
,,".D~
!!!!

(~ \~rwt
GRAMMING

PHIL CORNE

D~
Q,.~. c '/uit

PROGRAMMING SERIES

STEP-SY-STEP
. PROGRAMMING

COMMODORE 64
, GRAPHICS
;

!

THE OK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the OK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
learning how to program in BASIC_ Following the success of this
completely new concept in teach-yoursel f computing, the series
now carries on to explore the speed and potential of machine-code

'""", graphics_ Fully illustrated in the Screen-Shot style, the series
continues to set new standards in the world of computer books_

BOOKS ABOUT THE COMMODORE 64
This is Book Three in a series of guides to programming the
Commodore 64_ It contains a complete BASIC-and-machine-code
graphics langua~e for the Commodore, and features its own
f,raPhics editor w ich enables you to use all these facilities directly
rom the keyboard_ Together with its companion volumes, it bui lds

up into a complete programming and graphics system_

ALSO AVAILABLE IN THE SERIES
Step-by-Step Programming for the ZX Spectrum+

Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron

Step-by-Step Programming for the Apple lie
Step-by-Step Programming for the Apple lie

PHIL CORNES
V V After taking a BA in Mathematics and Computing, Phil Carnes has

V ~ been involved in system development of computer-based
education at British Telecom's National Training College_ He has
been a part-time technical author since 1978, and has become a

vv ~~ regular contributor to personal computer ma~aZines such as
Personal Computer World, Computing Todayand leetronics Today
International_ He has written a book and a large number of articles

on programming and using the Commodore 64_

v~~
/V~

"'" -- .-
"..

:;-- .
... -. --~

/:/

f--I-
~

-+

D~
~ (L-rJJfJJ(~~~ ~~ ""':'('Jf.

"""'-.:;..,..0 ~KUL " .. ~

"""" -- ::J. STEP-SY-STEP ~..., .:J
Ii!""" ~

PROGRAMMING ~ ,
\
\ COMMODORE 64
~~ GRAPHiCS I-

~
I I I I I I I I I I I II

PHILCORNES
"

\ ,
\
\

\
. ~

.~A<fIiI- 1/
A;" V

..--r I ,/ .4
rT GUILD PUBUSHING · LONDON v v .. ~

,/VDG
/

CON TEN L-------4~~------~ L-______ ~~~--------

'-----Gf--------.J
PICTURES WITH POINTS CIRCLES AND ARCS 1

HOW TO USE
THIS BOOK

~-------1~I------"
HOW TO KEY IN
THE PROGRAMS

IL------4~f--------~ L-------~~f__------~
THE GRAPHICS LINE GRAPHICS 1

TOOLKIT ~I-__ _

'-----------101---- LINE GRAPHICS 2

HIGH·RESOLUTION
COLOR

The OK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited .

Deslper Steve Wilson
Photolrapher Vincent Oliver
Series Editor David Burnie
Series Art Editor Peter Luff
Managing Editor Alan Buckingham

Copyright © 1985 by Dorling
Kindersley Limited, London

This edition published 1985 by Book
Club Associates by arrangement with
Dorling Kindersley Limited.

The term Commodore is a trade mark
of Commodore Business Machines, Inc.

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Uovet
S.A., Barcelona, Spain
Printed and bound in Italy by
A. Mondadori, Verona

L---------1[EJ~---
CIRCLES AND ARCS 2

L-______ ~~~-------
OVERPRINTING
AND ERASING

L-______ ~~~--------
FILLING SHAPES 1

L-______ ~~~~------
FILLING SHAPES 2

L-_______ ~~------~
HIGH·RESOLUTION

TEXT

______ ~~-----ILI _____ ~~-----I~I _____ ~~-----

DESIGNING SCREEN·SCROLLING TURTLE SHAPES 1

L------E]f------
"--=--------------- TURTLE SHAPES 2

~----------~ 44 f--__ ~ ~

'------~>-----·----Gf------ GRAPHICS EDITOR 1
PAnERN.FILLING 1 '----6>------ ,-_T_U_RT----"LE SPIRALS

L G GRAPHICS EDITOR 2

PAnERN·FILLING 2

0
TURTLE PAnERNS

@] I ~ I EJ I I
BLOCK·COPYING 1 GRAPHICS EDITOR 3 HIGH·RESOLUTION

GRID

EJ
ERROR TRAPPING

EJ
~

ROUTINES CHECKLIST

G I I EJ BLOCK·COPYING 2
TURTLE GRAPHICS INDEX

HOW TO USE THIS BOOK
The Commodore 64 is one of the most powerful
microcomputers currently avai lable, and it has many
faci lities that set it apart from other machines.
However, it docs have onc drawback. The
Commodore's BASIC interpreter - the part of the
computer which "understands" the BASIC
programming language - has a rather limited
vocabulary. Because it doesn't understand keywords
like PLOT, DRAW or COLOR, complex graphics often
require long programs full of difficult-to-use POKE
statements. Furthermore, when you tryout programs
like these, the chances arc that thc Commodore will take
quite a long time to run them because so many
instructions are needed.

This book provides you with the tools you need to get
much more out of the Commodore 64 's graphics by
taking you beyond BASIC. With the routines and
programs on the following pages, you can makc
graphics both easier to key in and much faster to run.

Speeding up Commodore BASIC
Each time you run a BASIC graphics program, the
Commodore will almost certainly have to perform a
number of different operations, repeating each onc over
and over again. Take as an example plotting a single
point on the screen. Each time the computer plots a
point, it must interpret quite a long sequence of BASIC
instructions. A considerable amount of l< thinking" time
is needed before the point appears. Imagine how much
work the Commodore has to do if you want it to draw a
series of lines made up of individual point-plots.

Program sequences that are to be repeated are usually
written as routines. Indeed, this book gives you a whole
package of routines to produce graphics. However, they
are not ordinary BASIC routines activated by the
command GOSUB. Instead, they arc written so that

. they produce instructions in machine code, and these
instructions are t riggcred by the command SYS. Using
these routines, graphics programs run tens or hundreds
of times faster than they would with pure BASIC.

The machine-code graphics routines
Pages 10-43 introduce 19 machine-code graphics
routines that together build up into a complete graphics
system. The routines are arranged in blocks, with each
block coded by a lener from A to L. Each block contains
from one to five separate graphics routines coded by a
number (A I , A2 and so on). You can find a complete list
of the routines on pages '62-63.

To tryout any program in this book, all you have todo
is key in the main BASIC program together with the
routine blocks that it uses. You can find full details of
how to do this on pages 8-9. By saving each of the

routine blocks on tape or disk as you go through the
book, you'll have a ncw and flexible graphics capabili ty
at your fingertips.

Linking BASIC and machine code
When you tryout a program in this book, the computer
will run it by using a number of the machine-code
routines. Here is a program sequence which would plot a
series of points:

HOW A PROGRAM USES THE GRAPHICS ROUTINES

START

Call the high-resolution
routine

Call the clear-and -color
routine

Call the plot routine

Call the plot routine

FINISH

What the macbla
does

Sets up the high-resolution
screen

Clears the screen and sets
its colors

Plots a single point

Plots a single point

You can sec from the diagram how the BASIC and
machine code work together. A typical example of a
main BASIC graphics listing which plots points in this
way looks like this:

MAIN BASIC LISTING

You wi ll notice that the listing contains a number of
lines which feature the SYS command . This makes the
computer carry out instructions that start not at a
specified line number, but instead at a specified address
in memory (you can see the address numbers in the
routines checklist on pages 62-63).

In the previous program, when the computer rcaches
line 10 I 00, for example, it goes to memory add ress C l.
C I is simply a variable holding the number of the
memory address for routi ne 1 in block C. When the
computer goes to this address it follows the instructions
that begin there. T his is where the graphics routine
comes in. It puts instructions that code a graphics
operation directly into the memory. Once there, the
computer can read them without using BASIC.

You can see the routine in the panel below. It plots
points. Because it has low line numbers, its instructions
are POKEd into memory before the main BAS IC listing
calls on them . This means that from the moment the
routine has been run, the potential for plotting points
with machine code is in memory ready to be used.

When the computer encounters the command SYS
C I in the main BASIC program, it will jump to the
correct machine code and plot a point. This will happen
very quickly because BASIC is not used.

Block

What is machine code?
Although you can program the Commodore with
BASIC keywords, ultimately it works only with
numbers. In every one of the 65,536 addresses in the
Commodore's RAM, there is room for one number with
a value between 0 and 255 . It is these numbers that
control all the programmable operations that the
computer can perform.

Before a program can be carried out, the Commodore
must convert all BASIC inst ructions, strings and
variables into numbers and put them into specific
memory addresses. Once this has been done, the
computer can then start working on them to produce
results.

The number language that the computer uses is
known as machine code. Machine-code instructions are
carried out very rapidly. A large amount of the time
your Commodore needs to run a BASIC program is
taken up with converting from BASIC into machine
code, rather than computing results.

This book speeds up programs by cutting down the
amount of BASIC-to-machine-code conversion that the
Commodore needs to do. The graphics routines use the
POKE command to put DATA numbers directly into
memory, and these produce machine-code results.

C f---------,
code block is labeled by a
single letter from A to L (block
M docs not contain machi ne
code). The program line
num bers in the blocks form a
single sequence which fo llows
their alphabetica l order.

L-___ -----.J

parameters
i [ells you how to

key in each routine and also
what parameters, if any. you
need to specify.

Parameters This section [ells
you what the parameters
specify, and what limits they
must fa ll between.

PLOT routine.-----k~-~~,,---
Routine names This tells you

What the routine does
which routine or routines [he
block contains.

The routine plots a single pixel at a specified point on the high
resolution screen (the screen coord inates are shown in the -jH:o.;ji;er;;;;(;ti(j:;;-'ji'hT,;tc:u;-
grid on page 61). yeu what each of the r~UEines

AND PARAMETERS

x,v Horizontal and vertical coordinates of the point
to be plotted 0-319 and o·

ROUTINE LISTING

in the block does, and also any
special information you need in
order to use them.

Syntax This shows the
general form in which the
routinc(s) must be keyed in.
Here SYS C 1 is the part of the
syntax which calls the plot
routine, while X,Y arc the twO
parameters it requires.

Routine listing This is the
listing you must key in and run
in order to be able to call the
machine-code rOUEinc(s) it
codes.

HOW TO KEY IN THE PROGRAMS
Because the programs in this book all depend on
machine code, it is crucial that you know what to key in
beforc you start. To run any program in this book, you
need to do three things:

1 Make surc that your Commodore is set up for high
resolution. You can see how to do this in the panel on the
right of this page. You only havc to do this once every
time you switch on, but failing to do it will prevent the
programs from running.

2 Find out which machine-code rourine blocks the
program needs, and load or key them in . You can either
load the separate routines one by onc, or, if you have
worked through the book already, you can load the
complete set. Both ways work equally well (it doesn 't
matter if you have unused routines in memory). Make
sure that you add all the routines in order, with the
lowest line numbers being keyed in or loaded first.

3 Add the main BASIC listing and run the complete
program. If you have trouble with a program, consult
the panels on the opposite page.

Writing your own programs
Once you have a complete set of the graphics routines ,
writing your own high-resolution graphics programs is
easy. All you have todo is load the routines and then add
a main BASIC program, starting at line 10000.

Here for example is a program which will draw fan
shapes on the screen. You can see from this how simple
the graphics system is to use) and how much more
straightforward the listing is than a pure BASIC
equivalent.

HIGH-RESOLUTION GRAPHICS PROGRAM

After you turn on the computer and before you tryout
the programs in this book, you must key in the following
series of direct commands:

HIGH-RESOLUTION COMMA NDS SCREEN

The Commodore does not have a section of memory
specifically reserved for high-resolution graphics.
These commands make the computer rearrange. its
memory so that it can store high-resolution graphics
information in the area normally used by the BASIC
system. The programs in this book will not work if you
forget to key in these commands.

This sequence must be typed in as direct commands
and not as part of a program. If you try to enter the
commands as statements in a program) there is a chance
that the program may destroy itself before it has
finished running.

Program line numbers
When you key in a program from this book, the
complete listing will rail into two parts. The machine
code routines, which make up the first part of the pro
gram, will always start at line number 100. The main
program, which makes up the second part and calls the
routines, will always start at linenumber 10000. In addi
tion to this, ordinary BASIC subroutines (subroutines
which do not involve machine code and which are called
by GOSUB) will normally appear at line number 20000
onward.

How to store and re-load the routines
The value of machine code is that it is very fast .
However, some of the blocks of machine-code routines
in this book are quite lengthy, and there would be little
point in using this system of speeding up programs if it
meant a great deal of extra time on the keyboard. But if
you have a cassette or disk storage system, there is no
need ror you to key in any machine-code block more
than oncc.

As you encounter each block for the first time, after
testing that it works correctly you should store it. Then,
when you want to tryout a program, you can re-load the

The program won't RUN or LIST
Check that you have set your Commodore up for high
resolution. If not, switch off and begin again.

The program won't RUN but it will LIST
Check that the lines are in the right order. If you merge
routines and programs out of line order, the complete
program will probably crash. This is particularly
important to remember with turtle graphics.

The program only RUNs partially
You may have keyed in the routines incorrectly. On
page 6 I , you will find an error-detection system which
will help you to track down any typing errors in your
machine-code DATA. Errors in BASIC can be detected
by switching to low resolution (see page 10), after which
programming faults will be revealed by the usual
Commodore error reports on screen.

The program just produces a READY message
Check that your machine code is in memory. Try typing
SYS Al in as a direct command. If the screen doesn 't
switch to high resolution, your routines are either
incorrectly keyed ~ or have not been run.

The program works, but won't re-RUN
If you key in RUN on a line which already has some
graphics on it , the computer won't understand the
instruction. Press the RUN/ STOP and RESTORE
keys together, and key in RUN again.

routine blocks needed, add the program, and you are
ready to run.

Block A of thq machine-code routines contains a
merge routine which allows you to add together routine
blocks and programs (the Commodore normally erases
any program in memory if you load another). If you key
in and store every routine block separately as you go
through the book, the merge routine will let you later
add all the routine blocks together. The resulting
complete set of machine-code routines will enable you to
run any high-resolution program in this book without
having to load routine blocks separately. You can find
instructions for using the merge routine on page 11.

How to alter a program
The system or program numbering is designed to help
you to distinguish between the machine-code routines
and the main program. You can alter the main program
just as you would any other BASIC program. You can
edit, extend or reorganize in any way you like, as long as
the main program continues to use only the routines
that precede it. To modify a main program, simply
delete or alter the lines you want to change, and the
revised version will be ready to run.

When do I have to set up high resolution?
You must do this every time you turn the computer on, if
you want to use the high-resolution screen. Get into the
habit of doing this automatically after you switch on.

Can I start anywhere in the book?
Yes, you can start anywhere you like. However, you will
find it much easier to work through pages 10-43 first,
building up a library of the routine blocks on tape or disk
as you try them out. If you do this, you will avoid having
to key them in more than once.

How can I add together routines and programs
from a tape or disk?
There's no MERGE command on the Commodore, but
this book gives you a machine-code equivalent. This is
contained in routine block A. If you load this block and
then run it, you can merge anything else with SYS
49297 . Full details are on page 11.

Can I load just one routine from a block?
No. You must always load or key in complete routine
blocks.

C an I adapt the machine-code routines?
No. If you alter the DATA numbers in the routines it is
highly unlikely that the routines will work.

How do I stop a program?
Press the RUN / STOP and RESTORE keys together.

THE GRAPHICS TOOLKIT
The machine-code routines featured on these two pages
don 'r produce graphics themselves , but they arc either
essential for the routines that do, or else they give you
program-handling facilities which'Commodore BASIC
does not have.

Before you can produce graphics, you need to turn on
the high-resolution screen. To do this, set your
Commodore up for high resolution, if you haven't
already done so (see page 8), and then type in the whole
of the listing in the block A panel on the opposite page.
Before you go any further, you should slOre the listing
on tape or disk. If you save a block of routines before
running it, you can re-load it if it fai ls to work the first
time so that it can be debugged.

High- and low-resolution routines
After you have saved block A, add this very shorr main
program to it :

10000 SYS Al
10010 GOTO 10010

You now have a program which when run will turn on
the high-resolurion graphics screen. The program
consists ofrwo parts. Line 10000 calls a machine-code
routine for high resolution, while line 10010 forms an
endless loop, preventing the computer from trying to
produce a READY message on the high-resolution
screen. If you now key in RUN and then press
RETURN , you should see a display like this:

=------,

The program works in a few seconds. It uses the
command SYS A 1 to activate the first machine-code
routine in block A, turning on high resolution.

If you now press the RUN/ STOP key and type in
SYS A2 followed by pressing RETURN, you will return
to the low-resolution (text mode) screen:

How the routines check themselves
When you first run the program, you may notice a shorr
time delay before the high-resolution screen is turned
on. This delay is the time taken for the five rourines in
block A to load their machine code into memory. This
only has to happen onee each time you switch on,
because all the routines check to see if they have already
been placed in memory.

Line 100 in block A checks 10 see if the machine code
has already been loaded. !fit hasn 't, control is passed 10
the loop in lines 110 and 120 which READs all the
DATA and POKEs it into memory starring at location
49152. But if the DATA is already in memory then this
loop is skipped .

Lines 130 to 150 set up the variables that tell the
computer where each set of machine-code instructions,
from Al to A5, starts in memory. There are five
variables - one for each routine.

The restore routine
The next routine in the block doesn 't produce anything
on its own, but is very helpful in graphics programming.
Because all the routines in this book contain DATA
statements , you can run into trouble if your main
programs also contain DATA. This is because the
computer READs DATA as a single series, starring at
the beginning of a program, ana working through to the
end. If the DATA is to be READ more than once, the
RESTORE statement is normally used. However, the
Commodore's RESTORE statement cannot be used to
specify READing of just parr ofthe DATA, so normally
you cannot make the computer use DATA selectively.

The restore routine provides just this facility. It 's
quite simple to use in programs. The command:

SYS A3 ,15000

for example makes the computer READ the DATA
beginning at line 15000. Watch out for this routine
where a main program uses DATA.

The rescue routine
The fourth routine in the graphics toolkit will help you if
you accidentally erase a program. It reverses the effect
of the BASIC command NEW (in some BASICs, this is
carried out by the command OLD). The rescue routine
lets you recall a BASIC program. This is possible
because NEW does not in fact clear a program
completely, but merely alters some memory pointers so
that the program is ignored by the computer. To cancel
NEW, simply type :

SYS 49271

This routine has to be called by a number instead ofb)'
SYS A4 because all variables are "forgotten" if you use
NEW.

The merge routine
Throughout this book you will want to join separate
programs together, usually to combine a main program
with one or a group of rourines. The merge routine
allows you to add one program onto the end of another.

Suppose you have a program in memory, and then
want to add another program to it. Typing:

SYS 49297, "FILENAME"

or, if you are using a disk drive,

SYS 49297, "FILENAME ",8

is all that is needed. The program you have identified
with the fi lename will now be loaded onto the end of the
program in memory. N arice that again the routine has
to be called by its address number instead of by SYS AS .

How to add the routines together
You can use the merge rourine to build up a complete set
of all the machine-code graphics routines in this book.
All you have to do is load or key in block A, run it, and
then any other routine block can be added to itwith SYS
49297. You should add the routine blocks in
alphabetical order as you encounter them in the book.
Their line numbers are designed to form a single, non-
overlapping sequence. .

Remember whenever you use the merge routine to
add programs in strict line order.

What next?
Now you have saved your graphics toolkit on tape or
disk, you can add some more routines which will start
graphics on the screen . Turn over the page to find out
abour quick ways to use color.

r--------i BLOCK A r--------i
HIGH-RESOLUTION, LOW-RESOLUTION,

RESTORE, RESCUE and MERGE routines

What the routines do
High-resolution turns on the high· resolution screen. All the
programs in this book need this routine in order to work.
Low-resolution returns the screen to low resolution (text
mode).
Restore resets the DATA pointer toa specified line of DATA in
a program. This allows DATA to be READ selectively.
Rescue cancels the effect of the NEW command. It is
equivalent to the OLD command of other BASICs.
Merge adds a second program onto the end of the one
currently in memory. The merge routine does not arrange lines
in numerica l sequence. The line numbers of the second
program must therefore be higher than and not overlapping
those of the first. .

SYNTAX AND PARAMETERS

High·resolution: SYS Al low-resolution: SYS A2
Restore: SYS A3,N Rescue: :(:~) 49271 Merge: SYS

49297,A$,8

8 (Restore only) Line number at which the program is
to start READing DATA.

GJ (Merge only) Filename. This can be the name of any
program currently on tape or disk.

0 (Merge only) Device number. Add ,8 if you are using a
disk drive; omit if you are using a tape.

ROUTINE LISTING

HIGH-RESOLUTION COLOR
Now that you can switch the Commodore to high
resolution, the next step is to decide which colors you
want to use. There are two ways in which you can do this
- you can either specify colors for the whole of the
screen, or for just pan of it. As you will see later on,
coloring the screen is best done in a particular order.
First you set up overall colors, then you draw your
design, then, if you want to, you can change areas of
color.

Coloring is done with two machine-code routines that
are programmed by block B on the opposite page. They
are the dear-and-color routine and the block-color
routine.

Commodore color codes
If you have read Book Two in this series, you will be
fami liar with the color-coding that the Commodore uses
in high resolution . There are 16 colors ava il able. Their
codes are summarized in the table on page 63.

In high resolution, there are some res trictions in the
way that these colors can be used. In the bit-map mode
only two colors can be used in each 8x8 pixel block, but
resolution is very good. In the multi color mode four
colors can be used in each 8x8 block, but the resolution
drops by half. All the programs in this book use the bit
map mode to give the best resolution.

On the screen one color is known as the background
color, and the other the foreground color. Graphics
images appear in the foreground color surrounded by
the background color. Any combination ofbackground
and foreground colors can be selected by adding
together two of the color control numbers shown in the
table.

To see how the dear-and-color and block-color
routines work, you wi ll need to load or type in the block
A listing on page II , if it is not in memory already, and
then type block B onto the end. When you have done
this , save the combined blocks so that you have a total of
seven routines safely stored on tape or disk. You will find
that every program in this book uses routines from both
these blocks.

The c1ear-and-color routine
To specify a foreground and background color for the
whole screen, you use the clear-and-color routine. This
routine is called by the command SYS B I , together with
a color code, like this:

SYS BI,80

(don ' t forgellhe comma) . If you have blocks A and B in
. memory (that is, if you have loaded and run them) this
command would dear the screen and set up a
foreground color of green and a background color of

black. You wouldn ' t actually see the foreground color
until you had plotted or drawn with it .

If you have only carried out this procedure before
with BASIC, you' ll sec a huge reduction in the amount
of time it takes.

The block-color routine
You can color a selected area of the screen with the
block-color routine. This is called into action with a
command like:

SYS B2,X, Y,C

where C is the required color combination, and X and Y
arc a pair of high-resolution coordinates (you will find a
high-resolution coordinates grid on page 60). This
routine controls the colors in one 8x8 pixel block. It
takes the two coordinates, rounds them down ~o get the
corner of r :l 8x8 block, and then colors the block. So, for
example, the line:

SYS B2, 100, 100,118

would set the color of just the 8x8 pixel block containing
the high-resolution coordinates 100, 100 to yellow on
blue (color codes 112+6). If you had previously selthe
overall background color to something other than blue,
you would now see a single bl ue block standing out on

RANDOM BLOCK- "'""-... ~
COLOR PROGRAM

07=05
How the program works
Three values a rc selected at
random - a color combination
and a pair of coordinates.
These fix the color and position
of each bar . The height is
random, while the width is
fixed at 40 pixels for each bar.
(The time above is that taken
for SO bars to be displayed.)
Line 10000 sets up the high
resolution screen and colors it
black with the c1ear-and-color
routine.
Lines 10010-10070 make up
a loop which produces random
bars in random colors.

ROUTINES USED BY
THIS PROGRAM

I Block Routine(.) II Pagel

A High·resolution tJI

L

B_C_le_,_r-_,_nd_-_co_lo_r_-, 13
Block-color

the screen. Anything plotted or drawn in this block
would be in the new foreground color - yellow. T his
might sound complicated, but it 's easy to master.

Random block-coloring
You can test out the block-color routine with the
fo llowing program _ It sets up random colors in bars over
the screen. Using the routine by having SYS B2 inside a
loop allows you to color any size of rectangle. To try it,
load blocks A and B if they are not currently in memory,
add this listing and then run the complete program.

RANDOM BLOCK-COLOR PROGRAM

BLOCK B 1--------1

CLEAR·AND·COLOR and BLOCK·COLOR
routines

What the routines do
Clear-and-color clears the high-resolution screen, and sets
up the initial overall foreground and background colors for the
whole screen. It is normally used at the beginning of a high
resolu tion graphics program, immediately fo llowing the high·
resolution routine.
Block-color sets up the foregrou nd and background colors
for a single 8x8 pixel block. It is often used wi thin a loop to
color rectangles containing a number of blocks. The block
color routine can be used to reset the colors of an area of the
screen as often as required wi thin a program, so that a range
of colors can be built up in a display.

Both these routines use the standard Commodore color
combination codes. For details, see the chart on page 63.

SYNTAX AND PARAMETERS

Ctear'and-coto" SYS Bl,C Btock-colo" SYS B2,X,Y,C
c II Color combination code (range 0-255).

G (Block-color only) Horizontal and vertical
X,V coordinates of any point within the 8x8 pixel block

that is to be colored (ranges 0-319 and 0-199)_

ROUTI NE LISTING

PICTURES WITH POINTS
In any high-resolution picture there arc a number of
clements from which the display is constructed. The
fundamental element is a simple point, a single lit pixel.
Once you can plot points, all the other graphics objects
like lines and circles can be produced by plotting in a
specific way.

The Commodore doesn 't have a PLOT command in
its BASIC. However, the single routine in block C on the
opposite page gives you this facility. Once this routine's
machine code is in memory, you can use it with the
following kind of command:

SYS C l ,X,Y

This will plot a single point at position X,Y on the high
resolution grid. You can see the plot routine at work in
the pair of programs on these two pages. Each of them
uses the routine in a different way. The first plots predic
tably, while the second is semi-random.

/

~L

the plot routine
One way of using the point-plotter is to make it
produce by plotting rows of points close together.
The Point Star program makes the plot routine produce
a star. It uses routines in blocks A, Band C, so you will
need all these in memory as well as the listing before you
run it .

Shading with the plot routine
If you draw lines with the plot routine, pixels are plotted
in a regular way. But anothertechnique that you can try
out with the routine involves planing points morc
densely in one part of an object than in another. The
Planets program uses this method to produce an almost
three-dimensional display.

PLANETS PROGRAM
BLOCK Cf------I

PLOT routine

What the routine does
The routine plots a single pixel at a specified pOint on the high
resolut ion screen (the screen coord inates are shown in the
grid on page 61).

SYNTAX AND PARAMETERS

SYS Cl,X,Y

Horizontal and vertical coordinates of the point
to be plotted (ranges 0-319 and 0-199).

ROUTINE LISTING

Random numbers and shading
The Planets program uses random numbers to decide
which pixels within a boundary should be plotted. As
each pixel in each horizontal line of the planet shape is
considered in turn, the random function determines
whether or not the pixel should be plotted. T he
probability of any point being plotted is made to depend
on how far along the line, from left to right, the point
lies. The left-most point is never plotted while the right
most point almost certainly is. In this way the brightness
increases across the width in a realistic fashion . The pro
gram is written so that the total length of each line of pix
els varies, producing a circular outline. However, the
shading technique will work with any regular outline.

PLANETS PROGRAM Lines 10010 and 10030

06=30
How the program works
The program uses a BASIC
subroutine which plots rows of
points, varying the width of
each row to produce a circular
outline. The plot routine is
called so that it comes into
operation most frequently
toward the right or each row.
Line 10000 sets up the high
resolution screen and selects
the roreground and back
ground colors.

select two pairs of coord inates
which specify the center of
each planet.
Lines 10020 and 10040 caU
the subroutine which ca rries
OUt the plotting.

ROUTINES USED BY
THIS PROGRAM

II Pagel

[illl~
15

'------'

I Block Routine(s)

A High·resolution
8 Clear-and-color
C Plot

LINE GRAPHICS 1
As you saw in the Point Star program on page 14, you
can use FOR ... N EXT loops to plot straight lines, as
long as the X and Y coordinates are related to each other
in a simple way. Butthis is ratherlimiting, because often
you will want to draw lines with slopes that are difficult
to work out in this way.

To draw a straight line between any pair of points,
you need to use the draw routine. This is the single
routine contained in block D on the opposite page. It's
much longer than the plot routine in block C because it
has a lot more work to do. With this block, the command
SYS Dl ,X,Y will make the computer draw a line from
the last point it visited to the point at X,V.

Line designs
With computers that feature a DRAW command, it 's
easy to produce designs that use the command with
STE P to make interesting displays. With the draw
routine in memory, you can do this with the
Commodore. The following program is a simple

of this . It uses routines in all four

blocks from A to D, so these blocks must all be in
memory before you can run the program. It draws a
lattice-like web of lines.

LINE WEB PROGRAM

00:12
How the program works
The program uses the draw
routine to produce
interconnecting lines. The plot
routine (line 10010) is used to
reset the draw routine's last
coordinate to 0,0. Try
removing the SYS C 1
command and sec what
happens if you run the
program more than once.
Lines lOOOO~10010 set up
and color the high-resolution
screen.
Lines 10020-10050 rorm the
first loop that draws lines from
the top or the screen down to a
single point at the bottom.
Lines 10060-10090 fo rm a
loop which repeats the process
upsi de-down.

ROUTINES USED BY
THIS PROGRAM

I Block Routine(s) IIPsg.1
A High-resolution 11
B Clear-and·color 13
C Plot 15
D Draw 17

Testing the draw routine's memory
Making the computer draw a line is substantially more
complex than instructing it to plot a point, as the length
of block D shows. Much of the machine-code in this
block is concerned with making the computer
remember which was the last point it visited. You can
see how it uses this information if you tryout the next
program. Torun it, you will need to load or key in blocks
A} Band D, if you don 't still have them in memory from
the previous program. If you have all the blocks in
memory, and block C as well , you don 't have to do
anything with the machine-code routines. Just change
the main program fro1Jlline 10000 upward.

After line 10010 has set up the high-resolution screen,
lines 10020-10070 select two random coordinates, and
then draw a line to this point from the last point visited.
The draw routine has to remember and update the
current last point. If a point is off-screen, the routine will
still remember where it is although it cannot actually be
seen. This means that the program can continue even if
its results are invisible.

BLOCK D f------i

DRAW routine

What the routine does
The routine draws a line from the last paint visited to tbe point
specified. The routine accepts a pair of coordinates which set
the final point in the line (the screen coordinates are shown in
the grid on page 63). The draw routi ne is not restricted to
working only with points that lie within the screen boundary. If
either or both of the points involved are off the screen, the line
will sti ll appear correctly, but will be "clipped" by the screen
edges. The draw routine is essential for the operation of the
ci rcle and arc routines (see page 21).

SYNTAX AND PARAMETERS

SYS Dl,X,Y

Horizontal and vertical coordinates of the line end
point (ranges 0-319 and 0·199; higher values will be
accepted but will produce off-screen images).

ROUTINE LISTING

LINE GRAPHICS 2
When you use the draw routine, you can either specify
separately each line that you want the computer to draw
or you can use a program sequence to specify a number
of lines. Drawing parallel lines a set distance apart is
quite easy - you just use a FOR ... NEXT loop with
STEP. However, with a slightly different kind of
program, you can produce series oflines which combine
to produce special visual effects.

Radiating patterns
If you make the Commodore draw radiating lines close
together, you will find that it produces some interesting
patterns. This is because the screen resolution, although
good, is limited. Sloping lines are actually drawn as a
series of steps, and these sometimes combine to give
unexpected secondary shapes. You can see this kind of
pattern if you tryout the Radiating Pattern program
below. It uses routine blocks A-D. The type of pattern

RADIATING PATTERK PROGRAM

produced depends on how close together the lines are.
Try altering the STEP value and see what happens.

Drawing diamonds
You can make the draw routine build up shapes if you
use a loop. The Diamond program below does this - it
draws a succession of diamonds, starting with the widest
that will fit on the screen and then narrowing down.
Note that if you change the STEP size to an even
number, the shaded effect on the two diagonally
opposite faces will disappear. The program uses blocks
A-D.

Line landscapes
By using the draw routine and then adding different
colors to parts of the screen with the block-color routine,
you can build up quite complex pictures. The Line
Landscape program shows you one way you can do this.

LINE LANDSCAPE PROGRAM

188°0 SYS "' , SYS 81,112 1 10 fOR x-a TO 320 ~T[P 3

1
10°0°320° SYS Cl.X,144 SYS 01.X*4.0
18840 SYS Cl.X+J.144
1 50 SYS Dl.X*4+i.O

1
100°7"00 H[XT X : V=144 fOR C=2 TO 16

18838 ~~~ ~f:~l~~Y
10106 Y=V+C : "[~T C
10116 LX =O : X=312 : lY = 144
10120 UY =192 C=13 : GOSUB 10190
18130 POKE 53 80 12
1 140 lX =184 Uk=208 : lY =88
10150 UY =144 C=68 : GOSUR 10190
10160 LX =248 UX=Z96 . lY= 56
10170 UY =168 C=68 : GOSUB 10190
1011° GOTO 16 80 111 0 FOR X=L TO UX STEP 8
1 2 8 FOR Y=L TO UY ST(P 8

1 21 SYS 82 •• Y C
220 H[XT V "tXT X RETURN
ftDY.

This program draws radiating lines that seem to come
from a point hidden by a "horizon". Then, by drawing
horizontal lines that get closer together away from the

boltom of the screen, an illusion of distance is created.
Finally, two "buildings" are produced by the block
color routine, using the same color for foreground and
background so the underlying display is blanked out.

LINE LANDSCAPE
PROGRAM

00:35
How the program works
The draw routine is used to
display lines in two different
ways. The sunset pattern is
produced by gradually
decreasing the slope of the
lines above the horizon, while
in the foreground the space
between the lines is
successively increased.
Lines 10010-10060 form a
loop which draws lines of
decreasing gradient between
the top of the screen and a

vertical value of 144.
Lines 10070-10100 draw the
perspective lines in the bottom
part of the screen.
Lines 10UO-10220
use the block-color routine
three times to color the shapes.

ROUTINES USED BY
THIS PROGRAM

'Page II Block Routine(s)
r===

11 A High-resolution

13 B Clear·and·color
Block·color

15 C Plot
17 D Draw

Co.- L-____ --'

CIRCLES AND ARCS 1
The two routines in block E on the opposite page let you
draw circles and partial circles, or arcs. Both of them
work by drawing small straight lines, so it's essential
that you always have block D, containing the draw
routine, in memory when you use them.

To try the program that follows , load routine blocks
A-D (remember that if you run block A first, you can use
the merge routine todo this) and then add block E. Now
key in the BASIC listing that follows. The program
activates the circle routine with the command SYS El,
and the arc routine with the command SYS E2, using
them a total of nine times. The circle routine uses three
parameters while the arc routine uses five. They are all
explained on the next page.

The routines you have loaded in will also enable the
program to use DATA to control planing. This facility is
provided by the restore routine. Here it makes the

TELEPHONE PROGRAM

LIST 10000-10190

'°8°0 SVS Ai SYS 81.4 '8 10 SYS A3 15000
1 020 F=O : ~OK[53280,6
10030 READ X Y
10040 IF X=-! THEN F=Y . GOlD 10030
10050 If X(O THEN 10690
10060 IF f=1 THEN SVS Oi.X,V
10070 IF F=D THEN SYS Cl.X,Y
10080 GO TO 10030
10090 SYS [2,160,220,196,251.289
10100 SYS E2.160.220~183~256.283
10110 SYS EZ.I00.5G,£2.1bS.345
19f~g ~~~ ~~:~~g:~~62~~195.15
10140 SYS [1,160,120:25
10150 SYS [1.160,120.12
10170 SYS [2,128,160.34,14,166 113133 ~~¥o[f6t~8·160.33.14.166
I EftDV •

program READ DATA from~l~in~e~15~O~O~O:.... ---;--;;;;o--,:...-==;:::;;:;:::;;:::;;;::;;;;;:;;;;;:;;;;;:;;;;;;:::;:;:;:::;:;:;:::;:;:;:::;:;:;:::;:;:::;;;:::;;;:==~
TELEPHONE PROGRAM

How the program works
All the instructions for the
st raight lines in the display are
held in DATA statements. The
program READs these in
sequence, and then uses the
plot or draw routines. It then
adds the circles and arcs.
Line 10010 makes the
program READ the DATA
from line 15000 onward.
Lines 18030-10080 activate
the plot and draw routines.
Lines 10090-10180 produce a
total of nine circles and arcs.
Line 10190 StOpS the READY
message spoiling the display.
Lines 15000-15140 contain
DATA that select routines and
fix coordinates.

ROUTINES USED BY
THISPROGRAM

I Blo<k RoutiDc(.) Ilpagcl

A High-resolution 11
Restore

B Clear·and·co!or 13
C Plot 15
D Draw 17
E Circle 21

Arc
~

The second screen of the listing consists entirely of the
DATA needed for plotting and drawing the straight
parts of the display.

TELEPHONE PROGRAM (CONTD.)

How to use the circle and arc routines
The circle routine is very straightforward to use. All you
have to do is decide where you want the center of the
circle to be, and how long you want its radius. If you
want to draw a circle at the center of the screen
(160,100) with a radius 0[50 pixels, you would key in:

SYS E 1, 160, 100,50

Using the arc routine requires a bit more planning.
The parameters that you need to specify are the same as
those for the circle, but in addition you need to supply
two numbers - a starting angle (P) and a finishing angle
(Q). This enables the routine to draw just part of a
complete circle. Both the angles are measured in
degrees starting at the positive horizontal axis, and
turning clockwise around to the angles ' radi i. Suppose
you wanted to draw an arc like this:

=.,..-------1

X,V- 160, lOO

R-50
1'-315

R
P .__-_

Q-IlL.L----+-f--,--,--+---

fd
The complete command for the arc would be:

SYS E2,160,100,50,315,105

Remember that all positions and lengths are in pixels,
and all angles in degrees.

BLOCK E
CIRCLE and ARC routines

What the routines do
Circle draws a circle of a specified radius and center.
Arc draws part of a circle. 80th use the draw routine.

SYNTAX AND PARAMETERS
Circle, SYS El,X,Y,R Arc, SYS E2,X,Y,R,P,Q

B Horizontal and vertical coordinates of the center of
the circle or arc (ranges 0·319 and 0·199; values

X, Y higher than these will still be accepted but may
produce off-screen images).

I R II Length of radiUS in pixels (no range limit)

[] (Arc only) Angle at which the arc is to start,
measured in degrees clockwise from poSitive
horizontal axis (no range limit).

~
(Arc ,only) Angle at which the arc is to finish,
measured in degrees clockwise from positive
horizontal axis (no range limit).

ROUTINE LISTING

2500 IF PEEK(50202)=169 THEN 2530
2510 SYS A3,2540 FOR C=50192 TO 50549
2520 READ B ; POKE C

6
8 : "EXT C

2530 [1=50202 ; [2=5 225
~540 g=f~ 8·g:g·rt~:r;~41 4 .. 550
2560 DATA 1~2 1~2 0 142,2~.196.142
2570 g~f: ~41~~§·f~i·~g:,~4ft~46196 2'80
2590 DATA 141.4.192.~2,46.192.140

2600 DATA 16~196 142,17 196~32 40
~610 OATft' 19",146§18119t~14"§1§1196
1;620 DATA ~1;tgt11~~ ~019g;~0~;1:2 ... 630 DATA
2640 DATA ~~·tgtl~~·~361g~·t~3;~~2 2650 DATA
2660 DATA 19t114~12~.1~611t921.141 ms DATA 24~ 9~~ 411~~' 92, 2122. DATA 19.1 141 • 92
2690 DATA 17 .7.1~~.141.9.1~2.113
2100 DATA 10~1921141.12~192.113.11
2110 DATA 19 14 113,19"132.211.196
2120 DATA 144.19. 73.24~ 96.105.104
2130 DATA f4t4t4~~9t~~77t2~~~9t~~OS 2740 DATA
2750 DATA 1~3 , 2~ 1§~'16s,§ 141,22
2760 DATA 1~6117~~2 ~196112S10t141 F70 DATA ~2'2~~ ' I~t ~~;135'1~4'~6 .. 780 DATA
2790 DATA 16~.19t,17~.24.19t,141.22

!I"
DATA ~~6~1~~1Il:+16IA~71~~:~~6 DATA 17~1~.'1 '~f~I~2'196'173 DATA
OfliTA f5 4 9 t 2 6~ ;14~·l6.48 DfHfII t~~IIII~I:lt :~~'log,~~~ HI goro oro
DftTfII ~'~ til 'l1~A~I§A+~~~~7 ~ K goro oro 1 ~.161.16 .1 • ~ .141.6

II DATA ~~~tj~i~t?i'I~9'~:\1~6~1.1 H DATA
gfliTA llt~ ~:1;~iI9~!~~;!I~ii~ oro oro

~ ,0 DATA

t i:tla'II§.l~:t·~:1~17~i DfliTA

i KI 8
ftTfII oro 1~, t1 6".' ~ ,hJ" oro 14. • • 0,

rs DATA ~~SI479~!6'~~7.l21!3,~87

d8
DATA 7~ ",1 ,4 ~'8"1 1"4 DATA 1 4 1 ... 4 ~2. 0
DATA 14,16~,I'~,lt! ~~"3t19~

H8 DATA ~it14.1 .1 • .7 .43 DATA

CIRCLES AND ARCS 2
One technique which may be new to you, but which can
be used to great effect, is recursion. Recursion means
repetition, but it's repetition of a special kind. On these
two pages, you can develop a program 'that produces
recursive patterns with circles.

Recursion with circles
The listings opposite show you one of the big advantages
of recursion - programs that are quite short can
produce complex displays. To see the first display
below, load blocks A, B, 0 and E, if you don't have them
in memory already, key in the first listing opposite, and
then run it . The program repeatedly draws smaller and
smaller circles until it has produced a sequence of seven,
and then it starts the process again from another
position.

Once you have run this program, you can start to alter

it . The most obvious change you can make is to the limit
set by line 20000. After you have done that, try altering
the values in line 20010. Here is one way to do it:

20010 SYS El,X(L),IOO+13*L,R(L)

This makes the height of each circle above the boltom of
the screen vary, as you can see from the second of the
small displays below.

After you have made the program draw circles at
different heights, you can extend it so that the pattern is
reflected in the horizontal axis as well. All that is needed
is a second BASIC subroutine, starting at line 30000,
and a line to call it. The altered program is the second
listing opposite. It produces the big display shown
below.

•••••••••••••••••••••• 1

DDDDDElIDDG

aaaaeGaaaa
• ••••••••••••••••••••• l

LIST
10000 SYS Ai : SYS 91,7
'OliO l =D . X<l> =160 : R<L) =80

"

0 .3'0 POKE '3280.'
o 0 GOSUa 2000u

10 40 GOlD 10040
~80000,OO If L=1 THEN l=l - i RETURN
~ SYS £1 X(l).100,R(l)
2 020 Rel.!) R<L)/2
~0030 X(l+l> X(L)+R<L)
20040 l=L.! GOSUB 20000
20050 X<L+l) X(l)-R(L)
20060 l=L+l GOSUS 20000
20070 l =l - i RETURN
READY . •

10000 SYS Ai SYS 81.7
10010 l e O : X(L) =160 R(l) =80
10020 POKE 53280~4
10030 GOSUB 2000u
J0040 L=O : X(l>=160 : R(l) =80
10050 GOSUa 30000
10060 GOlD 10060
20000 If L=7 THEN l=t - i . RETURN
20010 SYS [i.X(L>,iDO+13*L.R(l)
~0020 R(L+!>=R(L)/2
20030 X(l+l)=X(L)+R(L)
20040 l =l.! : GOSUB 20000
20050 X(l+J)=X(L)-R(L>
20060 L=l.! : GOSUa 20000
20070 l =l - l : RETURN
30000 If L=T THEN L=L-l : RETURN
30010 SYS El.X(L),i99-(iOO+13*l)IR(l)
30020 R(l+1)=R(l)/2
30030 X(l+l)=X(l)+R(l)
30040 l =l+l : GOSUB 30000
30051 X(L+l)=X(L)-R(l)

188! L- L·' , GOSUB 30000
L=L-l : RETUj;t"

Eft Y.

DOUBLE RECURSION
PROGRAM

iI',..·· ·~·IIooIW'· • • • • • ,. • • .. • • • • • • .. • •••••
D a a Q DQDDDQQOD

,B II BallDUDDBa

How the program works
The program repeatedly calls
the circle routine. Every time it
docs so, the horizontal position
and radius of the circle is set by
values stored as array variables.
Line 10000 sets up the high
resolution screen and the
colors.
Line 10060 loops back on
itself after both sets of
recursions have been
completed.
Lines 20000-20070 form a
BASIC subroutine which
repeatedly draws circles with
different radii at different
coordinates, unt il the limiting
condition in line 20000 is met.
Lines 30000-30070 form a
second subroutine which
produces a mirror-image of the
display created by the first.

ROUTINES USED BY
THIS PROGRAM

I Block Roo'lno(s) I~I
A High·resolution
B Clear·and·color
o Oraw

E Circle.

II
13
17

21
'--____ ---' L-

OVERPRINTING AND ERASING
Normally if you print one shape over another on the
Commodore, the second simply replaces the first .
However, with the routine in block F on the opposite
page you can achieve some different effects. This
routine is activated by SYS Fl , l and is turned off by
SYS FI ,O. It's called the erase routine, but as you will
sec, this is a simplification because its effects can be
quite subtle.

Patterns with the erase routine
With heavily colored shapes, you can sometimes
produce some interesting patterns by using the erase
routine to overprint them. The next program produces
a practically solid circle on a grid by drawing hundreds
of radiating lines. \'<'hen the circle is first drawn, it is
solid, but when it is overprinted the erase routine
creates a pattern as the lines arc canceled out. This
cycle continues as long as the program runs.

OVERPRIKTED CIRCLE PROGRM\

How to use the erase routine
The Rotating Squares program above shows you how
the erase routine can be used to wipe away a design. In
this program, a nest of squares is built up on the screen.
OVERPRINTED CIRCLE Lines 10090-10120 draw the
PROGRAM solid circle.

Line 10130 starts the process

O 7: 20 again, but this time with the
crase routine switched on.

How the program works
The grid and solid circle arc
drawn while the crase routine
is turned ofT. It is then turned
on, so that when the circle is
repeated it produces a
canceled-pixel pattern . The
time given above is for the
program to draw through 360
degrees.
Line 10000 switches ofT the
crase routine.

ROUTINES USED BY
THIS PROGRAM

I Block Routine(.) II Pagel
r==

A High-resolution 11
B Clear-and-color 13

C Plot 15
o Draw 17
F Erase 25

BLOCK F f--- ----j

ERASE routine

What the routine does
The routine is used to affect the operation of the previous
graphics routines by activating an "exclusive·OR" mode on the
screen. This means that after the erase routine is turned on, a
pixel plotted over one already lit will cancel it out. A pixel
plotted on an unlit (background) pixel will appear normally. The
routine can therefore be used to erase all or part of a display by
redrawing it. Note that this ro"tine must be turned off when
drawing closed shapes which are later to be filled.

SYNTAX AND PARAMETERS
SYS Fl.N

N II Off or on (a-off. I-on).

3200
3210
3220
3230
3%40
3 .. 50
3260

ROUTINE LISTING

IF' PEEK(SOSGO> =32 THE" 3230
SVS A3,3240 . FOR C=50560 TO
READ 8 ; POKE C,B "EXT C
F'1=50560
DATA 32A40,192.1SZ

1
208 A7,138

DATA 200,4.141
1

29. 92,~6.169
DATA 1,141,29, 92,96

50518

When the program repeats itself, instead of just
overprinting the design, the computer starts to erase it.
This is caused by line 10010. The SYS Fl , l command
turns on an "exclusive-OR" drawing facility. What this
means is that whenever the computer overprints a pixel
lit in the foreground color) it cancels it out, turning it off.
Because the lines are quite far apart, they just
disappear, unlike those in the Overprinted Circle
program, which are close enough together to afTeeteach
other.

Points to watch with the erase routine
If you want to remove a display from the screen,
always erase by drawing again in exactly the same
order. You can do this quite simply by looping the
program back with the erase routine switched on.
However, remember that if your display contains
many lines close together or overlapping, you may nOt
be able to erase them all without producing an efTect of
the kind shown by the Overprinted Circle program.

When you are drawing closed shapes with the erase
routine turned on, you will find that final points plotted
on complete outlines are canceled out, leaving a single
pixel gap. This is a problem if you later want to fill a
shape. Therefore always keep the erase routine turned
off when you are not using it. It's a good idea to switch it
ofTfrom within a program when a display is completed.
However, if you suspect that you have left the routine
on, you can switch it ofT by a direct command.

FILLING SHAPES 1
Having found out how to draw outlines, t he next step
is filling them in. Block G on the opposite page
contains a flood-fill routine, that is, it rapidly fills
closed shapes with solid color. It will fi ll almost any
regular or irregular shape. All you have to do is specify
any point inside the shape and the routine will fill all
around the point until it reaches the boundaries.

How the flood-lill routine works
What the flood-fill routine does is to search for
background pixels and light them in the foreground
color. It continues to search in each particular
direction until it meets a boundary of lit pixels or until
it rcaches the edge of the screen. So when you are
designing your own pictures using the flood-fill
routine, you must take care that there are no gaps in
the boundary surrounding the area to be filled , or the
color will "leak" out into areas you may not have

SEASCAPE PROGRA,\\

planned to fill.
You will find that this routine will fi ll almost any

shape that you want it to. It "remembers" to go back to
regions of a shape so that all of it is filled in. However,
due to the limited memory space available for the
routine's calculations, you may come across shapes
that the routine cannot deal with. If this happens, you
will get an ILLEGAL QTY ERR message. To
overcome this problem, all you have to do is split up
the area to be filled into a number of smaller, simpler
areas and flood-fi ll each one separately.

Filling in a seascape
The program on these two pages shows a quite complex
display being filled and then colored. The block-color
routine is used to set up separate areas each with a
different color combination. Remember to make sure
that the erase routine is not sti ll switched on if you have

juS! tried out the programs on pages 24-25.lfit is , you
will find that the flood-fill routine "escapes" and fill s the
whole screen.

SEASCAPE PROGRAM

OlBO
How the program works
First an outline is drawn in
black over blue. This is then
fi lled with solid black. Finally
[he block color routine is used
to color the display selectively.
In some places) the colors ha ve
to be changed more than once.
Line 10000 calls the high
resolution routine, sets up the
colors and resets the DA.TA
pointer to line 10060.
Lines 10010-10230
usc the plOl, draw and Oaod-fill
roulines to produce and fill the
outline.

Lines 10240-10350 use the
block-color routine to color the
result.

ROUTINES USED BY
THIS PROGRAM

! Block Routine(s) !!Page!

A High-resolution 11
Restore

B Clear-and-color 13
Block-color

C Plot 15
D Draw 17
E Circle 21
G Flood·nll 27

'-----

f-------l BLOCK G
FLOOD· FILL routine

What the routine does
Flood·fill fills a closed regular or irregular shape with the
current foreground color, given a single starting point within
the shape. The routine operates by rapidly drawing lines
horizontally until a boundary is detected, and then by
repeating the process above and below the original line until
the shape is fi lled. Because the routine operates on the single
pixel level, a pixel missing in any boundary will eventually allow
the routine to escape and start filling outside the shape. For
this reason it will only fill a complete shape. Very complex
shapes may generate an ILLEGAL QTY ERR report. This can be
aVOided by splitting an area up into smaller parts.

SYNTAX AND PARAMETERS
I SYS Gl.X.Y

r-:-:l Horizontal and vertical coordinates of point where
~L-fil_lin~g~i_s_to_s_ta_r_t~(r_an~g~e_S_O_.3_1_9_a_nd __ O·_1_9~9)~. ______ ~

ROUTINE LISTI NG

FILLING SHAPES 2
If you want to produce a colored and filled picture, it's
important to bear in mind the Commodore's color
restrictions when you are designing the display. You
can use all of the Commodore's 16 colors on the screen
at once, but if you are using the bit-map mode (as all
the programs in this book do) you cannot get more
than two colors into a single 8x8 pixel block.

Consider the following problem - suppose that the
first of the following diagrams is part of a picture. How
can you color the three areas shown if you can use only
one foreground color and one background color in each
8x8 pixel block?

It sounds easy but imagine what would be involved.
Suppose you decide to fill just the area colored yellow.
Yellow becomes the foreground color, so, because it is
adjacent to the blue area at the boltom of the design,
blue needs to be the background color. Now look at the
red area at the top. On the boundary with the yellow
foreground area, red must be the background color. But

JUNGLE PROGRAM

07:75
How the program works
The program first draws and
fdls the forest in black and
white. The block-color routine
is then used to set up the blue
and green colors. Any one
color may be either foreground
or background in different
parts of the display.
Line 10010 resets the DATA
poimer to ensure that reading
starts at the right point (line
15000).
Lines 10030-10080 form a
loop which interprets the
DATA as instructions to plot
and draw.
Line. 10090-10151 r.u and
color the result.
Lines 20000-20030 form the
block-coloring subroutine.

ROUTINES USED BY
THIS PROGRAM

I Block Roulln.Ca) II P.g~
A High-resolution 11

Restore
B Clear-and-color 13

Block-color
C Plot 15
0 Draw 17
G Flood·hIl 27

on the boundary with the blue background area, red
must be the foreground color. How can red be
foreground and background at once' It sounds
impossible, but there is a way of producing this result. It
depends how you divide up the screen.

ed

y, h10' , 1\
8 uc

To solve this problem, you need to think of the screen as
being divided up into rectangles with different color
combinations set up by lhe block-color routine. Each
rectangle contains two colors. One color may be
background in one rectangle and foreground in
another. In this way you can use block-coloring to
produce the kind of coloring needed . The diagram
below shows how it could be done .

cd
I ac g. pu d

I-

Y 110 .
"\. B ue

Fb .. raul E ac gr U d

I I

Filling and coloring a complex picture
The program below produces a complex filled and
colored display. It 's a view from a jungle clearing,
looking out through the trees to a distant hilltop.

JUNGLE PROGRAM

HIGH-RESOLUTION TEXT
One problem with using the Commodore 64 in high
resolution is that there are no facili ties for printing
text. Obviously, if you have large volumes of text to
display on the screen, then it is easier to do this in low
resolution (text mode). Sometimes, however, there is a
need to put a few characters on a display. The listing in
block H on the opposite page contains two new
routines which enable you to do this. T hey are the
ROM-copy routine and the text routine. If you want to
put text on the screen, you need to use both of these
routines.

Copying the Commodore's character set
If you have read Book Two in this series, you will know
that it is possible to make a copy of the Commodores
standard character set, which is held in ROM, and put
this copy into RAM, where it can be modified. This
copying is performed by the ROM-copy routine. When
the block H machine code is in memory, you can use
SYS HI to copy the ROM character set. You won't see
anything after activating the ROM-copy routine.
However, afterwards you can use the text routine to
take any of the copied characters and print them on the
screen. T o display text, all you have to do is use SYS H2,
fo llowed by the text. The routine prevents the
characters appearing as colored blocks.

\.iSllng high-resolution text in games
T here arc many times during a game where text on the
high-resolution screen can be used. T he following
program produces a favorite - a flight simulator.
Although the display is only static, it is very detailed. To
run it, load or key in the routines listed next to the
display, and then add the program. The routines and
coordinates are all keyed in as DAT A.

821.65

FLIGHT SIMULATOR PROGRAM CONTD.

FLIGHT SIMULATOR
PROGRAM

00:35 i

How the program works
The display is first drawn, and
then [he program uses the tex t
routine to add numbers and
labels to parts of the display. It
is finally flood-fiUed and then
colored,
Line 10000 sets up the high
resolution screen and the oYer
all colors.
Line 10020 copies the ROM
cha racter set so it can be used
by the text routine.
Hne. 10030-10120 READ
the DATA block, either
produci ng points or lines or
(line 10100) putting text from
the DATA lines onto the
screen.

Lines 10130-10150 call the
block-coloring subroutine.
Lines 20000-20030 form the
subroutine which contains the
block-color routine.

ROUTINES USED BY
THIS PROGRAM

I Block Routine(s) Ilpagel
A High·resolution ~

Restore
8 Clear·and·color 13

Block-color

C Plot 15
D Draw 17
E Circle 21
G Flood·fill 27
H ROM-copy 31

Text

BLOCK H 1---------1

ROM-COPY and TEXT routines

What the routines do
ROM-copy copies the standard character set from ROM into
RAM so that the characters can be used in high·resolution
displays with the text routine.
Text displays any text on the high· resolution screen. The text
is displayed starting at an 8x8 pixel block which can be fixed by
specifying any point which lies within it.

SYNTAX AND PARAMETERS
ROM-copy: SYS HI Text: SYS H2,X,Y,A$

EJ (Text only) Horizontal and vertical coordinates of
X, y any point within the 8x8 pixel block where the first

character is to appear.

I A$ II (Text only) Any text.

I ROUTINE LISTING

4200
4210
4220
4230
4240
42:)0

~~~g 
~m 

::~rg 
4320 
4330 ms 
'36

S .31 
.38 
4390 

4400 
4410 
4 .. 20 
4430 
4440 
4450 
4460 
4470 
4480 
44S0 3m 

IF P[[K(S1104)=113 THE" 4230 
SY$ 113,4240 ; FOR C=51104 TO 51306 
READ B : POKE C1B : "EXT C 
Hl=5J104 : H2=5 161 
DATA 173 , 1"~220,41~2S"11'1114 
DATA 220.16~ 1,41 ~51 33 
DATA 160 0 1~2,25~ 13~ 251 1~9 
DATA 17 . 13~,2S",1~~ . 20§,13~.252 
DATA 32,215,199,230,254,169,208 
DATA 13..:1,25,::,32,215.199,165.1 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

DIHA 
DATA 
Dill,., 
DATA 
DATA 
DATA 
OIHI\ 
DATA 
gATA 

ATA 
DIHIII 
DATA 
OfHA 

9,4.J33.1,i73614~220 
9 1 , 141.14 22 9b 177 
2~1,145~2S~~206,268~249 , 96 
32~40kl~213~.224 . i9~~i44 
3, (6~~34A 93A1S2t41,~48 
141 19~,14~.9 ~92 32 
40,1 ~,32,23611~_,lt6,236 
15'141.24U l 14 612~192A142 
13. 9 2 .321. 211. A3L125~ 
174.32.1Su,11" • .s2 , 63 , 182 

141.2 198 169 0 141 1 . 
19.,1~3,2~213~,6 ' 1'~ , 165 
~~t:i~!1~:~1~:~~1+~56~253 
198 , 20u.1.~6J.13bI.14 ,2 
198. 172I.i,19uI.17rA,341200 
140I.i~1~8.10."81.2~21. 0 
38~~SL~10103812S~1.13"A251 
1.,,25_~lu', 6~1~312'21160 
~4~'~42111~~~~~ ~g3~ ~61~~ 
253,16~, ' •• 10~, ,13~62S4 
169,0,1" .2a2.7~.~9 ; 2 0 

Using the text routine 
The text routine will put any text you like at the point 
with coordinates X, Y on the high-resolution screen. It 
rounds down the coordinates you specify to the nearest 
8 so that they bring the character onto a low-resolution 
boundary. This is done to make changing character 
foreground and background colors more easy. 

With this routine, the text doesn 't have to be a letter 
or word - it can be a string expression that is 
evaluated into text. So you could use something as 
simple as "FRED", or you could use something as 
complex as CHR$(27)+ "="+A$. However, the text 
routine cannot deal with numeric expressions. These 
must be converted to string expressions flrst. 



On the previous two pages you saw how the ROM-copy 
routine can be used to copy characters from ROM into 
RAM. One advantage of doillg this is that it is a simple 
matter to go on from there to create your own 
characters. Once you have done that, you can use these 
shapes to fill up spaces, giving you the facility to 
"panern-fill". The listing in block I on the opposite page 
contains a single routine. This is the define-character 
routine which enables you to define any of the 8x8 
characters stored in RAM. 

How to make a high-resolution character 
If you already know how an 8x8 character is coded, 
you will find this routine quite simple to use as it just 
accepts 8 bytes, one for each row of the character. If 
you haven't already coded a character on the 
Commodore, all you need to know is that the 8x8 pixel 
grid can be broken down into 8 rows. Each of these is 

coded by a row total. The row total is arrived at by 
adding together the "bit values" of all the filled-in 
pixels in the row. Once you have 8 row totals, these can 
be used with the define-character routine. 

-+-+-+-+-1 ~2 
64+31+16-112 

-1-1-1 128+ 64+1 6+8- 216 

L..J--L-L-'--'--'-.J.......J 

128+ 8+4+1-141 

4+2+1 -7 

2 
o 

COLOR CHART 
PROGRAM 

00:20 
How the program works 
The program first produces a 
blackboard and an easel by 
drawing, flood-filling and 
block-coloring. After the color 
numbers have been primed by 
the text routine, the same 
routine is used to prim a 
specially-defmed character . 
The block-color rouline makes 
the character appear in all the 
Commodore's colors. 
Line 10200 defmes the square 
color-test character. 
Lines 10140- 10250 print the 
num bers using the STR$ 
command, and then prim the 
colOr-teSl characters. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routinc(s) IIPagel 
A High-resolution 11 

Restore 
B Clear-and-color 13 

Block-color 
C Plot 15 
o Draw 17 
G Flood-~II 27 
H ROM·copy 31 

Text 
I De1me-character c...R 



If you give your design character code C, and the row 
totals areXI-X8, then you can put it into the computer's 
memory with 

SYS Il ,C,X 1,X2,X3,X4,X5,X6,X7 ,X8 

Once the new character is in RAM, you can display it 
on the high-resolution screen with the text routine. 
Furthermore, as you will see on the next four pages, 
you can use the character with the pattern-fill routine 
to fill designs. 

Below are two examples of user-defined characters, 
together with the complete defme-character routines 
that produce them. 

Color chart program 
Now that you have seen how to create your own high
resolution characters, you should have no trouble 
understanding how the next program works. This 
listing creates a character and then displays it in each 
of the 256 color combinations that the Commodore is 
capable of producing. The numbers down the left
hand side of the chart set up the background colors. 
The small square character then appears in all of the 
foreground colors. 

COLOR CHART PROGRAM 

BLOCK I 
DEFINE-CHARACTER routine 

What the routine does 
The routine defines a character which is then held in RAM. This 
user·defined character can then be called by its CHR$ number. 
The routine accepts nine parameters - a character code, and 
eight row totals which specify the character. Each row total 
consists of the sum of the bit values for all the pixels that are to 
be lit on that row of the character. A row that has no pixels lit 
has a row total of O. whereas one that has all its pixels lit has a 
row total of 255. The eight rows of a character give eight row 
totals. 

SYNTAX AND PARAMETERS 

SYS Il,C.Xl.X2.X3.X4.XS.X6.X7.XS 

c II Character code (range 0·255). 

xl·xsi l Row bit totals (range 0·255 each). 

ROUTIN E LISTING 

COLOR CHART PROGRAM CONTD. 

LIST 10200 -

10200 SYS 1160tO,O~60.60L60.60tO.0 
10210 ~OR X= 0 1~ : rOK Y;O 0 is 
10~20 Xi=104+X*8 ' Yl =32 +Y*8 
10 30 SYS B2.Xi , Yl.X*lS+Y 
10 40 SYS H2.Xl~YltCHWS(O) 
10250 NEXT Y : nEX X 
1027° GOlD 10260 
150 0 DATA 12§.O -I 1.124 23.148 23 
150 0 DATA 15 ,1~.ltO.12.172.23.196.23 
f~g~g g~l= f3o:Ytl-~1~~~~t~~r~o!~Ao 
15040 DATA 200,20 .1§S6168,220,168 

i
1~101sg g=l= ~~~~~69 ~8~166:ftO 

I 
0 rOR X' LA , UX SIE' 8 

§ fOR Y~LY TO UY S [P 8 
SYS B2.X.Y C 
HEXT Y , "fXT X , REfURM 

• Y. 

Mixing text and defined characters 
You can use defined characters just like ordinary text, 
so that if you want to, you can mix them with text. But 
remember that to do this, you must first use the ROM
copy routine so that the text characters are in RAM, 
where you can use the defme-character routine to 
change them. 



PATTERN· 1 
Over the last few pages you have seen how you can use 
the graphics routines to put text up on the screen and 
how to define your own characters. Now you have got 
this far, you can add another facility whose usefulness 
is out of all proportion to its simplicity - a routine 
which fills irregular shapes with a pattern which you 
can specify. 

The listing in block J opposite contains the pattern-fill 
routine. To use the routine you need to specify the 
coordinates of a point where fi lling is to begin, as with 
the flood-fill routine. However, after the coordinates, 
you then need to specify a character number. The 
computer will use this character to fill the shape. If you 
first define a character with the define-character 
routine, you can then use it to pattern-fill. 

To see the pattern-fill routine in action, load or key in 
routine blocks A-E and H, add block J and then the 
program below. 

Pattern-filling complex shapes 
Unlike the flood-fill routine, pattern-fill will only work 
with relatively simple shapes. It starts at the point you 
specify and then works vertically downward until it 
reaches a boundary or the bottom of the screen. In a 
complex shape, you may have to use it more than once , 
as the next program shows. It draws a map which is both 
flood-filled and no,>pnn_hllpn 

PATTERN-FILLED MAP 
PROGRAM 

DD:25 
How the program works 
The map is filled using bOlh 
types or fill routine. 
Line 10220 produces the 
nood-filling. 
Line 10242 calls the pattern
fill routine. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routine( s) II Page I 
~ A High-resolution 

Restore 
B Clear-and-color 13 

Block-color 
C Plot 15 
0 Draw 17 
G Flood-fill 27 
H ROM-copy 31 

Text 
I Define-character 33 
J Pattern-fill 35 



PATIERN-FILLED MAP PROGRAM (CONTD.) 

After each time that the pattern-fill routine moves down 
a line, it fills as far as it can to the left and to the right. 
However, unlike the flood-fill routine, it won't 
"remember" to go back to unfilled areas in complex 
shapes. Instead you need to start the routine again from 
the top of any unfilled areas . It's rather like painting a 
wall: just start from the top of each area you want to 
paint, and go back to any that are missed Out. You will 
find that the routine is written so that the pattern will 
match exactly where it meets any part that was filled 
previously. 

-'---

BLOCK J 
PAITERN·FILL routine 

What the routine does 
The routine fi lls a closed regular or irregular shape with an 8x8 
pixel RAM text character (this may be a standard Commodore 
character, or one previous ly created using the define· 
character routine). Although the routine fills with 8x8 charac
ters, it will fill partial character spaces. The routine should be 
started at the top of any shape to be filled. Complex shapes 
may have to be pattern· filled by calling the routine a number of 
times, breaking the shapes up into Simpler areas. 

SYNTAX AND PARAMETERS 

~I ==~~7=77:;SY~S~J~l~, X~,y~,C~~~==~~~I . 
~ Horizontal and vertical coordinates of the point where o pattern· filling is to begin (ranges 0·319 and 0·199). 

I 

Copying and defining a pattern 
The pattern-fill routine will only fill with characters that 
already exist in RAM. To fill with a character other than 
one that can be copied from ROM into RAM by the 
ROM-copy routine, you must define it first. If you 
forget to use the ROM-copy or define-character 
routines, you will find that the pattern-fill routine takes 
whatever is in RAM at the particular character address 
that you have specified. If your pattern-filling just 
produces a pattern of random dots and lines repeated 
over the screen, you have probably forgotten to use the 
routines in block H. 



PATTERN-FILLING 2 
set 

and you can pattern-fill with all the characters that can 
be printed on the screen . This means that a single 
program can have areas filled with different patterns. 
The programs on these two pages show what you can do 
with just three different kinds of pattern-filling. 

Cross-hatching a design 
Many designs produce a 3-D effect by cross-hatching, 
that is, by having areas filled with parallel lines. You can 
use this technique to shade a diagram to give an 
impression of its three-dimensional shape. 

The program below makes a 3-D box. Each type of 
cross-hatching is produced by a separate character used 
with the pattern-filling routine. The numbers that code 
the three characters are in lines 10120, 10150 and 
10180. To try the program out, you will need routines 
A-D and G-J in memory. 

a 
The next program uses all the so far to draw 
and pattern-fill a wall and a gate. It uses three characters 
produced by the define-character routine, and then 
colors the result with the block-color routine. 

\X1hen you fun this program, you will see a new 
technique at work. Sometimes you may want to pattern
fill an area but not show the outline or boundan' that 
surrounds the pattern. This program shows yo'u one 
way of achieving this effect. It draws one particular 
boundary (the curved top of the gate), pattern-fills the 
shape that it surrounds, and then takes this boundary 
away by drawing it again with the erase routine turned 
on. The gate is pattern-filled without the top boundary 
appearing in the final display. It's much easier than 
trying to work out a programming routine to draw lines 
thattogether form an arc. You can use it with any shape 
that has a programmable outline. 

lIw
ldl 

H' 

I Ii:: , II: 
,. 

" 
.1 .!e' 

, 
H 

, 

'I 11" rill' :llIill;, ilji: J jlW' :1)1 '1111. i" II '1 ' !il . II! 
.. I t ' . 



WALL AND GATE 
PROGRAM 

OO:'-{O 
How the program works 
The program uses three 
specially defmed characters to 
produce a pancrn-filled 
display. The vertical bars of 
the gate arc nO( drawn but 
pancrn-fillcd within a 
boundary which is later 
removed. 
Lines 10010-10040 define 
three characters (the bars of 
[he gate. the bricks in the wall 
and the pattern on the path). 
Line 10050 READs the 
DATA in lines IjOOO~16070. 
This comrols all the drawing, 
ftlling and coloring. 
Line 10120 turns on the crase 
routine so that the arc at the 
top of the gate is erased after 

the bars have been created by 
pattern-filling in line 10200. 
Line 10230 turns the crase 
routine ofT again. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routine(s) II Page I 
A High-resolution 11 

Restore 
B Clear·and~color 13 

Block-color 
C Plot 15 
o Draw 17 
E Arc 21 
F Erase 25 
G Flood·fill 27 
H ROM~copy 31 
I Define-character 33 

J Pattern·fill 35 

The program uses two sets of DATA. To ensure that 
READing always begins from the correct point, the 
restore routine is used twice (lines 10050 and 10280) to 
reset the DATA pointer. 

WALLAND GATE PROGRAM 



BLOCK-COPYING 1 
There are many times when it is useful to be able to copy 
some object that you have drawn on the screen without 
having to repeat the code to program it. The listing in 
block K on the opposite page contains a block-copy 
routine which will copy one 8x8 block, taking it from a 
specified position on the screen and displaying the copy 
in another position. The routine doesn 't simply redraw 
whatever is to be copied- instead it makes a direct copy 
of it from the original in memory, a process which is 
much faster. Although the routine only copies one block 
at a time, it's an easy matter to put it inside a 
FOR . .. NEXT loop so that rectangular blocks of any 
size can be copied from one position to another. 

When you use this routine, the originating block is left 
unchanged (unless of course you copy back onto the 
space it occupies). Furthermore, the routine only copies 
the part of the memory that holds the high-resolution 
information, and does not copy the color memory. This 

DIAMOND COPIER PROGRA,\\ 

means the object on 
com bination has been in the area to which it is to 
be copied. However, the block-color routine, which also 
deals with 8x8 blocks, can be used in combination with 
the block-copy routine to set the colors of all the copies 
made. 

If you compare the Planet Copier program with the 
Planets program on page 15. you can see that the block
copy routine is simply looped to repeat the design . 

Copying a design 
Each of the programs on these twO pages produces a 
shape and then copies it O\oer the screen. It's a simple 
\Vay of using the block-copy routine to produce a 
pallern. The first program draws and fills a diamond , 
and copies it. T he second produces a planet by plot
shading, using the method shown on pages 14-15, and 
then copies this design onto other parts of the screen. 



To try either program, first load the routines (the 
Diamond Copier needs routine blocks A-D and G) and 
then add block K. Next add the listings. 

BLOCK K f----------i 

BLOCK·COPY routine 

What the routine does 
The routine makes a copy of whatever is displayed in a 
specified 8x8 pixel block. The copy can then be displayedin any 
other 8x8 block on the screen. The routine can be used within a 
loop like the block-color routine to copy rectangles made up of 
a number of 8x8 pixel blocks. Note that colors are not copied: a 
copy has whatever colors are already set in its destination 
block. 

SYNTAX AND PARAMETERS 

I SYS Kl,X,Y,A,B 

~ Horizontal and vertical coordinates of any point within 
~ the block to be copied (ranges 0·319 and 0-199). . 

~ Horizontal and vertical coordinates of any point within 
~ L-th_e_d_es_t_in_at_io_n_b_lo_c_k.:.(r_a...:ng:..e_s_0_·3_1_9_a_n_d_0_·l_9_9.:.)._----' 

these programs that if you break 
them the RUN / STOP key, and then type RUN 
followed by pressing RETURN, sometimes nothing 
happens. Instead, you just get an error message in high
resolution blocks. The reason for this is that the line you 
type RUN on probably has some of the display further 
along it. The computer treats this as part of your 
instruction, fails to understand it, and comes to a halt. 
To re-run the program, press the RUN/ STOP and 
RESTORE keys together first. 

PLANET COPlER 
PROGRAM 

OO:'-{O 
How the program works 
First a planet is ploned in the 
top-left corner. The block-copy 
routine is then used to display 
copies of the planet over the 
screen, and these arc colored 
by the block-color rou tine. 
Lines 10100-10200 plot the 
planet to be copied. 
Lines 10030-10700 copy the 
planet, using the block-copy 
rourine inside a FOR. .. NEXT 
loop, and thcn add thc colors 
each time. 

Lines 20000-20050 form the 
planet-plotting subroutine. 
Lines 21000-21050 form the 
copying and coloring 
subroutine. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routine(s) II Page I 
A High·resolution 11 
B Clear·and·color 13 

Block·color 
C Plot 15 
K Block·copy 39 



BLOCK-COPYING 2 
As well as using the block-copy routine to make 
interesting patterns, you can use it to alter displays. The 
program on these two pages produces a sim ulation of a 
sliding numbers game. It's a simple example of the game 
using a 3x3 grid , but once you have secn how thE 
program works, you can make it more complex. 

In rhcgame, you move the numbers around unti l they 
are in order. To make the computer simulate this, you 
could program it to redraw the display after a move is 
made, showing the numbers in their new positions. 
However, if you use the block-copy routine. a lot of 
programming is avoided. The listing is still quite 
complex because the computer has to hold a lot of 
information in arrays. But without block-copying, it 
would be much more difficul t. 

The parts of the puzzle 
The Puzzle program starts by drawing and filling the 
puzzle 's border and then drawing just one puzzle piece. 
This is all carried out by lines 10000-10090 in the screen 
below, although you will need to key in the whole 
program before this is carried out. 

PUZZLE PROGRMI 

111°00 SSYYSS fti : SYS 81 100 1 1 HI : POKE ~~Z80.6 
10 ~g ~~~ Cl.104.48 ; SYS 011104~lS1 
fo 40 SYS gf:fg~:~~l : : s~~sc~ l~g t~8 
10051 SYS 01 . 119.136 : SYS o1113~A136 
10060 $YS Dl . 192.63 : SYS 001, lS,b3 
10010 SYS Gl , 112,56 : SYS Cl,121,65 

1
10°'.00 SYS 001,121,86 : SYS 001 . 142 .86 

00 SYS Dl.142~65 : SYS OoIL12166S 
10100 LX=i20 : Ly =6~ ; SYS A~,i5 00 
10110 FOR C- 2 TO 8 : REftO X,Y ~ 

1
10°1132 00 P(C . O) =X ; PCC61)=Y : ptC~2) =C 

P(C.3) =~ : GOS B 20000 : nEXT C 
10140 P(S.0) =168 ; P(1.0) - LX : P(1.2) =1 
10150 P(S,1) - 112 : P(I L i) =LY : P(S,2) =S 
10160 P(1,3) =8196 : P(~L3) =lGG4 
18170 FOR C' l TO • , GO,U8 22008 
10180 SYS H2 t P(C,0).e,p(C . l ) .8,CHR$(P(C. 
2).48) : NEX C : K- 9 
18190 GET ft$ : IF ftS - .... THE" 10190 
10200 FOR C- i TO 38 ; N_ INT(R"D(O).4) 

IEf'lDY . 

You won ' t see the bJock-copy routine in the first part of 
the program, but it is there, in the form of subroutines. 
Every time the subroutine at line 20000 is called, the 
block-copy routine copies a 3x3 character block from 
coordinates LX ,LY to X,Y. Lines 10100-10160 use this 
subroutine to copy the top-left puzzle piece to the 
coordinates READ by line 1011 0. This section of the 
program also sets up the nine puzzle piece positions. 

When you have keyed in the machine-code routines 
and the complete Puzzle program, pressing RETURN 
after the puzzle has first appeared will rearrange the the 
puzzle pieces at random. You can then use the cursor 
keys to move the pieces back into the right order. 

PUZZLE PROGRM I CO~TD'I 

PUZZLE PROGRAM player's instructions. 
Lines 10310-10340 test to see 
if the solution has been 
reached. 

How the program works ROUTINES USED BY 
The block-copy rou tine is used THIS PROGRAM 
in a subroutine to rearrange 
the pieces of the puzzle. The I Block Routine(s) I ~ 

= computer will produce a 
random arrangement which 
can then be sorted into 
sequence with the cursor keys. 
Lines 10000·10160 produce 
the initial puzzle by calling the 
block-copy routine which is 
contained in a subroutine. 
Lines 10190-10240 scan the 
keyboard and then rearrange 
the puzzle at random. 
Lines 10250-10300 move the 
pieces in reponse to the 

A High-resolution 
Restore 

B Clear-and-color 
Block'color 

C Plot 
0 Draw 

Flood-fill 
H ROM-copy 

Text 
K Block-copy 

II 

!3 

15 
17 
27 
31 

39 
'---





SCREEN-SCROLLING 
The final facility provided by the machine-code 
graphics routines is screen scrolling. Scrolling is the 
movement of the whole screen display, usually 
horizontally or vertically. Left and right scroll are 
particularly useful in games and other programs where 
you want a moving background. 

You could use the block-copy routine to produce 
scrolling, but if you try to do this, you will find that it's 
unacceptably slow. Although the block-copy routine 
itself works quite rapidly, the Commodore BASIC 
ROM takes time to interpret and carry out the 
FOR ... NEXT loops needed to block-copy the 
contents of the entire screen. However, the scroll 
routine in block L opposite completely eliminates the 
need for any BASIC. It carries out horizontal scrolling 
at high speed by replacing the BASIC FOR ... NEXT 
statements with machine code. 

Scrolling and wrap-around 
With the screen-scroll routine's machine code in 
memory, you can scroll a display with a command like 
this: 

SYS Ll ,D,C 

where D is the direction of the scroll ( I-left and 
O-right) and C is the code of the color that will be left 
behind in the newly-created strip down the side of the 
screen when the scroll is carried out. Since you would 
not often want to use the color combination 0 (black 
foreground and black background) this has been 
pressed into service in another way. When color 
combination 0 is used, the character positions that are 
vacated by the scroll are filled by the characters that 
have just been pushed off the other end of the screen. 
This makes the screen "wrap around ") a facility that is 
useful in animating backgrounds to give more complex 
displays. 

How to make a display scrolI 
If you have a program which finishes with a line like: 

10400 GOTO 10400 

all you have to do to make it scroll is to change the final 
line and add one more. To wrap-around the display, you 
would need the following lines : 

10400 SYS Ll , I,O 
10410 GOTO 10400 

This repeats the scroll routine, moving the display to the 
left and wrapping it around. 

To make the program move to the right, but produce 
a white screen instead of wrapping around, you would 
need to add: 

10400 SYS Ll ,O, 17 
10410 GOTO 10400 

All the effects so far use GOTO to produce a loop 
which endlessly scrolls the display. You can however 
scroll a display a set distance to the right or left.by using a 
FOR ... NEXT loop. You can even link together a 
series of these loops so that a display moves from side to 
side by a specified or random amount. 

Different effects with the scroll routine 
The displays on these two pages have been produced by 
taking two programs from earl ier in this book, and then 
adding the scroll routine. The Wall and Gate program 
shows the wrap-around scroll which repeats the original 
design. The Line Landscape displays show both wrap
'around and scrolling to reveal a color-in this case pur
ple, the same color as the original two "buildings". 

WRAP-AROUND SCROLLING 



BLOCK L 
SCREEN-SCROLL routine 

What the routine does 
The routine scrolls the contents of the entire screen by one 
column of 8x8 pixel blocks either to the right or left. If the 
routine is used once it will move the display by one column 
only. However it can be used in an endless loop for continuous 
scrolling, or it can be used in a closed loop to move the display a 
specified amount to the left or the right. The routine will either 
color the area vacated by the scroll (the color can be 
specified), or it will allow ·wrap·around" of the display. 

To make a display scroll off the screen, use SYS Ll,followed by 
a direction and a color code. The display will then scroll one 
8·pixel coumn at a time to the left or right, leaving a blank 
colored area. This colored area is controlled by a color code. To 
make a display scroll left or right but wrap·around the screen, 
use SYS Ll, fallowed by a direction (coded by 0 or 1) and then 
the color code O. The scroll routine can be used to move a 
display from side to side behind stationary sprites, and if it is 
used with the RND function. the screen can be made to scroll 

unpredictably. It can also be used to gradually remove one 
display from the screen to make way for another instead of 
simply clearing the screen with the dear·and·color routine. 

The rout ine uses standard Commodore color combination 
codes. For details, see the chart on page 63. 

I 0 II 

SYNTAX AND PARAMETERS 

SYS Ll.D.C 

Direction of scroll (O-right. I - left). 

Color of vacated area (O- wrap around, 1-255 -
standard color combinations). 



GRAPHICS EDITOR 1 
So far, all the graphics you have produced have been in 
the form of specific programs to produce specific 
pictures. The program on the next six pages lets you 
create pictures directly on the keyboard. It gives you 
instant access to all the routines so far, and it also 
provides two graphics cursors, an optional color grid 
and a facility for saving your displays on tape or disk. 

How to key in the graphics editor 
You can build up the graphics editor in easy stages so 
that each part can be tested as you key it in. The 
program uses graphics routines in all the blocks from 
A-L, so you must have these in memory before you start 
keying in. 

Although the editor is written in six consecutive parts, 
do not try to assemble it using the merge routine. If you 
do, it will not work, because its lines are not always built 
up in numerical order. 

Producing the cursors 
Part 1 of the editor listing generates two cursors. The 
large cross is called the main cursor, and this is 
controlled by the usual cursor keys, moving one pixel at 
a time. A second cursor can also be made to appear by 
pressing the M key. This cursor cannot be moved by the 
cursor keys. 

In general, to use the graphics editor, you need to 
mark one or sometimes two points with the cursors. For 
operations that need two points to be marked, the 
second or marker cursor is used. If you move the main 
cursor after pressing the M key, the marker cursor will 
stay in the main cursor's original position. Pressing M a 
second time unites the cursors again. 

Type in part 1 of the editor and check that the cursors 
appear before continuing. 

tim 1 030 
1 040 
,0050 

flog~g 
1 080 
1 090 
1 100 
1 110 
10120 
,0'30 

Ilogg 
f fig 
H~I 
i EOOY . 

GRAPHICS EDITOR PART I 

KOL =16 0 =0 ' POKE 650 128 
SYS Al SYS 81 . 16 : SY~ Fi,O 
CX=160 CY = iOO : NX =D : NY = 2 2 0 
GOSUB 2 000 GOSUB 20100 
GET AS 
IF A$ = .... THEN 0 =0 . GOlD 10050 
KE =AS C(AS) : 0=0.1 
If KE (> 29 THEN 101 2 0 
GO SUO 20000 CX=CX+O 
If CX ) 319 THEN CX =319 . 0 =0 
GOSUB 2 0000 GOTO 10050 
If KE( >lS7 THE" 10160 
GOSUB 20000 : CX - CX - D 
If ex <o THEN CX =O : 0 =0 
Gasus 20000 : GOlD 10050 
If KE <) 145 THE" 102 00 
Gasus 2 0000 : CY =CY - D 
If CY <O THE" CY =O : 0 - 0 
GO SUB 2 0000 GO TO 10050 
IF KE <> g7 TH " 0 =0 : GOTO 10240 
GD SUB 2 000 CV =CY+O 
IF CV)l 9 TH " tV - I99 : 0 =0 

GRAPHICS EDITOR PART I CONTD. 

The editor commands 
Part 2 of the editor provides three graphics facilities
plotting, drawing and flood-filling. 

To plot a point, move the main cursor to the required 
position, press 0 and the point will be plotted. The 
marker cursor will be updated so that it is in the same 
position as the main cursor. 

Drawing lines is equally easy. The program draws a 
line from the marker cursor to the main cursor when 
you press L. You can draw lines from the existing 
marker cursor position or from a new one, specified by 
pressing M. After you have pressed L, the line appears, 
and the marker cursor is united with the main cursor. 
This enables you to draw a long sequence of lines 
quickly. 

Flood-filling areas is simple. Just move the main 
cursor to the place where you want the flood -fill to start 



and press F. 
If you add the part 2 listing to part I, you will be able 

to test out these three facilities. If your combined parts I 
and 2 seem to run properly, make a copy on tape or disk 
so that if you introduce a bug later, you don 't run the 
risk of losing all your work so far. If your program 
doesn' t work, check that you have all the machine-code 
routines in memory. Press BREAK and then SYS A2 to 
identify problem lines when running. 

DISPLAY US ING PARTS 1 A:.J O 2 

The graphics editor program makes coloring very easy. 
But before you turn over and find out how to do this, try 
producing some designs in black and white first. It 's 
always easiest to draw first and color later. 

On page 49 you will find a list of keys used by the 
editor. If you press an unused . key when the final 
program is running, it will ignore it . Until then, press 
only the keys which the program uses, or the editor may 
halt and your display will be lost. 



GRAPHICS EDITOR 2 
You can add a coloring facility to your graphics editor by 
keying in part 3 of the program. This allows you toset up 
colors for all or part of the screen. It works in two stages. 
First you decide what color combination you want to 
use, and then you decide which area of the screen you 
want to appear in these colors. 

To select a color combination, first press I followed by 
a standard Commodore color control code from 0-255 
(seethe chart on page 63 ) and then by RETURN. Don't 
wait for a prompt after you press I as the program does 
not produce one. Now position the marker cursor at the 
top-left of the area you want to color, and move the main 
cursor to the boltom right. When you press C, the area 
will be colored by the block-color routine. Remember 
that coloring is a two-stage process - first color 
selection, then positioning. 

Because color is dealt with in 8x8 pixel blocks, you 
will probably find that the colored area is slightly larger 
than you specified because the colors are set to the next 
boundary up. If you take a black and white design like 
the one shown on the previous page, it's easy to start 
adding some colors to it. 

Using the on-screen grid 
When you use the coloring facility, you may find that it 's 
difficult to know exactly where the boundaries of the 
8x8 pixel blocks are. You can overcome this problem 
with the part 4 of the editor. After typing it in, run the 
program, and press the G key. You'll find that a 
complete color grid is overprinted on the screen. 
Pressing G a second time makes the grid vanish, leaving 
your design exactly as it was before. 

When you use this facility, it is important that you 
don 't draw any objects or fill any areas while the grid is 
on the screen. 

10428 '8 43 
1 440 

1°:l~8 ,84'8 
'8 48 
i 4S0 
,o~o8 
Us~o 
10530 
10540 

u~n 
18m 
18m 
Im8 
~["OY > 

GRAPHICS EDITOR PART J 

If KE(>73 THEN 10510 
TK "' O 
GET A$ : If AS "" '" THEN 10440 
A: ASC<AS) If 11 =13 THE" 10490 
If 11(48 THEN 10440 
If A)57 THEN 10440 
TK:JK*10+A - 48 : G010 10440 
If TK(O OR TK ) 2SS THE" 10050 
KOl=TK : GOTO 10050 
IF KE()S7 THEH 10630 
IF HX)CX THEH 10050 
IF HY)CY THEM 10050 
LX =HX RHD 504 : LY =HY RHD 248 
UX =CX RHD 504 : UY =CY AHD 248 
FOR X=LX TO UX STEP 8 
FOR Y=LY TO UY STEP 8 
~~hB~,~,~t~~lX 
GOSU8 20100 : NX =CX 
HY=CY GOSU8 20100 
08TO 10050 
(j TO 10630 

GRAPHICS EDITOR PART 4 

>.: 



The next two displays show how the grid looks when in 
usc. After the colors have been applied, the grid is 
removed and the design left intact. 

_. -

-------"";;;::".-------------_:::.:;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;:._--

::::::~===~~:::::::::::::~~====~:~~::: 
::::~ --------:::::::::::::::~::::~==:: 
---~=========~--------------~=~-------

Pattern-filling, circles and text 
Part 4 of the editor provides a pattern-filling facility. To 
fill an area with a pattern, position the cursor at the top 
of the area, and then press the P key. Then enter a 
character number from 0-255 and press RETURN. To 
fill with a defined character, use the ROM-copy and 
define-character routines in the direct mode after 
stopping the program with the RUN / STOP and 
RESTORE keys when the cursors appear. Then simply 
re-run the program. 

Part 5 of the editor allows you to draw circles and 
print text. To draw a circle, move the marker cursor to 
the center of the circle. The main cursor is then used to 
mark any position on the circumference. Press 0, and 
the circle appears. To write text on the screen, move the 
main cursor to the start position, press T and then begin 
writing. If you make a mistake, you can use the INST / 
DEL key to erase it. Press RETURN when you get to 
the end of a line, or when you have finished . 

GRAPHICS EDITOR PART l 



GRAPHICS EDITOR 3 
By this stage, you have probably produced some designs 
which really needed some tidying up, but so far you 
haven 't been able to erase anything, except by 
overprinting with something elsc. You can use the text 
facility to erase anything that you have drawn. To do 
this, move the cursors to the top left of the area you want 
to erase. Press T to switch to text and then press the 
space bar. This will erase one 8x8 square at a time. 

Alternatively, you can block-color any area with 
black on black. However, you should remember that 
this won't erase any designs, but will just hide them. 
Changing the colors again will make the design visible 
once morc. 

How to store and retrieve your pictures 
Having drawn a picture, you can make the editor save it 
on tape or disk. Part 6 of the program adds a short 
display section at the beginning of the program which 

GRAPHICS EDITOR PART 6 

asks you for some details. Your displays will be stored as 
files, each with a filename. The computer needs to know 
three things - the kind of storage system you are using, 
the name of the "LOAD" file ( the one to be taken from 
storage and put on the screen) and the name of the 
"SAVE" file ( the display to be sent to storage, in other 
words the one you are about to create) . 

After you have keyed in part 6 of the listing, your 
graphics editor is complete. You will find that the 
program now starts by asking three questions. You must 
answer these before the program will continue: 

1 2? 
LOAD' 
SAVE' 

The first means "tape or disk storage'''. Key in 1 for 
tape, 2 for disk. The second question asks which file you 
want the program to LOAD, and the third which file you 



want to SAVE. You don't have to LOAD or SAVE 
anything, but in case you want do, the program needs to 
know the filenames before it can continue. 

When you have answered the questions and created a 
display, pressing the W key will make the computer 
store it. Pressing the R key will make the computer 
retrieve the LOAD file and show it on thescreen. You do 
not need to press RETURN for either. Storage and 
rcrrivai take a number of minutes as there is a lot of 
information involved, so don't be impatient if initially 
nothing seems to happen. 

Once either operation is complete, the program 
continues to run from where it left off. 

Choosing filenames 
If you are using disks, it 's important to remember that 
once you have decided on two filenames, you can't 
change them except by starting the program again. So if 
you call the current SAVE fil e "DISPLAY3 ", for 
example, and you already have a DISPLA Y3 on disk, 
you won 't be able to SAVE your current display. 

GRAPHICS EDITOR CONTROL KEYS 

The Graphics Editor uses the keys listed below. When the program is 
complete, any other letter keys will be ignored. Color changes set by 
key I arc only visible when put into effect with key C. 

Key Function 

o Plot point 

F Flood-fill 

G Print! crase color grid 

L 
.II 

o 
p 

R 

Set color combination (enter color code and follow with 
RETURN) 
Draw line 
Position marker cursor 

Draw circle 
Pattern-fill (fo llow with character number) 

LOAD stored display 
SAVE current display 



TURTLE GRAPHICS 
you were to a program 

draw six squares, each rotated at an angle of60 degrees 
to the next. How would you go about it? You could either 
draw out a design on a high-resolution grid and read off 
the coordinates needed, or, if you were mathematically
minded, you could write a program that calculated the 
coordinates itself. However, either method would take 
quite a time. 

Shape programs in BASIC are often rather 
cumbersome. However, LOGO, another computer 
language developed in the 1970s, tackles the task of 
drawing shapes far more effectively. The part of the 
LOGO language that has become of greatest interest to 
micro owners concerns the "turtle" - an im aginary 
animal that produces complex shapes by following easy
to-use instructions . With the help of the routines in 
block M on the opposite page, you can generate some 
fascinating turtle graphics on your Commodore, using 
not LOGO but BASIC and machine code. 

How turtle graphics work 
With turtle graphics, the commands that control 
movement are like the ones you would use in giving 
directions. Here for example is a sequence of turtle 
instructions written in a BASIC framework: 

FOR N-l T04 
FORWARD50 
RIGHT 90 
NEXTN 
This would move the turtle around a square with sides of 
length 50 units. FORWARD makes the turtle move in 
the direction it is facing for the specified distance - in 
this case 50 units. RIGHT makes it turn right, in this 
case making an angle of 90 degrees. Because this is 
repeated four times the turtle traces out a square-shaped 
path. 

The orientation of any shape the turtle produce; 
depends on its initial direction . So if you start it pointing 
vertically upward and then make it draw a square and 
finally turn through 60 degrees, you can simply repeat 
this set of instructions to produce a nest of squares. 
Programming shapes this way is easy. 

Turtle routines for the Commodore 
How can you make your Commodore understand an 
instruction like FORWARD or RIGHT? The answer, as 
you can see in the following program, is to call a BASIC 
subroutine instead , one which does exactly the same 
thing as the turtle command. Block M contains eight 
separate turtle routines, each written in ordinary 
BASIC, and each of which in turn calls one or more of 
the machine-code graphics routines. 

What the routines do 
In block M, the first turtle routine, starting at line 
20000, sets the turtle 's initial position at the center of 
the screen, the initial direction vertically upward, and 
selects a "pen down" option, so that drawing will begin 
as soon as the turtle is moved. All the angles in these 
routines are measured in degrees clockwise from the 
positive horizontal axis, and all the distances are 
measured in pixels. 

The second turtle routine, starting at line 21000, 
draws the shape that represents the turtle itself. The 
erase routine from block F is used so that it can both 
draw and erase the turtle. 

The third routine, at line 22000, turns the turtle left. 
To use it, you set the variable A to the angle through 
which you want to turn and then call the routine with 
GOSUB. For example, to turn the turtle left by 30 



degr ees, you would use the f ollowing line: 

A~30 : GOSUB 22000 

The rout ine to turn r ight starts at line 23000, and it is 
called in exactly the same way. T he routine at l ine 
24000 is the one for FORWARD. You just state the 
distance you want the turtle to travel by setting the 
variable D, and then by calling the routine with GOSUB 
24000. For example, to move forward 50 pixels, you 
would use the line: 

D~50 : GOSUB 24000 

Similarly, to m ove the turtle backward, you would set D 
to the distance and call the routine at line 25000. 

T he fin al two routines are at lines 26000 and 27000. 
T hese carry out the pen-up and pen-down options. 
Neither of these two routines needs any parameters. 

How to try the routines out 
You can tryout the turtle r outines yourself. First, load 
blocks A-D and F, then key in your turtle program 
starting at line 10000, and finally add block M. Read the 
details in the block M panel carefully so that you 
understand how to oper ate the routines before you key 
them in . You will find a wide range of turtle graphics 
demonstration programs on the following eight pages. 

The turt le rou tines must be keyed in or loaded after al l the 
required machine· code rout ines and main program have 
been entered. If you do not follow th is order, your turtle 
programs wi ll not work. 

TURTLE ROUTINES LISTING 

1-----1 BLOCK M 1-----1 

TURTLE GRAPHICS routines 

What the routines do 
The routines in this block enable the Commodore to set up a 
mobile turtle, and then move it through relative angles and 
distances, rather than through absolute ones. For example, 
the turt le can be programmed to move forward 50 pixels and 
then turn 90 degrees to its right regardless of the position and 
direction it started in. This block does not itself program 
machine code. The eight subroutines in it are writ ten in simple 
BASIC using GOSUB and RETURN. However, each of these 
BASIC subroutines works by call ing one or more of the 
machine-code graphics routines in blocks k D and F. 

How to use the turtle graphics routines 
To use turtle graphics, first load graphics routine blocks A-D 
and F (or the complete set if you have it ). Then add your turtle 
program giving it line numbers between 10000 and 19999, 
and then finally add block M. It is very important that you 
assemble a turt le program in th is order. All t urt le programs 
must begin either with the turtle initia lization routine, if you 
want the turt le to start in the middle of the screen, or the turt le 
shape rout ine, if you want to make it start somewhere else. 

SYNTAX AND PARAMETERS 

To set up or move the turtle in a program, first decide 
which turtle routine you need. Then key in an angle or 
distances if the routine requires them, separated by 

colons, then GOSUB and the line number which calls the 
routine. 

Turtle Inllallzallon GOSUB 20000 
Turtle shape XI- , YI- , AI - , P- , GOSUB 21000 

Turn left A- , GOSUB 22000 
Turn rlghl A~ , GOSUB 23000 
Forward 0 - , GOSUB 24000 

Backward 0 - , GOSUB 25000 
Pen up GOSUB 26000 

Pen down GOSUB 27000 

B (Turtle initialization only) Initial turtle horizontal 
and vertical coordinates (ranges 0-319 and 0-199). 
Key in XI- th-en the horizontal coordinate, and YI -
then the vertical coordinate. 

[] (Turtle initialization only) Initial angle at which the 
turtle is to point, measured in degrees clockwise from 
the positive horizontal axis (range 0-360). Key in AI-
followed by the angle. 

.. I P II (Turtle lnol,alozal,on only) Pen up (O)or pen down(!)1 

[] 

(Turn lefl and lurn righl only) Angle through which 
A the turtle is to turn, measured in degrees (no range 

p='lim:=i~t)=. K=e~y=in=A=-=fO=II=ow=e=d=b~y=th=e:,a=ng;,l=e.====~ 

D (Forward and backward only) Distance in pixels 
through which the turtle is to travel (no range limit, 

o although some values may produce off-screen 
displays). Key in D- followed by the distance. 
~--=----



TURTLE SHAPES 1 
you have seen how a turtle graphics program can 

be used to move through fixed angles and distances. But 
it 's possible to write a turtle graphics program so that 
the turtle's movements are controlled by variables 
instead of by set figures. The program can then start by 
asking for values for these variables and so produce 
results which you can specify from the keyboard. 

The first program on these two pages works in this 
way. Itdraws a ncsrof24 squares in a way very simil ar to 
the one you saw on page 50. However, this time the 
results are much more interesting. The size of 
successive squares changes, and you can control the 
initial length of the sides and also the STEP size by 
which they increase each time a sq uare is drawn. To try 
the program out, make sure that you have routine 
blocks A-D and F in memory, add the program listing, 
and finall y add block M. After typing RUN , key in two 
parameters and watch the display unfold. 

VARIABLE T URTLE SQUARES (parameters 1,3) 

Multi-shape programs 
Some turtle graphics programs will produce a huge 
range of quite different results. The next program is a 
good example. 

MULTI-SHAPE PROGRAM 



T he program lets you INPUT two parameters. T hese 
are the angle through which the turtle turns after it has 
drawn a line, and the increase in the forward distance 
with each successive line. T he program is controlled by a 
loop so that the turtle stops after 60 lines. 

T he small displays on the right show the effect of 
three difTerent pairs of parameters. The photographs 
show the displays before the program has reached 
completion . T he large display below is the complete 
display produced by using the parameters 123 and l. 

With this program, it 's very difficult to predict how a 
shape will turn out, but this is the fun of turtle graphics 

MULTI-SHAP E 
PROGRAM 

OLr7S 
How the program works 
The program asks for two 
paramete rs. The angle through 
which the HIrtle turns remains 
constanl . while the distance it 
travels between turns increases. 
Lines 10050 and 10060 
make the ru rtlc move forward 
then nun right. 
Line 10070 increases the 

rorward distance that the turtlc 
moves on every loop. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routiae( . ) Ilpage l 
A High-resolution 11 
B Clear·and-color 13 
C Plot 15 
o Draw 17 
F Erase 25 

- you can create some fascinating displays by 
experimenting. The three displays below show the 
results you should see if you try entering parameters 123 
and 1, 144 and 5, and 170 and 10. 



TURTLE SHAPES 2 
There are several kinds of objects that turtle graphics 
are particularly good at displaying. The simplest are 
"closed" shapes - ones that start and finish at the same 
point. You see this with the first of the following 
programs, which draws polygons. 

This program asks you to input two parameters and 
then draws a closed regular shape and fills it. The first of 
the two values you need to enter specifies the length of 
the perimeter, that is the total length of the edges of the 
shape. The second value specifies the number of sides 
the shape will have. 

Each of the following three displays uses a perimeter 
value of 350 with numbers of sides 5, 9 and 15 
respectively. To run the program, load routine blocks 
A-D and F, add the listing below, and then add the turtle 
routines in block M. 

Remember that you must add the program and the 
machine-code and turtle routines in the correct order. 

POLYGON PROGRAM 

As you can sec, as the number sides increases it 
becomes more and more difficult to distinguish the 
shape produced from a circle. In fact, the high
resolution circle and arc routines on page 21 draw 
shapes in just this way - as a sequence of short lines. 

One final point to notice about this program is that it 
does not use the default initial posi tion for the turtle. It 
does not call the turtle initialization routine starting at 
line 20000 but instead sets up its own initial values in 
line 10040 so that the turtle starts to the left of the 
screen '5 center. 

Using multiple loops 
N ow you know how to display a closed shape, there are 
several ways in which a series of closed shapes can be 
combined to produce interesting effects. For example, 
you can display a variable number of shapes so that they 
all touch at one corner, as the next program shows. 



Again, this program needs to be added to blocks A-D 
and F, and then followed by block M. The displays 
below shows the results you should see with parameters 
5 and then 50. 

MULTIPLE CLOSED SHAPES PROGRAM 

As a final example of closed shapes, try the following 
program. The displays below are produced by 
parameter values of 80,80 and 100, 160. As usual, it 
needs routine blocks A-D and F. 

CLOSEDSHAPES PROGRfu~ 



TURTLE SPIRALS 
One display which turtle graphics makes simple is the 
spiral. In general, to draw a spiral you need to move the 
turtle forward repeatedly by some increasing amount, 
and rotate it through a fixed angle. 

You can develop this approach with turtle graphics so 
that several parameters are used. T he following 
program shows you one way of doi ng this - it draws a 
spiral which you can specify. When the program is run, 
it asks you to enter three parameter values . These arc, in 
order, the length of the initial move forward, the angle 
through which to turn, and the step size for the increase 
in length. T he following sequence of displays was 
produced with this program. T he two small displays are 
produced by parameters 5,60, I and 5,65, I. 

To test the program, la,ad the graphics routines in 
blocks A-D and F, add the listing below, and then add 
the turtle routines in block M. Again, remember that the 
order in which you do this must be right. 

07:'-/0 
How the program works 
The program accepts three 
parameter values - a distance 
through which the turtle will 
move forward, an angle 
through which it wi ll then 
turn , and an increase which is 
added 10 the distance after 
each turn . The large display 
here is created by paramete rs 
5,61 ,1. 
Line 10010 
asks for the three parameters. 
Line 10030 
init ializes the tu rtlc, making it 
start at the center of the 
screen . 
Lines 10040- 10080 
form a loop which makes the 
turtle move rorward and turn . 
Line 10070 increases the 
distance by the number 
selected at the beginning or the 
program. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Rout;n.(.) IIPage I 
r=== 

A High-resolution 11 
B Clear-and-color 13 
C Plot 15 

o Draw 17 

F Erase 25 
'---



The next program also creates a family of spiral shapes 
and again requires you to specify three parameters. 
However, this time the results are very different. The 
parameters for this program are the length of the turtle 
movements, the initial angle through which the turtle 
rotates, and the amount by which this angle is increased 
on each pass through the loop. 

Increasing the angle instead of the distance 
completely alters the display. This simple progtam 
produces a family of spiral patterns whose shapes are 
very difficult to predict from the input parameters. The 
curves are best described as «inward spirals". 

You will find that many combinations of parameters 
make the turtle wander off the screen after a few turns. 
You may have to wait hours to find out if it ever returns! 
The trick is to find an angle and an angle increase value 
which together make the turtle track back over a small 
area. If you do find a combination that keeps the turtle 
within the screen boundaries, you will probably see a 
pattern like the ones below. These shapes both have 
rotational symmetry. The first is produced by 

parameters 20,2,20 and the second by 10, 1,78. The first 
has five-fold symmetry and the second three-fold 
symmetry. It produces an endless variety of simple or 
complex patterns on this theme. 



One technique that can be very useful in producing 
turtle displays is that of creating patterns inside 
subroutines. What this means is that you develop a 
shape or pattern and write it so that it can be called as a 
subroutine. This shape can be as simple or as 
complicated as you like - as long as it can be produced 
by the turtle routines. 

Once you have created the subroutine, you can 
make the turtle move across the screen, drawing the 
shape at different orientations or even different sizes 
as it goes. Because you can nest subroutines by having 
GOSUBs within other GOSUBs, you can draw 
patterns within patterns, so that a fairly 
straightforward original design ends up by producing a 
very detailed pattern on the screen. 

The three programs on these two pages are all 
related, being based on the same simple shape. The 
first program produces just the The second 

program repeats the shape rour times in a specific way, 
and the third program repeats the whole of the shape 
created by the second, again in a specific way. 

To tryout the first program, load routine blocks 
A-D and F, key in the program and then add block M. 
You can then adapt the main program as shown here. 

How to repeat a simple shape 
The fi rst program draws the fundamental shape. It 's a 
design like a games bat. The part of the program that 
draws the bat is contained in a subroutine starting at 
line 15000. It is now fairly straightforward to write 
another subroutine that builds up a simple square 
pattern using the previously created bat subroutine. 
This gives you the second program. Finally, you can 
write a third program that calls this new subroutine 
several times to repeat the design . The result is a 
complex new display. 



10000 

1 030 11m 1 040 
1 050 
1 060 
11999 
12000 
12010 
12020 
12030 

t~333 
tsg~3 
15030 

nm 
;£00 •. 

FINAL TURTLE PATTERN 

$YS Ai : SYS 81 5 
GOSUS 20000 : pbKE 53280.4 
FOR I(K=1 TO 8 
GOSUB 12000 
A~135 GOSUS 23000 
"EXT teK 
GOSUB 27000 

FOR K=1 TO 4 

Gala 10060 

GOSUB 150g0 
A=120 : G SUB 23000 
"EXT K RETURN 

D=50 GOSUB 24000 
A=30 . GOSUB 22000 
FOR C:l TO 3 
0=20 Gasus 24000 
A=120 _ GOSUB 23000 
N[XT C 
RETURN 
XI=160 YI=100 

Writing shapes as subroutines 
You can use subroutines to build up a library ofshapes 
for use in turtle graphics . By nesting the subroutines, 
you can add shapes together, although there is a limit to 
the depth of nesting that the Commodore can handle. 

TURTLE PATTERN 
PROGRAM 

How the program works 
The program produces a 
simple design, repeats it four 
times in a square, and then 
repeats this square eight times. 
Lines 10020~10050 caU the 
subroutine at line 12000, 
moving the turtle on each time. 
Lines 12000-12030 call the 

Lines 15000-15060 produce 
the bat. 

ROUTINES USED BY 
THIS PROGRAM 

I Block Routine(s) IIPagel 
A High-resolution 11 

B Clear-and-color 13 
C Plot 15 
D Draw 17 
F Erase 25 

~=.::;=.;:::::;=:=====;:;;;;;::;;;;;;;;:;:;;;;;;;;;;;;;:::;:;:;;;;:;::::;:=:.,.;-,.;s::,:ubroutine at line 15000. 



HIGH-RESOLUTION GRID 
The two grids on this page allow you to work out 
coordinates for use with the machine-code graphics 
routines, and also enable you to work out row bit totals 
for use with the define-character routine. 

Screen grid 
T he main grid below shows the coordinates of points 
that lie on the visible screen area. When you use the 
graphics routines, you' are not limited to coordinates 
within this range. Most of the routines will accept 
parameter values that extend outside this area, either 
positive or negative, as long as the total range of co· 
ordinates does not exceed the Commodore's integer 
handling capacity. In reality, this restricts most co
ordinates to a total range of about 32,000. 

This capability means that you can produce designs 
that are only partially on-screen. For example, if you 
key in SYS E1 ,160,800,700 you will see a very shallow 
arc on the screen - the only visible part of a complete 
circle which the computer has calculated. 

Although invisible parts of displays are supported in 
the computer 's memory, the scroll routine cannot be 
used to move hidden parts of a display. 

HIGH·RESOLUTION SCREEN GRID 

Character grid 
You can use this grid to work out row bit totals 
inclusion with the define-character routine. Pencil· 
your design and then add up the row totals. 

Row bit totals 

o 
1 

2 
3 

4 
5 
6 

7 

Bit values 

-

~NO~~~NOOO~~NOOO~VNOOO~VNOOO~VN 
~VNOOO~VNOOO~O_NN~v~~~~oo~OO_N~VV~~~OOOO~O_ 

o 
8 

16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 

104 
112 
120 
128 
136 
144 
152 
160 
168 
176 
184 
192 

000 NMVV~~~OOOO~ --- - NNNNNNNNNNNNN~~ - --------
I 
j 



ERROR TRAPPING 
Even if you are an experienced micro user, it is easy to 
make mistakes when keying in programs. If you have 
been very careful (and lucky) when using this book, you 
might have managed to key in all the machine-code 
DATA numbers without making any mistakes. 
However, the chances are that one or two simple errors 
will have crept into your copy of the routines. Depend
ing on where these errors occur, you may not experience 
any problems for quite a time. Then some time later, 
you will call on a routine which you have not previously 
used, and an error in it will cause your program to go 
wrong in some way-perhaps giving a different problem 
every time you run it. There are no error reports gener
ated when using machine code, so how do you know 
where you have gone wrong' 

The Checksum program 
If you transfer information from one medium to 
another, you need some way of checking that the trans
fer has been accurate. A simple but effective way of 
doing this with numerical information is to add together 
all the numbers to produce a "checksum". You can then 
compare the two checksums-before and after transfer. 

The program at the bonom of this page lets you check 
your routines using this method. It will go to a specified 
machine-code routine and add together all the DATA 
numbers it contains to produce a checksum which it 
then compares with its own built-in list. 

How to use the Checksum program 
To use this program, you must first enter block A and 
run it, and then merge the Checksum program with this 
block. Now if you run the combined program and block 
A, it will ask you the question A-L?, requesting you to 
name a routine. If you enter A, and should confirm that 
block A is correct by displaying DATA OK. Ifblock A is 
incorrect, it should display DATA ERROR. Any other 
message output or printed by BASIC as a result of an 
error indicates that one or more of the DATA state
ments in block A is at fault. You now need to find and 
correctthe error. When your first block of machine code 
passes the checksum test, it is then safe to go on and use 
the program to test the other blocks. You must check 
block A first because the Checksum program uses the 
restore routine. You will also find the merge routine 
useful for adding the Checksum program onto the end 
of the routines you want to test. 

Having combined and tested block A with the 
program, you can then test any other block with it . Just 
load the block or blocks you want to test, and then merge 
the Checksum listing with them. Any block which is 
incorrect will give a DATA ERROR report when the 
Checksum tests it . The chances of an incorrect listing 

coincidentally producing the correct checksum total is 
negligible, so, if you do get a DATA ERROR message, it 
is almost certain that your listing is not correct. 

How to avoid errors 
When you are keying in the routines, it is a good idea to 
SAVE each routine before you run it for the first time, 
rather than testing it first and then storing it. Because 
the routines produce machine code, errors can make 
them disrupt themselves. For example, this may lead to 
a listing becoming corrupted by other characters that 
are thrown up on the screen, locking the computer into a 
state that only disconnection will break . 

Secondly, if you key in the routines but they seem to 
be ineffective, try jumping over the first line "f the first 
routine with GOTO. The routines may be ignored if 
their first DATA number accidentally happens to be in 
memory already. 

CHECKSUM PROGRAM 



The main table on these two pages gives you details of all 
the machine-code graphics routines that are featured in 
this book. Block M, the turtle graphics routine block, 
does not appear here because it only uses ordinary 
BASIC. The chart enables you to look up the 
information you need to use the machine-code routines 
in your own programs. 

variable which identifies the routine (B I, H2 and so on) 
and then by parameters, if the routine requires them. 
Remember to separate all this information by commas 
as shown in the chart. 

Because the routines arc activated by variables which 
stand for five-figure memory addresses, it is very 
important that you do not usc the same variables to 
represent any other values in your programs. For 

Syntax example, calling two sets of coordinates A I ,B 1 and 
When you are using any routine, it is important to use A2,B2 could make a program crash. This is because 
the correct syntax. Each routine is called from a main these variables are already used by routine blocks A and 
BASIC the command SYS, followed by the B to signify the addresses of four routines. 

Blocl< Page Title Syntax Parameters 

A 11 High-reSOlution 

A 11 Low-resolution 

A II Restore 

A 11 Rescue 
A 11 Merge 

B 13 Clear-and-color 

B 13 Block-color 

C 15 Plot 

D 17 Draw 

E 21 Circle 

E 21 Arc 

F 25 Erase 

G 27 Flood-fill 

H 31 ROM-copy 

H 31 Text 

I 33 Define-character 

J 35 Pattern-fill 

K 39 Block-copy 

L 43 Scroll 

SYS Al 

SYS A2 
SYS A3,N 

SYS 49271 
SYS 49297, AS 1,8] 
SYS BI,C 

SYS B2,X,Y,C 

SYS CI,X,Y 
SYS DI,X,Y 
SYS E I,X, Y,R 

SYS E2,X, Y,R,P,Q 

SYS Fl,N 

SYS G l,X,Y 
SYS HI 
SYS H2,X, Y,AS 

SYS Il,C,X 1-X8 

SYS Jl,X ,Y,C, 

SYS Kl,X,Y,A,B 

SYS Ll,D,C, 

None 

None 
N program line number 
None 
AS filename 

C color code 
x, Y block coordinates 
C color code 
x, Y point coordinates 
x, Y line-end coordinates 
x, Y center coordinates 
R radius length 
X,Y center coordinates 
R radius length 
P starting angle 
Q finishing angle 
N ofT/ on 
x, Y start coordinates 

None 
x, Y start coordinates 
AS text 
C character code 
X 1-X8 row bit totals 

x, Y start coordinates 
C filling character code 

X, Y origin block 
coordinates 

A,B destination block 
coordinates 

D 
C 

direction 
color code 



Parameters 
The chart shows what parameters need to be specified 
for each routine, and what the range limits for each 
parameter are. Routines which perform specific 
operations like switching from low to high resolution do 
not require any parameters. 

Parameter ranges 
The parameter ranges in the charr indicate values that 
will give results fully or partially-on screen. Some of the 
routines actually accept parameters that give results 
completely off the screen. Although in these cases you 
cannot see the resulting display, the computer will 
remember the "invisible" coordinates. This means that 
in turtle graphics, for example, a program may produce 

Parameter Address Checksum 

49273 22319 

49254 
any line number 49209 

49271 
any current filename 49297 
0-255 49559 34257 
0-319 and 0-199 49634 
0-255 
0-319 and 0-199 49712 8606 
0-319 and 0-199 49792 46426 

0-319 and 0-199 50202 39981 
any value 
0-319 and 0-199 50225 
any value 
any value 
any value 
O~off, l~on 50560 2067 

0-3 19 and 0-199 50694 47612 
51104 

0-319 and 0-199 51167 26764 
any text 
0-255 51328 6326 
0-255 each 
0-319 and 0-199 51394 27057 
0-255 
0-319 and 0-199 51616 8484 

0-319 and 0-199 

1 ~left , O- right 51689 65736 
0-255 

a display th at disappears off the screen, to reappear 
again later. 

When you use the machine-code graphics routines, 
the screen acts as a window which allows you to look at 
just a very small part of the theoretical display area. 
Most of the routines which actually produce graphics 
wi ll accept any coordinates that lie within the Commo
dore's integer handling range. That means that the 
coordinates can reach nearly 32,000. The total display 
area is therefore about 100 screens wide and 160 screens 
deep! Only one sixteen-thousandth of this is visible 
screen. 

Address 
The start address for each routine shows whcre its 
machine code begins in memory. Each start address is 
represented by a variable. Start address 49273 , for 
example, which is the beginning of the machine-code 
routine which makes the screen switch to high 
resolution, is represented by Al. To activate the high
resolution routine, you could either type SYS A I or SYS 
49273. 

Checksum 
These figures are the ones used by the Checksum 
program on page 61 to test if the total of a routine's 
DATA numbers, as keyed in, is correct. T his gives a 
simple way of checking a listing that uses machine-code 
routines . When machine-code instructions are being 
carried out, faults will not generate BASIC error 
reports , making it difficult to track down bugs. Full 
details appear on page 6l. 

Combinations of foreground and background colors are coded by a 
single number from 0 to 255. To select any foreground and 
background color combination, add together the ( Wo num bers 
shown. The resulting color code can then be used wit h the clear
and-color, block-color or scroll routines. 

Color As foreground As background 

Black 0 0 
White 16 1 
Red 32 2 
Cyan 48 3 
Purple 64 4 
Green 80 5 
Blue 96 6 
Yellow 112 7 
Orange 128 8 
Brown 144 9 
Light red 160 10 
Dark gray 176 II 
Medium gray 192 12 
Light green 208 13 
ught blue 
Light gray 



Main entries are given in 
bold type. 

Address 63 
Arc routine 20-1 

BASIC, speeding up 6 
Blank-color scrolling 43 
Block-color routine 

12-13 
Block·copy routine 

38-39 
Blocks, routine 
. re· loading 9 

storing 9 
titles 7 

Characters, high
resolution 32-3, 60 

Checksum program 61, 
63 

Circles, Graphics 
Editor 47 

routine 20-1 
Clear·and·color routine 

12-13 
Closed shapes 

programs, 54·5 
Color, block·color 

routine 12-13 
c1ear-and·color 

routine 12-13 
codes 12, 63 
filling shapes 26·9 
Graphics Editor 46·7 
high· resolution 12· 13 
random block-
color 12· 13 

Color Chart program 
32·3 

Copying 38·40 
Cross-hatching 36 
Cursors, Graphics 

Editor 44 
Dcfine·character routine 

32-3 
Diamond Copier 

program 38 
Diamond program 18 
Displays, scrolling 42-3 
Double Recursion 

program 23 

Draw routine 16-17 

Erase routine 24-5 
Errors, avoiding 61 

Checksum 
program 61, 63 

programming 
troubleshooting 9 

Filenames 49 
Filling, patterns 34·7 

shapes 26·9 
Flight Simulator program 

30·1 
Flood·fill routine 26-7 

Graphics Editor 44·9 
circles 47 
color 46·7 
commands 44·5 
filenames 49 
flood-filling 44·5 
lines 44·5 
on-screen grid 46·7 
pattern· filling 47 
points 44-5 
storing displays 48·9 
text 47 

Grids, high
resolution 60 

on-screen 46-7 

High· resolution 8, 9 
characters 32-3 
color 12· 13 
grid 60 
routine 11 
text 30·1 

Jungle program 28-9 

Keying in programs 8·9 

Landscapes 18· 19 
Line Landscape 
program 18· 19 

Line numbers 9 
Line Web program 16 
Lines, drawing 16· 17 

landscapes 18· 19 
radiating patterns 18 

Loading 9 

LOGO 50 
Low·resolution 

routine 11 

Machine code, 
definition 7 

linking Basic with 6· 7 
routines 
checklist 62·3 

,\\erge rourine 11 
,\ !ulti·shape 

programs 52·3 

Overprinted Circle 
program 24·5 

Overprinting 24·5 

Parameters 7 
checklist 63 

Pattern-filled Map 
program 34-5 

Pattern·filling, 
Graphics Editor 47 

Patterns, copying 35 
cross·hatching 36 
defining 35 
filling 34·7 
turtle graphics 58·9 

Planet Copier 
program 39 

Planets program 15 
Plot routine 14-15 
Point Star program 14 
Points, plotting 14· 15 
Polygon program 54 
PolyspirJI program 56-7 
Programs, errors 9 

keying in 8·9 
line numbers 9 
merging II 
troubleshooting 9 

Puzzle program 40- 1, 
46·7 

Radiating patterns 18 
Random block-color 

12-13 
Random line 

program 17 
Random numbers, 

plotting with 15 
Recursion, with 

circles 22-3 
Re-Ioading routines 9 
Rescue routine 11 

Restore routine 11 
Retrieval 49 
RO,\!·copy routine 

30- 31 
Rotating Squares 

program 25 
Routines, checklist 62·3 

function 7 
names 7 

Screen grids. high· 
resolution 60 

Screen· scrolling 42·3 
Seascape program 26·7 
Shading, plot routine 14 
Shapes, filling 26·9 

repeating 58-9 
turtle graphics 52·5 

Spirals, turtle 
graphics 56·7 

Storing routines 9, 48-9 
Subroutines, pat-

tern 58, 59 
Syntax 7 

checklist 62 

Telephone pro· 
gram 20·1 

Text, Graphics 
Editor 47 

high· resolution 30-1 
rourine 30-31 

Turtle graphics 50·7 
patterns 58-9 
routines 50-1 
shapes 52-5 
spirals 56·7 

Wall and Gate 
program 36-7 

Wrap·around 
scrolling 42 

Acknowledgments 
Dorling Kindersley would 
like to thank all those 
who helped in the 
preparation of this book 
especially Hugh 
Schcrmuly (design), 
James Burnie and Roger 
Cornes (program 
checking), Fred Gill 
(proofreading), and 
Richard Bird (indexing). 



PROGRAMMING SERIES 
The bestselling teach-yourself programming course now takes you 
beyond BASIC to the world of advanced machine-code graphics. 

Using a combination of simple BASIC programming and a 
collection of tailor-made, ready-to-run machine-code routines, this 
book shows you how to produce precision, high-resolution graphics 
in afraction of the timetheywould take in BASIC alone. A keyboard

driven graphics editor, a turtle graphics pattern generator, and a 
wide variety of demonstration programs, will help you open up the 

full potential of the Commodore 64-withoutthe need for any 
knowledge of machine-code programming. 

Together, Books Three and Four in this series form a complete, 
self-contained graphics system forthe Commodore 64. 

" Far better than anything else reviewed on these pages . . . 
Outstandingly good" 

BIGK 

" As good as anything else that is available, and far 
better than most" 
COMPUTING TODAY 

" Excellent ... As a series they coL!.Ld form the best 'basic 
introduction' to programming I've seen" 

POPULAR COMPUTING WEEKLY 

II II II II 111111111111 
1111 UIIII. IIIIIIU . I . . -

I 

, 

II 

-
: I : 

i • . .. .. . ,~. .,. 

-" 
-

----- -------- ---_._-- -- --- -------

. 


