QoeenShol

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

COMMODORE

ULAWNMDOO-0U AWM |

i o

PHIL CORNES o))%

1

QoneenShol

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

COMMODORE 64

RAFNICS

THE DK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the DK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
learning how to program in BASIC. Following the success of this
completely new concept in teach-yourself computing, the series
now carries on to explore the speed and potential of machine-code
graphics. Fully illustrated in the Screen-Shot style, the series
continues to set new standards in the world of computer books.

BOOKS ABOUT THE COMMODORE 64
This is Book Three in a series of guides to programming the
Commodore 64. It contains a complete BASIC-and-machine-code
graphics language for the Commodore, and features its own

graphics editor which enables you to use all these facilities directly -

from the keyboard. Together with its companion volumes, it builds
up into a complete programming and graphics system.

ALSO AVAILABLE IN THE SERIES
Step-by-Step Programming for the ZX Spectrum+

Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the Apple lic

PHIL CORNES
After taking a B.A. in Mathematics and Computing, Phil Cornes has
been involved in system development of computer-based
education at British Telecom’s National Training College. He has
been a part-time technical author since 1978, and has became a
regular contributor to personal computer magazines such as
Personal Computer World, Computing Today and Electronics Today
International. He has written a book and a large number of articles
on programming and using the Commodore 64.

QueonShol

PROGRAMMING SERIES

P-BY-STEP

Y &= ' T T :
il i f Al 2 Y .
N A A d A % oy ;
‘ £ B _& yaYy B \

ey)
¥ a | y
| | |
i g |
- L -

o 5 e Rl) R LR T o R R

PHIL CORNES

[L:- ' _M
N ' u
e B B A
| - |
i EEaEEEs)
L /@‘3
GUILD PUBLISHING-LONDON Iz *:\
/o

CONTENTS

R s S O e S I S

| 6

HOW TO USE
THIS BOOK

[T 8

HOW TO KEY IN
THE PROGRAMS

| 10

THE GRAPHICS
TOOLKIT

12

-

HIGH-RESOLUTION
COLOR

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited.

Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

Copyright © 1985 by Dorling
Kindersley Limited, London

This edition published 1985 by Book
Club Associates by arrangement with
Dorling Kindersley Limited.

The term Commodore is a trade mark

of Commodore Business Machines, Inc.

=
A

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Llovet

S.A., Barcelona, Spain

Printed and bound in Italy by
A. Mondadori, Verona

| 14 | [20 I
PICTURES WITH POINTS | CIRCLES AND ARCS 1
I 22 |
CIRCLES AND ARCS 2
| 24 | |
OVERPRINTING
AND ERASING
I 16 | s
LINE GRAPHICS 1
| 18 &
LINE GRAPHICS 2

| 28 ||]

FILLING SHAPES 2
I 30 |

HIGH-RESOLUTION
TEXT

—

32 1] 42 | | 52 |

DESIGNING CHARACTERS TURTLE SHAPES 1

T

TURTLE SHAPES 2
| 44 ; [= .
34 || GRAPHICS EDITOR 1
PATTERN-FILLING1 || 46 | TURTLE SPIRALS
36 1| GRAPHICS EDITOR 2

PATTERN-FILLING 2

TURTLE PATTERNS

| 48 |

HIGH-RESOLUTION
GRID

ERROR TRAPPING
| 62 |

ROUTINES CHECKLIST
50] 64 |

TURTLE GRAPHICS INDEX

R

BLOCK-COPYING 2

HOW TO USE THIS BOOK

The Commodore 64 is one of the most powerful
microcomputers currently available, and it has many
facilities that set it apart from other machines.
However, it does have one drawback. The
Commodore’s BASIC interpreter — the part of the
computer which “understands” the BASIC
programming language — has a rather limited
vocabulary. Because it doesn’t understand keywords
like PLOT, DRAW or COLOR, complex graphics often
require long programs full of difficult-to-use POKE
statements. Furthermore, when you try out programs
like these, the chances are that the Commodore will take
quite a long time to run them because so many
instructions are needed.

This book provides you with the tools you need to get
much more out of the Commodore 64’s graphics by
taking you beyond BASIC. With the routines and
programs on the following pages, you can make
graphics both easier to key in and much faster to run.

Speeding up Commodore BASIC
Each time you run a BASIC graphics program, the
Commodore will almost certainly have to perform a
number of different operations, repeating each one over
and over again. Take as an example plotting a single
point on the screen. Each time the computer plots a
point, it must interpret quite a long sequence of BASIC
instructions. A considerable amount of “thinking” time
is needed before the point appears. Imagine how much
work the Commodore has to do if you want it to draw a
series of lines made up of individual point-plots.
Program sequences that are to be repeated are usually
written as routines. Indeed, this book gives you a whole
package of routines to produce graphics. However, they
are not ordinary BASIC routines activated by the
command GOSUB. Instead, they are written so that
‘they produce instructions in machine code, and these
instructions are triggered by the command SYS. Using
these routines, graphics programs run tens or hundreds
of times faster than they would with pure BASIC.

The machine-code graphics routines

Pages 10-43 introduce 19 machine-code graphics
routines that together build up into a complete graphics
system. The routines are arranged in blocks, with each
block coded by a letter from A to L. Each block contains
from one to five separate graphics routines coded by a
number (A1, A2 and so on). You can find a complete list
of the routines on pages 62-63.

Totry out any program in this book, all you have todo
is key in the main BASIC program together with the
routine blocks that it uses. You can find full details of
how to do this on pages 8-9. By saving each of the

routine blocks on tape or disk as you go through the
book, you’ll have a new and flexible graphics capability
at your fingertips.

Linking BASIC and machine code

When you try out a program in this book, the computer
will run it by using a number of the machine-code
routines. Hereis a program sequence which would plota
series of points:

HOW A PROGRAM USES THE GRAPHICS ROUT

INES

N SHEY wilk > 1m o e i J y:
= Sets up the high-resolution E
= - — screen

&
Y

Clears the screen and sets |
its colors []

W Cal the clear-and-color
| | routine

S e A

e 5 et __:_- s |'_ L
' | Plots a single point I

machine code work together. A typical example of a
main BASIC graphics listing which plots points in this
way looks like this:

MAIN BASIC LISTING

Tan
’h

BSOSO

Tolee

nLNL
OOOOOCOOOOD® M

D=S000 I &

000D

e e, Laaes | - o

You will notice that the listing contains a number of
lines which feature the SYS command. This makes the
computer carry out instructions that start not at a
specified line number, but instead at a specified address
in memory (you can see the address numbers in the
routines checklist on pages 62-63).

In the previous program, when the computer reaches
line 10100, for example, it goes to memory address C1.
C1 is simply a variable holding the number of the
memory address for routine 1 in block C. When the
computer goes to this address it follows the instructions
that begin there. This is where the graphics routine
comes in. It puts instructions that code a graphics
operation directly into the memory. Once there, the
computer can read them without using BASIC.

You can see the routine in the panel below. It plots
points. Because it has low line numbers, its instructions
are POKEd into memory before the main BASIC listing
calls on them. This means that from the moment the
routine has been run, the potential for plotting points
with machine code is in memory ready to be used.

When the computer encounters the command SYS
C1 in the main BASIC program, it will jump to the
correct machine code and plot a point. This will happen
very quickly because BASIC is not used.

What is machine code?

Although you can program the Commodore with
BASIC keywords, ultimately it works only with
numbers. In every one of the 65,536 addresses in the
Commodore’s RAM, there is room for one number with
a value between 0 and 255. It is these numbers that
control all the programmable operations that the
computer can perform.

Before a program can be carried out, the Commodore
must convert all BASIC instructions, strings and
variables into numbers and put them into specific
memory addresses. Once this has been done, the
computer can then start working on them to produce
results.

The number language that the computer uses is
known as machine code. Machine-code instructions are
carried out very rapidly. A large amount of the time
your Commodore needs to run a BASIC program is
taken up with converting from BASIC into machine
code, rather than computing results.

This book speeds up programs by cutting down the
amount of BASIC-to-machine-code conversion that the
Commodore needs to do. The graphics routines use the
POKE command to put DATA numbers directly into
memory, and these produce machine-code results.

WHAT A MACHINE-CODE PANEL CONTAINS

Block title Each machine-,
code block is labeled by a

‘BLOCK C

single letter from A to L (block
M does not contain machine-

PLOT routine

Routine names This tells you

code). The program line
numbers in the blocks form a
single sequence which follows
their alphabetical order.

What the routine does

grid on page 61).

The routine plots a single pixel at a specified point on the high-
resolution screen (the screen coordinates are shown in the

which routine or routines the
block contains.

Routine function This tells
yeu what each of the routines

I SYNTAX AND PARAMETERS

I in the block does, and also any

Syntax and parameters

special information you need in

This section tells you how to I

SYSCL XV —— . |

order to use them.

key in each routine and also
what parameters, if any, you XY
need to specify.

Horizontal and vertical coordinates of the point
T° to be plotted (ranges 0-319 and 0-199).

Syntax This shows the
general form in which the

routine(s) must be keyed in.

Parameters This section tells

ROUTINE LISTING

Here SYS Cl is the part of the

you what the parameters
specify, and what limits they
must fall between.

OCO=J0
OO0
-

OO0
=
o
o

syntax which calls the plot
routine, while X,Y are the two
0 4978 parameters it requires.

Routine listing This is the
listing you must key in and run
in order to be able to call the
machine-code routine(s) it
codes.

HOW TO KEY IN THE PROGRAMS

Because the programs in this book all depend on
machine code, it is crucial that you know what to key in
before you start. To run any program in this book, you
need to do three things:

1 Make sure that your Commodore is set up for high
resolution. You can see how to do this in the panel on the
right of this page. You only have to do this once every
time you switch on, but failing to do it will prevent the
programs from running.

2 Find out which machine-code routine blocks the
program needs, and load or key them in. You can either
load the separate routines one by one, or, if you have
worked through the book already, you can load the
complete set. Both ways work equally well (it doesn’t
matter if you have unused routines in memory). Make
sure that you add all the routines in order, with the
lowest line numbers being keyed in or loaded first.

3 Add the main BASIC listing and run the complete
program. If you have trouble with a program, consult
the panels on the opposite page.

Writing your own programs

Once you have a complete set of the graphics routines,
writing your own high-resolution graphics programs is
easy. All you have to do isload the routines and then add
a main BASIC program, starting at line 10000.

Here for example is a program which will draw fan-
shapes on the screen. You can see from this how simple
the graphics system is to use, and how much more
straightforward the listing is than a pure BASIC
equivalent.

HIGH-RESOLUTION GRAPHICS PROGRAM

DO
DoO0m
-
-

~30

4 Ln Lt T T ace Tam T ma m o T

D0

OO0

HIGH-RESOLUTION GRAPHICS DISPLAY

IMPORTANT

After you turn on the computer and before you try out
the programs in this book, you must key in the following
series of direct commands:

HIGH-RESOLUTION COMMANDS SCREEN

POKE 642,64
READY.

POKE 44,64
READY.

POKE 16384,8
READY.

NEH

READY.
|

The Commodore does not have a section of memory
specifically reserved for high-resolution graphics.
These commands make the computer rearrange its
memory so that it can store high-resolution graphics
information in the area normally used by the BASIC
system. The programs in this book will not work if you
forget to key in these commands.

This sequence must be typed in as direct commands
and not as part of a program. If you try to enter the
commands as statements in a program, thereis a chance
that the program may destroy itself before it has
finished running.

[o Sramh| » R e

Program line numbers

When you key in a program from this book, the
complete listing will fall into two parts. The machine-
code routines, which make up the first part of the pro-
gram, will always start at line number 100. The main
program, which makes up the second part and calls the
routines, will always start at line number 10000. In addi-
tion to this, ordinary BASIC subroutines (subroutines
which do not involve machine code and which are called
by GOSUB) will normally appear at line number 20000
onward.

How to store and re-load the routines
The value of machine code is that it is very fast.
However, some of the blocks of machine-code routines
in this book are quite lengthy, and there would be little
point in using this system of speeding up programs if it
meant a great deal of extra time on the keyboard. Butif
you have a cassette or disk storage system, there is no
need for you to key in any machine-code block more
than once.

As you encounter each block for the first time, after
testing that it works correctly you should store it. Then,
when you want to try out a program, you canre-load the

routine blocks needed, add the program, and you are
ready to run.

Block A of the machine-code routines contains a
merge routine which allows you to add together routine
blocks and programs (the Commodore normally erases
any program in memory if you load another). If you key
in and store every routine block separately as you go
through the book, the merge routine will let you later
add all the routine blocks together. The resulting
complete set of machine-code routines will enable you to
run any high-resolution program in this book without
having to load routine blocks separately. You can find
instructions for using the merge routine on page 11.

How to alter a program

The system of program numbering is designed to help
you to distinguish between the machine-code routines
and the main program. You can alter the main program
just as you would any other BASIC program. You can
edit, extend or reorganize in any way you like, as long as
the main program continues to use only the routines
that precede it. To modify a main program, simply
delete or alter the lines you want to change, and the
revised version will be ready to run.

PROGRAMMING TROUBLESHOOTER

GRAPHICS QUESTIONS AND ANSWERS

The program won’t RUN or LIST
Check that you have set your Commodore up for high
resolution. If not, switch off and begin again.

The program won’t RUN but it will LIST
Check that the lines are in the right order. If you merge
routines and programs out of line order, the complete
program will probably crash. This is particularly
important to remember with turtle graphics.

The program only RUNSs partially

You may have keyed in the routines incorrectly. On
page 61, you will find an error-detection system which
will help you to track down any typing errors in your
machine-code DATA. Errors in BASIC can be detected
by switching to low resolution (see page 10), after which
programming faults will be revealed by the usual
Commodore error reports on screen.

The program just produces a READY message
Check that your machine code is in memory. Try typing
SYS Al in as a direct command. If the screen doesn’t
switch to high resolution, your routines are either
incorrectly keyed, or have not been run.

The program works, but won’t re-RUN

If you key in RUN on a line which already has some
graphics on it, the computer won’t understand the
instruction. Press the RUN/STOP and RESTORE
keys together, and key in RUN again.

When do I have to set up high resolution?

You must do this every time you turn the computer on, if
you want to use the high-resolution screen. Getinto the
habit of doing this automatically after you switch on.

Can I start anywhere in the book?

Yes, you can start anywhere you like. However, you will
find it much easier to work through pages 10-43 first,
building up alibrary of the routine blocks on tape or disk
as you try them out. If you do this, you will avoid having
to key them in more than once.

How can I add together routines and programs
from a tape or disk?

There’s no MERGE command on the Commodore, but
this book gives you a machine-code equivalent. This is
contained in routine block A. If you load this block and
then run it, you can merge anything else with SYS
49297. Full details are on page 11.

Can I load just one routine from a block?
No. You must always load or key in complete routine
blocks.

Can I adapt the machine-code routines?
No. If you alter the DATA numbers in the routines it is
highly unlikely that the routines will work.

How do I stop a program?
Press the RUN /STOP and RESTORE keys together.

THE GRAPHICS TOOLKIT

The machine-code routines featured on these two pages
don’t produce graphics themselves, but they are either
essential for the routines that do, or else they give you
program-handling facilities which-Commodore BASIC
does not have.

Before you can produce graphics, you need to turn on
the high-resolution screen. To do this, set your
Commodore up for high resolution, if you haven’t
already done so (see page 8), and then type in the whole
of the listing in the block A panel on the opposite page.
Before you go any further, you should store the listing
on tape or disk. If you save a block of routines before
running it, you can re-load it if it fails to work the first
time so that it can be debugged.

High- and low-resolution routines
After you have saved block A, add this very short main
program to it:

10000 SYS Al
10010 GOTO 10010

You now have a program which when run will turn on
the high-resolution graphics screen. The program
consists of two parts. Line 10000 calls a machine-code
routine for high resolution, while line 10010 forms an
endless loop, preventing the computer from trying to
produce a READY message on the high-resolution
screen. If you now key in RUN and then press
RETURN, you should see a display like this:

HIGH-RESOLUTION SCREEN

The program works in a few seconds. It uses the
command SYS Al to activate the first machine-code
routine in block A, turning on high resolution.

If you now press the RUN/STOP key and type in
SYS A2 followed by pressing RETURN, you will return
to the low-resolution (text mode) screen:

LOW-RESOLUTION SCREEN

How the routines check themselves

When you first run the program, you may notice a short
time delay before the high-resolution screen is turned
on. This delay is the time taken for the five routines in
block A to load their machine code into memory. This
only has to happen once each time you switch on,
because all the routines check to seeif they have already
been placed in memory.

Line 100 in block A checks to see if the machine code
has already been loaded. If it hasn’t, control is passed tc
the loop in lines 110 and 120 which READs all the
DATA and POKEs it into memory starting at location
49152, But if the DATA is already in memory then this
loop is skipped.

Lines 130 to 150 set up the variables that tell the
computer where each set of machine-code instructions,
from Al tc AS, starts in memory. There are five
variables — one for each routine.

The restore routine
The next routine in the block doesn’t produce anything
onits own, butis very helpful in graphics programming.
Because all the routines in this book contain DATA
statements, you can run into trouble if your main
programs also contain DATA. This is because the
computer READs DATA as a single series, starting at
the beginning of a program, and working through tothe
end. If the DATA is to be READ more than once, the
RESTORE statement is normally used. However, the
Commodore’s RESTORE statement cannot be used to
specify READing of just part of the DATA, so normally
you cannot make the computer use DATA selectively.
The restore routine provides just this facility. It’s
quite simple to use in programs. The command:

e ey | [e e

SYS A3,15000

for example makes the computer READ the DATA
beginning at line 15000. Watch out for this routine
where a main program uses DATA.

The rescue routine

The fourth routine in the graphics toolkit will help you if
you accidentally erase a program. It reverses the effect
of the BASIC command NEW (in some BASICs, this is
carried out by the command OLD). The rescue routine
lets you recall a BASIC program. This is possible
because NEW does not in fact clear a program
completely, but merely alters some memory pointers so
that the program is ignored by the computer. To cancel
NEW, simply type:

SYS 49271

This routine has to be called by a number instead of by
SYS A4 because all variables are “forgotten” if you use
NEW.

The merge routine

Throughout this book you will want to join separate

programs together, usually to combine a main program

with one or a group of routines. The merge routine

allows you to add one program onto the end of another.
Suppose you have a program in memory, and then

want to add another program to it. Typing:

SYS 49297, “FILENAME”
or, if you are using a disk drive,
SYS 49297, “FILENAME”,8

is all that is needed. The program you have identified
with the filename will now be loaded onto the end of the
program in memory. Notice that again the routine has
to be called by its address number instead of by SYS AS.

How to add the routines together
You can use the merge routine to build up a complete set
of all the machine-code graphics routines in this book.
All you have to do is load or key in block A, run it, and
then any other routine block can be added toit with SYS
49297. You should add the routine blocks in
alphabetical order as you encounter them in the book.
Their line numbers are designed to form a single, non-
overlapping sequence. .

Remember whenever you use the merge routine to
add programs in strict line order.

What next?

Now you have saved your graphics toolkit on tape or
disk, you can add some more routines which will start
graphics on the screen. Turn over the page to find out
about quick ways to use color. ‘

BLOCK A

HIGH-RESOLUTION, LOW-RESOLUTION,
RESTORE, RESCUE and MERGE routines

What the routines do

High-resolution turns on the high-resolution screen. All the
programs in this book need this routine in order to work.
Lo»g-l)'esolution returns the screen to low resolution (text
mode).

Restore resets the DATA pointer to a specified line of DATAIn
a program. This allows DATA to be READ selectively.
Rescue cancels the effect of the NEW command. It is
equivalent to the OLD command of other BASICs.

Merge adds a second program onto the end of the one
currently in memory. The merge routine does not arrange lines
in numerical sequence. The line numbers of the second
program must therefore be higher than and not overlapping
those of the first.

| SYNTAX AND PARAMETERS

High-resolution: SYS Al Low-resolution : SYS A2
Restore: SYS A3,N Rescue: SYS 49271 Merge: SYS
49297,A$(,8)

N (Restore only) Line number at which the program is
to start READing DATA.

A$ (Merge only) Filename. This can be the name of any
program currently on tape or disk.

8 (Merge only) Device number. Add ,8 if you are using a
2 disk drive; omit if you are using a tape.

l ROUTINE LISTING

e Tan L] 0t ® 2 L mn T

D
BOO0
DOOD
D000
OO0
OO

DOD=I0
HOOOO0OOOD

-l el el
2I2IDDD

PIDIDIDDIDA

el el e e T T T

=l

DPIDDIDI

2DIDDDDD2

OO -INLN

BOOOO0ODOOOGDMS

-l Lo Lo Lo Lo T
P2IIID

P L T e e TS R o L T

[
HIGH-RESOLUTION COLOR

Now that you can switch the Commodore to high
resolution, the next step is to decide which colors you
want to use. There are two ways in which you can do this
— you can either specify colors for the whole of the
screen, or for just part of it. As you will see later on,
coloring the screen is best done in a particular order.
First you set up overall colors, then you draw your
design, then, if you want to, you can change areas of
color.

Coloring is done with two machine-code routines that
are programmed by block B on the opposite page. They
are the clear-and-color routine and the block-color
routine.

Commodore color codes

If you have read Book Two in this series, you will be
familiar with the color-coding that the Commodore uses
in high resolution. There are 16 colors available. Their
codes are summarized in the table on page 63.

In high resolution, there are some restrictions in the
way that these colors can be used. In the bit-map mode
only two colors can be used in each 8x8 pixel block, but
resolution is very good. In the multicolor mode four
colors can be used in each 8x8 block, but the resolution
drops by half. All the programs in this book use the bit-
map mode to give the best resolution.

On the screen one color is known as the background
color, and the other the foreground color. Graphics
images appear in the foreground color surrounded by
the background color. Any combination of background
and foreground colors can be selected by adding
together two of the color control numbers shown in the
table.

To see how the clear-and-color and block-color
routines work, you will need to load or type in the block
A listing on page 11, if it is not in memory already, and
then type block B onto the end. When you have done
this, save the combined blocks so that you have a total of
seven routines safely stored on tape or disk. You will find
that every program in this book uses routines from both
these blocks.

The clear-and-color routine

To specify a foreground and background color for the
whole screen, you use the clear-and-color routine. This
routine is called by the command SYS B1, together with
a color code, like this:

SYS B1,80

(don’t forget the comma). If you have blocks A and B in
‘memory (that is, if you have loaded and run them) this
command would clear the screen and set up a
foreground color of green and a background color of

- bars in random colors.

black. You wouldn’t actually see the foreground color
until you had plotted or drawn with it.

If you have only carried out this procedure before
with BASIC, you'll see a huge reduction in the amount
of time it takes.

The block-color routine

You can color a selected area of the screen with the
block-color routine. This is called into action with a
command like:

SYS B2,X,Y,C

where C is the required color combination, and X and Y
are a pair of high-resolution coordinates (you will find a
high-resolution coordinates grid on page 60). This
routine controls the colors in one 8x8 pixel block. It
takes the two coordinates, rounds them down o get the
corner of 211 8x8 block, and then colors the block. So, for
example, the line:

SYS B2,100,100,118

would set the color of just the 88 pixel block containing
the high-resolution coordinates 100,100 to yellow on
blue (color codes 112+6). If you had previously set the
overall background color to something other than blue,
you would now see a single blue block standing out on

RANDOM BLOCK-
COLOR PROGRAM

o105

How the program works
Three values are selected at
random — a color combination
and a pair of coordinates.
These fix the color and position
of each bar. The height is
random, while the width is
fixed at 40 pixels for each bar.
(The time above is that taken
for 50 bars to be displayed.)
Line 10000 scts up the high-
resolution screen and colors it
black with the clear-and-color
routine.

Lines 10010-10070 make up
a loop which produces random

ROUTINES USED BY
THIS PROGRAM
[Block Routine(s) |[Page]
A High-resolution 11
B Clear-and-color 13
Block-color

the screen. Anything plotted or drawn in this block
would be in the new foreground color — yellow. This
might sound complicated, but it’s easy to master.

Random block-coloring

You can test out the block-color routine with the
following program. It sets up random colors in bars over
the screen. Using the routine by having SYS B2 inside a
loop allows you to color any size of rectangle. To try it,
load blocks A and B if they are not currently in memory,
add this listing and then run the complete program.

RANDOM BLOCK-COLOR PROGRAM

e

SOOODOE™

00000000

—c:
ey

13

BLOCK B

CLEAR-AND-COLOR and BLOCK-COLOR
routines

What the routines do

Clear-and-color clears the high-resolution screen, and sets
up the initial overall foreground and background colors for the
whole screen. It is normally used at the beginning of a high-
resolution graphics program, immediately following the high-
resolution routine.

Block-color sets up the foreground and background colors
for a single 8x8 pixel block. It is often used within a loop to
color rectangles containing a number of blocks. The block-
color routine can be used to reset the colors of an area of the
screen as often as required within a program, so that a range
of colors can be built up in a display.

Both these routines use the standard Commodore color
combination codes. For details, see the chart on page 63.

(5 SYNTAX AND PARAMETERS |
| Clear-and-color: SYS B1,C Block-color: SYS B2,X,Y,C J
’ C || Color combination code (range 0-255). |

(Block-color only) Horizontal and vertical
coordinates of any point within the 8x8 pixel block

XY
that is to be colored (ranges 0-319 and 0-199).

[ROUTINE LISTING |

j el ey
o

DOD=J0
O000OODODM™

OO0
wlelelelelalelelele
BPDDDTD DD DT

DOOOOOOOOD

wlw el e Lo Lo Lo Lo
b0 "D DD
-

DOD=J0
DOODOOOODD
wle o L e o e L Lo L
P2 DIDDDD

DD

oo
D000

PICTURES WITH POINTS

In any high-resolution picture there are a number of
clements from which the display is constructed. The
fundamental element is a simple point, a single lit pixel.
Once you can plot points, all the other graphics objects
like lines and circles can be produced by plotting in a
specific way.

The Commodore doesn’t have a PLOT command in
its BASIC. However, the single routine in block C on the
opposite page gives you this facility. Once this routine’s
machine code is in memory, you can use it with the
following kind of command:

S¥S CLX.Y

This will plot a single point at position X,Y on the high-
resolution grid. You can see the plot routine at work in
the pair of programs on these two pages. Each of them
uses the routinein a different way. The first plots predic-
tably, while the second is semi-random.

POINT STAR PROGRAM

OO0
B ()

AR

OO0 OOEM™

e
DODOS000DOE

NN NONMNO

Drawing lines with the plot routine

One simple way of using the point-plotter is to make it
produce lines by plotting rows of points close together.
The Point Star program makes the plot routine produce
a star. It uses routines in blocks A, B and C, so you will
need all these in memory as well as the listing before you
run it.

Shading with the plot routine

If you draw lines with the plot routine, pixels are plotted
in aregular way. But another technique that you can try
out with the routine involves plotting points more
densely in one part of an object than in another. The
Planets program uses this method to produce an almost
three-dimensional display.

T T e - [e

PLANETS PROGRAM

-

COOOOOOOOMM™

- OOO0000000S
b OO

BLOCK C
PLOT routine

What the routine does

The routine plots a single pixel at a specified point on the high-
resolution screen (the screen coordinates are shown in the
grid on page 61).

[SYNTAX AND PARAMETERS |
[SYS C1,X,Y |

X.Y Horizontal and vertical coordinates of the point
! to be plotted (ranges 0-319 and 0-199),

l ROUTINE LISTING |

D00=J0
maTweTnn Twn T e mnma L n T L et

malualentualan
e e

e Lo Lo [e
b

Random numbers and shading

The Planets program uses random numbers to decide
which pixels within a boundary should be plotted. As
each pixel in each horizontal line of the planet shape is
considered in turn, the random function determines
whether or not the pixel should be plotted. The
probability of any point being plotted is made to depend
on how far along the line, from left to right, the point
lies. The left-most point is never plotted while the right-
most point almost certainly is. In this way the brightness
increases across the width in a realistic fashion. The pro-
gram is written so that the total length of each line of pix-
els varies, producing a circular outline. However, the
shading technique will work with any regular outline.

PLANETS PROGRAM Lines 10010 and 10030
‘ select two pairs of coordinates
0530 which specify the center of

each planet.
Lines 10020 and 10040 call

How the program works] : :
the subroutine which carries

The program uses a BASIC :
subroutine which plots rows of Ut the plotting.

points, varying the width of

each row to produce a circular ROUTINES USED BY
outline. The plot routine is THISPROGRAM

called so that it comes into | Block Routine(s) ||Page|
operation most frequently

toward the right of each row. A High-resolution 11
Line 10000 sets up the high- B Clear- |

resolution screen and selects Clear-and-color 13
the foreground and back- C Plot 15
ground colors.

LINE GRAPHICS 1

As you saw in the Point Star program on page 14, you
can use FOR ... NEXT loops to plot straight lines, as
long as the X and Y coordinates are related to each other
in a simple way. But this is rather limiting, because often
you will want to draw lines with slopes that are difficult
to work out in this way.

To draw a straight line between any pair of points,
you need to use the draw routine. This is the single
routine contained in block D on the opposite page. It’s
much longer than the plot routine in block C because it
has alot more work to do. With this block, the command
SYS D1,X.Y will make the computer draw a line from
the last point it visited to the point at X,Y.

Line designs

With computers that feature a DRAW command, it’s
easy to produce designs that use the command with
STEP to make interesting displays. With the draw
routine in memory, you can do this with the
Commodore. The following program is a simple

example of this technique. It uses routines in all four

X

blocks from A to D, so these blocks must all be in
memory before you can run the program. It draws a
lattice-like web of lines.

LINE WEB PROGRAM

LINE WEB PROGRAM

0g:1¢c

How the program works
The program uses the draw
routine to produce
interconnecting lines. The plot
routine (line 10010) is used to
reset the draw routine’s last
coordinate to 0,0. Try
removing the SYS C1
command and see what
happens if you run the
program more than once,
Lines 10000-10010 set up
and color the high-resolution
screen.,

Lines 10020-10050 form the
first loop that draws lines from
the top of the screen down to a
single point at the bottom.
Lines 10060-10090 form a
loop which repeats the process
upside-down.

ROUTINES USED BY

THIS PROGRAM

|Block Routine(s) J Page
A High-resolution 11

B Clear-and-color 13

C Plot 15

D Draw 17

T O |

Testing the draw routine’s memory

Making the computer draw a line is substantially more
complex than instructing it to plot a point, as the length
of block D shows. Much of the machine-code in this
block is concerned with making the computer
remember which was the last point it visited. You can
see how it uses this information if you try out the next
program. To runit, youwill need toload or key in blocks
A, B and D, if you don’t still have them in memory from
the previous program. If you have all the blocks in
memory, and block C as well, you don’t have to do
anything with the machine-code routines. Just change
the main program from line 10000 upward.

Afterline 10010 has setup the high-resolution screen,
lines 10020-10070 select two random coordinates, and
then draw a line to this point from the last point visited.
The draw routine has to remember and update the
current last point. If a pointis off-screen, the routine will
still remember where it is although it cannot actually be
seen. This means that the program can continue even if
its results are invisible.

BLOCK D

DRAW routine

What the routine does

The routine draws a line from the last point visited to the point
specified. The routine accepts a pair of coordinates which set
the final point in the line (the screen coordinates are shown in
the grid on page 63). The draw routine is not restricted to
working only with points that lie within the screen boundary. If
either or both of the points involved are off the screen, the line
will still appear correctly, but will be “clipped” by the screen
edges. The draw routine is essential for the operation of the
circle and arc routines (see page 21).

| SYNTAX AND PARAMETERS

] SYS D1, X,Y

Horizontal and vertical coordinates of the line end-
X,Y || point (ranges 0-319 and 0-199; higher values will be
accepted but will produce off-screen images).

| ROUTINE LISTING

RANDOM LINE PROGRAM

"‘5“[-— o

¢
L
\ g

e

-
o :‘
A 4

aW!
[Y
T

D0=J0
DOo0O00OO00

o Low Lo Lo Lo Lo Lo

DOD =30
OO0 00OO0O
b Lo L e L L e Lo L Lo o
o
o

DOD =30
OO0 oODO
oooDDDDODODD
n PTDDD D]

T

s

=

e’

D00 =10
A aA Tt [aa]t os [ar Tan Ta Lo
DoOoDDDDDoDD

DOO=30
o000
3
DD

e Lo Lo L e Lo Lo Do Lo
PDIDD b
e b Lo Lo .

e

alunlis FonTonTasTon TusTan Ton
CoDDDDoDoDOD
w

LINE GRAPHICS 2

When you use the draw routine, you can either specify
separately each line that you want the computer to draw
Or you can use a program sequence to specify a number
of lines. Drawing parallel lines a set distance apart is
quite easy — you just use a FOR . . . NEXT loop with
STEP. However, with a slightly different kind of
program, you can produce series of lines which combine
to produce special visual effects.

Radiating patterns

If you make the Commodore draw radiating lines close
together, you will find that it produces some interesting
patterns. Thisis because the screen resolution, although
good, is limited. Sloping lines are actually drawn as a
series of steps, and these sometimes combine to give
unexpected secondary shapes. You can see this kind of
pattern if you try out the Radiating Pattern program
below. It uses routine blocks A-D. The type of pattern

produced depends on how close together the lines are.
Try altering the STEP value and see what happens.

Drawing diamonds

You can make the draw routine build up shapes if you
use a loop. The Diamond program below does this — it
draws a succession of diamonds, starting with the widest
that will fit on the screen and then narrowing down.
Note that if you change the STEP size to an even
number, the shaded effect on the two diagonally
opposite faces will disappear. The program uses blocks
A-D.

Line landscapes
By using the draw routine and then adding different

colors to parts of the screen with the block-color routine,
you can build up quite complex pictures. The Line
Landscape program shows you one way you can do this.

RADIATING PATTERN PROGRAM

DIAMOND PROGRAM

SYS Bi,288 POKE 532886.,80

%Eﬂ STEP ©.025
00%COS(A),100+300%SINCA

w
-

POKE 53288,2

DENWNWO NN
DOOD-COD
e e o e e (] o e

()
=HHNNNBDNY

0 e e e e o e e e e
MOQOOOOODD
DOOOOODODOD
SOOI N L P D
<COO00O0000

(=10}

LINE LANDSCAPE PROGRAM

OOOOOCOm

" oW
sl

,
¢

BOO00E

This program draws radiating lines that seem to come
from a point hidden by a “horizon”. Then, by drawing
horizontal lines that get closer together away from the

bottom of the screen, an illusion of distance is created.
Finally, two “buildings” are produced by the block-
color routine, using the same color for foreground and
background so the underlying display is blanked out.

LINE LANDSCAPE
PROGRAM

00:35

How the program works
The draw routine is used to
display lines in two different
ways. The sunset pattern is
produced by gradually
decreasing the slope of the
lines above the horizon, while
in the foreground the space
between the lines is
successively increased.
Lines 10010-10060 form a
loop which draws lines of
decreasing gradient between
the top of the screen and a

vertical value of 144,

Lines 10070-10100 draw the
perspective lines in the bottom
part of the screen,

Lines 10110-10220

use the block-color routine
three times to color the shapes.

ROUTINES USED BY
THIS PROGRAM

[Page || Block Routine(s) |

11
13

A High-resolution
B Clear-and-color
Block-color
C Plot
D Draw

IRCLES AND ARCS 1

The two routines in block E on the opposite page let you
draw circles and partial circles, or arcs. Both of them
work by drawing small straight lines, so it’s essential
that you always have block D, containing the draw
routine, in memory when you use them.

To try the program that follows, load routine blocks
A-D (remember that if you run block A first, you can use
the merge routine to do this) and then add block E. Now
key in the BASIC listing that follows. The program
activates the circle routine with the command SYS E1,
and the arc routine with the command SYS E2, using
them a total of nine times. The circle routine uses three
parameters while the arc routine uses five. They are all
explained on the next page.

The routines you have loaded in will also enable the
program to use DATA to control plotting. This facility is
provided by the restore routine. Here it makes the
program READ DATA from line 15000.

TELEPHONE PROGRAM

oo U130

SO0 D

TELEPHONE PROGRAM

00:11

AALE AL o4 L AA AL bt Lt s TR

=7

How the program works
All the instructions for the
straight lines in the display are
held in DATA statements. The
program READs these in

trbited

weseays.
e

pipe b
Shabibambbbatbhie
2

eirisivisay
SEinnnuns

sequence, and then uses the

plot or draw routines. It then
adds the circles and arcs.

Line 10010 makes the

program READ the DATA

from line 15000 onward.

Lines 18030-10080 activate

the plot and draw routines.

Lines 10090-10180 produce a

total of nine circles and arcs.

Line 10190 stops the READY
message spoiling the display.

Lines 15000-15140 contain
DATA that select routines and
fix coordinates.

ROUTINES USED BY
THIS PROGRAM
[Block Routine(s) | |Page|

A High-resolution 1@l
Restore

B Clear-and-color 13

C Plot 15

D Draw 17

E Circle 21
Arc

o) . e S

The second screen of the listing consists entirely of the
DATA needed for plotting and drawing the straight
parts of the display.

BLOCK E
CIRCLE and ARC routines

TELEPHONE PROGRAM (CONTD.)

B
Dibepepepe b NGICE
T o et
owgy

i
i

0 N e D e e e e o o e e

FEONWORP M= MO0 LNM
v e D0 UK ORNE0G

OFpen v mh v 5 % & & % v
L L e A [
= NG OWWLOHONND
=ov o omb WOOLOOe = - O
WIN I " = ppmpar
w e e et e | OO0 |
On b O D=IFFIPI 0
Jularn pups QO OO N v >
PRSI, R Y
=1k DM Tr
R LT L P

pOifre = % % = OO

222222222 DDD
DLOIUNm | == |

MANNNNNNNNNNNLNULN -
D EQOOOR00008 W
AW Q00 =N U Ju P =
<CODODOODDODOO0DDD

e Lol Lo Lo Lo b Lo Lo Lo L Do o T T

IDIIDIDDLDLDDIDIDDD

e] o e e o]] e] e e e e

.

L
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
R
1]

How to use the circle and arc routines

The circle routine is very straightforward to use. All you
have to do is decide where you want the center of the
circle to be, and how long you want its radius. If you
want to draw a circle at the center of the screen
(160,100) with a radius of 50 pixels, you would key in:

SYS E1,160,100,50

Using the arc routine requires a bit more planning.
The parameters that you need to specify are the same as
those for the circle, but in addition you need to supply
two numbers — a starting angle (P) and a finishing angle
(Q). This enables the routine to draw just part of a
complete circle. Both the angles are measured in
degrees starting at the positive horizontal axis, and
turning clockwise around to the angles’ radii. Suppose
you wanted to draw an arc like this:

ARC ROUTINE PARAMETERS

X,Y=160,100
R=50

P=315
Q=105

Resulting arc

The complete command for the arc would be:
SYS E2,160,100,50,315,105

Remember that all positions and lengths are in pixels,
and all angles in degrees.

What the routines do
Circle draws a circle of a specified radius and center.

Arc draws part of a circle. Both use the draw routine.

[SYNTAX AND PARAMETERS

]

[Circle: SYS ELX,Y,R Arc: SYS E2Z X,Y,R,P,Q

|

Horizontal and vertical coordinates of the center of
the circle or arc (ranges 0-319 and 0-199; values

X,Y higher than these will still be accepted but may
produce off-screen images).
[R || Length of radius in pixels (no range limit).

(Arc only) Angle at which the arc is to start,
P measured in degrees clockwise from positive
horizontal axis (no range limit).

(Arc only) Angle at which the arc is to finish,
Q measured in degrees clockwise from positive
horizontal axis (no range limit).

| ROUTINE LISTING

Do =10
e laaLanaalaaannalna] el e
e Lo Lo Lo Lo [

D

DOO =10
walnalenl st an (ol o [nnaal n
o L L Lo e Love Lo Lo Lo T
[
-

AL ar] it Las Lot [an Lol an i Lo

DO =30
SOOOOOOO0D
il el T T T

900 DATA pe 0
L)) u
8 DAT 3))
D DATA i
0 DATA
3 DATA F
50 D 2 3 TR i
8 DAT) &) 3
80 DAT i
98 D ¥ D, 90 3
pog DATA
510 DATA
p20 DATA g 1
938 DATA 0
040 DATA
A58 DATA

CIRCLES AND ARCS 2

One technique which may be new to you, but which can
be used to great effect, is recursion. Recursion means
repetition, but it’s repetition of a special kind. On these
two pages, you can develop a program that produces
recursive patterns with circles.

Recursion with circles

Thelistings opposite show you one of the big advantages
of recursion — programs that are quite short can
produce complex displays. To see the first display
below, load blocks A, B, D and E, if you don’t have them
in memory already, key in the first listing opposite, and
then run it. The program repeatedly draws smaller and
smaller circles until it has produced a sequence of seven,
and then it starts the process agam from another
position.

Once you have run this program, you can start to alter
RECURSIVE CIRCLES DISPLAY

'*‘Q
va

g
PG

ADAPTED RECURSIVE CIRCLES

it. The most obvious change you can make is to the limit
set by line 20000. After you have done that, try altering
the values in line 20010. Here is one way to do it:

20010 SYS E1,X(L),100+13*L,R(L)

This makes the height of each circle above the bottom of
the screen vary, as you can see from the second of the
small displays below.

After you have made the program draw circles at
different heights, you can extend it so that the pattern is
reflected in the horizontal axis as well. All that is needed
is a second BASIC subroutine, starting at line 30000,
and a line to call it. The altered program is the second
listing opposite. It produces the big display shown
below.

n*‘.‘.l-."*‘-ﬂ-.ﬁlﬂlﬂﬂ‘.

r'."""“-""_'*“""q

e T e

RECURSIVE CIRCLES PROGRAM

DOUBLE RECURSION PROGRAM

-~
-
w
-

1.7
: R(L)=80

D
N -
DrIWIC

e L e T TN

DAADAAATLOOM
Il <

Sab=tn
o
om

-]
o

|

: RETURN

L L [

A]

il

~ o~ QI

I+ +++ FoOcMm
nENe o

e e e o e 7Y |
OB -
[~}

mMoSOoOOOOOO000

2000000000000

2 =100 N L LIPS = 0 . GO P e D

{Q_@QQQQOOQQQGQ
Ul e L L Ty Loy o T ol
[N e i (=== N [
Frr=r<r<r-¢ =—-Hrxoum
mMOrarrrmacdww
L) N o T
CC | Sk~
DO =™

e o Lo Lo LT L e L o T o gy

o

=

i
i
i
i
i
2
2
2
2
2
2
2
2
R
i

=30
wa wa o ma [L wn L an L[m Lo e s f en

ililili

ililili

lilils

DOB0

W W O W W W WO OW WO O SN e

D00 0o o0 ooOoDaQR

00 ococoQo

t‘r

-ﬂ}ﬂ-ﬂﬂ-ﬂﬂﬂ;ﬂ?ﬂﬁﬂ

BT . T e R R R R R N R A -

DOUBLE RECURSION
PROGRAM
06:30
How the program works
The program repeatedly calls
the circle routine. Every time it
does so, the horizontal position
and radius of the circle is set by
values stored as array variables.
Line 10000 sets up the high-
resolution screen and the
colors.
Line 10060 loops back on
itself after both sets of
recursions have been
completed.
Lines 20000-20070 form a
BASIC subroutine which
repeatedly draws circles with
different radii at different
coordinates, until the limiting
condition in line 20000 is met.
Lines 30000-30070 form a
second subroutine which

produces a mirror-image of the
display created by the first.

ROUTINES USED BY
THIS PROGRAM
| Block Routine(s) | Page
A High-resolution 11
B Clear-and-color 13
D Draw - 17
E Circle. 21

OVERPRINTING AND ERASING

Normally if you print one shape over another on the OVERPRINTED CIRCLE PROGRAM
Commodore, the second simply replaces the first.
However, with the routine in block F on the opposite

page you can achieve some different effects. This 0008 3 - PO
routine is activated by SYS F1,1 and is turned off by 23288, a TO
SYS F1,0. It’s called the erase routine, but as you will 8830 ;
see, this is a simplification because its effects can be H“:i - 3 TO :
quite subtle. 8070 5123

1 - n: 1 i 1 3
Patterns with the erase routine iRt : B+ 160%C0 0+100

With heavily colored shapes, you can sometimes 9128 .
produce some interesting patterns by using the erase READY e
routine to overprint them. The next program produces
a practically solid circle on a grid by drawing hundreds
of radiating lines. When the circle is first drawn, it is
solid, but when it is overprinted the erase routine
creates a pattern as the lines are canceled out. This
cycle continues as long as the program runs.

e e - [

ROTATING SQUARES PROGRAM

=

m
* ==
M
-
-
| =
4,

FI=CM=CX DD
—
=
-~
D
-t

% |

Ll il L Ty Loy [y]
s e s ALARIGY

10 e e D DC A AN ¢
PG O

DD O0=1NUN M= -
OO0+ + I

DOOO00IO0DD 0
CS0OCO0000000
ZHNLNNNXDNTN
MC-LLCL-C=C |l || OO=C
HOLNUNOOIRXGN
e e e e o e O, [e
-~ HCHCOD
00 (0 €0 0 o e)
Okl | +20

= S
-]

MOOOOOOOOOO0D
-

L
i
i
1
i
i
1
i
i
i
i
i
i
4
u

ROTATING SQUARES DISPLAY

How to use the erase routine

The Rotating Squares program above shows you how
the erase routine can be used to wipe away a design. In
this program, a nest of squares is built up on the screen.

Lines 10090-10120 draw the
solid circle.

Line 10130 starts the process
again, but this time with the
erase routine switched on.

ROUTINES USED BY
THIS PROGRAM

| Block Routine(s) | Pagel

OVERPRINTED CIRCLE
PROGRAM

0120

How the program works
The grid and solid circle are
drawn while the erase routine
is turned off. It is then turned

on, so that when the circle is

repeated it produces a A High-resolution 11
canceled-pixel pattern. The B Clear-and-color 13
time given above is for the

program to draw through 360 C Plot 15
degrees. D Draw 17
Line 10000 switches off the F Erase 25
erase routine.

BLOCK F
ERASE routine

What the routine does

The routine is used to affect the operation of the previous
graphics routines by activating an “exclusive-OR” mode on the
screen. This means that after the erase routine is turnedon, a
pixel plotted over one already lit will cancel it out. A pixel
plotted on an unlit (background) pixel will appear normally. The
routine can therefore be used to erase all or part of adisplay by
redrawing it. Note that this routine must be turned off when
drawing closed shapes which are later to be filled.

)

| SYNTAX AND PARAMETERS
i SYS FL,N |
| N ” Off or on (0=o0ff, 1=on). l

| ROUTINE LISTING |

(ATATATATRTATAY
@ M
oo Cnoocam
omil
Ok ~ O
ratodn CoMora

PIPITIMITININD

i}
0
)
5]
0
B
5]

2>IHM-CM

Lol b [T
2>DUNT D

(5]
i
2
3
4
5
153

—t—i= || D)

When the program repeats itself, instead of just
overprinting the design, the computer starts to erase it.
This is caused by line 10010. The SYS F1,1 command
turns on an “exclusive-OR” drawing facility. What this
means is that whenever the computer overprints a pixel
litin the foreground color, it cancelsit out, turning it off.
Because the lines are quite far apart, they just
disappear, unlike those in the Overprinted Circle
program, which are close enough together to affecteach
other.

Points to watch with the erase routine
If you want to remove a display from the screen,
always erase by drawing again in exactly the same
order. You can do this quite simply by looping the
program back with the erase routine switched on.
However, remember that if your display contains
many lines close together or overlapping, you may not
be able to erase them all without producing an effect of
the kind shown by the Overprinted Circle program.
When you are drawing closed shapes with the erase
routine turned on, you will find that final points plotted
on complete outlines are canceled out, leaving a single
pixel gap. This is a problem if you later want to fill a
shape. Therefore always keep the erase routine turned
off when you are not using it. It’s a good idea to switch it
off from within a program when a display is completed.
However, if you suspect that you have left the routine
on, you can switch it off by a direct command.

]
FILLING SHAPES 1

Having found out how to draw outlines, the next step
is filling them in. Block G on the opposite page
contains a flood-fill routine, that is, it rapidly fills
closed shapes with solid color. It will fill almost any
regular or irregular shape. All you have to do is specify
any point inside the shape and the routine will fill all
around the point until it reaches the boundaries.

How the flood-fill routine works

What the flood-fill routine does is to search for
background pixels and light them in the foreground
color. It continues to search in each particular
direction until it meets a boundary of lit pixels or until
it reaches the edge of the screen. So when you are
designing your own pictures using the flood-fill
routine, you must take care that there are no gaps in
the boundary surrounding the area to be filled, or the
color will “leak” out into areas you may not have

SEASCAPE PROGRAM

wr L Tan T T T T

SOOOOOm

mn L T T Tan L en [[mn [
-

OO0 00

(2T’

OO

D S
-

00=]0
aalenlanlnalnals
]

-
q
o
[~]
T
@0
Q
)

e o o
QODOOE
PFSPIPIPI=~
WP~
OWONNN
D-C-C-CutoC
DA
M=CH WMCH WCHOMOOD
o
L
SRR
o) 0 e ol e
=D D)
Bt AN

-4

-]
NOON b b N G

0 0D LI FPIDAIN,

QENTMENTIMEN T
OM=COOM=-COOM=-CO
=HHNWVIWHANVRVH N
=L TR T T S R TR

(=L]

<OO0ROOOROOOOOODODD
[+]

I 0 e e o e e e e e ot e e e o
MOOOOO0000OGD
DWWWWWWIWRIFIPI I
SO L LN b= L0 00 =3 TN,

planned to fill.

You will find that this routine will fill almost any
shape that you want it to. It “remembers” to go back to
regions of a shape so that all of it is filled in. However,
due to the limited memory space available for the
routine’s calculations, you may come across shapes
that the routine cannot deal with. If this happens, you
will get an ILLEGAL QTY ERR message. To
overcome this problem, all you have to do is split up
the area to be filled into a number of smaller, simpler
areas and flood-fill each one separately.

Filling in a seascape

The program on these two pages shows a quite complex
display being filled and then colored. The block-color
routine is used to set up separate areas each with a
different color combination. Remember to make sure
that the erase routine is not still switched on if you have

O s D e SR e - e

just tried out the programs on pages 24-25. If it is, you
will find that the flood-fill routine “escapes™ and fills the

whole screen.

SEASCAPE PROGRAM

01:00

How the program works
First an outline is drawn in
black over blue. This is then
filled with solid black. Finally
the block color routine is used
to color the display selectively,
In some places, the colors have
to be changed more than once.
Line 10000 calls the high-
resolution routine, sets up the
colors and resets the DATA
pointer to line 10060,

Lines 10010-10230

use the plot, draw and flood-fill
routines to produce and fill the
outline.

Lines 10240-10350 use the
block-color routine to color the
result.

ROUTINES USED BY

THIS PROGRAM

Block Routine(s) J Page

A High-resolution il
Restore

B Clear-and-color 13
Block-color

C Plot 15

D Draw 17

E Circle 21

G Flood-fill 27

BLOCK G
FLOOD-FILL routine

What the routine does

Flood-fill fills a closed regular or irregular shape with the
current foreground color, given a single starting point within
the shape. The routine operates by rapidly drawing lines
horizontally until a boundary is detected, and then by
repeating the process above and below the original line until
the shape is filled. Because the routine operates on the single-
pixel level, a pixel missing in any boundary will eventually allow
the routine to escape and start filling outside the shape. For
this reason it will only fill a complete shape. Very complex
shapes may generate an ILLEGAL QTY ERR report. This canbe
avoided by splitting an area up into smaller parts.

[SYNTAX AND PARAMETERS |
| SYS GL.X,Y |

XY Horizontal and vertical coordinates of point where
! filling is to start (ranges 0-319 and 0-199).

| ROUTINE LISTING [

00 =30
(o onTunTan T ae Tacm ot] o LT

By D L) t) o
0 DATA
g DAaln
0 DAT 3
O DATA 3,
8 DATE A
6D DATA 3 3
0 DATPFH
=33 DA R t) S
30 D g
k3 i, A :
) A 6 58, B
3 ATA ©
g PATA
5 DA 2 3
3 D ik
5B)
i t <
86
=13 59 3 3
080 D 1)
3 ATA 80 8
e &) 3 2 Y
3 ATA g 3
g DA A
3080 DAIA L)
5 *:' A il
A 3 3
30 3)
83 §
908 DA L) i L
3 3 .i I]
8 DATA q 08
8 DATH : 3 i
] DATA b 3 2
8 DATA 3 3
0 DATA 3 3 <
B DATA i 9
BO DATA 3 98 3
b DA A)
D00 DATF 3
3 VAIA
EE DA
3 DA
i' L P
ot DA
60 D
BT DA
b8y D
090 D
) D

FILLING SHAPES 2

If you want to produce a colored and filled picture, it’s
important to bear in mind the Commodore’s color
restrictions when you are designing the display. You
can use all of the Commodore’s 16 colors on the screen
at once, but if you are using the bit-map mode (as all
the programs in this book do) you cannot get more
than two colors into a single 8x8 pixel block.

Consider the following problem — suppose that the
first of the following diagrams is part of a picture. How
can you color the three areas shown if you can use only
one foreground color and one background color in each
8x8 pixel block?

It sounds easy but imagine what would be invelved.
Suppose you decide to fill just the area colored yellow.
Yellow becomes the foreground color, so, because it is
adjacent to the blue area at the bottom of the design,
blue needs to be the background color. Now look at the
red area at the top. On the boundary with the yellow
foreground area, red must be the background color. But

JUNGLE PROGRAM

g1:15

How the program works
The program first draws and
fills the forest in black and
white. The block-color routine
is then used to set up the blue
and green colors. Any one
color may be either foreground
or background in different
parts of the display.

Line 10010 resets the DATA
pointer to ensure that reading
starts at the right point (line
15000).

Lines 10030-10080 form a
loop which interprets the
DATA as instructions to plot
and draw.

Lines 10090-10151 fill and
color the result.
Lines 20000-20030 form the
block-coloring subroutine.
ROUTINES USED BY
THIS PROGRAM
[Block Routine(s) || Page]
A High-resolution 11
Restore
B Clear-and-color 13
Block-color
C Plot 15
D Draw 17
G Flood-fill 27

on the boundary with the blue background area, red
must be the foreground color. How can red be
foreground and background at once? It sounds
impossible, but there is a way of producing this result. It
depends how you divide up the screen.

A COLORING PROBLEM

| N
| 1\ Red
N |
N

,\ | 1

___,....--""‘

Yallow

(o))
™

vey: so
en
= <
a.mnDu._
Oy IS
oL
Wﬂch = -
Q Lo~ @ o
o e B o 4 o
Y a3 B D _
w S5 .2 - - s oTE T
- S © IR - e
a0 S = o oo =
€ o |4 ; - -
Eocs . o : o
r o g
Q0% 8) = A = - o = & by
cwe R &4 = [~ =
588 |~ =55 o8 o S 5 Soee
gm.mv.e m - D0 S OOOONOOD g
.mpam 3 © WEZE s 2 e ; . i
§205(5 i , e STt
l.mrﬂu — = &0 Doo &
oe o CLT
Q0 5 oC - DDOE T Pt ECCECCERCCEE cCc rC T
= g - o d CCC T CCTCTTTTCTTT e T -
dm.l.t COLEO OO DA - - CCCTEC CLECCETO
SRR oo corooo® - R ccooocoocococcoccozees 3 MMM coccocscosocossess
tot 522 o ces s HEEE CCOOooooooooornooeoneed > 209090909 HEE Co00o00Nrosontooo0on
BDD © DI o = oh A Db oNe = 5 = =
&0 O el b bababa el A QOO
npdg A IDOODOW s
ovd L=
-V o
oi.h..mo
BB oS
2558828
2o © gm
edpeh
HE o E 35S
v o B8 mm..a z
O =T o
SoE5®c 8 |8
SELeE5xH (B
Odr._C.le . a i
L —_— W
cEzg=9°2 |2 219
£59085Y0 . = 3
2, =5 Y o =
mﬂc D) =g H -] =] &0
92 &S 0S| =[8] |8 i
enbonﬂuba nd B = [
O3S o8O =) ==
nteCtUMb (= 80 5D
U%‘m R Q
> V;.W [T =]
meteyn..l.m m
Ega, a8°,. | .m.
C.IUSOW o
— = e w .
9 egs =
ouea = O 0 w
o= we8ag 2
Qg o §7F < O = & |
w U g L w ‘o
£585°285z: |8 Cs
S W s -
0E Sl g 8a
c b g g =2 B
co eS8 3.8
,O.GOWMnmd
0 O nwH © RO

HIGH-RESOLUTION TEXT

One problem with using the Commodore 64 in high
resolution is that there are no facilities for printing
text. Obviously, if you have large volumes of text to
display on the screen, then it is easier to do this in low
resolution (text mode). Sometimes, however, there is a
need to put a few characters on a display. The listing in
block H on the opposite page contains two new
routines which enable you to do this. They are the
ROM-copy routine and the text routine. If you want to
put text on the screen, you need to use both of these
routines.

Copying the Commodore’s character set

If you have read Book Two in this series, you will know
that it is possible to make a copy of the Commodore’s
standard character set, which is held in ROM, and put
this copy into RAM, where it can be modified. This
copying is performed by the ROM-copy routine. When
the block' H machine code is in memory, you can use
SYS H1 to copy the ROM character set. You won’t see
anything after activating the ROM-copy routine.
However, afterwards you can use the text routine to
take any of the copied characters and print them on the
screen. To display text, all you have todoisuse SYS H2,
followed by the text. The routine prevents the
characters appearing as colored blocks.

Using high-resolution text in games

There are many times during a game where text on the
high-resolution screen can be used. The following
program produces a favorite — a flight simulator,
Although the display is only static, itis very detailed. To
run it, load or key in the routines listed next to the
display, and then add the program. The routines and
coordinates are all keyed in as DATA.

! FLIGHT SIMULATOR PROGRAM
[

[T Tom 1o T - DD
e .
TR A ittt
O ¢ 4
=
=
o

i
DD
Ll [

EE——
BLOCK H
ROM-COPY and TEXT routines

FLIGHT SIMULATOR PROGRAM (CONTD.)

S
o]

(74]
(1]
.. o=

= = P00
N
[==]
W
oo
=1th

D TR T S BT T e - e O

Dbl OOC O =~ & - UN-=
- =1

-

s v DL

| o e el ot S T e el ol]

What the routines do

ROM-copy copies the standard character set from ROM into
RAM so that the characters can be used in high-resolution
displays with the text routine.

Text displays any text on the high-resolution screen. The text
is displayed starting at an 8x8 pixel block which can be fixed by
specifying any point which lies within it.

| =

-
Now P Pt)
e e 5 e e 0 O e T €T
N e | O R
D e e e e e e o
“ 00~
we

.-

DUDHUCSLEH T oo -
~ M= O« 0w 1w
o SR = RN |

DI I W N e
.

LW~ ~
n abe Oy D e
=

== =~
Q_JEO_J-Q Pl LG | POl G e e 00 = D e

i s o e e ot s o e e e e o e e e
DNDDDHNNNNANNNUNLALILTL
50000 0 CIN e o e o e e e e e 5 5 €5 €35 £ €
n AN e 053 0 60 =3 € Y L0 P e G L GO I O N

L T T S e L S P L P oy

Ittt el Te T T T T T T T T Tt T
22222222 DIIDIIIIDIDDID
e o e e e e e e e e —
ITIIDDDTDIBIDIDTDIDDDDDD
00 = b e e GO B LI P P 00 CO TIPS e o P e
5000000 000 0 =1 80 001 == ~1 60 60 63 L fa COLOPI 0O
i i e e e e e e e 00 G 3 00 €40 1 = LY
DD LNNDWNWNWWID D WD OEDD
S I DLMNOONOIT ~ = % % & % % &

COONTr o v v v PO LILNWI DI D=
S| ORI UL T - D
bt e b R DRI OGO T U & | PO

. NN
DFRIDPOTr = DO O
OO e

LR

| SYNTAX AND PARAMETERS]
[ROM-copy: SYS H1 _Text: SYS H2,X,Y,A$ |
(Text only) Horizontal and vertical coordinates of

any point within the 8x8 pixel block where the first
character is to appear.

-

=
m
>
-]
<

XY

| A$ ”(Text only) Any text. I

| ROUTINE LISTING |

128 e

4,
3"{ gger
44,“82165" i

o0 W
171}

<LOOO00S0000000000n
bl

IIDIDIDIIDDDDD

G 1 1] S0P PP 0O CIP b e o)
b i e O b e

G b U e 0 e e B
= W Lo PRONMR
[l ol N SN M1
DOODODOOOS

oooDoDoDD
-

VT S v NI NI

R-CH

~

ENMMOCODODDODDOD
M=L<OOT2IDIDDIDIDIDDD

* EEOUMNOREs MNOUNG
RO P VO OLMMCS

G013 70 00 = e o e e —f e e e d
M OO0 LUIN L ==L LN I

SN =M LN =00~
-

D00 =10
o Tn Tt Tin T T o T 5 i
wlwlwlelelelelelols

i‘; 0

FLIGHT SIMULATOR
PROGRAM

00:35¢

Lines 10130-10150 call the
block-coloring subroutine.
Lines 20000-20030 form the
subroutine which contains the

DEO=ICNEN
e mn b L | mn L]]] e L |

el o Lo e L Lo L
.

block-color routine.

How the program works

The display is first drawn, and TSR Re

Houtine st mumbersand | THISPROGRAM Using the text routine : :
labels to parts of the display. It [Block Rout = The text routine will put any text you like at the point
is finally flood-filled and then ock Routine(s) _|[Page| with coordinates X,Y on the high-resolution screen. It
colored. A High-resolution 11 rounds down the coordinates you specify to the nearest
Line 10000 sets up the high- Restore 8 so that they bring the character onto a low-resolution
;‘l’fgl}i;"sﬂ scresmandtheoves- o o 13 boundary. This is done to make changing character
Line 10020 copies the ROM Block-calor foreg_roungl and ’packground colors more easy.

SEATACTer SAt 80 it can be used C Plot 15 With this routine, the text do_esn’t have to bea lette:r
by the text routine. D Draw 17 or word — it can be a string expression that 1s
Lines 10030-101%(:1READ E Circle 21 evaluated into text. So you could use something as
;Eg ggﬁ g‘ ;’cl)?gtk; g;t]izzs = & ran 27 simple as “FRED”, or you could use something as
(line 10100) putting text from ROM < complex as CHRS$(27)+"="+AS$. However, the text
the DATA lines onto the Py routine cannot deal with numeric expressions. These
screen. Text must be converted to string expressions first.

DESIGNING CHARACTERS

On the previous two pages you saw how the ROM-copy
routine can be used to copy characters from ROM into
RAM. One advantage of doing this is that it is a simple
matter to go on from there to create your own
characters. Once you have done that, you can use these
shapes to fill up spaces, giving you the facility to
“pattern-fill”. The listing in block I on the opposite page
contains a single routine. This is the define-character
routine which enables you to define any of the 8x8
characters stored in RAM.

How to make a high-resolution character
If you already know how an 8x8 character is coded,
you will find this routine quite simple to use as it just
accepts 8 bytes, one for each row of the character. If
you haven’t already coded a character on the
Commodore, all you need to know is that the 8x8 pixel

coded by a row total. The row total is arrived at by
adding together the “bit values” of all the filled-in
pixels in the row. Once you have 8 row totals, these can
be used with the define-character routine.

CODING A CHARACTER

1286432 168 4. 2 1

0

32

64+32+16=112
128+64+16+8=216
128+8+4+1=141
442+1=7

2

0

COLOR CHART
PROGRAM

i |
00:20
How the program works
The program first produces a
blackboard and an casel by
drawing, flood-filling and
block-coloring. After the color
numbers have been printed by
the text routine, the same
routine is used to print a
specially-defined character.
The block-color routine makes

the character appear in all the

Commodore’s colors.
Line 10200 defines the square

color-test character.

Lines 10140-10250 print the
numbers using the STRS
command, and then print the
color-test characters.

8
1
e
3
b
-~
£
?
8
3
8
i
2
3
=
2

i
i
i
i
1
L |

ROUTINES USED BY
THIS PROGRAM
[Block Routine(s) || Page|

A High-resolution 11
Restore

B Clear-and-color 13
Block-color

C Plot 15

D Draw 17

G Flood-fill 27

H ROM-copy 31
Text

| Define-character 33

3

3

If you give your design character code C, and the row
totals are X 1-X8, then you can putitinto the computer’s
memory with

SYS I1,C,X1,X2,X3,X4,X5,X6,X7,X8

Once the new character is in RAM, you can display it
on the high-resolution screen with the text routine.
Furthermore, as you will see on the next four pages,
you can use the character with the pattern-fill routine
to fill designs.

Below are two examples of user-defined characters,
together with the complete define-character routines
that produce them.

BLOCK |
DEFINE-CHARACTER routine

DEFINE-CHARACTER EXAMPLES

What the routine does

The routine defines a character which is then held in RAM. This
user-defined character can then be called by its CHR$ number.
The routine accepts nine parameters — a character code, and
eight row totals which specify the character. Each row total
consists of the sum of the bit values for all the pixels that are to
be lit on that row of the character. A row that has no pixels lit
has a row total of 0, whereas one that has all its pixels lit has a
;ow I’cotaJ of 255. The eight rows of a character give eight row

otals.

| SYNTAX AND PARAMETERS

128643216 8 4 2 1 1286432168 4 2 1

L SYS 11,C,X1,X2,X3,X4,X5,X6,X7,X8

12

61,112,56,28,14,14,

Color chart program
Now that you have seen how to create your own high-
resolution characters, you should have no trouble
understanding how the next program works. This
listing creates a character and then displays it in each
of the 256 color combinations that the Commodore is
capable of producing. The numbers down the left-
hand side of the chart set up the background colors.
The small square character then appears in all of the
foreground colors.

COLOR CHART PROGRAM

e T {on T e f
»

% £ 53 023 00 00 £ ¢
DL T
=

n
o .I.Eil. hh n
(R £
-

0
-

r Cc ”Earacter code (range 0-255).
[X1-x8 | [Row bit totals (range 0-255 each).

L L]) ||

| ROUTINE LISTING

.'f!.’.‘f

=l e
e
e
o

et T e T T T T T T

COLOR CHART PROGRAM (CONTD.)

SOOO000

~lolelelolelol'
pDDDIDD

SO SO
=

Mixing text and defined characters

You can use defined characters just like ordinary text,
so that if you want to, you can mix them with text. But
remember that to do this, you must first use the ROM-
copy routine so that the text characters are in RAM,
where you can use the define-character routine to
change them.

T e R

PATTERN-FILLING 1

Over the last few pages you have seen how you can use
the graphics routines to put text up on the screen and
how to define your own characters. Now you have got
this far, you can add another facility whose usefulness
is out of all proportion to its simplicity — a routine
which fills irregular shapes with a pattern which you
can specify.

Thelisting in block J opposite contains the pattern-fill
routine. To use the routine you need to specify the
coordinates of a point where filling is to begin, as with
the flood-fill routine. However, after the coordinates,
you then need to specify a character number. The
computer will use this character to fill the shape. If you
first define a character with the define-character
routine, you can then use it to pattern-fill.

To see the pattern-fill routine in action, load or key in
routine blocks A-E and H, add block] and then the
program below.

PATTERN-FILL PROGRAM

-
-t
-4

PO Q0000000 O
L LIV Jsten L [1w B8 o T3 RO T

m

s G

CO < =~ F L
PR =0 DPON

[ae]
W=I=C=CUI= D00

8
-

(R

(=]

a0 & e - Q-G
-3
(7]
oL

IO NG
AT T
< @Ur P
Pt CINE
DM O
e

Do

w
QUL DNOWVINWLNWL

= G et = o e = e o

.

T OMM T D
o e e e e e o o 1 e e

fo SRR X SR

S
KE
12
80
a

19
is
78
'3
&1
iﬂ
73

QQ“,‘WWWWQ@" ~ WWDWN
. P =

[T o e e S S T S
MoOOCO0: ODNO0OO0DHD
COOOOOCOOO0DODOD

= NBN DN NDRDD DN
o

o i e e 00 G e T bt 11
WD L v OOOLD

Pattern-filling complex shapes

Unlike the flood-fill routine, pattern-fill will only work
with relatively simple shapes. It starts at the point you
specify and then works vertically downward until it
reaches a boundary or the bottom of the screen. In a
complex shape, you may have to use it more than once,
as the next program shows. It draws a map which is both
tlood-filled and pattern-filled.

PATTERN-FILLED MAP PROGRAM

S ON D
NN

GO CeGe

WO=UN=O=DTBNNUN— L=HT

WIOD> D>

LY

AN

i
QS OO0
[
']
DEOCODD
o R Lo (T e R i eyt
L@

- >
o8

-

=N QL

NOLNNK PRRONE ~ « X
w e P =D L

N

~

du
on
NEMNG 2
bl

~

w
DOBLN =L =r

WON» W o

9
S
E
S
D
i
D
$
s
S
F
S
D
2
D
b

v e e DO

N ANWNIDEEH=] WD
NOLADOSOOOOOS WOHD
D DD LOCLLD NDCE

P L) o o s)
PONDLDOOOODD 0O

B
m
>
Q
-

'S

PATTERN-FILLED MAP
PROGRAM

00:25

How the program works
The map is filled using both
types of fill routine.

Line 10220 produces the

flood-filling.
Line 10242 calls the pattern-
fill routine.

ROUTINES USED BY

THIS PROGRAM

| Block Routine(s) ||Page|

A High-resolution 11
Restore

B Clear-and-color 13
Block-color

C Plot 15

D Draw 17

G Flood-fill 27

H ROM-copy 31
Text

| Define-character 33

J Pattern-fill 35

S P e

PATTERN-FILLED MAP PROGRAM (CONTD.)

Wh = DIMDO=IN
QONOC QOO0
<€ C-COD-CO-C
v U =-nXoWn
Wl =IL DX
Ll T il SR T

.

DN LANNODWMY

.

[L LI 1 1 pLe e 0r or]
O=CC=C=C-Cr=C Il
qmmwww_mm
TIIIIXUm
ERRNNNRNR
WEDook=N =]

[~ S

:mmmmmmmmaﬁ NI B PO () o e e e
=)
)
-+
0
(=)
L
[™

Moo QoOUd QO0OD OO
ONSWH=-1<NHUN

<oODOOONoe

i
b
i
i
4
i
i
2
i
i
(7]
i
i
i
i
i
i
i
i
i

After each time that the pattern-fill routine moves down
a line, it fills as far as it can to the left and to the right.
However, unlike the flood-fill routine, it won’t
“remember” to go back to unfilled areas in complex
shapes. Instead you need to start the routine again from
the top of any unfilled areas. It’s rather like painting a
wall: just start from the top of each area you want to
paint, and go back to any that are missed out. You will
find that the routine is written so that the pattern will
match exactly where it meets any part that was filled
previously.

BLOCK J
PATTERN-FILL routine

What the routine does _

The routine fills a closed regular or irregular shape with an 8x8
pixel RAM text character (this may be a standard Commodore
character, or one previously created using the define-
character routine). Although the routine fills with 8x8 charac-
ters, it will fill partial character spaces. The routine should be
started at the top of any shape to be filled. Complex shapes
may have to be pattern-filled by calling the routine a number of
times, breaking the shapes up into simpler areas.

| SYNTAX AND PARAMETERS
| SYSJLXY,C .

XY Horizontal and vertical coordinates of the point where
! pattern- filling is to begin (ranges 0-319 and 0-199).

| c J rCode number of character used for filling (0-255). |

| ~ ROUTINE LISTING |

-
~ M
wun
[={e~1%)
©

S

QDRI WHMNEFURFOM =] WWH Pl PO P == D WM

ST

@0
P s O W M=X

L~ Load I ¥ A

b
m

SN 3 I

UIPD Lo far

P PEeOOCRrY M) MWk = QW

Jar x POk v v POm] OO ft = e O O CAORIOOR oXr

DR O,
Ob=pi Op=p=fde [~ =)= L 0OWINM P00 ORI~

SR s

o

DI T R 7. S
W s L =R MW

SR LDWWwA WRNOWENW X
> Wk LMo

s L NO=IUID Y At S
PP D-ICF =Jfa~

rOr O Po- -

S~ b= ORI GO

P (O~

QObspe @ =00 = PO LE=000I0

Oh=F=0=1 ~ O~ PO Jab

Fobes
Q0 -
- FakeUn

o Y4

T L7 a0 S A= S
-‘,
=

(++]

=JODr
ra

COb= b=t 00b= = Ll COPOPIPas pepaPifib Ol DA~
OME=ORNEN =~ OOk PINEF00 LWRUUN

PIOWE b= MY W WLOMWAMI~

« NO--F QUL
o - ONOL OO
Ul Ul
On v Db =
Pk WD

kg
=
o
@

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
]
S
5
S
S
S
3
3
S
5
3
S
]
S

FEEEe O00000000m WOUUOWOWEWW KOO0 00000000
LWMI=D WO=INUNLWNEE OO=IDULWHNEGE OO=1TUN LM =
OOo0O0 O00OOOO0On OOOCOOOOOn OO0OO00000
PUOOD DOOOOROOoDD QUODROOOon QOO X (e
DPILDID DIIIIIDIDID TPIIIIIDIDD DIDIDDMCT
| o o o | e] e e e e e e]] e e e e e || DU
IITDPPD DPIIIIIDIDITP TIIIITIIIDT DDIIDDIUND
FREGW FWONGEUDWRES - O WRIOWWR M= LFROL o~

W ol M W - - O

FIOSP
et] WROR O DN O N0 P e WY

e DM = O=r A LU
wh el - D0 L v Ul
OWEr O O OLWOM
POPFp=) & %« Dpe v b
e P~

LIRS 1

&\. - &w
OOFEE > LN tO

P e e 2 0
oL O
Drr -
WWwo- W W Lo WO
PRrSEoN
OH=UOMND =L~ = D~ =1

Copying and defining a pattern

The pattern-fill routine will only fill with characters that
already existin RAM. To fill with a character other than
one that can be copied from ROM into RAM by the
ROM-copy routine, you must define it first. If you
forget to use the ROM-copy or define-character
routines, you will find that the pattern-fill routine takes
whatever is in RAM at the particular character address
that you have specified. If your pattern-filling just
produces a pattern of random dots and lines repeated
over the screen, you have probably forgotten to use the
routines in block H.

PATTERN-FILLING 2

The Commodore has a character set with 256 elements,
and you can pattern-fill with all the characters that can
be printed on the screen. This means that a single
program can have areas filled with different patterns.
The programs on these two pages show what you can do
with just three different kinds of pattern-filling.

Cross-hatching a design

Many designs produce a 3-D effect by cross-hatching,
thatis, by having areas filled with parallel lines. You can
use this technique to shade a diagram to give an
impression of its three- dlmensmnai shape.

The program below makes a 3-D box. Each type of
cross-hatching is produced by a separate character used
with the pattern-filling routine. The numbers that code
the three characters are in lines 10120, 10150 and
10180. To try the program out, you will need routines
A-D and G-] in memory.

PATTERN-FILLED BOX PROGRAM

(s
Ty
w
WD
<~
TS
w
e
G
W
DR
(4]
P
&
;
e

=0
@en

~

P S S
= PORer O

(ol

[FpL¥r [9p]opler]
T T -
(=%}

&

P o= =

P RAFICOMICD

P PO DD

fa =
-
or)
N

o

NS O G-
i

NG e e e o h ke e e N

LIRS I SR

P o) e e e e e [0 e 00 1 00 CD) €D

[t 1 e TN S T e B TV] e T T e SO O 0
o B e Lo T Lo L

P UG
L L e
PIEDII e

L=r]

{S N] e e L]
(4]
(s]

(=]
(]

32,16,8,4,2.1

QWRWLWN SO G
7]

e Loy 5 Iy e U s Ky g BT ¢

’

LIRS 1o i
P) DD

WHr

(IR, Jo e T T Lo T T S
b &

o o s o o o e et e ot e s e ot e

O =l b= k] =i

DI e o e e o e e e - (.60 (5 0 2 0 2 0 2 €
o

MOOOOODOOO0DODDO0DDDDECD

D= 000 =1 O LN La LM == CD O S0 =1 T L GO e O

B e lonlinlnslwelunaronlenluslonlos [Tonl aeTanTan T arlanlanTon}
[y L L T L TE P T S p L p (Ep TR p T L 1Y Ty 1 5 L VT3 T T 51
B o e o o e L oL o2 0
=LA BN WWNNWNN U NWLYL
Qo

Db - s

I 70 o e e et o e e et e ot s o e e e e o o s
0&- (- LU R L N]

Pattern-filling a wall and gate

The next program uses all the routines so far to draw
and pattern-fill a wall and a gate. It uses three characters
produced by the define-character routine, and then
colors the result with the block-color routine.

When you run this program, you will see a new
technique at work. Sometimes you may want to pattern-
fill an area but not show the outline or boundary that
surrounds the pattern. This program shows you one
way of achieving this effect. It draws one pamcular
boundary (the curved top of the gate), pattern-fills the
shape that it surrounds, and then takes this boundary
away by drawing it again with the erase routine turned
on. The gate is pattern-filled without the top boundary
apl;)carmcr in the final display. It’s much easier than
trying to work out a programming routine to draw lines
that together form an arc. You can use it with any shape
that has a programmable outline.

;mwmmwmwmﬁm

'm#wwwwwww
--mwﬂwwwwwm
mmmmmwmmm_
.wmmmmmmﬁm#

= U 0O
e =]
L=~
el ==
w o« OO - ™M
[=l ¥ | - N
J50 - s
— o -
o & - T
v, ,T CI (]
o9 8§ i
= e = Gl
i O N < i i
L OIS . N =}
H o2 &) - @ -
Ahl @) n w (=} &
g = S D@ 2 ol o
8E g 1 8 an e
A g & g pli st T - I
e 3 4% Melin ~ & 1D L
.8 w D@ o Ryl T O
PR S B i b
= - ; oo
298 13 75 oy g T e oS
=) . " i L B
cEE 5|2 L8 2 Brex RS " TRa8u0s
Sty & |2 e M RO © @ O i x
2 09 = |- A A i IX D00 o A e e o i R
= O .] . TO (@OODN0 A 3 ANON@DON » 2 Y
2 g B 2 mel ol ~DWOD
S 23 | Ak She e A
O o o, [= 2 1 DDAt it e gl g
8 w5 - [i P - -~ Lo B [1}
458 |Z S DL S ™ prirred Ao (| (8o 5 DD
] ks = x o2 g Lt 3 cuocoaE @ | OOBNNODT T o>
£5 8 > Tl 05> @ SSSSSSSSSS&STmrmmmmm & cecccca . -
- EZ b 3 r>>dsasaucoccecee o STkl
bp b0 5 0DDODO00NDDOD s MR A e ¢ Sa83385llox
m .m — m M%M%Mm...zoﬁ.ss_rs W mccsonooosoaaaasauoa >) S A
£8 o8 BEBBB il E DOHNOTNORONOHEANOTHO O PODODDDODDD
w St ot Mkt oo @ HAaNNENNNNGNOEDOOSS € 7y AR T s
VL 2o ok e - 111m8380883095555558 o 2 Bhooooeonoou
L] v @ et e e el e e el e . O | B@oioaomReaL
2 W m el e el e G U I O O
r~
o
...m.: na»a — o
= all— 0~ =0~ = om it : E =3 5 5 - .
mmm & — 1122233% .w w‘mw.mm.m<m”w. _
158 o 5 HH
S5 |a MHHHHHHHH
v FHHME
HE R : HHHHHHHHHH
5=2q|e<|lglle 2 o dHRBHEHERN
s=c£|52||8llz 3 3 MR P
v mlen® ||=lS L i = :
> o @ |Mm = o - 2 > 8 = wmmm W =
S = i O l|lell8 ¢ & 3 = 85 F il & & 3F §
2=Qs |Z& |R|[E 8 £ 2 E8%E +HMHRR HHH
e %S . |FS |«||[EF S5S 5 & 88=£2 S g Bl 0 0, 0, 0,0
8 5 g .E mcwlnembbmm&mnuﬁﬂ o mwwmww
hcm.mmmmm fFozoogarxad mmmmwmmmmmm
ELE <"e couvoz-- S HH
T, lgiylglglylylphely]
2 ¢ Sy 2555 SP 5§28 THEMHBEHH R
s 3 . - =
koS B2 Ero8 35 oos ; T
Yoo g . DO RELYY W o i 3 # : T E: : i
o) BEEfosE H g 8e g @ O © g sl Sk Rod Sad ik Gl fudk
s @ = g S8 e Y=L S o0 .
[thrﬂﬂaﬂ.m ue.l..kuu.SOd g =8 :
e S R S T T = o O o DU v .o ® J
g0 = =i~ [— R = [= Ubsemm
(&} BB 55 =ESg STd6SNnE BEg.g
A 3355558 TEEeH L TEELE S
NM (| RESSa5gE eESgME 2P EL
- R TR = C =wQ%veco8s oS
E - o B ok S ; S FfEEwm=SEgQaC ™
.mov:c Crﬂ_ﬁxdﬂaspﬂntdloe
SICERE OFvy B LdpTS N SR E B .o
=0 3 P.mu%ardvscmh.u.lﬁ,oalet
<z BoSSE DI Ecgy s gC o PgE s
SE oy 8E S8BoEZE8E) uBLEEET o
MEgS 888 0EE R AREAQA RS

BLOCK-COPYING 1

There are many times when it is useful to be able to copy
some object that you have drawn on the screen without
having to repeat the code to program it. The listing in
block K on the opposite page contains a block-copy
routine which will copy one 8x8 block, taking it from a
specified position on the screen and displaying the copy
in another position. The routine doesn’t simply redraw
whatever is to be copied—instead it makes a direct copy
of it from the original in memory, a process which is
much faster. Although the routine only copies one block
at a time, it’s an easy matter to put it inside a
FOR . .. NEXT loop so that rectangular blocks of any
size can be copied from one position to another.
When you use this routine, the originating block is left
unchanged (unless of course you copy back onto the
space it occupies). Furthermore, the routine only copies
the part of the memory that holds the high-resolution
information, and does not copy the color memory. This

DIAMOND COPIER PROGRAM

way of using the block-copy routine to produce a

shading, using the method shown on pages 14-15, and
then copies this design onto other parts of the screen.

el e

o[Lo
=
o

‘anfmnTnn ugul DD

DD

means that the object simply takes on whatever color
combination has been defined in the area to whichitis to
be copied. However, the block-color routine, which also
deals with 8x8 blocks, can be used in combination with
the block-copy routine to set the colors of all the copies

made.

If you compare the Planet Copier program with the
Planets program on page 13. vou can see that the block-
copy routine is simply looped to repeat the design.

Copying a design
Each of the programs on these two pages produces a
shape and then copies it over the screen. It’s a simple

pattern. The first program draws and fills a diamond,
and copies it. The second produces a planet by plot-

S — |

To try either program, first load the routines (the
Diamond Copier needs routine blocks A-D and G) and
then add block K. Next add the listings.

BLOCK K
BLOCK-COPY routine

PLANET COPIER PROGRAM

-
—
w
-
>
Vol

[~~[=={1)]
L=+]
ra
I

x+XC,
ORr

2 HOO -1000=Co0

I=-EX —~ QOC
UAII~N N=-XEL XX
o "= e]

XEFOOX: + EXUNMD =L LD
v PR =IME XK -

+HoA—AE A OO
IITOODM—Ab—AnD DD -C

i
T
B
8
8
x

<<<MM~ Ui =C
G LT T

+MHx, NY+HY

ZNNMTMEX=ETX OO OXW
MLCOD MM OF-O00SSXO || =
MKV =2 || D=2 || U=

TP mCICADCICA || || o wCDC
W LU A TSR

v
M

CHOOOOOAOOOOOOOO0O0DDO
-

TP e e e o o £ 5 2 D D D DD D DD D DD
IOOOOODOOOOOOODOOOOOD
U P e £ L0 GO P e (D =1 €0) LI e D

IO POPI PP O P P P\ 10 1) e e o o e o e

What the routine does

The routine makes a copy of whatever is displayed in a
specified 8x8 pixel block. The copy can then be displayedin any
other 8x8 block on the screen. The routine can be used withina
loop like the block-color routine to copy rectangles made up of
a number of 8x8 pixel blocks. Note that colors are not copied: a
glopyk has whatever colors are already set in its destination

ock.

[SYNTAX AND PARAMETERS]
[SYS KL,X,Y,A,B s

XY Horizontal and vertical coordinates of any point within
’ the block to be copied (ranges 0-319 and 0-199). -

Horizontal and vertical coordinates of any point within

AB 1| the destination block (ranges 0-319 and 0-199).

ROUTINE LISTING |

3

3
3
3
5
)
i
b &)
3
3
3
3
&)
3

DoDDDODD

DD D DD D

You might notice with these programs that if you break
them with the RUN/STOP key, and then type RUN
followed by pressing RETURN, sometimes nothing
happens. Instead, you just get an error message in high-
resolution blocks. The reason for this is that the line you
type RUN on probably has some of the display further
along it. The computer treats this as part of your
instruction, fails to understand it, and comes to a halt.
To re-run the program, press the RUN/STOP and
RESTORE keys together first.

PLANET COPIER Lines 20000-20050 form the
PROGRAM planet-plotting subroutine.

Lines 21000-21050 form the
0040

copying and coloring

subroutine.

How the program works
First a planet is plotted in the
top-left corner. The block-copy

T ; 2 ROUTINES USED BY
routine is then used to display THI
copies of the planet over the SPROGRAM
screen, and these are colored s
by the block-color routine. Iﬁock Routine(6) ”M,
Lines 10100-10200 plot the A High-resolution 11
planet to be copied. -and-col 1
Lines 10030-10700 copy the BElear Bl enaler =
planet, using the block-copy Block-color
routine inside a FOR..NEXT C Plot 15
loop, and then add the colors K Block-copy 39
each time.

'BLOCK-COPYING 2

As well as using the block-copy routine to make
interesting patterns, you can use it to alter displays. The
program on these two pages produces a simulation of a
sliding numbers game. It’s a simple example of the game
using a 3x3 grid, but once you have seen how the
program works, you can make it more complex.

In the game, you move the numbers around until they
are in order. To make the computer simulate this, you
could program it to redraw the display after a move is
made, showing the numbers in their new positions.
However, if you use the block-copy routine, 2 lot of
programming is avoided. The listing is still quite
complex because the computer has to hold a lot of
information in arrays. But without block-copying, it
would be much more difficult.

The parts of the puzzle

The Puzzle program starts by drawing and filling the
puzzle’s border and then drawing just one puzzle piece.
This is all carried out by lines 10000-10090 in the screen
below, although you will need to key in the whole
program before this is carried out.

PUZZLE PROGRAM

LA ma fae o

ML WN
¢

sl faalanTaTuaTos T,

N g
-

IDOO0ODOOCO0M

¥

”

Y

PNADN DO
o

DO

W

You won't see the block-copy routine in the first part of
the program, but it is there, in the form of subroutines.
Every time the subroutine at line 20000 is called, the
block-copy routine copies a 3x3 character block from
coordinates LX,LY to X,Y. Lines 10100-10160 use this
subroutine to copy the top-left puzzle piece to the
coordinates READ by line 10110. This section of the
program also sets up the nine puzzle picce positions.

When you have keyed in the machine-code routines
and the complete Puzzle program, pressing RETURN
after the puzzle has first appeared will rearrange the the
puzzle pieces at random. You can then use the cursor
keys to move the pieces back into the right order.

PUZZIE PROGRAM (CONTD.

wnlenTonlanlasls

(DD

-y
)
-]
(]
[
-]
]

<
=M ONWNTOX

-
2 o CHAT e

ZOMOX VO KK N NN
v AT

CNE A = DX
@ MWIN @ V<= N

s MUVOCUD ~ =Xoo

e =D

M=COM Il AS 1 X 1| M\ C=CO0
KWWDNRNEDI
ZOOTMSHO

Y
TR =

o0=C

IO0QCOCOAND~AQDCOOOD O
e

MINAININ e = ST OO0
WM DML WP =T L + WM
<CODOOO0000D+OOTIO000

L
<>
=4
>
(=3
2>
=
>
4
¢
2
&
B
2
2
2
2
p
2
2
2
2
2
3
[|

PUZZLE PROGRAM

rmr.ic
UU'll_’!

How the program works
The block-copy routine is used
in a subroutine to rearrange
the pieces of the puzzle. The
compurer will produce a
random arrangement which
can then be sorted into
sequence with the cursor keys.
Lines 10000-10160 producc
the initial puzzle by calling the
block-copy routine which 1s
contained in a subroutine.
Lines 10190-10240 scan the
keyboard and then rearrange
the puzzle at random.

Lines 10250-10300 move the
pieces in reponse to the

player’s instructions.
Lines 10310-10340 test to see

if the solution has been

reached.
ROUTINES USED BY
THIS PROGRAM
| Block Routine(s) | Page |
A High-resolution 11
Restore
B Clear-and-color 13
Block-color
C Plot 15
D Draw 17
Flood-fill 27
H ROM-copy 31
Text
K Block-copy 39

R o S AT R SRR PR e S

: e
A L LY

v

PUZZLE PROGRAM DISPLA

Arifyinsansaiirin
Ripeg s gig G A0 e SN

e
e e e - b B P

o

— e
e e e e e L

e

SCROLLING

The final facility provided by the machine-code
graphics routines is screen scrolling. Scrolling is the
movement of the whole screen display, usually
horizontally or vertically. Left and right scroll are
particularly useful in games and other programs where
you want a moving background.

You could use the block-copy routine to produce
scrolling, but if you try to do this, you will find that it’s
unacceptably slow. Although the block-copy routine
itself works quite rapidly, the Commodore BASIC
ROM takes time to interpret and carry out the
FOR...NEXT loops needed to block-copy the
contents of the entire screen. However, the scroll
routine in block L opposite completely eliminates the
need for any BASIC. It carries out horizontal scrolling
at high speed by replacing the BASICFOR . . . NEXT
statements with machine code.

Scrolling and wrap-around

With the screen-scroll routine’s machine code in
memory, you can scroll a display with a command like
this:

SYS L1,D.C

where D is the direction of the scroll (1=left and
0=right) and C is the code of the color that will be left
behind in the newly-created strip down the side of the
screen when the scroll is carried out. Since you would
not often want to use the color combination 0 (black
foreground and black background) this has been
pressed into service in another way. When color
combination 0 is used, the character positions that are
vacated by the scroll are filled by the characters that
have just been pushed off the other end of the screen.
This makes the screen “wrap around”, a facility that is
useful in animating backgrounds to give more complex
displays.

How to make a display scroll
If you have a program which finishes with a line like:

10400 GOTO 10400

all you have to do to make it scroll is to change the final
line and add one more. To wrap-around the display, you
would need the following lines:

10400 SYS L1,1,0
10410 GOTO 10400

This repeats the scroll routine, moving the display to the
left and wrapping it around.

To make the program move to the right, but produce
a white screen instead of wrapping around, you would
need to add:

10400 SYS L1,0,17
10410 GOTO 10400

All the effects so far use GOTO to produce a loop
which endlessly scrolls the display. You can however
scroll a display a set distance to the right or left by using a
FOR...NEXT loop. You can even link together a
series of these loops so that a display moves from side to
side by a specified or random amount.

Different effects with the scroll routine

The displays on these two pages have been produced by
taking two programs from earlier in this book, and then
adding the scroll routine. The Wall and Gate program
shows the wrap-around scroll which repeats the original
design. The Line Landscape displays show both wrap-
-around and scrolling to reveal a color—in this case pur-
ple, the same color as the original two “buildings”.

WRAP-AROUND SCROLLING

TA
i

0

(

SYNTAX AND PARAMETERS
SYS L1.D.C
ROUTINE LISTING

standard color combinations

Color of vacated area

D MmO SN

5 a 00 aa s

LWMNWODOOMD

We -

o ancCcoad
T || bbb b=

O AT A= I
AN AN
MW =~ Nl

I OO LY
~HWAIDT LJCICI=
A= e 0D el
LB~ T 2 B o I
Y = CICID T O
DN =Y =D
D0 = s & oo 8 o
- D Ly S
~OMTODHNOINT
B e o e e e S U

CCCCTCCCCTT
o o o o e

mOm ONTMOT
D=0 NI

A a0y AT ol

QOOJW AONM 000
IR LD CID O~
b S 6o I o R TR

= sl A0 AN

TOOT “OW—DINC
= IR D I
E - e e
CUOAM— D =
DT DT
HrA A DI NI

CECLCCCTCTTT
Sty Sy

ADUNCI AT~ =
baa L G pIa Co (W [B0
(e B o [I 15T
CICIOLD SO ~eef
CIMOCIN=DC]) ~
s o =0 SOND
DT A IHO -
WINWW ~nin ~ N
=N HDOMCI-HCIWD
C A o[|
D=~ ~
CIODNODHT - %0
O e e e e == OO O D

CELTCCTTETT
b bbb bbb b e b

SDONHTONCI-
QYTWO] i =
WOywd A0) & 8w

s o o0 SLOOJOOOIIN
U= DW=
e BTN, e R B

QWD ~D
MW LOCIT I
) v o] e e Oy e e
wl nmn o v om

= Q0 SNDD
OODODHOOH TN
ACICI Ol = O 0

CCCTCTCTTTTT
o o g e e

CICID=DT ~DI0Y
O OOl wd wd O el (DU
Ran e IETLIE - B 3]
(o I Lo [BT~ B
O-HTT-® ~ OM
CID = =000 0
o B RO 1T T
e Y e D n
=T DA T I D
Rl el o BENEE T, BENEY
vl s OO e OO
O S0WOM-0 NGO
CDOCIHATRNAH

CCCCCTTTTT
L o e e e

4b]
c
=
=
o I
o -] ™
— ITe] - - o - n] (4] QM
L= o~ ™ o TN ol OO 6NN O Nm G DM O O - ©
o) CI0-0000 ~cd MO0 NONONDD MF M QMM + QW WHD DM @ SO0 DIN-0I- ©
@ = © DAY D= MIOIHCIH OIDOICICS AT = CIOIND T DA (IO SOOI ON ~ Itit- o
. = 0=~ ~=0I=00 - D e ~ =T LJOIT CICJCICIE ~ O o AT s a0 OO A ADTD -0
= E N o e I B2 T B O AOMCIC D HHMONTINND » MO SN D ST Ol
= DODTID ~ « T LI HMINCIDDC - MO L-CIDHDWA O ID ~TWOO0 » &
— (=] =T Al CICIOM e AT L el) A O D) TTOTON e NI v] AOM AT A DO~ =
Tl ® DD =~ D LD« OIHDMM n 2 a s IO 5 A OB) AT D M) 5 DI~ £D
e O SO0 LIDCl = oD O CIDMOINND » vl D= SO D D= MDA D
I I LIrAHDD LD A HOHCIN O IO AT D GO = 0D s OO HHDNINN O AT A0 5 =D -
— || & = INGD ~ O =AA ~ D DG+ ()~ I A DD DD D e DO OO s N0 AN AT Ol OO T 0
A = CICICUE welt) oD ~n CINCIHMI ~ 5 D i) =IO v v » SOD® 0 A0 5 5 s Ym0 o o OOUT & AD 8 s AT &
I

ICICIOCIOIO T w0~
v alwel LD = 00 WD
A AN I D
W0 NN ~ NDNTNIN
LA T DA (IO DI N
Cd dNwd & 8) & o oY
S0 N =HNT D
D INOD TN
OIS D IO
L I o B B " Y
AV AD A Al =) o D
WO TN
DD e o O A O O D=0

CELTCCCCECCELET
o o e e e e e e

lay from the screen to make way for another instead of

simply clearing the screen with the clear-and

The routine uses standard Commodore color combination
D ” Direction of scroll (O=right

unpredictably. It can also be used to gradually remove one
codes. For details, see the chart on page 63.

SCREEN-SCROLL routine

LWHECCCCCE CLCCCCCCCE CCLCLLCCCT CTLCECTCTTCE CTCCCLCCICCE CCLECCCCCCE CCECCCCTTCELCTT
—OXIOOO00a O0000A000R OAOAOAA000 OACAAOAO0n OCOSOAO000h COAAOO0OLs OOCOACALasas
OOOOOOOO0D O00000O000 SO00OOONOD OOOOOCOO0D CDODODODDE VVVOODO0 DOOODOODOOOOD
DHUMTINO=RON DHOIOTINOE-00 DHEHIMTNW=00 O=HAUMTION00 D=HCIMTINONMEE D=HUOTHOMED D=UMTIHON0NHD=00
Sttt DODLNDDNON OWOVWOEOOOOW B=M00==0=M0- 00MMWNNNNN NNNOHOHNOODN OOODDOODDEE v
WWNNDWBIRNY DBRVBLDVBBNEYG PPRBBLLLVOY LRBLBBDLEEE PRDBBDLVOY VDLRDDVINBY WO LWWEODWWWDWWNWYD
a (&)
R
d —_— —_—
(28]
b i
Qx O —C © =
CCHGo g, 0
oO% s >]
— O L S o w
ook
5©®825ERS
»n oo rs.onu O [<h)
Pt o= m
> Q by =
PocOBSDIE
8] v
rP=0ZJo 35w
= 2= o A2
ZHga0° 28 \
I >TL2 2B c 5O AR
S TS =T c
[=% - =0 @
(e Nk ©
e SESS S
O 2g 0 o
e w 5]
=l =
- -
o gt S
- ©
L w -
(<5}
— N
B o=90
o Q
() [45]
B
=
_I

WRAP-AROUND/BLANK-COLOR SCROLLING

ixel coumn at a time to the left or right,

routine is used once it will move the display by one column
only. However it can be used in an endless loop for continuous
scrolling, or it can be used in a closed loop to move the display a

specified amount to the left or the right. The routine will either
Tomake a display scroll off the screen, use SYS L1,followed by

color the area vacated by the scroll (the color can be
specified), or it will allow “wrap-around” of the display.
display from side to side behind stationary sprites, and if it is

The routine scrolls the contents of the entire screen by one
column of 8x8 pixel blocks either to the right or left. If the

=

IS

5]

—o

==

el

o il

o Q ©

Po=
P —
» 62 Laos
(=] T Q
L oige=c
o =c =

@ © OF
= 52 ama
F= i 00 3=
- = V;me [0
o = . ST Zo
- CEorm -0
© ca3fwT st
£ SS8sT R =ES
=] = woTmxe

L @ D 4 Q
] > rkSC o
= ..mmv.ma%e Q
= w0 o ESSEDT S

GRAPHICS EDITOR 1

So far, all the grap}_n'cs you have produced have been in SRAPHICS EDITOR PART 1 (CONTD.)
the form of specific programs to produce specific
pictures. The program on the next six pages lets you e
create pictures directly on the keyboard. It gives you
instant access to all the routines so far, and it also g
provides two graphics cursors, an optional color grid
and a facility for saving your displays on tape or disk. D¢

.
1
CoOOOOOO
-
] me [
.

How to key in the graphics editor ‘
You can build up the graphics editor in easy stages so |
that each part can be tested as you key it in. The -
program uses graphics routines in all the blocks from 1
A-L, so you must have these in memory before you start s
keying in.

Although the editor is written in six consecutive parts,
do not try to assemble it using the merge routine. If you
do, it will not work, because its lines are not always built
up in numerical order.

WQOQLC

Producing the cursors

Part 1 of the editor listing generates two cursors. The
large cross is called the main cursor, and this is
controlled by the usual cursor keys, moving one pixel at
a time. A second cursor can also be made to appear by
pressing the M key. This cursor cannot be moved by the
cursor keys.

In general, to use the graphics editor, you need to
mark one or sometimes two points with the cursors. For
operations that need two points to be marked, the
second or marker cursor is used. If you move the main
cursor after pressing the M key, the marker cursor will
stay in the main cursor’s original position. Pressing M a
second time unites the cursors again.

Typein part 1 of the editor and check that the cursors
appear before continuing.

GRAPHICS EDITOR PART 1

The editor commands
Part 2 of the editor provides three graphics facilities —
i i plotting, drawing and flood-filling.
0SUB 20680 OSUB 20168 To plot a point, move the main cursor to the required
D=0 0TO 18858 position, press D and the point will be plotted. The
D120 marker cursor will be updated so that it is in the same
D=0 position as the main cursor.
Drawing lines is equally easy. The program draws a
: line from the marker cursor to the main cursor when
you press L. You can draw lines from the existing
: marker cursor position or from a new one, specified by
kS i pressing M. After you have pressed L, the line appears,
and the marker cursor is united with the main cursor.
This enables you to draw a long sequence of lines
quickly.

Flood-filling areas is simple. Just move the main
cursor to the place where you want the flood-fill to start

OOOCDEOODM
0

-
-
DO
o
-
-

WD =I0
Fan T am n i on L] e L 0 [L o e et] Ao Lo n] | mn L mon T | mee e T
!

wnlaeTalme e o ae T fas Lo [T T T Te T T Te Tt T Tie T e’

o
o
-
0
DY OUCTOOTTOOWw
o
o

and press F.

If you add the part 2 listing to part 1, you will be able
to test out these three facilities. If your combined parts 1
and 2 seem to run properly, make a copy on tape or disk
so that if you introduce a bug later, you don’t run the
risk of losing all your work so far. If your program
doesn’t work, check that you have all the machine-code
routines in memory. Press BREAK and then SYS A2 to
identify problem lines when running.

GRAPHICS EDITOR PART 2

~

-~
([~

N
=

o<

MooOOOOOOOOOOOOOOD

~
LHO O0=10 JIA-ID Con

SREO CREO SX
m-ccawmwuawmw-cnwm
QN NV NN G DV
NEOXOOOIXONDOHNON
o0 OO 0 OO0
=

(=4
SUNO=0 || IO=0NGo=-

OO IO TN TN~
o<

QOCLOTMORXLCOTMODC-CO

=N NIuy K

[—~{y]

<LOO0O00000C000O00
(o8

D dn i WD W DWW W LIWILIPINIT
O =D =107 NI N = (D00 =3

00 e e b e o

DISPLAY USING PARTS 1 AND 2

G9QQQQQ0
QQQQQQAaAa

The graphics editor program makes coloring very easy.
But before you turn over and find out how to do this, try
producing some designs in black and white first. It’s
always easiest to draw first and color later.

On page 49 you will find a list of keys used by the
editor. If you press an unused key when the final
program is running, it will ignore it. Until then, press
only the keys which the program uses, or the editor may
halt and your display will be lost.

GRAPHICS EDITOR 2

You can add a coloring facility to your graphics editor by
keying in part 3 of the program. This allows you tosetup
colors for all or part of the screen. It works in two stages.
First you decide what color combination you want to
use, and then you decide which area of the screen you
want to appear in these colors.

Toselect a color combination, first press I followed by
a standard Commodore color control code from 0-255
(see the chart on page 63) and then by RETURN. Don’t
wait for a prompt after you press I as the program does
not produce one. Now position the marker cursor at the
top-left of the area you want to color, and move the main
cursor to the bottom right. When you press C, the area
will be colored by the block-color routine. Remember
that coloring is a two-stage process — first color
selection, then positioning.

Because color is dealt with in 8x8 pixel blocks, you
will probably find that the colored area is slightly larger
than you specified because the colors are set to the next
boundary up. If you take a black and white design like
the one shown on the previous page, it’s easy to start
adding some colors to it.

Using the on-screen grid
When you use the coloring facility, youmay find thatit’s
difficult to know exactly where the boundaries of the
8x8 pixel blocks are. You can overcome this problem
with the part 4 of the editor. After typing it in, run the
program, and press the G key. You’ll find that a
complete color grid is overprinted on the screen.
Pressing G a second time makes the grid vanish, leaving
your design exactly as it was before.

When you use this facility, it is important that you
don’t draw any objects or fill any areas while the grid is
on the screen.

GRAPHICS EDITOR PART 3

E<>73 THEN i©5i86

F As="" TH
= T 3
1
i

m»xm
=i 1|
v ox

UL~

D00
QRN - 2200V Ok=10D

CNLaldra
Q0 O TV [ot bt et o e o T () e et

CoOo0
o]en]

Sadodadafo oo de

QN =0 SO =INUN La LIPI = CH O 00 =)

{oaleslunluslualunTasluafualunlunTusTomTonTonTar Y ne e
(9]

r
OTIIN Il 4—D>D
€W W-CHICH-CICM AR A,
VNVAXA
OOMMI — =L XX
=
R e o Y
OOFOU LD

C=HOCC LA LEXZMOM MO
mMC-cmen QO
VO | DW=~

=H=-CrOOOOUOLL I

WCHCEX=COC
oo
L 00)

=Cra Il
o
WU ~
noar- OOUUNITI-HS
KX
~-cX

[& 4
QX
=l
Q0
QX

OO-COM-COOXMMMMOM»XTIT ||
c
W

R
R
S
X
S
T
T

[l d oy T |
O0OOXE-C=l=

oo

m CoOOOOOOD0OOOGHO0
-

> OOOOUNUNULNNUNLIIANG,

D o b b e e e e s o e
o
<

GRAPHICS EDITOR PART 4

e e e e o e e e o e oo o o e
MOOOOOnEO0REEEEE0000000
20000000000 mI =) mImd s =i =) =) =) DRI NI
0 GO e 558 00 =) O L1 L S e CD O 50 mI DN a0
B e e e e e Tt T LT o e e T =

1l D=l OXUNMNBGD
C==DDL OXE- = cx
™ OXTMmm
= AKLOAN A etk A
QN"~Nﬁ;whD

B
E
i
C
<
P
P
B
J
X
B

=1~y

GG 9 G bt e e ot D 5 e b) S) T) T et
s

QOX<COTMTMM I MV NIOM-CMCO-CO™

= |l

W

o
LHOINDO + Q=i

0o

Oo=C VDL =~

- S
ROD=TM C=

Q=

DD & HQMNWMUNY O

QN
=5 OG- ||

The next two displays show how the grid looks when in
use. After the colors have been applied, the grid is
removed and the design left intact.

GRID IN USE

i‘ jiﬁ iﬁ;i
. flllli . h

COLORED DISPLAY — GRID REMOVED

Pattern-filling, circles and text

Part 4 of the editor provides a pattern-filling facility. To
fill an area with a pattern, position the cursor at the top
of the area, and then press the P key. Then enter a
character number from 0-255 and press RETURN. To
fill with a defined character, use the ROM-copy and
define-character routines in the direct mode after
stopping the program with the RUN/STOP and
RESTORE keys when the cursors appear. Then simply
re-run the program.

Part 5 of the editor allows you to draw circles and
print text. To draw a circle, move the marker cursor to
the center of the circle. The main cursor is then used to
mark any position on the circumference. Press O, and
the circle appears. To write text on the screen, move the
main cursor to the start position, press T and then begin
writing. If you make a mistake, you can use the INST/
DEL key to erase it. Press RETURN when you get to
the end of a line, or when you have finished.

GRAPHICS EDITOR PART 5

ey
X~
kM
+ X

o-C
[Fz 1)

[
-
el

CxRC CXOX
~
[l anlomop [=f ¥ 1T}
MmN Omwmo
XTI D=

x

G

x

o
COM0 O XK-CH

I QXD | W
- =l @@= ZNee— N=C || D

=2V W=D

= Il
| @A
= ORI T =]
AL A~
= AP
WrW
X
xn

Qon SO0 | O=D
Lok DDYYy

WS MWW | D

L el el el el ol

M~ O OO D OO GO0 0 GO0 mE

+ N
OWs RV R NV TINVE PRIV

QWHO® AD
=

=4
QOOION

w=<m
=CnxE -

» OXONO MO~ O OAC
[=]

HI@C-CUr = || D MM =M
=0 | ON=NENTHO=DTOI K~

L=<

GG et 0 50 T et et e £ it 2 el S et 30 S D G 1t
M
x>
(e}
kg
I
(g
>
+*
@

OOMLES<CTNTI XM I STO-CO I 1M

-{— ANl

[k]
NWRIXOOMNIO: TX
(1)

OO G000 WL LW 0000000800
DU LW =W =] U LN = DO 00 -1 LN Lu
COODOOOOOD000000DOOD0OD

|

GRAPHICS EDITOR 3

By this stage, you have probably produced some designs
which really needed some tidying up, but so far you
haven’t been able to erase anything, except by
overprinting with something else. You can use the text
facility to erase anything that you have drawn. To do
this, move the cursors to the top left of the area you want
to erase. Press T to switch to text and then press the
space bar. This will erase one 8x8 square at a time.

Alternatively, you can block-color any area with
black on black. However, you should remember that
this won’t erase any designs, but will just hide them.
Changing the colors again will make the design visible
once more.

How to store and retrieve your pictures

Having drawn a picture, you can make the editor save it
on tape or disk. Part 6 of the program adds a short
display section at the beginning of the program which

GRAPHICS EDITOR PART 6

Lmm

Lrar-
mo

NITI—OM MDD =
- O O T
M@= XD R

ZOCKRE—X X X TCoXRO

MEME =~ -0
CENOT N - -~

. IRVE =) 0o

™
ONG DL O

m &

x
.l -
NG -G OOEA

NI I o i e e e e i e i e (5 e 5 O D D £
el

GIN =M SO =ITUN fa LM =D DD R -INUD
DOCOOOOONSOOo0ODO0055S
OTO OFOEOEDVTIEDNO OO
mMoT UMOMOMDOMOOT DVOOMO

TTY e e o e e e e e e o ()
—X0m
b4

O e e e e e e o e e e e e e e e e e e e
>
o
<

o
0

PYWoS O O

#i,A%
- NEXT C

(el ey

=TTt CTD=NN QTN X

-0 QCEXCXXD I XCECSCSOM =M
NI == D={=—DOM

et T VOOV DV=DV=~VOHOVNAT
b

IO PP o e e o e e e e e e e e o e e
e e e o et o o o S o Sy
B POFIPIF o o i LI LI LI LI LI IPIPIPIPITD
SOOI =ID U fa P = DD =1 U fa
<OOOOSO000000000D0DOOODS

MMTMOSENVINDTMMOINOOOOMD

asks you for some details. Your displays will be stored as
files, each with a filename. The computer needs to know
three things — the kind of storage system you are using,
the name of the “LOAD? file (the one to be taken from
storage and put on the screen) and the name of the
“SAVE” file (the display to be sent to storage, in other
words the one you are about to create).

After you have keyed in part 6 of the listing, your
graphics editor is complete. You will find that the
program now starts by asking three questions. You must
answer these before the program will continue:

1/27

LOAD ?

SAVE ?

The first means “tape or disk storage?”. Key in 1 for

tape, 2 for disk. The second question asks which file you
want the program to LOAD, and the third which file you

B

s -

want to SAVE. You don’t have to LOAD or SAVE
anything, butin case you want do, the program needs to
know the filenames before it can continue.

When you have answered the questions and created a
display, pressing the W key will make the computer
store it. Pressing the R key will make the computer
retrieve the LOAD file and show it on the screen. Youdo
not need to press RETURN for cither. Storage and
retrival take a number of minutes as there is a lot of
information involved, so don’t be impatient if initially
nothing seems to happen.

Once either operation is complete, the program
continues to run from where it left off.

Choosing filenames

If you are using disks, it’s important to remember that
once you have decided on two filenames, you can’t
change them except by starting the program again. Soif
you call the current SAVE file “DISPLAY3”, for
example, and you already have a DISPLAY3 on disk,
you won’t be able to SAVE your current display.

GRAPHICS EDITOR CONTROL KEYS
The Graphics Editor uses the keys listed below. When the program is

complete, any other letter keys will be ignored. Color changes set by
key I are only visible when put into effect with key C.

Key Function

(€ Block-color

D Plot point

E Flood-fill

G Print/erase color grid

I Set color combination (enter color code and follow with
RETURN)

L Draw line

M Position marker cursor

0 Draw circle

P Pattern-fill (follow with character number)

R LOAD stored display
W SAVE current display

3

Higps. TR b b

TURTLE GRAPHICS

Suppose you were asked to write a program that would
draw six squares, each rotated at an angle of 60 degrees
to the next. How would you go aboutit? You could either
draw out a design on a high-resolution grid and read off
the coordinates needed, or, if you were mathematically-
minded, you could write a program that calculated the
coordinates itself. However, either method would take
quite a time.

Shape programs in BASIC are often rather
cumbersome. However, LOGO, another computer
language developed in the 1970s, tackles the task of
drawing shapes far more effectively. The part of the
LOGO language that has become of greatest interest to
micro owners concerns the “turtle” — an imaginary
animal that produces complex shapes by following easy-
to-use instructions. With the help of the routines in
block M on the opposite page, you can generate some
fascinating turtle graphics on your Commodore, using
not LOGO but BASIC and machine code.

How turtle graphics work

With turtle graphics, the commands that control
movement are like the ones you would use in giving
directions. Here for example is a sequence of turtle
instructions written in a BASIC framework:

FOR N=1TO 4
FORWARD 50
RIGHT 90
NEXT N

This would move the turtle around a square with sides of
length 50 units. FORWARD makes the turtle move in
the direction it is facing for the specified distance — in
this case 50 units. RIGHT makes it turn right, in this
case making an angle of 90 degrees. Because this is
repeated four times the turtle traces out a square-shaped
path.

The orientation of any shape the turtle produces
depends on itsinitial direction. Soif you start it pointing
vertically upward and then make it draw a square and
finally turn through 60 degrees, you can simply repeat
this set of instructions to produce a nest of squares.
Programming shapes this way is easy.

Turtle routines for the Commodore
How can you make your Commodore understand an
instruction like FORWARD or RIGHT? The answer, as

you can see in the following program, is to calla BASIC -

subroutine instead, one which does exactly the same
thing as the turtle command. Block M contains eight
separate turtle routines, each written in ordinary
BASIC, and each of which in turn calls one or more of
the machine-code graphics routines.

NEST OF SQUARES WITH TURTLE GRAPHICS

o
-

Dot

0
00 OO0 O
oo o0

o O o0

What the routines do

In block M, the first turtle routine, starting at line
20000, sets the turtle’s initial position at the center of
the screen, the initial direction vertically upward, and
selects a “pen down” option, so that drawing will begin
as soon as the turtle is moved. All the angles in these
routines are measured in degrees clockwise from the
positive horizontal axis, and all the distances are
measured in pixels.

The second turtle routine, starting at line 21000,
draws the shape that represents the turtle itself. The
erase routine from block F is used so that it can both
draw and erase the turtle.

The third routine, at line 22000, turns the turtle left.
To use it, you set the variable A to the angle through
which you want to turn and then call the routine with
GOSUB. For example, to turn the turtle left by 30

T e e TN) [

degrees, you would use the following line:
A=30 : GOSUB 22000

The routine to turn right starts at line 23000, and it is
called in exactly the same way. The routine at line
24000 is the one for FORWARD. You just state the
distance you want the turtle to travel by setting the
variable D, and then by calling the routine with GOSUB
24000. For example, to move forward 50 pixels, you
would use the line:

D=50 : GOSUB 24000

Similarly, to move the turtle backward, you would set D
to the distance and call the routine at line 25000.

The final two routines are at lines 26000 and 27000.
These carry out the pen-up and pen-down options.
Neither of these two routines needs any parameters.

How to try the routines out

You can try out the turtle routines yourself. First, load
blocks A-D and F, then key in your turtle program
starting at line 10000, and finally add block M. Read the
details in the block M panel carefully so that you
understand how to operate the routines before you key
them in. You will find a wide range of turtle graphics
demonstration programs on the following eight pages.

BLOCK M
TURTLE GRAPHICS routines

The turtle routines must be keyed in or loaded after all the
required machine-code routines and main program have
been entered. If you do not follow this order, your turtle
programs will not work.

TURTLE ROUTINES LISTING]

[o
. A

0no
O Wl KA
A DW=DD

I il MO DODO-OT -0
- XA e O OO0
winie

i DOLWI NG
-y

e

THEN GOSUB 21088

THEN AI=A1+360
HEN GOSUB 2ip68

L]

=
o
-y

CXTOoCT CoOo»» T SUDIDT

FOPIFIPIPIFIPIPIPITY FORIPIMIPIPIFITITITY

THEN GOSUB 21608

0 XS4
[TR WD
D M = =X =
Io
O=MD>D m
L€ O = x—
< KX Ge
OroA 3 om

3%
DO WOH XX 70 r——

=B il N -
Tt ot

|

=
Cro

- I
" o
o}
&
X O

X
)
$
g
S
g
3
2
3
S
S
I
A
1
I
R
I
A
T
i
£
b
v
i
b
G
s
X
S
o
D
I
P
1
P

MM 1M Il OC==C O=TIOOD MM T MMM Cof CCLCLCDDC i

0000
9010
0920
1060
i9i0
1820
1030
1049
10590
1089
1070
1080
1099
2000
2919
2020
2030
2048
2050
3000
3010
3020
3030
3049
30590
3990
4919
4028
4038
4048
4050
4050
4070
4080
40399
5009
5018
€000
6018
386
7838

PORIPINIRIFIPIFIRIPITIRY POPIFIFIFIFIFIFIFIND
o

o

I
o+ O
T =T O OmCm O<CT~AA
om oM — & =~

What the routines do

The routines in this block enable the Commodore to set up a
mobile turtle, and then move it through relative angles and
distances, rather than through absolute ones. For example,
the turtle can be programmed to move forward 50 pixels and
then turn 90 degrees to its right regardless of the position and
direction it started in. This block does not itself program
machine code. The eight subroutines in it are written in simple
BASIC using GOSUB and RETURN. However, each of these
BASIC subroutines works by calling one or more of the
machine-code graphics routines in blocks A-D and F.

How to use the turtle graphics routines

To use turtle graphics, first load graphics routine blocks A-D
and F (or the complete set if you have it). Then add your turtle
program giving it line numbers between 10000 and 19999,
and then finally add block M. It is very important that you
assemble a turtle program in this order. All turtle programs
must begin either with the turtle initialization routine, if you
want the turtle to start in the middle of the screen, or the turtle
shape routine, if you want to make it start somewhere else.

| SYNTAX AND PARAMETERS]

To set up or move the turtle in a program, first decide
which turtle routine you need. Then key in an angle or
distances if the routine requires them, separated by
colons, then GOSUB and the line number which calls the
routine.

Turtle intialization GOSUB 20000
Turtle shape XI=: YI=: Al=: P=: GOSUB 21000
Turn left A= : GOSUB 22000
Turn right A= : GOSUB 23000
Forward D= : GOSUB 24000
Backward D= : GOSUB 25000
Pen up GOSUB 26000
Pen down GOSUB 27000

(Turtle initialization only) Initial turtle horizontal
X1,Y1 || and vertical coordinates (ranges 0-319 and 0-199).
Key in X|= then the horizontal coordinate, and YI=
then the vertical coordinate.

(Turtle initialization only) Initial angle at which the
turtle is to point, measured in degrees clockwise from
the positive horizontal axis (range 0-360). Key in Al=
followed by the angle.

Al

(Turtle initialization only) Pen up (0)or pen down(1)|

o

(Turn left and turn right only) Angle through which
A the turtle is to turn, measured in degrees (no range
limit). Key in A= followed by the angle.

(Forward and backward only) Distance in pixels
through which the turtle is to travel (no range limit,
D although some values may produce off-screen
displays). Key in D= followed by the distance.

TURTLE SHAPES 1

So far, you have seen how a turtle graphics program can
be used to move through fixed angles and distances. But
it’s possible to write a turtle graphics program so that
the turtle’s movements are controlled by variables
instead of by set figures. The program can then start by
asking for values for these variables and so produce
results which you can specify from the keyboard.

The first program on these two pages works in this
way. [tdraws a nestof 24 squaresin a way very similar to
the one you saw on page 50. However, this time the
results are much more interesting. The size of
successive squares changes, and you can control the
initial length of the sides and also the STEP size by
which they increase each time a square is drawn. To try
the program out, make sure that you have routine
blocks A-D and F in memory, add the program listing,
and finally add block M. After typing RUN, key in two
parameters and watch the display unfold.

VARIABLE TURTLE SQUARES (parameters 1,3)

m X
I -

]

ra 0 OX

= wC D

B H AL R

D

v D= =3

T T
or
DO=]

POPdb= b=

el WO N

QoMo Il MOSOoOD-CXD
AR UDFIHN AT TS
WmOXe D=
o
4
Wi
we
oo

oOC-HEO-CCS
WD QI OO~=-Y - X

OOEDLDIPEXSLIOMMODN—"D
m m

-0

o0 O0 O0COoQunr
[~~] Oa:" [an]us]

Lo TR 5

HO e -
M OO0OOOODODDODD -
D OO0 08 W
2 WREODOO=INULWRE-GE —
< COOODO0oOOODOOD

V= T
\1/{{&;

&
=

Multi-shape programs

Some turtle graphics programs will produce a huge
range of quite different results. The next program is a

good example.

MULTI-SHAPE PROGRAM

Yo

D OODOODOOE
O Ja WO

S0000000000

o L on fn] an s Tan Tt Tn T e 7 g
)¢ DS

W00

P

=

T o

%3
T

I L D K T
Mg e B
" !pﬁf:.‘.':ﬁ

» ﬂb
T

&

.

A
gl
ek

goe, 33 TR T ¢ ’

X
:1

™

o

‘.

i
-
ol
i

i

R

Py 8 ok -
#

" -".;im
»
iy

;'!
:"’

= ¢ Al
B
B

At)

T e e R

The program lets you INPUT two parameters. These
are the angle through which the turtle turns after it has
drawn a line, and the increase in the forward distance
with each successive line. The program s controlled by a
loop so that the turtle stops after 60 lines.

The small displays on the right show the effect of
three different pairs of parameters. The photographs
show the displays before the program has reached
completion. The large display below is the complete
display produced by using the parameters 123 and 1.

With this program, it’s very difficult to predict how a
shape will turn out, but this is the fun of turtle graphics

MULTI-SHAPE
PROGRAM

forward distance that the turtle
moves on every loop.

o415 ROUTINES USED BY

_ THIS PROGRAM
How the program works
The program asks for two [Block Routine(s) | [Page|
parameters. The angle through
which the turtle turns remains A High-resolution 11
constant, while the distance it B Clear-and-color 13
travels between turns increases.
Lines 10050 and 10060 C Plot 15
make the turtle move forward D Draw 17
then turn right. F Erase 25
Line 10070 increases the

L

e
;v

)

2

o'

Lk |
; P-”_"
o

v ad
A
*“

o
ol

'

_ -\,é.._
AN

Aﬂ'-l " ..

L

2

il i, ot
e
L e

590

—
Tl
o ‘_b"
e o

¥

:
3

— vyou can create some fascinating displays by
experimenting. The three displays below show the
results you should see if you try entering parameters 123
and 1, 144 and 5, and 170 and 10.

MULTI-SHAPE DISPLAYS

—————— - — — —— —

) = (RAR - L e i 2

A 3 ¥ | A
e - A REER

d P, il I A i

1 o ' o . g) il

e e C Tos

There are
are particularly good at displaying. The simplest are
“closed” shapes — ones that start and finish at the same
point. You see this with the first of the following
programs, which draws polygons.

This program asks you to input two parameters and
then draws a closed regular shape and fills it. The first of
the two values you need to enter specifies the length of
the perimeter, that is the total length of the edges of the
shape. The second value specifies the number of sides
the shape will have.

Each of the following three displays uses a perimeter
value of 350 with numbers of sides 5, 9 and 15
respectively. To run the program, load routine blocks
A-D and F, add the listing below, and then add the turtle
routines in block M.

Remember that you must add the program and the
machine-code and turtle routines in the correct order.

POLYGON PROGRAM

r
—
w
=
Hy)
N DT
mo

()
L]

N =M Cx
Y SOU-~
o

c=cc
OW TIWOD: = Dgm

[~leeletlisaTon T TurTunTurTan Tun Tun Tun]
P - OO000000S0
W= DWOM=-1NUN LW~
OoOO000OROOODD
OUNSOZTOHTID VIV~
QLOMOOS || || =E =X
;mmxmmmwpuxmﬁ-
Ll L

N N0

MO ot b o e e e o ot o o o e o
m
>
=)
-

several kinds of objects that tﬁrtle graphics

POLYGON PROGRAM DISPLAYS

As you can see, as the number of sides increases it
becomes more and more difficult to distinguish the
shape produced from a circle. In fact, the high-
resolution circle and arc routines on page 21 draw
shapes in just this way — as a sequence of short lines.

One final point to notice about this program is that it
does not use the default initial position for the turtle. It
does not call the turtle initialization routine starting at
line 20000 but instead sets up its own initial values in
line 10040 so that the turtle starts to the left of the
screen’s center.

Using multiple loops

Now you know how to display a closed shape, there are
several ways in which a series of closed shapes can be
combined to produce interesting effects. For example,
you can display a variable number of shapes so that they
all touch at one corner, as the next program shows.

produced by
.80 and 100,160. As usual, it

-D and F.

CLOSED SHAPES PROGRAM
0.081 THEN 18078

lays below are

=AM || =D M= BELNUNICUN=
OCXD= Ot] 1]])l e EOWOO
AL N0 XK O o S EE =l (DO T DD

DOO0OOOCO00O000D0
QOO T LU D= 0O D w O D T DD
DODODOD DO DO vl el e el
OR0OVDDODIODDODDD
4 e o] s v v e v v v e] e e e]

As a final example of closed shapes, try the following

program. The disp
parameter values of 80
needs routine blocks A

vy
vy

18
- GOSUB 29888

]
Lyl
-

_E CLOSED SHAPES PROGRAM

zN @
XN Q-

MM Om
DO WI=-0
=0 AN DL AL I M =
AKE>D | OO0 || OLIO
AN AL LOVECOTS

CROOODOODDOODD
Q=IO D= O D = D
OROHODO0EEE v v
LROOOODOOODOOD
] e e e e e e e e

this program needs to be added to blocks A-D
MULTIPI

and F, and then followed by block M. The displays
below shows the results you should see with parameters

5 and then 50.

Again,

TURTLE SPIRALS

One display which turtle graphics makes simple is the
spiral. In general, to draw a spiral you need to move the
turtle forward repeatedly by some increasing amount,
and rotate it through a fixed angle.

You can develop this approach with turtle graphics so
that several parameters are used. The following
program shows you one way of doing this — it draws a
spiral which you can specify. When the program is run,
it asks you to enter three parameter values. These are, in
order, the length of the initial move forward, the angle
through which to turn, and the step size for the increase
in length. The following sequence of displays was
produced with this program. The two small displays are
produced by parameters 5,60,1 and 5,65,1.

To test the program, load the graphics routines in
blocks A-D and F, add the listing below, and then add
the turtle routines in block M. Again, remember that the
order in which you do this must be right.

POLYSPIRAL PROGRAM POLYSPIRAL PROGRAM

gryu

How the program works
The program accepts three
parameter values — a distance
through which the turtle will
move forward, an angle
through which it will then
turn, and an increase which is
added to the distance after
each turn. The large display
here is created by parameters
b1

Line 10010

asks for the three parameters.
Line 10030

initializes the turtle, making it
start at the center of the
screen.

Lines 10040-10080

form a loop which makes the
turtle move forward and turn.
Line 10070 increases the
distance by the number
selected at the beginning of the

POLYSPIRAL DISPLAY (parameters 5,65,1)

(7]
-

: POKE 53288,6

COOO0OODDED
[nlualoalordeTo-To T TT Y
7o le e b g L KT T
[Tl T T T YL P
OEOOSTON=~T

I: o e e e s e e e
>

)

<

programt.

ROUTINES USED BY

THIS PROGRAM

[Block Routine(s) | [Page|

A High-resolution 11 .

B Clear-and-color 13 "
C Plot 15

D Draw 17

F Erase 25

T e - e S

The next program also creates a family of spiral shapes
and again requires you to specify three parameters.
However, this time the results are very different. The
parameters for this program are the length of the turtle
movements, the initial angle through which the turtle
rotates, and the amount by which this angle is increased
on each pass through the loop.

Increasing the angle instead of the distance
completely alters the display. This simple program
produces a family of spiral patterns whose shapes are
very difficult to predict from the input parameters. The
curves are best described as “inward spirals™.

You will find that many combinations of parameters
make the turtle wander off the screen after a few turns.
You may have to wait hours to find outif it ever returns!
The trick is to find an angle and an angle increase value
which together make the turtle track back over a small
area. If you do find a combination that keeps the turtle
within the screen boundaries, you will probably see a
pattern like the ones below. These shapes both have
rotational symmetry. The first is produced by

parameters 20,2,20 and the second by 10,1,78. Thefirst
has five-fold symmetry and the second three-fold
symmetry. It produces an endless variety of simple or
complex patterns on this theme.

INWARD SPIRAL PROGRAM

w
=y
-~

o

VO D ——
FIPIPS
oo

QOOOUODOODC -
DOVDULLa LI~
OO0000oDED
HDD IO DT
=0T I SO0-CXX
= BT
FOP+CCC CxX
(LT

(nalep]

“ia WhL® O
<O= Q0D

]

s R e e o] e e O]

m
> CO0OOO0OSD

Lo
-

TURTLE PATTERNS

One technique that can be very useful in producing
turtle displays is that of creating patterns inside
subroutines. What this means is that you develop a
shape or pattern and write it so that it can be called as a
subroutine. This shape can be as simple or as
complicated as you like — as long as it can be produced
by the turtle routines.

Once you have created the subroutine, you can
make the turtle move across the screen, drawing the
shape at different orientations or even different sizes
as it goes. Because you can nest subroutines by having
GOSUBs within other GOSUBs, you can draw
patterns within patterns, so that a fairly
straightforward original design ends up by producing a
very detailed pattern on the screen.

The three programs on these two pages are all
related, being based on the same simple shape. The
first program produces just the shape. The second

program repeats the shape four times in a specific way,
and the third program repeats the whole of the shape
created by the second, again in a specific way.

To try out the first program, load routine blocks
A-D and F, key in the program and then add block M.
You can then adapt the main program as shown here.

How to repeat a simple shape

The first program draws the fundamental shape. It’s a
design like a games bat. The part of the program that
draws the bat is contained in a subroutine starting at
line 15000. It is now fairly straightforward to write
another subroutine that builds up a simple square
pattern using the previously created bat subroutine.
This gives you the second program. Finally, you can
write a third program that calls this new subroutine
several times to repeat the design. The result is a
complex new display.

SIMPLE TURTLE DESIGN

FIRST TURTLE PATTERN

L]
-

(=1=l~1d
nunnnm
ccC

[o=1-e 1. o)

OUNUNNUNNNNLOOEDD -
DOO00OOOWLOS
ADEDOMNDO - D@

[=-Tn-le~lieJanloeTon T TR TETY. TS
Lol [AU T =TT

ONULL W = SO WM D
Il =€ = I LN
O=ND oS

-: T e e ot e e e e ot ot e e e [
>
[~
=

-
-t
0
-

o

1,5
POKE S532890,4
GOTO 18630

ccc
[--1--1--1

MIoO OO0O=C
=1}
~

w

(]

(-]

@

()]
Il
[o
@ o
[pl=lg [=1=]

Iy

T
SUoNY VOOO OO0OW

PN N XM

we CC Mo
CRWRm =S L
wo o9

[~]
o0 Od
o0 o0
(-]

I =X =0 M= NN
w

D e e e e e o o e e e
DUNUNNNNNLIIRINN-D D DD
L e e e e R T
NI WP DD LI = C LD LIPS b D
HOXDONDT XDOT . OO
=1

—e-NE 00 —NE

ox0 -

=<
-t
]
(=5
[~
1]

< 0000000 LOODOLEONS
"

.

[b
m
>
-

ng shapes as subroutines
You can use subroutines to build up a library of shapes

for use in turtle graphics. By nesting the subroutines,

riti

A

o . . o]
=] o Bl — 0 O M~ WD
f:m =3 o — = = o~ N
= 4] M

ES &8 | (=

- = (=9 =4}

5 E B m — |

>3 9 SW | 8 8

o 7 |PE|El S8

o E S HG gl g =

g 8 Cllall 8§

= & w» Z & gl & < = o
gm - . R L M w
= .55 |4 285 88
28 ¢ |5 2l T Ooa o
= Q9 a2 0 moOow
SO a5 M [l <

~ L

o o

0 S .
] :]
R w 89 Eo
Y f=t w I EE FEE
[l .ﬂamm.nlsmlnu.
= B = B =] =
SWUDN ms.ﬁt@mﬁ&mm
e.U = EBMIONHOS
2% oW muaac-310311
® O o X v o =]
e et anup‘.l Ceze
= - Ceao.ﬂl c E
Dk, = BASE3TEE TS
=° SEE29QEE8E
= SPa.w.bs.mMeeOe
cs H v S eSS EE NG
s o HE Ny g8, "S g—E
s SRT ., treimsunsw
@ Mo Boagy eEs ¢8
5o BONy Eo88 852 85
o o 4 OhmmnD‘_....UO.lu
™ TPBHTHUrLsmLS

FINAL TURTLE PATTERN

4

KE 53288,

GOTO 160868

UB 23000

'g]
=]
Ll
@
w

QED

o &0

00 ONMDIw

B w30 Il

QO I HON | Lullade=
CLOCE - QCLOTEAX

COCOOOONOODONDOOODODD
DHAUMTINONHD=INIDHD =N TINDD
CO0OOOONOODONDOONOODD
SOOOODD-NNNNTIDININNIDINGD
e e o e o e v e e e e] e v] e e e O

l1ili

R A

te

TR

i
il

HIGH-RESOLUTION GRID

The two grids on this page allow you to work out
coordinates for use with the machine-code graphics
routines, and also enable you to work out row bit totals
for use with the define-character routine.

Character grid
You can use this grid to work out row bit totals for
inclusion with the define-character routine. Pencil in
your design and then add up the row totals.

Supeen gl SINGLE CHARACTER GRID
The main grid below shows the coordinates of points Bit values
that lie on the visible screen area. When you use the Orel ey
graphics routines, you are not limited to coordinates |Row bit fetalic ort CQUISE (60 v 00 NG T
within this range. Most of the routines will accept 0
parameter values that extend outside this area, either 1
positive or negative, as long as the total range of co-
ordinates does not exceed the Commodore’s integer 2
handling capacity. In reality, this restricts most co- 3
ordinates to a total range of about 32,000.
This capability means that you can produce designs 4
that are only partially on-screen. For example, if you 5
key in SYS E1,160,800,700 you will see a very shallow |
arc on the screen — the only visible part of a complete 6 '
circle which the computer has calculated. 7
Although invisible parts of displays are supported in
the computer’s memory, the scroll routine cannot be
used to move hidden parts of a display.
HIGH-RESOLUTION SCREEN GRID
cwenNeresness RS RINEE NSRS RTILRNRERRA
; o
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192

ERROR TRAPPING

Even if you are an experienced micro user, it is easy to
make mistakes when keying in programs. If you have
been very careful (and lucky) when using this book, you
might have managed to key in all the machine-code
DATA numbers without making any mistakes.
However, the chances are that one or two simple errors
will have crept into your copy of the routines. Depend-
ing on where these errors occur, you may not experience
any problems for quite a time. Then some time later,
you will call on a routine which you have not previously
used, and an error in it will cause your program to go
wrong in some way—perhaps giving a different problem
every time you run it. There are no error reports gener-
ated when using machine code, so how do you know
where you have gone wrong?

The Checksum program
If you transfer information from one medium to
another, you need some way of checking that the trans-
fer has been accurate. A simple but effective way of
doing this with numerical information is to add together
all the numbers to produce a “checksum”. You can then
compare the two checksums—before and after transfer.
The program at the bottom of this page lets you check
your routines using this method. It will go to a specified
machine-code routine and add together all the DATA
numbers it contains to produce a checksum which it
then compares with its own built-in list.

How to use the Checksum program

To use this program, you must first enter block A and
run it, and then merge the Checksum program with this
block. Now if you run the combined program and block
A, it will ask you the question A-L?, requesting you to
name a routine. If you enter A, and should confirm that
block A is correct by displaying DATA OK. If block A is
incorrect, it should display DATA ERROR. Any other
message output or printed by BASIC as a result of an
error indicates that one or more of the DATA state-
ments in block A is at fault. You now need to find and
correct the error. When your first block of machine code
passes the checksum test, it is then safe to go on and use
the program to test the other blocks. You must check
block A first because the Checksum program uses the
restore routine. You will also find the merge routine
useful for adding the Checksum program onto the end
of the routines you want to test.

Having combined and tested block A with the
program, you can then test any other block with it. Just
load the block or blocks you want to test, and then merge
the Checksum listing with them. Any block which is
incorrect will give a DATA ERROR report when the
Checksum tests it. The chances of an incorrect listing

coincidentally producing the correct checksum total is
negligible, so, if you do geta DATA ERROR message, it
1s almost certain that your listing is not correct.

How to avoid errors

When you are keying in the routines, it is a good idea to
SAVE each routine before you run it for the first time,
rather than testing it first and then storing it. Because
the routines produce machine code, errors can make
them disrupt themselves. For example, this may lead to
a listing becoming corrupted by other characters that
are thrown up on the screen, locking the computer into a
state that only disconnection will break.

Secondly, if you key in the routines but they seem to
be ineffective, try jumping over the first line of the first
routine with GOTO. The routines may be ignored if
their first DATA number accidentally happens to be in
memory already.

CHECKSUM PROGRAM

|

=i

Dh

QOO0 Div=)
t

e]
s =)

$>"L'" THEN 18868

O ——

=
0L 0

L
LOLITI~
sy o
2N OOS—-DDT
WOWRNOODOWw
[
R <] ol el ol
o DL~
~ DD~
Q= D
[0 e o e e
[~ R o
e e e
[elesloali)
Lafab-2
[BN
[elasla

(]
=
|.Q
s
GO)
(4]
(=]
=
(=]
L=+ = +}

-
'
OO] e 00 e OO e || ot || o LAVCD DD D

=
&L 0
Tier D
w9
Q=G HONODO=IE FMREE
)
o o:
11 &2 || & || D= PIEOIFIFI-C
W DLW LILIILITILI=It QP

[~}
W
@O
w0

o -
@D
W W
ORODODODOD || P~
e
o
™

1 e e e e e e e e e | 55 € €0 50 0 D D D D D)
@

OODOEEEOOOOEEODOOEomD
000010V U fa PO b= O 00 T U1 fa G P e O
COOEOOEO00OO0000OODDD
OO Or O OO0 OO D -
NoNSISIDIS IO XXX | T
NENENESNENCUNE DPDDIIODCE
1 &[] DD S MmE =

i
i
i
i
i
i
i
i
i
i
oL
1:
i
1
i
i
i
i
i
1
i

R FILARICONS FILARD QCUCDk~

LALLM k=D k=D LIS
LWLDALDLDLDOD:
-
@
W
R
- e
o m
NO DHOnHS
-
=)
WO onowo o

| k)
m
-
2
<

-
.
@
r
-
(o]
1

Gosue 1
=342

==RO D O=OCOrOraoror

—HOZX=-CLENCOCEH
==l PLDLDLD

Ok || =D || f=Cmk

I N || SN || D

e LI P LMD

Wy PakR RO

oo oo oWwD

05
=3
0S
=3
0s
=5
05
=5
03
0
RI
RI
01
ES
=9
=T

COO0OOOOOOO0000000D
+

[0 e o e e o e o o e e o e e e e o e e [
MOQOQOOOOOODODODODE
DWW WL PIFIPITIPITIPIPILS D
D00 = LN LI =9 40 00 =1 LN fa LOP I b=

ROUTINES CHECKLIST

The main table on these two pages gives you details of all
the machine-code graphics routines that are featured in
this book. Block M, the turtle graphics routine block,
does not appear here because it only uses ordinary
BASIC. The chart enables you to look up the
information you need to use the machine-code routines
in your own programs.

Syntax

When you are using any routine, it is important to use
the correct syntax. Each routine is called from a main
BASIC program by the command SYS, followed by the

variable which identifies the routine (B1, H2 and so on)
and then by parameters, if the routine requires them.
Remember to separate all this information by commas
as shown in the chart.

Because the routines are activated by variables which
stand for five-figure memory addresses, it is very
important that you do not use the same variables to
represent any other values in your programs. For
example, calling two sets of coordinates Al,B1 and
A2,B2 could make a program crash. This is because
these variables are already used by routine blocks A and
B to signify the addresses of four routines.

Block Page Title Syntax Parameters

A 11 High-resolution SYS Al None

A 11 Low-resolution SYS A2 None

A 11 Restore SYS A3,N N program line number

A 11 Rescue SYS 49271 None

A 11 Merge SYS 49297, AS [,8] AS filename

B 13 Clear-and-color SYSBLC G color code

B 13 Block-color SYS B2,X,Y,C X,Y block coordinates
C color code

G 15 Plot SYS C1,X.Y X,Y point coordinates

D 17 Draw SYS DLX.Y X,Y line-end coordinates

E 21 Circle SYS ELX,Y,R X,Y center coordinates
R radius length

E 21 Arc SYS E2,X,Y,R,P,Q X,Y center coordinates
R radius length
P starting angle
Q finishing angle

F 25 Erase SYS FILN N off/on

G 27 Flood-fill SYS GLXY X,Y start coordinates

H 31 ROM-copy SYS H1 None

H 31 Text SYS H2,X,Y,AS X,Y start coordinates
A$ text

I 33 Define-character SYS 11,C,X1-X8 C character code

X1-X8 row bit totals

i 35 Pattern-fill SYS JL.X.Y.C, X,Y start coordinates
& filling character code
K 39 Block-copy SYS KLX,Y,A,B X,Y origin block
coordinates
A,B destination block
coordinates
L 43 Scroll SYS L1.D.C; D direction
G color code

e S

Parameters

The chart shows what parameters need to be specified
for each routine, and what the range limits for each
parameter are. Routines which perform specific
operations like switching from low to high resolution do
not require any parameters.

Parameter ranges

The parameter ranges in the chart indicate values that
will give results fully or partially-on screen. Some of the
routines actually accept parameters that give results
completely off the screen. Although in these cases you
cannot see the resulting display, the computer will
remember the “invisible” coordinates. This means that
in turtle graphics, for example, a program may produce

E————— e e

a display that disappears off the screen, to reappear
again later.

When you use the machine-code graphics routines,
the screen acts as a window which allows you to look at
just a very small part of the theoretical display area.
Most of the routines which actually produce graphics
will accept any coordinates that lie within the Commo-
dore’s integer handling range. That means that the
coordinates can reach nearly 32,000. The total display
areais therefore about 100 screens wide and 160 screens
deep! Only one sixteen-thousandth of this is visible
screen.

Address
The start address for each routine shows where its
machine code begins in memory. Each start address is

Parameter Ranges Address Checksum represented by a variable. Start address 49273, for
example, which is the beginning of the machine-code
— 49273 22319 routine which makes the screen switch to high
= 49254 resolution, is represented by Al. To activate the high-
— b 49209 resolution routine, you could either type SYS Al or SYS
y line number 49273,
= 49271
any current filename 49297 Checksum
0-255 49559 34257 These figures are the ones used by the Checksum
0-319 and 0-199 49634 program on page 61 to test if _the total of a _roqtine’s
0-255 DATA numbers, as keyed in, is correct. This gives a
simple way of checking a listing that uses machine-code
0-319 and 0-199 49712 8606 routines. When machine-code instructions are being
0-319 and 0-199 49792 46426 carried out, faults will not generate BASIC error
0-319 and 0-199 50202 39981 reports, making it difficult to track down bugs. Full
any value details appear on page 61.
0-319 and 0-199 50225 COMMODORE COLOR CODES
any value Combinations of foreground and background colors are coded by a
any value single number from 0 to 255. To select any foreground and
any value background color combination, add together the two numbers
0=off, 1=o0n 50560 2067 shown. The resulting color code can then be used with the clear-
2 and-color, block-color or scroll routines.
0-319 and 0-199 50694 47612
== 51104 Color As foreground As background
0-319 and 0-199 51167 26764 Black 0 0
any text White 16 1
0-255 51328 6326 Red 32 2
0-255 each Cyan 48 3
0-319 and 0-199 51394 27057 ope = :
0-255 reen 80 5
Blue 96 6
0-319 and 0-199 51616 8484 Yellow 112 7
Orange 128 8
0-319 and 0-199 Brown 144 9
Light red 160 10
1=left, O=right 51689 65736 Dark gray 176 11
0-255 Medium gray 192 12
Light green 208 13
Light blue 224 14

Light gray 240 15

R A T s et

4 e

Main entries are given in
bold type.

Address 63
Arc routine 20-1
BASIC, speeding up 6
Blank-color scrolling 43
Block-color routine
12-13
Block-copy routine
38-39
Blocks, routine
. re-loading 9
storing 9
titles 7

Characters, high-
resolution 32-3, 60
Checksum program 61,
63
Circles, Graphics
Editor 47
routine 20-1
Clear-and-color routine
12-13
Closed shapes
programs, 54-5
Color, block-color
routine 12-13
clear-and-color
routine 12-13
codes 12,63
filling shapes 26-9
Graphics Editor 46-7
high-resolution 12-13
random block-
color 12-13
Color Chart program -
32-3
Copying 38-40
Cross-hatching 36
Cursors, Graphics
Editor 44
Define-character routine
32-3
Diamond Copier
program 38
Diamond program 18
Displays, scrolling 42-3
Double Recursion
program 23

Draw routine 16-17
Erase routine 24-5
Errors, avoiding 61
Checksum
program 61, 63
programming
troubleshooting 9

Filenames 49
Filling, patterns 34-7
shapes 26-9
Flight Simulator program
30-1
Flood-fill routine 26-7
Graphics Editor 44-9
circles 47
color 46-7
commands 44-5
filenames 49
flood-filling 44-5
lines 44-5
on-screen grid 46-7
pattern-filling 47
points 44-5
storing displays 48-9
text 47
Grids, high-
resolution 60
on-screen 46-7

High-resolution 8, 9
characters 32-3
color 12-13

grid 60

routine 11

text 30-1

Jungle program 28-9
Keying in programs 8-9

Landscapes 18-19
Line Landscape
program 18-19
Line numbers 9
Line Web program 16
Lines, drawing 16-17

landscapes 18-19
radiating patterns 18
Loading 9

LOGO 50
Low-resolution
routine 11

Machine code,

definition

linking Basic with 6-7

routines

checklist 62-3
Merge routine 11
Multi-shape

programs 52-3

Overprinted Circle
program. 24-5
Overprinting 24-5

Parameters 7
checklist 63
Pattern-filled Map
program 34-5
Pattern-filling,
Graphics Editor 47
Patterns, copying 35
cross-hatching 36
defining 35

filling 34-7

turtle graphics 58-9
Planet Copier

program 39
Planets program 15
Plot routine 14-15
Point Star program 14
Points, plotting 14-15

‘Polygon program 54

Polyspiral program 56-7
Programs,errors 9
keying in 8-9

line numbers 9
merging 11
troubleshooting 9
Puzzle program 40-1,
46-7

Radiating patterns 18
Random block-color
12-13
Random line
program 17
Random numbers,
plotting with 15
Recursion, with
circles 22-3
Re-loading routines 9
Rescue routine 11

Restore routine 11
Retrieval 49
ROM-copy routine

30- 31

Rotating Squares
program 25
Routines, checklist 62-3
function

names 7

Screen grids, high-
resolution 60
Screen-scrolling 42-3
Seascape program 26-7
Shading, plot routine 14
Shapes, filling 26-9
repeating 58-9
turtle graphics 52-5
Spirals, turtle
graphics 56-7
Storing routines
Subroutines, pat-
tern 58,59
Syntax 7
checklist 62

9, 48-9

Telephone pro-
gram 20-1

Text, Graphics

Editor 47

high-resolution 30-1
routine 30-31

Turtle graphics 50-7
patterns 58-9
routines 50-1
shapes 52-5
spirals 56-7

Wall and Gate
program 36-7
Wrap-around
scrolling 42

Acknowledgments
Dorling Kindersley would
like to thank all those
who helped in the
preparation of this book
especially Hugh
Schermuly (design),
James Burnie and Roger
Cornes (program
checking), Fred Gill
(proofreading), and
Richard Bird (indexing).

R T s R R A T

The bestselling teach-yourself programming course now takes you
beyond BASIC to the world of advanced machine-code graphics.

Using a combination of simple BASIC programming and a
collection of tailor-made, ready-to-run machine-code routines, this
book shows you how to produce precision, high-resolution graphics
in afraction of the time they would take in BASIC alone. A keyboard-

driven graphics editor, a turtle graphics pattern generator, and a
wide variety of demonstration programs, will help you open up the
full potential of the Commodore 64 —without the need for any
knowledge of machine-code programming.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for the Commodore 64.

€6 Far better than anything else reviewed on these pages . . .
Outstandingly good 99
BIGK

€¢ As good as anything else that is available, and far
better than most 99
COMPUTING TODAY

€€ Excellent. .. Asaseries they could form the best ‘basic
infroduction’ to programming I've seen 99
POPULAR COMPUTING WEEKLY

Bl ==
B e I S e I e e e el
B e ey R e PR S R e R e 1 e S i e
AR EEeR RN ISBN 0-8L318-087-k
RS s T T TR
A = | S e TS e
EREEREEEE
1] 0 2 5 o O o O
EmEE
EE=

