Q(yl,eeug/wf

= PROGRAMMING SERIES

.r
aEzs

STEP-BY-STEP
PROGRAMMING

COMMODORE

12345

T PHILCORNES - g0 2%
SN 9

J ‘ ..

= PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

COMMODORE

THE DK SCREEN-SHOT PROGRAMMING SERIES
Never has there been a more urgent need for a series of well-produced,
straightforward, practical guides to learning to use a computer. It is in
response to this demand that The DK Screen-Shot Programming Series
has been created. It is a completely new concept in the field of
teach-yourself computing. And it is the first comprehensive library of
highly illustrated, machine-specific, step-by-step programming manuals.

BOOKS ABOUT THE COMMODORE 64
This is Book Two in & series of unigue step-by-step guides to
programming the Commodore 64, Together with its companion volumes,
it will build up into 2 self-contained teaching course that begins with the
basic principles of programming, and progresses — via more sophisti-
cated technigues and routines — to an advanced level.
ALSO AVAILABLE IN THIS SERIES
Step-by-Step Programming for the ZX Spectrum
tep-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lie
Step-by-Step Programming for the IBM PCjr

PHIL CORNES
After taking a B.A, in Mathematics and Computing, Phil Cornes has been
involved in system development of computer-based education at British
Telecom's National Training College. He has been a part-time technical
author since 1978, and has become a regular contributor to personal
compliter magazines such as Personal Computer World, Computing
Today and Electronics Today International. He has written a book and a
large number of articles on programming and using the Commodore 64.

~ PROGRAMMING SERIES

STEP-BY-

P,

PROGRAMMING

EEEEENEEEEEE

o R I

|

PHIL CORNES

GUILD PUBLISHING LONDON

HEEEERENN
'll

[T 1]

[18
i

0 — 12 | —
CONTENTS o
I [EE—
THE COMMODORE 64
[s)] e—
INSIDE THE COMPUTER |

COMPUTER
CALCULATIONS

—
| | 20 | ¥]

="
WRITING YOUR
FIRST PROGRAM

i 22| 3
DISPLAYING
PROGRAM LISTINGS

[e s st me o m
e s e e 30 e R o e

This edition published 1984 by Book Club

Associates by arrangement with Dorling
Kindersley Limited, 9 Henrietta Street,
Covent Garden, London WCZ2E 8PS.

The term Commodore is a trade mark of
Commodore Business Machines, Inc.

Company (Woking) Limited, Woking,

Surrey, England

Repmdumion by Reprocolor Llovet
2 ona.

me

| 14
==
— STARTING OFF
[110 [1
|
THE COMMODORE 16 -
KEYBOARD KEYINGINCOLOR | i 2+
e e sl CORRECTING
MISTAKES
The DK Screen-Shot Programming All rights reserved. No part of this —
Series was conceived, edited and publicaﬁgn may be reprod ", storéd 26
designed by Dorling Kindersl in a retrieval system, or
Limited, 9 Henrietta Street, Covem any form or by any means, elemmnrc,
‘Garden, London WCZ2E 8PS. Ymg,: : _‘l& com PUTER
or otherwise, , without the prior written CONVERSATIONS
Designer Hugh Schermuly permission of the copyright owner.
Photography Vincent Oliver
Series Editor David Burnie British Library Cataloguing o 4E'j]
Series Art Editor Peter Luff in Publication Data
Managing Editor Alan Buckingham Gomies il WRITING
First published in Great Britain in 1984 Siep bysiep progiming for he PROGRAM LOOPS
by Dorling Kindersley Limited ! s ;
9 Henrietta Street, Covent Garcl’en, 1. Commodore 64 (Computer)
London WCZE 8PS. 1. Title ';
Copyright © 1984 by Dorling 001.64°2 QA76.8.C64 g
Kindersley Limited, London ISBN 0-86318-040-X E
Typesetting by The Letter Box :
4
L

['"“",IL&[* |l Till | | 56 | |
DECISION-POINT | PROGRAMMING WITH | HINTS AND TIPS
_ PROGRAMMING | SPRITES || |58 []
[=] | HOW TO KEEP YOUR
| POKE AND PEEK PROGRAMS
i) [m el
L > —— SPRITE GRIDS
| KEYBOARDGRAPHICS S —
| —] | e
SOUND AND SPECIAL E= FE
EFFECTS
:Eﬁ“:“ B | ‘l‘ll EEm
‘ NOTES, CHORDS AND || : &=
I MUSIc =
| fﬂ] — H I EESEmE====s
UNPREDICTABLE |
' - PROEAMS SCREEN MEMORY
ANIMATION WRITING .
o SUBROUTINES | | 611 '
1 | 40 | ASCII
USING A DATA BANK 1 || CHARACTER SET
[- e - : =
[| 42|] | [| Iin =]
USING A DATA BANK 2 | GLOSSARY
— 7] || | — o+) =
INTRODUCING SPRITES INDEX

THE
COMMODORE 64

On/Off switch When the Power socket The
o C

is hed on, dore is provided

The Commodore 64 is an extremely versatile computer
that provides many powerful facilities. These include
sound synthesis on three channels, low- and high-
resolution graphics in 16 colors, and high-resolution
animation using small mobile object blocks called
sprites. Once you have mastered the Commodore’s
simple dialect of the BASIC programming language,
you will find that your Commodore will provide you
with many hours of interest and entertainment.

Sockets and connectors

If you face the Commodore’s keyboard, the sockets that
enable you to connect it to other devices lie on the right-
hand side and along the back panel of the computer.
Turn the computer around and take a look at the back
panel. From left to right the Commodore has a number
of input and output sockets. First is the cartridge slot,
into which pre-programmed Read Only Memory
(ROM) program cartridges can be inserted. Cartridges
are available for a range of uses like games, utilities and
extra programming languages. The next three sockets
are concerned with feeding television picture signals
out to the screen. The first of these allows adjustment of
the television channel used by the Commodore. The
second is the UHF socket which provides a signal which
can be fed straight into your television’s aerial socket. If
you have a Commodore video monitor, you will need to
use the third socket which outputs an audio and color
video signal. (All the photographs in this book were
taken using displays produced on a Commodore
monitor.)

Next in line is the serial port through which the
Commodore printer and the Commodore disk drive
unit are connected. This is followed by the cassette
interface which is used to link up the special
Commodore C2N digital cassette recorder. Finally, on
the right is the user port. This is used mainly for
interface circuits such as a modem (modulator-
demodulator for telephone transmissions) or an RS232
communications cartridge.

The list of connectors does not stop there. If you turn
the computer around and look at the right-hand side
panel you will see a switch and some more connecting
sockets. Working from the front to the back, the first
two connectors are the games or control ports. These
accept analog or non-digital inputs from devices such as
light pens, games paddles and joysticks. The signals are
then converted into digital form to control programs.
Next to the control ports is the main power on/off
switch, and finally comes the power socket itself.

the red power light on the with a transformer that
keyboard indicates that it produces a low-voltage
is ready for use. supply connected

through this socket.

Control ports The two
control ports can each
accept a light pen, games
paddle or joystick.

A

f——c ===

UHF socket This feeds
the Commodore’s sound
and picture signals into a
television aerial socket.

Audio/Video port A
color video monitor can
be connected through
this socket, which
provides high-quality

Serial port Interfaces for
the standard serial printer
and Commodore 1541
disk drive are provided
via this socket.

Cartridge slot The
Commodore can handle
several extra languages
and utility programs in
Read Only Memory
(ROM) cartridges. These
are inserted into this slot.

sound and picture

signals.

Channel selector This

Cassette interface This
i

User port The
C

the G

dore can be used

allows some ad

to be made to the
television channel used
by the computer.
Normally no adjustment
of this control is needed.

to the special C2N
cassette recorder for
program and data file
storage.

to control various
peripherals through the
user port including a
Centronics printer and
other parallel devices.

vowme W

RESTORE

INST
DEL

RETURN

——-— = _w =R e ———

INSIDE THE
- COMPUTER

The Commodore 64 is constructed on two circuit
boards. The first carries the keyboard (see pages 10—
11), while the second is the main board, which covers
the whole floor of the case. The top shell of the case is
designed to be removable, allowing the main board to
be examined in detail.

The board contains the same basic elements which
every personal computer uses — a miCroprocessor,
various types of memory and input/output chips. The
microprocessor (CPU) chip does all the computer’s
calculations and controls the activities of the rest of the
machine. The Commodore 64 uses a type 6510 CPU.
The computer’s memory is divided into two main types
— Random Access Memory (RAM) and Read Only
Memory (ROM). RAM is also called “volatile memory™
because its contents are lost when the power is
interrupted. RAM is a temporary memory store;
information is held there only while the power is on.
ROM on the other hand is a permanent memory. The
instructions it contains are not erased by the computer
being turned off.

BASIC and machine code

The computer’s working languages are composed
entirely of electronic pulses. The counting system that
the computer’s circuits use is based on only two
numbers, 0 and 1, where 0 is represented by “off” (no
pulse) and 1 by “on” (pulse present). This system is
called binary code. In common with most personal
computers, the Commodore deals with binary data in
groups of eight binary digits (bits) at a time. Each group
of eight bits (a bit is a single 0 or 1) is called a “byte”.
The data in each byte of memory represent a single
character or symbol on the keyboard. The Commodore
64 contains 64K of RAM and 16K of ROM. The “K”
stands for kilobyte (1IK=1024 bytes).

The Commodore is most easily programmed with the
“high-level” language BASIC. The BASIC on the
Commodore is fairly compact, and it occupies only 8K
of ROM. This means that some of the facilities of the
machine have to be accessed in a fairly general way
instead of by using specific BASIC keywords. Before
the computer can act on the instructions you give it in
BASIC it must first translate them into machine code,
the language that the CPU understands. BASIC is
therefore slower than machine code but has the
advantage of being much easier to understand. When
the computer is switched on, it automatically selects the
program in the BASIC ROM. This program is called
the BASIC interpreter.

The microchip
command chain All
the chips within the
Commodore form an
electronic chain of
command, with the
CPU performing all of
the executive tasks.
The rest of the chips,
including the RAMs

Keyboard/user port
chips The Commodore
uses two 6526 Complex
Interface Adapter (CIA)
parallel control chips to
interface the keyboard to
the computer and to
provide user port
facilities.

Random Access
Memory (RAM) Eight
RAM chips provide 64K
of storage for all the
programming
information that the
computer is given after
being switched on.

and ROMs, act as
temporary or
permanent
information storage
systems. These supply
the CPU with the
instructions it needs to
carry out the
computer’s functions.

BASIC and KERNAL
ROMs The BASIC
ROM contains the
instructions necessary to
turn programs into a
form that the computer’s
most important chip, the
CPU, can understand.
The KERNAL ROM
provides instructions for
communication with
peripherals.

Video Interface Circuit
(VIC) The VIC chip
controls all the
Commodore’s low- and
high-resolution graphics,
including color and
sprites.

Central Processing Unit

(CPU) The executive

part of the computer.

This microprocessor

carries out all the

calculations and controls Sound Interface Device

theactivities of the rest of (SID) The SID chip

the computer, using provides a complete

information and three-channel sound Phase Alternation Line
programs contained in synthesizer with sound (PAL) encoder This

both ROM and RAM. envelope control and converts the stream of
four separate sound data produced by the
waveforms. computer into a high-
frequency signal that can
be fed into a television
set.

Power socket This is the
* Commodore’s low-
voltage input point.

Power supply This part
of the computer converts
the low-voltage
alternating current (AC)
Voltage regulator This coming into the computer
prevents changes in the from the transformer
power supply voltage into direct current (DC)
disrupting the activities which can be used by the
of the computer. ‘computer’s circuitry.

T o [N, T

THE
COMMODORE
KEYBOARD

The Commodore has a high-quality keyboard which is
equally suitable for one-finger programming or fast
touch-typing. It looks very similar to a typewriter
keyboard, but the central block of ordinary letter and
number keys is surrounded by a number of extra keys
not found on a typewriter. The keys on the board can be
split by function into three groups — the central block
with numbers and letters on them, the surrounding
dark-coloured keys, and the four light-colored keys to
the right of the main block.

Character keys

When one of the central block of keys is pressed it
produces a character on the screen. You can use these
keys to type in words that the computer will recognize
as commands, or information that you want the
computer to use while it is running a program. You will
notice that as well as having letters or numbers printed
on them, these keys also have symbols or words printed
on their front faces. The symbols are a set of graphics
characters that can be made to appear on the screen,
taking the place of the letters. The number keys control
the colors, and can be used to change the colors of words
and graphics as you type. Full descriptions of how to
use these graphics characters and color controls are
given later in this book.

Cursor and editing keys

On the right-hand side of the main block of keys there
are four special keys that control the movement of the
screen cursor and allow editing. The Commodore
enables programs to be edited and corrected in a very
flexible way. Any lines of a program to be edited or
corrected are first listed on the screen, and then picked
out by using the two keys labeled CRSR, which are in
the bottom right-hand corner of the keyboard. The
INST/DEL (INSerT/DELete) key, at the top right-
hand corner of the keyboard, can then be used to insert
and delete characters. The CLR/HOME key clears the
screen and moves the cursor to the top left corner.

Function keys

If you press one of the four light brown keys to the right
of the main block nothing appears to happen. This is
because the Commodore function keys are designed to
be used from within a program, and perform no action
under normal circumstances.

RUN/STOP This key stops a program
that has been set running, and shows
where the program has been stopped.

CTRL This key has a similar function to
the Commodore key; it allows access to
the eight colors marked on the number
keys 1-8. It can also be used with the 9
and 0 keys to produce “reversed”
characters.

NUN SHIFT
sTop LOCK

<« SHIET

Commodore key The main function of
this key is to allow access (with the
number keys 1-8) to the second set of
colors available on the Commodore. It is
used with letter keys to produce any of a
set of graphics characters on the screen.

— - __ ~ —_ afi renceasees o

Number keys As well as producing the
numbers 0-9, these keys can also be used
in conjunction with the CTRL and
Commodore keys to give access to any of
16 colors.

RETURN The Commeodore will not
respond to most commands unless they
are followed by pressing this key. It is
roughly equivalent to a typewriter’s
carriage return.

RESTORE When used with the RUN/
STOP key, this resets the computer to
produce a clear screen.

CLR/HOME This is one of the
Commodore’s four cursor control keys.
Pressing it on its own will make the cursor
home to the top left corner of the screen.
Pressing this key at the same time as the
SHIFT key gives a method of clearing the
screen from the keyboard.

INST/DEL This key is used for program
editing. On its own it backspaces the
cursor and deletes characters on the
screen. Used with the SHIFT key it has
the opposite effect and opens up a gap in
a line and inserts spaces.

I

Space bar This works exactly like the
space bar on an ordinary typewriter.

SHIFT and SHIFT LOCK

These keys allow access to a set of
graphics characters on the letter keys,
and, when used in combination with the
Commodore key, will change a display
from one character set to the other.

Function keys These four keys can be
used with the SHIFT key to provide eight
key combinations that can be detected
within a program and used to provide
controlled functions.

Cursor control keys These two keys,
used in conjunction with the SHIFT key,
allow the cursor to be moved in any
direction around the screen. This facility
is needed when you are editing parts of a
program.

] =
SETTING UP

Setting up the Commodore is a two-part operation.
First, you need to connect the computer up to its
peripherals, and then you need to adjust your television
or monitor to get the best results on the screen. The first
part is easy — the second can take a little longer.

The system as supplied comprises the main keyboard
unit, which also contains all of the computer’s
electronics, a power supply transformer and an aerial
lead to connect the computer to a television set.

The power supply transformer has two leads. The
DIN plug should be connected with the computer
power socket which is on the right-hand side of the case.
The other lead is the power lead which should be
plugged into a wall socket. Now, if you are using a
television, unplug the aerial lead and replace it with the
Commodore television lead. The other end of this
should be plugged into the UHF TV socket on the
computer’s rear panel. If you are using a Commodore
monitor, connect this through the audio/video port.

When you switch on the computer at the power
switch, the red power indicator light at the top right of
the keyboard should come on.

If you are using a television, switch on and select a
spare channel. (It helps if you can keep a channel
permanently allocated to the computer.)

Tuning in

When the computer is switched on, it produces a screen
signal that you should be able to receive on your
television set. After some experimentation with the
tuning controls, you should see this display — or one
similar — on your screen:

COMMODORE SCREEN DISPLAY

If you can’t get this display at all, you probably have not
connected the computer up properly. Check all the
leads and connections again.

If you are using a color television, you should seea color
display like the one shown. If the colors seem very
different, try fine-tuning the set. When a television is
slightly out of tune, it may produce a sharp black-and-
white picture with no indication that color signals are
being produced. If you have a monitor, it will be tuned
already. Adjustment of the controls will enable you to
select the best color settings.

Sometimes with a television, the display will not be
centered properly. You can correct this by using the
normal horizontal and vertical hold adjustment
controls. Remember also that the Commodore has no
built-in loudspeaker. Instead it uses the loudspeaker in
the television or monitor. When you come to writing
programs that produce sound, check that the volume
control on your set is turned up so that any sounds
which the computer produces are audible.

You will notice when you have set up the computer
that its initial display contains the line:

38911 BASIC BYTES FREE

This number tells you how much memory space there is
inside the computer that can be used to store BASIC
programs and the data that these programs operate on.
A byte of memory will hold one character — a letter or
symbol. As you begin programming, memory will start
being used (although the screen display will not register
this). Because your programs are only held in memory
for as long as the power is on, the computer will always
have the same number of bytes free every time you
switch on.

Commodore color combinations

In addition to the light and dark blue colors seen on the
initial display, the Commodore is capable of producing
many other colors. There are 16 colors in total, giving
you a very large number of color combinations that can
be displayed on the screen. As you will soon find, some
of these — particularly combinations of strong colors —
look very good. Combinations which use just the pale
colors often prove less successful. Some color
combinations may produce “fringing”, or shadowing
which makes any text on the screen difficult to read.
This is not a result of faulty tuning, and the best way to
getaround the problem is to change to other colors. The
color combinations in this book will give you an idea of
some colors which go together well.

Connecting peripherals

Peripherals are items of equipment such as cassette
recorders, disk drives and printers that you can connect
to your machine. Apart from display screens, there are
many different peripherals available for the

e R S (e

Commodore. The one you are likely to use most often is
a Commodore cassette recorder or Commodore disk
drive, both of which are used to store and play back
programs. Commodore produces cassette recorders and
disk drives that are specifically designed for use with
your computer. A disk drive performs just the same
function as a cassette recorder but, as well as saving and
loading programs faster, it has almost immediate access
to any program on a disk without having to carry outa
search from the beginning, as a cassette recorder does.
This reduction in access time is very useful if you want

to record and play back programs frequently. Using a
cassette recorder and a disk drive is covered in detail on
page 58.

In general, when you are making plug-socket
connections, never force a plug into a socket if you feel
any resistance. You may be trying to push a plug into
the wrong socket. If not, check that there is no debris
inside the socket, and make sure that none of the pins is
bent. When you want to disconnect a plug, never pull it
out by the lead — you may put enough strain on a wire or
connection inside the plug to break it.

Coloring listings and displays The
Commodore’s light and dark blue
screen display can be switched to
other colors either directly, using the
keyboard color Is, or indirectly,
by programming color changes.
Program listings will normally appear
in the two shades of blue.

In order to make the programs in
this book as clear as possible, the

p has been d to

show the listings in white on black (the
method for doing this is described on
page 32). This will have no effect on
your programs; you can enter them in
any color you want.

(i

STARTING OFF

Having set up your Commodore, you may already have
given in to the temptation to tap a few keys to see what
happens. If not, try it — you can’t do any damage. In
most cases, pressing a key causes the symbol on the key-
top to appear on the screen.

But having successfully got the computer to display
something, you will then want to know how to remove
it. The simplest method is to hold SHIFT and press
CLR (the second key from the right on the top row).
This erases anything on the screen. To reset the
computer so that any commands that you may have
given it are lost from its memory it is easy to turn the
computer off and on again. But be careful, because this
can irretrievably erase a carefully written program.

Another way of clearing the screen is to type PRINT
CHR$(147) then press the RETURN key.

Giving exactly the right instructions

It is important to remember that the computer will only
obey instructions that are exactly correct. If you type in
PRINT CHR$(147) and RETURN the screen will
clear. But if you type in, for example, PRINT
CHRS(147), you will just get an error message, one of
many that the computer has stored in its permanent
memory. This is because the computer does not
understand what you have typed. This is how the
computer responds to incorrect instructions:

INCORRECT COMMAND ERROR MESSAGES

PRINT CHRSC147)
2BAD SUBSCRIPT ERROR
READY .

PRNT CHRSC147)
ISYNTAX ERROR
READY .

So if during the following pages your computer refuses
to obey your instructions, make sure you have not given
it a command that it cannot recognize.

Starting to PRINT on the screen
Now clear the screen and type in this line:

PRINT 6

If you press the RETURN key after this, the number 6
will appear on the next line of the screen. The computer
has responded to your command. PRINT has nothing
to do with ink and paper — it just tells the computer to
display something on the television screen. Try using
the same command in the same way with other
numbers. It doesn’t matter whether you leave a space
between PRINT and the number for neatness, or not.
The computer can still understand the instruction:

PRINT WITH NUMBERS

But now clear the screen with SHIFT and CLR again
and then type in:

PRINT AGE

The computer responds by displaying a zero and not the
word AGE as you might have expected:

PRINT WITH WORDS

PRINT AGE
;]

READY .
|

What has happened is that the computer has been
hunting in its memory for a “variable” called AGE, and

because it cannot find one, it creates it and gives it the

. S PRINTING STRINGS
value zero. This value is what you then see PRINTed on
the screen.

What is a variable?
‘Without clearing the screen now type in the instruction
in a different way:

PRINT “AGE”

This time the computer makes the correct response — it
PRINTs AGE on the next line of the screen. You have
just discovered that to the computer AGE (on its own)
and “AGE” (inside quotation marks) mean two totally
different things. The computer treats any letter or
group of letters on their own as a variable. A variable is
simply a label identifying a number stored in the
computer’s memory.

Now you should be able to see why PRINT AGE had
unexpected results. The computer read AGE not as a The characters between the quotation marks make up a

el

X —=TX o

word but as a label for a slot in its memory. It looked for string. In the same way as a number is stored in the
a number called AGE, but because you haven’t used the computer and labeled by a numeric variable, a string is
computer’s memory yet, it couldn’t find one. stored and labeled by a string variable. String variables
always end in a dollar sign. A$, NUMBERS, PRICE$
Numeric and string variables and CITYS$ are all string variables. In the line:

To make PRINT AGE more comprehensible to the

computer; give AGE a value. Try this (press the LET CITY§="NEW YORK”

RETURN key at the end of each line): for example, CITY$ is a string variable and NEW
USING LET YORK is the string it labels. Clear the screen again and
then type the above line on the keyboard. If you type:
PRINT AGE PRINT CITY$
READY . the computer will then reveal the contents of the string
variable CITY$. As with numeric variables, the
PRINT “AGE™ command LET allows you to put a string into the

computer’s memory. Again, the computer will
remember only the last version of the string labeled by
a particular variable in its memory, so you can change
CITY$ as often as you like:

CHANGING A STRING

Now AGE is labeling something, the number 14. LET
is a command which gives a label and a value to a slot in
the memory. Every time you ask the computer to
PRINT AGE, it will display the last value entered.
“AGE” is called a string, while AGE, which always
represents a number, is called a numeric variable.

The computer displays everything put inside
quotation marks exactly as you type it. Try it. You can
use any characters on the keyboard — letters, numbers,
mathematical symbols and punctuation marks —as long
as the PRINT command doesn’t go over two lines:

WY GOX C® U0 FD xon -

m ToM MM oxm mm

KEYING IN COLOR

One of the Commodore 64’s outstanding features is its
ability to produce dazzling color. The machine can
display 16 colors and these can all be accessed directly
from the keyboard, that is, without a program being
needed. On these two pages, you will learn how to
change the color of text on the screen. As you will see,
there are quite a number of different ways of doing this.

When you switch the computer on, the display is blue
and light blue, or cyan. Many of the illustrations in this
book show white text on a black background, which is
easier to read than the normal display. You will see how
to produce white text in a moment, but if you also want
to change the screen to black, type in:

POKE 53280,0:POKE 53281,0

and then press RETURN. You will find out how these
commands work on pages 32-33.

Changing colors from the keyboard

If you look at the Commodore keyboard you will see 8
colors lettered onto the fronts of number keys 1 to 8.
These keys are used in conjunction with the CTRL key
(furthest left on the second row) to select 8 of the 16
available colors. Try a few simple exercises. Press and
hold the CTRL key, and then press the key marked
BLK (the 1 key). You will notice that the flashi

C= (the Commodore key) instead of CTRL. The next
screen shows some of these colors, and the table
following it shows you how to access them:

COMMODORE KEY COLORS

READY .
INT
o

COMMODORE TEXT COLORS

The text colors produced by the number keys are selected in
bination with the CTRL or Commodore (C=) keys.

cursor on the screen has changed to black and that
anything you now type also appears in black. Similarly,
if any other number key is pressed with the CTRL key
then the cursor color will change to that shown on the
number key. This screen shows a series of colors
selected with the CTRL key (the solid circle is selected
by pressing SHIFT and Q):

CTRL KEY COLORS

962008880 ssesss’

PRIN
2850008 008000008
READY.

PRINT “estensesesd
steen

sepRBaOTEDISSSS"
S0eSPSOSEEDNSS0RDSTORIS

The other colors that are available on the Commodore
are selected in the same way, but with the key marked

Number key Color produced

with CTRL key with C=key
1 Black Orange
2 White Brown
3 Red __ Lightred
4 Cyan Darkgray
5 Purple Medium gray
6 Green Lightgreen
7 Blue Lightblue
8 Yellow Light gray

Changing colors with control symbols

As well as using the Commodore’s colors directly, you
can also put special control symbols in a string using the
command LET. Doing this prevents the color changes
from occurring until you tell the computer to PRINT

COLOR CONTROL SYMBOLS

Each of the Commodore’s 16 colors can be keyed in as a string to
produce a color control symbol on the screen.

Color Selector Control Color Selector Control
bol

keys symbol keys sym|
Black CTRL1 _] Orange c=1 0
White CTRL2 E Brown C=2 4
Red CTRL3 € Lightred c=3 pd
Cyan CTRL4 N Dark gray C=4 o
Purple CTRLS & Mediumgray C=5 &
Green CTRL6 1 Lightgreen C=6]
Blue CTRL7 4= Light blue Cc=7 @

CTRL8 Light C=8

the string, a feature which can be used in a program.
This is what the process looks like on the screen:

COLORING WITH CONTROL SYMBOLS

LET C$="ACOHHODORE 64"
READY .

PRINT C$

COMMODORE B4

READY .

LET C$="[iCOMHODORE 64"

PRINT C$
COMMDDURE 64

READY .

LET C$="[XCOMMODORE 64'
READY .

PRINT CS

COMMODORE B4

READY .

The keys used to enter the special control symbols are
the same ones you have been using in the direct mode —
the number keys with CTRL or C=. But asyou can see,
what appears within the string with this method bears
no relation to the color chosen. Each control symbol is
just one of the many graphics characters that are
permanently programmed into the Commodore.
Although it is quite easy to key in color symbols,
copying them in from a listing can be more difficult. In
order to avoid any confusion with color changes in the
programs in this book, we shall often use a third way of
changing colors, one which uses numeric “character
codes”.

Changing colors with character codes

Inside the Commodore a special code called ASCII
(American Standard Code for Information
Interchange) is used to represent a set of characters that
can be PRINTed on the screen. So, for example, the
capital letter A in ASCII is represented by the number
65, B by the number 66 and so on. A complete list of
these codes is given on page 61. But as well as
representing all of the PRINTable characters, ASCII
codes also activate operations such as cursor movement,
line changing and character color controls. In

%

method that will be used most often in this book. If you
want to use other color control methods, the programs
will work just as well. Here are some CHR$ color
changes:

COLORING WITH CHR$ CODES

> ;"ABCDEFGHIJKLH"

PRINT CHRS(31);''0c00000000000"
- 2

PRINT CHRS(158) ; “HHHHHHHNHEHN""
HHHHHHHHHE

READY .

PRINT CHRS(156) ; "606606a606006000e
e e

READY .

Using CHRS in strings

In the same way as you can use LET to type color
control codes into a string, so you can also type in CHR$
codes. Again, they only work after PRINT:

COLORING WITH LET AND CHR$

+

T AS+BS
BSERSE0RNEROOD00D

READY .
n

Commodore BASIC there is a special keyword that can

ASCII COLOR CODES

be used with PRINT to produce a character or
operation if its ASCII code is given. This is CHRS. You
have come across this already in PRINT CHR$(147),

The CHR$ command can be used with ASCII codes directly or in
programs to produce the colors that are accessed with the CTRL or
Commodore keys.

which clears the screen.

As you can see from the table on this page, the ASCII
color codes do not form a continuous series. However,
despite these drawbacks, with CHRS$ there is less
chance of errors creeping into programs as you copy
them, because numbers are much easier to deal with
than graphics symbols. This is the text color-changing

N s e |

Color ASCII code Color ASCII code
Black CHR$(144) Orange CHR$(129)
White C (5) Brown CHR$(149)
Red CHR$(28) Lightred CHR$(150)
Cyan CHR$(159) Darkgray CHRS$(151)
Purple _ CHR$(156) __ Mediumgray CHR$(152)
Green CHR$(30) Light green CHR$(153

Blue CHR$(31) Light blue CHR$(154)
Yellow CHR$(158) Light gra CHRS$(155)
Reverseon CHR$(18) Reverse off CHR$(146)

COMPUTER CALCULATIONS

The PRINT command is not limited just to displaying
characters on the screen. You can also use it in
conjunction with the four mathematical functions —
addition, subtraction, multiplication and division — t0
perform calculations that you can follow on your
screen.

Let’s take addition first. The plus sign is on the fifth
key in from the right on the top row. To add two
numbers together, simply use PRINT followed by the
calculation. Subtraction is carried out in the same way.
The minus sign, which doubles as a hyphen when used
in text, is next to the plus key. The screen below shows
simple additions and subtractions, the bottom screen
shows multiplications and divisions:

ADDING AND SUBTRACTING

the right SHIFT key. In 24/8, for example, the left-
hand number is divided by the right-hand number. As
you can see in the second screen, when a division
produces a recurring result, as in 84/4.5, the computer
gives a nine-figure answer.

Calculating exponents and square roots

In addition to these familiar math functions, you can
multiply a figure by itself a specified number of times
(called exponentiation), and find out square roots. For
example, 2? is equivalent to 2 multiplied by itself three
times, in other words 8. The keyboard cannot produce
superscripts like the 3 in 23, 50 you have to use the up
arrow (1) symbol below the CLR key. 23 is keyed into
the computer as 2 1 3. Here are some examples:

RINT_63.8+55
P118.8

READY .
PRINT 566+155
721

READY .
PRINT_61.5-32.82
29.48

READY .
PRINT 1167-8622
545

READY .

[

IS

MULTIPLYING AND DIVIDING

]

Multiplication is carried out, not with the familiar X
but with an asterisk, *. The asterisk is just under the
minus key. Division uses the oblique stroke, /, next to

EXPONENTS

PRINT 213
8

READY .
PRINT 812
64

READY .
PRINT 225
32

READY .

PRINT 10186
1666688

READY.
u

The computer also allows you to find out the square root
of a number. This time there isn’t a single key that
carries out the calculation; instead you have to type in
the command like this:

PRINT SQR(2)

Make sure that you use the round brackets on the
number keys 8 and 9, and not the square brackets to the
left of the RETURN key. Because the brackets are the
upper of the two symbols on the key-tops the SHIFT
key must be pressed with the bracket keys in order to
select the upper characters. When you press RETURN
after keying in this line, the computer will PRINT out
the answer. However, if you try this command with a
minus number, the computer will produce an error
message to let you know that you have asked for a
mathematical impossibility.

How to specify a sequence of calculations
You can carry out a number of different calculations

using the same PRINT command. Try it with just
addition and subtraction first. You will discover that
the machine’s memory seems inexhaustible:

MULTIPLE CALCULATIONS

éi.887+0.089—L.2+37v5—1.2

PRINT 1288+3578-2 + a
RINT L2 3578-2500+9601

READY .
|

You can enter the figures for each calculation in any
order at all, and the result will be the same.

However, when you add multiplication and division
to the chain of calculations, apparently odd things may
happen. Look at the next screen, and try the
calculations for yourself. Say you want to add two
numbers together and divide the result by 2. The order
in which the numbers are added should not make any
difference to the result, but it appears to do so:

IFFERENT RESULTS FROM THE SAME CALCULATION

Pgl"f 3+4/2

READY .
PRINT 4+43/2
5.5

READY .
PRINT (3#4),2
3.5

READY..

PRINT (4+#3)/2
3.5

READY .
|

If 3+4 is exactly the same as 4+ 3, then why should the
subsequent division by 2 produce different answers?
The reason is that the computer does not necessarily
carry out calculations in the order you key them in on
the screen. It performs exponentiation first, then
multiplication and division, and finally addition and
subtraction. So in PRINT 3+4/2, 4 is divided by 2
before 3 is added to the result. Butin PRINT 4+3/2, 3

is divided by 2 before 4 is added to the result.

The problem you set the computer was to add two
numbers together and divide the result by 2. Neither of
these examples does this. But you can change the order
in which the computer performs calculations by using
pairs of round brackets again, as in the final two
examples on the screen. Here, the addition is carried
out first and then the result is divided by 2.

What are the computer’s limits?

There are limits to the numbers that the computer can
handle, and these limits take two forms — size and
accuracy. The size limitation is unlikely to
inconvenience you. Numbers with a decimal point can
have any value in the range 1x10* (1 followed by 38
zeros) to —1x 10% (—1 followed by 38 zeros). Integers
(whole numbers) can have any value from 32,767 to
—32,768.

The accuracy of these two types of numbers is also
handled in a slightly different way in each case.
Although numbers with decimals can be up to 1
followed by 38 zeros, the computer only memorizes the
first nine digits — the rest it sets at zero. This nine-figure
accuracy is adequate for most applications. Whole
numbers are stored with complete accuracy, so that
within its range the computer remembers whole
numbers with an accuracy better than 5 thousandths of
1 percent!

You may come across another of the computer’s
quirks when dealing with very big numbers. The
Commodore does not display them in the way in which
you would type them on the keyboard. For example,
PRINT 1000000000000 produces 1E+12 on the screen
(the E stands for exponent). This is simply a shorthand
way of displaying 1x10'? or 1 followed by 12 zeros, the
number you keyed in. Try entering some large numbers
and calculations using the PRINT command and see
the way the computer responds to them:

PRINTING LARGE NUMBERS

1000800800000

2E20%2E20
LOH ERROR

WRITING YOUR FIRST PROGRAM

So far, you have given your Commodore commands to
which it has responded immediately. These commands
have been very simple — in many cases it would have
been quicker not to have used the computer ar all.
However, commands on their own are not computer
programs. The computer reads each command, carries
it out, and then forgets it. A program on the other hand
is an orderly list of instructions which the computer can
store in its memory. It can carry them out as and when
you wish so that a long and complicated set of
instructions can be repeated at the touch of a button.

From single commands to program lines
Having found a task that you want your Commodore to
carry out, the next job is to write the program in steps
that the computer can understand. The Commodore,
like most personal computers, uses a computer
language called BASIC (Beginners’ All-purpose
Symbolic Instruction Code). BASIC is an example of a
high-level language, a language composed of words and
symbols with which you, the user, are already familiar.
It is, therefore, one of the easiest computer
programming languages to learn — as you are about to
find out!)

The essence of a program is that it is stored in the
computer’s memory. The commands that you have
keyed into your computer so far can be turned into
programs simply by adding line numbers. Here is a
simple six-line program:

SQUARE CALCULATION PROGRAM

TAB(8) ; X; TEXTS ;X122

As you key the program in, you will notice that the
commands are not now carried out as soon as you press
the RETURN key. Instead the program is safely stored
in the computer’s memory. It remains only to run it—by
typing RUN, and then RETURN - and to see what it
then produces on the screen.

How program lines are numbered

You may be wondering why the lines are numbered in
tens. When you are writing and testing programs, you
will frequently want to add extra lines. If the existing
lines are numbered 1, 2, 3, 4, and so on, there is
nowhere to put the new lines so that the computer
carries them out in the right order. In the previous
program, there is room to add extra lines numbered 0—
9, 11-19 and so on if necessary.

The program is still in memory, so to try the next one
switch off and on to reset the computer and erase the old
program. Then see what the following produces when
you key in the program and then type RUN:

SCREEN DISPLAY PROGRAM

©

TAB(2T
! TAB(I2) ;" DEMONSTRATI
AB(11);''SCREEN DIS

AR=HRRRRM
GRS
AT OB

SO CXSO0S
DVLT VVVTD
nxn

I e e 3
ZE—TDZTTT

DAt

i
2
3
3
g
B
7]
8!
[|

Taking it from the top, what is a REM? REM is short
for REMark. The computer doesn’t do anything with a
REM statement other than store it with the rest of the
program. But it’s a useful device for titling or labeling
programs or lines, so that you can find them quickly. As
your programming ability grows, you will find REM
lines very valuable for reminding you how a particular
program works. Other people will also be able to follow
your programs more easily if there are periodical REM
statements to explain what you are doing or how the
program is structured.

PRINT CHR$(147) you have come across already.
It’s a quick way of taking all the old unwanted
information off the screen. Lines 30 to 80 PRINT %
symbols in a frame around the text. They use the
command TAB to position the symbols along each line.
There are 40 character spaces per line, numbered from
0 to 39. TAB works just like the tab space on a
typewriter, so that PRINT TAB(9) means that
PRINTing will begin at position number 9, instead of at
the left-hand edge of the screen. Lines 50 and 60
PRINT the text itself in the middle of the frame.

Why punctuation is important
The next program uses the techniques demonstrated on
pages 18-19. Switch off the power again for a second or
two before keying it in:

CALCULATIONS PROGRAM

TAB(8);''1082,28.7+3 =";
TABCS); "108%3/5+32 =10

WO = DO fu)
e

43,3 = 14.3333333

3%18 =

B.25%4

179%9.8 = 1754.2
1602,28.7+3 = 37.912882
160%8/,5+32 = 212

In each of the six calculations, the screen shows the
calculation and the result. The PRINT command at the
beginning of each program line produces a space (blank
line) before the following calculation is displayed on the
next line down.

The semi-colon is very important. It ensures that the
result is shown on the same line as, and immediately
following, the details of the calculation. Try the same
program with a comma, a colon and nothing at all
instead of the semi-colon. You’'ll quickly realize how
important punctuation is in computer programming.
Correct spacing is also vital if you want to produce a
readable display when the computer PRINTs numbers
and strings following each other.

The following program, which again combines some
calculations with PRINT, shows how to plan a display.
It works out some conversions on screen:

—

CONVERSIONS PROGRAM

DO

‘;%pl CENMTIGRADE =";(38%3/5)+32;

>

*19 KILOMETERS ='";10%5,/8;" MILE

"1 VYEAR =";365%24%60%60;" SECO

M0 IEOTMO0 OO

g
2
S
Al

MXZR OO0 ADNURW- =

How to write a flowchart

If a program is to RUN properly, it must carry out the
correct operations in the right order. Drawing a
flowchart is a useful way of outlining the steps involved
in making the computer perform a task. This flowchart
shows how to plan a program to add up all the numbers
from 1 to 1000. Each shape is a separate operation, and
the arrows connecting the shapes show the path that the
program is to follow. NUMBER and TOTAL can be
entered in a program as numeric variables. This
program contains two features which you will
encounter later — a program “loop” and a program
“decision point”, which determines how many times
the loop will be carried out.

DRAWING A FLOWCHART

This chart shows all the steps needed
to program a computer to add together
all the numbers from 1 to 1000.

LET NUMBER=0

Terminator Signals beginning
and end of flowchart

LET NUMBER
=NUMBER+1

Instruction Identifies each

separate operation LED I_%TUAJ‘.‘;&WAL

Decision point Instructs
computer to make a decision

Input/Output Instructs
computer to take in or give out
information

R s Bl =] 2 |G Uk . A X
DISPLAYING PROGRAM LISTINGS

As you start writing programs, you will often want to
refer back to check on something or perhaps alter it in
some way. In order to do that, you must be able to see
the program on the screen again after it has been RUN.
The Commodore allows you to look at anything you
have stored in its memory. In this case, you want to look
at the “program listing” — the program as you typed it
in.

If you’ve just switched the computer on again after a
short break, type in a program from a previous page and
RUN it to make sure that it’'s OK. The BASIC
command LIST is used to call up your program onto
the screen from the part of the memory where it is
currently stored. Here it is used with the first program
on page 20. The program has been keyed in, and then
followed by LIST:

REPEATING A PROGRAM WITH LIST

SQUARED = **

H} TAB(8) ; X, TEXTS;X¢2
a

?QUQRED ="

T SOOI IR
"

I !BB(R);X;TEXTS;XYZ
T SRR FIOEEIEN

$
3
2

Every time you press the RETURN key after writing a
program line, the line is stored in the RAM. The
program LISTing is an exact copy of all the lines that
the RAM currently holds. The program is not
permanently transferred from the RAM to the screen
by LIST —it’s still held in the memory.

Moving around a LIST

LIST’s capabilities don’t end there. Key in the program
shown on the next screen. It incorporates a technique
that you haven’t covered yet, but that’s not important.
(Incidentally, if you want to RUN this program, press
the RETURN key after you type in your name.) Then,
to display the whole program listing again, type LIST.
Say you want to look at the first line of the program
only. You can do that by typing LIST 10. Perhaps you
only need to see a few lines of the whole program. Say
you want to look at lines 20 to 40. Try typing LIST 20—
40. You can see the results on the second screen:

“OPERATOR” PROGRAM

R
N SMER AB(S) ;" —mmmmmm e

AB(7);"HHAT IS YOUR NA
“COMHODORE 64 -

PARTIAL LISTING

IﬁBl?);"HHﬁT IS VYOUR Wi
Yﬂg(2);"COHHuDORE 64 —
AHES

LIST also lets you look at everything up to a certain line
number and everything from a certain line number to
the end of the program. Type in LIST -50 and LIST
20— and watch the effect in each case.

If you want to search a large block of program for a
particular line or lines the best way is to use LIST with
no line numbers which will cause the whole program to
“scroll” up the screen. The program will scroll rather
quickly but when you are approaching the section of the
listing containing the line you are trying to find you can
slow the scrolling down by pressing and holding the
CTRL key. This will allow you time to identify the
required line. When you have found it, the LIST
command can be aborted by pressing the STOP key.
You can then LIST the specific line so that it can be
examined. If necessary, it can then be edited using the
techniques that are explained on pages 24-25.

Using NEW to delete a program

Imagine you are starting a new program. Clear the
screen with SHIFT and CLR and then type in the first
line:

10 PRINT “SPACE PROBE PROGRAM”

and RUN it. Something odd happens. The last program
is still in memory. The computer carries out your new
line 10, but then goes on to RUN the old program,
because you haven’t erased it.

Up to now you have been switching the machine off
and on before entering a new program, but there are
better ways of getting rid of old programs. One of them
is to use the BASIC keyword NEW. Type NEW, press
the RETURN key, then re-key in the new line 10. This
time the old program appears to have gone for good. If
you try to LIST any program after NEW, you will find
that all its lines will have disappeared:

USING NEW

Before using NEW, you should always be quite sure
that you want to erase the program currently in
memory. There is a way for getting a program back
after NEW (this is shown on page 57), but it is quite a
cumbersome process. In addition, it only works if you
have not begun to key in another program.

RUNning a program segment

Programs may be RUN partially, either with RUN
followed by a line number, or with the command
GOTO. You may be having trouble getting part of a
program to RUN properly. In a short program, it’s just
as convenient to RUN the whole program as it is to
RUN only a part of it. But what if the troublesome part
that you want to experiment with and RUN over and
over again comes near the end of long program? It soon
becomes tiresome and time-wasting to have to watch
the first five minutes or so of the program unfold on the
screen every time you want to check on the suspect part
near the end. Suppose that in the square calculation

program on page 20, you only want to check that it %b
RUNSs from line 60 onward. Instead of using RUN, try
typing RUN 60 and GOTO 60 and see what happens:

PARTIALLY RUN PROGRAM

=

AW
OOO®
-
L

ﬁB(S);X;TEXTS;XfZ

3!
6

o0

GOTO 68
i]
EEQD\' -

GOTO is one of the simplest and most useful

commands in the BASIC language. Used on its own —

without a program line in front of it — GOTO makes the

computer go straight to a specified line and then RUN

the program from that point. But when GOTO is

actually part of a program, the results then become very

interesting. You can get an idea of what this command

can do simply by keying in two program lines:

10 PRINT “#”;

20GOTO 10

When you RUN it, your screen should look similar to

this, depending on which colors you have selected:
GOTO DISPLAY

To halt the program, press the STOP key. If you are
puzzled about why this display has appeared, don’t
worry. We will be returning to GOTO soon after.you
have mastered a few more BASIC keywords.

CORRECTING MISTAKES

Computer programming is one pastime in which
mistakes are unavoidable. Programs very rarely work
satisfactorily first time, and the longer they are, the
more difficult it is to get them right. It’s important to
realize that making mistakes and correcting them is
often an interesting part of program development. So,
don’t ignore, hide or gloss over your mistakes —they are
an invaluable aid to learning how to get things right.

For instance, in acomputer program you cannot alter
punctuation without completely changing the sense of
what you have written. As you saw on page 21, it will
have drastic results. To the computer, punctuation
means something very precise, and if you get it wrong,
a program may not work.

You can change a line in a program in two ways.
First, you can retype the line and press RETURN. The
new version automatically replaces the old one in the
computer’s memory. However, if there is very little
wrong with a line, especially if it is a long line, it’s a
waste of time to completely retype it. The alternative
way of making a change in this case is to use the cursor
keys to edit on screen.

Editing on the screen

Editing involves using the two CRSR keys with arrows
printed on them and the INST/DEL key. Here is a
program that needs editing:

PROGRAM BEFORE EDITING

L
£l
2
3
3
)
3
]

To correct the spelling in line 30 to read:
30 PRINT “ COMMODORE 64 ”

you could retype the line. But try using the screen
editor instead. First, type in the program and RUN it.
Now LIST the program on the screen. Pressing SHIFT
together with the CRSR key with the up and down
arrows on it will make the flashing cursor move up one

line. If you hold these two keys down the movement
will be repeated until the keys are released. If you press
the up/down CRSR key on its own without the SHIFT
key then the flashing cursor on the screen will move
down by one line. This function will also be repeated if
you continue to hold the key.

Using these facilities you should move the cursor on
the screen until it lies over the 3 of line 30 (the line that
needs changing). Now using the left/right CRSR key
move the flashing cursor along line 30 until it lies over
the letter R in COMMORODE. You can then just type
in the correct letters and they will automatically replace
the old letters on the screen. Then press RETURN.

You can also insert extra spaces into a line in order to
fit in missing letters. To open up an extra space in a line
you should press the SHIFT key together with the key
marked INST/DEL (INserT/DELete) at the top right
of the keyboard. In this case, the letters RODE and the
closing quote at the end of the line would move one
place to the right. You can then enter an extra letter. In
order to tell the Commodore that you have finished
editing a line you must press RETURN with the
flashing cursor standing somewhere on the edited line.
If you do not press RETURN then the computer will
not make any of your changes to the program:

PROGRAM DURING EDITING

L
1
3
s
R

You will frequently want to add lines to a program after
you have written the first draft. Perhaps you forgot to
put PRINT CHR$(147) at the beginning to start the
program off on a clear screen. You do not have to edit
any line numbers to do this. In the above program, for
example, you can enter the new first line by typing:

5 PRINT CHR$(147)

As the computer executes BASIC instructions in line
number order, this line will be carried out first.

First steps in bug-hunting
Mistakes in programs are called bugs, and the business
of getting rid of them, debugging. As you have
probably discovered, the Commodore helps a great deal
in debugging programs by examining what you type in
for errors in spelling and grammar or syntax, If it finds
any, it alerts you by displaying an error message on the
screen. You have already seen BAD SUBSCRIPT
ERROR and SYNTAX ERROR on page 14. In fact the
Commodore can display 28 different error messages.
You may have come across some of them if you have
made any mistakes in keying in any of the programs. In
most cases the error messages will even tell you which
lines of your program the errors are in. To correct an
error, LIST the appropriate part of the program and
edit it using the CRSR and INST/DEL keys.

Here are some programs which will not work. Try

BUGGED PROGRAM

DLW

RUNning them and then checking the error
they produce on the table that follows. You should then
be able to find out which line is causing the problem in
each of the programs:

COMMODORE ERROR MESSAGES

These are some error messages that you may encounter when writing
your first programs.

BUGGED PROGRAMS

Bad subscri;

Specifically, this refers to an “array element” number out of range, but
you may get this message with a simple typing mistake (see page 14).

Break
A program has been halted because you have pressed the RUN/STOP
key. The message will show where the program was interrupted.

Device not present

This will appear if you attempt to record or play back a program
without a tape der or disk drive d (see page 58). It will
also appear if the disk drive is not switched on!

Division by zero
You have asked the computer to perform a calculation which includes
division by zero —a mathematical impossibility.

Formula too complex
This will appear if you write a calculation which has too many brackets
for the computer to work with.

WOLWN ™

Illegal
A number that you have used with a function is outside a permitted
range — SQR with a minus number, for example.

NEXT without FOR

This will appear when a FOR ... NEXT program loop incorrectly uses
two variables instead of one, or when FOR ... NEXT loops are
incorrectly nested (see pages 28 and 56-57).

Overflow
A number produced by a calculation is too large (see page 19).

Redo from start

In a program using INPUT (see pages 26-27) you have keyed in a
character when the computer was instructed to expect a number. The
computer will now wait for a number.

String too long
A string that you have p d the comp to produce exceeds
its capacity of 255 characters.

?Syntax error
The computer cannot recognize what you have typed in.

Type mismatch
You have mixed up numbers and strings (see pages 14-15).

..
COMPUTER CONVERSATIONS

In all the programs you have written so far, you have
given the computer a set of instructions and then left it
to carry them out. Each program had just one outcome,
which was exactly the same every time the program was
RUN. But few real programs are like this; in a games
program, for example, the player feeds the computer
with new instructions every time the game RUNs. The
computer takes in these instructions during the course
of the game, changing the display in response to this
input of information.

Indeed, it is difficult to write a program of any
complexity without being able to interrupt the program
while it is RUNning to feed in new information.

The BASIC word INPUT is intended to deal with
this situation. It lets you carry on a conversation with
the computer — you “talk” to it through the keyboard
and it “talks” to you through the screen.

The INPUT command makes the computer
remember information typed in on the keyboard, and
gives it a name —a numeric variable if the information is
anumber, or a string variable if the information ismade
up of letters. Once the computer has labeled the
information, it can then be passed on to later parts of a
program. Here is an example of INPUT at work:

INPUT PROGRAM

r
0
-

NE00006s ~
STTVVV—~TT
<OWRRLDT

1
2
3
<4
5
&
v
R
]

Questions from your computer
The program instructs the computer to display the
question WHAT IS YOUR NAME. Line 30 then puts
a question mark on the screen to indicate that the
computer is waiting for new information from you.
There’s no need to hurry — there isn’t a time limit. The
computer will wait forever or until you type in the
information it needs, whichever comes first. Type in
your name and press the RETURN key.

The INPUT line of the program takes your name and

labels it with the string variable NAMES. The dollar
sign shows that the computer has been programmed to
expect one or more letters.

This program may look familiar to you. It’s similar to
one that was featured on page 22 as an example of how
to use LIST. If you compare it with that example, you
will notice that INPUT can do the jobs done by two
lines in the first INPUT program here. It can cause the
question to be PRINTed and halt the program to await
your response. A question mark is automatically
PRINTed by INPUT - you don’t have to type it in
yourself. The next two screens show how INPUT
works like PRINT. Note the semi-colon that appears
before NAMES in line 20:

USING INPUT TO PRINT A QUESTION

@
-

YOUR NAME";NAMES

OOOD ~
TXXTCET
==

S_INPUT PROGRAM:

Moo

>
SUVVT~D
<RRDRE!

L
2
<
3
B
Ri
[|

FPREHEOOEOEOOOOOOOONE
JAHES S _INPUT PROGRAM
FERIE O 00O

READY .
|

Using INPUT to gather numbers
You can also use INPUT to gather numbers as a
program is RUN. This has many practical applications.

Consider, for example, the problem of converting
lengths, sizes or weights from one unit of measurement
into another. The conversion is always the same — 2.54
centimeters to the inch, 0.3048 meters to the foot, 2.2
pounds to the kilogram and so on — but the numbers in
each new calculation are different. Here is a simple
conversion program for you to try out:

Now the output spreads out onto two lines. This is
because the screen width is divided into four invisible
zones or columns. Each of these zones is 10 characters
wide. Using commas in the PRINT statement to
separate items to be output causes each item to appear
starting in a new zone. Keying in the examples on the
next screen makes this clear:

CONVERSION PROGRAM

SCREEN PRINT ZONES

B PROGRAMNM"
ﬁ INY HILE!

L 1]
ILES = ";Hi .

T 1;2;3:4;:5;
RRINT 152:3:48
READY.

PRINT 1,2,3,4,5,6,7,8
i 2

5 5
READY .
|

The program asks you how many miles you want to
convert to kilometers, waits for your reply, does the
calculation and then displays the result on the screen.
Because the INPUT line is expecting a number in
response to the question it asks, the variable it produces
is a numeric one.

Output formatting
You may notice that the output from the above program
appears on a single line, with the various numbers and
strings PRINTed fairly close together.

Now try editing line 40 above to change the semi-
colons into commas:

More about TAB

Although the computer will automatically position
numbers and strings either close-spaced or in zones, you
are not limited to PRINTing them in this way. Indeed,
as you saw on page 20, you may start PRINTing
anywhere on a line using the BASIC function TAB.
This function is always followed by a number in
brackets which determines where an item will appear:

PRINT TAB(2);“TAB 2”

displays TAB 2 beginning 2 spaces in from the left.
Here are some more examples of TAB in use:

MODIFIED CONVERSION DISPLAY

USING TAB

CONVERSION PROGRAM
HOW MANY MILES? 12
HILES =

19.32 KILOHMETER

AR RS Wivgery, .

TAB(S);"TAB (50"
PR“‘TTﬁBB(S)'

READY .
T TABCL5);"TAB
PRIN 188

READY.

25);" @5
PRINT TAB(25);"TAB o e

READY.

PRINT TAB(30);"TAB TAB (20>

READY.
|

WRITING PROGRAM LOOPS

Computers are extremely good at doing lots of simple,
repetitive jobs very quickly. But if it is to do anything
involving repetition, a computer must have some way of
carrying out the same program or part of a program
more than once. On page 23 you came across a loop
using GOTO. Here it is in a slightly more complex loop
(line 10 simply sets up the colors):

NEVER-ENDING LOOP PROGRAM

-
-

Mooooos

DD L
>

If you RUN this program, you will quickly see the
disadvantage of using GOTO alone — the program is
never-ending. Press STOP to stop it. The screen will
show at which line number the program was stopped:

STOPPED LOOP

o e
AL EININRININ
”Wman@ﬂm“*@ o
PNBINGHANEES

e B DNGAB D

3

S
a
£
2
3
3
3
&
7
8
3
1
2
3

NG
AODNDGM

i
1
i
i
g
2
2
2
2!
2
2

D QNOUA
DDA
thﬂ"ﬂﬂa

2m
<R

How to exit from a loop

The solution to these endless programs is the FOR ...
NEXT loop. This allows you to set limits on how many
times the loop is carried out. You can use it to PRINT
the same table as the first loop program:

FOR ... NEXT LOOP PROGRAM

I
MOCCEm

DU L Wro-
>

The FOR ... NEXT loop both improves the program
and shortens it by one line. Note that you don’t have to
set X equal to 1 or add 1 to it on each loop of the
program now, because FOR ... NEXT takes care of
this automatically. It starts off at line 30 by setting X
equal to 1. Line 50 asks for the next value of X and so
the program re-starts from line 30. This continues until
X has a value of 20, the maximum set by line 30. In this
case, the program stops, because its last line is line 50.

If necessary, the loop can be interrupted on each pass
through to wait for new information. Try using INPUT
in the middle of a FOR ... NEXT loop:

FOR ... NEXT/INPUT PROGRAM

@
=

x

=
:_POKE 211,5
W CTEAP-32)%

o

©
B 2=

~=_ mEmMMMEEE
x
DI~ X

MOOONGY OMOSo

F
P
PR
Si
BO
AHR
PO
ER
£0
NE
NE
DY.

A

BOONDNNLD LCwio

This program converts Fahrenheit temperatures into
Centigrade. The FOR ... NEXT loop beginning at line
10 sets a limit of five calculations, after which you will
have to RUN the program again. The INPUT
statement at line 40 stops the program until you type in

the Fahrenheit temperature you want to convert. Line
50 then does the calculation and PRINTs the result.

How to slow your programs down

You might be confused by lines 60 and 70. They are to
prevent the computer PRINTing and clearing results
faster than you can read them. The two lines form a
time delay to keep each result on the screen for a few
seconds before continuing. This loop doesn’t do
anything other than divert the computer from the rest
of the program. It is normally written as a single line:

60 FOR A=1TO 5000: NEXT A

You can even miss out the final A, as the Commodore
will assume that the NEXT refers to the FOR that
precedes it. In general, a colon can be used in this way
to separate commands on a single line instead of writing
them on a number of different lines. Putting one loop
inside another like this is called “nesting” loops. When
you nest loops in your own programs, make sure there
isa NEXT for every FOR.

How to round numbers off

When you RUN the temperature conversion program
try entering a temperature of 32. The program tells you
that 32 degrees Fahrenheit is equal to zero degrees
Centigrade as you would expect. Next time the program
asks for a temperature enter 34 degrees. The computer
now tells you that 34 Fahrenheit is equal to 1.11111111
Centigrade, splitting the word Centigrade over two
lines and spoiling the display. But there is a way to
prevent this problem. It is sufficiently accurate for most
purposes if the answer is given just as a whole number
of degrees which then does not take up so much room
on the line. Try using the screen editor to replace the
expression (TEMP-32)%5/9 in line 50 by the slightly
more complex expression INT((TEMP—32)x5/9).
You'’ll find this will fix the problem:

ROUNDED DOWN CONVERSION DISPLAY

TEMPERATURE CONVERSION

GIVE ME A FAHRENHEIT TEHPERATURE? 34

34 FAHRENHEIT = 1 CENTIGRADE

The number is more sensible and the display looks
much better. INT, short for INTeger, converts a
decimal number into a whole number. If the result is,
for example, 1.11111111, adding INT changes that to
1, an approximation that is quite accurate enough for
most purposes. But when you use INT, remember that
it always rounds numbers down. This can have a
distorting effect with numbers that have large decimal
fractions, as the next program shows:

USING INT

The first example is similar to the one you have already
seen. The second example may seem a little surprising
unless you remember that —4 is less than —3.1 and that
INT rounds downward. The last example gives the
expected answer, but looking back at the conversion
program it would be better if 2.99 was rounded up to 3
not rounded down to 2. This can be achieved if you
modify line 50 again:

COMPLETED CONVERSION PROGRAM

@
=)

3 ;;“TEHPERATURE CON

: INPUT "GIVE HE
‘L TEMP

s PORE

bl
x

ﬂ
D~
EDNO TN

o
XTI MEVDVDVHTOM

MOCONSU_ OMOOE w
<A

>

(=
1
2
3!
U
4
A
4
3
3
&
7
8
R
u

By adding 0.5 to the temperature, you can ensure that
INT produces the nearest whole number for each
conversion.

DECISION-POINT PROGRAMMING

On the previous two pages you saw how loops can be
used to make a program carry out the same sequence of
commands a number of times. If you want to carry out
a calculation or put something on the screen 10 times for
example, you could write:

FORA=1TO10...
NEXTA

But there is another way of doing this, by usinganIF ...
THEN statement. Let’s say you want to PRINT all the
numbers from 1 to 10, together with their squares and
cubes in a table. First, here is how you would do it with
FOR ... NEXT:

FOR ... NEXT LOOP

r
@
-

meceysess
SzvmmvDUD

>
<MIOZTX:

i
3
3
5
8
7
R
| |

Inthe IF ... THEN program which follows, line 10 sets
up the color screen and line 30 PRINTs the table’s
heading as before. Line 60 is the first line of the loop -
it increases N by 1 on every pass round the loop. Line
70 is the same PRINT statement used in the FOR ...

NEXT program. Line 80 is where the computer makes
a decision as it examines N. The < symbol is
mathematical shorthand for “less than”. So, if N is less
than 10, the computer is told to go around the program
again from line 60 (note that GOTO can be left out).
When N is 10 the program ends:

IF ... THEN LOOP

et
0
-

NEEOSIZE00 =
OUXT~TVTD

<R 1 X300
Rl Sefedetas]

>

S
g
7
8
R
|

Why use the IF ... THEN loop?
You might wonder what the point of thisis, asthe IF ...
THEN loop produces just the same results as the FOR
... NEXT loop. The value of IF ... THEN is that the
computer can respond to any information that you
INPUT during the program’s operation by making a
decision about it. Here is an example which shows this,
by giving you a chance to test your skill at mental
arithmetic (the new command RND in line 70 is
explained on pages 52-53):

MATH TEST PROGRAM

SOUID =
AT
00

BOOOX

DO DT D™

£NTTNVV=TVVVOX (| OM;
NTANX Il e

N2 N T

b Shpe T KOG TR

: POKE 214,14

T : 6070 &
: POKE z;xhgg

: 6OTO %0

WM

O bbb 00 ~DAMWI® b
+ DXOO IO TN e et X i 20 TR ek

§
;
;

OOOCOOOOD

)

e e s e e W

Each time the computer sets the problem and waits for
your answer, it is faced with two possible courses of
action. If you type in a correct answer, the IF ... THEN
statement at line 120 directs the computer to go, not to
line 130, but to line 160 next — PRINTing a “correct”
message and then setting another problem. If the
answer is wrong, then the computer “falls through” the
IF ... THEN statement to line 130 and goes into the
“wrong” routine.

It is important to remember that there must also be
something in the program to stop the wrong answer
routine carrying on into the correct answer routine. In
this case, it is line 150, which makes the computer
PRINT out the problem again after a delay:

MATH TEST DISPLAY

Selecting the right condition

When you use IF ... THEN, remember that there is a
great variety of “conditions” which can follow the IF
part of the statement. The programs on these pages
have used either < or =, but this is only part of the
complete range of symbols that the Commodore uses, as
you can see from the table below.

You might think that you can only use IF ... THEN
for comparing one number or numeric variable with
another. However, this is not the case. The same set of
conditions can be used with strings. A line like:

30 IF A$=“FRED” THEN ...

at least makes some kind of sense. But what does the
next line mean?

ASCII codes. The string whose first character ASCIT
code is biggest is considered to be “larger” than the
other. This means that FRED would be larger than
ALAN because the ASCII code for F is greater than the
code for A. If the first characters of both strings are the
same, then the second letters are taken and compared,
and so on, until a difference is found. With two words
like ON and ONLY, where all the letters they share are
the same, the longer word is considered to be greater
than the shorter word. Only when two words are
identical does the computer decide that they are equal.

If you look at the list of ASCII codes on page 61, you
will see that the letters of the alphabet appear in order
with codes from 65 to 90. This means that IF ... THEN
can be used to sort words into alphabetic order, as this
program shows:

ALPHABETIC SORTER

r
DY~

¢
P UORD 1;AS

£ 5iBS

i “THEY ARE THE SAH
H
il

T

P
=D~

NT AS;' COMES AFTER

ol e et

;'* COHES BEFORE '';BS$: GOT0 2

WOON sum,
™o
>
=3
<

b O
IO 2

O TN TN
OV MY M
X “ “»

Mok XX XX
»OL IDD BB

30 IF A$>“FRED” THEN ...
To answer this, you need to know how Commodore
BASIC compares two strings. IF ... THEN CONDITIONS
These symbols specify the kind of decision that the computer will make
Putting words in order about what follows an IF command.
When the Commodore compares two strings, it takes = isequalto <> isnotequalto
the first character from each string and examines their > isgreaterthan < islessthan

>= isgreaterthanorequalto <= islessthanorequalto

*

POKE AND PEEK

On some microcomputers a lot of memory space is
given over to the BASIC interpreter so that the machine
understands a large vocabulary of BASIC keywords.
With the Commodore, the BASIC vocabulary is fairly
small, so that it uses up a minimum amount of memory
space, allowing room for larger programs. However,
you still need to be able to program the computer to
produce graphics and sound, for example. Both these
facilities are controlled in other machines by keywords
such as COLOR, DRAW and SOUND, none of which
work on the Commodore. Instead, graphics, sound and
a wide range of other functions are carried out by two
general-purpose keywords — POKE and PEEK.

Using POKE to change colors

The POKE command is used to put a number directly
into a location in the Commodore’s RAM. If you type in
the following program, you can see the effect of
changing the values in just two of these memory
“addresses”:

COLOR CHANGE PROGRAM

-

*: POKE 53281,C

S
i
2
3
3
3
R
.

When you RUN this program, you should see that the
screen border and background change through a
sequence of colors. In fact the program cycles through
all the colors that the Commodore can display. The
actual color ch themselves are controlled by the

two POKE statements in line 20. What this line does is
to tell the computer to place or POKE the value of the
variable C into the two memory locations 53280 and
53281. The Commodore looks at the contents of these
two particular memory addresses to tell it which border
color to put on the screen (53280) and which
background color to use (53281). The 16 different
colors that can be used are numbered from 0 to 15. The
FOR ... NEXT loop beginning at line 10 gives the
variable C values from 1 to 15, so that it runs through all
the colors except black, which is 0.

The codes for all of the colors are shown on the table
at the bottom of this page. You should now be able to
see how POKE can be used to turn the screen black, as
mentioned on page 16. To restore the screen to its
normal state after RUNning this program, press and
hold the RUN/STOP key and at the same time press the
RESTORE key (farthest right on the second row).

With so many separate memory addresses available
on the Commodore, you cannot get very far by
POKEing values at random. At worst, this can make
the computer “hang”, meaning that it goes into a state
from which you have to switch off power to recover
control. Of course, you will also lose whatever is in the
computer’s memory at the time. But there are many
addresses that you can usefully POKE values into, and
indeed all sound functions on the Commodore are
controlled in this way, as you will see later on in this
book.

Controlling key functions with POKE

To see another example of POKE at work, try typing
the POKEs on the following screen, holding down a
letter key after you press RETURN each time (don’t
worry about the error message):

SETTING AUTOREPEAT WITH POKE

POKE 658,128

ANARAAAAAARARARAAARARAA

POKE 658,8

READY .

AE

POKE COLOR CODES
All the Commodore’s 16 colors can be produced by POKE d
ending with color control codes.
Color POKE code Color POKE code
Black 0 Orange 8
White 1 Brown 9
Red 2 Lightred 10
Cyan 3 Dark gray 11
Purple 4 Mediumgray 12
Green 5 _ight green 13
Blue 6 Light blue 14
Yellow 7 Light gray 15

As you may already have noticed, a few keys
automatically repeat their function if they are held
down. This is true for the space bar and the INST/DEL
and CRSR keys. Key autorepeat, as this facility is
known, can be very useful to have on the whole
keyboard. Memory address 650 is the one that the
Commodore uses to determine which keys the
autorepeat will work on. If you POKE the value 128
into location 650 then all the keys will autorepeat. The
previous screen shows what happens if you hold down
the A key. A value of 0 POKEJ into the same address
will restore the keyboard to normal.

As afinal example of POKE at work here is a program
that will take an X and Y screen co-ordinate pair from
you and then move the screen cursor to the position you
have specified and PRINT a letter X:

CURSOR CONTROL PROGRAM

r
0

et

: POKE 2i4,X%

SVVT=—D —

LRODTZX

= R D D
xmzcCx

Mocooo

>

1
2
3
1
3
13
R
[}

Here, address 214 holds the cursor Y position and
address 211 holds the current cursor X position. You
will find this facility for moving the cursor around the
screen very useful when you program animation.

Looking into the memory with PEEK
PEEK is a keyword which has exactly the opposite
effect of POKE. So, for example, if you type:

PRINT PEEK (650)

the number PRINTed will tell you whether key
autorepeat is switched on or not. The value will be 128
if autorepeat is on for the whole keyboard, or 0 if it is
just on for the editing keys and space bar.

PEEK is widely used in Commodore programming
for taking the numbers from memory locations,
modifying them in some way, and then POKEing them
back again. You can use a loop with PEEK to see the
values in the Commodore’s memory. The next program
does this. It’s an endless loop which will go through all
the memory locations — this screen shows the listing and
just the first few PEEKSs:

g=1)
58 PRIMT X:%:;PEEKCX)
8 CRir gt

b BT
Rty |
i

DWE
dnda

g
]

PSR

One very useful function that PEEK can carry out is
examining the Commodore’s real-time “jiffy” clock.
The jiffy clock is a 3-byte binary counter. When the
computer is switched on the jiffy clock is set to 0 and
incremented by one, sixty times per second, for as long
as the machine remains on.

The jiffy clock is stored at addresses 160, 161 and
162. Location 162 changes the fastest, at sixty times per
second. Location 161 changes the next fastest, every
time the value in location 162 is incremented from 255
back to 0 again. Finally, location 160 is incremented the
slowest, every time the value in location 161 changes
from 255 back to 0. Using just location 162 on its own
will allow the Commodore to count just over 4 seconds
before the clock starts again. Using locations 162 and
161 allows it a count of just over 18 minutes and with all
three locations the machine can count to about three
and a quarter days. You can see how PEEK can be used
with the jiffy clock if you try out the next program,
which times how long you take to answer a question:

JIFFY CLOCK PROGRAM

—

18
20
38
40
58
RE
|

_

KEYBOARD GRAPHICS

On page 17 you saw how characters and controls on the
Commodore’s keyboard are represented by ASCII code
numbers inside the computer. You can use this coding
system to make the Commodore display its “character
set”, that is, all the characters arranged in order of
coding. Here is a program that PRINTs the characters
with codes from 33 to 126:

CHARACTER SET 1

MOSDODHE
)
STXTNTV D =

EEROUN LN~
>

€Ol = CEON - | @ 1 G -l
ERE-TPN

NG = SEON

T ha FSw
A rGE 1 | TAA] = wd) TTROD

> x % '+
=>28a
uksgu
15131
s812
CDEEG
Laxv’;(
iy Ll
S678BS
I JKLM
]t &e—~0
8.9 »
¢) x +
¢=»72
PQRS
I

MEZhA £ K1 VAA] bl
| a0 TXODe] BVE— | rogn
TN~ CD 16] S
SEON— 1R T RIS T
Mxo@e] BV | FouN\NTIN
TS sy 1 RONTIE0W
NINTI e (e Yo 22+ (OIS

2.
o
K=z INIHR pC@

L2

oo
R
~czig)em

This program actually repeats the set four times, filling
the screen. You can see from the chart of characters on
page 61 that this program PRINTs about half the set, up
to code 126, and misses out the control characters with
codes from 0 to 32.

The Commodore actually has two character sets. To
see the second set you don’t need another program.
After RUNning the program above, just press the
SHIFT and C= keys together. You should now see a
character set which features capital letters with lower

case letters as well: areas of color on the screen.

R i A T NS
- UNT RC O
=S [EO0N AD S E (N,

PR T WO AN, 0
RTUIT IS 0 XD A

TN NN GO VT B

n
8
U
&
T

TG W F wSRIE W ROl O
NI i] e RANTEN o N
FEN N TDE OND W W |
ST MU AmOe @) SR A D
FEONLMD (| et &= 0 b
R A DNT Wikt | NN H 1Y
TEN DU O+ EDE ONOME W

& DH>

G
<@
oo

As you can see from these two displays, in addition to
the letters A to Z and the numbers 0 to 9, the
Commodore has very useful sets of predefined
characters. You can key these in either directly, orin a
program with PRINT, just as you would with letters.

If you look at the keyboard you will see that most of
the keys have two of these graphics characters printed
on the front of them. The right-hand one of the pair is
accessed by holding the SHIFT key while the key with
the required character on it is pressed. The left-hand
character of the pair can be accessed in the same way but
using the C= key instead of SHIFT. To get lower case
letters, you should use the SHIFT and C= keys
together to select the lower case character set.

How to reverse the graphics symbols
If you look at the keyboard, you will notice that the
number keys 8 and 9 are marked RVS ON and RVS
OFF. These keys enable you to produce the reverse of
any character. To see this at work, press CTRL and 8,
and then type in some characters on the screen. You will
see that the text and screen colors are reversed, so that
you get a character which is the inverse of the one
normally produced. Pressing CTRL and 9 turns this off
again. If you use CTRL and 8 within a string, it will
appear as a reversed R control symbol. RVS ON and
RVS OFF can also be activated with PRINT CHRS.
The keyboard graphics characters are arranged in
groups with lines of varying thickness. If you cannot see
the particular character you want to complete a design,
this may be because what you actually need to key in is
the reverse of another character. One reversed
character that is particularly useful is the space. This
produces a solid text square which can be built up into

Designing with keyboard graphics

You can use the Commodore’s graphics characters in
programs to build up images on the screen. The
following program uses only two of these characters,
one shaped like a short capital letter T (line 50) and the
other shaped like a capital T upside down (line 40).
These two characters appear on the E and R keys:

()
=

POKE 53280, 12:POKE

CHR$ (1472
PRINT _CHRS
i 28 -
THEN PRIN
.t

MOOoO0000WE
o

DXOXOT=TODT

< 1| 110G 1) =0

WXOOADN LW
>

Tl el

If you RUN it, the program produces a reasonably good
representation of a wall. If you change to the lower case
character set again, the program will still RUN
perfectly well. But if you type in programs with the
lower case character set you must remember to type in
all the BASIC keywords in lower case — without the
SHIFT key pressed — otherwise the program will not
work.

You can use the keyboard characters to build up
other shapes on the screen by using loops. The next
program, for example, produces a triangular stack of
lines by PRINTing a series of characters. How many
characters are PRINTed on each line is determined by
the range of N:

TRIANGLE PROGRAM

r
73
~

BOD-ID U L Wb
Mesoco0on
DX VX TVMMTD

>

You can use loops to produce quite large shapes without
having to write the entire shape out in the program. The
next program draws and fills a rectangle:

RECTANGLE PROGRAM

@
=

BOSON LW~
g@OQGQDQ -
Sox TNV
<OMBONEH

THE SCREEN MEMORY

Now you know something about the Commodore’s
character sets, you can move on to a method for putting
characters on the screen which is much more versatile
than PRINT CHRS. This new technique uses POKE to
fix both a character and a color for any position on the
display.

Character and color maps

The Commodore’s screen can be thought of as being
divided up into a grid on which characters are
displayed. Inside the computer there are two areas of
memory set aside for the positions on this grid — the
screen memory map and the color memory map. The
first remembers the character to be displayed at each
position on the grid, and the second remembers its
color. Character and color can both be fixed by POKE
commands.

Because the screen is divided into 25 lines of 40
characters, a total of 1000 positions, the character and
color maps are each 1000 locations long. The character
map begins at location 1024 and forms a continuous
block up to location 2023. Similarly, the color map runs
from location 55296 to 56295. The following grid shows
how these positions are arranged (the grid on page 60
also gives the memory POKE numbers):

COMMODORE TEXT GRID

You can see from the color table on page 32 that 1,
which appears at the end of this program line, is white.

An easy way to set memory locations

If you had to remember all these POKE numbers to use
them each time in a program it would be a very lengthy
process. However, knowing where the first locations in
the two memory maps are, you can quickly work out the
POKE number for any other point. If Y is the number
of screen lines down, and X is the number of positions
across, the following program line will produce a white
ball at that position:

40 POKE 1024+ Y*40+X,81:POKE 55296+ Y*40+X,1
This will take any values of X (positions across) and Y
(lines down) and produce the character, as long as the

values are within the screen limits. By looping both X
and Y you can produce characters all over the screen:

CHARACTER POKE PROGRAM

@
=

:POKE 53281.8

B+X,81-POKE S5236+¥Y=x48:+X

29 R

MEO-DO6
== m

>
Sxx wvmmo

<mM cooo

L
1
2
3
5
8
R
'l

To put a character on the screen in a program, you need
a line like this:
90 POKE 1464,81:POKE 55696,1

This puts a character in screen line 10 at position 0
across, that is at the left-hand edge. If you look up the
character code, 81, in the table on page 60, you will see
it is a solid circle or ball. The second POKE sets the
color. Without this the ball would be invisible because

it would be PRINTed in the same color as the screen.

T e |

Now you can experiment by adding color. You could
simply change from white to another color, but instead
try altering the final character in line 40 so that it now
reads:

40 POKE 1024+ Y#40+X,81:POKE 55296+ Y*40+X,X

Now the color depends on the position, so that it
changes with every character. When X goes above 15,
the computer starts the color series from the begmmng
again. The result is the same display as in the previous
screen but this time with all the Commodore’s colors:

COLOR CHARACTER POKE

°
°
3
°
°

°
°

e

8

3
e
e
2
[
°
@
a

0

8

8

9
8
8
3
@

PO NRP0LNINEEEIOREARRR0eR

R IR NIIDORD

PENBECN0NRREBR0E
socnonone

secccessee
ceanan0Bens

Using POKE for graphics

By POKEing a character and color onto the screen, you
can build up your own graphic displays. The following
program allows you to draw designs on the screen. It’s
a simple sketch-pad listing that uses one of the text
characters — an asterisk — to produce outline drawings.
The program uses POKE to change a cursor position
each time you key in an instruction:

POKE GRAPHICS PROGRAM

GOTO <488
GOTO 488
GOTO 488
: GOTO 468

& @
@1
=3

: D
T

¥
H
D
I
Y
H
¥
I
Y
4

|| =€ | DM 1| 2D
xo
[}
®o@
(=)

<K X
*4

% I3 1] =<
x
o

o
£

You can control the movement of the cursor with the U,
D, L and R keys (for up, down, left and right
respectively). Once you have selected the direction in
which you want to move the cursor you should press
RETURN. To take another step in the same direction,
you need only press RETURN again. If you want to
move the cursor several steps in any direction, the
program is arranged so that it will autorepeat. This
means that you only have to press and hold the
RETURN key and the cursor will move rapidly in the
last direction you have selected. To draw lines while
moving the cursor enter an asterisk and press
RETURN and then move the cursor in the normal way.
To blank lines out again if you make a mistake enter a B
and press RETURN and the cursor will then leave
spaces behind it as it moves. The display is limited to
the 40X 25 character positions on the screen. Although
the designs it can show are therefore at low resolution,
it works quite quickly. Here is an example of the sort of
display you can produce:

POKE GRAPHICS PROGRAM

%

TVVVORDDD

72 ;CHRS(S)

ZEMMrOOZEMM -
+0

BUNRODOOO0DOBS

e DO I A LIS
Soo6

RO | 1 DOO
R T P78 e s 75

B et
TITTTOORLD & W
MMM~ LS

READY

POKE GRAPHICS DISPLAY

ANIMATION

Animation consists of programming the computer to
place a character on the screen and then move it in a
series of small steps. There are two ways of doing this,
using either POKE with PRINT, or POKE for
position, character and color. Both methods use loops
to change the position of the character in ways which
you can specify.

Here’s a simple animation program which shows you
some of the problems that have to be overcome when
controlling movement:

you get left with a small part of the previous image
which isn’t deleted. In some programs you may want to
retain these after-images for special effects but more
often you will want to remove them. Another thing you
may have noticed is the speed with which the object
moves across the screen — it is far too fast for most
purposes. Both of these problems can easily be cured by
keying in the following lines with the first program still
in memory:

CHANGES TO IMPROVE DISPLAY

ANIMATION WITH CHANGING CO-ORDINATES

r
()
-

noozons
SXTV<cTD
<MBO I Ox
=
—xromz

DN da PN~

FREFEERRRRRFERFFRFRRFRRRFRFRRFFRFRFFFH

How to remove after-images and control speed
The first thing you will notice when you RUN this
program is that it doesn’t do exactly what you want it to.
It moves the character from left to right by changing the
position of the cursor with POKE but it doesn’t remove
the old image first, because you haven’t told the
computer to do that, This means that on every move,

7
3~

INT ' ";CHRSCL71);CHRSCLTT) ;CHRS(1T
54 R T=1 TO 10 : NEXT T

M =

L
S
5]
S
R
| }

B3
om

The space in line 50 erases the left-hand part of the
image, while a delay loop slows the movement down.
Vertical movement can be produced by the same
method. This time the X co-ordinate is kept constant,
while the Y co-ordinate is changed by a loop. You can
make an object move upward with a line like this:

50 POKE 214,24—Y:POKE 211,X

As Y increases, the object is PRINTed higher and
higher up the screen. To erase after-images, spaces
must be PRINTed by moving the cursor back one space
each move.

How to program two-way motion

So far you have seen animation that uses FOR ...
NEXT to vary either the X or Y co-ordinates of an
object, moving it in just one direction. This idea works
well as far as it goes, but it is not much use where, for
example, you want te bounce a ball from side to side
across the screen. The easiest and probably one of the
best ways of achieving this two-way motion is to have
the program set up an extra variable in addition tothe X
and Y co-ordinate variables. These new variables hold
the direction of movement of the object. The following
program uses this technique with the variable DX to
move a ball from side to side across the screen:

e R, T et ke]

BOUNCING BALL PROGRAM

COLOR TRACK PROGRAM

WROOIDNLBO-
MOCOOODORES ~

=

MOOCOMO0O00

BAR]
PHOOEOOHCHODODOOBE B

<O TNTVNZINDNL VTN

MEW@H=10)

=)

2
o
é
3
R
.

In this program, line 20 sets up the initial X and Y co-
ordinates and also sets up the direction variable, DX, to
start the movement off from left to right. Line 30
positions the cursor at the current X and Y co-ordinates
on the screen. Line 40 PRINTS the ball and also erases
any previously drawn ball characters to the left or right
of the current position by PRINTing spaces there. Line
50 updates the X position by adding DX to it.

Because DX is currently 1 this update increases X by
1 and thus moves the ball one place to the right. If DX
had been —1 then this same line would have moved the
ball to the left by one place. Lines 70 and 80 reverse the
ball’s direction if it is at the screen edge by changing the
sign of DX from +1 to —1 or vice versa.

Animation with POKE

As well as using PRINT CHRS$ to produce animation,
you can also POKE characters from the graphics
character set straight onto the screen, erasing them
again to produce movement:

In this program, a ball speeds around a rectangular
track. The listing looks quite involved, but when fairly
complex motion is required, POKE is actually an easier
programming technique than PRINT CHRS, even
though it means having to program color locations as
well as character numbers. It is also easier to develop
programs by changing POKE values.

Lines 10 and 20 clear the screen and set the screen
color to blue. Lines 30 to 90 now POKE a rectangular
pattern of ball characters onto the screen again in dark
blue. Lines 100 to 290 then change the color of each ball
in turn, in a clockwise direction, from the dark blue
background color to white, then, after a short delay,
back to dark blue. If you type in the following line to
change the screen color, this whole process then
becomes visible:

20 POKE 53280,6:POKE 53281,0

When the change has been made, the display looks like
this, with the white ball traveling around the blue track:

COLOR TRACK PROGRAM

@

: POKE 53284.8
0+%,81 : POKE 5SS
5%40+X,81 : POKE

T
8

D=0

N RO

S

POKE 5
- POKE 55235+Y%4

(4

T
p
14
F
P
8
P
%,
N
#
2
a
8
3

o P D O D I It + LTI
A 4.5 F B O BER DD

3
a
8
a8
15)
8

(1

COLOR TRACK DISPLAY

_USING A DATA BANK 1

The data necessary for a program can be collected while to get the computer to PRINT a new map. Here are two
it is RUNning by using INPUT, or alternatively can be sets of line changes and the maps they produce:
written into the program itself. The commands used to
store data are quite straightforward. Data is held in
DATA statements and read by READ statements. This
program shows you the technique at work:

CONSTELLATION PROG!

»18,13,14,15,23

7
=

9,6:POKE 53281,6:PRINT CHRSC
: POKE 211,7
3,11,13,44,13,27.18,

2

=
TVVXMTHOT T

<DEMRD

,26,44,16,18,20,19,16

: PRINT : POKE 211,%
: NEXT T

M=COO000 CODLS —

OB
o

L
1
1
2
3
3
%
7
8
3
i
1
i
R
]

When you RUN this program you should see on your
screen a computer-generated map of a group of stars, CASSIOPEIA
the constellation Ursa Major, also known as the Big .
Dipper: .

URSA HAJOR

The information for the display is carried in line 40 in
the form of 14 co-ordinates. Line 70 tells the computer
to READ the DATA in line 40, and to understand the
DATA as pairs of figures which the program will refer to
as Y,X. Line 50 tells the computer that there will be
seven of these pairs altogether.

With a program like this it is easy to enter new DATA

When you use DATA statements, it is important to tell
the computer how much DATA there is to READ. Line
60 in the constellation program shows you how to do
this. It sets the limit for the number of pairs of co-
ordinates that are stored in the DATA line, so when the
computer has PRINTed the final star, it stops. If there
was no FOR ... NEXT loop controlling the READ
command, the computer would run out of DATA. If
this happened the program would end with an error
message:

? OUT OF DATA ERROR IN 70

Storing numbers and words together

Words, too, can be stored and read using DATA lines,
and you can also store a mixture of both numbers and
words — the names of friends and their phone numbers
or birthdays, for example. This does present a problem
though, because two different types of DATA are to be
used, numbers and strings. But careful organization of
the DATA and READ statements can get round this:

TELEPHONE LIST PROGRAM

IST -180

-

2,6.HILTON, 166, R.HERNA
6, T.PHILLIPS,71,P.RICH

o .
TITVNTO> OO

£ METDT VD= DRXOD D DOD X

HOKE LISTING"
214,4 : PRINT

B T

. .PRESS 2

NI ICMVOr =1 RN

=
o

:PRINT

o i e o e O 00 = Y i DD RO
DNNUNRWNOOOECODDOLDD

> COOOOEODR

o

[
m

LIST 190-

: POKE 2
AND

FOUND**

POMIPIRIRS b
MNP+ O
80008 o
O TIR—0D

¥$ THEN RESULTS=NAMES+"
T CHR$C14T)

: I=1

:Fgéxnr c

WD
MO=YON
> oo
ou
<ozD=.

This program holds a personal telephone list. Names
and telephone numbers are held in lines 20 to 40. Lines
50 to 90 display the program title and then offer a choice
of functions. If you type:

1 RETURN
the computer PRINTs the entire telephone list:
TELEPHONE LIST DISPLAY

.BAKER
HILTON
HERMANN
-KLEIN

.PERERA
PHILLIPS
.RICHARD
+SHITH

© T =HITVXO

f you type in:
2RETURN

the program follows lines 190 to 270. You are first asked
to enter an initial and a name.

If the computer finds that the name (ENTRYS$) that
you type in is the same as one of the names (NAMES) in
the DATA statements, it will give a new string
(RESULTS) the value of NAMES$ plus a line of dots
and the telephone number. Ifit does notfind ENTRYS,
RESULTS$ is left unchanged at “Name not found” (set
by line 210), and that is PRINTed out at the end.

Because you want to add the name, a line of dots and
the telephone number together in line 240, the
telephone number has to be treated as a string variable
(N$) instead of the numeric variable (N) used in line
150. If you were to substitute N for N§ in lines 230 and
240, you would get back an error message:

? TYPE MISMATCH ERROR IN 240

because string and numeric variables cannot be added.
You can extend this program to hold a much longer
list of your own names and numbers by putting them
into the DATA lines, and then altering the limits of the
two loops at lines 140 and 220. To see the complete list
if it is more than one screen long, press CTRL as the
program display begins to slow down the scrolling.
Line 270 uses a command which will be new to you—
RESTORE. Without this, the program will RUN
correctly only once — after this you will get an error
message. You can find out why this happens on page 43.

USING A DATA BANK 2

On the Commodore, READing DATA can produce
quite complex graphics when the DATA refers to
keyboard graphics characters. On these two pages, you
will see how you can store this sort of DATA most easily
to produce static and animated displays.

The following program uses DATA to store the
details of a maze. It also features a new way of using
GOTO:

MAZE PROGRAM

b}
NP WA - ZD
Dk ¢

DO~ N 5
b] N D U

NN
CEEE R

L
1
1
2
3
3
5
8
7
8
3
i
i
i
1
i
1
i
i

TR EOODEEB8E.
Soes0e00 fec e

=z

=

OO0 -
o5 oo Cooe O
-

N b

i

L R

(5
oD U9 0D DD OO oozw

33 33 D> DD DD IDMN
et el et e el i e s et ¥
33 I ID DD ID DDAE

S R s b e b

[

e OIPIINR PIDS MR POPIM-TORIbake
e O LD 0O P md 03P GO P

(5
D S T

I OOk OO OO

<o
B
=)
>

W
o

To draw the maze the program uses some of the
permanently programmed keyboard graphics

characters. Rather than use the ASCII codes for these
characters in the DATA statements, the program gives
each of the characters in the display a code of its own in
the range 1 to 11.

When a lot of DATA has to be stored, reducing the
size of the DATA block like this can be very valuable.
The only problem with this is that the DATA needs to
be decoded before it can be used. In this case the
program needs to tell the computer which character to
PRINT for each of the codes. This is dealt with in lines
40 and 50 using the pair of commands, ON ... GOTO.

The variable M in line 40 is the one that contains the
coded DATA just READ in line 30. Line 40 says that if
the value of M is 1 then GOTO the first line number in
the list of numbers following the GOTO. If the value of
M is 2 then the computer will GOTO the second line
number in the list and so on. If M has a value greater
than the number of lines in the line number list then line
40 is ignored and the computer moves on to line 50.
This line subtracts 6 from M and then selects one of a
new group of line numbers.

Each of the lines specified in the ON ... GOTO
statements PRINTs the correct graphics character, and
then directs the computer to READ the next coded
character for the maze:

MAZE DISPLAY

Once you know how to produce a display like this, you
can develop it for your own use. You can build up quite
complex shapes with the graphics characters including

MAZE PROGRAM CODES

charts and tables (looping the PRINT lines helps to save

In the maze program, graphics are selected by short program character
codes.

space when you do this).
The Commodore’s cursor keys will let you move the

Ch Code Ch Code
[i 7
= 2 8
| 3 9
(d 4 10
hl 5

H] 3

cursor through the maze to find the way out. By using
a series of different mazes in conjunction with a timing
routine, you can develop this system of DATA storage
to create a simple game:

T S i ——

MAZE GAME DISPLAY

=3

BT

ST

Using DATA for animation

Another graphics area in which READing DATA can
be helpful is in storing a graphics shape which can then
be used for animation. In order to be able to continually
move the same DATA over and over again, you need to
make use of the RESTORE statement. Here is a
program which features this technique:

DATA ANIMATION PROGRAM

The program uses an animation method similar to one
on page 39, but here the program is arranged in a
different order. Line 10 clears the screen and line 20
sets up the colors. Line 30 sets up the initial values of
the X and Y co-ordinates and the initial X and Y
directions. Lines 40 to 70 perform the check for a co-
ordinate out of range. Line 80 updates the X and Y co-
ordinates with DX and DY and RESTORESs the DATA
pointer (you’ll see what this means in a moment). Lines
100 and 120 READ the graphics DATA out of the
DATA statement in line 150 and PRINT and color the
graphic shape onto the screen. Line 130 gives a short

delay before line 140 erases the graphic shape by
clearing the screen:

How to reset the DATA pointer

You can have any number of DATA statements
anywhere in a listing. The Commodore treats them as
though they are all joined together. Each time the
computer comes across a READ command, it READs
the next item of DATA in line. But what happens when
the computer gets to the end of the DATA?

In programs where the DATA is only used once,
that’s no problem. But if you want the computer to use
the same DATA a number of times, you need to use
RESTORE to tell the DATA pointer to point back to
the beginning of the DATA again. That’s why
RESTORE was needed in the telephone list program on
page 41, and in the previous program on this page.
Here’s another program which shows you how just a
small amount of DATA can be used repeatedly to work
out tax totals:

TAX RATES PROGRAM

)

NOCOO0OO00D —

WX OONDUNLWR ™~
20

e I
INTRODUCING SPRITES

As you will have discovered by now, producing text
graphics using PRINT and POKE has its drawbacks —
chiefly that the screen resolution is rather limited. But
the Commodore does have other methods of producing
displays, and one of these, programming sprites, can
give you much more detailed graphics for animation.

Sprites, or MOBs (Mobile Object Blocks), are each
about the size of 9 ordinary text characters put together
in a 3x3 block. You can program up to 8 different
sprites to appear on the screen at once. The shape,
position and color of the sprites is controlled by a special
chip in the Commodore called the Video Interface
Circuit, or VIC chip for short. To produce a sprite, all
its details have to be POKEd into the relevant locations
in this chip.

Designing a sprite

Each sprite is made up of 504 tiny picture elements
(“pixels” for short). These pixels are arranged in a
rectangular pattern consisting of 21 rows with 24 pixels
on each row. To make a sprite, you first need to sketch
the design on a grid with one square for each pixel (you
will find a blank grid for this on page 59). The design
can be any shape you like as long as it fits inside the grid.
One possible sprite layout —an airplane — has been filled
in here ready for programming:

USING A SPRITE GRID

The sprite design is laid out on a sprite grid so that DATA values can be
calculated.

Bit DATA values

1] o a2 [o [8 [a [2|1 [isfes [l s [aTo o [unfesTululs s

0
L |
I
I

| 1

-
|

Row number
|

This information has to be POKEd into consecutive
memory locations inside the computer where the VIC
chip can “see” it and get at it. The easiest way to store
this information is to put it in a series of DATA
statements, and then make the program READ it and
POKE it into the memory. In the following program,
the DATA contains the pixel information for the
airplane design. As yet, it does not contain any
instructions for putting the sprite on the screen:

SINGLE SPRITE PROGRAM

L
19
3
3
2
Dl
fe
5
5
5
5
5
5
R
L

Entering sprite DATA

The first thing to notice about the program above is the
technique used to arrive at the list of numbers in the
DATA statements. This is where the numbers and titles
in the blank spaces around the grid come in. Starting at
the top left corner of the sprite design and working left
to right across the top row, read the first 8 pixels and the
numbers above them. In this row, the pixels in the
right-hand half of the row are turned on, making up the
wingtip, while those in the other half are turned off:

ADDING UP DATA BITS

Each 8-row unit of sprite pixels is entered in a program as a single
number — the total of the individual pixe] bit DATA value

(0 T
1 I I
0 T 0
E) T

Having designed your sprite you now need to transfer
this information into the computer in a form that it can
understand. Everything inside the Commodore is
arranged in bytes, each made up of 8 binary digits or
bits. Each pixel in a sprite is controlled by one bit, so it
takes 24-+8=3 bytes to control each complete row of the
sprite, dictating which pixels are turned on or off. As
there are 21 rows in a sprite, it takes 3X21=63 bytes to
completely specify the pixels.

BitDATAvalues 128 64 32 16 8 4 2 1

Row 0

8+4+2+1=15=Byte DATA value

Each 0 indicates a pixel that is not lit, while a 1 indicates
one that is lit. The 8 column numbers then have to be
added together to form a byte. Here the pixels are lit in
the columns headed 8, 4, 2 and 1, so the byte total is 15.
This is the first number in the DATA statements. You

[=gt e NPT) S — - |

then move on to the next 8 pixels to the right, gradually
working down through the grid. This gives a total of 63
DATA numbers. But because 63 is not a very
convenient total for the computer to work with, a 64th
byte has to be added. This is used just as “padding” —it
does not actually specify anything, and is set to zero.

Placing sprites in the memory

The next thing the program does is to POKE the bytes
into memory in line 50. In the standard Commodore
memory map there is nowhere that is completely safe
for sprite DATA storage. This program uses an area of
the memory that is normally reserved for cassette input
and output operations. It starts at location 528 but this
is not a multiple of 64 so the program starts a bit higher
at 832 (64x13). In fact there is room for up to 3 sprites
in this area starting at memory locations 832, 896 and
960. The FOR ... NEXT loop between lines 30 and 60
READ:s each item of DATA, POKEing each into one of
the memory locations after 832. When you RUN the
program now, you should see the sprite appear :

SPRITE LOCATION LINES

Within the Commodore’s memory there are 8 locations
which are used as signposts to tell the computer where
the DATA for sprites has been stored. There is one byte
for each sprite. As a single byte can hold any number
from 0 to 255, this means that there are 256 possible
locations that sprite DATA can start at. The starting
location for the DATA for this sprite is specified by line
70. It directs the computer to the 13th block of 64 bytes,
in other words the memory location 832.

You can see how color is controlled if you change line
80 to:

80 POKE 53287,7

If you then RUN the program, you should see the
change in the display:

COLOR SPRITE DISPLAY

==
-

Line 90 controls the position of the sprite, while line
100 POKEs a number into the location which turns
sprites on and off. Line 110 activates two memory
locations which control the size of sprites. The two
POKE:s in this line make the sprite take up four times
the amount of space on the screen that it would
otherwise occupy.

You will find out more about how to use these
different control locations on the next two pages. You
will also find out how to make this program simpler —so
before turning over, either SAVE your program on tape
or disk (page 58 will tell you how to do this), or make
sure that it’s held in memory.

Why sprites don’t work like text

Because sprites are under the control of the VIC chip,
they don’t behave in the same way as the text
characters. You will find that if you RUN the program
on this page, you cannot erase the sprite with SHIFT
and CLR, and even if you LIST the program, the sprite
will stay in the same position on the screen instead of
scrolling upward. To get rid of the sprite you need to
use the RUN/STOP and RESTORE keys.

PROGRAMMING WITH SPRITES

When you are programming sprites, you can find
yourself writing lines that use a number of rather
unmemorable POKE addresses for the VIC chip. But
because the addresses in this chip run in a sequence
from a lowest value of 53248 upward, you can avoid this
problem by giving a variable the value 53248, and then
using the variable instead of the number. You could do
this with the program from the previous two pages by
first putting in this line:

5 LET V=53248

This enables you to refer to any locations in the VIC
chip in terms of V plus a one- or two-digit number. This
makes sprite programs a lot easier to interpret. With
this method, the sprite program from the previous
pages now looks like this:

SIMPLIFIED SINGLE SPRITE PROGRAM

Adding color to sprites

You can make sprites appear in any of the
Commodore’s 16 colors. As you saw on the previous
page, it is just a matter of inserting a color control
number with 2 POKE statement that colors a specific
sprite. The color numbers are the same as those shown

on page 32 for use with POKE. The POKE location
depends on the number of the sprite. For sprite 0 it is
V+39 (asin line 80), for sprite 1 itis V+40, and so on.

Positioning and moving sprites

If you look at the single sprite program again, you will
see this line:

90 POKE V,50:POKE V+1,100:POKE V+16,0

This controls where the sprite appears on the screen. V
sets the horizontal position and V+1 the vertical
position. Using two single bytes for a sprite allows you
to place it in 256 positions vertically and 256 positions
horizontally. But there are actually more than 256
positions across the screen — 512 in fact, so a 9th bit is
required to completely specify the position of a sprite.
Instead of giving an extra byte to each sprite to store this
information, all 8 extra bits are combined and stored in
a single VIC register byte, V+16. In this extra byte, bit
0 is for sprite 0, bit 1 for sprite 1 and so on.

SPRITE POSITION CONTROLS

The horizontal and vertical position of each sprite is controlled by a
separate VIC location.

Sprite Horizontal (X) Vertical (Y)
number VIClocation VIC location

0 V40, V+1,

1 V42, V+3,

2 V+4, V+5,

gl V+6. V+7,

4 V48, V9,

5 V+10, V+11,

6 V+12, V+13,

7 V+14, V+15,

All horizontal positions outside 24 to 343 and vertical
positions outside 30 to 229 are off the screen. The
position numbers are arranged in this way so that
sprites can be scrolled smoothly on'and off the screen in
any direction. This does mean that positioning a sprite
on the screen so that it fits a background can be rather

SETTING SPRITE COLORS

tricky — an outline of how the sprite co-ordinates work

Sprite colors are controlled individually by a color code POKEd into a
VIC color location. This table gives both VIC locations (V=VIC base
address) and color codes.

is given on page 59.
Once you know how to position a sprite, it is an easy
matter to change this position with a FOR ... NEXT

Sprite VICcolor | Color Color Color Color
number locati code code

0 V+39, Black 0 Orange 8

1 V+40, White 1 Brown 9

2 V+4l, Red 2 Lightred 10

3 V+42, Cyan 3 Dark gray 11

4 V443, Purple L) Mediumgray 12

5 Vid44, Green 5 Lightgreen 13

6 V445, Blue 6 Light blue 14

7 V+46, Yellow 7 Lightgray 15

loop. All that remains is to turn the sprite on. In the
single sprite program that is done by line 100. Only one
bit is needed to turn a sprite on and off, and again, the
separate bits for all 8 sprites are combined and put in
one VIC register, V+21. For example, if you had 8
sprites, and you wanted some to be off and some to be
on at one point in a program, you would work out the
POKE number by adding together bits like this:

—_

TURNING SPRITES ON AND OFF

DOUBLE SPRITE PROGRAM

Spritepumber 128 64 32 16 §& 4 2 1
Bit value

Starus OFF ON OFF OFF ON ON OFF O!
Total byte value =VIC+21,77)

By the same technique, you can expand sprites both
horizontally and vertically, to twice their original
dimensions in both directions. V+29 holds the bits that
instruct horizontal expansion, while V+23 controls
vertical expansion. You can see from this that line 110
in the single sprite program expands sprite 0 (which has
a bit value of 1) in both directions.

©XTN VSTV
OM —BDLWIO<

=TT THDVVTOCO0 X1 VSD
-

DRVNNEWNIDOCOD DOOOE
MMMOLORO0)

CODEIRCHE
MO DR EMLD =

L
i
2
3
3
S
g
7
g
9
i
i
i
i
1
1
i
i
i
i
R
|

A two-sprite program with animation

To show you how to produce more than one sprite

simultaneously, here is a program that creates two

sprites. First, the sprites are drawn out on grids:
DOUBLE SPRITE PROGRAM DESIGNS

Bit DATA values LIST 280-
as o [o2 [[o [[o o o [Toe [5 o [[[e [[s o [2 o T ST
0 =l 50 POKE
L I 400 DATA
] 410 DATA
T 320 DATA
T 430 DATA
o 48 baia
s I 180
2 486 _DATA
g 28,0
476 paTA
a 480 DATA
T 496 DATA
3 i 55
) [560 DATA
38 pan
336 bATA
READY .
]
1
Bit DATA values
B [R S T I ’}' 3 N N R R Line 80 controls the sprites’ initial positions and the
i [variables D0 and D1 in line 90 control the individual
3]l directions and speeds of the sprites:
3 |
5[
E L
N
W
E [I 1
2 [L I T
0 I I
v
s [

This time there needs to be twice as much DATA,
coding 128 bytes altogether with two redundant bytes at
the end of each section. Separate instructions are also
needed for positioning and coloring the two sprites.
Horizontal and vertical enlargements are carried out by
putting a value of 3 into V+23 and V+29. The program
also makes the two sprites move at different speeds:

SOUND AND SPECIAL EFFECTS

The Commodore is equipped with one of the most
sophisticated sound synthesizer facilities available on
any home microcomputer. Sound can make all the
difference to your programs, whether it is just a simple
bleep to prompt you to enter an INPUT, or a series of
realistic sound effects which add excitement and
interest to your games. The Commodore does not have
a single command like SOUND, but instead uses the
multi-purpose command POKE.

The SID chip

All the sounds on the Commodore are created by a
single integrated circuit or chip known as the SID
(Sound Interface Device). The SID chip contains all the
circuitry needed to provide three separate sound
channels, each of which can be used to produce musical
notes, noises or sound effects. The computer
communicates with the SID chip via a block of 29
memory locations, starting at location 54272.

In all the following sound programs the 29 memory
locations are referred to as S+N, where S is 54272 (the
base address) and N is the SID register number from 0
to 28. For example, memory location 54296, whose
main function is as the SID chip master volume control,
is shown as §+24. This is the same system as you saw
with sprite programming. The simpler numbering is
easier to remember, and you are also less likely to make
mistakes in entering your programs from a listing.

Simple sound programs

To program sound you need to POKE values for master
volume, volume change or “‘envelope”, frequency and
waveform. All these details have to be sent to the SID
chip. Here to start off is a program which produces the
sound of a siren —a loop made up of two notes:

SIREN PROGRAM

()
MOONDANBIES
2CEO5050568 &
<ZOTTNOOMDG
- MEOOO6906)

D 0 70 7 2 0

3
3
3
a
3
3
3
R
|

(If you RUN this program and no sound is produced,
check the volume control on your television or
monitor.)

Line 300 sets the variable S to 54272, and then sets
S+24, the master volume, to maximum. The range of
volume values runs from 0 (off) to 15 (maximum). Line
310 sets up something called the envelope shape. This
controls the way that a sound’s volume changes as the
note progresses from start to finish. Real sounds don’t
simply start then stop; they grow and then fade, and the
envelope controls these changes. The first half of
envelope shape can have any value from 0 to 15 — the
higher the number, the slower the change.

The SID chip is also capable of producing sounds
with four different waveform shapes, any of which you
can select.

SOUND WAVEFORM SHAPES

A waveform shape is selected by POKEing the relevant value into a
channel waveform location.

TRIANGULAR
(16)

SAWTOOTH
(32)

N

J RECTANGULAR
(64)

A I\/\MI\ A /\AA RANDOM NOISE
W \/JV \A v\/V\/AV\/ Y (128)

Each of these waveforms is given a numeric value. One
of these values needs to be POKEd into the waveform
and channel location of each channel you wish to sound,
to tell the SID which waveform to play for that channel.
Lines 330 and 380 POKE values into this location. Line
330 starts the channel off with a sawtooth waveform and
line 380 stops it. You should always make sure that the
start values are one greater than the chosen waveform
values,

To hear the effect of changing waveforms try
modifying the siren program by typing in the following
two lines which change the waveform from a sawtooth
wave (32) to a triangular wave (16):

pee e e e S T —

330 POKE §+4,17

380 POKE S+4,16

The frequency or pitch of the two tones of the siren is
controlled by lines 340 and 360. Note that you need two
POKEs for each pitch. You will find out more about
frequency values in music programming on the next
two pages. Lines 350 and 370 control the durations of
the notes by using simple delay loops.

Programming sound effects
With the random noise waveform you can program a
range of sound effects:

GUNFIRE PROGRAM

r
»
=

Mocosonos
- XD
= i

>
SxomuwTTGY

<MOODOce |

1
2
3
3
5
5
7
8
R
]

This program produces the sound of a volley of
machine-gun fire. The envelope shape for each shot is
controlled by line 40 which is set so that the volume of
the random noise rises quickly to its maximum level and
then decays away fairly fast to about half volume before
slowly dying away altogether. Now try the following
program:

—_—

LASER CANNON PROGRAM

POOSODDOD B
S

MNOUNADIID
o
<DZTTNVTG

WO b b e e [~

This produces the sound of a laser cannon firing and
shows the effect of changing the frequency of the sound
rapidly, from high to low, while itis playing. This effect
is created by line 140 which changes the frequency
within the FOR ... NEXT loop.

Finally, here are two programs that produce very
different effects. The first is a piercing electronic bird
call, while the second is the sound of an engine slowly
coming to 2 halt (press RUN/STOP and RESTORE
when you’ve heard enough of them!):

BIRD CALL PROGRAM

-
-

S
=

=)

il

@F O
DD L DEAR M+

O 116360
el

PRl @

- o S8

— —ARONSTRH

TPNOUTSMD

if

M OO0000000
a

1
2
3
3
5
&
Vd
8
9
3
1
1
R
8

ENGINE PROGRAM

r
@
=

18:NEXT

Ok (O 00 =3 O L U b

SOUND MEMORY LOCATIONS
To specify a sound, the following controls for each channel must be
POKE into the SID chip.
Function Channel
1 2 3
Note frequency (low value) S+0, S+7, +14,
Note frequency (high value) S+1, S§48, +15,
Square wave pulse width (low value) S$+2, +9, +16,
Square wave pulse width (high value) +3, +10, S§+17,
Waveform/main channel control +4, +11, S+18,
Envelope shape (attack/decay) +5, +12, S+19,
Envelope shape (sustain/release) +6, +13, S$+20
Filter mode/master volume S+24, +24, S+24,

NOTES, CHORDS AND MUSIC

All the sound programs you have tried so far have been
created on channel 1. You could have just as easily
chosen channels 2 or 3. But the Commodore is not
limited to playing just one channel at a time. With the
right program you can make it play chords —a number
of simultaneous notes —and these can be put together to
produce harmonies.

To play a single sequence of notes on one channel all
you have to do is enter a list of lines that POKEs note
values into the frequency control register pair. Here is
an example program for channel 1:

CHANNEL 1| TUNE PROGRAM

D -
e

w R
G

POKE _S+1,16
: NEXT f

D b & ol

S ADADADAD AL & =i on % 1

80

[
w
o @

SUCOONWBWONWED
R i
W e
DN N,
S i

o
W W

POOOODOOODDODVDDOOTD &
we

MO-DULWNI=DDODUN S Gt
3

B e A B B e)
- COOEEC00oPEOSO000:

L
1
1
i
i
i
i
i
i
i
i
2
2
2
5
2
2
2
2
2
R
|

This method works well, but you can quickly see that it
would take several screens of listing for a tune of any
length. A better solution is to store the frequency or
pitch values in DATA statements and have a short
program to READ and play the notes. Here’s the same
tune, with slight modifications:

TUNE PROGRAM WITH DATA

,.
@
-

3

L ey

=
DR

<TTOD TNV VO=T DY

- DIDORODOM Mmoo
W

AS
ORI I DND D=y

DIDDI + bk

DDIOM MMTOTOML,
S ONOL WG= =T
Sty T oToa

8 :
D
E
E
T
3
1]
<
i
i
2

et Fatd

5

NS WOONBU LD WD
POOOOOOTOTOCODD

MDh L S WOWWOIWE WLW
o

There are three DATA values in this program for each
note, two for the frequency and one for the duration. If
the “high” frequency is 0 then the program will produce
a silence and if it is negative then this will END the
program, simply terminating it without PRINTing a
line number.

Once you have entered this program, playing any
tune is just a matter of carefully converting each note in
the tune into its equivalent high- and low-frequency
values and putting them along with a duration into the
DATA statements.

How to play chords
With channel 1, you can only play single notes, but by
using all three channels you can play chords:

SIMPLE CHORDS

OOD w
@
VNV
Zmommrnooosonoay
s

DODCORRRTARIRA
FRTARMM | mirmmm,

MBLWN=DEODDED

L
&
2
3
3
3
(3
7
8
S
i
1
i
1
1
i
R
[}

Try RUNning the program and listen to the result. The
chord builds up to three notes playing at the same time,
the maximum number that can be played together, This
enables you to play any tune where up to three notes
need to be played simultaneously.

G TOGETHER CHANNELS

The chord program adds together three channels to produce a harmony.

Channel 3
Channel 2
Channel 1
TIME sl 1000 1500 2000 2500 3000

(T loop duration)

Programming sheet music
The next program is a chord version of the program to
READ notes from DATA statements. The musical

score below shows the notes that have been written into
the program. When you are trying this, remember that
“tied” notes are continuous, so that if they are of the
same pitch you can treat them as one note by combining
their durations.

() u
P — T f = =1 —
Ty T | T N—1—+
LGP] = 2 o= - 1
) f f F M'r
P ——
y T - = T 5|
o e | i —— f 1 3 A=
#T o = =t T i 4 =
#l = b = m— T |
— 514 t

How the music program works

An important fact to remember when programming
music on the Commodore is that once the SID chip has
been instructed to produce a sound on a particular
channel, it will continue to do so until the sound is
turned off, or until a new sound is programmed on that
channel. In the music program here, the DATA values
again control frequency and duration, but this time
they control channel as well. If you look at line 130, you
will see a series of nine numbers. The first of each group
of three is READ as a channel number, and this is
followed by the high- and low-frequency values for a
note in the first chord.

If you now look at line 140, you will see that the first
figure is 0. Line 70 tells the computer that after
READing a zero, it will treat the next number as the
length of time during which it stays in a delay loop. In
this case the next number is 160, so the computer waits
FOR T=1 TO 160 before it goes on to READ the next
DATA number, which resets channel 2.

SHEET MUSIC PROGRAM

SID G L WFI=
DOV
000

R T=

£ TO D =

(CxT
POKE

S+

i TOROon
L DBDDDDIDDD

o o e o e i

ES

SELECTING A PITCH VALUE
This chart shows the pitch values for seven octaves. Each note requires two pitch values for p
0
b’ 4
:g = s e = .8 =y =3 = S =
| e o= == aEE — ! 4 ob 4 eb| o |
€Y — S5 = P = & = o s = . =
T = P o — &
== |otor| o |eFeF| & | = [#Ho | ©
7 134 24 [142 18 | 150 132 [159 120 | 168 243 | 178 255 | 189 164 | 200 235 | 212 221 | 225 133 | 238 238 [253 35
6 67 12 (71 9 75 66 |79 188 |84 122 |89 127 [94 210|100 117 | 106 110 | 112 195 | 119 119 | 126 146
5 33 134[35 13237 161 (39 222 |42 61 |44 192 |47 105 |50 59 |53 S5 |56 97 [S59 188163 73
4 16 195|17 194[18 209[19 239 |21 30 |22 96 [23 180 (25 29 |26 156 |28 49 [29 222 |31 164
3 8 98 [8 225|9 1049 24710 143[11 48 |11 218 (12 143[13 78 |14 24 |14 23915 210
2 4 49 [4 113|4 180|4 2525 72 |5 152|5 2376 7 |6 167|7 12 |7 119|7 233
1 2 242 56 (2 9 |2 1262 164|2 204(2 247(3 36 |3 33 [3 134|3 188(3 245
0 1 121 28 [1 45 (1 63 [1 8 [1 102|1 123|1 146|1 1701 195[1 2221 250
NOTE Cc lC# Db D D# Eb B F F# Gb G G# Ab A A# Bb|B# Cb

UNPREDICTABLE PROGRAMS

Although computers generally work with precise
information, doing exactly what you tell them to do,
most computer games are based to some extent on
chance. If you want to make something happen at an
unpredictable time, or if dice are to be thrown or coins
tossed, you can’t tell the computer what results to
produce every time or the element of chance would
disappear. The way to build chance into a program is to
use RND. You will already have come across this
command — it was used to produce a series of random
numbers for example in the math test program on pages
30-31. RND, as you have probably guessed, stands for
RaNDom. It allows you to generate random numbers
up to a maximum that you can set. You can then use
these numbers to produce unpredictable sequences.
The following program uses RND to PRINT a series of
random numbers. The numbers selected by the
program are all decimal fractions:

RANDOM NUMBER PROGRAM

r
o =

7
o -
x

FRINT

ZTMZVOMTD
IO

: PRINT : POKE 241,12
NEXT

80
: PRINT POKE 211,18

MUAAWODOOHODODHD
POOOOED
<HTVNTIMIOMDBEO

2

i
T
21
3
3
3
&
7
8
g
i
i
1
i
1
i
R
L]

TR NI AR

* 5 B
* .68359524 *
* *

NP AH AR AR A AN

This uses RND(0) in line 110 to generate random
numbers between 0 and 0.999999999, while lines 30 to
90 set up a border of asterisks to frame the numbers.
Very small numbers include the E symbol that you
came across on page 19. Normally, as each new number
is PRINTed, it automatically erases the last number —
simply by PRINTing on top of it. However, when
something like E-4 appears, it is not automatically
erased. Line 140 has therefore been written into the
program to take care of that.

Although RND is called the random function, this is
not strictly true. More correctly, it is known as a
“pseudorandom” function, one which produces results
according to set patterns. Which particular pattern is
produced by RND(0) is determined by the time that has
elapsed since the computer was switched on. Since
there are so many different possible values for this, the
numbers produced are for most purposes completely
random.

Producing random whole numbers
If you now replace line 110 with:

110 PRINT INT(RND(0)*10);

and RUN the program again, you will notice an
immediate change in the display. The numbers are no
longer decimal fractions, in fact there’s no decimal
point at all. Instead, the program is generating whole
numbers between 0 and 9 inclusive — a much more
useful result for programs. INT, which you came across
on page 29, rounds the random number produced down
to the nearest whole number or integer. By using RND,
it is quite easy to get the Commodore to simulate
throwing dice or tossing coins. Here is a program which
selects random numbers to imitate coin throws:

COIN TOSS PROGRAM

w
s

= GOTO 78

WDODOUN L
;ooocuaoéa 2,
Somuo~DTTD
<OOROT | VXD
B e i ey

As a tossed coin can have only one of two values — heads
or tails — line 40 produces a random number that is
either 1 or 2. Heads are represented by 1 and tails by 2.
COINS$ represents the result of the current throw. If
A=1, then COIN$ becomes HEADS and line 60 is by-
passed. If A=2, the computer decides that the
condition in line 50 is not true, and so it goes on to set
COINS$ to TAILS in line 60. The FOR ... NEXT loop
using the variable Q, in line 80, produces a short pause
between each throw:

COIN TOSS DISPLAY

Using random effects in graphics programs
You can produce some fascinating effects with RND by
incorporating it in graphics programs, so that the
computer is instructed to draw random graphics
characters at random positions on the screen. If you
then make the computer repeat this a number of times
by using FOR ... NEXT, you can build up a complete
graphics pattern which will be different every time the
program is RUN. This program uses RND in this way.
Line 40 chooses a random text color, and lines 50 and 60
pick two random X and Y co-ordinates:

HEADS-TAILS

MPDDMMMMB MNP MBMMD
Dt DD D DD DD i D Dt
S rPOCOr oo~ oD
DODDHOBHDBBDDOD DD
B e el b o s o 0
DMDPIMDMDDAMMMDMMM
D DI DD DD = D D>
FOrOrOrrORORr OO0
DODDDDBDAPADDDNDD
HAZ AT AT AT AT
DDMDMDMDMDDDIDDDD
A et T 2D bt Tt et 2 ettt
OO OO O
BODDODBNDDNDADHND
o e . - o e
MMM DD MMD MDD DID
DD I i D e D D A P
SOOrTroroDEor T
DONDNHBHRNNDBHNNHNNOD

T
H
H
T
H
I
H
H
T
H
H
H
H
I
T
T
H

How random is a random program?

It is possible to write a program that will show you just
how random RND is. If you use RND to toss an
electronic “coin” 100 times, you should get roughly 50
heads and 50 tails each time. You can actually test to see
if this is true. Key in this program by amending the coin
toss program. When you RUN it, the computer will
PRINT totals showing how close to 50:50 the heads and
tails are each time the program is carried out:

RANDOM GRAPHICS PROGRAM

=
7 —
]

MoNOCoBoes

>
OXLpexO™

i
2
3
pet
b3
&
7
9
8
R
|

—
Line 70 looks more complicated than it really is. Using
the formula you saw first on page 36, it POKEs a
character and color at the screen position X,Y. This
time, the character can be either a diamond or a cross —
the selection is made every time by 90+RND(1)*2
which picks the character code. You can use this
program as a basis for producing a whole range of
different displays by altering character and color
settings:

RANDOM TEST PROGRAM

()
-

DALA—E DT

TVVVO—DMDD
DDLH =TT DITOWX

R
3
0
F
ar
0
R
R
1
1
P
P
P
F
N
¥.

MONLLHIOODORCODED

9
0]
i)
8
9
8
8
A

D

Wb s b = (D QO T RS =

RANDOM GRAPHICS DISPLAY

[e e [T I RS T PP

WRITING SUBROUTINES

You will often want to use the same few lines of a
program again and again to carry out the same
calculation or to display the same group of characters on
the screen. To avoid writing out the same lines time
after time (and using up too much of the computer’s
memory) you could branch off to frequently used
sections of the program with GOTO. However, the use
of GOTO is frowned on by many programmers. Using
it carelessly can turn your programs into untidy mazes
that are impossible to understand or debug.

The easiest program to analyze and debug is one that
is written methodically in blocks or modules, each of
which you can test independently of the other, if
problems arise. If you look up the listing of a good
games program in a magazine, for example, you will
find that it works something like this:

MAIN PROGRAM SUBROUTINES
r Set up screen display |
[]
[t o e [Tt —
]
| Start program phase 1 %
]

Display A
l Increase game speed phase 2 Time delay B

¥

= = Display B
| Switch to more difficult game Time delay C

[}
3 Display C
l Final screen display Dis;nny

How to use a subroutine

With the Commodore, frequently used blocks of
programs can be “set aside” as subroutines.
Subroutines are set up using the command GOSUB.
This command allows you to branch off from the main
program to the subroutine and then return to the main
program again. The command looks like this:

50 GOSUB 500

Here the main program RUNs normally until it reaches
line 50, which makes the computer jump to a
subroutine at line 500. After it has been through the
subroutine, it automatically returns to the main
program at line 60 — the one after the line where it left.
The subroutine must be ended by the word RETURN.
Without it, the computer will not go back to the correct
point in the main program.

You can use GOSUB in almost any program where

the computer has to repeat an operation. The next
program produces a temperature conversion chart,
using three types of measurement, Centigrade,
Fahrenheit and Kelvin. The subroutine at lines 90 to
110 makes the computer PRINT out a line on the table
and then RETURN to line 70. The command END at
line 80 stops the main program carrying on into the
subroutine. If you miss out END, the computer will
reach the RETURN command at line 110. It would
then produce an error message because it had
encountered a RETURN without its own GOSUB. You
will also notice here that the subroutine is actually
inside a FOR ... NEXT loop, so it is “called” each time
the Centigrade temperature is increased by the NEXT
command. There is a new command — STEP - in line
50. This makes the loop increase C in jumps of 10
instead of 1. STEP does not always have to be a whole
number (it can even be negative):

TEMPERATURE CONVERSION PROGRAM

N =
| 9DOO

8 TO 129 STEP 18

BC(4)>;C; TAB(16) ;C*9/5+32;TAB(2
TO 200 : NEXT A

WD OO ~ITI |
MO EaRE®

48
-38
-28

oo e LS00 NS GO b e
NODD0DDIEOD 1

In this program, the subroutine is not actually saving
any space. However, if you extended the program to
carry out other functions, the subroutine could be
“called” again as often as you wanted — saving both
space and memory.

Setting up “menu” displays with GOSUB

In many programs, you are initially given a “menu” or
choice of options to select. This choice is often
programmed by using GOSUB. When you enter your
selection, the program goes to the appropriate
subroutine and sets up the display for the game or
function that you have picked.

Here is a simple listing that shows how you can do
this. The program can set up either of two basic
displays. The displays are produced by a subroutine —
which colors are used depends on your INPUT
following line 20. In this program, a keyboard character
group moves across the screen. If you were using itina
real games program, you could call the subroutine as
often as you wanted:

MENU PROGRAM

b Who =
DNCOD =
I 7]
=

©
DTG L DD

PRINT : POKE 211,%
NEXT H

F
N
P

MADNOD DOD—DD
POOCOSD

<VVVVVO 1OMO Q0 M 0
FRRTOCO RMBrRBD

WO OO-~ZDU
°

<
i
i

0
o

GOSUB is a particularly useful command for many \
games programs in which a tune is played over and over
again. Instead of repeatedly typing the listing for the
tune, you can simply write it once, and then enter a
GOSUB command, followed by the appropriate line
number, each time you want to repeat the tune.

Using GOSUB with animation

As you will have discovered when learning about simple
graphics, writing programs that involve animation can
be very time-consuming, particularly if you want
several characters to move. GOSUB is particularly
useful in programming animation:

GOSUB ANIMATION PROGRAM

=

v

a
)
8
1]
R
i)
L]
8
i}
8
8
i
2
8
;‘
R
3
3
H
S
E

POTVOONDODHE!
< MO RSOMOT

o w

1
3
3
H
3
6
7
8
9
i
T
i
S
3
5
H
3
3
C
3
R
| |

Here is a program which PRINTs a target — three
graphics symbols — on the ground, and which then
PRINTSs a succession of aliens falling from random
points at the top of the screen. If one of the aliens then
hits the target, line 100 directs the computer to the
subroutine at line 500, producing a series of flashing
colors before the program resumes again:

GOSUB ANIMATION DISPLAY

ko4 Fod kod Fod - Fod

Fod ko4 Fod

HINTS AND TIPS

When you are learning to program your Commodore,
you will probably have come across a number of ways of
improving your technique by trial and error. However,
there are some methods of saving time or sorting out
problems which, although simple and effective, are not
necessarily obvious. On these two pages you will find
some “tricks” which will help you to produce programs
that are well organized and bug-free.

Using REM as a marker or mask

Because the command REM makes the computer
ignore anything that follows it in a line, it can be used in
labeling and testing parts of a program. On page 20 you
saw how REM can be used in the first line of a program
to show you what the program does. You can also use
REM lines throughout a program to remind you what
each of the parts does, and the longer a program is, the
more helpful this becomes.

However, when a program gets really long, it is
sometimes difficult to pick out REM lines among all the
others. One way you can draw attention to them is by
following REM with some symbols which clearly stand
out from the rest of the program. Here is one way of
doing this:

PROGRAM LABELED WITH REM

BWROXTITTT
X

TAB(4);C; TABCLS) ;C*9/5+32;TAB(2
A=1 TD 200 : NEXT A

M=OvEOE00 | ODOED

L
2
2
(3
8
1
2
3
T
4
3
&
é
8
9
9
1
i
R
u

When you read through this program, the REM lines
are visible at a glance.

REM also has a use in program development. You
will often want to test a program to see what happens if
certain lines are left out. This may be because part of the
program takes a long time to RUN, or produces a sound
that you don’t want to hear time and time again!

You can skip part of a program by using GOTO or
RUN followed by a line number, but this won’t help if
you just want to miss out a few lines in the middle. The
way to deal with this problem without resorting to

deleting and losing the lines altogether is to insert a
REM command at the beginning of each line you want
to skip. This will mask or “disable” the lines, as the
computer will ignore all the commands following each
REM. Here is a program in which this has been done:

LINES MASKED WITH REM

OOO0 —
@

SZTMIX/VDVD
<Moo mMmxo
B 2

L
il
2
3
3
s
[
7
R
|

neco
>

How to check nested loops
When you use a number of loops in a program, it is easy
to get the loops tangled up so that the program does not
produce the result you want. But there is an easy way of
checking if loops are “nested” without overlapping.
You do this by connecting up the beginning and
ending of each loop with a line. Here is a program with
nested loops, showing how these connecting lines
should fit inside each other. There are three
FOR ... NEXT loops, two contained within the main
loop between lines 20 and 90:
PROGRAM WITH NESTED LOOPS

@
=

m
WOODINUNLGII
MOCoOSOEED

ES
DXEMXTTMTMT

When you have connected up every FOR with its
NEXT, you should find that none of your lines overlaps
any other. If any does, you have wrongly nested loops,
and the chances are that your program will not work
correctly. Of course you can’t draw lines on the screen
itself, but this method can be used on a program layout
or a printed listing.

Useful debugging techniques

Although the Commodore has a large repertoire of error
messages which will alert you to any incorrect lines in a
program, often a program will RUN without any
hitches, only to produce a result entirely different to the
one you had in mind. How then do you go about finding
the source of the problem?

As you have just seen, you can use REMs to mask
parts of a program, or you can link loops to check that
they are nested properly. But if that doesn’t help, you
can often track down the problem by giving each
variable in a program one set value, instead of allowing
it to go through many.

Imagine that you have a graphics program which uses
the command RND to produce a display which is built
up by looping. If it does not work in the way you expect,
you can take out the RND, and instead use a number.
You can then work out what effect this number should
have when the program is RUN. Now take out the lines
that start and terminate the loop (you can use REM for
this). If the result of a single RUN through is not what
you predicted, the display should give you some idea of
where your program is going “wrong”:

PROGRAM EDITED FOR TESTING

Above is the random graphics program from page 53,
edited so that the random variables in lines 40 to 60 are
fixed. The original lines are still kept in, but are
disabled by REMs. The loop between lines 30 and 80 is
also disabled by a pair of REMs so the program only
PRINTS once.

If the program is RUN, you can check whether or not

the program has done what was expected, and if not, it
is now much easier to work backward to the source of
the problem. You can use this technique in any
program which uses variables. By substituting a single
value for each variable, you can check your expected
result with the result when the program is RUN.

Don’t forget that the STOP key can be very helpful in
telling you how far the computer has got through a
program. If you RUN a program which either seems to
do nothing, or gets stuck at a certain point, the STOP
key will tell you where the hold-up lies. If you then
LIST the program, you will often be able to identify the
problem with the line identified by STOP and correct it
so that the program works.

How to recover lost programs

Finally, if you do much programming sooner or later
you will probably lose a listing by accidentally typing
NEW before you SAVE it. However, you don’t have to
start programming all over again. The following screen
shows a short sequence of direct commands for
program recovery (CLR means press SHIFT+CLR):

CANCELING NEW

POKE 2050,8
SYS 42281

POKE 45,PEEK (174>
POKE 48,PEEK <417
POKE

POKE

POKE

POKE
CLR
LIST

This works because when you type NEW, BASIC does
not actually erase the program listing from memory. All
that happens is that several pointers that tell BASIC
where the program starts and where to store all its
variables are reset to values that make BASIC think that
there’s no program in memory. Your old program
actually remains in RAM until you start a new one.

The first two lines on the screen sort out where in
memory the deleted program ends. This is stored in
memory at locations 174 and 175. The rest of the
commands copy this address back into the pointers that
were lost when NEW was keyed in. The pointers at
locations 45/46 and 47/48 are used to tell BASIC where
its list of variables starts and the pointer at locations 49/
50 is used by BASIC to mark the position in memory
where its string space ends.

HOW TO KEEP YOUR PROGRAMS

Whatever you type into your Commodore is only stored
in the computer’s memory for as long as the power is on.
When you switch off, your program disappears.
Obviously, you can’t type in every program you want to
use each time you switch on. Fortunately the
Commodore offers two ways to store programs by using
either a cassette recorder or disk drive.

The Commodore cassette recorder is a very simple
machine to use because it is designed specifically for
storing Commodore programs, and all its controls are
permanently set to receive the computer’s signals. The
disk system allows you to carry out more complex data
handling, but at the simplest level, it uses just the same
commands as the cassette recorder.

Program storage commands

Programs are recorded onto tape or disk and played
back again using the commands SAVE and LOAD.
You can try these out with any program in this book.
Type a listing into the computer and then RUN the
program to make sure that it contains no typing errors.
Then decide on a filename for the program not more
than 16 characters long. Now type in SAVE
“FILENAME”, using the name you have chosen. If
you are using a disk, type SAVE “FILENAME”,8.
When you press RETURN, the process begins:

CASSETTE SAVE MESSAGE

With a tape system, SAVEing starts when you press
RECORD and PLAY. With a disk system, you do not
have to do anything further after keying in the SAVE
command. When the computer has SAVEd the
program, the READY message will appear. Your
program should now be stored.

How to check tapes and disks
It is always a good idea to check that the program you

have just SAVE is in fact stored correctly. To do this
you type the command VERIFY followed by the
filename (and ,8 if you are using a disk system) and
press RETURN. If you are using tapes, when the
computer finds a program on the tape it will PRINT the
filename. To get the computer to VERIFY the
program, press the C=Kkey (this is not necessary for disk
systems). Now the computer will compare the SAVEd
program with the one in its memory. If there are any
differences, a VERIFY ERROR message will show you
that the SAVEd program has been stored incorrectly.

Playing programs back

If you now type NEW, you can try recalling a program.
Typein LOAD “FILENAME?” (again add ,8 for disks).
The program will now be LOADed into the computer
ready for RUNning. With a disk, the drive will
automatically move to the blocks where the program
has been stored. With a tape system, it helps to use the
counter to move to the right part of the tape first:

LOADING A TAPED PROGRAM

LOAD"'FOR-NEXT'"
NG FOR FOR-NEXT

o

L
4
23
3
30
3
R
]

If you type in LOAD “$”,8 with a disk system, the
computer will LOAD the disk’s directory. Typing
LIST will then enable you to see the filenames of all the
programs on the disk.

LOADing from inside a program

There is a way by which you can make one program
RUN another (this is known as “chaining™). If you use
the LOAD command as part of a program line, the
computer will LOAD the program specified and then
go on to RUN it. With this technique you can link a
number of programs together. However, if you do this
you should remember that values of variables in any
previous programs will remain in memory. This does
not happen when LOAD is used outside a program.

SPRITE GRIDS

Commodore sprites are each composed of 21 rows of 24 These can then be entered as DATA in a program. After
pixels, each pixel being controlled by a single bit in a pencilling in a design on the grid, add up the bit values
POKE statement. You can use the grid below to design for each group of eight pixels on a row. You can then
your own sprites and work out their POKE values. record the totals in the columns on the right.

0|1[2|3|4|5|[6|7]|8|9(10/11]12|13|14|15]|16|17|18(19(20(21|22|23 DATA values
12864 |32 |16 | 8 | 4 32116 |8 |4 | 2| 1]128/64|32]|16 |8 |4 |2.|1

g8
2

vl wlo|n| sl wio-e

-
=)

—
=

-
=)

13

Horizontal co-ordinate
Positioning sprites 0 2324 34334 51
Sprite position co-ordinates can have any value 0
from 0-255 vertically or 0-511 horizontally.
However, only a part of this range is actually visible 59
on the screen. The diagram on the right shows how 39
these co-ordinates relate to the screen. The central Screen area
panel is the visible area on the screen. This extends
from 24 to 343 horizontally and 30 to 229 vertically.
This means that you can move sprites on and off the
screen smoothly.

Because vertical position runs from 0 to 255, it
can be controlled by a single byte of information.
Horizontal position, on the other hand, needs two Sprite
bytes if the whole of the range from 0 to 511
(=2x%255) is to be used. If you want a sprite to 229
continue moving past horizontal position 255, the 230
V+16 location must be turned on for the sprite
concerned. 255

w

Vertical co-ordinate

SCREEN MEMORY CODES

At text resolution, every point on the Commodore
screen can be accessed using the POKE command. This
allows you to put characters in any color onto the screen
at specified positions. Two separate POKE commands

0

are needed — one to specify the character that is to
appear at a screen position, and another to set its color.
The grid below shows how the screen memory and color
memory locations are selected.

0 20 0

Screen memory

1024 55296
and color memory et D
To find out the two |1} o0
memory locations of 1184 55456
5 1224 5549
any point on the 15 55536
screen, first find out 1304 55576
the row POKE values. Sg: ggg!g
=l
The complete screen i 369
and color memory 1464 55736
locations can then be 1% 5776
; » 1544 55816
determined by adding 1584 55856
the column number to }gﬁ ggg‘ig
each POKE value. 5 35076
Once you have deter- 1744 56016
mined these two 7% 56036
1824 56096

numbers, youcanadd 1864 56136 :
1904 56176

a Jha.racter and color e 5 ‘

value. 1984 56256 [

Character POKE values

The chart below shows the POKE values for the
Commodore’s upper case and lower case characters.

Character codes are POKEd together with the screen
memory values. Values from 128 to 255 produce the
reverse images of the characters shown here.

0 1 2 3 4

5 7 8

0

6

|

10

=

o
0 |0
—

b
1
v

<|\=

20

=

N

2| Z|T

30 SPACE

(N |

o|® || W o

50

60

Bl w1 || R

—

70

le][a)
~| T

80

X e -
<=
€80
M| z|o
el

N| |
oy
»

90

il

SPACE

100

NZ | =|>

110

e | I el N1 -

LR =L V= *
B HRP]~ ||+ | = || 2O
(aHI&] =B Ao«

[][l i | S S e e e Ll [©)
N

LD

120

RV NEC R el
B ™o e | ~|gl—|o|®

e[S

The ASCII character set forms a single sequence of range are used differently by diﬂ"er(;m maci;jn;s. On l
characters and control functions that can be accessed by the Commodore these control a range of functions like
the command CHRS. The ASCII system provides a color settings and represent keyboard graphics
standard digital coding for computer characters. The characters. The ASCII code for each character only uses
codes from 33 to 127 represent the same characters on 7 bits of a byte, leaving room for an eighth bit for
almost all microcomputers, while the codes outside this “parity checking”, or transmission error monitoring.
0 1 2 3 4 5 6 7 8 9
0 Wiz SHIPT C=/SHIFT+C=
10 RETURN | Lover CQusor Igvson QLR
20 | INST/DEL Red g;;ls‘or
3() | Green Blue SPACE | e # $ % & .
40| () * + > = : / 0 1
so| 2 3 4 5 6 7 8 9 : 5
60| < = > ? @ A B G D E
70, F G H I J K L. M N (8]
8| P Q R S T U \Y% W X ¥
0| Z [£ 1 i) < | H| [« | T H
w| H | B H D O8N 0| N
w A 10O @ | O] | 04| X
20| & | ([| [¢ | BH | E] [N Orange
130 l:g}ml:ﬁm E:;gtion ll: :;gtion E:;:tion Il::;gdon f :;lgtion l;:yngtinn
140 E:;gﬂ"m SHIFLS | Yepes Black ‘Cl‘;’s‘” RVSOFF |GoR . | INST/DEL| Brown
150 [E o [e e |pa |Puwe |@PT |Yelow |Cym
wolseace | N] | wd | OO | OO | 0 | B8 | (1| = | W
wol (M | MW [W [8 [A O [d[H]| H|H
wo| O | 0O | | O B8 | | O] & |] H
wo| M | H I H @& | D/ B8 18|81 [
20 1 (NI NIPFHIOIN| WA O O] @
2000 [v | 4] X & | [| [¢ | H
20 &l | [N [seace | B | b | OO | O] | L]
20 B || & [P [(1| B | &40 |
20 4 | WK [H [|0 |0 [0 8| -
250 [1 | w] | [® | F1 | & | (M

GLOSSARY

62

Entries in bold type are BASIC keywords.

ASCII
American Standard Code for Information Interchange;
the character coding system used by the Commodore.

BASIC

Beginners’ All-purpose Symbolic Instruction Code;
the most commonly used high-level programming
language.

Binary
A counting system used by computers based on only
two numbers — 0 and 1.

Bit
A binary digit— 0 or 1.

Byte
A group of eight bits.

Chip
A single package containing a complete electronic
circuit. Also called an integrated circuit (IC).

Converts an ASCII code into the character it represents.

CPU

Central Processing Unit. Normally contained in a
single chip called a microprocessor, this carries out the
computer’s arithmetic and controls operations in the
rest of the computer.

Cursor
A flashing symbol on the screen, showing where the
next character will appear.

DATA

The computer treats whatever follows DATA as
information that may be needed later in the program.
Used in conjunction with READ.

Debugging
The process of ridding a program of errors or bugs.

END
Halts a program. (See also STOP.)

Envelope
The change in amplitude (volume) of a note while it is
playing. Envelope shapes are selected with POKE.

Filename
A name given to a program or set of data to enable
storage and recall on a tape or disk.

Flowchart
A diagrammatic representation of the steps necessary
to solve a problem.

FOR ... NEXT
A loop which repeats a sequence of program statements
a specified number of times.

GOSUB

Makes the program jump to a subroutine beginning at
the line number following the command. The
subroutine must always be terminated by RETURN.

GOTO
Makes a program jump to the line number following
the command.

Hardware

The physical machinery of a computer system, as
distinct from the programs (software) that make it do
useful work.

Prompts the computer to take a particular course of
action only if the condition specified is detected.

INPUT
Instructs the computer to wait for some data from the
keyboard which is then used in a program.

INT
Converts a number with a decimal fraction into a whole
number by rounding down.

Interface
The hardware and software connection between a
computer and another piece of equipment.

K
Abbreviation of kilobyte (1024 bytes).

LET
Assigns a value toa variable. The use of LET is optional
on the Commodore.

LIST
Makes the computer display the program currently in
its memory.

LOAD

Transfers a program from a tape or disk into the
computer’s memory. The program is identified by a
filename.

Loop
A sequence of program statements which is executed
repeatedly or until a specified condition is satisfied.

NEW
Removes a program from the computer’s memory.

ON... GOTO/GOSUB

Makes a program jump to one of a number of
statements or subroutines depending on the value of a
variable.

PEEK
Reads the numeric value in a specified memory
location.

POKE
Puts a numeric value into a specified memory location.

PRINT
Makes whatever follows appear on the screen.

RAM

Random Access Memory (volatile memory). A memory
whose contents are erased when the power is switched
off. (See also ROM..)

READ
Instructs the computer to take information from a
DATA statement.

REM

Enables the programmer to add remarks to a program.
The computer ignores whatever follows REM in a
program statement.

RESTORE
Resets the computer to READ the firstitem in a DATA
list.

RETURN
Terminates a subroutine. (See also GOSUB.)

RND
Produces numbers at random within specified limits.

ROM

Read Only Memory (non-volatile memory). A memory
which is programmed permanently by the
manufacturer and whose contents can only be read by
the user’s computer.

63

SAVE
Records a program currently in memory onto a tape or
disk. The program is identified by a filename.

SID
Sound Interface Device; the chip used by the
Commodore to produce sound.

Software
Computer programs.

Sprite)
A mobile object block that is defined using POKE.

SQR
Produces the square root of the number that follows it.

Statement
An instruction in a program. There may be more than
one statement in each program line.

STEP
Sets the step size in a FOR ... NEXT loop.

STOP
Halts a program and PRINTS out the line number in
which it appears.

String
A sequence of characters treated as a single item —
someone’s name, for instance.

Subroutine

A part of a program that can be called when necessary,
to produce a particular display or carry outa number of
calculations repeatedly, for example.

Syntax
Rules governing the way statements must be put
together in a computer language.

TAB
Positions text along a line.

Variable

A labeled slot in the computer’s memory in which
information can be stored and retrieved later in a
program.

VERIFY
Checks that a program has been recorded correctly ona
tape or disk using SAVE.

VIC
Video Interface Circuit; the chip responsible for
controlling sprites.

INDEX

Main entries are given in

bold type

Addition 18

Alphabetic sort 31

Animation 38-9, 43, 47,
55

ASCII 17, 31, 34,42

BASIC6, 8, 20
BASIC ROM 8

Bits 62

Bugs see Debugging
Bytes 8

Calculations 18-19
Cartridge slot 6, 7
Cassette interface 6, 7
Cassette recorders 13, 58
Channel selector 7
Characters, ASCII 61
— codes 60
— grids 36
— keys 10
— POKE values 60
— sets 34
Chips 8
Chords 50
CHR$ 17, 61
Clock, jiffy 33
CLR/HOME 10, 11
Color, combinations 12
— keying in 16-17
— map 36
— POKE and PEEK
32-3
— sprites 46
Commodore key 10
Control ports 6
Conversations 26-7
Corrections 24-5
CPU (Central Processing
Unit) 9
CTRL 10
Cursor 10, 11, 33

DATA 40-1, 42-3, 44-5
Data banks 40-3
Debugging 25, 57
Decision points 21, 30-1
Disk drive 3, 58
Division 18

Editing 24
— keys 20

END 50

Envelope 48

Error messages 14, 25,
41,57

Exponents,
mathematical 18

Filename 58

Flowcharts 21

FOR ... NEXT 28, 30,
38,41, 56-7, 62

Function keys 10

GOSUB 54-5
GOTO 23,28,42,54,56
Graphics, animated
38-9,43,47,55
— grid 36
— keyboard 34-5
— sprites 44-5,46-7,59
see also Color

IF ... THEN 30-1
INPUT 26-7, 40
INST/DEL 10, 11
INT 29

Interface 6, 12

Jiffy clock 33

KERNAL ROM 8

Key functions 32-3
Keyboard 10-11
Keyboard graphics 34-5

LET 15

Line numbering 20
LIST 22-3,57

LOAD 58
Loops21,28-9,30-1,56
Lost programs 57

Machine code 8
Memory 33, 45

— screen 36-7
Menus 55
Microprocessor 8
MOBs (Mobile Object

Blocks) see Sprites
Multiplication 18
Music 50

Nested loops 56-7
NEW 23, 57
Notes 50
Numbers 26-7, 41

— random 52-3
Numeric variables 15

ON ... GOTO/GOSUB
42
Output formatting 27

PEEK 32,33
Peripherals, connecting
6,12-13
Phase Alternation Line
(PAL) encoder 9
Pixels 44
POKE 32-3
— animation 38, 39
- color change 32
— graphic displays 36
— key functions and
32-3
— for sound 48-9
— sprites 44, 45, 46, 59
— values 60
Power supply 6, 9, 58
PRINT 14, 18, 26, 27,

44
PRINT CHRS$ 14, 17,
20, 36, 39
Printers 13
Program listings 22-3
Punctuation 21, 24

RAM (Random Access
Memory) 8

Random programs 52-3

READ 40, 41,42

REM 20, 56

RESTORE 11, 32, 41,
43,45

RETURN 11

Reverse characters 34

RND 52-3

ROM (Read Only
Memory) 6,7, 8

Rounding numbers off

RUN 20, 23, 26, 56, 57,
58

RUN/STOP 10, 45
RVS 34

SAVE 58
Screen memory 36-7, 60

Serial port 6, 7
Setting up 12-13
SHIFT 11
SID (Sound Interface
Device), 9, 48
Sockets 6-7
Sound 48-9, 50-1
Special effects 48-9
Sprites 44-5, 59
— programming with
46-7
SQR 18
STEP 54
STOP 23, 28, 57
Storage 40-3, 58
Strings and string
variables 15
Subroutines 54-5
Subtraction 18

TAB 20, 27

Television receivers 6, 7,
12

Tuning in 12

UHF sockets 6,7, 10,12

Unpredictable programs
52-3

User port 6, 7

Variables 14, 15

VERIFY 58

VIC (Video Interface
Circuit) 8, 44, 45, 46

Voltage regulator 9

Acknowledgments
Dorling Kindersley would
specially like to thank Ian
Graham for his significant
contribution to this series.
Thanks are also due to Philip
Freebrey and Paul Rubert
for technical asssistance, to
Fred Gill for checking the
text, and to Richard Bird for
preparing the index.
Commodore Business
Machines (UK) Ltd kindly
helped in the supply of
equipment.

[L[]]] 5)

\ hol

DK EEEEEN

— PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

THE DK SCREEN-SHOT PROGRAMMING SERIES
Never has there been a more urgent need for a series of well-produced,
straightforward, practical guides to learning to use a computer. It is in
response to this demand that The DK Screen-Shot Programming Series
has been created. It is a completely new concept in the field of
teach-yourself computing. And it is the first comprehensive library of
highly illustrated, machine-specific, step-by-step programming manuals.

BOOKS ABOUT THE COMMODORE 64
This is Book One in-a series of unique step-by-step guides to
programming the Commodore 64. Together with its companion volumes,
it will build up into a self-contained teaching course that begins with the
basic principles of programming, and progresses — via more sophisti-
cated techniques and routines — to an advanced level.

ALSO AVAILABLE IN THIS SERIES
Step-by-Step Programming for the ZX Spectrum
Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the IBM PCjr

PHIL CORNES
After taking a B.A. in Mathematics and Computing, Phil Cornes has been
involved in system development of computer-based education at British
Telecom's National Training College. He has been a part-time technical
author since 1978, and has become a regular contributor to personal
computer magazines such as Personal Computer World, Computing
Today and Electronics Today International. He has written a book and a
large number of articles on programming and using the Commodore 64.

: | 7
18 DK
=% ™~ PROGRANIMING SERIES |
= STEP-BY-STEP |
PROGRAMMING |
i - il |
- | - | 1 J 1 |
0 50 O
PHIL CORNES u
| ‘ [1| [[]
] |
! | o ! i \ T
[I O | RN
| ' EEE EEEE [
|] LT |
| } \ !
s | ‘ |]
‘ EEN R \ \
] : | HEE !
| | EEEE { | i
|
] |
__aai |
! | |
= GUILD PUBLISHING LONDON ‘
[] 5] 5 A R T 1 0 A
] B 0

CONTENTS

Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrietta Street, Covent
Garden, London WC2E 8PS.

Designer Roger Priddy
Photography Vincent Oliver

Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1984
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Copyright © 1984 by Dorling
Kindersley Limited, London

This edition published 1984 by Book Club
Associates by arrangement with Dorling
Kindersley Limited, 9 Henrietta Street,
Covent Garden, London WC2E 8PS.

The term Commodore is a trade mark of
Commodore Business Machines, Inc.

publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,

mechanical, photocopying, recording,

or otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing

in Publication Data

Cornes, Phil
Step-by-step programming for the
Commodore 64. Bk. 2
1. Commodore 64 (Computer)——

Programming
1. Title
001.64°2 QA76.8.Co4

ISBN 0-86318-041-8

Typesetting by The Letter Box
Company (Woking) Limited, Woking,
Surrey, England

Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

Printed and bound in Italy by

A. Mondadori, Verona

SCANNING DRAWING LINES
| v | THE KEYBOARD = J
DEFINBIZANS LSBIE 1) {1] | CURVES AND CIRCLES
BIT MASKING |, B 1
| | : | Ii (4= | FILLING SHAPES
EXTENDING HIGH RESOLUTION
BASIC DECISIONS

o
|24 |

NATURAL GRAPHICS

& gl

The DK Screen-Shot Programming All rights reserved. No part of this 26

DESIGNING
CHARACTERS

| 28]
i)

ADVANCED
SPRITEMAKING

Se

| 30 [|

|

SPRITE ANIMATION

[R

R] 52—
| S gfmaca == lRAR FILING DATA
| Echgaaice im :p— WITH ARRAYS
HH SR e
Elit‘l I v‘*ti
Pl oy
[‘B | SHAPINGSOUND |, of 5+ pm—
' OVERLAPS [——szll—l TRACING ERRORS
AND COLLISIONS SOGRY)AENFGFEEDCTS : Eﬁ :
HINTS AND TIPS
E—
| WORKING WITH WORDS
’ T | | 1
: l Y !ﬁ} X] ==
PIE CHARTS WRITING GAMES 1
AND GRAPHS
— === = .
E— | WRITING4GAMES 2
BAR CHARTS et
T 158 [L |
HIGH-RESOLUTION
AND SPRITE GRIDS
{ 60 [
L=
CHARACTER SETS
=)
1234587839 101112 AlﬁjliM]
GLOSSARY
L__,J__i—s_sﬁp____l (S @"’ = :*;;@,”,,;
GRAPHICS WRITING GAMES 3 INDEX

WITH GRAVITY

DEFINING AND USING FUNCTIONS

All computers feature a range of built-in functions,
commands that can be used to transform one number
into another in a specific way. Functions produce a
result that can be used later in a program. SQR (SQuare
Root) and INT (INTeger) are two examples of
functions that are pre-programmed on the
Commodore. When you use these commands, they take
anumber and operate on it to produce another number.

The range of built-in functions on the Commodore is
quite wide, but if you want to use a function that does
not appear in the Commodore’s BASIC, you don’t have
to type out the instructions every time. The
Commodore allows you to program it to carry out
specific sequences of calculations. These sequences or
functions are “called” by the command FN (FunctioN)
and are defined by the command DEF FN (DEFine
FunctioN).

How to write functions for your programs

To use a function, you must first define what it is going
to do. That is done with a defining statement. For
instance:

120 DEF FNAX)=4*X+36

defines a function called “A”. The number that a
function operates on is known as its argument. In this
case the argument of the function is X. The function
takes whatever value of X it is given, multiplies it by 4,
and then adds 36. If in a program you wanted to put the
number 10 into this function, you would do so by using
the keyword FN like this:

200 PRINT FNA(10)

This would PRINT the value of the function when 10 is
substituted for X, which is 4x10+36, or 76.

Once a function has been defined in a program, you
can use it and its argument just like any other number
or numeric variable. For example, you can add,
subtract, divide and multiply functions and their
arguments together, and even make functions work on
numbers that are themselves functions. Unless you are
doing mathematical research you are unlikely to get this
far, but for more straightforward tasks functions are
easy to use and helpful in making programs simpler.

What can functions do?

The following program shows a simple way in which
you can put functions to work to produce a numerical
result which is then PRINTed. It takes the distance of
a star measured in light years and then converts it into
a distance measured in miles. The function that actually
does the conversion is defined in line 50. It multiplies
the number it is given by 5.88:

STAR DISTANCE PROGRAM

r
®
-

: POKE 53288,0 : POKE

(%]

m

£
W V=DV VT TVHNY
I TRERDRMDBOD

IOOODLOCODOOUG

=)

1
S
f
1
S
;)

T TABCi0);"MILES FROHM EART

WOTFTHOD SONBGN =

STAR DISTANCE PROGRAM
ey

ENTER STAR’S DISTANCE IN LIGHT YEARS
2 34.7

THE STAR 1S 204.636 THOUSAND BILLION
HILES FROH EARTH

Going to the trouble of using a function here might
seem a bit unnecessary, and in fact it’s unlikely that you
would use FN in such a simple program. But imagine
what would happen if you wanted to do the calculation
a number of times at different places in the same
program, and with different numbers. Itis then that the
user-defined function really comes into its own. When
the function is long and complicated, defining it just
once enables you to make calculation lines much
simpler to write and check. FN is very much like a one-
command subroutine that deals only with numbers.

Because an expression containing FN actually
represents a number, you can use it to replace any kind
of complex calculation. When you write your own
functions, you are in effect giving the computer
functions that its resident programming language,
BASIC, doesn’t already have — extending the
capabilities of the language.

Using functions in a calculation sequence
Imagine that you want to calculate the cost of something
that is sold by area — perhaps carpets to cover the floors
of a house. You would need to multiply the length and
width of each room to get its area, and then multiply
that by the cost of the floor covering per unit area. If you
called the length and the width X and Y, and the cost
per unit area Z, then the cost per room would be worked
out by:

(X*Y)*Z

In the next program, the cost for each room is calculated
by a function. It is defined in line 10 as function C. This
function is used right at the end of the program in lines
340 and 350, after values for X and Y have been
supplied, together with the value for cost per unit area,
P, which is asked for by line 50:

CARPET COSTER PROGRAM

Lines 70 to 290 set up a graphics display which
produces the outline of a room, and then wait for you to
key in values for width and length (you can use any
units you like, as long as you also use them for the unit

area price). Once you have entered the two figures, the
program INPUTs the values and then clears the screen.

The next display takes the cost per unit area— square
yard, square meter or whatever you have used — and
then uses it to tell you what it would cost to cover the
room. As well as using the function C to produce this,
it uses it again in line 350 to update the running total.
The program passes around this loop once for each
room in turn. After each pass you will find that the
TOTAL COST line in the second display will be
updated to show the running total of all the costs
calculated:

CARPET COSTER DISPLAYS

R UNIT AREA
LENGTH 5
HIDTH 12

You can define a function at any point in a program,
although the line containing the function definition
must be carried out before the function can be used.
This means that it is usually best to put your function
definitions near to the beginning of your programs. In
the carpet coster program, using a function makes lines
340 and 350 simpler; with really complex calculations
functions are essential for making programs easy to
understand.

e ¢ [T I e

EXTENDING BASIC DECISIONS

The BASIC keywords IF and THEN let a program
operate in one way until the condition specified by the
IF statement is encountered. When this happens, the
program is then triggered to follow another course of
action. But the capabilities of IF ... THEN do not stop
at making a straightforward “yes” or “no” decision. By
combining IF ... THEN with the keywords AND and
OR you can make the commands tackle much more
complicated situations.

Because BASIC is designed to reflect how words are
used in ordinary language, you can use IF ... THEN
just as you would when describing a set of conditions to
someone. Here is a program which shows how you can
take IF ... THEN decision-making to a more advanced
level:

BOUNCING BALL PROGRAM

@
TUVTIVNVDON —

< DVVOKOHEDVTERVOOOOO ||

POKE 211,R+8

MO TR RO FFN

DC1)%iB)+6
POKE 241,X1
POKE 214,X%2

M OOE-OULRN+OOODDDDOOD =

> COOOOODOEOD

WO bbb b b O D= DU e PO (=
°

<

r
S EOTMMMIS by

DPOCOOOOS 6

o

<D=
S

MO LW~

EORORIRIRITIRITS

Lines 40 to 140 simply set up the display — an orange
outline box in the middle of the screen. Lines 160 and
170 specify the starting position and direction for a ball

(akeyboard graphics character) inside the box. To make
the ball appear to move, line 200 continually produces
new co-ordinates.

After this happens, lines 230 and 240 check whether
the ball has reached any of the box’s walls. They
examine the ball’s position to see if the row number is
one below the box lid or one above the box bottom, or
if its column number is one more than the left side or
one less than the right side. If any of these conditions is
met, lines 230 and 240 reverse the ball’s vertical or
horizontal motion, whichever is necessary.

How to add decisions together

You can now move on a stage further from the previous
program to see how more conditions can be
incorporated in an IF ... THEN statement. The next
program uses AND to test whether or not a series of
statements are true all at the same time:

DOUBLE BOUNCING BALL PROGRAM

@
=

TUVNVVTTN

241,R+8
KE 211,R#8

M0 DO

POKE 214,X%

BDORVDTN LW DOODODDEDD

PO b b GO0 DO UL GO =
CRCOODROIOD.

< XDDOXVEDTVIRNOONCOO ||

[td
m
]

-

Cue oty
O IAR DD =D DD TARKT
=3 -
OMMWT MM -CHC-C

MO L1+ ol OO0 DU Letofo~ =
=R

POCOOD OOPODODOODOEOOD 0
- OEOOTHTIT MMTMMRONCM-D o

WOWW0 6 DIIEPINITIIIRINININ
o

This program is very similar to the first one, except that
now there are two sets of lines that PRINT a graphics
ball at changing row and column numbers. And in this
program, each of the balls starts at a random co-
ordinate which is defined in lines 140 and 160. The balls
are then animated by lines 180 to 380. This display
shows what happens if you delete the erasing statements
in lines 190 and 210:

DOUBLE BOUNCING BALL DISPLAY

The second ball is made to set off in a different direction
from the first and at a slightly different vertical speed,
so that the two balls have a greater chance of meeting.
Otherwise, they would just follow each other around
the box in the same tracks. Line 320 is the one in which
the computer makes a multiple decision about the
position of both balls. Without this line, when the balls
met, they would just carry on through each other as if
nothing had happened. This isn’t a very convincing
simulation of what would really occur, so line 320
decides whether the balls are close enough together to
have collided. The line includes an IF...THEN
decision with three ANDs to see if X1 and X2 are
sufficiently close together, and then if Y1 and Y2 are
also within the same limits. It does this by taking X2,
for example, and then deciding whether it is smaller or
equal to X1+1 and simultaneously greater or equal to
X1-1.

If all these conditions are met, then it means that the
two balls are either occupying the same position or are
atadjacent positions, in which case they can be assumed
to have collided. A bleep is sounded and then the whole
process Starts again.

IF...THEN in games programming

So, as you’ve just seen, IF ... THEN is very useful if you
want to know whether or not two characters are
occupying the same screen location. This is often used
in programs in which one character is “shot down” by
another:

B e R S N T o

)

i,0

3 CHRS (18 ; CHRS
;CHRS(18 ; CHRS
51y

SOOD
on
W0

DVVXADWDTTD

<N =TVDT==XTOOO (| D!
200 MIDDTVOTIM Il T Kb imens

@

)
b 0 Ty

R MM

O XEMIMCH+ET =

i
0
i
1]
8
]
8
8
i
2
3!
3
3
8
8
2
9
8
E

DODOCODODDDED.

o

DI bbb b b (B O I AU A S OO
]

This program PRINT: a fire-base at the bottom of the
screen. It fires upward arrows at a horizontal target that
repeatedly flies across the screen. Line 180 checks
whether the screen co-ordinates of the upward arrow
are the same as those of the target. If they are, the
program jumps right back to line 10 and begins again.
If not, it jumps back to line 70 and moves all the
characters on one space. Line 130 checks whether the
upward arrow has reached the top of the screen, and
line 120 checks whether the target has reached the right
edge.

When you RUN the program, you should find that
the fire-base’s arrow scores a direct hit on the horizontal
target’s fourth pass across the screen. This happens
because the program is working with fixed figures. If
instead you use the following line:

60 X=INT(RND(0)x10+1):Y=19

the results become unpredictable and will change with
each RUN:

FIRE-BASE DISPLAY

SCANNING THE KEYBOARD

To key in new information while a program is RUNning
you have — until now — used the command INPUT.
With INPUT you must press RETURN after keying
the information in. This technique has its
disadvantages. Even when you know that it’s necessary
to use RETURN, you can occasionally forget, and
using two keys in sequence also slows programs down.
It is much more useful if you make the Commodore
respond without waiting for you to press RETURN,
just as arcade machines respond every time you press a
button. To make the Commodore do this, you can use
the keyword GET.

How the computer recognizes characters

As you may have found out from Book 1, all the
symbols that the Commodore recognizes are stored as
code numbers from 0 to 255, according to the ASCII
(American Standard Code for Information
Interchange) system. The computer uses this coding
system every time you INPUT a number or string, to
determine its content. There’s a complete ASCII chart
on page 61, but you can quickly get the computer to
PRINT the numbers and letters with their codes by
keying this in:

10 FOR N=48 TO 90

20 PRINT N;*“-";CHR$(N),

30 NEXTN

A partial ASCII chart then appears on the screen:
ASCII CODE CHART

OO0
RN
<COZMD O
(N N T |
SORORONVRED
O mIm NN
ORI
TGORDO V= =]

1
5
5
5
6
5
v
7
)
8:
8

(OIS TR G3

=
OLDOR

The next program uses the two BASIC commands GET
and ASC to respond when you press character keys by
taking the character’s code, changing it and then
PRINTing the character specified by the new code. The
result is a keyboard encoder which produces a coded
message as you type:

KEYBOARD ENCODER PROGRAM

MOCO00E0E m

]

VDD DTY
0%

20
o

L
1
2
3
3
3
£
i
8
9
4
R
u

<@IN | MMMm;

In this program line 20 PRINTs a heading, and then
line 30 uses GET to scan the keyboard. Any character
that is entered by a key-press when the scan takes place
is labeled with the variable A$. If you don’t press a key
during this time, then the variable is given a zero value.
The second part of line 30 tests to see if the variable has
a zero value, and if it has, the program loops back again
so that in effect the keyboard is continually scanned.

When the computer detects a key-press, program
control is passed to line 40. If the key pressed is not a
letter, lines 40 and 50 pass control to line 90 which just
PRINT: the character detected. If the key-press is a
letter, line 60 converts this character to its ASCII
number using the ASC command (this works like
CHRS in reverse). It then makes this the value of the
variable A. Lines 70 and 80 then operate on A to encode
it into a new letter, and then convert it back to a
character, A$, which is PRINTed by line 90.

This program seems to PRINT nonsense when you
type a message into it. There’s not much point in a code
that can’t be decoded, and you can quickly turn your
program into a decoder by changing the following three
lines:

20 PRINT “TYPE DECODER”

60 A=ASC(A$)-2

70 IF A<65 THEN A=A+26

To see this at work, try keying in the following when the
decoder program is RUNning:

VJKU KU C VGUV OGUUCIG

How to make the function keys work
As well as using GET to scan for the letter and number
keys, you can also use it to find out if any of the function

keys have been pressed, because each of these keys has
an ASCII value although normally they do not PRINT
anything on the screen. The ASCII values of the
function keys range from 133 to 140, as this program
will demonstrate when you RUN it:

FUNCTION KEY DETECTION PROGRAM

7]
=

x
A~
-

o
L
x

TXMmmmmT

DMMLZIZZZE Do

it it

I
T
A

OD =
A

b G LI LI

7
B HONED =IOy

CO00ODOOD
D D
zon v
=]
S-=ETTTTT .
OOO ===
-_—-COOOO0
TORIDNAINY
NNOOODOD

R
=
E
F
E
E
E
F
1
1
P
V.

MRSb
DEOD

D

WO ORI DA LW

Every time you press one of the function keys, its
identity appears on the screen. This may not seem very
useful, but it actually shows you how these keys can be
used in programming. If you use GET you can make the
function keys control programmed operations. You can
have a total of eight separate functions from, for
example, color setting to sprite animation.

Testing your reactions with GET

The Commodore’s “jiffy” clock, detailed in Book 1, is
a three-byte counter that is incremented 60 times per
second to keep a record of the time elapsed since the
computer is switched on. Also built into the
Commodore are some simple facilities that enable you
to access the clock and use the numbers that it stores.
Try this direct command:

PRINT TI

What you see when you do this is a number that tells
you how many sixtieths of a second have elapsed since
you started up the computer. Now type in another line:

PRINT TI$

This time what is PRINTed is the same information but
converted into hours, minutes and seconds, with two
digits for each. So 013000, for example, means that it is
exactly 1Y% hours since you started using the computer.
As well as being able to read the clock in these two ways,
you can also reset it to zero, or indeed any other number
you want, by this kind of command:

TI$=“000000"

This sets the clock to zero.

You can use GET in combination with the clock to
time the speed of anything during a program. One of
the simplest ways of doing this is in a reaction test
program. Here’s one that produces a random letter and
then times how long it takes you to find and press the
key that it has selected:

REACTION TESTER PROGRAM

F
@
-

-
1
TVTDMTTVOVND

MOVDNLWNOOODODDIDND =
2OCOODOODD
<OTTDT=O DNDDNORDXOHT

0 e e (D OO DI S GO
]

TEST YOUR REFLEXES AGAINST
THE REACTION TESTER

FIND THIS KEY: 1T

Y0U TOOK .84 SECONDS

Lines 10 to 60 clear the screen, PRINT the program
title on the screen, give a two-second pause and then the
game begins. Line 70 generates a random letter. This is
done by CHR$ which converts a randomly generated
number from 65 to 90 into a single character that
becomes A$. Lines 90 to 110 PRINT a message asking
you to locate the random letter and set the clock to zero.
When you press the right key, the value of the clock is
read and PRINTed by line 150. The calculation:

INT(T1/0.6)/100

is used to convert the time to seconds and cut the answer
to two figures after the decimal point. If you can get a
time score below 0.5 seconds, you’re probably a touch-

typist!

| BIT MASKING

On page 8, you encountered two new keywords, AND
and OR, and you saw there how they can be used in
decision-making. But there is more to AND and OR
than this. They are actually both examples of “logical
operators”, keywords that combine a pair of numbers in
special ways. To understand how the Commodore is
programmed to produce high-resolution graphics
involving plotting points or drawing lines, you will need
to know how to use AND and OR to transform
numbers into patterns on the screen.

When you PEEK a value from a register, you can
simply treat its byte as a single number, disregarding
the fact that it is actually 8 separate binary bits.
Similarly, you can POKE a whole byte into a register so
that all the bits that the register previously held are lost
from memory. These techniques are fine for some
applications, but fairly soon you will find that you want
to set or reset a single bit within the memory without
changing all the other bits in its byte. With the
Commodore, this is a crucial part of advanced
programming. To do it, you need to use AND and OR
in a technique called “bit masking”.

How to make a Commodore alter a single bit
You may remember from Book 1 that V+21 (where V
is the VIC chip base address of 53248) is the register that
controls which of 8 sprites are switched on and which
are switched off.

result in every bit position where there is a 1 bit in both
of the numbers being compared. The OR operator puts
a 1 bit in the result in every position where there is a 1
bit in either of the two numbers being compared.

To take an example, if you want to set bit 4 in a byte
to a value of 1 without affecting the rest of the byte, you
could make the computer do it like this:

200 BYTE=BYTE OR 16

The decimal value of bit 4 is 16 (2 1 4). If the byte hasa
value of say, 164, the line will work like this:

HOW OR WORKS

The OR function gives a result bit of 1 when either or both bits it is
working on have a value of 1.

=}

Bitnumber 7 6 3 2 1

BYTE164_[1]0|] [o]1JoJo]
16~I7)[0|0|1|0I0|0]0[()R

RESULT=[1Jo J1 JTJoJ1]o Jo]

SPRITE CONTROL BITS

Each sprite is turned on or off by a single bitin register V+21 of the
VIC chip.

Bit Sprite controlled Decimal value
number by bit of bit
0 0 1
1 1 2
2 2 4
3 3 8
4 4 16
5 § 32
6 6 64
7 7 128

Bit 4, which was originally 0 or “off”, is now 1 or “on”,
while the rest of the byte is unchanged.

Converting the numbers to binary makes the effect of
the OR function quite easy to follow. If you convert it
back to decimal, it gives 164 OR 16=180, a result that
you can check by getting the computer to PRINT it out.

In general, to set or “turn on” any specific bit(s) in a
byte you need to OR the byte with the number that has
the required bit or bits set. Conversely, to reset or “turn
off”” given bit(s) in a byte, you need to AND the byte
with 255 minus the number that has the required bit or
bits set. So, taking the previous result of 180, if you
wanted to reset bit 5 you would need to AND 180 with
the value 255—32=223:

HOW AND WORKS

The AND function gives a result bit of 1 only when both bits it is
working on have a value of 1.

In order to be able to control the individual sprites
independently, you need to control the individual bits
of the V+21 register, turning them on or off in a
program.

This is where the AND and OR operators come in.
These two operators work by comparing two numbers
bit by bit and producing results based on the
comparisons. The AND operator puts a 1 bit in the

Bit number 7 0
BYTE=180=[1 0[1T1|0| | |
255-32=223=[1 1 Jo 1 111 |anD

RESULT=[1 Jo Jo J1 Jo J1 Jo Jo]

=1

Turning sprites on and off
So much for the theory. To see how AND and OR can
be used in a program, try out the following listing. It
uses VIC chip location V+21 together with INPUTs
from the keyboard to turn 8 sprites on and off
instantaneously as you choose:

Oand 1:

- -
T @ b

T RAD® AN

TXmDTD D

Wliniwn: D0 o
LOROTE €O

DOEAZN
OO =D s D
XOTN XL | O || e
ASmE——.D0D
OVOOODDOOOE
P00z HOOCOOBHNBTIHOROAN,
IO AT DD 00 03wl el il i DD ID I

The first is the choice of AND or OR

AND/OR CALCULATOR DISPLAY

AND/OR CALCULATOR PROGRAM
—1 if it is negative and 0 if it is 0. In this

PRESS RETURN TO CONTINUE? B

operator, and the other two are the numbers that the
chosen operator is to operate on. The program then
converts your decimal numbers into binary, performs
the operation and converts the result back into decimal:

This program uses a function at line 510 which will be

new to you. This is SGN, and it is in the line that
converts from decimal into binary. The decimal

number is contained in variable V and the binary bit
number to be PRINTed is in the variable C. The

expression:
takes the Cth bit from the value of V. If the Cth bit is set

to 1 then 2 1 C is returned. If the Cth bit is reset to 0
then the value 0 is returned. 2 1 C and 0 then need to be

translated into 1 and 0 for PRINTing. This is where
SGN comes in. It returns the value 1 if its argument is

positive,

program it therefore only returns two answers,

INPUTs.
VAND (2 1C)

ulations that

bit masking carries out, this time PRINTed on the

screen. When you RUN it, you are asked for three

POKE VU+ig,9
POKE 214,3

t work

gic af

FODNOE- A
FDED o
o 22 2 101013613

USING AND AND OR WITH SPRITES

faacaae &

SRODRDO
DO AUOMTI:
OO IR OO0 0O

coxazlada
DOOEODODD

DOCOODDDDEHNM TG

U T Ot 0D) e e e

LIST -188
LIST 196-

The next program allows you to see the calc

Seeing computer lo,

)
_HIGH RESOLUTION

In all the graphics you have seen so far, the displays
have used only predefined characters in low (text)
resolution, or sprites. But as well as these two graphics
modes, the Commodore also has a very powerful high-
resolution graphics facility. Now you have seen how bit
masking works you will be able to set up the high-
resolution screen; in the following pages you will see
how to use it.

Screen layout
The Commodore’s high-resolution graphics screen is
based on a rectangular grid of 64000 individually
controllable pixels, or picture elements. These are laid
out as 200 rows with 320 pixels on each row. (A
complete high-resolution screen grid is shown on page
58.) Each pixel on the screen requires a single bit in
memory to control it. If the bitis set to 1, then the pixel
is lit, while if it is reset to 0, the pixel goes blank. At 1
bit each, the 64000 pixels require 64000/8 or 8000 bytes
of memory. These 8000 bytes of memory are controlled
by the VIC chip, the same chip that controls sprites.
To produce high-resolution graphics, you need to
take over an 8000-byte chunk of memory.
Unfortunately, the best area of memory for this is
already used for storing your BASIC programs.
However, they don’t have to be stored here, and you
can easily make the BASIC ROM store them
somewhere else.

How to move the BASIC storage area
Rearranging program storage is quite simple, as the
following screen shows. (If you do have any problems at
all with high resolution, just press RUN/STOP and
RESTORE together. This will return you to low
resolution so you can check your programs for bugs.)

It is very important to remember that before you start
working on programs with high-resolution graphics
you must type in this series of commands. If you don’t,
your programs may well “crash”, because the computer
will try to store your programs and high-resolution
graphics in the same place.

All the rest of the programs in this book are written
assuming that you have already keyed in these
commands.

One further point to note here is that this sequence
must be typed in as direct commands, not as part of a
program. Because the commands move several memory
pointers that BASIC uses, if you key in the commands
asa program, BASIC will not know where the rest of the
program is.

Now to continue. All of the facilities for high-
resolution graphics that follow in this book will use one
or more of a series of subroutines. You will encounter
these as you go along; they all have non-overlapping line
numbers so that they may all be used as one program. If
you store them together on a tape or disk, you will be
able to call any of the subroutines as required.

You can add each successive subroutine to the stack
you have SAVEd by keying it in, LOADing the stack
accumulated so far, and then pressing RETURN with
the cursor at each of the new subroutine’s lines. This
will combine the two programs. Don’t LIST the stack
of subroutines before you do this or the new one will
scroll irretrievably off your screen.

How to clear out the memory

The first pair of subroutines needed to set up the high-
resolution screen tells the VIC chip where to find the
high-resolution graphics memory, and how to clear the
screen by emptying part of the memory:

MOVING PROGRAM STORAGE

CLEARING THE MEMORY (SUBROUTINES 1-2)

POKE 642,64
READY.

POKE 44,64
READY .

POKE 186384,8
READY .

NEH

READY .

|

SR SHBOD =

PIPIPITINIbm b b O =
MIMIT W
b 4= ST TS

L)
I SOOOO0HE
AT MDMRV VOO

ZxMmzAG

m
<

mx

R N 5 [G T T

Lines 100 and 110 tell the VIC chip to use the high-
resolution display mode and tell it that the 8000 bytes of
memory for this start at location 8192. The other
" subroutine starts at line 200. Lines 200 and 210 clear the
screen by POKEing zeros into every bit in the 8000
bytes. Lines 220 and 230 then go through another 1000-
byte block of memory from location 1024 to 2023
setting each byte to the value of a variable called COL.
This block stores the display codes of the ordinary
characters and predefined graphics shapes that appear
on the screen. In high-resolution mode this block of
memory has a new function. It determines the colors
used to draw the pixels. Having 1000 bytes of color
memory and 8000 bytes of pixel memory means that
each byte of color memory controls the foreground and
background color for 8 bytes of pixel memory.

In each byte of color memory bits 47 control the
foreground color of an 8 x8 pixel block, while bits 0-3
control its background color. By POKEing selected
numbers into the color memory with the variable COL
you can create any foreground and background color
combination.

HIGH RESOLUTION COLOUR CODES

To select any of these combinations, two color codes must be added

HIGH RESOLUTION DURING SETTING UP

Now that you have got a program that can move the
BASIC storage area, switch the VIC chip to high
resolution, clear the screen and set its colors, you are
ready to add some further subroutines that will make
the computer produce graphics. For safety, you should
SAVE the subroutines so far. If you don’t do this, don’t
type NEW before moving on!

together and POKEd into the screen memory.

Setting up high I with hine code

Color For d code Background code
Black 0 0
White 16 1
Red 32 2
Cyan 48 3
Purple 64 4
Green 80 5
Blue 96 6
Yellow 112 7
Orange 128 8
Brown 144 9
Lightred 160 10
Dark gray 176 11
Medium gray 192 12
Lightgreen 208 13
Light blue 224 14
Lightgray 240 15

If you wanted to draw in white on a red background, the
color combination would be 16+2, or 18. This value
then needs to be POKEd into all 1000 locations of color
memory. This is what lines 220 and 230 of the previous
program do. Clearing the memory and setting up color
is quite time-consuming, with 9000 separate POKEs to
be carried out. The only way you can speed this up is to
use machine code, so an alternative to the BASIC
subroutine is shown at the end of this page. The next
screen shows the process in BASIC; if you use machine
code, clearing happens so quickly that you won’t see

this display:

The screen below shows a machine code alternative o
the BASIC high-resolution subroutine 2. Its numbering
is fully compatible with all the high-resolution
subroutines in this book, so you can key it in as a single
self-contained unit without having to understand how it
works.

The listing here is actually a BASIC program which
calls a machine code operation by using the command
SYS. The DATA statements are used to POKE
numbers into a particular set of locations, and these set
up the high-resolution screen. Once the machine code
has been carried out, the computer returns to
functioning in BASIC as before.

SUBROUTINE 2 (MACHINE CODE)

VDRI

R0 DOOSCEE O

RO

: POKE 253,
56800,8 : SYS 500

: POKE

Sm M m Mo-BoDD

=3

M DA DO~ DA
c
0

WX ONDNISNWININN

POINT GRAPHIC

On all microcomputers, graphics are produced by
lighting up a specified series of pixels. To light an
individual pixel with the Commodore, you need to
work out which of the 8000 memory locations controls
the pixel you want to light, and then which bit within
that location’s byte needs to be set to 1.

Because the 64000 pixels are arranged in 200 rows of
320 columns, any pixel on the screen can be specified by
a row and column number — just as a text position can.
The pixels are usually numbered from 0-319 across and
from 0-199 down, so the lowest pixel number (8192) is
at the top left corner of the screen.

POINT PLOTTER (SUBROUTINES 3-5)

HIGH-RESOLUTION LOCATIONS

The highmesoluﬁon screen has a total of 64000 separately controlled

points, running from 0 to 319 horizontally and from 0 to 199

vertically. This chart shows the bytes that control just the top left
58).

area uf the screen (a full grid aj on
Horizontal co-ordinate
07 8.15 1623 | 2431 |, [312319
0 | 3192 | %00 | s208 | 8206 | | ®504
1 | sie3 | g0 | s200 | 8217 | 5 | 8505
2 | si4 | w202 | 8210 | 828 | 5 | 8506
2 3 [a5 | s203 | san | 829 | | 8507
-.5 4 | 819 | s204 | 22 | 820 | 5 | 8508
$ 5 8197 8205 8213 8221 | — 8509
3 6 | si8 | s06 | m24 | m22 | - | 8510
E 7 | s99 [s207 | s | 823 [— | 851
E 8 | 8512 | 520 | ss28 | 836 | — | 8824
9 | 8513 | ss21 | ss29 | 8537 | — | 8825
0 |14 | 822 [ss30 | 53 | — | 886
| i | \ d
199 |15879 | 15887 | 15895 | 15003 16191

2

192+ INTCLY /83 %328+ INT{LX/8)%8+

73

OZOOMDE<

¢BYTE) AND (255-MAS

BB UGN DI
COOTODDOEOCO ©
NEOTTVOVODVID®

BR GONLLLLLOOAE
>
2

If you had to store all the information for the complete
screen so that you could look up the required byte, a
huge amount of memory would be needed.
Fortunately, you can avoid this by using two equations.
The first equation tells you which byte the pixel is in,
given its co-ordinates, and the second gives you a bit
mask value. You can take this value to set a particular
bit to 1 by using the bit masking techniques from pages
12-13. The two equations are ready for use in the next
set of subroutines. You should key this set into your
computer and then LOAD the first set from page 14.
You can then merge the two sets by using the RETURN
key to re-enter each line in the new set.

You don’t have to understand exactly how these
subroutines work. They’re just a set of calculations for
identifying bits and turning them on and off as
required. The point plotter lets you plot pixels with
program loops instead of individual POKEs:

The point plotter contains three separate
subroutines. The first one, starting at line 300,
calculates the byte and the mask values for the pixel at
screen co-ordinates LX,LY. This subroutine is called
by the two other subroutines. The first one at line 400
uses these calculations, and the value of the variable
COL, to plot or light the pixel at LX,LY in the chosen
color. The last subroutine in the program starts at line
500. This unplots or turns off the pixel.

At this point, it will again help if you SAVE these
subroutines after adding them to the previous two, as
they will be used frequently on the following pages.

Using plotting in graphics

So, assuming that your Commodore now has a total of
five separate subroutines in memory, type in and RUN
the following program which brings them into action:

DRAWING PARALLEL LINES

7!
i

MOCCEOEOS —
oMEEXONNO0

WOONONLWr-
>

—F_—

Line 10 sets up the high-resolution screen. Line 20 sets
COL to 18 to produce white lines on a red background,
and also clears the screen. Line 50 calls the subroutine
that plots a pixel and this is contained inside a double set
of FOR ... NEXT loops in lines 30 to 70. These two
loops generate the values for LX and LY so that the
program draws five horizontal lines made up of
individual pixels:

PARALLEL LINE DISPLAY

The END statement in line 80 is needed as all of the
subroutines follow this program. Without END the
proliglram would RUN on into them, disrupting the
result.

The next program shows how you can link lines up by
using these subroutines. This time, lines are plotted
vertically and diagonally as well.

As the program is longer than nine lines, it will not fit
into the space below the subroutines as the last one did.
To overcome this problem, the program is written with
higher line numbers than the subroutines, starting at
line 1000:

TRIANGLE PROGRAM

DALW=D . B
DTEOOEDE —
OO0 OO O

M EE000000HH0. =
&
Tt

D
D

L
i
i
i
i
i
i
i
5
i
1
i
i
i
3
L

TRIANGLE DISPLAY

How to change STEP in a loop

You will probably have noticed that the previous
programs all draw lines by plotting a series of points in
adjacent pixels. This is done by using FOR...NEXT
loops. You can modify these programs so that instead of
producing solid lines, they produce dotted ones. This is
done by setting a STEP size so that the program skips
some of the pixels. You can see this in the triangle
program if you make the following line changes:

1030 FOR LY=50 TO 150 STEP 5
1060 FOR LX=50 TO 150 STEP 5
1080 FOR C=150 TO 50 STEP —5

Now you can see that the display is made up of
individual pixels, each 5 units apart (you can use this
technique to plot stippling inside shapes). Otherwise,
the outline is the same:

DISPLAY WITH DOTTED LINES

Because the program now has only one-fifth as many
pixels to plot, it RUNSs considerably faster.

DRAWING LINES

Now you know how to plot pixels on the screen, you can
draw lines and simple shapes by using FOR ... NEXT
loops. However, using the techniques decribed on the
previous two pages, you can only draw lines vertically,
horizontally or diagonally at 45 degrees. To produce
graphics, you need a way of drawing lines at any angle.
This is what you are going to find out about next — a
subroutine that can draw a line between any pair of co-
ordinates on the screen.

The drawing subroutine

The basic subroutine for drawing lines appears in the
screen below. You should add this to the subroutine
program you have on tape or disk, so that you now have
six subroutines altogether:

LINE DRAWING (SUBROUTINE 6)

- "GOSUB 480
- RETURN

POOCDDDOD &

M

Don’t worry if you can’t understand the lines here. The
subroutine is simply a collection of equations that work
out where a line of pixels should be plotted. It uses two
sets of co-ordinates, LX,LY and NX,NY, and draws a
line from the last co-ordinate position to the new one. It
also updates the last LX and LY variables, making
them equal NX and NY so that another line may be
drawn, starting from the position where the previous
one finished.

The keyword ABS which appears in lines 600 and 610
gives the absolute value of any number or numeric
variable that follows it. In this subroutine it has the
effect of making any value of NX-LX or NY-LY
positive, so the program can use positive figures to
produce lines.

Pin and string patterns

Now that you have all six subroutines available, try
adding the following lines, and then RUN the complete
program to see the display appear:

PIN AND STRING PROGRAM

=

B e o
LT 2 o 0
QLXOMOX<O000
U A Ut ed
SONH =SSO | Mk

Producing this kind of pattern is quite straightforward
because there is a simple mathematical link between the
end points of the various lines. If you vary the numbers
used, the display changes. But what if you want to draw
something that doesn’t fit a simple equation — a space
shuttle, for example? For this, you need a subroutine
that draws lines that you can specify individually to give
any shape you want.

A high-resolution line machine

You can use the same method for storing line
information as you would use for storing notes in a
sound program — READing a section of DATA. In the
next program, the DATA has been written in to produce
adesign. You can think of this program as producing an
imaginary “pen”. As with a real pen, it lets you lift it up
from the screen, put it back again, or move it in either
up or down positions:

DRAWING WITH DATA

= -
©
=

EOOODODODODO0 ~
=}

O 0 YD
DEx

=
TUXZZZS I || M

2 mMemTmMTMMmecs

© OO0CHORROOEO0
@

D OWOBUDNAWII~ED
<

WX Elbhi e

)
I

DS
oo

4, 182,73,142
b, 18
256,82,207,

(o
oo
A -

VU
=

i
o

168,-1,4,158 114,-1.8
35,184,458, 153
37,21,1,235,137

(- I - X

 OORSRONODE Dl

DONDULdas WIS i
ZDQWCJUKDI\)CJ- |
DDLDND D D
DA =
D> D DND DNDOD

e el el ot L e
NPT RGI=aN, =

The program also gives you the option of changing the
colour of the “ink™, and again this is controlled by
numbers in the DATA statements, which change the
value of the variable COL.

How the line machine works
In this program, all the numbers in the DATA
statements are split into pairs. If both the numbers are
greater than or equal to zero, then the pen is moved in
a straight line to the position specified by the pair of
numbers. If the pen is down, then a line will appear.
For all other options, the first of the pair of DATA
numbers is —1. The second number then tells the
computer what to do. If the second number is 1, the pen
is moved down onto the screen. If it is 0, the pen goes
up. If the number if negative, the number that follows
the minus sign fixes the variable COL, and hence the
ink color. Finally, if the second value is 2, the program
finishes by going into an endless loop in line 1070. The
program terminates like this so that the display will not
be spoiled by the READY message appearing on the

screen. To stop the program completely, you just need
to press the RUN/STOP key. With the DATA lines in
the previous screen, the program produces this display:

LINE MACHINE DISPLAY

Remember that to LIST the program to make changes
if there are any errors in your version, you will have to
return to the low-resolution display. You can do this by
pressing the RUN/STOP and RESTORE keys
simultaneously, resetting the Commodore to its state
before the program was carried out.

How to change the size of a display

You can alter the line machine program so that it
produces the same display but at a different size. Try
keying these lines into the program:

600 NX=NX/2: NY=NY/2 : GT=ABS(NX-LX)
1090 IFPEN=0 THEN LX=NX/2 : LY=NY/2
: GOTO 1030

This reduces the space shuttle display to half of its
original size:
REDUCED LINE MACHINE DISPLAY

-

CURVES AND CIRCLES

Now that you know how to tackle graphics with straight
lines, you can get your computer to draw some curves
and circles. On the Commodore, there’s no CIRCLE
command to help you here, instead you need two new
keywords, SIN and COS. Using these two commands
you can produce some spectacular graphics with quite
short programs.

How the Commodore draws a circle
If you sketch out part of a circle, you can relate each
point on the circle to an angle at the circle’s center.

CIRCLE CO-ORDINATES

Point on circle
Radius length=R
Venical
distapce=Y
ngle
_Center |
Horizontal }
distance=X

You can write the distances X and Y in another way, as
multiples of the angle and SIN or COS. Every angle has
its own value of SIN and COS, and you can write the co-
ordinates of any point on the circle like this:

R+COS(A),R*SIN(A)

Once you know this, you can start your Commodore on
curves and circles. The next program produces a circle
with a radius of 80 pixels. Remember to shift BASIC (if
you haven’t done so already) and LOAD the six high-
resolution graphics subroutines before you RUN it:

CIRCLE PLOTTING PROGRAM

7
-
=

53280,8 : GOSUB 188
TEP as1290

MECoOO0O0D —

DAL DRI

DACHDDENEE
3

<
- OEOECMEO—

L
i
i
1
1
i
1
i
i
R
| |

Why computers don’t work with degrees
In this first program, the angle has to vary from 0 to a
full circle, which is 360 degrees. But as you will
probably have noticed, there’s no mention of 360 in the
program — instead the loop runs from 0 to 2#7, with an
odd-looking STEP value of 7/120. The reason for this is
that the Commodore doesn’t use degrees at all. Instead
it measures angles in radians, just a different but more
logical way of doing the same thing. A full-circle angle
of 360 degrees is exactly equivalent to 2#7 radians.
The symbol 77 (pronounced “pi”) is a Greek letter that
is produced on the Commodore by pressing SHIFT and
the key next to RESTORE. It’s an important
mathematical constant, which has a value of
3.14159265. .. (you can see this by keying in PRINT 7).
This figure is the ratio of the length of a circle’s
circumference to its diameter. All you need to
remember is that there are 2*7 radians in a circle, so
that 77/2 radians are a quarter of a circle, 77/4 an eighth
and so on.

The all-purpose circle subroutine

You can now add another subroutine to the six that you
already have so your Commodore can produce any
circles you want. The subroutine is very similar to the
previous program, except that instead of just plotting
points around a circle, it draws lines between them to
produce a complete outline.

This new subroutine begins at line 700. To use it, you
need to give the computer three numbers. These are the
values of the co-ordinates for the center of the circle,
XC and YC, and the length, in pixels, of the circle’s
radius, RAD:

CIRCLE OUTLINE (SUBROUTINE 7)

&1

PEEOODOCO0S 0
Ermimt A DD

MEODTDNLWIND

<OTXTCCDO=D

L
7
7
7
7
7
3
4
7
7
T
B
]

When you have added this to the block of six

subroutines that you already have, SAVE them together

for use later. Your set of high-resolution graphics
subroutines is now nearly complete.

Pattern design with the circle subroutine
If you select the co-ordinates of a circle’s center at
random, you can make the computer build up patterns:

CONCENTRIC CIRCLE PROGRAM

LIST
i8
i

e e

Lines 1020 and 1030 produce a pair of X and Y co-
ordinates at random so that neither is within 50 pixels of
the screen edges. It is set like this so that the program
can then draw circles up to a radius of 40. The loop at
lines 1040 to 1060 repeatedly draws circles with the
same center, but with gradually increasing radii. Line
1060 starts the whole process off again but with a new
pair of random co-ordinates.

You can try altering the maximum radius of the circle
and the STEP size between radii by changing the
figures in line 1040 to:

1040 FOR RAD=10 TO 40 STEP 6

or even STEP 3, which draws smaller and tighter
patterns.

Programming wandering curves

When you keyed in the circle subroutine, you might
have thought that it seemed more complicated than
really necessary. You would have been quite right. In
fact, not only is this subroutine capable of drawing
circles, but it can also draw arcs, or parts of circles. To
use this subroutine to draw an arc, you need to give the
computer values for XC, YC and RAD just as for
circles, but you also need to specify values for two extra
variables, Al and A2. These extra variables control the
start and finish angles that the arc will be drawn
between. These angles are measured in radians working
clockwise from the positive X axis. When you use the
subroutine to draw arcs you need to call it with GOSUB
710 instead of GOSUB 700.

Here is a program that uses GOSUB 710 to draw
semicircles at random, each of which can go up, down,
left or right across the screen. It does this by picking a
random number from 1 to 4 inclusive, and then using
this number to set the direction in which the semicircle
will be drawn:

WANDERING CURVES PROGRAM

ENDID)=4)+1
THEN XC=LX : ¥YC=LY¥-18a -

THEN XC=LX+iB :

8 OR YC<

A e R 22 [R Sl

FILLING SHAPES

So far you have built up quite acomprehensive graphics
“toolkit” in the form of subroutines that will plot and
draw a range of shapes. Now you can finish off the set by
adding a last one which fills in the shapes you can draw
with the others. The subroutine you’ll use here can
work with almost any closed shape to fill it with solid
color. The word “closed” means that the shape must be
bounded by a completely unbroken line of lit pixels —a
dotted circle, for example, can’t be filled in this way,
but a drawn one can.

The shape-filling subroutine
To start you off, here is the subroutine which you
should add to your stack of seven:

SHAPE FILLER (SUBROUTINE 8)

=

ASK) =8> AND (FD
ASK)<>8) AND (F

368
gls(l)Jgﬂ THEN 838

L
8
8
8
g
8
8
8
u
8
8
8
bt

D T

W | DW= Il HONLGH, -
COROhBCOohaCEE05s &
OMTE—NE €= T -C XD

WD OO0
m
>
C
<

NT "“SHAPE TOO COHPLE
(SP,4)=LY SP=SP+1

SP-1
ST(SP, 1)

s

MXOODOORD
MOH~ND

To use this routine, you need to set two variables, FX
and FY. These are any co-ordinates within the area that
you want to fill - it doesn’t matter where in the area they
are. You can then call the subroutine with GOSUB 800

and it will fill in the area you have selected.

Now for a word of warning. By this stage, you will
have seen that the Commodore plots and draws quite
slowly with BASIC. The filling routine is no faster than
the drawing routine, and because there are so many
more pixels to deal with, shape filling takes a long time.
However, as you will see, the results make the waiting
worthwhile.

How the shape filler works

Although the shape filler looks complicated, what it
actually does is quite simple. Lines 810 and 820 move
the position of the variable FX to the left from its
starting point until the computer finds a boundary.
Lines 830 to 890 then move back from left to right,
plotting pixels as they go to fill in a horizontal line.
While pixels are being plotted from left to right, lines
850 to 890 are also checking the pixels above and below
to see if they will have to be plotted later.

If pixels need to be plotted above and below the
current line, then the co-ordinates of the left-hand ends
of these lines of pixels will be stored by program lines
940 to 960. The co-ordinates are put into an “array”, a
method for storing information so that each item can be
retrieved separately (arrays are explained on pages 52—
53). When the end of the current line has been reached
(that is, when the routine has encountered a boundary
line on the right), a pair of X,Y co-ordinates is
recovered from the array and the process begins again,
starting from these new co-ordinates.

To see the shape filler in action, key the following
program onto the end of the completed set of eight
graphics subroutines, and then RUN it. Remember as
usual that you will need to shift BASIC if you haven’t
done so already:

FILLING A LUNAR LANDER

w
SO=
S

+ UOCCTOOMED TGO~

GOSUB 180 : GOSUB 280 =

(7)
OO0 e
bbb D O (| DD

DLUNDOD
UDUUNDUNSD

e

M == OO0 DO OO OOR DD

DN=QOR~INULWN =MD

DOOOIOOOOODDD
IDIDDDONMMORBOS
e e e e s (| 3D [} O
DDDDDDORAD D

<

L
1
1
(1]
i
£
i
i
i
d
1
i
i
i
1
i
Ri
]

LUNAR LANDER DISPLAY

Wy

In this program, line 1000 sets the foreground color to
yellow and the background to blue, switches the
machine to high resolution and clears the screen. Lines
1010 to 1040 use the six lines of DATA at the end of the
program as co-ordinate pairs and draw the outline of the
lunar lander. Line 1050 then sets FX and FY to a point
within the outline. Line 1060 is only included to
prevent text messages spoiling the display at the en

Filling in the space shuttle display

The next program takes the space shuttle from page 19,
fills it in and then adds a moon to it (this is programmed
by lines 1120 to 1150). The co-ordinates between lines
1110 and 1116 determine which parts of the shuttle are
to be filled in. In this program, there are four co-
ordinate pairs specified — one for the crew’s observation
window, two for the wings and one for the tail. The
moon filling is specified by line 1160. It’s drawn in a
different ink color, set in line 1120. Again, the program
finishes with an endless loop:

SPACE SHUTTLE FILLER

o

ADONTTINGD O DD
Et i)

=
DI TXXXD || || She

MeMMMNMMoGe
mi

WD Pobebepobebe o b b b =
M b SO OO0 DO

{3

(7]

1=

SPACE SHUTTLE FILLER

b
000 =
=

DO
== @
DO~ &
a0 5

192,73,112
78
56,82, 207,

37,236,108,

o
(4

3
o

5=
- OORORSUDOT SoomD

DDLDOD D DODM

-1,1,158.114,-1,0
5,154 43, 123
>-1,1;238,137

e
137

DA = =g
> IND IO

WD o por B COb e
Seonaianc: & 1o o

Here are two displays of the shuttle filler in action. In
the first one, the fill is still under way, in the second, it’s
complete:

FILLING THE SPACE SH E

_ NATURAL GRAPHICS

On pages 20-21, you saw how the Commodore’s BASIC
commands SIN and COS can produce circles and arcs.
These are not the only uses to which you can put these
two functions. If you take a look back at the first
program on page 20, the one that plotted a circle with
dots, you can make just a few small changes to produce
quite different results. To do this you will need all the
eight high-resolution subroutines again, so if they are
not already in memory, LOAD them into your
computer before you start.

How to throw a circle out of step

The circle program on page 20 produces a circle because
the X and Y co-ordinates vary in exactly opposite ways.
When X is zero, Y is at its maximum value and vice
versa. What happens if you deliberately make them
vary at different rates? Make just one change to the
program — alter the angle after the SIN command by
changing line 1030 to:

1030 LY=80#SIN(2*A)+100

Here’s the display it produces (you can set the colors to
any combination you like):
LISSAJOUS FIGURE DISPLAY

This shape is called a “Lissajous figure” after the
French physicist who first investigated them. The
number of loops in the display depends on how many
times the angle after SIN has been multiplied.

You can adapt the circle program to produce an
infinite variety of results like this. Here’s another way of
changing it:

1010 FOR A=0TO 27/720
1030 LY=80%SIN(5*A)+100

This time the angle has been multiplied by 5, as you can

LISSAJOUS FIGURE DISPLAY

Programming some complex curves

Now you can make a different sort of change to the
program. Try keying in these lines:

1010 R=0: FOR A=0 to 2* 7 STEP 7/480

1020 LX=(R*COS(A)*R*SIN(0.5%A))+160

1030 LY=8+R*SIN(A)+100

Here’s what it looks like if you RUN it after changing
colors as well:

KIDNEY PROGRAM

The program will continue drawing if you increase the
range of angle values. The next program roughly
doubles the range. It also increases the RUNning speed
by drawing short lines instead of plotting individual
points. Each new position calculated is the starting
point for the line to be drawn on the next pass around

tell by looking at the display: the FOR ... NEXT loop:

e e ¢ [e

HOURGLASS PROGRAM

-

IR b o o e

You can experiment with this program to produce a
whole variety of more complicated shapes. Here’s one
which has a long RUNning time:

BALL DISPLAY

This design is produced by changing colors again, and
by altering lines 1030 and 1040 so that they now read:

1030 FOR A=0.001 TO 1000 STEP 0.1
1040 I=R*COS(A)*SIN(0.98+A)

Here SIN and COS are working on very slightly
different angles. The shape starts off by being quite
open, but very gradually the computer fills it in until it
becomes the filled ball on the previous screen. The
patterns it produces as it develops are just as interesting
as the final design itself. Again, you can try changing
these two new lines to produce different shapes.

How to draw a graph of SIN and COS

As afinal example of natural graphics, here is a program
which actually shows you how the values of SIN and
COS vary against each other for angles between 0 and 2%
7 radians — 0 on the left-hand side and 27 on the right.
The values of SIN and COS both vary between —1 and
+1; in this program they are exaggerated so that you
can see the variation more easily:

SIN AND COS WAVE PROGRAM

4

=1

o
So—
RO

: POKE 53280,8 :
5
>

GOSUB 169

T0 2%a STEP «/36
ga*snncn))

G
8
0
8
5]
5]
8

2%g STEP w/386
%COSCAID

TEODOODOSD

S OXDTTN-ZOTEN-
OMEXHEXMOC e
=5¢n Il 11011366 11 1) 20 1)

IR bbb e
<

DESIGNING CHARACTERS

If you look closely at the screen, you can see the pixel
pattern that makes up each symbol or character. Each
of the characters is made by displaying a different
arrangement of pixels within an 8x8 grid. The letter X,
for example, looks like this:

SINGLE CHARACTER

These pixel patterns are stored in an area of ROM so
that the character pattern is ready for use as soon as the
Commodore is switched on. Inside this ‘“character
generator” ROM, each character pixel is represented by
a single bit of memory. An 8x8 grid therefore needs 8
bytes of memory, so that an entire character set of 256
items takes up 2K (2048 bytes). With the Commodore,
you can design your own characters, replacing the
whole set if you want to.

How to change the character patterns

Given that all the pixel patterns are stored in ROM, you
may be wondering how you can change them at all.
What you have to do is point the Commodore to a
different location when it is looking for the pixel pattern
information. If you tell the Commodore to get the
patterns from RAM instead of ROM, you can then
POKE in your own characters. This is fairly easy to do.
However, if you do this, your Commodore will “forget”
all its built-in characters. So if you want it to remember
some of them, you have to copy the characters you want
to keep, such as the numbers and letters, from ROM
into RAM before you switch over.

The next program takes copies of 64 characters — the

numbers and letters — from ROM into RAM, and then
switches the machine to using the RAM characters.
You’ll notice that the RAM characters are stored from
location 2048 upward. This number should be familiar
to you by now — it’s the location that BASIC normally
uses for its programs, so that you will have to move the
bottom of BASIC as described on page 14 before you
RUN the program.
Because the computer has to transfer a total of 512 bytes
to new memory locations, it takes a few seconds before
the process is complete and the selected ROM
characters are stored in the specified area of RAM:

SWITCHING TO RAM CHARACTERS

@
=

©TVVINTT
DA 1 =1
Wor QT &
NWDL D6
AWM=t
NLM+oma

MOSCOOOm
>

L
1
2
3
3
5
8
7
R
5

When you RUN this, you should soon be able to tell if
it is working because the normal block cursor, which is
not copied from ROM to RAM, will be replaced by a
flashing dot pattern.

Making and storing your own symbols

Say you want to put a small symbol on the screen - a
rocket for a space game. The first thing you need to do
is draw the character. It’s the same technique as
designing a sprite, but much simpler.

SINGLE CHARACTER DESIGN

Bit 1286432168 4 2 1

values 8 = R
16+8+4 =28
32+8+2 =42
64+16+8+4+1 =93
16+8+4 =28
16-+8+4 =28
32+16+8+4+2 = 62
64+32+16+8+4+2+1=127

As usual, each pixel is either “on™ or “off”’, and this is
shown by filling in the squares.

To convert this to a sequence of bytes for storage, you
need to take each row of 8 pixels in turn, and add their
values to form a single byte. Following this procedure,
the single character is converted into 8 bytes.

These now need to be POKEd into memory onto the
end of the existing character data. The best characters
to redefine are the shifted characters, SHIFT A to
SHIFT Z. To add the rocket design to the character set,
type the following lines onto the end of the previous
program:

ROCKET CHARACTER PROGRAM

NI DOD

PODCOOS o
TV~
—=

=)

e (003

<oZ VBT

- DS
=HXRDOOEEL
DeMS

When you RUN this program you will see the current
CHR$(97) character appear on the screen, and after a
short time it will change to the one that you have just
defined, the rocket.

Adding your own characters together

The first thing you will notice is that the rocket is
extremely small. This is because it only occupies the
same amount of space as a single letter on the screen.
But although user-defined characters are based on an
8x8 grid, there is no reason why your designs should
not cover more than one grid, so you can make them any
size or shape you want. Here’s a more complex design:

In the next program, these four characters are stored as
CHR$(97) to CHR$(100). Here’s the complete
program and the display it produces:

FOUR-CHARACTER PROGRAM

D =
NS o
0

=

CHRS(147> : POKE 53288, : POK

O

0 31
: POKE C+2568,BYTE

=
P EONSOTOI

PR N R om il

A T R DI 2 7 et
DIDIXMEMO~D ~ x
=

PORPIRI 1

- DDIIDXVOXD || MMORX
Lacopn

DOCOIOOONOD D!
£DODOTITTRET NN

LR IR Y kT o
°

11 DI NIRIINIRSAIDINIMES 1=

MULTI-CHARACTER DESIGN
DATA DATA
totals totals
12864 3216 8 4 2 1128643216 8 4 2 1

9 144

9 144 .
% 28 This program assumes that the first program to place

the ROM characters into RAM has already been RUN.
45 180 | ¢ js also written so that the rocket can be positioned
41 148 | anywhere on the screen by changing the values of X and
51 204 Y on line 240. These values control the position used to
39 228 display CHR$(97), the top left part of the rocket.
37 164 Because there is room to define a complete set of 256
% 228 characters if you want to, you can drayv up more than
one completely new alphabet and still have enough

5 160 | memory locations left to keep the Commodore’s pre-
39 228 programmed letter and number symbols.
37 164
47 244 USER-DEFINED LETTERS
61 188

32 4

32 4

ADVANCED SPRITEMAKING

A standard sprite is 24X 21 pixels, but can be expanded
by a factor of 2 in both horizontal and vertical
directions. This means that a fully expanded sprite
occupies 48x42 pixels, a fourfold increase in area.
These variations in size do not mean that you have to
put extra DATA into the program —locations V+23 and
V+29 do all the work for you.

V+29 controls expansion horizontally, and V+23
controls expansion vertically. The bits in both these
bytes each control a separate sprite, so that to expand
sprite 0, you would need to set bit 0 in either or both
locations to 1. For sprite 1, you would need to set bit 1,
and so on. So for sprite 0, expansion in both directions
would be activated by:

POKE V+23,1:POKE V+29,1

To expand sprite 1, you would need to set bit 1. This bit
has a numeric value of 2, so to expand sprite 1 in both
directions you would need to POKE a value of 2 into
both locations. To expand a combination of sprites, you
simply add all the POKE values together. POKE
V+23,3 would expand both sprites 0 and 1 vertically.

When you use either of these expansion locations, all
that changes is the size that a pixel is plotted. This
means that when you enlarge a sprite, you don’t get any
increase in resolution. The sprite will be larger but
coarser. The next program allows you to compare all the
possible expansions. It stores sprites in the area
normally used by BASIC, so before you key it in, you
will need to move the BASIC storage area by the
method shown on page 14.

The program makes sprites 0, 1, 2 and 3 all from the
same DATA. Next the program gives each sprite one of
the four different sizes available. The first screen is the
sprite control section:

SPRITE EXPANSION PROGRAM

@
=
|
-
o

147>
,g : POKE 53281.8

(e

O - @
SO 1| e

CECCCCCCT+OO <OWDHO
TrEA e AR QLL

o0 W

TDOZOMVET
)

DNBNLBNOEODDODDOD
T TS

OORDODDDHE.

L
1
2
3
3
5
5
7
8
3
i
i

I
i

1
1

di

i
I

RERRERRRAMMM AT ML
NNOLNDSLAOND M=0 o
DR > ONREN & &

OOODOOOOCRRIRIND X TN
mmmmmmmme

TOUVVV VTV TOCOMMSES (10
LDt e DWW

OEES

ol
=
>
@
<

The second screen shows the sprite DATA which is
used four times to make up the display:

SPRITE EXPANSION PROGRAM

7,193,99,1
254,112,141
470,560,186,

0L G DL e lalob =
D)

MHY Ll b=

SPRITE MULTI-COLOR BIT VALUES

Each pair of pixels in a sprite row is treated as one unit. By using the
bit values in this table for each pair, you can set the pair to any of
four colors, each controlled by a different register.

Register controlling pixel
Bit pairvalue pair color
00 Screen color
register (53281)
01 Sprite multi-color
register 1(V+37)
10 Normal sprite color
registers (V+39—V+46)
11 Sprite multi-color
register 2 (V+38)

MULTI-COLOR SPRITE DESIGNS MULTI-COLOR SPRITE PROGRAM
Here two multi-color sprites have been drawn up and their DATA

values calculated. The bit value for each pair of pixels is set by using 1201 Lreso T

the system shown in the table on the previous page. 2 %g g l;l’ ;g 2

300 DATA O, 9,

310 DATA 8 8,

328 DATA 38,182

336 DATA 174,176

339 DATA 170,171

G 358 DATA 171,171

wl o 360 DATA 174,170

w0 378 DATA 186,170

K 380 DATA 43,170,

338 DATA 19,234

3808 DATA B,)

418 DATA O 4,

428 DATA 0 9,

4 439 DATA 8,17.8

it 438 DATA O 96

] 450 DATA 42,1%0,

N 488 DaTA 422340

T 219 DATA 43]160]

Tl u

T
AN

As you have already seen, a single color sprite has a
horizontal resolution of 24 pixels. If you use the multi-
color facility, the horizontal resolution drops to 12.
This does not mean that the sprites drop to half width,
because each of the pixels in a multi-color sprite is
displayed twice as wide on the screen.
In a normal sprite each bit controls one pixel on the
i screen. In amulti-color sprite, each pair of bits in the bit
pattern controls the color of one pair of pixels on the
screen. If a pair of bits has the binary value 00, then the
i i e pixels on the screen will be transparent, allowing the
I HE background to show through. If the pair has the value
— . - ! 10, then the normal sprite color register is used to
determine the pixels’ color. The difference comes when
a pair of bits has the value 01 or 11, because then the
Programming multi-color sprites color of the pixels is taken from one of two special multi-
In addition to the enlarging that is available with color registers at VIC locations V+37 and V+38. This
sprites, you can also make up a sprite with a mixture of means that each sprite can contain up to four colors.

FE e

colors. Here’s a listing which produces the sprites Here is the display that the multi-color sprite
shown above: program produces:
MULTI-COLOR SPRITE PROGRAM MULTI-COLOR SPRITE DISPLAY

@

47>
: POKE 53281.8

KE 2048+C,BYTE

TOLEONET D

POKE U+29,3 : POKE 2048

o o o b (0D mI VTR 3T
P RNBWEEEESSa8s ~

2
9 POKE
8 POKE
8 POKE
8 POKE
8 POKE
8 POKE
8 POKE
8 POKE
8 POKE

=%
m
>
°
Z

(=]
SPRITE ANIMATION

When you are programming sprites, you need to decide
where to put the sprite DATA in the Commodore’s
memory. As you may have seen in Book 1, there is
enough space for three sprites in the Commodore’s
cassette input/output buffer starting at locations 832,
896 and 960. This area can only be used if you don’t
want to use the cassette at the same time that the sprite
program is RUNning, and if you don’t want to use more
than three sprites at the same time. However, there are
places in the Commodore’s memory where you can
store much more sprite DATA than this. You used one
of these areas on the previous two pages by moving the
BASIC storage area from its normal position.

Where to store sprites

By making a large section of memory available for
holding your sprites, you can store enough information
to program 32 of them from locations 2048 upward —
four times as many sprites as you can have on the screen
at once. This means that you can have a large store of
sprite shapes that can be called on very quickly with
interesting results.

To see what you can do with this, here is a single
sprite design and a program which puts the DATA into
the memory area in which BASIC is normally held.
Once you understand how this sort of program works,
you can try one which modifies the sprite as it moves:

CRAB SPRITE DESIGN
Bit values

B382wen-|83820.n0|8382x.-| DATAvalues

e T | [==

5| 0 |20

30 | 102120

31| 195 | 248

] [o[22

| 62 | 126 [124

108 | 153 | 54

97 [255 | 134

B 9 | 255 [198

T [[oss[m

1 Brzs s

15| 255 | 230

R

127 | 255 | 254

143 | 255 | 241

[31| 255 [248

103 | 255 [230

139 | 255 209

N S0 [126 76

ERERE

e T ot

Because the program uses the space normally occupied
by BASIC, remember to shift the BASIC storage area
before keying it in (if you’ve forgotten how to do this,
look back at page 14). When you RUN the program

youw’ll see that the single sprite shape moves around the
screen. It’s controlled by changing the X and Y co-
ordinates by 2 on each cycle through a loop:

CRAB SPRITE PROGRAM

DL =
DODDD
&
ISOS0™
DR |
MM
O o~ ®
7500 11 PIr i)
=m

[
W XVNXDMDOMD

OXm=TTTT Il DM

QMmoo

<
Dk WEDON—H®R

oo Il DD,
atatatalilnl - V]
O+ XVMMMMDID @
o
Y Y

DTN D BUND
oAl

SOOODDO &
XU EECRA

=%

8
7
8
9
i
2
1
i
x
i
i
i
i
1
R
]

-

R
D
POCODOSHOSHG ¢
<PUDoooCooos
- DIIIDDDD.
=
2IIDDBDDDD &5
I

MEO@=100,
=)

WO GIPIPSRALIRIT,

Ways to change sprite shapes

Now it is possible to get some action into the sprite itself
as well as moving it around. You can do this by setting
up two or more sprite areas in memory so that they
contain images of the same sprite in different positions.
Locations 2040 to 2047 tell the Commodore’s VIC chip
where in memory it can find the sprite DATA for sprites
0 to 7. All you need to do to make a sprite change shape
is to switch the VIC chip quickly around a sequence of
images. It’s like making a cartoon with numbers instead
of with pencil and paper. It is done by POKEing the
memory location controlling where the VIC chip gets a
sprite’s DATA from with a sequence of numbers that
point to different sets of sprite DATA.

Here is an example which shows you how this is
done. Staying with the crab sprite, you can define some
more versions of it. The designs at the bottom of this
page show the crab with its claws in different positions.
Having looked at these designs, you can then key in the
program which uses this DATA to animate the crab.

One thing you should notice here is that the program
does not contain the complete set of DATA for the three
different versions of the crab. This is because most of
the DATA for each design is the same, so to store all the
DATA would waste a lot of memory. Instead, only the
top four lines of each crab are stored separately.

ANIMATED CRAB SPRITE PROGRAM

POKE 53281,6
OKE 2048+C,BYTE

POKE U+23,1 : POKE U+2
POKE U+2i,1

BABUNALIEr DODDEDODD =

WD bbb b bbb O WS mI DN G RO =
DORODOS DD

ANIMATED SPRITE DESIGNS

oS ERHE @ TR .. .| DATA values
| E

I R m Al i e

1

I W0 [k| 2w
i 3 [
| E i W [o | m
& ||

2
o
2
16

PO

MNP DB DLW =
POOOHDORTOORODOHD B
DOTNEOCCOCTTDoS
IDIDITDDIDDDDDDD @
WU b= DD~ T
<
DO

@

WL WRININININITIPININIPS. 1=

Now as the crab moves along, its claws open and shut
like those of a cartoon figure, as you can see in these
close-ups of the program RUNning:

ANIMATED CRAB SPRITE DISPLAYS

(OVERLAPS AND COLLISIONS

What happens when a sprite moves into a position on
the screen already occupied by something else? If you
have RUN a sprite program while leaving text on the
screen, you will probably have found that the sprite
seems to “float” over the text, covering it up but not
erasing it. On the other hand when two sprites meet, the
results can be much more varied.

Setting overlaps with sprite priorities

On the Commodore you can tell the computer how to
overlap sprites.and background, and you can also make
it take specified action if it detects a collision.

When two sprites meet, there is a simple rule which
controls which is “in front” and which is “behind”. The
lower-numbered sprite will always appear to pass in
front of the higher-numbered one. This gives sprite 0
the highest priority while sprite 7 has the lowest. This
means that if, for example, sprite 2 meets sprite 4, sprite
2 will appear to pass in front of sprite 4. So sprite/sprite
priorities are just a matter of careful choice of sprite
numbers.

When a sprite meets a background object, the
situation is a little different. The memory location
53275 (or V+27 in the VIC chip) controls the sprite-
background display priorities. Each bit controls the
priority for one sprite — bit 0 controlling sprite 0, bit 1
sprite 1 and so on. If you set a bit to 1 in this byte, then
in a collision the corresponding sprite will pass behind
any background it encounters. Conversely, if a bit is
reset to 0, then its sprite will pass in front of any
background object.

You can use these techniques to set up some
interesting effects. The following program shows sprite
priorities at work. It creates a situation which is
impossible in reality but easy with sprites:

SPRITE PRIORITIES PROGRAM AND DISPLAYS

SPRITE PRIORITIES PROGRAM

,.
(7
-
|
S

(x5

OKE 2848+C,BYTE
POKE 2041,32

= POKE U#40,4

: PRINT

TVVERNCSTT

m

PRINT “e';
ggKE VU#23,3:POKE V+28,3

OMOSORRRID RN
| RXRDRMMM=—D Mz

rm=im

1
2
3
3
5
&
7
8
S
1
i
1
i
1
1
i
&
i
i
2

BCUBDNNN AW EEDDOODDDD

DODOORTISOD
TN CTZTNVOCOMMS || O

ax
m
>
o
<

@
+

FINRIAAUINIPINNZO

<
=
—~
<
DANANPIPSNNNEN + N

RN DONINFING

GIAUIN ~ - eacnenen
Negii

Ch o QIO s -
© S ALNCACATINY
SNADDDNNUNNK
PIPININIPIPIFITININY.
aaanga—
U L
PAPORIRS

Sk G N s O
e

AAADNPPINANUN <
NI I]
UIUIUN © ~ LA

b4 +
i z
pATA 2
DATA 2
DATA 2
DATA 2
DATA 2
DATA 2
DATA 2
DATA 2
pATA 2
DATA 2
DATA 2
¥

fA
A
A
A
A
a
A
a
a
A

D

ss0seccacsans

In this program there are two sprites, 0 and 1. Sprite 0
has priority. What makes the program interesting is the

way that the priorities are set up between the sprites and
the background. Sprite 1 has priority over the
background, while sprite 0 is made to move behind it,
creating a strange effect on the screen.

Detecting collisions on the screen

The other important facility provided by the
Commodore with moving sprites is collision detection.
The computer considers a collision to have occurred if
any lit pixel in a moving sprite is drawn at the same
screen position as a lit pixel from any other object. This
means that for programs with missiles and targets for
example, it doesn’t matter how complex the missile or
target shapes are — the programming does not get any
more involved.

There are two types of collision possible on the
screen, one where a sprite hits another sprite and one
where a sprite hits a background object. Both these
situations are dealt with in much the same way, with
individual bits being set within the VIC chip registers to
“flag” the fact that a collision has taken place.

Two VIC registers are involved in this, V+30 and
V+31. The first detects sprite/sprite collisions, and the
second detects sprite/background collisions. Both of
these two registers are split into individual bits, each
controlling one sprite in the usual way. To start off with,
the VIC chip resets these registers to zero, and then
when any collisions take place, the appropriate bits are
set to 1, and the byte is held like that until the VIC
register is read with PEEK, which resets it back to zero.

This means that your software has a chance to detect
any collision, no matter how momentary it may be.
However, you should remember that reading the
registers always resets them to zero, so the best thing to
do is to read the values into a variable so that you don’t
lose a value before you have finished with it. The next
program is similar to the last one except that this time it
detects and signals collisions:

SPRITE COLLISION PROGRAM

SPRITE COLLISION PROGRAM

4
e
<X @

r
MM re
¢

BMS AN

W=D WD TUIW | M= 0
a1 NP IR s AN

PO e WS DO DN DN LI i

FOCEREOEOIBIIDASE &

COODTODT T DD D) i

» DDDDDDDDDDDOT

i e A
IDIDDDIBDDBMYY
PRI~ P T+ 2070
OHAANADUANINT W I

PO LI v WO e
DNNAROUN L1

DWW WL GNP LIPS RIS

Every time the two sprites collide, the computer
PRINTS an asterisk. Eventually the asterisks will scroll
up the screen, creating a continuous “collision”:

SPRITE COLLISION DISPLAYS

i
)

oy =
OW It HH~)

048+C,BYTE

KE 2841,32
E V23,3 -

ZXTCTTOTN

TTVOXT VOV VIMMO 1SRDS 1|
COORIO BOO OOXDINRmRRUN

POKE U#2

RS MMM,

Zmm mm

b (O (D00 I DL S 3P
m

DOBNBY LW HOOOCOTDEOD

OO DOSWOD:

K
K
1

K
i
K
K
K

=x
m
>
]
<

PIE CHARTS AND GRAPHS

Computer graphics are ideal for displaying information
that you can take in at a glance, and one of the most
easily understood displays that the Commodore can
produce is a pie chart. Pie charts are particularly good
for showing the relative sizes of numbers, or how
different items make up parts of a whole.

Starting off a pie chart program

To produce a pie chart, the first job is to draw a circle.
You can then put in the edges that mark off the “slices”.
In the following program, one right-angled slice is
drawn in a circle. To make the Commodore produce a
circle you need to use high resolution, so before you
RUN this program remember that you need to move
the BASIC area (see page 14) and then LOAD the
complete set of eight graphics subroutines, which you
should have on tape or disk. Here’s the simple pie chart
program that calls these routines:

FIXED PIE CHART PROGRAM

=]
o

I b b e
MOOOO0OOEGm
DIDNLDIID B
Sooosecaco—
COXECRXGTH

OXXANDOOOO
=0 1D W B
Ok [l IS
DDLOND
HOOO00 U

The program draws a circle at the center of the screen
(co-ordinates 160,100). Line 1050 then draws the first
radius from the right to the center. Line 1060 then
draws the second radius straight up to form the slice.

Adding more slices to the chart

You could go on from this to add lines to draw further
slices and so build up the chart, but this sort of program
wouldn’t really be much use. A fixed pie chart program
can only ever give you the same display. What is much
more useful is a program which responds to the
numbers you key in:

VARIABLE PIE CHART PROGRAM

o

LWRED ¢

DOEO0000EOERSODGN—

<

AN NZOI R M

 OOEE DN D DO T
OOCANODOIOAEDEOD
=T

ZOR | CHOM=OOD.

0 o e e e
M e OO0 OB 00O
DLWN=DOO-INC,

In this program lines 1000 to 1040 sort out how many
slices need to be drawn on the pie chart and how big
each slice needs to be. You can specify all these values.
In line 1020 you will see the command DIM. This sets
up something called an array, which is a way of holding

and retrieving information easily. Arrays are explained
in full on pages 52-53. From the information held in the
array, the program calculates the angle of each slice.
This calculation and the actual drawing are carried out
by lines 1070 to 1130 (because the chart is shown in high
resolution, you can’t PRINT any labels on it).

Putting information into graphs

Pie charts are useful for showing how something is split
up; graphs, on the other hand, show how two separate
sets of data are related. Here’s a simple Commodore
graph display. It’s produced in low (text) resolution, so
that unlike the pie chart display, it can be labeled, and
it is also created more quickly:

FIXED GRAPH DISPLAY

You don’t need to be a mathematician to get some
useful information from this graph. As time goes by
(along the horizontal axis), the amount measured by the
vertical axis is steadily increasing.

The program that sets up this graph has to draw the
axes, label them and PRINT the asterisks:
FIXED GRAPH PROGRAM

©
-
= =
Noo
IO OWE

TVOVMVVDVTVD
ZOOOVINTTTTNOLNTODBONOR
T RPOROOONOO | R it R Rt

o - < ()
gl WINPT

SIS RDRRDD X TEMEME
=

DDOXM_MEM =i

LI
18
20
39
40
20
60
78
89
99

3
18
i1
12
13
14
i3
i6
i

3
33
RE
| |

20P000000000

)

o + e

The two sets of information are contained in the DATA
in lines 190 and 200. Lines 30 to 140 draw and label the
two axes of the graph. The loop that follows READs 10
pairs of values from the DATA statements and uses
these as co-ordinates for plotting points.

Programming a high-resolution graph plotter

The fixed graph display is quite coarse, because it uses
the low-resolution screen which only gives 504
character positions within the graph’s area of 28
columns by 18 rows. For a more detailed graph, you
need to go to high resolution (using the high-resolution
subroutines). The next program does this, again
working with information held as DATA. The program
takes longer to RUN, but the display is more precise:

HIGH-RESOLUTION GRAPH PROGRAM

=1

DIDOOOXNXHNNOOD
=GR |
SV NOO- XD

- POCOOMCEE GO
e

M=~ D 000000

<

L
i
i
i
i
i
i
i
i
i
i
1
i
i
R
"

You can easily adapt this program so that instead of
using DATA already built in, it accepts your INPUT
values before drawing the graph — just like the variable
pie chart program — so that you can see information
displayed as a graph in a few seconds.

BAR CHARTS

Having seen how your Commodore can produce high-
resolution pie charts and graphs, you can now add a
third way of showing information graphically, by using
a low-resolution bar chart.

In bar charts data is displayed not as single points,
but as columns whose height depends on the size or
level of the item shown. They are frequently used to
show changes in currency values, votes in elections and
50 on, and you can easily make your Commodore use
them to show personal data in an instant graphic way.

Writing a bar chart program

Because a bar chart is really an adapted graph, you can
use much the same programming techniques to
produce one. The main difference is that instead of
plotting a single point when fed with co-ordinates, the
program must PRINT a column. With the
Commodore, columns are most easily made up with the
graphics square, using PRINT CHR$(18), and you can
then add some color for clarity. The next program does
this by using information which you can INPUT.
Because it uses the low-resolution screen, the chart can
also be labeled without any problem:

SIMPLE BAR CHART PROGRAM

r
@
0O TDTTITNTD —

<O TINVTIVIIO | GVVBOCOR
ZO| TOUOX XM
MXe OColi<mD N

i0
20
38
49
58
68
79

3
80
98
i@
1i
i2
i3
14
i5
is
i7
i8
5
RE
|

DOOIOOBIDODD

o

The Y (vertical) axis is drawn by lines 30 to 50 in the
same position as for the first graph on page 35. The
PRINT statement at line 70 labels the X (horizontal)
axis with the numbers 1 to 12, which could represent
the months of the year. The program produces bars that
are two graphics squares wide. If you want to increase
the number of bars that you can show on each chart, you
can reduce the width of each one to a single square. But
if you do this, remember that you will also have to alter
the PRINTing positions to make the bars appear the
right distance apart. Here is the double-square program
in action, showing it in two different colors:

SIMPLE BAR CHART DISPLAYS

1234568789 101142

1234586789 101142

Adding charts together

The first charts can show just one list of items. But it is
possible to reorganize them so that they can display
more than one set of information. You may for instance
want to see both maximum and minimum figures like
temperatures on the same chart. You don’t have to
rewrite the first program. A few additions will do:

105 FORN=1TO 2
115 IF N=2 THEN PRINT CHR$(158)
195 NEXTN

This RUNSs as before until you have finished keying in
the first set of dara. It then sets N to 2 and PRINTs
columns of yellow squares instead of magenta ones.
Your second set of data must be generally smaller than
the first set, otherwise the magenta chart will be
completely overwritten by the yellow one:

DOUBLE COLOR CHART

8 9 181412

You can extend this to any number of overlapping
charts by increasing the upper limit of the FOR ...
NEXT loop in line 105, and then by adding extra lines
of program between lines 110 and 120 to change color.
Here’s a chart which shows four sets of information:

4-COLOR CHART

Improving your charts with alternating color
One of the problems with charts that have a single color
for each set of data is that you cannot distinguish
individual bars, making it difficult to relate each bar
height to scale on the bottom axis. You can get around
this by using two different colors again, but this time by
alternating them as the bars are PRINTed. It’s then
quite easy to see which bar relates to which figure on the
X axis,

The following program is an adaptation of the simple
bar chart. If you take out the lines that make it show
more than one set of data, you can then edit it to
produce a display with alternating colors.

Instead of having the color fixed, it’s now controlled

by the variable A. A loop is used in conjunction with IF
... THEN to set the drawing color to either blue or red.
You can use this type of color-changing loop with as
many colors as you like. Here is the program and some
of the displays that it can produce:

ALTERNATING COLORS CHART

TORDTTTMDD

M GEEOA I OB E OB

PODODOOEORODE pEsma
ZTUNTIDVTTIVS Il O

B e et

WO bbb b (000 ~IOa ORI
°©

<O,

@

&

> Py PRSP
R o

)

i

3 456789 101112

GRAPHICS WITH GRAVITY

On pages 24-25 you saw how the Commodore can
produce “natural” graphics, shapes that you can
sometimes see in the natural world. To make these
shapes you can simply experiment with the graphics
subroutines and see what happens. But if you want the
computer to simulate something moving in a realistic
way, an understanding of how it moves in real life will
help you a great deal in programming the same
movement on the computer screen.

How the Commodore starts a ball falling

On pages 8-9 IF ... THEN was used to “bounce” a ball
in straight lines moving at a constant speed. However,
a ball doesn’t move in straight lines. On the screen
below is a short program to demonstrate how you could
begin simulating a more realistic fall (the display
beneath it includes after-images normally deleted by
the first statement in line 80):

SIMPLE FALL PROGRAM

)
=

[y 5
TR 5855
om0
ZomvInoonanan
O RRERRR SR
—=X=MXM ZXM mx

WO 00NN Lo
3

Falling objects are influenced by several forces —
gravity, air resistance, surface friction and something
called the “coefficient of restitution” — which make
them move in a complex way. However, you don't have
to be a physicist to write a more realistic program than
this. If you drop a ball, it falls to the ground and
bounces up again, and that’s all you need to know to get
a ball bouncing on the screen.

Programming movement in two directions

In the simple fall program, line 50 PRINTs the ball near
the top of the screen. After a 2-second pause, the ball
starts to move downward. Line 80 erases it, the row
number is then increased by 1 and last the ball is
PRINTed again. If you RUN this program, you will
find that although the ball is indeed falling to the
bottom of the screen, its movement doesn’t look very
realistic. The program also ends abruptly when the ball
reaches the bottom of the screen. The next program
improves the display considerably by making the ball
move sideways as well:

SIDEWAYS FALL PROGRAM

Ripsssssmanes =
S 3
"0 0T
Lnsaazm &

et P

T Somx
—m=mmEm Zm
=i, mz

L
1
2
3
3
5
6
7
8
8
]
1
1
i
R
[]

The variable H represents the change in horizontal
position and V the change in vertical position. On each
loop, V is added to the row number and H to the column
number. Now it’s easy to modify the motion in any
direction. For instance, you can make the ball bounce
by adding:

85 IF C<1 ORC>38 THEN H=-H
86 IF R<1 OR R>22 THEN V=—V

You have seen these techniques using AND and OR
with IF ... THEN before, so these two lines should
present you with no problems. If you take out the lines
which erase the ball as it moves, you will now see a
display like this:

SIDEWAYS FALL DISPLAY

Computer-controlled gravity

Although the ball bounces around the screen it doesn’t
yet look completely realistic. The reason for this is that
there is no gravity acting on it. You can add a “force”
like gravity that pulls in any direction, or that even
changes direction during a program’s RUN. Gravity
acts downward, so, as the ball moves from the top to the
bottom of the screen it should accelerate. When it
‘bounces back up, it should slow down until it falls back
again. The next program imitates this:

BOUNCING BALL PROGRAM

w
MNVTOVVNTD o

LEDL D= CTTVOR0 1| OO || @
TMOTMOTT | DO RN AR
Sk XM MM

SMR=mOR +Zm—=

MO~NOAALNNIDDDODEDEOE =
XX XA

DEOSODNDDD.

)

L
1
2
3
3
5
8
7
8
39
1
1
i
1
1
1
i
1
§
L)

In this program, the gravity factor is written in at line
120. The addition of 0.2 to V means that the change in
R — the vertical position — is no longer constant. It
increases on each loop, speeding the ball up.

When the ball hits the bottom of the screen a sound
is produced, and the ball’s direction is reversed by line
170. V then becomes negative, repeatedly decreasing
the row number. The added gravity factor at line 120

upward progress of the ball until its vertical movement
ceases, V becomes positive again, and the ball begins to
move downward once more.

This display shows how the ball moves with this
program (again, this is what you will see if you stop the
computer deleting the after-images by masking line 110
with a REM command):

BOUNCING BALL DISPLAY

The ball bounces around as before, but as it does so, it
doesn’t reach the same height on each bounce. Its
height is gradually decreasing, although its horizontal
movement remains the same. The result of this is a
rough example of a curve known as a parabola.
Eventually the ball will reach the bottom of the screen
when the program goes into an endless loop.

In just the same way as you can influence vertical
movement by “gravity”, you can alter the horizontal
movement as well. This gives the impression of an
object that is not only falling under gravity, but which
is also being blown along by a strong wind.

Simulating gravity wi*%i high resolution

The curve that the ball makes in the gravity program
isn’t very smooth because the ball is a text character,
and there are only 4025 possible positions that it can
be shown at. If you want to produce smoother
bouncing, you can experiment with plotting high-
resolution ball tracks instead. This will produce a single
point at a graphics co-ordinate pair, allowing much
smoother movement curving over a 320x200 high-
resolution display.

To do this, however, you would have to modify the
program so that the low-resolution co-ordinates in all
the lines were converted to high-resolution co-
ordinates. If you refer to the grid on page 58, you
shouldn’t find this too difficult. Being in high
resolution, the program will work more slowly than the
original one, although the curves produced will be more

makes V less and less negative, slowing down the realistic.

SHAPING SOUND

As you may have seen in Book 1, the Commodore has a
sound facility that is unusually powerful, allowing you
to produce a wide range of notes and sound effects. The
Sound Interface Device, or SID chip, can do a lot more
than just producing a sound at a particular frequency.
Here you will find out more about how to control the
profile of a sound, a characteristic that is known as the
sound “envelope” or ADSR.

How a sound changes during playing

The envelope shape of a sound or note is a graph which
shows how the volume changes as the sound progresses
from start to finish. On the Commodore there are four
parameters that can be varied to shape volume. These
are called Attack, Decay, Sustain and Release (ADSR).

THE “SHAPE” OF A TYPICAL SOUND

VOLUME

Mas

level

Sustain level

Zero level TIME
Artack Decay Sustain Release

Attack is the time taken from the start for the volume to
reach its maximum. This can be anything from 2
milliseconds to 8 seconds. Decay is the part of the sound
from the end of the attack period to the time that the

ADSR RANGES

This table shows the effect of all the settings from 0-15 on each of the
ADSR parameters.

sound reaches its sustain level. The decay time can be
between 6 milliseconds and 24 seconds. Sustain is
different from the other three parameters in that it is not
a time but a volume level, expressed as a fraction of the
maximum value reached at the end of the attack phase.
A value of 0 indicates that the sound will decay to a
sustain level of 0, and a value of 15 indicates that the
sustain value will be the same as the maximum level, so
that the sound does not decay at all. The sustain level is
maintained by the SID chip until the sound is switched
off, Release is the length of time taken for the volume to
decay from its sustain value to nothing, and this can
range from 6 milliseconds to 24 seconds. To program all
these, you need to select the appropriate ADSR
settings.

Here is a program which demonstrates the effect that
the ADSR settings have. It plays a simple tune,
changing the ADSR settings each time:

ADSR DEMONSTRATION PROGRAM

X3¢ D DT et
EEC e

TIERVNTHD
mmm_ Mmoo

DNNULWNOOODOODEHE

e o s b (D OO I D U GO e [
DOOOBEESHD.

DTRTID U DO MMM (| X5

coooocmmm:
RRRIFARD DD

mx
m
>
]
<

Attack Decay Sustain LIS

time time level 198 FOR T=1 TO N(K,2> : HEXT T
Setng _(sec) (sec) (%) 230 poke S
0 .002 0.006 0 220 FOR T-1 TO 10060 - NEXT T
1 008 0.024 7 233 BATA 55.29.180.25
2 0.016 0.048 13 528 Bara 22:38-184:38
3 0.024 0.072 20 308 BAIR 3833788 81,
4 0.038 0.114 27 %38 BAIA 83:5,0" 27
5 0.056 0.163 33 328 BATA 1813713
6 0.068 0.204 40 330 DATA 64,88,57

PEADY .

7 0.08 0.24 47 L]
8 0.1 0.3 53
9 0.25 0.75 60
10 0.5 L5 67
1 0.8 2.4 73
12 1 3 80
13 3 &) 87
14) 15 93
15 8 24 100

41

Programming a sound profile
Each of the three sound channels on the Commodore

can see that an attack setting of 6 has a value of 96, and
a decay setting of 11 has a value of 11.

has two registers associated with it to control ADSR.

HOW ONE BYTE CONTROLS TWO PARAMETERS

Attack and decay are together in one SID chip register,
and sustain and release are together in the other.

ADSR REGISTERS

By adding together the values for two nibbles in a specific byte, you
can make one ADSR byte control two separate features of a sound.

Each register is made up from two half-bytes or nibbles. These
control separate features of the sound.

ATTACK nibble DECAY nibble

Bitvalues 128 64 32 16

8 4 2 1
l[o|1|o]1|1|

The SID chip registers are split into two equal parts,
each four bits long. Attack, decay, sustain and release
are all controlled by one of these “nibbles”. Having four
bits gives a total of 16 possible settings. Decay and
release are set by the low nibbles. So a setting of 10, for
example, means a nibble value of 10. Attack and sustain
however are set by the high nibbles. For them, a value
of 10 would mean a nibble value of 160.

ADSR VALUES

Decay and release are controlled by low-value nibbles, so the setting
number and nibble values have the same range (0-15). Attack and
sustain are controlled by high-value nibbles and so have to be
converted from the setting numbers between 0 and 15.

Setting Attack/Sustain Decay/Release
value value

0 0 0

1 16 1

2 32 2

3 48 3

4 64 4

S 80 5

6 96 6

7 112 7

8 128 8

9 144 9
10 160 10
11 176 11
12 192 12
13 208 13
14 224 14

15 140 15

SIDregister Sound ADSR function 0 1
(8=54272) channel high nibble low nibble
gig i g‘*““!‘ gelmy ATTACK nibble value=96 DECAY nibble value=11
ustain clease
12 2 Attack Decay Total ATTACK/DECAY byte value=107
+13 g iustaf ;elease Adding these values together gives 107 which is the
: ;g = S“t::c.m {el'iyse value to POKE into SID register S+12 — the register
st € which controls attack and decay on sound channel 2.

Suppose that you wanted to program a sound which had
an attack parameter setting of 6 and a decay setting of
11, using sound channel 2. From the table above you

Here’s a program which shows you the variety of
sounds these settings can produce. It allows you to
control waveform and ADSR as a tune is played:

USER-CONTROLLED ADSR PROGRAM

oo o e (O GO N OO
DDV N0 DD ED DD o
DOTVVXON

COOTOOOED.
DD it DM T o 1|

OCOX T LDV 3D D D)

=
PIPIWPIRINOTN 1| A |
ey
NORZXS
- A

ORI+t b @
View ye
N=RWR

RO RRITIIMI R R PSP~

ADVANCED SOUND EFFECTS

You are now ready to take a look at some of the
Commodore’s more advanced sound facilities,
including filtering and ring modulation. These
techniques can be quite tricky to master, and you can
only become fully familiar with them through many
hours of practice. The details on these two pages will
point you in the right direction, and from there you can
make your own way by experimentation. With all the
facilities of the SID chip behind you, this can lead to
many hours of discovery.

Filtering a sound effect

Except for the purest sound tones (called sine wave
sounds), all sounds are made up of many frequencies.
One of these frequencies, called the fundamental, is the
dominant one which gives the sound its pitch. The
others are multiples of this frequency and are called
harmonics. The second harmonic has twice the
frequency of the fundamental, the third harmonic three
times the frequency and so on.

The characteristics of a sound can be changed
dramatically by altering the volume levels of just a few
of the harmonics in the sound, and within the SID chip
this job can be done by filters. The output from each
channel is first set up by the tone and waveform
settings. This output is then modified by the ADSR
which is brought in at the mixing stage. The outputs
from all three channels are then put through a filtering
and master volume control to give the final sound.

As you can see from this, any filtering that is done
simultaneously affects the output of all three channels.
There are three different types of filter available within
the SID chip and they can be used either individually or
in combination. They are known as low pass, band pass
and high pass filters. Each of the filters has a “cut-off”
frequency, which is the point in the frequency range
where the filter starts to become effective cutting out
parts of the sound.

HOW SOUND IS MIXED AND FILTERED

Tones/

waveform 1 DUXERT

A

ADSR 1

Tones/

FILTERING
‘waveform 2

> —>pnd master
olume control

MIXER 2

AUDIO OUTPUT

ADSR2

Tones/

MIXER 3
waveform 3

ADSR3

SOUND FILTER PROFILES
Volume Cut-off
T
i
:
!
i
i
1
1
: "
High pass filter
Volume Cut-off
v
i
i
|
i
i1
E
i B
£)
Low pass filter
Volume Cut-off
T
i
|
|
I
E
'
: Frequency
Band pass filter

The filters themselves are controlled by bits stored in
four registers within the SID chip, S+21 to S+24.
S+21 and S+22 contain an 11-bit number, three bits in
location S+21 and eight in location S+22, which
controls the cut-off frequency in the range 30Hz to
12kHz. $+23 controls which sound channels will be
filtered (low 3 bits) and how steeply the filters will be cut
off (high 4 bits), and S+ 24 controls which filters will be
switched on and also the master volume level.

The next programs generate white noise from a
sound channel and then apply the band pass filter to this
output, changing the cut-off frequency so that you can
hear the effect on the sound:

P e

ROCKET PROGRAM

so that only this bit is set. This line will do it:

MUARDODEOEEEGD
DOCOODD 7
TNVIVVVOAT =
LD TNVOOO0C00 (%
RXDEDRM MMM fae

2
- OMO OO BR DRI N

L o

WEAPON FIRE PROGRAM

,
@
=

o
ORODDDDOH

OOOOD —
=IO IO | + 4 ks 4 b DIy

DVTVTDTNT

<OMTZETTZ DT NOOCOOS 170

60 STEP 28

0 0 STEP -2

()

18006 : NEXT

SDRKR IR KM MM e
1)

MOOONDUL WO OEDE!
POCOHIDOODE,
 COOMMOOMOOORRRR XX e

=)

ORI bbb (OO0 YDA o GO
S Mei=m =i

Changing sounds with ring modulation

Ring modulation is a process by which the triangular
waveform output of a selected sound channel is
replaced by a modulated combination of it and the
output from the next channel. So, for example,
selecting ring modulation on channel 1 will replace the
channel 1 triangular output by a ring modulated
combination of channels 1 and 2. Ring modulation on
channel 2 works on channels 2 and 3.

You can select this effect by setting the third bit in the
channel’s control register. To do this, you need to use
bit masking. The third bit has a decimal value of 4, so
to turn it on, you will need to POKE a value using OR 4

RING MODULATION REGISTERS

Channel Control register
1 +4
2 +11
3 +18

POKE S+CR,PEEK(S+CR) OR 4

Here CR is the SID chip control register number for the
required channel. AND will turn the same bit off:
POKE 8+CR,PEEK(8+CR) AND 251

Here are two programs which let you hear ring
modulation at work. The first produces the sound of a
bell, and the second the sound of an alarm:

RINGING BELL PROGRAM

%
=

HRS(147)

SO0 =
TVVTVTTAT
<ODMO0O000
—DOBANNN=
WO+ + 4 s+ 100
O+ O DR

WD OO DAL
M OO OSGE

ALARM PROGRAM

@
=
it
bl

o~

OOOD =

DNV VTTBND
MMz

7
) | DDA

ROUDDD 1+ b 4 v

= NEXT T

: NEXT T

-

g
0K
OKE
OKE
OKE
OKE
OR
OKE
FOR
POK
POK
POK
FOR
POK
NEX
h 4%

IO W O D N DD

2
a
45}
o)
9
a
)
A

D!

Db b b GO O TN N da RO =
~m" mmm

Watch out for this simple bug

When you’re working with sound programs, you may
find that some of them just don’t seem to work, even
though the listings look perfect. Your problem here
might be that a previous sound program has POKEd
register(s) in the SID chip that are interfering with your
new program. If this does happen, the best thing to do
is briefly switch off the computer to clear out the SID
chip, and then key the new program in again.

WORKING WITH WORDS

Until now, you have treated strings — or words that
make up strings — as indivisible units. Some of the
programs so far have added strings together, but none
of them have “looked inside” the quotation marks that
begin and end every string to work on the characters
that are there. With the Commodore you can take
strings apart and reassemble their characters in a
number of different ways. This means that you can
program the computer to take out part of a word or
group of words and examine it — a process that can be
very useful.

Like most computers that work with BASIC, the
Commodore has a family of commands that can be used
to manipulate strings. Some of the most useful are
LEFT$, RIGHT$ and MIDS$. They are used to pick
out the first, last or middle character of a string
respectively.

How to cut up words

You can make the Commodore break into a word by
slicing parts off the string. It’s fairly straightforward.
To see how to do it, first type in this program:

STRING SLICER PROGRAM

STRING SLICER DISPLAY

You can use this kind of technique to pick out strings
that all begin with the same letter or word, and then
perhaps PRINT them out in a series of lists.

An opposite effect is just as easy to produce. Try
adding this to the first program:

MOSDOOD =
%
DZIMOUDT ~

>

L
i
2
3
4
5
5
R
|

The special technique here is in line 50, wherea LEFT$
command appears as part of a string expression. For
each value of N, line 50 PRINTS a string N characters
long, from the first character, C, to the Nth character.
So, the first line contains the string “C”, the second line
“CO” and so on, until N equals the length of the string
that is set. With this program you can use any string —
a group of words, numbers or other symbols; it’s best if
the value of N is not more than one screen line (40
characters). If you use a different string, make sure that
the maximum value of N in line 40 is the same as the
length of your string. Here’s the display that the string
slicer produces with line 20 set as above:

70 FORN=1TO 18

80 PRINT TAB(8); RIGHT$(A$,19—N)

90 NEXTN

Now, as N increases from 1 to 18, the length of the

string PRINTed decreases from 18 characters toonly 1,
as letters are sliced away from the left.

Picking out parts of a phrase

Now you can explore this technique. The next program
shows how the Commodore can select parts of a string
and use them in different ways:
SELECTIVE STRING SLICER

)

a3

53286 ,8:POKE 532
= POKE 2i1.6

= POKE 211,56

TUVTITDTD

MONEE00000DORS —

POODD

L
1
2
8
3
3
S
&
7
8
9
i
i
i
i
R
[

As you can see from the display this produces, you
aren’t limited to dealing with the first N characters of a
string. In fact, you can take any consecutive group of
characters from a word or sentence. In this program line
60 works in the same way as line 50 of the first slicing
program. Line 90 forms a string of 6 characters from
characters 8 to 14 out of the middle of A$. Finally, line
120 forms a third string from the last six characters.
Although these three “substrings™ are formed from
parts of A$, A$ itself is still intact. This lets you take a
group of words and pick out any of them for use on their
own in a program.

Word games with string commands
The next program shows how you can use these
methods of handling words in a game. It's a
computerized “hangman” word-guessing contest in
which one player enters a word and the other has to
guess it; the computer PRINTs letters guessed correctly
in their right positions in the word, and also lets you try
guessing the whole thing:

WORD GAME PROGRAM

VT
SO =+ ng

DO ARNADT—D- D00

ey

D A

WD r 0 OI~NOCUNE LW
= DOTVODOD 3O O

r
)
-

-
DO=E ¥
x

T
KE 211,P+N

o A

x
<N DUV DZ DD~ T
+ OTMTMORCOM=TRMN | NEO

MWOND® O3 DNDL 13w

DODDOD=DO_ DOM

IEDIINONIRI 1 e o o
]

Lines 10 to 60 PRINT the title frame. When a friend
has typed in the test string that you will have to guess,
line 80 calculates the length of this test string using the
command LEN, and sets the score (S) to zero.

The program now has to PRINT symbols on the
screen to represent the letters in the test string. As you
guess the letters, any correctly guessed letters will
replace these symbols. Also, to allow for test phrases
rather than just words, the positions of the spaces
between the words are shown. Line 110 PRINTS
hyphens to represent the characters. Line 90 uses the
value of P to work out where the characters that
represent the test string should be PRINTed so that
they lie in the middle of the line (a similar effect is
incorporated in word-processing programs).

If you want to guess the whole word or phrase instead
of keying in individual letters (you can do this at any
point in the game), press 1. The program jumps to line
180. The word or phrase that you type in (T$) is
compared to the stored string (A$). Then a
“CORRECT” frame is PRINTed or if the guess is
wrong, a “-WRONG-” frame is PRINTed. When a
single letter is tried, lines 150 to 170 compare it to each
character of the stored string in turn. If the guess is
correct, the letter is PRINTed in the appropriate
position in the display.

‘WORD GAME DISPLAY

HANGHAN - PRESS 1 TO HMAKE A GUESS

H-C-0COH

TRY A LETTER? B

You can easily limit the number of guesses by adding
the commands:

IF $>N THEN STOP

after the statements where the score S is calculated. If
you make a mistake in keying in the program, it can be
difficult to interrupt using the STOP and RESTORE
keys, so to make this easier, add one extra line to check
the value of T$:

145 IF T$=*2” THEN STOP
To stop the program at any point, simply press 2.

]
WRITING GAMES 1

The next six pages will take you through writing a
games program, showing you how to put all the phases
together to build up a complete listing. Writing a games
program requires some careful planning before you
actually start writing lines. To begin with, you need to
decide what sort of game you want. Many games
combine your acquired skill with an element of chance
(the roll of dice, the turn of a card and so on), and many
have a number of different phases of play.

To plan a game, it’s best to start by drawing a rough
sketch of the screen display, marking the colors and
positions of any fixed characters or patterns. You’ll
want to refer back to this as you write your program.

Next, you can draw up a flowchart showing the
program steps and the order in which they will appear
in the program. It isn’t necessary to draw a detailed
chart —a list of steps connected with arrows to show the
order should be sufficient. A complete games program
will be more complicated than anything you’ve written
so far, so it is worth spending some time designing a
program before you key it in.

Keying in the first phase of the game

With the game on this page, the planning stage has been
completed, and you can now key in the first phase of
what will be a two-stage program. The listing that
follows is for a practical game — one that anyone should
be able to play without any prior knowledge of the game
or the computer. Below is the first screen of the
program. This first phase of the game involves shooting
at a moving spacecraft. As the program contains some
user-defined characters and sprites, remember to move
the BASIC program area out of the way by using the
technique on page 14 to make room for them before you
key the program in:

The program gives you a laser base which you can move
left or right with the Z and X keys. You can fire, but
only straight up the screen. A number of spacecraft
approach you one by one, and you must destroy them to
carry on. The program will start after you type RUN
and then press any key. However, because it has a lot of
DATA to POKE, it takes a little time to get started on
screen. Don’t assume that your listing is wrong if
nothing appears for a few seconds.

PHASE 1 VARIABLES

The first phase of the game uses a total of 16 variables to control
graphics and record hits on the target.

Variable Function

A Sets spacecraft direction

C$ Holds characters entered by player

F Records total number of laser strikes

H Flags successful laser strikes on target

LM Fix row and column co-ordinates of laser
base

N,P General variables

Q Records the number of times laser fired

R,C Fix row and column co-ordinates of
spacecraft

S SID chip base address

sC Holds score for this phase

T Setsdelay loops

XY Control co-ordinates of laser beam

(1=right, —1=left)

The second screen of the program contains a number
of lines which direct the computer to make decisions
and then direct the computer to later subroutines. You
will notice that as you go through the listing the line
numbers sometimes jump by more than 10. This is
because it’s simpler to identify subroutines this way:

PHASE 1 SCREEN 1

PHASE 1 SCREEN 2

o0
@O

ZTDVTNTT T

=T VNTNVWDOOOECED
m

b S0
L ABODIN | NORMEST HOB TS
o W m

MO NR

)
T 4 NUIWWD:

FOLXMY & ARNWEDC

DRUDULEBNII~ADDODOEDDD
@ MDA

D Fimpie bbb X L OQODULD ok
HODEEOOBONm &

Tt 2> 32>
= POKE U#i,(L+
= POKE U#3,(
FOR T=i TO 2B

L WP

COE0OEOBOERRAD-IDKOSOOHD
T

x

o

i
£s
EN

H
EN
is
551
GO

BRI DD+ Drih,
Zo_DEAMEAMOW © PXL

WD WOWWWUWWNRIRS TR
MARAM EM 0w A

Lines 290 and 300 let you move the laser base to either
side with keys Z and X, and lines 310 and 320 stop it
moving out of the screen. The laser moves one place for
every key-press. If you key in POKE 650,128 as a direct
command at the end of the listing, this will enable you
to autorepeat the movement by holding the keys down.

If you press the M key, the program jumps to the
“fire” routine at line 500. This PRINT: a line of user-
defined characters, If the subroutine records a hit, the
program begins a new attack.

Lines 350 and 360 control the movement of the
spacecraft. Lines 370 and 380 make the program jump
to the enemy attack routine at line 600 once in-every 10
spacecraft moves. This is done by picking a random
number from 1 to 10; only one of these numbers — 3 —
will trigger the attack routine. Line 390 continues the
same attack by jumping back to line 230.

The subroutine section

Finally, here is the last part of the program. It contains
a pair of subroutines and the DATA for the graphics.
Lines 510 to 560 draw and “undraw” the laser beam
using the character defined in screen 1. If M is in the
range from C—1 to C+1 then the laser has hit its target.
Lines 600 to 700 control the return fire from the
spacecraft. If it lands on the laser base, an explosion will
sound and the Q value of your score will be altered.

Lines 400 and 410 calculate the score and end this
phase of the program. The score is based on the time
you take to complete the program, the number of times
you fire the laser, and the number of direct hits. The
score isn’t actually used here, but it will appear later on
as you develop the program.

Once you have typed in the listing on the following
screens, SAVE it on a tape or disk before you RUN it so
that if you have made any errors in keying, you will not
lose the program if the machine “hangs”, and you will
be ready to combine it with the next phase.
PHASE 1 SCREEN 3

Q42-10%F

S
=0
00 i
o
mm

I
T :
R
E

=
m

SO0 O
mNS<m

™
DT DTV VDNHAL D= T VLDV VNG
V=
Bl
e Tl St
Qom=m=
x -

<
O I =00 _f<e s

FEOM RO
m
"

FROMO VBB MOTROMSRO ||
HRNRROBNR R AR 3%,
=]
LTt
S
Mokt O
HDRR AW
om=m r>

PODNDDDND ANNTASANNN 8 4
U

BADNMWNID _ DDNON e WIS
COOBEROOSNGOOEOBO0LODE

MXEM—AMZM EATZM—~MEM + 0

b4
s
3
Fi
b
S
0
i

s
bt

o
%

o
m
>
°
<

PHASE 1 SCREEN 4

Q+10 : POKE S+4,128

00 ¢

B A e b o T
©

SRR RN OO Z

o e e e e | {50
2DIDIDDIDDDDDD DD

B NG S bt faw

MDD N W= DOBLDNDED =
It

POOURODDOOOODDOD !

2
33DIDIDIDDIDIDDDHMM

WOODDHOODDDDDyI 1) (=

Here is the program in action. In the first display the
laser is firing at the spacecraft, while in the second you
can see the spacecraft retaliating:

PHASE 1 DISPLAYS

T+ [A
WRITING GAMES 2

In the second phase of the program, the scene changes
from the air to the sea as a ship tries to depth-charge a
moving submarine. Again, your aim is to hit the enemy
to produce the best score. The scoring instructions are
still not used in this phase, but are ready to be brought
into operation when you key in the last phase of the
game, linking up the first two parts.

You should type all three screens of listing for this
phase on top of the program you SAVEd for phase 1.
Remember once again to SAVE the combined program
on a disk or tape before you RUN it. Because there are
a large number of bytes POKEd into memory by the
program, any typing mistakes that you make can
POKE DATA into fatal places!

As before, the program uses a number of variables to
control movement and subroutines.

PHASE 2 VARIABLES

The second phase uses a total of 6 variables to control movement and
record hits,

Variable Function

B.D Submarine row and column co-ordinates
(B=row, D=column)

G Fixes column position of ship

F Flag for “depth-charge dropped”™
(1=dropped, 0=notdropped)

U,E Depth-charge row and column co-ordinates

(U=row, E=column)

Setting the scene
The first section of the program produces a colored
screen and sets up sprites for the ship and submarine:

PHASE 2 SCREEN 1

Don’t worry for a moment about line 165 — you’ll find
out why it is included on the next page. Lines 1075 to
1080 PRINT a light blue sky over the dark blue sea.
Line 1110 sets the column position for the ship and lines
1130 to 1190 control its movement across the water.
The aim of this game is to hit the submarine. The M
key controls the release of the ship’s depth-charges.
The ship is also maneuverable, again being controlled
by the Z and X keys. All these functions are controlled
by a GET statement in line 1130 for a rapid response.
The ship always starts off in the middle of the screen.
The position of your enemy is less predictable. Lines
1110 and 1120 set the random starting point for the
submarine. It may appear at almost any position.

The main program and its subroutines
The second part of the listing contains most of the main
program, together with a number of subroutines:

PHASE 2 SCREENS 2 AND 3

G A
O MmN N eeee

ik
i
i
i
1
o
i
i
i
i
i
i
i
i
i
i
1
1
4
i
1
i

DO NN D=1 fu W= D
PRt S e

DX DT DVEC =T

T L 0 N e g
Ol MHOTHD 1O

M AZMCEM ODmm |
- A s

RE R R R

o]

)
Q;L‘}I

FRNTT Jy

Mmawm

L
L 2]
PIRSL TN

o .
NOOOODE
20!

1= 2a CONY =
o-waaaaau
e M Y0
o2 oo

e YRR

OO0 TLMeXTX MM
AVNOS LG

150y

DDHH!
SISV OUGUD
S OO DM T DO

DNBDI=D DI
"o =D

b e = E T
T.00 Mmoo Mo ccAmo

WD Fop bbb |
bbb D O

e

POKE 211.E

.
D)

DEEOD
| e
XM=
O~

(7}

-}

(R

e

S
S

S O R s OIS b S
SN HDDANFIN WD
@~ I Jas & & & NN day
S N~ QGO 0mDNn O~ DS
WO 1~ « % PIR PIPIeY ¥
ARUING. R BN D

PRI ODDWINDEDEE =
ORUINNOAEDIUNIRDOr @

O WA & > S R ~
Wk OUDEOEN NUN=IA~ D

DI AW DI TIN L GOR)

e P A e
IDDIIDIDIDDDDIDDDDD D
RN N G N N S S amgROn

B0 o o o o o e
0 NN NN P DO PP
<

Line 1210 makes the program jump to the depth-charge
routine at line 1300 if you have pressed M.. The score, S,
is also adjusted every time a depth-charge is dropped.
The score is related to the time that has passed by using
the jiffy clock in line 1500. Lines 1230 to 1260 control
the movement and the appearance of the submarine.
Line 1270 continues the program by returning it to line
1130 to check the keyboard for key-presses.

Lines 1300 to 1420 make the depth-charge travel
down the screen. If the charge reaches the bottom of the
screen, lines 1380 to 1420 reset F to its original value
(zero) and then return to the main program. However,
if the position of the depth-charge coincides with any
position occupied by the submarine (sprite collision
detection in line 1370) then the attack is terminated and
anew one started.

You will notice that when you RUN the program
only one depth-charge can be released at a time. If F has
been set to 1 by line 1220, when a depth-charge is
dropped, line 1210 stops you from dropping another
one until F is once again equal to zero. This will be true
either when the charge reaches the bottom of the screen
(line 1330) or when it hits the submarine (line 1380).

Lines 1600 to 1770 contain all the DATA necessary to
program the sprites. The final two lines contain DATA
which codes user-defined characters. The first
character is the depth-charge. The second character is
not used, but is available if you want to experiment with
it. If you replace the reversed square character in line
1080 with CHR$(103) you will see a background of
waves instead of solid sky. These waves are made up
from single curved characters to give the impression of
the water’s surface. All the DATA in lines 1600 to 1810
is POKEd into memory by the loop of commands in
lines 1000 to 1060.

Here is a sequence of displays from the game; in the
final screen the submarine has been hit, making it
change color:

PHASE 2 DISPLAYS

S T U et T

PHASE 2 DISPLAYS

The continuing scoring routine

The time is once again used to calculate the score at the
end of the game. If you want to check that the program
is working properly, you can PRINT out your score for
phase 2 with the following line:

1510 PRINT “PHASE 2 SCORE=";8C

Line 165 is included in this program to branch around
the phase 1 program in memory. In the final version,
you'll be taking out this line and adding some extra
statements to combine the scores obtained in the two
phases of the game. If you are really familiar with how
the two phases work, you might like to look at the
ranges of the score values they produce. Then see if you
can think of a way to combine these so that they
contribute to about half the overall score.

When you have made sure that the phase 2 program
works you will be ready to link the two phases together
and key in some playing instructions, making the games
a single functional program.

e I [e
WRITING GAMES 3

Now that you have keyed in and SAVEA the first two
phases of the game, you are ready to add the game
instructions and complete the part of the program
which will produce your score. The extra line, 165, that
you added to phase 2, now needs to be removed for the
final version, so delete it now before moving on.

Adding the game instructions
If you RUN the program with the first two phases, you
will find that although it’s theoretically one program, it
still behaves as two separate units. When you are
writing games in phases like this, you will need to do a
little tailoring to the final program to make it RUN
through properly.

Linking the two phases is easily done. Change line
410 to:

410 POKE V+21,0:GOTO 2200

That’s not a mistake, even though the sub-sinker
program begins at line 1000. It’s to allow you some
space to add game instructions starting from line 2200.
The new line 410 also turns off the sprites that are used
in the first game.

Now you can go right back to the beginning and start
the program off with a title frame containing all the
instructions the player will need. The keys that control
the objects moving on the screen need to be listed. You
also need to tell the player how to start the game,
bearing in mind that by the time the message appears,
the program that contains the game will already be
RUNning.

The next screen shows the instructions which appear
before the first game. Line 5 makes the program jump
over the two games to the instructions, and line 2140
makes the program go back to the beginning:

Lines 2000 to 2120 PRINT the game title, and explain
its controls. Instead of the program clearing the display
after a time interval, it waits for a period that is
controlled by a GET command. Line 2130 stops the
computer from going any further by looping back on
itself. This carries on until you enter a string which is
not null - in other words, until you press any key. The
condition for repeating line 2130 is then broken, and
the program then goes to line 10, which clears the
screen and starts the game:

PHASE 1 INSTRUCTIONS DISPLAY

POT SHOTS
SRR

FIUE ALIEN SPACECRAFT
HAVE BEEN SIGHTED IN YOUR AREA
LIE

YOU HMUST DESTROY THE Al NS
FOOE O IOOOOEEGEEEOBHONR

LASER BASE CDHTRDL?
Z=LEFT X=RIGHT H=FIRE

PRESS ANY KEY TO START

You can now key in the instructions for the second
phase of the game. These work in the same way, and are
activated at the end of the first phase by line 410. Again,
GET is used to allow you to start the game only when
you are ready. When you press any key, the program
jumps to line 1000 which POKEs sprite DATA, and
then the screen is cleared:

PHASE 1 INSTRUCTIONS

PHASE 2 INSTRUCTIONS

DOOMS

LW D6
SMETOOB0CRUSS
OO TTVTVDR TS

DPILAIRIPINIPIN ZAIN

SO0
DO,

S0
DD

o P

2]
2
2
3
I
3

L0 N
o 00 O Coo;

m e
>

o0
bl

IDOODONS
DO

XA
%3

NIIPINIMINdf
MDY L=

OIS o

;
b=
DD TVV O

PO NOmNIPINININIP:

freaeird
o000
& -
oM VIO X

M W SO K PITROBIN
)

WD NN=NDRN

PHASE 2 INSTRUCTIONS DISPLAY

SCORING ROUTINE

SUB_ SINKER
P

NOH FIUE SUBHARINES HAUE
INVADED YOUR TERRITORIAL HATERS

YOU CAN DEPTH-CHARGE THEHM

o "%
O T DDA DB
SxomTmMTT =

e

WONSOD
RO) %
zm mom

TINCLL b dada do
OEXMOVUNN.

L
i
L
2
2
2
A
3
2
3
2
2
2
2
R
)

You can of course use any keys you want to specify
movement as long as you change them throughout the
program. Now neither phase of the game will start until
you are ready and press a key to begin.

Completing the scoring routine

Firstly, you need to add a routine to produce the score
at the beginning of the program. The final score of the
second phase is retained:

1500 LET SC=SC+TI

However, if you have played the two games
independently and typed PRINT SC afterwards, you
will have noticed that the first phase of the game yields
a result ranging from —20 or so to several hundreds or
several thousands. The results of the two games need to
be roughly the same size. You can achieve this by
multiplying the running score total in line 400 by 100.

400 LET SC=100%(TI/300+Q 1 2—10%F)

This line is a good test of your understanding of the
variables from pages 46—49! To make the presentation
of the score more interesting, you can add a few lines to
turn this purely numerical score into a ranking. This is
quite a useful technique in games programs, because it
gives a new player some idea of how the program rates
his or her skill. It’s much better than a purely numerical
result which gives you no idea how your score compares
with the complete range that the program is likely to
produce.

This ranking feature is very often used in a whole
range of programs. Even though adding these little
extra touches is fairly simple, it is these small additions
to the main sequence that can make the difference
between an average program and one that you can be
really proud of. Here’s the scoring section and one of
the displays it produces after the complete game has
been played:

SCORE DISPLAY

YOU HAVE EARNED THE RANK OF

COHMHANDER

Lines 2440 to 2480 divide the scores up into bands, each
of which is assigned to a rank. A series of IF ... THEN
lines decides where your score comes in the ranking.
You can change the cut-off scores for each band to make
the games easier or harder (if you’re feeling ambitious
you can actually program this as a difficulty option).

You have now completed a two-phase game with
instructions, action and a scoring routine. Although the
two phases used on these pages are relatively simple, the
way that they are combined can be used to build up
games of your own that are much more complex. You
can use this multi-phase technique to put together a
number of sub-programs, each written and tested
independently. The only restriction on this is the size of
the computer’s memory, but unless you are combining
long programs, you shouldn’t have any problems.

All you need now is practice. The best way to get this,
as a beginner, is to take an existing program such as the
one you have seen over the last six pages, and then to
customize it in your own way.

FILING DATA WITH ARRAYS

An array is a way of storing a collection of facts and/or
figures in the computer’s memory in the form of a table,
so that you can locate any itein in the table without
having to go through all the others first. Each item in an
array is specified by one or more numbers. In the
following array, each item is given a pair of co-ordinates
which identify it and nothing else:

0 1 2 3 4 5
0 FRED KATE JOHN JANE ALAN JUDY
1 100 250 840 125 223 691

This is a 6X2 array, so-called because it has 6 columns
by 2 rows. Item (1,1) is 250, item (2,0) is JOHN, and so
on. Because two numbers are needed to identify each
item, this array is known as a two-dimensional array. If
it was composed of only one row of names or numbers,
it would need only one number to identify each item
and so it would be a one-dimensional array. The BASIC
keyword DIM is used to tell the computer how big an
array is to be, by specifying the largest subscript (the
highest position) in each dimension of the array.

What use are arrays?
A one-dimensional array can store a list of frequently

used numbers or strings:
ONE-DIMENSIONAL ARRAY PROGRAM

When the program is RUN, the display it should
produce looks like this — a month chart ready for more
information:

ONE-DIMENSIONAL ARRAY DISPLAY

J
F
Hi
il
H
3
J
f
S
(1]
N
D

MoOMEECD:

Writing tables with arrays

Now you can build upon this calendar array program to
make it do something useful. Add a second array, a
numeric array, so that you can list some totals or values
against each month:

r
@
=5

MWD 00000Beo0
DTOMODTDY

POEOD
]

1
2
3
3
<)
B
7
8
9
i
1
i
i
R
|

CXTONDNMO—D D

L

Here line 50 tells the computer that the array M$ has 12
" entries (notice that array subscript numbers start at 0 so
the array elements are numbered 0 to 11). This program
PRINTS out a list of the months of the year given in
lines 10 to 40. Although there are easier ways of doing
this, later on in a program you may want to match up a
month with other information or the result of
calculations. Using this listing, you can pick out any
month by using M$(N) where N is the month number.

TWO-DIMENSIONAL ARRAY PROGRAM

@
=

SO =
bt)
MEmDD3D3D

MO D T L e et
T LS

PIC IO N e 1 D D D 5 9 G
H R I DD

DOOOODEDDE
°©
<X UTNVOTOY

Db b e DN N a PO
» MO

The table now has two headings. You don’t have to
PRINT all the members of the string array — M$(N) —
before moving on to select the numeric array — R(N).
Line 170 takes one item from each array. As these are to
be PRINTed on consecutive rows of the screen, they
can be easily identified by relating them to the row
number. For each value of N, M$(N) and R(N) are
PRINTed at different TAB positions along row (N+5):

TWO-DIMENSIONAL ARRAY DISPLAY

TAX TABLE PROGRAM

RAINFALL

]

OXONDAT DI
LORIRRIARE 7 R NS
oo aaaaa

=

e

OO O OO Ao
DPTLTLTS TLILTS Ta

o

ERC R =G

211, (L)
211,%¢E)
POKE ZA1T S
RATE™;

=

MO O R N N

T G G) LIPS D NP PRI O N3 e
MO e NI DD D T G AP DI)
200000BR0E0REIDOBCSEERD
<HTVTTPD VX VTV IINV T
R T A M S

e R I X ot 1 Tt 3% IS IL
CTIMIMEM—ALZNIMEM XM~
Pty =

W0 e D v % X =

AU DD TBN D DOWCD

Adding an extra dimension
Once you have understood the rainfall program, you
can be more ambitious by constructing a much more
complicated table. In the financial planning program
below, the columns in the display are interrelated and
you have the option of changing some of the
information displayed by keying in a new tax rate.

Lines 10 and 20 contain the DATA for the first part of
the array, a series of prices, and line 30 the DATA fora
second part — a series of quantities. Line 40 contains
some co-ordinates which will be used later in the
program. Lines 50 to 80 dimension the 9x2 array and
READ in its DATA. Lines 210 to 370 simply DRAW
the grid of lines that frames the DATA. The co-
ordinates of the bottom ends of the vertical lines are
stored in line 40 and are used in a 7 X1 array.

The DATA is PRINTed in the grid by lines 120 to
200. Itis PRINTed every line from rows 6 to 14 (this is
set by line 130):

The last two items PRINTed by lines 180 and 190 look
particularly complex. If the subtotal was 8.25, the tax
would be calculated as 0.15%8.25=1.2375 — too many
decimal places. To solve that, the tax is multiplied by
100, the INTeger value of it is taken (removing all the
decimal places) and it is divided by 100 again. The
0.005 is added to ensure that the final figure is rounded
down to the nearest unit to fit into the table.

Lines 380 and 390 invite you to enter a new tax rate.
If you do and press RETURN, all the figures in the
table that use the tax rate are recalculated. This instant
recalculation facility is the principle behind a type of
financial planning program called a spreadsheet.
Interrelated columns of figures representing income,
raw material/production costs, overheads and so on can
be entered. Then the effects of changing one or more of
these parameters can be observed as all the totals are
recalculated throughout the display (you can also
modify this sort of program so that the initial
information for the table can be INPUT):

TAX TABLE PROGRAM

TAX TABLE DISPLAY

7
=4

TTIAM~OoD0

x

AT
AT
AT
AT
—f
oR
=
gr
RIN
POK
PRI
EOR
POKE
POKE
POKE
POKE
POKE
POKE
*T /1

a
8
{:}
8
a
8
il
i 9

b

M - QUDNARE OTOROEE0DD =
oo

WD Eherepnbebe e OO =IN N A=
>
)
<

[TTen]cosT[Wo]sue L] Ta%_|TotaL]

@
@

BDNDU DN
TP fa b AN
(RIertE)
AT fu b D)

LU0
WL LDLD LG
NODLAND
~NODRRINNT)

QUAN
SADDO=TOOUN
OWO~IIDIIDD
PO (D fada So
WU
UMD
DEONDWED U

PO Da dn o S da

BN T

o

NEH TAX RATE? 12.5E

TRACING ERRORS

Even when you plan a program meticulously and take
every care when keying it in, you may still find that it
refuses to RUN properly. On these two pages you can
take a look at how to debug a program. You’ve seen the
program before, it’s the word-game program from page
45, but this time it has eight serious bugs in it. It’s as if
the program has been written and keyed in hurriedly so
that it will not work. Don’t cheat by looking back at the
earlier program! See if by checking the listing any of the
bugs become obvious to you then see if what you think
is wrong is corrected on these two pages.

Trying a test RUN

When you RUN a bugged program, youw’ll discover its
bugs in two ways. Firstly, any lines that don’t make
sense to the computer will produce error messages, and
secondly problems in structure or detail will show up in
the way it RUNs:

WORD GAME PROGRAM

: POKE 53281,8 : PRINT C
: PRINT TAB(S5);"AS
ORD*'
PRINT TABC(S);™0
PRINT ™ *% DO
1 et
RETURN HHEN YO

. = ;a8
T

: POKE 214,7 :

241, P
PRIAT " *;

E TS

D DDA TR T WRIIT
ORTVOROD (O D

oo

=

~

)

PRINT TAB(T);

x
€ i D D DD It)t
+ DTMOREOM=TTN i T

) §
s
K
R
R
G

R
T
{1}
R
H

DOOOOO=OD DODDD

MONEOW 0= DADRL
)

IONONION = bbb

When you try to RUN the program, you’ll find that the
title frame comes up and then you are asked to enter a
word. Throughout this debugging session, try keying
in “TRACING ERRORS?” - this will enable you to get
the same results as the ones shown here.

When you key these two words in, you’ll find that
you get an error message straightaway:

?’NEXT WITHOUT FOR ERROR IN 110

This means that the program stopped when it
encountered something that it didn’t understand in line
110. If you LIST 70-140, you will see that a NEXT
statement containing the variable M appears in line 110.
Looking back through the program for a matching
FOR statement reveals that the FOR in line 90 uses the
variable N and not M. Between these statements, you
can see that the variable N appears, suggesting that this
is the correct one and that M is a mistake in keying in.
To make the loop work properly, change NEXT M to
NEXT N. Now try the program again:

CRASHED PROGRAM DISPLAY

ASK A FRIEND TO TYPE A HORD
OR PHRASE, FOR YOU TO GUESS

%% DON‘T LOOK AT THE SCREEN! 3%
PRESS REYRN HICH-OUGME)
HANGMAN - PRESS 1 10 HAKE A

N
N
R

orY
GUE

This time, the title frame and the test string entry work
properly, but the title frame stays on the screen when the
next phase of the game starts. That’s easily dealt with by
adding:

PRINT CHR$(147)

to the start of line 70.

Another problem that you can see with the display
above is that the characters PRINTed to represent the
two words all seem to have appeared in the same
position.

Looking carefully around the loop that PRINTs
these characters, you might notice that their X position
is determined by POKE in line 90. You can see that the
value POKEd is the constant value of the variable P,

whereas you would expect the value to vary with the
value of N. You can make it do this by changing the
value POKEd in line 90 from P to P+N.

How to track down more bugs

Now when you RUN the program, as soon as you key in
your first guess at a letter, you will get another error
message:

?TYPE MISMATCH ERROR IN 150

This means that a number or numeric expression was
found in a position in a line where a string value or
expression was expected, or vice versa. LIST the linein
the error message, and you will find that it uses the
LEN function. The job of this function is to return the
length of the string contained within its brackets. If you
now look at the contents of the brackets you will see the
variable A. This is numeric and not string, and so you
have found the cause of another problem. To cure it,
replace A by A$, and try the program again:
CRASHED PROGRAM DISPLAY 2

HANGMAN - PRESS 1 TO HAKE A GUESS

ERROR IN 1868

LEGAL QUANTITY
DY .

TRIES = 2

TRY A LETTER? R

This time, the program allows you to enter the two
guesses T and R before it crashes again, this time with
the message:

ILLEGAL QUANTITY ERROR IN 160

This message is given when a parameter has gone out of
the range of a command. Add to this the fact that the
display shows the guesses T and R PRINTed in the
wrong positions and in reverse order, and you will have
good reason to suspect that the POKE in line 160 is the
cause of the problem. To check this, get the computer to
PRINT the value being POKEd:

PRINT P-N

You should find that this gives a negative result, which
is certainly illegal as a value to be POKEd. As the letters
are being PRINTed in the wrong direction, the value of
N should be added to P and not subtracted:

CRASHED PROGRAM DISPLAY 3

HANGHAN - PRESS 1 TO HAKE A GUESS

TRY A LETTER? B

You should now see that when you enter T and R as
guesses, the letters are entered on the screen in the
correct horizontal positions and are PRINTed in the
right order. Unfortunately, you will have uncovered
another bug — multiple occurrences of a letter are not
PRINTed on the same line. It looks as though a
RETURN is being put in after each character.

This bug is easy to track down to the PRINT
statement at the end of line 160, which should terminate
with a semi-colon to suppress RETURN.

RUNning the program again after correcting this
produces results that are fine as you key in the letters T,
R, A and C, but when you key in the letter I, the
program stops asking for letter guesses and asks you to
try for a whole word guess. According to the
instructions, this should only happen if you key in the
number 1 as a letter guess. But the number 1 and the
letter I look very similar, and as you’ll see if you check
line 130, the programmer has got them the wrong way
around, a fault which is easily corrected.

The final bug is fairly straightforward. When you
enter some letter guesses and then try to guess the whole
thing, the program should tell you whether the guess is
right or wrong. But the last bug doesn’t allow this
message to stay on the screen long enough for you to
read it. To cure this last problem, increase the time
delay loop in line 230 from 5 to 5000. Now you can
check with the program on page 45 to confirm that the
two programs now RUN in the same way.

Ways to avoid writing bugged programs

As you develop your own programs, constant checking
should prevent all but a few bugs from slipping into the
final listing. When you’re testing a program that you’ve
written, put it through all the situations that it will meet
in use, particularly testing any numerical limits. If it’s
supposed to have safeguards to stop it crashing in some
circumstances, test them too.

HINTS AND TIPS

One of the biggest problems that you have probably
come across during this book is typing listings. It’s very
difficult to get a listing fully correct the first time.
Normally this shows up in an error message, but when
you are using high resolution, error messages are
unreadable. Your program stops, and all you can see of
the error message is a row of colored squares. What can
you do to find out what is wrong?

Identifying bugs in high resolution

The next screen shows a graphics program which uses
the high-resolution subroutines, and after that is the
display. As you can see, there is a problem somewhere:

BUGGED HIGH-RESOLUTION PROGRAM

o
DX RE O
OXHRHKOO

zéeaaaoamd

IOk bbb

Because the area of memory that usually holds text now
holds the color memory, you can’t get letters on the
high-resolution screen. The normal way to go back to
the text resolution display is with RUN STOP and

RESTORE. However, this results in the screen being
cleared so the error message disappears as well, leaving
you no wiser as to why your program crashed. What you
need is a method of switching from high resolution back
to text resolution without clearing the screen. You can
do this by entering the following commands directly
after the error message has appeared. First, key in this
line:

POKE 53272,PEEK(53272) AND 247

The screen should immediately fill up with a display
like this:
SWITCHING FROM HIGH RESOLUTION

Now key in a second line of POKEs to bring the error
message onto the screen:

POKE 53265,PEEK(53265) AND 223
This screen shows what you should see next:
THE ERROR REVEALED

As you can see, this does work. However, there is one
problem. The two sets of POKEs are rather complex
and you have to type them into the machine “blind”, as
you cannot see what you are typing on the screen.

A better solution is to accept the fact that you will
probably make mistakes while developing programs,
but prepare for them in advance. What you do is to key
in the previous two lines, plus an END statement, into
your high-resolution graphics subroutines. It’s done
like this:

20 POKE 53272,PEEK(53272) AND 247
30 POKE 53265,PEEK(53265) AND 223
40 END

Then if your high-resolution graphics program crashes,
all you need to do is type in GOTO 20 and the error
message will appear.

How to make RESTORE more useful

One facility which is absent from the Commodore’s
BASIC repertoire is the ability to RESTORE the
machine’s DATA pointer to any given DATA statement
in a program. For example, you can’t type:

10 RESTORE 50

meaning “reset the DATA pointer to the beginning of
line 50 rather than the first line of DATA in the
program”. This facility can be very useful where a lot of
text messages are to be stored, such as in an accounts
program or an adventure game, and need to be accessed
quickly. The big advantage of this is that no memory
space is needed to hold the DATA other than in the
DATA statements in the program. You don’t need to
dimension an array to READ the DATA into, because it
can be READ straight from the DATA statements.
The following screen gives a subroutine listing,
starting at line 5000, which will POKE a short machine
code routine into a free area of the computer’s memory:

MACHINE CODE RESTORE ROUTINE

=

MOOOOBOOD

DANNLWRID 0

TOEOC0G
OOFOLD ||
HAWD

<
© DOUDOZDOM

L
5
S
S
3
5
3
3
3
R
|

' §

This block only needs to be carried out once in a
program. It contains instructions to get the computer to
change the DATA pointer to the next DATA statement
in use.

The next screen shows a short subroutine which uses
this block of machine code to produce the effect of
RESTOREing to a line number:

USING THE RESTORE ROUTINE

=

LI
535
33
53
55
535
55
RE
{ |

CIoT=1ers)

DUNLDI=D
<

The entry point for this subroutine is at line 5500. You
can set the variable RN to the line number you wish to
RESTORE to and then make the computer GOSUB
5500.

Where to store machine code subroutines
Asyou have just seen, it is often helpful to access a short
piece of machine code from within a BASIC program.
Usually, this is done with the BASIC keyword SYS.
This is followed by a number which is the address in
memory of the start of the machine code routine. The
SYS keyword is very like the BASIC statement
GOSUB, in that after the machine code routine, the
program goes back to the statement following SYS. To
make sure that the program returns to the correct point,
the machine code routine must end with the machine
code equivalent of RETURN, which is RTS (ReTurn
from Subroutine). This instruction has a decimal value
of 96, which can be seen at the end of a machine code
DATA list.

When you want to use machine code subroutines as
part of your BASIC programs, one of the problems
which you may encounter is deciding where in memory
to locate the bytes that make up the machine code. On
the Commodore this problem is easy to solve. There is
a RAM area from addresses 49152 1o 53247, that is 4K
in all, which is available for machine code and which is
unused by anything else within the computer. This area
is ideal for storing machine code subroutines. The
RESTORE subroutine on the left is located in this

““safe” area of memory.

HIGH-RESOLUTION GRIDS

The two grids here enable you to identify the high-
resolution memory location for any pixel or group of
pixels on the screen. The first grid has two sets of
numbers along each side. The innermost numbers are
simple horizontal and vertical co-ordinates. The
outermost numbers allow you to work out memory

locations for each square on the grid. The pixels in each
square are controlled by eight consecutive locations in
the memory. To find the number of the lowest location
in the sequence of eight, add together the horizontal
and vertical location numbers on the grid. You can then
move on to the 8 x 8 grid below it.

EEFERESEEEREEEEE R R LR RS R R 4
e 2T NeRREReEg SRR NS ERENSERNNRERERRERER
0 0
320 8
640 16
960 24
1280 32
1600 40
1920 48
2240 56
2560 64
2880 72
3200 80
3520 88
3840 96
4160 104
4480 112
4800 120
5120 128
5440 136
5760 144
6080 152
6400 160
6720 168
7040 176
7360 184
7680 192
How to set individual pixels
Once you have established which to add up the pixel values — -
eight memory locations control 128+64+32+8+2+1 in this R R
the square you have picked out, example — and POKE them into 0
you can then POKE values into this memory location. If you 1
them to light individual pixels. wanted to light pixelsin more than 2
Each memory location controls one row of this square, you would 3
just one row of pixels, so working need to POKE more than one 4
downward from the top of the location. s
square, there are eight separate Working out high-resolution 6
locations involved. In the grid on ~ memory locations like this is a T

the right, just six pixels in line 2
are being set. To do this, you
would have to work out the
location that starts the square,
using the grid above, and then add
2 to it. This gives you the right
location for line 2. Then you need

useful way of getting to know
exactly how the Commodore
operates in high resolution. If you
try it out, it will give you an idea of
how the high-resolution sub-
routines featured earlier in this
book actually function.

SPRITE GRIDS

Commodore sprites are each composed of 21 rows of 24
pixels, each pixel being controlled by a single bit in a
POKE statement. You can use the grid below to design
your own sprites and work out their POKE values.

These can then be entered as DATA in a program. After
pencilling in a design on the grid, add up the bit values
for each group of eight pixels on a row. You can then
record the totals in the columns on the right.

o|1|2(3|4|5|6|7|8|9(10[11|12|13|14|15[16|17(18[19(20(21|22)|23 o
DATA values
128|64 (32|16 | 8 | 4 1 |128/64 |32 |16 4 |2 |1128/64|32|16|8 |4 |21
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Horizontal co-ordinate
Positioning sprites 23 24 343 344 51
Sprite position co-ordinates can have any value 9
from 0-255 vertically or 0-511 horizontally.
However, only a part of this range is actually visible 29
on the screen. The diagram on the right shows how 30
these co-ordinates relate to the screen. The central Screen area
panel is the visible area on the screen. This extends &
from 24 to 343 horizontally and 30 to 229 vertically. é
This means that you can move spritesonand off the £
screen smoothly. =
Because vertical position runs from 0 to 255, it -2
can be controlled by a single byte of information. §
Horizontal position, on the other hand, needs two [Isprite
bytes if the whole of the range from 0 to 511
(=2x255) is to be used. If you want a sprite to 229
continue moving past horizontal position 255, the 230
V+16 location must be turned on for the sprite
concerned. 255

SCREEN MEMORY CODES

are needed — one to specify the character that is to
appear at a screen position, and another to set its color.
The grid below shows how the screen memory and color
memory locations are selected.

10 20

20

24

At text resolution, every point on the Commodore
screen can be accessed using the POKE command. This
allows you to put characters in any color onto the screen
at specified positions. Two separate POKE commands
0
Screen memory 1024 55296
and color memory }‘]’g; ggggg
To find out t'he two 1144 55416
memory locations of }gi ;5:;2
3 B

any point on the 55536
screen, first find out 1304 55576
the row POKE values. 13 a8
The complete screen a4 55696
and color memory 1[;"3: ;;;32
locations can then be |5 55816
determined by adding 1584 55856
the column numberto 1924 -
each POKE value. 704 55976
Once you have deter- 1744 56016

ined these two % 56056
mine = 1824 56096
numbers, you can add §8(6)1 26132

9 617

a character and color |4 e
value. 1984 56256
Character POKE values

The chart below shows the POKE values for the
Commodore’s upper case and lower case characters.

Character codes are POKEd together with the screen
memory values. Values from 128 to 255 produce the
reverse images of the characters shown here.

0 1 2 3 4

S 6 7 8 9

10

g
q

FenlE
< ||
< |—|o

20

]

<«
N T s

30 SPACE

Slsiale
=

AN | T

40

o || e X o

50

60

70

e |~ =—o| @

el

80

o

XICH| oo -
<|-|w
O
£|2lo
4l
~<|O|m

N ||

90

B | —

SPACE

100

N | A >

110

RN
AE0E0- =] - =~

AP AA | === @
DD H @ | w~|T|c|~>
19| VA B
ML= ||+ |- |E|E 0
Gmﬁﬁéﬁm@v

N

120

O NARIN] <] 1|3~ Ol
B
|-

The ASCII character set forms a single sequence of
characters and control functions that can be accessed by
the command CHR$. The ASCII system provides a
standard digital coding for computer characters. The
codes from 33 to 127 represent the same characters on
almost all microcomputers, while the codes outside this

range are used differently by different machines. On
the Commodore these control a range of functions like
color settings and represent keyboard graphics
characters. The ASCII code for each character only uses
7 bits of a byte, leaving room for an eighth bit for
“parity checking”, or transmission error monitoring.

0 1 2 3 4 5 6 7 8 9
0 White s - SHIFTrC=
10 RETURN | Lover Gusor — IgysoN (G e
20 |INST/DEL Red gg;s‘or
20 | Green Blue SPACE | # # $ % & .
40| () * + > - . / 0 1
500 2 3 4 S 6 7 8 9 : 5
60| < = > ? @ A B C D E
70| F G H I T K I M N 0
80| P Q R S T U \% W X Y
0| Z [£] 1 <« | H|l & M| H
w| 5 | B8]0 0[N A0 N
| [/ C | O i d 2 O] 4] X)
120 [#] [@« | B | 8 | 0 m| N Orange
130 E:;Tu'on E E;Eﬁnn E:;;[jon E:;:suon E‘:;gtiun 11: :;gtion]l::;:;:[ion
140 | Function | BRI | Ooeet Back |(a™" | RVSOFF CLR & |INST/DEL|Brown
e R - I Ll L
wolsace | M0 | @ | OO | O | [0 [B8 [(]| bad | W
wo| [B | & | IR [O]H]|H|H]|H
180 [] D0/ 0 = | = | O &) | ™) H
190 M N 45 @ | D818 21
00| [NI N Pl L N A C H
20| [v | O] 4] X @ | [| [| H
2| 8 | M | W [N lsme [0 | w [00| L0} [
20l B |]| & (P | OB |G| M| | O
20| [d = HF | H DD [105 | -
50| [w | ™ Hl ol

GLOSSARY

62

Entries in bold type are BASIC keywords.

ABS
Gives the absolute value of a number.

AND
Combines two conditions or numbers, giving a result of
1 only if both conditions or numbers have a value of 1.

ASC
Gives the ASCII code of a character.

ASCII
American Standard Code for Information Interchange;
the character coding system used by the Commodore.

BASIC

Beginners’ All-purpose Symbolic Instruction Code;
the most commonly used high-level programming
language.

Binary

A counting system used by computers based on only
two numbers — 0 and 1.

Bit

A binary digit—0or 1.

Byte

A group of eight bits.

Chip

A single package containing a complete electronic
circuit. Also called an integrated circuit (IC).

CHR$
Converts an ASCII code into the character it represents.

COos
Gives the cosine of an angle.

CPU

Central Processing Unit. Normally contained in a
single chip called a microprocessor, this carries out the
computer’s arithmetic and controls operations in the
rest of the computer.

Cursor
A flashing symbol on the screen, showing where the
next character will appear.

DATA

The computer treats whatever follows DATA as
information that may be needed later in the program.
Used in conjunction with READ.

Debugging
The process of ridding a program of errors or bugs.

DEF FN
Defines a function.

DIM
Informs the computer about the size of an array.

END
Halts a program. (See also STOP.)

Envelope
The change in amplitude (volume) of a note while it is
playing. Envelope shapes are selected with POKE.

Filename
A name given to a program or set of data to enable
storage and recall on a tape or disk.

FN
Indicates that the variable following represents a
function. (See also DEF FN.)

FOR ... NEXT
A loop which repeats a sequence of program statements
a specified number of times.

GOSUB

Makes the program jump to a subroutine beginning at
the line number following the command. The
subroutine must always be terminated by RETURN.

GOTO
Makes a program jump to the line number following
the command.

IF...THEN
Prompts the computer to take a particular course of
action only if the condition specified is detected.

PUT
Instructs the computer to wait for some data from the
keyboard which is then used in a program.

INT
Converts a number with a decimal fraction into a whole
number by rounding down.

K
Abbreviation of kilobyte (1024 bytes).
LEFT$

Forms a string from the left-hand part of another string.

LET
Assigns a value to a variable. The use of LET is optional
on the Commodore.

LEN
Counts the number of characters in a string.

LIST
Makes the computer display the program currently in
its memory.

LOAD

Transfers a program from a tape or disk into the
computer’s memory. The program is identified by a
filename.

Loop
A sequence of program statements which is executed
repeatedly or until a specified condition is satisfied.

MID$

Forms a string from the middle part of another string.

NEW
Removes a program from the computer’s memory.

ON ... GOTO/GOSUB

Makes a program jump to one of a number of
statements or subroutines depending on the value of a
variable.

OR
Combines two conditions or numbers, giving a result of
1if either of the conditions or numbers has a value of 1.

PEEK
Reads the numeric value in a specified memory
location.

POKE
Puts a numeric value into a specified memory location.

PRINT
Makes whatever follows appear on the screen.

READ
Instructs the computer to take information from a
DATA statement.

REM

Enables the programmer to add remarks to a program.

The computer ignores whatever follows REM in a
program statement.

RESTORE

Resets the computer to READ the first item in a DATA
List.

RETURN

Terminates a subroutine. (See also GOSUB.)

RIGHT:
Forms a string from the right-hand part of another
string.

SR | [y e

RND
Produces numbers at random within specified limits.

SAVE .
Records a program currently in memory onto a tape or
disk. The program is identified by a filename.

SGN
Tests the sign of a number.

SID
Sound Interface Device; the chip used by the
Commodore to produce sound.

SIN
Gives the sine of an angle.

Sprite
A mobile object block that is defined using POKE.

SQR
Produces the square root of the number that follows it.

STEP
Sets the step sizeina FOR ... NEXT loop.

STOP
Halts a program and PRINTS out the line number in
which it appears.

String
A sequence of characters treated as a single item —
someone’s name, for instance.

Subroutine

A part of a program that can be called when necessary,
to produce a particular display or carry out a number of
calculations repeatedly, for example.

SYS
Gives the starting location of a machine code program.

TAB
Positions text along a line.

Variable

A labeled slot in the computer’s memory in which
information can be stored and retrieved later in a
program.

VERIFY
Checks that a program has been recorded correctly ona
tape or disk using SAVE.

vIC
Video Interface Circuit; the chip responsible for
controlling sprites.

Main entries are given in

bold type

ADSR (Attack, Decay,
Sustain and Release)
40-1, 42

AND 8-9, 12-13

Animation, sprites 30-1

Arrays 52-3

ASC 10

ASCII 10-11
— character set 61

Bar charts 36-7
BASIC 22, 26, 57
— storage area 14
Bit masking 12-13
Bouncing ball programs
8-9,38-9
Bugs 14
— avoiding 55
— in high resolution
56-7
— sound 43
see also Debugging

Calculations, using
functions 6-7
Characters, ASCII set,
61
— designing 26-7
- multi-character
design 27
— POKE values 60
Charts, bar 36-7
— pie 34-5
Circles 20-1
Clocks 11
Collisions 22-3
Color, bar charts 37
— high-resolution 14—
15
— memory codes 60
— multi-color sprites
28-9
Columns 36
COS 20-1, 24
— graph of 25
Crashed programs 54-5
Curves 20-1
— complex 24-5
— wandering 21

DATA 18-19, 57
Debugging 54-5
Decoder programs 10
Defining statements 6
DIM 52-3
Displays, high-
resolution 14-15
—size 19
see also Graphics
Dotted lines 17
Drawing, circles and
curves 20-1
— lines 18-19

Encoder programs 10
Error messages 54-5, 56
Errors 54-5

see also Bugs

Filtered sound 42
Flowcharts 46
FN 6
FOR ... NEXT 17
Function keys 10-11
Functions 6-7

— built-in 6

— writing 6

Games programming
46-51
— adding instructions
50-1
—IF...THENin9
— planning 46
— scoring routines 49,
51

GET 10

GOSUB 57

Graphics 35

— bar charts 36-7

— character design 26-7

— changing size 19

— circles 20-1

— curves 20-1

— filling shapes 22-3

— graphs 35

— gravity simulation
38-9

— high-resolution 14—
15

— lines 18-19

— natural 24-5

— pie charts 34-5
— plotting 16-17
— point 16-17
— writing games 47
see also Sprites
Gravity, simulation 38-9

High resolution 14-15
— bugs 56-7
— drawing lines 18-19
— locations 16-17
Hints and tips 56-7

IF ... THEN 8-9
INPUT 10
INT6

Jiffy clock 11
Keyboard encoders 10

LEFTS$ 44

Lines, drawing 18-19
Lissajous figure 24
Listings, typing 56
Logical operators 12
Loops 17

Machine code, storing
subroutines 57

Memory, clearing 14-15
— screen 60

MID$ 44

OR 8,12-13
Overlaps 32-3

Parallel lines 16-17
Patterns 21
PEEK 12
Pie charts 34-5
Pixels 16-17, 26, 28-9
Point graphics 16-17
POKE 12, 57

— values for characters

60

RAM 57

Reaction test programs
11

RESTORE 57

RETURN 10

RIGHTS 44

Ring modulation 43

ROM 26

RTS 57

Screen memory codes 60
Shape filling 22-3
SID (Sound Interface
Device) 40, 41, 42, 43
SIN 20-1, 24
— graph of 25
Sine wave sound 42
Size of display 19
Sound 40-1
— advanced effects 42-3
— bugs 43
— filtered 42
— ring modulation 43
Sprites, animation 30-1
— collisions 32-3
— control bits 12
— expanding 28
— multi-color 28-9
— overlaps 32
— storage 30
SQR 6
STEP 17
Storage, machine code
— subroutines 57
— rearranging 14
— sprites 30
Strings 44-5
— cutting up 44
8YS 57

Tables 52-3

VIC (Video Interface
Circuit) 12, 14-15, 32,
33

Wandering curves 21
Word games 45
Words 44-5

Acknowledgments
Dorling Kindersley would
specially like to thank Ian
Graham for his significant
contribution to this series.
Thanks are also due to Fred
Gill for checking the text
and to Richard Bird for
preparing the index.
Commodore Business
Machines (UK) Ltd kindly
helped in the supply of
equipment.

T
_INDEX

	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_001
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_002
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_003
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_004
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_005
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_006
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_007
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_008
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_009
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_010
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_011
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_012
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_013
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_014
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_015
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_016
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_017
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_018
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_019
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_020
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_021
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_022
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_023
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_024
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_025
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_026
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_027
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_028
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_029
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_030
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_031
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_032
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_033
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_034
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_035
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_036
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_037
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_038
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_039
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_040
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_041
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_042
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_043
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_044
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_045
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_046
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_047
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_048
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_049
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_050
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_051
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_052
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_053
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_054
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_055
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_056
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_057
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_058
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_059
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_060
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_061
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_062
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_063
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_064
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_065
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_066
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_067
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_068
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_070
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_071
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_072
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_073
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_074
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_075
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_076
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_077
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_078
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_079
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_080
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_081
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_082
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_083
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_084
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_085
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_086
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_087
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_088
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_089
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_090
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_091
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_092
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_093
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_094
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_096
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_097
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_098
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_099
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_100
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_101
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_102
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_103
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_104
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_105
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_106
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_107
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_108
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_109
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_110
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_111
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_112
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_113
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_114
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_115
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_116
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_117
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_118
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_119
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_120
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_121
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_122
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_123
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_124
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_125
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_126
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_127
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_128
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_129
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_130

