
The Hitchhiker's

Guide to GEOS

v2020

A Potpourri of Technical Programming Notes

(provided "as is" without support)

April 1988

Heavily Revised for Digital Medium 2020

Copyright ©1988, 1989 Berkeley Softworks.

Copyright ©2020 Paul B Murdaugh

This is a copyrighted work and is not in the public domain. However, you may use, copy, and distribute

this document without fee, provided you do the following:

• You display this page prominently in all copies of this work.

• You provide copies of this work free of charge or charge only a distribution fee for the physical

act of transferring a copy.

Please distribute copies of this work as widely as possible.

Note: Berkeley Softworks / Paul B Murdaugh makes no representations about the suitability of this

work for any purpose. It is provided "as is" without warranty or support of any kind.

Berkeley Softworks / Paul B Murdaugh DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS WORK, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS. IN NO EVENT SHALL BERKELEY SOFTWORKS BE LIABLE FOR ANY SPECIAL,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTIONS, ARISING OUT OF OR IN

CONNECTION WITH THE USE OF THIS WORK.

 Introduction

This work is in an Alpha stage.

The Goal of this Document is to provide a one stop resource for GEOS programming information.

1. Convert to Fully Indexed Digital Form:

The Hitchhikers Guide to GEOS

by Berkely Softworks 1988

Note: all Apple Information will be removed from this conversion. If I get geoAssembler

ported into the Apple GEOS, there will be another document made from this one with

all the apple information in it. Until then the lack of development tools for Apple lead

to an early death of GEOS in that environment and its inclusion here is of no value to

a CBM GEOS developer.

2. Combine additional information from other sources including.

A. Geos Programmer’s Reference Guide by

 by Alexander Donald Boyce 1986

 Revised by Bo Zimmerman 1997

B. The Official GEOS Programmers Reference Guide

 by Berkeley Softworks 1987

C. Information now available from the Dissembled GEOS Kernal

D. Information Obtained from my Disassembly of GEOS Applications.

3. Include API Information for Wheels 4.4

Note: Thanks to "THE" email chain collected by Bo Zimmerman, there is some

original author source for documentation. In addition more information will be

extracted from the dissembled sources of both the Wheels kernal and of wheels

applications.

Major find by

4. Include API Information for MP3+

Note: MP3 is still being actively developed and it is open source so this should not

be a problem.

5. Add Tutorials for at least the following.

a. creating Auto-Exec applications. With all of the special restrictions outlined.

b. creating Desk Accessories. With all of the special restrictions outlined.

c. creating VLIR applications. With fully functioning Module Management outlined.

6. Include geoProgrammer Manual content so it can benefit with hotlinks into the GEOS API

and examples.

7. Add any and all other relevant information from others sources including from my own

experience developing for GEOS. With appropriate credits given for all source Documents

Volunteers are welcome to assist and credits will be given...

My goal is too add a minimum of 1 page a day until this document it is completed.

Paul B Murdaugh

Writer of Dual Top and the Landmark Series for GEOS

paulbmurdaugh@gmail.com

mailto:paulbmurdaugh@gmail.com

 Introduction

Preface:

Why this document.

 I want to see GEOS not only continue to exists, but to have a newly growing user base. This is

only possible with new development. New development needs new programmers that have been

attracted into the system.

After some time getting back into GEOS programming myself I quickly decided the bugs and

limitations of geoProgrammer that I used to deal with were no longer acceptable. I did not find concept

to be a solution since it has many of the same limitations and problems as geoProgrammer with only a

small set of bugs fixed. It also forced you into only developing while running wheels and into using is

"little mini desktop" to work in. None of that worked for me and I assumed it could be an issue for

others. While I do appreciate the good parts of concept it was simply not for me.

Next I tried CC65. CC65 is great achievement imho. Wrote a couple of small applications using it.

Then discovered it does not do Desk Accessories and the author has posted a comment about not seeing

any point in fixing that. Combine that with me not really enjoying developing outside of GEOS and not

being able to use geoDebugger and it was pretty easy to say goodbye to CC65 as my development

platform. While being a great piece of work, CC65 was just not for me.

That left me with patching problems in geoProgrammer... Which grew into a complete upgrade with

major portions of the geoProgrammer programs being rewritten. During this process I of course needed

reference material to work with as I was reverse engineering and writing new code. What I found was

lots of OCR scanned documents and some good web resources.

I was constantly going between these different sources. HHG2G was the most complete and by far the

hardest to search as the OCR is pretty rough. There is a really nice web resource for data but has no

API at all. Plus I have no ability to make notes or additions into someone else's web site. GEOS

Programmer’s Reference Guide was fairly easy to search as it did not have OCR issues but it was not

complete by HHG2G standards and had other issues I wanted corrected.

My first effort was just turning the Geos Programmer’s Reference Guide to text so I could make

changes and notes as needed. Intended only for my own private use. I would add a new section

everything I had to reference something I didn't already have converted in. As this started to grow it

started morphing into the HHG2G as that was where all the real meat from Berkeley themselves is.

When it became obvious to me the end result was going to be a full digital conversion of HHG2G it had

to be something that got shared so new programmers could just jump right in and not have any of the

starting hurdles I had to deal with. Then came prereleases so feedback from the community could help

to shape the final form. With the end goal be a complete but living document covering all aspects of

GEOS development. From this document it would be very quick base for translation into other

languages. Conversion to Web form for a WIKI type structure , brought into a database for easy report

generation on the fly for any type of content. The data in these old OCR scans has been set free.

So it is my hope that with a new set of development tools provided in geoProgrammer'2.0 that works

inside of any version of GEOS from 1.3 up to Wheels 4.4 / MP3 combined with documentation that is

indexed and cross referenced will make it a more enjoyable for programmers just discovering GEOS

for the first time.

 Introduction

Sources

 Hitchhikers Guide to GEOS 1988 Base Source Document

1 Geos Programmer’s Reference Guide 1986/1997 Secondary documentation source. notes

with a superscript 1 (1) are from this

document.

2 The Official GEOS™ Programmer's Reference

Guide

Adding Content that is not already

covered in HHG2G and GPRG

3 Paul B Murdaugh (author). Personal experience,

Information learned from the rewrite / upgrades

of geoProgrammer applications combined with

discoveries from reverse engineering Berkeley

applications.

Additional Content /changes made by me

get a (3). Example note3: Also any

content related to geoProgrammer' 2.0 is

my original content.

4 Scott Hutter. Data Mining Found great extinct resource on

additional Wheels documentation from

2002ish era. All of Kernal Group 0 was

documented from his findings.

 Additional Sources to be added as used

Contributors

1 Bo Zimmerman Geos Programmer’s Reference Guide

1997

wheels documentation collection via

Email with Wheels Author

2 Scott Hutter Data Mining

Proof Reading

3 Facebook group GEOS - Wheels - GeoWorks -

MegaPatch - gateWay

General Feedback and a place for me

distrubute this document

 Additional Contributors to be added as needed

 Introduction

Introduction

In 1986, Berkeley Softworks pioneered GEOS — the Graphic Environment Operating System —

for the Commodore 64. GEOS offered the power of an icon/windowing operating system, once

thought only possible on the likes of Apple's Macintosh, to one of the world's lowest priced

microcomputers. The computing community quickly recognized this innovation as significant: the

Software Publisher's Association (SPA) gave GEOS a Technical Achievement Award and

Commodore Business Machines endorsed it as the official operating system for the Commodore 64.

Some industry critics even said it brought the Commodore 64 out of obsolescence. Since that time,

GEOS has been ported to the Commodore 128 and, most recently, to the Apple II family of

computers. Boasting an installed base approaching one-million units, GEOS not only promises to be

around for some time, but to grow into the operating system for low-end computers

Why Develop GEOS Applications

GEOS provides an environment for programmers and software companies to quickly and efficiently

develop sophisticated applications. GEOS insulates the programmer from the frustrating details and dirty

work usually associated with application development. By using the GEOS facilities for disk file

handling, screen graphics, menus, icons, dialog boxes, printer and input device support, the application

can concentrate on doing what it does best, applying itself to the task at hand, using the GEOS system

resources, routines, and user-interface facilities to both speed program development and build better

programs.

Consistent User-interface
A very large portion of GEOS is devoted to supporting the user-interface. The GEOS interface has proven

popular with thousands of users, and an application that takes advantage of this will likely be well

received because the users will already be familiar with the basic program operation. Once a user has

learned to operate geoWrite, for example, it is a smooth transition to another application such as geoCalc.

Large Installed Base and Portability
GEOS is currently available for three machines: the Commodore 64, the Commodore 128, and the Apple

II. There are hundreds of thousands of owners who use GEOS on these machines and there is a

correspondingly large demand for follow-on products. With careful programming, an application can be

developed to run under all available system configurations with only minor changes. Berkeley Softworks

plans to port GEOS to other 6502-based microcomputers, thereby further increasing the user base. As the

popularity of GEOS grows, so does the market for your product.

Application Integration
GEOS offers a flexible cut and paste facility for text and graphic images. These photo scraps and text

scraps allow applications to share data: a word processor can use graphics from a paint program and a

graph and charting application can use data from a spreadsheet. The scrap format is standard and allows

applications from different manufacturers to exchange data. Berkeley Softworks is currently developing

a second-generation scrap facility for object-oriented graphics such as those used in desktop publishing

and CAD programs.

 Introduction

Input and Output Technology
GEOS supports the concept of a device driver. A device driver is a small program which co-resides with

the GEOS Kernal and communicates with I/O devices. Device drivers translates data and parameters

from a generalized format that GEOS understands into a format relevant to the specific device. GEOS

has input drivers for mice, joysticks, light pens, and other input devices, printer drivers for text and

graphic output devices (including laser printers), and disk drivers for storage devices such as floppy disk

drives, hard disks, and RAM expansion units (RAMdisks). As new devices become available, it is merely

necessary to write a driver to support it.

What Exactly is GEOS?

First and foremost, GEOS is an operating system: a unified means for an application to interact with

peripherals and system resources. GEOS is also an environment — specifically, a graphics based user-

interface environment offering a standard library of routines and visual-based controls, such as menus

and icons. And finally, GEOS is a programmer's toolbox, providing routines for double-precision integer

math, random-number generation, and memory manipulation..

GEOS As an Operating System
College textbook writers are forever coming up with splendid new metaphors to describe operating

systems. But as the coach of a baseball team or the governor of California, an operating system has the

same basic function: it is the manager of a computer, providing facilities for controlling the system while

isolating the application from the underlying hardware. An operating system allows the application to

function in higher-level abstract terms such as "load a file into memory11 rather than "let a bit rotate into

the serial I/O shift register and send an acknowledge signal." The operating system will handle the

laborious tasks of reading disk files, moving the mouse pointer, and printing to the printer.

GEOS provides the following basic operating system functions:

• Complete management of system initialization, multiple RAM banks, interrupt processing,

keyboard/joystick/mouse input, as well as an application environment that supports dynamic

overlays for programs larger than available memory, desk accessories, and the ability to

launch other applications.

• A sophisticated disk file system that supports multiple drives, fast disk I/O, and RAM disks.

• Time-based processes, allowing a limited form of multitasking within an application.

• Printer output support, offering a unified way to deal with a wide variety of printers.

NOTE: GEOS as a general term can represent full range of concepts — an operating system,

a user environment, the deskTop, a group of integrated applications — but in this book

it usually refers specifically to the GEOS Kernal, the resident portion of the operating

system with which the application deals with.

 Introduction

GEOS As a Graphic and User-Interface Environment
Interactive graphic interfaces have become the norm for modern day productivity. GEOS provides a

services for placing lines, rectangles, and images on the screen, as well as handling menus, icons, and

dialog boxes. Using the GEOS graphic elements make applications look better and easier to use.

GEOS provides the following graphic and user-interface functions:

• Multi-level dynamic menus which can be placed anywhere on the screen. GEOS

automatically handles the user's interaction with the menus without permanently disrupting

the display.

• Icons — graphic pictures the user can click on to perform some function.

• Complete dialog box library offering a standard set of dialog boxes (such as the file selector)

ready for use. The application may also define its own custom dialog boxes.

• A library of graphic primitives for drawing points, lines, patterned rectangles, and pasting

photo scraps from programs like geoPaint.

• Sprite support. (Sprites are small graphic images which overlay the display screen and can be

moved easily. The mouse pointer, for example, is a sprite.)

• A secondary screen buffer for undo operations.

GEOS As a Programmer's Toolbox
.GEOS also contains a large library of general support routines for math operations, string manipulations,

and other functions. This relieves the application programmer of the task of writing and debugging

common routines ("re-inventing the wheel" as it were).

GEOS provides the following support routines:

• Double-precision (two-byte) math: shifting, signed and unsigned multiplication and

division, random number generation, etc.

• Copy and compare string operations.

• Memory functions for initializing, filling, clearing, and moving.

• Miscellaneous routines for performing cyclic redundancy checks (CRC), initialization,

error handling, and machine-specific functions.

Development System Recommendations

There are many ways to develop GEOS applications. Berkeley Softworks, for example, uses a UNIX™

based 6502 cross assembler and proprietary in-circuit emulators to design, test, and debug GEOS

applications. Most developer's, however, will find this method too costly or impractical and will opt to

develop directly on the target machines. Anticipating this, Berkeley Softworks has developed

geoProgrammer, an assembler, linker, debugger package designed specifically for building GEOS

applications.

 Introduction

geoProgrammer

geoProgrammer is a sophisticated set of assembly language development tools designed specifically for

building GEOS applications. geoProgrammer is a scaled-down version of the UNIX™ based

development environment Berkeley Softworks actually uses to develop GEOS programs. In fact, nearly

all the functionality of our microPORT™ system has been preserved in the conversion to the GEOS

environment. All sample source code, equates, and examples in this book are designed for uses with

geoProgrammer.

The geoProgrammer development system consists of three major components:

geoAssembler, the workhorse of the system, takes 6502 assembly language source code and creates

linkable object files.

• Reads source text from geoWrite documents; automatically converts graphic and icon images into

binary data.

• Recognizes standard MOS Technology 6502 assembly language mnemonics and addressing

modes.

• Allows over 1,000 symbol, label, and equate definitions, each up to 20 characters long.

• Full 16-bit expression evaluator allows any combination of arithmetic and logical operations.

• Supports local labels, as targets for branch instructions.

• Extensive macro facility with nested invocation and multiple arguments.

• Conditional assembly, memory segmentation, and space allocation directives.

• Generates relocatable object files with external definitions, encouraging modular programming.

geoLinker takes object files created with geoAssembler and links: them together, resolving all cross-

references and generating a runable GEOS application file.

• Accepts a link command file created with geoWrite.

• Creates all GEOS applications types (sequential, desk accessory, and VLIR), allowing a

customized header block and file icon. geoLinker will also create standard Commodore

applications which do not require GEOS to run. Resolves external definitions and cross-

references; supports complex expression evaluation at link-time.

• Allows over 1,700 unique, externally referenced symbols.

• Supports VLIR overlay modules.

 Introduction

geoDebugger allows you to interactively track-down and eliminate bugs and errors in your GEOS

applications.

• Resides with your application and maintains two independent displays: a graphics screen for your

application and a text screen for debugging.

• Automatically takes advantage of a RAM-expansion unit, allowing you to debug applications

which use all of available program space.

• Complete set of memory examination and modification commands, including memory dump, fill,

move, compare, and find.

• Symbolic assembly and disassembly.

• Supports up to eight conditional breakpoints.

• Single-step, subroutine step, loop, next, and execute commands.

• RESTORE key stops program execution and enters the debugger at any time.

• Contains a full-featured macro programming language to automate multiple keystrokes and

customize the debugger command set.

Commodore 64
GEOS was first implemented on the Commodore 64, and currently there are more GEOS

applications for this system than the Apple II or the Commodore 128. The following is

recommended for developing under this environment:

• Commodore 64 or 64c computer.

• Commodore 1351 mouse.

• At least one 1541 or 1571 disk drive.

• Commodore 1764 or 1751 RAM-expansion unit.

• GEOS supported printer.

• The basic GEOS operating system (GEOS 64), version 1.3 or later which includes geoWrite and

geoPaint.

• geoProgrammer for the Commodore 64.

Commodore 128
The Commodore 128 may be the ideal environment for prototyping and developing GEOS

applications because it can be used to create programs which run under GEOS 64 (in 64 emulation

mode) and GEOS 128. The 128 sports a larger memory capacity, and geoProgrammer takes

advantage of this extra space for symbol and macro tables. The following is recommended for

developing under this environment:

Commodore 128 computer.

• Commodore 1351 mouse.

• At least one 1541 or 1571 disk drive.

• Commodore 1764 or 1751 RAM-expansion unit.

• GEOS supported printer.

• The basic GEOS operating system (GEOS 64), version 1.3 or later which includes geoWrite and

geoPaint.

• The basic GEOS 128 operating system, version 1.3 or later which includes geoWrite 128 and

geoPaint 128.

• geoProgrammer for the Commodore 128.

Table of Contents

 Status

Chapter 1. GEOS Kernal (Growing/80% Compete)

Chapter 2. Wheels 4.4 (Early Stages)

Chapter 2. Examples (growing)

Chapter 3. Memory Map (In Progress)

Chapter 4. Icons, Menus and Other Mouse Presses.

Chapter 5. Structures (growing)

Chapter 6. Appendix

 Hardware

 6510 data register

 17XX RAM Expansion

 C128 MMU

 Memory Maps

 Zero Page (90% Done)

 Stack Page

 128 BackRAM Memory Map (In Progress)

 REU Bank 0 Memory Map (In Progress)

Chapter 7. Constants

 Zero Page (50% Done)

 Disk Errors (done)

Chapter 8. Variables (25% Done)

Quick Reference

GEOS Kernal by Name

 Name Addr Description Category Page

GEOS Kernal by Name

AllocateBlock 9048 Mark a disk block as in-use. disk mid-level 19

AppendRecord C289 Insert a new VLIR record after the current record. disk VLIR 69

BBMult C160 Byte by byte (single-precision) unsigned multiply. math 125

Bell N/A 1000 Hz Bell sound. utility 177

BitmapClip C2AA Display a compacted bitmap, clipping to a sub-window. graphics 88

BitmapUp C142 Display a compacted bitmap without clipping. graphics 90

BldGDirEntry C1F3 Build a GEOS directory entry in memory. disk mid-level 20

BlkAlloc C1FC Allocate sectors for a file. disk mid-level 21

BlockProcess C10C Block process from running. Does not freeze timer. process 163

Bmult C163 Byte by word unsigned multiply. math 126

BootGeos C000 Reboot GEOS. Requires only 128 bytes at $c000. internal 117

CalcBlksFree C1DB Calculate total number of free disk blocks. disk mid-level 22

GetScanLine C13C Calculate scanline address. graphics 94

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. utility 178

ChangeDiskDevice C2BC Change disk drive device number. disk very low-level 5

ChkDkGEOS C1DE Check if a disk is GEOS format. disk mid-level 23

ClearRam C178 Clear memory to $00. memory 137

CloseRecordFile C277 Close/Save currently open VLIR file. disk VLIR 70

CmpFString C26E Compare two fixed-length strings. memory 138

CmpString C26B Compare two null-terminated strings. memory 139

CopyFString C268 Copy a fixed-length string. memory 140

CopyString C265 Copy a null-terminated string. memory 141

CRC C20E Cyclic Redundancy Check calculation. utility 179

Dabs C16F Double-precision signed absolute value. memory 127

DeleteFile C238 Delete file. disk high-level 54

DeleteRecord C283 Delete current VLIR record. disk VLIR 71

Ddec C175 Double-precision unsigned decrement. math 128

Ddiv C169 Double-precision unsigned division. math 129

DisablSprite C1D5 Disable sprite. sprite 172

DMult C166 Double-precision unsigned multiply. math 131

Dnegate C172 Double-precision signed negation. math 132

DoBOp C2EC (128) Back-RAM memory primitive memory 142

DoDlgBox C256 Display and begin interaction w/dialog box. dialog box 2

DoIcons C15A Display and begin interaction with icons. icon/menu 103

DoInlineReturn C2A4 Return from inline subroutine. utility 180

DoMenu C151 Display and begin interaction with menus. icon/menu 104

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. icon/menu 106

DoRAMOp C2D4 RAM-expansion unit access primitive. memory 149

Quick Reference

GEOS Kernal by Name

 Name Addr Description Category Page

DoneWithIO C25F Restore system after serial I/O. disk very low-level 6

DrawLine C130 Draw, clear, or recover line between two endpoints. graphics 91

DrawPoint C133 Draw, clear, or recover a single screen point. graphics 92

DrawSprite C1C6 Define sprite image. sprite 173

DSDiv C16C Double-precision signed division. math 133

DShiftLeft C15D Double-precision left shift (zeros shifted in). math 134

DShiftRight C262 Double-precision right shift (zeros shifted in). math 135

EnableProcess C109 Make a process runnable immediately. process 166

EnablSprite C1D2 Enable sprite. sprite 174

EnterDeskTop C22C Leave application and return to GEOS deskTop. disk high-level 55

EnterTurbo C214 Activate disk turbo on current drive. disk very low-level 7

ExitTurbo C232 Deactivate disk turbo on current drive. disk very low-level 8

FastDelFile C244 Quick file delete (requires full track/sector list). disk mid-level 24

FetchRAM C2CB Transfer data from RAM-expansion unit. memory 150

FillRam C17B Fill memory with a particular byte. memory 143

FindBAMBit C2AD Get allocation status of particular disk block. disk mid-level 25

FindFile C20B Search for a particular file. disk high-level 56

FindFTypes C23B Find all files of a particular GEOS type. disk high-level 57

FirstInit C271 Initialize GEOS variables. internal 118

FollowChain C205 Follow chain of sectors, building track/sector table. disk mid-level 26

FrameRectangle C127 Draw an outline in a pattern graphics 93

FreeBlock C2B9 Mark a disk block as not-in-use in BAM. disk mid-level 27

FreeFile C226 Free all blocks associated with a file. disk mid-level 28

FreezeProcess C112 Pause a process countdown timer. process 164

Get1stDirEntry 9030 Get first directory entry. disk mid-level 29

GetBlock C1E4 Read single disk block into memory. disk low-level 16

GetCharWidth C1C9 Calculate width of char without style attributes. text 184

GetDirHead C247 Read directory header into memory. disk mid-level 31

GetFile C208 Load GEOS file. disk high-level 59

GetFHdrInfo C229 Read a GEOS file header into fileHeader. disk mid-level 32

GetFreeDirBlk C1F6 Find an empty directory slot. disk mid-level 33

GetNextChar C2A7 Get next character from keyboard queue. text 185

GetNxtDirEntry 9033 Get directory entry other than first. disk mid-level 30

GetOffPageTrSc 9036 Get track and sector of off-page directory. disk mid-level 35

GetPtrCurDkNm C298 Return pointer to current disk name. disk mid-level 61

GetRandom C187 Calculate new random number. utility 181

GetRealSize C1B1 Calculate actual character size with attributes. text 186

GetSerialNumber C196 Return GEOS serial number. internal 119

GetString C1BA Get string input from user. text 187

Quick Reference

GEOS Kernal by Name

 Name Addr Description Category Page

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. icon/menu 107

i_BitmapUp C1AB Inline BitmapUp. graphics 90

i_FillRam C1B4 Inline FillRam. memory 143

i_FrameRectangle C1A2 Draw a solid outline with inline data graphics 93

i_MoveData C1B7 Inline MoveData. memory 146

i_PutString C1AE Inline PutString. text 195

i_Rectangle C19F Inline Rectangle. graphics 97

InterruptMain C100 Main interrupt level processing. internal 120

InitForIO C25C Prepare system for serial I/O. disk very low-level 9

InitMouse FE80 Initialize input device. input driver 112

InitProcesses C103 Initialize processes. process 165

InitRam C181 Initialize memory areas from table. memory 144

InitTextPrompt C1C0 Initialize text prompt. text 189

InsertRecord C286 Insert new VLIR record in front of current record. disk VLIR 72

IsMseInRegion C2B3 Check if mouse is within a screen region. mouse/sprite 155

LdApplic C21D Load GEOS application. disk mid-level 36

LdDeskAcc C217 Load GEOS desk accessory. disk mid-level 38

LdFile C211 Load GEOS data file. disk mid-level 40

LoadCharSet C1CC Load and activate a new font text 190

MainLoop C1C3 GEOS MainLoop processing. internal 121

MouseOff C18D Disable mouse pointer and GEOS mouse tracking. mouse/sprite 156

MouseUp C18A Enable mouse pointer and GEOS mouse tracking. mouse/sprite 157

MoveBData C2E3 128 BackRAM memory move routine. memory 145

MoveData C17E Intelligent memory block move. memory 146

NewDisk C1E1 Initialize a drive. disk mid-level 41

NextRecord C27A Make next VLIR the current record. disk VLIR 73

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. graphics 95

NxtBlkAlloc C24D Version of BlkAlloc that starts at a specific block. disk mid-level 42

OpenDisk C2A1 Open disk in current drive. disk high-level 61

OpenRecordFile C274 Open VLIR file on current disk. disk VLIR 74

Panic C2C2 System-error dialog box. internal 122

PointRecord C280 Make specific VLIR record the current record. disk VLIR 75

PosSprite C1CF Position sprite. sprite 175

PreviousRecord C27D Make previous VLIR record the current record. disk VLIR 76

PromptOff C29E Turn off text prompt. text/keyboard 191

PromptOn C29B Turn on text prompt. text/keyboard 192

PutBlock C1E7 Write single disk block from memory. disk low-level 17

PutChar C145 Display a single character to screen. text 197

PutDecimal C184 Format and display an unsigned double-precision nbr. text 194

Quick Reference

GEOS Kernal by Name

 Name Addr Description Category Page

PutDirHead C24A Write directory header to disk. disk mid-level 44

PutString C148 Print string of characters to screen. text 195

ReadBlock C21A Get disk block primitive. disk mid-level 11

ReadByte C2B6 Read a File 1 byte at a time. disk mid-level 45

ReadFile C1FF Read chained list of blocks into memory. disk mid-level 46

ReadLink 904B Read track/sector link. disk mid-level 12

ReadRecord C28C Read current VLIR record into memory. disk VLIR 77

RecoverAllMenus C157 Recover all menus from background buffer. icon/menu 108

RecoverMenu C154 Recover single menu from background buffer. icon/menu 109

Rectangle C124 Draw a filled rectangle. graphics 97

ReDoMenu C193 Reactivate menus at the current level. icon/menu 110

RenameFile C259 Rename GEOS disk file. disk mid-level 63

ResetHandle C003 internal Bootstrap entry point internal 123

RestartProcess C106 Unblock, unfreeze, and restart process. process 167

RstrAppl C23E Leave desk accessory and return to calling application. disk mid-level 64

SaveFile C1ED Save Memory to create a GEOS file. disk high-level 65

SetDevice C2B0 Establish communication with a new serial device. disk high-level 66

SetGDirEntry C1F0 Create and save a new GEOS directory entry. disk mid-level 48

SetGEOSDisk C1EA Convert normal CBM disk into GEOS format disk. disk high-level 67

SetMouse FE89 Reset input device scanning circuitry. input driver 113

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. mouse/sprite 158

SetNewMode C2DD Change GEOS 128 graphics mode (40/80 switch). graphics 98

SetPattern C139 Set current fill pattern. graphics 99

SetGDirEntry C1F0 Create and save a new GEOS directory entry. disk mid-level 49

Sleep C199 Put current subroutine to sleep for a specified time. process 168

SlowMouse FE83 Reset mouse velocity variables. input driver 114

SmallPutChar C202 Fast character print routine. text 196

StartASCII 7912 Begin ASCII mode printing. print driver 160

StartAppl C22F Warmstart GEOS and start application in memory. disk mid-level 51

StashRAM C2C8 Transfer memory to RAM-expansion unit. memory 151

SwapBData C2E6 128 memory swap between front/back ram. memory 147

SwapRAM C2CE RAM-expansion unit memory swap. memory 152

RstrFrmDialog C2BF Exits from a dialog box. dialog box 3

TempHideMouse C2D7 Hide soft-sprites before direct screen access. mouse/sprite 159

TestPoint C13F Test status of single screen point (on or off?). graphics 100

ToBasic C241 Pass Control to Commodore BASIC. utility 182

UnblockProcess C10F Unblock a blocked process, allowing it to run again. process 168

UnfreezeProcess C115 Unpause a frozen process timer. process 170

UpdateMouse FE86 Update mouse variables from input device. input driver 115

Quick Reference

GEOS Kernal by Name

 Name Addr Description Category Page

UpdateRecordFile C295 Update currently open VLIR file without closing disk VLIR 78

UseSystemFont C14B Use default system font (BSW 9). text 196

VerifyBData C2E9 128 BackRAM verify. memory 148

VerifyRAM C2D1 RAM-expansion unit verify. memory 153

VerWriteBlock C223 Disk block verify primitive. disk very low-level 13

WriteBlock C220 Write disk block primitive. disk very low-level 14

WriteFile C1F9 Write chained list of blocks to disk. disk mid-level 52

WriteRecord C28F Write current VLIR record to disk. disk VLIR 79

Table of Contents

categories

GEOS Kernal by Category

dialog box

------------------- ---- -- ---

DoDlgBox C256 Display and begin interaction w/dialog box. 2

RstrFrmDialog C2BF Exits from a dialog box. 3

disk very Low level

------------------- ---- -- ---

ChangeDiskDevice C2BC Change disk drive device number. 5

DoneWithIO C25F Restore system after serial I/O. 6

EnterTurbo C214 Activate disk turbo on current drive. 7

ExitTurbo C232 Deactivate disk turbo on current drive. 8

InitForIO C25C Prepare system for serial I/O. 9

PurgeTurbo C235 Remove disk turbo from current drive. 9

ReadBlock C21A Get disk block primitive. 11

ReadLink 904B Read track/sector link. 12

VerWriteBlock C223 Disk block verify primitive. 13

WriteBlock C220 Write disk block primitive. 14

disk low level

------------------- ---- -- ---

GetBlock C1E4 Read single disk block into memory. 16

PutBlock C1E7 Write single disk block from memory. 17

disk mid-level

------------------- ---- -- ---

AllocateBlock 9048 Mark a disk block as in-use. 19

BldGDirEntry C1F3 Build a GEOS directory entry in memory. 20

BlkAlloc C1FC Allocate sectors for a file. 21

CalcBlksFree C1DB Calculate total number of free disk blocks. 22

ChkDkGEOS C1DE Check if a disk is GEOS format. 23

FastDelFile C244 Quick file delete (requires full track/sector list). 24

FindBAMBit C2AD Get allocation status of particular disk block. 25

FollowChain C205 Follow chain of sectors, building track/sector table. 26

FreeBlock C2B9 Mark a disk block as not-in-use in BAM. 27

FreeFile C226 Free all blocks associated with a file. 28

Get1stDirEntry 9030 Get first directory entry. 29

GetNxtDirEntry 9033 Get directory entry other than first. 30

GetDirHead C247 Read track 18 sector 0. 31

GetFHdrInfo C229 Read a GEOS file header into fileHeader. 32

GetFreeDirBlk C1F6 Find an empty directory slot. 33

GetOffPageTrSc 9036 Get track and sector of off-page directory. 35

LdApplic C21D Load GEOS application. 36

LdDeskAcc C217 Load GEOS desk accessory. 38

LdFile C211 Load GEOS data file. 40

NewDisk C1E1 Initialize a drive. 41

NxtBlkAlloc C24D Version of BlkAlloc that starts at a specific block. 42

PutDirHead C24A Write directory header to disk. 44

ReadByte C2B6 Read a File 1 byte at a time. 45

ReadFile C1FF Read chained list of blocks into memory. 46

SetGDirEntry C1F0 Create and save a new GEOS directory entry. 48

SetNextFree C292 Search for nearby free disk block and allocate it. 49

StartAppl C22F Warmstart GEOS and start application in memory. 51

WriteFile C1F9 Write chained list of blocks to disk. 52

disk high level

------------------- ---- -- ---

DeleteFile C238 Delete file. 54

EnterDeskTop C22C Leave application and return to GEOS deskTop. 55

Table of Contents

categories

FindFile C20B Search for a particular file. 56

FindFTypes C23B Find all files of a particular GEOS type. 57

GetFile C208 Load GEOS file. 59

GetPtrCurDkNm C298 Return pointer to current disk name. 61

OpenDisk C2A1 Open disk in current drive. 61

RenameFile C259 GEOS disk file. 63

RstrAppl C23E Leave desk accessory and return to calling application. 64

SaveFile C1ED Save Memory to create a GEOS file. 65

SetDevice C2B0 Establish communication with a new serial device. 66

SetGEOSDisk C1EA Convert normal CBM disk into GEOS format disk. 67

disk VLIR

------------------- ---- -- ---

AppendRecord C289 Insert a new VLIR record after the current record. 69

CloseRecordFile C277 Close/Save currently open VLIR file. 70

DeleteRecord C283 Delete current VLIR record. 71

InsertRecord C286 Insert new VLIR record in front of current record. 72

NextRecord C27A Make next VLIR the current record. 73

OpenRecordFile C274 Open VLIR file on current disk. 74

PointRecord C280 Make specific VLIR record the current record. 75

PreviousRecord C27D Make previous VLIR record the current record. 76

ReadRecord C28C Read current VLIR record into memory. 77

UpdateRecordFile C295 Update currently open VLIR file without closing. 78

WriteRecord C28F Write current VLIR record to disk. 79

icon/menu

------------------- ---- -- ---

DoIcons C15A Display and begin interaction with icons. 103

DoMenu C151 Display and begin interaction with menus. 104

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. 106

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. 107

RecoverAllMenus C157 Recover all menus from background buffer. 108

RecoverMenu C154 Recover single menu from background buffer. 109

ReDoMenu C193 Reactivate menus at the current level. 110

input driver

------------------- ---- -- ---

InitMouse FE80 Initialize input device. 112

SetMouse FE89 Reset input device scanning circuitry. 113

SlowMouse FE83 Reset mouse velocity variables. 114

UpdateMouse FE86 Update mouse variables from input device. 115

internal

------------------- ---- -- ---

BootGeos C000 Reboot GEOS. Requires only 128 bytes at $c000. 117

FirstInit C271 Initialize GEOS variables. 118

GetSerialNumber C196 Return GEOS serial number. 119

InterruptMain C100 Main interrupt level processing. 120

MainLoop C1C3 GEOS MainLoop processing. 121

Panic C2C2 System-error dialog box. 122

ResetHandle C003 internal Bootstrap entry point 123

graphics

------------------- ---- -- ---

BitmapClip C2AA Display a compacted bitmap, clipping to a sub-window. 88

BitmapUp C142 Display a compacted bitmap without clipping. 90

i_BitmapUp C1AB Inline BitmapUp . 90

BitOtherClip C2C5 BitmapClip with data coming from elsewhere (e.g., disk)-

624

Table of Contents

categories

DrawLine C130 Draw, clear, or recover line between two endpoints. 91

DrawPoint C133 Draw, clear, or recover a single screen point. 92

FrameRectangle C127 Draw a rectangular frame (outline). 93

i_FrameRectangle C1A2 Inline FrameRectangle. 93

GetScanLine C13C Calculate scanline address. 94

GraphicsString $C136 Process a graphic command table -601

i_GraphicsString $C1A8 Process a graphic command table / inline -602

HorizontalLine $C118 Draw a horizontal line in a pattern -616

InvertLine $C11B Reverse video a horizontal line -614

ImprintRectangle $C250 Copy a box from screen 2 to screen 1 -610

i_ImprintRectangle $C253 Copy a box from screen 2 to screen 1 / inline -611

InvertRectangle $C12A Reverse video a box -612

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. 95

RecoverLine $C11E Copy a line from screen 2 to screen 1 -613

Rectangle C124 Draw a filled rectangle. 97

i_Rectangle C19F Inline Rectangle. 97

RecoverRectangle $C12D Copy a box from screen 1 to screen 2 -608

i_RecoverRectangle $C1A5 Copy a box from screen 1 to screen 2 / inline -609

SetNewMode $C2DD Change GEOS 128 graphics mode (40/80 switch). 98

SetPattern C139 Set current fill pattern. 99

TestPoint C13F Test status of single screen point (on or off?). 100

VerticalLine C121 Draw a vertical line in a pattern 101

math

------------------- ---- -- ---

BBMult C160 Byte by byte (single-precision) unsigned multiply. 125

Bmult C163 Byte by word unsigned multiply. 126

Dabs C16F Double-precision signed absolute value. 127

Ddec C175 Double-precision unsigned decrement. 128

Ddiv C169 Double-precision unsigned division. 129

DMult C166 Double-precision unsigned multiply. 131

Dnegate C172 Double-precision signed negation. 132

DSDiv C16C Double-precision signed division. 133

DShiftLeft C15D Double-precision left shift (zeros shifted in). 134

DShiftRight C262 Double-precision right shift (zeros shifted in). 135

memory

------------------- ---- -- ---

ClearRam $C178 Clear memory to $00. 137

CmpFString $C26E Compare two fixed-length strings. 138

CmpString $C26B Compare two null-terminated strings. 139

CopyFString $C268 Copy a fixed-length string. 140

CopyString $C265 Copy a null-terminated string. 141

DoBOp $C2EC (128) Back-RAM memory primitive 142

DoRAMOp $C2D4 RAM-expansion unit access primitive. 149

FetchRAM C2CB Transfer data from RAM-expansion unit. 150

FillRam $C17B Fill memory with a particular byte. 143

 i_FillRam $C1B4 Inline FillRam. 143

InitRam $C181 Initialize memory areas from table. 144

MoveBData $C2E3 128 BackRAM memory move routine. 145

MoveData $C17E Intelligent memory block move 146

 i_MoveData $C1B7 Inline MoveData. 146

StashRAM $C2C8 Transfer memory to RAM-expansion unit. 151

SwapBData $C2E6 128 memory swap between front/back ram. 147

SwapRAM $C2CE Swap memory with an REU memory block. 152

VerifyBData $C2E9 128 BackRAM verify. 148

VerifyRAM $C2D1 RAM-expansion unit verify. 153

mouse/Sprite

Table of Contents

categories

------------------- ---- -- ---

ClearMouseMode $C19C Reset the mouse -815

HideOnlyMouse $C2F2 (128) Temporarily remove soft-sprite mouse pointer.

IsMseInRegion C2B3 Check if mouse is inside a window 155

MouseOff C18D Disable mouse pointer and GEOS mouse tracking. 156

MouseUp C18A Enable mouse pointer and GEOS mouse tracking. 157

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. 158

StartMouseMode $C14E Initialize the mouse -812

TempHideMouse C2D7 Hide soft-sprites before direct screen access. 159

printer driver

------------------- ---- -- ---

GetDimensions $790C

InitForPrint $7900

PrintASCI $790F

PrintBuffer $7906

SetNLO $7915

StartASCII 7912 Begin ASCII mode printing. 160

StartPrint $7903

StopPrint $7909

process

------------------- ---- -- ---

BlockProcess C10C Block process from running. Does not freeze timer. 163

EnableProcess C109 Make a process runnable immediately. 166

FreezeProcess C112 Pause a process countdown timer. 164

InitProcesses C103 Initialize processes. 165

RestartProcess C106 Unblock, unfreeze, and restart process. 167

Sleep C199 Put current routine to sleep for a specified time. 168

UnblockProcess C10F Unblock a blocked process, allowing it to run again. 168

UnfreezeProcess C115 Unpause a frozen process timer 170

sprite

------------------- ---- -- ---

DisablSprite C1D5 Disable sprite. 172

DrawSprite C1C6 Define sprite image. 173

EnablSprite C1D2 Enable sprite. 174

PosSprite C1CF Position sprite. 175

text

------------------- ---- -- ---

GetCharWidth C1C9 Calculate width of char without style attributes. 184

GetNextChar C2A7 Get next character from keyboard queue. 185

GetRealSize C1B1 Calculate actual character size with attributes. 186

GetString C1BA Get string input from user. 187

InitTextPrompt C1C0 Initialize text prompt. 189

LoadCharSet C1CC Load and begin using a new font 190

PutChar C145 Display a single character to screen. 197

PutDecimal C184 Format and display an unsigned double-precision nbr. 194

PutString C148 Print string of characters to screen. 195

i_PutString C1AE Inline PutString. 195

SmallPutChar C202 Fast character print routine. 196

UseSystemFont C14B Use default system font (BSW 9). 196

text\keyboard

------------------- ---- -- ---

PromptOff C29E Turn off text prompt. 191

PromptOn C29B Turn on text prompt. 192

Table of Contents

categories

Table of Contents

categories

utility

------------------- ---- -- -----

Bell N/A 1000 Hz Bell sound. 177

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. 178

CRC C20E Cyclic Redundancy Check calculation. 179

DoInlineReturn C2A4 Return from inline subroutine. 180

GetRandom C187 Calculate new random number. 181

ToBasic C241 Pass Control to Commodore BASIC. 182

Wheels Kernal

------------------- ---- -- -----

GetNewKernal $9D80 Load New Kernal Group

RstrKernal $9D83 Unload Kernal Group

KG_REU 0

GetRAMBam $5000

PutRAMBam $5003

AllocAllRAM $5006

AllocRAMBlock $5009

FreeRAMBlock $500C

GetRAMInfo $500F

RamBlkAlloc $5012

RemoveDrive $5015

SvRamDevice $5018

DelRamDevice $501B

RamDevInfo $501E

KG_DEVICE 1

DevNumChange $5000

SwapDrives $5003

KG_DISK 2

NSetGEOSDisk $5000

DBFormat $5003

FormatDisk $5006

DBEraseDisk $5009

EraseDisk $500C

KG_ReadFile 3

OReadFile $5000

KG_WriteFile 4

OWriteFile $5000

KG_DIRECTORY 5

ChgParType $5000

ChPartition $5003

ChSubdir $5006

ChDiskDirectory $5009

GetFEntries $500C

TopDirectory $500F

UpDirectory $5012

Table of Contents

categories

DownDirectory $5015

GoPartition $5018

ChPartOnly $501E

FindRamLink $5027

KG_MKDIR 6

MakeDirectory $5000

MakeSysDir $5003

KG_VALDISK 7

ValDisk $5000

KG_CPYDISK 8

CopyDisk $5000

TestCompatibility $5003

KG_COPY 9

CopyFile $5000

KG_DESKTOP 10

NewDesktop $5000

OEnterDesktop $5003

InstallDriver $5006

FindDesktop $5009

FindAFile $500c

KG_ToBasic 11

KToBasic $5000

Structures
disk

Directory Entry

Constants
errors

examples

disk

CheckDiskSpace

GEOS Kernal

dialog box

1

Chapter 1 GEOS Kernal

dialog box

------------------- ---- -- -----

DoDlgBox C256 Display and begin interaction w/dialog box. 2

RstrFrmDialog C2BF Exits from a dialog box. 3

GEOS Kernal

dialog box

2

DoDlgBox: (C64,C128) C256

Function: Initializes, displays, and begins interaction with a dialog box.

Parameters: r0 DIALOG — pointer to dialog box definition (word).

r5-rl0 can be used to send parameters to a dialog box.

When using DBGetFileS

r5 BUFFER Ptr to buffer to store returned filename.

r7L FILETPE GEOS file type to search for (byte). (NULL for all)

r10 PERMNAME GEOS file type to search for (byte). (NULL for all)

Wheels: When using DBGetFileS and bit 7 of r7L is set.

r5 FILTER Ptr to Filter Procedure. Called once for every file before

adding to the list of files.

r7L FILETPE GEOS file type to search for (byte). (NULL for all)

r10 PERMNAME GEOS file type to search for (byte). (NULL for all)

Returns: r0L return code: typically the number of the system icon clicked

on to exit.

 Note: returns when dialog box exits through RstrFrmDialog.

Destroys: n/a

Description: DoDlgBox saves off the current state of the system, places GEOS in a

near warm start state, displays the dialog box according to the

definition table (whose address is passed in r0), and begins tracking

the user's interaction with the dialog box. When the dialog box finishes,

the original system state is restored, and control is returned to the

application.

Simple dialog boxes will typically contain a few lines of text and one

or two system icons (such as OK and CANCEL). When the user clicks on

one of these icons, the GEOS system icon routine exits the dialog box

with an internal call to RstrFrmDialog, passing the number of the system

icon selected in sysDBData. RstrFrmDialog restores the system state and

copies sysDBData to r0L.

More complex dialog boxes will have application-defined icons and

routines that get called. These routines, themselves, can choose to load

a value into sysDBData and call RstrFrmDialog.

Note: Part of the system context save within DoDlgBox saves the current stack

pointer. Dialog boxes cannot be nested. DoDlgBox is not reentrant. That

is, a dialog box should never call DoDlgBox.

Structure: DIALOG

Example:

See also: RstrFrmDialog

GEOS Kernal

dialog box

3

RstrFrmDialog: (C64,C128) C2BF

Function: Exits from a dialog box, restoring the system to the state prior to the

call to DoDlgBox.

Parameters: none.

Returns: Returns to point where DoDlgBox was called. System context is restored.

r0L contains sysDBData return value.

Destroys: assume a, x, y, r0H-rl5

Description: RstrFrmDialog allows a custom dialog box routine to exit from the a

dialog box. RstrFrmDialog is typically called internally by the GEOS

system icon dialog box routines. However, it may be called by any dialog

box routine to force an immediate exit.

RstrFrmDialog first restores the GEOS system state (context restore)

and then calls indirectly through recoverVector to remove the dialog

box rectangle from the screen. The routine in recoverVector is called

with the r2-r4 loaded for a call to RecoverRectangle. By default

recoverVector points to RecoverRectangle, which will automatically

recover the foreground screen from the background buffer. However, if

the application is using background buffer for data, it will need to

intercept the recover by placing the address of its own recover routine

in recoverVector. If there is no shadow on the dialog box, then

recoverVector is only called through once with r2-r4 holding the

coordinates of the dialog box rectangle. However, if the dialog box has

a shadow, then recoverVector will be called through two times: first

for the patterned shadow rectangle and second for the dialog box

rectangle. The application may want to special-case these two recovers

when recovering.

Note: RstrFrmDialog restores the sp register to value it contained at the call

to DoDlgBox just before returning. This allows RstrFrmDialog to be

called with an arbitrary amount of data on top of the stack (as would

be the case if called from within a subroutine). GEOS will restore the

stack pointer properly.

Structure: DIALOG

Example

GEOS Kernal

disk very low level

4

disk very low-level

------------------- ---- -- ---

ChangeDiskDevice C2BC Change disk drive device number. 5

DoneWithIO C25F Restore system after serial I/O. 6

EnterTurbo C214 Activate disk turbo on current drive. 7

ExitTurbo C232 Deactivate disk turbo on current drive. 8

InitForIO C25C Prepare system for serial I/O. 9

PurgeTurbo C235 Remove disk turbo from current drive. 9

ReadBlock C21A Get disk block primitive. 11

ReadLink 904B Read track/sector link. 12

VerWriteBlock C223 Disk block verify primitive. 13

WriteBlock C220 Write disk block primitive. 14

GEOS Kernal

disk very low level

5

ChangeDiskDevice: (C64, C128) C2BC

Function: Instruct a drive to change its serial device number.

Parameters: a NEWDEVNUM — new device number to give current drive (byte).

curDrive drive whose device number will change.

Uses: curDrive drive whose device number will change.

Returns: x error ($00 = no error).

Alters: curDrive NEWDEVNUM

 curDevice NEWDEVNUM

Destroys: a,y

Description: ChangeDiskDevice requests the turbo software to change the serial device

 number of the current drive. Most applications have no need to call this

routine, as it is in the realm of low-level disk utilities.

ChangeDiskDevice is used primarily by the deskTop and Configure programs

to add, rearrange, and remove drives.

 Be aware that changing the device number merely instructs the turbo

software in the drive to monitor a different serial bus address. Many

internal GEOS variables and disk drivers expect the original device

number to remain unchanged.

Note: If ChangeDiskDevice is used on a RAMdisk, curDrive and curDevice both

 change. However, because of the nature of the RAMdisk driver, the RAMdisk

does not respond as this new device.

Example:

See also: SetDevice

GEOS Kernal

disk very low level

6

DoneWithIO: (C64, C128) C25F

Function: Restore system after I/O across the serial bus.

Parameters: none.

Returns: nothing.

Destroys: a,y

Description: DoneWithIO restores the state of the system after a call to InitForIO.

It restores the interrupt status, turns sprite DMA back on, returns the

128 to its original clock speed, and switches out the ROM and I/O banks

if appropriate (only on C64).

 Disk and printer routines access the serial bus between calls to

InitForIO and DoneWithIO.

Example: MyPutBlock

See also: InitForIO

GEOS Kernal

disk very low level

7

EnterTurbo: (C64, C128) C214

Function: Activate disk drive turbo mode

Parameters: none.

Uses: curDrive currently active disk drive.

 curType vl.3+: checks disk type because not all use turbo

 software.

Returns: x error ($00 = no error).

Destroys: a,y

Description: EnterTurbo activates the turbo software in the current drive. If the

turbo software has not yet been downloaded to the drive, EnterTurbo will

download it. The turbo software allows GEOS to perform high-speed serial

disk access.

 EnterTurbo treats different drive types appropriately. A RAMdisk, for

example, does not use turbo code so EnterTurbo will not attempt to

download the turbo software.

 The very-low level Commodore GEOS read/write routines, such as ReadBlock,

WriteBlock, VerWriteBlock, and ReadLink, expect the turbo software to be

active. Call EnterTurbo before calling one of these routines.

Example: MyPutBlock

See also: WriteBlock, ExitTurbo, PurgeTurbo.

GEOS Kernal

disk very low level

8

ExitTurbo: (C64, C128) C232

Function: Deactivate disk drive turbo mode.

Parameters: none.

Uses: curDrive currently active disk drive.

Returns: x error ($00 = no error).

Destroys: a,y

Description: ExitTurbo deactivates the turbo software in the current drive so that

the serial bus may access another device. SetDevice automatically calls

this before changing devices.

Note: If the turbo software has not been downloaded or is already inactive,

ExitTurbo will do nothing.

Example:

See also: EnterTurbo, PurgeTurbo.

GEOS Kernal

disk very low level

9

InitForIO: (C64, C128) C25C

Function: Prepare for I/O across the serial bus

Parameters: none.

Returns: nothing.

Destroys: a,y

Description: InitForIO prepares the system to perform I/O across the Commodore serial

bus. It disables interrupts, turns sprite DMA off, slows the 128 down to

lMhz, switches in the ROM and I/O banks if necessary, and performs

anything other initialization needed for fast serial transfer.

 Call InitForIO before directly accessing the serial port (e.g., in a

printer driver) or before using ReadBlock, WriteBlock, VerWriteBIock, or

ReadLink. To restore the system to its previous state, call DoneWithIO.

Example: MyPutBlock

See also: DoneWithIO, SetDevice

GEOS Kernal

disk very low level

10

PurgeTurbo: (C64, C128) C235

Function: Completely deactivate and remove disk drive turbo code from current

drive, returning to standard Commodore DOS mode.

Parameters: none

Uses: curDrive currently active disk drive.

Returns: x error ($00 = no error).

Destroys: a,y

Description: PurgeTurbo deactivates and removes the turbo software from the current

drive, returning control of the device to the disk drive's internal ROM

software. This allows access to normal Commodore DOS routines. An

application may want to access the Commodore DOS to perform disk

functions not offered by the GEOS Kernal such as formatting.

Example:

See also: EnterTurbo, ExitTurbo.

GEOS Kernal

disk very low level

11

ReadBlock: (C64, C128) C12A

Function: Very low-level read block from disk.

Parameters: rlL TRACK—valid track number (byte),

rlH SECTOR—valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes to read block into

(word).

Uses: curDrive currently active disk drive.

 curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a,y

Description: ReadBlock reads the block at the specified TRACK and SECTOR into BUFFER.

If the disk is shadowed, ReadBlock will read from the shadow memory.

ReadBlock is a pared down version of GetBlock. It expects the application

to have already called EnterTurbo and InitForIO. By removing this

overhead from GetBlock, multiple sector reads can be accomplished without

the redundant initialization. This is exactly what happens in many of

the higher-level disk routines that read multiple blocks at once, such

as ReadFile.

 ReadBlock is useful for multiple-sector disk operations where speed is

an issue and the standard GEOS routines don't offer a decent solution.

ReadBlock can function as the foundation of specialized, high-speed disk

routines.

Example: MyGetBlock

See also: GetBlock, WriteBlock, VerWriteBlock.

GEOS Kernal

disk very low level

12

ReadLink: (C64, C128) 904B

Function: Read link (first two bytes) from a disk block

Parameters: rlL TRACK — track number (byte),

rlH SECTOR — sector on track (byte).

r4 BUFFER — address of buffer of at least BLOCKSIZE bytes, usually

points to diskBlkBuf (word).

Uses: curDrive currently active disk drive.

Returns: x error ($00 = no error).

Destroys: a,y

Description: ReadLink returns the track/sector link from a disk block as the first

two bytes in BUFFER. The remainder of BUFFER (BLOCKSIZE-2 bytes) may or

may not be altered.

ReadLink is useful for following a multiple-sector chain in order to

build a track/sector table. It mainly of use on 1581 disk drives, which

walk through a chain significantly faster when only the links are read.

Routines such as DeleteFile and FollowChain will automatically take

advantage of this capability of 1581 drives.

Note: Disk drives that do not offer any speed increase through ReadLink will

simply perform a ReadBlock.

Note: Does not work in 1541 Drivers. Use ReadBlock instead.

Example:

See also: ReadBlock, FollowChain

GEOS Kernal

disk very low level

13

VerWriteBlock: (C64, C128) C223

Function: Very low-level verify block on disk.

Parameters: rlL TRACK — track number (byte).

rlH SECTOR — valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes that contains data

that should be on this sector (word).

Uses: curDrive currently active disk drive.

 curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a,y

Description: VerWriteBlock verifies the validity of a recently written block. If the

block does not verify, the block is rewritten by calling WriteBlock.

VerWriteBlock is a low-level disk routine and expects the application to

have already called EnterTurbo and InitForIO.

VerWriteBlock can be used to accelerate the verifies that accompany

multiple sector writes by first writing all the sectors and then

verifying them. This is often faster than verifying a sector immediately

after writing it because when writing sequential sectors, the GEOS turbo

code will catch the sector interleave. If a sector is written and then

immediately verified, the turbo code will need to wait for the disk to

make one complete revolution before the newly-written sector will again

pass under the read/write head. By writing all the sectors first and

catching the interleave, then verifying all the sectors (again, catching

the interleave), the dead time when the turbo code is Waiting for the

disk to spin around is minimized. Many of the higher-level disk routines

that write multiple blocks do just this.

VerWriteBlock is useful for multiple-sector disk operations where speed

is an issue and the standard GEOS routines don't offer a decent solution.

VerWriteBlock can function as the foundation of specialized, high-speed

disk routines.

VerWriteBlock does not always do a byte-by-byte compare with the data in

BUFFER. Some devices, such as the Commodore 1541, can do a cyclic

redundancy check on the data in the block, and this internal checksum is

sufficient evidence of a good write. Other devices, such as RAM-expansion

units, have built-in byte-by-byte verifies.

Example: MyPutBlock

See also: WriteBlock, PutBlock

GEOS Kernal

disk very low level

14

WriteBlock: (C64, C128) C220

Function: Very low-level write block to disk.

Parameters: rlL TRACK — valid track number (byte).

rlH SECTOR—valid sector on track (byte).

r4 BUFFER — address of buffer of BLOCKSIZE bytes that contains data

to write out (word).

Uses: curDrive currently active disk drive.

 curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a,y

Description: WriteBlock writes the block at BUFFER to the specified TRACK and SECTOR.

If the disk is shadowed, WriteBlock will also write the data to the

shadow memory. WriteBlock is pared down version of PutBlock. It expects

the application to have already called EnterTurbo and InitForIO, and it

does not verify the data after writing it.

 WriteBlock can be used to accelerate multiple-sector writes and their

accompanying verifies by writing all the sectors first and then verifying

them. This is often faster than verifying a sector immediately after

writing it because when writing sequential sectors, the GEOS turbo code

will catch the sector interleave. If a sector is written and then

immediately verified, the turbo code will need to wait for the disk to

make one complete revolution before the newly written sector will again

pass under the read/write head. By writing all the sectors first and

catching the interleave, then verifying all the sectors (again, catching

the interleave), the dead time when the turbo code is waiting for the

disk to spin around is minimized. Many of the higher-level disk routines

that write multiple blocks do just this.

 WriteBlock is useful for multiple-sector disk operations where speed is

an issue and the standard GEOS routines don't offer a decent solution.

WriteBlock can function as the foundation of specialized, high-speed

disk routines.

Example: MyPutBlock

See also: PutBlock, ReadBlock, VerWriteBlock.

GEOS Kernal

disk low-level

15

disk low-level

------------------- ---- -- ---

GetBlock C1E4 Read single disk block into memory. 16

PutBlock C1E7 Write single disk block from memory. 17

GEOS Kernal

disk low-level

16

GetBlock: (C64, C128) C1E4

Function: General purpose routine to get a block from current disk.

Parameters: r4 BUFFER — address of buffer to place block; must be at least

BLOCKSIZE bytes (word).

 rlL TRACK — track number (byte).

r1H SECTOR — sector number on track (byte).

Uses: curDrive currently active disk drive.

 curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 rl, r4 unchanged

Destroys: a,y

 (1581 drive, r1, r4)

 AAnote: Need to confirm is this is still true

Description: GetBlock reads a block from the disk into BUFFER. GetBlock is useful for

implementing disk utility programs and new file structures.

 GetBlock is a higher-level version of ReadBlock. It calls InitForIO,

EnterTurbo, ReadBlock, and DoneWithIO. If an application needs to read

many blocks at once, ReadBlock may offer a faster solution. If the disk

is shadowed, GetBlock will read from the shadow memory, resulting in a

faster transfer.

 The Commodore 1581 driver has a bug that causes its GetBlock to trash rl

and r4.

Example:

See also: PutBlock, WriteBlock, BlkAlloc.

GEOS Kernal

disk low-level

17

PutBlock: (C64, C128) C1E7

Function: General purpose routine to write a block to disk with verify.

Parameters: r4 BUFFER — address of buffer to get block from;

rlL TRACK — valid track number (byte).

r1H SECTOR — valid sector on track (byte).

Uses: curDrive currently active disk drive.

 curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 rl, r4 unchanged

Destroys: a,y

Description: PutBlock writes a block from BUFFER to the disk. PutBlock is useful for

implementing disk utility programs and new file structures.

 PutBlock is a higher-level version of WriteBlock. It calls InitForIO,

EnterTurbo, ReadBlock, and DoneWithIO. If an application needs to write

many blocks at once, WriteBlock may offer a faster solution. If the disk

is shadowed, PutBlock will also write the data to the shadow memory..

Note3: PutBlock does no boundary check on the buffer. If the buffer is less the

then BLOCKSIZE ($100) bytes, PutBlock will write the buffer and the

memory contents that are after the buffer. This normally will not cause

any problems as the size of data in the data block is stored in offset

1 of the block when the block is not full.

Example:

See also: GetBlock, WriteBlock, BlkAlloc.

GEOS Kernal

disk mid-level

18

disk mid-level

------------------- ---- -- ---

AllocateBlock 9048 Mark a disk block as in-use. 19

BldGDirEntry C1F3 Build a GEOS directory entry in memory. 20

BlkAlloc C1FC Allocate sectors for a file. 21

CalcBlksFree C1DB Calculate total number of free disk blocks. 22

ChkDkGEOS C1DE Check if a disk is GEOS format. 23

FastDelFile C244 Quick file delete (requires full track/sector list). 24

FindBAMBit C2AD Get allocation status of particular disk block. 25

FollowChain C205 Follow chain of sectors, building track/sector table. 26

FreeBlock C2B9 Mark a disk block as not-in-use in BAM. 27

FreeFile C226 Free all blocks associated with a file. 28

Get1stDirEntry 9030 Get first directory entry. 29

GetNxtDirEntry 9033 Get directory entry other than first. 30

GetDirHead C247 Read track 18 sector 0. 31

GetFHdrInfo C229 Read a GEOS file header into fileHeader. 32

GetFreeDirBlk C1F6 Find an empty directory slot. 33

GetOffPageTrSc 9036 Get track and sector of off-page directory. 35

LdApplic C21D Load GEOS application. 36

LdDeskAcc C217 Load GEOS desk accessory. 38

LdFile C211 Load GEOS data file. 40

NewDisk C1E1 Initialize a drive. 41

NxtBlkAlloc C24D Version of BlkAlloc that starts at a specific block. 42

PutDirHead C24A Write directory header to disk. 44

ReadByte C2B6 Read a File 1 byte at a time. 45

ReadFile C1FF Read chained list of blocks into memory. 46

SetGDirEntry C1F0 Create and save a new GEOS directory entry. 48

SetNextFree C292 Search for nearby free disk block and allocate it. 49

StartAppl C22F Warmstart GEOS and start application in memory. 51

WriteFile C1F9 Write chained list of blocks to disk. 52

GEOS Kernal

disk mid-level

19

AllocateBlock: (C64, C128) 9048

Function: Allocate a disk block, marking it as in use..

Parameters: r6L track number of block (byte).

 r6H sector number of block (byte).

Uses: curDrive drive that disk is in.

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

;†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 BAD_BAM

 r6 unchanged

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only)

dir3Head† (BAM for 1581 drive only)

Destroys: a,y, r7, r8H

Description: AllocateBlock allocates a single block on this disk by setting the

appropriate flag in the block allocation map (BAM).

If the sector is already allocated then a BAD_BAM error is returned.

AllocateBlock does not automatically write out the BAM. See PutDirHead

for more information on writing out the BAM. The Commodore 1541 device

drivers do not have a jump table entry for AllocateBlock. All other

device drivers, however, do. The following subroutine will properly

allocate a block on any device, including the 1541.

NewAllocateBlock

Example: CallNewAlloc

See also: SetNextFree, BlkAlloc, FreeBlock.

GEOS Kernal

disk mid-level

20

BldGDirEntry: (C64, C128) C1F3

Function: Builds a directory entry in memory for a GEOS file using the

information in a file header.

Parameters: r2 NUMBLOCKS — number of blocks in file (word).

r6 TSTABLE — pointer to a track/sector list of unused blocks (unused

but allocated in the BAM), usually a pointer to fileTrScTab; BlkAlloc

can be used to build such a list (word).

r9 FILEHDR — pointer to GEOS file header (word).

Uses: curDrive drive that disk is in.

Returns: r6 pointer to first non-reserved block in track/sector table

(BldGDirEntry reserves one block for the file header and a second

block for the index table if the file is a VLIR file).

Alters: dirEntryBuf contains newly-built directory entry.

Destroys: a,y, r5

Description: Given a GEOS file header, BldGDirEntry will build a system specific

directory entry suitable for writing to an empty directory slot.

 Most applications create new files by calling SaveFile. SaveFile calls

SetGDirEntry, which calls BldGDirEntry as part of its normal processing.

Example: MySetGDirEntry

See also: SetGDirEntry

GEOS Kernal

disk mid-level

21

BlkAlloc: (C64, C128) C1FC

Function: Allocate enough disk blocks to hold a specified number of bytes.

Parameters: r2 BYTES — number of bytes to allocate space for. Commodore version can

allocate up to 32,258 bytes (127 Commodore blocks).

r6 TSTABLE — pointer to buffer for building out track and sector table

of allocated blocks, usually points to fileTrScTab (word).

Uses: curDrive drive that disk is in.

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

interleave† desired physical sector interleave (usually 8); used by

SetNextFree. Applications need not set this explicitly —

will be set automatically by internal GEOS routines.

;†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r2 number of blocks allocated to hold BYTES amount of data.

r3L track of last allocated block.

r3H sector of last allocated block.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only)

dir3Head† (BAM for 1581 drive only)

Destroys: a, y, r4-r8

Description: BlkAlloc calculates the number of blocks needed to store BYTES amount of

data, taking any standard overhead into account (such as the two-byte

track/sector link required in each Commodore block), then calls

CalcBlksFree to ensure that enough free blocks exist on the disk. If

there are not enough free blocks to accommodate the data, BlkAlloc

returns an INSUFFICIENT_SPACE error without allocating any blocks.

Otherwise, BlkAlloc calls SetNextFree to allocate the proper number of

unused blocks.

BlkAlloc builds out a track and sector table in the buffer pointed to by

TSTABLE. The 256 bytes at fileTrScTab are usually used for this purpose.

When BlkAlloc returns, the table contains a two-byte entry for each block

that was allocated: the first byte is the track and the second byte is

the sector. The last entry in the table has its first byte set to $00,

indicating the end of the table. The second byte of the last entry is an

index to the last byte in the last block. This track/sector list can be

passed directly to WriteFile for use in writing data to the blocks.

Note: For more information on the scheme used to allocate successive blocks,

refer to SetNextFree.

Example: GrabSomeBlocks

See also: NxtBlkAlloc, SetNextFree, GetFreeDirBlk, FreeBlock.

GEOS Kernal

disk mid-level

22

CalcBlksFree: (C64, C128) C1DB

Function: Calculate total number of free blocks on disk.

Parameters: r5 DIRHEAD — address of directory header, should always point to

curDirHead (word).

Uses: curDrive drive that disk is in.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

†used internally by GEOS disk routines; applications generally don't use.

Returns: r4 number of free blocks.

r5 unchanged.

r3 in GEOS vl.3 and later: total number of available blocks on empty

disk. This is useful because vl.3 and later support disk devices

other than the 1541. GEOS versions earlier than vl.3 leave r3

unchanged.

Destroys: a, y

Description: CalcBlksFree calculates the number of free blocks available on the disk.

An application can call CalcBlksFree, for example, to tell the user the

amount of free space available on a particular disk. GEOS disk routines

that allocate multiple blocks at once, such as BlkAlloc, call

CalcBlksFree to ensure enough free space exists on the disk to prevent

a surprise ENSUFFICENT_SPACE error, midway through the allocation. (This

is why it is usually not necessary to check for sufficient space before

saving a file or a VLIR record—the higher level GEOS disk routines handle

this checking automatically.)

CalcBlksFree looks at the BAM in memory and counts the number of

unallocated blocks. The BAM is stored in the directory header and the

directory header is stored in the buffer at curDirHead. Calling

CalcBlksFree requires first loading r5 with the address of curDirHead.

 LoadW r5, #curDirHead

 jsr CalcBlksFree

When checking the total number of blocks (both allocated and free) on a

particular disk device, call CalcBlksFree with r3 loaded with the number

of blocks on a 1541 disk device. On GEOS v1.3 and above, this number is

changed to reflect the actual number of blocks in the device. On previous

versions of GEOS, r3 comes back unchanged.

N1541_BLOCKS = 664 ; total number of blocks on 1541 devices

LoadW r3, #N1541_BL0CKS ; assume 1541 block count for vl.2 Kernal’s

LoadW r5, #curDirHead ; point to the directory header

jsr CalcBlksFree ; r3 comes back with total number of blocks

 ; on this device

Example: CheckDiskSpace

See also: NxtBlkAlloc, SetNextFree, GetFreeDirBlk, FreeBlock.

GEOS Kernal

disk mid-level

23

ChkDkGEOS: (C64, C128) C1DE

Function: Check Commodore disk for GEOS format.

Parameters: r5 DIRHEAD — address of directory header, should always point to

curDirHead (word).

Returns: a TRUE/FALSE matching isGEOS.

 Z flag=0 GEOS Disk

 Z flag=1 Non GEOS Disk

Alters: isGEOS set to TRUE if disk is a GEOS disk, otherwise set to FALSE.

Destroys: a,y

Description: ChkDkGEOS checks the directory header for the version string that flags

it as a GEOS disk (at OFF_GEOS_BD). The primary difference between a

GEOS disk and a standard Commodore disk is the addition of the off-page

directory and the possibility of GEOS files on the disk. GEOS files have

an additional file header block that holds the icon image and other

information, such as the author name and permanent name string. To

convert a non-GEOS disk into a GEOS disk, use SetGEOSDisk.

 OpenDisk automatically calls ChkDkGEOS. As long as OpenDisk is used

before reading a new disk, applications should have no need to call

ChkDkGEOS

Example:

 jsr GetDirHead ; read in the directory header

 txa ; check status

 bne 99$; exit on error

 LoadW r5,#curDirHead ; point to directory header

 jsr ChkDkGEOS ; Check for GEOS disk

 beq 50$; if not a GEOS disk, branch

 ; code here to handle GEOS disk

 bra 90$; jump to exit

50$

 ; code here to handle non-GEOS disk

90$

 clc ; Success Exit

 rts

99$

 sec

 rts ; error exit

See also: SetGEOSDisk

GEOS Kernal

disk mid-level

24

FastDelFile: (C64, C128) C244

Function: Special Commodore version of DeleteFile that quickly deletes a

sequential file when the track/sector table is available.

Parameters: r0 FILENAME — pointer to null-terminated file name (word).

r3 TSTABLE — pointer to track and sector table of file, usually points

to fileTrScTab (word).

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

 curDirHead BAM updated to reflect newly freed blocks.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Destroys: a,y, r0, r9

Description: FastDelFile quickly deletes a sequential file by taking advantage of an

already existing track/sector table. It first removes the directory entry

determined by FILENAME and calls FreeBlock for each block in a

track/sector table at TSTABLE. The track/sector table is in the standard

format, such as that returned from ReadFile, where every two-byte entry

constitutes a track and sector. A track number of $00 terminates the

table.

FastDelFile is fast because it does not need to follow the chain of

sectors to delete the individual blocks. It can do most of the deletion

by manipulating the BAM in memory then writing it out with a call to

PutDirHead when done.

FastDelFile will not properly delete VLIR files without considerable

work on the application's part. Because there is no easy way to build a

track/sector table that contains all the blocks in all the records of a

VLIR file, it is best to use DeleteFile or FreeFile for deleting VLIR

files or DeleteRecord for deleting a single record.

FastDelFile calls GetDirHead before freeing any blocks. This will

overwrite any BAM and directory header in memory.

Note: FastDelFile can be used to remove a directory entry without actually

freeing any blocks in the file by passing a dummy track/sector table,

where the first byte (track number) is $00 signifying the end of the

table: See Example DeleteDirEntry

Examples: DeleteDirEntry, ReadAndDelete

See also: FreeFile, DeleteFile

GEOS Kernal

disk mid-level

25

FindBAMBit: (C64, C128) C2AD

Function: Get disk block allocation status.

Parameters: r6L TRACK —track number of block (byte).

r6H SECTOR — sector number of block (byte).

Uses: curDrive

 curDirHead BAM updated to reflect newly freed blocks.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Returns: st z flag reflects allocation status (1 = free; 0 = allocated).

r6 unchanged

 1541 drives only:

 x offset from curDirHead for BAM byte.

 r8H mask for isolating BAM bit.

 a BAM byte masked with r8H.

 r7H offset from curDirHead of byte that holds free blocks on track total.

Destroys: non-1541 drives:

 a, y, r7H, r8H.

 1541 drives:

 y (a, r7H, and r8H all contain useful values).

Description: FindBAMBit accesses the BAM of the current disk "in curDirHead) and

returns the allocation status of a particular block. If the BAM bit is

zero, then the block is in-use; if the BAM bit is one, then the block is

free. FindBAMBit returns with the z flag set to reflect the status of

the BAM so that a subsequent bne or beq branch instructions can test the

status of a block after calling FindBAMBit.

 bne BlockIsFree ;branch if block is free

- or -
 beq BlockInUse ;branch if block is in-use

Note: FindBAMBit will return the allocation status of a block on any disk

device, even those with large or multiple BAMs (such as the 1571 and

1581 disk drives). Only the 1541 driver, however, will return useful

information in a, y, r7H, and r8H. For an example of using these extra

1541 return values, refer to AllocateBlock.

Examples:

LoadB r6L,#TRACK ; get track and sector number

LoadB r6H,#SECTOR

jsr FindBAMBit ; get allocation status

beq BlocklnUse ; branch if already in use

See also: AllocateBlock, FreeBlock, GetDirHead , PutDirHead

GEOS Kernal

disk mid-level

26

FollowChain: (C64, C128) C205

Function: Follow a chain of Commodore disk blocks, building out a track/sector

table.

Parameters: rlL START_TRACK — track number of starting block (byte).

rlH START_SEC — sector number of starting block (byte).

r3 TSTABLE — pointer to buffer for building out track and sector

table of chain, usually points to fileTrScTab (word).

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r3 unchanged

track/sector built-out in buffer pointed to by TSTABLE.

Alters: diskBlkBuf used for temporary block storage.

Destroys: a, y, r1, r4

Description: FollowChain constructs a track/sector table for a list of chained blocks

on the disk. It starts with the block passed in START_TR and START_SC

and follows the links until it encounters the last block in the chain.

Each block (including the first block at START_TR, START_SC) becomes a

part of the track/sector table.

Commodore disk blocks are linked together with track/sector pointers.

The first two bytes of each block represent a track/sector pointer to

the next block in the chain. Each sequential file and VLIR record on the

disk is actually a chained list of blocks. FollowChain follows these

track/sector links, adding each to the list at TSTABLE until it

encounters a track pointer of $00, which terminates the chain.

FollowChain adds this last track pointer ($00) and its corresponding

sector pointer (which is actually an index to the last valid byte in the

block) to the track/sector table and returns to the caller.

FollowChain builds a standard track/sector table compatible with

routines such as WriteFile and FastDelFile.

Examples:

LoadB r1L,#START_TR ; start track

LoadB r6H,#START_SC ; and sector

LoadW r3,#fileTricTab ; buffer for table

jsr FollowChain ; get allocation status

txa ; set status flags

bne ; branch if error

See also: FastDelFile, WriteFile, ReadLink

GEOS Kernal

disk mid-level

27

FreeBlock: (C64, C128) C2B9

Function: Free an allocated disk block.

Parameters: r6 track number of block to free (byte).

 r6H sector number of block to free (byte).

Uses: curDrive

 curDirHead must contain the current directory header.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Returns: x error ($00 = no error).

 BAD_BAM if block already free.

 r6L, r6H unchanged.

Alters: curDirHead BAM updated to reflect newly allocated block.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a,y,r7,r8H

Description: FreeBlock tries to free (deallocate) the block number passed in r6. If

the block is already free, then FreeBlock returns a BAD_BAM error.

Note: FreeBlock was not added to the Commodore GEOS jump table until vl.3, but

it can be accessed directly under GEOS vl.2. The following routine will

check the GEOS version number and act correctly under GEOS vl.2 and

later. See Example MyFreeBlock

Example: MyFreeBlock

See also: FreeFile, AllocateBlock

GEOS Kernal

disk mid-level

28

FreeFile: (C64, C128) C226

Function: Free all the blocks in a GEOS file (sequential or VLIR) without

deleting the directory entry. The GEOS file header and any index

blocks are also deleted.

Parameters: r9 DIRENTRY — pointer to directory entry of file being freed, usually

points to dirEntryBuf (Apple GEOS: must be in main memory.)

(word).

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r6L, r6H unchanged.

Alters: diskBlkBuf used for temporary block storage.

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)

fileHeader temporary storage of the index table when deleting a

VLIR file.
†used internally by GEOS disk routines; applications generally don't use.

Destroys: a,y,r0-r9

Description: Given a valid directory entry, FreeFile will delete (free) all blocks

associated with the file. The GEOS file header and any index blocks

associated with the file are also be freed. The directory entry on the

disk, however, is left intact

The directory entry is a standard GEOS data structure returned by

routines such as FindFile, Get1stDirEntry and GetNxtDirEntry. FreeFile

is called automatically by DeleteFile.

FreeFile tries to free (deallocate) the block number passed in r6. If

the block is already free, then FreeBlock returns a BAD_BAM error.

FreeFile calls GetDirHead to get the current directory header and BAM

into memory. It then checks at OFF_GHDR_PTR in the directory entry for

a GEOS file header block, which it then frees.

If the file is a sequential file, FreeFile walks the chain pointed at by

the OFF_DE_TR_SC track/sector pointer in the directory header and frees

all the blocks in the chain. FreeFile then calls PutDirHead to write out

the new BAM.

When using Get1stDirEntry and GetNxtDirEntry, do not pass FreeFile a

pointer into diskBlkBuf. Copy the full directory entry (DIRENTRY_SIZE

bytes) from diskBlkBuf to another buffer (such as dirEntryBuf) and pass

FreeFile the pointer to that buffer. Otherwise when FreeFile uses

diskBlkBuf it will corrupt the directory entry.

Because FreeFile deletes a block at a time as it follows the chains, it

is capable of deleting files with chains larger than 127 blocks, which

is the standard GEOS limit imposed by the size of TrScTable.

See also: DeleteFile, FreeDir, FreeBlock.

GEOS Kernal

disk mid-level

29

Get1stDirEntry: (C64, C128) 9030

Function: Loads in the first directory block of the current directory and

returns a pointer to the first directory entry within this block.

Parameters: none.

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r5 pointer to first directory entry within diskBlkBuf.

Alters: diskBlkBuf directory block.

Destroys: a,y,r1,r4

Description: Get1stDirEntry reads in the first directory block of the current

directory and returns with r5 pointing to the first directory entry.

Get1stDirEntry is called by routines like FindFTypes and FindFile.

To get a pointer to subsequent directory entries, call GetNxtDirEntry.

Since Commodore GEOS does not support a hierarchical file system, the

"current directory" is actually the entire disk.

Get1stDirEntry did not appear in the jump table until version 1.3. An

application running under version 1.2 can access Get1stDirEntry by

calling directly into the Kernal. The following subroutine will work on

Commodore GEOS vl.2 and later:

;**

; MyGet1stDirEntry — Call instead of Get1stDirEntry

; to work on GEOS vl.2 and later

;**

;EQUATE: vl.2 entry point directly into Kernal. Must

;do a version check before calling.

o_Get1stDirEntry = $c9f7 ; exact entry point

MyGet1stDirEntry:

 lda version ; check version number

 cmp #$13

 bcc 10$; branch < vl.3

 jmp Get1stDirEntry ; direct call

10$

 jmp o_Get1stDirEntry ; go through jump table

Example:

See also: GetNxtDirEntry, FindFTypes.

GEOS Kernal

disk mid-level

30

GetNxtDirEntry: (C64, C128) 9033

Function: Given a pointer to a directory entry returned by Get1stDirEntry or

GetNxtDirEntry, returns a pointer to the next directory entry.

Parameters: r5 CURDIRENTRY — pointer to current directory entry as returned from

Get1stDirEntry or GetNxtDirEntry; will always be a pointer into

diskBlkBuf (word).

Uses: curDrive

 diskBlkBuf must be unaltered from previous call to Get1stDirEntry

or GetNxtDirEntry.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r5 pointer to next directory entry within diskBlkBuf.

 y non-zero if end of directory reached

Alters: diskBlkBuf directory block.

Destroys: a,y,r1,r4

Description: GetNxtDirEntry increments r5 to point to the next directory entry in

diskBlkBuf. If diskBlkBuf is exceeded, the next directory block is read

in and r5 is returned with an index into this new block. Before calling

GetNxtDirEntry for the first time, call Get1stDirEntry.

GetNxtDirEntry did not appear in the jump table until version 1.3. An

application running under version 1.2 can access GetNxtDirEntry by

calling directly into the Kernal. The following subroutine will work on

Commodore GEOS vl.2 and later:

;**

; MyGetNxtDirEntry — Call instead of GetNxtDirEntry

; to work on GEOS vl.2 and later

;**

;EQUATE: vl.2 entry point directly into Kernal. Must

;do a version check before calling.

o_GetNxtDirEntry = $ca10 ; exact entry point

MyGetNxtDirEntry:

 lda version ; check version number

 cmp #$13

 bcc 10$; branch < vl.3

 jmp GetNxtDirEntry ; direct call

10$

 jmp o_GetNxtDirEntry ; go through jump table

Example:

See also: GetlstDirEntry, FindFTypes.

GEOS Kernal

disk mid-level

31

GetDirHead : (C64, C128) C247

Function: Read directory header from disk. GEOS also reads in the BAM

Parameters: none.

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r4 pointer to curDirHead.

Alters: curDirHead contains directory header

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)

†used internally by GEOS disk routines; applications generally don't use.

Destroys: a,y,r1

Description: GetDirHead reads the full directory header (256 bytes) into the buffer

at curDirHead. This block also includes the BAM (block allocation map)

for the entire disk.

GEOS disks, like the standard Commodore disks upon which they are based,

have one directory header. The directory header occupies one full block

on the disk. The Commodore directory header contains information about

the disk, such as the location of the directory blocks, the disk name,

and the GEOS version string (if a GEOS disk). The Commodore directory

header also contains the disk BAM, which flags particular sectors as

used or unused

GetDirHead calls GetBlock to read in the directory header block into the

buffer at curDirHead. The directory header block contains the directory

header and the disk BAM (block allocation map). Typically, applications

don't call GetDirHead because the most up-to-date directory header is

almost always in memory (at curDirHead), OpenDisk calls GetDirHead to

get it there initially. Other GEOS routines update it in memory, some

calling PutDirHead to bring the disk version up to date.

Because Commodore disks store the BAM information in the directory header

it is important that the BAM in memory not get overwritten by an outdated

BAM on the disk. An application that manipulates the BAM in memory (or

calls GEOS routines that do so), must be careful to write the BAM back

out (with PutDirHead) before calling any other routine that might

overwrite the copy in memory. GetDirHead is called by routines such as

OpenDisk, SetGEOSDisk, and OpenRecordFile, etc.

Example:

See also: PutDirHead

GEOS Kernal

disk mid-level

32

GetFHdrInfo: (C64, C128) C229

Function: Loads the GEOS file header for a particular directory entry.

Parameters: r9 DIRENTRY — pointer to directory entry of file, usually points to

dirEntryBuf (Apple GEOS: must be in main memory) (word).

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r7 load address copied from the O_GHST_ADDR word of the GEOS file

header.

rl track/sector copied from bytes +1 and +2 of the directory entry

(DIRENTRY). This is the track/sector of the first data block of a

sequential file (OFF_DE_TR_SC) or the index table block of a VLIR file

(OFF_INDEX_PTR).

Alters: fileHeader contains 256-byte GEOS file header.

fileTrScTab track/sector of header added to first two bytes of this

table; a subsequent call to ReadFile or similar routine

will augment this table beginning with the third byte

(fileTrScTab+2) so as not to disrupt this value.

Destroys: a,y,r4

Description: Given a valid directory entry, GetFHdrInfo will load the GEOS file header

into the buffer at fileHeader.

The directory entry is a standard GEOS data structure returned by

routines such as FindFile, Get1stDirEntry and GetNxtDirEntry.

GetFHdrInfo is called by routines such as LdFile just prior to calling

ReadFile (to load in a sequential file or record zero of a VLIR).

GetFHdrInfo gets the block number (Commodore track/sector) of the GEOS

file header by looking at the OFF_GHDR_PTR word in the directory entry.

Example:

See also:

GEOS Kernal

disk mid-level

33

GetFreeDirBlk: (C64, C128) C1F6

Function: Search the current directory for an empty slot for a new directory

entry. Allocates another directory block if necessary.

Parameters: rl0L DIRPAGE — directory page to begin searching for free slot; each

directory page holds eight files and corresponds to one notepad

page on the GEOS deskTop. The first page is page one.

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

interleave† desired physical sector interleave (usually 8); Applications

need not set this explicitly — will be set automatically by

internal GEOS routines. Only used when new directory block

is allocated.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 FULL_DIRECTORY

rl0L page number of empty directory slot.

rl block (track/sector) number of directory block in diskBlkBuf.

y index to empty directory slot in diskBlkBuf.

Alters: curDirHead contains directory header

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)

Destroys: a,r0,r3,r5,r7-r8.

Description: GetFreeDirBlk searches the current directory looking for an empty slot

for a new directory entry. A single directory page has eight directory

slots, and these eight slots correspond to the eight possible files that

can be displayed on a single GEOS deskTop notepad page.

GetFreeDirBlk starts searching for an empty slot beginning with page

number DIRPAGE. If GetFreeDirBlk reaches the last directory entry without

finding an empty slot, it will try to allocate a new directory block. If

DIRPAGE doesn't yet exist, empty pages are added to the directory

structure until the requested page is reached.

$01 will most often be passed as the DIRPAGE starting page number, so

that all possible directory slots will be searched, starting with the

first page. If higher numbers are used, GetFreeDirBlk won't find empty

directory slots on lower pages and extra directory blocks may be

allocated needlessly.

GetFreeDirBlk is called by SetGDirEntry before writing out the directory

entry for a new GEOS file.

Since GEOS 2.0 does not support a hierarchical file system, the "current

directory" is actually the entire disk. A directory page corresponds

exactly to a single sector on the directory track. There is a maximum of

18 directory sectors (pages) on a Commodore disk. If this 18th page is

exceeded, GetFreeDirBlk will return a FULL_DIRECTORY error.

GEOS Kernal

disk mid-level

34

GetFreeDirBlk allocates blocks by calling SetNextFree to allocate

sectors on the directory track. SetNextFree will special-case the

directory track allocations. Refer to SetNextFree for more information.

GetFreeDirBlk does not automatically write out the BAM. See PutDirHead

for more information on writing out the BAM.

Example: MySetGDirEntry

See also: AllocateBlock, FreeBlock, BlkAlloc

GEOS Kernal

disk mid-level

35

GetOffPageTrSc: (C64, C128) 9036

Function: Get track and sector of off-page directory.

Parameters: none.

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

y $ff if the disk is not a GEOS disk and therefore has no off-page

directory block, otherwise $00.

rlL track of off-page directory.

r1H sector of off-page directory.

r4 pointer to curDirHead.

Destroys: a,y, r5

Description: Commodore GEOS disks have an extra directory block somewhere on the disk

called the off-page directory. The GEOS deskTop uses the off-page

directory block to keep track of file icons that have been dragged off

of the notepad and onto the border area of the deskTop. The off-page

directory holds up to eight directory entries.

 GetOffPageTrSc reads the directory header into the buffer at curDirHead

and calls ChkDkGEOS to ensure that the disk is a GEOS disk. If the disk

is not a GEOS disk, it returns with $ff in the y register. Otherwise,

GetOffPageTrSc copies the off-page track/sector from the OFF_OP_TR_SC

word in the directory header to rl and returns $00 in y.

Example:

; Put off-page block into diskBlkBuf

 jsr GetOffPageTrSc ; get off-page directory block

 txa ; check for error

 bne 99$;

 tya ; check for GEOS disk

 tax ; put in x in case error

 bne 99$;

 LoadW r4,#diskBlkBuf ; get off-page block

 jsr ; return with error in x

 99$ rts

See also: PutDirHead

GEOS Kernal

disk mid-level

36

LdApplic: (C64, C128) C21D

Function: Load and (optionally) run a GEOS application, passing it the standard

application startup flags as if was launched from the deskTop.

Parameters: r9 DIRENTRY — pointer to directory entry of file, usually points to

dirEntryBuf (word).

r0L LOAD_OPT:

bit O: 0 load at address specified in file header; application

will be started automatically

1 load at address in r7; application will not be started

automatically.

bit 7: 0 not passing a data file.

1 r2 and r3 contain pointers to disk and data file names,

bit 6: 0 not printing data file.

1 printing data file; application should print file and

exit

r7 LOAD_ADDR — optional load address, only used if bit 0 of LOAD_OPT

is set (word).

r2 DATA_DISK — only valid if bit 7 or bit 6 of LOAD_OPT is set: pointer

to name of the disk that contains the data file, usually a pointer

to one of the DrXCurDkNm buffers (word).

r3 DATA_FILE — only valid if bit 7 of LOAD_OPT is set: pointer to name

of the data file (word).

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: only returns if alternate load address or disk error.

 x error ($00 = no error).

Passes: usually doesn't return, but warmstarts GEOS and passes the following:

r0 as originally passed to LdApplic.

r2 as originally passed to LdApplic (use dataDiskName).

r3 as originally passed to LdApplic.(use dataFileName).

Alters: GEOS brought to a warmstart state.

dataDiskName contains name of data disk if bit 7 of r0 is set.

dataFileName contains name of data file if bit 6 of r0 is set

Destroys: a,x,y,r0-r15

Description: LdApplic is a mid-level application loading routine called by the higher

level GetFile. Given a directory entry of a GEOS application file,

LdApplic will attempt load it into memory and optionally run it. LdApplic

calls LdFile to load the application into memory: a sequential file is

loaded entirely into memory but only record zero of a VLIR file is

loaded. Based on the status of bit 0 of LOAD_OPT, optionally runs the

application by calling it through StartAppl.

Most applications will not call LdApplic directly but will go indirectly

through GetFile.

GEOS Kernal

disk mid-level

37

Note: Only in extremely odd cases will an alternate load address be specified

for an application. Loading an application at another location is not

particularly useful because it will most likely not run at an address

other than its specifiec load address. When LdApplic returns to the

caller, it does so before calling StartAppl to warmstart GEOS.

Example:

See also: GetFile, LdDeskAcc, StartAppl

GEOS Kernal

disk mid-level

38

LdDeskAcc: (C64, C128) C217

Function: Load and run a .GEOS desk accessory.

Parameters: r9 DIRENTRY — pointer to directory entry of file, usually points to

dirEntryBuf (word).

r0L RECVR_OPTS — should be set to $00 (see below for explanation) (byte).

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: returns when desk accessory exits with a call to RstrAppl.

 x error ($00 = no error).

Passes: warmstarts GEOS and passes the following to the desk accessory:

rl0L as originally passed to LdDeskAcc (should be $00; see below).

Alters: nothing directly; desk accessory may alter some buffers that are not

saved.

Destroys: a,x,y,r0-r15

Description: LdDeskAcc is a mid-level desk accessory loading routine called by the

higher level GetFile. Given a directory entry of a GEOS desk accessory

file, LdDeskAcc will attempt load it into memory and run it. When the

user closes the desk accessory, control returns to the calling

application.

LdDeskAcc first loads in the desk accessory's file header to get the

start and ending load address. Under GEOS 64 and Apple GEOS, it will

then save out the area of memory between these two addresses to a file

on the current disk named "SWAP FILE". The GEOS 128 version saves this

area to the 24K desk accessory swap area in back RAM. Desk accessories

larger than 24K cannot be used under GEOS 128 (to date, there are none);

a BFR_OVERFLOW error is returned.

After saving the overlay area, the dialog box and desk accessory save-

variables are copied to a special area of memory, the current stack

pointer is remembered, and the desk accessory is loaded and executed.

When the desk accessory calls RstrAppl to return to the application,

this whole process is reversed to return the system to a state similar

to the one it was in before the desk accessory was called. The "SWAP

FILE" file is deleted.

Most applications will not call LdDeskAcc directly, but will go

indirectly through GetFile.

C64 : GEOS versions 1.3 and above have a GEOS file type called TEMPORARY. When

the deskTop first opens a disk, it deletes all files of this type. The

"SWAP FILE" is a TEMPORARY file.

GEOS Kernal

disk mid-level

39

Note: The RECVR_OPTS flag originally carried the following significance:

bit 7: 1 force desk accessory to save foreground screen area and

restore it on return to application.

0 not necessary for desk accessory to save foreground.

bit 6: 1 force desk accessory to save color memory and restore it

on return to application.

0 not necessary for desk accessory to save foreground.

Note: It was found that the extra code necessary to make desk accessories save

the foreground screen and color memory provided no real benefit because

this context save can just as easily be accomplished from within the

application itself. The RECVR_OPTS flag is set to $00 by all Berkeley

Softworks applications, and desk accessories can safely assume that this

will always be the case. (In fact, future versions of GEOS may force

rlOH to $00 before calling desk accessories just to enforce this

standard!)

The application should always set rl0H to $00 and bear the burden of

saving and restoring the foreground screen and the color memory. (Color

memory only applicable to GEOS 64 and GEOS 128 in 40-column mode.)

Example:

See also: GetFile, LdApplic, RstrAppl, RstrFrmDialog.

GEOS Kernal

disk mid-level

40

LdFile: (C64, C128) C211

Function: Given a directory entry, loads a sequential file or record zero of a

VLIR record.

Parameters: r9 DIRENTRY — pointer to directory entry of file, usually points to

dirEntryBuf (word).

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

r7 pointer to last byte read into BUFFER plus one.

Alters: fileHeader contains 256-byte GEOS file header. (This is a 512-byte

buffer in Apple GEOS, although only 256 bytes are used

in the GEOS file header for compatibility).

fileTrScTab track/sector of header in first two bytes of this table

(fileTrScTab+O and fileTrScTab+1); As the file is

loaded, the track/sector pointer to each block is added

to the file track/sector table starting at fileTrScTab+2

and fileTrScTab+3.

Destroys: Not Listed in source material. LdFile is in an Unusable state already

so this is to be expected.

Description: LdFile is a mid-level file handling routine called by the higher level

GetFile. Given a directory entry of a sequential file, LdFile will load

it into memory. Given the directory entry of a VLIR file, LdFile will

load its record zero into memory.

Most applications will not call LdFile directly, but will go

indirectly through GetFile.

 All versions of LdFile to date under Commodore GEOS are unusable because

the load variables that are global under Apple GEOS (loadOpt and

loadAddr) are local to the Kernal and inaccessible to applications.

Fortunately this is not a problem because applications can always go

through GetFile to achieve the same effect.

See also: GetFile, LdApplic, LdDeskAcc.

GEOS Kernal

disk mid-level

41

NewDisk: (C64, C128) C1E1

Function: Tell the turbo software that a new disk has been inserted into the

drive.

Parameters: r1L1 Track to position the disk drive head at.

 r1H1 Sector to position the disk drive head at.

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a,y, r0-r3

Description: NewDisk informs the disk drive turbo software that a new disk has been

 inserted into the drive. It first calls EnterTurbo then sends an

initialize command to the turbo code. If the disk is shadowed, the shadow

memory is also cleared.

 NewDisk gets called automatically when OpenDisk opens a new disk. An

 application that does not deal with anything but the low-level disk

routines might want to call NewDisk instead of OpenDisk to avoid the

unnecessary overhead associated with reading the directory header and

initializing internal file-level variables.

Note: NewDisk has no effect on a RAMdisk. Also, some early versions of the

1541 turbo code leave the disk in the drive spinning after it is first

loaded. A call to NewDisk during the application's initialization will

stop the disk.

Note:1 It also positions the head over a particular sector.

Calls:2 EnterTurbo, InitForIO, DoneWithIO

Example:

See also: OpenDisk, SetDevice

GEOS Kernal

disk mid-level

42

NxtBlkAlloc: (C64, C128) C24D

Function: Special version of BlkAlloc that begins allocating from a specific

block on the disk.

Parameters: r2 BYTES — number of bytes to allocate space for. Can allocate up to

32,258 bytes (127 blocks). (word)

r3L START_TR — start allocating from this track (byte).

r3H START_SC — start allocating from this sector (byte).

r6 TSTABLE — pointer to buffer for building out track and sector table

of the newly allocated blocks (word). usually a position within

fileTrScTab

Uses: curDrive drive that disk is in.

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

interleave† desired physical sector interleave (usually 8); used by

SetNextFree. Applications need not set this explicitly —

will be set automatically by internal GEOS routines.

;†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r2 number of blocks allocated to hold BYTES amount of data.

r3L track of last allocated block.

r3H sector of last allocated block.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only)

dir3Head† (BAM for 1581 drive only)

Destroys: a, y, r4-r8

Description: NxtBlkAlloc begins allocating blocks from a specific block on the disk,

allowing a chain of blocks to be appended to a previous chain while still

maintaining the sector interleave. NxtBlkAlloc is essentially a special

version of BlkAlloc that starts allocating blocks from an arbitrary block

on the disk rather than from a fixed block. NxtBlkAlloc is otherwise

identical to BlkAlloc.

Use NxtBlkAlloc for appending more blocks to a list of blocks just

allocated with BlkAlloc, thus circumventing the 32,258-byte barrier.

Point TSTABLE at the last entry in a track/sector table (the terminator

bytes which we can overwrite), load the BYTES parameter with the number

of bytes left, and call NxtBlkAlloc. The START TR and START_SC parameters

in r3L and r3H will contain the correct values on return from BlkAlloc.

NxtBlkAlloc will allocate enough additional blocks to hold BYTES amount

of data, appending them in the track/sector table automatically. This

combined list of track and sectors can then be passed directly to

WriteFile too write data to the full chain of blocks.

NxtBlkAlloc does not automatically write out the BAM. See PutDirHead for

more information on writing out the BAM. Also, the START_TR parameter

should not be track number of the directory track. Refer to GetFreeDirBlk

for more information on allocating blocks on the directory track.

Note: For more information on the scheme used to allocate successive blocks,

refer to SetNextFree.

GEOS Kernal

disk mid-level

43

Example:

See also: BlkAlloc, SetNextFree, AllocateBlock, FreeBlock.

GEOS Kernal

disk mid-level

44

PutDirHead: (C64, C128) C24A

Function: Write directory header to disk. GEOS also writes out the BAM.

Parameters: none.

Uses: curDrive drive that disk is in.

curType GEOS 64 v 1.3 and later for detecting REU shadowing.

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

r4 pointer to curDirHead.

Destroys: a,y, r1

Description: PutDirHead writes the directory header to disk from the buffer at

curDirHead. GEOS writes out the full directory header block, including

the BAM (block allocation map).

GEOS disks, like the standard Commodore disks upon which they are based,

have one directory header. The directory header occupies one full block

on the disk. The Commodore directory header contains information about

the disk, such as the location of the directory blocks, the disk name,

and the GEOS version string (if a GEOS disk). The Commodore directory

header also contains the disk BAM, which flags particular sectors as

used or unused.

PutDirHead calls PutBlock to write out the directory header block from

the buffer at curDirHead. The directory header block contains the

directory header and the disk BAM (block allocation map). Applications

that are working with the mid- and low-level GEOS disk routines may need

to call PutDirHead to update the BAM on the disk with the BAM in memory.

Many useful, mid-level GEOS routine's, such as BlkAlloc, only update the

BAM in memory (for speed and ease of error recovery). When a new file is

written disk, GEOS allocates the blocks in the in-memory BAM, writes the

blocks out using the track sector table, then, as the last operation,

calls PutDirHead to write the new BAM to the disk. An application that

uses the mid-level GEOS routines to build its own specialized disk file

functions will need to keep track of the status of the BAM in memory,

writing it to disk as necessary.

It is important that the BAM in memory not get overwritten by an outdated

BAM on the disk. Applications that manipulate the BAM in memory (or calls

GEOS routines that do so), must be careful to write out the new BAM

before calling a routine that might overwrite it. Routines that call

GetDirHead include OpenDisk, SetGEOSDisk, and OpenRecordFile.

GEOS VLIR routines set the global variable fileWritten to TRUE to signal

that the VLIR file has been written to and that the BAM in memory is

more recent than the BAM on the disk. CloseRecordFile checks this flag.

If fileWritten is TRUE, CloseRecordFile calls PutDirHead to write out

the new BAM.

Example:

See also: GetDirHead.

GEOS Kernal

disk mid-level

45

ReadByte: (C64, C128) C2B6

Function: Special version of ReadFile that allows reading a chained list of

blocks a byte at a time.

Parameters: on initial call only:

 r1 START_TRSC — track/sector of first data block (word).

 r4 BLOCKBUF — pointer to temporary buffer of BLOCKSIZE bytes for use by

ReadByte, usually a pointer to diskBlkBuf (word).

 r5 $0000 (word).

Uses: curDrive drive that disk is in.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: a byte returned

 x error ($00 = no error).

 rl, r4, r5 contain internal values that must be preserved between calls

to ReadByte.

Destroys: y

Description: ReadByte allows a chain of blocks on the disk to be read a byte at a

time. The first time ReadByte is called, rl, r4, and r5 must contain the

proper parameters. When ReadByte returns without an error, the a register

will contain a single byte of data from the chain. To read another byte,

call ReadByte again. Between calls to ReadByte, the application must

preserve rl, r4, r5, and the data area pointed to by BLOCKBUF.

 ReadByte loads a block into BLOCKBUF and returns a single byte from the

buffer at each call. After returning the last byte in the buffer, ReadByte

loads in the next block in the chain and starts again from the beginning

of BLOCKBUF. This process continues until there are no more bytes in the

file. A BFR_OVERFLOW error is then returned.

 ReadByte is especially useful for displaying very large bitmaps with

BitOtherClip

Note: Reading a chain a byte at a time involves finding the first data block

and passing its track/sector to ReadFile. The track/sector of the first

data block in a sequential file is returned in rl by GetFHdrlnfo. The

first data block of a VLIR record is contained in the VLIR's index table.

Example:

See also: OpenDisk, SetDevice

GEOS Kernal

disk mid-level

46

ReadFile: (C64, C128) C1FF

Function: Read a chained list of blocks into memory.

Parameters: r7 BUFFER — pointer to buffer where data will be read into (word).

r2 BUFSIZE — size of buffer Commodore version can read up to 32,258

bytes (127 blocks) (word).

 rl START_TRSC — track/sector of first data block (word).

Uses: curDrive device number of active drive.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

 r7 Pointer to last byte read into BUFFER plus one.

rl if BFR_OVERFLOW error returned, contains the track/sector of the

block that, had it been copied from diskBlkBuf to the application's

buffer space, would have exceeded the size of BUFFER. The process of

copying any extra data from diskBlkBuf to the end of BUFFER is left to

the application. The data starts at diskBlkBuf+2. If no error, then rl

is destroyed.

r5L byte index into fileTrScTab of last entry (last entry = fileTrScTab

plus value in r5).

Alters: fileTrScTab As the chain is followed, the track/sector pointer to each

block is added to the file track/sector table. The track

and sector of the first data block is added at fileTrScTab+2

and fileTrScTab+3, respectively, because the first two

bytes (fileTrScTab+0 and fileTrScTab+1) are reserved for

the GEOS file header track/sector.

Destroys: y, (rl), r2-r4 (see above for rl).

Description: ReadFile reads a chain of blocks from the disk into memory at BUFFER.

Although the name implies that it reads "files" into memory, it actually

reads a chain of blocks and doesn't care whether this chain is a

sequential file or a VLIR record — ReadFile merely reads blocks until it

encounters the end of the chain or overflows the memory buffer.

ReadFile can be used to load VLIR records from an unopened VLIR file.

geoWrite, for example, loads different fonts while another VLIR file is

open by looking at all the font file index tables and remembering the

index information for records that contain font data. When a VLIR

document file is open, geoWrite can load a different font by passing one

of these saved values in rl to ReadFile. ReadFile will load the font

into memory without disturbing the opened VLIR file.

For reading a file when only the filename is known, use the high-level

GetFile.

Note: The Commodore filing system links blocks together with track/sector

links: each block has a two-byte track/sector forward-pointer to the

next sector in the chain (or $OO/$ff to signal the end). Reading a chain

involves passing the first track/sector to ReadFile. The first block

contains a pointer to the next block, and so on. The whole chain can be

followed by reading successive blocks.

GEOS Kernal

disk mid-level

47

ReadFile reads each 256-byte block into diskBlkBuf and copies the 254

data bytes (possibly less in the last block of the chain) to the BUFFER

area and copies the two-byte track/sector pointer to fileTrScTab. This

process is repeated until the last block is copied into the buffer or

when there is more data in diskBlkBuf than there is room left in BUFFER.

When there is more data in diskBlkBuf than there is room left in BUFFER,

ReadFile returns with a BFR_OVERFLOW error without copying any data into

BUFFER. The application can copy data, starting at diskBlkBuf+2, to fill

the remainder of BUFFER manually.

Because of the limited size of fileTrScTab (256 bytes), ReadFile cannot

load more than 127 blocks of data. (256 total bytes divided by two bytes

per track/sector minus two bytes for the GEOS file header equals 127.)

127 blocks can hold 127 * 254 = 32,258 bytes of data.

Example:

See also: GetFile, WriteFile, ReadRecord.

GEOS Kernal

disk mid-level

48

SetGDirEntry: (C64, C128) C1F0

Function: Search for a nearby free block and allocate it.

Parameters: r10L directory page to begin searching for free slot; each directory

page holds eight files and corresponds to one notepad page on

the GEOS deskTop. The first page is page one.

r2 NUMBLOCKS — number of blocks in file (word).

r6 TSTABLE — pointer to a track/sector list of unused blocks (unused

but allocated in the BAM), usually a pointer to fileTrScTab;

BlkAlloc can be used to build such a list (word).

r9 FILEHDR—pointer to GEOS file header (word).

Uses: curDrive device number of active drive.

 year, month, day, hours, minutes for date-stamping file.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

curDirHead this buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

 interleave† desired physical sector interleave (usually 8). applications

need not set this explicitly — will be set automatically by

internal GEOS routines. Only used when new directory block

is allocated.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 r6 pointer to first non-reserved block in track/sector table

(SetGDirEntry reserves one block for the file header and a second

block for the index table if the file is a VLIR file).

Alters: dirEntryBuf contains newly-built directory entry.

 diskBlkBuf used for temporary storage of the directory block.

Destroys: a, y, rl, r3-r5, r7-r8.

Description: SetGDirEntry calls BldGDirEntry to build a system specific directory

entry form the GEOS file header, date-stamps the directory entry, calls

GetFreeDirBlk to find an empty directory slot, and writes the new

directory entry out to disk.

Most applications will create new files by calling SaveFile. SaveFile

calls SetGDirEntry as part of it's normal processing.

Note3: Required Offsets into GEOS File Header to Set

 Offset Constant Size Description

$00 word Pointer to Filename

$44 O_GHCMDR_TYPE byte DOS File Type

$45 O_GHGEOS_TYPE byte GEOS file type

$46 O_GHSTR_TYPE byte GEOS file structure type (SEQ or VLIR)

Example:

See also: GetFile, OpenRecordFile.

GEOS Kernal

disk mid-level

49

SetNextFree: (C64, C128) C292

Function: Builds a system specific directory entry from a GEOS file header,

date-stamps it, and writes it out to the current directory.

Parameters: r3 block (track/sector) to begin search (word).

Uses: curDrive device number of active drive.

curDirHead This buffer must contain the current directory header.

dir2Head2† (BAM for 1571 and 1581 drives only)

dir3Head3† (BAM for 1581 drive only)

 interleave† Desired physical sector interleave (usually 8). applications

need not set this explicitly — will be set automatically by

internal GEOS routines.
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 r3 block (Commodore track/sector) allocated.

Alters: curDirHead BAM updated to reflect newly allocated blocks.

dir2Head† (BAM for 1571 and 1581 drives only)

dir3Head† (BAM for 1581 drive only)

Destroys: a, y, r6-r7, r8H.

Description: Given the current block as passed in r3, SetNextFree searches for the

next free block on the disk. The "next" free block is not necessarily

adjacent to the previous block because SetNextFree may interleave the

blocks. Proper interleaving allows the drive to read and write data as

fast as possible because it minimizes the time the drive spends waiting

for a block to spin under the read/write head. It means, however, that

sequential data blocks may not occupy adjacent blocks on the disk. As

long as an application is using the standard GEOS file structures, this

interleaving should not be apparent.

After determining the ideal sector from any interleave calculations,

SetNextFree tries to allocate the block it if it is unused. If the block

is used, SetNextFree picks another nearby sector (jumping to another

track if necessary) and calls tries again. This process continues until

a block is actually allocated or the end of the disk is reached, whichever

comes first. If the end of the disk is reached, an INSUFFICIENT_SPACE

error is returned.

Notice that SetNextFree only searches for free blocks starting with the

current block and searching towards the end of the disk. It does not

backup to check other areas of the disk because it assumes they have

already been filled. (Actually, under Commodore GEOS, SetNextFree will

backtrack as far back as beginning of the current track but will not go

to any previous tracks.). Usually this is a safe assumption because

SetNextFree is called by BlkAlloc, which always begins searching for

free blocks from the beginning of the disk.

It is conceivable, however, that an application might want to implement

an AppendRecord function (or something of that sort), which would append

a block of data to an already existing VLIR record without deleting,

reallocating, and then rewriting the record like WriteRecord.

In order to maintain any interleave from the last block in the record to

the new block, the AppendRecord routine passes the track and sector of

GEOS Kernal

disk mid-level

50

the last block in the record to SetNextFree. SetNextFree will start

searching from this block. If a free block cannot be found, an

INSUFFICIENT_SPACE error is returned Since SetNextFree only searched

from the current block to the end of the disk, the possibility exists

that a free block lies somewhere on a previous, still unchecked disk

area. The following alternative to SetNextFree will circumvent this

problem:

MySetNextFree:

 ;--- Look for a free block starting at the current block

 ;--- so that we continue the interleave if possible

 jsr SetNextFree ; look for block to allocate

 cpx #INSUFFICENT_SPACE ; check for no blocks

 beq 10$; start from beginning if none

 rts ; exit on any other error or

 ; valid block found.

 ;--- We got an insufficient space error. Start the search

 ;--- again from the beginning of the disk.

10$

 LoadB r3H,#0 ; always sector 0

 ldx #1 ; assume track 1

 ldy curDrive ; but special case 1581

 lda driveType-8,y ; because of outer/inner track

 and #$0F ; searching scheme

 cmp DRV_1581

 bne 20$; branch if not 1581

 ldx #39 ; 1581 counts down on inner (39-1)

20$

 stx r3L ; track number

 jmp SetNextFree

Note: SetNextFree uses the value in interleave to establish the ideal next

sector. A good interleave will arrange successive sectors so as to

minimize the time the drive spends stepping the read/write head and

waiting for the desired sector to spin around. The value in interleave

is usually set by the Configure program and internally by GEOS disk

routines. The application will usually not need to worry about the value

in interleave.

Because Commodore disks store the directory on special tracks,

SetNextFree will automatically skip over these special tracks unless r3L

is started on one of these tracks, in which case SetNextFree assumes

that this was intentional and a block on the directory track is allocated.

(This is exactly how GetFreeDirBlk operates.) The directory blocks for

various drives can be determined by the following constants:

1581 DIR_1581_TRACK $28 (one track)

1541 DIR_TRACK $12 (one track)

1571 DIR_TRACK

DIR_TRACK+N_TRACKS

$12

$12+$23

(two tracks)

SetNextFree does not automatically write out the BAM. See PutDirHead for

more information on writing out the BAM.

Example:

See also: GetFile, OpenRecordFile.

GEOS Kernal

disk mid-level

51

StartAppl: (C64, C128) C22F

Function: Warmstart GEOS and start an application that is already loaded into

memory.

Parameters: These are all passed on to the application being started.

 r7 START_ADDR — start address of application (word).

r0L OPTIONS:

bit 7: 0 not passing a data file.

1 r2 and r3 contain pointers to disk and data file names,

bit 6: 0 not printing data file.

1 printing data file; application should print file and

exit

r2 DATA_DISK — only valid if bit 7 or bit 6 of OPTIONS is set: pointer

to name of the disk that contains the data file, usually a pointer

to one of the DrXCurDkNm buffers (word).

r3 DATA_FILE — only valid if bit 7 of OPTIONS is set: pointer to name

of the data file (word).

Returns: never returns.

Passes: warmstarts GEOS and passes the following to the application at

START_ADDR:

Alters: GEOS brought to a warmstart state.

r0 as originally passed to StartAppl.

r2 as originally passed to StartAppl (use dataDiskName).

r3 as originally passed to StartAppl.(use dataFileName).

dataDiskName contains name of data disk if bit 7 of r0 is set.

dataFileName contains name of data file if bit 6 of r0 is set

Destroys: n/a

Description: StartAppl warmstarts GEOS and jsr's to START\ADDR as if the application

had been loaded from the deskTop. GetFile and LdApplic call StartAppl

automatically when loading an application.

StartAppl is useful for bringing an application back to its startup

state. It completely warmstarts GEOS, resetting variables, initializing

tables, clearing the processor stack, and executing the application's

initialization code with a jsr from MainLoop.

Example:

See also: LdApplic, GetFile

GEOS Kernal

disk mid-level

52

WriteFile: (C64, C128) C1F9

Function: Write data to a chained list of disk blocks.

Parameters: These are all passed on to the application being started.

 r7 DATA — pointer to start of data (word).

r6 TSTABLE — pointer to a track/sector list of blocks to write data to

(unused but allocated in the BAM), usually a pointer to fileTrScTab+2;

BlkAlloc can be used to build such a list.

Uses: curDrive device number of active drive.

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Destroys: a, y, rl-r2,r4,r6-r7.

Description: WriteFile writes data from memory to disk. The disk blocks are verified,

and any blocks that don't verify are rewritten.

Although the name "WriteFile" implies that it writes "files," it actually

writes a chain of blocks and doesn't care if this chain is an entire

sequential file or merely a VLIR record.

Note: WriteFile uses the track/sector table at TSTABLE as a list of linked

blocks that comprise the chain. The end of the chain is marked with a

track/sector pointer of $OO,$FF. WriteFile copies the next 254 bytes

from the data area to diskBlkBuf+2, looks two-bytes ahead in the TSTABLE

for the pointer to the next track/sector, and copies those two-bytes to

diskBlkBuf+0 and diskBlkBuf+1. WriteFile then writes this block to disk.

This is repeated until the end of the chain is reached

WriteFile does not flush the BAM (it does not alter it either — it

assumes the blocks in the track/sector table have already been

allocated). See BlkAlloc, SetNextFree, and AllocateBlock for information

on allocating blocks. See PutDirHead for more information on writing out

the BAM.

Example:

See also: SaveFile, WriteRecord, ReadFile.

 GEOS Kernal

disk high-level

53

disk high-level

------------------- ---- -- ---

DeleteFile C238 Delete file. 54

EnterDeskTop C22C Leave application and return to GEOS deskTop. 55

FindFile C20B Search for a particular file. 56

FindFTypes C23B Find all files of a particular GEOS type. 57

GetFile C208 Load GEOS file. 59

GetPtrCurDkNm C298 Return pointer to current disk name. 61

OpenDisk C2A1 Open disk in current drive. 61

RenameFile C259 GEOS disk file. 63

RstrAppl C23E Leave desk accessory and return to calling application. 64

SaveFile C1ED Save Memory to create a GEOS file. 65

SetDevice C2B0 Establish communication with a new serial device. 66

SetGEOSDisk C1EA Convert normal CBM disk into GEOS format disk. 67

 GEOS Kernal

disk high-level

54

DeleteFile: (C64, C128) C238

Function: Delete a GEOS file by deleting the its directory entry and freeing all

its blocks. Works on both sequential and VLIR files.

Parameters: r0 FILENAME — pointer to null-terminated name of file to delete

Uses: curDrive

 curType GEOS 64 v 1.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Alters: diskBlkBuf used for temporary block storage

 dirEntryBuf deleted directory entry.

 fileHeader temporary storage of index table when deleting a VLIR

 file.

 Written to Disk:

 curDirHead BAM updated to reflect newly freed blocks.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a, y, r0-r9.

Description: Given a null-terminated filename, DeleteFile will remove it from the

current directory by deleting its directory entry and calling FreeFile

to free all the blocks in the file.

 DeleteFile first calls FindFile to get the directory entry and ensure

the file does in fact exist. If the file specified with FILENAME is not

found, a FILE_NOT_FOUND error is returned.

 The directory entry is deleted by setting its OFF_CFILE_TYPE byte to

$00.

Example:

 GEOS Kernal

disk high-level

55

EnterDeskTop: (C64, C128) C22C

Function: Standard application exit to GEOS deskTop.

Parameters: none.

Returns: never returns to application.

Description: EnterDeskTop takes no parameters and looks for a copy of the file DESK

TOP on each drive. Later versions of GEOS are only compatible with the

correspondingly later revision of the deskTop and will check the version

number in the permanent name string of the DESK TOP file to ensure that

it is in fact a newer version. If after all drives are searched no valid

copy of the deskTop is found, EnterDeskTop will prompt the user to insert

a disk with a copy of the deskTop on it.

Example:

See also: RstrAppl, GetFile.

 GEOS Kernal

disk high-level

56

FindFile: (C64, C128) C20B

Function: Search for a particular file in the current directory.

Parameters: r6 FILENAME — pointer to null-terminated name of file of a maximum

of 16 bytes (not counting null terminator). (word).

Uses: curDrive

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 $886E1 Flag byte

Returns: x error ($00 = no error).

 r1 track/sector of directory block containing entry;

 r5 Pointer to directory entry within diskBIkBuf.

Alters: dirEntryBuf directory entry of file if found.

 diskBlkBuf contains directory block where FILENAME found.

Destroys: a,y,r4,r6

Description: Given a null-terminated filename, FindFile searches through the current

directory and returns the directory entry in dirEntryBuf. If the file

specified with FILENAME is not found, a FILE_NOT_FOUND error is returned.

 Since Commodore GEOS 2.0 does not support a hierarchical file system,

the current directory is actually the entire disk. The directory entry

is deleted by setting its OFF_CFILE_TYPE byte to $00.

Note:1 If the flag byte at $886E is $FF, then both drives 8 and 9 will be

scanned if necessary. If the flag is $00, then the lookup is only to the

current drive. If there is only one drive, then this flag has no effect.

Note:3 Wheels, Gateway and MP3 All support a hierarchical file system. As of

this writing, the Author or this document (PBM) does not yet know the

details of this support. This section, (and many others I am sure) will

be updated when I have researched these systems.

ANote: (Note to Author: Confirm behavior of and Give/Get a Name if confirmed

the 886E Flag address)

Example: LoadBASIC

See also: GetlstDirEntry, GetNxtDirEntry, FindFTypes

 GEOS Kernal

disk high-level

57

FindFTypes: (C64, C128) C23B

Function: Builds a list of files of a particular GEOS type from the current

directory.

Parameters: r6 BUFFER — pointer to buffer for building-out file list; allow

ENTRY_SIZE+1 bytes for each entry in the list (word).

r10 PERMNAME — pointer to permanent name string to match or $0000 to

ignore permanent name string (word).

r7H MAXFUJES — maximum number of filenames to return, usually used to

prevent overwriting buffer.

r7L FILETYPE — GEOS file type to search for (byte).

Uses: curDrive

 curType GEOS 64 vl.3 and later for detecting REU shadowing

Returns: x error ($00 = no error).

r7H decremented once for each file name (Apple GEOS: high-bit is always

cleared).

Alters: diskBlkBuf used as temporary buffer for directory blocks.

Destroys: a, y, rO-r2L, r4, r6.

Description: FindFTypes build a list of files that match a particular GEOS file type

and, optionally, a specific permanent name string.

The data area at BUFFER, where the list is built-out, must be large

enough to accommodate MAXFILES filenames of ENTRY_SIZE+1 bytes each.

FindFTypes first clears enough of the area at BUFFER to hold MAXFILES

filenames then calls Get1stDirEntry and GetNxtDirEntry to go through

each directory entry in the current directory. When the GEOS file type

of a directory entry matches the FILETYPE parameter, FindFTypes goes on

to check for a matching permanent name string.

If the PERMNAME parameter is $0000, then this check is bypassed and the

filename is added to the list. If the PERMNAME parameter is non-zero,

the null terminated string it points to is checked, character-by-

character, against the permanent name string in the file's header block.

Although the permanent name string in the GEOS file header is 16

characters long, the comparison only extends to the character before the

null-terminator in the string at PERMNAME.

 Since permanent name strings typically end with Vx.x, where x.x is a

version number (e.g., 2.1), a shorter string can be passed so that the

specific version number is ignored. For example, a program called geoQuiz

version 1.3 might use "geoQuiz V1.3" as the permanent name string it

gives its data files. When geoQuiz version 3.0 goes searching for its

data files, it can pass a PERMNAME string of "geoQuiz V" so data files

for all versions of the program will be added to the list

When a match is found, the filename is copied into the list at BUFFER.

The filenames are placed in the buffer as they are found (the same

order they appear on the pages of the deskTop notepad). With a small

buffer, matching files on higher-numbered pages may never get added to

the list.

 GEOS Kernal

disk high-level

58

Note: Since Commodore GEOS does not support a hierarchical file system, the

"current directory" is actually the entire disk. The filenames appear

in the list null terminated even though they are padded with $a0 in

the directory.

Example:

 GEOS Kernal

disk high-level

59

GetFile: (C64, C128) C208

Function: General-purpose file routine that can load an application, desk

accessory, or data file.

Parameters: r6 FILENAME— pointer to null-terminated filename (word).

 When loading an application:

r0L LOAD_OPT:

bit 0: 0 load at address specified in file header; application

will be started automatically

1 load at address in r7; application will not be started

automatically.

bit 7: 0 not passing a data file.

1 r2 and r3 contain pointers to disk and data file names.

bit 6: 0 not printing data file.

1 printing data file; application should print file and

exit

r7 LOAD_ADDR — optional load address, only used if bit 0 of LOADJOPT

is set (word).

r2 DATA_DISK — only valid if bit 7 or bit 6 of LOAD_OPT is set:

pointer to name of the disk that contains the data file, usually

a pointer to one of the DrXCurDkNm buffers (word).

r3 DATA_FILE — only valid if bit 7 or bit 6 of LOAD_OPT is set:

pointer to name of the data file (word).

When loading a desk accessory:

rl0L RECVR_OPTS — no longer used; set to $00 (see below for

explanation (byte).

Uses: curDrive

 curType GEOS 64 vl.3 and later for detecting REU shadowing

Returns: When loading an application:

only returns if alternate load address or disk error.

x error ($00 = no error).

r0, r2, r3, and r7 unchanged.

When loading a desk accessory:

returns when desk accessory exits with a call to RstrAppl

x error ($00 = no error).

When loading a data file:

x error ($00 = no error).

Passes: When loading an application:

warmstarts GEOS and passes the following to the application

r0 as originally passed to GetFile.

r2 as originally passed to GetFile (use dataDiskName).

r3 as originally passed to GetFile.(use dataFileName).

dataDiskName contains name of data disk if bit 7 of r0 is set

dataFileName contains name of data file if bit 6 of r0 is set

When loading a desk accessory:

warmstarts GEOS and passes the following:

rl0L as originally passed to GetFile.

See also: FindFile, GetlstDirEntry, GetNxtDirEntry.

 GEOS Kernal

disk high-level

60

When loading a data file:

not applicable.

Alters: When loading an application:

GEOS brought to a warmstart state.

Destroys: a,x,y,r0-r10 (only applies to loading a data file).

Description: GetFile is the preferred method of loading most GEOS files, whether a

data file, application, or desk accessory. (The only exception to this

is a VLIR file, which is better handled with the VLIR routines such as

OpenRecordFile and ReadRecord). Most applications will use GetFile to

load and execute desk accessories when the user clicks on an item in the

geos menu. Some applications will use GetFile to load other applications.

The GEOS deskTop, in fact, is just another application like any other.

Depending on the user's choice of actions — open an application, open an

application's data file, print an applications' data file — the deskTop

sets LOAD_OPT, DATA_DISK, DATA_FILE appropriately and calls GetFile.

GetFile first calls FindFile to locate the file at FILENAME, then checks

the GEOS file type in the directory entry. If the file is type DESK_ACC,

then GetFile calls LdDeskAcc. If the file is type APPLICATION or type

AUTO_EXEC, GetFile calls LdApplic. All other file types are loaded with

the generic LdFile.

The following GEOS constants can be used to set the LOAD_OPT parameter

when loading an application:

ST_LD_AT_ADDR $01 Load at address: load application at the address

passed in r7 as opposed to the address in the file

header.

ST_LD_DATA $80 Load data file: application is being passed the

name of a data file to load.

ST_PR_DATA $40 Print data file: application is being passed the

name of a data file to print.

Note: The RECVR_OPTS flag used when loading desk accessories originally carried

the following significance:

bit 7: 1 force desk accessory to save foreground screen area and

restore it on return to application.

0 not necessary for desk accessory to save foreground.

bit 6: 1 force desk accessory to save color memory and restore it

on return to application.

0 not necessary for desk accessory to save color memory.

The application should always set rl0H to $00 and bear the burden of

saving and restoring the foreground screen and the color memory. (Color

memory only applicable to GEOS 64 and GEOS 128 in 40-column mode.)

See LdDeskAcc Note for more information.

Example:

See also: LdFile, LdDeskAcc, LdApplic

 GEOS Kernal

disk high-level

61

GetPtrCurDkNm: (C64, C128) C298

Function: Search for a particular file in the current directory.

Parameters: x PTR — zero-page address to place pointer (byte pointer to a word

variable).

Uses: curDrive

Returns: x error ($00 = no error).

zero-page word at $00,x (PTR) contains a pointer to the current disk

name.

Destroys: a,y

Description: GetPtrCurDkNm returns an address that points to the name of the current

disk. Disk names are stored in the DrXCurDkNm variables, where x

designates the drive (A, B, C, or D). If drive A is the current drive

then GetPtrCurDkNm would return the address of DrACurDkNm. If drive B is

the current drive then GetPtrCurDkNm would return the address of

DrBCurDkNm. And so on.

Although the locations of the DrXCurDkNm buffers are at fixed memory

locations, they are not contiguous in memory. It is easier to call

GetPtrCurDkNm than hardcode the addresses into the application. This

will also ensure upward compatibility with future versions of GEOS that

might support more drives.

C64: Versions of GEOS before v 1.3 only support two disk drives and therefore

only have two disk name buffers allocated (DrACurDkNm and DrBCurDkNm).

GEOS vl.3 and later support additional drives C and D. GetPtrCurDkNm

will return the proper pointer values in any version of GEOS as long as

numDrives does not exceed the number of disk name buffers. Trying to get

a pointer to DrDCurDkNm under GEOS vl.2 will return an invalid pointer

because the buffer does not exist

C64 & C128: Commodore disk names are always a fixed-length 16 character string. If

the name is less than 16 characters, the string is padded with $AO.

Example: KeyTrap

See also:

 GEOS Kernal

disk high-level

62

OpenDisk: (C64, C128) C2A1

Function: Open the disk in the current drive

Parameters: None:

Uses: curDrive drive that disk is in. Set by call SetDevice

 driveType type of drive to open (for shadowing information)

Calls: NewDisk, GetDirHead , ChkDkGEOS, GetPtrCurDkNm

Returns: x error ($00 = no error).

 r5 pointer to disk name buffer as returned from GetPtrCurDkNm. This

is a pointer to one of the DrXCurDkNm arrays.

Alters: DnxCurDkNm current disk name array contains disk name

 curDirHead current directory header

 isGEOS set to TRUE if disk is a GEOS disk, otherwise set to

 FALSE.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a, y, r0-r4.

Description: OpenDisk initiates access to the disk in the current drive. OpenDisk is

meant to be called after a new disk has been inserted into the disk

drive. It prepares the drive and disk variables for dealing with a new

disk. An application will usually call OpenDisk immediately after calling

SetDevice

Note: Because GEOS uses the same allocation and file buffers for each drive,

it is important to close all files and update the BAM if necessary (use

PutDirHead) before accessing another disk.

 OpenDisk first calls NewDisk to tell the disk drive a new disk has been

inserted (if the disk is shadowed, the shadow memory is also cleared).

GetDirHead is then called to load the disk's header block and BAM into

curDirHead. With a valid header block in memory, ChkDkGEOS is called to

check for the GEOS I.D. string and set the isGEOS flag to TRUE if the

disk is a GEOS disk. Finally, OpenDisk copies the disk name string from

curDirHead to the disk name buffer returned by GetPtrCurDkNm.

Note: This Routine calls GetDirHead which loads in the BAM from disk.

PutDirHead should be called prior to this routine if the BAM has been

modified by Freeing or allocating blocks.

Example:

See also: DeleteDir, FreeDir, FreeFile, FreeBlock, SetDevice.

 GEOS Kernal

disk high-level

63

RenameFile: (C64, C128) C259

Function: Renames a file that is in the current directory.

Parameters: r6 OLDNAME — pointer to null-terminated name of file as it appears on

the disk (word).

r0 NEWNAME — pointer to new null-terminated name (word).

Uses: curDrive drive that disk is in. Set by call SetDevice

 driveType type of drive to open (for shadowing information)

Calls: NewDisk, GetDirHead , ChkDkGEOS, GetPtrCurDkNm

Returns: x error ($00 = no error).

Alters: diskBlkBuf used for temporary block storage.

dirEntryBuf old directory entry.

 curDirHead BAM updated to reflect newly freed blocks.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a, y, r4-r6.

Description: RenameFile searches the current directory for OLDFILE and changes the

name string in the directory entry to NEWFILE.

RenameFile first calls FindFile to get the directory entry and ensure

the OLDFILE does in fact exist. (If it doesn't exist, a FILE_NOT_FOUND

error is returned.)

The directory entry is read in, the new file name is copied over the old

file name, and the directory entry is rewritten. The date stamp of the

file is not changed.

When using Get1stDirEntry and GetNxtDirEntry to establish the old file

name, do not pass RenameFile a pointer into diskBlkBuf. Copy the file

name from diskBlkBuf to another buffer (such as dirEntryBuf) and pass

FreeFile the pointer to that buffer. Otherwise when FreeFile uses

diskBlkBuf it will corrupt the file name.

Note3: This Routine calls FindFile which loads in the BAM in from disk. it is

important to close all VLIR files and update the BAM if necessary (use

PutDirHead) before using RenameFile.

Example:

See also: FreeFile, FreeBlock.

 GEOS Kernal

disk high-level

64

RstrAppl: (C64, C128) C23E

Function: Standard desk accessory return to application.

Parameters: none:

Uses: curDrive drive that disk is in. Set by call SetDevice

Returns: never returns to desk accessory.

Description: A desk accessory calls RstrAppl when it wants to return control to the

application that called it. RstrAppl loads the swapped area of memory

from the SWAP FILE, restores the saved state of the system from the

internal buffer, resets the stack pointer to its original position, and

returns control to the application.

It is the job of the desk accessory to ensure that if the current drive

(curDrive) is changed that it be returned to its original value so that

RstrAppl can find SWAP FILE. Under Apple GEOS it is not necessary to

save the current directory.

Note: If a disk error occurs when reading in SWAP FILE, the remainder of the

context switch (restoring the state of the system, etc.) is bypassed and

control is immediately returned to the caller of the desk accessory. The

application will have only a moderate chance to recover, however, because

the area of memory that the desk accessory overlayed may very well

include the area where the jsr to GetFile or LdDeskAcc resides. The

return, therefore, may end up in the middle of desk accessory code.

Example:

See also: StartAppl, GetFile.

 GEOS Kernal

disk high-level

65

SaveFile: (C64, C128) C1ED

Function: create a GEOS sequential OR VLIR file and save a region of memory.

Parameters: r9 HEADER pointer to GEOS file header for file.

 r10L DIRPAGE Directory page to begin searching for an empty directory slot.

Uses: curDrive device number of active drive.

 year, month, day, hours, minutes for date-stamping file.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 interleave desired physical sector interleave (usually 8).

Returns: x error ($00 = no error).

 r1 Track and Sector of last block written

 r9 Unchanged

 r6 pointer to fileTrScTab

Alters: dirEntryBuf contains newly-built directory entry.

 diskBlkBuf contains contents of last block written

 fileTrScTab $00-$01 contain T/S of File Header.

 End of Table is marked with Track=0

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a,y, r0-r8

Description: SaveFile is the most general purpose write data routine in GEOS. It

creates a new file, either sequential or VLIR with a Header Block. VLIR

files will have all of the memory written to Record 0 of the VLIR.

 SaveFile calls SetGDirEntry and BlkAlloc to construct the file, then

calls WriteFile to put the data into it. After the file is saved, the

BAM is written to disk

Note1,3: If the Start Address = $0000 and the End Address = $FFFF (Or if Start

Address = End Address) no data blocks are written. A VLIR’s VLIR block

will have all empty records. An empty SEQ file’s directory entry will

have a start T/S of 00/FF. (This is not a normal valid state for a SEQ

file and should have at least one block added to it).

Note3: The HEADER holds all the information needed to create the file. All of

the information listed as Required must be populated in the HEADER.

 Required Offsets into GEOS File Header to Set

 Offset Constant Size Description

$00 word Pointer to Filename

$44 O_GHCMDR_TYPE byte DOS File Type

$45 O_GHGEOS_TYPE byte GEOS file type

$46 O_GHSTR_TYPE byte GEOS file structure type (SEQ or VLIR)

$47 O_GHST_ADDR word Memory to Save Start Address

 note: (Set to $0000 for an empty file)

$49 O_GHEND_ADDR word Memory to Save End Address

 note: (Set to $FFFF for an empty file)

Example:

See also: GetFile, OpenRecordFile.

 GEOS Kernal

disk high-level

66

SetDevice: (C64, C128) C2B0

Function: Establish communication with a new peripheral

Parameters: a DEVNUM — 8,9,10,11 (DRIVE A through DRIVE D) for disk drives,

PRINTER for serial printer, or any other valid serial device bus

address (byte).

Uses: curDevice currently active device.

Returns: x error ($00 = no error).

Alters: curDevice new current device number.

 curDrive new current drive number if device is a disk drive.

 curType GEOS vl.3 and later: current drive type (copied from

 driveType table).

Destroys: a,y

Description: SetDevice changes the active device and is used primarily to switch from

one disk drive to another. SetDevice also allows a printer driver to

gain access to the serial bus by using a DEVNUM value of PRINTER.

 Each I/O device has an associated device number that distinguishes its

I/O from devices. At any given time only one device is active. The active

device is called the current device and to change the current device an

application calls SetDevice.

 SetDevice is designed to switch between serial bus devices, DEVNUM

reflects the architecture of serial bus: disk drives are numbered 8

through 11 and the printer is numbered 4. However, not all I/O devices

are actual serial bus peripherals. A RAMdisk, for example, uses a special

device driver to make a cartridge port RAM-expansion unit emulate a

Commodore disk drive. SetDevice switches between these devices just as

if they were daisy chained off of the serial bus.

 GEOS up through vl.2 supports two disk devices, DRIVE A and DRIVE B.

Commodore GEOS vl.3 and later supports up to four disk devices, DRIVE~A

through DRIVE-D. Desktop Only Supports 3 Devices.

Note: SetDevice calls ExitTurbo so that the old device is no longer actively

sensing the serial bus, then installs the new device driver as necessary

to make the new device (DEVNUM) the current device. With more than one

type of device attached (e.g., a 1541 and a 1571), GEOS must switch the

device drivers, making the driver for the selected device active. GEOS

stores inactive device drivers in the Commodore 128 back RAM and in

special system areas in an REU. GEOS applications must use SetDevice to

change the active device. An application should never directly modify

curDrive or curDevice.

Example: KeyTrap

See also: OpenDisk, ChangeDiskDevice

 GEOS Kernal

disk high-level

67

SetGEOSDisk: (C64, C128) C1EA

Function: Convert Commodore disk to GEOS format.

Parameters: none.

Uses: curDrive

curType GEOS 64 vl.3 and later for detecting REU shadowing.

Returns: x error ($00 = no error).

Alters: curDirHead directory header is read from disk.

 dir2Head (BAM for 1571 and 1581 drives only)

 dir3Head (BAM for 1581 drive only)

Destroys: a,y

Description: SetGEOSDisk converts a standard Commodore disk into GEOS format by

writing the GEOS ID string to the directory header (at OFF_GEOS ID) and

creating an off-page directory block. An application can call SetGEOSDisk

after OpenDisk returns the isGEOS flag set to FALSE. Typically the user

is prompted before the conversion.

SetGEOSDisk expects the disk to have been previously opened with

OpenDisk. It first calls GetDirHead to read the directory header into

memory then calls CalcBlksFree to see if there is block available for

the off-page directory (if there isn't, an INSUFFICIENT_SPACE error is

returned). SetNextFree is then called to allocate the off-page directory

block. The off-page directory block is written with empty directory

entries and a pointer to it is placed in the directory header (at

OFF_OP_TR_SC). Finally PutDirHead is called to write out the new BAM and

directory header.

Example:

See also: ChkDkGEOS

 GEOS Kernal

disk VLIR

68

disk VLIR

------------------- ---- -- ---

AppendRecord C289 Insert a new VLIR record after the current record. 69

CloseRecordFile C277 Close/Save currently open VLIR file. 70

DeleteRecord C283 Delete current VLIR record. 71

InsertRecord C286 Insert new VLIR record in front of current record. 72

NextRecord C27A Make next VLIR the current record. 73

OpenRecordFile C274 Open VLIR file on current disk. 74

PointRecord C280 Make specific VLIR record the current record. 75

PreviousRecord C27D Make previous VLIR record the current record. 76

ReadRecord C28C Read current VLIR record into memory. 77

UpdateRecordFile C295 Update currently open VLIR file without closing. 78

WriteRecord C28F Write current VLIR record to disk. 79

 GEOS Kernal

disk VLIR

69

AppendRecord: (C64, C128) C289

Function: Adds an empty record after the current record in the index table, moving

all subsequent records down one slot to make room.

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten† if FALSE, assumes record just opened (or updated) and

 reads BAM/VBM into memory. ANOTE: Confirm

 curRecord Current record number

 fileHeader VLIR index table.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 OUT_OF_REC0RDS

Alters: curRecord new record number

 usedRecords number of records in file that are currently in use.

fileWritten† set to TRUE to indicate the file has been altered since

last updated.

 fileHeader buffer contains VLIR index table.

note: When making manual changes to the VLIR setting fileWritten to TRUE

will cause CloseRecordFile to write the changes to disk.

Destroys: a,y, r0L, r1L, r4

Preparatory routines1: OpenRecordFile

Description: AppendRecord inserts an empty VLIR record following the current record

in the index table of an open VLIR file, moving all subsequent records

down in the record list. The new record becomes the current record. A

VLIR file can have a up to MAX_VLIR_RECS records (127 on the Commodore

and 254 on the Apple). If adding a Record exceeds this value, then an

OUT_OF_RECORDS error is returned.

 A record added with AppendRecord occupies no disk space until data is

written to it. The new record is marked as empty in the VLIR index table

($00 $FF). When a VLIR file is first created by SaveFile, all records

are marked as unused ($00 $00). Some applications call AppendRecord

repeatedly after creating a new file until an OUT_OF_RECORDS error is

returned This marks all the records as used and prepares them to accept

data with calls to WriteRecord.

Note: AppendRecord does not write the VLIR index table out to the disk. Call

CloseRecordFile or UpdateRecordFile to save the index table when all

modifications are complete.

Note: Use PointRecord to check the status of a particular record (unused,

empty, or filled).

Example: SaveRecord

See also: InsertRecord, DeleteRecord, PointRecord

 GEOS Kernal

disk VLIR

70

CloseRecordFile: (C64, C128) C277

Function: Close the current VLIR file (updating it in the process) so that another

may be opened

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten† if FALSE, assumes record just opened (or updated) and

 reads BAM/VBM into memory. ANOTE: Confirm

 fileHeader VLIR index table.

fileSize total number of disk blocks used in file (includes index

block, GEOS file header, and all records).

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten† set to TRUE to indicate the file has been altered since

last updated.

 fileHeader buffer contains VLIR index table.

note: When making manual changes to the VLIR setting fileWritten to TRUE

will cause CloseRecordFile to write the changes to disk.

Destroys: a,y, r1, r4, r5.

Preparatory routines1: OpenRecordFile

Description: CloseRecordFile first calls UpdateRecordFile then closes the VLIR file

so that another may be opened.

 Because Commodore GEOS stores the BAM in global memory, the application

must be careful not to corrupt it before the VLIR file is updated or

closed. For more information, refer to UpdateRecordFile.

Example: SaveRecord

See also: OpenRecordFile, UpdateRecordFile

 GEOS Kernal

disk VLIR

71

DeleteRecord: (C64, C128) C283

Function: Removes the current VLIR record from the record list, moving all

subsequent records upward to fill the slot and freeing all the data

blocks associated with the record.

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten† if FALSE, assumes record just opened (or updated) and

 reads BAM into memory.

 curRecord Current record number

 fileHeader VLIR index table.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: curRecord only changed if deleting the last record in the table, in

which case it becomes the new last record.

 fileWritten set to TRUE to indicate the file has been altered since

last updated.

 fileHeader Record Marked as empty ($00 $FF)

 fileSize decremented to reflect any deleted record blocks.

 curDirHead current directory header/BAM modified to free blocks.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)

Destroys: a,y, r0-r9

Description: DeleteRecord removes the current record from the record list by moving

all subsequent records upward to fill the current record's slot. Any

data blocks associated with the record are freed.

 DeleteRecord does not update the BAM and VLIR file information on the

disk. Call CloseRecordFile or UpdateRecordFile to update the file when

done modifying.

Example:

See also: AppendRecord, InsertRecord

 GEOS Kernal

disk VLIR

72

InsertRecord: (C64, C128) C286

Function: Adds an empty record before the current record in the index table, moving

all subsequent records (including the current record) downward.

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten† if FALSE, assumes record just opened (or updated) and

 reads BAM/VBM into memory.

 curRecord Current record number

 fileHeader VLIR index table.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

 MAX_VLIR_RECS

 OUT_OF_REC0RDS

Alters: curRecord new record number

 fileWritten† set to TRUE to indicate the file has been altered since

last updated.

 fileHeader buffer contains VLIR index table.

 usedRecords number of records in file that are currently in use.

Destroys: a,y, r0L

Preparatory routines1: OpenRecordFile

Description: InsertRecord attempts to insert an empty VLIR record in front of the

current record in the index table 7of an open VLIR file, moving all

subsequent records downward in the record list. The new record becomes

the current record. A VLIR file can have a maximum of MAX_VLIR_RECS

records. If adding a record will exceed this value, an OUT_OF_REC0RDS

error is returned. In the index table, the new record is marked as used

but empty ($00,$FF) 1.

Note: An application can create an empty VLIR file with SaveFile.

Note: GEOS up to 2.0 does not support a hierarchical file system, the

"current directory" is actually the entire disk.

Note:3 This Routine calls GetDirHead which loads in the BAM from disk.

PutDirHead should be called prior to this routine if the BAM has been

modified by Freeing or allocating blocks.

Example: SaveRecord

See also: ReadRecord, WriteRecord, CloseRecordFile, UpdateRecordFile

 GEOS Kernal

disk VLIR

73

NextRecord: (C64, C128) C27A

Function: Makes the next record the current record.

Parameters: none

Uses: fileHeader index table checked to establish whether record exists.

Returns: x error ($00 = no error).

 INV_RECORD

 y Track of VLIR Chain. A value of $00 here means record is allocated

but not in use (has no data blocks).

 a new current record number.

 r1L Track of VLIR Chain

 r1H Sector of VLIR Chain

Alters: curRecord new record number

Destroys: nothing

Preparatory routines1: OpenRecordFile

Description: NextRecord makes the current record plus one the new current record. A

 subsequent call to ReadRecord or WriteRecord will operate with this

record.

 If the record does not exist, then NextRecord returns an then NextRecord

returns an INV_RECORD (invalid record) error.

Example: SaveRecord

See also: PreviousRecord, PointRecord.

 GEOS Kernal

disk VLIR

74

OpenRecordFile: (C64, C128) C274

Function: Open an existing VLIR file for access.

Parameters: r0 FILENAME—pointer to null-terminated name of file (word).

Uses: curDrive drive that disk is in. Set by call SetDevice

 curType GEOS 64 vl.3 and later for detecting REU shadowing

Returns: x error ($00 = no error).

 STRUCT_MISMATCH

 rlL track/Sector of VLIR Block

 r1H

 r5 pointer into diskBlkBuf to start of directory entry.

Alters: fileHeader buffer contains VLIR index table.

 usedRecords number of records in file that are currently in use.

 curRecord new record number

 fileWritten set to FALSE to indicate VLIR file has not been written

to.

 fileSize total number of disk blocks used in file (includes

index block, GEOS file header, and all records).

 dirEntryBuf directory entry of VLIR file.

Destroys: a,y,r1,r4-r6

Preparatory routines: SetDevice, OpenDisk

Description: Before accessing the data in a VLIR file, an application must call

 OpenRecordFile. OpenRecordFile searches the current directory for

 FILENAME and, if it finds it, loads the index table into fileHeader.

 OpenRecordFile initializes the GEOS VLIR variables (both local and

global) to allow other VLIR routines such as WriteRecord and ReadRecord

to access

 the file. Only one VLIR file may be open at a time. A previously opened

VLIR file should be closed before opening another.

 If an application passes a FILENAME of a non-VLIR file, OpenRecordFile

 will return a STRUCT_MISMATCH error.

Note: An application can create an empty VLIR file with SaveFile.

Note: GEOS up to 2.0 does not support a hierarchical file system, the

"current directory" is actually the entire disk.

Note:3 This Routine calls GetDirHead which loads in the BAM from disk.

PutDirHead should be called prior to this routine if the BAM has been

modified by Freeing or allocating blocks.

Example: SaveRecord

See also: ReadRecord, WriteRecord, CloseRecordFile, UpdateRecordFile

 GEOS Kernal

disk VLIR

75

PointRecord: (C64, C128) C280

Function: Make a particular record the current record.

Parameters: a RECORD — record number to make current (byte).

Uses: fileHeader index table checked to establish whether record exists.

 usedRecords Number of Currently Used Records in the VLIR file

Returns: x error ($00 = no error).

 y Track of VLIR Chain. A value of $00 here means record is allocated

but not in use (has no data blocks).

 a new current record number.

 r1L Track of VLIR Chain

 r1H Sector of VLIR Chain

Alters: curRecord new record number

Destroys: nothing

Preparatory routines1: OpenRecordFile

Description: PointRecord makes RECORD the current record so that a subsequent call to

ReadRecord or WriteRecord will operate with RECORD. VLIR records are

numbered zero through MAX_VLIR_RECS-1.

 If the record does not exist (you pass a record number that is larger

than the number of currently used records), then PointRecord returns an

INV_RECORD (invalid record) error.

Example: SaveRecord

See also: NextRecord, PreviousRecord.

 GEOS Kernal

disk VLIR

76

PreviousRecord: (C64, C128) C27D

Function: Makes the previous record the current record.

Parameters: none

Uses: fileHeader index table checked to establish whether record exists.

Returns: x error ($00 = no error).

 INV_RECORD

 y Track of VLIR Chain. A value of $00 here means record is allocated

but not in use (has no data blocks).

 a new current record number.

 r1L Track of VLIR Chain

 r1H Sector of VLIR Chain

Alters: curRecord new record number

Destroys: nothing

Preparatory routines1: OpenRecordFile

Description: PreviousRecord makes the current record minus one the new current record.

A subsequent call to ReadRecord or WriteRecord will operate with this

record.

 If the record does not exist, then PreviousRecord returns an INV_RECORD

(invalid record) error.

Example: SaveRecord

See also: NextRecord, PointRecord.

 GEOS Kernal

disk VLIR

77

ReadRecord: (C64, C128) C28C

Function: Read in the current VLIR record.

Parameters: r7 BUFFER — pointer to start buffer where data will be read into (word).

r2 BUFSIZE — size of buffer: Commodore version can read up to 32,258

bytes (127 Commodore blocks); Apple version can read up to the maximum

two-byte number that can be passed in r2: 65,535 ($FFFF) bytes (word).

Uses: curDrive drive that disk is in. Set by call SetDevice

 curRecord Current record number

fileHeader VLIR index table. Table holds Track / Sector of first

block of each record.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

Returns: x error ($00 = no error).

 a $00 = empty record, no data read.

 $ff = record contained data.

r7 pointer to last byte read into BUFFER plus one if not an empty

record, otherwise unchanged.

rl if BFR_OVERFLOW error returned, contains the track/sector of the

block that, had it been copied from diskBlkBuf to the application's

buffer space, would have exceeded the size of BUFFER. The process

of copying any extra data from diskBlkBuf to the end of BUFFER is

left to the application. The data starts at diskBlkBuf+2. If no

error, then rl is destroyed

Alters: fileTrScTab As the chain blocks in the record is followed, the

track/sector pointer of each block is added to the file track/sector

table. The track and sector of the first block in the record is added at

fiieTrScTab+2 and fileTrScTab+3. Refer to ReadFile for more information.

Destroys: y,(r1),r2-r4 (see above for r1)

Preparatory routines1: OpenRecordFile

Description: ReadRecord reads the current record into memory at BUFFER. If the record

contains more than BUFSIZE bytes of data, then a BFR_OVERFLOW error is

returned.

 ReadRecord calls ReadFile to load the chain of blocks into memory.

Example:

See also: WriteRecord, ReadFile.

 GEOS Kernal

disk VLIR

78

UpdateRecordFile: (C64, C128) C295

Function: Update the disk copy of the VLIR index table, BAM and other VLIR

information such as the file's time/date-stamp. This update only takes

place if the file has changed since opened or last updated.

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten if FALSE, assumes record just opened (or updated) and

fileHeader VLIR index table. Table holds Track / Sector of first

block of each record.

 fileSize total number of disk blocks used in file (includes

index block, GEOS file header, and all records).

 dirEntryBuf directory entry of VLIR file.

 year, month, day, hours, minutes for date-stamping file.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten set to FALSE to indicate that file hasn't been altered

since last updated

Destroys: a, y, r1, r4, r5

Description: UpdateRecordFile checks the fileWritten flag. If the flag is TRUE, which

indicates the file has been altered since it was last updated,

UpdateRecordFile writes the various tables kept in memory out to disk

(e.g., index table, BAM) and time/date-stamps the directory entry. If

the fileWritten flag is FALSE, it does nothing.

 UpdateRecordFile writes out the index block, adds the time/date-stamp

and fileSize information to the directory entry, and writes out the new

BAM with a call to PutDirHead.

 Because Commodore GEOS stores the BAM in global memory, the application

must be careful not to corrupt it before the VLIR file is updated. If

the fileWritten flag is TRUE and the BAM is reread from disk, the old

copy (on disk) will overwrite the current copy in memory. In the normal

use of VLIR disk routines, where a file is opened, altered, then closed

before any other disk routines are executed, no conflicts will arise.

Example:

See also: CloseRecordFile, OpenRecordFile.

 GEOS Kernal

disk VLIR

79

WriteRecord: (C64, C128) C28F

Function: Write data to the current VLER record.

Parameters: none.

Uses: curDrive drive that disk is in. Set by call SetDevice

 fileWritten if FALSE, assumes record just opened (or updated) and

 curRecord Current record number

fileHeader VLIR index table.

 curType GEOS 64 vl.3 and later for detecting REU shadowing

 curDirHead BAM updated to reflect newly allocated block.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)
†used internally by GEOS disk routines; applications generally don't use.

Returns: x error ($00 = no error).

Alters: fileWritten set to FALSE to indicate that file hasn't been altered

since last updated

fileHeader index table adjusted to point to new chain of blocks

for current record.

fileSize adjusted to reflect new size of file.

fileTrScTab Contains track/sector table for record as returned from

BlkAlloc. The track and sector of the first block in

the record is at fileTrScTab+0 and fileTrScTab+1 The

end of the table is marked with a track value of $00.

curDirHead BAM updated to reflect newly freed and allocated

blocks.

 dir2Head† (BAM for 1571 and 1581 drives only)

 dir3Head† (BAM for 1581 drive only)

Destroys: a, y, r1, r4, r5

Description: WriteRecord writes data to the current record All blocks previously

associated with the record are freed. BlkAlloc is then used to allocate

enough new blocks to hold BYTES amount of data The data is then written

to the chain of sectors by calling WriteFile. The fileSize variable is

updated to reflect the new size of the file.

 WriteRecord does not write the BAM and internal VLIR file information to

disk. Call CloseRecordFile or UpdateRecordFile when done to update the

disk with this information.

Note: WriteRecord correctly handles the case where the number of bytes to write

(BYTES, R2) is zero. The record is freed and marked as allocated but not

in use.

Example:

See also: ReadRecord, WriteFile.

 GEOS Kernal

disk DRIVER

80

disk DRIVER

------------------- ---- -- -----

AddDirBlock 9039 Needs Documenting...

CallDrvRoutine: 9042 Needs Documenting...

CheckDrvStatus: 9045 Needs Documenting...

GetdiskBlkBuf 903C Needs Documenting...

PutdiskBlkBuf 903F Needs Documenting...

JmpIndX: 9D80 Jump Table Needs Documenting...

 GEOS Kernal

disk DRIVER

81

AddDirBlock: (C64, C128) 9042

Function: Call Directly into Disk Driver

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

disk DRIVER

82

CallDrvRoutine: (C64, C128) 9042

Function: Call Directly into Disk Drive

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

disk DRIVER

83

GetDiskBlkBuf: (C64, C128) 9045

Function: Call Directly into Disk Driver

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

disk DRIVER

84

PutDiskBlkBuf: (C64, C128) 9045

Function: Call Directly into Disk Driver

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

disk DRIVER

85

CheckDrvStatus: (C64, C128) 9045

Function: Call Directly into Disk Driver

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

disk DRIVER

86

JmpIndX: (C64, C128) 9D80

Function: Jump Table

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Note: Needs Documenting...

Example:

See also:

 GEOS Kernal

graphics

87

graphics

------------------- ---- -- ---

BitmapUp C142 Display a compacted bitmap without clipping. 90

i_BitmapUp C1AB Inline BitmapUp . 90

BitmapClip $C2AA Draw a coded image -623

BitOtherClip $C2C5 Draw a coded image with user patches -624

DisablSprite $C1D5 Turn off a sprite -628

DrawLine C130 Draw, clear, or recover line between two endpoints. 91

DrawPoint C133 Draw, clear, or recover a single screen point. 92

DrawSprite $C1C6 Copy a sprite data block -625

EnablSprite $C1D2 Turn on a sprite -627

FrameRectangle C127 Draw a rectangular frame (outline). 93

i_FrameRectangle C1A2 Inline FrameRectangle. 93

GetScanLine C13C Calculate scanline address. 94

GraphicsString $C136 Process a graphic command table -601

i_GraphicsString $C1A8 Process a graphic command table / inline -602

HorizontalLine $C118 Draw a horizontal line in a pattern -616

InvertLine $C11B Reverse video a horizontal line -614

ImprintRectangle $C250 Copy a box from screen 2 to screen 1 -610

i_ImprintRectangle $C253 Copy a box from screen 2 to screen 1 / inline -611

InvertRectangle $C12A Reverse video a box -612

NormalizeX C2E0 Normalize C128 X-coordinates for 40/80 modes. 95

RecoverLine $C11E Copy a line from screen 2 to screen 1 -613

Rectangle C124 Draw a filled rectangle. 97

i_Rectangle C19F Inline Rectangle. 97

RecoverRectangle $C12D Copy a box from screen 1 to screen 2 -608

i_RecoverRectangle $C1A5 Copy a box from screen 1 to screen 2 / inline -609

SetNewMode $C2DD Change GEOS 128 graphics mode (40/80 switch). 98

SetPattern C139 Set current fill pattern. 99

TestPoint C13F Test status of single screen point (on or off?). 100

VerticalLine C121 Draw a vertical line in a pattern 101

 GEOS Kernal

graphics

88

BitmapClip: (C64, C128) C2AA

Function: Place a rectangular subset of a compacted bitmap on the screen.

Parameters: r0 DATA — pointer to the compacted bitmap data (word).

rlL XPOS — x card coordinate: pixel position /8 (byte).

r1H Y — y-coordinate (byte).

r2L W_WIDTH — width in cards: pixel width/8 (byte).

r2H W_HEIGHT — height in pixels (byte).

rllL DX1 — delta-xl: offset of left edge of clipping window in

cards from left edge of full bitmap (byte).

r11H DX2 — delta-x2: offset of right edge of clipping window in

cards from right edge of full bitmap (byte).

rl2 DY1 — delta-y 1: offset of top edge of clipping window in

pixels from top edge of full bitmap (word).

where the upper-left corner of the clipped bitmap is placed at

(XPOS*8,Y). The lower-right corner is at (XPOS*8+W_WIDTH*8,Y+W_HEIGHT).

Uses: dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Returns: Nothing

Destroys: a, x, y, rO-rl2

Description: BitmapClip uncompacts a rectangular area of a full bitmap, clipping

(ignoring) any data that exists outside of the desired area. The

rectangular subset is called the clipping window.

 GEOS Kernal

graphics

89

The following diagram illustrates the eight BitmapClip parameters:

No checks are made to determine if the data, dimensions, or positions

are valid. Be careful to pass accurate values. Do not pass a value of

$00 for either the W_WIDTH or W_HEIGHT parameters, and pay special

attention to the fact that XPOS, W_WIDTH, DX1, and DX2 are specified in

cards (groups of eight pixels horizontally), not in individual pixels.

NOTE: It may be helpful to think of DY1 as the number of scanlines in the

bitmap to skip initially, to think of W_HEIGHT as the number of scanlines

to display, to think of DX1 as the number of cards to skip at the

beginning of each scanline, to think of W_WIDTH as the number of cards

to display, and to think of DX1 as the number of bytes to skip at the

end of each scanline.

C128: Under GEOS 128, OR'ing DOUBLE_B into the XPOS and W_WIDTH parameters

automatically doubles the x-position and the width of the bitmap

(respectively) when running in 80-column mode.

BitmapClip in the first release of GEOS 128 does not call TempHideMouse

to disable the sprites and does not properly double the width when

drawing to the 80-column screen. On Kernal's where the release byte is

greater than $01, these problems have been fixed.

Example: DisplayImage

See also: BitmapUp , BitOtherClip

clipping window

full compacted bitmap

eight-pixel

boundaries

DX2

(in cards)
W_WIDTH

(in cards)

DX1

(in cards)

W_HEIGHT

(in pixels)

DY1

(in pixels)

 GEOS Kernal

graphics

90

BitmapUp , i_BitmapUp: (C64, C128) C142, C1AB

Function: Place a compacted bitmap onto the screen.

Parameters: Normal:

r0 DATA — pointer to the compacted bitmap data (word).

rlL XPOS — x card coordinate: pixel position /8 (byte).

r1H Y — y-coordinate (byte).

r2L WIDTH — width in cards: pixel width/8 (byte).

r2H HEIGHT — height in pixels (byte).

Inline:

data appears immediately after the jsr i_BitmapUp

.word DATA pointer to the compacted bitmap data.

.byte XPOS x card position: pixel position /8.

.byte Y y-coordinate.

.byte WIDTH width in cards: pixel width/8.

.byte HEIGHT height in pixels.

where the upper-left corner of the bitmap is placed at (XPOS*8,Y). The

lower-right corner is at (XPOS*8+WIDTH*8,Y+HEIGHT).

Uses: dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Returns: Nothing

Destroys: a, x, y, rO-r9L

Description: BitmapUp uncompacts a GEOS compacted bitmap according to the width and

height information and places it at the specified screen position. No

checks are made to determine if the data, dimensions, or positions are

valid, and bitmaps which exceed the screen edge will not be clipped. Be

careful to pass accurate values. Do not pass a $00 for the WIDTH or the

HEIGHT parameter, and pay special attention to the fact that both the

x-position and the width are specified in cards (groups of eight pixels

horizontally), not in pixels.

128: Under GEOS 128, OR'ing DOUBLE_B into the XPOS and WIDTH parameters will

automatically double the x-position and the width (respectively) in 80-

column mode. The first release of GEOS 128 did not properly remove the

sprites before placing the bitmap on the screen. The easiest way to

correct for this is to always precede a call to BitmapUp with a call

to TempHideMouse. The redundant call to TempHideMouse when running under

later releases is minimal compared to the number of cycles it takes to

decompact and draw the bitmap.

jsr TempHideMouse ; correct for bug in release 1 of GEOS 128

jsr BitmapUp ; then put up the bitmap

Example: ShowBitmap

See also: BitmapClip, BitOtherClip

 GEOS Kernal

graphics

91

DrawLine: (C64, C128) C130

Function: Draw, clear, or recover a line defined by two arbitrary endpoints.

Parameters: r3 X1 — x-coordinate of pixel (word).

r11L Y1 — y-coordinate of pixel (byte).

r4 X2 — x-coordinate of second endpoint (word).

r11H Y2 — y-coordinate of second pixel (byte).

st MODE:

 N C Operation

1 x recover pixel from background screen to foreground

0 1 set pixel using dispBufferOn.

0 0 clear pixel using dispBufferOn.

 where (X1,Yl) and (X2,Y2) are the two endpoints of the line.

Uses: if n is set (drawing, not recovering):

 when setting or clearing pixels:

 dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Destroys: a, x, y, r3-13

Description: DrawLine will set, clear, or recover the pixels which comprise the line

between two arbitrary endpoints. Setting a pixel sets its bit value to

one, clearing a pixel sets its bit value to zero, and recovering a pixel

copies the bit value from the background buffer to foreground screen.

DrawLine uses the Bresenham DDA (Digital Differential Analyzer)

algorithm to determine the proper points to draw. The line will be drawn

correctly regardless of which endpoint is used for (X1,Y1) and which is

used for (X2,Y2). In fact, the line is reversible: the same line will

be drawn even if the endpoints are swapped.

 The carry (c) flag and sign (n) flag in the processor status register

(s) are used to pass information to DrawLine. The following tricks can

be used to set or clear these flags appropriately:

• Use sec and clc to set or clear the carry (c) flag.

• Use lda #[-1 to set the sign (n) flag.

• Use lda #0 to clear the sign (n) flag.

Note: Calculates each pixel position on the line and calls DrawPoint

repeatedly.

C128: Under GEOS 128, OR'ing DOUBLE W into the XI andX2 parameters will

automatically double the x-position in SO-column mode. OR'ing in

ADD1_W will automatically add 1 to a doubled x-position- (Refer to

"GEOS 128 X-position and Bitmap Doubling" in "Graphics Routines" for

more information.)

Example:

See also: TestPoint, DrawLine.

 GEOS Kernal

graphics

92

DrawPoint: (C64, C128) C133

Function: Set, clear, or recover a single screen point (pixel).

Parameters: r3 X1 — x-coordinate of pixel (word).

 r11L Y1 — y-coordinate of pixel (byte).

 st MODE:

 N C Operation

1 x recover pixel from background screen to foreground

0 1 set pixel using dispBufferOn.

0 0 clear pixel using dispBufferOn.

 where (X1,Y1) is the coordinate of the point.

Uses: when setting or clearing pixels:

 dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Destroys: a, x, y, r5-r6

Description: DrawPoint will set, clear, or recover a single pixel. Setting a pixel

sets its bit value to one, clearing a pixel sets its bit value to zero,

and recovering a pixel copies the bit value from the background buffer

to foreground screen.

 The carry (c) flag and sign (n) flag in the processor status register

(s) are used to pass information to DrawPoint. The following tricks can

be used to set or clear these flags appropriately:

• Use sec and clc to set or clear the carry (c) flag.

• Use lda #[-1 to set the sign (n) flag.

• Use lda #0 to clear the sign (n) flag.

C128: Under GEOS 128, OR'ing DOUBLE W into the XI andX2 parameters will

automatically double the x-position in SO-column mode. OR'ing in

ADD1_W will automatically add 1 to a doubled x-position- (Refer to

"GEOS 128 X-position and Bitmap Doubling" in "Graphics Routines" for

more information.)

Example:

See also: TestPoint, DrawLine.

 GEOS Kernal

graphics

93

FrameRectangle, i_FrameRectangle: (C64, C128) C127, C1A2

Function: Draw a rectangular frame (one-pixel thickness).

Parameters: Normal:

 a eight-bit line pattern.

r3 X1 — x-coordinate of upper-left (word).

r2L Y1 — y-coordinate of upper-left (byte).

r4 X2 — x-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

where (X1,Yl) is the upper-left corner of the frame and (X2,Y2) is the

lower-right corner.

Inline:

data appears immediately after the jsr i_FrameRectangle

.byte Yl y-coordinate of upper-left

.byte Y2 y-coordinate of lower-right.

.word X1 x-coordinate of upper-left

.word X2 x-coordinate of lower-right.

.byte PATTERN eight-bit line pattern.

Uses: dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Destroys: a, x, y, r5-r9,r11

Description: FrameRectangle draws a one-pixel rectangular frame on the screen as

determined by the coordinates of the upper-left and lower-right corners.

The horizontal and vertical lines which comprise the frame are drawn

with the specified line pattern.

FrameRectangle operates by calling HorizontalLine and VerticalLine with

the desired line-pattern. As with these two routines, the line pattern

is drawn as if aligned on an eight-pixel boundary. The values of the

corner pixels will be determined by the vertical sides because they are

drawn after the horizontal sides.

Because all GEOS coordinates are inclusive, framing a filled rectangle

requires either calling FrameRectangle after calling Rectangle (and

thereby overwriting the perimeter of the filled area) or calling

FrameRectangle with (X1-1,Y7-1) and (X2+1,Y2+1) as the corner points.

 Under GEOS 128, OR'ing DOUBLE_W into the X1 and X2 parameters will

automatically double the x-position in 80-column mode. OR'ing in ADD1_W

will automatically add 1 to a doubled x-position. (Refer to "GEOS 128

X-position and Bitmap Doubling" in Chapter "Graphics Routines" for more

information.)

Example:

See also: Rectangle, ImprintRectangle, RecoverRectangle, InvertRectangle.

 GEOS Kernal

graphics

94

GetScanLine: (C64, C128) C13C

Function: Calculate the memory address of a particular screen line.

Parameters: x Y — y-coordinate of line.

Uses: dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Returns: x unchanged.

addresses in r5 and r6 based on dispBufferOn status:

bit 7 bit 6 returns

1 1 r5 = foreground; r6 = background

0 1 r5, r6 = background

1 0 r5, r6 = foreground

0 0 error: r5,r6 = address of screen center

Destroys: a

Description: GetScanLine calculates the address of the first byte of a particular

screen line. The routine always places addresses in both r5 and r6,

depending on the value in dispBufferOn. This allows an application to

automatically manage both foreground screen and background buffer writes

according to the bits set in dispBufferOn by merely doing any screen

stores twice, indirectly off both r5 and r6 as in:

/ Note: this code is C64 specific (see notes below for 128)

 ldy xpos ; byte index into current line

 lda grByte ; graphics byte to store

 sta (r5),y ; store using both indexes

 sta (r6),y

128: When GEOS 128 is operating in 80-column mode, all foreground writes are

sent through the VDC chip to its local RAM. In this case, the address

of the foreground screen byte is actually an index into VDC RAM for the

particular scanline. For background writes, the address of the

background screen byte is an absolute address in main memory (be aware,

though, that the background screen is broken into two parts and is not

a contiguous chunk of memory).

In 40-column mode, GetScanLine operates as it does under GEOS 64.

Example:

See also:

 GEOS Kernal

graphics

95

NormalizeX: (C128) C2E0

Function: Adjust an x-coordinate to compensate for the higher-resolution 80-column

mode.

Parameters: x GEOSREG — zero-page address of word-length GEOS register which

contains the word-length X-coordinate to adjust..

Returns: x unchanged.

register passed as GEOSREG parameter contains the adjusted x-coordinate.

Destroys: a

Description: NormalizeX is used by nearly every GEOS 128 routine that writes to the

screen. It adjusts an x-coordinate (two's complement signed word) based

on the graphics mode (40- or 80-column) and the status of the special

bits in the coordinate. NormalizeX allows an application to run in both

40- and 80-column modes with a minimum of programming effort If the

proper bits in a 40-column coordinate is set, NormalizeX will

automatically double the value when in 80-column mode.

Since GEOS graphics operations automatically call NormalizeX to adjust

the coordinates, most applications will not need to call it directly.

Bit 15 of the coordinate specifies doubling. Bit 13 adds one to a doubled

coordinate (allowing odd-pixel addressing). Bit 14 is a pseudo-sign bit.

Use the DOUBLE_W and ADDl_W constants to access these bits. If the

coordinate might be negative, the DOUBLE_W and ADDl_W constants should

be exclusive-or'ed into the x-position so that the sign is preserved.

However, if the coordinate is guaranteed to be a positive number, the

constants may simply be or'ed in.

The GEOSREG parameter is an actual zero-page address. Usually this will

be a GEOS register (r0-rl5) or an application's register (a0-a9). If,

for example, an application had a value in r9 which it wanted normalized,

it would first exclusive-or in the special bits, then call NormalizeX

in the following manner:

ldx #r9 ; load x with addr of r9

jsr NormalizeX ; normalize the val in r9

The following breakdown of the word-length x-coordinate illustrates

how the special bits affect the adjustment process.

b15 b14 b13 x-pixel coordinate (b0-b12)

b0-12 x-coordinate in pixels (two's comp. number).

b13 add one to doubled x-coordinate (flag).

b14 x-coordinate sign-extension from bl2 (pseudo sign-bit).

b15 double x-coordinate (flag).

 GEOS Kernal

graphics

96

If in 40-column mode, then the special bits are ignored and the x-

coordinate is returned to its original state (the state it was in

before any special constants were exclusive-or'ed in).

If in 80-column mode, then the following applies:

b15 b14 b13 Effect

0 0 n x value changed (normal positive).

1 1 n x value changed (normal negative).

0 1 n x=x*2-n (double negative)

1 0 n x=x*2+n (double positive)

Note: For more information, refer to "GEOS 128 X-position and Bitmap Doubling"

in Chapter "Graphics Routines"

Example:

See also:

 GEOS Kernal

graphics

97

Rectangle, i_Rectangle: (C64, C128) C124, C19F

Function: Draw a rectangle in the current fill pattern.

Parameters: Normal:

r3 X1 — x-coordinate of upper-left (word).

r2L Y1 — y-coordinate of upper-left (byte).

r4 X2 — x-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

where (X1,Yl) is the upper-left corner of the frame and (X2,Y2) is the

lower-right corner.

Inline:

data appears immediately after the jsr i_FrameRectangle

.byte Yl y-coordinate of upper-left

.byte Y2 y-coordinate of lower-right.

.word X1 x-coordinate of upper-left

.word X2 x-coordinate of lower-right.

Uses: dispBufferOn:

 bit 7 — write to foreground screen if set.

 bit 6 — write to background screen if set.

Destroys: a, x, y, r5-r8

Description: Rectangle draws a filled rectangle on the screen as determined by the

coordinates of the upper-left and lower-right corners. The rectangle is

filled with the current 8x8 (card-sized) fill pattern.

The 8x8 pattern within the rectangle is drawn as if it were aligned to

a card boundary: that is, the bit-pattern is synchronized with (0,0),

and, since the patterns are 8x8, they are aligned with every eighth

pixel thereafter. This allows the patterns in adjacent or overlapping

rectangles to line-up regardless of the actual pixel positions.

Rectangle operates by calling HorizontalLine in a loop, changing the

bit-pattern byte after every line based on the current 8x8 fill pattern.

Because all GEOS coordinates are inclusive, framing a filled rectangle

requires either calling FrameRectangle after calling Rectangle (and

thereby overwriting the perimeter of the filled area) or calling

FrameRectangle with (X1-1,Y1-1) and (X2+l,Y2+l) as the corner points.

Note: Under GEOS 128, OR'ing DOUBLE_W into the X1 and X2 parameters will

automatically double the x-position in 80-column mode. OR'ing in ADD1_W

will automatically add 1 to a doubled x-position. (Refer to "GEOS 128

X-position and Bitmap Doubling" in Chapter "Graphics Routines" for more

information.)

Example:

See also:

See also: FrameRectangle, ImprintRectangle, RecoverRectangle, InvertRectangle.

 GEOS Kernal

graphics

98

SetNewMode: (C128) $C2DD

Function: Set 128 mode to 40 or 80 column mode.

Uses: graphMode GRMODE — new graphics mode to change to:

 40-Column: GR_40

 80-Column: GR_80

Returns: nothing.

Destroys: a, x, y, r0-r15

Description: SetNewMode the Operation mode of the Commodore 128.

40-column mode (graphMode == GR_40)

 1: 8510 clock speed is slowed down to lMhz because VIC chip cannot

 operate at 2Mhz.

 2: rightMargin is set to 319.

 3: UseSystemFont is called to begin using the 40-column font.

 4: 40-column VIC screen is enabled.

 5: 80-column VDC is set to black on black, effectively disabling it.

80-column mode (graphMode == GR_80)

 1: 8510 clock speed is raised to 2Mhz.

 2: rightMargin is set to 639.

 3: UseSystemFont is called to begin using the 80-column font.

 4: 40-column VIC screen is disabled.

 5: 80-column VDC screen is enabled.

Example: Change Mode

See also: TestPoint, DrawLine, GetScanLine.

 GEOS Kernal

text

99

SetPattern: (C64, C128) C139

Function: Set the current fill pattern.

Parameters: a GEOS system pattern number (must be between 0 and 31) (byte).

Returns: nothing.

Alters: curPattern Contains an address pointing to the eight-byte pattern.

Destroys: a

Description: SetPattern sets the current fill pattern. There are 34 system patterns

(numbered 0-33) in GEOS; Unfortunately, SetPattern will only work

correctly with patterns numbered 0-31. To access higher number patterns,

call SetPattern with a value of 31 and add 8 to curPattern in order to

access pattern 32, add 16 to access pattern 33, and so on.

Example:

See also: GetPattern.

 GEOS Kernal

text

100

TestPoint: (C64, C128) C13F

Function: Test and return the value of a single point (pixel).

Parameters: r3 X1 — x-coordinate of pixel (word).

rllL Yl — y-coordinate of pixel (byte).

where (X1,Yl) is the coordinate of the point to test.

Uses: dispBufferOn:

bit 7 — write to foreground screen if set.

bit 6 — write to background screen if set.

(If both bit 6 and bit 7 are set, then only the pixel in the

background screen is tested).

Returns: r3L, r11L unchanged.

Destroys: a, x, y, r5-r6

Description: TestPoint will test a pixel in cither the foreground screen or the

background buffer (or both simultaneously) and return the pixel's status

by either setting or clearing the carry (x) flag accordingly. The jsr

TestPoint is usually followed immediately by a bcc or bcs so that a set

or clear pixel may be handled appropriately.

C128: Under GEOS 128, OR'ing DOUBLE_W into the X1 will automatically double

the x-position in 80-column mode. OR'ing in ADD1_W will automatically

add 1 to a doubled x-position. (Refer to "GEOS 128 Xposition and Bitmap

Doubling" in Chapter "Graphics Routines" for more information.)

Example:

See also: DrawPoint.

 GEOS Kernal

text

101

VerticalLine: (C64, C128) C121

Function: Draw a vertical line with a repeating bit-pattern.

Parameters: a eight-bit repeating pattern to use (not a GEOS pattern number).

r4 X1 — x-coordinate of line (word).

r3L Yl — y-coordinate of topmost endpoint (byte).

r3H Y2 — y-coordinate of bottommost endpoint (byte).

where (X1,Yl) and (X1,Y2) define the endpoints of the vertical line.

Uses: dispBufferOn:

bit 7 — write to foreground screen if set.

bit 6 — write to background screen if set

Returns: r3L, r3H, r4 unchanged.

Destroys: a, x, y, r5L-r8L

Description: VerticalLine sets and clears pixels on a single vertical line according

to the eight-bit repeating pattern. Wherever a 1-bit occurs in the

pattern byte, a pixel is set, and wherever a O-bit occurs, a pixel is

cleared.

Bits in the pattern byte are used top-to-bottom, where bit 7 is at the

top. A bit pattern of %11110000 would create a vertical line like:

The pattern byte is always drawn as if aligned to a card boundary. If

the endpoints of a line do not coincide with card boundaries, then bits

are masked off the appropriate ends. The effect of this is that a pattern

is always aligned to specific pixels, regardless of the endpoints, and

that adjacent lines drawn in the same pattern align.

Note: To draw patterned vertical lines using the 8x8 GEOS patterns, draw

rectangles of one-pixel width by calling the GEOS Rectangle routine with

identical Xcoordinates.

Example:

See also: HorizontalLine.

 GEOS Kernal

icon/menu

102

icon/menu

------------------- ---- -- ---

DoIcons C15A Display and begin interaction with icons. 103

DoMenu C151 Display and begin interaction with menus. 104

DoPreviousMenu C190 Retract sub-menu and reactivate menus up one level. 106

GotoFirstMenu C1BD Retract all sub-menus and reactivate at main level. 107

RecoverAllMenus C157 Recover all menus from background buffer. 108

RecoverMenu C154 Recover single menu from background buffer. 109

ReDoMenu C193 Reactivate menus at the current level. 110

 GEOS Kernal

icon/menu

103

DoIcons: (C64, C128) C15A

Function: Display and activate an icon table.

Parameters: r0 ICONTABLE — pointer to the icon table to use.

Uses: dispBufferOn:

bit 7 — draw icons to foreground screen if set.

bit 6 — draw icons to background screen if set.

Destroys: rO-rl5, a, x, y

Description: DoIcons takes an icon, draws the enabled icons (those whose OFF_I_PIC

word is non-zero) and instructs MainLoop to begin tracking the user's

interaction with the icons. This routine is the only way to install

icons. Every application should install at least one icon, even if only

a dummy icon.

If DoIcons is called while another icon table is active, the new icons

will take precedence. The old icons are not erased from the screen before

the new ones are displayed.

DoIcons is a complex routine which affects a lot of system variables and

tables. The following is an outline of its major actions:

1: All enabled icons in the table are drawn to the foreground screen

and/or the background buffer based on the value in dispBufferOn.

2: StartMouseMode is called. If the OFF_IC XMOUSE word of the icon table

header is non-zero, then StartMouseMode loads mouseXPosition and

mouseYposition with the values in the OFF_IC_XMOUSE and the

OFF_IC_YMOUSE parameters of the icon table header (see StartMouseMode

for more information).

4: faultData is cleared to $00, indicating no faults.

5: If the MOUSEON_BIT of mouseOn is clear, then the MENUON BIT is forced

to one. This is because GEOS assumes that it is in a power-up state

and that mouse tracking should be fully enabled. If the MOUSEON_BIT

bit is set, GEOS leaves the menu-scan alone, assuming that the current

state of the MENUON_BIT is valid.

6: The ICONSON_BIT and MOUSEON_BIT bits of mouseOn are set thereby

enabling icon-scanning.

When an icon event handler is given control, r0L contains the number of

the icon clicked on (beginning with zero) and r0H contains TRUE if the

event is a double-click or FALSE if the event is a single click.

.

Example: IconsUp

See also: DoMenu.

 GEOS Kernal

icon/menu

104

DoMenu: (C64, C128) C151

Function: Display and activate a menu structure.

Parameters: r0 MENU — pointer to the menu structure to display.

a POINTER_OVER — which menu item (numbered starting with zero) to center

the pointer over.

Destroys: a, x, y, rO-r13

Description: DoMenu draws the main menu (the first menu in the menu structure) and

instructs MainLoop to begin tracking the user's interaction with the

menu. This routine is the only way to install a menu.

If DoMenu is called while another menu structure is active, the new menu

will take precedence. The old menu is not erased from the screen before

the new menu is displayed. If the new menu is smaller (or at a different

position) than the old menu, parts of the old menu may be left on the

screen. A typical way to avoid this is to erase the old menu with a call

to Rectangle, passing the positions of the main menu rectangle and

drawing in a white pattern. However, a more elegant solution involves

calling GotoFirstMenu, which will erase any extant menus by recovering

from the background buffer.

DoMenu is a complex routine which affects a lot of system variables and

tables. The following is an outline of its major actions:

1: Menu level 0 (main menu) is drawn to the foreground screen.

2: StartMouseMode is called. mouseXPosition and mouseYposition are set

so that the pointer is centered over the selection number passed in a.

Under Apple GEOS, if the CallRoutine POINTER_OVER number in the

accumulator has its high-bit set, then the mouse will not be repositioned

Under GEOS 64 and GEOS 128, DoMenu always forces the mouse to a new

position. If you do not want the mouse moved, surround the call to DoMenu

with code to save and restore the mouse positions. The following code

fragment will install menus without moving the mouse.

DoMenu2:

 php ; Save Processor Status Register

 sei ; disable interrupts around call

 PushW mouseXPos ; save mouse x

 PushB mouseYPos ; save mouse y

 lda #0 ; dummy menu value

 jsr DoMenu ; install menus (mouse will move)

 PopB mouseYPos ; restore original mouse y

 PopW mouseXPos ; restore original mouse x

 plp ; Restore Interrupts to their saved state

 rts

3: SlowMouse is called. With a joystick this will kill all accumulated

speed in the pointer, requiring the user to reaccelerate. With a

proportional mouse, this will have no effect.

 GEOS Kernal

icon/menu

105

4: faultData is cleared to $00, indicating no faults.

5: If the MOUSEON_BIT of mouseOn is clear, then the ICONSON_BIT is forced

to one. This is because GEOS assumes that it is in a power-up state and

that mouse tracking should be fully enabled. If the MOUSEON_BIT bit is

set, GEOS leaves the icon-scan alone, assuming that the ICONSON_BIT is

valid.

6: The MENUON_BIT and MOUSEON_BIT bits of mouseOn are set,

thereby enabling menu-scanning.

7: The mouse fault variables (mouseTop, mouseBottom, mouseLeft, and

mouseRight) are set to the full screen dimensions.

Example:

See also: DoIcons, GotoFirstMenu, DoPreviousMenu, ReDoMenu.

 GEOS Kernal

icon/menu

106

DoPreviousMenu: (C64, C128) C190

Function: Retracts the current sub-menu and reactivates menus at the previous

level.

Parameters: none:

Destroys: assume rO-rl5, a, x, y

Description: DoPreviousMenu is used by a menu event handler to instruct GEOS to back

up one level of menus, erasing the current menu from the foreground

screen and making the parent menu active when control is returned to

MainLoop. menuNumber is decremented.

When using DoPreviousMenu, if the parent menu (the one which will be

given control) is of type UN_CONSTRAINED, then the mouse must be manually

repositioned over the parent menu. This can be done by loading

mouseXPosition and mouseYPosition with values calculated from the menu

structure. If the parent menu is of type CONSTRAINED, then the mouse is

automatically positioned over the selection in the parent menu which led

to the sub-menu..

Note: DoPreviousMenu may be called repeatedly to back up more than one level.

Do not call DoPreviousMenu when the menu is at level 0 (menuNumber =

$00). The effects may be disastrous.

Example:

See also: DoMenu, GotoFirstMenu, ReDoMenu, RecoverMenu.

 GEOS Kernal

icon/menu

107

GotoFirstMenu: (C64, C128) C1BD

Function: Retracts the current sub-menu and reactivates menus at the previous

level.

Parameters: none:

Destroys: assume rO-rl5, a, x, y

Description: GotoFirstMenu is used by a menu event handler to instruct GEOS to back

up to the main menu level, erasing the current menu and any parent menus

(except the main menu) from the foreground screen, making the main menu

active when control is returned to MainLoop. menuNumber is set to $00.

GotoFirstMenu can be called from a menu event routine at any menu level,

including main menu level. It operates by checking for level zero and

calling DoPreviousMenu in a loop.

Example:

See also: DoMenu, DoPreviousMenu, ReDoMenu, RecoverAllMenus.

 GEOS Kernal

icon/menu

108

RecoverAllMenus: (C64, C128) C157

Function: Removes all menus (including the main menu) from the foreground screen

by recovering from the background buffer.

Parameters: none:

Destroys: assume rO-rl5, a, x, y

Description: RecoverAllMenus is a very low-level menu routine which recovers the area

obscured by the opened menus from the background buffer. Usually this

routine is only called internally by the higher-level menu routines. It

is of little use in most applications and is included in the jump table

mainly for historical reasons.

RecoverAllMenus operates by loading the proper GEOS registers with the

coordinates of the menu rectangles and calling the routine whose address

is in recoverVector (normally RecoverRectangle) repeatedly.

Example:

See also: DoPreviousMenu, ReDoMenu, GotoFirstMenu, RecoverMenu.

 GEOS Kernal

icon/menu

109

RecoverMenu: (C64, C128) C154

Function: Removes the current menu from the foreground screen by recovering from

the background buffer.

Parameters: none.

Destroys: assume rO-rl5, a, x, y

Description: RecoverMenu is a very low-level menu routine which recovers the

rectangular area obscured by the current menu. Usually this routine is

only called internally by the higher-level menu routines such as

DoPreviousMenu. It is of little use in most applications and is included

in the jump table mainly for historical reasons.

RecoverMenu operates by loading the proper GEOS registers with the

coordinates of the current menu's rectangle and calling the routine

pointed to by recoverVector (normally RecoverRectangle).

Example:

See also: DoMenu.

 GEOS Kernal

icon/menu

110

ReDoMenu: (C64, C128) C193

Function: Reactivate menus at the current level.

Parameters: none.

Destroys: assume rO-rl5, a, x, y

Description: ReDoMenu is used by the application's menu event handler to instruct

GEOS to leave all menus (including the current menu) open when control

is returned to MainLoop. menuNumber is unchanged. Keeping the current

menu open allows another selection to be made immediately.

ReDoMenu will redraw the current menu. If menu event routine changes the

text in the menu (adding a selection asterisk, for example), a call to

ReDoMenu will redraw the menu with the new text while leaving the menu

open for another selection.

Example:

See also: DoMenu, GotoFirstMenu, DoPreviousMenu.

 GEOS Kernal

input driver

111

input driver

------------------- ---- -- -----

InitMouse $FE80 Initialize input device.

SetMouse $FE89 Reset input device scanning circuitry.

SlowMouse $FE83 Reset mouse velocity variables.

UpdateMouse $FE86 Update mouse variables from input device.

 GEOS Kernal

input driver

112

InitMouse: (c64,C128) FE80

Function: Initialize the input device.

Parameters: none.

Returns: nothing.

Alters: mouseXPos initialized (typically 8).

mouseYPos initialized (typically 8).

mouseData initialized (typically reflects a released button).

pressFlag initialized (typically set to $00).

Destroys: assume a,x,y,r0-r15

Description: GEOS calls InitMouse after first loading an input driver. The input

driver is expected to initialize itself and begin tracking the input

device. An application should never need to call InitMouse.

Example:

See also: SlowMouse, UpdateMouse, SetMouse, StartMouseMode, MouseUp.

 GEOS Kernal

input driver

113

SetMouse: (C128) FE89

Function: Input device scan reset.

Parameters: none.

Returns: nothing.

Destroys: assume a,x,y,r0-r15

Description: GEOS 128 calls SetMouse during Interrupt Level, immediately after the

keyboard is scanned for a new key, to reset the pot (potentiometer)

scanning lines so that they will recharge with the new value of. It is

primarily of use with the Commodore 1351 mouse, which requires having

the pot lines reset regularly. Other input drivers will have a SetMouse

routine that merely performs an rts. An application should never need to

call SetMouse.

Example:

See also: SlowMouse, UpdateMouse, Initmouse.

 GEOS Kernal

input driver

114

SlowMouse: (c64,C128) FE83

Function: Kills any accumulated speed in a non-proportional input device.

Parameters: none.

Returns: nothing.

Alters: internal input-driver speed variables, if any.

Destroys: assume a,x,y,r0-r15

Description: Input drivers for non-proportional input devices, such as a joystick,

will often internally associate a speed and velocity with movement. This

way the pointer can speed up when the user is trying to move large

distances. SlowMouse will tell the input driver to kill any accumulated

speed, effectively stopping the pointer at a specific location and

forcing it to regain momentum. Depending on the input driver, SlowMouse

may or may not have an effect on the pointer's movement The standard

mouse driver, for example, simply performs an rts but some other input

driver may actually copy the value in minMouseSpeed to its own internal

speed variable.

GEOS calls SlowMouse when it drops menus down. A driver that has velocity

variables should adjust the current speed so that the pointer does not

immediately jump off the menu. An application may want to call SlowMouse

when the user is required to make precise movements.

Example:

See also: UpdateMouse, Initmouse, SetMouse.

 GEOS Kernal

input driver

115

UpdateMouse: (c64,C128) FE86

Function: Update the mouse variables based on any changes in the state of the

input device.

Parameters: none.

Returns: nothing.

Alters: mouseXPos mouse x-position.

mouseYPos mouse y-position.

mouseData state of mouse button: high bit set if button is

released; clear if pressed.

pressFlag MOUSE_BIT and INPUT_BIT set appropriately.

inputData depends on device

Destroys: assume a,x,y,r0-r15

Description: GEOS calls UpdateMouse at Interrupt Level to update the GEOS mouse

variables with the actual state of the input device. An application

should never need to call UpdateMouse.

A typical input driver's UpdateMouse routine will scan the device

hardware and update MouseXPos and MouseYPos with new positions if the

coordinates have changed It will also update mouseData with the current

state of the input button (high-bit set if released; cleared if pressed)

and set MOUSE_BIT in pressFlag if the button state has changed since the

last call to UpdateMouse.

The four byte inputData field, which was originally for device-dependent

information, has adopted the following standard offsets:

inputData+0 (byte) 8-position device direction (joystick direction; mouse

drivers convert a moving mouse to an appropriate direction):

inputData+1 (byte) current speed (Commodore joystick drivers only).

Standard GEOS input drivers should set the INPUT_BIT of pressFlag if

inputData+O has changed since the last time UpdateMouse was called.

Because most GEOS applications leave inputVector set to its default $0000

value, setting this bit will usually have no effect.

Example:

See also: SlowMouse, Initmouse, SetMouse.

-1 0 4

6

2

1

5 7

3

 GEOS Kernal

internal

116

internal

------------------- ---- -- ---

BootGeos C000 Reboot GEOS. Requires only 128 bytes at $c000. 117

FirstInit C271 Initialize GEOS variables. 118

GetSerialNumber C196 Return GEOS serial number. 119

InterruptMain C100 Main interrupt level processing. 120

MainLoop C1C3 GEOS MainLoop processing. 121

Panic C2C2 System-error dialog box. 122

ResetHandle C003 internal Bootstrap entry point 123

 GEOS Kernal

internal

117

BootGeos: (c64,C128) C000

Function: Restart GEOS from a non-GEOS application.

Parameters: none.

Returns: Does not return.

Destroys: n/a

Description: BootGeos provides a method for an non-GEOS to run in the GEOS

environment—starting up from the deskTop and returning to GEOS when done.

The non-GEOS application need only preserve the area of memory between

BootGeos ($C000) and BootGeos+$7f ($CO7f). The rest of the GEOS Kernal

may be overwritten. To reboot GEOS, simply jmp BootGeos, which completely

reloads the operating system (either from disk in a "boot11 procedure or

from a RAM-expansion unit in an "rboot11 procedure) and returns to the

GEOS deskTop.

A program can check to see if it was loaded by GEOS by checking the

memory starting at $c006 (bootName) for the ASCII (not CBMASCII) string

"GEOSBOOT". If loaded by GEOS, the program can check bit 5 of $cO12

(sysFlgCopy): if this bit is clear, ask the user to insert their GEOS

boot disk before continuing, otherwise a boot disk is not needed because

GEOS will rboot from the RAM expansion unit. To actually return to GEOS,

set CPU_DATA to $37 (KRNL BAS 10 IN) on a Commodore 64 and set config

to $40 (CKRNL_BAS_IO_IN) on a Commodore 128, then jump to BootGeos

Example: RoadTrip

See also: FirstInit, StartAppl, GetFile, EnterDeskTop.

 GEOS Kernal

internal

118

FirstInit: (c64,C128) C271

Function: Simulates portions of the GEOS coldstart procedure without actually

rebooting GEOS or destroying the application in memory.

Parameters: none.

Returns: GEOS variables and system hardware in a coldstart state; stack and

application space unaffected.

Destroys: a, x, y, rO-r2

Description: FirstInit is part of the GEOS coldstart procedure. It initializes nearly

all GEOS variables and data structures (both global and local), including

those which are usually only done once, when GEOS is first booted, such

as setting the configuration variables to a default, power-up state.

GEOS calls this routine internally. Applications will not find it

especially useful.

Note: The GEOS font variables are not reset by FirstInit; a call to

UseSystemFont may be necessary.

Example:

See also: StartAppl

 GEOS Kernal

internal

119

GetSerialNumber: (c64,C128) C196

Function: Return the 16-bit serial number or pointer to the serial string for

the current GEOS kernal

Parameters: none.

Returns: r0 16-bit serial number

Destroys: a

Description: GetSerialNumber gives an application access to an unencrypted copy of

the GEOS serial number or serial string for comparison purposes. You

cannot change the actual serial string or number by altering this copy.

Example:

See also:

 GEOS Kernal

internal

120

InterruptMain: (c64,C128)
 C100

Function: Main Interrupt Level processing.

Parameters: none.

Returns: nothing.

Destroys: a, x, y, rO-rl5

Description: InterruptMain is the main GEOS Interrupt Level processing loop and that

means different things on different systems.

Note: InterruptMain is a subset of the full Interrupt Level process.

InterruptMain is typically called through the intTopVector. An

application could conceivably jsr InterruptMain to "catch up" on some

system updating if interrupts have been disabled for a considerable

period of time. InterruptMain is not re-entrant, so it is important that

interrupts be disabled around the catch-up calls.

Example:

See also: MainLoop.

 GEOS Kernal

internal

121

MainLoop: (c64,C128) C1C3

Function: Main Interrupt Level processing.

Parameters: Direct entry into the GEOS MainLoop.

Returns: nothing.

Destroys: a, x, y, rO-rl5

Description: Although the term "MainLoop" usually refers to GEOS MainLoop Level

processing, it also represents an entry in the GEOS jump table. By

performing a jmp MainLoop, the application would be returning to the top

of the MainLoop Level without letting it run through its normal course

of events. The application is expected to return to MainLoop Level with

an rts, not with a call to MainLoop. Hence, this jump table entry is not

terribly useful to applications and is primarily used internally by GEOS.

The MainLoop jump table entry is perhaps useful when debugging. The

system could, conceivably, be returned to a "known state" by resetting

the stack pointer and executing a jmp MainLoop. Of course, there is no

guarantee that this will work.

Example:

See also: InterruptMain.

 GEOS Kernal

internal

122

Panic: (c64,C128) C2C2

Function: Display "system error" dialog box.

Parameters: C64

 top word on stack is the system error address+2.

C128

top eight bytes on stack are unused, next word on stack is the system

error address+2

Returns: Never returns.

Description: Panic puts up a system error dialog box. It is usually not called directly

by an application. Usually the global GEOS variable BRKVector will

contain the address of this routine When GEOS encounters a brk (opcode:

$00) instruction in memory, it jumps indirectly through BRKVector with

system-specific status values on the stack. This usually results in a

system error dialog box. The hex address in the dialog box is the address

of the offending brk instruction.

An application that patches into BRKVector processes brk instructions on

its own may need to simulate the normal GEOS course of events by

performing a jmp Panic.

Although this is not a typical use, an application can use Panic as a

means of communicating fatal error messages. This may be useful in a

beta-test version of a software product, for example.

Example: FatalError

See also: InterruptMain.

 GEOS Kernal

internal

123

ResetHandle: (c64,C128) C003

Function: Internal routine used during the GEOS boot process.

Parameters: none.

Returns: does not return.

Description: ResetHandle is only used during the GEOS boot process. It is not useful

to applications and is documented here only because it exists in the

jump table.

See also: BootGeos

 GEOS Kernal

math

124

math

------------------- ---- -- ---

BBMult C160 Byte by byte (single-precision) unsigned multiply. 125

Bmult C163 Unsigned 16 bit by 8 bit multiply 126

Dabs C16F 16 bit absolute value 127

Ddec C175 Decrement a 16 bit integer 128

Ddiv C169 Unsigned 16 bit division 129

DMult C166 Unsigned 16 bit by 16 bit multiply 131

Dnegate C172 Negate a 16 bit integer 132

DSDiv C16C Signed 16 bit division 133

DShiftLeft C15D Multiple 16 bit arithmetic shift left 134

DShiftRight C262 Multiple 16 bit logical shift right 135

 GEOS Kernal

math

125

BBMult: (c64,C128) C160

Function: Unsigned byte-by-byte multiply: multiplies two unsigned byte operands

to produce an unsigned word result.

Parameters: x OPERAND1 — zero-page address of single-byte multiplicand in the

 low-byte of a word variable (byte pointer to a word variable).

y OPERAND2 — zero-page address of the byte multiplier (byte pointer

to a byte variable).

 Note: result = OPERANDl(word) * OPERAND2(word).

Returns: x, y, and byte pointed to by 0PERAND2 unchanged. word pointed to by

OPERAND1 contains the word result.

Destroys: a,r7L,r8

Description: BBMult is an unsigned byte-by-byte multiplication routine that

multiplies two bytes to produce a 16-bit word result (low/high order).

The byte in 0PERAND1 is multiplied by the byte in 0PERAND2 and the result

is stored as a word back in OPERAND1. Note OPERANDl starts out as a byte

parameter but becomes a word result with the high-byte at OPERAND 7+1.

Note: Because r7 and r8 are destroyed in the multiplication process, they

cannot be used to hold either operand.

 No overflow can occur when multiplying two bytes because the result

always fits in a word($ff*$ff = $fe01).

Example: 8BitMultiply

See also: BMult, DMult, Ddiv, DSdiv

 GEOS Kernal

math

126

BMult: (c64,C128) C163

Function: Unsigned word-by-byte multiply: multiplies an unsigned word and an

unsigned byte to produce an unsigned word result

Parameters: x OPERAND1 — zero-page address of word multiplicand (byte pointer

to word variable).

y OPERAND2 — zero-page address of multiplier (byte pointer to a

word variable — use a word variable; only the low-byte is used in

the multiplication process, but the high-byte of the word is

destroyed).

 Note: result = OPERANDl(word) * OPERAND2(byte).

Returns: x, y unchanged.

 word pointed to by 0PERAND2 has its high-byte set to $00, and its low-

byte unchanged word pointed to by OPERAND1 contains the word result.

Destroys: a, r6-r8.

Description: BMult is an unsigned word-by-byte multiplication routine that multiplies

the word at one zero-page address by the byte at another to produce a

16-bit word result. Bmult operates by clearing the high-byte of 0PERAND2

and calling Bmult. The result is stored as a word back in OPERAND 1.

Note: r6, r7 and r8 are destroyed in the multiplication process, they cannot

be used to hold the operands.

 Overflow in the result (beyond 16-bits) is ignored.

Example: 16x8Multiply, ConvToUnits

See also: BMult, DMult, Ddiv, DSdiv

 GEOS Kernal

math

127

Dabs: (c64,C128) C16F

Function: Compute absolute value of a two's-complement signed word

Parameters: X OPERAND — zero-page address of word to operate on (byte

 pointer to a word variable).

Returns: x,y unchanged.

 word pointed to by OPERAND contains the absolute value result.

Destroys: a

Description: Dabs takes a signed word at a zero-page address and returns its absolute

value. The address of the word (OPERAND) is passed in x. The absolute

value of OPERAND is returned in OPERAND.

 The equation involved is: if (value < 0) then value = -value.

Example: DSmult

See also: DNegate

 GEOS Kernal

math

128

Ddec: (c64,C128) C175

Function: Decrement a word

Parameters: X OPERAND — zero-page address of word to decrement (byte pointer

 to a word variable).

Returns: x,y unchanged.

 st z flag is set if resulting word is $0000.

 zero page word pointed to by OPERAND contains the decremented word.

Destroys: a

Description: Ddec is a double-precision routine that decrements a 16-bit zero-page

word. The absolute address of the word is passed in x. If the result of

the decrement is zero, then the z flag in the status register is set and

can be tested with a subsequent beq or bne. Ddec is useful for loops

which require a two-byte counter.

Note3: the Macro DecW should be used in cases where speed is more important

then code size. Inner loops should always use DecW if space allows. Ddec

should be used when space is at a premium as it costs only 5 bytes to

use. The kernal uses Ddec in CRC because space in the kernal is more

valuable then the speed of the CRC procedure that is not normally ever

used in an inner loop. See Example DdecvsDecW

Example: Kernal_CRC, DdecvsDecW, DecCounter

 GEOS Kernal

math

129

Ddiv: (c64,C128) C169

Function: Unsigned word-by-word (double-precision) division: divides one unsigned

word by another to produce an unsigned word result.

Parameters: x OPERAND1 — zero-page address of word dividend (byte

 pointer to a word variable).

y OPERAND2 — zero-page address of word divisor (byte

 pointer to a word variable).

 Note: result = OPERANDl(word) / OPERAND2(word).

Returns: x,y and word pointed to by 0PERAND2 unchanged,

 word pointed to by 0PERAND1 contains the result

 r8 contains the fractional remainder (word).

Destroys: a,r9

Description: Ddiv is an unsigned word-by-word division routine that divides the word

at one zero-page address (the dividend) by the word at another (the

divisor) to produce a 16-bit word result and a 16-bit word fractional

remainder The word in OPERAND 1 is divided by the word in 0PERAND2 and

the result is stored as a word back in OPERAND1. The remainder is returned

in r8.

Note: Because r8 and r9 are used in the division process, they cannot be used

to hold operands.

 If the divisor (OPERAND2) is greater than the dividend (OPERAND1), then

the fractional result will be returned as $0000 and OPERAND1 will be

returned in r8.

 Although dividing by zero is an undefined mathematical operation, Ddiv

makes no attempt to flag this as an error condition and will simply

return incorrect results. If the divisor might be zero, the application

should check for this situation before dividing as in:

 lda zpage,y ; get low byte of divisor

 ora zpage+l,y ; get high byte of divisor

 bne 10$; if either non-zero, go divide

 jmp DivideByZero ; else, flag error

 10$

 jmp Ddiv

 There is no possibility of overflow (a result which cannot fit in 16

bits).

Example: ConvToUnits, CheckDiskSpace

See also: DSDiv, DMult, BBMult, BMult

 GEOS Kernal

math

130

DivideBySeven: (Apple)

Function: Divide a byte value by 7

Parameters: r0L OPERAND1 — byte to divide/7

Returns: a result

Destroys: a

Description: Bonus Code Page CBM GEOS has no DivideBySeven in the Kernal like Apple.

So here is a block to do a similar operation on an 8 bit value

DvBy7:

 lda r0L

 lsr

 lsr

 lsr

 adc r0L

 ror

 lsr

 lsr

 adc r0L

 ror

 lsr

 lsr

 rts

 GEOS Kernal

math

131

DMult: (c64,C128) C166

Function: Unsigned word-by-word (double-precision) multiply: multiplies two

unsigned words to produce an unsigned word result.

Parameters: x OPERAND 1 — zero-page address of word multiplicand (byte

 pointer to a word variable).

 y OPERAND2 — zero-page address of word multiplier (byte pointer

 to a word variable).

 Note: results OPERANDl (word) * OPERAND2(word).

Returns: x,y, word pointed to by 0PERAND2 unchanged

 word pointed to by OPERAND contains the word result.

Destroys: a, r6-r8

Description: DMult is an unsigned word-by-word multiplication routine that multiplies

the word at one zero-page address by the word at another to produce a

16-bit word result (all stored in low/high order). The word in OPERANDl

is multiplied by the word in 0PERAND2 and the result is stored as a word

back in OPERANDl.

Note: Because r6, r7 and r8 are destroyed in the multiplication process, they

cannot be used to hold the operands.

 Overflow in the result (beyond 16-bits) is ignored.

Example: DSmult

See also: Bmult, BBMult, Ddiv, DSDiv

 GEOS Kernal

math

132

Dnegate: (c64,C128) C172

Function: Negate a signed word (two's complement sign-switch).

Parameters: X OPERAND — zero-page address of word to operate on (byte

 pointer to a word variable).

Returns: x,y unchanged.

Destroys: a

Description: Dnegate negates a zero-page word. The absolute address of the word

 OPERAND) is passed in x. The absolute value of OPERAND is returned in

OPERAND.

 The operation of this routine is: value = (value A $FFFF) + 1.

Example: DSmult

See also: Dabs

 GEOS Kernal

math

133

DSDiv: (c64,C128) C16C

Function: Signed word-by-word (double-precision) division: divides one two's

complement

Parameters: X OPERAND1 — zero-page address of signed word dividend (byte

pointer to a word variable).

 y OPERAND2 — zero-page address of signed word divisor (byte pointer

to a word variable).

Returns: x,y unchanged.

 r8 the fractional remainder (word).

 word pointed to by 0PERAND2 equals its absolute value.

 word pointed to by OPERAND 1 contains the word result.

Destroys: a,r9

Description: DSDiv is a signed, two's complement word-by-word division routine that

divides the word in one zero-page pseudo register (the dividend) by the

word in another (the divisor) to produce a 16-bit word signed result and

a 16-bit word fractional remainder The word in OPERAND 1 is divided by

the word in 0PERAND2 and the result is stored as a word back in OPERANDl

with the remainder in r8.

 The remainder is always positive regardless of the sign of the dividend.

This will cause problems with some mathematical operations that expect

a signed remainder. The following code fragment will fix this problem:

Note: Because r8 and r9 are used in the division process, they cannot be used

as the operands.

 Although dividing by zero is an undefined mathematical operation, DSDiv

makes no attempt to flag this as an error condition and simply returns

incorrect results. If the divisor might be zero, the application should

check for this situation before dividing:

 zpage = $00

 DSDivPre:

 lda zpage,y ;get low byte of divisor

 ora zpage+l,y ;get high byte of divisor

 bne 10$;if either non-zero, go divide

 jmp DivideByZero ;else, flag error

 10$

 jmp DSDiv ;divide

Example:

See also: Ddiv, DMult, BBMult, BMult

 GEOS Kernal

math

134

DShiftLeft: (c64,C128) C15D

Function: Arithmetically left-shift a zero-page word.

Parameters: X OPERAND — address of the zero-page word to shift (byte pointer

 to a word variable).

 y COUNT — number of times to shift the word left (byte).

Returns: a,y unchanged.

 y #$ff

 st c (carry flag) is set with last bit shifted out of word.

 zero page address pointed to by OPERAND contains the shifted word.

Destroys: nothing

Description: DShiftLeft is a double-precision math routine that arithmetically left-

shifts a 16-bit zero-page word (low/high order). The address of the word

is passed in x and the number of times to shift the word is passed in

y. Zeros are shifted into the low-order bit.

 An arithmetic left-shift is useful for quickly multiplying a value by a

power of two. One left-shift will multiply by two, two left-shifts will

multiply by four, three left-shifts will multiply by eight, and so on:

value = value * 2count.

Note: If a COUNT of $00 is specified, the word will not be shifted.

 Carry Flag <- High Byte <- Low Byte

C 7-6-5-4-3-2-1-0 7-6-5-4-3-2-1-0 <- 0

Example:

See also: DShiftRight

 GEOS Kernal

math

135

DShiftRight: (c64,C128) C262

Function: Arithmetically right-shift a zero-page word.

Parameters: X OPERAND — address of the zero-page word to shift (byte pointer

 to a word variable).

 y COUNT — number of times to shift the word right (byte).

Returns: a,x unchanged.

 y #$ff

 st c (carry flag) is set with last bit shifted out of word.

 zero page address pointed to by OPERAND contains the shifted word.

Destroys: nothing

Description: DShiftRight is a double-precision math routine that arithmetically

right-shifts a 16-bit zero-page word (low/high order). The address of

the word is passed in x and the number of times to shift the word is

passed in y. Zeros are shifted into the high-order bit.

 An arithmetic left-shift is useful for quickly multiplying a value by a

power of two. One left-shift will multiply by two, two left-shifts will

multiply by four, three left-shifts will multiply by eight, and so on:

value = value * 2count.

Note: If a COUNT of $00 is specified, the word will not be shifted.

 High Byte -> Low Byte -> Carry Flag

0 -> 7-6-5-4-3-2-1-0 7-6-5-4-3-2-1-0 C

Example: MseToCardPos, ConvToUnits

See also: DShiftLeft

GEOS Kernal

memory

136

memory

------------------- ---- -- ---

ClearRam $C178 Fill a memory region with zeroes 137

CmpFString $C26E Memory block comparison 140

CmpString $C26B String compare 139

CopyFString $C268 String copy 140

CopyString $C265 Memory block move 141

DoBOp $C2EC (128) Back-RAM memory action primitive 142

DoRAMOp $C2D4 Perform any of the Below REU commands 149

FetchRAM C2CB Retrieve memory from an REU 150

FillRam $C17B Memory block fill 143

 i_FillRam $C1B4 Memory block fill with inline data 143

InitRam $C181 Multiple memory location initialization 144

MoveBData $C2E3 (128) Move data between front and back RAM 145

MoveData $C17E Intelligent memory block move 146

 i_MoveData $C1B7 Inline Version inline data 146

StashRAM $C2C8 Stash memory into an REU 151

SwapBData $C2E6 (128) Swaps memory between Front and Back RAM 147

SwapRAM $C2CE Swap memory with an REU memory block 152

VerifyBData $C2E9 (128) Compares two regions of memory 148

VerifyRAM $C2D1 Verify (compare) memory with REU 153

GEOS Kernal

memory

137

ClearRam: (C64,C128) $C187

Function: Clear a region of memory to $00.

Parameters: r1 ADDR — address of area to clear (word).

 r0 COUNT — number of bytes to clear (0 - 64K) (word).

Returns: nothing.

Destroys: a,y, r0,r1,r2L

Description: ClearRam clears COUNT bytes starting at ADDR to ADDR+COUNT. It useful

for initializing ramsect variables and data sections.

Note: Do not use ClearRam to initialize r0-r2L. Also, for when space is at a

premium, it actually takes fewer bytes to call i_FillRam with a fill

value of $00.

Note:1 ClearRam sets r2L to $00 and calls FillRam.

Example: InitBuffers

See also: FillRam, InitRam.

GEOS Kernal

memory

138

CmpFString: (C64,C128) $C26E

Function: Compare two fixed-length strings.

Parameters: x SOURCE — zero-page address of pointer to source string (byte

pointer to a word pointer).

 y DEST — zero-page address of pointer to destination string (byte

pointer to a word pointer).

 a LEN — length of strings (1-255). A LEN value of $00 will cause

CmpFString to function exactly like CmpString, expecting a null

terminated source string.

Returns: st status register flags reflect the result of the comparison.

Destroys: a,x,y

Description: CmpFString compares the fixed-length string pointed to by SOURCE to the

string of the same length pointed to by DEST.

 CmpFString with a LEN value of $00 causes the routine to act exactly

like CmpString.

 CmpFString compares each character in the strings until there is a non-

matching pair. The result of the comparison between the non-matching

pair is passed back in the processor status register (st). If the strings

match, the z flag is set. This allows the application to test the result

of a string comparison with standard test and branch operations:

 bne branch if strings don't match

 beq branch if strings match

 bcs branch if source string is greater than or equal to DEST string

 bcc branch if source string is less than DEST string

Note: The strings may contain internal NULL'S. These will not terminate the

comparison.

Example: Find

See also: CmpString, CopyFString

GEOS Kernal

memory

139

CmpString: (C64,C128) $C26B

Function: Compare two null-terminated strings.

Parameters: x SOURCE — zero-page address of pointer to source null terminated

string.

 y DEST — zero-page address of pointer to destination null

terminated string.

Returns: st status register flags reflect the result of the comparison.

Destroys: a,x,y

Description: CmpString compares the null-terminated source string pointed to by SOURCE

to the destination string pointed to by DEST. The strings are compared

a byte at a time until either a mismatch is found or a null is encountered

in both strings.

 CmpString compares each character in the strings until there is a non-

matching pair. The result of the comparison between the non-matching

pair is passed back in the processor status register (st). If the strings

match, the z flag is set. This allows the application to test the result

of a string comparison with standard test and branch operations:

 bne branch if strings don't match

 beq branch if strings match

 bcs branch if source string is greater than or equal to DEST string

 bcc branch if source string is less than DEST string

Note: CmpString cannot compare strings longer than 256 bytes (including the

null). The compare process is aborted after 256 bytes.

Example: Find2

GEOS Kernal

memory

140

CopyFString: (C64,C128) $C268

Function: Copy a fixed-length string.

Parameters: x SOURCE — zero-page address of pointer to source string (byte

pointer to a word pointer).

 y DEST — zero-page address of pointer to destination buffer (byte

pointer to a word pointer).

 a LEN — length of strings (1-255)

Returns: Buffer pointed to by DEST contains copy of source string.

Destroys: a,x,y

Description: CopyFString copies a fixed-length string pointed to by SOURCE to the

buffer pointed to by DEST If the source and destination areas overlap,

the source must be lower in memory for the copy to work properly.

Note: Because the LEN parameter is a one-byte value, CopyFString cannot copy

a string longer than 255 bytes. A LEN value of $00 causes CopyFString

to act exactly like CopyString.

Note: The source string may contain internal NULL'S. These will not terminate

the copy operation.

Example: CopyBuffer

See also: CmpFString, CopyString.

See also: CopyString, CmpFString, MoveData.

GEOS Kernal

memory

141

CopyString: (C64,C128) $C268

Function: Copy a null-terminated string.

Parameters: x SOURCE — zero-page address of pointer to a NULL terminated

source string (byte pointer to a word pointer).

 y DEST — zero-page address of pointer to destination buffer (byte

pointer to a word pointer).

Returns: Buffer pointed to by DEST contains copy of source string, including

the terminating NULL

Destroys: a,x,y

Description: CopyString copies a null terminated string pointed to by SOURCE to the

buffer pointed to by DEST. All Characters in the string are copied,

including the null-terminator. If the source and destination areas

overlap, the source must be lower in memory for the copy to work properly.

 CopyString cannot copy more than 256 bytes. The Copy process is aborted

after 256 bytes.

Note: NULL terminated Strings can be an arbitrary size including > 255

Example: CopyBuffer

See also: CopyFString, CmpString, MoveData.

GEOS Kernal

memory

142

DoBOp: (C128) $C2EC

Function: Primitive for communicating with REU (RAM-Expansion Unit) devices.

Parameters: r0 ADDR1 — address of first block in application memory (word).

 r1 ADDR2 — address of second block in application memory (word).

r2 COUNT—number of bytes to operate on (word).

r3L A1BANK—ADDR1 bank: 0 = front RAM; 1 = back RAM (byte).

r3H A2BANK—ADDR2 bank: 0 = front RAM; 1 * back RAM (byte).

y MODE — operation mode:

b1 b0 Description

0 0 move from memory at ADDR1 to memory at ADDR2.

0 1 move from memory SAADDR2 to memory at ADDR1.

1 0 swap memory at ADDR1 with memory at ADDR2.

1 1 verify (compare) memory at ADDR1 against memory at ADDR2.

Note: the DoBOp MODE parameter closely matches the low nibble of the Do

RAM Op CMD parameter.

Returns: r0-r3 unchanged.

 When verifying:

 x $00 if data matches; $ff if mismatch.

 DEV_NOT_FOUND if bank or REU not available.

Destroys: a,x,y

Description: DoBOp is a generalized memory primitive for dealing with both memory

banks on the Commodore 128. It is used by MoveBData, SwapBData, and

VerifyBData.

Note: DoBOp should only be used on designated application areas of memory. When

moving memory within the same bank the destination address must be less

than source address. When swapping memory within the same bank, ADDR1

must be less than ADDR2.

Example:

See also: MoveBData, SwapBData, VerifyBData, DoRAMOp

GEOS Kernal

memory

143

FillRam: ,I_FillRam: (C64,C128) $C17B,$C1B4

Function: Fills a region of memory with a repeating byte value.

Parameters: Normal:

 r0 COUNT — number of bytes to clear (0 - 64K) (word).

 rl ADDR — address of area to clear (word).

 r2L FILL — byte value to fill with (byte).

 Inline:

 .word COUNT — number of bytes to clear (0 - 64K) (word).

 .word ADDR — address of area to clear (word).

 .byte FILL — byte value to fill with (byte).

Returns: r2L unchanged.

Destroys: a,y, r0,r1

Description: FillRam fills COUNT bytes starting at ADDR with the FILL byte. This

routine is useful for initializing a block of memory to any desired

value.

Note: Do not use FillRam to initialize r0-r2L.

Note:

Example: InitBuffers

See also: ClearRam, InitRam.

GEOS Kernal

memory

144

InitRam: (C64,C128) $C181

Function: Table driven initialization for variable space and other memory areas.

Parameters: r0 TABLE —address of initialization table (word).

Returns: nothing.

Destroys: a,x,y, r0-r2L

Description: InitRam uses a table of data to initialize blocks of memory to preset

values. It is useful for setting groups of variables to specific values.

It is especially good at initializing a group of noncontiguous variables

in a "two bytes here, three bytes there" fashion.

 The initialization table that is pointed to by the TABLE parameter is a

data structure made up from the following repeating pattern:

 .word address ;start address of this block

 .byte count ;number of bytes to initialize

 .byte bytel,byte2,... ; count bytes of data

 .word address ;start address of next block

 ...

 The table is made of blocks that follow the above pattern, count bytes

starting at address are initialized with the next count bytes in the

table. (A count value of $00 is treated as 256.) To end the table, use

 .word NULL

 where InitRam expects the next address parameter.

Note: Do not use InitRam to initialize r0-r2L.

Example:

See also: FillRam, ClearRam.

GEOS Kernal

memory

145

MoveBData: (C128) $C2E3

Function: Special version of MoveData that will move data within either front RAM

or back RAM (or from one bank to the other).

Parameters: r0 SOURCE — address of source block in memory (word)

 r1 DEST — address of destination block in memory (word)

 r2 COUNT — number of bytes to move (word)

 r3L SRCBANK — source bank: 0 = back RAM; 1 = front RAM (byte)

 r3H DSTBANK — destination bank: 0 = back RAM; 1 = front RAM (byte)

Returns: r0-r3 unchanged.

Destroys: a,x,y

Description: MoveBData is a block move routine that allows data to be moved in either

front RAM, back RAM, or between front and back (bank 1, the front bank,

is the normal GEOS application area). If the SOURCE and DEST areas are

in the same bank and overlap, DEST. must be less than SOURCE.

 MoveBData is especially useful for copying data from front RAM to back

RAM or from back RAM to front RAM.

 MoveBData uses the DoBOp primitive by calling it with a MODE parameter

of $00.

Note: MoveBData should only be used to move data within the designated

application areas of memory. MoveBData is significantly slower than

MoveData and should be avoided if the move will occur entirely within

front RAM.

Example:

See also: MoveBData, SwapBData, VerifyBData, DoBOp.

GEOS Kernal

memory

146

MoveData: ,I_MoveData: (C64,C128) $C2E3

Function: Moves a block data from one area to another.

Parameters: Normal:

 r0 SOURCE — address of source block in memory (word)

 r1 DEST — address of destination block in memory (word)

 r2 COUNT — number of bytes to move (word)

 Inline:

 .word SOURCE

 .word DEST

 .word COUNT

Returns: r0,R1,R2 unchanged.

Destroys: a,y

Description: MoveData will move data from one area of memory to another. The source

and destination blocks can overlap in either direction, which makes this

routine ideal for scrolling, insertion sorts, and other applications

that need to move arbitrarily large areas of memory around. The move is

actually a copy in the sense that the source data remains unaltered

unless the destination area overlaps it.

64 & 128: If the DMA MoveData option in the Configure program is enabled (GEOS

vl.3 and later), MoveData will use part of bank 0 of the installed RAM-

expansion unit for an ultrafast move operation. An application that calls

MoveData in the normal manner will automatically take advantage of this

selection. An application that relies upon a slower MoveData (for timing

or other reasons) can disable the DMA-move by temporarily clearing bit

7 of sysRAMFlg. This bit can also be used to read the status of the DMA-

move configuration.

64: Due to insufficient error checking in GEOS, do not attempt to move more

than 30,976 ($7900) bytes at one time when the DMA-move option is

enabled. Break the move up into multiple calls to MoveData.

128: Due to insufficient error checking in GEOS, do not attempt to move more

than 14,592 ($3900) bytes at one time when the DMA-move option is

enabled. Break the move up into multiple calls to MoveData. MoveData

should only be used to move data within the standard front RAM

application space. Use MoveData to move memory within back RAM or between

front RAM and back RAM.

 Because the RAM-expansion unit DMA follows the VIC chip bank select, an

application that is displaying a 40-column screen from back RAM must

either disable DMA-moves or temporarily switch the VIC chip to front RAM

before the MoveData call. (Note to Author: Confirm information here. I

see no reason REU would not function equally well with back ram. And

also be able to do ultra fast transfers between front to back. Using

stash ram, bank switch, then fetch ram. Needs testing.)

Note: Do not use MoveData on r0-r6.

Example:

See also: MoveBData, CopyString.

GEOS Kernal

memory

147

SwapBData: (C128) $C2E6

Function: Swaps two regions of memory within either front RAM or back RAM (or

between one bank and the other).

Parameters: r0 ADDR1 — address of first block in application memory (word).

 r1 ADDR2 — address of second block in application memory (word).

r2 COUNT — number of bytes to swap (word).

r3L A1BANK — ADDR1 bank: 0 = front RAM; 1 = back RAM (byte)

r3H A2BANK — ADDR2 bank: 0 = front RAM; 1 = back RAM (byte).

Returns: r0-r3 unchanged.

Destroys: a,x, y

Description:

 SwapBData is a block swap routine that allows data to be swapped in

either front RAM, back RAM, or between front and back. If the ADDR1 and

ADDR2 areas are in the same bank and overlap, ADDR2. must be less than

ADDR1.

 SwapBData is especially useful for swapping data from front RAM to back

RAM or from back RAM to front RAM.

 SwapBData uses the DoBOp primitive by calling it with a MODE parameter

of $02.

Note: SwapBData should only be used to swap data within the designated

application areas of memory.

Example:

See also: MoveBData, VerifyBData, DoBOp.

GEOS Kernal

memory

148

VerifyBData: (C128) $C2E9

Function: Compares (verifies) two regions of memory against each other. The

regions may either be in front RAM or back RAM (or one in front and the

other in back).

Parameters: r0 ADDR1 — address of first block in application memory (word).

 r1 ADDR2 — address of second block in application memory (word).

r2 COUNT — number of bytes to swap (word).

r3L A1BANK — ADDR1 bank: 0 = front RAM; 1 = back RAM (byte)

r3H A2BANK — ADDR2 bank: 0 = front RAM; 1 = back RAM (byte).

Returns: r0-r3 unchanged.

 x $00 if data matches; $FF if mismatch.

Destroys: a,y

Description: VerifyBData is a block verify routine that allows the data in one region

of memory to be compared to the data in another region in memory. The

regions may be in either front RAM, back RAM, or in front and back. The

ADDRl and ADDR2 areas may overlap even if they are in the same bank.

 VerifyBData uses the DoBOp primitive by calling it with a MODE parameter

of $03.

Note: VerifyBData should only be used to compare data within the designated

application areas of memory.

Example:

See also: MoveBData, SwapBData, DoBOp.

GEOS Kernal

memory

149

DoRAMOp: (c64 v1.3+,C128) $C2D4

Function: Primitive for communicating with REU (RAM-Expansion Unit) devices.

Parameters: r0 CBMSRC — address in Main Memory (word).

 r1 REUDEST — address in REU bank (word).

r2 COUNT — number of bytes to operate with (word).

r3L REUBANK — REU bank number to use (byte).

y CMD — command to send to REU (byte).

Returns: r0-r3 unchanged.

 x error code: $00 (no error) or

 DEV_NOT_FOUND if bank or REU not available.

 a REU status byte and'ed with $60

Destroys: y

Description: DoRAMOp is a very low-level routine for communicating with a RAM

expansion unit on a C64 or C128. This routine is a "use at your own risk"

GEOS primitive

 DoRAMOp operates with the with the RAM-expansion unit directly and

handles all the necessary communication protocols and clock-speed

save/restore (if necessary).

 The CMD parameter is stuffed into the REC Command Register

(EXP_BASE+$01). Although DoRAMOp does no error checking on this

parameter, it expects the high-nibble to be %1001 (transfer with current

configuration and disable FFOO decoding). The lower nibble can be one of

the following:

 %00 Transfer from Commodore to REU.

 %01 Transfer from REU to Commodore.

 %10 Swap.

 %11 Verify.

 Note: the low nibble of the DoRAMOp CMD parameter closely matches the

 DoBOp MODE parameter.

Note: Note: On a Commodore 128, if the VIC chip is mapped to front RAM (with

the MMU VIC bank pointer), the REU will read/write using front RAM.

Similarly, if the VIC chip is mapped to back RAM, the REU will read/write

using back RAM. The REU ignores the standard bank selection controls on

the 8510. GEOS 128 defaults with the VIC mapped to front RAM.

 For more information on the Commodore REU devices, refer to the Commodore

1764 RAM Expansion Module User's Guide or the 170011750 RAM Expansion

Module User's Guide.

Example:

See also: StashRAM, FetchRAM, SwapRAM, VerifyRAM, DoBOp

GEOS Kernal

memory

150

FetchRAM: (c64 v1.3+,C128) C2CB

Function: Primitive for transferring data from an REU

Parameters: r0 CBMDEST — address in Main Memory to start writing (word).

 r1 REUSRC — address in REU bank to start reading (word).

r2 COUNT — number of bytes to fetch (word).

r3L REUBANK — REU bank number to fetch from (byte)

Returns: r0-r3 unchanged.

 x error code: $00 (no error) or

 DEV_NOT_FOUND if bank or REU not available.

 a REU status byte and'ed with $60 ($40 = success).

Destroys: y

Description: FetchRAM moves a block of data from a REU BANK into Commodore memory.

 FetchRAM uses the DoRAMOp primitive by calling it with a CMD parameter

of %10010001. $91

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: StashRAM, SwapRAM, VerifyRAM, DoRAMOp, MoveBData

GEOS Kernal

memory

151

StashRAM: (c64 v1.3+,C128) $C2C8

Function: Primitive for transferring data to an REU

Parameters: r0 CBMSRC — address in Main Memory to start reading (word).

 r1 REUDEST — address in REU bank to stash data (word).

r2 COUNT — number of bytes to stash (word).

r3L REUBANK — REU bank number to stash to (byte)

Returns: r0-r3 unchanged.

 x error code: $00 (no error) or

 DEV_NOT_FOUND if bank or REU not available.

 a REU status byte and'ed with $60 ($40 = success).

Destroys: y

Description: StashRAM moves a block of data from Commodore memory into an REU bank.

This routine is a "use at your own risk" low-level GEOS primitive

 StashRAM uses the DoRAMOp primitive by calling it with a CMD parameter

of %10010000. $90

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: SwapRAM, FetchRAM, VerifyRAM, DoRAMOp, MoveBData

GEOS Kernal

memory

152

SwapRAM: (c64 v1.3+,C128) $C2CE

Function: Primitive for swapping data between Commodore memory and an REU.

Parameters: r0 CBMADDR — address in Commodore to swap (word).

 r1 REUADDR — address in REU to swap (word).

r2 COUNT — number of bytes to swap (word).

r3L REUBANK — REU bank number to fetch from (byte).

Returns: r0-r3 unchanged.

 x error code: $00 (no error) or

 DEV_NOT_FOUND if bank or REU not available.

 a REU status byte and'ed with $60 ($40 = successful swap).

Destroys: y

Description: SwapRAM swaps a block of data in an REU bank with a block of data in

Commodore memory.

 SwapRAM uses the DoRAMOp primitive by calling it with a CMD parameter

 of % 10010010. $92

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: StashRAM, FetchRAM, VerifyRAM, DoRAMOp, SwapBData

GEOS Kernal

memory

153

VerifyRAM: (c64 v1.3+,C128) $C2D1

Function: Verify (compare) data in main memory with data in an REU.

Parameters: r0 CBMADDR — address in Commodore to start (word)

 r1 REUADDR — address in REU bank to start (word).

r2 COUNT — number of bytes to verify (word)

r3L REUBANK — REU bank number to verify with (byte).

Returns: r0-r3 unchanged.

 x error code: $00 (no error) or

 DEV_NOT_FOUND if bank or REU not available.

 a REU status byte and'ed with $60

 $40 = data match

 $20 = data mismatch

Destroys: y

Description: VerifyRAM Compares a block of data in Commodore memory with a block of

 data in an REU bank to Verify the contents match. If bit 5 of the a

register is set, there was an failed comparison during validation.

 VerifyRAM uses the DoRAMOp primitive by calling it with a CMD parameter

 of % 10010011. $93

Note: Refer to DoRAMOp for notes and warnings.

Example:

See also: SwapRAM, FetchRAM, StashRAM, DoRAMOp, VerifyBData

 GEOS Kernal

mouse/sprite

154

mouse/sprite

------------------- ---- -- -----

ClearMouseMode $C19C Reset the mouse 1-815

IsMseInRegion $C2B3 Check if mouse is inside a window 1-710

MouseUp $C18A Turn on the mouse 1-813

MouseOff $C18D Turn off the mouse 1-814

SetMsePic C2DA Set and preshift new soft-sprite mouse picture. 158

StartMouseMode $C14E Initialize the mouse 1-812

TempHideMouse $C2D7 Hide soft-sprites before direct screen access. 159

 GEOS Kernal

mouse/sprite

155

IsMseInRegion: (C64, C128) C2B3

Function: Checks to see if the mouse is within a specified rectangular region of

the screen.

Parameters: r3 X1 — x-coordinate of upper-left (word).

r2L Yl — y-coordinate of upper-left (byte).

r4 X2 — y-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

where (X1,Yl) and (X1,Y2) is the upper-left corner of the rectangle and

(X2,Y2) is the lower-right corner.

Returns: a TRUE if in region, FALSE if not in region.

st result of loading TRUE or FALSE into the a register.

Destroys: nothing.

Description: IsMseInRegion tests the position of the mouse against the boundaries of

a rectangular region (passed in the same GEOS registers as the Rectangle

routine). It returns TRUE if the mouse is within the region (inclusive)

and FALSE if the mouse is outside the region. Because the st register

reflects the result of loading TRUE or FALSE into the accumulator, the

call can be followed by a branch instruction that tests the result, such

as:

beq InRegion ; branch if mouse was in region

 -or-

bne NotInRegion ; branch if mouse not in region

Note: Interrupts should always be disabled around a call to IsMseInRegion . If

the php-sei-plp method is used, be aware that the plp will reset the st

flags. If this is troublesome, it may warrant creating a new version of

IsMseInRegion that does its own interrupt disable and leaves the values

in the st register intact: See NewIsMseInRegion

Example: NewIsMseInRegion

See also: HorizontalLine.

 GEOS Kernal

mouse/sprite

156

MouseOff: (C64, C128) C18D

Function: Temporarily disables the mouse pointer and GEOS mouse tracking.

Parameters: nothing.

Returns: nothing.

Modifies: mobenble sprite #0 bit cleared by DisablSprite.

 mouseOn clears the MOUSEON_BIT

Destroys: a

Description: MouseOff temporarily disables the mouse cursor and GEOS mouse tracking

by clearing the proper bit in mouseOn and calling DisablSprite.

Applications can call MouseOff temporarily disable the mouse. The mouse

can be reenabled to its previous state by calling MouseUp.

Example:

See also: MouseUp, ClearMouseMode.

 GEOS Kernal

mouse/sprite

157

MouseUp: (C64, C128) C18A

Function: Reenables the mouse pointer and GEOS mouse tracking.

Parameters: nothing.

Returns: nothing.

Modifies: mobenble sprite #0 bit cleared by DisablSprite.

 mouseOn sets the MOUSEON_BIT

Destroys: a

Description: MouseUp reenables the mouse cursor and GEOS mouse tracking after a call

to MouseOff by setting the proper bits in mouseOn and mobenble.

StartMouseMode calls this routine.

Example:

See also: MouseOff, ClearMouseMode.

 GEOS Kernal

mouse/sprite

158

SetMsePic: (C64, C128) $C184

Function: Uploads and pre-shifts a new mouse picture for the software sprite

handler.

Parameters: r0 MSEPIC — pointer to 32 bytes of mouse sprite image data or one of

the following special codes:

 ARROW

Returns: nothing

Destroys: a, x, y, r0-r15

Description: The software sprite routines used by GEOS 128 in 80-column mode treat

the mouse sprite (sprite #0) differently than the other sprites. Sprite

#0 is optimized and hardcoded to provide reasonable mouse-response while

minimizing the flicker typically associated with erasing and redrawing

a fastmoving object. The mouse sprite is limited to a 16x8 pixel image.

The image includes a mask of the same size and both are stored in a pre-

shifted form within internal GEOS buffers. For these reasons, a new

mouse picture must be installed with SetMsePic (as opposed to a normal

DrawSprite). SetMsePic pre-shifts the image data and lets the soft-

sprite mouse routine know of the new image.

SetMsePic accepts one parameter: a pointer to the mask and image data

or a constant value for one of the predefined shapes. If a user-defined

shape is used, the data that MSEPIC points to is in the following format:

16 bytes 16x8 "cookie cutter" mask. Before drawing the software

mouse sprite, GEOS and's this mask onto the foreground

screen. Any zero bits in the mask, clear the

corresponding pixels. One bits do not affect the screen.

16 bytes 16x8 sprite image. After clearing pixels with the mask

data, the sprite image is or'ed into the area. Any one

bits in the sprite image set the corresponding pixels.

Zero bits do not affect the screen.

Note: SetMsePic calls HideOnlyMouse.

Note3: ARROW Equate - ARROW = $00

Example:

See also: TempHideMouse, HideOnlyMouse, DrawSprite

 GEOS Kernal

mouse/sprite

159

TempHideMouse: (C64, C128) $C184

Function: Temporarily removes soft-sprites and the mouse pointer from the graphics

screen.

Parameters: nothing.

Uses: graphMode

Destroys: a, x

Description: TempHideMouse temporarily removes all soft-sprites (mouse pointer and

sprites 2-7) unless they are already removed. This routine is called by

all GEOS graphics routines prior to drawing to the graphics screen so

that software sprites don't interfere with the graphic operations. An

application that needs to do direct screen access should call this

routine prior to modifying screen memory.

 The sprites will remain hidden until the next pass through MainLoop.

Note: In 40-column mode (bit 7 of graphMode is zero), TempHideMouse exits

 immediately without affecting the hardware sprites.

Example:

See also: HideOnlyMouse

 GEOS Kernal

 print driver

160

print driver

 GEOS Kernal

 print driver

161

StartASCII: (C64, C128) 7912

Function: Enable ASCII text mode printing. 7912

Parameters: rl WORKBUF — pointer to a 640-byte work buffer for use by the printer

driver.(word). PrintASCII uses this work area as an intermediate buffer,

the buffer must stay intact throughout the entire page.

Returns: x STATUS — printer error code; $00 = no error.

Destroys: a, y, r0-r15

Description: StartASCII enables ASCII text mode printing. An application calls

StartASCII at the beginning of each page. It assumes that InitForPrint

has already been called to initialize the printer.

StartASCII takes control of the serial bus by opening a fake Commodore

file structure and requests the printer (device 4) to enter listen mode.

It then sends the proper control sequences to place the printer into

text mode.

Example:

See also: PrintASCII, StopPrint, StartPrint

 GEOS Kernal

process

162

process

------------------- ---- -- ---

BlockProcess C10C Prevent a recurring timed event from running 163

EnableProcess C109 Force a recurring timed event to run 166

FreezeProcess C112 Stop a recurring timed event's timer 164

InitProcesses C103 Initialize a table of recurring timed events 165

RestartProcess C106 Enable a recurring timed event 167

Sleep C199 Set up a time delay 168

UnblockProcess C10F Allow a recurring timed event to execute 168

UnfreezeProcess C115 Start a recurring timed event's timer 170

 GEOS Kernal

process

163

BlockProcess: (C64, C128) C103

Function: Block a processes events.

Parameters: x PROCESS — process to block (0 to n-1, where n is the number of

processes in the table) (byte).

Returns: x unchanged.

Destroys: a

Description: BlockProcess causes MainLoop to ignore the runnable flag of a particular

process so that if a process timer reaches zero (causing the process to

become runnable) no process event is generated until the process is

subsequently unblocked with a call to UnblockProcess. BlockProcess stops

the process the MainLoop level. Refer to FreezeProcess to stop the

process at the Interrupt Level.

BlockProcess does not stop the countdown timer, which continues to

decrement at Interrupt Level (assuming the process is not frozen). When

the timer reaches zero, the runnable flag is set and the timer is

restarted. As long as the process is blocked, though, MainLoop ignores

this runnable flag and, therefore, never generates an event. When a

blocked process is later unblocked, MainLoop checks the runnable flag.

If the runnable flag was set during the time the process was blocked,

this pending event generates a call to the appropriate service routine.

Only one event is generated when a process is unblocked, even if the

timer reached zero more than once.

Note: If a process is already blocked, a redundant call to BlockProcess has

no effect.

Example:

SuspendClock:

ldx #CLOCK_PROCESS ; x <- process number of the clock

jmp BlockProcess ; block that particular process

See also: UnblockProcess, FreezeProcess

 GEOS Kernal

process

164

FreezeProcess: (C64, C128) C112

Function: Freeze a process's countdown timer at its current value.

Parameters: x PROCESS — process to freeze (0 to n-1, where n is the number of

processes in the table) (byte).

Returns: x unchanged.

Destroys: a

Description: FreezeProcess halts a process's countdown timer so that it is no longer

decremented every vblank. Because a frozen timer will never reach zero,

the process will not become runnable except through a call to

EnableProcess. When a process is unfrozen with UnfreezeProcess, its

timer again begins counting from the point where it was frozen.

Note: If a process is already frozen, a redundant call to FreezeProcess has

no effect.

Example:

See also: UnfreezeProcess, BlockProcess

 GEOS Kernal

process

165

InitProcesses: (C64, C128) C103

Function: Initialize and install a process data structure.

Parameters: a NUM_PROC — number of processes in table (byte).

r0 PTABLE — pointer to process data structure to use (word).

Returns: r0 unchanged.

Destroys: a, x, y, rl

Description: InitProcesses installs and initializes a process data structure. All

processes begin as frozen, so their timers arc not decremented during

vblank. Processes can be started individually with RestartProcess after

the call to InitProcesses.

InitProcesses copies the process data structure into an internal area

of memory hidden from the application. GEOS maintains the processes

within this internal area, keeping track of the event routine addresses,

the timer initialization values (used to reload the timers after they

time-out), the current value of the timer, and the state of each process

(i.e., frozen, blocked, runnable). The application's copy of the process

data structure is no longer needed because GEOS remembers this

information until a subsequent call to InitProcesses.

Note: Although processes are numbered starting with zero, NUM_PROC should be

the actual number of processes in the table. To initialize a process

table with four processes, pass a NUM_PROC value of $04. When referring

to those processes (i.e., when calling routines such as UnblockProcess),

use the values $00-$03. Do not call InitProcesses with a NUM_PROC value

of $00 or a NUM_PROC value greater than MAX_PROCESSES (the maximum

number of processes allowable).

Example:

See also: Sleep, RestartProcess

 GEOS Kernal

process

166

EnableProcess: (C64, C128) C109

Function: Makes a process runnable immediately.

Parameters: x PROCESS — process to enable (0 - n-l, where n is the number of

processes in the table) (byte).

Returns: x unchanged.

Destroys: a

Description: EnableProcess forces a process to become runnable on the next pass

through MainLoop, independent of its timer value.

EnableProcess merely sets the runnable flag in the process table. When

MainLoop encounters an unblocked process with this flag set, it will

attempt to generate an event just as if the timer had decremented to

zero.

EnableProcess has no privileged status and cannot override a blocked

process. However, because it doesn't depend on or affect the current

timer value, the process can become runnable even with a frozen timer.

EnableProcess is useful for making sure a process runs at least once,

regardless of the initialized value of the countdown timer. It is also

useful for creating application-defined events which run off of

MainLoop: a special process can be reserved in the data structure but

never started with RestartProcess. Any time the desired event-state is

detected, a call to EnableProcess will generate an event on the next

pass through MainLoop. EnableProcess can be called from Interrupt Level,

which allows a condition to be detected at Interrupt Level but processed

during MainLoop.

Example:

See also: InitProcesses, RestartProcess, UnfreezeProcess, UnblockProcess

 GEOS Kernal

process

167

RestartProcess: (C64, C128) C106

Function: Reset a process's timer to its starting value then unblock and unfreeze

the process.

Parameters: x PROCESS — process to restart (0 - n-l where n is the number of

processes in the table) (byte).

Returns: r0 unchanged.

Destroys: a, x, y, rl

Description: RestartProcess sets a process's countdown timer to its initialization

value then unblocks and unfreezes it Use RestartProcess to initially

start a process after a call to InitProcesses or to rewind a process to

the beginning of its cycle.

Note: RestartProcess clears the runnable flag associated with the process,

thereby losing any pending call to the process.

 RestartProcess should always be used to start a process for the first

time because InitProcesses leaves the value of the countdown timer in

an unknown state.

Example:

See also: InitProcesses, EnableProcess, UnfreezeProcess, UnblockProcess.

 GEOS Kernal

process

168

Sleep: (C64, C128) C199

Function: Pause execution of a subroutine ("go to sleep") for a given time interval.

Parameters: r0 DELAY — number of vblanks to sleep (word),

Returns: does not return directly to caller (see description below).

Destroys: a, x, y

Description: Sleep stops executing the current subroutine, forcing an early rts to

the routine one level lower, putting the current routine "to sleep." At

Interrupt Level, the DELAY value associated with each sleeping routine

is decremented. When the associated DELAY value reaches zero, MainLoop

removes the sleeping routine from the sleep table and performs a jsr to

the instruction following the original jsr Sleep, expecting a subsequent

rts to return control back to MainLoop. For example, in the normal

course of events, MainLoop might call an icon event service routine

(after an icon is clicked on). This service routine can perform a jsr

Sleep. Sleep will force an early rts, which, in this case, happens to

return control to MainLoop. When the routine awakes (after DELAY vblanks

have occurred), MainLoop performs a jsr to the instruction that follows

the original jsr Sleep. When this wake-up jsr occurs, it occurs at some

later time the contents of the processor registers and GEOS pseudo-

registers are uninitialized. A subsequent rts will return to MainLoop.

Sleeping in Detail:

1: The application calls Sleep with a jsr Sleep. The jsr places a return

address on the stack and transfers the processor to the Sleep routine.

2: Sleep pulls the return address (top two bytes) from the stack and places

those values along with the DELAY parameter in an internal sleep table.

4: Sleep executes an rts. Since the original caller's return address has been

pulled from the stack and saved in the sleep table, this rts uses the next

two bytes on the stack, which it assumes comprise a valid return address.

(Note: it is imperative that this is in fact a return address; do not save

any values on die stack before calling Sleep.)

5: At Interrupt Level GEOS decrements the sleep timer until it reaches zero.

6: On every pass, MainLoop checks the sleep timers. If one is zero, then it

removes that sleeping routine from the table, adds one to the return address

it pulled from the stack (so it points to the instruction following the

jsr Sleep), and jsr's to this address. Because no context information is

saved along with the Sleep address, the awaking routine cannot depend on

any values on the stack, in the GEOS pseudoregisters, or in the processor's

registers.

Note: A DELAY value of $0000 will cause the routine to sleep only until the next

pass through MainLoop.

When debugging an application, be aware that Sleep alters the normal flow

of control.

Example: BeepThrice

See also: InitProcesses.

 GEOS Kernal

process

169

UnblockProcess: (C64, C128) C10F

Function: Allow a process's events to go through.

Parameters: x PROCESS — number of process (0 - n-1, where n is the number of

processes in the table) (byte).

Returns: x unchanged.

Destroys: a

Description: UnblockProcess causes MainLoop to again recognize a process's runnable

flag so that if a process timer reaches zero (causing the process to

become runnable) an event will be generated.

Because the GEOS Interrupt Level continues to decrement the countdown

timer as long as the process is not frozen, a process may become runnable

while it is blocked. As long as the process is blocked, however, MainLoop

will ignore the runnable flag. When the process is subsequently

unblocked, MainLoop will recognize a set runnable flag as a pending

event and call the appropriate service routine. Multiple pending events

are ignored: if a blocked process's timer reaches zero more than once,

only one event will be generated when it is unblocked. To prevent a

pending event from happening, use RestartProcess to unblock the process.

Note: If a process is not blocked, an unnecessary call to UnblockProcess will

have no effect.

Example:

See also: BlockProcess, UnfreezeProcess , EnableProcess, RestartProcess.

 GEOS Kernal

process

170

UnfreezeProcess: (C64, C128) C115

Function: Resume (unfreeze) a process's countdown timer.

Parameters: x PROCESS — number of process (0 - n-1, where n is the number of

processes in the table) (byte).

Returns: x unchanged.

Destroys: a

Description: UnfreezeProcess causes a frozen process's countdown timer to resume

decrementing. The value of the timer is unchanged; it begins

decrementing again from the point where it was frozen. If a process is

not frozen, a call to UnfreezeProcess will have no effect.

Note: If a process is not frozen, a call to UnfreezeProcess will have no

effect.

Example:

See also: FreezeProcess, BlockProcess

 GEOS Kernal

sprite

171

Sprite

------------------- ---- -- -----

PosSprite $C1CF Position a sprite. 178

 GEOS Kernal

sprite

172

DisablSprite: (C64, C128) C1D5

Function: Disable a sprite so that it is no longer visible.

Parameters: r3L SPRITE — sprite number (byte).

Returns: nothing.

Alters: mobenble

Destroys: a, x

Description: DisablSprite disables a sprite so that it is no longer visible. Although

there are eight sprites available, an application should only directly

disable sprite #2 through sprite #7 with DisablSprite. Sprite #0 (the

mouse pointer) is always enabled when GEOS mouse-tracking is enabled

(disable mouse-tracking with MouseOff), and sprite #1 (the text cursor)

should be disabled with PromptOff.

Example:

See also: EnablSprite, MouseOff, PromptOff, DrawSprite.

PosSprite, InitSprite.

 GEOS Kernal

sprite

173

DrawSprite: (C64, C128) C1C6

Function: Copy a 64-byte sprite image to the internal data buffer that is used for

drawing the sprites.

Parameters: r3L SPRITE — sprite number (byte).

r4 DATAPTR — pointer to 64-bytes of sprite image data (word).

Returns: nothing.

Alters: internal sprite image.

Destroys: a, y, r5

Description: DrawSprite copies 64-bytes of sprite image data to the internal buffer

that is used for drawing the sprites. DrawSprite does not affect the

enabled/disabled status of a sprite, it only changes the image

definition.

Although there are eight sprites available, an application should limit

itself to sprites #2 through #7 because GEOS reserves sprite #0 for the

mouse cursor and sprite #1 for the text prompt.

The 64 bytes are copied to the VIC sprite data area, which is located

in memory immediately after the color matrix. The size information byte

(byte 64) is unused by GEOS 64 but is copied to the data area,

nonetheless. A SPRITE value of $00 can be used to change the shape of

the mouse cursor.

The data is transferred to the VIC sprite area (regardless of the current

graphics mode). This data is used by the VIC chip in 40-column mode and

by the soft sprite handler in 80-column mode. The last byte (byte 64)

of the sprite definition is used as the size information byte by the

soft-sprite handler. In 80-column mode, the sprite is not visually

updated until the next time the soft-sprite handler gets control. To

change the mouse cursor, the application can use a SPRITE value of $00

in 40-column mode or call SetMsePic in 80-column mode (doing both is a

simple solution: it will do no harm regardless of the graphics mode).

The data is transferred to an internal sprite area. The last byte (byte

64) of the sprite definition is used as the size information byte. The

sprite is not visually updated until the next time the soft-sprite

handler gets control. The soft-sprite handler will draw sprite #1

through sprite #7. In no case should the SPRITE parameter be $00; a

value of $00 will most likely trample GEOS.

Example

See also: PosSprite, EnablSprite, DisablSprite.

PosSprite, InitSprite.

 GEOS Kernal

sprite

174

EnablSprite: (C64, C128) C1D2

Function: Enable a sprite so that it becomes visible.

Parameters: r3L SPRITE — sprite number (byte).

Returns: nothing.

Alters: mobenble

Destroys: a, x

Description: EnablSprite enables a sprite so that it becomes visible. Although there

are eight sprites available, an application should only directly enable

sprites #2 through #7 with EnablSprite. Sprite #0 (the mouse pointer)

is enabled through MouseOn and StartMouseMode, and sprite #1 (the text

cursor) should be enabled with PromptOn.

Example:

See also: DisablSprite, MouseOff, PromptOff, DrawSprite, PosSprite.

 GEOS Kernal

sprite

175

PosSprite: (C64, C128) C1CF

Function: Positions a sprite at a new GEOS (x,y) coordinate.

Parameters: r3L SPRITE — sprite number (byte).

r4 XPOS — x-position of sprite (word).

r5L YPOS — y-position of sprite (byte).

Returns: nothing.

Alters: mobNxpos

msbNxpos

reqXposN

mobnypos

 where N is the number of the sprite being positioned.

Destroys: a, x, y, r6

Description: PosSprite positions a sprite using GEOS coordinates (not C64 hardware

sprite coordinates). PosSprite does not affect the enabled/disabled

status of a sprite, it only changes the current position.

Although there are eight sprites available, an application should only

directly position sprites #2 through #7 with PosSprite. Sprite #0 (the

mouse pointer) should not be repositioned (except, maybe through

mouseXPos and mouseYPos), and sprite #1 (the text cursor) should only

be repositioned with stringX and stringY.

C64: The positions are translated to C64 hardware coordinates and then

stuffed into the VIC chip's sprite positioning registers. The C64

hardware immediately redraws the sprite at die new position.

C128: The positions are translated to C64 hardware coordinates and then

stuffed into the VIC chip's sprite positioning registers. This data is

used by the VIC chip in 40-column mode and by the soft-sprite handler

in 80-column mode. In 80-column mode, the sprite is not visually updated

until the next time the soft-sprite handler gets control.

Example:

See also: DrawSprite, EnablSprite, DisablSprite.

 GEOS Kernal

utility

176

Utility

------------------- ---- -- -----

Bell N/A Play a bell sound 177

CallRoutine C1D8 pseudo-subroutine call. $0000 aborts call. 178

CRC C20E Cyclic Redundancy Check calculation. 179

DoInlineReturn C2A4 Return from inline subroutine. 180

GetRandom C187 Calculate new random number. 181

ToBasic C241 Pass Control to Commodore BASIC. 182

 GEOS Kernal

utility

177

Bell: (Apple) N/A

Function: Makes a brief beeping sound

Parameters: none.

Returns: nothing.

Destroys: a

Description: Bell sounds a 1000 Hz signal. The sound lasts approximately 1/10th of a

second.

Note: Bell does not exists in Commodore Geos. This code provides the behavior

of the Apple Bell.

 ; Author: Dan Kaufman (w Chris Hawley)

sidBase = $D400

voicelRegs = sidBase

 freqLol = voice1Regs

 freqHil = voice1Regs + 1

 PWLol = voice1Regs + 2

 PWHil = voice1Regs + 3

 controlRegl = voice1Regs + 4

 att_decl = voice1Regs + 5

 sus__rell = voice1Regs + 6

 FCLo = voice1Regs + 7 + $07

 FCHi = voice1Regs + 7 + $08

 res_filt = voice1Regs + 7 + $09

 mode_vol = voice1Regs + 7 + $0A

 pulse = %01000001

 SOUND_ON = $30

Bell:

 PushB CPU_DATA ;switch to I/O space

 LoadB CPU_DATA,#IO_IN

 LoadB controlReg1,#0

 sta att_dec1

 LoadB mode_vol, #$18

 LoadB sus_rell,#SOUND_ON

 LoadW PWLol,#$800

 LoadB FCLo,#0

 sta FCHi

 sta res_filt

 LoadB att_decl,#6

 LoadB sus_rell,#0

 LoadB freqLol,#$DF

 LoadB freqHil/#$25

 LoadB controlRegl,#pulse

 PopB CPU_DATA ;return to memory space

 rts

Example: BeepThrice

See also: Ddec

 GEOS Kernal

utility

178

CallRoutine: (C64,C128) C1D8

Function: Perform a pseudo-subroutine call, checking first for a null address

(which will be ignored).

Parameters: a [ADDRESS — low byte of subroutine to call.

x]ADDRESS — high byte of subroutine to call.

where ADDRESS is the address of a subroutine to call.

Returns: depends on subroutine at ADDRESS.

Destroys: depends on subroutine at ADDRESS.

Description: CallRoutine offers a clean and simple way to perform an indirect jsr

through a vector or call a subroutine with an address from a jump table.

Before simulating a jsr to the address in the x and a registers, it also

checks for a null address ($0000). If the address is $0000 (x=$00 and

a=$00), CallRoutine performs rts without calling any subroutine address.

This makes it easy to nullify a vector or an entry in a jump table by

using a $0000 value.

GEOS frequently uses CallRoutine when calling through vectors. This is

why placing a $0000 into keyVector, for example, causes GEOS ignore the

vector. Other examples of this usage are intTopVector, intBotVector, and

mouseVector.

Note: CallRoutine modifies the st register prior to performing the jsr. It,

therefore, cannot be used to call routines that expect processor status

flags as parameters (flags may be returned in the st register, however).

CallRoutine may be called from Interrupt Level (off of routines in

IntTopVector and IntBotVector). Do not use CallRoutine to call inline

(i_) routines, as it will not return properly.

Example: HandleCommand, KeyTrap

See also:

 GEOS Kernal

utility

179

CRC: (c64,C128) C20E

Function: 16-bit cyclic redundancy check (CRC).

Parameters: r0 DATA - pointer to start of data (word).

r1 LENGTH - of bytes to check (word).

Returns: r2 CRC value for the specified range (word).

Destroys: a, y, r0-r3L

Description: CRC calculates a 16-bit cyclic-redundancy error-checking value on a range

of data. This value can be used to check the integrity of the data at a

later time. For example, before saving off a data file, and application

might perform a CRC on the data and save the value along with the rest

of the data. Later, when the application reloads the data, it can perform

another CRC on it and compare the new value with the old value. If the

two are different, the data has unquestionably been corrupted.

Note: Given the same data, CRC will produce the same value under all versions

of GEOS.

Note1: This routine is called by the bootup routines to compute the checksum

of GEOS BOOT. This checksum is used to create the interrupt vector

address. The reason for this was to prevent piracy. This can be used to

check the integrity of a memory region.

Example: Kernal_CRC

 MAGIC_VALUE = $0317 ; CRC value that we’re looking for

 DATA_SIZE=$2434 ; Size of data

 .ramsect

 buffer .block DATA_SIZE

.psect

Checksum:

 LoadW r0,#buffer ; r0 <- data area to checksum

 LoadW r1,#DATA_SIZE ; r1 <- bytes in buffer to check

 jsr CRC ; r2 <- CRC value for data area

 CmpWI r2,MAGIC_VALUE ; return status to caller

 rts

See also: Ddec

 GEOS Kernal

utility

180

DoInlineReturn: (c64,C128) C2A4

Function: Return from an inline subroutine.

Parameters: a DATABYTES — number of inline data bytes following the jsr plus

one(byte).

stack top byte on stack is the status register to return (execute a

php just before calling).

Returns: (to the inline jsr) x, y unchanged from the jmp DolnlineReturn. st

register is pulled from top of stack with a plp.

Destroys: a

Description: DoInlineReturn simulates an rts from an inline subroutine call, properly

skipping over the inline data. Inline subroutines (such as the GEOS

routines which begin with i) expect parameter data to follow the

subroutine call in memory. For example, the GEOS routine i_Rectangle is

called in the following fashion:

jsr i_Rectangle ;subroutine call

.byte yl,y2 ;inline data

.word x1,x2

jsr FrameRectangle ;returns to here

Now if i_Rectangle were to execute a normal rts, the program counter

would be loaded with the address of the inline data following the

subroutine call. Obviously, inline subroutines need some means to resume

processing at the address following the data. DoInlineReturn Provides

this facility. The normal return address is placed in the global variable

returnAddress. This is the return address as it is popped off the stack,

which means it points to the third byte of the inline jsr (an rts

increments the address before resuming control). The status registers is

pushed onto the stack with a php, DoInlineReturn is called with the

number of inline data bytes plus one in the accumulator, and control is

returned at the instruction following the inline data.

Inline subroutines operate in a consistent fashion. The first thing one

does is pop the return address off of the stack and store it in

returnAddress. It can then index off of returnAddress as in Ida

(returnAddress),y to access the inline parameters, where the y-register

contains $01 to access the first parameter byte, $02 to access the

second, and so on (not $00, $01, $02, as might be expected because the

address actually points to the third byte of the inline jsr). When

finished, the inline subroutine loads the accumulator with the number of

inline data bytes and executes a jmp DoInlineReturn.

Note: DoInlineReturn must be called with a jmp (not a jsr) or an unwanted

return address will remain on the stack. The x and y registers are not

modified by DoInlineReturn and can be used to pass parameters back to

the caller. Inline calls cannot be nested without saving the contents of

returnAddress. An inline routine will not work correctly if not called

directly through a jsr (e.g., CallRoutine cannot be used to call an

inline subroutine).

Example: i_VerticalLine

See also: Ddec

 GEOS Kernal

utility

181

GetRandom: (C64,C128) C187

Function: Creates a 16-bit random number.

Parameters: none.

Uses: random random seed for next random number.

Alters: random random contains a new 16-bit random number.

Returns: depends on subroutine at ADDRESS.

Destroys: a

Description: GetRandom produces a new pseudorandom (not truly random) number using

the following linear congruential formula:

random = (2*(random+l) // 65521)

(remember: // is the modulus operator)

The new random number is always less than 65221 and has a fairly even

distribution between 0 and 65521.

Note: GEOS calls GetRandom during Interrupt Level processing to automatically

keep the random variable updated. If the application needs a random

number more often than random can be updated by the Kernal, then

GetRandom must be called manually.

Example:

See also:

 GEOS Kernal

utility

182

ToBasic: (C64,C128) C187

Function: Removes GEOS and passes control to Commodore BASIC with the option of

loading a non-GEOS program file (BASIC or assembly-language) and/or

executing a BASIC command.

Parameters: r0 CMDSTRING — pointer to null-terminated command string to send to

BASIC interpreter.

r5 DIR_ENTRY — pointer to the directory entry of a standard

Commodore file (PRG file type), which itself can be either a

BASIC or ASSEMBLY GEOS-type file. If this parameter is $0000,

then no file will be loaded.

r7 LOADADDR — if r5 is non-zero, then this is the file load address.

For a BASIC program, this is typically $801. If r5 is zero and a

tokenized BASIC program is already in memory, then this value

should point just past the last byte in the program. If r5 is

zero and no program is in memory, this value should be $803, and

the three bytes at $80O-$802 should be $00.

Returns: N/A

Destroys: N/A

Description: ToBasic gives a GEOS application the ability to run a standard Commodore

assembly-language or BASIC program. It removes GEOS, switches in the

BASIC ROM and I/O bank, loads an optional file, and sends an optional

command to the BASIC interpreter.

Once ToBasic has executed, there is no way to return directly to the

GEOS environment unless the RAM areas from $C000 through $CO7F are

preserved (those bytes may be saved and restored later). To return to

GEOS, the called program can execute a jump to $C000 (BootGEOS).

A program in the C64 environment can check to see if it was loaded by

GEOS by checking the memory starting at $C006 for the ASCII (not CBMASII)

string "GEOS BOOT” If loaded by GEOS, the program can check bit 5 of

$CO12: if this bit is set, ask the user to insert their GEOS boot disk;

if this bit is clear, GEOS will reboot from the RAM expansion unit To

actually return to GEOS, set CPU_DATA to $37 (KRNL_BAS_IO_IN) and jump

to $C000

Example: LoadBASIC

See also: BootGeos

 GEOS Kernal

text

183

 text

------------------- ---- -- ---

GetCharWidth C1C9 Calculate width of char without style attributes. 184

GetNextChar C2A7 Get next character from keyboard queue. 185

GetRealSize C1B1 Calculate actual character size with attributes. 186

GetString C1BA Get string input from user. 187

InitTextPrompt C1C0 Initialize text prompt. 189

LoadCharSet C1CC Load and begin using a new font 190

PutChar C145 Display a single character to screen. 197

PutDecimal C184 Format and display an unsigned double-precision nbr. 194

PutString C148 Print string of characters to screen. 195

i_PutString C1AE Inline PutString. 195

SmallPutChar C202 Fast character print routine. 196

UseSystemFont C14B Use default system font (BSW 9). -211

text\keyboard

------------------- ---- -- ---

PromptOff C29E Turn off text prompt. 191

PromptOn C29B Turn on text prompt. 192

 GEOS Kernal

text

184

GetCharWidth: (C64, C128) C1C9

Function: Calculate the pixel width of a character as it exists in the font (in

its plaintext form). Ignores any style attributes.

Parameters: a CHAR — character code of character (byte).

Uses: curlndexTable

Returns: a character width in pixels.

Destroys: y

Description: GetCharWidth calculates the width of the character before any style

attributes are applied. If the character code is less than 32, $00 is

returned. Any other character code returns the pixel width as calculated

from the font data structure. The sprites will remain hidden until the

next pass through MainLoop.

 Because GetCharWidth does not account for style attributes, it is useful

for establishing the number of bits a character occupies in the font

data structure.

Note: In 40-column mode (bit 7 of graphMode is zero), TempHideMouse exits

 immediately without affecting the hardware sprites.

Example:

See also: GetRealSize

 GEOS Kernal

text

185

GetNextChar: (C64, C128) C2A7

Function: Retrieve the next character from the keyboard queue.

Parameters: none.

Returns: a keyboard character code of character or NULL if no characters

available.

Alters: pressFlag if the call to GetNextChar removes the last character

 from the queue, then the KEYPRESS_BIT is cleared.

Destroys: x

Description: GetNextChar checks the keyboard queue for a pending keypress and returns

a non-zero value if one is available. This allows more than one character

to be processed without returning to MainLoop

Example:

See also: GetString

 GEOS Kernal

text

186

GetRealSize: (C64, C128) C1B1

Function: Calculate the printed size of a character based on any style attributes.

Parameters: a CHAR — character code of character (byte).

Uses: curHeight

 baselineOffset

Returns: y character width in pixels (with attributes).

 x character height in pixels (with attributes).

 a character baseline offset (with attributes).

Destroys: nothing.

Description: GetRealSize calculates the width of the character based any style

attributes The character code must be 32 or greater. If the character

code is USELAST, the value in lastWidth is returned. Any other character

code returns the pixel width as calculated from the font data structure

and the MODE parameter.

 lastWidth is local to the GEOS Kemal and therefore inaccessible to

applications.

Example:

; Calculate size of largest character in current font

 lda #'W' ; capital W is a good choice

 ldx #(SET_BOLD|SET_OUTLINE) ; widest style combo

 jsr GetRealSize ; dimensions come back in x,y

See also: GetCharWidth

 GEOS Kernal

text

187

GetString: (C64, C128) C1BA

Function: Get a string from the keyboard using a cursor prompt and echoing

characters to the screen as they are typed. Runs concurrently with

MainLoop.

Parameters: r0 BUFR — pointer to string buffer. When called this buffer can

contain a null-terminated default string (if no default

string is used, the first byte of the buffer must be NULL).

This buffer must be at least MAX_CH+1 bytes long.

 rlL FLAG — $00 = use system fault routine;

 $80 = use fault routine pointed to by r4 (byte).

 r2L MAX_CH — maximum number of characters to accept

 (not including the null-terminator).

 r11 XPOS — x-coordinate to begin input (word).

 rlH YPOS — y-coordinate of prompt and upper-left of characters.

To calculate this value based on baseline printing position,

subtract the value in baselineOffset from the baseline

printing position (byte).

 r4 FAULT — optional (see FLAG) pointer to fault routine.

 keyVector STRINGDONE — routine to call when the string is terminated

by the user typing a carriage return.

 $0000 = no routine provided.

Uses: at call to GetString :

 curHeight for size of text prompt.

 baselineOffset for positioning default string relative to prompt

 any variables used by PutString.

 while accepting characters:

 keyVector vectors off of MainLoop through here with characters.

 stringX current prompt x-position.

 stringY current prompt y-position.

 string pointer to start of string buffer.

 any variables used by PutChar.

Returns: from call to GetString :

 keyVector address of System String Service.

 stringFaultVec address of fault routine being used

 stringX starting prompt x-position.

 stringY starting prompt y-position.

 string BUFR (pointer to start of string buffer).

 when done accepting characters:

 x length of string / index to null

 string BUFR (pointer to start of string buffer).

 keyVector $0000

 stringFaultVec $0000

Destroys: at call to GetString:

 r0-rl3, a, x, y.

Description: GetString installs a character handling routine into GetString and

returns immediately to the caller. During MainLoop, the string is built

up a character at a time in a buffer. When the user presses [Return],

GEOS calls the STRINGDONE routine with the starting address of the

string in string and the length of the string in the x-register.

 GEOS Kernal

text

188

The following is a breakdown of what GetString does:

1: Variables local to the GetString character input routine are

initialized. Global string input variables such as string,

stringX, and stringY are also initialized.

2: PutString is called to output the default input string stored in

the character buffer. If no default input string is desired, the

first byte of the buffer should be a NULL.

3: The STRINGDONE parameter in keyVector is saved away and the

address of the GetString character routine (SystemStringService)

is put into keyVector.

4: If the application supplied a fault routine, install it into

StringFaultVec, otherwise install a default fault routine.

5: The prompt is initialized by calling InitTextPrompt with the value

in curHeight. PromptOn is also called.

6: Control is returned to the application.

 lastWidth is local to the GEOS Kemal and therefore inaccessible to

applications.

Note: String is not null-terminated until the user presses [Return]. To

simulate a [Return], use the following code:

 ;Simulate a CR to end GetString

 LoadB keyData,#CR ; load up a [Return]

 lda keyVector ; and go through keyVector

 ldx keyVector+1 ; so SystemStringService

 jsr CallRoutine ; thinks it was pressed

 This will also terminate the GetString input.

Note: This note courtesy of Bill Coleman...Because GetString runs off of

MainLoop, it is a good idea to call GetString from the top level of the

application code and return to MainLoop while characters are being

input. That is, while at the top level of your code you can call

GetString like this:

 jsr GetString ; Start GetString going

 rts ; and return immediately to MainLoop so

 ; that string can be input.

 Since the routine specified by the STRINGDONE value stored in keyVector

is called when the user has finished entering the string, that is where

your application should again take control and process the input.

Note2: If the user manages to type off the end of the screen, specifically past

rightMargin, GetString will stop echoing characters although it will

still enter the characters into the buffer.

See also: PutChar, PutString, GetNextChar.

 GEOS Kernal

text

189

InitTextPrompt: (C64, C128) C1C0

Function: Initialize sprite #1 for use as a text prompt.

Parameters: a HEIGHT — pixel height for the prompt (byte)

Alters: alphaFlag %10000011

Destroys: a, x, y

Description: InitTextPrompt initializes sprite #1 for use as a text prompt. The

sprite image is defined as a one-pixel wide vertical line of HEIGHT

pixels. If HEIGHT is large enough, the double-height sprite flags will

be set as necessary. HEIGHT is usually taken from curHeight so that it

reflects the height of the current font.

The text prompt will adopt the color of the mouse pointer.

Example:

See also: PromptOn, PromptOff

 GEOS Kernal

text

190

LoadCharSet: (C64, C128) C1CC

Function: Begin using a new font.

Parameters: r0 FONTPTR — address of font header.

Returns: r0 unchanged

Alters: curHeight height of font

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curIndexTable pointer to current font index table.

curSetWidth pixel width of font bitstream in bytes.

Destroys: a, y

Description: LoadCharSet uses the data in the character set data structure to

initialize the font variables for the font pointed at by the FONTPTR

parameter.

Example:

See also: LoadCharSet

 GEOS Kernal

text

191

PromptOff: (C64, C128) C29E

Function: Turn off the prompt (remove the text cursor from the screen).

Parameters: none.

Alters: alphaFlag (($C0 & (alphaFlag & $40) | PROMPT_DELAY),where

PROMPT_DELAY = 60.

Destroys: a, x, r3L

Description: PromptOff removes the text prompt from the screen. To ensure the prompt

will remain invisible until a subsequent call to PromptOn, interrupts

must be disabled before calling PromptOff.

Example: KillPrompt

See also: InitTextPrompt, PromptOn.

 GEOS Kernal

text

192

PromptOn: (C64, C128) C29B

Function: Turn on the prompt (show the text cursor on the screen).

Parameters: none.

Uses: stringX cursor x-position (word).

stringY cursor y-position (byte).

Alters: alphaFlag (($C0 & (alphaFlag & $40) | PROMPT_DELAY),where

PROMPT_DELAY = 60.

Destroys: a, x, r3L

Description: PromptOn makes the text prompt visible and active at the position

specified by stringX and stringY. The prompt will flash once every

second (PROMPT_DELAY). If stringX or StringY are changed, the cursor

will repositioned automatically the next time the cursor flashes. To

make the update immediate, call PromptOn. Before PromptOn is called for

the first time, InitTextPrompt should be called.

Example: KillPrompt

See also: PromptOn, PromptOff

 GEOS Kernal

text

193

PutChar: (C64, C128) C145

Function: Process a single character code (both escape codes and printable

characters).

Parameters: a CHAR — character code (byte).

 r11 XPOS — x-coordinate of left of character (word).

 r1H YPOS — y-coordinate of character baseline (word).

Uses: dispBufferOn display buffers to direct output to.

currentMode character style.

leftMargin left margin to contain character.

rightMargin right margin to contain characters.

(following set by LoadCharSet)

curHeight height of current font.

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curlndexTable pointer to current font index table data.

curSetWidth pixel width of font bitstream in bytes.

Returns: r11 x-position for next character.

 rlH unchanged

Destroys: a, x, y, rlL, r2-rlO, rl2, rl3

Description: PutChar is the basic character handling routine. If the character code

is less than 32, PutChar will look-up a routine address in an internal

jump table to process the escape code. Only send implemented escaped

codes to PutChar.

If the character code is 32 or greater, PutChar treats it as a printable

character. First it establishes the printed size of the character with

any style attributes (currentMode) then checks the character position

against the bounds in leftMargin and rightMargin. If the left edge of

the character will fall to the left of leftMargin, then the width of

the character is added to the x-position in rll and PutChar vectors

through StringFaultVec. If the right edge of the character will fall to

the right of rightMargin, then PutChar vectors through StringFaultVec

without altering the x-position. The character is not printed in either

case.

 Assuming no margin fault, PutChar will print the character to the screen

at the desired position. Any portion of the character that lies above

windowTop or below windowBottom will not be drawn.

PutChar cannot be used to directly process multi-byte character codes

such as GOTOX or ESC_GRAPHICS unless r0 is maintained as a string pointer

when PutChar is called (as it is in PutString). See PutString for more

information.

Example:

See also: SmallPutChar, PutString, PutDecimal.

 GEOS Kernal

text

194

PutDecimal: (C64, C128) C184

Function: Format and print a 16-bit positive integer.

Parameters: a FORMAT — formatting codes (byte) — see below.

 r0 NUM — 16-bit integer to convert and print (word).

 r11 XPOS — x-coordinate of leftmost digit (word).

 r1H YPOS — y-coordinate of baseline (word).

Uses: Same as PutChar

Returns: r11 x-position for next character.

 rlH unchanged

Destroys: a, x, y, r0, rlL, r2-rlO, rl2, rl3

Description: PutDecimal converts a 16-bit positive binary integer to ASCII and sends

the result to PutChar. The number is formatted based on the FORMAT

parameter bytes in the a-registers as follows:

 FORMAT:

 7 6 5 4 3 2 1 0

 b7 b6 b0-b5

 b7 justification:

 1 = left

 0 = right.

 b6 leading zeros:

 1 = suppress

 0 = print.

 b5-bO field width in pixels (only used if right justifying).

 The following constants may be used:

 SET_LEFTJUST

 SET_RIGHTJUST

 SET_SUPPRESS

 SET_NOSUPPRESS

Note: The maximum 16-bit decimal number is 65535 ($FFFF), so the printed

number will never exceed five characters.

Example:

See also: PutChar, PutString, SmallPutChar

 GEOS Kernal

text

195

PutString, i_PutString: (C64, C128) C148, C1AE

Function: Print a string to the screen. C1AE

Parameters: Normal:

 r0 STRING — pointer to string data (word).

 r11 XPOS — x-coordinate of left of character (word).

 r1H YPOS — y-coordinate of character baseline (word).

 InLine:

data appears immediately after the jsr i_PutString

.word XPOS x-coordinate.

.byte YPOS y-coordinate.

.byte STRINGDATA null terminated string (no length limit)

Uses: Same as PutChar

Returns: r11 x-position for next character.

 rlH unchanged

Destroys: a, x, y, rlL, r2-rlO, rl2, rl3

Description: PutString passes a full string of data to PutChar a character at a time.

PutChar maintains r0 as a running pointer into the string and so supports

multi-byte escape codes such as GOTOXY.

If a character exceeds one of the margins, PutChar will vector through

stringFaultVec as appropriate. r0, rll, and rlH will all contain useful

values (current string pointer, x-position, and y-position,

respectively). For more information, refer to "String Faults (Left or

Right Margin Exceeded)" in Chapter XX FIXME

Basic operation of PutString

PutString:

5$

 ldy #0 ;use zero offset

 lda (r0),y ;get character

 beq 10$;exit if NULL terminator

 jsr PutString ;otherwise process char

 IncW r0 ;move to next byte in string

 bra 5$;and loop through again

10$

 rts ;exit

Note: Unless a special string fault routine is placed in stringFaultVec prior

to calling PutString, a margin fault will be ignored and PutString will

attempt to print the next character.

Example:

See also: PutChar, PutString

 GEOS Kernal

text

196

SmallPutChar: (C64, C128) C202

Function: Print a single character without the PutChar overhead

Parameters: a CHAR — character code (byte).

 r11 XPOS — x-coordinate of left of character (word).

 r1H YPOS — y-coordinate of character baseline (word).

Uses: Same as PutChar

Returns: r11 x-position for next character.

 rlH unchanged

Destroys: a, x, y, rlL, r2-rlO, rl2, rl3

Description: SmallPutChar is a bare bones version of PutChar. SmallPutChar will not

handle escape codes, does no margin faulting, and does not normalize

the x coordinates on GEOS 128.

 SmallPutChar will assume the character code is a valid and printable

character Any portion of the character that lies above windowTop or

below windowBottom will not be drawn. If a character lies partially

outside of leftMargin or rightMargin, SmallPutChar will only print the

portion of the character lies within the margins. SmallPutChar will also

accept small negative values for the character x-position, allowing

characters to be clipped at the left screen edge.

Note: Partial character clipping at the leftmargin, including negative x-

position clipping, is not supported by early versions of GEOS 64 (earlier

than vl.4) — the entire character is clipped instead Full leftmargin

clipping is supported on all other versions of GEOS: GEOS 64 vl.4 and

above, GEOS 128 (both in 64 and 128 mode.

 Like PutChar, 159 is the maximum CHAR value that SmallPutChar will

handle correctly. Most fonts will not have characters for codes beyond

129.

Example:

128: DOUBLE_W,ADD1_W cannot be used on r11

See also: PutChar, PutString

 GEOS Kernal

wheels

197

UseSystemFont: (C64, C128) C14B

Function: Begin using default system font (BSW 9).

Parameters: none.

Alters: curHeight height of font

baselineOffset number of pixels from top of font to baseline.

cardDataPntr pointer to current font image data.

curIndexTable pointer to current font index table.

curSetWidth pixel width of font bitstream in bytes.

Returns: nothing.

Destroys: a, x, y, r0

Description: UseSystemFont calls LoadCharSet with the address of the always-resident

BSW 9 font.

128: In 80-column mode a double-width BSW 9 font is substituted

Example:

See also: LoadCharSet.

 GEOS Kernal

wheels

198

Chapter 2 Wheels 4.4

Wheels Kernal

------------------- ---- -- -----

GetNewKernal $9d80 Load New Kernal Group

RstrKernal $9d83 Unload Kernal Group

 GEOS Kernal

wheels

199

GetNewKernal: (Wheels 4.4 64,128) $9D80

Function: Load Modular Kernal Group

Parameters: a GROUPNBR to load | RUNFLAG

 RUNFLAG Bit 6 of a.

 1 Selected Kernal Group Swapped into memory at 5000-5FFF.

 0 First Routine in group executed. (Kernal Group swapped back).

Destroys: (unknown)

Return: varies depending on RUNFLAG and GROUPNBR.

Description: GetNewKernal allows access to the Extended Kernal available in 4.4.

 If RUNFLAG is 0 GetNewKernal behaves as a far jsr to the first routine

in the Kernal Group. Performing the following...

 Swap the extended kernel group into memory.

 Execute the first routine in the group.

 Swap the kernal back out of memory.

 Control is returned to the caller.

 If RUNFLAG is set:

 Extended Kernal is swapped into memory at 5000-5FFF.

 Control is returned to the caller.

 (Kernal will remain in memory until a call to RstrKernal to swap

it back.)

Note: Kernal Groups are loaded from the Last REU bank which is reserved

exclusively for the 4.4 Kernal.

Note: Caller cannot be in the Range 5000-5FFF as that address range is swapped

out with the Kernal Group

Example:

 KG_REU=$00

 NO_RUN=%01000000

 RUN_FIRST=%00000000

 LoadREUGrp:

 lda #KG_REU|NO_RUN

 jmp GetNewKernal

See also: RstrKernal

 GEOS Kernal

wheels

200

RstrKernal: (Wheels 4.4 64,128) $9D83

Function: Unload Extended Kernal group.

Parameters: none

Destroys: a

Return: nothing

Alters: Memory area from 5000-5FFF is restored to its previous contents.

Description: RstrKernal is used to restore the memory area 5000-5FFF after using

GetNewKernal to load in an extended Kernal Group.

Example:

 GRP_REU=$00

 NO_RUN=%01000000

 RUN_FIRST=%00000000

 .ramsect

 freeBanks: .block 1

 .psect

 GetBanksFree:

 lda #GRP_REU|NO_RUN ; Select REU Group . And don’t execute 1st

 jsr GetNewKernal ; Load in Kernal Group.

 jsr GetRAMInfo ; Call Kernal Group function to get

 ; number of free REU banks.

 MoveB r4H,freeBanks ; save the result

jmp RstrKernal ; Remove Kernal Group, restoring 5000-5FFF

; to its previous contents.

See also: GetNewKernal

 GEOS Kernal

wheels

201

KG_REU

GetRAMBam: (Wheels 4.4 64,128) $5000

Function: Creates a copy of Wheels' expansion RAM's 'BAM'.

Parameters: none

Uses: Expansion RAM's BAM homespace at $5025-44 and workspace at $5045-64.

RAM BAM's checksum at $5024.

Return: Y = $FF.

Destroys: a,y

Description: GetRAMBam copies 32 bytes from $5025-44 to $5045-64. I assume that the

32-byte buffer at $5025-44 contains the Wheels' expansion RAM BAM

(referred to as 'homespace') and a copy is made on $5045-64 (referred

to as 'workspace') for further operations. That way, if something goofs

up, $5045-64 is trashed, but the original BAM for the Wheels' expansion

RAM is largely untouched at $5025-44. Any application that needs to

modify Wheels' expansion RAM makeup needs to call this routine first to

ensure that they are working off of a copy of the RAM BAM.

Secondly, the routine creates a checksum byte value (stored at $5024),

computing the entire memory range from $5025-$5105. This entire memory

range is swapped in/out along with the entire Group 0 module from Wheels'

expansion RAM. Still unclear is the purpose of the checksum value.

Example:

Note4:

See also: PutRAMBam

 GEOS Kernal

wheels

202

PutRAMBam: (Wheels 4.4 64,128) $5003

Function: Writes back the copy of Wheels' expansion RAM's 'BAM' to its original

buffer.

Parameters: none

Uses: Expansion RAM's BAM homespace at $5025-44 and workspace at $5045-64.

RAM BAM's checksum at $5024.

Return: Y = $FF.

Destroys: a,y

Description: PutRAMBam copies 32 bytes from $5045-64 to $5025-44. I assume that the

32-byte buffer at $5045 contains a copy of the Wheels' expansion RAM

BAM and this copy is written back to the original 32-byte buffer at

$5025-44. Essentially the opposite of the GetRAMBam routine. An

application can ensure that whatever changes are made to this copy of

the Wheels' expansion RAM BAM are confirmed and written back to its

original buffer.

Secondly, the routine creates a checksum byte value (stored at $5024),

computing the entire memory range from $5025-$5105. This entire memory

range is swapped in/out along with the entire Group 0 module from Wheels'

expansion RAM.

Example:

Note4:

See also: GetRAMBam

 GEOS Kernal

wheels

203

AllocRAMBlock: (Wheels 4.4 64,128) $5009

Function: Allocates a 64Kb bank of Wheels' expansion RAM for a program to use.

Parameters: Bank number ($01-$FE) in r6L.

Uses: ramExpSize ($88C3).

bit masking tables at $522d-34.

expansion RAM's BAM workspace at $5045-64.

RAM BAM checksum at $5024.

Return: X = $00 (no error.)

X=$06 (BAD_BAM).

Destroys: a,x,y

Description: AllocRAMBlock allocates memory in 64Kb banks in Wheels' expansion RAM

by marking the RAM BAM workspace wherever appropriate. You cannot pass

a value (in r6L) of $00 and the last bank of Wheels' expansion RAM as

they are already allocated by the operating system. Similarly, you

cannot pass a value exceeding the last bank of Wheels' expansion RAM,

i.e., passing a bank number of $80 when the Wheels' expansion RAM

consists of a 2Mb REU. You cannot allocate an already allocated bank.

In those cases of errors, the routine will return X with a BAD_BAM error

value.

Once a valid bank number has been passed, the routine will clear a bit

in the corresponding RAM BAM entry to '0', indicating that this bank is

now allocated for a program use. The RAM BAM's checksum value is

recomputed and stored at $5024.

Example:

Note4:

See also: AllocAllRAM, FreeRAMBlock, RamBlkAlloc.

 GEOS Kernal

wheels

204

AllocAllRAM: (Wheels 4.4 64,128) $5006

Function: Allocates all banks in expansion RAM.

Parameters: Nothing.

Uses: Expansion RAM's BAM workspace at $5045-$5064. RAM BAM's checksum at

$5024.

Return: Y = $FF

Destroys: a,y

Description: AllocAllRAM allows a program to allocate all banks in expansion RAM for

their own use. Then a new checksum is computed for the expansion RAM's

BAM and is stored at $5024. Make sure that GetRAMBam has been called

and that there is a Wheels' expansion RAM BAM already in place in Wheels'

local RAM workspace.

Example:

Note4:

See also: AllocRAMBlock, FreeRAMBlock, RamBlkAlloc.

 GEOS Kernal

wheels

205

FreeRAMBlock: (Wheels 4.4 64,128) $500C

Function: Frees up a 64Kb bank in expansion RAM for the Wheels OS.

Parameters: Bank number ($01-$FE) in r6L.

Uses: ramExpSize ($88c3).

bit masking tables at $522d-34.

expansion RAM's BAM workspace at $5045-64.

RAM BAM checksum at $5024.

Return: X = $00 (no error)

X=$06 (BAD_BAM).

Destroys: a,x,y

Description: FreeRAMBlock frees up Wheels' expansion RAM memory in 64Kb chunks by

marking the RAM BAM (copy) wherever appropriate. The routine merely uses

the bank value ($01-$FE) passed via r6L and calls up the toggle routine,

marking the copy of the RAM BAM's corresponding entry to a value of '1',

freeing it. This toggle routine is shared by the AllocRAMBlock routine.

It then recomputes the RAM BAM's checksum value and stores the value

back onto $5024.

Example:

Note4:

See also: AllocAllRAM, AllocRAMBlock, RamBlkAlloc.

 GEOS Kernal

wheels

206

GetRAMInfo: (Wheels 4.4 64,128) $500F

Function: Gets a snapshot of available RAM from Wheels' expansion RAM.

Parameters: Nothing.

Uses: r2, r3, r4, r6, r9L.

ramExpSize ($88c3).

bit masking tables at $522d-34.

expansion RAM's BAM homespace at $5025-44.

expansion RAM's BAM workspace at $5045-64.

RAM BAM checksum at $5024.

temporary space at $52c7.

Calls: GetRAMBam.

 RamBlkAlloc.

Return: r2L=# of consecutive free 64Kb banks. (If r2L contains a zero value,

then there are no banks in Wheels' expansion RAM available.)

r3L=# of starting bank pointing to the largest free area.

r4H=# of free 64Kb banks.

Destroys: a,x,y

Description: GetRAMInfo Gives you a snapshot of available RAM that a program can use

in accessing Wheels' expansion RAM. Basically what it does is that it

loads r2L with the value (minus one) located at ramExpSize and loads

r3L with $00 and then calls the RamBlkAlloc routine.

The RamBlkAlloc routine will allocate the largest available contiguous

memory area and pass its parameters upon return. Upon returning from

the RamBlkAlloc routine, it then calls the GetRAMBam routine to undo

any changes that RamBlkAlloc routine may have made. Next, it recomputes

the RAM BAM's checksum value and stores it back onto $5024. The resulting

parameters are then returned back to the calling program.

Example:

Note4:

See also:

 GEOS Kernal

wheels

207

RamBlkAlloc: (Wheels 4.4 64,128) $5012

Function: Allocates banks in Wheels' expansion RAM for program use.

Parameters: r2L=# of contiguous 64Kb banks needed.

r3L=0 for the Wheels OS to select a bank or # of desired starting bank

in Wheels' expansion RAM.

Uses: r2, r3, r6, r9L

bit masking tables at $522d-34.

expansion RAM's BAM homespace at $5045-64.

RAM BAM checksum at $5024.

temporary space at $52c7.

Calls: GetRAMBam.

 RamBlkAlloc.

Return: r3L=Start # of 64Kb bank that was just allocated.

X = $00 (no error)

 INSUFF_SPACE if ram allocation was not successful.

Destroys: a,x,y

Description: RamBlkAlloc is similar to the AllocRAMBlock routine, except that this

can allocate a bunch of contiguous 64Kb banks in succession in Wheels'

expansion RAM memory. Make sure that the program will free these same

banks upon exiting, because the Wheels OS will leave these banks alone

and will not allow other programs to allocate these same banks.

While you can specify a starting 64Kb bank of expansion RAM prior to

calling this routine, the routine will search for the next available

64Kb bank of expansion RAM if the desired starting bank is already in

use. Just like AllocRAMBlock, it will mark a contiguous area in Wheels'

expansion RAM memory as allocated by marking a value of '0' in the

corresponding BAM entries in the expansion RAM BAM workspace. The RAM

BAM's checksum value is recomputed and stored at $5024.

Example:

Note4:

See also: AllocAllRAM, AllocRAMBlock, FreeRAMBlock.

 GEOS Kernal

wheels

208

RemoveDrive: (Wheels 4.4 64,128) $5015

Function: Removes a RAM drive from the Wheels OS system.

Parameters: Nothing.

Uses: r4L,

 driveType type of drive to open

 numDrives Number of Drives in the system

 curDrive currently active disk drive.

 curType Currently Active Drive Type.

 curDevice currently active device.

 ramBase,

Calls: SetDevice

 PurgeTurbo.

Return: Nothing.

Destroys: a,y

Description: RemoveDrive checks numDrives to ensure that there are at least two

drives running. No sense in deleting the only drive in a system! Using

the drive number passed in r4L, it calls SetDevice & PurgeTurbo. Next,

it zeroes out the corresponding driveType entry and the ramBase entry

in these two tables. It then zeroes out curType, curDrive, curDevice

and finally decreases the value found in numDrives by one.

This has the effect of removing a RAM drive from the Wheels OS system.

It does not actually remove the RAMdisk in a physical sense! It is just

that some pointers indicating the existence of a RAMdrive is simply

wiped out.

See Also: Interestingly enough, there is no corresponding AddDrive

entry. Maybe this routine is contained in the Toolbox instead and is

not in the Group 0 section of the Wheels OS Kernal.

Example:

Note4:

See also:

 GEOS Kernal

wheels

209

SvRamDevice: (Wheels 4.4 64,128) $5018

Function: Create a partition in Wheels' expansion RAM.

Parameters: r0 = pointer to a 16 byte null-terminated partition name.

r2L = # of contiguous 64Kb banks needed.

r3L = Starting Bank Number.

 (0 = Let the Kernal decide which starting 64Kb bank to use).

r7L = ID number, can be any number less than 128.

 (Any number higher than 128 designates a RAMdisk).

Y = Partition Nbr. 1-8 (Max of 8)

 0 Let the Kernal decide the partition #.

Uses: r0, r1, r2L, r3L, r7L,

Temporary address space at $5373 indicating the current partition

number.

RAM BAM checksum at $5024.

RAM BAM homespace ($5025-44).

RAM BAM workspace ($5045-64).

ID# table for each partition at $5065-6c.

Start bank table for each partition at $506d-74.

of 64Kb banks table for each partition at $5075-7c.

Partition names table for each partition from $507d-$5104.

Calls: GetRAMBam

 RamBlkAlloc.

Return: Nothing.

Destroys: a,x,y

Description: SvRamDevice can permanently set up a partition in Wheels' expansion RAM

by creating a partition in the Wheels' extended kernal. This way, the

partition will be reserved by a program and have it survive various

computing sessions. Once created, a program can simply reuse that

partition over and over instead of individually allocating and freeing

up expansion RAM memory every time it boots.

This routine makes heavy use of the four tables mentioned above, from

$5065-$5104. This way, ram partitions have their own corresponding

entries and are preserved for use in future computing sessions. The RAM

BAM workspace at $5045 is written back to the homespace ($5025-44) and

the checksum is generated and stored at $5024.

Example:

Note4:

See also: DelRamDevice, RamDevInfo.

 GEOS Kernal

wheels

210

DelRamDevice: (Wheels 4.4 64,128) $5018

Function: Remove a partition from Wheels' expansion RAM.

Parameters: Y = Partition Nbr. 1-8 (Max of 8)

 0 Let the Kernal decide the partition #.

Uses: r1, r3H, r6L

Temporary address space at $5373 indicating the current partition

number.

RAM BAM workspace ($5045-64).

ID# table for each partition at $5065-6c.

Start bank table for each partition at $506d-74.

of 64Kb banks table for each partition at $5075-7c.

Partition names table for each partition from $507d-$5104.

Calls: GetRAMBam

 PutRAMBam

Return: X = $00 (no error)

 X != 0 an Error Occurred

Destroys: a,x,y

Description: DelRamDevice removes a partition from the Wheels' expansion RAM by

modifying pointers indicating its existence. The partition in question

really isn't removed in a physical sense, but rather, its pointers are

zeroed out.

First, it calls GetRAMBam to load the RAM BAM workspace, and frees up

the corresponding BAM (64Kb bank) entries occupied by the partition as

available for future use. Next, it zeroes out the corresponding entries

in the four tables mentioned above, from $5065-$5104. Finally, it calls

PutRAMBam to save the RAM BAM workspace.

Example:

Note4:

See also: SvRamDevice, RamDevInfo.

 GEOS Kernal

wheels

211

RamDevInfo: (Wheels 4.4 64,128) $501E

Function: Get stats on a partition residing in Wheels' expansion RAM.

Parameters: Y = Partition Nbr. 1-8 (Max of 8)

Uses: r1, r2L, r3L, r7L.

ID# table for each partition at $5065-6c.

Start bank table for each partition at $506d-74.

of 64Kb banks table for each partition at $5075-7c.

Partition names table for each partition from $507d-$5104.

Return: r2L contains the # of contiguous 64Kb banks value extracted from the

corresponding entry at $5075-7c.

r3L contains the start bank value extracted from the corresponding entry

at $506d-74.

r7L contains the ID# value extracted from the corresponding entry at

$5065-6c.

r1 points to the corresponding name for the partition located at $507d-

$5104.

Destroys: a,x,y

Description: RamDevInfo gets stats about a particular partition, i.e., its ID#, its

size in # of 64Kb banks, its starting bank value and its name.

Example:

Note4:

See also: SvRamDevice, RamDevInfo.

Examples

 atoms

212

Examples
atoms

Examples

 atoms

213

KeyTrap:

.psect

.include _upper

T_Action:

 'A','B','C','D' ; Keyboard commands to act on. Case insensitive

T_ActL: ; Low Pointer table to Action Handlers

 .byte [SetDrv8

 .byte [SetDrv9

 .byte [SetDrv10

 .byte [SetDrv11

T_ActH: ; High Pointer table to Action Handlers

 .byte]SetDrv8

 .byte]SetDrv9

 .byte]SetDrv10

 .byte]SetDrv11

T_ACTCNT=*-T_ActH

Init:

 LoadW keyVector, KeyTrap

 rts

KeyTrap: ; Routine hooked into keyVector

 lda keyData ; Get Keypress and

 jsr Upper ; Convert it to Uppercase

 ldy #T_ACTCNT-1 ; Search action table for a hit

10$

 cmp T_Action,y

 beq 20$

 dey

 bpl 10$

 rts ; No Action found for press. Exit

20$

 lda T_ActL,y ; Action Found.

 ldx T_ActH,y

 jmp CallRoutine ; Execute the Handler

SetDrv8:

 lda #8

cldaI SetDrv9, #9

cldaI SetDrv10, #10

cldaI SetDrv11, #11

 jsr SetDevice ; Set Device to user selected number

 jsr OpenDisk ; open the disk

 jmp ErrHndlr ; Generic Error Handler.

; Displays error dialog or

; does nothing on no error.

Examples

 hardware

214

hardware

Examples

 hardware

215

GetFPS:

;Author PBM

;PASS: Nothing

;Return: a = fps

; minus flag set if known model was not found

; minus return should never happen without a bug in C64Model

models: .byte %00,%01,%10,%11

NBR_MODELS=*-models

frates: .byte 50,60,60,50

GetFPS:

 jsr C64Model

10$

 ldx #NBR_MODELS-1

 cmp models,x

 beq 90$

 dex

 bpl 10$

 lda [TRUE

 rts

90$

 lda frates,x

 rts

Examples

 hardware

216

C64Model:

;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Detect PAL/NTSC

; Original Name: DetectC64Model

; Author: TWW

; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; 312 rasterlines -> 63 cycles per line PAL

; => 312 * 63 = 19656 Cycles / VSYNC => #>76 %00

; 262 rasterlines -> 64 cycles per line NTSC V1

; => 262 * 64 = 16768 Cycles / VSYNC => #>65 %01

; 263 rasterlines -> 65 cycles per line NTSC V2

; => 263 * 65 = 17095 Cycles / VSYNC => #>66 %10

; 312 rasterlines -> 65 cycles per line PAL DREAN

; => 312 * 65 = 20280 Cycles / VSYNC => #>79 %11

C64Model:

 ;-- Use CIA #1 Timer B to count cycled in a frame

 lda #$FF

 sta $DC06

 sta $DC07 ; Latch #$FFFF to Timer B

10$

 bit $D011

 bpl 10$; Wait until Raster > 256

20$

 bit $D011

 bmi 20$; Wait until Raster = 0

 ldx #%00011001

 stx $DC0F ; Start Timer B (One shot mode

 ;(Timer stops automatically when underflow))

30$

 bit $D011

 bpl 30$;Wait until Raster > 256

40$

 bit $D011

 bmi 40$;Wait until Raster = 0

 sec

 sbc $DC07 ;Hibyte number of cycles used

 and #%00000011

 rts

DetectC64Model Source from CodeBase64

https://codebase64.org/doku.php?id=base:detect_pal_ntsc

Note3: I believe this will also work on a 128 in 40 column mode. Need to test

FIXME.

https://codebase64.org/doku.php?id=base:detect_pal_ntsc

Examples

 math

217

math

Examples

 math

218

8BitMultiply:

;**

; 8BitMultiply- 8 Bit unsigned multiply.

;

; pass: x - zpage address of multiplicand

; y - zpage address of multiplier

;

; returns: unsigned result in address pointed to by x

; x, y unchanged

;

; Multiply rlL by rlH and store the word result in r2

8BitMultiply:

 MoveB rlL,r2L ; r2L <- rlL copy of OPERAND1

 ldx #r2L ; x <- source register address

 ldy #r1H ; y <- destination register address

 jsr BBMult ; r2 <- r2L * r2H do multiplication

 rts

Examples

 math

219

16x8Multiply:

;**

; 16x8Multiply - 16x8 Bit unsigned multiply.

;

; pass: x - zpage address of multiplicand

; y - zpage address of multiplier

;

; returns: unsigned result in address pointed to by x

; x, y unchanged

;

; Multiply the value in r9 by 87 and store the result back in r9

; (rl is destroyed)

;

;**

16x8Multiply:

 ldx #r9 ; point to OPERAND1 in r9

 LoadB rlL,#87 ; rl <- 87 (OPERAND2)

 ldy #rl ; point to OPERAND2 in rl

 jsr Bmult ; r9 <- r9 * rlL

 rts

Examples

 math

220

ConvToUnits:

;**

; This routine converts a pixel measurement to inches or, optionally,

; centimeters, at the rate of 80 pixels per inch or 31.5 pixels per

; centimeter.

;

; pass: r0 - number to convert (in pixels)

;

; return: r0 - inches / centimeters

; rlL - tenths of an inch / millimeters.

; destroys: a, x, y, r0-rl, r8-r9

;**

; Assembler time decision on whether inches or centimeters is to be used.

.if AMERICAN

 INCHES = TRUE

.else

 ;Metric

 INCHES = FALSE

.endif

ConvToUnits: ; First, convert r0 to length in 1/20 of

 ; standard units

.if INCHES

 ; For Inches, need to multiply by

 ; 20 1

 ; ------------- = ---

 ; 80 dots/inch 4

 ; which amounts to a divide by four

 ldx #r0

 ldy #2

 jsr DShiftRight

.else

 ; For Centimeters, need to multiply by

 ; 20 1

 ; ------------- = ---

 ; 31.5 dots/cm 63

 ;

 LoadB rl,#40 ; First multiply by 40

 ldx #r0 ; (word value)

 ldy #rl ; (byte value)

 jsr Bmult ; r0 * r0*40 (byte by word multiply)

 LoadW rl,#63 ; then divide by 63

 ldx #r0 ;

 ldy #rl ;

 jsr Ddiv ; r0- r0/63

.endif

 ;-- Start of Common Code ; r0 * result in l/20ths

 IncW r0 ; add in one more l/20th, for rounding

 LoadW rl,#20 ; now divide by 20 (to move decimal over one)

 ldx #r0 ; dividend

 ldy #rl ; divisor

 jsr Ddiv ; r0 = r0 /20 (r0 = result in proper unit)

 MoveB r8L,rlL ; rlL - l/20ths

 lsr rlL ; and convert to l/10ths (rounded)

 rts ; exit

Examples

 math

221

Kernal_CRC:

;**

; This is the actual Kernal Code for CRC.

;

; pass: r0 - pointer to start of data

; r1 - # of bytes to check

;

; return: r2 – CRC Checksum

;

; destroys: a, x, y, r0, r1, r3L

;**

Kernal_CRC:

 ldy #$FF

 sty r2L

 STY r2H

 iny

10$

 lda #$80

 sta r3L

20$

 asl r2L

 rol r2H

 lda (r0),y

 and r3L

 bcc 30$

 eor r3L

30$

 beq 40$

 lda r2L

 eor #%00100001

 sta r2L

 lda r2H

 eor #%00010000

 sta r2H

40$

 lsr r3L

 bcc 20$

 iny

 bne 50$

 inc r0H

50$

 ldx #r1

 jsr Ddec

 lda r1L

 ora r1H

 bne 10$

 rts

Examples

 math

222

DecCounter:

;**

;

zCounter = $70

COUNT = $FFF0

DecCounter:

 LoadW zCounter,COUNT

 10$

 Jsr DoSomething

 ldx #zCounter

 jsr Ddec

 bne 10$

 rts

Examples

 math

223

DdecvsDecW:

Size in Bytes vs Speed in Cycles of Ddec and DecW

Ddec represents a maximum of 7 byte savings over DecW every time it is used in your

code. If Not needing a zero result after DecW then only a 3 byte savings.

DecW takes roughly ½ the time to execute. In and Inner loop executed 1 Million

times. DecW will save roughly 20 seconds off the time vs Ddec

zCounter=$70

.macro DecW dest

 lda dest

 bne dolow

 dec dest+1

dolow:

 dec dest

.endm

Ddec code block.

Op Code Instruction Bytes Cycles

--------- --------------- ------ --------

A2 70 ldx #zCounter 2 2

20 0E C2 jsr Ddec 3 6

 (Kernal Routine) 0 27 - 32

 Total 5 35 - 40

DecW macro code block.

Op Code Instruction Bytes Cycles

--------- --------------- ------ --------

A9 70 lda zCounter 2 3

D0 02 bne 10$ 2 2 or 3 or 4

C6 71 dec zCounter+1 2 5

 10$

C6 70 dec zCounter 2 5

 Total 8 11 Worst Case 15

 if branch crosses page 12

 ;-- When using DecW on a counter, Add check for word=0 after the DecW macro

A9 70 lda zCounter 2 2

05 70 ora zCounter+1 2 3

 Total 12 16 - 20

Kernal Ddec ;Actual Kernal Code for Ddec

Op Code Instruction Cycles

--------- --------------- ------ --------

B5 00 lda zpage,X 4

D0 02 bne 10$ (1/256ish chance 2) or 3 or Worst case:4

D6 01 dec zpage+1,X 6

 10$

D6 01 dec zpage,X 6

B5 00 lda zpage,X 4

D6 01 ora zpage+1,X 4

60 rts 6

 =====================

 Total Best Case: 27 Worst Case:32

 if branch crosses Page 28 (1/256 chance)

Examples

 math

224

DSmult:

;**

; DSMult - double-precision signed multiply.

;

; pass: x - zpage address of multiplicand

; y - zpage address of multiplier

;

; returns: signed result in address pointed to by x

; word pointed to by y is absolute-value of the

; multiplier passed

; x, y unchanged

;

; Strategy:

; Establish the sign of the result: if the signs of the

; multiplicand and the multiplier are different, then the result

; is negative; otherwise, the result is positive. Make both the

; multiplicand and the multiplier positive, do unsigned

; multiplication on those, then adjust the sign of the result

; to reflect the signs of the original numbers.

;

; destroys: a, r6 - r8

DSmult:

 lda zpage+l,x ;get sign of multiplicand (hi-byte)

 eor zpage+l,y ;and compare with sign of multiplier

 php ;save the result for when we come back

 jsr Dabs ;multiplicand = abs(multiplicand)

 stx r6L ;save multiplicand index

 tya ;put multiplier index into x

 tax ;for call to Dabs

 jsr Dabs ;multiplier = abs(multiplier)

 ldx r6L ;restore multiplier index

 jsr DMult ;do multiplication as if unsigned

 plp ;get back sign of result

 bpl 90$;ignore sign-change if result positive

 jsr Dnegate ;otherwise, make the result negative

90$

 rts

Examples

 memory

225

memory

CopyBuffer

Examples

 memory

226

CopyBuffer:

SrcBuff: .byte "Any Values can be in the buffer",NULL,CR

 .byte $0C,”NULLS are just zeros here”,CR

LENBUFF = (*-SrcBuff)

.ramsect

DestBuff .block LENSTRING

•psect

CopyBuffer:

LoadW r5,#SrcBuff ; point to start of source buffer

LoadW rll,#DestBuff ; point to start of destination buffer

ldx #r5 ; x <- source register address

ldy #rll ; y <- destination register address

lda #LENBUFF ; a <- length of buffer

jsr CopyFString ; DestBuff <- SrcBuff (copy)

rts

SrcStr: .byte "Any values but null can be in the string",NULL

LENSTRING = (*-SrcStr)

.ramsect

DestBuff .block LENSTRING

.psect

CopyStr:

LoadW r0,#SrcStr ; point to start of source String

LoadW rl,#DestBuff ; point to start of destination buffer

ldx #r0 ; x <- source register address

ldy #rl ; y <- destination register address

jsr CopyString ; DestBuff <- SrcStr (copy)

rts

Examples

 memory

227

Find:

REC__SIZE = 5 ;size of each record

.ramsect

Data: .block 1024 ;Table of Zip Code Locations.

.psect

Key: .byte “65803” ;Zip Code to Find

Find:

LoadW r2,#NUM_RECS ; r2 <- total number of records

LoadW r0,#Key ; r0 <- pointer to keyword

LoadW rl,#Data ; rl <- pointer to start of search list

10$; DO

 ldx #r0 ; x <- source string - key ,

ldy #rl ; y <- destination string - list

lda #REC_SIZE ; a <- length of each record

jsr CmpFString ; compare key with current record

beq 20$; if they match, branch to handler

AddVW #REC_SIZE,rl ; otherwise point to the next record

DecW r2 ; r2— (decrement counter)

bne 10$; WHILE (r2 > 0)

;---

jmp NotMatched ; jmp to no match handler

20$ jmp Matched ; jmp to match handler

Examples

 memory

228

Find2:

Find2:

LoadW r0,#original ; r0 <- pointer to original string

LoadW rl,#copy ; r1 <- pointer to copy

ldx #r0 ; x <- source string =* key

ldy #rl ; y <- destination string - list

jsr CmpString ;

beq 20$

jmp NotMatched ; jmp to no match handler

20$ jmp Matched ; jmp to match handler

original:

.byte "Mark Charles Heartless",NULL

Copy:

 .byte "Mark Charlie Heartless",NULL

Examples

 memory

229

InitBuffers:

;**

; initialize buffers and variables to zero

InitBuffers:

 LoadW r0,#varStart ; clear variable space

 LoadW rl,#(varEnd-varStart)

 jsr ClearRam

 LoadW r0,#heapStart ; clear heap

 LoadW rl,#(heapEnd-heapStart)

 jmp ClearRam

;**

Alternate version. Using more space efficient i_FillRam

InitBuffers:

 jsr i_FillRam ; clear variable space

 .word varStart

 .word varEnd-varStart

 .byte $AA ; With any value you choose

 jsr i_FillRam ; clear heap

 .word heapStart

 .word heapEnd-heapStart

 .byte $00 ; Heap set to zero’s

 rts

Examples

 disk routines

230

disk

CheckDiskSpace

Examples

 disk routines

231

CheckDiskSpace:

;**

;DESCRIPTION: Ensures that the current disk has a enough space for a

; minimum number of bytes. Does not take into account any

; index blocks or other blocks needed to maintain the file

; structure. Works with GEOS 64, GEOS 128

;

;Pass: r2 number of bytes we need

;Returns: x = If not enough space, returns an

; INSUFFICIENT_SPACE error.

; x = 0 Is there is enough space.

; Z Flag follows value of X.

;

;Destroyed: a, y, r2, r3, r8, r9

;**

; Number of bytes that can be stored in each block on the disk. Accounts for

; two-byte track/sector link on Commodore versions of GEOS.

NO_ERROR = 0

BLOCK_SIZE = $100

BLOCK_BYTES = BLOCK_SIZE – 2

.macro bgt raddr

 beq label

 bcs raddr

label:

.endm

CheckDiskSpace:

 lda r2L ; r2 - # of BYTES to check for

 ora r2H ; check if zero bytes requested

 beq 80$; if so, exit with no error

 LoadW r3,BLOCK_BYTES ; r3 <- number of bytes per block.

 ldx #r2 ; divide r2 by r3 to get number of

 ldy #r3 ; blocks to hold BYTES

 jsr Ddiv ; r2 <- r3/r2

 lda r8L ; r8L <- remainder

 ora r8H ; Any remainder bytes?

 beq 10$; if not, OK

 IncW r2 ; otherwise 1 more block needed

 ; r2 = BLOCKS needed to hold BYTES

10$; get number of free blocks on disk

 LoadW r5,#curDirHead ; point to directory header

 jsr CalcBlksFree ; r4 <- free blocks on disk

 CmpW r2,r4 ; are there enough free blocks?

 bgt 99$; if not, assume. correct, branch.

90$

 ldx #NO_ERROR ; otherwise, no error

 rts

99$

 ldx #INSUFFICIENT_SPACE ; not enough space

 rts ; exit

Examples

 disk routines

232

DeleteDirEntry:

;Pass: r0 pointer to filename

.ramsect

 rFileName: .block 17

DeleteDirEntry:

 LoadW r0,rFileName

 LoadW r3,#NullTrScTable ;pass dummy table

 jmp FastDelFile

This will also work correctly with a VLIR file. For freeing (deleting) all the blocks

in a file without removing the directory entry refer to FreeFile.

Examples

 disk routines

233

ReadAndDelete:

 .if COMMENT

 Read sequential file into memory and then delete it from disk

 Pass: r6 pointer to filename

 r7 where to put data

 r2 size of buffer (max size of file)

 Returns: x error code

 Destroys: a, y, rO-r9

 Implementation:

Call FindFile to get the directory entry of the file to load/delete. We pass

the directory entry to GetFHdrlnfo to get the GEOS header block. We check

the header to ensure we're not trying to read in a VLIR file. After

GetFHdrlnfo, the parameters are already set up correctly to call ReadFile

(fileTrScTab+O,fileTrScTab+1 contains header block and rl contains first

data block). ReadFile reads in the file's blocks, building out the remainder

of the fileTrScTab, which we pass to FastDelFile to free all blocks in the

file (including the file header block, which is the first entry in the

table).

 .endif

ReadAndDelete:

 MoveW r6,r0 ; save pointer for FastDelFile

 Jsr FindFile ; find file on disk

 txa ; set status flags

 bne 99$; branch on error

 LoadW r9,dirEntryBuf ; get directory entry

 jsr GetFHdrlnfo ; get GEOS file header

 txa ; set status flags

 bne 99$; branch on error

 lda fileHeader+OFF_GSTRUCT_TYPE ;

 cmp #VLIR ; check filetype

 bne 10$; branch if not VLIR

 ldx #STRUCT_MISMAT ; can't load VLIR

 bne 99$; branch always for error

10$

 jsr ReadFile ; read in file

 txa ; else set status flags

 bne 99$; branch on other error

20$

 LoadW r3,#fileTrScTab ; track/sector table

 jsr FastDelFile ; file read OK, delete it!

99$

 rts ; error in x

Examples

 disk routines

234

GrabSomeBlocks:

;**

;

; GrabSomeBlocks — allocate enough disk blocks to hold

; data in buffer.

;

; pass: Nothing

;

; returns: Carry flag. 1 = Error, 0 = success.

; X = Error Nbr if Carry is set or 0.

;

;**

 K = 1024 ;one kilobyte

.ramsect

 buffer: .block 5*K -1 ; 5K buffer .'

 bufferE: .block 1 ; End of 5k Buffer

 BUF_SIZE = (bufferE – buffer)+l ; size of buffer

.psect

GrabSomeBlocks:

 LoadW r2,BUF_SIZE ; number of bytes to allocate

 LoadW r6,fileTrSecTab ; buffer to build out table

 jsr BlkAlloc ; allocate the blocks

 txa ; check status

 bne 99$; and exit on error

 ; more code here

90$

 ldx #0

 clc ; Success exit

 rts

99$

 sec ; Error Exit

 rts

Examples

 disk routines

235

MyFreeBlock:

;**

;

; MyFreeBlock — allocate specific block in BAM

; with any CBM device driver. And any GEOS Version

;

; pass:

; r6L = track #

; r6h = sector #

;

; Note:

; FreeBlock was not added to the

; GEOS jump table until vl.3

;**

MyFreeBlock:

 lda version ;check GEOS version number

 cmp #$13 ; version Less then 1.3?

 bcc 10$;

 Jmp FreeBlock ; if not, go through jump table

10$

 jsr FindBAMBit ; Returns r8H = mask for BAM byte

 ; r7H = offset to track

 ; x = offset into bam

 ; a = masked value

 bne 99$; if 1, then not allocated, give error

 txa

 bne 99$

 lda r8H ; get mask

 eor curDirHead,x ; flip BAM bit to make available

 sta curDirHead,x ;

 ldx r7H ; one more free block

 inc curDirHead,x ;

 ldx #0 ; NO_ERROR

 rts

99$

 ldx #BAD_BAM ;

 rts

Examples

 disk routines

236

MySetGDirEntry:

 .if COMMENT

This routine duplicates the function of the Kernal's SetGDirEntry for demonstration

purposes. It shows examples of the following routines:

 BldGDirEntry

 GetFreeDirBlk

 PutBlock

Pass: Same as SetGDirEntry

Destroys: Same as SetGDirEntry

 .endif

DIRCOPYSIZE=30 ; Size of directory entry for copy

TDSIZE=5 ; number of bytes in time/date entry

MySetGDirEntry:

 jsr BldGDirEntry ; build directory entry for GEOS file

 jsr GetFreeDirBlk ; get block with free directory entry

 ; r3 = 1st byte of free entry

 ; block number of block in rl

 txa ; test for error code

 bne 99$; if error, exit...

 tya ; get offset into diskBlkBuf for dir entry

 clc

 adc #[diskBlkBuf ; and get absolute address in buffer

 sta r5L

 lda #]diskBlkBuf

 adc #0 ; (propagate carry)

 sta r5H

 ldy #DIRCOPYSIZE ; copy over some bytes

10$

 lda dirEntryBuf,y ; get byte from directory entry built

 sta (r5),y ; store new entry into block buffer

 dey

 bpl 10$; loop till copied

 jsr TimeStampEntry ; stamp the dir entry with time & date

 LoadW r4,#diskBlkBuf ; write out the new directory entry

 jsr PutBlock

 txa ; get error status

 bne 99$; if error, exit

 clc

 rts ; Success exit

99$

 sec

 rts ; Error exit

TimeStampEntry:

 ldy #(OFF_YEAR+TDSIZE)-1 ; offset to time/date stamp

10$

 lda dirEntryBuf,y ; get the year/month/day/hour/minute

 sta (r5),y ; store in dir entry

 dey ;

 bpl 10$; Loop until done

 rts

Examples

 disk routines

237

MyPutBlock:

;**

; MyPutBlock — Write diskBlkBuf to disk

;

; pass:

; r1L = track #

; r1H = sector #

; r4 = Address of block to write.

; verify = FALSE (0) Do Not Verify

; <> 0 Verify after Write

;

; Note: If you have multiple blocks to write you should

; write the entire chain and then verify the chain.

; See WriteBlock description for more information

;**

 .ramsect

 nextTrack: .block 1

 nextSector: .block 1

 outbuffer: .block $FE

 track .block 1

 sector .block 1

 verify: .block 1

 .psect

CallMyPutB:

 LoadW r4,outBuffer-2

 MoveB track,r1L,

 MoveB sector,r1H

 LoadB verify,[#TRUE

 jsr MyPutBlock

 bcs 99$

 rts ;return good status in carry

99$

 ... ;Error Handler or let caller handle error

 rts

MyPutBlock:

 jsr EnterTurbo ; go into turbo mode

 txa ; check for error in X

 bne 99$; branch if error found

 jsr InitForIO ; prepare for serial I/O

 jsr WriteBlock ; primitive write block

 txa ; set status flags

 bne 99$; branch if error found

 lda verify ; check verify flag

 beq 80$; branch if not verifying

 jsr VerWriteBlock ; verify block we wrote

 txa ; set status flags

 bne 99$; branch if error found

80$

 jsr DoneWithIO ; restore after I/O done

 clc

 rts ; No Errors

99$

 jsr DoneWithIO ; restore after I/O done

 sec

 rts ; Error Status exit

Examples

 disk routines

238

MyReadBlock:

;**

;

; MyReadBlock — Read sector from disk into diskBlkBuf

; Demonstrates use of very-low level disk primitives

; pass:

; r1L = track #

; r1H = sector #

; r4 = Address of block to read into.

;

;**

.ramsect

 nextTrack: .block 1

 nextSector: .block 1

 outbuffer: .block $FE

 inbuffer .block $100

 track .block 1

 sector .block 1

 verify: .block 1

 .psect

CallMyPutB:

 LoadW r4,inBuffer

 MoveB track,r1L,

 MoveB sector,r1H

 jsr MyReadBlock

 bcs 99$

 rts ;return good status in carry

99$

 ... ;Error Handler or let caller handle error

 rts

MyReadBlock:

 jsr EnterTurbo ; go into turbo mode

 txa ; check for error in X

 bne 99$; branch if error found

 jsr InitForIO ; prepare for serial I/O

 jsr ReadBlock ; primitive read block

 jsr DoneWithIO ; restore after I/O done (x is preserved in DoneWithIO)

 txa ; get error result of ReadBlock

 bne 99$; branch if error found

80$

 clc

 rts

99$

 sec

 rts

Examples

 disk routines

239

NewAllocateBlock:

;**

; NewAllocateBlock — allocate specific block in BAM

; with any CBM GEOS device driver.

;

; Pass: r6L,r6H track, sector to allocate

;

; Uses: BAM in curDirHead

;

; Returns: x error status ($00 = success, BAD_BAM = block already in use, etc.)

;

; Destroys: a,y,r7, r8H.

;**

BAD_BAM=$0B

DRV_1571=2

NO_ERROR=0

NewAllocateBlock:

 ldy curDrive ; get current drive

 lda driveType-8,y ; get drive type

 and #%00001111 ; keep only drive format

 cmp #DRV_1571 ; see if 1571 or above

 bcc 1541$; branch if 1541

 jmp AllocateBlock ; else, use driver routine

1541$

 jsr FindBAMBit ; get BAM bit info

 beq 110$; if zero, then it's not free

 lda r8H ; get bit mask for BAM

 eor #$FF ; convert to clearing mask

 and curDirHead,x ; and with BAM byte to clear

 ; bit and show as allocated

 sta curDirHead, x ; and store back.

 ldx r7H ; get base of track9s entry

 dec curDirHead,x ; dec # free blocks this track

 ldx #NO_ERROR ; show no error

 rts ; exit

99$

 ldx #BAD_BAM ; show error — already in use

 rts ; exit

Example Caller Routine;

.ramsect

 diskBlock .block 2

.psect

CallNewAlloc:

 MoveW diskBlock,r6 ; block to allocate

 jsr NewAllocateBlock ; (see above)

 cpx #BAD_BAM ; BAD_BAM means block in use

 beq 95$; branch if block already in use

 txa ; check for other error

 bne 99$; branch if error

 ; code to handle newly allocated block goes here

95$; block was not free...

 ; code to handle block already allocated goes here

99$

 jmp MyDiskError ; call error handler with error in x

Examples

 disk routines

240

SaveRecord:

;**

;

; SaveRecord — Append new record into am existing VLIR

;

; pass: appendPoint = Already set to the last VLIR Record

; Filename = Buffer populated with VLIR’s filename

;

;**

NAME_LENGTH=17

.ramsect

 appendPoint: .block 1 ; record to append to

 filename: .block NAME_LENGTH ; hold null-terminated filename

 bufStart: .block 1023 ; data buffer

 bufEnd: .block 1 ; length of buffer

 BUFLENGTH = (BufEnd - BufStart)+l

.psect

SaveRecord:

 LoadW r0, #filename ; pointer to filename

 jsr OpenRecordFile ; open VLIR file

 txa ; check open status

 bne ; exit on error

 lda appendPoint ; get record to append to

 jsr PointRecord ; go to that record

 txa ; check point status

 bne 99$; exit on error

 jsr AppendRecord ; append a record at this point

 LoadW r7, #bufStart ; point at data buffer

 LoadW r2, #BUFLENGTH ; bytes in buffer (bufEnd-bufStart)

 jsr WriteRecord ; write buffer to record

 txa ; get write status

 bne 99$; exit on error

 jsr CloseRecordFile ; close VLIR file

 txa ; check point status

 bne 99$; exit on error

90$; Clean Exit

 clc ; clear carry for all ok

 rts

99$: ; Error handler

 sec ; Set carry to show returning with an error

 rts

NOTE: geoProgrammer1.1 does not support the * counter in .ramsect. The method above

must be used when the assembler needs to calculate the size of a ramsect

field.

Examples

 internal

241

internal

Examples

 internal

242

FatalError:

 .if COMMENT

Purpose: use Panic to send a fatal error message to the user

Pass: r0

.endif

.ramsect

 GEOS_save .block BYTESTOSAVE ; save area for GEOS restart block

.psect

FatalError:

 IncW r0 ; add 2 to error number

 IncW r0 ; to compensate for Panic

.if C64

 PushW r0 ; push error number onto stack

.else ; 128, expects all kinds of internal

 ; machine-state information (10 bytes total) on the

 ; stack. It ignores all but the bottommost word.

 ldx #5-1 ; place 5 words (10 bytes) total onto stack

$10

 PushW r0 ; push error number onto stack

 dex ; (use error number repeatedly as dummy value)

 bne 10$; loop until all done.

.endif

 jmp Panic ; go put up the Panic dialog box

Alternate Version with live detection of 64/128 and a more efficient setting of the

stack pointer.

FatalError:

 IncW r0 ; add 2 to error number

 IncW r0 ; to compensate for Panic

 bit c128Flag

 bpl 10$; C64. Just push once.

 ; 128, expects all kinds of internal

 ; machine-state information (10 bytes total) on the

 ; stack. It ignores all but the bottommost word.

 tsx ; Set Stack Pointer down 8 bytes to prepare for r0

 txa ; push for the last word

 sec

 sbc #8

 txs ; Save the new stack pointer

10$; Now put final Word onto stack

 PushW r0 ; push error number onto stack

 jmp Panic ; go put up the Panic dialog box

Examples

 internal

243

RoadTrip:

;Show Leaving GEOS to use all of the resources of the machine and returning again via

;rebooting by either REU or disk.

BYTESTOSAVE=$80 ; no. of bytes to save at BootGeos

RBOOT_BIT=5 ; bit in sysFlgCopy to check

CKRNL_BAS_IO_IN=$40

config=$FF00

.ramsect

 GEOS_save .block BYTESTOSAVE ; save area for GEOS restart block

.psect

RoadTrip:

 jsr OnEntry ; Save Kernal Boot strap

 jsr HaveAFunTrip ; Do anything ... Use all of kernal ram

 ; just no kernal calls while you are gone

 jmp OnExit ; Reboot the Kernal

OnEntry:

 ldx #BYTESTOSAVE ; save bytes GEOS needs so we can use area

10$; STARTLOOP

 lda BootGeos-1,x ; copy a byte

 sta GEOS_save -l,x ;

 dex ; count--

 bne 10$; if (count != 0), then loop

 rts ; ENDLOOP

OnExit:

 lda version ; Get. version of GEOS

 cmp #$13 ;

 bcc 64$; If version < 1.3, then branch

 lda cl28Flag ; else, test for GEOS 128

 bpl 64$; If GEOS64, then branch

128$;

 lda CKRNL_BAS_IO_IN ; load 128 memory mapping

 sta config ;

 bra 200$;

64$;

 lda #KRNL_BAS_IO_IN ; load 64 memory mapping

 sta CPU_DATA ;

$200

 ldx #BYTESTOSAVE ; restore bytes GEOS needs to restart

10$; STARTLOOP

 lda GEOS_save-l,x ; copy a byte

 sta BootGeos-l,x ;

 dex ; count--

 bne 10$; if (count != 0), then loop

 ;ENDLOOP

 lda #(%1<<RBOOT_BIT) ; check for Rboot flag

 and sysFlgCopy ;

 bne 90$; if flag is clear, branch to rboot

 jsr AskForBootDisk ; else, get user to insert boot disk

90$

 jmp BootGeos

Examples

 internal

244

Examples

 graphics

245

graphics

ChangeMode

Examples

 graphics

246

BitCompact:

.if (0)

BitCompact

DESCRIPTION:

Converts linear bitmap data into compacted bitmap format, suitable for

passing to routines such as BitmapUp.

When compacting bitmaps directly from screen memory, the data must tsx first

be converted from the internal screen format to linear bitmap format. The

left edge of the source bitmap must start on a card boundary and the right

edge must extend to the end of another, card boundary.

This bitmap data must then be converted to a linear format, where the first

byte represents the first eight pixels of the upper-left corner of the

bitmap, the next byte represents the next eight pixels and so on to the right

edge of the bitmap. The byte following the last byte in a single line of a

bitmap is the first byte of the next line. (The actual dimensions of the

bitmap will be reconstructed from the WIDTH and HEIGHT parameters passed to

the bitmap display routine.

To convert from internal screen format to linear bitmap format:

C64: Set dispBufferOn appropriately (to reflect which

screen buffer to grab data from) and...

Cnvrt40:

 ldx yPos ; get y coord of top of bitmap

 jsr GetScanLine ; use it to calc screen ptrs

 lda xPos ; get x pixel coord (lo byte)

 and #%11111000 ; strip off 3 bits for card x-position

 clc ; Add card offset to

 adc r5L ; base pointer (lo byte first)

 sta r5L

 lda xPos+1 ; (hi byte also)

 adc r5H

 sta r5H

;At this point, (r5) points to the first byte in

;the bitmap (upper-left corner).

Now step through each byte in this scanline by adding 8 to the pointer

in r5 (compensating for the card architecture) to get to the next byte,

and repeat this process for each line in the bitmap (incrementing yPos

appropriately for each scanline).

C128: (40-column, same as C64; 80-column, read on...)

Conveniently, the 80-column data is already in linear bitmap format.

The data, will probably be coming from the background buffer because

the foreground screen is entirely contained on the VDC chip's internal

RAM and is difficult to access...

Examples

 graphics

247

Cnvrt80:

bit graphMode ; make sure in 80-col mode

bpl Cnvrt40 ; handle 40 like C64

PushB dispBufferOn ; save current dispBufferOn

LoadB dispBufferOn,#ST_WR_BACK ;force use of back buffer

ldx yPos ; get y coordinate

jsr GetScanLine ; use it to calc screen ptrs

MoveW xPos,r0 ; copy x-position to zp work reg

ldx #r0 ; divide r0 by 8

ldy #3 ; (shift right 3 times)

jsr DShiftRight ; this gives us the card offset

AddW r0,r6 ; add card (byte) offset to scanline addr

;At this point (r6) points to the first byte of the bitmap.

Now step each byte in this scanline by adding

1 to the pointer in r6 to get to the next byte,

and repeat this process for each line in the

bitmap (incrementing yPos appropriately).

CALLED BY:

PASSED:

 r0 Pointer to destination buffer to store compacted data (this buffer must

be at least 1 and 1/64 of size of the uncompacted data because it is

possible, but unlikely, that the compacted data will actually be larger

than the uncompacted data).

r1 Pointer to linear bitmap data to compact.

r2 # if bytes to compact

RETURNS:

 r0 Points to byte following last byte in compacted data.

DESTROYED: a,x,y,rl-r6

PSEUDO CODE / STRATEGY:

Starts with the first source byte and counts the number of identical bytes

following it to determine whether to generate a UNIQUE or REPEAT packet. If

there are three or less identical bytes in a row, a UNIQUE packet is

generated, four or more generates a REPEAT packet. The packet is placed in

the destination buffer and this process is then repeated until all bytes in

the source buffer have been compressed.

KNOWN BUGS / SIDE EFFECTS / IDEAS:

Only uses the UNIQUE and REPEAT compaction types. The BIGCOUNT compaction

type is such that it is difficult to determine the compaction payoff point.

BIGCOUNT could be used to compress adjacent scanlines that are identical

because this type of check would be trivial. The basic scanline could be

compressed with UNIQUE and REPEAT, then duplicated by placing it inside a

BIGCOUNT.

This routine is not limited to compressing bitmap data. In fact, it works

quit well on any data where strings of identical bytes are common (e.g.,

fonts). It does not, for example, compress text very efficiently. A Huffman-

based algorithm yields better results.

.endif

Examples

 graphics

248

MAX_REPEAT = 127 ; maximum repeat COUNT value

MAX_UNIQUE = 191 ; maximum unique COUNT value

UNIQ_THRESH = 3 ; byte count threshold, beyond which a REPEAT type

 ; should be used instead of UNIQUE.

BitCompact:

10$; rl = current addr in source buffer

 ; r0 = current addr in destination buffer

 ; r2 = # bytes left in source

 jsr CountRepeat ; count the # of identical bytes here

 cmp #UNIQ_THRESH ; Enough repeats to justify REPEAT type?

 ble 20$; No, go use UNIQUE

 ; yes, use REPEAT (A = # to repeat)

 sta r5L ; store repeat # for later

 ldy #0 ; init. index into buffers

 sta (r0),y ; store repeat # to destination

 lda (rl),y ; get repeat value

 iny ; point to next byte in dest buffer

 sta (r0),y ; store to destination buffer

 AddVW 2,r0 ; move up dest. pointer

 bra 100$; exit.

20$

 ; use UNIQUE

 jsr GetUnique ; Calc # of unique bytes to use

 ; (A = number of unique)

 ldy #0 ; init. index into buffers.

 ora #$80 ; convert unique count to packet count value

 sta (r0),y ; store to dest buffer

30$

 lda (rl),y ; get first unique value

 iny ; increment pointer

 sta (r0),y ; store to destination buffer

 cpy r5L ; done yet? (r5L - repeat #)

 bne 30$; loop till done copying

 inc r5L ; convert to # to add to dest pointer

 AddBW r5L,r0 ; move up destination pointer

 dec r5L ; correct back to # done

 ; fall through to-exit

100$;

 AddBW r5L,rl ; move up source pointer

 SubBW r5L,r2 ; subtract off # left in source buffer

 lda r2L ; check for zero bytes left

 ora r2H ; more to do?

 bne 10$; if so, loop

 rts ; else, exit.

CountRepeat:

 ; rl = current pointer into source buffer

 ; r0 = current pointer into destination buffer

 ; r2 = number of bytes left in source

 ldy #0 ; initialize relative buffer index

 ldx #0 ; initialize current repeat count

 ;

Examples

 graphics

249

 lda (rl),y ; get first byte

 sta r6L ; keep in r6L. This is the byte we're trying

 ; to match.

10$;

 lda r2H ; more than 255 bytes left in source?

 bne 20$; if so, ignore # check

 cpx r2L ; else, are we at the last byte?

 beq 90$; if so, exit

20$;

 cpx #MAX__REPEAT ; check repeat count with max # of repeats

 beq 90$; if at maximum, branch to exit.

 lda (rl),y ; does it actually match?

 cmp r6L ; check against 1st byte

 bne 90$; if no match, exit.

 inx ; else, we found a match, increment repeat count

 iny ; move to next byte in source

;NOTE -- following branch changed to save a byte, y is never incremented to $00.

; bra 10$; and loop to check it

 bne 10$; branch always... iny above will always clear z flag

90$

 txa ; return repeat count in A

 rts ; exit

GetUnique:

 PushW rl ; Save orig pointer

 LoadB r5L,#0 ; start none unique

10$

 inc r5L ; do one more unique

 ldx r5L ; get # unique so far

 lda r2H ; lots left?

 bne 20$; if so, skip end check

20$

 cpx r2L ; all of them?

 beq 90$; if yes, then that many

 cpx #MAX UNIQUE ; max # unique

 beq 90$; if full, do them

 AddVW #l,rl ; move up a byte

 jsr CountRepeat ; how many of the following bytes are repeats?

 cmp #UNIQ_THRESH ; Enough to warrant a REPEAT packet?

 ble 10$; No, go stuff them in this UNIQUE packet

30$; Yes, close this UNIQUE packet.

 PopW rl ; retrieve start pointer

 lda r5L ; get # to do unique

 rts

Examples

 graphics

250

ChangeMode:

GREYPAT=2

ChangeMode:

jsr GreyScreen ; grey out old screen

lda graphMode ; switch mode by flipping

eor #%10000000 ; 40/80 bit

jsr SetNewMode ; and calling SetNewMode

jsr GreyScreen ; grey out new screen

rts ; exit

GreyScreen:

 jsr i_GraphicsString ;

 .byte NEWPATTERN,GREYPAT ; set to grey pattern

 .byte MOVEPENTO ;Put pen in upper left

 .word 0 ; x

 .byte 0 ; y

 .byte RECTANGLETO ; grey out entire screen

 .word (SC_PIX_WIDTH-l) | DOUBLE_W | ADD1_W

 .byte SC_PIX_HEIGHT-1

 .byte NULL

 rts

Examples

 graphics

251

Checkl28:

 .if COMMENT

**

Check for GEOS 128.

Pass:

nothing

Returns:

 st minus flag set if running under GEOS 128.

**

 .endif

Checkl28:

 lda #$12 ; cl28Flag not valid until version 1.3

 cmp version ; first see if version <= 1.2

 bpl 10$; if so; branch and say C64.

 lda c128Flag ; else set minus based on high bit cl28Flag.

10$

 rts

Example usage:

 jsr Checkl28

 bpl 10$;ignore if under GEOS 64

 jsr DoDeDoubling ;else, patch x-coordinates to remove doubling bits

10$

 .

 .

 .

Examples

 graphics

252

DblDemo1:

;Will assemble differently depending on the status of the C64 and C128 assembly

;constants. If assembling for GEOS 64, doubling constants will be set to zero so

;that they will not affect the x-positions. If assembling for GEOS 128, doubling

;constants will be set according to geosConstants file so that graphic operations

;will double automatically in 128 mode.

.if !(C128 ^^ C64) ; C64/C128 flags must be mutually exclusive!

 .echo "DblDemo not designed to assemble for both GEOS 64 and GEOS 128!"

.else

.if !C128 ; if not assembling for GEOS 128, force

; doubling constants to harmless values so

; GEOS 64 graphics routines

 ; don't get confused.

DBLE_B=0 ; Note3: geoAssembler1.x cannot do reassignment

DBLE_W=0 ; Need a new equate to hold the conditional

AD1_W =0 ; value.

 .else ;

DBLE_B=DOUBLE_B ; If this logic block was in the CONSTANTS

DBLE_W=DOUBLE_W ; file it could set DOUBLE_B,DOUBLE_W,ADD1_W as

AD1_W=ADD1 ; needed and then all of the code base would

.endif ; use those values.

BM_XPOS = (32/8) ; byte x-position of bitmap (40-col)

BM_YPOS = 20 ; y-position of bitmap

Bitmap:

BM_WIDTH = PicW ; byte bitmap width (40-col)

BM HEGHT = PicH ; byte bitmap width (40-col)

FPATTERN = %11111111 ; pattern for surrounding frame

DoBMap:

;Place the bitmap on the screen, loading the registers with

;inline data (note double-width settings).

jsr i_BitmapUp ; inline call

 .word Bitmap ; bitmap address

 .byte (BM_XPOS|DBLE_B) ; xpos

 .byte (BM_YPOS ; yPos

 .byte (BM_WIDTH|DBLE_B) ; width

 .byte BM_HEIGHT ; height

90$

rts /exit

;(both C128 & C64 constants were both true or both false)

.endif

Examples

 graphics

253

DisplayImage:
 .if COMMENT

**

DisplayImage -- General purpose routine to display a portion of compacted bitmap

image in a window

Pass: pixBuf compacted bitmap image in pseudo-photoscrap format. Byte 0 is

card width of image. Byte 1 and 2 is the pixel height (word).

The compacted image data starts at byte 3.

xOffset card index into bitmap to display

yOffset pixel index into bitmap to display

Destroys: a,x, y, r0-rl2

**

 .endif

.ramsect

 xoffset: .block 1 ; card x index into bitmap (byte)

 yoffset: .block 2 ; pixel y index into bitmap (word)

 ;--- 2K picture buffer

 PixWidth: .block 1 ; width of picture in cards (byte)

 PixHeight: .block 2 ; height of picture in pixels (word)

 PixImage: .block $800-3 ; start of bitmap image

.psect

WINDOW X = 4 ; card x-position of window

WINDOW_Y = 30 ; pixel y-position of window

WINDOW_WIDTH = 5 ; card width of window

WINDOW__HEIGHT = 60 ; pixel height of window

DisplayImage:

 ;--- set up initial parameters

 LoadW r0,#PixImage ; r0 <- compacted picture data (DATA)

 LoadB rlL,#WINDOW_X ; rlL <- left edge of window (XPOS)

 LoadB rlH,#WINDOW_Y ; rlH <- top edge of window (Y)

 LoadB r2L,#WINDOW_WIDTH ; r2L <- width of window (W_WIDTH)

 LoadB r2H,#WINDOW_HEIGHT ; r2H <- height of window (W_HEIGHT)

 MoveB xOffset,rllL ; rllL <- x offset into bitmap (DX1)

 MoveW yOffset,rl2 ; rl2 <- y offset into bitmap (DY1)

 ;--- clip x to window

 lda PixWidth ; get bitmap width

 sec ;

 sbc #WINDOW_WIDTH ;

 sbc rllL ; now we have the right edge clip distance

 sta rllH ; rllH <- right edge clip (DX2)

 bpl 10$; if we're >0, branch to skip x clipping

 adc #WINDOW WIDTH ; add back the window width

 sta r2L ; make that the new clip window

 LoadB rllH,#0 ; rllH <- $00 (fixes underflow of DX2)

Examples

 graphics

254

10$;--- clip y to window

 lda PixHeight ; subtract window height from bitmap height

 sec ; (two byte subtraction)

 sbc #WINDOW_HEIGHT

 sta r3L ; store intermediate result in r3

 lda PixHeight+1

 sbc #0

 sta r3H

 lda r3L ; now subtract y index into bitmap

 sec

 sbc rl2L ; (rl2 = yOffset)

 sta r3L

 lda r3H

 sbc r12H ; (rl2 = yOffset)

; sta r3H ; value in r3H never used after this

 bpl 20$; branch if no underflow

 lda r3L

 adc #WINDOW HEIGHT ; correct for underflow

 sta r2H

20$ jsr BitmapClip ; display the bitmap with clipping

 rts ; exit

Examples

 graphics

255

FilledRect:

X1 = 35 ; left edge

X2 = 301 ; right edge

Yl = 40 ; top edge

Y2 = 100 ; bottom edge

FilledRect:

;--- Draw a filled rectangle using the current pattern

 jsr i_Rectangle. ;inline call

 .byte Y1,Y2 ;y1,y2

 .word (X1|DOUBLE_W|ADD1_W) ;xl with doubled width + space on left for frame

 .word (X2|DOUBLE_W) ;x2 with doubled width

 jsr i_FrameRectangle

 .byte Y1,Y2 ;y1,y2

 .word (X1|DOUBLE_W) ; xl with doubled width

 .word (X2|DOUBLE_W|ADD1_W) ; x2 with doubled width + offset for frame

 .byte $FF

 rts

;--- Size Optimized Version.

;--- Saves 7 bytes over the original version of FilledRect

;--- While achieving the same result.

FilledRect:

 jsr i_Rectangle. ;inline call

 .byte Y1,Y2 ;y1,y2

 .word (X1|DOUBLE_W) ;Fill Full Size of final Rectangle

 .word (X2|DOUBLE_W) ;

 ;X (r3,r4) and Y (r2L,r2H) are set and returned

;unchanged by i_Rectangle

 lda #$FF ;Set Line Pattern

 jmp i_FrameRectangle ;Frame Full Size of rectangle

Examples

 graphics

256

MseToCardPos:

 .if COMMENT

**

MseToCardPos

 converts current mouse positions to card position

 pass: Nothing

 uses: mouseXPos, mouseYPos

 Returns: r0L mouse card x-position (byte)

 r0H mouse card y-position (byte)

 Destroys: a,x,y

**

 .endif

MseToCardPos:

 php ; save current interrupt disable status

 sei ; disable interrupts so mouseXPos doesn't change*

 MoveW mouseXPos, r0 ; copy mouse x-position to zp work reg (r0)

 lda mouseYPos ; get mouse y-position

 plp ; reset interrupt status asap.

 ldx #r0 ; divide x-position (r0) by 8

 ldy #3 ; (shift right 3 times)

 jsr DShiftRight ; this gives us the card x-position in r0L

 lsr a ; shift y-position in a right 3 times

 lsr a ; which is a divide by 8

 lsr a ; and gives us the card y-position in a

 sta r0H ; set card y-position

 rts ; exit

Note: If you do not disable interrupts prior to getting the value of

mouseXPos you could get r0H with Lydia/site and before getting really

an interrupt occurs and the mouse position is updated during the

interrupt. Now when you do/star for r0L it is for a different mouseXPos

reading giving unpredictable results.

Note3: By also getting the Y value while interrupts are disabled, you are

guaranteed to also get a consistent reading for all three parts of the

mouse position.

Examples

 graphics

257

ShowBitmap

;******************

;*** ShowBitmap ***

;******************

; For C64 and C128

.if C128

 DOUBLE_B=%10000000

.else

 DOUBLE_B=NULL

.endif

BM_XPOS = (32/8) ; card x-position of bitmap

BM_YPOS = 20 ; y-position of bitmap

 ;

Bitmap:

BM_WIDTH = picW ; card width of bitmap

BM_HEGHT = picH ; bitmap height

 ;

 ; Place the bitmap on the screen,

 ; loading the registers with

 ; inline data (note double-width

ShowBitmap:

 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK)

.if (C128) ; bug fix for 128 release 1. (Not needed for 2.0+)

 jsr TempHideMouse ; remove sprites

.endif

 jsr i_BitmapUp ; inline bitmap call

 .word Bitmap ; *bitmap address

 .byte BM_XPOS | DOUBLE_B ; *Xpos

 .byte BM_YPOS ; *Ypos

 .byte BM_WIDTH | DOUBLE_B ; *width

 .byte BM HEIGHT ; *height

90$ rts ; exit

Examples

 graphics

258

StopMenus:

.if COMMENT

Example of how to temporarily disable menus and then restart them at

a later time.

jsr StopMenus will stop menu processing.

jsr RestartMenus will return menu processing to it's prior state.

.endif

oldMouseOn:

 .byte $00 ; temp save area for mouseOn variable

StopMenus:

 MoveB mouseOn,oldMouseOn ; save current enable status for later

 rmbf MENUON_BIT,mouseOn ; disable menus temporarily

 rts

RestartMenus:

 lda oldMouseOn ; get old menu enable status

 and #(%1 << MENUON_BIT) ; ignore all but menu bit

 ora mouseOn ; restore old menu bit

 sta mouseOn ; in current mouseOn byte

 rts ; exit

Examples

 graphics

259

VDC

Sta80Fore:

.if COMMENT

Sta80Fore — stores byte to 128 80-column foreground screen

Lda80Fore — loads byte from 128 80-column foreground screen

Pass: r5 = address in foreground memory

A = data value (for Sta80Fore)

Returns: A data value (for Lda80Fore)

Destroyed: x

Note: Call TempHideMouse to disable software sprites before accessing

foreground screen directly.

.endif

VDC_UAH=$12 ; update hi-byte of VDC pointer

VDC_UAL=$13 ; update lo-byte of VDC pointer

VDC_DA=$1F ; data byte at current VDC pointer

VDC_cr=$D600

VDC_dr=$D601

Sta80Fore:

; Send data byte to the VDC chip

 jsr NewVDCAddress ; Update VDC address with fg screen pointer (r5)

 ldx #VDC_DATA ; request VDC data register

 stx VDC_cr ;

10$ bit VDC_cr ; test VDC status

 bpl 10$; loop till VDC ready for data byte

 sta VDC_dr ; store data byte

 rts ; exit

Lda80Fore:
; Get data byte to the VDC chip

 jsr NewVDCAddress ; Update VDC address with fg screen pointer (r5)

 ldx #VDC_DATA ; request VDC data register

 stx VDC_cr ;

10$ bit VDC_cr ; test VDC status

 bpl 10$; loop till VDC ready for data byte

 lda VDC_dr ; get data byte

 rts ; exit

; Transfer value in r5 to VDC internal hi/lo address register.

; Destroys: x

NewVDCAddress:

 ldx #VDC_HI_UPDATE ;

 stx VDC_cr ; ask VDC for high byte

10$ bit VDC_cr ; check VDC status

 bpl 10$; and loop till VDC ready

 ldx r5H ; store hi-byte of address

 stx VDC_cr ; to VDC chip

 ldx #VDC_LO_UPDATE ; ask VDC for low-byte

 stx VDC_cr ;

20$ bit VDC_cr ; check VDC status

 bpl 20$; and loop till VDC ready

 ldx r5L ; store lo-byte of address

 stx VDC_dr ; to VDC chip

 rts ; exit

Examples

 icons/menus

260

i_VerticalLine:

;**

; Inline version of VerticalLine.

; Pass:

; .word xl

; .word x2

; .byte y1

;**

IVERT_BYTES = 5 number of inline bytes in call

i_VerticalLine:

;--- Save away the inline return address

 PopW returnAddress

;--- Load up VerticalLine's parameters

ldy #VJBYTES

lda (returnAddress),y ; get yl parameter first

sta rllL

10$

dey ; load other params in a loop

lda (returnAddress),y ; They occupy consecutive GEOS

sta r3L-l,y ; pseudoregisters, so this will,

cpy #1 ; work correctly

bne 10$

;--- Now call VerticalLine with registers loaded

jsr VerticalLine

;--- and do an inline return

php ; save st reg to return

lda #IVERT_BYTES +1 ; # of bytes + 1

jmp DoInlineReturn ; jump to inline return. Do not jsr!

Examples

 icons/menus

261

icons/menu

ChangeMode

Examples

 icons/menus

262

IconsUp:

IconsUp:

 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK) ;draw to both buffers

 LoadW r0,#IconTable

 jsr DoIcons ;exit

 rts

Important: Due to a limitation in the icon-scanning code, the application must

always install an icon table with at least one icon. If the application

is not using icons, create a dummy icon table with one icon (see

below).

;***

; NoIcons: Install a dummy icon table. For use in applications that

; aren't using icons. Call early in the initialization of the

; application, before returning to MainLoop.

;***

DummylconTable:

 .byte 1 ; one icon

 .word NULL ; dummy mouse x (don't reposition)

 .byte NULL ; dummy mouse y

 .word NULL ; bitmap pointer to $0000 (disabled)

 .byte NULL ; dummy x-pos

 .byte NULL ; dummy y-pos

 .byte 1,1 ; dummy width and height

 .word NULL ; dummy event handler

Nolcons:

LoadW r0,#DummyIconTable ; point to dummy icon table

jmp DoIcons ; install. Let DoIcons rts

Examples

 utility

263

mouse/sprite

ChangeMode

Examples

 utility

264

ArrowUp:

;**

; Put up a new mouse picture

;**

ArrowUp:

 LoadW r0, #DnArrow ;point at new image

 jsr SetMsePic ;install it

 rts

;macro to store a word value in high/low order

.macro HILO word

 .byte]word,[word

.endm

;Mouse picture definition for down-pointing arrow

DnArrow:

 HILO %1111111110000000 ;mask

 HILO %1111111001111110

 HILO %0001100111111001

 HILO %0110011111100111

 HILO %0111111110011111

 HILO %0111111110011111

 HILO %0111111111101111

 HILO %0000000000001111

 HILO %0000000000000000 ;image

 HILO %0000000001111110

 HILO %0000000111111000

 HILO %0110011111100000

 HILO %0111111110000000

 HILO %0111111110000000

 HILO %0111111111100000

 HILO %0000000000000000

Examples

 utility

265

NewIsMseInRegion:

;**

; Replacement for IsMseInRegion.

; Handles the disabling of interrupts so return status registers

; are not effected by plp.

;**

NewIsMseInRegion:

 php ; disable interrupts around coordinate checks

 sei ; so it doesn't change while we're looking

lda mouseYPos ; get mouse y-position

 cmp r2L ; compare to top edge

 blt 20$; branch if outside

 cmp r2H ; compare to bottom edge

 bgt 20$; branch if outside

 CmpW mouseXPos,r3 ; compare mouseX with left edge

 blt 10$; branch if outside

 CmpW mouseXPos,r4 ; compare mouseX with right edge

 bgt 10$; branch if outside

 plp ; (restore interrupts before setting st reg)

 lda #TRUE ; return outside region status

 rts ; exit

10$

 plp ; (restore interrupts before setting st reg)

20$

 lda ; return inside region status

 rts ; exit

 LoadW r3,windowXl ; get coordinates of window's rectangle

 LoadW r2L,windowYl

 LoadW r4,windowX2

 LoadW r2H,windowY2

 jsr NewIsMseInRegion ; check for mouse inside region

 beq MouseOutsideWindow ; branch if outside window area

Examples

 text

266

Text

Examples

 text

267

Placeholder

 Examples

 text\keyboard

268

Keyboard

 Examples

 text\keyboard

269

KillPrompt:

.if COMMENT

**

Purpose: Safely turn off Text Prompt.

Pass: nothing

Returns: nothing

Alters: alphaFlag

Destroyed: a, x, r3L

DESCRIPTION: Disables Interrupts and then Turns Text Prompt off

**

.endif

KillPrompt:

 php ; save interrupt status

 sei ; disable interrupts

 jsr PromptOff ; prompt - off

 LoadB alphaFlag,0 ; clear alpha flag

 plp ; restore interrupt status

 rts

 Examples

 text\keyboard

270

utility

------------------- --- ---

BeepThrice Beep three times. Runs off the MainLoop by using Sleep

HandleCommand Given a command number this routine handles dispatching

 control to the appropriate routine.

LoadBASIC Loads a Commodore BASIC program and starts it running.

 Examples

 text\keyboard

271

BeepThrice:

;**

; Beep three times

; Runs off the MainLoop by using Sleep

;**

.if TARGET_NTSC

 FRAME_RATE=60

.else

 FRAME_RATE=50

.endif

BELL_INTERVAL = (FRAME_RATE/10) ;approximately. 1/10 second.

BeepThrice:

 jsr Bell ; sound the bell

 LoadW r0,BELL_INTERVAL ;

 jsr Sleep ; pause a bit

 jsr Bell ; sound the bell again

 LoadW r0,BELL_INTERVAL

 jsr Sleep ; pause a bit

 jmp Bell ; sound the bell again and let bell rts

Note3: see GetFPS for detecting Frame Rate for portability between hardware.

 Examples

 text\keyboard

272

HandleCommand:

;**

; HandleCommand

; DESCRIPTION: Given a command number this routine handles dispatching

; control to the appropriate routine.

;

; Pass: y command number

; Returns: depends on command

; Destroyed: depends on command

;**

UNIMPLEMENTED = $0000

HandleCommand:

 cpy #TOT_CMDS ; check command # against last cmd num

 bcs 99$; exit if command is invalid

 ldx CMDtabH,y ; get high byte routine address

 lda CMDtabL,y ; get low byte of routine address

 jsr CallRoutine ; call the routine

99$

 rts ; exit

; The table below is a collection of the the high/low bytes of the routine

; associated with each command number. If a command is not yet implemented

; use the UNIMPLEMENTED constant

CMDtabL:

 .byte [UNIMPLEMENTED ; Low Byte of command 0

 .byte [Cmdl ; Low Byte of command 1

 .byte [Cmd2 ; etc...

 .byte [Cmd3

 .byte [Cmd4

 .byte [Cmd5

CMDtabH: ;low bytes

 .byte]UNIMPLEMENTED ; High Byte of command 0

 .byte]Cmdl ; High Byte of command 1

 .byte]Cmd2 ; etc...

 .byte]Cmd3

 .byte]Cmd4

 .byte]Cmd5

TOT_CMDS = (CMDtabH-CMDtabL) ; Total Number of commands

Cmd1:

 ;Perform some action here.

 rts

Cmd2:

 ;Perform some action here.

 rts

Cmd3:

 ;Perform some action here.

 rts

Cmd4:

 ;Perform some action here.

 rts

Cmd5:

 ;Perform some action here.

 rts

 Examples

 text\keyboard

273

LoadBASIC:

; Loads a Commodore BASIC program and starts it

; running. Assumes that the program is a standard BASIC

; file that loads at $801. This example does little

; error checking.

;

; Pass: Nothing

;

UNIMPLEMENTED = $0000

basicProg:

 .byte "GodZilla",NULL

runCommand:

 .byte "RUN",NULL

LoadBASIC:

 LoadW r6,basicProg ; Find Basic Program to run

 jsr FindFile ; r5 will now point to programs DIR Entry

 txa

 bne 99$; If FILE_NOT_FOUND or other Disk Errors exit.

 LoadW r0,runCommand ; point at command string

 LoadW r7,#$801 ; assume standard address

 jmp ToBasic

99$

 sec

 rts

Overviews

 graphic routines

274

Graphic Routines
As the name GEOS (Graphics Environment Operating System) implies, screen graphics are central to

both the operating system and its applications. GEOS provides a number of graphic primitives

("primitive" because they are the basis of more complex objects) for drawing points, lines, rectangles,

and other objects, as well as displaying bitmap images such as those cut from geoPaint. GEOS also

provides graphic support routines for undoing regions, inverting areas, scrolling, and directly accessing

the screen memory.

Drawing with the built-in GEOS routines increases program portability by making much of the internal,

machine-dependent screen architecture transparent to the application. When you draw a line, for example,

you merely supply the two endpoints. GEOS takes care of calculating the proper pixel locations and

modifying the screen memory. This allows an application to use the same code to draw lines on machines

with very different graphics hardware and spares the programmer from dealing directly with screen

memory.

Introduction to GEOS Graphics

If you look closely at a monitor or television screen, you will notice that the image is made up of many

small dots. These small dots, called pixels, can be either on or off and are represented in memory by l's

and 0's, respectively. A pixel with a value of one is considered set and a pixel of value zero is considered

clear. This binary, or bitwise, representation of images is referred to as bitmapped graphics, and a bitmap

is a picture or image created in this way.

0011110000

0001110000

0001111000

0000111000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

Overviews

 graphic routines

275

Color

Although some hardware configurations support color graphics, GEOS assumes that the screen is a

monochromatic device; that is, GEOS only deals with one drawing color and one background color.

Typically, the drawing color is black, like ink and the background color is white, like a piece of paper.

Depending on the monitor being used and the Preference Manager settings, the actual displayed colors

may be different. We will refer to the color displayed by a zero-pixel as the background color and the

color displayed with a one-pixel as the drawing color. Applications that support multiple drawing colors,

such as the Commodore 64 version of geoPaint, must do so on their own, bypassing GEOS (at the expense

of portability) to provide multiple colors on the screen.

The GEOS Virtual Screen

The GEOS screen is often referred to as virtual screen, one whose layout and internal storage

characteristics exist independent of any underlying graphics hardware. For this reason, the GEOS screen

is fundamentally identical under all versions of the operating system.

The GEOS screen is a rectangular array of pixels arranged like a sheet of graph paper. Each pixel on the

screen has a corresponding (x,y) coordinate. The x-axis begins with zero and runs horizontally (left to

right) across the screen, and the y-axis begins with zero and runs vertically (top to bottom) down the

screen. The maximum x- and y-positions, because they differ from machine to machine, are calculated

by subtracting one from the GEOS constants SC_PIX_WIDTH and SC_PIX_HEIGHT.

(0,0) (SC_PIX_WIDTH-1,0)

(0, SC_PIX_HEIGHT-1) (SC_PIX_HEIGHT-1,SC_PIX_HEIGHT-1)

GEOS

SCREEN COORDINATES

X increasing

Y
 in

creasin
g

Overviews

 graphic routines

276

GEOS 128 40/80-Column Support
Because applications that run under GEOS 128 may want to take advantage of both the 40- and 80-

column screen modes, the following conventions have been adopted for the screen width and height

constants:

• The following constants can be used to access the dimensions of the 40- or 80-column screen

specifically:

SC_40_WIDTH 320 Pixel width of 40-column screen.

SC_40_HEIGHT 200 Pixel height of 40-column screen.

SC_80_WIDTH 640 Pixel width of 80-column screen.

SC_80_HEIGHT 200 Pixel height of 80-column screen.

• If the application is designed to run under GEOS 128 only and not run under GEOS 64 (the C64

constant is set to $00 and the C128 constant is set to $01), then the standard SC_PIX_WIDTH

and SC_PIX_IEIGHT constants take on the following values:

SC_PIX_WIDTH Pixel width of 80-column screen.

SC PIX_HEIGHT Pixel height of 80-column screen.

• If the application is designed to run under GEOS 64 and GEOS 128 (both the C64 constant and

the C128 constant set to $01), then the standard SC_PIX_WIDTH and SC_PIX_HEIGHT

constants take on the following values:

SC_PIX_WIDTH Pixel width of 40-column screen.

SC PIX_HEIGHT Pixel height of 40-column screen.

This is because the application (typically) will be written with the 40-column screen in mind. At

runtime, the application can check to see which version of GEOS it is running under and add

doubling bits to the appropriate coordinate values so that the 40-column coordinates will be

normalized automatically when GEOS 128 is in 80-column mode.

An application can use the following subroutine to determine whether it is running under GEOS

128 or GEOS 64: Checkl28

Important: GEOS does no clipping or range-checking on coordinates passed to it. If you pass

it invalid data or coordinates, the results are unpredictable and will often crash the

application.

Overviews

 graphic routines

277

When running under GEOS 128, the graphMode variable may be checked to determine whether GEOS

is in 40- or 80-column mode:

 bit graphMode ; check 40/80 mode bits

 bpl C64Mode ; branch if in 40-column mode

 ; else, handle as 80-column...

For more information, refer to "GEOS 128 X-position and Bitmap Doubling11 in this chapter. Also see

NormalizeX in the Routine Reference Section.

Inclusive Dimensions
All dimensions and GEOS coordinates are inclusive: a line contains the endpoints which define it, and a

rectangle includes the lines that make up its sides. For example, a rectangle defined by an upper-left

corner of (10,10) and a lower-right corner of (20,20) would include the lines around its perimeter defined

by the points (10,10), (10,20), (20,10), and (20,20).

Linear Bitmap
For the purpose of bitmap compaction and patterns, the GEOS screen is treated as a linear bitmap, a

contiguous block of bytes with each bit controlling an individual pixel. The bytes are lined up end-to-end

for each screen line! The high-order bit (bit 7) of each byte controls the leftmost pixel and the low-order

bit (bit 0) controls the rightmost pixel.

GEOS Virtual Screen

Keep in mind that this is a conceptual organization of the screen; the actual in-memory storage of

the screen and bitmap data may be very different.

y
-a

x
is

x-axis

byte 1 byte 0

Overviews

 graphic routines

278

Dividing the Screen Into Cards
Many GEOS routines subdivide the GEOS virtual screen into 8x8-pixel blocks called cards. A card

is a two-dimensional unit of measurement eight pixels on each side. The first card begins in the

upper-left corner of the screen (0,0) and extends to (7,7). The next card is just to the right of the first and

extends from (8,0) to (15, 7).

Cards are always aligned to eight pixel boundaries called card boundaries (pixel positions 0, 8,16, 24,

etc.). Aligning an object to a card boundary is called card alignment, and the position of an object

expressed in cards is called its card position. Pixel position (32, 72), for example, would correspond to

card position (4, 9) because 32/8 =.4 and 72/8 = 9). The card width of an object is its width in cards, and

the card height is its height in cards. An entire row of cards is called a cardrow.

The card is a convenient unit of measurement because its dimensions, 8x8, which is a power of 2, lend

themselves to simple binary arithmetic. For example, converting a pixel position to a card position is

merely a matter shifting right three times. See MseToCardPos in Examples / Graphic Routines

Example: MseToCardPos

Cards are also convenient because they map directly to the internal storage format of the Commodore

40-column graphics screen. (Converting to other formats, such as the Commodore 128 80-column screen

or the Apple II double hi-res screen, requires additional translation. This translation is handled

automatically by the GEOS graphics routines.)

Overviews

 graphic routines

279

Display Buffering
Normally the application has control of the screen. But when an item such as a dialog box or a menu is

displayed, GEOS overwrites the screen. When the dialog box is removed or the menu is retracted, GEOS

needs to restore the portion of the screen it destroyed. For this purpose, GEOS maintains a background

screen buffer. Most of the time, the background buffer contains an exact copy of the foreground screen

(the screen that is displayed) because GEOS normally sends graphics data to both screen buffers. When

a temporary object is displayed, however, it is only drawn to the foreground screen. Removing the object,

or recovering the original area of the screen, is then simply a matter of copying pixels from the

background buffer to the foreground screen. The GEOS dialog box and menu routines-handle this sort of

recovery automatically.

dispBufferOn
Usually the application will want to draw to both buffers so that GEOS can properly recover the

foreground screen after menus and dialog boxes. If graphics are only drawn to one buffer and a menu is

brought down or a dialog box is displayed, the subsequent recover may restore the wrong data.

However, sometimes an application may want to limit drawing to only the foreground or background

screen buffer. GEOS graphics and text routines use the global variable dispBufferOn to determine

whether to draw to the foreground screen, the background buffer, or both simultaneously. Bits 6 and 7 of

dispBufferOn determine the writing and reading mode:

bit 7: 1 — use foreground screen.

 0 — do not use foreground screen.

bit 6: 1 — use background buffer.

 0 — do not use background buffer.

bits 5-0: reserved for future use — should always be zeros

There are some constants which allow you to gain access to these bits:

ST_WR_FORE use foreground.

ST_WR_BACK use background.

and they can be used in following manner:

;Use both foreground screen and background buffer (normal).
LoadB dispBufferOn, # (ST_WR_FORE | ST_WR_BACK)

;Use foreground screen only.
LoadB dispBufferOn, #ST_WR_FORE

;Use background buffer only.
LoadB dispBufferOn, #ST_WR_BACK

Important: If bits 6 and 7 of dispBufferOn are both zero, GEOS considers this an undefined

state and will not produce useful results. In most cases, the internal address

calculations will force your graphic objects to appear in the center of the drawing

area where they can do little harm. If the center line on the screen becomes

garbled, dispBufferOn probably contains a bad value.

Overviews

 graphic routines

280

Using dispBufferOn
Typically applications leave dispBufferOn set to draw to both screens, whereas most desk accessories

will only draw to the foreground screen. In some situations, an application may want to limit drawing to

the foreground screen so that it may recover from the background buffer at a later time. Internally this is

what GEOS does when it opens a menu or dialog box: the object is only drawn to the foreground screen,

and when it needs to be erased, the original data is recovered from the background buffer. dispBufferOn

can also be used to pre-draw complex objects in the background buffer (ST_WR_BACK) and make

them instantly appear on the foreground screen by doing a recover.

An application must take special precautions when using dispBufferOn to draw selectively to one buffer

or the other. For example, when GEOS automatically recovers from a menu or a dialog box, it recovers

the data from the background buffer. If the background buffer has not been updated (the application has

been drawing with the ST_WR_BACK bit cleared, for example), then the menu or dialog may recover

the wrong data.

Since dialog boxes are only displayed when the application calls DoDlgBox and menus are only opened

while GEOS is in MainLoop, the application has some control over GEOS's automatic recovering. The

application can postpone displaying dialog boxes and returning to MainLoop until the foreground screen

and background buffer contain the same data. If an application must return to MainLoop while the

buffers contain different data (to let processes run, for example), it can always disable menus by clearing

the MENUON_BIT bit of mouseOn. The menus may be reenabled again by restoring the

MENUON_BIT bit of mouseOn:

Example: StopMenus

Using the Background Buffer as Extra Memory

Some applications are so starved for memory that they opt to use the background buffer for program code

or data. To do this, they must always keep the ST_WR BACK bit of dispBufferOn clear so that the

background buffer is not corrupted with graphic data.

If you disable the background buffer, GEOS cannot automatically recover after menus and dialog boxes.

The application must provide its own routine for restoring the foreground screen. There is a GEOS vector

called RecoverVector, which normally points to the RecoverRectangle routine. Whenever GEOS needs

to recover from a menu, dialog box, or desk accessory, it sets up parameters as if it were going to call

RecoverRectangle and jsr's indirectly through the address in RecoverVector. If the application is using

the background buffer, it must place the address of its own screen recover routine in RecoverVector.

When GEOS needs to recover a portion of the screen, it will jsr to the application's recover routine with

the following register values describing the rectangular area to recover:

r3 X1 — x-coordinate of upper-left (word).

r2L Y1 — y-coordinate of upper-left (byte).

r4 X2 — x-coordinate of lower-right (word).

r2H Y2 — y-coordinate of lower-right (byte).

Overviews

 graphic routines

281

where (X1,Y1) is the upper-left corner and (X2,Y2) is the lower-right corner of the rectangular area to

recover. The rectangle's coordinates are inclusive. The application must then use these values to restore

the portion of the screen that lies within the rectangle's boundaries and return with an rts. This recovery

can be as simple as filling with a halftoned pattern or as involved as redrawing graphic and text objects

that fall within the rectangular recover area.

Most of the larger Berkeley Softworks GEOS applications use a technique called saveFG/recoverFG

(short for "save foreground" and "recover background") to save and recover the foreground screen when

displaying menus and dialog boxes. Basically, saveFG will save a rectangular subregion of the

foreground screen to a special buffer just before GEOS displays a menu or a dialog box. When GEOS

tries to recover from the background buffer, recoverFG restores the data from the special buffer. Although

the size of the buffer varies from application to application, it will seldom be larger than 5.5K (just large

enough to hold the largest standard dialog box).

Transferring data to and from the buffer is fairly straightforward. With the Commodore 40-column

screen, it is mostly a matter of calculating the proper address offsets and copying bytes. With the GEOS

128 80-column screen, the process is complicated a bit because the bytes must be read from the VDC

chip's RAM.

The real trick is knowing how to intercept the normal GEOS menu and dialog box drawing and recovering

mechanisms. Dialog boxes are the easiest because they are always called by the application. The program

only needs to save the foreground screen area prior to calling DoDlgBox. The size of the dialog box can

be calculated from its table (be sure to account for any shadow) and the foreground data can be copied

into the saveFG buffer. When the dialog box is finished, GEOS will jsr through RecoverVector. The

application installs its own recoverFG routine into RecoverVector and restores the foreground area from

the saveFG buffer. The GEOS dialog box recovery does have one quirk that concerns shadowed dialog

boxes. GEOS shadowed dialog boxes consists of two overlapping rectangular areas: the actual dialog

box and the slightly offset shadow rectangle. GEOS first calls through RecoverVector once for the

region bounded by the shadow box, then again for the region bounded by the dialog box. When saving

the foreground area, the entire dialog box region (the area bounded by the union of all eight corner points)

should be saved and a special flag should be set so that the area is only recovered once. Under Apple

GEOS, the recovery of dialog box shadows can be suppressed by setting recoverOnce to a non-zero value.

When recoverOnce is non-zero, GEOS only vectors through RecoverVector once with the bounding

rectangle of the dialog box. The application's recover routine will need to compensate for the shadow

box. For more information on dialog boxes, refer to Chapter ?@DLG@. FIXME

Saving the foreground area before a menu is displayed is a bit tougher because GEOS displays menus at

MainLoop, the application has little notice that a submenu is opening up. Fortunately, there is a

workaround: GEOS supports a special type of sub-menu called a dynamic sub-menu. Just before a

dynamic sub-menu opens, GEOS calls a subroutine whose address is stored in the menu data structure.

This opportunity can be used to save the foreground screen area before GEOS draws the menu by

calculating the bounding rectangle from the menu structure. When GEOS recovers a menu, it calls

through RecoverVector as it does with dialog boxes. With multiple sub-menus, the menus are always

recovered in the reverse order they were drawn. For more information on menus, refer to Chapter "Icons,

Menus, and Other Mouse presses"

Overviews

 graphic routines

282

Manual Imprinting and Recovering

Within an application, data can be moved between the foreground screen and background buffer with

GEOS routines that copy data to and from the two areas. Copying data from the foreground screen to the

background buffer is called imprinting, and copying data from the background buffer to the foreground

screen is called recovering. There are GEOS routines for imprinting and recovering points, lines, and

rectangular regions.

Some Possible dispBufferOn Complications

When drawing with both buffers enabled (with both foreground and background bits set in

dispBufferOn), GEOS requires that the foreground screen and the background buffer contain exactly

the same data. If they are different, the results of graphic operations may be unpredictable. If you need

to draw to the foreground screen and the background buffer when they contain different data, you must

perform the graphic operation once by writing only to the foreground screen, and then a second time,

writing only to the background buffer — you cannot write to both of screen areas simultaneously if they

contain different data.

Machine Dependencies

The GEOS graphics routines hide much of the underlying hardware from the application. This allows the

same code to run under a variety of different environments with very few changes. However, it is

sometimes necessary to optimize graphic routines for a specific machine. This can be as simple as taking

advantage of color display capabilities or as complex as direct screen memory manipulation. Either way,

an application should only resort to such tactics when the desired effect cannot be achieved through the

standard graphics routines. Be aware that circumventing the GEOS Kernal will very likely increase your

development time and that there is no guarantee that the techniques will be compatible with future

versions of GEOS.

Commodore 64

The Commodore 64 version of GEOS uses the standard high-resolution bitmap mode (not multi-color

bitmap mode), which is 320 pixels wide by 200 pixels high. Memory is mapped to the screen in eight-

byte stacks called cards: byte 0 controls pixels (0,0) through (7,0), with bit 7 on the left and bit 0 on the

right, and byte 1 controls the same pixels on the line below, which is pixels (0,1) through (7,1). This

stacking continues through byte 7, which controls pixels (0,7) through (7,7) and completes the 8x8-pixel

card. Byte 8 begins the next card, controlling pixels (8,0) through (15,0). The screen memory begins at

SCREEN_BASE and occupies 8,000 bytes, extending to SCREEN_BASE+7999. The background

buffer begins at BACK_SCR_BASE and extends to BACK_SCR_BASE+7999.

GEOS does not directly support the foreground and background color options of the standard high-

resolution bitmap mode. The color matrix, located from COLOR_MATRIX to COLOR_MATRIX+999,

is set to a constant foreground and background color as determined by the Preference Manager. If an

application wants to support color like geoPaint), it must manage the color matrix itself. Each byte in the

color matrix sets the foreground and background colors of a card (8x8 pixel block): color byte 0 sets the

colors for card 0 (bitmap bytes 0-7) and color byte 1 sets the colors for card 1 (bitmap bytes 8-15). Before

the application exits, it must restore the original color matrix. This best done by saving the first byte and

then filling the color matrix before calling EnterDeskTop, as the following code fragments illustrate:

Example:

Overviews

 graphic routines

283

;On entry, save off the first byte of the color matrix

 MoveB COLOR_MATRIX, saveColor

 .

 .

;On exit, fill the color matrix with the saved value

 LoadW r0,1000 ; color matrix is 1000 bytes

 LoadW r1,COLOR_MATRIX

 MoveB saveColor,r2L ; fill with original color

 jsr FillRam

Commodore 128

In 40-column mode, GEOS 128 screen memory is identical to the Commodore 64. In 80-column mode,

GEOS 128 uses the high-resolution 640x200 mode supported by the 8563 VDC (Video Display

Controller) chip.. The foreground screen memory is not stored in the normal Commodore memory but

on the VDC chip instead. The VDC RAM is accessed indirectly through the VDC control registers. The

screen occupies 16,000 bytes, and each byte is accessed one at time by its address within the VDC display

RAM(the first screen byte is at 0, the last at 15999). Bits are mapped sequentially from memory to the

screen pixels: bits 7 through 0 of byte 0 (in that order) control the first seven pixels, (0,0) through (7,0).

The following byte controls the next seven pixels, (8,0) through (15,0). And so on for the remainder of

the screen. The following two subroutines will access bytes in the VDC screen RAM when GEOS 128 is

in 80-column mode: See Sta80Fore, Lda80Fore in Examples.

For more information on controlling the 8563 VDC chip, refer to the Commodore 128 Programmer's

Reference Guide.

Before writing directly to the 80-column foreground screen, be sure to call TempHideMouse to

temporarily disable the virtual sprites (for more information, refer to TempHideMouse in Chapter XX).

Because the 80-column screen requires a 16,000-byte background buffer, GEOS 128 (when in 80-

column mode) uses the 8,000-byte 40-column screen foreground buffer (SCREEN_BASE to

SCREEN_BASE+7999) for store the first 100 scanlines of background buffer data and the 8,000-byte

foreground screen buffer (BACK_SCR_BASE to BACK_SCR_BASE+7999) to store the last 100

scanlines of background buffer data. Because these data areas are not contiguous, an application that

directly accesses the background screen must compensate for this break.

FIXME. Back Buffer for VDC mode starts at BACK_SCR_BASE for the first half of the screen. Second half starts at roughly

$A032. Need to get the exact address on Second half of back screen start address and fix the above paragraph. Possible this

paragraph was correct for GEOS 128 V1.3? But not for 2.0

Overviews

 graphic routines

284

Porting Considerations and Techniques

Outside of the normal considerations for porting a GEOS application from one machine to another, there

are a few additional elements which pertain specifically to graphics.

GEOS 128 Virtual Sprites

GEOS 128 (in 80-column mode) renders sprites entirely in software by modifying the actual bitmap

screen. (GEOS 64 and GEOS 128 in 40-column mode, use the hardware sprite capabilities of the VIC

chip.) In order to properly treat these virtual sprites as if they were apart from the bitmap screen, they

must be erased before any graphic operation, whether drawing, testing, imprinting, or recovering, is done.

To do this, Apple GEOS and GEOS 128 provide the TempHideMouse routine to temporarily remove

all sprites. The sprites are not redrawn until the application returns to MainLoop. Normal GEOS graphics

and text routines will automatically call TempHideMouse; only applications that are directly accessing

the foreground screen area need call TempHideMouse. For more information, refer to TempHideMouse

in the Routine Reference Section "Software Sprites11 in Chapter®SPRITE®. FIXME

GEOS 128 X-position and Bitmap Doubling

Because the GEOS 128 80-column bitmap screen has a horizontal resolution exactly twice that of GEOS

64 (640 vs. 320), GEOS 128 supports the ability to automatically double the Xcoordinate (s) of graphic

and text objects, and the width of bitmap objects, by setting special bits in the x-position and width calling

parameter(s). This allows the visual elements of a GEOS 64 application to run in 80-column mode under

GEOS 128 with a minimum of effort. The special bits can also be added at run-time to dynamically

configure a program to run correctly under both GEOS 64 and GEOS 128. X-position and bitmap

doubling is supported by nearly every GEOS 128 routine that writes to the screen (including text, dialog

box, and icon routines). The following constants may be bitwise or'ed into GEOS 128 x-coordinates and

bitmap widths to take advantage of the automatic 80-column doubling features:

DOUBLE_W For doubling word-length values. Normal Xcoordinates, such as

those passed to Rectangle and DrawPoint.

DOUBLE_B For doubling byte-length values. A byte-length value is either a

card x-position or a card width, both of which apply almost

exclusively to bitmap routines, such as BitmapUp and

BitmapClip.

ADD1_W Used in conjunction with DOUBLE_W; adds one to a doubled

word-length value. This allows addressing odd-coordinates, as

when drawing a one-pixel frame around a filled rectangle.

These doubling bits have no effect when GEOS 128 is in 40-column mode but come to life when GEOS

128 is in 80-column mode. For example, the following code fragment will frame a filled rectangle. It will

appear similarly in both 40- and 80-column modes. See FilledRect in Examples:

Important: GEOS 128 filters all word-length x-coordinates (but not widths or byte-length

Xcoordinates) through the routine NormalizeX to process the doubling. For more

detailed information on how this routine works, refer to its documentation in this

chapter. NormalizeX will also double signed x-coordinates. If the x-coordinate is a

signed number (like you might pass to SmallPutChar), then the double bits must be

exclusive-or'ed into the x-coordinate parameters rather than simply or'ed.

Overviews

 graphic routines

285

The graphic elements of existing GEOS 64 applications can be ported to run under GEOS 128 with a

minimum of effort by taking advantage of the GEOS 128 doubling bits. However, once the doubling bits

have been installed, the application will no longer run under GEOS 64. The simplest approach to this

problem is to have two entirely different applications. One designed to run under GEOS 64 and the other

designed to run under GEOS 128. The doubling bits may be controlled at assembly-time with conditional

assembly, as the following example illustrates.

Example: DblDemo1

Designing an application so that it runs well under both GEOS 64 and GEOS 128 is a more difficult

task. It usually involves using self-modifying code: part of the initialization code for each module can

check the version of GEOS it is running under (use the Checkl28 subroutine illustrated in "GEOS 128

40/80-Column Support" in this chapter) and add the proper doubling-bits to all relevant x-coordinates.

Note3: A More efficient method is to build the application with all doubling in place. Then if the

program detects it is on a C64 it will remove the doubling bits with a simple and #%00011111. If you

are trying to add doubling instead then you have to have additional logic to handle when an ADD1_W

gets applied.

Note3: The best correct solution has not been created yet as of this writing. If the C64 kernal was

updated to be able to use NormalizeX in the same way 40 Column GEOS on the 128 does, then all

applications could be written with no need for self modification and would work the same on C64/C128

40/80.

Points and Lines

Points
The simplest graphic operation involves setting, clearing, or testing the state of an individual pixel,

or point, on the screen. GEOS provides two routines for working with points:

DrawPoint Set or clear a single point.

TestPoint Test a single point: is it set or clear?

Horizontal and Vertical Lines
Due to the rectangular nature of bitmapped graphics, horizontal and vertical lines are inherently fast

and easy to create and manipulate. GEOS provides five routines for working with horizontal and

vertical lines:

• HonzontalLine Draw a horizontal line with a repeating bit pattern.

• VerticalLine Draw a vertical line with a repeating bit pattern.

• InvertLine Invert the pixels in a horizontal line.

• ImprintLine Imprint a horizontal line to the background buffer.

• RecoverLine Recover a horizontal line from the background buffer.

Overviews

 graphic routines

286

Line Patterns.
Both HorizontalLine and VerticalLine use a byte-sized bit pattern when creating the line. Each bit in

the pattern byte represents a pixel in the line: wherever a one appears in the pattern byte, the

corresponding pixel will be set, and wherever a zero appears , the corresponding pixel will be cleared.

This allows lines which vary from solid (all l's) to dashed (a mixture of Ts and O's) to clear (all O's).

Note: this concept of a line-pattern is different from the 8x8 GEOS fill patterns used for rectangles.

Bits in the pattern byte are used left-to-right for horizontal lines and top-to-bottom in vertical lines, where

bit 7 is at the left and the top, respectively. A bit pattern of %11110000 would create a horizontal line

like:

and a vertical line like:

The pattern byte is always drawn as if aligned to an eight-pixel boundary. If the endpoints of a line do

not coincide with eight-pixel boundaries, then bits are masked off the appropriate ends. The effect of this

is that a pattern is always aligned to specific pixels, regardless of the endpoints and that adjacent lines

drawn in the same pattern will line up. That is, positions 0, 8, 16, 24, etc. will always depend on pattern

bit 7, and positions 1,9,17,25, etc. will always depend on pattern bit 6.

Diagonal Lines
For the same reason that bitmap displays are well-suited for displaying horizontal and vertical lines, they

are ill-suited for displaying diagonal lines. A smooth, even-density line cannot be drawn diagonally

between two points (except at 45-degree angles) — the points on the line must be approximated in a

stairstep fashion:

GEOS provides one routine for drawing and recovering a line between two arbitrary points:

DrawLine Draw or recover a line between any two points.

Note: Because of the internal memory layout of screen memory, horizontal lines will often draw up

to eight times faster than vertical lines.

Overviews

 graphic routines

287

DrawLine does not utilize a pattern byte; it will either set or clear all pixels between the two endpoints.

Patterns and Rectangles

Fill Patterns

GEOS uses two types of patterns: line patterns and fill patterns. A line pattern is a one-byte repeating

pixel pattern used by routines like HorizontalLine and VerticalLine, and a fill pattern is an 8x8 pixel

block represented by eight bytes in memory and used by routines like Rectangle. Line patterns are

discussed in "Points and Lines11 earlier in this chapter. Fill patterns are discussed here.

A 50% fill pattern might be defined by the following:

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

.byte %10101010

.byte %01010101

The pattern has alternating set and clear pixels. Drawing a filled rectangle in this pattern would produce

a medium-dark block.

All versions of the GEOS Kernal contains the following predefined patterns:

Fills occur in the current pattern. The current pattern can be changed with the following routine:

To use one of the system patterns, the application would first call SetPattern with the appropriate pattern

number. SetPattern calculates the proper pattern address, the address of the eight-byte block, and places

it in the GEOS variable curPattern. Any subsequent call to a routine which uses a system pattern will

index off of the address in curPattern to access the 8x8 block. Some applications, finding the need to

define their own patterns, modify either the address in curPattern to point to their own eight-byte pattern

• SetPattern Set the current pattern.

Note: DrawLine is the most general-purpose drawing routine. It can be used to draw single points

(both endpoints the same), horizontal and vertical lines, or lines at arbitrary angles. However,

it is burdened by this flexibility> making it appreciably slower than the other plotting

routines.

Overviews

 graphic routines

288

or use the address in curPattern (after a valid call to SetPattern) to modify the GEOS system patterns

directly.

Rectangles
Rectangles in GEOS are defined by their upper-left and lower-right corners. The upper-left is usually

referred to as (X1,Y1) and the lower-right as (X2,Y2), where XI, X2, Yl, and Y2 are valid x and y screen

positions. From these two coordinates, the rectangle routines can determine the coordinates of the other

two corners:

GEOS provides five routines for dealing with rectangular regions:

• Rectangle Draw a solid rectangle using the current fill pattern.

• FrameRectangle Draw an unfilled rectangle (bounding frame).

• InvertRectangle Invert the pixels in a rectangular area.

• ImprintRectangle Imprint a rectangular area to the background buffer.

• RecoverRectangle Recover a rectangular area from the background buffer.

Bit-mapped Images

All graphic picture objects, such as icons and Photo Scrap images cut from geoPaint, are stored

internally in GEOS Compacted Bitmap Format to save space. When you paste an image or icon

into a geoProgrammer source file, it is in compacted bitmap format, and when you read a geoPaint

image, it too is in compacted bitmap format If a compacted image were to be copied directly to the

screen, it would very likely be unrecognizable. GEOS bitmap routines first decompact the image

and then transfer it to the screen area.

Note: GEOS does not restore the system patterns when an application exits. If an application

modifies the patterns, it should restore them when it exits unless it is desirable for the next

application to inherit the redefined patterns (as with the GEOS Pattern Editor).

(X1,Yl) (X2,Yl)

(X1,Y2) (X2,Y2)

Overviews

 graphic routines

289

Standard Bitmap Routines
All versions of GEOS support the following bitmap routines:

• BitmapUp Place a full compacted bitmap on the screen.

• BitmapClip Place a rectangular subset of a compacted bitmap on the screen.

• BitOtherClip Special version of BitMapClip which uses an application-defined routine

to collect the compacted bitmap data a byte at a time, allowing the image

to come from disk or other I/O device.

GEOS bitmaps are compacted from the GEOS virtual screen format rather than the internal machine

format. Because the standard bitmap routines deal with byte-sized chunks (eight-pixels at a time),

the following apply:

• Horizontally, the bitmap occupies pixels up to the nearest eight-pixel (byte) boundary. That is: a

bitmap of five pixels is extended to eight and a bitmap of 30 pixels is extended to 32 pixels.

Bitmaps which are not evenly divisible by eight (in the horizontal direction) are usually padded

with zero bits.

• Bitmaps can only be placed at eight-pixel intervals on the x-axis (0, 8, 16...). This limitation does

not apply to the y-axis.

GEOS Compacted Bitmap Format

The GEOS compacted bitmap format relies on the observation that pixel patterns in bitmap images

are frequently repetitive. If you were to examine a rectangular area of the screen (in GEOS linear

bitmap format) it would often be the case that adjacent bytes would be identical. The compacted

bitmap format encodes this redundancy into groups of bytes called packets. Each packet can

decompress to a large number of bytes in the actual bitmap.

Overviews

 graphic routines

290

Packet Format
Each packet in a GEOS compacted bitmap follows a specific format. The first byte of each packet

is called the count byte and is part of the packet header. Depending on its value, it has the

following significance:

COUNT (HEX) SIGNIFICANCE

0 ($00) reserved for future use.

1-127 ($00 - $7F) repeat: repeat the following byte count times. The total length of this

packet is two bytes and decompresses to count bytes in the actual bitmap.

128 ($80) reserved for future use.

129-219 ($81-$DB) unique: use the next count-128 bytes literally. The total length of this

packet is (count-128)+l or count-127 bytes and decompresses to count-128

bytes.

220 ($DC) reserved for future use.

221-255 ($DD - $FF) bigcount: the next byte is a bigcount value in the range 2

through 255. The following count-220 bytes comprise data in

repeat and unique format that should be repeated bigcount

times. The total length of this packet depends on the decompacted

size of the repeat and unique packets. A bigcount cannot

contain another bigcount.

Decompaction Walkthrough

Given the following compacted data:

.byte 25, 0, 133, 240, 220, 10, 0, 7, 224, 4, 3, 10, 5, 3

The decompaction routine would interpret it like this:

repeat: the decompaction routine encounters the count value 25. Since it is in the range 1-

127, the following byte (0), is repeated 25 times:

0, 0

unique: the next packet begins with a count of 133,which is in the range 129-219. The next

133-128 = 4 bytes are used once each:

240, 220, 10, 0, 7

bigcount: the final packet begins with a count of 24 which is in the range 221-255. This

signals a two byte header and the following byte, the bigcount, is 4. These two bytes are

interpreted to mean repeat the next 224-220 = 4 bytes four times. The next four bytes,

however, are expected to be in the unique and repeat compacted formats. In this case, its 3,10

(repeat: 10 three times) and 5,3 (repeat: 3 five times), which in turn are repeated four times:

25, 0

133, 240, 220, 10, 0, 7

224, 4, 3, 10, 5, 3

Overviews

 graphic routines

291

10, 10, 10 ,3, 3, 3, 3, 3, 10, 10, 10 ,3, 3, 3, 3, 3, 10, 10, 10 ,3, 3, 3, 3, 3, 10,

10, 10 ,3, 3, 3, 3, 3

Compacting Strategy

The easiest way to compact a bitmap image is to let geoPaint do it for you by cutting the image out

as a photo scrap and pasting it directly into your geoProgrammer source code. Sometimes this

method is impractical and you will want to compress images directly from within an application.

The following subroutine can be used to compact bitmap data:

Example: BitCompact

Direct Screen Access and Block Copying

Direct Screen Access
One purpose of an operating system such as GEOS is to insulate the application from the peculiarities of

the machine it is running on, allowing the programmer to worry more about how the application will

function than how it will interact with the hardware. However, because of the complexity of GEOS

graphics routines, it is sometimes necessary, for performance reasons, to bypass the operating system and

manipulate the screen memory directly. Although this practice is not recommended — it increases

portability problems, defeating much of the purpose of a GEOS — it is a reality. And with that in mind,

Berkeley Softworks built routines into GEOS to facilitate direct screen access. The following routine

exists in all versions of the Kernal:

• GetScanLine Calculate the address of the first byte of a particular screen line.

Special Graphics Related Routines

GEOS provides a few graphics-related routines which don't fit nicely into any other category:

• GraphicsString Execute a string of graphics commands.

• NormalizeX Adjust an x-coordinate (under GEOS 128 only) to compensate for

the higher-resolution 80-column mode

• SetNewMode Change GEOS 128 graphics mode (40/80-column).

Overviews

 Icons, Menus, and Other Mouse Presses

292

Icons, Menus, and Other Mouse Presses

When the user clicks the mouse button, GEOS determines whether the mouse pointer was

positioned over an icon, a menu item, or some other region of the screen. GEOS has a unique

method of handling a mouse press for each of these cases. If the user pressed on an icon, GEOS

calls the appropriate icon event routine. If the user pressed on a menu, GEOS opens up a sub-

menu or calls the appropriate menu event routine, whichever is applicable. And if the user pressed

somewhere else, GEOS calls through otherPressVector, letting the application handle (or

ignore) these "other" mouse presses.

Icons

When you open a disk by clicking on its picture, delete a file by dragging it to the trash can, or

click on the CANCEL button in a dialog box, you are dealing with icons, small pictorial

representations of program functions. A GEOS icon is a bitmapped image, whether die picture

of a disk or a button-shaped rectangle, that allows the user to interact with the application.

When the application enables icons, GEOS draws them to the screen and then keeps track of

their positions. When the user clicks on an icon, an icon event is generated, and the application

is given control with information concerning which icon was selected.

Icon Table Structure

The information for all active screen icons is stored in a data structure called the icon table.

GEOS only deals with one icon table at a time. The icon table consists of an icon table header

and a number of icon entries. The whole table is stored sequentially in memory with the header

first, followed by the individual icon entries.

Icon Table Header
The icon table header is a four byte structure which tells GEOS how many icons to expect in the structure

and where to position the mouse when the icons are enabled. It is in the following format:

Icon Table Header:

 Index Constant Size Description

+0 OFF_NM_ICNS byte Total number of icons in this table.

+1 OFF_IC_XMOUSE word Initial mouse x-position. If $0000, mouse position will not be altered.

+3 OFF_IC_YMOUSE byte Initial mouse y-position.

This first byte reflects the number of icon entries in the icon table (and, hence, the number of

icons that can be displayed). The table can specify up to MAX_ICONS icons.

The next word (bytes 1 and 2) is an absolute screen x-coordinate and the following byte (byte

3) is an absolute screen y-coordinate. The mouse will be positioned to this coordinate when the

Overviews

 Icons, Menus, and Other Mouse Presses

293

icons are first displayed. If you do not want the mouse positioned, set the x-coordinate word to

$0000, which will signal DoIcons to leave the mouse positions alone.

Icon Entries
Following the icon table header are the icon entries, one for each specified in the OFF_I_NUM byte in

the icon table header. Each icon entry is a seven-byte structure in the following format:

Icon Entries:

 Index Constant Size Description

+0 OFF_I_PIC word Pointer to compacted bitmap picture data for this Icon. If set

to $0000, icon is disabled.

+2 OFF_I_X byte Card x-position for icon bitmap.

+3 OFF_I_Y byte Y-position of icon bitmap.

+4 OFF_I_WIDTH byte Card width of icon bitmap.

+5 OFF_I_HEIGHT byte Pixel height of icon bitmap.

+6 OFF_I_EVENT word Pointer to icon event routine to call if this icon is selected.

Note: OFF_I_NEXT=8 Offset to Next Icon in structure if it exists.

The first word (OFF_I_PIC) is a pointer to the compacted bitmap data for the icon. The icon can be of

any size (up to the full size of the screen). If this word is set to NULL ($0000), the icon is disabled.

The third byte (OFF_I_X) is the x byte-position of the icon. The x byte-position is the x-position in

bytes. Icons are placed on the screen by BitmapUp and so must appear on an eight-pixel boundary. The

byte-position can be calculated by dividing the pixel-position by eight (x_byte_position =

x_pixel_position/8).

The fourth byte (OFF_I_WIDTH) is the pixel position of the top of the icon. The icon will be placed at

(x_byte_position*8, y_pixel_position).

The next two bytes (OFF_I_WIDTH and OFF_I_HEIGHT) are the width in bytes and height in pixels,

respectively. These values correspond to the geoProgrammer internal variables picW and picH when

they are assigned immediately after a pasted icon image.

The final word (OFF_I_EVENT) is the address of the icon event handler associated with this icon.

Sample Icon Table
The following data block defines three icons which are placed near the middle of the screen. The mouse

is positioned over the first icon:
**

; SAMPLE ICON TABLE

**

; Icon positions and bitmap data

I_SPACE = 1 ; space between our icons (in cards)

PaintIcon:

PAINTW = picW

PAINTH = picH

PAINTX = 16/8

PAINTY = 80

Overviews

 Icons, Menus, and Other Mouse Presses

294

Writelcon:

WRITEW = picW

WRITEH = picH

WRITEX = PAINTX + PAINTW + I_SPACE

WRITEY = PAINTY

PublishIcon:

PUBLISHW = picW

PUBLISHH = picH

PUBLISHX = WRITEX + WRITEW + I_SPACE

PUBLISHY = WRITEY

;The actual icon data structure to pass to DoIcons follows

IconTable:

I_header:

.byte NUMOFICONS ; number of icon entries

.word (PAINTX*8) + (PAINTW*8/2) ; position mouse over paint icon

.byte PAINTY + PAINTH/2

I_entries:

PaintIStruct:

.word Paintlcon ; pointer to bitmap

.byte PAINTX, PAINTY ; icon position

.byte PAINTW, PAINTH ; icon width, height

.word PaintEvent ; event handler

WriteIStruct:

.word Writelcon ; pointer to bitmap

.byte WRITEX, WRITEY ; icon position

.byte WRITEW, WRITEH ; icon width, height

.word WriteEvent ; event handler

PublishIStruct:

.word Publishlcon ; pointer to bitmap

.byte PUBLISHX, PUBLISHY ; icon position

.byte PUBLISHW, PUBLISHH ; icon width, height

.word PublishEvent ; event handler

NUMOFICONS = (*-I_entries)/IRECSIZE ; number of icons in table

;Dummy icon event routines which do nothing but return

PaintEvent:

WriteEvent:

PublishEvent:

rts

Overviews

 Icons, Menus, and Other Mouse Presses

295

Installing Icons

When an application is first loaded, GEOS will not have an active icon structure. GEOS must be given

the address of the applications icon table before MainLoop can display and track the user's interaction

with them. GEOS provides one routine for installing icons

• DoIcons Display and activate an icon table.

DoIcons draws the enabled icons and instructs MainLoop to begin watching for a single- or double-click

on one. The icon table stays activated and enabled until the ICONS_ON_BIT of mouseOn is cleared or

another icon table is installed by calling DoIcons with the address of a different icon structure. In either

case, the old icons are not erased from the screen by GEOS.

DoIcons will draw to the foreground screen and background buffer depending on the value of

dispBufferOn. Icons are usually permanent structures in a display and so often warrant being drawn to

both screens. If icons are only drawn to the foreground screen, they will not be recovered after a menu

or dialog box.

Example: IconsUp

;***

; NoIcons Install a dummy icon table. For use in applications that

; aren't using icons. Call early in the initialization of

; the application, before returning to MainLoop.

;***

Nolcons:

LoadW r0,#DummyIconTable ; point to dummy icon table

jmp DoIcons ; install. Let DoIcons rts

DummyIconTable:

 .byte 1 ; one icon

 .word $0000 ; dummy mouse x (don't reposition)

 .byte $00 ; dummy mouse y

 .word $0000 ; bitmap pointer to $0000 (disabled)

 .byte $00 ; dummy x-pos

 .byte $00 ; dummy y-pos

 .byte 1,1 ; dummy width and height

 .word $0000 ; dummy event handler

Important: Due to a limitation in the icon-scanning code, the application must always

install an icon table with at least one icon. If the application is not using

icons, create a dummy icon table with one icon (see below).

Overviews

 Icons, Menus, and Other Mouse Presses

296

MainLoop and Icon Event Handlers

When the user clicks the mouse button on an active icon, GEOS MainLoop will recognize this as an icon

event and call the icon event handler associated with the particular icon. The icon event handler is given

control with the number of the icon in r0L (the icon number is based on the icon's position in the table:

the first icon is icon 0). Before the event handler is called, though, MainLoop might flash or invert the

icon depending on which of the following values is in iconSelFlag:

Constants for iconSelFlag:

ST_NOTHING $00 The icon event handler is immediately called; the icon image is untouched

ST_FLASH $80 The icon is inverted for selectionFlash vblanks and then reverted to its normal state before the

event handler is called.

ST_INVERT $40 The icon is inverted (foreground screen image only) before the event handler is called. The event

handler will usually want to revert the image before returning to MainLoop by calculating the

bounding rectangle of the icon, loading dispBufferOn with ST_WR_FORE, and calling

InvertRectangle.

Detecting Single- and Double-clicks on Icons
When the user first clicks on an icon, GEOS loads the global variable dblClickCount with the GEOS

constant CLICK_COUNT. GEOS then calls the icon event handler with r0H set to FALSE, indicating

a single-click. dblClickCount is decremented at interrupt level every vblank. If the icon event handler

returns to MainLoop and the icons user again clicks on the icon before dblClickCount reaches zero,

GEOS calls the icon event handler a second time with r0H set to TRUE to indicate a double-click.

Checking for a double-click or a single-click (but not both) on a particular icon is trivial: merely check

r0H. If r0H is TRUE when you're looking for a single-click or its FALSE when you're looking for a

double-click, then return to MainLoop immediately. Otherwise, process the click appropriately. This way,

if the user single-clicks on an icon which requires double-clicking or double-clicks on an icon which

requires single-clicking, the event will be ignored.

However, checking for both a double- or a single-click on the same icon (and performing different

actions) is a bit more complicated because of the way double-clicks are processed: during the brief

interval between the first and second clicks of a double-click, the icon event handler will be called with

r0H set to FALSE, which will appear as a single-click; when the second press happens before

dblClickCount hits zero, the icon event handler is called a second time with r0H set to TRUE, which

will appear as a double-click. There is no simple way (using the GEOS double click facility) to distinguish

a single-click which is part of a double-click from a single-click which stands alone.

 There are two reliable ways to handle single- and double-click actions on icons: the additive function

method and the polled mouse method. The additive function method relies on a simple single-click event

which toggles some state in the application and a double-click event (usually more complicated) which

happens in addition to the single-click event. The GEOS deskTop uses the additive function method for

selecting (inverting) file icons on a single-click and selecting and opening them on a double-click. The

icon event handler first checks the state of r0H. If it is FALSE (single-click) then the icon (and an

associated selection flag) is inverted. If it is TRUE (double-click) then the file is opened. If the user

single-clicks, the icon is merely inverted. If the user double-clicks, the icon is inverted (on the first click)

and then processed as if opened (on the second click).

Overviews

 Icons, Menus, and Other Mouse Presses

297

Example:

; **

; Icon double-click handler

; additive function method

; **

IconEventl:

 lda r0H ; check double-click flag .

bne 10$; branch if second click of a double-click

 ; else, this is a single-click or the

 ; first push of a double-click,

 jsr InvertIcon ; so just invert the selection

 bra 90$

10$

 jsr OpenIcon ; double-click detected, go process it

90$

 rts ; exit

The polled-mouse method can be used when the single-click and double-click functions are

mutually exclusive. When a single-click is detected the icon event handler, rather than returning to

MainLoop and letting GEOS manage the double-click, handles it manually by loading

dblClickCount with a delay and watching mouseData for a release followed by a second click.

Example:

; **

; Icon double-click handler

; polled mouse method Open Icon

; **

IconEvent2:

 ;--- User pressed mouse once, start double-click counter going

 LoadB dblClickCount,#CLICK_COUNT ; start delay

 ;--- Loop until double-click counter times-out or button is released

10$

 lda dblClickCount ; check double-click timer

 beq 40$; If timed-out, no double-click

 lda mouseData ; Else, check for release

 bpl 10$; loop until released

 ;--- mouse was released, loop until double-click counter times-out or

 ;--- button is pressed a second time.

20$

 lda dblClickCount ; check double-click timer

 beq 30$; If timed-out, no double-click

 lda mouseData ; Else, check for second press

 bmi 20$; loop until pressed

 ;--- Double-click detected (no single-click)

30$ jmp DoDoubleClick ; do double-click stuff

 ;--- Single-click detected (no double-click)

40$ jmp DoSingleClick ; do single-click stuff

Overviews

 Icons, Menus, and Other Mouse Presses

298

Other Things to Know About Icons

Icon Releases and otherPressVector

When the user clicks on an active icon, MainLoop will call the proper icon event routine rather than

vectoring through otherPressVector. However, the routine pointed to by otherPressVector will get called

when the mouse is released. Applications that aren't using otherPressVector can disable this vectoring by

storing a. $0000 into OtherPressVector ($0000 is actually its default value). Applications that depend on

otherPressVector, however, can check mouseData and ignore all releases.

Example:

;OtherPressVector routine that ignores releases (high bit of mouseData is set on

releases)

MyOtherPress: ; control comes here from otherPressVector

 lda mouseData ; check state of the mouse button

 bmi 90$; ignore it if it's a release

 jsr PressDown ; otherwise process the press

90$:

 rts ; exit

For more information on otherPressVector, refer to "Other Mouse Presses" in this chapter.

Icon Precedence

GEOS draws icons sequentially. Therefore, if icons overlap, the ones which are drawn later will be drawn

on top. When the user clicks somewhere on the screen, GEOS scans the icon table in this same order,

looking for an icon whose rectangular boundaries enclose the coordinates of the mouse pointer. If more

than one icon occupies the coordinate position, the icon that is defined first in the icon table (and therefore

drawn on bottom) will be given the icon event. If an active menu and an icon overlap, the menu will

always be given precedence.

Disabling Icons

An application can disable an icon in the current icon structure by clearing the OFF_I_PIC word of the

icon (setting it to $0000). If an icon is disabled prior to a call to DoIcons, the icon will not be drawn. If

an icon is disabled after the call to DoIcons, the icon will remain on the screen but will be ignored during

the icon scan. The application can reenable the icon by restoring the OFF_I_PIC word to its original

value. (Actually, any non-zero value will do because reenabling an icon does not redraw it, it only restores

the coordinates to MainLoop's active search list.)

Note: These techniques for handling single- and double-clicks are described here as they

pertain to icons; they are not directly applicable to applications that detect mouse clicks

through otherPressVector. When control vectors through otherPressVector, the value

in r0H is meaningless. For more information on otherPressVector, refer to "Other

Mouse Presses" in this chapter.

Overviews

 Icons, Menus, and Other Mouse Presses

299

GEOS 128 Icon Doubling

As with bitmaps, special flags in the icon data structure can be set to automatically double the xposition

and/or icon width when GEOS 128 is running in 80-column mode. To have an position icon's x-position

automatically doubled in 80-column mode, bitwise-or the OFF_I_X parameter with DOUBLE_B. To

double an icon's width in 80-column mode, bitwise-or the OFF_I_WIDTH parameter with

DOUBLE_B. These bits will be ignored when GEOS 128 is running in 40-column mode. Do not,

however, use these doubling bits when running under GEOS 64. GEOS 64 will try to treat the doubling

bit as part of the coordinate or width value rather than a special-case flag. For more information, refer to

"GEOS 128 X-position and Bitmap Doubling" in Chapter "Graphics Routines".

Example:

; **

; SAMPLE GEOS 128 ICON TABLE THAT USES AUTOMATIC DOUBLING FEATURE

; using compiler flags for conditional assembly between C128 and C64

; Note: You can build programs that work on both the 128 in 80cols

; and the 64.

; **

C128=TRUE

C64=FALSE

.if !C128

.echo Error: cannot assemble GEOS 128 specific code without C128 flag set

.else

PaintIcon:

PAINTW = picW

PAINTH = picH

PAINTX = 16/8

PAINTY = 80

;The actual icon data structure to pass to DoIcons follows
IconTable:

I_header:

 .byte NUMOFICONS

 .word ((PAINTX*8) + (PAINTW*8/2)) | DOUBLE_W ; position mouse over paint icon

 .byte PAINTY + PAINTH/2

I_entries:

PaintIStruct:

 .word PaintIcon ; pointer to bitmap

 .byte PAINTX | DOUBLE_B ; x card position (dbl in 80-column mode)

 .byte PAINTY ; y-position

 .byte PAINTW | DOUBLE_B ; icon width (dbl in 80-column mode)

 .byte PAINTH ; icon height

 .word PaintEvent ; event handler

NUMOFICONS - (*-I_entries)/ OFF_I_NEXT ;number of icons in table

;Dummy icon event routines which do nothing but return

PaintEvent:

 rts

.endif

Overviews

 Icons, Menus, and Other Mouse Presses

300

Menus

Menus, one of the most common and powerful user-interface facilities provided by GEOS, allow the

application to offer lists of items and options to the user. The familiar menus of the GEOS desktop, for

example, provide options for selecting desk accessories, manipulating files, copying disks, and opening

applications. Virtually every GEOS-based program will take advantage of these capabilities, providing a

consistent interface across applications.

GEOS menus come in two flavors: horizontal and vertical. The main menu, the menu which is always

displayed, is usually of the horizontal type and is typically placed at the top of the screen. Each selection

in the main menu usually has a corresponding vertical sub-menu that opens up when an item in the main

menu is chosen. These sub-menus can contain items that trigger the application to perform some action.

They can also lead to further levels of sub-menus. For example, a horizontal main menu item can open

up to a vertical menu, which can have items which then open up other horizontal sub-menus, which can

then lead to other vertical menus, and so on.

Division of Labor with Menus

GEOS divides the labor of handling menus between itself and the application. The GEOS Kernal handles

all of the user's interaction with the menus. This includes drawing the menu items, opening up necessary

sub-menus, and restoring the Screen area from the background buffer when the menus are retracted.

MainLoop manages the menus, keeping track of which items the user selects. If the user moves off of the

menu area without making a selection, GEOS automatically retracts the menus without alerting the

application.

If the user selects a menu item which generates a menu event, the application's menu event handler is

called with the menus left open. Leaving the menus open allows the application to choose when and how

to retract them: all the way back to the main menu, up one or more levels (for multiple sub-menus), or

up no levels (keeping the current menu open). This lets the application choose the menu level which is

given control upon return, thereby allowing multiple selections from a sub menu without forcing the user

to repeatedly traverse the full menu tree for each option.

Menu Data Structure

The main menu, all its sub-menus, their individual selectable items, and various attributes associated with

each menu and each item are all stored in a hierarchical data structure called the menu tree. Conceptually,

a menu tree with multiple sub-menus might have the following layout:

Overviews

 Icons, Menus, and Other Mouse Presses

301

0

Level 0 Level 2

 Level 1 Level 3

Sample Menu Tree

The main menu (or level 0) is the first element in the tree; it is the menu that is always displayed while

menus are enabled. Each item in a main menu will usually point to a secondary menu or submenu. Items

in these submenus can point to events (alerts to the application that an item was selected) or they can

point to additional submenus. Menus are linked together by address pointers.

Sub-menus are sometimes referred to as child menus, and the menu which spawned the sub-menu as its

parent. Sub-menus can be nested to a depth determined by the GEOS constant MAX_M NESTING,

which reflects the internal variable space allocated to menus. The depth or level of the current menu can

be determined by the GEOS variable menuNumber, which can range from 0 to (MAX_M_NESTING-1)

.In memory, all menus, whether the main menu or its children, are stored in the same basic menu structure

format Each menu is comprised of a single menu header block followed by a number of menu item blocks

(one for each selectable item in the menu):

main menu

sub-menu sub-menu sub-menu sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

sub-menu

E
V

E
N

T

E
V

E
N

T

E
V

E
N

T

Overviews

 Icons, Menus, and Other Mouse Presses

302

item n is the last item in

a menu of n items

Menu/Sub-menu structure

Menu/Sub-menu Header
The menu header is a seven-byte structure that specifies the size and location of the menu (How big is

the rectangle that surrounds the menu and where should the menu be drawn?), any attributes that affect

the entire menu (Is it a vertical or horizontal menu?), and the number of selectable items in the menu.

The header is in the following format:

 Menu/Sub-menu Table Header:

 Index Constant Size Description
+0 OFF_M_Y_TOP byte Top edge of menu rectangle (yl pixel position).

+1 OFF_M_Y_BOT byte Bottom edge of menu rectangle (y2 pixel position).

+2 OFF_M_X_LEFT word Left edge of menu rectangle (xl pixel position).

+4 OFF_M_X_RIGHT word Right edge of menu rectangle (x2 pixel position).

+6 OFF_NUM_M_ITEMS byte Menu type bitwise-or'ed with number of items in this

menu/sub-menu.

The first six bytes specify the screen location and size of the menu with the positions of the bounding

rectangle in pixel positions. The x-positions are word (two-byte) values and the y positions are byte

values. These values are absolute screen pixel positions. The size of the bounding rectangle depends on

the number of menu items and the size of text strings within the menu. The height of the rectangle can

be calculated with the constant M_HEIGHT: a horizontal menu is always a height of M_HEIGHT, and

a vertical menu is a height of the number of menu items multiplied by M_HEIGHT. For example, the

height of a vertical menu with seven items would be 7*M_HEIGHT. The width of a menu is more

difficult to calculate because it depends on the length of the individual text strings. It is best to use a large

number for this dimension and adjust it to a smaller size if necessary.

menu

header

block

menu

item

block

(item n)

menu

item

block

(item 0)

Overviews

 Icons, Menus, and Other Mouse Presses

303

All menus and sub-menus are positioned independently. This means that the main menu need not be at

the top of the screen (it can be inside a window, for example), and sub-menus need not be adjacent to

their parent menus (although that is where you will usually want them). You can experiment with the

flexibility of menu positioning to customize your applications.

The seventh byte is the attribute byte. It is the number of selectable items in the menu bitwise-or'ed with

any menu type flags. A menu can have as many as MAX_M_ITEMS selectable menu items.

Menu/Sub-menu Types (use in attribute byte):

Constant Description

HORIZONTAL Arrange menu items in this menu/sub-menu horizontally.

VERTICAL Arrange menu items in this menu/sub-menu vertically.

CONSTRAINED Constrain the mouse to the menu/sub-menu. If the menu is a sub-menu, the mouse

can still be moved off to the parent menu (off the top of a vertical sub-menu or off

the left of a horizontal menu).

UNCONSTRAINED Do not constrain the mouse to the menu/sub-menu. If the user moves off of the

menu, GEOS will retract it.

Bitwise Breakdown of the Attribute Byte:

7 6 5 4 3 2 1 0

b7 b6 b5-b0

b7 orientation: 1= vertical; 0 = horizontal,

b6 constrained: 1 = yes; 0 = no.

b5-b0 number of items in menu/sub-menu (up to MAX_M_TEMS).

Some of the menu types are obviously mutually exclusive: you can't, for example, make a menu

both vertical and horizontal, nor simultaneously constrained and unconstrained.

A vertical, unconstrained menu with seven selectable items would have an attribute byte of:

.byte (7 | VERTICAL | UN_CONSTRAINED)

A horizontal, constrained menu with 11 selectable items would have an attribute byte of:

.byte (11 | HORIZONTAL | CONSTRAINED)

Most sub-menus are unconstrained: if the user moves the pointer off the sub-menu, all opened menus are

retracted as if GotoFirstMenu had been called. A constrained menu, on the other hand, restricts the

pointer from moving off the menu area from all but one side. A constrained menu will only allow the

pointer to move off the side leading back to where it expects the parent menu to be: off the top for a

vertical sub-menu and off the left for a horizontal sub-menu. If the user moves off of a constrained menu

Important: GEOS 64 and GEOS 128 before version 2.0 do not correctly handle menus that extend

beyond an x-position of 255.

Overviews

 Icons, Menus, and Other Mouse Presses

304

(in the only available direction), the current sub-menu is retracted and the parent menu becomes active

as if DoPreviousMenu had been called.

Menu Item Structure

For each selectable item in a menu (the number items is specified in the header) there is a five-byte item

structure. These item structures follow the menu header in memory. The first item represents the first

menu selection (top- or leftmost), the second, the second, and so on. Each item structure specifies the

text that will appear in the menu, what happens when the item is selected (Will it generate an event or a

sub-menu?), and the appropriate event routine or sub-menu. Each menu item is in the following format:

 Menu Item:

 Index Constant Size Description
+0 OFF_TEXT_ITEM word Pointer to null-terminated text string for this menu item.

+2 OFF TYPE ITEM byte Selection type (sub-menu, event, dynamic sub-menu).

+3 OFF_POINTER_ITEM word Pointer to sub-menu data structure, event routine, or dynamic

sub-menu routine, depending on selection type.

The first word of the item is a pointer to the text that will be placed in the menu. The text is expected to

be null-terminated (the last byte should be $00 or NULL). If the menu rectangle specified in the header

is not wide enough to contain the entire text string, the text will be clipped at the right edge when the

menu is drawn.

The byte following the text pointer (the third byte) is an item type indicator. Each selectable item can

either be an action, a sub-menu, or a dynamic sub-menu selection. An action8type item generates a menu

event from MainLoop. A sub-menu type item automatically opens up a sub menu structure. And a

dynamic sub-menu type selection opens up a sub-menu, but before it does, it calls an application's routine.

Dynamic sub-menus arc useful for modifying a menu structure on the fly. For example, a point size sub-

menu, such as those used in geoWrite, can be changed dynamically when a new font is selected. When

the user chooses the font item, the dynamic sub menu routine checks the list of available point sizes and

builds out the point size sub-menu based on its findings. The following table summarizes the three menu

item types:

Types of Menu Items (for use in item type byte):

Constant Description

SUB_MENU This menu item leads to a sub-menu. The OFF_POINTER_ITEM is a pointer to

the sub-menu data structure (points to first byte of "a menu/sub-menu header).

DYN_SUB_MENU This menu item is a dynamic sub-menu. The OFF_POINTER_ITEM is a

pointer to a dynamic sub-menu routine that is called before the menu is actually

drawn. The dynamic sub-menu routine can do any necessary preprocessing and

return with r0 containing a pointer to a sub-menu data structure or $0000 to

ignore the selection.

MENU_ACTION This menu item generates an event. The OFF_POINTER_ITEM is a

pointer to the event routine that will to call.

NOTE: The constrain option is only applicable to sub-menus — if the CONSTRAINED flag is

set in the main menu (level 0), the option will have no effect.

Overviews

 Icons, Menus, and Other Mouse Presses

305

Examples

 structures

306

structures

dialog/Icons/Menus/Graphics

Examples

 structures

307

DIALOG:

Note2: The first entry in a DB table is a command byte defining its position.

This can either be a byte indicating a default position for the DB,

DEF_DB_POS (%10000000), or a byte indicating a user defined position,

SET_DB_POS (%00000000) which must be followed by the position

information.

The position command byte is or'ed with a system pattern number to be

used to fill in a shadow box. The shadow box is a rectangle of the same

dimensions as the DB and is filled with one of the system patterns. The

shadow box appears underneath the Dialog Box, Offset 1 card right and 1

card down.

 Start of Default Dialog Start of Custom Size Dialog

-------------------------- ----------------------------------

.byte DEF_DB_POS | pattern .byte SET_DB_POS | pattern

 .byte top ;(0-199)

 .byte bottom ;(0-199)

 .word left ;(0-319 or 0-639)

 .word right ;(0-319 or 0-639)

Note1: standard window size: columns 64-255

 rows 32-127

Note1: If the shadow pattern is zero, then no shadow is drawn.

Note1: Icon descriptors are stored in a table at $880C

Note3: Maximum # of Dialog Icons is 8. This can be worked around by drawing

your own images and detecting mouse clicks over the images.

Note1: The following is a list of global variables stored by the window

processor:

 curPattern string baselineOffset curSetWidth

curHeight curIndexTable cardDataPntr currentMode

dispBufferOn mouseOn msePicPtr windowTop

windowBottom leftMargin rightMargin appMain

intTopVector ioBotVector mouseVector keyVector

inputVector mouseFaultVec otherPressVector alarmTmtVector

BRKVector RecoverVector selectionFlash alphaFlag

iconSelFlag faultData menuNumber mouseTop

 mouseBottom mouseLeft mouseRight stringX,stringY

 I/O address’s $D000-$D010 $D01B-$D01D $D025-$D026 $D015 $D028-$D02E

Position Commands:

After the position byte (or bytes) may appear a number of icon or

command bytes. Most require position coordinates. The x and y

positions are an offset from the upper left corner of the DB.

Icons x position uses bytes (cards) 0-40 x_boffset

Text x position uses pixels 0-319 x_poffset

y position is always in pixels 0-199 y_offset

Note3: GEOS 128 always doubles the x positions in a dialog box when the

system is in 80 column mode. Do not try to use DOUBLE_W/DOUBLE_B as

this will be a VERY large x coordinates. DBUSERICON Structures DO need

DOUBLE_B for width if the user icon is not a native 80 col icon.

Note3: Custom Dialog X-Cords DO require Doubling (or native 0-640 cords)

Examples

 structures

308

Dialog Box Icons

Icon Value Example Description

OK 1 .byte OK

.byte x_boffset

.byte y_offset

Draw OK Icon

CANCEL 2 Draw CANCEL Icon

YES 3 etc...

NO 4

OPEN 5

DISK 6

NOT-USED 7-10 Marked for future use. When is the future?

Dialog Commands

Command Value Example Description

DBTXTSTR 11 .byte DBTXTSTR

.byte x_poffset

.byte y_offset

.word ptrtTextStr

Put tTextStr

DBVARSTR 12 .byte DBVARSTR

.byte x_poffset

.byte y_offset

.byte zPgPtr

Put text @@zPgPtr

zPgPtr is an address of a zero

page ptr to string

DBGETSTRING 13 .byte DBGETSTRING

.byte x_poffset

.byte y_offset

.word ZPgPtr

.byte BUFFERSIZE

Get typed user input. ZpgPtr

points to address of a buffer to

use for the input that is

BUFFERSIZE bytes.

SBSYSOPV 14 .byte SBSYSOPV Closes DB when the mouse is

pressed anywhere other then over

an Icon

DBGRPHSTR 15 .byte DBGRPHSTR

.word gGraphicsString

Draws a GraphicsString

DBGetFileS 16 .byte DBGetFileS

.byte x_boffset

.byte y_offset

Presents a File Selection box

for the user to pick from.

DBOPVEC 17 .byte DBOPVEC

.word MsePressVector

Vector to call when mouse button

is pressed.

DBUSERICON 18 .byte DBUSERICON

.byte x_boffset

.byte y_offset

.word UserIcon

UserIcon Table

.word ptrIconData

.word NULL

.byte width in bytes

.byte Height in Pixels

.word ptrIconAction

Note: (width | DOUBLE_B for 128)

DB_USR_ROUT 19 .byte DB_USR_ROUT

.WORD User_Vector

Call User_Vector after the DB

has been drawn.

NULL 0 .byte NULL Ends the Dialog Box Definition

Examples

 structures

309

Menu

Menu/Sub Menu Header

 Size

+0 OFF_M_Y_TOP byte Top edge of menu rectangle (yl pixel position).

+1 OFF_M_Y_BOT byte Bottom edge of menu rectangle (y2 pixel position).

+2 OFF_M_X_LEFT word Left edge of menu rectangle (xl pixel position).

+4 OFF_M_X_RIGHT word Right edge of menu rectangle (x2 pixel position).

+6 OFF_NUM_M_ITEMS byte Menu type bitwise-or'ed with number of items in this

menu/sub-menu.

Menu/Sub-menu Types (use in attribute byte):

HORIZONTAL Arrange menu items in this menu/sub-menu horizontally.

VERTICAL Arrange menu items in this menu/sub-menu vertically.

CONSTRAINED Constrain the mouse to the menu/sub-menu. If the menu is a sub-

menu, the mouse can still be moved off to the parent menu (off the

top of a vertical sub menu or off the left of a horizontal menu).

UNCONSTRAINED Do not constrain the mouse to the menu/sub-menu. If the user moves

off of the menu, GEOS will retract it

Bitwise Breakdown of the Attribute Byte:

 7 6 5 4 3 2 1 0

b7 b6 b5-b0

b7 orientation: 1 = vertical; 0 = horizontal,

b6 constrained: 1 = yes; 0 = no.

b5-bO number of items in menu/sub-menu (up to MAX_M_ITEMS).

Examples

 structures

310

disk

Examples

 structures

311

Directory Entry:

Offset Constant Size Description

$00 OFF_CFILE_TYPE 1

DOS file type

 Bit 7 1=File Closed/Normal State

 Bit 6 Write Protect bit

ST_WR_PR %01000000

 Bit 0-2 Commodore file Type

 DEL = 0 ;deleted

 SEQ = 1 ;sequential

 PRG = 2 ;program

 USR = 3 ;user (GEOS)

 REL = 4 ;relative file. Invalid in GEOS

 CBM = 5 ;BAM Protection.

$01 OFF_INDEX_PTR

OFF_DE_TR_SC

2 Index table pointer (VLIR file T/S)

track/sector for file's 1st data block

$03 OFF_FNAME 16 File name padded with hard spaces $A0

$13 OFF_GHDR_PTR 2 track/sector of GEOS Header block

$15 OFF_GSTRUC_TYPE 1 GEOS file structure type

 SEQUENTIAL=0

 VLIR=1

$16 OFF_GFILE_TYPE 1 GEOS file type

 NOT_GEOS=0 ;C-64 file No Header

 BASIC=1 ;C-64 Basic w/Header

 ASSEMBLY=2 ;C-64 Assembly w/Header

 DATA=3 ;C-64 DATA File w/Header

 SYSTEM=4 ;GEOS System File

 DESK_ACC=5 ;GEOS desk accessory

 APPLICATION=6 ;GEOS application

 APPL_DATA=7 ;GEOS data file

 FONT=8 ;GEOS font

 PRINTER=9 ;GEOS Print Driver

 INPUT_DEVICE=10 ;GEOS mouse etc.

 DISK_DEVICE=11 ;GEOS DISK driver

 SYSTEM_BOOT=12 ;GEOS boot file

 TEMPORARY=13 ;GEOS Swap File

(The deskTop will automatically delete all

temporary files when opening a disk.)

 AUTO_EXEC=14 ;Application to automatically be

ran just after booting, but before deskTop runs.

 INPUT_128=15 ;128 Input driver

$17 OFF_YEAR 5 Y/M/D/H/M

$1C OFF_SIZE 2 File Size in blocks

Examples

 structures

312

Header Block:

Offset Constant Size Description

$00 2 $00,$FF

When Creating a file with Save file, this

location holds a word pointer to a buffer

containing the filename

$02 O_GHIC_WIDTH 1 width in bytes of file icon

$03 O_GHIC_HEIGHT 1 height of file icon in pixels

$04 O_GHIC_PIC 64 Icon Data

$44 O_GHCMDR_TYPE 1 Commodore File Type

 DEL = 0 ;deleted

 SEQ = 1 ;sequential

 PRG = 2 ;program

 USR = 3 ;user (GEOS)

 REL = 4 ;relative file. Invalid in GEOS

 CBM = 5 ;BAM Protection.

$45 O_GHGEOS_TYPE 1 GEOS file type

 NOT_GEOS=0 ;C-64 file No Header

 BASIC=1 ;C-64 Basic w/Header

 ASSEMBLY=2 ;C-64 Assembly w/Header

 DATA=3 ;C-64 DATA File w/Header

 SYSTEM=4 ;GEOS System File

 DESK_ACC=5 ;GEOS desk accessory

 APPLICATION=6 ;GEOS application

 APPL_DATA=7 ;GEOS data file

 FONT=8 ;GEOS font

 PRINTER=9 ;GEOS Print Driver

 INPUT_DEVICE=10 ;GEOS mouse etc.

 DISK_DEVICE=11 ;GEOS DISK driver

 SYSTEM_BOOT=12 ;GEOS boot file

 TEMPORARY=13 ;GEOS Swap File

(The deskTop will automatically delete all

temporary files when opening a disk.)

 AUTO_EXEC=14 ;Application to

automatically be ran just after booting, but

before deskTop runs.

 INPUT_128=15 ;128 Input driver

$46 O_GHSTR_TYPE 1 GEOS file structure type

$47 O_GHST_ADDR 2 Start address of file

$49 O_GHEND_ADDR 2 end address of file

(Only valid for Desk Accessories)

$4B O_GHST_VEC 2 Application Initialization vector

$4D O_GHFNAME 12

4

3

Permanent filename

Version Example: V1.0

Always 3 Zeros.

$60 O_128_FLAGS 1 OS Combability Flag

bit7 bit 6

 0 0 $00 64/128 40-column mode only

 0 1 $40 64/128 40 and 80-column modes

 1 0 $80 64 Only.

 Does not run under GEOS 128

 1 1 $C0 128 80-column mode only.

 Does not run under GEOS 64

$61 O_GH_AUTHOR 20 Application Author Name

$75 O_GHP_FNAME 20 permanent filename of parent application.

Used by Data Files.

Examples

 structures

313

 = 97 ;20 bytes: author's name (only if is applic.)

 = $A0 ;offset to notes that are stored with the file

 ;and edited in the deskTop "get info" box.

if file is an application data file:

O_GHP_DISK = 97 ;20 bytes: disk name of parent application's

 ;disk.

O_GHP_FNAME = 117 ;20 bytes: permanent filename of parent

 ;application.

$89 O_GHAPDAT 23 Data Area for Application Use

$A0 O_GHINFO_TXT 96 Null Terminated File Notes. Shows in

Information box for file.

 Appendix

Additional Resources

314

Appendex

Contents

1. atoms
2. hardware
3. memory maps
4. macros

 Appendix

atoms

315

atoms
quick reference

Categories
Identifier Category

bit bit operations

br branching

cmp Comparisons

flow Alters flow of logic

math Math

hw Hardware

size Code Base Reduction

text Text Operations

util Utility

Sources
Identifier Source

gP1 geoProgrammer1.1

gD geoDebugger

gW geoWrite 128

gP' geoProgrammer' 2.0

HHG Created by PBM to perform actions for HHG2G Macros that were not defined in geoProgrammer1.1.

Example: macro bgt is used in HHG2. But is not in geoProgrammer1.1. Macro logic was obvious so it

was created here for use in the examples.

 Other sources will be added as used

 Appendex

atoms

name Description

316

by name

DoDlg Wrapper for DoDlgBox to reduce codebase size gP size

Lower Convert character to Lowercase gP' text

Upper Convert character to uppercase gP' text

 Appendix

atoms

317

atom definitions by name

blank

 Appendix

atoms

318

DoDlg: size

Name: DoDlg

Filename: _DoDlg

Category size

Source: geoProgrammer

Purpose: Reduce Foot Print of application that uses multiple dialog boxes.

Pass: a DBL - Low Part of dialog Box Address

 x DBH - High byte of dialog Box Address

Returns: Same as DoDlgBox

Destroys: Same as DoDlgBox

Description:

Note: Normal way to call a dialog box is using LoadW r0,dbTable.

This takes 8 bytes to load r0 before calling DoDlgBox and only 4 bytes

to load a and x with the address bytes.

 It takes 2 uses of DoDlg for it to cut a profit.

 DoDlg size = 7 bytes.

 Savings per use. 4 bytes.

Example:

 ...

 lda #[dbTable

 ldx #]dbTable

 jsr DoDlgBox

 ...

Body:

 DoDlg:

 sta r0

 stx r0H

 jmp DoDlgBox

See also:

 Appendix

atoms

319

Lower: text

Name: Lower

Filename: _Lower

Category text

Source: geoProgrammer'

Purpose: Convert character to uppercase

Pass: accumulator CHAR - Character to process

Returns: If value in accumulator is a lowercase letter

 returns uppercase of that letter.

 otherwise returns accumulator unchanged

Destroys: Nothing

Description:

Note: †Carry is known to be clear at that point. no need to clc prior to the

adc.

Example:

Body:

 Lower:

 cmp #'A' ; If character < 'A' then exit.

 bcc 14$

 cmp #'Z'+1 ; If character < 'Z' then exit.

 bcs 10$

 adc #('a'-'A') ; Convert to Lower Case†

 10$

 rts

See also: Upper

 Appendex

hardware

320

Upper: text

Name: Upper

Filename: _Upper

Category text

Source: geoProgrammer'

Purpose: Convert character to uppercase

Returns: If value in accumulator is an uppercase letter

 returns uppercase of that letter.

 otherwise returns accumulator unchanged

Destroys: Nothing

Pass: accumulator CHAR - Character to process

Note: †Carry is known to be clear at that point. The -1 is to compensate for

the additional +1 subtraction caused by the cleared carry. This uses

assembler time to save runtime bytes (1) and cycles (2) by removing

the need for the sec instruction.

Example: KeyTrap

Body:

 Upper:

 cmp #'a' ; If character < 'a' then exit.

 bcc 90$;

 cmp #'z'+1 ; if character > 'z' then exit.

 bcs 90$;

 sbc #('a'-'A') -1 ; Convert to Upper Case†

 90$

 rts

See also: Lower

 Appendex

hardware

321

hardware

dialog

 Appendex

hardware

322

6510 data register: (64,128) 01

CPU_DATA

;Machine Power on Default KRNL_BAS_IO_IN

;GEOS Default RAM_64K

;GEOS During serial I/O IO_IN

RAM_64K=$30 ;%11 0100 ;64K RAM

KRNL_BS=$33 ;%11 0011 ;Kernal + basic

IO_IN=$35 ;%11 0101 ;60K RAM, 4K I/O space in

KRNL_IO_IN=$36 ;%11 0110 ;Kernal + I/O

KRNL_BAS_IO_IN=$37 ;%11 0111 ;Kernal + basic + IO

 KRNL_BAS_IO_IN RAM_64K IO_IN

 FFFF

E000

D000

C000

A000

0100

0

8k KERNAL ROM

8K RAM 8K RAM

I/O 4K RAM I/O

4K RAM 4K RAM 4K RAM

8K BASIC

8K RAM 8K RAM

24K RAM

24K RAM 24K RAM

Zero Page Zero Page Zero Page

See also:

 Appendex

hardware

323

17XX RAM Expansion:
EXP_BASE:

$DF00: STATUS REGISTER

 Bit 7: INTERRUPT PENDING (1 = interrupt waiting to be served)

 Not Used by GEOS

 Bit 6: END OF BLOCK (1 = transfer complete)

 unnecessary

 Bit 5: FAULT (1 = block verify error)

 Set if a difference between C64- and REU-memory areas was found

 during a compare-command.

 Bit 4: SIZE (1 = 256 KB) set on 1764 and 1750 and clear on 1700.

 Bits 3..0: VERSION 0

$DF01: COMMAND REGISTER. Write to this register to start operation

 Bit 7: EXECUTE (1 = transfer per current configuration)

 Set this bit to execute a command.

 Bit 6: reserved (normally 0)

 Bit 5: LOAD (1 = enable autoload option)

 With autoload enabled the address and length registers (see

 below) will be unchanged after a command execution.

 Otherwise the address registers will be counted up to the

 address off the last accessed byte of a DMA + 1,

 and the length register will be changed (normally to 1).

 Bit 4: FF00

 If this bit is set command execution starts immediately

 after setting the command register.

 Otherwise command execution is delayed until write access to

 memory position $FF00

 Bits 3..2: reserved (normally 0)

 Bits 1..0: TRANSFER TYPE

 00 = transfer C64 -> REU

 01 = transfer REU -> C64

 10 = swap C64 <-> REU

 11 = compare C64 - REU

$DF02: .word C64 BASE ADDRESS

$DF04: .word REU BASE ADDRESS

$DF05: .byte BANK

$DF07: .word Transfer Size

$DF09: Interrupt Mask Register. Not used by GEOS

$DF0A: Address Control Register.

 Bit 7: C64 ADDRESS CONTROL (1 = fix C64 address)

 Bit 6: REU ADDRESS CONTROL (1 = fix REU address)

 Bits 5..0: unused

Note: By using a fixed address in the REU as a source you can very quickly

initialize large blocks of ram

Full Reference

http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata/programming.reu

Richard Hable

http://www.zimmers.net/anonftp/pub/cbm/documents/chipdata/programming.reu

 Appendex

hardware

324

C128 MMU:

Configuration Register

MMUReg=$FF00 ;Mirror of D500. FF00 is Always Visible

;MMUReg Bits

;- Bit 0 ;Zone 5 $D000-DFFF

MIO =%0 ;I/O

MCROM =%1 ;Character ROM

;- Bit 1 ;Zone 2 ;$4000-7FFF

MBASIC =%00 ;Basic ROM

MEXTROM=%10 ;External Function ROM

;- Bits 2,3 ;Zone 3 $8000-BFFF

MUBASIC=%0000 ;Basic ROM

MUIROM =%0100 ;Internal Function ROM

MUEROM =%1000 ;External Function ROM

MURAM =%1100 ;RAM

;- Bits 4,5 ;Zone 4 $C000-CFFF,

 $E000-FEFF

MHKERNAL = %000000 ;KERNAL ROM

MHIROM=%010000 ;Internal Function ROM

MHEROM=%100000 ;External Function ROM

MHERAM=%110000 ;RAM

;- Bits 6,7 ;Bank Select

MBANK0=%00000000 ;Bank 0

MBANK1=%01000000 ;Bank 1

MBANK2=%10000000 ;Bank 2

MBANK3=%11000000 ;Bank 2

BANK_0 = MBANK0| MHERAM | MURAM | MEXTROM | MCROM ;No ROMs, RAM 0

BANK_0 =%00111111 ;No ROMs, RAM 0

BANK_1 =%01111111 ;No ROMs, RAM 1

BANK_2 =%10111111 ;No ROMs, RAM 2 ;Requires 512k expanded 128.

;Otherwise same as bank 0

BANK_3 =%11111111 ;No ROMs, RAM 3 ;Requires 512k expanded 128.

;Otherwise same as bank 0

BANK_4 =MBANK0|MHIROM|MUIROM|MEXTROM|MIO

BANK_5 =MBANK1|MHIROM|MUIROM|MEXTROM|MIO

BANK_6 =MBANK2|MHIROM|MUIROM|MEXTROM|MIO

BANK_7 =MBANK3|MHIROM|MUIROM|MEXTROM|MIO

BANK_8 =MBANK0|MHEROM|MUEROM|MEXTROM|MIO

BANK_9 =MBANK1|MHEROM|MUEROM|MEXTROM|MIO

BANK_10 =MBANK2|MHEROM|MUEROM|MEXTROM|MIO

BANK_11 =MBANK3|MHEROM|MUEROM|MEXTROM|MIO

BANK_12=%00000110 ;int function ROM, Kernal and IO, RAM 0

BANK_13=%00001010 ;

BANK_14=%00000001 ;all ROMs, char ROM ram 0

BANK_15=%00000000 ;all ROMs, RAM0 power on default

BANK_99=$00001110 ;IO, KERNAL, RAM 0 48K

Configuration Register

Bits Description

7-6 Bank Select

00 Bank 0

01 Bank 1

10 Bank 2

 11 Bank 3

5-4 C000-CFFF,E000-EFFF

00 Kernal ROM
01 Internal Function ROM
10 External Function ROM

 11 RAM

3-2 8000-BFFF

00 Basic ROM

01 Internal Function ROM

10 External Function ROM

 11 RAM

1 4000-7FFF

0 BASIC ROM low

1 RAM

0 D000-DFFF

0 I/O

1 1 RAM or Character ROM

 Appendex

hardware

325

Ram Configuration Register

MMURCR=$FF06 ;Mirror of D506. FF06 is Always Visible

;MMUReg Bits

;- Bit 0 ;Zone 5 $D000-DFFF

MIO =%0 ;I/O

MCROM =%1 ;Character ROM

;- Bit 1 ;Zone 2 ;$4000-7FFF

MBASIC =%00 ;Basic ROM

MEXTROM=%10 ;External Function ROM

;- Bits 2,3 ;Zone 3 $8000-BFFF

MUBASIC=%0000 ;Basic ROM

MUIROM =%0100 ;Internal Function ROM

MUEROM =%1000 ;External Function ROM

MURAM =%1100 ;RAM

;- Bits 4,5 ;Zone 4 $C000-CFFF,

 $E000-FEFF

MHKERNAL = %000000 ;KERNAL ROM

MHIROM=%010000 ;Internal Function ROM

MHEROM=%100000 ;External Function ROM

MHERAM=%110000 ;RAM

;- Bits 6,7 ;Bank Select

MBANK0=%00000000 ;Bank 0

MBANK1=%01000000 ;Bank 1

MBANK2=%10000000 ;Bank 2

MBANK3=%11000000 ;Bank 2

RAM Configuration Register

Bits Description

7-6 Bank Select for VIC

00 Bank 0
01 Bank 1

10 Bank 2

 11 Bank 3

5-4 Not Used

3-2 Common Ram Location

00 Disabled
01 Bottom
10 Top

 11 Both

0-1 Size of Common Ram

00 1k

01 4k

10 8k

11 16K

 Appendex

hardware

326

CMRAM_1K =%00

CMRAM_4K =%01

CMRAM_8K =%10

CMRAM_16K=%11

;-- Set Shared RAM size to 16K

lda MMURCR

and #%11111100

ora CMRAM_16K

sta MMURCR

.macro SetBankConfiguration(id) {
 .if(id==0) {
 lda #%00111111 // no ROMs, RAM0
 }
 .if(id==1) {
 lda #%01111111 // no ROMs, RAM1
 }
 .if(id==12) {
 lda #%00000110 // int.function ROM, Kernal and IO, RAM0
 }
 .if(id==14) {
 lda #%00000001 // all ROMs, char ROM, RAM0
 }
 .if(id==15) {
 lda #%00000000 // all ROMs, RAM0. default setting.
 }
 .if(id==99) {
 lda #%00001110 // IO, kernal, RAM0. 48K RAM.
 }
 sta MMUCR
}

.endm

.macro SetVICBank (bank) {
 lda $DD00
 and #%11111100
 ora #3 - bank
 sta $DD00

.endm

 Appendex

memory maps

327

memory maps

 Appendex

memory maps

328

GEOS Memory Map:

All address Values in Hex

C64 Memory Regions

00 100 200 300 400 6000 8000 8A00 8C00 9000 A000 BF40 D000 E000

Zero

Page

Stack

Page

deskTopVars Vectors AppRAM Back

Screen

Disk

Buffers

Sprites COLOR

MATRIX

DISK

BASE

Fore

Screen

Kernal

Low

I/O or

Kernal

Kernal

High

 Appendex

memory maps

329

Zero Page

00 CPU_DDR 6510 data direction register

01 CPU_DATA Built-in 6510 I/O port, bit oriented

02-21 r0-r15 GEOS Kernal zero Page pseudoregisters

22-23 curPattern Pointer to fill pattern data

24-25 string Pointer to input buffer

26 fontTable ;- Label for Start of Current Font Settings

26 baselineOffset number of pixels from top of font to baseline.

27-28 curSetWidth pixel width of font bitstream in bytes.

29 curHeight card height in pixels (Point size1) of font

2A-2B curIndexTable pointer to font index table.

2C-2D cardDataPntr Pointer to font image data.

 ;--- fontTable End

2E currentMode Defines the current print style

2F dispBufferOn Controls the screen to draw too. Fore/Back or Both.

30 mouseOn Mouse control flag.

31-32 msePicPtr Pointer Mouse sprite, default= 84C1

 ;--- Text Clipping

33 windowTop Top margin, usually 0 (Top of screen)

34 windowBottom Bottom margin, usually 199

35-36 leftMargin Left margin

37-38 rightMargin Right margin

39 pressFlag Input control flags

3A-3B mouseXPos Mouse's X position

3C mouseYPos Mouse's Y position

3D-3E returnAddress Address for inline return

3F graphMode 40 / 80 column mode flag on 128

40-41 returnAddress Pointer to click box data table

42-43 callRouVector Jump vector used by CallRoutine

44-45 dlgBoxVector DoDlgBox pointer to window descriptor block.

45-6F Used by Kernal

70-7F A2-A9 Generically Named. Application zPage area

80-FA zKerIO Kernal I/O*

 BA curDevice current serial device number

FB-FE A0-A1 Generically Named. Application zPage area

FF Used by Kernal

*Note: 80-FA is only used by the kernal during IO. See SwZp for how to make safe use of this area in your

applications.

 Appendex

memory maps

330

 Appendex

memory maps

331

Stack Page
===

0100-01FF 6510 Hardware Stack Area.

 (GEODEBUGGER uses bottom of stack as a data area)

0200-02FF deskTopVars ;Application may freely use this block

0300-03FF

 Appendex

memory maps

332

128 BackRAM:

GEOS Primary Bank is Bank 1.

BackRAM is bank 0. This allows common RAM to be turned on and have parts of bank 0 then Appear into the memory

space of bank 1 as shared ram is always Bank 0 ram and is always visible to the CPU when active.

Bank 0:

0000-03FF: ?

0400-1FFF: Soft Sprites

2000-9FFF: Swap area for Desk Accessories

 If your application does not use Desk Accessories this may be used

 as Application data area.

A000-FFFF: ??

Bank 0 Back Ram

$0000 $400 $FF00 $FF05

 BANK 0 MMU ROM

Bank 1 GEOS Address Space

$0000 $400 $FF00 $FF05

 BANK 1 GEOS APPLICATION SPACE MMU ROM

Bank 2

$0000 $400 $FF00 $FF05

 BANK 2 (bank 0 if 128 is not expanded) MMU ROM

Bank 3

$0000 $400 $FF00 $FF05

 BANK 3 (bank 1 if 128 is not expanded) MMU ROM

Bank 14

$0000 $400 $4000 $D000 $E000 $FF00 $FF05

 RAM 0 Basic ROM Char Rom Kernal ROM MMU ROM

 Appendex

memory maps

333

Bank 15

$0000 $400 $4000 $D000 $E000 $FF00 $FF05

Common RAM RAM 0 Basic ROM I/O Kernal ROM MMU ROM

REU-BANK0

 Appendix

macros quick reference

334

Macros
quick reference

Terms
addend a number which is added to another.

addr Target for a relative branch.

augend the number to which an addend is added.

bitNumber Index for bit position. example %10000000 / bitNumber 7 is set

difference Result of subtraction

dest An address to store a macro result.

immed A Constant number

minuend A number from which another is to be subtracted

result The Sum of addition

New value after BIT operation

source An address to load from.

Address or Immediate value in Byte macros.

subtrahend A number to be subtracted from another.

value a Constant number.

Categories
Identifier Category

bit bit operations

br branching

cmp Comparisons

flow Alters flow of logic

math Math

hw Hardware

util Utility

Sources
Identifier Source

gP1 geoProgrammer1.1

gP'2 geoProgrammer' 2.0

HHG Created by PBM to perform actions for HHG2G Macros that were not defined in geoProgrammer1.1.

Example: macro bgt is used in HHG2. But is not in geoProgrammer1.1. Macro logic was obvious so it

was created here for use in the examples.

 Other sources will be added as used

 Appendix

macros quick reference

335

By Category

bit operations
Macro Parameters Description Source
rmb

bitNumber

dest

resets bit in destination byte
bit number in byte to reset

address of byte which contains bit to reset

gP1

rmbf

bitNumber

dest

resets bit in destination byte
bit number in byte to reset

address of byte which contains bit to reset

Destroys: accumulator

gP1

smb

bitNumber

result

Set bit in result byte
bit number in byte to set

address of byte which contains bit to set

gP1

smbf

bitNumber

result

Set bit in result byte
Destroys: the accumulator

bit number in byte to set

address of byte which contains bit to set

gP1

branching
Macro Parameters Description Source

bbr

bitNumber

source

addr

Tests bit in source byte, branches if reset
bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is reset

gP1

bbrf

bitNumber

source

addr

Test bit in source byte, branches if reset
bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is reset

Destroyed: accumulator if bitNumber is < 6

gP1

bbs

bitNumber

source

addr

Tests bit in source byte, branches if is set
bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is set

gp1

bbsf

bitNumber

source

addr

Test bit in source byte, branches if is set
bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is set

Destroyed: accumulator if bitNumber is < 6

bge addr relative branch if A>=B
 Carry is set

gP1

bgt addr relative branch if A>B
 Carry Flag is set and

 Z Flag is not set.

HHG

blt addr relative branch if A<B
 Carry is Clear

HHG

bra addr Unconditional branch to relative addr. gP1

comparisons
Macro Parameters Description Source

CmpB

source

dest

Compare contents of source and dest bytes
address of first byte

 or #Immidiate value

address of second byte

gP1

CmpBI

source

Compare contents of source to a constant

address of first byte

gP1

 Appendix

macros quick reference

336

immed value to compare to

CmpW

source

dest

Compare contents of source and dest bytes

address of first byte

address of second byte

gP1

CmpWI

source

immed

Compare contents of source to a constant

address of first word Appendix

constant value to compare to

gP1

Math
Macro Parameters Description Source

add addend a = a + addend gP1

AddB

addend

augend

augend = augend + addend

address of byte to add

 or #constant value

address of byte to add to

gP1

AddBW

addend

augend

augend = augend + addend
address of byte to add

address of word to add to

gP'

AddVB

value

augend

augend = augend + value

constant to add to augend

address of byte to add to

gP1

AddVW

value

augend

augend = augend + value

constant to add to augend

address of word to add to

gP1

AddW

addend

augend

augend = augend + addend

address of word to add

address of word to add to

gP1

sub

subtrahend
a = a – subtrahend
address of byte to subtract

 or #Constant value

gP1

SubB

subtrahend

minuend

minuend = minuend – subtrahend (m=m-s)
address of byte to subtract

 or #Constant Value

address of byte to subtract from

gP1

SubBW

subtrahend

difference

Minuend = Minuend – subtrahend (M=M-s)
address of byte to subtract

address of word to subtract from

gP'

SubW

subtrahend

difference

Minuend = Minuend – subtrahend (M=M-S)
address of word to subtract

address of word to subtract from

gP1

Hardware
Macro Parameters Description Source

Utility
Macro Parameters Description Source

IncW

dest
increment word by 1
address of word to increment

gp2

LdW

dest

value

Load a word with a compacted value
address of byte to load with value.

constant to load.

(If High and Low parts of constant are the same. accumulator only loaded once.)

gP2

LoadW

dest

value

Load a word with a value

address of word to load with value

constant to Load

gP1

MoveB Move byte contents of source to destination. gP1

 Appendix

macros quick reference

337

source

dest

source address

destination address

MoveW

source

dest

Move word contents of source to destination.
source address

destination address

gP1

PopB

dest
Pop a byte from the stack
where to store byte value

gP1

PopW

dest
Pop a byte from the stack
where to store byte value

gP1

PushB

source
Push the byte at source onto the stack
address of the byte to push

 or #Constant value

gP1

PushW

source
Push the word at source onto the stack
address of the byte to push

gP1

 Appendix

macros quick reference

338

By Name

Macro Parameters Description Source Category

add addend a = a + addend gP1 math

AddB

addend

augend

augend = augend + addend

address of byte to add

 or #constant value

address of byte to add to

gP1 math

AddBW

addend

augend

augend = augend + addend

address of byte to add

address of word to add to

gP' math

AddVB

value

augend

augend = augend + value

constant to add to augend

address of byte to add to

gP1 math

AddVW

value

augend

augend = augend + value

constant to add to augend

address of word to add to

gP1 math

AddW

addend

augend

augend = augend + addend

address of byte to add

address of byte to add to

gP1 math

bbr

bitNumber

source

addr

tests bit in source byte, branches if reset

bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is reset

gP1 br

bbrf

bitNumber

source

addr

tests bit in source byte, branches if reset

bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is reset

Destroyed: accumulator if bitNumber is < 6

gP1 br

bbs

bitNumber

source

addr

tests bit in source byte, branches if is set

bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is set

gP1 br

bbsf

bitNumber

source

addr

tests bit in source byte, branches if is set

bit number in byte to test (7 for MSD)

address of byte which contains bit to test

where to branch to if bit is set

Destroyed: accumulator if bitNumber is < 6

gP1 br

bgt addr relative branch if A>B

 Carry Flag is set and

 Z Flag is not set.

HHG br

blt addr relative branch if A<B

 Carry is Clear

HHG br

bra addr Unconditional branch to relative addr. gP1 br

cldaI

label

value

load accumulator on branch to label

Label for branch targeting

constant to load into accumulator on branch

gP'2 flow

CmpB

source

dest

compare contents of source and dest bytes

address of first byte

 or #Constant value

address of second byte

 or #Constant value

gP1 cmp

CmpBI

source

immed

compares contents of source to value

address of first byte

value to compare to

gP1 cmp

CmpW

source

compare contents of source and dest bytes

address of first byte

gP1 cmp

 Appendix

macros quick reference

339

dest address of second byte

CmpWI

source

immed

compares contents of source to a constant

address of first word

constant value to compare to

gP1 cmp

IncW

dest

increment word by 1

address of word to increment

gp2 util

LdW

dest

value

Load a word with a compacted value

address of byte to load with value.

constant to load.

(If High and Low parts of constant are the same. accumulator only

loaded once.)

gP2 util

LoadB

dest

value

Load a byte with a value.

address of byte to load with value.

constant to load.

gP1 util

LoadW

dest

value

Load a word with a compacted value

address of byte to load with value.

constant to load.

gP1 util

MoveB

source

dest

Move byte contents of source to destination.

source address

destination address

gP1 util

MoveW

source

dest

Move word contents of source to destination.

source address

destination address

gP1 util

PopB

dest

Pop a byte from the stack

where to store byte value

gP1 util

PopW

dest

Pop a byte from the stack

where to store byte value

gP1 util

PushB

source

Push the byte at source onto the stack

address of the byte to push

 or #Constant value

gP1 util

PushW

source

Push the word at source onto the stack

address of the byte to push

gP1 util

rmb

bitNumber

dest

resets bit in destination byte
bit number in byte to reset

address of byte which contains bit to reset

gP1 bit

rmbf

bitNumber

dest

resets bit in destination byte
bit number in byte to reset

address of byte which contains bit to reset

Destroys: accumulator

gP1 bit

smb

bitNumber

dest

set bit in destination byte

bit number in byte to set (7 for MSD)

address of byte which contains bit to set

gP1 bit

smbf

bitNumber

result

Set bit in result byte
Destroys: accumulator

bit number in byte to set

address of byte which contains bit to set

gP1 bit

sub

subtrahend
a = a – subtrahend

address of byte to subtract

 or #Constant value

gP1 math

SubB

subtrahend

minuend

minuend = minuend – subtrahend
address of byte to subtract

 or #Constant Value

address of byte to subtract from

gP1 math

SubBW

subtrahend

difference

minuend = minuend – subtrahend
address of byte to subtract

address of word to subtract from

gP' math

 Appendix

macros quick reference

340

SubW

subtrahend

minuend

minuend = minuend – subtrahend
address of word to subtract

address of word to subtract from

gP1 math

 Appendex

macros by name

341

Macro Definitions by name

add: math

;***

;

; Add Byte: add addend

;

; Args: addend - address of byte to add

; or constant value

; Action: a = a + addend

;

;***

.macro add addend

 clc

 adc addend

.endm

Note:

Example:

See also: AddB, AddW

 Appendex

macros by name

342

AddB: math

;***

;

; Add Bytes: AddB addend, augend

;

; Args: addend - address of byte to add

; or constant value

; augend - address of byte to add to

;

; Action: augend = augend + addend

;

;***

.macro AddB addend,augend

 clc ;must add with carry

 lda addend ;get source byte

 adc augend ;add to destination byte

 sta augend ;store result

.endm

Note:

Example:

.ramsect

 myVar .block 1

 count .block 1

.psect

 AddB #20,myVar ;Add Constant to myVar

;(# required for constant)

 AddB myVar, count ;Add myVar to count

See also: AddB, AddW

 Appendex

macros by name

343

AddBW: math

;**

; geoProgrammer'

; Add Byte To Word: AddBW addend, augend

;

; Args: addend - address of byte to add

; augend - address of word to add to

;

; Action: augend = augend + addend

;**

.macro AddBW addend,augend

 lda addend

 clc

 adc augend

 sta augend

 bcc NoInc

 inc augend+1

NoInc:

.endm

Note:

Example:

See also: AddB,AddW

 Appendex

macros by name

344

AddVB: math

;**

;

; Add Value To Byte: AddVB value, augend

;

; Args: value - constant to add to augend

; augend - address of byte to add to

;

; Action: augend = augend + value

;

;**

.macro AddVB value, augend

 lda augend

 clc

 adc #value

 sta augend

.endm

Note: This macro is redundant with AddB since AddB can do immediate values too.

Left in geoProgrammer' 2.0 for backwards compatibility with existing source.

Example:

See also: AddW

 Appendex

macros by name

345

AddVW: math

;**

;

; Add Value to Word: AddVW value,augend

;

; Args: value - constant to add to augend

; augend - address of word to add to

;

; Action: augend = augend + value

;

;**

.macro AddVW value,augend

 clc ;must add with carry

 lda #[(value) ;get low byte of value

 adc augend ;add to low byte of word

 sta augend ;store updated value

.if (value >= 0) && (value <= 255)

 bcc noInc ;carry was set if adc above overflowed.

 inc augend+1 ;increment high byte of word

noInc:

.else

 lda #](value) ;carry was set if adc above overflowed.

 adc augend+1 ;add carry + 0 to high byte of address

 sta augend+1 ;store result

.endif

.endm

Note:

Example:

See also: AddB

 Appendex

macros by name

346

AddW: math

;***

;

; Add Words: AddW addend,augend

;

; Args: addend - address of word to add

; augend - address of word to add to

;

; Action: augend = augend + addend

;

;***

.macro AddW addend,augend

 lda addend ;get addend low byte

 clc

 adc augend ;add to destination low byte

 sta augend ;store result, sec carry with overflow

 lda addend+1 ;get source high byte

 adc augend+1 ;add with carry to high byte dest

 sta augend+1 ;store result

.endm

Note:

Example:

See also: AddB

 Appendex

macros by name

347

bge: branch

;***

;

; Branch On Result of compare: bge addr

; if a >= b:

; Args: addr - where to branch to

;

; Action: relative branch if carry is set

;

;***

.macro bge addr

 bcs addr

.endm

Note:

Example: RoadTrip

See also: bge, bgt, blt, ble

 Appendex

macros by name

348

bgt: branch

;***

;

; Branch On Result of compare: bgt addr

; if a > b:

; Args: addr - where to branch to ;

; Action: relative branch if carry flag is set and

; Z flag is not set

;

;***

.macro bgt addr

 beq label

 bcs addr

label:

.endm

Note:

Example: NewIsMseInRegion

See also: bge, bgt, blt, ble

 Appendex

macros by name

349

ble: branch

;***

;

; Branch On Result of compare: ble addr

; if a <= b

; Args: addr - where to branch to

;

; Action: relative branch if carry flag is not set or

; Z flag is set

;

;***

.macro ble addr

 bcc addr

.endm

Note:

Example:

See also: bge, bgt, blt, ble

 Appendex

macros by name

350

blt: branch

;***

;

; Branch On Result of compare: blt addr

; if a < b:

; Args: addr - where to branch to

;

; Action: relative branch if carry flag is clear

;

;***

.macro blt addr

 bcc addr

.endm

Note:

Example: NewIsMseInRegion

See also: bge, bgt, ble, bra

 Appendex

macros by name

351

bra: branch

;***

;

; Branch Relative Always: bra addr

;

; Args: addr - where to branch to

;

; Action: unconditional relative branch

;

;***

.macro bra addr

 clv

 bvc addr

.endm

Note:

Example: RoadTrip

See also: bge, bgt, blt, ble

 Appendex

macros by name

352

bbr: branch

;***

;

; Branch on Bit Reset: bbr bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is reset

;

; Action: tests bit in source byte, branches if is reset

;

;***

.macro bbr bitNumber,source,addr

 php

 pha

 lda source

 and #(1 << bitNumber)

 bne nobranch

 pla

 plp

 bra addr

 nobranch:

 pla

 plp

 .endm

Note:

Example:

See also: bbrf

 Appendex

macros by name

353

bbrf: branch

;***

;

; Branch on Bit Reset: bbrf bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is reset

;

; Action: tests bit in source byte, branches if is reset

; Destroys: accumulator if bitNumber is < 6

;

;***

.macro bbrf bitNumber,source,addr

.if (bitNumber = 7)

 bit source

 bpl addr

.elif (bitNumber = 6)

 bit source

 bvc addr

.else lda source

 and #(1 << bitNumber)

 beq addr

.endif

.endm

Note:

Example:

See also: bbr

 Appendex

macros by name

354

bbs: branch

;***

;

; Branch on Bit Set: bbs bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is set

;

; Action: tests bit in source byte, branches if is set

;

;***

.macro bbs bitNumber,source,addr

 php

 pha

 lda source

 and #(1 << bitNumber)

 beq nobranch

 pla

 plp

 bra addr

nobranch:

 pla

 plp

.endm

Note:

Example:

See also: bbr

 Appendex

macros by name

355

bbsf: branch

;***

; Branch on Bit Set fast: bbsf bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is set

;

; Action: tests bit in source byte, branches if is set

; Destroys: if bitNumber is < 6 the accumulator

;***

.macro bbsf bitNumber,source,addr

.if (bitNumber = 7)

 bit source

 bmi addr

.elif (bitNumber = 6)

 bit source

 bvs addr

.else

 lda source

 and #(1 << bitNumber)

 bne addr

.endif

.endm

Note:

Example:

See also: bbr

 Appendex

macros by name

356

cldaI: flow

.if COMMENT

Source: geoProgrammer' by PBM

Purpose: Conditional Load Immediate: cldaI label,value

Pass: label – Label for branch targeting

 value – constant to load into accumulator if branch

 target is used.

Action: load accumulator on branch to label.

.endif

.macro cldaI label,value

 .byte $2c

label:

 lda #[(value)

.endm

Note:

Example:

 lda #4 ; If flow gets here a=4 when PointRecord called.

cldaI 40$, #3 ; Local labels are ok. a=3 if branch to 40$

cldaI Rec2, #2 ; if branch or jmp/jsr to Rec2 a = 2

cldaI Rec1, #1 ; if jmp/jsr to Rec1 a = 1

 jsr PointRecord

 ...

See also:

 Appendex

macros by name

357

CmpB: cmp

;***

;

; Compare Bytes: CmpB source,dest

;

; Args: source - address of first byte

; - or #Immidiate value

; dest - address of second byte

; - or #Immidiate value

; Action: compare contents of source byte to contents of dest. byte

;

;***

.macro CmpB source,dest

 lda source ;get source byte

 cmp dest ;compare source to dest

.endm

Note:

Example:

.ramsect

 myVar .block 1

 count .block 1

.psect

 CmpB #20,myVar ;Compare Constant with variable

 CmpB myVar, count ;Compare two variables

 CmpB count,#40 ;variables with Constant

See also:

 Appendex

macros by name

358

CmpBI: cmp

;***

;

; Compare Byte To Value: CmpBI source,immed

;

; Args: source - address of first byte

; immed - value to compare to

;

; Action: compares contents of source to value

;

;***

.macro CmpBI source,immed

 lda source ;get source byte

 cmp #immed ;compare source to immediate value

.endm

Note: This macro is redundant with CmpB since AddB can do immediate values too.

Left in geoProgrammer' 2.0 for backwards compatibility with existing source.

Example:

See also:

 Appendex

macros by name

359

CmpW: cmp

;***;

; Compare Words: CmpW source,dest

;

; Args: source - address of first word

; dest - address of second word

;

; Action: compare contents of source word to contents of dest. word

;

;***

.macro CmpW source,dest

 lda source+1 ;get high source byte

 cmp dest+1 ;compare source to dest

 bne done ;need to do low byte?

 lda source ;do low byte

 cmp dest ;compare low byte

done:

.endm

Note:

Example:

See also:

 Appendex

macros by name

360

CmpWI: branch

;***;

; Compare Word To a Constant: CmpWI source,immed

;

; Args: source - address of first word

; immed - value to compare to

;

; Action: compares contents of source to a Constant

;

;***

.macro CmpWI source,immed

 lda source+1 ;get high byte

 cmp #](immed) ;test high byte of immediate Constant

 bne done ;don't need to do low byte

 lda source ;get low byte

 cmp #[(immed) ;test low byte

done:

.endm

Note:

Example:

See also:

 Appendex

macros by name

361

IncW: utility

;***

; geoProgrammer'

; Conditional Load: IncW dest

;

; Args: dest – address of word to increment

;

; Action: increment word by 1.

;

;***

.macro IncW dest

 inc dest

 bne done

 inc dest+1

 done:

.endm

Note:

Example:

See also:

 Appendex

macros by name

362

LdW: utility

;***

; geoProgrammer'

; Load Compacted Word: LdW dest,value
;

; Args: dest - address of word to load with value

; value - word to load

;

; Action: Load a word with a compacted value

; (If High and Low parts of constant are the same.

; accumulator only loaded once.)

;***

.macro LdW dest,value

 lda #](value) ;get higher byte of value to load

 sta dest+1 ;store it

.if #](value) <> #[(value)

 lda #[(value) ;get lower byte of value to load

.endif

 sta dest ;store it

.endm

Note:

Example: ShowBitmap

See also: LoadB

 Appendex

macros by name

363

LoadB: utility

;***

; Load Byte: LoadB dest,value
;

; Args: dest - address of byte to load with value

; value - byte to load
;

; Action: Load a byte with a value

;***

.macro LoadB dest,value

 lda #value ;load value

 sta dest ;store it

.endm

Note:

Example: ShowBitmap

See also: LoadW

 Appendex

macros by name

364

LoadW: utility

;***

; Load Word: LoadW dest,value
;

; Args: dest - address of word to load with value

; value - word to load
;

; Action: Load a word with a value

;***

.macro LoadW dest,value

 lda #](value) ;get higher byte of value to load

 sta dest+1 ;store it

 lda #[(value) ;get lower byte of value to load

 sta dest+0 ;store it

.endm

Note:

Example: ShowBitmap

See also: LoadB

 Appendex

macros by name

365

MoveB: utility

;***

; Move Byte: MoveB source,dest
;

; Args: source - source address

; dest - destination address
;

; Action: Moves byte contents of source to destination.

;***

.macro MoveB source,dest

 lda source ;load data from source

 sta dest ;store it in destination

.endm

Note:

Example:

See also: MoveW

 Appendex

macros by name

366

MoveW: utility

;***

; Move Word: MoveW source,dest
;

; Args: source - source address

; dest - destination address
;

; Action: Moves a word from source address to dest address.

;***

.macro MoveW source,dest

 lda source+1 ;get high byte

 sta dest+1 ;store it

 lda source+0 ;get low byte

 sta dest+0 ;store it

.endm

Note:

Example:

See also: MoveB

 Appendex

macros by name

367

PopB: utility

;***

;

; Pop Byte: PopB dest

;

; Args: dest - where to store byte value

;

; Action: Pops a byte from the stack

;

;**

.macro PopB dest

 pla ;get byte

 sta dest ;and save it

.endm

Note:

Example:

See also:

 Appendex

macros by name

368

PopW: utility

;***

;

; Pop Word: PopW dest

;

; Args: dest - where to store word value

;

; Action: Pop a word from the stack

;

;***

.macro PopW dest

 pla ;get low byte of word

 sta dest+0 ;and save it

 pla ;get high byte of word

 sta dest+1 ;and save it

.endm

Note:

Example:

See also:

 Appendex

macros by name

369

PushB: utility

;***

; Push Byte: PushB source

;

; Args: source - address of the byte to push

; or a Constant value

;

; Action: Pushes the byte at source onto the stack

; or a Constant value

;***

.macro PushB source

 lda source ;get byte

 pha ;and push it

.endm

Note:

Example:

See also: MoveB

 Appendex

macros by name

370

PushW: utility

;***

;

; Push Word: PushW source

;

; Args: source - address of the word to push

;

; Action: Pushes the word at source onto the stack

;

;**

.macro PushW source

 lda source+1 ;get high byte of word

 pha ;and push it

 lda source ;get low byte of word

 pha ;and push it

.endm

Note:

Example:

See also:

 Appendex

macros by name

371

rmb: bit

;***

;

; Reset Bit: rmb bitNumber,dest

;

; Args: bitNumber - bit number in byte to reset

; (7 for MSD, 0 for LSD)

; dest - address of byte which contains bit to reset

;

; Action: resets bit in destination byte

; Destroys: the accumulator

;

;**

.macro rmb bitNumber,dest

 pha

 lda dest

 and #[~(1 << bitNumber)

 sta dest

 pla

.endm

Note:

Example:

 Appendex

macros by name

372

rmbf: bit

;***

;

; Reset Bit: rmbf bitNumber,dest

;

; Args: bitNumber - bit number in byte to reset

; (7 for MSD, 0 for LSD)

; dest - address of byte which contains bit to reset

;

; Action: resets bit in destination byte

; Destroys: the accumulator

;

;**

.macro rmbf bitNumber,dest

 lda dest

 and #[~(1 << bitNumber)

 sta dest

.endm

Note:

Example:

See also:

 Appendex

macros by name

373

smb: branch

;***

;

; Set Bit: smb bitNumber,result

;

; Args: bitNumber - bit number in byte to set (7 for MSD, 0 for LSD)

; result - address of byte which contains bit to set

;

; Action: sets bit in result byte

;

;***

.macro smb bitNumber,result

 pha

 lda result

 ora #(1 << bitNumber)

 sta result

 pla

.endm

Note:

Example:

See also: smbf

 Appendex

macros by name

374

smbf: branch

;***

;

; Set Bit: smbf bitNumber,result

;

; Args: bitNumber - bit number in byte to set (7 for MSD, 0 for LSD)

; result - address of byte which contains bit to set

;

; Action: sets bit in result byte

; Destroys: the accumulator

;

;***

.macro smbf bitNumber,result

 lda result

 ora #(1 << bitNumber)

 sta result

.endm

Note:

Example:

See also: smb

 Appendex

macros by name

375

sub: utility

;**

;

; Subtract Byte: sub subtrahend
;

; Args: subtrahend - address of byte to subtract, or immediate value

;

; Action: a = a - subtrahend

;

;***

.macro sub subtrahend

 sec

 sbc subtrahend

.endm

Note:

Example:

See also:

 Appendex

macros by name

376

SubB: math

;***

;

; Sub Bytes: SubB subtrahend, minuend

;

; Args: subtrahend - address of byte to subtract

; or #Constant Value

; minuend - address of byte to subtract from

;

; Action: minuend = minuend - subtrahend

;

;***

.macro SubB subtrahend, minuend

 sec ;must add with carry

 lda minuend ;get minuend byte

 sbc subtrahend ;subtract subtrahend byte

 sta minuend ;store result in minuend

.endm

Note:

Example:

See also:

 Appendex

macros by name

377

SubBW: math

;***

; geoProgrammer'

; Sub Bytes: SubBW subtrahend, minuend

;

; Args: subtrahend - address of byte to subtract

; or #Constant Value

; minuend - address of byte to subtract from

;

; Action: minuend = minuend - subtrahend

;

;***

.macro SubBW subtrahend, minuend

 sec

 lda minuend

 sbc subtrahend

 sta minuend

 lda minuend +1

 sbc #0

 sta minuend +1

.endm

Note:

Example:

See also:

 Appendex

macros by name

378

SubW: math

;***

;

; Sub Words: SubW subtrahend, minuend
;

; Args: subtrahend - address of word to subtract

; minuend - address of word to subtract from

;

; Action: minuend = minuend - subtrahend

;

;***

.macro SubW source, minuend
 lda minuend ;get source low byte

 sec

 sbc subtrahend ;subtract from minuend low byte

 sta minuend ;store result, clc carry with overflow

 lda minuend +1 ;get subtrahend high byte

 sbc subtrahend+1 ;sub with carry from minuend high byte

 sta minuend +1 ;store result in minuend

.endm

Note:

Example:

See also:

 Constants

disk

379

Constants

1st:

If you use TRUE/FALSE and Block Comments then these constants should always appear

first in your constants files.

TRUE=-1

FALSE=0

COMMENT=FALSE

 Constants

disk

380

C128:

ADD1_W=$2000

DOUBLE_W=$8000

DOUBLE_B=$80

DBL_W_P1=DOUBLE_W | ADD1_W

GR_40=0 ;graphMode

GR_80=%10000000

 Constants

disk

381

Dialog Box:

DEF_DB_POS = $80 ;command for default dialogue box position

SET_DB_POS = 0 ;command for user-set DB position

Descriptor table commands

OK = 1 ;Put up system icon for "OK", command is

 ;followed by 2 byte position indicator, x pos.

 ;in bytes, y pos. in pixels. NOTE: positions

 ;are offsets from the top left corner of the

 ;dialogue box.

CANCEL = 2 ;Like OK, system DB icon, position follows

YES = 3 ;Like OK, system DB icon, position follows

NO = 4 ;Like OK, system DB icon, position follows

OPEN = 5 ;Like OK, system DB icon, position follows

DISK = 6 ;Like OK, system DB icon, position follows

FUTURE1 = 7 ;reserved for future system icons

FUTURE2 = 8 ;reserved for future system icons

FUTURE3 = 9 ;reserved for future system icons

FUTURE4 = 10 ;reserved for future system icons

DBTXTSTR = 11 ;Command to display a text string.

DBVARSTR = 12 ;Used to put out variant strings.

DBGETSTRING = 13 ;Get an ASCII string from the user.

DBSYSOPV = 14 ;Any press not over an icon return to applic.

DBGRPHSTR = 15 ;Execute graphics string.

DBGETFILES = 16 ;Get filename from user.

DBOPVEC = 17 ;User defined other press vector.

DBUSRICON = 18 ;User defined icon.

DB_USR_ROUT = 19 ;User defined routine.

Offsets into descriptor table.

OFF_DB_FORM = 0 ;box form description, i.e. shadow or not

OFF_DB_TOP = 1 ;position for top of dialogue box

OFF_DB_BOT = 2 ;position for bottom of dialogue box

OFF_DB_LEFT = 3 ;position for left of dialogue box

OFF_DB_RIGHT = 5 ;position for right of dialogue box

OFF_DB_1STCMD = 7 ;1st command in dialogue box *

 ;descriptor table

Icon dimensions.

SYSDBI_WIDTH = 6 ;width in bytes *

SYSDBI_HEIGHT = 16 ;height in pixels *

 Constants

disk

382

;These equates define a standard, default, dialogue box position and

;size as well as some standard positions within the box for outputting

;text and icons.

Default Coordinates
DEF_DB_TOP = 32 ;top y coordinate of default box

DEF_DB_BOT = 127 ;bottom y coordinate of default box

DEF_DB_LEFT = 64 ;left edge of default box

DEF_DB_RIGHT = 255 ;right edge of default box

Standard Text Locations
TXT_LN_X = 16 ;standard text x start

TXT_LN_1_Y = 16 ;standard text line y offsets

TXT_LN_2_Y = 32

TXT_LN_3_Y = 48

TXT_LN_4_Y = 64

TXT_LN_5_Y = 80

Standard Icon Locations
DBI_X_0 = 1 ;left side standard icon x position *

DBI_X_1 = 9 ;center standard icon x position *

DBI_X_2 = 17 ;right side standard icon x position *

DBI_Y_0 = 8 ;left side standard icon y position *

DBI_Y_1 = 40 ;center standard icon y position *

DBI_Y_2 = 72 ;right side standard icon y position *

Disk:

DK_NM_ID_LEN = 18 ; # of characters in disk name

;Equates for variable "driveType". High two bits of driveType have special

;meaning (only 1 may be set):

; Bit 7: if 1, then RAM DISK

; Bit 6: if 1, then Shadowed disk

DRV_NULL = 0 ;No drive present at this device address

DRV_1541 = 1 ;Drive type Commodore 1541

DRV_1571 = 2 ;Drive type Commodore 1571

DRV_1581 = 3 ;Drive type Commodore 1581

DRV_NETWORK = 15 ;Drive type for GEOS geoNet "drive"

Directory:

DirHeader:

;Offsets into a directory header structure

OFF_TO_BAM = 4 ;first BAM entry

OFF_DISK_NAME = 144 ;disk name string

OFF_OP_TR_SC = 171 ;track and sector for off page directory

 ;entries. 8 files may be moved off page.

OFF_GS_ID = 173 ;where GEOS ID string is located *

OFF_GS_DTYPE = 189 ;GEOS disk type. Currently, is 0 for *

 ;normal disk, 'B' for BOOT disk. Zeroed

 ;on destination disk during disk copy.

DirBlock:

FRST_FILE_ENTRY = 2 ;first dir entry is at byte #2

 Constants

disk

383

DirEntry:

ST_WR_PR = $40 ;write protect bit: bit 6 of byte 0 in the

 ;directory entry

DirEntryOffsets:

OFF_CFILE_TYPE = 0 ;standard commodore file type indicator

OFF_INDEX_PTR = 1 ;Index table pointer (VLIR file)

OFF_DE_TR_SC = 1 ;track for file's 1st data block

OFF_FNAME = 3 ;file name *

OFF_GHDR_PTR = 19 ;track/sector info on where header block is

OFF_GSTRUC_TYPE = 21 ;GEOS file structure type *

OFF_GFILE_TYPE = 22 ;geos file type indicator

OFF_YEAR = 23 ;year (1st byte of date stamp) *

OFF_SIZE = 28 ;size of the file in blocks *

OFF_NXT_FILE = 32 ;next file entry in directory structure

low-level GEOS disk handling routines

N_TRACKS = 35 ;# of tracks available on the 1541 disk

DIR_TRACK = 18 ;track # reserved on disk for directory

DIR_1581_TRACK = 40 ;1581 track # reserved on disk for directory

Disk access commands
MAX_CMND_STR = 32 ;maximum length a command string would have

DIR_ACC_CHAN = 13 ;default direct access channel

REL_FILE_NUM = 9 ;logical file number & channel used for

 ;relative files.

CMND_FILE_NUM = 15 ;logical file number & channel used for

 ;command files

 ;- Indexes to a command buffer. for setting the track and sector number for a

 ;- direct access command.

TRACK = 9 ;offset to low byte decimal ASCII track number

SECTOR = 12 ;offset to low byte decimal ASCII sector number

 Constants

disk

384

DiskError:

NO_ERROR = 0 ;"No Error"

NO_BLOCKS = 1 ;"not enough blocks" *

INV_TRACK = 2 ;"invalid track" *

INSUFF_SPACE = 3 ;"not enough blocks on disk" *

FULL_DIRECTORY = 4 ;"directory full"

FILE_NOT_FOUND = 5 ;"file not found"

BAD_BAM = 6 ;"bad Block Availability Map"

UNOPENED_VLIR = 7 ;"unopened VLIR file" *

INV_RECORD = 8 ;"invalid record" *

OUT_OF_RECORDS = 9 ;"cannot insert/append more records"

STRUCT_MISMAT = 10 ;"file structure mismatch" *

BFR_OVERFLOW = 11 ;"buffer overflow during load" *

CANCEL_ERR = 12 ;"deliberate cancel error"

DEV_NOT_FOUND = 13 ;"device not found" *

INCOMPATIBLE = 14 ;This error is returned when an attempt is made

 ;to load a program that can't be run on the

 ;current graphics modes under the C-128 GEOS.

HDR_NOT_THERE = $20 ;"cannot find file header block" *

NO_SYNC = $21 ;"can't find sync mark on disk"

DBLK_NOT_THERE = $22 ;"data block not present" *

DAT_CHKSUM_ERR = $23 ;"data block checksum error" *

WR_VER_ERR = $25 ;"write verify error"

WR_PR_ON = $26 ;"disk is write protected"

HDR_CHKSUM_ERR = $27 ;"checksum error in header block"

DSK_ID_MISMAT = $29 ;"disk ID mismatch" *

BYTE_DEC_ERR = $2E ;"can't decode flux transitions off of disk"

DOS_MISMATCH = $73 ;"wrong DOS indicator on the disk"

 Constants

disk

385

FileType:

;This is the value in the "GEOS file type" byte of a directory

;entry that is pre-GEOS:

NOT_GEOS = 0 ;Old C-64 file, without GEOS header

 ; (PRG, SEQ, USR, REL)

;The following are GEOS file types reserved for compatibility

;with old C64 files, that have simply had a GEOS header placed

;on them. Users should be able to double click on files of

;type BASIC and ASSEMBLY, whereupon they will be fast-loaded

;and executed from under BASIC.

BASIC = 1 ;C-64 BASIC program, with a GEOS header

 ;attached. (Commodore file type PRG.)

 ;To be used on programs that

 ;were executed before GEOS with:

 ; LOAD "FILE",8

 ; RUN

ASSEMBLY = 2 ;C-64 ASSEMBLY program, with a GEOS header

 ;attached. (Commodore file type PRG.)

 ;To be used on programs that were executed

 ;before GEOS with:

 ; LOAD "FILE",8,1

 ; SYS(Start Address)

DATA = 3 ;Non-executable DATA file (PRG, SEQ, or USR)

 ;with a GEOS header attached for icon & notes

 ;ability.

;The following are file types for GEOS applications & system use:

;ALL files having one of these GEOS file types should be of

;Commodore file type USR.

SYSTEM = 4 ;GEOS system file

DESK_ACC = 5 ;GEOS desk accessory file

APPLICATION = 6 ;GEOS application file

APPL_DATA = 7 ;data file for a GEOS application

FONT = 8 ;GEOS font file

PRINTER = 9 ;GEOS printer driver

INPUT_DEVICE = 10 ;INPUT device (mouse, etc.)

DISK_DEVICE = 11 ;DISK device driver

SYSTEM_BOOT = 12 ;GEOS system boot file (for GEOS, GEOS BOOT,

 ; GEOS KERNAL)

TEMPORARY = 13 ;Temporary file type, for swap files.

 ;The deskTop will automatically delete all

 ;files of this type upon opening a disk.

AUTO_EXEC = 14 ;Application to automatically be loaded & run

 ;just after booting, but before deskTop runs.

INPUT_128 = 15 ;128 Input driver

NUM_FILE_TYPES = 15 ;# of file types, including NON_GEOS (=0)

;GEOS file structure types. Each "structure type" specifies the organization

;of data blocks on the disk, and has nothing to do with the data in the blocks.

SEQUENTIAL = 0 ;standard T,S structure (like commodore SEQ

 ; and PRG files)

VLIR - 1 ;Variable-length-indexed-record file (used for

 ;Fonts, Documents & some programs)

 ;This is a GEOS only format.

 Constants

disk

386

Standard Commodore file types (supported by the old 1541 DOS)

DEL = 0 ;deleted file

SEQ = 1 ;sequential file

PRG = 2 ;program file

USR = 3 ;user file

REL = 4 ;relative file

CBM = 5 ;CBM BAM protection file, currently only on

 ;1581 disk drivers. Used to protect specific

 ;blocks/tracks from collection at validation

 ;time.

TOTAL_BLOCKS = 664 ;number of blocks on 1541 disk, not including

 ; directory track.

 Constants

disk

387

Flag Equates

Values for pressFlag variable

KEYPRESS_BIT = 7 ;other keypress

INPUT_BIT = 6 ;input device change

MOUSE_BIT = 5 ;mouse press

SET_KEYPRESS = %10000000 ;other keypress

SET_INPUTCHG = %01000000 ;input device change *

SET_MOUSE = %00100000 ;mouse press

Values for faultFlag variable

OFFTOP_BIT = 7 ;mouse fault up

OFFBOTTOM_BIT = 6 ;mouse fault down

OFFLEFT_BIT = 5 ;mouse fault left

OFFRIGHT_BIT = 4 ;mouse fault right

OFFMENU_BIT = 3 ;menu fault

SET_OFFTOP = %10000000 ;mouse fault up

SET_OFFBOTTOM = %01000000 ;mouse fault down

SET_OFFLEFT = %00100000 ;mouse fault left

SET_OFFRIGHT = %00010000 ;mouse fault right

SET_OFFMENU = %00001000 ;menu fault

ANY_FAULT = %11111000

 Constants

disk

388

Get File:

;The following equates define file loading options for several of the

;GEOS file handling routines like GetFile. These bit definitions are used to

;set the RAM variable loadOpt.

ST_LD_AT_ADDR = $01 ;"Load At Address": Load file at caller

 ;specified address instead of address file was

 ;saved from.

ST_LD_DATA = $80 ;"Load Datafile": Used when application

 ;datafile is opened from deskTop. Used to

 ;indicate to application that r2 and r3

 ;contain information about where to

 ;find the selected datafile.

ST_PR_DATA = $40 ;"Print Datafile": Used when application

 ;datafile is selected for printing from deskTop.

 ;Used to indicate to application that r2 and r3

 ;contain information about where to find the

 ;selected datafile.

 Constants

disk

389

Graphics/Screen Equates

Constants for screen size

SC_BYTE_WIDTH = 40 ;width of screen in bytes *

SC_PIX_WIDTH = 320 ;width of screen in pixels *

SC_PIX_HEIGHT = 200 ;height of screen in scanlines *

SC_SIZE = 8000 ;size of screen memory in bytes *

Bits used to set dispBufferOn flag
 (controls which screens get written to)

ST_WR_FORE = $80 ;write to foreground

ST_WR_BACK = $40 ;write to background

ST_WRGS_FORE = $20 ;graphics strings only write to foreground.

Values for graphics strings

MOVEPENTO = 1 ;move pen to x,y

LINETO = 2 ;draw line to x,y

RECTANGLETO = 3 ;draw a rectangle to x,y

NEWPATTERN = 5 ;set a new pattern

ESC_PutString = 6 ;start PutString interpretation

FRAME_RECTO = 7 ;draw frame of rectangle

PEN_X_DELTA = 8 ;move pen by signed word delta in x

PEN_Y_DELTA = 9 ;move pen by signed word delta in y

PEN_XY_DELTA = 10 ;move pen signed word delta in x & y

Screen colors

BLACK = 0

WHITE = 1

RED = 2

CYAN = 3

PURPLE = 4

GREEN = 5

BLUE = 6

YELLOW = 7

ORANGE = 8

BROWN = 9

LTRED = 10

DKGREY = 11

GREY = 12

MEDGREY = 12

LTGREEN = 13

LTBLUE = 14

LTGREY = 15

Values for PutDecimal calls

SET_LEFTJUST = %10000000 ;left justified *

SET_RIGHTJUST = %00000000 ;left justified *

SET_SUPRESS = %01000000 ;no leading 0's

SET_NOSUPRESS = %00000000 ;leading 0's

 Constants

disk

390

Header Block:

Offsets into a GEOS file header block

O_GHIC_WIDTH = 2 ;byte: width in bytes of file icon

O_GHIC_HEIGHT = 3 ;byte: indicates height of file icon

O_GHIC_PIC = 4 ;64 bytes: picture data for file icon

O_GHCMDR_TYPE = 68 ;byte: Comm. file type

O_GHGEOS_TYPE = 69 ;byte: GEOS file type

O_GHSTR_TYPE = 70 ;byte: GEOS file structure type

O_GHST_ADDR = 71 ;2 bytes: start address of file in mem

O_GHEND_ADDR = 73 ;2 bytes: end address of file in memory

O_GHST_VEC = 75 ;2 bytes: init vector if file is appl.

O_GHFNAME = 77 ;20 bytes, permanent filename.

O_128_FLAGS = 96 ;1 byte, flags to indicate if this program

 ;will run under the C128 OS in 40 column and

 ;in 80 column. These flags are valid for

 ;applications, desk accessories, and auto-exec

 ;files.

 ;Bit 7: zero if runs in 40 column.

 ;Bit 6: one if runs in 80 column.

bit 7 bit 6

 0 0 $00 64/128 40-column mode only

 0 1 $40 64/128 40/80 and 80-column modes

 1 0 $80 64 Only. Does not run under GEOS 128

 1 1 $C0 128 80-column mode only.

O_GH_AUTHOR = 97 ;20 bytes: author's name (only if is applic.)

O_GHAPDAT = $89 ;Application Data.

O_GHINFO_TXT = $A0 ;offset to notes that are stored with the file

 ;and edited in the deskTop "get info" box.

if file is an application data file:

O_GHP_DISK = 97 ;20 bytes: disk name of parent application's

 ;disk.

O_GHP_FNAME = 117 ;20 bytes: permanent filename of parent

 ;application.

 Constants

disk

391

Hardware:

;The following equates define the numbers written to the CPU_DATA register

;(location $0001 in C-64). These numbers control the hardware memory map

;of the C-64.

IO_IN=$35 ;60K RAM, 4K I/O space in

RAM_64K=$30 ;64K RAM

KRNL_BAS_IO_IN=$37 ;both Kernal and basic ROM's mapped into memory

KRNL_IO_IN=$36 ;Kernal ROM and I/O space mapped in

;graphics control register #l grcntrl1

;Location D011

;ie msb raster /ECM /BMM /DEN /RSEL /y scroll bits.

ST_ECM = $40

ST_BCM = $20

ST_DEN = $10

ST_25ROW = $08

;**

; Principal Memory Map Equates

;**

APP_RAM = $0400 ;start of application space *

BACK_SCR_BASE = $6000 ;base of background screen *

PRINTBASE = $7900 ;load address for print drivers *

APP_VAR = $7F40 ;application variable space *

OS_VARS = $8000 ;OS variable base

SPRITE_PICS = $8A00 ;base of sprite pictures

COLOR_MATRIX = $8C00 ;video color matrix

DISK_BASE = $9000 ;disk driver base address

SCREEN_BASE = $A000 ;base of foreground screen

OS_ROM = $C000 ;start of OS code space

OS_JUMPTAB = $C100 ;start of GEOS jump table

vicbase = $D000 ;video interface chip base address.

sidbase = $D400 ;sound interface device base address.

ctab = $D800

cia1base = $DC00 ;1st communications interface adaptor (CIA).

cia2base = $DD00 ;second CIA chip

EXP_BASE = $DF00 ;Base address of RAM expansion unit

MOUSE_JMP = $FE80 ;start of mouse jump table

MOUSE_BASE = $FE80 ;start of input driver

END_MOUSE = $FFFA ;end of input driver

 Constants

disk

392

Icon:

;These equates are bit values for iconSelFlag that determine how an icon

;selection is indicated to the user. If ST_FLASH is set, ST_INVERT is

;ineffective.

ST_FLASH = $80 ;bit to indicate icon should flash

ST_INVERT = $40 ;bit to indicate icon should be inverted

offsets into the icon structure

OFF_NM_ICNS = 0 ;number of icons in structure *

OFF_IC_XMOUSE = 1 ;mouse x start position *

OFF_IC_YMOUSE = 3 ;mouse y start position *

Offsets into an icon record in icon structure.

Constant Declarations from HHG2G.

Adopted for Official Constants in geoProgrammer 2.x+

OFF_I_PIC = 0 ;picture pointer for icon

OFF_I_X = 2 ;x position of icon

OFF_I_Y = 3 ;y position of icon.

OFF_I_WIDTH = 4 ;width of icon.

OFF_I_HEIGHT = 5 ;height of icon.

OFF_I_EVENT = 6 ;pointer to service routine for icon is selected.

IRECSIZE = 8 ;Size of Icon Record

Constant Declarations from geoProgrammer 1.x

Included for backwards combability

OFF_PIC_ICON = 0 ;picture pointer for icon

OFF_X_ICON_POS = 2 ;x position of icon

OFF_Y_ICON_POS = 3 ;y position of icon

OFF_WDTH_ICON = 4 ;width of icon

OFF_HEIGHT_ICON = 5 ;height of icon

OFF_SRV_RT_ICON = 6 ;pointer to service routine for icon

OFF_NX_ICON = 8 ;next icon in icon structure *

Keyboard:

;Values for keys

KEY_INVALID = 31

KEY_F1 = 1

KEY_F2 = 2

KEY_F3 = 3

KEY_F4 = 4

KEY_F5 = 5

KEY_F6 = 6

KEY_F7 = 14

KEY_F8 = 15

KEY_UP = 16

KEY_DOWN = 17

KEY_HOME = 18

KEY_CLEAR = 19

KEY_LARROW = 20

KEY_UPARROW = 21

KEY_STOP = 22

 Constants

disk

393

KEY_RUN = 23

KEY_BPS = 24

KEY_LEFT = BACKSPACE

KEY_RIGHT = 30

KEY_DELETE = 29

KEY_INSERT = 28

 Constants

disk

394

Menu:

Types
HORIZONTAL = %00000000

VERTICAL = %10000000

CONSTRAINED = %01000000

UN_CONSTRAINED = %00000000

Offsets
OFF_MY_TOP = 0 ;offset to y pos of top of menu

OFF_MY_BOT = 1 ;offset to y pos of bottom of menu

OFF_MX_LEFT = 2 ;offset to x pos of left side of menu

OFF_MX_RIGHT = 4 ;offset to x pos of right side of menu

OFF_NUM_M_ITEMS = 6 ;offset to Alignment |Movement |Number of items

OFF_1ST_M_ITEM = 7 ;offset to record for 1st menu item in structure

Actions
SUB_MENU = $80 ;for setting byte in menu table that indicates

DYN_SUB_MENU = $40 ;whether the menu item causes action *

MENU_ACTION = $00 ;or sub menu

 Constants

disk

395

Mouse Equates

Bit flags for mouseOn variable

SET_MSE_ON = %10000000 ; *

SET_MENUON = %01000000

SET_ICONSON = %00100000

MOUSEON_BIT = 7

MENUON_BIT = 6

ICONSON_BIT = 5

 Constants

disk

396

Process:

Possible values for processFlags
SET_RUNABLE=%10000000 ;runnable flag

SET_BLOCKED=%01000000 ;process blocked flag

SET_FROZEN=%00100000 ;process frozen flag

SET_NOTIMER=%00010000 ;not a timed process flag

RUNABLE_BIT=7 ;runable flag

BLOCKED_BIT=6 ;process blocked flag

FROZEN_BIT=5 ;process frozen flag

NOTIMER_BIT=4 ;not a timed process flag

 Constants

disk

397

Text:

Bit flags in mode
SET_UNDERLINE = %10000000

SET_BOLD = %01000000

SET_REVERSE = %00100000

SET_ITALIC = %00010000

SET_OUTLINE = %00001000

SET_SUPERSCRIPT = %00000100

SET_SUBSCRIPT = %00000010

SET_PLAINTEXT = 0

UNDERLINE_BIT = 7

BOLD_BIT = 6

REVERSE_BIT = 5

ITALIC_BIT = 4

OUTLINE_BIT = 3

SUPERSCRIPT_BIT = 2

SUBSCRIPT_BIT = 1

PutChar constants
EOF = 0 ;end of text object

NULL = 0 ;end of string

BACKSPACE = 8 ;move left a card

TAB = 9

FORWARDSPACE = 9 ;move right one card

LF = 10 ;move down a card row

HOME = 11 ;move to left top corner of screen

UPLINE = 12 ;move up a card line

PAGE_BREAK = 12 ;page break

CR = 13 ;move to beginning of next card row

ULINEON = 14 ;turn on underlining *

ULINEOFF = 15 ;turn off underlining *

ESC_GRAPHICS = 16 ;escape code for graphics string

ESC_RULER = 17 ;ruler escape

REV_ON = 18 ;turn on reverse video

REV_OFF = 19 ;turn off reverse video

GOTOX = 20 ;use next byte as 1+x cursor

GOTOY = 21 ;use next byte as 1+y cursor

GOTOXY = 22 ;use next bytes as 1+x and 1+y cursor

NEWCARDSET = 23 ;use next two bytes as new font id

BOLDON = 24 ;turn on BOLD characters

ITALICON = 25 ;turn on ITALIC characters

OUTLINEON = 26 ;turn on OUTLINE characters

PLAINTEXT = 27 ;plain text mode

USELAST = 127 ;erase character

SHORTCUT = 128 ;shortcut character

 Constants

disk

398

VIC Chip

GRBANK0 = %11 ;bits indicate VIC ram is $0000 - $3fff, 1st 16K

GRBANK1 = %10 ;bits indicate VIC ram is $4000 - $7fff, 2nd 16K

GRBANK2 = %01 ;bits indicate VIC ram is $8000 - $bfff, 3rd 16K

GRBANK3 = %00 ;bits indicate VIC ram is $c000 - $ffff, 4th 16K

MOUSE_SPRNUM = 0 ;sprite number used for mouse *

 ;(used to set VIC)

VIC_YPOS_OFF = 50 ;Position offset from 0 to position a *

 ;hardware sprite at the top of the screen.

 ;Used to map from GEOS coordinates to hardware

 ;position coordinates.

VIC_XPOS_OFF = 24 ;As above, offset from hardware 0 *

 ;position to left of screen, used to map GEOS

 ;coordinates to VIC.

ALARMMASK = %00000100 ;mask for the alarm bit in the cia chip

 ;interrupt control register.

 Constants

disk

399

VDC:

;VDC_cr=$D600

;VDC_dr=$D601

VDC_HT=$00 ; Horizontal Total

VDC_HD=$01 ; Horizontal Displayed

VDC_HP=$02 ; Horizontal Sync

VDC_VHW=$03 ; Vertical Sync Width | Horizontal Sync Width

VDC_VT=$04 ; Vertical Total

VDC_VA=$05 ; Vertical Total Adjust

VDC_VD=$06 ; Vertical Total Adjust

VDC_VP=$07 ; Vertical Displayed

VDC_IM=$08 ; Interlaced Mode

VDC_CTV=$09 ; Rasterlines Per character row

VDC_CMS=$0A ; Cursor Mode / Cursor Start

VDC_CE=$0B ; Cursor end

VDC_DSH=$0C ; Start of Display Memory in VDC RAM

VDC_DSL=$0D

VDC_CPH=$0E ; Text Mode Cursor Address

VDC_CPL=$0F

VDC_LPV=$10 ; Light Pen V/H position

VDC_LPH=$11

VDC_UAH=$12 ; VDC pointer

VDC_UAL=$13

VDC_AAH=$14 ; Start of Attribute Memory in VDC RAM

VDC_AAL=$15

VDC_CGW=$16 ; Character Width

VDC_CDV=$17 ; Character Height

VDC_VSS=$18 ; Block Fill/Copy

 ; Reverse/Blink control

 ; Vertical smooth scroll

VDC_HSS=$19 ; Bitmap/Attributes/Gap fill/Pixel Clock

 ; Horizontal Smooth scroll

VDC_FBG=$1A ; Foreground Color / Background Color

VDC_AI=$1B ; Address increment

VDC_CB=$1C ; Character base address / RAM-Type

VDC_UL=$1D ; Underscan scan line

VDC_WC=$1E ; Block copy/fill word count

VDC_DA=$1F ; Data Register: Data byte pointed to by current VDC pointer

VDC_BAH=$20 ; Block Copy Source Address.

VDC_BAL=$21

VDC_DEB=$22 ; Display enable begin

VDC_DEE=$23 ; Display Enable end

VDC_DRR=$24 ; DRAM refresh rate

VDC_HVS=$25 ; hsync/vsync

 Constants

disk

400

Obsolete

Desk Accessory save foreground bit.

FG_SAVE = %10000000 ;save and restore foreground graphics data.

CLR_SAVE = %01000000 ;save and restore color information.

 Constants

disk

401

Zero Page

pseudoregisters:

Pseudoregisters are used when calling into the GEOS kernal. Each call will have a

list of registers to setup. Registers have common uses across the GEOS API but none

are exclusively for only one thing. r12-r15 are very rarely used and make for very

safe temporary zpage use. Never use other data areas for temporary storage unless

you have already used all of the available options in r0-r15 that do not conflict

with your current kernal interaction.

.zsect $02

 r0 .block 2 ; Pointer

 r1 .block 2 ; Used in RAM operations

 r2 .block 2 ; Ptr to diskname , Buffer Size during Disk I/O

 r3 .block 2 ; Left Margin, Ptr dataFileName

 r4 .block 2 ; Ptr to Disk Buffers, margins on boxes

 r5 .block 2 ; Ptr to DirEntry

 r6 .block 2 ; Ptr to T/S List for block allocates

 r7 .block 2 ; Start address of Read/Write buffer

 r8 .block 2 ; Internal Kernal use during some kernal calls

 r9 .block 2 ; Pointer to disk structures. DirEntrys/ Info Sector etc.

 r10 .block 2 ; Class Pointer.

 r11 .block 2 ; x Position for PutChar

 r12 .block 2 ; Not Used by Kernel as a parameter

 r13 .block 2 ; Not Used by Kernel as a parameter

 r14 .block 2 ; Not Used by Kernel as a parameter

 r15 .block 2 ; Not Used by Kernel. Commonly used in GEOS Application

;Equates for access to Low and High parts of pseudoregisters.

 r0L = $02 ; holds result after DoDlgBox

 r0H == $03

 r1L = $04 ; Track Number in Disk I/O

 r1H == $05 ; Sector Number in Disk I/O, Y Position for PutChar

 r2L = $06 ; Top Margin, Pixel Width, Str Length

 r2H == $07 ; Bottom Margin, Pixel Height

 r3L = $08 ; Top Margin Track for Allocate Block.

 r3H == $09 ; Bottom Margin Sector for Allocate Block

 r3L = $0A ; Sprite Number

 r3H == $0B ; Dest Bank on Move operations.

 r5L = $0C ;

 r5H == $0D ;

 r6L = $0E

 r6H == $0F

 r7L = $10 ; FileType to find with FindFTypes

 r7H == $11 ; Number of files to get from FindFTypes

 r8L = $12

 r8H == $13

 r9L = $14

 r9H == $15

 r10L = $16 ; Desk Top Page number

 r10H == $17

 r11L = $18 ; row Number in DrawPoint

 r11H == $19

 r12L = $1A

 r12H == $1B

 r13L = $1C

 r13H == $1D

 r14L = $1E

 r14H == $1F

 r15L = $20 ; This is the first Goto for temp zpage use.

 r15H == $03

 Constants

disk

402

Disk

 Constants

disk

403

Disk Errors:
GEOS I/O Routines return errors in the X register

Standard Constant Dec Hex Description

------------------- ------ ----- ---

NO_ERROR 0 $00 No Error Occurred

NO_BLOCKS 1 $01 Not Enough Blocks On Disk

INV_TRACKS 2 $02 Invalid Track or Sector

INSUFF_SPACE 3 $03 Disk Full, Insufficient Space

FULL_DIRECTORY 4 $03 Directory is Full

FILE_NOT_FOUND 5 $05 File Not Found

BAD_BAM 6 $06 Bad Bam: Attempt to deallocate

 an unallocated block. (Or the reverse)

UNOPENED_VLIR 7 $07 VLIR file not open

 Illegal VLIR chain number.

INV_RECORD 8 $08 Invalid VLIR Record. Bad Track/Sector

OUT_OF_RECORDS 9 $09 Out of Records: Too many VLIR chains

STRUCT_MISMATCH 10 $0A Geos Structure Mismatch

 File is not a VLIR file.

BFR_OVERFLOW 11 $0B Buffer Overflow: ReadRecord max read size

 exceeded.

CANCEL_ERR 12 $0C Deliberate Cancel Error

DEV_NOT_FOUND 13 $0D Device Not Found

INCOMPATIBLE 14 $0E Incompatible 40/80

HDR_NOT_THERE 32 $20 Disk Block Read error:

 No Header Block sync character.

NO_SYNC 33 $21 Unformatted or Missing Disk

DBLK_NOT_THERE 34 $22 No Data Block Found

DAT_CHKSUM_ERR 35 $23 Data Block Checksum Error

WR_VER_ERR 37 $25 Write Verify Error

WR_PR_ON 38 $26 Write Protect On

HDR_CHK_SUM_ERR 39 $27 Disk Block Write: Header Checksum Error

DSK_ID_MISMAT 41 $29 Disk ID Mismatch

BYTE_DEC_ERR 46 $2E Drive Speed Read error

DOS_MISMATCH 115 $73 Wrong DOS Indicator

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

404

Kernal Variables
variables

By Name:

alarmSetFlag: 851C 851C 1 FALSE No TRUE if the alarm is set for geos to monitor, else FALSE

alarmTmtVector: 84AD 84AD 2 0 Yes address of a service routine for the alarm clock time-out

(ringing, graphic etc.) that the application can use if

necessary.

alphaFlag 84B4 84B4 1 0 Yes Flag for alphanumeric string input

 0 if not getting text input

 llxx xxxx if getting text input.

bit Description

--- --

b7: Flag indicating alphanumeric input is on

b6: Flag indicating prompt is visible

b5-0: Counter before prompt flashes

appMain: 849B 849B 2 0 No Vector that allows applications to include their own main

loop code. The code pointed to by appMain will run at the

end of every GEOS MainLoop.

backBufPtr: - 131B
†

16 None No Screen pointer where the back buffer came from. Resides in

back ram of C128.

bakclr0: [0-3] D021

:

D024

D021

:

D024

1 ? No Background colors 0-3. 1 Byte each, 4 Total Bytes.

Hardware Registers

backXBufNum: - 132B
†

8 None No For each sprite, there is one byte here for how many bytes

wide the corresponding sprite is. Used by C128 soft sprite

routines and resides in back ram.

backYBufNum: - 1333
†

8 None No For each sprite, there is one byte here for how many

scanlines high the corresponding sprite. Used by soft

sprite routines and resides in back ram.

bootName: C006 C006 9 GEOS

BOOT

No This is the start of the "GEOS BOOT" string.

BRKVector: 84AF 84AF 2 CF85 Yes Vector to the routine that is called when a BRK

instruction is encountered. The default is to the

operating system

System Error dialog box routine.

bkvec: 0316 0316 2 ? No BRK instruction vector when ROMs are switched in.

baselineOffset: 26 26 1 $06 Yes Offset from top line to baseline in character set. i.e. it

changes as fonts change. Default $06 - for BSW 9 Font

callRouVector 42 42 2 None No

CPU_DATA: 01 01 1 RAM_64K No Address of 6510 data register that controls the hardware

memory map of the C64.

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

405

CPU_DDR: 00 00 1 %101111 No address of 6510 data direction register

Note: Writing $00 to this address will disable output to

CPU_DATA register. This may cause unexpected results.

cardDataPntr: 2C 2C 2 D2DC

(BSW 9)

Yes This is a pointer to the actual card graphic data for the

current font in use.

curDirHead: 8200 8200 256 $00 No buffer containing header information for the disk in

currently selected drive.

curDevice: BA BA 1 $08 No current serial device number. See curDrive for more

information

curDrive:

8489

8489 1 $08 No device number of the currently active disk drive.

For Commodore, allowed values are 8 – 11.

curEnable: - 1300
†

1 None No This is an image of the C64 mobenble register.

curHeight: 29 29 1 $09 Yes card height in pixels of the current font in use.

curIndexTable: 2A 2A 2 D218 Yes pointer to the table of sizes, in bytes, of each

card in of the current font.

curmobx2: - 1302
†

1 None No Image of the C64 mobx2 register. Used for C128 soft

sprites. Resides in back ram

curmoby2: - 1301
†

1 None No Image of C64 moby2 register. Used for C128 soft sprites.

Resides in back ram.

curPattern: 22 22 2 D010 Yes Pointer to the first byte of the graphics data for the

current pattern in use.

Note: Each pattern is 1 byte wide and 8 bytes high,

 to give an 8 by 8 bit pattern.

curRecord: 8496 8496 1 0 No Current record number for an open VLIR file.

Note: When a VLIR file is opened, using OpenRecordFile.

curRecord is set to 0 if there is at least 1 record in the

file, or -1 if their are no records.

currentMode: 2E 2E 1 $00 Yes Current text drawing mode. Each bit is a flag for a

drawing style. If set, that style is active, if clear it

is inactive. The bit usage and constants for manipulating

these bits are as follows.

Bit Style Constant

--- ----- --------

b7: Underline SET_UNDERLINE: = %10000000

b6: Bold SET_BOLD = %01000000

b5: Reverse SET_REVERSE = %00100000

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

406

b4: Italics SET_ITALIC = %00010000

b3: Outline SET_OUTLINE = %00001000

b2: Superscript SET SUPERSCRIPT = %00000100

bl: Subscript SET_SUBSCRIPT = %00000010

b0: Unused

To Clear all flags (plain text) SET_PLAINTEXT = %00000000

Any combination of flags can be set or clear. If current

mode is plaintext, all flags are clear.

Constants that can be used within text strings themselves

that affect currentMode are:

UNDERLINEON, UNDERLINEOFF, REVERSEON, REVERSEOFF, BOLDON,

ITALICON, OUTLINEON, PLAINTEXT

curSetWidth: 3c 3c 2 $00 Yes Card width in pixels for the current font

curType: 88C6 88C6 1 Drive 8

Type

Np Holds the current disk type. This value is copied from

driveType for quicker access to the current drive

b7: Set if the disk is a RAM disk

b6: Set if using disk shadowing

Only one of bit 6 or 7 may be set. Other constants used

with curType are

DRV_NULL = 0 No drive present at this device address

DRV_1541 = 1 Drive type Commodore 1541

DRV_1571 = 2 Drive type Commodore 1571

DRV_1581 = 3 Drive type Commodore 1581

curXpos0: - 1303
†

16 None No The current X positions of the C128 soft sprites. BackRAM

curYposO: - 1313
†

8 None No The current Y positions of the C128 soft sprites. BackRAM

dataFileName: 8442 8442 17 None No Name of a data file to open. The name is passed to the

parent application so the file can be opened.

dataDiskName: 8453 8453 18 None No Holds the disk name that an application's data file is on.

dateCopy: C018 C018 3 YMD No Copy of system Variables year, Month, and day.

day: 8518 8518 1 20 No Holds the value for current day.

dblClickCount: 8515 8515 1 $00 No Used to determine when an icon is double clicked on. When

an icon is selected, dblClickCount is loaded with a value

of CLICK_COUNT (30). dblClickCount is then decremented

each interrupt. If the value is non-zero when the icon is

again selected, then the double click flag (r0H) is passed

to the service routine with a value of TRUE. If the

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

407

dblClickCount variable is zero when the icon is clicked

on, then the flag is passed with a value of FALSE.

diskBlkBuf: 8000 8000 256 $00 No General disk block buffer. Initialized to all zeros

dispBufferOn: 2F 2F 1 $C0 Yes Routes graphic and text operations to either the fore-

ground screen, background buffer, or both simultaneously.

b7: 1 = draw to foreground screen buffer

b6: 1 = draw to background buffer

b5: 1 = Limit GetString text entry to foreground screen.

 0 = GetString text entry will use b7,b6

b4-bO: reserved for future use? should always be 0

ST_WR_FORE = %10000000 ;$80

ST_WR_BACK = %01000000 ;%40

Default is ST_WR_FORE | ST_WR_BACK ;$C0

Use ST_WR_FORE (write to foreground) and ST_WR_BACK (write

to background) to access these bits.

%00xxxxxxxx is an undefined state and will result in

sending most graphic operations to the center of the

display area.

dlgBoxRamBuf: 851F 851F 417 None Yes This is the buffer for variables that are saved when desk

accessories or dialog boxes are run.

doRestFlag: - lB54
†

1 $00 No Flag needed because of overlapping soft sprite problems on

C128. Set to TRUE if we see a sprite that needs to be

redrawn and therefore all higher numbered sprites need to

be redrawn as well. Resides in BackRAM.

driveType: 848E 848E 4 Drive 8

Type

No There are 4 bytes at location driveType, one for each of

four possible drives.

Each byte has the following format:

b7: Set if drive is RAM DISK

b6: Set if Shadowed disk

(Only 1 of bit 7 or bit 6 may be set)

Constants and values used for drive types are

Constant Value Description

-------- ----- -----------

DRV_NULL = 0 ; No drive present at this device address

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

408

DRV_1541 = 1 ; Drive type Commodore 1541

DRV_1571 = 2 ; Drive type Commodore 1571

DRV_1581 = 3 ; Drive type Commodore 1581

dir2Head: 8900 8900 256 None No 1571,1581 Second BAM block

dir3Head: 9C80 9C80 256 None No 1581 Third BAM block

diskOpenFlg: 848A

848A

1

$00 No This flag byte is not used by the Kernal. It is initialized

to $00 when the entire block is cleared at startup. It is

never touched again by the Kernal.

It is used by the DeskTop. The flag follows the status of

the currently selected drive. If the disk is open this byte

is set to TRUE. If you close the disk using DeskTop it

changes this byte to False.

This byte could be freely used by applications to perform

the same function as the DeskTop (or for any other purpose

as well). But it would be up to the Application to set and

maintain the value of the byte.

dlgBoxVector: 44 44 2 None No

DrACurDkNm: 841E 841E 16 None No Disk name of the current disk in drive A, padded with $A0

DrBCurDkNm: 8430 8430 16 None No Disk name of the current disk in drive B, padded with $A0

DrCCurDkNm: 88DC 88DC 16 None No Disk name of the current disk in drive C, padded with $A0

DrDCurDkNm: 88EE 88EE 16 None No Disk name of the current disk in drive D, padded with $A0

driveData: 88BF 88BF 4 None No One byte is reserved for each disk drive, to be used by

the with disk driver. Each driver may use it differently.

iconSelFlag: 84B5 84B5 1 $00 Yes Flag bits in b7 and b6 specify how the system should

indicate icon selection to the user. If no bits are set,

then the system does nothing to indicate icon selection,

and the service routine is simply called.

The possible flags are:

 ST_FLASH = $80 ; flash the icon

 ST_INVERT = $40 ; invert the selected icon

If ST_FLASH is set, the ST_INVERT flag is ignored and the

icon flashes but is not inverted when the programmer's

routine is called. If ST_INVERT is set, and ST_FLASH is

CLEAR, then the icon will be inverted when the

programmer's routine is called.

dirEntryBuf: 8400 8400 30 $00 No Buffer used to build a file's directory entry.

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

409

extclr: 20 20 1 $FB No exterior (border) color.

faultData: 84B6 84B6 1 $00 Yes Holds Information about mouse faults. Mouse faults occur

when the mouse attempts to move outside the bounds set by

mouseLeft, mouseRight, mouseTop, and mouseBottom. A fault

is also signaled when the mouse is outside the current

menu area. The bits for signaling are used as follows:

Bit Fault Constant for bit access

--- ----- -----------------------

b7: mouse fault up OFFTOP_BIT

b6: mouse fault down OFFBOTTOM_BIT

b5: mouse fault left OFFLEFT_BIT

b4: mouse fault right OFFRIGHT_BIT

b3: menu fault OFFMENU_BIT

fileHeader: 8100 8100 256 $00 No Header Block buffer for a GEOS file.

fileSize: 8499 8499 2 None No Current size (in blocks) of a file. It is pulled

in from and written to the file's directory entry.

fileTrScTab: 8300 8300 256 $00 No Track and Sector chain for a file of maximum size of 32258

bytes.

fileWritten: 8498 8498 1 None No Flag indicating if the currently open file has been

written to since the last update of its index table and

the BAM.

firstBoot: 88C5 88C5 1 $00 No This flag is changed from $00 to $FF when the deskTop

comes up after booting.

fontData: 850C 850C 9 None No Buffer for saving the user active font table when going

into menus.

fontTable: 26 26 8 Default

Font

Yes fontTable is a label for the beginning of variables for

the current font in use. These variables are

baselineOffset, curSetWidth. curHeight, curIndexTable, and

cardDataPntr.

For more information, see documentation on these

variables.

graphMode: 3F 3F 1 None No Current video mode for C128.

40-Column: GR_40 ($00)

80-Column: GR_80 ($80) (%10000000)

sample usage graphMode

 bit graphMode

 bmi Do80ColStuff

 Data

variables

Address (hex)

Name 64 128 Size Default Saved Description †128 BackRAM

410

grcntrl1: D011 D011 1 None No graphics control register #l, ie msb raster /ECM /BMM /DEN

/RSEL /y scroll bits.

defined for use with above register

ST_ECM = $40

ST_BCM = $20

ST_DEN = $10

ST_25ROW = $08

numDrives: 848D 848D 1 Actual No Number of drives in the system

turboFlags: 8492 8492 0 $00 No Turbo state flags for drives 8 through 11

Flag Byte Layout.

bit 7 = 1 Turbo is Loaded.

bit 6 = 1 Turbo is Active

bit 0-5 Always Zero.

diskOpenFlg can be used as a base to index into this table

by drive number.

Example

 ldy curDrive

 lda diskOpenFlg,y

Note3: Next firstBoot pg 547

 Data

Unused Next Section

411

 Appendex

wheels

412

;Dumping Ground for Wheels info until it gets organized

; Wheels

; these are addresses to routines that are in the extended

; kernal that get loaded in at $5000 in groups.

	GEOS Kernal by Name
	GEOS Kernal by Category
	Chapter 1 GEOS Kernal
	dialog box
	DoDlgBox: (C64,C128) C256
	RstrFrmDialog: (C64,C128) C2BF

	disk very low-level
	ChangeDiskDevice: (C64, C128) C2BC
	DoneWithIO: (C64, C128) C25F
	EnterTurbo: (C64, C128) C214
	ExitTurbo: (C64, C128) C232
	InitForIO: (C64, C128) C25C
	PurgeTurbo: (C64, C128) C235
	ReadBlock: (C64, C128) C12A
	ReadLink: (C64, C128) 904B
	VerWriteBlock: (C64, C128) C223
	WriteBlock: (C64, C128) C220

	disk low-level
	GetBlock: (C64, C128) C1E4
	PutBlock: (C64, C128) C1E7

	disk mid-level
	AllocateBlock: (C64, C128) 9048
	BldGDirEntry: (C64, C128) C1F3
	BlkAlloc: (C64, C128) C1FC
	CalcBlksFree: (C64, C128) C1DB
	ChkDkGEOS: (C64, C128) C1DE
	FastDelFile: (C64, C128) C244
	FindBAMBit: (C64, C128) C2AD
	FollowChain: (C64, C128) C205
	FreeBlock: (C64, C128) C2B9
	FreeFile: (C64, C128) C226
	Get1stDirEntry: (C64, C128) 9030
	GetNxtDirEntry: (C64, C128) 9033
	GetDirHead : (C64, C128) C247
	GetFHdrInfo: (C64, C128) C229
	GetFreeDirBlk: (C64, C128) C1F6
	GetOffPageTrSc: (C64, C128) 9036
	LdApplic: (C64, C128) C21D
	LdDeskAcc: (C64, C128) C217
	LdFile: (C64, C128) C211
	NewDisk: (C64, C128) C1E1
	NxtBlkAlloc: (C64, C128) C24D
	PutDirHead: (C64, C128) C24A
	ReadByte: (C64, C128) C2B6
	ReadFile: (C64, C128) C1FF
	SetGDirEntry: (C64, C128) C1F0
	SetNextFree: (C64, C128) C292
	StartAppl: (C64, C128) C22F
	WriteFile: (C64, C128) C1F9

	disk high-level
	DeleteFile: (C64, C128) C238
	EnterDeskTop: (C64, C128) C22C
	FindFile: (C64, C128) C20B
	FindFTypes: (C64, C128) C23B
	GetFile: (C64, C128) C208
	GetPtrCurDkNm: (C64, C128) C298
	OpenDisk: (C64, C128) C2A1
	RenameFile: (C64, C128) C259
	RstrAppl: (C64, C128) C23E
	SaveFile: (C64, C128) C1ED
	SetDevice: (C64, C128) C2B0
	SetGEOSDisk: (C64, C128) C1EA

	disk VLIR
	AppendRecord: (C64, C128) C289
	CloseRecordFile: (C64, C128) C277
	DeleteRecord: (C64, C128) C283
	InsertRecord: (C64, C128) C286
	NextRecord: (C64, C128) C27A
	OpenRecordFile: (C64, C128) C274
	PointRecord: (C64, C128) C280
	PreviousRecord: (C64, C128) C27D
	ReadRecord: (C64, C128) C28C
	UpdateRecordFile: (C64, C128) C295
	WriteRecord: (C64, C128) C28F

	disk DRIVER
	AddDirBlock: (C64, C128) 9042
	CallDrvRoutine: (C64, C128) 9042
	GetDiskBlkBuf: (C64, C128) 9045
	PutDiskBlkBuf: (C64, C128) 9045
	CheckDrvStatus: (C64, C128) 9045
	JmpIndX: (C64, C128) 9D80

	graphics
	BitmapClip: (C64, C128) C2AA
	BitmapUp , i_BitmapUp: (C64, C128) C142, C1AB
	BitmapUp , i_BitmapUp: (C64, C128) C142, C1AB
	DrawLine: (C64, C128) C130
	DrawLine: (C64, C128) C130
	DrawPoint: (C64, C128) C133
	DrawPoint: (C64, C128) C133
	FrameRectangle, i_FrameRectangle: (C64, C128) C127, C1A2
	FrameRectangle, i_FrameRectangle: (C64, C128) C127, C1A2
	GetScanLine: (C64, C128) C13C
	GetScanLine: (C64, C128) C13C
	NormalizeX: (C128) C2E0
	NormalizeX: (C128) C2E0
	Rectangle, i_Rectangle: (C64, C128) C124, C19F
	Rectangle, i_Rectangle: (C64, C128) C124, C19F
	SetNewMode: (C128) $C2DD
	SetPattern: (C64, C128) C139
	TestPoint: (C64, C128) C13F
	VerticalLine: (C64, C128) C121

	icon/menu
	DoIcons: (C64, C128) C15A
	DoMenu: (C64, C128) C151
	DoPreviousMenu: (C64, C128) C190
	GotoFirstMenu: (C64, C128) C1BD
	RecoverAllMenus: (C64, C128) C157
	RecoverMenu: (C64, C128) C154
	ReDoMenu: (C64, C128) C193

	input driver
	InitMouse: (c64,C128) FE80
	SetMouse: (C128) FE89
	SlowMouse: (c64,C128) FE83
	UpdateMouse: (c64,C128) FE86

	internal
	BootGeos: (c64,C128) C000
	FirstInit: (c64,C128) C271
	GetSerialNumber: (c64,C128) C196
	InterruptMain: (c64,C128) C100
	MainLoop: (c64,C128) C1C3
	Panic: (c64,C128) C2C2
	ResetHandle: (c64,C128) C003

	math
	BBMult: (c64,C128) C160
	BMult: (c64,C128) C163
	Dabs: (c64,C128) C16F
	Dabs: (c64,C128) C16F
	Ddec: (c64,C128) C175
	Ddiv: (c64,C128) C169
	DMult: (c64,C128) C166
	DMult: (c64,C128) C166
	Dnegate: (c64,C128) C172
	DSDiv: (c64,C128) C16C
	DShiftLeft: (c64,C128) C15D
	DShiftRight: (c64,C128) C262

	memory
	ClearRam: (C64,C128) $C187
	CmpFString: (C64,C128) $C26E
	CmpString: (C64,C128) $C26B
	CopyString: (C64,C128) $C268
	DoBOp: (C128) $C2EC
	FillRam: ,I_FillRam: (C64,C128) $C17B,$C1B4
	InitRam: (C64,C128) $C181
	MoveBData: (C128) $C2E3
	MoveData: ,I_MoveData: (C64,C128) $C2E3
	SwapBData: (C128) $C2E6
	VerifyBData: (C128) $C2E9
	DoRAMOp: (c64 v1.3+,C128) $C2D4
	FetchRAM: (c64 v1.3+,C128) C2CB
	StashRAM: (c64 v1.3+,C128) $C2C8
	SwapRAM: (c64 v1.3+,C128) $C2CE
	VerifyRAM: (c64 v1.3+,C128) $C2D1

	mouse/sprite
	IsMseInRegion: (C64, C128) C2B3
	MouseOff: (C64, C128) C18D
	MouseUp: (C64, C128) C18A
	SetMsePic: (C64, C128) $C184
	TempHideMouse: (C64, C128) $C184

	print driver
	StartASCII: (C64, C128) 7912

	process
	BlockProcess: (C64, C128) C103
	FreezeProcess: (C64, C128) C112
	InitProcesses: (C64, C128) C103
	EnableProcess: (C64, C128) C109
	RestartProcess: (C64, C128) C106
	Sleep: (C64, C128) C199
	UnblockProcess: (C64, C128) C10F
	UnfreezeProcess: (C64, C128) C115

	Sprite
	DisablSprite: (C64, C128) C1D5
	DrawSprite: (C64, C128) C1C6
	EnablSprite: (C64, C128) C1D2
	PosSprite: (C64, C128) C1CF

	Utility
	Bell: (Apple) N/A
	CallRoutine: (C64,C128) C1D8
	CRC: (c64,C128) C20E
	CRC: (c64,C128) C20E
	DoInlineReturn: (c64,C128) C2A4
	DoInlineReturn: (c64,C128) C2A4
	GetRandom: (C64,C128) C187
	ToBasic: (C64,C128) C187

	text
	GetCharWidth: (C64, C128) C1C9
	GetNextChar: (C64, C128) C2A7
	GetRealSize: (C64, C128) C1B1
	GetString: (C64, C128) C1BA
	InitTextPrompt: (C64, C128) C1C0
	LoadCharSet: (C64, C128) C1CC
	PromptOn: (C64, C128) C29B
	PutChar: (C64, C128) C145
	PutDecimal: (C64, C128) C184
	PutString, i_PutString: (C64, C128) C148, C1AE
	SmallPutChar: (C64, C128) C202
	UseSystemFont: (C64, C128) C14B

	Chapter 2 Wheels 4.4
	Wheels Kernal
	GetNewKernal: (Wheels 4.4 64,128) $9D80
	RstrKernal: (Wheels 4.4 64,128) $9D83

	KG_REU
	GetRAMBam: (Wheels 4.4 64,128) $5000
	PutRAMBam: (Wheels 4.4 64,128) $5003
	AllocRAMBlock: (Wheels 4.4 64,128) $5009
	AllocAllRAM: (Wheels 4.4 64,128) $5006
	FreeRAMBlock: (Wheels 4.4 64,128) $500C
	GetRAMInfo: (Wheels 4.4 64,128) $500F
	RamBlkAlloc: (Wheels 4.4 64,128) $5012
	RemoveDrive: (Wheels 4.4 64,128) $5015
	SvRamDevice: (Wheels 4.4 64,128) $5018
	DelRamDevice: (Wheels 4.4 64,128) $5018
	RamDevInfo: (Wheels 4.4 64,128) $501E

	Examples
	atoms
	KeyTrap:

	hardware
	GetFPS:
	C64Model:

	math
	8BitMultiply:
	16x8Multiply:
	ConvToUnits:
	Kernal_CRC:
	DdecvsDecW:

	memory
	CopyBuffer:
	Find:
	Find2:
	InitBuffers:

	disk
	CheckDiskSpace:
	DeleteDirEntry:
	GrabSomeBlocks:
	MyFreeBlock:
	MySetGDirEntry:
	MyPutBlock:
	MyReadBlock:
	NewAllocateBlock:
	SaveRecord:

	internal
	FatalError:
	RoadTrip:

	graphics
	BitCompact:
	BitCompact:
	CountRepeat:
	GetUnique:

	ChangeMode:
	Checkl28:
	DblDemo1:
	DisplayImage:
	FilledRect:
	MseToCardPos:
	ShowBitmap
	StopMenus:
	VDC
	Sta80Fore:
	Lda80Fore:

	i_VerticalLine:

	icons/menu
	IconsUp:

	mouse/sprite
	ArrowUp:
	NewIsMseInRegion:

	Text
	Placeholder
	Keyboard
	KillPrompt:

	utility
	BeepThrice:
	HandleCommand:
	LoadBASIC:

	Graphic Routines
	Introduction to GEOS Graphics
	Color
	The GEOS Virtual Screen
	GEOS 128 40/80-Column Support
	Inclusive Dimensions
	Linear Bitmap
	Dividing the Screen Into Cards

	Display Buffering
	dispBufferOn
	Using dispBufferOn
	Using the Background Buffer as Extra Memory
	Manual Imprinting and Recovering
	Some Possible dispBufferOn Complications

	Machine Dependencies
	Commodore 64
	Commodore 128

	Porting Considerations and Techniques
	GEOS 128 Virtual Sprites
	GEOS 128 X-position and Bitmap Doubling

	Points and Lines
	Points
	Diagonal Lines

	Patterns and Rectangles
	Fill Patterns
	Rectangles

	Bit-mapped Images
	Standard Bitmap Routines
	GEOS Compacted Bitmap Format
	Packet Format
	Decompaction Walkthrough

	Direct Screen Access and Block Copying
	Direct Screen Access

	Icons, Menus, and Other Mouse Presses
	Icons
	Icon Table Structure
	Icon Table Header
	Icon Entries
	Sample Icon Table
	Installing Icons
	MainLoop and Icon Event Handlers
	Detecting Single- and Double-clicks on Icons
	Other Things to Know About Icons
	Icon Releases and otherPressVector
	Icon Precedence
	Disabling Icons
	GEOS 128 Icon Doubling

	Menus
	Division of Labor with Menus
	Menu Data Structure
	Menu/Sub-menu structure
	Menu/Sub-menu Header
	Menu/Sub-menu Types (use in attribute byte):
	Menu Item Structure
	Types of Menu Items (for use in item type byte):

	structures
	dialog/Icons/Menus/Graphics
	DIALOG:
	Menu

	disk
	Directory Entry:
	Header Block:

	Appendex
	atoms
	quick reference
	Categories
	Sources
	by name

	atom definitions by name
	DoDlg: size
	Lower: text
	Upper: text

	hardware
	6510 data register: (64,128) 01
	17XX RAM Expansion:
	C128 MMU:

	memory maps
	Zero Page
	Stack Page
	128 BackRAM:
	REU-BANK0

	Macros
	quick reference
	Terms
	Categories
	Sources
	By Category
	bit operations
	branching
	comparisons
	Math
	Hardware
	Utility

	By Name

	Macro Definitions by name
	add: math
	AddB: math
	AddBW: math
	AddVB: math
	AddVW: math
	AddW: math
	bge: branch
	bgt: branch
	ble: branch
	blt: branch
	bra: branch
	bbr: branch
	bbrf: branch
	bbs: branch
	bbsf: branch
	cldaI: flow
	CmpB: cmp
	CmpBI: cmp
	CmpW: cmp
	CmpWI: branch
	IncW: utility
	LdW: utility
	LoadB: utility
	LoadW: utility
	MoveB: utility
	MoveW: utility
	PopB: utility
	PopW: utility
	PushB: utility
	PushW: utility
	rmb: bit
	rmbf: bit
	smb: branch
	smbf: branch
	sub: utility
	SubB: math
	SubBW: math
	SubW: math

	Constants
	1st:
	C128:
	Dialog Box:
	Descriptor table commands
	Offsets into descriptor table.
	Icon dimensions.
	Default Coordinates
	Standard Text Locations
	Standard Icon Locations

	Disk:
	Directory:
	DirHeader:
	DirBlock:
	DirEntry:
	DirEntryOffsets:

	low-level GEOS disk handling routines
	Disk access commands
	DiskError:

	FileType:
	Standard Commodore file types (supported by the old 1541 DOS)

	Flag Equates
	Values for pressFlag variable
	Values for faultFlag variable

	Get File:
	Graphics/Screen Equates
	Constants for screen size
	Bits used to set dispBufferOn flag
	Values for graphics strings
	Screen colors
	Values for PutDecimal calls

	Header Block:
	Offsets into a GEOS file header block

	Hardware:
	Icon:
	offsets into the icon structure
	Offsets into an icon record in icon structure.

	Keyboard:
	Menu:
	Types
	Offsets
	Actions

	Mouse Equates
	Bit flags for mouseOn variable

	Process:
	Possible values for processFlags

	Text:
	Bit flags in mode
	PutChar constants

	VIC Chip
	VDC:
	Obsolete
	Desk Accessory save foreground bit.

	Zero Page
	pseudoregisters:

	Disk
	Disk Errors:

	Kernal Variables
	variables
	By Name:

