| NICKHAMPSHIRE

COMMODORE

KERNAL AND
Y HARDWARE
" REVEALED ™

The Commodore 64 Kernal and
Hardware Revealed

Also by Nick Hampshire

The Commodore 64 ROMs Revealed
0 00 383087 X

Advanced Commodore 64 Graphics and Sound
0 00 383089 6

Advanced Commodore 64 BASIC Revealed
0 00 383088 8

The Commodore 64 Disk Drive Revealed
0 00 383091 8

The Commodore 64
Kernal and

Hardware Revealed

Nick Hampshire

with Richard Franklin and Carl Graham

COLLINS
8 Grafton Street, London W1

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985

Copyright © Nick Hampshire 1985

British Library Cataloguing in Publication Data
Hampshire, Nick
The Commodore 64 kernal and hardware revealed.
1. Commodore 64 (Computer)
I. Title II. Franklin, Richard IlI. Graham, Carl
001.6404 QA76.8.C64

ISBN 0-00-383090-X

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or transmitted,

in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Also by Nick Hampshire

The Commodore 64 ROMs Revealed
0 00 383087 X

Advanced Commodore 64 Graphics and Sound
0 00 383089 6

Advanced Commodore 64 BASIC Revealed
0 00 383088 8

The Commodore 64 Disk Drive Revealed
0 00 383091 8

Contents

Preface

|
2
3
4
5
6

Inside the Commodore 64

The Keyboard, Joysticks and Screen
Serial Communications

The Cassette Units

The User Port

Interrupts and Their Use

Index

vii

15
32
78
127
184
193

Preface

Whether you program the CBM 64 in Basic or machine code, an understanding of how
the kernal software works and how the system hardware functions is essential before
writing many programs, particularly those involving connecting the CBM 64 to external
devices. This book looks at the way the operating system and system hardware work
and should be used in conjunction with Volume 1 of this series, The Commodore 64
ROMs Revealed, which gives the entire operating system kernal software source code.

A knowledge of how the operating system and hardware work enables one to perform
many interesting functions. Notable amongst these is the high speed tape load and save
routines, which allow the tape deck to operate at speeds equivalent to that ona 1541 disk
drive. The whole area of program security is also covered. Without an understanding of
the system software and hardware, the operation and use of the serial and RS232 ports is
often quite mysterious.

This book is the product of many year’s work on Commodore machines, and | am
confident that it provides the most complete and useful set of information available
from any one source. All serious programmers should find this an invaluable and
constant reference book.

Nick Hampshire

Chapter One

inside the Commodore 64

CHARACTER SET
(bit 2 of SO00 1

0=CHAR ROM

| = 1/0 ROM/RAM

VIC 1 Chip sees
this 16K block
on power-up

SFEFF

SE000
SDCoo
SDROO
SD000

$C000

SA000

$8000
(32768)

34000
(16384)

$2000
(8192)

$0800

$040C

$0000

(65535)
8K HI RAM
) (bit 1 of $0001)
KERNAL ROM 0= RAM
I = KERNAL ROM
(57344)
CIA1.CIA2(S. Bus. P.U'.P)
(55320) 4K RAM
Colour Ram Nibbles maps to $D000 when
(55296) bits 0 & 1 of $0001 = 0
VIC 1. SID
(53248)
4K RAM
(49152)
BASIC 8K LORAM
HTERF;RETER (bit 0 of $0001)
) ROM 0=RAM
' | = BASIC ROM
(40960) ——————— -+ -+
External
ROM
8K ROM Cartridge
maps here
BASIC
User RAM

(38912 Bytes)

HI-RES Screen
maps here

(2018)
Screen (1K)

HI-RES Colour Table

(1024)
Workspace (1K)

Processor Reg (80 1)

Fig. 1.1. Commodore 64 memory architecture map.

2 The Commodore 64 Kernal and Hardware Revealed

1.1 Commodore 64 design concept

The division of memory space into blocks in the Commodore 64 is shown in
Fig.1.1. The Commodore 64 is built around the VIC chip and the 6519
microprocessor. As with all microcomputers the Commodore 64 is designed to
use the minimum number of chips. This is to reduce component and assembly

costs.
8 7 | 8 | 8
® RPY 53K Al 3.3K -
'x e T +3i
2;2 H pATA | =
nf | g S8 o cq r
mep | s |-AN &8 T AT PO
g& 2 @"0 VT T P
F' POTY ﬂ
a8
° |2 e
a2
Al pE— U —
Al —
ape——
—
=3 W a7 <CREC)
2\ osioA .53 (T
QO§ | The MPU ;g C (FRE>
—58% s & >
23| iFoxred)
P4 W-5LY) o Ra3| S22 R4S
= T— 33K 33k
N Lign 22
= 23 . 45
-ar ' 5
g q OTAX - 34
2| > AT £
.ZDO ; o) lz | oz >
D | 319 1
;’;§ 3 RLOTA o Y
¢ =11 - ROY D
_L'—_l_ "
B
e e
?E' Wicor
D,
—{PEE§ r}-HQwO)
23 | bRz I
s = <MD
il
i - — >
; F—o4S FESTORE oS
H e !
LIl .
B = } Al
RP4
33 RPY 33K
:) 3.3
T me
3 §1N
o -SNT2.
5 i CEe
& 3.&2 dloc 1A g3l A
c BB ppo (D000~ R32
— §§ [wova por ODFF) B3 A AO-AIS
82 —@o-As>
20 | [Ceea- 0% Yy P —
wiEed_ 4l oy 24
s a8 N I G
3|8 171o0% rar B
=] (9] 3
8 <tT&kZ >
B! il G »)
= |oj ey E =
o -
i 75 DX Tz
A u% i ! RP3 E R37 |
A s TeCoN 33K 2.7k)
N ~AAA— -—|
i — 3 Ral “3 % & -
M3 €38 I g % .
]
= 'E‘ :1 N 5%
Lo 1 w7 'ﬁ Al
3 CARTRIDGE EXPANSION 7aL508 r L |2N437|
28 NG = .
8 7 I) | 5

Fig. 1.2. Commodore 64 schematics (Reproduced by courtesy of Commodore Business

Machines (UK) Ltd).

Inside the Commodore 64 3

The main computer circuit (see Fig. 1.2) consists of the 6516, the VIC chip
with clock circuit and the eight 64K bit RAM chips. These chips are enough to
make a computer circuit that can perform machine code instructions. Note that
the VIC chip is required as it supplies most of the computer’s RAM control
signals and timing. However, to make a usable personal computer the 64 needs a

few chips for I/O and sound, also a Basic interpreter and operating system in
ROM.

Ll 2.24M

K¥31818 MHz

c8
3‘1? 13%
¢ss S ls | >
ust asv
74L3629N e
A4
R
ez |7 e
= rsn
cas ¢
9 sV l
8.1818 MHe Ig%; v SR 8
sV
R cos
hail wasor 45, wIoo= . vC SHCULL BE USED TO DRIVE CNLY CEVICES
w2 o o—0 5 9 ¢—o—Y = - INDICATED.
oL TFesr * 89 Tr '—\ 2. Y114 EIE MH2 ~NTSC
22 ITe. = " Ilsp mtee | 17734472 NKHZ-FAL
9 — 5 L ALL RESISTORS ARE U4 WATT5X UNLESS
nREG | CTHERWISE SFECIFIED.
2 Ve i 4 ALL CAPACTOR VALUES ARE IN uf
R Prees aues ."Cqs o N UNLESS CTHERWISE SPECIFIED
T - S T T 2200 = 5. CAP, SOPF: OOAY WITH R4 OR R4T2 VERSIONS
= =BV T T Fev u s OF 6567.
F[6. SEE ECO ND. 2896 FOR INSTRUCTIONS ON USE
3 Tc) = ca2 OF C106 .
g I'w I 22 T. CAP. 220Pf: ONLy WITH RI VERSION OF §569.
£ 1<% g0
4 af |57
- ,._'_'{ I—smr_u; GND.
I
' C : — =
! 8§° ‘2’” 1 K== [oamwd iy commodore
! H omcrs om - oo =z
0oV s co [iws VAT
N = e BF 4] COMMODORE A
vAc “"‘“: o s . p— SCHEMATIC
——Snc LEDCONNECTOR 0 23] e
POWER Iw-’UT CN7 C64a 326298 "S'J 326106 %
(7-PIN MALE DIN) e e
4 I 3 [2 I 1

Fig. 1.2. (contd.)

4 The Commodore 64 Kernal and Hardware Revealed

The required input/ output is supplied by two 6526 CIA chips. Together these
two chips supply 4 timers used for IRQ timing, the tape system and serial. Their
I/O ports are used for keyboard scanning, the user port, serial ports and VIC
chip bank select. These chips also have serial ports and time of day clocks but
these are not used in the CBM 64.

Lastly sound is generated by the SID chip. This has 3 voices each with 4

8 | 7 | 8 l s
pe L L = XL L p3
ca3 c2? caz c26 c4 cas c40 Ci4
I 2T ‘zz;L I “zzIL zzI 2 L Tw
- ls () l 8 T 2%
-—
D
u24 un uts ulo 2z v 874}
41642 4104 41GAR| 416A4-2| 41642] 4164=2| 41642
RAM RAM | RAM RAM RAM RAM RAM
r~-===-1
' '
L U U UL e o e U
%3
1
G0 B
Logooo
c
(©0-D7 <
@ NI)
|BEEEEI TT1TTT |EEERE
o 02 01 ":u.osmm o oo ?’Lumumornz
(Ao-alg £ a2 f.l a2
ALl Al
E A0 us AD v A0 us
:: 23G4A :‘; 23G4A :; 2332A
—ila; BASIC [i]a) KERNAL CHARACTER
————2&lAc ROM —2 :; :Z ROM
; == s
6 = 8F FFEF OFFF)
<AEO—1—{ratsod s m i Sas a3
;——lAl Al
— *2 & i ow
o T i £
g4 s .2 T TGy)
8 | cmmm] ¥
GEER>— ;B ado =
Il Ft
_L 12 Fafila azs
I3 Y7 F 2
Vi AlS T4 gasiooF 4%
Al4 1o P rolu =
3 414 Ay 7 £ TOPH
SO 18 Fep_nc 'S
— 19 Ve
I
8| .{I? C&Ds I‘.:QD‘
GEi>— 112 L= ¥
bk) N
N11a
s s
REED>- s
94
[I] REL IS 55 3
A JON ~ 5
1| o [L U‘l n :-‘
! RS SRR bt
el oL
) woms§ G EEIRSSDIYD ":uxr:zvnvqc<l~- ~mofy - w0
CARTR!DGEIEXPANS\ON (44-PIN FEMALE) (NG
) | 1) I 5

Fig. 1.2. (contd.)

Inside the Commodore 64 5

waveforms an envelope control and filters. The 2 channel analog to digital
converter on this chip is connected to the joystick ports.

1.2 Chips in the Commodore 64

The Commodore 64 consists of a plastic case holding a double sided printed

4

AS/AY3
Ad/ai2
Yoo

i

SIIST
“CsS 4704F,

A3/ AN

A2/a10

A1/ aa
40/A8_ COLOR|
LI

on u9
19 567
vi

SND (N1G 3lvwds Nid-S) O3dIA/oany

€7 S
47 usozanl%l Warg
=i

Vec

= ve A
a0

_.‘3"4 0L 19

ag COLOR AB

A7 RAM Hac

AIGTI I
p:')

-] ¥ - VIC 4 SID SHOULD HAVE
| @) £ cioc Coe > SEPARATE GND RETURNS.
! -

- R RS

= [z
14.31818 MHe = NTSC
743139 pa s TEhoTe (M TCOLOR) 15 352472 Mbtn - PAC

8.18 MH2 - NTSG)
7.88 MHa - PAL)

8, O

WO IcA

o —fda e 23 COMMODORE %4

.
AV == 2 e

ced|326298[T 326106 | R
otas — |

s j/(S St [¥%] commodore
o CievA X
(co

[e]
[3
9

-

eauyT 2 OF 2

4] 3 | 2 | 1
Fig. 1.2. (contd.)

6 The Commodore 64 Kernal and Hardware Revealed

(P17 (MN) saulyoe Ssauisng atopowwo)
J0 Asa1unoo Aq paonpouday) 9 a10powwo) ay} 10} A|quIaSSe paeod 1Nd410 paluiig gL bi4

»«..:_E.u :

ager - epn

e ._ T
T4 34 By . 64N 40 VIBY WBANED .
3% P1g ol a0l 0L 9% H3Ll AMddy (@n‘an) 43
PR P
o \

v9 380A0NNOD

-y {w} tm 4O G5 Ory -6
nn n .
1 H .
L wm
— O, >
3.
Eg@aaaéya
M = D
“._Ev
< < -
o L -2
] L -3y
-
-(FA
Rieig - -0
p 2 o o om
92 {€3)
n n
n on n

(en‘vo'sn) 145 §2) (610°20*20°1n) "a v (53)

Inside the Commodore 64 7

circuit board, a 66 key keyboard and assorted plugs and sockets, not forgetting
the power switch and LED.

1.2.1 The PC board

The printed circuit board (see Fig. 1.3) has soldered onto one side of it, a few
hundred assorted resistors, capacitors, ferrite beads, diodes, coils, 2 voltage
regulators, a fuse and 31 integrated circuits (chips). The power supply box
supplies the board with 5 volt dc regulated, 9 volt ac and a shielded ground line.
The 5 V line is used to power most of the main chips but not the VIC chip or the
clock circuit. The 5 V and 12 V for these chips is generated on the board using
diodes and voltage regulators to convert the 9 volt ac supplied. This is done to
limit interference from the VIC chip and clock circuit which are in a shielded
can. (Do not run the computer with this can open as the lid of this provides the
heat sink for the VIC chip.)

1.3 The main chips

1.3.1 651® microprocessor (MPU)

The microprocessor (Fig. 1.4) is a version of the very common 6502. The main
difference is that the 6519 has a 6 pin I/ O port. In the CBM 64 this port is used
for controlling memory configurations through the PLA chip, controlling
output lines to the tape deck and sensing keys being pressed on the tape deck.

+5V

=

6 38— R/w (Read/ write)
2 RDY (Ready)

(I/O port) P@-P5 @2‘1-2&

(Clockin) PPin —) 3¢-3?<__:_> D@ -D# (Data bus)

(Phase 2 clock)2 <34 ?‘
(Int t jR@ —— 0
Se;:e);tg ”ic_l_ R Ag-Al5 CAddress bus)
(Non maskable NMI ——— 3 4 +.2¢
inl’errupl') . 22423
(Reset) RES —_ 5l49 5 ke——— AEC
2] (Address enable control)
+
GND

Fig. 1.4. 6510 microprocessor (MPU).

8 The Commodore 64 Kernal and Hardware Revealed

6510 Signals and Lines
Pin | @Pin Clock in (from VIC chip)
Pin 2 RDY Ready. Processor waits in current state while this line is

low. If this line is low and interrupts are enabled at the
end of the current instruction cycle then an interrupt
will be initiated

Pin 4 NMI Non maskable interrupt (negative edge sensitive input).
When this line goes from high to low an interrupt will
be initiated at the end of the current instruction

Pin 5 AEC Address bus enable control. When this line goes low
the processor frees the address bus for use by other
chips (VIC in the 64)

Pin 6 Vee Supply voltage (+5 V)
Pins 7-20
& 22,23 AP-Al5 Address bus (enabled by AEC)
Pin 21 GND Ground (9 V)
Pins 24-29 P5-P9 Processor 1/O port
Pins 3p-37 D7-D9 Data bus
Pin 38 R/W Read/ write. (Output: low flags for processor write.)
Pin 39 ¢2in Phase 2 clock input
Pin 49 RES Reset (Active low)

1.3.2 6526 complex interface adapter (CIA)
There are two of these chips in the Commodore 64. The first CIA#1 is used for

+5V
Vee

20

(Data bus) DP-DF N335 29 K> PAP-PAT (Pt h)
(Register _ psgp.Rs3 I EE g K> PB¢ - P8 (Port 8)

select lines —
(Chip select) €S ——213 24 f———— FLAG (Nega.{:ive edge

. o Sensing input
(Qeo«i/wnfc) R/W — 22 4p f———> CNT (Serial clock/pu.lse Counter)
(Phase 2 clock)P2 ——25

39— 5 SP (Serial data)
(Reset) RES —f 34

ClA ¢526

18 |———s p¢c (Port B hand shaking output)

(Interrupt request)iR@. +— 2! 19 . TOD (Time o day clock)

A -
o
z
=]

Fig. 1.5. 6526 complex interface adapter (CIA).

Inside the Commodore 64 9

scanning the keyboard and inputting from the cassette and serial port. The
second CIA#2 supports the user port and most of the other serial port lines. It
also is used as a latch for the VIC chip bank select value. CIA chip 2 hasits IRQ
output connected to the NMI line so that its timers can generate NMIs instead
of IRQs. The chip select lines for the two chips are decoded from the processor
address bus by the PLA chip to addresses $SDCPf & $DD@P (Fig. 1.5).

6526 Signals and Lines

Pin 1 GND
Pins 2-9 PAp-PA7
Pins 19-17 PBp-PB7
Pin 18 PC

Pin 19 TOD

Pin 20 Vee

Pin 21 IRQ

Pin 22 R/W

Pin 23 CS

Pin 24 FLAG
Pin 25 2

Pins 26-33 D7-D§
Pin 34 RES

Pins 35-38 RS3-RSP

Ground (9 V)

Data port A (Bi-directional data port)

Data port B (Bi-directional data port)

Handshaking output for port B

Clock input for TOD clock

Supply voltage (5 V)

Interrupt request output

Read/write. Input from processor (low for processor
write)

Chip select. Low indicates a processor read or write to
the CIA

Negative edge sensing input

Phase 2 clock input

Data bus (Bi-directional depending on R/ W)

Reset (Active is low)

Register select. Connected to the lower order address
lines to one of the 16 registers

Pin 39 SP Serial input. Not used for Commodore serial bus
Pin 49 CNT Pulse counter, serial clock. Not used for serial bus
+5V +12V
VCC I lvdd
- 25 28
(Data. bus)D¢ D¥ <:l$-22 \% — g:glo. (Fiter capacitor 1)
'—"_ Ib
(Register
. - -1
select Lines) AB-A% :> - 384 ——— ggﬁim (Filter capacitor 2)
(Chip select) 6 —0 9 = AUDIOB .
. — 2+ b— ou
(Reqd/wnte) RIW 1 a 8 26 ke . EXT (Audio '|nPut:)
Clock 2 ———36 O
(o) ¢ 6 24 leem POTX (lnputs for A/
(Reset) WS —_—5 23 ke POTY converters)
14
= &

Fig. 1.6. 6581 sound interface device (SID).

10 The Commodore 64 Kernal and Hardware Revealed

1.3.3 6581 sound interface device (SID)

SID is a music/sound effects generator for computer games. Its output goes to
the modulator and audio/video socket, and has a sound input from a pin on this
socket (see Fig. 1.6).

SID Signals and Lines

Pins | & 2 CAPla-b Filter capacitor

Pins 3 & 4 CAP2a-b Second filter capacitor

Pin 7 R/W Read /write

Pin 8 CS Chip select. Decoded from address bus by PLA to
$D4pp

Pins 9-13 Ap-A4 Register select

Pin 14 GND Ground (P V)

Pins 15-22 Dp-D7 Data bus

Pin 23 POTY Analog input for A/D converter

Pin 24 POT X Analog input for second A/D

Pin 25 Vee Supply voltage 5 V

Pin 26 EXTin Audio input

Pin 27 AUDIO Audio output

Pin 28 Vdd Supply voltage 12 V

1.3.4 6567-9 video interface chip (VIC)
This video display generator chip (Fig. 1.7) also produces most of the internal
timing and control signals for the CBM 64, including the processor clock.

VIC generates its own address bus like the 6510. This is used to fetch display
data from RAM and character ROM, but since the computer cannot have two
completely separate address and data bus systems, VIC and the processor have
to share them. 65xx series processors use the system buses only during phase 2 of
the clock cycle. The VIC chip takes advantage of this and uses phase 1 of the
clock (2 low @9 high).

This chip has been given a higher internal bus priority than the 6519
processor. VIC can disable the 6519 and free the address bus for its own use
during phase 2 by sending the lines AEC & BA low. The AEC line disables the
651f address drivers so that its own can drive the address bus. The VIC chip can
send the AEC line low during phase 1 and use the address bus without
interfering with the processor’s operation. The line BA is connected to the 6510’s
RDY (ready) pin. This can be set low during phase 1 and then held low causing
the 6510 to pause at the end of its next read cycle. (This is ignored during 6510
write operations. VIC accessing memory with R/ W low would not be desirable
anyway!). BA will go low three cycles before AEC is used in phase 2. This
ensures that all write operations have finished and avoids conflict with DMA
(direct memory access) from any cartridge port device (Z8p card).

VIC also refreshes the dynamic RAM chips using its RAS line and its lower
order address bus during phase 1.

Inside the Commodore 64 11

+5v +Qv
Vee l | Vdd
(Data bus) DB-D6 < a;“ . W f——— R/ (Read/uwrite)
(Colou: data Dg-Dil {5935 § |——p R& Cinterrupt reQuest)
A 22— PIN CClock in (Dot Cbck))
& r;sl;et:: ?&fa A¢/A8 As/AuC}“'“ o g e s ¢ Chip setect)
AP_A5)
(High aadress) ~ A6- AN Ci‘:‘;“ 5 ufp——— @®CoLouR
(Row setect) RAS 3 8 qk— P« Light p en)
(Columa select) Cas :g - 15 oo SYNC + LUH (Video sync &
(Address enable AfC 6 9 14 Colour Luminosity)
control) S (Video colour)
(Bus availaple) BA —li2
(Clock out) @ouT — '

29
L

Fig. 1.7. Video interface chip (VIC II).

VIC Signals and Lines

Pins 1-6 D6-DP & Data bus

& 35-39 DI11-D7 D@-D7 are bi-directional and are used for
register access and VIC memory fetches
D8-DI1 are used for reading colour RAM

Pin 8 IRQ Interrupt request output

Pin 9 LP Light pen input

Pin 19 CS Chip select

Pin 11 R/W Read / write

Pin 12 BA Bus available

Pin 13 .vdd Supply voltage +12 V

Pin 14 Colour Colour output

Pin 15 S/LUM Sync/luminance

Pin 16 AEC Address bus enable

Pin 17 [0Y] Phase one clock out

Pin 18 RAS Row address select. Dynamic RAM control signal,
used for low order of multiplexed address and for
refreshing

Pin 19 CAS Column address select. Dynamic RAM control signal
for high order address

Pin 20 Vss Ground (9 V)

Pin 21 ¢colour Colourclock in 14-18 MHz

Pin 22 ¢in Clock in 8 MHz

Pins 23 All &

& 30-34 A6-Al1P High order address output

Pins 24-29 AP/ A8-

AS5/A13 Address lines Ap-A13 multiplexed together. Gives
address for VIC for memory fetches in output mode or
register select in input mode

Pin 49 Vee Supply voltage 5 V

12 The Commodore 64 Kernal and Hardware Revealed

1.3.5 Programmable logic array (PLA)

This is an array of logic gates programmed together at the time of manufacture
to give most of the required logic circuits of the 64 (see Fig. 1.8). The chip has 16
inputs and 8 outputs. A very complicated logic table relates the outputs to the
inputs. The pin names of this chip are If-115 and Fp-F7!

+5Vv
Vee
28
|6 INPUT LINES \
- F@-F%
I$-115 ! &2 > 9
2%.20 | (8 oureur
LINES)
(ouTPuT OF
ENABLE) CE 9

FE ——— |

14
l GND
Fig. 1.8. Programmable logic array (PLA).

The other main chips in the 64 are the RAM and ROM chips. The RAM
comprises eight 4164 dynamic RAM chips. One chip gives 1 by 64K bits of
memory, so the eight chips give 8 by 64K bits or 64K bytes. The 4164 has 8
address lines. The 16 bit address is multiplexed in (low byte first) and timed with
the RAS and CAS lines. The main improvement with this chip over older
dynamic RAMs is that it requires only a single 5 V supply instead of —5,+5 and
+12 V fora4116. The colour memory RAM isa 2114 chip; thisis a4 by 1§24 bit
static RAM.

The Basic and kernal ROMs are 8 bit by §K ROMs. The character ROM isan
8 by 4K. These chips are Commodore’s own manufacture and type. The 6510,
6526 CIA, VIC and SID chips are all manufactured by Commodore’s chip
manufacturing subsidiary, MOS Technology Inc. It is unfortunate that none of

these devices appears to be second sourced and consequently replacements are
either very difficult or impossible to obtain.

1.4 System logic and timing

Like all computers the Commodore 64 is a group of chips linked together by
address and data buses. The main chips which are connected to the data and
address buses are instructed to send to, take from or ignore the data bus by the

Inside the Commodore 64 13

control system lines. There are, in addition, lines controlling the use of the
address bus. These control lines are defined as follows:

1.4.1 Clock lines

¢ colour clock

This is the colour clock used by the VIC chip for generating colour signals. It is
divided by part of the clock circuit and used as a reference for producing the VIC
chip’s dot clock.

Dot clock

This signal produced by the clock circuit is the clock input to the VIC chip. VIC
uses this as the timing for producing pixels on the sceen. Also VIC divides this
signal by 8 and supplies it as the processor phase zero clock.

Phase 2 processor clock ¢2

This clock line controls all 6510 read and write operations. It is produced by the
6519 from the VIC chip’s ¢f line. The 65xx series processors require only the
system buses while this line is high (5 V).

1.4.2 Main system control signals

Read/Write R/W

If this line is low when a byte of memory or I/ O device register is selected by the
address bus, then the contents of the data bus will be transferred to the selected
byte or register. If the line is high then the contents of the selected address are
transferred onto the data bus.

Reset RES

This line is connected to all the main chips including the processor. On machine
power up this line is held low for a few clock cycles to ensure the supply voltages
have stabilised. This holds all chips in their reset state until they are ready.

Ready RDY

RDY is a processor input which, if low, causes the 651 to pause at the end of the
read cycle. It is used with the AEC line to disable the processor during phase 2
clock cycles for direct memory access.

Interrupt request IRQ
When this line is low it signals that one or more of the CIAs or VIC is requesting
an interrupt service.

Non maskable interrupt NMI

When this line goes from high to low the processor will be interrupted at the end
of the current instruction cycle. Only a change from high to low will cause an
interrupt, so if this line is held low after an NMI it will disable future NMIs.

Bus available BA
When this line is low it flags that the VIC chip needs the system buses during
phase 2. It disables the processor via the RDY line.

RAM control signals CAS RAS & CASRAM
The 4164 dynamic RAM chips have their 16 bit addresses fed to in two lots of 8

14 The Commodore 64 Kernal and Hardware Revealed

bits. This is because the 16 pin chip has only an 8 bit address bus. RAS, the row
address and CAS, the column address are used to strobe in the low and high
bytes. In the 64, CAS and RAM chip select are combined into CASRAM, so
when this line is low it flags the high byte of address on the chip’s address pins
and the chip is selected for read or write.

Chapter Two
The Keyboard, Joysticks and
Screen

2.1 Keyboard

2.1.1 Keyboard hardware and software operation
The CBM 64 keyboard has a total of 66 keys, the layout of which is shown in
Fig. 2.1. These 66 keys can be divided as follows:

(wefr] T v u]]
InEGonn

[z e v e v L)

Fig. 2.1. The keyboard layout.

1. RESTORE key; this is connected directly to the NMI line.
2. The left shift key and the shift lock are connected together.
3. All other 63 keys.

The main section of the keyboard thus has a total of 64 keys. These are
organised electrically as an 8 by 8 matrix. The keyboard scanning is performed
by the operating system software. The matrix is organised such that the columns
are set as outputs by the scanning routine and the rows return a value if a key is
pressed. These 8 row inputs and 8 column outputs from the keyboard matrix are
connected to the computer via the CIA#1 I/O chip, where the output is via
address $DCPP and the input is via address $DCP1. The scanning routine loops
through 8 times, and each time sends a different line on the output to a low state.
It then reads the input port connected to the matrix row lines, which will return
values for 8 keys (each key takes up one bit, /=down, I=up). Therefore, looping
8 times through the scanning routine will look at each of the columns and return
all keys which are pressed.
The keyboard is laid out as follows:

16 The Commodore 64 Kernal and Hardware Revealed

Row # Column # (output)
(input) [] 2 3 4 5 6 7
[} DEL 3 5 7 9 + £ 1
1 RET w R Y I P * -
2 — A D G J L ; CTRL
3 F7 4 6 8 [- CLR 2
4 Fl z C B M R.SH SPACE
5 F3 S F H K : = €=
6 F5 E T U (0] @ t Q
7 l LSH X \% N , / STOP

The scanning of the keyboard matrix, and the testing for depression of the
RESTORE key, are all under software control. The entire processor time
cannot be devoted to keyboard scanning, therefore scanning is initiated by a
regular 1/6f second interrupt. Keyboard scanning is one of the functions of the
IRQ interrupt servicing routine. The 1/6f second regular interrupt is generated
by Timer A of CIA#1. The interrupt service routine starts at location $SEA31
and the keyboard scanning portion at SEA87.

The keyboard scanning routine goes through a sequence of operations, the
result of which is to place each input character into a special section of memory;
the keyboard buffer. The sequence is as follows:

1. Check if key pressed; if not then exit from routine.

2. Initialise 1/O ports of CIA#1 for keyboard scan and set pointers into
keyboard character table |. Set character counter to 9.

3. Set one line of port A low and test for character input on port B by
performing eight right shifts of the contents of port B register; if carry is clear
then key present. Each shift increments key count; store key count in .Y.

4. Go back to step 3 and repeat for next column; if key found then continue.

5. Use key count value as index pointer into keyboard character table to get
ASCII code corresponding to depressed key.

6. See if it is SHIFT or STOP key.

7. Evaluate shift function

If SHIFT key then use table 2
If CBM key then use table 3
If CONTROL key then use table 4

8. Use key count value as index pointer into keyboard character table
designated in step 7.

9. Check for repeat key operation.

19. Do repeat if required.
11. Put ASCII character obtained from keyboard character tables into the
keyboard buffer; increment the pointer into the keyboard buffer.

The contents of the 1f character keyboard buffer are accessed on a first in first
out basis by the INPUT and GET character routines. These routines take the
first character in the keyboard buffer, decrement the buffer pointer and close up

The Keyboard, Joysticks and Screen 17

the buffer by moving the contents down one byte thereby leaving space for new
input characters.

The characters put into the keyboard buffer are removed by either the
INPUT or GET kernal routines. Both these routines call a subroutine at §ESD4
which removes the first character and puts it in register .Y then moves the whole
buffer down by one byte. This routine is only called if at least one characterisin
the buffer.

Warning: Do not call the routine at $ESD4 when there are no characters in
the keyboard buffer as this will crash the computer.

The GET character routine which is accessed by the kernal jumpblock at
location $FFE4 (vectored at $032A) will return the Commodore ASCII code of
the next character in the keyboard buffer in register .A. If no character was
present, the value of zero is returned.

The INPUT routine, when called, will set the cursor flashing and will input
characters from the keyboard buffer until a carriage return is found. Each
character received is printed to the screen using the routine at SE716 and when a
carriage return is found, the routine inputs the first character on the line from
the screen and returns it in register .A. Subsequent calls to this routine will
return one character at a time until they have all been returned. At this point, if
the ASCII value of SHIFT/STOP is found, the LOAD/RUN combination is
stored to the buffer replacing all characters following it. The routine is accessed
via the kernal jumpblock at location SFFCF (vectored at $0324). A Basic
program to emulate the keyboard scanning routine is given in Program 1.

1809 REM KEYBORRD SCAN SIMULATION PROGRAM

1010 REM H4ERERIcHISHOOBERISORERR
=

1939 REM THIS BASIC PROGRAM SIMULATES

1048 REM THE IRQ SCANNING ROUTINE WITH

1858 REM A FULL SCREEN DISPLAY OF WHAT

1068 REM IS HAPPENING. THE ROUTINE FIRST

1876 REM WAITS FOR A KEY TO BE PRESSED

1850 REM AND_THEN SCANS THROUGH TO PICK

1692 REM UP THE KEY(3). ANY KEY PRESSED

1190 REM WILL BE DISPLAYED RS A REVERSE

1118 REM KEY IN THE BOX LABELLED KEY’.

1128 REM

1139 REM YOU MUST HOLD DOMM A KEY UNTIL

1149 REM IT IS RECOGNISED.

1159 REM

116@ REM A KEVBOARD BUFFER IS KEPT AND

117@ REM THE ROUTINE WILL EXIT WHEN

1139 REM EITHER THE RETURN KEY IS FOUND

1130 REM OR WHEN THERE ARE TEN CHARACTERS

1280 REM IN THE BUFFER.

1218

1220 DTN GERED

1330 DIN K$(71>:FORI=BTD?1 ‘RERDKSC 1) NEXT

1249 DIM K(3.64) :FORJ=0T02:FORI=8T064:K(J, I »=PEEK(6@289+J#65+1) :NEXTL, J

1250 FORI=0T064:K(3, [)=PEEK(6B536+1) :NEXTI

1268 PRINT"JEl KEYBURRD SCAN SIMULATION®

1270 PRINT"HM OQUTPUT: $DCOO INPUT : $DCBL"
1288 PRINT"H BIT: 76543218 BIT : 76543210"
1293 PRINT" ———— —
1308 PRINT" I | | ™
1318 PRINT" e —
13268 PRINT" KEY : | "

1338 FORI=1T04:PRINTPS$; :FORJ=1TOI :PRINT W ; : NEXT
1348 PRINT" I 1" NEXT

18 The Commodore 64 Kernal and Hardware Revealed

135¢
1368
1378
1368
13848
1458
1418
1428
1438
144a
1456
1456
1479
14308
1490
1560
15118
1520
1538
1549

1558 KT

1568
15798
1528
1599
1660
1618
16za@
1638
1649
16508

PRINTP$" Bleleldl] "———— "

PRINT " STlEEREBERECURRENT SHIFT : @*
PRINT"CURRENT KEY P 64"

PRINT"H KEY BUFFER®

30SUB 1594

POKE 56333, 1:FORI=0T07:P2(I)=21] :NEXT
KT=8:C5=0:CK=64:%YL=8:R=255: GOSUBi 7@
¥=0:POKES6329, V : GOSUB1668 : A=PEEK(56321)>
IF R=255 THEN 1420

GOSUB 17649

¥=254 : FORYL=@T0O7

POKE 56328,V:G05UB 1668 DISPLAY OUTNEW
A=PEEK (563212 :GOSUB 1788 DI3PLAY INFUT
GOSUB 1868 CHECK FOR ANY NEWS DOWN
V=((V¥2>AND255)> +1 : NEXT

IF CS<>3 THEN 1558

IF {PEEK(S3248+24> AND 2>=2 THEN 1548
FPOKE S53243+24,PEEK(53248+24>0R2
G0TN1568

POKE S53248+24.PEEK (53248+24 >AND253
=CS: IFKT>3THENKT=3

CC=K(KT.CK>

IF CC=253 THEN 1656
KB(BP>=CC : BP=BP+1
IF(BP<>18>AND(CC{>13>THEN 1648

FOR I=8TOBP-1:FDOKE 631+],KBCI):NEXT
POKEISS:BP POKE 56333;129

PRINT " 2abifaleh 1 £117112))

END

GOSUB 1390

GO0T01364

166@ REM

1670

REM DISFLAY OUTPUT YALUE BITWISE

1680 REM

1696
b sl]
ivia
1728
175ae
1748
1758
1768
177
1vea
1728
1308
1818
1829
1838
1349
1858
1860
1878
1880
1830
19006
1910
1228
1938
1548
1355
1968
1978
1385
12986
2064
2818
2820
20308
2640

RE;:PRINT“HMNNHWGEEDUBUEEBP;1GOTO 1868
ggp DISPLAY INPUT YALUE BITWISE
EM
FRINT" SRS R8eE0bREEEREREPEEREEREDEER!"
FORI=7FTOBSTEP-1 :PRINTPS;
FORJ=FTOISTEP-1 :PRINT"BI"; :NEXTJ
C=\L¥3+I:FORJ=1TQS
CH=MIDFCKECO+" " J. 10
FRINT"&"; : IFCA AND P2(I)>=9 THEN PRINT"&";
EEINTC$"EEP5ZNEXTiNEXTiPRINT"!“;’RETURN
M
EEM DISFLRY VALUE IN A BITWISE
M
FOR I=? TO @ STEP -1
C$="@":IF A AND P2(I) THEN C$="1"
PRINT"#"C$"8"; : NEXT : RETURN
REM
gEH CHECK FOR A KEY FROM THIS COLUMMN
EM

FOR X=8 T0 7
IF(R AND P2(X>>=@ THEN 1356
NEXT
SEERRPREERSBRAN(" ; CS

| pESIROPEEEEIRRRT ; CK; "0 ¢
RETURN
IN=K (KT, X+YL%8)
IF IN>4 THEN CK=X+VL%8:G0T01918
IF IN=3 THEN CK=X+VL#8:60T01°919
C3=C30RIN:GOTO1318
REM
REM DISPLAY KEYBOARD BUFFER
REM
PRINT " e a0t IR et
FOR I=8 T0 9
PRINT"1BBEREBBOEEEEI" ; KB(I) : NEXT

:G0SUB 1889

The Keyboard, Joysticks and Screen 19

2058 SN ROETRIR]® ;

2060 IF BP=8 THEN "BSB

2070 PRINTLEFT$(" ¥ibablblas” ,

2860 PRINT"IBREERIERERIEEBSE"

2898 RETURN

2160 REM

2118 REM MNEMONICS FOR KEY PRESS
2128 REM

2130 DATR DEL.RET.,C.RT.F7.F1,F3,FS,C.DN
2148 DATA 3,W.A.4,2,5,E,L.SH

21568 DATA S.R.,D.6,C.F,T,X

2168 DATAR 7.'Y.G,8,B,H. UL,V

2178 DATA 9.1.J.8,M,K,0.N

2188 DﬁTﬂ +IP.'LJ-JnIu:")@)"I"

213@ DATA “\.%,";",CLR,R.SH,=, 1./
22068 DRTR 1.¢,CTRL.2.SPC,CBM.Q,STOP
2218 DATR » » » + 4+ +

Program 1.

2.1.2 Modification of keyboard operation

Program 2 shows how a wedge can be made into the INPUT routine to give the
function keys text definition. This follows the same principle as the expansion of
the SHIFT/STOP character, with the exception that subsequent characters are
not lost. Each function key definition can be up to 255 characters long and the
definitions are stored behind the Basic ROM.

833C I FUNCTION KEYS FOR THE &4,
833C | ReteeseeesitaloisEiEuoR g
C !
gggk I ERCH KEY CAN HAYE R MAXIMUM
833C IDEFINITION OF 255 CHARARCTERS LONG
833C FCMAXIMUM BASIC STRING LENGTH)
a33C !
833C ! DEFINE R FUNCTION KEY LISING:
@33c 13YS 42163, N.DEFINITIONS
833C !
833C ! INITIALISE FUNCTION KEYS WITH:
933C 18YS 49132.
833C !
Coo0 #=$C000
C808 AR963 LDR #<FUNCTION
802 3D2483 STR $8324
Ce8sS ASCa LDA #OFUNCTION
Coe7 8D2563 STR $8325
ceeh 68 RTS
CosB !
Co8B 26F 1B7 DEFINE JSR $BVF1 IGET KEY#
COvE EBBI CPX #$89 ILESS THRN 37
Co18 9685 BCC DEF1 IYES
C812 R2BE ERROR LDX #3$08E TILLEGARL QUANTITY
Co14 6CBe63 JMP ($030@> !SEND ERROR
817 !
Cal? Ee@8 DEFI CPX #300 tIS IT ZERQ?
19 FOF7 BE@ ERROR IYES
Co1B CR DEX
ce1C 8Rn TXA
ceiD 43 FHA
CB1E 20FDAE JSR $AEFD
Co21 2@S9EAD JSR $RDSE !GET STRING
Ce24 2BA3B6 JSR $BEA3 'DISCARD STRING
Ce27 8D51C8 STAR STLEN
C82A &8 PLR
Ce2B orA ASL R
cezC AR TAX
Ca2D BDS3CE LDA POINT.X
Ca36 8524 STR $24

€832 BDSHCA LDA POINT+1,X

20 The Commodore 64 Kernal and Hardware Revealed

Ca35
ce3?
Ca33
cesB
Ca3b
CO3E
Co41
Cco43
Ca45
Cco4?
ce48
Co4A
ce4c
Co4E
casa
Cesi
Cosi
Cas2
ces3
Ces3
CaSB
Ce63
Co63
CB6S
ceé7
C86R
CoeeR
cesC
Ce6E
Coro
car2
Co73
cer4

8525
fBo8
B122
9124
cs8
Cccsice
Foes
Cago
DoF2
60
Caoe
FOFB
AS0Q
9124
60

(505)
89

06B30A
©0BFAYBB

AS399
F@e3
4CSFF1

ASD3
85CA
ASD6
85C2
98
48
3A

Cars 48

ceré
cer’8
Ce7A
CarD
cevD
Cosa
cess
Ca8s
ces?
coess
cesc
COsE
CoOsF
coesi
ces3
Cess
casg
CesA
cesc
CaSF
CBR2
CBA4
CoR6
CoR8
CBR3
CBRB
CBRE
CaBt
ceB2
C8B4
CeBs6
CaBs
CBBR
CeBD
CoBD
COBF

ASD@
Foes
4C3AEE

2016E7
ADS2Ce
Dass
ASC6
35CC
809262
FoFz2
78
HSCF
FaerC
ASCE
RE87@2
RBBA
84CF
2013EA
28B4ES
C983
De18
Azes
78
86C6
BDEGEC
SD7ea2
CA
DaF?
FecR
C28D
Dea3
4COZES

RED
DAEC

DEF2

DEF3
DEF4

!

STLEN
FUNCFLG
POINT

!
FUNCTION

!
FUNCa2

FUNCB3
FUNCO4

FUNCBS

FUNC8e

FUMNCB?
FUNCEXT
!
FUNCBs

STH
Loy
LDA
STR
INY
cPY
BE@
CPY
BNE
RTS
cPy
BEQ
LDR
5TA
RTS

BYT
BYT

WOR
WOR

JMP

LDX
BME

$25

#5008

$22).%

($245,Y

STLEN TEND OF STRING?
DEF4 IYES

#5608 IEND OF ROOM?
DEF2 INOT YET

#3008 ISTRING LEMGTH=2357
DEF3 IYES

#s00 IZERO TERMINATOR
($245.% ISTORE IT

a

8

$BS03, $BCAY, $B203, $FDOG

$BAGO, $BEBY, $BBVY, $BFV0
$99 IFROM KEYBORRD?
FUNC82 IYES
$F157 1D0 NORMAL
$D3 ISAVE CURREMNT CURSOR
$CA ! COLUMN
$D6
$C9 ! AND ROW

ISAVE .X AND .Y
$D0 ISCREEN OR KEYBOARD?
FUNCO4 | KE'YBORRD
$E63A 1D0 FOR SCREEN
$E716 IDISPLAY CHAR TO SCREEM
FUNCFLG IDOING FUMCTION KEY?
FUNCB9
6 IANY CHARS IM BUFFER?
$CC 'IF NOT, BLIMK CURSOR
$8292 TAUTO SCROLL DOMWN
FUNCB4 IREPEAT UNTIL CHAR

IDISABLE KEYBUARD
$CF ICURSOR BLINK?
FUNCES INO
$CE IRESTORE ORIG CHAR
$9287 ! AND COLOUR
#$00
$CF ISWITCH OFF BLINK
$EAL3 IRESTORE CHAR
$ES5B4 IREMOVE CHAR
#383 IRUN/STOF?
FUNCO? INO
#3899 ICOPY TEXT INTO BUFFER
$C6
$ECEG, X
$9276, X
FUNCB6 IREPEAT UNTIL DONE
FUNCB4 1 DONE
#3$9D ICARRIAGE RETLURN?
FUNCE8 INO
$EED2 IEND INPUT
$D4 IQUOTES?
FUNCO3 IYES

The Keyboard, Joysticks and Screen 21

Caci C38S CMP #133 {LESS THAN F17?
CaC3 SeB8 BCC FUNC@3

Cecs C98D CHP #141 IGREATER THAM F3?
Cec? B@B4 BCS FUNCB3

Cac9 38 SEC

CcacA E9S8S SBC #133 ICHANGE VALUE TO 8-7
cacc 1s CLC

C8CD 65B8 ADC #$B8 I'SET HIGH BYTE QOF
CeCF 8SFE STR $FE ! DEFINITION POINTER
Cab1 A998 LDR #$08

C8D3 35FD STR $FD

CeDS Rego LDY #3080

Cep? 2683C1 JSR GETVAL !GET FIRST BYTE
cebn C8 INY

CeDB 3CS2C8 STY FUNCFLG IFLRG FUMCTION
CODE (36D CMP #3@D ICARRIAGE RETURN?
CBE@ FAD38 BEQ FUNCEXT 'Y'ES

CBE2 C268 CMP #3090

CBE4 DBS7? BNE FUNC@3

COE6 3DS2Ca STA FUNCFLG

CeES F@9sS BEQ FUNCa4

CeEB !

CBEB RCS2CY FLNC@9 LDY FUNCFLG

CREE 2083C1 JSR GETYAL IGET CHARACTER
CoF1 Doas BNE FUNC18

Cer3 8Ds2ce STA FUMNCFLG

CBFs Fags BEQ FUNCB4

CeFs Cs FUNC18 INY

COF3 8CS2C8 ST FUNCFLG

CoFC C28D CMP #$aD 'CARRIAGE RETURN?
COFE FBBH BEQ FUNCEXT IYES, EXIT

Cigg 4C7DCA \ JMP FUNCE3

C !

183 AS81 GETVYAL LDA %81 !BASIC ROM QUT
C195 25FE AND #$FE

C187 8581 STA $91

C18% BIFD LDA ($FDD.Y 'GET CHARACTER
CigB 48 FHRA

C1ec ASA1 LDA $a31 'BRSIC ROM IM
C18E 89a1 ORR #3281

C119 38581 STA $01

Cilz 68 PLR

C113 68 RTS

Program 2.

To enable the function keys enter:
SYS 49152
To define a function key use:
SYS 49163,k#,def$

where k# is the number on the function key (without the ‘) and def$ is any
string expression.

The text on the function keys will appear only if the function key character is
removed by the input routine. This means that when using the GET command,
the ASCII character for the function key is returned rather than a character
from the text. The function key is not expanded if it is within quotes.

The following is an example definition of a function key:

A$=*":FOR I=p TO 79:A$=AS$+CHRS$(32)+CHRS$(20):NEXT
SYS 49163,7,A$

This will set up a function on key 7 which deletes from the cursor position to the
end of the line, leaving the cursor at the same position (space-delete 80 times).

22 The Commodore 64 Kernal and Hardware Revealed
2.2 Joysticks

There are two different types of joystick which can be connected to the CBM 64;
a simple paddle switch joystick and a potentiometer or analog joystick. The
switch joystick is widely used in games programs to move a cursor about the
screen or to move an object. A switch joystick is primarily capable of only very
simple directional input. It is, however, a very low cost device. The analog
joystick is fairly expensive but is capable of far greater positional control. An
interesting version of the analogjoystick has started to appear in the form of low
cost digitising pads which, when combined with the appropriate software, can
produce some excellent computer art on the CBM 64.

2.2.1 The switch joystick

These joysticks are not part of the keyboard hardware but they are connected to
the same lines on the CIA#1 chip: port | to the read line and port 2 to the write
line:

$DCpP: Bits 7-5 Not used
JOY?2 fire button
JOY?2 east
JOY2 west
JOY?2 south
JOY2 north

-5 Not used
JOY1 fire button
JOY1 east
JOY1 west
JOY1 south
JOYI north

$DCP1: Bits

W= N WA O — N Wh

As with the keyboard, both joysticks must be read assuming that when the bit is
zero, the contact is made. Because port 1 is connected to the same line as the
keyboard read, any switches on joystick 1 will affect the character read in.
Program 3 demonstrates the operation of the switch joystick.

18 REM EXAMPLE OF READING THE JO'YSTICK
28 REM

30 PRINT" %",

49 A=PEEK(5632@) :REM PORT 2, 56321 FOR PORT 1
59 F=0:IF (ARND15>=0 THEN F=1

50 E=9:IF (AANDS>=8 THEN E=1

7@ W=0:IF (AAND4>=9 THEN W=1

3@ S=8:IF <{ARND2>=3 THEN Z=1

30 N=0:IF (AAND1>=2 THEM N=1

188 IF F THEN RUN

118 IF E THEM PRINT"0I %“;

128 IF W THEM PRINT"0E8k BI":

130 IF S THEM FRINT"8] EERE":

148 IF N THEN PRINT"80 "BR":

GOTO 490
159 GOTO Program 3.

2.2.2 Potentiometer joystick
A potentiometer joystick consists of two potentiometers mounted at right

The Keyboard, Joysticks and Screen 23

angles to each other in a mechanism which allows the joystick when moved to
change the wiper position of either one or both of the potentiometers. One
potentiometer registers the potentiometer movement in the X axis and the other
in the Y axis. The rotational movement of either potentiometer is divided by the
computer into 255 divisions. With the joystick centered vertically the X and Y
potentiometers will both have a value of 128. The position of the joystick can
thus be mapped in terms of 2D graph coordinates.

The two potentiometers are connected to the SID chip. SID has two analog
inputs, and the two analog lines from each joystick port are multiplexed onto
each input using a 4066 quad analog switch. The 4966 switching is controlled by
lines PA6 and PA7 on CIA#1. Program 4 allows the input of values from two
joysticks using the USR command.

CEga #=£C008

CHea EEESE e s P e e SO SRS EEEE ST g

[ps]als) !ROUTINE TO READ PADDLE PORTS

caed ! USES BASIC USR COMMAND

Coag ! T INITIALISE USR COMMAND

ceas ! POKE 785.98

caeg ! POKE 726,132

ceas !

coas ! P= IISR{ PADDLE NUMBER)

Coad ! MOTE PADDLE NUMBER = 8 TO 3

coea ! el

Cead 28BFB1 USR JER $B1BF IFLOART TO FIXED

CBP3 ASES LDA $65 ILOW BYTE

ceas 23683 AND #3

Coay Al TRY

Ccags A240 LDX #$40

CagR 2582 AND #2 !PORTS 8,1 OR 2.3

coec Foe2 BEQ@ POOR1

CABE R288 LDX #$80

ce18 73 PA0R1 SEI !KEYBOARD SCAN

£a1l SEepDC STA $DCO8 tUSES $DCo0

Cca14 A288 LDX #$3@

Col1é CR LooP DEX 'DELAY FOR A/D

Cai1v 18FD BPL LOOP | CONVERTER

ce19 33 YR

Caln 2581 AND #1

CB1C AR TAX

C@1D BC13D4 LDY $D413,X !READ PORT

ceze =53 CLI

Ce21 A%es LA #8 !ZERQ HIGH BYTE

Ce23 4C391B3 JMP $B3S1 IFIXED TO FLORT & EXIT
Program 4.

2.3 The screen

2.3.1 The hardware

The screen display on the Commodore 64 is created and controlled by one chip;
the VIC II (video interface controller 6567/9). A detailed description of the VIC
II hardware can be found in Chapter 1.

2.3.2 The screen display operating system software

None of the wide range of potential features of the VIC II chip are implemented
by the software of the 64 with the exception that on power-up the default screen
and border colours are set up, and the case bit is toggled. The kernal software to
control the text screen is split into two sections; print a character to the screen,

24 The Commodore 64 Kernal and Hardware Revealed

and scroll the screen. The routine to print a character to the screen is located at
$E716. This routine prints the character in register .A to the screen taking into
account colour control codes, etc. This routine does several tasks before the
character is printed; these tasks are shown in the flow chart in Fig. 2.2.

The flow chart in Fig. 2.3 shows how the screen scrolls. This routine can be
called from Basic with SYS 59626.

Readers interested in the addition of extra commands which utilise the
capabilities of the VIC II chip should consult the companion volume in this
series, Advanced Commodore 64 Graphics and Sound.

The Keyboard, Joysticks and Screen 25

Display non control char

OR CHAR 3
e WITH
$40

PUSH OFF ALL
REGISTERS,
DISABLE INPUT
FROM SCREEN.

OR CHAR
+#
witH $80

iz
INSERTS

DECREASE
INSERT COUNT
By 1

\'4

PUT
CHARACTER
AND COLOUR
ONTO SCREEN

¥

CHECK FOR
LINE WRAP -
AROUND, IF SO,
SCROLL UP OR
DOWN DEPEND-
ING- ON LINE

LINKING AND
SCREEN POS.

PULL OFF
REGS.

ENABLE IRQ
EXIT

Fig. 2.2. Character output flowchart.

26 The Commodore 64 Kernal and Hardware Revealed
Handle char <128

AND CHAR
3 WITH § DF AND CHAR 3
WITH $ 3F
L]

NES

POSITION
CURSOR AT
TOP LEFT OF

SCREEN

INCREASE
COLUMN
NUMBER

WRAP-

SCROLL

SCREEN UP ARDUND ¥
¥y YES
kY POSITION
whae e
NUMBER?

© G

Fig. 2.2. (contd.)

The Keyboard, Joysticks and Screen 27

Test for colour
or lower case

Handle colour codes

LOAD .X
WITH |5

SET VIC CHIP
TO LOWER
CASE

RETURN

LOAD COLOUR
VAL WITH
. X

RETURN

Fig. 2.2. (contd.)

28 The Commodore 64 Kernal and Hardware Revealed

Handle char#>127

AND CHAR
WITH $3F

RETURN?
($oD)

Test for colour

or upper case

OR CHAR
WITH § 8¢

SET Vic
CHIP TO
UPPER CASE

OR CHAR

wiTH $49

®

Fig. 2.2. (contd.)

The Keyboard, Joysticks and Screen 29

MOVE CURSOR

UP | LINE
CZ)
CLEAR Y
REVERSE
FLAG

DECREASE

COLUMN

NUMBER sg}éei?
)

13

CLEAR SCREEN
CLEAR LINE LINK

CURSOR TO TOP
i’ LEFT

MOVE CURSOR
TO RIGHTMOST
ONE LINE UP

Fig. 2.2. (contd.)

30 The Commodore 64 Kernal and Hardware Revealed

Operate on carriage return

ZERO 3f INSERTS,
RESET QUOTES
FLAG. SET REV-
ERSE OFF, MOVE
CURSOR TO NEXT LINE

SCROLL SCREEN

vp
I 0R 2 LINES

Delete a character

MOVE | CHAR
BACK

POSITION AT
TOP LEFT
OF SCREEN

Insert a space

]

DECREASE
COLUMN BY
|

¥

MOVE REST OF
CHARS ON LINE

BACK | SPACE.
REPLACE LAST

CHAR WITH SPACE

SCROLL REST
OF SCREEN
DOWN | LINE

AND LINK IT

¥

CURSOR POSITION

MOVE REST OF

CHARS ON UNE
FORWARD | SPACH
PUT A SPACE AT

i

INCREASE =
OF INSERTS

BY |

Fig. 2.2. (contd.)

The Keyboard, Joysticks and Screen

Scroll screen up

$ES EA

SAVE OFF
SA and EA

— 1

DECREASE
ROW 3#

POINT TO

SECOND LINE

b SCROLL
LINE UP | ¥
LINE

i

DECREASE
LINE #
BY |

L ¥

{

INCREASE
ROW #

tonTrODN, NO

KEY
DOWN?

YES

PAUSE LOOP
CLEAR KEY-
BOARD BUFFER

RESTORE
SA and EA

——

STORE
SPACES IN
BOTTOM LINE

!

SCROLL LINE
LINK HIgH BITS
DOWN | BYTE,
SET 80TTOM LINE
AS NOT LINKED

{

EXIT
(RrTS)

Fig. 2.3. Screen scrolling flowchart.

31

Chapter Three
Serial Communications

The CBM 64 has two different forms of serial communications capability; these
are the Commodore serial interface and the RS232 interface. The Commodore
serial interface is designed to allow the CBM 64 to be connected to other
Commodore peripherals, in particular the 1541 disk drive. The RS232 serial
interface is a simplified version of an industry standard communications
interface widely used when connecting computers to printers and modems.
Unfortunately the RS232 interface does not conform to the correct industry
standards and therefore requires a small additional circuit to make it function
properly.

3.1 Commodore serial bus

The Commodore serial bus connects the Commodore 64 to its peripherals such
as a disk drive and printers. This serial system has an effective speed of 3000
baud. This is not a true baud rate but is given just for comparison with the 399
baud normal cassette or 360 baud for the high speed tape system in Chapter4.
A speed of 3090 baud is adequate for communicating with printers but makes
the 1541 disk drive a little slow. The serial bus uses 5 lines including the ground
line.

3.1.1 Commodore serial bus lines

Serial service request

Input: This enables a serial device to generate an IRQ in the 64. (No CBM
64 firmware support is available for this feature.)

Signal ground
This is a common ground line for serial devices. It is for signal reference and
shielding the cable.

Serial attention

Input and output: Normally the CBM 64 can use this line only asan output. The
64 pulls this line low when sending command bytes to serial devices. It instructs
all serial devices to listen for a command.

Serial Communications 33

Serial clock and serial data lines

These two lines are both inputs and outputs. The current talking device uses
these lines to send data and clock signals. Together these lines carry all data and
perform the required handshaking.

The serial bus signals are produced in the CBM 64 by port A of CIA chip 2.
The following table shows the line connections.

Serial Data in on PA7

out on PAS
Serial Clock in on PA6
out on PA4
Serial Atn in to user port pin 9
out on PA3
SRQ in to CIA chip I FLAG pin

Fig. 3.1 shows the serial port line driver. The serial port lines are driven by a

5v

K 7106

DATA ——— :4 PAS (ouT)
= CiA

PAZ (IN)

Fig. 3.1. Serial port line driver.

7406 inverting buffer/driver chip with its outputs tied to 5 V with 1K resistors
(Fig. 3.2). The 7496 was chosen for its open collector outputs. An open collector

5V

.
INPUT OuTPY

GND

Fig. 3.2. 7496 schematics (one gate).

34 The Commodore 64 Kernal and Hardware Revealed

output can only drain current, not source it. So when the output of a 7406 gate is
low it can pull the serial line low but when the output is high the serial line has to
be pulled to 5 V by the 1K resistor. The 64 uses this by having the 5 V state as the
release state i.e. available for use by other devices. When a line is in the released
state the open collector outputs on another serial device can pull the line low.

The 7406 is an inverting buffer/driver, so all clock, data and attention signals
sent are transmitted inverted. Therefore release or line high is sent as a zero but
received as a logic one.

Only one device on the serial bus can talk at any one time but any number can
listen. The Commodore 64 controls which device talks and which listens by
commands sent with the attention line low (true). A timing diagram for serial
overation is shown in Fig. 3.3.

1. Command byte sent under attention.

64 Asserts attention Attention released

Byte ready fo send by 64 if no
secondary oddress
Bit valid on clock high to be sent

ATN a% — | —
cLock 3V | | !
oV Tl__l_—LﬂﬂﬂfUlfUTﬂ_m
T 5V Yoo o [i | -
AR S S BI85 18] o S S
123

4 6 ¥
If TAT > I ms then <1158 DATA BITS ms [Tr

device not present TAT TNE

Serial device flagging
data accepted

Serial device releases data Ip TF> Ims then
when ready to receive

error
frame error

Serial device ucKnowledges
attention with data low

Fig.3.3. Serial bus timing.

Serial Communications 35

(‘piuod) g gbis

MO| 040P HIM 103
sabpajmouyo0 23uais1

payday
| 8
pazdeso 24hq 1507 . 10} Apoas Jaua3sry
24hq 3507 ﬁ,
£ 9 64 £ T I P + 96S b
o o O I R4
| _ 103 NS vLva
1 1 L O R B A R N W I
— >ﬂw 4201
| _ | | | N
abossaw 1a4fo p2S03)24 saulT] | AS NIV
Sw 900 Cd:“_, mwwq WI-_ N

ﬂ aANL 4
Jowiou woyy 42bua| 3N sayow sawo)

PUss o3 hpoal say ol

‘|B1I8S UO S8IAQ |BWION ‘¢

36 The Commodore 64 Kernal and Hardware Revealed

(p1uos) g bl4

SH
0{0p m:.:&
v30p
pa3dadu VIVP SISV3|Y
J2u23s) "Kpoa~ Jauags)y
SWwY'0 > 3aNL and ELN
aSW mﬂ
£96 v ¢ T | £t 9SS+ ¢z ND
_ DDDDDDDD M OO000000 A8 v
. AD
UUUULLILL _::E:EHEHFI_ AS 4207
| |
\\//mv NLY

894

puas of hpoas Jagop

‘(eyeyspuey |03) abessaw e jo dlAq ise '€

Serial Communications 37

(pauod) ggbiy
w@nﬂgochc
O} MOy Moo
s|nd 1avio4 may

puas
QL Apood 2oy} MaN

13u3ys)

¥} pa|da»y

Buipuas Jayo) Mo N

obossaw 54Aq ysuiy EDT _<m pUOWIWIOY)
wmn¢ma_s«_ 9 S+ Ag
L OnOnanne g || L OO AS viva
|
TurrnL L g A8 o

| | | N v

fipoald 1auaysy MaN | _

pa3daoy %000 s3503194 49

+9 hq puowwos 1330 Pasve1a4 vorualy

‘19%|B1 S8W0023aq Jaudlisi ‘b

38 The Commodore 64 Kernal and Hardware Revealed

3.1.2 Serial commands

LISTEN Command device to listen

TALK Command device to talk

UNLSN Commands all listening devices to unlisten

UNTLK Commands talking device to stop talking (UNTALK)

3.2 Serial ROM routines

LOC CODE LINE

0000 PESEEESENEXEENARL RN LRNAZ

0000 ; SERIAL SYSTEM

00090 PHENENNMANCEARKEEXENERE XS

0000 -LIP KDECLARE

0000 # =$90

0090 '

0090 :

0090 s KERNAL VARIABLES

0090 }

09990 STATUS #=%41 ;1/0 OFERATION STATUS BYTE
0091 STKEY x=x+{ ;STOP KEY FLAG

0092 SUXT x=x+1 ; TEMFORARY

0093 VERCK ®=+1 ;LOAD OR VERIFY FLAG

0094 CIF0 *=x+] 1 IEEE PUFFERED CHAR FLAG
0095 BSOUR ==x+{ ;CHAR BPUFFER FOKR IEEE

0096 SYNO #=x+41 ;CASSETTE SYNC #

0097 XSAV =4l ;TEMF FOR BASIN

0098 LDTND #=x+1 s INDEX TO LOGICAL FILE

0099 DFLTN #=%+{ sDEFAULT INFUT DEVICE #
0094 DFLTO #=%+1 sDEFAULT OUTFUT DEVICE #
009B FRTY ®¥=x+1 ;CASSETTE FARITY

0e9C DFSW =x+1 ;CASSETTE DIFOLE SWITCH
209D MSGFLG ®*=#%+1 ;08 MESSAGE FLAG

Q09E FTR1 ;CASSETTE ERROR FASS1

00%E Ti Fax+q ; TEMFORARY 1

009F THFC

009F FTR2 ;CASSETTE ERROR FASS2

009F T2 w=%+] 3 TEMPORARY 2

00A9 TINE ®=x43 324 HOUR CLOCK IN 1/68TH SECONDS
00A3 R2D2 sSERIAL PUS USAGE

00A3 FCNTR #=#+{ sCASSETTE STUFF

00A4 BSOUR1 ; TEMF USED BY SERIAL ROUTINE
00A4 FIRT ==x+1

90AS COUNT s TEMF USED BY SERIAL ROUTINE
00AS5 CNTDN #=z+1 ;CASSETTE SYNC COUNTDOWN
Q0AL BUFPT x=x+1 ;CASSETTE PUFFER FOINTER
00A7 INBIT 3RS-232 RCVR INFUT BIT STORAGE
00A7 SHCNL #=¥+1 ;CASSETTE SHORT COUNT

00A8 BITCI ;RS-232 RCVR BIT COUNT IN
00n8 RER =41 ;CASSETTE READ ERROR

00A9 RINONE ;RS-232 RCVR FLAG FOR START BPIT CHECK
00A9 REZ ¥=x4] ;CASSETTE READING ZEROS
00AA RIDATA ;R6-232 RCVR BYTE PUFFER
00AA RDFLG ®=%+1 ;CASSETTE READ MODE

00AR RIFRTY ;RS-232 RCVR FARITY STORAGE
90AP. SHCNH x=%+1 ;CASSETTE SHORT CNT

0enC SAL ¥=%4+1

90AD SAH ¥=e4]

00AE EAL =%+

Q0AF EAH =]

00P0 CNFO x=x+1

ooR1 TENF ==%+)

00PR.2 TAFE1 #=%42 ;ADDRESS OF TAFE BUFFER
o0R4 BITTS ;RS-232 TRNS BIT COUNT

00R4 SNSW1 ¥=x+1

Loc

00RS
Q0BG
00R 6
006
ooe7
ooe8
(1134
00RA
oope
00BD
@ORD
00RE
QORF
00Co
00C1
0oC1
00C2
00C3
00C3
90CS
00CS
00CS
90CS
00Cé4
00C?7
00C8
00L?
00CA
voce
0oCC
0oCD
VOCE
0oCF
o0D9
o001
0003
0oL4
00DY
00ob6
oob7
o8
0oLy
oor2
OOF 3
YoFrS
VoF7
ooF 7
00F /
0oF 7
Q9F Y
@oF P
OOF
01090
0100
0100
0101
0200
Q259
0259
0259
0259
0265
026D
0277
0277
0277
0277
0281

CODE

LINE

NXTRIT
DIFF
RODATA
FRF
FNLEN
LA

L)

FA
FNADR
ROPRTY
OCHAR
FSBLK
MYCH
CAS1
TMFO
STAL
STAH
MEMUSS
TNF2

*=¥4]

EET TS
¥=%+1
=%+
R=x4]
F=ed]
#¥=%42

¥=R+]
#=x4+]
¥=%4+1
¥=%4+1

=+l
®=¥+1

=42

Serial Communications 39

;RS-232 TRNS NEXT RIT TO RE SENT
;RS-232 TRNS BYTE PUFFER

sLENGTH CURRENT FILE N STR
sCURRENT FILE LOGICAL ADDR
$CURRENT FILE 2ND ADDR

$CURRENT FILE FRIMARY ADDR

;ADDR CURRENT FILE NAME STR
;RS-232 TRNS FARITY PUFFER
:CASSETTE READ BLOCK COUNT

3CASSETTE MANUAL/CONTROLLED SWITCH

;CASSETTE LOAD TEMFS (2 BYTES)

;UARIAGLES FOR SCREEMN EDITOR

3
LSTX
NDX
RVS
INDX
LSXF
LSTP
SFDX
BLNSY
BLNCT
GOBLN
BLNON
CRSW
PNT
FNTR
Qrsw
LNAX
TRLX
DATA
INSRT
Loret
LINTNF
USER
KEYTAPR

{RS-232 2-FAGE

RIBUF
ROBUF
FREKZF
BASZFT

.
v

BAD

RUF

s TABLES FOR OFEN FILES

5

LAY
FAY
SAT

{SYSTEM STOKAGE

KEYD

x=%41
et
¥=%x41
*=%4+]
¥=%+1
EX 2
¥=%41
#zxe]
¥=%41
¥=%+1
¥=¥+1
r=x4+]
x=%42
¥=%4+]
*=x+1
¥=x+1
*=%+]1
¥=%+1
x=x41

*=%4+25

x=%4+]
REY R
®=x42

X=%42
¥=x4y
#=%4+4
w=x4]

¥*=$100

*#=%41

*=$200
*=%489

*=%+19
x=%+10
x=%4+10

*=x410
MEMSTR #=%+2

sKEY SCAN INDEX
3 INDEX TO KEYBOARD @
sRVS FIELD ON FLAG

1X FOS AT START

3SHIFT MODE ON FRINT
;CURSOR BLINK ENAB
;COUNT TO TOGGLE CUR
;CHAR BEFORE CURSOR
;ON/OFF BLINK FLAG

s INFUT VS GET FLAG
sFOINTER TO ROW
sFOINTER TO COLURMN
;QUOTE SWITCH

;49/89 MAX FOSITION

;s INSERT MODE FLAG

;40/80 LINE FLAGS

: TEMFORARY FOR LINE INDEX
;SCREEN EDITOR COULOUR IF
+KEYSCAN TABLE INDIRECT

yRS-232 INFUT BUFFER FOINTER
;RS-232 OUTFUY BUFFER FOINTER
;FREE KERNAL ZERO FAGE
:LOCATION ($00FF) USED RY BRASIC

;BASIC/MONITOR RUFFER

;LOGICAL FILE NUMPERS
sFRIMARY DEVICE NUMBERS
s SECONDARY ADDRESSES

: IRQ KEYBOARD PUFFER
:START OF MEMORY

40 The Commodore 64 Kernal and Hardware Revealed

LOC

0283
0289
0286
0286
0286
0286
0287
0288
0289
028A
olse
028C
0280
028t
Q23F
0291
0292
0293
0293
0293
0293
0294
0295
0297
@298
0299
0290
02vL.
029P
0290
229C
029D
0270
029D
029D
(264 43
929F
029F
02A1
02A1
02A1
0309
0314
0516
9318
231A
031C
VS1E
0320
0322
0324
0326
0328
032A
9320
03LE
0330
0332
0334
0334
033C
O3rC
V3FC
0400
0/E7
97E7
0860
0809

CODE LINE

MEMSIZ
TImouY

H
;SCREEN EDITOR STURAGE

COLOR
GLCOL
HIRASE
XMAX

RFTFLG
KOUNY
DELAY
SHFLAG
LS ISHF
KEYIL0G
MODE

AUTODN

x=x42
®=¥41

*z¥+]
¥=%+]
¥=%+]
¥=3x4+1
¥=x4]
¥=%+1
¥=%+1
¥=%4+]
*=%+1
¥=g42
x=%4]
¥=x4+1

{KS-232 STORAGE

M26CTR
M26CDLKR
M26AJR
RSSTAY
BITNUM
BAUDOF

*¥=%x41
r=%+1
EET ¥3¢]
¥=%4+1
¥=%+1
¥=%+2

sRECIEVER $70RAGE

KIDRE
KIDRS

;TRANSNITTER STORAGE

KOLES
RODRE

IRQTAF

e e

CINV
CRINV
NM IRV
IOFEN
1CLOSE
ICHKIN
ICKOUT
ICLRCH
IRASIN
IBSOUTY
ISTOF
IGETIN
ICLALL
USRCMD
ILOAD
ISAVE
3

TRUFFR
H
CBMSCN

v
v

s RARLOC

3

¥=%+1
¥=x41

¥=¥4+1
¥=x+1

=x42

*=$0300
*=$0300+20
*=%42
=it
=%+
x=x4
E=¥42
F=x42
¥=%4+2
¥=%42
*=%42
Ezx42
x=x42
¥=¥%4+2
x=%+2
=34+
¥=x42
¥=%4)

*=$0300+60
x=%+192

¥=$0400
®2E+999

¥=%$0800

:TOF OF MEMORY
s IEEE TIMEOUT FLAG

sACTIVE COLOUR NIPRLE
sORIGINAL COLOUR REFORE CURSOR
1BASE LOCATION OF SCREEN (TOF)

;KEY REFEAT FLAG

sSHIFT FLAG BYTE

sLAST SHIFT FATTERN

s INDIRECT FOR KEYBOAKD TABLE SETUFP
$@-FET MODE, 1-CAVTACANNA

sAUTO SCROLL DOWN FLAG (=0 ON,<>@® OFF)

36926 CONTROL REGISTER

16526 COMMAND REGISTER

;NON STANDARD (BITTIME/2-109)

3RS-232 STATUS REGISTER

;NUMBER OF BITS 10 SEND (FAST RESFONSE)
;BAUD RATE FULL BIY VIME

; INFUT BUFFER INDEX 10 END
; INFUT BUFFER FOINTER TO START

sOUTFUT BUFFER INDEX 10 START
;OUTFUT BUFFER INDEX T0 ENOD

;HOLDS IRQ DURING TAFE OFS

;FRUOGRAM INDIRECTS(10)
tKERNAL/US INDIRECTS (20)

s IKQ RAM VECTOR

1PRK INSYR RAM VECTOR

;NI KAM VECTUR

s INDIRECTS FUR CUDE

sCUNFORMS TO KERNAL SFEC 8/19/80

s SAVESF
+CASSETTE DATA BUFFER

164 SCREEN

LocC

0860
Dooo
DO2F
DO2F
D400
D41D
D41D
D800
bEE?
bee”
DRE7
DBE/
DCoo
DCoo
DCeo1
bLo1L
DCo2
DLo3
DCe4
DCOS
DCeé
oce7z
DCe8
DCo?
DCoA
pcer
pcec
bCeD
DCOE
DCOF
bC1o
DC19
DDLeO
bbe1
bbe2
DDOJ
bbe4
DL
DDo6
DDO7
Dbes
DDo?
bbeA
bber
bbec
() 111V]
DDOE
DDOF
bD1e
bD1o
bb1o
DL1o
LD1¢@
bD1@
bbL1e
bbD1o
D01e
DD1@
bD16
bo1o
bbie
bL1o
DDL1e
DD1@
DD1e
bD1o
DDh1e

CUDE

LINE

VICREG

cencou

*¥=$D900
g=x447

*»=3D400
x=%429

*=$0800
¥=%4999

+1/0 DEVICES

.
v

coLm
D1DFA
ROWS
D1DFE

D1DDRA =
D1DDREB =

DITAL
D1TAH
DITEL
D1VeH
D1TOD1

D1T0D2
D1TOD3 #

D1TOD4

¥ =$DC0OO

x=¥+1

DIIODE *==x

D1ICR
DI1CRA
DiCkR

.
v

D2DFA
D20FR

D2DLKA *
D2DOKE *

D2TAL
D2TAH
D2TEL
D2TEH

D2T001 =

0271002
L2T0L3
027004
D21I0DE
D2ICR
D2CRA
D2CRB

%=+
=%+
¥zx+]
EE T T3

1 TAFE BLOCK TYFES

3

EOT
BLF
BOF
FLF
BDFH
RUFSZ

H

s TAFE
SFPERR
CKERR
SPERKR
LBERR

=%
=1
a2
=3
=4
=192

"RROR TYFES

=16
=32
=4
=g

Serial Communications

;VIC REGISTERS

31SID REGISTERS

364 COLOUR NIBBLES

16526 (IRQ)
s KEYBEOARD MATRIX

+KEYROARD MATRIX

36526 (NMID)

3END OF TAFE

sBASIC LOAD FILE

sBASIC DATA FILE

sFIXED FROGRAM 1YFE
sBASIC DATA FILE HEADER
:RUFFER SIZE

;SCREEN EDITUOR CONSTANTS

v
v

41

42 The Commodore 64 Kernal and Hardware Revealed

Loc CODE

bD1@
vbie
DIV
oD19
bb1o
DD1o
bb1e
DD10@
DD10o
D010

TALK

LINE
LLEN =49
LLEN2 =80
NLINES =23
BLUE =6
LTBLUE =14
CR =$D
MAXCHR =89
NURAF =2
END
.LIB KSER1

Entry point: $FFB4

+SINGLE LINE 40 COLUMNS
;DOUBLE LINE 80 COLUMNS
+25 ROWS OMN SCKREEN
sBLUE SCREEN COLOUR

;LT BLUE CHAR COLOUR

;s CARRIAGE RETURN

Function: Command serial device to talk (transmit data)

Input parameters: .A device number

Output parameters:

Registers used: .A

Error messages:

Device not present (returned in STatus var. $90) - attention not acknowledged

by data low within

Frame error (in ST) - no data accepted response (data low) within I ms of last

None

I ms

bit of byte being sent.

Description: This routine ORs the device number in the .A register with $40.
Before the command is sent the single character serial buffer is checked for being
empty. If it is not the character in it is sent (with end message marker (EOI)).
After this the attention line is set low (bit 3 set in chip 2 port A (assembler label
D2DPA in listing). Then the command byte is sent with the attention line held

low.

LoC CODE

bD1e

EDOY

EDOY

EDOY

EDOY

EDOY

EDO? @9 46
EDOBR 2C

LISTEN

Entry point: $SFFBI

LINE

*=$LDOY

e e Y E E Y
; *COMMAND SERIAL PUS 10 TALK.

s *THE ACCUMULATOR MUST BE LOADED WITH THE
s ¥DEVICE NUMBER THAY YOU W1SH TO TALK.

PR EEERREEEER RS EAREERREER LR ERE LR R EE

LB36 ORA #8449
.BYT 82C

sMAKE ADDK TALK
$SKIP NEXT COMMAND

Serial Communications 43
Function: Command serial device to listen

Input parameters: .A device number
Output parameters: None
Registers used: .A

Error messages:

Device not present (returned in STatus var. $90) - attention not acknowledged
by data low within | ms

Frame error (in ST) - no data accepted response (data low) within I ms of last
bit of byte being sent

Description: This routine ORs the device number in the .A register with $20.
Before the command is sent the single character serial buffer is checked for being
empty. If it is not the character in it is sent with an EOI handshake to mark it as
the last byte of its message. After this the attention line is set low. Then the
command byte is sent with the attention line held low. This routine includes the
main routine to send a byte to the serial bus. This is done as follows :

L842 - Set clock low
Set data high
Delay I ms
L859 - Set data high (released)
Set clock line high
If EOI no handshake required then L850
; Wait with clock high for End Or Identify handshake
Wait for data high
Wait for data low
; That is end of hold, until serial device is ready
L85p - Wait for data high
Set clock low
Put 8 in counter
1848 - If data not high framing error
Get next bit of byte to send
; Low bit first
If bit is zero then set data low
Set clock high ; flag bit
Sort pause
Set data high and clock low
Decrease bit counter
Go to L848 if not all sent
Set timer for 1 ms
L855 - Has timer expired?
If so then L847 (framing error)
If data not low go back to L855
Exit

44 The Commodore 64 Kernal and Hardware Revealed

Loc

LDeC
EDOC
EboC
EDOC
EDOC
EDOC
EDOC
EDOE
ED11
ED12
ED14
ED16
ED16
ED16
ED16
ED17
ED19
ED1C
EDIE
EDZ0
ED21
[AVAR]
ED24
ED27
ED2Y
EDL2E
ED2E
ED31
ED33
tD36
ED36
ED37
ED3A
ED3D
ED4¢
ED41
ED44
ED47
ED49
ED4C
ED4E
EDS@
EDS0
EDS3
EDSY
EDS8
EDGA
EDGD
EDSF
ED62
ED62
ED62
ED62
ED64
ED66
ED6?
EDSC
EDSE
ED6F
ED71
ED73
ED7S
ED78
ED7A
ED/D
ED8O
ED81
EDB2

CODE

09
29
48
24
10

38
b6
20
46
46
68
89
78
20
(B4
Do
20
AD
07
8D

78
20
20
20
78
20
20
ee
20
24

10

20
144
20
-1
20
99
20

A9
85
AL

Do
oA
k4%
-2}
bo
20
De
20
20
EA
EA
EA

20
A4

94

A3
40
P4
Al

97
3F
03
8%
00
08
00

8E
97
B3

9?7
A9
64
85
A3
oA

A9
Fe
A?
Fg
A9
FB
BE

vy

A0
63
97
8%

Fo

ED

EE
EE
bD
bD

EE
EE

EE
EE

EE
EE
EE
EE

bp
Db

EE
EE

LLINE

R R I A T e L R TR T R R L

; *COMMAND SERIAL BUS TO LISTEN.

3%TO USE THIS ROUTINE, THE ACCUMULATOR MUST

3 *FIRST BE LOADED WITH THE DEVICE NUMBER THAT

1¥YOU WISH TO LISTEN (RECEIVE DATA).
PN EREE R R RA LR E R R RS RR SRR AR RERERER

LY66 ORA
JSR
LY8¢ FHA
BYV
BFL

¥
1 SEND RUFFERED CHAR

’
SEC
ROR
JSK
LSR
LSKR

LB&4 FLA
sTa
St1
JSR
ChF
BNE
JSK

LB83? LoA
ORA
STA

;
LB42 SEI
JSR
JSR
JSK
L8Y%9 SET
JSR
JSR
BCS
JSR
BIY
BFL
;D0 EOI
LB46 JSR
ece
LB849 JSK
BCS
L850 JSR
ecc
JSR

+SET 10 SEND DATA

LDA
STA
L848 LDA
CHF
BME
ASL
ece
ROR
ecs
JSR
BNE
L8351 JSR
LBS3 JSR
NOP
NOF
NOF

820
SFOA4

C3ro
LB64

R202
L85y
C3ro
R2D2

BSOUR

LB44
HeSF
LB3Y
L8795
D20FA
Heo8
D2DFA

L8433
LB44
L8446

LB44
LBS4
L8YS
L875
R202
L8Se

L8Y4
L840
L8G4
L849
L8G4
L8GO
L843

H$o08
COUNT
D2DF A
D20FA
LB48
A
LB47
BSOUR
L851
LB41
LB8S3
LB44
LB87%

:MAKE ADDKR LISTEN
sFROTECT FROM RS323 NNI

sCHAR IN BUFFER?
3 NO

3SET EOI FLAG
$SEND LAST CHAR
sBUFFER CLEAR

jCLEAR EOI FLAG
s TALK/LISTEN ADDR

JCLKHI ONLY ON UNLISTEN

1 ASSERT ATTENTION

sSET CLOCK LINE LOW

;DELAY 1 NS

1DISABLE IRQ

;MAKE SURE DATA IS RELEASED
1DATA SHOULD BE LOW

;CLOCK LINE HI

;EOT FLAG TEST

sHAIT FUR DATA HI

{NAIT FOR DATA LO

:WAIT FOR DATA HI

;SET CLOCK LO

;s COUNT 8 RITS
:DEROUNCE BUS

;DATA MUSYT PE HI
sNEXT BIT INVO CARRY

JCLOCK HI

Serial Communications 45

Loc Cobe LINE

EDB3 EA NOF

EDB4 AD 96 DD LDA D2LFA

£ED87 29 DF AND H$DF ;DATA HI

ELDB? 09 10 ORA H$10 ;CLOCK LO

ED8E. 8D 00 LD STA D2DFA

EDBE Cé AL DEC COUNT

ED96 Do D4 PNE LB48

ELYZ A9 04 LDA H$04 3SET TIMER FOR 1 MS

ED94 8D 67 DC 8TA D1TRH

ED?7 A% 19 Lha He19

ED99 8D ¢F DC 8TA DICRE

EDYC AD oL DC LDA D1ICR

ED9F AD @0 DC LB83S LDA DIICR

EDA2 29 @2 AND He02

EDA4 DO oA ENE LB47

EDAS 20 A9 EE JSR LBY4

EDAY PO F4 BCS LBSS

EDAR &8 CLI sENARLE IRQ

EDAC 60 RTS8

EDAD A% 8¢ LBYS LDA HeB80 ;DEVICE NOT FRESENT

EDAF 2C BYT $2C

EDRO A% 03 LB847 LDA H$03 ;FRAMING ERROR

EbR2 220 1C FE LB8S2 JSR $FELC ;s SEND MESSAGE

EDBY &8 CLI ;ENABLE IRQ

EDR6 18 cLC

EDB7 906 4A BCC L1004 s ALWAYS
SECOND

Entry point: $FF93

Function: Send secondary address after listen

Input parameters: Secondary address in .A register ORed with $69
Output parameters: None

Registers used: .A

Error messages:

Device not present (returned in STatus var. $99) - attention not acknowledged
by data low within I ms

Frame error (in ST) - no data accepted response (data low) within 1 ms of last
bit of byte being sent

Description: The secondary address is stored in the serial buffer and then sent to
listening devices. Next the attention line is released (set high).

Loc CODE LINE
EDRY R e e it E e L R i i
EDER? ; *SEND SECONDARY ADDRESS AFTER LISTEN.
EDRY ;¥TH1S ROUTINE IS USED TO SEND A SECOMDARY
ELR? ;1 *ADDRESS AFTER A CALL TO THE LISTEN COMMAND.
EDRY IR R e T e T

ELR? 835 93 L871 STA BSOUR :BUFFER CHAR

46 The Commodore 64 Kernal and Hardware Revealed
20 36 ED

EDER
EDRE
EDBE
EDBE
EDRE
EDC1
EDC3
EDC6

AD ¢@ LD
29 F7
8D 00 DD

69

TKSA

JSR 1842 SEND IT
sRELEASE ATTENTION

3

L983 LDA D2DFA
AND H$F7
STA D2DFA sRELEASE
RTS

Entry point: $FF96

Function: Send secondary address after talk

Input parameters: Secondary address in .A register

Output parameters: None

Registers used: A

Error messages:

Device not present (returned in STatus var. $90) - attention not acknowledged

by data low within | ms

Frame error (in ST) - no data accepted response (data low) within 1 ms of last

bit of byte being sent

Description: The secondary address is loaded into the serial buffer and then sent
to the serial bus. This routine then waits for the new talking device to
acknowledge it is the new talker by changing the clock line. This is done as

follows:

Hold data low

Set attention high (release)

Set clock high

Then wait for clock to go low

LOC

EDC7
EDC?
EDC?
EDLC?
EDC?7
EDCY
EDC?
EDLC?
EDCC
EDCC
EDCC
EDCC
EDCD
ELDO
EDD3
EDDS
EDD9
eboe
EDLC

CODE

95

36

AQ
BE
85
A9
FB

ED

EE
ED
EE
EE

LINE

R A e I R T R T AR R T Y

;1 ¥SEND TALK SA.

;%TH1S ROUTINE IS USED TO SEND A SECONDAKY
; *ADDRESS TO A DEVICE THAT HAS ALREADY BEEN
s *COMMANDED TO TALK.
PEEEEEEEEEEE U AR AR R AR R REEREARE R LR SRR
LB6® STA BSOUR ;BUFFER CHAR

JSR L1842 JSEND SA
sSHIFT OVER TO LISTENER
L970 SEI ;DISABLE IKQ
JSK L841 ;DATA LINE LO
JSR L983
JSR L8735 sCLUCK LINE HI
L968 JSR L8%4 ;WAIT FOR CLOCK LO
BRI L968
CcLI ; DONE

RTS8

Serial Communications 47

CiouT

Entry point: SFFA8

Function: Send byte to serial bus
Input parameters: Byte to send in .A
Output parameters: None

Registers used: .A

Error messages:

Device not present (returned in STatus var. $99) - attention not acknowledged
by data low within | ms

Frame error (in ST) - no data accepted response (data low) within 1 ms of last
bit of byte being sent

Description: Any character in the serial buffer is sent to the serial port. Then the
current character is stored in the buffer.

Loc CODE L1INE
EDDD ;BUFFERED OUTFUT 70 SERIAL RUS
EDLDD 24 94 L 861 BIT C3FO ;s BUFFERED CHAR?
EDDF 30 09 BMNI L949 s YES, SEND LAST
EDE1 38 SEC +NO
EDE2 66 94 ROR C3FO sSET PUFFERED CHAR FLAG
EDE4 DO 9% BNE L862 s ALWAYS
EDES 3
EDES 48 L?49 FHA 1+ SAVE CURRENT CHAKR
EDE7 20 49 ED JSR L8Y9 s SEND LAST CHAKR
EDEA 68 FLA 3}RESTUORE CURKRENT
EDEB 85 95 L8462 8TA BSOUR sBUFFER I
EDED 18 CLeC 3 6O0OL EXITY
EDEE 490 RTS

CUNTLK

Entry point: $SFFAB

Function: Send command UNTALK
Input parameters: None

Output parameters: None

Registers used: A

Error messages:

Device not present (returned in STatus var. $99) - attention not acknowledged
by data low within I ms

48 The Commodore 64 Kernal and Hardware Revealed

Frame error (in ST) - no data accepted response (data low) within 1 ms of last
bit of byte being sent

Description: This routine sends the $5F under attention to serial bus. This tells

the current talking to stop. After a delay this routine ends by releasing clock and
data lines.

Loc CODE LINE
EDEF SHEAEENNFANAAMSERN X ERIAEXFARF NI ENNL LN
EDEF ; *SEND UNTALK.
EDEF +*THIS ROUTINE SENDS AN "UNTALK® TO THE SERIAL
EDEF +*¥BUS. IT WILL TELL ALL DEVICES IN 1ALK
EDEF +*MODE TO STOF TALKING (SENDING DATA).
EDEF It P I 1333 i i i dadadddadcdaddd
EDEF 78 LB863 SEI
ELDFO 29 8E EE JSR L8433
EDF3 AD @0 DD LDA D2DFA sFULL ATN
EDF4 09 o8 UORA H$08
EDF8 8D 06 DD STA D2DFA
EDFE A9 UF LDA H$GF sUNTALK
EDFD 2C BYT 82C $SKIF NEXT COMMAND

UNLSN

Entry point: $SFFAE

Function: Send command UNLISTEN
Input parameters: None

Output parameters: None

Registers used: .A

Error messages:
Device not present (returned in STatus var. $99) - attention not
acknowledged by data low within 1 ms

Frame error (in ST) - no data accepted response (data low) within 1 ms
of last bit of byte being sent

Description: This routine sends the $3F under attention to serial bus.
This tells the current listening devices to stop. After a delay this
routine ends by releasing clock and data lines.

LOC CODE LINE

EDFE s ¥SEND UNLISTEN.

EDFE +*TH1S ROUTINE SENDS AN UNLISTEN’ TO
EDFE y#THE SERIAL BUS. fT WILL TELL ALL DEVICES
EDFE +%IN LISTEN MODE TO STOF LISTENING.

EDFE H ERUEEEFREEEFERVREFERAFEEREXFEREEFLEREEEEEY
EDFE A9 3F L1006 LDA H$3F SUNLISTEN COMMAND
EEV® 20 11 ED JSR L9890 s SEND

EE03 :

EEO3 +RELEASE ALL LINES

EE03 :

EE®3 20 BE ED L1004 JSR L993 sRELEASE ATN

EE®6 H

Serial Communications 49

EEgé sDELAY THEN RELEASE CLOCK AND DATA
EE06 3
EE®6 BA L8%8 TXA sDELAY AFFROX 66 MICRO SECS
EEQ7 A2 6A LDX #30A
EE09? CA L8876 DEX
EE®A DO FD BNE L8746
EE6C AA TAX
EE®D 20 85 EE JSR L8755
EE10 4C 97 EE JMF LB44
ACPTR

Entry point: $FFAS

Function: Input byte from serial port

Input parameters: None

Output parameters: Character in .A

Registers used: .A

Error messages:
Read timeout (in ST) - no clock low response within §.2 ms of data being
released

Description: This routine gets a byte from serial bus and returns it in the A
register. It does this as follows:

L865 - Zero COUNT

Release clock line
Wait for clock to go high

L.866 — Set timer to 256 ms

Release data

1872 - If timer expired go to L868

If clock still high go back to L872
Otherwise go to L870, to read byte

L868 - If COUNT non zero flag read timeout in ST and exit via a

routine to release lines

Otherwise assume EOI

; Handshake EOI

Set data low

Pause and release data

Flag EOI in ST

Increase COUNT

Go back to L866, to wait for clock
; Get a byte

L870 - Set COUNT for 8 bits
L869 - Wait for clock to go high

Get next bit of byte from data line
Wait for clock to go low

50 The Commodore 64 Kernal and Hardware Revealed

LoC

EE13
EEL13
EELZ
EEL3
EE14
EE16
EELS
EE1R
EEILE
EE20
EE22
EELS
EE27
EE2A
EE2D
EE30
EE33
EE3Y
EE37
EESA
EE3C
EE3E
EE3E
EE3E
EE49
EE42
EE44
EE47
EE47
EE47
EE47
EE4A
EE4D
EE4F
EES2
EEG4
EES6
EESS
EESé6
EES6
EEG8
EESA
EESD
EE60
EE62
LE63
EESS
EE67
EE6A
EE6D
EEGF
EE70
EE72
EE74
EE76

CODE

78
A%
85
20
20
10
.34
8D
A?
8D
29
AD
AD
29
Do
20
30
10

AS
Fo
A9
4C

20
20
A?
20
Eé
bo

oo
AG
85
A9
Fe
o1
67
19
oF
97
00
o0
02
o7
AY
F4
18

AS
UA
02

B2

Ad
85
40
1C
AS
ca

o8
AS

00
F8

FS
A4
(17
00
F8

FS
AS
E4
A0

Decrease COUNT

If COUNT not zero go back to L869 to get next bit
Acknowledge byte by sending data low

Check EOI flag in ST

; EOI flags end of message

If set then delay and release data

Exit this byte read in .A

LINE

R R AR T PO R T H
s INFUT A BYTE FROM SERIAL BUS

L8645 SEI ;DISARLE IRQ
LDA H$00 sSET EOIZERROR FLAG
S1A COUNT
EE JSR L8735 ;RELEASE CLOCK LINE
EE L?43 JSR L8%4 $WAIT FOR CLOCK HI
BFL L943
LB66 LDA H$01 3SET TIMER B FOR 256 US
DC STA D1TRH
LbA H$19
e STA DICRR
EE JSR LB844
ve LDA D1ICR
bc L872 LDA DIICR
AND H$02 ;CHECK THE TIMER
BNE L8648 sRAN OUT
EE JSR L8554 sCHECK THE CLOCK LINE
BRI L872 sNOT YET
BFL LB70 3 YES
’
LB68 LDA COUNT 3CHECK FOR ERROR
BEQ L847
LDA H302
ED JMF L8552 $8T=2, READ VIME OUT
; TIMER RAN OUT, DO AN EOI
}
EE LB67 JSR LB41 s1DATA LINE LO
EE JSR L8875 sDELAY, SET DATA HI
LDA #3460
FE JSR S$FELC ;UR AN EOI BIT INTO ST
INC COUNT AND AGAIN FOR ERROR CHECK
BNE L8666

BYTE TRANSFER

P

L8790 LDA H$¢8 sSET UF COUNTER

STA COUNT
bD LB69 LDA D2DFA ;WAIT FOR CLOCK HI
Lo CMF D20FA ; DEROUNCE

ENE LB69

ASL A

BFL L86%

ROR BSOUR1 ;ROTATE DATA IN
()] LB73 LDA D2DFA sWAIT FOR CLOCK LO
DD CMF D2DFA ; DERUUNCE

BNE L873

ASL A

BEMI L873

DEC COUNT

ENE L8649 ;sMORE BITS

EE JSR 1841 ;DATA LO

EE79
EE78
EE7D
EEBO
EEBZ
EE83
EEB4

24
b1
20
AG
o8
18
69

90
03

06 EE

A4

BIT STATUS

BVC L874

JSR L858
1.874 LDA BSOUR1

CLI

cLe

RTS

3.3 General routines

All routines change only the .A register.

Serial Communications

;CHECK FOR EOI
+ NONE
;DELAY AND DATA HI

{ENABLE IK®
;600D EXIT

51

Set clock high, set clock low, set data high & set data low all just
set or unset a bit in port A of CIA chip 2. Note that the bit is set to
send a line low.

Debounce CIA routine first loops until a consistent value is read from
port A of the CIA. It then sets the carry flag to the state of the data line, and

the sign flag to the state of the clock line.

The 1 millisecond delay is a software delay loop lasting approx 1 ms.

Loc

EESY
EEBS
EEBT
EEBS
EES8
EEBA
EEH®D
EEBE
EESE
EEBE
EESE
EE91
EEY3
EE®6
EE?7
EE97
EEQY
EE?7
EE®A
EE9C
EE9F
EEAQ
EEA®
EEAQ
EEAQ
EEA3
EEAS
EEAB
EEA9
EEA9
EEA?
EEAY
EEAC
EEAF
EEB1
EER2
EER3
EER3
EEB3
EER3

AD
29
8D
69

AD
09
8D
69

AD
29
8D
69

AD
09
80

AD
cb
Do
oA
69

84

CODE

00
EF
20

00
1¢
(-1

00
DF
00

00
20

00

(47
00
F8

Db
Db

bD
DD

Db
bb

Do

DD

DD
DD

LINE

[~ we ws

875 LDA D2DFA
AND HSEF
STA D2DFA
RTS

]
14

SET CLOCK LINE HI (INVERTED)

;SET CLOCK LINE LO (INVERTED)

3

L843 LDbA D2DFA
ORA H$1le
STA D2DFA
RTS

}
;SET DATA LINE HI C(INVERTED)

LB44 LDA D2DFA
AND H&DF
STA D2DFA
RTS

+SET DATA LINE LO (INVERTED)

¥

L841 LDA D2LFA
ORA #$20
STA D20FA
RTS

DEBOUNCE THE FIA

™ ue e e

854 LDA D2DFA
CAF D20FA
BNE L8554
ASL A
RTS

{DELAY 1 MS

LB46 TXA

52 The Commodore 64 Kernal and Hardware Revealed

EER4
EER6
EERY
EER9
EERA
EERP
EEBR

A2 B8

CA

GETIN

Entry point: $FFE4

LB4S

-END

LDX
DEX
BNE
TAX
RTS

.LIB KSER2

HeRo
L8435

Function: Get a character from the current input device

Input parameters: None

Output parameters: .A holds character, CARRY clear

Registers used: .A

Error messages: None

Description: For serial devices, GETIN is redirected to BASIN.

Loc CODE
EEPP
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E
F13E AY 99
F149 D0 o8
F142 AS Cé
Fl144 FO¢ OF
F146 78
F147 4C B4 ES
Fl14A C9 02
F14C D9 18
F14E 84 97
F150 20 86 F@
F153 A4 97
F155 18
F156 60

BASIN

LINE

x=$F13L

4

L R e R e R e R e L
;# GETIN -- GET CHARACTER FROUM CHANNEL.
CHANNEL IS DETERMINED BY DFLTN.
;* IF DEVICE IS o, KEYRBOARD QUEUE IS

3% EXAMINED AND A CHARACTER REMOVED IF

;¥ AVAILABLE.

IF QUEUE IS ENMFTY, Z

;% FLAG IS RETURNED SET. DEVICES 1-31
;# ADVANCE 10 PASIN. THE CHARACTER 1S

+* RETURNED IN .A.

IF ZERU, NULL CHAR.

PEEEEEEEEERFER AR AR AN R AR R RS SRR ERELE R R RS

}
NGETIN

L924
L?26

L44

Entry point: SFFCF

LDA
BNE
LDA
BEQ
SEI
JAp
CHF
BNE
STY
JSR
LDY
cLc
RTS

DFLTN
L924
NDX
LP44

$EGR4
He02
L927
XSAV
$Fo8s
XSAY

;CHECK DEVICE

sNOT KEYROARD

QUEUE INDEX
sNOTHING THERE, EXIT

;REMOVE A CHAR

+RS-2327

sNO, USE BASIN

}SAVE .Y, USED IN RS-232

sRESTORE .Y
46000 RETURN

Serial Communications 53

Function: Get a character from the current input device
Input parameters: None

Output parameters: .A holds character, CARRY clear
Registers used: .A

Error messages: None

Description: If the status from the last character read was 7§ (EOF), the
character 13 (carriage return) is returned with CARRY clear. Otherwise one
byte is read using the ACPTR routine.

Loc CODE LINE

F157 :

F157 ;¥ BASIN-- INFUT CHARACTER FRUM CHANNEL.
F157 P ¥ BASIN DIFFERS FROM GETIN ON KEYPROARKD
F157 :* AND RS-232 ONLY. THE SCREEN ELITOR
F157 ;¥ MAKES READY AN ENTIRE LINE WHICH IS
F157 ;¥ PASSED CHARACTER RY CHARACTER UF

F157 3% TO THE CARRIAGE RETURN. THE CHARACTEK
F157 3#¥ IS RETURNED IN .A. ZERO FUR NULL CHAR
F157 ;¥ OTHER DEVICES ARE:

F157 3 ¥ 9 --- KEYROARD

F157 3 ¥ 1 --- CASSETTE

F157 s 2 --- RS§-232

F157 ¥ 3 —-- SCREEN

F157 ¥ 4-31 --- SERIAL BUS

F157 ;*§)3********ﬂ***§§§§§******K’****#***§****
F157 2

F157 AS 99 NBASIN LDA DFLTN s+ CHECK DEVICE

F159 0o oR BNE L%27 sNOT KEYBDARD

F15e 3 .

F158 3 INFUT FROM KEYBOARD

F15P :

Fi158 A5 D3 LDA FNTR 3 SAVE CURKENT:
F13D 85 CA STA LSTP 3 CURSOR CULUMN,
F15F AS Dé LDA TBLX

F161 85 C9 STA LSXFP ;s LINE NUMBER

F163 4C 32 Eé JNFP $KE632 ;PLINK CURSOR UNTIL RETURN
F166 ;

F166 C9 03 L927 CHF #$063 3 SCREEN?

F168 0o @9 BNE L%28 1NO

F16A 85 Do STA CRSHW ;FAKE CARRIAGE RETURN
F16C A5 D5 LDA LNAX ;ENDED?®

F14E 85 C8 STA INDX :ON THIS LINE

F179 4C 32 Eé JNF $E632 ;FICK UF CHARACTERS
F173 3

F173 peo 38 L928 BCS L939 ;DEVICES:>3

F175 C9 o2 CHF H$e2 1RS-2327

F177 Feo 3F BEQ $F1P8 ; YES

F179 g e e

F179 #=¢F 1AD

F1AD :

F1AD ;s INFUT FROM SERIAL BUS

F1AD :

F1AD AYS 99 L939 LDA STATUS 1STATUS FROM LAST
F1AF Fo 04 BEQ L9411 10K,

F1B1 A% oD L932 LDA H#86D 1BAD, ALL DONE
F1R3 18 L?46 CcLc sVALID DATA

Fik4 60 L 945 RTS

F1BS 3

FIBS 4C 13 EE L9441 JAF LB6S :GO0UD, HANDSHAKE

F1e8 gD

54 The Commodore 64 Kernal and Hardware Revealed

BSOUT

Entry point: $FFD?2

Function: Output the character stored in .A to the current output device.
Input parameters: .A holds character

Output parameters: .A holds same character, CARRY clear

Registers used: None

Error messages: None

Description: This routine just jumps to the send buffered character to serial
routine.

LOC COLE LINE
Fies #*=$F1CA
F1CA :
Fica R e AR L e R e 1
Fi1CA ;¥ BSOUT -- OUTFUT CHAR STORED IN .A TO
FiCA ;% CHANNEL DETERMINED BY VARIARLLE DFLTO:
F1CA P ¥ 9 --- INVALID
F1CA 3 ¥ 1 --—- CASSETTE
F1CA 1 2 --- RS-232
Fica 1 ¥ 3 --- SCREEN
F1CA 3¥ 4-31 --- SERIAL BUS
FiCA PRAEELAUNLEXRRNANNESRF XX ALLEXNSBENER USRS
F1CA ;
F1CA 48 NBSOUT FHA s PRESERVE .A
FICB AS 9A LDA DFLTO ;CHECK DEVICE
F1CD C9 o3 CHMF H%03 3 SCREEN?
F1CF Do 04 BNE L%33 $NO
FiD1 68 FLA 1YES, RESTORE .A
F1D2 4C 16 E7 JMF $E716 ;PRINT TO SCREEN
F105 : .
F1DS 90 84 L?33 BCC $FiDB sDEVICE 1 OR 2
F1b7 3
Fib7 sFRINT TO SERIAL BUS
F1b7 [
F1D7 68 FLA
F108 4C DD ED JMP L1861
F1iDR e e
F1ibe 3
F1De .LIP KSER3
CHKIN

Entry point: $FFC6
Function: Set a previously OPENed file for input.
Input parameters: . X holds the logical file number of the OPENed file.

Serial Communications 55
QOutput parameters:
CARRY clear - OK
CARRY set - error, error number in .A

Registers used: A, . X

Error messages:

File not open - if the logical file number in .X is not in the LFN table
Device not present - if bit 7 of ST is set, the device did not respond to the TALK
command

Description: This routine first checks that the LFN in .X has a reference in the
LFN table. If not, the message File not open is sent. The device referenced by the
LFN is told to TALK and a secondary address is sent (if present). After sending
the TALK secondary address, the device is shifted over to listener. If bit 7 of the
STATUS byte (ST) is set, the message Device not present is sent.

Loc CODE LINE
F1Le ==$F20E
F20E
F26E R L Rt R R S At R R e R e iRt R L)
F20E ;% CHKIN -- UFEN CHANNEL FOR INFUT.
F20E 1% THE NUMBER OF THE LOGICAL FI1LE TO
F20E s BE OFENED FOR INFUT IS FASSED IN .X.
F20eE ;¥ CHKIN SEARCHES THE LOGICAL FILE T0O
F20E ;¥ LOOK UF DEVICE AND CUMMAND INFO.
F20E ;¥ ERRURS ARE REFORTED IF THE DEVICE WAS
F20E :* NOT OFENED FOR INFUT, (E.G. CASSETTE
F2oE +® WRITE FILE), OR THE LOGICAL FILE HAS
F20E 3 NO REFERENCE IN THE TABLES. DEVICE o,
F20E 1% (KEYROARD), AND DEVICE 3 (SCREEN),
F20E ;¥ REQUIRE NO TABLE ENTRIES AND ARE
F20E ;¥ HANOLED SEFARATELY.
F20E PEERERER AN E AR F AR R ER SRR FR XL XNAEEREEREY
F20E 3
F26E 20 OF F3 NCHKIN JSR L1oee sFILE OFENED?Y
F211 Fo o3 BEQ L9590 ; YES
F213 4C o1 F7 JHF L1609 ;NO, FILE NOT OFEN
F216 20 1F F3 L?50 JSR L1092 :GET FILE INFO
F219 AS PA LDA FA
F21B Fo 16 BEQ L963 ; KEYBOAKRD
F21D ?
F21D 3COULD BE SCREEN, RS-232, OR SERIAL
F21D 3
F21D0 C9 o3 CHMP H¢03 3 SCREEN?
F21F F® 12 BEQ L963 ; YES, DONE
F221 B9 14 BCS L9761 ;SERIAL
F223 C9 o2 CMF #$02 3RS-2327
F225 D¢ e3 ENE L9558 sNO, MUST BE TAFE
F227 4C 4D Fe JMF 8K 04D ;RS-232
F22A H
F22A ;CHECK FOR INFUT FILE ON TAFE
F224 3
F224 A6 B9 L958 LDX SA s CHECK SECONDARY AD
F22C EO 60 CFX H$69 s INFUT?
F22E Fo 03 BEQ L9763 s YES
F239 4C OA F7 JAP L971 ;NO, NOT INFUT FILE
F233 85 99 L?63 STA DFLTHM ;SET INFUT
F235 18 CLC :GOOD KRETURN
F236 690 RTS

F237

e

56 The Commodore 64 Kernal and Hardware Revealed
LOC CODE LINE

F237 ;A SERIAL DEVICE MUST TALK

F237 :

F237 AA L961 TAX ;SAVE DEVICE H

F238 20 @9 ED JSR L836 : TALK

F23B A5 B9 LDA SA ; SECOND?

F230 10 06 BFL L9462 ;YES, SEND IT

F23F 20 CC ED JSR L9760 :NO, LET GO

F242 4C 48 F2 NP L967

F245 20 C7 ED L962 JSR L840 ;SEND TALK SA

F248 8A I.967 TXA

F24%9 24 990 BI1T SIAITUS sDID IT LISTEN?

F248 10 C6 BPL L963 LYES

F24D 4C 07 F7 JNF L1026 ;DEVICE NOT PRESENT
CHKOUT

Entry point: $FFC9
Function: Set a previously OPENed file for output.
Input parameters: . X holds the logical file number of the OPENed file.

Output parameters:
CARRY clear - OK
CARRY set - error, error number in .A

Registers used: .A, . X

Error messages:
File not open - if the logical file number in .X is not in the LFN table

Device not present - if bit 7 of ST is set, the device did not respond to the

LISTEN command

Description: This routine first checks that the LFN in .X has a reference in the
LFN table. If not, the message File not open is sent. The device referenced by the
LFN is told to LISTEN and a secondary address is sent (if present). If bit 7 of the

STATUS byte (ST) is set, the message Device not present is sent.

Loc CODE LINE
F250 PEEENLNFAEENENLEAXGRLLAARE XN AXCEN LR RELXEE
F2350 +* CHKOUT -- OFEN UHANNEL FOR OUTFUT.
F25¢ 3 ® THE NUMBER OF THE LOGICAL FILE TO
F259 ;¥ BE OFENED FOR OUTFUT IS FASSED IN .X.
F250 ;¥ CHKOUT SEARCHES THE LOGICAL FILE TO
F2u9 ;¥ LOOK UF DEVICE AND COMMAND INFO.
F250 ;¥ ERROKS ARE REFORTED IF THE DEVICE WAS
F259 ;% NOT OFENED FOR INFUT, (E.G. KEYBOARD)
F250 1% OR THE LOGICAL FILE HAS NO REFERENCE
F259 ;% IN THE TABLES. DEVICE 3 (SCREEN)
F25e :¥ REQUIRES NO TABLE ENTRY AND IS
F259 ;# HANDLED SEFARATELY.
F259 R L R A A e S i L e]

Serial Communications 57

Loc COLE LINE
F259 ;
F250 20 oF F3 NCKOUT JSR L1609¢ 3FILE IN TAPBLE;
F2G3 Fo 03 BEQ L969 s YES
F255 4C o1 F7 JMF L1669 ;NO, FILE NOT OFEN
F258 20 IF F3 LP69 JSR L1092 ;GET TABLE INFO
F25e AS BA LDA FA
F250 Do 03 BNE L9979 3NOT KEYBOARD
F25F 4C oD F7 L972 JME L9645 sKEYROARD, NOT OUTFUT FILE
F262 3
F262 :COULD BE SCREEN, SERIAL,
F262 3 CASSETTE, OR RS-232
F262 3
F262 C9 o3 L979 CHF #$03 3 SCREEN?
F264 Fo oF REQ, LS77 3 YES, DONE
F266 BO 11 BCS L975 ;NO, SERIAL
F268 C9 02 CHF Hee2 3R6-2327
F26A Do 03 BNE L973 sNO, MUST BE CASSETTE
F26C 4C E1 EF JHF S$EFE1 3SET UF FOR RS-232
F26F :
F26F ;CHECK FOR CASSETTE FILE TYFE
F26F :
F26F A6 B9 L?73 LDX SA
F271 E@® 60 CHX He60 s INFUT FILE?
F273 FO EA BEQ L972 sYES, ERROR
F275 85 9A L?77 S1A DFLTO0 ;SET OUTFUT
F277 18 cLc ;GOOD RETURN
F278 69 RTS
F279 B
F279 ;SERIAL DEVICES
F279 ;
F279 AA L?75 TAX ;SAVE DEVICE #
F274 20 ©C ED JSR L966 ;LISTEN
F27D AS B9 LDA SA ;AND SECOND?
F27F 10 05 BFL L976 ; YES
F281 20 BE ED JSR L983 yNO, RELEASE LINES
F284 Do 03 BNE L981 ;ALWAYS
F286 20 B9 ED L976 JSR L871 ;SEND LISTEN SA
F289 8A L9811 TXA
F28A 24 90 BIT STATUS ;DID IT LISTEN?Y
F28C 10 E7 BFL L977 ;YES, FINISH
F28E 4C @7 F7 JMF L1026 ;NO, DEVICE NOT FRESENT
F291 -END
F291 .LIPB KSER4
CLOSE

Entry point: $FFC3

Function: Close a logical file.

Input parameters: .A holds the logical file number to close.
Output parameters: CARRY clear.

Registers used: A, .Y, .X

Error messages: None.

Description: The LFN table is checked for the file to be closed. If the file is not
open the routine exits, otherwise the device is told to listen and then unlisten and
the file entry is removed from the table.

58 The Commodore 64 Kernal and Hardware Revealed

LocC

F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F291
F294
F296
F297
F298
F29B
F29¢
F290
F29F
F2A1
F2a3
F2A5
F2A7
F2A9
F24P
F2ap
F2EE
F2EE
FLEE
F2F 1
F2F1
F2F 1
F2F 1
F2F2
F2F3
F2F5
F2F7
F2F9
F2FB
F2FE
F301
F304
F307
F30A
F30D
F30E
F30F
F30F
F34F
F311
F213
F314
F316
F317
F319
F31C
F31E
F31F
F31F
F31F
F31F
F322

68

Cé
E4
Fo
A4
134
90
B9
90
B9
9D
18
69

AT
83
8A
Ab
CA
30
DD
Do
60

eD
83

CODLE

14

98

14
y8
59
59
63
63
6D
6D

00
?0

98
15

59

F8

59

B8

F3

F3

Fé

02
02
02
02
02
02

02

LINE

R R D e R e A s st Ly
CLOSE -- CLOSE LUGICAL FILE.

* THE LOGICAL FILE NUMPER OF THE

¥ FILE Y0 PE CLOSED IS FASSED IN .A.

* KEYROARD, SCREEN, AND FILES NOT OFEN

FASS STRAIGHT THROUGH. TAFE FILES

OFEM FOR WRITE ARE CLOSED BY DUMFING

¥ THE LAST BUFFER AND CONDITIONALLY

¥ WRITING AN END OF TAFE PBILOCK. SERIAL

¥ FILES ARE CLOSED RY SENDING A CLOSE

* FILE COMMAMD IF A SECONDARY ADDRESS

* WAS SFECIFIED IN ITS OFEN COMMAND.

LR R R I e e R R e a2 R i

@ NE Ne W4 Ne e Wq N4 Ne e Ne e Mo we Ne

NCLOSE JSK L957 ;LOUK UF FILE

BEQ LY82 ;FOUND
cLe ;ELSE RETURN
RTS
L982 JSR L1002 ;GET FILE DATA
TXA sSAVE TABLE INDEX
FHA
LDA FA sCHECK DEVICE #
BEQ L987 ;KEYROARD, DONE
CHP H$03 s SCREEN?
PEQ L9B7 1 YES, DONE
BCS L997 s SERIAL
CHP H302 sRG-2327
BNE $F2C8 sNO, MUST BE TAFE
#=$F2EE

;CLOSE A SERIAL FILE

v

L997 JSK L1681

v
4

;REMOVE FILE ENTRIES FROM TABLES

v

L987 FLA sGET TAPLE INDEX
LY86 TAX
DEC LDTND
CPX LDTND ;1S IT AT END?
PEQ L989 1 YES, DONE
LDY LDTND ¢NO, SHIFT LAST ENTRY
LDA LAT,Y y INTO DELETED ENTRY'S
STA LAT,X sPOSITION
LDA FAT,Y
STA FAT, X
LDA SAT.Y
STA SAT,X
L989 CLC :600D EXIT
RTS

;FIND FILE ENTRY

L1000 LDA H$00
STA STATUS
TXA

L?G7 LDX LDTND

L984 DEX
BMI L9269
CMF LAT,X
ENE L984
RTS

;FETCH TABLE ENTRIES

3
L1092 LDA LAT,X
STA LA

Serial Communications 59

LOC CODE LINE

F324 PRD 63 02 LDA FAT,X

F327 85 PA STA FA

F329 BD 6D @2 LDA SAT, X

F32C 83 BY STA SA

F32E 60 L9690 RTS

F32F -END

F32F .LIE KSERS
CLALL

Entry point: $FFE7

Function: Close all logical files.
Input parameters: None
Output parameters: None
Registers used: A, .X

Error messages: None

Description: The number of files open is zeroed and the CLRCH routine is
entered.

Loc CODE LINE

F32F '

F32F R A A D R R R L e S R R L R e R
F32F ;3# CLALL -- CLOSE ALL LOGICAL FILES.

F32F I DELETES ALL TABRLE ENTRIES AND
F32F ;# RESTORES DEFAULT I/0 CHANNELS AND
F32F 1% CLEARS SERIAL. FORT DEVICES

F32F PREEREERBXERXELELEEEXXEERFULERXEXRREREEER
F32F H

F32F A9 00 NCLALL LDA #H%$0¢

F331 85 98 STA LDTND s FORGET ALL FILES

CLRCH

Entry point: SFFCC

Function: Abort any serial 1/O files and reset default 1/O.
Input parameters: None

Output parameters: None

Registers used: .A, . X

Error messages: None

60 The Commodore 64 Kernal and Hardware Revealed

Description: The output device is checked and if it is serial, the command
UNLISTEN is sent to it. The input device is then checked and if that is serial the
command UNTALK is sent to it. The input device is then set to § (keyboard)
and the output device is set to 3 (screen).

LOC COLE LINE
F333 :
F333 PENEFEXEELEXXFSEREXLUEENEXXANKENEENNRRNRN
F333 ;* CLRCH -- CLEAR CHANNELS.
F333 3 ¥ UNLISTEN OR UNTALK SERIAL
F333 3¥ DEVICES, BUT LEAVE OTHERS ALONE.
F333 ;% DEFAULT CHANNELS ARE RESTORED.
F333 EEERREEENNRAENSPEARUPEREN AR LSRR NNE R R RS
F333 :
F333 A2 o3 NCLRCH LDX H$¢3
F335 E4 94 CFX DFLTO ;OUTFUT CHANNEL SER1AL7?
F337 Bo 93 BCS L1601 ;NO
F339 20 FE ED JSR L1006 3 YES, UNLISTEN
F33C E4 99 L169®1 CFX DFLTN ; INFUT CHANNEL SERIAL?
F33E PO 03 BCS L1603 sNO
F340 20 EF ED JSR LB63 s YES, UNTALK
F343 86 9A L1003 STX DFLTO 3OUTPUT CHANNEL=3
F345 A9 00 LDA #%e0o
F347 85 99 STA OFLTN 3 INFUT CHANNEL =0
F349 69 RTS
F34A -END
F34A -LIB KSERé

OPEN

Entry point: $SFFCp
Function: Open a logical file.

Input parameters:

$B7 - Length of text string to send with OPEN command (filename)
$B8 - Logical file number
$B9 - Secondary address

$BA
$BB/$BC

Output parameters:
CARRY clear - OK
CARRY set - error, error number in .A

Registers used: A, X, .Y

Device number
Pointer to filename

|

Error messages:

File open - if the file number in $B8 is equal to any entry in the LFN table
Too many files - if the LFN table already has 1§ entries

Device not present - if the device in $BA did not respond to the LISTEN
command

Serial Communications 61

Description: The LFN table is checked to see if the file number already exists
(file open), and if so exits with error. The number of files open is then checked
for ten (too many files), and if so exits with error. Otherwise, the file entry is
submitted to the file tables (with the secondary address ORed with $6@) and the
number of files open incremented.

If there is no secondary address (>>127), OPEN then exits. If there is no
filename, OPEN exits. Otherwise, the device to be opened is told to LISTEN
and the secondary address is sent. If bit 7 of ST is set, the routine exits with a
device not present error. The filename is then sent one byte at a time and an
UNLISTEN command is sent to the device.

Loc CODE LINE
F34A '
F34a PRENHAERAEXIXRLRLNFANX LN ARILNRSRRREEERE
F34A ;¥ OFEN -- OFEN A FILE.
F34A 3 ¥ CREATES AN ENTRY IM THE FILE
F34A ;% FILE TABLES CONSISTING OF LOGICAL
F34A s% FILE NUMBER, DEVICE NUMBER, AND SEC
F34A ;¥ ADDRESS NUMBER.
F34A I ROUTINES SETLFS & SETNAM SHOULD
F34A 3% BE USED FIRST.
F34A PEEERAEXNXNAXCXAEXINAENANS XX AREXENRRRRR
F34A :
F34A A6 BB NOFEN LDX LA ;CHECK FILE H
F34C Do 03 BNE L1005 s NOT KEYBOARD
F34E 4C 0A F7 JnP L9771 ;NOT INFUT FILE
F351 20 oF F3 L1965 JSR L1099 ;ALREADY OFEN?
F354 D@ e3 ENE L1v0?7 s NO
F356 4C FE Fé JHF L1e11 3YES, FILE OPEN
F359 A6 98 L1067 LDX LDTND ;END OF TABLE?
F3SB E® 9A CPX H¢0A
F35D 90 03 BCC Lioos 3NO
F3S5F 4C Fe Fé JHP L1097 3 VES, TOO MANY FILES
F362 E6 98 L1668 INC LDTND sNEW FILE
F364 AS B8 LDA LA
F366 9D 59 @2 STA LAT,X $STORE FILE ¥
F349 AT B9 LDA SA
F362 09 60 ORA #3690 ;MAKE SA SERIAL
F36D0 835 B? STA SA
F36F 9D 6D o2 STA SAT,X ;STOURE SA
F372 AD BA LDA FA
F374 9D 63 @2 STA FAT,X ;STORE DEVICE H
F377 5
F377 ;FERFORM DEVICE SFECIFIC OFEN TASKS
F377 H
F377 F@ SA BEQ Li1o3e ;KEYBOARD, DONE
F379 C9 @3 CHF #$03 ; SCREEN?
F378 F@ 56 BEQ L1030 s YES, DONE
F370 90 05 BLCC $F384 ;CASSETTE OR RS-232
F37F 20 DS F3 JSR L1021 ;OFEN SERIAL
F382 99 4F BCC L1030 ;ALWAYS, DONE
F384% P
F384 *=$F303
F3D3 18 L1¢3¢ CLC
F3D4 69 L1012 RTS sEXIT
F3DS :
F3D5 sOUPEN SERIAL
F3D3 H
F305 A5 B9 L1021 LDA SA
F3D7 30 FA BEMI L103¢ ;NO SA, DUNE
F3D? A4 &7 LDY FNLEN

F3DB F@ Fé BEQ L1630 sNO FILENAME, DONE

62 The Commodore 64 Kernal and Hardware Revealed
CODE

LoC

F300
F3D¥
F3EL
F3E3
F3E6
F3ESB
F3EA
F3ED
F3EF
F3F1
F3F2
F3F3
F3Fé
F3F8
F3FA
F3FA
F3FA
F3Fa
F3FC
F3FE
F401
F402
F404
F406
F409
F409
F409

AP
85
AS
20
AS
09
20
AS
10
68
68
4C
AS
Fo

A9
B1
20
c8
C4
Do
4C

00
99
BA
oC
B?
Fo
B?
90
0S5

07
B?7
oC

(1
BB
DD

B7
Fé
54

LINE

LDA 300
STA STATUS
LDA FA
ED JSK L966 sDEVICE LA TD LISTEN
LDA SA
ORA HSFO
ED JSR L871
LDA STATUS +DEVICE THERE?
BFL L1014 s YES
FLA +NO
PLA
¥7 JNP L1026 sDEVICE NOT FRESENT
L1914 LDA FNLEN
BEQ L1033 sNO NAME, DONE

SEND FILE NAME

we e we

LDY Hé0O
L1031 LDA (FNADR),Y
ED JSR LB861
INY
CFY FNLEN
BNE L1031
Fé L1033 JMF L999 ;UNLISTEN AND RETURN

.LIB KSER?7

LOAD/VERIFY

Entry point: $FFD5

Function: Load or verify a file from serial to RAM.

Input parameters:

$B7
$B8
$B9
$BA

$BB/$BC

A
Y/ X

Length of text string to send with OPEN command (filename)
Logical file number

Secondary address

Device number

Pointer to filename

Load (@)/ verify (#9) flag

Alternative load address (only if $B9=0)

Output parameters:

OK

Error

CARRY clear
.Y/.X end address
CARRY set

.A error number

Registers used: A, X,.Y

Error messages:
Missing filename - if length of filename is zero
File not found - if attempting to read the first byte gives a framing error

Serial Communications 63

Break - if the stop key was pressed
Verify - if on verifying, the file does not match the memory contents

Description: The alternative load address is stored away. If the filename lengthis
zero, a missing filename error is produced. Otherwise, the message ‘searching
for ...’ is printed to the screen and the file is opened (with SA=$60). The device is
commanded to TALK and the first byte is read in and stored to the load address
low. If bit 1 of ST is set (file not found), the file is closed and LOAD exits with
error in .A. Another byte is read and stored in the load address high. If the
original secondary address was zero, the load address is replaced by the
alternative load address.

The message ‘loading’ is printed to the screen and each byte is read in untilan
end of file (bit 6 of ST) is encountered or the stop key is pressed (break). With
each byte, it is either stored to memory or compared with memory and if
different, bit 4 of ST is set. The address is bumped by 1 and the next byte
handled.

When EOF has been found, the .X and .Y registers are loaded with the end
address, CARRY is cleared and LOAD exits.

Loc CODE LINE

F409 #=$F 49E

F49E s

F49E et it e R e R L R T P)
F49E :+¥ LOAD RAM FUNCTION.

F4%E 3 ¥ LOADS FROUM CASSETTE OR SERIAL PUS
F49%E % DEVICES >»=4 Y0 31 AS DETERMINED BRY

F49E ;% CONTENTS OF VARIABLE FA. VERIFY FLAG
F4%E 3% IN .A.

F4%E IR ALT LOAD IF SA=0, NORMAL SA=1

F47E ¥ X, .Y LOAD AUDRESS [F SA=¢

F49E 3 ¥ .A=® FERFORMS LOAD,<:»6 IS VERIFY.
F49E ;*# HIGH LOAD RETURN IN .X,.Y

F49E ;¥ USE SETLFS & SETNAM BEFORE THIS ROUTINE
F49E PEEUFEFERE R F R EE R A SRR R L FE RN SRS RS R LR HEREER
F49tE :

F49E 86 C3 L9996 STX MEMUSS ;L0 ALT START

F4A® 84 C4 STY MEMUSS+1 sHI ALT STARY

F4A2 6C 30 03 JHF (ILOAD)

F4AS 85 93 NLOAD ST1A VERCK ;STORE VERIFY FLAG
F4A7 A9 00 LDA #3060

F4A? 85 90 STA STATUS

F4ane AS PA LDA FA ;CHECK DEVICE #
F4AD D9 @3 BNE L1046

F4AF 4C 13 F7 L1241 JMFP L1049 s+ KEYROARD, PAD DEVICE
F4B2 C9? @3 L1046 CHFP H$63 +SCREENT

F4P4 FO F9 PEQ L1241 s YES

F4b6 90 7B BCC $FS533 s TAFE

F4E8 H

F4e8 ;LOAD FROM SERIAL BUS DEVICES

F4E8 :

F4R8 A4 B7 LDY FNLEN ;MUST HAVE FILENAME
F4BA DO 03 BNE L1945 ;0.K.

F4BC 4C 10 F7 JNF L974 sMISSING FILENAME
F4BF A4 B9 L1945 LDX SA

F4Cl 20 AF FS JSR L1062 3 "SEARCHING”

F4C4 A9 69 LDA H$60 s SFECIAL LOAD COMMAND
F4Cé6 85 B9 STA SA

F4C8 20 DS F3 JSR L1021 ;OFEN FILE

64 The Commodore 64 Kernal and Hardware Revealed
LOC CODE LINE

F4Ck AS PA LDA FA

F4CDL 20 99 ED JSR L8346 ;s TALK, ESTABLISH CHANNEL
F4D0 AS B9 LDA SA

F4D2 290 C7 ED JSR L840 sTELL IT 70 LOAD
F4DS 20 13 EE JSR L865 3GET FIRST BYTE
F4D8 85 AE STA EAL

F4DA AS 90 LDA STATUS s ERROR?

F4DC 4A LSR A

F4DD 4A LSR A

F4DE RO 59 BCS L1058 sFILE NOT FOUND
F4E® 20 13 EE JSR L8665

F4E3 85 AF STA EAH

F4ES BA TXA sORIG SA=07
F4E6 DO 08 BNE L1048 s NO

F4E8 AS C3 LDA MEMUSS sYES, SET ALT
F4EA 85 AE STA EAL 3 LOAD ADDKESS
F4EC AS C4 LDA MEMUSS+1

F4EE 85 AF STA EAH

F4F® 20 D2 FS L1048 JUSR L1070 : "LOADING”

F4F3 A9 FD L1051 LDA ¥$FD sMASK OFF TIMEOUT
F4FS 25 90 AND STATUS

F4F7 85 99 STA STATUS

F4F9 20 E1 FF JSR S$FFE1 1 STOF KEY?

F4FC DO 03 BNE L10GS +NO

F4FE 4C 33 Fé JNF L1084 ;s "BREAK”

F501 20 13 EE L1955 JSR L84S s GET BYTE

FS504 AA TAX

F595 AS 90 LDA STATUS s TIMEOUT?

F507 4A LSR A

F308 4A LSK A

FS5¢9 PO EB BCS L1051 sYES, TRY AGAIN
FS0BR B8A TXA

FSoC A4 93 LDY VERCK 1 VERIFY?

FSOE Fe oC BEQ L1053 ;NO, LOAD IT
FS10 A0 00 LDY H$00

FG12 D1 AE CHF (EAL),Y ;s VERIFY IT

FS14 Fo o8 EEQ L1056 10K,

FS516 A9 190 LDA HSFERR ;NO, VERIFY ERROR
FS18 20 1C FE JSR $FEIC ;UFDATE STATUS
FS51e 2C BYT ¢2C s SKIF STORE
F51C 91 AE L1653 STA (EAL),Y

FS1E E& AE L1956 INC EAL ;s INCREMENT STORE ADDR
FS2¢ Do 02 BENE L1037

F522 E6 AF INC EAH

F524 24 99 L1057 PB1T STATUS sEND OF 1INFUT?
F326 S0 CB BUC L1oY1l ;NO, CARRY ON
FS528 20 EF ED JSR L8B3 ; CLOSE CHANNEL
FS2B 20 42 F6 JSR L1081 sCLOSE FILE
FS2E 90 79 PCC L1067 1 ALWAYS

FS530 4C 04 F7 L1958 JNF L9959 ;FILE NOT FOUND
F533 T e e e

FS33 #=3F S5A%

FSAY 18 L1067 CLC :GOOD EXIT

FSAA :

FSAA 3sSET UF END ADDRESS

F5AA ;

FS5AA A6 AL LDX EAL

FSAC A4 AF LDY EAH

FSAE 69 L1659 RTS

FSAF :

FOAF ;FRINT "SEARCHING L[FOR NAMED’

FSAF ;

FSAF A5 9D L1062 LDA MSGFLG s FRINT 177

F3el1 1@ 1E BFL L1071 g NO

FSR3 AQ eC LDY Hsel 3 ' SEARCHING’
FSBRS 20 2F Fi JSR $F12F

FS5B8 AY B7 LDA FNLEN

Serial Communications

L1071
Hel7 3 "FOR’
$F12F

FNLEN s NARE?
L1671 $NO, DONE
H900

(FNADR) , Y

$FFD2

FNLEN
L1691

;PRINT LOADING/VERIFYING

H$49 ;ASSUME " LOADING”
VERCK 1CHECK FLAG

L1052 1 YES, LOADING
H$59 1 "VERIFYING’
$F12P

.LIE KSERS

LocC CODLE LINE
FSeaA Fo 15 PEQ
FSBC A0 17 LDY
FSRE 20 2F Fi JSR
FYC1 '
FGC1 sFRINT FILE NANWE
FSC1 s
FSC1 A4 B7 L1e22 LDY
FS5C3 F@ oC REQ
FGCS A0 00 Loy
FSC7 &1 PR L1691 LDA
FSC? 26 D2 FF JSR
FSCC C8 INY
FGCD C4 B? crY
FSCF DO Fé BNE
FS01 4@ L1071 RTS
FSD2
F302
FSDZ2 H
FSD2 A® 49 L1670 LDY
FSb4 AS 93 LDA
FSD6 FO ©2 PEQ
F3D8 A0 59 LDY
FSDA 4C 20 F1 L1052 Jnr
F50D .END
FS0D

SAVE

Entry point: SFFD8

Function: SAVE a section of memory to serial device.

Input parameters:
Length of text string to send with open command (filename)
Logical file number
Secondary address

$B7
$B8
$B9
$BA

$BB/$BC

A
Y/ X
(-A)

Device number

Pointer to filename

Pointer to zero page save address
End of save address

Page zero indirect start of save

Output parameters:
CARRY clear - OK
CARRY set - error, error number in .A

Registers used: A, . X, .Y

Error messages:
Missing filename - if the length of the filename is zero
Break - if the stop key was pressed during SAVE

65

Description: The length of the filename is checked and if zero (missing
filename), exits with error. The file is opened, the message ‘saving ..." is printed

66 The Commodore 64 Kernal and Hardware Revealed

to the screen and the device is told to LISTEN. The save address (low followed
by high) is sent to the device. The start address is compared with the end address
and if reached the file is closed and the routine exits with CARRY clear.

One byte of the file is sent to the device and the stop key is tested. If the stop
key was not pressed, the start address is bumped by 1 and the routine loops back
to the address comparison. If the stop key was pressed, the file is closed and the
routine exits with CARRY set.

LOC CODE LINE

F3Db :

FSDD R e e AL LR e]
FSbD ;¥ SAVE MEMORY FUNCTION.

F3SDD ¥ SAVES TO CASSETTE OR SERIAL

F3LDL :# DEVICES »=4 TO 31 AS SELECTED BRY

FSDD ;¥ VARIABLE FA.

F5bD ¥ START OF SAVE IS INDIRECT AT .A
FSbD ;¢ END OF SAVE IS .X, .Y

F3bD $% USE SETLFS & SETNAM BEFORE THIS ROUTINE
FSDD R T T T e e T
F3bD ;

F3DD 86 AL L1672 STX EAL

FSOF 84 AF STY EAH

FSEL AA TAX $SET UF START

FSE2 B3I 00 LDA $00,X

FSE4 85 C1 STA STAL

FOE6 RS 01 LbA ¢01 X

FSEB 85 C2 8TA STAH

FSEA 6C 32 03 JHF (ISAVE)

FSED AS PA NSAVE LDA FA

FSEF D@ 03 BNE L1079

FSF1 4C 13 F7 L1242 JNMF L1049 ;EAD DEVICE

FGF4 C9 03 L1075 CHP K803 3 SERIAL?

F3F6 FO F9 BEG L1242 1 SCREEN, BAD DEVICE
F3F8 90 GF BCC $F659 ;NO, TAFE

FIFA A9 61 LDA #361 s YES

FGFC 8% B9 S1A 5A

FSFE A4 B7 LDY FNLEN

F600 DO 03 ENE L1074

Fé602 4C 10 F7 JHF L974 ;MISSING FILE NAME
F605 20 DS F3 L1074 JSR L1021 ; OFEN

F608 20 8F Fé JSR L1087 s "SAVING”’

F6OR AT BA LDA FA

Fé6oh 2@ oC ED JSR L966 ;LISTEN

F610 AS B9 LDA SA

Fé12 20 B9 ED JSR L871 ;LISTEN SA

F615 AD 900 LOY #$00

F617 20 BE FB JSR ¢FEBE

F61A A5 AC LDA SAL

F61C 20 DD ED JSR LB61

F61F AT AD LDA SAH

Fé21 2¢ DD ED JSR L861

F624 20 D1 FC L1077 JSR $FCD1 ; COMFARE START TO END
F627 B¢ 16 BCS Lle82 sHAVE REACHED EMND
F629 B1 AC LDPA (SAL),Y

F62e. 20 DD ED JSR LB61

F62E 20 E1 FF JSR ¢FFEL ;STOF KEY?

F&631 Do o7 ENE L1054 3 NO

F&33 20 42 Fé L1084 JUSR L1081 ;YES, CLOSE

F636 A9 00 LDA H$00

F638 38 SEC

Fé39 60 RTS

Fé63A :

F63Aa 20 DB FC L1054 JSR $FCDR s INCREMENT CURRENT ADDK

F63D0 DO ES BNE L1077

Serial Communications 67

LOC CODE LINE

F63F 20 FE ED L1682 JSR L1006 s UNLISTEN
F642 24 B9 L1081 BIT SA

Fé44 30 11 BMI L1634

F64b AY BA LDA FA

F648 20 oC ED JSK L966 ;LISTEM
F64B A5 BY LDA SA

F64D 29 EF AND HSEF

F64F 09 EQ OKA H$E®

F651 20 B9 ED JSR L1871 sLISTEN SA
F&54 20 FE ED L999 JSR L1904 sUNLISTEN
F657 18 L1634 CLC ;600D EXIT
F&58 60 RTS

Fé59 § e
F&57 x=$F 68E

F6BE 60 L1096 KTS

F68F ;

Fé8F sFRINT "SAVING [FILE NAME]’

F&8F :

F68F A5 9D L1687 LDA MSGFLG sPRINT 117
F691 10 Fe BFL L1090 sNO

F693 A® 51 LDY H$51 3 "SAVING®
F695 20 2F F1 JSR $F12F

Fé98 4C C1 FS JMF L1022 3SEND FILENAME
Fo9P .END

F69R .LIB KSERY

Error handler

Entry point:
$F6FB - (1) too many files

$F6FE - (2) file open

$F791 - (3) file not open
$F79p4 - (4) file not found
$F797 - (5) device not present
$F7PA - (6) not input file
$F79D - (7) not output file

$F719 - (8) missing filename
$F713 - (9) bad device

Function: To flag an error and print it if output is enabled.

Input parameters: None

Output parameters: CARRY set, error number in .A

Registers used: .A, X, .Y

Error message: 1/O error #(number) - if bit 6 of MSGFLG is set

Description: At each entry point, the .A register is loaded with the value in
brackets. The routine CLRCH is called and if bit 6 of MSGFLG (output enable)
is clear, CARRY issetand .A holds the error number upon exit. If bit 6 is set, the
message ‘I/O error #’ is printed to the screen and the number is converted to
ASCII and printed. CARRY is set and .A is reloaded with the error number.

68 The Commodore 64 Kernal and Hardware Revealed
LOC CODE

Fé698

Fo6FR

F6Fe

FéFe

F6FPR

F6F B

F6FR

FéFe

F6FE A9
F6FD 2C
F6FE A%
F700 2C
F701 A9
F703% 2C
F704 A9
F706 2C
F707 A9y
F709 2C
F70A A9
F7eC 2C
F76D0 A9
F70F 2C
F716 A9
F712 2C
F713 A9
F715 48
F716 2¢
F719 a0
F71B 24
F710 U9
F71F 20
F722 68
F723 48
F724 99
F726 20
F729 68
F724 38
F720 690
F72C

F72C

F72C

o1

03
24

06
67
o8
(24
CC FF
00
9D

oA
2F F1

30
D2 FF

Symbol table
SYMBOL VALUE

AUTODN
BDF
BITTS
BELNSW
BUF
CAS1
CINV
coLm
CRSW
D10DRE
birooe
DiTBL
D110D4
D2DDRE
D2I0NB
D2TeL
D2TODL4
DFLTO
EAL
FIRT
FSBLK

Q292
0002
ook 4
0oCC
0200
0eCo
0314
bCoo
[A20%
DCo3
bcecC
DCé6
DCob
bDo3
DboC
Dbes
DLOR
0O9A
VOAE
00A4
VORE

LINE

*=¢F 6FR

7% ERROR HANDLER.
3# FRINTS KERNAL ERROR MESSAGE IF RIT 6
;% OF MSGFLG IS SET. RETURNS WITH ERRUK
;¥ H IN .A AND CARRY SET.

E1097
Liel1
L1009
L9559
L1026
Ly71
L9465
L?74
L1049

EAD
BDFH
ELF
BLUE
RUFF1
CRINV
CKERK
COLOR
DICRA
D1DFA
D11AH
D110D1
D2CKRA
D2DFA
D27AH
D21T0D1
DATA
DIFF
EQT
FNADR
GDhRLN

LDA Hso1
-BYT s2C
LDA #$02
LBYT $2C
LDA H$63
-BYT s2C
LDA #304
-BYT ¢$2C
LDA H$05
BYT s2C
LDA H$06
BYT $2C
LDA H$97
YT 82C
LDA Hso8
<BYT s2C
LDA Hse9
FHA

JSR $FFCC
LDY #H¢o0

BE1T MSGFLG

BUC L1018
JSR $F12F
FLA
FHA
ORA H$30
JSR $FFD2
FLA
SEC
R1S

0160
0004
0001
0006
ULLYS
0316
0020
0286
DCOE
DCoo
DCeS
DCo8
LDOE
Dbhoé
DD
DDé8
©0oD7
¢oBS
0005
@oRR
0oCE

BASZFT
BITCI
BLNCT
BSOUR
BUFSZ
CemcoL
CAMFO
COUNT
D1CK®
D1iDFE
DITAL
D1T0OD2
D2CRrB
D2DFE
D27VAL
D2T0D02
DELAY
DFSW
FA
FNLEN
GbcoL

;100 MANY FILES

sF1LE OFEN

sF1LE NOT OFEN

3FILE NOT FOUND

;DEVICE NOT FRESENT

sNOT INFUT FILE

$NOT OUTPUT FILE

;MISSING FILE NAME

sEAD DEVICE #

sERROR # ON STACK

sRESTORE 1/0

sFRINT ERROR?

sNO
sFRINT

;MAKE ERROR # ASCII
sFRINT IT

OOFF
00VAS8
0oCD
0e9S
0eCo
D8oo
0ore
0OAS
DCOF
DCo1
DCO4
DCoY
DDOF
DDo1
LDO4
DL&9
028C
009C
¥ORA
voe7
0287

BAUDOF
BITHUM
BLNON
BSOUR1
C3F0
CBMSCH
CNTDN
CR
D1DLRA
D1ICR
D1TERH
D1T0D3
D2DDRA
D21CR
D2TBH
D2T0D3
DFLIN
EAH
FAT
FREKZF
HIBASE

"I/0 ERROR #'

0299
0298
YOCF
VVA4
0094
0466
VOAS
006D
DCo2
Deen
bco7
DCoA
bbe2
DD6D
DD®7
DheA
9099
VUAF
0263
GOFP
9288

Serial Communications 69

B veriiie HKIN ©31E ICKOUT 320
IPASIN 0324 IBSOUT €326 1CHK © 3
ICLALL 032C ICLOSE @31C ICLRCH 0322 IGETIN 032A

JLUAD 0330 INRIT oA’ INDX 00C8 INSRT 6008
I0FEN V31A IRATMF 029F I5AVE 0332 ISTOF 0328
KEYD 0277 KEYLOG 028F KEYTAR VoFS KOUNT 028

L1000 F3oF Lioo1 F33C L1002 F31F L1003 F343%
L1oo4 EEQ3 L1005 F351 L1066 EDFE L1667 F359
L1008 F362 L1009 F701 L1011 F6FE Lio12 F3D4
L1014 F3Fé6 Lie18 F729 L1021 F3DS L1022 F3SC1
L1026 F76/ L1030 F3D3 L1031 F3FC L1033 F406
L1034 Fé657 L1045 F4RF L1046 F4b2 L1048 F4Fo
11049 F713 L1eS5t F4F3 L1052 FSDA L1053 FS1C
L1054 Fé63A L1655 F5e1 L1056 FOI1E L1657 FS524
L1058 F330 L1057 FSAE L1062 FOAF L1067 FOAY
L1676 FSD2 Lie71 F301 L1072 FSDD L1o74 Fé05
L1075 FGF 4 L1077 F624 L1081 F642 L1e82 F&3F
L1¢84 Fé633 L1087 Fé68F L1090 F 68E L1691 FSC7

L1097 F6FR L1241 F 4AF L1242 FOF1 L8346 EDOY
L.839 ED2E 1846 EDGO LB41 EEAO 1.842 ED36
L843 EESE L844 EE97 LB4Y EER6 LB46 EERJ3
L.847 EDRO LB48 ED66 LB49 EDSS L85 EDGA
L851 ED7A L852 EbR2 L8G3 ED7D L8G4 EEAY
L8SS EDYF L.BS6 EDAD L8S8 EE0S6 L8559 ED40
L8609 EDCY L861 EDDD L862 EDER L863 EDEF
L8664 ED20 1.865 EE13 LB66 EE20 1867 EE47
L8468 EEJE L86Y EESA L87eo EEG6 1.871 EDbR?
1.872 EE30 1.873 EE67 LB74 EEBO L875 EEBS
L8764 EE0? L9224 F14A L9226 F14E L9227 F166
L9228 F173 1.932 Fik1 1.933 F1DS L.939% F1Ab
L941 F1R5 L943 EE1R L?44 F155 L94% F1e4
LY46 F1R3 LY49 EDE6 L9G0 F216 L?S7 F314
L?38 F224a L?59 F704 LP69 F32E L?61 F237
LY62 F245 L9663 F233 L?6S F70D L966 EDeC
L?67 F248 L?68 EDDS L969 F258 L9790 ebccC
L?71 F704A L9772 F2GF LY73 F26F L974 F7160
LY75 F279 L?76 F286 L?77 F275 L?79 F262
L9890 ED11 L9811 F289 L9882 F298 L983 EDRE
L?84 F316 L?86 F2F2 L987 F2F1 L989 F3eD
L?90 F49E L?97 F2EE LY9? F65i4 LA wor8
LA 0259 LBERR 0068 LDie1 00D LDTHD 0098
LINTMF QOF2 LLEN 0028 LLENZ 0050 LNMX 000DY
LSTF o6CA I.STSHF 928E LSTX 00LS LSXF 0eCY

LTRLUE Q0OOE M26AJ0 0295 M246CDR 0294 M26CTR 0293
MAXCHR Q0L0 MEMS1Z 0283 MEASTR 0281 MEMUSS @oC3

MUDLE 0291 MSGFLG Vo9 MYCH QOLF NEBASIN F157
HESOUT Fi1ca NCHKIN F20E NCKOUT F250 NCLALL F32F
NCLOSE F291 NULRCH F333 NDX 00C4 NGETIN F13E

NLINES 0019 NLOAD F4AS NMINV 0318 NOFEN F34A
NSAVE FSED NWRAF 0002 NXTRIYT 0ORY OCHAR oorn

FCNTR OOA3 FLF 0003 FNT 6001 FNTR 0oD3
FRF [A2-X) FRTY 009 FTR1 [(1'%43 FTR2 V09K
arsw 0oD4 R2D2 0OA3 RDFLG VOAA RER V0OA8
REZ 00AY RIBUF VOF7 RIDATA 0oAA RIDRE 0298

K1DES 029C RINONE 0oAY RIFRTY Q0APR. ROBUF OOF 9
RODATA (A=) RODLRE 029E RODES 0290 ROFRTY QorD

ROWS DCo1 RFTFLG 928A RSSTAT 6297 RVUS 0oC7
SA 00R? SAH 0OAD SAL 00AC SAT 026D
SEERR 0004 SFDX epLe SHCNH QGAPR SHCNL 00a7
SHFLAG 028D SIDREG D409 SNSH1 voR4 SFERR 0010
STAH 0002 STAL 110} STATUS 0099 STKEY 0091
SVX1 0072 SYNO 0096 11 009k T2 009F
TAFE1L ooR2 TRLX 0006 TRUFFR 0330 TEMF oor1
T'INE 00A0 TIRouY 0285 ThME2 09C3 1AFC VO9F
MFOo 00C1 USER 0oF3 USRCMD 032E VERCK 0093

VICREG Dooo XMAX 0289 XSAV 0097

70 The Commodore 64 Kernal and Hardware Revealed
3.4 RS232 serial communications

The CBM 64 is able to communicate with peripheral devices, known as an
RS2321/0 port. The name RS232 simply refers to an industry standard form of
serial communication for computing devices. A serial I/ O port can consist of as
few as three lines, an output or transmit line, an input or receive line and a
common ground line. The data is transmitted or received as a stream of pulses; a
single byte becomes a string of eight pulses.

Although a serial port can have just three lines, other lines are frequently used
to transfer control information. The 64 is able to receive and generate such
control signals to implement a full ‘X line’ interface as well as the simple ‘3 line’
interface. Whichever implementation is used all the lines are connected to I/ O
port B of CIA#2 (user port). The RS232 routines inside the 64 also use two other
lines; PA2 on port A and FLAG which is connected to the NMI line. Normally
an RS232 interface card will be used to connect between the user port and a
standard RS232 connector. The card will also provide buffering and a higher
drive voltage. For communications using the simple 3 line mode an interface
card can easily be constructed using a couple of buffer/driver ICs. The RS232
line normally transmits data using a 12 volt signal, however, and providing
cables are kept short it will work with a 5 volt signal. The standard RS232
connector is shown in Fig. 3.4. The function and pin assignment of each of these
lines is as follows:

CIA RS232 CIA Abv EIA In/ Modes Function

line # pin # pin# Out

GND 1 A GND AA - 1,2 Protective ground
FLAG 3 B SIN BB In 1,2 Received data

PBp 3 C SIN BB In 1,2 Connected to FLAG
PBI 4 D RTS CA Out 2 Request to send
PB2 20 E DTR CD Out 2 Data terminal ready
PB3 18 F RI CE In 3 Ring indicator

PB4 8 H DCD CF In 2 Received line signal
PBS Not assigned

PB6 5 K CTS CB In 2 Clear to send

PB7 6 L DSR CC In 2 Data set ready

PA2 2 M SOUT BA Out 1,2 Transmitted data
GND 7 N GND AB - 23 Signal ground
Modes:

1 Three line interface (note RTS and DTR are both held high during this mode)
2 X line interface
3 User only, not implemented in the CBM 64 code

Serial Communications 71

1 2 3 456 7 8 919811 12
L O Gn BN N N A W GE G

PIN TYPE RS232 FUNCTION
A
B FLAG
C PBg 1 Sin
D PBI1 — RTS
E PB2 — DTR
F PB3 — RI
H PB4 — DCD
J
K PBS — CTs
L P87 — DSR
M PA2 — Sout
N GND — GND
PIN
1 Protective Ground AA
2 Transmitted Data BA
3 Received Data BB
4 Regquest To Send CA
5 Clear To Send cB
ol 10 6 Data Set Ready cc
20 7 Signal Ground AB
Qis 30 8 Carrier Detect CF
ole 9 (not used)
o ;8 19 .
ols 6o 12 o
Ql9 13 o
Q20 70 14 "
80 15 "’
O2i 16 o
90
022 17 ”
oz 100 18 v
1O 19 "
O24 120 20 Data Terminal Ready cD
028 30 21 (not used)
\J 22 "
23 ”
24 "
25 !

Fig. 3.4. CBM 64 RS232 connector, pin allocations and E/A line coding.

The implementation of the RS232 port on the 64 is very interesting since it
involves the use of software (originally used on the VIC 2§ with very few
modifications for the 64) to emulate a hardware device (that was never used).
This device was called the 6551 universal asynchronous receiver and transmitter
or UART. Like the other I/ O chips, it was intended that the 6551 functions were
to be controlled by registers at specific memory locations. The software uses the
same principle because when it was written for the VIC 20, Commodore

72 The Commodore 64 Kernal and Hardware Revealed

intended to replace the software with the 6551 when it became available, so there
would be complete compatibility.

The pseudo registers are located in various parts of the variable storage area
at the bottom of CBM 64 memory. Besides the registers, the RS232 routines
require two 256 byte buffers; one for received data and one for data to be
transmitted. The 512 bytes of memory occupied by these buffers are located at
the top of available RAM memory, and the starting address of the two buffers is
stored in four register bytes. The two most important registers are the control
and command registers. These determine the exact operation of the RS232 port.
They can be summarised as follows:

3.4.1 RS232 control register - Hex $0923 Decimal 659

The function of the control register (Fig. 3.5) is to set the speed of data
transmission and reception and set the number of bits needed to transmit each
character. The speed at which data is input or output is called the baud rate, and

6|5 [4:]32\0

STOP BITS
0~1STOPBIT BAUD RATE
1-2STOP BITS
0{ 0| 0| 0] USERRATE
ojofof1 50 BAUD
o[of1]0 75
WORD LENGTH REE o
TR oj1{ofo 1345
5 [5 | WORD LENGTH ol 1|of1 150
olo| 88ITS ol1{1]o 300
ol1]| 78iITS o 1)1} 600
1|o| eBiTS 1fo{ofo| 1200
11| sBis 1{olo|1] 1800
1lol1]o[2400
1lol1j1] 3600
1[1{of{o| 4800
UNUSED BIT
1[1]o]1] 7200
1f{1]1]o] 9600
(IR ERERI 19200

(NI) Not implemented

Fig. 3.5. Function of bits in the CBM 64 RS232 control register.

the value assigned to this is the number of bits per second. If the baud rate is set
to 3PP baud, and each character is transmitted as the eight character bits plus
one stop bit and one parity bit — a total of ten bits — then 3@ characters will be
transmitted every second. The selected baud rate depends on the specifications
of the device communicating with the 64 via the RS232 port - check the manual

Serial Communications 73
of the device before setting this value. Bits 5, 6 and 7 control the number of bits
needed to transmit or receive data between the 64 and a peripheral. The number
of bits per character plus the number of stop bits depends on the peripheral.

3.4.2 RS232 command register - Hex 30294 Decimal 6690
The command register (Fig. 3.6) controls the mode for data transmission and

reception. Bit f sets the mode; a 3 line mode or an X line mode. Bit 4 sets the
duplex mode as follows:

Full duplex - simultaneous transmission and reception of data
Half duplex - alternate transmission and reception of data

anafoicofnla

PARITY OPTIONS

BIT| BIT|BIT

RATION
716ls OPERATIONS
0 Parity disabled, none
Generated/Received
olol QOdd Parity

Receiver/Transmitter

ol 1 Even Parity
Receiver/Transmitter

1lolha Mark Transmitted
Parity Check Disabled

. 1 Space Transmitted
Parity Check Disabled

DUPLEX
0= FULL DUPLEX
1= HALF DUPLEX

UNUSED

HANDSHAKE

0= 3LINE
1= XLINE

Fig. 3.6. Function of bits in the CBM 64 RS232 command register.

Bits 5, 6 and 7 determine the nature of the parity bit and whether the mark or
space is transmitted. The parity bit is transmitted after the data bits and has an
error checking function. The choice of whether the parity is disabled or set to
odd or even depends on the communicating peripheral. The mark/space setting
determines whether a logic ‘I’ is transmitted as a zero voltage or a positive
voltage.

3.4.3 RS232 status register — Hex $0297 Decimal 663
The function of each bit of the status register is shown in Fig. 3.7. The memory
locations and pseudo registers of the RS232 routines are as follows:

74 The Commodore 64 Kernal and Hardware Revealed
7]els|efs]2]1]o]

— PARITY ERROR BIT

R

—— FRAMING ERROR BIT

RECEIVER BUFFER OVERRUN BIT

UNUSED

CTS SIGNAL MISSING BIT

UNUSED

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

RS-232 STATUS REGISTER — $02A1

Fig. 3.7. Function of bits in the CBM 64 RS232 status register.

$A7 - receiver bit storage
$AS8 - receiver bit count
$A9 - receiver flag start bit check
SAA - receiver byte buffer
$AB - receiver parity storage
$B4 - transmitter bit count
$B5 - transmitter next bit
$B6 - transmitter byte buffer
$BD - transmitter parity storage
SF7-$F8 - input buffer pointer
$F9-SFA - output buffer pointer
$0293 - RS232 control register
$0294 - RS232 command register
$0297 - RS232 status register
$0298 - number of bits to send/receive
$0299-

$029A - baud rate
$029B - input buffer index to end
$029C - input buffer index to start
$029D - output buffer index to start
$029E - output buffer index to end
3.4.4 RS232 system routine entry points
SEEBI — entry for NMI continue routine
$EED7 - calculate parity
SEF0P - count stop bits

SEFP6 — entry to start of byte transmission

$EF13
$EF2E
SEF4A
$EF59
$EF63
$EF69
SEF6E
$EF7E
SEF99
$EF97
$EFB3
SEFBC
$EFC7
SEFEI
$EFE9
SEFF2
SEFF9
$EFFE
SEPP6
$Fp14
$FP28
$FP4D
$FP59
$Fp62
$FP68
SFP7P
SEPT7
$FP7D
$FPR6
SFP9B
SFPA4

Serial Communications

set up to send next byte

set errors

calculate number of bits to be sent
NMI routine to collect data into bytes
calculate parity

shift data bit in

have stop bit so store in buffer
enable to receive a byte

receiver start bit check

put data in buffer (at parity time)
parity checking

check calculated parity

errors reported

output a file over RS232

check for DSR and RTS

check for active input

wait for CTS to be off

turn on RTS

wait for CTS to go on

buffer handler to output a character
set up if necessary to output

input a file over RS232

check for DSR and not RTS

wait for active output to be done
turn off RTS

wait for DCD to go high

enable FLAG for RS232 input

if not 3 line half then see if we need to turn on FLAG
input a character buffer handler
receiver always runs

protect serial/cassette from RS232 NMIs

3.5 Using the RS232 port

3.5.1 Opening an RS232 channel
Basic syntax: OPEN If,2.0,“(control register) (command register)”
The syntax coding is as follows:

If - normal logical file ID (1-255). If 1f>127 then line feed follows carriage

return.

75

(control register) — an ASCII character equivalent to the required bit setting of
the control register. Example: to set baud rate to 3@ and transmit 7 bit code use
CHRS$(6132) - this sets bits 1, 2 and 5 to ‘I’ and leaves the rest at ‘@’
(command register) - an ASCII character equivalent to the required bit setting
of the command register. Example: to set the output to mark parity and full
duplex use CHRS$(32+128) - this sets bits 5 and 7 to ‘I’ and leaves the rest at ‘@’

Entry point: SFFC@

76 The Commodore 64 Kernal and Hardware Revealed

Notes on usage: Only one RS232 channel should be open at any time. Since the
OPEN statement resets the buffer pointers, a second OPEN will destroy any
data in the buffers set up in the first OPEN. The OPEN RS232 channel
command should be used before any variable DIM statements; failure to do this
will cause wiping of data. This is because the OPEN RS232 channel command
performs an automatic CLR before allocating the 512 bytes at the top of
memory used for the two RS232 buffers.

3.5.2 Receiving data from an RS232 channel
Basic syntax: GET #If,(string variable)
If - logical file ID used in OPEN RS232 channel command.

Entry points:

$FFC6 - set channel for input. Handles full X line implementation according to
EIA standard RS232C interfaces. The RTS, CTS, and DCD lines are
implemented when the CBM 64 is designated as a data terminal device.
$FFE4 - get character from buffer.

Notes on usage: Received data is put into the 64’s 256 byte internal receiver
buffer set up during the OPEN routine. Data input is under control of the 6526
timers and NMIs, and is performed in the background during the running of a
Basic program. This is done by having the RS232 data input line connected to
the FLAG handshake line, and input on FLAG will generate an NMI system
interrupt. The use of NMI interrupts is the reason why the cassette and serial bus
should not be used during RS232 data communications. The NMI will call the
serial data input routines whenever data is present on the RS232 input. These
routines will place the received data into the 256 byte receiver buffer located at
the top of RAM memory. If the input data has a word width less than eight bits
then all unused bits will be filled with zero.

The receiver buffer is organised as a first in first out - FIFO - buffer. The
buffer removes the necessity for Basic to wait for data input before processing
each byte of data. Instead the Basic program can take data from the buffer when
it needs it rather than when it is presented. Basic accesses the buffer using the
GET# command to transfer a single byte of data into a Basic variable. If there is
no data in the buffer then the GET# command will return with a null character.
If the buffer should overflow then all characters are lost. An overflow condition
is indicated by bit 2 in the RS232 status register being set. An overflow condition
will frequently result if an attempt is made to input data at fairly high data rates
using Basic. This is because Basic is normally slow and the use of the GET#
command with string concatenation will give rise to frequent garbage collects.
Machine language routines are best used for data rates above the normal 300
baud.

3.5.3 Transmitting data to an RS232 channel
Basic syntax: CMD If PRINT#If,(variable list)
If - logical file ID set up in the OPEN command.

Entry points:
$FFC9 - set channel for output. This handles X line handshaking for the

Serial Communications 77

implementation of an EIA standard RS232 interface. The RTS, CTS, and DCD
lines are implemented with the 64 as a data terminal.
$FFD2 - output character to channel.

Notes on usage: When either one of the two Basic commands is used data is first
transferred from the assigned string or memory block to the 256 byte
transmitter buffer. From here it is output to the RS232 channel using the format
and baud rate assigned in the OPEN command. Data output is transparent to
the operation of Basic since the timing is done by the 6526 timers and output of
each byte initiated by an NMI system interrupt. As with data input on the
RS232, the cassette or serial port should not be used during data transmission
otherwise interrupt conflicts will occur. There is no carriage return delay
implemented by the output channel, therefore a normal RS232 printer cannot
correctly output the data unless some form of internal buffering or other hold-
off is implemented by the printer. If a CTS handshake is implemented (in the X
line mode) then the 64 buffer will fill, and output will not occur until
transmission is allowed by an input on CTS.

3.5.4 Closing an RS232 data channel
Basic syntax: CLOSE If
If - logical file ID set up in the OPEN channel command.

Entry point:
$FFC3 - close logical file

Notes on usage: Closing the RS232 file causes all the data in the buffers to be
discarded, stops data transmitting or receiving , sets the RTS and SOUT lines
high, and deallocates the memory area used for the RS232 buffers. Closing an
RS232 file will also allow the cassette or serial ports to be used. Before closing
the channel care should be taken to ensure that all data in the buffer is
transmitted. This can be done by checking the status (ST variable) is=f and that
bit @ of the RS232 enable register at location 673 ($02A1) is set to logic 1. If both
are true then there is still data in the buffer.

Chapter Four

The Cassette Units

4.1 The cassette hardware

The CBM 64 has a single external cassette unit which is used for program and
data storage. The cassette deck is connected to the CBM 64 by six lines — write,
read, motor, sense and two power lines; ground and +5 volts. The connections
are shown in Fig. 4.1. The cassette is controlled by 1/ O lines from the the CIA
chip and the processor 1/ O register. The source of each of the cassette control
lines is shown in Fig. 4.2. The cassette motor power supply lines are connected
to the processor chip via a three transistor driver, used to boost the power and
voltage, allowing the motor to be driven directly. The output to the motor is an

1 2 3 45 6

— il O W OO

e
A B CDETF

PIN # TYPE
A-1 GND
B-2 +5V
C3 CASSETTE MOTOR
D-4 CASSETTE READ
E-5 CASSETTE WRITE
F-6 CASSETTE SWITCH

Fig. 4.1. The allocation and function of pins on the cassette connector.

. N UNREG

+3Sv

2]

A-1

c-3
P3eon 63510 o- CASS WRIT]
FLAG CIAK] o CASS PEAD |52
Pten 6S10 0 CASS SWITCHI k.5

Fig. 4.2. The cassette circuit and its connection to the 6522 chips.

CASSETTE
P2

The Cassette Units 79

unregulated +9 volts at a power rating of up to 18 mA. The cassette deck motor
can be turned on and off by toggling line 5 of the processor 1/O register:

POKE I,PEEK(1) AND 191 turns the motor on
POKE 1,PEEK(1) OR 64 turns it off

Great care should be taken not to alter the status of bits 1 and 2 of location 1
when using this command, since these control the memory configuration of the
machine. The sense line input, line 4 of the processor I/ O register, is connected
to a switch on the cassette deck which senses when the play, rewind or fast
forward buttons have been pressed. The switch is only required to sense the
pushing of the play button during a read or write to tape routine; this is done by
a subroutine at $F82E. If either the rewind or fast forward button is pressed
accidentally instead of the play button, the system will be unable to tell the
difference and will act as if the play button has been pressed. For a similar
reason during a record routine the record button must be pressed before the play
button, since recording will start as soon as the sense switch is closed by pressing
the play button.

The cassette read line is connected to the negative edge sensitive serial input
line of CIA#1 and the cassette write line to line 3 of the processor 1/ O register.
During a read operation the operating system uses the setting of the CIA#1
interrupt flag to detect transitions on the cassette read line. The functioning of
the read and write lines is controlled entirely by the operating system, the only
hardware required being signal amplification and pulse shaping circuitry. These
circuits are contained on a small PC board within the cassette deck, their
function being to give correct voltage and current to the record head and
amplify the input from the read head to give a 5 volt square wave output, able to
produce an interrupt on the FLAG or CBI lines.

4.2 Cassette operation

In normal usage the cassette deck is assigned an I/O device number. The
cassette is device number 1, and the number of the device currently being used is
storéd in location 186. The device number together with the logical file number
and the secondary address is used when saving or retrieving data files from the
cassette deck. The logical file number can be any number from 1 to 255 and is
used to allow multiple files to be kept on the same device. It is of little use with
cassette tape and is intended primarily for use with floppy disk units. It is usual
to have the logical file number the same as the device number; the logical file
number of the current file is stored in location 184. The secondary address is
important since it determines the operational mode of the cassette; the current
secondary address is stored in location 185, the normal default value being zero.
If the secondary address is zero then the tape is opened for a ‘read’ operation, if it
is set to 1 then it is opened for a ‘write’ operation, and if 2 then it is opened fora
‘write’ with an end of tape header being forced when the file is closed.

The CBM 64 operating system is configured to allow two different types of
file to be stored on cassette: program files and data files. These names are rather

80 The Commodore 64 Kernal and Hardware Revealed

misleading, however, since a program can be stored as a data file and data can be
stored as a program file. The difference between these two file types is not in
their application but in the way the contents of the machine’s memory are
recorded. Instead of program and data files we must look upon them as binary
and ASCII files.

4.3 Binary files

A binary file is usually used to store programs, since a binary file is created by
the operating system to store the contents of memory between a starting
location and an end location. It is called a binary file because it stores on tape the
binary value in each memory location within the assigned memory area. Basic
statements are stored in memory using tokens. The use of tokens means that
Basic commands are not stored in the same manner as they are listed on the
display or were entered on the keyboard. They are instead stored in memory ina
partly encoded form. Being partly encoded, a binary file is a quicker and more
efficient way of storing programs. Binary files are essential when saving and
loading machine code programs.

The starting address from which a binary file will be saved is stored in
locations 172 and 173. These locations are loaded by the SAVE routine with the
memory location at which the SAVE will begin. Normally they will be set to §1
and P8, thereby pointing to the start of the Basic text area at 2049. They can be
altered by the SAVE routine to point to any location in memory. The end
address of the area of memory to be saved is stored in locations 174 and 175.
Normally when saving a Basic program these are set to the address of the double
zero byte terminating link address. The end address can be altered to any desired
location. To change either of these addresses one cannot use the normal SAVE
routine since this automatically initialises these locations. Instead one must
write a small machine code initialisation routine incorporating the desired
operating system subroutines. By default a SAVE command will write a binary
file and a LOAD command will read a binary file.

4.4 ASCII files

An ASCII file is normally used to store data but it can be used to store programs
(see the MERGE procedure). The format is the same as that displayed on the
screen or entered on the keyboard. ASCII files are created or read almost
exclusively by instructions from within a Basic program. A binary file is created
or read mostly by direct instructions, though the LOAD and SAVE instructions
can be used within a program.

An ASCII file must first be opened with an OPEN statement. This specifies
the logical file, device number, secondary address and filename. The operating
system interprets these parameters and allows the user to read or write the file to
the specified device. Data is written to an ASCII file on a particular device with
a command to PRINT to the specified logical file number, and data is read by a
READ from logical file command.

The Cassette Units 81

Whereas a binary file is loaded with the contents of successive memory
locations, an ASCII file is loaded with a string of variables. Storing these would
require the tape to be turned on and off repeatedly, storing a few bytes of data at
a time. The CBM 64 overcomes this by having a 192 byte tape buffer into which
all data to be written to or read from tape is loaded. Only when this buffer is full
is the tape motor turned on. Data is stored on tape in blocks of 192 bytes, and
since the motor is turned on and off between blocks a two second interval is left
between blocks to allow the motor to accelerate and decelerate. The beginning
of the 192 character buffer starts at address 828. The pointer to the start of the
buffer is located at addresses 178 and 179. The number of characters in a buffer
is stored in location 166. These locations can be used by the programmer to
control the amount of space left in a data file. If, having opened a file on cassette,
the command POKE 166,191 is executed, then the contents of the tape buffer
even if empty are loaded onto the tape. If records are kept in multiples of 191
bytes we can very easily keep null or partially filled records allowing future data
expansion.

4.5 Recording method

Whether the file being stored is binary or ASCII the recording method used is
the same, involving an encoding method unique to Commodore and designed to
ensure maximum reliability of recording and playback. Each byte of data or
program is encoded by the operating system using pulses of three distinct audio
frequencies. These are: long pulses with a frequency of 1488 Hz, medium pulses
at 1953 Hz and short pulses at 2849 Hz. All these pulses are square waves with a
mark space ratio of 1:1. One cycle of a medium frequency is: 256 microseconds
in the high state and 256 microseconds in the low state. The operating system
takes about 9 milliseconds to record a byte of data consisting of the eight data
bits, a word marker bit and an odd parity bit. The data bits are either ones or
zeros and are encoded by a sequence of medium and short pulses: a ‘1’ is one
cycle of a medium length pulse followed by one cycle of a short length pulse, and
‘Y is one cycle of a short length pulse followed by one cycle of a medium length
pulse. Each bit consists of two square wave pulse cycles, one short and one
medium, with a total duration of 864 microseconds. The waveform timing is
shown in the diagram in Fig. 4.3.

The ‘odd parity’ bit is required for error checking and is encoded like the eight
data bits using a long and short pulse. Its state is determined by the contents of
the eight data bits. The word marker separates each byte of data and signals to
the operating system the beginning of each byte. The word marker is encoded as
one cycle of a long pulse followed by one cycle of a medium pulse (see Fig. 4.3).

Since a byte of data is recorded in just 8.96 milliseconds, a 192 byte block of
data in an ASCII file should be recorded in just over 1.7 seconds. However, on
timing such a recording we find it takes 5.7 seconds. There are two causes for
this discrepancy in timing. Firstly, to reduce the possibility of audio dropouts
the data is recorded twice. Secondly, a two second interrecord gap is left
between each record of 192 bytes.

82 The Commodore 64 Kernal and Hardware Revealed
256us 176 us

256us 176ps l

176us 256us

] V76us 256us l

Q

336ups 256us

J 336us ‘ 256y I

Viord marker

Fig. 4.3. Output waveforms to the cassette recorder.

The extensive use of error checking techniques is one reason why the tape
system on the CBM 64 is slow but also quite reliable compared with that
available on many other popular computers. There are two levels of error
checking. The first divides the data into blocks of eight bytes and then computes
a ninth byte, the checksum digit. The checksum is obtained by adding the eight
data bytes together; the checksum is the least significant byte of the result. On
reading the tape, if one bit in the eight bytes is dropped and a zero becomes a one
or vice versa, the checksum can be used to detect this error. To do this the same
procedure to calculate the check digit is performed, but the result will be
different from that stored in byte nine - the check digit of that block computed
when the tape was recorded. The second level of error checking involves
recording each block of data twice. This allows errors detected by the check digit
to be corrected during the second reading of the 192 byte data block. By
recording the data twice a verification can be performed by comparing the
contents of the two blocks; this will highlight the few errors not detected by the

checksum.
The use of pulse sequences rather than two frequencies as in a standard FSK

recording has a great advantage since it allows the operating system to
compensate easily for variations in recording speed. Normally a hardware phase
locked loop circuit would be used to lock the system onto the correct frequencies
coming from the tape head. The CBM 64, however, uses software to perform
this process. A ten second leader is written on the tape before recording of the
data or program commences. This leader has two functions; first it allows the

The Cassette Units 83

tape motor to reach the correct speed, and secondly the sequence of short pulses
written on the leader is used to synchronise the read routine timing to the timing
on the tape. The operating system can thus produce a correction factor which
allows a very wide variation in tape speed without affecting reading.

The system timing used to perform both reading and writing is very accurate,
based as it is on the crystal controlled system clock and Timer | and Timer 2 of
CIA#2. Interrecord gaps are used only in ASCII files and their function is to
allow the tape motor time to decelerate after being turned off and accelerate to
the correct speed when turned on prior to a block read or write. Each
interrecord gap is approximately two seconds longand is recorded as a sequence
of short pulses in the same manner as the ten second leader. There is also a gap
between blocks. When the first block of 192 bytes is recorded it is followed by a
block end marker which consists of one single long pulse followed by 54+ cycles
of short pulses. Then the second recording of the 192 block starts, which is
identical to the first block.

The first record written on the tape after the ten second leader in both ASCII
and binary files is a 192 character file header block. The file header contains the
name of the file, the starting memory location, and the end location. In an
ASCII file these addresses are the beginning and end of the tape buffer; in a
binary file they point to the area of memory in which the program is to be stored.

The filename can be up to 187 bytes long. The length of the filename is stored
in location 183. When read it is compared with the requested filename in the
LOAD or OPEN command; if the name is the same the operating system will
read the file, if different then it will search for the next ten second interfile gap
and another header block. The filename is stored during a read or write
operation in a block memory, the starting address of which is stored in locations
187 and 188. On completion of the operation these are reset to point to a
location in the operating system. The starting location is normally set to the
beginning of the user memory area, address 2049, however it can be changed to
point to any location - a method employed when recording programs in
machine code using the monitor. The starting address is pointed to by the
contents of locations 172 and 173. The end address is stored in locations 174 and
175. Normally this is the highest byte of memory occupied by the program,
however it can be altered to point to any address providing it is greater than the
start address.

4.6 Cassette operating system routines

The CBM 64 kernal contains a whole series of routines for handling data
transfer between the processor and the cassette unit. The following sections
describe these routines and how they can be used. These descriptions are
accompanied by annotated source code listings of each routine (consult volume
1 of this series, The Commodore 64 ROMs Revealed, for the full kernal source
code listing). The variable declaration file for these routines is to be found in
Chapter 5.

84 The Commodore 64 Kernal and Hardware Revealed

Protect cassette/serial from RS232 NMI interrupts

Entry point: SFPA4

Function: This routine checks location $42A1 to see if RS232 communications
are enabled. If they are not then this location contains a zero and the routine
exits to allow serial or cassette operation to commence. If RS232
communications are enabled then the routine goes into a loop waiting for the
RS232 NMI interrupt to reset location $82A1 to $03, thereby signalling its
completion. As soon as this happens the Timer A interrupt is disabled, the flag
at $02A1 is set to zero and the routine exits. The reason for this routine is to

prevent an NMI interrupt from occurring during cassette or serial operation
thereby causing data loss.

Input parameters: $2A1 - if non zero then RS232 enabled
Output parameters: None

Registers used: .A is used but is pushed to the stack by the instruction at SFpA4
and then retrieved at the end of the routine by $F@BB.

Routine source code:

Loc CODE LINE

pb1e *=$FOA4:

FoR4 H

FOA4 :PROTECT SERIAL/CASSETTE FROM

FoA4 ;RS-232 NMI’S

FoAa4 3

FoA4 48 L?21 PHA ;SAVE A

FOAS AD Al e2 LDA ¢02a1 ;RS232 ENABLES 7
FoAg Fo L1 BEQ L923 ;NO

F@AA AD Al 02 L838 LDA $62A1

FOAD 27 ©3 AND H$03

FOAF DO F9 BNE L1838

FeBl A9 10 LDA #$19 :DISARLE FLAG
FoR3 8D oD DD STA D2ICK

FoB& A7 99 LDA #3909

Fee8 8D Al 02 STA $02A1

FopB 68 L923% PLA sALL DONE
FOeC 60 RTS

FoBD ;

Cassette error message output

Entry point:
$F12B - tests direct mode flag first
$FI12F - displays message to screen

Function: This routine outputs a message to the screen concerning cassette

The Cassette Units 85

operation. The first entry point tests the contents of location $9D to see if the
output is in direct or run mode. The second entry point performs the actual
message output, the choice of message being determined by the value in the .Y
index register. The messages used by this routine are stored in the area of
memory immediately above this routine starting at $FABD.

Input parameters:

.Y index register contains message number

$9D - direct mode flag; if the high bit of .A is set and the contents of location
$9D are non zero, the required message is printed.

Output parameters: None

Routine source code:

Lac CODE LINE

FoepD : ERROR RESSAGES

FORD 3

FeeD 6D MS1 .BYT $0,’I/0 ERROR ’,6$A3
FOBE 49 2F

FAC8 A3

FeC9 @D MSS -BYT $0,’SEARCHING’, $A8
FOCA 33 45

FeD3 ne

FeD4a 46 4F 52 Msé BYT "FOR’,$A0

FoD7 RO

FoD8 @D MS7 .BYT $D, PRESS FLAY ON TAP’, ¢CU
FeD? S u2

FOEA CY

FOER 50 52 Ass .BYT "PRESS RECOKD & PLAY ON TAF’,$CS
F193 C3

Fieé 0D fs16 BYT $D,"LOADIR",$C7
F197 4C 4F

FieD C7

F19E oD ms11 BYT $D,’SAVING' , $A0
FLOF &3 41

F115 A6

F1i6 oD ms21 .BYT $0, VERIFYIN' $C7
F117 96 43

F11F C7

F1290 @D ms17 LBYT 3D, FOUND’ ,$A0

FL2L 46 4F

F126 A9

F127 @D Msi8 .BYT €D, 0K’ ,%8D

F128 4F 4B

F12A 8D

F12B H

F128 ;FRINT MESSAGE TO SCREEN ONLY IF
Fi2 s OUTPUT ENABLED

F128 H

F12p 24 9D L922 BIT ASGFLG sPRINTING MESSAGES?
F12D 190 @D RPL L923 :NO

F12F B9 BD FO L1673 LDA AS1,Y

F132 08 FPRP

F133 29 7F AND #47F

F135 29 D2 FF JSR $FFD2

Fi38 C8 INY

Fi%9 28 PLP

F13a 10 F3 2PL L1873

F13C 18 L?23 cLc

Fi3D 66 RTS

Fi3E -END
F13E .LIB KTAPE1l

86 The Commodore 64 Kernal and Hardware Revealed

Load RAM function

Entry point: $F49E

Function: This routine loads from cassette or a serial bus device (with a device
number between 4 and 31 where this device number is stored in location $BA)
into the memory starting at the LOAD address in the file ifthe secondary address
is greater than @, or at the specified address if the secondary address is @.

Input parameters:

$BA - device number

$B9 - secondary address

.X - LOAD address lo if secondary address is zero
.Y - LOAD address hi if secondary address is zero
A - if =@ then load, # @ then verify

|

Output parameters:
.X - return high LOAD address hi
.Y - return high LOAD address lo

Routine source code:

Loc CODE LINE

F13E *=$F 49E

F4%E H

F49E ;% LLOAD RAA FUNCTION.

FA9E e LOADS FROM CASSEIYE OR SERIAL RUS
F49E :# DEVICES »=4 TO 31 AS DETERMINED BY
F49E ;% CONTENTS OF VARIABLE FA. VERIFY FLAG
F4%E ;% IN JA.

FA9E 3 ¥ ALT LOAD IF SA=9, NORMAL SA=1
F4%E 3 * X, .Y LOAD ADDRESS IF SA=90

F49%E 3 ¥ -A=9 PERFORMS LOAD,«>@ IS VERIFY.
F49E ;¥ HIGH LOAD RETURN IN .X,.Y

FA49E ;% USE SETLFS & SETNAM REFORE THIS ROUTINE
Fa9E H

F49E 86 C3 L9990 STX MEMUSS . ;1.0 ALT START
F4R0 84 C4 STY MERUSS+1 sHI ALT START
FAA2 6C 36 @3 JAP (ILLOAD)

F4AS 83 93 NLOAD STA VERCK ;STORE VERIFY FLAG
F4AA7 A9 066 LDA H%00

F4A9 85 99 STA STATUS

F4AB AT PRA LDA FA ;CHECK DEVICE #
F4AD D9 03 BNE L1046

F4AF 4C 13 F7 L1241 JRP L1649 ;KEYBOARD, BAD DEVICE
F4B2 C9? 93 L1946 CRF #$03 :SCREEN?

F4B4 F@ F9 REA L1241 ;YES

F4Bs 99 7B BCC L1959 s TAPE

F4B8 ;

F4B3 H

F4B8 #:2$F 349

F530 4C 04 F7 L1938 JnP L9359 ;FILE NOT FOUND
F533 ;

FU33 ;es#%% LOAD FROA TAFE

FS33 H

Loc
F333
F334
FS46
F539
F33C
FS3E
FS41
F944
Fa46
F349
Fo4B8
F54D
[T
F952
F8S4
F556
Fas9
F35
FY3D
FS5F
Fo41L
FS62
F364
F366
F348
FOéA
F36C
F36E
F379
F3572
F973
F37%
F577
F379
Fi7e
FuU7D
Fa7F
Fo81
Fs83
F58Y%
F386
Fo88
Fi8A
Fa8C
Fu8E
FS8F
F370
F391
Fov3
F395
F596
F598
FS9A
Fo9cC
FS9E
FSA6
F3A2
FSAS
FIA8
FOA?
FIAn
F3AA
F5aa
FSAA
FSaC
FSAE
FoaF

CUDE
4A
Re
4C
20
=19
4C
29
Bé
29
AS
Fo
20
70
Fo
BO
20

Fo 3

47
AJS
29
38
Dé
E®
Fé
E9
ne
A
Bl

B2

£3

B2
C4
Q4
B9
EF
%3
RZ
61
B2

04
B2
02
B2

c3
AE

o~z

) AF

C3
C1
Ca
D2
44

F7

F7

F7
F8

F7

F7

F5
F8

LINE
L10Ge

L1047

L1040o

L1661

L1esé

L1963

L1964

L1668

L1665

L1867

LSKR
BCS
Jnp
JSR
ecs
JHP
JSR
BCS
JSK
LDA
BEQ
JSK
8cc
BEE
BCS
JSR
BE@
2Cs
LDA
AND
SEC
BNE
CPX
BER
CPX
ENE
LDY
LDA
STA
INY
LDA
STA
BCS
LDA
BNE
LDY
LDA
LDY
SBC
TAX
LDY
LDA
LDY
SRC
TAY
CLC
(43
ADC
STR
TYA
ADC
STA
LDA
STA
LDA
STA
JSR
JSR

A
L1647
L1049
L1164
L1060
L1049
L?38
L1059
L1062
FNLEN
L1066
L1198
L1963
L1059
L1958
L1098
L1859
L1658
STATUS
HSFERKR

L1659
HBLF
L1048
HPLF
L1661
4301
(TAPEL) Y
REMUSS

(TAPEL), Y
MEMUSS+1
L1065

SA

L1064
#$03
(TAFE1) Y
#3061
(TAPEL),Y

#3504
(TAPE1),Y
#$02
(TAPE1),Y

MEMUSS
EAL

REMUSS+1
EAH
RERUSS
STAL
MEMUSS+L
STAH
L1979
L9489

BYT $24

CLC

;SET UP END ADDRESS

-
’

L1659

»

LDX
LoY
RTS

EAL
EAH

The Cassette Units

; TAPE?

s YES

;NO, BAD DEVICE
;SET TAFE FOINTERS

;s DEALLOCATED

3 'PRESS PLAY ON TAPE’
;STOP KEY?

;' SEARCHING”

:NARE?

;NO, LOAD FIRST PROG
;YES, FIND A FILE

; FOUND

:STOF KEY

;NO, END OF TAFE
;FIND ANY HEADER
:STOP KEY

;s NO HEADER

;MUST HAVE GOT HEADER RIGHT

;IS BAD

;MQVEABLE?

1 YES

; FROGRAN

sNO, TRY FOR MEXT
;FIXKED LOAD
;ADDRESS IN BUFFER
;1S LOAD ADDRESS

sMONITOR LOAD?
s TES, FIKED TYPE
;s TAPEA-TAPESTA

;L0 TO X

sHI TO .Y
;EA=STA+(TAPEA-TAPESTA)

:SET UP START ADDRESS

; "LOADING™

;LOAD TAPE BLOCK
;SKIP NEXT CORRAMD
;600D EXIT

87

88 The Commodore 64 Kernal and Hardware Revealed

Print tape loading messages

Entry points:

$F5AF - print ‘searching [for filename]’
$F5C1 - print filename

$F5D2 - print loading/verifying

Function: The function of these three routines is simply to display the
appropriate messages on the screen when loading a program or file from tape.

Input parameters:

$9D - flag to indicate whether ‘searching[for filename]’ is printed; if high bit is
set then message is printed

$B7 - filename length

$BB - filename address

$93 - loading/verifying flag; if = @ then loading, otherwise verifying

Output parameters: None

Routine source code:

Loc CODE LINE

FSAF sPRINY "SEARCHING FOR L[NAME]’

FSAF ;

FSAF AS 9D L1062 LDA MSGFLG sPRINT IT?
FaB1 19 LE BPL L1e71 s NO

FOBR3 ne @C LDY HASU-MS1 ;s "SEARCHING”
FSRS 29 2F F1 JSR L1973

F3R8 AT B7 LDA FNLENM

FSBA F9 15 eEQ L1971

F3BC A€ 17 LDY #fASé-fS1 ;s "FOR’

FSBE 29 2F FIL JSR L1673

FSC1 s

FuC1 :PRINT FILENAME

F5C1 :

F3C1 A4 &7 L1922 LDY FNLEN sNARE LENGYH
FSC3 Feé eC REQ L1671 sNO MNAME
FSCT ho 90 LDY #$99

FSC7 B1 BB L1091 LDA (FNADK),Y

FSC9 20 D2 FF JSR $FFD2

FSCC C8 INY

F5CD C4 B7 CPY FNLEN

FSCF DO Fé BNE L1691

FSD1 69 L1671 RTS

FSD2 H

F5D2 tPRINT LOADING/VERIFYING

F5D2 .

FSD2 A@ 49 L1679 LDY #AS18-AS1 ;ASSUME "LOADING’
FSD4 AL 93 LDA VERCK :CHECK FLAG
FSD6 FO e2 BEQ L1652 “:YES, LOADING
F508 A0 99 LDY #RS21-nS1 s "VERIFYING'
FSDA 4C 22 F1 L1652 JRP L9222

F300D ~END

FSDD -LIB KTAPE2

The Cassette Units 89

Save memory function

Entry point: SF5DD

Function: A specified block of memory is saved by this routine onto cassette or a
serial device with a device number between 4 and 31. This routine must be
preceded by the routine at SFFBA which sets logical first and secondary
addresses and at $FFBD which sets up the filename.

Input parameters:

.A - indirect pointer to start of memory area to be saved
.X - end of SAVE lo

.Y - end of SAVE hi

$BA - device number

Output parameters: None

Routine source code:

LoC CObE LINE

FS0D :

F300 3% SAVE MERORY FUNCTION.

F5DD ;€ SAVES TO CASSEITE OR SERIAL

FSDO ;% DEVICES >=4 710 31 AS SELECVED BY

FSDD ;% VARIABLE FA.

FODD % START OF SAVE IS INDIRECT AT .A
FSPD ;% END OF SAVE IS .X, .Y

FS00D ;¥ USE SETLFS & SETNAR BEFORE THIS ROUTINE
FSDD § BEERRRE SRS BEFRESHLEUREEIEECEER LN LR R EFOSE 0D
FSDD :

FSDD 86 AE L1072 STX EAL ;STORE END ADDRESS
FSDF 84 AF STY EAH

F3E1 AA TAX sSET UFP START

FSE2 BS 00 LDA %60 ,X

FSE4 85 C1 STA STAL

FSES6 29 01 LDA $01,X

F5£8 85 C2 STA STAH

FSEA 6C 32 923 JHFP (ISAVE)

FSED A5 RA NSAVE LDA FA

FSEF D9 03 BNE L1075

FSF1 4C 13 F? L1242 JPF L1049 ;BAD DEVICE

FSF4 C9 923 L1975 CHAP #$03 :SERIALT

FGF6 F& F9 BEQ L1242 ;SCREEN, PAD DEVICE
FEF8 99 IF BCC L1085 sNO, TAPE

FSFA B

FSFA *=$F 659

F659 H

F659 FREFREE TAPE SAVE

F659 ;

F459 4A Lie8S LSR A s RS-2327

Fé65a4 L@ 63 BCS L1676 ;NO, MUST BE TAFPE
F6SC 4C 13 F7 JAP L1249 ;BAD DEVICE

F&SF 20 D& F7 L1676 JSR Ll1é4 ;GET BUFFER ADDR
Fé42 90 80 BCC L1242 :NOT ALLOCATED
Fé64 26 38 F8 JSR L1114

F467 89 23 BCS L1899 ;STOP KEY

F669 20 8F Fé JSR L1ie87 ; "SAVING'

90 The Commodore 64 Kernal and Hardware Revealed

LocC CODE LINE
F46C A2 03 LDX HPLF ;OECIDE TYPE TO SAVE
Fé6E AS B9 LDA SA ;1-PLF, @-BLF
F&79 29 91 AND H$01
Fé72 Do 62 BNE L1686
Fb474 A2 91} LDX WBLF
Fé676 8A L1686 TXA
F&77 20 6A F7 JSKR L1099 ;sWRITE HEADER BLOCKS
Fé676 BRe 12 BCS L1e9%e ;STOP KEY
F&67C 20 67 F8 JOR L9952 ;WRITE PROGRAM BLOCKS
Fé7F B& oD BCS L169¢ ;STOP KEY
Fé8l1 AS B9 LDA SA
Fé83 29 92 AND H$62 ;WRITE END OF TAFEY
Fo8S F9 926 BEQ L1088 :NO
Fé687 A9 05 LDA #$05
F&689 29 6A F7 JSR L1levy sWRITE END TABLE BLOCKS
F68C 24 BYT $24 ; SKIF COMMAND
Fe8D 18 L1988 CLC
F6BE 60 L1098 RTS

Print ‘saving’

Entry point: $F68F

Function: Prints the message Saving [filename] on the screen. Note that this
message can be output to another device such as a printer, but the following
SAVE will give an error.

Input parameters: $9D - flag to indicate if message is to be printed; if high bit is
not set then message is not printed.

Output parameters: None

Routine source code:

LL0C CUbE LINE

F68F :

F68F sFRINT "SAVING CFILENAME]’

F68F :

Fé68F AS 9D L1687 LDA RSGFLG sPRINT IT?
F&6?1 10 FB BFL L1999 +NO

F693 A0 51 LDY #AS11-MS1 3 SAVING”
F&49S 29 2F FI JSR L1073

Fé98 4C CL FS JAF L1e22 sSEND FILENAME
Fé69e ~END

F 698 LIR KTVAPE3

Stop key servicing

Entry point: $SF6ED

Function: This routine is included in this section because it is called by so many

The Cassette Units 91

of the other routines. The function of this routine is to check the stop key flag
and if set then close any active 1/O channels, flush the keyboard queue and
return the machine to direct mode.

Input parameters: $91 - value of last keyboard row — contains ‘stop’ key

Output parameters:
Z flag - set if stop key depressed
A - keys depressed from last keyboard row

Routine source code:

1OC CODE L1NE

F498 #=$F HED

FGED ;

F&ED e R e e e i e
F4ED % STOP -- CHECK STOF KEY FLAG AND

F&ED 3% RETURN Z FLAG SEY IF FLAG TRUE.

FSED :# ALSO CLOSES ACTIVE CHANNELS AND

F6ED ;% FLUSHES KEYBOARD QUEUE.

FAED :¥ ALSO RETURNS KEY DUWNS FROM LAST

FOED ;% KEYBOARD ROW IN .A.

FEED ;¥ SHOULD CALL UFDATE TIME BEFOKE
FGED ;% THIS.

F&ED Mt EXREREERXFEFERLELNERXF LS LRER SR LSRR EE
F&ED ;

F&ED A5 91 NSTOP LDA STKEY ;VALUE OF LAST KOW
FOEF €9 7F CitP H$7F ;STOP KEY FOSITION
F6FL DO &7 BNE L1243 sNUT DOWN

F&F3 08 PHF

F&F4 26 CC FF JSK $FFCC :CLEAR CHANNELS
F&F7 85 Cé STA NDX ;CLEAR KEY QUEUE
F&F9 28 FLP

FOFA 40 L1243 RTS

Error handler

Entry points:

$F6FB - too many files
$F6FE - file open

$F791 - file not open

$F794 - file not found

$F797 - device not present
$F79A - not input file

$F79D - not output file
$F719 - missing filename
$F713 - illegal device number

Function: This will display a designated error message from a list of nine
cassette and serial I/ O related messages. The table of actual error message texts
is stored in locations $A19E to $A225.

92 The Commodore 64 Kernal and Hardware Revealed
Input parameters: None

Output parameters: None

Routine source code:

LoC CODE LINE

F6FB P EREFRFXXCRFAFSARARARLLBRRAF R REN LB R RNRRRS
F&FB +¥ ERROR HANDLER.

F&FBE ;% PRINTS KERNAL ERROR MESSAGE IF BIT 6
F&FB ;# OF MSGFLG IS SET. RETURNS WITH ERKROR
F6Fe ;% # IN .A AND CARRY SET.

F&FB P RRFRERREHLEERRXNRREFEFELRRERELERRREFREESS
F6FE 3 ,

F6FB A9 01 L1897 LDA Hs@l ; TOO MANY FILES
F6rD 2C LBYT $2C

F&FE A9 02 L1011 LDA H$@2 ;FILE OFEN

F7906 2C .BYT s2C

F761 A9 63 L1609 LDA K$03 ;FILE NOT OPEN
F703 2C LBYT $2C

F704 19 64 L95% LDA #$64 ;FILE NOT FOURD
F766 2C -BYT $2C

F767 A9 &5 L1026 LDA #3635 ;DEVICE NOT PRESENT
F799 2C .BYT $2C

F70A A9 06 L971 LDA H$86 ;NOT INPUT FILE
F7eC 2C LBYT s2C

F70D A9 07 L9265 LDA #$07 ;NOT OUTPUY FILE
F7eF 2C .BYT $2C

F716 (9 @8 L974 LDA #s08 ;M1SSING FILENAME
F712 2C BYT $2C

F713 A9 09 L1049 LDA #H%¥69 ;BAD DEVICE #
F715 48 PHaA ;ERROR # ON STACK
F716 20 CC FF JSR $FFCC ;RESTORE 1/0

F719 A9 99 LDY #MS1-niS1

F71R 24 9D B1T NSGFLG ;FRINT ERROR?Y

F71D 79 24 BVC L1918 :NO

F71F 20 2F F1 JOR L1673 ;PRINT "1/0 ERROR #7
F722 68 FLA

F723 48 PHA

F724 99 392 URA H$30 ;MAKE ERROR # ASCII
F726 20 D2 FF JSR $FFD2 sFRINT IT

F729 68 L1918 FLA

F72A 38 SEC

F72B 69 RTS

F72C -END

F72C .LIB KTAPE4

Find any tape header

Entry point: $F72C

Function: This routine reads the tape device until one of the following two
block types is found: ‘basic data file header’ or ‘basic load file’. The state of the
carry flagindicates whether a header was found or not. Having found the header
the message Found is displayed, followed by the filename from the header. A
pause of 8.5 seconds is then generated before the routine exits to perform the
rest of the load. This delay can be eliminated by pressing the CBM key.

The Cassette Units 93
Input parameters: None

Output parameters:
.A - P if stop key pressed
Carry flag - clear = header found; set = header not found

Routine source code:

LOC COGE LINE

F72¢C ;

F72C R e D et
F72C ;¥ FIND ANY TAPE HEADER.

F72C ;% READS TAFPE DEVICE UHTIIL ONE OF THE
F72C :# FOLLOWING BLOCK TYYFES IS FOUND: ROFH--
F72C€ ;% BASIC DATA FILE HEADER, BLF--RASIC
F72C :# LOAD FILE. FOR SUCCESS, CARRY IS

F72C ;¢ CLEAR ON RETURN. FOK FAIILLURE, CARRY
F72C :# IS SET ON RETURN. IN ADDITION, .A IS
F72C ;% @ IF STOF KEY WAS PRESSED.

F72C P HERFEER R AR H IR AR LR EERER RN R R SRR R R R RSB ES
F72C H

F72C A5 93 L1998 LDA VERCK 3SAVE OLD VERIFY
F72E 48 PHA

F72F 26 41 F8 JSR L1e29 sREAD TAPE BLOCK
F732 68 PLA

F733 85 93 STA VERCK ;RESTORE VERIFY
F735 8o 32 BCS L1191 sREAD TERMINATED
F737 A9 06 LDY #$09

F739 B1 B2 LDA (TAFEL1),Y sGET HEADER TYFE
F73R C9 65 CMP HEOT sEND OF TAPE?

F73D0 F9 2A BEQ Lileo1l sYES

F73F C9 1 CnpP HBLF 3BAS1C LOAD FILEY
F741 Fo 8 REQ L1027 s YES

F743 C9 @3 CMF HPLF ;FIXED LOAD FILE?
F745 F9 94 BEQ L1927 ;s YES

F747 C9 @4 CMP HBDFH sBASIC DATA FILE?T
F749 D9 EL BNE L1098 sNO, TRY AGAIN
F74B AA L1627 TAX sFILE TYPE IN X
F74C 24 7D BIT 4SGFLG s PRINT RESSAGE?
F74E 10 17 BFL L1162 :NO

F759 A9 63 LDY HMS17-mS1 : "FOUND’

F752 20 2F F1 JSR L1@é73

F755 A9 295 LDY K$83

F7%97 B1 B2 L1166 LDA (TAPEL),Y ;0UTPUT COMFLETE
F7G9 29 D2 FF JSR $FFD2 s FILENARE

F75C C8 INY

F730 Co9 15 CPY #%135

F75F D@ Fé BNE L11¢@

F761 AG Al LDA TIME+1 ;WAIT FOR 8.5 SECONDS
F763 20 E® E4 JSR $E4ED ; OR FOR THE CBMm KEY
F766 EA NOP

F767 18 Li1e2 CLC sSUCCESS

F748 88 DEY

F769 66 L1161 RTS

Write tape header

Entry point: SF76A

Function: This routine first pushes the program start and end addresses onto the

94 The Commodore 64 Kernal and Hardware Revealed

stack and then blanks the tape buffer memory area and sets up a tape header
with all the requisite information being stored in the correct position in the tape
buffer. The tape buffer contents are then written to tape and the start and end
addresses restored off the stack.

Input parameters: All tape header variables and filename
Output parameters: .A - tape SAVE error flag

Routine source code:

LocC CODE LINE

F76n :

F76A PERERSRRRSFEREFE RS RLR DR AR VLR IR SRR SRS R R SR
F76n ;* WRITE TAPE HEADER

F76A 3% ERROR IF TAPE BUFFER DE-ALLOCATED
F76R :¥ CARRY CLEAR fF 0.K.

F760 JREFRERASEEEF I RERA RV RSR AR R B LR ER NSRS RN SR
F76A H

F764 89 9E L1999 STA T1

F764C 20 DO F7 JSK L1104 ;GET BUFFER ADDRESS
F76F 9¢ SE BCC L1166 sNOT ALLOCATED

F771 g Gc2 LDA STAH sFRESERVE START AND END
F773 48 PHA ;s ADDRESSES

F774 AS C1 LDA STAL

F776 48 FHA

F777 A3 AF LDA EAH

F779 48 PHA

F77A AS AE LDA EAL

F77C 48 PHA

F770 A9 BF LDY #BUFSZ-1 :BLAMK TAPE BUFFER
F77F A9 20 LDA #3209 3SPACE CHAKS

F781 91 B2 L998 STA (TAPE1).,Y

F783 88 DEY

F784 D9 rB& BNE L998

F786 AL 9E LDA T1 ;BLOCK TYFE IN HEADER
F738 91 B2 STA (TAPE1),Y

F784 C8 INY

F788 AS C1 LDA STAL ;START ADORESS [N HEADER
F78h 91 B2 STA (TAFEL),Y

F78F (8 INY

F79@¢ A5 C2 LDA STAH

£792 91 B2 STA (TAPEL1) Y

F794 C8 INY sEND ADDRESS IN HEADER
F77% A3 AE LDA EAL

F797 91 B2 STA (TAPELl),Y

F799 (8 INY

F794 #AS AF LDA EAH

F79C 91 B2 STA (TAFEL),Y

F79E C8 INY sFILENAME IN HEADER
F79F 84 9F STY T2

F7A1 A® 00 LDY #3906

F783 84 YE SIY T1

F768% A4 9E L1i1e5 LDY Ti

F7A7 C4 B7 CPY FNLEN

F7A9 Fe oC BEG L1107

F7AB Bl BB LDA (FNADR) .Y

F7AD A4 9F LDY T2

F7AF 2?1 B2 STA (TAPEL1),Y

F781 E&6 9E INC T1

F7R3 E& 9F INC T2

F723 Do EE ENE L1163

F7B7 20 D7 F7 L1107 JSR L9995 ;SET UP START & END
F7RA A9 69 LDA #%69 ;sADDR OF HEADER & SET

F7BC 85 AB STA SHCNH ; TIME FOR LEADEKR

The Cassette Units 95

Loc CODE LIME
F7BE 20 6B F8 JSR L1689 sHRLITE F1LE TO TAFE
F72CL A8 TAY :SAVE ERROR CODE IN .Y
F?CQ 68 FLA ;RESTORE START & END
F7C3 85 AE STA EAL ; ADDRESSES
F7C5 68 PLA
F7Cé 89 &F STA EAH
F7C8 68 FLA
F7C? 85 C1 STA STAL
F7Ce 48 FLA
F7CC 89 C2 STA STAH
F?CE 98 TYA sRESTORE ERROR CODE
F7CF 69 L1186 RIS

Return buffer address

Entry point: $SF71D7

Function: This routine is in two parts; the first tests if the tape bufferis allocated
and the second calculates the start and end address pointers which are required
by the SAVE routines.

Input parameters: None

Output parameters:

$CI1 - start address lo
$C2 - start address hi
$AE - end address lo
$AF - end address hi

Routine source code:

Loc CODE LINE

F7Dhe H

F7D9 :RETURN BUFFER ADORESS

F70@ 3

F7D9 A6 B2 L1194 LDX TAPEL

F7D2 n4 B3 LDY TAPE1+1

F7D4 Co 92 CPY H$02 sALLOCATED?

F7D6é6 6@ RTS ;CARRY CLEAR. DE-ALLOCATED
F707 29 DO F7 L9929 JSR L1104 :GET PYR TO CASSETTE
F7DA B84 TXA

F708 85 Cl STA STaL :SAVE START LOW

F70D 18 cLC

F7DE 49 Co ADC HBUFSZ ;COMPUTE POINTER 10 END
F7E0 85 AE STA EAL $SAVE END LOW

F7E2 98 TYR

F7E3 85 C2 STA STAH 3SAVE START HI

F7ES 69 90 ADC #$090 sCOMPUTE POINTER TO END
F7E7 85 AF STA EAH 1SAVE END HIGH

F7E? 60 RTS

Find correct file on tape

96 The Commodore 64 Kernal and Hardware Revealed
Entry point: SFTEA

Function: This routine searches for a program header on tape. Having found a
header the filename is compared with that specified (if the contents of location
$B7 are zero then the first program encountered is loaded). If the program name
in the header is not the same as that specified then the routine searches for the
next header. It should be noted that this routine only compares the header
filename for the number of characters in the filename specified in the
LOAD/VERIFY command, thus if the filename Test is specified in the LOAD
command but the header contains the filename Testing, then the routine will
take this as a positive match and load Testing.

Input parameters: $B7 - length of current filename string
Output parameters: None

Routine source code:

Loc CODE L INE

F7EA JRERREE SRR RE RN FXEex

F7EAR :# FIND CORRECT FILE ON TQFE

F7EA ;% IF FMILEN = @ THEN USE

F7€aA .* FIRST HEADFR FOUND

F7EA R e e e e e

F7ER H

F7EA 26 2C F7 L1168 JSKR L1é98 sFIND ANY HEADER
F7ED B9 1D BCS LLll1 sFALLED

F7EF A6 @5 LDY #H$@Y s CHECK MAME

F7FL 84 9F STV T2 :0FFSET TO HEADER
F7F3 A% 00 LDY #%09

F7FS 84 9E . STY TL (OFFSET TO NANME
F7F7 C4 B7 L1@24 CHY FNLEN ;COMFARE TH1S MANY
F7F9 Fo 19 BE@ L1l12 :DONE

F7FR B1 BB LDA (FNADR),Y

F7FD A4 9F LDY T2

F7FF D1 B2 CMP (TAFEL),Y

F3oL D2 E7 BNE Ll1e8 sWRONG FILENARE
FB893 L6 JE INC T1

F8oS E6 9F INC T2

¥807 A4 9E Lby 11

F899 09 EC BNE L1024 sALWAYS

F8eR 18 Lit12 CLC ; SUCCESS

F8OC 40 L1lll RTS8

F8oD END

F39D .LIB KIAPEY

Miscellaneous cassette support routines

Entry points:

$F8PD - increase pointer in tape buffer
$F817 - wait for play switch

$F82E - test cassette switch

$F838 - check for record and play

$F841 read header block

The Cassette Units

$F84A - read LOAD block entry

Routine source code:

Loc CODE

F8eD

F890

FgeD 20 Do F7
FBLO® E& Ré
FB12 A4 Aé
F814 C9 9
F816 69

Fa17

Fg17

F817

FB17 2@ 2E F8
FB1IA FO LA
FB81C A9 1P
FBLE 2@ 2F F1
F821 20 Do F8
F824 20 2E F8
F827 Do F8
F829 A0 6A
F828 4C 2F F1
F82E

FB2E

F82E

FB82E A9 16
F839 24 o1
Fge32 De a2
F334 24 o1l
F836 18

F837 69

F838

F838

F838

F838 20 2E F8
F83E Fe F9
F83D A9 2E
FB83F D@ DD
F84l

F841

F841

FB4l A9 06
F843 85 99
FB45 8% 93
F847 29 D7 F/
F84A

F84A

Fa4a

FB4A 20 17 F8
F840 RO 1F
F84F 78

F83596 AY 09
FBS2 B85 AA
FB8S4 895 B4
Fg%6 89 B0
F858 83 YE
F854 8Y 9F
F33C 89 ¢9C
F8SE A9 90
F869 A2 9E
F862 D@ 11

LINE

; INCREASE POINTER 1IN TAPE BUFFER

L1116 JSR
INC
LDy
cpPy
RTS

e e ~e

938 JSK
BER@
LbY
JSR
JSK
JSR
BNE
LDY
JapP

L1029
L1117

L1104 ;GET BUFFER ADDRESS
BUFPT

BUFPT

HBUFSZ ;CHECK END BUFFER

WALT FOR PLAY SW1TCH

L1116
L1113
#RS7-MST
L1973
L112y
Lille
L1117
#iS18-MS1
L1673

; 'PRESS FLAY...'

;s TEST STOF KEY
;TEST CASSETTE SWITCHES

;'UK'

;1EST CASSETTE SWITCH

L1116 LDA
8IT
BNE
BIT
CLC

RTS

L1113

;CHECK FOR

Lil1i4 JSR
BEQ
LDY
BNE

#$10 ;CHECK FORT
391 ;CLOSED™?
L1113 :NO

401 s DEBOUNCE

;600D EXIT

RECORD & PLAY

L1116
L1113
#MS8-f4S1
L192¢

; "PRESS RECORD...~’

sREAD HEADER BLOCK

L1029 LDA
STA
STA
JSR

tREAD LOAD

JSR
BCS
SE1
LDA
STa
STA
STA
STA
STA
STA
LDA
LDX
BNE

L9946

Write memory

#5090
STATUS
VERCK
L9935

BLOCK ENTRY

L938 ; 'FRESS FLAY...’
Liley ;STOFP KEY

#$09 ;CLEAR FLAGS

RDFLG

SNSH1

CHPO

PIRL

PTR2

DPS4

#9909 :ENAPLE FOR TAFE 1R@Q
H$OE sPOINT [RQ YECTOR TO REMD
L1118 sALWAYS

97

98 The Commodore 64 Kernal and Hardware Revealed

Entry point:
$F864 - write tape buffer
$F867 - write memory between start address and end address

Function: The first entry point sets up the addresses to SAVE the tape buffer.
The second entry point is to the main tape write routine. This routine writes the
contents of memory between the previously determined start and end addresses
onto tape. This routine calls up several small routines located at SFBA6.

Input parameters:

$C1 - start address lo
$C2 - start address hi
$AE - end address lo
$AF - end address hi

Output parameters: None

Routine source code:

Loc CODE LINE

F364 H

FB64 L i e L L L s L

F864 % WRITE TQPE BUFFER

F8é4 JEERBEFRALBELALRRR SR SRR N RS RN

F364 H

FB64 :SET UP TO SAVE TAFPE BUFFER

F86&4 H

F864 2@ D7 F7 Ll@o? JbR L99S vBUFFER

Fg4y S RERERSE R R R R R

F867 'URlTE HEMORY BETWEEN bTAL bTAH

F867 sAND EAL ,EAH AS A BLUCA

Fg867 ;‘:xrvf'%\‘ 3 T

F867 AY l4 LG22 LDA H$14 -BETHEEN BLOCK SHUKRTS
F869 8Y AB STA SHCMH

F8ék 29 338 F8 L1689 JSK Llille ;"PRESS RECORD...’
FB6E BO 6C L1169 BCS L1115 :STOP KEY

F870 78 SEL

F871 A9 82 LDA #$82 sENARRLE T2 1R@
F373 R2 98 LDX #%48 sFOINT [R@ VECTOR TU WRITE
F875 H

F87% :START TAPE OPERATION ENTRY POINT

F879 : /

F875 A0 7F L1118 LDY #$7F sKILL UﬁbAHTED 1R@
F877 8C 9D DC STY D1ICR ’

F87A 8D oD DC STA D11CK sENARBLE WANTED
F87D aD %E DC LDA DICRA

F8l30 @9 19 ORA H$19

F882 8D 9F DC STA D1CRB

F88y 29 91 AND #%91

F887 8D A2 02 STA $02R2

FB8RA 20 R4 Fo JSR L921 ;WALT FOR RS232
F880 AD 11 D9 LDA VICREG+17 sBLANK SCREEN

F896 29 EF AND HSEF

F892 80 11 D@ STR VICREG+17

F895 AD 14 63 LDA CINV sMOVE 1RQ TO 1RAQ TEMP
F398 80 9F oz STA IRQTMP ;FOR CASSETTE OFS
F89E AD 14 @3 LDA CINV+1

FB9E 8D no o2 STA IRQTIMP+1

F8al 2@ BL FC JSR L119% ;CHANGE 1R& VECTOR
F8A4 A7 02 LDA #%02 :FSBLK STARTS AT 2
FB8AR6 83 BE STA FSBLK

F8A8 20 97 FB JSR L1079 :PREPARE LOCAL COUNTERS

Loc

F8ap
FSAD
F8AF
FaBl
Faed
F8RS
F8R7
F8RS
F8RA
F8RE
FBRrD
F8erD
F8eD
F8eD
FB8RE
Facl
F8C4
F8LS
F8Cc7
F8Ca
F8CD
F800
F8D3
F8D4
F8Dé
F80¢
F8DA
F3DB
F8pc
F8DE
F8E1

CODE

A5
29
85
85

2
AQ
88
Do
CA
Do

o1
1F
81
co
FF
FF

FD

F8

14
AQ

%2
03

F8
Fo
Fg
FF

LINE

Lilly
L1124

LDA
AND
STA
STaA
LDX
LDY
DEY
BNE
DEX
BNE

$61
H$1F
$61
CASl
HO$FF
HEFF

L1124

L1119

The Cassette Units

; TURH CASSETTE MOTOR ON

:FLAG INTERNAL CONTRUL
sDELAY BETWEEN RLOCKS

; ENABLE TAFE IQR ROUTINES TO

START WRITE OFERATIOH

L1123

L1125

L1115

L1126

CL1
LDa
Cnp
CcLC
BEQ
JSK
JSKR
JHP
JSK
CcLC
BNE
JSR
SEC
PLA
FLA
LDaA
STa
RTS

1RaTAF+1
CINU+1

L1115
L1125
$F4RC
L1123
$FFEL

L1120
L1192

#5090
IRQTMP+1

;CHECK FOR 1R@ VECTOK

;FOINTING AT WRITE ROUTINE

s YES, RETURN

;NO CHECK STOP
sUFDATE TIME

1STAY IN LOOF

sTOP KEY DOWN?
sASSUAE NOT

:CORKECT ASSUMPTION
1STOF DOWN STOF TAFE
sFALLED

;BACK OR KTS

;DISARLE 1RQTMP

Set up time out watch for next dipole

Entry point: $F8E2

99

Function: This routine is used to detect read errors by checking the timing of
each pulse pair (dipole); if the pulses are too long then a time out error is
assumed.

Input parameters: . X — time out constant for particular dipole

Output parameters: None

Routine source code:

Loc

F8EZ
FBE2
F8E2
FBE2
FBE4
F8ES
FQE?7
FBES
F3EY
FBER

CODE

86
AS
6A
9A
13

18

21
2o

B9

LINE

SET UP TIMEOQUT WATCH FOR NEXT D1FOLE

L1126

STX
LDA
ASL
ASL
CLC
Aabc
CLC

TEMP
CiaPQ
A
A

(ol 140}

s TIMEQUT CONSTANT
sCHPO=3

100 The Commodore 64 Kernal and Hardware Revealed

.oc CODE LINE

FBEC 65 BL ADC TEMP :ADJUST LONG BYTE COUNT
FBEE 89 B1 STA TEMP

F8FO A% 96 LDA #$00

F8F2 24 pRo B1T CaroO ;CHECK CHF0O..

F3F4 39 ol BMl L1146 : MINUS, NO ADJUST

FBFé6 2A ROL A ; FLUS, ADJUST FOS

FEF7 96 81 L1146 ASL TENP sAULTIPLY CORRECTED
F8F9 2A KOL A ; VALUE BY 4

F8Fa 06 P1 ASL TERP

F8FC 24 ROL A

FBFD AR TAX

F8FE AD 06 DC L1128 LDA D11BL ;WATCH OUT FOR ROLLOVER
F991 C¥ 16 CHF H#$16 sTIME FOR ROUTINE?

F963 9@ F9 BCC L1128 ;700 CLOSE SO WALT

F?03 65 B1 ADC TENP :CALCULATE AND

F9@7 8D @4 DC 5TA D1TAL ; STORE ADJUSTED T1ME COUNT
F99A B8A TXA

F9éR 6D 07 DC ADC D17eH ;ADJUST FOR H1 TIME COUNT
F?9E 8D 05 DC STA D1TAH

Fyil aAD A2 92 LDA $82A2

F?14 8D ?2E DC STa D1CRA

F?17 8D A4 62 STA $02A4

F?1Aa AD oD DC LDA D1ICKR

Feib 29 1@ ARD K16

F?LF F9 09 BE@ L1129

F921 AY F9 LDA HF9

FP23 48 PHA

F924 R9 24 LDA H$2A

F?26 48 FHA

F¥27 4C 43 FF JNP $FF43

Fy2a 58 L1129 CLI

F92B 40 RTS

Fo2C -END

FozC L1B KYaPES

Cassette read subroutines

Entry point: $F92C

Function: This is the main routine which reads data from the tape. The bulk of
the routine performs the timing of the incoming pulses in order to decode the
pulse type and to give a software servo loop, which adjusts the timing of the
pulses to the speed of the cassette deck. To understand the timing of the pulses
see the waveform diagrams in Fig. 4.3 plus the documentation accompanying
the source code listing.

Input parameters: None
Output parameters: $B6 - tape read error

Routine source code:

LOC CoObE LINE
F92C 7 %3 EE B P REXEGXSEREREB LB SR EL XSRS RRR BN
FoaC 1% CASSETTE READ SUBROUTINES

G 14 7‘7"‘& * .-»u‘ ;6 7 d X‘ = -AKKHX. THEEEEEXT®

Feac

The Cassette Units 101

LOC CODE LINE

F92L :

F9ac ;THFE READ 1RG ROUTINE

Fyae :

F92C AE 07 DC L1138 LDX D1TBH ;GET TIME SINCE LAST IRg
F92F A@ FF LDY H$FF ;COMPUTE COUNTER DIFF
F931 98 1YA

F932 ED @6 DC SBC D1T8L

F935 EC @7 DC CPX D1TBH ; TIMER H1GH ROLLOVER?
F938 Do F2 BME L1136 sYES, RECOMPUTE

F93n 86 Bl STX TEMF

F93C AR TAX

F93D BC 86 DC STY DITBL ;RE-LOAD T1MER B

F949 8C 67 DC STY D1TBH

F943 A9 19 LDA #3$19

F945 8D @F DC STA DICKB

F948 AD 8D DC LDA D11CK

F94B 8D A3 02 STA $62n3

F94E 98 TYA

F94F E5 Bl SBC TERP ;CALCULATE HIGH

F951 86 b1 STY TEMP

F9S3 4A LSR A SAOVE 2 BITS FROM

F954 66 Bi ROK TEMP ; HIGH TO TEWP

F956 4A LSR A

F957 66 Bl KOK TEMF

F9S9 A5 BO LDA CHFPO ;CALC MIN PULSE YALUE
Fose 18 cLe

F9SC 49 3C ADC #$3C

F9SE C5 B CHP TEMP ;PULSE LESS THAN M1N?
F960 PO 4A BCS L1141 ;YES, NOISE

F962 A6 9C LDX DPSW sNO, LAST B1T?

Fo64 F9 03 BEQ L1132 sNO, CONTINUE

F966 4C 66 FA JRF L1154 {YES, FINISH BYTE

F969 :

F969 A6 A3 L1132 LDX PCMIR ;9 BITS KEADY

F94B 30 1B BRI L1134 ;YES, GOTU ENDING

Fy6D A2 00 LDY #$ee $SET BIT Val TO ZERD
FO4F 6% 30 ADC #$30 ;ADD UP TU HALF WAT BETWEEN
F971 65 Be ADC CAFO : SHIRT FULSE AN SYNC FULSE
F973 (5 Bl CMF TERMP :SHOKT?

F97% B@ 1C BCS L1139 $YES

F977 ES LN sSET BIT vaL TO 1

F978 49 26 ADC #$26 sMOVE TO MWIDDLE OF HI1GH
F978 &5 &0 ADC CHPD ‘

Fy7C C5 B1 CMP TERP ;17

F97E BD 17 BCS L1137 L YES

K980 69 2C ADC #42C ;MOVE TO LONGLONG

F982 43 Pe ADC CRPO

F984 CS B1 CMP TEMP ;s LOHGLONG?

F98s 99 03 BCC L1136 JGREATER THAN, ERROK
Fy88 4C 10 Fa L1134 JHF L1145 SYES

F788 :

F98E AS B4 L1136 LDA SNSW1 sNOT SYNCRONISED?

F98D Fo LD BEQ Lll41 sNO, ERROR

Fy8F 85 A8 STA KER $YES, FLAG KER

F991 Do L9 BNE L1141 ;ALWAYS

K993 :

F993 E6 av L1139 1NC REZ ;COUKT REZ UP OH ZEKOS
FO95 RO 92 BCS L1138 sALWAYS

F997 :

F997 Cé A9 L1137 DEC KEZ ;COUNT REZ DOWH ON ONES
Fv99 38 L1138 SEC :CALC ACTUAL VAL FOR COMPARE
F99a E9 13 SBC #913

F99C ES Bl SBC TEMP sSUBTRACT INPUT VAL
F99E &5 92 ADC SUXT : ADD DIFF TO TEMF STORE
FoRo 85 92 STa SUXT ; USED TO ADJUST SOFT SERYO
F9A2 AS A4 LDA FIRT sFLIP DIFOLE FLAG

F9A4 4y 61 EOR #3601

102 The Commodore 64 Kernal and Hardware Revealed
CUDE

Loc

Fyasé
F9A8
Fona
FonAC
F9AC
F9RE
FoB®
F9B3
F9BS
F9B7
FoBA
F9BC
FIRE
F9Co
F9C3
FOCS
F9c7
FoCo
Foco
FOCE
FoCE
F909
FoD2
FoDY
FIDS
FOD7
FoD9
FIDB
F9DD
F90E
FIE®
FOE2
F9E4
FYES
FoES
FREY
FOER
FYED
FOEF
F9F1
F9F3
F9FS
F9F7
F9F7
F9F8
F9FA
F9FC
FOFE
FA9YH
FAO2
FAO4
FAes
FAOS
FAeA
FAOD
Fa10
FA19
FALG
FA1®
FA12
FAai4
FAL6
Fa18
FAla
Faic
FALF
FALF

85
Fo
86

AS
Fo
AD
29
Do
Ab
Do
A?
85
8D
A
10
39

A2
29
AS
De
4C

AS
Fo
39
Cé
2c
Eé
A9
83
E4
Do
84
Do
Aad
39
c?
Yo
85
RO

8A
43
85
AD
Fo
Cs
30
44
66
A2
20
4C

AS
Fo
AS
Fo
AS
3o
4C

46

A4
2B
b7

29

92
b7
oF

AG
RY
en

ee
96
B3

28
e

b2
A3
cs
D7
BF
DA
ER
BC

F8
FE

F9

LINE

L1141

L1133

L1144

L1156

L1143

L1142
L1149

;LONGLONG HANDLER

(1145
L1140

L1151

STA
BEQ
STX

LDaA
BEQ
LDA
AND
BNE
LDA
BHE
LDA
STA
STA
LDa
BFL
BRI

LbX
JSR
LDA
BNE
JaP

LbA
BEG
BRI
DEC

F1RT
L1143
DATA

SNSW1
L1150
$02A3
#4001

L1133
$0274
L1159
1309

FIRT

$02A4
PCNTR
L1148
L1134

H$A6
L1126
PRTY
L1136
$FERC

SUXT
L1149
L1142
Ccnro

BYT $2C

INC
LbA
STA
CPX
BNE
TXA
BNE
LbA
BMI
ChF
BCC
STA
BCS

TXA
EOR
STA
LDA
BEQ
DEC
BAl
LSR
ROK
LDX
JSR
Jap

LDA
BEQ
LDA
BERQ
Lba
Bnl
Jnp

LSR

CRED
H+60
SYXT
DATA
L1148

L1136
REZ
L1141
Hé16
Lilat
SYMO
L1141l

PRTY
PRTY
SNSW1
L1150
PCNTR
L1144
DATA
HYCH
HeDR
L1i26
$FEBC

SYNO

L1149
SNSW1
L1151
PCNTR
L1131
L1137

TEMP

;SECOND HALF OF DIPOLE
;FLIRST HALF S0 STORE VAl

:NO BYTE START?
:YES, RETURN
sTIMER A 1RQ’D7

; YES

$NO, EX1T
:SET DIPOLE FLAG FOR FLIRST HALF

;WHERE IN BYTE
: STILL DOING DATA
; PROCESS PARITY

;SETUP FOR LONGLORG

sEVEN PARLTY?
:NO, SET ERROR
;RESTOKE REGS AW RT1

:ADJUST SOFT SERVOY
sNO

sYES, MORE PRASE TI1AME
YES. LESS BASE 1IME
;SKIF NEX)

;CLEAR DIFF FLAG

;CONSEC. L1IKE VALS IN DIFOLEY
:NO, FRUCESS INFU

;YES, CHECK VALS

;ONES, ERRUR

;HOW MANY ZERQOS?

: TOO MANY

r 167

sNO, CONTENUE

sYES, FLAG SYHO

sALWAYS

sMOVE READ DATA TO .A
;CALC PARITY

:REAL DATA?

sNO, FORGET

;DEC BIT COUNT

;NEG, TIME FOR PARITY
sSHIFT BIT FROM DATA

; INTO BYTE STORE
;SETUF FOR MEXT DIFOLE

:RESTORE REGS AND RTI

;GOT BLOCK SYNC?
sNO

sHAD REAL BYTE?T
;NG

sEND OF BYTE?

s TES

sNO, TREAT AS LOMNG

;ADJUST TIME QUT FOk

r-
2
o

FA21
FA23
FA24
FA26
FA28
FA29
FA2A
FA2D
FAZF
FA31
FA33
FA3Y
FA37
FA39
FAse
FA3D
FAZF
FAa42
FAR44
FA44
FA4s
FA48
FA4Rn
FA4C
FR4E
FAS9
FAS3
FASS
FAS7
FAS9
FASBE
FASD
FR69
FA69
FAL3
FA&S
FA67
FALA
FR&C
FAGE
FA70
FA7@
FA79
FA790
FA70
FA79
FA79
FA7®
FA79
FA7@
FA70
FA79
FA70Q
FA7¢
FA79
FA70
FA79
FA70
FA79
FA72
FR74
FA76
FA73
FAZA
FA7C

FA7D .

FAZF

A9
24
10
RS
D®
Ab
Ca
De
AY

v3

Bl
2o

E2
9C
B4
11
?6
26
A8
20
?6
81
2D
B4

96
B3
124

L)

B4
01
')
BF

S Bb

A8

R&
RC

97
?C
DA
RE
[P
A7

oF

17
RS
aC
BE

B
08

F8

bC

DC

The Cassette Units 103

LINE
LDA H393 ; LONGLONG FULSE VAL
SEC
SBC TENP
ADC CMFO
ASL A
TAX sSET TIME OUT FOR LAST BIT
JSR L1126
INC DPSH ;SET BIT THKOW AWAY FLAG
LDA SNSW1 ;BYTE SYNCRONISED?
BNE L1152 :YES, SKIF TO FASS CHAR
LDA SYNO : THROW OUT DATA UNTIL SYNC
BEQ L1155 NO SYNC
STA RER :FLAG DATA AS ERROR
LDA #$60 ;KILL 16 SYNC FLAG
STA SYNO
LDA #%81 ;SETUF FOR TINER B 1R@
STA DLICR
STA SNSW1 sFLAG WE HAVE BYTE SYHC
k4
L1152 LDA SYNO ;SAVE SYNO STATUS
STA DIFF
PEQ L1153 ;N0 BLUCK SYNC
LDA H$00 sTURN OFF BYTE SYNC SWITCH
STA SNSW1
LDA W$01 :DISABLE TIMER B [RGQ
STA D11CKR
L1153 LDA HYCH :PASS CHAR TO BYTE ROUTINE
STA OCHAK
LDA REK ;COMBINE ERROR YALS
ORA REZ
$TA PRP ; AND SAVE [N FRP
L1155 JAP $FERC :BET LAST BYTE
L1154 JSR L1679 ;F1HISH BYTE, CLK FLAGS
STA DFSW ;GET BIT THROW AWAY FLAG
LDX #$DA :INLT FOK NEXT D1FOLE
JSR L1126
LDA FSBLK ;CHECK FOR LAST VAL
BEQ L1135
STA SHCNL
;% BYTE HANDLER OF CASSETTE READ.
s RER 15 SET IF THE BYTE 1S 1N
% ERROR. REZ [S SET IF THE INTERRUPT
% PROGKAM 15 READING ZERUS. RDFLG TELLS
;% 1S WHAT WE ARE DOING. BIT 7 SAYS 10
;% IGNORE BYTES UNTIL.REZ 1S SET, BT 6
;% SAYS 10 LOAD THE BYTE. OTHERWISE
;% RDFLG 1S A COUNIDOWN AFTER SYNC. 1F
% VERCK [S SET WE DO A COMFARE INSTEAD
1% OF A STOKE AWD SET STATUS. FSBLK
;% COUNIS THE IW0 BLOCKS. FTR1 IS THE
;% LNDEX TO THE ERROK TABLE FOR PASSI.
:# PTR2 IS THE INDEX TO THE CORRECTION
1% TABLE FOR FASS2.
L1135 LDA H$eF
BLT KDFLG ;TEST FUNCT1OW MODE
BFL L1159 sNOT WAITING FOR ZERQS
LDA DIFF :ZEKOS YET%
BNE L1156 :YES, WALT FOR SYNC
LDX FSBLK FASS OUERY
DEX :ZERQ, NO ERROR
BHE L1158 $HU
LDA HLBERK

104 The Commodore 64 Kernal and Hardware Revealed

Loc

FAB1
FAa84
Fagé
FaB8
FABA
FR8D
FABF
FAYL
FA93
FA93
FA%7
FA?9
FAYE
FA?C
FAZE
FAAD
FRAZ
FAAS
FARAY
FARY
FAARY
FARB
FAAD
FARF
FAR1
FAB4
Fapé
FARE
FARA
FABC
FARE
FACO
FAC2
FAC4
FAacé
FACY
FACE
FACE
FaD1
FAD3
Fabsé
FADSB
FAD9
FAD&
FADD
FRDF
FAE1L
FAE3
FAES
FAE7
FRE9
FAED
FAER
FAEBR
FALR
FAED
FAEF
FAF L
FAF3
FaFs
FAF7
FAF9
FAFC
FArE
Feotl
FB92
FRe3
FBe2S

CODE

29
Do
A9
85
4C
70
Do
AG
be
AS
beo
AS
4A
RS
39
?0
18
B9
29
83
Cé
Do
A%
89
20
A?
84
Fo
A9
8%
be
AS
Fe
Ay
20
A%
4C
29
96
4C
Aé
CA
Fé
AJ
Fe
AY
AS
D1
Fo
A?
89

A%
Fe
A2
E4
29
A6
AS
20
AS
20
E8
E8
86
4C

ic
04
20
AR
BC
31
18
29
FS
Bé
Fi

A7
RD
18

15
oF
RAA
AR
Db
49
AR
8E.

AR
Do
8@

CA
ao
(22}

ic
29
4A
D1
23
43
A7

2D
?3
&C
99
BD
AC
84
21
Bé

Ré
4
3D
YE
3E
YE
Ab
oL
AC
09

YE
3Aa

FE

FE

FE

FB
FC

FB

ol

ol

FB

LINE

L1156

L1158
1.1159

L1157

L1162

L1161

L1163

L1160

L1164

+STORE

;
L1166

JSKR
BNE
LbA
STA
Jr
BYS
BHE
LDA
BHE
LDA
BHE
LDA
LSR
LDA
BMl
BCC
CLC
BCS
AR
STA
DEC
BNE
LDA
STA
JSR
L.DA
STA
BEQ
LDA
STA
BHE
LDA
BERQ
LDA
JSR
LDA
JmE
JSR
rCC
Jup
LDX
DEX
REQG
LDA
pEQ
LY
LbA
cmF
REQ
LDA
STA

BAD

Lba
BEQ
LbX
CrPX
rveC
LDX
LbA
STA
LDaA
STA
INX
INX
STX
Jnp

$FELC
L1158
H¢00
RODFLG
$FERC
L1163
L1162
DIFF
L1158
PRF
L1158
SHCNL
A
UCHAR
L1157
Lil61l

L1161
He$OF
RDFLG
RDFL
L1158
#4940
RDFLG
L1174
#3090
SHCNH
L1158
#4860
RDFLG
L1158
DIFF
L1160
HSBERK
$FELIC
#5000
Lile7
L1193
L1164
Li172
SHCNL

L1169
YERCK
L1166
1309
OCHAR
(SaL) .Y
L1166
H$91
FRF

;YES, LONWG BLOCK ERROK
sRLWATS

:NEW MODE, WALT FOR SYNC
SEXIT, DONE

;LORDING

;SYNCING

sHAVE BLOCK SYMC?

s YES, EX1T

;FIRST BYTE [N ERROR?

s YES, EXILT

;MOVE FSBLK TO CARRY

; SHOULD RE A HEADER COUNT CHARR
sNEG, FIRST BILOCK DLATA
sEXPECTING FIRST BLOCK DATA

;EXPECTING 2ND BLOCK

;IASK OFF H1GH STORE HEADER
: COUNT IN MODE FLAG

;WALY FOR REAL DATA

: REAL

sNEXT UP 1S REAL DATA

; SET DATA MODE

;SETUP ADDR POINTERS

sALWAYS, EXIT
; 1IGNORE BYTES MODE

;ALNAYS
;END OF BLOCK?

; YES

:SHORT BLOCK ERROR

+FORCE RDFLG FOR ERRUR

:END OF STURE AREA?T
sNOT YEY

sYES

sWH1CH PASS?

; SECOND
;LOAD OR VERIFY?
LOAD1NG

JVERIFY ING

; COMPARE
500D, CONTIMUE
:BAD, FLAG
. AS ERROK

LOCATIONS FOR 2ND PASS RE-TRY

FRP
LiL71
443D
PTR1
L1173
FTR1
SAH
BAD+1, X
sSAl
BAD, %

FTK1
L1171

;CHK FOR ERRURS

3 NONE

MAX OF 30

sREACHED MART

(YES, FLAG 2HD FASS
;s INDEX INTO BAD

: AND STORE Bab LOC
; IN BAD TAELE

;ADVANCE TO NEXT

;STORE CHAR

Loc

Fees
FRO3
Fpes
FBé8
FB9A
Feeéc
FBOE
FR1¢
Fei13
FB1S
FB17
FR1A
F21cC
FR1E
FB29
FR22
FR24
FR26
FB28
FR2A
FR2C
Fez2b
FR2F
Fe31
Fe33
FB35
FR38
FR3n
FB3C
FR3E
FR3F
FR4l
FB43
FR46
FB4y
FE48
FB4A
FB4C
FB84D
FRAF

FRS2
FesS5
FRS7
Fes8
FRIA
Fesc
FRIE
FR&6@
FR&Z
FR64
FR&6
FR68
FR68
FROR
FR6E
FR70
FR72
FB/2
FB72
Fez2
FR74
FR76
FB78
FR78B
FB7E
FB8¢%
FRB82

COLE

Ré
E4

Do

A

29

9F
9E
35
AC
0

AD
o1
27
vF
9F
?3
oL
eo
29
AC
i7

Bé
Y-}
o7

ic
(A4
93

N}

BD
AC

43

89

91
oD
20
BE

2
ZE
A7
o8
YE
a7
BE
23

v3
8E
1%
AR

AC
AR
AR
De
L1

AL
B0

o1

oL

DC
DC

LINE

e e

)

L1169

L1168

L1173

L1171

L1170

L1172
L1167

L1165

L1175

;COMFUTE PARLTY BYTE

L1176 LDA (SAL),Y

CHECK BAD

LDX
CFX
REQ
LDA
cnp
BNE
LDA
CHP
BHE
INC
INC
LDA
BEQ
LDA
LDY
CHP
BEQ
INY
STY
LDA
BEA
LDA
JSR
BNE
Lba
BNE
TAY
LDA
STA
JSK
BHE

LDA
STA
Skl
LDA
STX
LDX
LDX
DEX
BFl
STX
DEC
LERQ
Lba
BNE
STA
BER

JSR
JSR
LbY
STY

EOR
STA
JSR
JSK
BcC
LDaA
EOR

The Cassette Units

TABLE FOR RE-TRY

PTR2
PIKL
L117¢
SAL
BAD, X
L1170
SAH
BAD+1,X
L1179
PTKRZ
PTR2
VERCK
L1148
OCHAR
H$00
(SAL) .7
L1179

PRE
PRF
L1171
HSPERR
$FELC
Lil7e
VERCK
L1170

OCHAR
(SAL) , Y
L1089
L1177

#4896
RDFLG

#s0l

b11Ck
D1ICR
FSBLK

L1165
FSBLK
SHCNL.
L1175
FIR1

L1177
FSBLK
L1177

L1192
L1174
#9060

SHCNH

SHCNH
SHCNH
L1ege
L1193
L1176
SHCNH
OCHAR

sDONE ALL 1H TABLE?

s YES
sNEXT [N TABLE?

:NO

sNU
;FOUND NEXT UOME, ADYANCE

;LOAD UK VERIFY?
;LOADING
s VERILIFY [MG

;0.K.

s.Y=1

sFLAG 1T AS AW ERROR
;SECOND PASS ERROR?
s NO

;ALWAYS
;LOAD OR VERLIFY?
SVERIF Y

; STORE CHARACTER
sNEXT ADDRESS
;ALWAYS

;SET SKIP MEXT DATA

;DEC FSBLK FOR NEXY FASS

;DONE, FSRLK=9
. ELSE, NEXT

;DEC PASS CALC

:ALL DOME

;FIKST FASS ERRORS?

;TES, CONTINUE

;CLEAR FSBLK 1F NU ERROUKS
;ALWAYS, EXLT

sREAD 1T ALL, EXIT
;RESIORE Sel & SAH
; SHCNH=¢

’

:CALC BLOCK BCC

;BURP ADORESS
;A1 END?

sNOT YET

;BCC CHAR MATCH?

105

; USED TO CALC PARILTY BYTE

106 The Commodore 64 Kernal and Hardware Revealed

Loc

Fega
FRgs
Fe8s
FB3R
FEBE
FE8E
FRY9
FB92
FR94
FBY6
FB97
FB97
FB9?
FR9E
FR90D
FE9F
Feal
FBA3
FRAD
FBAS
FBAs

CODE

Fo
A9
2@
4C

AS
80
AS
85
17

A9
89
A9
85
85
85
g5
69

@5
20
1iC
RC

c2
AD
Ci1
Ac

68
A3
6o
AL
AB

A9

FE
FE

LINE
RER L1177 ;YES, EXIT
LDA #CKERK ;CHKSUM ERROR
JSK ¢FEILC

L1177 JRF $FERC
L1174 LDA STAH

;RESTORE START ADDR
STA SAH : TO POINTER SAH & SaL
LDA STAL
STA SAL
KTS
L1679 LDA #$08 ;SETUP FOR 8 RITS+FARLTY
STA FCNTR _
LDA #4900 s INIT1ALISE
STA FIRT ; DIFOLE COUNTER
STA KER ; ERROR FLAG
STA PRTY ; PARLTY BIT
STh REZ ; ZERO COUNT
RTS :.A=0 DN RETURN

SEMD
.LIB KTAPE7

Cassette write subroutines

Entry point: SFBAG6

Function: These five routines are all required by the main write to tape routine
at $F867.

Routine source code:

Loc

FBR6
FRR6
FBAO
FRAS
FRAo
FEAS
FRas
FRRG
FRAS
FRAG
FER6
FBAb
FBAG
FRAS
FRA9
FBR3
FRAD
FBAF
FBR1
rFega
FRR?7
FEBA
FRBC
FRBF
FRC1
FEBC3

CODE

AS
4A
AY
90
A9
AZ
8D
S8E
Ab
AY

ad

49

89

BD

66
[2ed
Be
29
@6
97
oD
19
oF
oL
28
oL

bC
DC
bc

bC

LINE
R R e L DL D R T e 1
CASSETTE WRITE SUBROUTINES.
* FSBLK IS BLOCK COUNTER FOR RECORD
® = @ SECOND DATw
* = 1 FIRST DATA
* = 2 FIRST HERDER
e e e L

TOGGLE WRITE BIT ACCORDIMG TO LSB
IN UCHAR

T 94 N4 Ne Ne N4 99 Ne Ne Ne Ne Ne ve

1122 LDLA OCHAR ;21T TO WRITE 1MTO CARRY

LSK A
LDA #%60 ;ASSUME CARRY CLEAR (SHORT)
BCC L1184 ;CORRECT
L1183 LDA #3890 ;SET LONG
L1184 LDX #3099 ;SET AND STORE TIME
L1178 STA DITBL ;L0 BYTE
STX D1TEBH ;HU BYTE
LbA D11CR ;CLEAR 1R@
LDA #%19
STA DICKE ;FORCE LOAD & START TIMER
LDA s$ol ; TOGGLE WRITE BI(T
EOR #¢08
STA $91

Lnc

FBCS
FRCY
FBCB
FBLY
FRCE
FRLD
FECD
FBCD
FECD
FECD
FBCF
FED1
FRDJ
FEDS
FeDg
FEDA
FRDC
FEDE
FRE®
FRE3
FRE3
FRES
FRE7
FBEA
FREC
FREE
FRFQ
FRFO
FEF3
FEFS
FBF7
FRFY
FEFP
FRFD
FRFF
FCol
FCos
FC95
FCo7
FCo9
Fcec
FCoc
FCOE
FC10
Fci2
FC14
FC16
FC1é
FC19
FCiaA
FC1C
FC1E
FC20
FCa2
FC24
FC26
FC28
FCco2a
Fcac
FC2E
FC39
FC33
FC35
FC37
FC39
FC3B
FC3D

CODE

29
69
38
bd
36

AS
Do
AY

A2

29
Do
Eé

1
4C

AS

20
Do

49
8%
29
45
89

4C

46
Cé
AS
Fo
19

20
38
Ad

A2
86
Cé
Ad
EO
Do
99
85
Do
29
98
Do
Eé
AS
85
B9

98

=)
3C

ac

eD
A3
A3
3A

97

AS
12
09
D7
AS
BE
62
8¢
BD

D1
0A
?1
Ab
D7
Bb
A

Fi

FC

FC

LINE

L1181

£ e we owe e

RTN

L1186

L1183

£1179

(1186

L1196

L1189

AND
RIS
SEC
ROR
BMl

LDa
BNE
Lba
L.DX
JSKR
BNE
INC
LDaA
BPL
Juap

Lba
BiRE
JSR
BNE
INC
3NE

JSR
BHE
LDA
EOR
STA
BEQ
LDA
EOKR
STA
AND
EOR
STA
Jnf

LSK
DEC
LDA
BER
BFL

JSR
CL1
LbA
BER
LDX
STX
DEC
LDX
CPX
BNE
ORA
STA
BNE
JSR
BCC
BNE
1INC
LDA
STA
BeCs

#9908

PRF
L1183

TAFE WRITE LR@ EMTRY

REK
L1191
He10
H$01
L1178
L1183
RER
PRP
L1183
L1194

REZ
L1189
L118%
L1183
REZ
L1183

L1122
L1183
FIRT
01
FIRT
L1179
OCHAR
#eel
OCHAR
H#$01
PRTY-
FRTY
$FEBRC

OCHAR
FCNTR
PCNTR
L1199
L1183

L1079

CNTDN
L1189
900
DATA
CNTDN
FSBLK
He62
L1196
#4686
OCHAR
L1183
L1193
L1188
L1181
SAH
DATA
OCHAR
L1183

The-Cassette Units 107

;LEAVE JUST WRITE BIT
;FLAG PRP FOR END OF BLOCK

s RILWAYS

;CHECK FOR OME LONG
sWR1ITE LOWNG B1T

;END OF BLOCK?
;MU, CONTINUE
:TES, FINISH OFF

;CHECK FOR A ONE BIT

sWRITE
;ON BLT LOW, ERIT
tFIRST OF DIFULE?

;DIPOLE DONE
sFLIPS BIT FOR COWMPLEMENTARY

; TOGGLE FARLTY

:RESTURE REGS AND RTI

(NEXT BIT

:DEC COUMNTER FOR # RITS
;8 BITS SENTY

;YES, DO FARITY

(NO, SEND REST

;CLEAN UP COUNTERS

«ALLOW INTERRUFTS TO NEST
WRITING HEADER COUNTERY
:NO

sWRITE HEADER COUNTERS
;CLEAR BLC

:FIRST BLUCK HEADER?

:NO

:YES, MARK 1ST BLOCK HEADEK
sWRITE CHARS IN HEADER
;ADDR=END?

sNOT YET

:MARK END

sWRITE BCC

s ALWAYS

108 The Commodore 64 Kernal and Hardware Revealed

LDY
Lba
STA
EOR
STA
JSK
BNE

LDA
EOR
STA
JNP

DEC
BHE
JSR
LDA
STA
LDX
SEL
JSKR
BNE

4509
(SAL), Y
OCHAR
DATA
DATA
L1080
L1183

PRTY
#5301
OCHAR
$FEBC

FSeLK
Liis2
Lii21
H$UD
SHCNL
#$08

L1195
L1187

1.OC CODE LINE
FC3F ;
FC3F AQ 90 L1188
FC41 B1 AC
FC43 85 BD
FCAS 45 D7
FC47 85 D7
FC49 20 DB FC
FC4C DO BE
FCAE H
FC4E AS 9B L1190
FCS9 49 91
FCS2 85 BD
FCS4 4C BC FE L1187
FCS7 :
FLS7 C6 BE L1194
FCS9 DO 63
FCSB 29 Ca FC
FCSE A9 Se L1182
FCo® 85 A7
FL62 A2 08
FCo4 73
FCo% 20 BD FC
FC48 D9 ER
Tape IRQ
Entry point:
$FC6A - tape IRQ entry
$FCBD - change IRQ vectors

Function: The first of these two routines performs the main IRQ loop for both
tape LOAD and SAVE. It should be noted that all SAVE and LOAD
operations are performed under IRQ as a background program. The second
routine is used to change the IRQ vectors for different tape read and write

operations.

Routine source code:

LOC

FCoA
FCoA
FC6A
FCoA
FCoC
FC6F
FC71
FC73
FC75
Fc78
FC7A
FC7C
FCYE
FC81
Fca2
FC84
FC86

CUDE

Fé

78
AF
E3
A7
DF

Fe

97 F&

AR
D8
2A

AB
BE
39

FC

LINE

WKTZ

TAPE IRQ

LbA
JSR
BNE
DEC
BHE
JSR
DEC
BFL
LDX
JSR
CL1
INC
LD
BEQ

ENTRY FOR

#$78

L1184
L1187
SHCNL
L1187
L1979
SHCNH
L1187
#$04

L119S

SHONH
FSBLK
L1198

:NEXT CHAR

;STORE IN OUTFUT CHAR
;UPDATE BCC

;BUMP ADDRESS
(ALWAYS

;PARLITY INTO OCHAR

; FOR NEXT BIT
;RESTORE REGS AND RTI

END?

BLOCK ONLY

SWRITE S0 TURN OFF MOTOR
;PUT 89 CASSETIE

; SYNCS AT END

;SET VECIOR TO WRITE ZEROS
sALWAYS

{WKITING LEADIMG ZEROS
: FOR SYNC

;DONE WITH LOW SYNCT
™0

:YES, CLEAN UP COUNTERS
;DONE W1TH SYNCY

:NO

;YES, VECTOR FOR DATA

;ZERO SHCNH
sDONE?
;TES, SYSTEM RESTORE

Loc

Fces
FCaB
FC8D
FCBF
FC91
FC93
FC93
FC94
FC9%
FCog
FCoA
FC9D
Fcae
FCA2
FCAS
FCA8
FCAR
FCAD
FCBO
FLas
FCB6
FCB7
Fces
FCR8
FCRR
FCED
FCRD
FCED
FCEeD
FCRD
FCBD
FCBD
FCBD
FCBD
FOCO
FCC3
FCCS
FCcs
FCCA
FCCA
FCoc
FCCE
FLD%
FCD1
FCD1
FCbi
FCco1
FCb1
FCD1
FCD1
FLb2
FCD4
FCD6
FCL8
FLDA
Fcoe
FCDR
FCDB
Fcoe
FCHD
FCDF
FCE1
FUEZ
FCE2
FCE2
FD9E
FO9B

CODE

26
A2
86
86
De

08
73
AD
99
8b
29
A9
8D
20
AD
Fé
8D
AD
80
28
.14

20
)

gb
8D
BD
80
69

AS
29
895
60

38
AS
E5
AS
ES
69

Eé
be
Eé

60

8t
(34
A5
B4
83

11
19
11
CA
7F
oD
Db
Ao
09
15
F
14

9?3
97

93
i4
74

o1

o1

AC
AE
AD
AF

AC
02
AD

Fe

De’

bo
FC

DC
FD
22
o3

92
93

L1INE

JSR
LDX
STX
§TX
BNE

e

L1192 FHP
SEL
LDA
ORA
STA
JSR
LDA
STA
JSK
LDA
BEQ
STA
LbaA
STA
L1127 FLF
RTS

L1198 JSK
2EQ

L1174
H$69
CNTDN
PRP
L1186

VICKREG+17
#e10
VICREG+17
L1121
He7F
D1ICKR
3FDLD
IRUTAP+1
L1127
CINY+1
1RQTAP
CINY

Li192
LL18/

The Cassette Units 109

:SETUP FUR HEADER COUNT

;ALWAYS

;CLEAR UP IRQ AND
; RESTORE PIA’S
;RESTORE SCREENM

; TURN OFF MOTOR
;CLEAR INTERRUFTS

;RESTORE KEYROARD 1R@
tRESTORE KETROARD INTERRUFT WECIOR
;MO 1R@

;RESTORE SYSTEM 1K@
:CARE FOR TAFE [R@G S0 RTH

CEEHXEN

OMN ENTRY,

=19

= 12

= 14

R

“SUBKOUTINE TO CHANGE IRG VEGTORS.
X = 8 WRITE ZEKOS TO TAFE

WRITE DATA TO TAFE
RESTORE TO KEYSCAN
READ DATA FROM TAFE

L1195 LDA
STA
LDa
STA
RTS

L1121 LDA
ORA
STA
RTS

e e L DR R DL

$FD93, X
CINV
$FD94, X
CINV+1

$01
Hé20
$91

:MOVE IRQ VECTORS
; TO VECTOK TABLE

;TURH OFF CASSETTE MOTOR

SRR R E RN

+% COMPARE START AND END OF LDADYSAVE
;% ADDRESSES. SUBKOUTINE CALLED 2Y

:* TAFE REA

D, SAVE,

TAFE WRITE

L1193 SEC
LbA
SeC
LDA
SkC
RTS

SAL
EAl
SAH
EAH

;BUMP ADDRESS POINTVER SAL

L1986 INC
BHE
INC
L1983 RTS

SaL
L1083
SAH

YECTOKS

110 The Commodore 64 Kernal and Hardware Revealed

LuC CODE LINE

FDIR ;

FD9E 6A FC -WOR WRTZ {WRITE ZEROS TAFE
FD9D CO FE JWOR WRTN sURITE NORMAL TAPE
FDOYF 31 EA .WOR $EA31 s HORMAL TRQ

FDAL 2C F? LWOR L1139 sREAD TAPE

FDA3 H

FDAJ3 JEND

FDA3 -END

4.7 High speed tape operation

Virtually all Commodore 64 software currently being marketed uses some form
of fast loader. These fast loaders are given names like: Turbo (this was the first
fast loader available), Pavload, Flash Load, etc. The origin of these fast loader
routines is rather obscure since many of the software houses use the same loader
routines. In this section we give the source code for two fast loaders and their
associated SAVE routine; these have been used on several software products of
Zifra Software Ltd. under the name of ZITload and ZIFRAload.

A fast loader is a routine which replaces the existing LOAD and allows a
program or data to be loaded from tape at about ten times the speed of a normal
LOAD. This means that a tape can be as fast as a disk drive. A fast loader is
achieved by simply changing the format of the pulse sequence which is stored
onto the tape in order to allow a far greater density of information storage per
inch of tape. In order to create a fast loader two programs are needed; a fast
loader program which is a fairly short machine code routine loaded at the
beginning of a LOAD operation and then auto run to LOAD the rest of the
program and/or data which is stored in fast loader format. The second program
which is required is a routine to SAVE a program in fast loader format, the fast
SAVE.

The first major problem to be overcome in designing a fast loader is how each
bit is stored on the tape. Each bit is stored on tape as a pulse which goes through
a high-low transition (see Fig. 4.4). The length of the total pulse decides whether
the bit is a 1 or f. A short pulse is a zero and a long pulse is a one. The bit is
flagged in the interrupt register on the falling edge of the pulse.

The loader is a machine code program which runs with the interrupts
disabled, sets a timer to between the two lengths, and when the timer runs out
the interrupt register is checked to see if the pulse came in or not. If the falling
edge of the pulse generates an interrupt before the timer runs out then the pulse
was a zero, otherwise it was a one. The bits are then rotated into a byte storage
until 8 bits have been read, thereby loading a full byte.

Before any bytes can be read and stored, the loader must set itself to be in sync
with the bits on the tape. This is done by writing a string of zero bits with a single
one bit at every byte interval. The routine then tries to align itself by recognising
the value of the byte. An example of a header byte for aligning would be the
value 64, hex $40 or in binary: 910000PP. A series of these bytes is written as the
header; only when this byte has been read in and recognised can the actual
program can be read without risk of alignment errors.

The Cassette Units 111

‘wiojanem adey paads ybiHy 'y b14

asind do abpa buyjo} o Pa12bbL bo4 = 4

5o0q pva4
waodanoMm

Jno voiHiim
waodonom

==
=
=
=

0 o ==

112 The Commodore 64 Kernal and Hardware Revealed

The program is stored in different ways depending on how much protection it
is desired to put in the program. The simplest way of formatting the file is to first
SAVE the two byte load address followed by the two byte end address and then
the actual file. The final byte following the end of the file is a checksum that was
calculated by the SAVE routine and is also calculated during loading. If the two
values are the same, the LOAD was successful. The routine for this form of fast
loader is given in Program 5.

B33C I FAST TRPE SAVE FOR THE 64.
gggg | ol Rk AR

!
833C ITHIS ROUTINE WILL SRYE A PROGRAM
a33C !TO TAPE SO THAT WHEN LORDED BACK
8330 'IT WILL LOAD FASTER THAN THE
B33C 11541 DISK DRIYE.
833C !
@a33c 'AN OPTION FOR AUTO-RUN IS
|a33c I INCLUDED.
833C !
coea #=$000
case A%ap LDA #{SAWEC ICHANGE SAVE VECTOR
coaz SD32as STR %8332 ! TO GO TO NEW
Ceas ASCe LDR #>SAVVEC ! SAVE ROUTINE
Coo7 3D3303 STA $6333
COBR &8 RTS
L89B !
CoeB 43 SAYVEC PHA ISAVE OFF .R
Ceac ASBA LDA $BA IGET DEVICE #
CogE C397 CHP #3897 INUMBER 77
Co1g Foo4 BE@ TSAVE IYES
Ce12 &8 PLA
813 4CEDFS JMP $FSED !D0 NORMAL SAYE
ceisé !
Ce16 ASB? TSRYE LDAR $B2? IGET SEC. RDDR.
Ccei18 8D29c2 STA RUNFLG IFLAG FOR RUTO-RUM
CB1E nosF LDY #3$8F
Co1D A%S208 LDR #3208
C81F 398CC! LOOP1 STA FLNAME,Y IBLANK FILEMAME
Ca22 38 DEY
Ce23 16FA BPL LOOP1
Co25 R4BV LDY #B7 !GET FILENAME LENGTH
cazy ce1l CPY #311 !GREATER THAN 16?7
Co23 2202 BCC LOOP2 INO
C82B R318 LDY #s10 IONLY 1ST 16 CHARS
ce2h 88 LoorP2 DEY
CO2E 3088 BMI TSRVYE1
@39 B1BE LDA ($BBJ,Y !GET FILENAME
832 392CC1 STR FLNAME,Y ISTORE IT
CgSg 4CzDCa JMP LOOP2 1D0 NEXT CHAR
o3 !
Co33 AB47 TSAVEL LDY #$47
CO3A B244C1 TSAVE2 LDA LORDER,Y IGET LOADER BYTE
Ce3D 39BCO2 STA $02BC.Y ISTORE IT TO SRVE
Ce4a 83 DEY
Co41 18F7 BPL TSAYE2 IFOR RLL BYTES
£O43 R9\1 LDA #3901
Ca45S AA TAX
Ca4s A8 TAY
Co47 26BAFF JSR $FFBR ISET FILE DETRILS
Co4A RSSE LDA #3$S9E ILENGTH OF FILENARME
Ce4C R2EC LDX #<{FLNAME IFILENAME LO
Co4E AREC1 LDY #OFLNAME IFILENAME HI
CeS8 28BDFF JSR $FFBD ISET NAME DETRILS
Cas3 A28y LDA #$68 ISTOP NAME FROM BEING
CesSs 859D STAR $9D IPRINTED ON SRVE

£eS7 A%z LDA #302

The Cassette Units 113

Ces3 aSFC STA $FC ISAYE START HI
Cask H9BC LDAR #$BC

C8sSD &SFR STR $FB ISAYE STRRT LO
CasrF ASFB LDR #$FB IPOINT TO START
Cces1 Az2e4 LDX #$04 ISAVE END LO
£Co63 REG3 LDY #3863 ISAVE END HI

CB65 ZB6DSFF JSR $FFDS !SAVE LORDER FILE
Co6g RO983 LDA #4$83

CoB6A 8D82e3 STR $8382 IRESET WARM START
Ceel R3A LDA #3$A4 ! YECTOR

COsF 3DB383 STA #9383

cara2 A%al LDA #3081

C874 359D STA 9D

Cove ALeE LDY #$80

CBYS Azed LDX #s09

carA !

cav {THE FRAST SAVE ROUTINE

Cg?g :STBRTS HERE.

Co7| !

carA 26CBCO JSR WRTHDR 'WRITE ALIGNMENT BYTES
CovD AS2BE LDR $2B IGET START LO
CarF 48 PHA

caco 26FARCA JSR WRTBYT {WRITE IT

Ce33 RS2C LDA s$2C VGET START HI
Cess 48 FHA

Cog6 2BFACH JSR WRTBYT 'WRITE IT

Cas3 RS2D LDA $2D IGET END LO

Cas3B 20FACA JSR WRTBYT IWRITE IT

C@8E AS2E LDR $2E IGET END HI

CB898 26FACO JSR WRTBYT IWRITE IT

Cag3 S4FR STY $FB 1ZERDO CHECKSUM
Cagss R42B LDY $2B IGET PAGE OFFSET
37 A%oe LDR #3808

Ce99 852B STA $2B 1ZERO LO BYTE
CasB B12B TSAVLOOP LDA ($2B),Y !GET R BYTE

Ce3D 20FRCO JSR WRTBYT 'WRITE IT

CeAe C3S INY

Cenrl Doez BNE TSRVE3

CaR2 E62C INC $2C

CoRS C42D TSAVES CPY $2D ICHECK END OF SAYE
Cor? AS2C LDR $2C

COAS ES2E SBC $2E

CBAB SBEE BCC TSAVLOCP INOT YET

CBAD ASFB LDA $FB IGET CHECKSUM
CORF 28FACB JSR WRTBYT IWRITE IT

CeB2 268EC1 JSR KWRTBIT ICLOSE OFF LAST BIT
CeBS RS1B LDR #$1B

CoB? 8D11D8 STA $D211 IUNBLANK SCREEN
CaBA R937 LDA #$37

CeRC 38501 STAR $81 ISTOP TAPE

CEBE 58 CLI IRESTRRT IRQ
CaBF 68 PLA IGET START HI
CcoCe 852C 5TR $2C ISTORE IT

cecz &8 PLA IGET START LO
cac3 85z2B STA $2B ISTORE IT

CaCS 20384FF JSR $FF84 IRESET I1/0

CBC% 4C74A4 JMP $R474 'EXIT TO “READY.~
cecC !

CeCB A266 WRTHDR LDA #3$@6 !BASIC ROM OUT &
CaCh 8se1 STA $91 ! START TAPE
CaCF RS@RB LDA #$0B

CeDp1i 8D11D8 STR $DB11 IBLANK SCREEN
cap4 CA HEADR1 DEX !PAUSE FOR TAPE
CcapS DeFD BNE HEARDR1 ! TO GET TO FULL
Ccap7 88 DEY ! SPEED

Ceps DeFA BNE HERDR1

Cebn 78 SEI !DISABLE IRQ
CeDB ASAQ LDA #$A8 {INITIAL TIMER
CaeDD 3D84DD STA #DD84 ! VRLUE FOR DELRY

CeEB A9Ye LDA #se0

114 The Commodore 64 Kernal and Hardware Revealed

COEZ 8D@SDD STA $DD8S

CRES R213 LDA #3$19

CRE? 3DDEDD STR $DDBE ISTART TIMER

CBEA AB40 LDY #$402

COEC AS48 HERDRZ LIR #$40 101000089 FOR
CBEE 2BFRCBR JSR WRTBYT !ALIGNMENT

CoF1 38 DEY

CeF2 DBF3 BNE HEADR2 'WRITE 64 OF THEM
CaF4 A9SA LDA #$SA ICHECK ALIGNMENT
COF5 28FACe JSR WRTBYT HWRITE IT

CeFs &a RTS

CaFR !

CoFA 85SBD WRTBYT STA $RD ISTORE BYTE

CIFC 45FB EOR $FR ICHECKSUM

CBFE 3SFER STA $FB

cinga R2635 LDA #$038 'LOOP FOR 8 BITS
£182 8SA3 STA $A3

CiB4 26BD WBYTEL ROL $BD 'BIT INTO CARRY
C186 2@4EC1 JSR WRTBIT 'WRITE THE BIT
C199 CeR3 DEC $R3

CiaB DBF? BNE WBYTE1 !D0 NEXT BIT

CiBD é8 RTS

CleE !

C18E A248 WRTBIT LDX #$48 !ASSUME ZERO BIT
Clia svez2 BCC WBIT1 !CORRECT ASSUMPTION
112 A2%0 LDX #$98 ISET FOR ONE BIT
C114 3EG4DD MBIT1 STX $DDB4 !SET TIMER

117 AS9a LDR #%00

C11% 2D8BSDD STA $DD9AS

C11iC ARSA1 LDA #$21 'WARIT FOR TIMER
CilE 2CODDD WRIT2 BIT $DD@D

C121 FGFB BEQ@ WBIT2

C123 ASH1 LA $81 !TOGGLE WRITE BIT
£125 4283 EOR #s08 ! IN 6518 REGISTER
Ci127 gset STR $61

C123 EE20D8 INC $Do2@ ISHOW IT IS WORKING
C12C AS12 LDA #3$19

C12E 8DOEDD STA $DDGE ISTART TIMER

Ci31 A%a1 LDR #$91 '"WAIT FOR TIMER
C133 2C0DDD WBIT3 BIT $DDAD

0136 FOFB BEQ@ WBIT3

C138 ASe1 LDA #81 !TOGGLE WRITE BIT
C12A 4983 EOR #3988 ! IN 6518 REGISTER
C13C 85e1 STA %91

C13E R2173 LDR #$139

Cl4a 3DREDD STR $DDGE ISTART TIMER

C143 60 RTS

Cl44 !

Cid4 !THE LORDER STARTS HERE

Ci44 !

Ci44 RD28D@ LORDER LDA $Do20

C147 &SFE STA $FE !SAVE BORDER COLOUR
C145 ASA4 LDA #$R4 IRESET WARM START
C14B 8D@363 STAR $6383 ! YECTOR

C14E A983 LDR #3$83

C158 8D@2a3 STR sa302

1S3 285183 JSR #0351 !FAST LOAD THE FILE
C155 RSFE LDA $FE

C158 3D28D8 STA $D@28 IRESTORE BORDER COLOUR
C1SB RI37 LDA #$37

C135D 8561 STA $081 ISTOP THE TAPE
C1SF 53 CLI IRESTORE IRR

C168 ARS91B LDA #$1B

Cis2 8D11D@ STA $DO11 'UNBLANK SCREEN
C165 20@84FF JSR $FF34 'RESET 1.0

C168 RASFC LDA $FC !COMPARE CALCULATED TO
CléR CSFB CMP $FB ! LOARDED CHECKSUM
CierC Da1s BNE LODERR ! DIFFERENT. . ERROR
Ci6E 2863A6 JSR $RE63 ICLR

£171 ADDEGS LDA $83DE IGET AUTO-RUN FLAG

The Cassette Units 115

Civ4 Faen BEQ EXIT !NO RUN
Ci76 288ERS JSR $RESE ISET CHARGET POINTER
C173 A998 LDR #3600
C17F 399D STR $9D 'FLAG RUN MODE
C%Eg 4CREAT ' JMP $R7ARE 'RUN
cis !
gng 508283 ?XIT JMP ($8382> 'WARM START

3 !
C183 A21D LODERR LDX #$1D '“?LORD ERROR”
C%gg 4C37AR4 JMP $R437 !SEND ERROR
C !
C183 3BE3 WOR $E33B 'ERROR LINK
Clgﬂ BCO2 ' WOR $@82BC IMARM START LINK
c18c !
C18C 202828 FLNAME TXT * *
Cc13C !
£C18C '15 SPRCES
Ci3C !
CisC ! %=$0351
C13C !
C13C 288783 JSR $6387 !RERD HERDER
C19F 26BFRB3 JSR $83BR 'READ A BYTE
CiR2 RS TRY 'LORD LO
C1R3 A9V6 LDAR #s08
C1RS 8SC1 STR $Ci
C1R7? 26BRO3 JSR $83BR IRERD A BYTE
CiAA 33C2 STA sC2 'LOAD HI
CiAC 28BRO3 JSR $83BA !READ A BYTE
ClAF 852D STA $2D 'END LO
C1B1 28BAB3 JSR $83BA !READ A BYTE
CiB4 8SZE STR $2E 'END HI
C1B6é 28BAE3 TLUOAD JSR $83BA !READ A BYTE
C1B2 31C1 STA ($C1>.V !STORE IT
C1iBE 45FC EOR $FC !CALCULATE CHECKSUM
C1BD 85FC STR #FC
CiBF C& INY
CiCe Dne2 BNE TLOADZ
Cic2 E6C2 INC $C2
CiC4 C42D TLOAD2 CPY 2D 'CHECK END OF LOARD
CiC6 RSC2 LDA $C2
CiC3 ESZE SRC $2E
C1CA 9BER BCC TLOAD1 INQT YET
C1CC 26BARB3 J5R $83BR 'RERD CHECKSUM
CICF 85SFB STA $FB
CiD1 &p RTS
cip2 !
cipz 1 %=4$B387
CiD2 - ! LDA #sa7
CciD2 7
C1D4 8561 STA ;géB ISTART TAPE
CiDé A9EGB LbA
CiD8 8D11D@ STA $DB11 ! BLANK SCREEN
CiDB CA RHEAD1 DEX !PAUSE FOR TRPE TO
C1DC DOFD BNE RHERD1 ! RERCH FULL SPEED
Si0F 88FFI gsg RHEAD1
Eigi g? SEI IDISABLE IRQ
C1E2 84FC STY $FC !ZERO CHECKSUM
C1E4 3CaSDD STY $DD@S ISET TIMER HI
C1E7 ASF2 LDR #$F8
C1E3 3D84DD STR $DD64 'SET TIMER LO
C1EC R209 LDX #3528
CIEE 20C883 RHERD2 JSR $03C8 {READ R BIT
CiFl 26BD ROL $BD I INTQ BYTE
C1F3 RASBD LDA $BD
CIFS C948 CHP #$48 'ALIGNED?
C1F? DOFS BNE RHEARDZ2 INOT YET
C1F9 2@BAB3 RHEAD3 JSR $8GBAR IREAD A BYTE
CIFC C548 CHP #3490 V15 IT 647

CIFE FaFg BER@ RHEAD3 IYES

116 The Commodore 64 Kernal and Hardware Revealed

c2e8 C95A CrP #$SR 'ALIGNMENT CHECK?
292 DeERn BNE RHERD2 'NO
C204 50 RTS
€285 !
c2e5 ! ¥=$03BA
c2es !
285 AsSal LA #$01
C287 83BD STA $BD
C289 20C883 GBYTE! JSR $83C8 IREAD R BIT
C28C 26BD ROL $BD FINTO BYTE
C28E 99F9 BCC GBYTE1 !COMPLETE BYTE
C218 RSBD LDR $BD
c212 &0 RTS
213 !
c213 | ¥=$03C8
€213 !
€213 AS18 LDA #$18 'WARIT FOR BIT
C215 2CeDDC GBIT1 BIT $DC8D
£218 FGFB BEQ GBIT1
C21A RADBDDD LDA $DDED !GET BIT
C21D 48 PHR
C21E R913 LDA #$19
€228 SDOEDD STA $DDSE ISTART TIMER
£223 €8 PLA
C224 EE20D8 INC $D920 'SHOK IT IS WORKING
C227 4R LSR R IMOVE BIT INTO CARRY
c228 &8 RTS
c229 !
cz29 ! ¥=$03DE
c229 !
229 a9 RUNFLG BYT @
Program 5.

Another type of LOAD, which uses the same saver but is slower, is the
interrupt loader. This method has the advantage of being able to LOAD with
the screen on and a foreground program running whilst the main program is
loaded. Loaders of this type are: Novaload and Micro Load. The difference with
this type of LOAD is that an interrupt is created when a pulse is read by the tape
recorder, and the timer is checked to find out whether the pulse was a zero or a
one. The whole LOAD is done in the background allowing a foreground
program to play music, run a clock, etc. The foreground program must check at
regular intervals to see if the loader has flagged for the end of load. The example
of a background LOAD in Program 6 has only a foreground program that is
waiting for the end of LOAD flag to be set.

833C ! FAST TRPE SAVE FOR THE 64.
@33C | deisimisipeERcsspanislisiEoee
833C !
833C ITHIS ROUTINE WILL SAVE A PROGRAM
833C !TO TAPE SO THAT WHEN LOARDED BRCK
833C 'IT WILL LOAD WITH THE SCREEN ON.
833C !
cens #=$C000
Cega ASGR LDA #<SAYVEC ICHANGE SAVE VECTOR
Cogz 8D328e3 STA $8332 ! TO GO TO NEW
Cee5 ASCa LDA #>SAVVEC ! SAYE ROUTINE
Ccear 3D33a3 STA $8333
CaeR &0 RTS
%ggg 8 !FIVVEC PHR ISAYE OFF .R
4 S ! .
CesC ASEAR LDA $BAR IGET DEVICE

CegE C307 CMP #$87 INUMBER 7?

The Cassette Units 117

Co18 Foe4 BEQ TSAVE IYES

Cco12 68 PLA

ggls 4CEDFS JMP $FSED 'DO0 NORMAL SAVE
16 !

Co16 ROBE TSRAVE LDY #$BE

Co12 A920 LDA #$26

Co1R/ 3939C1 LOOP1 STA FLNAME+1. Y ! BLANK FILENAME

ceiDp 88 DEY

CB1E DOFA BNE LOOP1

£O20 A4B7 LDY $BTV IGET FILENAME LENGTH

Ce22 CoeF CPY #30F IGREATER THAN 147

ca24 2002 BCC LODP2 INO

CH26 RVBE LDY #$8E IONLY 15T 14 CHARS

Co28 88 LOOP2 DEY

Ce29 3068 BMI TSAYE1L

C82B B1BB LDA ($BB).Y IGET FILENAME

Cez2Dd 399AC1 STA FLNAME+2.Y ISTORE IT

CB38 4C28C9 JMP LOOP2 D0 NEXT CHAR

£e33 !

CB33 ABS8 TSAYEL LDY #3583

€835 BO3FC1 TSAVE2 LDA LOADER.Y !GET LOADER BYTE

Ce328 S9RB\2 STA $0@2AB., Y ISTORE IT TO SAVE

CB3B 32 DEY

Ca3C 19F7 BPL TSAYE2 IFOR ALL BYTES

C83E A%ai LDA #3801

Cod4a AR TARX

CB41 RS TRY

CB42 20BAFF J3R $FFBA ISET FILE DETRILS

CR45 ASBB LDA #$FB ILENGTH OF FILENAME

£847 R293 LDX #<{FLNAME IFILENAME LO

Ca4Q Racit LDY #OFLNAME IFILENAME HI

C@84B 20BDFF JSR $FFBD ISET NAME DETAILS

CA4E RSVYA LDR #$09

Co5e 359D STA $9D

cas2 A982 LDA #3092

£aS4 8SFC STR $FC ISAVE START HI

Ca56 R9ARB LDA #$AB

CBS8 85FB STR $FB ISAVE START LO

CBSA ASFB LDR #$FB IPOINT TO START

CoSC R294 LDX #3904 ISAVYE END LO

COSE RO83 LDY #3863 ISRVE END HI

Ce6d 20DSFF JSR 3FFD8 ISAVE LORDER FILE

Ca63 R933 LDR #$83

Ce6S 309263 STA $98382 IRESET WARM START

CB68 HSA4 LDA #$A4 ! YECTOR

Ce6A 808593 STA $83083

CeéD RIFF LDR #s$FF

CB6F 359D STAR $SD

Co71 R20a LDX #3060

Ca73 R961 LDY #3500

Cca7s !

Ca7s !THE FAST SAVE ROUTINE

ce7s ISTARTS HERE.

C875 !

CarS 28CeC8 SRVEIT JSR WRTHDR 'WRITE ALIGNMENT BYTES

Ca73 AS2B LDA $2B IGET START LO

Ca7vA 48 PHA

C@7B 20F5C8 JSR WRTBYT IWRITE IT

CB87E RS2C LDA $2C IGET START HI

coga 43 PHR

Ces81 206FSCH JSR WRTBYT IWRITE IT

Co34 AS2D LDA $2D IGET END LO

CB36 28FSCH JSR WRTBYT HRITE IT

C889 AS2E LDR $2E IGET END HI

CBSB 26FSCH JSR WRTBYT MWRITE IT

CBSE 24FB 3TY $FB !ZERO CHECKSUM

Co70 R42B LDY $2B IGET PRGE OFFSET

ca92 ASeB LDA #$00

Cas4 352R STR $2B IZERC LO BYTE

Cas¢ B12B TSAYLOOP LDA ($2B>,Y IGET A BYTE

118 The Commodore 64 Kernal and Hardware Revealed

Cas3
Ca9B
cesc
Case
Cena
canz
CoR4
CoRs
CeAs
CarA
CARD
CoBa
CoR2
CaeS
CeB?
CaBs
CoBA
CoBB
C@BD
CEBE

cece 2

cecs
cece
cecé
cacs
Ccacna
cacc
cacF
C8Do
cap2
Ccans
£aps
CeDné

CBD8 ¢

CoDB
CADD
CeED
COE2
CRES
COE?
COE?
CBEC
COED
CoEF
COF1
CoFd
CoFS
COFS
CoOF?
COF3
CoFB
COFD
CaFF
181
Cigg
c1a6
cies
cie3
Ci99
C18B
ci8D
C18F
ci12
c114
C11?
C113
C11c
Cl1E
c12e
ci122

20F5C8
c3
Dae2
E€2C
C42D TSAVE3
AS2C
ES2E
S@EE
ASFB
2eFSCo
2885C1
H2{B
801108
RA937
8501

4C74R4
!
A986 WRTHIR
85681
ASGER
SD11D9
CA HEADR1

R940 HEADR2
20F5CO
38
DOFS
RS5A
28F5C8
€6
!

85BD WRTBYT
4SFB
35FB
R908
85R3
26BD WBYTEL
260901
CeR3
DoF7
50
|
A27@ WRTBIT
3682

R2FF
SE@4DD WBIT1
RS9

8IB5DD

ASa1

2CODLD WBIT2
FBFB

ASa1

49838

soe1

JSR
INY
BNE

WRTBYT

$DD6S
$DDBE

#340
WRTBYT

HEADR2
WRTBYT

WRITE IT

ICHECK END OF SRVE

INOT YET

IGET CHECKSUM
'WRITE IT

'CLOSE OFF LAST BIT

IUNBLANK SCREEN

1STOP TAPE
IRESTART IRG
IGET START HI
ISTORE IT

IGET START LO
ISTORE IT

IRESET 170

IEXIT TO “READY.”

IBASIC ROM OUT &
! START TAPE

'BLANK SCREEN
{PAUSE FOR TAPE
! TO GET TO FULL
! SPEED

!DISABLE IRQ

VINITIAL TIMER
! VALUE FOR DELAY

ISTART TIMER

1016088609 FOR
'ALIGNMENT

'WRITE 64 OF THEM

HCHECK - AL IGNMENT
'WRITE IT

ISTORE BYTE
{CHECKSUNM
!LOOP FOR 8 BITS

!BIT INTO CARRY
IWRITE THE BIT

!DO NEXT BIT
'ASSUME ZERO BIT
!CORRECT RSSLWMPTION

ISET FOR ONE BIT
ISET TIMER

WAIT FOR TIMER

!TOGGLE WRITE BIT
! IN 6518 REGISTER

The Cassette Units 119

C124 EE20D0 INC $D829 " ISHOM
€127 A219 LDA #$19 IT IS WORKING
C129 3DGEDD STA $DDBE ISTART TIMER
C12C A%81 LDA #3981 IMAIT FOR TIMER
C12E 2CADDD WBIT3 BIT $DDGD
C131 FOFB BEQ WBIT3
€133 AS@1 LDA $61 ITOGGLE WRITE BIT
C135 4903 EOR #3083 ! IN 6510 REGISTER
C137 5501 STA $01
C139 A919 LDA #$19
C13B SDOEDD STA $DDBE ISTART TIMER
C13E 68 RTS
C13F !
gig; ITHE LORDER STARTS HERE
1 !
C13F A@@S LORDER LDY #$85
C141 A928 LDA #3528 IBLANK OUT “RERDY.’
C143 995604 BLLOOP STR $9450,Y
C146 88 DEY
C147 18FA BPL BLLOOP
C143 78 SEI IDISABLE IRQ
C14A ASOS LDA #3095
C14C 3501 STA $81 ISTART TRPE
C14E A9IF LDA #$1F I DISABLE KEYBOARD
158 8D@DDD STA $DD8D
C153 8D8DDC STA $DCOD
€156 RDADDD LDA $DDOD
£153 ADODDC LDA $DCBD
C15C A963 LDA #3683 ISET TIMER
C1SE SD@4DC STR $DCO4
C151 A9@3 LDA #3503
€163 SD@5DC STA $DCBS
C156 A998 LDA #3596 IENABLE TAPE IRQ
C168 3D@DDC STA $DC8D
C16B A9S1 LDA #$51 ISET IR@ VECTOR
£16D SDFEFF STA $FFFE ! TO POINT TO
C178 R983 LDA #383 t LORD ROUTINE
€172 8DFFFF STA $FFFF
C175 A977 LDA #$77 ISET NMI VECTOR
C177 SDFRFF STA $FFFR i TO POINT TO
Ci7A A983 LDA #3683 I AN RTI
C17C S8DFBFF STR $FFFB
C17F R900 LDA #3509 : ICLEAR LORDED FLAG
C131 8562 STA $82
C183 58 cLI
Cig4 4coDes JWP $83DD IMAIT FOR END OF LORD
¢ !
187 1 ¥=$B2F3
187 !
€187 A983 LDA #383 IRESET WARM START
€189 809203 STA $0382 ! VECTOR
C13C A9A4 LDA #$R4
C18E 8D93e3 STR $8363
C131 4C84FF JMP $FFS4 IRESET 1/0
rqzsg 8BE3AB WOR $E38B, $82RB
C19 !
C198 932R20 FLNAME TXT 23 »
CiRg 114 SPRCES
C1AS 48 PHA IIR@ ENTRY POINT
C1R9 98 VA
CIAR 43 PHA
CiAB AD@SDC LDA $DC8S IGET TIMER HI BYTE
C1RE RG19 LDY #8319 IRESTART TIMER
C1B@ SCEEDC STY $DCeE
C1B3 4982 EOR #$02 IFLIP BIT 1
C1B5 4A LSR A ! AND SHIFT TO
C1B6 4A LSR A | CARRY
C1B? 26A9 ROL $A9 IMOVE BIT INTO
C1B9 ASA9 LDA $R9 | BYTE RERD

CiBB S@82 BCC BITGOT !WHEN BYTE READ

120 The Commodore 64 Kernal and Hardware Revealed

C1BD
CiBF
Ccic1
CiC3
C1CS
cics
CicA
cicc
CICF
CiDa
1D
Cip2
Cip3
C1D3
C1DS
CiD7
CiD3
C1DB
CiDD
CiE@
CiE2
ClE4
CIE?
C1ES
CIlEE
C1ED
C1ED
CiEF
CiF2
CiFS
CiF?7
C1F39
CiFB
CIFE
c2eg
Cc208
ca2e2
cze4
caees
Cz298
C2eB

BooD

C940 BITGOT
DoB2

A916

8D6583

RSFE EX1
83A%

RDBDDC EXIT
&8

RS
68
48

940
FOF1

C95A

Foe?

AS82

806503

DOE6

A93@ BITGT2
806503

RS8O

85C1

FODEB

8SFR
EES783
AD9783
CSFF
DoCF
A943
3D6503
Dacs

Reoe
S91FB
45C1
85C1
EEGBDS
EGFB
=

C29D DB82

C2eF
c211
c213
c215
cz217
c213
Z221R
C21D
c22v
ca22
c222
C224
cz22¢6

E6FC

ASFB BITGTS
CSFD

ASFC

ESFE

S96AD

AS65

806563

DBRs

85C2
R9FF
8502
R982
8D6563
HSFE
8D9793

2 DB94

1%=$93DD
!

AS82 PAUSE
F@FC

A998

8562

RS07Y

g85a1

26F362

BCS EXIT
CHP #3408
BNE EXIT
LDA #$16
STR $83635
LDA #$FE
STA $R9
LDR $DCBD
PLA

TRY

PLA

RTI

CMP #3480
BEQ@ EX1

#$5A
BEQ BITGT2

STA $8397
BNE EX1

BEQ PRUSE
STA sa@2

STAR $01
JSR $02F3

INOT COMPLETE BYTE
issIGNMENT?

I1SET NEW ADDRESS

'GET RERDY FOR
! A NEW BYTE
ICLEAR IRQ

IEXIT IRQ

IMORE ALIGNMENT?
IYES

'FINRL CHECK?

IYES

!GO0 BRCK TO

! ALIGNMENT ROUTINE

ISET NEW ADDRESS

! TO REAB IN LOAD
! ADDRESSES. CLEARR
! CHECKSUM

ISTORE LOAD ADDRESS
' INCRERSE STORE
! UNTIL 4 BYTES

INOT YET

!STORE NEW ADDRESS
!FOR READING FILE

ISTORE A BYTE
!CALCULATE CHECKSUM

ISHOW IT IS WORKING
' INCREASE RDDRESS

'END OF LOAD?

INOT YET
!NEW ADDRESS FOR
!CHECKSUM

ISTORE CHECKSUM
!FLAG END OF LORD

'RESET BRANCH TO
! ALIGNMENT

'WRIT FOR FILE
! TO BRCKGROUND LOARD

'RESET KERNAL ROM

The Cassette Units 121

5242 %‘96396 JSR $RE63 ICLR

246 ASC1 LDA $C1 1COMP

ngg gggz’ e ! ARE CHECKSUNMS

c2 Ba3 BNE LODERR ! DIFFERENT. . ERROR

gig 4C74A4 ‘ JMP $R474 !GO TO “RERDY.”

C24F A21D LODERR LDX #$1D !“?LOAD ERROR~

C251 4C37R4 JMP $R437 ISEND ERROR
Program 6.

4.7.1 Fast tape routines

Putting the theory into practice to create the fast loader routines is not difficult.
The actual timing for the SAVE routine was not calculated from any theoretical
formula but was obtained just by trial and error. The only guidelines were that
the short pulse should be slightly shorter than half the long pulse, as the
waveform of the pulse is evened out by the cassette hardware. The timing value
used by the loader is just shorter than the time required before the long pulse
reaches its falling edge.

There are two program listings in this section, one for each of the two types of
LOAD. Each program will SAVE a Basic program to tape in its fast format and
automatically put the fast loader routine into the filename where it is stored and,
when loaded, will automatically start on the warm start vector. The routines are
initialised by SYS(49152). A Basic program can be fast saved by using the
SAVE command as normal but with a device number of 7, thus:

SAVE“PROGRAM?”,7

In addition the first kind of fast LOAD also makes use of the secondary
address to auto run the program, thus:

SAVE“PROGRAM”,7,1

will cause the program to auto run when loaded back. With both routines, when
a program has been saved using one of these fast loader SAVE routines it is
unnecessary to load anything before loading the program; it will load directly
from the LOAD command.

An example of how fast these routines can be is shown by the following
timing table. This was based on the time taken to load a 26.3K byte Basic
program:

Method 1 :1 minute

Disk :1 minute 10 seconds
Method 2 :1 minute 25 seconds
Normal tape :8 minutes 40 seconds

It should also be noted that the SAVE routines for the fast tape operation are
considerably shorter than the normal tape routines which were analysed at the
beginning of this chapter.

4.8 Causing programs to auto run from tape

The facility to have a program run automatically after completingits LOAD isa

122 The Commodore 64 Kernal and Hardware Revealed

nice feature to include, particularly if the program is intended for commercial
sale. Adding this auto run feature to tape loaded programs is not difficult and
considerably enhances a program’s professionalism. Before saving a Basic
program to tape, the secondary address is used to indicate whether the LOAD
routine starts loading into the memory area from which it was saved, or starts
loading at an address stored in the pointer to the start of Basic program storage
variables. Thus if a program is saved with: SAVE“PROGRAM” it will
commence loading wherever the pointer stored at $2B,$2C (decimal 43,44)
indicates, regardless of where it was saved from. If, however, SAVE
“PROGRAM?” 1,1 is used the LOAD routine will load the program into the
same locations from which it was saved.

The use of the secondary address is thus the main principle required for auto
running. To auto run a program a short machine code loader is required; this is
loaded first, and on loading will then take control of the computer. The only
way to make this happen is to write over one of the operating system vectors in
page 3 of memory, the top end of the stack, or the ‘Tape load IRQ’ vector
temporary storage at location $929F/$32A0.

4.8.1 Page three vectors
There are plenty of vectors which can be used. The most commonly used is the
Basic warm start vector (as in the fast load routines in the previous section). This
is the easiest one to use since it can be set to point to the auto run routine in the
vectors saved with the program, and then reset afterwards. In addition, use of
this vector allows code to access the sprite 11 block.

Other vectors which can be used are:

Input vector at $09324
Output vector at $0326
Abort I/O vector at $032C

These three vectors will also cause control to be transferred to the routine after
loading, but use of the sprite 11 block for code is impossible so the code must
therefore be located in the filename. Problems can arise in using these vectors
when saving, for example: the output vector is set up, as soon as the SAVE
routine is called, and the computer will crash when it tries to print the message
‘PRESS RECORD & PLAY ON TAPE’. The way to overcome this is to add a
bit of code into the SAVE routine which is called before the vector is set up:

LDA #3909
STA $9D !disable the message ‘saving’
JSR $F838 !wait for record and play

You can then set up the vector and save it.

4.8.2 The stack

A machine code program can be made to auto run by using the top 8 bytes of the
stack. These locations are all set to a value of 2, and the machine code starts at
location $0203. This method is not widely used, since it will only work on the
majority of occasions when the machine is freshly powered up. There is one

The Cassette Units 123

advantage, however; if it does not auto run, there is less chance of the machine
code being intact for prying eyes.

4.8.3 Tape IRQ save

With this vector you must have a SAVE routine which saves a program from
one area of memory which will be loaded into another (see beginning of this
section). All the auto run code must be located in the filename.

Having decided which vector to auto run and where to place the machine
code loader, it is necessary to decide what the loader will do. The first function
of any loader should be to get the kernal LOAD routine to stop printing
messages. This will prevent the pause for CBM key when the next file is found. It
may also be necessary to disable the RUN/STOP key (see next section). Other
security methods that you can add into your loader are detailed in the next
section of this chapter. Whichever vector is used to auto run, it must be reset to
normal before running the main program. If page 3 vectors are used (IRQ save
included), there are two ROM subroutines to use: $E453 for vectors from $@309
to $03PB, or $FF8A for vectors between $8314 and $0333 (IRQ save changes
$9314). The program can then be loaded. Depending on whether the program
is in machine code or Basic, theautorunroutinecaneitherjumpstraightintothe
main program or cause the Basic program to run. Running a machine code
program is straightforward, however there are several ways to initiate the
running of a Basic program from a machine code routine:

a) Keyboard buffer

By storing the characters R, shift U, and carriage return into the keyboard
buffer ($9277-$028@) and setting the number of characters to 3 ($C6), the Basic
program will then run by: JMP ($03@2). The problem with this is that, to be on
the safe side, the screen should first be cleared or there is a possibility of a syntax
error occurring.

b) Basic ROM routines

The second, and best, way of running a Basic program is to use the routines in
the ROM. The code to run a program this way is shorter than that for the
keyboard buffer method. In both types, the end address from the LOAD must
be stored into locations $2D and $2E. The code for running a Basic program
using the ROM routines is as follows:

JSR $A65C perform ‘CLR’
JSR $A68E Ireset charget pointers
JMP SATAE lexecute the next statement

There is no need to store anything into the keyboard buffer or to clear the
screen.

4.9 Tape security and anti piracy techniques

The greatest problem for anyone writing and/ or selling commercial software is

124 The Commodore 64 Kernal and Hardware Revealed

illegal copying. This can lose the author a substantial proportion of the expected
royalty. It has been estimated that often as many as two out of every three copies
of a program in circulation are illegal pirate copies. The SAVE command makes
pirating of unprotected programs so easy that it is essential to put some
protection onto any commercial program. There is no absolutely secure way of
protecting a piece of software on the 64. If someone has enough patience they
can break any protection method and copy the program. Therefore, the main
thing to concentrate on is making the job of breaking the protection as difficult
or laborious as possible. The initial methods include disabling the RUN/STOP
key, encoding the program before saving and decoding it on loading, etc.
To disable the RUN/STOP key is very simple:

LDA #<STOP ISET RUN/STOP VECTOR

STA $$328 ! TO POINT TO NEW
LDA #>STOP ! ROUTINE
STA $0329

STOP LDA $91
RTS

Another method of disabling the STOP key is by altering the low byte, but the
above method is the only totally reliable way. This disables both the normal stop
from a Basic program and the STOP/RESTORE combination. If the program
is a machine code game, then it is better to just disable the NMI vector. This can
be done by changing the vector at $4318 to point to an RTI instruction ($FEC1).
The NMI vector does not have to be disabled; it could be of use in the actual
program (see Chapter 6).

Encryption of the program is useful as it will stop a pirate from loading the
main file without the auto run part. Encryption means that a special SAVE
routine is used to encode a program which is then totally indecipherable. The
loading then decodes it so that it can run properly. The best way of encoding and
decoding is to use one of the arithmetic commands in the 651§ instruction set.
The most common and easiest to use is the EOR command. To do this take a
key value, a number between @) and 255, EOR it with a byte of the original code
and store the result; this is the encrypted code. To restore the original code,
simply take the stored encrypted code byte, EOR it with the key value and the
original code is restored:

LDA STORE !GET THE VALUE FROM MEMORY
EOR #$Al 'ENCODE IT
STA STORF !'STORE T

This routine, when called the first time, will encode the byte. Call it a second
time and the original value will be restored. Use the following routine to encode
(or decode) a complete program where ($2B) is the start and ($2D) is the end
plus I:

The Cassette Units 125

LDA $2B !SET START ADDRESS
STA $FB
LDA $2C
STA $FC
LDY #3%¢9
LOOP LDA ($FB),Y !GET A BYTE
EOR $FB !ENCODE/DECODE IT
STA (§FB),Y ISTORE IT
INC $FB 'INCREMENT POINTER
BNE CHECK
INC $FC
CHECK LDA $FB !ICHECK END OF
CMP $2D ! PROGRAM
LDA $FC
SBC $2E
BCC LOOP INOT YET

It is not necessary to use location $FB for the EOR code, but whatever value is
used it must be the same on encoding as it is on decoding. With the advent of fast
tape formats, the need for this EOR encoding/decoding is nullified due to the
fact that the high speed loader must be present to be able to load the main
program.

Final security checks should be made on running the program to check
certain locations for the presence of known values. Obvious locations are the
cassette buffer (filename), device number (to check the last device used), etc.

4.9.1 Undocumented codes

All the previously mentioned methods can be displayed with the use of a
monitor, and so with a little detective work they can be understood by someone
intent on breaking the security. The use of some of the undocumented codes of
the 6502 within the program and its security makes the use of a monitor much
harder. On all 6502 microcomputers there are some instructions that don’t
appear in most documentation. These codes are therefore not included in any of
the monitors available. The most useful of these codes are the multi-byte NOP
instructions. These instructions have the same effect as the normal NOP with
the exception that one or two bytes following are ignored. Using a two byte
NOP before a three byte instruction with the byte to be ignored as, forexample,
$20 (JSR) or $4C (JMP) will result in the code looking like garbage upon
disassembly. 2 byte NOPs:

$04.$14,334,$44,$54,$64,$74, and $F4
3 byte NOPs:
$9C,$1C,$3C,$5C,$7C,$DC, and $FC
Three byte NOPs are useful since the next two bytes could contain a 2 byte

126 The Commodore 64 Kernal and Hardware Revealed
instruction which will read well with the rest of the code but is in fact ignored.

For example, on assembly:

BYT $44,$4C 12 BYTE NOP
JSR $FFDS5 'LOAD FILE
BYT $3C 13 BYTE NOP
LDX #$00 IIGNORED
STX $2D ISTORE END LO
BYT $7C 13 BYTE NOP
LDY #$09 'IGNORED
STY $2E ISTORE END HI
BYT $74,520 12 BYTE NOP
JMP §A474 !IGOTO ‘READY’’

actually does:
JSR $FFDS
STX $2D
STY $2E
JMP $A474

but on disassembly it gives:
., P33C 44 77
, 933D 4C 20 D5 JMP $D52¢
, 9349 FF m
., P341 3C M
., P342 A2 99 LDX #3090
, P344 86 2D STX $2D
, P346 7C 77
., 347 AP 99 LDY #$9¢
., 0349 84 2E STY $2E
., P34B 74 m
., P34C 29 4C 74 JSR §$744C
., P34F A4 xx LDY $xx

The byte xx has nothing to do with the code.

The subject of program protection and security methods is one which can be
gone into in great depth but unfortunately it would be inadvisable to give more
information than has been included since a knowledge of how to protect a
program will also tell the intending pirate how to break that protection. Readers
interested in adding protection and security to their programs should write to
Zifra Software Ltd., 40 Bowling Green Lane, London ECI. Zifra have
considerable experience and expertise in security and protection methods for
both tape and disk which have been used on Zifra products.

Chapter Five
The User Port

5.1 The 1/0 ports and the 6526

The CBM 64 communicates with peripheral devices via five integrated circuits.
The most important of the five is the 6519 microprocessor. This has a single
eight line I/ O port which is used principally to control memory bank switching
but also some of the tape operations. The 6566 VIC chip controls the video
display and has a light pen input. The sound output is generated by a 6581 SID
chip, which also has four analog joystick inputs (see Fig. 5.1 for I/ O connections
on the CBM 64). The other two integrated circuits are 6526 complex interface
adapters or CIAs, which are used to perform all the other I/ O functions of the
CBM 64. We can summarise the function of these two chips as follows:

Keyboard input

User port

Cassette deck

Serial I/O - used by the disk drive and printer
RS232 I/O - for printers, modems etc.
Joystick - simple switch type

IRQ timing for real time clock and keyboard

The two CIA chips which are used to control all these functions have between
them just 32 programmable I/ O lines and 8 handshake lines; many of these lines
are thus used by more than one of the above functions.

73

1) Game 170 b) Cassette

2) Memory expansion 6) User port

3) Audio and video 7) Modulated TV output
4) Serial 170

Fig. 5.1. The position of the different CBM 64 1/0 outputs.

128 The Commodore 64 Kernal and Hardware Revealed

SERIAL /10

AUDIO/VIDEO

GAME I/10

Port #1

PIN #

TYPE

DO WN =

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT

NC

PIN# | TYPE

lon e @ =

LUMINANCE
GND

AUDIO OUT
COMP VIDEO
AUDIO IN

PIN #

TYPE

NOTE

DO hAE WN

JOY@

JOY1

JOY2

JOY3

POTY
LIGHT PEN/
BUTTON A
+5V

GND

POT X

MAX. 16@mA

Fig. 5.1. (contd.)

The User Port 129
Port #2

PIN# | TYPE NOTE

JOY®
JOY1
JOoy2
JOY3

POT Y
BUTTON B
+ 5V MAX. 168mA
GND
POT X

—_

e}

0o

O

o]
©ONOOEWN

Fig. 5.1. (contd.)

An understanding of the two 6526 CIA interface chips is essential if all the
features of the CBM 64 are to be used to the full, and a knowledge of these chips
helps to explain some of the quirks of the system. The functioning of the chipsis
controlled by internal programmable registers, and there are 16 registers in each
chip. These 32 registers (16 from each chip) are located in addressable memory
space and are located at hex $DCPP to SDDFF (decimal 56320 to 56831). They
can thus be accessed from Basic using PEEK and POKE statements and from
machine code using LDA and STA commands.

Of the 49 I/O lines output from the two CIA chips the user can directly
connect equipment to, and control the functioning of or input from, 21 lines; the
other 18 lines are used by the keyboard or memory bank select and are not
therefore particularly usable; one line is not connected. All but two of the I/O
lines on CIA#2 can be used, but only three of the lines on CIA#1. CIA#2is thus
used in all the examples in this section. The functions of each I/ O line from the
two CIA chips are shown in Fig. 5.2 and the electrical connections which allow
the user to utilise some of the lines are shown in Fig. 5.3. Though these lines are
all assigned particular functions the user is not confined to using a particular

PiIN#| TYPE NOTE PIN# | TYPE | NOTE
1 |GND A | GND
2 |+5V 100mA MAX.! B | FLAG
3 | RESET C | PBO
4 | CNT1 D | PB1
5 |SP1 E | PB2
6 |CNT2 F PB3
7 | sP2 H | PB4
8 |PC2 J PB5
9 | SERIAL ATN IN K | PB6

10 |+9VAC 100mA MAX.| L | PB7
11 |+9V AC M | PA2
12 | GND N | GND

Fig. 5.2. The allocation and function of pins on the user port connector.

130 The Commodore 64 Kernal and Hardware Revealed
12 3 4 56 7 8 9 10 11 12

W

N W N W W I R
A BCDEFHUJUKLMN
Fig. 5.3. User port edge connector line definition.

I/ 0 line for the function designated for that line. This is because all the I/ O lines
are under software control and it is not until the routines within the operating
system which utilise that line for a particular function are called that that line is
used. This flexibility allows the redefinition of I/ O line function and is one of the
most useful features of the CBM 64.

The 6526 is a very complex chip with sixteen different addressable registers.
Each bit within these registers has a specific function, either as an input or an
output or to control the operation of the 6526. The registers are of six basic
types; 1/0, data direction, peripheral control, shift register, timers and timer
control registers.

The 6526 can be functionally divided into two component parts. On one side
are the connections to the processor; the processor interface. On the other side
are the input/ output lines; the peripheral interface. The main components of the
processor interface are the eight bi-directional data lines. These are connected
directly to the processor data bus and are used to transfer data between the CIA
and the processor. As with any memory, the processor treats the 6526 as a
sixteen byte block of memory. The direction of data transfer is controlled by the
R/W line, the exact timing of a transfer being controlled by the ¢2 clock line.
The individual registers are addressed by the register select lines connected to
the bottom address lines AP-A3. The exact location of the 6526 within
memory space is determined by decoding some of the address lines and
connecting these to the chip select inputs. The registers of the 6526 will be
accessed only if chip select CS is low. As with all the I/O chips the 6526 can
generate a processor interrupt by pulling the IRQ line low. This occurs
whenever an internal interrupt flag is set as a result of an input on one of the
peripheral control lines.

The processor interface lines have seven basic functions which can be
summarised as foliows:

1) Phase two clock (¢2) - data transfers between the 6526 and the processor take
place only when the ¢2 clock is high. This clock also acts as a time base for the
internal 6526 timers and shift register. On the CBM 64 the ¢2 clock is derived
from the 651§ microprocessor chip which in turn is derived from the ¢@ clock
produced by the VIC chip. The ¢2 clock hasa frequency of .98 MHz ona PAL
machine (UK version 64) and 1.82 MHz on an NTSC (US version 64).

2) Chip select line (CS) - the chip select input is connected to the decoding
circuitry connected to the PLA chip.

3) Register select lines (RSP, RS1, RS2, RS3) - the four register select lines are
connected to the processor address bus lines Af) - A3. This allows the register to
select one of the sixteen registers in the 6526.

The User Port 131

4) Read/write line (R/ W) - the direction of data transfer between the 6526 and
the processor is controlled by the R/W line. If R/W is high then a ‘read’
operation is performed and data is transferred from the 6526 onto the data bus.
If R/W is low then a ‘write’ operation is performed and data currently on the
data bus is loaded into the addressed register of the 6526.

5) Data bus (DBf to DB7) - data is transferred between the processor and the
6526 via the eight bi-directional lines of the data bus. The internal data bus of
the 6526 will only be connected to the processor data bus when the two chip
select lines are enabled and the ¢2 clock is high. The direction of data transfer
will depend on the state of the R/ W line and the register addressed on lines RS@
to RS3.

6) Reset (RES) - the reset line clears all the internal registers of the 6526 (except
the timers and shift register) and sets them all at logic zero. The result is that all
the interface lines are put in the input state, and timers, shift register and
interrupts are all disabled. This is connected to the processor power up circuitry
and is used only when the system is switched on (this line is accessible externally
and since the system software can be changed its function could be modified).
7) Interrupt request (IRQ) - the interrupt request output from the 6526 is very
important in the CBM 64. The IRQ line goes low whenever an internal interrupt
flag is set and the corresponding interrupt enable flag is high. On CIA#2 the
IRQ line is connected to the processor NMI interrupt line; the NMI line is also
used to test the RESTORE key. On CIA#1 the IRQ line is connected to the
processor IRQ line. The function of this line is to generate a regular 69 Hz
interrupt which is used by the clock, I/ O and keyboard routines; this interrupt is
provided by Timer A in the CIA.

5.2 The peripheral interface lines

The peripheral interface lines on each 6526 CIA chip are divided into two I/ O
ports, each port having eight bi-directional I/ O lines. The two ports share two
handshaking and two serial control lines. The following is a brief description of
the I/O buses and control lines of a 6526.

1) Peripheral ports A and B (PA@ - PA7) and (PB@ - PB7) - these portsconsist of
eight bi-directional lines each of which can be independently programmed
under control of the data direction register to act as either an input oran output.
The polarity of the lines defined as outputs is controlled by the contents of the
output register. The internal control registers are used by the processor to
control the modes of operation of the 6526. All lines represent a load of one
standard TTL gate in the input mode and will drive two standard TTL loads in
the output mode.

2) Handshaking lines (FLAG, PC) - the FLAG peripheral control line acts as
interrupt input, and PC as handshake output for peripheral port B. Each line
controls an internal interrupt flag with a corresponding interrupt enable bit.
The various modes of operation are controlled by the processor via the internal
control registers of the 6526.

132 The Commodore 64 Kernal and Hardware Revealed
5.3 Operation of the |/0 ports

Three registers are required to access each of the eight line peripheral ports; they
are a data direction register, an output register and an input register. Each port
has a data direction register for specifying whether each of the eight lines acts as
either an input or an output. A zero in a bit of the data direction register causes
the corresponding peripheral line to act as an input. A one causes the line toact
as an output.

Example: Set lines f to 3 as inputs and 4 to 7 as outputs on port B of CIA#2.

I/0 line Data DDR contents DDR contents
number direction if line = in for example
[in 1)

1 in 2 [’}

2 in 4 [1]

3 in 8 [’}

4 out 16 16
5 out 32 32
6 out 64 64
7 out 128 128

Total for example - 249

Command is POKE 56579, 249

Each peripheral line is connected to an input register and an output register.
When a line is programmed to act as an output the voltage on that line is
controlled by the corresponding bit in the output register. A ‘I’ in the output
register causes the corresponding line to go high, and a ‘9’ causes it to go low.
Example: Output to port B of CIA#2 using the data direction set out in the
previous example. Lines 4 and 7 are high and lines 5 and 6 are low.

I/0 line Data direction High or Value of line
number of line low in I/O reg
1] in - -

1 in - -

2 in - -

3 in - -

4 out high 16
5 out low [/]

6 out low 9
7 out high 128

Total for example 144

Command is POKE 56577, 144

The User Port 133

Reading one of the peripheral port registers causes the contents of the input
register to be transferred onto the data bus. With input latching disabled the
contents of the input registers will always reflect the data currently on all the
peripheral port lines.

Example: Read the contents of the input lines of port B of CIA#2 set up in the
example on data direction, and store the contents as variable A.

A = PEEK (56577) AND 15

The AND 15 masks off the lines used as outputs; they must be removed since the
current state of the output lines is stored in the input register. AND commands
can then be used to determine which lines are high and which are low.

5.3.1 Registers used in the operation of the /0 ports
Register 1 Parallel port A 1/0 register
CIA#]1 - Hex $DC@P decimal 56329
CIA#2 - Hex $DD@p decimal 56576
This register contains the contents of the input and output lines of port A of
the 6526.

Register 2 Parallel port B I/O register with handshake control
CIA#1 - Hex $DCPl decimal 56321
CIA#2 - Hex $DD@1 decimal 56577

This register contains the contents of the input and output lines of port B. Itis
identical to that of port A, except that this register has control over the
handshake line PC. The PC line goes low for one clock cycle following either a
read or write to the port B peripheral I/ O register.

Register 3 Data direction register for port A
CIA#1 - Hex $DC@2 decimal 56322
CIA#2 - Hex $DD@2 decimal 56578

This register controls each of the eight lines on port A and determines whether
they are acting as inputs or outputs. A one in any of the eight bits of this register
sets the corresponding line into the output mode, and a zero puts it into the
input mode.

Register 4 Data direction register for port B
CIA#1 - Hex $DCP3 decimal 56323
CIA#2 - Hex $DD@3 decimal 56579

This register controls each of the eight lines on port B and determines whether
they are acting as inputs or as outputs. A one in any of the eight bits of this
register sets the corresponding line into the output mode, and a zero puts it into
the input mode.

5.3.2 Handshaking

The term handshaking is used to refer to signals which control or synchronise
the transfer of data between the computer and another device. The 6526 has two
handshaking lines for use on data transfers; the FLAG input and the PC output.
The PC line is used to indicate that data is ready to be transmitted or received on
port B. This is indicated by the PC line going low for one clock cycle following a

134 The Commodore 64 Kernal and Hardware Revealed

read or write of the port B data register. The FLAG line is an input which, on
receiving a negative transition, will set the FLAG bit in the interrupt control
register. The FLAG line can be used to detect the PC output from another 6526.

5.4 The interval timers and counters of the 6526

The 6526 has three internal interval timers (Timer A, Timer B, and TOD). One
of these, TOD, is a 24 hour time of day clock. Timer A will also function as a
counter of pulses input on one of the I/O lines. These timers are not only useful
but are of vital importance to the operation of the CBM 64. It is these timers
which are used to control the generation of the 6@ Hz interrupt used to update
the real time clock and scan the keyboard. They are also used to control the
timing of I/ O on the serial port, the RS232 port and the cassette. Since the CBM
64 interface uses two 6526 chips there are a total of six timers available for use by
the system software. The timers are used in conjunction with the processor
interrupts. The following table shows some of the functions of each timer plus
the interrupt line affected:

CIA#1 IRQ interrupt
Timer A - System 60 Hz interrupt
Real time clock updating
Keyboard scanning
Cassette read/ write timing
User programmable functions
Timer B - Cassette read/ write timing
Serial port timing
User programmable functions
TOD — User programmable functions

Note that Timer A is used for both updating the kernal software’s real time clock
and cassette timing; for this reason the real time clock loses whenever the
cassette is used.

CIA #2 NMI interrupt
Timer A - RS232 port I/O timing

User programmable functions
Timer B - RS232 port I/O timing

User programmable functions
TOD - User programmable

5.4.1 Timer A and Timer B

Each interval timer consists of two eight bit latches and a sixteen bit counter.
Each timer occupies two of the 6526 registers; register numbers 5 to 8. Their
locations in the CBM 64 are as follows:

The User Port 135

Register 5 - Timer A low order byte
CIA#1 - Hex $DCp4 decimal 56324
CIA#2 - Hex $DDgp4 decimal 56589
Register 6 - Timer A high order byte
CIA#1 - Hex $DC@5 decimal 56325
CIA#2 - Hex $DD@5 decimal 56581
Register 7 - Timer B low order byte
CIA#1 - Hex $DCP6 decimal 56326
CIA#2 - Hex $DD@6 decimal 56582
Register 8 - Timer B high order byte

CIA#1 - Hex $DC@7
CIA#2 - Hex $DD@7

decimal 56327
decimal 56583

These registers are used to load values into the counters. After loading, the
counter decrements at the system clock rate (.98 MHz on PAL machines and
1.02 MHz on NTSC). Thus if the counter is loaded with its maximum value (all
sixteen bits = 1 or decimal 65535) it will be decremented to zero 1n.H669
seconds. Upon reaching zero, an interrupt flag is set and one of the two interrupt
lines will go low and generate a processor 1nterrupt The timer will thus disable
any further interrups until the interrupt servicing routine reads the interrupt
control register of the 6526. In addition, the timer can be instructed to invert the
output level on one of the peripheral I/O lines each time it ‘times out’. The
modes of operation are controlled by reading or writing to the four timer
registers plus the two control registers and the interrupt register. The two timers
A and B can be linked to create a single 32 bit counter which is capable of
creating long delays. Program 7 demonstrates the operation of a 32 bit timer.

18 POKESE3583, 8: POKET6582. @

28 POKES6581,255:POKESS580., 253

30 POKES6E594., 16+1 :FOKESAS591, f4+16+8+1
35 T1=TI

48 IF(PEEK({S56583>AND2)(2THEN4Q

58 PRINT(TI-T1)/68

Program 7.

5.4.2 Time of day clock - TOD

This is a general purpose 24 hram/pm timer witha 1 1§ second resolution. This
timer occupies four registers within the 6526. They are 10cated and organised as
follows in the CBM 64:

Reg # CIA#]1 location CIA#2 location Function

8 $DC@8 - 56328 $DD@8 - 56584 TOD 1/18 secs
9 $DCP9 - 56329 $DDP9 - 56585 TOD secs

19 $DCPA - 56339 $DDPA - 56586 TOD mins

11 $DCPB - 56331 $DD@B - 56587 TOD hours

136 The Commodore 64 Kernal and Hardware Revealed

Each of these registers stores its data as shown in the following table. It should
be noted that the values are stored in BCD form rather than straight binary:

Register Byte 7 6 5 4 3 2 1 4}

8 - TOD 1/18 sec Ji] [/] [{] Ji] T8 T4 T2 T1
9 - TOD seconds 4} shi4 shi2 shil slo8 slo4 slo2 slol
19 - TOD minutes [/] mhi4 mhi2 mhil mlo8 mlo4 mlo2 mlol

11 TOD hours PMflag # [hhil hlo8 hlo4 hlo2 hlol

shi, mhi and hhi are the decade portion of the respective second, minute or hour
and slo, mlo and hlo are the unit portion.

The TOD clock is timed by a 50 or 69 Hz external clock pulse provided for the
system interrupt timing (5¢ Hz is found on US machines and 6§ Hz on UK
machines). This external clock frequency must always be set to the correct value
by setting the required bit in control register, .A bit 7, to #=6@ Hz and 1=50
Hz. The TOD time registers can be preset by writing to them the required time
values. This must, however, be done in the correct sequence. The TOD clock is
stopped when a write is performed to the hours register. The clock will not start
again until a write is performed to the 1/1f seconds register, thereby allowing
accurate time setting.

When reading the contents of the TOD registers there is the problem of the
register values changing whilst they are being read. This is overcome by latching
all the register values on a read of the hours register. Whilst the values are
latched the TOD clock will continue to count but will not affect the register
values until the 1/ 10 seconds register is read; this disables the latches. Any of the
registers (apart from hours) can be read without latching providing the problem
of carry between registers is not important.

The TOD clock incorporates an alarm feature which causes an interrupt to be
generated whenever the time reaches a preset value. The alarm is set by first
setting bit 7 of control register .B to | and then writing the desired alarm time
value into the four TOD registers. Having written the desired values into these
registers, control register .B bit 7 should be reset to zero. Program 8
demonstrates the use of the TOD clock registers and the alarm feature.

8 CIR=56576: REM CIA#2. FOR CIA#1, CIAR=56320
1 POKECIA+14,PEEK(CIA+14>0R128

2 MO=0:GOSUB 1866 SET TOD TIME

4 MO=1:GOSUB 1808 SET TOD ALARM

S PRINT"®D : @ M

18 H=PEEK(CIA+11) :REM HOLIRS/AM DR PM
28 M=PEEK(CIA+18> :REM MINUTES

30 S=PEEK(CIR+2) :REM SECONDS

48 S18=PEEK(CIR+3):REM 118 SECONDS
58 POKE1624, ((HAND112).16)0R48

68 POKE1825, (HAND1S)(0R48

78 POKE1927, ({MAND248).16)0R43

38 POKE1828. (MAND15>0R48

50 POKE1838, ((SANDZ2432.'16)0R43

The User Port 137

160 POKE1831. (SAND15:0R48

118 POKE1832.S180R43

120 B8=16:IF(HRAND128><{128 THEM B3=1

136 POKE1635. B3

149 IF _PEEK(CIA+13>AMD4=4THEMPRIMT" HAIASRLARM" : EMD
158 GOTO 1@

397 REM

998 REM SET CLOCK OR TIME

999 REM

1600 IF MO=8 THEN PRINT"=(JJSET TIME:":POKECIA+15,PEEK(CIA+1SXAND127:G0OTO 1829

1010 PRINT"=(J2SET ALARM:":POKECIA+15,PEEK{CIA+1520R128
1020 INPUT"HOURS";H:H=INT(H)

1838 IF H<C1 OR H>12 THEM PRINT"TI":GOTO 1920
18648 PRINT"AM QR PM 2"

1058 GETA$: IFA$S "AANDASC P THEN1850

1868 PRINTA$

1861 IF MO=1 THEN 1678

1665 IF H=12 AND R$="R" THEN RA$="P":G0TD1679
1866 IF H=12 AND A$="P" THEM R$="R"

1676 B=128:IFA$="R"THENB=8

1088 POKECIA+11,B+INT(H/1@)%16+H-INT(H/18>%18
1898 INPUT"MINUTES";M:M=INT(M)

1100 IF M<B OR M>S2 THEN PRIMT"TI":GOTO1898
1118 POKECIA+1@, INT{M/13)%16+M-INT(M/18>%10
1128 INPUT"SECOMDS":5:53=INT(3)

1138 IF S<B OR 35>53 THEN PRINT"TI":GOTO112@
1148 POKECIA+9, INT(S/A102#16+5-INT(5-19:%109
1145 IF MO=1 THEN 117VAQ

1156 PRINT"EREFPRESS ANY KEY TO START TIMER"
1168 GETA$: IFA$=""THEN1158

1176 POKECIA+3.8:RETLRM

Program 8.

5.5 Serial data register (SDR)

One of the registers of the 6526, register 12, functions as a serial in/ parallel out
or parallel in/serial out shift register. The serial input or output from this
register is connected to the SP pin on the chip and is designed to be used in
conjunction with the CNT line to allow serial communications between 6526
chips. Data is clocked in or out of the shift register using either Timer A or the
CNT pulses. In the input mode data is clocked in off the SP line on the rising
edge of a clock pulse applied to the CNT line. Each pulse on the CNT line clocks
in one bit of data, represented by the state of the SP line. After 8 CNT pulses the
data in the shift register is transferred to the serial data register and an interrupt
to the processor is generated.

In the output mode, data is loaded into the serial data register. Timer A is
used to generate the timing rate at which data is clocked out. Timer A is first set
into continuous running mode and data will be shifted out at half the timer
underflow rate, the highest possible data rate being one quarter of the ¢2 clock
(245 KHz on a UK version of the 64 and 255 KHz on a US version). As soon as
the data is written into the SDR transmission will commence, assuming that
Timer A has already been set into continuous operation. Every time an
underflow is generated by Timer A a CNT pulse is generated. A bit from the
SDR data is shifted onto the SP line, becomes valid on the falling edge of the
CNT pulse and remains valid until the next falling edge of a CNT pulse. After
eight CNT pulses the entire contents of the SDR will have been transmitted on
the SP line and an interrupt is then generated to indicate that data transmission

138 The Commodore 64 Kernal and Hardware Revealed

has been completed. On completion of transmission the CNT line will go high
and the SP line will stay at the level of the last data bit transmitted. If a new byte
of data is loaded into the SDR before the transmission of the previous byte has
been completed, the 6526 will complete transmission of the current byte, and
then instead of generating an interrupt, will carry on and transmit the second
byte. In this manner continuous transmission can be achieved.

An important potential use for the serial line is in serial communications
between computers and/ or peripheral devices which also use the 6526. Program
9 shows how two or more CBM 64 computers can be connected via the CNT and
SP lines, plus ground, to enable the transmission of programs and data between
the two machines. This could easily be expanded to work with more machines.

@ REM RUN TO SEND FIRST

1 REM OR RUNY@ TO RECEIVE FIRST

2 REM

S5 INPUTAS:A$=A$+CHR$ (13>

18 POKES658@, 2:POKESE581.8

28 POKES6598, 64+16+1

25 FORI=1TOLEN(A$)

26 J=ASC(MID$(A$.I,1)>>

38 POKES6588, J:PRINTCHRS(J);

58 IF (PEEK(S6583)ANDB8><8 THEN 58

58 NEXT:POKES6568,0

55 IF (PEEK(S6S89)AND3)<8 THEN 65

78 POKE 56598, PEEK(SE598> AND (128+63)
38 POKESE568.9

38 IF (PEEK(S6583>AND8><3 THEN 98

16a I=PEEK(56588): [FI<>@THENPRINTCHRS$(I>,; :GOTO38
118 50T0S

18 POKES6579, 1

28 POKES6326., 255 POKES6327.,255

3@ POKES6335,32+16+1

48 PRINT""

58 PRINT"H"65335-(PEEK(S6326)+PEEK(56327>%256)
68 FORI=8T0100:NEXT

70 GETR$: IFA$=""THENV®

38 POKES6577.1:POKESE577.8

98 50TO Se

18 POKES6599. PEEK(S6598)ANDC128+63)
20 POKESES73.1

30 GETA$: [FA$=""THEN39

49 POKES6S7T.9:FOKESESTT., 1

5@ IF(PEEK(S6583)RND3)<E8THEN3B

60 PRINTPEEK:S5588)> 507030

Program 9.

5.6 The interrupt control register (ICR)

The 6526 can generate interrupts in several different ways. There are altogether
five sources of interrupts. The source of the interrupt is identified by examining
which bit is set in the interrupt control register; this is register 13 of the 6526. The
functions of the individual bits of this register are:

The User Port 139

ICR bit # Interrupt source

Underflow from Timer A
Underflow from Timer B
TOD clock alarm

Serial data register full/empty
Flag line input

L ——=

Bits 5 and 6 are not used, while bit 7is used to set or clear the ICR mask register.

The ICR, in fact, consists of two separate registers; the interrupt flag register
which is read only and the interrupt mask register which is write only. Whenan
interrupt occurs the corresponding bit in the interrupt flag register is set,
providing it has previously been enabled by the mask register; an interrupt to the
processor is also generated. The mask register is used to control which function
or functions can create an interrupt. An interrupt will occur only when the
corresponding mask register bit is set. When enabling an interrupt the mask
register, with bit 7= 1, is set by writing the appropriate bit pattern to register 13,
the ICR. If, when writing to the ICR, bit 7is cleared then all mask bits set to one
will be cleared whilst all mask bits set to zero will remain in their previous state.
Any interrupt which is enabled by the mask register will set bit 7 of the ICR flag
register and thereby cause the IRQ pin to go low and generate an interrupt. The
interrupt is cleared by reading the interrupt flag register. The interrupts on the
CBM 64 are examined in greater detail in the Chapter 6.

5.7 The 8526 control registers (CRA and CRB)

The two control registers of the 6526 are used, as their names imply, to control
the actual functioning and modes of the timers and the serial port. Each bit in
the two registers has a separate control function; they can be summarised as
follows:

Control register A

Bit State Function
9 9 start Timer A
1 stop Timer A; in one shot mode this bit is reset on
underflow

line PB6 functions normally as an 1/O line
output from Timer A appears on line PB6
pulse output on PB6 (only if bit | set)
toggle output on PB6 (only if bit | set)
Timer A in continuous running mode
Timer A in one shot mode

[S)
—_l—, S — S

140 The Commodore 64 Kernal and Hardware Revealed

Control register A

Bit State Function
4 [’ no effect
1 forces the Timer A counter to be loaded from the Timer A
latch
5 [4] Timer A counts ¢2 clock pulses
1 Timer A counts positive transitions on the CNT line
6 [’} SP line in input mode using external shift pulses on CNT
line
1 SP line in output mode. CNT sources shift pulses
7 1] TOD clock timing pulse at 6 Hz (use on US machines)

TOD clock timing pulse at 50 Hz (use on UK machines)

Control Register B
State

Bit

Function

5,6

—_e e, —,e —,e -

9

stop Timer B

start Timer B; in one shot mode this bit is reset on underflow
normal I/O operation on the PB7 line

output from Timer B appears on line PB7

pulse output on PB7 (only if bit 1 of CRB set)

toggled output on PB7 (only if bit 1 of CRB set)

Timer B in continuous running mode

Timer B in one shot mode

no effect

forces the Timer B counter to be loaded from the Timer B latch
these two bits select one of four input modes for Timer B:

Bit 6 Bit 5 Mode
[/ 9 Timer B counts ¢2 clock pulses
/] 1 Timer B counts positive CNT transitions
| # Timer B counts Timer A underflow pulses
1 1

Timer B counts Timer A underflow pulses
while the CNT line is high

writing to TOD registers will set TOD clock
writing to TOD registers will set TOD alarm

5.8 Parallel interfacing

In some applications it is simply not possible to connect devices directly to the
eight user port I/ O lines. This is generally for one of two reasons. The first is that

The User Port 141

the user port lines do not output enough power to drive the device; directly
connecting the device to the user port could result in damage to the CIA chip.
The second reason is that there are insufficient I/ O lines for the application. The
first type of problem can be overcome by using relays and opto-isolators; the
second type by using multiplexing techniques to expand the available number of
I/ O lines.

The eight 1/ O lines from the CIA chip are in output mode only, capable of
each driving the input of a single TTL chip. The simplest method of improving
this drive capability is to put a buffer onto each output line; this will expand the
drive capability of each line to 1@ TTL chip inputs. This is adequate if the I/ O
lines are used just to control some TTL circuitry, but it is inadequate for
controlling power devices such as motors, relays and lamps; for these a power
driver circuit is needed. The simplest power driver circuit consists of a single
transistor whose base is connected to the output of a buffer and whose outputs
are connected on one side to the power supply and on the other to the device to
be driven. It is, however, much easier to use one of the peripheral driver ICs like
the SN75446. This chip is used in the circuit diagram in Fig. 5.4. The SN75446 is
capable of driving devices requiring up to 5@ volts and 4@ mA. The circuit shows
it driving two relays.

+5V (or up to HPV)

I

+5v
COMMON
Strobe Vee
RELAY #1
ovT]

User PBY———— v g No

port NC
PBl ——— IN1 COMMON

#5446
RELAY #2
our2 i o NO

— O NC

GND
=

Fig. 5.4. Dual relay control circuit.

If there is any risk of a high voltage accidentally being present on one of the
I/0 lines it is advisable to protect the computer by using opto-isolators on lines.
An opto-isolator simply consists of an optically coupled LED and photo
transistor. An example of such a device which provides four separate opto-
isolators which work on 5 volt lines is the ILQ74.

The most commonly needed I/ O expansion is the requirement to test the state
of a large number of input lines. This kind of I/ O expansion is used when adding
a special keyboard to the machine or testing switches in a security alarm system.

142 The Commodore 64 Kernal and Hardware Revealed

pee VCC

I i T

[3 L.l wee -8 16~ al—Vee 2133 2l veo
741502 74150 n 74150 a 74150 12
1011 13 14 ?1 104V 13 “9'51 (0N 13 lq—;% o 1] {3 14 lsi
4&
Vee)

(
Sv
I‘T
“PB7T 6 54 3 21

Fig. 5.5. 1/0 expansion circuit.

A circuit of this kind is shown in Fig. 5.5. It uses four 16 line to 4 line
demultiplexers which convert the state of the 16 lines into a 4 bit binary value.
This value is fed into four lines of the user port. The chip select line of each of the
four demultiplexers is controlled by four output lines of the user port. Using this
circuit the computer can scan the state of up to 64 input lines.

5.8.1 Parallel port application example

Program 10 is an example of how the parallel port can be used. This program is
designed to allow disabled people to use a computer, both to write and use
programs and to control various devices such as TV, radio, lamps etc. The
program requires line @ of the user port to be connected to a switch, the other
side of which is connected to ground. The switch can be a simple microswitch
usable with minimum finger pressure, or a suck /blow switch controllable by the
user blowing into it. The other I/ O lines are connected to devices which are to be
controlled, and each line will require connection via a power driver circuit and
relay, as in Fig. 5.4. A selection of possible applications is shown in the program.

6 PR=5:MC=5

10 DATA" LC ","SENT “,"DELC ","DELW *," ", mONL
20 DATA" UC_ “,"PARA “,"SEND ","ESC "."+YAR "," 1C "." "
38 DATATEXT “,"PROG ", "USER ","HELP "."-YAR ",* “,"DEL "

108 DATA" 3P ".A,T,L.G.V," THE "
11@ DATAE.I,3,U,2,Q," AMD *

1206 DATAN,Q.R,P,J.#," OF "

130 DATAC.D.H. M. ¥,@," IS *

148 DRTAF.B,HW,Y¥.K."." TO *

156 DATAG.2.4,5,8," 7 "," IN "
168 DATA1,3.5,7,2, !, "THAT *

1?8 DRTR.J"’J'J*:J":(‘;S

188 DATA"., ", 2,=,%4,¢,0,<

199 DATA&, t.";",":".[,1,>

209 DHTR" "}HITJL)G)I'-".!THE

218 DATAE. I.3,U,Z,3,AND

S5%a

The User Port

DATAN, 0. R.F.J. #.0F

DATAC.D.H.M.X.@,I5

DATAF. B, W, Y,K, . TD

DATAG,2.4,6,3, .IN

DATARL.3,5.7,2, 1, THART

DRTH-)+I— *Jr. L%

DATA"., ", ?.=.%,(,0,¢

DHTB&:?;"J" "0 1.3

DATR" P allf;‘;" <Son "GOTO “."ON "
DATARB, 2,5, ", ", >, "INPUT". " ¥AL "

DATA3,4,5.#,<{,"POKE “,"CHR$ "

DATRE.93,.." <7 ",*" C= “,"PEEK ","STR$ "

DATAY, (. $,t," >= ","LEN ","LEFT$"

DATA+.-. %, " ","ASC ", "RGHT$"

DATA"LIST "“,"DATA “,"IF ","GOSUB"," DIM ","TRON ","MID$ "

DRTA"RUN ", "COMT ","THEN “."RTRN “."3TOP “","TROFF“." LOG "
DATA"READ ", "INT “,"ABS ",“"SGN ","RND “,"SGR " L EXP "
DATA“PRINT"." FOR ", "NEXT ","3IN ";"COS ", "TAN ";" v
DATA" ",1,7,=,3.50T0,0N

DATARA. 2,5, ".", >, INPUT, AL

DATAS, 4,5, #, <, POKE(, CHR¥(

DATA8,2,..," ".,<{=,PEEK(,5TR$(

DATA>. (. %, 1, >=.LENC, LEFT$(

DATA+, —. %, .. """ ,ASC{.RIGHT$(
DATALIST.DATA, IF . 30SUB, DIM. TRACEON. MID$(

DATARUN, CONT . THEN, RETURM. STOP, TRACEOFF, LOG¢

DATAREAD., INT(,ABS(, 36N, RNDC, SARC, EXPC¢
DATAPRINT, FOR. MEXT ., SINC, COSC. TANC, ¢

1688 RESTORE

1819 DIMDF$(2,55,DA$CL, 3,60, TA$(L, 3,50, DV${22), TY$ (2
1820 FORI=8T02:FORJ=GT06

1638 RERDDF#(I,J>

1048 NEXTJ:MEXTI

18650 FORI=8T01

1868 FORJ=8T02

1878 FORK=9T06&

10688 READDAS$CI.J, K>

1898 IFLEMCDR$:I,J,K))=1THENDA$CI, J.K)=" "+DASCI,J,K)+"
1188 NEXTK:NEXTJ

1118 FORJ=0T09

11206 FORK=0T06&

1138 READTAS$CI. J.K>

1148 NEXTK:NEXTJ

1150 NEXTI

1178 TA$(B,5,35>=CHR$ (34>

1198 TA$(1,3,3)=CHR$(34>

1200 FORI=0T020

1210 DVs$(I>=" TV II="

1228 NEXTI

1788 UP=356577:UX=1

1718 VN=2:M=6:R$="":UC=1:ED=0:HP=8:TV=0:N¥=9
1728 PD=70:FR=50:FM=0

1738 GOSUB 20089

2008 PRINT " TRNEMADYICE";

2019 PRINT " SalalaleleHOME " ;

2020 PRINT " SnDalanenR" ;

2638 FORI=QTQO2:PRINT" "

2048 FORJ=0T06:PRINTDASCM, I, I

2058 NEXTJ:NEXTI

2055 PRINT

2068 PRINT " SaliRisDOlaie" : "mmuummm" "#YARIABLES";

2078

5080 FORI=OTO2:PRINT" ";
2090 FORJ=OTO6:PRINTDVS(I*7+JY ;

2180 NEXTJ: NEXTI
2110 NIRRT AR R DRI
2120

’

2139 FORI=BT02-PRINT"\-‘ Tag
2148 FORJ=@TO6:PRINTDF$CI, I
2150 NENTJ:NEXTI

143

144 The Commodore 64 Kernal and Hardware Revealed

2168 PRINT"S";Rs$;

3008 PRINT"S":FPRINT

3005 IFHP=8G0TI3849

3016 PRINT"SNNEEKADY ICE SSELECT ANY BOX FOR HELPE";

3028 HP=HP+1

3638 GOT03260

3040 IFLENCA$)+LENC(NS$) +LENCY$)+LENCZ$2<168G0T03870

3850 PRINT" SIRMURMWARNIMG FRINT STRIMG -- NOW!E“; :50T03208
3078 FORI=1TOLEMIN$)

3688 NB$=MID$S(N$.I.1>

3898 IFUC>8G0T0213@

3118 IFNB$<"A“ORMB$>"Z2"GOTN313Q

3120 NB3$=CHR$(RSC(NB$)+126)

3138 R$=A$+NB¥

3141 IFUC=2THEMGOSUEZ01009

3142 IFUC=ZTHENUC=8

3143 NEXTI

3145 Ng=""

3146 IFUC=3THENUC=2

3150 PRINT"S":As$;

3160 IFED=8G0T03130

3178 PRINT"J";Y'$;"@";2%;

3188 PRINTFL$:FL$=""

3208 PRINT"S":PRINT: PRINT " SuklslalckHOMES" ;

3285 IF (PEEK(UP)>ANDUX»=8THEN3225

3210 IF(PEEK<CUP)ANDUKX>GOTN3212

3212 IFHP>OTHEN3220-

3213 IFED>OTHEN3220

3214 IFNV>BTHEM3220

3215 PRINT"=aWED&RDY ICE "
3228 PRINT " SRIEIEB*HOME " ;

3238 PRINT " Sallellsm" ;

3249 FORI=BTO1S

3250 PRINT"d > B

3268 FORJ=1TOPD: IF(PEEK(LIF>ANDUX YGOTO3483

32635 NEXTJ

3278 PRINT"i@B@@] IEgEE" ;

3288 PRINT"W"; : IFI=20RI=1ZTHENPRINT"&":

3298 NEXTI

3318 GOT032080

3488 IF (PEEK(UP>ANDUX)>GOTO3488

3420 PRINT"iEEEEI "

3438 IFI>9G0T03600

3448 FORJ=8T06

3456 PRINT"@";DA$(M. I,Jo:"E";

3468 FORK=1TOPQ: IF{PEEK(UPXANDUX>GATO3450

3465 NEXTK

3478 PRINT"IBEEEI"; DAFCM. I, T>:;

3488 NEXTJ
3485 PRINT"i® ;DAS(M. I, J-15; :GOTO3268
3498 PRINT"i@ DR$CM, I, T35

3568 IFHP=2G0T048040

3585 IF NV>8 GOTO7720

3518 N$=TAR%$(M, I,J):G0OT03804

3688 IFI>12G0T038068

3618 II=I-10

3628 FORJ=9T06:PRINT"J"; DVS(II#7+J); "@";
3638 FORK=1TOPR: IF{PEEK(LIPXANDUX>GOTO3672
3635 NEXTK

3658 PRINT"BEE@EN"; DYSCIIHT+I>;

3668 NEXTJ

3665 PRINT"iBEEEI;D''$(II4#7+J-1); :G0TO3209
3670 PRINT"IEEBEE"; DVECII47T+I);

3688 IFHP=2G0TQ42699

3685 IF NV>@ GOTO77449

3698 N$=TV$(II#7+J)>:G0T0O3P28

3ge@ II=I-13

3819 FORJ=9TO6:PRINT"&": DF$(II, Jo; "8,
3838 FORK=1TOPQ: IF {PEEK(UP>ANDUX>GOT033:83
3835 NEXTK

3868
3870
3375
3880
4808
4818
4820
4338
4840
4109
4118
4300
4310
4500
4505
4510
45208
45368
4708
4781
4702
4705
4718
4720
4739

The User Port
PRINT"fBEEBEI"; DF$<I11.J>;
NEXTJ

PRINT"iBEEEI" ; DF$<II.J-1): :G0TO3200
PRINT"jESBEM : DF$CII.J>;

SS=(II¥7+J>+1

IF N¥2>8 GOTO7728

IFHP=2G0T044080

IFSS>7G0T04820
ONSSGOTD41089. 4309, 4539, 4700, 4982, 5108, 5398
IFS35>14550T04940
ONSS~-PGOT0S568, 5709, 5300, 5198, 6399, 5568, 6700
ONSS-14G0T06998, 7164, 7390, 7500, 7799, 7369, 5109
REM SET TO LOWER CRSE =~
UC=9:G0SUB20188 : GOTN3290

REM BEGIN R SENTENCE

UC=3:G0SUB20608 : A$=As+". *: GOTO3808
REM DELETE CHARACTER
IFLENCA$>=8G0TD3290
IFLEM{R$)>>160T045358

A$="":FL$=" ":GOTO3086

A$=LEFT$(A$. LEM(A$H—-1 > :FL$=" ":G0TO3669
REM DELETE WORD

IFLEN<R$>=08G0T030a0
IFLEN(A%>=1G0TQ4745
FORI=LEN{A$)TO2STEP-1
NB$=MID$CA$, 1,12

IFNB$=" "GOTO4758
RA$=LEFT#(AS, [-1) FL$=FL$+" "

NEXTI

IFLENCA$)>=1ANDLEFT$(A$, 12O "THENGOSUB4869
GOTO3998

Ag="":FL$=FL$+" ":RETURN

REM NOT DEFINED

307032688

REM NOT DEFINED

50703288

REM CR-SENDCRALF TO FRINTER
OPENPR., FR

PRINT#PR

CLOSE PR

G0T03808

REM SET TO UPPER CRSE
UC=1:GOSUB268068 : G0TN3280

REM PARAGRAPH

OPENPR. PR

GOSUB 21698:G0SUB 209960

GOSUB Z2oooa
PRINTH#PR:PRINT#PR:PRINTH#PR

R$= " "

uc=3

CLOSE FR

GOTO3868

REM PRINT CONTENTS OF Rs$

OPEN PR, PR

GOSUB218083 : GOSUB28992

H$= nn

CLOSEPR

GOTO3988

REM SEND LINE TO MICRO

OPEN MC.MC

PRINTH#MC, A$

- GOSUBZ©83960

ﬁ$= nn
CLOSEMC

G0TO3L88

REM ADD R MAKE A$ THE MEXT YARIABLE

IF YN<21 THEM 634@

FRINT " Jalel#ADY ICE - NO ROOM FOR NEW YARIABLE™:
GOTO30868

IF A$=""THEMN3000

145

146 The Commodore 64 Kernal and Hardware Revealed

6348 TW$(YNI=RA$

6358 DYS(YMI=LEFTS{TYSCWNI+" ",5

6368 DVYS(YNI=LEFTS(DY${YNY. 4>

6365 DVS(YNI=D¥$(VYNI+CHR$(32)

6378 GOSUB22699

6388 YN=VN+1

6398 GOT03890

8500 REM SEND ASCII 3 TO MICRO (BREAK-IN)

6518 OPEN MC,MC

6528 PRINTHMC, CHR$(3);CHR$(3);

6538 CLOSE MC

6548 GOTO308a

6788 REM UNDEFINED

6718 GOTO 3208

6968 REM TEXT MODE

6918 M=9:G0T026089

7180 REM PROGRAM MCDE

7118 M=1:UC=1:GDSUB20688:GOTO29aD

73088 REM USER MODE

7312 GOTO39809

7o8@ REM HELP SUB-S'YSTEM

7910 HP=1:G0T03000

7788 REM DELETE YARIABLE

7781 IF YN>@ GOTO7718

7783 PRINT"XfEE0B#ADVICE - NO YARIABLES TO REMOVE";
7785 G0T03000

7718 PRINT"HBWIEEMADVICE - SELECT “ARIABLE TO BE REMOVED";
7713 Ny=1

r715 GOTO30v8

7728 REM UNKHOWM YARIABLE

7rad PRINT"SREGREMADYICE - NO VARIABLE SELECTED! "
7738 Nvy=@

7735 507036608

7748 REM DELETE SELECTED VARIABLE

7745 PRINT"DsldAD ICE - 0.K. "
7758 FOR K=II1%7+J TO 19

7795 DY$CK)=DV'$(K+1)

7768 TYSCKI=TY$(K+1)

7762 NEXT K

T76S Dv$(28r=* !

7778 TVS(285=""

7788 GOSUB 22099

7735 Nv=6

7798 YN=VN-1

7795 GOT03898

7906 REM UNDEFINED

7918 GOTO32688

8106 REM DELETE BUFFER

81108 GOSUBZ282@3:A$="":GOTO3069

10980 PRINT"=NEEMADYICE NO HELP IN THIS YERSION";
10885 HP=8-

19818 50T03800

20060 PRINT " kB RERRNERER I EREhEae) LC v
20013 PRINT"XEEBEE UC% "

20820 DF$C1,8)=" UC¥ ":DF$(8.@)=" LC "
20838 RETURM

20188 PRINT " S{RRIREIER AR BB BRE] LCE "
28110 PRINT"WEEBEI UC

201208 DF$(1.8>=" UC ":DF#${0,@>=" LC¥ "
20138 RETURN

26960 PRINT"&":

20918 FORL=1T01@

20928 PRINT" "

28938 NEXT

20948 RETURM

21888 PRINTH#PR.R$

21818 RETURN

22080 PRINT" SRR RRERGENERE" ;

22019 FORI=@TO2:PRINT" i

22020 FORI=@TO05: PRINTDVFCI%7+JT):

22036
22049
30000
38018
30026
30835
368406
36058
30069
380870
36889
36899
3e169
30118
30128
30138
30140
30150
30168
38178
38188
38190
302008
3682109
38220
36230
36248
302568
30268
36278
30280
39398
363008
30318
38320
38338
39400
30418
38420
36569
38518
30528
30688
30618
30520
36788
38718
30728
30800
30818
38828
30968
30318
38926
31888
31810
31826
311@8
311109
31120
31200
31218
31228
313608
31318
313208
31409
31418
31428
31560

The User Port

NEXT.J: HEXTI

RETURN

REM USER FRAME

PRINT"T ##k SELECT FUNCTION "
PRINT

PRINT" T.¥. ON"

FRINT" T.¥. DFF"

PRINT" E.B.C. 1"

PRINT" E.B.C. 2"

PRINT" I.T.¥."

PRIMT" RADIO ON“

PRINT" RADIJ OFF"

PRINT" LAMP OM"

PRINT" LAMP OFF"

PRINT" DOWH FRSTER"

PRINT" DOWN SLOWER"

PRINT" ACROSS FASTER"
PRINT" HCROSS SLOWER"
PRINT" RETURN"

PRINT S %"

IFCPEEKCUPYAND Ux>=8 GOTO 38188
IF(PEEKCUPYAND LIX) GOTO 3919@
PRINT"H 0"

FOR I=1 TO 14

PRINT"Mk";

FOR J=1 TO PD
IFC(PEEKCUPYAND U» GOTO 39399
NEXT J

PRINT"81 01*;

NEXT I

PRINT"8 "

5OTO 38179

PRINT"H ";

IF 1>7 GOTO 38339

ON I GOTO 39480,38500, 30508, 39760 . 30800, 39900, 31209
ON I-7 GOTO 3110@,31209.31300,31408, 31560, 31600, 31790
REM TURN TY ON

POKE UP.FPEEK(UPYAND 251
GOTO 39608

REM TURN TY OFF

POKE UP,PEEK(UFP)OR 4

GOTO 38178

REM BBC1

POKE UP,PEEK(UPYOR 3
50T030170

REM BBC2

POKE LIP, (PEEKCUP>OR3)AND254
50T03017@

REM ITY

POKE UP. (PEEK<LUP)OR3)AND253
507030178

REM RADIO 0N

POKE UP.PEEK (UP)AND247
507036178

REM RADIO OFF

POKE LIP, PEEK<UP)URS
50TO361 70

REM LAMP ON

POKE UP. PEEK (LIP) AND239
G0T036170

REM LAMF OFF

POKE LIP, PEEKCUPOR16
307030178

REM DOWN FASTER
PD=PD-1@: IF PD<3@ THEN PD=3
GOTO32179

REM DOWN SLOMER

PD=PD+16

G0T030179

REM ACROSS FASTER

147

148 The Commodore 64 Kernal and Hardware Revealed

31518
31528
31500
31618
31620
31vee
31718
46000
40819
400820
40030
40848
40050
40060
48070
42000
42010
4208208
420308
42040
42059
42060
42679
42080
426992
44000
440085
44019
440820
44838
44040
44850
45000
4508109
456020
45100
45118
45128
45138
45200
45218
45228
45360
453109
45320
45408
45410
45500
45518
45680
45610
45628
45780
457108
45728
45808
45810
45820
45830
459008
45918
45920
46000
46019
46820
46100
46118
46120
46140
46200

PR=PR-19:IF PR<38 THEN PR=38
507039176

REM ACROSS SLOWER

PR=PQ+18

GOTO381768

REM RETURN

GOT02088

REM HELP WITH LETTERS

GOSUB 26968

PRINT"®BY SELECTING “":DA$(M.I,J);
IF LENCTA$(M, I, J)>=8THEN PRINT"- NOTHING"

IF LENCTA$(M, I,J2>=1THEN PRINT"- THE CHARACTER “";TA$(M,I.J):"~

IF LEMCTA$CM, [.J2)>1THEN FRINT" THE STRING “";TR$(M.I.J>;"/"
PRINT"TIS ADDED TO THE BUFFER."

GOT049968

REM HELP WITH VARIABLES

GOSUB 282@0:FRINT"S";

IF LENCTY$(II%F+J2228 THEN 42060

PRINT"THIS YARIRBLE (", II%7+J:") IS5 EMPTY;"
PRINT"TSEE +YAR AND -VAR."

GOTO42008

PRINT"BY SELECTING YARIABLE ", DM#(II#%7+J>;"7 THEM"
PRINT"7Y "; Ty#(1147+J); " 15 ADDED"

PRINT"TO THE BUFFER. "

G0T049000

REM HELP WITH FUNCTIONS

GOSUB 2096@:PRINT"H";

IF 3S>7 GOTO 44830

ON SS GOT045088, 45198,45280, 45300, 45489, 45560, 45600
IF §5>14 GOTO 44850

ON SS-7 5OTO 45793, 45399, 45908. 45000, 46158, 46200, 46303
ON SS-14 GOTO 4540@,45500, 46590, 46700, 45300, 46560, 47050
PRINT"Sl LC ® FOLLOWING LETTERS WILL BE LOWER"
PRINT"TCASE. ALS0 SEE 7 UC “.*

GOT0458008

PRINT"JSENT ® END OF SEMTENCE., RDDS A FULL"®
PRINT"ISTOP HND THREE SPRCES TO THE BUFFER*
PRINT"AND MAKES THE NEXT LETTER A CAPITAL."
GOT049008

PRINT"SDELC 2 DELETES THE MOST RECENT"
PRINT""CHARACTER IN BUFFER."

G0T049009

PRINT"SDELW @ DELETES THE MQST RECENT WORD*®

PRINT"TIN THE BUFFER., NOT INCLUDING SPHCES.*
GO0T049600

PRINT"NOT DEFINED - CODE RT 43508"

GOT042000

PRINT"NOT DEFINED - CODE RT Sige*

G0T049800

PRINT"Q NL B NEWLINE ON PRINTER, DOES NOT"

PRINT""RFFECT BUFFER."

GOTO49v08

PRINT"J UC = FOLLOWING LETTERS WILL BE™
PRINT“TWUFPER CASE - ALS0 SEE “ LC ~."
G0T045983

PRINT"#PARA B END OF PARAGRAFH. PRINTS"
PRINT"TBUFFER., THREE NEW LINES, AMD ZETS*
PRINT"BUFFER TO THREE SPACES."

G0TO490608

PRINT"SSEND ® PRINTS CONTENTS OF BUFFER."
PRINT""ERASES BUFFER AND TRKES A NEWLINE."
GOTO45068

PRINT"SESC = SENDS BUFFER T0O 2ND. MICRO,®
PRINT" AND ESCAPE CHARACTER. "

GOTO42008

PRINT" VAR B SAVES THE CONTENTS OF THE BUFFER®
PRIMT"TIN THE NEXT FREE “ARIABLE LOCARTION."
PRINT"SHOWS FIRST FOUR CHRRACTERS."
G0TO49060

PRINT"& 1C 2 SENDS CONTROL C (RSCII(Z») TO"

The User Port 149

46218 FRINT"TTTHE 2ND. MICRO. ACTS RS A BREAK IN."
46228 GOTO49868

46380 PRINT"NOT DEFIMED - CODE AT &7@8"

46318 50T0496889

46400 PRINTHTEXT 2 GOTO TEXT MODE, DISPLAYS RSCII"
46410 PRINT"CHARACTER SET AMD A SELECTION OF"

46428 PRINT"FREQUEMTLY USED WORDS."

46438 GOTO49960

46500 PRINT" 3PROG B PRUGRAMMING MODE, DISPLAYS CHAR-*
46518 PRIMT"TRCTERS AND WORDS USED IN BRSIC. SETS"
46520 PRINT"UC. YARIABLES MAY BE DEFINED IM TEXT.*
46548 50T045808

46608 PRINT"QUSER B USE TO COMTROL EXTERNAL™

46618 PRINT"TEQUIPMEMT (T.%.. RADID ETC.» AND"
46628 PRINT"ALTER CURSOR SCAN SFEED. *

46638 GOTO490080

46700 PRINT"SHELP B R HELP SYSTEM. USE AT FIRST FOR"
46718 PRINT"TIGENERAL INFORMATION, THEN TO CHECK®
46728 PRINT"CONTENTS OF ‘YARIABLES - HELF/VARIABLE."
46730 GOT043883

46808 PRINT"3-VAR ® REMOVES SELECTED YARIABLE AND"
46818 PRINT"TISHIFTS REMAINING ONES TO FILL SPACE."
46828 50T049985

46988 PRINT"MQT DEFIMED - CODE AT 7998

463918 G0T049268

47800 PRINT"HDEL @ CLEARS BUFFER - MO OTHER EFFECT."
40008 PRINT"SelERMADYICE - ONSOFF TO RETURN "
49010 [F(PEEK({LIP»AND UX>=9 GOTO 43219

49020 IFC(PEEK(UP)AMD UX> 5OTD42020

49830 GOSUB 20909

49340 PRINT" =hEMEMADYICE - 0.K. "

490568 HP=@

49068 GOTO 3860

Program 10.

5.9 Voice synthesis

Adding a voice synthesiser to the CBM 64 is both simple and cheap, and
probably one of the easiest ways is to use the General Instrument SP$256 speech
processor chip. This IC is connected directly to the user port and its output is
simply fed via an amplifier to the audio input line on the SID chip and thence to
the monitor or TV speaker. This circuit is shown in Fig. 5.6.

The SP@256 is an allophone speech generator which can be used to synthesise
any English word by concatenating the individual speech sounds (phonemes)
which comprise the word. Within this chip is a table of 64 different allophones
and pauses; a full list of these is given in Table 5.1. These are accessed via the
chip’s six address lines. By having the user port connected directly to these six
address lines we can generate any required allophone simply by outputting the
correct address to these six lines. Normal speech contains between ten and
twelve allophones per second, and consequently allophone synthesis is a very
compact way of storing speech. The major advantage of allophone synthesis is
that it can provide an unlimited vocabulary with fairly low storage
requirements.

When using this circuit to generate speech it must be realised that the
allophones do not necessarily correspond directly to the written letters and
therefore a word must first be converted to its phonetic form. Thus because of

150 The Commodore 64 Kernal and Hardware Revealed

‘1IND110 18S1S8YIUAS 8210\ "9°G bi4

uge _

-
oy |

F E

Age

[

Age

upPl ==

(4

ADD) _H

) NS |

£

NG+

bl

1353y L85
1353

96T 0d$§

PPA

3s

Toso

1250
SSA
1831
8V
Y
A8s
aw
v
sv

V|
€V

(A4
v

|82 .u_n_sw__H

3 zanie

4497
| oo,
|

The User Port 151

Table 5.1. Allophone address (Reproduced by courtesy of General Instruments).

Octal Sample Octal Sample
Address Allophone Word Duration Address Allophone Word Duration
000 PA1 PAUSE 10ms 040 /AW/ Out 250ms
001 PA2 PAUSE 30ms 041 /DD2/ Do 80ms
002 PA3 PAUSE 50ms 042 /GG3 Wig 120ms
003 PA4 PAUSE 100ms 043 /VV/ Vest 130ms
004 PAS PAUSE 200ms 044 /GG1/ Guest 80ms
005 /0Y/ Boy 290ms 045 /SH/ Ship 120ms
006 /AY/ Sky 170ms 046 /ZH/ Azure 130ms
007 /EH/ End 50ms 047 /RR2/ Brain 80ms
010 /KK3/ Comb 80ms 050 /FF/ Food 110ms
011 /PP/ Pow 150ms 051 /KK2/ Sky 140ms
012 /JH/ Dodge 100ms 052 /KK1/ Can't 120ms
013 /NN1/ Thin 170ms 053 122/ Zoo 150ms
014 /1H/ Sit 50ms 054 /NG Anchor 200ms
015 /TT2/ To 100ms 055 /LL/ Lake 80ms
016 /RR1/ Rural 130ms 056 /WW/ Wool 140ms
017 /AX/ Succeed 50ms 057 /XR/ Repair 250ms
020 /MM/ Milk 180ms 060 /WH/ Whig 150ms
021 /TT1/ Part 80ms 061 /YY1/ Yes 90ms
022 /DH1/ They 140ms 062 /CH/ Church 150ms
023 Y/ See 170ms 063 /ER1/ Fir 110ms
024 /EY/ Beige 200ms 064 /ER2/ Fir 210ms
025 /DD1/ Could 50ms 065 /OW/ Beau 170ms
026 /UW1/ To 60ms 066 /DH2/ They 180ms
027 /AO/ Aught 70ms 067 /SS/ Vest 60ms
030 /AA/ Hot 60ms 070 /NN2/ No 140ms
031 /YY2/ Yes 130ms 071 /HH2/ Hoe 130ms
032 /AE/ Hat 80ms 072 /OR/ Store 240ms
033 /HH1/ He 90ms 073 /AR/ Alarm 200ms
034 /BB1/ Business 40ms 074 /YR/ Clear 250ms
035 /TH/ Thin 130ms 075 /1GG2/ Got 80ms
036 /UH/ Book 70ms 076 /EL/ Saddle 140ms
037 /UW2/ Food 170ms 077 /BB2/ Business 60ms

irregularities in spelling it is necessary to use the sounds of the word rather than
the letters when dealing with speech allophones. A second problem is the
segmentation of speech. This means that although we think of a spoken word as
consisting of a sequence of separate sounds which correspond to a letter name,
in fact speech sound is a continuously varying signal which cannot easily be
broken into discrete units. This accounts for the occasional problems of
intelligibility in allophone synthesised speech. A third problem is that the ear
will perceive the same acoustic signal differently depending on the sounds
which precede or follow it. Thus the initial p in ‘pop’ is different from the p in
‘spy’. An attempt is made to overcome some of these problems by the design of
the allophone sounds and by careful selection of allophones to describe a
particular word.

The individual sounds of language are called phonemes. In each language
these are slightly different. The SPP256 is designed to give English phonemes.
The phonemes can be divided into three different catagories; consonants,
vowels, and speech sounds such as aspirants and pauses. Tables 5.2 to 5.6 show
the consonant and vowel phonemes and how allophones can be used. Program
11 shows how to use the voice synthesis circuit and allophones from Basic.

152 The Commodore 64 Kernal and Hardware

REM el poitaalica i
REM # SPEECH DATA TO USER PORT #
REM sesssicieseiopdedaoiolnsolainiolaores
REM

POKES4272+24. 15

DD=56576

20 POKEDD+3, 127

READD: IFD=-1THENEND

POKEDD+1,D DRS¢

POKEDD+1.D RND&3

IFPEEK (DD+1><123THENS1

GOTO 35

7@ DATA42,59.45.3

DATA 3,32.12.50.52.21.3

DATA 3.26.11.32.3

DATA 3,11.12,41.3

DATA 3,46.52.41,3

DATA 48.,58.3

168 DATA 43,12.48,3%,26.3

118 DATAR 12,11.48,55,16,29.37.15,11.3
128 DATA 13,7, 42.56.53.45.53,18,13,3,-1

Revealed

Program 117.
Table 5.2. Examples of spelling irregularities. (Reproduced by courtesy of General
Instruments).
Same sound represented by Different sounds represented
different letters by the same letter(s)
Vowels meat vein
feet foreign
Pete deism
people deicer
penny geisha
Consonants ship although
tension ghastly
precious cough
nation

Table 5.3. Consonant phonemes of English (Reproduced by courtesy of General

Instruments).
Labio- | Inter- | Alveo-
Labial' | Dental® | Dental®| lar* | Palatal® | Velar® | Glottal’

Stops: Voiceless| PP TT KK

Voiced BB DD GG
Fricatives: | Voiceless| WH FF TH SS SH HH

Voiced \AY DH 2z ZH*
Affricates: | Voiceless CH

Voiced JH
Nasals: Voiced MM NN NG*
Resonants:| Voiced WwW RR, LL YY

*These do not occur in word-initial position in English.

. Upper and Lower Lips Touch or Approximate

. Upper Teeth and Lower Lip Touch

. Tongue Between Teeth

. Tip of Tongue Touches or Approximates Alveolar Ridge (just behind upper teeth)
. Body of Tongue Approximates Palate (roof of mouth)

. Body of Tongue Touches Velum (posterior portion of roof of mouth)

. Glottis (opening between vocal cords)

NO O S WD =

The User Port 153
Table 5.4. Vowel phonemes of English (Reproduced by courtesy of General Instruments).
FRONT | CENTRAL | BACK |

HIGH YR
Iy uw#
H* UH #
MID EY, ER, ows
EH AX ov#
XR
LOW AE" AWH AO™#
AY OR#
AR
AR

* SHORT VOWELS # ROUNDED VOWELS

Table 5.5. Examples of words made from allophones (Reproduced by courtesy of General
Instruments).

DD2-AO-TT2-ER1 “daughter”
KK3-AX-LL-AY-DD1 “collide"
SS-SS-IH-SS-TT2-ER1 “sister”
KK1-LL-AW-NN1) “clown”
KK3-UH-KK1-1Y “cookie”
LL-EH-TT2-ER “letter”
LL-IH-TT2-EL “little”
AX-NG-KK3-EL “uncle”

KK1-AX-MM-PP1-YY1-UW1-TT2-ER | “"computer”
EH-KK1-SS-TT2-EH-EH-NN1-TT2 “extent”

TT2-UW2 “two”
AX-LL-AR-MM “alarm”
SS-KK3-OR “score”
FF-ER2 “fir"

Table 5.6. Guidelines for using the allophones (Reproduced by courtesy of General
Instruments).

Silence

PA1 (10ms) before BB, DD, GG, and JH
PA2 (30ms) before BB, DD, GG, and JH
PA3 (50ms) before PP, TT, KK, and CH, and between words
PA4 (100ms) between clauses and sentences
PA5 (200ms) between clauses and sentences
Short Vowels

*/1H/ sitting, stranded

*/EH/ extent, gentlemen

*/AE/ extract, acting

*/UH/ cookie, full

*/A0/ talking, song

*/AX/ lapel, instruct

*/AA/ pottery, cotton

Long Vowels

NnY/ treat, people, penny

/EY/ great, statement, tray

/AY/ kite, sky, mighty

/0Y/ noise, toy, voice

/UW1/ after clusters with YY: computer
/UW2 in monosyllabic words: two, food
/OW/ zone, close, snow

/AW/ sound, mouse, down

154 The Commodore 64 Kernal and Hardware Revealed
Table 5.6. Continued.

R-Colored Vowels

/ER1/ letter, furniture, interrupt

/ER2/ monosyliables: bird, fern, burn
/OR/ fortune, adorn, store

/AR/ farm, alarm, garment

/YR/ hear, earring, irresponsible
/XR/ hair, declare, stare

Resonants

/WW/ we, warrant, linguist

/RR1/ initial position: read, write, x-ray
/RR2/ initial clusters: brown, crane, grease
/LL/ like, hello, steel

/EL/ little, angle, gentlemen

/YY1/ clusters: cute, beauty, computer
/YY2/ initial position: yes, yarn, yo-yo

Voiced Fricatives

/VV/
/DH1/
/DH2/
1Z2Z/
/1ZH/

vest, prove, even

word-initial position: this, then, they
word-final and between vowels: bathe, bathing
200, phase

beige, pleasure

Voiceless Fricatives

*/FF/ . N

“/TH/ These may be doubled for initial position

*/SS/ and used singly in final position

/SH/ shirt, leash, nation

/HH1/ before front vowels: YR, IY, IH, EY, EH, XR, AE

/HH2/ before back vowels: UW, UH, OW, OY, AO, OR, AR

/WH/ white, whim, twenty

Voiced Stops

/BB1/ final position: rib; between vowels: fibber; in clusters; bleed, brown
/BB2/ initial position before a vowel: beast

/DD1/ final position: played, end

/DD2/ initial position: down; clusters: drain

/GG1/ before high front vowels: YR, 1Y, IH, EY, EH, XR

/GG2/ before high back vowels: UW, UH, OW, OY, AX, and clusters: green, glue
/GG3/ before low vowels: AE, AW, AY, AR, AA, AO, OR, ER; in medial clusters:

anger; and final position: peg

Voiceless Stops

/PP/ pleasure, ample, trip

/TT1/ final clusters before SS: tests, its

/TT2/ all other positions: test, street

/KK1/ before front vowels: YR, 1Y, IH, EY, EH, XR, AY, AE, ER, AX;
initial clusters: cute, clown, scream

/KK2/ final position: speak; final clusters: task

/KK3/ before back vowels: UW, UH, OW, OY, OR, AR, AO;
initial clusters: crane, quick, clown, scream

Affricates

/CH/ church, feature

/IH/ judge, injure

Nasal

/MM/ milk, alarm, ample

/NN1/ before front and central vowels: YR, 1Y, IH, EY, EH, XR, AE, ER,
AX, AW, AY, UW; final clusters: earn

/NN2/ before back vowels: UH, OW, QY, OR, AR, AA

ING/ string, anger

*These allophones can be doubled.

The User Port 155
5.10 Analog interfacing

In digital systems two voltage levels are used to represent data, with the binary
digit @ represented by a low voltage and binary 1 by a high voltage. Digital data
is therefore represented by a series of pulses. Analog signals have an infinite
range of voltage levels and are therefore continuous rather than having discrete
units of information. The difference between the two types of waveform is
shown in Fig. 5.7. The digital equivalent of an analog signal is generated by
regularly sampling the waveform, and on each sample converting the measured
voltage into a binary value using an analog to digital conversion circuit. The
sampling of a waveform is shown in Fig. 5.8. For a computerto be able to create
a smooth analog waveform it must at regular intervals output a binary value,
which is converted to an analog voltage by a digital to analog conversion circuit.
The digital synthesis of an analog waveform is shown in Fig. 5.9.

VOLTAGE

TIME

Typical digital signal

VOLTAGE

TIME
Typical analog signal

Fig. 5.7. Comparison of digital and analog waveforms (Reproduced by courtesy of Practical
Electronics).

VOLTAGE

'
'
1
1
t
i
I
I
I
1
]
'
[
1
|

|
I
I
1
|
i
1
'
'
!

1

[I
' ' |

t | !

1 ! ' 1

' | ! '
' | |

- u T +

TIME
Fig. 5.8. Digital sampling of an analog waveform (Reproduced by courtesy of Practical
Electronics).

156 The Commodore 64 Kernal and Hardware Revealed

VOLTAGE
4

TIME

Fig. 5.9. Digital synthesis of an analog waveform (Reproduced by courtesy of Practical
Electronics).

5.11 Digital to analog conversion

The circuit used to convert a digital signal to an analog signal is quite simple
involving the use of a weighted resistor network. This most commonly takes the
form of an R, 2R, 4R, 8R etc. ladder, such as the one shown in Fig. 5.10. In
operation each successively lower weighted input produces an output voltage
which is exactly half that produced by the preceding input. The voltages from
each input are summed at the combined output and a voltage developed which
is the analog representation of the binary digital value.

Although a digital to analog conversion circuit can be constructed easily from
resistors it is simpler and often more accurate to use one of the many D to A
converter ICs. An example of sucha D to A IC is the ZN425E. This chipisan 8
bit dual mode A/D and D/A converter, incorporating a voltage reference,
resistor network, input switches and an 8 bit binary counter. A block diagram
and pin out for this IC is shown in Fig. 5.11. The 8 bit counter is used with an
external comparator IC to facilitate analog to digital conversion. The logic

+V,
- REF

Fig. 5.10. Digital to analog converter using R-2R register network (Reproduced by courtesy
of Practical Electronics).

The User Port 157

PIN CONNECTIONS

(TOP VIEW)
Ground 1 O U] 16 Vpger Output
Logic Select 2 [) 15 Vgee Input
Counter Reset 3 [] 1 14 Analog Output

Clock 4 [J 13 Bit1 (MSB)

Bit8 5 [D 12 Bit2

Bit7 6 [0 11 Bit3

Bit6 7 O 1 10 Bit4

+Vec 8 0 9 Bit5
+Yee o—p;

330 I Snalog
Vagr o] R-2R Ladder utput
Output 16 2.5V
Reterence
|0V e Input
Ground] ! L Switches I—IS ReF P
Sﬁ{?ks 3 Bit 1(MsB)
Bit 6 0—0 Z E
Bit5 ; 5 Bit4
Logic lnput Select Switch
Logic Select JIIT I T I T TITTITTIT]
(High for Counter) 2 AR R RS
Clock LQ" 8 Bit Binary Counter @
1 D D W W W W Counter Reset
{Low to reset)

Fig. 5.11. Pin connections and block diagram for the A/D and D/A converter (Reproduced
by courtesy of RS Components Limited).

select pin determines which function, A/D or D/ A, is being used. The on-chip
2.5 volt reference signal ensures that the conversion is very accurate (0.2%
accuracy). This chip is very easy to connect to the processor; the circuit diagram
for connecting it is shown in Fig. 5.12. It should be noted that the output from
this chip is a voltage ranging between f volts and 2.5 volts (an increase of 1 in the
output to the D to A therefore gives a corresponding increase of approximately
#.01 volts). A buffer amplifier is necessary to change this voltage range,
particularly if a positive to negative ranging voltage is desired, and calibrate the
output.

The ability to generate an analog signal from the computer has many
applications, probably the most obvious is in the generation of simple or
complex analog waveforms. The technique for outputting a repeating
waveform of frequency is quite simple. The fundamental requirement is a
waveform table, usually one page (256 bytes) long. This table contains a
sequence of precalculated values which define the waveform shape. By
repeatedly outputting all the values in the table, in sequence, to the digital to
analog converter a regular waveform is generated. The frequency of the
waveform can be varied either by varying the delay between outputting each

158 The Commodore 64 Kernal and Hardware Revealed

‘UN2119 uoISIBAU0D Bojeue o1 |eubip pue |enbip o1 Bojeuy "z /G bi4

NG+
II‘II TING
Abl wie
AT A\
O : T z9 N
Ni £ —0
HOIVYNY s w\1 TVd
G+
1AdNI HOTYNY —
31gYNI 0L HILIMS \ '
i € 2z |
¢
o bl !
100 HOYNY Tl
I
@1
JGTHPNZ
b
+
91 9
]|

8 S

gy
L

NS+

1¥0d
¥3sNn

£ 4d
9d 94d
5@ cad
»Q
£ cad
2T 284
(d 14d
oaq ¢8d

130d ¥36n

Loc

ca291
ca91
251
mesch)
£a291
£251
221
cao1
czet
£z2o1
casl
£224
caov
C33R
e
C29F
CaA2
C2A4
CaAv
C2AR
C2RC
C2RF
C2B1
CaB4
C2E6
C2B39
CZEB
C2BE
caca
cac2
cace
C2Cs
C2CB
C2CD
C2Dg
c2n1
eath}
£2n2
C2D3
£C2D4
C2DS
C2Ds
C2D8
2DB
C2DD
C2DF
C2EZ
C2ES
C2ES
C2E2R
CZER
C2EB
C2EC
C2ED
C2EE
C2EE
CaF1
CaF4
2F7
C2Fs
C2F2
C2FB
C2FE
caal
(iciz)}

CCDE

29

26

a1

91
a1

a1

a1

Eg C

RE

-

83

FF

a3
FF

DD
D
D
D4

~2

ID
oD
DD

D

0D
FF

The User Port
LINE

.LIB FUNC.SIMPLE

i ROUTINE TO QUTPUT A FUMCTION
;TABLE OVER THE USER PORT TO R
;DIGITAL TO ANALOG CONYERTER.

; THE FREQUENCY IS COMTROLLED
iBY EITHER THE TIMER YRLUE OR
i INCREASING/DECREASING THE
JSAMPLING ‘YALUE.

FUNCTN JSR $REFD ;GET VALUE FOR
JSR $AD3A ; TIMER R
JSR $B7F7
LDA #{NMI JSET NNWI YECTOR
STR $8313
STR $FFFA
LDA #>NMI
STR $8313
STA $FFFB
LDA %14
STA $DDo4 JSTORE TIMER VALUE
LDA #15
STAR $DD@S
LDA #3FF
5TA $DD63 JUSER PORT TO QUTPUT
LDA #s@F
5TA $D480+24 MRX SID YOLUME
LDA #3293
STA FLAG iPOINTER TO TRBLE
LDR $DDBD ;CLERAR NMIS
LDA #3231 JSET TIMER R MMI
STA #DDaD
LDA #s$11 ;START TIMER R
STR $DDGE

MMI PHA ;STORE REGISTERS

LDA #$91 iCARUSED BY TIMER R?

BIT $DDGD

BNE SEND ;YES

LDR #37F ;CLEAR ENABLED NMIS

STA #DD&D

JSR #FF&4 JRESET 10

JSR $FFSR ;RESET KERNAL
NMEXIT PLR ;PULL REGISTERS

TRY

PLR

TAX

PLA

RTI

SEND LDX FLAG :GET POINTER
(DA TAELE., X iGET BYTE
STR $DD61 'SEND TO USER PORT
A
cLC
STORE ADC #5091
STA FLAG
IMP NMEXIT EXIT NMI

FLAG .BYT 8

JADD SAMPLING ‘“YALUE

159

160 The Commodore 64 Kernal and Hardware Revealed

LoC CODe LINE

cam2 ;

C392 28 3R FF DISAB JSR $FF2A
305 28 84 FF JSR $FF84
C308 R9 FE LDR #$FE
C3eR 8D FB FF STA $FFFB
C38D R3S 43 LDA #$43
C36F 8D FA FF STA $FFFA
c312 68 RTS

€313 ;

C313 TABLE #=#+256
C413 .END

Symbol table

SrMBOL YALUE
ALOOP1 CBA3 ATOD cesc CLRMEM C263 CLRSCN C2éA
DISAB c382 DISPLY CBed DIV c12s5 DONE CiFo

DoT caDnt ERROR Cei3 EXIT cecDd FLAG cse1
FUNCTN £251 GRAPH CiEl GXY c198 KERIN CiDi
KEROUT CIC3 LooP c206 LOOP1 C26E LoorP2 Ccaec3
MuL22e C147 MUL8 Ci12E NMEXIT C2E3 NMI can1
NORM (wery oK ceig PLOT1 Ci8A PLOTIT Ci81
READI® CB68B RLOOP1 CB6E RLOOP2 (CB79 SEND C2EE
SETUP cas2 STORE CaFd TABLE C313 TOP2X C179

CiC? XER CeEi ¥OK CeE3 YND7OK C123

bR
ZL00P caaz ZLoorPt C@3A Z2LooP2 Ced2 ZPLOT Co4F

Program 12.

value or for higher frequencies by sampling the table rather than using every
value, with the frequency being determined by the sampling step.

The machine code routine in Program 12 can be used to output a waveform
using a predefined waveform table over a range of different frequencies, the
frequency being controlled by the value stored in Timer A. This routine is
designed such that the analog output is connected to the sound input of the SID
chip so that the sound generated by the waveform can be heard. The Basic
program in Program 13 is used in conjunction with Program 12 to create a
waveform table, the waveform being created either from a mathematical
function or drawn directly using either a joystick or the cursor keys. The
resulting waveform is displayed on the screen using high resolution graphics. It
should be noted that in order to obtain the graphics, the graphics routines in
Prograrp 14 should be present. These are integrated with the frequency
generation routine so that they can both reside in memory together.

18 PRINT"IUUSE:"

20 PRINT"M 1 - JOYSTICK"

38 PRINT"M 2 - KEYBORRD"

40 PRINT"M 3 - FUNCTION"

5@ GETA$: IFA$=""THENS@

68 A=YAL(A$> : IFARCI0RAD3THENSO

S99 T=49939:S5YS49627

100 DIMTC255> : FORI=0T0255: T(1y=127:POKET+I, 127 :5Y549537, [, T(D27 NEXT
118 ONAGOSUB188@, 2000, 3288

120 GETA$: IFA$=""THEN1Z2©

The User Port

130 5Y549739
142 END

1990
161e

REM
REM INFUT MWAYEFORM USING JOYSTICK

18206 REM

1839
18408
1650
1869
ieve
1880
1890
1i0@
1118
2000
2018
2020
2038
204a
2050
=068
2070
2680
26800
21008

X=0:Y=T(N1-27
A=PEEK(56320) :E=9: N=0:5=0:N=Q
IF (AAMD16>=0 THEN RETURM

IF (ARND8>=9 THEN E=1:G0T01119
IF (AAND4)>=8 THEN W=-1:5G0T0N1119

IF (AAND2)>=8 THEN S=-1:560T01118
IF (ARND1»=8 THEN N=1:G0TD111@
GOTO 1840
GOSUB 11199:6G0T01848

REM
REM INPUT WAYEFORM USING KEYBOARD
REM

=9:Y=T(X>-27
GETH$ZE=BZN=Q: 5=8:N=

IF A$=CHR#{13> THEN RETURN

IF A$="B" THEN E=1:50T0D 2118
IF A$="M" THEN W=-1:G0TO 2118
IF Ag$="W" THEN 5=-1:50T0 2118
IF A$="T1" THEN MN=1:GOTO 2118
GOTO 2048

2116 GOSUB 11169:G0TD2040

3098 REM

3910 REM PUT UP A WAVYEFORM DEFIMED IN

3628 REM FNF

3038 REM

3048 DEF FNF(7"1 28+(31-. 122%2 %S INC(ZH0,'1283 12
3058 FORI=4TOZS

3868 Y=FNF<I): o?o4 o937, [, T(1»=-27

3878 POKET+I.Y:T(I)=:5Y343537, I, T(I)~27

3880 MNEXTI:RETURN

11100
11118
11111
11112

IF E OR W THEM 11128
IF(Y+53+N><OTHEMRETURN
IF (Y+3+N>>1239 THEM RETURM
“?o4°53?,x.?¢?=?+5+ﬂ

11115 TCX2=(P+27) : POKET+X, (Y+27) 1 8Y549537, X, ¥ :RETURN

11120
111380

Loc

8069
Coeo
casg
cea:3
Cceas
cags
COaR
Ccoap
CH8F
a1l
ce13
cais
caiv
ca13
Ccain
co1c
Ce1E
Cezg
ce22
caz4
ceze
£pz29
Caz2B
cazC

X‘(X+E+NJHND2‘5 Y1=T(RX)-27 1 SYS49537, X, ¥1 : SYS493537, X, ¥
T{KO=Y+27 : POKET+X, ¥Y+27 :RETURN

Program 13.
CODE LINE

¥=3$C0008

.LIB géEQSIMP;E
2 RE DISPLY $AEF
23 gg AD JSR $RDSA iGET MEMORY RDDRESS
28 F7 BV JSR $B7F7 ; OF DISPLARY
RS 1S LDA $15
C3 78 CHP #3$78 JLESS THRAN BOTTOM?
%4 a4 BCC ERROR JYES
C3? A8 CMP #3R0 +IN RRNGE?
29 85 BCC 0K ;YES
AS a1 ERROR LDA #3081 ;FLAG ERROR
35 82 STA $92 ; RAND EXIT
53 RTS
R3 98 0K LDA #3060 ;FLAG 0.K.
35 a2 STAR %82
A3 00 LDA #3008 JSET X COUNTER
35 FD STR $FD
35 FE STAR $FE
ARG 90 ZLOOP LDY #3080
Bl 14 LDAR ($14),% ;GETTHI¥RLUE
28 4F C8 JSR ZPLOT iPLO
gg 14 LDR %14 s INCREARSE TRABLE POINTER
13 CLC ;BY SAMPLING RATE

69 81 ADC #$01

161

162 The Commodore 64 Kernal and Hardware Revealed
LOC CODE LINE

CB2E 35 14 STA $14

Cage AS 1S LDA $15

£B32 52 89 © ADC #$009

L8334 C3 A9 CMP #$R0 s WRAPAROUND?
CAcs DY @Az BNE ZLOOP1 iNO

Ca32 A9 78 LDR #3$73

C83A 25 1S ZLOOP1 5TA %15

CA3C ES FD INC $FD 5 INCRERSE X
Co2E D& 82 BNE ZL0O0OP2 ; COORDIMARTE BY 1
CAd4@ ES FE INC $FE

CB42 RS FE ZLOOP2 LDA 3$FE

cedd £33 a1 CMP #301 ;DONE 328 PDINTS?
Cads D8 DA BNE ZLOOP JMOT YET

Ca43 AS FD LDA $FD

ca4R C% 49 CMP #$40

Ca4c DB D4 BNE ZLOOP ;ND

CB4E &8 RT3 iYES, EXRIT

Cad4rF ;

CR4F 385 SB ZPLOT 35TA $SB JSTORE THE ¥
casi A a9 LDA #3008 : COORDINATE
cas3 25 8C STR $5C

CAaSS RS FD LDA $FD JSTORE THE N
casy 85 82 STR $53 ; COORDINATE
£COS2 RS FE LDA 3$FE

Case a5 SR 5TA $SA

CASD 4C 34 C1 JMP PLOTIT+3 iPLOT THE POINT
Caeg .END

(5 Y .LIB RERAD.SIMPLE

CAgE 72 READ18 SEI JDISABLE IRQ
Ca&l A9 8B LDA #$0B iBLANK SCREEN
C863 3D i1 DB STR $DB11

CRes R @9 LDA #m0 ;SET POINTER TO
cag3 35 FD STR $FD i START OF TARBLE
CasH A2 78 LDA #3778

CReC 35 FE 5TR $FE

CEEE A2 81 RFLOOP1 LDX #s81 iSAMPLE RATE
cava 28 32 Ca RLOOF2 JSR SETUP JREAD “ALUE
cevs CA DEX

Cev4 D FA BNE RLOOPZ +IGNORE SAMPLE
Cars ARG Qg LDY #$83

cars 31 FD STA ($FD>.Y i8TORE THE YALUE
CarA A2 a1 LDR #3$91 ; INCREASE TABLE
cavc 1z CLC ; POINTER BY 1
Cavd /S FD RDC $FD

CavF 35 FD STA $FD

cesl AS FE LDA $FE

ca3z »3 aa ADC #3390

cess 29 FE STR $FE

Co37 2 AL CMP #3$R9 JEMD OF TABLE?
ceg® DO E3 BME RLOOP1 iNO

CBSB AR 1B LDR #$1B JRESTORE SCREEN
CosD 3D 11 D8 STA 30811

caes &8 CLI JENABLE IRQ
cegl 8@ RTS

£Ragz i

£e22 RS FF SETUP LDA #$FF iSET USER PORT
Cag4 2D @83 DD STA $DDa3 i TO QUTFUT
CBay A\ FB LDR #$FB J3ET ONE INPUT LINE
Ces3 3D 82 DD STA s$Dp@2 i (PRZ)

cooC RI 38 ATOD LDA #3080 JSETRATOD
CAse 3D 81 DD STR $DDa1 iSTART “ALUE
C8A1 35 &1 5TR $61

CéR3 AD &1 DD ALOOP! LDR $DD21 JSTART MAIN LOOP
CBARE 1% &1 ORA #$61

COR3 32D &1 DD 5TR $DDB1

C8ABR EA NOP

CBAC ER NOP

CBAD HAD @] DD LDA £DDB3 + INPUT FROM

The User Port 163

LoC CODE LIMNE

CARR &R ROR A i COMPARATOR INTO
CBBl &R ROR R ; CARRY

CAEZ 6R ROR R

CA8B3 BA GE BCS LOOP2 SYALUE TOO SMALL
CBBS RS &1 LDR $61 JYALUE TOO LARGE
CABT 4D o1 DD EOR $DDa1 i TRY HRLF “YALUE
C8BA 3D &1 DD STAR $DDB1

CORD 45 61 LSR $61 ;DECRERSE SEARCH STEP
COBF FB aC BEQ EXIT :COMPLETE

caci 1@ E@ BPL ALOOP! ; TRY RGARIN

CBCE 4561 LOOPZ LSR $51 ;DECRERSE SEARCH STEF
CaCs ER NOP JADJUST TIMING
Cecs ER NOP

Cacy Een NoP

cecs EeAn NOP

CAC3 HS &1 LDA $61

CBCB DB D6 BNE RLOOP1 ;TRY AGAIN

C8CD RD 81 DD EXIT LDR $DDA1 YALUE RETURNED IN
copg sa RT3 i WR

£apnt .END

cant .LIB DOT.SIMPLE

cept i

cani i ROUTINE TO CALCULRTE LOCATION

£epl i AND BIT{S)> FROM THE X AND *

(913)1D s COORDINATES.

ceni i

CeDl RS SA noT LDR $3AR ; CHECK THAT X AND ¢
caps C2 0o CHP #$08 ; ARE WITHIN BOUNDS
CapS Fa oc BE® ROK

cepy C3 91 CHP #3841

cep? Da 86 BNE XER

CapBp AS 59 LDA $52

capp C3 4@ CMP #$40

CaDF %9 a2 BCC XOK

CeEl 3 ¥ER SEC ; TOO LARGE EXIT
CBEZ 61 RTS

CBE3 AS SC XOK LDAR $5C

COES DB FA BNE XER

COET RS SB LDA $SB

CoE? C3 (8 CHMP #3C8

C8ER BB F4¢ BCS XER

CRED R2 C7 LDA #1299

C8EF 38 SEC

CBFa ES SB SBC $5B

CBF2 35 G STA $SB

CarFr4 RS 52 LDA $523 ;CALCULATE THE BIT TO
CoFs 22 @7 AND §3$87 ; BE PLOTTED RS
CAFE 85 SE STAR $3E ;5 T=¢(x RND Y2
CBFA R3 &7 LDA #sa7

CBFC 38 SEC

COFD ES SE 5BC $S5E

Ce8FF AA TAX ;CALCULATE 214$SE
Cigg BD 73 C1 LDA TOF2X.X

£1a3 835 SE STR $SE

cias H

C18S JCALCULATE INT(Y/8)%320

185 iAND STORE IN 357

cias H

CiaS AS SB LDA $5B

ci1a7 4R LSR A

cigs 4R LSR A

Cig3 4R LSR A

CiéR @R ASL A

Ci1BB AA TAX

CiBC BD 47 C1 LDA MUL320, X

CigF 35 57 STA $57

£111 BD 48 Ci LDA MUL329+1,X

164 The Commodore 64 Kernal and Hardware Revealed

Loc

Ci14
Ci1é
Ciis
Ci1s
Cl1s
Ci13
C11A
Ci11B
C11D
C11F
2121
C123
ci23
£123
C123
C125
cia7

c123
Ci12R
cizc
cizac
ci12C
Ci12C
C12E
Ci13a
c132
C133
C135
C13S
Ci13S
C1335
Ci13v
£138
C13A
Ci3c
C13E
Ci409
C148
C140
C148
£141
C143
C143
Clde
147
C143
C14B
C14D
C14F
C151

Ci1s3
C155
C157

C152
C15B
C1SD
C15F
c161
C163
£165
C167
Cl1e2
C16B
C16D
C16F
Ci71
Ci1v3

CODE

85 58

22 a7

65 57
85 57

E6 58

RG a3
45 SA
&6 59

Do F9

LINE

. STR $58
iADD ¥ AND 7 TO $57

LDA $5B
AND #$07
CcLc

ADC $37
STA $57
BCC YND7OK
INC $58

;CHLCULRTE INT{X/8)

YND7OK LDY #3863
DI¥Y8 LSR $SA
ROR %52
DEY
BNE DIVS

{CALCULATE INT(X/8)%3

' LDY #5983
MULS ASL $59
ROL $5R

DEY
' BNE MUL8
%nnn INT(X/8)%8 INTO $57
’ LDA $57

cLC

ADC $59

STR $57

LDR $58
ADC #5A

iADD $E@BA INTO $57
' cLe
ADC #$E0
STR $56
oLe

RTS
MUL328 .WOR 8,320,640.368.12608

-WOR 16088, 1320,2248, 2560, 2589
-WOR 3208, 3528,3849, 4168, 4430
-WOR 438080.5129, 5449, 5768, 5888

-WOR 6488,6720, 7248, 7368, 7588

CODE

ce
5%}

g2
84
a8
19
20
408
30

1c
1E

98
a1
ca
5]
57
SE

D1

91
g1

a1
81

RE
RD
B1

C1
RE

RD
Bl

The User Port
LINE

TOP2X .BYT 1.2.4.8,16,32,64,128

-END
-LIB PLOT.SIMPLE

; ROUTINE TO PLOT A POINT

PLOTIT JSR GXY i GET X AND ¥
JSR DOT
BCC FLOT!
RTS

PLOT1 JSR KEROUT JDISABLE IRQ
LDY #s00
LDA ($57>.Y ; DTHERWISE FPLOT POINT
EOR #5E
STA ($57>.Y
JMP KERIN

iGET X AND ¥ YALUE
:INTO $59 AND $SB

GXY JSR $REFD
JSR $RDSA JGET X
JSR $B1BF JFIRIT
LDX %65
LDY $64
STR TX
STY TX+1
JSR $AREFD ;CHECK 7,7
JSR $RD8A JGET ¥
JSR $B1BF JFIX IT
LDX %65
LDY $64
S5TX $5B
STY $5C
LDA TX
STR $59
LDA TX+1
5TA $5A
RTS

= .WOR B

:DISABLE KERNAL AND IRQ

KERODUT SEI
LDA 3081
AND #$FD SSWITCH QUT
STA $81
RTS

JENRBLE KERMAL AND IRQ

KERIN PHA
LDR $01
ORA #3802 JSWITCH IN
STA $81
CLI
FLA
RTS
.END

165

166
Loc

CiDB
CiDB
C1iDB
C1DB
C1DB
CiDE
CiEl
CiEl
CiEl
C1El
C1E3
C1ES
CI1ES
C1EB
C1ED
C1F8
CiF2
CIFS
C1F3
C1FB
C1iFD
C1FF
caa2
£293
283
283
c2a3
czes
czes
czes
caac
C28F
c212
£215
€218
C21B
CZ1E
221
caz4

oo

e
22

C22D
Cca3l
£ce33
236

-,
£232

£23c
C23F
£242
245
248
CZ4B
C24E
casi
Ccas4
casy
-C2SA
Cz2sSD
czes
£263
Cc266
caev
c2e2
C26éR
26C
C26E
caevl

The Commodore 64 Kernal and Hardware Revealed

CODE

29 93

28 5A C

-
(e

YN

Do
ng

D9
DD

I
D

DD

cc
CD

LINE

-LIB

MODE. SIMPLE

% ROUTINE TO SET UP HIRES SCREEM

2

i GRAPH
GRAPH

DONE

JSR CLRMEM
JSR CLRSCN

COMMAND ENTRY

LDA #33B
S5TA $Deil
LDA #$3D
STA $Daia
LDA #$C3
STAR $DA16
LDA #DDB2
ORA #3083
STA $DDe2
LDA $DD&Y
AtD #3FC
ORR #3008
STA $DDeo
RTS

JCLG COMMAND ENTRY

CLRMEM
LaOP

CLRSCN
LOOF1

LDY #3098
YA

STA 3$£@69.Y
STA $E188,Y
STA $E268,Y
5TA $E3693,Y
STA $E4@9.,Y
STA $ESE@8.Y
STR $E6BA. 'Y
STA $E780.Y
STA $EG8A4,Y
STA $ES88. Y
STA $ERBO. Y
STAR $ERVA. Y
STA $ECBA, Y
STA $EDEA, Y
STA $EEGQ.Y
5TA $EF60.Y
5TA $Foea. ¢
STA $F168.Y
STAR $F268.Y
STA $F369.Y
STA $F496.%7
STA $FS66.Y
STA $F6E2.,Y
STA $F768.,%Y
STA ¢$Fsea, v
STA $F360.%
STAR $FAGG. Y
5TA $FEGG. Y
STR $FCOB.Y
5TR $FDOQ, Y
5TA $FE@3.Y
STR $FEFS.Y

DEY

BNE LOOP
RTS

LDY #3060
LDR #31B
STR $CCo4.Y
STA #CDoQ.Y

; CLEAR HIRES SCREEN
i CLEAR YIDEO SCREEN

i SELECT BIT MAP MODE
i CHOOSE HIRES SCREEN
; ELSE SET HIRES MODE

; SELECT BRANK 2 FOR HIRES
; SCREEN

; LOOP TO CLEAR HIRES

; LOOP TO CLEAR

The User Port 167

Loc CODE LINE

car4 39 @9 CE STA $CEB0.Y

C2F7 29 88 CF 5TA $CFB0.Y

cerR 83 DEY

CarB D8 Fi BNE LOOP1

card 58 RTS

C27E <END

CarE .LIB NORM.SIMPLE

Cav ;

CE?E s ROUTINE TO RETURN TO NORMAL SCREEM
car i

C27E AD 62 DD NORM LDA $DDB2

€281 29 FC AND #3$FC

£C283 3D 92 DD 5TA sDDa2 ; BACK TN BANK 8
£L286 AR9 1B LDA #$1B

Cz283 oD 11 DB STA $DA11 ; BIT MAF MODE OFF
C28B A% 15 LDA #$15

C28D 8D 13 D9 STR $DO13 ; NORMAL SCREEN
C29%a 68 RTS

caal .END

Program 14.

Another application for D to A converters involves using two converters, the
output of each being connected to the X and Y inputs on an oscilloscope. This
configuration can then be used to generate true vector graphics displays; the two
D/ A converters are switched by using the PA2 line. One of the D/ A converters
uses only 7 bits with the eighth bit used to control the Z axis or intensity control
input on the scope. Alternatively the two D/A converters could be used to
control two rotating mirrors for a laser display.

An extension of the waveform generation routine is a music generator. Such a
routine is given in Program 15. This is a four voice sophisticated music
synthesiser. The program uses four waveform tables, one for each voice. These
are shown in Program 16, and their respective waveforms in Fig. 5.13. In
addition to the waveform tables it also requires a score table; a sample score
table is given in Program 17. It is divided into two sections; the main control
table and the music table. It is in two sections for several reasons, the principal
one being to allow it to be stored more compactly. The score is compacted by
having sections of the score which are identical stored only once and then
repeatedly called by the main control table. The control loop also allows the
tempo and waveforms of each voice to be changed. This system may seem fairly
complex but examination of Program 17 will show that it is fairly straight-
forward. This program is based on an original idea by Hal Chamberlin in his
book Musical Applications of Microprocessors published by Hayden Books.
These are the command codes used in the control and music tables:

Main control table commands
If byte is FF this specifies that the following byte contains a control code

If followed by f1 then the next byte contains tempo

If followed by #2 then the next four bytes specify the waveform for each voice,
each byte being the msb of the start of the specified waveform table

If byte is not FF then each pair of bytes specify the hi, lo address of a pointer
into the start of a section of the music table.

168 The Commodore 64 Kernal and Hardware Revealed
CODE

Loc

3988
5608
BaBy
[alslsls)
gage
o]alals)
allula)
Ba8Y
BYG1
8688
f5151%]5)
8968
aeva
8aGs
weB8
8060
asa1
33883
3885
[aic15]y
B30B
egoc
88BE
880E
B88E
88QE
asoF
9811
6214
8815
881?v
@81Rn
831C
B81F
6821
Be23
8326
ga2v
2323
8328
882D
a32F
#8831
8e33
B335
Rnea7
@839
B33k
833D
BESF
2841
9843
8345
8347
@343
884R
884B
ne4c
834D
B84F
8850
8353
8854
9855
8856
8858
B38SA

(o]
o 0

0)
n

11 Do

12 D4
@3 DD

20 Ca

98 638

89 Co

LINE

USRPRT =s$DD@l

DDR =$DDG3
YIPT =$48
YIPT =$45
Y3PT =$43
Y4PT =$4B
INCPT =$4E
NOTES =$58
VIIN =$52
Y2IN =$54
Y3IN =$56
Y4IN =$58
DUR =$5A
INCA =$5D
TEMPO =$5F
* =$0301
.WOR END
WOR 18

-BYT $3E. 82862

END .MOR O
SENTRY

LDR #$0B
STA $De11

LDA #39F

STR $D413

LDA #3FF

STA DIR

LDX #$00
STORE LDA $6660.X

STR $Ceev, X

BNE STORE
LDX #$99
LDY #$52
STX INCA+1
STY INCA
LDY #$0F
STX $FB
STY $FC
STHK VIPT+1
STX V2PT+1
STR V3PT+1
STX %4PT+1
STX INCPT+1

LOOF LDA (3FB).Y
BEQ CNTROL

LDA ($FBD.Y
JSR MUSIC

NEXT INY

BNE LOOP
EXIT LDX #4100
RESTRE LDA $C898., X

iQUTPUT PORT

iDATA DIRECTION
;FOUR VOICE WAVEFORM
; POINTERS

JPOINTER TO MUSIC
;FOUR VYOICE INCREMENT
; POINTERS

;DURATION COUMTER
SINITIRL INCPT
;TEMPD VALUE

SNEXT LINE POINTER
;LINE NUMBER 19
,8 ;5YS82e62

;END OF BRSIC

iDISABLE IRQ
sDISABLE SCREEN DMA

;DISABLE DECIMAL
JSET SID VOLUME
i TO MAX

;SET USER PORT
iTO QUTPUT

JSAVE OFF ZERD
; PRGE

’

JGET UP INCR TO
; POINT TO V1IN

;CONTROL TRBLE STARTS

;ZERQ WAVEFORM
; HIGH BYTES

;GET CONTROL CODE
iPLAY CONTROL?

JYES

;3TORE AS HIGH BYTE
; FOR MUSIC

JGET LOW BYTE

JPLAY THE PIECE
sREPEAT UNTIL MUSIC
; COMPLETE

;COPY BACK TO

Lac

@35D
B3SF
ases
8352
8864
8867
8862
886C
agsd
88sE
@86k
B86F
0871
8873
ga7S
88?y
8878
asy
887!
B37E
3888
83382
Ba82
8835
8887
8333
933AH
8asc
288D
883F
8391
aga2
u824
Be9e
8333
agss
8831
838c
8832k
B85RV
93A2
B8R4
@8RT
28AR
@8AC
83RE
BERF
B8EQ
98B1
23B89
R3B4
88B6
8883
@8ER
A3BIC
B3BE
agCy
83C2
38C4
B8Ce
Bacy
B8CH
gecc
B8CE
8301
asD3
B80S

507

@
o1

-

a6

=

S8

56
3E

59

21
4E
4E
09
4E
S8
a2

D4
Do

nc

oc

B8R

8R

LINE

CNTROL

CONTR1

MUSIC
MUSIC1

MUSICS

Musicz

MUSIC3

STAR

STR

INY

STR
INY

STR
INY
LDA
STAR

STX
sTY

LDA
STA

STA
LDA
CMP
BNE
PLA
FLA
FLA
JMP

LDA
BER
chP
BEQ
STA
INC
BNE
INC
LDA
TAX
LDR
STA

LDA
5TAR
INC
BNE

$9009, X

RESTRE
#3060
$D418
#$1B
$D011

C$FBY, Y
EXIT
#3091
CONTR1

($FB). Y
TEMPO
NEXT
#3a2
EXIT

C$FEBD, Y
VIPT+2

($FB), Y
Y2PT+2

($FBY,Y
Y3PT+2

CSFBY,Y
Y4PT+2
NEXT

NOTES+1
NOTES
#3509
INCR
INCPT

A #$7F

$DCed
$DCv1
#3$7F
MUSICIO

EXIT

(NOTES>, Y
ENDSNG
#301
NXTSEG
DUR
NOTES
MUSIC3
NOTES+1
(NOTES)., "

FRQTAB., X
(INCPT>.,Y
INCPT
FRATAB-1,X
CINCPTY, Y
NOTES
MUSIC4

The User Port

; ZERO PRGE

;NO SID VOLUME
iRESTORE SCREEN

;START IRQ
JFINISHED

;GET CONTROL NUMBER

JEND QF MUSIC
;IS YALUE 172
;NO

;GET TEMPO

5 TRY AGAIN
15 CONTROL 27
;NO EXIT PROG

;GET HI BYTE FOR
; THE WAVEFORM

i POINTERS OF THE
5 FOUR YOICES

iSTORE MUSIC TABLE

; POINTERS

;SET P TO

; TRANSLATE FOUR

i VOICES INTO INCREMENTS
+SET TQ RERD CONTROL

i KEY

;GET ANY KEYS

JSTOP KEY?

sNO
JCLEAN UP STRCK

JEXIT ROUTINE

;GET DURATION

i IF ZERQ EXIT PHRASE
JIF 1 GET NEXT SEGMEMT
i OF PHRASE

;15 DURATION

+ INCREMENT MUSIC

i POINTER

JRERD IN FOUR

; YOICES AND STORE

i IN YOICE INCREMENT
; LOCARTIONS

169

170 The Commodore 64 Kernal and Hardware Revealed
Lac CODE LINE

83D7 E& Si INC NOTES+1

8803 E6 4E MUSIC4 INC INCPT JREPEAT FOR

A3DB AS 4E LDA INCPT ; DTHER %OICES
a3DDd C2 SA CHP #Y4IN+2

WeDF D@ E3 BNE MUSIC3

AGE1 28 F7 88 JSR FLRY ;PLAY THE NOTES
98E4 4C S9C v8 JMP MUSIC1 ;D0 NEXT LINE
4sET i

83EyY C8 NXTSEG INY iGET POINTER TO
B8E8 PRl S0 LDA (NOTES>».,Y ; NEW SEGMENT QOF
B88ER 48 FHA i MUSIC

B8ER C8 INY

A8EC Bl 5@ LDR (NOTES).,Y

@SEE 85 51 5TA NOTES+1

B8F8 &8 PLA

B3F1 35 58 STA NOTES

@SF3 4C 2C 88 JMP MUSIC1

A3F 5 ;

B3Fs 68 ENDSNG RTS JRETURN TO CONTROL LOOP
9aFy i

BaFY RY 8@ PLAY LDY #%00 iFPLAY THE NOTES
43F3 R6 SF LDX TEMPO

a3FB i

BEFB 18 PLAY1 CLC

88FC Bl 41 LDA <(¥1PT+1),Y 35UM WAYEFORMS OF
83FE V1 46 ADC (¥2PT+1>,Y ; FOUR %OICES FOR
9338 71 49 ADC (¥Y3PT+1).Y & DUTPUT

8992 71 4C ADC (Y4PT+1)5.Y

asa4 8D 81 DD STR USRPRT JOUTPUT VALUE
9387 HS 48 LDA VIPT +ADD INCREMENTS
8283 &5 52 ADC Y1IN i TD THE FOUR WRAVE-
8%@B 85 44 STA VIPT ; FORM TRBLE POINTERS
#33D AS 41 LDA Y1PT+1 ; VWOICE 1

890F 65 53 ADC Y1IN+1

8911 35 41 STA Y1PT+1

8513 RS 45 LDA %2PT ; 2

8315 K5 S¢ ADC V2IN

9217 85 45 STR Y2PT

9813 AT 46 LDA ¥2PT+1

9%81B 65 S5 ADC V2IN+1

831D 39 46 STA V2PT+1

331F H3 48 LDAR VY3PT ; 3

a321 &5 56 ADC Y3IN

8323 85 48 STA V3PT

a325 AS 49 LDA V3PT+1

@327 65 57 RDC Y3IN+1

8322 35 43 STR V3PT+1

A92B RS 4B LDA V4PT ; 4

892D 65 58 ADC Y4IN

A92F 35 4B STA Y4PT

8831 AS 4C LDA Y4PT+1

9933 65 59 RADC Y4IN+1

8935 85 4C STA V4PT+1

8337 CA DEX

4333 DO 88 BNE TIMWAS JWASTE TIME

993/ L& SA DEC DUR s DECREMENT DURATION
893C FB BC BEQ ENDNOT ;IF DUR=8 THEN DO NEXT LINE
BZE A6 SF LDX TEMPO

a94@ D@ BS BNE FLAY1

a%42 D@ 49 TIMWAS BNE ¥#+2 JWASTE A BIT OF
9944 D@ 90 BHME #+2 ; TIME

3946 DB 89 BNE #+2

9243 D8 Bi BNE PLAY1

9947 60 ENDNOT RT3

394B :

894B FRQTAB =$0A01

A24B .END

Symbol table
SYMBOL YALUE

CHTROL BS6E CONTR1
EMD B8ec ENDHOT
FRRTAB BAB1 INCA
MUSIC 8393 MUSIC1
MUSIC4 B38D3S MUSIC3
NXTSES 98EY PLAY
STORE @321 TEMPO
Y1IN 8852 Y1PT
V3IN BeS6 Y3PT

8387E
a34R
095D
agac
83R4
BEF?
@BSF
2043
Ba4s

Music data frequency tables

Bass frequency table
Hi-lo BA7C to FA93

1 8A00
1 BRO8
‘BA18
‘BA18
‘9A208
1BR28
10A38
{OA3S
TER4d
1BR43
1 BASO
‘8BRS
1 BREO
:BAG8 S
‘@AT8 2
‘BA78
'BABA
1@A88
1BASe

DDR
ENDSNG
INCPT
MUSIC2
NEXT
PLAY1
TIMWAS
V?IN
V4IN

Program 15.

8e
92

E3

Wraparound waveform table no 1

:9Bo8
:9B@sg
‘8B16
‘9B18
:@AB206
‘BB28
1@B34
‘8B38
:9B48@
:9B48
1 aBS@
1@B98 !
1 83B&O
:@B63

‘0BT
: QB8
:0B38

‘8BB3
‘BECB

:@BDA
‘9BDE
:BBEA
‘8ABES
‘BBF@

1BBVO :

‘8B73 2
18B38 2
*8BAG :
‘8BR8 2
:ABRE@ ¢

‘ABCS &

‘BBFY

33
33

3C

3C

3R

39
3A
)]
3E
3F

3E 3

The User Port 171

DUR
EXIT

MUSIC3
NOTES
RESTRE
USRPRT
W2PT
Y4PT

B885A
8358
8843
9eC4
BvaSe
A3SRH
DDa1
88435
8948

25%c0ccaoar
B37.E.c0.o.
677 .%cccb0a
497, ..00..1
667 cocl0aan
CD e =eaeaa™
927.5. ...
CC ccoaalall
280..
247...E... ¥
237,32 0000
S Y. 3
427.1.. \"H
3173R&. (T+1
6L/ -—A,31%.,
B3 %=, .uan
467, .. 8. 4.F
) SO
51 A IR N

34 35 36
3A 3R 3B 3
3C 3C 3C 3C
2C 3C 3B 2
3R 3R 3R 2
3% 33 33
2R 3R 3A
3C 3C 3C .
3E 3E 2E 3 .
3F 3F 3F 3F 2F
3E 3E 3D 3D IC : ==L
SR 33 28 25 27 36 357 .48.55
33 2 31 28 2F 2E 207432187, -
2B 2A 29 28 27 26 257 .+%2(7&4
23 22 21 21 28 1F 1F s,
1E 1D 1D 1D 1IC 107 sseassa
iC 1D 1D 1D 1D 1E cccocnss
9 21 21 227... it
26 27 BHFFL&L
2R 2B
2B 2R+
27 SETHEEIN(TR
1F 1D Xs#" 0 .,
14 137, 000anes
(515" - R
[5)50 5 IR
(515 I R
81 9 02 43 847 . . ieieas
US a7 @3 BB BC A0 . ..ces0n
18 12 12 16 13 1A .vanase
1D IF 29 22 23 25 27"... "#17
2R 2B 2C 2E ZF 239 317 %+, .91

172 The Commodore 64 Kernal and Hardware Revealed

Wraparound waveform table no 2

. 1 8Ce8
.:BC1@
. 8C18
. 18C28
. AC28
. '8C30
. 0C38
. 1AC48 !

°
°
.
a
N
°
°
°
a
.
.
.
°
°
a
.
a
a
-
°
°
.
°

Wraparound waveform table

18ADee :
‘@Deg
'8D16
‘8D18
'9D20
18028
18038
15D38
:9D49
:8D48
1ADS0
:@D5S8 33
:8D6D
:0D68
'9D70
:8D78
:8D3@ |
1ADasg
:8Do8
:8D28
:@DAA
:8DA8
:BDBG
:@DB8
:9DCo
:BDCE
:@DD6
:@DnD8
‘BDE@
‘ADES
:BDFB
‘9DF3

°
a
°
s
a
a
°
.
o
°
o
.
°
a
°
o
0
.
o
®
®
°
°
°
°
°
°
®
°
o
-
s

1 acoe

18C48 !
‘8CSe
‘8CS8
‘acee
1OC68 :
1aCve
1@CyY8e 2
18C8e
1acee
Tacsa
tacag 2
‘8CRe
:9CA8
‘BCBo
:aCB8
‘gCCo
1accs
1g9CDa
'9CD8
:@CE@
:@CES
‘BCFa
‘BCF8

22
22
1D
1B
1F
26

2A

[

e L L RN
-

LR R
17 icaanss

IF i eiaaans
257, HreE
SR7&EE 0%
327%%K, , .92
3R 244789 :
A0 {{===]
337 1385429
1E . +2731
18 iiannon
P eeienans
267 Tnieg
218K
12«
I.00.0...
IE e iacuans
ae“...

19 sieeaas
1P ianeans
13 ceenaes
() R
U
(5% R
[5) 1 L

1D eencnns
227, pngne
1w ..
179 0cincan
1B eveennns
217 0000 1
217 el
et el

177 aeecnne
]
2C7. 1827 0%,
2D = A0 -
1B CR# .,
215 PP
139 ceencans
e Ak 14 24
AR72478
2479792/, (¥
B6 e aceonne
A7 enconss

ave s
& .---a-#

SE7+-369<=>
2F 7 23=<363/
B0 +7#.....
B3 iienons
1B uuneen
37.$(, /257
3479::::874
1R2/+($!, .,
5] 5 R
157 cenenne
2A7. .. B&(#
2B/ =0
21787 u#!
177 ceananns
1A% ceanan.

Ay
0L

The User Port 173
Wraparound waveform table no 4
.TOEBP 20 20 20 20 20 29 20 297

LTOEB8 21 21 21 22 22 22 28 2z1nitniay
‘BE1Y 24 29 29 26 26 7 28 2R7FNH<(C
"BE18 23 2R 2B 2B 2L 2D 2E ZE id++.-..
‘BE2@ 2F 39 31 32

32 33 34 3479122344
'PE2R 35 36 36 37 37 38 33 38755577383
‘PE3SO 38 38 33 38 33 38 3 37 533838387
"DE38 37 36 35 34 33 32 31 2F/Te54321/
‘BE48 2E 2D 2B 22 27 26 24 227.-+)74&s$"
‘OE48 28 1E 1C 1A 13 16 15 137
"OESHA 12 19 AF BE 8D AC ac BB

"BES8 @B @B AC A/C A D5
‘BEGB 13 14 16 13 1D IF 217, 000ua !
"BEE8 24 26 23 2R 2C 2D 2F 397$k(%. -9
'BEVD 30 31 31 31 38 2F 2E 2ha111a/. -
‘BEFS 2B 22 27 24 22 29 1D 1B +7F" ..
‘BES@ 13 17 15 13 12 11 11 117........
‘BEB8 11 12 13 14 15 18 1A 1%, ce.nnn
"BE38 1E 21 23 25 27 29 2R IRV, 1#A7 0%+
"BES8 2C 2C 2C 2B 2R 29 27 257.., .+ "k
‘AEAB 23 21 1E IC 1A 18 17 15°#!......
‘BEA8 15 15 15 16 17 18 1A 1C7.
‘BEB@ 1E 28 22 24 25 27 28 237, "$A7((
‘OERS 28 28 27 26 20 28 21 287 (7 ax#!
‘9ECB (E 1C 1B 1R 13 13 18 19”,...
‘BEC8 1A 1B 1C 1D 1F 21 22 237!"#
"BEDE 24 25 25 25 25 24 23 227 3RAHNSH"
‘BED8 20 1F 1E 1D 1C 1B 1B 1B” ..cuuue
‘BEEB 1C 1C 1D 1E IF 20 21 227..... !"
‘BEE8 22 22 22 22 22 21 21 2g7mnrentd
"BEF@ 1F 1F 1E 1E 1E 1E 1IE 1E . cueaenn
‘BEF8 IF IF IF 29 28 26 28 287...

— I
=1=1=]
o)
m
o
T

e o « 8 © o © ®8 ® n o ® ®© ©o ® @ © © o s ©b ® & s & ® © e 8 &

- T USSR
e -’ -, - - -
- e Py . T
et = =,
=" T

Fig. 5.13. Sample voice waveforms for music synthesis program.

174 The Commodore 64 Kernal and Hardware Revealed

Main control table

FF specifies control code

Followed by 1 = tempo as next byte

Followed by 2 = next 4 bytes are waveform table pointers
If not FF then hi-lo of pointer to following score table

‘8F@@ FF 81 38 FF 82 9E OE PE"..8.....
‘OF08 BE 18 B0 18 1A 18 83 18,
‘BF10 1R 10 &9 10 68 19 80 187
‘BF18 1A FF 82 BB AC 9D PE 107 ...cuees
‘BF20 20 18 3F 11 30 11 35 117 ...e.ees
‘GF28 AR 18 B8F 11 E7 11 35 117 L.esee.
‘AF38 FC 12 4D 13 1B 12 4D 137..M.. .M.
"BF38 94 18 8F 11 EV 11 35 14-.......s
‘9F40 AD 11 BE 18 3F 11 2@ (1-4°.....
‘OF48 35 14 AD 12 18 14 C2 187.. 4.1,
'BFS8 8F 11 39 11 35 16 71 167, ..uunee
‘OF58 DB 14 2E {1 88 11 35 167+...vees
‘BF58 P1 16 FF FF FF 88 68 987

)

Music table

In groups of 5

Duration and 4 notes, 1 per voice

@0 = return to main control loop

®1 = read next 2 bytes as pointer into this table lo-hi

$1008 89 30 30 868 06 B9 39 807
11908 34 PR 92 39 38 85 BE 25700.0
:1@19 80 30 2R 18 28 899 88 2R,
11813 98 B3 60 B0 B3 68 69 907,
11926 34 48 38 22 19 4C 99 B8 4HB". ...
11828 99 98 14 4R 32 2C 14 8C ... J2. ..
11838 98 99 90 A8 34 4E 36 387....4N68
11838 18 8C 99 89 A9 89 14 527.......R
11648 3A 32 1A AC 69 83 M3 @R :2,.,...,.
11843 34 5S4 3C 36 1E 6C 99 A3 475, ...
11858 89 V9 14 52 30 32 IR BC .. .R:2..
11958 90 68 48 A8 34 4E 26 847....dHED
11968 18 BC 99 896 8A 838 14 4RT
11868 32 2C 14 4C 09 &9 B9 8982,
1670 34 423 38 28 18 3C 89 @B 4HBC, ..
11978 868 V@ 43 53 T4 4E 48 29 ..BATNH
$1908 90 O ©A 92 44 80 99 187, ...8...
.:1888 8A 26 A9 VA BB 60 88 287,
11999 48 28 81 80 20 44 2C @v 3., D..
11998 AY 29 42 30 a0 08 49 4A7. HE..RJ
110R0 88 32 92 28 487 48 3A a2°.2. Je:,
116R8 48 40 8Q 4% AR 28 44 3R @@... L
.118B0 32 1@ 20 3A 89 22 1A 2872, .
:18B8 3R 8@ 22 83 28 3R 32 26 L. ?%i
$18C8 86 49 35 2L 26 @3 20 327,86, &. 2
118C8 2C 26 82 44 3
a

9 © © 8 4 o @ a @ © a 8 B B @& & o

Jt

r

40 48 3A° D...28:
©19D8 2E B4 2B 49 3C 28 86 287.. 34,

"1BEB 40 69 14 SR 28 44 28 @9-R2... ‘],
©1B0E8 ©¥8 28 44 2C 68 88 28 43°. D... H
*10F0 30 99 49 20 48 32 a8 8a a.. J2..
*18F8 20 4C 34 ©9 0B 48 4E 367 L4..2N6
11168 88 16 20 4E 3C 4@ 18 48°.. N{@.B
:11968 48 96 88 1E 29 48 3C 49°H... HKE
11119 1E 48 40 22 @9 15 28 407 .36@(,. @
11118 3C 36 18 4@ 2C 28 28 187 {6.@<08<,
11120 26 36 2@ 23 19 49 32 @887 &8(. 182,

5]

&

a3 24 D8 A6 . &.B9F. .
118D8 28 44 Q8 29 ag

112
11138 !
11138
11149
11143
11158
11158
11168
11188 ¢
11170 ¢
11178
11138
11188

.11190

e 8 8 ®© © & © ® 8 ® & & 8 8w ® © ® ® 8 & ¥ & ® 8 & &6 @ ®m e ® w & o 8w & & 8 w © & 5 ® o ® 8 a O s G & o

11138
. 11R8
*11A8
:11B9
:11B8
11108
11108 4
11108 !
:11D8 «
*11E8
‘11E8
‘11F8
“11F8
11260
112088
11218
11218
11220
11228
11239 ¢
11238
11249
11248
11259
11258
11260
11268
11278
11273
112809
11288
11259
11298
112A9
*12R8 ¢
:12B9
:12B38
112C8
(12ce 22
$12D8 4
11208
T12EB8
“12E8 ¢

2F8

t12F8 ¢
11309
11308
11319 <
11318 ;
1132

113283
:1339
:1338
11349
11348
11350 22

28

a8
48

The User Port 175

48-,, 2(".@
2292,.. 2
a7, 2... @
187(.. D...
327 Ha.. J2
4a°,, No..@
42°R... RJ@
4R.8J... J
16°@:,08,..
327 @:2.@:2
aa- (. 2240..
887 e(2s. @,
28°(. @0, ..

88“H.9..12J,
48-2, JD>.1@
2C“H.8. D>,
2a7,.88(,,

89 2R EA(,
4E7. H6..@N
8a->.. N>..
3EVRIME. D>
566, . N@6. .
38N>, BNCD
497,B
< /‘C. 3. 'CB.'
44°.@D.,. D
2872,..0@. ¢
487, @{B(eR
@8-, (. H.8.
LS. N
20-6.@J<2.

SATHKA, J@:
447, Je:, J
ac@:, J@:,
497 JB:, Jg
287:.@J8:,

807,42,
207 ie0ann

2472...@D. %
42°. D.%.@B
1A"%". D.*%.
FEBN... N>
2876.8J,..

22°D. LGF."
467, D. .@F
9. ", F.",

ZE” F.". F.
20°%. F.(.

1E“F.". F..
467, F...BF
827(¢". D,&.
2R F (.. BH¥
ea ", F.(..
24 H&.,BJ.F
44, J2..@D
8., .. <.F.
ap @2... ..
20-,.8@:2,

1A“,...2D%.
427, D$,.EB
1R“#". D.¥.
2E“@N... M.
B276..8J...
287 D%, .@3¢
4a-", @(".@
2z27J2.. J2"
a7, Jo.. T
187... J(".
28-@J, .. J¢

287" BECE.

176 The Commodore 64 Kernal and Hardware Revealed

s © @ o s ® o @ © o 8 ® o o & & & o & b - s O © » s © & 5 & ® & s @ 8 & b 6 & © ® o 8 & ® 5 8 @ & © © o ® A 8 6 @ @ 8 & & o ° @ & 5 o O 8 o

11338
11368
11368
113?9

. lﬂl‘a
11388
$1390
11398
*13RA8 :
:13A8 «
*13P8 :
113B8
$13Ca
113CS8 :
:1300
11308 :
T13EQ «
S 13E3
T13F8
*13F8

11488
11498
:1419
11418 «
11420
11428
11430
11438
11440
11448
11450 «
:1458
11450
114€8
11470
11478
11480
11433
11499
11498
:14R0
:14R8 ¢
:14B0
:14B8
$14C0
11403
:1470
114D38
“14E08 2
:14E8 B
: 14F0
:14F8
11508

:1508
11518
11518
115209

1328

113538
11538
11548
11548
11558
11558 ¢
115608
11363
11578
11578
11588

49
13
28
28
24
40

1€
23
20
24

44 2

18

30 2

80
24
20
24
52

B <

3a
e
2C
46 2
@9
3A

20 ¢

2C
S4

18

98
ac
44

54
88 :

4E

3t

4E
19
28
28
24
4R
18
4R
a3
ZE
29
2R
3€
@H

36
28
20
43
14
28
60
2c
49
24
45
13
36
48
2c
4R
219
36

~,

3 2(F.BNS,
4E7. N(%. M
1°¢.. Ni..
387 N($. He
28°%. D.¥.

22°3(¢F, , J(
527..N9%..R
28°:¢..8J.

467. D% .@F
Mm s, F.¥%.
2E"RBD.$. F.
28°F.BR ¥,

2R R: %, @Ne#
4A°. HO%.3J
24°2.. J2.%
227eD.,. JI2
280, BF, ",

227 J2" . BNe"
947, R:". T
1E7C2, T2,.
327 T2.. T2
207.. TQ;.

28°T2,. oo
S4B, ... T
1512 RN 1t 1 PO,
(1% R 08 § | RNV
ac’...TJD..
447.... TID
S47, TND$ T
28-JD"4TJD

A e as 2aTJ
28°D

440410, WID
567, WJID.4%
14°TD0anaee
88 . %ID....
487, , XNH.@2
Pt
8a- srenenee
[R P
1575 R G
487, ..0.@
28 BRC
437, . BEAR
39°H.8. HEo
28°.. 34,.

2E“24.. 34,
3.2, 2
9R72%,3....
Hne- 232%.8. .,
457, 92%,.3
A ..., B2%
G337.R.... 8
08 4¢3, ...
34~ ‘4(. 24
BC " {osacons
(525 R
515 R
5]
515 R
B e eeaneas
(515 KA - T
gas, a4,.8,
16~ 4 54..
34°@,... S¢
207, . B....

BB 84, .6...
3C7. 82%..<
B 2%.0c0na
Ba’, . 2%, ...

- @ @ o © © o © s & & & © & © © & v @ © 8 © © © e 8 © m ©w B8 a s 6 & 8 © @ 6 6 & o & B

® @ & @ s & ® 8 o @

2) D L)
DOOD DN

.
1S

ac

The User Port

ac’, . (2%, .
2R7.... 22%
357..52%..3
ac 24, . 82%.
08 .32%. ...
147 cceeans
[R
1% R
1R7...Q....
89 32%.@..
487,.. B2%.12
SR ..., D2%
3B.e,... 3
B472%. 8. ...
807 4%, .,
497, . (4%.@
2R, ... 4%
C.8.,.. <
B8 4%, 2. ...
897 24..8..
4a7,. 34..@
SR ... Do ¥
CTN - R)
167, %, .28, .
207, FES....
ac’...Fes..
327.....FE8
437......8H
9B B, ...,
fg” . B@... .
1R, .. BJ...
a838,
497,2
BEN... ...
ea, 5@, .. .
227, .BR, "
L A
287, "@3, .,

307E6A(BH, &
4E7. HEGHEN
88 {6, NI..
49-RJL2. HE
1R7<A. . J@:,
407,02 @HE

38°@78. D{O
147, H<@...
Ha-Je,..aJ,
497, .2J...8
18-J...8J7,
4R-.@8J. .. 8T
14°%, . 8J. .
aaaJ, . aJ,
487,.@J...8
82°J...MF. .
4E7.FN...FHM
147, . .FN...
B8 FN{. .FN.
467, . FN$. . F
BA“M...FN".
4E7 . FM...FH
147...FN...
28°JR...JR.
417, IR .. T
18R, . .JRC,
527.JR...JR
1478, .JR...
Ba - JR"..JR,
4R7. . JR...J
B2°R...NT..

177

178 The Commodore 64 Kernal and Hardware Revealed

.17B5 BC 4E 54 890 890 14 4E 547 .NT...NT
.17C8 2C 14 AC 4E S4 99 99 147...NT...
.-17C8 4E 54 28 1@ BC 4E 54 BB NT(..NT.
-:17D8 90 14 4E 54 24 OC aC 4E-, NT$..N
. 17D S4 98 28 14 94E S4 22 BA-T.. . HT".
. *17EB BC 4E 54 90 98 14 4E 54, NT...NT
.17E8 IE 86 BC 4E 54 @9 98 28-.,.NT..

. 17FB 52 58 1A B2 29 3R 99 BORK.. :..
. 17F3 DR 26 49 90 09 14 29 4A7. @,,, J
.1 1588 96 Y@ 1A 26 49 99 B8 187.,. @..,
. 1382 26 4A 0B 0@ 1R 26 S2 va- J... R.
.:1818 BB 22 20 48 59 @9 1A 207." J...

.:1818 52 ©¥ 80 22 20 S5 @9 @9R.." X..
.71828 28 20 52 98 86 22 28 S53°¢ R.." ¥
. 1828 BA VA 28 3@ 62 5B T2 327,.{..8R2
. 1838 20 89 Q0 62 AA 20 6A PO
-1338 19 3A 42 80 D9 @9 82 387, ,.R.....
.71340 68 00 £ 00 YD DO BP9 KO

Program 17.

Music table commands
The bytes in this table are stored in groups of 5 bytes; these are a duration value
and a note value for each of the four voices.

If the duration byte contains a ff then this specifies the end of the score
segment and the program returns to the main control table.

If the duration byte contains a §1 then this specifies that the next two bytes
contain a pointer to another section of the music table. This address is stored in
lo, hi form.

5.12 Analog to digital conversion

The circuit used to convert an analog signal to a digital value is very simple. It
involves the use of a voltage comparator IC and a digital to analog converter.
The comparator has two inputs; one is the voltage to be measured and the other
is a variable reference voltage. The comparator output will go high when the
reference voltage is equal to or greater than the voltage being measured. If the
reference voltage is generated by a D to A converter then it is a fairly simple
matter to vary the converter output until it matches the input voltage. This point
is detected by a change in the comparator output. Fig. 5.12 shows such a circuit.

Analog to digital conversion using the circuit in Fig. 5.12 relies heavily on
software to find the correct D to A output value. This could be done simply by
ramping up the output voltage from zero (using a simple increment loop) until
the desired voltage is reached. This, however, would be very slow and could take
up to 255 steps to find the match. A quicker technique, known as successive
approximation, requires just eight loops. The successive approximation
technique starts by setting the most significant bit (bit 8) to 1 and all other bits to
zero. It then tests to see if the voltage resulting from this value is greater or
smaller than the voltage to be measured. If it is larger then the msb is left set and
if smaller then the msb is cleared. The routine then sets bit 7 to [leaving bit 8 in
the state defined in the previous loop and all less significant bits set to zero. The
same test is then performed to discover whether the resulting voltage value is

The User Port 179

280 REM PROGRAM TO INMPUT 18K ‘'ALLES

30 REM FROM AN A 70 D CONVERTER AND THEM
49 REM DISFLAY 320 VALLUES AT A TIME TO
S8 REM A GRAPHICS SCREEN

79 REM PROTECT MEMORY
2@ POKESZ, 128:PUOKES4. 120:FPOKESS. 128:CLR
REM

119 REM READ THE “ALUES

20 REM

139 POKE 43263,1:3YS459243:REM 42263 IS5 SAMPLING VALUE
140 REM

150 REM GQ IMTO GRAPHICS MODE

168 REM

179 3y342627

18@ REM

130 ggg LOOP TQ DISPLAY 32 SCREENS FULL

219 POKE 42137.1:FORI=ATN31:REM 43137 [5 SAMPLING YALUE

220 SYS43152. [¥320+3872

238 GETA$: IFA$=""THEM23Q

248 SYS42667 (NEXT 1 5Y545373G

Program 18.

greater or less than the input voltage to be measured. Depending on the result
bit 7 is left set or cleared. This procedure is then repeated for all the other bit
positions in the byte, with the result that only eight operations need be
performed to obtain the required value. A successive approximation technique
is shown in the first part of Program 13.

Program 18 is an example of one of the many applications to which an analog
to digital conversion circuit can be applied. This program performs the function
of a simple storage oscilloscope. This storage oscilloscope program is very short
and written in Basic. It does, however, require that the machine code programin
Program 13 is already loaded into memory. The program samples 10240 values
with a maximum sampling rate of approximately 250@ samples per second. This
sampling rate can be varied to less than this by changing the contents of location
49263. The input waveform is then displayed in high resolution as 32 screens of
information.

5.13 Expansion port

The expansion port is a 44 pin edge connector on the rear of the CBM 64. It
gives access to most of the Commodore 64’s internal signals. The port is
designed to take two main types of device. The firstare simple memory mapped
devices such as ROMs or I/ O chipslike a 6526 (if you can get one) ora 6522. The
second type of device is more interesting. These are less passive in that they can
read or write direct to memory without going through the processor. The most
common of these devices is the Commodore Z8f card. Using the DMA (direct
memory access) line totally disables the 651 processor while the card is active.

5.13.1 Pin descriptions

Expansion port

44 pin double sided .1 edge connector socket. Labelled 1-22 (top) and A-Z
(G,I,0 and Q skipped)

180 The Commodore 64 Kernal and Hardware Revealed

Power connection (power out to boards)

Pins

1,22,A,Z Ground p V

2,3 +5 volts

Timing signals

Pins I/0

6 Out Dot clock 8 MHz approx (varies with TV standard (PAL

NTSC ..)
2 Out. ¢2 Phase two clock

Bus control signals

Pins I/0

12 Out BA system buses available from VIC chip

13 Input DMA Direct memory access (gives expansion card control of
system buses)

5 Input R/W Read/write

Interrupts

Pins /o

4 Input IRQ Interrupt request

D Input NMI Non maskable interrupt

Memory mapping

Pins /0

7 Out I/Ol Address decoded $DEPP-$DEFF

19 Out I/O2 Address decoded $DFpP-$DFFF

11 Out ROML Addr decoded $8090-$APPP

B Out ROMH Addr decoded SEAPP-SFFFF

8 Input GAME Expansion ROM at $APPP-$COPP (no Basic ROM)

9 Input EXROM Exp ROM at $8009

Reset line

Pins /o

C Both RES Reset everything

System buses

Pins I/0

14-21 Both Data bus consisting of eight unbuffered lines
with a maximum load of 1 TTL device.
Line 14 is D7 and line 21 is D#.

F-Y Both Address lines; these sixteen lines are unbuffered
and have a maximum load of 1 TTL device.
Line F is AlS5 and line Y is Ap.

5.13.2 ROM cartridge

The expansion port is set up to make ROM cartridges a simple direct
connection. An expansion ROM for address $8000 using a 2764 (8K by 8) is not
too hard if you can obtain or make a board to fit the expansion port edge
connector. Just-connect the 13 address lines and 8 data lines. Then connect chip

The User Port 181

select to LROM and connect the 64’s EXROM to ground. The 7464 pins Vpp,
Vee and PGM go to 5 V and Vss goes to ground.

5.13.3 170 chips on the expansion port
Wiring up a 6526 or 6522 is similar but clock, interrupt and reset also have to be
implemented. It is important to connect this type of chip to I/O1 or I/O2 and
not to LROM or HROM.

Figure 5.14 shows 2764 and 6522 pin outs and appropriate expansion port
connections.

MEMORY EXPANSION

123456789

10111213 14151617 18 1920 21 22

JR

"ABCDEFHJKLMNPRSTUVWXYZ

PIN # TYPE PIN # TYPE
1 GND 12 BA
2 +5V 13 DMA
3 +5V 14 D7
4 IRQ 15 D6
5 R/W 16 D5
6 DOT CLOCK 17 D4
7 1/¢1 18 D3
8 GAME 19 D2
9 EXROM 20 D1

10 i/92 21 DO
11 ROML 22 GND
PIN # TYPE PIN # TYPE
A GND N A9
B ROMH P A8
o RESET R A7
D NMI S AB
E bz T A5
F A15 U Ad
H Al4 \V; A3
J A13 wW A2
K A12 X A1l
L Al1 Y AQ
M A1Q Z GND

Fig. 5.14. The allocation and function of pins on the memory expansion connector.

182 The Commodore 64 Kernal and Hardware Revealed

g
G oolE S
2e-nnznenfsBIOEERESR 233
M Y
F2TTRLLLAILITIZIZEMWE 2
Expansion port connector lines. =
GND 1 Vss
+5V 4 2PAQ
Al2 3 PAL
AF 4 PAZ
A6 A3 5 PA3
AS AQ 6 PA4
A% Al 7PAS
A3 ROML 3PA6
A2 Alg qpA?
Al qAl GND 1pPBY
Ad IpAD D7 11PB1
PR 1HDp D6 12P82 R}
DI 12D} D5 13p83 ©
D2 13D2 DA 14 PB4
GND D3 15 PB5
16 PB6
Connection of a 2764 EPROM to expansion port lines. L% PB¥
18 CBI
19¢ch2
+5V 20 VBC

Connection of 6522 via 1/0 expansion connections.

Fig. 5.14. (contd.)

Chapter Six
Interrupts and Their Use

Interrupts are the signals used by peripheral devices, such as the CIA chips, to
signal to the processor that they require servicing. This IRQ signal will then
cause the processor to halt its current operation temporarily in order to service
the interrupt generating device. Having completed this servicing the processor
returns to the interrupted program.

6.1 Interrupt requests (IRQ)

The major implementation of IRQs in the Commodore 64’s operating system is
to scan and receive key presses from the keyboard. This IRQ runs on Timer A of
CIA#1. The timer value is set up so that the keyboard is scanned every 1/60th of
asecond. IRQ interrupts can be disabled by setting bit 2 of the processor status
register or by the use of the command SEI. To re-enable IRQ, reset bit 2 or use
the CLI command. The SEI command is used by the disk operating system to
prevent timing errors when accessing the disk.

The only other standard use of IRQs in the operating system of the
Commodore 64 is in the tape I/ O routines. Rather than just disabling IRQs, the
tape system uses IRQs for reading fron or writing to the tape. The tape system
uses both Timer A and Timer B on CIA#! for reading and writing. For more
information on the tape routines, see Chapter 4.

6.2. Interrupt generating devices

6.2.1 The CIA chips

CIA#1 Register 14 (§DC@D)

Bit Enable/disable (write), occurred (read)
Not used

Not used

FLAG 1 line (cassette read)

Serial data register

TOD clock alarm

Timer B

Timer A

| = N WA LA

184 The Commodore 64 Kernal and Hardware Revealed

When reading bit 7 is used to determine whether an enabled IRQ on this chip
occurred (if more than one device is connected to the IRQ line) i.e. if this bit was
not set when the IRQ routine was caused, it must have been either the VIC chip
or the expansion port. If bit 7 is set, bits §-4 will tell what caused the IRQ. It
should be noted that when using IRQs, it is advisable to keep a separate record
of the IRQs that are enabled, since their respective bits may be set but not
necessarily enabled.

When writing, bit 7 is used to tell the CIA whether the lower bits are for
disabling or enabling. If bit 7 is set, any other bits set are to enable an IRQ. If bit
7 is not set, any other bits set are to disable an IRQ.

1. Cassette read FLAG 1 line

This line is used by the cassette read routines and creates an IRQ when it is
enabled. The tape flags an IRQ on this line when the pulse on the tape goes from
high to low. An example of the use of this IRQ is shown in Chapter 4 (fast tape
operation).

2. Serial data register (SDR)

The SDR is a serial input/output device of the 6526 CIA chip. When IRQ is
enabled on this register, the IRQ will be caused either when the full byte has
been read in (input) or when it has been sent out (output). When the IRQ occurs,
either a new value to send must be put into the SDR or the byte contained in the
SDR will be read and the SDR left to input the next byte. The SDR uses 2 lines
on the user port. These lines are SP1 and CNT1, which together are used to
send/receive data. When sending, each bit is set on SP and the CNT line is used
to clock the bit using Timer A. An example use of the SDR can be found in
Chapter 5.

3. TOD clock alarm

When the TOD clock alarm IRQ has been enabled (after setting TOD and the
alarm) an IRQ occurs when the value in TOD becomes equal to the value set in
the alarm. An example of how to use the TOD clock can be found in Chapter 5.

4. Timer B

Timer B can run in three different modes; as a straight timer, a count down on
pulses from the CNT line of the user port, and a count down on Timer A
running out. These three methods are outlined in Chapter 5. An IRQ will occur
on Timer B in any of the three modes of operation when the value in Timer B
clocks past zero.

5. Timer A

Timer A has only one mode of operation; as a straight timer. An IRQ on Timer
A will occur when the value in Timer A clocks past zero. Note that with Timers
A and B, the timer always decreases until it clocks past zero. Therefore, to time
something, the timer should be set to the period and when it runs out the time is
up. With CIA IRQs, the IRQ is cleared by reading register 14.

6.2.2 The VIC chip
The VIC chip is also connected to the IRQ line and VIC chip IRQs are
controlled by registers 25 and 26 on the VIC chip.

Interrupts and Their Use 185

VIC register 25 ($D@19)
(Interrupt flag register)

Bit Set on any enabled VIC IRQ occurring

4 Not used
Light pen (1=occurred)
Sprite to sprite collision (1=occurred)
Sprite to background collision (I=occurred)

Raster compare (I=occurred)

‘S'—Nw?\\l

VIC register 26 (D@1 A)
(Interrupt enable mask)

Bit 7-4 Not used
3 Light pen (1=enabled)
2 Sprite to sprite collision (I=enabled)
1 Sprite to background collision (1=enabled)
/] Raster compare (I=enabled)

To enable IRQ, register 26 should be read and the bit to enable set and then
written back to register 26. When the IRQ occurs, reading register 25 will tell
you which VIC IRQ has occurred. To clear the IRQ, the corresponding bit to
clear is written to register 25.

1. Light pen
The light pen IRQ occurs when the raster scan reaches the position of the light
pen and the light pen values can then be read from registers 19 and 20.

2. Sprite te sprite collision
Sprite to sprite collision IRQ occurs when any bit in the sprite to sprite
collision register (39 - $D@IE) is set.

3. Sprite to background collision
Sprite to background collision IRQ occurs when any bit in the sprite to
background collision register (31 - $D@IF) is set.

4. Raster compare

Raster compare IRQ occurs when the raster position being displayed becomes
equal to the compare value written to registers 17 ($D@11 high bit) and 18
($D@12).

6.2.3 The expansion port

IRQ can be caused by any I/ O device connected to the Commodore 64 via the
expansion port. There are two ‘spare’ areas for such I/O devices; they can
either be addressed at $DE@@ or $DF@@. See Chapter 5 for an example of
adding a 6522 VIA chip to the Commodore 64 via the expansion port.

186 The Commodore 64 Kernal and Hardware Revealed
6.3 Non maskable interrupts (NMI)

NMIs are so named because they cannot be disabled by the SEI command.
Normally the NMI routine is not called regularly like the IRQ routine. This is
because NMI is only caused by 2 devices:

a) RS232 (user port FLAG sent low)
b) RESTORE key

There are five other ways of causing an NMI on the 64 that are not
implemented in the software. These are Timers A and B, internal shift register,
expansion port, and time of day clock on CIA#2. All NMIs except the
RESTORE key and the expansion port are controlled by register 14 (§$DD@D)
on CIA#2. This register is used as a dual purpose write (enable/ disable NMI)
and read (to determine the source of NMI).

CIA#2 Register 14 ($DD@D)

Bit 7 Enable/disable (write), occurred (read)
6 Not used
5 Not used
4 User port FLAG line RS232 data received)
3 Shift register
2 TOD clock alarm
1 Timer B
[} Timer A

When reading bit 7 is used to determine whether an enabled NMI on this chip
has occurred (if more than one CIA chip is connected to the NMI line) i.e. if this
bit was not set when the NMI routine was caused, the NMI must have been
either the RESTORE key or expansion port. If bit 7 is set, bits -4 will tell what
caused the NMI. It should be noted that when using NMlIs, it is advisable to
keep a separate record of the NMIs that are enabled as their respective bits could
be set but not enabled.

When writing, bit 7 is used to tell the CIA whether the lower bits are for
disabling or enabling. If bit 7is set, any other bits set are to enable an NMI. If bit
7 is not set, any other bits set are to disable an NMI.

6.4 Devices that cause NMI

1 User port FLAG line

This line is the one used by the RS232 routines and causes an NMI when it is
enabled. The method of flagging an NMI on this line is to set the line to+5V
and then to @V. This method is outlined in Program 19 which uses 10 lines on
the user port to transfer a block of memory from one CBM 64 to another (8 data
lines and 2 lines to flag the NMI on the other 64). When initialised, the NMI

Interrupts and Their Use 187

cova #=$C000

CBasd RSIF LDAR #<NMI 'SET NMI T0O POINT
caez 3D18a3 STR #8318 I 7O THE TRANSFER
Cees RaCo LDA #>NMI ! RECEIVE RQUTIME
Ceo7 38D1993 STAR $8312

CBOA ASAE LDA #<{SAVIED I'SET SRVE TO POINT
cgaC 3D3283 5TR $8332 I TD THE TRANSFER
CBBF RASCO LDA #>SAVWED ! SEND ROUTINE
C811 3D33a3 STR #8333

CB14 RA99L LDR #3299 'ENRRLE USER

C81s 3DODDD 3TA $Dhpap ! PORT NMI

C819 R984 LDA #$94 'RESET RECEIYE FLAG
CO1B 8DhFoco STR FLAG

CB1E &8 RTS

CB1F !

Ca1iF IRDUTINE TO RECEIYE R FILE OVER

Co1iF 'THE USER PORT

CB1F

CB1F 48 NNI PHA 'PUSH OFF REGISTERS
Co26 8A TSR

caz1 48 FHA

ce22 38 TrA

CB23 48 PHA

Co24 R2192 LDA #s$16 'WAS NMI CARUSED BY
Ce26 2C8DDD- BIT $DDOD ! THE USER PORT?
Cazs Do1a BNE LORDIT IYES

CO2B 20RBRCFs JSR $FSBC INO. UPDATE CLOCK
CB2E 2BEIFF JSR ¥FFE1L ITEST STOP KEY
CO31 D@37 BNE EXIT I'NOT DOWN

C833 RS7F LDA #s$7F 'DISABLE UUSER

C83S 8DaDrd STA $DDBD ! PORT NMI

C8338 4CB6FE JMP $FE66 ID0 NORMAL STOP-RESTORE
C83B !

C83B R%@@ LORDIT LDR #3090 ISET PORT TD INPUT
C83D 8DB3DD STR $DDG3

Cb40 ADO1DD LDA $DDB1 IGET INPUT BYTE
Co43 EE20DD INC #$Dazg ISHOW IT IS WORKING
CB46 RE7OCH LDX FLARG IREADING FILE 0OR
Co43 Fooo BEQ STRFLE ! LOAD RDDRES3?
CB4B 295FR STA $FA.X ILOARD ADDRESS

CB4D CA DEX IDECRERZE FLAG
CB4E 3E7@CH STX FLRG ISTORE IT

CBS1 4Cénca JMP EXIT TEXIT NMI

Cos4 !

Ca54 AYB8 STRFLE LDY #3008 'NOW READING FILE
CaS6 31FB 3TA ($FB.Y ISTORE THE BYTE
CaS8 209FCo JSR BUMP2 ! INCREMENT AND TEST EMD
CBSB 3@al BCC EXIT INOT YET

CeSD RSFD LDR $FD I'SET FROGRAM END
CBSF 852D STA %20 ! FOIMTERS TQ EHMD
(861 ‘ASFE LDA $FE ! OF READ FILE
CBe3 852E 5TA $2E

CBES ASv4 LDR #3a4 IRESET LCADING FLAG
Coé67 8hr7ecs STA FLAG

Ceén ! .

CoéA &8 EXIT FLA IRESTORE REGISTERS
Ca6B RS TRY ! AMD EXIT NMI
CeeC 58 PLA

Cesd AR TAX

CBEE 68 PLA

COEF 49 RTI

cerg !

Coero o4 FLAG BYT 4

ceri !

cert IRDUTINE TO SEND R FILE OYER THE

cerl ! USER PORT

cazi !

CB71 AD7FACH SAVER LDR FLAG 'IF RECEIVING.
car4 Cae4 CMP #3914 ! DON‘T SEND

Cars DaF3a BNE SRVER

cars AzB4 LDX #3284 IPOINT TO ZRYE

188 The Commodore 64 Kernal and Hardware Revealed

CB7A BSAR LOOP LDR #$AB, X 'GET ADDRESS RYTE
Cce7Cc 20C2CH JSR SBYTE ISEND THE BYTE
CAFF CR DEX D0 NEXT?

Co38 DBFS BNE LOQP IYES

cag2 Aoud LDY #$993

Cas4 B1AC LOOP1 LDR ($ACH,%Y IGET R FILE RYTE
Ca8s 2vC2Ca JSR SBYTE I3END IT

CA’? 2u9acy JZR BUMP I INCREMENT AMD' TEST EMD
CRsC QvFs BCC LOOP1 'NOT YET

CO3E 18 CLC ISAYED 0K

CB8F 58 RTS I DONE

cagg !

Ca%3 E6AC BUMF INC $AC I INCREMENT LQ BYTE
ca32 Dew2 BME EUMP1

Caz4 E&RD INC #AD I INCREMENT HI EYTE
Co2e RSAC BUMPL LDR $AC ICOMPRRE SAYE

CR9S CISHE CMP $RE ! ADDRESS TO END
CB9A ASAD LDA $AD ! ADDRESS

Cv3C ESAF SBC $AF

CB2E 58 RTS

Ca3F !

C8SF E&FEF BUMP2 IMC $FP I ITMCREMENT LD EBYTE
COR1 Daaz EME BUMP3

CHRZ EEFC INC $FC I INCREMEMT HI BYTE
CORS ASFB EUMP3 LDR $FEB ICOMPRARE LORD

CBART CSFD CMFP $FD ! ADDRESS WITH EMD
CBARS RSFC LDA $FC ! ADDRESS

CBRR ESFE SBC %FE

COARD & RTS

CBARE !

ngg IWEDGE INTOQ SAVE YECTOR

CE !

COAE RSBA SAVNWED LDA #$BA ITEST DEVICE #
CRBS C297 CMP #3067 IDEVICE 7?

CBB2 Fa93 BER 3SRYEL IYES. SEND OYER PORT
Cob4 4CEDFS JMP $FSED INO. NORMAL SRYE
CaBy RASC1 SAVEL LDR #C1 {3ET SAYE START
CoB2 235RAC 3TAR $AC ! ADDRESS FOR USER
CBRB RSCZ LDR $C2 ! PORT ZRVE

CeBD 2SHAD 3TA $AD

chF 4C71CA JMP SAYER I3EMD FILE

cac2 !

cuc2 IRQUTINE TO SEMD | BYTE ACRO33

cac2 ! THE USER PORT

cac2 !

cacs 42 SBYTE FHA ISAYE OFF BYTE
Coc2 ASFF LDR #3FF ISET FPORT TO QUTPUT
CBCS 2D83DD STA $£DD93

Cacs s2 PLR 'GET BYTE

CAC3 3na1DdD STA $DDu1 ISEND TO FORT

CACcC RDI2DD LDA #%DDB2 I'3ET LIME FR2

CacF 99a4 DRA #3904 I TQ DUTPUT

26D1 SDezDdD 3TR $DDB2

Colh4 ADISDD LDA $DDo@ ISEND PA2 HIGH
Cany g2a4 ORA #304

cens? 208anD 3TA $DDea

CODC 20F3Co JSR DEL 'PARUSE

CeDF RIGADD LDA $DDEB ISEND PAR2 LOW

CREZ 29FB AND #$FB INMI HARS BEEN CARUSED
C9E4 2DAanD 3TR $DDw@d ! ON RECEIVING MACHIME
CRET 28F3CH JSR DEL PRUSE

COER A=A LDA #3$2 ISET USER PORT TO
COEC 2DB3DD 3TA $DDAS ! INPUT

CREF EE28D8 INC $D@z29 I'SHOW IT IS WORKING
COF2 84 RTS

CarF3 !

CHF3- A%19 DEL LDA #$10 'PRUSE FOR DARTA
COFS E3al IE SBC #3901 !TO BE RERD

COFT DoFC BNE IE

CBF3 ga RT3

Program 13.

Interrupts and Their Use 189

vector is set to point to the receive routine and the SAVE vector is set to the send
routine. When the user of one computer SAVEs a block of memory with device
7, the file is passed through to the other computer by setting a full byte onto the
data lines and causing an NMI by setting the PA2 line hi then lo (PA2 is
connected to FLAG both ways). The NMI routine then reads the byte from the
port and either stores it as a load address or as part of the file.

To send a file, use SAVE*“”,7. Files are automatically received.

2. Serial data register
The NMI SDR has exactly the same operation as the IRQ SDR except that
instead of lines CNT1 and SPI1, lines CNT2 and SP2 are used. SDR use can be

seen in Chapter 5.

3. TOD clock alarm

The NMI TOD clock alarm has exactly the same operation as the IRQ TOD
clock alarm. An example of how to use the TOD clock can be found in Chapter
5.

4. Timer B
The NMI Timer B has exactly the same operation as the IRQ Timer B.

5. Timer A
The NMI Timer A has the same operation as the IRQ Timer A.

6. RESTORE key

The RESTORE key on the keyboard is connected directly to the NMI line and
is not a true NMI. When RESTORE is pressed, the NMIroutine is called and if
the STOP key is also down, NMI will cause a restart of the computer. This is
done by jumping to a routine pointed to by an indirection at $APP2: IMP
(SAPP2). If a cartridge ROM is in place (with the power-up bytes), JMP ($8002)
is used instead.

7. Expansion port
Expansion port NMI has the same operation as expansion port IRQ except that
IRQ occurs if the line is low, whereas NMI occurs when the line goes low.

6.5 The kernal vectors

There are a group of vectors in page three memory that are used for indirect
jumps into some of the most useful kernal routines. These have been provided so
that the machine code programmer can patch into them to change the operation
of the computer. Each vector is a two byte low-high vector to the main machine
code kernal routine and by changing its value, you may point it to your own
routine.

The vectors are as follows:

190 The Commodore 64 Kernal and Hardware Revealed

Address Default Use

$9314 $EA31 Vector to the IRQ routine. This vector can be changed to point
to your own 1RQ routine for things such as screen scrolling etc.

$0316 $FE66 Vector for BRK instruction is changed by all monitors so that
when a BRK is encountered, the computer jumps to the
monitor.

$0318 $FE47 Vector to the NMI routine. Its major use is for the detection of
the RESTORE key. Other methods are outlined in Chapter 5.

$031A $F34A Vector to open file routine.

$031C $F291 Vector to close file routine.

$031E S$F2QE Vector to set input device.

$0320 $F250 Vector to set output device.

$0322 $F333 Vector to restore /0.

$0324 $F157 Vector to input. This routine is used in all peripheral input. It
could be used for function keys etc.

$0326 $FICA Vector to output. This routine controls all output to the same
devices as input (except keyboard).

$0328 $F6ED Vector to test STOP routine. The most widely used patch is for
disabling the STOP key.

$032A $FI3E Vector to get. This routine is used to get a single key from the
keyboard buffer. The character received is not displayed but is
just returned in register .A. The get key has the same operation
as input from all devices except the keyboard where input
inputs a line until carriage return is pressed.

$032C S$F32F Vector to abort 1/ 0.

$032E $FE66 Unused vector. This vector can be used by your own routines.

$03390 $F4AS5 Vector to load routine. This vector is jumped to after the load
parameters have been set up.

$0332 $FSED Vector to save routine. An example of a patch into this vector
can be seen in Chapter 4 and in Program 19 in this chapter.

Iindex

abort serial 1/0O files, 59

ACPTR, 49

address bus, 8, 10

allophones, 151

analog interfacing, 155

analog music synthesis, 159

analog todigital converters, 5, 10, 155
anti piracy techniques, 123

ASCII files, 80

auto run, 121

Basic interpreter, 3
BASIN, 52

binary files, 80
BSOUT, 54

cartridge port, 10, 179

cassette buffer, 79

cassette error messages, 84

cassette hardware, 78

cassette operating system routines, 83
cassette operation, 79

character output, 25

CHKIN, 54

CHKOUT, 56

CIA 6526,4,8,15,33,70,78,79, 127 ff
CIA signals and lines, 9

CIOUT, 47

CLALL, 59

clock signals, 8, 10, 13, 130, 137
CLOSE, 57

close all logical files, 59

CLRCH, 59

colour clock, 13

Commodore 64 design concept, 2
computer control for the disabled, 142

data bus, 8, 10
digital to analog conversion, 156
digitising pads, 22

DMA, 10, 13
dot clock, 13

error handler, 67
expansion port, 179, 185

find any tape header, 92
find correct file on tape, 95
FLAG, 131, 186

function key definition, 19

general function serial routines, 51

get character from current input device,
52,53

GETIN, 52

handshaking, 131, 133
high speed data transfer, 138, 186
high speed tape operation, 110

1/0,3,4,7,15,127,128, 132

input byte from serial port, 49
interrupt control register, 138
IRQ, 4,9, 13,108, 138, 183 ff

joystick, 5, 10, 22, 127

kernal vectors, 189

keyboard, 15, 127,

keyboard buffer, 16

keyboard matrix scanning, 4, 15, 16
keyboard operation modification, 19
keyboard scan simulation program, 17

light pen, 11, 185
listen, 42

load RAM function, 86
LOAD/VERIFY, 62

microprocessor 6510, 2, 7

194 /ndex

miscellaneous cassette routines, 96
MPU signal lines, 8, 130

NMI, 9, 13,84, 186

OPEN, 60
operating system, 3
output character, 54

parallel port expansion, 142, 181
peripheral interface lines, 131

phase 2 clock, 10, 13

PLA,7,9.12

potentiometer joystick, 22

power supply, 7

print ‘saving’, 90

print tape loading messages, 88
printed circuit board, 6., 7

protect cassette from RS232 NMI, 84

RAM,3,10,12,13

read cassette, 100

read/ write, 13

ready, 13

recording method, 81

relay control circuit, 141

return buffer address, 95

ROM cartridge, 180

RS232 close channel, 77
RS232 command register, 73
RS232 connections, 71

RS232 control register, 72
RS232 open channel, 75

RS232 receive from channel, 76
RS232 serial communications, 70
RS232 status register, 73
RS232 transmit to channel, 76

save memory function, 39
screen, 23

screen display software, 23
screen scrolling, 31

secondary address, 45

send byte to serial bus, 47

send secondary address after talk. 46
serial bus lines, 32

serial bus timings, 34

serial communications, 32, 70

serial data register. 137, 184

serial system routines, 42

serial system variable declare file, 38
set opened file for input, 54

set opened file for output, 56

set up time out for next dipole, 99
SID 6581.4,9. 10

SID signals and lines. 10

sound generation, 4, 10

stop key servicing, 90

switch joystick, 22

system control signals, 13

system logic and timing, 12

TALK, 42

tape error handler,91

tape IRQ, 108, 123

tape security, 123

time of day (TOD) clock, 4,9, 135, 184
timers, 4,9.84, 134, 184

TKSA, 46

UNLISTEN, 48

UNTALK. 47

user port, 128

user port connections, 127, 128, 129

VIC 6567 Chip, 2,10, 11, 187
VIC signals and lines, |1
voice synthesis, 149

write cassette, 106
write memory, 97
write tape header, 93

7280 card. 10

W

A knowledge of the Commodore 64 kernal software and the
hardware with which it interacts is essential for programmers
wishing to make full use of the machine’s capabilities. The
kernal software provides the interface between the user, the
BASIC interpreter and the electronics - and a thorough
knowledge of its functioning gives the programmer a wealth of
ideas and methods for interesting programming techniques.

This book gives the programmer a unique insight into the
operation of the Commodore 64 plus a wide variety of very
useful hints on subjects as diverse as reconfiguring the keyboard
and anti tape-copying security. The book also covers the user
port and the addition of external circuitry to it.

The Authors

Nick Hampshire is a well-known author and microcomputer
expert who has specialised in Commodore computer equipment.
He started the first hobby microcomputer magazine, later
absorbed into Practical Computing, of which he was technical
editor for several years. He was the co-founder of Popular
Computing Weekly and founder and managing editor of
Commodore Computing International magazine. He is also the
author of over a dozen books on popular computing, including the
very successful and widely acclaimed PET Revealed and VIC
Revealed.

Richard Franklin and Carl Graham are programmers with

- Zifra Software Ltd and together with'Nick Hampshire have

written some of the software included in this book.

Also by Nick Hampshire

THE COMMODORE 64 ROMs REVEALED v ;s
000383087 X

ADVANCED COMMODORE 64 BASIC REVEALED
000383088 8

ADVANCED COMMODORE 64 GRAPHICS AND SOUND
000383089 6

THE COMMODORE 64 DISK DRIVE REVEALED
000383091 8

ISBN 0-00-383090-X

COLLINS ' ||
Printed in Great Britain

£10.95 net] 9 '780003"830903

