] —
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 64

, X

TIMOTHY J. O'MALLEY

ARTIFICIAL
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 64

ARTIFICIAL
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 64

TIMOTHY J. O'MALLEY

TAB TAB BOOKS Inc.

Blue Ridge Summit, PA 17214

FIRST EDITION
SECOND PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Copyright © 1985 by TAB BOOKS Inc.
Library of Congress Cataloging in Publication Data

O’Malley, Timothy J.
Artificial intelligence projects for the
Commodore 64.

Includes index.
1. Artificial intelligence—Data processing.
2. Commodore 64 (Computer)—Programming. |. Title.
Q336.043 1985 001.535 84-26749
ISBN 0-8306-0883-4
ISBN 0-8306-1883-X (pbk.)

Contents

P S R S S A A Y S S B ULV ST T R S S IS N N A S OB e

Programs in the Book vii
Introduction ix
1 Introduction to Artificial Intelligence 1

What Is Artificial Intelligence?
Definitions and Scope—Microcomputer Applications
Artificial Intelligence Techniques
Tree Searches—The Algorithm Method—The Heuristic Method—
Pattern Searching
Three Introductory Programs in BASIC
The Towers of Hanoi: Version One—The Towers of Hanoi:
Version Two—The Knight's Tour

2 Intelligent Games 21
Artificial Intelligence in Games
Board Games—Three Intelligent Games in BASIC

The Game of Nim—The Path through a Maze—The Cellular
Automaton

3 Behaviors and Bootstraps 39

An Introduction to Behavior
Definitions—B.F. Skinner and His |deas
Computer Behavior
Training the Rat—Bootstrap Systems
The First Bootstrap Program—The Second Bootstrap Program

Natural Language Processing 51
Definitions and Examples
English-Like Conversations—Compositional Works
The Story of ELIZA
Language Processing in BASIC
An ELIZA-Like Program—The Perfect Logic Program

Heuristics 83

Heuristic Programs in BASIC
Heuristic Tic Tac Toe—The Five-in-a-Row Game

Pattern Recognition 99

Ways of Finding Patterns
Differences between Numbers—The Grouping of Strings—Inter-
polation and Extrapolation
Pattern Recognition Programs in BASIC
Patterns in Numbers—Patterns in Strings—A Word Processor
Program

Other Areas in Artificial Intelligence 116

LISP: An Artificial Intelligence Language
Robotics

Introductory Robots—Robotic Activities
Creativity in Computers
An Artificial Intelligence Operating System
Limits to Artificial Intelligence
Artificial Intelligence Computers
A Bonus Graphics Program

Glossary 125
Index 128

Programs in the Book

Listing 1-1 The Towers of Hanoi: Version 1.............. 7
Listing 1-2 The Towers of Hanoi with Graphics.......... 12
Listing 1-3 The Knight's Tour. 17
Listing 2-1 The Game of Nim......................... 24
Listing 2-2 Changes to Use Nim on Disk............... 26
Listing 2-3 The Path through a Maze.................. 30
Listing 2-4 Cellular Automaton. 34
Listing 3-1 Training the Rat.......................... 41
Listing 3-2 Changes to Use the Program on Disk. 43
Listing 3-3 The First Bootstrap Program................ 47
Listing 3-4 The Second Bootstrap Program.............. 49
Listing 4-1 The ELIZA-like Program.................... 54
Listing 4-2 Perfect Logic............................. 66
LIsting 51 Tic Ta0 TOB, . .« cxseesursmsesvmumenrscnn 84
Listing 5-2 Five-in-a-Row Game....................... 91
Listing 6-1 Patterns in Numbers. 101
Listing 6-2 Patterns in Strings....................... 104
Listing 6-3 A Word Processor. 105
Listing 6-4 Changes to Use the Program on Disk. 109
Listing 7-1 Graphics Maker.......................... 120

vii

Introduction

R S T T T G T Ve T T e R O T, S P O WP T

This book is more than just a collection of artificial intelligence
programs and their descriptions. It is a source book of ideas
concerning how to solve problems. It is a guide to how humans
solve problems and how the Commodore 64 might be programmed
to do so. It is written so that you might become a better
programmer and might explore different ways of solving prob-
lems. I have done my best to design programs that will display
important aspects of artificial intelligence on the Commodore 64.

Think about artificial intelligence for a moment. Let’s not
fool anyone; artificial intelligence is a set of ways to make the
computer make better use of the information that it contains. All of
the rules of computer science apply to the field of artificial
intelligence. Don’t expect that you can somehow transform your
Commodore 64 into an electronic personality. In this book I will
not attempt to answer the question of whether or not computers
can be programmed to think. I sometimes ask people if people can
think. Human intelligence may also be an illusion.

In this book you will look at ways that the Commodore 64 can
be used to make deductions and solve problems. In some programs,
the computer “learns” strategy from a game-playing opponent,
you. It then uses that stored strategy to make a move when it
encounters the same situation. Is this learning? It is learning inan
artificial sense and may not utilize the same mechanics as human

ix

learning. Other programs change themselves or the data that they
contain. These program might increase in complexity. In any
artificial intelligence program, the acid test is whether or not the
computer will respond better with time. Much of artificial
intelligence simply involves getting the data organized so that the
computer can access it in a coordinated manner.

This book is written for both the beginner and the seasoned
programmer. The beginning programmer can run the programs
even though he or she may not understand all of the operations and
techniques involved. The experienced programmer will find some
surprises, mostly in the ways of approaching problems and in the
ways BASIC statements can be arranged. This book then is really
appropriate for a wide range of programmers, although some
fundamental understanding of computing is essential. Home
computer owners who are interested in artificial intelligence will
find that this book satisfies their curiosity. This book would also be
good as outside reading or as an added text for a math or computer
science course. Those in psychology courses in which computers
are used will find the book of interest.

I hope that you will use this book in a constructive manner. I
hope that the programs in it will help you to look at problems and
thinking in a fashion that you hadn’t considered previously. At the
present stage of computer technology, the lagging area is software
development. This book will help you develop a proper per-
spective of artificial intelligence and computer software generally.

Chapter 1

An Introduction to Artificial Intelligence

In this first chapter I introduce some definitions and techniques
associated with artificial intelligence. You will see some of the
kinds of things that can be done on the Commodore 64 micro-
computer. Two introductory programs that exhibit artificial
intelligence to some degree are presented.

WHAT IS ARTIFICIAL INTELLIGENCE?

At the risk of being in trouble before I start, letme try to define
a working definition of artificial intelligence. This definition may
not be inclusive but it is a start.

DEFINITIONS AND SCOPE

Artificial intelligence is the attempt to set machines to
perform processing abilities normally associated only with cogni-
tive human thought. It is artificial in the sense that it is a
manufactured technique and may not have the same basis as
human intelligence. What is important is that the results of human
and artificial intelligence are highly similar. Artificial Intelligence
is really more than that, though. It is the ability of the computer to
better utilize the information that it contains. For example, if you
somehow store the fact that Socrates is a man in the computer and
then store the fact that man is mortal, you might be able to devise

an algorithm such that the computer can deduce that Socrates is
mortal. Thus the computer might be able to solve the hypothetical
syllogism.

Much of how the computer can solve problems lies in how the
data is organized in memory. I will use set theory in some of my
programs. If I say that Socrates is a proper subset of man and if I say
that man is a proper subset of things mortal, it follows logically
that Socrates is mortal. If set A is contained in set B, and set B is
contained in set C, then set A is contained in set C. I will design a
truth table for solving problems. Then the computer can use this
truth table to solve all problems that relate to set theory.

Artificial intelligence, in my opinion, is really an illusion. In
fact, I think that thinking may be an illusion. If these words that
you are reading don’t seem to contradict the facts that you know
already, you might say that an intelligence had written them. We
might contrive a survey such that people would be polled to see if
certain computer abilities were indistinguishable from human
abilities. If they could not tell the difference, we might say that the
computer exhibited artificial intelligence. Such a test is called the
Turing test, after Alan Mathison Turing.

Turing, more than anyone else, laid the mathematical frame-
work for digital computers. Turing machines are the logical basis
of every digital electronic computer in existence. Turing machines
are conceptual devices that allow for the binary solution of
problems in electronic computers. Turing’s work has led me to
believe that any problem that can be defined as a set of binary
components is ultimately solvable. This makes me think that
binary arithmetic is fundamental to the problem-solving process.

The goal of artificial intelligence is to be able to program a
computer to solve any given set of problems in a reasonable period
of time. Although some problem might be theoretically solvable,
the time involved might be astronomical. Therefore we have to
look at other ways of solving problems. I hope that this book will
challenge us to explore other ways of solving problems.

There are a number of areas that artificial intelligence
encompasses. One is natural language processing. In this area the
computer responds in English or another language and “‘under-
stands” commands and statements in that language.

Another area is expert systems. In expert systems the computer
is able to respond to many different commands or questions about
a limited discipline. It is an expert.

Another area is problem-solving, in which the computer
attempts to find patterns or rules in order to solve problems. Maybe
it will store data from prior problems and then see if there is a
solution based on past information. We might even supply the rule
so that the computer can solve the problem.

Another area is behavior where we can “train” the computer
to perform a certain “learned” sequence of operations. If a step in
that sequence produces a negative effect, we might have the
computer try another possible operation. Eventually we can have
the computer “trained” to do the desired sequence of events.

In heuristics the computer may look for the best operation ata
given point in time. If that operation turns out to be wrong, itwill
“remember”’ not to do that again. Many of these different areas
overlap and a program may not lie strictly in one area.

Microcomputer Applications

Let’s be honest. When we think of artificial intelligence, we
generally think of cryogenic supercomputers operating at the
limits to technology, or at least of a large mainframe using a high-
level language like LISP. Is it possible to run artificially intelli-
gent programs on a microcomputer programmed in BASIC or
machine language? I think so. At least some problems can be run
on a micro if those problems do not use an excessive amount of
memory or time.

The Commodore 64 is a good choice for some artificial
intelligence programs. It has 64 K RAM and can store data on disk
or tape. A disk drive will allow fast access to files of information.
These files can be updated as a program is run. Thus the storage
capacity is large enough to do some modest problem-solving. The
cost is low enough to enable many people interested in artificial
intelligence to conduct their own experiments. The speed of the
Commodore is reasonably fast. For those problems requiring more
speed, the programmer might resort to machine language instead
of interpreted BASIC. Machine language is easily accessed on the
Commodore 64. The programmer might also use a BASIC
compiler to translate his program into faster code.

ARTIFICIAL INTELLIGENCE TECHNIQUES

We now look at four techniques used in artificial intelligence.
They are tree searches, the algorithmic (rule) method, the heuristic
method, and pattern searching. We realize other methods may
exist, but these are some of the techniques best suited to be explored
using the Commodore 64.

Tree Searches

A tree is a graph made of points, called nodes, and connecting
lines. They are designed so that the number of nodes increases as
you go from top to bottom. Actually the tree resembles an inverted
tree structure with many branches. If you visualize your family
tree, you might see a few ancestors at the top, and many levels of

descendants as you go toward the bottom. Genealogical diagrams
are a form of tree.

Another type of tree reflects the number of possible moves ina
game. As the move number increases, the possible outcomes of the
game increases. For example in the game of chess, you start with 20
possible moves for move number one by WHITE. Any of the eight
pawns can move one or two squares forward, or either of the two
knights can jump to one of two possible squares. BLACK has the
same number of possible moves on its first move. After that the
possibilities start to multiply rapidly.

A tree search would go down all the levels (in this case move
numbers) to find all the possibilities. The computer would check
out the possible outcomes of the moves with a tree search.

A complete search. In a complete search, the computer would
explore the outcomes of every possible move in a game. It would
then take those moves that would assure a victory. In the game of
chess, a complete search would be impossible because the number
of possible games are virtually infinite. A complete tree search
would require an infinite amount of time.

In some simple games, like tic tac toe, a complete search would
make sense because the possible games are a small finite number,
nine factorial, or 362,880. Actually it is smaller than that if we
disregard move numbers and only consider positions as combina-
tions of moves. Games are probably the most obvious examples of
where tree searches are used.

A pruned search. Because a complete search is impossible for
some situations, such as the game of chess, we can employ a
modified tree search called a pruned search. In a pruned search, we
eliminate those moves that are clearly nonsense moves, moves that
lead to immediate defeat. We save computer time by searching only
those moves that seem to have a good possibility of leading to a
victorious outcome. In the minimum-maximum prune search, we
take those moves that give us the minimum amount of danger of
losing and that our opponent could use to gain the maximum
advantage. Thus we try to find our best move and try to predict how
our opponent will move. We probably set some time or level limit
for this pruned search and then choose the move that gives the best
position at the lowest level. Many typical microcomputer pro-
grams for chess or checkers only go down a few levels in a tree
search. Tree searches, then, can be useful for finding best moves in
some games.

The Algorithmic Method

In the algorithmic method, we use a rule or algorithm to solve
a problem. For example if you are blind and lost in a maze, you
might find your way out of the maze by running your left or right

4

hand along the wall. Eventually you will trace your way through
the maze to find the exit. This may not be the fastest method, but it
works. Another method for finding your way out of a maze is to
somehow mark all dead ends. As you successively mark dead ends,
you effectively debranch the maze. The resulting trunk is the
solution and leads to the exit. Obviously you may well find your
way out of the maze before you have debranched all of the dead
ends. So sometimes a simple rule can lead to the solution, no
matter what the problem.

Often the solution is a simple binary solution. In the firsttwo
programs in this chapter, you will see how a simple binary rule can
solve the Towers of Hanoi puzzle. In that puzzle you move disks of
varying diameters on three different posts. The rules of the puzzle
states that you can move only one disk at a time and can not placea
larger disk on top of a smaller disk. When we discuss that program
we will see how a simple binary rule can tell us where to place
which disk, regardless of the number of disks. The game of Nim
may have a binary solution as well.

The Heuristic Method

Heuristics can include such things as the pruned search,
where the computer ignores exploring dead end possibilities. Let’s
expand the definition of heuristics to include any process whereby
the computer will debranch a tree or maze, or will reduce the
probability of using certain routes. In a game we can set up a
probability array corresponding to certain moves. If the computer
makes certain moves that leads to a defeat, we might reduce the
numbers in the probability array. The computer would then
choose from those move numbers that have a higher probability of
success. In this way the computer might successively approximate
the correct sequence of moves leading to a win. We might say that
the computer has learned strategy from past games. Likewise the
probability of choosing those numbers that lead to victory might
be increased so that the computer would choose them more often.

Pattern Searching

In pattern searching the computer looks for a sequence of
numbers or a complicated rule to solve the problem. For example
if we stored the notes from many songs in memory and then asked
the computer to name the tune after just a few notes, the computer
would search through all the note sequences until it found a
match. Then it might give the title of that song. Or we might have
games stored on file and ask the computer when a combination of
moves were made that lead to a victory. We would have the
computer look for patterns.

Binary patterns. We said earlier that we suspected that binary

5

arithmetic may be fundamental to the problem-solving process. If
a binary pattern could be found, we might have understood
something about the nature of the problem. Binary patterns are the
simplest form of language, although it might not seem so to us.
(Consider the firefly: its on-off flashes represent a binary form of
communication. Other fireflies have no problem in deciphering
the message.) This may become more obvious later.

Other patterns. Many times there is no clear-cut rule, only the
sequence itself. Consider the number of days in a month. We would
either have to invent a rule to remember or look at a calendar.
There really is no simple mathematical rule to relate days of the
month to the name of the month or vice versa. As we said,
sometimes we make up a rule so that we can remember. You might
think about how a computer could devise a sequence rule to solve
problems after it has found the pattern initially.

Other times the pattern can best be expressed in a non-binary,
mathematical way. Perhaps the relationship between two given
variables is a simple polynomial expression. If we use statistics, we
might find a polynomial regression line that best relates the two
variables in question. Or let's say we want the computer to
distinguish the difference between men and women based on
height and weight. For the sake of argument, let’s say that men
tend to be taller and heavier than women. We would have the
computer plot a height-weight graph. We would then tell the
computer which points were male and which were female. The
male points would probably cluster together and the female
coordinates would cluster together. If we entered a height and
weight and asked the computer whether it was male or female, it
would choose whichever cluster of points were nearest in making
its determination. The program’s data would be constantly
updated. Statistics would shed some light on the mathematics of
the problem. We might also want to include another factor, such as
age, and then plot in three dimensions to predict the sex.

In this book I will describe all of these ways of solving
problems. More than a dozen programs will be examined in depth
and every line will be explained in detail. I will suggest ways to
alter the programs. This book assumes that you own or have access
to a Commodore 64 computer with a C2N or equivalent tape
recorder/player. The programs can also be used with disk drives.
We will look at the different kinds of programs that can be used in
artificial intelligence experiments. This book will serve as a
starting point for those interested in artificial intelligence. It
doesn’t presume to cover every area of artificial intelligence.
Discoveries of new ways of using computers are being made each
day.

THREE INTRODUCTORY PROGRAMS IN BASIC

The three programs that follow display important aspects of
artificial intelligence. The first two programs are similar. They
solve the Towers of Hanoi puzzle. The first produces a list of the
moves that must be made to solve the puzzle, the second program
shows the solution graphically. The third program shows the
solution to the knight’s tour problem. In the knight's tour, the
object is to have a knight in the game of chess land on all 64 squares
of a chessboard without landing on a square more than once.

The Towers of Hanoi: Version One

The challenge in this puzzle is to move all the disks from one
of three posts to another of the posts, without placing a larger disk
on top of a smaller disk. Only one disk can be moved at a time.
Listing 1-1 shows a unique binary solution to the puzzle.

Listing 1-1 The Towers of Hanoi: Version 1

za
28

laa
11@
12a
13a

135

ssszrzssrIsIsIIIIIIEESISOITIREISIIGIIILGZ
REM TOWERS OF HANOI - WERSION 1
REM WRITTEN BY TIMOTHY J. O"MALLEY
REM COPYRIGHT 1984, TARB BOOKS INC.
REM SWRITTEN FOR THE COMMODORE ©&4>

PRINT CHR#$C1470)3
INPUT "WHAT HUMBER OF DISKS":HN:M=:{1=C1 AND HN>)¥2+1
DIM KiNDIFOR I=1 TO HiK<Id=1:NEXT

AF="ABC"IFOR L=1 TO 2TH-1:I=8

D=—cil AND 21 I1)=21I>%{I+1>:I=I+1:1F D=0 THEN 9@
T=Mk({1l AND D>=1)%2+10

F=KiDr»—T: J=F-T¥3%{F<1 OR F>32

PRINT "MOUE"L":"TABL1S)"FROM: "MID$C(A$.KLD>- 12" TO "
PRINT MIDCA.J. 121 KDI=TJiNEKT

]
T EEEE R E R
- - B B R

pe
T EEERE] ==
- e

Here's how the solution works. First, let’s number the disks:
the smallest disk on top will be assigned the number 1; the disk
beneath that will be called 2, and so forth down to N number of
disks. Second let’s number the posts (or towers): the A post, which
is the post holding all the disks initially, is 1; the B postis 2, and the
C post is 3. Third, the total number of moves is 2 to the power of N
minus 1. L is defined as the move number variable.

The variable M is set to 1 when the number of disks is even and
to — 1 when the number of disks is odd. This is all the information
that is needed to solve the problem.

When we represent the move number as a binary number, it
becomes evident what disk to move; the disk number is a binary

function of the move number! The disk to move reflects the
position of the rightmost unity (1) bit of the move number. If L is
0001, we move disk 1; if L is 0010, we move disk 2; if L is 0100, we
move disk 3; if L is 1000, we move disk 4; if L 1s 1100, we move disk
3.

We can determine what post to move that disk toasa function
of the variable M. If M is — 1, the odd -numbered disks go to posts in
the sequence 3 to 2to 1 to 3 to 2 to 1 and so on; the even-numbered
disks go to posts in the sequence 1 to2to3to1to2to 3 andsoon. If
the variable M is 1, the even-numbered disks go according to the
first sequence and the odd numbered disks go according to the
second sequence. The problem is solved when L has a final value of
2 to the power of N minus 1.

Here is a detailed explanation of each program line.

LINE EXPLANATION

5 The colon is a nonexecutable character in BASIC. It
is used here to outline the edge of the program
listing.

10 This REM (for REMark) is not executed in BASIC.

It simply acts as a comment statement in BASIC. In
this case it tells the name of the program. It’s usually
a good idea to use REM statements to identify and
explain parts of your program.

20 This REM statement identifies the programmer/
author.

30 This statement indicates the copyright ownership of
the program. TAB BOOKS, Inc.

40 This statement says that the program is written for
the Commodore 64.

45 This set of colons separates the header information
from the main body of the program.

50 This line clears the screen. CHR$(147) is the com-

mand code for the clear screen command. The
semicolon (;) keeps print position from jumping to
the next line after the PRINT statement is executed.
Thus the next printing will start at left side of the
top line.

60 This line is made of two statements separated by a
colon. The first statement requests the value of N
after it prints the question, “WHAT NUMBER OF
DISKS?” INPUT statements sometimes contain
prompting information when they ask for values.
The second statement on this line defines the value of
M. 1 AND N will give a value of 1 if N is odd, and a

70

80

90

100

110

120

130

135

value of 0 if N is even. 1 =1 will give a value of —1,
meaning true. 1 =0 will give a value of 0, meaning
false. These are Boolean algebra logic statements.
We multiply the earlier result by 2 and add 1 to get
the value of M. Note the double use of the equal
sign (=) in this statement: the equal sign is used
both to perform a logical test and to assign the
value of the expression to the variable M.

DIM K(N) assigns space in memory for a list of
numbers that we will call K. K is an array with N
number of elements. The next three statements in
this line form a loop that sets the value of each of
these N elements to 1. Loops are common in
virtually all programming languages. Here we make
up a variable called I that will have values that will
range from 1 to N, whatever N is. The NEXT
statement says to continue this loop until I exceeds
N. We could also have said NEXT I instead of simply
NEXT, but NEXT by itself is somewhat faster.
This line assigns the string variable, A§, to ABC.
A$ is like the K array, only it contains individual
characters instead of numerical values. We then start
an L loop, with the values of L ranging from 1 to 2
to the power of N minus 1. L is the number of
moves that are required to solve the puzzle. The
variable I is set to zero.

This line determines what disk to move as a function
of the move number, L. The value of I is increased.
by 1, and if D equals 0, the line is rerun. Eventually
D will reach a nonzero value.

The value of T is assigned as a function of M and D.
F is assigned to K at D minus T. J is set as a result of
the algebraic and logical expression (F<1 OR
F>3), which is evaluated as either 0 or —1.

This line prints the move number, spaces over to the
fifteenth print position, and then prints the post that
the disk is moved from, A, B, or C. These letters are
printed using the MID$ function.

This line prints the letter of the post that the disks
are moved to. Then the array K at the element D is
set to the value of J. The L loop is terminated at this
line.

This line of colons gives a boundary to mark the
end of the program listing.

Program Operation. Figure 1-1 shows the result of moving four

9

disks. Figure 1-2 shows the result of moving five disks. Notice that
the number of steps doubles with each additional disk. The
statements in this program have been written for a minimum
amount of computation, and the program starts to print im-
mediately, regardless of the number of disks involved. It is
interesting to note that if you know the disk numbers and the move
number, you can immediately deduce the proper disk to move and
the place to move it, regardless of the number of disks used in the
problem.

Towers of Hanoi: Version Two

In the version of the Towers of Hanoi puzzle, shown in
Listing 1-2, we display a graphic solution, using sprites as disks.
These sprites are like user-defined graphic characters and can be of
several colors. We use a different color for each sprite to help
distinguish them from each other. Each sprite is of a different
length, showing the different sizes of the disks.

This program lets you have the computer use as many as eight
disks in the puzzle. There is a limit of eight disks because there are
only eight sprites, numbered from 0 to 7. That means that the
computer would make up to 255 moves to solve a puzzle involving
all of the sprites.

WHAT NUMBER OF DISK? 4

MOUVE 1 = FROM A TO B

MOUE 2 = FROM A TO C

MOVUE 3 = FROM B TO C

MOQUE 4 : FROM A TO B

MOUE S = FROM C TO A

MOQUE & = FROM C TO B

MOQUE 7 = FROM A TO B

MOVE 8 = FROM A TO C

MOUE 9 3 FROM B TO C

MOUVE 1@ = FROM B TO A
MOVE 11 = FROM C TO A
MOVE 12 = FROM B TO C
MOUE 13 = FROM A TO B
MOVE 14 = FROM A TO C
MOUE 15 = FROM B TO C
READY.

Fig. 1-1. The solution to the Towers of Hanoi puzzle with four disks.

10

WHAT HNUMBER OF DISK? S

MOVE 1 = FROM A TO C
MOVE 2 = FROM A TQ B
MOVE 3 = FROM C TO B
MOVE 4 = FROM A TO C
MOWE S = FROM B TO A
MOVE & = FrROM B TO C
MOVE ¥V = FROM A TOQ C
MOVE 3 = FROM A TO B
MOVE 3 = FROM C TO B
MOUE 1@ = FROM C TO A
MOWE 11 = FROM B TO R
MOVE 12 = FROM C TO B
MOUE 13 = FROM A TO C
MOVE 14 = FROM A TO B
MOUJE 1S = FROM C TO B
MOVE 1& = FROM A TO C
MOVE 1V = FROM B TOQ A
MOVE 18 = FROM B TO C
MOUVE 19 = FROM A TO C
MOVE 2é = FROM B TO A
MOVE 21 = FROM C TO B
MOVE 22 = FROM C TQ A
MOVE 23 = FROM B TO R
MOVE 24 = FROM B TO C
MOVE 25 = FROM A TO C
MOUE 28 = FROM A TO B
MOUE 27V = FROM C TO B
MOVE 28 = FROM A TO C
MOUWE 29 = FROM B TO A
MOUE 3@ = FROM B TO C
MOVE 31 = FROM A TO C
RERDY.

Fig. 1-2. The solution to the Towers of Hanoi puzzle with five disks.

This program uses the same binary solution to solve the
Towers of Hanoi puzzle as the first program did. It starts to operate
by moving the disks almost immediately. Other computer pro-
grams solve this problem by using many recursive techniques, but
none is quite so simple as the one employed in this program.

11

Listing 1-2 The Towers of Hanoi with Graphics

1@ ssssssssgsssagsassagsassaasassazsss
13 REM TOWERS OF HARHNOI
28 REM WRITTEW BY TIMOTHY J. O"MALLEY

25 REM COPYRIGHT 19383, ThREB BOOKS INC.
I8 REM CWRITTEN FOR THE COMMODORE &40)

-e
pe e}

4@ REM . MAIN PROGRAM koK
S@ GOSUR 1@a: REM PRINT INSTRUCTIONS
&8 GOSUBR Ioé:REM DEFINES SPRITES
7@ GOSUB S@@:REM DETERMINE SOLUTION

2@ END

96 sssssIsigeoEosTeIsIIRTEISSIOR®GRTOEIIGRGERIRIGZSS

168 REM ok PRINT INSTRUCTIONS %%

185 HM=a

118 PRINTCHR#$C147 >3 :REM CLEAR SCREEN

128 PRINT" ARTIFICIAL INTELLIGENCE - PROGRAM 1"

136 PRINT:PRINT" THE TOWERS OF HANOI":PRINT:PRINT
146 PRINT" THE PROBLEM IS TO MOUE ALL OF THE"

1S5@ PRINT"DISKS FROM THE FIRST POST TO THE THIRD"

1@
iva
13a
194
28a
21a
228
23a
z24@a
258
2e@
2vea
Iaa
3as
31@
315
32a
33a
34a
35a
3@
Iva
375
32a
385
39a
40a
41a
42a
43a
44

12

PRINT"POST. OHE DISK AT A TIME. WITHOUT
FPRINT"PLACING A LARGER DISK ON TOP OF R "
PRINT"SMALLER DISK.":PRINT

PRINT" Yau MAY SPECIFY 1-8 DISKS. ":PRINT
OFEN1.@

PRINT"ENTER NUMBER OF DISKS: "3:INPUT#1.HS$
PRINT:CLOSE1

IF LENCHN$) >1THENPRINT:: GOTO19@

N=UALCH$: IFN>S0RNCI THENPRINT : GOTO1 9@
PRINT:PRINT"UERY WELL."

RETURN

REM *%% DEFINE SPRITES %%

POKES3281. 15: REM BORDER GRAY3

U=53243: FPOKEU+32. 15 IF N=8 THEN 3I2@

FORS=NTOS: POKEW-2+2%5, @: POKEU-1+2%5. i NEXTS

FORS=1TON: POKEV+21, PEEK(U+2150RC2 1 {5-1)>>:REM ENABLE SPRITES
POKEU+23, PEEK{U+2300R(2T(S-1>):REM EXPAND IN ¥ DIRECTION
POKEWU+29, PEEK (J+2950RC21 (3-155:1REM EXPAND IN ¥ DIRECTION
POKEU+37+2%35, S+5:1REM SET SPRITES® COLORS

POKEU-2+2%5,. 5@ REM SET EACH SPRITE TO X COORDINATE AT POST 1
POKEWU-1+2%5, 206@:REM SET EACH SPRITE TO VY COORDINATE AT POST 1
UL=191+3

POKEZG3I3+5. UL REM SET SPRITE'S POINTERS
FORK=64%xULTOS4*IL +63: POKEK , @: NEXTK
FORK=64%UL +6¥{5—-1) TO64¥L +6%(5~-1+35TEP3
FOKEK . 2151

POKEK+1 ., 255

POKEK+2, 255-C(21 {(8-50—-1>

HEXTK. =

PRINTCHR$ 147 >3 tREM CLEAR SCREEHN

458
468
47a
458
485
438
Sea
Sie
S2a
S3a
S4@
SSa
Sea
svea
Sgae
S9a
a8
&la
620
&3e
vaea
vie
vZe
v3a
4@
voa

FORK=1TO1S:PRIMTCHR$ 1755 s NEXTK

FORK=1TOS: PRINTTARCS» s CHR$ 3203 TARC 130 : CHR$(38> 2
PRINTTRBL3@): CHR$ (38>

HEXTK:PRIMT: PRIMTTABCE 2 "1 "t TABL 1803 "2 s TAR(3@ £ " 3"
PRIMTCHR$C 1921 RETURN

T R R R
SR R R R R R R R R R R R R R

REM %%k DETERMINE SOLUTION ¥¥¥

T{1o=2TN-1

HM=HM+1: 5=8

D=—{ {NMAND2 1T S>=21S)>%{S+1)1 5=5+1: IFD=GTHENS3a
TF=8

TF=TF+1: IF@=((21 (D=1DANDTCTF>>={21 (D-1))>THENSS@
DT={{{1ANDNY=1>%2+1)% (C{1ANDD) =1 >%2+10
TT=TF-DT-DT*3% L TF-DT >3>0R(TF-DT<10>
TETRO)=TL{TF)>=21{D-1)

TETTO=TCTTO>+21{D—-1>

GOSUB7@@: REM DISPLAY DISK MOTION

IF HM<ZTH-1THENS2@

PRINT"DONE. ": RETURN

SRR s R R R R R R R A R R R R R R R R R R R R R B B
- I R) - a s w o EoEowowowow

REM *%¥ DISPLAY DISK MOTIOHN k&
FORY=20TO1@ASTERP—1: POKEU—1+2%3, VI NEKTY
FORK=C(TF—12%36+S2TOCTT=1) ¥I6+S2STEPSGHITT-TF »
POKEV-2+2%5, KINEXKTH

FORVY=1aaTOzZe@: POKEU—-1+2%S, YINEXTY

RETURHN

Here is a detailed explanation of the listing.

LINE EXPLANATION

10-35 This is the title and credit information for the
program.

40-80 This is the main program. It consists of three sub-

routine calls and an END statement. By writing the
program as a series of subroutines, you can keep
it better organized and easier to understand. Line 40
is a REM statement identifying the section as the
main program. Line 50 is a subroutine call that
prints the instructions and asks how many disks.
Line 60 defines the sprites. Sprites are graphic
objects that you can define and can move around the
screen quickly. We will use sprites to create the disks
that the computer will move. Line 70 calls the sub-

13

1

F

2 3

Fig. 1-3. The towers of Hanoi puzzle with four disks after move five.

90

100-260

270
300-485

300
305

14

routine that determines the solution to the puzzle.
Line 80 ends the program. Otherwise it would run
into the subroutine that starts at line 100.

Colons are used to separate the main program from
the first subroutine. They are nonexecutable.
These lines print the instructions and ask the user to
input the number of disks. Line 200 is a command
that allows the computer to read the keyboard, an
alternative to using the INPUT statement. Line 210
prompts the user to enter the number of disks. The
INPUT#1,N§ statement reads the keyboard and
doesn’t print a question mark on the screen. Line
220 ends the keyboard reading command. Actually
it closes the keyboard “file.” Line 230 checks for
errors, as does line 240. Line 250 indicates that the
number has been accepted. Line 260 returns the con-
trol back to line 60 of the main program.

The colons form a separation between the sub-
routines.

This subroutine defines the sprites.

This line identifies the subroutine.

This command changes the border color, the area
around the edge of the screen, to color number 15,

310

315

320

330

340

350

360

370

375-430

440
450

460-485

490
500-620

630
700

710

known as gray 3. POKE is a command used to
change the values in individual memory locations.
V is a variable that is set to the value of the memory
location at the beginning of the video chip register.
The next POKE sets the rest of the screen to gray 3.
If the number of disks (or sprites) is 8, control is sent
to line 320.

This line is a loop that sets all the sprites at the
initial position, off the screen. This is used to clear
the screen.

The S loop enables the sprites in this line.

This line expands the sprites to double their original
size in the vertical direction.

This line expands each sprite in the horizontal
direction to twice its size.

This line uses the POKE command to set the color
of each sprite.

This line moves each of the sprites used to its
horizontal position on the first post.

This line positions each of the sprites to the proper
vertical position.

These lines define the sprites’ pointers and define the
individual sprites. Each sprite is defined as a rect-
angle, which used to represent the disk. Parts of the
sprites that are not defined are transparent to other
sprites and whatever else that is on the screen.
This line clears the screen except for the sprites.
This line moves the cursor down 15 lines from the
top.

These lines draw the vertical lines representing the
posts and the letters A, B, and C. CHR$(19) is the
code for the home character; it positions the cursor
to the top left corner without clearing the screen.
This is a separator line.

This subroutine is essentially the same as was used
in the first program. It determines the binary solu-
tion to the puzzle. Line 600 calls the subroutine
starting at line 700, which shows the disks moving.
Line 620 prints the word, “DONE" when the pro-
gram is over.

This is a subroutine separator line.

This identifies the start of the disk (sprite) moving
subroutine.

This line moves the sprite in question vertically
from its resting place on the post. It is moved one
pixel at a time, giving a smooth motion.

15

720-730 These lines move that sprite horizontally to the
proper post, as determined by the subroutine start-
ing in line 500.

740 This line drops the sprite down on the proper post.

750 This line returns control to line 610.

Program operation. After you have entered the program into RAM
and typed RUN, the instructions will be displayed. The program
will request the number of disks that you wish to have in a stack on
the first post. You may specify an integer from 1to 8. If you specify
1, the computer will solve the puzzle in 1 move. If you specify 8, the
computer will solve the puzzle in 255 moves. As we said, the only
real limit to the number of disks is the number of available sprites
(8). If that weren't the limiting factor, then computer speed would
be the limiting factor in solving the puzzle.

This program is rather interesting to watch because of the
graphics. It looks like someone is moving the disks from one post
to another. This program is visually more meaningful than the
first program. Enjoy!

The Knight's Tour

The program in Listing 1-3 is a computer solution to the
knight’s tour puzzle, which requires that the knight land on each
position on the chess board without landing on any position twice.
Although there are many possible solutions for the knight’s tour
from any given starting position, this program displays one
possible solution for each of the 64 possible starting positions.
This program is something of an expert system because the
computer is able to quickly solve the problem from any first
position. A solution of the knight’s tour is contained in DATA
statements in lines 601 -608. These data are rearranged to give other
possible solutions. Thus the computer appears more “intelligent”
than it is. Also the solution is displayed almost immediately.

This program, then, represents an unusual way of solving the
knight’s tour puzzle. Other methods have included the use of stacks
to trace the knight’s way through the chessboard. This program is
particularly good if you don’t care how the knight finds his way
from a given starting position.

Here is an explanation of the program lines.

LINE EXPLANATION
10-60 These lines identify the program.
70-110 This is the main program. Line 70 identifies the

section. Line 80 is a subroutine call to line 200 to
print the instructions. Line 90 is a subroutine call to

16

Listing 1-3 The Knight's Tour

i@
2a
3a
4@
Sa
aa
va
2a
I8
1aa
i1@

1z@
208
218
228
23a
248
258
268
2va
288
298
Jaa
31a
2@
334
34a
35a
Jag
408
418
4z
43a
448
45e
468
47va
438
438
Saa
S1@
S28
S53a
S4a
S5
Sea
saa
sal
eaz
&@a3

gegeezesszeeesegeeeeTILRLILIIELL
REM KNIGHT*S TOUR
REM WRITTEN BY TIMOTHY J. Q°MaALLEY

REM COPYRIGHT 19283, TABR BOOKS IHMC.
REM «“WRITTEN FOR THE COMMODORE &4)

REM *kk MAIN PROGRAM #%¥
GOSUB 20@:REM PRINT IMSTRUCTIONS
GOSUB 40@:REM DEFINE GRAPHICS

GOSUB &s@@:REM DISPLAY SOLUTION

OPEN 1,8: INPUT#1,N$:CLOSE 1:FPRINTCHR${147):FPOKES3I221,&:FPOKES. @2

POKES+1.@:END
TsssssgsssIsIIIsassIIsIIROGILIEIOIOGGS

REM ¥kk INSTRUCTIONS ¥k
FPRINTCHR$:147 >3 :REM CLEAR SCREEH
PRINT:PRINTTABC13): "KNIGHT S TOUR":FRINT
PRINT" - THIS PROGRAM DISPLAYS A KHNIGHT®S"
PRINT" TOUR. THAT IS: A KNIGHT IN THE GAME"
PRINT" OF CHESS CAN JUMP OM ALL &4 SOUARRESY

FPRINT" OF & CHESS BOARD WITHOUT LANDING ONH"

PRINT" ANY SQUARE MORE THAM OMCE."

FRINT

OFEN 1.8

PRINT" EHNTER KNIGHT’S STARTING POSITION. ":FPRINT
PRINT" ENTER THE ROW: "3:IMNPUTH1.R:PRINT
PRINT" ENTER THE COLUMH: "::INPUT#1.C:PRINT
CLOSE 1

IFR<10RR >S0RCC 1 0RC >BTHENZ 3G

RETURN

REM *k¥% DEFIMNE GRAFPHICS #kk
PRINTCHR$: 147 >3 :REM CLEAR SCREEM
FORI=ATOS3:READJ: POKES32+1, JENEKTI

DATAs s s a2 sa2 2>

DATA: 3B > - 3852263, 127,
DnTn9111?3’1595?31?:"62’

[)QTQ’E‘Z‘:‘ ."3285 -"62.‘! Hd 12?,‘
DQTQ!IB?:’S.‘;:,»):::!:

5=53248

POKES+21. 1:POKES+39-1

POKES+23. 1 : POKES+29, 1: POKEZ24@. 13: POKES3281- 14
P=1@1&6:L=-1:FORJ=1TO8: FORM=1TO3
P=F+7:FORK=1TO&

FORN=1TO4: P=P+1:POKEF, 16@: POKEP+S4272, ABSC(LO*3
NEXTH: L=HOTL:NEXTK::FP=FP+1:HNEXTHM

L=NHOTL:HEXTJ: RETURN

REM ¥ DISPLAY SOLUTION ¥
DATR3,42,5.20,37-48, 15, 18
DATRG,21,2.41,16:19.36,39
DATAR43,4.57,54.59.33,17, 14

17

627 HEXTK..J

€38 N=H+1:FORJI=1TOS:FORK=1TO3: IFEBD{J. Ki=NTHENR=J: C=k

633 HEKTK,J

635 P=1085S+4%{C—12+12a%R-1>

640 U=43+INT(H 18> : POKEF.)

650 U=423+H-1@* INTCN.- 1@t POKEFP+1.1)

6E0 HK2=T24C-12:1Y2=24%R+16: DE=K2-x1: DY=Y2Z-Y1

&7V IFRBESCDY > *ABS (DK THENISEG

238 FORI=SGHIDX» TODKSTEFSGH DK

698 K2=H1+J1Y2=Y1+TKDY. DK

vag POKES. K2:POKES+1.%2

718 NEXTJI: IFN=84THEHRETURH

oA K1=xK2:Y1=YZ:160TOoe3a

350 FORJI=SGHDY)ITODYSTEPSGHIDY) 1 W2=Y1+T1 K2=K1+T¥DK. DY GOTOTEE@

360 ssr:zggezzrgeersseesrraaazzrszze:
line 400 to define the graphics used in the program.
Line 100 calls a graphic display of the solution.
Line 110 allows you to clear the entire screen before
ending the program. OPEN 1,0 allows the computer
to read the keyboard for characters to be entered.
INPUT#],N$ is a command to input a character
string without a question mark appearing. The
POKE commands gets rid of the knight.

120 This is a line separating the main program from the
first subroutine.

200-350 This subroutine prints the instructions and requests
the starting square for the knight’s tour. Notice the
use of OPEN 1,0 to read the keyboard.

360 A separation line.

400 This line identifies the subroutine.

410 This line clears the screen.

420 This line reads the data from DATA statements in

18

DATA22, 7,62, 1,56, 53,60, 35
DATA4, 44,55,58,61,64, 13,28

DATAS, 23, 48, 63, 52,29, 34, 31

DATA45, 50, 25, 10,47, 32, 27,12

DATA24,9,46,51,26,11,3@,33

DIM BD(8,8),MD(8,8>

FORJ=1T08t FORK=1T08: READMD<J, K> t NEXTK, J

N=0:X1=a:Y1=@

FC=MD(R,C>—1

FORJ=1T08: FORK=1T0&: BD(T, K>=MD(J, K>—FC: IFBD (T, K>< 1 THENBD
(T, K2=BDLJ.K>+64

lines 430-470. These data are used to create four
sprites that will make up a small knight on a chess-
board. We read a total of 64 values.

430

440
450-470
480
490-500

510-550

560
600
601-608

610
615

620-627

630-633

635-650

660-850

860

This line consists of 12 zeros. Notice that they are not
displayed but are separated by commas. Because 0
is nothing, it doesn’t have to be displayed in BASIC.
This line consists of 12 values, four of which are
nonzero.

These lines are the rest of the values used in defining
the sprites for the knight.

S is the X position register of sprite 0.

These lines turn on the sprites. Line 500 also sets
the background color to light blue and sets sprite
0’s pointer.

These lines print out the chessboard on the screen.
Each square is made of 3X4 solid color characters.
Note the use of L=NOT L in lines 540 and 550. L.
alternates between —1 and 0 and is used to print the
alternating square colors.

This separates two subroutine lines.

This is the start of the display subroutine.

This is a solution for the knight’s tour if the knight
starts at column 4, row 4 (left to right, top to
bottom).

This line dimensions arrays for storing board values.
This line reads in the data of the original board from
lines 601-608.

These lines rearrange the board data for the starting
row and column. Observant programmers will no-
tice that I cheated: I made the knight's tour circular.
Then all I had to do was to rearrange the move
numbers. In other words, you can reach the first
move from the last move.

These lines find the position of the next move num-
ber.

These lines POKE the move number on the appro-
priate square on the screen.

These lines draw a straight line from the current
knight position to the next square. It then moves
the sprites along that line, one pixel at a time. This
makes the knight appear to move smoothly along.
After the 64th move, control goes to line 110.

This marks the end of the listing.

Program Operation. When you enter the program into RAM and
type RUN, instructions are printed and you are asked for the row
and column numbers of the knight’s starting position. Enter an
integer from 1 to 8 for the row and column. The computer will
check for values outside of this range.

19

\

AN

"/
N

\
/\

«!

N

W o

\

W

. N\

AN

W\
\

-

NENEWN

Fig. 1-4. Move 10 of Knight's Tour starting at Row 4, Column 4.

After that, the computer will print out a chessboard on the
screen and change the screen color. A knight will appear from the
upper left corner and will move around the board. The move
numbers will be printed on the squares of the board just before the
knight moves to the next square. These numbers act as a trace to
leave a trail of the knight’s tour. The graphics are interesting to
follow.

You might want to think about how to change the program to
have the computer solve other possible tours from the same initial
starting position. The reason this program is included is that the
computer uses one set of data to solve a wide range of possibilities. I
think that makes it somewhat intelligent. Intelligence is really
making the best use of stored information.

20

Intelligent Games

In this chapter I discuss some intelligent computer games. The
three games, the game of Nim, a maze program, and a cellular
automaton program, show some differing aspects of artificial
intelligence. I also discuss some of the traditional board games.

ARTIFICIAL INTELLIGENCE IN GAMES

Artificial intelligence is sometimes best understood by study-
ing games. Because games are understood by everyone, even
children, they are attractive candidates for the study of artificial
intelligence on computers.

Artificial intelligence has not been fully utilized in computer
games. Obviously as the technology grows, the capabilities of
computers involved in computer games will similarly increase.
Microcomputers are becoming faster, and more RAM is becoming
available for the storage and execution of these games. LLow-cost
mass storage devices add to the capabilities of the microcomputer.
These developments increase the possibilities for the future
development of artificial intelligence in computer games.

Board Games

Four popular board games that have been computerized are
chess, checkers, Othello, and backgammon. Let’s discuss each one
separately.

21

Chess. Chess is the most famous computer board game. There
are microcomputer tournaments in which computers using
different programs compete against one another. Large computers
were first used to play the game of chess. It was then thought that
the computer could not beat a grand master and that the use of
computers in the game of chess was nothing more than an
interesting experiment. People were startled when a computer first
beat its human opponent at chess. Suddenly computers had to be
taken seriously. There are now many chess programs for many
kinds of microcomputers. Many are written in machine language
to make maximum use of operating speed of the microprocessor.

In the future, chess programs will no doubt be written that
play chess more like the way humans play the game. Typically the
chess games in existence utilize tree searches, as mentioned earlier.
Humans usually play chess by establishing a set of subgoals and
then seeking the moves that will accomplish those subgoals. Many
of the chess programs use the brute force method of deciding
moves. A computer that would accept advice and make analogies
between similar situations that it has “recognized’’ before would be
operating in the realm of artificial intelligence. Chess is a rather
complex game, so such a program would require considerable
thought in programming. Certainly it shouldn’t be written in
BASIC.

Checkers. Checkers is another favorite computer board game.
Again there are many strategies used in determining the moves
made by the computer. Tree searches find the best possibilities.
These searches don’t give the program intelligence, however. If the
computer could be programmed to remember a stategy from game
to game, then it would be intelligent. A program would have to be
designed so that it could change its own programming with time—
or perhaps data files could be updated and read into the computer
at the start of each game or series of games. This data file could then
be saved at the end of the games, having been modified by
“learned” strategy.

I don’t think that checkers has a simple solution. If arelatively
simple solution to the game could be found, the computer
program could become an expert at the game. That is, the
computer could find a mathematical solution for any given set of
moves or states of the game.

Realistically, it might be reasonable for a computer to learn
strategy. Humans look at a set of circumstances and generalize.
They make a rule or set of rules that explains how the system
works. They test that hypothesis against the situation. Where they
are wrong they alter their thinking. This process can be defined as
learning. A checkers program might be able to do similar things in
the game of checkers.

Othello. There are several games of Othello in existence. In

22

Othello, pieces are won by “trapping” the opponent’s pieces
between one of your existing pieces and a piece you put downona
8x8 board (see Fig. 2-1). There might be a binary solution for the
game: discovering it would be an interesting project. There is at
least one official Othello tournament for microcomputers.
Backgammon. Backgammon is another game that has been
adapted for the computer. The simulated roll of the dice has been
replaced by a random number generator. In July 1979 a computer
backgammon program called BKG 9.8, written by Han Berlinger,
defeated a world champion, Luisi Villa of Italy. Although this
game was run on a large computer instead of a microcomputer, it
represented the first time that a computer defeated a world
champion at any board or card game. That program utilized
artificial intelligence. (See the June, 1980 issue of Scientific
American, Volume 242, Number 6, pages 64-72.) That program
used several “intelligent” techniques to defeat its opponent, not

O|®
® O
O

Fig. 2-1. An Othello board: the black piece has been “trapped” by the white
pieces.

23

just brute force and mathematical calculation. It simulated some of
the techniques that people use in playing the game.

THREE INTELLIGENT GAMES IN BASIC

Let’s now look at the three games written in BASIC. The first
1s the game of Nim. The object of Nim is to pick from one to three
items from a pile, leaving your opponent with the last item in the
last pile. The second game is a maze program that the computer
solves. The method involved is to successively change all three-
sided squares (dead ends) to four-sided squares, effectively filling
in the dead ends. The final result is the solution. The last of the
three programs is a cellular automaton program with an interest-
Ing twist.

The Game of Nim

The program in Listing 2-1 plays the game of Nim with you.
You have to match wits against the computer. The program is
artificially intelligent because it will learn your winning strategy!
Your moves are stored in an array that can be saved on tape at the
end of the game or the series of games. (Listing 2-2 shows one way

Listing 2-1 The Game of NIM

10 ssseezezssazezsesaszessasaeezaasany
15 REM GAME OF HNIM - PROGRAM 4
28 REM WRITTEW BY TIMOTHY J. O°MALLEY

25 REM COPYRIGHT 1984. TARE BOOKS IHC.
3@ REM (WRITTEW FOR THE COMMODORE &4>

e AR SRR R RN R R RS R E R E N R R R RN R R R R RN
St o sssisssIIIIIIISRRIIERREGTGEGRR -

37 REM kK MAIN PROGRAM ok

4@ GOSUR 1@S:REM INITIALIZE PROGRAM

45 IF F=@ THEHW GOSUR 7V1@:GO0SUBR 4@S:GOSUR S48: IF TL=a
S8 GOSUR 7Vi@:GOsSUBR 2e@:G0SUR S4a: IF TL=@ THEH 7Va

S5 IF F=1 THEH GOSUBR 71@:GOSUR 4@S5:505UR S4@: IF TL=a
s@ GOTO 45

Y@ INPUT"WANT TO PLAY AGAIN <YoH>":A$

3@ PRINT:IF LEFTCA+" ", 10="%" THEN GOSUB 113:G0OTO
P8 INPUT"WANT TO SAVE STRATEGY <VoH>":iAas

92 PRINT:IF LEFT#{A$+" ".10="N" THEHN EHND

34 OPEH 1.1.1,"STRATEGY":FOR I=1 TO S12

36 PRINT#1.P%<IDiNEXTICLOSE 1:EHND

98 teeseassreasgsseyoeags e

168 REM *kk INITIALIZE PROGRAM #%%
185 DIM PX{S584).Q%(3.24)

11 GOsSUR 31@

114 A%$="Y": INPUT"ENTER STRATEGY FROM TAPE <Y~ H)>":iA$
115 PRINT:IF LEFTCA+" ".10="H" THEH 113

116 OPEN 1,1.8@."STRATEGY":FOR I=1 TO 534

117 INPUT#1.P%CI>:IF ST=@ THEHW HEXT

118 CLOSE 1

24

THEH 7@

THEN V@

45

240

25e

2648
2va

286

Jaa
31@

3@
408
485
41@
42@
43@
44
45@
455
46@
465
466
47a
475
4z@
49@
See
S1@
S2e
S3e

Soae
Sea
Sra

M=1:F=@a

IF RNDC1><@.5S THEN PRINT “vOUu MAY MOUVE FIRST.":F=1:G0TO 14@
PRINT "THE COMPUTER WILL MOUE FIRST."

FOR I=1 TO 3

Q%I 10=3+5%RND1 D
FOR J=2 TO 24

Q%I Jo=0

NEXT:NEXT

GOSUR 46@: RETURN
sssrrreszzozsozIzae
REM k¥ YOUR MOUE &%

OPEN 1:@:PRINT "YOUR MOUE. ":PRINT

PRINT "ENTER FPILE #:"::INPUT#1.PH:PRINT

IF PN<1 OR PH>3 THEHN PRINT "ILLEGAL PILE #. TRY AGAIN.":PRINT:GOTO
220

IF Q@X{PN-M>=@ THEHN PRINT "HNONE IHW THAT PILE. TRY AGAIN.":PRINT:
GOTO 22@

PRINT:PRINT "ENTER HUMBER TRKEN FROM PILE #"PHN":2"::INPUTH#I1.NB:
PRINT

IF NB>3- THEN PRINT "TOO MaNY. 3 IS MAKIMUM. TRY AGARIN.":PRINT:GOTO
240

IF HB<1 THEW PRINT "COME OHW HOW. TAKE AT LEARST 1.":PRINT:GOTO 240
IF @%<PH.M><HB THEHW PRINT "ILLEGAL MOUE. TRY AGAIN.":PRINT:GOTO
220

CLOSE 1:PRINT:PRINT "WERY WELL.":PRINT
Q%@ MO={PN~-1)%3I+NB

FORI=1TOQ3

QHCTMe10=Q%CI - M) +NB*{ I=PN>
HEXT:M=M+1: RETURN
segRIIIRIOLIRTRIRISEGERRETENTGLIGTORIRIGROCLIILSL
REM *¥¥ COMPUTER’S MOUE #kxk

PRINT "COMPUTER®S MOUE.":PRINT

C=@%C 1, MO+GC2, MO+ I MI*E4

IF PR{CO=@THEN GOSUEB 43@:GOTO 45@
PHN=1-{PX{C 30— P%{CH 6D

NB=P*X{CH—(PN—-1)>%3

PRINT "COMPUTER WILL TAKE"HB"FROM PILE #"PH".":PRINT
GOSUB 296

TI$="aaaga"

IF TI$<{"@eeaa4" THEHN 485

RETURN
R R N R R E R R R E R R RN RN
REM #k% RANDOM COMPUTER MOUE *¥¥
PN=1+INT{3%RND{1) >

IFQ% (PN M)=BTHENPHN=PH+1 : PN=PH+3%{PN>3): GOTO43@
J=E PN M) tNB=1+INT(-RND{1 0% T510—RNDCL D% (T >20 0
RETURN

IR R R EEEEEEEEEEE]

REM *¥k IS GAME QUER? &k
TL=@:FOR I=1 TO 3
TL=TL+Q%{I-M>

NEXT: IF TL THEN RETURHN

PRINT CHR#$:<{1475:" GRAME QUER!":PRINT

25

@ IF INTXIM=F2>~20={(M-F>-2 THEN PRINT"COMPUTER LOST! YOU WON'":GOTO

600
PRINT "vOU LOST! COMPUTER WOHN!"

a
8@ PRINT:FORI=M-2 TOQ 1 STEP -2

v PH=1—-(@%08, I >30—-{QXC{@, 1558
HEB=QX (@, I 2~ (PN-15%3

1)
@ Pra@yol, IDHQEC2, To¥R+Q% T I o¥E40=0%@, 1D
i

IF PH=1 THEHN P20l ID+E%0I3, ToRB+QC2, TH%E4)=00(@, 1)

2 IF PHN=2 THEHN P%C0%C3, I0+Q%02, Io%8+Q%01, I0%64)0=0%(8, 1)

613 IF PH=3 THEHW PRCQNC2, I0+Q% 01, ID¥+Q%CT, I0Xe40=0C8, 1>
614 IF PH=1 THEN PXOQel2, ID+Q%{1, [D¥+QX(T, I)¥%64)=3+NB
815 IF PH=1 THEHN PX{Q¥IZ3, ID+GMI1, Io%34+Q%C2, I0¥%640=3+NB
816 IF PHN=2 THEN PZ%O{@%01, ID+QMI3, I)%3+Q% (2, I)¥%54)=6+NB
617 IF PH=2 THEN P03, I0+Q%01. I0X8+Q% (2, I)¥64)=6+NB
818 IF PHN=3 THEHN PXOQMITE, I0+QM0I1, Io%3+Q% (2, I)%64)=NB

619 IF PH=3 THEN PX{QMC3, I0+R%(2, I0%2+Q% (1, I)%&64)=NB

828 HEXT:RETURN

638 tssssaszIgaeGIzIaTIGDGIORG

yaa REM *kk PRINT PILES %%«

78 PRINT CHR$:{1470:FOR I=1 TOQ 3

V2@ PRINT "PILE #"I": "3

V3@ FORJ=1 TO @%<I-M>

¥4@ IF JraxCI-M> THEN Vaa

75@ PRINT CHR#:{111)>CHR${17)CHR$ (15708
768 PRINT CHR#${168)CHR$(186)CHR$C14503
778 PRINT CHR$:{1SVOCHR$C1120" "3

788 NHEXT:PRINT:PRINT:PRINTINEXT: RETURN

Y98 1133 aagesgoongoaazaazzgroe

388 REM *kk INSTRUCTIONS ok

2318 PRINT CHR${147)>3z" *kk GAME OF HNIM *&%x":PRINTIPRINT
23268 PRINT" IN THIS GAME YOu PICK FROM 1 TO 3¢

838 PRINT"ORBJECTS FROM ANY SINGLE PILE. EARCH QF" i

848 PRINT"THREE FILES WILL CONTAIN FROM 3 TO 8"

@ PRINT"OBJECTS. YOU WIN BY MAKING THE COMPUTER"

268 PRINT"PICK UFP THE LAST OBJECT.":PRINT:PRINT
278 RETURN

R8P sssrserrasgsiooEEoTEIETIGTEGEIEISGORIOGIGRGE

Listing 2-2 Changes To Use Nim on Disk

" =~

000 O

DUl B e

%)

1

L0 LD LD
FOS N R

Y

5
98

26

IMPUT"HANT TO FLAY AGHIM O7YAH " A%

FRIMT:IF LEFT&CAE+" ", 1o="%" THEM GOSUE 112:G0TO 45

IMFUTYLIANT TO SAVE STRATEGY Y HI" A%

FRINT:IF LEFT#CA$+" ", 13="H" THEM EHD

FRIMT"IF YOU HAVE USED THIS PROGRAM BEFORE AMD HAVE ALREADY SAYED
A FILE "

FRIMT"OF STRATEGY OM THIS DIzk. "

PRIMT"IT WILL BE REFLRCED EY"

PRIMT"THE CLURREMT FILE. EMWTER % IF SUCH A FILE ALRERDY EXISTS."
ITHPUT HZ$: IF M2F="4Y" THEW OPEM 15,2, 15 PRIMTH#1S5, "S8:STRATEGY " :
CLOSELS

OPEM 2,8, &, "STRATEGY . 5. W" FOR I=1 TO 512
PRIMT#2, PXCT0 HEST (CLOSE 2 EMD

REM #%% THITIALIZE PROGRAM ###%

DIM FRCS240, 062, 240

GOSUR 21a@

A$="Y": INPUT"EMTER STRATEGY FROM DISK <Y H3";H$

PRINT:IF LEFTCA+" ", 10="H" THEN 113
OPEM 2.82.2. "‘TRHTEU b R":FOR I=1 TO S&4
INPUT#a,P"'I\ @ THEF o
i EM HEXT

you can change the program so the strategy can be saved on disk.
The other lines remain the same.) You can read that array into the
program when you start playing the next time, and the computer
should become more adept at playing the game. We might say that
the computer is “learning” the game. It has gained experience.

The object of the game of Nim is to select objects from one of
three piles. You must take one to three objects from only one pile.
You win by making your opponent (the computer) pick up the last
object. One kind of winning strategy is to leave two piles of two
objects each, that would ensure a win for you because no matter
which pile the computer picks from, you can pick from the other,
leaving only one item. You will find other winning strategies—but
so will the computer

We will now look at the game of Nim by examining the
program line by line. In this game the computer will store winning
moves as a code in an array. When it encounters those moves again,
it will play those winning moves. If the moves are new to it, it will
move randomly.

Here is an explanation of the lines of the game of Nim:

LINE EXPLANATION

10-35 This is the title and credit information for the pro-
gram,

37-98 This is the main program. Line 37 is a remark

identifying the main part. Line 40 is a subroutine
call to the beginning of the initialization sub-
routine. Line 45 says that if the computer moves
first, it should go to the routine that prints the
objects, then to the routine that computes the com-
puter’s move, and then to the routine that checks to
see if the game is over. If it is, control goes to line 70.
Line 50 calls the subroutine that displays the objects,
the routine that lets you play your move, and the
routine that checks to see if the game is over. If the
game is over, then the computer goes to line 70.
Line 55 is like line 45 except it is run if you
moved first. Line 60 cycles control back to line 45.

27

100

105

110
114

115
116-118

119

120

130
140-180

190

200-320

28

Line 70 asks if you want to play another game. Line
80 checks your input to determine whether or not
you want another game. If you do, part of the ini-
tialization subroutine is run (starting at line 119).
Then control is returned to line 45. Line 90 asks if
you want to save the computer’s newest strategy on
tape. Line 92 ends the program if you don’t want to
save the strategy. Lines 94-96 save the array, P%,
on tape and ends the program.

This line is the title of the subroutine as a remark
statement.

This line dimensions arrays P% and Q% stores the
complete strategy of the game, Q% stores the moves
of the current game being played.

This line calls the subroutine that prints the instruc-
tions.

This line asks if you want to enter strategy from
earlier games from tape.

If the answer is negative, control jumps to line 119.
These lines properly read in the P% array from the
cassette tape.

M is the move number. F is a flag indicating who
moves first. If F=0, the computer moves first.
Based on a random number, you will move first,
about half the time and F will equal 1. A jump
is then made to line 140.

The computer will go first.

These lines blank the array, Q%, and fill in the
number of objects in the three piles at the start of
the game. The number of objects in each pile ranges
from 3-7. The I index is the pile number, and the
second index,], is for the move number of this two-
dimensional array.

This subroutine call is for a four second time delay
starting at line 460.

This subroutine allows you to enter your move. It
checks to see if you entered an incorrect number. If
so, it informs you and you have to try again. Line
210 opens a keyboard file, for checking the characters
that are being pressed. This is an alternative to using
an INPUT statement with its question mark. PN is
the pile number, and NB is the number of objects
taken from pile PN. Line 290 calculates a code based
on the pile number and the number taken. It is
stored in array Q%. Lines 300-320 subtracts the
number taken from the pile and copies the other
piles in Q% for the next move. Note the use of the

400-466

470
475-510

530-620

700-780

800-880

logical conditions, I = PN to compute the number in
each pile for the next move. After that the move
number is increased and control is returned to the
main program.

This is the subroutine that computes the computer’s
best move. Line 410 computes a code from the
number of objects in each pile to “look up” in array
P%. The current number of objects in pile 1 is added
to 8 times the number of objects in pile 2, and the
result is added to 64 times the number of objects in
pile 3. Line 420 says that if the corresponding lookup
value is 0, then go to the subroutine at line 480 to
make a random move, and then go to line 450. Line
430 computes the pile number to pick from. Notice
the use of logical conditions in computing the value.
Line 440 computes the number of objects to take
from the pile. Line 450 prints out how many objects
it will take and from which pile. 455 is a call to line
290, part of the “‘your move” subroutine. This call
updates the Q% array and increases the move number
as before. After that, control is returned to line 460,
which sets a timer at zero. This timer gives you four
seconds to read what the computer just printed on
the screen. Line 465 actually uses the timer. If you
want to change the time delay, increase or decrease
the numbers in the quotes. Line 466 returns control
to the main program.

This line is a subroutine separator.

This subroutine chooses arandom number of objects
to be taken from a random pile containing objects.
This subroutine checks to see if the game is over. If it
is, then P% is updated with the winning moves.
Lines 540-560 check to see if any objects are left
in the three piles. Lines 600-620 update the P% array
with the winning moves. Then control is returned
to the main program.

These lines print the graphics of the game. The
objects appear as squares. Code 111 is the upper
left corner, 17 is the code for cursor down, 157 is
the bottom left corner, and so forth.

These lines clear the screen and print the instruc-
tions at the beginning of the game.

Program Operation. After you enter the program in memory,
and type RUN, the program will display the instructions. You are
then asked if you want to enter strategy from tape. If you had saved
strategy on tape from when you had played the game before, type Y.

29

If not, type N. The computer will then determine who moves first.
It will then make three piles of objects with three to seven items in
each. These will be displayed on the screen as squares. You are
asked to enter the pile number that you wish to pick from; then you
are asked for the number of objects that you wish to pick. If you
make a mistake, the computer will inform you, and you will have
to reenter the move. You and the computer will take turns moving.

After the game is over, you will be asked if you want to play
again. Type Y for Yes or N for No. If you type Y, you will play
another game. If you type N, the computer will ask you if you want
to save the current level of strategy “learned” by the computer on
tape. If you want to, type Y for Yes, or type N for No. After that the
program will end. You will notice that the computer will
gradually make some of the same moves that you made to attempt
to win games. The computer will move randomly when it has no
recorded strategy for a given move. After each game, the computer
will convert the moves to a code and store those codes in the array
P%. When you save the strategy on tape, you are actually storing
the numbers in this array.

This program is a good example of artificial intelligence in
games because the computer’s performance improves with the
number of games played, something that we might consider to be
learning. It is a good idea to save strategy on tape after every series
of games. You might want to convert the programs to save more
than one file of strategies on disk if you have a disk drive. You
would have to change the OPEN statements to the appropriaté
disk drive file numbers and device numbers.

The Path Through a Maze

The Maze program in Listing 2-3 shows how the computer
can find a path through a maze. It uses a technique of changing
cells, or parts of a maze, to find the solution to the maze. By
debranching dead ends in the maze, the computer successfully
approaches the solution to the puzzle. After no more cells can be
changed, the computer prints a solid square in all of the cells that
have not been changed. The program assumes that there are an
entrance and an exit to the maze.

Listing 2-3 The Path through a Maze

10 sssssrzszsssssssosssssoasssoossssnnses
28 REM MAZE - PROGRAM 5

3@ REM WRITTEN BY TIMOTHY J. O°MALLEY
4@ REM COPYRIGHT 1933, TAB BOOKS INC.
S@ REM {WRITTEN FOR THE COMMODORE &4)
6@ TrrzzirrroiIIIIIIIisoIIIIssssisasascs:
va REM ok MAIN PROGRAM ¥k

8@ GOSUB 28@:REM INSTRUCTIONS

108 GOSUB &@@:REM READ MAZE DATA

30

402

4@3
404

GOSUB 72@:REM DETERMINE SOLUTION
OPEN 1.@: INPUT#1,AI$:PRINT" CHOMEX "t END

REM *kk IMSTRUCTIONS ¥k

PRIMT" CWHT:"s

POKE S53281-.4

PRINTCHR$: 14723 TARC 1253 "MAZE — PROGRAM S"tPRINT:PRINT
PRINT" THIS PROGRAM ALLOWS THE COMPUTER TO"
PRINT"FIMD ITS WAY THROUGH A MAZE. THE MRZE "
PRINT"IS DEFIMED IM THE DATA STATEMENTS IHN "
PRINT"THE PROGRAM LISTING. LINES e4a-71a. "

PRINT: INPUT"PRESS A KEY TO CONTIHUE. OK"sRAl$

RETURHN
gsszzzEsssssETEEIIIREIIESRIRRRRR R

REM #%% CODES FOR SIDES OF MAZE ok
PRINT"_’"'-CCJLF}(C/LF}CCﬁLF}€C/LF}";=RETURN
PRIHT"(CEET}CCfET}CCJRT}I{C/LF}CC/DN}I{C/LF}CC/DN}ICC/LF}CC/LF}
(O LFY CCrLFs LCrUPR LC-UPT M2 RETURH
PRIHT"CC/RT}CC/RT}CCKRT}TCCJLF}CC/LF}CCfLF}{C/LF}";=RETURN
PRINT" CC DN CCr DN e {0 LF Y CO-LF {CALF> {CALFX {CrUPX {CAUPX"52
RETURHN

PRINT" CC-DNY (C-DN3 CC-RTH CCRTH LC-RTH _JLCLF3 LCrLFZ LCrLF2 {CALFZX
{CAUPY CCoUPT " s s RETURN

PRIMT"I {CrLFZ {C~DNX1 (CrLFX {C-DHXI {CALF3 {CAUPX CCoUPT "3 t RETURN
PRINT"IM{C-LFX"s : RETURN

PRINT" CC/DH¥ {CoDN¥L {C/LF3 {CoUPT CCoUPT "3 t RETURN

T T R R R R . .
gesszsssszszssrIToaTIISIIIRIIIOLIGERRS

REM *xk READ MAZE DATA ¥k

DIM B{3.8>

PRINT "<{CLRX"3

FORI=1 TQ 2:FOR J=1 TO 8

READ BLI.Jd:tIF Bi(I,J>=@ THEHN &33

FOR K=@ TO 3:0N ¢(BCI.J> AND ZTKI=ZTKO¥—(K+10 GOSUB 481.482, 404,
4a8

NEXT:FOR K=1 TO 4

ON <XB{I,J> AND 3¥KH=3KO¥-kK G0SUR 423, 406,489, 412

NEXT
PRINT"CC/RT}(CfRT}(CfRT}CCKRT}"ﬁ=NENT:PRINT=PRINT:PRIHTINEHT
DATA 1@.9,3,9,5:3:13:3

DATA 19.14.18,18,13,4,5,2

DATA 12.5,4:.6,9,5,3-10

pATA 11.9.5.5,6-11,18,18

DATA 10.18,13,5,1,6:12,8

DATA 10,12,5,5,8.5:5,7

DATA 2:5.5,7-18,9,5,3

DATA 12,5:5,5,4,4,7-10

RETURN
gerrzzazyraoooETISIIREIISITIRRIIISILILE

PRINT "(HOME}";:F=@:FOR I=1 TO 8:FOR J=1 TO 8

IF BSI.Jo=7 THEN F=1:Bi{I.J0=1S:B{I,J-1>=B{1,J-10+2
IF B{I.Jy=11 THEN F=1:Bil.Jo=15:B{I+1, J0=B{I+1.J0+1
IFBCI.Jo=13 THEN F=1:B(I.Jr=15:B{I. J+10=B{I,J+10+8
IF B:I.J0=14 THEN F=1:B«{I,J0=15:1B{I-1.J0=B{I-1,J0+4

nj e

1

31

vva NEKT J.1

vaa IF F THEN 7za

¥9@ FOrR I=1 TO Q:FOR J=1 7O &

3@ IF B{I.J>)=15 THEN PRINWT "J{C-RT:{C-RTILCARTH CCARTH"
36 PRIWT "{CrDHXCCoRT: M (CARTH (CAUPT"3

210 HEXT:PRINT:FPRINT:FPRINT:HEXT:RETURH

826 trsstrriiiaeTITIIEIGIILIISILIEIIIRITISIEIRILIS

This program represents an unusual method of solving the
maze problem. Typically, methods have utilized a stack array in
which the computer would store. Whenever the computer would
reach a dead end, the computer would pop moves off of the stack
until it reached a branch point. Then it would continue putting
moves on the stack. The method used in this program is a faster
way to solve the problem.

Here is a line by line description of the program and its
operation.

LINE EXPLANATION
10-60 These lines identify the program.
70-120 This is the main program. It is a series of sub-

routine calls that solves the maze puzzle. Line 70
identifies the main program. Line 80 isa call toa
subroutine that prints out the instructions. Line 100
is a call to a routine that reads the maze data. Line
110 is a subroutine call to line 720 where the solu-
tion is determined. Line 120 waits for you to press
the RETURN key after the program 1s over. It then
ends the program.

130 This line separates the parts of the program.

200-390 This set of lines prints the instructions. Line 205 is a
command that changes the color of the characters to
white. {WHT}is produced by pressing the CTRL
and 2 keys simultaneously. This character does not
appear this way on the screen but is the way some
printers print it. Line 207 is a POKE command that
changes the screen colors.

400-412 These lines are a set of subroutines that print the
sides of the cells in the maze. Line 401 contains four
graphic characters (the left one on the Y key). {C/LF}
is the CRSR LEFT key. Line 402 contains the CRSR
RIGHT characters, {C/RT}, followed by the left
graphic character on the N key. The CRSR DOWN
{C/DN} characters and the CRSR UP {C/UP} con-
trol characters are also used. L.ine 403 contains some
of these same control characters plus the right
graphic character on the P key. Line 404 contains

32

-
s

T

G

146

600-715

720-810

control characters plus the left graphic character
on the P key. line 406 contains control characters
plus the right graphic character on the @ key. Line
408 contains control characters plus the left graphic
character on the H key. Line 409 contains the right
graphic character on the O key. Line 412 contains
the right graphic character on the L key plus control
characters. Together these subroutines draw parts
of the maze.

These lines dimension the B array, clear the screen,
and read in the elements of the B array. Line 615
contains the {CLR} character produced by pressing
the SHIFT and CLR/HOME keys. The maze is
made up of eight rows and eight columns of cells.
The numbers of those cells are contained in lines
640-710. The cells’ numbers are first defined as zero.
If the cell has a line on top, a one is added to its
number. If the ceil has a line on the right, a two is
added to the cell’s number. If the cell has a line on
the bottom, a four is added to the cell’s number. If
the cell has a line on the left, an eight is added to the
cell’s number. A cell with a number of 10 has a line
on the left and a line on the right. The top and
bottom are open. A cell with a value of 9 has a top
and bottom but no sides. That is how the numbers on
the DATA statements in lines 640-710 make up the
maze. You might want to change these values or
have the computer change these numbers and then
solve the maze puzzle. The rest of the lines of this
subroutine draw the lines of the macze, based on the
cells’ values.

This is the subroutine that actually solves the maze
problem. Line 720 prints the HOME character, sets
a F flag to 0, and begins two loops that are nested.
These loops look for cells that have 1 open side.
Line 730 converts a cell with an opening on the
left to a solid square, effectively debranching that
dead end. It also sets the F to 1, indicating that an
operation has taken place. It also changes the cell
to the left by adding a right side to it. Line 740
does similar things to a cell with no bottom. It also
adds a top to the cell beneath it and sets the F flag
variable. Line 750 adds a rightside to the cell without
one and adds a left side to the cell on its right. Line
760 adds a top line to a cell without one and adds a
bottom line to the cell above it. This process is
repeated over and over until no F flags are set. Then

33

the program prints the left graphic character on the
+ key. This character is represented in in line 806
as a black square with a white column in it. On the
screen it appears as a checkered square.

820 This indicates the end of the program.

Program Operation. When this program is correctly entered
and run, 1t will print out the maze as an eight by eight collection of
cells. The maze has an open end on the top and an open end on the
bottom. The computer will solve the puzzle and then print a
checkered square in all of the cells that were not debranched. This
represents the solution to the puzzle. Just follow the squares from
one end to the other. This trial of characters is the solution to the
maze puzzle.

You might like to change the data in lines 640-710 to make a
new maze. Or you might like to change the program so that the
computer will generate a new maze every time that the program is
run. You might also want to change the number of cells that are
displayed on the screen.

The Cellular Automaton

This program, shown in Listing 2-4, needs a little explana-
tion. First of all, you must enter the program into the Commodore
64 EXACTLY as it is listed. The reason is that the program will
change the characters in the DATA statements as the program is
run! That s, if you run the program and then press STOP and look
at the program listing, it will appear different than before it was
run! If you do not enter the program exactly, the program may
crash. Figures 2-2 and 2-3 shows how the data statements change as
the program runs.

Listing 2-4 Cellular Automaton

O sszzssssszsssszgseszozasasasazas:

1 REM CELLULAR AUTOMATON - PROGRAM &

2 REM WRITTEN BY TIMOTHY J. Q°MALLEY

3 REM COPYRIGHT 1383. TRE BOOKS IHNC.

4 REM (WRITTEM FOR THE COMMODORE &4)

S szssgssszsszzrpicocooczeszaaaazane

9 DIM BX{25,385.D%C25,3a>

1@ FOR I=1 TO 2S:REARD B$:FOR J=1 TO 3@
28 IF MID$(B$,T.10<>" " THEN B%<{I,J>=1
3@ IF MID#(B$.J.I>=" " THEN BX:{I,J>=@
4@ NEXT J.1

S1 DATAR" "
52 DATA" "
53 DATA" "
S4 DATA" "
S5 DATA" "

e
=y
58
=9
aa
&1
&2
83
o4
&5
a6
&7
a8
89
va
71

g

V3

f=]
Ve
réd
@
28
1aa
11@
1z2@
13a
14a
15a
1g@
i7aé
iga

DATA" v
DATA" .
DATA" "
DATA" .
DATA" x
DATA" .
DATA" ook .
DATA" * % .
DATA" * ok .
DATA" .
DATA" .
DATA" .
DATA" »
DATA" .
DATA" .
DATA" .
DATA" .
DATA" .
DATA" I
DQTQ " "
PRINT CHR$%147)3
FOR I=55296 TO S6295:POKE I.1:NEXT
FOR I=1 TO 25:FOR J=1 TO 3@:D%(I.J>=@
MEXT J,I:FOR I=2 TO 24:FOR J=2 TO 29
IF B%<I,J>=@ THEN 13@

FOR K=I-1 TO I+1:FOR L=J-1 TO J+1
D%CK» LY=D%<K, L>+1 s NEXT Lo KiD%CI. J>=D%CI.T0-1
NEXT J, I:FOR I=2 TO 24:R=983+40%1:U=2413+33%I1:FOR J=2 TO 29
T=U+JtP=R+JtB%< I, J>=-<D%<I,J»=3 OR (B%CI,J>=1 AND D%<I,Jr=2)>
5=32+18%B%C 1, J>:POKE P.5

POKE T-39.5

NEXT J, 1:GOTO 30

This program is a cellular automaton. That is, starting from
an initial pattern, you can generate very sophisticated patterns.
This program is based upon the game of life that was invented in
1970 by John Horton Conway. (See “Computer Recreations” in
Scientific American, Volume 250, Number 3, pages 12-21 for a
more detailed explanation on cellular automata.) This program
stores the state of the automaton by changing the program.

In this program, the pattern of asterisks and blanks determine
where the next generation of asterisks and blanks will appear. Here
are the rules that control the changes. If a cell touches three other
cells or if that cell is an asterisk and touches two other asterisks, it
will be an asterisk in the next generation. All other conditions for
cells will cause them to “die” and become blanks. This causes the
patterns to change.

You can see that as the program runs, the patterns will change
in unpredictable ways. A spinoff effect of this program is that the
program itself will change because the DATA statements will

35

S1 DATA" "
52 DAaTa" "
53 DATA" o
sS4 DATA" .
SS DATA" 5
S6 DATA" o
=7 DATA" .
s3 DATA" "
59 DATA" .
68 DATA" "
61 DATA" "
&2 DATA" NOKK "
&3 DATA" * K "
64 DATA" * % "
65 DATA" "
&6 DATA" “
67 DATA" "
68 DATA" .
639 DATA "
7@ DATA" "
71 DATA" .
72 DATA" o
73 DATA" "
74 DATA" -
7S DATA" M

Fig. 2-2. The data statements in the Cellular Automaton program at the start.

change. This means that you can STOP the program at any time
and SAVE it. When you restart that saved program, it will start
working based on the newly stored pattern in the DATA state-
ments.

Think of how other programs that would change the program
lines as they ran might be written. This process can have very
interesting consequences! Cellular automata should be explored
further for their usefulness in computing. Someday when parallel
processing becomes commonplace in microcomputers, cellular
automata will reach their potential.

Here is a line-by-line description of the program.

LINE EXPLANATION
0-5 Note the use of line 0 as part of the heading of

this program. Zero is a valid line number that
usually is not used in programs.

36

=9

“J
i

KR

(LIRS

o
-

Bt Bt R B TN N s s s S S)
[S VI R RN U R B S

DATA"
DATH"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"

DATAR"

2 DATAR"

DATAR"
DATA"

S DATA"

DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATH"
DATA"
DETA"
DETA"
DATH"
DATA"
DATA"
DATA"
DATA"
DATA"

K I
E U 33

B S
& E 3
L S

®

e
Fi

® =
52

S3
S4
=5

=
pu L]

RIS N A R R Rl

R e B B e BB s PSR R R R R

[S T N]

=T
i)

PR

]
oo &

oanoon

n
J

O T T J I O L i
N G b @0 00 =) OO G B =@ ':Lq fL'J..l!I =

T O

T

= g T

DATA"

DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"

DARTAY

> DATA"

DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"
DATA"

ok KK
oK kK

LS8 S
* ®
ok KK

Fig. 2-3. The Data Statements in the Cellular Automaton program as they continue to change.

37

9 This line dimensions two integer arrays. These
arrays store 1 or 0, indicating that a character (like
the asterisk) is present in the data or that a blank
was present. D% is the working array, an array thatis
made based on what is contained in the B% array.
When all the cells of the B% have been checked, D%
is changed into B%, and D% is reset to zero.

10-40 These loops read in the characters in the character
strings of the DATA statements in lines 51-75. If the
characters in those lines are blanks, then the cor-
responding values in B% are 0. All other characters
are represented as 1 in B%.

51-75 These lines contain the “‘screen” of the cellular
automaton. You may change the blanks or asterisks
to whatever printable character that you like. You
may design different patterns. Just make sure that
you maintain the same number of characters in each
line and you maintain the same number of lines.
There are 30 characters in each line.

76 This clears the screen.

77 This turns on all of the 1000 screen positions.

80-90 This resets all of the D% array and begins to work
with the B% array.

100 If B% i1s 0, skip it.

110-120 This nested loop adds 1 to all the surrounding cells
in the D% array for the occupied cell in B%.
130-170 These lines change the cells in B% to those in the
completed D% array. They also change the blanks
and asterisks in the DATA statements by using
the POKE command. Notice the complicated use of
Boolean logic to determine what cells are changed.
180 This is the last line of the program.

Program Operation. When you type RUN, the screen will
blank. The pattern will start to print out on the screen. Because the
program POKEs the asterisks upon the screen, the patterns will
appear to change without the screen being blanked out. The
program will continue to run indefinitely. To stop the program,
you must press the RUN/STOP key. Check out thelisting. Youwill
see that it has changed, and you might want to save the revised
program.

38

Chapter 3

Behaviors and Bootstraps

In this chapter we look at two novel ideas. One is the idea of having
the computer learn behaviors. The second is the idea of programs
that change themselves.

AN INTRODUCTION TO BEHAVIOR

Experimental behavioral psychology is the science that deals
with the relationships between stimuli and overt behaviors.
Typically a stimulus is a measured quantity and the resulting
behavior is a quantitative response to that stimulus. The experi-
mental variable is the amount of the stimuli that results in the
subsequent behavior relative to a control. Behavioral psychology,
then, makes correlations and defines causal relationships between
the stimulus and the response.

I explored that idea that a simulation of behavior could be
created on the computer. The first program in this chapter
simulates the behavior of a rat in a Skinner box. Let’s look at some
definitions before we look at that program.

Definitions

In experimental behavioral psychology, as with any “true”
science, everything has to be defined mathematically. If we say that
something might exist, we call it a hypothetical construct. (A

39

hypothetical construct is an entity that may or may not have
essence.) For science to deal effectively with a hypothetical
construct, the construct has to be presented in terms of an
operational definition. We must find a way to measure it. Our
stimulus may be a drug measured in milligrams, and the response
may be a drop in blood pressure measured as millimeters of
mercury. If we notice a positive relationship between the stimulus
and the response, we say that a correlation exists. If we can
manipulate the values of the stimulus and notice a consequential
change in the values of the response, we have established a causal
relationship. A control is an identical experiment whose experi-
mental variable has not been manipulated but has typically been
set at zero. A null hypothesis says that the amount of the stimulus
has no effect on the response. We disprove the null hypothesis
when we establish the causal relationship. This is the core of all
experimental science.

B. F. Skinner and His Ideas

At the risk of being ridiculed by some of the members of the
artificial intelligence community, let’s spend a few moments
discussing B. F. Skinner and some of his ideas about behavior.

One of the assumptions of behavior psychology is that if a
stimulus caused the frequency of a behavior to increase, that
stimulus was acting as positive reinforcement. Conversely, if the
frequency of the response decreased, then the stimulus was acting
as negative reinforcement. In experiments food might act as
positive reinforcement, particularly if the experimental animal
was on a deprivation schedule. A mild shock administered after a
behavior might act as negative reinforcement. The schedule of
reinforcement could be varied. A variable schedule of reinforce-
ment leads animals to exhibit superstitious behavior.

COMPUTER BEHAVIOR

We don’t normally think of computers as having behavior.
They are programmed and that’s that, they are ruthlessly consis-
tent, they are idiots with lightning reflexes. On the other hand,
computers can be programmed to do almost anything.

Is it possible to write programs that will exhibit behavior? To
answer that question we have to devise a way to control the
frequency of responses. That can be done by using an array of
numbers that correspond to specific responses. On the Com-
modore 64 we will use such a frequency array to control the
responses of the computer in a behavioral sort of way.

Training the Rat

In the program that we now discuss the object is to train arat.

40

The computer will act as the rat and will display certain behaviors
that the rat would exhibit. You will have five seconds to press a key
to positively reinforce the last behavior displayed. If you do not
press a key, that behavior will actually decrease in frequency (by
5%). When you press the key, you will increase the frequency of that
response by 10%. The set of behaviors can be saved on tape and
retrieved for use in the program the next time that the program is
run.

The program shown in Listing 3-1 allows you to simulate
some of the behaviors of a rat in a Skinner box. The computer will
act as the rat, and you can reinforce some of his behaviors by
pressing any key within five seconds of the displayed behavior. Up
to 20 different behaviors will be displayed on the screen. Certain
behaviors are linked together. You can reinforce the sequence of
behaviors that occur. If you don’t press any key, the selected
behavior will decrease in frequency.

Listing 3-1 Training the Rat

i@

2@

a

4a

Sa

&a

va

sa

28

16a
11@
12@
13a
135
136
137
148
145
15a
152
153
155
1e@
199
28a
218
226
23a
24a
258
Ze@
27a

271

DR] H
REM TRAINING THE RAT - PROGRAM 7
REM WRITTEN BY TIMOTHY J. Q°MALLEY
REM COPYRIGHT 1924, TaB BOOKS IHC.
REM (WRITTEN FOR THE COMMODORE &4
R R R R R R TN
REM ¥k MOIN PROGRAM %ok
DIM YIFPB0. PG FO7a), 802G . A% 2@)
FOR J=1 TO V9:iREAD WI{JIX)IF{Io=11NEKT

FOR J=1 TO 20:READ PrJIX:iREAD SeJ):NEXT

FOR JT=1 TO 20:READ A$CI):MNEXT

GOSUB 20@:REM PRINT INSTRUCTIONS

“=3

K=SCR0+INT R OO RRND L >)

TF=@: FORI=S{XOTOASCHI+P K —~1

TF=TF+F {132 HEXT

IF (RNDC1O¥TFO<FI{K> THEN FRINT:PRINTA$(VYOKD D GATO 15@
GOTO 135

TIs="@eaaaa":Re=""

GET R#$:IF R$="" aHD TI$<"@oaoas" THEN 152

IF R$=CHR#{133) THEN 7aa

IF R$<{>"" THEHN FUkD=F{KOo%] 12 8=V(K) 1 GOTO13S
FrkD=,98%F (KDt K=Y (K1 GOTA13S

L - O O O O B B O O R R O T S T S e
SRR Ess s sseNNsessaseeRRIRSRossyr

REM *¥k PRINT INSTRUCTIONS %k
PRINTCHR${14?>;TQB(12);“REINFDRCENEHT“:PRIHT:PEIHT
FRINT" THIS FPROGRAM SIMULSTES A SKIWNER ¢
FRINT"BOX. THE DESCRIPTION OF THE BEHAUIOR aF"
PRINT"THE RAT WILL BE DISPLAVED ON THE"
PRINT"SCREEN. BY FPRESSING ANY KEV. YOU CAN®
PRINT"FOSITIVELY REINFORCE THAT BEHAUIOR. "
PRINT"POSITIVELY REINFORCED BEHaUIOR WILL "
FRINT"INCREASE IM FREQUEHCY.":1PRINT

41

DR I SR B S A I N i X

% LI OO NI X SO R N VI N N
Y O O I O O 0 O o O 0 R (R |

Saa
So9a
(=yuls)
ala

&
D]

42

FRINT" FRESS F1 TO 3TOP OF SAVE BEHRUIOR"
FRINT"OW CASSETTE TRFE.":FRINT

INFUT"DO YOU WANT TO ENTER BEHRUIOR <Y-MHY":BA$

IF LEFTCBR+"Y" 100"V THEN 288

OFEN 1.1.8."BEHARUIOQR"::FOR I=1 TO V3

INFUTH#1.F I IF ST=@ THEN HEXT

CLOSE 1:F2=

FRINT"PRESS THE RETURN KEY TO CONTINHUE. OK"::INPUT
FRINTCHR$ 147>

FRINT" THE RAT HAS JUST BEEW FLACED IN"
PPINT”THE SKINHNER BOX.":iPRINT:RETURN

REM kR DRTH RkK

[’HTH .4.:1~‘.F~..F?C\7|-a l 4 5 br|:831r4?5r6’?r833’5
[”—‘TH 1’-.\--..'-.:5;:' 1..\"_\!‘..'?&\'! :-_,1? 3?'5‘.- 13,3!..119
DATA 11-12-11,12.3:9,.18:14,15,16:1:3:5:,6:7-8,13
DATRAR 14 15:.16:-14: 15,16, 18,13, 2@, 173:5!6???8!1?
DRTR 219.20,123.19,20,1,1:6,2:6,3:6,14,2,28,7
DRTR 22»6:29»3,35»3s39:' 41.2,43,3,45, 3,487,551

DRTR 3:58:3:861:3:64:7V:67:3:74, 3,77

DATA RAT APPROACHES PELLET DISPENSER.

DATA RAT TURNS RWAY FROM DISPENSER.

DATA RAT STANDS ON ALL FOUR LEGS.

DRTA RAT CONTINUES STANDING ON ALL FOURS.
DRTR THE RAT JUMPS.

DATA RAT WALKS AROUND OH RIGHT SIDE OF BOX.
DATA RAT WALKS AROUND OW LEFT SIDE OF BOH.
DATA THE RAT LIES DOWH.

DATA IT CONTIHUES LYIHG DOWH.

DATA IT GOES TO SLEEP.

DATA RAT CONTIHUES SLEEPING.

DATAR THE RAT WAKES UFP.

DATA THE RAT FACES THE BAR FRESS OW HIWD LEGE.
DATA RBAT TURNHS AWAY FROM BRRE FRESS.

DATA HOW THE RAT IS OMLY TOUCHIHG THE BRR.
DATA THE RAT IS PRESSING THE BRR FPRESZ.
DATA RAT FACES PUSH ROD OW HIMD LEGS.

DATA IT TURHS AWAY FROM PUSH ROD.

DATA RAT IS OHLY TOUCHING THE FUSH ROD.
DATA THE RAT IS PUSHING THE ROD.

REM ®%x SpUJE BEHAVIOR OH TRFE? %%«

PRINTCHRE$ (1472

INPUT"IWANHT TO SAVE BEHAUIOR OH TRFE CY-HO":iBCE
IF LEFTHCBCHE+"Y" 102" THEN Ved

OFEH 1.1,1."BEHRAVIOR" :FOR I=1 TOQ V73
FRINTH#1.FoIosHERT:CLOSE 1

PRINT: INPUT"WANT TO STOF YoM "iBDS

IF LEFTHCBDS+ "0 < 5" THEN 135

=3

There is a frequency array that stores the frequency of every
behavior, F. After any given behavior, the computer selects one of
several possible subsequent behaviors. If the frequency of the
selected behavior is very small, the computer will reselect another
behavior. In this way the frequency of the behavior, as contained in
array F, controls the chance of its occurring. You positively
reinforce a behavior by pressing a key. (Its frequency will increase
10% each time.) You can extinguish a behavior by not pressing any
key. (Its frequency will decrease 5% in that case.) You might want to
change the program to alter these numbers. You might also want
to add additional behaviors. The program as itisshownin Listing
3-1 allows you to save the rat’s behavior on tape. Listing 3-2 shows
one way to change the program for use with a disk drive. (The rest
of the lines remain the same.) You may want to change the
program so that you can collect a number of behavior files on the
same disk.

Listing 3-2 Changes To Use the Program on Disk

272
273
281
282
283
284
285

700
710
720
730
732
733
734

PRIMT" FRESS F1 TO STOP OF SAVE BEHAYIOR"
PRIMT"OM DISEK.":PRIMT

INFUT"DO YOU WAMT TO LOAD BEHRVIOR O¥/MHi" EBA$
IF LEFT$CBAS+"Y", 10:{2"Y" THEM 288

OPEM 2,8,2, "BEHAVIOR. S, R" (FOR I=1 TO 73
INPUT#2,FCI2: IF ST=6B THEM HEXT

CLOSE z:Fz=1

REM ###% SAVE BEHAYIOR OM DISK? #%#

PRINTCHR#C 1472

INFUT"WAMT TO SAYE BEHAVIOR OW DISK oYAH:",BC#
IF LEFT$CBCE+"Y" 15C5"Y" THEM 768

FRINT"IF YOU ALREADY HAVE A FILE OF "
PRIMT"RAT BEHAYIOR OH THIS DISK, IT WILL BE "

PRINT"REFLACED EBY THE CURREHMT FILE. EMTER Y IF SUCH A FILE ALREADY

EXISTS."

INPUT MZ$:IF MZ$=""Y" THEMW OFEM 15.2.15 PRINT#15."S0:BEHAVIOR" :

CLOSE1S

OPEM 2,8,2,"BEHAYIOR. S, W" 'FOR I=1 TO 79
PRIMT#2,FCI) HEXT :CLOSE 2

PRINT : INFUT"WANT TO STOF (Yoo " BDE

IF LEFT#CEDE+"Y", 122" THEN 135

This program represents an attempt to make a computer
simulate behavior, the behavior of a rat in a Skinner box. Here isa

line-by-line explanation of how it works.

LINE EXPLANATION

10-60 These lines identify the program and provide credit

information.

70-160

80

90

100
110

120
130

135

136-137

140

145
150
152
153

155

160

- 199

200-300

310
400-470

480-670

This is the main program. Line 70 is a remark
statement.

This line dimensions various arrays. Y is the array
that stores behavior codes. P is the starting point in
the array for a given behavior, and S is the number
of possible behaviors that follow P for each behavior.
F is the frequency of the behavior, and AS$ is the
actual behavior.

This line reads in the elements of array Y and sets
each element of array F to 1.

This line reads in the P and S arrays.

This line reads in the behaviors from DATA state-
ments 480-670 into the A$ array.

This line calls a subroutine to print the instructions.
This sets the first exhibited behavior as 8, which is
RAT STANDS ON ALL FOUR LEGS.

K is the random choice of P(X) behaviors starting
at S(X).

These lines add up the frequencies of possible sub-
sequent behaviors.

This line selects a behavior based on its frequency.
If the behavior selected is within the frequency range
associated with it, it is printed and control goes to
line 150.

This line return control to line 135 where another
possible behavior is selected.

This line sets a timer at zero and sets R$ to the
empty string.

This line reads the keyboard for a key pressed within
5 seconds.

If the pressed key is f1, control goes to line 700.

If any key was pressed, the frequency of the be-
havior is increased by 10%. X becomes the number
of the new behavior, and control goes to line 135.
No key was pressed; the frequency of the present
behavior is decreased, X is assigned the new be-
havior number, and control goes to line 135.

This is a separation line.

This subroutine prints the instructions and asks if
you want to load data from cassette tape.

A separation line.

These DATA statements contain the 79 numbers
for the Y array. The next 40 numbers are the P and
S numbers, as P(1),5(1),P(2),5(2), etc.

Each of these lines represents an element of the A$
array. For example, A$§(1) is RAT APPROACHES
PELLET DISPENSER.

REINFORCEMENT

THIS PROGRAM SIMULATES A SKINNER
BOX. THE DESCRIPTION OF THE BEHAUIOR OF
THE RAT WILL BE DISPLAYED ON THE
SCREEN. BY PRESSING ANY KEY. YOU CAN
FOSITIVELY REINFORCE THAT BEHAVIOR.
POSITIVELY REINFORCED BEHAVIOR WILL
INCREASE IN FREQUENCY.

PRESS F1 TO STOFP OR
ON CASSETTE ThPE.

SRUE BEHAVIOR

DO YOU WANT TO ENTER BEHAUIOR <Y~ M>? H
PRESS THE RETURH KEY TO CONTINUE. OK

THE RAT HAS

JUST BEEN PLACED IN

THE

WALKS
RAT WALKS
THE RAT LIES

IT CONTINUES

FAT CONTINUES
THE RAT WAKES
IT GOES TO
RAT COMTINUES
RAT CONTINUES
RAT CONTINUES
THE RAT WAKES
IT GOES TO
RAT CONTINUES
THE RAT WAKES
RAT STANDS ON

RAT CONTINUES

AROUND

FROUND

SKINHER BOX.

ON RIGHT SIDE OF BOX.

ON RIGHT SIDE OF BOX.

DOWN.

LYING DOWN.

SLEEPING.

UuF.

SLEEF.

SLEEFING.

SLEEPING.

SLEEPING.

LF.

SLEEF.

SLEEFING.

uFP.

ALL FOUR LEGS.

STANDING ON ALL FOURS.

RAT WALKS RROUND ON RIGHT SIDE OF BOX.

THE RAT FACES THE BRR PRESS ON HIND LEGS.

Fig. 3-1. A display of simulated computer behavior from the Training
Program.

Rat

45

680 A separation line.

700-770 This subroutine asks you if you want to save the
current behavior on tape for use later. It then asks
you if you want to stop the program. The computer
responds accordingly.

790 The last line of the program.

Program Operation. Figure 3-1is a display of the program as
it runs on the Commodore 64. After the initial instructions and
questions, the program starts displaying the behaviors. Your job is
to press any key at an appropriate time to reinforce the behavior. In
this way you increase the frequency that it will occur. At the
beginning, all the behaviors associated with the particular
behavior have an equal chance of occurring.

You can train the rat to go through a series of behaviors by
reinforcing the proper behaviors.

BOOTSTRAP SYSTEMS

We now look at an interesting sort of ideas. What would
happen if you could write a computer program that would change
its programming as it ran? This is possible on the Commodore 64
because we can find where and how the programs are stored. By
writing a careful program, we can have the computer change its
programming as it runs.

Let’s define what a bootstrap system is. A bootstrap system is
any computer program that creates new program statements as it
runs. This is not to be confused with bootable files, that load the
operating system or language for some computers. The bootstrap
system is any program that changes itself as it runs. We will look at
two simple examples and how they work.

On the Commodore 64 the BASIC programs that you enter
into RAM are stored as tokens. Tokens are an internal form that is
neither the letters and numbers of BASIC nor executable machine
language code. This intermediate form is a series of numbers from
0 to 255 stored in the RAM and represents the program. It occupies
less space than the entire collection of characters comprising the
BASIC language commands and operators. Figure 3-2 is a partial
list of the codes associated with that internal form. Thus BASIC
commands are stored as 8-bit numbers in memory.

The First Bootstrap Program

We now look at a bootstrap program that will define the
variable A as 1 and will print it every other time that the program is
run. Listing 3-3 includes three versions of the program. The first
version shows how the program should be entered into the Com-
modore 64. The second version shows how the program appears

46

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

END
FOR
NEXT
DATA
INPUT+
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSuUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT +
PRINT
CONT
LIST
CLR
CMD
SYS
OPEN
CLOSE
GET
NEW
TAB<
TO

N

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

SOC<
THEN
NOT
STEP

Al VOP =\ * | +
28

SGN
INT
ABS
USR
FRE
POS
SQR
END
LOG
EXP
COS
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFTS
RIGHT$
MID$
GO

Fig. 3-2. Code numbers and tokens for BASIC commands as stored in the
Commodore 64.

Listing 3-3 The First Bootstrap Program

a

1@
28
Ia
4a
Sa
ea
vé

HE S

REM BOOTSTRAP PROGRAM - PROGRAM 3

REM WRITTEN BY TIMOTHY J.

REM COFPYRIGHT 1984.
REM (WRITTEN FOR THE COMMODORE &4
POKEZBS3, 65: POKE2Z2GS54 - 1731 POKEZBSS, 49

POKEZBSY, 153: POKEZB53, 65

0’ MALLEY
TABR BOOKS INC.

POKE2868, 151 : POKE2261, SO POKEZREZ- 48

47

2@ POKEZBE3,S3:POKEZ2G64.51: POKE2Z2GES, 44
P8 POKEZBEE6.493: POKEZBETY . 52: POKE2063, 51
168 FOKE267a,. 128

8 A=1:PRINTA:POKEZBS3I,. 143:END: =

1@ REM BOOTSTRAP PROGRAM - PROGRAM 8
28 REM WRITTEHW BY TIMOTHY J. O*MALLEY
38 REM COPYRIGHT 1984. TAB BOOKS INC.
4@ REM (WRITTEN FOR THE COMMODORE ©4>
S8 POKEZOSI.eS5:FPOKE2GS4. 173: POKEZ2BSS, 49
ea POKEZ@SY. 1S3: POKEZBSE. 65

78 POKEZBE@. 151 :POKEZO61 . S8: POKEZ2B:62, 48
2@ POKEZBE3Z,S53:POKE2864 .51 : POKEZBES, 44
I8 POKEZBEE6.43: POKEZBSY . 521 POKE2B62, 51
1aa FOKEZB7a. 123

4 REM=1:PRINTR:POKEZBST, 1431 END: ¢

1@ REM BOOTSTRAP PROGRAM — PROGRAM &
Z8 REM WRITTEN BY TIMOTHY J. O MALLEY
3@ REM COFPVYRIGHT 1984. TABR BOOKS INC.
4@ REM <WRITTEN FOR THE COMMODORE &4
S8 POKE2@S3,65: POKE28S4, 173: POKE29SS. 49
6@ POKE2@S7, 153: POKE2ZGS8, 65

78 POKE2Z@6@, 151:POKE2061, S@: POKE2@62, 43
88 POKE2@63,53: POKE2864, S51: POKE206S, 44
9@ POKE2066.43: POKE2067,5S2: POKE2068, 51
18@ POKE2@7@. 123

after it is run once, and the third version is a listing of the program
after it has been run a second time. Subsequent runs of the program
alternate between the second and the third version.

This program is unique in that the program operates in two
different ways. When the program is first run, it creates a new
program statement from line 0. This particular program is simple.
It creates a subprogram out of itself. That subprogram defines the
variable A and 1 and prints out that value. It alternates between two
different modes of operation.

This program by itself is not spectacular, but it should lead
you to explore ways of having programs change themselves.
Remember the cellular automaton program that changes the
contents of the DATA statements as it ran? This concept, the idea
of bootstrap systems, has some intriguing possibilities.

Here’s a program line-by-line explanation of the program.

LINE EXPLANATION

0 This line consists of 20 colons and will be used to
store a new program line.

10-40 These lines are the title and credit data for the
program.

50 POKE 2053,65 changes the first colon to the letter A.

48

POKE 2054,178 changes the second colon to the =
character. POKE 2055,49 changes the third colon to
the number 1.

60 This line changes the fifth colon to PRINT and the
sixth colon to the letter A.

70 This line changes the eighth, ninth, and tenth
colons to POKE, 2, and 0, respectively.

80 This line changes the next three colons to 5, 3, and
the comma character.

90 These three statements change the next three colons
to the digits 1, 4, and 3.

100 This POKE command changes the 18th colon to
END.

Program Operation. As the program is run, the contents of
line 0 change. The first time it runs, some of the colons of line 0 are
changed to BASIC statements. Actually what happens is that we
have altered the contents of the RAM area that stores the tokens of
the program. The next time the program is run, only line 0 is
executed because one of the tokens added was the END command,
code 128. When this line is run, the token at RAM position 2053,
the A letter, is changed to REM, the remark statement. That means
the next time that the program is run, line 0 will not be executed.
The other program lines will be executed, as in the first version.
The program alternates between the last two forms from then on.

The Second Bootstrap Program

Listing 3-4 shows the two forms of another program that
changes the line statements. This program will run only twice.
The first time it is run, it creates the statements of line 0, shown in
the second version. The second time it is run, it executes line 0,
which also erases the program. This program will run, run again,
and then disappear.

Listing 3-4 The Second Bootstrap Program

B s3s8s33:2¢8 HEE -

18 REM BOOTSTRAP PROGRAM - PROGRAM 9

26 REM WRITTEN BY TIMOTHY J. O°MALLEY

3@ REM COPYRIGHT 1984, TAB BOOKS INC.

4@ REM <WRITTEN FOR THE COMMODORE &4)

5@ IFR=@THENPOKEZ@S3.65: POKE20S4, 173: POKE20SS., 49
68 IFA=ATHENPOKEZGS?, 1531 POKEZGSS, 65

78 IFA=@THENPOKEZ@6@, 151 : POKEZ061, S58: POKEZG62, 43
86 IFA=@THENPOKEZOE3, S3: POKEZO64 . 43: POKEZBES, 44
9@ IFA=ATHENPOKEZ@66. 43

8 A=l PRINTR:POKEZOBSG. G222 2

1@ REM BOOTSTRAF FROGRAM FROGRAM 2

49

28 REM WRITTEW BY TIMOTHY J. O°MALLEY
38 REM COPYRIGHT 1984. TRE BOOKS IHC.
483 REM <WRITTEHW FOR THE COMMODORE &40
S8 IFA=ATHENPOKEZGSS. 6S5: POKEZGSY, 178: POKEZ2GSS,
ad IFR=ATHENPOKEZBSY. 153: POKEZ@SE. 65
IFA=BTHENPOKEZG6G, 151 : POKE2ZBE1 , SO FOKEZOEZ

IFR=ATHENFOKEZ@EE » 43

Here is a brief explanation of the lines in the first version.

LINE EXPLANATION

0 This line contains 20 colons, which provide room
for storing the new statements.

10-40 The title and credits of the program.

50-90 These lines run only if A is 0, in other words, if it is

the first time that the program is run. These lines
generate the BASIC statements in line 0 of the second
form. Line 0 in that program assign A as 1, print
it and set the first A in that line equal to a code of
0, a null code, which erases the lines of the program.

Program Operation. After entering the program into
memory, type LIST. You should see the first form of the program.
After you run the program, type LIST. You should see the second
form of the program. If you type RUN again, the computer will
print 1 on the screen and erase the program. When you type LIST,
the computer will display nothing but the READY prompt. You
MIGHT recover the program by typing POKE 2053,65. If the RAM
is disturbed, it generally won’t reinstate the program in its entirety.

Imagine how this concept could be expanded. Certain lines of
a program could be activated to dirhension arrays, erase lines at the
end of the program, destroy line statements forever by converting
them to colons, and inactivate lines by making the first token
REM. A good program could generate all sorts of fascinating
commands. Experiment!

50

(5]
3@ IFA=ATHENFOKEZGE 3. S3:POKEZ2GS4, 43 FOKEZGES . 44
%

43

az

Chapter 4

S\

— p——

i

\U

Natural Language Processing

One of the most active areas of artificial intelligence is the area of
natural language processing. In natural language processing, the
computer reacts to English statements. The ideal natural language
processor would interpret commands as a person would. Program-
ming would be as easy as teaching a person, maybe easier. The
point of natural language is to have the computer understand you,
instead of you trying to understand the computer. Obviously
English is only one of several languages that could be used in
programming computers to understand natural language.

In this chapter we will explore two programs that utilize
natural language processing. The first is a program based on
ELIZA, a natural language program originally written by Joseph
Weizenbaum at the Massachusetts Institute of Technology in 1966.
The second BASIC program is called PERFECT LOGIC, a 1984
original by me that makes conclusions based on set theory. (I
consider this program to be the best in the book.)

DEFINITIONS AND EXAMPLES

Let’s talk about natural language and give some examples.
When we solve problems, we must find a way from the question to
the answer. We might think that the answer to a question or the
solution of a problem is somehow a function of that question or
problem. Our task in finding the answer is to break down the

51

question into a series of steps. If we know the solution to a few of
the steps, we are that much closer to the answer to the overall
question. This same approach can be used in artificial intel-
ligence. What the computer might be programmed to do is to save
some of the solutions to steps in the problems that it encounters.
This stored knowledge would be used to break new problems down
into similar steps and to organize memory properly to solve the
problem.

In the case of natural language, words are the steps of the
problem. The arrangement of the words and statements determine
how the computer is to respond. If the computer “remembers”
what action it is to take when it encounters a sequence of words, the
problem is on its way to being solved. This will all become clearer
by the end of this chapter.

English-Like Conversations

The Commodore 64 can be programmed to respond correctly
to a limited set of English sentences and questions. If you have a
program that allows the computer to store some of the statements
or questions that you entered earlier, you might be able to have
somewhat of a meaningful conversation. Unfortunately, the com-
puter’s world is very limited. The only way the computer “knows”
how to respond is by the contents of its memory. It is aware of
nothing and only responds electronically to the signals that it
receives. To the human observer, however, well written programs
can seem incredible.

In the first program in this chapter the computer will look for
key words and then attempt to respond, based on the content of
those key words. Key words would be the link between the question
and the answer. The second program involves the creation of sets
and subsets, and the use of an English language interpreter to place
nouns in sets. You can think of graph theory when you look at
these examples. Trees can be used to trace a path from one point to
another to see if there is a connection, which would indicate a
solution.

An example of a program that used natural language to com-
municate to a computer is SHRDLU, written by Terry Winograd
at MIT. In that program the computer manipulated a collection of
blocks, pyramids, and boxes. This 1971 program would attempt to
respond to English commands and perform certain actions on the
objects within its mathematical domain. If the computer was
uncertain about the request, it would question the user for
information that would clarify the request. This program would
then be able to process natural language, manipulate actions, and
query the user when a request was ambiguous. The result was
remarkable.

52

One of the harder things to do on the computer is to program
it to understand “common sense’ because the computer’s world is
very limited. At this point in time, personal computers have
neither the memory to store enough data nor the advanced
programming capabilities that would allow them to deal with
things outside of their limited world. The computer is at best an
expertin its own little world, and common sense is foreign to them.

The ability to communicate with computers using natural
language becomes quite a challenge for the programmer. The
approach that the programmer uses is determined by what he
wants the computer to accomplish.

Compositional Works

One idea that we will not explore but that is worth discussing
is computer composition. Here the computer strings together
nouns, verbs, phrases, and sentences. Often the programs produce
ridiculous sentences. However, if the verbs can be made to match
the nouns and phrases, they can be somewhat meaningful.
Generally programs of this type use the random number generator
to select arbitrary words and phrases.

Do you remember how one state of our cellular automaton
program determined the next state? If a program could be devised
to construct compositional works based on words and phrases, we
might have an interesting text generator. One sentence would lead
to another to form paragraphs, and then chapters. This concept
might not be as farfetched as it sounds. Remember that in the
cellular automaton you could not predict precisely how the figure
would appear, even though it used only a few simple rules and a
starting pattern. A compositional automaton could work the same
way.

THE STORY OF ELIZA

Because the first program in this chapter is like ELIZA, it may
be worthwhile to discuss ELIZA. At one time ELIZA was the most
famous computer program in the world. It has now been
supplanted by VisiCalc, the electronic spreadsheet marketed by
VisiCorp. Nevertheless, ELIZA was innovative in allowing the
first uses of natural language in a real time environment.

ELIZA was intended as a simulation of a nondirective
psychotherapy session based on the techniques of Carl Rogers. The
computer program would search through the sentences or
questions that the user would enter and from those entries select
key words or phrases from which to print a reply. By the clever use
of grammar and the rearrangement of sentence structure and so
forth, the computer would be able to produce a somewhat
meaningful response. The computer program required a long list

53

of key words and a preprogrammed set of instructions on how to
react. For instance, if the user typed the word sister in a sentence,
the computer would ask the user to tell him some more about his
family. If no key words were found, the program would default to
printing from a selection of stock, noncommittal replies.

ELIZA was really just an experiment in how to make people
think that a computer could think and understand what they were
talking about. Many times the program would produce nonsense,
especially when the program stored a sentence incorrectly. When
conversing with the computer, people would use incomplete
sentences—garbage in, garbage out. The program was interesting,
nevertheless.

A program like ELIZA was apt to get out of hand. One of the
unfortunate effects of ELIZA was that people took the program
seriously. The original program was never intended as anything
other than an experiment. It was never intended to replace a
psychotherapist. People tended to regard the computer as a
personality and shared their personal feelings with the computer.
They were caught by the illusion. Beware of this attitude as you
examine any artificial intelligence programs.

LANGUAGE PROCESSING IN BASIC

The next two programs are written in BASIC and run well on
the Commodore 64. I will explain them both in detail.

An ELIZA-Like Program

The program in Listing 4-1 is like the ELIZA program
discussed previously. This one is written specifically for the
Commodore 64 and contains features used only on the Com-
modore 64. The computer’s responses are written in white, and the
user’s responses are in cyan. The computer reads the keyboard for
input (including final punctuation marks) and does not display
question marks as a prompt.

Listing 4-1 The EL/ZA-like Program

10 szssrssszzassesszsssssassssszozess]
28 REM AN "ELIZA"-LIKE PROGRAM

3@ REM WRITTEN BY TIMOTHY J. Q"MALLEY
48 REM COPYRIGHT 13984. TAB BOOKS IHNC.
S8 REM {WRITTEN FOR THE COMMODORE &40
6@ sszsssrzsssIsIIEEIIREIIEZISSIEISIoIDCS
va REM *okk MAIN FROGRAM %k

8@ GOSUBR 17@:REM SET UP PROGRAM

9@ GOSUB 25@:REM INFPUT SUBROUTINE

18@ GOSUBR 3I9@:REM SYHONYMS AMD ANTONYMS
118 GOsSUB SV@:REM LOOK FOR KEYWORDS

1286 GOSUB 112@:REM REMOVE MARKERS

13@ GOSUBR 119@:REM COMPUTER’S REPLY

54

Jea

3Jga
394
408
41@
428
43@
44a

45a
488
47va
43a
49a
Sea
Sia
529
S3a
S4@
S5a
Sea
Sva
S80
S9a

GOTO 9a: REM ENDLESS LOOF
REM *kk SET UP PROGRAM k&

M=S5@: REM HUMBER OF SYHOHYMS & AMTONYMS
U=24:REM HUMBER OF FOSSIBLE REFLIES

DIM My${2@ad:MC=a:REM STACK OF "MY" STATEMENTS

PRINT "{CLR>"::PRINT "{WHT>"::REM CLEARR SCREEHM AHD SET COMPUTER™S
COLOR AS WHITE

PRINT " HELLQ. WHAT'S 0N YOUR MIND?":PRINT

RETURN

forrrIzzsrososrIsasITIaISRIGODGIRBGSDGEIIRIGOOGSNGS

REM #kk THPUT SUBROUTINE so#k
RESTORE: REM ALLOW DATA TO BE RE-READ

X=@:AF=""1PRINT "{CVANX"::REM KEYWORD FLAG=G & YOUR INPUT COLOR IS
CYAaN

OFEN S@.@:REM OPEN THE KEYVBORRD FILE TO "RERD" KEYBOARD

GET#5@.Z2$: IF Z%="" THEH 283@:REM RE-READ KEYBOARD

IF Z#%=CHR#$:{13)> THEH FRIMT:CLOSES@:PRINT "{WHT>"::G0TO 328:REM EHND
INPUT

IF Z%$=CHR#$.2@> THEHN PRINT Z#%::A$=LEFT$ A%, LENCA$»—1)>:G0TQ Z2@: REM
DEL CHAR

AS=AS+Z$IPRINT Z#%: :G0TO 288:REM CONCATENATE IWMPUT STRING & DISPLAY
CHAR

IF A$="" THEHN PRINT "WHAT'S THE PROBLEM?":k=1:RETURN:REM HO ENTREY

IF A$=R$% THEHN PRINT "YOU ARE BEING REFETITIOUS.":x=1:RETURHN
R#=A%:REM STORE LAST INPUT

A$=" "+LEFT${AF.LEN/A$I-10+" "1REM ERASE PUNCTUARTION AHD ADD
SPRCES

RETURN

R R R
"% EEEoww s EssEEo. CRCRE - - - - -

REM *&k SYNONYMS AND ANTONYMS sk
IF ® THEN RETURNM:REM HO UALID INPUT
FOr I=1 TO M~2

RERD E#$.M$:REM REARD WORD PARIR

FOR S=1 TO LEN{A$)-LENCES$>+1

IF MID${A$.S. 103" " THEN SZ@:REM MIDDLE OF WORD

IF E$=MID${rA%.S. LENCE$D>> THEHN A$=LEFT#{A%.S-1>+N$F+MIDE A%, S+LEN
CE$>)

DATA " MOM "," MOTHER "." 'DAaD "." FATHER "." KIDS "." CHILDREN "
DATAR " DREAMS "." DREAM "." KID "." CHILD "." HOUSE "." HOME%* "
DATA " I "," Youg "." You "," I "." ME "-" Yau "." ONE "." 1 "

DQTQ " Ml\" " » " |1JDUR* " s " TUG n * " 2 " " " THREE " > " 3 "
DATA " YOUR "." MY "." MYSELF "." YOURSELF* "." TOOQ "." @AL30 "

DATA " YOURSELF "." MYSELF "." HURT "." HARM "." HOME "." HOUSE%* "
DATA " I'M "." YOU'RE* “"," YOU'RE "." I°M "." @AM "." AREQ "

DATA " WERE "." WAS "." ERSY "." SIMPLE "." DIFFICULT "." HARD "
NEXT S.1

RETURN

REM Fokok LOOK FOR KEJUGPDS R R R
IF ¥ THEW RETURH
FOR I=1 TO U

REARD E$.J

55

e@@ FOR S=1 TO LEM{A$O-LENIE$)>+1

628 IF E$=MID${A%$,S.LENCE$)>> THEHN R$=MIDF(A$.S+LENLESD>:G0TO 131@

838 NEXT =.1

54@ GOTO 35@:REM HO KEVWORDS LOCATED

658 RI=LEFT${R$.LENIR$I-1:1RETURN

&6d@ DATA "COMPUTER".1."MACHINE"-1

&7@ DATA " HAME ", 2. "ALIKE".3." LIKE ".3." SAME ".3

&8a DATA "YOoUua REMEMBER".4,"DO I REMEMBER".S. "VOUQ DREARMED".&

&9 DATA " DREAM ",7." IF ".&8."EUVERYBODY".3,"EUVERYONE".3

7@ DATA "HOBODY".9."HO OHE". 9. "WAS YOUI". 1@, "YoUug WAsS".11

718 DATA "WAS I".12."YOUR¥ MOTHER". 13, "YOUR* FATHER".13

720 DATA "YOUR¥ HUSBAND". 13, "YOUR¥ CHILDREN", 13, "YOURX".14

¥3@ DATA "YOUR¥ SISTER".13, "YOUR¥ BROTHER". 13, "YOUR¥* WIFE".13

748 DATA "ALWAYS",1S,"ARE I".16&."AREY YOUI". 18, " HOW ".25

75@ DATA "BECAUSE".193."CAN I",26,"CAN YOU3".21, "CERTAINLY",22

v6@ DATA "DEUTSCH".23, "ESPANOL" .23, FRANCAIS" . 23, "HELLO" . 24

vva DATA "I REMIND WOU OF",3."I ARE".26."I"M",26&

78@ DATA "ITALIANO".23. "MAYBE".2&8." MY ".29," HNO ",.38

798 DATA "PERHAPS", 28, "SORRY" .31, "WHAT ", 25, "WHEN ".25

@@ DATA "WHY DON'T I",32."WHY CAN'T Youa", 33, "VES". 22

31@ DATA "YOUY WANT".34."YOUl HNEED".34." ARE "-17." I ".27

228 DATA "YOUa ARER SAD". 35, "YOU' RE¥x SAD". 35

33@ DATA "YOU3d AREQ UNHAPPY'". 3G, "YOU® RE* UNHAPPY".3S

248 DATA "YOUa AREY DEPRESSED".3S. "YOU'RE* DEFRESSED".3S

258 DATA "YOUQ AREY SICK".3S, "YOU' REXx SICK".3S

2368 DATA "YOUa AREY HAPPY".3&. "VOU’ REx HAPPY'".3&

278 DATA "YOUad ARE3 ELATED".3&."VYOU'REx* ELATED".3&

38@ DATA "YOUa AREa GLAD".3&. "YOU'RE¥* GLAD".36

298 DATA "YOUa AREQ BETTER".36."YOU'RE% BETTER".3&

8@ DATA "YOUl FEEL YOua".3I7. "Youa THIHNK Youa".37

1@ DATA "YOUa BELIEVE YOUI".3I7."YOUa WIsSH Youa".3?

328 DATA " YOUQ AREQ" .38, "YOUTRE*",3&. "YOUQ CAN’T",39

33@ DATA "YOUI CANNOT". 39, "YOUa DONTT".4a, "Youa FEEL".41

34@ DATA " HE ".42." SHE ".43

945 sszsrssszsesssiTesasiiIasaas:

958 REM *kk NO KEYWORDS %

968 xK=1:IF MC=@ THEH 33@

978 RAN=1+INT(S¥RNDC1>>:0H RAN GOTO 3523@,1838.1@3a. 183a, 32a

928 RAN=1+INT{4%RNDC1>0:0H RAN GOTO 994, 10061814, 1a2a

9968 PRINT"I AM NOT SURE I UNDERSTAND YOU FULLY.":RETURHN

160@ PRINT"PLEASE GO OH.":RETURH

1@1@ FPRINT"WHAT DOES THAT SUGGEST TO YOU?":RETURN

1626 PRINT"DO YOU FEEL STRONGLY AROUT DISCUSSING SUCH THINGS?":RETURN

163@ Y&=MY$ 1+INTIMCERHNDCL 25 0 i RAN=1+INTCe®RND L 20

1842 ON RAN GOTO 18548. 16064, 1674, 1836, 18396, 1104

1658 PRINT"LET S DISCUSS FURTHER WHY YOUR"+Y$+",":i1RETURHN

1868 PRINT"EARRLIER YOU SAID YOUR"+VY$+".,":RETURHN

1678 PRINT"DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR"+V$+"
. "TRETURN

1888 PRINT"TELL ME MORE ABOUT WHY YOUR"+Y$+".,":RETURN

1898 PRINT"IS IT REALLY TRUE THAT YOUR"+VY$+"7?":RETURH

1188 PRINT"LET’S SEE. YOU TOLD ME YOUR"+Y$+". CARE TO ELABORATE?":
RETURH

1105 sssescesegessazazeoaeassesnsae

111@ REM *¥¥ REMOUE @ AHD * MARKERS ¥k

1120
113@
114@

115a
iis6a@
117a
1188
1198
1288

1z21@
1228

123@
1248

125a
1268

127a
1280
129a
13aa
131@
132@
133@
134a
1358
13s0
137va
138@
1358
1488
1418
14z@
1438
144a
145@
1468
147@
14za@
1498
15ea
1518
152@
153a
154@
1558
156@
1S57va
158a

IF ¥=1 THEN RETURN
FOR S=1 TO LENIR$)
GHF=MID$<R$. 5. 102 IF G$="3" OR GF="%" THEHN R$=LEFT$.R$,S3-10+MIDFIES$

NEXT S

RETURHN

R 0
REM %% COMPUTER’S REPLY %%+

IF %=1 THEW RETURH

IF J<i1 THEN ON J GOTO 1318, 13208, 1336, 134@. 1356, 136, 1378, 1328,
13394, 14@a

J=J-18

IF J<11 THEN OM J GOTO 141@, 1426, 1436, 1443, 1450, 1463, 1473, 143@;
145a. 1508

J=J-18@

IF J<11 THEN OH J GOTO 151@,. 1528, 1536, 154&, 1558, 1568, 157a. 1584,
159@. 1608

J=J-18a

IF J<11 THEW ON J GOTO 1618, 166@, 167@. 1683, 1693, 1703, 1718, 1724,
1734, 1744

J=J-18@

ON J GOTO 175@.2za7a,. 2a8a

" =]

T E R EEE R ==
R T - B CEE
s

REM %% COMPUTER®S REPLIES %%
PRINT"DO COMPUTERS WORRY YOUT?":RETURN

PRINT"I AaM HOT INTERESTED IN HAMES.":RETURH

PRINT"IN WHAT WAY?":iRETURN

PRINT"DO YOU OFTEM THINK OF"R$"7?":iRETURH

PRINT"DID YOU REALLY THIHK I WOULD FORGET"R$"7":RETURN
PRINT"REALLY. "R$"?":RETURN

PRINT"WHAT DOES THAT DREAM SUGGEST TO YOUu?":RETURN

PRINT"DO YOU THINK THAT IT'S LIKELY THAT IF'R$"?":RETURN
PRINT"REALLY. "E$"7?":RETURN

PRINT"WHAT IF YOU WERE"R$"7":RETURN

PRINT"WERE YOU REALLY?":RETURHN

PRINT"WOULD YOU LIKE TO BELIEWE I WAS"R$"?":iRETURN

PRINT"TELL ME MORE ABOUT YOUR FAMILY.":RETURH

GOSUB 196@:GOSUR 173@:RETURHN

PRINT"CAN YOU THIMK OF & SPECIFIC EXAMPLE?":RETURN

ERINT"WHY ARE YOU INTERESTED IM WHETHER I AM"R$" QR HOT?":RETURH
PRINT"DID YOU THIMK THEY MIGHT NOT BE "R$"?":RETURN

FPRINT"DO YOU BELIEUE YOU ARE"R$"?":RETURHN

PRINT"IS THAT THE REAL REASON?":RETURH

PRINT"YOU BELIEVE I CAN"R$". DOW'T YOU?":RETURHN

PRINT"WHETHER YOU CAN"R$" DEPEHDS ON YOU MORE THRHN OM ME.":RETURN
PRINT"YOU SEEM QUITE SURE.":RETURH

PRINT"SORRY. I SPEAK OHLY ENGLISH.":RETURN

PRINT"HOW DO vaUu DO?":RETURN

PRINT"WHY DO YOU ASK?":RETURH

PRINT"WHAT MAKE YOU THIHMK I AM"R$"?":iRETURN

PRINT"LET?S HOT TALK ABOUT ME.":RETURH

PRINT"YOU ARE CERTAIN?":RETURN

57

159@
is0a
lela
1628
1638
164@
165a
1668
1&678a
1680
1695a

1788
i71@e
172@
1738
iv4a
175a
1768
177a
1788
1798
18@@
181@
182a
183a
1848
125a
1868
187@
138a
18590
15aa
191@
1328
135a
1968
1378
1388a
19986
2808
z2ala
2828
2838
Za4a
2858
2868
Zava
2838
2834

58

PRINT"WHY ARE YOU CONCERNED OQUER MY "R$"7"iRETURN

FRINT"ARE YOU SAYING “HO® JUST TO BE NEGATIWE?":RETURN
RAN=1+INT{4¥RNDC10 520N RAN GOTO 1628, 1638, 1648, 1658
PRINT"PLEASE DON'T APOLOGIZE. ":RETURHN

PRINT"APOLOGIES ARE HOT HNECESSARY.":RETURN

PRINT"WHAT FEELING DO YOU HAVE WHEN YOU RPOLOGIZE?":RETURN
PRINT"YOU NEEDH’T FEEL YOU HAUE TO APOLOGIZE. ":RETURN
PRINT"DO YOU BELIEVE I DON’T"R$"?":RETURN

PRINT"DO YOU THINK YOU SHOULD BE ABLE TO"R$"7?":RETURN
PRINT"WHAT WOULD IT MEAN TO YOU IF YOU GOT"R$"?":RETURN
GOSUB 184@:GOSUER 183@:PRINT"I'M SORRY TO HEAR YOU ARE"R$",":
RETURN

GOSUB 184@:G0SUEB 138@: PRINT"HOW HAVE I HELPED YOU BE"R$"7":RETURN
FPRINT"DO YOU REALLY THIHMK S0?":RETURHN

PRINT"IS IT BECAUSE YOU ARE"R$" THAT YOU CAME TO ME?":RETURHN
PRINT"HOW DO YOU KHOW YOU CAN’T"R$"?":RETURH

PRINT"DONT YOU REALLY"R$"7?":iRETURN

FRINT"TELL ME MORE RBOUT SUCH FEELINGS.'":RETURH

R R R R E R R R] T EE R R R E RN
T - A B) R

REM kK KEVWORD IS "MY" ok
IF LENCR$><12 THEN RETURHN
MC=MC+1: ID=MC: IF MC>288 THEN MC=20@: ID=1+INT{2868%RND{1)>

MY${IDO=R$

RETURN

REM k% REMOUE @ MARKER %%

IF MID$CE#$.4.15>="2" THEN R¥=RIGHT${E®$.LEN{E®$>-3)
RETURN

fgssssssssazzszsazssssozessssIsa:

REM ek REMOUE * MARKER %k

IF MID${E$.7,1)0="%" THEN R$=RIGHT$({E#$.LEN{E$>-7>
RETURHN

IF R$<>"" THEN &S@

RETURN

sssssssssssgssasazreEagaasaIEIzn:

RAN=1+INT {8%RND{ 12>

ON RAN GOTO 1984, 1396, 2006, 2616, 2828, 2634, 2044
PRINT"YOUR"R$"?":GOSUB 1738:RETURN

FRINT"WHY IS IT THAT YOUR"R$"?":1G0SUB 173@:RETURN
PRINT"YOUR"R$" ! ": GOSUB 1738:RETURN

PRINT"HOW IS IT THAT YOUR"R$"?":G05UB 1738:RETURN
FPRINT"YOUR"R$"? REALLY?":1G0SUB 1788:RETURN
PRINT"MY"R$", TOO.":GE0SUB 1788:RETURN
PRINT"WHOSE"R$"?":1GOSUB 172@:RETURN

PRINT"YOU 35AY YOUR"R$"?":G0SUB 17368:RETURHN
TsssissssIisIsszIsasIEIIIEIOGZIGSIGOG:GS

PRINT"DOES HE HAVE A PROBLEM?":RETURN

PRINT"TELL ME MORE sEBOUT HER.":RETURN

HELLO. WHAT'S ON YOUR MIND?

I HAVE THIS PROBLEM.

DO YOU FEEL STRONGLY ABOUT DISCUSSIMG SUCH THINGS?
HUH? MY DOG HAS FLEAS.

HOW IS IT THAT YOUR DOG HAS FLERS?

I THINK MY DOG IS5 OQUTSIDE TOO MUCH.

WHOSE DOG IS QUTSIDE ALS0 MUCH?

MY STUPID DOG IS5 QUTSIDE TOO OFTEM.

WHOSE STUFID DOG IS QUTSIDE ALS0 OFTEN?
MINE IS.

PLEARSE GO OHN.

HE IS MISERARELE.

DOES HE HRUVE A FPROBLEM?

Yau WEREN'T LISTENING TO ME.

LET"S HNOT TALEK rRBOUT ME.

MY COURSE IN QUANTUM MECHANICS IS DIFFICULT.
MY COURSE IH QUANTUM MECHRHICS I35 HARD. TOO,
DO YOou TRKE COURSES?

LET*S HNOT TaALK AREOUT ME.

MY HOUSE IS TOO NOIsY.

WHOSE HOME I3 ALSO HOIsY?

WHAT TIME I3 IT HOW?

WHY DO YO msE?

I HATE MACHINES LIKE YOu.

DO COMPUTERS WORRY You?

HO.

AHRE YOU SAYING "HO™ JUST TO BE NEGATIVE?
BUZZ OFF!

WHAT DOES THAT SUGGEST TO WYou?

Fig. 4-1. The start of a conversation with an “ELIZA"-like program.

BUGS.

EARLIER YOU SAID YOUR DOG HAS FLERS.

SOME FPEOFLE BUG ME.

IS IT REALLY TRUE THAT VYOUR STUPID 00G I3 QUTSIDE aALSO OFTEW?
YES.

YOou SEEM QUITE SURE.

Fig. 4-1. (continued)

As shown in the sample program run in Fig. 4-1 this program
provides an English conversation with the user and stores some of
the entries of the user, namely those containing the word MY. This
program should provide an interesting amusement for the user. In
the explanation of the program lines below I have given some
suggestions on how to change the program. You might also want
to save some of the stored MY$ responses on tape of disk for later

use.

Here is a detailed description of the lines of the program.

LINE EXPLANATION

10-60 This is the identification information for the pro-
gram.

70-140 This is the main program. Line 70 is a REM state-
ment identifying this section of the program.

80 This line calls the subroutine in lines 160-220.

90 The subroutine called in this line allows you to
enter responses and changes the color of the text
depending on who is responding, you or the com-
puter,

100 This line calls a subroutine that looks for synonyms
and antonyms of words used by the user.

110 This line calls a subroutine that searches for key
words or key phrases.

120 This line calls a subroutine that removes markers
the program placed on the antonyms. They are
placed to keep the computer from changing altered
words back to the original words.

130 This line calls a subroutine that prints out the com-
puter’s replies.

140 This statement establishes an endless loop that
cycles back to line 90, where new input is requested
from the user.

60

150

160-220

160
170

180

190

200

210

220

230
240-360
240

250

260

270

280

290

300

310

320

This line acts as a separation between parts of the
program.

This subroutine sets up the program and is run only
at the beginning of the program.

This remark tells what this section does.

There are 25 synonym and antonym pairs. M is the
variable that stores that value.

U is a variable set at 84 and used as the number of
possible replies.

This line is unique. The MY$ array, or “stack,”
stores statements input by the user that contain the
word MY. This line dimensions that string array
and sets the stack pointer, MC, equal to zero.

This line prints the CLR character and the WHT
character. White is the color that the computer will
use when printing lines on the screen.

This is the computer’s opening question.

The program control returns to the main program
from the subroutine.

This line separates the sections of the program.
This subroutine allows for input from the user.
This line identifies this subroutine as the input
subroutine.

RESTORE allows the data in the DATA statements
to be used over and over.

This line sets a flag, X, to 0, sets A$ to an empty
string, and changes the color to CYAN, which is the
user’s text color.

This statement opens the “file”’ corresponding to
the keyboard, allowing the computer to scan letters
that the user is typing without resorting to INPUT
statements.

This line actually scans the keyboard for letters.
One letter at a time is stored in Z$.

If the user presses the RETURN key (character code
13), the keyboard file is closed and the color changes
back to white. The program branches to line 320.
If the key pressed is the DEL character, the com-
puter erases the last entry. Because the sentences or
questions are made into the string, A$, the last
character entered into that is deleted also. The pro-
gram then branches to line 280 for more characters.
AS$ equals A$ concatenated with the last letter typed.
The last letter typed is printed on the screen. The
program then goes to line 280 for more letters.

If the user simply presses the RETURN key, he is

61

330

340
350

360
370
380-540

380
390

400

410

420

430

440

450

460-520

530
540
550
560-940

62

asked what the problem is. The program then re-
turns to the main program.

If the user enters the same reply twice, the computer
states that he is being repetitious. The program then
returns to the main program.

RS$ is set as A$, to check for repetition.

The punctuation is removed from the sentence or
question and a space is added at the beginning of
AS$. If your entry does not include closing punctua-
tion, the program cannot function accurately.

The program then returns to the main program.
This line separates sections of the program.

This subroutine exchanges words for their syn-
onyms or antonyms.

This line identifies this section of the program.
If X has a value of zero, then return because there
is no entry, just a RETURN character.

This line starts an I loop to start reading the
antonym/synonym word pairs.

This line reads the word pairs. E$ is the word that
might be found in the sentence and N§$ is the word
that will replace it if it is found in the sentence.

S is a loop that searches for the spaces between words
in the sentence to find the beginnings of possible
words to replace.

If the character in the sentence is not a space, then
the index, S, is incremented to point to the next
letter by going to line 530.

If a word in the sentence matches one of the words
in the DATA statements in lines 450-520, then E§
is replaced by N§ in the sentence.

MOM is replaced by MOTHER, DAD is replaced
by FATHER, and KIDS is replaced by CHILDREN.
In these lines the first word of each pair, if foundina
sentence, is replaced by the second word of each pair.
Markers made of the asterisk or @ sign prevent a
word from being replaced twice by the computer.
For instance, MYSELF is replaced by YOURSELF*
and YOURSELF is replaced by MYSELF. Without
the marker on YOURSELF*, MYSELF would be
converted to YOURSELF and then back to MYSELF
again. Markers prevent this.

This is the end of the S and I loops.

The program then returns to the calling section.
This is a separation line.

This section actually looks for key words and key
phrases.

560

570

580

590

600

620

630

640

650

660-940

945
950-1100

950
960

970

980

990-1020

The name of the section of the program.

If the user pressed only the RETURN key, the
input was not a sentence or question and the pro-
gram returns for more input.

This searches for up to U number of key words or
phrases by using an I loop.

ES$ is the key word or key phrase. J is a number
associated with that key word or phrase.] will
indicate to the computer what output to print.
This searches the entry for the location of possible
key words, just like it searched for synonyms above.
If a key word is found, R$ is defined and the pro-
gram branches to line 1910.

This line ends the S and I loops.

If the program gets through the entire S and 1 loops,
no key words were found in the input. (Line 1910
dealt with keywords if they were found.)

R$ is defined and control returns to the calling
section.

This is the list of key words or key phrases and their
associated numbers. Notice that COMPUTER and
MACHINE have the same number. This number, I,
indicates to the program to print out reply number I,
found in line 1310. Likewise, the other DATA
statements contain key words and associated num-
bers indicating the type of response to display. You
can add more of these to include a wider range of
subjects. However, the program will respond more
slowly. Be sure to change U in line 180 to reflect any
change.

This is a separation line.

This subroutine is used if no keywords were found
in the input.

This remark identifies this section.

X is assigned the value of 1. If MC is zero, control
goes to line 980. MC is the stack pointer for state-
ments with the word MY in them. Some of the time
when no key words are found, the program will refer
back to some of the MY subjects.

This line branches to an arbitrary answer if MY was
never used.

If the user never typed MY, the program will print
out one of the lines 990-1020.

These are four possible general answers for when no
key words were found and when the user never used
the word MY. Sometimes these lines will be used
even if the word MY was used. You can add non-

63

1030

1040
1050-1100

1105
1110-1160

1170
1180-1280

1290
1300-1750

1760
1170-1810

1830-1850

1870-1890

1910-1920

1960-2050

64

committal answers of your own by changing line
980 and adding the appropriate line numbers. If you
do this be sure to change the 4 in line 980 to the
number of responses that you end up with.
Additional replies will not slow the program and
will increase the vocabulary of the program.

This line defines Y$ as an arbitrary element of the
MYS$ array. Thus the computer will try to discuss
more about a sentence that had contained the word
MY. RAN is a variable that is set to a random
number between one and six.

This line branches to one of six possible lines.
These lines print out various sentences and ques-
tions using subjects of the MY entries. You can add
new responses of your own, and it will not slow
down the computer.

This is a separation line.

This subroutine simply eliminates all occurrences
of the * and the @ symbols.

This is a separation line.

This subroutine branches to the proper line number
to print out the reply based on the value of J, the
number associated with the key word. If X was setat 1
earlier, the subroutine simply returns without
printing out anything from this subroutine.

This is a separation line.

These are the different replies by the computer. 1310
is printed when J is 1. 1320 is printed when] is 2
and so forth. Some of these lines contain subroutine
calls for certain cases.

This is a separation line.

This subroutine is used when the word MY is found
in an input. The response is placed in the MY $ stack
array. When that array becomes full, arbitrary
elements of that array are replaced by the newest
entries.

This subroutine actually moves the @ sign from the
entries.

This subroutine removes the asterisk from words
containing it. Notice that @ is used for E$ with 4
letters and * is used for words with 7 letters. You
might think about changing this convention.

This subroutine was used with the key word search.
If the key word was found, the program went to line
650 after first going to line 1910.

This subroutine is a set of answers that the com-
puter prints when it encounters the word MY in a

sentence. Notice that there are eight different replies.
You can add to these also.

2070 This line is printed if the word HE is found in an
input.
2080 This line is printed if the word SHE is found in an

input. You might want to add other responses here
too. Insert a random number routine as in the other
response subroutines.

2090 This line of colons is the end of the program.

Program Operation. After loading or typing the program,
into memory, type RUN. The program will clear the screen and
type, HELLO. WHAT'SON YOUR MIND? The computer will use
white letters and your input will be in cyan. Be sure thatyouinclude
a period or question mark at the end of your input. To erase any of
your input, simply press DEL toremove lettersfromrighttoleft. To
stop the program, press the RUN/STOP key. Otherwise the
program will continue indefinitely.

There are many ways that the program could be changed.
Some of those ways have been mentioned in the line descriptions.
You might want to expand the program. Maybe you would like to
use disk files for storing information that has been input. You
might also want to eliminate the rereading of all the DATA
statements and the use of the RESTORE command. You might
want to store input that contains specific words as was done with
the word MY. You might want to correlate some of the responses in
other ways.

The Perfect Logic Program

The Perfect Logic, shown in Listing 4-2 is a conversational
logic program. Listing 4-3 shows one way of changing the
program for use with a disk rather than with a cassette. You type in
various statements and questions, complete with final periods and
question marks, and the computer will respond accordingly. If you
make a statement like ALL CATS ARE ANIMALS, the computer
will respond with a question that is the converse, namely, ARE
ALL ANIMALS CATS? In this way the computer decides the
relationship between the nouns using set theory. If all cats are
animals, then cats are contained in the set of animals. Because you
would reply NO to the converse question, the computer would
conclude that only some animals are cats. (By changing line 10125
in the program, you can have the computer print this out. See the
listing and its explanation.) If you replied YES to the converse
question, the computer would conclude that all animals are cats.
In other words, animals are another name for cats. Such would be
the case if you typed, CATS ARE FELINES. The computer would
respond, ARE ALL FELINES CATS? You would respond YES.

65

28 RE
Ia R
48 R
S| R
ed
164
11a
115
116
117
1za
128
13a
14a
145
15a
199
1@
165
17a
173
17

138
135
13@
135
208
21a
228
23a
246
254
268
27a
399

1866
1a1a

1aze
1aza
184a
1845
1a5a
1asa
1ava
1199
1268
1z1@
1215
1217

66

PERFECT LOGIC
EM WRITTEN BY TIMOTHY 0" MARLLEY
EM COPYRIGHT 13983, TAR BOOKS IHC.
EM (WRITTEHN FOR THE COMMODORE &40

DIM SS$010@0 . NMEFC 100 AT$ 18a0 . L0 1aa, 1aas: ID=1
FORI=1TO18@: SS$ I 0="S5" 1 LK* (I, I 0=3:HEXTI:PRINTCHR$ 1473
PRINTTARBC120: "PERFECT LOGIC"::FRINT

WHF="N": IHPUT "DO YOU WANHT TO LOAD FROM TAFE <Y HO":iUWH$

IF WH$="%" THEH GOSUE Z1aaa
PRINT"CLBLUZ": :OPEML. @: INPUTH1 . IO$:PRINT: CLOSEL: PRINT" COVANZ "3
IF IQ#="STOP"ORIQ#%="END" THEHNGOSUE 22a@a:PRINT" {LBLUZ":END
IP$=LEFT$CIQ$, LENCIQ$D—-10 ‘
IFLEFT${IP%$,90="WHAT ARE "THEHNGOSUE1@@@a: GOTOL2aa
IFLEFT#CIP$.2)="ARE ALL "THENGOSUE13G@a: GOTO1Z20d
IFLEFT#CIP#. 20="WHAT I5 "THENGOSUBZO@E@: GOTOL1Z206
IFLEFTHCIFP$. Po="WHAT" S "THEHGOSUBZSGGE: GOTO1 268
IFLEFT#CIP#$, 30="ARE SOME "THEHGOSUEBIO@@: GOTOLZ66
IFLEFT#CIP#, 130="ARE HOT SOME "THEHNGOSUBIS@@: GOTO1Z20a
IFLEFTCIP.40="ARE "THENGOSUB4@G@: GOTO1286

IF LEFTCIP, 120="AREN’T S0OME "THEHGOSUB42Z@:G0TO1204

IF LEFT${IP$,.7o="AREN"T "THENGOSUB4Z@@: GOTO1284
IFLEFT${IP#$,30="15 "THENGOSUESGEG: GOTO1200

IF LEFTCIF,60="1I5H"T "THEHNGOSUBSSGE: GOTO1204
IFLEFT#CIP,7o="15 NOT "THENGOSUBs@G@: GOTO1Z2G6
IFLEFTCIF.40="ALL "THEHGOSUB13S0G: GOTO1208
IFLEFT${IP$,50="5S0ME "THENGOSUBYGG@G

FORI=1TOLENCIP$): IFMID$CIF$. I.30=" IS HOT "THEHGOSUEBZGQO:GOTO1208
IFMIDCIP. I.7o=" ISH’T "THENGOSUB3GGG: GOTO1Z06
IFMIDCIP,1,40=" IS "THENGOSUBl1G@@a@:GOTO12G6

IFMIDCIF. I.9>=" ARE HOT "THEHGOSUE1180@:G0TO120a
IFMIDCIP.1.80=" AREN’T "THEHGOSUE12GG&: G0TO12686
IFMID$CIP%$. I.50=" ARE "THEHGOSUR1IG@&: 50TO126a4
NEXTI:GOSUE1488a: GOTO1 286

REM UHDERSTAND "WHAT ARE "

LT#=MID${IP$. 105 IFRIGHTHCLT$. 10="S"THENLT$=LEFTLT. LENLT$>~-1)
tF1=1

FORI=IDTO1STEP-1: IFHNM$ I 0=LT$THENI1=1:G0OTO1848a

HEXTI: GOSUER1 3666 RETURN

FORI=IDTO1STEP—-1: IFLKSCT1, ITo=3RNDLEN I, J10=3THEHPRINT"ALL "3
IFLKS%CT1: T0o=3THENPRINTHM$. J1 255%:.T1 2" ARE "HM$ IOSSHCIO", "

IFLKMC T To=2THENFRINT"SOME "HM$II125S$0T15" ARE "HMECIHSS$CI", "
IFLEKXCTL . I0=1THENPRINT"HO "HM$CI1055$0T10" ARE "HMEFOIHSSHCIH", "
HEXTI:RETURN

REM COMPUTER DRAWS CONHCLUSIONS

FORII=1TOID—-1:FORIZ=1TOID-1: IFLKX{I1,. I20=00RLKSCI2, 11 0=GTHEN125@
FORIZ=1TOID-1: IFLKXCI2. I30=00RLKX (I3, I2)=THEN124a
IFLEZCIL. I35 >8ANDLENCIZ, 110 *aTHENL 246

B T T T P T T I R U W ST R U

1220 IFLKXCIL. I20=3ANDLKX(I2. I1=3THENGOSUR] 3G
1225 IFLKXCIL, I20=3ANDLKX(IZ2. I10=2THENGOSUR143&
1238 REM IFLECIL, I20=2AHDLEX{IZ2, I12=2THENGOSUEB1S
1235 REM IFLEXCIL. I20=1ANDLKX(IZ, 11 0=1THENGOSUR1GGE
1248 NEKTIZ

1258 HNEKTIZ. I1:G0TO126

1308 IFLKXCIZ, I30=3ANDLE (I3, I20=3THENLK®(I1. I30=3: LKX (I3, 11 >=3:RETURHN
1318 IFLKXCI2, I30=0RNDLEKX I3, I20=2THENLK®{I1. IZ0=3:LKX{ I3, I10=2:RETURHN
1320 IFLKXCIZ. IZ0=2ANDLEKNC I3, I20=2THENLK S I1. I30=2: LK% (I3, 11 0=2:RETURN
1338 IFLK%CIZ2, IZ0=1ANDLK* (I3 I22=1THENLK®(I1. I30=1:LK%{I3, I11>=1:RETURN

13483 RETURH

1486 REM IFLKXC{IZ, I30=3RNDLEX I3, IZ20=3THENLE{I1,I30=3:LK%C I3, I110=2:
RETURN

1418 IFLK%CIZ, I30=3RNDLEX I3, I20=2THENLE X (I1, I30=3:1LK%{I3, I11>=2:RETURN

1420 IFLK%CIZ I30=1ANDLK (I3, I120=1THENLE?{I1, I30=1sLK*{I3,I11>=1:1RETURN

1438 RETURHN

1588 REM IFLK®CIZ. IZ0=3RNDLE: I3 I20=3THENLEK CI1., I30=2:LK* I3, 110=22
RETURN

1518 REM IFLKX%CIZ, I30=3RNDLECIZ, I20=2THENLK* I3, I1=2:RETURN

15286 REM RETURHN

1688 REM IFLKXCIZ2. ISZ0=3RNDLEXCIZ, I20=3THENLE{I1,I30=1:LK%CI3,I17=1:
RETURN

1618 REM RETURH

1999 sz

20086 REM UNDERSTAND "WHAT

2010 LT$=MID${IP$.3>: I x$=LT$:GOSURISO0O: LT$=1K$

2028 FORI=IDTOI1STEP-1: IFHM${I)=LT$THENI1=1:GOTO1a4a

20638 NEXTI:GOSUB1480@: RETURHN

15 "

2499 szt aogasTan:

2588 REM UMDERSTAND "WHAT'S "

2518 IP$=" "+IP$:G0TOZG1@

2599 sz HER
H

381@ IP$=MID${IP%$, 1@>:G0TO4a

X499 2213z ssassszssssegegazassege

3S@@ REM "ARE HNOT SOME " QUESTION

3510 IP$=MID${IP$.14>:G0TO462a

I999 sz ITaEsIRGOGTGOIGTGIGRGRIGIONIGGC

4806 REM ANSWER "ARE " QUESTION

4018 IP$=MID$ IP$.5)

48280 FORM=1TOLENCIP$>: IFMID$SCIP$. M, 10=" "THEH4G@4a
4838 HNEXTM: GOTO14068

404@ LT$=LEFT$ IP$,M-1)

4058 IFRIGHT${LT$,10="S"THEHLT$=LEFT$LT#%,LENCLT$>~-1>
4666 FORJ=IDTOI1STEP-1: IFLT#$=NM${.J>THEN4GZ@

4878 NEXTJI: GOTO4038

40280 RT$HF=MID${IPF,M+1): [X$=RT$:GOSURI1E6QGG: RT$=1X$: A2$=nR$
4085 IFRIGHT$:RT$.1)="S"THENRT$=LEFT${RT#.,LEHIRT$>-1)
4@390 FORK=IDTO1STEP-1: IFRT$=HM${K>THEN411@

4100 NEXTK: GOTO4a7a

411@ IFLKZ(J»K)=GTHEHPRINT?I’H HNOT SURE.":RETURHN

4120 IFLKX%(J,K>=1THENPRINT"HONE ARE.":RETURH

4130 IFLKX%CJ. K)=2THENPRINT"SOME ARE.":RETURHN

3988 REM ANSWER "ARE SOME " QUESTIO
2a

67

ALL ARE. ":RETURH

OH

4249 sz g3
4258 REM "AREN’T SOME " QUEST
426@ IP$=MID$<IP%$.135:G0T04826
4508 REM "AREW'T ." QUESTIOHN
451@ IFP$=MID$<{IP$,3>:G0TO4626
4999 gssssgsassaggsesgseeaasssazsazaane

S@6@ REM "IS " QUESTION

S@1@ IP$=MID${IF$.4)

S@28 FORM=1TOLENZIP$)>: IFMID$CIP$.M, 10=" "THENSG4a

5830 NEXTM:GOTO14666

S@4@ LT$=LEFT${IP$-M-1D

SE5S0 IX$=LT$:GOSURI16Q0A: LT$=IX$: Al$=ARS

S@6@ FORJ=IDTO1STEP-1: IFLT$=NHM$J)> THENSG2G

S@7a HNEXTI:GOTOSGIa

Sa28 RT$F=MIDSCIPF . M+10: [K$=RT$: GUSURBI QA RT$=1x$: A2F=nR$
TS890 FORK=IDTO1STEP-1: IFRT$=HM$ K >THENS11&

188 NEXTK:GOTOSG a

S11@ GOTO411@

4140 IFLKXCT. KO=3THENPRINT"YES
I

S499 srsrrssissrirEGiaRIGOIREOROGTOROLTOIOIOOIGRG
SSea REM "ISNTT " QUESTION

S51@ IFP$=MID$IP$, 70 :60TOSE2A

SE99 ssrssrsarziosIiIoGIIIOIOODOIGIGIGIOGTOIOCNGZ
s@@aa REM "IS HOT " QUESTION

c@1@ IP$=MID$CIF$,.30G0TOSAZA

BP9 TrrrTrrzIzIIIIIIIITIIIISIGSIRIGIIG§OINGQ
vaea REM "SOME " STATEMENT

vala IF$=MID${IP$.60:F5=1:RETURHN

V999 stz

2008 REM UNDERSTAHD " IS HOT "

3618 LT$=LEFT${IF$. I-10:RT$=MIDS${IP$. I+3>

23628 IF RIGHT#${IQ$.1>="7"THEHGOSUR1SGGA: RETURN
2038 GOTO 12624

018 LT$=LEFT$ IF$, I-10:RTH=MIDFIP$. I+7D

2628 IF RIGHT#{IQ%.1)="7?"THENGOSUR1S6G0G: RETURN
836 GOTO 1z262a

9999 serzesgrassszizszzzs: H
1888@ REM UNDERSTAND IS SENTENCE
106168 LT$=LEFT${IP$, I-1):RT$=MIDFIP$.I1+4)

10638 I<$F=LT$:GOSUBIc000: LT$=1<$: A1 $=AFR$

180648 [X$=RT$: GOSUB1c00Q: RT$=1x$: RZF=AFR$

18845 IF RIGHT#$CIQ#, 1 0="?"THENGOSUR1SGOA: RETURN

16aSa FORI=IDTOISTEP-1: IFLT$=HM$ I >THENJ1=1:G0TO1aa7a

106680 NEXTI:HM$CIDO=LT$:AT$ IDI)=A1$: T1=1D: ID=ID+1

18678 FORI=IDTO1STEP-1: IFRT$=HM$ I >THENK1=1:G0TO1@838S

16888 HEXTI:HNM$CID)=RT$:AJ$ IDI=R2ZF:1K1=ID: ID=1D+1

18835 IF LEXC{T1,K15=3 THEH OH 1+3%RHDC10 GOTO 18637 . 1084832, 18839
18838 GOTO 18a3a

186387 PRINT"I KHEW THART ALREADY.":RETURH

1aa22 PRINT"I HERRED THAT BEFORE. ":RETURH

18833 PRINT"I KHOW.":RETURH

1a@3a LKXI{J1.K10=3

18895 IFFSTHENWFS=@: LKXCJ1.K10=2

68

1aa3v
lalaa
lei1a
1@12a
18125
1a13a

16999
11664
1181a
11999
12068
12a1a
12e2a
12a3a
12848
1ze5a
12868
1z2éva
1za8a
12a3@
1210a
1211a
1212a
12999
13a8a
13e1a
13eza
13a3a
13@4@
13asa
13esa
13avea
13a3a
13@5%@a
13186
1311@
1312@
13999
140006
14085
14ai@

14@a2a
14a3a
14@4a
14a5a
14868
14@va
14a2a
14a5a
14999
156aa

IF LKX%CK1,J10>3 THEH GOSUBR 17@aa: RETURH
PRINT"ARE ALL "HMEK1DSS$O0K10" "HMECIL0SSEc T 7"

PRIMT"<LBLUZ"::0OFPEN1.@: INPUT#1. AN$: PRINT: CLOSEL : PRINT" {CYANX "3

IFLEFT$CANS. 1o="""THENLK* (K1, J1>=3: GOSUR1Vaaa: RETURN

IF LEFT$CANS. 10="H" THEN LE%{K1.J12=2:G603UB 1700a:RETURN
PRINT"SOME "MM${K1>5S$0K1>" ARE "HM$FCI10S5$0T10",. ":iGOSUEBLVEAEA
RETURH

EEEEE R R R R R R R R R R R R R R R R R E R R E N

REM UNDERSTAND " ARE. HOT "

LTS-LEFTSQIPS-I—1>=RT$ MIDFCIP$. I+32:G0TO12620

REM UHDERSTAHD " AREW'T "
LT$=LEFT$ 1IP$. I-1):RT$=MIDSCIP$, I+3)

IX$=LT$: GOSUR1CcEOA:LT$=1x$: Al $=pR$

IX$=RT$: GOSUR16B0Q: RT$=1x$: A2ZE=ARE

IFRIGHT${LT#, 10="S"THENLT#$=LEFT$LT#$, LEH/LT$>-15:F1=1
IFRIGHT${RT#, 1 0="S"THENRT$=LEFT$ RT#$. LEH/RT$-1>:F2=1
FORI=IDTOISTEP—-1: IFLT#$=HNM$ I >THENIJ1=1:G0TO12634
HEXTI:HM$CIDO=LT$:AT$ ID)=R1$: T1=1ID: ID=1ID+1
FORI=IDTOLISTEP-1: IFRT#=HM$ {1 THENK1=1:1GOTO1 2166

HEXTI:HM$CIDO)=RT$: AIEID=AZ$iK1=ID: ID=1D+1
IFFITHENSS$(J10="3":F1=08
IFFZTHENSS$ (K1 0="5" 1 F2=0

GOTOZaaaa

REM UNDERZSTAMD " ARE "

LT$=LEFT$IP$. I-10:RT$=MIDF IF$. I+5>

IX$=LT$:GOSUBIcBOA: LT$=1K$: nl1$=nR$

IX$=RT$: GOSUB1cGQQ:I RT$=1x$: R2$=nR$

IFRIGHT#$LT#$, 1 0="S"THEHLT$=LEFT$/LT$. LENLT$2-10:F1=1
IFRIGHT${RT#, 10="3"THENRT$=LEFT# RT$. LENIRT$0-10:FZ=1
FORI=IDTO1STEP-1: IFLT$=HM$ 1> THENJ1=1:G0OTO1 3638
MEXTI:HNM${IDO=LT$:RI$ 1ID)=R1%$: T1=1D: ID=1ID+1
FORI=IDTOISTEP-1: IFRT$=HNM$ I 2 THENK1=I:GOTO1Z1606
HEXTI:NM$CIDO)=RT$:AJ$IDI=R2Z$: K1=ID: ID=ID+1
SS$E(T1o=""1 IFF1THENSS$(J1)="5":1F1=@

SSF(K1O=""1 IFF2THENSS$ K1)="3"1F2Z=a

GOTO1ea8%

REM DO HOT UNDERSTAND INFUT
PRINTLT#$: "7 "3

ON1+INT{8%RND {15 >G0TO14824, 14870, 14048, 14050, 14062, 1467a.

14@5@a

PRINT"I DON’T DIG.":RETURH

PRINT"WHAT?" : RETURH

PRINT"WHAT ARE YOU SAYING?":RETURH
PRINT"HUH?" : RETURHN

PRINT"I DOW’T FOLLOW.":RETURN

PRINT"I DOM’T UNDERSTAND.":RETURHN

PRINT"YOU ARE HOT MAKIHNG SENMSE. ":RETURH
PRINT"IF YOU SaY S0. BUT I DON'T KHMHOW.":RETURHN

® W W W OE S NN W NN EE NN EEEE N EEEEEw
I T - - - - - R

REM STATEMENT IS REALLY QUESTION

148z2a.

69

1Sala
1Saza
15a3a
1Se4a
1S@sea
15999
1s@aa
1e@1@
ieaz2a
16@3a

1684a
16999
17a0a
i7a1a

17aza
17a3a
17a4a
17asa
17asa
17ava
1vaga
17a9a
17999
1gaea
1ga1a

1gaza
18@3a
18a4a
13ase
1ga@sa
1g8ava
1gaga
igasa
1g21aa
1i811@
18999
19aaa
i9ai1a
19493
195aa
1951a
19999
20002
z2aa1a
28998
2893939
21804
z21a1a
z2182a
z21a3a

70

FORI=IDTOISTEP-1: IFLT$=NM$<{I>THEN1SG3@
NHEXTI:GOTO14866

FORK=IDTOQISTEP—-1: IFRT$=HM${K>THEN1S@Sa
NEXTK: GOTO1480688

GOTOS118

REM FIND ARTICLES OF
DQTQ " THE Ih " n " » " QN " » " THE " » llg " > IIQN "

AR$="":1FORI= 1T06=REQDQT$=LQ=LEN(QT$)

IFMID$<IX%$, 1, LAY=ATSTHENIX$=MID${IX%, LA+1 > ARS=AT$: RESTORE:
RETURHN

NEXTI:RESTORE: RETURN

REM INPUT UNDERSTOQOD

ON1+INTC3*RNDC1 5 >GEATOL17E23, 1774, 17848, 17854, 17aea, 17674, 17434,

17asa

PRINT"I UNDERSTAND HNOW.":RETURHN
FRINT"OKAY." 1 RETURN

FPRINT"ALL RIGHT.":RETURH

PRINT"I SEE.":RETURM

PRINT"OK. THAT MAKES SENSE. ":RETURH

PRINT"I GET IT. WHAT ELSE CAM I LERRN?":RETURN
PRINT"HOW WE ARE GETTIHG SOMEWHERE. ":RETURN
FPRINT"GOOD. LET’S GO ON."'RETURN

REM DID HOT FIND HNOUN IN QUESTION
ON1+INTCRHDC1DDGOTO13G2G, 13830, 123048, 13854, 13063, 123a78. 183a3a,

12a3a

FRINT"YOUW RE ASKING ME? I DON'T KHOW ABOUT "LT#$::G0TO1216@4
FRINT"GOT ME. I HAUVE HO IWFQ OW "LT#$::G0TO1219@
FRINT"BEARTS ME.":RETURH

FRINT"I WOULD HNOT KHOW /BOUT "LT$::G0TO1S164
FRINT"I HAUVE HNO INFO ABROUT "LT#$::G0TO1218a4
PRINT"YOUR GUESS IS AS GOOD AS MINE. ":RETURN
FRINT"GOOD QUESTIOHW. I DON’T KHOW.":RETURH
FRINT"I HAVE HO IDEA.":RETURH

IF FITHENFRINT"S"::F1=8

FRINT".":RETURHN

I R R R R R R
I - -)
-

REM "ARE ALL " GQUEST
IPS=NID$‘IP$,Q7=GOT0

REM "ALL " STARTEMENT
IP$=MID$IF#$.50: RETURN

REM SET NOT COMDITIOHN
LE%{TJ1-K10=12 LK (KL, T10=1

REM *kk LOAD DATA %%

D$="": INPUT"WHAT FILE NAME":D$
OPEN1.1.@,D$

INPUT#1. ID

FOR I=1 TO ID-1:INPUTH#1.3S$<IYINEXT I

21048 FOR I=1 TO ID—1:INPUTHI.NM$F{IDINEXKT I

21858 FOR I=1 TO ID-1:INPUTH#1.-AJTSCIOIHNEXT I

21868 FOR I=1 TO ID-1:FORJ=1TOID-1:INPUTH#I1 .LK:LEX(I, Jo=LKIHEXT J-1
2187@ CLOSE 1:RETURH

21998 ssessg2z23g8s2gsssgeeasgeesgaa:

21999 REM *¥kk SAUE DATA k%

22008 WH$="H": INPUT"WANT TO SAVE WORK <Y-/NY":WH#: IFWH$="N"THEN END
22085 DF="":INFUT "WHAT FILE HAME":D%

220816 OPEN1-1.1.D%

22026 PRINT#1., 1D

22638 FOR I=1 TO ID-1:PRINTH#1.SS$CIDINEXKT I

22840 FOR I=1 TOQ ID-1:PRINT#1.HM$CI>:HNEXT I

22058 FOR I=1 TO ID-1:PRINTH#1.AJ$CIOINEXT I

22060 FOR I=1 TO ID-1:FORJI=1TOID—-1:LK=LKX{I.J0:PRINT#1.LK:NEXT J,1I
22878 CLOSE 1:RETURHN

22999 s33s:2ssgsss22gesssragseaeaee

Listing 4-3 Changes To Use Perfect Logic on Disk
116 WHE="H":INPUT "DO YOU WANT TO LOAD FROM DISK <YAH)";WH$

20593 REM #¥% LOAD DATA #%#%

21068 De="":INPUT"WHRT FILE MAME";D$

21065 DF$=D%:DF=1

21818 OPEN 2,8,2."@:"+D$+",5,R"

2le2a INPUT#Z, 1D

21028 FOR I=1 TO ID-1:IMPUTH#2,SS$CI> NEXT 1

21048 FOR I=1 TO ID-1:INPUTHZ. HM$CI) NEXT I

21058 FOR I=1 TO ID-1:IMPUT#2,AJ$CI) :HNEXT I

21868 FOR I=1 TO ID-1:FORJ=1TOID-1:INPUTH#2, LK LEXC(I.Jo=LK:NEXT J,I
21979 CLOSE Z:RETURM

B1998 il stvretessrantetrisistees

21993 REM *¥% SAVE DATH ##%%

22008 WH$="N":INPUT"WANT TO SAYE MWORK <Y/N)".WH$: IFWH$="N"THEN END
22001 IF DF=0 THEM 22813

22082 PRINT"DO YOU WANT TO SAYE THIS FILE UMDER THE SAME FILENAME THART

22003 INPUT "JUST USED",SN$

22004 IFLEFT$(SN$,1,<>"Y" THEN 22013

22005 D$=DF$:0FEN 15.8,15:PRINT#15,"5@:"+D$:CLOSE 15:G0T0O 22018

22013 PRINT"MDO MOT USE THE MAME OF A FILE THAT IS ALREADY ON THE
DISK.m"

22015 DF="":INPUT "WHAT FILE NAME";D#

22016 IF D#="" THEN 22015

22017 DF$=D%$:DF=1

22018 OPEM 2,8.2,"8:"+D$+", 5, W"

220208 PRINT#2, 1D

22038 FOR I=1 TO ID-1:PRIMTH#2,SS$C1) MEXT I

220848 FOR I=1 TO ID-1:FRINT#Z,MM$CI) HEXT I

22050 FOR I=1 TO ID-1:PRINT#2,AJ$(1):NEXT I

22060 FOR I=1 TO ID-1:FORJ=1TOID-1:LK=LKX(I,J) :PRINT#2,LK:NEXT J,1

220878 CLOSE 2:RETURN

7

That way CATS and FELINES are sets that contain all of each
other.

You can type statements like PLANTS ARE NOT ANI-
MALS. The computer would immediately conclude that ANI-
MALS ARE NOT PLANTS. By using logic, the computer also
concludes that every noun (or set) is a subset of itself. For example,
if you type, ARE ALL CATS CATS? The computer would respond
in the affirmative. The computer draws various conclusions based
on set theory. If all cats are animals and animals are not plants, the
computer concludes that NO CATS ARE PLANTS, and NO
PLANTS ARE CATS.

Figure 4-2 is an explanation of the kinds of conclusions that
the computer will draw. The computer will make comparisons
between three sets. If certain conditions are met, the computer will
make changes in LK%, as results. Zeros in LK% represent an
absence of information. In that case, the computer doesn’t know
about the relationship between two sets. If the relationship
between two sets is a 1, then the sets are not related. In fact, they
may be opposites, as in the case of plants and animals. If the

CONDITIONS

LK%(13,11) LK%(11,12) LK%(12,11) LK%(12,13)
3

2
2
1
2
1

LWWLWWwWww
N WWWW
_-—W=NWww

LEGEND:

1 = Sets are not related and may be opposites.

2 = Some of one set are contained in the second set.
3 = All of one set is contained in the second set.

LK%(I1,12) is the relationship between 11 and 2.
LK%(12,11) is the relationship between 12 and I1.
LK%(12,13) is the relationship between 12 and 13.
LK%(13,12) is the relationship between I3 and 12.
LK%(11,13) is the relationship between 11 and 13.
LK%(13,11) is the relationship between 13 and I1.
11 is the first set.

12 is the second set.

I3 is the third set.

RESULTS
LK%(13,12) LK%(11,13)
3 3
2 3
2 g
1 1
2 3
1 1

Fig. 4-2. The logic used in the Perfect Logic program.

72

relationship between the first set and the second is a 2, then some,
but not all, of the first set is contained in the second set. If the
relationship between the first set and the second set is a 8, then all of
the first set is contained in the second set. The ? in the figure
indicates an indeterminant result. The question mark is either 2 or
3. Thus the program scans the LK% array looking for elements that
meet one of the six conditions in Fig. 4-2. When it finds one, it
makes changes to other elements of the array. In this way, the
program really demonstrates artificial intelligence. (We never
really told the computer that a cat was not a plant. It concluded it
from the statements that said a cat was an animal and that animals
are not plants.)

This program shows some degree of self-correction if you
delete line 10097. It might even correct some things if you don’t.
The maximum number of items that the program can store in its
present form is 100. That is because the LK% array is 100 X 100
elements. This is 10,000 elements, a big bite of memory (no pun
intended). This program slows down as the number of sets
increases. That is because the search procedure takes longer and
longer as the program tries to draw conclusions. You might think
of ways to get around this or think of ways to store this information
on disk instead of in RAM. It may be somewhat difficult because
the number of possible relationships between sets is the square of
the number of sets. Maybe you would adopt a different numbering
convention to designate the kinds of sets involved. There are other
ways to change the program also.

Here’s a line-by-line description of the program.

LINE EXPLANATION
10-60 These lines provide identification for the program.
100 This line dimensions the various arrays used in the

program. SS$ is an array used to store the plural
of the nouns entered. NM$ is the array that stores the
noun of the phrase as determined by the program.
A]JS stores the articles (a or an) used with the nouns.
LK%. is the array that contains the code (0-3) for
determining the relationships between nouns or
noun phrases entered. LK% is the most important
array in the program. ID is a variable that acts as an
index. It is set at 1 at the start of the program.

110 This line sets all of the plural forms of nouns that
it encounters, making them end with S. The diag-
onal of the LK% array is set as 3, meaning that
everything is a set that contains itself. CHR$(147)
is the code used to clear the screen.

73

115

116

117

120

125

130

140

145

150-200

210-270

999

74

This line tabs across and prints the first line on the
screen.

This line asks if you want to load data from cassette
tape. You enter Y or N.

If you enter Y, the program calls a subroutine that
starts at line 21000.

The computer changes the color to light blue (ASCII
code 154). This line then asks for an imput by
opening the keyboard file. After the input, the com-
puter prints in the cyan color, the computer’s color.
If your input was STOP or END, the program
branches to the subroutine that starts at line 22000.
That subroutine asks if you want to save the data
accumulated during the session on cassette tape for
use with the next session. This way the computer
“remembers” what it had learned. Finally, the color
is changed back to light blue, and the program ends.
IP$ is IQ$ without the last letter. We drop the
punctuation—if you forgot to enter the punctua-
tion with your input, the program will not function
accurately.

If the first 9 letters that you typed are WHAT ARE,
the program calls the subroutine that deals with
“WHAT ARE” questions, located at line 1000. Then
the program branches to line 1200.

Likewise if a question starts with ARE ALL, the
program goes to a subroutine that starts at line 19000
and then goes to line 1200. Line 1200 1s a routine that
attempts to draw conclusions from thatdata entered.
These lines do similar things with input that starts
with various words, such as WHAT IS, IS, and
SOME . These are the only kinds of things that the
program can deal with. The program will attempt to
look for a noun or nouns following these words.
Then it will respond accordingly.

These lines are a loop that attempts to locate the
verbs IS, IS NOT, ISN'T, ARE, ARE NOT and
AREN'T if the lines above did not locate any starting
words in the input. If the loop runs through its
entirety without finding any of these verbs, the
program goes to the subroutine that starts at line
14000, where it prints out a message saying it didn't
understand the input. Then the program branches to
line 1200 to see if it can draw some more conclusions
before returning for more input.

This line separates the main program from the next
section, the WHAT ARE subroutine.

1000-1070

1010

1020

1030

1040-1070

1199
1200-1610

1200
1210

1215

This subroutine attempts to interpret questions
beginning with WHAT ARE . . .

LT$ is the input starting with the tenth character.
If the last word ends with an S, it is assumed thatitis
a plural form, and the S is dropped from LTS$. A
“flag” F1 is set at 1.

This line searches for the noun starting with the
most recently entered character and working back-
wards. If it matches the nouns stored in the NM$
array to the input, J1is set to the index, I, and the
program branches to line 1040.

If the program goes through the entire NM$ array
without finding the array, the program calls the
subroutine that starts at line 18000 and then returns
for more input.

This I loop prints out all the sets to which the noun
belongs. What is printed depends on the contents of
LK% NMS$(]J1) is the noun. SS$(J1) is its plural
form.

This is a separating line.

This is the most important subroutine; it is used to
draw conclusions. It makes comparisons between
three sets. For example if set A contains all of set B
and set C contains all of set A, it can conclude thatall
of set B are contained by set C and that some of set C1is
set B. Likewise if set A contains all of set B and set C
contains none of set A, it can conclude that C
contains none of set B. All of the logical combina-
tions that yield definite conclusions are included in
the subroutine. In the example that has been
mentioned, A might be ANIMALS, B might be
CATS, and C might be PLANTS. If we know thatall
CATS are ANIMALS and no ANIMALS are
PLANTS, it follows that no CATS are PLANTS.
(Figure 4-2 shows all of these combinations of
conditions and the results.)

This line identifies the subroutine.

I1 is the index for one of three nested loops that
examines entries in LK%. 12 is the index for the
second set. If the relationship between set I1 and set
12 is 0 (both ways), nothing can be concluded, and
the program branches to line 1250 to increase the
indexes of the loops.

I3 is the index for the third set. If I2 and I3 have no
relationship at all, nothing can be concluded. The
program then branches to line 1240 to increase the 13
loop index.

75

1217

1220

1225

1230

1235

1240

1250

1300-1340

1400-1430

1500-1520

1600-1610

1999
2000-2030

2499

76

If the relationship between I1 and I3 and the rela-
tionship between I3 and I1 have already been es-
tablished, control goes to line 1240.

If I1 is entirely contained in 12, and 12 is entirely
contained in I1, then I1 is the same as 12, and control
goes to the subroutine at line 1300 where the
relationships between 12 and I3 are checked.

If I1 is a proper subset of 12, control goes to line 1400
where the relationships between 12 and I3 are tested.
If some of 11 is contained in 12 and some of 12 is con-
tained in I1, control goes to line 1500 where the rela-
tionships between 12 and I3 are tested.

If there is definitely no relationships between I1 and
jI1 (I1 and 12 may be opposites), there is a call to the
subroutine at line 1600.

This line increments the 13 index (loop).

This line contains the ends of the 12 and Il loops
and a branch to line 120 for more input.

This subroutine tests and sets the results of various
elements of the LK% array as called by line 1220.
This subroutine tests and sets the various elements of
the LK% array as called by line 1225.

This subroutine tests and sets the various elements
of the LK% array as called by line 1230.

This subroutine tests and sets the final possible
elements of LK%.

This is a separation line.

This subroutine interprets questions that start with
WHATIS. . . LT$isIP$from the ninth element to
the last element of that string. IX$ is defined as LT,
and then the program calls the subroutine that starts
at line 16000. That subroutine looks for the words
THE, A or AN in IXS$. If it finds any of these words, it
drops them from the string. LTS is then defined as
the changed string. Line 2020 does a search for the
noun from the modified string. If it finds the noun, it
calls part of the WHAT ARE subroutine (starting at
line 1040) to print out all the things that the noun is.
Line 2030 is the end of the I loop. If the noun is not
found, the program branches to line 14000 to
indicate that the computer didn’t understand the
input. You will notice that if the noun was found in
line 2020, that the computer branched out of the I
loop. Branching out of loops generally causes no
serious problems on the Commodore 64, although
on some computers it might.

This is a separation line.

2500-2510

2599
3000-3010

3499
3500-3510

3999
4000-4140

4000
4010

4020-4030

4040
4050

4060-4070

4080

4085

4090-4100

In this subroutine, the computer deals with ques-
tions that start with WHAT’S . . . To answer these
questions, it adds a space at the beginning of IP$ and
branches to the WHAT IS subroutine. That subrou-
tine will drop the first 8 characters and process the
rest as if the question was WHAT IS.

This is a separation line.

This subroutine processes ARE SOME questions by
dropping the first nine characters and branching to
the ARE question subroutine that starts at line 4020.
This is a separation line.

This subroutine processes ARE NOT SOME ques-
tions by dropping the first 13 characters and branch-
ing to line 4020.

This is a separation line.

This subroutine processes all the ARE . . . ques-
tions.

This is the remark identifying the subroutine.
This line drops the first four characters of ARE
questions.

The M loop searches for the separation between
words. If it finds a space, it branches to line 4040. If it
does not find anything, it BRANCHES to the sub-
routine that starts at line 14000. Notice that sub-
routines can be branched to as well as called if you
are careful.

LT$ is the left part of IP$.

This line looks for the letter S, indicating the plural
form of the noun. If it finds it, the S is dropped.
These lines check to see if the first word of this
string is found in the NMS$ array. If it is, the program
branches to line 4080 to find the next noun. If the
noun is not found, maybe the noun is really a phrase,
and the program will use more than one word in
LTS. It does this by branching back into the M loop
at line 4030.

RTS$ is the right part of the original IP$. The rest of
this line looks for the articles. THE, A and AN in
RTS.

This line drops the S (if it is there) from the end of
the last word because it assumes that it is dealing
with the plural form of the noun.

This K loop attempits to search for the noun in ques-
tion. If it finds it, the program branches to line 4110.
If it does not find it, it assumes that it made a mistake
in determining what L'T$ was and will branch back
into the J loop! If it does not find it then, it branches

77

4110-4140

4249

4250-4260

4500-4510

4999
5000-5110

5499
5500-5510

5599
6000-6010

6999

7000-7010

8000-9030

9999
10000-10130

78

back to the M loop! If it still finds nothing, it
branches to line 14000.

Four different messages will be printed depending
on the value of LK%(J,K). J and K are the loop in-
dicators from the lines above. After the message is
printed, the program returns to the input sub-
routine.

This is a separation line.

This subroutine answers the AREN'T SOME ques-
tion by dropping the first 12 characters and branch-
ing into the ARE subroutine.

This subroutine answers the AREN’T question by
dropping the first seven characters and branching to
line 4020.

This is a separation line.

This subroutine interprets the IS question. It be-
haves very much like the ARE question subroutine
and branches into that subroutine if it finds both
nouns or phrases. The number 5110 in line 5090
could be changed to 4110 and line 5110 could be
deleted.

This is a separation line.

This subroutine answers the ISN'T question by
dropping the first six characters and branching into
the IS subroutine.

This is a separation line.

This subroutine answers the IS NOT question by
dropping the first seven characters and branching
into the IS subroutine.

This is a separation line.

This subroutine is used for statements that begin
with SOME. The first five letters are dropped and FS,
a flag, is set at 1; then the program returns to the
calling routine.

These lines deal with statements and questions that
contain the words IS NOT or ISN’T somewhere in
the middle of the input. The words are dropped from
the input and the two parts are placed in LT$ and
RTS. If the input ends with the question mark, the
program calls the subroutine starting at line 15000
then returns. For declarative statements, the pro-
gram branches to line 12020 of the AREN’T sentence
subroutine.

This is a separation line.

This subroutine interprets the sentence containing
IS. This subroutine will print one of three sentences
if the program has already stored or concluded that

10999
11000-11010

11999
12000-12120

12999

statement beforehand. Lines 10087-10089 are those
responses. Line 10100 asks a question to determine
whether or not the converse of the statement is true.
Line 10110changes the color of theinputandrequests
a Yes or No answer. The program then changes the
color back to cyan. If you delete from line
10125:GOSUB 17000:RETURN the program will
acknowledge that sometimes the converse is true
when answering No.

This is a separation line.

This subroutine interprets statements with ARE
NOT in the middle of the sentence. Then the
program branches into the AREN'T subroutine.
This is a separation line.

This subroutine interprets any sentence containing
AREN'T. It is like the IS sentence subroutine. It then
branches to line 20000, which sets both sets to 1, the
not condition. The not condition means that the
nouns may be opposites.

This is a separation line.

13000-13120 This subroutine interprets sentences containing

13999
14000-14090

14999
15000-15050

15999
16000-16040

16999
17000-17090

17999
18000-18110

ARE. It resembles the AREN’T sentence subroutine.
It doesn’t set the not condition. It branches into the
IS sentence subroutine at line 10085.

This is a separation line.

If the program doesn’t understand the input, it calls
this subroutine. This subroutine prints up to eight
different comments. You might want to change or
add some comments to suit your preference.

This is a separation line.

This subroutine is used if the statement entered is
really a question because it has a question mark at
the end.

This is a separation line.

This is the subroutine that searches for the articles
THE, A, or AN in the input. Some of the articles
have a space in front of them (if they are in the middle
of the input).

This is a separation line.

This subroutine includes eight comments telling the
user that the computer has understood the input.
You may want to add to or change some of these
comments as well.

This is a separation line.

This subroutine is used if the user asks a WHAT IS
or WHAT ARE question and the computer has never
heard of the noun in question. You might want to

79

change some of these comments. Some of the
comments print out the noun, LT$, thatitcan’t find.
Line 18100 prints S on the end of the word if the
noun is plural.

18999 This is a separation line.

19000-19010 This subroutine drops ARE ALL from the input and
branches into the ARE question subroutine.

19499 This is a separation line.

19500-19510 This subroutine drops the ALL from the beginning
of a statement if it has been included in the input.

19999 This is a separation line.

20000-20010 This sets the not condition for nouns or phrases that
are opposites or have a negative relationship.

20998 This is a separation line.

20999-21070 This subroutine allows you to load data that you
saved on cassette tape from a former session. You can
specify a specific filename or simply press the
RETURN key and the name will be an empty string.
If you have a disk drive, you might want to alter the
numbers to save on disk. This subroutine, then,
allows you to accumulate information that the
program has handled.

21998 This is a separation line.

21999-22070 This subroutine is the opposite of the last one. It
allows you to save your work on cassette tape for
use in the next session. You may define the filename
or leave it blank. If it is blank, the first file that is
found will be loaded. You might want to alter this
subroutine if you have a disk drive.

22999 This is the last line of the program!

Program Operation. When you have entered the program into
memory, type RUN. The computer will print PERFECT LOGIC
at the top of the screen. It will then ask you if you want to load data
from tape. Type Y for Yes or N for No. When the cursor blinks,
simply enter your statements or questions. All inputs should
contain at least one of the following words: IS, ARE, NOT,
AREN’T, and ISN'T. You can include other words such as SOME,
ALL, WHAT IS, WHAT'S, and WHAT ARE.

Figures 4-3 and 4-4 show typical conversations with the logic
program. Every other line is printed by the computer. If you type: A
CAT IS A MAMMAL. The computer will respond: ARE ALL
MAMMALS CATS? You reply NO. It might then reply: OKAY.
You might then type: A DOG IS NOT A CAT. It might reply: I
UNDERSTAND NOW. You might type: A MAMMAL IS A
VERTEBRATE. It responds: ARE ALLL. VERTEBRATES MAM-
MALS? You reply, NO. It prints: NOW WE ARE GETTING

80

DO YOU WANT TOQ LORD FROM TRFE
A CAT IS A MAMMAL.

ARE ALL MAMMALS CATS?

HO

OKAY.

A DOG IS NOT A CAT.

I UHDERSTAND HOuW.

A MAMMAL IS5 A VERTEBRATE.
ARE ALL VERTEBRATES MAMMALS?Y
HO

HOW WE ARE GETTING SOMEWHERE.
A CAT IS A MAMMAL.

I HEARD THAT BEFORE.

IS A DOG A MAMMAL?

I'M NOT SURE.

A DOG IS A MAMMAL.

ARE ALL MAMMALS DOGS?

NO

GOOD. LET’S GO ON.

A CAT IS NOT A DOG?

A CAT? 1 DON'T FOLLOW.
AREN’T CATS DOGS?

NONE ARE.

PLANTS ARE MNOT ANIMALS.
QKAY.

ARE SOME PLANTS ANIMALS?
HONE ARE.

ARE SOME ANIMALS CATS?

VAN T

N

Fig. 4-3. The start of the conversation with the Perfect Logic program.

81

I'M NHOT SURE.

MAMMALS ARE ANIMALS.
ARE ALL ANIMALS MAMMALS?
HO

GOOD. LET S GO OH,
WHAT IS A CAT?

CATS ARE ANIMALS.

HO CATS ARE PLANTS.
CATS ARE WVERTEBRATES.
HO CATS ARE DOGS.
ALL CATS ARE CATS.
STOP

WANT TO SAUE WORK <(Y-N>? N

READY.

Fig. 4-4. The end of the conversation with the Perfect Logic program.

SOMEWHERE. You type: A CAT IS A MAMMAL. It tells you: I
HEARD THAT BEFORE. The conversation continues on and on.
If you ask: WHAT IS A CAT? It replies: CATS ARE ANIMALS.
NO CATS ARE PLANTS. CATS ARE VERTEBRATES. NO
CATS ARE DOGS. ALL CATS ARE CATS. You see some of the
conclusions that the computer drew from statements entered. You
never said that a cat was not a plant.

Except for the limited storage problem and the slow response
with a large number of sets, this program demonstrates artificial
intelligence well when it makes deductions based on statements
using sets. This program utilizes natural language processing.
You simply typed in your IS and ARE and NOT statements in
English. You asked questions to retrieve information by typing
them in English. When the computer doesn’t understand what you
are typing, it will tell you so.

82

Chapter 5

Heuristics

In this chapter the discussion of heuristics is continued, and two
BASIC programs are examined. The first is a tic tac toe program
that remembers strategy, and the second is a five-in-a-row game
that you can play with other people and with the computer.

Many of the programs that we have discussed so far have used
heuristics. Let’s define heuristics and examine some types of
heuristics.

A heuristic, in the broadest sense, is a rule of thumb used in
solving a problem. It is a way to provide a link between a question
and an answer. Heuristics eliminate some of the nonsensical paths
in the search for an answer. Heuristics can be generalizations about
sets of things and their relationships to each other. Heuristics,
then, are any methods that eliminates the searching of the full
range of possibilities for an answer.

A pruned search is an example of a heuristic. In the pruned
search the possible choices that lead to an immediate failure are
deleted, and consequently the number of possible choices are
reduced. The binary solution that was used in the Towers of Hanoi
program was a heuristic that yielded the solution directly. If a
computer game stores moves that lead to a win, it might search the
moves for a solution. The program would be learning.

83

HEURISTIC PROGRAMS IN BASIC

In this chapter I will use heuristics in two BASIC programs. In
the tic tac toe program, I will have the computer store moves that
lead to a victory. It will also store the last move that lead to a defeat.
In this way the computer can avoid or choose a particular move.
You won't be able to fool the computer twice with the same set of
moves.

In the five-in-a-row game the computer plays against one or
several human opponents. The computer will try to get five dots in
a row. It will try to block the moves of any player that has three of
four dots in a five dot space on the board. If one end of a five dot
space is blocked, it will try to form a line of five using the other end.
If that is also blocked, it will abandon that section and find a new
space. The program does not, however, store strategy.

Let’s now look in depth at tic tac toe and five-in-a-row.

Heuristic Tic Tac Toe

The program shown in Listing 5-1 plays the simple game of
tic tac toe with you. However, the computer will store all moves
that lead to a victory. It also stores the last bad move that lead to a
defeat and will avoid using that move again. In short, the program
remembers the best moves and will make them when playing the
game.

The game is played on a three by three grid. The object is to
place three of your symbols in a row either vertically, horizontally,
or diagonally on the board. This program displays the move
number and the game number. There is no provision to store the
strategy for future games. Thus the computer must relearn the
strategy each time that the game is loaded and run. You might
think about a way to save the strategy on tape or disk.

Here’s a line-by-line description of the program.

Listing 5-1 Tic Tac Toe

1@ REM HEURISTIC TIC Tﬁ TOE - PROG. 12
28 REM WRITTEHN BY TIMOTHY J. O°MALLEY
3@ REM COPYRIGHT 19284, TAEB BOOKS IHC.
48 REM (WRITTEN FOR THE COMMODORE &4>

.
45 ssszzfiiiiiiiiasEEaazssssssEzEzzaais:
ooossssIIIIIIITIzITIISIGTGIGRGRTGORSGSRIGNIGLOCLNITL

47 REM *¥¥% MAIN PROGRAM sk

S8 POKE S1,.8:FPOKE S2.684:POKE SS.@:POKE S6.64

5SS PRINT "HANG ON A MINUTE WHILE I DO SOME HOUSE-"

@ PRINT "KEEFIHNG.....THANKS!!"

78 G=@:FOR I=16384 TO 3&6a77:POKE I.@:HEXT

38 G=G+1:T=8a

98 PRINT CHR$:<1470: " *kk HEURISTIC TIC TAC TOE *%%x":PRINT
16@ PRINT "GAME HNO. ":G:PRINT

84

11@
12@
138
148
15a
16@
i7va
18@
19a
28a
21@
228
23a
24a
258
26@
2vea
2za
296
Jaa
31@

3za
325
327
3Za
34a
35a
Jea
43@
448
45a
468
47a
48a
208
216
928
3@
940
58
68
Iva
284
998
I95
1eaa
1@1a
1aza
1638
1a4a
1asa
1aea
1a7va

FOR J=1 TO =
FOR K=1 TO =
B {J.K>=8
=3k J+K~-3
R{LO=8
CiLor=@a:5dLo=a
HEXT K. J
M=@:REM M IS THE MOUE HUMEBER
GOSUB 98@:G0sUB 400@: REM DETERMIME WHO GOES FIRST & PRINT BOARD
M=M+1:REM IHCREASE MOUE HUMBER
PRINT:PRINT "MOUE HO. "sM:PRINT
M2=M- 21 M3I=M2<L >INT M2
Ma=M2=INTM2>
IF ({Z2=1 AND M3> OR (Z=2 AND M4> THEHW GOSUE 2@@@:REM COMPUTER®S MOUE
IF <{@=1 AND M3> OR (@=2 AHND M4> THEHN GOSUEB Ia@a:REM YOUR MOVE
GOSUEB 4@0@:REM PRINT BORRD
GOSUBR 1@@@:REM ANY WINNER YET?
IF A=1 THEH 338:REM STORE WINNING STRATEGY
IF M<3 THEN 2aa
PRINT: INPUT "HOBODY WOH. WANT TO FLAY AGAIN":R1$
IF LEFT$(R1%$,10="%" THEW S@:REM GO TO THE BEGINHNING OF THE HEXT
GRME

END

REM %% STORE WINNING STRATEGY %%k

FOR L=W TO M STEP 2

POKE <16384+5S0(L)) . (I¥RCLO+CCLY-3D

NEXT

POKE <{18384+5(M-100, (Z*¥RIMO+CCMOI-3D

IF W=Z THEHN PRINT:FRINT "I WIHN! "IPRINT
IF W= THEHN FPRINT:PRINT "YOU WIN! ":PRINT
INFUT "WANT TO PLARY ANOTHER GAME":R1$
GOTO 31@
Tegszszzzzessesresaressassioszeses

REM *¥¥ DETERMIHE WHO GOES FIRST k¢

Z=1

Q=2

IF RHND{1><@a.5 THEN 35d

PRINT "I WILL BE ¥ AND WILL MOUE FIRST."
RETURHN

2=2

Q=1

FPRINT "YOU CAaM BE X AND CANW MOVE FIRST."
RETURN

REM ¥k SERRCH FOR A WINHER %%

H=a

Z3=a

Z4=a

FOR J=1 TO 3

Z22=a

Z1=@a

FOR K=1 TO =
IF B{K, Jo=l THEH Z2=22+1

85

16838 IF B{J,K>=W THEHN Z1=2Z21+1

1898 IF Bk, Ji)=W AND J=K THEHW Z3=23+1
11g@ IF BCEK, Jo=lW0 AND J+K=4 THEN Z4=24+1
1118 HNEKT

1128 IF Z21=3 THEH AR=1
113@ IF Z22=3 THEHN R=1
1148 HNEXT

1158 IF Z23=3 THEH A=1
1168 IF Z4=3 THEH A=1
1178 RETURN

1180 :3:xs33:33338338838¢33¢8
1198 REM *x%x COMPUTER
2088 PRINT "MY MOUE IS
2018 W=2:Y=Q

2020 RZ=PEEK{1&6384+T>: IF R2Z=8 THEN 284a

2025 IF R2>9 THEN STOP

2838 J=INTC1+(R2-1)>-3):1K=R2-ZIXINTLIR2=-1>-32:RMI=T:CiMO)=K:G50TO 2118
284a FOR J=1 TO 3

2858 FOR K=1 TO 3

2855 IF R(M>>8 THEN 2188

28068 IF BOJ.K>>8 THEN 21646

2078 Ri{M>X=]

20880 RIZ=3%J+K-3

2898 C(MoHI=kK

2188 NEXT K. J

2118 BIRIMI-CCMIOD=22S{MI=T: T=T+2k3I T+ {I*R{MI+CIMI—-4)

2128 PRINT "ROW":STR$F(RMO>O: ", COLUMNH":STR$CCIMOO" . "

2138 RETURN

2140 tr:sessseeoereaeEeazas et

2158 REM k¥ YOUR MOUVE SUBROUTINE ¥

3I006 W=Q:YVY=2

Jaia PRINT "YOUR MOUE. "3

Jaza INPUT "WHAT ROW AND COLUMH":ROMD> . COM)

3azS IF RM>23 OR RIMO<1 OR C<{M>>3 OR CIiM><1 THEH Ja&wa
3838 IF B(RIMOY.CIM>O>>@ THEHWH 3J@e@

3848 BIRMOICIMO =R S (MO=TIT=T+Q*I T (IKRMI+CCMI—-4)
358 RETURN

Ja6a PRINT "INUALID MOUE. PLEARSE TRY AGAIN."

3Java G0TOo Jaza

I08P sc1rrggeegoeriIEesCRgEIINSISIETREGSGS
28398 REM *¥¥ PRINT OUT BOARD kX

4006 PRINT:FOR J=1 TO 3

4@ai@ FOR K=1 TO 3

4028 PRINT TABLI(K-1)%4+2)3

4638 IF B(J.kK>=1 THENH FRINT "k":

4@4@ IF B(J.K>=2 THEN PRINT "0O":

4058 IF K<3I THEHN PRINT TRBud%k>z" | "3

S MOUE %k

-
H
»

-
»

-

486@ NEXT

4878 PRINT

4888 IF J=3 THEHN 410a

4698 PRINT " ———4———t——"
4188 NEXT

4128 RETURN

4139 2333ty geegseegasy

86

LINE

5-45
47-320
47

50

55-60

70

80

90

100
110-170

180
190
200
210
220
230
240

250

260
270

280

290

300

EXPLANATION

These lines provide identification for the program.
This is the main program.

This 1s a remark to identify the section.

These POKEs reduce the top of the RAM to provide
a section of memory to store strategy. The BASIC
program will not enter these locations.

This message is printed so that you will know that
the computer IS working and not waiting for you to
do something.

G 1s the game number. This loop fills in the memory
locations that were reserved for strategy with zeros.
G is increased by one. T is a variable that is used to
store a code for the placement of the moves on the
board.

This line clears the screen and prints the name of
the game plus a blank line.

This line prints the game number.

This loop clears the board array, B, the row array,
R, the column array, C, and the sum array, S.

M is the move number, which is set at zero.

These are calls to two subroutines. The first sub-
routine determines who moves first, and the second
prints the board.

This line increments the move variable.

This line prints the move number and the two blank
lines.

This line sets M2 as one-half the move number and
M3 as either 0 or —1: 0 if M is odd, and —1 if M is
even.

This line sets M4 to 0if M is even, or to — 1 if M 1s odd.
If it 1s the computer’s move, control goes to the sub-
routine that starts at line 2000.

If it is your move, control goes to the subroutine that
starts at line 3000.

Control goes to the subroutine that prints the board.
The subroutine called in this line checks to see if
there is a winner.

If A equals one, there is a winner, and the computer
will store the winning strategy by branching to
line 330.

If all the moves are not taken, control goes to line
200.

Because all the spots have been taken and there is
still no winner, the computer prints the message

87

310

320
325
327-460

327
330-350
360

430

440
450

460
470
480-980

480
900
910
920

930
940
950
960
970
980
990

995-1170
1000

1010

1020

1030
1040

88

that nobody won and asks player if he wants to
play again.

If the first letter input was Y, control goes back to
line 80.

If the first letter was not Y, the game is ended.
This is a separation line made of colons.

This routine stores the winning strategy in the
reserved memory locations.

This line identifies this section.

This loop stores the winning moves.

This line replaces the last move of the loser with
the correct winning move. This way the computer
will not ever make that move again!

If the computer won, the appropriate message is
printed.

If you won, the appropriate message is printed.
This line asks whether or not you want to play
another game.

Control goes to line 310 to evaluate the answer.
This is a separation line.

This subroutine determines who goes first by using
the random number generator.

This line identifies this subroutine.

2 = 1 will make the computer move first.

Q = 2 will make you move second.

If a random fraction is less than .5, then control
branches to line 950, and the order of who goes first
switches.

This line prints that the computer will be X and will
move first.

Control returns to the main program.

The computer will move second.

You will move first.

This line prints that you will be X and can move
first.

Control is returned to the main program.

This is a separation line.

This subroutine searches for a winner.

A is the variable that indicates whether or not there is
a winner. If A is zero, there is no winner. If A is
changed to 1, there is a winner. A is a flag variable.
Z3 is a flag that indicates a bottom left to upper
right diagonal win.

Z4 is used to check for an upper left to bottom right
diagonal win.

J is a loop for checking the columns on the board.
72 is for checking for a vertical win.

1050
1060
1070

1080

1090

1100

1110
1120
1130
1140
1150
1160
1170
1180
1190-2130
1190
2000
2010

2020

2025

2030

2040-2100

2110

2120
2130
2140
2150-3070
2150
3000

3010
3020

Z1 is for checking for a horizontal win.

K is the loop that checks the rows on the board.

If this board position has a value equal to W, Z2
is increased by one.

If this board position has a value of W, Z1 is in-
creased.

If the bottom left to upper right diagonal has a value
of W, Z3 is increased.

If the position in the other diagonal has a value
equal to W, Z4 is increased.

This is the end of the K loop.

This line sets A to 1 if Z1 equals 3.

This line sets A equal to 1 if Z2 is 3.

This is the end of the] loop.

IfZ31s 3, Ais set to 1.

If Z4 is 3, A i1s set to 1.

Control returned to the main program.

This is a separation line.

This subroutine determines the computer’s move.
This line identifies this subroutine.

This line starts to print out the computer’s move.
W is the computer’s first move, and Y is your first
move number.

This line sees if there is a stored number that is a
code for the move to take. T is the coded sum of the
moves on the board.

If the number returned from the PEEK is greater
than 9, there has been an error, and the game is
stopped.

This line converts the R2 code back into J and K
values and then makes its move based on that. It
branches back to line 2110.

These nested loops choose the first available position
on the board if the R2 value was zero.

This line assigns the value to the board array and
the sum array, and increases the sum variable, T,
based on the X or O and the board position.

This line prints the computer’s move on the screen.
This line returns control to the main program.
This is a separation line.

This subroutine allows you to enter your move.
This line identifies the subroutine.

W is your first move, and Y is the computer’s first
move.

This line states that it is your move.

This line requests the row and column you want to
move 1o.

89

3025 This line checks for an invalid row or column

number.

3030 This line checks to see if the position has already
been taken.

3040 This line assigns values to the board array, the sum

array, and the sum variable based on the value of the
move, the symbol used (X or O), and the position

taken.

3050 This line returns control to the main program.

3060 This line prints the error message.

3070 This line branches back to entry line.

3080 This is a separation line.

3090-4120 This subroutine prints out the tic tac toe board.

3090 This line identifies the subroutine.

4000 J is the loop for the rows on the board.

4010 K is the loop for the columns on the board.

4020 This line establishes the next print position.

4030 If the board value is 1, an X is printed.

4040 If board value is 2, an 0 is printed.

4050 This line prints a vertical bar, which is the graphic
character on the B key.

4060 This is the end of the K loop.

4070 This line prints a blank line.

4080 If the end of J loop has been reached, the horizontal
line will not be printed.

4090 This line prints the graphic character found on the

asterisk key and the graphic character found on the
plus sign. Together these characters make the hori-
zontal lines of the board.

4100 This is the end of the J loop.
4120 Control is returned to the main program.
4130 This is the last line of the program.

Program Operation. When the program starts, it will inform
you who will be X and will move first. It will alsodisplay an empty
tic tac toe board. You will be asked for the row and column of your
move. Enteritas 2,3 for row 2 and column 3, for example. The rows
are numbered from 1 to 3 from top to bottom, and the columns are
numbered from 1 to 3 from left to right. After each of your moves
the board will be updated and the computer will display its move.
You playagainst the computer, moving alternately. After the game
is over, you will be asked if you want to play again. Answer either
YES or NO. Enjoy the game!

The Five-in-a-Row Game
The program in Listing 5-2 plays the game of five-in-a-row
with you and up to three other human opponents. The computer

90

Listing 5-2 Five-in-a-Row Game

1@ s:s22szzgsgasszazsoegseroeessraae
28 REM A FIVE-IH-A-ROW GAME
38 REM WRITTEHW BY TIMOTHY J. G’HﬁLLEV

48 REM COPYRIGHT 13933. TrhEB BOOQK
S8 REM <WRITTEW FOR THE COMMO
60 zzszssszszzzzzssssIssaz:

78 PRINT CHR$:{147>3

“w o

- O

" O X

o T rJ. =
m

- 0’-.

o L

7S PRINT " *k¥ FIVUE IH A ROW GAME k"
88 PRINT:PRINT
81 PRINT " THE GOAL OF THIS GAME IS TO FLACE"

82 PRINT "FIUVE DOTS IN A ROW. EITHER VERTICALLY."

83 PRINT "HORIZONTARLLY OR DIAGOHALLY. YOU MaY PUT™

84 PRINT "YOUR DOT OHN AHY UNOCCUPIED POSITIOMN."

98 PRINT "EHWTER MOUES AS ROW COLUMH. FOR EXAMFLE:"

93 PRINT "H 21 WILL PLRCE YOUR DOT AT ROW H AND ¢

94 PRINT "COLUMH 21. IF THAT'S THE IWNTEHWDED SPOT."

9% PRINT "PRESS THE RETURN KEY. IF HOT. PRESS ANY"

96 PRINT "OTHER KEY AND RE-ENTER. THE FPOSITIOH "

97 PRINT "WILL FLASH THE DOT BEFORE WYOU FPRESS THE"

98 PRINT "RETURH KEY. THE CORHERS DISFLAY THE"

99 PRINT "CURRENT COLOR.":PRINT

188 DIM BXC22,380:REM DIMENSION ARRAY FOR BORRD

185 DIM AXIS, 82, 5R.S, 20:REM DIMENSION ARRAYS FOR MOUES

186 DIM CR{SO:FOR I=1 TO S:READ CRCIDINEXT:REM COLORS OF DOTS

187 DATA 7. 1. 8, 13, 3

189 PRINT "THE COMPUTER WILL MOUE LAST."

118 PRINT: INPUT"WHAT HUMBER OF HUMAHN FLAYERS C1-45":iHP

12é@ IF HNF<1 OR HP>4 THEHN 11@

138 PRINT CHR$:{147>::REM CLEAR SCREEHN

135 F3=@:REM FLAG FOR START OF GARME

148 FOR I=1@24 TO 2823:POKE I-.21:NEKT

158 FOR I=8 TO Z1:POKEC1184+4@%]0, (1+I0:FPOKEC1143+4@¥I0,01+10

16@ POKE (SS336+40%]0. 1:POKECSSITS+4@%I 0, 1T HEXT

ivé@ FOR I=1 TO 38

193 IF I-1@>=1 THEN POKE 1824+1.INT{I-18)+43:POKE SS23&6+

194 IF I-1@>=1 THEHN POKE 1344+1.INT{I-1@>+42:POKE S6Z16+

208 A=]1-18%INTCI-1@0: R=48+R

218 POKE 1864+1.A:POKE 1924+1,A:POKE SS336+1.1:POKE SE256+1.1:1HEXT

215 HC=1

228 IF HNC>HP+1 THEHW HC=1

23@ POKE SS33S.CROMCO:POKE Se295. CROHC

248 POKE S82%56,CROHC)

245 PRINT CHR#$:{13)::POKE SS5296.CRIHC)

246 FOR I=1824 TO 1831:POKE I.32Z:HEXT

258 OPEHN 1.@

268 INPUTH#1.A$:PRINT

270 CLOSE 1:Z2=ASCI{LEFT$ A%, 100-84:IF 241 OR Z2>22 THEH 245

288 Y=UAL(MIDCA+" " .3F.200:IF Y<1 OR V>332 THEHW 245

298 IF BXAIZ.Wo>»@ THEN 245

388 POKE 1@s4+4a%Z+Y, 311FPOKE SSITe+4@%2+Y, CROHC)

31@ GET C#:POKE 1@&4+4@¥Z+Y, T2 POKE SS3T6+4@%2+Y, CROHCO: IF C$="" THEN
Jae

I.1
I.1

91

328 IF CHR$<13)=LEFT#$<C#%,1> THEN GOSUB 1228:G60T0 348
33@ GOTO 245

ITI otz :

335 REM #xk SEARCH FOR A WINNER %%k
348 BXHiZ.Vi=NCiU=@:H=a:L=a: kK=a
35@ FOR I=(VY-SO%—(¥>4)+1 TO CY-340%-{Y{I55+38

6@ FOR J=qZ-S0%—0Z340+1 TO (Z-180%-{Z{175+20

Q.B IF BXOT. Io=HC AND I=Y THEW U=sU+1:1G0T0 336

IVS IF U=5 THEW EHND

38@ IF I=% AHD B%(J. I)<}NC THEH =@

I3 IF BMOJ,I2=HC AND J=Z THEHN H=H+1:G0TO 41@

335 IF H=5 THEW END

4@@ IF J=2 AND BX(J. I><>HC THEN H=G

41@ IF BX(J:I2=HC mRHD (Y-I)=0(Z2-J> THEH L=L+1:G0TO 43a
415 IF L=5 THEN END

4z2a IF (N-T10=42-J) AND BXCJI: I3<NC THEM L=2

43@ IF BXO(J-I>»=HC AND Y-I)=0J-Z25 THENW K=k+1:G0TO 4%@
435 IF K=% THEHN EHND

440 IF V-10={J-Z) AND EBE%CJ. I2<>HNC THEN K=@

45@ IF H=% OR U=5 OR L=5 OR K=% THEHN PRINT CHR$C19)::END
46@ MEXTINEXTIANCNC, 10=Y1RXINC, 2)=2

478 HC=NC+1:IF HC=NP+1 THEN 49S:REM COMFUTER®S MOUVE

A8@ GUTO 22a

42% srztssszsiniaaGsTIIIERIEGIGIRIIORIRGYIGG

498 REM %% COMPUTER™S MOUVE k%

495 POKE SS335,CRCNCY :POKE S629%, CRCNCY :POKE S&256,CRINCY
496 FRINTCHR$:130: "COMPUTER":

See IF F3=2 THEN 1196:REM START OF GAME - FIND EMPTY SQUARES
@S FY=0:Fx=a

S51@ FOR Hx=1 TO HF

T2 V=REONES 1) 2 2=R%0NK, 20

D43 U=t H=01 L= K=0: 5M=2:Fx=a: FYy=a

S5@ FOR I=cV-So0%—(Wodi+l TO (Y-345%-(W{I00+38

S6@ FOR J={Z-S0%-{Z>40+1 TO (Z-160¥-(2{172+28

SV@ IF BXOJ, Io=Hx AND I=Y THEN U=U+1:G0TO S55@

S8 IF I=Y AND BXOJ.10<>@ AND U>a THEN U=8:G0TO QG

585 IF BY/AI.I)=G AaMD I=Y AND 33N THEN FH=J:1FY=1 =1
96 IF BX<{J.I0=Hx AND J=Z THEHN H=H+1:GO0TOQ &l@

P - e = >
C - RN] - - - = -

)

:
s

s@a IF J=Z AaND BX{J.I><>@ AHD H>@ THEN H=@:G0TO &1@

eas IF BX.{J, 1= AHD J=2 AND H>SM THEN FX=J:FWY¥=I:3M=H

sla IF RkdT, I\—HV AND Y=10=0Z2-3> THEHW L=L+1:G0TQ &3@

&2 IF (Y-Io=:{2-T) AND BXOJ,I5<>@ AND L@ THEM L=a:160T0 &3
625 IF BX(J, I)‘B AND CY=10=(Z2-J) AND L>3M THEN FX=J:FY=I:3M=L
3@ IF BXOJ. I0=Hx AND (Y-Io={J-Z> THEHN K=K+1:G60T0Q &5@

ed@ IF dY-1a=¢Z-T5 AND BMALI. 104> AND K>8 THEWN K=a:G0TO &5@
845 IF B%<J, I>=@ AND (W~-I>=0J-2> AHD K>3M THEW Fi=J:FY=1:SM=K
558 NEXT:HEXT

668 ANIHE, 30=URNONK, 40=H

€78 AN, SO=LIRANINK, 8O=K

888 HNEXT

898 FOR I=1 TO HP:FOR J=3 TO &

vaa IF Fi>@ AND FY>@ AND AXdI. Jo=5M THEHN 1286

718 HEXTIHEXT

2a5S FYy=@:Fx=a

92

818 FOR Hx=1 TO NP

828 Y=AYNI(NE, 1)1 Z2=A%INK. 2>

2848 U=@:H=0:L=0a: K=a: SM=2: F¥=a: Fy=@a

2858 FOR I=d{VY-340%—-CW{350+38 TO V-S50¥—-iY:43+1 STEP -1

268 FOR J=({2-180%—{Z2{17+20 TO Z2-Sr¥-{Z2>45+1 STEP -1

3768 IF BX{(J,I)=Hx< AND I=Y THEN U=U+1:G0TO 33a

886 IF I=Y AND BX%{J.I><>@ AND U>a THEH U=a:G60TO 398

88% IF B%X{J.I>=8 AND I=Y AND UJ>SM THEH FxX=J:FY=1:35M

89@ IF BX(J, I)=Hx AHND J=Z THEH H=H+1:G0TO 31@

98@ IF J=Z2 AHD BXCJ.I><>@ AND H>a THEHWH H=@:G0TO 314

a5 IF BXIJ. I>»=8 AND J=Z AHD H>3M THEWN Fx=J:F4Y=I1:35M=H

91@ IF BXCJI.I0=H¥ AMD YV=I>=0CZ~JT> THEHW L=L+1:G0TO 334

928 IF VW=-10=:{Z2-J> AHD BX<J,I><>8 AND L>3 THEHW L=@:G60TQ 33a

925 IF B%C T, 12=8 AND Y-1>=0CZ2~-T3 AND L>3M THEHN Fi=J:FY=1:SM=L

93@ IF BXCJ:I0=HX AND <V-I1>={J-2> THEH K=K+1:G0T0Q 3Sa

94@ IF V-I>0=0(J-2) AND BX{J,I><>a AND K>3a THEHN K=a:G0T0O 354

945 IF BXCT, I102=0 AHD (Y-I>=0CJI-2> AHD K>5M THEHN Fx=J:FY=I1:3M=kK

9568 NEXT:HNHEXT

968 AMINK, Io=UIANINK, 40=H

I7A AMINKE, So=LtAMINK. o=k

988 NEXT

996 FOR I=1 TO HF:FOR J=3 TO &

1888 IF FX>8 AND FY>@ AND RMCIs

1816 HEXTIHNHEXT

162é GOTO 1146

1030 2:s33¢g3c8eeezsg2seeesz2sse

11aa ’1=7+INTf3*RHDu1>>=V1=?+INT(24*RND'1‘3=F3=1

1118 Z2=INTC3¥%RHDC1 20 —1 s VZ=INT{3%RHNDC 1 > 2 ~1

1115 IF Z22=8 AaND YZ=8 AHND CT>1 THEN 1144

1117 IF Z22=6 AHD YZ=8 THEH 1164

11286 FOR I=1 TO S:Z23=21+Z22%I-10:V3=Y1+Y2%{ 11

1125 IF BX(23,¥3>>83 THEHW IF BX{Z3,¥3><>NC THEH 111a

1138 SR{I,10=23:15R{I.2)>=Y31NEXT:CT=1

1148 IF BXO(SRICT:10,8SRICT.200= THEH BX{SR{CT-12,.5SR{CT-220=NHC:CT=CT+1:
GOTO 113a

=5M THEH 126a

e

115@ CT=CT+iCT>12:21=SR{CT-12:V1I=5SRICT-2>»:60TO 1114

1160 2223838588222z

1198 Z=SR{CT-1,12:V=5SR{CT-1,22:G03UB 1Z28:G50T0 344

1208 Z=FX:Y=FY:G0SUB 1226:G0TO 344

1218 =zssszssssssesssesssesseassaseys:

1226 POKE 1864+40%Z2+Y.321:POKE SS33&+4a¥2+Y, CRIHC) : RETUREN
1230 =383z

will act as another opponent. Each player will try to place five dots
in a row on the board to win. Each player will be assigned a specific
color based on his or her move number. The color of the current
player will be displayed in the corners during his or her turn. The
players take turns, with the computer moving last. The more
players there are, the longer it takes the computer to decide where
to place its dot. If a player has three or more dots in a five dot space,

93

the computer will attempt to block his or her next move. The
program will check for a winner after each player has made a move.

When it is your turn, select the row and column of your
proposed move by typing something like J 12. Then press the
RETURN key. If the letter or number is invalid, the computer will
keep on blinking the square in the upper left corner and seek
another input. A dot will appear and blink rapidly in the
appropriate position after valid a valid row and column numbers
are entered. If you want to move there, press RETURN again and
the dot will remain. Otherwise press another key to reselect. The
first player getting five dots in a row wins the game, and the
program will stop.

LINE EXPLANATION

10-60 This is identification information for the program.

70 This line clears the screen.

75 This line prints the name of the game on the screen.

80 This line prints two blank lines.

81-99 These lines print the instructions for the game.

100 This line dimensions the array to store the moves on
the board. The board uses 22 rows and 38 columns.

105 This line dimensions the arrays used in storing

moves and in keeping track of the computer’s
anticipated moves.

106 This line dimensions an array to store the colors of
the dots for each player. The I loop reads in the
color codes for up to five players, including the

computer,
107 This DATA statement contains the color code data
for the CR array.
109 This line tells you that the computer will move last.
110 This line requests the number of human players, NP.
120 This is an error routine in case you entered the wrong
number of players (outside the range of 1-4).
130 This line clears the screen.
135 F3 is a special flag used for the start of the game.
140 This line fills the entire screen with dots that are

not turned on.
150-160 This I loop prints the letters that label the 22 rows.
170-210 This I loop fills in the numbers for the 38 columns
on the screen.

215 NC is the number of the player whose turn it now is.

220 If the computer has just played, the player-number
counter is reset.

230-240 These lines color the three corners (top right, bottom

94

245

250-260
270

280

290

300

310

320

330

333
335-480

335
340

350

360
370

375
380

390

400

right, and bottom left) with the color of the current
player.

This line prints the home character and colors the
upper left corner with the color of the current
player.

These lines read the keyboard for the move position.
This line closes the keyboard file and finds the value
of Z using the letter that was entered for the row.
Z is now the index of the row for the move. If an
invalid letter or character was entered, the key-
board is reread.

Y is the number of the column that was entered. If
an improper number was entered, the computer will
reread the keyboard.

If the position just entered is already occupied,
control goes back to line 245, and the keyboard is re-
read.

This line places a colored dot at the indicated
position.

This line reads the keyboard, and blanks the dot out.
If a key is not pressed, control goes to line 300. This
will cause the dot to blink on and off rapidly until
a key 1s pressed.

If the key pressed was the RETURN key, control
goes to the subroutine at 1220 and then to line 340.
If it was another key, control goes to line 245 to read
the keyboard again.

This is a separation line.

This subroutine searches for a winner after each
person makes his move.

This line identifies this subroutine.

This line stores the player’s position in the board
array and sets the flag variables for the vertical,
horizontal, and diagonal indicators to zero. If one of
these variables becomes 5, there is a winner.

The I loop searches up to 5 columns to the left and
to the right for determining the winner.

The] loop searches up to 5 rows above and below.
If there is a player’s dot in the same column as this
move occupies, then add 1 to V and branch to 390.
If V reaches 5, there is a winner and the game is over.
If the dot in that column is someone else’s, V is re-
duced to zero because of a “block.”

If one of the player’s own dots is in the same row,
it is increased by 1 and control goes to 410.

If H is 5, the game is ended.

95

410

415
420

430
435
440
450

460

470
480
485
490-1020
490
495
496

500

505

510

520

550

560

570-645

650

96

If a dot is in the game diagonal line, L is increased
by 1 and control goes to 430.

If L is 5, the game is ended.

If that dot belonged to another player L is reduced to
zero.

If a dot is in the opposite diagonal, K is increased by
1, and control branches to 450.

If K is 5, the game is ended.

If that dot is someone else’s, K is reduced to zero.
If any of the variables equals 5, the home character
is printed and the game is ended.

This line ends both loops and sets two elements of
the A% array to the row and column positions of
this player.

This line increases the player number by one. If itis
the computer’s turn, control branches to line 495.
Otherwise control goes to line 220.

This is a separation line.

This subroutine determines the computer’s move.
This is the name of the subroutine.

This line colors the corners the computer’s color.
This line prints the word COMPUTER in the upper
left corner.

If it is the start of the game, control goes to the
subroutine at line 1100 to find 5 blank squares for
the computer’s proposed moves.

This line set the computer’s row and column choice
to zero.

NX is a loop to check out all of the other player’s
moves.

Y and Z are set as the row and column of the
player’s last move, as stored in array, A%.

This line sets various variables to zero. SM is the
sum variable, which is used to check the amount of
dots that a player has in a row.

this I loop checks the columns up to five positions
from the player’s last move.

This] loop checks the rows up to five squares above
or below the player’s last move.

These lines are like the lines used to check for a
winner in the routine in lines 335-480. FX and FY
are set to the row and column numbers of blank
positions that can be used to block the opponent’s
moves. The computer will attempt to block if a
player has 3 or more dots within a space of 5 squares
in a row, column, or diagonal.

This line then ends the] and I loops.

660-670

680
690-710

805-1010

1020

1030
1100-1150

1100

1110

1115

1117

1120

1125

1130

1140

1150

1160
1190-1200

These lines store the number of dots for the vertical,
V, the horizontal, H, and the two diagonals of each
player in the A% array.

This is the end of the NX loop.

These nested loops check to see where a possible
move to block an opponent was recorded in A%. If
one was found, a branch to line 1200 is made.
These lines are run if the computer did not find a
counter move. These lines examine the series of
moves from the other direction, because this possi-
bility was not taken into account by the first routine.
Notice that the I and] loop have STEP — 1 and go
from the end to the beginning, relative to the first set.
If a counter move was not found or was not ap-
propriate, the computer branches to line 1140 to
make its own line of moves.

This is a separation line.

These lines select and fill five unoccupied positions
on the board for the computer.

This line selects a starting row and column position
for the computer. It sets the start flag variable. F3,
to 1 to indicate that it is no longer the start of the
game.

Z2 and YY are each an integer, —1, 0,or 1. These
represent the increment added to the row and
column from the starting row and column position.
If Z2 and Y2 are both zero, and the computer has
already filled at least one of its positions, control
branches to line 1140.

Otherwise, a new series of squares is obtained for
the moves.

This I loop positions the dot or checks for an op-
ponent’s dot in one of the computer’s proposed
positions. Z3 and Y3 are the new row and column
of the proposed move.

If that position is taken by another’s dot, control
branches to line 1110.

This line stores the move in array SR and sets CT to 1.
This line stores the proposed move in the board
array, B%, increases CT by one, and branches to line
1190.

This line subtracts 1 from CT, if CT 1s greater than
1, and then starts a line of dots from that position.
This is a separation line.

Line 1190 sets the z and Y variable at the last stored
SR position, calls the subroutine at line 1220, and
then branches to line 340. Line 1200 does a similar

97

thing if FX and FY were used above.

1210 This is a separation line.

1220 This line prints a dot on the board and colors it
with the player’s color. Control then returns to the
calling section of the program.

1230 This is the last line of the program.

Program Operation. After you enter the program and type
RUN, the computer will display the name of the game and the
instructions. It will request the number of human players and then
proceed with the game. Players must try to develop strategy to win
the game. The computer will not save strategy in this game but will
attempt to win by blocking opponents and making its own line of
five dots to win. Players must try to stop each other and the com-
puter.

98

Chapter 6

Pattern Recognition

In this chapter you will find two short programs concerning
patterns in numbers and in literal strings, and a long program that
you might find useful for word processing or text editing. In that
program you can search for a particular word in the text and have
the computer change all occurrences of that word.

WAYS OF FINDING PATTERNS

Pattern recognition is an area of artificial intelligence. If
someone gave you a series of numbers, could you predict the next
number in that series? Chances are that you could. You might
notice a pattern in the sequence and then extrapolate the next
number. When dealing with words, you might know what the
person is going to say next, or you might recognize patterns that
help you understand what the person is talking about.

Differences Between Numbers

The first program that we will examine will find patterns in
numbers by looking at the differences in value between the
numbers in the series. Then it will look at the differences between
successive differences and so forth until there is one value left.
Then the computer will use that value and “‘work forward” again
to predict the next value. It then asks you if that was the value that

99

you were looking for. If it is not, it will search through some other
stored sequences to attempt to answer the problem. Finally it will
ask you for the value. Finding differences between numbers is one
way of finding patterns. You might look for multiplicative
differences between numbers as well.

The Grouping of Strings

In the Perfect Logic program, you entered names of things and
the computer grouped things in sets based on what you entered.
This is a good example of looking for patterns in strings. The
computer broke up your sentences or questions and attempted to
answer or respond to your input. Language processing, then,
overlaps the area of pattern recognition.

There are other ways to find patterns in strings. One way is to
store strings along with whatever follows them. The next time that
the computer recognizes the string, it will pring out whatever
followed it. In the second program in this chapter, you enter the
letters from A to G, which represents the musical notes. After you
enter the same set of letters again, the computer will predict the
next letter that you will type. This is a simple example of string
recognition.

The final program is a word processor/text editor. In that
program you can easily replace incorrectly spelled words or
phrases in whatever lines that you like, and the computer will
change those lines of text. This program is a bit out of the
mainstream of artificial intelligence, but it is an interesting and
useful area to learn about. You might consider an artificially
intelligent word processor, one that would outthink the one in this
book.

Interpolation and Extrapolation

Many times a value that yow want to find can be found by
interpolation or by extrapolation. Interpolation is finding an
answer between two similar or close answers. For example if you
wanted to predict a number between two numbers, the best guess
that you could give would be the average or mean of those two
numbers. If you want to find a value outside of two values, you
might construct a regression line and use that mathematical
formula to calculate the value in question. All of this leads into the
area of statistics.

Statistics is a very powerful tool for predicting where numbers
will fall and how events will occur. It can be used in conjunction
with artificial intelligence concepts—there is simply so much
territory to cover that the subject is out of the scope of this book.

PATTERN RECOGNITION PROGRAMS IN BASIC

Let’s examine the three pattern recognition programs written

100

in BASIC for the Commodore 64. The programs deal with patterns
in numbers, patterns in strings, and patterns as they are used in a
word processor.

Patterns in Numbers

The program in Listing 6-1 allows you to enter five numbers
of a series. The computer will try to predict the sixth number in the
series. If it can’t find that number, it requests an answer from you.

This program displays artificial intelligence by calculating or
retrieving this sixth number. The program stores answers that are
different from the one that it calculates. That way, the next time
you enter that series of numbers, the computer can retrieve the
answer. The same series can have different sixth numbers. The
computer will search down through the list and quiz the user on
possible answers.

Here’s a line by line explanation of the program.

Listing 6-1 Patterns in Numbers

1a
2a
3a
4@
Sia
&a
va
(=
S8
LS
1aa
11a
1z@
13@
14a
15@
ie@
i7a
iza
19@
Zaa
21a
224
238
24a
25a
268
2va
258
29a
Jaa
e

328

REM ¥ PATTERHS IN HUMBERS sk

REM WRITTEW BY TIMOTHY J. O"MALLEY
REM COPVRIGHT 139284. ThE BOOKS INC.
REM CWRITTEHW FOR THE COMMODORE &4

DIM ACGE, &0 -BFC 1860, CH010@01CT=a
PRINT "{CLRX":TABCI) "wx¥ HUMBER GUESSER #®¥x"iFRINT
PRINT " ENTER FIVE HUMBERS. OME AT A TIME."
PRIWT "I WILL TRY TO FPREDICT THE SIXTH NUMEBER"

FRINT "IM THE SERIES.":PRINT

FOR J=1 TO S:INPUT AL, JoiNEXT

FOR I=2 TO S:FOR J=1 TO &-I

AL Jo=AI-1,J+10-R0I-1.00

HEXT J-1

HLE- 10=R{5.10

FOR I=5 TO 1 STEP -1

AL V-Io=ACl.e-12+AlI+l.6-1>

HNEXT

H=RA{1, 621 PRINT:PRINT "I5 IT"STR$CH>:
INFUT A%

IF LEFT#CA$+"Y", 10="y" THEN PRINT "GOOD'":PRINT:GOSUR 34@:G0T0 7S
ME="":FOR HM=1 TO S:H$=H$+STR$CAC1,. N 3t NEXT

IF CT=@ THEN 3&@

FOR I=1 TO CT

WE=REC I IF H$<:V$ THEN 29@

KE=CHLIYIPRINT "IS IT "x$:

INFUT a3

IF LEFT$CAS+"Y ", 1o="" THEHN PRINT "GREAT'":PRINT:GOSUE 3I4@:G0TO 7S
MEXT

INPUT "WHAT IS THE AMSWER":Z$

CT=CT+1:B$(CTI=H$:CHCTI=2%

PRINT "I°LL REMEMEER THAT!":PRINT:GOSUER 3I4@:G0TO 7S

101

J4@ FOR I=1 TO S@aa:HEXT:IRETURHN

I50 stz

LINE

10-60
70

~1
ot

80-100
110

120-140

150

160-180

190

200

210

220
230

240-290

300

102

EXPLANATION

This is the program identifying information.

This line dimensions the arrays used in the program.
A is an array used to store the 5 numbers that you
enter. B$ is an array for storing up to 100 special
series of numbers. C$ is the array that stores the sixth
number in each of the stored series in B§. CT is a
variable used as a counter for the number of stored
series in B$.

This line prints the CLR character and prints the
title of the program on the screen.

These lines print the instructions.

This line lets you enter the 5 numbers into the A
array.

These lines find the arithmetic difference between
the numbers in the series, then find the differences
between those differences, and so forth until it gets
down to one number.

The last number is duplicated in the sixth row of the
array.

The process is reversed with the duplicated number
being added to the differences to calculate the sixth
number in the series.

This line asks if its number is correct. STR$ was
used so that there would be no space between the
number and the question mark of the input.

This line solicits a YES or NO answer to the above
question.

If the first letter of your reply is Y, the computer
prints GOOD! then calls the subroutine at line 340
and branches back to line 75 for another series of
numbers.

This line stores the series of numbers as N§.

If no series of numbers were previously stored, the
computer branches to line 300 to request the answer.
This I loop runs through the stored series of numbers
searching for a match. When it finds one, it prints
out the answer stored in C$. If that is the answer, the
computer replies, GREAT! then calls line 340 and
goes to line 75.

If the answer is not found, the computer gives up
and asks you for the answer.

310 This line increments the CT counter and stores the
series in B$ and the answer in C$.

320 The computer acknowledges the input of the correct
number, calls line 340, and branches to line 75.

330 This is a separation line.

340 This subroutine provides a time delay of a few

seconds before continuing the program. You might
use TI$ as a timer instead. You would set TI$ and
then check it against a predetermined value.

350 This is the last line of the program.

Program Operation. When the program is entered and RUN,
the computer will display the program title and the instructions.
You are to enter five numbers, one at a time into the computer. The
computer will ask you if a certain answer is correct.

Figures 6-1 and 6-2 show the operation of the program. Figure
6-1 shows the first time the series was entered, and Fig. 6-2 shows
the second time the series was entered. You might want to change
the program to search through the stored answers before trying to
calculate an answer. You might work backwards in the list to
retrieve the last answer stored; use a loop with a STEP —1.

Patterns in Strings

The short program shown in Listing 6-2 attempts to deter-
mine the next letter that you will press based on what you pressed
before.

The computer will take the last four letters that you entered
and convert them to a code to store in memory. If you enter four
letters that have been saved before, the computer will print out (in
cyan) the letter that it thinks you will type next.

4k HUMBER GUESSER %X

EHTER FIVE HUMBERS. ONE AT A TIME.
I WILL TRY TO PREDICT THE S1XTH HUMBER
IH THE SERIES.

IS IT=-227
WHAT IS THE ANSWERT Z
I'LL REMEMBER THAT!

Fig. 6-1. The first time that a series is entered into Listing 6-1.

103

k. MUMBER GUESSER w0k

ENTER FIUE HWUMBERS. OME AT A TIME.
I WILL TRY TO PREDICT THE SIKTH HUMBER
IN THE SERIES.

Fig. 6-2. The second time a series of numbers is entered into Listing 6-1.

Listing 6-2 Patterns in Strings

18 REM ®%%x PATTERNS IH STRIHNGS ®%%

28 REM WRITTEH BY TIMOQTHY J. O MALLEY

38 REM COPYRIGHT 1334, TAB BOOKS INC.

4@ REM {WRITTEN FOR THE COMMODORE &4>

=8 RssisszszszasrastravraeepTrranzeni:

SS DIM Z2%16e3G70:C=a

el LL=@:PRINT "{CLR> {WHTXENTER LETTERS A-G. {CYAHNX"
Y8 GET r\m$:IF \ps="" THEH 7a

30 A=ASCLASI-e4: IF A< OR A7 THEH 7a

P8 C=C+1:PRINT As$:

1908 M$I=RIGHT$:" @ @ @ A@"+ME+STREA>. 1@

11@ HL=G:FOR =& TO 4

128 HL=UAL MIDS I ME, I*2+1. 200 T I+HL

138 HEXT:IF Z%0iHL? THEH PRINT "JWHTX"CHRE#$CZXNOHL Y +64 0" OVRANT"

148 ZXiLLoy=R:LL=HL: GOTO A
150 s2te3s328asemsssdaansesssgignis

This program might be useful when you are experimenting in
music because the letters entered must be in the range of letters
from A to G.

Here is a line by line explanation of the program.

LINE EXPLANATION

5 This is a separation line.

10-50 This is program identification information.

50 Z% is a very large array used to store all the possible
combinations of the codes of the letters A-G.

55 This is a separation line.

104

Listing 6-3 A Word Processor

1@
z2a
Ja
4a
@
aa
va
3a

25

26
2@
91
92

rem ward Fracessor version

rem written

rem coFrwrisht 1934,

rem “written

60-70 These lines prompt you to enter letters from A to G.

80 If the letters are not within this range, they are

rejected and the program branches back to line 70.
90 This line prints out the character that you entered.
100 MS is the string array of the four letters that you

entered. If you just started entering letters, M$ is
padded with zeros.

110-130 The I loop converts the numbers to a single value,
NL. If the value of Z% at index NL is found to be
greater than 0, the computer converts it to a letter and
prints it out in white.

140 The current four letters are stored in Z%, LL is set
to NL, and the program branches to line 70.
150 This is the last line of the program.

Program Operation. After you enter the program and type
RUN, the computer will prompt you to enter some letters from A to
G. Youcantypethese;ifafourletter group matchesagroupstored in
memory, the next letter from thatgroup will be printedin cyan. The
ones that you entered are printed in white.

A Word Processor Program

The program shown in Listing 6-3 works as a word
processor/text editor. It makes your Commodore 64 become a
simple, yet powerful tool. You can enter text, print the text on a
printer, view the current text on the screen, save the text on cassette
tape, insert lines of text, load text from cassette tape, delete a line of
text, edit a line of text, change words in the text, or move lines of
text. Listing 6-4 shows the lines that you will have to change or
insert to use the program with a disk drive. All the rest of the
program would remain the same.

=] o

be timothy J. co’'mallew

tab bococks. inc.

far the commodore &4)

R R R R N

dim c#{SS@ :c=1iprintchr$i140:chr$iSOschr$i3s
bf=frel@)ibf=bf-(bf{@O¥ESE38trrintchr${14705 tab (SO "kkk" 1 hf: "BYTES

FREE *%%"

if Bf<S@A then Printiprint” Sk LOW MEMORY! SAVE TEXT! **%":iacto

2a

Frint
FrintiFrrint”
rrintiprint”

WORD FPROCESSOR - VERSION 7 "

fl1 - PRINT text aon Frrinter"irrint
Frint" f2 - WIEW current text"ieprint

105

I3 Frint" f3 — SAVE text an tare'"irprint

34 Frint" fd4 — INSERT a line of text"irrint

S Print"” S = LORD text from tare"irFrint

FE Frint" f&é — DELETE a line of text"iprint

37 Pprint" 7 — EDIT a line of text"iFrrint

I8 Frint” f& — MOVE lines of tesxt"

39 printiprint" Lar simele TYFE text nowd"irrint
188 b$="":print"__":

118 get a$:if aF="" then 118

115 lb=lenth$)

126 ifa$=chr$iZOrthenb$=left$ibE. lb+1b>A0 3 cFico=bFirprintabiads" _"312
actolla

125 1if 1b>8 then 145

138 if as=chr$133> then 1&4:irem f1

135 if as=chr$i134> then 200:rem 3

136 if at=chr${135> then 286@:rem S

137 if at=chr$i136> then 3I78:rem V7

138 if a$=chr$l13EZ7> then S28:rem 2

139 if at=chr$ 138> then &581Irem 4

148 if a$=chr$i1339> then 7I980:rem 6

141 if a$=chr$i148)> then 298I rem 3

145 ifa$=chrFii132thenrrintchr${2@rsa$icFico=cHFico+" "+abic=c+liactalin

15@ ifa$=" "andlb>éSthenrrintchrEiZ@ricHicr=cHFicr+" "+chr$ilIo:c=c+ls
actal@d

168 printchr$c2arix$:" __"3ib$=b$F+afic¥ico=b$Fiocto 118

164 print"{CLRE>":

165 print" k¥ TEXT FPRINTIHNG ROUTINE *%¥":pprint

166 inFut"Press RETURH when readw. OK": 1%

178 corend 4.7 cmd4g

188 fori=ltociprintcHFiid

185 ifi-3@=intli-J@8)thenfordi=ltcdirrint: nesxtd

187 nexti

198 Fprint#d4: closed: scta 3@

208 print"CLRE>":

218 Frint" *x% TAPE FILE SAVING ROUTIHE *k&":ppint

228 d$="file"tinrut"What file name":d#$

278 orenl.1-1.d¥%

248 for i=1 to ¢

245 z$=c¥ii>

258 print#l.leftdizé. lenizdo+ leniz$) @00

268 next i

2va closelracto 3@

288 Frint" CCLRX":

298 Frint” *%% TAPE FILE LOADING ROUTINE *¥x%":print

Jaa de=""tinFput"What file name":d%

318 orenl.1.8.d%

328 get#l.ef

338 cHlicor=cElcort+ed

Z4@ ifef=chr$il130thenc=c+l

@ if =t=@ then 326

e c=c—1ltcloselisata 38

IFE Fprint" {CLRX":

8@ print” %% LIME EDITING ROUTIHE #%x"iprint

385 sasub 3I90: actcdSa

39a
395
396
408
41a
415
428
43@
43S
44a
45a

Frint"Current text contains":ic—-1:" lines."tFprint: rE="n"
inFPut"Want displaw of text da-no"if$iprint

if f$="n" then return

li=1tinput"Start at line":l1l:Frrint

12=112inFut"End at line":12

rrint"{CLRX>":

fori=1l1 to 12

Frint i3"> "3cHlios

if lenic$iidrr=@thenFrrint

next itFrrintireturn

fF="n"tinput'Want to change an entire line <w- - n>":7t$
iff$="n"thenl@sa

13=11:inFut”"Which line":13

printierint"Simely tuere in the new line no. "3 133" now.
acsub 435 actcSoa

b$=""tprint"_"3

geta$:ifa$=""thendz3a

lb=lenib$)
ifa$=chr$Z@>thenb$=lert$ bF,. lb+I1bL>A0O1cHF 130=bFirprintariads " __"312
acto 49@

ifa$=chr${130thenrrintchr$ (2003 a$: cF130=cH$130+" "+a$ireturn
Frintchr$i2@o:a$:" __"s:bd=b$+a$icH 130=b$: actad3a
FrintiFprint"Line no."313:"is now chansed.":irrint

actalI’E

Frint" {CLR>":

Frint" *%¥% TEXT WIEWING ROUTIHE *%¥":print

Frint"Current text contains"sc-1:"lines."iFrrint
ld$="v"2inFut"Want line numbers disrlaved <9 - n2":ld$iprint
Frint"Press any kew to disFrlavy ur to 18 lines"
geta$:ifa$=""thenSea

fori=ltoc—-1 =ster 1@

Frintchr$il147 03

fordi=i ta i+9

ifld$="u"thenFrrintiz"> "3

FrintcHilin:

if c$lio="" then Frint

nesxtd

Frintiprint"Press ane kew to continue."
geta$iifad=""thend2a

nexti

actol@

Frint"{CLR>":

Frint" *%% LINE INSERTION ROUTIHE *%%":pprint

acsubk 3I9@:print: fE="n"

Frint"Do wou wish to insert a line of”
inFut"text within the current text (ua-n>":f$
if f$="n"then 3@

nbk=@:inFut"Before which line number":nk
if nbdl or nb>SSE then Yaa
Frrintirrint"Simrle tuyre in the new line.
13=@: acsubd435

FrintiFprint"Line is being inserted.”
fari=c to nb ster -1

107

cFlid=cHii-1>
nexti
cFinbr=cE{@n
cH{@r=""1 c=c+ligotocSa
Frint"{CLR>"3
Frint" *%k LINE DELETION ROUTINE *%%x"iprint
goasub 39@iprint: rE="n"
inFut"Do wou wish to delete a line (9 n2"3 f$
if fF="n" then 2@
nb=@:inFput"Which line number":nb
if nb<@ or nb>5S58 then 34@
rrintirrint"Line no.":inbi"i=s beins deleted."”
for i=nb to c—-1
cFlid=cHCi+1D
nextiic=c—-1iacta?3a
Frint"{CLR>":
Frint" *¥¥k | ITNE MOUING ROUTINE *%%":print
gosub IF@iErint: fE="n"
tnrut"Do vou want to move some lines (v n>":if$
if f$="n" then 3G
sli=@tinput"Startineg at what line no."isl
i1feld@d or =1>558 then 4@
s2=@:inFut"Ending at what line no.
if €248 or s22>550 or s2<s1 then 9%
inFut"Inserted before what line no."inb
if nbi==s1 and nbi=s2 then &4
if nbdl or nb>5S56 then 9604
rrintiprint'Lines are now being moved."
ti=—1¥%{nbd{sldit2=—1%nbisl)
for i=sil¥tl+s2%12 to s2¥%tl+=1%t2 ster t1-t2
cFl@)=cH$1)
for Jd=i+t2-t1 to nb-t2 ster t2Z-ti
CEFId+t1-t20=cH D
nestd

"i1s2

cFinb—t2i=cHi@
nb=nb+tl1-t2
next i

cgl{@ar=""
actol9a

Frintiinput"Want to chanse a wordsrFrhrase (9 -r2"3f¥irprint
iffE="n"thensa

inFut"Start at line":lliprint

12=112inFut"End at line":12tFrrint

Frint"What ORIGINAL word or Fphrase?"iscsublZZ@trrint: fl1$=" "+fl$+
Frint"What HEW woard ar phrase?":gosublZé@iprints F28=" "4+ f2$+" "
1fl=lenifl$>iprintchr${1472:: fori=11 ta 12

11%=" "+cHlid+" ":1lll=lenilis)

if 111<1flthenizia

far Jd=1talll-1f1

1fFiF=mid$C11$.40.1F1>thenl30E

next diFrrintc$din:

next itscta 236G

flg=""

1238 gset al$iif als="" then 1234

1248 if al$=chr$<13> then return

1258 printal$s:fis=Ffils+alsiacta 123G

1268 f2s=""

1270 set al2%:if az$="" then 1270

1280 if aZ$=chr${13> then return

1298 Frintals$:: r28=f2%+a2¢i1acto 1270

1360 11$=left$(11$, i-10+72%+riaht$(11$.111-1F1+1—i>
1318 c${io=mid$<11%$.2: len{li$)-20iprintckiidizacta 121G

Listing 6-4 Changes To Use the Program on Disk
33 Print" f3 - SAVE text on disk" Print
99 print" 9 = LOAD text from disk" print

219 print" #%¥#% DISK FILE SAVING ROUTIHE %" print

211 if df=8 then 213

212 print "Do gou wapt to zave thiz file under the same filename that
aony

213 doput "just used"isnE) B

214 iflettFcznt, 10="9" then df=dfF oPenlS. 5, 15 Print#lS. "=0: "+d%:
clozelS:a0to236

219 %ﬁint"ﬂmo not use the name of a file that iz alreads on the dizk.
‘ll

2@ dF=""inPut"lhat file name".d$

221 if d#F="" then 228

222 dff=d$ di=1

238 oPenz.2.2."A: "+d%+" 2, 0"

248 for i=1 to <

245 z¥=cF(i)

25@ print#2, leftsizd, lendzFi+lentzd)r 2000
268 next i

278 close2: aoto A

280 Frint"a";

290 print” *#%% DISK FILE LOADIHG EOUTIHE ###":print
308 dF=""inPut"lhat file name".d$

385 dff=df df=1

310 oPenz.S.2."0: "+dE+" 5, 0"

320 2et#?. ef

338 cFicoi=cEci+ed

348 ifef=chr$il3ithenc=c+1

358 if st=0 then 224

360 c=c~1:closez anto 24

This program will print upper- and lowercase letters on the
screen. You simply start typing what you want. The program is
constructed to output up to 80 characters per line of text. You may
change the program to alter this. Two screen lines of text constitute
one line of printed text. As you enter the text, the computer will
automatically break the lines at the first space after the 65th
character printed on the current line of text. That means that you
simply have to keep typing without worrying about margins.

109

When the text is printed out, there will be 30 lines of text per page
(8.5x11) with a break between sheets.

You can load new text from cassette tape (or disk if you use the
lines in Listing 6-4) at the end of the current text. You may then
move those lines of text to wherever you want. The program is
designed to hold up to 550 lines of text before the Commodore runs
out of memory space. There is a warning when the memory is low.
You can then save the text or print it out.

When you are typing the program in for the first time, you
should press the Commodore key (G=) at the lower left of the
keyboard along with the SHIFT key to switch the computer into
upper/lowercase character mode. Then enter the program as
shown in Listing 6-3. A description of the lines of the program
follows:

LINE EXPLANATION
10-60 These lines identify the program.
70 This line dimensions the string array, C$. C$ will

hold up to 550 lines of text. Each line in this program
has up to 80 characters. When it prints out, there will
be 30 lines on each 8.5 by 11 inch sheet of paper. The
variable C is a counter for numbering the lines of text
in the C$ array. CHR$(14) is the command to switch
to lower case. CHR$(5) is the command to print in
white. (You might want to change this code to
something else.) CHR$(8) disables the use of the
Commodore & SHIFT key combination. This keeps
everything in the upper/lowercase character mode.

80 BF is the number of bytes free. This line prints the
number of bytes of memory left for use in the text at
the top of the “menu” screen.

85 If the available bytes left fall below 500, a special
message 1s displayed telling you to save the text.
Then you can press the RUN/STOP button, type
RUN, and press RETURN to start new text. Other-
wise you will run out of memory space and your
work could be lost. You might want to modify this
program to automatically save the text on tape or
disk when the memory is low.

86 This line prints a blank line.

90-99 These lines print the name of the program and the
different modes of operation. By pressing one of the
(function) keys, you can alter the operation of the
program. When you are typing text, press one of the f
keys immediately after pressing the RETURN key.
(The RETURN key ends a paragraph or skips a

110

100

110

115
120

125

130-141

145

150

160

164-190

line.) You may also simply start typing. What you
enter will be at the bottom of what you entered
beforehand.

BS$ is an empty string; this line prints the underline
character to act as a cursor.

This line seeks to read a character from the key-
board. If no key is pressed, the program keeps
running this line.

LB is the length of BS.

If A$ is the DELete character (code 20), the last
character is dropped from B$, the current [ine of text
is made the same as B$, the delete character is printed
twice, the underline character (the graphic character
under the @ sign) is printed, and control goes to line
110.

If the length of B§ is greater than zero, control goes
to line 145 (in other words, after a RETURN and a
pressed key).

These lines cause the computer to branch to various
routines based upon the function key that was
pressed. f1 is for printing the text on a printer; {2 is
for viewing the current text on the screen; {3 is for
saving the current text on cassette tape; f4 is for
inserting a line of text within the current text; f5 is
for loading some text from cassette tape; {6 is for
deleting a line of text from the current text; {7 is for
editing the text; f8 is for moving lines of text within
the current text.

If you pressed the RETURN key, the computer will
erase the cursor from the last line, print the
RETURN character, store the line of text in C$,
increment the line counter and branch to line 100.
If you pressed the space bar and the length of the
current line was over 65 characters long, it’s time to
go to a new line of text. The computer will erase the
cursor and add a RETURN character at the end of
that line of text. It will increment the counter and
branch to line 100.

If the key that you pressed while typing was the DEL
key, the program will erase the last character, print
the cursor at the old position, update C$ and B, and
branch to line 100. This is the end of the main
program.

This subroutine prints out the current text on paper
using a Commodore compatible printer. (I used an
EPSON printer and a CARDCO interface, but many

mm

164
165-166

170

180-187

190

200-270

200
210-220

230
240-260
270
280-360

280
290-300

310
320

330

340

350

360

112

others will undoubtedly work without any trouble at
all.)

This line clears the screen.

These lines identify the mode and give you time to
turn on the printer and make sure that it is ready.
This line opens a file to the printer and instructs
the printer to print in upper and lowercase charac-
ters. CMD4 means that all the following commands
are for the printer.

These lines print out all of the lines of the stored
text. After every group of 30 lines, six blank lines are
printed. This way there are 30 double spaced lines
per page with margins at the top and bottom of each
sheet. You can change this if you like.

This line closes the printer file properly and
branches back to the main program.

200-270

This routine saves the current text as a tape file.
You might want to convert this if you want to save
your text on disk.

This line clears the screen.

These lines identify the mode and request the name
of tape file. If you simply press RETURN, the file
will be saved under the name, “file”.

This line opens the file for saving on cassette tape.
These lines save the text on tape.

This line properly closes the tape file and is the end
of the tape saving routine.

This routine loads tape files into the memory of
the computer.

This clears the screen.

These lines print the name of this routine and re-
quests the name of the tape file to be loaded. If
nothing is entered, then the computer will load the
first file that it comes to on the tape.

This command opens the tape read file.

The computer will read one character at a time
from the tape using the GET# command.

The character that it gets 1s appended to the end of
the current string member.

If that character is RETURN, then it marks the end
of that line of text and C is incremented by one.

If the status of the tape is 0, indicated by the Com-
modore variable ST, the computer continues reading
the tape file by branching to line 320.

Because the end of the file was read, C 1s decreased

370-510
370
380
385

390-440

450-460

470

480-482

485-496
500

510

520-640

650-780

790-880

890-1080

by one, the file is closed properly, and conuol
branches to line 80.

This is the line editing routine.

This clears the screen.

This line prints the name of the routine.

This line calls the subroutine that starts at line 390
and then branches to line 450.

This subroutine displays the number of current lines
of text and is used in some of the other routines. You
specify what lines you want to display. The line
number, a right parenthesis and the line of text wil]
be printed on the screen.

These two lines ask you if you want to change an
entire line of text. You reply either y or n.

You are asked which line to replace. Notice the use
of the value of L1 as a default value if you simply
press the RETURN key.

You enter the new line, and then the program
branches to line 500.

This routine allows you to enter the new line.
This line acknowledges that the line has been
changed.

Control branches back to the beginning of the line
editing routine.

This routine allows you to view the entire text on
the screen, 10 lines at a time. It’s fairly straight
forward and won't need a thorough explanation.
You may request to have the line numbers displayed
or not displayed. You press any key to display the
next screen of text.

This routine allows you to insert a line of text
within the current text. You can have some of the
lines displayed. To insert a line of text, you specify
the number of the line before which you want to
insert the line. The line will then be inserted before
that line. All of the other lines will be renumbered.
This routine allows you to delete a line of text. You
specify the line number and the computer will delete
it and move the lines that follow it to form a
continuous text. The program tells you that the line
is being deleted.

This routine allows you to move some of the lines
of text to another place in the text. You specify the
starting and ending line numbers of the lines 1o be
moved and the line number where they are to be
inserted. Notice the use of certain logical conditions

113

(line 980) to tell the computer where the lines that
have to be moved are located. This is necessary to
have the text become continuous once again.

1090-1310 These lines are part of the line editing subroutine.
They are used when changing a word or phrase.
When changing a word or phrase, it is important to
include the comma, period, or other punctuation as
part of the word or phrase. Otherwise the program
will not recognize it. There must be spaces on either
side of the word or phrase that you wish to replace,
unless it is at the beginning or end of the sentence.
This is done to prevent the computer from changing
parts of words that are themselves words, like AT in
the word SAT. You would like to change AT to ON,
not SAT to SON, for example.

Program Operation. After entering the program, type RUN.
You will notice that the characters will shift to theupper/lowercase
character set; thescreen will blank and then displayamenuscreenin
white letters. The Commodore will be locked in the
upper/lowercase character set mode. Whatever you type will be in
lowercase unless you press the SHIFT key while typing the letters.

You may simply start typing away and an underline character
will act as the cursor. You can delete characters by pressing the
DEL key, as long as the cursor has not jumped to the next set of
lines. Then you will have to use the editing routine to change
things. Don’t be concerned if the words are split up going from the
first 40 characters of the text to the last forty. They will be printed
out correctly on the printer. When you press the space bar after you
get past the 65th character in a set of two lines, the cursor will jump
to the next line. You can also make it jump to the next line by
pressing the RETURN key. If you keep pressing the RETURN key,
you effectively create blank lines. After you get to the bottom of the
screen, you will notice that the screen will automatically scroll
upward.

Start new paragraphs by pressing the RETURN key and then
spacing inaboutfivespaces. Then continue typing. Youcanchange
the mode by pressing the RETURN keyand then one of the function
keys (f1 — £8). f2 is usually a safe key to press because it merely
displays the text. After you press one of the [keys, the program will
cycle to the main menu again. You can press another f key or
continue entering the text by simply typing.

There is one problem that the Commodore has. As the
memory gets full, the computer will stop from time to time, just for
a few moments, but it can be a little aggravating. Fortunately the
keyboard buffer will hold about 10 characters, so usually what you
type in will not be lost, unless you are a fast typist or the memory is

114

quite full. This is the only real problem that I've noticed with the
system. The lack of 80 columns on the screen is a problem that can
be lived with unless you have some software or hardware that can
correct the problem. Otherwise the program is quite handy to use.

If you have a disk drive, you might consider having the
computer save texton disk. You might even change the program so
that all the text is saved directly on disk as it is typed. This might
solve the problem of the keyboard delay. You might change the
program to include graphic characters. You might also consider a
40-column screen editor where you can change any word or phrase
on any line so long as it is still displayed on the screen. There are
many possible improvements that can be made to this program.

115

Chapter 7

Other Areas in Artificial Intelligence

This final chapter will tie up some loose ends and present some
new topics including LISP, an artificial intelligence computer
language, robotics, creativity in computers, an artificial intel-
ligence operating system, the limits of artificial intelligence, and
computers specifically designed for artificial intelligence pur-
poses.

LISP: AN ARTIFICIAL INTELLIGENCE LANGUAGE

LISP is a LISt Processing language used widely on some of the
large computers involved in artificial intelligence. In fact a version
of ELIZA is written in LISP. Most microcomputers have been
unable to run the LISP language because it required such a large
amount of memory. It is now available for some larger personal
computers. It remains to be seen whether it will be available for the
Commodore line of microcomputers.

LISP was developed by John McCarthy from an original
language called IPL. LISP’s usefulness soon became apparent, and
now there are several dialects of the language around. The
language is the preferred language of artificial intelligence
programmers. Its speed of processing is much faster than that of
BASIC. The structure of the language is unique. The language
consists of atoms and lists. There is no distinction between

116

programs and data. LISP is very useful in recursion problems and
should be considered by anyone serious about artificial intel-
ligence.

ROBOTICS

Since the introduction of the first small scale microprocessor
controlled robot, there has been much interest in robotics. Some
have speculated that robotics might become an industry as
important as the microcomputer industry. This remains to be seen.
Nevertheless, a discussion of robotics would be appropriate in a
book on artificial intelligence.

Introductory Robots

Let’s talk about some of the robots that can be used at school or
home for learning about robotics. Let’s look at some that are
available now and some that may be available later.

I think that personal robotics really came into being when the
HERO 1, Model ET18 was introduced by the Heath Company.
This robot has a 6808 CPU with 4K RAM and 8K ROM. It can
detect sound and light. It can detect objects with a range resolution
of 1/4 inch to 8 feet. It can detect motion. It has speed synthesis and
a calendar clock. It has wheels and an arm to manipulate objects.
These features made this robot a real pioneer in the area of personal
robotics.

Other robots on the market include “turtles,” arms, and boxes.
The RHINO, by Sandhu Machine Design, and the MINIMOVER,
by Microbot Inc., are similar in that they consist of an arm that can
grasp and manipulate small objects. Microbot also makes a
TEACHMOVER robot arm machine. Terrapin Inc. makes two
turtles, the TASMAN TURTLE and the TURTLE II. These
robots can draw turtle graphics on paper. Other robots include
ITSABOX, by Technical Micro Systems Inc., and RB5X, by RB
Robot Corp. These robots vary in price and features.

If the personal robot industry takes off like the microcomputer
industry did, we might expect to see robots that would have larger
memories and more capabilities. This may or may not happen.
Small robots would probably be useful in small manufacturing
plants, but their real usefulness in the home is in doubt. They
might be useful as a mobile computer. I think the technology has
to jump a bit more before they would be cost-effective for home use.
They might be useful as part of a security system in the event of a
burglary or fire. Maybe someone will invent one that will pick up
the house or do windows.

Robotic Activities

There are several activities that robots can perform. Here are a
few of them.

117

Motion in Several Directions. Robots like the HERO or the
turtles can move around the room or draw figure on paper because
their wheels are controlled by motors. The turtles are accurate
because of their plotting application. Floor models are less
accurate. They are intended to find their way around objects and to
measure their distance from them.

Robots with arms can raise the arm with one or two elbows,
grasp with two fingers, and rotate the hand at the wrist. Some can
extend the arm and rotate it. All of the motions that we have
mentioned can be programmed. The program might consist of a
machine language program with angles and distances entered.
Some robots can learn to perform certain activities. Some linear
assembly jobs can be accomplished using robots with this kind of
motion.

Speech Synthesis. Speech synthesis in robots is just an
extension of speech synthesis on microcomputers. The same
electronics is involved. Undoubtedly better and better speech
synthesis modules that will be able to create natural sounding
speech will be made in the future. Ideally a robot would be able to
talk like a person and have a large vocabulary thatit could use in an
intelligent manner.

Speech Recognition. Some robots can be trained to perform
certain tasks whenever they hear certain sounds. A practical robot
would be one that could distinguish and interpret speech and
perform new commands based on auditory commands. There are
expensive robots that can interpret speech and respond to what is
said to them. This is an area that will be interesting to watch in the
future.

CREATIVITY IN COMPUTERS

Can computers be creative? Within certain limits a computer
might be considered creative. If a computer can select certain
things randomly and then determine if that combination of things
made sense, then it might be able to be creative. Common sense is a
rather elusive concept, however, and computers are best at
operating within a limited discipline, it seems.

In the Perfect Logic program, the computer was able to draw
certain conclusions from the information that was entered. In this
sense the computer might be considered to be creative, especially if
you didn’t know the mechanics of the program. A computer might
be programmed to search for the relationships between all the
components stored in memory. This might add to the creativity of
the computer. If a computer could be programmed to develop
analogies, it might test those analogies. If they made sense, then the
computer might also be considered creative.

118

AN ARTIFICIAL INTELLIGENCE OPERATING SYSTEM

What would happen if you could get your hands on a com-
puter that was constructed especially with artificial intelligence in
mind? It would be interesting to have a computer that would
operate in machine language and could interpret, store, and
correlate information from English or any other language, as well
as deal with math or other disciplines. Such a computer would be
able to respond like a person might. This proposed computer
would certainly be possible someday. The hardware is available
today. The software end of it would require some careful planning
before it could be feasible. Such a computer might be more
precisely trained than programmed. I think that a computer with
an artificial intelligence operating system is possible and even
likely in the near future.

Parallel processing would contribute to the production of
such a machine. Parallel processing means that several operations
are performed at the same time. Most computers today have only
one CPU that controls a serial schedule of operations. Even
multitasking computers really simply divide up the time of the
CPU and then perform a certain number of operations for each
task. Imagine a computer built around arrays of CPU, each one
controlling certain operations within its domain. Think of an
electronic spreadsheet where an individual CPU controls the value
of each cell and you might understand how such a machine might
operate. I have no doubts that we will see parallel processing on
microcomputers in the not too distant future.

LIMITS TO ARTIFICIAL INTELLIGENCE

I really think that there are no limits to artificial intelligence
in computers. The human programming aspect seems to be the
limiting factor. Memory size is also a limiting factor. I think that
when optical disk storage, especially erasable optical disk storage,
comes of age and is affordable, and when parallel processing
becomes common, artificial intelligence will really flourish. There
may come a time when computers will be able to program
themselves. (After all, when you grew to a certain age, you could
read and understand books by yourself and didn’t need someone to
explain everything to you.)

I really don’t think that there are any real limits to artificial
intelligence. It is important to remember that artificial intelligence
is artificial. People and computers don’t work the same way, and
we should not forget that computers, no matter how remarkable,
are still simply electronic machines.

ARTIFICIAL INTELLIGENCE COMPUTERS

At that time of this writing there are no true artificial intel-

119

ligence microcomputers on the market. Texas Instruments pro-
posed THE ANSWER, which could be programmed to interpret
English. A computer like Apple’s Macintosh goes a ways in the
direction of artificial intelligence by making computers easier to
program and operate. Hardware and software that allows for
speech recognition are also a push in that direction. I think that
someday there will be a truly artificial intelligent computer, one
that will remember anything, that can communicate in natural
language and can be programmed by verbal commands. Someday
science fiction will be reality.

A BONUS GRAPHICS PROGRAM

The final bonus program shown in Listing 7-1 allows you to
convert your computer into a drawing board. You use a joystick as
a pencil or eraser. Actually you are bit-mapping the screen and are
using a sprite in the shape of an arrowhead to draw or erase the
pixels. By pressing the {1 key you can switch between the drawing
and the erasing modes. By pressing the button on the joystick, you
actually create or erase the pixels at the end of the arrowhead. By
moving the arrowhead to the top left corner of the screen and
pressing the joystick button, you can erase the entire screen. By
moving the arrowhead to the rectangular figure to the right of the
leftmost top figure, you can transfer the image on the screen to
paper by using an Epson MX series or compatible printer. (I used a
Cardco +G Printer Interface and an Epson MX-70 Printer.) The
screen dump is very fast—about two minutes for whatever is on the
screen. Other printers may work, but some printers use only 7 bits,
so you may have to change the screen dump subroutine in the
program (lines 600-700). I used a very inexpensive joystick and
plugged it into CONTROL PORT 2 on the Commodore 64. It
responded quite well. Figure 7-11is a simple example of some of the
things that you can draw with the joystick. The figures print
sideways on the printer to give realistic proportions.

Listing 7-1 Graphics Maker

FEM k¥ GRAPHICE MAKER ¥$%

REM WRITTEW BY TIMOTHY J. O°HMaLLEY
REM CORPYRIGHT 1934, TARE BOOKS IHC.
REM <WRITTEW FOR THE COMMODORE &4>

PR I N P vt

REM *kk INITIALIZE ##k
18 FOR I=32763 TO 3I279S:READ HiPOKE I.HINEXT
15 FOR I=32799 TO 3I2823:READ NiPOKE I.MiNEXT
28 BASE=16384:GOSUB S1@:PRINT " (CLR":

120

38 POKE S6578.PEEK(S6S78)0R3:REM SET OUTPUT BITS

48 POKE S6576. (PEEK{S6S76)AND2S2)0R2:REM BANK 1 STARTS AT 16334

S@ S=5S3265:POKE S.PEEK<S>OR32:REM SET EIT MAP MODE

6@ POKE S+7. (PEEK{S+7)AND1S>0R128:REM RELOCATE SCREEM AT 24576-25599

7@ POKE 32769.10@:POKE 32775, 96:POKEI2773, 141 3V5 32768:REM CLERR
SCREEN

8@ POKE 32769.96:POKE 32775.64:POKE 32779.@:REM SET FOR CLEARING BIT
MAP

9@ DIM ZZ(255>:REM MAKE ARRAY FOR SCREEN DUMP

95 FORI=ATO255:READ Z2Z¢1)sHEXT

99

186 REM *kk MAKE SPRITES okk

116 FOR I=2560@ TO 25662:READ M:POKE I.H:HEXT:X=20a:Y=10a

126 U=53242:POKE 25592, 144:POKE U+39, 11 POKE . X1POKE U+1.Y

138 FOR I=25664 TO 25726:READ M:POKE I.H:HEXT

148 POKE 25593, 145:POKE U+4@, 1:POKE V42, 25: POKE U+3,S@:POKE U+21.3
199 @

208 REM *kk OPERATE JOVSTICK *%k

205 P=@

218 GETP#$: IFP$=CHR$:133) THEHN P=HOTP

IFFP$=CHR${134>THEN GOSUB 2@&@:REM SAVE BIT MAPFPED SCREEN

212 IF P#$=CHR#$/{13%) THEHN GOSUEB 9@@:REM RETRIEVE DISK FILE OF BIT MAP

S JU=PEEK{S&32@) tFR=JU AHD 16:JU=15-{JJ) AND 15>
@ ON JUJ GOSUR 38a.318,328,338, 344, 350, 36d, 374, 3233, 334

23@ IF FR<>16 THEN GOSUB 395

248 HE=INTCOR+250 /2560t L=K+25-206%HK I POKE W, LKIPOKE U+16, Hi<
258 POKE V+1.Y+S@:G0TO 21@

298 :

299 REM ok JOVSTICK DIRECTIONS ¥k

Ja@ Y=Y+(Y>a>:RETURM: REM UP

31@ Y=Y-(Y{1995:RETURN: REM DOWN

32 RETURN

33@ K=R+(H A0 RETURNMIREM LEFT

34@ V=Y+OVRantksK+ K ai tRETURNIREM UP & LEFT

358 VW=Y-oWO1990 i K=K+ a0 tRETURNIREM DOWN & LEFT
36@ RETURKN

HKER-CKCI190tRETURNI REM RIGHT

3I8@ V=YV RAD T K=K K319 tRETURNIREM UP & RIGHT
I3@ NM=W-W{1990 1 E=K- 0K 3190 RETURN REM DOWN & RIGHT

IF X>23 THEH 41a

392 IF Y>12 THEH 41@
395 IF K<1@ AND Y<13 THEHW S1a@

396 IF X<24 AaMD V<13 THEHW &1@

F99
4@@ REM *k% PLOT POINTS ¥k
410 BY=BASE+32@%INT (V. 80 +BKINT LK 3040V AND 75

415 IF P THEHN 488

428 POKE BY.PEEKIBYIORIZT(7=0x AHD 7220 :iRETURH

449 3

458 REM K LUNPLOT POINTS #o4k

40@ FOKE BY.PEEK(BYO)ANDIZSS-2 1T (7—01 AMD V232 :RETURH
499 :

Sea REM #¥¢ CLEAR BIT MAPPED SCREEN ok«
1@ 3Ys 3ZVel:RETURH

121

e
[N N
[N <
U O

[
L
0 8o
Do

REM *kk HIGH-RESOLUTIOW SCREEN DUMP w#%
OFEN 4.4.4:CMD4
PRINTCHR#$ {27V)CHR$ (&S OCHR$ (20 3
FOR L=BRSE+312 TO BRSE STEF -8
FRINTCHR$ {2V OCHR$ (VSO CHR$S (2000 CHR$ (G0 2
FOR B=& TO 7Peg@ STEP IZaiH=L+E
FOR P=@ TO ViFRINTCHR$(ZZCPEEKCP+H D03
HEXTiHEXTEPRINT s HEXT
PRINT#4: CLOSE4: RETURN
REM ok RETURM TO HORMAL ok

FPOKE S+7.PEEK{(S+7OANDLI 27 REM RELOCATE HORMAL SCREEHN
FPRINT "{CLRX":

FOKE =, PEEKCEAMDZZE

FOKE U+21.@:REM TURN OFF SPRITES

REM DARTA FOR MARCHINE LANGURGE ROUTINE

DATA 162,96, 169,133,251, 169,64, 133, 252: 163, - 168, . 145
DATA 251,206, 132, . 288, 249, 230, 252,228, 252, 288, 239,935
DRTA 173,228, 178,41, 16, 168, 138,41, 15, 141, 27. 168
DATA 169, 15:237- 171 168, 141, 28, 168, 146, 293, 163, 36
REM DATA FOR ZZ2 ARRAY FOR SCREEH DUMP

DETH Ba 128,64, 192, 32, 108, 96, 224. 16, 144, 3@, 208, 48, 1

136,72

-

6. 112,243, 83,

@, VE. 204, 44,
1.;:1@3

DATA 236. 28, 156,92, 228,68, 1238, 124, 252, 2, 138, 66, 194, 34, 162,93, 226,
12, 146

DAaTA 82,210, 50, 178,114,242, 13, 138, 74, 202,42, 17@, 186, 234, 26, 154,90,

218
DATA 52, 186,122,258, 6, 134, 7@, 198, 33, 166, 182, 233, 22, 158, 36, 214,54,
132,118
[’HTR j“b 14 14 » 312‘36:46'- 1?4:11‘3:. ‘.\B 1»_‘d :;4 22- 62’199, 126!
254,1,129

o4

DATA 65,193, 33,161,397, 225,17,145,81,289,. 43,177,113 1.9,137,73,
201,41

DATA 1689, 185, 233,25, 153,89, 217,57, 185, 121,249, 5, 133,869, 197: 37,
185, 181

DARTAR 229,21:149. 85, 213,53, 181,117,245, 13, 141,77, 205,45, 173, 189,
2)?’4.9 lhll

DATA 93,221,681, 189,125,253, 3, 131,67, 1935, 35, 163,99, 227V, 19, 147,83,
211,51

o]

DATA 173: 115,243, 11, 139, 75, 283, 43, 171, 187, 235, 27, 155, 91, 219, 59,
DATA 251.7.135. 71,199, 39, 167, 183, 231, 23, 151, 87, 215, 55, 183, 119, 247,

15,143

3 DATA 73.287.47-175- 111,239, 31, 159,95, 223,63 1731, 123, 255

REM wxk DATA FOR SPFRITE @ %k

DATA 128,..96:--58:--30:., 15, 128,
DATA V-224,,3:248:-1:192: 5,192 - 64,
DATA sassssssansnsassassnsas

DHT':' PIPIIINDIIIIIDIDID

e S e ol

DARTA 200,48, 163, 184, 232,24, 152,838, 216,56, 134, 128, 243, 4, 132,68, 196,
4

o TTr R T ., w1

R diea i s ol on Bt bl

1Zaa REM wkk DATAR FOR SPRITE 1 sk

1318 DATA 255,231,255, 128,36, 1, 128, 36, 125

1328 DATA 128.36:1,128.37,253, 128, 36: 1. 128, 37,253
1338 DATA 128.36.1. 128, 37,253,122, 36,1, 128, 37, 241
1348 DATA 128,36, 1, 128,36, 1. 255, 231,255

135‘3‘ [).':'Tn PR2IIIDIIIIPIBINNAIDIIRPD

Let’s look briefly at the program. Lines 0-5 identify the
program. Lines 9-99 initialize the program by reading data,
changing screen modes, and dimensions an array. Lines 100-199
read the data and define the sprites used in the program. Lines
200-290 operate the joystick. You will notice that the {3 key can be
used to save the bit map if you define a subroutine in lines 800-899.
Likewise if you define a data retrieval subroutine in lines 900-998,
you can use f5 to retrieve that data. Lines 299-399 calculate the
position of the pixel to be plotted or erased. Lines 400-449 plot the
points by turning on the pixels of the bit-mapped screen. Likewise
lines 450-499 unplot the points by resetting pixels of the screen.
Lines 500-599 clear the entire screen by calling a machine
language subroutine that the program located at 32768. Lines
600-700 form the high-resolution screen dump that will work with
some printers. You might want to substitute a screen dump
subroutine that will work with your particular printer. Lines

%ﬂ- A L
- e

A

-
[\
|-

o

Fig. 7-1. A screen dump of graphic images.

123

999-1030 are lines that restore the computer to normalcy. You will
have to STOP the program by pressing the RUN/STOP key and
typing GOTO 1000. It may be simpler to turn the power off and
then on to restore everything when you are done. The rest of the
lines are data for the machine language subroutine, the screen
dump, and the sprites.

124

Glossary

Address: A specific location in memory, from 0-65535 in decimal
or 0000-FFFF in hexadecimal for 8-bit CPU computers.

Algorithm: The specific set of rules or operations to solve a
problem.

Alphabetic: Consisting of the letters A-Z and blanks.

Alphanumeric: Consisting of letters, numbers, and special
characters, the keys of the keyhoard.

And: A boolean logical operator that makes an expression true
if all terms are true.

Array: A data structure made of numerics or literals.

Artificial Intelligence: Any method that attempts to simulate the
cognitive processes generally associated only with human
thought.

ASCII: American Standard Code for Information Interchange, a
code representing the alphanumeric characters in computing,
0-255.

BASIC: Beginner's All-purpose Symbolic Instruction Code, a
high-level computer language commonly used in micro-
computers.

Baud: A rate of data transfer along a serial line, first used
with teletype machines.

Behavior: An overt action expressed by an organism.

125

Binary: Consisting of only two possible states, 0 or 1. Zero
usually represents a false or off condition and 1 represents a
true or on condition. Computers use the binary system.

Bit: A binary digit, either 0 or 1.

Bootstrap: A method of allowing a computer program to change
itself.

Branch: A statement, like GOTO, that changes the flow of a
program.

Bug: A flaw in a computer program.

Byte: A location in memory that can store an integer from 0-255,
an 8-bit number.

Chip: Slang for an integrated circuit used in RAM or a CPU.

Compiler: A program that changes a high-level program to a low-
level one.

CPU: The Central Processing Unit, the arithmetic, timing, and
logic unit of the computer. It is the real “workhorse’ of the
computer.

Data: Any computer information.
Disk: A round magnetic storage medium.

File: A collection of data stored on tape or disk.
Firmware: Software stored in ROM.

Hard copy: A printout on paper.

Hardware: The physical machine.

Heuristic: A rule-of-thumb or any method that can allow for the
faster solution of any problem by eliminating nonsense.

Hexadecimal: The base 16 numbering system, which uses 0-9 and
the letters A-F.

Input: What you enter into the computer program.

Integer: Any whole number.

Interpreter: A program that converts each statement in a program
in a high-level language to a token or machine language code
as the program is run.

Keyboard: Any collection of typewriter-like keys used to enter
input to a computer.

Literals: Any group of characters within quotes or assigned to a
string.

Loop: A sequence of computer instructions that is repeated.

Machine language: The actual code used by the CPU.
Mass storage device: A device, like disk or tape, used to store data.

126

Memory: Storage locations in a computer.
Microcomputer: A personal computer using a microprocessor.
Microprocessor: The CPU on a chip, like the 6502 or the 6510.

Numeric: Consisting only of digits 0-9, the minus sign, the plus
sign and the decimal point.

OR: A boolean logical operator that makes an expression true if
any term is true.

Parallel interface: An interface that send all the bits of the byte
at once, as opposed to a serial interface.

Port: The connection point between the CPU of the computer
and the peripheral.

Printer: A device that makes hard copies.

Program: The list of instructions that controls a computer.

RAM: Random Access Memory, the memory in a computer that
can be actively changed.

ROM: Read Only Memory, the memory of the computer that
can not be changed, usually containing the operating system of
the computer.

Serial interface: An interface that sends the bits of a byte in
sequence along one data line.

Software: Programs and data.

String: A variable, such as S§, that contains data as a collection
of characters.

Subroutine: A small program contained within a larger program.

Turing machine: An automatic device that is the logical basis
of every CPU, theorized by A. M. Turing.

Variable: A quantity specified by a name that has values that can
change.

127

Index

A
activities, robotic, 117
algorithms, 4
ANSWER, THE, 120
Apple, 120
array, frequency, 40
artificial intelligence, definition
of, 1
artificial intelligence, limits to, 119
atoms, 116
automaton, cellular, 34
averages, 100

B
backgammon, 23
BASIC commands, storage of, 45
BASIC statements, 49
BASIC, heuristic programs in, 84
BASIC, language processing in,
54

BASIC, pattern recognition in, 100
behavior, 39

behavior, computer, 40

behavior, frequency of, 43
Berlinger, Han, 23

binary patterns, 5

board games, 21

bootstrap systems, 45

box, Skinner, 41

128

Cc
Cardco +G printer interface, 120
causal relationship, 40
cellular automaton, 34
central processing unit, 119
checkers, 22
chess, 16, 22
colors, 10
Commodore 64, 3
common sense, 53
complete searches, 4
compositional works, 53
computer behavior, 40
computers, creativity in, 118
construct, hypothetical, 40
constructs, hypothetical, 39
controls, 40
conversations, English-like, 52
Conway, John Horton, 35
correlations, 40
creativity in computers, 118

D
DATA, 3, 4, 16, 35

definition of artificial intelligence,

1

E
ELIZA program, 51
ELIZA-like program, 54

English, 51

Epson printers, 120
expert systems, 2
extrapolation, 100

F
five-in-a-row game, 90

G
Game of Nim, 24
game, five-in-a-row, 90
game, tic tac toe, 84
games, 21
generalizations, 83
Graphics Maker, 120
graphics program, 120
grouping of strings, 100

H
Heath Company, 117
HERO 1, 117
heuristics, 3, 5, 83

I
industry, robots in, 117
interface, Cardco+@G, 120
interpolation, 100
interpoloation, 100
ITSABOX, 117

K
knights tour, 7, 16
knowledge, stored, 52

L
language processing in BASIC, 54
language processing, natural, 2
learning, 3
life, game of, 35
limits of artificial intelligence, 119
LISP, 3, 116
lists, 116
logic program, 65

M
Macintosh, 120
Maze program, 30
McCarthy, John, 116
means, 100
memory size, 119
method, heuristic, 5
Microbot Inc., 117
MINIMOVER, 117
motion, robotic, 118
multitasking, 119

N
natural language processing, 51
new program statements, creation
of, 45
Nim game, 5
Nim, game of, 24
nodes, 3
numbers, patterns in, 99, 101, 101

(o]
operating system, artificial
intelligence, 119

Othello, 22

P
parallel processing, 119
pattern recognition, 99
pattern recognition in BASIC, 100
pattern searching, 5
patterns, 2

Edited by Marilyn L. Johnson

patterns in numbers, 99

patterns in numbers program, 101

patterns in strings program, 103

patterns, binary, 5

Perfect Logic program, 65

predictions, 100

printer interface, Cardco+G, 120

printers, Epson, 120

problem solving, 2, 51

processing, natural language, 51

processing, parallel, 119

program restoration, 50

program statements, creation of
new, 45

pruned search, 4, 83

psychology, 39

puzzle, Towers of Hanoi, 5

R
RAM, 45, 49, 50
rat, training, 40
rats, 39
RB Robot Corp., 117
RBS5X, 117
recognition of patterns, 99
recursion, 117
regression line, 100
reinforcement, 40
relationship, causal, 40
REM, 49
remarks, 49
response, 40
restoration of programs, 50
RHINO, 117
robotics, 117
robots in industry, 117
robots, personal, 117
Rogers, Carl, 53
rules, 2

S
Sandhu Machine Design, 117
search, pruned, 83
searches, tree, 3
searching, pattern, 5
set theory, 2, 51, 52, 65
SHRDLU, 52
size, memory, 119

Skinner box, 39

Skinner, B.F., 40

Socrates, 1

speech recognition, 118
speech synthesis, 118

sprites, 10

statements, DATA, 3, 4, 16, 35
statements, new, 45

statistics, 6, 100

stimulus, 40

storage of BASIC commands, 45
strategy, 22

strings, patterns in, 100
subprograms, creation of, 48
subsets, 2, 52
supercomputers, 3

syllogism, 2

systems, bootstrap, 45
systems, expert, 2

T
TASMAN TURTLE, 117
TEACHMOVER, 117
Technical Micro Systemsinc., 117
Terrapin Inc., 117
Texas Instruments, 120
text editor program, 105
text generator, 53
tic tac toe, 4, 84
tokens, 45
Towers of Hanoi program, 7
Towers of Hanoi puzzle, 5
Towers of Hanoi with Graphics, 10
training, 3
tree searches, 3
Turing, Alan Mathison, 2
TURTLE 11, 117

v
variables, relationships between,
6
VisiCalc, 53

w
Weizenbaum, Joseph, 51
Winograd, Terry, 52
word processor program, 105

129

OTHER POPULAR TAB BOOKS OF INTEREST

The Computer Era—1985 Calendar Robotics and Artifi-
cial Intelligence (No. 8031—$6.95)

Making CP/M-80% Work for You (No. 1764—$9.25 paper;
$16.95 hard)

Going On-Line with Your Micro (No. 1746—$12.50 paper;
$17.95 hard)

The Master Handbook of High-Level Microcomputer Lan-
guages (No. 1733—$15.50 paper; $21.95 hard)

Getting the Most from Your Pocket Computer (No.
1723—$10.25 paper; $14.95 hard)

Using and Programming the Commodore 64, including
Ready-to-Run Programs (No. 1712—$9.25 paper;
$13.95 hard)

Computer Programs for the Kitchen (No. 1707—$13.50
paper; $18.95 hard)

Beginner's Guide to Microprocessors—2nd Edition (No.
1695—$9.25 paper; $14.95 hard)

The First Primer of Microcomputer Telecommunications
(No. 1688—$10.25 paper; $14.95 hard)

How to Create Your Own Computer Bulletin Board (No.
1633—$12.50 paper; $19.95 hard)

Microcomputers for Lawyers (No. 1614—$14.50 paper;
$19.95 hard)

Mastering the VIC-20 (No. 1612—$10.25 paper; $15.95
hard)

BASIC Computer Simulation (No. 1585—$15.50 paper;
$21.95 hard)

Solving Math Problems in BASIC (No. 1564—$15.50
paper; $21.95 hard)

Learning Simulation Techniques on a Microcomputer
Playing Blackjack and Other Monte Carlo Games (No.
1535—$10.95 paper; $16.95 hard)

Basic BASIC-English Dictionary for the Apple ™, PET® and
TRS-80™ (No. 1521—$17.95 hard)

The Handbook of Microprocessor Interfacing (No.
1501—$15.50 paper; $21.95 hard)

Investment Analysis with Your Microcomputer (No.
1479—$13.50 paper; $19.95 hard)

The Art of Computer Programming (No. 1455—$10.95
paper; $16.95 hard)

25 Exciting Computer Games in BASIC for All Ages (No.
1427—$12.95 paper; $21.95 hard)

TAB

Programming with dBASE 11® (No. 1776—$16.50 paper;
$26.95 hard)

Lotus 1-2-3™ Simplified (No. 1748—$10.25 paper;
$15.95 hard)

Mastering Multiplan® (No. 1743—$11.50 paper; $16.95
hard)

How to Document Your Software (No. 1724—$13.50
paper; $19.95 hard)

Scuttle the Computer Pirates: Software Protection
Schemes (No. 1718—$15.50 paper; $21.95 hard)
Using and Programming the VIC-20%, including Ready-
to-Run Programs (No. 1702—$10.25 paper; $15.95

hard)

MicroProgrammer’'s Market 1984 (No. 1700—$13.50
paper; $18.95 hard)

PayCalc: How to Create Customized Payroll Spread-
sheets (No. 1694—$15.50 paper; $19.95 hard)

Commodore 64 Graphics and Sound Programming (No.
1640—$15.50 paper; $21.95 hard)

Does Your Small Business Need a Computer? (No.
1624—$18.95 hard)

Computer Companion for the VIC-20® (No. 1613—$10.25
paper)

Forecasting On Your Microcomputer (No. 1607—$15.50
paper; $21.95 hard)

Database Manager in MICROSOFT® BASIC (No. 1567—
$12.50 paper; $18.95 hard)

Troubleshooting and Repairing Personal Computers (No.
1539—$14.50 paper; $19.95 hard)

25 Graphics Programs in MICROSOFT® BASIC (No.
1533—$11.50 paper; $17.95 hard)

Making Money with Your Microcomputer (No. 1506—
$8.25 paper; $13.95 hard)

C-BIMS: Cassette-Based Information Management Sys-
tem for the PET® (No. 1489—$10.95 paper; $16.95
hard)

From BASIC to Pascal (No. 1466—$11.50 paper; $17.95
hard)

Computer Peripherals That You Can Build (No. 1449—
$13.95 paper; $19.95 hard)

Machine and Assembly Language Programming (No.
1389—$10.25 paper; $15.95 hard)

TAB BOOKS Inc.

Blue Ridge Summit. Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print

Artificial Intelligence Projects
for the Commodore 64

If you are intrigued with the possibilities of the programs included in Artificial Intelligence
Projects for the Commodore 64 (TAB BOOK No. 1883), you should definitely consider having
the ready-to-run disk containing the software applications. This software is guaranteed free of
manufacturer’s defects. (If you have any problems, return the disk within 30 days, and we'll send
you a new one.) Not only will you save the time and effort of typing the programs, the disk
eliminates the possibility of errors that can prevent the programs from functioning. Interested?

Available on disk for the Commodore 64 (6420S) at $19.95 for each disk plus $1.00 each

shipping and handling.

I'm interested. Send me:

disk for the Commodore 64 computer (6420S)
TAB BOOKS catalog

Check/Money Order enclosed for $19.95 plus $1.00 shipping and handling for
each tape or disk ordered.

VISA MasterCard
Account No. Expires
Name
Address
City State Zip
Signature

Mail to: TAB BOOKS Inc.
P.O. Box 40
Blue Ridge Summit, PA 17214

(Pa. add 6% sales tax. Order outside U.S. must be prepaid with international money orders in U.S. dollars.)
TAB Book 1883

Artificial Intelligence Projects for the Commodore 64"

0'Malle)

Discover a whole new dimension in your C-64’s programming abilities!

If you're tired of ordinary computer games . . . if you're looking for
something exciting and different to do with your C-64 . . . here's the answer! It's
a whole collection of artificial intelligence (Al) projects designed to tap your
micro’s real problem-solving capabilities for both practical and entertainment
applications.

Leading off with a definition of artificial intelligence and an overview of Al
concepts, the author provides 16 ready-to-run programs in BASIC to iliustrate
your micro’s cognitive powers. You'll cover tree searches (testing all possi-
ble solutions to a problem), hueristics (a modified trial-and-error technique),
algorithms, and pattern searching/recognition routines.

You'll find out how to solve simple—and not-so-simple—puzzles like
Towers of Hanoi and the Knight's Tour of the Chessboard . . . explore concepts
of animal behavior and how it can be simulated . . . analyze how natural
language can be recognized and acted on by the computer . . . simulate an
actual human-machine conversation . . . and use an interactive routine that
allows your micro to make deductions through clever application of set theory.
There's even a program that allows your micro to write its own program
modifications!

And, as an extra bonus, the author has included a functioning word
processing program (which he used to write this book’s manuscript) and a
graphics program that lets you draw on the screen with a joystick.

Totally fascinating and packed with techniques that will help you improve
all your BASIC programming practice, this is a sourcebook that will open a
whole new dimension in your computer usage!

Timothy J. O'Malley is a writer and programmer whose experience spans
both mainframe and microcomputer experiments in artificial intelligence.

TAEB| TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print

FPT > £12:.95 ISBN 0-830b-1883-X

1245-028¢

