

ARTIFICIAL .
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 641M

ARTIFICIAL .
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 641M

ARTIFICIAL .
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 641M

ARTIFICIAL
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 64'·
TIMOTHY J. O'MALLEY

FIRST EDITION

SECOND PRINTING

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Copyright © 1985 by TAB BOOKS Inc.

Library of Congress Cataloging in Publication Data

O'Malley, Timothy J.
Artificial intelligence projects for the

Commodore 64.

Includes index.
1. Artificial intelligence-Data processing.

2. Commodore 64 (Computer)-Programming. I. Title.
0336.043 1985 001.53'5 84-26749

ISBN 0-8306-0883-4
ISBN o-8306-1883-X (pbk.)

Contents

Programs In the Book
Introduction

Introduction to Artificial Intelligence
What Is Artificial Intelligence?
Definitions and Scope-Microcomputer Applications

Artificial Intelligence Techniques
Tree Searches- The Algorithm Method-The Heuristic Method-

Pattern Searching
Three Introductory Programs in BASIC
The Towers of Hanoi: Version One-The Towers of Hanoi:
Version Two-The Knight's Tour

vII
Ix

2 Intelligent Games 21
Artificial Intelligence in Games
Board Games-Three Intelligent Games in BASIC
The Game of Nim- The Path through a Maze-The Cellular

Automaton

3 Behaviors and Bootstraps 39
An Introduction to Behavior
Definitions-B.F. Skinner and His Ideas

Computer Behavior
Training the Rat-Bootstrap Systems
The First Bootstrap Program-The Second Bootstrap Program

4 Natural Language Processing 51
Definitions and Examples
English-Like Conversations-Compositional Works

The Story of ELIZA
Language Processing in BASIC
An ELIZA-Like Program-The Perfect Logic Program

5 Heuristics 83
Heuristic Programs in BASIC
Heuristic Tic Tac Toe-The Five-in-a-Row Game

6 Pattern Recognition 99
Ways of Finding Patterns
Differences between Numbers-The Grouping of Strings-Inter-

polation and Extrapolation
Pattern Recognition Programs in BASIC
Patterns in Numbers-Patterns in Strings-A Word Processor
Program

7 Other Areas In Artificial Intelligence 116
LISP: An Artificial Intelligence Language
Robotics
Introductory Robots-Robotic Activities

Creativity in Computers
An Artificial Intelligence Operating System
Limits to Artificial Intelligence
Artificial Intelligence Computers
A Bonus Graphics Program

Glossary 125

Index 128

Programs in the Book

Listing 1-1 The Towers of Hanoi: Version 1 7
Listing 1-2 The Towers of Hanoi with Graphics 12
Listing 1-3 The Knight's Tour 17
Listing 2-1 The Game of Nim 24
Listing 2-2 Changes to Use Nim on Disk 26
Listing 2-3 The Path through a Maze 30
Listing 2-4 Cellular Automaton 34
Listing 3-1 Training the Rat. .41
Listing 3-2 Changes to Use the Program on Disk 43
Listing 3-3 The First Bootstrap Program 47
Listing 3-4 The Second Bootstrap Program 49
Listing 4-1 The ELIZA-like Program 54
Listing 4-2 Perfect Logic 66
Listing 5-1 Tic Tae Toe 84
Listing 5-2 Five-in-a-Row Game 91
Listing 6-1 Patterns in Numbers 101
Listing 6-2 Patterns in Strings 104
Listing 6-3 A Word Processor 105
Listing 6-4 Changes to Use the Program on Disk 109
Listing 7-1 Graphics Maker 120

vii

ARTIFICIAL .
INTELLIGENCE PROJECTS

FOR THE

COMMODORE 641M

Introduction
This book is more than just a collection of artificial intelligence
programs and their descriptions. It is a source book of ideas
concerning how to solve problems. It is a guide to how humans
solve problems and how the Commodore 64 might be programmed
to do so. It is written so that you might become a better
programmer and might explore different ways of solving prob-
lems. I have done my best to design programs (hat will display
important aspects of artificial intelligence on the Commodore 64.

Think about artificial intelligence for a moment. Let's not
fool anyone; artificial intelligence is a set of ways to make the
computer make better use of the information (hat it contains. All of
the rules of computer science apply to the field of artificial
intelligence. Don't expect that you GlO somehow transform your
Commodore 64 into an electronic personality. In this book I will
not attempt to answer the question of whether or not computers
can be programmed to think. I sometimes ask people if people can
think. Human intelligence may also be an illusion.

In this book you will look at ways that the Commodore 64 can
be used to make deductions and solve problems. In some programs,
the computer "learns" strategy from a game-playing opponent,
you. It then uses that stored strategy to make a move when it
encounters the same situation. Is this learning? It is learning in an
artificial sense and may not utilize the same mechanics as human

ix

learning. Olher programs change themselves or the data thaI they
contain. These program might increase in complexity. In any
artificial inlelligence program, the acid test is whether or not the
computer will respond bcttcr Wilh time. Much of artificial
inrelligcncc simply involves gctting the data organized so that the
compulcr can access it in a coordinated manner.

This book is wrillen for both thc beginner and the seasoned
programmer. Thc beginning programmcr can run the programs
even though he or she may not understand all of the operations and
lechniques involved. The experienced programmcr will find some
surprises, mostly in the ways of approaching problems and in the
ways BASIC statcmcms can be arranged. This book then is really
appropriale for a widc range of programmers, although some
fundamenlal understanding of computing is csscntial. Home
computer owners who arc imeresled in artificial intelligence will
find that this book satisfies their curiosilY. This book would also bc
good as outside reading or as an added lext for a math or computcr
science course. Those in psychology courses in which computcrs
are used will find the book of intcrcst.

I hope that you will use this book in a conslructive manner. I
hope that the programs in il will help you to look at problems and
thinking in a fashion thaI you hadn't considcred previously. Atthe
prcsent slage of computcr technology, the lagging area is sofrware
devclopment. This book will help you develop a proper per-
spective of artificial intclligence and computer sofrware generally.

x

Chapter 1

An Introduction to Artificial Intelligence
In this first chapter I introduce some definitions and tcchniques
associated with artificial inlclli~cnce. You will see somc of the
kinds of things that can be done on the Commodore 64 micro-
computer. Two introductory programs thaI exhihil artificial
inlelligence to some degrce arc presented.

WHAT IS ARTIFICIAL INTELLIGENCE?
At thc risk of being in trouble before I slart,let me try to define

a working definition of artificial illlelligence. This definition may
not be inclusive but it is a slart.

DEFINITIONS AND SCOPE
Artificial illtelligellce is the allempt to set machincs to

pcrform processing abilities normally associated only with cogni-
tive human thought. It is artificial in thc sense thaI it is a
manufaclured technique and may nOI have thc same basis as
human intelligence. What is imporral1t is that the results of human
and artificial intelligence are highly similar. Artificial Intelligencc
is really more than that, though. It is the ability of thc computer 10

heller ulilile the information thaI it contains. For examplc. if you
somehow store the fact that Socratcs is a man in lhc compuler and
then store lhe fact that man is morral. you might be able 10 dcvise

an algorithm such lhal the compuler can deducc lhat Socrates is
mortal. Thus thc computcr mighl be ablc to solve the hypothetical
syllogism.

Much of how lhe computer can solve problems lies in how the
dala is organiled in memory. I will use set theory in some of my
programs. If I say that Socrates is a proper subset of man and if I say
thaI man is a proper subset of things mortal, it follows logically
thaI Socratcs is mortal. If sel A is contained in sel B, and set B is
conlained in set C, lhcn sel A is contained in set C. I will design a
truth table for solving problems. Then the computer can use this
lruth lable to solve all problems that relate to sel thcory.

Artificial intelligence, in my opinion, is really an illusion. In
fact, I think that thinking may be an illusion. If these words that
you are reading don'l seem to contradict the facts thaI you know
alrcady, you mighl say that an illlelligencc had wrillen them. We
mighl connive a survcy such thaI people would be polled to see if
ccrtain computcr abilities wcre indistinguishable from human
abilities. If they could not tell lhe diffcrcnce, we might say that the
computcr exhibited artificial intclligence. Such a tcst is called the
Turing tesl, after Alan Malhison Turing.

Turing, more lhan anyonc else, laid thc mathemalical frame-
work for digital computers. Turing machines are thc logical basis
of cvery digital eleclronic computer in cxistence. Turing machines
are conceplUal dcvices lhal allow for lhe binary solution of
problems in electronic com pUlers. Turing's work has led me to
believe thaI any problcm that can bc defined as a set of binary
componenls is uhimalely soh-ablc. This makes mc lhink that
binary arilhmelic is fundamental to the problem-solving process.

The goal of artificial inlelligence is to be able 10 program a
compuler to solvc any given sel of problcms in a reasonable period
of time. Ahhough some problem might bc lheoretically solvable,
the time involved might be astronomical. Therefore we have to
look al other ways of solving problems. I hope that this book will
challcnge us 10 explorc other ways of solving problems.

Thcrc are a numbcr of areas thaI artificial intelligence
encompasses. One is /laturallanguage processing. In this arca the
computcr responds in English or anothcr language and "under-
stands" commands and statcments in that language.

Anothcr area is expert systems. In expert systems the computer
is able to respond to many differelll commands or questions about
a limited discipline. It is an cxpert.

Another area is problcm-solving, in which lhe computer
attempts to find patterns or rules in order to solve problcms. Maybe
it will store data from prior problcms and then see if there is a
solution based on past information. We might even supply thc rule
o that the computer can solve lhe problcm.

2

Another area is behavior whcre we can "train" thc computer
to perform a ccrtain "Icarned" sequence of operations. If a step in
that scquence produces a negative effect, we might have the
computer try anolher possiblc operalion. Evelllually we can have
the computer "trained" to do the desired sequence of events.

In heuristics the computer may look for the bcst operation at a
given poinl in time. If that operation turns out to be wrong, it will
"remember" not to do that again. Many of these diffcrent areas
overlap and a program may not lie strictly in one arca.

Microcomputer Applications
LeI's be honest. When we think of artificial illlclligence, wc

gencrally think of cryogenic supercomputers operating al Ihc
limits to technology. or at least of a large mainframe usinga high-
level language like LISP. Is it possible to run artificially inlelli-
gelll programs on a microcompuler programmed in BASIC or
mach inc language? I think so. At least some problems can be run
on a micro if those problems do not use an excessive amoulll of
memory or time.

The Commodore 64 is a good choice for somc artificial
illlelligcnce programs. It has 64 K RAM and can slore data on disk
or tape. A disk drive will allow fasl access 10 files of information.
Thesc files can be updated as a program is run. Thus the storage
capacity is largc enough to do somc modest problem -solving. The
cost is low enough to enable many people interesled in artificial
illlelligence to conduct their own cxperimcnts. The spced of thc
Commodore is reasonably fast. For those problems requiring more
speed, the programmer might resort to machine languagc instead
of intcrpreted BASIC. Machine language is easily accessed on the
Commodore 64. The programmer might also use a BASIC
compiler 10 translate his program into faster code.

ARTIFICIAL INTELLIGENCE TECHNIQUES
We now look at four techniques used in artificial intclligence.

They are tree searches, thc algorithmic (rule) method, the heurislic
method, and pattern searching. We realize other methods may
exist, but these are some of the techniques best suited 10 be explored
using lhe Commodore 64.

Tree Searches
A tree is a graph made of points, called nodes, and connecling

lines. They are designed so that the number of nodes increases as
you go from top to bottom. Actually thc tree resembles an inverted
tree structure with many branches. If you visualize your family
tree, you might see a few ancestors at the top, and many levels of

3

descendants as you go IOward the bottom. Gencalogical diagrams
are a form of lree.

Another type of tree reflects the number of possible moves in a
game. As the move number increases, the possible outcomes of the
game increases. For example in the game of chess, you start with 20
possiblc movcs for move number one by WHITE. Any of the eight
pawns can movc one or lWOsquares forward, or either of the two
knighls can jump to one of two possible squares. BLACK has the
same number of possible moves on its first move. After that the
possibililies slart 10 multiply rapidly.

A tree search would go down all the levels (in this case move
numbcrs) to find allthc possibilities. The computer would check
out the possible outcomcs of the moves with a tree search.

A complete search. In a complete search, the computer would
explore the outcomes of every possible move in a game. It would
lhen lake lhose moves that would assure a viclory. In the game of
chess, a complete search would be impossible because the number
of possible games are virtually infinite. A complete tree search
would require an infinite amounl of lime.

In somc simple games,like tic tac toe, a complete search would
make sense because the possible ~amcs arc a small finite number,
ninc factorial, or 362,880. Actually it is smaller lhan thaI if we
disrc~ard movc numbcrs and only consider positions as combina-
tions of movcs. Gamcs are probably the most obvious examples of
where trce scarchcs arc used.

A pruned search. Because a complele search is impossiblc for
some siluations, such as lhe game of chess, wc can employ a
modified lree search called a pruned search. In a pruncd scarch, we
eliminale those moves lhat are clearly nonsense moves, movcs that
lead to immedialedefeat. Wesavecomputerlimcbyscarchingonly
those moves that seem to have a good possibility of leading to a
victorious oUlcome. In the minimum-maximum prunescarch, we
take "lOse moves that givc us Ihe minimum amount of danger of
losing and that our opponcnt could usc to gain the maximum
advantagc. Thus wc try 10 find our best move and try 10 predicl how
our opponcnt will movc. We probably set some lime or levellimil
for this pruned search and thcn choose lhe move thaI gives the best
position at the lowest level. l\lany typical microcompuler pro-
grams for chess or checkers only go down a few levels in a lrcc
search. Tree searches, lhen, can be useful for finding best movcs in
some games.

The Algorithmic Method

In lhe algorithmic mcthod, wc usc a rule or algorithm to solve
a problem. For example if you arc blind and lost in a male, you
mighl find your way out of the malC by running your leh or right

4

hand along the wall. Eventually you will tracc your way through
the maze to find the exit. This may not be the fastest method, bUl it
works. Anolher mcthod for finding your way out of a maze is to
somehow mark all dead cnds. As you succcssivcly mark dcad ends,
you cffeclively debranch the maze. The rcsulting trunk is lhc
solution and Icads to the exit. Obviously you may well find your
way oul of the maze before you have debranched all of the dead
ends. So sometimcs a simplc rule can lead 10 thc solUlion, no
mattcr what the problem.

Often the solOtion is a simple binary solution. In the first two
programs in lhis chapter, you will see how a simple binary rule can
solvc the Towers of Hanoi puzzle. In that punle you move disks of
varying diamcters on three differenl posts. The rules of the puzzlc
states that you can move only one disk at a time and can not place a
larger disk on top of a smaller disk. When we discuss that program
we will see how a simple binary rule can tell us whcre to place
which disk, regardless of the number of disks. The game of Nim
may have a binary solution as well.

The Heuristic Method
Heurislics can include such things as the pruned search,

whcre the computer ignores exploring dcad end possibilities. Let's
expand the definition of heurislics to include any process whcreby
the computcr will debranch a lrec or maze, or will reducc the
probability of using ccrtain rout('s. In a gamc we can set up a
probability array corrcsponding to certain moves. If lhe computer
makes ccrtain movcs that leads to a defeat, we might rcduce lhe
numbers in the probability array. The computer would then
choose from those move numbers that have a higher probability of
success. In this way the computer r.nighl successively approximate
the correct sequence of moves leading to a win. We might say lhat
the computer has learned strategy from past games. Likewise lhc
probability of choosing those numbers that lead to victory might
be increased so that the computer would choose thcm more oftcn.

Pattern Searching
In pattern searching the computer looks for a sequence of

numbers or a complicated rule to solve the problem. For example
if we stored lhe notes from many songs in memory and then askcd
the computer to name the tune after just a few notes, the computer
would search through all the notc sequenccs U111il it found a
match. Thcn it might give the titlc of thaI song. Or we might have
games storcd on file and ask lhe computer when a combination of
moves were made lhat lead to a victory. Wc would have lhe
compuler look for patterns.

Binary patterns. Wc said earlier that wc suspecled that binary

5

arithmetic may be fundamental to the problem-solving process. If
a binary patlern could be found, we might have undcrstood
something about the nature of the problem. Binary patterns are the
simplest form of language, ahhough it might not seem so to us.
(Consider the firefly; its on-off flashes represent a binary form of
communication. Other fireflies have no problem in deciphering
the message.) This may become morc obvious latcr.

Other patterns. Many timcs there is no clear-cut rule, only thc
sequence itself. Consider lhe number of days in a month. We would
eilher havc to invent a rule to remember or look at a calendar.
There really is no simple mathematical rule to relate days of lhe
month to thc name of the month or vice vcrsa. As we said,
sometimes we make up a rule so that wecan remember. You mighl
think about how a computer could dcvise a sequence rule to solve
problems after it has found the pattcrn inilially.

Other times the pallern can besl be cxpressed in a non-binary,
mathematical way. Perhaps the relationship between two given
variables is a simplc polynomial expression. If we use statistics, we
mighl find a polynomial regression line that best relales Ihe lwo
variables in question. Or let's say we want the computer to
distinguish lhe difference between men and women based on
height and weight. for the sake of argumcnt, leI's say thaI men
tend to be taller and heavier than women. We would have the
computer plot a height-weight graph. We would then tell the
computer which points were malc and which were female. The
male points would probably cluster together and the female
coordinates would cluster togcther. If wc enlered a height and
weight and asked the computer whelher il was male or female, it
would choose whichever cluster of points were ll(~areSl in making
its determination. The program's data would be constantly
updated. Statistics would shed some light on the malhematics of
the problem. We might also want to include another faclor, such as
agc, and then plot in three dimensions to predict the sex.

In this book I will dcscribe all of these ways of solving
problems. More lhan a dozen programs will be examined in depth
and every linc will be explained in detail. I will suggest ways 10

ahcr the programs. This book assumes lhal you own or have access
to a Commodore 64 computer wilh a C2N or equivalent tape
recorder/playcr. The programs can also bc used with disk drives.
We will look al lhe differenl kinds of programs that can be used in
artificial inlelligence experiments. This book will scrve as a
starting point for those intereslcd in artificial intelligence. It
doesn't presume to covcr every area of artificial intelligence.
Discoveries of new ways of using com pUlers arc being madc each
day.

6

THREE INTRODUCTORY PROGRAMS IN BASIC
The three programs that follow display importanl aspects of

artificial intelligence. The first two programs are similar. They
solve lhe Towers of Hanoi pUllle. The first produces a list of lhc
moves that must bc made 10 solve the pUllle, the second program
shows the solution graphically. The third program shows th.e
solution to lhe knighl's lOur problcm. In the knight's tour, tl"k'
object is to have a knighl in the game of chess land on all 64 squares
of a chessboard without landing on a square morc than once.

The Towers of Hanoi: Version One
The challenge in this puzzle is to move all the disks from one

of three posts to another of the posts, without placing a larger disk
on top of a smaller disk. Only one disk can be moved at a time.
Listing I -I shows a unique binary solution to the puzzle.

Listing 1-1 The Towers of Hanoi: Version 1

5•......•....••.••••.••.•••..••••..... .
TOl,IERSOF HANO I - "JERSION 1

WRITTEN BY TIMOTHY J. O'MALLEY
COPYRIGHT 1984. TAB BOOKS INC.
(WRITTEN FOR THE COMMODORE 64)

..

10 REI'1
REI'1
REt'1
REM

20
30
40
45
50 PRINT CHR$(147);
60 HIPUT "Io.IHATNUMBER OF DISKS"; t~:1'1=(1=(1 AND t~))*2+1
70 DIM K(N):FOR 1=1 TO N:K(I)=l:NEXT
80 A$="ABC": FOR L=l TO 2'tN-l: 1=0
90 D=-«L AND 2'tI)=2'tI)*(I+l):I=I+l:IF 0=0 THEN 90
100 T=M*«(l AND D)=1)*2+1)
110 F=K(D)-T:J=F-T*3*(F(1 OR F)3)
12(1 PRINT "MOIJE"L": "TAB(15)"FROt'1'"I'1ID$(A$.I«D).1)" TO ";
130 PRINT MID$(A$.J.l):K(D)=J:NEXT
135 ..

Here's how the solution works. First, let's number the disks:
the smallest disk on lOp will be assigned the number I; the disk
bencath that will be called 2. and so forth down 10 N numbcr of
disks. Second let's number the posts (or towers): the A post, which
is the post holding all the disks initially, is I; the B post is 2, and lhe
C pOSl is 3. Third, the total number of moves is 2 to the powcr of N
minus 1. L is defined as the movc number variable.

The variablc Mis set 10 I whcn the numberof disks is even and
10 -I when the number of disks is odd. This is all the information
that is needed 10 solve the problcm.

When we represenl the move number as a binary number, it
becomes evident what disk 10 move; lhe disk number is a binary

7

function of thc move number! The disk 10 move reflccts thc
position of the rightmost unity (I) bit of thc move number. If L is
0001, we movc disk I; if L is 0010, we move disk 2; if L is 0100, we
move disk 3; if L is 1000, we movc disk 4; if L is 1100, wc move disk
3.

We can determine what pOSl to move that disk to as a function
of the variable M. IfMis -I ,the odd-numbercd disks go to posts in
the sequence 3 to 210 I to 3 to 2 to I and so on; the even-numbered
disks go to pOSlS in the sequence I to 210 3 to I 102103 and so on. If
the variable M is I, the even-numbered disks go according to the
first sequence and the odd numbered disks go according 10 lhe
second sequence. The problem is solved when L has a final value of
2 to the power of N minus I.

Here is a detailed explanation of each program line.

LINE

5

10

20

30

40

45

50

60

8

EXPLANATION

The colon is a nonexeculable character in BASIC. It
is used here 10 outlinc Ihe ed~c of thc program
listing.
This REM (for REMark) is not exccutcd in BASIC.
h simply acts as a comment statcmcnt in BASIC. In
this case it tclls thc namc of thc program. II's usually
a good idea to usc REM statements to identify and
cxplain pans of your program.
This REM statement identifies the programmer/
author.
This Slalement indicates lhe copyright ownership of
the program. TAB BOOKS, Inc.
This statemenl says that the program is written for
the Commodorc 64.
This set of colons separates the hcadcr information
from thc main body of thc pro~ram.
This linc clears the screen. CHRS(147) is lhe com-
mand code for the clear scrcen command. The
semicolon (;) keeps print posilion from jumping to
the ncxt line after the PRINT statement is execuled.
Thus the next printing will stan at leh side of lhe
lOp line.
This line is made of lwO stalements separated by a
colon. The first slatemenl requests the value of
aher it prints lhe question, "WHAT NUMBER OF
DISKS?" INPUT statements sometimes contain
prompting infonnalion when lhcy ask for values.
The second statement on this line defines the val ue of
M. I AND N will givc a valuc of I if N is odd, and a

70

80

90

100
110

120

130

135

value of 0 if N is evcn. I= I will give a value of -I,
meaning true. I=0 will givc a value of 0, meaning
falsc. These are Boolean algcbra logic Slalemcnts.
We muhiply the carlicr resuh by 2 and add I to gel
the value of M. Note lhe double usc of lhe equal
sign (=) in this statemenl: the equal sign is used
both to perform a logical tcst and to assign the
value of the expression to the variable 1\1.
DIM K(N) assigns space in memory for a list of
numbers that we will call K. K is an array wilh N
number of elements. The neXl three statements in
this line form a loop thaI selS thc value of each of
these N elemcnts to I. Loops arc common in
virtually all programming languagcs. Here we make
up a variable called I that will have values that will
range from I to N, whatcver N is. Thc NEXT
Slalement says to conlinue this loop until I cxceeds
N. We could also havc said NEXT I inslcad of simply
NEXT, but N EXT by itself is somewhal faster.
This line assigns thc string variable, AS, 10 ABC.
AS is like the K array, only il colllains individual
characlers instead of numeric<ll valucs. We then sIan
an L loop, with thc values of L ranging from I to 2
to the power of N minus I. L is the number of
movcs thaI are rcquired to solvc lhe puule. Thc
variable I is sct 10 lCI'O.

This line dctcrmines what disk to move as a function
of the move number, L. Thc value of I is incrcascd.
by I, and if D cquals 0, thc linc is rerun. Evcnlually
D will rcach a nOlllcro value.
The valuc of T is assigned as a funclion of M and D.
F is assigncd to Kat 0 minus T. J is sct as a rcsull of
thc algebraic and logical expression (F < I OR
F>3), which is cvaltlaled as eithcr 0 or -I.
This line prints thc move numbcr, spaces over to thc
fiftcenth print position, and thcn prints lhe post that
the disk is movcd from, A, B, or C. These lellcrs arc
printed using the MID$ funclion.
This line prints the leller of lhe post lhal thc disks
are movcd to. Then thc array K al lhe elcmcnt D is
scI to the value of J. The L loop is tcrminated allhis
linc.
This line of colons gives a boundary to mark thc
end of lhe program lisling.

Program Operation. Figure I -I shows the rcsull of moving four

9

disks. Figure 1·2 shows thc result of moving five disks. Notice that
the number of steps doubles with each additional disk. The
statemcnts in this program have been written for a minimum
amount of computation, and thc program starts to print im-
mcdiately, regardlcss of lhe number of disks involved. It is
intcresling to note that if you know the disk numbers and lhe move
number, you can immediately deduce lhe proper disk 10 move and
the place 10 move it, regardless of lhe number of disks used in the
problem.

Towers of Hanoi: Version Two
In the version of thc Towers of Hanoi puule, shown in

Lisling 1·2, we display a graphic solution, using sprites as disks.
These sprites are like uscr-defined graphic characters and can be of
several colors. We usc a different color for each sprite to help
distinguish them from each olher. Each sprite is of a different
length, showing the different siles of the disks.

This program lets you have the computer use as many as eight
disks in the pULZle.There is a limit of eight disks because there are
only eight spritcs, numbered from 0 to 7. That means thaI the
computer would make up 10 255 moves to solve a puzzle involving
all of the sprites.

WHAT NUMBER OF DISK? 4
MOUE 1 . FROM A TO B.
MOI,JE2 : FROl'1A TO C
MOI,JE3 : FROl'1B TO C
MOI.JE4 : FROM A TO B
MmJE 5 : FROM C TO A
1'101.JE6 : FROM C TO B
MOt.JE7 : FROM A TO B
NOI.JE8 : FROM A TO C
1'10UE'3 : FROM B TO C
NOI.JE1e : FRON B TO A
MOUE 11 : FROl'1C TO A
NOI.JE12 : FROM B TO C
MOUE 13 : FRON A TO B
NOUE 14 : FROM A TO C
t-101.JE15 : FROM B TO C

READV.

Fig. 1-1. The solution to the Towers of Hanoi puzzle with four disks.

10

WHAT NUMBER OF DISK? 5
MOIJE 1 . FRO!" A TO C.
MOIJE 2 : FROI'1 A TO 8
MmJE 3 : FROM C TO 8
MOI.JE 4 : FROM A TO C
!"OIJE 5 : FRO!'1 8 TO A
MOI.JE 6 : FROM B TO C
MOIJE 7 : FRO!" A TO C
MOIJE 8 : FROI'1 A TO B
I"OIJE '3 : FROM C TO B

1'10IJE 10 : FROI'1 C TO A
t10IJE 11 : FRO!'1 B TO A
MOUE 12 : FRO!" C TO 8
t10lJE 13 : FRON A TO C
t"OIJE 14 : FRON A TO B
NOIJE 15 : FRON C TO 8
NOUE 16 : FROt" A TO C
1'10lJE 17 : FROI'1 8 TO A
t10UE 18 : FRO!" 8 TO C
MOIJE 19 : FROI'1 A TO C
I'101JE 20 : FRON B TO A
NOIJE 21 · FROt'1 C TO 8·
t'10lJE 22 : FROI'1 C TO A
1'10l.)E 23 : FROI'1 8 TO A
NOIJE 24 : FRON B TO C
NOIJE 25 : F~~ON A TO C
t10IJE 26 : FROM A TO 8
1'10l"JE27 : FROM C TO 8
NOI.JE 28 : FROl'1 A TO C
I'101JE 29 : FROI'1 8 TO A
I'101.JE30 : FROM 8 TO C
I'101JE 31 · FROI'1 A TO C·

READV.

Fig. 1-2. The solution to the Towers of Hanoi puzzle with five disks.

This program uses the same binary solution to solve the
Towers of Hanoi puzzle as the first program did. It starts to operate
by moving the disks almost immediately. Othcr computer pro-
grams solve this problem by using many recursive lechniques, but
none is quite so simple as the one employcd in this pro~ram.

11

Listing 1-2 The Towers of Hanoi with Graphics

10 ::::::::::::::::::::::::::::::::::::
15 REI'l
20 REM
25 REI'l
30 REt1

TOt.IERSOF HAt-lOI
WRITTEN BY TIMOTHY J. O'MALLEY
COPYR IGHT 1983, TAB BOOI(S It-le.
CWRITTEN FOR THE COMMODORE 64)

..".c: ..
--'\ 1 ..

... ..

ENABLE SPRITES
.,..DIRECTION
X DIRECTION

*** PRINT INSTRUCTIOt-lS ***

*** MAIN PROGRAM ***
100: REM PRINT INSTRUCTIONS
300:REM DEFINES SPRITES
500:REM DETERMINE SOLUTION

... ..

REM
t-lt'l=O
PRINTCHR$(147);:REM CLEAR SCREEN
PR ItH" ART IF IC IAL ItHELL IGEt-lCE- PROGRAM 1"
PRItH: PRINT" THE TOl.JERSOF HANOI": PRINT: PRINT
PR ItH" THE PROBLEM IS TO I'10""EALL OF THE"
PR ItH" DISKS FROl'lTHE FIRST POST TO THE TH IRD"
PR ItH "POST • Ot-lEDISK AT A TII'lE.t.IITHOUT "
PR ItH" PLAC It-lGA LARGER DISK Ot-lTOP OF A "
PRItH"SI'lALLEF:DISK. ":PRItH
PR It-lT" YOU I'lA','SPEC IF'Y'1-8 DISKS.": PR It-lT
OPEt-ll.0
PRItH"EtHER t-lUt-1BEROF DISKS: ";: It-IPUT#l.t-l$
PRItH: CLOSEl
IF LEt-ICt-I$»lTHEt-IPRIt-IT:GOT0190
t-I=UALCt-I$):IFt-I)80Rt-I(lTHEt-IPRIt-IT:GOT0190
PR It-IT:PR It-lT"I.'ERYl~IELL."
RETURt-I

REM *** DEFIt-IESPRITES ***
POKE53281.15:REM BORDER GRAY3
U=53248:POKEU+32.15:IF t-I=8THEt-I320
FORS=t-IT08:POKEU-2+2*S.0: POKEU-l+2*S. 0: t-IEXTS
FORS=lTOt-l:POKEU+21.PEEKCU+21)ORC2~CS-l»:REM
POKEU+23.PEEKCU+23)OR(2~CS-l»:REM EXPAt-IDIN
POKEU+29.PEEK(U+29)OR(2~CS-l»:REM EXPAND IN
POKEU+37+2*S.S+5:REM SET SPRITES' COLORS
POKEU-2+2*S.50:REM SET EACH SPRITE TO X COORDIt-IATE AT POST 1
POKEU-l+2*S.200:REM SET EACH SPRITE TO Y COORDINATE AT POST 1
UL=191+S
POKE2039+S.UL:REM SET SPRITE'S POIt-ITERS
FORK=64*ULT064*UL+63:POKEK.0:t-IEXTK
FORK=64*UL+6*CS-l)T064*UL+6*CS-l)+3STEP3
POKEK.2~S-1
POKEK+l.255
POKEK+2,255-(2~(8-S)-1)
NEXTK,S
PRIt-ITCHR$(147);:REM CLEAR SCREEt-I

REM
GOSUB
GOSUB
GOSUB
END

40
50
60
713
80
'30
100
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
300
305
310
315
320
330
340
350
360
370
375
380
385
390
400
41(1
420
430
440

12

450 FORK=ITOI5:PRINTCHR$CI7);:NEXTK
460 FORK=IT08:PRINTTAB(6);CHR$C98);TABCI8);CHR$C93);
470 PRINTTAB(30);CHR$C98)
480 t~E)<:TK:PR ItH: PR ItHTAB (6); "1";TABC 18) ;"2"; TABC 30); "3"
485 PRINTCHR$CI9):RETURN
490 :::::::::::::::::::::::::::::::::::

500 REM *** DETERI'1INE SOLUT Iot~ ***
510 T(1)=21'N-l
520 t~M"'NM+1:S=0
530 D=-(CNI'1AND21'S)=21'S)*CS+l):S=S+I:IFD=0THEN530
540 TF=0
550 TF=TF+l:IF0=CC21'CD-l)ANDTCTF»=C21'CD-l»)THEN550
560 DT=CCCIANDN)=I)*2+1)*C«IANDD)=I)*2+1)
570 TT=TF-DT-DT*3*CCTF-DT)3)ORCTF-DT(I»
530 TCTF)=TCTF)-21'CD-l)
590 TCTT)=TC~T)+21'CD-l)
600 GOSUB700:REM DISPLAY DISK MOTION
610 IF NI'1(21'N-ITHEN520
620 PR ItH" Dot~E.":RETURt~
630 ::::::::::::::::::::::::::: :.:::::::
700 REI'1 *** DISPLAY DISK 1'10TION***
710 FORY=200TOI00STEP-l:POKEU-l+2*S.Y:NEXTY
720 FORX=CTF-l)*96+52TOCTT-l)*96+52STEPSGNCTT-TF)
730 POKEU-2+2*S.X:NEXTX
740 FORY=100T0200:POKEU-l+2*S.Y:NEXTY
750 RETURt~

Here is a detailed explanalion of the listing.

LINE

10-35

40-80

EXPLANATION

This is the title and credil information for the
program.
This is the main program. It consists of three sub-
routine calls and an END statement. By writing the
program as a series of subroutines, you can kcep
it better organized and easier to understand. Line 40
is a REM statemenl idelllifyin~ the section as lhe
main program. Line 50 is a subroutine call that
prillls the instructions and asks how many disks.
Line 60 defines the sprites. Sprites are graphic
objects that you can define and call move around the
screen quickly. Wc will use spriles to creatc the disks
that lhe computer will move. Line 70 calls the sub-

13

1 2 3

Fig. 1-3. The towers of Hanoi puzzle with four disks after move five.

90

100-260

270

300-485
300
305

14

routine that dctermines the solution to the pUllle.
Line 80 ends the program. Otherwise it would run
into the subroutine that starts at line 100.
Colons are used to scparate the main program from
thc first subroutinc. They are nonexecutable.
These lines print the instructions and ask the user to
input the number of disks. Line 200 is a command
thaI allows the computer to read the kcyboard, an
alternalive 10 using the INPUT statement. Line 210
prompts the user to entcr the number of disks. The
INPUT#I,NS slatement reads the keyboard and
doesn't print a question mark on the screen. Line
220 ends thc keyboard reading command. Actually
il closes the keyboard "file." Line 230 checks for
errors, as does line 240. Line 250 indicates that the
number has been accepted. Line 260 reI urns the con-
trol back to line 60 of lhe main program.
The colons form a separation between the sub-
roulines.
This subroutine dcfines lhe sprites.
This line identifies the subroutine.
This command changes the border color, the area
around lhe edge of the screen, to color number 15,

310

315

320
330

340

350

360

370

375-430

440
450

460-485

490
500-620

630
700

710

known as gray 3. POKE is a command used to
change the values in individual memory locations.
V is a variable that is set to the value of the memory
location at the beginning of the video chip register.
The next PO KE sets the rest of the screen to gray 3.
ICthe number of disks (or sprites) is 8, control is sent
to line 320.
This line is a loop that sets all the spritcs at the
initial position, off the screen. This is used to clear
the screen.
The S loop enables the sprites in this linc.
This line expands the spritcs to dou ble their original
size in the vertical direction.
This linc expands each sprite in the horizontal
direction to twice its size.
This line uses the POKE command to set the color
of each sprite.
This line moves each of the sprites used to its
horizontal position on the first post.
This line posilions each of the sprites 10 the proper
vertical position.
These lines define the sprites' pointcrs and define the
individual sprites. Each sprite is defined as a rcct-
angle, which used to represent the disk. Parts of the
sprites that are not defined are transparent to other
sprites and whatever else that is on the screen.
This line clears the screen except for the spriles.
This line moves the cursor down 15 lines from the
top.
These lines draw the vertical Jines represenling the
posts and the letters A, B, and C. CHRS(19) is lhe
code for the home characler; it posilions lhe cursor
to the top left corner without clearing thc screen.
This is a separator line.
This subroutine is essentially the same as was used
in the first program. It determines thc binary solu-
tion to the puzzle. Line 600 calls thc subroutinc
starting at line 700,which shows the disks moving.
Line 620 prints the word, "DONE" when thc pro-
gram IS over.
This is a subroutine separator line.
This identifies the start of the disk (sprite) moving
subroutine.
This line moves the sprite in question vertically
from its resting place on the post. It is moved one
pixel at a timc, giving a smooth motion.

15

720-730

740
750

Thcsc lines move that sprile horiLOntally to the
proper post, as determined by thc subroutine start-
ing in line 500.
This line drops the spritc down on the proper post.
This line returns control to line 610.

Program operation. Aftcr you havccntered the program inlo RAM
and typed RUN, the instruclions will be displayed. The program
will request the number of disks thaI you wish 10 have in a stack on
the firsl post. You may specify an integer from I to 8. If you specify
I, the computer will solve the puzzle in I move. If you specify 8, the
computcr will solvc the puzzlc in 255 moves. As we said, the only
real limit to the number of disks is the number of availablc sprites
(8). If that weren't the limiting factor, thcn computer speed would
be lhc limiling factor in solving the puzzle.

This program is rathcr interesting to watch because of the
graphics. It looks like somcone is moving the disks from onc post
to another. This program is visually more meaningful than the
firsl program. Enjoy!

The Knight's Tour
The program in Listing 1-3 is a computer solution to the

knight's lOur puzzle, which requires that the knight land on each
position on the chess board withoullandingon any position twicc.
Although lhere are many possible solutions for the knight's tour
from any given starting position, this program displays one
possible solution for each of the 64 possible starting positions.
This program is something of an expert system because the
computer is able to quickly solve the problem from any first
position. A solution of the knight's tour is contained in DATA
statements in lines 601-608. These data arerearranged to give other
possible solutions. Thus the computcr appears more "intelligent"
than it is. Also the solution is displayed almost immediately.

This program, then, reprcscnts an unusual way of solving the
knight's tour puzzle. Other methods have included the use of stacks
10 trace the knighl's way through lhe chessboard. This program is
particularly good if you don't care how the knight finds his way
from a given starting position.

I-Jere is an explanation of the program lines.

LINE

10-60
70-110

16

EXPLANATIO

These lines identify thc program.
This is the main program. Line 70 idcntifies the
section. Line 80 is a subroutine call to line 200 to
print thc inslructions. Line 90 is a subrouline call to

listing 1-3 The Knight's Tour
10 ::::::::::::::::::::::::::::::::::::
20 REM
30 REt'1
40 REM
50 REM

KNIGHT'S TOUR
WRITTEN BY TIMOTHY J. O'MALLEY
COPYRIGHT 1983, TAB BOOKS INC,
(WRITTEN FOR THE COMMODORE 64)

60 ::::::::::::::::::::::::::::::::::::
70 REM *** MAIN PROGRAM ***
80 GOSUB 200:REM PRINT INSTRUCTIONS
90 GOSUB 400:REM DEFINE GRAPHICS
100 GOSUB 600:REM DISPLAY SOLUTION
110 OPEN 1,0:INPUT#1,N$:CLOSE 1:PRINTCHR$(147):POKE53281,6:POKES.O:

POKES+l.0:END
121.3
200
210
220
230
240
250
260
270
280
2',0
3130
310
320
330
34(1
350

36(l
4130
410
4213
430
440
450
460
470
4813
4',13
5013
510
5213
530

540
550
5613
600
601
6132
6133

.. .
REM *** INSTRUCTIONS ***
PRINTCHR$(147);:REM CLEAR SCREEN
PRItH: PR It-iTTAB(13); "KtHGHT' S TOUR": PRINT
PRltH" - THIS PROGRAI'1DISPLAYS A Kt-lIGHT'S"
PRINT" TOUR. THAT IS. A KNIGHT IN THE GAME"
PR ItH " OF CHESS CAt-l~TUt'1Pat-lALL 64 SC~UARES"
PRINT" OF A CHESS BOARD WITHOUT LANDING ON"
PR ItH" AtN SQUARE MORE THAt-lat-lCE."
PRItH
OPEt-l1,0
PRINT" EtHER Kt-lIGHT'S STARTlt-iGPOSITIOt-l,":PRItH
PRItH" EtHER THE ROW: ";: It-lPUT#l.f':: PRItH
PR ItH" EtHER THE COLUI'1N:";:It-lPUT#1•C: PR ItH
CLOSE 1
IFR(10RR)80RC(10RC)8THEN2913
RETURt-l..
REM *** DEFINE GRAPHICS ***
PRINTCHR$(147);:REM CLEAR SCREEN
FORI=0T063:READJ:POKE832+I.J:NEXTI
DATA, ,,••••••••
DATA,8 •••30 •••63, ••127,
OATA. 111. ,•15 •••31 •••62.
DATA.62 •••28 •••62 ••• 127.
DATA~127~~~~"""~,,,
8=53248
POKES+21.1:POKES+39.1
POKES+23.1:POKES+29.1:POKE2040.13:POKE53281.14
P=1016:L=-1:FORJ=lT08:FORM=lT03
P=P+7:FORK=lT08
FORN=lT04:P=P+l:POKEP.160:POKEP+54272.ABS(L)*3
NEXTN:L=NOTL:NEXTK:P=P+l:NEXTM
L=NOTL:NEXTJ:RETURN..
REM *** OISPLAY SOLUTION ***
DATA3.42.5.20.37.40.15,18
DATA6.21.2.41,16.19.36.39
DATA43.4.57.54.59.38,17.14

17

604 DATA22,?,62,1,56,53,60,35
605 DATA49,44,55,58,61,64,13,28
606 DATA8,23,48,63,52,29,34,31
60? DATA45,50,25.10,4?,32,2?12
608 DATA24.9.46.51,26.11,3~.33
610 DIM BD(8.8).MD(8.8)
615 FORJ-1T08IFORK=lT08:READMD(J.K):HEXTK,J
620 N=0:Xl=0:Yl=0
625 FC=MD(R,C)-1
626 FORJ=IT08:FORK=IT08:BD(J.K)=MDCJ,K)-FC:IFBD(J,K)(ITHENBD

(J,K)=BD(J,K)+64
627 NEXTK,J
630 N=N+l:FORJ=IT08:FORK=IT08:IFBDCJ.K)=NTHENR=J:C=K
633 NEXTK,J
635 P=1065+4*(C-l)+120*(R-l)
640 U=48+INTCN/10):POKEP.U
650 U=48+N-10*INTCN/10):POKEP+l.U
660 X2=32*C-18:Y2=24*R+16:DX=X2-Xl:DY=Y2-Yl
670 IFABS(DY)}ABSCDX)THEN850
680 FORJ=SGN(DX)TODXSTEPSGN(DX)
690 X2=Xl+J:Y2=Yl+J*DY/DX
700 POKES.X2:POKES+l.Y2
710 NEXTJ:IFN=64THENRETURN
750 Xl=X2:Yl=Y2:GOT0630
850 FORJ=SGN(DY)TODYSTEPSGNCDY):Y2=Yl+J:X2=Xl+J*DX/DY:GOTO700
:360 :::::::::::::::::::::::::::::::::::

120

200-350

360
400
410
420

18

[inc 400 to define the graphics used in lhe program.
Line 100 calls a graphic display of the solution.
Line 110 allows you to clear the entire scrcen before
cnding the program. OPEN 1,0 allows the computer
to read the keyboard for characters to be entered.
INPUTtll,NS is a command to input a character
string without a question mark appearing. The
POKE commands gets rid of the knight.
This is a line separating the main program from the
first subroutine.
This subroutine prints the instructions and requests
the starring square for the knight's tour. Notice the
use of OPEN 1,0 to read the keyboard.
A separation line.
This line identifies the subroutine.
This line clears the screen.
This line reads the data from DATA statements in
lines 430-470. These data are used to create four
spritcs that will make up a small knight on a chess-
board. We read a total of 64 values.

430

440

450-470

480
490-500

510-550

560
600
601-608

610
615

620-627

630-633

635-650

660-850

860

This linc consists of 12 zeros. Notice that thcy are nOl
displayed but arc separated by commas. Because 0
is nothing, it doesn't have to be displayed in BASIC.
This line consists of 12 values, four of which are
nonzero.
These Iincs are the rest of the valucs used in defining
the spritcs for the knight.
S is the X position register of sprite O.
These lines turn on lhe sprites. Line 500 also sets
the background color to light blue and selS sprite
O's pointer.
These lines print out the chessboard on the screen.
Each square is made of 3X4 solid color characters.
Note the use of L=NOT L in lines 540 and 550. L
alternates between -I and 0 and is used to prirlllhe
alternating square colors.
This separates two subroutine lines.
This is the start of the display subroutine.
This is a solution for the knight's tour if the knight
starts at column 4, row 4 (left to right, top to
bottom).
This line dimensions arrays for storing board valucs.
This line reads in thc data of the original board from
lines 601-608.
These lines rearrange the board data for the starting
row and column. Observanl programmers wi)) no-
tice that I cheated: I made the knighl's tour circular.
Then all I had to do was to rearrangc the move
numbers. In other words, you can reach the first
move from the last move.
These lines find the position of the next move num-
ber.
Thcse lines POKE the move number on lhe appro-
priate square on the screen.
These lines draw a straight line from the current
knight position to the next square. II then moves
the sprites along that line, one pixel at a time. This
makes the knight appear to movc smoothly along.
After the 64th move, control gocs to line 110.
This marks the end of the listing.

Program Operation. When you enter the program into RAM and
type RUN, instructions are printed and you are asked for the row
and column numbers of the knight's starting position. Enter an
integer from I to 8 for the row and column. The computer will
check for values outside of this range.

19

Fig. 1-4. Move 10 of Knight's Tour starting at Row 4, Column 4.

After that. lhe computer will print out a chessboard on the
scrccn and change thc scrcen color. A knight will appear from thc
uppcr lcfl corner and will move around thc board. The move
numbers will be prinlcd on thc squares of the board just before the
knight moves to [he next squarc. These numbers aCl as a trace to
leave a lrail of the knight's tour. The graphics are intcresting to
follow.

You mighl wanl 10 think about how to change the program to
havc thc computer solvc other possible tours from the same initial
starting position. The rcason this program is included is that the
compuler uscs one sel of dala 10 solve a wide range of possibilities. I
think lhat makes it somewhat intelligenl. Intelligence is really
making thc bcst use of stored information.

20

Chapter 2

Intelligent Games
In this chapter I discuss some intelligent computer games. The
three games, the game of Nim, a maze program, and a cellular
automaton program, show some differing aspects of artificial
intelligence. I also discuss some of thc traditional board games.

ARTIFICIAL INTELLIGENCE IN GAMES
Artificial intelligence is sometimes bcst undcrstood by study-

ing games. Because games are undcrstood by everyone, even
children, they are allractivc candidates for the study of artificial
intclligcncc on computers.

Artificial inlelligence has not bccn fully utilized in computer
gamcs. Obviously as the technology grows, the capabilities of
computers involved in computcr games will similarly increase.
Microcomputers are becoming faster, and more RAM is becoming
available for the storage and execution of these games. Low-cost
mass storage devices add to the capabilities of the microcomputer.
These developmcnts incrcasc the possibilities for the future
development of artificial intelligence in compulcr games.

Board Games
Four popular board games that have been compulerized are

chess, checkers, Othello, and backgammon. Lct's discuss each one
separately.

21

Chess. Chess is lhc mosl famous computer board game. There
are microcomputer tournaments in which computers using
different programs compete against one another. Large computers
were first used to play the game of chess. It was then though I that
the computer could not beat a grand master and lhat the use of
computers in the game of chess was nothing more than an
interesting experiment. People were startled when a computer first
beal its human opponent at chess. Suddenly computers had to be
raken seriously. Thcrc are now many chess programs for many
kinds of microcomputers. Many are written in machine language
to make maximum use of operating speed of the microprocessor.

In lhe future, chess programs will no doubl be written lhat
play chess more like the way humans play the game. Typically the
chess games in existcnce utilile tree scarches, as mentioncd earlier.
Humans usually play chess by establishing a set of subgoals and
lhen seeking the moves that will accomplish those subgoals. Many
of the chess programs use the brute force method of deciding
moves. A computer that would accept advice and make analogies
between similar situations that it has "recogniled" before would be
operating in lhe realm of artificial intelligence. Chess is a rather
complex game, so such a program would requirc considerable
thought in programming. Certainly it shouldn'l be written in
BASIC.

Checkers. Checkers is another favorite computcr board game.
Again there are many stralegies used in determining the moves
made by thc compuler. Tree searches find the best possibilities.
These scarches don't give lhe program intelligence, however. If the
computer could be programmed to rcmember a stategy from game
to game, lhcn it would be intclligent. A program would havc to be
designed so that it could change ilS own programming Wilh time-
or perhaps data files could be updated and read into the computer
at the start of cach game or series of games. This data file could then
be saved at the end of the games, having bcen modified by
"learned" strategy.

I don't think that checkcrs has a simple sol ution. If a relatively
simple solution to the game could be found, the computer
program could bccome an cxpert al the game. That is, the
compuler could find a mathemarical solution for any given sct of
moves or states of the game.

Realistically, il might be reasonable for a computer to learn
strategy. Humans look at a set of circumstances and gencralile.
Thcy make a rule or sct of rules that explains how the system
works. They test that hypothesis againsl the situation. Where they
are wrong they alter their thinking. This proccss can be defincd as
learning. A checkers program might be able to do similar things in
the game of chcckers.

Othello. There arc several games of Othello in existence. In

22

Othello, pieces are won by "trapping" the opponent's pieces
between one of your existing pieces and a piece you pUl down on a
8x8 board (see Fig. 2-1). There might be a binary solulion for the
game: discovering il would be an intcresting project. There is at
least one official Othello tournament for microcomputers.

Backgammon. Backgammon is another game that has been
adapted for the computer. The simulated roll of the dice has been
replaced by a random number generator. In July 1979 a computer
backgammon program called BKG 9.8, written by Han Berlinger,
defeated a world champion, Luisi Villa of Ilaly. Although lhis
game was run on a large computer instead of a microcomputer, it
represented the first lime that a computer defeated a world
champion at any board or card game. That program utililed
artificial intelligence. (See lhe June, 1980 issue of Scientific
American, Volume 242, Number 6, pages 64-72.) That program
used several "intelligent" techniques to defeat its opponent, nOl

e 0
0 e 0

Fig. 2-1. An Othello board: the black piece has been "trapped" by the white
pieces.

23

just brute force and mathematical calculation. It simulaled some of
the tcchniques thaI people use in playing the gamc.

THREE INTELLIGENT GAMES IN BASIC
Let's now look at the three games written in BASIC. The first

is lhe game of Nim. The object of Nim is (0 pick from one to three
items from a pile, Icaving your opponent with the last item in the
lasl pile. The second game is a male program that the computer
solves. The method involved is to successively change all three-
sided squares (dead ends) to four-sided squares, effectively filling
in lhe dead ends. The final result is the solution. The last of thc
(hrec programs is a ccllular automaton program with an interest-
ing twist.

The Game of Nlm
Thc program in Listing 2-1 plays lhc gamc of Nim with you.

You have to match wits against the computer. The program is
artificially intelligent because it will learn your winning stratcgy!
Your moves are stored in an array (hat can be savcd on tape at the
end of the game or the series of games. (Listing 2-2 shows one way

Listing 2-1 The Game of NIM
10 ::::::::::::::::::::::::::::::::::::
15 REM
20 REI'1
25 REI'1
30 REt"

GAI'1EOF NII'1- PROGRAI'1 4
WRITTEN BY TIMOTHY J. O'I'1ALLEY
COPYRIGHT 1984. TAB BOOKS INC.
(WRITTEN FOR THE CC~MODORE 64)

35 ::::::::::::::::::::::::::::::::::::
37 REI'1 *** I'1AINPROGRAI'1 ***
40 GOSUB 105: REt·,It~IT IAL IZE PROGRA!'1
45 IF F=0 THEN GOSUB 710:GOSUB 405:GOSUB 540: IF TL=0 THEN 70
50 GOSUB 710:GOSUB 200:GOSUB 540: IF TL=0 THEN 70
55 IF F=l THEN GOSUB 710:GOSUB 405:GOSUB 540: IF TL=0 THEN 70
60 GO TO 45
70 It~PUT"("ANT TO PLAY AGA It~ (Y /t~)";A$
80 PRINT: IF LEFT$(A$+" ".l)="Y" THEt~ GOSUB 11',:GOTO 45
',0 INPUT"t.IAt~T TO SA')E STRATEGY (')}/N)";A$
',2 PRIt~T: IF LEFT$(A$+" ".1)="N" THEN Et~D
94 OPEt~ 1.1.1. "STRATEGY": FOR 1=1 TO 512
96 P~INT#l.P%(I):NEXT:CLOSE l:END
'38 ::::::::::::::::::::::::::::::::::::
100 REM *** It~IT IAL IZE PROGRAt'1 ***
105 DIM P%(584).Q%(3.24)
110 GOSLIB 810
114 A$='"y": INPUT"EtHER STRATEGY FRO!" TAPE (',}/N)";A$
115 PRIt~T: IF LEFT$(A$+" ".l)="W' THEt~ 11',
116 OPEN 1. 1.0. "STRATEGY": FOR 1=1 TO 584
117 INPUT#l.P%(I):IF ST=0 THEN NEXT
118 CLOSE 1

24

:::::::::::::: ::::::: ::::::::::::::

~1=1: F=e
IF RND(I)(e.5 THEH PRltH "'Y'OU NAY NO'JE FIRST. ":F=I:GOTO 1410
PRINT "THE CO~lPUTER "IILL t10l)E FIRST,"
FOR 1=1 TO 3
Q%(I.l)=3+5*RHD(I)
FOR ~T=2 TO 24
Q%(I.~T)=e
t~EXT: HEXT
GOSUB 4610: RETURt-l

250

2413

o").,.c::
.. .,);;J

REM *** YOUR MOVE ***
OPEt~ I.e: PRIt-lT "YOUR NOVE. ": PRIt~T
PRINT "ENTER PILE #:".: It~PUT# 1 • Pt~: PRINT
IF Pt~(1 OR Pt-l>3 THEt~ PRIHT .. ILLEGAL PILE #. TR',I AGAlt~.": PRltH: GOTO
2210
IF Q%(Pt-l. M)=e THEH PRItH .. t-lot~E It-l THAT PILE. TRV AGAIN.": PRItH:
GOTO 220
PR I NT: PR I tH ..EtHER t-lU~lBER TAKEt-l FROM PILE #" PN" : ... : I t-lPUT#1 • HB:
PRINT
IF t-lB>3· THEt~ PRltH "TOO t'1AtN. 3 IS NA)<:I~lUN, TRV AGAlt-l.": PRltH: GOTO
2410

2613 IF HB< 1 THEH PR I tH "CO~1E Ot-l t~O"I. TAKE AT LEAST 1.": PR I HT: GOTO 240
270 IF Q%(PH.N)(NB THEH PRINT "ILLEGAL NOVE. TRY AGAIH.":PRIHT:GOTO

119
1213
1313
1413
1513
1613
1713
1813
1913
195
21313
2113
2213
2313

2210
2813 CLOSE 1: PR I tH: PR I tH "I)ER'Y' WELL.": PR I tH
2913 Q%(e.M)=(PH-l)*3+HB
300 FORI=1T03
3113 Q%(I.N+l)=Q%(I.N)+HB*(I=PH)
3213 NEXT:N=N+l:RETURH
330 ::::::::::::::;;;;::::::;;;::::;;;;
4013 REM *** COMPUTER'S NOVE ***
405 PR I tH "CONPUTER' S t10I)E."; PR I tH
4113 C=Q%(I.N)+Q%(2.t'1)*8+Q%(3.N)*64
420 IF P%(C)=eTHEH GOSUB 48e;GOTO 4513
430 PN=I-(P%(C»3)-(P%(C»6)
440 NB=P%(C)-(PN-l)*3
4513 PRltH "COMPUTER "IILL TAKE .. t~B"FRON PILE #"Pt-l",": PRltH
455 GOSUB 2913
460 T I $=" 101310101313"
465 IF TI$< "13131313134" THEt-l 465
466 RETURt-l
470 :::::::::::::::::::::::::::::::::::

475 REN *** RAHDON CONPUTER MOVE ***
480 PN=I+INT(3*RND(I»
4913 IFQ%(PH. N)=eTHEt-lPH=Pt-l+1 : Pt-l=PtH3*<PH>3): GOT04'3e
5130 J-Q%(PH.N):HB=I+IHT(-RHD(I)*(J>I)-RHD(I)*(J>2»
5Hl RETURH
520 :::::::::::::::::::::::::::::::::::

530 REN *** IS GAt'1E OVER? ***
540 TL=e;FOR 1=1 TO 3
5513 TL=TL+Q%(I.N)
5613 t~EXT: IF TL THEH RETURt~
570 PRINT CHR$(147); " GA~lE OVER!": PRINT

25

580

5,,0
600
605
606
610
611
612
613
614
615
616
617
618
61',
620
630
700
71-0
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

IF It-ITCCI'1-F)/2)=CM-F)/2THEt-lPRIt-IT"COI'1PUTERLOST! '>'OU"'ION!":GOTO
G0e
PR IHT "VOU LOST! COMPUTER Wat-l!"
PRIHT:FORI=M-2 TO 1 STEP -2
PH=I-CQ%C0.1»3)-(Q%C0.1»6)
HB=Q%(0.1)-(PH-l)*3
P%CQ%(I.I)+Q%(2.1)*8+Q%C3.1)*64)=Q%C0.1)
IF PH-I THEH P%CQ%(I.I)+Q%C3.1)*8+Q%(2.1)*64)=Q%(0,I)
IF PH=2 THEN P%CQ%(3,1)+Q%(2,1)*8+Q%Cl,I)*64)=Q%(0,1)
IF PH-3 THEH P%(Q%C2.1)+Q%Cl.I)*8+Q%(3,1)*64)=Q%(0.1)
IF PH=1 THEH P%(Q%(2.1)+Q%Cl.I)*8+Q%(3,1)*G4)=3+HB
IF PH=1 THEH P%(Q%(3.1)+Q%(I,I)*8+Q%(2.1)*64)=3+HB
IF PH=2 THEH P%(Q%(I.I)+Q%(3,1)*8+Q%(2.1)*~4)=G+HB
IF PH=2 THEH P%(Q%(3.1)+Q%(I,I)*8+Q%(2,1)*64)=6+HB
IF PH=3 THEH P%(Q%(3,1)+Q%(I,I)*8+Q%(2.1)*G4)=NB
IF PH-3 THEH P%(Q%(3,1)+Q%(2,I)*8+Q%(I.I)*64)=NB
HEXT: RETURt-l
.. ..

REM **' PRINT PILES ***
PRIHT CHR$(147):FOR 1=1 TO 3
PRIHT "PILE #" I": ";
FORJ=1 TO Q%(I,M)
IF J)Q%(I,M) THEH 780
PRIHT CHR$(III)CHR$(17)CHR$(157);
PRIHT CHR$(108)CHR$(186)CHR$(145);
PRINT CHR$(157)CHR$(112)" ";
HEXT:PRIHT:PRINT:PRINT:HEXT:RETURH
:
REM *** INSTRUCTIOHS ***
PRIt-ITCHR$(147); " *** GAME OF tHM ***": PRIt-IT:PRIt-IT
PRlt-IT" It-lTHI S GAI'1E'>'OUP ICI< FROM 1 TO 3"
PR It-IT"OBJECTS FROM AHV S It-lGLEPILE. EACH OF"
PR It-IT"THREE PILES lJ ILL Cat-ITAIH FROM 3 TO 8"
PR It-IT"OB~TECTS. ',IOUl,1IH B'>'1'1AI<It-lGTHE COMPUTER"
PR It-IT"P ICI< UP THE LAST OB~TECT.": PR It-IT:PR IHT
RETURH.. - - ..

Listing 2·2 Changes To Use Him on Disk
70 I t·jpUT "l,jAt~T TO PLA'r' AGAI H ('r' /t·~ > II ; A:t
:::~3 PF.:ItH : IF LEFT:t 0:: A$+" ".' 1 ;.- '"r''' THEt-~ GO:;UB 119: GOTO 45
85 I t'lF'UT IIL,jAtH TO ::;AVE ::;TRATEG'r' 0:: 'r'/t'l > II .:A:t
87 pF.:un: IF LEFT:t(A$+" ",1 >="t'i" THEt-l Et·m
90 PRIHT"IF YOU HAVE USED THIS PROGRAM BEFORE AND HAVE ALREADY SAVED

A FILE ";
91 PF.:UH" OF STF.:ATEO'r' Ot-l TH I S DI :3f~:., ";
92 PF.:un II IT 1.J1LL BE F~EPLACED B'r'"
93 PRIHT"THE CURREtH FILE. EtHEF.: '1' IF :3UCH A FILE ALF:EAD'r' D::I:::T:::, II

94 H1PUT t·Q$: IF t·e:t- '"r''' THEt-l OPEt-l 15, 8., 15 : PR ItH # 15, "S~3 : :::;TF:ATECi'r''' :
CLO:3E15

95 OPEt·l 2,8,2., "SH:t':tTEG'r', :::.,W'; FOR 1=1 TO 512
96 PRIHT~2,P%(I):NEXT:CLOSE 2:END '

26

98 :::::::::;;::::::::::::::::::: :.: :
100 REM *** INITIALIZE PROGRAM ***
105 DIM P%(584),Q%(3,24)
110 GO::;UB 810
114 A$="'T''': HlPUT"UHER :3TRATE(~'r' FROt'1 DISK <'T'/t'D" ,;Rt
115 PRItH: IF LEFT$(A$+" ",1)=="t'l" THEt~ 119
116 OPE~l 2,8,2,. "STRATEG'T'., S, R" : FOR 1=1 TO 5E:4
117 INPUT#2,P%(I):IF 8T==0 THEN NEXT
118 CLOSE 2

you can change the program so lhe strategy can be saved on disk.
The other lines remain the same.) You can read that array inlo the
program when you start playing the ncxt time, and the computer
should become more adept at playing the game. We might say that
the computer is "learning" the game. It has gained experience.

The object of the game of Nim is to select objects from one of
three piles. You must take one to three objects from only one pile.
You win by making your opponent (the computer) pick up the last
object. One kind of winning strategy is to leave two piles of two
objects each, that would ensure a win for you because no matter
which pile the computer picks from, you can pick from the other,
leaving only one item. You will find other winning strategies-but
so will the computer

We will now look at the game of Nim by examining the
program line by line. In this game the computer will store winning
moves as a code in an array. When it encounters those moves again,
it will play those winning moves. If the moves are new to it, it will
move randomly.

Here is an explanation of the lines of the game of Nim:

LINE

10-35

37-98

EXPLANATIO

This is the title and credit information for the pro-
gram.
This is the main program. Line 37 is a remark
identifying lhe main pan. Line 40 is a subroUline
call to the beginning of thc initialilation sub-
routine. Line 45 says thaI if thc computer moves
first, it should go to the routine that prinls lhe
objects, then to the routine thaI compules lhe com-
puter's move, and then to the routine thaI chccks to
see if the game is over. If it is, control goes to line 70.
Line 50 calls the subroutine thaI displays the objects,
the routine that lets you play your move, and the
routine that checks to see if lhe game is ovcr. If the
game is over, then the computer goes to line 70.
Line 55 is like line 45 excepl it is run if you
moved first. Line 60 cycles control back to line 45.

27

100

lOS

110

114

liS
116-118

119

120

130
140-180

190

200-320

28

Line 70 asks if you want to play another game. Line
80 checks your input to determine whether or not
you want another game. If you do, part of the ini-
tialization subroutine is run (starting at line 119).
Then control is returned to line 45. Line 90 asks if
you want to save the computer's newest strategy on
lape. Line 92 ends the program if you don't want to
save the strategy. Lines 94-96 save the array, P%,
on tape and ends the program.
This line is the title of the subroutine as a remark
statcment.
This line dimcnsions arrays P% and Q% storcs thc
complete strategy of the game, Q% stores the moves
of the current game being played.
This line calls the subroutine that prints the instruc-
tions.
This line asks if you want to enter strategy from
earlier games from tape.
If the answer is negalive, control jumps to line 119.
These lines properly read in the P% array from the
cassette tape.
M is the move number. F is a flag indicating who
moves first. If F = 0, the computer moves first.
Based on a random number, you will move first,
aboul half lhe time and F will equal \. A jump
is lhen made to line 140.
The computer will go first.
These Jines blank the array, Q%, and fill in the
number of objects in the three piles at the start of
the game. The number of objects in each pile ranges
from 3-7. The I index is the pile number, and the
second index, J, is for the move number of this two-
dimensional array.
This subrouline call is for a four second time delay
starting at line 460.
This subroutine allows you to enter your move. It
checks 10 see if you entered an incorrect number. If
so, il informs you and you have 10 try again. Line
210 opens a keyboard file, for checking the characlers
that are being pressed. This is an al lernative to using
an INPUT statement with its question mark. PN is
the pile number, and NB is the number of objecls
taken from pile PN. Line 290 calculates a code based
on lhe pile numbcr and the number taken. It is
stored in array Q%. Lines 300-320 subtracts the
number taken from the pile and copies the other
piles in Q% for the next move. Note the use of the

400-466

470
475-510

530-620

700-780

800-880

logical conditions, 1= PN 10 compute the number in
each pile for thc next move. Afrer that lhc move
number is increased and control is returned 10 thc
main program.
This is lhe subroutinc that computes thc computer's
bcst move. Line 110 compulcs a code from lhe
numbcr of objects in each pilc to "look up" in array
P%. The current number of objccts in pilc I is addcd
to 8 limes lhc number of objects in pile 2, and the
rcsult is added to 64 limes the number of objects in
pile 3. Linc 420 says that if lhe corresponding lookup
value is 0, then go to the subroutinc at line 480 10
make a random move, and then go to line 450. Linc
430 computes the pile numbcr to pick from. Notice
the use of logical conditions in computing thc value.
Linc 440 compules the number of objecls to take
from the pile. Line 450 prints OUIhow many objcCls
it will take and from which pile. 455 is a call 10 line
290, part of lhc "your move" subroutine. This call
updates the Q% array and increascs the move number
as before. After that, control is relurncd to linc 460,
which sets a timer at lero. This timcr gives you four
seconds to read what the computer just printed on
the screen. Line 465 actually uses the limcr. If you
want to change the time delay, incrcase or dccrease
lhe numbers in the quotes. Line 466 relUrns control
to thc main program.
This line is a subroutine scparalor.
This subroutine chooses a random num bcr of objecls
to be taken from a random pile containing ObjcClS.
This subroutine checks to see if lhc game is over. If il
is, then P% is updated with the winning moves.
Lines 510-560 check 10 see if any objects are left
in the three piles. Lines 600-620 update the P% array
with the winning movcs. Then control is rcturned
to the main program.
Thesc lines print the graphics of lhc game. The
objects appear as squarcs. Code III is lhc upper
left corncr, 17 is lhc code for cursor down, 157 is
the bottom lefr corner, and so fonh.
These lines clear the screen and prinl the inslruc-
tions at the beginning of Ihe game.

Program Operation. Afrcr you enter the program in memory,
and lype RUN, the program will display the instruClions. You arc
then asked if you want to enter strategy from tapc. If you had saved
stratcgy on tape from when you had played the gamc before, type Y.

29

If no(, type N. The computer will then determine who moves first.
It will then make three piles of objects Wilh three (0 seven items in
each. These will be displayed on the screen as squares. You are
asked to enter the pile number that you wish to pick from; then you
are asked for lhe number of objects that you wish 10 pick. If you
make a mistake, the computer will inform you, and you will have
to reenter the move. You and the computer will take turns moving.

After lhe game is over, you will be asked if you want to play
again. Type Y for Yes or N for No. If you type Y, you will play
another game. If you type N, the computcr will ask you if you want
to save the current level of strategy "learned" by the computer on
lape. If you want to, type Y for Yes, or type N for No. After thatlhe
program will end. You will notice that the computer will
gradually make some of the same moves that you made to attempl
to win games. The computer will move randomly when it has no
recorded strategy for a given move. After each game, Ihe computer
will convert the moves to a code and store those codes in the array
P%. When you save the strategy on tape, you are actually storing
the numbers in this array.

This program is a good example of artificial intelligence in
games because the computer's performance improves with the
number of games played, something that we might consider to be
learning. It is a good idea to save strategy on lape after every series
of games. You might want to convert the programs to save more
than one file of strategies on disk if you have a disk drive. You
would have 10 change the OPEN statements to the appropriate
disk drive file numbers and device numbers.

The Path Through a Maze
The Male program in Listing 2-3 shows how the compuler

can find a path through a male. II uses a technique of changing
cells, or parts of a male, to find thc solution to the male. By
debranching dead ends in the male, the computer successfully
approaches thc solution to the puule. After no more cells can be
changed, the computer prints a solid square in all of the cells that
have not been changed. The program assumes that there are an
entrance and an exit to the male.

Listing 2·3 The Path through a Maze
10 ::::::::::::::::::::::::::::::::::::
20 REM MAZE - PROGRAM 5
30 REM WRITTEN BY TIMOTHY J, O"MALLEY
40 REM COPYR IGHT t983" TAB BOOKS It-lC.
50 REM (WRITTEt-lFOR THE COMMODORE 64)
60 ::::::::::::::::::::::::::::::::::::
70 REM *** MAIN PROGRAM ***
80 GOSUB 200:REM INSTRUCTIONS
t00 GOSUB 600:REM READ MAZE DATA

30

110 GOSU8 72e:REM DETERMINE SOLUTION
1213OPEN 1.13:INPUT#1. AU: PR ItH " CHOt'1E}":Et-lD
1313 :::::::::::::::::::::::::::::::::::
2130 REM *** INSTRUCTIONS ***
2135 PR ItH" (t,lHT)";
207 POKE 53281.4
210 PRItHCHR$(147); TA8(12); "~1AZE - PROGRA~1 5": PRINT: PRItH
2213 PR INT" TH IS PROGRAM ALLOl,IS THE CO~1PUTER TO"
2313 PR It-lT"F It-lDITS l,IA',ITHROUGH A t'1AZE. THE ~1AZE "
2413 PRINT"IS DEFINED IN THE DATA STATEMENTS IN "
250 PRItH"THE PROGRAM LISTIt-lG. LIt-lES 6413-7113."
2613 PR ItH: It-lPUT"PRESS A KE','TO CotH It-lUE.OK"; A I$
390 RETURt-l
395 :::::::::::::::::::::::::::::::::::
40(1 RE~1 *** CODES FOR S IDES OF t-1AZE ***
401 PRINT"---- CC/LF} (I>LF} CC/LF} CC/LF)"; :RETURt-l
402 PRINT"CC/RT)CC/RT}CC/RT) ICC/LF}CC/DN) ICC/LF}CC/DN) ICC/LF}CC/LF)

CC/LF} CC/LF) CC/UP} CC/UP} ";:RETURt-l
403 PR ItH" CC/RT} CC/RT} CC/RT} -,CC/LF} CC/LF} CC/LF} CC/LF} ";:RETURt-l
404 PR ItH "CC/Dt-l}CC/DtD· CC/LF} CC/LF} CC/LF} CC/LF} {C/UP} {C/UP}"; :

RETURN
406 PR ItH" {C/Dt-l}{(jDt-l}{C/RT} {(jRT} CC/RD..J CC/LF} {C/LF} CC/LF} (C/LF)

CC/UP}CC/UP}";:RETURN
408 PRItH"1 {C/LF} (C/Dt-l}1CC/LF) CC/Dt-l}1CC/LF} C(jUP} CC/UP}"; :RETURt-l
409 PRItH"r CC/LF}"; :RETURN
412 PR ItH" CC/Dt-l}CC/Dt-l}L CC/LF} CC/UP} CC/UP} ";:RETURt-l
5913 :::::::::::::::::::::::::::::::::::
600 REt'1 ,+;**F:EAD NAZE [)ATA ***
61(1 DH1 8(8.8)
615 PRItH "CCLR}";
620 FORI=1 TO 8:FOR J=1 TO 8
622 READ 8CI.J):IF 8(I.J)=e THEN 639
624 FOR K=e TO 3:0N «8(1.3) AND 2~K)=2~K)*-(K+1) GOSU8 4131.4132.4134.

4138
625 NEXT:FOR K=1 TO 4
630 ON «8CI.3) AND 3*K)=3*K)*-K GOSU8 4133.4136.4139.412
635 t-lE~<:T
639 PRINT"CC/RT}CC/RT}CC/RT}CC/RT}";:NEXT:PRINT:PRINT:PRINT:NEXT
640 DATA 113.9.3.9.5.3.13.3
6513 DATA 113.14.113.113.13.4.5.2
660 DATA 12.5.4.6.9.5.3.113
670 DATA 11.9.5.5.6.11.10,113
680 DATA 10.10.13,5,1,6,12.6
690 DATA 10,12,5.5,0.5.5,7
709 DATA 8.5,5.7.10.9,5.3
710 DATA 12.5.5,5,4.4,7.113
715 RETURN
717 I::::: I I I J I I I : I I : : : I : : : : : : : : : : : : : : :
7213 PRINT "(HOME}"JIF-e:FOR 1-1 TO 8lFOR J-1 TO 8
730 IF 8(I.J)=7 THEN F=1:8(I.J)=15:8(I.J-1)=8(I.J-1)+2
740 IF 8CI.J)=11 THEN F=1:8(I.J)=15:8CI+1.J)=8(I+1.J)+1
759 IF8CI.J)=13 THEN F=1:8(I.J)=15:8CI.J+1)=8CI.J+l)+8
7613 IF 8(I.J)=14 THEN F=1:8(I.J)=15:8(I-l.J)=8(I-1.J)+4

31

7713
7813
7',13
8ee
8eG
8le
8213

t~E~':T.J, I
IF F THEN 720
FOR 1=1 TO 8:FOR J=1 TO 8
IF 8(I,J)=15 THEN PRINT "(C/RT)(C/RT}(C/RT)(C/RT)";:GOTO
PR ItH "((J[JtU ((:.·'RT::·II (C/F.:T}(C/UP) ";
NEXT: PRINT: PRINT: PRINT: NEXT: RETURN
... "

810

This program represents an unusual method of solving the
male problem. Typically, methods have utililed a slack array in
which thc complller would Slore. Whencver the computer would
reach a dead end, the compUlcr would pop moves off of the stack
unlil il reached a branch point. Thcn it would continue putting
moves on the slack. The method used in this program is a faster
way to solve the problem.

Here is a line by line description of the program and its
operation.

LINE

10-60
70-120

130
200-390

'100-412

32

EXPLAN AnON

These lines identify the program.
This is thc main program. It is a scries of sub-
routinc calls that solves lhe male pUlllc. Line 70
idcntifies the main program. Line 80 is a call to a
subroutine thaI prints out the instructions. Line 100
is a call 10 a routine that reads the male data. Line
110 is a subrouline call to line 720 whcre the solu-
tion is determined. Line 120 waits for you to press
the RETlJRN key after the program is over. It then
ends lhe program.
This line separates the parts of thc program.
This set of lines prints lhe instructions. Line 205 is a
command that changes the color of the characters to
while. lWHT}is produced by pressing the CTRL
and 2 keys simultaneously. This characler does not
appcar this wayan the screen but is the way some
printcrs print it. Line 207 is a POKE command thaI
changcs the screen colors.
Thcse lincs are a set of subroutines that print the
sides of the cells in lhe male. Line 401 contains four
~I'aphic charaClel's (the left one on the Y key).lC/LF}
is the CRSR LEFT key. Line 402 contains the CRSR
RIGHT characters, {C/RT}, followed by the left
graphic charactcr on the N key. Thc CRSR DOWN
{C/DN} charaClers and the CRSR UP {C/UP} con-
trol characters are also used. Line 403 contains somc
of lhese same control characlers plus the right
graphic character on thc P kcy. Linc 404 contains

600-715

720-810

columl characters plus the leEt graphic characler
on the P key. line 406 contains control characters
plus the right graphic character on the @ key. Line
408 contains control characters plus the left graphic
character on the H key. Line 409 contains lhe right
graphic character on the 0 kcy. Line 412 contains
lhe right graphic character on the L key plm control
characlers. Together tht'se subroulincs draw pans
of the male.
These lines dimension the B array, clear the screen,
and read in the elemellls of the B array. Line 615
contains the {CLR} character produced by pressing
the SHIFT and CLR/HOME keys. The male is
made up of eight rows and eighl columns of cells.
The numbers of those cells are colllained in lines
640-710. The cells' numbers are first defined as lero.
If the cell has a line on lOp, a one is added to its
number. If the cell has a line on the right, a IWOis
added to the cell's number. If the cell has a linc on
the bo/Com, a four is added 10 the cell's number. If
the cell has a line on the lefl, an eight is added to the
cell's number. A cell with a number of 10 has a line
on thc left and a linc on the right. Thc top and
bOllOm are open. A ccll with a value of 9 has a top
and bollom but no sides. ThaI is hal\' Ihe numbers on
the DATA stalcments in lines 640-710 makc up the
male. You might want to change these values or
have thc computcr change thesc numbers and thcn
olve the male puule. Thc rest of the lines of this
subroutine draw the lines of thc mal.e. based Oil the
cells' values.
This is the subroutine lhat actually solvcs the male
problem. Line 720 prints lhe HOl\IE charactcr, sets
a F flag 10 0, and bcgins tWO loops thaI are neslcd.
These loops look for cclls that ha\'e I open side.
Line 730 converts a cell with an opening on the
leEl 10 a solid square, l'fEecli\'cly debranching Ihal

dead end. It also sets lhe F to I, indicating that an
operation has taken place. It also changes thc cell
to the left by adding a right side 10 it. Line 740
does similar things to a cell with no bottom. II also
adds a lOp to the cell beneath it and sels the F £lag
variable. Line 750 adds a right side to lhe cell without
one and adds a left side to the cell on its right. Line
760 adds a top line to a cell without one and adds a
bottom line 10 the cell above it. This process is
repeated over and over until no F flags are set. Then

33

820

the program prints the Icft graphic character on the
+ kcy. This character is reprcsented in in line 806
as a black square with a white column in it. On the
screen it appcars as a checkered square.
This indicates the end of lhe program.

Program Operation. When this program is corrcctly entered
and run, it will print out the mazc as an cighl by eight collection of
cells. Thc male has an open cnd on the top and an open end on the
bollom. Thc computer will solve the puzzle and then print a
chcckered squarc in all of the cells that werc not debranched. This
rcprcsents the solution to the puzzle. Just follow the squarcs from
one end to the other. This trial of characters is lhe solution to the
maze puzzle.

You might like to change the data in lines 640-710 to make a
new male. Or you might likc to change the program so that the
computer will gcnerate a new maze cvcry time that lhe program is
run. You might also wanl 10 change the number of cells lhat arc
displayed on the scrccn.

The Cellular Automaton
This program, shown in Listing 2-4, necds a lillIe explana-

tion. Firsl of all, you muSl enter the program into lhc Commodore
64 EXACTLY as it is listcd. The reason is that the program will
change the characters in the DATA statcments as the program is
run! ThaI is, if you run the program and lhen prcss STOP and look
al the program listing, it will appcar differenl than before il was
I'lm! If you do not enter the program exactly, the program may
crash. Figurcs 2-2 and 2-3 shows how lhe data statcments change as
the program runs.

Listing 2-4 Cellular Automaton

CELLULAR AUTOMATON - PROGRAM 6
WRITTEN BY TIMOTHY 3. O'MALLEY
COPYRIGHT 1983. TAB BOOKS INC,
(WRITTEN FOR THE COMMODORE 64)

o ::::::::::::::::::::::::::::::::::
1 REf'1
2 REM
3 REt-1
4 REM
5 ::::::::::::::::::::::::::::::::::
9 DIM B%(25.3e).D%(25.3e)
10 FOR 1=1 TO 25:READ B$:FOR 3=1 TO 313
20 IF f'1ID$ (B$ •~T,1)< >" " THEt-lB:-;;(I,~T)= 1
313 IF f'lID$(B$,~T,1)=" " THEt-lB%(I,~T)=e
40 NEXT 3.1
51 DATA"
52 DATA"
53 DATA"
54 DATA"
55 DATA"

34

:+:**
:+::4<
:+:*

56 DATA"
57 DATA"
58 DATA"
5'3 DATA"
60 DATA"
61 DATA"
62 DATA"
63 DATA"
64 DATA"
65 DATA"
66 DATA"
67 DATA"
68 DATA"
69 DATA"
70 DATA"
71 DATA"
72 DATA"
73 DATA"
74 DATA"
75 DATA"
76 PRINT CHR$(147);
77 FOR 1=55296 TO 56295:POKE I.l:NEXT
80 FOR 1=1 TO 25:FOR J=1 TO 30:D%(I.J)=0
90 NEXT J.I:FOR 1=2 TO 24:FOR J=2 TO 2'3
100 IF 8%(I.J)=0 THEN 130
110 FOR K=I-1 TO I+l:FOR L=J-l TO J+l
120 D%(K.L)=D%(K.L)+I:NEXT L.K:D%(I.J)=D%(I.J)-1
130 NEXT J,I:FOR 1=2 TO 24:R=983+40:+:I:U=2413+38:+:I:FOR
140 T=U+J:P=R+J:8%(I.J)=-(D%(I.J)=3 OR (8%(I,J)=1 AND
150 S=32+10:+:8%(I.J):POKE P.S
160 POKE T-39.S
170 NEXT J,I:GOTO 80
180 :::::::::::::::::::::::::::::::::::

J=2 TO 29
D:~(I,J)=2»

This program is a cellular automalOn. That is, starting from
an initial pattern, you can generale vcry sophisticated patterns.
This program is based upon the game of life that was invented in
1970 by John I-lorton Conway. (See "Computer Recreations" in
cientific American, Volume 250, Number 3, pages 12-21 for a
more detailed explanation on cellular aUlomata.) This program
stores the state of the automaton by changing the program.

In this program, the pallern of asterisks and blanks delcrmine
where the next generation of asterisks and blanks will appear. Here
are the rulcs that control the changcs. If a celllouches three other
cells or if that cell is an aSlerisk and touchcs twO other aSlerisks, it
will be an asterisk in lhe nexl generation. All olher conditions for
cells will cause them 10 "die" and become blanks. This causes the
pallerns to change.

You can see thaI as thc program runs, the pallcrns will changc
in unpredictable ways. A spinoff effect of this program is thallhe
program ilseIf will change bccause the DATA slatements will

35

51 [,ATA"
52 DATA"
53 DATA"
54 DATA"
55 DATA"
56 DATA"
57 DATA"
58 DATA"
59 DATA"
60 DATA"
61 DATA" "
62 DATA" *** "
63 DATA" * * "
64 DATA" * * "
65 DATA" "
66 DATA" "
67 DATA" "
68 DATA" "
69 DATA"
70 DATA"
71 DATA"
72 DATA"
73 DATA"
74 DATA"
75 DATA"

Fig. 2-2. The data statements in the Cellular Automaton program at the start.

change. This means that you can STOP the program at any lime
and SAVE it. When you restart thaI saved program, it will start
working based on the newly stored pattern in the DATA state-
ments.

Think o{ how other programs that would change the program
lines as they ran might be written. This process can have very
interesting consequences! Cellular automata should be explored
further for their usefulness in computing. Someday when parallel
processing becomes commonplace in microcomputers, cellular
automata will reach their potentia1.

Here is a line-by-line description of the program.

LINE

0-5

36

EXPLANATIO

ote the use of line 0 as part of the heading of
this program. Zero is a valid line number that
usually is not used in programs.

(0 51 DATA" " ® DATA"51
I

52 DATA" 52 DATA"
53 DATA" 53 DATA"
54 DATA" 54 DATA"
0:-0:- DATA" 55 DATA"~I...J

56 DATA" 0:- ~ DATA"~'t>
o:-~ DATA" 57 DATA"...J(

58 [)ATA" 58 DATA"
5'3 DATA" 59 DATA"
6(1 DATA" 6(1 DATA"
61 DATA" :+: 61 DATA" :+:
62 DATA" :+: :+: 62 DATA" *:+: *:+:
63 DATA" ** *:+: .- DATA" :+::+: :+:*t>~,
64 DATA" 64 DATA"
'-0:- DATA" 65 DATA"t>~,
66 DATA" 66 DATA"
67 DATA" 67 DATA"
68 DATA" .68 DATA"
69 DATA" 69 DATA"
7(1 DATA" 70 DATA"
71 DATA" 71 DATA"
72 DATA" 72 DATA"
73 DATA" 73 DATA"
74 DATA" 74 DATA"
~o:- DATA" "70:- DATA"(' ' I ~,

® 51 DATA" " 8) 51 DATA"
52 DATA" " c::"'-' DATA"...JL

53 DATA" " 0:- [)ATA"--I

54 DATA" " 54 DATA"
55 DATA" " 0:-0:- DATA",• ..1_1

56 DATA" " 56 [)ATA"
57 DATA" " 0:-"7 DATA"~'I

58 DATA" " 58 DATA"
59 DATA" " 59 DATA"
60 DATA" " 60 DATA" *
61 DATA" *** " 61 DATA" *:+::+:
62 DATA" * * " 62 DATA" :+: :+:
63 DATA" ** ** " 0':'" DATA" :+::+: **
64 DATA" " 64 DATA"
65 DATA" "

.-0:- DATA"t>~1

66 DATA" " 66 DATA"
67 DATA" " 67 DATA"
68 [lATA" " 68 DATA"
69 DATA" " 69 DATA"
70 DATA" " 70 DATA"
71 DATA" " 71 DATA"
72 DATA" " 72 DATA"
73 DATA" " 73 DATA"
74 DATA" " 74 DATA"
"70:- [)ATA" " "70:- DATA"I ~I ' ~,

Fig.2-3. TheDataStatementsintheCellularAutomatonprogramastheycontinuetochange.

37

9

180

51-75

10-40

This line dimcnsions two integer arrays. These
arrays store I or 0, indicating that a character (like
the asterisk) is present in the data or that a blank
was present. D% is the working array, an array that is
made bascd on what is containcd in the B% array.
When all the cells of the B% have been checked, D%
is changed into B%, and D% is reset to zero.
These loops read in the characlers in the characler
strings of the DATA statcments in lines 51-75. If the
characters in those lines are blanks, then the cor-
responding values in B% are O. All other characters
are represented as I in B%.
Thcsc lines contain the "screen" of the cellular
automaton. You may change the blanks or asterisks
to whatewr printablc character that you like. You
may design different pallerns. Just make sure that
you maintain the same number of characters in each
line and you maintain thc same numbcr of lines.
There are 30 characters in each linc.
This clears thc screen.
This turns on all of the 1000 screen positions.
This resets all of the 0% array and begins to work
with the B% array.
If B% is 0, skip it.
This nested loop adds I to all the surrounding cells
in thc D% array for lhe occupied cell in B%.
These lincs change the cells in B% to thosc in lhe
completed D% array. They also change the blanks
and asterisks in the DATA statcments by using
the POKE command. Notice thc complicated use of
Boolean logic to determine what cells are changed.
This is the last line of the program.

Program Operation. When you lype RUN, the screen will
blank. The pattcrn will stan to print out on the screen. Because the
program POKEs the asterisks upon the screen, the pallerns will
appear to change without lhe screen being blanked out. The
program will continue to run indefinitely. To stop the program,
you must press lhe RUN/STOP key. Checkout the listing. You will
see that it has changed, and you might want to save the revised
program.

130-170

100
110-120

76
77
80-90

38

Chapter 3

Behaviors and Bootstraps
In this chapter we look at two novel ideas. One is lhe idea of having
lhe computer learn behaviors. The second is the idea of programs
that change themselves.

AN INTRODUCTION TO BEHAVIOR
Experimental behavioral psychology is the science that deals

with the relationships between stimuli and overt behaviors.
Typically a stimulus is a measured quantity and the resulting
behavior is a quantitative response to that stimulus. The experi-
mental variable is the amount of thc stimuli that rcsults in the
subsequent behavior relative to a conlrol. Behavioral psychology,
then, makes correlations and defines causal relationships between
the stimulus and the response.

I explored that idea that a simulation of behavior could be
created on the computer. The first program in lhis chapter
simulates the behavior of a rat in a Skinner box. Let's look at some
definilions before we look at that program.

Definitions
In experimental behavioral psychology, as with any "true"

science, everything has to be defined mathematically. If we say that
something might exist, we call it a hypothetical construct. (A

39

hypothclical conslruct is an entity that mayor may nol have
essence.) For science to deal effectively with a hypothetical
conSlnlCl, the construct has to be presented in terms of an
operalional definilion. We must find a way to mcasurc it. Our
slimulus may be a drug measured in milligrams, and thc response
may be a drop in blood pressure measured as millimeters of
mcrcury. If we noticc a positive relationship betwecn thc stimulus
and the rcsponse, we say that a corrclalion exisls. If we can
manipulate the valucs of the stimulus and noticc a conscquential
change in the values of lhe response, we have eSlablished a causal
relalionship. A control is an identical experiment whose experi-
mcntal variable has nol bccn manipulated bul has typically been
sel al lero. A null hypothesis says that the amount of thc slimulus
has no effecl on the response. Wc disprove the null hypothesis
when we establish the causal relationship. This is the core of all
experimcnlal science.

B. F, Skinner and His Ideas
At the risk of being ridiculcd by some of lhe members of the

artificial inlclligence community, let's spend a fcw moments
discussing B. F. Skinner and some of his ideas about behavior.

One of the assumptions of behavior psychology is that if a
stimulus caused the frequency of a bchavior 10 increase, thaI
slimulus was acting as positive reinforcement. Convcrsely, if the
frequcncy of lhe response decrcascd, thcn lhe stimulus was aCling
as negative reinforcemenl. In experiments food mighl acl as
posilive rcinforcement, particularly if thc experimental animal
was on a deprivation schedule. A mild shock adminislcred aftcr a
behavior mighl act as ncgativc rcinforcemenl. The schedule of
reinforcemenl could be varied. A variable schedule of reinforce-
ment leads animals 10 exhibit superstitious behavior.

COMPUTER BEHAVIOR
Wc don't normally think of computers as having behavior.

They are programmcd and that's that, they arc ruthlcssly consis-
tcnt, they are idiolS with lightning rcflcxes. On the other hand,
computers can be programmed to do almost anything.

Is it possible to write programs that will exhibit behavior? To
answer thaI question we have 10 devise a way to control the
frequency of rcsponses. That can be donc by using an array of
numbers lhal correspond 10 specific responses. On the Com-
modore 64 we will usc such a frequency array 10 control the
responses of lhc computer in a behavioral son of way.

Training the Rat
In the program that we now discuss thc objecl is to train a rat.

40

The computer will act as (he rae and will displaycenain hehaviors
that the ral would exhibit. You will have five seconds to press a key
to positively reinforce the last behavior displayed. If you do not
press a key, lhat behavior will actualIy decrease in frequency (by
5%). When you press the key, you will increase the frequency of that
response by 10%. The set o(behaviors can be saved on lape and
retrieved for use in thc program the ncxt time that the program is
run.

The program shown in Lisling 3-1 alIows you to simulate
somc of the behaviors of a rat in a Skinner box. The com pUler will
ael as thc rat, and you can rcinforcc some of his behaviors by
pressing any key within five seconds of the displayed bchavior. Up
10 20 different beha\'iors will be displayed 011 (he screen. Cerlain
behaviors are linked logether. You can reinforce lhe. sequence of
behaviors thaI occur. If you don't prcss any key, the selected
behavior will decrease in frequency.

L1sllng 3-) Training the Rat
1e ::: = : ::: :
213 REM TRA It~It~G THE RAT - PROGRAl'l 7
313 REM WRITTEN BY TIMOTHY 3, O'MALLEY
413 REM COPYRIGHT 1984. TAB BOOKS INC.
513 REM (It'RITTEN FOR THE CONNODORE 64,)
Get :::::::::::::::::::::::::::::::::::::

713 REM *** MAIN PROGRAM ***
813 DIM Y(79).P(20).F(79).S(2G).A$(20)
913 FOR 3=1 TO 79:READ Y(J):F(3)=I:NEXT
11313FOR 3=1 TO 213:READ peJ):READ S(J):NEXT
110 FOR 3=1 TO 213:READ A$eJ):NEXT
120 GOSUB 2013:REM PRINT INSTRUCTIONS
130 }c:=3
135
136
137
1413
145
150
152
153
155
160
199
2013
210
.22et
230
240
25&)
260
270
271

K=S(X)+INT(PCX)*RND(I»
TF=13:FORI=S(X)TOSCX)+P(X)-1
TF=TF +F (I):t~E><T
IF (RND(I)*TF)(F(K) THEN PRINT:PRINTA$(YCK»:GOTO 1513
GOTO 135
TIt>="OOO@e@":R$=""

GET R$: IF Rt="" At~D TI$("000005" TI:lEt~152
IF R$=CHR$(133) THEN 700
IF R$(>"" THEt~ F (K)=FCIO* 1. 1:)<:=','(K):GOTO 135.
F(K)=.95*FeK):X=YCK):GOTGI35.. " ..

REM *** PRINT INSTRUCTIONS **~
PRItHCHR$(147); TAB(12); "REINFORCEMEtH": PRIt-lT:PRItH
PRINT" THIS PROGRAM SINULATES A SKINNER "
PR ItH" BOX. THE DESCR IPT IOt-.lOF THE BEHAI)IOR OF"
PF:ItH"THE RAT IAIILLBE DISPLA','ED ot~ THE"
PRINT"SCREEN. B',·· PF:ESSINGANV KEV. 'lOU CAW'
PRItH"POSITII)EL'" REINFORCE THAT BEHAI)!OR."
PR UH" POS IT HJEL ','RE It-.lFORCE[,BEHAI)IOR ~tlILL II

PF:ItH" ItKREASE It-.lFREOUEt~C"'.":PR ItH

41

·-.. ,..-,.......
273

281
282

283
284
285

286
287
29(1
30(1
310
400
41(1
420
430
440
450
4613
470
480
4913
500
5113
520

53£1
540
55(1

56(:1
570
580

5':10
600
61(1
620
630
64(1
65(\
66(1
67(1
680
70(1
710
720

73(1
74(1
75(1

760
'770
790

42

PF:ItH" PRESS F 1 TO STOP OR SAI)E 8EHA')IOR"
PR ItH" Ol~ CASSETTE TAPE.": PR ItH
It~PUT"DO ',lOUl,IAtHTO EtHER 8EHA')lOR (V/H) ";8A$
IF LEFT$ (8A$+ '",'''•1)<)-" ',-.., THEt~ 286
OPEH 1.1.0. "8EHA')IOR": FOR 1=1 TO 79
IHPUT#l.F(I):IF ST=0 THEN NEXT
CLOSE 1:F2=1
PRINT"PRESS THE RETURN KEV TO CONTINUE. OK";: INPUT 8$
PRItHCHR$(147)
PRINT" THE RAT HAS ~TUST 8EEt~ PLACED It~"
PR IIH" THE SK It~t~EF:Bm.:.":PF:ItH :RETURt~.. .
REM *** DATA ***
[)ATA 2.1.3.5.6,7.8.1.4.5.6.7.8.1.4.5,6,7.8.3,5
DATA 1 ~3_ 5~6~7,. 8,. 13:0 3,. 5~ 6,. 7,. 8,. 17,. 3:0 ":':0le:o 3:0 9:0 10
[>ATA 11.12,11,12.3. ':1,10,14.15,16.1.3,5,6,7.8,13
DATA 14.15.16,14.15,16.18.1':1,20.1.3,5,,6,7.8,17
DATA 18.1'3.20.18.19.20,1,1,6.2,6,8,6,14,2,20,7
DATA 22,.6,.29,3,35,3,.39,2,.41~2,.43,3,.45_3,.48,.7_51
DATA 3,58.3,61.3.64.7,67.3,74,3,77
DATA RAT APPROACHES PELLET DISPENSER.
DATA RAT TURNS AWAY FROM DISPENSER.
DATA RAT STAt~DS ON ALL FOUR LEGS.
DATA RAT CONTINUES STANDING ON ALL FOURS.
DATA THE RAT JUMPS.
DATA RAT WALKS AROUND ON RIGHT SIDE OF BOX.
DATA RAT WALKS AROUND ON LEFT SIDE OF BOX.
DATA THE RAT LIES DOWN.
DATA IT CONTINUES LVING DOWN.
DATA IT GOES TO SLEEP.
DATA RAT CONTINUES SLEEPING.
DATA THE RAT WAKES UP.
DATA THE RAT FACES THE BAR PRESS ON HIND LEGS.
DATA RAT TURNS AWAV FROM BAR PRESS.
DATA NOW THE RAT IS ONLV TOUCHING THE BAR.
DATA THE RAT IS PRESSING THE BAR PRESS.
DATA RAT FACES PUSH ROD ON HIND LEGS.
DATA IT TURNS AWAV FROM PUSH ROD.
DATA RAT IS ONLV TOUCHING THE PUSH ROD.
DATA THE RAT IS PUSHING THE ROD.. .
REM *** SAVE BEHAVIOR ON TAPE? ***
PRItHCHR$'~ 147)
It~PUT"l"At~TTO SA')E BEHAI)IOF: Ot~ TAPE (','/t'1)";BC$:
IF LEFT$(BC$+"V". 1)<)-"',.'"THEt~ 76~3
OPEt~ 1,1.1. "BEHAVIOR": FOR 1=1 TO 7'?
PRINT#l,F(I):NEXT:CLOSE 1
PRItH: It~PUT"l,IANTTO STOP (V/ID";B[)$
IF LEFT$(B[)$+"','")<>''',-'''THEI~ 135... .

There is a frequency alTay that stores the frequency of every
behavior, F. After any given behavior, the computer selects one of
several possible subsequent behaviors. If the frequency of the
selected behavior is very small, the computer will reselect another
behavior. In this way the frequency of the behavior, as contained in
array F, controls the chance of its occurring. You positively
reinforce a behavior by pressing a key. (Its frequency will increase
10%each time.) You Gill extinguish a behavior by not pressing any
key. (Its frequency will decrease 5% in that case.) You might want to
change the program to alter these numbers. You might also walll
to add additional behaviors. The program as it isshown in Listing
3-1 allows you to save the rat's behavior on tape. Listing 3-2 shows
one way to change the program for use \...ith a disk drive. (The rest
of the lines remain the same.) You may want to change the
program so that you can collect a number of behavior files on the
same disk.

Lilting 3·2 Changes To Use the Program on Disk

272 PR I ~H" PF.:E8S F 1 TO :3TOP OR :3A',lE BEHAV1OR"
273 PRINT"O~l DISK."; PRIt~T
281 HIPUT"DO 'r'OlI ~'JAtH TO LOAD BEHAVIOR ('r',/t·D".;BAt
282 IF LEFT$(BA$+"'r"'., 1)()"'r''' THal 286
283 OPHl 2.,8,2," BEHA'.,IIOF~..:3., P" ; FOF~ 1=1 TO 79
284 INPlIT#2,F(I):IF 8T=0 THEN NEXT
285 CLOSE 2; F2= 1

700 REM ~~*SAVE BEHAVIOR ON DISK? +++
710 PRINTCHP$(147)
720 I~lPUT"WRtH TO SRVE BEHA'.,'IOR Ot~ DI::;I< O::'T'/t·l)"; BCt
730 IF LEFT$(BC$+"'T''' .. 1)()"'r''' THEt·l 76(1
732 PR I.tH" IF 'r'OU ALREAD'r' HAVE A FILE OF II

733 PRHH"RAT BEHA\/IOR Ot·l THI::; DISK, IT ~HLL BE "
734 PRINT"REPLACEIr B'r' THE CURREtH FILE. EtHEl': 'r' IF SUCH A FILE ALREADY

EXISTS."
735 HlPUT t'lZt: IF HZ$="'r''' THEt·l OPEN 15 ..8 .. 15: PF.:ItH#15 .. "S(1; BEHA'v'IOF.:":

CLOSE15
740 OPEN 2,8,2., "BEHAVIOR., ::;.,W': FOR 1=1 TO 79
750 PRINT#2,FCI):NEXT:CL08E 2
760 PRnn :HlF'UT" WR~H TO STOP ('T'....t·P".; BDt
770 IF LEFT$(BD:H"'r'''., 1)()"'r'" THHl 1::?-5
7913 :;:::;;::;;;:::;;;::;:;;:::;::::;;:

This program represents an attempt to make a computer
simulate behavior, the behavior of a rat in a Skinner box. Here is a
line-by-line explanation of how it works.

LINE

10-60

EXPLANATION

These lines identify the program and provide credit
information.

43

70-160

80

90

100
110

120
130

135

136-137

140

145

150

152

153
155

160

199
200-300

310
400-470

480-670

44

This is the main program. Line 70 is a remark
statement.
This line dimensions various arrays. Y is the array
that stores behavior codes. P is the starting point in
the array for a given behavior, and S is the number
of possible behaviors that follow P for each behavior.
F is the frequency of the behavior, and AS is the
actual behavior.
This line reads in the elements of array Y and sets
each element of array F to I.
This line reads in the P and S arrays.
This line reads in the behaviors from DATA state-
ments 480-670 into the AS array.
This line calls a subroutine to print the instructions.
This sets the first exhibited behavior as 3, which is
RAT STANDS ON ALL FOUR LEGS.
K is the random choice of P(X) behaviors starting
at S(X).
These lines add up the frequencies of possible sub-
sequent behaviors.
This line selects a behavior based on its frequency.
If the behavior selected is within the frequency range
associated with it, it is printed and control goes to
line 150.
This line return control to line 135 where another
possible behavior is selected.
This line sets a timer at lero and sets RS to the
empty string.
This line reads the keyboard for a key pressed within
5 seconds.
If the pressed key is fl, control goes to line 700.
If any key was pressed, the frequency of the be-
havior is increased by 10%. X becomes the number
of the new behavior, and control goes to line 135.
No key was pressed; the frequency of the present
behavior is decreased, X is assigned the new be-
havior number, and control goes to line 135.
This is a separation line.
This subroutine prints the instructions and asks if
you want to load data from cassette tape.
A separation line.
These DATA statements contain the 79 numbers
for the Y array. The next 40 numbers are the P and
S numbers, as P(I),S(I),P(2),S(2), etc.
Each of these lines represents an element of the A
array. For example, A$(I) is RAT APPROACHES
PELLET DISPENSER.

REINFORCEMENT

THIS PROGRAM SIMULATES A SKINt-IER
BOX. THE DESCRIPTION OF THE BEHAVIOR OF
THE RAT WILL BE DISPLAVED ON THE
SCREEN. BY PRESSING ANV KEV, VOU CAN
POSITIVELV REINFORCE THAT BEHAVIOR.
POSITIVELV REINFORCED BEHAVIOR WILL
INCREASE It~FREQUEt~CV.

PRESS Fl TO STOP OR SAVE BEHAVIOR
ON CASSETTE TAPE.

DO VOU I,IANTTO EtHER BEHAVIOR <V/t~)? t~
PRESS THE RETURt~ ~:EV TO COtH It~UE. OK

THE RAT HAS JUST BEEN PLACED IN
THE SK Wt~ER BOX.

RAT WALKS AROUND ON RIGHT SIDE OF BOX.

RAT I.,JALKSAROUt~D Ot~ RIGHT S IDE OF BO:<.

THE RAT LIES DOWN.

IT CotH It~UES LV It~G DOWt~.

RAT CotHIt~UES SLEEPIt~G.

THE RAT WAKES UP.

IT GOES TO SLEEP.

RAT CONTINUES SLEEPING.

RAT COtH It~UES SLEEP It~G.

RAT CotH It~UES SLEEP It~G.

THE RAT WAKES UP.

IT GOES TO SLEEP.

RAT CONTINUES SLEEPING.

THE RAT t.IAKESUP.

RAT STANDS Ot~ ALL FOUR LEGS.

RAT COtH I1~UES STAt~DIt~G ot~ ALL FOURS.

RAT WALKS AROUt~D ON RIGHT SIDE OF BOX.

THE RAT FACES THE BAR PRESS ON HIND LEGS.

Fig. 3-1. A display of simulated computer behavior from the Training Rat
Program.

45

680
700-770

790

A separation line.
This subroutine asks you if you want to save the
current behavior on tape for use later. It then asks
you if you want to stop the program. The computer
responds accordingly.
The last line of the program.

Program Operation. Figure 3·1 is a display of the program as
it runs on the Commodore 64. After the initial instructions and
questions, the program starts displaying the behaviors. Your job is
to press any key at an appropriate time to reinforce the behavior. In
this way you increase the frequency that it will occur. At the
be~inning, all the behaviors associated with the particular
behavior have an equal chance of occurring.

You can train the rat to go through a series of behaviors by
reinforcing the proper behaviors.

BOOTSTRAP SYSTEMS
We now look at an interesting sort of ideas. What would

happen if you could write a computer program that would change
its programming as it ran? This is possible on the Commodore 64
because we can find where and how the programs are stored. By
writing a careful program. we can have the computer change its
pro~ramming as it runs.

Let's define what a bootstrap system is. A bootstrap system is
any computer program that creates new program statements as it
HillS. This is not to be confused with bootable files. that load the
operating system or language for some computers. The bootstrap
system is any program that changes itself as it runs. We will look at
two simple examples and how they work.

On the Commodore 64 the BASIC programs that you enter
into RAM are stored as tokem. Tokens are an internal form that is
neither the letters and numbers of BASIC nor executable machine
language code. This intermediate form is a series of numbers from
o to 255 stored in the RAM and represents the program. Itoccupies
less space than the entire collection of characters comprising the
BASIC language commands and operators. Figure 3-2 is a partial
list of the codes associated with that internal form. Thus BASIC
commands are stored as 8-bit numbers in memory.

The First Bootstrap Program
We now look at a bootstrap program that will define the

variable A as I and will print it every other time that the program is
run. Listing 3-3 includes three versions of the program. The first
version shows how the program should be entered into the Com-
modore 64. The second version shows how the program appears

46

128 END 166 SOC<
129 FOR 167 THEN
130 NEXT 168 NOT
131 DATA 169 STEP
132 INPUT+ 170 +
133 INPUT 171 -
134 DIM 172 •
135 READ 173 /

136 LET 174 t
137 GOTD 175 AND
138 RUN 176 OR
139 IF 177 >
140 RESTORE 178 =
141 GOSUB 179 <
142 RETURN 180 SGN
143 REM 181 INT
144 STOP 182 ABS
145 ON 183 USR
146 WAIT 184 FRE
147 LOAD 185 POS
148 SAVE 186 SQR
149 VERIFY 187 END
150 DEF 188 LOG
151 POKE 189 EXP
152 PRINT+ 190 COS
153 PRINT 191 SIN
154 CONT 192 TAN
155 LIST 193 ATN
156 CLR 194 PEEK
157 CMD 195 LEN
158 SYS 196 STR$
159 OPEN 197 VAL
160 CLOSE 198 ASC
161 GET 199 CHR$
162 NEW 200 LEFT$
163 TAB< 201 RIGHT$
164 TO 202 MID$
165 FN 203 GO

Fig. 3-2. Code numbers and tokens for BASIC commands as stored in the
Commodore 64.

listing 3·3 The First Bootstrap Program
,,,, .'" .
10 REM BOOTSTRAP PROGRAM - PROGRAM 8
20 REM WRITTEN BY TIMOTHY J. O"MALLEY
30 REM COPYRIGHT 1984, TAB BOOKS INC.
413 REM (WR ITTEt~ FOR THE COMf'tODORE 64)
50 POKE21353.65:POKE2e54,178:POKE21355,49
60 POKE21357.153:POKE21358,65
70 POKE2060,151:POKE2061.50:POKE2062.48

47

80 POKE2063.53:POKE2064,51:POKE2065.44
90 POKE2066,49:POKE2067,52:POKE2068.51
lee POKE207e.128

o A=I:PRINTA:POKE2053,143:END::
10 REt'1 BOOTSTRAP PROGRAI'1- PROGRA,t'18
20 REM WRITTEH BV TIMOTHY J. O'MALLEY
30 REM COP','RIGHT 1984, TAB BOOKS INC.
40 REI'1(WRITTEH FOR THE COMMODORE 64)
50 POKE2053.65:POKE2054,178:POKE2055.49
60 POKE2057.153:POKE2058.65
70 POKE2060.151:POKE2061,50:POKE2062,48
80 POKE2063,53:POKE2064.51:POKE2065,44
90 POKE2066,49:POKE2067,52:POKE2e68.51
100 POKE2070.128

o REM=1:PRINTA:POKE2053,143:END::
10 REM BOOTSTRAP PROGRAM - PROGRAM 8
20 REM WRITTEN BY TIMOTHY J. O'MALLEY
30 REM COPYRIGHT 1984, TAB BOOKS INC.
40 REM (WRITTEN FOR THE COMMODORE 64)
50 POKE2053. 65: POKE2054. 178: POKE2055, 49
613 POKE2057.153:POKE2058,65
70 POKE2060.151:POKE2061,5e:POKE2062.48
80 POKE2e63.53:POKE2e64.51:POKE2e65.44
90 POKE2e66.49:POKE2067.52IPOKE2068,51
lee POKE2070.128

after it is run once, and the third version is a listing of the program
after it has been run a second time. Subsequent runs of the program
alternate between the second and the third version.

This program is unique in that the program operates in two
different ways. When the program is first run, it creates a new
program statement from line o. This particular program is simple.
It creates a subprogram out of itself. That subprogram defines the
variable A and I and prints out that value. It alternates between two
different modes of operation.

This program by itself is not spectacular, but i(should lead
you to explore ways of having programs change themselves.
Remember the cellular automaton program that changes the
contellts of the DATA statements as it ran? This concept, the idea
of bootstrap systems, has some illlriguing possibilities.

Here's a program line-by-line explanation of the program.

LINE

o
10-40

50

48

EXPLANATIO

This line consists of 20 colons and will be used to
store a new program line.
These lines are the title and credit data for the
program.
POKE 2053,65 changes the first colon to the letter A.

60

70

80

90

100

POKE 2054,178 changes the second colon to the =
character. POKE 2055.49 changes the third colon to
the number I.
This line changes the fifth colon to PRINT and the
sixth colon to the letter A.
This line changes the eighth, ninth, and tenth
colons to POKE, 2. and 0, respectively.
This line changes the next three colons to 5, 3, and
the comma character.
These three statements change the next three colons
to the digits I, 4, and 3.
This POKE command changes the 18th colon to
END.

Program Operation. As the program is run, the contents of
line 0 change. The first time it runs, some of the colons of line 0 are
changed to BASIC statements. Actually what happens is that we
have altered the contents of the RAM area that stores the tokens of
the program. The next time the program is run, only line 0 is
executed because one of the tokens added was the END command,
code 128. When this line is run. the token at RAM position 2053,
the A letter, is changed to REM, the remark statement. That means
the next time that the program is run, line 0 will not be executed.
The other program lines will be executed, as in the first version.
The program alternates between the last two forms from then on.

The Second Bootstrap Program
Listing 3-4 shows the two forms of another program that

changes the line statements. This program will run only twice.
The first time it is run, it creates the statements of line O. shown in
the second version. The second time it is run, it executes line 0,
which also erases the program. This program will run, run again,
and then disappear.

listing 3-4 The Second Bootstrap Program
,'A ••••••••••••••••••••
't;..I ••••••••••••••••••••

10 REM BOOTSTRAP PROGRAM - PROGRAM 9
20 REM WRITTEN 8','TIMOTHY J. O'MALLE','
30 REM COPYRIGHT 1984, TAB BOOKS INC.
40 REM (WRITTEN FOR THE COMMODORE 64)
50IFA=eTHENPOKE2053.65:POKE2e54,178:POKE2055.49
60IFA=0THENPOKE2057,153:POKE2058,65
70 IFA=0THENPOKE2060.151:POKE2061,50:POKE2062.48
80 IFA=0THENPOKE2063,53:POKE2064,48:POKE2065.44
90 IFA=0THENPOKE2066.48

o A=1:PRINTA:POKE2050.0::::::
10 REM BOOTSTRAP PROGRAM - PROGRAM 9

49

20 REM WRITTEN BV TIMOTHV J. O'MALLEV
30 REM COP','RIGHT 1984, TAB BOOKS INC.
40 REM (WRITTEN FOR THE COMMODORE 64)
50IFA=0THENPOKE2053,65:POKE2054,178:POKE2055.49
60IFA=0THENPOKE2057,153:POKE2058,65
70IFA=0THENPOKE2060,151:POKE2061.50:POKE2062.48
80 IFA=0THENPOKE2063.53:POKE2064.48:POkE2065.44
90 IFA=0THENPOKE2066.48

Here is a brief explanation of the lines in the first version.

LINE

o

10-40
50-90

EXPLANATION

This line contains 20 colons, which provide room
for storing the new statements.
The title and credits of the program.
These lines run only if A is 0, in other words, if it is
the first time that the program is run. These lines
generate the BASIC statements in line 0 of the second
form. Line 0 in that program assign A as I, print
it and set the first A in that line equal to a code of
O. a null code, which erases the lines of the program.

Program Operation. After entering the program into
memory. type LIST. You should see the first form of the program.
After you run the program, type LIST. You should see the second
form of the program. If you type RUN again, the computer will
print Ion the screen and erase the program. When you type LIST,
the computer will display nothing but the READY prompt. You
i\IIGHT recover the program by typing POKE 2053,65. If the RAM
is disturbed, it generally won't reinstate the program in its entirety.

Imagine how this concept could be expanded. Certain lines of
a program could be activated to dimension arrays, erase lines at the
end of the program, destroy line statements forever by converting
them to colons, and inactivate lines by making the first token
REM. A good program could generate all sorts of fascinating
commands. Experiment!

50

Chapter 4

Natural Language Processing
One of the most active areas of artificial intelIigence is the area of
natural language processing. In natural language processing, the
computeT reacts to English statements. The ideal natural language
processor would interpret commands as a person would. Program-
ming would be as easy as teaching a person, maybe easier. The
point of natural language is to have the computer understand you,
instead of you trying to understand the computer. Obviously
English is only one of several languages that could be used in
programming computers to understand natural language.

In this chapter we will explore two programs that utilile
natural language processing. The first is a program based on
ELIZA, a natural language program originally written by Joseph
Weilenbaum at the Massachusetts Institute of Technology in 1966.
The second BASIC program is called PERFECT LOGIC, a 1984
original by me that makes conclusions based on set theory. (I
consider this program to be the best in the book.)

DEFINITIONS AND EXAMPLES
Let's talk about natural language and give some examples.

When we solve problems, we must find a way from the question to
the answer. We might think that the answer to a question or the
solution of a problem is somehow a function of that question or
problem. Our task in finding the answer is to break down the

51

question into a series of steps. If we know the solution to a few of
the steps, we are that much closer to the answer to the overall
question. This same approach can be used in artificial intel-
ligence. What the computer might be programmed to do is to save
some of the solutions to steps in the problems that it encounters.
This stored knowledge would be used to break new problems down
into similar steps and to organize memory properly to solve the
problem.

In the case of natural language, words are the steps of the
problem. The arrangement of the words and statements determine
how the computer is to respond. If the computer "remembers"
what action it is to take when it encounters a sequenceof words, the
problem is on its way to being solved. This will all become clearer
by the end of this chapter.

English-Like Conversations
The Commodore 64 can be programmed to respond correctly

to a limited set of English sentences and questions. If you have a
program that allows the computer to store some of the statements
or questions that you entered earlier, you might be able to have
somewhat of a meaningful conversation. Unfortunately, the com-
puter's world is very limited. The only way the computer "knows"
how to respond is by the contents of its memory. It is aware of
nothing and only responds electronically to the signals that it
receives. To the human observer, however, well written programs
can seem incredible.

In the first program in this chapter the computer will look for
key words and then attempt to respond, based on the content of
those key words. Key words would be the link between the question
and the answer. The second program involves the creation of set
and subsets, and the use of an English language interpreter to place
nouns in sets. You can think of graph theory when you look at
these examples. Trees can be used to trace a path from one point to
another to see if there is a connection, which would indicate a
solution.

An example of a program that used natural language to com-
municate to a computer is SH RDL U, written by Terry Winograd
at MIT. In that program the computer manipulated a collection of
blocks, pyramids, and boxes. This 1971 program would attempt to
respond to English commands and perform certain actions on the
objects wilhin its mathematical domain. If the computer was
uncertain about the request, it would question the user for
information that would clarify the request. This program would
then be able to process natural language, manipulate actions, and
query the user when a request was ambiguous. The result was
remarkable.

52

One of the harder things to do on the computer isoto program
it to understand "common sense" because the computer's world is
very limited. At this point in time, personal computers have
neither the memory to store enough dala nor the advanced
programming capabilities that would allow them to deal with
things outside of their limited world. The computer is at best an
expert in its own little world, and common sense is foreign to them.

The ability to communicate with computers using natural
language becomes quite a challenge for the programmer. The
approach that the programmer uses is delermined by what he
wants the computer to accomplish.

Compositional Works
One idea that we will not explore but that is worth discussing

is computer composition. Here the computer strings together
nouns, verbs, phrases, and sentences. Often the programs produce
ridiculous sentences. However, if the verbs can be made to match
the nouns and phrases, they can be somewhat meaningful.
Generally programs of lhis type use the random number generator
to select arbitrary words and phrases.

Do you remember how one state of our cellular automaton
program determined the next state? If a program could be devised
to construct compositional works based on words and phrases, we
might have an intcresting lext generator. One sentence would lead
to another to form paragraphs, and then chaplers. This concept
might not be as farfetched as it sounds. Remember that in the
cellular automaton you could not predict precisely how the figure
would appear, even though it used only a few simple rules and a
starting pattern. A compositional automaton could work the same
way.

THE STORY OF ELIZA
Because the first program in this chapter is like ELIZA. it may

be worthwhile to discuss ELIZA. At one time ELIZA was the most
famous computer program in the world. It has now been
supplanted by VisiCalc, the electronic spreadsheet marketed by
VisiCorp. Nevertheless, ELIZA was innovative in allowing the
first uses of natural language in a real time environment.

ELIZA was intended as a simulation of a nondirective
psychotherapy session based on the techniques of Carl Rogers. The
computer program would search through the sentences or
questions that the user would enler and from those enlries select
key words or phrases from which to print a reply. By the clever use
of grammar and the rearrangcment of sentence structure and so
forth, the computer would be able to produce a somewhal
meaningful response. The computer program required a long list

53

of key words and a preprogrammed set of instructions on how to
react. For instance, if the user typed the word sister in a sentence,
the computer would ask the user to tell him some more about his
family. If no key words were found, the program would default to
printing from a selection of stock, noncommittal replies.

ELIZA was really just an experiment in how to make people
think that a computer could think and understand what they were
talking about. Many times the program would produce nonsense,
especially when the program stored a sentence incorrectly. When
conversing with the computer, people would use incomplete
sentences-garbage in, garbage out. The program was interesting,
nevertheless.

A program like ELIZA was apt to get out of hand. One of the
unfortunate effects of ELIZA was that people took the program
seriously. The original program was never intended as anything
other than an experiment. It was never intended to replace a
psychotherapist. People tended to regard the computer as a
personality and shared their personal feelings with the computer.
They were caught by the illusion. Beware of this attitude as you
examine any artificial intelligence programs.

LANGUAGE PROCESSING IN BASIC
The next two programs are written in BASIC and run well on

the Commodore 64. I will explain them both in detail.

An ELIZA-LIke Program
The program in Listing 1-1 is like the ELIZA program

discussed previously. This one is written specifically for the
Commodore 64 and contains features used only on the Com-
modore 64. The computer's responses are written in white, and the
user's responses are in cyan. The computer reads the keyboard for
input (including final punctuation marks) and does not display
question marks as a prompt.

Listing 4-1 The ELIZA-like Program
10
2(1

313
40
50
60

... ..
REt'l At~" EL IZA" -L IKE PROGRAt'l
REt'llAIRITTEN B'>'T IMOTH'>'J. O't'lALLE'>'
REM COP','RIGHT 1984. TAB BOOKS INC.
REt'l(WRITTEN FOR THE COMMODORE 64)... .

70 REM *** MAIN PROGRAM ***
80 GOSUB 170:REM SET UP PROGRAM
90 GOSUB 250:REM INPUT SUBROUTIHE
100 GOSUB 390:REM S','NON','MSAND ANTON','MS
110 GOSUB 570:REM LOOK FOR KE','WORDS
120 GOSUB 1120:REM REMOVE MARKERS
1313 GOSUB 119a:REM COMPUTER'S REPL','

54

140 GOTO 90:REM ENDLESS LOOP
150 :::::::::::::::::::::::::::::::::::
1613 REM *** SET UP PROGRAM***
170 M=50:REM NUMBER OF SVNONYMS& ANTON\~S
180 U=84:REM NUMBER OF POSSIBLE REPLIES
l'~e DIN MV$(2e0):l'lC=\;:1:REM STACK OF "1'1\''' STATEl'lEtHS
200 PRI tH "(CLR}";: PRI tH "(l.IHT}";: REl'l CLEAR SCREEt~ AI~D SET Cot1PUTER' S

COLOR AS I.JHITE
210 PRItH " HELLO. 1,IHAT'S Ot~ ','OUR MIt~[J',?": PRItH
220 RETURN
2310 :::::::::::::::::::::::::::::::::::
240 REM *** INPUT SUBROUTINE ***
2513 RESTORE:REM ALLOW DATA TO BE RE-READ
2613 X=0: A$=" " : PRI NT "(CVAtD";: REt'l I<EVl.IORC,FLAG=0 :& VOUR I t~PUT COLOR IS

CVAI~
270 OPEN 50. 0: REM OPEN THE ~~EVBOARDFILE TO "REA[>" KEVBOARD
280 GET#50.Z$: IF Z$="" THEt~ 280:REt'l F:E-READ KEVBOARD
2'310 IF Z$=CHR$(13) THEN PRItH: CLOSE50: PRIIH "(l.IHT}";: GOTO 320: REt1 Et'~D

INPUT
300 IF Z$=CHR$(20) THEN PRINT Z$;:A$=LEFT$(A$.LEN(A$)-l):GOTO 280:REM

DEL CHAR
310 A$=A$+Z$:PRINT Z$;:GOTO 280:REM CONCATENATE INPUT STRING :& DISPLAV

CHAR
320 IF A$="" THEt~ PRI tH "l.IHAT' S THE PROBLEl'l?": ~.;=1: RETURN:REt'l t~O EtHRV
3313 IF A$=R$ THEt~ PRI tH "','OU ARE BEI NG REPETI T I OUs. " :).:=1: RETURH
340 R$=A$:REM STORE LAST INPUT
350 A$=" "+LEFT$ (A$. LEt~(A$) -1) +" ": REM ERASE PUtKTUAT I Ol~ At~D ADD

SPACES
360 RETURN
370 :::::::::::::::::::::::::::::::::::
380
3913
4130
4113
420
430
4413

4513
460
470
4813
490
500
5110
520

530
540
550
560
570
580
590

REM *** SVNO~,'MS AND ANTONVMS ***
IF X THEN RETURN:REM NO VALID INPUT
FOR 1=1 TO M/2
READ E$.N$:REM READ WORDPAIR
FOR S=l TO LEN(A$)-LEN(E$)+l
IF t1ID$(A$, S, 1)()-" " THEt-l 530: REl'l t1ID[>LE OF 1,10R[>
IF E$=MID$(A$.S.LEN(E$» THEN A$=LEFT$(A$.S-l)+N$+MID$(A$,S+LEN
(E$»
DATA" 1'10t1"," 1'10THER"." 'DA[> "." FATHER "." KIDS "." CHILC)REN "
DATA " DREAl'lS "." DREAl'l to. to KID "," CHIL[> "." HOUSE "," HOI'1E* "
DATA .. I ". to ','OU@ "." ','OU to," I "." 1'1E"." VOU "." Ot~E "." 1 ..
DATA .. I'1V ',)OUR* "," TI,IO "," 2 "," THREE "," 3 "
DATA " ','OUR "," I'1V "." I'1VSELF ". to ','OURSELF* "," TOO ", to ALSO "
DATA .. \'OURSELF to. to I'1VSELF "," HURT "," HARt'l ", to HOl'lE "," HOUSE* to

DATA " I' M to," VOU' RE* ". to VOU' RE to... I' t'l to." At'l "." ARE@ "
DATA " 1,IERE to." 1,IAS "." EAS',' "." SIl'lPLE ". " DIFFICULT "." HARD to

t~EXT S, I
RETURN.. ..
REM *** LOOK FOR KEVWORDS***
IF X THEN RETURN
FOR 1=1 TO U
READ E$, ~T

55

600 FOR S=l TO LEN(A$)-LEN(E$)+l
620 IF E$=MID$(A$,S.LEN(E$» THEN R$=MID$(A$.S+LEN(E$»:GOTO 1910
630 t~E~<:TS, I
640 GOTO 950:REM NO KEVWORDSLOCATED
650 R$=LEFT$(R$.LEN(R$)-l):RETURN
660 DATA "COMPUTER". 1• "MACHIt~E" • 1
670 DATA " t~AI'1E ",2. "ALIKE". 3." LIKE ".3," SAI'lE ",3
680 DATA "','OU<i1REI'lEt'lBER". 4, "DO I REI'lEI'lBER", 5. "'>'OU@DREAt'lED", 6
6913 DATA " [>REAI'l ",7," IF ".8. "EI)ER'lBOr,V". '3. "EI)ERVOt~E". '3
7013 DATA "t~OBODV", 9. "140 Ot~E". 9, "I.,IAS ','OU@". 10, '''lOU@ ldAS". 11
7113 DATA "lo.IAS 1".12. "VOUR:+<I'10THER".13. "','OUR* FATHER". 13
720 DATA "VOUR* HUSBAt~D", 13. "VOUR* CHI LDREt~" , 13. "','OUR*" • 14
7313 DATA "'lOUR* SISTER ". 13, ".,.'OUR* BROTHER". 13, "',)OUR* 1,1I FE" • 13
740 DATA "AL.:lo.IAVS",·15."ARE 1",16. "ARE@ VOU<iI",18." HOW ".25
750 DATA "BECAUSE", 19. "CAt~ 1",20. "CAN "'OU@", 21. "CERTAII~LV", 22
760 DATA "DEUTSCH", 23, "ESPAt~OL", 23, FRAt~CAIS", 23, "HELLO", 24
770 DATA "I REt1It~D 'lOU OF", 3. "I ARE". 26. "1'1'1".26
780 DATA "ITALIAt~O". 23, "MA','BE". 28." I'lV ".2'3," 140 ",30
7913 DATA "PERHAPS". 28. "SORR','''. 31, "WHAT ". 25. "1,IHEt~ ".25
800 DATA "WHV DOt~·T 1".32. "1,IHV C:At~·T 'lOU@". 33, "','ES", 22
810 DATA "'lOU@ 1,IAt~T".34. "'lOU@ t~EED", 34." ARE ",17," I ",27
820 DATA "'lOU@ ARE@SAD", 35, "'YOU' RE* SAD". 35
830 DATA "'lOU@ ARE@Ut~HAPPV". 35. "'lOU' RE* Ut~HAPP',''', 35
840 DATA "'lOU@ ARE@DEPRESSED". 35, "'lOU' RE* DEPRESSED", 35
850 DATA "VOU@ARE@SICK". 35. '''lOU' RE* SICK", 35
860 DATA "'lOU@ ARE@HAPPV",36,"VOU'RE* HAPPV".36
870 DATA "'lOU@ ARE@ELATED", 36, ''','OU' RE* ELATED". 36
8813 DATA "'lOU@ ARE@GLAD". 36, ''','OU' RE* GLAD". 36
8913 DATA "'lOU@ ARE@BETTER".36."VOU·RE* BETTER",36
'300 DATA "VOU@FEEL VOU@".37. '''lOU<i1 THII~K ','OU<iI".37
'310 DATA "VOU@BEL I EI)E ','OU<iI".37. "VOU@ 1,1I SH VOU@",37
920 DATA " 'lOU@ ARE<iI". 38, "','OU' RE*" , 38. "','OU@ CAt~·T" • 39
930 DATA "VOU@CANt~OT". 3'3, "VOU@ DOt~'T" • 40. "VOU@ FEEL", 41
940 DATA" HE ".42," SHE ".43
945 :::::::::::::::::::::::::::::::::::
9513 REM *** NO KEVWORDS***
9613 X=l:IF MC=0 THEN 980
9713 RAN=1+INT(5*RND(1»:ON RAN GOTO 980,1030.1030.1030,980
9813 RAN=1+INT(4*RND(1»:ON RAN GOTO 990.1000,1010.10213
'390 PRI tH" I AN HOT SURE I UHDEF:STAt~D','OU FULLV.": RETURt~
10130 PRI HT" PLEASE GO Ot~.": RETURt~
11310 PRItH"lo.IHAT DOES THAT SUGGEST TO VOU?": RETURH
1020 PRItH"DO ','OU FEEL STROt~GL',' ABOUT DISCUSSING SUCH THII~GS?": F:ETURI~
10313 V$=MV$(1+INT(MC*RND(1»):RAN=1+INT(6*RND(1»
10413 ON RAN GOTO 10513.1060,1070,1080.1090,11013
113513PRI tH" LET'S DISCUSS FURTHEF: 1,IHVVOUR"+','$ +" • " : RETURt~
113613PRIHT"EARLIER ',IOU SAID 'lOUR"+V$+".": RETURt~
1070 PRItH"DOES THAT HAIJE AtNTHIt~G TO DO 1,IITH THE FACT THAT ','OUR"+V:H"

• ": RETURt~
113813PRIHT"TELL ME I'10RE ABOUT lo.lHV'lOUR"+V$+".": RETURt~
10913 PRIt~T" IS IT REALL'l TRUE THAT ','OUF:"+','$+ "'7'" : F:ETURt~
111313PRItH "LET" S SEE. ',IOU TOLD NE ','OUR"+','$+ " • CARE TO ELABORATE?":

RETURt~
11135

56

.. .

..
REM *** COMPUTER'S REPLIES ***
PRItH"DO COl'lPUTERS l.IORRV 'YOU?": RETURN
PRI tH" I Al'l t~OT I tHERESTED I H t~Al'lES.": RETURH
PRItH" It~ 1,IHAT1,IA','?": RETURt~
PRItH"DO ','OU OFTEt~ THIHK OF"R$"?": RETURt~
PRIt~T"DID ','OU REALLV THIt~I< I l.IOULD FORGET"R$"?": RETURt~
PRIHT"REALL',I, "R$"?": RETURt~
PRItH"lc.lHAT DOES THAT DREAt'l SUGGEST TO ','OU'-;-''':RETURt~
PRItH"DO VOU THIt~K THAT IT'S LIKEL'y THAT IF"R$"?": RETURt~
PRIt~T"REALLY. "E$"?": RETURH
PRIt~T"I,IHAT IF VOU 1,IERE"R$"?": RETURH
PRIt~T"l.IERE ',IOU REALL'y?": RETURH
PRINT"lc.lOULD ','OU LIKE TO BELIEIJE I 1,IAS"R$"?": RETURt~
PRI tH" TELL ME MOREABOUT 'yOUR FAl'l I LV. " : RETURt~
GOSUB 1960:GOSUB 1780:RETURH
PRI tH" CAt~ VOU THI t~K OF A SPECI F I C E~':At'lPLE?": RETURH
PRIt~T"l.IHV ARE VOU IHTERESTED IH 1,IHETHERI Al'l"R$" OR t~OT?": RETURt~
PRItH"DID ','OU THIt~K THE'Y tlIGHT t~OT BE "R$"?": RETURt~
PRI t~T"DO VOU BEL I EI)E VOU ARE"R$"?" : RETURt~
PRIHT" IS THAT THE REAL REASot~?"; RETURN
PRIt~T"VOU BELIEVE I CAt~"R$". Dot~' T 'YOU?": RETURt~
PRI tH" WHETHERVOU CAI~"R$" DEPEt~DSOH VOU t'10RE THAt~ Ol~ 1'1E.": RETURN
PRItH"VOU SEEM G"lUITE SURE.": RETURt~
PRItH"SORR'y, I SPEAK OHL',' EHGLISH.": F:ETURt~
PRItH"HOW DO '>'OUDO?": F:ETURt~
PRI NT" WHV DO VOU ASK?": RETURt4
PRI NT" 1,IHATMAI<E 'YOU THI t~K I A1'1" R$"?" : RETURt~
PRI tH" LET' S t~OT TALK ABOUT 1'1E.": RETURt~
PRIt~T"\IOU ARE CERTAIt~?": F:ETURH

12713
12813
12913
131313
1310
1320
1330
1340
1350
13613
13713
1380
13913
141313
1410
1420
14313
1440
1450
1460
14713
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
15813

11113REM *** REMOVE@ AND * MARKERS ***
11213 IF X=l THEN RETURN
11313FOR S=l TO LEN(R$)
1140 G$=MID$<R$.S, 1): IF G$="@" OR 13$="*" THEN R$=LEFT$(R$,:;-l)+t'lIO$(:F:$

, S+l)
11513 t~EXT S
11613RETURt~
1170 ::::::::::::::::::::::::::::::::::
1180 REM *** COMPUTER'S REPLV ***
11913 IF X=l THEN RETURN
1200 IF J(ll THEN ON J GOTO 1310.1320.1330.13413.13513.1360.1370.1380.

13'30.1400
12113 J=J-10
12213 IF J(11 THEN ON J GOTO 1410.1420.1430,1440,1450,1460,1470,14813.

1490,1500
12313 ~T=J-10
12413 IF J(11 THEN ON J GOTO 1510.1520.1530,1540.1559.1560.1570,1580.

1590,16130
1250 J=~T-10
1260 IF J(ll THEN ON J GOTO 1619,1660.1670,1680.1690,171313,1710.1720,

1730,1740
J=J-10
ON J GOTO 1750.2070,2080

57

1590
161313
1610
1620
1630
1640
1650
1660
1670
1680
1690

1700
17113
17213
17313
1740
1750
17613
1770
17813
1790
18130
18113
18213
1830
18413
1850
18613
1870
18813
1890
19013
1910
1920
1':;'50
19613
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
20'?0

58

PRI tH "1,IHV ARE 'IOU CONCERNEDOI,JER1'1'>'"R$"?": RETURt~
PRI tH" ARE ','OU SA\' I t~G , NO' ~TUSTTO BE t~EGATI I)E?" : RETURt~
RAN=1+INT(4*RND(1»:ON RAN GOTO 1620.1630.1640.1650
PRI tH" PLEASE DOt~'T APOLOGI ZE. " : F:ETURN
PRI tH" APOLOGI ES ARE NOT t~ECESSAR\'.": RETURt~
PRItH"WHAT FEELIt~G DO ','OU HAI)E 1,IHENVOU APOLOGIZE''?'': RETURN
PRI tH" ','OU t~EEDt~·T FEEL VOU HA')E TO APOLOGI ZE... : RETURt~
PRItH"DO VOU BELIEVE I [>Ot~'T"R$"?": RETURt~
PRI NT" DO YOU THI t~K VOU SHOULD BE ABLE TO"R$"?" : RETURt~
PRItH"WHAT 1,IOULDIT f'1EANTO VOU IF VOU GOT"R$"?": RETURN
GOSUB 1840: GOSUB 1880: PRItH" I' f'l SORR'" TO HEAR 'lOU ARE"R$".":
RETURt~
GOSUB 1840: GOSUB 1880: PRItH" HO....I HAIJE I HELPED ','OU BE"R$"?": RETURN
PRItH"DO 'IOU REALLV THIt~K SO?": RETURt~
PRItH" IS IT BECAUSE VOU ARE"R$" THAT VOU CAf'lE TO ME?": RETURt~
PRItH"HOW DO VOU KNOW'lOU CAW T"R$"?": RETURt~
PRIt~T"DOt~' T VOU REALLV..R$..?": RETURt~
PRI NT" TELL f'lE f'lORE ABOUT SUCH FEEL I t~GS." : RETURt~
:::: ::: ::: ::: ::: ::::: :::::::::::::
REM *** KEV....IORD IS" 1'1'>'''***
IF LENCR$)(12 THEN RETURN
MC=MC+l:ID=MC:IF MC)200 THEN MC=200:ID=1+INTC20e*RND(1»
MV$CI[»=R$
RETURt~.. .
REM *** REMOVE@MARKER ***
IF f'lIDCE.4,1)="@" THEN R$=RIGHT$(E$,LEN(E$)-9)
RETURN....................................... .
REM *** REMOVE* MARKER ***
IF MIC>$(E$. 7.1)="*" THEt~ R$=RIGHT$(E$. LEtHE$)-7)
RETURt~..................................... .
IF R$<>"" THEN 650
RETURN
:::::::::::::::: ::::::::::::::::::
RAN=1+INT(8*RND(1»
ON RAN GOTO 1980.1990.20130.2010,2020.2030.2040
PRINT"VOUR"R$"?":GOSUB 1780:RETURN
PRItH"WHY IS IT THAT ','OUR"R$"'?": GOSUB 1780: RETURN
PRI NT"'y'OUR"R$" ! .. : GOSUB 1780: RETURt~
PRI tH" HO....I I SIT THAT 'y'OUR"R$"?" : GOSUB 1780: RETURN
PRINT"VOUR"R$"'? REALLV'?": GOSUB 1780: RETURt~
PRI t~T"1'1V"R$". TOO.": GOSUB 17813:RETURN
PRI tH"IHOSE"R$"?" : GOSUB 1780: RETURH
PRItH"VOU SA'y' VOUR"R$"'?": GOSUB 1780: RETURt~
::::::::::::::::::::::::::::::::: :
PRI tH" DOES HE HAIJE A PROBLEM?": RETURN
PRItH"TELL t'1E f'10RE ABOUT H!::R.": RETURN
::::::::::::::::::::::::: :::::::::

HELLO. !..IHAT'S Ot~ VOUR MIt~D?

HAIJE THIS PROBLEM.

DO ',.'OU FEEL STRONGLY ABOUT DISCUSSING SUCH THINGS?

HUH? ~IV DOG HAS FLEAS.

HO~J IS IT THAT YOUR r,OG HAS FLEAS?

I THIN~: 11'.' DOG IS OUTSIDE TOO MUCH.

(,IHOSE DOG IS OUTSIDE ALSO MUCH?

MV STUPID DOG IS OUTSIDE TOO OFTEt~.

WHOSE STUP I D DOG 1S OUTSI DE ALSO OFTEN?

MIt~E IS.

PLEASE GO ON.

HE 1S ~II SERABLE.

DOES HE HAI)E A PROBLEt-I?

',lOU !..IEREN·T L I STEt~I t~G TO I'1E.

LET'S NOT TALK ABOUT ~IE.

I'IY COURSE IN QUAtHUI'1 MECHAt~I CS IS DI FF I CULT •

~IV COURSE It~ QUAtHUI'1 ~IECHAtHCS IS HARD, TOO.

DO VOU TAKE COUF:SES?

LET' S t~OT TALK ABOUT ~IE.

I'IV HOUSE I S TOO NOIS"'.

I"IHOSE HOt'lE IS ALSO tlOISV?

I".IHAT T II'IE I SIT t401,1;'

I"IHV DO ',-'OU ASk?

I HATE MHCHIt~ES LIKE VOu.

DO COMPUTERS WORRV VOU?

t~O.

ARE ',lOU SAV I t~G • t~o' JUST TO BE NEGATIIJE?

BUZZ OFF'

WHAT DOES THAT SUGGEST TO VOU?

Fig, 4-1. The start of a conversation with an "ELlZA"-like program.

59

BllGS.

EARL I ER VOU SAI D ..'OUR DOG HAS FLEAS.

SO~l£ PEOPLE BUG ME.

IS IT REALLV TRUE THAT VOUR STllPID DOG IS OllTSIDE AL'30 OFTEH?

VES.

',IOU SEEM QUI TE SURE.

Fig. 4-1. (continued)

As shown in the sample program run in Fig. 4-1 this program
provides an English conversation with the user and stores some of
the entries of the user, namely those containing the word MY. This
program should provide an interesting amusement for the user. In
the explanation of the progralll lines below I have givcn some
sllggesrions on how to change the program. You might also want
to save some of the stored i\-IYS responses on tape of disk for later
use.

Here is a detailed description of the lines of the program.

LINE

10-60

70-140

80
90

100

110

120

130

140

60

EXPLAN Ano'"

This is the identification information for the pro-
gram.
This is the main program. Line 70 is a REM state-
ment identifying this section of the program.
This line calls the subroutine in lines 160-220.
The subroutine called in this line allows you (0

enter responses and changes the color of the text
depending on who is responding. you or the com-
puter.
This line calls a sl~broutine that looks for synonyms
and antonyms of words used by the user.
This line calls a slIbrouline that searches for key
words or key phrases.
This line calls a subroutine that removes markers
the program placed on the antonyms. They are
placed 10 kccp the computer from changing altered
words back to the origirwl words.
This line calls a subroutine that prints out the corn-
pliler's replies.
This statement establishes an endless loop that
cycles back to line 90, where new input is requested
from the user.

150

160-220

160
170

180

190

200

210
220

230
240-360
240

250

260

270

280

290

300

310

320

This line acts as a separation between pans of the
program.
This subroutine sets up the program and is run only
at the beginning of the program.
This remark tells what this section does.
There are 25 synonym and antonym pairs. M is the
variable that stores that value.
is a variable set at 84 and used as the number of

possible replies.
This line is unique. The MYS array, or "stack,"
slores statements input by the user that cOlllain the
word MY. This line dimensions that string array
and sets the stack poi Iller, MC, equal to lero.
This line prints the CLR character and the WI·IT
character. White is the color that the computer will
use when printing lines on the screen.
This is the computer's opening question.
The program control returns to the main program
from the subroutine.
This line separates the sections of the program.
This subroutine allows for input from the user.
This line identifies this subroutine as the input
subroutine.
RESTORE allows the data in the DATA statements
to be used over and over.
This line sets a flag, X, to 0, sets A~ to an empty
string, and changes the color to CYAN, which is the
user's text color.
This slatement opens the "file" corresponding to
the keyboard, allowing the computer to scan letters
that the user is typing without resorting to INPUT
statements.
This line actually scans the keyboard for letters.
One letter at a time is stored in ZS.
If the user presses the RETURN key (character code
13), the keyboard file is closed and the color changes
back to white. The program branches to line 320.
1£ the key pressed is the DEL character, the com-
puter erases the last enlry. Because the sentences or
questions are made into the string, AS, the last
character entered into that is deleted also. The pro-
gram then branches to line 280 for more characters.
AS equals AS concatenated with the last letter typed.
The last letter typed is prillted 011 the screen. The
program then goes 10 line 280 for more letters.
1£ the user simply presses the RETURN key, he is

61

330

310
350

360
370
380-510

380
390

100

110

420

430

440

450

460-520

530
540
550
560-910

62

asked what the problem is. The program then re-
turns to the main progTam.
If the user enters the same reply twice, the computer
states that he is being repetitious. The program then
returns to the main program.
RS is set as AS. to check for repetition.
The punctuation is removed from the sentence or
question and a space is added at the beginning of
AS. If your entry does not include closing punctua-
tion. the program cannot function accurately.
The program then returns to the main program.
This line separates sections of the program.
This subroutine exchanges words for their syn-
onyms or antonyms.
This line identifies this section of the program.
If X has a value of lero, then return because there
is no entry, just a RETURN character.
This line starts an I loop to start reading the
antonym/synonym word pairs.
This line reads the word pairs. ES is the word that
might be found in the sentence and NS is the word
that will replace it if it is found in the sentence.
S is a loop that searches for the spaces between words
in the sentence to find the beginnings of possible
words to replace.
If the character in the sentence is not a space, then
the index, S, is incremented to point to the next
letter by going to line 530.
If a word in the sentence matches one of the words
in the DATA statements in lines 150-520, then E
is replaced by N$ in the sentence.
MOl\1 is replaced by MOTHER, DAD is replaced
by FATHER. and KIDS is replaced by CHILDREN.
In these lines the first word of each pair, if found in a
sentence, is replaced by the second word of each pair.
Markers made of the asterisk or @ sign prevent a
word from being replaced twice by the computer.
For instance, MYSELF is replaced by YOURSELF-
and YOURSELF is replaced by MYSELF. Without
the marker on YOURSELF·, MYSELF would be
converted to YOURSELF and then back to MYSELF
again. Markers prevent this.
This is the end of the S and I loops.
The program then returns to the calling section.
This is a separation line.
This section actually looks for key words and key
phrases.

560
570

580

590

600

620

630
640

650

660-940

945
950-1100

950
960

970

980

990-1020

The name of the section of the program.
If the user pressed only the RETURN key, the
input was not a sentence or question and the pro-
gram returns for more input.
This searches for up to U number of key words or
phrases by using an I loop.
ES is the key word or key phrase. J is a number
associated with that key word or phrase. J will
indicate to the computer what output to print.
This searches the entry for the location of possible
key words, just like it searched for synonyms above.
If a key word is found. RS is defined and the pro-
gram branches to line 1910.
This line ends the S and I loops.
If the program gets through the entire S and I loops,
no key words were found in the input. (Line 1910
dealt with keywords if they were found.)
R$ is defined and control returns to the calling
section.
This is the list of key words or key phrases and their
associated numbers. Notice that COl\IPUTER and
MACHINE have the same number. This number. I.
indicates to the program to print out reply number I,
found in line 1310. Likewise, the other DATA
statements contain key words and associated num-
bers indicating the type of response to display. You
can add more of these to include a wider range of
subjects. However. the program will respond more
slowly. Be sure to change U in line 180 to reflect any
change.
This is a separation line.
This subroutine is used if no keywords were found
in the input.
This remark identifies this section.
X is assigned the value of I. If MC is lero, control
goes to line 980.MC is the stack pointer for state-
ments with the word MY in them. Some of the time
when no key words are found, the program will refer
back to some of the MY subjects.
This line branches to an arbitrary answer if MY was
never used.
If the user never typed MY, the program will print
out one of the lines 990-1020.
These are four possible general answers for when no
key words were found and when the user never used
the word MY. Sometimes these lines will be used
even if the word MY was used. You can add non-

63

1030

1040
1050-1100

1105
1110-1160

1170
1180-1280

1290
1300-1750

1760
1170-1810

1830-1850

1870-1890

1910-1920

1960-2050

64

committal answers of your own by changing line
980 and adding the appropriate line numbers. If you
do this be sure to change the 4 in line 980 to the
number of responses that you end up with.
Additional replies will not slow the program and
will increase the vocabulary of the program.
This line defines YS as an arbitrary element of the
MYS array. Thus the computer will try to discuss
more about a sentence that had contained the word
MY. RAN is a variable thaI is set to a random
number between one and six.
This line branches to one of six possible lines.
These lines print out various sentences and ques-
tions using subjects of the MY entries. You can add
new responses of your own, and it will not slow
down the computer.
This is a separation line.
This subroutine simply eliminates all occurrences
of the • and the @ symbols.
This is a separation line.
This subroutine branches to the proper line number
to print out the reply based on the val ue of J, the
number associated with the key word. If X was set at I
earlier, the subroutine simply returns without
printing out anything from this subroutine.
This is a separation line.
These are the different replies by the computer. 1310
is printed when J is I. 1320 is printed when J is 2
and so forth. Some of these lines contain subroutine
calls for certain cases.
This is a separation line.
This subroutine is used when the word !\IY is found
in an input. The response is placed in the MY$stack
array. When Ihat aITay becomes full. arbitrary
elements of that aITay are replaced by the newest
entries.
This subroutine actually moves the@sign from the
entries.
This subroutine removes the asterisk from words
containing it. Notice that @ is used for E$ with 4
letters and • is used for words with 7 letters. You
might think about changing this convention.
This subroutine was used with the key word search.
If the key word was found, the program went to line
650 after first going to line 1910.
This subroutine is a set of answers that the com-
puter prints when it encounters the word MY in a

sentence. Notice lhal there are eight different replies.
You can add to these also.

2070 This line is printed if the word HE is found in an
input.

2080 This line is printed if the word SHE is found in an
input. You might want 10 add other responses here
too. Insert a random number routine as in the other
response subroutines.

2090 This line of colons is the end of the program.

Program Operation. After loading or typing the pro~ram,
into memory, type RUN. The program will clear the screen and
type, HELLO. WHAT'SONYOURMIND?Thecomputerwill use
white letters and your input will be in cyan. Be sure that you include
a period or question mark at the end of your input. To erase any of
your input, simply press DEL to remove letters from right to left. To
stop the program, press the RUN/STOP key. Otherwise the
program will continue indefinitely.

There are many ways that the pro~ram could be changed.
Some of those ways have been mentioned in the line descriptions.
You might want to expand the program. Maybe you would like to
use disk files for storing information lhat has been input. You
might also want to eliminate the rereadin~ of all the DATA
statements and the use of the RESTORE command. You might
want to store input that contains specific words as was done with
the word MY. You might want to correlate some of the responses in
other ways.

The Perfect logic Program

The Perfect Logic, shown in Listing 4-2 is a conversational
logic program. Listing 4-3 shows one way of changing the
program for use with a disk rather than with a cassette. You type in
various statements and questions, complete with final periods and
question marks, and the computer will respond accordingly. If you
make a statement like ALL CATS ARE ANIMALS, the computer
will respond with a question that is the converse, namely, ARE
ALL ANIMALS CATS? In this way the computer decides the
relationship between the nouns using set theory. If all cats are
animals, then cats are contained in the set of animals. Because you
would reply NO to the converse question, the computer would
conclude that only some animals are cats. (By changing line 10125
in the program, you can have the computer print this out. See the
listing and its explanation.) If you replied YES to the converse
question, the computer would conclude that all animals are cats.
In other words, animals are another name for cats. Such would be
the case if you typed, CATS ARE FELINES. The computer would
respond, ARE ALL FELINES CATS? You would respond YES.

65

Listing 4-2 Perfect Logic
10 ::::::::::::::::::::::::::::::::::
20 REM
30 REM
40 REM
50 REM

PERFECT LOGIC - PROGRAM11
WRITTEN BV TIMOTHV J. O'MALLEY
COPVRIGHT 1983. TAB BOOKS INC.
(WRITTEN FOR THE COMMODORE64)

18C1
175

190
1';.15
200
21(1
220
230
240
250
260

6C1
100
110
115
116
117
120
1·-,c-...~,
130
140
145
150
155
160
165
170
173

DIM SS$(100),NM$(100),AJ$(100).LK%(100.100):ID=1
FOR1=1TO100: SS$(I) =" S" : LI<;~(I. I) =3: I~E;<TI: PRI1HCHR$ 0:: 147) :
PRItHTAB(12); "PERFECT LOGIC": PRItH
l,dH$="N": IHPUT "DO VOU l.IAtH TO LOAD FROt'l TAPE (\'/I'D": lo.lH$
IF 1,IH$="',''' THEt~ GOSUB 21000
PRItH" (LBUJ} " : : OPEI~1.0: It~PlIT# 1, 10$: PRI1H: CLOSE1: PRItH" (CVAID " :
IF IQ$="STOP"ORIO$="Et~D"THEt~GOSUB 22000: PRItH" (LBLLI}": END
IP$=LEFT$(IQ$,LEN(IO$)-l)
I FLEFT$ (I P$. '3)=" I"IHAT ARE "THEI~GOSUBl00~3:GOTO12C10
I FLEFT$ (I P$. 8) =" ARE ALL "THEt~GOSUB19C100:GOTO12~30
I FLEFT$ 0:: I P$. 8) =" ldHAT IS" THEt~GOSUB2000:GOTO120C1
I FLEFT$ (I P$. 7) =" 1,IHAT'S "THEt~GOSUB2500:GOTO1200
I FLEFT$ 0:: I P$, ';.I)=" ARE Sot'lE "THEI~GOSUB3(100:GOTO1200
I FLEFT$ (I P$. 13) =" ARE t~OT SOME "THEt~GOSUB3500:GOTO1200
I FLEFT$ (I P$. 4) =" ARE "THEt~GOSUB40C10:GOTO1200
IF LEFT$ (I P$, 12) =" AREWT SOME "THEt'lGOSUB425~3:GOTO120C1
IF LEFT$(IP$, 7)="AREW T "THEt~GOSUB45~30:GOT01200
IFLEFT$(IP$. 3)=" IS "THEt~GOSUB5000:GOT01200
IF LEFT$ (I P$, 6) =" I St~' T "THEt~GOSUB5500:GOTO12(11)
IFLEFT$(IP$, 7)=" IS t~OT "THEt~GOSUB6C100:GOT01200
IFLEFT$(IP$, 4)="ALL "THEt~GOSUBl';.I500:GOT01200
I FLEFT$ (I P$, 5) =" SOt'lE "THEI~GOSUB7000
FORI = 1TOLEt~(I P$): I FMI [4(I P$, I • 8) =" I S t~OT "THEI~GOSU88C100:GOTO12013
I Ft1I D$(I P$. I , 7) =" I St~' T "THEHGOSUB';.ICn30:GOTO1200
IFMID$(IP$. 1,4)=" IS "THEI~GOSUB10000:GOT01200
IFI'1ID$(IP$, I, ';.1)=" ARE t~OT "THENGOSUBl1000: GOT01200
IF/'lID$(IP$. 1,8)=" AF:EWT "THEHGOSUB12000: GOT01200
I Ft'1I D$(I P$. I • 5) =" ARE "THEt~GO~;UB13000:GOTO1200
NEXTI:GOSUB14000:GOT01200

.................................... ..

185

270
999
1000
1010

1020
1030
1040
1045
1050
1060
1070
11';.19
1200
1210
1215
1217

....................................... .
REI'1Ut~DERSTAt~[>"'"IHAT ARE "
LT$=I'lID$(IP$, 10): IFRIGHT$(L T$, 1)="S"THEt~L T$=LEFT$(LT$. LEt~(L T$)-1)
:Fl=l
FORI=IDT01STEP-l:IFNM$(I)=LT$THENJ1=I:GOT01040
NEXTI:GOSUB18000:RETURN
FORI = I DTO1STEP-l : I FLI<;'~(~T 1• I) =3At~DLK:'~(I • ~T1) =3THEt'lPRI tH" ALL ":
I FLI<%(~T 1. I) =3THEt~PRI t~Tt~M$(..1 1) :;S$ (~T 1)" ARE "1~t'1$(I ::> SS$(I) " • "
I FLK:~(~T1, I)=2THEt~PRI tH"SOME "t~t'l$ (~T 1)SS$(~T1)" AF:E "llt'1$ (I) SS$(I)". "
I FLK;~(~T1. 1)= 1THEt~PRI tH"t~O "t~t'1$0:: ~T1)SS$ (~T 1)" ARE "t~t'1$(I)SS$ (I)" • "
I~EXTI : RETURt~
: : : : : : : : : : :': :
REM COMPUTERDRAWSCONCLUSIONS
FORI1=lTOID-l:FORI2=lTOID-l:IFLK%(Il.I2)=00RLK%(I2.Il)=0THEN1250
FORI3=lTOID-l:IFLK%(I2.I3)=00RLK%(I3.I2)=0THEN1240
IFLK%(Il,I3»0ANDLK%(I3.Il»-0THEN1240

66

1220IFLK%(Il.I2)=3ANDLK%(I2.Il)=3THENGOSUB1300
1225IFLK%(Il.12)=3ANDLK%(I2,Il)=2THENGOSUB1400
1230 REM IFLK%(Il.I2)=2ANDLK%(I2,Il)=2THENGOSUB1500
1235 REM IFLK%(Il.I2)=lANDLK%(I2.Il)=lTHENGOSUB1600
1240 t~E)<:TI3
1250 NEXTI2.Il:GOT0120
1300 IFLK%(I2.I3)=3ANDLK%(I3.I2)=3THENLK%(Il.I3)=3:LK%(I3.I1)=3:RETURN
1310 IFLK%(I2.I3)=3ANDLK%(I3.I2)=2THENLK%(Il.I3)=3:LK%(I3,I1)=2:RETURN
1320 IFLK%(I2,I3)=2ANDLK%(I3.I2)=2THENLK%(Il.I3)=2:LK%(I3.I1)=2:RETURN
1330 IFLK%(I2.I3)=lANDLK%(I3.12)=lTHENLK%(Il,I3)=1:LK%(I3.I l)=l:RETURN
1340 RETURt~
1400 REM IFLK%(I2.I3)=3ANDLK%(I3,I2)=3THENLK%(Il,I3)=3:LK%(I3.I1)=2:

RETURN
1410 IFLK%(I2,I3)=3ANDLK%(I3.I2)=2THENLK%(Il. I3)=3:LK%(I3, I1)=2:RETURN
1420 IFLK%(I2.I3)=lANDLK%(I3.I2)=lTHENLK%(Il.I3)=1:LK%(I3,Il)=l:RETURN
1430 RETURt~
1500 REM IFLK%(I2,I3)=3ANDLK%(I3.I2)=3THENLK%(Il.I3)=2:LK%(I3.I1)=2:

RETURN
1510 REM IFLK%(I2.I3)=3ANDLK%(I3.I2)=2THENLK%(I3,Il)=2:RETURN
1520 REM RETURt~
16013REM IFLK%(I2.I3)=3ANDLK%(I3.12)=3THENLK%(Il,I3)=1:LK%(I3.I1)=1:

RETURt-l
161\3 REM RETURt~
1999 :::::::::::::::::::::::::::::::::
2000 REM Ut-lDERSTAt~D"WHAT IS"
20113LT$=MID$(IP$,9):IX~=LT$:GOSUB16000:LT$=IX$
2020 FORI=IDT01STEP-l:IFNM$(I)=LT$THENJ1=I:GOT01040
2030 NEXTI:GOSUB14000:RETURN
2499 :::::::::::::::::::::::::::::::::
2500 REM UNDERSTAt~D "I.r.IHAT'S "
2510 IP~=" "+IP$:GOT02010
2599 :.:::::::::::::::::::::::::::::::::
3000 REM ANSI.r.IER"ARE SOME " QUEST IOt~
3010 IP~=MID~(IP$,10):GOT04020
3499 :::::::::::::::::::::::::::::::::
3500 REM "ARE t~OT SOI'1E" QUEST IOt~
35113 IP$=MID$(IP$,14):GOT04020
3999 :::::::::::::::::::::::::::::::::
40130REt'1ANSl,IER"ARE " QUEST ION
4010 IP$=MID~(IP$.5)
40213 FORI'1=1TOLEN(IP$): IFMID$(IP$. 1'1.1)=" "THEt~4040
4030 NEXTM:GOT014000
4040 LT~=LEFT$(IP$.M-l)
4050 IFRIGHT~(L T~, 1)="S"THEt~LT$=LEFT$(L T$. LEt~(LT$)-l)
4060 FORJ=IDT01STEP-l:IFLT$=NM$(J)THEN4080
40713 NEXTJ:GOT0403e
4080 RT~=MID$(IP~,M+l):IX$=RT~:GOSUB16000:RT$=IX$:A2$=AR$
41385 IFR IGHT$ (RT$, 1)="S" THEt~RT$=LEFT$ (RT$, LEt~(RT$) -1)
4090 FORK=IDT01STEP-l:IFRT$=NM$(K)THEN4110
411313I~E)':TK:GOT0407e
41113 IFLK% (J,K)=0THENPR ItH" I•M t~OT SURE.": RETURt~
41213 IFLK% (J,K)= 1THEt~PRItH" NONE ARE.": RETURt~
4130 IFLK% (~T• K)=2THENPR ItH" SOME ARE.": RETURN

67

.. ..

... .

... ..

.. ..

... .

REf'l"ISN' T " I;lUESTIot~
IP$=MID$(IP$,7):GOT05020

... .

.. .

REM UNDERSTAND IS SENTENCE
LT$=LEFT$(IP$.I-l):RT$=MID$(IP$,I+4)
IX$=LT$:GOSUB16000:LT$=IX$:Al$=AR$
IX$=RT$:GOSUB16000:RT$=IX$:A2$=AR$
IF RIGHT$(IQ$. 1)="?"THEt~GOSUB15000: RETURt~
FORI=IDT01STEP-l:IFLT$=NM$(I)THENJ1=I:GOT010070
NEXTI:NM$(ID)=LT$:AJ$(ID)=Al$:Jl=ID:ID=ID+l
FORI=IDT01STEP-l:IFRT$=NM$(I)THENK1=I:GOT010085
NEXTI:NM$(ID)=RT$:AJ$(ID)=A2$:Kl=ID:ID=ID+l
IF LK%(Jl.Kl)=3 THEN ON 1+3*RND(1) GO TO 10087.10088.10089
GOTO 10090
PR ItH" I Kt~El,1THAT ALREADV.": RETURt~
PRItH" I HEARD THAT BEFORE.": RETURt~
PR It~T"I I<t~OI,I.":RETURt~
LK:~CT1.1<1)=3
IFFSTHENFS=0:LK%(Jl.Kl)=2

IFLI<%(J •1<) =3THEt~PR ItH" ','ES.ALL ARE.": RETURt~

REI'1"SOl'lE" STATEf'lEtH
IP$=MID$(IP$.6):FS=1:RETURN

REI'l"IS t~OT " QUEST IOt~
IP$=MID$(IP$,8)GOT05020

REM ..AREt~'T SOf'lE" QUEST IOt~
IP$=MID$(IP$.13):GOT04020
REM "AREt~'T ." QUEST IOt~
IP$=MID$(IP$,8):GOT040213

REI'lUHDERSTAt~D " IS t~OT "
LT$=LEFT$(IP$, I-l):RT$=MID$(IP$. 1+8)
IF R IGHT$ (IQ$. 1 :> ="?" THEHGOSUB15000: RETURI~
GOTO 12020
LT$=LEFT$(IP$.I-l):RT$=MID$(IP$.I+7)
IF R IGHT$ (I(~$.1)="?" THEt~GOSU8150(10:RETURt~
GOTO 12020

REM ..IS " QUESTIOt~
IP$=MID$(IP$.4)
FORI'l=1TOLEt~(IP$): IFM I[>$(IP$, M, 1)=" "THEH5040
NEXTM:GOT0140e0
LT$=LEFT$(IP$.M-l)
IX$=LT$:GOSUB16000:LT$=IX$:Al$=AR$
FORJ=IDT01STEP-l:IFLT$=NM$(J)THEN5080
I~EXT~T: GOT05030
RT$=MID$(IP$,M+l):IX$=RT$:GOSUB161300:RT$=IX$:A2$=AR$
FORK=IDT01STEP-l:IFRT$=NM$(K)THEN5110
t~E~':TK:GOT05C170
GOT04110

41413
4249
42513
4260
4500
4510
4999
5000
513113
50213
5030
51340
5050
50613
5070
5080
5090
5100
5110
5499
5500
5510
5599

6000
6010
69'39
7000
70113
799'3
80(113
8010
8020
8030
'3010
'31320
'30313
'39'3'3
101300
10010
1003(1
1(1040
10045
10050
10060
10070
10080
10085
10086
10087
10088
1008'3
101390
101395

68

10097
101130
10110
10120
10125
10130

10999
11000
11010
11999
120013
120113
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120
1299'3
1313013
13010
13020
13030
13040
13050
13060
13070
130813
131390
13100
13110
13120
139'3'3
140130
140135
14010

14020
140313
14040
140513
141360
14070
14080
14090
14999
150130

IF LK%(Kl.Jl»-0 THEN GOSUB 17000:RETURN
PRItH"ARE ALL "t-{to1$(I< 1)SS$(l<l)" "t~t'l$(Jl)SS$<~Tl) "?"
PF:ItH" (LBLU) "::OPEI~1,~3:It~PUT# 1•AI~$:PR ItH: CLOSE 1:F'RItH" (C','Atn":
IFLEFT$ (At~$.1)= "V "THEt~LI<:~(I< 1•J 1)=3: GOSUBl 70013:RETURt~
IF LEFT$(AN$,l)="N" THEN LK%<Kl.Jl)=2:GOSUB 17000:RETURN
PRI tH"SOt'lE "t~I'l$(K 1)SS$(I< 1)" ARE "1~/'1$(J 1)SS" (,J 1)". ":GOSUBl 713(1(1:
RETURN................................... .
REI'lUt~DEF:STAt~[>" ARE. t~OT "
LT$=LEFT$(IP$.I-l):RT$=MID$(IP$.I+9):GOT012020.................................... .
REI'lUt~DERSTAt~[> " AREt~'T "
LT$=LEFT$(IP$,I-l):RT$=MID$(IP$.I+8)
IX$=LT$:GOSUB16000:LT$=IX$:Al$=AR$
IX$=RT$:GOSUB16000:RT$=IX$:A2$=AR$
IFRIGHT$(LT$. 1)="S"THEt~L T$=LEFT$(L T$, LEI~(LTP-l): Fl=l
IFRIGHT$<RT$. 1)="S"THEt~RT$=LEFT$(F:T$, LEll(RTl)-l): F2=1
FORI=IDT01STEP-l:IFLT$=NM$(I)THENJ1=I:GOT012080
NEXTI:NM$(ID)=LT$:AJ$(ID)=Al$:Jl=ID:ID=ID+l
FORI=IDT01STEP-l:IFRT$=NM$(I)THENK1=I:GOT012100
NEXTI:NM$(ID)=RT$:AJ$(ID)=A2$:Kl=ID:ID=ID+l
IFFl THEt~SS$(~Tl)="S": Fl=0
IFF2THEt~SS$ (I< 1)=" S" :F2=(1
GOT020000.. .
REt'lUt~[)ERSTAt~[)" AF:E "
LT$=LEFT$(IP$.I-l):RT$=MID$(IP$.I+5)
IX$=LT$:GOSUB160(10:LT$=IX$:Al$=AR$
IX$=RT$:GOSUB1600(1:RT$=IX$:A2$=AR$
IFRIGHT$(L T$, 1)="S"THEt~L T$=LEFT$(L T$, LEt~(LT$)-l): Fl=l
IFRIGHT$(RT$. 1)="S"THEt~RT$=LEFT$(RT$. LEI~(RT$)-l): F2=1
FORI=IDT01STEP-l:IFLT$=NM$(I)THENJ1=I:GOT013080
NEXTI:NM$(ID)=LT$:AJ$(ID)=Al$:Jl=ID:ID=ID+l
FORI=IDT01STEP-l:IFRT$=NM$(I)THENK1=I:GOT013100
NEXTI:NM$(ID)=RT$:AJ$(ID)=A2$:Kl=ID: ID=ID+l
SS$(J 1)="": IFF 1THEHSS$(J 1)="S": Fl=~3
SS$(l<l)="": IFF2THEHSS$(Kl)="S": F2=(1
GOT010085.. .
REM DO NOT UNDERSTAND INPUT
PRIt~TL T$: "? ":
ON1+INT(8*RND(1»GOT01402(1, 14030. 14040. 14050, 14060, 140 70,14080,
140'30
PR It~T"I DOt~'T DIG.": RETURt~
PR ItH" t.IHAT?":RETURt~
PRItH"I,IHAT AREOU SAVIt~G?": RETURt~
PRINT"HUH?":RETURH
PR ItH" I DOW T FOLLOl,I.":RETURt~
PR ItH" I DOt~'T Ut~DERSTAt~D.": RETUF:t~
PR ItH" VOU ARE t~OT I'lAKIt~G SENSE.": F:ETURt~
PR It~T"IF VOU SAV SO, BUT I DOt~'T Kt'lOl,I.":F:ETUF:t~...................................... .
REM STATEMENT IS REALLV QUESTION

69

15010
15020
15030
15040
15050
15'3'3'3
16000
161310
16020
16030

16040
16'3'39
170130
170113

17020
17030
17040
17050
17060
17070
17080
170'313
179'3'3
18000
18010

18020
18030
18040
18050
180613
18070
18080
180'30
1810(1
18110
189'39
191300
1'3010
1949'3
195013
19510
1'399'3
20000
20010
20'3'38
2099'3
21000
21010
21020
21030

70

FORI=IDT01STEP-l:IFLT$=NM$(I)THEN15030
NEXTI:GOT014000
FORK=IDT01STEP-l:IFRT$=NM$(K)THEN15e50
NEXTK:GOT0140130
GOT05110...............................· .

REM FIND ARTICLES OF IX$
DATA " THE "." A "." At~ "."THE "."A "."At~ "
AR:~="":FORI=l T06: READAT$: LA=LEtHAT$)
IFMID$(IX$,l.LA)=AT$THENIX$=MID$(IX$,LA+l):AR$=AT$:RESTORE:
RETURt~
NEXTI:RESTORE:RETURN·
REM INPUT UNDERSTOOD
ON1+INT(8*RND(1»GOT017020, 17030,17040, 17050, 17060. 17070.171380,
17090
PR INT" I Ut~DERSTAt~D t~ow.":RETURt~
PR ItH" OKA'\'.":RETURt~
PRItH"ALL RIGHT.": RETURN
PRItH"I SEE. ":RETURt~
PRItH"OK. TH.AT /'1AKESSENSE.": RETURH
PRItH" I GET IT. 1,IHATELSE CAt~ I LEARtn": RETURt~
PRIt~T"t~Ol,11,IEARE GETTING SOl'lEl,IHERE.":RETURt~
PR ItH" GOOD. LET'S GO Ot~.":RETURt~
: :': : : : : :
REM DID NOT FIND NOUN IN QUESTION
ON1+INT(RND(1»GOT018020. 18030. 18040,18050, 18060. 18070 ,18080,
180'30
PR ItH" \,OU'RE ASK ING t'lE',?I DOI~'T KNOul ABOUT "LT$: :GOTO 1810(1
PRItH"GOT 1'1E.I HAI)E t~O It~FO Ot·j"LT$; :GOT018100
PRItH"BEATS t'lE.":RETURN
PR ItH "I l"OULD NOT Kt~Ol,1ABOUT "LT$;: GOT018100
PR ItH" I HAI)E t~O It~FO ABOUT "LT$: :GOTO 1810('1
PR ItH" \'OUR GUESS IS AS GOOD AS 1'1It~E.":RETlIRt~
PRINT"GOOD QUESTIOt~. I DOW T Kt~OI,I.":RETURt~
PF:ItH" I HAI)E t~O IDEA.": RETURI~
IF Fl THEt~PRItH"S":: Fl=0
PRItH". ":RETURt~·
REl'l"ARE ALL " QUEST IOt~
IP$=MID$(IP$.9):GOT04020................................... .

RE/'1"ALL " STATEt-1EtH
IP$=MID$(IP$,5):RETURN·
REM SET NOT CONDITION
LK%(Jl.Kl)=1:LK%(Kl.Jl)=1:GOT017000·
REM *** LOAD DATA ***
D$=" ": It~PUT"ulHAT FILE t~At'lE":D$
OPEtH •1•0.D$
It~PUT#l,ID
FOR 1=1 TO ID-l:INPUT#l.SS$(I):NEXT I

21040
21050
210613
21070
21998
21999
220013
22005
22010
22020
22030
22040
22050
22060
22070
22999

FOR 1=1 TO ID-l:INPUT#l.NM$(I):NEXT I
FOR 1=1 TO ID-l:INPUT#l.AJ$(I):NEXT I
FOR 1=1 TO ID-l:FORJ=lTOID-l:INPUT#l.LK:LK%(I.J)=LK:NEXT J,I
CLOSE l:RETURH... .
REM *** SAVE DATA ***
t.IH$="t~,.:IHPUT"ldAt~T TO SAI)E 1,10RK(V/t~)";1,IH$:IFl,IH$="H"THEH Et~D
D$="" :1t~PUT "WHAT FILE t~A"lE":D$
OPEt~1 • 1•1,D$
PRItH#l. ID
FOR 1=1 TO ID-l:PRINT#l.SS$(I):NEXT 1
FOR 1=1 TO ID-l:PRINT#l.NM$(I):NEXT 1
FOR 1=1 TO ID-l:PRINT#l.AJ$(I):NEXT 1
FOR 1=1 TO ID-l:FORJ=lTOID-l:LK=LK%(I.J):PRINT#l,LK:NEXT J, I
CLOSE 1:RETURt~.. .

listing 4-3 ChangesTo Use Perfect Logic on Disk

116 l,JH$="W':U~PUT "DO 'T'OU~~At-HTO LOAD FR0I1 DISK ('r'/tV"i WHS

213999 REM ~~~ LOAD DATA ~*~
2100(1 D$=" II : It~PUTII~JHAT FILE ~m11EII i II$
211305 DF$=D$;DF=l
211310 OPEt·~2,8,2., "(1: "+D$+", S.,R"
211320INPUT#2,ID
211330 FOR 1=1 TO ID-l:INPUT#2/SS$(I);NEXT I
21040 FOR 1=1 TO ID-1;INPUT#2,NMS(I);NEXT I
21050 FOR 1=1 TO ID-l;INPUT#2,AJS(I):NEXT I
21060 FOR 1=1 TO ID-l:FORJ=lTOID-l;INPlIT#2,LK:LK%(I.J)=LK;NEXT J,I
~10?e CLOSE 2;RETURN

21998
21999
22000
22001
22002

REM ..~.. SAVE DATA ~~ ..
~'JH$="~l":I~lPlIT"~JA~H TO SAVE ~'JORK(Y/N) " i ~JH$:IF~IH$="N" THEN E~m
IF DF=0 THEN 22013
PR I~n" DO 'r'OlI~JANT TO SA'o.,'ETH IS FILE lIt·mERTHE SAI'lEF ILEt~At1ETHAT

221303 INPUT "JUST USED"iSN$
2213134IFLEFT$(St~$, 1)()'''r'"THEt~ 22013
2213135D$=DF$:OPEN 15,8,15:PRINT#15, "S0;"+D$:CLOSE 15;OOTO 221318
22013 PRUH").IDO NOT USE THE NAI1E OF A FILE THAT IS ALREADY ON THIi:

DISK.:.!"
221315 D$=""; It~PUT "WHAT F ILE t~AI1E"i liS
221316 IF D$="" THEN 22015
221317 DF$=D$:DF=l
22018 OPEN 2,8/2. "13;"+DS+", S,W'
22020 PRINT#2,ID
22030 FOR 1=1 TO In-1.: PR UH #2, ::S$ (I) ;~lD::TI
221340 FOR 1=1 TO ID-l:PRINT#2,NM$(I);NEXT I
220513 FOR 1=1 TO ID-l:PRINT#2,AJS(I);NEXT I
2213613FOR 1=1 TO ID-1:FORJ=lTOID-l;LK=LK%(I,J);PRIN1#2/LK:NEXT J,I
221370 CLOSE 2:RETURN

71

That way CATS and FELINES are sets that contain all of each
other.

You can type statements like PLANTS ARE NOT ANI-
MALS. The computer would immediately conclude that ANI-
MALS ARE NOT PLANTS. By using logic, the computer also
concludes that every noun (or set) is a subset of itself. For example,
if you type, ARE ALL CATS CATS? The computer would respond
in the affirmative. The computer draws various conclusions based
on set theory. If all cats are animals and animals are not plants, the
computer concludes that NO CATS ARE PLANTS, and NO
PLANTS ARE CATS.

Figure 4-2 is an explanation of the kinds of conclusions that
the computer will draw. The computer will make comparisons
between three sets. If certain conditions are met, the computer will
make changes in LK%, as results. Zeros in LK% represent an
absence of information. In that case, the computer doesn't know
about the relationship between two sets. If the relationship
between two sets is a I, then the sets are not related. In fact, they
may be opposites, as in the case of plants and animals. If the

CONDITIONS RESULTS

LK%(13,11) LK%(11,12) LK%(12,11) LK%(12,13) LK%(13.12) LK%(11,13)
3 3 3 3 3 3
2 3 3 3 2 3
2 3 3 2 2 2
1 3 3 1 1 1
2 3 2 3 2 3
1 3 2 1 1 1

LEGEND:
1 = Sets are not related and may be opposites.
2 = Some of one set are contained in the second set.
3 = All of one set is contained in the second set.

LK%(11,12) is the relationship between 11 and 12.
LK%(12,11) is the relationship between 12 and 11.
LK%(12.13) is the relationship between 12 and 13.
LK%(13,12) is the relationship between 13 and 12.
LK%(11.13) is the relationship between 11 and 13.
LK %(13.11) is the relationship between 13 and 11,
11 is the first set.
12 is the second set.
13 is the third set.

Fig. 4-2. The logic used in the Perfect Logic program.

72

relationship between the first set and the second is a 2. then some,
but not all, of the first set is contained in the second set. If the
relationship between the first set and the second set is a 3, then all of
the first set is contained in the second set. The? in the figure
indicates an indeterminant result. The question mark is either 2 or
3. Thus the program scans the LK% array looking forelements that
meet one of the six conditions in Fig. 4-2. When it finds one, it
makes changes to other elements of the array. In this way, the
program really demonstrates artificial intelligence. (We never
really told the computer that a cat was not a plant. It concluded it
from the statements that said a cat was an animal and that animals
are not plants.)

This program shows some degree of self-correction if you
delete line 10097. It might even correct some things if you don't.
The maximum number of items that the program can store in its
present form is 100. That is because the LK% array is 100 x 100
elements, This is 10,000 elements, a big bite of memory (no pun
intended). This program slows down as the number of sets
increases. That is because the search procedure takes longer and
longer as the program tries to draw conclusions, You might think
of ways to get around this or think of ways to store this information
on disk instead of in RAM. It may be somewhat difficult because
the number of possible relationships between sets is the square of
the number of sets. Maybe you would adopt a different numbering
convention to designate the kinds of sets involved. There are other
ways to change the program also.

Here's a line-by-line description of the program.

LINE

10-60
100

110

EXPLANATIO

These lines provide identification for the program.
This line dimensions the various arrays used in the
program. SS$ is an array used to store the plural
of the nouns entered. NM$ is the array that stores the
noun of the phrase as determined by the program.
AjS stores the articles (a or an) used with the nouns.
LK%. is the array that contains the code (0-3) for
determining the relationships between nouns or
noun phrases entered. LK% is the most important
array in the program. ID is a variable that acts as an
index. It is set at 1 at the start of the program.
This line sets all of the plural forms of nouns that
it encounters, making them end with S. The diag-
onal of the LK% array is set as 3. meaning that
everything is a set that contains itself. CHRS(147)
is the code used to clear the screen.

73

lIS

116

117

120

125

130

140

145

150-200

210-270

999

74

This line tabs across and prints the first line on the
screen.
This line asks if you want to load data from cassette
tape. You enter Y or
If you enter Y, the program calls a subroutine that
starts at line 21000.
The computer changes the color to light blue (ASCII
code 154). This line then asks for an imput by
opening the keyboard file. After the input, the com-
puter prints in the cyan color, the computer's color.
If your input was STOP or END, the program
branches to the subroutine that starts at line 22000.
That subroutine asks if you want to save the data
accumulated during the session on cassette tape for
use with the next session. This way the computer
"remembers" what it had learned. Finally, the color
is changed back to light blue, and the program ends.
IPS is IQS without the last letter. We drop the
punctuation-if you forgot to enter the punctua-
tion with your input, the program will not function
accurately.
If the first 9 letters that you typed are WHAT ARE,
the program calls the subroutine that deals with
"WHAT ARE" questions, located at line 1000. Then
the program branches to line 1200.
Likewise if a question starts with ARE ALL, the
program goes to a subroutine that starts at line 19000
and then goes to line 1200. Line 1200 is a routine that
attempts to draw conclusions from that data entered.
These lines do similar things with input that starts
with various words, such as WHAT IS , IS , and
SOME. These are the only kinds of things that the
program can deal with. The program will attempt to
look for a noun or nouns following these words.
Then it will respond accordingly.
These lines are a loop that attempts to locate the
verbs IS, IS NOT, ISN'T, ARE, ARE NOT and
AREN'T if the lines above did not locate any starting
words in the input. If the loop runs through its
entirety without finding any of these verbs. the
program goes to the subroutine that starts at line
14000, where it prints out a message saying it didn't
understand the input. Then the program branches to
line 1200 to see if it can draw some more conclusions
before returning for more input.
This line separates the main program from the next
section, the WHAT ARE subroutine.

1000-1070

1010

1020

1030

1040-1070

1199
1200-1610

1200
1210

1215

This subroutine attempts to interpret questions
beginning with WHAT ARE ...
LTS is the input starting with the tenth character.
If the last word ends with an S, it is assumed that it is
a plural form. and the S is dropped from LTS. A
"flag" FI is set at I.
This line searches for the noun starting with the
most recently entered character and working back-
wards. If it matches the nouns stored in the NM
array to the input, J I is set to the index, I, and the
program branches to line 1040.
If the program goes through the entire NM.) array
without finding the array, the program calls the
subroutine that starts at line 18000 and then returns
for more input.
This I loop prints out all the sets to which the noun
belongs. What is printed depends on the contents of
LK%. NMS(] I) is the noun. SSS(] I) is its plural
form.
This is a separating line.
This is the most important subroutine; it is used to
draw conclusions. It makes comparisons between
three sets. For example if set A contains all of set B
and set C cOlHains all of set A, il can conclude that all
of set B are contained by set C and that some of set Cis
set B. Likewise if set A contains all of set B and set C
contains none of set A. it can conclude lhal C
contains none of set B. All of the logical combina-
tions that yield definite conclusions art' included in
the subroutine. In the example that has been
mentioned, A might be ANIMALS, B might be
CATS, and C might be PLANTS. If we know rhat all
CATS art' ANIMALS and no ANIMALS are
PLANTS. it follows that no CATS are PLANTS.
(Figure 4-2 shows all of these combinations of
conditions and the results.)
This line identifies the subroutine.
II is the index for one of three nested loops that
examines entries in LK%. 12 is the index for the
second set. If the relationship between set I I and set
12 is 0 (both ways), nothing can be concluded. and
the program branches to line 1250 to increase the
indexes of the loops.
13 is the index for the third set. If 12 and 13 have no
relationship at all, nothing can be concluded. The
program then branches to line 1240 to increase the 13
loop index.

75

1217

1220

1225

1230

1235

1240
1250

1300-1340

1400-1430

1500-1520

1600-1610

1999
2000-2030

2499

76

If the rclationship bctwcen I I and 13 and the rela-
tionship betwecn 13 and I I have already been es-
tablished, control goes to line 1240.
If I I is entire! y contained in 12. and 12 is entirely
contained in I I, then II is the samc as 12. and control
goes to the subroutine at line 1300 where the
relationships between 12 and 13 arc checked.
If I I is a proper subset of 12. control goes to line 1400
where the relationships between 12 and 13 are tested.
If some of I I is contained in 12 and some of 12 is con-
tained in II, control goes to line 1500 whcre thc rela-
tionships between 12 and 13 are tested.
If there is definitely no relationships between I I and
jI I (I I and 12 may be opposites), there is a call to the
subroutine at line 1600.
This line increments the 13 index (loop).
This line contains the ends of the 12 and I I loops
and a branch to line 120 for more input.
This subroutine tests and sets the results of various
elements of the LK% array as called by line 1220.
This subroutine tests and sets the various elements of
the LK% array as called by line 1225.
This subroutine tests and sets the various elements
of the LK% array as called by line 1230.
This subroutine tests and sets the final possible
elements of LK%.
This is a separation line.
This subroutine interprets questions that start with
WHAT IS, , . LT$ is IP$ from the ninth element to
the last element of that string. IX$ is defined as LT.$,
and then the program calls the subroutine that starts
at line 16000. That subroutine looks for the words
THE, A or AN in IXS. If it finds any of these words, it
drops them from the string. LT$ is then defined as
the changed string. Line 2020 does a search for the
noun from the modified string. If it finds the noun, it
calls part of the WHAT ARE subroutine (starting at
line 1040) to print out all the things that the noun is.
Line 2030 is the end of the I loop. If the noun is not
found, the program branches to line 14000 to
indicate that the computer didn't understand the
input. You will notice that if the noun was found in
line 2020. that the computer branched out of the I
loop. Branching out of loops generally causes no
serious problems on the Commodore 64, although
on some computers it might.
This is a separation line,

2500-2510

2599
3000-3010

3499
3500-3510

3999
4000-4140

4000
4010

4020-4030

4040
4050

4060-4070

4080

4085

4090-4100

In this subroutine, the computer deals with ques-
tions that start with WHAT'S ... To answer these
questions, it adds a space at the beginning of IPS and
branches to the WHAT IS subroutine. That subrou-
tine will drop the first 8 characters and process the
rest as if the question was WHAT IS.
This is a separation line.
This subroutine processes ARE SOME questions by
dropping the first nine characters and branching to
the ARE question subroutine that starts at line 4020.
This is a separation line.
This subroutine processes ARE NOT SOME ques-
tions by dropping the first 13 characters and branch-
ing to line 1020.
This is a separation line.
This subroutine processes all the ARE ... ques-
tions.
This is the remark identifying the subroutine.
This line drops the first four characters of ARE
questions.
The M loop searches for the separation between
words. If it finds a space, it branches to line 4040.If it
does not find anything, it BRANCHES to the sub-
routine that starts at line 11000. Notice that sub-
routines Cdn be branched to as well as called if you
are careful.
LT$ is the left part of IPS.
This line looks for the letter S, indicating the plural
form of the noun. If it finds it, the S is dropped.
These lines check to see if the first word of this
string is found in the NMS array. If it is, the program
branches to line 4080 to find the next noun. If the
noun is not found, maybe the noun is really a phrase,
and the program will use more than one word in
LTS. It does this by branching back into the M loop
at line 4030.
RTS is the right part of the original IPS. The rest of
this line looks for the articles. THE, A and AN in
RT$.
This line drops the S (if it is there) from the end of
the last word because it assumes that it is dealing
with the plural form of the noun.
This K loop attempts to search for the noun in ques-
tion. If it finds iI, the program branches to line 4110.
If it does not find it, it assumes that it made a mistake
in determining what LTS was and will branch back
into the J loop! If it does not find it then, it branches

77

back to the M loop! If it still finds nothing, it
branches to line 14000.

4110-4140 Four different messages will be printed depending
on the value of LK%(J,K). J and K are the loop in-
dicators from the lines above. After the message is
printed. the program returns to the input sub-
routine.

4249 This is a separation line.
4250-4260 This subroutine answers the AREN'T SOME ques-

tion by dropping the first 12 characters and branch-
ing into the ARE subroutine.

4500-4510 This subroutine answers the AREN'T question by
dropping the first seven characters and branching to
line 4020.

4999 This is a separation line.
5000-5110 This subroutine interprets the IS question. It be-

haves very much like the ARE question subroutine
and branches into that subroutine if it finds both
nouns or phrases. The number 5110 in line 5090
could be changed to 4110 and line 5110 could be
deleted.

5499 This is a separation line.
5500-5510 This subroutine answers the ISN'T question by

dropping the first six chardcters and branching into
the IS subroutine.

5599 This is a separation line.
6000-6010 This subroutine answers the IS NOT question by

dropping the first seven characters and branching
into the IS subroutine.

6999 This is a separation line.
7000-70 I0 This subroutine is used for statements that begin

with SOME. The first five leiters are dropped and F~,
a flag, is set at I; then the program returns to the
calling routine.

8000-9030 These lines deal with statements and questions that
contain the words IS NOT or ISN'T somewhere in
the middle of the input. The words are dropped from
the input and the two parts are placed in LT$ and
RT$. If the input ends with the question mark. the
program calls the subroutine starting at line 15000
then returns. For declarative statements, the pro-
gram branches to line 120200ftheAREN'Tsentence
subroutine.

9999 This is a separation line.
10000-10130 This subroutine interprets the sentence containing

IS. This subroutine will print one of three sentences
if the program has already stored or concluded that

78

statement beforehand. Lines 10087-10089 are those
responses. Line 10100 asks a question to determine
whether or not the converse of the statement is true.
Line 10110changes thecolorof theinpul and requests
a Yes or No answer. The program then changes the
color back to cyan. If you delete from line
10125:GOSUB 17000:RETURN the program will
acknowledge that sometimes the converse is true
when answering No.

10999 This is a separation line.
11000-11010 This subroutine interprets statements with ARE

OT in the middle of the sentence. Then the
program branches into the AREN'T subroutine.

11999 This is a separation line.
12000-12120 This subroutine interprets any sentence containing

AREN'T. It is like the IS sentence subroutine. It then
branches to line 20000, which sets both sets to I, the
not condition. The not condition means that the
nouns may be opposites.

12999 This is a separation line.
13000-13120 This subroutine interprets sentences containing

ARE. It resembles the AREN'T sentence subroutine.
It doesn't set the not condition. It branches into the
IS sentence subroutine at line 10085.

13999 This is a separation line.
14000-14090 If the program doesn't understand the input, it calls

this subroutine. This subroutine prints up to eight
different comments. You might want to change or
add some comments to suit your preference.

14999 This is a separation line.
15000-15050 This subroutine is used if the statement entered i

really a question because it has a question mark at
the end.

15999 This is a separation line.
16000-16040 This is the subroutine that searches for the articles

THE, A, or AN in the input. Some of the articles
have a space in front of them (if they are in the middle
of the input).

16999 This is a separation line.
17000-17090 This subrouline includes eight commenls telling the

user that the computer has understood the input.
You may want to add to or change some of these
comments as well.

17999 This is a separalion line.
18000-18110 This subroutine is used if the user asks a WHAT I

or WHAT ARE question and the computer has never
heard of the noun in question. You might want to

79

change some of these comments. Some of the
comments print out the noun, LT$, that it can't find.
Line 18100 prints S on the end of the word if the
noun is plural.

18999 This is a separation line.
19000-19010 This subroutine drops ARE ALL from the input and

branches into the ARE question subroutine.
19499 This is a separalion line.
19500-19510 This subroutine drops the ALL from the beginning

of a statement if it has been included in the input.
19999 This is a separation line.
20000-20010 This sets the not condition for nouns or phrases that

are opposites or have a negative relationship.
20998 This is a separation line.
20999-21070 This subroutine allows you to load data that you

saved on cassette tape from a former session. You can
specify a specific filename or simply press the
RETURN key and the name will bean emply string.
If you have a disk drive, you might want to alter the
numbers to save on disk. This subroutine, then,
allows you to accumulate information that the
program has handled.

21998 This is a separation line.
21999-22070 This subroutine is the opposite of the last one. It

allows you to save your work on cassette tape for
use in the next session. You may define the filename
or leave it blank. If it is blank, the first file that is
found will be loaded. You might want to alter this
subroutine if you have a disk drive.

22999 This is the last line of the program!

Program Operation. When you have entered the program into
memory, type RUN. The computer will print PERFECT LOGIC
at the top of the screen. It will then ask you if you want to load data
from tape. Type Y for Yes or N for No. When the cursor blinks,
simply ellieI' your statements or qucstions. All inputs should
contain at leasl one of lhe following words; IS. ARE, NOT.
AREN'T, and ISN'T. You can include other words such as SOME,
ALL, WHAT IS. WHAT'S, and WHAT ARE.

Figures 4-3 and 4-4 show typical convcrsations with the logic
program. Every other line is printed by the computer. If you type: A
CAT IS A MAMMAL. The computer will respond: ARE ALL
MAMMALS CATS? You reply NO. It might then reply: OKA Y.
You might then lype: A DOG IS NOT A CAT. It might reply: I
UNDERSTAND NOW. You might type; A MAMMAL IS A
VERTEBRATE. It responds: ARE ALL VERTEBRATES MAM-
MALS? You reply, NO. Il prillls; NOW WE ARE GETTING

80

[)O ','Oll 1..IAtH TO LOA[) FROI'1 TAPE ('l/tL'? tl

A CAT I S A I'1AI·lI'1AL.

ARE ALL ~lAI11'1ALS CATS?

HO

OKA','.

A DOG IS HOT A CAT.

UHDERSTAt~O t~Ol..l.

A ~1AI'1I'1AL I S A I.JERTEBRATE.

ARE ALL IJERTEBRATES MA~1~1ALS?

t~O

HOW 1..IE ARE GETT It~G SOMEl..IHERE.

A CAT I S A MAI'1~1AL.

HEARD THAT BEFORE.

I S A DOG A ~1AI'1I'1AL?

I' ~1 HOT SURE.

A DOG I S A MAMMAL.

ARE ALL MAMMALS DOGS?

HO

GOOD. LET'S GO OH.

A CAT I S t~OT A DOG?

A CAT? I DON'T FOLLOW.

AREN'T CATS DOGS?

HONE ARE.

PLAHTS ARE NOT AH I ~1ALS.

OKAY.

ARE SOME PLAHTS At~ I ~1ALS?

t~ONE ARE.

ARE SOME AtHMALS CATS?

Fig. 4-3. The start of the conversation with the Perfect Logic program.

81

I' ~1 NOT SURE.

~lA~lMALS ARE ANH1ALS.

ARE ALL AIH~lALS ~lAt·1t'lALS?

I~O

GOOD. LET'S GO ON.

41HAT I S A CAT?

CATS ARE ANIMALS.

I~O CATS ARE PLANTS.

CATS ARE VERTEBRATES.

IKI CATS ARE DOGS.

ALL CATS ARE CATS.

STOP

[,IANT TO SAIJE WORK (Y/N)? N

READY.

Fig. 4-4. The end of the conversation with the Perfect Logic program.

SOMEWHERE. You type: A CAT IS A MAMMAL. It tells you: I
HEARD THAT BEFORE. The conversation continues on and on.
If you ask: WHAT IS A CAT? It replies: CATS ARE ANIMALS.
NO CATS ARE PLANTS. CATS ARE VERTEBRATES. NO
CATS ARE DOGS. ALL CATS ARE CATS. You see some of the
conclusions that the computer drew from statements entered. You
never said that a cat was not a plant.

Except for the limited storage problem and the slow response
with a large number of sets, this program demonstrates artificial
intelligence well when it makes deductions based on statements
using sets. This program utilizes natural language processing.
You simply typed in your IS and ARE and NOT statements in
English. You asked questions to retrieve information by typing
them in English. When thecomputerdoesn't understand what you
are typing, it will tell you so.

82

Chapter 5

Heuristics
In this chapter the discussion of heuristics is continued, and two
BASIC programs are examined. The first is a tic tac toe program
that remembers strategy, and the second is a five-in·a-row game
that you can play with other people and with the computer.

Many of the programs that we have discussed so far have used
heuristics, Let's define heuristics and examine some types of
heuristics.

A heuristic, in the broadest sense, is a rule of thumb used in
solving a problem. It is a way to provide a link between a question
and an answer. Heuristics eliminate some of the nonsensical paths
in the search for an answer. Heuristics can be generalizations about
sets of things and their relationships to each other. Heuristics,
then, are any methods thai eliminates the searching of the full
range of possibilities for an answer.

A pruned search is an example of a heuristic. In the pruned
search the possible choices that lead to an immediate failure are
deleted, and consequ('ntly the number of possihle choices are
reduced. The binary solution that was used in theTowersof Hanoi
program was a heuristic that yielded the solution directly. If a
computer game stores moves that lead to a win, it might search the
moves for a solution. The program would be learning.

83

HEURISTIC PROGRAMS IN BASIC
In this chapter I will use heuristics in two BASIC programs. In

the tic tac toe program, I will have the computer store moves that
lead to a victory. It will also store the last move that lead to a defeat.
In this way the computer can avoid or choose a particular move.
You won't be able to fool the computer twice with the same set of
moves.

In the five-in-a-row game the computer plays against one or
several human opponents. The computer will try to get five dots in
a row. It will try to block the moves of any player that has three of
four dots in a five dot space on the board. If one end of a five dot
space is blocked, it will try to form a lineof five using the other end.
If that is also blocked, it will abandon that section and find a new
space. The program does not, however, store strategy.

Let's now look in depth at tic tac toe and five-in-a-row.

Heuristic Tic Tac Toe
The program shown in Listing 5-1 plays the simple game of

tic tac toe with you. However, the computer will store all moves
that lead to a victory. It also stores the last bad move that lead to a
defeat and will avoid using that move again. In short, the program
remembers the best moves and will make them when playing the
game.

The game is played on a three by three grid. The object is to
place three of your symbols in a row either vertically, horizontally,
or diagonally on the board. This program displays the move
number and the game number. There is no provision to store the
strategy for future games. Thus the computer must relearn the
strategy each time that the game is loaded and run. You might
think about a way to save the strategy on tape or disk.

Here's a line-by-line description of the program.

Listing 5·1 Tic Tac Toe
5 :::::::::::::::::::::::::::::::::::::

10 REM HEURISTIC TIC TAC TOE - PROG. 12
20 REM WRITTEN BV TIMOTHV J. O'MALLEV
30 REt'1COP'>'RIGHT 1984. TAB BOOKS ItK:.
413 REM (WRITTEN FOR THE COMMODORE 64)
45
.. ..

47 REM *** MAIN PROGRAM ***
513 POKE 51,0:POKE 52,64:POKE 55,0:POKE 56,64
55 PR IIH "HANG OH A 1'1It~UTE I...IHILE I [>0 SOI'IEHOUSE - "
613 PR ItH "I(EEPIt~G.••.. THAt~KS! !"
713 G=e:FOR 1=16384 TO 36077:POKE I,0:NEXT
80 G=G+l:T=0
'30 PRItH CHR$(147); " *** HEURIST IC TIC TAC TOE ***": PRItH
1130PRItH "GAt-IEt~O. ":G:PRItH

84

110
120
130
140
150
1613
1713
1813
190
21313
2113
2213
2313
2413
2513
260
270
280
290
3130
310

320
325
327
330

3413
350
3613
430
4413
4513
4613
4713
4813
9130
'3113

FOR ~T=l TO 3
FOR 1<=1 TO 3
B(~T,K)=0
L=3*~T+I<-3
R(L)=0
C(L)=0:S(L)=0
t~E)<:TI< hT
M=0:REM M IS THE MOVE NUMBER
GOSUB 90e:GOSUB 4000:REM DETERMINE WHO GOES FIRST & PRINT BOARD
M=M+l:REM INCREASE MOVE NUMBER
PRItH: PRItH "I'101)Et~O. ";t'l:PRItH
M2=M/2:M3=M2()INTCM2)
I'14=M2=ItH CM2)
IF C2=1 AND M3) OR C2=2 AND M4) THEN GOSUB 20013:REM COMPUTER'S MOVE
IF CQ=l AND M3) OR (Q=2 AND M4) THEN GOSUB 3000:REM VOUR M~)E
GOSUB 4000:REM PRINT BOARD
GOSUB 10ee:REM ANY WINNER VET?
IF A=l THEN 330:REM STORE WINNING STRATEGV
IF 1'1<9 THEt~ 2130
PR ItH: It~PUT "t~OBOD','I.,IOH.1,IAtHTO PLAV AGA IH" :R 1$
IF LEFT$ (R1$. 1)="','"THEt~ 80: F:EI'lGO TO THE BEG It~t~It~G OF THE I~EXT
GAI'lE
EHD... .
REM *** STORE WINNING STRATEGV ***
FOR L=W TO M STEP 2
POKE C16384+SCL».C3*RCL)+CCL)-3)
I~E><:T
POKE C16384+SCM-l»,(3*R(M)+CCM)-3)
IF 1,1=2THEH PRItH: PRINT "I I.Ht~! ":PRItH
IF 1,I=QTHEt~ PRItH: PRItH "'lOU 1,IIH!":PRItH
It~PUT "lo.IAtHTO PLAV At~OTHEF:GAt'lE":R 1$
GOTO 310...................................... .
REM *** DETERI'lIt~E WHO GOES FIRST ***
2=1
Q=2

9213 IF RHD(1)(0.5 THEH 95~
930 PR ItH "I 1,1ILL BE ~< At~D 1',1ILL I'101.JEFIRST."
'340 RETURt~
",50 2=2
'360 Q=l
'370 PRItH "VOU CAH BE).:AHD CAt~ 1'10')EFIRST."
'380 RETURt~
'3'313:::::::::::::::::::::::::::::::::::
995 REM *** SEARCH FOR A WINNER ***
1000 A=0
10113 23=0
1020 24=0
1030 FOR J=l TO 3
11341322=0
1050 21=13
1060 FOR K=l TO 3
1070 IF BCK,J)=W THEN 22=22+1

85

1080
10913
11130
1110
1120
11313
11413
11513
1160
11713
1180
1190
201313
20113
2020
2025
2030
2040
2050
2055
20613
20713
2080
2090
2100
21113
21213
21313
2140
2150
3000
30113
3020
3025
3030
3040
3050
3060
3070
30813
30'30
4000
40113
4020
4030
4040
4050
40613
4070
40813
4090
41013
4120
4130

86

IF BC3,K)=W THEN 21=21+1
IF BCK.J)=W AND 3=K THEN 23=23+1
IF BCK.J)=W AND J+K=4 THEN 24=24+1
NEXT
IF 21=3 THEN A=l
IF 22=3 THEN A=l
N~XT
IF 23=3 THEN A=l
IF 24=3 THEN A=l
RETURN..................................... .
REM *** COMPUTER'S MOVE ***
PRItH "MY MOI,JEIS ";
W=2:V=Q
R2=PEEK(16384+T):IF R2=0 THEN 2040
IF R2>9 THEN STOP
3=INT(1+(R2-1)/3):K=R2-3*INT«R2-1)/3):R(M)=3:C(M)=K:GOTO
FOR J=l TO 3
FOR K=l TO 3
IF R(M»0 THEN 2100
IF B(J.K»0 THEN 2100
R(M)=~T
R2=3*~T+K-3
CCM)=I<
NEXT K.3
B(R(M).C(M»=2:S(M)=T:T=T+2*3~(3*R(M)+C(M)-4)
PRItH "ROl,I";STR$(R(M»: ", COLUI'1W';STR$(C01»". "
RETURt~.................................... .
REM *** '>'OURMOIJE SUBROUT INE ***
W=Q:V=2
PR ItH "VOUR I'10~JE.";
INPUT "WHAT ROl<lAt~D COLUMt~";R (t'1)•C (1'1)
IF R(M»3 OR RCM)(l OR CCM»3 OR C(M)(l THEN 3060
IF B(R(M).C(M»)0 THEN 3060
B(R(M),C(M»=Q:S(M)=T:T=T+Q*3~(3*R(M)+C(M)-4)
RETURN
PR ItH "It~VALID I'10IJE.PLEASE TR','AGA It~."
GOTO 3020.. .
REM *** PRINT OUT BOARD ***
PRINT:FOR 3=1 TO 3
FOR K=l TO 3
PRINT TAB«K-l)*4+2);
IF B CT•K) = 1 THEt~ PR ItH "~<";
IF BCT. K)=2 THEt~ PRItH "0";
IF K(3 THEt~ PRItH TAB(4*K);" I";
t-lEXT
PRINT
IF J=3 THEN 4100
PRIt~T " ---+---+---"
t~EXT
RETURN.. .

2110

LINE

5-45
47-320
47
50

55-60

70

80

90

100
110-170

180
190

200
210

220

230
240

250

260
270

280

290

300

EXPLANATIO

These lines provide identification for the program,
This is the main program.
This is a remark to identify the section.
These POKEs reduce the top of the RA;\lto provide
a section of memory to store strategy. The BASIC
program will not enter these locations.
This message is printed so that you will know that
the computer IS working and not waiting for you to
do something.
G is the game number. This loop fills in the memory
locations that were reserved for strategy with I.t'I'o..
G is increased by one. T is a variable that is med to

store a code for the placement of the moves on the
board.
This line clears the screen and prints the naml' of
the game plus a blank line.
This line prints the game number.
This loop clears thc board array, B, the row ana\,
R. the column array, C, and the sllln ana), S.
M is the move number, which is SCIal I.ero.
These are calls to two subroutines. The first sub-
routine determines who moves first, and the second
prints the board.
This line increments the move variable.
This line prints the move number and the two blank
lines.
This line sets M2 as one-half the mov(' number and
M3 as either 0 or - I: 0 if M is odd, and -I if ~I is
even.
This line sets M1to 0 if M is even, orto -I if ;\1IS odd.
If it is the computer's move, control goes 10 Ihe sub-
routine that starts at line 2000.
If it is your move, control goes to thesubJOlIline Ihal
starts at line 3000.
Control goes to the subroutine that prints Ih(' board.
The subroutine called in this line checks to see if
there is a winner.
If A equals one, there is a winner, and Ihe computer
will store the winning strategy hy branching 10

linc 330.
If all the moves are not taken. control goes to lin('
200.
Because all the spots have been taken and there is
still no winner, the computer prints the message

87

310

320
325
327-460

327
330-350
360

430

440
450

460
0170
480-980

480
900
910
920

930

!HO
950
960
970

980
990
995-1170
1000

1010

1020

1030
1040

88

that nobody won and asks player if he wants to
play again.
If the first letter input was Y, control goes back to
line 80.
If the first letter was not Y, the game is ended.
This is a separation line made of colons.
This routine stores the winning strategy in the
reserved memory locations.
This line identifies this section.
This loop stores the winning moves.
This line replaces the last move of the loser with
the correct winning move. This way the computer
will not ever make that move again!
If the computer won, the appropriate message is
printed.
If you won, the appropriate message is printed.
This line asks whether or not you want to play
another game.
Control goes 10 line 310 to evaluate the answer.
This is a separation line.
This subroutine determines who goes first by using
the random number generator.
This line identifies this subroutine.
2 = I will make the computer move first.
Q = 2 will make you move second.
If a random fraction is less than .5, then control
branches to line 950, and the order of who goes first
switches.
This line prints that the computer will be X and will
move first.
Control returns to the main program.
The computer will move second.
You will move first.
This line prints that you will be X and can move
first.
COlllrol is returned to the main program.
This is a separation line.
This subrouline searches for a winner.
A is the variable that indicates whether or not there is
a winner. If A is lero, there is no winner. If A is
changed to I, there is a winner. A is a flag variable.
Z3 is a flag that indicates a bottom left to upper
right diagonal win.
Z4 is used to check for an upper Jeft to bottom right
diagonal win.
J is a loop for checking the columns on the board.
Z2 is for checking for a vertical win.

1050
1060
1070

1080

1090

1100

1110
1120
1130
1140
1150
1160
1170
1180
1190-2130
1190
2000
2010

2020

2025

2030

2040-2100

2110

2120
2130
2140
2150-3070
2150
3000

3010
3020

ZI is for checking for a horiLOntal win.
K is the loop that checks the rows on the board.
If this board position has a value equal to W, Z2
is increased by one.
If this board position has a value of W, ZI is in-
creased.
If the bottom left to upper right diagonal hasa value
of W, Z3 is increased.
If the position in the other diagonal has a value
equal to W, Z4 is increased.
This is the end of the K loop.
This line sets A to I if ZI equals 3.
This line sets A equal to I if Z2 is 3.
This is the end of the J loop.
If Z3 is 3, A is set to I.
If Z4 is 3, A is set to I.
Control returned to the main program.
This is a separation line.
This subroutine determines the computer's move.
This line identifies this subroutine.
This line starts to print out the computer's move.
W is the computer's first move. and Y is your first
move number.
This line sees if there is a stored number that is a
code for the move to take. T is the coded sum of the
moves on the board.
If the number returned from the PEEK is greater
than 9. there has been an error, and the game is
stopped.
This line converts the R2 code back into J and K
values and then makes its move based on that. It
branches back to line 2110.
These nested loops choose the first available position
on the board if the R2 value was lero.
This line assigns the value to the board array and
the sum array, and increases the sum variable, T,
based on the X or 0 and the board position.
This line prints the computer's move on the screen.
This line returns control to the main program.
This is a separation line.
This subroutine allows you to enter your move.
This line idelllifies the subroutine.
\\' is your first move, and Y is the computer's first
move.
This line states (hat it is your move.
This line requests the row and column you want to
move to.

89

3025

3030

3040

3050
3060
3070
3080
3090-4120
3090
4000
4010
4020
'1030
'1040
4050

4060
4070
4080

4090

4100
4120
4130

This line checks for an invalid row or column
number.
This line checks to see if the position has already
been taken.
This line assigns values to the board array, the sum
array, and the sum variable based on the value of the
move, the symbol used (X or 0), and the position
taken.
This line returns control to the main program.
This line prints the error message.
This line branches back to entry line.
This is a separation line.
This subroutine prints out the tic tac toe board.
This line identifies the subroutine.
J is the loop for the rows on the board.
K is the loop for the columns on the board.
This line establishes the next print position.
If the board value is I, an X is printed.
If board value is 2, an 0 is printed.
This line prints a vertical bar, which is the graphic
character on the B key.
This is the end of the K loop.
This line prints a blank line.
If the end of J loop has been reached, the horiLOntal
line will not be printed.
This line prints the graphic character found on the
asterisk key and the graphic character found on the
plus sign. Together these characters make the hori-
LOntal lines of the board.
This is the end of the J loop.
Control is returned to the main program.
This is the last line of the program.

Program Operalion. When the program starts, it will inform
you who will be X and will movefirst.1t will also display an empty
tic tac toe board. You will be asked for the row and column of your
move. Enter it as 2,3for row 2 and column 3,for example. The rows
are numbered from I to 3 from top to bottom. and the columns are
numbered from I to 3 from left to right. After each of your moves
the board will be updated and Ihe computer will display its move.
You play against the computer, moving alternately. Afterthe game
is over. you will be asked if you want 10 play again. Answer either
YES or NO. Enjoy the game!

The Flve-In-a-Row Game
The program in Listing 5-2 plays the game of five-in-a-row

with you and up to three other human opponents. The computer

90

... .

Listing 5-2 Flve-In-a-Row Game
10 :::::::::::::::::::::::::::::::::::

A FIUE-IN-A-ROW GAME
WRITTEN 8Y TIMOTHY J. O'MALLEY
COPYRIGHT 1983, TAB BOOKS INC.
CWRITTEN FOR THE COMMODORE 64)

20 REI'l
30 REM
40 REI'l
50 REM
60
70 PRINT CHRSCI47);
75 PR ItH " :+::+::+:F I'.IEIt~ A F:(II...1 GAI'lE:+::+::+:"
80 PRHIT : PR ItH
81 PRItH " THE GOAL OF THIS GAI'lEIS TO PLACE"
82 PRItH "FIIJE DOTS IN A ROtJ. EITHER I.JEF:TICALL'/,"
83 PRItH "HORIZOtHALLY OF: DIAGONALLY. ','OU1'1AYPUT"
84 PR INT "YOUR DOT Ot~ AtN Ut~OCCUPIED POS IT IOt~."
90 PRItH "EtHER NO'JES AS ROW COLUI'1t~.FOR E~<Al'lPLE:"
'33PR IIH "H 21 t,1ILL PLACE YOUR DOT AT ROt•.1 H AI~D
'34PRItH "COLUMt~ 21. IF THAT'S THE ItHEt~DE[)SPOT,"
'35PR ItH "PRESS THE RETUF:t~I(EY. IF t·jOT.PRESS At~...."
'36PRItH "OTHER I(EY AI~D RE-EtHER. THE POSITION
'37PR ItH "1,,1 ILL FLASH THE DOT BEFORE '>'OUPRESS THE"
'38PR ItH "RETURt~ KEY. THE CORI~ERS D ISPLA'>'THE"
99 PR ItH "CURREtH COLOR.": PR ItH
100 DIN 8%C22.38):REN DINENSION ARRAY FOR 80ARD
105 DIM A%C5.6),SR(5,2):REM DIMENSION ARRAS FOR NOUES
106 DIM CR(5):FOR 1=1 TO 5:READ CRCI):NEXT:REM COLORS OF DOTS
107 DATA 7. 1. 8. 13. 3
10'3PR ItH "THE COl'lPUTEF:1...1ILL 1'10UELAST."
110 PR ItH: It~PUT"t,IHATt-lUI'lBEROF HUl'lAt~PLA"'ERS (1-4)"; t·jp
120 IF NP(1 OR NP)4 THEN 110
130 PRINT CHR$(147);:REM CLEAR SCREEN
135 F3=0:REN FLAG FOR START OF GANE
140 FOR 1=1024 TO 2023:POkE I.81:NEXT
150 FOR 1=0 TO 21:POKECII04+40:+:I).(I+I):POkE(1143+40:+:I).(1+I)
160 POkE C55336+40:+:I),I:POKE(55375+40:+:I).I:NEXT
170 FOR 1=1 TO 38
193 IF 1/10)=1 THEN POKE 1024+I.INT(I/I0)+48:POKE 55296+1.1
194 IF 1/10>=1 THEN POKE 1944+I.INT(I/I0)+48:POKE 56216+1,1
200 A=I-I0*INT(I/I0):A=48+A
210 POKE 1064+I.A:POKE 1'384+I.A:POkE 55336+1, I:POkE 56256+1, l:t~E~<:T
215 tK=1
220 IF tK)t-lP+1 THEN t-lC=1
230 POKE 55335.CR(NC):POKE 56295,CR(NC)
240 POKE 56256,CRCNC)
245 PRINT CHR$(19);:POkE 55296,CRCNC)
246 FOR 1=1024 TO 1031:POkE I.32:NEXT
250 OPEt~ 1.0
260 INPUT#I.A$:PRINT
270 CLOSE I:Z=ASCCLEFTS(AS,I»-64:IF Z(l OR Z)22 THEN 245
280 Y=IJALCl'lID$CAS+" ",3.2»: IF Y< 1 OR '>')38THEt~ 245
290 IF 8%CZ.Y»0 THEN 245
300 POkE 1064+40*Z+Y.81:POKE 55336+40*Z+CRCNC)
310 GET CS:POKE 1(164+40*Z+'l,32:POKE 55336+40:+:Z+\',CROK'):IF C.$="" THEt-l

300

91

320 IF CHR$(13)~LEFT$(C$.1) THEN GOSU8 1220:GOTO 340
330 GOTO 245~~~~,-"'--'
"T"TC"_\--,_1
340
350

360
370
.....~r::
.:;.. .. _,
380
3'30
395
400
410
415
420
430
435
440
4513
460
470
480
485
490
495
496
500
505

510
520
540
55\3

560
570
580
585
590
600
605
610
620
GO,")&:"....~,
630
64(1
645
650
660
670
680
690
700
710
805

92

..................................... -...................... ,. ..

RE,..l:+:**SEARCH FOR A t..1IW-IER ***
8%(Z,Y)=NC:U=0:H=0:L=0:K=0
FOR I=(Y-5)*-CY)4)+1 TO (Y-34)*-CY(35)+38
FOR J=(Z-5)*-(Z)4)+1 TO (Z-16)*-(Z(17)+2(1
IF B:';CT.O=HC AND 1=',,"THEI-lIJ=l.J+l:GOTO39(:1
IF 1.1=5THEt~ END
IF I=Y AND 8%CJ.I)<>NC THEN U=O
IF 8=~(~T.I)=IK AN[l J=2 THEt~ H=H+l:GOTO 410
IF H=5 THEN Et..(D
IF J=Z AND 8%(J.I)<>NC THEN H=O
IF 8%(J.I)=NC AND (Y-I)=(Z-3) THEN L=L+l:GOTO 430
IF L=5 THEN EI-l[l
IF (\'-I)=(Z-J) AND B%(J,I)<A~C THEN L=0
IF 8%(J,I)=NC AND (....-I)=(J-2) THEN K=K+l:GOTO 450
IF K=5 THEt-lEND
IF (....-I)=(J-Z) AND 8~(J.I)(>NC THEN K=0
IF H=5 OR 1,1=5OR L~5 OR 1<=5 THEI4 PRIHT CHR$(19); :EHD
NEXT:NEXT:A%(NC.l)~Y:A%(NC.2)~Z
NC=NC+l:IF NC=NP+l THEN 495:REl'1COMPUTER'S MOUE
GOTO 220....... _ "' ..

RE,..1:+:*:+:CO,..lPUTER'S 1'10lJE:+::+::+:
POKE 55335.CRCNC):POKE 56295.CRCNC):POKE 56256.CRCNC)
PR ItHCHR$ (1'3);"CONPUTER";
IF F3=0 THEH 1100:REt-1START OF GA,..lE- FII~D EI'lPT'lSOUARES
F','=0:F~<~O
FOR t-lX=1 TO NP
Y=A%CNX.l):Z=A%CNX,2)
1)=0:H:=0:L=0: K=£I:St-1=2:F~<=C1:F'l=0
FOR I~('l-5)*-(Y>4)+1 TO (Y-34)*-(Y(35)+38
FOR J~(2-5):+:-(2>4)+1 TO (2-16)*-(Z(17)+20
IF 8%(J.I)=NX AHD 1=....THEN U=U+l:GOTO 590
IF I=Y AND 8%(J.I)(>0 AND U>0 THEN U=0:GOTO 590
IF 8%CT. 1)=6 AHD 1=''''At~\)IJ>SI'1THEH Fi<:=J:F\,=l:St-l=l)
IF 8%(~T.I)=H~< AHD ~T=Z THEN H=H+l:GOTO 610
IF 3=Z AND B%(J.I)<>0 AND H>O THEN H=0:GOTO 610
IF 8%(J.I)=0 AND J=Z AND H>SM THEN FX=J:FY=I:SM=H
IF 8%(J.I)=NX AND (Y-I)~(Z-J) THEN L=L+l:GOTO 630
IF (Y-I)=(Z-J) AND 8%(J.I)<)0 AND L)0 THEN L=0:GOTO 630
IF B%(J.I)=O AND (\'-I)=(Z-J) AND L)SM THEN FX=J:FY=I:SM=L
IF B%(J.I)=NX AND (Y-l)~(3-Z) THEN K=K+l:GOTO 650
IF ('''''-1)=(Z-.1) At~D B=~(J.I>()0 AI~r,K>(1 THEH K=0: GOTO 650
IF B%CT. 1)=0 AI~D ('''-I)=,:~T-Z)At-lDK)Sl'lTHEH F~<=J:F'y'=I:SI'1=1<
HE~<T:t../E~<T
A%(NX.3)=U:A%(NX.4)=H
A:-:CHX.5)=L: A=~(t~~:.6)=1<
I../E~<T
FOR 1=1 TO NP:FOR J=3 TO 6
IF FX>O AND FY>O AND A%(I,J)=SM THEH 1200
HEXT:HE~<T
F'l=0:FX=0

810 FOR NX=1 TO NP
820 Y=A%CNX.l):Z=A%CNX.2)
840 U=0:H=0:L=0:K=0:SM=2:FX=0:FY=0
850 FOR I=CY-34)*-(\'(35)+38 TO CY-5)*-CY)4)+1 STEP -1
860 FOR J=(Z-16)*-CZ(17)+20 TO CZ-5):+:-(Z)4)+1 STEP -1
870 IF 8%(J.I)=NX AND 1=....THEN U=U+l:GOTO 890
880 IF I=Y AND 8%(J.I)(>0 AND U)O THEN U=O:GOTO 890
885 IF 8%(J.I)=0 AND I=Y AND U>SM THEN FX=J:FY=I:SM=U
890 IF 8%(J.I)=NX AND J=Z THEN H=H+l:GOTO 910
900 IF J=Z AND B%(J.I)<>O AND H)0 THEN H=O:GOTO 910
905 IF 8%(J.I)=0 AND J=Z AND H)Sl'1THEN FX=J:F\'=I:SM=H
910 IF B%(J,I)=NX AND (\'-I)=(Z-J) THEN L=L+l:GOTO 930
920 IF (Y-I)=(Z-J) AND 8%(J.I)<)0 AND L)0 THEN L=O:GOTO 930
925 IF B%(J.I)=O AND (....-I)=CZ-J) AND L>Sl'1THEN FX=J:F\'=I:SM=L
930 IF B%(J.I)=NX AND (....-I)=CJ-Z) THEN K=K+l:GOTO 950
940 IF (Y-I)=(J-Z) AND 8%(J.I)<>0 AND K)0 THEN K=0:GOTO 950
945 IF B%(J.I)=O AND (Y-I)=(J-Z) AND K>SM THEN FX=J:FY=I:Sl'1=K
950 t~EXT:t-lEXT
960 A% (I.j~<.3)=1.):A:~(t-l~<.4) =H
970 A%(NX.5)=L:A%(NX.6)=K
980 t-lEXT
990 FOR 1=1 TO NP:FOR J=3 TO 6
1000 IF FX>O AND FY>O AND A%(I,J)=Sl'1 THEN 1200
1010 NEXT: NE~<T
1020 GOTO 1140
1030 :::::::::::::::::::::::::::::::::::
1100 ZI=7+INT(8*RNDC1»:1=7+INT(24*RNDC1»:F3=1
1110 Z2=INT(3*RNDC1»-I:Y2=INT(3:+:RNDC1»-1
1115 IF Z2=0 AND Y2=0 AND CT)1 THEN 1140
1117 IF Z2=0 AND Y2=0 THEN 1100
1120 FOR 1=1 TO 5:Z3=ZI+Z2*CI-l):3=....I+\'2*(I-l)
1125 IF 8%(Z3.Y3»0 THEN IF B%(Z3.Y3)(A-IC THEN 1110
1130 SR(I,1)=Z3:SR(I.2)=3:NEXT:CT=1
1140 IF 8%(SR(CT.l),SRCCT,2»=0 THEN B%CSR(CT.l).SR(CT,2»=NC:CT=CT+l:

GOTO 11':10
1150 CT=CT+CCT)I):ZI=SRCCT.l):Yl=SRCCT.2):GOTO 1110
1160 ::::::::::::::::::::::::::::::::::
1190 Z=SR(CT-l.l):Y=SR(CT-l.2):GOSUB 1220:GOTO 340
1200 Z=FX:Y=FY:GOSUB 1220:GOTO 340
1210 ::::::::::::::::::::::::::::::::::
1220 POKE 1064+40*Z+Y, 81: POKE 55336+40*Z+',.'.CF:OK:):RETUF:t-l
1230 ::::::::::::::::::::::::::::::::::

will act as another opponent. Each player will try to plan' fiv(>dOls
in a rowan the board to win. Each player wi II be assigned a specific
color based on his or her move number. The color of the current
player will be displayed in the corners during his or her lurn. The
players take turns, with the computer moving last. The more
players there are, the longer it takes the com pIller to decide where
to place its dot. If a player has lhreeor more dots in a five dot space,

93

the computer will auempt to block his or her next move. The
program will check for a winner after each player has made a move.

When it is your turn. select the row and column of your
proposed move by typing something like J 12. Then press the
RETU RN key. If the leuer or number is invalid. the cOInpuLCr will
keep on blinking Ihe square in Ihe upper left corner and seek
anolher input. A dot will appear and blink rapidly in the
appropriale position after valid a valid row and column numbers
are enlered. If you want 10move there, press RETURN again and
the dol will remain. Otherwise press another key to reselect. The
{irs(player geuing five dots in a row wins the game, and the
program will stop.

LINE

10-60
70
75
80
81-99
100

105

106

107

109
110
120

130
135
140

150-160
170-210

215
220

230-240

94

EXPLANATIO

This is identification information for the program.
This line clears the screen.
This line prims the name of the game on the screen.
This line prints two blank lines.
These lines prim (he instructions {or (he game.
This line dimensions the array to store the moves on
the board. The board uses 22 rows and 38 columns.
This line dimensions the arrays used in storing
moves and in keeping track of the computer's
amici paled moves.
This line dimensions an array 10 store the colors of
Ihe daIS for each player. The 1 loop reads in Ihe
color codes for up to five players. including the
compuler.
This DATA statement comains the color code data
for the CR array.
This line (ells you (hat (he computer will move last.
This line requests the number of human players. N P.
This is an error routine in case you entered the wrong
number of players (outside the range of 1-4).
This line clears the screen.
f3 is a special flag used for the stan of the game.
This line fills the entire screen with dots that are
nOI Iurned on.

This I loop prints the letters that label the 22 rows.
This I loop fills in the numbers for the 38 columns
on the screen.
C is the numbt~r of the player whose turn it now is.

IE the computer has just played, the player-number

counter is reset.
These lines color the three corners (lOp right. bouom

245

250-260
270

280

290

300

310

320

330

333
335-480

335
3'10

350

360
370

375
380

390

100

right. and bottom left) with the color of the currem
player.

This line prims the home character and colors the
upper left corner with the color of the currem
player.
These lines read the keyboard for the move position.
This line closes the keyboard file and finds the value
of Z using the letter that was emered for the row.
Z is now the index of the row for the move. If an
invalid letter or character was emered. the key-
board is reread.
Y is the number of the column that was entered. If
an improper number was entered, the computer will
reread the keyboard.
If the position just emered is already occupied,
comrol goes back to line 245.and [he keyboard is re-
read,
This line places a colored dOl at the indicated
position,
This line reads the keyboard, and blanks the dot out.
If a key is not pressed, comrol goes to line 300.This
will cause [he dot to blink on and off rapidly until
a key is pressed.
If the key pressed was the RETURN key, comrol
goes to the subroutine at 1220 and then to line 340.
If it was another key, control goes to line 245 to read
[he keyboard again.
This is a separation line.
This subroutine searches for a winner after each
person makes his move.
This line idemifies this subroutine.
This line stores the player's position in the board
array and sets the flag variables for the vertical,
horiLOmal, and diagonal indicators to lero. If one of
these variables becomes 5. there is a winner.
The I loop searches up to 5 columns to [he left and
to the right for determining [he winner.
The J loop searches up to 5 rows above and below.
If there is a player's dot in the same column as this
move occupies, then add I to V and branch to 390.
If V reaches 5, there is a winner and the game is over.
If the dot in that column is someone else's, V is re-
duced to lero because of a "block,"
If one of the player's own dots is in the same row,
it is increased by I and control goes to 410.
If H is 5, the game is ended.

95

410

415
420

430

435
+-to
,150

460

470

4W
4~
490-1020
400
495
4%

500

505

510

520

540

550

560

570-645

650

96

If a dOl is in the game diagonal line, L is increased
by I and control goes 10 130.
If L is 5, the game is ended.
If that dot belonged to another player L is reduced 10

Lno.

If a dot is in Ihe opposile diagonal, K is increased by
I, and cOlllrol branches 10 1.10.
If K is 5, Ihe game is ended.
If Ihat dot is someone else's, K is reduced to Lero.

If any of Ihe variables equals 5, the home character
is printed and the game is ended.
This line ends both loops and selS IWOelements of
the A% array 10 the row and column positions of
Ihis player.
This line increases the player number by one. If il is
the computer's lurn, control branches to line '195.
Otherwise control goes to line 220.
This is a separation line.
This subroutine determines the computer's move.
This is the name of the subrouline.
This line colors the corners the compuler's color.
This line prinls Ihe word COMPUTER in the upper
left corner.
If it is Ihe start of the game, co III ro I goes 10 the
subroutine al line 110010 find 5 blank squares for
the compuler's proposed moves.
This line set the computer's row and column choice
to Lero.

NX is a loop 10 check oul all of the other player's
Inoves,
Y and Z are sci as Ihe row and column of Ihe
player's last move, as stored in array, A%.
This line sets various variables 10 Lero. SM is the
sum variable, which is used to check the amoulll of
dots thai a player has in a row.
Ihis I loop checks Ihe columns up 10 five positions
from the player's last move.
This J loop checks the rows up 10 five squares above
or below the player's last move.
These lines are like Ihe lines used to check for a
winner in Ihe routine in lines 335-480. FX and FY
are set to the row and column numbers of blank
positions that can be used to block the opponent's
moves. The computer will allempt to block if a
player has 3 or more dOls within a space of 5 squares
in a row, column, or diagonal.
This line Ihen ends the J and I loops.

660-670

680
690-710

805-1010

1020

1030
1100-1150

1100

1110

1115

1117

1120

1125

1130
1140

1150

1160
1190-1200

These lines store the number of dots for the vertical.
V, the horiLOntal, H, and the two diagonals of each
player in the A% array.
This is the end of the NX loop.
These nested loops check to see where a possible
move to block an opponent was recorded in A%. If
one was found, a branch to line 1200 is made.
These lines are run if the computer did not find a
counter move. These lines examine the series of
moves from the other direction, because this possi-
bility was not taken into account by the first routine.
Notice that the Iand J loop have STEP - I and go
from the end to the beginning, relative to the first set.
If a counter move was not found or was not ap-
propriate, the computer branches to line 1140 to
make its own line of moves,
This is a separation line.
These lines select and fill five unoccupied positions
on the board for the computer.
This line selects a starting row and column position
for the computer. It sets the start flag variable. F3,
to I to indicate that it is no longer the start of the
game,
Z2 and YY are each an integer, -I, O,or I. These
represent the increment added to the row and
column from the starting row and column position.
If 12. and Y2 are both zero, and the complller has
already filled at least one of its positions, control
branches to line 1140.
Otherwise, a new series of squares is obtained for
the moves.
This I loop positions the dot or checks for an op-
ponent's dot in one of the computer's proposed
positions. Z3 and Y3 are the new row and column
of the proposed move.
If that position is taken by another's dot, control
branches to line 1110.
This line stores the move in array SR and sets cr to I.
This line stores the proposed move in the board
array, B%, increases cr by one, and branches to line
1190.
This line subtracts I from cr, if CT is grealer than
I, and lhen slarts a line of dots from thaI position.
This is a separation line.
Line 1190 sets the z and Y variable at the last stored
R position, calls the subroutine at line 1220, and
then branches to line 340. Line 1200 does a similar

97

thing if FX and FY were used above.
1210 This is a separation line.
1220 This line prillls a dot on the board and colors il

with the player's color. COlli ro I then returns to lhe
calling section of the program.

1230 This is the last line of the program.

Program Operation. After you ellieI' the program and type
RUN, the computer will display the name of the game and the
instructions. It will req uest the number of human players and then
proceed with the game. Players must try to develop strategy to win
rhe game. The computer will not save strategy in this game but will
attempt to win by blocking opponellls and making its own line of
five dots (0 win. Players must try to stop each other and the corn-
pUler.

98

Chapter 6

Pattern Recognition
In this chapter you will find two shon programs concerning
pauerns in numbers and in literal strings, and a long program thaI
you might find useful for word processing or texI editing. In that
program you can search for a panicular word in lhe leXl and have
lhe compuler change all occurrences of that word.

WAYS OF FINDING PATTERNS
Pauern recognition is an area of artificial intelligence. If

someone gave you a series of numbers, could you predicl the next
number in lhat series? Chances are lhat you could. You might
nOlice a pauern in the sequence and then eXlrapolate lhe next
number. When dealing with words, you mighl know whal the
person is going 10 say next. or you might recognize pauerns lhal
help you understand what the person is talking about.

Differences Between Numbers
The first program lhat we will examine will find pallerns in

numbers by looking at the differences in value between the
numbers in the series. Then it will look at the differences between
successive differences and so fonh until there is one value lefl.
Then the computer will use that value and "work forward" again
to predict the next value. It then asks you if lhat was the value that

99

you were looking for. If it is not, it will search through some other
stored sequences to attempt to answer the problem. Finally it will
ask you for the value. Finding differences between numbers is one
way of finding palterns. You might look for muhiplicative
differences between numbers as well.

The Grouping of Strings
In the Perfect Logic program, you entered names of things and

the computer grouped things in sets based on what you entered.
This is a good example of looking for patterns in strings. The
computer broke up your sentences or questions and altempted to
answer or respond to your input. Language processing, then,
overlaps the area of pattern recognition.

There are other ways to find palterns in strings. One way is to
store strings along with whatever follows them. The next time that
the computer recogniles the string, it will pring out whatever
followed it. In the second program in this chapter, you enter the
leiters from A to C, which represents the musical notes. After you
enter the same set of leiters again, the computer will predict the
next leiter that you will type. This is a simple example of string
recognition.

The final program is a word processorltext editor. In that
program you can easily replace incorrectly spelled words or
phrases in whatever lines that you like. and the computer will
change those lines of texl. This program is a bit out of the
mainstream of artificial intelligence, but it is an interesting and
useful area to learn about. You might consider an artificially
intelligent word processor, one that would outthink the one in this
book.

Interpolation and Extrapolation
Many times a value that yow want to find can be found by

interpolation or by extrapolation. Interpolation is finding an
answer between two similar or close answers. For example if you
wanted to predict a number between two numbers. the best guess
that you could give would be the average or mean of those two
numbers. If you want to find a value oUlside of two values, you
might construct a regression line and use that mathematical
formula to calculate the value in queslion. All of this leads into the
area of statistics.

tatistics is a very powerful 1001 for predicting where numbers
will fall and how events will occur. It can be used in conjunction
with artificial inlelligence concepts-there is simply so much
territory to cover that the subject is OUI of the scope of this book.

PATTERN RECOGNITION PROGRAMS IN BASIC

Let's examine the three paltern recognition programs written

100

in BASIC for lhe Commodore 64. The programs deal Wilh palterns
in numbers, palterns in strings, and pallerns as lhey are used in a
word processor.

Patterns In Numbers
The program in Listing 6-1 allows you to enter five numbers

of a series. The compuler will try 10 prediclthe sixth number in the
series. If il can't find lhal number, it requests an answer from you.

This program displays artificial intelligence bycalculatingor
relrieving lhis SiXlh number. The program stores answers thaI are
differelll from lhe one that il calculates. ThaI way, the next lime
you enler Ihal series of numbers, the computer can retrieve the
answer. The same series can have different sixlh numbers. The
compuler will search down through the list and quil Ihe user on
possible answers.

Here's a line by line explanation of lhe program.

listing 6-1 Patterns In Numbers
10 ::::::::::::::::::::::::::::::::::::
20 REI'l
30 REI1
40 RE/'1
50 RE,..l

:+::+:*PATTERNS IN NUMBERS***
WRITTEN 8Y TIl'10THY J. O'MALLEY
COPYRIGHT 1984, TAB BOOKS INC.
(WRITTEN FOR THE COMMODORE64)

60 ::::::::::::::::::::::::::::::::::::
70 DIM A(6.6).B$(100).C$(100):CT=0
75 PRI In "(CLR}"; TA8 ('3) "*** ,t-lUI'18ERGUESSER***": PRI tH
80 PRItH " EtHER FI IJE NUI'18ERS. Ot-lE AT A TH1E. "
90 PRI tn "I l,1ILL TR',' TO PREDI CT THE SI ~<:THNU/'1BER"
100 PRItH "It-4 THE SERIES.": PF:ItH
110 FOR J=l TO 5: INPUT A(l,J):NEXT
120 FOR 1=2 TO 5:FOR J=1 TO 6-1
130 A(I,J)=A(I-l,J+l)-A(I-l,J)
140 t-lEi<T ..1, I
150 A(6,1)=A(5.1)
160 FOR 1=5 TO 1 STEP -1
170 A(I,7-I)=ACI,6-I)+A(I+l,6-I)
180 t-lE~<T
190 H=Ad.6):PRItH:PF:ItH "IS IT"STR$(H);
200 I t-lPUT A$
210 IF LEFT$(A$+"'l".I)="'/" THEN PRlt'H "GOOD!":PRlt-4T:GOSU8 340:GOTO
220 t-4$="": FOR t-1=1 TO 5: t-4$=t-4$+STR$(AC1. t-l»: t-4Ei<T
239 IF CT=0 THEN 300
249 FOR 1=1 TO CT
250 \'$=B$(I):IF N$()\'$ THEN 290
26(1 ~<$=C$(I): F'F:ltH "IS IT "i<$;
270 I t-lPUT A$
280 IF LEFT$(A$+"'l". 1)="\'" THEt-4PRItH "GREAT!": PRItH: GO~3U834(1: GOTO
290 t-4E~<T
30(1 It~PUT "1,,1HATIS THE AtjSlJER"; Z$
310 CT=CT+l:B$(CT)=N$:C$(CT)=Z$
32(1 PF:I tH "I'LL REI'lEl'lBER THAT!": PRI NT: GOSUB340: GOTO 75

-.C"
••... 1

101

33(1 :::::::::::::::::::::::::::::::::::
340 FOR 1=1 TO 5000:NEXT:RETURN
35(1

.. .

LINE EXPLANATION

10-60
70

75

80-100
110

120-140

150

160-180

190

200

210

220
230

300

102

This is the program identifying information.
This line dimensions the arrays used in the program.
A is an array used to store the 5 numbers that you
enter. BS is an array for storing up to 100 special
series of numbers. C$ is the array that stores the sixth
Humber in each of the stored series in B$. CT is a
variable used as a counter for the number of stored
series in BS.
This line prints the CLR character and prints the
title of the program on the screen.
These lines print the instructions.
This line lets you enter the 5 numbers into the A
array.
These lines find the arithmetic difference between
the numbers in the series, then find the differences
between those differences. and so forth until it gets
down to one number.
The last number is duplicated in the sixth row of the
array.
The process is reversed with the duplicated number
being added to the differences to calculate the sixth
number in the series,
This line asks if its number is correct. STRS was
used so that there would be no space between the
number and the question mark of the input.
This line solicits a YES or NO answer to the above
queslion.
If the first letter of your reply is y, the computer
prints GOOD! then calls the subroutine at line 340
and branches back to line 75 for another series of
numbers.
This line stores the series of numbers as i\'$.
If no series of numbers were previously stored. the
com pliler branches to line 300 to requesl the answer.
This I loop runs through the slored series of numbers
searching for a malch. When it finds one. il prints
OUI the answer stored in CS. If thaI is the answer, the
computer replies, GREAT! then calls line 340 and
goes to line 75.
If the answer is not found. the computer gives up
and asks you for the answer.

310

320

330
340

350

This line increments the CT counter and stores the
series in BS and the answer in C$.
The computer acknowled~es the input of the correct
number, calls line 340. and branches to line 75.
This is a separation line.
This subroutine provides a time delay of a few
seconds before continuing the program. You might
use TI$ as a timer instead. You would set TIS and
then check it against a predetermined value.
This is the last line of the program.

Program Operation. When the program is entered and RUN,
the computer will display the program title and the instructions.
You are \0 enterfive numbers, one at a time into the computer. The
computer will ask you if a certain answer is correct.

Figures 6-1 and 6-2 show the operation of the program. Figure
6-1 shows the first time the series was entered. and Fi~. 6-2 shows
the second time the series was entered. You might want \0 chan~e
the program to search through the stored answers before trying \0

calculate an answer. You might work backwards in the list to
retrieve the last answer stored; use a loop with a STEP -I.

Patterns In Strings
The short program shown in Listing 6-2 attempts to deter-

mine Ihe next letter that you will press based on what you pressed
before.

The computer will take the lasl four letters that you entered
and convert Ihem to a code to store in memory. If you enter four
letlers that have been saved before, the computer will print out (in
cyan) the letter that it thinks you will type nexl.

*** t~Ut'lBERGUESSEF: ***
ENTER FlUE NUMBERS, ONE AT A TIME.

I WILL TRY TO PREDICT THE SIXTH NUMBER
IN THE SERIES.

?
") 2
"7-'
- 2
~,

IS 11"-22"7
WHAT IS THE ANSWER? 2
I'LL REMEMBER THAT!

Fig. 6-1. The first time that a series is entered into listing 6-1.

103

*** NUMBER GUESSER ***
ENTER FlUE NUMBERS, ONE AT A TIME.

I WILL TRY TO PREDICT THE SIXTH NUMBER
IN THE SERIES.

?
? 2
-:> 1
~.. 2
?

IS IT-22?
IS IT 2"?
','
GREAT!

Fig. 6-2. The second time a series of numbers is entered into Listing 6-1.

Listing 6-2 Patterns In Strings
c:::' •••••••••••••••••••••••••••••••••••••--' ..
10 REI'l
20 REt'l
30 REl'l
40 REI'l

*** PATTERNS IN STRINGS *:+::+:
WRITTEN 8\' TIl'10TH\'J. O'MALLEY
COPYRIGHT 1984, TAB 800KS INC.
(WRITTEN FOR THE C0l'1l'10DORE64)

5(1
55 DIM Z%(16807):C=0
60 LL=O: PR ItH "(CLP} (I"IHT}EtHER LETTERS A-G. (C'/AID"
70 GET A$: IF A$="" THEt~ 70
80 A=ASC(AS)-64:IF A(0 OR A)7 THEN 70
90 C=C+l:PRINT A$;
100 IU=R IGHT$ (" I~ 0 (1 0" +I'l$+STRf (A). 10)
110 NL=0:FOR 1=0 TO 4
120 NL=UAL(l'1ID$(l'1S,I:+:2+1,2»~I+NL
130 t-1E~<T:IF Z:';<:HL) THEt~ PR ItH "(I"IHT}"CHRS (Z:';(t-lL)+64) " {(SAtD "
140 Z%<:LL)=A:LL=NL:GOT070
150

This program might be useful when you are experimenting in
music because the letters entered must be in the range of letters
from A to C.

Here is a line by line explanation of the program.

LINE

5
10-50
50

55

104

EXPLANATIO

This is a separation line.
This is program identification information.
Z% is a very large array used to store all the possible
combinations of the codes of the letters A-C.
This is a separation line.

60-70
80

90
100

110-130

140

150

These lines prompt you LO enter lellers from A to G.
If the lellers are not within this range, they are
rejected and the program branches back to line 70.
This line prints oul the character that you entered.
MS is the sning array of the foul' lellers that you
entered. If you just started enterin~ letters, MS is
padded with leros,
The I loop converts the numbers to a single value,
NL. If the vaJue of Z% at index NL is found to be
greater than 0, the computer converts it to a leller and
prints it out in white.
The current four lellers are stored in Z%, LL is set
to NL, and the program branches to line 70.
This is the last line of the program.

Program Operation. After you enter the program and type
RUN, the computer will prompt you toenter some lellers from A to
G. Youcan typelhese; if a four lellergroupmatchesagroupstored in
memory, the nexllellerfrom lhatgroupwill be printed in cyan. The
ones that you entered are printed in while.

A Word Processor Program
The program shown in Listing 6-3 works as a word

processor/text editor. It makes your Commodore 64 become a
simple, yet powerful tool. You can enter text, print the text on a
printer. view the current text on the screen, save the text on casselle
tape, insert lines of text, load text from casselle tape, delete a line of
text, edit a line of text, change words in the text, or move lines of
text. Listing 6-4 shows the lines that you will have to change or
insert to use the program with a disk drive. All lhe rest of the
program would remain the same.

Listing 6-3 A Word Processor

.. .

.. .

t.IORD PROCESSOR - IJERS 10t-l 7 "
f1 - PRIt~T te:.ct on F'rinter":F'rint

- l')IEt.1 currer,t te)ct": F'ri r.t .

10
20
30
40
50
60
70
80

85

86
90
91
'~2

rem word processor version 7
rem written b~ timoth~ J. o'malle~
t"em cop~ri9ht 1'384. tab books, ir.c.
rem (written for the commodore 64)

dim c$(550):c=l:printchr$(14);chr$(5);chr$(8);
bf=fre(O): bf=bf-(bf(0):+:65536: F'ri ntchr$(147); tab(5); ":.d.;:+:"; bf; "B\'TES
FREE ***"
if bf(500 then Pt"int:F'rint" *** LOt..I I'lEt-10F:V! SAI')E TE~<T' **:+:":90tc,
'30
F'ri rlt
pri nt: F'ri nt"
F·rint:prir.t"
pri rlt" f2

105

SAI)E te):t c,n taF'e":F'rint
It-lSERT a line e,f te:>:t": F't-i nt
LOAD te:>:t from taF'e": F'r i n t
DELETE a line ,:,f te:>:t":F't-ir,t
Er, I T a line 0 f te:>:t " : F't-i n t
1'10l)E lines e,f te:>:t "
Cot- S i rIIF'I ':I T'/PE te:>:t ne'l,,')": F'r i nt_

',3 F"t·inl
ll

f3

'34 F't-i nt" f4
'35 FTint" f5
'36 F'rint" f6
'37 F·ri nt" f7
'38 F'r i n t " f8
'39 F' r i nt: F' t- i nt "
1(10 b$="": F't"i n t "_ " ;
110 soet a$:if a$="" then 110
115 1b= len (to$)
120 i fa$= e h r$ (20) the nb$= I e f t$ Ct,$, I b+ (I b)O)) : e$ (c) = b$: F'r i n ta$; a$; "_ " ; :

soe,tc.lle
125 if Ib>0 then 145
130 if a$=ehr$(133) then 164:rem fl
135 if a$=ehr$(134) then 200: rem f3
136 if a$=ehr$CI35) then 280: rem f5
137 if a$=ehr$(136) then 370: rem f7
138 if a$=ehr$(137) then 520: rem f2
139 if a$=ehr$(138) then 650: rem f4
140 if a$=ehr$(139) then 790: rem f6
141 if a$=ehr$(140) then 890: rem f8
145 i fa$=ehr$(13) thenF'ri ntehr$(20); a$: e$(c)=e$(e)+" "+a$: e=e+l: '9otol(10
15(1 i fa$=" "and I b)65thenF'ri ntehr$(20): e$(e)=e$(e)+" "+cht-$(13): e=e+l:

soe,te,100
160 F'ri ntehr$(20); a$; "_";: b$=b$+a$: e$(c)=b$: sooto 110
164 F'r i n t " (CLR) " ;
165 F'r i n t " *** TEXT PRI t~TI t~G ROUTINE ***": F'r i n t
166 i nF'u t "P t-ess RETURN l"he n t-ead':l, 01<"; f$
170oF'en4.4.7:cmd4
180 fori=ltoc:F'rintc$(i)
185 ifi/30=intCi/30)thenforJ=lto6:F'rint:nextJ
187 ne):ti
1'30 F'rint#4:close4:sooto 80
200 F'rint"(CLR}";
210 F'ri nt" *** TAPE FILE SAI)It-lG F:OllTIt-lE ***": F·t-i rot
220 d$=" f i Ie" : i nF'u t "lllha t f i I e name"; d$
230oF'enl.l,l,d$
240 for i=1 to e
245 z$=c$Ci)
250 F'rint#I.left$(z$,lenCz$)+(lenCz$»O»
260 ne:>:t i
270 closel:sooto 80
280 F't-int"(CLR}";
2'30 F·rint" *** TAPE FILE LOA[lIt-lG ROUTlt-lE ***":F,t-int
3(10 d$=" " : i r,F'u t "l,1ha t f i Ie nar.,e"; d $
310oF'enl,1,0.d$
320 soet#l.e$
330 e$(c)=e$(c)+e$
340 ife$=ehr$(13)thenc=c+l
350 if st=0 then 320
360 e=c-l:closel:sooto 80
370 F'rint"(CLR}";
:380 F-t-i n t " **:+: L I t-lE EDI T I t~G F:OllTI t~E :+::+:*":F't-i n t.
385 90sub 390:90lo450

106

390
395
396
400
410
415
420
430
435
440
450
460
470
480
482
485
490
491
492

494
496
500
510
520
530
540
545
550
560
570

580
590
595
600
605
610
615
620
630
640
650
660
665

670
680
690
700
710
72£1

730

740

F'rint"Current te:.,t ec,nt ...ins"; c-l;" lines. ":F't-ir,t.: f$="n"
inF·ut"l.o.l...nt disF·l ...\:I e,f te),t (':l,·'··r')";f$:F't-irot
if fS="ro" thero returro
11= 1: i roF'u t " St a t-t ...t 1 i roe" ; 11: F't-i rot
12= 11: i roF'u t "E rod ...t 1 i roe" ; 12
print"(CLR}";
fClri=11 tel 12
F'rint i;") ";cS(i);
if len(c$(i»=OthenF'rirot
next i:F'rint:returro
f$=" n": i nF'ut "1.o.1 ... nt te, ch ...nge ...n enti re 1i ne (':l/n)"; f'$

if fS=" n" t henl0'30
13= 11 : i nF'ut "1.0.1 hi chI i ne"; 13
F'rint:Pt-int"SimF'l\:1 t\:lF'e in the roe(,1line ne,. "; 13; "nol."."
90sub 485:90to500
b'S= II II : F' r- i n t II _ II ;

get ...S:if ...S=""thero490
1b=len(bS)
i f ...S=chrS(20) t henbS=l eftS(bS, 1b+(1b)O»: c$(13)=bS: F-ri ntaS; a$; "_"; :
9C,tO 4'30
i f ...S=chrS(13) thenF'ri ntchrS(20); ...S: eS(13)=cS(13)+" "+:as: t-et'Jrn
F'ri ntchr$(20); :as; "_"; : bS=bS+ ...S: eS(13)=t,$: 90t04'30
F'I' i nt: F'r i nt "L i ne nc-."; 13; " is nC,(,1c ha nged . " : F'r i nt
9c,to370

F'rint"(CLR}";
F-rint" **:+: TE~<T I)IEl,IIt-iG ROUTII~E :+::+::+:":F'rint
F't-i nt "c UI' re nt te)(t ec,r.t ...i ns" ; c-l ; " 1 i nes. " : F't-i r,t
IdS="\:I": inF'ut"l,l:ant line numbers disF'l ...\:Ied (\:I/n)"; IdS:F't-int
F'ri nt"Press ...r.\:I ke\:l te, d iSF·l:a\:l UFoto 10 1i nes"
get ...S:if:a$=""then560
fori=ltoc-l steF' 10
F'ri ntehrS(147);
for)=i to i+'3
ifldS="\:I"thenF'rint);") ";
F'ri ntcSCi);
if cS()="" then F'rint
ne)(t~i
F-rint:F'rint"Press ...n\:l ke\:l te, ce'ntin'Je."
ge t ...S: i f:a$= " " t he ro62~3
ne)(ti
90tCl80
F'rint"(CLR}";
F'ri nt " *:+::+:L I t-lE I t-lSERTI Ot~ F:OUTI t~E :+::+::+:":F'r i n t
90sub 390:F'rint:fS="n"
F'rint"Do \:IOU ,-,'ish to insert:a line of"
i nF'ut" te),t '-"i thi n the current te)(t (',l/n)"; fS
if fS="n"tt,ero 80
nb=O: i nF'ut "8efore ("hi ch 1i ne nUfo',ber"; nb
if nb(1 or nb)550 thero 700
F'ri nt: F-I' i n t "S i r(.F·l\:I t':l F'e i n the ne(,1 1i roe_"
13=0: 9c'sub485
F'ri nt: F'r i nt "L i ne is be i n9 i nse t-ted. "
fori=c to rob steF' -1

107

750 c$(i)=c$(i-l)
760 ne)(ti
770 c$(nb)=c$(0)
780 c$(0)= :c=c+l:Slot0650
790 F·t-i nt .. (CLR}";
800 p t"i n t " *** LI t-lE DELETI01-1 ROUTIHE ***": p t"i n t
810 Slosub 390:Pt"int:f$="n"
820 inF-ut"Dcl \:lC'U....,ish te, delete a line (\:l/n)"; f$
830 if f$="n" then 80
840 nb=0:input"Which line numbet"";nb
850 if nb(O ot" nb)550 then 840
855 F·t"int:F·t"int"Line nc,.";nb;"is beinSl deleted."
860 fot" i=nb to c-l
870 c$(i)=c$(i+l)
880 nexti:c=c-l:Slot0790
890 F·t"i nt" (CLR}";
900 F-t"int" *** LIHE MOIJIt-lGROUTlt-lE ***":Pt"int
'310 Slosub 390: Pt"i nt: f$=" n"
'320 input"Do \:lOU(,'ant to move se'me lines (\:l/n)"; f$
'330 if f$=" n" then 80
940 sl=O: i nF"ut ":;tat"ti nSl at,ha t 1 i ne no."; sl
945 ifsl(O at" sl>550 then 940
950 s2=0: i nF"ut ..End i nSl a t (,Iha t 1 i ne nc-... ; 52
955 if s2(0 at" s2>550 at" s2(sl then 950
960 input"Inset"ted befot"e what line no."; nb
965 if nb>=sl and nb(=s2 then 960
966 if nb(l at" nb>550 then 960
'370 Pt"i nt: Pt"i n t"L i r,es at"e no (0,1 bei nSl moved."
980 tl=-1*(nb(51):t2=-I*(nb)sl)
990 fat" i=sl*tl+s2*t2 to s2*tl+s1*t2 step tl-t2
1000 c$(O)=c$(i)
1010 fat" J=i+t2-tl to nb-t2 step t2-tl
1020 c$(J+tl-t2)=c$(J)
1030 ne)(U
1040 c$(nb-t2)=c$(0)
1050 nt,=nb+tl-t2
1060 ne)(t i
1070 c$(O)=
1080 SIC't0890
1090 F·t"int: inputlant tc, chanSle a'ot"d/F·ht"ase (\:l/n)"; f$:F't"int
1100 i ff$=" n" tt,er.80
1110 i nF'u t "s ta t"tat 1i ne" ; 11 : F't"i n t
1120 12= 11: i np ut "E nd at 1 i ne" ; 12: p t"i n t
1130 Pt"int ..t..lhat ORIGIt-lAL'ot"d C't- F'ht-ase'?":SlosubI220:Pt"int: fl$=" "+fl$+

II ..

1140 F't"in t "lliha t t-lE....1 (,Iclt"d CIt"p ht"ase'?": Slosubl260: Pt- i r.t: f2$=" ..+ f2$+" "
1150 Ifl=len(fl$):Pt"intcht"$(147);:fot"i=11 to 12
1160 11$=" "+c$(i)+" ":lll=len(ll$)
1170 if 111<lflthenl210
1180 fot" J=ltolll-lfl
1190 iffl$=mid$(11$.J.lfl)then1300
1200 next J:Pt"intc$(i);
1210 next i:Sloto 80
1220 flS=""

108

1230 get ..1$:if ..1$="" then 1230
1240 if ..1$=chr$(13) then return
1250 print ..l$;:fl$=fl$+ ..I$:goto 1230
1260 f2$=""
1270 get ..2$: if ..2$="" th~n 1270
1280 if ..2$=chr$(13) then return
1290 print ..2$;:f2$=f2$+ ..2$:goto 1270
130011$=left$(11$.J-l)+f2$+right$(11$.111-1fl+1-J)
1310 c$(i)=mid$(11$.2.1en(11$)-2):printc$(i);:goto 1210

listing 6-4 ChangesTo Use the Program on Disk
93 Print"
95 pr'int"

f3 - SAVE text on disk":PriDt
f5 - LOAD text from disk":Print

2113 P r i 'lit" +:+:+: II I Sf< FILE SA~/ It~Ci POUT H1E +:+:f,": P r' i 'lit
211 if df=0 then 219
~12 pr i nt "Do ~ou. \".L3,nt· tQ S.3,ve' th i s f i 1e- u.nde'r' the- ~·arne f i 1e-n,:.HI,e'that

~OI.J. II

213 inPut ".ju.st u:::,O:'o"':::,n$
214 ifle'ft.$(:::n$/1)=,,::!i, t.h@n d$=df$:oPe'1115/:::., 15:FTint#15 .."::,~2t: "+d$:

c 1o::·e 15 : 9o:.to23fl
219 pr'int"rno nc,t. use' t.he n,"Jlle-of ,,,. fi l@ th,,,,t is .3,lr'o:·ad~ on thE' di::l:.

a"
2213 d$="": i 'liP'J,t "l'U-I,",t. f i 1e- n,3.f0'Ie'",:d$
221 if d$=" I' thE'n 22(1
222 df:t=d:t:df=1
230 oPe-n2 ..81 21 "(1: "+d$+" ..::,..1..)"
240 for i=l to c
245 z$=c$(i)
250 Print#2/1eft$(z$..1e-'IICz$)+(1e-n(z$»(1»
260 ne>~t i
270 close-2:goto :::0
280 Pr'int"~";
290 P r int II :U+: DI Sf< FILE LOAD It-1G POUT H1E +:+:f,": P r' i 'lit
300 d$=" ": i nPu.t"l,Jh""t fi le- n,3.f1Ie";d$
3(15 df$=o$: df= 1
310 oPen2., 8 ..21 "0: "+d$+" 1 :::... 1",11
320 get#2,e$
330 c$(c)=c$(c)+e$
340 ife$=chrS(13)thenc=c+1
350 if st=0 then 320
360 c=c-l:close2:9ot.o 80

This program will prilll upper- and lowercase letters on lhe
screen. You simply sIan lyping whal you wanl. The program is
conslrucled 10OUlplllllp 10 80 characlers per line of lexl. You may
change lhe program 10aher lhis. Two screen lines of leXl conslilule
one line of printed leXI. As you enler lhe leXl, Ihe compuler will
aUlOmalically break lhe lines al the first space after lhe 65th
character prillled 011 the currelll line of texl. That means thaI you
simply have 10 keep typing withoul worrying about margins.

109

When the text is printed out, there will be 30 lines of text per page
(8.5xll) with a break between sheets,

You can load new text from cassetle tape (or disk if you use the
lines in Listing 6-4) at the end of the current text. You may then
move those lines of text to wherever you want. The program is
designed to hold up to 550 lines of text before the Commodore runs
out of memory space. There is a warning when the memory is low.
You can then save the text or print it out.

When you are typing the program in for the first time, you
should press the Commodore key (0=) at the lower left of the
keyboard along with the SHIFT key to switch the computer into
upper/lowercase character mode. Then enter the program as
shown in Listing 6-3. A description of the lines of the program
follows:
LINE

10-60
70

80

85

86
90-99

110

EXPLANA TION

These lines identify the program.
This line dimensions the string array, CS. C$ will
hold up to 550 lines of text. Each line in this program
has up to 80 characters. When it prints out, there will
be 30 lines on each 8.5 by II inch sheet of paper. The
variable C is a counter for numbering the lines of text
in the C$ array. CHR$(14) is the command to switch
to lower case. CHR$(5) is the command to print in
white. (You might want to change this code to
something else.) CHR$(8) disables the use of the
C..ommodore & SHIrT key combination. This keeps
everything in the upper/lowercase character mode.
BF is the number of bytes free. This line prints the
number of bytes of memory left for use in the text at
the top of the "menu" screen.
If the available bytes left fall below 500, a special
message is displayed telling you to save the text.
Then you can press the RUN/STOP butlon, type
RUN, and press RETURN to start new text. Other-
wise you will run out of memory space and your
work could be lost. You might want to modify this
program to automatically save the text on tape or
disk when the memory is low.
This line prints a blank line.
These lines print the name of the program and the
different modes of operation. By pressing one of the f
(function) keys, you can alter the operation of the
program. When you are typing text, press one of the f
keys immediately after pressing the RETURN key.
(The RETURN key ends a paragraph or skips a

100

110

115
120

125

130-141

115

150

160

164-190

line.) You mar also simply sIan typing. Whal you
enler will be al Ihe bollom of what you ('n!ered
beforehand.
BS is an emply string; Ihis line prinls Ihe underline
characler 10 act as a cursor.
This line seeks 10 read a character Erom the key'
board. If no key is pressed, Ihe pro~ram keeps
running Ihis line.
LB is the lenglh of B....
If A$ is the DELete character (code 20), Ihe las I
characler is dropped from BS, the curren I line of lexl
is made the same as B$, the delete character is prin!ed
Iwice, Ihe underline characler (Ihe graphic characler
under Ihe @ sign) is primed, and connol ~oes 10 line
110.
If the length of B$ is greater Ihan lero, conlrol goes
to line 145 (in other words, after a RETURN and a
pressed key).
These lines cause the compuler to branch 10 various
routines based upon the funclion key thaI was
pressed. fl is for printin~ the lexl on a prin!er; f2 is
for viewing the current text on the screen; f3 is for
saving the current text on casselle tape; f1 is for
inserting a line of lexl within the cunenl text; f5 is
for loading some lexl from casselle tape; f6 is for
deleting a line of text from the curren! texl; £7 is for
editing the text; f8 is for moving lines of lext wilhin
the curren! texl.
If you pressed the RETURN key, the computer will
crase the cursor Erom (he last line, print (he
RETURN character, store the line of lext in C$,
increment the line coumer and branch 10 line 100.
lf you pressed the space bar and the length of the
current line was over 65 characters long, it's time 10

go to a new line of texl. The compuler will erase the
cursor and add a RETURN character at the end of
thaI line of lexl. IIwill incremeJ1l the counter and
branch to line 100.
If the key that you pressed while typing was the DEL
key, the program will erase the last charaCler, prim
the cursor at the old position, update C$ and B$, and
branch {O line 100. This is the end oE (he main

program.
This subroutine prints om the current text on paper
using a Commodore compalible printer. (I used an
EPSON printer and a CARDCO interface, bUI many

111

164
165-166

170

180-187

190

200-270

200
210-220

230
240-260
270

280-360

280
290-300

310
320

330

340

350

360

112

others will undoubtedly work without any troubleat
all.)
This line clears the screen.
These lines idemify the mode and give you time to
turn on the printer and make sure that it is ready.
This line opens a file to the primer and instructs
the primer to print in upper and lowercase charac-
ters. CMD4 means that all the following commands
arc for the primer.
These lines prim out all of the lines of the stored
text. After every group of 30 lines, six blank lines are
primed. This way there are 30 double spaced lines
per page with margins at the top and bOllom of each
sheet. You can change this if you like.
This line closes the printer file properly and
branches back to the main program.
200-270
This routine saves the current text as a tape file.
You might wam to convert this if you wam 10 save
your text on disk,
This line clears the screen.
These lines idemify the mode and request the name
of tape file. If you simply press RETURN, the file
will be saved under the name, "file".
This line opens the file for saving on casselle tape.
These lines save the text on tape.
This line properly closes the tape file and is the end
of the tape saving routine.
This routine loads tape files imo the memory of
the computer.
This clears the screen.
These lines prim the name of this routine and re-
quests the name of the tape file to be loaded. If
nothing is emered, then the computer will load the
first file that it comes to on the tape.
This command opens the tape read file.
The computer will read one character at a time
from the tape using the GET# command.
The character that it gets is appended to the end of
the current string member.
If that character is RETURN, then it marks the end
of that line of text and C is incremented by one.
If the status of the tape is 0, indicated by the Com-
modore variable ST, the computer continues reading
the tape file by branching to line 320.
Because the end of the file was read, C is decreased

370-510
370
380
385

390-440

450-460

470

480-'182

485-496
500

510

520-640

650-780

790-880

890-1080

by one. the file is closed properly, and control
branches to line 80,
This is the line editing routine.
This dears the screen,
This line prints the name of the routine.
This line caIls the subroutine that starts at line 390
and then branches to line 450.
This subroutine dispJays the number of curren I lines
of text and is used in some of the other routines. You
specify what lines you want to display. The line
number, a right parenthesis and the line of text will
be printed on the screen.
These two lines ask you if you want (a change an
entire line of texl. You reply either y or n.
You are asked which line to replace. Notice the use
of the value of LI as a default value if you simply
press the RETURN key.
You enter the new line. and then the program
branches to line 500.
This TOUline aJJows you to enter the new Jine.
This line acknowledges that the line has been
changed.
Control branches back to the beginning of the line
editing roUline.
This routine allows you to view the entire text on
the screen, 10 lines at a time. It's fairly straight
forward and won'l need a thorough explanation.
You may request to have the line numbers displayed
or not displayed. You press any key to display the
next screen of texl.
This routine allows you to insert a line of text
within the curren I lex/. You can have some of Ihe
lines displayed. To insert a line of text, you specify
the number of the line before which you want to
insert the line. The line will then be inserted before
that line. All of the other lines will be renumbered.
This roucine allows you 10 delete a line of texc. You
specify the line number and the computer will delete
it and move the lines that follow it to form a
continuous text. The proRram tells you that the line
is being deleted.
This routine allows you to move some of the lines
of text to another place in the texl. You specify the
starting and ending line l1umb('rs of the lines to be
moved and the line number where they are to be
inserted. Notice the use of certain logical conditions

113

(line 980) to tell the computer where the lines that
have to be moved are located. This is necessary to
have the text become continuous once again.

1090-1310 These lines are part of the line editing subroutine.
They are used when changing a word or phrase.
When changing a word or phrase. it is important to
include the comma. period. or other punctuation as
part of the word or phrase. Otherwise the program
will not recognize it. There must be spaces on either
side of the word or phrase that you wish to replace,
unless it is at the beginning or end of the sentence.
This is done to prevent the computer from changing
parts of words that are themselves words, like AT in
the word SAT. You would like to change AT to 0...
not SAT to SON, for example.

Program Operation. After entering the program, type RUf •.
You will notice that the characters will shift to the upper/lowercase
character set; the screen will blank and then dis pia ya menu screen in
white letters. The Commodore will be locked in the
upper/lowercase character set mode. Whatever you type will be in
lowercase unless you press the SHIr-r key while typing the letters.

You may simply start typing away and an underline character
will act as the cursor. You can delete characters by pressing the
DEL key, as long as the cursor has not jumped to the next set of
lines. Then you will have to use the editing routine to change
things. Don't be concerned if the words are split up going from the
first 40 characters of the text to the last fony. They will be printed
out correctly on the printer. When you press the space bar after you
get past the 65th character in a set of two lines. the cursor will jump
to the next line. You can also make it jump to the next line by
pressing the RETURN key. If you keep pressing the RETURN key.
you effectively create blank lines. After you get to the bottom of the
screen. you will notice that the screen will automatically scroll
upward.

Start new paragraphs by pressing the RETURN key and then
spacing inabout five spaces. Then continue typing. You can change
the mode by pressing the RETURN key and then oneof the function
keys (fl - f8). f2 is usually a safe key to press because it merely
displays the text. After you press one of the f keys, the program will
cycle to the main menu again. You can press another f key or
continue entering Ihe text by simply typing.

There is one problem that the Commodore has, As the
memory gets full, the computer will stop from time to lime. just for
a few moments, but it can be a little aggravating. Fortunately Ihe
keyboard buffer will hold aboul 10 characters. so usually what you
type in will not be lost, unless you are a fasl Iypist or the memory is

114

quile full. This is lhe only real problem lhal I've nOliced Wilh lhe
syslem. The lack of 80 columns on lhe screen is a problem lhal can
be lived Wilh unless you have some soflware or hardware lhal can
correCl lhe problem. Olherwise lhe program is quile handy 10 use.

If you have a disk drive, you mighl consider having lhe
compuler save lexl on disk. You mighl even change lhe program so
lhal all lhe lexl is saved direclly on disk as il is lyped. This mighl
solve lhe problem of lhe keyboard delay. You mighl change lhe
program 10 include graphic characlers. You mighl also consider a
40-column screen edilor where you can change any word or phrase
on any line so long as il is slill displayed on lhe screen. There are
many possible improvemems lhal can be made 10 lhis program.

115

Chapter 7

Other Areas in Artificial Intelligence
This final chapter will tie up some loose ends and present some
new lOpics including LISP, an anificial intelligence computer
language, robotics, creativity in computers, an anificial intel-
ligence operating system, the limits of anificial intelligence, and
computers specifically designed for anificial intelligence pur-
poses.

LISP: AN ARTIFICIAL INTELLIGENCE LANGUAGE

LISP is a LISt Processing language used widely on some of the
large computers involved in anificial intelligence. In fact a version
of ELIZA is wrillen in LISP. Most microcomputers have been
unable 10 run the LISP language because it required such a large
amount of memory. It is now available for some larger personal
computers. It remains to be seen whether it will be available for the
Commodore line of microcomputers.

LISP was developed by John i\kCanhy from an original
language called IPL. LISP's usefulness soon became apparent, and
now there are several dialects of the language around. The
language is the preferred language of anificial intelligence
programmers. Its speed of processing is much faster than that of
BASIC. The structure of the language is unique. The language
consists of alOms and lists. There is no distinction between

116

programs and data. LISP is very useful in recursion problems and
should be considered by anyone serious about anificial intel-
ligence.

ROBOTICS
ince the introduction of the first small scale microprocessor

controlled robot. there has been much interest in robotics. Some
have speculated that robotics might become an industry as
important as the microcomputer industry. This remains to be seen.
Nevertheless, a discussion of robotics would be appropriate in a
book on artificial intelligence.

Introductory Robots
Let's talk about some of the robots that can be used at school or

home for learning about robotics. LeI's look al some that are
available now and some that may be available later.

I think that personal robotics really came into being when the
HERO 1. Model ETI8 was introduced by the Heath Company,
This robot has a 6808 CPU with 4K RAM and 8K ROl\1. It can
detect sound and light. It can detect objects with a range resolution
of 1/4 inch to 8 feet. It can detect motion. It has speed synthesis and
a calendar clock. It has wheels and an arm to manipulate objects.
These features made this robot a real pioneer in the area of personal
robotics.

Other robots on the market include "t urtles," arms, and boxes.
The RHINO, by Sandhu Machine Design, and the MINIMOVER,
by Microbot Inc.. are similar in that they consist of an arm that can
grasp and manipulate small objects. MicrobOl also makes a
TEACHMOVER robot arm machine. Terrapin Inc. makes two
turtles, the TASMAN TURTLE and the TURTLE II. These
robots can draw turtle graphics on paper. Olher robots include
ITSABOX. by Technical Micro Systems Inc., and RB5X. by RB
Robot Corp, These robots vary in price and features.

If the personal robot industry takes off like the microcomputer
industry did, we might expect to see robots that would have larger
memories and more capabilities. This mayor may not happen.
Small robots would probably be useful in small manufacturing
plants. but their real usefulness in the home is in doubt. They
might be useful as a mobile computer. I think the technology has
to jump a bit more before they would be cost-effective for horne use.
They might be useful as part of a security system in the event of a
burglary or fire. j\Iaybe someone will invent one that will pick up
the house or do windows.

Robotic Activities
There are several activities that robots can perform. Here are a

few of them.

117

Motion in Several Directions. Robots like the HERO or the
turtles can move around the room or draw figure on paper because
their wheels are controlled by motors. The turtles are accurate
because of their plotting application. Floor models are less
accurate. They are intended to find their way around objects and to
measure their distance from them.

Robots with arms can raise the arm with one or two elbows.
grasp with two fingers, and rotate the hand at the wrist. Some can
extend the arm and rotate it. All of the motions that we have
mentioned can be programmed. The program might consist of a
machine language program with angles and distances entered.
Some robots can learn to perform certain activilies. Some linear
assembly jobs can be accomplished using robots wilh this kind of
motion.

Speech Synthesis. Speech synthesis in robots is just an
extension of speech synthesis on microcompluers. The same
electronics is involved. Undoubtedly better and better speech
synthesis modules that will be able to create natural sounding
speech will be made in the future. Ideally a robot would be able to
talk like a person and have a large vocabulary that it could use in an
intelligent manner.

Speech Recognition. Some robots can be trained to perform
certain tasks whenever they hear certain sounds. A practical robol
would be one that could distinguish and interpret speech and
perform new commands based on auditory commands. There are
expensive robots that can interpret speech and respond to what is
said to them. This is an area that will be interesting to watch in the
fUllne.

CREATIVITY IN COMPUTERS
Can computers be creative? Within certain limits a computer

might be considered creative. If a com pliler can select certain
things randomly and then determine if that combination of things
made sense, then it might be able to be creative. Common sense isa
rather elusive concept, however, and computers are best at
operating within a limited discipline, it seems.

In the Perfect Logic program, the computer was able to draw
certain conclusions from the information that was entered. In this
sense the compuler might be considered 10 be creative, especially if
you didn't know the mechanics of the program. A computer might
be programmed to search for the relationships between all the
components stored in memory. This might add to the creativity of
the computer. If a computer could be programmed to develop
analogies, it mighllesl Ihose analogies. If they made sense, then the
computer mighl also be considered creative.

118

AN ARTIFICIAL INTelLIGENCE OPERATING SYSTEM
What would happen if you could get your hands on a com-

puter that was constructed especially with artificial intelligence in
mind? It would be interesting to have a computer that would
operate in machine language and could interpret, store, and
correlate information from English or any other language, as well
as deal with math or other disciplines. Such a computer would be
able to respond like a person might. This proposed computer
would certainly be possible someday. The hardware is available
today. The software end of it would require some careful planning
before it could be feasible. Such a computer might be more
precisely trained than programmed. I think that a computer with
an artificial intelligence operating system is possible amI even
likely in the near future.

Parallel processing would contribute to the production of
such a machine. Parallel processing means that several operations
are performed at the same time. Most computers today have only
one CPU that controls a serial schedule of operations. Even
multitasking computers really simply divide up the time of the
CPU and then perform a certain number of operations for each
task. Imagine a computer built around arrays of CPU, each one
controlling certain operations within its domain. Think of an
electronic spreadsheet where an individual CPU controls the value
of each cell and you might understand how such a machine might
operate. I have no doubts that we will see parallel processing on
microcomputers in the not too distant future.

LIMITS TO ARTIFICIAL INTELLIGENCE
I really think that there are no limits to artificial intelligence

in computers. The human programming aspect seems to be the
limiting factor. Memory size is also a limiting factor. I think that
when optical disk storage, especially erasable optical disk storage,
comes of age and is affordable, and when parallel processing
becomes common, artificial intelligence will really flourish. There
may corne a time when computers will be able to program
themselves. (After all, when you grew to a certain age, you could
read and understand books by yourself and didn't need someone In
explain everything to you.)

I really don't think that there are any real limits to artificial
intelligence. It is important to remember that artificial intelligence
is artificial. People and computers don't work Ihe same way, and
we should not forget that computers, no mailer how remarkable,
are still simply electronic machines.

ARTIFICIAL INTELLIGENCE COMPUTERS
At that time of this writing there are no true artificial intel-

119

ligence microcomputers on the market. Texas Instruments pro-
posed TI-IE ANSWER, which could be programmed to illlerpret
English. A computer like Apple's Macintosh goes a ways in the
direction of al'lificial intelligence by making computers easier to
program and operate. Hardware and software that allows for
speech recognition arc also a push in that direction. I think that
someday there will be a truly artificial intelligent compuler, one
that will remember anything, that can communicate in natural
language and can be programmed by verbal commands. Someday
science fiction will be reality.

A BONUS GRAPHICS PROGRAM
The final bonus program shown in Lisling 7-1 allows you 10

con\'el'l your computer illlO a drawing board. You usc a joystick as
a pencil or eraser. Actually you are bit-mapping the screen and are
using a sprite in the shape of an arrowhead to draw or crase the
pixels, By pressing the fl key you can switch between the drawing
and the erasing modes. By pressing the bUllon on lhe joystick, you
actually create or crase the pixels at the end of the arrowhead. By
moving the arrowhead to the top left corner of the screen and
pressing the joystick bUllon, you can erase the entire screen. By
mo\'ing the arrowhead to the rectangular figure to the right of the
leftmost top figure, you can transfer Ihe image on the screen to
paper by using an Epson MX series or compatible printer. (I used a
Cardco +C Primer Interface and an Epson MX-70 Printer.) The
scre('n dump is \'ery fast-about two minutes for whatever is on lhe
screen. Other printers may work, but some prinlers use only 7 bits,
so you may have to change the screen dump subroutine in the
program (lines 600-700). I used a very inexpensive joystick and
plugged it illlO CONTROL PORT 2 on the Commodore 64. II
responded quite well. Figure 7-1 is a simple example of some of the
things thai you can draw with the joystick. The figures print
sideways on the printer 10 gi\'e realistic propol'lions.

Listing 7-1 Graphics Maker
o ::::::::::::::::::::::::::::::::::::
1 F:Et'l
2 REt'l
3 REl'l
4 RE,..l

*** GRAPHICS l'1AKER*:+:*
WRITTEN 8Y TIl'10TH\'J. O'l'1ALLE\,
COPYRIGHT 1984. TA8 800KS INC.
(WRITTEN FOR THE COMMODORE 64)

5 ::::::::::::::::::::::::::::::::::::

9 REl'1 :+:** INITIALIZE ***
10 FOR 1=32768 TO 32795:READ N:POKE I,N:NEXT
15 FOR 1=32799 TO 32823:READ N:POKE I,N:NEXT
20 8ASE= 16384: GOSU8 510: PR ItH "(CLR}";

120

30 POkE 56578.PEEk(56578)OR3:REl'1 SET OUTPUT BITS
40 POkE 56576.CPEEK(56576)AND252)OR2:REl'1 8ANk 1 STARTS AT 16384
50 S=53265:POKE S,PEEK(S)OR32:REM SET 8IT MAP l'10DE
60 POkE S+7,(PEEk(S+7)ANDI5)ORI28:REl'1 RELOCATE SCREEN AT 24576-25599
70 POKE 32769.100:POKE 32775.96:POKE32779.14:SYS 32768:REl'1 CLEAR

SCREEN
80 POKE 32769,96:POKE 32775,64:POKE 32779,0:REl'1 SET FOR CLEARING BIT

MAP
90 DIl'1ZZ(255):REM MAKE ARRAY FOR SCREEN DUMP
95 FORI=OT0255:READ ZZCI):NEXT
9'3
10(1
110
12(1
130
14(1
19';1
200

21(1
211
212
215
220

230
240
250
290
299
300
310
320
330
340
350
360
370
380
390
391
392
395
396
399
400
410
415
420
449
450
460
4'3'3
500
510

REl'1 **:+:l'1AkESPRITES ***
FOR 1=25600 TO 25662:READ N:POKE I,N:NEXT:X=200:\'=100
U=53248:POKE 25592, 144:POkE U+39,I:POKE U,X:POKE U+l,V
FOR 1=25664 TO 25726:READ N:POKE I~N:NEXT
POKE 25593, 145:POKE U+40.1:POkE U+2,25:POKE U+3.50:POKE U+21.3

REl'1 *:+::+:OPERATE JOYSTICK ***
P=O
GETP$:IFP$=CHR$(133) THEN P=NOTP
IFP$=CHR$(134)THEN GOSU8 800:REl'1SAUE BIT l'1APPEDSCREEN
IF P$=CHR$(135) THEN GOSUB 900:REl'1RETRIEUE DISK FILE OF BIT l'1AP
JU=PEEK(56320):FR=JU AND 16:JU=15-(JU AND 15)
ON JU GOSU8 300.310,320.330.340.350,360.370.380,390
IF FR(>16 THEN GOSUB 395
HX=INT«X+25)/256):LX=X+25-256*HX:POKE U.LX:POKE U+16.HX
POKE U+l.Y+50:GOTO 210

REM *** JOYSTICK DIRECTIONS ***
Y=Y+(Y)O):RETURN:REM UP
Y=Y-(....(199):RETURN:REM DOWN
RETURN
X=X+(X)O):RETURN:REM LEFT
Y=Y+(Y)O):X=X+(X)O):RETURN:REl'1 UP & LEFT
Y=Y-CY(199):X=X+CX)0):RETURN:REl'1 DOWN & LEFT
RETURN
X=X-(X(319):RETURN:REM RIGHT
Y=Y+(Y)0):X=X-CX(319):RETURN:REM UP & RIGHT
Y=Y-(Y(199):X=X-(X(319):RETURN:REM DOWN & RIGHT
IF X)23 THEN 410
IF \')12 THEN 410
IF X(10 AND Y(13 THEN 510
IF X(24 AND Y(13 THEN 610

REl'1 *** PLOT POINTS ***
BY=BASE+320*INTC/8)+8*INT(X/8)+(Y AND 7)
IF P THEN 460
POKE BY,PEEK(BY)OR(2~(7-(X AND 7»):RETURN

REl'1 :+:**L~PLOT POINTS *:+:*
POKE B.....PEEK(BY)AND(255-2~(7-(X AND 7»):RETURN

REl'1:+:*:+:CLEAR BIT l'1APPEDSCREEN **:+:
SYS 32768:RETURN

121

599

60e REl'1 *** HIGH-RESOLUTION SCREEN DUl'1P:+::+::+:
61e OPEN 4.4,4:CMD4
620 PRINTCHR$(27)CHR$(65)CHR$(8);
630 FOR L=BASE+312 TO 8ASE STEP -8
640 PRINTCHR$(27)CHR$e75)CHR$(200)CHR$(0);
650 FOR 8=0 TO 7680 STEP 320:N=L+B
67e FOR P=O TO 7:PRINTCHR$(ZZePEEK(p+N»);
690 NEXT:NEXT:PRINT:NEXT
700 PRINT#4:CLOSE4:RETURN
999 REl'1 *** RETURN TO NORl'1AL*:+::+:
1000 POKE S+7,PEEk(S+7)ANDI27:REl'1 RELOCATE NORl'1ALSCREEN
11)10 PF:ItH "{CLR}";
1020 POKE S.PEEKCS)AND223
1039 POKE U+21.0:REl'1 TURN OFF SPRITES
1109 REM DATA FOR MACHINE LANGUAGE ROUTINE
1110 DATA 162.96.169,.133,251,169,64.133,252,169,,160,,145
1120 DATA 251,200,192,~208~249~230,252~228,252,2a8,239,96
1139 DATA 173,,220.170,41,16,168,138,41,15,141,27,160
1140 DATA 169.15,237,171,160,141.28,160,140.29.160,96
1178
1179 REl'1DATA FOR ZZ ARRAY FOR SCREEN DUl'1P
1180 DATA 0,128.64,192,32,160,96.224,16.144,80,208,48.176,112,240.8.

1"",·- ,?'-,...Job, I L

1181

1182

1183

1184

1185

1186

1187

1188

1189

11'30

11'31

DATA 200.40.168,104.232.24.152,88,216.56,184.120,248,4,132.68,196,
36

DATA 164.100,228.29,148.84,212,52,180,116.244,12.140.76,204,44,
172,108
DATA 236,28,156,92,220,60~188~124,252~2~13e,66~194~34,162,98,226~
18.146
DATA 82.210,50.178,114.242.10,138.74.292,42, 170.106,234,26.154,90,
218
DATA 58,186,122.250,6,134,70.198,38,166,102,230.22,150,86.214.54,
182.118
DATA 246,14,142,78.206,46.174,110,238.30.158,94,222,62.199,126,
254.1.129
DATA 65,193.33.161,97,225,17.145.81,209,49.177,113,241,9.137.73.
201.41
DATA 169,105,233~25,153,89,217~57,185,121~249,5,133,69,197,37,
165,101
[lATA 229,21,149.85.213.53.181,117,245,13.141,77,205,45.173.109.
237~29,157
DATA 93,221,61~189,125,253,3,131,67,195,35,163,99~227,19,147,83,
211.51
DATA 179,115,243~11,139~75,203,43,171,le7,235,27,155,91,219,59,

DATA 251~7,135,71,199,39~167,103,231,23,151,87,215,55~183,119,247~
15. 143
[>ATA 79,2e7,47,175,111,239,31,159,95,223~63,191~128,255

1192

1193
119'3
1200
1210
1220
12313
1249
12'3'3

122

REt'l
DATA
DATA
DATA
DATA

*** DATA FOR SPRITE 0 ***
128~~, '36, , , 56, , , ~(1, , :0 15, 128,
7,224.,3,248,,1,192,.,192.,,64,

1300 RE,..l
1310 DATA
1320 DATA
1330 [lATA
1340 [lATA
1350 DATA

*** DATA FOR SPRITE 1 **:+:
255~231~255~128~36,1~128~36~125
128,36~1~128~37~253,128,36,1,128,3?,253
128,36,1,128,37~253,128,36,1,128,37,241
128,36,1,128,36,1,255,231,255

Let's look briefly at the program. Lines 0-5 identify the
program. Lines 9-99 initialile the program by reading data,
changing screen modes, and dimensions an array. Lines 100-199
read the data and define the sprites used in the program. Lines
200-290 operate the joystick. You will notice that Iht' f3 key can be
used to save the bit map if you define a subroutine in lines 800-899.
Likewise if you define a data retrieval subroutine in lines 900-998,
you can use fS to retrieve that dala, Lines 299-399 calculale the
posilion of the pixel to be plotted or erased. Lines 100-4-19 plot the
points by lurning on the pixels of the bit-mapped screen. Likewise
lines 4S0-499 unplot the poinls by resetting pixels of the screen.
Lines 500-S99 clear the elHire screell by calling a machine
language subrouline that the program located at 32768. Lines
600-700 form the high-resolution screen dump Ihal will work with
some printers. You might walll to substitute a screen dump
subroutine that will work with your particular printer. Lines

,A

Dr.... \(-')
--/'--'

1

... ,. ••• .J" ..

.'-", .
,-' ..

/,." .
" "/' '..")

Fig, 7-1. A screen dump of graphic images,

123

999-1030 are lines that restore the computer to normalcy. You will
have to STOP the program by pressing the RUN/STOP key and
typing GOTO 1000. It may be simpler to turn the power off and
then on to restore everything when you are done. The rest of the
lines arc data for the machine language subroutine. the screen
dump, and the sprites.

124

Glossary

Address: A specific location in memory, from 0-65535 in decimal
or OOOO-FFFF in hexadecimal for 8-bit CPU computers.

Algorithm: The specific set of rules or operations to solve a
problem,

Alphabetic: Consisting of the lelleTs A-Z and blanks.
Alphanumeric: Consisling of lellers, numbers, and special
charaClers, the keys of the keyboard.

And: A boolean logical opera lOr thaI makes an expression true
if all terms are true.

Array: A data structure made of numerics or literals.
Artifidallntelligence: Any method that ;lItempts 10 simulate the
cognitive processes generally associaled only with human
lhoughl.

ASCII: American Standard Code for Information Interchange. a
code represenling lhe alphanumeric characters in computing,
0-255.

BASIC: Beginner's All-purpose Symbolic Instruclion Code. a
high-level com pUler language commonly used in micro-
computers.

Baud: A fate of data lram.fer along a serial line, first used
with teletype machines.

Behavior: An oven aClion expressed by an organism.

125

Binary: Consisting of only two possible states, 0 or I. Zero
usually represents a false or off condition and I represents a
true or on condition. Computers use the binary system.

Bit: A binary digit, either 0 or I.
Bootstrap: A method of allowing a computer program to change
itself.

Branch: A statement, like GOTO, that changes the flow of a
program.

Bug: A flaw in a computer program.
Byte: A location in memory that can store an integer from 0-255,
an 8-bit number.

Chip: Slang for an integrated circuit used in RAM or a CPU.
Compiler: A program that changes a high-level program toa low-
level one.

CPU: The Central Processing Unit, the arithmetic, timing, and
logic unit of the computer. II is the real "workhorse" of the
computer.

Data: Any computer information.
Disk: A round magnetic storage medium.

File: A collection of data stored on tape or disk.
Firmware: Software stored in ROM.

Hard copy: A printout on paper.
Hardware: The physical machine.
Heuristic: A rule-of-thumb or any method that can allow for the
faster solution of any problem by eliminating nonsense.

Hexadecimal: The base 16 numbering system, which uses 0-9 and
the letters A-F.

Input: What you enter into the computer program.
Integer: Any whole number.
Interpreter: A program that converts each statement in a program
in a high-level language 10 a token or machine language code
as the program is run.

Keyboard: Any collection of typewriter-like keys used to enter
input to a computer.

Literals: Any group of characters within quotes or assigned to a
string.

Loop: A sequence of computer instructions that is repeated,

Machine language: The actual code used by the CPU.
Mass storage device: A device, like disk or tape, used to store data.

126

Memory: Storage locations in a computer.
Microcomputer: A personal computer using a microprocessor.
Microprocessor: The CPU on a chip. like the 6502 or the:-6510.

umeric: Consisting only of digits 0-9. the minus sign, Ihe plus
sign and the decimal point.

OR: A boolean logical opera \Or that makes an expression lrue if
any lerm is Irue.

Parallel interface: An interface Ihat send all the bits of Ihe byte
at once. as opposed to a serial interface.

Port: The connection poinl belween the CPU of the:-computer
and Ihe peripheral.

Printer: A device Ihat makes hard copies.
Program: The lisl of instruclions thaI controls a compuler.

RAM: Random Access Memory, the memory in a computer that
can be actively changed.

ROM: Read Only Memory. the memory of the computer that
can not be changed. usually conlaining Ihe operating syslenl of
the computer.

Serial interface: An interface that sends Ihe bils of a bYle 111

sequence along one data line.
Software: Programs and data,
String: A variable. such as S$, that contains dala as a collection
of characters.

Subroutine: A small program contained within a larger program.

Turing machine: An automatic device that is the logical basis
of every CPU, lheori/,ed by A. M. Turing.

Variable: A quantity specified by a name that has values thaI (an
change.

127

A
activities, robotic, 117
algorithms, 4
ANSWER, THE, 120
Apple, 120
array, frequency, 40
artificial intelligence, definition

of, 1
artificial intelligence, limits to, 119
atoms, 116
automaton, cellular, 34
averages, 100

B
backgammon, 23
BASIC commands, storage of, 45
BASIC statements, 49
BASIC, heuristic programs in, 84
BASIC, language processing in,

54
BASIC, pattern recognition in, 100
behavior, 39
behavior, computer, 40
behavior, frequency of, 43
Berlinger, Han, 23
binary patterns, 5
board games, 21
bootstrap systems, 45
box, Skinner, 41

128

Index
C

Cardco+G printer interface, 120
causal relationship, 40
cellular automaton, 34
central processing unit, 119
checkers, 22
chess, 16, 22
colors, 10
Commodore 64, 3
common sense, 53
complete searches, 4
compositional works, 53
computer behavior, 40
computers, creativity in, 118
construct, hypothetical, 40
constructs, hypothetical, 39
controls, 40
conversations, English-like, 52
Conway, John Horton, 35
correlations, 40
creativity in computers, 118

o
DATA, 3, 4, 16,35
definition of artificial intelligence,

1

E
ELIZA program, 51
ELIZA-like program, 54

English,51
Epson printers, 120
expert systems, 2
extrapolation, 100

F
five-in-a-row game, 90

G
Game of Nim, 24
game, five-in-a-row, 90
game, tic tac toe, 84
games, 21
generalizations, 83
Graphics Maker, 120
graphics program, 120
grouping of strings, 100

H
Heath Company, 117
HERO 1, 117
heuristics, 3, 5, 83

I
industry, robots in, 117
interface, Cardco+G, 120
interpolation, 100
interpoloation, 100
ITSABOX. 117

K
knights tour, 7, 16
knowledge, stored, 52

L
language processing in BASIC, 54
language processing, natural, 2
learning, 3
life, game of, 35
limits of artificial intelligence, 119
LISP, 3, 116
lists, 116
logic program, 65

M
Macintosh, 120
Maze program, 30
McCarthy, John, 116
means, 100
memory size, 119
method, heuristic. 5
Microbot Inc., 117
MINIMOVER,117
motion, robotic, 118
multitasking, 119

N
natural language processing, 51
new program statements, creation

of. 45
Nlm game,S
Nim, game of, 24
nodes, 3
numbers, patterns in. 99.101.101

o
operating system, artificial

intelligence, 119
Othello, 22

p
parallel processing, 119
pattern recognition, 99
pattern recognition in BASIC, 100
pattern searching,S
patterns, 2

Edited by Marilyn L, John8O/1

patterns in numbers, 99
patterns in numbers program, 101
patterns in strings program, 103
patterns, binary,S
Perfect Logic program, 65
predictions, 100
printer interface, Cardco+G, 120
printers, Epson, 120
problem solving, 2, 51
processing, natural language, 51
processing, parallel, 119
program restoration, 50
program statements, creation of

new, 45
pruned search, 4, 83
psychology, 39
puzzle, Towers of Hanoi,S

R
RAM, 45, 49, 50
rat, training. 40
rats, 39
RB Robot Corp., 117
RB5X.117
recognition of patterns, 99
recursion, 117
regression line, 100
reinforcement, 40
relationship, causal, 40
REM. 49
remarks, 49
response. 40
restoration of programs. 50
RHINO, 117
robotics, 117
robots in industry, 117
robots, personal, 117
Rogers, Carl, 53
rules, 2

S
Sandhu Machine Design, 117
search, pruned, 83
searches, tree, 3
searching, pattern,S
set theory, 2, 51, 52, 65
SHRDLU,52
size, memory, 119

Skinner box, 39
Skinner, B.F., 40
Socrates, 1
speech recognition, 118
speech synthesis, 118
sprites, 10
statements, DATA, 3, 4, 16, 35
statements, new, 45
statistics, 6, 100
stimulus, 40
storage of BASIC commands, 45
strategy, 22
strings, patterns in, 100
subprograms, creation of, 48
subsets, 2, 52
supercomputers, 3
syllogism, 2
systems, bootstrap. 45
systems, expert, 2

T
TASMAN TURTLE, 117
TEACHMOVER, 117
Technical Micro Systems Inc., 117
Terrapin Inc., 117
Texas Instruments, 120
text editor program, 105
text generator, 53
tic tac toe, 4, 84
tokens, 45
Towers of Hanoi program. 7
Towers of Hanoi puzzle,S
Towers of Hanoi with Graphics, 10
training, 3
tree searches, 3
Turing, Alan Mathison. 2
TURTLE II, 117

V
variables, relationships between,

6
VislCalc, 53

W
Weizenbaum, Joseph, 51
Winograd, Terry, 52
word processor program, 105

129

OTHER POPULAR TAB BOOKS OF INTEREST
The Computer Era-1985 Calendar Robotics and Artifi-

cial Intelligence (No. 8031-$6,95)
Making CP/M-80~ Wori(for You (No, 1764-$9,25 paper;
$16,95 hard)

Going On-Une with Your Micro (No, 1746-$12.50 paper;
$17.95 hard)

The Master Handbook of High-Level Microcomputer lan-
guages (No, 1733-$15.50 paper; $21.95 hard)

Getting the Most from Your Pocket Computer (No.
1723-$10.25 paper; $14.95 hard)

Using and Programming the Commodore 64, including
Ready-to-Run Programs (No, 1712-$9.25 paper;
$13.95 hard)

Computer Programs for the Kitchen (No, 1707-$13.50
paper; $18.95 hard)

Beginner's Guide to Microprocessors-2nd Edition (No.
1695-$9.25 paper; $14.95 hard)

The First Primer of Microcomputer Telecommunications
(No, 1688-$10.25 paper; $14.95 hard)

How to Create Your Own Computer Bulletin Board (No.
1633-$12.50 paper; $19,95 hard)

Microcomputers for lawyers (No. 1614-$14.50 paper;
19.95 hard)

Mastering the VIC-20 (No. 1612-$10,25 paper; $15.95
hard)

BASIC Computer Simulation (No, 1585-$15.50 paper;
$21.95 hard)

Solving Math Problems in BASIC (No, 1564-$15,50
paper; $21.95 hard)

Learning Simulation Techniques on a Microcomputer
Playing Blackjack and Other Monte Carlo Games (No,
1535-$10,95 paper; $16.95 hard)

Basic BASIC-English Dictionary for the Apple 1M, PET~and
TRS-80IM (No. 1521-$17.95 hard)

The Handbook of Microprocessor Interfacing (No,
1501-$15.50 paper; $21.95 hard)

Investment Analysis with Your Microcomputer (No.
1479-$13.50 paper; $19.95 hard)

The Art of Computer Programming (No. 1455-$10.95
paper; $16.95 hard)

25 Exciting Computer Games in BASIC for All Ages (No.
1427-$12,95 paper; $21.95 hard)

Programming with dBASE II~ (No. 1776-$16.50 paper;
$26.95 hard)

Lotus 1-2-3IM Simplified (No, 1748-$10.25 paper;
$15,95 hard)

Mastering Multiplan~ (No. 1743-$11.50 paper; $16.95
hard)

How to Document Your Software (No. 1724-$13.50
paper; $19.95 hard)

Scuttle the Computer Pirates: Software Protection
Schemes (No. 1718-$15.50 paper; $21.95 hard)

Using and Programming the VIC-20~, including Ready-
to-Run Programs (No. 1702-$10.25 paper; $15.95
hard)

MicroProgrammer's Market 1984 (No. 1700-$13.50
paper; $18.95 hard)

PayCalc: How to Create Customized Payroll Spread-
sheets (No. 1694-$15.50 paper; $19.95 hard)

Commodore 64 Graphics and Sound Programming (No,
1640-$15.50 paper; $21.95 hard)

Does Your Small Business Need a Computer? (No.
1624-$18.95 hard)

Computer Companion for the VIC-20~ (No.1613-$10.25
paper)

Forecasting On Your Microcomputer (No. 1607-$15.50
paper; $21.95 hard)

Database Manager in MICROSOFT~ BASIC (No, 1567-
$12.50 paper; $18,95 hard)

Troubleshooting and Repairing Personal Computers (No.
1539-$14.50 paper; $19.95 hard)

25 Graphics Programs in MICROSOFT~ BASIC (No.
1533-$11.50 paper; $17,95 hard)

Making Money with Your Microcomputer (No. 1506-
$8.25 paper; $13.95 hard)

C-BIMS: Cassette-Based Information Management Sys-
tem for the PET~ (No. 1489-$10.95 paper; $16.95
hard)

From BASIC to Pascal (No. 1466-$11.50 paper; $17.95
hard)

Computer Peripherals That You Can Build (No. 1449-
$13,95 paper; $19.95 hard)

Machine and Assembly language Programming (No.
1389-$10,25 paper; $15.95 hard)

ITABI TAB BOOKS Inc.
Blue Ridge Summit. Pa, 17214

Send for FREE TAB Catalog describing over 750 current titles in print

Artificial Intelligence Projects
for the Commodore 64

If you are intrigued with the possibilities of the programs included in Artificial Intelligence

Projects for the Commodore 64 (TAB BOOK No. 1883), you should definitely consider having
the ready-to-run disk containing the software applications. This software is guaranteed free of
manufacturer's defects. (If you have any problems, return the disk within 30 days, and we'll send
you a new one.) Not only will you save the time and effort of typing the programs, the disk
eliminates the possibility of errors that can prevent the programs from functioning. Interested?

Available on disk for the Commodore 64 (6420S) at $19.95 for each disk plus $1,00 each
shipping and handling.

r--
I'm interested. Send me:

- __ disk for the Commodore 64 computer (6420S)
___ TAB BOOKS catalog

--- Check/Money Order enclosed for $19.95 plus $1.00 shipping and handling for
each tape or disk ordered.

___ VISA MasterCard

Account No. -- Expires _

Name _

Address _

City ---- State Zip _

Signature _

Mail to: TAB BOOKS Inc.
P.O. Box 40
Blue Ridge Summit, PA 17214

(Pa. add 6% sales tax, Order outside U.S. must be prepaid with international money orders in U,S. dollars.)L--- ~~~~~~_J

Artificial Intelligence Projects for the Commodore 84™
by TImothy J. O'Malley

Discover a whole new dimension in your C-64's programming abilities!

If you're tired of ordinary computer games if you're looking for
something exciting and different to do with your C-64 here's the answer! It's
a whole collection of artificial intelligence (AI) projects designed to tap your
micro's real problem-solving capabilities for both practical and entertainment
applications.

Leading off with a definition of artificial intelligence and an overview of AI
concepts, the author provides 16 ready-to-run programs in BASIC to illustrate
your micro's cognitive powers. You'll cover tree searches (testing all possi-
ble solutions to a problem), hueristics (a modified trial-and-error technique),
algorithms, and pattern searching/recognition routines.

You'll find out how to solve simple-and not-so-simple-puzzles like
Towers of Hanoi and the Knight's Tourof the Chessboard ... explore concepts
of animal behavior and how it can be simulated . . . analyze how natural
language can be recognized and acted on by the computer ... simulate an
actual human-machine conversation ... and use an interactive routine that
allows your micro to make deductions through clever application of set theory.
There's even a program that allows your micro to write its own program
modifications!

And, as an extra bonus, the author has included a functioning word
processing program (which he used to write this book's manuscript) and a
graphics program that lets you draw on the screen with a joystick.

Totally fascinating and packed with techniques that will help you improve
all your BASIC programming practice, this is a sourcebook that will open a
whole new dimension in your computer usage!

Timothy J. O'Malley is a writer and programmer whose experience spans
both mainframe and microcomputer experiments in artificial intelligence.

ITABI TAB BOOKS Inc.
Blue Ridge Summit, Pa, 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > $12·95 ISBN 0-8306-1883-X

