artificial intelligence
on the commodore 64

make your micro think

keith & steven brain

artificial intelligence
onthe commodore 64

make your micro think

keith & steven brain

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street,

London WC2R 3LD

Copyright © Keith and Steven Brain, 1984

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or otherwise, with-
out the prior written permission of the Publishers.

British Library Cataloguing in Publication Data
Brain, Keith
Artificial intelligence on the Commodore 64.
1. Artificial intelligence 2. Commodore 64
(Computer)
I. Title Il. Brain, Steven
001.53°5°0285404 Q335

ISBN 0-946408-29-7

Cover design by Graphic Design Ltd.

Illustration by Stuart Hughes.

Typeset by V & M Graphics Ltd, Aylesbury, Bucks.
Printed in England by Short Run Press Ltd, Exeter.

CONTENTS

Page

Introduction 7
1 Artificial Intelligence 9

2 Just Following Orders 13

3 Understanding Natural Language 29

4 Making Reply 47

5 Expert Systems 65

6 Making Your Expert System Learn for Itself 79

7 Fuzzy Matching 93

8 Recognising Shapes 105

9 An Intelligent Teacher 117

10 Putting It All Together 125

Contents in detail

CHAPTER 1

Artificial Intelligence
Fantasy — reality: two-way conversations, robots, expert systems.

CHAPTER 2

Just Following Orders

Preset orders and fixed responses — DATA arrays — expanding the
vocabulary — removing redundancy — abbreviated commands — partial
matching — sequential commands.

CHAPTER 3

Understanding Natural Language

Dealing with sentences — subjects, objects, verbs, adjectives, adverbs —
punctuation — a sliding search — rearranging the word store array.

CHAPTER 4
Making Reply
Getting more sensible replies — making logical decisions before replying —
choosing the correct subject — problems with objects — changing tense.

CHAPTER 5

Expert Systems

How an expert works — simple problems — more difficult problems —
including pointers — sequential and parallel branching — checking how
well the answers match the data — better in bits.

CHAPTER 6

Making Your Expert System lLearn for Itself

Letting the computer work out its own rules for two objects — a wider
spectrum — watching what happens.

Artificial Intelligence on the C ommodore 64

CHAPTER 7
Fuzzy Matching

Recovering information from the human mind — Soundex Coding — a
computer program for converting names — retrieving information.

CHAPTER 8

Recognising Shapes

Simulating the action of a light sensor — inserting into sentences — a
branching short cut.

CHAPTER 9

An Intelligent Teacher
Questions and answers — keeping a score — shifting the emphasis of
questions to areas of difficulty — making questions easier or harder.

CHAPTER 10
Putting It All Together

Making conversation with the computer — making decisions, cost arrays
and profit arrays — the Computer Salesman.

Introduction

Artificial Intelligence is undoubtedly an increasingly important area in
computer development which will have profound effects on all our lives in
the next few decades. The main aim of this book is to introduce the reader
to some of the concepts involved in Artificial Intelligence and to show them
how to develop ‘intelligent’ routines in BASIC which they can then
incorporate into their own particular programs. Only a superficial
knowledge of BASIC is assumed, and the book works from first principles
as we believe that this is essential if you are really to understand the
problems involved in producing intelligence, and how to set about
overcoming them.

The basic format of the book is that ideas are taken and suitable routines
built up step by step, exploring and comparing alternative possibilities
wherever feasible. Rather than simply giving you a series of completed
programs, we encourage you to experiment with different approaches to let
you see the results for yourself. Detailed flowcharts of most of the routines
are included. The main emphasis in the routines is placed on the Al aspects
and we have therefore avoided ‘tarting up’ the screen display as this tends to
obscure the significance of the program. In places you may notice that odd
lines are redundant, but these have been deliberately included in the
interests of clarity of program flow. As far as possible, retyping of lines is
strenuously avoided but modification of lines is commonplace. All listings
in the book are formatted so that they appear as you will see them on the
screen. In most cases, spaces and brackets have been used liberally to make
listings easier to read but be warned that some spaces and brackets are
essential so do not be tempted to remove them all. All routines have been
rigorously tested and the listings have been checked very thoroughly so we
hope that you will not find any bugs. It is a sad fact of life that most bugs
arise as a result of ‘tryping mitsakes’ by the user. Semi-colons and commas
may look very insignificant but their absence can have very profound
effects!

Artificial Intelligence is increasing in importance every day and we hope
that this book will give you a useful insight into the area. Who knows — if
you really work at the subject you might be able to persuade your machine
to read our next book for itself!

Keith and Steven Brain
Groeswen, January 1984

CHAPTER 1
Artificial Intelligence

Fantasy

For generations, science fiction writers have envisaged the development of
intelligent machines which could carry out many of the functions of man
himself (or even surpass him in some areas), and the public image of
Artificial Intelligence has undoubtedly been coloured by these images. The
most common view of a robot is that it is an intelligent machine of generally
anthropomorphic (human) form which is capable of independently
carrying out instructions which are given to it in only a very general
manner,

Of course, most people have ingrained Luddite tendencies when it comes
to technology so in the early stories these robots tended to have a very bad
press, being cast in the traditional role of the ‘bad guys’ but with near-
invincibility and lack of conscience built in. The far-sighted Isaac Asimov
wove a lengthy series of stories around his concept of ‘positronic robots’
and was probably the first author really to get to grips with the realities of
the situation. He laid down his famous ‘Three Laws of Robotics” which
specified the basic ground rules which must be built into any machine
which is capable of independent action — but it is interesting to note that he
could not foresee the time when the human race would accept the presence
of such robots on the earth itself.

‘Star Wars’ introduced the specialised robots R2D2 and C3PO, but we
feel that many of their design features were a little strange. Perhaps there is
an Interplanetary Union of Robots, and a demarcation dispute prevented
direct communication between humans and R2D2. In ‘The Stepford
Wives’, the local husbands got together and had the (good?) idea of
converting their wives into androids who automatically did exactly what
was expected of them, but the sequel revealed the dangers of the necessity
to continuously reinforce with an external stimulus! Perhaps one hope for
mankind is that any aliens who chance upon us will not have watched
‘Battlestar Galactica’, and will therefore build robots of the Cylon type
who, rather like the old Space Invaders, are always eventually defeated
because they are totally predictable.

Of course intelligent computers also appear in boxes without arms and
legs, although flashing lights seem obligatory. Input/output must
obviously be vocal but the old metallic voice has clearly gone out of fashion

Artificial Inielligence on the Commodore 64

in favour of some more definite personality. If all the boxes look the same
then this must be a good idea, but please don’t make yours all sound like
Sergeant-Major Zero from ‘Terrahawks’! Michael Knight's KITT sounds
like a reasonable sort of machine to converse with, and it is certainly
preferable to the oily SLAVE and obnoxious ORAC from ‘Blake’s Seven’.
ORAC seemed to pack an enormous amount of scorn into that little
perspex box, but other writers have appreciated the difficulties which may
be produced if you make the personality of the machine too close to that of
man himself.

In Arthur C. Clarke’s 2001: A Space Odyssey’, the ultimately-intelligent
computer HAL eventually had a nervous breakdown when he faced too
many responsibilities; but in ‘Dark Star’ the intelligent bomb was quite
happy to discuss Existentialism with Captain Doolittle but was unwilling
to deviate from his planned detonation time, although still stuck in the
bomb bay. In ‘The Restaurant At The End of The Universe’, the value of
the Sirius Cybernetics Corporation Happy Vertical People Transporter
was reduced significantly when it refused to go up as it could see into the
future and realised that if it did so it was likely to get zapped; and the Nutri-
Matic Drinks Synthesiser was obviously designed by British Rail Catering
as it always produced a drink that was ‘almost, but not quite, entirely unlike
tea’.

More worrying themes have also recently appeared. The most significant
feature of ‘Wargames’ was not that someone tapped into JOSHUA (the US
Defence Computer), but that once the machine started playing
thermonuclear war it wouldn’t stop until someone had won the game. And
in ‘The Forbin Project’ the US and Russian computers got together and
decided that humans are pretty irrelevant anyway. Of course, if you are
Marvin the Paranoid Android and have a brain the size of a planetand a
Genuine People Personality, you can succeed without weapons by
confusing the enemy machine into shooting the floor from under itself
whilst discussing your personal problems.

Reality

The definition and recognition of machine intelligence is the subject of fast
and furious debate amongst the experts in the subject. The most generally-
accepted definition is that first proposed by Alan Turing way back in the
late 1940s when computers were the size of houses and even rarer than a
slide-rule is today. Rather than trying to lay down a series of criteria which
must be satisfied, he took a much broader view of the problem. He
reasoned that most human beings accept that most other human beings are
intelligent and that therefore if a man cannot determine whether he is
dealing with another man (or woman), or only with a computer, then he
must accept that such a machine is intelligent. This forms the basis of the

10

Chapter 1 Artificial Intelligence

famous ‘Turing Test’, in which an operator has to hold a two-way
conversation with another entity via a keyboard and try to get the other
party to reveal whether it is actually a machine or just another human being
— very awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carry on by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantly to find the secret, apparently
without success. However after some time the interviewer returns, shakes
him by the hand, and congratulates him with the words ‘Well done, old
man, the machine couldn’t tell if you were human so you are just what we
need as one of Her Majesty's Tax Inspectors!’

Everyone has seen from TV advertisements that the use of computer-
aided design techniques is now very common, and that industrial robots are
almost the sole inhabitants of car production lines (leading to the car
window sticker which claims ‘Designed by a computer, built by a robot,
and driven by an idiot’). In fact, most of these industrial robots are really of
minimal intelligence as they simply follow a pre-defined pathway without
making very much in the way of actual decisions. Even the impressive
paint-spraying robot which faithfully follows the pattern it learns when a
human operator manually moves its arm cannot learn to deal with a new
object without further human intervention.

On the other hand, the coming generation of robots have more-
sophisticated sensors and software, which allow them to determine the
shape, colour, and texture of objects, and to make more rational decisions.
Anyone who has seen reports of the legendary ‘Micromouse’ contests,
where definitely non-furry electric vermin scurry independently and
purposefully (?) to the centre of a maze, will not be aMAZEd by our faithin
the future of the intelligent robot, although there seems little point in giving
it two arms and two legs.

Another important area where Artificial Intelligence is currently being
exploited is in the field of expert systems, many of which can do as well (or
even better) than human experts, especially if you are thinking about
weather forecasting. These systems can be experts on any number of things
but, in particular, they are of increasing importance in medical diagnosis
and treatment — although the medical profession doesn’t have to worry
too much as there will always be a place for them since ‘computers can’t
cuddle’.

A major barrier to the wider use of computers is the ignorance and pig-
headedness of the users, who will only read the instructions as a last resort,
and who expect the machine to be able to understand all their little
pecularities. Processing of ‘natural language’ is therefore a major growth
area and the ‘fifth generation’ of computers will be much more user-
friendly.

Artificial Intelligence on the Commodore 64

Most of the serious work on Artificial Intelligence uses more suitable
(but exotic) languages than BASIC, such as LISP and PROLOG, which
are pretty unintelligible to the average user and are probably not available
for your home micro in any case. The BASIC routines which follow cannot
therefore be expected to give you the key to world domination, although
they should give you a reasonable appreciation of the possibilities and
problems which Artificial Intelligence brings.

12

CHAPTER 2
Just Following Orders

As your computer is actually totally unintelligent, you can only converse
with it in very simple terms. The first step, used in many simple adventure
games, is to have a series of preset orders to which there are fixed responses.
Let’s start by taking a look at giving compass directions for which way to
move. At first sight, the simplest way to program this appears to be to ask
for an INPUT from the user and to write a separate IF-THEN line for each

possibility (see Flowchart 2.1).

108 PRIMT CIRECTIONT"

128 THPUT [H¥

290 1F TH="HORTH" THEM FRINT
218 1F [HE="SOUTH" THEM FRINT
228 IF IM$="MEST" THEM FPRIMT
229 IF IM$="ERST" THEM FRIMT
S0 GO T

INPUT
DIRECTION

Flowchart 2.1 Giving Compass Directions

Artificial Intelligence on the Commodore 64

If you type in anything other than the four key command words, nothing
will be printed except for another input request. It would be more user-
friendly if the computer indicated more clearly that this command was not
valid. You could do that by including a test which shows that none of the
command words has been found, but this becomes very long-winded, and
effectively impossible when you have a long list of valid words. (Note that
this line is so long that you can only enter it if you use the keyword
abbreviations given in the back of your Commodore 64 manual.)

240 TF THES 3 HORTHYAHD THE S " SOUTHY FHD THS -
SUUEST U AHG THES > ERST " THEMPRIMT " THYALIC R
ECUEST"

On the other hand, adding GOTO 100 to the end of each IF-THEN line will
force a direct jump back to the INPUT when a valid command is detected.
If all the IF tests are not true then the program falls through to line 240
which prints a warning. Making direct jumps back when a valid word is
found is a good idea anyway, as it saves the system making unnecessary tests
when the answer has already been found (see Flowchart 2.2).

Flowchart 2.2 Deleting Unnecessary Tests

ITHE="HORTH" THEH FRINT "HORTH":GD

—i I

o
X

P

o —t

T

Chapter 2 Just Following Orders

219 IF IMg="SOUTH® THEM FRIHT "SOUTH" GO

TO 196

2Ew IF IME="WEST" THEW FRINT "HEST":GOTO
116

20 IF IM="ERST" THEH FRINT “ERST": GOTO
156

249 FRINT"IMVALID REDUEST"

That will echo the command given on the screen but of course it does not
actually DO anything. As a model to work with, we will start at a position
defined as X% =0 and Y%—=0 and indicate movement as plus and minus in
relation to this point. Notice that integer variables are used wherever
possible, as they are processed faster than real numbers, and this also
removes the possibility of clashing with reserved variables.

18 Wx=0: YE-E

We now need to add the real response to the command, as well as the
message indicating that it has been understood (see Flowchart 2.3).

26 IF IM$="MORTH" THEM FRIMT "HORTH" 7%
=1%-1:GOTO 168

219 IF IN$="SOUTH" THEM PRIMT “SOUTH":vx
=(%+1 GOTO 198

220 IF IN$="WEST" THEM FRINT "MEST": %=
el GOTD 198

228 IF IH$="ERST" THEM FRIMT “ERST":Hx=)
A1 GOTO 1693

That modification actually shows your position appropriately, relative to
the origin. So that you can see what is happening, and where you are,add a
printout of your current position:

116 FRIMT WM W ey

Using subroutines

Of course, that was a very simple example and, particularly where the
results of your actions are more complicated, it is usually better to put the
responses into subroutines.

208 IF IHg="HORETH" THEM GOSUE 2958 COTo
Kkl

Hrl

15

Artificial Intelligence on the C ommodore 64

IF IHE="S0UTH" THEH GOELE 2188 C0T0

VPO
(AN]

IF IMg="LEST" THEW GOIUE 2286 SOt |

IF TM#="ERST" THEM GOZUE 2265070 -1

[

e o ot .
Vol o -

0 TG o T

Pt
"o

268 PEINT “GOTHG HMORTH!" Y5=Y%-1:FETLURH
Z1e8 FREINT "GOIMG SOUTH" :%=Y%+1: RETURH
220 FRINT "GOIHG WEST': #5=4%-1:FETURH
2200 PREINT "GOIHG ERST" :Hi=@k+ 1 RETURH

SET
X anDY

| PRINT v=vy+1 |

PRINT X =X+1

« PRINT
INVALID

Flowchart 2.3 Adding a Response

Chapter 2 Just Following Orders

More versatility

You could extend this use of IF-THEN tests ad infinitum (or rather ad
memoriam finitum!), but it is really a rather crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DATA and then store them in string arrays.
First you must DIMension arrays of suitable length for command words
(CS) and responses (R$). As variable-length strings are allowed (up to 255
characters) the actual text can be of almost any length.

20 DIM CHl 2, REC 20

If you put the commands and responses in pairs in the DATA statement,
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.1).

Ll DHTH MORETH, GOTHG HORTH. SOUTH, COTMHG
SOUTH. MEST, GOTHG WEST.ERST. ZOIHG ERST
Lleasd FOR M= TO 32
11ale RERD Cmi M, REIH
112 HERT M
ELEMENT COMMAND RESPONSE
NUMBER WORD C$(n) R$(n)
1 NORTH GOING NORTH
2 SOUTH GOING SOUTH
3 WEST GOING WEST
4 EAST GOING EAST

Table 2.1 Content of Command and Response Arrays

To initialise the arrays (fill them with your words), when you RUN add a
GOSUB and RETURN.

40 SOSUE 19866
11936 RETURH

Artificial Intelligence on the Commodore 64

All those IF-THEN tests can now be replaced by a single loop which
compares your INPUT with each element of the array containing the
command words (C$) in turn (see Flowchart 2.4). Lines 200-220 need to be
replaced by the following lines but notice also that line 230 must be deleted.

o0 FOF He=2 TO 2
16 IF IHg=CEoH2 THEM PRINT BEECH:GOTO 1

-
[

I
22 MERT H

3

T

INPUT
DIRECTION

CHECK
] COMMAND
ELEMENT

Y=y-1

Y=Y+1 |

X=X+1 i

Flowchart 2.4 More Versatility

Now, IF your input, IN$, corresponds to any of the command words, the
program jumps out of the loop after printing the appropriate response,
RS$(N).

Of course we are now back in our original position of actually doing
nothing, so we need to be able to call those action subroutines. First of all

18

Chapter 2 Just Following Orders

let’s arrange to jump out of the loop, if a match is found, to a new routine at
line 300.

218 IF ITH$-~Cg by THEM FRINMT R®OH2:Z0TO 2
518

We still have a pointer to indicate which word matched the input, as N (the
number of array elements checked) holds this value. We can use this in an
ON-GOSUB line to move to appropriate routines which are similar to the
ones we wrote earlier, except that there is no need to define the particular
message: this has already been printed as R§(N).

O OM O+ COSUE 200D, 2100, 2208, 2208 5
OTO 198

2R YN 1 RETURH
2188 A RETURM
R % 1 5] -1 FETURH
RO =l RETIUFH

Expanding the vocabulary

The arrays can easily be expanded to contain more words. It would be
better if we defined the number of words as a variable WD%, which we
would then use to DIMension the arrays and for both the filling and
scanning loops. This produces a general routine which is easily modified.

20 WD%eE

T ODIM %MD b R RO
208 FOR M=a TO W0
11608 FOP H-@ T WO

For example we can add intermediate compass directions which change
both X and Y axes.

28 W07

19819 DATAH HORETH ERST. COIMG HORTH ERZT.S
OUTH EARST . GOTHG SOUTH ERST

19020 DATA SOUTH WEST, COIHG S0UTH HMEST.H
DRETH WEST.GOIMGE HORETH WEST

and add some more subroutines:

SN, 2DEE S0, 270 GOTO 168

19

Artificial Intelligence on the Commodore 64

24BR Hmh-1 o heEie L RETURN
2GR THRAL +1RETURH
ZEED YhmYHH] e FETURH
IPEE vHEvH-1 ME=HE-1 FETURH

Removing redundancy

All the responses so far have included the word ‘GOING’ and this word has
actually been typed into each DATA statement. Now typing practice is
very good for the soul but it would be much more sensible to define this
common word as a string variable. Notice that a space is included at the end
to space it from the following word.

191a6 GHE="COIHG

You can then delete alt occurrences of this word inthe DATA and combine
G$ with each key word in the response instead.

\%

2180 IF IM$=C%iH) THEM FRIMT GEiRFOH:LOT
0 308

18998 DATA HORTH. HORTH. SOUTH. SOUTH., WEST .
WEST., ERST, ERST

13815 DATA HORTH EAST.HORTH ERST.S0UTH E
AST, SOUTH ERST

109268 DATH SOUTH WEST, SOUTH WEST.HORTH W
EST,MORTH WEST

Now that is starting to look rather silly as both arrays now contain exactly
the same words, so why not get rid of the response array, RS, and simply
print C$(N)? Well, in this case you could do that without any problem, but
of course where the responses are not simply a repetition of the input (as is
very often the case) the second array is essential.

If you look hard at all those subroutines you will realise that they all do
only one thing — update the values of X% and Y%. Now we could include
that information in the original DATA and get rid of them altogether! We
need to add two more arrays to hold the X and Y coordinates, add the
appropriate values into the DATA lines after each response,and READ in
this information in blocks of four (INPUT, RESPONSE, X-MOVE,
Y-MOVE- see Table 2.2).

30 DIM CECWDN D, RECUD% 2o KD%Y, YOUDY)
19088 DRATA MOFTH, MORTH. B, ~1. SOUTH. SOUTH.
8.1, MEST, WEST. ~1,8. ERST EAST. 1, @

18316 CATA MORTH EAST.HORTH ERST.1.-1,50

Chapter 2 Just Following Orders

WTH ERST.S0UTH ERST. 1.1

19928 DATA SOUTH WEST. SOUTH KWEST.-1.,1.HO
FTH MWEST,HORTH WEST.-1.-1

11916 RERD CECM I REECH Y, MOH I YIHD

ELEMENT COMMAND RESPONSE

NUMBER WORD R$(n) X-MOVE Y-MOVE

C$(n) X(n) Y(n)

1 NORTH NORTH 0 —1

2 SOUTH SOUTH 0 1

3 WEST WEST —1 0

4 EAST EAST 1 0

5 NORTH-EAST NORTH-EAST 1 -1

6 SOUTH-EAST SOUTH-EAST 1 |

7 SOUTH-WEST SOUTH-WEST -1]

8 NORTH-WEST NORTH-WEST -1 -1

Table 2.2 X and Y Moves Incorporated into Arrays

Now we can delete lines 300 to 2700 and modify line 210 so that X% and Y%
are updated here (see Flowchart 2.5).

218 IF IHE=CHCMY THEM FRIWNT CHE:RSOH b W=
ARARCH D NREY A H S GOTD 198

This overall pattern of putting all the information into a series of linked

arrays is a very common feature which is used in several of the later
programs in this book.

21

Artificial Intelligence on the Commodore 64

INPUT
DIRECTION

CHECK

COMMAND

ELEMENT
1% =
MATCHING
ELEMENT

Y=
MATLRING

LEMENT

INCREMENT
ELEMENT
NUMBER

NO <3§§=>

YES

Flowchart 2.5 Using Linked Arrays

Abbreviated commands

So far we have always used complete words as commands, but that means
that you have to do a lot of typing to give the machine your instructions. If
you are feeling lazy you might think of changing the command words to the
first letter of the words only, and then INPUT a single letter. However,
unless you start using random letters that will only work as long as no two
words start with the same letter! To code all the eight compass directions
used above, we will have to use up to two letters: N, NE, E, SE, S, SW, W,

NW.

12989 DRTA N HORTH, 8, -1,5, 50UTH. 4. 1.1 HE

STJ"'].)B)E.- EHST' 1)2‘

19818 DATA HE.HORETH EARST.1,~-1,8E,20UTH E

AST. 1,1

10929 DATH SM. SOUTH MEST, -1, 1.HW.NORTH L

ESTJ_IJ_I

22

Chapter 2 Just Following Orders

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching

In all the programs above we have always checked that the input matched a
word in the command array exactly. However, it would be useful if we
could allow a number of similar words to be acceptable as meaning the
same thing. For example, you could check whether the first letter of the
input word matched the abbreviated keyword by only comparing the first
character (taking LEFT$(INS,1)).

1963 THE=LEFT$C IM$, 1)

That will work with NORTH, SOUTH, EAST and WEST, but there are

obvious problems in dealing with the intermediate positions. In addition

there are lots of words beginning with the letters N, S, E and W — all of

which would be equally acceptable to the machine as a valid direction.
For example:

NOT NORTH
would produce:
GOING NORTH

A more selective process is to match a number of letters instead of just one.
In this example the first three letters of the four main directions are quite
characteristic.

NOR
SOu
EAS
WES

If you use these as command words, then, for example:
NOR
NORTH
NORTHERN

and NORTHERLY

will all be equally acceptable, but:

23

Artificial Intelligence on the Commodore 64

NOT

NEARLY

NOWHERE
and NONSENSE

will all be rejected.

All we need to do is to take the first three letters of the input,
LEFT$(INS,3), and compare them with a revised DATA list. Lines 10010
and 10020 can be deleted and the word number variable WD% must then
be amended to 4.

28 Wh¥=32

1909 IMNE=LEFTE IH%, 32

135339 DATH MOR. HORTH. 6. -1, 500, S0UTH. 8.1,
HE':-) O NESTJ "1 s ‘3) EHE‘N EHST.- 1, D

Sequential commands

In the routines above we have dealt with the intermediate compass
positions as separate entities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get to any point, and if more than one command word could be
understood at the same time we would not have to worry about checking
for directions such as ‘NORTH EAST as they could be dealt with by the
combination of ‘NORTH’ and ‘EAST".

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up a separate word. The answer, of course, is that you see a
SPACE between them. Now if we look for spaces we can break the input
into separate words which we can look at individually.

The easiest way to look for spaces is with the INSTR command which
searches the whole of a designated search string for a match with a second
target string. Unfortunately this command is not provided in standard
Commodore BASIC , so we will have to use a series of BASIC commands
to emulate this. These will be placed in a subroutine at line 5000, which we
will refer to for the rest of this book as simply the INSTR routine.

2880 FOR H=1 TO LEHC IH®X

o018 IF MIDSCIM%, M. 10=" " THEM SP%=M:FET
LIRH

SU28 MEXT N

S83d SFY=0

9045 FETURH

24

Chapter 2 Just Following Orders

This routine will check whether the first character in INS is a space. Ifit is
notaspacethenit willautomatically continuechecking untiltheend of INS is
reached. If no space is found in the whole of IN$ then SP% will be set to
zero. If a space is found then the value of SP% will be the number of
characters along INS$ that the space is located (see Flowchart 2.6).

MOVE TO
NEXT
CH

Flowchart 2.6 l.ocating the Position of a Space

We need to call this from the main routine and we will print out the result
when we RETURN so that you can see what is happening.

128 COSUE Saag
148 PRINT SPIL:COTD 186

Try this out with:
NOR WES
SP% 4
NORTH WEST
SP% 6
NOR NOR WEST
SP% 4
Notice that the length of the word is accounted for by SP% but that only the
first space is found. To find all the spaces we are going to have to work
harder. First delete that temporary line 140.
Let’s look at the input logically from the start (lefthand side). We will

replace the LEFT$(INS,3) with MID$(IN$,ST%,3) so that we can look at
any three-letter combination in the whole of INS. To make it more sensible

25

Ariificial Intelligence on the Commodore 64

we will call the result of this W$ as it shows the position of a word. Tostart
with we must set the search start position ST% equal to one and add a space
to the front of IN$ so that the first word is also found (see Flowchart 2.7).

125 5T%=1:INg=" "+INg

125 GDSUR S0na

198 Ws=MIDE, INS, 5T%, 2

218 IF W$=CHCM) THEH PRINT G%:RS$(HD:HY=Y
SR Mo Y=Y GOTO 198

5809 FOR M=ST% TO LEMCINS)

If you run this as it stands then you will still only find the first word as we
have GOTO 100 on the end of line 210. However simply sending the
program back to the INSTR check in line 130 instead does not help either,
as it will always start checking from the beginning of IN$ and will always
find the same first space. Once we have found this first space we need to

INPUT
COMMAND
SET SEARMM
POSITION
(sT=1)
ADD SPACE
T0
START !
T n
e
SET SEARCH Il
POSITION
1TO SPACE+1 Il
(sT=85P+1)
* Il | creck
“ MATCH
W4 = THREE It]
<i’n‘rrenz el e e
SPACE Il

Flowchart 2.7 Searching for a Keyword

move the start position ST for the next search on to the character after
that space, SP%+ 1. When no more spaces can be found then the end of the
input has been reached and we can GOTO 100 again.

149 IF SPX>A THEW STH=5FX%+1:G0T0O 1379
159 GOTO 1va

26

Chapter 2 Just Following Orders

218 IF W$=C3 W) THEW FRINT G%:RECHI: #i=k
HAROH D WEEYEAYOH D GOTO 120

Now typing:
NORTH WEST
produces:

GOING NORTH
GOING WEST

and even:
NOR NOR EAST
is decoded as:

GOING NORTH
GOING NORTH
GOING EAST

It would be a lot neater if we deleted all those redundant‘GOINGs’ and put
all the reported directions on the same line. We need to PRINT GS$ once,
immediately before the INSTR check. Now each time we go through the
loop comparing the current word with those stored, we PRINT R$(N); if
there is a match. As there is a semi-colon after this, the words will be printed
on the same line but we also need to add spaces between them. Finally we
add a simple PRINT just before we go back for a new input, to move the
cursor position on to the next line.

128 FRINT %

145 PRINT

2168 IF WE=CHE M3 THEM PRINT FoHI: " " u%
MBI H D YRSV GOTO 138 -

Now:

NORTH EASTERLY SOUTH WEST

sends you neatly round in circles:

GOING NORTH EAST SOUTH WEST

27

CHAPTER 3
Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way, as it has only been programmed to understand a very few words or
letters and it only recognises these if they are entered in exactly the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing whether
the two strings match exactly.

On the other hand in the real world everyone uses what is known as
‘natural’ language which is a very sophisticated and extremely variable
thing which only the human brain can cope with effectively. Even if we
forget for the moment the difference between ‘English’ and ‘American’ or
even regional dialects of either (can ‘Ow bist old but’ really mean ‘How are
you old friend™?) dealing with language has an infinite number of problems.

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIlA developed a superb translation program which could instantly convert
English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities, in which it
converted everything he said into Russian, spoke that, and then retranslated
the Russian back into English. He was most impressed and was totally ab-
sorbed until one of his aides reminded him that he had forgotten that the First
Lady was waiting for him outside. When he ruefully commented ‘out of
sight, out of mind" he was amazed to hear the machine come back with
‘invisible maniac’!

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However if we are going to be able to
deal with sentences, we are going to have to think a lot harder than that.
The Oxford Dictionary definition includes ‘a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement, question, command or request’ but also concedes
that it is used loosely to mean ‘part of writing or speech between two full
stops’. Phew! Can somebody transiate that into everyday English, please?

29

Artificial Intelligence on the Commodore 64

The intricacies and illogicalities of the English language are infamous so
how can we expect a computer to cope?
Well, let’s start by looking at some simple examples of sentences.

1 WANT.

consists of a subject 1 and a verb WANT

I WANT BISCUITS.

also has an object BISCUITS

I WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATES
I SOMETIMES WANT CHOCOLATE BISCUITS.

qualifies the verb with an adverb SOMETIMES.

The most important word in all the above examples was “‘WANT" as it
conveyed the main idea. The second example was more informative as it
indicated that only one particular type of object, BISCUITS, was wanted.
The addition of an adjective, CHOCOLATE, gave further information on
the type of object wanted, but life became more uncertain again when the
adverb SOMETIMES was included.

Now how could a computer program decode such sentences? The answer
must be to find some logical structure in the sentence, so what ‘rules’ could
we lay down for this example?

1) All started with a subject I and ended with a full stop.

2) The last word was always the object BISCUITS (unless there was no
object and only two words).

3) If the word before the object was not the verb WANT it was an adjective
CHOCOLATE.

4) If the word before the verb was not the subject I it was an adverb
SOMETIMES.

Let’s write a program in which we give the computer sentences and ask itto
break them up into their component parts.

To start off, we need to give it a vocabulary of objects, adjectives and
adverbs to work with. We will READ these from DATA and store themin
arrays OB, AJ and AV, according to type.

30

Chapter 3 Understanding Natural Language

16 SUsUE 1L1H %)

1oaa DIM DEHCS s AJEC S o, AVSE 20
18925 FEM ORJECTS

llﬂﬂﬁ DARTR BISCUITS, BUNS, CHVE
OHTA COFFEE. TER. WATER

FEM RDJECTIVES

CHTH CHOCOLRTE . GINCER . JAM
CRTR COLD, HOT, LUKEKARM
REM ROVERES

DATH ALKWAYS, OFTEM SOMETIMES
FOR H=3 TO 5

FEAD DBFH

HEXT M

FOR M= T 5

RERD H.%CH D

HEST M

FORP M=t TO 2

FEAD- AVECH 2

MEXT M

FETIURH

—-
faory
=
p—
Px]

't

—
—

N W AA]

a0 S G LT

e
AW RN

i
st

23 = S B G N e
[l

MO D 3 U G
AN R R

AN

Pt ek ke pd ke b el peeb ek bk bk ek i
Y
Y

et b bt ek A b et b ek pek e b ek b
o b A b b e et s e O

Now we need to break the sentence into words (see Flowchart 3.1). Once
again we will do that with an INSTR search for spaces, and to make life
easier we will add a space on to the end of INS so that the format of the last
word looks just like that of other words.

105 THPUT IH%
28 IHE=THG+" "
GOSUE S008
1 GOTO 1320

e
ol
TS

The end of the sentence has been reached when no more spaces can be
found.

14 IF SPE=0 THEMW Z09

If a space is found then the section of INS from ST (current search start)
to SP%—ST9% (current space—current start=length of word) is cut out
and stored in a word store array WHWC%).

B WECWCY b=MID% IN%, ST, SPHN-5T%)

15
19819 DIM WS4

To begin with ST%=1 so that the search starts at the first character in the

31

Artificial Intelligence on the Commodore 64

{ INPUT [
COMMAND

SET SEARCH
PQSITION
(sT= 1)
SET WORD
COUNT TO
ZERO(NC=¢)
ADD SPACE
TO END
SPace> YES | Wons o
? (37 10 sP-s7)
MOVE 70
NEXT NO }
CHARACTER
NO END INLWRE.MWORD
? COUNT
! (we = wc+1)
YES
T\ POSITON
(6T=6P+Y)

Flowchart 3.1 Cutting Out Words

input string. The word count variable WC9% is set to zero so that the first
word found is stored in the zero element of the word store array.

118 ST%=1:UCH=9

The word count is incremented (so that the next element of the array W§ is
used next time)and a check made that there are not more than five words in
the sentence. The start position for the next search is then set to one more
than the position of the last space and the search is continued.

168 WCK=MWCH+1
178 IF WCH:S THEM FRIMT "SEWTEMCE TOO LD
MG":GOTD 196
188 ST%=SF%+1

32

Chapter 3 Understanding Naiural Language

A test is now made to see whether there is a match between the key words in
the sentence and the objects in the vocabulary array OB$(N) (see Flowchart
3.2). Only words 2, 3 and 4 are checked as these are the only possible

TAKE
OBTECT,
(0B(N))

Flowchart 3.2 Looking for a Match

positions for the object in our restricted sentence format. Three different
routines are jumped to according to the position of the matching word in
the sentence. If no match is found a message is printed and a new input
requested.

209 FOR M=8 TO S

2189 IF W% 2 =0B%{H>» THEH
220 IF WS 20=0B%(H» THEH
238 IF WS4 =0B% M) THEN
248 HEXT N

o8 PRIMT "OBJECT HOT FOUND"
68 GOTD 169

~H
(AR A}
LAY hn]

If the object was found as word three then there was neither adjective or
adverb.

33

Artificial Intelligence on the Commodore 64

508 PRIMT "MO RDGJECTIVE OR ADVERE"
519 GOTO 166

If the object was found as word four then there could have been either an
adjective or an adverb in the sentence (see Flowchart 3.3).

S0P FRIMT "EITHER HOJECTIVE OF ADVERE"

Flowchart 3.3 Adverb or Adjective

First we check for a match between the second word and the contents of the
adverb array.

€19 FOR N=& TO 2
&2 IF W$C1o=RYVEH) THEHM 366
&390 HEXT N

If no match is found then we check the third word against the adjective list
549 FOR MH=0 TO 5

£S5 IF W& 2 =RJ%EHY THEM 1000
668 HEXT H

If a match is not found in either of these lists, then it would be useful to

34

Chapter 3 Understanding Narural Language

indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb ‘WANT”, as in that case the
second word must have been an adverb. On the other hand, if the second
word was the verb then the third word must have been an adjective. Notice
that the actual word which did not match is now included in the message.

ere IF WEC1 »:"HWANT" THEM FRIMT "ROWVERE
YWEC L s NOT UMDERSTOOD: GOTD 198

e FRINT "ADJECTIVE ":W$C2" HOT UHDEFR
STAODY : COTO 198

If a match is found in either test then a success message is printed. Note that
these possibilities are exclusive and that in four words we can only have one
or the other.

260 FREIMT "ALVERE®

218 GOTO 1ew

1820 PRIMT “ADJECTIVE"
1818 GOTO 104

Where both adverb and adjective are present we must check for both, and
therefore a match in the first test also jumps on to the second test (see
Flowchart 3.4).

79a FRINT "ADWERE AMD RDJECTIVE"
P19 FOF H=8 TO 2

v2R IF WECL o=AVECH Y THEM V58
738 HEXT M

If no match is found for the adverb, then this fact is reported: a flag AV% s
set to 1 to indicate failure at this point before the adjective is checked.

74 FEIHMT “"ACVERER " M$013:" HOT UMDERSTO
a0t AYE=1

V5B FOR M= TO S

7680 IF WEC3 =A% My THEW =08

77O HEWT M

If a successful match for the adjective is not found then the program loops
back after a report.

728 FRINT "ADJECTIVE ":W$:2);" HMOT UMDER
sToOD"
799 GOTO 108

35

Artificial Intelligence on the Commodore 64

PRINT
“OK”

RESET
FLAG
(AV= @)

Flowchart 3.4 Adverb and Adjective

If the adjective was found then a test is made that the adverb flag AV% was
not set before a match is reported. In any case, the flag is reset before the
next input.

oop IF AV%=0 THEM PRIMT "RDJECTIVE SHD A
DVERE OK"

210 HV%=8

aze GOTD 1o8

What about punctuation?

As we have already said. you usually recognise the end of a sentence
because it has a full stop, although when you type into a computer you
usually forget all about such trivialities. But what will happen in the

36

Chapter 3 Understanding Natural Language

program so far if some ‘clever’ user puts in the correct punctuation? If you
think for a moment, you will realise that the computer will start
complaining as it will no longer recognise the last word, as this will actually
be read as the word plus the full stop.

We therefore need to check if the last character in the input string INS is a
full stop: this is simple as the ASCII code for this character is 46. The best
place to check seems to be immediately after the INPUT. If the code of the
last character is 46, then simply throw this character away and then
continue as before.

f

TARE ASCIL

VALUE. OF
LAST

CHARACTER

”

QUESTION

Flowchart 3.5 Dealing with Punctuation

We will add this as a subroutine which is jumped to as soon as an input is
made. Other punctuation marks may also appear at the end of the sentence,
so we will read the last character as a variable LC% which we will also use
later. This is stored as a simple variable by taking the ASCII code of the last
character in INS$: using simple variables saves a lot of typing of string ($)
indicators (see Flowchart 3.5).

105 COSUE zewg

LCH=RSCCRIGHTEC TH%. 105

IF LCx=d& THEM 2180

2829 RETURH

2106 IMF=LEFTSC IN®, LEMC INE -1 3 RETURH

Lo Y]

g
AR
&

37

Artificial Intelligence on the Commodore 64

More useful sentence terminators are the question and exclamation marks
which often indicate the context of the words. We can distinguish these in
the same way by their ASCII codes and. for the moment, we will just report
their presence.

2028 IF LC%=33 THEM FRINT"ESCLAMATION!":
GOTD 21698

2020 IF LO%=E3 THEM FPRIMT'QOUESTIOH" COTO
2194

The normal INPUT command will not accept anything after a comma,
which it reads as data terminator. However we can produce a routine using
GET which will accept any text including commas. First of all INS is set
empty and a ‘<’ printed as a cursor.

189 INg="" FRINT "<

Now a check is made for a key-press and if no key is pressed then the check
is repeated.

191 CET I%¥ IF I%="" THEH 181

When a key is pressed a cursor left code — is printed, followed by the
character corresponding to the key pressed. I$. This character is then added
on to IN$ and a jump made back to the keycheck. In this way the entry
appears on the screen as in a normal INPUT, and any errors can be
corrected with the backspace key.

193 PRIMT "CZ-~23"; 1% "< IMS=IHS+I%: LUT
o191

The end of the input is indicated by checking for the RETURN key, which
has an ASCII code of 13. If the entry is complete, then the cursor is moved
to the next line.

192 IF ASCYI% =13 THEH PRIMT:GOTO 185

T

Commas may be useful in indicating different parts of a sentence, which
could be examined as ‘sub-sentences’ in their own right. However. in simple
cases they are best deleted and replaced by spaces before the sentence is
broken into words (see Flowchart 3.6). Note that this will only function
totally correctly if there is no space after the comma, as any space following
a replaced comma will be seen as a new word.

Rather than write a completely new INSTR routine, we will modify our

38

Chapter 3 Understanding Naitural Languuge

NO RESET NO RESET
| SEARCH APOSTROPH SEARCH
START START
YES YES
REPLACE cutT ouT
WITH AND
SPACE CLOSE uP
INCREMENT INCREMENT
SEARCH —1 SEARCH
START START

Flowchart 3.6 Replacing Commas and Apostrophes

existing one so that we can check IN$ for any predefined string TAS. To
make things clearer in the long run, we will make the variable pointing to
the position of the match in the string [S%, which can then be swapped with
any number of different variables, such as SP%. First we must modify our
space check to the new format.

139 TART=" ":GOSUE S000:SP%=15%

o918 IF MIDSCIM$, M. 1 »=TR$ THEM ISh=H:FET
URN

o828 I1S%~=a

Now the same method can be used to look for a comma. before replacing it
with a space.

113 THRE=", " Q03UE Zewd

2008 GOSUBR SPhOAE: LMu=1S

3019 IF CMx%=8 THEHW 3T%=1:FETLRH

2020 JTH$= LEFTW’IH% CI=1 24" "+RIGHT®: IN%
2 LEMC TN 32

2032

<t (gx

B STH=CM +1
A GATO 2806

g

If you add this line, you can see the punctuation being taken out of the
string item.

2925 PRINT TH$

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

39

Artificial Intelligence on the Commodore 64

115 TR$=",":GOSUE 2008 THE=""":LOSUE 214
5]

2100 GCOSUB 5800 :RAPN=1%%

2119 IF AP%=0 THEM STx=1:FETURHN

2120 IME=LEFTS IM%, AF%~1)+RIGHTS: THSE. LEH
L IHE -RPY D

2125 PRIMT IN%

3130 STH=HP%+1

214 GOTO 21860

A sliding search approach

Although the method of examining a sentence described above will work. it
has the disadvantage that it requires the sentence to be entered in a
particular, restricted format. For example, if you enter:

1 WANT HOT CAKES OFTEN
the computer will report:
OBJECT NOT FOUND

as it mistakenly takes the last word OFTEN as the object.

On the other hand using a sliding search of the whole sentence for each
key word, without first breaking the sentence down into words, has the
advantage that it allows a completely free input format. In this approach
we take the first key word and try to match it against the same number of
letters in INS. starting at the first character. If this test fails then it is
automatically repeated. starting from the second character. etc. until a
match is found or the end of INS is reached. For example, if IN$ was ‘]
WANT CAKE’ and the first key word was ‘CAKE’ the comparisons would
be:

Pass | I WA

Pass 2 WAN

Pass 3 WANT

Pass 4 ANT

Pass 5 NT C

Pass 6 T CA

Pass 7 CAK

Pass 8 CAKE (match found)

So far our INSTR routine has only tried to match a single character. but we

40

Chapter 3 Understanding Natural [anguage

will have to modify line 5010 again, so that it takes into account the length
of the target string LEN(TAS).

5919 IF MID®Y IM%,H, LEHCTR%30=TRS THEM IS
=M:FETLURH

Delete lines 105- 1010 and add this line to check for the first object OB$(0).

,‘U THEH F'F'IHT IJE€$|. ”..._; won,

Each object can be compared in the same way by forminga loop. (Note that
printing a semi-colon after OB$(M) ensures that each word is printed on
the same line.)

200 FOR M=o TO 5
220 HEXT M

Similar checks can be made for matching with words in the adverb and
adjective arrays.

2980 FOR M=2 TO 2
319 TAT=RVE M GOSUB SO0 :SPi=12%: IF SPX
'ﬁ THEM PRINT BVY$CM:" ";
329 MEXMT M
408 FOR M=2 TO 5
418 THE=AJIFCM) GOSUE Seon: SP5=15%: IF S5F%
»8 THEN PRIMNT RJI$ECHM:" "
428 HEXT M
18999 GOTO 104

To report what has been found, and so that we can use the words
discovered later, we will store each in an array as it is detected. We already
have a word store array W$ but we will expand it to hold up to 20 words
(which should be enough for even a very verbose sentence!).

189918 DIM WE 13
If a match is found a temporary string T$ is set equal to the matched word,

and a subroutine called at line 1500, which puts the word detected inthe first
array element (see Flowchart 3.7).

218 TAT=0BECMO: GOSUER SO0 : cF"’ﬂIS?’.fIF] e
0 THEM T#=0B$CM):PRINT T®:" ", :LOSUE 135

41

Artificial Intelligence on the Commodore 64

(415
1508 WS W0 »=T%

|
T$= '
0B8$(N) |

{*_ STORE

| WORD
T$= | . |
AV$(N) |

. |INCREMENT

<4 WORD

| COUNT
MATCHING ——
ADTECTIVE AT $(N) |
|

Flowchart 3.7 Sliding Search

The word count WC% is then incremented, so that the next word is put in
the next element, before returning.

1528 WCX=HCH+1
1528 EETURHM

Using a temporary string T$ in the actual subroutine means that we can
also use it in the tests for adverbs and adjectives in exactly the same way.

219 TRE=RVECMH: COSUB SR04 ‘.;F" -I'E.'f. IF sSPx
Y8 THEM TE=RV$ECM):FRINT T$:" ";:COSUE 15
(3]8)
4190 TAS=AJECM 1 GOSUB Saem: SPH=I154: IF 3SPX
29 THEM TE=AJECM2:-PRIMT T%:" ";:GOSUB 135
5]%)

Partial matching

One advantage of the sliding search is that you can easily arrange to
recognise a series of connected words by only looking for some key
characters. This is obviously useful as it saves you having to put in both
single and plural nouns such as BISCUIT and BISCUITS. If you amend
the DATA in line 11000 as shown below than both will be recognised.

119839 DHTR BISCUIT, EUM. CREE

42

Chapter 3 Understanding Natural Language

However life is not that simple as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN,
BUNS. and BUNFIGHT but unfortunately BUNCH, BUNDLE,
BUNGALOW. BUNGLE, BUNK, BUNION, and BUNNY as well!

NO NO

Flowchart 3.8 Checking That This is the Start of a Word

This problem is not restricted to prefixes as the computer will also not
distinguish between HOT and SHOT. You could include a check that the
character before the start of each match was a space (ie that this was the
start of a word. see Flowchart 3.8). SP% gives the current start-of-word
position so MIDS$(INS.SP%—1.1) is the character before this.

219 TRE-OBECM2: GOSUE D00W: sFX=13%: IF SP4
=g THEH HEXT M:GOTO 22

i

211 IF MIDC IHS., SF5-~1.1002" " THEH HERT
M:GOTO 220

212 TE=0B$ M PRINT T%: FLUSUE 1508
218 THR$=RYEC M GOSUE 508 E F' =% IR SPX
=g THEH HEXT M:GOTO 232

211 IF MIDS: IM$,SF%-1,1 305" " THEH MEXT
M:GOTD 32y

212 TH=AYS$ M2 FRINT T%: (GOSUR 1560
419 TRE=HJIE M3 G0SUE BD@ 'P'ng4=IF] A
-9 THEH MEST M:GOTO 4uu

411 IF MID®C IME, SPA-1,1000" " THEW HEXY
M:GOTD 428

412 TE=RAJE M2 :PREINT T%:" " GOSUE 1508

For this to function correctly on the first word, just add a space to the start
of INS.

119 IM%=" "+IHM%

In a similar way, you could use checks on the next letter after the match, or
the length of the word, to restrict recognised words.

43

Artificial Intelligence on the C ommodore 64

Putting things in order
Although we have now detected all the words in the sentence, regardless of
their position or what else is present. they are found and stored in the order
in which they appear in the DATA. This is because the comparison starts
with the first item in the object array rather than the first word in the
sentence. It would be useful if we could rearrange the word store array so
that the words in it were in the order in which they appeared in the sentence.
To do this, we must keep a record of the sentence position of the word
SP% and word count WC%, as each word is matched in a new word
position array WP9%. This is a two-dimensional array with the sentence
position kept in the first element. WP(WC%.0). and the word count,.
WP(WC%.1). in the second.

19928 UM WPC19, 1)
1518 WPCWCH, @ =8P% - WFCHEY, 1 2=kCy

The actual sorting subroutine which does the rearrangement is at line 4000.
This must only be reached if a match is found.

446 IF WCY=8 THEM 47&
458 GOSUE <wug

4589 GOTO 109

478 PRIMNT"HO MATCH FOUMD"
$E9 GOTO 199

The sort routine (see Flowchart 3.9) takes the sentence position of the first
word found (first element in the first dimension WP(0.,0)) and compares it
with the sentence position of the second word found (second element in the
first dimension WP(0+1.0)). If the position variable for the first word is of

NO

SWAP SWAP
YES SENTENCE WORD YES
-7 POSITION COUNT 1
POINTERS POINTERS

NO

Flowchart 3.9 Putting Words in Order

higher value than that for the second word then the first word found is
farther along the sentence than the second word, and these therefore need
to be swapped around. This will put the sentence-position pointers right
but the word-count markers also need to be rearranged to the correct
positions. This process is repeated until the word pointers are all in the
correct order. Notice that the actual contents of the string array which

44

Chapter 3 Understanding Natural Language
holds the words are not altered but only the pointers (index) to them.

490 FOF N=¢ TO Wlk-2

18 IF WRCH, @3 WPCH+1,83) THEN HEST M:G0

TO 4948

4928 DHA=UWPOM @ 2 WPCH, B =PI M+, 8 0 PO M+

, B o=DE

40380 Dx=WPOM, 10 WP 1 D=bP M+, L o WFPO M+

> 10=0% - GOTO 400

If the strings are now printed inrevised word-count, WC%, order, they will
be.as they were in the original sentence, which should make it easier to

understand them.

4948 PRIMT:FOR H=0 TO WC%-1
4950 PRIMT WSO WPCH. 130" "
4068 HEXT W:PRINT

All elements in the sentence position array WP(N,0) and the word count
WC9% must be reset to 0 before the next input.

1979 FOR M= TD 12
JA2D bPCHL 3 =
4893 MHEXT H

41898 WC%=8

411wt RETUPH

45

CHAPTER 4
Making Reply

More sensible replies
We have considered at length how to decode sentences which are typed into
the computer, but the replies it has produced so far have been very limited
and rigid. Although many of the original words in a sentence are often used
in a reply, in a real conversation we look at the subject of the sentence and
modify this word according to the context of the reply.

For example the input:

I NEED REST

might expect the confirmatory reply:
YOU NEED REST

and similarly:

YOU NEED REST

should generate:

I NEED REST

If you look at that situation logically, you will realise that for each input
subject there is an equivalent output subject, and that we have simply
chopped off the original subject and added the remainder of the sentence to
the appropriate new subject.

‘I’ is only a single character so we could check LEFT$(INS,1). If this was
‘I’ then PRINT “YOU?” could be added to the front of the remainder of the
input, RIGHTS$(INS.LEN(IN$)-1.

12 IMPUT IN%

28 IF LEFTHCIME, 12="1" THEW PRIMT "90U"+
RIGHT®C IM%, LEMHC THE -1 3

&Y GOTO 19

47

Artificial Intelligence on the Commodore 64

In the same way, the first three characters LEFTS$(INS$.3) could be checked
against *YOU’ and replaced when necessary by ‘I'.

So IF LEFTEC IMS, 20="%0U" THEHW PRIWNT "I"+
RIGHTSC IN%, LEHC IH$ »-2 2

If you try that out with a series of sentences, you will see that it works OK
until you type something like:

YOU ARE TIRED
which comes back as the rather unintelligent:
I ARE TIRED

We could get around this by checking for the phrases ‘1 AM’ and ‘YOU
ARE"as well as‘I’and *YOU’ on their own, but notice that you must test for
these first and add GOTO 10 to the end of lines 20 and 40 to prevent a
match also being found with *I' and *YOU" alone.

28 IF LEFTEIINS,45="1 AM" THEW PRIMT "v0O
U ARE"+RIGHTSC THE, LENC TH% »~4 7 GOTO 19

49 IF LEFT®: IH%. 7 ="Y0l ARE" THEH FRINT
"I AM"+RIGHTSC THS . LEMC IN% -7 5:C0TO 18

Although this method will work, the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into account
the length of the matching word or phrase. Where many words are to be
checked, it is therefore better to use a multidimensional string array which
can be compared with the input by a loop.

A convenient format is to have a two-dimensional array 10$(n,m) where
the first dimension of each element, 10$(n,0), is the input word or phrase
and the second dimension, 10$(n.1), is the corresponding output word or
phrase. It is easier to avoid errors if these are entered into DATA in
matching pairs and READ inturninto the array. Start a new program with
these lines which set up the array.

19 GOSUE 12008

10euy DIM IH$'° I

IIEBB ODRTR I.%00,w0l. 1.1 AM.vou
REE."OU RRE.I AM

12908 FOR H-a TO 3

12a1uv FEHD IOSCH. B0, TOBCH, 1>
12020 HEXT M

13088 RETURH

e
oo

Chapter 4 Making Reply

PRINT

WORD (N

2ND
DIMENSION

Flowchart 4.1 Using a Corresponding Reply

We will use a looping sliding string search again, which for the moment will
just print out the corresponding word or phrase to that matched. IO$(N,1)
(see Flowchart 4.1). One advantage of the sliding string search here is that it
will happily match embedded spaces in phrases as we have not broken IN$
into ‘words’ before matching.

19 THPUT IM%

118 STx%~1

209 FOR M=8 TO 2

219 TR%=I0%CM. B3 G0SUR Sa80: SFY=1%%:IF 3
P8 THEHW PRIMT IO®CM.10

2za MEXT M

298 GOTO 190

It is better to redefine the required response word as a new string which is
the first part of the reply RIS, and then PRINT this when the loop is left.

% IF S

(LY}

218 TRE=ID®ECM. B CO05UE SO : SPy=1!
Frsel THEM R1$=10%0M. 15
228 PRIMT R1%

To get a fuller reply, we need to add back on the rest of the original
sentence R2$ (after inserting a space). It is not difficult to define the ‘rest of
the sentence’. We just need to subtract the end position of the word from
the LENgth of the sentence and use this value in RIGHTS. SP% points to
the start of the matched word: we have arecord of the LENgth of this word
in the first dimension of the array as IO$(N.0), so we just need to subtract
SP%+LEN(10$(N.0)).

218 THE=I0% M, : GO5UE S0a8:SPh=I12%: IF £
Px=8 THEM 228

49

Ariificial Intelligence on the Commodore 64

215 R1$=I0%M. 15 R2%=" "+RIGHT%C INg. LEHC
IHS)—¢ SPX+LEMC I0$CM. 82007
238 PRINT Ri1%.:R2%

TAKE
INPUT

REMOVE
FIRST
WORD

ADD SPACE
TO FRONT

Flowchart 4.2 A Fuller Reply
Now when you try:
1 AM CLEVER
the computer agrees:
YOU ARE CLEVER
But if you then press RETURN again it still tells you that you are clever —

which is not true, as you have notemptied IN$, R1$ and R2$ before looping
back to the next input!

189 IN$="": IHPUT IH%
249 Rlg="0 p2g=""

Before you feel too clever try:

WE ARE STUPID

50

Chapter 4 Making Reply

which may well surprise you when it gives the reply:
YOU

If you think for a few moments, you will see that one of our keywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT
where the computer disagrees with you by returning:
YOU COMPETENT

Although each keyword is tested for in turn, each one is set to R1$ when a
match is found so only the last match is reported. As the keyword is only
checked for once in each sentence, embedded ‘I’ only causes problems when
this is not the keyword in the sentence.

To get around this we must consider which keywords may cause
problems. Although the letter ‘I' is very common, it is very rarely the last
letter in a word and so we could check that there is a space after the
keyword. We must treat all keywords in the same way so add a space to the
end of each. This could be done by changing all the DATA but it saves
memory in the long run if we add the space as the array is set up. Note that
there is no need to add spaces on to the end of the replies.

12920 I0FCH, B i=T0%CH, Bt "

We also now need to subtract one less character from IN§$ to give R18, as
the space has now become an integral part of the keyword.

215 P1g=10% M. 1 2 F2%=" "+RICHT® IN%. LENS
ITHE 3~ SPYHLEMC TOSCM, 005 3+1 2

The computer will now readily agree about your incompetence.

If the first keyword is not at the start of the sentence, then everything
before it will be ignored in the reply.

For example the answer to:
WHAT IF I FALL?

will be:

YOU FALL?

51

Artificial Intelligence on the Commodore 64

Some strange results can still occur when two true keywords are present.
For example:

WHAT IF YOU AND | FALL
gives

I AND I FALL

and

WHAT IF 1 AND YOU FALL
replies

I FALL

However, adding more suitable keywords is easy and some combinations
will just not be acceptable. To make the routine more general. it is better to
define the number of keywords as a variable K W% and use this in place of
the actual number.

1v‘| KiZ=5: GASUE 1o
m FOR H=9 TO EMX
a3 DIM TOF0rM=, 1.
CRTH WE. WE. THE ' THEY
FOF HM=& TO EHx

Al

et o S R
ot — 1S
DO LY
D]
S

Now the answer to:
WHAT IF WE FALL?
is the more logical:

WE FALL?

Pointing to replies
So far our computer has displayed only slightly more intelligence than a
parrot, as it has merely regurgitated a slightly modified version of the input.
The next stage, therefore, is to make it take some logical decisions on the
basis of the input before it replies.

The numbers of subjects SU%, verbs VB% and replies RP% are defined
as variables so that the program can be easily expanded, and three arrays

52

Chapter 4 Making Reply

using these are set up. (As we have a zero element in the array, these values
are all one less than the number of words.) SU$(n,n) is a two-dimensional
array which is concerned with the subjects in the input and output
sentences. The first dimension (n,0) contains the recognised subject words
and phrases allowed in the input, and the second dimension (n,1) contains
the opposites which may be needed in the output. VBS$(n) holds the legal
verbs, and RP$(n) a series of corresponding replies.

1o GOSUE 1owag

1800 SLE=25: VB =0 RPY=C
10a1a DIM SU$sS, 1)
1oB2a DIM VESOWESL)

199380 DIM RFECRFY

Table 4.1: Pairs of Subjects in SUS$(n.n)

SU$(n.0) SUS$(n.1)

I HAVE YOU HAVE
I'VE YOU'VE

I AM YOU ARE
I'M YOU'RE
YOU HAVE I HAVE
YOU'VE I'VE

YOU ARE I AM
YOU'RE I'M

YOU |

SHE HAS SHE HAS
SHE IS SHE IS
SHE'S SHE'S
SHE SHE
THEY'VE THEY'VE
THEY ARE THEY ARE
THEY'RE THEY'RE
THEY THEY

HE HAS HE HAS
HE IS HE IS
HE'S HE'S

HE HE

WE HAVE WE HAVE
WE'VE WE'VE
WE ARE WE ARE
WE'RE WE'RE
WE WE

I YOU

53

Artificial Intelligence on the Commodore 64

The first two lines of DATA contain paired input and output subjects (see
Table 4.1) and these are READ into corresponding dimensioned elements
in the SU$(n.n) array. As the pronouns (‘I', *‘YOU’, etc) are frequently
linked to other words to form phrases (such as ‘I'VE’), these combined
forms are also included in the DATA. Notice that these are arranged in
such an order that the most complete phrase containing a keyword is
always found first. A space is added on to the end of each element, so that
some clashing of partial matches is avoided and a space is automatically
formed in the reply.

119889 DATH I HAYE, YO HAVE, IT'VE. WOU'VE, I
AL YO ARE, T/M,W0URE, YO HAVE. T HRAY
11918 DRTAR YO VE, T°VE,WOU REE, T AM. YOU’
FE, I*M,Y0U, 1

11935 DHTH SHE HAS,SHE HAS,SHE I3,5HE I3
,SHE'5.8HE' S, SHE., SHE

11928 DHTH THEY " VE. THEY " VE, THEY HFE, THEY
HRE., THE'Y* RE. THEY ' PE. THEY , THE'Y

11948 DRATH HE HRS.HE HH3,HE IS.HE IS.HE

S,HE*S.HE,HE, ME HAVE.HE HRYE

11858 DATA WE*YE,WE'WE.WE HRE.WE ARE.MWE’

FE.WE'RE,ME.HWE, I.%0U

12008 FORE M=g TO 3U%

120810 FREAD SUSCH. 05, SUSCH, 12

12828 SUSCH. 02=SUSCH, B2+" " :SUECH, 1)=5U%

v H- 1 '~,+u "

12820 HEXT W

The next DATA line contains the main verbs which are READ into
VB%$(n). The verb ‘to be’ is omitted as its variations are so complicated.
and many of its versions are already accounted for in the ‘subject’ check.

11958 DATA HATE.LOVE.KILL.DISLIKE.LIKE,F
EEL., KHOW

12049 FOR H=2 TO VBX%

12858 RERD VBSCHD

12068 HEXAT M

The last set of DATA contains the replies which are put into RP$(n), before
control RETURNS to the main part of the program. To make things simple
to understand and check at this stage, all the replies contain the original
verb, although of course they could say anything.

54

Chapter 4 Making Reply

11878 DATH PROERELY HATE YOU AS WELL.LOY
E YoU TOO,KILL vou

119860 DRTA DISLIKE LOTS OF THINGS.LIKE ©
HIP3,FEEL POMERFUL, KHOW EVERYTHIMG

12078 FOR H=8 TO RPX

12080 RERD RP®CHN

120690 MEXT M

12008 PETURN

Matching

The input string is now compared with the list of subjects in the first
dimension of SUS(n,n) (see Flowchart 4.3). If there is no match then a new

I NO

@ NO YES

YES

NO

ALL YES
VERB CHECKED

Flowchart 4.3 Setting Match Pointers

55

Artificial Intelligence on the Commodore 64

input is requested, or else a subject match variable SM% is set to the
element number at which a match was found. (Note that 1SS is always used
in this program to indicate the position of an INSTR match.)

2e FOR M=8 TO S

918 STik=1: TRE=SUEC M, 930 GOSUE 580
IF IS5%=0 THEW HEXT M:COTO 1983
SHR=M

fonar
o [y
o i

The verb array is now compared with INS. If no verb is found, then the
input is rejected, or else the verb match variable VM% is set.

249 FOR M= TO WEX

259 TAS=NEE1M)) : GOSUE S0ug

268 IF I3%=8 THEMW MEAT M:GOTD 198
278 WMi=M

:'l l

[RER AN

Making reply

Now that the subject and verb have been identified, we can pick up the
appropriate reply by using VM9 as a pointer to the reply array RP3$(n).
209 RELE=RPECMMAL D

In the simplest case we can just add the appropriate subject to the front of
RLS before we print it.

520 RLE=SUSC SIMA, & 0+FLE
58 FREINT RLY¥

568 GOTO 1@g

Now, for example, if you type in:

| HATE COMPUTERS

the program will reply with:

1 PROBABLY HATE YOU AS WELL

and:

I KNOW A LOT

generates:

I KNOW EVERYTHING

56

Chapter 4 Making Reply

Alternative subjects

If you prefer the machine to agree with you rather than trying to beat you at
your own game, then just change the subject added to RLS$ to the second
element of the array (the ‘opposite’).

228 RLS=5USCEMY, 1 0+ELS
now:

I KNOW A LOT

generates:

YOU KNOW EVERYTHING

For more variety, you can pick the subject at random from the first or
second element, so that the reply is not predictable.

510 RSX=IHTCRMDC L 3+8.57
529 PL$=SUS SM¥, RS 0+RLE

Putting the subject in context

It would be more sensible altogether if we chose the correct subject
according to the context of the reply, but to do that we must have markers
in the reply array. We will use a slash sign*; " to indicate that the word in the
first dimension of the subject array is to be used, and an asterisk ‘*’ to
indicate that the word in the second dimension is to be used.

11079 DRATA ~PROBABLY HATE Y¥OU AS MELL,-L
OvE YOU TOO.-KILL OU A

11826 DATA #LISLIKE LOTS OF THIMGE. LIKE
CHIPS. ¥FEEL POWERFUL. ¥KMOW EVERYTHIHNG

We can search the reply string RP$(VM%) pointed to by the verb marker
VMY for a slash sign */’, provided that we rename this as IN$ before we
enter the INSTR check. If a slash sign is found, then the contents of the first
dimension of the subject array SU$(SM%.0) areadded tothereply RLS, less
the first character (the slash sign, see Flowchart 4.4).

S98 FLE=RPPEC WIS)

S1e IH$=RLE STY=1:THE="-":GOSLE S0

2 IF Is&w-a THEH 269

SB8 RLE=SU% SMY, 0 3 +RICHTS PLY . LEMCRLS »-1
219 GOTO 526

57

Artificial Intelligence on the Commodore 64

ADD ON
YES CUT OFF SUBTECT
w e IN FIRST [
/ DIMENSION

NO
YES CUT OFF SUBTECT
> i (BT |
DIMENGION
NO

Flowchart 4.4 Putting the Subject in Context

On the other hand if no slash sign is found in the reply then a second search
is made for an asterisk “*°. If this is found, then the second dimension of
SUS$(n,n) is used in the same way.

520 STe=1 TAF="+" COSUER 500

S99 IF I5WH6 THEW 228

220 FLE=SUESMY, 1 R IGHT$ RLS, LEHCRELE 21
3

220 E0TD 358

Now

I LOVE ME

will give:

1 LOVE YOU TOO
but:

I FEEL POWERFUL
produces:

YOU FEEL POWERFUL

Inserting into sentences

To make things simple, we have always started our reply sentences with the
subject. but in real life this is not always the case. Now that we have markers
in the replies to indicate what type of subject is to be added, we can also use
them to indicate where in the reply to insert this word or phrase. First we

58

Chapter 4 Making Reply

7N Y SET TAKE ADD ON ADD _J
/ B pinTeER LEFT END = SY87ECT RIGHT END
MATCH OF REPLY OIMENSION OF REPLY
NO
RESET
SEARCH
START
OUONUYES| SET TAKE ADD ON ADD _J
* POINTER |—— LEFT END woyBrecy RIGHT END
MATCH OF REPLY DIMENSION OF REPLY
NO

Flowchart 4.5 Inserting into a Sentence

will amend the DATA so that the word to be inserted is never at the start, to
make the insertion process obvious.

11879 DATA DO YOU RPEALISE THAT ~FROERELY
HATE “OU AS MWELL.WELL ~LOVE DU TOO
ti@s9 DATA IF ~LOM'T KILL YOO FIRET.z0 H

HAT #DISLIKE LOTS OF THIMGE

11099 ORTA 0D <LIKE CHIPS,WHY DO #FEEL F

OWERFUL, HOW DD $EHOW EVERYTHIMG

We actually already have a record of where to insert the word as 1S% tells
us where in the reply the slash or asterisk was found. Allwe needtodoisto
take the part of the reply before the marker, LEFT$(RLS$.IS%—1), add the
correct version of SUS$(SM%,n), and then the rest of the reply
RIGHTRLS,LEN(RL$)-IS%)

208 RPLY=LEFTSCRLS. T5%~1 M 50%C SM% . 8 4R ICH
T RLE,LEMOFLE 2-1S% 2

228 PLI=LEFT®CRLY, IS%-1 M3SU%C SM, 1 4R ICH
TE FLE, LENCRLE 0-TS%0 0

Now:
I WILL KILL HIM

59

Artificial Intelligence on the Commodore 64
produces:

IF I DON'T KILL YOU FIRST
and:

1 DISLIKE COMPUTERS

gives:

SO WHAT YOU DISLIKE LOTS OF THINGS

Although we are now inserting the subject into the reply sentence more
naturally, we are only dealing with one subject per sentence. Another
minor modification will allow us to insert any number of subjects into a
sentence. All we need to do isto keep repeating the search for markers until
no more are found. A start variable ST% is defined as I in line 500, and then
a search is made for the first type of marker. When a matchis found, ST% s
reset to one more than the match position. When RLS$ has been modified by
line 800 we now need to jump back to 510 to look for more markers. If no
match is found for the first marker then ST is reset to 1. The second type

of marker is then checked for in the same way.

SO0 RLE=FPECYMYC D 5TY=1
510 IMY=PL%: TR%=".":GOSUE S0
520 IF 1S58 THEM STH=I15%+1:G0T0 280
925 5Th=1

226 IHZ=RL$¢TH$="1" GOTUE S8
549 IF ISKHE THEM STH=IZ¥+1:CI

ITO 2326
“ig COTO "16

229 LOTO 528

11979 DATA DO YOl FEALISE THAHT ~FPROEBREL

W OHATE YOU AS WELL.WELL ~LOYE YOU TOUO

11989 DRTA IF <DOM'T EILL w0 FIRST

11985 DATA SO WHAT ~DISLIKE LOTS OF THI

NG5 ESPECIALLY #

11856 DATA DO <LIKE CHIPS,MWHY DO FFEEL

FPOWERFUL ¥ THIMNK #HNOW EVERYTHIHG

Now:

I KNOW EVERYTHING

60

Chapter 4 Making Reply
produces:
YOU THINK YOU KNOW EVERYTHING
and:
I DISLIKE COMPUTERS
gives:

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

OBJECTions on the SUBJECT

Everything is starting to look rosy until you try something like:

1 HATE YOU

which replies:

DO YOU REALISE THAT YOU PROBABLY HATE YOU AS WELL

The problem here is that we are jumping out of the search routine as soon as
the first match is found, and that although we are checking for the subject
‘I' we are finding the object ‘YOU’ first. As ‘YOU’ comes before ‘I in the
subject array this is found first, in spite of the fact that it comes later in the
sentence.

As we cannot practically mimic all the intricacies of the human brain, we
will have to make the assumption that the subject always comes before the
verb, and the object after it. In the program so far we have been checking
for the subject before we checked for the verb, and we will have to reverse
that order. The verb position in the input is the value of 1IS% when a verb is
found, so we will save that as a verb position VP9 pointer.

2o FOR M=9 TO VEX

218 ST%=1 TA$=YES$: M) GOSUE Sooa
229 IF 15%=9 THEH HEXT M:GOTO 19
228 YHX=M: YPE=15%

A

Now when a match with the subject array is found, we can compare that
position IS% with the stored verb pointer VP%, and reject the match if the
subject is positioned after the verb (see Flowchart 4.6).

6l

Artificial Intelligence on the Commodore 64

<‘£E’»NO

YES

SET (VM)
VERB
MATCH

SET_ (s5M)
SUBJECT
MATCH

!

Flowchart 4.6 Rejecting Object Matches

249 FOR M=@ TO 3SUX

258 STh=1:TRE=SUS M) : GOSUE D006

258 IF 1S%=g THEH MEWT M:GOTO 1o
279 IF IS%»VYPH THEM HEWT M:GOTO 18

208 SH=N

(If you are too lazy to retype those lines you can add a couple of jumps to
rearrange the order instead.)

148 GOTO 248
GOTO 509
GOTO 200
VM= VP [5%

IF I5%>PH THEM HEXT M:COTO 196

v
Y

=) ~J iR
I

[N R
h

[}
|39

Chapter 4 Making Reply

A change of tense

If we change to the past tense of the verb, we may or may not find this. With
the first five verbs the situation is straightforward: to change to the past
tense we just add ‘D’ to the end of the present tense. Both forms are
therefore accepted.

HATE HATED
LOVE LOVED
KILL KILLED
DISLIKE DISLIKED
LIKE LIKED

However, with the last two verbs the word changes completely, so there can
be no simple match. Although we might get away with checking for‘KN’, as
this is a rare combination, it would not be practical for us to use such a
common group as ‘FE’ as a keyword.

FEEL FELT
KNOW KNEW

It is casier if we treat all verbs in the same way and, if there are no
constraints on memory, then we can simply put all the possible versions
into the verb array in pairs.

1T SN2 WBH= 12 RFY=E

11850 DRTH HATE. HATED. LOVE . LOVED, KILL. K1
LLLED. DISLIKE. DISLIKED

11820 DARTH LIKE. LIKED. FEEL. FELT. KEMOW, KHE
7]

Unless we want to have different replies for the different tenses. we will now
have to divide the verb variable VMY by two, to point to the correct reply
for both forms.

220 WM=MZ o VPEE TSN

63

CHAPTER 5
Expert systems

A human expert is someone who knows a great deal about a particular
subject and who can give you sensible advice (‘expert opinion’)
on it. Such expertise is only acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they are often not on hand when a problem needs to be solved.

Scientists have therefore applied themselves to the problem of producing
computer programs which mimic the functions of such human experts.
Such programs have the advantage that they can be copied very easily to
produce an infinite number of experts, and of course they do not need tea-
breaks, sleep, pay-rises, etc, either! Of course, the computer must be totally
logical and can still only follow pre-programmed instructions entered by
the programmer. It is interesting to note that science fiction authors have
envisaged problems when the ultimate ‘experts’ (such as HAL in *2001: A
Space Odyssey’ or Isaac Asimov’s positronic robots) are faced with
alternative courses which conflict with more than one of their prime
directives and which produce not system crashes but ‘pseudo-nervous
breakdowns’.

Before we can start writing programs for ‘expert systems’, we must ask
ourselves how a human expert works.

Let us first consider the simplest situation, where the expert’s task is to
find the answer to a known problem.

First of all he takes in information on the current task.

Secondly he compares this with information stored in his brain and looks
for a match.

Finally he reports whether or not a match has been found.

What we need here is simply a database program which tries to match the
input against stored information. (See Flowchart 5.1). A user-friendly
system would accept natural language (see earlier), but to keep things
simple here we will stick to a fixed input format. To start with, let’s ook at
recognising animals by the sound they make. We set up two arrays: the
question array QUS$(n) contains the sounds which are known, and each

65

Artificial Intelligence on the Commodore 64

{ nr

Flowchart 5.1 A Simple ‘Expert’

element of the answer array ANS$(n) contains the name of the relevant
animal.

18 GUSUE 19w

1o90n DIM GUECd 2 ANSC G

199013 DATH MIADL, CAT. WUFF, DOG . MO0, COW, HO
0T . OML, HETIGH, HORSE

19828 FOR H=0 TO 4:PERD QUECH . AHECH 2 HE
AT M

18920 RETURH

Now we just need to ask for a sound and compare it with the contents of

QUS$(n).

28 PRIMT"HHAT MOISE DOES IT MRKE":

28 IHFUT IH¥

48 FOR H=0 TO 4:IF IHF=QUSHI THEH 1@

o8 HEAT H

E0 FRIMT"SORRY I DOHW'T EMOK THAT OHE"

B GOTO 20

108 PRINT "AH AHIMAL THAT ";0UscH» "z I3

H " AMHECHD

118 GOTO 2@

Perhaps we should say at this point that our computer expert may well be

better at this task than the human kind. as it cannot make subjective
judgements, become bored. or accidentally forget to check all of the

66

Chapter 5 Expert Systems

information in its memory. On the other hand it is not very literate as it
reports ‘A OWL’, etc. (We will leave you to tidy that up by adding a routine
which checks whether the first letter of the answer array match is a vowel.)

Rranching out

The example above is very simple as only one question is asked, and there is
only one possible answer. In reality we need to be able to deal with more
difficult problems, where the answer cannot be found without asking a
whole series of questions. For example, what should an expert do if he put
the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLAT BATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause, he should follow a logical path and make a number of
checks. The first thing to do is to check whether it is only the starter motor
which is not working:

IS IGNITION LIGHT ON? (Y/N)

If the answer to this is ‘N’ then there is no power at the switch, so the cause
must be one of the first three possibilities listed above. We can narrow
things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY?(Y/N)

If the answer is yes, then the battery cannot be flat and it must be connected
to the light switch correctly. So presumably the switch is broken and a
suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work, then the connections should be checked.

ARE BATTERY CONNECTIONS OK? (Y N)

If the answer is yes, then the battery is flat so you must charge it (or push!)

67

Ariificial Intelligence on the C ommodore 64

CHARGE BATTERY OR PUSH CAR

In the same way, a sequence of checks could be made to deal with a
situation where there is a power but the starter mechanism itself does not

work (the last three possibilities).

IGNITION
LIGHT
ON ?

o YES CHARGE
g OR
<)

NO

% REPAIR /
ONNECTIO

Flowchart 5.2 A Branching ‘Expert’

The simplest way to program this branching structure is by a series of IF-
THEN tests (see Flowchart 5.2).

FRIMT"FRAULT CIAGHOZIZ"

FRINT

FRINT"15 IGHITIOW LIGHT OH oYM
IHMFUT IHe$

IF IMg="%" THEH 129

PRIMT"DD LIGHTS MWORK CORRECTLY <Y~ HO"

TN & W iar
[oD A

68

Chapter 5 Expert Sysiems

IMPUT IM%

IF TH%="%" THEM 118

PRINT"FEPLACE IGHITIOH SHITCH"

g FUM

0 FRIMT"RRE ERTTERY COMHECTIOHS OF %«

= L0V]
e S

—-—
—

126 IHPUT IN$
120 IF INT="Y" THEN 1£6

148 PRINT"REFRIF COHMECTIOMS"

158 RUN

168 PRIMT"CHARGE BRTTERY OR FUSH CAR!™
178 RUH

186 ~-~-~- ete ———=-m

This sort of program is relatively easy to write, but as usual is inefficient as
it becomes longer and more complicated.

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays

SET
CURRENT
POSITION
(cP=1)

CP POINTED
To BY
N{cP)

Flowchart 5.3 Pointing to the Next Output

69

Artificial Intelligence on the C ommodore 64

and have pointers which direct you to the next question or reply, according
to whether you answer yes or no to the current question (see Flowchart
5.3).

The format for entering the DATA for each branch point is, then:

(TEXT).(Pointer for *YES").(Pointer for*'NO’)

The first question was:

IS IGNITION LIGHT ON2(Y N) ... 1

If the answer was ‘N’ then you need to ask the second question:
DO LIGHTS WORK CORRECTLY?(Y. N) ...2

Otherwise you need to continue with the other part of the diagnosis(which
we have not included but which would be point 7).

We need to set up three arrays: OP$(n) contains the output (text), Y(n)
the pointer for ‘yes’, and N(n) the pointer for ‘no’. To make the program
easy to modify, a variable NP is used for the number of points. The DATA
is read in groups of three into each element in these arrays. Where the
DATA point is a possible end of the program. this is indicated by the Y(n)
and N(n) pointers being set at zero.

16 GOSUE 1a@an
1aagn HE=7

)
[N

10918 DIM OFECHP 2 HE D HOHRF

11988 DATA "I9S ICGHITION LIGHT oM"Y, 2
11818 DRTA "DO LIGHTS WORE CORFECTLY!. 2.
4

11920 DATA "REFLACE SWITCH".d.9

11929 DATA "BFE ERTTERY COMHECTIONZ ORY,
)

119489 DATA "CHAFCE BARTTERY OF FUSH CARE".
W, e

118548 DATR "FEPRIE CDHHEETIDHC” a.8

116E0 DATH "=rezt of Prodcam-".8,08

120 FOR M=1 TO HP

12919 READ OFP$CH T, YR HOHD

iz028 MEXMT H

120880 RETUREH

The actual running routine is very simple. A pointer CP is used to indicate
the current position in the array: to begin with this is set to 1 and the first

70

Chapter S Expert Svstems

text printed. If this is an end point Y(CP)=0 (hardly likely just yet!), then
CP is reset to | so that the sequence starts again. On the other hand, if a real
pointer is present then an INPUT is requested. If the inputis‘Y’, then CP is
set to the value contained in the appropriate element of the Y(n) array,
otherwise it is set to the value contained in the N(n) array.

CP=1

’\d FRIMT OP$:.CPD

48 IF YCCFO=8 THEH 2B

SE IHFUT IHS

e IF TM®="'" THEM CP=YCF:GOTD 2@
78 CP=MHICP 3

S0 GOTO 2e

'a 1
<

]
i

(

L

A parallel approach

An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usually takes longer than followingan
efficient tree structure, but itis more likely to produce the correct answer as
no points of comparison are omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark | or 0 for the presence or
absence of these in each of our five modes of transport (see Table 5.1). If
you look closely you will notice that the pattern of results varies for each of
the different possibilities so it must be possible to distinguish between them
by these features.

Table 5.1: Presence or Absence of Features

bicycle car train plane horse

wheels
wings
engine
tyres
rails
windows
chain
steering

—_—— 00— O O -~
— 0 OO o OO C

!
1
1
1
0
1
0
1

SO = —O - O ~

1
0
1
1
0
1
0
1

We will enter these values as DATA and then READ them into a two-
dimensional array FE(n.n) which will hold a copy of this pattern. together

71

Artificial Intelligence on the C ommodore 64

with a string array containing the names of the objects OBS$(n).

16 GOSUE 1g8ou

1e0ee DIM OS50, FECTS, 20

11688 OATH EICYCLE.1.8,8.1.6.8.1.1
11019 DATA CAF.1,9.1.1,8.1.8.1
11928 DATA TEAIN.1,8,1.8,1.1.8.:4
11939 DATH FLANE,1.1.1,1.8.1.4.1
11949 DATA HORSE.9,8.8.9.8.8.8,1

12088 FOR H=1 TO &
1218 RERD OB%IH
12920 FOR M=1 TD &
ca2e READ FECH. M2
2u40 HEXT M. H
2009 RETURH

We can now ask whether the first feature is present or not and use the reply

to print out which modes of transport match at this particular point (see
Flowchart 5.4).

WHEELS 7

AN=1

Flowchart 5.4 A Parallel Approach

72

Chapter 5 Expert Sysiems

169 PRINT"DOES IT HAYE WHEELS

Zee INPUT IH®

510 AM=1:IF IH®="H" THEHW AH=B

528 FOR M=1 T2 5

529 IF FECH, 1 =AM THEHM FRIMT OE%CMD
998 HEXT M

In this case, answering ‘Y" will produce a print-out of:

BICYLE
CAR
TRAIN
PLLANE

and answering ‘N’ will produce a print-out of only:
HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as, although we have just shown that only a horse does not have wheels, the
program insists that we still ask all the other questions before it commits
itself. This is not really as silly as it seems at first, as if you answer ‘Y to the
next question (‘does it have wings’) you will see that the computer quite
logically refuses to believe in flying horses.

If we put the actual comparison part as a subroutine we can use it to
check for all eight features in turn. We would need to make slight
modifications, adding an array pointer AP which is incremented to check
the next element of the feature array FE(N,AP) in each cycle (see
Flowchart 5.5).

109 PRINT"DOES 1T HAVE WHEELS"
119 GosUe S@e

128 PRIMT"DOES IT HAWE WIHGS"
120 GOSUB 590

140 PRINT"DOES IT HAVE AM EMGIME"
150 GOSUE S

166 PRIMT"DOES IT HAYE TWRES"
178 GOSUB 548

189 PRIMT"DDES IT MEED RAILS
196 GOSUE Doa

2B PRIMT"DOES IT HAVE WIMDOWS"
z2la GOsUR SBe

229 PRINT'DOES IT HRWE A CHAIM®
228 GOsSUe Sua

73

Artificial Intelligence on the Commodore 64

244
258
480
410
519
K

& &

o
W

PRIMT"IS IT STEEFRELE"

GOSUE SPBY

PRINT

FUH

AP=AP+1:RH=1:IF IM$="H" THEM HM=W
IF FECH,HRP =AM THEM FRIMT OB$IM
RETLIEH

INCREMENT
ARRAY
POINTER
(AP)

AN=1

"N" NO

NO

MATCH
FE(N,AP) S

YES

PRINT
OBJECT

Flowchart 5.5 Checking the Features in Turn

Top of the pops

The previous routine will print out a list of matches for each individual
question as it proceeds, but it will not actually tell us which set of DATA is
an overall match for the answers to all the questions. We can produce a
SCORE which shows how well the answers match the DATA by having a
success array element SU(n) for each object, which is only incremented

when a match is found FE(N,AP)=AN (see Flowchart 5.6).

74

Chapter 5 Expert Systems

INCREMENT
SUCCE?S
(SUIN)

Flowchart 5.6 Measuring Success

PRIMT

PRINT"SCORE"

PRINT

308 FOR H=1 TO O

3160 PRIMT OBTCH I, SUTH

228 MHEAT N

529 IF FECH,AP)>=RM THEM FRIMT OB®IHI:3SUL
M 5=SUCH 3+1

16818 DIM SIS0

Q0 ~4 G
(g o]

QO o

If a complete match is found then SU(n) will be equal to 8. Where one or
more points were incorrect the score will be lowered. Scoring in this way is
particularly useful where the correct answers to the questions are more a
matter of opinion than fact (eg is a horse really steerable?), as the highest
score actually obtained probably points to the correct answer anyway.
(Notice that in this case each correct answer has equal weighting.)

Better in bits

You may have noticed that we just happened to use eight features for
comparison and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a byte. If we consider each
feature as representing a binary digit (see Table 5.2), rather than an
absolute value, then each object can be described by a single decimal
number which is the sum of the binary digits, instead of by eight separate
values. We will convert to decimal with the least significant bit at the top so
that, starting from the top at ‘wheels’, each feature is equivalent to 1, 2,4, 8,
16, 32, 64, 128 in decimal notation.

75

Artificial Intelligence on the Commodore 64

Table 5.2: Binary Weighted Features

bicycle car train plane
wheels 1 |] 1
wings 0 0 0 2
engine 0 4 4 4
tyres 8 8 0 8
rails 0 0 16 0
windows 0 32 32 32
chain 64 0 0 0
steering 128 128 0 128
sum total 201 173 53 175
INPUT
FEATURE
AN=1
NO
YES
AN=¢
AN=1NO
YES
SCORE =
RE +
BINARY
VALVE
INCREMENT
BINARY
VALUE

Flowchart 5.7 Producing a Binary Score

76

horse

[B o I o R

128
128

Chapter 5 Expert Systems

It is not too difficult to convert our ‘score’ of 1 to 8 into the appropriate
binary value, as long as we remember that the decimal value of the binary
digit BV must double each time we move down, and that we must only add
the current binary value to the score if the answer was ‘yes’ (AN=1, see
Flowchart 5.7).

If you consider for a moment, you will realise that we only need to keep
track of the total number produced, SU, by adding the binary values of the
‘ves’ answers. There is no need to loop through and check each part of the
array contents each time, or even to have a two-dimensional array at all!
The only DATA we need to enter are the overall decimal values for each
object, DV(n), and when all the questions have been asked we can check
these against the decimal value obtained by the binary conversion of the
‘yes, no’ answers, SU (see Flowchart 5.8). The simplest thing for you todo

Flowchart 5.8 Matching the Decimal Value

now is to delete everything after line 260 and start entering from scratch
again!

PREIMT, "SCORE" ;i SU)

PRINT

FOR H=1 TO 5

IF DAVOH =50 THEM FPRIMT, "OB%CH > COTD

HEXT H

FEINT, "OBJECT HOT FOUHE"
FRIMT

FUH

IHNPUT IH%

G- SIS~ &g -l
(ol WA I R A AN B A A BN]

Uhe Jo G200 Ja G300 o o

77

Artificial Intelligence on the Commodore 64

518 AM=1:1IF IH$="H" THEH RH=

529 IF AM=1 THEM SU=zU+EY
D20 EV=BEY+EY

S4d FETURN

19996 DIM OBECD L, DMOS
19813 BY=1

11680 DATR BICYCLE, 291
11819 DRTR CAR. 173
11028 DARTR TREAIM: 52
11928 DATA FPLAME. 1.5
11840 DATH HORSE. 12%
1206 FOR HM=1 TO 5
izele FERD QE$CHI, DWOMD
12928 HMEXT H

12869 RETURH

This approach obviously saves a 1ot of memory and time, as each array
element takes up several bytes and must be located before it can be
compared, so it is particularly useful where you are dealing with large
amounts of information. On the other hand, it does mean that you have to
calculate the decimal equivalents of all of the bit patterns before you can
use them, and it also gives you no clues when a complete match is not
found. (Note that you cannot simply take the nearest decimal value here, as
the decimal equivalent value of each correct answer depends on its
position.) Of course you could do the calculations the hard way, but if you
enter the bit pattern as a string, 18, then it is quite easy to convert it to the
equivalent decimal value DV by comparing each single character slice
MIDS$(I$,N,1) with ‘1" and then adding on the value of the appropriate
binary digit BD if a match is found.

2o BO=1:THPUT 1%

2uBle FOR M=1 TO 2

2oz IF MIDSCIF. M, 10="1" THEN DV=[4Y+BD
20928 EL=R0+ED

20849 MEXT H

28958 FRIMT OV

2000 FUH

78

CHAPTER 6
Making Your Expert System Learn for
Itself

Although the ‘expert’ systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance, which can be very tedious.

However, it is possible to construct an expert program which can learn
from its mistakes and work out the decision rules for itself, provided that
you can tell it when (although not where) it goes wrong. This is obviously
an advantage if you are not altogether sure of the correct rules yourself
anyway! In this case we start out with a series of features which should
enable us to distinguish between the different objects, but without any pre-
defined yes/ no pattern of these features (‘decision rule’) to guide us. Instead
we use the program itself to calculate what the pattern should be.

We will work with our familiar transport example and begin by setting
up some variables. FE% is the number of features to be considered (8),
FES(n) is an array containing the names of these features, FV(n) is anarray
which will hold the values which you give to each feature as input at any
particular point (0 or 1), and RU(n) is an array which will hold the current
overall values of the decision rule on each feature.

13 GOSUE 1wgee

1998y FEx=2

198 DIM FESCFEX 2 FYOFEN b, FLUCFER

198ze FOR M=1 To FEX

18920 FEHD FE$OH2

19840 HEST H

11023 DATH WHEELS . MINGE EMCIHE, TYRES, BRI
LS. WIMDOWS, CHAIN. STEERIHMG

12003 PETUEN

Each feature is considered in turn (see Flowchart 6.1). First the current
feature value FV(n) for this cycle is set to zero, and then a ‘yes/no’ input
INS$ is requested from the user on each point. If IN$ is ‘Y the feature value
element FV(N) is set to 1; otherwise it remains set at zero. This will produce
a pattern which describes the object as ‘0’ and ‘I’ in array FV(n).

79

Artificial Intelligence on the Commodore 64

NO
CUVRRENT AL
FEATURE CHELKED
VALUE =1

YES

DECISION
VALUE = @

UPDATE
DECISION

PRINT
DECISION

RULE

NO
YES z“} / PRINT /| | veoare | |

Flowchart 6.1 Learning to Distinguish Between Two Objects

o) FOR M=1 TO FEY

g FYiH =0

g FRINT FE$IM, " "

20 GET IM%:IF IM$="'" THEM 3¢
g8 FRIMT IM%.

119 IF IH$="4" THEM FW0(H =1
ZE HEXT M

Before you start a decision variable DE9% is set to zero. This is
recalculated as the sum of the current value of DE9%, plus each of the
feature values FV(N) entered, multiplied by the current decision rule values
RU(N).

125 LE%=8
130 FOR M=1 TO FE%

150 DEX=DEXHFYCH R H
163 HEXT M

178 PRINT "LE%= "iDEX

HD—HLLIKI‘»JC,

80

Chapter 6 Making Your Expert System Learn for Iiself

Which is which?

To start with we will consider the simplest situation where there are only
two possibilities — a bicycle or a car. Initially we make the distinction
between these quite arbitrarily by saying that if the final value of DE% is
equal to or greater than O then it is a bicycle, whereas if DE% is less than 0
then it is a car. It does not really matter that this is not actually true as the
system will soon correct itself. When the program has made a decision on
the basis of the value of DEY%, it requests confirmation (or otherwise) of the
result.

189 'IF DEXX=8 THEW PRIMT"IS IT R BICYCLE
Y5 IHFUT TN :GOTO 2ad

150 IF DEX<8 THEM FRINT"IS IT A CRE "i:1

HPUT IM%:5G0TOQ 224

Three possible courses of action may be taken according to whether or not
the computer’s decision was correct. If it was correct then effectively no
action is taken (a weighting variable WT9 is set to zero), and the program
loops back for another try. If DE% was >=0 but the computer was wrong,
then the weighting variable WT% s set to minus one, whilst if DE% was <0
but the computer was wrong then WT% is set to plus one.

2P0 IF IH$="%" THEM WT%=8:GOTO 248
219 WT%=~1:G0TO 248
220 IF IM$="%" THEN WT%=0:GOTO 248

228 WUTX%=1

The effect of the weighting variable is to modify the values in the rule array
RU(N), pulling them down when they are too high, and pulling them up
when they are too low.

24v FOF H=1 TO FEX

238 RUCH D=ELIH 4 FWH 2ENTE

2e PRIMT RUCH .

278 HEXT M

228 PRIMT

299 GOTO &p

The way the system operates is best seen by a demonstration. Type RUN

and then follow this sequence of entries. (Note that the punctuation has

been designed to give a screen format which clearly indicates the

relationship between your input values and the decision rule values.)
First of all enter these values:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAINY STEERING Y

81

Artificial Intelligence on the Commodore 64

The program will return with a decision value DE% of zero, as this is the
initial value and no modifications have yet taken place:

DE%=0

As DE% is 0, the system assumes that this is a bicycle and asks for
confirmation, to which the answer is of course ‘yes’.

ISIT ABICYCLE?Y

The print-out of the contents of the rule array RU(n) shows that these have
not changed from zero as the correct answer was, by pure chance, obtained:

0 0 0 0
0 0 0 0

Now try entering this sequence, which describes a car:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAINN STEERING Y

DE% is still zero, so the wrong conclusion is reached and the wrong
question is asked, to which the answer must be ‘no’.

DE%=0
IS IT A BICYCLE? N

Now, as a mistake was made, the decision rule is modified by subtracting
one from each value in the rule array where a ‘yes’ answer was given. The
contents of the rule array thus become:

-1 0 -1 -1
0 -1 0 -1

If you once more enter the values which describe a car, the program will
come up with the correct answer:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAINN STEERING Y
DE%=—5

ISITACAR?Y

-1 0 -1 -1

0 —1 0 -1

82

Chapter 6 Making Your Expert System Learn for Itself

Before you feel too pleased with yourself, try giving it the values for a
bicycle again, which it will get wrong!

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAINY STEERING Y
DE%=-3

ISIT ACAR?N

0 0 -1 0

0 -1 1 0

However the positive features which are common to the bicycle and the car
are now automatically increased by one, so that if you repeat this last
sequence it will now produce the correct conclusion:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAINY STEERING Y
DE%=1

ISIT ABICYCLE?Y

0 0 -1 0

0 -1 1 0

The situation has now stabilised and the program will always recognise
both car and bicycle correctly every time you enter the features which
describe them:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAINN STEERING Y
DE%=-2

ISIT ACAR?Y

0 0 -1 0

0 -1 1 0

Notice that the final value of DE% for a bicycleis 1, and foracar—2. If you
look at the rule array values, you will see that these correspond in both
number and position to the unique features which distinguish these objects
(CHAIN for bicycle, and ENGINE and WINDOWS for car).

83

Artificial Intelligence on the C ommodore 64

A wider spectrum

Although you have now managed to teach your computer something, it is
not exactly earth-shattering for it to be able to distinguish between only
two objects. Let’s expand the system to deal with a wider spectrum of
possibilities (see Flowchart 6.2). To start with we need to define the

ZERO ZERO FEATURE
— {DECISION |+ FEATURE PRINT V.
VALUES VALUE | FEATURE ALUE

UPDATE
DECISION
VARIABLES

PRINT
OBJECT WHICH ?
LIST

NO
UPDATE
RULES
ES
NO

UPDATE
RULES

Flowchart 6.2 Learning the Rules for a Wider Spectrum of Possibilities

number of objects we wish to be able to recognise OB%, name them as
DATA which we READ into a new array OB$(OB%). change our decision
rule array into a two-dimensional form, RU(FE%,0B%), which can hold
ru'es for each of the objects separately, and set up a decision array DE(n) to
hold decision values for each object.

84

Chapier 6 Making Your Expert System Learn for Iiself

19 GOSUE 180g0

19800 FEX=2:0B%Z=5

19918 DIM FESCFEX), FYOFESX D, BUCFEX, OB 3, 0°
E$COBRY 2, DECORY 3

jaazi@ FOR MH=1 TO FEX

1wz RERD FE®CH 2

19948 MEXT N

1e9a FOR H=1 TO OE%

1pvet RPERD ORS$CH

19973 HEXT H

11808 DATH WHEELS, WINGS ., EMGINE, TYRES. BRI
LS, MIMDOLS . CHAIM. STEERIHNG

11919 DATH BICWCLE. CRE, TRAIM. PLANE . HORSE
1zoe FETURH

Rather than just having a single decision variable DE%, we need here to
determine a decision value for each object each time. In each cycle we must
first set DE% to zero, and then zero every element in the decision array
DE(n) so that we start with a clean slate for every object.

28 DEY%=u

28 FOR H=1 TO 0OE%
4 DEC M 2=9

ok MEXT M

The values for each feature are then entered in exactly the same way as
before.

60 FOR M=1 TO FEX

vE FYOHO=E

20 FRINT FESCHI" v

S8 GET IM%:IF IN%="" THEM 99
168 PRINT IM%$

118 IF IN$="¥" THEH FViHNI=1
129 MEXT M

Each element of the decision array DE(n) is now updated according to the
status of the entered values FV(n) and the contents of the appropriate rule
array element RU(n,m).

128 FOF H=1 TO FEX

149 FOR M=1 TO QB

150 DECMI=DECM 34+F ' H 2P H. M)
1ee HEXT M.H

85

Artificial Intelligence on the Commodore 64

We now need to look to see if any of the decision values for any of the
objects DE(n) are greater than or equal to the overall decision value DE%.
If this is true, we set a ‘top score’ TS% variable equal to the number of the
object producing the best match.

178 FOR M=l TO OB% .
129 IF DECH)3=DE% THEM DEX=DECH D TEH=H
126 HEMT M

The best guess of the system is that this is the correct answer, so once again
it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

200 PRIMT "MRS IT “;0B$ TS " "
219 GET IM$:IF IH$="" THEM 210
215 PRIMT IH%

229 IF IM$="%" THEH zi@

If this was not the correct answer, the names and numbers of all the objects
are printed out and you are asked for the number of the correct answer
CR%. (The limitations on CR% prevent you crashing the program by
entering an illegal value.)

FOR H=1 TO DBX

FRIMT H.OBSCHD

ME¥T M

FRIMT “"WHICH WAS ITY;

GET CRY%:IF CR%<1 OR CRX:S THEHM 2Vd
PRIMT CRX%

P a2 P2 Fa g
=1 =} Gy N N

it o N kA

A check is now made to see if the decision value for each object DE(n) is
greater than or equal to the overall decision value DE% and whether the
object being considered is nor the correct answer. If both of these are true
then the rules are updated again by subtracting the correct feature values
EV(n) to bias in favour of the correct answer.

288 FOR H=1 TO 0OB%

230 PRINT DECH Y. DEX,CR%

9@ IF DE(CH»»=0E% AHD M CRN THEW FOR M=
1 TO FE%:RPUCH, Ho=RUCH M O=FWCM0 HERT 1
218 NEXT H

Now the correct feature values FV(n) are added to the rule array for the
correct object, to bias in the opposite direction.

86

Chapter 6 Making Your Expert System Learn for Iiself

20 FOF M=1 TO FEX
22O RN, CRY=RUCH, CFS 04FY 11
348 HEHT M

l'u l-‘l

Finally the status of the rule arrays are printed out so that you can see what
is happening.

FOR M=1 TO QFE=
FOF "M=1 TO FE%
FEIMT FLCH. M,
HEXT H

FRIMT

HEST I

LOTO 2

Lo —~-J6H QN
O A A A AN]

2 (8 I F0 By
1

Lo
| Y]
= o

Once again a demonstration is the best way to understand what is
happening so enter the following sequence:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAINY STEERING Y

The program will come back with the erroneous conclusion that it was a
horse, so you must tell it that this was wrong, when it will ask you for the
correct answer (bicycle = I):

WAS IT HORSE N

1 BICYCLE
2 CAR

3 TRAIN

4 PLANE

5 HORSE

WHICH WAS IT |

The statuses of the various decision and rule arrays are now printed out for
your information (note that the labels shown here are not included on the
screen).

(DE(N)) (DE%) (CR%)

C OO OO
SO OO O

1
]
]
1
1

87

Artificial Intelligence on the Commadore 64

1 0 0 1 0 0] | (bicycle)
-1 0 0 -1 0 0 -1 -1 (car)
-1 0 0 —1 0 0 -1 -1 (train)
~1 0 0 -1 0 0 -1 -1 (plane)
-1 0 0 -1 0 0 -1 -1 (horse)

A B C D E F G H
(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=Chain H=Steering)

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels, tyres, chain and steering — all
features which we defined as part of a bicycle and not found in a horse. In
addition, you will see that the values for these features in the bicycle rule
array are now all plus one, whilst the values for these features for all the
other objects are now all minus one.

Now give it the features of a car, which it will think a bicycle, and then
correct it. Notice that the rule arrays for bicycle and car are now amended to
take into account the new information.

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAIN N STEERING Y

WAS IT BICYCLE N

1 BICYCLE
2 CAR
3 TRAIN
4 PLANE
5 HORSE
WHICH WAS IT 2
3 3 2
-3 3 2
-3 3 2
-3 3 2
-3 3 2
0 0 =1 0 0 =1 1 0 (bicycle)
0 0 1 0 0 1 -1 0 (car)
-1 0 0 -1 0 0 -1 —1 (train)
-1 0 0 -1 0 0 -1 —1 (plane)
-1 0 0 -1 0 0 -1 —1 (horse)

Chapter 6 Making Your Expert System Learn for Iiself

A B C D E F G H
(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=chain H=steering)

Next give it a plane, which it decides is a car, and correct it again.

WHEELS Y WINGS Y ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAIN N STEERING Y

WAS IT CAR N

1 BICYCLE
2 CAR

3 TRAIN

4 PLANE

S HORSE

WHICH WAS IT 4
And now a train, which it still gets wrong!

WHEELS Y WINGS N ENGINE Y TYRES N
RAILS N WINDOWS 'Y CHAIN N STEERING N

WAS IT PLANE N

1 BICYCLE
2 CAR

3 TRAIN

4 PLANE

5 HORSE

WHICH WAS IT 3
And finally a horse, which comes out as a plane!

WHEELS N WINGS N ENGINE N TYRES N
RAILS N WINDOWS N CHAIN N STEERING Y

WAS IT PLANE N

1 BICYCLE
2 CAR

89

Artificial Intelligence on the Commodore 64

3 TRAIN
4 PLANE
5 HORSE

WHICH WAS IT 5

If you continue to feed your expert information, eventually it will get the
right answer every time. How long this will take depends upon the extent of
the differences between the features of the objects, and on the order in
which the objects are presented to the expert. Be warned that it can take a
long time before it becomes infallible. Here is one sequence which
eventually came out right every time.

plane (train) car (plane) bicycle (YES)
car (YES) plane (car) plane (YES)
horse (YES) plane (bicycle) car (plane)
plane (car) plane (car) car (plane)
car (YES) plane (car) plane (YES)
car (YES) plane (YES) horse (YES)
bicycle (YES) train (car) train (YES)
bicycle (YES) car (plane) car (YES)
plane (car) plane (YES) car (plane)
car (YES) plane (YES) car (YES)
bicycle (car) car (YES) plane (YES)
train (YES) horse (YES) bicycle (YES)

To see the final state of the rule array when the ultimate state is reached,
you can stop the program and then type GOTO 350 as a direct command.
As the final scale of values ranges from +6 to —2, you should not be
surprised that it took a long time to get there.

1 0o -1 1 0 -2 3 0 (bicycle)
-1 4 1 0 -1 1 -2 0 (car)

0 -1 1 -2 2] -1 —2 (train)
-2 6 0 0 -1 0 -2 —2 (plane)
=1 0 0 -1 0 0 -1 0 (horse)
A B C D E F G H
(A=wheels B=wings C=engine D=tyres

E=rails F=windows G=chain H=steering)

Of course, in a real application of such an expert system you could feed ita

90

Chapter 6 Making Your Exper: Sysiem Learn for Iiself

mass of collected information and conclusions on a subject area and then
leave it alone to digest this and to come up with the rules in its own good
time. As these rules are stored in arrays you could easily write a routine to
save these for re-use later.

9l

CHAPTER 7
Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. Forexample, Englishis a very variable
language and there are frequently alternative spellings of the same (or very
similar) surnames, which can cause difficulties.

One way around this problem is to try to match the sound of the word,
rather than the actual letters in it, by means of ‘Soundex Coding’, which
was originally developed to assist processing of the 1890 census in the USA.
This method of coding ensures that similar-sounding words have aimost
the same code sequence.

The rules for coding a word are as follows:

1) Always retain the first letter of the word as the first character of the code.
From the second letter onward:

2) Ignore vowels (a, e, i, 0, u).
3) Ignore the letters w, y, q and h.
4) Ignore punctuation marks.

5) Code the other letters with the values 16 as follows:

Letters Code
bfpv l
cgjksxz 2
dt 3
1 4
mn S
r 6

6) Where adjacent letters have the same code only the first one is retained.
7) If length of code 1s greater than four characters then take first four only.

8) If length of code is less than four characters then pad out to four
characters with zeros.

93

Artificial Intelligence on the Commodore 64

To make this clear here are some examples of Soundex Coded names:
BRAIN - B650

(Bis retained. R is 6, A and l are dropped. N is 5 and a zero is added to pad
out the code.)

CUNNINGHAM - C552

(Cis retained, U is dropped, both Ns are represented by the single code 5, lis
dropped, the third N is represented by 5. G is 2, H and A are dropped, and
M is coded as 5 — but the resulting code (C5525) is truncated to four
characters.)

GORE - G600

(G is retained. O is dropped, R is 6, E isdropped and zeros are added to pad
the code.)

IRELAND 1645

(1 is retained, R is 6, E is dropped. L is 4, A is dropped, N is S and D is 3—
but the resulting code (16453) is truncated to four characters.)

SCOT - 5230

(S is retained, C is 2, O is dropped. T is 3 and zero is added to pad the code.)
If your name is full of vowels and other rejected letters, then you will find
that your code is somewhat abbreviated!

HEYHOE - H000

(H is retained, all the other letters are rejected (!), and the code is filled up
with zeros.)

Coding routine

To save all that brainwork, let’s develop a program which allows you to
input a word in English and output it in Soundex Code (see Flowchart
7.1) The first thing to do is to jump to a set-up routine which reads each
group of the retained letters into one element of a Soundex Code string
array SC$(n). (Note that the letters are arranged so that they are in the
array element corresponding to their code value.)

94

Chapter 7 Fuzzy Maiching

INPUT TAKE 18T
AME LETTER
[; AS CO$

TAKE NEXT
LETTER
AS TM$
SEARCH
STRING =
CODE GROUP|
NO
Cnéexen N0 CMATCH
YES YES
SET TM$ TM$ =
CODE
EMPTY NUMBER
1 } f
ADD TM$
TO CO$
ZutcrepSNO
YES
PRINT
NAME
JAND CODE

Flowchart 7.1 Producing a Soundex Code

18 GOSUE 186099

189638 DM SCH &

110 DATH EFFY. CCES=2, 0T L. MHL R
FOR H=1 TU &

FERD SCHOM

HE#T H

FETURHM

Wi b
-
'
-~
-t

[N o WU A)
v

,_
=
-,
il

[N I

el ey
LU SN KU O

5 T = (T

We can now input the word to be converted, INS, and, to begin with, make
the coded version of this, COS, the first letter of that word (following the

first rule above).

95

Artificial Inuelligence on the Commodore 64

I IMPUT IHN%

(512
18 CO%=LEFT®CINE. 10

1
1
We now need to check the other letters of the word, 2 TO LEN(INS), inturn

after first making a temporary string TM$ equal to the current letter to be
translated.

129 FOR H=2 TO LEM IN%
1280 THe=MID%. IHNE, H. 12

As conversion to the code numbers will be required at various pointsin the
final problem, we will set up this process as a subroutine at line 1000.

146 GOSUE 1098

We have to check TM$ against each individual letter in each group of
letters SC$(n) to find a match. To check each letter group, we have to go
round six times, making a search string SES the current Soundex Code
group, and jumping to an INSTR routine which checks each letter in the
group against TM$ in turn.

lepd FOF F=1 TO &
1810 SEF=5CHCP
1928 LOSUE Soas

The INSTR routine is similar to the one used in previous chapters.

When the INSTR check has been made, we have to determine whethera
match has been found to any of the Soundex groups, and if so, to which
group. If no match is found then SP% will be set to zero. If a match is found
then SP% will be set to M which will point to the value of the code group
matched.

o698 FOR M=1 TO LEHCSE®?

5819 IF MIDSCSES, M. 10=THM$ THEH SPX=M:RET
URH

9828 HEXT M

5039 SPR=8

5849 RETURM

If a match is found, SP%>0, then we convert the numeric value of the loop
scanning the code groups P to a string TM$ which replaces our original
temporary string. (The STR$ command converts a number into a string,
but we also need to use RIGHTS as STR$ automatically adds a space onto
the front of the number string.)

96

Chapter 7 Fuzzy Matching

1928 IF SPN>@ THEH TH$=RICHT®.STRE$CF 1,12
'RETLIEH

If no match is found in that group, we have to check the next group.
1940 HEKT F

If no match is found at all, then TM$ must contain one of the characters to
be ignored. So we reset TM$ empty [$=""] and RETURN.

1958 THE=""
1968 FETUREH

We can now make the coded string COS$ equal to the original coded string
plus the newly converted character TM$.

178 COf=COS+TMS
Now we loop back to deal with the next character in INS.
189 HEXT H

When the end of INS is reached, we print out the input IN$ and the entire
coded string CO$ before going back to 100 for another input.

218 PRINT:FRIMT "HAME","CODE":PRINT IM%.
Ccos
328 GOTO 168

If you input the name STEVEN you will now get the code S315 which is
correct. However, if you try BRAIN or CUNNINGHAM you will get the
codes B65 and C55525 respectively. The code for BRAIN is too short and
needs padding out with zeros, and the code for CUNNINGHAM is too
long and the same codes are repeated one after another for the letter N.

Dealing with the details

To solve the problem of the repetition of the same code for adjacent letters,
we need to keep a record of the last temporary string LTS. We need to make
LTS the code of the first character in INS to start with, so that the initial
letter is not repeated. As we go through the FOR-NEXT loop, we must
compare LT$ with TM$, and if they are the same we must not add TM$to
COS. Otherwise we need to make LTS the latest TM$.

97

Artificial Intelligence on the Commodore 64

TAKE 1ST
[rmn Py it
A‘STN$ |* S0BRo0TINE

I
| SEARCH |
STRING=

| CODE GROUP(|

co$ =TM$ | I

| |

. | I
n 0

1 reuie | | |
I susrouTINE]

———d I I

™% =

|| seT TM$ tome |

| EMPTY NUMBER | |

LT$=TM$ | ! f |

| f I

! | |

TAKE NEXT -—_———————— -

LETTER
AS TM$
[t __J"' b |
:* TeHiNG |
Isueawrwe :
| I |
- ADD TM$
L =
T$ =T TO CO%

PRINT
CO%$=FIRST co$ =
NAME s d
ZND cope [|FOURCHARS ™"Ico$ + ppp

Flowchart 7.2 Dealing with the Details

118 TH$=LEFT$C IMS$, 1 »: CUS=TNS$: GOSUE 1229:
LT$=THM%

158 IF THM$=LT$ THEH GOTO 126

169 LT$=THE

Now we can sort out the problem of the code being too short. First of all we
check the length of the string LEN(CO$)<4. If it is too short, we add three
zeros on to the end and then use LEFTS to cut the string back down to the
correct size (four characters).

98

Chapter 7 Fuzzy Maiching

120 IF LEMCCO93¢4 THEM CO$=COs+"gn”: Cog
LEFT#CC0%, 4 |

Finally, if the string is too long then we cut it down to size with
LEFT$(COS$.4) again.

co0 IF LEMCCO% 024 THEW CO%=LEFTSCO%. 4

Matchmaking

Now that we have a reliable method of producing the Soundex
Codes, let’s give it something to work on. The first task is to read a
list of names out of DATA statements into a name string array NA$(n).
Our demonstration list only consists of eighteen names — if you want
more, a quick flick through your local telephone directory should soon
solve that problem! Note that the number of words is also stored as NW%,.

1699318 MWX=17:DIM MASCHWY)

11818 DRTAR HERRHAM, AEFAHAMS , ABFAMS , ADAM,
HORMES, ADDAMS . RDAMSON. ALAM. ALLAN, ALLEM
11920 DATA AHTHAMY . AHTHOMY , AMTOMY , AMTROE
LS, APFERLEY . APFLEEEE. RFPLEEY , APPLEFORL:
12928 FOR H=9 T0 17

1zv4@ RERD HAFIH

12038 HEXT H

The whole idea of matching with Soundex Codes relies on the fact that you
use the Soundex Code to make the match before printing the possible
words. We therefore have to find the codes for each of the names from the
DATA and put these coded into an equivalent string array NC$(n). The
routine to find the Soundex Code is virtually identical to the one used to
find the code of an input, as described above.

1020 DIM HCE HEE
12020 FRINT FRINT “"HAME", "CODE" FRINT

12978 FOR Q=8 TO HWX

12899 PREINT HA%C S,

12093 THE=LEFTECMABC D 3, 10 COE=THS : GOSUE
1089 LTE=THE

12189 FOR H=2 TO LEHCHABCQ 2

121168 THE=MIDECHAS QA2 H. 10

12128 GOSUE 1808

12128 IF THME=LT% THEM HEXT H:GOTO 12179
12149 LTE=THE

99

Artificial Intelligence on the Commodore 64

12156 CO$=CO%+TM%

12168 HEXT M

12178 IF LEMCCO% <4 THEM COf=COF+"0@a":C
DF=LEFTFCOF. 45

1218w IF LEMCCO% 224 THEM CO%=LEFT$CCO%. 4
12150 FRINT CO%

12200 HC$C R »=C0%

12218 HEXT @

If you RUN this now, you will see all the codes for the DATA produced
before the input request.

NAME CODE
ABRAHAM A165
ABRAHAMS Al165
ABRAMS A165
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY AS535
ANTHONY A535
ANTONY AS35
ANTROBUS A536
APPERLEY Al64
APPLEBEE Al4l
APPLEBY Al4l
APPLEFORD Al4]

The only thing we need to do now is to find which codes of these names
match the code of your input and then to print out these names with a
FOR -NEXT loop.

249 FRIMT

2580 FOF M= TO HWY

268 IF CO$=HCT H» THEH FRIMT HHFCH 2. HC%.
B

278 MEST M-

This will only print words with exactly matching Soundex Codes. For

100

Chapter 7 Fuzzy Matching

example, if you try entering the name APPLEBE you will get the following
response:

? APPLEBE

NAME CODE
APPLEBE Al4l
APPLEBEE Al4]
APPLEBY Al4l
APPLEFORD Al4]

Although APPLEBE (one E at the end!) is not present in the DATA, we
have found APPLEBEE and APPLEBY, as wellas APPLEFORD (where
the interesting sound at the end has been chopped off).

NOC OF CHR
CHECKED

YES
Flowchart 7.3 Partial Matching

101

Artificial Intelligence on the Commodore 64

Partial matching

Notice that on the other hand APPERLEY has been rejected. even though
it sounds quite similar at first. It would therefore be useful if we could also
print out partial matches.

This can easily be done by adding an extra FOR-NEXT loop. which
compares a decreasing section of the input LEFT$(CO$,M) with
decreasing lengths of the stored codes LEFT$(NC$(N).M) (sce Flowchart
7.3).

229 FOR M=4 TO 1 STEF -1

249 FRINT FPRIMT M: "CHRRFACTERS MATCH" :FRI
HT

269 IF LEFTECCOF. Mo=LEFTECHCE H . My THEH
PRIMNT HAFCM D HCECH

299 PRIWMT PRIHT "FRESS KEW TO COMTIHUE"

298 GET IM$-IF IH%="" THEM 228

2K

If you now try APPLEBE you can see the whole range of possibilities.

? APPLEBE
NAME CODE
APPLEBE Al4l

4 CHARACTERS MATCH

APPLEBEE Al4l
APPLEBY Al4l
APPLEFORD Al4l

PRESS KEY TO CONTINUE

3 CHARACTERS MATCH

APPLEBEE Al4]
APPLEBY Al4l
APPLEFORD Al4l

PRESS KEY TO CONTINUE

2 CHARACTERS MATCH

ABRAHAM A165
ABRAHAMS A165
ABRAMS A165
APPERLEY Al64

102

Chapier 7 Fuzzy Matching

APPLEBEE Al4]
APPLEBY Al4l
APPLEFORD Al4l

PRESS KEY TO CONTINUE

I CHARACTERS MATCH

ABRAHAM A165
ABRAHAMS A165
ABRAMS A165
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY A535
ANTHONY AS535
ANTONY A535
ANTROBUS A536
APPERLEY Al64
APPLEBEE Al4l
APPLEBY Al4l
APPLEFORD Al4l

PRESS KEY TO CONTINUE

CHAPTER 8
Recognising Shapes

We normally recognise objects using our senses of sight, sound, taste and
feel, whereas of course our basic computer can only obtain information
through the keyboard. Whilst itis possible to produce sensors which can be
interfaced with your machine to give it another view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We will make do instead with a simulation
of the action of a light sensor to illustrate how shapes can be recognised.

Let us think for a start about three simple shapes — a vertical line, a
square, and a right-angled triangle.

We can recognise these shapes by looking at the pattern they make onan
imaginary grid and deciding whether or not there is a point set at each X
and Y coordinate.

In the case of a line only the first X coordinate is used, but all of the Y
coordinates. A square is a little more complicated, as all the X
coordinates on Y rows | and 8 are set, and from Y rows 2 to 7 only the first
and last X points are set. Finally, a triangle is even more complicated, as
the slope is produced by incrementing the X axis each time

Table 8.1 Decimal Values of Shapes Described in Binary Form

Y row line square triangle
1 1 255 1

2 1 129 3

3 1 129 5

4 1 129 9

5 1 129 17

6 1 129 33

7 1 129 65

8] 255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and to produce a decimal value for each
row, in the same way as we did before when we were looking at expert
systems (see Table 8.1). In fact this type of approach is used to produce the
characters which you see on your screen display, the formats for which are

105

Artificial Intelligence on the C ommodore 64

stored in memory in just this form. For example Figure 8.1 shows how the
letter ‘A’ is built up.

There are now machines available (Optical Character Readers)whichcan
reverse this process. They actually ‘read’ a printed page by scanning the
paper in a grid pattern and measuring whether or not light is reflected at
particular coordinates.

Figure 8.1 Forming the Letter ‘A’

What they actually take in will be a pattern of ‘yes’ and ‘no’ for each
coordinate, and of course this must then be decoded and compared with the
patterns for known shapes. The most obvious way to make this comparison
would be to consider every point in turn as a binary digit and then to
convert each row back to a decimal value which could be compared with a
table of known values. However this has the disadvantage that we must
actually check every individual point on the grid (64 points).

A branching short cut

A quicker approach relies on the fact that each character can actually be
detected by looking at only a much smaller number of critical features of
the pattern. For example, Figure 8.2 gives a decision tree which will find all

106

Chapter 8 Recognising Shapes

Decision Tree for Alphabet

Figure 8.2a

107

Artificial Intelligence on the Commodore 64

P4
N 0 <
~N
z
2

20 21 22
Y N %
28 27 26
45 46 47
Y Y Y
51 50 49

19
Y
29
Y
,6

44

108

—

Figure 8.2b

Chapter 8 Recognising Shapes

the capital letters of the alphabet using only 12 points (see Figure 8.3), and
it is not even necessary to check all 12 in any particular case. If you follow
each of the routes, you will see that the maximum number of steps to be

6 X
’ X

Figure 8.3 Points Used in Decision Tree

followed is seven, and that most letters are found in less than five steps
(Table 8.2). This must obviously be quicker than companng all 64 points!

Table 8.2 Numbers of Steps Required for Recognition of Each Character

3steps - 1, D

4steps - L,J,C,G, 0, W
Ssteps - S, A, Q. R, T, F, U, space
6 steps - P V.Y, H

7steps - B, M, N,E, K, X, Z

109

Artificial Intelligence on the Commadore 64

To demonstrate how this approach works, we will simulate the action of
the scanning head by producing a grid on the screen, on which you can

construct characters.
The text screen start address 1024 and colour RAM offset 54272 are

defined as variables, TS and CO respectively, as they are used frequently.
The screen is cleared and a dark area 6 X 8 blocks is set up in the top
lefthand corner. A lighter-coloured 5X 7 grid is then superimposed on this
to mark the actual working area (of course there must be a margin around
the edge so that characters do not merge).

QSUE 1w

To=102d: C0=04272

i

e L

1)

pzees PRIMT "CCLFEIY

12919 FOR H=1 TO 1u

12828 PRINT

12628 HEXT H

12900 FOR W= TO

12919 FOR =0 TO 2

12028 POKE TS+CO+H+0 " Ha 5. 11
12028 POEE TS+E+0vidR . zz4
12e40 HEET Wi

12958 FOR #¥=1 TO0 3

12068 FOR 4=1 TO0 ¢

12079 POKE TS+IO+R+0 A4 0.1
12888 HEXT V.=

12998 w=1:=1

12198 RETUEH

A flashing cursor is now produced to show your position. CP is the current
position on the text screen, TS + offset, the current colour of which is saved
as CC by PEEKing the equivalent position in the colour RAM. A different
colour CC + 4 is then POKEJ into place and the original colour (CC)
POKEd back, so that there is no lasting effect.

28 GET H$

20 CP=TS+H+C Y440 0 CO=PEERY CP+C0O »: PORE CF
+C0, CC+4:POKE CR+CO. LT

49 IF R%="" THEH 1

T
&

The X and Y coordinates are updated according to the movement of the
cursor keys, and if the spacebar is pressed the colour of the current position
is set to black (0). If you make a mistake, the left arrow erases the current
position by resetting the colour to 1, or CLR jumps to the set-up routine

110

Chapier 8 Recognising Shapes

and erases all the current grid. Pressing RETURN leads to the decoding
routine, or else the program loops back to the keycheck.

90 IF A$="LRIGHT CURSORI" THEMW ¥=¥+1
e8 IF AE="LCLEFT CURSORI" THEM K=¥-1
IF A¢="C0O0WH CURSOR]" THEH Y='r+1
IF A¥="CUPF CURSORI" THEM ‘=Y-1

IF Rg=" " THEM POKE TS+CO+X+(vE48 0

~J

IO ®

O &

IF Ag="LC:--1" THEM FOEE TS+CO+#+0r¥48
IF AS="CCLRI" THEM COSUE 12860

IF ASCCAT =12 THEN zooa

GOTO 20

| aondlt onalll oo BRI S X) €]

s AV

Limits must be set to prevent the cursor wandering off the 5 X 7 grid area.

128 IF %<1 THEM ¥=1
148 IF X35 THEM #=5
156 IF Y<1 THEM ‘=1
168 IF Y37 THEM =7

The decision tree is held in a series of linked arrays where NB is the number
of branches, LE$(n) holds the names of the letters, C1(n) the X coordinate
to be checked next, C2(n) the Y coordinate to be checked next, N(n) the
nextelementto use if theansweris‘no’,and Y(n)the nextelementto useif the
answer is ‘yes’,

11880 HE=35Z

11910 DIM LESCHE », C1OHE 2, C2CHE 2, HOHE 3,9,
HE 3

11628 FOR H=1 TO HE

11078 FERD LESCH >, CLOH M, C20H 0 MO b, i H 2
11848 MEXT M

The best way to enter the DATA is probably as 53 separate lines (one for
cach branch point), as this makes it easy to enter and to edit out any
mistakes.

14018 DATA 1,1,2.19
14920 BATH ,1.5,2.18
14828 DATH PRCRIE P
14048 DATH ,S,1.5.9
14850 DRTH ,2.1,¢€.7

Artificial Intelligence on the Commodore 64

14868 DRTH " “JJJJ
14078 DRATH "S"Y, ...
14928 DATH “JY.. ..
14890 DATR "I". ...
14198 DATH .5.4.11.14
14119 DATA .9.5.12,12
141z DATR "C".. ..
14128 DRTH "G", ...
14149 DATR , 5.7V, 18,10
134159 DATH 204,170 16
14168 DRATH "H", ...
14178 DRATH "2"..,
14188 DRATH “D"s.»
14198 DATH ,5.1.28,8
14268 DATA .2.4,21.2
14219 DATH LJO.2, 27,2
14228 DATA L5, 7. 23,2
14238 DRTR .5,5.24.¢
14243 DATR "F".. 0.
14258 DATH "B, ...
14268 DRTA "R". ..
14278 LRTA LY. ...
14220 DATA "D, ...
14259 DATA .5.7.45,209
14208 DRATH . 2.6,21,44
14216 DATR .5.2,22.39
14228 DATH 51.5,22,36
14228 DATA L2, 1.24,25
14249 DATA "X", ...
14258 DRTH "2"..,
14268 DRTH J4;Z;39;3?
14279 DRTAH "K". .,
14228 DRATAH "E". ...
147290 DATA .2.4,49.42
14400 DATA . 4.2.42.41
1441 DRTH "M"..., .
14428 DATA "H".. ..
14428 DATA "H". ., ..
14446 DRTH “"W". ...
14459 DATA .2.1.,46,51
14468 DARTA ,1,5.47,568
14474 GATH , 2.4, 42,43
14428 DARATA "Y', ...
14498 DATA "W", ...

H,T]\. ~

T I'" [ARE LU Y
LA Poaato

112

Chapter 8 Recognising Shapes

14580 DATA "', ..,
14u1@ DATHR ,1,5.952,52
4529 DATA "T".., ..

14‘.:.'?‘;1 DRTH "F"....

If you are more confident (or are trying to save space) then all the DATA
can be condensed on to eight rather unreadable lines which are OK for
those who are good at counting commas, but very difficult to edit.

14918 DATA S1,1.2.19.,1,5,2,18, .32, 2, 4.3,
2O0.1.5,8,,3,1, 6,7, " "aaaaa"S L,

14828 DATH ”-J“.’J.‘.‘J”I“))J.‘ .'AS.-‘:".-II.II":"/JS
59,12, 1200 a0, .G aan-;;5»7119a15
14158 DRTH L 2.4, 1716, "R, "0, .. ,, "0
“'J.'JJ.‘S.‘1)-’38):““!.'J""'J._i)’.:...'a'-j':z:.':—l"33
14220 DRATH 5.7, 23, 26,.5,5,24, 2%, "P", . .,
'“B“.'J))J“P“J 4 “L“'J"‘“D"'"‘

14298 DRTR JSJT 4deU 2.8 31,49, ,5, 3,32
229, 105022 28, 2,1, 24535, 0 .,

14258 DATR "2, ., 04,2 28,37, EY, . ., . "E

")J))J':Jﬁ‘"#rl"‘;.?.l)4)‘..":.'41 B i
tdad29 DATH PN T HY s Y pas a1,
4!‘4--'1;.-14..!.-':“;JU.-.-;:1' 42,49, B SR
144533 DRTH "W, L0, "0, L ..., 1.5, 82,52, T

n (1} i
)!IJJFI)J.‘

To check the design produced against the patterns available (see Flowchart
8.1), the array pointer AP is first set to | so that the search is started from
the beginning. X and Y coordinates are read from the C1 (AP)and C2(AP)
elements pointed to, and the last position LP pointer set equal to the
current array pointer AP.

The point colour PC at these coordinates is determined by PEEK(TS+
CO+X+(Y*40)) AND 15. If this is zero than the point has been set and the
‘ves’ pointer Y(AP) must be followed. If any other value is found then the
‘no’ pointer N(AP) is followed. In either case a check is made to see whether
the element pointed to contains a zero (indicating the ultimate end of a
branch), which shows that a character has been found. If so, the
appropriate letter LES(LP) is printed, and the display is held until a key is
pressed, when a new cycle is initiated. As long as a higher value than zero is
found then this must be another branch point and so the program loops
back to 2010 and picks up the new values of CI{AP) and C2(AP).

To allow you to see which points have been checked, thesc are set to
different colours as they are found. ‘Yes’ and ‘no’ branches can be
distinguished as tested points which were not set, PC>0.and willnow be light

113

Artificial Inielligence on the Commodore 64

+

ARRAY
POIN{ER

COLLECT
COORDINATE

COLLYECT
ICOORDINATE

SAVE
CURRENT
POINTER

YES USE “YES'
POINTER

NO

USE "NO” NO
POINTER

YES

Flowchart 8.1 Character Recognition

green, 3, whilst points which were set will be red (3+1). Any points which
were set but not tested will remain black.

20908 AP=1

2018 H=C1CRP D Y=C20AF) : LF=HF

2Uz8 PL'PEEh\Tﬁ+"+N+'|#4ﬁ" HHD 13

26260 IF PC=@ THEM AP=Y(AP 3:GOTOD ZB5H
26848 AP=M AP O

2050 IF-AP=8 THEH 297d

2E50 POKE TS+CO+H+C 40), 2+(PC=0 1 GOTO &

2873 FRINT LE®CLP)
2980 GET A%: IF A%="" THEM zgza
2998 GOSUR 126080070 29

Chapter 8 Recognising Shapes

If you want to see which part of the tree was actually followed, then add
these modifications which will print out the sequence. The grid is moved
down the screen by adding an offset of 481 to SS and a blanking string BL$
defined which is used for partial screen clearance.

10065 EL$="

2885 PRIMNT"CHOMED" " AP":PRINT

25D PRIMT AP

287y PRIMT:PEIMT " Y, LE$CLP3:PRIMT

<e75 PRIMT"FRESS A KEY TO COMTINUE"

2085 PRIMT"CHOMED" :FOR M=1 TO 18:PRINT BL%:HE
¥T M

The disadvantage of this more rapid method, of only checking critical
points, is that it will make a mistaken match if it encounters a shape that is
not on the tree, whereas if all points are checked then no match will be
found in such a case.

Early Optical Character Readers would only accept a single particular
typeface, but the latest machines not only accept different styles of type, but
actually learn the recognition rules for themselves by means of a built-in
expert system. You teach these by showing them a few pages of text and
then entering these same characters via the keyboard. However we feel that
it will still be a long time before anyone can produce a machine that can
read OUR handwriting!

115

CHAPTER 9
An Intelligent Teacher

Another place where artificial intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student’s knowledge at random, but this is not how a real human teacher
works. As well as asking the questions, he keeps an eyeontheprogressofthe
students, increases the difficulty of the questions as experience increases,
and tests them more rigorously on the types of problems with which they are
having difficulties. For example, if a child takes a test involving addition,
subtraction, multiplication, and division, but only gets the division-type
questions wrong, then it follows that the child should be given more
division questions in the future to provide more practice.

Let's have a look at how we can introduce these *human’ qualities into a
teaching program.

Questions and answers

We need to create random numbers to be used in the first question,
which we will make addition. Using INT(RND(1)*10) will give numbers
between 0 and 9.

2 A= IHTORHDG L a1
ZHEREIHTORMD 1 ad1d

The computer adds these together and then goes on to an input and
checking subroutine at 1000.

!

A3 CH=RN+EY GOSUE 1m0
First, the routine must print the question and input your answer [P,

R PRIMT i " BN ey,
B1g IMFPUT IF%

Your answer must then be checked. If the program answer C9% is the same

as your answer, then CORRECT is printed and the routine returns to line
40. Otherwise WRONG is printed followed by the correct answer.

117

Artificial Intelligence on the C ommodore 64

1928 IF Cx~=I1F% THEM FRINT “CORPECT":RETU
R

Y328 FRINT "WROMG, THE CORFECT AMSWER WA
5 ";C%

1948 FETURH

The other three subjects (subtraction, multiplication, and division) can be
easily dealt with in the same way if we replace the ¢ + *signin line 1000 by a
sign string SG$, which we can set to the appropriate character at the time.
As INT(RND(1)*10) is common to all the calculations, we might as well
define this as a function RD.

DEF FHRDC W o=FHDC L 2¥18

A =FHRDCRDS S

Ex=FHROC AD®)

ShE="+" Cx=RANAEN : COSUE 1800
Hic=FHRLC S0

EX=FHRDC SUS D

Sne="-" CN=AN-EX: GOSUR 1008
2 AX=FHRDC ML

28 En=FHRDOMUS D

16 SGE="#" CREAKEEN: GOSUE 1989w
118 A%X=FHRDCDT?

120 EXN=FHRDODIZ D

120 SGF="-":CxN=Rx B%: GOSUE 1009
1008 PRINT AN SGE BY; ="

o

I L (X PO
Dot

& fo

Finally we jump back to line 20 to ask more questions.

140 GOTO 28

Dividing by zero!

As it stands. the program can crash if B% happens to be zcro when a
division is selected. This can be simply fixed by always adding one on to B%
in this case:

1268 ExX=FHRDCDIN 241

Deleting decimals
We are using integer variables to keep usto round numbers, but of course a

118

Chapter 9 An Intelligent Teacher

division may still produce a fractional answer, which you cannot enter
correctly: 1P% will be rounded down, eg:

3j2=15

The program will accept 1, 1.5, 1.9 or any other number between | and
1.999 ... as correct.

To avoid producing decimals, A% needs to be a multiple of B%. To
achieve this we calculate B% first and make A% equal to BG% multiplied by
a random number between 0 and 10.

1189 EX=FHRDC DI »+1
120 RX=IHTOFHREDS LIS 3 0B

Keeping a score

Now that we have the test itself working, we need to consider how to keepa
score. The simplest thing is to increment a tries variable TR% each time the
subroutine at 1000 is used, and to increment a score variable SC% each
time a correct answer is obtained.

1318 IMPUT IF%- TRE=TRZ:+1

1828 IF Cx=IFY THEMW:FRIMT "CORRECT":SC%=
SCYAL:GOTO 16409

1@4ad FRINT “VOUR SCORE IS “;SCHk: s TR
FETURH

If you prefer the score as a percentage then amend line 1040 as follows:

1948 FRINT "YOU HAYE HAD " IHTCC SON-TRY)
¥193 5, " CORRECT" : RETURH

How many questions?

As it stands the program will ask one question of each type in sequence., ad
infinitum. We can limit the number by defining the number of questions
NQ% as a variable.

19 Mex =22

Each time a question is asked. NQ% is decreased by 1, and when NQ%=0
the test ends (after eight questions of each type have been answered).

119

Artificial Intelligence on the C ommodore 64

158 IF H@%»8 THEW 28
160 EHD
1919 IHPUT IP%: TRH=TRY+1: HO%=HIE-1

Shifting the emphasis

If we are going to bias the questions in favour of areas of difficulty, then we
need to keep a record of performance in each individual area. We therefore
need separate variables for each type of question (AD% for addition, SU%
for subtraction. MU% for multiplication. and DI% for division). These
variables are defined in terms of one eighth of the total number of
questions to be asked NQ%.

19 HON=2F FON=HGS - SUN=ACG MUR=A0N DI
AL

Now if the correct answer C% is the same as your answer [P% then an
increment variable IN% is set to—1, CORRECT is printed, and the routine
returns. Otherwise IN% is setto 1, and WRONG is printed followed by the
correct answer.

1628 IF Ch=IF% THEH IMN=—1 FRINT "CORRED
T" : FETUREH

128 [HX=1 PRINT "WROHG. THE CORRECT HHZ
WER MRS ".C%

19482 RETURH

IN is added to the appropriate individual number of questions variable
AD%, SU%, MU% or DI% on returning, producing an increase in this
value if the answer was wrong, or a decrease if the answer was right.

48 SEE="+" CH=FUE%: GOSUE 1000 R0%=ALNH]
?% SGg="=" : Cx=R%~E%: GOSUR 1809: SUN=SUx+]
Tag SE="E" CHeFANEES GOSUB 1908 FUk=MUs+
155 SoE="" R BN GOSUR 1060 DIH=D 1%
TH%

Now we add a check to see whether all the questions of a particular type
have not been correctly answered (eg AD%>0, see Flowchart 9.1) If all
questions of one type have been correctly answered, then no more of this
type will be asked as the line is jumped over. If the appropriate number of

120

Chapter 9 An Intelligent Teacher

PICK
Ist No

PICK
2nND No

INCREMENT
TRIES
e
UPDATE
INDIVIDUAL
SCORE
* UPDATE,
SCORE

Flowchart 9.1 Intelligent Teacher

each type has been answered correctly (AD%=0. SU%=0, MU%=0
DI19%=0) then the program ends.

4 IF ADNSB THEM SG$="+", Ch=R%+E%: GOSUE

1886 - HLo=ADY+ M

78 IF SUKRE THEW SG$="-" Ch=RXx-B%: GOSUR
1808 : SUX=S10%+ M

168 IF MU%X8 THEM SGE="4":CH=A%IEX: COSU

E 1000 MUYN=ME+ TN

1268 IF ©IX:8 THEM SG%="-":CX=RX-EX: 505U

E 1008 DI%=0I%N+IH%

148 IF HOXN=0 AND SUN=0 AHD Mik=9 AND DI%

=@ THEM 168

Notice that you are no longer asked questions about areas in which you

121

Artificial Intelligence on the Commodore 64

have correctly answered four questions without making any errors. If you
make a mistake then ADY%, etc, will be increased and so you will have to
answer more than four correctly before AD reaches zero.

Degrees of difficulty

How about making the questions easier or harder according to how well
you are doing (ie the values of AD%, SU%, MU%, and D1%)? So far the
current values for A% and B% have always been between 0 and 9 as they
were produced by RND(1)*10, but we now need to bias the numbers
produced for the questions towards higher values, if you are correct, and
lower values, if you are incorrect. At the same time, we must ensure that
you do not produce negative values if your performance is abysmal.

The ‘worst case” will be if you get all the questions right in three of the
groups, and all the questions wrong in the last group. In this case only four
questions will be asked on the first three groups, leaving 32—(3*4)=20
questions to be asked on the last group. Inaddition we must remember that
X (eg AD%) starts at a value of 4, so that the maximum value of X which
could be obtained is 20+4=24.

We therefore set up a weighting variable WT9%, which is calculated by
subtracting three times the number of questions to be asked in each group
(3* AD%) from the total number of questions NQ%and adding back on the
number of questions in a group AD% at the start.

WT%=NQ%—(3*AD%)+AD%
This is more simply expressed as:
WT%=NQ%—(2*AD%)

18 W% =22 RDG=HDS S SUR=ADN LS =R D%
RE : MT3 MR- ZHA0%

We now replace the fixed value of ten by the difference betwen WT9% and
X.

15 DEF FHRD: & =MD 1 o BTS00

To begin with, WT9%=24 and X=4 so numbers between 0 and 19 will be
selected. If a correct answer is given, then X will be reduced to 3 and
numbers between 0 and 20 will be chosen. After four correct answers, X will
not change (for this type of question) as it will have reached zero and the
line will be skipped. The last values will therefore be between 0 and 22.

122

Chapter 9 An lntelligent Teacher

On the other hand if the first answer is incorrect then X will increase by 1
and the range of numbers produced reduced by 1 (0—18). In the ‘worst case’
X will be increased twenty times to 24 and (WT9%—X) will fall to zero for
both A% and B% (so you should be able to solve that particular problem!).

123

CHAPTER 10
Putting It All Together

In the previous chapters we have dealt, from first principles, with various
aspects of Artificial Intelligence. In this final chapter we have linked
together many of these individual ideas in a single complete program.

The original ‘intelligent’ program was the famous ‘ELIZA’, which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy. We have resisted the temptation to follow this lead and
have opted instead to produce a replacement for the average computer
salesman. This program combines some ideas on the processing of natural
language and on expert systems, to produce a result which should both
understand your requests and make suggestions which take into account
both your requirements and a number of hard commercial facts.

Enough words and values have already been included to make the
program interesting, but you can easily customise it by adding your own
ideas to the DATA. (We take no responsibility for the values included so
far. which are for demonstration purposes only, or for the views on particu-
lar machines expressed by the program!) The program itself is quite
complex but it follows the methods described earlier in the book and
the functions of the various line variables and arrays are given in
Table 10.1

Making conversation

The format of the program is that you are asked for your views on each of a
number of possible features in turn (the exact wording of the question
being selected at random from a selection of phrases). Note that the key
word or phrase is inserted into the sentence where necessary, and that the
correct conjugation is applied.

Your input is examined in detail for keywords, and a rule array updated
according to your requests. (If you want actually to watch the rule array
being updated then delete line 5490.) Many of the keywords are truncated
so that one check can be made for a number of similar words, and a test is
included to see if the matching string is at the start of a word.

The simplest answer is ‘YES’ or ‘NO’, which adds or subtracts I from the
rule for that feature. If you mention the name of the feature (eg
‘GRAPHICS’) then a further 1 is added to the rule. In addition, using a

125

Artificial Intelligence on the Commodore 64

Table 10.1 Main Variables in ‘Salesman’

SIMPLE VARIABLES

IS INSTR start

11% target string

12% search string

IP INSTR pointer

QP no. of question sentences
Q no. of questions

R no. of rules

BB bank balance

PH phrase number

PHS$ phrase words

M match marker

OF object flag

oM object match

LD like/dislike

FS rest of sentence pointer
NP negative pointer

Sl AND match pointer

S2 BUT match pointer

RU rule update marker

OB no. of objects

Al no. of adjectives

AV no. of adverbs

LI no. of likes

DL no. of dislikes

NJ no. of negative adjectives
NV no. of negative adverbs
HM no. of cheap/expensive
CcO no. of computers

FE no. of features

CT no. of cost ratings

CS no. of cost suggestions
EX no. of excuses

H1 no. of high price suggestions
LO no. of low price suggestions
TC total cost

TP total profit

126

ARRAYS

OBS$(OB) objects

AJS(A)) adjectives
NIS(NJ) negative addresses
AV3(AY) adverbs

NVS(NV) negative adverbs
LIS(LI) likes

DL$(DL) dislikes

Q%(Q) question objects
QP3¥(QP) question sentences
CR(Q) cost rate

PR(Q) profit rate

1C(Q) total cost

IP(Q) total profit
HMS$(HM) cheap/expensive
R(R) rules

COS(FE) computer names
FE(CO,FE) feature names
C(CT) cost ratings
CS$(CS) cost suggestions
EXS$(EX) excuses

HIS(HI) high messages
LOS$(LO) low messages

Chapter 10 Putting It All Together

‘positive’ adjective or adverb adds to the rule, whilst a ‘negative’ adjective or
adverb subtracts from the rule. Separating the words into different classes
allows you to make more than one change to the rule at the same time.

Thus:

YES

YES BASIC

YES BASIC NECESSARY

YES GOOD BASICNECESSARY

Whilst:

NO

NO MEMORY

adds one

adds two

adds three

adds four

subtracts one

subtracts two

127

Artificial Intelligence on the Commodore 64

Furthermore, verbs are grouped as ‘likes’ and ‘dislikes’, the last of which
reverses the action of the rest of the words.
Thus:

I DETEST MACRODRIVES subtracts one

Both ‘NO-" and ‘N'T’ are recognised, and most double negatives are
interpreted correctly.

Thus:
I DON'T LIKE SOUND subtracts two
I DON'T DISLIKE SOUND adds one

If anything appears at the start of a sentence and is followed by a comma, it
1s usually cut off and effectively ignored.
Thus:

NO, I DON'T WANT GOOD SOUND subtracts three

The exception is when ‘AND’ or ‘BUT are included, when both parts of the
sentence are acted on independently.
Thus if the question is:

DO YOU WANT GRAPHICS?
and the answer is:
NO, BUT I WANT GOOD SOUND

then one is subtracted from the graphics rule and twois added to the sound
rule.

If the program does not find any keywords in the input, it politely asks
you to try again:

PARDON, EXCUSE ME BUT...

The program can only cope with one feature at a time, so if you try to ask
for ‘SOUND and GRAPHICS’ at the same time, for example, you will get
a request for a repeat of the question.

HANG ON — ONE THING AT A TIME

However, it is possible to make comments about single features that you
are not being asked about at the time, and these entries will still update the
rules (as in the ‘BUT’ example above).

128

Chapier 10 Putting It All Together

shnis [— (o] [
ARRAYS QUESTI WD AD

ADD SPACE

INPUT PRINT ;
RESET
VARIABLES REPLY QUESTION

SUBTRACT

| FROM
CURRENT
RULE

LD= -
NO J
YES |NP=NP+1
Lb=-1
NO T
9 No RU —ve
LD = -1
YES
RU+ve
LD=1
(1)

129

Artificial Intelligence on the Commodore 64

ADVERB>ES | RU=RU+LD

(1)
YES LD=LD#%1
NO |
4@ YES lip-Lp*-1
NO |
RU=RU +LD
YES |RUZRUS
OM=0M+1
2'/ -

NO 1
~ve Y LD=LD % -1
DVERB £ RU=RU*LD
J

NO
{E‘ﬂv YES |Ry=Ru+LD

NO
“ve, YES |(ps=LD¥-1
{E‘m | RU=RU+LD

NO 1

EXPENSIVE)

130

Chapter 10 Putting It All Together

@

“PARDON"

NO
UPDATE.
@ ey CURRENT
RULE
NO *
UPDATE UPDATE
OBJTECT TWA/@%OST
RULE TOTAL PROFIT

YES @

NO

“CREDIT
STATUS”

131

Artificial Intelligence on the Commodore 64

(T
X=q Pog="" N=g
r:(~>
———a————~RULE) X
N
. - ADD N
N=CO N=N+1 26 PO$

NO YES

132

4)

Chapter 10 Puiting It All Together

)
TS=¢
BS=¢g
N¢C = YES | UPDATE
H=
CH=g mm,lgf'* @ TS + HI
NO T
UPDATE
BS + 10

PICK M YES
NUMBER 5)

NO

Artificial Intelligence on the Commodore 64

Decisions

In addition to the rule array, there are two other arrays which are linked to
this. The first is the ‘cost array’, which gives an indication of the cost of this
particular option, and the second is the ‘profit array’ which indicates to the
salesman how much effort it is worth putting into selling this feature. The
values for these last two arrays are produced by multiplying the content of
the corresponding rule array element by factors entered originally as
DATA in lines 10100, etc, where the format is:

(phrase describing feature, cost, profit)

After each input, the salesman considers the consequences of your
requests. First of all he looks to see if the sum total of the cost of all your
requirements exceeds your bank balance. If so, he prints out one of a series
of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE EXCEEDING YOUR
CREDIT LIMIT

He also looks at how much profit he is likely to make on the sale so far: if
this drops too low, he will start to lose interest and come up with comments
like:

I HAVE AN URGENT APPOINTMENT

or

WE CLOSE IN FIVE MINUTES

Atthesametime, he will be more helpful withregard towhich of the available
computers will fit your requirements, drawing up a short-list by comparing

the rating given originally to this feature in the description of each
computer with the value you put on it. The format for the descriptions is:

(name, value of feature 1, value of feature 2, value of feature 3, etc)

The highest rated machine will always be picked out first but, if possible, at
least three machines (possibly with lower ratings) will be selected and the
final choice is made from these. Either the highest or lowest cost computer
(at random) will be selected for mention, for example:

IF YOU WANT A REAL ROLLS-ROYCE THEN JUST LOOK AT
THE...

134

Chapter 10 Punting It All Together

and

IF YOU ARE IN THE BUDGET MARKET THEN WHAT ABOUT

THE...
If only one machine fits the bill, the program will come up with:

YOUR ONLY OPTION IS THE...

Salesman

19 GUsUB 5389

28 GOTO 2o

iog FOR IS=FT TO LEWII1%®:

116 IF MID$C I1%, IS, LENC IZ%20=128 THEM IP
=15: RETURN

128 NEXKT IS

139 IP=0:RETURHN

208 PH=RHOCC 1 24 uP+1;' PHS=UP$CFH 3

dlU I1$=FPHT " T2%=""FT=1:GOSUE leo:sP=IPF
228 1IF 5F=0 THEM 20U

239 IF LEFTSCO$EI, 10="1" THEHM PH$=LEFTS%
CPHE, 5P-1 s+ "REE" +RIGHT$C PHS, LEN: FHS >—-5F 3
399 IF SP=g THEH 4uvi

318 IF LEFTSCO$I0I, 1 0="2" THEM FH$=LEFTS
CPHE, SP=1 04" IS "+RIGHT®Y PHS, LEN: PHS 5-5F
3309 11%$=PH$: I2%="4%" :FT=1:GOSUR 108

419 IF SP=9 THEN 44b

420 FPHE=LEFT®{PHS,SP—-1 2+" "+FIGHTS LS
sLENT Q% @ 5 0—1 2+RIGHTSC FHE . LEMC FHE »~5F 2
439 GOTO SBO

348 FHE=PHE+" "+RIGHT$ LSCC > LENC Q%00 3 -
13

458 PRIMT:PRIMT

o900 FRIMT PH$,; 7"

5098 PRINT

Vo8 INg="

719 GET I%:FRINT "<CLEFT CURSORI";

/zg IF 1%="" THEM V18

730 IF I%$=CHR$: 121 THEM 304

V48 IMNF=IH$+]%

v58 FRINWT I%;

769 GUTO 7109

3 F
]

Artificial Intelligence on the Commodore 64

- 0
oo

Bg L

D=1:0F=-1:F5S=1:HP=0:Rl=0:M=6: 0M=9: S
1 52=

Y
998 I1%=IN%: I12%=",":FT=1:205U lag:CH=IF
918 IF CM=g THEH 1€

1000 11$=INS: [2%="AND" FT=1:GOSUE 18951
=IF
1810 12%=IN%: [2%="BUT" FT=1:GOSUE 1032

=Ip

1290 IF Si1+52=0 THEM 154@

139 IF LEFTSCIMS, 205" HO" THEM 1499
1319 RO =R =1 ICE R o=TCCQ »~CROG 2 TP @D
=IPCC-PRCG 2: GOTO 1500

1498 RCO=RCO I+ ICCQ =[O 2+CROG D : TPCCD
=IPCD PRI D

15608 IN$=RIGHT$. IHE, LEMY THE =MD

1668 T1%=IM%: I2%="YES" FT=FS:COSUE 1899:5
F=1F

1738 IF SPr9 THEM RU=PU+1:LD=1:M=1:FS=5SP
+1:507T0 leBw

1208 I1$=IM$: I2$="HO" FT=FS cZ0OSUB 19&:2F
=IF

1996 IF SP»8 THEHW Lb=-1:M=1:F5=SF+1:HP=H
P+1:GOTO 1288 .
2000 [1$=IHE: I2%="H'T" :FT=F5:Q0SUE 18@:5
pP=IF
21989 IF SP:B THEM LD=-1:M=1:F5=5P+1:MHP=}H
P+1=hUTU 29

2208 IF MP-a THEM 2209
2219 IF INT(HP-2 =HF-2
GOTOD 23w
2250. PU=RI-1:LD=~1
2289 FOR M= TO LI
2400 I1%=IHE: I2$=LI$ H»:FT=1:GCOSLE 104:

THEH RU=RU+1:L0=1

2418 IF SF=0 THEN 2569

2420 IF MIDCIM,SP-1.13=" " THEN LD=LD#
2506 HEAT N

2608 FOR M=9 TO OL

27RO 11$=IN$: I2%=0LSCH) FT=1:COSUR 198:5
2710 IF SP»@ THEH IF MID®C INS, 5P-1.1)="

" THEM LD=LD¥-1:M=1
2238 HEXT M

136

Chapter 10 Putting It All Together

2958 FOR H=8 TO 0B
BBBE 11$=IH$: 12%=0B%C M1 FT=1:GOSUE 198: S
P=1F

2510 IF SF>3 THEM IF MICSC IHS,5P-1.1 ="
" THEM RU=FU+LD: OF =M M=1 : DH=0M+1

2166 HEXT H

3208 FOR H=§ TO AY

3200 [1$~IMHS: I2%=AVECH Y FT=1:COSUE 188: 5
P=1IP

3210 IF SP=0 THEM Zeuw

2400 IF MID®C IM$,SF-1.1070" " THEH 2c86
35u0 RU=RU+LD: M=1

2600 MEXT H
2708 FOR MH=9 TO HV
23200 I1$=IM%: I2%=MVECHI:FT=1:G0SUB

15

IF SF=& THEH 4180

IF MID®: INE, SF~1,10050" " THEM 41
LD=LD%~-1:REU=R+L[: M=1

HEAT M

FOR M=0 TO H.

I1%=IMS: J2%~AJFCH 3 :FT=1:GOSUE 190:%

H LT
— @0 o0 i
[y}

[y

GH}DE'JQGIQH

p
&
&
?
&
4200
34269
=1
4218 IF SP~8 THEHM 4580
4499 IF MIDSC IM$, SP-1,100:" " THEH 4&0@
4588 RU=RU+LD: M=1
4£09 HEXT H
4786 FOF H=9 TO M
4208 [1%=IHS: IZ$=HI$ W FT=1 COSUE 188:5
P=1F
4219 IF SP=9 THEH 5196
42998 IF MIDSC IME, SF-1.13:" "THEH S1@0
5900 LD-L0$-1:FU=RU+LD: M1
S196 HEXT H
5118 FOR H=2 TO HM
S126 I1S=THS: I2%=HM$I M :FT=1:COSUP 199:S
p=IF

5129 IF SP=0 THEM 5156

5148 IF MIDHC IH$, SF-1 02" " THEM 51328
5156 Fe=H: IF ®¥<2 THEW FPRIMT"CHERP AHD H
ASTY" GOTO 515a

5168 1IF ¥Ms=2 THEH PRIMT"FATHEF EXFEHZIV
EII

5178 HEXT H

137

Ariificial Intelligence on the Commodore 64

51889 FREIMT

200 IF Mo1 THEH PRIMT "FPRFDOOH, FLEASE E
MCUSE ME BUT" :GOTO 286

S208 IF OM-1 THEH FRINT "HAMG OH - OHE T
HIMG RT A TIME" GOTO 286

S463 IF OF=-1 THEH 5445

3419 ECOF »=RC0F p4+RU: TOOOF 2=100 OF b+ TR OF
PEA =W

A28 IRCUOF)= IPCOF 0+ PROCOF 23R

S48 GOTO S494

TGy R G =R G R L s TO0 0 2 D00 G) DR D R D
CIRCD D= IR G+l FROD DR

S498 GOTOS9EA

5508 PRIMNT"CCLEI

SeRn FOR H=@ TO R:FRINT RIH»: HEMT H:PRI
MT

SYeR FOR M=0 T F-FPRIMT ICOHM»; HEST H:FR
IHT

S5eB8 FORE M= TO FP:PRINT IFCHY HEXT H:FR
INT

5980 FOR H-=0 TD OB

08l TC=TC+ICIH)

108 TP=TF+IPiM)

2N HEXT M

&288 IF TRP4R$S THEM TH=RMDO @ fEX -FRINT:F
FIMT EXETHx

40 IF TCHXPE THEH PT=RHDC G 0 PRIMT PR
INT CSECPT

€508 TC~8: TF=Y

6788 FOR X=2 TJ @ ZTEP-1 PQE=""

E200 FOR M=0 TO C0

G208 IF FEIH. QRO D2 THEW FOS=FOF+RICH
TECSTREI M, 1 2:M=H

To0n HEST M

7108 IF PO%$="" THEM HEXT ¥:COTO 7298
118 IF LEHCPOS 2 THEW MEXT ¥

7210 COTOFI0e

T350 FRIMT FU%

7308 IF PO%="" THEH 29208

TORE FOR HM=1 TO LEMFO%

TEDD FRIMT CO%WHLCMIDS FOS, M. 1000

Teog HEXT M

e PRIMT

To38 TS=9:BS—=10

138

Chapter 10 Punting It All Together

2080 FOR CH=a TO LEMIPO®I-1

210 NC=VAL MIDSCFO%., CH+1- 1 0

22 IF COMCHE=TS THEM TS=COMI:HI=HC
2208 IF COHCI=B5 THEM BS=C0HC »: LO=HC
24989 MEXT CH

2410 IF HI=LO THEM FRIHT"WOUR OMLY OFTIO
H IS THE":PRIMT CO$CHI »:GOTO 32080

2588 HI$=COSCHI b LOS=C0%E L0

2508 SE-RHOC 1 3+1

270 SL=RNDC L 2¥2

2200 IF SE=Z2 THEM S1a8

2998 FRINT HISCSL», ., HI%

209 GOTO 2294

5100 PRIMT LO%. 3L, .. LO%

9280 D=0+1: IF @28 THEM 266 ELSE EHD
2300 OF=3:0=15:RE=0: 0B=R:AI=2: AY=0: LI=3: [
L=2:HJ=3 :HY=2 :HM=2: PB=100

2210 DIM OBECOE D, AISCAL D, MISC MY D, AVED RY

N»$-4”1.LI$nLI,,[L$-[L SR

3220 DIM PRI, OFEDP), |PvHJ PP-H'-Ilrns.
IP'u,,HH$-HH'
9488 DATA ERSIC. GRAPHIC, SOUNHD. KEYEORRD . F
UHCTION, MEMORY . TRPE . MACPODRIVE, DISC
3319 DRTA SOFTHARE. CRRTRIDCE., JOYSTICE, AS
SEMEL. CEMTROMIC. PS222, EXPAMD
3423 DATA HETHORY. 1r EIT.MULTITHSE . SERYI
LE
95 DRTA GUOD., EXCEL, SUPER. MAGHIF.FIPST.
FRST.EFFIC.ESSEMT.LOT
2588 DRTH EHD,RUEEISH,PDDRJSLDH,IHEFFIC,
FEL, HORS, LEAST, LESS
avae DATA PEHL,”EP\,HFTEH FRED, MECESS, TR

20 DATH HEVER, UMMECESS. THFRELR
200 DATA WRMT, LIKE. HEED., REQUIRE
ljuﬂj CATA HATE. DISLIKE. LORTHE. [ETE“
tolea DATA G000 ERSIC, 3, 2, RBEREAFHICS
S RS0OUMEL &L 2, 4/ GOOD HE:BUHPD.#;-
181193 DARTH EFUMCTION KEYS.1.5.%R LAFCE M
EMORY. 2,5, %8 THPE IHTEFFHFE:_ 2

19128 DATH EMACEODRIVES, 2. 4, 20ISCS,. 5.2, %
EATEHSIVE SOFTHARE.B. S

168133 DATA %2R CARTRIDGE FORT. 1 E
1208 DRTA &A JOWSTICKE PORT. 1.7,

o luC
"unu

[aa]

139

Artificial Intelligence on the Commodore 64

MELER. 2, 1,8 CEMTROMICS PﬂPT.¢ =

19219 DATR “AM RPS23E2 FHFT 2.0 LEXFPAMDAET
LT, 2,2, AHETHORKTIMG . 2, 4

19228 CDRTH &R 16— ~BIT LPUJIJFJ&HULTITHSKI

HG. 5., 9, 256000 SERVICE. 1.3

18298 DATA WOULD YouU LIKE.WHRT REOUT . HOW
AEDUT. DO YO WANT ., 0O vWOU REQUIRE

1e218 DATA <~ IMPORTHHT

19220 DATA CHEAF. IMEXPEMSINVE

19234 DATA DERF. EXPEMSIVE
1949 FOR H=9 TO OB:READ DBSCH I :HEMT M

16508 FOR M-8 TO AJ:RFERD RJFCH:HEXT H
195 FOR H=8 TO HJ:RPERD HIECH:HEXMT H
16798 FOF H=9 T3 A/Y:REARD AVEIH - HEXT H
19883 FOR M=@2 TO HY: READ MMECH I HEKT M
19208 FOR M= TO LI:RERD LICHX:HEXT M
110869 FOF M= TO DL:RERD DLECHI-HEXKT H
11188 FOF MH-2 TO 2:RERD QFCHI, CROH I, PROH
S HERT M

11208 FOR HM=g TO QFP:READ QPECH:HEAT H
11218 FOF H=20 TO HM:REARD HME M »:HEXT H
11206 PRINT"CLCLEI" Q=2

11498 FRINT "IT IS MY PLEARSURPE TO WELCOM
E WO TO THE MULTIMEGA MICROZTORE"

114189 FPRINT

11588 PEIMT"WE AFE UHDOUETEDLY THE ULTIM
ATE SOURCE 0OF ALL COMRPUTER PRODLCTS"
1150085 PRINT

11518 PRINT"I SHALL HAVE FLEASURE 1M HEL
FIHG YOLESELECT WOUR HER MECHIME"
11515 PRINT

11w PREIMT"SO THAT I CHW WORE OUT THE E
EST COMPUTER"

11618 PRINT"FOR YOUR PARTICULAR HEEDS FE
FHAFPS"

11528 PRINMT"YOL WOULD BE FIHD EMOLGH T
AHSMWER H FEW GLESTIOMS

11658 FRINT

11788 FPIHT FEIMT"AFE YO FERDY":

EE CO=2: FE=12:CT=% LIM CO%CFE . FECCD.
F Fﬂ FE.COCT D

RTH JCH PC, 7,202,589,
i e B B

EHACT SERIOUS.E.7,6. 8,8, 9,

e I B

(2]
(¥l
(]

Wt
4w
i)

E H
A s E
] HTH

—) e T
[RNIRS »—-m»—»
.L

l"ﬁ G; ' .L'

g
e
i
3

[
R)
[

-
[

140

Chapter 10 Putting It All Together

’ PR 4 [l VL

1 LHTH ILEHP IH HT “. SALTLTLENR S,
)63?!?)0»5)"!1: 4 4 1

12206 DATH HCHROH ILLUQIHH =P OO O R
.-U-‘.u_ B35 0,0,4,1.8,0.

ATR BAMAMA IIE.Z a?a5s5:4:5;@u
H'JJJIH B, 6, 7.9.8,08, 4

1242083 DRTA 51 ELITE. 2.2, 2.7, 7. 2,208, 7.2,
A R P S TN S I G e

-~
L
A
C
.
I
L

12598 DRTH CDLECTDUISIDH CHEBRGE, 5. 5. 5.5
2 2,5,5.59.8.1,7.7 .8, BoE, D908, il
1ze08 DATA CAMDY COLOURPED COMPUTER. 7. 2. 4
2,02, 7.0.4,3,2.7.80.04, l.v.__?.H Kk

ae DRTH EDHHH[EHP =4, SELTLT D

CTLELEL 2, 20,08,8, 5

HTH ATRIA- :DDGT 1.2.2.9.8,.2,5,8.7
TLULEBLEL S BR85S

DATAH 19, u..JJJ9,4JE,J,2:1

FOF M=0 TO 0

RERD 0% H

FOF M=a TO FE

FPERD FECHM.M

HEXT M.H

FOrR H=2 TO CT

FERD oM

HEXT M

GET HA%:IF A%="" THEH 12204

DHTAR I THINE O ARE GETTIHG OUT O
UUP FRICE PRMGE
12210 DATA THIS SPECIFICATION SEEMS TO E
E EMCEEDINGYOUR CREDIT LIMIT
13920 DATA 1 COM'T THIMKE THARAT YOU CAH AF
FORD SUCH LUSURIES
14008 DATA EXCUSE ME I CRAM HEARR THE FPHOH
E RIMGIMG, I HRVE AH URCEMT RPPOIMTHEMWT
14819 DRTAH WE CLOSE IH FIVE MIHUTES
14190 CS=2:EX=2:DIM CSECCS s DIM EMNSCERD
14298 FOR H=0 TO CS:FERD CSECH:HEXT H
14208 FOR H=9 TO E¥:RERD EXEIHI:HEXT H
144989 DATA IF YO ARE IN THE BUDCET MARE
ET THEH WHRT REOUT THE-
144180 DATAH AH IHEXPEMSIVE CHOICE IS THE.
YO GET GO00D WYALLE FOR MOMEY WITH THE
14599 DATA IF YO WAMT R FIRST-CLAZS FRO

S 50 12 J G“'
@G'«

't

09 S5~
[t Rl o I U I e Y IR

AL N e e O 0D)

O G &

PR U ST R PN T O S R e i (UL SY]

-nHHHHH)—‘HHHHV—“ HG‘I’—A‘-
XAt o)

141

Artificial Intelligence on the Commodore 64

DUCT THEM wOU MUST TFY THE

14510 DRTA FOR STATE OF THE ART TECHHOLD
G YOU CAM'T BEAT THE

14528 DATA IF YOU MANMT A RPOLLS-ROYCE THE
M JUST LOOK AT THE |

14600 HI=2:L0=2:0IM HISCHI ».LOSIL0Y
14700 FOR H=Q TO LO:READ LAKCHY:NEXT H
14853 FOR H=9 TO HI:FEAD HISCH::HEXT M
14968 PRIMT"CCLRI" RETURH

Commentary
Lines 100-130: Contain an INSTR routine.

Lines 200 -440: Pick the words to be used in the next question, and select the
correct conjugation.

Lines 500 800: Set up your INPUT and reset variables.
Lines 900 910: Check for a comma.

Lines 1000 1200: Check for ‘AND’ and ‘BUT". If neither of these is present
the program jumps to line 1500.

Lines 1300-1310: Update the current rule negatively if ‘AND’ or ‘BUT" are
present and the first word is ‘NO’,

Line 1400: Updates the current rule positively if AND’ or‘BUT" are present
and the first word is not ‘NO’.

Line 1500: Deletes anything preceding a comma.

Line 1600-2100: Check for ‘YES’, ‘NO’ and ‘N’T’ and update the current
rule accordingly.

Line 2200: Checks for a double negative.

Lines 2300-2500: Check for ‘likes’.

Lines 2600 2800: Check for ‘dislikes’.

Lines 2900 5100: Similarly check for objects, adjectives and adverbs.

Lines 5110-5190: Check matches for high and low cost key words.

142

Chapter 10 Putting It All Together

Line 5200: Checks for no match and reports.
Line 5300: Checks for more than one object.

Lines 5400-5440: Update the current rule, or another rule, according to
whether or not the object matches the current question.

Line 5490: Jumps over the print-out of the rules.

Lines 5500-5800: Print out the rules.

Lines 5900-6200: Update the total cost and total profit values.

Line 6300: Prints an excuse if the profit seems too low.

Line 6400: Prints a warning if the spending is too high.

Line 6500: Zeros the total cost and profit values.

Line 6700-7120: Search for computers which match your requirements.

Line 7310: Jumps over the print-out of matching machines.

Lines 7350 -7800: Print out the matches.

Lines 7900-8400: Pick the highest and lowest priced machines which match
the specification.

Line 8140: Checks if only one machine was selected.

Lines 8500-9100: Print out the name of either the highest or lowest priced
machine.

Line 9200: Updates the feature to be checked and returns for another input.

Lines 9300-11300: Enter the information on features, keywords, costs and
profits.

Lines 11400 11700: Provide an introduction.

Lines 11800 13800: Enter the information on the names and virtues of
particular machines.

Lines 13900 14300: Provide warnings and excuses.

143

Artificial Intelligence on the Commodore 64

Lines 14400-14900: Contain the words for high and low cost messages.

The rest is up to you

Artificial Intelligence is a fascinating subject, and we trust that we have
given you enough information to get you started on your own experiments
in this area. We have certainly enjoyed making our own explorations whilst
putting this book together, but we have started to wonder how long it
will be before someone designs an expert system program which writes
books ...

144

Artificial Intelligence on the Commodore 64 shows
you how to implement Al routines on your home micro
and turn it info an intelligent machine which can hold
a conversation with you, give you rational advice,
learn from you (and teach you) and even write
programs for you.

The book explains Al from first principles and
assumes no previous knowledge of the subject. All
the imporiant aspects of Al are covered and are fully
illustrated with example programs.

For many years science fiction books and films have
contained ‘intelligent’ computers which appear to be
at least the equal of man. Although some of the
features described in these remain illusions,
extensive research into Al has brought many of the
ideas much nearer reality.

Keith and Steven Brain are a father and son team and
have already published the best selling Dragon 32
Games Master and Advanced Sound and Graphics for
the Dragon computer. They are both regular
contributors to Popular Computing Weekly.

ISBN 0 946408 29 7 £6_95 net

