
artificial intelligence
on the commodore 64
make your micro think

keith &steven brain

artificial intelligence
on the commodore 64
make your micro think

keith &.steven brain

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)

12-13 Little Newport Street,

London WC2R 3 LD

Copyright © Keith and Steven Brain. 1984

All rights reserved. No part of this puhlication may he reproduced,

stored in a retrieval system, or transmilled in any form or hy any means,

electronic, mechanical, photocopying, recording and/ or otherwise, with­

oUlthe prior written permission of the Puhlishers.

British Library Cataloguing in Puhlication Data

Brain, Keith

Artificial intelIigence on the Commodore 64.

I. Artificial intelIigence 2. Commodore 64

(Computer)

I. Title II. Brain. Steven

001.53'5'0285404 Q335

ISBN 0-946408-29-7

Cover design by Graphic Design Ltd.

l\Iustration by Stuart Hughes.

Typeset by V & M Graphics Ltd, Aylesbury, Bucks.

Printed in England by Short Run Press Ltd, Exeter.

2

CONTENTS

Page

Introduction 7

I Artificial Intelligence 9

2 Just Following Orders 13

3 Understanding Natural Language 29

4 Making Reply 47

5 Ex pert Systems 65

6 Making Your Expert System Learn for Itself 79

7 Fuzzy Matching 93

8 Recognising Shapes 105

9 An Intelligent Teacher 117

10 Putting It All Together 125

3

Contents in detail

CHAPTER I
Artificial Intelligence
Fantasy - reality: two-way conversations, robots, expert systems.

CHAPTER 2
Just Following Orders
Preset orders and fixed responses - DATA arrays - expanding the
vocabulary - removing redundancy - abbreviated commands - partial
matching - sequential commands.

CHAPTER 3
Understanding Natural Language
Dealing with sentences - subjects, objects, verbs, adjectives, adverbs _
punctuation - a sliding search - rearranging the word store array.

CHAPTER 4
Making Reply
Getting more sensible replies - making logical decisions before replying ~
choosing the correct subject - problems with objects - changing tense.

CHAPTER 5
Expert Systems
How an expert works - simple problems - more difficult problems -
including pointers - sequential and parallel branching .- checking how
well the answers match the data - better in bits.

CHAPTER 6
Making Your Expert System Learn for Itself
Letting the computer work out its own rules for two objects - a wider
spectrum - watching what happens.

5

Artijiciallmelligence on the Commodore 64

CHAPTER 7
Fuzzy Matching
Recovering information from the human mind - Soundex Coding - a
computer program for converting names - retrieving information.

CHAPTER 8
Recognising Shapes
Simulating the action of a light sensor - inserting into sentences - a

branching short cut.

CHAPTER 9
An Intelligent Teacher
Questions and answers - keeping a score - shifting the emphasis of
questions to areas of difficulty - making questions easier or harder.

CHAPTER 10
Putting It All Together
Making conversation with the computer - making decisions, cost arrays
and profit arrays - the Computer Salesman.

6

Introduction

Artificial Intelligence is undoubtedly an increasingly important area in
computer development which will have profound effects on all our lives in
the next few decades. The main aim of this book is to introduce the reader
to some of the concepts involved in Artificial I ntelligence and to show them
how to develop 'intelligent' routines in BASIC which they can then
incorporate into their own particular programs. Only a superficial
knowledge of BASIC is assumed, and the book works from first principles
as we believe that this is essential if you are really to understand the
problems involved in producing intelligence, and how to set about
overcoming them.

The basic format of the book is that ideas are taken and suitable routines
built up step by step, exploring and comparing alternative possibilities
wherever feasible. Rather than simply giving you a series of completed
programs, we encourage you to experiment with different approaches to let
you see the results for yourself. Detailed flowcharts of most of the routines
are included. The main emphasis in the routines is placed on the AI aspects
and we have therefore avoided 'tarting up' the screen display as this tends to
obscure the significance of the program. In places you may notice that odd
lines are redundant, but these have been deliberately included in the
interests of clarity of program flow. As far as possible, retyping of lines is
strenuously avoided but modification of lines is commonplace. All listings
in the book are formatted so that they appear as you will see them on the
screen. In most cases, spaces and brackets have been used liberally to make
listings easier to read but be warned that some spaces and brackets are
essential so do not be tempted to remove them all. All routines have been
rigorously tested and the listings have been checked very thoroughly so we
hope that you will not find any bugs. It is a sad fact of life that most bugs
arise as a result of , try ping mitsakes' by the user. Semi-colons and commas
may look very insignificant but their absence can have very profound
effects!

Artificial Intelligence is increasing in importance every day and we hope
that this book will give you a useful insight into the area. Who knows - if
you really work at the subject you might be able to persuade your machine
to read our next book for itself!

Keith and Steven Brain
Groeswen, January 1984

7

CHAPTER 1
Artificial Intelligence

Fantasy
For generations, science fiction writers have envisaged the development of
intelligent machines which could carry out many of the functions of man
himself (or even surpass him in some areas), and the public image of
Artificial Intelligence has undoubtedly been coloured by these images. The
most common view of a robot is that it is an intelligent machine of generally
anthropomorphic (human) form which is capable of independently
carrying out instructions which are given to it in only a very general
manner.

Of course, most people have ingrained Luddite tendencies when it comes
to technology so in the early stories these robots tended to have a very bad
press, being cast in the traditional role of the 'bad guys' but with near­
invincibility and lack of conscience built in. The far-sighted Isaac Asimov
wove a lengthy series of stories around his concept of 'positronic robots'
and was probably the first author really to get to grips with the realities of
the situation. He laid down his famous 'Three Laws of Robotics' which
specified the basic ground rules which must be built into any machine
which is capable of independent action - but it is interesting to note that he
could not foresee the time when the human race would accept the presence
of such robots on the earth itself.

'Star Wars' introduced the specialised robots R2D2 and C3PO, but we
feel that many of their design features were a little strange. Perhaps there is
an Interplanetary Union of Robots, and a demarcation dispute prevented
direct communication between humans and R2D2. In 'The Stepford
Wives'. the local husbands got together and had the (good?) idea of
converting their wives into androids who automatically did exactly what
was expected of them, but the sequel revealed the dangers of the necessity
to continuously reinforce with an external stimulus! Perhaps one hope for
mankind is that any aliens who chance upon us will not have watched
'Battlestar Galactica', and will therefore build robots of the Cylon type
who, rather like the old Space Invaders, are always eventually defeated
because they are totally predictable.

Of course intelligent computers also appear in boxes without arms and
legs, although flashing lights seem obligatory. Input/ output must
obviously be vocal but the old metallic voice has clearly gone out offashion

9

Artificiallmelligence on the Commodore 64

i'n favour of some more definite personality, If all the boxes look the same
then this must be a good idea, but please don't make yours all sound like
Sergeant-Major Zero from 'Terrahawks'! Michael Knight's KITT sounds
like a reasonable sort of machine to converse with, and it is certainly
preferable to the oily SLAVE and obnoxious ORAC from 'Blake's Seven',
ORAC seemed to pack an enormous amount of scorn into that little
perspex box, but other writers have appreciated the difficulties which may
be produced if you make the personality of the machine too close to that of
man himself.

In Arthur C. Clarke's '200 I: A Space Odyssey', the ultimately-intelligent
computer HAL eventually had a nervous breakdown when he faced too
many responsibilities; but in 'Dark Star' the intelligent bomb was quite
happy to discuss Existentialism with Captain Doolittle but was unwilling
to deviate from his planned detonation time, although still stuck in the
bomb bay. In 'The Restaurant At The End of The Universe', the value of
the Sirius Cybernetics Corporation Happy Vertical People Transporter
was reduced significantly when it refused to go up as it could see into the
future and realised that if it did so it was likely to get zapped; and the Nutri­
Matic Drinks Synthesiser was obviously designed by British Rail Catering
as it always produced a drink that was 'almost, but not quite, entirely unlike
tea'.

More worrying themes have also recently appeared. The most significant
feature of , War games' was not that someone tapped into JOSH UA (the US
Defence Computer), but that once the machine started playing
thermonuclear war it wouldn't stop until someone had won the game. And
in 'The Forbin Project' the US and Russian computers got together and
decided that humans are pretty irrelevant anyway. Of course, if you are
Marvin the Paranoid Android and have a brain the size of a planet and a
Genuine People Personality, you can succeed without weapons by
confusing the enemy machine into shooting the floor from under itself
whilst discussing your personal problems.

Reality
The definition and recognition of machine intelligence is the subject offast
and furious debate amongst the experts in the subject. The most generally­
accepted definition is that first proposed by Alan Turing way back in the
late 1940s when computers were the size of houses and even rarer than a
slide-rule is today. Rather than trying to lay down a series of criteria which
must be satisfied, he took a much broader view of the problem. He
reasoned that most human beings accept that most other human beings are
intelligent and that therefore if a man cannot determine whether he is
dealing with another man (or woman), or only with a computer, then he
must accept that such a machine is intelligent. This forms the basis of the

10

Chapter I Artificial Intelligence

famous 'Turing Test', in which an operator has to hold a two-way
conversation with another entity via a keyboard and try to get the other
party to reveal whether it is actually a machine or just another human being
- very awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carryon by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantly to find the secret, apparently
without success. However after some time the interviewer returns, shakes
him by the hand, and congratulates him with the words 'Well done, old
man, the machine couldn't tell if you were human so you are just what we
need as one of Her Majesty's Tax Inspectors!'

Everyone has seen from TV advertisements that the use of computer­
aided design techniques is now very common, and that ind ustrial robots are
almost the sole inhabitants of car production lines (leading to the car
window sticker which claims 'Designed by a computer, built by a robot,
and driven by an idiot'). In fact, most ofthese industrial robots are really of
minimal intelligence as they simply follow a pre-defined pathway without
making very much in the way of actual decisions. Even the impressive
paint-spraying robot which faithfully follows the pattern it learns when a
human operator manually moves its arm cannot learn to deal with a new
object without further human intervention.

On the other hand, the coming generation of robots have more­
sophisticated sensors and software, which allow them to determine the
shape, colour, and texture of objects, and to make more rational decisions.
Anyone who has seen reports of the legendary 'Micromouse' contests,
where definitely non-furry electric vermin scurry independently and
purposefully (?) to the centre of a maze, will not be aMAZEd by our faith in
the future of the intelligent robot, although there seems little point in giving
it two arms and two legs.

Another important area where Artificial Intelligence is currently being
exploited is in the field of expert systems, many of which can do as well (or
even better) than human experts, especially if you are thinking about
weather forecasting. These systems can be experts on any number ofthings
but, in particular, they are of increasing importance in medical diagnosis
and treatment - although the medical profession doesn't have to worry
too much as there will always be a place for them since 'computers can't
cuddle'.

A major barrier to the wider use of computers is the ignorance and pig­
headedness of the users, who will only read the instructions as a last resort,
and who expect the machine to be able to understand all their little
pecularities. Processing of 'natural language' is therefore a major growth
area and the 'fifth generation' of computers will be much more user­
friendly.

II

Artificial Intelligence on the Commodore 64

Most of the serious work on Artificial Intelligence uses more suitable
(but exotic) languages than BASIC, such as LISP and PROLOG, which
are pretty unintelligible to the average user and are probably not available
for your home micro in any case. The BASIC routines which follow cannot
therefore be expected to give you the key to world domination, although
they should give you a reasonable appreciation of the possibilities and
problems which Artificial I ntelligence brings.

12

CHAPTER 2

Just Following Orders

As your computer is actually totally unintelligent, you can only converse
with it in very simple terms. The first step, used in many simple adventure
games, is to have a series of preset orders to which there are fixed responses.
Let's start by taking a look at giving compass directions for which way to
move. At first sight, the simplest way to program this appears to be to ask
for an INPUT from the user and to write a separate I F-THEN line for each
possibility (see Flowchart 2.1).

:[00 PI-? r HT "[:' I PEer I OH"? II .;

:[2~:1 :r t··IPUT .[t·N·
200 IF 1 t·4!:f:'" II t·KIPTH II THEt-i PF.: I t·rr II tKlF.:TH"
21 (1 I F I t4!V·"" ::;OUTH II THEt·4 F'P I t·rr II ::;OUTH II
~~20 I F I t·H$:!'·~ II l.JE::;T II THEt·4 PI-? I I·-rr II ~.JE::n II
2:30 I F I t··I$::' II EA::;T II THEt·4 F'P I t·n II Ef6T II
~~50 c:.;OTO 1 ()O

Flowchart 2.1 Gh'ing Compass Directions

13

Artificial Intelligence on the Commodore 64

If you type in anything other than the four key command words, nothing
will be printed except for another input request. It would be more user­
friendly if the computer indicated more clearly that this command was not
valid. You could do that by including a test which shows that none of the
command words has been found, but this becomes very long-winded, and
effectively impossible when you have a long list of valid words. (N ote that
this line is so long that you can only enter it if you use the keyword
abbreviations given in the back of your Commodore 64 manual.)

240 I F I t·~$< :> II t·~ORTt·i II At·~[) I N$< :> II SOUTH II Ftt·~D I t·~$<
:> II WEST II AtKI I t·~'t< :> II EFt~;T II THEt·WF.: I t·n II I t·~VfIL I [:1 P
EI)UE~:n·1I

On the other hand, adding GOTO 100 to the end of each IF- TH EN line will
force a direct jump back to the INPUT when a valid command is detected.
If all the I F tests are not true then the program falls through to line 240
which prints a warning. Making direct jumps back when a valid word is
found is a good idea anyway, as it saves the system making unnecessary tests
when the answer has already been found (see Flowchart 2.2).

Flowchart 2.2 Deleting t·nnecessar) Tests

28t1 I F I t·~$::::: II t·K1PTH II THEN F'f~ I tn II NOPTH II : GO
TO 1 ~:H3

14

Chapter 2 Just Follo ing Orders

210 I F It~$"'" II ::;OUTH" THH4 PF: un "SOUTH": GO
TO 1 ~.30
2~~l1 I F H4$~~:" ~o.'E::; T" THEt·4 F'R rtH II ~'JE:=n II : (;OTO

100
2:::!\21 I F I t·4$:"" "EfI::;T" THEt·4 PP I tn ." EA::n II : GOTO

11210
240 PP 1 tH II I t·4 1

• ... Al_I [) F:EOUEST"

That will echo the command given on the screen but of course it does not
actually DO anything. As a model to work with, we will start at a position
defined as X 0/0= 0 and Yo/o=O and indicate movement as plus and minus in
relation to this point. Notice that integer variables are used wherever
possible, as they are processed faster than real numbers, and this also
removes the possibility of clashing with reserved variables.

We now need to add the real response to the command, as well as the
message indicating that it has been understood (see Flowchart 2.3).

2(10 IF It'~$:!":lItKIRTH"
-=.\'~~-1 : GOTO 100
21 (1 I F I t~$.::: II ::;OUTH II
,·.:°i~~+ 1 : (;OTO HKI
22(1 IF IN$::::"l~ESTIl

~'~-1 : GOTO Hj~ZI
2:31::.1 I F I t'~$=-:! II EAST II
~ ... ;+ 1 : (;OTO 1 ~j~j

THEt··,

THEt-~

THEt·~

THEt·4

F'PItH "'··~OfnHIl : 1~,1~

p~: I t-n II :;OUTH II : '/\

F'PItH II~JESTII : ~.<::.~::-:.::<

PRINT II EA:=;TII : :~:: /~ == >::

That modification actually shows your position appropriately, relative to
the origin. So that you can see what is happening, and where you are, add a
printout of your current position:

1111 F'F: I t'~l- II ;:..: II ,; :"':~"~., II \' II .: \I~.~

Using subroutines
Of course, that was a very simple example and, particularly where the
results of your actions are more complicated, it is usually better to put the
responses into subroutines.

2~jO IF 1 t·N::::- II t·KIPTH II THEN GOSUE: 2008: COTO
100

15

Artificial Intelligence on the Commodore 64

2113 IF IH$:::' II SOUTH II THEH GO::;UE: 21 O~~I : (;OTO
10~1
22121 I F I t·~$'-:: II ~JE::n" THEt~ GO::;UB 22(10' COTO 1
1::10
:~:::'0 I F I t,l!f::=. II EAST" THEt-~ C;O::;U8 2300: C;OTO . 1
tlO

20~~10 Pf;: I tH "GO I t·H:; t·WRTH II : 'l~·~::::"(~'~-'l : PETU~n~
2100 F'P I tH "GO I t·H:; :30UTH": y~'~:::::'l~'~+ 1 : PETURt·~
220~D F'P I tH "GO I t·H:; WE:3T II : ::":~'~:::::::<~'~'-1 : PETUfCl~
2:300 PR I tH "CO I t··IG EAST II : :>::~ ... ;:!':::.:::.~+ 1 : PETUF<:t·~

SET
X ANDY

Flowchart 2.3 Adding a Response

16

Chapter 2 Just Following Orders

More versatility
You could extend this use of IF-THEN tests ad infinitum (or rather ad
memoriam finitum!), but it is really a rather crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DATA and then store them in string arrays.
First you must DIMension arrays of suitable length for command words
(C$) and responses (R$). As variable-length strings are allowed (up to 255
characters) the actual text can be of almost any length.

If you put the commands and responses in pairs in the DATA statement,
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.1).

10000 DATA NORTHJCOING NORTHJSOUTH:GOING
SOUTH. WEST. GOING WESTJEAST.GOINC· EAST

11000 FOR N~0 TO 3
11010 READ C$(N).RS(N)
1102121 HE:"':T t·~

ELEMENT COMMAND RESPONSE
NUMBER WORD C$(n) R$(n)

NORTH GOING NORTH

2 SOUTH GOING SOUTH

3 WEST GOING WEST

4 EAST GOING EAST

Table 2.1 Content of Command and Response Arra)s

To initialise the arrays (fill them with your words), when you RUN add a
GOSUB and RETURN.

40 GOSUB 10(H30
11 ~J3£1 RETURt·~

17

Artificial Intelligence on the Commodore 64

All those IF-THEN tests can now be replaced by a single loop which
compares your INPUT with each element of the array containing the
command words (C$) in turn (see Flowchart 2.4). Lines 200-220 need to be
replaced by the following lines but notice also that line 230 must be deleted.

200 FOP t'l:~'O TO :3
210 I F I I··~'ti:--C~;(t·~ > THH·I F'P I tHo p~< t·~ ::0 : COTO 1
~XI

220 t'~E>':T t·4

F1o",charl 2.4 :\lore Versalilil)

Now, IF your input, IN$, corresponds to any of the command words, the
program jumps out of the loop after printing the appropriate response,
R$(N).

Of course we are now back in our original position of actually doing
nothing, so we need to be able to call those action subroutines. First of all

18

Chapter 2 Just Following Orders

let's arrange to jump out of the loop, if a match is found, to a new routine at
line 300.

210 IF IN$~C~(N) THEN PRINT P$(N):GOTO 3
00

We still have a pointer to indicate which word matched the input, as N (the
number of array elements checked) holds this value. We can use this in an
ON-GOSUB line to move to appropriate routines which are similar to the
ones we wrote earlier. except that there is no need to define the particular
message: this has already been printed as R$(N).

300 ON (N+l) COSU8 2000,210Q,2200:2300:G
OTO 100
2000 Y%~Y%-l:RETUPN
2100 Y%~Y%+1:RETUPN
2200 X%~X%-l:RETURN
2300 X%~X%+l RETURN

Expanding the vocabulary
The arrays can easily be expanded to contain more words. It would be
better if we defined the number of words as a variable WO%, which we
would then use to 01 Mension the arrays and for both the filling and
scanning loops. This produces a general routine which is easily modified.

20 l·.I[)\''''':~'
30 DIM CS(WD%),PS(WD%)
200 FOP t'~::::0 TO l·JD~~
11000 FOR N~O TO WD%

For example we can add intermediate compass directions which change
both X and Y axes.

2fl l·JD\-?
10010 DATA NORTH EAST,GOING NORTH EAST,S
OUTH EASTJGOING SOUTH EAST
18020 DATA SOUTH WESTJCOING SOUTH WEST,N
ORTH WEST,GOING NORTH WEST

and add some more subroutines:

300 ON (N+l) GOSUS 2800.2100,2280,2200,2
40Q,2500,2600,2780:GOTO 100

19

Arti(iciallnrelligence on the Commodore 64

2400 Y%=Y%-l:X%~X%+l:RETURN
2508 Y%~Y%+l:X%=X%+l'RETURN
2600 Y%~Y%+l:X%~X%-l:RETURN
2700 Y%~Y%-l X%=X%-l'PETUPN

Removing redundancy
All the responses so far have included the word 'GOING' and this word has
actually been typed into each DATA statement. Now typing practice is
very good for the soul but it would be much more sensible to define this
common word as a string variable. Notice that a space is included at the end
to space it from the following word.

101~)O G$7-'"GOING "

You can then delete all occurrences of this word in the DA T A and combine
G$ with each key word in the response instead.

210 IF IN5:C'(N) THEN PRINT G';R'(N):GOT
o :3~1r::l
10080 DATA NORTH,NORTH!SOUTHJSOUTH,WEST,
~JEST • EAST, EAST
10010 DATA NORTH EAST,NORTH EAST.SOUTH E
AST) ~:;tjUTH EA~:;T

10020 DATA SOUTH WEST,SOUTH WEST,NORTH W
EST. t-KIPTH ~'JEST

Now that is starting to look rather silly as both arrays now contain exactly
the same words, so why not get rid of the response array, R$, and simply
print C$(N)? Well, in this case you could do that without any problem, but
of course where the responses are not simply a repetition of the input (as is
very often the case) the second array is essential.

If you look hard at all those subroutines you will realise that they all do
only one thing - update the values of X% and Y%. Now we could include
that information in the original DATA and get rid of them altogether! We
need to add two more arrays to hold the X and Y coordinates, add the
appropriate values into the DATA lines after each response, and READ in
this information in blocks of four (INPUT, RESPONSE, X-MOVE,
Y-MOVE- see Table 2.2).

30 DIM C$(WD%),R$tWD%),X(WD%),Y(WD%)
10080 DATA NORTH,NOPTH,O,-l,SOUTH,SOUTH,
0,1,WEST,WEST,-1.0,EAST,EAST:l,0
10010 DATA NORTH EAST,NORTH EAST,l,-l,SO

20

Chapter 2 Just Following Orders

UTH EAST.SOUTH EAST,l,l
10020 DATA SOUTH ~1EST., SOUTH HE:3T., -1 .' 1 .' t·w
RTH WEST.NORTH WEST:-l:-l
11010 READ CS(N),P$(N),X(N),Y(N)

ELEMENT COMMAND RESPONSE
NUMBER WORD R$(n) X-MOVE Y-MOVE

C$(n) X(n) Yen)

NORTH NORTH 0 -I

2 SOUTH SOUTH 0

3 WEST WEST -I 0

4 EAST EAST 0

5 NORTH-EAST NORTH-EAST -I

6 SOUTH-EAST SOUTH-EAST

7 SOUTH-WEST SOUTH-WEST -I

8 NORTH-WEST NORTH-WEST -I -I

Table 2.2 X and Y l\loves Incorporated into Arra)~

Now wecan delete lines 300 to 2700 and modify line 210 so that X%and Y%
are updated here (see Flowchart 2.5).

210 IF IN$=C$(N)· THEN PRINT C$;P$(N):X%=
X%+X(N):Y%~Y%+Y(N):GOTO 100

This overall pattern of putting all the information into a series of linked
arrays is a very common feature which is used in several of the later
programs in this book.

21

Arti{iciallmelligence on (he Commodore 64

CHEC,K
COMMAND
ELEMENT

INCREMENT
ELEMENT
NUMBE.R

Flowchart 2.S Csing !.inked Arra)s

Abbreviated commands
So far we have always used complete words as commands, but that means
that you have to do a lot of typing to give the machine your instructions. If
you are feeling lazy you might think of changing the command words to the
first letter of the words only. and then INPUT a single letter. However,
unless you start using random letters that will only work as long as no two
words start with the same letter! To code all the eight compass directions
used above, we will have to use up to two letters: N, NE, E, SE, S, SW, W,
NW.

10000 DATA N,NORTH,0,-1,S,SOUTH/0.1.W~WE
ST,-1,0,E.EAST.l,0 .
10010 DATA NE.NORTH EAST.l,-1,SE.SOUTH E
AST,1,l
10020 DATA SW,SOUTH WEST,-l,1,NW.NORTH W
ESL -L-l

22

Chapter 2 Just Followin/: Orders

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching
In all the programs above we have always checked that the input matched a
word in the command array exactly. However, it would be useful if we
could allow a number of similar words to be acceptable as meaning the
same thing. For example, you could check whether the first letter of the
input word matched the abbreviated keyword by only comparing the first
character (taking LEFT$(IN$,I».

That will work with NORTH, SOUTH, EAST and WEST, but there are
obvious problems in dealing with the intermediate positions. In addition
there are lots of words beginning with the letters N, S, E and W - all of
which would be equally acceptable to the machine as a valid direction.

For example:

NOT NORTH

would produce:

GOING NORTH

A more selective process is to match a number ofletters instead of just one.
In this example the first three letters of the four main directions are quite
characteristic.

NOR
SOU
EAS
WES

If you use these as command words. then, for example:

NOR
NORTH
NORTHERN

and NORTHERLY

will all be equally acceptable, but:

23

Arr(ficial Inll'lIi!{ence on (he Commodore 64

NOT
NEARLY
NOWHERE

and NONSENSE

will all be rejected.
All we need to do is to take the first three letters of the input,

LEFT$(lN$,3), and compare them with a revised OAT A list. Lines 10010
and 10020 can be deleted and the word number variable WO% must then
be amended to 4.

20 L.J[)~~~:3

190IN$=LEFT$(IN$J3)
1~000 DATA NOR)NORTH)0)-1)SOU)SOUTH:0Jl,
WES)WEST,-1)0,EAS)EAST)l,0

Sequential commands
In the routines above we have dealt with the intermediate compass
positions as separate entities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get to any point, and if more than one command word could be
understood at the same time we would not have to worry about checking
for directions such as 'NORTH EAST' as they could be dealt with by the
combination of 'NORTH' and 'EAST'.

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up a separate word. The answer, of course, is that you see a
SPACE between them. Now if we look for spaces we can break the input
into separate words which we can look at individually.

The easiest way to look for spaces is with the INSTR command which
searches the whole of a designated search string for a match with a second
target string. Unfortunately this command is not provided in standard
Commodore BASIC, so we will have to use a series of BASIC commands
to emulate this. These will be placed in a subroutine at line 5000, which we
will refer to for the rest of this book as simply the INSTR routine.

5000 FOR N=1 TO LEN(IN$~
5010 I F ~1I [:1$(H~$, t·L 1):;.-," " THEt·~ SP%=.t·~; RET
URt·~
502£1 t~E:;n t~
50:30 SP~~:-:.0
504~1 RETUf:=~t·~

24

Chapter 2 Just Fol/ul1'inll Orders

This routine will check whether the first character in IN$ is a space. I f it is
not a space then it will automatically continue checking until the end of! N$ is
reached. If no space is found in the whole of IN$ then SP% will be set to
zero. If a space is found then the value of SP% will be the number of
characters along IN$ that the space is located (see Flowchart 2.6).

,,",OVE TO NO
NEXr

CHARACTER

Flowchart 2.6 I.ocating the Position of a Space

We need to call this from the main routine and we will print out the result
when we RETURN so that you can see what is happening.

1 :3£1 GOSU8 50121[1
140 PRINT SP%:GOTO 100

Try this out with:

NOR WES

SP% 4

NORTH WEST

SP% 6

NOR NOR WEST

SP% 4

Notice that the length ofthe word is accounted for by S P% but that only the
first space is found. To find all the spaces we are going to have to work
harder. First delete that temporary line 140.

Let's look at the input logically from the start (lefthand side). We will
replace the LEFT$(lN$,3) with M ID$(IN$,ST%,3) so that we can look at
any three-letter combination in the whole of IN$. To make it more sensible

25

Artificial Intelligence on the Commodore M

we will call the result of this W$ as it shows the position of a word. To start
with we must set the search start position ST% equal to one and add a space
to the front of IN$ so that the first word is also found (see Flowchart 2.7).

125 ST~~~1: It~$:::" "+IH$
1:313 GOSU8 5000
19121 W$=MID$(IN$~ST%J3)
21121 IF W$=C$(N) THEN PRINT G$;R$(N):X%~X
%+X(N):Y%~Y%+Y(N):GOTO 100
5121013 FOR N~ST% TO LEN(INS)

If you run this as it stands then you will still only find the first word as we
have GOTO 100 on the end of line 210. However simply sending the
program back to the INSTR check in line 130 instead does not help either,
as it will always start checking from the beginning of IN$ and will always
find the same first space. Once we have found this first space we need to

NO

SET SEARaI
POSITION

CST= 1)

YES SEr~
POSITION

TO $~+1
(ST" S~+~

W~1tEC eM ItS
~
SP~

Flowchart 2.7 Searching for a Kepmrd

II
" ------

CHECK
MATC.H

II
II

move the start position ST% for the next search on to the character after
that space, SP%+ I. When no more spaces can be found then the end ofthe
input has been reached and we can GOTO 100 again.

1413 IF SP%)0 THEN ST%=8P%+1:GOTO 190
150 GOTO 11210

26

Chapter 2 Just Fol/o»'imt Orders

210 IF W$=C$(N) THEN PRINT G$;RS(N):X%=X
%+X(N):Y%~Y%+Y(N):GOTO 130

Now typing:

NORTH WEST

produces:

GOING NORTH
GOING WEST

and even:

NOR NOR EAST

is decoded as:

GOING NORTH
GOING NORTH
GOING EAST

It would be a lot neater if we deleted all those red undant 'GOINGs' and put
all the reported directions on the same line. We need to PRINT G$ once.
immediately before the INSTR check. Now each time we go through the
loop comparing the current word with those stored, we PRINT R$(N); if
there is a match. As there is a semi-colon after this, the words will be printed
on the same line but we also need to add spaces between them. Finally we
add a simple PRINT just before we go back for a new input, to move the
cursor position on to the next line.

126 PRlt-H G'l=)
145 PRItH
21121 I F ~'J$"""C$(t··I::' THEN PR I tH P$(t·~ ::'.;" ";: ;:.::~,;
,.,,~.~~~+::.::(t·~ ::. : ,.t'~.~:='.(~.~+\\ H) : COTO 1:30 .

Now:

NORTH EASTERLY SOUTH WEST

sends you neatly round in circles:

GOING NORTH EAST SOUTH WEST

27

CHAPTER 3
Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way, as it has only been programmed to understand a very few words or
letters and it only recognises these if they are entered in exactly the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing whether
the two strings match exactly.

On the other hand in the real world everyone uses what is known as
'natural' language which is a very sophisticated and extremely variable
thing which only the human brain can cope with effectively. Even if we
forget for the moment the difference between 'English' and 'American' or
even regional dialects of either (can 'Ow bist old but' really mean 'How are
you old friend'?) dealing with language has an infinite number of problems.

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIA developed a superb translation program which could instantly convert
English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities, in which it
converted everything he said into Russian, spoke that, and then retranslated
the Russian back into English. He was most impressed and was totally ab­
sorbed until one of his aides reminded him that he had forgotten that the First
Lady was waiting for him outside. When he ruefully commented 'out of
sight, out of mind' he was amazed to hear the machine come back with
'invisible maniac'!

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However if we are going to be able to
deal with sentences, we are going to have to think a lot harder than that.

The Oxford Dictionary definition includes 'a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement, question, command or request' but also concedes
that it is used loosely to mean 'part of writing or speech between two full
stops'. Phew! Can somebody translate that into everyday English, please?

29

Artificial IllIe/liKence on the Commodore 64

The intricacies and illogicalities of the English language are infamous so
how can we expect a computer to cope?

Well, let's start by looking at some simple examples of sentences.

I WANT.

consists of a subject I and a verb WANT

I WANT BISCUITS.

also has an object BISCUITS

I WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATES

I SOMETIMES WANT CHOCOLATE BISCUITS.

qualifies the verb with an adverb SOMETIMES.
The most important word in all the above examples was 'W ANT as it

conveyed the main idea. The second example was more informative as it
indicated that only one particular type of object. BISCUITS, was wanted.
The addition of an adjective, CH OCOLA TE, gave further information on
the type of object wanted, but life became more uncertain again when the
adverb SOMETIMES was included.

Now how could a computer program decode such sentences? The answer
must be to find some logical structure in the sentence, so what 'rules' could
we lay down for this example?

I) All started with a subject I and ended with a full stop.
2) The last word was always the object BISCUITS (unless there was no

object and only two words).
3) If the word before the object was not the verb WANT it was an adjective

CHOCOLATE.
4) If the word before the verb was not the subject I it was an adverb

SOMETIMES.

Let's write a program in which we give the computer sentences and ask it to
break them up into their component parts.

To start off, we need to give it a vocabulary of objects, adjectives and
adverbs to work with. We will READ these from DATA and store them in
arrays OB, AJ and AV, according to type.

30

Chapter 3 Understandinl: Natural Lanf{uaf{e

10 COSU8 1 ~~H3(H3
10000 DIM 08$(5)JRJ$(5),RV$(2)
10999 PEM OBJECTS
11800 DATA 8ISCUITS.8UNS,CA~E
11010 DATA COFFEE. TEA. WATER
11019 REM ADJECTIVES
11020 DATA CHOCOLATE,GINGEP/JAM
11030 DATA COLD,HOTJLUKEWARM
11029 REM ADVER8S
11040 C·ATA AU.IA"!"::;., OFTEt·t" SOt'1ET I t'lES
11100 FOR N=0 TO 5
11110 READ 08$(N)
11120 t'~E~n t·~
11130 FOR N=0 TO 5
11140 READ AJ$(N)
1115~3 HE>::T t~
11160 FOP N~0 TO 2
11170 READ' AV$(N)
11180 t'~E:'~T t·~
11190 RETURN

Now we need to break the sentence into words (see Flowchart 3.1). Once
again we will do that with an INSTR search for spaces, and to make life
easier we will add a space on to the end of IN$ so that the format ofthe last
word looks just like that of other words.

100 I t··IPUT I t·~$
120 I W*== I t·4$+ II II

13~) GOSUB 50~~n3
19(1 (;OTO 13(1

The end of the sentence has been reached when no more spaces can be
found.

140 IF SP%=0 THEN 200

If a space is found then the section of IN$ from ST% (current search start)
to SP%-ST% (current space-current start=length of word) is cut out
and stored in a word store array W$(WC%).

150 W$(WC%)=MIO$(IN$,ST%,SP%-ST%)
1001~j Dlt1 ~~$(4)

To begin with STo/o=l so that the search starts at the first character in the

31

Art(ficialllllelli1{ence on the Commodore 64

MOVE TO
NEXT
CHARACTER

NO

,sE.T .5EARc.H
POSITION

(ST = 1)

ADD ~ACE
TO END

YES CIIT" Ol/r

>-----i =- AND
($T TO SP-Slj

/tUET
~--4---------------____ ~ ~~

(6T = 6 P +l)

Flo~chart 3.1 Cutting Out Words

input string. The word count variable WC% is set to zero so that the first
word found is stored in the zero element of the word store array.

110 ST%= 1 ' ~JC~'~=:::0

The word count is incremented (so that the next element of the array W$ is
used next time) and a check made that there are not more than five words in
the sentence. The start position for the next search is then set to one more
than the position of the last space and the search is continued.

16121 ~JC"~::-~Jc-~+ 1
1 71Z1 I F WC~~ >5 THEt-~ F'P I tH II SEtHEt~CE TOO LO
~~G \I : GOTO 1 ~)0
18121 sr,~=:sP\+ 1

32

ChapleT 3 UndersJanding NalUral Language

A test is now made to see whether there is a match between the key words in
the sentence and the objects in the vocabulary array OB$(N) (see Flowchart
3.2). Only words 2, 3 and 4 are checked as these are the only possible

TAKE
r-------~ 08~CT

(OB,f>(N))

MOllE
OBJEC.T
POINTER.

NO

Flowchart 3.2 Looking for a Match

positions for the object in our restricted sentence format. Three different
routines are jumped to according to the position of the matching word in
the sentence. If no match is found a message is printed and a new input
requested.

2£10 FOR N=::O TO 5
210 IF W$(2)=08$(N) THEN 500
220 I F ~J$(:;:)=08$(t·~;' THEt·~ 6(H3
230 IF W$(4)=08$(N) THEN 700
24E) t'~E>-:T N
250 PRItH "08.JECT t~OT FOUt~[)1I
260 GOTO 100

If the object was found as word three then there was neither adjective or
adverb.

33

Artificial Intelligence on the Commodore 64

50~1 PR I tH II t·m A[:'.JECT I '.IE OR A[:.VERB"
510 (;OTO 100

If the object was found as word four then there could have been either an
adjective or an adverb in the sentence (see Flowchart 3.3).

600 PR I tH II E I THEJ;: AO.Je:CT I './E OR AD',/ER8 II

Flowchart 3.3 Adnrb or Adjecthe

First we check for a match between the second word and the contents of the
adverb array.

610 FOR t~=0 TO 2
6213 IF W$(l)=AV$(N) THEN 900
6313 t'~E>n N

If no match is found then we check the third word against the adjective list

640 FOR t·~:::e TO 5
650 IF W$(2)=AJ$(N) THEN 10013
660 HEXT t·~

If a match is not found in either of these lists, then it would be useful to

34

Chapter} Undnstanding Natllral Language

indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb 'W A;\IT', as in that case the
second word must have been an adverb. On the other hand. if the second
word was the verb then the third word must have been an adjective. Notice
that the actual word which did not match is now included in the message.

670 I F ~J$(1)< :>" ~JAt-rr" THEt·~ PP. ItH "AD\"EFB
II .j ~J$(1 ::'.j II NOT UHDEP.:3TOO[:o: (;OTO 1 t1121
68121 F'P. I tH II A(UECT I '.IE ".: ~J$(2 :;'.j" t·KlT Ut'~C'EP
STOOD" : GOTO 1 (H3

If a match is found in either test then a success message is printed. Note that
these possibilities are exclusive and that in four words we can only have one
or the other.

900 PP I tH "A(:".,.'ER8"
91(1 GOT I) 100
11211210 PR I NT "AD.JEeT I ' ... 'E"
112110 GOTO 10(1

Where both adverb and adjective are present we must check for both, and
therefore a match in the first test also jumps on to the second test (see
Flowchart 3.4).

70(1 F'P ItH "A(:o',/ERE! At·W AC'.JEeT I "'~E"
'? H:1 FOP t·~.""O TO 2
720 IF W$(l)=AV$(N::' THEN 750
(,:3~1 t'~EXT N

If no match is found for the adverb, then this fact is reported: a flag A V% is
set to I to indicate failure at this point before the adjective is checked.

740 PPItH "A(:OVEPf? ".i ~'J$(1).:" HOT UHDER~:;TO
OD" : AV~'~:::: 1
750 FOR N=~O TO 5
760 IF W$(3)~AJ$(N) THEN 800
770 NE~n N

If a successful match for the adjective is not found then the program loops
back after a report.

788 PR I t~T "A[).JECT I '.IE ".j ~J$(:?).i II NOT UN[)ER
STOO() II
798 GOTO 10@

35

Artificial Intelligence on the Commodore 64

SET ADVERB
FI..A{;.

CAY = 1)

RESET
Fl.P6

(AY=¢)

Flowchart 3.4 AdHrb and AdjectiH

NO

If the adjective was found then a test is made that the adverb flag A V% was
not set before a match is reported. In any case, the flag is reset before the
next input.

e8121 I F AV~ ... ~=0 THEN PR I tH "A()JECT I '.IE At·K, R
['VERB OKII
810 A'y'/~=0
820 GOTO 100

What about punctuation?
As we have already said. you usually recognise the end of a sentence
because it has a full stop, although when you type into a computer you
usually forget all about such trivialities. But what will happen in the

36

Chapter 3 Understanding Natural Language

program so far if some 'clever' user puts in the correct punctuation? If you
think for a moment. you will realise that the computer will start
complaining as it will no longer recognise the last word, as this will actually
be read as the word plus the full stop.

We therefore need to check if the last character in the input string IN$ is a
full stop: this is simple as the ASCII code for this character is 46. The best
place to check seems to be immediately after the INPUT. If the code of the
last character is 46, then simply throw this character away and then
continue as before.

GUT OFF
>-------~--------~ ~ST

CHARAC1ER

Flowchart 3.5 Dealing with Punctuation

We will add this as a subroutine which is jumped to as soon as an input is
made. Other punctuation marks may also appear at the end of the sentence,
so we will read the last character as a variable LC% which we will also use
later. This is stored as a simple variable by taking the ASCII code of the last
character in IN$: using simple variables saves a lot of typing of string ($)
indicators (see Flowchart 3.5).

2000 LC%=ASC(RIGHTS(IN$:l»
2010 IF LC%=46 THEN 2108
2090 ~:ETUP.t·4
2100 IN$~LEFT$(IN$JLEN(IN')-l):P.ETURN

37

ArtiliciallntelllKence on (he Commodore 64

More useful sentence terminators are the question and exclamation marks

which often indicate the context of the words. We can distinguish these in

the same way by their ASCII codes and. for the moment. we will just report

their presence.

2£120 I F LC'~-=::;::3 THEt·~ F'P I tH" E::':;CLAt'lRT I OH , II :

GOTO 218~)
20:30 I F LC:/~'""'G:~! THEN F'R I tH II OUEST I OH II . COTO

210(1

The normal INPUT command will not accept anything after a comma,

which it reads as data terminator. However we can produce a routine using

GET which will accept any text including commas. First of alllN$ is set

empty and a '<' printed as a cursor.

llZU) It·~$~'IIi. PPltH "< II

Now a check is made for a key-press and if no key is pressed then the check

is repeated.

101 GET 1,*· I F 11$'.-:"" THEt·~ 101

When a key is pressed a cursor left code - is printed, followed by the

character corresponding to the key pressed. 1$. This character is then added

on to IN$ and a jump made back to the keycheck. In this way the entry

appears on the screen as in a normal INPUT, and any errors can be

corrected with the backspace key.

11::):3 PRINT 1I[< ____]II.i 1$.: "< II j : IN$'-::n~~+I$: COT

[I 101

The end of the input is indicated by checking for the RETURN key, which

has an ASCII code of 13. I f the entry is complete, then the cursor is moved

to the next line.

102 IF ASC(I$)=13 THEN PRINT:GOTO 105

Commas may be useful in indicating different parts of a sentence, which

could be examined as 'sub-sentences' in their own right. However. in simple

cases they are best deleted and replaced by spaces before the sentence is

broken into words (see Flowchart 3.6). Note that this will only function

totally correctly if there is no space after the comma, as any space following

a replaced comma will be seen as a new word.

Rather than write a completely new INSTR routine, we will modify our

38

Chapter J Understanding Natural Languuge

NO RESET
SEARCH
START

NO RESET
SEARCH
START

REPLAC-E
WITH

SPACE

GUr OllT
AND

CL05E UP

INGREHENT
SEARCH
START

Flowchart 3.6 Replacing Commas and Apostrophes

existing one so that we can check IN$ for any predefined string T A$. To
make things clearer in the long run, we will make the variable pointing to
the position of the match in the string IS%, which can then be swapped with
any number of different variables, such as SP%. First we must modify our
space check to the new format.

1 :30 TAllie"."" ": GOSIJ8 5~.J00: :3P~·~,:,: I S~~
5010 IF MID$(IN$,NJ1)=TA$ THEN IS%=N:RET
URN
5e3~j I S~;~0

Now the same method can be used to look for a comma. before replacing it
with a space.

115 TA$=::: II .' II : GOSU8 ~~tIOO
300121 GOSUB 50e0:CM%=IS%
3010 IF CM%=0 THEN ST%=l:PETURN
:?~120 IN$:::LEFT$("H~$., Cm~"'l H" II+P.IGHT$(Itl$
) LEN(I t4$ >-·Ct'l~~ ::.
:3£1:30 Sn~=::cr1~'~+ 1
3040 (;OTO :3tH)O

If you add this line, you can see the punctuation being taken out of the
string item.

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

39

ArtificialllltelliKence on the Commodore 64

115 TA$:o= II) 11 : CO::;UE' :3~1~J€I: TI1$= 11 .' 11 : COSUE: 31 ~J
(I

3100 GOSU8 5000:AP%~IS%
3110 IF AP%=0 THEN ST%=1:RETUPN
3120 IN$~LEFT$(IN$)AP%-1)+RIGHT$(IN$)LEN
(I t~$)-AP~'~)
3125 PRItH It~$
3130 ST~~~AP~~+ 1
:3140 GOTO 31130

A sliding search approach
Although the method of examining a sentence described above will work, it
has the disadvantage that it requires the sentence to be entered in a
particular, restricted format. For example, if you enter:

I WANT HOT CAKES OFTEN

the computer will report:

OBJECT NOT FOUND

as it mistakenly takes the last word OFTEN as the object.
On the other hand using a sliding search of the whole sentence for each

key word, without first breaking the sentence down into words, has the
advantage that it allows a completely free input format. In this approach
we take the first key word and try to match it against the same number of
letters in IN$, starting at the first character. If this test fails then it is
automatically repeated, starting from the second character, etc, until a
match is found or the end of IN$ is reached. For example, if IN$ was 'I
WA:\iT CAKE' and the first key word was 'CAKE' the comparisons would
be:

Pass I I WA
Pass 2 WAN
Pass 3 WANT
Pass 4 ANT
Pass 5 NT C
Pass 6 T CA
Pass 7 CAK
Pass 8 CAKE (match found)

So far our INSTR routine has only tried to match a single character, but we

40

rhO{llf'r I (Indf'ntandin!? Vall/ral lon!?l/o!?f'

will have to modify line 50 I 0 again, so that it takes into account the length
of the target string LEN(T A$).

5010 IF MIO$(INS,N,LEN(TAS»=TA$ THEN IS
~~=~~ : P.ETURt·~

Delete lines 105- 1010 and add this line to check for the first object OB$(O).

210 TAt=08$(M):GOSU8 5000:SP%=IS%:IF SP%
>0 THEt·~ PR I NT 08$(t,,::. ,i II ".:

Each object can be compared in the same way by forming a loop. (N ote that
printing a semi-colon after OB$(M) ensures that each word is printed on
the same line.)

2£J0 FOR f"=O TO ~
220 HE~H f1

Similar checks can be made for matching with words in the adverb and
adjective arrays.

::::00 FOP t'l::::tl TO 2
310 TA$~AV$(M):GOSU8 5000:SP%~IS%:IF SP%
>~:3 THE~4 PP. I tH fi\I$(~') .. II ",;

328 t'~E~<T ~1
4[10 FOR fo1:-;~J TO 5
410 TA$~AJ$(M):GOSU8 5008:SP%=IS%:IF SP%
>0 THEt~ P~: I tH AJ$(t1).; II II j

420 t'4E:~::T fo1
112100 COTO 100

To report what has been found, and so that we can use the words
discovered later, we will store each in an array as it is detected. We already
have a word store array W$ but we will expand it to hold up to 20 words
(which should be enough for even a very verbose sentence!).

10010 [IIt'l ~'J$(19)

If a match is found a temporary string T$ is set equal to the matched word,
and a subroutine called at line 1500, which puts the word detected in the first
array element (see Flowchart 3.7).

210 TAS=08~(M):GOSU8 5000:SP%=IS%:IF SP%
>~:I THEt·4 T$'-=08$(r', ::. : PR I tH T$.. " ";: GO~:;U8 1 ~5

41

Artijiciallntel/igence on the Commodore 64

(10
1500 ~J*(~,JC{)=-T$

T$:
OB$(N)

T$=
AV$(N)

Flowchart 3.7 Sliding Search

The word count WC% is then incremented. so that the next word is put in
the next element. before returning.

1520 ~JD~:::~JC'~+ 1
15:;0121 RETUP.t·~

Using a temporary string T$ in the actual subroutine means that we can
also use it in the tests for adverbs and adjectives in exactly the same way.

310 TA$=AV$(M):GOSU8 5000:SP%=IS%:IF SP%
>0 THEt·~ T$=AV$(t'1) : PR I tH T$.j II II.;: GOSU8 15
flO
410 TA$=AJ$(M):GOSUB 5000;SP%~IS%;IF SP%
>0 THEt·4 T't=A.J$(t1 :;. ; F'P I NT T$.j II 1I.i: GOSU8 15
00

Partial matching
One advantage of the sliding search is that you can easily arrange to
recognise a series of connected words by only looking for some key
characters. This is obviously useful as it saves you having to put in both
single and plural nouns such as BISCU IT and BISCU ITS. If you amend
the DATA in line 11000 as shown below than both will be recognised.

42

Chapter 3 Cnderstanding Natural Language

However life is not that simple as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN,
BUNS, and BUNFlGHT but unfortunately BUNCH, BUNDLE,
BUNGALOW. BUNGLE, BUNK, BUNION. and BUNNY as well!

_---.... MATCH

Flo"chart 3.8 Checking That This is the Start of a Word

This problem is not restricted to prefixes as the computer will also not
distinguish between HOT and SHOT. You could include a check that the
character before the start of each match was a space (ie that this was the
start of a word. see Flowchart 3.8). SP% gives the current start-of-word
position so M I [)$(I]'1; $.S P%-I.I) is the character before this.

210 Tti$''''·08't(1'1) : C;OSU8 ~3~jOO: SF~·~:::- I S~ ... ~ : I F :::;p~,~
=0 THEN NEXT M:GOTO 230
211 IF 11 ![)$(H~$., SP~·~--l .. 1 >< :>" " THEt·~ t·~E::-:;-l
N : GOTO 231:::1
212 T$=08$(1'1 > : PR I tH T$.;" ".;: GOSUS 150~j
310 TA$=AV$(M):GOSU8 Sea0:8P%=IS%:IF SP%
~e THEN NEXT N:GOTO 330
::? 11 IF 1'1I [:.$(H~$., SP~·~ ·-1) 1 >< :>" " THEt·~ t·~E::·::T
1'1 : GOTO :338
:312 T$::-:tiV$(1'1 :;. : PP I t-n T$.:" ".:: COSU8 15~3121
410 TR$=tiJ$(M):G08Ue 5080:SP%=IS%:IF SP%
-0 THEN NEXT M:GOTO ~38
411 IF 11 I [:1$(I t·~$., ::;P~'~-l) 1)< :>" II THEt·~ t·~D:;r
1'1 : GOTO 4:3121
412 T$:::A ... I$(1'1) : PP I tH T$.: II ".;: GOSUB 1508

For this to function correctly on the first word, just add a space to the start
of IN$.

In a similar way. you could use checks on the next letter after the match, or
the length of the word, to restrict recognised words.

43

Artificial11llelligence on the Commodore 64

Putting things in order
Although we have now detected all the words in the sentence, regardless of
their position or what else is present. they are found and stored in the order
in which they appear in the DATA. This is because the comparison starts
with the first item in the object array rather than the first word in the
sentence. It would be useful if we could rearrange the word store array so
that the words in it were in the order in which they appeared in the sentence.

To do this, we must keep a record of the sentence position of the word
S Po/c and word count WC%, as each word is matched in a new word
position array WP%. This is a two-dimensional array with the sentence
position kept in the first element, WP(WCo/c,O). and the word count.
WP(WC%,I). in the second.

10020 DIM WP(19,1)
1510 WP(WC%~8)~SP%:WP(WC%)1):WC%

The actual sorting subroutine which does the rearrangement is at line 4000.
This must only be reached if a match is found.

448 IF WC%=0 THEN 478
450 GOSUe 48(18
468 GOT I} 100
47121 Pft: I NT II t·W t'1ATCH FOUt·.IO II
4:::~1 GOTO 1 ~30

The sort routine (see FlmHhart 3.9) takes the sentence position of the first
word found (first element in the first dimension WP(O,O» and compares it
with the sentence position of the second word found (second element in the
first dimension WP(O+ 1,0». If the position variable for the first word is of

YES SWAP
seNTENCe
POSITION
POI"'TE~

SWAP 1---1= POINTEI\S

Flo~chart 3.9 Putting Word, in Order

higher value than that for the second word then the first word found is
farther along the sentence than the second word, and these therefore need
to be swapped around. This will put the sentence-position pointers right
but the word-count markers also need to be rearranged to the correct
positions. This process is repeated until the word pointers are all in the
correct order. Notice that the actual contents of the string array which

44

Chapter 3 Understanding Natural Lan!(ua!(e

holds the words are not altered but only the pointers (index) to them.

4£10£1 FOR N=0 TO WC%-2
4010 IF WP(N,0){WP(N+1,0) THEN NEXT N:GO
TO 4040
4020 D%~WP(NJ0):WP(NJ0)~WP(N+1,0):WP(N+l
) £I):"7-"D~~
4£130 D%=WP(N)1):WP(N~1)=WP(N+1,1):WP(N+1
)1)""'D\:GOTO 4000

If the strings are now printed in revised word-count, WC%, order, they will
be ·as they were in the original sentence, which should make it easier to
understand them.

4£140 PRINT:FOR N~0 TO WC%-1
4850 PRINT W$(~JP< t·~., 1 »;" ".i

4060 NEXT N:PRINT

All elements in the sentence position array WP(N,O) and the word count
WC% must be reset to ° before the next input.

4070 FOR N=0 TO 19
4080 ~JP(t·~., 0):-:::~j
412190 t'~E>::T N
410121 ~JC\:::I~)
411 ~j RETURN

45

CHAPTER 4

Making Reply

More sensible replies
We have considered at length how to decode sentences which are typed into
the computer, but the replies it has produced so far have been very limited
and rigid. Although many of the original words in a sentence are often used
in a reply, in a real conversation we look at the subject of the sentence and
modify this word according to the context of the reply.

For example the input:

I NEED REST

might expect the confirmatory reply:

YOU NEED REST

and similarly:

YOU NEED REST

should generate:

I NEED REST

If you look at that situation logically, you will realise that for each input
subject there is an equivalent output subject, and that we have simply
chopped off the original subject and added the remainder of the sentence to
the appropriate new subject.

'I' is only a single character so we could check LEFT$(IN$, I). If this was
'I' then PRINT "YOU" could be added to the front of the remainder of the
input, RIGHT$(IN$,LEN(IN$)-1.

1£1 H~PUT IN$
:::aa IF LEFT$(I H$) 1)==:" I II THEt·~ 'PR I tH "\'OU II +
RIGHT$(IN$,LEN(IN$)-l)
6121 GOTO 10

47

Artificiallntelli!!,ellce 011 the Commodore 64

In the same way, the first three characters LEFT$ (IN$,3) could be checked
against 'YOU' and replaced when necessary by T.

50 IF LEFT$(It4$J:3)~"'''''OU" THEt~ PRltH II I "+
RIGHT$(IN5JLEN(IN$)-3)

If you try that out with a series of sentences, you will see that it works OK
until you type something like:

YOU ARE TIRED

which comes back as the rather unintelligent:

I ARE TIRED

We could get around this by checking for the phrases '1 AM' and 'YOU
ARE' as well as')' and 'YOU' on their own, but notice that you must test for
these first and add GOTO 10 to the end of lines 20 and 40 to prevent a
match also being found with T and 'YOU' alone.

20 IF LEFT$(I N$ ~ 4):::: "1 Ar1" THEt·~ P~: I tH II 'lO
U ARE II +R I GHT$(I t·HS) LEt4(I t'~$)-4 > : GOTO 10
4121 IF LEFT$(I t·~$., 7)= II YOU ARE II THEt·~ PR I tH
II I Af'1 1'+RIGHT$(IN$., LEN(IN$)-7): GOTO 18

Although this method will work, the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into account
the length of the matching word or phrase. Where many words are to be
checked, it is therefore better to use a multidimensional string array which
can be compared with the input by a loop.

A convenient format is to have a two-dimensional array IO$(n,m) where
the first dimension of each element, IO$(n,O), is the input word or phrase
and the second dimension, IO$(n,I), is the corresponding output word or
phrase. It is easier to avoid errors if these are entered into DATA in
matching pairs and READ in turn into the array. Start a new program with
these lines which set up the array.

1121 Go::;ue 1 ~XH:UZI
10000 DIM IO$(3)1)
11000 DATA !)YOU)YOU:I)I AM:YOU
APE .' · OU ARE., I At'1
12000 FOR N~0 TO 3
12010 READ IO$(N~~)~IO$(N:1)
120:2£1 NE~<T N
1 :3000 RETURt·~

48

Chapler 4 Making Rep(r

Flowchart 4.1 Csing a Corresponding Reply

We will use a looping sliding string search again, which for the moment will
just print out the corresponding word or phrase to that matched. IO$(N, I)
(see Flowchart 4.1). One advantage of the sliding string search here is that it
will happily match embedded spaces in phrases as we have not broken IN$
into 'words' before matching.

100 I t·~PUT I N$
110 Sr~~l
200 FOR t1::-::0 TO 3
210 TA$~IO$(M:a):GOSU8 5000:SP%=IS%:IF S
P%>0 THEN PRINT IO$(M,1)
220 NEr:T t'l
250 GO TO 1 ~:30

It is better to redefine the required response word as a new string which is
the first part of the reply R I $, and then PRI NT this when the loop is left.

210 TAI=IO$(M,0):GOSUe 5000:SP%=IS%:IF S
P%}0 THEN Rl$=IO$(M:1)
220 PRltH P1 $

To get a fuller reply. we need to add back on the rest of the original
sentence R2$ (after inserting a space). It is not difficult to define the'rest of
the sentence'. We just need to subtract the end position of the word from
the LENgth of the sentence and use this value in RIGHT$. SP% points to
the start of the matched word: we have a record of the LENgth of this word
in the first dimension of the array as I 0$(N .0). so we just need to subtract
SP%+ LEN(lO$(N .0».

210 TA$~IO$(M,0):GOSUe 5000:SP%=IS%:IF S
P~~~0 THEt·~ 220

49

Arriflciallntelligl!nce on the Commodore 64

215 f':l$=IO$(N .. 1): R2$::::1I "+RIGHT$(IH~ .. LEt·~(
IH$)-(SP%+LENCIO$(MJ0»»
230 PRIHT R1$;R2$

TAKE.
INPUT

REMOVE
FIRST
WORD

ADD 5PACE
TO FRONT

Flowchart 4.2 A Fuller Reply

Now when you try:

I AM CLEVER

the computer agrees:

YOU ARE CLEVER

But if you then press RETURN again it still tells you that you are clever­
which is not true, as you have not elTJptied IN$, R I $ and R2$ before looping
back to the next input!

lt10 It4$:::III1: INPUT IH$
240 Rl$="I': R2$=" II

Before you feel too clever try:

WE ARE STUPID

50

Chapter 4 Making Rep~\'

which may well surprise you when it gives the reply:

YOU

If you think for a few moments, you will see that one of our keywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT

where the computer disagrees with you by returning:

YOU COM PETENT

Although each keyword is tested for in turn, each one is set to R I $ when a
match is found so only the last match is reported. As the keyword is only
checked for once in each sentence, embedded T only causes problems when
this is not the keyword in the sentence.

To get around this we must consider which keywords may cause
problems. Although the letter T is very common, it is very rarely the last
letter in a word and so we could check that there is a space after the
keyword. We must treat all keywords in the same way so add a space to the
end of each. This could be done by changing all the OAT A but it saves
memory in the long run if we add the space as the array is set up. Note that
there is no need to add spaces on to the end of the replies.

12020 10~(HJ 0):::::10$(t~., 0)+" "

We also now need to subtract one less character from IN$ to give R I $, as
the space has now become an integral part of the keyword.

215 Pi!t~ I 0$(t1., 1 ;. : P, 2 $-::: " II +R I GHT'(I H$., LEt·V
IN$)-(SP%+LEH(IO$(MJO»)+l)

The computer will now readily agree about your incompetence.
If the first keyword is not at the start of the sentence, then everything

before it will be ignored in the reply.
For example the answer to:

WHAT IF I FALL?

will be:

YOU FALL?

51

Artificiallntelli~en('e on the Commodofl' 64

Some strange results can still occur when two true keywords are present.
For example:

WHAT IF YOU AND I FALL

gives

I A:\,D I FALL

and

WHAT IF I AND YOU FALL

replies

I FALL

However. adding more suitable keywords is easy and some combinations
will just not be acceptable. To make the routine more general. it is better to
define the number of keywords as a variable K W% and use this in place of
the actual number.

10 KW%=5:GOSUe 10000
200 FOP N~0 TO KW%
10000 DIM IO$(YW%.1)
11010 DATA WE.WEJTHEY.THEY
12000 FOP N=8 TO KW%

;\I ow the answer to:

WHAT IF WE FALL?

is the more logical:

WE FALL?

Pointing to replies
So far our computer has displayed only slightly more intelligence than a
parrot. as it has merely regurgitated a slightly modified version of the input.
The next stage, therefore. is to make it take some logical decisions on the
basis of the input before it replies.

The numbers of subjects S U%, verbs V B% and replies R P% are defined
as variables so that the program can be easily expanded, and three arrays

52

Chapter 4 Making Replr

using these are set up. (As we have a zero element in the array, these values
are all one less than the number of words.) SU$(n,n) is a two-dimensional
array which is concerned with the subjects in the input and output
sentences. The first dimension (n,O) contains the recognised subject words
and phrases allowed in the input, and the second dimension (n, I) contains
the opposites which may be needed in the output. VB$(n) holds the legal
verbs, and R P$(n) a series of corresponding replies.

10 GOSU8 10000
10000 SU%~26:V8%=6:RP%~6
10010 DIM SUf(SU%,l)
10020 DIM Ve$(V8%)
10030 DIM RP$(PP%)

Table 4.1: Pair~ of Subjects in Sl"$(n,nl

SU$(n,O) SU$(n,l)

I HAVE YOU HAVE
I'VE YOU'VE
lAM YOU ARE
I'M YOU'RE
YOU HAVE I HAVE
YOU'VE I'VE
YOU ARE lAM
YOU'RE I'M
YOU
SHE HAS SHE HAS
SHEIS SHEIS
SHE'S SHE'S
SHE SHE
THEY'VE THEY'VE
THEY ARE THEY ARE
THEY'RE THEy'RE
THEY THEY
HE HAS HE HAS
HE IS HE IS
HE'S HE'S
HE HE
WE HAVE WE HAVE
WE'VE WE'VE
WE ARE WE ARE
WE'RE WE'RE
WE WE
I YOU

53

Arlificiallmelligence on Ihe Commodore 64

The first two lines of DA T A contain paired input and output subjects (see
Table 4.1) and these are READ into corresponding dimensioned elements
in the SU$(n,n) array. As the pronouns ('I', 'YOU', etc) are frequently
linked to other words to form phrases (such as 'I'VE'), these combined
forms are also included in the DATA. Notice that these are arranged in
such an order that the most complete phrase containing a keyword is
always found first. A space is added on to the end of each element, so that
some clashing of partial matches is avoided and a space is automatically
formed in the reply.

11008 DATA I HAVE,YOU HAVE,I~VE~YOU~VE,I
AM,YOU ARE,I~M,YOU'RE~YOU HAVE, I HAVE

11818 DATA YOU'VE,I'VE,YOU ARE,I AM:YOU'
RE I I .' r'l .• 'lOU J I
11020 DATA SHE HASJSHE HAS,SHE IS,SHe IS
,SHE'S,SHE'S,SHE,SHE
11030 DATA THEY~VE,THEY~VE,THEY APE~THEY
APEJTHEY~RE)THEY~PE)THEY!THEY

11040 DATA HE HAS,HE HAS,HE ISJHE IS,HE'
S,HE'S.HE,HE,WE HAVE~WE HAVE
11850 DATA WE'VE,WE·VE.WE ARE,WE ARE. WE'
PE,WE·PE,WE.WE,I,YOU
1212180 FOR N=0 TO SU%
12018 READ SU$(N,0),SU$(N,I)
121212£1 SU$(t·~., (1):.-.:SU$(N J 121)+ II ", SU$(t·~, 1):=.SU$
(t·t. 1)+" ..
12020 t'~E>n N

The next OAT A line contains the main verbs which are READ into
VB%$(n). The verb 'to be' is omitted as its variations are so complicated,
and many of its versions are already accounted for in the 'subject' check.

11068 DATA HATE,LOVE,KILL,DISLIKE,LIKE,F
EEL) Kt·mW
12048 FOR N=0 TO V8%
121215121 RERD V8S(N)
121216~3 t'~EXT ~~

The last set of OAT A contains the replies which are put into RP$(n), before
control RETURNs to the main part of the program. To make things simple
to understand and check at this stage, all the replies contain the original
verb, although of course they could say anything.

54

Chapter 4 Making Rep/)'

11070 DATA PR08ABLY HATE YOU AS WELL/LOV
E YOU TOOJKILL YOU
11080 DATA DISLIKE LOTS OF THINGS/LIKE C
HIPSJFEEL POWERFUL,KNOW EVERYTHING
12070 FOR N~0 TO RP%
12080 READ RP$(N)
12090 NEXT t-4
130121121 RETURt~

Matching
The input string is now compared with the list of subjects in the first
dimension of SU$(n,n) (see Flowchart 4.3). If there is no match then a new

Sf.T
SU87ECT
MATGII
POIWTER

NO

NO

Flo"chart 4.3 Setting Match Pointers

55

Artificial Inre//i~en('e on the Commodore 64

input is requested, or else a subject match variable SM% is set to the
element number at which a match was found. (N ote that IS$ is always used
in this program to indicate the position of an INSTR match.)

200 FOR M~0 TO SU%
210 ST%=1:TAS=SUf(MJO»:GOSU8 5000
220 IF 15%=0 THEN NEXT M:GOTO 100
2:3~) ::;N~·~=t'l

The verb array is now compared with IN$. If no verb is found, then the
input is rejected, or else the verb match variable VM% is set.

240 FOR M=0 TO VB%
2513 TA$~V8$(M»:GOSU8 5000
260 IF IS%=e THEN NEXT M:GOTO 10~
27~j V~1~·~~t1

Making reply
Now that the subject and verb have been identified, we can pick up the
appropriate reply by using VM% as a pointer to the reply array RP$(n).

In the simplest case we can just add the appropriate subject to the front of
RL$ before we print it.

520 RL$=5U'(SM%J0)+RL$
550 F'~: nn RUt
56~) GOTO 10£1

Now, for example, if you type in:

I HATE COMPUTERS

the program will reply with:

I PROBABLY HATE YOU AS WELL

and:

I KNOW A LOT

generates:

I KNOW EVERYTHIl\'G

56

Chapter 4 Making Rl'p(1'

Alternative subjects
If you prefer the machine to agree with you rather than trying to beat you at
your own game, then just change the subject added to RL$ to the second
element of the array (the 'opposite').

now:

I KNOW A LOT

generates:

YOU KNOW EVERYTHING

For more variety, you can pick the subject at random from the first or
second element, so that the reply is not predictable.

510 RS%=INT(RND(1)+0.5)
520 RLS=SU$(SM%,RS%)+RL$

Putting the subject in context
It would be more sensible altogether if we chose the correct subjec!
according to the context of the reply, but to do that we must have markers
in the reply array. We will usc a slash sign' i' to indicate that the word in the
first dimension of the subject array is to be used, and an asterisk '*' to
indicate that the word in the second dimension is to be used.

11070 DATA /PROBABLY HATE YOU AS WELL,/L
aVE YOU TOO,/KILL YOU
1108~ DATA tDISLIKE LOTS OF THINGS}/LIKE

CH I PS., :t.FEEL pm'JERPUL., :t.KNO~J EVER'lTH I t·K;

We can search the reply string RP$(VM%) pointed to by the verb marker
VM0f for a slash sign '/', provided that we rename this as IN$ before we
enter the I NSTR check. If a slash sign is found, then the contents of the first
dimension of the subject array SU$(S M%.O) are added to the reply RL$, less
the first character (the slash sign. see Flowchart 4.4).

50(1 PL$o:::PF'Lt(',/t'l\ ::.
51 ~ I N$=F:L$, ST~~:::-: 1 : TA$'-;:' \I •..•• \1 'GOSUE~ :i~jOO

520 IF IS%}0 THEN Se0
800 RL$=SU$(SM%.0)+RIGHT$(PL$;LEN(RL$)-1

e10 GOTO 530

57

A,rijiciallnrel/igl'nce on (he Commodore 64

ADD ON
CUTOFF

"/" 1----------1 IW~~fi

GUT OFF
~*~

DIMEII/SION

Flowchart 4.4 Putting the Subject in Context

On the other hand if no slash sign is found in the reply then a second search
is made for an asterisk '*'. If this is found, then the second dimension of
SU$(n,n) is used in the same way.

520 ::;T$~ 1 . TA$-=:: II til, GOSIJE~ 500tl
540 IF I5%}0 THEN 820
820 PL$=SU$(SM%,l)+PIGHT$(PLS,LEN(PLt)-l
)

8:::'0 (;OTO 55(1

Now:

I LOVE ME

will give:

I LOVE YOU TOO

but:

I FEEL POWERFUL

produces:

YOU FEEL POWERFUL

Inserting into sentences
To make things simple, we have always started our reply sentences with the
subject. but in real life this is not always the case. Now that we have markers
in the replies to indicate what type of subject is to be added, we can also use
them to indicate where in the reply to insert this word or phrase. First we

58

Chapter 4 Making Rppll'

SET TAKE ADD ON ADD
R)INrER LEFT END SUS3"ELT RICrHT END IN FIItST
MATG.H OF REPLY DIMENSION OF REPLY

RESET
SEARC.H
START

SET TAKE ADD o~ ADD
POINTER LEFT END SUSTECT R!uHT END I~ SEt:OIIIO
MATCH OF RE.PLY DlMEN6l01V OF RE.PL.Y

Flowchart 4.5 Inserting into a Sentence

will amend the DATA so that the word to be inserted is never at the start, to
make the insertion process obvious.

11070 DATA DO YOU REALISE THAT /PR08AeLY
HATE YOU AS WELL~WELL /LOVE YOU TOO

110e0 GATAIF /DON'T KILL YOU FIRSTJSO W
HAT %DISLIKE LOTS OF THINGS .
11090 DATA DO /LIKE CHIPS,WHY DO tFEEL P
OWERFULJHOW DO *KNOW EVERYTHING

We actually already have a record of where to insert the word as IS% tells
us where in the reply the slash or asterisk was found. All we need to do is to
take the part of the reply before the marker, LEFT$(RL$,1S%-I), add the
correct version of SU$(SM%,n), and then the rest of the reply
RIG HT$(R L$,LEN(RL$)-IS%)

:?0t1 RL$:::LEFT$(~~L$., 1:3\-1)-tSU$(Sr'l~·~., 0)+'p I GH
T$(RL$,LEN(PL$)-IS%)

820 RLt=LEFT'(RLt,IS%-l)+SUS(SM%,l)+RIGH
T$(RLSJLEN(PL$)-IS%)

Now:

I WILL KILL HIM

59

Arlificiallntelligence all the Commodore 64

produces:

IF I DON'T KILL YOU FIRST

and:

I DISLIKE COMPUTERS

gives:

SO WHAT YOU DISLIKE LOTS OF THI?\IGS

Although we are now inserting the subject into the reply sentence more
naturally, we are only dealing with one subject per sentence. Another
minor modification will allow us to insert any number of subjects into a
sentence. All we need to do is to keep repeating the search for markers until
no more are found. A start variable ST% is defined as I in line 500, and then
a search is made for the first type of marker. When a match is found, ST% is
reset to one more than the match position. When RL$ has been modified by
line 800 we now need to jump back to 510 to look for more markers. If no
match is found for the first marker then STo/c is reset to I. The second type
of marker is then checked for in the same way.

5121(1
510
521Z1
525
53~)
54121
::"10
830

PL$=PPS(VM%):ST~=l
I t·~~·~==RUt : TA$:::: II •..•. II : GO::;UE' 5000
IF 18%>0 THEN ST%=lS%+l'GOTO
sr·~-: 1
I tr.-;~RL $: TA$::: II :t: II : GO~;UE' 50~3~3

IF 18%)8 THEN ST%=IS%+l:COTO
CO TO 510
COTO 538

1107121 DATA DO YOU PEALISE THAT /PROE'A8L
Y HATE YOU AS WELLJWELL /LOVE YOU TOO
110ea DATA IF /DON'T KILL YOU FIRST
11085 [lATA SO l,JHAT ./() I SL It::E LOTS OF TH I
t4GS ESPECIALLY l
11090 DATA DO /LIKE CHIPS. WHY DO lFEEL
POWERFUL.tTHINr tKNOW EVERYTHING

Now:

I KNOW EVERYTHING

60

Chapter 4 Making Rep!.r

produces:

YOU THI;\K YOU KNOW EVERYTHIl\;G

and:

I DISLIKE COMPUTERS

gives:

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

OBJECTions on the SUBJECT
Everything is starting to look rosy until you try something like:

I HATE YOU

which replies:

DO YOU REALISE THAT YOU PROBABLY HATE YOU AS WELL

The problem here is that we arejumping out of the search routine as soon as
the first match is found, and that although we are checking for the subject
'I' we are finding the object 'YOU' first. As 'YOU' comes before T in the
subject array this is found first, in spite of the fact that it comes later in the
sentence,

As we cannot practically mimic all the intricacies of the human brain. we
will have to make the assumption that the subject always comes before the
verb, and the object after it. In the program so far we have been checking
for the subject before we checked for the verb, and we will have to reverse
that order. The verb position in the input is the value oflS% when a verb is
found, so we will save that as a verb position VP% pointer.

200 FOR M~0 TO V8%
210 ST%=l'TA$=V8$(M):GOSUB 5000
220 IF 18%=0 THEN NEXT M:GOTO 100
230 VM%~M:VP%=IS%

Now when a match with the subject array is found. we can compare that
position IS% with the stored verb pointer VP%. and reject the match if the
subject is positioned after the verb (see Flowchart 4,6),

61

Art i/irial Intelligence on the C ominodorl! 64

SET (VI1)
VERB
MATC-H

SET (VP)
VERB
Pa5ITION

SET (SH)
SU8Jf.c.r
MATC.H

NO

NO

'fES

Flowchart 4.6 Rejecting Object Matches

248 FOR M=0 TO SU%
250 ST%=1:TA$=SU$(M):GOSU8 5000
260 IF IS%=0 THEN NEXT M:GOrO 100
270 IF IS%)VP% THEN NEXT M:GOTO 100
2::'0 St'1~~:::::fo1

(If you are too lazy to retype those lines you can add a couple of jumps to
rearrange the order instead.)

140 GO TO 24(1
231 GOTO 5(n3
271 GO TO 200
270 Vfo1%=fo1'VP%=IS%
225 IF IS%>VP% THEN NEXT M:GOTO 100

62

Chapter 4 ,\faking Rep'l'

A change of tense
If we change to the past tense of the verb, we mayor may not find this. With
the first five verbs the situation is straightforward: to change to the past
tense we just add '0' to the end of the present tense. Both forms are
therefore accepted.

HATE
LOVE
KILL
DISLIKE
LIKE

HATED
LOVED
KILLED
DISLIKED
LIKED

However, with the last two verbs the word changes completely, so there can
be no simple match. Although we might get away with checking for'K Y. as
this is a rare combination. it would not be practical for us to use such a
common group as 'FE' as a keyword.

FEEL
KNOW

FELT
KNEW

It is easier if we treat all verbs in the same way and, if there are no
constraints on memory, then we can simply put all the possible versions
into the verb array in pairs.

10000 SU%~26:VP%=13:RP%:6
11060 DATA HATEJHRTED;LOVE;LOVEDJKILLJKI
LLLED;DISLIKE;DISLIKE~
11065 DATA LIKE;LIKEDJFEEL.FELT.KNOW;KNE
~J

Unless we want to have different replies for the different tenses. we will now
have to divide the verb variable VM% by two, to point to the correct reply
for both forms.

63

CHAPTER 5

Expert systems

A human expert is someone who knows a great deal about a particular
subject and who can give you sensible advice ('expert opinion')
on it. Such expertise is only acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they are often not on hand when a problem needs to be solved.

Scientists have therefore applied themselves to the problem of producing
computer programs which mimic the functions of such human experts.
Such programs have the advantage that they can be copied very easily to
produce an infinite number of experts, and of course they do not need tea­
breaks. sleep, pay-rises, etc, either! Of course, the computer must be totally
logical and can still only follow pre-programmed instructions entered by
the programmer. It is interesting to note that science fiction authors have
envisaged problems when the ultimate 'experts' (such as HAL in '200 I: A
Space Odyssey' or Isaac Asimov's positronic robots) are faced with
alternative courses which conflict with more than one of their prime
directives and which produce not system crashes but 'pseudo-nervous
breakdowns'.

Before we can start writing programs for 'expert systems', we must ask
ourselves how a human expert works.

Let us first consider the simplest situation, where the expert's task is to
find the answer to a known problem.

First of all he takes in information on the current task.

Secondly he compares this with information stored in his brain and looks
for a match.

Finally he reports whether or not a match has been found.

What we need here is simply a database program which tries to match the
input against stored information. (See Flowchart 5.1). A user-friendly
system would accept natural language (see earlier), but to keep things
simple here we will stick to a fixed input format. To start with, let's look at
recognising animals by the sound they make. We set up two arrays: the
question array QU$(n) contains the sounds which are known, and each

65

Artif/ciallntelligence on the Commodore 64

Flowchart 5.1 A Simple 'Expert'

element of the answer array AN$(n) contains the name of the relevant
animal.

10 GOSUE' 1000tl
10000 DIM QU$(4),ANS(4)
10018 DATA MIAOW,CAT,WUFF,DOG,MOOJCOWJHO
OT,OWLJNEIGH,HORSE
10020 FOR N=O TO 4:PEAD QU$(N),AN$(N):NE
~·::T ~~
100:?£1 RETURt·~

Now we just need to ask for a sound and compare it with the contents of
QU$(n).

20 PP I tH" ~,JHAT NO I SE DOE::; IT t'1AI<E",i
3f1 I t'~PUT I t·~$
40 FOR N=0 TO 4:IF IN$~QU$(N) THEN 100
5£1 t-4E:X:T t·~
60 F'RH·IT"SOF:R'l I Dm~" T KNmJ THAT Ot-~E"
7~3 GOTO 20
1(10 PR I HT II At·4 AH I t'1AL THAT II; QU$(t·4 ::' ,i "S IS
A "; At'~$(t·~)

110 GOTO 2ti

Perhaps we should say at this point that our computer expert may well be
better at this task than the human kind. as it cannot make subjective
judgements. become bored. or accidentally forget to check all of the

66

Chapter 5 Expert Systems

information in its memory. On the other hand it is not very literate as it
reports 'A OWL', etc. (We will leave you to tidy that up by addinga routine
which checks whether the first letter of the answer array match is a vowel.)

Branching out
The example above is very simple as only one question is asked, and there is
only one possible answer. In reality we need to be able to deal with more
difficult problems, where the answer cannot be found without asking a
whole series of questions. For example, what should an expert do ifhe put
the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLAT BATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause, he should follow a logical path and make a number of
checks. The first thing to do is to check whether it is only the starter motor
which is not working:

IS IGNITION LIGHT ON? (Y I N)

If the answer to this is 'N' then there is no power at the switch, so the cause
must be one of the first three possibilities listed above. We can narrow
things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY? (YIN)

If the answer is yes, then the battery cannot be flat and it must be connected
to the light switch correctly. So presumably the switch is broken and a
suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work, then the connections should be checked.

ARE HATTERY CONNECTIO;\lS OK? (Y N)

If the answer is yes, then the battery is flat so you must charge it (or push!)

67

Artificiu//ntel/igence on the Commodore 64

CHARGE BATTERY OR PUSH CAR

In the same way, a sequence of checks could be made to deal with a
situation where there is a power but the starter mechanism itself does not
work (the last three possibilities).

Flowchart S.2 A Branching 'Expert'

The simplest way to program this branching structure is by a series of IF­
THEN tests (see Flowchart 5.2).

10 Pf;: I tH" FAUL T (:0 I AGt·W:3 IS"
20 PRItH
:30 F'~: I NT" 1 S I Gt·~ I T I Ot·~ LIGHT Ot·~ ('f' l4 ::'''
4(1 I t·4PUT I H$
5121 IF IH$:::"Y" THEt·4 180
60 PRItH"DO LIGHTS ~JORK CORRECTL'l Cl.'·lD"

68

Chapler 5 Expen SYJlems

70 I HPUT I t·4$
80 IF IN$~I'l" THEt'4 11~1
9fl pr;;:INT"REPLACE IGNITIOt·~ S~.uTCHIf
1£10 RUN
110 PRItH"ARE E:ATTER"(COt-U'~ECTIOH::; OK ('//
N)"
120 I t·4PUT I N$
130 IF H4$::::I''(" THEN 160
140 PR I tH II REPA I P. COt'U~ECT I Ot·~S II
150 RUN
160 PR I tH II CHARGE BATTERY OR PUSH CAP! II

170 RUt·4
180 ----- etc ------

This sort of program is relatively easy to write, but as usual is inefficient as
it becomes longer and more complicated.

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays

SET
CURRENT
posln~

(cp:: 1)

YES

Flo"chart 5.3 Pointing to the :-';ext Output

69

Artificiallnrel/igence on the Commodore 64

and have pointers which direct you to the next question or reply, according
to whether you answer yes or no to the current question (see Flowchart
5.3).

The format for entering the OAT A for each branch point is, then:

(TEXT),(Pointer for 'YES'),(Pointer for'~'W')

The first question was:

IS IG~ITIO~ LIGHT O~? (Y~) ... I

If the answer was ']\' then you need to ask the second question:

DO LIGHTS WORK CORRECTLY?(Y ~) ... 2

Otherwise you need to continue with the other part of the diagnosis(which
we have not included but which would be point 7).

We need to set up three arrays: OP$(n) contains the output (text), Y(n)
the pointer for 'yes', and N(n) the pointer for 'no'. To make the program
easy to modify, a variable N P is used for the number of points. The OAT A
is read in groups of three into each element in these arrays. Where the
OAT A point is a possible end of the program. this is indicated by the Y(n)
and N(n) pointers being set at zero.

1 (I GOSUE' 1 ~3000
100110 t·.jp:::?
10010 DIM OP$(NP)IY(NP)IN(NP)
11 tH)(1 [:IATA "H3 I GtH T I OH LIGHT OWl.,?, 2
11 (I H~I DATA "DO LIGHT::; ~'JOF:K COf.:F:ECTL'l": :~:.,
4
11 ~]20 [)ATA "PEF'LACE S~.I ITCH" , ~~I.' ~J
11 O:3~) DATA II APE E:ATTEP'"!' COt-H'~ECT I Ot·~::; OK".,

11040 [lATA "CHARCE BATTER"! Of~: PUSH CriP".,
0) l1
11050 [;lfUA II F:EPA I P. COtH'~ECT I Ot·6 II .' 0., 0
11060 [)ATA II . .:.. f' E·:=;· t. (If p r·,::.9r· .~U'·I--" .' (I., [I

12000 FOR N=1 TO NP
12010 READ OP$(N),Y(N)JH(N)
12~)20 NE:'~T t·~
120(n:1 FC:ETUPH

The actual running routine is very simple. A pointer CP is used to indicate
the current position in the array: to begin with this is set to I and the first

70

Chapter 5 Expert Systems

text printed. If this is an end point Y(CP)=O (hardly likely just yet!), then
CP is reset to I so that the sequence starts again. On the other hand, if a real
pointer is present then an I N PUT is requested. If the input is 'Y', then CP is
set to the value contained in the appropriate element of the Yen) array,
otherwise it is set to the value contained in the N(n) array.

20 CP:::-l
38 PRltH OP$< CP)
40 IF Y(CP)=0 THEN 20
58 I HPUT I t'~$
68 I F I N$-= II '-('; THEN CP==\'(CP ::. : COT!) :30
"70 CP=t·V CP ::.
8121 GO TO 2£1

A parallel approach
An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usually takes longer than following an
efficient tree structure, but it is more likely to produce the correct answer as
no points of comparison are omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark I or 0 for the presence or
absence of these in each of our five modes of transport (see Table 5.1). If
you look closely you will notice that the pattern of results varies for each of
the different possibilities so it must be possible to distinguish between them
by these features.

wheels
wings
engme
tyres
rails
windows
chain
steering

Table 5.1: I'resence or Absence of Features

bicycle car

I I
0 0
0

0 0
0 I
I 0

train

I
0
I
0

I
0
0

plane horse

o
o
o
o

o 0
I 0
o 0

We will enter these values as DATA and then READ them into a two­
dimensional array FE(n.n) which will hold a copy of this pattern. together

71

Artif/ciallnlel/il:ence on the Commodore 64

with a string array containing the names of the objects OB$(n).

18 GOSUE: 10(100
1£1000 DIM Oe$(5),FE(5,8)
11000 DATA 8ICYCLE,l,0,0/1,O,0/l,l
11010 DATA ~APJ1,0/1Jl,0/1/0/1
11020 DATA TPAIN/1,0,l,O,l,1/0/0
11830 DATA PLANE,l/l/1,l,e:l/0/1
11040 DATA HORSE,O,0/0,0/0/0,0,l
12000 FOR N=1 TO 5
12010 READ OB'(N)
12028 FOR M=1 TO e
12030 READ FE(N,M)
12040 t~EXT r'l., t·~
1 :?0(10 RETUPt·~

We can now ask whether the first feature is present or not and use the reply
to print out which modes of transport match at this particular point (see

Flowchart 5.4).

AN:: 1

AN:¢

Flowchart 5.4 A Parallel Approach

72

(,hopil'r.5 F:xPl'rt Srsu:ms

100 F'PItH"[;'OES IT HAVE ~JHEELS"
50(1 I t'~PUT I t'~$
510 At·~~ 1 : I F H~$:::" t·j" THEt~ AH:=O
52121 FOR t·~:::: 1 TO 5
530 IF FE(NJ1)=AN THEN PRINT 08$(N)
54~!1 t'~E>~T t·j

In t his case, answering 'Y' will prod uce a print-out of:

BICYLE
CAR
TRAIN
PLANE

and answering 'N' will produce a print-out of only:

HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as, although we have just shown that only a horse does not have wheels, the
program insists that we still ask all the other questions before it commits
itself. This is not really as silly as it seems at first, as if you answer 'Y' to the
next question ('does it have wings') you will see that the computer quite
logically refuses to believe in flying horses.

If we put the actual comparison part as a subroutine we can use it to
check for all eight features in turn. We would need to make slight
modifications, adding an array pointer AP which is incremented to check
the next element of the feature array FE(N,AP) in each cycle (see
Flowchart 5.5).

10£1 PR I tH II DOES IT Ht"1'.,.'E ~JHEELS"
110 GOSU8 5~)t1

120 PRItH"DOES IT HAVE L·J I t·jGS"
1::3£1 GOSUB 500
140 PP I tH II ['OES IT HAVE AN ENG I t·lE"
150 GOSUE' 500
160 PR I NT" C'OES IT HA'· ... E T\'RES"
170 GOSU8 5tH)
180 PR I NT" [)OES IT ~jEEC' RAILS"
19f) GOSUE: 5(10
200 PRItH"DOES IT HA\.'E l·J I t·lDOt·JS"
210 GOSIJ8 50~3
220 PR I tH" [)OES IT HAVE A CHA I t·j"
230 GOSU8 5121(1

73

Artificial Intelligence on the Commodore 64

240 PPI tH II I SIT STEEPABLE II
250 GOSUB 500
400 PPltH
410 RUN
510 AP'=AP+ 1 : At~= 1 : I F I N!t:::" Nil THEt·j At·~:::O
530 IF FE(NJAP)=AN THEN PRINT 08$(N)
560 RETURN

IHC.~HUIT'
"/\MY

POINTER
("to)

AN= 1

Flowchart 5.5 Checking the Feature, in Turn

Top of the pops
The previous routine will print out a list of matches for each individual
question as it proceeds, but it will not actually tell us which set of DATA is
an overall match for the answers to all the questions. We can produce a
SCORE which shows how well the answers match the DATA by having a
success array element S U(n) for each object, which is only incremented
when a match is found FE(N,AP)=AN (see Flowchart 5.6).

74

Chapter 5 Expert Systems

26£1 PRINT

INCREMENT
SUCCE$S 1---------'
(SU(N»)

Flo"chart 5.6 Mea~uring Succe,s

270 PP.INTIISCORE II

28£1 PRINT
300 FOR t·~:: 1 TO 5
310 PRINT 08$(N»)SU(N)
32£1 tiEXT N
53£1 IF FE(N,AP)=AN THEN PRINT 08$(N):8U<
~~)=SU(N >+ 1
1£101£1 [) Hl SIJ(5)

If a complete match is found then SU(n) will be equal to 8. Where one or
more points were incorrect the score will be lowered. Scoring in this way is
particularly useful where the correct answers to the questions are more a
matter of opinion than fact (eg is a horse really steerable?), as the highest
score actually obtained probably points to the correct answer anyway.
(Notice that in this case each correct answer has equal weighting.)

Better in bits
You may have noticed that we just happened to use eight features for
comparison and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a byte. If we consider each
feature as representing a binary digit (see Table 5.2), rather than an
absolute value, then each object can be described by a single decimal
number which is the sum of the binary digits, instead of by eight separate
values. We will convert to decimal with the least significant bit at the top so
that, starting from the top at 'wheels', each feature is equivalent to 1,2,4,8,
16,32,64, 128 in decimal notation.

75

Artificiallntelli1(ence on the Commodore 64

wheels
wings
engme
tyres
rails
windows
chain
steering

sum total

76

Table 5.2: Binarl Weighted Feature..

bicycle

0
0
8
0
0

64
128

201

car

0
4
8
0

32
0

128

173

AN=¢

INCREMENT
BINARY
VALUE

train

0
4
0
16
32
0
0

53

Flowchart 5.7 Producing a Binar) Score

plane horse

0
2 0
4 0
8 0
0 0
32 0
0 0

128 128

175 128

Chapter 5 Expert Systems

It is not too difficult to convert our 'score' of I to 8 into the appropriate
binary value, as long as we remember that the decimal value of the binary
digit BV must double each time we move down, and that we must only add
the current binary value to the score if the answer was 'yes' (AN= I, see
Flowchart 5.7).

If you consider for a moment, you will realise that we only need to keep
track of the total number produced, SU, by adding the binary values of the
'yes' answers. There is no need to loop through and check each part of the
array contents each time, or even to have a two-dimensional array at all!
The only DATA we need to enter are the overall decimal values for each
object, DV(n), and when all the questions have been asked we can check
these against the decimal value obtained by the binary conversion of the
'yes, no' answers, SU (see Flowchart 5.8). The simplest thing for you to do

Flowchart 5.8 Matching the Decimal Value

now is to delete everything after line 260 and start entering from scratch
again!

27~3 PR I tH I "SCORE II .; SU
280 PRltH
380 FOf;: t~~ 1 TO 5
210 IF [1\,'(t·~)==SU THEt·~ PR I NT., II OE'$(t·~ ::. : GOTO
400
32(1 HE::<T t·~
3:30 PP I tH., II 08 . ..IECT t·KlT FOUt.~[) II
413[1 PRINT
41121 RlJt·~
50£1 I t'~PUT I t·~$

77

Artificial Intelli!(ence on the Commodore 64

51£1 At·~=: 1 : I F I t·~$~" H" THEN At'~==~3
52121 IF m~=1 THEN SU=SU+8V
520 E"'/=8V+E'V
54121 PETURt-~
188121121 DIM 08$(5)JDV(S)
1121~318 8'./=1
11£11210 DATA BICYCLE,201
11£118 DATA CARJ173
11026 DATA TRAIN~53
1183121 DATA PLANEJ175
11£14£1 DATA HOPSEJ129
12808 FOR N=1 TO 5
12£11£1 READ 08$(N)JDV(N)
12~~120 t·~E~··:T t·~
121210£1 PETURt~

This approach obviously saves a lot of memory and time, as each array
element takes up several bytes and must be located before it can be
compared, so it is particularly useful where you are dealing with large
amounts of information. On the other hand, it does mean that you have to
calculate the decimal equivalents of all of the bit patterns before you can
use them, and it also gives you no clues when a complete match is not
found. (N ote that you cannot simply take the nearest decimal value here, as
the decimal equivalent value of each correct answer depends on its
position.) Of course you could do the calculations the hard way, but if you
enter the bit pattern as a string, 1$, then it is quite easy to convert it to the
equivalent decimal value OV by comparing each single character slice
MIO$(I$,N,I) with T and then adding on the value of the appropriate
binary digit BO if a match is found.

208£18 BD=1:INPUT IS
2£1£118 FOR N=l TO 8
2002121 IF r'l I CI$(1$., t·~ J 1):::" 1" THEt~ DV:::: [)I,/+8[)
2e~~1:?0 8Cr::8[H8[:'
2£1(148 NE~'~T t·~
213£150 PR I NT [)I,,I
20060 F.:UN

78

CHAPTER 6

Making Your Expert System Learn for
Itself

Although the 'expert' systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance, which can be very tedious.

However, it is possible to construct an expert program which can learn
from its mistakes and work out the decision rules for itself, provided that
you can tell it when (although not where) it goes wrong. This is obviously
an advantage if you are not altogether sure of the correct rules yourself
anyway! In this case we start out with a series of features which should
enable us to distinguish between the different objects, but without any pre­
defined yes! no pattern of these features ('decision rule') to guide us. Instead
we use the program itself to calculate what the pattern should be.

We will work with our familiar transport example and begin by setting
up some variables. FE% is the number of features to be considered (8),
FE$(n) is an array containing the names of these features, FV(n) is an array
which will hold the values which you give to each feature as input at any
particular point (0 or I), and RU(n) is an array which will hold the current
overall values of the decision rule on each feature.

1 H GOSUE~ 1000\21
18800 FE~'~-:.8
10010 DIM FE$(FE%),FV(FE%).RU(FE%)
10020 FOR N=l TO FE%
10020 READ FE$(N)
1 O~j4~J t~E:<T t·~
11eOO DATA WHEELS.WINGS.ENGINE.TYRES,RAI
LS.WINDOWS,CHAIN.STEERING
121~)~n3 RETUPt·4

Each feature is considered in turn (see Flowchart 6.1). First the current
feature value FV(n) for this cycle is set to zero, and then a 'yes/ no' input
IN$ is requested from the user on each point. If IN$ is 'Y' the feature value
element FV(N) is set to I; otherwise it remains set at zero. This will produce
a pattern which describes the object as '0' and 'I' in array FV(n).

79

Arti/iciallntelligence on the Commodore 64

DE(.IS'ON
VALUE: ¢

W'EIGoKT
::: ~

UPDATE
RULE.

Flowchart 6.1 Learning to Oistinguish Bet"een Two Objects

60 FOR N=l TO FE~
7121 FV(H)~O
80 PPltH FE$(t'~)i 1\ ";

9~) GET I t'~$: I F I t'~$:::::" It- THEH 90
1121121 PRItH IH'l;.1
118 IF IWr::::: · .. THEt·~ n ,\ t·~)==1
12121 t'4E~-':T t~

Before you start a decision variable DE% is set to zero. This is
recalculated as the sum of the current value of DE%, plus each of the
feature values FV(N) entered, multiplied by the current decision rule values
RU(N).

125 [:IE\=O
130 FOR N=l TO FE\
15121 DE%=DE%+FV(H)lRU(N)
160 t'~E:~n t·~
1 ('0 PR I tH .. [)E~'~::: "; CIE/~

80

Chapler 6 Making Your Experl Syslem Learn for "self

Which is which?
To start with we will consider the simplest situation where there are only
two possibilities - a bicycle or a car. Initially we make the distinction
between these quite arbitrarily by saying that if the final value of DE% is
equal to or greater than 0 then it is a bicycle, whereas if DE% is less than 0
then it is a car. It does not really matter that this is not actually true as the
system will soon correct itself. When the program has made a decision on
the basis of the value of DE% it requests confirmation (or otherwise) of the
result.

180 . I F OE~~ >=,£1 THEt·4 PF.: ItH II I SIT A 81 C\'CLE
II i : I t·4PUT I t~$: GOTO 2121121

1~0 IF [:IE::'~<O THEH FRItHII IS IT A CAf': ".i: I
NPUT INS:GOTO 220

Three possible courses of action may be taken according to whether or not
the computer's decision was correct. If it was correct then effectively no
action is taken (a weighting variable WT% is set to zero), and the program
loops back for another try. If DE% was >=0 but the computer was wrong,
then the weighting variable WT% is set to minus one, whilst if DE%was<O
but the computer was wrong then WT% is set to plus one.

20121 I F I N$= II 11 THEt·4 L.JT~'~:::I2I: GOTO 24(1
210 WT%=-l:GOTO 240
22£1 IF H4$= 11 1 THEH L.JT%::::0: GOTO 240
2:30 ~JT::'~:::: 1

The effect of the weighting variable is to modify the values in the rule array
R U(N), pulling them down when they are too high, and pulling them up
when they are too low.

24121 FOR N=l TO FE%
25121 ~U(N)=RU(N)+FV(N)*WT%
26~3 PR I tH PlY t·4).'
27£1 t·4E~<T N
28£1 PRItH
29121 GOTI) 60
The way the system operates is best seen by a demonstration. Type RUN
and then follow this sequence of entries. (Note that the punctuation has
been designed to give a screen format which clearly indicates the
r<!lationship between your input values and the decision rule values.)

First of all enter these values:

WHEELS Y
RAILS N

WINGS N ENGINE N
WINDOWS N CHAII' Y

TYRES Y
STEERING Y

81

Artificial Intelligence on the Commodore 64

The program will return with a decision value DE% of zero, as this is the
initial value and no modifications have yet taken place:

DEo/o=O

As DE% is 0, the system assumes that this is a bicycle and asks for
confirmation, to which the answer is of course 'yes'.

IS IT A BICYCLE? Y

The print-out of the contents of the rule array R U(n) shows that these have
not changed from zero as the correct answer was, by pure chance, obtained:

o
o

o
o

o
o

o
o

Now try entering this sequence, which describes a car:

WHEELS Y
RAILS N

WINGS N ENGINE Y
WINDOWS Y CHAIN N

TYRES Y
STEERING Y

DE% is still zero, so the wrong conclusion is reached and the wrong
question is asked, to which the answer must be 'no':

DE%=O
IS IT A BICYCLE? N

Now, as a mistake was made, the decision rule is modified by subtracting
one from each value in the rule array where a 'yes' answer was given. The
contents of the rule array thus become:

-I
o

o
-I

-I

o
-I
-I

If you once more enter the values which describe a car, the program will
come up with the correct answer:

WHEELS Y
RAILS N

DEo/o=-5

WINGS N ENGINE Y
WINDOWS Y CHAIN N

IS IT A CAR? Y

-I
o

82

o
-)

-)

o

TYRES Y
STEERING Y

-)
-)

Chapter 6 Making Your Expert System Learn for Itself

Before you feel too pleased with yourself, try giving it the values for a
bicycle again, which it will get wrong!

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAIN Y STEERING Y

DE%=-3
IS IT A CAR? N

0 0 -I 0
0 -I I 0

However the positive features which are common to the bicycle and the car
are now automatically increased by one, so that if you repeat this last
sequence it will now produce the correct conclusion:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAIN Y STEERING Y

DE%=I
IS IT A BICYCLE? Y

0 0 -I 0
0 -I I 0

The situation has now stabilised and the program will always recognise
both car and bicycle correctly every time you enter the features which
describe them:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAIN N STEERING Y

DE%=-2
IS IT A CAR? Y

0 0 -I 0
0 -(0

Notice that the final value of DE% for a bicycle is I, and for a car-2. If you
look at the rule array values, you will see that these correspond in both
number and position to the unique features which distinguish these objects
(CHAIN for bicycle, and ENGINE and WINDOWS for car).

83

Artijiciallnlelligence on the Commodore 64

A wider spectrum
Although you have now managed to teach your computer something, it is
not exactly earth-shattering for it to be able to distinguish between only
two objects. Let's expand the system to deal with a wider spectrum of
possibilities (see Flowchart 6.2). To start with we need to define the

ZERO
FEATURE
VALUE.

UPDATE
DEC-ISION
VA RIA 8\..f.S

FEATURE
VAWE
,. 1

Flo"chart 6.2 Learning the Rules for a Wider Spectrum of Possibilities

number of objects we wish to be able to recognise OB%, name them as
DATA which we READ into a new arrayOB$(OB%), changeourdecision
rule array into a two-dimensional form, RU(FE%,OB%), which can hold
ru!es for each of the objects separately, and set up a decision array DE(n) to
hold decision values for each object.

84

Chapter 6 Making Your Expert System Learn for Itse(f

1£1 GOSIJ8 18000
1121880 FE%~8:08%=5
10018 DIM FE$(FE%)JFV(FE%)JRIJ(FE%JOB%)JO'
8$(08~'~ > J OE(08~'~ ::.
101212£1 FOR N=l TO FE%
10028 READ FE$(N)
1 0(J4€1 t'~E>n N
10£15£1 FOR N=1 TO 08%
1£1060 READ OB$(N)
1007£1 HE:,n H
11800 DATA WHEELSJWINGSJENGINEJTYRESJRRI
LSJWIHDOWSJCHRIH,STEERIHG
11818 DATA 8ICYCLE,CARJTPAIN,PLRNE,HORSE
12fH?t0 r£TURt·~

Rather than just having a single decision variable DE%, we need here to
determine a decision value for each object each time. In each cycle we must
first set DE% to zero, and then zero every element in the decision array
DE(n) so that we start with a clean slate for every object.

2£1 C'E%:::12I
3£1 FOR H~l TO O£%
4121 DE(t~)=0
50 HE~~T H

The values for each feature are then entered in exactly the same way as
before.

60 FOR N=l TO FE%
70 FV(t·~)==0
80 F'RItH FE$(t·~); II II;

90 GET IH$: IF IN$==IIII THEt·~ 90
lee PRIHT It-l$
110 IF It~$=lIyll THEt·~ FV(N)=1
12£1 t'~EXT N

Each element of the decision array DE(n) is now updated according to the
status of the entered values FV(n) and the contents of the appropriate rule
array element RU(n.m).

12121 FOR H=l TO FE%
140 FOR M~l TO 08%
15121 OE(M>=DE(M)+FV(N)tPIJ(N,M)
16(1 t'~E::<T r·1 .. H

85

Artificial Intelligence on the Commodore 64

We now need to look to see if any of the decision values for any of the
objects DE(n) are greater than or equal to the overall decision value DE%.
If this is true, we set a 'top score' TS% variable equal to the number of the
object producing the best match.

170 FOR N=l TO 08%
leO IF DE(N)=DE% THEN DE%=DE(N)'TS%=N
19~~1 ND::T t·~

The best guess of the system is that this is the correct answer, so once again
it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

200 PF: I t-n "HAS IT II .; (18$(TS/~ ;'.i II II .:

210 GET H~$: IF It.H~;""''' II THEH 21(1
215 PRINT I t·~$
220 IF I t·~$:::: 1/ 'ill THEt·~ ~::0

If this was not the correct answer, the names and numbers of all the objects
are printed out and you are asked for the number of the correct answer
CR%. (The limitations on CR% prevent you crashing the program by
entering an illegal value.)

230 FOR N=1 TO 08%
240 PRIHT NJ08$(N)
25121 NE~n H
260 PRIt-n lI~lHICH L·lAS ITII;
270 GET CR%'IF CR%(1 OR CR%>5 THEN 270
275 PR I NT CP~,~

A check is now made to see if the decision value for each object DE(n) is
greater than or equal to the overall decision value DE% and whether the
object being considered is not the correct answer. I f both of these are true
then the rules are updated again by subtracting the correct feature values
FV(n) to bias in favour of the correct answer.

280 FOR N=1 TO 08%
290 PRINT DE(N»)DE%)CR%
300 IF OECH»=DE% AND N<>CR% THEN FOR M~
1 TO FE%:RU(M;N)=RU(MJN)-FV(M):NEXT M
310 NE:'<T t·~

Now the correct feature values FV(n) are added to the rule array for the
correct object, to bias in the opposite direction.

86

Chapter 6 M akinl(Your Expert Sl'stem Learn for Itself

220 FOP M~l TO FE%
320 PU(M,CP%)~RU(M,CR%)+FV(M)
34£1 t'~E:'<T '-1

Finally the status of the rule arrays are printed out so that you can see what
is happening.

250 FOR M~l TO O~%
260 FOR'N~l TO FE%
270 PRINT PU(N,M);
:380 t'~E~n t·~
390 PRItH
4~;J(1 t'~E~n r-1
410 GOTD 20

Once again a demonstration is the best way to understand what IS

happening so enter the following sequence:

WHEELS Y
RAIl.S N

WINGS N ENGINE N
WINDOWS N CHAIN Y

TYRES Y
STEERING Y

The program will come back with the erroneous conclusion that it was a
horse, so you must tell it that this was wrong, when it will ask you for the
correct answer (bicycle = I):

WAS IT HORSE N

I BICYCLE
2 CAR
3 TRAIN
4 PLANE
5 HORSE

WHICH WAS IT I

The statuses of the various decision and rule arrays are now printed out for
your information (note that the labels shown here are not included on the
screen).

(DE(N» (DE%) (CR%)
0 0 I
0 0 I
0 0
0 0
0 0

87

ATlijiciallntelligence un the Commodore 64

0 0 0 0 (bicycle)
-I 0 0 -I 0 0 -I -I (car)
-I 0 0 -I 0 0 -I -I (train)
~I 0 0 -I 0 0 -I -I (plane)
-I 0 0 -I 0 0 -I -I (horse)

A B C D E F G H

(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=Chain H=Steering)

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels, tyres, chain and steering - all
features which we defined as part of a bicycle and not found in a horse. In
addition, you will see that the values for these features in the bicycle rule
array are now all plus one, whilst the values for these features for all the
other objects are now all minus one.

Now give it the features of a car, which it will think a bicycle, and then
correct it. Notice that the rule arrays for bicycle and car are now amended to
take into account the new information.

WHEELS Y
RAILS N

WINGS N ENGINE Y
WINDOWS Y CHAIN N

WAS IT BICYCLE N

BICYCLE
2 CAR
3 TRAIN
4 PLANE
5 HORSE

WHICH WAS IT 2

3 3 2
-3 3 2
-3 3 2
-3 3 2
-3 3 2

0 0 -I 0 0 -I
0 0 I 0 0 -I

-I 0 0 -I 0 0 -I
-) 0 0 -I 0 0 -I
-I 0 0 -I 0 0 -I

88

TYRES Y
STEERING Y

0 (bicycle)
0 (car)

-) (train)
-I (plane)
-I (horse)

Chapter fI Making Your Expert System Learn for !tse((

A B

(A=wheels
E=rails

C D E

B=wings
F=windows

F G

C=engine
G=chain

H

D=tyres
H=steering)

Next give it a plane, which it decides is a car, and correct it again.

WHEELS Y
RAILS N

WAS IT CAR N

BICYCLE
2 CAR
3 TRAIN
4 PLANE
5 HORSE

WINGS Y ENGINE Y
WINDOWS Y CHAIN N

WHICH WAS IT 4

And now a train, which it still gets wrong!

WHEELS Y
RAILS N

WINGS N
WINDOWS Y

WAS IT PLANE N

I BICYCLE
2 CAR
3 TRAIN
4 PLANE
5 HORSE

WHICH WAS IT 3

ENGINE Y
CHAIN N

And finally a horse, which comes out as a plane!

WHEELS N
RAILS N

WINGS N ENGINE N
WINDOWS N CHAIN N

WAS IT PLANE N

I BICYCLE
2 CAR

TYRES Y
STEERING Y

TYRES N
STEERING N

TYRES N
STEERING Y

89

Arri/iciallnrelligence on the Commodore 64

3 TRAIN
4 PLANE
5 HORSE

WHICH WAS IT 5

If you continue to feed your expert information, eventually it will get the
right answer every time. How long this will take depends upon the extent of
the differences between the features of the objects, and on the order in
which the objects are presented to the expert. Be warned that it can take a
long time before it becomes infallible. Here is one sequence which
eventually came out right every time.

plane (train)
car (YES)
horse (YES)
plane (car)
car (YES)
car (YES)
bicycle (Y ES)
bicycle (YES)
plane (car)
car (YES)
bicycle (car)
train (YES)

car (plane)
plane (car)
plane (bicycle)
plane (car)
plane (car)
plane (YES)
train (car)
car (plane)
plane (YES)
plane (YES)
car (YES)
horse (YES)

bicycle (YES)
plane (YES)
car (plane)
car (plane)
plane (YES)
horse (YES)
train (YES)
car (YES)
car (plane)
car (YES)
plane (YES)
bicycle (YES)

To see the final state of the rule array when the ultimate state is reached,
you can stop the program and then type GOTO 350 as a direct command.
As the final scale of values ranges from +6 to -2, you should not be
surprised that it took a long time to get there.

I 0 -I 0 -2 3 0 (bicycle)
-I 4 I 0 -I I -2 0 (car)

0 -I I -2 2 I -I -2 (train)
-2 6 0 0 -I 0 -2 -2 (plane)
-\ 0 0 -\ 0 0 -I 0 (horse)
A B C D E F G H

(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=chain H=steering)

Of course, in a real application of such an expert system you could feed it a

90

Chapter 6 Making Your Expert S)'stem Learn for Itself

mass of collected information and conclusions on a subject area and then
leave it alone to digest this and to come up with the rules in its own good
time. As these rules are stored in arrays you could easily write a routine to
save these for re-use later.

91

CHAPTER 7

Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. For example, English is a very variable
language and there are frequently alternative spellings of the same (or very
similar) surnames, which can cause difficulties.

One way around this problem is to try to match the sound of the word,
rather than the actual letters in it, by means of 'Soundex Coding', which
was originally developed to assist processing of the 1890 census in the USA.
This method of coding ensures that similar-sounding words have aimost
the same code sequence.

The rules for coding a word are as follows:

I) Always retain the first letter ofthe word as the first character of the code.

From the second letter onward:

2) Ignore vowels (a, e, i, 0, u).

3) Ignore the letters w, y, q and h.

4) Ignore punctuation marks.

5) Code the other letters with the values I 6 as follows:

Letters Code

bfpv I
cgjksxz 2
dt 3
I 4
mn 5
r 6

6) Where adjacent letters have the same code only the first one is retained.

7) If length of code is greater than four characters then take first four only.

8) If length of code is less than four characters then pad out to four
characters with zeros.

93

Artificial Intellige/ll'e on the lommodore 64

To make this clear here are some examples of Soundex Coded names:

BRAIN· B650

(8 is retained, R is 6, A and I are dropped, N is 5 and a zero is added to pad
out the code.)

CUNNINGHAM· C552

(C is retained, U is dropped, both N s are represented by the single code5, I is
dropped, the third N is represented by 5, G is 2, H and A are dropped, and
M is coded as 5 - but the resulting code (C5525) is truncated to four
characters.)

GORE· G600

(G is retained. 0 is dropped, R is 6, E is dropped and zeros are added to pad
the code.)

IRELAND 1645

(I is retained, R is 6, E is dropped, Lis 4, A is dropped, N is 5 and D is 3-
but the resulting code (16453) is truncated to four characters.)

SCOT· S230

(S is retained, C is 2, 0 is dropped. T is 3 and zero is added to pad the code.)
If your name is full of vowels and other rejected letters, then you will find

that your code is somewhat abbreviated!

HEYHOE· HOOO

(H is retained, all the other letters are rejected (!), and the code is filled up
with zeros.)

Coding routine
To save all that brainwork. let's develop a program which allows you to
input a word in English and output it in Soundex Code (see Flowchart
7.1) The first thing to do is to jump to a set-up routine which reads each
group of the retained letters into one element of a Soundex Code string
array SC$(n). (N ote that the letters are arranged so that they are in the
array element corresponding to their code value.)

94

Chapter 7 Fu;;;r Matchinf(

NO

SETTM$
EMPTY

Flo"chart 7.1

18 GOSUE' 10088
10000 [:1 I t'1 SC$(6 ::0

TAKE 1ST
I---t_~ LETTER

NO

AS CO.$

TAKE NEXT
LETTER

AS TM$

SEARC.H
STRING:
CODE. GROUP

TM$ =
CODE
NUMBER

Producin2 a Soundex ('ode

11000 DATA 8FPV!CGJ~SX:IDT:L.MN.P
12000 FOR N~l TO 6
12010 READ SC$(N)
12020 t'~E~n t--I
1 :?00121 PETURH

We can now input the word to be converted, IN$. and. to begin with. make
the coded version of this. CO$. the first letter of that word (following the
first rule above).

95

Artificial Intelligence on the Commodore 64

10€1 I t·WUT I t~$
110 CO$=LEFTS(INSJ1)

We now need to check the other letters ofthe word, 2 TO LEN(lN$), in turn
after first making a temporary string TM$ equal to the current letter to be
translated.

120 FOR N~2 TO LEN(IN$)
130 TM$=MID!(IN$;N~l)

As conversion to the code numbers will be required at various points in the
final problem, we will set up this process as a subroutine at line 1000.

14£1 GOSUE' 1 ~h30

We have to check TM$ against each individual letter in each group of
letters SC$(n) to find a match. To check each letter group, we have to go
round six times, making a search string SE$ the current Soundex Code
group, and jumping to an lNSTR routine which checks each letter in the
group against TM$ in turn.

1000 FOR P~l TO 6
Ild10 SE$=8C,!;(P)
1020 GOSU8 5tl00

The INSTR routine is similar to the one used in previous chapters.
When the INSTR check has been made, we have to determine whether a

match has been found to any of the Soundex groups, and if so, to which
group. If no match is found then SP% will be set to zero. If a match is found
then SP% will be set to M which will point to the value of the code group
matched.

5000 FOR M=l TO LEN(SE$)
5010 IF MIO$(SE$,MJ1)=TM$ THEN SP%=M:RET
URt·~
5020 t'~E:~::T t1
5030 SP~'~:::fJ
5040 RETURN

If a match is found, SP%>O, then we convert the numeric value ofthe loop
scanning the code groups P to a string TM$ which replaces our original
temporary string. (The STR$ command converts a number into a string,
but we also need to use RIG HT$ as STR$ automatically adds a space on to
the front of the number string.)

96

Chapter 7 Fuzzy Matching

1£130 IF SP%>0 THEN TMS=RIGHT$(STR$(P)J1)
, ~~ETUP.t·~

If no match is found in that group, we have to check the next group.

1040 HE:·~:T p

If no match is found at all, then TM$ must contain one of the characters to
be ignored. So we reset TM$ empty [$=""] and RETURN.

1£150 Tt1$::-:1I It

1£160 RETUF:t-~

We can now make the coded string CO$ equal to the original coded string
plus the newly converted character TM$.

Now we loop back to deal with the next character in IN$.

When the end of IN$ is reached, we print out the input IN$ and the entire
coded string CO$ before going back to 100 for another input.

210 PRItH: PRItH II HAt'lE I! J "CODE" : PRltH IH$J
C(I$
32£1 GOTO 1 ~)[1

If you input the name STEVEN you will now get the code S315 which is
correct. However, if you try BRAIN or CUNNINGHAM you will get the
codes B65 and C55525 respectively. The code for BRAIl'\ is too short and
needs padding out with zeros, and the code for CUNNINGHAM is too
long and the same codes are repeated one after another for the letter N.

Dealing with the details
To solve the problem of the repetition of the same code for adjacent letters,
we need to keep a record of the last temporary string L T$. We need to make
L T$ the code of the first character in IN$ to start with, so that the initial
letter is not repeated. As we go through the FOR-NEXT loop, we must
compare L T$ with TM$, and if they are the same we must not add TM$ to
CO$. Otherwise we need to make L T$ the latest TM$.

97

Artificial Intelligence on the Commodore 64

CO$=TM$

r.-- --,
'*~TQI/N6 I
ISu8~n"'EI
I I L __ __ ...I

LT$=TM$

TAKE NEXT

r T /'VIT'HING -1- - - - --, 1* SUSROI1T1NE I
I SEARCH I

5TRIN&=
I CODE. GROUP I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I L __________ -i

LETTER ~----------__ ------------~
AS TM$

r.-- --,
'*M'lTUlIN6 I
I SU8I\0I!T/1llf. I
I I L ____ .J

ADD TM$
TO GO$

Flowchart 7.2 Dealing with the Details

NO

110 TM$=LEFT$(IN$)1):CO$~TM$:GOSU8 1000:
LT$=Hl$
150 IF TM$=LT$ THEN GOTO 180
160 LT$=H1$

Now we can sort out the problem of the code being too short. First of all we
check the length of the string LEN(CO$)<4. If it is too short, we add three
zeros on to the end and then use LE FT$ to cut the string back down to the
correct size (four characters).

98

Chapler 7 Fuzzy MalChinf{

19~1 I FLEW CO'li :V 4 THEt,~ (O$=CO$+" ~100" : CO$
=LEFT'!,(CO$., 4)

Finally, if the string IS too long then we cut it down to sIze with
LEFT$(CO$,4) again.

200 IF LEN(CO$»4 THEN COf=LEFT$(COf~4)

Matchmaking
Now that we have a reliable method of producing the Soundex
Codes, let's give it something to work on. The first task is to read a
list of names out of OAT A statements into a name string array N A$(n).
Our demonstration list only consists of eighteen names - if you want
more, a quick flick through your local telephone directory should soon
solve that problem! Note that the number of words is also stored as NW%.

10010 NW%=17:DIM NAS(NW%)
11010 DATA A8RAHAM,AeRAHAMS,A8RAMS~ADAM,
ADAMS,ADDAMS~ADAMSON~ALAN~ALLAN;ALlEN
11020 DATA ANTHANV,ANTHONY,ANTONY,ANTP08
US,APPERLEY,APPLE8EE,APPLE8V,APPLEFORD
12020 FOR N=0 TO 17
12040 READ NA$(N)
1205(1 NE~n t,~

The whole idea of matching with Soundex Codes relies on the fact that you
use the Soundex Code to make the match before printing the possible
words. We therefore have to find the codes for each of the names from the
OAT A and put these coded into an equivalent string array NC$(n). The
routine to find the Soundex Code is virtually identical to the one used to
find the code of an input, as described above.

18020 DIM NC$(NW%)
1212168 PRltH' PRltH "NAr1E", "CO[IE" 'PRltH
1207B FOR Q=0 TO NW%
12090 PRINT NASCQ),
12090 TMS=LEFTf(NA$(Q),l):COS=TM$:GOSUe
1000: L T$-:-:Tt'l'.t
12100 FOR N=2 TO LEN(NA$(Q»)
12110 TM$=MID$(NA$(Q),N,l)
1212(1 GOSIJB 1000
12120 IF TM$=LTS'THEN NEXT N:GOTO 12170
12140 L T$::::Tt1$

99

Artificiallnrelligence on the Commodore 64

12150 CO$=CO$+TM$
12160 NE~<T N
121 70 IF LEH(CO$)< 4- THEN (:O$=CO$+ II 0(1~J II : C
O$~";':LEFT$((:0$.. 4)
12180 IF LEH((:O$»4 THEN CO$=LEFT$(CO$~4)
12190 PRINT CO$
12200 t'K~$(Q)::::(:0$
1221£1 NE~<T I)

If you R UN this now, you will see all the codes for the DATA produced
before the input request.

NAME CODE

ABRAHAM AI65
ABRAHAMS AI65
ABRAMS AI65
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY A535
ANTHONY A535
ANTONY A535
ANTROBUS A536
APPERLEY AI64
APPLEBEE AI41
APPLEBY AI41
APPLEFORD AI41

The only thing we need to do now is to find which codes of these names
match the code of your input and then to print out these names with a
FOR -NEXT loop.

2411 F'P 1 t·n
250 FOP N=0 TO NW%
260 IF CO$=NC$(N) THEN PRINT NAf(N) .. NC$(
t·~ ::.
270 t'~D:T H·

This will only print words with exactly matching Soundex Codes. For

100

Chapter 7 Fu=zy Matching

example, if you try entering the name APPLEBE you will get the following
response:

? APPLEBE

NAME CODE
APPLEBE Al4l

APPLEBEE Al4l
APPLEBY Al4l
APPLEFORD Al4l

Although APPLEBE (one E at the end!) is not present in the DATA, we
have found APPLEBEE and APPLEBY, as well as APPLEFORD (where
the interesting sound at the end has been chopped off).

Flowchart 7.3 Partial Matching

!Ol

Artijiciallllle/ligence on the Commodore 64

Partial matching
Notice that on the other hand APPERLEY has been rejected. even though
it sounds quite similar at first. It would therefore be useful if we could also
print out partial matches.

This can easily be done by adding an extra FOR-NEXT loop. which
compares a decreasing section of the input LEFT$(CO$.M) with
decreasing lengths of the stored codes LEFT$(NC$(N).M) (see Flowchart
7.3).

230 FOR M=4 TO 1 STEP -1
240 FRUH· PPItH t1.; "CHr1PACTEPS r'1ATCH": PF.:I
tH
260 IF LEFT$(CO'/M)~LEFTt(NC$(N)/M) THEN

PPINT NA$(N).NC$(N)
2e0 PPItH PPItn "PPES::; rE'"!, TO c:mHIHUE"
290 GET H~,*:' IF Jt.1$ --:: II II THEN 290
:::;-00 PP I tH : PP. I tn
:? 1 (1 t~E~-=:T tol

If you now try APPLEBE you can see the whole range of possibilities.

? APPLEBE

NAME
APPLEBE

CODE
AI41

4 CHARACTERS MATCH
APPLEBEE AI41
APPLEBY AI41
APPLEFORD AI41
PRESS KEY TO CO:"llTlNUE

3 CHARACTERS MATCH

APPLEBEE A 141
APPLEBY AI41
APPLEFORD AI41
PRESS KEY TO CONTINUE

2 CHARACTERS MATCH
ABRAHAM AI65
ABRAHAMS AI65
ABRAMS AI65
APPERLEY AI64

102

Chapler 7 Fuzzy Jfalching

APPLEBEE AI41
APPLEBY AI41
APPLEFORD AI41
PRESS KEY TO CONTINUE

I CHARACTERS MATCH
ABRAHAM AI65
ABRAHAMS AI65
ABRAMS AI65
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALA~ A450
ALLA:\, A450
ALLEN A450
A:\THAl'I:Y A535
ANTHO:\,Y A535
ANTONY A535
ANTROBUS A536
APPERLEY AI64
APPLEBEE AI41
APPLEBY AI41
APPLEFORD AI41
PRESS KEY TO CONTINUE

103

CHAPTER 8

Recognising Shapes

We normally recognise objects using our senses of sight, sound, taste and
feel, whereas of course our basic computer can only obtain information
through the keyboard. Whilst it is possible to produce sensors which can be
interfaced with your machine to give it another view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We will make do instead with a simulation
of the action of a light sensor to illustrate how sha pes can be recognised.

Let us think for a start about three simple shapes - a vertical line, a
square, and a right-angled triangle.

We can recognise these shapes by looking at the pattern they make on an
imaginary grid and deciding whether or not there is a point set at each X
and Y coordinate.

In the case of a line only the first X coordinate is used, but all of the Y
coordinates. A square is a little more complicated, as all the X
coordinates on Y rows I and 8 are set, and from Y rows 2 to 7 only the first
and last X points are set. Finally, a triangle is even more complicated, as
the slope is produced by incrementing the X axis each time

Table 8.1 Decimal Values of Shapes Described in Binary Form

Y row line square triangle
I I 255 I
2 129 3
3 129 5
4 129 9
5 129 17
6 129 33
7 129 65
8 255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and to produce a decimal value for each
row, in the same way as we did before when we were looking at expert
systems (see Table 8.1). In fact this type of approach is used to produce the
characters which you see on your screen display, the formats for which are

105

Art!ficiallnlelli.r:ence un the Commudure 64

stored in memory in just this form. For example Figure 8.1 shows how the
letter 'N is built up.

There are now machines available (Optical Character Readers) which can
reverse this process. They actually 'read' a printed page by scanning the
paper in a grid pattern and measuring whether or not light is reflected at
particular coordinates.

Figure H.I Forming the Letter 'A'

What they actually take in will be a pattern of 'yes' and 'no' for each
coordinate, and of course this must then be decoded and compared with the
patterns for known shapes. The most obvious way to make this comparison
would be to consider every point in turn as a binary digit and then to
convert each row back to a decimal value which could be compared with a
table of known values. However this has the disadvantage that we must
actually check every individual point on the grid (64 points).

A branching short cut
A quicker approach relies on the fact that each character can actually be
detected by looking at only a much smaller number of critical features of
the pattern. For example, Figure 8.2 gives a decision tree which will find all

106

o -.
.I

1

N

2.

N

1,
5

N

:3

.....
.....

.
3

,2

y

4
N

15

F
ig

ur
e

8.
2a

D

ec
is

io
n

T
re

e
fo

r
A

lp
ha

be
t

5
6

Q

{l
 ~ O
c :::t
l

~
 ~ ~:

~

c.
"

;:,
-

{l

."
 ...,

lq

2
0

21

2

2

2
3

2

4

0
:...

oc

N

N

Y

N

...

5
.1

5

.4

5
.3

P

-§

; ..., ~

~

;;;

:::
:

y
(

I'
)

,
(

I
(

R

,
(
R

R

 '" ;::
, ~

Q

4
5

4

6

4
8

;::

,
2

q

+7

~

N

~

N

~

N

f:
:\

."

t
j

Q
 ::: § ~ ::; '" 0-

3
2

F
ig

ur
e

8.
2b

Chapter 8 Recognising Shapes

the capital letters of the alphabet using only 12 points (see Figure 8.3), and
it is not even necessary to check all 12 in any particular case. If you follow
each of the routes, you will see that the maximum number of steps to be

x
1 2 3 4 5

1 x X X
2 X X
3 X

y 4 X X
5 X X
6 X
7 X
Figure 8.3 Points l'sed in Decision Tree

followed is seven. and that most letters are found in less than five steps
(Table 8.2). This must obviously be quicker than comparing all 64 points!

Table 8.2 l\umbers of Steps Required for Recognition of Each Character

3 steps· I, D
4 steps .. L, J, C, G, 0, W
5 steps· S, A. Q. R, T. F. U, space
6 steps - P, V, y, H
7 steps - B, M, N, E, K, X, Z

109

Arlijiciallnll'lIigence on the Commodore 64

To demonstrate how this approach works, we will simulate the action of
the scanning head by producing a grid on the screen, on which you can
construct characters.

The text screen start address \024 and colour RAM offset 54272 are
defined as variables, TS and CO respectively, as they are used frequently.
The screen is cleared and a dark area 6 X 8 blocks is set up in the top
lefthand corner. A lighter-coloured 5 X 7 grid is then superimposed on this
to mark the actual working area (of course there must be a margin around
the edge so that characters do not merge).

18 GOSUE' 1 ~.K1(j0
10088 TS:1024:CO=~4272
12080 PF: I tH "[CLPJ"
12010 FOR N=1 TO 10
12~120 PP I tH
12030 t'~E::<T t·~
12008 FOR X=0 TO 6
12010 FOR Y=0 TO 8
13020 POKE TS+CO+X+(Yt40),11
12030 POKE TS+X+(Yt48),224
13~~14~:1 t'~E~<T ' ::<
13050 FOR X~1 TO 5
13060 FOR V=1 TO 7
12070 POKE TS+CO+X+(Yt40),1
1308121 t'~E~n Y., ::<
1 :?090 ;:'::::: 1 : Y::: 1
1:? 10l) RETIjRt·~

A flashing cursor is now produced to show your position. CP is the current
position on the text screen, TS + offset, the current colour of which is saved
as CC by PEEKing the equivalent position in the colour RAM. A different
colour CC + 4 is then POKEd into place and the original colour (CC)
PO K Ed back, so that t here is no lasting effect.

20 GET ~~$
30 CP=TS+X+(Y*40):CC=PEEK(CP+CO):POKE CP
+COJCC+4:POKE CP+CO}CC
4tl IF A$="" THEt·~ 2t1

The X and Y coordinates are updated according to the movement of the
cursor keys, and if the spacebar is pressed the colour of the current position
is set to black (0). If you make a mistake, the left arrow erases the current
position by resetting the colour to I, or CLR jumps to the set-up routine

110

Chapter 8 RccoKnisinK Shapes

and erases all the current grid. Pressing RETURN leads to the decoding
routine, or else the program loops back to the keycheck.

50 IF A$::: II [P I GHT CUR:30R] II THEt·~ ~~==X+ 1
6£1 IF A$= II [LEFT CURSOR] II THH~ -}:::::~~-1
70 I F Aft;: II [DOW'~ CURSOP] II THH~ "('::::'-(+ 1
8(1 IF A$= II [UP CURSOR] II THEN 'l=='t-l
90 IF AS= II II THEt·~ POKE TS+CO+~<+('/*40)
)0
10121 IF A$::: II [< -_.J II THEN F'm~E T8+CO+::<+(Y1A~1
») 1
11 £1 IF A$= II [CLR] II THEt·~ C;OSUE~ 130£1(1
120 IF ASCCA$)=13 THEN 20121121
170 GOTO 2(1

Limits must be set to prevent the cursor wandering off the 5 X 7 grid area.

13£1 IF X< 1 THEN ~<= 1
14121 IF :~<>5 THEN r:=5
150 IF '1)< 1 THEt·~ ..,.':::1
160 IF 1-(>7 THEH 1,(,::: 7

The decision tree is held in a series of linked arrays where l\' B is the number
of branches, LE$(n) holds the names of the letters, CI(n) the X coordinate
to be checked next, C2(n) the Y coordinate to be checked next, N(n) the
next element to use if the answer is 'no', and Yen) the next element to use if the
answer is ·yes'.

11 £H30 HE'==53
11010 DIM LE$(NE'»)C1(N8))C2(N~))N(N8)/Y(
t·~8)
11020 FOR N=l TO NB
1103£1 READ LE$(N»)Cl(N)IC2(N)IN(N)IY(N)
1104~ZI NEt~T H

The best way to enter the DATA is probably as 53 separate lines (one for
each branch poin!), as this makes it easy to enter and to edit out any
mistakes.

14010 DATA .·1)1/2J19
14020 DATA .115/3.10
14020 DATA .312.4.9
1404121 DATA .5.1.519
14050 DATA 1311.6.7

III

Aflificiallntelli~en('e on the Commodore 64

14060 DATR
1407(1 Ctt'HA
14080 DATA
1409(1 I)ATA
141 O~3 D~1TA
1411121 C'ATA
14120 OATA
141 ::;'0 DATA
1414(1 CIATA
14150 DATA
14160 DATA
1417€1 DATA
1418~) DATA
14190 DATR
142(H) CIATA
14210 (IRTA
14220 DATA
1423~) DATA
14240 NHA
1425(1 [:.ATA
1426121 CIATA
1427121 C'ATR
1428€1 [)ATA
14290 CIATA
14:~~(1(1 DATA
143H) DATA
14:32121 DATA
14:330 DATA
14340 DATA
i 4:350 CIATA
14360 DATA
14370 DATA
14280 DATA
14390 DATA
1441210 DATA
14410 DATA
14420 [~ATA
14430 CaATA
14440 DATA
14450 DATA
1446121 C'ATA
1447121 (;lATA
1448£t DATA
14490 DRTA

112

tI II

II Silo' .. J)

1I,,.tt ... I I ..

II I ., .. o. 0' J

lie: II " " ,. "

"G"))))
J 5.1 7) 1::: .. 15
)2,,·L 17" 16
II A II) ,) "

II I) II)) ")

"0 II " "))

,I 5 .. 1 .. 2~l., 2:.71
0,5 oj 4 J 21 .. 2-::
,l 5.1 3 .. 27" 22
) 5 J 7 .. 2:;:" 26
) 5) 5" 24) 25
IIFI II

., " " ..

II E' II J " ,I ..

flRt'oJ .. ")

II L II) J J "

II [:111) o' ,I J

)5)(,45)30
,,2,6) :31) 44
~ '-:;. ,-:;.,-, '-:;..:.

.. ~ .. ,_'" --.''::'.' 'wJ_

) L 5) :33) 36
,. :::~ .. 1 0' :~~4 " :;~5
111,,111

(', J J ,. "

liZ"" .. J "

," 4) 2) 3::' , :37
II t< II ..) J "

"E",)))
" 2) 4) 40 .. 4:3
) 4) 2,,42,,41
"~1",,)))

II H II ")))

IIHfI .. ,. " J

"~J"))))

)3)1,46,51
,1,5)47)50
J 2., '~J 'le .. .:~9
,.,'(II J .. J 0'

"'.,1"))))

Chap/Pr 1I Recognising Shapes

1450£1 DATA "fj",).,)

1451121 DATA)1/5/52/53
14520 DATA II Til/) .')
1453t1 DATA "F",)//

If you are more confident (or are trying to save space) then all the DATA
can be condensed on to eight rather unreadable lines which are OK for
those who are good at counting commas, but very difficult to edit.

1401121 NiTA .,-1; 1.,2., 19., , 1,5., ::::.,1121;., :3., 2; 4., 9,
0' 5" 1 J 5 .. ~I" " :;!" 1 " 6 J 7 J II II ,I .. ,) II::; II

140E't1 [:OATA ".J".,;;." II I ";,;.,.' ; 5., 4.,11.,14, J 5
.. 5 .. 12 .. 1::: ,_ II C' II ,I ,I " J J II C; II .. J o' " 5,1 ? J 1:3 .. 15
1415t1 [)ATA .' 2, 4) 17., 16 .. II A" J , .' .' , II Q1I .' , .' / / II (I
"" J,' J" .. 5 .. 1)2~3 .. 29J .. 5 .. 4 .. 21 .. 2:?·):i.':~:.127.,22
1422~J DATA .. 5 .. 7 .. 2:3 .. 2t5.1 ,.5) 51 24 .. 25 .. lip"" ,I ,'"

.f 118 11
" .. J .. J II R II J ,I of II L II " .. " " " If CI II " .' " 0'

14290 DATA .. 5/7,45 .. 20 2 .. 6 .. 31;44/,5,3,32
.. :?9J J 1 .. 5 .. :~!:~:) :36 .. ,,:?) 1 .. :34 .. ":35 .. "::-::""
14:?5[t C'ATA II Z II " " " " 4" 2 ,_ :?~3 .. :;~7 .. II ~::" .. I' o' .. " II E
II ,,2 .. 4 ..• ~~ZI.1 a:~:3:t .. 2.1 42 .. 41.1 IIr'l" 0' " " ..

14420 DATA "NI.,.,.,.,.,IH".,; .. /,I~J"//" ... ,3)1.,
46.1 !2',l 1) 5.1 4·7 .. 50.1., 2, .:~ .. .:~8 .. 49, "1.,01".1, J ..

14490 [)t1TA "V",.,;., / "U" / ... ') ~) 1.,5, 52., ~i:3~ "T
II 01 J IIFI ... 01 ... '

To check the design produced against the patterns available (see Flowchart
8.1), the array pointer A P is first set to I so that the search is started from
the beginning. X and Y coordinates are read from the C I (AP) and C2(AP)
elements pointed to, and the last position LP pointer set equal to the
current array pointer AP.

The point colour PC at these coordinates is determined by PEEK(TS+
CO+X+(Y*40» AND 15. If this is zero than the point has been set and the
'yes' pointer Y(AP) must be followed. If any other value is found then the
'no' pointer N(AP) is followed. In either case a check is made to see whether
the element pointed to contains a zero (indicating the ultimate end of a
branch). which shows that a character has been found. If so, the
appropriate letter LE$(LP) is printed. and the display is held until a key is
pressed, when a new cycle is initiated. As long as a higher value than zero is
found then this must be another branch point and so the program loops
back to 2010 and picks up the new values of CI(AP) and C2(AP).

To allow you to see which points have been checked. these are set to
different colours as they are found. 'Yes' and 'no' branches can be
distinguished as tested points which were not set. PDO. and will now be light

113

Artificial InrelliJ(ence on rhe Commodore 64

C.OLLEGT
X 1------------,

COORDINATE

SAVE
CURRENT
POIN1ER

YES USE 'YES"
POINTER

USE ·NO·
POINTER 1-----<

Flowchart 8.1 Character Recognition

green, 3, whilst points which were set will be red (3+ I). Any points which
were set but not tested will remain black.

200121 Ap::::l
21310 X=Cl(AP):Y=C2(AP):LP=AP
2~320 PC=PEEK(TS+CO+~'::+(\':tAt1)::. At~[) 15
2030 IF PC=0 THEN AP=YCAP):GOTO 2050
2£140 Ap:::t'K AP)
2050 IF-AP=0 THEN 2070
2060 POKE TS+CO+X+(Yt40)J3+(PC=0):GOTO 2
010
2070 PRINT LE$(LP);
2080 GET A$: IF A$="" THEN 2(IE~t1
2090 GOSUB 12000:GOTO 20

114

Cha{lter 8 Recognising Shapes

If you want to see which part of the tree was actually followed, then add
these modifications which will print out the sequence. The grid is moved
down the screen by adding an offset of 481 to SS and a blanking string BL$
defined which is used for partial screen clearance.

10000 5S=1024+481
100£Z15 BL $= II

"

2005 F'R I NT II [HOr1EJ II J" AP II : PR I t-n
2~155 PR I tH AP
2070 PRItH: PRItH" .. ; LE$(LP): PRINT
2£175 PR I tH II PRESS A KEY TO COtH I t~UE"
20':35 PR I NT '·I:HCfrolEJ" : FOF.: N= 1 TO 1 ~j : PR I t-n 8L $: NE
~<T H

The disadvantage of this more rapid method, of only checking critical
points, is that it will make a mistaken match if it encounters a shape that is
not on the tree, whereas if all points are checked then no match will be
found in such a case.

Early Optical Character Readers would only accept a single particular
typeface, but the latest machines not only accept different styles of type, but
actually learn the recognition rules for themselves by means of a built-in
expert system. You teach these by showing them a few pages of text and
then entering these same characters via the keyboard. However we feel that
it will still be a long time before anyone can produce a machine that can
read OUR handwriting!

115

CHAPTER 9

An Intelligent Teacher

Another place where artificial intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student's knowledge at random, but this is not how a real human teacher
works. As well as asking the questions, he keeps an eye on the progress of the
students, increases the difficulty of the questions as experience increases,
and tests them more rigorously on the types of problems with which they are
having difficulties. For example, if a child takes a test involving addition,
subtraction, multiplication, and division, but only gets the division-type
questions wrong, then it follows that the child should be given more
division questions in the future to provide more practice.

Let's have a look at how we can introduce these 'human' qualities into a
teaching program.

Questions and answers
We need to create random numbers to be used in the first question,
which we will make addition. Using INT(RND(I)*IO) will give numbers
between 0 and 9.

28 A%~INT(RND(1)*10)
20 E%~INT(PND(1)*10)

The computer adds these together and then goes on to an input and
checking subroutine at 1000.

40 C%~A%+8%:GOSUe 1008

First, the routine must print the question and input your answer IP%.

1 fHJ£1 PR I tH A~·~.,.,·t-") B~·~.; "=:' II "

1010 H~PUT IP\

Your answer must then be checked. If the program answer C% is the same
as your answer, then CO R R ECT is printed and the routine returns to line
40. Otherwise WRONG is printed followed by the correct answer.

117

ArtificiallntelliKcnce on the Commodore 64

1 ~32t1 1 F C~~~ I P\ THEt~ F'F: 1 tH "COPPECT II : RETU
PH
1 ~f3t1 PP I tH II ~JPOHG J THE CO~F:ECT At'~S~'JER ~'JA
S II; C·~

1 t14€1 PETIJRH

The other three subjects (subtraction, multiplication, and division) can be
easily dealt with in the same way if we replace the' + 'sign in line 1000 by a
sign string SG$, which we can set to the appropriate character at the time.
As INT(RND(I)*IO) is common to all the calculations, we might as well
define this as a function RD.

15 OEF FNRO(X)=RNO(1)*10
20 A%:::Ft-~RD(A[:I~'~)
2(1 8/;::::FNRO(AD~"'; ::.
40 SG$= II + II : C·~=A\tB~·~ : GOSU8 1000
50 A~-;;=Ft'~RO(Slj~ ... ;)
68 E!~~=FNR[II~ :;U~·~)
-;:'0 SG$::: 11- II : C-~::::A\·-E:~·; : GOSUE: 100[1
':'0 A/~=Ft·n;;:O(t'lU\)
90 8/i='FHf;;:N t'lU~'~ ::.
1 (1(1 :;G$== "l II : C~;::-A~"'~lB~·~ : GOSU8 1000
110 A~"';~FHPD([I I \ ::.
120 8~'~::::FNR[:II:: () I ~,;)
13£1 SG$== " " : C\::::A~'~/'8~'~ : GOSUE' 10(1121
10(1£1 PP I tH A~·~.i ::;G':l: ; B~; j II::., II ;

Finally we jump back to line 20 to ask more questions.

140 GOTO 2~3

Dividing by zero!
As it stands, the program can crash if B% happens to be zero when a
division is selected. This can be simply fixed by always adding one on to B%
in this case:

12121 8%=FNPD(OI%)+1

Deleting decimals
We are using integer variables to keep us to round numbers, but of course a

118

ChapIl'T 9 An Intelligent Teacher

division may still produce a fractional answer, which you cannot enter
correctly: I P% will be rounded down, eg:

3/2 = 1.5

The program will accept I. 1.5, 1.9 or any other number between I and
1.999 .,. as correct.

To avoid producing decimals, A% needs to be a mUltiple of B%. To
achieve this we calculate B% first and make A% equal to B% multiplied by
a random number between 0 and /0.

110 e%=FNPD(DI%)+1
120 A%=INT(FNRD(DI%))t8%

Keeping a score
Now that we have the test itself working, we need to consider how to keep a
score. The simp/est thing is to increment a tries variable TR% each time the
subroutine at 1000 is used, and to increment a score variable SC% each
time a correct answer is obtained.

1~10 INPUT IP%'TP%=TR%+l
102~j I F C~~'= I p~~ THEN: PR I tH "COPF.:ECT It : ::;C~·~::::­
SC/~+ 1 : GOT!) 104~3
104121 PP. I tH II YOUR SCORE I:':; It i SC-~.i It " ; TP.;·~ :
PETURt'4

If you prefer the score as a percentage then amend line /040 as follows:

1040 PR I tH "YOU HA' ... 'E HAD ".: I NT(0:: SC'~/TP~"'~) * 100 ::0 i ";.~ CORRECT": F<:ETUF<:H

How many questions?
As it stands the program will ask one question of each type in sequence, ad
infinitum. We can limit the number by defining the number of questions
I\Q% as a variable.

Each time a question is asked, NQ% is decreased by I, and when NQo/o=O
the test ends (after eight questions of each type have been answered).

119

Artificia//melli!rence on the Commodore 64

150 IF NQ%)0 THEN 20
160 EI·U)
1£110 INPUT IP%:TR%=TR%+l:NQ%=NQ%-1

Shifting the emphasis
If we are going to bias the questions in favour of areas of difficulty, then we

need to keep a record of performance in each individual area. We therefore

need separate variables for each type of question (AO% for addition, SUo/(

for subtraction, M U% for multiplication. and DI% for division). These

variables are defined in terms of one eighth of the total number of

questions to be asked NQ%.

1~ NQ%=22:AD%~NQ%/e:SU%=AD%:MU%=AD%:DI%~

A[)~·~

Now if the correct answer C% is the same as your answer IP% then an

increment variable IN% is set to -I, COR RECT is printed, and the routine

returns. Otherwise IN% is set to I. and WRONG is printed followed by the

correct answer.

1£120 I F C·~= I p~,~ THEt·~ I H~·~""-l . F'P I IH "COF.:F.:EC
T" : PETUF:t·~
1 (1:;'0 I t·~~,~= 1 . PP I IH "~JROt·~G., THE CO~:RECT At·~S

~JEF: ~,JAS ".; C ... ~
104(1 RETUf(:t-~

1:"1% is added to the appropriate individual number of questions variable

AO%, SU%, MU% or 01% on returning, producing an increase in this

value if the answer was wrong, or a decrease if the answer was right.

70 SGc.t:::.-" -" : C-~:-::A~~-8~'~ : GOSUE' 1000: SU~'~::::SU\+ I
H~~

10£1 SG$'::":f,": C·~::!A~·~lB% : GOSU8 10(1(1: r'1U~-::::::r1U~'~+
I t·~~·~
1:3£1 S(;$=",.,."· C·~~:A~'~·····E'~·~ : GO:::UE' 1 ~3c.;:10 : [:. I /~=D 1 ~,~+
IN~{

Now we add a check to see whether all the questions of a particular type

have not been correctly answered (eg AOo/O>O, see Flowchart 9.1) If all

questions of one type have been correctly answered, then no more of this

type will be asked as the line is jumped over. If the appropriate number of

120

Chapter 9 An Intelli~ent Teacht'r

PIc..K
1ST No

PIG.K.
2NO No

MAKE
CAlLUlATlON

I I

L..-----
t

~------i INCREMENT
TRIES

NO

'--__ --I UPDATE
SCORE

Flowchart 9.1 Intelligent Teacher

each type has been answered correctly (A Do/o=O. SUo/o=O, M Uo/o=O
Dlo/o=O) then the program ends.

4121 I F A(:t~·~ >0 THEt-~ 8[;$0: 1/ + II .; C~·~:::t1~·:+8~'~ : GOSUE~
1 O~3(1 . AD::'~=tA[:'~'~+ I t·t~
70 I F su=·~ >E) THEt·~ SG$::: II_II . C'~'-,:A='~-8/; : GO::;;U8

1000 : SU~'~:::SU~'~+ I t~~,;
1 [H} I F t'lU~~>O THEN SC;$= II * II : C~·~=:A~·::t:E'=·: : COSU
B 1000:MU%=MU%+IN%
1 :30 IF D I::'~ >0 THEN SG'ti= II."" 1/ : C'~=A~'~""'8~~ : GOSU
B 10eO:(:tI%cDI%+IN%
140 IF AD%=0 AND SU%=O AND MU%=0 AND 01%
:::0 THEt·~ 160

Notice that you are no longer asked questions about areas in which you

121

An({iciallnrelligence on the Commodore 64

have correctly answered four questions without making any errors. If you
make a mistake then AD%, etc, will be increased and so you will have to
answer more than four correctly before AD reaches zero.

Degrees of difficulty
How about making the questions easier or harder according to how well
you are doing (ie the values of AD%, SU%, MU%, and DI%)? So far the
current values for A% and B% have always been between 0 and 9 as they
were prod uced by R N 0(1)* 10, but we now need to bias the num bers
produced for the questions towards higher values, if you are correct, and
lower values, if you are incorrect. At the same time, we must ensure that
you do not produce negative values if your performance is abysmal.

The 'worst case' will be if you get all the questions right in three of the
groups, and all the questions wrong in the last group. In this case only four
questions will be asked on the first three groups, leaving 32-(3*4)=20
questions to be asked on the last group. In addition we must remember that
X (eg AD%) starts at a value of 4, so that the maximum value of X which
could be obtained is 20+4=24.

We therefore set up a weighting variable WT%, which is calculated by
subtracting three times the number of questions to be asked in each group
(3* AD%) from the total number of questions NQ%and adding back on the
number of questions in a group AD% at the start.

WT%=NQ%-(3*AD%)+AD%

This is more simply expressed as:

WTo/o=NQ%-(2* AD%)

18 NQ%~32:AD%~NQ%/8:SU%~AD%:MU%~AD%:DI%­
AD%:WT%~NQ%-(2tA0%)

We now replace the fixed value of ten by the difference betwen WT% and
X.

To begin with, WTo/o=24 and X=4 so numbers between 0 and 19 will be
selected. If a correct answer is given, then X will be reduced to 3 and
numbers between 0 and 20 will be chosen. After four correct answers, X will
not change (for this type of question) as it will have reached zero and the
line will be skipped. The last values will therefore be between 0 and 22.

122

Chapter 9 An Intelligent Teacher

On the other hand if the first answer is incorrect then X will increase by I
and the range of numbers produced reduced by I (0-18). In the'worst case'
X will be increased twenty times to 24 and (WT%- X) will fall to zero for
both A% and B% (so you should be able to solve that particular problem!).

123

CHAPTER 10
Putting It All Together

In the previous chapters we have dealt, from first principles, with various
aspects of Artificial Intelligence. In this final chapter we have linked
together many of these individual ideas in a single complete program.

The original 'intelligent' program was the famous 'ELIZA', which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy. We have resisted the temptation to follow this lead and
have opted instead to produce a replacement for the average computer
salesman. This program combines some ideas on the processing of natural
language and on expert systems, to produce a result which should both
understand your requests and make suggestions which take into account
both your requirements and a number of hard commercial facts.

Enough words and values have already been included to make the
program interesting, but you can easily customise it by adding your own
ideas to the OAT A. (We take no responsibility for the values included so
far. which are for demonstration purposes only, or for the views on particu­
lar machines expressed by the program!) The program itself is quite
complex but it follows the methods described earlier in the book and
the functions of the various line variables and arrays are given in
Table 10.1

Making conversation
The format of the program is that you are asked for your views on each of a
number of possible features in turn (the exact wording of the question
being selected at random from a selection of phrases). Note that the key
word or phrase is inserted into the sentence where necessary, and that the
correct conjugation is applied.

Your input is examined in detail for keywords, and a rule array updated
according to your requests. (If you want actually to watch the rule array
being updated then delete line 5490.) Many of the keywords are truncated
so that one check can be made for a number of similar words, and a test is
included to see if the matching string is at the start of a word.

The simplest answer is 'YES' or 'NO', which adds or subtracts I from the
rule for that feature. If you mention the name of the feature (eg
'GRAPHICS') then a further I is added to the rule. In addition, using a

125

Artijiciallnlelligence on the Commodore 64

Table 10.1 Main Variables in 'Salesman'

SIMPLE VARIABLES

IS INSTR start
11$ target string
12$ search string
IP INSTR pointer
QP no. of question sentences
Q no. of questions
R no. of rules
BB bank balance
PH phrase number
PHS phrase words
M match marker
OF object flag
OM object match
LD like / dislike
FS rest of sentence pointer
NP negative pointer
Sl AND match pointer
S2 BUT match pointer
RU rule update marker
OB no. of objects
AJ no. of adjectives
AV no. of adverbs
LI no. of likes
DL no. of dislikes
NJ no. of negative adjectives
NV no. of negative adverbs
HM no. of cheap/expensive
CO no. of computers
FE no. of features
CT no. of cost ratings
CS no. of cost suggestions
EX no. of excuses
HI no. of high price suggestions
LO no. of low price suggestions
TC total cost
TP total profit

126

Chapter 10 PUlling It All Together

ARRAYS

OB$(OB) objects
AJ$(AJ) adjectives
NJ$(NJ) negative addresses
AV$(AV) adverbs
NV$(NV) negative adverbs
LI$(LI) likes
DL$(DL) dislikes
Q$(Q) question objects
QP$(QP) question sentences
CR(Q) cost rate
PR(Q) profit rate
IC(Q) total cost
IP(Q) total profit
HM$(HM) cheap/ expensive
R(R) rules
CO$(FE) computer names
FE(CO,FE) feature names
C(CT) cost ratings
CS$(CS) cost suggestions
EX$(EX) excuses
HI$(HI) high messages
LO$(LO) low messages

'positive' adjective or adverb adds to the rule, whilst a 'negative' adjective or
adverb subtracts from the rule. Separating the words into different classes
allows you to make more than one change to the rule at the same time.

Thus:

YES adds one

YES BASIC adds two

YES BASIC NECESSARY adds three

YES GOOD BASIC NECESSAR Y adds four

Whilst:

NO subtracts one

NO MEMORY subtracts two

127

Artificial Inrelligence on the Commodore 64

Furthermore, verbs are grouped as 'likes' and 'dislikes', the last of which
reverses the action of the rest of the words.

Thus:

I DETEST MACRODRIVES subtracts one

Both 'NO-' and 'N'T' are recognised, and most double negatives are
interpreted correctly.

Thus:

I DON'T LIKE SOUND subtracts two

I DON'T DISLIKE SOUND adds one

If anything appears at the start of a sentence and is followed by a comma, it
is usually cut off and effectively ignored.

Thus:

NO, I DON'T WANT GOOD SOUND subtracts three

The exception is when 'AND' or 'BUT are included, when both parts of the
sentence are acted on independently.

Thus if the question is:

DO YOU WANT GRAPHICS?

and the answer is:

NO, BUT I WANT GOOD SOUND

then one is subtracted from the graphics rule and two is added to the sound
rule.

If the program does not find any keywords in the input, it politely asks
you to try again:

PARDON, EXCUSE ME BUT ...

The program can only cope with one feature at a time, so if you try to ask
for 'SOUND and GRAPHICS' at the same time, for example, you will get
a request for a repeat of the question.

HANG ON - ONE THING AT A TIME

However, it is possible to make comments about single features that you
are not being asked about at the time, and these entries will still update the
rules (as in the 'BUT' example above).

128

YES

R.IJ=RU+l
LD= 1

SET UP
ARRAY5

ADD 5PAGE
RESET
VAR.IABL£S

YES

CHOOSE
QUESTION
WORDS

CUT OFF
>-----1 BEFORE.

NO

(1)

COMMA

YES NP=NP"'l
LD= -1

RU -ve
LD= -1

Chapler 10 PUllinK Ir All TOKelher

CDNJLJUATE
AND ADD
sPAGE

ADD TO
C.URRENT
RULE.

YES "V8T~C.T
FI'WM
CJlRRENr
FWL.E.

129

Artificial Intelligence on the Commodore 64

(1)

>-Y ESoio------fLD =LD. -1

YES RU=RU+LD
>-"""-'---i OF=N

OM =OM+ 1

>-Y ES_-i RU = RU+ LD

YES LD= LD. -1
>-~--iRU =RU+ LD

>-Y E5_--t RU '" RU + LJ)

YES

130

(2)

UPDATE
OBJECT
RULE

Chapter 10 Purring It All Together

(:5)

131

Artificial Intelligence on the Commodore 64

NO

132

PO$=" " N=¢

NO

N=N+l ADD N
TO PO~

NO POLf<3 NO

'(ES

YES
>-------------~------~~

(4)

CH= ¢

NO

PICK
RANOOM
NUMBER

Chapter 10 PUlling It All Together

UPDATE
>--+-----i r S + HI

>-______ --~CH=CH+lr_------~----~

YES

=2 YES
f-------i---(5)

NO

133

Artificial Intelligence on the Commodore 64

Decisions
In addition to the rule array, there are two other arrays which are linked to
this. The first is the 'cost array', which gives an indication of the cost of this
particular option, and the second is the 'profit array' which indicates to the
salesman how much effort it is worth putting into selling this feature. The
values for these last two arrays are produced by mUltiplying the content of
the corresponding rule array element by factors entered originally as
DATA in lines 10100, etc, where the format is:

(phrase describing feature, cost, profit)

After each input, the salesman considers the consequences of your
requests. First of all he looks to see if the sum total of the cost of all your
requirements exceeds your bank balance. If so, he prints out one of a series
of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE EXCEEDING YOUR
CREDIT LIMIT

He also looks at how much profit he is likely to make on the sale so far: if
this drops too low, he will start to lose interest and come up with comments
like:

I HAVE AN URGENT APPOINTMENT

or

WE CLOSE IN FIVE MINUTES

At the same time, he will be more helpful with regard to which of the available
computers will fit your requirements, drawing up a short-list by comparing
the rating given originally to this feature in the description of each
computer with the value you put on it. The format for the descriptions is:

(name, value of feature I, value of feature 2, value of feature 3, etc)

The highest rated machine will always be picked out first but, if possible, at
least three machines (possibly with lower ratings) will be selected and the
final choice is made from these. Either the highest or lowest cost computer
(at random) will be selected for mention, for example:

IF YOU WANT A REAL ROLLS-ROYCE THEN JUST LOOK AT
THE ...

134

Chapler 10 PUlling II All Togelher

and

IF YOU ARE IN THE BUDGET MARKET THEN WHAT ABOUT
THE ...

If only one machine fits the bill, the program will come up with:

YOUR ONLY OPTION IS THE ...

Salesman

10 GOSUB 93£10
20 GOTO ~00
100 FOR IS=FT TO LEN(Il$)
110 IF MIO$(Il$,ISILEN(I2$»=I2$ THEN IP
=IS:RETURN
120 HEXT IS
130 I Pc 0 : ~:ETURt·~
200 PH=RNO«l)*(QP+l»:PH$=QP$(PH)
210 I 1S=PH$:-12$::.:",/" : FT=l: GOSU8 1[1[1: SP=IP
220 IF SP=0 THEN 300
230 IF LEFT$(Q$< Q ») 1)= "I~ II THEt·~ PH$::::LEFT$
(PHS) SP-1)+ II ARE II +~: I GHT$(PHS) LEt·~(PH$)-SP ::1

30£1 IF SP=0 THEN 400
31121 IF LEFTS(OS(Q ») 1)= ":~" THEt·~ PH$==LEFT$
(PHS) 8P-1)+" IS"+RIGHT$(PH$., LEW: PH$)-SP)
400 11$=PH$:I2$:":t.":FT=1:GOSUB 100
410 IF SP=0 THEN 440
420 PH$=LEFT$(PHS) SP-1)+" "+fUGHT(1)(G!::O
.LEN(Q$(Q»-1)+RIGHT$(PH$.LEN(PHS)-SP)
4:30 GOTO 5~j0
440 PH$=PH$+" "+R I GHT$(0$(G!).' LEt¥ 0$(I).))-
1 ::0

450 PRItH: PRItH
500 PRltH PH$; "?"
600 PRI~n
70e It~$:::" II

710 GET 1$: PRItH "<[LEFT CUR:30RJ".i
72121 IF 1$="" THEN 710 .
73€1 I F I $:::'cHR$(13::0 THEN 8~~10
74121 H~$=IN$+I$
750 PRIHT 1$;
760 GOTO 710

135

Artificial Intelligence on the Commodore 64

81210 LD=1:0F~-1:FS=1:NP=0:RU:8:M=0:0M=e:s
1=e:S2==0
91210 1 1$::::IN$: 12$=11) II : FT=1 : C;OSU8 10~1: cr'1=IP
910 IF CM=0 THEN-16e0
112188 Il$=INIP:I2$:::IIAN[)II:FT=1:GOSU8 1121121:81
=IP .
112110 I2$=It~$: 12$="BUT" : FT=1 : GOSUB 11210: 82
=IP
121210 IF 51+S2=8 THEN 150121
13121121 IF LEFT$(INS) 3)< >11 t~OIl THEN 1480
131121 R(Q)::::RC C!)-1: IC:':: Q)=IC(I))-CR(Ij): IP(Q)
=IP(Q)-PR(Q):GOTO 1500
140~3 R(Q):::R(Q)+ 1 : I C(I))~ I C(I))+CR(Q) : I.PC Q)
== I P(Q)+PR(Q)
1500IN$=RIGHTf(INS)LEN(INS)-CM)
161210 I 1 $~ 1 W$: 12$=" ',(ES" : FT::::F~; : C;OSUE: 10~j: S
P=IP
1700 IF SP)0 THEN RU~PU+l:LD=I:M~1:FS=8P
+1:(;OTO 1600
180(1 11 '$= I N$: 12$::-:: II t·W" : FT::::F8 : G0:3U8 1 ~1~1 : ~:;P
=IP
190121 IF SP}B THEN LD=-l:M=l:FS=SP+l:NP=N
P+i:GOTO 18£10
2121£1(1 I 1 $== I t~$: I 2$=- II t·~·' Til: FT::::FS : C;OSU8 10~:1: s
P::::IP
2188 IF SP)0 THEN LD=-l:M=l:FS=SP+l:NP=N
P+l:GOTO 200121
220121 IF NP~0 THEN 238121
221121 IF INT(NP/2)~NP/2 THEN RU=RU+1:LD=1
:GOTO 230121
225121. RU:::<RU-l:LD=-l
230121 FOP N:::0 TO LI
241210 Il$~IN$:I2$=LI$(N):FT=1:GOSU8 le0:S
P=IP
2410 IF SP=0 THEN 2588
2420 IF t'1 I (;.$(I t·~$) SP-l .' 1):::: II " THEt·~ LC"-:;:LC·:t:
1 : N= 1
25121(1 NE:>~T ~~
2688 FOR N=8 TO DL
278121 Il$~IN$:I2$=DL$(N):FT=1:GOSU8 108:S
P"'=IP
2710 IF SP>0 THEN IF tHC'$(INS., SP-i,. 1):::"
" THEN LD:-::LD;t:-l: r1= 1
288121 t'~EXT t~

136

Chaprer 10 Purring Ir All Togerher

2900 FOR N~0 TO 08
3008 Il$=IN$:I2$~08$(N):FT=1:GOSU8 IB0:S
P~IP
:?01 £I I F SF' >0 THEH IF t'1 I [)$(I t·~$., :::P-l .' 1)=="
II THEN RU"'"~:U+LCI: OF=='N : t1=:: 1 : 1Jto1::::Ot'1+ 1
:~ 100 NE::<T N
320£1 FOR N=0 TO AV
33£10 Il$~IN$:I2$=AV$(N)!FT=1:GOSU8 100:S
P=IP
3310 IF SP~0 THEN 2600
34(1£1 IF t'1 I D$(I t·~$., SP'-l .' 1)< >" " THEt·~ :3£.~H':1
3500 RU=RU+LD:M=l
368£1 t'~E>n t~
378£1 FOR N::::0 TO NV
3800 Il$=IN$:I2$~NV'(N):FT=1:GOSU8 100:S
P=IP
3810 IF SP~0 THEN 4100
3900 IF t1 I CI$(I t~$) SP-l) 1)< >" II THEt·~ 41 ~::KI
40£10 LD=LDt-l:RU=RU+LD:M=l
410£1 t'4E>~T N
4200 FOR H~0 TO AJ
4300 Il$~IN$:I2$~AJ'(N):FT~1:GOSUB 100:S
P""'IF'
4310 IF SP~B THEH 4600
44~~n) IF t'l I [:0$(I t·4$., ::;P'-l , 1)< :>" " THEt·~ 46~~10
4508 RU~RU+LD:M~l
460~j t'~E~<T t·~
4700 FOR H~0 TO NJ
4800 11$~IN$:I2$~NJ$(H):FT~1 GOSUB 100:S
P=IP
4810 IF SP~0 THEN 5100
490(1 IF tlI D$~~ H~$, SP-l .' 1)< :>" "THEt-~ 5 HKI
~000 LD~LD*-l:RU=RU+LD:M~1
51 ~jO t'~E>::T t·~
5110 FOR N=0 TO HM
512£1 11$=IN$:I2'=HM$(N):FT=I:GOSU8 100:S
P,-::IP
5120 IF SP~0 THEN 5198
5140 IF r'1 I [)$(I N$.' SP-l)< >" " THEt·~ 51 :~~J
515£1 >·:::<~t·~: IF :'<>':< 2 THEN PR I tH" CHEAP AtKI N
AST\'II : GOTO 5190
516(1 I F :"::~< >::-:2 THEt·~ PR UH" F:ATHER Er.;PEt·6 I 1',.1

E"
51 7~~1 NE~<T t·~

137

Arrificial Inrelligence on the Commodore 64

518~j F'PItH
521210 IF t'l< 1 THEt·~ PP I tH "PAP[:tOH., F'LEA~3E E
~<CUSE r'lE E!UT", (;OTO 200
5:?tH~1 IF Clr'l> 1 THEt··1 PP I tH "HAt¥:; OH .-. Ot'~E T
Hlt'~G AT A Tlt1E'" GOTO 20~3
54£10 IF OF~-l THEN 5440
541£1 R(OF)~R(OF)+RU:IC(OF)=IC(OF)+(CP(OF
/tRU)
5420 IF'(OF)~IP(OF)+(PP(OF)tPU)
54:~:0 GOTO 5496
544121 R(Q)=R(Q)+PU:IC(Q)~IC(Q)+(CR(Q)*RU)
: IP(Q)=IP(Q)+(PP(Q)tPU)
549£1 GOT05900
550121 PRItH"[CLRJ"
56121121 FOP H~0 TO P:PPINT P(N); 'NEXT N:PRI
~n
57tH) FOP t'~~121 TO R' F'RltH
un
5e0£1 FOR t~""121 TO p: PPItH
ItH
59£10 FOR N~8 TO 08
6000 T(::::T(:+ IC/ t·~)
618121 TP""TP+IP(H)
6200 t··IE~'-:T N

I C:(t·~).; : t'~E::<T t·~: pp

I F,(t·~).: :NE:'·::T N'PR

63£10 IF TP<Qt5 THEN TX~RND(O)tEX:PRINT'P
R I tH E~<$(T::-:)
6400 IF Tc>e8 THEN PT~RND(0)rCS'PRINT'PP
INT CS~(PT)
651218 TC.,,-£j:TP""'0
67£10 FOF.: ~:-="9 TO [I ::;TEF'-l' PO$=: II "

6:~OC1 FOR tl-(1 TO CO
690£1 IF FE(NJQ)-R(Q»X THEH PO$=PO$+PIGH
T$(STR$(N»)l):M~H

7600 NE:>':T t·~
710£1 IF PO$""''''' THEH t'~E:~~l ::<: GOTO 72(1(1
7116 IF LEN(PO$)(? THEN NEXT X
7:310 GOT0790t1
7:358 F'R I tH POet
?400 IP" PO$""''''' THEH 9200
7580 FOR H~l TO LEN(PO$)
766121 PRINT CO'(VAL(MID$(PO$JN:l»)
77£1£1 t~E:,n t·~
78f:l£1 PRltH
79£16 TS~0:8S"'"10

138

Chapter 10 Purting It All Together

8000 FOR CH~0 TO LEN(PO')-1
8100 NC~VAL(MID$(PO$!CH+l~I»
9200 IF C(NC»~TS THEN TS~C(NC):HI=NC
8300 IF C(NC)<~8S THEN 8S=C(NC):LO=NC
8400 NEXT CH
:3410 IF HI~LO THEt·~ PRIHT"'lOUF: Ot-~L'/ OPTIC!
t·~ I S THE": PR I tH CO$(HI) : GOTO Sl2~3(1
e500 HI$~CO$(HI)'LO$=CO$(LO)
860121 SE::"':Rt'K:'(1)+ 1
~3700 SL:::Rt~[:'(1 ::0:*:2
880121 IF SE=2 THEN 9106
8900 PRINT HI$(SL)J,.!HI$
912100 GOTO 9200
9100 PRINT LO$(SL)'JJJLO$
9200 Q=Q+l:IF Q{26 THEN 260 ELSE END
9300 QP~5:Q~19:R=Q:08=R:AJ=8:AV=5:LI~3:D
L-3'NJ~8'NV~2:HM=3:e8=100
9310 DIM Oe$(OB),AJ$(AJ),NJ$(NJ),AV$(AV)
,NV$(NV)JLI$(LI'.DL$(DL),Q$(Q)
9320 DIM R(R),QP~(QP),C~(Q):PR(Q':IC(Q',
IP(Q).HM$(HM) .
9400 DATA eASIC!GPAPHIC:SOUND:KEveOAPD:F
UNCTION,MEMORY!TAPE!MACPODPIVE.DISC
9410 DATA SOFTWARE,CARTRIDGE,JOYSTICK,AS
SEM8L!CENTRONIC. RS232. EXPAND
9420 DATA NETWOR(,16-BIT.MULTITASK;SERVI
CE
9~00 DATA GOOD,EXCEL.SUPEP,MAGNIF:FIPST:
FAST.EFFIC.ESSENT:LOT
9600 DATA 8AD,RU8BISH:POOPJSLOW:INEFFIC,
FEW. WORS. LEAST. LESS
9700 DATA REAL,VERY.OFTEN.FREQ,NECESS.TR
U .
9800 DATA NEVER,UNNECESS.INFREQ
9900 DATA WANT.LIKE,NEEDJREQUIRE
10000 DATA HATE,DISLIKE:LOATHE!DETEST
10100 DATA &GOOD 8ASIC.5.2,~GRAPHICS.?2
,&SOUND,6.2,~A GOOD KEYBOARD:4,2
1011~ DATA @FUNCTION KEYS,l.5,&A LARGE M
EMORY.2.6.&A TAPE INTERFACE.2:2
10120 DATA @MACRODRIVES.2,4.@DISCS,5,8,&
EXTENSIVE SOFTWARE,O!9
10130 DATA &A CARTRIDGE PORT.l,6
10200 DATA &A JOYSTICK PORT,l,7,tAN ASSE

139

Artificial Intelligence on the Commodore 64

M8LER)2,l,tA CENTRONICS PORT/215
10210 DATA ~AN RS232 PORTI2,6.&EXPANDA8I
LTY,2,9,&NETWORKINGI3,4
10220 DATA &A 16-81T CPU,l,7,&MULTITASKI
NG,5)5)~GOOD SERVICE, 1,9
10300 DATA WOULD YOU LIKE, WHAT ABOUT,HOW

A80UT.DO YOU WANT,DO YOU REQUIRE
10210 DATA /% IMPORTANT
10320 DATA CHEAP, INEXPENSIVE
10330 DATA DEAR, EXPENSIVE
10400 FOR N~0 TO O~:READ OB$(N):NEXT N
10500 FOR N~0 TO AJ:READ AJf(N):NEXf N
10600 FOR N~0 TO NJ:READ NJ$(N):NEXT N
10700 FOR N=0 TO AV:READ AV$(N):NEXT N
10800 FOR N=0 TO NV:READ NV$CN):NEXT N
10900 FOR N=0 TO LI:READ LI$(N):NEXT N
11000 FOR N~0 TO DL:PEAD DLS(N)'NEXT H
11100 FOR N~0 TO Q:PEAD QS(N).CP(N),PP(N
) : t'~E~<T t·~
11200 FOR N=O TO QP:READ QP$(N):NEXT N
11210 FOR N~0 TO HM:READ HM$(N):NEXT N
11::::1210 PRItHI[CLRJ": O~0
114~)O PP I NT II I TIS trl PLEA'3UPE TO l·JELCOt'l
E 'lOU TO THE t'lUL T I t'1EGA t,·, I CPO:::TOPE II
114Hj PPItH
11 SIZIO PR I tH II ~JE APE Ut-KIOUE'TE["IL \' THE UL T I t'l
ATE SOURCE OF ALL COt'1PUTEP. F'RO[:d.JCT3 II
1150~5 PR ItH
1151 (I PP I tH II I SHALL HAI'/E PLEA~3URE I H HEL
P I t'~G 'lOU -~:;ELECT YO UP. t'~E~'J t'lACH I t·~E II
11515 PPItH
11600 PR I tH II SO THAT I CAN l'WF:~": OUT THE E~
E:3T COfolPUTER"
11610 PR I tH II FOR \'OUP PtiRT I CULAR t'~EED!:; PE
RHAPS"
116!(1 PR I tH II '/OU loJOUL[) E'E ~.: I H[:. Et·mUCH TO
At'~S~JER A FE~J OUEST I Ot'45 II
11650 PPltH
11700 PR I tH : PP I tH II ARE '/OU PEA[)',(II .;

11908 CO~9:FE=19:CT=9'DIM CO$(FE).FE(COI
FE),DF(CO,FE).C(CT)
11900 DATA JCN PC)7)8/2)918,e.8.8,9;9,?

140

Chapter 10 PUlling It All Together

12200 DATA ACHRON ILLUSION;~.7.6.6.0:2.?
.0.~.S.0.0)6.0.0)4.1.0.0:2
12300 DATA 8ANANA IIE.2.5.2.5.0:4.6.0.?
0.3.5.0.0.6. 7 .0.0.0.4
12400 DATA SI ELITE.9.e.8.7.7.8.8:0: 7 .2.
7)4.0.0.6.0.8.0.0.8
12500 DATA COLECTOVISION CA88AGE.5.5~5.5
.2.5.5.5.5.1)7.7.0.0.6.5.8.9.8.0
12600 DATA CANDY COLOURED COMPUTER.?6.4
.2.0.2.7.0.4.9)S.7.0.0.6.3.0:0.0.6
12700 DATA COMANDEAR 64.2.8.9.7.7.6.5.0.
6.9)6.7.0.0.2)2.0.0)0.6
12800 DATA ATRIA-608GT.l.8,8.5.0.2.5.0.7
.7.7.7.0.0.6.6.0.0.0.5
12900 DATA 10.9.7.3.8.4.6.5.2.1
13000 FOR N~O TO CO
13180 READ COSCN)
132£10 FOR M~0 TO FE
13380 READ FE(N.M)
1340£1 t'~E~<T 11. t·~
13500 FOR N~8 TO CT
1 :36~lt1 REA[) C:(t·~)
1 :37~JO t'~E>::T ~·I
1 :380£1 GET A$: IF A$-=" \I \I THEt·4 13!3@)
1390£1 DATA I THINK YOU ARE GETTING OUT 0
F YOUR PRICE RANGE
13910 DATA THIS SPECIFICATION SEEMS TO B
E EXCEEDINGYOUR CREDIT LIMIT
13928 DATA I DON'T THINK THAT YOU CAN AF
FORD SUCH LUXURIES
14000 DATA EXCUSE ME I CAN HEAR THE PHON
E RINGING.I HAVE AN URGENT APPOINTMENT
14010 DATA WE CLOSE 1M FIVE MINUTES
14100 CS=2:EX=2:DIM CS$(CS):DIM EX$(EX)
14208 FOR N~8 TO CS:READ CS$(N):NEXT N
142£10 FOR N~O TO EX:READ EX$(N):NEXT N
14400 DATA IF YOU ARE IN THE 8UDGET MARK
ET THEN WHAT ABOUT TH~
14410 DATA AN INEXPENSIVE CHOICE IS THE.
YOU GET GOOD VALUE FOR MONEY WITH THE
14500 DATA IF YOU WANT A FIRST-CLASS PRO

141

Artificial Intelligence on the Commodore 64

DUCT THEN YOU MUST TRY THE
14510 DATA FOR STATE OF THE ART TECH~OLO
GY YOU CAN~T BEAT THE
14520 DATA IF YOU WANT A ROLLS-ROYCE THE
N JUST LOOK AT THE
14600 HI=2:LO=2:DIM HI$(HI)~LO$(LO)
14700 FOR N~0 TO LO:READ L8$(N):NEXT N
14800 FOR N=0 TO HI:PEAD HI$(N):NEXT N
149~)0 PRltHI[CLP]"· RETURt·~

Commentary
Lines 100-130: Contain an INSTR routine.

Lines 200 -440: Pick the words to be used in the next question, and select the
correct conjugation.

Lines 500 800: Set up your INPUT and reset variables.

Lines 900 910: Check for a comma.

Lines 1000 1200: Check for 'AND' and 'BUT'. If neither of these is present
the program jumps to line 1500.

Lines 1300-1310: Update the current rule negatively if'AND' or 'BUT' are
present and the first word is 'NO'.

Line 1400: Updates the current rule positively if' AND' or 'BUT' are present
and the first word is not 'NO'.

Line 1500: Deletes anything preceding a comma.

Line 1600-2100: Check for 'YES" 'NO' and 'N'T' and update the current
rule accordingly.

Line 2200: Checks for a double negative.

Lines 2300-2500: Check for 'likes'.

Lines 2600 2800: Check for 'dislikes'.

Lines 2900 5100: Similarly check for objects, adjectives and adverbs.

Lines 5110-5190: Check matches for high and low cost key words.

142

Chapler 10 PUlling II All Together

Line 5200: Checks for no match and reports.

Line 5300: Checks for more than one object.

Lines 5400-5440: Update the current rule, or another rule, according to
whether or not the object matches the current question.

Line 5490: Jumps over the print-out of the rules.

Lines 5500-5800: Print out the rules.

Lines 5900-6200: Update the total cost and total profit values.

Line 6300: Prints an excuse if the profit seems too low.

Line 6400: Prints a warning if the spending is too high.

Line 6500: Zeros the total cost and profit values.

Line 6700 -7120: Search for computers which match your requirements.

Line 7310: Jumps over the print-out of matching machines.

Lines 7350 - 7800: Print out the matches.

Lines 7900-8400: Pick the highest and lowest priced machines which match
the specification.

Line 8140: Checks if only one machine was selected.

Lines 8500-9100: Print out the name of either the highest or lowest priced
machine.

Line 9200: Updates the feature to be checked and returns for another input.

Lines 9300-11300: Enter the information on features, keywords, costs and
profits.

Lines 11400 11700: Provide an introduction.

Lines 11800 13800: Enter the information on the names and virtues of
particular machines.

Lines 13900 14300: Provide warnings and excuses.

143

Artijiciallntelligence on the Commodore 64

Lines 14400-14900: Contain the words for high and low cost messages.

The rest is up to you
Artificial Intelligence is a fascinating subject, and we trust that we have
given you enough information to get you started on your own experiments
in this area. We have certainly enjoyed making our own explorations whilst
putting this book together, but we have started to wonder how long it
will be before someone designs an expert system program which writes
books ...

144

Artificial Intelligence on the Commodore 64 shows
you how to implement AI routines on your home micro
and turn it into an intelligent machine which can hold
a conversation with you, give you rational advice,
le(;un from you (and teach you) and even write
programs for you.

The book explains AI from first principles and
assumes no previous knowledge of the subject. All
the important aspects of AI are covered and are fully
illustrated with example programs.

For many years science ftction books and films have
contained 'intelligent' computers which appear to be
at least the equal of man. Althou9h some of the
features described in these remain illusions,
extensive research into AI has brought many of the
ideas much nearer reality.

Keith and Steven Brain are a father and son team and
have already published the best selling Dragon 32
Games Master and Advanced Sound and Graphics for
the Dragon computer. They are both regular
contributors to Popular Computing Weekly.

SUNSHINE
ISBN 0 946408 29 7 £6.95 net

