»4
“z
|
i
]
i
!

The Commodore Programmer’s Route Map
for the Commodore 64 and VIC 20
Commodore Basic

Gordon Hill

W. Foulsham & Co. Ltd.
London - New York - Toronto - Cape Town - Sydney

ACKNOWLEDGEMENTS

I am indebted to my parents, Mr and Mrs L.G.
Hill for checking my use or abuse of the
English language and the readability of the
book, and to John Spence for his detailed
checking of the text for technical meaning,
grammar and punctuation. With the help of
Peter Jennings and my children Martin,
Timothy and Susan, who ran all the programs
or examples given in the book, a number of
errors and omissions were rectified. I am very
grateful to them for their help.

W. Foulsham & Company Limited
Yeovil Road, Slough, Berkshire, SL1 4JH

ISBN 0-572-01284-5
Copyright © 1984 W. Foulsham & Co. Ltd.

All rights reserved.

The Copyright Act (1956) prohibits (subject to certain
very limited exceptions) the making of copies of any
copyright work or of a substantial part of such a work,
including the making of copies by photocopying or
similar process. Written permission to make a copy or
copies must therefore normally be obtained from the
publisher in advance. It is advisable also to consult the
publisher if in any doubt as to the legality of any copying
which is to be undertaken.

Photoset in Great Britain by

M. B. Graphics (Typesetting) Services

and printed in Great Britain by

St Edmundsbury Press, Bury St Edmunds, Suffolk.

PREFACE

There is now a wide variety of books available
for the CBM home computers, but few of them
really get stuck into the practical problems that
afflict any programmer once he is past the
beginner stage. This book can’t do the work for
you, but it can help you get things working in
several ways.

Right at the start when you begin to use your
machine with the help of your manual, you
will often find an explanation difficult to
follow. Reference to this book may help by
giving another way of looking at things.

In Section 1 it gives you an idea how good
programmers — professionals and amateurs -
go about designing programs, and the types of
problems they tend to run in to.

Section 2 will help you with BASIC language
problems, how to get the best use from it and
what to look for if it fails to work the way you
wanted it to. Examples for most of the key-
words help you to understand their purpose or
can be used as part of your program.

Section 3 gives you a number of working
routines that you can include in your pro-
grams, or you can use the ideas to write similar
routines of your own.

The rest of the book contains useful refer-
ence information missing from or not easy to
find in the manual that comes with your
machine.

Commodore BASIC, as used in the VIC 20
and CBM 64 is not very friendly in comparison
with some other dialects around and in com-
parison with the all-singing - all-dancing
BASICs used by many home computers. For
instance, while CBM BASIC has about 60
statements and functions, some other

machines have 100 or more. Many regard it as
primitive or even archaic (it dates from about
1977"). Where else do you find a computer like

the CBM 64 that requires half a dozen five

figure POKE:s to play a single note? But that’s
not the whole story. The limited vocabulary
means a more compact interpreter (meaning
more memory for your program) and often
more efficient code — provided you understand
the subtleties and nuances of the language.

Programmers who have used other machines
will find Section 2 a rapid reference to the
particular qualities of this BASIC and the
examples here and in Section 3 illustrate many
ways in which the language can be used to
overcome its apparent limitations.

Your computer is a very powerful and versa-
tile machine and this book will help you to get
the best results from it.

CONTENTS

Section 1 Introduction

The Aim of the Book

Writing in BASIC

Programming Hints

Arithmetic

Comparisons

File Handling

Creating Serial and Random Access files
File Buffers

Section 2 Basic Functions

ABS
AND
ASC
ATN
CHRS$
CLOSE
CLR
CMD
CONT
COS
DATA
DEF FN
DIM
END
EXP
FN
FOR
FRE
GET
GET #
GOSUB
GOTO
IF

INPUT
INPUT #
INT
LEFTS$
LEN
LET
LIST
LOAD
LOG
(MERGE)
MID$
NEW

REM
RESTORE
RETURN
RIGHTS
RND
RUN
SAVE
SGN

SIN

SPC

SQR
STATUS
STEP
STOP

STRS$ 60
SYS 61
TAB 61
TAN 62
TIME 62
USR 63
VAL 63
VERIFY 64
WAIT 64

Section 3 Useful Routines

Introduction 65
Sort 66
Numeric Check 68
Random Groups 69
Base Converter 70
Business Forms 71
Tape Handling 79
Printing 81
Game 81
Graph Plotting 83

Section 4 Glossary of Terms

Addressing 87
Algorithm 87
Array 87
ASCII 87
Assembler 87
Base 87
BASIC 87
Binary 88
Bit 88
Boolean Logic 88
Buffer 88
Bug . 88
Byte 88
Code 88

Compiler 88

Default 88

Device 88
Function 88
Garbage 88
Hex 89
I/0 89
Input 89
Interface 89
Keywords 89
Kilobyte 89
Logic 89
Logical line 89
Machine code 89
Nesting 89
Octal 90
Output 90
Peripherals 90
Port 90
RAM 90
Real 90
ROM 90
Software 90
Statement 90
Structured programs 90
Syntax _ 90
Transparent 90
Variable 90
Virtual 91
APPENDIX A CONTROL CHARACTERS
USED IN THE PROGRAMS 91
APPENDIX B CHARACTERS PRINTED
FOR ASCII VALUES 92
APPENDIX C SOME USEFUL MEMORY
LOCATIONS 93
APPENDIX D ERROR CODES 95

SECTION 1 INTRODUCTION

The Aim of the Book

This book is intended for those users or owners
of a Commodore VIC 20 or CBM 64 who aim
to be serious programmers and would like a
more in-depth guide than that provided by the
user handbook. It can be used in conjunction
with the handbook, or by itself for those who
are already acquainted with BASIC. Those
who have spent some time programming in
PET or VIC BASIC may still find that this
book allows them to make fuller use of the
facilities of the language. Converts from other
BASICs will find that the detailed descriptions
of Commodore BASIC functions given here
provide the means for a rapid transition.

The book contains detailed descriptions of
all BASIC functions in Section 2, and some
general information and useful routines in
Section 3. The detailed descriptions are in-
tended to overcome the frustration felt by
programmers who know where a program is
going wrong through normal debugging
methods, but are unsure exactly how the
BASIC functions operate. For instance, many
* programmers have been held up for hours on
the bug in the INPUT (q.v.) function. Section 3
gives a collection of commonly required
subroutines, mostly built into programs, which
can speed up development of a program either
by the direct incorporation of routines into
your program or by showing ways in which
problems can be tackled.

Hardware is not dealt with in this book.
However, one of the major plus points for the
VIC 20 and CBM 64 is the ease with which

Commodore supplied or compatible acces-
sories can be attached, and the way in which
they operate without either affecting the
operating system or taking away memory from
the BASIC RAM area. Most users will there-
fore be able to attach and use these for simple
applications such as LOADing, SAVEing and
PRINTing without too much difficulty. Of
course, for more sophisticated applications and
many disk applications, a deeper understand-
ing of the peripheral operations is required.
These are all explained in the relevant man-
uals, but are not easy for many people to
understand and require careful study. For this
reason, I have explained certain aspects of file
handling at some length at the end of this
section.

Writing in BASIC

Writing short programs in BASIC is not diffi-
cult with the aid of'the guide which comes with
the computer, or other introductions to the
language. However, writing more complex
programs speedily and efficiently is more diffi-
cult than most people realise until they have
tried it themselves. Hours can go by like
minutes when debugging programs.

There is no easy solution to this (that’s why
trained professional programmers are so well
paid), but it is very easy to ignore the problem
until much time has been wasted. Even profes-
sional programmers working on large software
projects have fallen into the trap of believing
that the programs they have undertaken would
be easier to write than they in fact turned out to
be, causing expensive disasters.

This problem of writing large and complex
programs was not realised until about 15 years
ago because before that, most computer hard-
ware was not powerful enough to develop
really sophisticated programs. At that time the
largest computer available to me at Edinburgh
was the University Atlas which cost (as I recall)
several hundred thousand pounds and had
only 64 kbytes of main memory! The only
‘micro’ we had was an Olivetti P101 which was
driven by an electric motor like the old
fashioned calculators you may have read
about. Then, in the late sixties, as powerful
computers began to become available to more
and more people, it became possible to create
complex systems which could only have been
dreamed about previously. Few people foresaw
the problems of complex software and this led
to the software crisis of the sixties when many

sophisticated systems proved much more diffi-
cult to create than expected, or failed
altogether.

To understand why this happened and why
it will also happen to your programs, unless
you take due precautions, think of a program
of 100 lines. You can probably completely
understand what you have written and can go
almost at once to the piece of code that carries
out a given task. To write two similar programs
of 100 lines each will obviously take about
twice as long as writing one. To write a
program of 200 lines combining two 100-line
programs requires not only the writing of the
two modules but also the process of joining up
the code and ensuring that the two functions do
not interfere. In addition, it becomes more
difficult for you to remember exactly what you
have done and where.

To put it another way, for every line of code
you write there is a probability (perhaps 1% for
each line in a 100-line program) of it interact-
ing undesirably with another line of code in the
program (i.e. causing a bug). The larger the
program, the more chance there is of this
(perhaps 3% for each line in a 200-line pro-
gram etc), until one reaches the stage where the
creation of a new line is almost bound to
introduce a bug somewhere else. Worse still,
the changing of a line somewhere to cure a bug
will create one or more different bugs else-
where in the system, leaving a situation where
a program can never be made to work
properly. This problem requires the use of
special design methods to minimise the inter-
action between different parts of the program.

7

You will probably think that all this doesn’t
apply to you and that you will just be careful
not to make mistakes. Well, don’t forget I told
you so!

To write really complex programs requires a
knowledge of design methods beyond the scope
of this book, but a methodical approach
following a few common sense ground rules
will serve well for the average 100- to 200-line
program and will pave the way for more com-
plex professional type of programming later.

-Design and procedural suggestions are as
follows.

1. Before switching on the machine or open-
ing a BASIC manual, work out what you want
to do and write it down in pencil on any handy
piece of paper. Check it over to see if all your
required features are present, but resist the
temptation to add features that can be added
later after the initial program has been tested
out.

Then work out the steps you will need to
take to do it, also in pencil. Unless you are
possessed of a very logical mind and have a
clear idea of what you want to do before you
start, you will find yourself making much use
of the rubber; hence the suggestion that you
design in pencil. However keen you are to get
on with the coding, remember that it is much

easier to play about with your ideas in pencil
than to amend reams of code, particularly if
you don’t have a printer. (For meaning of code
as used in computer terms see the Glossary in
Section 4).

If you want to check out a particular
machine function — perhaps to time nested
FOR loops - then by all means write a program
directly onto the machine, but don’t be
tempted to do serious work this way.

2. When you have worked out your ideas,
make up some code (i.e. a series of BASIC
statements) to do it in the simplest possible
way, allowing for non-essential options to be
added later, and don’t worry too much about
sound and colour. Take particular care to get
the code right on paper before typing it in,
particularly if you don’t have a printer.

3. Type the code into your machine, SAVE it
and try it. If (or in most cases when!) it doesn’t
work, first check that your program has been
typed in correctly and then that it follows the
logic of your design by checking it line by line.
As you make corrections on the machine,
mark them on your program sheet so that you
know exactly where you stand, or periodically
produce a listing on your printer. Check any
BASIC statements you are doubtful about
under the appropriate heading in this book.

4. If the program still doesn’t work and you
cannot see anything obviously wrong with it,
try a process of elimination by using a toolkit
(see below) or by placing STOPs or PRINTS at
various places in the program and using CONT
to continue the program from STOP to STOP.
This will allow you to follow the path the
program has taken and at each STOP you can

check all variables to see if they have the values
you expect. It is worthwhile performing a “dry
run” to see exactly what the variables ought to
be at any given point in the program, by work-
ing manually through the BASIC, otherwise it
is easy to convince yourself that the variables
are what you expect simply because they look
reasonable.
For example: 10 A=1:B=2
20 C=A+B
25 STOP
30 D=A*B
when STOP is reached ?A should give 1
7B should give 2
7C should give 3
and if the program has run for the first time:
7D should give 0

D, of course, should be zero because we have
not yet set it. However, a very common prob-
lem that arises in mid program is that variables
that should have been, say, zero have been set
to another value elsewhere in the program. So
be careful not to assume it is zero until you
have checked it.

Remember that as soon as you change the
program, even just by placing the cursor on a
program line and pressing <RETURN>, all
values are lost (become @), strings are cleared
and CONT is disabled.

The use of a toolkit, mentioned above, can
simplify coding and debugging in a number of
ways such as automatic renumbering of lines,
tracing the progress of a program by displaying
the line numbers on the screen, explaining the
‘syntax error’ in more detail, single-stepping
the program line by line and dumping all
variables to the screen. Your local dealer will
have details of toolkits available for program
development. Although useful, a toolkit will
not compensate for poor program design.

5. Once you have confidence that your pro-
gram is working as it should, then proceed to
add colours and sound as required and tidy up
or rearrange the screen. A thorough program
check is now in order, using the program in as
many ways as you can imagine, including
invalid commands or replies. If possible get
someone else to run through it as well. This
person need have no knowledge of program-
ming and can be a friend or someone in the
family who would like to try out your program
in the same way that arcade games are used by
people with no knowledge at all about pro-
gramming. When he has finished, be prepared
to accept constructive criticism with a good
grace, even if some of it is not in your opinion
valid, otherwise you may not get the same help
again!

At this point you will have discovered the
“wouldn’t it be nice if” syndrome. Make a list
of all the nice goodies you would like in your
program and select the ones you will use.
Don’t choose any that involve much rewriting

9

10

of code already produced - this probably
means that your original design was incompa-
tible with the items you are thinking
of adding, and avoid those which seem compli-
cated or vaguely defined. Also, if you intend to
try to sell your software, be very careful before
adding extra pieces of accessory hardware to
your machine because your program requires
them. These extras will limit your market-
place. If you decide that some of the features
you want require extensive modification of the
existing program, the best course is usually to
throw the program away and start again, per-
haps using some of the routines from your old
program again. Your efforts will not have been
wasted because you will have learned a lot
about design and coding, and will be less likely
to make the same mistakes again.

Programming Hints

1. Ifpossible (i.e. if sufficient memory exists —
see below) use any variable for one purpose
only. This reduces the possibility of a variable
being set to an unexpected value for one part of
the program while being used for another. It
also makes debugging a lot easier as values set
up throughout the program are not overwritten
by other routines.
Space occupied by variables is as follows:

Integerse.g. X% 2 bytes each

Decimal numbers e.g.

X 5 bytes each

Stringse.g. X$...... 1 byte per char. +3

Arrays............. as above for each
element, +5,+2
per dimension

With only 2 bytes available for integers, the
values are restricted to between 32767 and

-32768. Attempting to exceed these limnits
will lead to an ILLEGAL QUANTITY
ERROR.

2. Use REM statements wherever possible to
make the program readable and to record the
purpose of each variable.

3. Use only one or two character variable
identifiers e.g. AB, Al, AB%, ABS, AB$(X),
AC%(D1%,D2%). VIC64 BASIC recognises
only the first two characters but does not give
an error if more than two are used. Thus
BLACK and BLUE will be treated by BASIC
as if they were the same identifier BL. Unfor-
tunately, this means that the variables cannot
easily be given meaningful names, which
makes the code difficult to read. Hence, it is all
the more important to use REM statements to
explain what each variable does. One particu-
larly frustrating problem that can occur,
happens when a BASIC keyword is acciden-
tally incorporated in a variable name. NOTE
for instance will be interpreted as NOT E, the
result of which is usually a syntax error on
what appears to be a perfectly good line.

4. Number lines in multiples of 10 and make
extensive use of subroutines numbered well
apart from each other. This makes changing
the program much easier.

Arithmetic

Arithmetic in BASIC is very versatile and easy
to use, following normal mathematical rules.
The meanings of such expressions as A+B,
A-B, A*B/C are obvious and for more complex
expressions, the order of precedence of opera-

tors is * (power of) * /+— < > . As an example,
the expression A+B*C ~ 2 will be evaluated by
squaring C, multiplying that by B and then
adding A. Changing the order of precedence is
easily achieved by using brackets e.g. (A+B*C)
" 2 will be evaluated by multiplying B
by C, adding A and then squaring the result.
For use of < and > as operators see below
under ‘Comparisons’.

Conventional arithmetic can take place on
one of two variable types. The default type —
the one normally used - is an ordinary decimal
floating point number. If a % sign is added to
the variable name, this becomes an integer
type with no figures after the decimal point
(e.g. AB%). Note that in Commodore BASIC
AB% is a totally different variable from AB or
ABS. You can use all three in your program
without any risk of them conflicting except
through use of the wrong type! Although,
ideally, you should use integers for indexing of
arrays or FOR/NEXT loops etc, in practice it
is not possible on the CBM 64 or VIC 20.
Arithmetic is actually slower using integers, as
the interpreter converts integers to floating
point numbers before processing them and
then truncates them to integer form again! All
you save is variable space (see above). How-
ever, if you decide to use a compiler to speed
things up, this will benefit greatly from the
inclusion of integer (%) variables wherever
possible.

Although not arithmetic, strings can be
‘““added” which have the effect of concatenating
them (running them together) e.g “J” +
“OHN” will give “JOHN":

PRINT “J"” +“OHN"
prints JOHN as does
PRINT A$ +B$
where AS$ contains “J”” and B$ “OHN”

Comparisons

Six comparisons are available:

Greaterthan.................. >
Lessthan..................... <
Equalto..............ooutt. =
Notequalto <>
Greater than orequalto >=
Lessthanorequalto.......... <=

Their meaning is obvious for numerics, but
they can also be used for strings which are
compared character by character, the test
being performed on the ASCII (see Glossary,
Section 4) value of the character concerned, so
that words, for instance, are compared as they
might be when consulting a dictionary.
e.g. ABC comes before ABCD
ABCD comes before ABD
Unlike some versions of BASIC, Commo-
dore BASIC supports boolean algebra beyond
the usual AND OR NOT combinations. For
the uninitiated this can lead to some strange
looking program lines e.g.

C=(A>1)

gives -1 if A is greater than 1, or 0 if A is less
than or equal to 1 and similarly for the other
comparisons. In all cases —1 represents “true”
and 0 represents false.

A=A+(A>10)

will reduce A by one unless it has reached 10.
The brackets are important as otherwise the
“+” will happen first, leaving A as -1 or 0 after
the first operation of the line, depending on A’s
starting value.

11

12

FOR X=1TO 20
AS=LEFT$(AS.LEN(AS)+

(LEN(AS)>10))
NEXT X

will truncate string A$ by removing 20
characters but will not allow the string to drop
below 10 characters.

PRINT CHR$(NR+48-(NR>9)*7)

will print any number between @ and 15 as its
hex character (e.g. 1 prints “1”” and 15 prints
“F”).

File handling

One area of program writing that seems to
cause more confusion than any other - at least
for beginners - is that of file handling.

In essence, there are three types of file that
you can use on most microcomputers. (There
are more types on larger computers.) They are:

Program files
Serial data files
Random Access data files

Program files are those you use every time you
save a BASIC program to casssette tape or disk.
All the information is saved in line number
order, and any ancillary information you need
to store — such as names and addresses — could
be kept in DATA statements, often at the end
of the program.

The great advantage of a program file is that
it is taken care of automatically by the com-
puter operating system, with the LOAD,
SAVE and VERIFY functions. Once the
program is working, there is very little that can

- g0 wrong.

On the other hand, there are two very serious
limitations. Firstly, program data files are very
inflexible; you can’t enter any of the stored
information while the program is running. If
you want to amend, for example, an address or
telephone number, you have to STOP the
program, LIST it to find the appropriate
DATA statement (not always an easy task!) and
edit the offending program line.

The problem is even worse if you need to add
information to the DATA statements, because
then you need also to change the part of the
program that READs the DATA - often a
FOR/NEXT loop.

The other limitation is memory size. You
can include sufficient information to fill the
memory space available between the end of
your BASIC program and the top of RAM.
This might represent a limit of perhaps
100-150 names, addresses and telephone
numbers (on a CBM 64) — none of which,
remember, can be changed other than by
someone who knows a bit about programming!

Serial data files
A much better way to store data that might
require up-dating or expanding, is to use a
serial data file. If you only have a cassette
system, this is in fact your only alternative. As
with a program file, a serial data file stores the
data in a continuous and contiguous stream
from beginning to end, and so is subject to the
same memory space limitations as a program
file. The big difference is that data can be
accessed, amended, deleted and added to while
the program is running, then re-saved to tape
(or disk) in its revised form before the program
ends.

Once the program has been written and de-
bugged, virtually anyone can use it to store,

retrieve and amend the data without any
knowledge of how the program was written.

Random access data files The third type of
data file — random access — frees you from
almost all memory limitations, but can only be
used with disk systems. The number of records
you can store is limited only by the amount of
room on the disk — or on several disks.

If an individual record consists of, say,

NAME

TITLE

ADDRESS

TELEPHONE NUMBER
DATE OF BIRTH

DATE OF JOINING

OFFICE HELD

SPECIAL INTERESTS
DATE SUBSCRIPTION DUE

you could quite easily maintain around 600
such records on a modest, unexpanded VIC
20, provided you had a disk drive.

There are snags, of course. Random access
file handling programs can seem more difficult
to write and each record must be a fixed length
so that the computer can work out where to
find it. It also takes slightly longer for the
computer to access each record because it has
first to start up the disk drive, locate and load
the record and then display it on the screen.

Even these minor irritations can be largely
overcome or minimised by techniques such as
using a serial file, loaded in at the start of the
program, as an index to the random file on
disk. So, in practice, random access files
though largely ignored by home computer
users, are often the obvious choice for serious
applications.

Creating serial and random
access files

Serial data files are the ones most commonly
used and they are the only data files that can be
handled on cassette. A serial file consists of
a continuous stream of information from
beginning to end, with no organisation other
than that which the programmer structures
when writing his data.

In just the same way that you have to open a
filing cabinet drawer before you can start work
on a particular file, so you have to OPEN a
serial data file (or random access file) before
you can start reading information from it, or
before writing information into it. When you
have finished with it you must then neatly
CLOSE the file. If you do not, the computer
does not know that you have come to the end
and will not mark the file end or put the last of
the data away from its working area (see
below). It can not be OPENed for reading and
writing simultaneously and must be opened at
the beginning and read or written from begin-
ning to end by the program. Thus, it is not
possible to go backwards, so once the file is
closed it is necessary to start again.

As mentioned above, when opening the file
it can only be opened for reading or opened for
writing, not both. When writing, it starts from
the beginning and writes until closed. This
means that once a file has been written it
cannot be updated except as follows:

(a) OPEN the serial file for reading.

(b) Copy the contents to a temporary serial
file using GET and PRINT, CLOSE it or read
(INPUT# or GET 4#) the specified variables
into a suitable area such as a large array.

(c) CLOSE the serial file.

(d) OPEN the serial file for writing — the

13

14

computer now assumes it is empty.

(e) Write (PRINT#) back the contents
from specified variables or from the temporary
file created after opening it for reading. This
overwrites the file that was previously held
there.

(f) Add the new information to the end of
the file, or combined with (e) above, insert new
or modified information as required.

This may seem strange to someone unused to
computing files, but if it were not so, then
every time a file was opened for writing the
cassette tape would have to start at the begin-
ning and run right through to find the end.
Don’t worry if you can’t immediately under-
stand the procedures above at a first reading, it
will become clear once you set about using
serial files and work out what you want to do
using the I/O (Input/Output) instructions
(OPEN#, CLOSE#, INPUT#, GET4#,
PRINT #)

The data would then progressively overwrite
any other files following on the tape.

Random files are only to be found on disk.
The disk manual explains these, and how to
use them to build indexed files. Here the file is
set up with a fixed size and with records
ordered in a particular fashion, gaps being left
in the structure for future inserts. Each record
has an address or record number so records can
be easily inserted, deleted and replaced. The
number of records is limited only by the size of
the disk, but practically for the sort of informa-
tion described earlier it would be one record
per sector (each sector having 254 bytes avail-
able for information).

File Buffers

All files are addressed from the computer using
buffers. For programming purposes these
buffers are said to be transparent to the user,
i.e. the programmer does not have to worry
about handling them as this is done by the
computer. However it helps to follow the way
programs operate, to understand the buffer
system. To take the cassette case, each time a
character or a string is sent to a cassette file, it
does not make sense to start the cassette motor,
wait for it to reach speed, send a character,
then stop, and repeat the process for each item
of data it wants to save. So, by convention,
characters are saved up in a buffer and then
when the buffer is full (192 characters for a
cassette) the entire buffer is written to the tape
in one go.

When the program finishes using the file,
any information left in the buffer will not have
been put on to the tape because it won’t have
reached the total of 192 characters needed to
cause an automatic writing of the contents of
the buffer to tape. So we must make sure that
the information in the buffer is not lost, by
‘forcing’ it to be written to tape. This is done by
using the CLOSE command which writes
away the rest of the data to be stored. The input
and output to disk and the output to the printer
are handled in the same way. Reading works in
the reverse manner.

A few routines to handle disk access are
shown above opposite.

419
420
439
435
440
450
460
470
474
475
450
490
500
510

oPen 19,8,15
Print "¥M3" roke S3251,1 Poke 53280@.3
priny "ETL

print "EBI Wain menud"
print "IN
Frint tab(1@),"¥d - directory”

Print tab(18):"$s - scratch"

Print tab(1@),"¥n - new dizk"
Prirt tab(1@):"¢ - rename a file"
print £ab?10);"¥x - exit"

print tab(10);"¢e - error status"
print "iBGenter the letter:"

Print "HNEEUCLUGUUCUCRRECGERENOM
get ku$:if ky$="" then 230

print " EEEECEUEEEEEEURCRRED
if ky$="d" then 300

if ky$="3" then 1000

if ke$="n" then Sosub 1200
if kys="r" then 9osub 1460
if kus="e" then 9osub 1700
if ku$="x" then close 1:close 15:Print "H2":en

ERDIR" S ky$

d

9oto 140
rem Kokl iioiionsioroioRroE
rem ¥k disk directory p it]
rem koo oKk
ofen 1,8,0,"¢0" ‘rem for dir

f=0

set#l,as, bs

Set#l, a$, b cetél,as,bs

Sosub S530:90sub 600:90sub €83
ds="BH"+f 1$+"B"+LP ¥

print "¥EFL

B

Print "W

Wirectorysd of ",d$

Print "ZB¥
get#l, as, bt

oet#l,a$, bt

g0sub 530 90sub 608 9osub €80

if f18="" then 470
bi$=risht$.bi$,2) 0suk: 740:rem Printing
f=Ff+1:1f f71€ then f=0:90sub 510:9oto 380
goto 410

rem ¥EE¥K ending Rk

Print " £2";bls;" blocks freed"

gosub 51@:close 1

9nto 142

get ks If kys="" then 510

9 return

2 rem ¥k reading no.blocks taken up by each
file dokik

A -=2

2 if a$0"" then c=asc(as): rem reading no.blocks
taken by file

368 if b$C"" then c=c+ascib®)#¥25€ remn ditto

579 block$=stré(c) ‘rem bls

580 return

500 rem ¥¥k¥ readin® name - locks for quotes ke

*

510 fle=""

620 get#] . hs:if st{OQ then f1$="" return

630 if b${>chr$(34) then 620:rem look for Quotes

648 Set#l.bt:if b${Ochr$(34) then f18$=f1%$+b$:90to
340:rem ¥k each file name

658 cet#l,b$:if b$=chr$(32) then €50

668 return

688 rem kKR tupe of file ok

693 c$="":if f1$="" then return

700 cé=ct+bd:get#l, bs if bLSO"" then 700
710 tr$=left$(cs.3)

720 return

730

748 rem ¥kEk Printing ook

798 Print "";bl$;"3";tabl(3);f1$:tab(18);"";tP$
760 return

770

780 :

790

1000 Print "SR
1010 Print "TWi

Becratchd”

1620 Print "IT
1030 inPut "file name";fl$
1040 Print#13,"scratchd:"f1¢
1630 9osub 2000

1069 soto 140
12080 print "ML

s

1210 Print "EBI

Wnew diskg"

1220 print "I

1230 inPut "disk nameB";dm$

1240 inPut "id no. (oPtional)®"';oP$

12350 Print#15, "newd:";dns",";op$

1260 9osub 2000

1270 return

1400 Print "3EPL
n -

e

15

16

1410 print "IN Frenamed”

1420 print "IN
14390 inPut "old file namel",on$

1448 inPut "new file name®",nm$

1450 Print#13, "renamed: ";me"="on$

1460 90sub 2000

1470 return

1480 :

1700 rem Holoiomiokioiriokioioioikokiiolokiokonk
1710 rem %ok routine for check %%k
1720 rem Hoksokiickioiimikioliilokokkok

1721 pPrint "3I4
“'-
1722 Print "EHi

Serror status®"

1723 Print "I0q
——

1730 9osub 2000

1740 if en=0 then Print en,em$,t,s

1758 Set ku$:if kys="" then 1750

1760 return

177@
2000 rem MkRiokioRoRIRRORREIORIE
2010 rem ¥k check disk Nk

2020 rem FrioiokioiiolalorioiolorioloRokiokio
2030 inPut#iS.en.em$,t.s

2040 if en=@ or en=1 then return

2050 Print en.em$,t,s

2060 for n=i to 1000:next:return

SECTION 2 BASIC FUNCTIONS

This section includes a detailed description of

the BASIC functions of the CBM language as

applied to the VIC 20 or CBM 64. The

language was derived from the PET BASIC

which means that many programs written on

PETs from 1977 onwards are not difficult to

convert for use on the newer machines.
Conventions used in the syntax are as

follows:

< and > indicates an entry of the type

described within the angle brackets.

[and] indicate an optional entry.

() and , are typed as shown.

The examples below the syntax statement
under each BASIC word use the conventions
mentioned above.

BASIC words can be abbreviated by using
the table in the manual or by remembering that
the abbreviation consists of sufficient letters to
allow the word to be differentiated from other
words, with the last letter shifted. PRINT is an
exception, for this the abbreviation is just ‘?’

Description
Gives a number without its sign.

Syntax
ABS (< numeric>)
e.g. ABS(-1) gives 1.

Function Very simply, ABS leaves a positive
number as it is and removes the sign on a
negative number making it positive. Not often
used, two examples are shown below.

X=SQR(ABS(Y))
will prevent a square root being attempted on a
negative number.

X=ABS(A-B)
finds the difference between two numbeis
when it is not known which is the larger of the
two.

Description
Logical AND operator.

Syntax
<operand> AND < operand >
e.g. IF (A=1) AND (B=1) THEN.....
(the brackets are optional)

Function
AND is a binary function i.e. it works between
two operands. It has two main functions:

1. As part of a logical test in an IF statement
where AND indicates that both conditions
must be satisfied e.g.

IFA<=3 AND A>=1 THEN 50

will go to line 50 if A lies between 1 and 3
inclusive.

2. As a logical function on binary numbers
with the following truth table which applies to
each bit in a basic numeric variable:

X Y XANDY

1 1 1
1 0 0
0 1 0
0 0 0

17

18

so that A=80 AND 48 will give 16 as follows:
128 64 32 16 8 4 2 1

80inbinaryis 0 1 0 1 0 0 0 O
48inbinaryis 0 0 1 1 0 0 0 0
AND gives 16

as . O 6 01 0 0 0 0

where 80 represents, say, menu items 2 and 3
chosen and 48 a check for items 3 or 4

The maximum size of binary number which
can be handled thus is 16 bits or two 8 bit
bytes. This is the size of a basic integer (%)
variable between —32768 and 32767 in decimal
(being 10000000 00000000 and G1111111
11111111 in binary with decimal zero being
00000000 00000000). Note that here the
leftmost bit determines if the number is
negative or positive. A zero means it is
positive; a 1 that it is negative. All numbers
must be expressed in decimal as the VIC and
CBM 64 have no facilities for handling binary
numbers.

As an example of type 1 we might wish to
verify entries on cassette, (read by an
INPUT i) against the original entries on paper
(read by an INPUT)

10 INPUT “CARAND
COLOUR’:AS$,B$

20 INPUT#1,C$,D$

301F A$=C$ AND B$=D$ THEN
PRINT “ENTRY VERIFIED”
40GOTO 10

Type 2 can be used for pattern matching
when looking at a byte which does not repre-
sent a number but a pattern. For instance there
may be 8 items on a menu screen from which

one wishes to select items 2 and 5. This could
be stored as a bit pattern 01001000, which is
later matched against 10000000 to see if the
first item on the menu was selected, against
0100000 for the second item and so on. In the
first case 128 AND 72 gives 0 (try it!), so item 1
on the menu was not specified, and in the
second case 64 AND 72 gives 64, so item 2 on
the menu was specified. A typical menu might
appear on the screen as follows:

(e EF]LI
SELECT OFPTIONS FOR TEST
TP to 30 Selected

Historyg E 3
GeogarafPhyu

Eng9@lish

French e
Ger-mamn

Chemistryg

Phusics

Riolosu E 3

ONRUNLQON-

SELECT? 1.4.8
1 =s=elected
4 selected
8 selected

See also the other logical operators OR and
NOT.

A small menu program for the CBM 64
using the AND function is given below. To
maintain a simple presentation, checking of
numbers input for range and other detailed
validation is not included, but this program
could form a basis for a multiple choice menu
selection.

18 REM MENL SELECTION

20 REM SET /P SCREEN WITH MENL OPTIONS DISPLAYED
30 PRINT CHR$C14>"TJ"TARC1S)" 22 Twl ~"/ &"

40 PRINT "7 MlF/w _I— T8l CUP TO 33"

50 PRINT TARC1S)"neE| ECTEDNM"

£ FOR I=1TN3:READ IT#

7@ PRINT I:I1T$:NEXT I:PRIMT:PRIMT

22 THPUT "we L™= A" 801280022, 5L

92 REM ALLOM THE 2 SELECTIOMS

1908 FOR J=1 TO 3:PRINT ":m" :BP=1/2

118 IF SLLT)=0 THEH 144

128 FOR K=1 T0 SL<J):PRINT:BP=BP#2:MEXT ¥:M3=M3 0P
BP

130 PRINT TARIZAM"#"

148 NEXT J

158 REM TEST FOR ITEM{S) SELECTED

169 PRINT " STuTuTetu e e e ee et

17@ 1IF MS AMD ! THEM PRINT "1 SELECTED"

188 IF M3 AND 2 THEN PRINT "2 SELECTED"

198 IF MS AMD 4 THEM PRIMT "3 SELECTED"

209 IF MS AND 2 THEN PRINT "4 SELECTED"

21@ IF MS AMD 16THEM PRIMT "5 SELECTED"

220 IF MS AMD 32THEN PRINT "€ SELECTED"

230 IF MS AMD f4THEM PRINT "7 SELECTED"

24A IF MS ANDI22THEN PRINT "8 SELECTED"

258 STOP

268 DATA " ITSTORY", "I ENGRAPHY", ""HELISH" . " _RENCH" .,
"| ERMAN" . "—HEMISTRY"

270 DATA “"“HYSICS"."1I10LOGY"

Identical program with printer set to lower case
mode.

19 rem meny celection

20 rem set uP screen with menu oPtions displaued

30 Print chr$14)"H"tah(1S)"IWTEST MENUIQ"

4@ pPrint "SELECT OPTIONS FOR TESTC(uP o 2>

S8 Print tab(15)"¥electediCER"

60 for i=iltof:iread it$

78 print i;it$inext 1:Print:print

20 input "SCELECTS":=2101),2102),21()

92 rem allow the 3 selections

192 for j=1 to 3:print "SEEEEI" :bp=1/2

110 if £12.i)=0 then 140

128 for k=1 to s1CiY:prink bP=hp¥2 next k:ims=ms or
bP

132 print tab(20)"%"

149 next |

158 ren test for item(s) selected

162 print "EEECEREEEEEEEREEL"

170 if me and 1 then Print "1 selected"

180 if ms and 2 then Print "2 celected”

192 if ms and 4 then Print "3 selected”

202 if me and 8 then Print "4 selected"

210 if ms and 16then Print "S selectad”

220 if me and 2then Print "6 selected”

238 if me and G4then Print "7 sslected"

242 if mz and128then Print "R szelected”

294 stop

262 data "Historu"."GeooraPhu"."Enalish". "French",
"German", "Chemistry"

270 data "Phusice","Binloau"
Description

Gives the ASCII value of the first character in
a string.

Syntax
ASC(<string>)
e.g. ASC (*“2”)is 50
ASC (“A”)is 65
ASC (“B”)is 66

Function

ASC is the reverse operation to CHRS$ and
gives the ASCII equivalent number of the first
character in a string. If no character is present
an “ILLEGAL QUANTITY™ error occurs.

A character in a string is stored in memory
as a number. This number is found in the
ASCII conversion table in your user manual,
for upper case mode. Lower case mode is
stored in exactly the same way and using the
same numbers as for the equivalent upper case.
This is because the machine does not recognise
any difference in storage between upper and
lower case mode, and the character displayed
by a PRINT statement or otherwise on the
screen depends entirely on the mode that the
computer is operating in at the time. For
convenience the complete table (excluding
control codes but including lower case) is
shown in Appendix A.

As examples:

PRINT ASC(X$)-48
19

20

will give the value of a single digit number
stored as a string character (if X$ is 2 the
answer will be 2).

PRINT ASC(“JONES")

will give only the the value of “J” i.e. 74. If
other values within a string are required this
can be done using MID$ e.g.

PRINT ASC(MID$(“JONES”,2,1)

will give the ASCII value of the second
character of the string “JONES”.

PRINT ASC(A$+CHR$(0))

will prevent an ILLEGAL QUANTITY error
occurring if A$ contains no characters.

ATN

Description
Trigonometric arctan.

Syntax
ATN(<numeric>)
e.g. ATN(2+A)

Function
This is the complement of TAN, turning a
tangent back into an angle (in radians) e.g.

A=ATN(B)*180/I]

converts a tangent to an angle in degrees.

Your machine has a [l function, so [I is
available direct and there is no need to derive it
from the trigonometric functions. For interest,
on computers without a [] function, pi can be
derived from ATN as [[=ATN(1)*4. This is

| because the angle whose tangent is 1 is 45
degrees or [1/4 radians.

Description
Converts a number to its ASCII equivalent.

Syntax
CHRS$(< numeric>)
e.g. CHRS$(50) gives the string “2” in both
modes
CHRS$(65) gives the string “A” or “a”

Function
This is the reverse instruction to ASC, and the
concept is explained there. The number must
be between @ and 255 or an ILLEGAL
QUANTITY error results. A non-integer is
truncated e.g. CHR$(50.89) still gives 2. It
is very useful for storing codes which cannot
be printed directly as, for example, the
<RETURN> key which is CHR$(13). It is
also useful for changing the printer modes
(explained in the printer manual). CHR$(34)
encodes the * sign, which is otherwise very
difficult to handle as the computer enters ”
(quote) mode every time you type it on the
screen.

See also ASC and the table of CHR$ values
and strings in Appendix A.

" CLOSE

Description
Closes a file.

Syntax
CLOSE < file number>
e.g. CLOSE 4 closes file no.4

Function

CLOSE informs the computer that the pro-
gram has finished processing a file or device
(e.g. printer), either permanently or tempora-
rily. CLOSE is necessary so that at the end of
processing the file can be properly cleared from
the system. Therefore when writing to a file,
any remaining information waiting in the file
buffer to be processed is sent to the disk, cas-
sette or printer and the end of file marker is
written, if requested. The input-output (I-O)
channel is also freed in the case of the printer
(but see also PRINT# and CMD), which
ensures that disk information (sent along the
same line) is not held up by the printer await-
ing information. _

If the file number is given as a zero, a
message such as NOT INPUT FILE ERROR
will appear. If the file number is not an integer
it will be truncated to an integer, and if a file
number is specified that had not been opened,
no action is taken but no error messages are
given. Ifa string is given (instead of a number) a
TYPE MISMATCH ERROR occurs.

CLOSE can be used directly or within a
program. It is worth noting that closing files
can take some time especially when closing the
cassette, as time has to be taken to write the
cassette buffer. In the case of serial cassette
files, remember to rewind before opening again
ifrequired in the same program.

100 FOR I=1 TO 10:CLOSE INEXT

closes any files with numbers between 1 and 10
that have been opened.

Note that CLOSE on its own does not work
on CBM computers, although available on
many others where it closes all open files

See also Section 1 on file handling and I-O.

CLR

Description
Clears all BASIC variables.

Syntax
CLR

Function

CLR clears all BASIC from RAM except the
screen RAM (which means the screen is not
cleared) and the BASIC program itself which is
there as if it had just been loaded. This is not a
clever instruction, it doesn’t close files for
‘instance, so it is necessary to make sure every-
thing is closed before using it. Assembler
(machine language) and other locations such as
sound and colour are not affected

21

22

| VARIABLES F——

>

_

X
5

\ A

Ly

— LOOPS '

- oo

Description
Alters the output from the screen to another
device.

Syntax
CMD < file number> [, < string >]
e.g. CMD4 reallocates output to the printer
which has been previously opened as file
number 4

Function

This very useful command used mainly in
direct mode, but also available for program
use, requires an OPEN to have been executed
for the file required and then sends all system
or program output to that file. The file may, of
course, be a device such as a printer, with a file
number associated with it by the OPEN
command. Any PRINT or LIST data will be
sent to the file until the CMD statement is
reversed.

A PRINT 3 sent to the output, followed by a
CLOSE command to write the buffer away and
revert to the screen, ends the sending of the
data.

An error such as SYNTAX ERROR cancels
the CMD and returns output to the screen, but
a PRINT # should still be used in direct mode
to clear any device or it may not respond when
the next output is sent to it, and the system will
hang up, waiting.

OPEN4,4:CMDA4:LIST will lista

program

PRINT#4:CLOSE4
screen.

reverts to the

See also PRINT # and OPEN.

Description
Continues a STOPped program.
Syntax
CONT.

Function

This is normally used after a STOP to resume
the program. It can also be used after the
<STOP> key has been depressed or after an
END. It won’t work (CAN’T CONTINUE) if
any program editing has taken place - and this
includes pressing < RETURN> in the middle
of a BASIC line even if no changes have been
incorporated. It also won’t work if an error has
occurred either to stop the program or while,
say, looking at variables after the program has
stopped. See also STOP and END.

COS

Description

Trigonometric cosine function, provided in a
right angled triangle by the equation COS A=
adjacent side/hypotenuse.

Syntax
COS (< NUMERIC>) e.g.COS (@)gives 1

Function

The cosine of an angle (in radians) is produced.
See also TAN, SIN and the table of other
trigonometric functions in your user manual.

Cos 0%
h

DATA

Description
Provides data embedded in the program.

Syntax
DATA <constant>[,<constant>]....
e.g. DATA 10,JAMES, 12, MARGE,“AT
HOME:456,AT WORK:2292”

Function

For the way DATA is used see READ. The
constants in DATA statements must be
enclosed in quotes if they contain commas,
colons or cursor control characters.

DEF FN

Description
Defines a mathematical function.

Syntax
DEF FN <name>(<numeric variable>)=

< numeric>
e.g. DEF FNA(N)E=N+1/N

Function

If you have a complicated formula used in
several places, it is best defined at the start of
the program with the DEF FN statement to
save space later. This is frequently used with
RND. A DEF FN should appear near the start
of the program amongst other non executable
statements such as DIM.

Some examples:

DEF FNA(N)=INT(RND(1)*N+1)

gives a random integer number between 1 and
N whenever the function is called, perhaps by
A=FNA(5) giving 1,2,3,4 or 5. The DEF state-

23

24

ment is in an early line, perhaps 50 or so,
directly after the REM statements describing

* the program, and the calls (e.g. A=FNA(5) or

A=FNA(7) or A=FNA(X)) occur whenever it
is required to perform the function defined.
So A=FNA(7) would be equivalent to
A=INT(RND(1)*7+1). The Iletters after the
FN enable you to have as many such formulae
defined at the start of your program as you
wish. For example:

DEF FNB(R)=[]*R2

gives the area of a circle whenever called by say
AR=FNB(10) the area of a circle of radius 10.

DEF FNRD(X)=INT(((10 N)*X)+.5)/
(10 N)

rounds off to N decimal places and
DEF FNM12(X)=12*(X/12-INT(X/12))

converts a 24 hour clock into a 12 hour clock.
Remember to check that the function you
want is not already explicitly defined in BASIC

e.g.
SIN(X)/COS(X)

is equivalent to TAN(X) so there is no need for

DEF FNA(X)=SIN(X)/COS(X).

Description
Dimensions an array

Syntax
DIM < array name > (< number > [,

<number>]......)
e.g. DIM A$(25) is an array of 26
elements (0-25 incl)
DIM B(11,11)1s an array of 144
elements in two dimensions

Function

An array is a collection of variables ordered
one after the other in list form or matrix form if
greater then one dimension. This makes it
easier to process a list within a FOR loop or
wherever indexing is used:

100 FORI=1TO 10
110 INPUT “NAME’";NAS$(I)
120 NEXT |

or
100 FORI=1TO 10
110 INPUT “NAME';NAS$(I)
120 FORJ=1TO 4
130 INPUT “ADDRESS"";AD$(1.J)
140 NEXT J.I

will fill a list of names or names and addresses.
Every array must be dimensioned either by
using a DIM statement or by letting the com-
puter do it for you. If there is no DIM state-
ment, your array will be dimensioned with 11
elements from 0 tol® or 121 (11 * 11) elements
if a two dimensional array, 11*11*11 for a
three dimensional array and so on the first time
the program encounters it while running. If
you dimension an array twice (i.e. if the
program runs through a DIM twice or does its
own implicit DIM before finding yours) an
error REDIM’D ARRAY will occur. Any
DIM statements should therefore be put at the
beginning of the program directly after any
introductory REM statements. Note that as
multi dimensional arrays use a lot of space, two

dimensional arrays should be used with care,
three dimensional arrays only on very special
applications and four dimensional arrays will
prove almost impossible to use anyway.

See also FOR.

Description
Stops a BASIC program.

Syntax
END

Function

END has the same function as STOP except
that the message BREAK IN LINE ... does not
occur. See STOP for further details.

END is a neat way of ending programs and it
is better than just allowing the program to run
off the end of the code. It ensures that the
program ends where you want it to, so that if
you put a subroutine or error handling routine
for instance, beyond the end of the main
program code it won’t get run unintentionally:

170 FORN=1TO 10:
PRINT #4,N:NEXT
180 GOSUB 300

190 CLOSE1:CLOSE4
200 END

300 REM SUBROUTINE........

More than one END can appear in a program.

l Description

Calculates powers of the constant e.

Syntax
EXP (< numeric>)
e.g. EXP(I]) is 23.1406926

Function
The mathematical exponential constant e is
raised to the power given by <numeric>. It is
related to the LOG function which uses a base
of e, for example EXP(LOG(10)) IS 10.

Useful in many mathematical equations, the

mathematician alone understands!

See DEF FN.

Description
Control statement for the generation of a loop.

Syntax
FOR < variable >=<numericl >TO
< numeric2 > [STEP < numeric3 >]

NEXT| < variable>]

Function

FOR allows the program to loop round a sec-
tion of code enclosed by the FOR and NEXT
statements a controlled number of times,
usually (numeric2-numericl)/numeric3. If the
optional STEP is not entered, a step of 1 is
assumed.

After each NEXT, the variable is increment-
ed and a test is made to see if it is greater than
the control end <numeric2>. If it is, the
program continues with the statement after

25

26

NEXT, otherwise the loop is entered again.
Note that this means that the FOR loop will
always execute at least once. This differs from
many other BASICs where the FOR loop is not
performed at all unless the conditions for it are
satisfied at the entry point.

There is nothing to prevent manipulation of
numerics 1,2 and 3 within the loop if they are
variables, but obviously care must be taken
doing this as it makes the logic of the program
more difficult to follow, and it sometimes
becomes quite difficult to calculate how many
times the loop will actually execute for any
given set of conditions. There is also nothing to
prevent you jumping out of the FOR loop if
some other condition such as end of line or end
of file is encountered.

Note that STEP can be negative as well as
positive, allowing you to step down an array
from the top as well as up from the bottom. It is
essential to specify STEP when negative.

At the end of the FOR loop, if it completes
normally, the <variable> has the value it had
for its last test at NEXT, which will be more/
less than the maximum/minimum specified by
TO and will be the value the next STEP has
incremented or decremented it to when finding
that it was outside the bounds of the loop.

10FORX=1TO 10
20 PRINT X

30 NEXT

40:

X is; always 11 on exit.
Jumping out of a loop

100 LN=1
110 FORX=1TO 10

120 PRINT Y$(X);

130 IF POS(0)>LN THEN 300
140 NEXT X

150 PRINT:PRINT “OK
IN“LN”“CHARS":END

300 REM LINE FULL ROUTINE

310 PRINT:REM SKIP A LINE

320 PRINT “TOO MANY WORDS TO
FITIN”“LN“CHARS :PRINT:LN=LN+1
330 GOTO 110 :

The value of X on exit depends on the
lengths of the strings in the array Y$(X) when
the code is run and the program continues to
look for another NEXT after line 300 so design
and debugging becomes that bit more difficult.
Furthermore a loop variable used internally by
BASIC is left on the BASIC stack and will not
be removed until a CLR or RUN. A better way
might be as follows:

100 LN=1

110 FORX=1TO 10

120 PRINT Y$(X);

130 IF POS(0)>LN THEN GOSUB
300:X=11

140 NEXT X

150 IF X=12 THEN 110

300 REM LINE FULL SUBROUTINE
310 PRINT:REM SKIP A LINE

320 PRINT “TOO MANY WORDS TO
FITIN”LN“CHARS :PRINT:LN=LN+1
330 RETURN

X is 11 on exit if the string fitted or 12 if it did
not.

In all cases the variable following NEXT
is optional and is used for clarity only. If
not used the speed of the loop is much
increased.

If an attempt is made to change the STEP
after the loop is running, nothing happens, as
once the STEP has been set up it cannot be
changed even if the variable used to set it is
changed. Thus the code below will not work to
increase the size of the step from within the
loop:

100 Y=1

110 FOR X=1TO 1000 STEP Y
120 PRINT X;

130 IF X>9 THEN Y=10

140 1F X>99 THEN Y=100
150 NEXT

Xis 1601 on exit.

Lines 130 and 140 alter Y but have no effect on
the step.

A FOR loop can also be used for a simple
delay, perhaps to give people a chance to read
a screen. Delays can be better handled in other
ways in machine language, but for BASIC
programmers this is an acceptable method
unless the code is to be compiled, in which case
the delay will be much reduced due to the
greater efficiency of the compiled code.
Another method is to use the internal clock,
which will work unless the cassette is in opera-
tion actually reading or writing.

FOR loop delay:
FOR X=1 TO 1600:NEXT

Time delay:

100 TI$-""000000":REM

SET INTERNAL CLOCK
1101FTI<(5*60)THEN

120 110:REM WAIT FOR CLOCK

(see under TIME for explanation of TI$ and
TI)

This gives a precisely timed 5 second delay,
whereas the only way to determine the time in
a FOR loop is by experiment. However the
FOR loop is a little more compact in code.
Compiled code is much more efficient and
therefore much faster and will thus shorten
considerably such timing loops.

A FOR loop should normally be used for
stepping up or down an array:

FOR I=1 TO16:AR(1)=0:NEXT:REM
CLEARS AN ARRAY
or:

10 DIM AR(16)

100 FOR I=16 TO 1 STEP-1:IF
AR(l)< >0 THEN PRINT |
110 NEXT

Nested loops are very powerful and you will
soon find occasion to use them. A two dimen-
sional array, perhaps a draughts board can be
set up this way:

100 REM CLEAR ENTRIES ON
DRAUGHTS OR CHESS BOARD
110 FORI=1TO 8

120 FORJ=1TO 8

130 DBS(1.J)=""

140 NEXT J.I

27

28

The maximum number of FOR statements
that can be nested is 10, which is more than
adequate. Only a program error should give
the condition OUT OF MEMORY. If using
multiple nested FORs be careful not to use the
same variable in any two loops. If you do the
result will be a NEXT WITHOUT FOR error.

An example of FOR loops nested 3 deep is
given below:

16 REM THREECOM
2@ REM PRODUCES ALL SUMS OF AMY 3 OF THE MUMEERS E
HTERET

36 REM STOPS WHEN OFTIOMAL MATCH FOUMD

44 OFEM 4.4

6@ INPUT "HUMEBER TO MATCH"HiM

78 N=1

26 IMPUT"MEXT HWUMBER":ACHY:IF ACN»=3 THEN X=M-1:0G0
0O 168

98 M=N+1:60TQ 28

106 CMI4

165 FOR M=1 TO X-2

118 FOR A=H+1 TOQ x-1

12@ FOR B=R+1 TO ¥

138 2= ACD+ACAI+ACR)

148 PRIMT Z" "!:IF Z=NM THEM PRIMT "M"R{MI:ACRI:A
(BY"3" :END

150 MEAT :PRIMT MEKT:FRIMT :HEXT

168 PRINT#4:CLOSE4:EMD

RERZY.

Some of the examples in Section 3 also use
nested FOR loops See also NEXT.

L ——

escription
Performs garbage collection and gives free
space available.

Syntax
FRE(<dummy>)
e.g. FRE(8)

Function

In BASIC, strings and other variables are
created dynamically and also deleted and
extended dynamically, which makes it impos-
sible to arrange all the data neatly in memory.
Some gaps and thus wasted memory are bound
to occur. For instance if a string AS$ is first
created by A$=“LONG AND COMPLICAT-
ED ERROR MESSAGE” and B$ is then
created as another string, A$ and B$ are
created one after the other in memory (string
space, to be precise). This means that if A$
becomes the shorter “SHORT AND SIMPLE
ERROR MESSAGE” then a few spare bytes
appear, which cannot be used unless another
string is the same length or less than the hole
created. In this manner, as a program goes on
manipulating strings, the free memory gets
scattered about within the computer and this
will stop BASIC from time to time when it runs
out of space and has to do a garbage collection.

Garbage collection is the computer jargon
for repacking all these strings, recovering all
the free space and packing it into one area.
FRE carries out this garbage collection and
gives the amount of memory free. If the
amount of memory spare when your program
is running is small, it is often advantageous to
do a FRE from time to time to prevent the
program having to do it at a time not of your
choosing. For example you might use FRE to
do a garbage collection while a menu or
instructions are being displayed on the screen
then the delay caused by the garbage collection
will not normally be noticed.

There is a bug in FRE which shows up on the
CBM 64 in that FRE gives a negative number if
more than 32k of BASIC memory is available.
The correct answer is given by adding 64k
(65536) to the FRE number or by:

FRE(8)-(FRE(8) <0)*65536

which you will need in a program if checking to
ensure that the user has sufficient space to
continue.

A$ B$ C$

rine sob
start of string AS String pointers

¢

Ljo[n[c] [a[N]o] [cfom[P[L[1]c|aT|E[D
R[[MIE[s{S[A[G[E[N[E|X]|T I [N[G

start of string BS start of string C$

A$ B$ C$

-
()
=
=0
[—J

[2]
(7]
—
=

String pointers

\
[is|t{mp]Lle] [elR[RMIR] [M[E
sis|ajclE N[E[X]T] [s|t[r[1]N]e]"

unused space

(7]
=
(=)
=
-
==
=
=]
(7]

GET

Description
Examines the keyboard for character entry.

Syntax
GET < variable>[, < variable>.....]
e.g. GET A$

Function

GET picks up any keyboard entry. If nothing
has been entered since the last GET, an empty
string (or @ if the variable is a numeric type) is
returned. GET does not wait and the program
proceeds immediately with the next statement,
so the usual way to use it is to return to the
GET until something is found e.g.

10 GET AS:IF A$S=""THEN 10

GET is more flexible than INPUT and has
many advantages, but is usually a bit more
complicated to program.

Commas, RETURNS and any other charac-
ters can be used.

String length can be up to 196 characters.

Undesired characters (perhaps cursor con-
trols) can be ignored by the program, or certain
keys or combinations of keys only accepted e.g.

10 GET AS$:IF VAL(A$)=0 THEN 10
or:

10 GET AS:IF AS=""THEN 10

20 IF VAL(AS$) < >0 THEN 50:REM

ACCEPT ANUMBER

30 1F ASC(A$)>63 AND ASC(AS)<
71 THEN 50:REM HEXATOF

40 GOTO 10

50 REM PROGRAM CONTINUES

WITH AHEX CHARACTERIN A$

Unlike INPUT, GET does not echo the
input characters on the screen, which gives you
the flexibility of echoing just the ones you
want, using PRINT or POKE statements.

The expanded syntax GET AS$,BS,.. is not
often used because in normal use GET will
only pick up one character. However if there is
a delay before the GET, this gives time for keys
to be pressed and stored internally in the key-
board buffer, which has the characteristics of a
queue, until the GET is encountered which
reads them:

110 FOR X=1 TO 10000:NEXT
120 GET A$,B$,C$.DS...

A maximum of 10 characters can be held in

29

the keyboard queue: any more than 10 are lost
unless GET has taken some from the front of
the queue. Unlike INPUT, if GET finds a
mismatch when a numeric is given a non-
numeric key, SYNTAX ERROR appears and
the program stops. It is therefore always best to
use a string variable (e.g. A$ and then convert
to a numeric by using VAL(AS) with a pro-
gram check for non-numerics if required). For
example, if ““A” is entered in error instead of a
number when the program is at a line contain-
ing GET X or GET X%, there will be a
SYNTAX ERROR. In addition, the normal
check shown above (10 GET AS:IF
A$=“"THEN 10) cannot work and must be
replaced by something like:

10 GET A:IIFA=0THEN 10

which means that @ cannot be entered as a
valid reply.

Description

Reads characters singly from a file or device.

Syntax
GET# <file number>,< variable> [, < vari-
able>.......

e.g. GET#1,A,B$,C

Function

GET4# works the same way as GET except
that the data comes from a file or device
instead of the keyboard. No characters are
specially treated, but are simply read one at a
time and placed in successive variable names.
This means that any data separation characters
inserted in the file when writing (perhaps
commas and RETURNs) must be analysed

30

separately by the BASIC program. Before
GET # can be used the file being accessed must
have been OPENed. As an example:

10 OPEN 8,8,8,0:FILE1"

20 GET#8,A$

30 IF A$=CHR$(13) THEN 50:REM
LOOK FOR RETURN

40 LN$=LN$+AS$:GOTO 20

50 PRINT LNS:LN$="""GOTO 20

CLOSE S8

When using GET # on cassette, the charac-
ters are read out of the cassette buffer which is
refilled as required (see File Handling in
Section 1) from time to time. The program
pauses and the clock stops while tape input or
output is in progress.

GOSuB

Description
Calls a subroutine.

Syntax
GOSUB < line number >
¢.2.GOSUB 500

Function

GOSUB causes control to be transferred to the
line number specified and stores the return
address as the statement following the
GOSUB. Control is passed back when a
RETURN is encountered in the subroutine e.g.

10 REM SET UP SCREEN
20 GOSUB 1000

30 PRINTN

100 END

1000 REM CLEAR SCREEN AND SET

PAGE

1010 PRINT <clr>
"SSSS>S>S>S>>>>>>>"

1020 PRINT “PAGE"’;

1030 RETURN

Lines executed will be: 10 20 1000 1010
1020 1030 30.....etc Notice the END at line
100. This is a useful safety precaution at the
end of any program before subroutines start so
as to prevent the program dropping through
from the main program into the subroutine
accidentally and causing a RETURN
WITHOUT GOSUB error. Subroutines can
equally well be placed at the front of the pro-
gram before main code with a jump from say
line 10 to the main code.

GOSUBs can be nested i.e. a routine can call
another routine, which itself can call another.
It is easy to nest subroutines accidentally by
forgetting to put RETURN in. This can lead to
most peculiar results as the code being execut-
ed is totally unexpected, and the return from
any other GOSUB so entered will be to the
wrong place. This is because the return line
number is picked off the stack as the last one
put there.

GOSUBs can be nested up to an unbeliev-
able 24 deep, so always check your RETURNSs
particularly carefully in complicated code.

The purpose of GOSUB is to allow frequent-
ly repeated code to be put in one place and
called from any part of the program. It can also
be used to make the code more understand-
able, by taking out detail from the main code
into subroutines thus allowing both the main

code logic and the subroutine logic to be
followed more easily. Note that a GOSUB can
point to any valid line including a REM line,
but cannot point to an undefined line. Calcu-
lated line numbers cannot be used:

100 A=10:GOSUB A

is invalid.
See also ON.

GOTO

Description
Jumps to another part of the program.

Syntax
GO TO <line number> or equivalently
GOTO <line number>. e.g. GOTO 70

Function

GOTO is an unconditional jump to another
part of the program without returning. This
should be avoided wherever possible except for
short loops (as in GET handling), for ON (q.v.)
or for simple skip overs (see IF) or errors. This
is because unrestricted use of GOTOs make the
logic of a program more difficult to follow,
particularly if used indiscriminately or with
flags (see design hints in Section 1). The inter-
twining logical paths created by large numbers
of GOTO statements result in what is com-
monly known as ‘spaghetti software’. If you
find that your program seems to need this kind
of structure (or more accurately non-structure)
it is wise to have another look at the logic of
your design and see if it can be rearranged.
Unfortunately BASIC was not designed as a
structured language, and you will find in Sec-
tion 3 fairly frequent use of GOTO in some
examples. Note that these are not used to jump
at will about the code.

31

32

Highly structured programs are undoubtedly
slower than well written unstructured code.
However, in practice it is so much easier to
write structured code and thus it is usually
more efficient than all but the best of unstruc-
tured code. If you find performance is a prob-
lem consider using short sections of machine
code within loops where the BASIC program
spends much of its time, or alternatively use a
compiler. No attempt is made to explain either
in this book but the Commodore Program-
mers’ Reference Guide for your machine is a
good starting point for machine code, and
compiler manuals are available with the com-
piler software. Use GOTO in an error situa-
tion to display an error and terminate proces-
sing; use GOSUB if just displaying an error
message with some of error processing and
continuing:

100 GET#1,A$:REM GET A
CHARACTER FROM TAPE

110 IF VAL(AS$)=0 GOTO 1000:REM
SHOULD ONLY CONTAIN
NUMERICS

or equivalently _
110 IF VAL(AS$)=0 THEN 1000:REM....

(omitting the GOTO after the THEN
if you wish)

1000 REM ERROR EXIT

1010 PRINT “NON NUMERIC
ENTRY"”

1020 PRINT “PROGRAM ERROR -
ENDS"’

1030 END

or, using GOSUB and returning

100 GET#1,AS:REM GET A
CHARACTER FROM TAPE

110 IF VAL(A$)=0 GOSUB 1000:REM
SHOULD ONLY CONTAIN
NUMERICS

1000 REM ERROR ROUTINE
1010 PRINT “WARNING - NON-
NUMERIC ON TAPE"”

1020 PRINT “PROGRAM

CONTINUES”
1030 RETURN
See also ON.
Description
Conditional statement allowing branching.
Syntax
1. IF <condition> THEN <line number>
or equivalently IF <condition> GOTO
< line number >
e.g. IF X=0 THEN 1000
2. IF <condition> THEN <state-
ment>......

e.g. IF X=0 THEN PRINT “FUEL

Note that <condition> can be a complex
condition containing logical operators AND,
OR or NOT (see below)

Function

IF is followed by a condition which can be
numeric or string and can include strings,
numbers and variables related by logical

operators and comparisons, but must avoid
data mismatches e.g.

50 IF A=0 AND B$="ABC"'THEN
GOSUB 1000

No ELSE is available in this BASIC so to
achieve the same effect a GOTO has to be used

e.g.

50 IF A=0 AND B$="YES''THEN
C$=TI$ ELSE C$="0"

must be written
50 IF A=0 AND B$="YES"'THEN
C$=TI$:GOTO 70
sm C$=lloll
70

Statements following a THEN in the same
BASIC line are not executed if the IF condition
is not satisfied, so in line 5@ above if A is 1 the
program moves directly to line 60. If only a
small number of statements is required after a
THEN, this is satisfactory, otherwise a
GOSUB is required e.g.

100 IF A=0 AND B$="YES"THEN
PRINT “THIS CONDITION IS OK"":
C$=TI$:PRINT”AT TIME"LEFTS
(T1$.2)"MINUTES"....

cannot be coded as it stands because there is no
provision in BASIC for lines longer than about
80 characters, and while some juggling can
take place removing spaces and using abbre-
viations, this can be more trouble than it is
worth in loss of clarity and problems with later
editing. It should therefore be written:

100 IF A=0 AND B$="YES"THEN
GOSUB 1000

1000 PRINT “THIS CONDITION IS
OK":C$=TI$ |

1010 PRINT “AT TIME"LEFTS
(T1$.2) “MINUTES"

1040 RETURN

INPUT , |

Description

A simple method of acquiring information
from the keyboard, already formatted as a
string or number.

Syntax

INPUT [“ < prompt >"’;] <variable>[,

<variable>1].....
e.g. INPUT

AGE”;NAS$,AG

Function

When a program reaches the INPUT state-
ment the prompt, if any, is produced and a
“?” is printed on the screen, the latter being
produced even if there is no prompt. The
program stops and awaits input which is stored
away in the variable list and may be

“ENTER YOUR NAME,

(a) a string

(b) a number

(c) a series of strings and/or numbers separ-
ated by commas

depending on the variables requested by the
program. In any case, if nothing at all is
entered (except < RETURN >) the contents of
the program variables are unchanged. For
example, if NAS$ contains JOHN and AG

33

34

contains 35, then a single press of the
<RETURN > key will leave them unchanged.

If a response is entered, all the variables
must be given values e.g. JOHN,36 .

Note that the use of the prompt is just a
shorthand way of writing PRINT
“PROMPT”;:INPUT.....

If too many replies are entered the program
resumes giving a warning message “EXTRA
IGNORED?”, and leaving out the extra items.
The same effect occurs if a comma is inadver-
tently included, of course, as this is recognised
as a string separator.

If too few are entered, the program will not
continue but will produce a double prompt
“97” to indicate that more entries are required.

A couple of examples illustrate the use of
INPUT:

10 INPUT “AM |1 A CLEVERVIC”;IN$
20 PRINT “I'M INTERESTED THAT
YOU SAY”INS

30 PRINT “DO YOU FIND THIS
CONVERSATION INTERESTING"”
40 INPUT INS

50 PRINT “I THINK “IN$“TOO"”

5 FOR N=1 TO 5: A(N)=0:NEXT

10 INPUT “HOW MANY CHILDREN
n;No

20 ON NO GOSUB 90,80,70,60,50
30 PRINT “THE AVERAGE AGE
IS”(A(1)+A(2)+A(3)+A(4)+A(5))/NO
40GOTOS5

50 INPUT A(5)

60 INPUT A(4)

70 INPUT A(3)

80 INPUT A(2)

90 INPUT A(1)
100 RETURN

As can be seen above INPUT is easy to
program within its limitations.

Some errors are checked for you and give the
message REDO FROM START. These errors
are mismatch errors such as entering non
numeric data in an integer or numeric field.
e.g. “ABC” in A or A%. However, no error
message is given for a decimal number being
entered into an integer field, but it will be
truncated. So if 5.1 is entered into A% it
becomes 5.

The insert/delete key and the cursor left/
right control can be used to modify the input
string without explicit programming, in just
the same way that you would edit a line in the
listing. The up/down cursor controls can also
be used amongst others, but the use of these
leads to unpredictable results.

No commas or RETURNSs can be used in
strings because these are separators and ter-
minators. GET must be used in such cases. The
string length is also limited to 80 characters.
There is a known bug in Commodore BASIC
where information displayed on the screen
before an INPUT statement can become
incorporated in the message picked up by
INPUT e.g.

10 INPUT “DO YOU THINK I'M
CLEVER”;INS

29 PRINT “I’'M INTERESTED THAT
YOU SAY”INS

INS$ will pick up “DO YOU THINK I'M
CLEVER”on the VIC as well as any message
typed in. The problem is not so apparent on
the CBM 64 as the screen line length is 40.

The problem occurs when a previously
PRINTed or INPUT string covers more than
one line on the screen, with the INPUT
prompt occurring on the same logical line i.e.
for any INPUT statement with a MESSAGE
greater than 22 characters (40 for the CBM 64),
or for any PRINT statement longer than this
length and terminated with a semi-colon. All
similar constructions have the same problem
so there is no simple “fiddle” to get round the
problem, which should be avoided by using
GET if necessary.

A program cannot be interrupted using the
<STOP> key when a reply to INPUT is
awaited. It is then neccessary to press
<STOP> and <RESTORE> and start the
program again.

Other considerations

The prompt and input can be made invisible
on the screen by printing the background
colour control character at the end of the
MESSAGE. e.g. on a white screen:

10 INPUT “PASSWORD{white}';A$
20 PRINT “{blue}OK"

where {white} is obtained by pressing
<CTRL> and 2 together and {blue} using
<CTRL> and 7.

so that the letters are the same colour as the
background and thus invisible. Of course the
VIC, screen, cursors etc all continue to func-
tion normally — you just can’t see anything.
When (or before) the next PRINT or INPUT is
executed the letters must be made visible again
by a suitable control character.

GET is much more flexible than INPUT and
can perform all the INPUT functions. GET

should be the normal choice of the advanced
programmer, but as it requires more compli-
cated programming techniques, INPUT will
normally be used by those with less BASIC
experience.

INPUT #

Description

A simple method of acquiring information
from an open file, the screen or other external
device, in string or numeric form.

Syntax
INPUT# <file number>,<variable>,
[<variable>.....

e.g. INPUT # 1,NAS(I),AG(I)
as part of a program loading a list of
names and ages in arrays NAS and AG.

Function

This works in the same way as INPUT (q.v.)
and has similar restrictions. The variables are
separated by a <RETURN>, comma or
colon and the required number of variables
will be picked up from the file or device rather
than from the screen (unless the screen has
been designated as an input device with a
CMD). Anything left over in the input after the
last separator will be lost, and input will be
ignored until the next <RETURN >, so it is
important to ensure that input data is properly
structured with exactly the right number of
separators before the carriage return and
exactly the right types of input used to match
the syntax of the INPUT statement e.g.

10 INPUT#1,A,NAS.B

must be matched on the cassette by a series of
number/ comma/ string/ comma/ number/

35

36

<RETURN>. Note particularly that no error
message is given when data is lost and the
program continues to read from the tape as if
nothing were wrong, so particular care is re-
quired here. Separators can be commas, semi-
colons or colons.

If you run off the end of the file while
INPUTting or try to read a string longer than
80 characters a “STRING TOO LONG” error
appears and the program stops with a BREAK
ERROR. It is therefore best to place your own
end of data marker, say ZZZ on the file and
look for it in the program that reads the data.

Quite complicated data patterns can be read

e.g.

10 INPUT#1,NOS$,Q8.AS:IF
NO$="2ZZ"“THEN GOTO 400:REM
READ COMPLETE

201F Q$="2ZZ"OR A$="2ZZ"THEN
300:REM ERROR

30 FORI=1 TO VAL(NOS):
INPUT # 1,W$(I)

40 IFW$(1)="2ZZ"'THEN 300:REM
ERROR

50 NEXT |

60 GOTO 10

reads a question, answer and a variable num-
ber of wrong alternatives to construct a multi-
ple choice type question. The routine expects a
terminating ZZZ in NOS. If it finds it anywhere
else it is an error.

GET # is more flexible than INPUT # and
will perform the same functions. If the format
of the incoming data is well defined in strings it
is best to use INPUT # but if in doubt about
unwanted characters such as commas, colons,
semi-colons or < RETURN>s (other than as
separators) then use GET #.

Description
A simple truncation function which returns an
integer value of a number or expression.

Syntax
INT (< numeric>)
e.g. A=INT(B)

Function

INT reduces the expression to the next lower
whole number, i.e. for a positive expression the
decimal point and figures to the right are re-
moved; for a negative expression the next
lowest whole number is returned. If a number
is already an integer it is unchanged. A simple
check that an integer number has been used as
areply to an input statement might be

10 INPUT “NO OF CHILDREN"",NO
20 IF NO=INT(NO) THEN 40

30 PRINT “HOW DID YOU MANAGE
THE”NO-INT(NO): GOTO 10

INT is a simple and straightforward function
and can be used for rounding decimal numbers
more simply than say LEFTS e.g. to round a
money amount of £12.345 in A to £12.35 in
B:

10 B=INT(A*100+0.5)/100

Note that as the next lower whole number is
selected by INT, to get rounding @.5 must be
added to the number to be rounded, thus bring-
ing it over the next number if it is closer to that
number than the one below.

Truncation is carried out by multiplying the
number by 100, taking its integer and then

dividing that by 100 with the effect that the
decimal place is shifted two places into the
number:

10 B=INT(A*100)/100 (try with A as
12.345)

If B is replaced by B% in the above examples
the INT function is unnecessary so this should
be borne in mind as a simpler alternative if the
variable is never required to be fractional, e.g.
B%=A instead of the above example.

Description
A string manipulation function extracting or
replacing part of a string starting from the left.

Syntax
LEFTS (< string>, < integer>)
e.g. LEFT$(“JOHN SMITH” 4) gives JOHN

Function

LEFT$ takes the leftmost <integer> charac-
ters of the string. The integer must evaluate to
between @ and 255. Useful in truncation or as
part of a string analysis routine.

AS=LEFT$(BS,1)

takes the leftmost character of a string — useful
for checking a Yes/No type answer by looking

at the first character.
Quite complex syntax can be used here with
good effect e.g.

AS$=LEFT$(B$,LEN(B$-1))
removes the last letter of a string.

10 IF LEN(BS) <20 THEN 50

20 PRINT LEFT$(B$.20)

30 B$=RIGHTS$(BS,LEN(BS$)-20)
490 GOTO 10

50 PRINT B$

. prints the data in B$ in widths of 20.

Another example shows how to prevent
words spilling over from one screen line to
another on the VIC. (For the CBM 64 use 40
instead of 22.) Line 20 takes the leftmost 22
characters of the text in C$. Line 30 removes
part words from the line by shortening to the
first space. Line 50 replaces the original text
string with the new version which has had
removed the part already PRINTed. This
process is repeated by returning to line 10.

10 IF LEN(C$)<22 THEN PRINT
C$:GOTO 70

20 D$S=LEFT$(CS$.,21)

30 IF RIGHT$(DS,1)<>" "THEN
D$=LEFT$(D$.LEN(D$)-1):GOTO 30
40 PRINT D$

50 C$=RIGHTS$(CS.(LEN(CS)-
(LEN(D$)+1)))

60 GOTO 10

70 END

LEFTS, RIGHTS, MIDS$, and LEN make up
the range of BASIC string handling functions
and, as hinted above, can be programmed to a

37

quite sophisticated level without necessarily
writing a lot of code. However, as can also be
seen above, it can be quite difficult to follow
the logic, so REMs or separate program notes
are in order. Also note that after considerable
string manipulation the memory can become
quite cluttered with discarded bits of string and
the occasional FRE can be useful (q.v.).

LEN

Description
Gives the length of a string.

Syntax

LEN (< string>)
e.g. A$="“19 CHARACTER STRING”
LEN(AS) gives 19

Function

LEN counts all characters including spaces
and non printing characters. See LEFT$ and
RIGHTS for some useful examples of string
manipulation using LEN. Other uses are €.g.

38

IFLEN(A$)=1 AND A$="X"THEN......
tests for the single character X.

110 FORI=1 TO LEN(AS)

120 IF MID$(AS$.1,1)="E”"THEN

CN=CN+1

130 NEXT

counts the number of Es in string A$

Description
Assignment.

Syntax
[LET] < variable >=< expression >
e.g. LET A=5 or LET A$=B$+C$

Function

LET assigns a value or a string to a variable
and is a very common statement. The word
LET is optional and is therefore almost invari-
ably left out to save typing and memory. This

is unfortunate, particularly for beginners as for
instance A=A+5 is nonsense to the ordinary
person, whereas the meaning of LET A=A+5 is
much more obvious.

LIST

Description
Lists all or part of a program.

Syntax
LIST [[< first line>]-[< last line >]]
e.g. LIST lists the entire program
LIST 100 lists line 100
LIST 100-200 lists lines 100 to 200
inclusive

LIST-100 lists lines up to 100

Function
This LISTS required lines on the requested
device (usually screen but can be printer). If
used within a program, LIST must be the last
instruction, as after a LIST, control is returned
to the BASIC system and READY is displayed.
LISTing about 10 lines at a time on the VIC
and 20 on the CBM 64 is enough to fill the
screen for a normal program.
Listing to a printer can be carried out as
follows:

OPEN 4,4:REM OPENS CHANNEL
TO PRINTERWITH ADDRESSING 4

CMD4:REM PASSES OUTPUT TO
PRINTER

LIST

and then, when the listing is complete....

PRINT#4:REM PASSES OUTPUT
BACKTO SCREEN

by terminating output to the printer using a
null PRINT # statement. It is important not to
forget the last line, as otherwise output, includ-
ing the READY prompt, continues to go to the
printer. The printer is normally device 4, but
this can be changed to 5 by a switch on the
rear, when the example above will contain 5

instead of 4.

LOAD

Description
Loads and optionally RUNSs a program.

Syntax
LOAD [*“< filename >][, < device >]
[,<address>]
e.g. LOAD loads the next program on cas-
sette.

100 LOAD AS$,8 loads the program
from disk, the name of which is set up in
AS$ by the currently running program,
and RUNSs it.

Function

This loads a program from a program file on
the specified device (usually 1 for cassette and
8 for disk). If executed from within a program,
on completion of the LOAD, the newly
LOADed program will run, which does not of
course apply in direct mode. This allows pro-
grams to be loaded serially and run one after
the other, or even looped round to run one or a
series of programs repeatedly.Obviously in the
case of a loop the cassette has to be rewound

39

40

and at some point the program must pause to
allow(this. On LOAD, any previous program in
memory is lost, whether it is a direct LOAD or
a LOAD from a program. As MERGE is not
directly available, there is no built in single
command way of adding one program to
another already in memory (but see
‘MERGE’). The LOADing of a menu pro-
gram can allow the selection of other programs

e.g.

110 IF CH=1 THEN
AS$="PROGRAM1"”
120 IF CH=2 THEN
A$="PROGRAM2"
130 IF CH=3 THEN
A$="PROGRAM3"”
140 LOAD A$.8

will load A$ from disk and run it. It is also
possible to do this from cassette by omitting
the ‘8’ but it may take some time if the required
program is some distance down the tape.
Unfortunately if the second program is
larger than the first, the system crashes! Yes, it
goes horribly wrong because two locations in
the BASIC area have not been set properly.
These locations are the pointer to the start of
BASIC variables at 45 and 46 in both the CBM
64 and VIC. These must therefore be reset by

e.g.

POKE 45,<number1 >:POKE
46,<number2>:CLR

where numberl and number2 are found by
PEEKing 45 and 46 after writing the program.
These numbers determine where the BASIC
variable area ought to be. The line above is
included as the first line of your program if it is

chained (LOADed from another program) and
must be changed whenever the program is
modified.

If the filename is not entered, the first file on
the cassette is LOADed or an error message
given if the disk is addressed. If the filename is
“* the first file on the disk directory is loaded,
with a FILE NOT FOUND error if this is not a
program file. If the device is not entered, the
cassette is assumed.

The secondary address is not normally used.
An address of 1 will, on the CBM 64, cause the
program to be loaded at the memory location
from which it was saved, rather than automati-
cally in the BASIC area. This could be useful if
the BASIC pointers have been moved about to
allow some machine code.

A load from cassette followed by an im-
mediate run can be achieved by simply press-
ing <SHIFT > and <RUN > together.

LOG

Description
Natural logarithm.

Syntax
LOG (<numeric>)
e.g. LOG (10) gives 2.30258509

Function

LOG finds the natural (base e) logarithm
(usually abbreviated to log) of a number or
expression. This is not the same as the logs
shown in school log tables or most slide rules
which are to the base 10 and can be obtained as
follows:

LOG (A)LOG (10) returns log base 10 of A

To return from a log to the original number
(i.e. antilogarithm usually abreviated to anti-

log) multiply by the base to the power given by
the log. As an example using base 10 logs, if the
log is 1 and the antilog is wanted this is 10"1
(10 to the power of 1) which is 10. If the log is 2
the antilog is 10 "2 which is 100

AL=BS"LG where AL is the antilog required

BS is the log base
LG is the log
Description
Merges two programs.
Syntax
None.
Description

This facility does not exist in the CBM BASIC.
However it is extremely useful to be able to
write programs in chunks and then to MERGE
them. The easy way of doing so is to buy a tool-
kit such as the VIC 20 programmers’ aid car-
tridge, otherwise it can be done as follows:

Write your first program to cassette as a
serial file e.g.

OPEN 1,1,1,”PROGRAM1"":CMD1:
LIST

followed by
PRINT#1:CLOSE1

Then to merge with another program,
rewind the cassette and load it using

POKE 19,1 setting the input prompt flag

and finally clear the screen and move down

three cursor positions to where the cursor
would be after a PRINT CHR$(19) and then

PRINT CHR$(19):POKE 198,1:
POKE 631,13:POKE 153,1
where
PRINT CHR$(19) clears the screen
POKE 198.1 sets 1 character in
keyboard buffer
queue
sets that character to
<RETURN>
sets default input
from cassette
instead of keyboard

POKE 631,13
POKE 153.,1

thus simulating someone typing into the

machine the listing that was saved to cassette.
End with a CLOSE 1 after ignoring the
SYNTAX ERROR.

Description
A string manipulation function extracting or
replacing any contiguous part of a string.

Syntax
MIDS$(< string> , < numericl > [, < numeric
2>]

e.g. MID$(“JOHN SMITH ESQ”,6,5) gives
SMITH

Function

MIDS takes the first position of the string to be
extracted from the left as numericl and
extracts numeric2 characters beyond that. If
numeric2 is greater than the remaining string
length, or is not entered, the rest of the string is
taken. Numeric2 must be between @ and 255
and numericl between 1 and 255. No syntax

41

42

error is returned if numeric2 is @ but obviously
nothing will be returned by MIDS.

MIDS$ can be usefully used in string index-
inge.g.

10 AS$="JANFEBMARAPRMAYJUN
JULAUGSEPOCTNOVDEC”

56 INPUT “MONTH NUMBER";C

100 B$=MID$(AS,C*3-2.3)
110 REM EXTRACTS THE MONTH
USING THE MONTH NO. IN C

See also LEFTS$ and RIGHTS

Description
Clears program and deletes variables.

Syntax
NEW.

Function

NEW can be used directly or within a pro-
gram, in which case it clears everything BASIC
including itself. It can therefore be used as a
rather primitive security device by clearing a
program from memory under certain condi-
tions, although additional line blanking (so

that the line containing the NEW is not visible)
is also required, if the program is not compiled

e.g.

100 INPUT
DAS

110 IF VAL(RIGHT$(DAS.2))>84
THEN NEW

“DATE (DDMMYY)";

Programs containing these statements will
automatically delete if used beyond 1984. The
cassette or disk copy is, of course, not affected.

CBM 64 sprites, machine code and high
resolution graphics are not cleared and of
courss POKEs that have been performed
remain in effect, so in many cases where these
have been used it may be necessary to press
<STOP> and <RESTORE > or even switch
the machine off and on again

5 K
= S ﬂ\pﬁ?
6010 At ‘

S —

escription
Gives the repeat point in a FOR loop.

Syntax
NEXT [< counter>],[<counter>]......

Function

NEXT returns the program to the most recent
FOR statement that has not already been
matched with a NEXT. If this does not corre-
spond to the FOR identifier, a NEXT WITH-
OUT FOR error occurs i.e. NEXT on its own
cannot cause this error if there is a FOR cur-
rent as it will automatically match that FOR
and assume that the identifier in the FOR
statement is the one intended in the NEXT.
However, it is safer (but much slower) to use an
identifier (e.g. NEXT I rather than just NEXT)
so that the BASIC interpreter can check the
syntax and thus your logic.

If the exit condition has been reached, the
program will continue by returning to the FOR
to test it and then skipping to the code directly
after the NEXT.

See FOR.

Description

Logical NOT.

Syntax
NOT <operand >
e.g. A=NOT B

Function
NOT is a unary logical operator, i.e. it works
on just one operand, and has two functions.

1. As an operator on an item, in which case
the item is converted to an integer between

—-32768 and 32767 and the bit pattern reversed
e.g.

A=NOT 32767 gives A as-32768.
32767 binary is

Q1111111 11111111

-32768 binary is

10000000 00000000

The machine interprets the left hand (most
significant) bit in an integer as a sign bit. If set,
the integer is negative, otherwise positive.

2. As part of an IF statement, in effect IF
NOT...THEN...

e.g.

100 IF NOT AS$S="YES”THEN PRINT
“A$ IS NOT YES”

101F NOT (A=B) THEN A=A+1:
GOTO 10

or

is equivalent to
10 IFA=B THEN 30
20 A=A+1:GOTO 10
30..

In line 10 (A=B) evaluates as -1 if true and 0
if false — see Comparisons in Section 1.

NOT is best used purely as a logical operator
in the two senses explained above, and not as
shorthand for arithmetic operations except on
integers, as ILLEGAL QUANTITY errors will
ensue if numbers above 32767 are used and
decimal numbers will be truncated. NOT X%
is equivalent to —X%-1 between 32767 and
-32768 because the bit pattern in the 16 bit
integer is reversed. (The same applies to other

43

numeric variable types provided they contain
only integers.)

Description
A multiple switch.

Syntax
ON <variable> {GO TO} <line number>
{GOSUB}
[,<line number>.......
e.g. ON A GOSUB 1000,1100,1200,1300,
1000,1200

Function

ON is a software switch that allows a multiple
branch in one instruction and is very useful for
table or data driven programs where the path is
not determined by program logic but by a table
or by data read from a file or input from the
screen; e.g. if a screen is displayed as

MAIN MENU

1. LOAD STOCK FILE FROM
CASSETTE/DISK

2.SAVE AMENDED FILE TO
CASSETTE/DISK

3. ENTER NEW STOCK ITEMS
4. AMEND STOCK AMOUNTS
5. REVIEW

6. REPORTS

SELECT ITEM REQUIRED ?

then code to perform the relevant functions
could be selected as below (repeating the code
that produces the last line above)

10 INPUT “SELECT FUNCTION
REQUIRED;MIN$

20 ON VAL(MNS) GOTO 100,200,
300,400,500,600

30 PRINT “INVALID CHOICE"
GOTO 10

or from a file...
10 GET#1,MN
20 ON MN GOTO 100,200,500,100,
300,400,100
30 PRINT “ERRORON INPUT
TAPE"”
490 END

If the variable (e.g. MN) is @ or greater than
the highest number in the list, the program will
continue with the next statement which dis-
plays an error message and stops. (It could
return to the selection with a GOTO.) If it is

greater than 255 or negative an ILLEGAL
QUANTITY error occurs. Ifit is not an integer
the fractional part is ignored.

ON replaces a whole series of IF statements
provided that the selection criteria can be
converted to a sequential series of numbers e.g.
if the reply to a menu was A B C or D in MNS.

MAIN MENU

A.LOAD STOCK FILE FROM
CASSETTE/DISK

B. SAVE AMENDED FILE TO
CASSETTE/DISK

C.ENTER NEW STOCK ITEMS
D. AMEND STOCK AMOUNTS
etc
110 N=ASC(MN$)-64
120 ON N GOTO 200,300,400,500
130 PRINT “INVALID REPLY"......
or even
FILE MENU
C.CREATEFILE
K.KILL FILE
A. AMEND FILE
110 N=ASC(MNS$)-64
120 ON N GOTO 300,130,130,

130,100,130,130,130,130,130,200
130 PRINT “INVALID REPLY".....

will handle a reply of C, K or A

Unrelated variables and complex conditions
cannot be handled and in these cases IF must
be used or a table of values set up.

Although in general programming terms the
use of GOTO is not recommended, in the case
of ON it should normally be used rather than
GOSUB as otherwise invalid entries cannot
easily be checked in the statement following
the ON statement.

Description
Opens files or channels to peripherals.

Syntax
OPEN < file number > ,[< device >
[,<operation>][,* < file name >
[, < file type>][,< mode>]"]

e.g. OPEN 1,1,0,DATA”opens a file on
cassette named DATA in READ mode and
gives it a number 1.

Function
OPEN sets up a channel for the transfer of
information to or from the computer. This can
then be used by CMD, GET #, INPUT # and
PRINT # statements until it is closed with a
CLOSE.

45

46

The file number is the number that all other
file handling statements, such as the ones
above, will use to identify it. It should be
between 1 and 127. Numbers over 127 can be
used but were intended for I/0 use and not as
files. A good convention is to use the same file
numbers for devices as the device number for
cassette screen and printer and then numbers
from 8 upwards for disk files.

The device can be 1 for the supplied cassette,
2 for a second cassette (wWhich must be Commo-
dore or Commodore compatible as unlike
other home computers ordinary cassette
players are not usable), 4 or 5 for the printer
depending on a selector switch on the printer,
and 8 upwards for disk drives. No entry
defaults to 1 (the cassette).

The operation indicates what the file will be
used for:

0 = OPEN for reading from cassette — this is
the value if nothing is entered.

1 = OPEN for writing to cassette without end
of tape (or file) marker.

2 = OPEN for writing with end of tape
marker. '
(The end of tape (or file) marker can be used to
prevent accidentally reading past the end of the
data on a file on a subsequent read.)

2-14 = secondary addresses for use with the
disk unit.

The file name is a string of between 1 and 16
characters which is the name that will be set up
on the disk or cassette when writing, or
searched for when reading.

The file type is sequential (SEQ) if not
entered. The other types are relative (REL),
random which is only applicable to disk files or
program (PRG) which is used by the system
during LOAD and SAVE etc.

The file mode is only used for disk and can

be R for read (the default if no mode is entered)
or W for write.

All this may seem rather complicated, and
for someone unused to microcomputer files on
disk it can be rather difficult. Careful study of
the disk manual and an ability to understand
file handling concepts is required and is
beyond the scope of this book. It is in fact all
there in the disk manual but will require some
perseverance. However for cassette and printer
use it is not too much of a problem:

OPEN 1,1,0,“DATA” for read and OPEN
1,1,1,“DATA? for write are all that is required
for the cassette. OPEN 4,4 opens a normal
printer after which information can be sent to
the screen using CMD or PRINT#4. See
LIST for the procedure needed to list a
program to the printer.

See also CLOSE, CMD, PRINT #, GET #,
INPUT #.

Description
Logical OR operator.

Syntax
<operand> OR <operand >

e.g. IF (A=1) OR (A=2) THEN...(brackets
are optional)

Function
OR is a binary function, i.e. it works between
two operands and has two functions:

1. As part of a logical test in an IF statement
where OR indicates that either condition can
be satisfied to satisfy the IF e.g.

IF A=B OR A=C THEN 50.
IF A%=1 OR A%=2 OR A%=3 THEN 50

will go to line 50 for any integer between 1 and
3 inclusive.

10 INPUT “MENU NUMBER’’;MN%
20 IFMN%<®ORMN%>5THEN 100

will check that a menu entry lies between 1 and
5. Line 100 is the start of the error routine. See
ON for a description of menu handling and
some examples. ON can be clumsy where the
spread of possible replies is too great and OR is
therefore a possible alternative as is a series of
IFs. Beware that occassionally this OR test
does not work due to a bug in BASIC

2. As a logical function on binary numbers
with the following truth table which applies to
each bit in the integer part of a BASIC variable:

X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0

so that A=80 OR 48 will give 64+32+16=112

128 64 32 16 8 4 2 1-decimal values .
‘ of bits

0000 B0

010
110000 48

ORO0 0

Pt et

01110000 112

The maximum size of binary number which
can be handled in this way is 16 bits or two 8
bit bytes. This is the size of a BASIC integer
variable and in decimal is between -32768 and
32767 (being 10000000 00000000 and
Q1111111 11111111 with decimal zero being
00000000 00000000 of course). All numbers
have to be expressed in decimal as unfortun-
ately the VIC and CBM 64 (in common with
most BASICs) have no handling of binary
numbers except through decimal numbers.

There are many different ways of carrying
out branching comparisons and binary logical
functions. Once your design has clearly stated
the logic required, a truth table should be set
up to show what is required. This is then
implemented with OR NOT AND statements
as required, in the simplest fashion. Equivalent
statements abound:

(a) IF A%=0 OR A%=1 OR A%=2 OR
A%=3 THEN...

(b) IF A%<=0 AND A%>=3 THEN...

(c) IFNOT(A%<®ORA%>3)
THEN...

are all equivalent, and the one used should be
the one that is clearest to understand and
reflects the design. A choice of several un-
related numbers (or strings) requires format (a),
a range requires format (b). It is difficult to
think of circumstances in which format (c)
would be preferable.

It is also easy to write incorrect logic or even
meaningless logic:

47

IFA<>40RA<>5THEN...

is always true but the computer is not smart
enough to recognise this and give an error
message, so you have to do it by checking your
code by hand or when testing the flow of logic
during debugging.

See also AND, NOT.

Description

Examines a memory location.

Syntax
PEEK (< location>)
e.g. PEEK (1024) gets the contents of the
first screen location on a
CBM 64.
PEEK (7680) gets the same for an unex-
panded VIC.

Function

If PEEK is used on a valid memory location,
the value of the bit pattern of the 8 bit byte is
found and expressed as a decimal number. A
location of less than @ or more than 65535
causes the error ILLEGAL QUANTITY to
appear. If on the VIC the memory location is
not valid (no memory exists at this location) an
undefined value will be returned, but no error
message, so it is important to check that the
memory you have and your PEEKs and
POKE:s are consistent. PEEK and POKE are
the BASIC way of direct communication with

48

machine memory and therefore they are
extremely varied in usage, including being able
to get into and modify the BASIC operating
system. This is beyond the scope of this book.
Common uses will be found in your user
manual, so they are not repeated here.
Remember that <location> can be an expres-
sion, so indexing and logical operations are
possible:

PEEK (1024+(V-1)*40+(H-1))

gives the screen contents at location H position
across the screen and V vertical lines down the
screen for the CBM 64.

It is sometimes convenient to show location
numbers in 2 bytes as this shows more clearly
where they are in memory. For instance upper
case characters on the CBM 64 start at 53248
or 208*256+0, this latter being easier to
remember and use for offsets to the various
characters in the character set. The formula for
PEEKing a 16 bit address is

AD=PEEK(X)+PEEK(X+1)*256

for two adjacent locations with the least signifi-
cant or low order byte first.

See also GET# which can read from the
screen, and WAIT which waits for a location to
change.

POKE 3

Description
Sets the contents of a memory location.

Syntax
POKE < location>, < integer >
e.g. POKE 1024,1 sets the character A into
the top left hand corner of the CBM 64 screen.
POKE 7680,1 sets the character A into
the top left hand corner of the VIC screen.

Function

POKE is the complement of PEEK, setting any
8 bit location in memory. The location follows
the same rules as for PEEK. The integer must
evaluate to between @ and 255 or the
ILLEGAL QUANTITY error appears. This is
because an 8 bit location can only contain
numbers between @ and 255.

POKEing values into ROM or non—existent
memory locations will obviously not work, but
there’s no error message so take care! Also as
POKE is not restricted to any part of memory,
an ill advised POKE or one in a runaway loop
(see FOR) can crash the operating system or
cause other unpredictable effects, with possible
loss of program. If your program contains
POKEs, it is therefore prudent to SAVE it after
typing it in and each time substantial modifica-
tions are made.

POKEs can be used to set up screens (nor-
mal or graphic), operate the sound system or
even to set up a few lines of machine code.
Most uses of POKE are described adequately
in your CBM 64 or VIC manual, but for
machine code a good understanding of the
machine hardware and operating system is
required to achieve anything significant,
together with some programming expertise of
course. The CBM 64 and VIC are a little un-

usual in the number of intrinsic functions
carried out by POKE instead of say SOUND
or COLOUR commands which do not exist in
this BASIC.

To set up machine code in BASIC, work out
a start address and the code statements
required and then load them with a routine
such as

100 FORI=1TO 10
110 READ N:POKE (BS+l),N:NEXT |
120 DATA.......

where 10 code statements held in DATA are to
be entered, starting at address BS. The DATA
statements have to be decimal which takes
some working out!

POKE can be used in place of PRINT, if you
don’t want to disturb the cursor position while
putting something on the screen. If V is the ver-
tical and H is the horizontal position required a
formula to do this would be

POKE (1024+(V-1)*40+(H-1)),1 for
the CBM 64

POKE (7680+(V-1)*22+(H-1)),1 for
the unexpanded VIC

for the character A in this example, and a simi-
lar expression for the colour. The expression
could of course be set up by, say A=V*22+H on
the previous line.

Try working out the same in PRINT - much
more complicated for just one character.
Normal text and header output is better
handled by PRINT.

The general formula for POKEing in a 16 bit
number to two 8 bit bytes is

POKE X,NO-INT(NO/256)*256:
49

POKE X+1,INT(NO/256)

where X is the least significant part of the
word.

Description
Gives the cursor position.

Syntax
POS (<dummy>)
e.g. POS(0)

Function

POS returns the position of the cursor in a
given logical line, i.e. between @ and 79, where
0 to 39 is on the first screen line (64), 40-79 is
on the second screen line, and similarly for the
VIC. The dummy is ignored. As an example
POS(0) returning a value of 20 is directly above
a value of 60 in a line of information that
spreads over 2 lines of the screen:

110 IF POS(0)}+LEN(WD$) <39 THEN
PRINT WD$" “;:INPUT#1,
WD$:GOTO 110

120 PRINT:GOTO110

will prevent words being read from cassette file
from being split between lines.

N\, " - j
e |

R B i R

e bbb ey Ly

50

PRINT

Description
Outputs information to a specified device.

Syntax
PRINT [< variable > [8]]

e.g. PRINT AS$BS;
concatenates and prints A$ and B$ and does
not move to the next line.

Function
PRINT is an extremely versatile statement, so
its function can be broken down as follows:

1. Detailed Syntax
PRINT on its own produces a new line.

PRINT < variable> causes the contents of
the variable to be displayed on the output
device, followed by a new line. The variable
can be any string or expression. Some variables
are specific to PRINT. These are TAB and
SPC.

A comma causes formatting similar to tabu-
lation on a typewriter, the tab positions being
10 apart from 10 to 70. A semi-colon causes
the next item or PRINT statement to
follow directly on the same line.

If neither a semi-colon nor a comma is used,
items within this PRINT statement are con-
catenated on the same line, but the next
PRINT statement follows on the next
line.

2. Formatting of Output

This varies slightly depending on the device to
which the output is being sent. This device is
not specified in the PRINT statement, and will
be the screen unless a CMD statement has
been executed directing all PRINT statements
to another device

Numeric items are preceded by a space or
minus sign and followed by a space. Trailing
zeros are removed e.g. 25.10 becomes 25.1 and
25.00 becomes 25. Literal strings (e.g.
“STRING *) are printed exactly as shown with
a few special exceptions, but note that SPC(X)
is not quite the same as printing X spaces since
SPC does not delete information previously
present in the spaced out area. The exceptions
above are ” (quotes) which terminate a
string,¢, <RETURN> and <SHIFT/
RETURN >. Cursor control characters can be
put inside quotes and appear as shown in
Appendix B when typed in and will cause the
relevant cursor actions when PRINTed.

Colour controls within strings cause the
colour of the succeeding character to change
when PRINTed. Within the quotes they
appear as various graphic characters as shown
in your VIC/CBM 64 manual and also in
Appendix B (for the main colours).

The <INST/DEL> keys perform their
normal functions within quotes, so that the
reverse T for DEL following INST will appear
and will have that effect in printing e.g.

PRINT “FORMINGEREJAT

will appear as FORMAT. It is best to avoid
this feature if possible as LISTing will not
show the full line and thus editing is tricky.

Some other fiddling about with the informa-
tion within quotes is possible but equally
tricky. For instance spaces are left for special
characters, the line is completed with
<RETURN> and the cursor controls are
used to get back into the line.

Experimentation is the only way to really
understand these features.

To avoid all the above drama, use should be

made of CHRS$ to encode special characters,
e.g. to switch the display to lower case use

PRINT CHR$(14).....

Note that if the output is to the printer
CHR$(17) must be used instead and has to be
repeated at the start of every line or it goes back
into upper case mode. CHRS$(14) on the
printer is double width mode. Other CHRS
characters on the printer retain their effect
until cancelled e.g. by PRINT CHR$(15).

POKE may also be used occasionally (q.v.)
and PRINT# may be used instead of CMD
and PRINT when writing to the printer. This
is often the preferred mode as then repeated
use of the CMD statement to switch control is
avoided.

PRINT 3

Description

Prints directly to a file or device.
Syntax

PRINT # < file number > ,[< variable > [ﬁ]]

9.

e.g. PRINT #1,A$

Function

PRINT # is very similar to PRINT, but is used
to write data to a logical file (which may be
output to the printer direct).

The comma, semi-colon or blank are all
interpreted as input separators but are not
passed through as characters or separators
to the file unless within quotes when they are
treated like any other character; i.e. items are
written one after the other without separators.
Commas cause spaces to be written to the file

51

52

after each variable or group of variables bet-
ween commas to make its total length up to 10.
At the end of a PRINT# statement, if
no punctuation exists, a carriage return and
line feed are output. Any punctuation by
comma or semi-colon causes the next
PRINT statement to put characters in the next
character position, again without separators. A
line can be up to 255 characters long. To
separate the variables on file (cassette or disk),
CHRS$(13) should be wused instead of
<RETURN>:

110 CR$=CHR$(13)
120 PRINT#1,
ASCR$SBSCRS$SCSCRS..

Before a PRINT # can be used an OPEN state-
ment must have been executed for the file or
device. It is possible to OPEN the screen for
output as with any other device, enabling the
same code to be used for printing both to
screen and printer. A CLOSE must be execut-
ed before program end or the file will be left
incomplete.

Example - to compact and store a list of
names:

10 OPEN1,1,1,"NAME":CR$=
CHR$(13)

20 PRINT “ENTER NAMES; ENTER *
TO COMPLETE FORENAMES IF < 3"
30 PRINT “SURNAME,
FORENAMES, TO FINISH ENTER *
IN SURNAME"’

40 INPUT S$,F1$,F2$,F3$

50 IF S$=""*"THEN CLOSE1:END

60 PRINT#1,SSCR$F1$

70 IF F1$="*"THEN 30

80 PRINT #1,F2$

90 IF F28="*"THEN 30

100 PRINT#1,F3$:GOTO 30

READ

Description
Reads from a DATA statement.

Syntax
READ <variable > [, < variable >1].....

Function

Information is transferred from the DATA
statements as if they were a sequential file. The
first READ picks up the first DATA line and
then works its way through the DATA items
until all variables specified have been filled.
The next READ follows on where the previous
one left off untii a RESTORE statement
resets the data pointer to the start.

OUT OF DATA appears if the READ tries
to go beyond the end of the DATA and
SYNTAX ERROR appears if there is a type
mis-match. The line identified is the line
containing the DATA item. READ can be used
to simulate data input from a file when
developing a program, or for fixed patterns
such as characters or music. It can also be used
as a fixed table of values to control a program

e.g.

110 READ CL%
120 ON CL% GOTO 100,200,
300,400,500

DATA has the advantage over files in that it
is fast, with no waiting for file buffers to be
loaded, and convenient, as it is already in the
program. However, for large amounts of
DATA, memory becomes a problem and of
course there is no easy way of reorganising
DATA, which can only be done by careful
editing of the program.

Field structures cannot easily be shown in

complex cases and the omission of one item
in a sequence will throw out the organisation of
the data. This can be avoided in a file by
writing a ‘data take-on program’ which guards
against the user making such errors:

110 READDT1:IFDT1>127 OR
DT1=0 THEN 300:REM ERROR
110 READ DT2: IF DT2=0 THEN 300

in a loop reading a series of values of character
codes (DT1) and their positions on a line
(DT2).

INPUT # OR GET # should almost always
be used instead of DATA. (In most other com-
puter languages DATA or its equivalent does
not exist.) The effect of READ can better be
achieved for tables by DIMensioning a number
of arrays and reading information into them
from files by GET4# statements. A ‘“data”
pointer then can be set to anywhere
within the arrays and not just to the beginning
with RESTORE. Initial values can be set with
data statements, and read into an array after
which they can be processed or modified at
will e.g.

110 FORI=1TO 10
120 READ DT:DT(1)=DT
130 NEXT

or from a file:

110 FORI=1TO 10
120 GET#1,DT:DT(1)=DT
130 NEXT

not forgetting to open and close the file as
required.

See also DATA, RESTORE
Description
Comment statement.

Syntax
REM [<text>]

Function

The REM statement itself has no function as
far as the computer is concerned, although its
line number can be used as target for a GOTO
or GOSUB statement. Its purpose is to allow
the programmer to note important details of
the program, or headings for subroutines or
other distinctive sections of code. In any
program, REM is a very useful reminder of
what has been done and why, or as a heading to
identify a section of the program. In
Commodore BASIC REM is particularly
important as it is difficult to attach meanings to
variables which can only (safely) be two
characters. Thus without REM, programs tend
to resemble a jungle of indecipherable code.

53

The text of a REM statement can be any
character except < RETURN> which termin-
ates the line.

If only blank lines are required for format-
ting a listing, a lone colon e.g. 110: will serve
instead of REM, and will not cause a
SYNTAX ERROR! The same applies after a
GOTO as anything thereafter is never accessed
by the program, but this is not recommended
as changes to the program (GOSUB instead of
GOTO) may cause problems.

REM statements should be used at the
beginning of a program to give general infor-
mation such as title and date last amended
and a section should then be included to
identify the variables e.g.

REM L=LENGTH W=WIDTH
H=HEIGHT V=VOLUME.......

Unfortunately REMs do occupy space and
marginally slow a program down, so if you are
short of space transfer your REM statements to
a piece of paper kept with the program. Beware
of long programs without reasonable use of
REMs which are often impossible to finish.
Large well written commercial programs are
heavily commented, and it is worth noting that
if you are writing large programs it is worth-
while getting a compiler. This will compact
your code and remove all REM statements
from the running version while leaving your
original (‘source’) code intact.

Description
Resets the READ pointer to the first DATA
item.

54

Syntax
RESTORE

Function
Each READ processes further DATA state-
ments until a RESTORE occurs, after which
the READ picks up the first DATA statement
again. RESTORE might be used as part of a
loop to allow a musical program to be played
repeatedly or repeat information on a screen.
Unlike many dialects of BASIC, CBM com-
puters do not have a RESTORE < line num-
ber> function, so to return to a given DATA
statement (not being the first one) requires a
combination of RESTORE and dummy
READS:

110 RESTORE
120 FOR N=1 TO 100:READ DM$:
NEXTN

to reach item no. 101

See also READ, DATA

RETURN

Description
Terminates a subroutine.

Syntax
RETURN

Function

Every subroutine must be terminated by a
RETURN which transfers control to the state-
ment following the GOSUB statement. Note
that failure to put a RETURN at the right
place will simply cause the program to run
wild through any code following that point. No
SYNTAX ERROR can appear as the com-
puter does not know when to expect a
RETURN. One should be vigilant over this
problem to avoid having painful debugging ses-
sions. See also GOSUB.

RIGHTS

Description
A string manipulation function which extracts
part of a string starting from the right.

Syntax
RIGHTS(< string >, < integer>)

e.g. RIGHTS$(“JOHN SMITH”,5) GIVES
SMITH

Function

RIGHTS$ takes the rightmost <integer>
characters of the string. The integer must
evaluate to between @ and 255. This is
useful in truncation or as part of a string
analysis routine and quite complex syntax
can be used here with good effect. For
examples see LEFT$ and MID$ and also
INT which is valuable for rounding and

truncating numerics and is easier to use
than the string functions under these circum-
stances.

Description
A pseudo random number generator.

Syntax
RND (< numeric>)
e.g. RND(1)

Function

The RND function is useful to create a floating
point number between 0 and 1. The numeric is
a dummy when positive and generates the
numbers in a fixed repeatable sequence. To
start such a sequence a negative number should
be used to provide the seed for the generator, in
other words to restart the generator at the
beginning of a known pseudo random
sequence. The sequence of random numbers
generated depends on the negative numeric
used to set up the sequence. The negative
number RND does not itself generate a random

55

56

number that can be used in a sequence. If the
numeric is zero there is no fixed repeatable
sequence. If a known sequence is not required,
it is possible to use RND without seeding e.g. |

10 GET AS:IFAS=""THEN 10

20 PRINT "

30 FOR N=1TO 4:PRINT
INT(RND(1)*6+1):NEXT

40 GOTO 10

simulates throwing 4 dice on pressing any key.

As can be seen from the example, to get a
maximum random number of 6 requires that 1
is added to RND(1)*6 as the random number
generator will never produce a value of exactly
1 and so INT(RND(1)*6) will be between @ and
5 instead of 1 and 6 as required.

Description
Starts a program.

Syntax

RUN [<line number>]
e.g. RUN

Function

RUN is normally used directly from the key-
board to start a program but can be run from
within a program, when its effect is rather like
a GOTO except that it implies a CLR state-
ment clearing not only variables and arrays,
but loop counters and subroutine pointers,
just as if the program had been loaded and
started for the first time. If a line number is
specified it starts the program from that line
which must exist even if only as a REM or lone
colon, otherwise the message UNDEF’D
STATEMENT appears.

60 IF CUS="NEW"THEN RUN 100
70IFCU$ < >"“"NEW"THEN RUN 200

re—initialises from one of two starting points.
Be careful of DIMensioned arrays as any array
dimension statements are cleared by typing
RUN.

Don’t use RUN when debugging using
STOP statements, CONT should be used.

SAVE

Description
Saves a program.

Syntax
SAVE [< [@0:]program name >][, < device

number >][, < address >]
e.g. SAVE “PROGRAM*“,8

saves a program named “PROGRAM”’to disk,
PROGRAM being currently not on disk.

Function

SAVE stores a program to cassette or disk,
giving it any name up to 10 characters long.
The ‘@0’ isnot part of the name but is required
if the original program on disk under the same
name is to be overwritten. The device number
is 1 (cassette) if nothing is entered. If 8 is
entered, the program is saved to the disk desig-
nated on device 8 (the usual device number).
The address, if used, has only 3 values which
are as follows:

1. The cassette/disk copy being made will be
loaded back at the same place in memory
where it currently resides, when LOADed
again.

2. An end of tape marker is put on tape.
3. Both functions 1 and 2 are carried out.

If a disk is used, a filename must be given, as
the disk is not a serial device like a cassette.
The SAVEd program is put on to a convenient
space on the disk and the disk programs are not
in any particular order. On cassette a filename
need not be given, when the program will be
saved without a name. However, it is

sensible to give it a name so that you can check
when loading that you have the right one.
Beware of the fact that the cassette can load on
a part match, so LOAD P will load the first
program whose name begins with P.

Programs on cassette are SAVEd one after
the other in the order of the SAVEs. SAVE can
be used from within a program but if
in main code this can occupy a lot of time
during debugging if long programs need to be
SAVEd to tape every time a small bug is
corrected. SAVEing a long program can take
over 10 minutes. An exception might be made
for a program containing POKEs or machine
code calls SYS or USR which might wipe out
or corrupt the operating system, e.g.

10 SAVE “POKEPROG"”

saves the program before any code is executed.
A better method would be:
1GOTO 10
2 SAVE “PROGRAM”
3STOP
4 VERIFY “PROGRAM"”
5STOP
10 REM START OF PROGRAM

where RUN 2 will SAVE the program, and,
after the cassette has been rewound, CONT
will VERIFY it and CONT again will run it.

A good discipline is to mark all changes on
your listing as you go along, or on a piece of
paper if you have no printer, so that
in case of disaster you know exactly what has
been done, and also to save when the listing
becomes difficult to read or you stop for a
break.

57

58

SAVE all important or lengthy programs on
alternate cassettes so that damage or corrup-
tion on one cassette does not cause loss of all
your work.

SGN

Description
Logical test of the sign of a number.

Syntax
SGN (< numeric>)
e.g. SGN (A-1)

Function

If the numeric evaluates to a positive number
the SGN is 1, if it is @, @ and if negative then 1.
An example is

50 ON SGN(A)+2 GOSUB1000,
2000,3000

which is a neat way of branching three ways,
especially as ELSE does not exist. This could
be used where a money amount is printed in
the debit column if negative, the credit column
if positive or not printed at all if zero.

Description

Trigonometric sine function, giving the ratio of
the side opposite and the hypotenuse in a right
angled triangle.

Syntax
SIN (< numeric>)
e.g. SIN (1) gives 0.84147

Function
The sine of an angle (in radians) is produced.
See also TAN, COS and the table of other
trigonometric functions in your user manual.
Example:

SIN([]/4)
gives the sine of 45 degrees=0.707106781

Sin8=Y
h

Description

Produces spaces in a PRINT statement.

Syntax
SPC(< numeric>)
e.g. SPC(5) moves the cursor 5 spaces to the

right

Function

SPC steps the cursor along, without printing,
by the number of spaces specified. On the
screen this leaves anything previously on the
screen unchanged, but obviously on other
devices it writes spaces. Line overflow is pre-
vented in all cases by automatic
<RETURN>s where required. The numeric
must evaluate to between 1 and 255 (or 254 for
disk files) e.g. in,

PRINT SPC(1*40+J)

will move the PRINT position down I lines
and along J spaces if the expression is less than
255 (CBM 64).

PRINT * ” actually prints spaces rather
than skipping them and TAB gets to a pre-
dicted position beyond the existing cursor
position thus often avoiding the need to
recount spaces every time a program changes
slightly. See also POKE.

SQR

Description

Square root function.

Syntax

SQR (< numeric>)
e.g. SQR(4) gives 2

Function

Gives the square root of a number or expres-
sion. The computer cannot handle imaginary

numbers, so the numeric must not be
negative (error ILLEGAL QUANTITY
appears).

STATUS

Description
Variable holding the status of the file most
recently operated on.

Syntax
ST

Function

ST is zero for an ordinary I/O operation. Bits
are set in the 8 bit ST word for any conditions
that arise, as follows:

ST (Bit) Cassette Serial I7/0 Disk
0 Timeout -
write
1 Timeout -
read
2 Short block
3 Longblock
4 Non-
recoverable
read error/
mismatch on
LOAD/
VERIFY
5 Checksum
error. End of

6 Endoffile End of input file

Device not
present

7 End oftape

e.g.
100 IF ST=64 THEN 1000

1000 PRINT “END OF FILE-NO

ERRORS”
59

tions. 64 is binary 01000000 representing the
end of file condition.

Description
Defines amount of step in a FOR loop.

Syntax
See FOR.

Function
See FOR. Note that if STEP is not explicitly
coded BASIC assumes a STEP of 1. In back-
ward counting loops therefore, STEP has to be
specified.

STOP

Description
Halts a BASIC program.

Syntax
STOP.

Function

STOP simulates a depression of the <STOP >
key. The BASIC program waits and all its
variables are available to examine or change.
The message given by the system is BREAK IN
LINE... and the line number followed by
READY as the machine returns to command
mode. To restart type CONT or to skip to
another part of the program type GOTO < line
number>. The program then resumes without
resetting stacks or variables.

The STOP function is extremely useful in
finding the bugs in a program. You can check if
a program follows a given path by placing
STOP:s in it and can check the variables within

| tests for end of file without other error condi-

60

the program to see if they are at the expected
values.

This function is very similar to END except
that the END does not produce a BREAK IN
LINE error message.

STR$

Description
Converts a numeric to a string.

Syntax
STRS (< numeric>)

Function

Evaluates a numeric or numeric expression as
if it were to be PRINTed and converts each
numeric character to its ASCII character
equivalent. The first character is always a
space or negative sign e.g.

PRINT STR$(4.5E5)

gives ”’ 450000 (Ilength 7)

This function is not often used except during
disk handling as the work is considerable,
chiefly because one often needs to get an exact
match between the strings and the expected
results when these are converted back to
numerics. For example 45.00 is converted to
45 by VAL, while 45.01 remains as 45.01.
However see the number checking routine in
Section 3.

SYS

Description
Starts a machine code subroutine.

Syntax

SYS <location >
e.g. SYS 828 starts a machine code program
in the cassette buffer, starting at decimal
828.

Function

The safety of BASIC is left behind, all com-
mands must be programmed in machine
language using an assembler or a series of
POKE:s in the BASIC program. Good luck, but
watch out as any error may sink you! Don’t
forget to end your machine code on an
RTS if you want it to come back to the BASIC
program.

It is beyond the scope of this book to
describe machine level programming, usually
required to obtain speed or special features of
the hardware. It is worth considering that a
BASIC compiler may achieve the same effect,
with far less effort.

SYS should be used in preference to the
other BASIC machine code call, USR, which
is more difficult to use without any real
advantages.

Description
Moves the cursor to a defined position in the
logical line.

Syntax
TAB (<numeric>)
e.g. TAB (35)

Function

TAB acts in the same way as a typewriter TAB
but can run on beyond the logical line length of
80 characters, up to 255 positions in total
(from the start of the line). E.g.

110 PRINT “MAR "TAB(10) “APR”
TAB(20) “MAY"'TAB(30)""JUNE"
120 FORN=1TO5

130 PRINT S$(N,1)TAB(10)
S$(N,2)TAB(20) S$(N.3)TAB(30)
S$(N.4)

150 NEXT

prints 5 sets of (say) monthly sales figures (held
61

62

in a two dimensional string array S$ as equal
length strings) in neat columns.
-Or on the printer:

110 PRINT “MAR"TAB(7)"“APR"
TAB(7)"MAY" ' TAB(7).....etc

produces the same effect, from which can be
seen that TAB works like SPC for the printer.

TAN

Description

Trigonometric tangent function being the
result of the side opposite to the angle divided
by the side adjacent to the angle in any right
angled triangle.

Syntax
TAN (< numeric>)

e.g. TAN ([1/4)=1 (actually comes out as .9
recurring)

Function

The tangent of an angle (in radians) is pro-
duced. See also SIN, COS and the table of
other trigonometric functions given in your
user manual. As the tangent, unlike SIN or

COS can approach infinity, an error
DIVISION BY ZERO will appear if the

Tan8=)
X

tangent is too close to [I/2 or a multiple there-
of. (I.e. BASIC cannot handle infinite numbers,
so a test must be incorporated to bypass TAN
and give an answer of INFINITE if the tangent
of [1/2, is expected to be requested).

TIME

Description
Reads an internal clock.

Syntax
TI or TIS$.

Function

The function TI starts at @ on power up and
can be reset at any time using TI$ (trying to
reset with TI=0 gives a syntax error). e.g.

TIS="000000"

It counts time accurately (even if it’s on a 50
Hz supply) in 1/60 second units (except when
cassette Input or Output is taking place) as a
pure count in TI but as a string of six
numerics of the format “HHMMSS”in TI$. It
can usefully be used as a keyboard timer e.g.

10 TI1$="000000"

20 GETAS:IFTI<10*60 AND
AS$=""THEN 20

30 IF A$S=""THEN PRINT “MISSED -
10 SECONDS UP’:END

49 PRINT “YOU TOOK “T1/60
“SECONDS":GOTO 10

As an illustrative program the CLOCK pro-
gram below shows how to set up and display
hours minutes and seconds. METRONOME
gives a method of creating a fixed time interval.

1 REM CLOCK

POKE 53281.1

PRINT "ol TRR 15" — "

PRINT " eau(ale (el leQe" TRRZ 152 : | [

PRINT " -e(spemee” TRRC 150 " "

i@ PRINT "mmmﬂ"-nHB(16).LEFT§(TIg'2\ nong
MIDGTII$. . 2,2)" "RICHTS(TI$. 2)

12 POKE 5323@, INT(RND1)#165+1

20 T=TI1#

30 IF T#=TI¢ THEN 32

4@ GOTO 1@

=~ N

Printer in lower case mode.

100 rem metronome - vic 20

110 v1=36878:31=36874 :Poke v1,15:ti$="000000"

120 inPut "WEEbeats/min";bts

130 print "THElkenter c to ¢hanse e to end
"

140 bt=sval(bt$):if bt=@ then Print "0 is too slow!
vigoto 110

150 mt%=6ON60/bt rem Pulses/sec M secs / no. beats
Per min

160 get ky$:if kys$="e" then 210

170 if kys="c" then 120

1680 if mt%>ti then 160:rem wait for clock tick or
command

199 Poke s1,128:Pcke 31,0

209 ti$="000000":50t0 160

210 poke s1,0:Poke v1,0:end

ready.
Description |
Starts a machine code routine.
Syntax
USR(< numeric>)

e.g. X=USR(A*2+4)
Function
USR calls a subroutine in the location pointed
to by memory locations 1 and 2 (VIC) or 785
and 786 (CBM 64). This must be set
up by POKEs before USR is called. The

numeric is stored in the floating point accumu-
lator at the start of the subroutine and the
result of the machine code routine is left in 97
for the BASIC program when control is re-
turned with an RTS machine language
statement. See also SYS which is easier to use
and more flexible.

VAL

Description
Extracts the numeric content of a string.

Syntax
VAL(< string>)
e.g. VAL(“1.01A) gives 1.01

Function

Starting from the left, VAL extracts first a sign,
if present, then numerics and one decimal full
stop, until a non-numeric or second full stop is
reached. The number is then stripped of lead-
ing and trailing zeros to be held as a conven-
tional numeric. e.g.

VAL (“-1.0.01A") gives -1
VAL (“ABC") gives @

VAL (“ABC123") gives @
VAL ("'-25.43"’) gives -25.43

VAL is the converse operation to STRS,
and has rather more use. When using INPUT
for numerics, an error occurs and the
program terminates if a non-numeric is
entered in a numeric field. It is therefore
advisable to use a string variable and
VALe.g.

10 INPUT “NUMBER 1 TO 9";A$
20 IF VAL(AS$)<1 ORVAL(AS)>9
GOTO 10

63

30 PRINT “OK"

See also the number checking routine in Sec-
tion 3 and INPUT.

VERIFY

Description
Checks a SAVEd program.

Syntax
VERIFY [“ < program name >][, < device >]
e.g. VERIFY “PROGRAM*”’

Function

The program name is read from the device
(defaults to cassette if not specified) and checks
against the contents of memory. A VERIFY
ERROR message is produced if the title and
data contents do not exactly match. VERIFY
can also be used within a program e.g.

5010 SAVE “@@:PROGRAM”,8
5020 VERIFY “PROGRAM",8
5030 PRINT “END":END

Note that this cannot be used on cassette
without a WAIT at 5015 or

5015 PRINT “REWIND CASSETTE,
PRESS PLAY THEN RETURN"
5017 INPUT AS$

otherwise the program goes straight into
VERIFY as the tape is still running.

Description
The program waits for an external event.

64

Syntax

WAIT <location >, < maskl > ,[< mask2 >]
e.g. WAIT 1,48 waits for cassette to be
stopped on CBM 64.
(48 is the bit pattern 00110000 set in
location 1 when the tape starts, and cleared
when it stops)

Function

WAIT halts the BASIC program until an exter-
nal event such as the pressing of a key on the
cassette recorder or the expiry of time occurs.
It does this by watching the location specified
for a defined pattern. Normally the location
will be one of the I-O registers or a related
position. This location need not be a
number, an expression will be evaluated to an
integer even if it is not, in fact, an integer.

To define the pattern being WAITed for, the
contents of the location are ANDed with
maskl, complemented and ANDed with
mask?2, if present. In other words, if any loca-
tion bits are 1 in positions corresponding to 1s
in mask1 or @ in positions corresponding to 1s
in mask2, the wait is over and the program
proceeds.

SECTION 3 USEFUL ROUTINES

Introduction

The examples set out in this section of the book
are intended to illustrate the way programs can
be built up using the BASIC described in detail
in Section 2. The BASIC syntax (i.e. language
construction) is very flexible, and commands
can be combined or nested in countless dif-
ferent ways and to a complex level before the
interpreter can no longer cope. In fact the usual
limitation is the ability of the human brain to
easily understand complex constructs that
limits the complexity of code, rather than
BASIC. Complex solutions are therefore better
implemented by carefully constructed com-
binations of simple easy to understand code,
than by convoluted code nested deep in FOR
loops and GOSUBs with a sprinkling of
GOTOs.

To get started on the computer is extremely
easy, but many people don’t realise this. After
a little while playing with the machine, reading
from the manual, most children can produce a
simple program like PROTEST below, which
apart from line 5 is exactly as it was written by
my 9 year old daughter.

5 REM PROTEST

18 PRINT"BOOONONO HOOODODOO"

2@ PRINT"I CAM‘T PLAY FOOTBALL"
30 PRIMT"MUM WOM‘T LET ME."

406 PRINT"HELP ME"

50 PRINT"

60 PRINT"HELP ME"

7@ GOTO 106

RERDY.

Another slightly longer program which
requires little knowledge of BASIC, but an
understanding of the way sound and colour is
generated (in your VIC 20 manual) is as
follows.

18 REM MUSIC

@ SC=53281:PRINT "' :POKE
CL=55296:5=54272:FOR H=3

POKE SIS, 9:POKE 5D+2,2:

READ DA: TA.LH

REM RANDOM COLOURED SGUARES ON THE SCREEM

RD=INT(RND(1)¥100@)

POKE RD+1024,32+128

ON=INT(RNDC1#17) : IF £0=1
IF DA=999 THEN RESTORE:GO
POKE RIHCL.CO

g

C.
TO 5+24:POKE N.@:HEXT
POk, +24. 15

REM PLAY NOTE

POKE SD+1.DA:POKE SD. TA:POKE SD+4.32
FOR M=1 TO LH¥Z:NEXT

POKE SD+4,32

GOTO Se

REM sk e DT Ak bbb k¢ ¥¥
BEPFREFERFDATARF R S bbb
198 DATA 14.107,1%0,12.63.300

2008 DATA 21.154.158,22,227,300

219 DATA 28.214.150.25,177,300

220 DATA 19.63,150,19.63, 301

233 DATAR 33,126, 154,38, 126,308

246 DATA 38.12€.150,34,75,300

252 DATA 28.214.150,28.214.600

260 DATA 38.126,75.38,126,75

279 DATA 38.126,308,21,154,150

2808 DATA 22,227.300,28,214,15@

270 DATA 25.177.150,19.63, 150

308 DATA 19,63.150

310 DATR 15.63.309

32@ DATR 19.63.170

338 DATA 12.63.30@,13.63, 150

348 DATA 123.42.304,18.42.150

358 DATA 19.63.300

360 DATA 993,999,999

O B D)) =D iR D D) 1D XD)R

Lt et i el e il ol * 2> B ISR A R N (5]

D RN
DA IO IS RS RN I

[

REATDY.

65

first few lines of this program generate 120 ¥=K+1
The first few 50 S PTog g 130 FOR L=1T025:POKE S1+1.24@:NEXT:POKE S1+1,0

random colours in random positions on the 148 NEXT N
screen, and the last few lines generate the 150 REMPHEHEF IR ¥ SORTING 4
music from the data read in line 190. The data PR, ,
is used exclusively to generate the music. o, PRINT M SRTING.
The examples that follow are in some cases 180 PRINT"M PLERASE WATT..."
quite complex and although all have been 198 TF HOCMIDNOCN+1) THEN HNO=NOCHD tHOCHY=NOCN+1) :H

tested or used for various applications, the OCN+1Y=ND %=0

. 200 ¥=¥+1:N=H+1:1F N>=AM THEM N=1
sharp programmers amongst you will vgry 218 IF ¥<MAM THEN 196
probably feel there are better ways of carrying 200 REMEFFFFHEEENN #¥ PRINTING ¥+
out some of these functions. If so then this - At
book has served its purpose and of course I 243 FOR N=1 T0 AM
would be pleased to hear of any improvements. 250 P=P+1:1F P/18=INT(P/123THEN GOSUR 282:PRINT"¥M

' 268 TF NOCHICO@ THEN PRINT "B"MOCND
SORT 278 NEXT N:PRINT "SEMD NOF LIST":END
280 PRINT"S @HIT ANY KEV"
290 GET Ky$:IF Kyg="" THEN 29@
The two programs below both work on the 200 PRINT"ZEN¥ SNUMBER SORT GH#km"
principle of a bubble sort. Starting with the first 312 RETURN
two items in the list of numbers or words, the -
program compares them and swaps them if the RE
order is wrong. It then goes on to the second
and third items, third and fourth items and so {8 REM MO SORT
on to the bottom of the list. Having passed the 20 REM SORTS HUMBERS INTQ RSCEMDING ORDER
list once it then repeats the process until the 32 % "L"4§35n“1’--'e~’*‘@ 130=53281 : §D=54272 :REM COLOLR
items are all in the right order, i.e. no further ap PORE L 15 REM YOLUME
swaps are carried out during a pass of the list. 5@ POKE BD.6:POKE SC2.1:REM SCREEN COLOURS
Thus an item at the bottom of the list will rise gg ﬁgﬁﬁﬁgzg +248:REM SOUND
one postion at a time until it arrives under the 20 PRINT"Z0000e ENTER EACH MUMEER. AHD"
item next to which it belongs. 99 PRINT TAB(E)"MHEN ¥0Ui HAYE FIMISHED"
10@ PRINT TAR{11)"PRESS /RETURN‘,"
18 S1=36874:POKE 236379, 15:POKE 36372, 30 118 PRINT TARC18)"NMEIP TO ONE THOUSAND
20 GNSUR 399 NUMBERS MAY BE ENTERED"
30 PRINT"EMMMENTER ERCH NUMBER.AND MHEN ¥0 120 PRINT " Ml #FHIT ANY KEYE":30SUE 4
Il HAVEFINISHED, PRESS “RETURN/." 28
49 PRINT"¥M LP TO ONE HUNDRED NUMBERS MAY BE EN 132 AM=190@:TIM NOCAM)
TERED" 148 FOR N=1TOAM
S@ PRINT" M MIT ANY KEYE":GOSUR 290 150 PRINT"E ENTER NLMBERE"N"Z:M4"
68 PRINT"T" :AM=102:DIM NOCAM) 168 INPUT © " HO$
70 FOR N=1TOAM 176 IF HO$="" THEM 290
22 PRINT"ZENTER HUMRERRI"N"S: 4" 182 NOCH)=YAL(NOS) :HO$=""
9@ TNPUT NO$ 199 ®=X+1
192 IF NOE="" THEN 159 209 POKE SD+5,199
112 NOCNY=VAL CHO$) : NOg="" 218 POKE SD+6,248

66

S PEMuckkdk k¥

1@

29
3@

42

59
69
7a
80
aa

POME SD+1. 28+ IHMTIRHDCL 24260 (POKE SD.37
FOKE SD+4.17

FOR L=1 TO 10@:NEXT L

POKE SD+4.0

POKE 2D+5.Q:POKE SI+€.8

2 NEXT N

REM#¥##k¥d¥4¢ SORTING $¥bebbaddrs

GOSUE 490 : PRINT S0 S0RTIMG, . "

AM=X o=@ M=1

FRINT"® PLERSE WRIT..."

IF HRCHYIHOCH+1Y THEW HO=NOCHY tMNOCNY=HNOCH+13:N
DEM+1 1=N0 XK=

H=+1 tH=M+1:IF N>=AM THEN H=1

IF #<>AM THEM 356

T4¢=TI¢

REM##¥¥4¥% PRINTING MUMBERS #¥#¥¥¥s

GOZUR 492:PRINT"W"

FOR N=1 TO AM

P=P+1:1F P/12=IHT(P/12}XTHEM COSUR 510

IF MOCMM<>@ THEM PRINT TARCTEY: "m"MOCND

MEXT M:PRIMT TAB(TB);"WHMEMD OF LISTER":FRINT"
" EMD

PRINT"H HIT ANY KEY"

A GET KY$:IF KY$="" THEM 420

PRINT"TTM §iek¥ INUMBER SORT B¥#¥¥N"
PETURN
f=A+1:TR=A¥12:IF A=ATHEN A=-1:GOSUB 470:G0TO S
19
PRINT" A" : RETLURN
Y.

% WORD 20RT #% #
R
S1=236874:POKE 2362878, 15:POKE 36873.30

GOSUB 200

PRINT"GMMDENTER EACH WORD ,AMD WHEM v
LI HAYEFINISHED, PRESS “RETURN‘.

PRINT"¥M LUP TO OME HUNDRED WORDS MAY BE EM
TERED"

PRINT " X0 HWHIT ANY KEYR" :GOSUR 294

PRINT"D)" :AM=100:DIM NOSCAM)
FOR N=1TOAM

PRINT"GENTER WORDE"N"R: 4"
INPUT NO$

IF NO$="" THEN 15@

118 NOFCNY=NOF:MOg=""

200
218 IF %C5AM THEM 198
220

1 M 1Y
]
SEE)

DS IS AR LS RS BN]
)= DD D N
DDRDIDIDODID

¥=¥+1

REM¥FSHFEHF ¥R I HHH ¥
HEFEERFRF R ORY

¥ SORTING %

AM=": ¥=@:N=1

PRINT"® PLEARSE WAIT..."

IF MHOLCMIDNOSINHLY THEM MOS=HOSOND D HOSONY=HNOS$(
H+1Y MO (N+1=HO%: ¥=A

H=i+1 H=H+1:TF H>=AM THEH N=1

REMRRE¥F¥EF 44 ¥¥
Rd et i £ EEEE L 2
GOSUR 300 PRINT"¥M"

FOR M=1 TO AM

P=P+1:IF PA18=INT(P/12YTHEN GOSUR 290:PRINT"¥M
"

IF NOSCMMO"Y THEM PRINT "s"HOS£CM)Y (GOSUR 320

MEXT M:PRINT "3amq" :EMD

FRINT"H HIT AMY KEM

CET KY$:TF KWg="" THEN 29@

PRIMT"TNpkdk¥ MIORD SORT Fokkdssm”

RETURN

R=INT(RMDC1D#10) :FOR L={T0O25:POKE S1+1,235+R:N
EXT:POKE S1+1.2:RETLRM

¥¥ PRINTING ¥

RERDY.

10 VL=5429¢ RI=52280: 3C0=532821 : SI=54272 :REM YOLUME
AND COLGURS

20 POKE YL, 13

32 POKE BD.A:POKE 271

40 POKE SD+6€, 249

5@ GOSUR 470

£@ PRINT" MM EMTER EACH WORT . AMD"

7A@ PRIMT TAR:2)"HHEN YOU HAVE FINISHED"

20 PRINT TARC11)"PRESE /RETURM‘."

2@ PRINT TARC12X"MWIP TQ ONE THOUSAND

HORDS MAY BE ENTERED"

108 PRINT" M(emm FHIT ANM VEYDR':COSUR 4
&0

110 AM=10002:DIM HOSCAM)

122 FOR M=1TORM

132 PRINT"® EHTER WORDE"N"®: ™"

149 IMPUT " INOSCH

158 IF MHO&cHY="" THEN 2€Q

160 H=K+]

67

68

170 POKE SD+%. 13
126 POKE SD+C. 24
192 POKE 2D+1.20
17

1

F DD

IMTC(RMDC1)#20) (POKE 20,37
20@ POKE SI+4.
218 FOR L=1 TO
226 POKE Sn.@
226 POKE SD+1:83PDKE
24@ NEXT H

A8 HEXT

S1+4.Q

260 REM$FVEF¥$F¥¥

A SORTING #h¥debebsys
5] REM JSES BURBLE 30
0

RT - COMPARER PAIRS

) PD‘:\"UB AT PRINT "B SORTING, . "

B AM=X:¥=0:N=1

@ PPINT"H PLEASE MWRIT..."

2 IF NOSCMIDHOSCHS1Y THEM HOF=pOSIHD
M1 NOSCH+1) =NOE: X=0

¥=¥+1:N=N+1:1F H>=AM THEM H=1

IF ¥<XAM THEM 339

T¢=TI#

THOS R =hOSY

REM$pbpkddk PRIMTING WORDS ddddddw

¢@ BOSUR 47@:FRINT M

19 FOR N=1 Tn aM

420 P=P¥1:IF P/18=THT(F/12)THEN 20SUF 198

420 TF NOSCHYZI"™ THEN PRIMT TARCTRY: "'HOSCH)

440 NEXT W:PRINT TAB(TE);"WASEND OF LISTEE":PRINTY

":END

450 PRINT"™S SHIT ANY VEV"

460 GET K118 wog=n" THEN 460

470 PRINT"TM FeEEFE BIORD SORT TRk

420 RETLRN

490 A=A+1:TR=A¥20: IF A=2THEM A=-1:CNGUR 450
CooaR

560 PRINT"SMOM" : RETLRN

1GOTO 4

READY.

The bubble sort is easy to understand but
very inefficient under most circumstances.
Many better sorts exist; most are difficult to
understand but usually fairly easy to use by
incorporating them as subroutines in your
program. One such subroutine is shown below.

0 OF WORDS TO GO

REM 1s
REM IS NO OF WORDS DONE. OR THE

zZZ=

1 e J
3 L]

4 REM %% POSITION IN THE ARRAY.

S REM #% R$() IS THE ARRAY

6 REM %% THIS PROG LOOKS. AT EACH

7 REM %ok INDIVIDUAL WORD, AND SORTS IT
8 REM %% OUT ON ITS OWN, AND THEN GOES
9 REM %% ON TO THE NEXT WORD.

18 FOR N=1 TO 109

20 INPUT AECND

3@ IF AS(N)="#" THEN 100

40 NEXT N

108 REM QUICKSORT ROUTINE

110 DIM SL(1080)>,SR(100)

120 §=1:SL(1)=1:SR(1)=N

130 L=SL(S):R=SR(S) :5=8~1

140 I=L:J=R:X$=R$CINT((L+R)/2))

130 IF A$CIX(X$ THEN I=I+1:GOTO 150
160 IF X$<A$(J> THEN J=J-1:G0TO. 160
170 IF I>J THEN 1159@

180 W$=AS(1) :AS(1)=RE(T) :AE(TI=U$: [=]+1:J=J~1
19@ IF I<=J THEN 15@

280 IF I>=R THEN 220

210 §=8+1:5L(S)=1:SR(S)=R

220 R=J:IF L{R THEN 149

230 IF SC>@ THEN 138

240 FOR N=1 TO 18@:PRINT A$(N) :MEXT

READY.

NUMERIC CHECK

There are a number of numeric checks that can
be carried out to see if a string that has been
input is a numeric. The simplest is the VAL
function, but this does not cater for the case of
0 or where some extraneous characters have
been added. The cases most commonly consi-
dered are integer, money and decimal.
However there is no reason why binary or
hexadecimal or octal cannot be checked for by
writing special validation routines using all or
part of the general routine for a decimal
number given below.

18 REM NUMERIC CHECK ROUTIME. CHECKS ADECIMAL ENTR

¥ OF P TN NINE HUMERALS

N
b~}

REM TF YALID MUMBER IM ‘MO T2 RETURMED AS “HO

@ THPLT"TEST HLIMRER" :NN4¢
A NO=YAL CNOEY : CKE=CTREHN®
Q REM STRTR NFE 1| EANTHA SPACES AND ZERDS AMD TRAI

o)

LING SPACES

8 IF LEFT#CNO%. 10=" "THEH MO£=RIGHTS(MHOE.LEMCHO$?
~-13:G07T0 50

65 IF LEFTSCHO%. 1)="A"AND HOF>"A" THEM HO#=RICHTS
(NO% LENCHO£Y -1 :G0TO 50

-1
28 IF RICHTECHOE, 1)=" "THEN HO$=|_EFTECHOE, LENCHOS)
-13:60T0 74
A TF NO$=CK$ THEM PRINT "OK"
AR PRIMT NO&:" ":CKE
1

RERDY.

The string manipulation in the above
routine may also be of some interest. It pro-
vides a method of reducing a string until
unwanted filler characters have been entirely
removed.

RANDOM GROUPS

The dice rolling and holding program below
illustrates the use of random numbers in a
selection from 1 to 6, then incorporated in
pictures of dice. The sound effects are also
randomly generated. Note the use of the screen
as an input device.

2 i9 D I~

PRINT TRR(1D):
INPUT#] ,YN&
IF LEFT$CUNE. 133000 TUENIER
GNSUT 1000 :PRINT "M

THE DICE"
PRINT "W

NN B B Y) e
T
D
-l),
Z
=F
-9
3
D i
< ;
.2 .o
ta
b
z
]
—
=z
)
_..
B
b
3
_‘
-4
[}
=
N
9

DD D R

4PRESS P TN IROLL

D
»

PRESS A FNUMBERH T SCHANGER"

e
1

DD

o]

i1
190
1ne
120
140
1=a

155

1¢a
1e=

PR RS IS]
D

RS IS BN N)

» PRTNT"

THE NIUMBER OF GDTCES ROLLED"

PRINT :PRTNT:PRINT" PRESS §HA AMD THE #NO O
F THE DIE"

PRINT"

DRTMT ¢

TN GHOLDY DICE"
TO SEPERATE NITE WANTIMG TO RE
PRINT " GHELD®. TYPE A COMMA. THEN RETLRM®
PRTHT " ¥ EHITIRNAKEATONISTART "
QET ¥ 1E Kug="" THEN {4@
GNRAIR 1007 :PRINT
REMESSEREIREE KEYD SHFsbbdsssdss e
ACT WUEITE wugs="t THEN 160
TF ASCIKYE)=12 THEN CH=2
IF Kv¢="H" THEM GOSUR 5QQ
TF KU$3="Q" AND KV4C="3" ANT CH=2 THRH AOSUR 9
=1l

A TF KYE=3"A" AND KY¢=("S" THEM GOSUR 99@:1F MO

24 THEH CH=2:00TQ 155

TF W24 "RUTHEM 169

REMERSkd 4444 ¥% PRTNTTHG ddbddbddddn ¥
HEEEFFHRGERI PRI OREFEFEFF S F

CH=2

FOR M=1 TO DC:POKE LF.THTCRHDNC13¥20Q%+1 :PAKE W
F . INTORHDC 1 D%20054+1

TUO D CHEXT MM

A PRINT"S ——. \BNERRI"

RRTHTY (YRl IR

PRINT" INpll VARBRAL" ;

PRTNT™ |NBBI ANNER) ;

PRINT" ' "TTTNRNNAPS"

FOR L=1 TO 24:1F N=HD(L) THEN DRTHT NNNNMFY: 6
AT 294 : '

£ MEXT L

PRINT"WNI WINEI WEENI TTREEA";

A PR=IHTCRHNDC] 3¥E)+]

ON RD GOSUR 400.416.490.430 440 . 450

A IF M/2=THT/H/RYTHEM BRINT:PRINT:PRINT
A POKE HF.Q:POKE LF.@

NEXT N:PRIMT"deMM"; :GOTO 155:REM START AGATH
PRINT"MMNBINBLTYY" ; - RETLRN

PRINT" ¥hlehl¥™a TTTMI" ; - RETLRM

PRINT" ¥Mia¥e¥ TTTH" ; :PETLRH
PRINT"¥hiosieXiRietNRIe TTTRBNI" : : FETIIPN
PRINT " ¥NjerleX¥RieTNRIe W TYIRI" : - RETIIRN
PRINT "¥Niatia XUREIOVIOXUREISIO TTTI" ; :RETURN
T
PEM¥#* HOLD THE DICE -

R G T s
FOR He=l TN 24:HDCHY=A:NEXT H

H=

H=H+1

69

70

540 GET Kwe:IF kyg="" THEM 540

S50 TF Ky$="." THEW WUDCHY=YALCHD$) :HD#="":GATN 53R

568 TF ASCCKVEI=13 THEN HDCHI=YAL (HI4) :HD$="":PRIN
T oS WM :RETURM

578 TF VYECUA" OR KVSSNAY THEN 540

SQA WNE=HNE+KYE

59G FRINT "H'HDE:GOTO =39
o -

Q20 DOE="":CH=A:GOSIR 166G PRTHT:FOP M=1 TN 24:HN(
HY=f MEYT RETIIRH

900 NNE=NICE+YE: I0=YAL(DCE) RETURM

1088 PRINT ""DREMKBNBRERH¥¥¥ POLI B-A%-NIE 2
BH¥¥" RETIIRH

1010 REM¥SkEsbdsy SET UOTOE 1 dddbdvdy ¥¥
HEREEFERRERRE R

1815 SD=54272

1820 FOR N=SD 7O SD+24:RPOKE H.@:HEWT

1630 FOKE ST+24.15:PEM %% VOLIIME

1040 POVE SN+5, 190:PEM #% ATTACK/DECAY

185@ POKE 2N+5.242:REM #¥ SUS/RELERSE

1868 LF = <1

1078 HF = SD+1

1296 POKE SD+4.17 REM ¥ WAVEFORM

1116 RETURH

RERD™,

BASE CONVERTER

The base converter program below provides a
useful utility for hexadecimal (hex) to decimal
and the reverse conversion. Once in hex it is
easy to produce binary, as each hex character
maps directly on to 4 binary bits. See AND,
and OR for the methods that can be used for bit
manipulation.

18 SC=53221:POKE SC.1:REM SET SCREEN TO WHITE
20 REMik¥ikdbbsshss ¥¥ COMNVERTER ¥#
L EdE i Lt

30 GOSUR 610:PRINT"idDemM HEX-LEC OR DEC-HEX 7"

48 PRINT"M §H TFOR mHEX-DEC"
30 PRINT" §D SFOR WDEC-HEX"
€2 PRINT" §E SFOR REMDIMGE"
78 PRINT" ¥ S SFOR mSTOPPING WHILE ENTERING

HUIMBERS"

80 GET ¥¥$:IF KY$O"H" AND KY$C"DUAND KY$"E"THE
N 22

9@ PRINT")"

19@ IF KY$="E" THEM EMD

119 IF KY$="H" THEN 372

120 REM¥REFHSEEEhbbEFy
Lai i aagE i Ll]

13@ REM DE$ IS DECIMAL MUMBER EMTERED

140 REM DE IS ITS NUMERIC EQUIVALENT

150 REM IS¢ = STRING OF MOS FROM DE WITHOUT LERDIN
£ SPACE - FOR NO. YALIDATION

162 REM D AND E ARE VARIPBLES FOR MUMBER MAMIPLLAT
10N

170 REM RE$¢)> IS HEX REMAIMDER AFTER N+1TH DIVISIO

#¥ YARIABLES &

N
180 REM#skkddkkkbbiiy
bEEd et £t el il
199 GOSUR 61@:PRINT"SM DECIMAL

#% DECIMAL-HEX#*
HEXRDECTIMAL
200 INPUT DE$:DE=VAL(DE$):D=DE:N=@:IF DE$="S" THEN

20

210 DS4=RIGHTH(STRE(DE).LEN(STRE(DE>)~1) :REM REMOV
ES SPACE BEFORE NO.

220 1F DS${>DE$ THEN PRIMT"NOT DECIMAL":GOTO 200:R
EM DECIMAL CHECK

2308 E=INT(D/16)

240

250 RE$(M)=CTR$(D-E¥16)>:D=E

260 IF VAL(RE$(N)I>Q THEN RE$(NI=CHRE(VAL(RESINI Y+
555

27

2808 IF D18 THEN 338

290 :

30@ M=h+1:G0TO 232

31@ REM¥¥ RUILD UP HEX NO. FROM ARRAY.

320 REM -HE$=HE¥X NO.

332 HE$="":IF D>@ THEN HE$=HE$+STRE(D)

34@ FOR L=N TQO @ STEP-1:HE$=HE®+RIGHT$(RES(L). 13N
EXT

33@ PRINT "T"TRR(18):HE®

36@ 00TO 200

370 REMdolriob bbb

Re it di il bl]
380 GOSUR 610:PRINT"¥m HEXADECIMAL

Y¥HEXADEC~DECH*

DECIMALE"

390 HE$="":INPUT HES$'H=LENCHE$>+1:IF HE$="S" THEN

400 IEOH-l)ia THEN PRINT" SHORTER NUMBER PLERSE!":
GOTO 390

410 :
420 REM CRERTE AND CHECK ARRAY

430 FOR N=H-1 TO 1 STEP-1:RE$(H-N>=MID$(HES$,N.1):H
N=RSC{RE$CH~-N)> '

440 1F HN>7@ THEN PRINT "NOT HEX!":00TQ 399

450 IF HNC48 THEN PRINT "NOT HEX!":00TO 390

460 IF HN>S? AND HNCES THEN PRINT "NOT HEX!":G0TO
390

470 IF HN>64 THEN RE(H-N)=RASC(RE$(H-N))~J3:NEXT N:
G070 518

480 RE(H-NY=YALCRE$(H-N)) :NEXT H

498 :

So@ REM BUILD DECIMAL NUMBER ITEM BY ITEM (ERCH IT
EM 1S5 BETWEEH @ AMD 150

510 FOR L=1 T0 H-1:DILY=REC(LI¥CIEML-1)) NEXT

Se@e :

530 FOR L=1 TN H-1:DE=DE+D(LY‘'HEXT:REM AIT P THE
ITEMS

540 REM¥¥# FRINTIMGH#¥

55@ PRINT "T"TAR(18);DE:DE=0

560 GOTO 390

572 :

580

398

60a :

610 PRINT"TM
¥¥¥" RETURN

MY BCTOMNB/SETRITTBERR wé¥

READY.

10 remisappiBionokirok ¥ converter ¥k
Salokioiloionk

20 9osub 48Q:print"IFEEEl hex-dec or dec-~hex ?"

32 Print"8 th Bfor dhex-dec”

40 Print" §d Gfor Sdec-hex"

59 Print" fQie Sfor Sendinel"

55 print"IEEl i Sfor SstoPPing whileentering numb
ers"

60 et ky$:if ky$O"h" and ku$d"d"and kusd'e"the
n 62

72 print"y"

73 if ky$="e" then end

82 if ky$="h" then 280

90 remisiikikiakiokioiok
siioiclopioioloopck)

180 9osub 432:Print"= decimal hexadecimald"

112 inPut de$:de=val(de$) d=de:n=0:if de$="s" then

¥k decimal-hexik

19
120 :
138 e=int(d/16)
140 :

150 re$(n)=str$(d-e¥16) d=e
160 if val(re$(n))>9 then re$i(nd)=chrél{valiresin))+
$5)

179 :

182 if d<18@ then 220

199 :

200 n=n+1{:90to0 130

212 remik wyorking %ok

220 he$="":if dD@ then he$=he$+str&$(d)

238 for 1=n to B step-1:he$=hes+riohts(res(1),1):n
ext

2%0 Print "M'tab(14);hes

260 9oto 119

289 remiikikiakickkiok

FoiokiokioRoniony

299 Sosub 482:Print"fid hexadecimal decimal”

320 inPut hef:h=lenthe$)+1:if he$="c" then 10

319 :

320 for n=h-1 to 1 stepP-1:re$Ch-nd=mid$Ches,n,1)

339 if asclre$l(h-n))>64 then relh-n)=ascire$th-n))
=55 next n:9nto 360

342 rel(h-nd=vali{re$(h-n)):next n

359

368 for 1=1 to h=1:d{D)=re(1d)¥(161M1-1)) next

379 :

380 for 1=1 to h-=1:de=de+d(1) :next

390 rem¥lk Print{nolik

408 Print "N'tab({14);de:de=0

410 eoto 300

449

459 :

460 :

479 :

480 Print "oy SchoBnBvileDr 4t Sclk BEuikk" :retur
n .

#¥hexadec~decid

In this program the colon has been used to
make the code more readable by separating
blocks of code. In other machine BASICs the
apostrophe () would be used as shorthand for
REM, but this is not available in VIC/CBM 64
BASIC, so the dummy statement represented
by colon can be used in a line on its own.

BUSINESS FORMS

A requirement in business is to be able to enter
information onto a form-style layout in order
to set up records on disk or tape. This makes

71

72

the entry of information a much more routine
affair that can be left to non-computer trained
staff who are guided through the entries by the
form layout.

The first program listed is a screen form
creation program that allows a programmer or
non-programmer to lay out a screen and then
store it on tape. This saves a lot of coding in
screen handling programs which simply pick
up and use the appropriate form from tape (or
disk). In this program, the screen is set up by
moving the cursor around and setting up
strings or entry fields wherever required. The
program is then run and picks up and com-
presses the data on the screen (first 20 lines)
before writing it to tape. Brackets () are used to
delineate the areas where entries are to be
made. The program stores only the start posi-
tion and contents of strings (defined as contain-
ing no more than one contiguous space) and
the start position and length of the spaces to be
reserved for entries (‘permitted fields’). The rest
of the screen (empty space and the last two
lines) are ignored. Note the use of function keys
to allow rapid entry.

S REM SCRGEN - GENERATES A SCREEN FORMRT ON A TRPE
ALLONING TEXT ENTRY AMD...

€ REM BRACKETS TO INDICATE WHERE FIELDS WILL BE EN
TERED BY A PROGRAM UISING...

7 THE STORED SCREEN FORMAT

28 REM RUN BY SETTING UP THE REQUIRED SCREEN AND TH
EN PRESSING RUN

2 REM SA#=STRT ADDRESS OF STRING

1@ OPEN1.1.1."SCREEN"

20 SC=1023:PK=32

3@ REMM#k ONLY FIRST 20 LINES OF SCREEN ARE CONSID
ERED ¥k ’

4@ FOROF=1TOARA:REM WORK THROUGH 2@ LINES OF SCREE
N (802 POSITIONS)

5@ PR=PK:PK=PEEK(SC+QF) :CRE=CHR$/PK>

52 IFPK{32THENCRE=CHR&(PK+64)

54 IFPKOEITHENCRS=CHR$(PK+32)

72 IFPK=32ANDPR=32THEN10S

20 TFPK=32ANDPR{O32THENPRIMTH#1.SR:PRINT#1,SR$: GOTO
103

90 IFPK{OR2ANDPR=32THENSA=0F-1 : SR$=CR% : GOTO10S5

100 SR$=SRE+CR&:GOTO10T

125 NEXT

107 PRINT#1.999:PRINT#1."END"

110 CLOSE1

1260 PRINT "SCREEN STORED TO TRPE"

130 END

133 REM TEST ROUTINE TO CHECK THE SCREEN GENERATED
ABOVE BY DISPLAYING IT

135 OPEN1,1.0, "SCREEN":J=1:0F=1023:CF=5529%

137 PRINT"D"

140 INPUT#1.R,R$: IFR=999THENPRINT " XD DO mmIDm
II:END

142 AC=ASC(MIDECAS,J. 1)) :PK=AC

144 IFAC>E3THENPK=RC-64

146 IFRCOSTTHENPK=RC-32

158 POKEOF+R+J,PK

155 POKECF+R+J, 1

160 1FJ=LENCAS)THENJ=1:G0T0140

165 JaJ+1:060T0142

RERDY.

The next program will appear at first sight to
have nothing whatever to do with the first
program or with business forms, but it is an
essential tool for building forms programs and
has uses elsewhere. This second program is
an extremely primitive word processor/line
editor. When the program is running, a line
can be typed and characters can be changed or
deleted just as if in the screen editor excluding
the vertical cursor movement,working on one
line at a time. When < RETURN > is pressed,
the line is typed out to the printer. As most of
this program simulates the operating charac-
teristics of the machine with no program in
memory, there is probably a rather neat way of
doing this in machine code using calls to
BASIC ROM subroutines, but if we stick to
BASIC, then this is the way it must be done.

12 REM TYPER 64
22 BD=13280:SC=33281

3@ REM /17 IS THE CURRENT POSITION IN THE LINE.

4@ REM “J7 IS THE CURRENT POSITION IN THE PRINT LI
NE WHEN PRINTING,

5@ REM ‘LC’ IS THE LAST CHARACTER POSITION IM THE
CURRENT LINE.

A2 PEM /N- IS A POSITIOM IM THE CURRENT LINE USED
DURING LINE MANIPULATION,

7@ REM ‘LI$0>7 IS AN ARRAY OF 20 SIMGLE CHARS. ERC
H REPRESENTING ONE LINE POSITION,

82 REM ‘FL‘ IS THE CURSOR.:

9% OPEN 4,4:1=A:POKE SC.1:POKE BD.3

108 PRINT ""B"CHR%(14)

118 DIM LI&431

120 FLEC1D=""" FL&(2)=" "

132 REM

142 IF LCCT THEN LC=I

152 IF LC>1 THEN FL$(2)=LI&(I+1):IF ASCILIS(I+10)=
34 THEM FL$(2)="g'®"

16@ IF LC=1 THEN FL&(2)=" "

178 IF LCO79 THEN CH$=CHR$#(13>: GO TO 382

189 FORL=1T0D2

199 FORK=1T030

202 GET CHS:PRINTFLS(L>"II":

21@ IF CH&O""THEN 262

220 NEYT K

232 NEXT L

249 GOTO 149

239 IF I=LC THEN PRINT" W

260 PRINT FL$(2)"W";:IF ASC/(CH$>=2@ THEN 450

278 IF RSC(CH$)=148 THEN 520:REM INSERT

299 IF ASC(CH$)>=1%57 THEN 590:REM CURSOR <-

299 1F ASC{CH$)=29 THEM 630:REM CURSOR ->

399 TF ASC{CH$)=133 THEM CLOSE4:END:REM FN KEY { C
AUSES EXIT

312 IF ASC(CH$>=13 OR ASC(CH&)>=141 THEN 329:REM PE
TURN KEY

328 IF ASC/CH$)><32 THEM 132:PEM IGNORE IMYALID CHA
RACTERS

332 IF ASC(CH$>>127 ANDASC/CHE)L168 THEN 130:REM I
GNORE MORE INYALID CHRRACTERS

349 CA$=CHS

339 IF ASCICH$)=34 THEN CR$="#/8":REM SPECIAL HAND
LING FOR "

360 I=1+1:PRINT CA$;:LI1€(I)=CH$:(0 TO 122

370 L1¢(1)=CH¢

380 REMSHEEieiy Ry

i il Ll

398 PRINT:SN$=""

400 FOR J=1 TO LC+1

410 SNE=SNE+L1$(J) ‘LISCI)="" NEXT J:

420 PRINT#4,CHRS(17)SNS

430 REM PRINT#8,SN$

% PRINTING ok

449 [=0:LC=0: G0 TO 139

450 REMBEOMOcEE s ¥ TELETE 4
Liddiidiiiiil s

468 I=1-1:1IF 1<@ THEM I=@:G0 TO 122

47@ LC=LC-1

420 PRINT CH#;

499 FOR H=I+1 TO LC+1:LI$IMI=LI$IN+1)

598 NEXT N

51@ 60 TO 139

520 REMsbdksiekiioriiy ¥¥ TNSERT #%
bbbl it ic s

330 :LC=LC+1:LI$(LCY=""

548 PRINT CHR$(148):

530 FOR N=LC TO I+1 STEP —1:LI$(MI=LI&(M-12

569 MEXT M

570 LI&(T+1H=" "

382 GO TO 130

T92 REM¥#dpiikickdoliny ¥% CURSOR <~ #¥
beigdd il idid]

600 I=1-1:1F 142 THEN I=R:G0 TO 139

610 PRINT "W";

€20 GO TN 132

632 REM¥s¥diriibiyky ¥% CURSOR -> #¥
ki it igi il i

64@ I=1+1:1F I3LC THEM LI&(Id="

652 PRINT FL£42);:60 TO 13@

RERDY.

Although the VIC is not really suitable as a
business machine for most applications,this
particular routine is useful on its own, so below
is a VIC version of the same program.

S REMispikikiiirkeVIC 20 TYPERW#Sd kK

12 PEM “17 IS THE CURRENT POSITION IN THE LINE.

2@ REM “J/ 1S THE CURRENT POSITION IN THE PRINT LI
NE WHEN PRINTING.

30 REM ‘LC/ IS THE LAST CHARACTER POSITION IN THE
CURRENT LINE.

42 REM ‘N’ IS R POSITION IN THE CURRENT LINE LISED
DURING LINE MANIPULATION,

5@ REM “LI£(>7 IS AN ARRAY OF 8@ SINGLE CHARS. EAC

H REPRESENTING ONE LINE POSITION.

REM “FL- 1S THE CURSOR.

OPEN 4.4:1=Q

22 PRINT "IX3"CHR${14)

92 DIM LI$(81)

100 FLEC1)="8" FL$(2)=" "

11@ REM

128 IF LC4I THEN LC=I

73

160
172
182
199
202
212
229
238
24@
259
269
270
280
299
300
319
322
325
330
349
339

362
370
330
399
499
420
430

440
450
460
470
480
490
500

510
520
522
24
=32
540
550
SEA

57A

A IF LC>79 THEN CH$=CHR$(13):

IF LC>I THEN FL$(2)=LI$(I+13:IF ASCILI$CI+10)=

34 THEN FL$(2)="g'®"

IF LC=I THEN FL&(2)=" "

G0 TO 35@

FORL=1T02

FORK=1T0N38

GET CH$:PRINTFL$C(L)"NM";

IF CH&>""THEN 24@

NEXT ¥

NEXT L

0T 122

IF I=LC THEN PRINT" W'

PRINT FL£(2)"W";:IF ASC(CH$)=20 THEN 430

IF ASC(CH$)=148 THEN 500

IF ASC/CH$)=1%7 THEN 550

IF ASC(CH$)=29 THEN 640

IF ASC(CH$)>=133 THEN CLQSE4:END

IF ASCA{CH$)>=13 OR ASC(CH$)>=141 THEW 359

IF ASC(CH$)(32 THEN 119

IF ASC(CH$)>127 ANDASCICHE)L160 THEM 118

CA$=CH$

IF ASC(CH$)=34 THEN CR¢="y/@"

I=1+1:PRIRT CAS;:L1$(1)=CHE:GO TO 11@

LI#(1)=CH¢

REMisdiokdsaoiolb ol

RO

PRINT:SNg=""

FOR J=1 TO LC+1

SNE=SNE+LI$(T) (LIS T)="" HEXT I:

PRINT#4,CHR£(17)SN¢

REM PRINT#8, SN$

1=0:LC=8: GO TO 110

REM¥sioklerolkikiornkk #% DELETE #%
fad il idididt

I1=I-1:1F 140 THEN I=0:60 TO 119

LCsLC-1

PRINT CHS;

FOR N=I+{ TO LC+1:LISCNI=LISCN+1)

NEXT N

G0 TO 119

REMiesaiiolleioh ke sonk o
sl .

PRINT " ";:LC=LC+{:LIS(LCI=" "

FOR N=I+1 T0O LC :

IF ASCCLISCMI =24 THEM. PRINT "g-m";

IF ASCCLISCMI Y34 THEN PRINT LIFCHD;

MEXT M

FOR H=I TO LC:PRINT "BI"::MEXT H

FOR H=LC 7O I+1 STEP —1:LISCHI=LI&HN~11

NEXT N

LIg(I+10=" "

G0 70 114

#¥ PRINTING %

INSERT ok

REMESFRERERFEFF RS #% CURSOR - #%
Rad iz b2l i dd

I=T-1:1F I<@ THEH 1=@:G0 TO

PRINT "q":

G0 70 114

REM¥$$EERFHEFFFHH¥ #¥ CURSOR - ##
REAEiEELZ 2222224

T=I1+1:1F I%LC THEM LT#(Ta=" ©

PRINT FLAC23::G0O TQ 110

Now defining all the fields in TYPER64
variably instead of as a standard 8@ characters
long, and if the output is written to an array

rat
of

her than the printer, then the combination
this program with a routine to read the

screen format created earlier, will provide a
business entry form:

NI I

p BP0
— D D D

i B B]

o
D
B

S BN Rgiio B N

DD DD

REM SCREENISE

DM LT ENC2RY EXC2R) , 3TH(20Y
NSRS 102 IFSTEC1)="%"THENSA
A0SR AR | GOSLIBEARA : ROTARA

PRINT"DOME" :EMD
FEM FUMCTTOM SUBROUTIME

118 RETURH

REM BUILD SCREEM SUBROUTIME

TNPLIT "SCREEN NAME":SC#
R=1:T=1:0F=1G23:CF=75295

OPEMY . 1.0, SCEPRINT"T

INPUT#1. A, A$: TFR=999THENEH T)=A:RETIIRN

4842 AC=ASCIMIDELA%E.R. 13 PK=AC

IFAC>A3THENPK=AC-£4
¢ IFACSRSTHEMPK=AC-32

4250 POKEOF+A+R, PK
4060 POKECF+A+R. 1

TFLEN(A$Y=1ANDIRE="("THEMEM T3 =R+1
IFLEHA$Y=1ANDA=") "THEHEY (TH=A~EM(T) : T=T+1
A TFR=I_EH/A$ITHENR=1:G0TN4R4A

4109 R=R+1:060T04042
5168 REM ACCEPT IMPUT SURROLTIME

1@ REM “F7 1S THE START POZITION OF THE CURREMT

L.INE.
A REM 717 I2 THE CURREMT POSTITION IM THE LINE,
A REM <J7 1S THE CURRENT POSTTIOM TH THE PRINT
LIME WHEM PRINTTHG.

DL 08, I,) B8 BRd RO B8 A |

) T) 1)) LD 1A D) T A [)) D)

b
0 ‘D

AR L S

5559
5560
5579
5584
5599

A PEM “LC7 15 THE LAST CHARACTER POSITION IM TH

E CURREMT LTHE.

REM ‘M7 T2 A POSITION TH THE CLURRFNT LTNE LISE
D NURTHG LTHE MAMIPLULATION.

REM “LI$¢)7 13 AM ARRAY OF 3 SINGLE CHRRS, E
ACH REFRESENTING OME LTHNE P2M

REM “FL< T2 THF CIIRSOR.

A 1=0:P=1

PRIMNT"H%":

FORQ=1TOEMNIPY :PRINT"NI" : tHEXT
FLECI="8" FLEr20=" "

REM

TFLCLITHEMLC=1
TFLCDTTHENFLE(2)=L T8¢ T+1) : TF ASCOLTHIT+1)3=34
THENpo (2\ =N s/ !n

IFLC=ITHEMFL& 2 =" "
IFLOS=EXPYTHENCHE=CHRES 127 1RNTNS47R
FORI =1TN?

FORK=1T03A

CETCH$:PRINTFLECLY "B
IFCHE " " THENS 350

HEXT

NEXT

GOTOS230

IFI=LCTHENPRINT" 0"
PRINTFLC2)"N"; : IFASCACHEY=2ATHENSSAG
JFASCLCHE)Y=142THENSARA
JFASCICHEY=157THENS 740
TFASC(CHEY=29THENS72G
TFRAC(CHEY=133THENRETLIRN
TFASC(CHEI=134THENSTS 1)="%" :RETLIRN
IFASCACHEY=130RASC(CHE =141 THENS47R
IFARSCYCHS){R2THENS220

IFASC(CHEI >127ANDARSCICHE) C1AATHENS 220
CA$=CHE

A IFASC/{CHE)=34THENCA$=" 1 ®"
A I=1+1:PRINTCAS: :LT1£(T2=CHE: GATOS229
A LISCI)=CHE

REM STOREING
SN$= un

A TFEN(P+1){>999THENFORA=EN(PY+ITOEN(P+1)-1:PRI

NT"WI" ; :NEXT

FORJI=1TOLC+1
SNE=SNE+L TSI :LISCTI=""NEXT
ST$(P)=SN$:P=P+1

S I=0:LC=0

IFENCP)=993THENRETLIRN
GaTOS220

REM DELETE
I=1-1:IFICATHENI=0:060TNS522@
LC=LC-~1

PRINTCHS:

DLL IS IO I T R I8RO0 T 5 A A, A |
AN NN N D DN NN N N AR
=D W0 NN B WD =D DD
DR D DDV DD DD LN

FORN=2TOEX(P)-T:PRINT"M"; :MEXT :PRINT")"

FORN=ATOEX(P)-T:PRINT"H"; : NEXT

FORH=T+1TOLC+1 :LISCND=LTECN+1)

NEXT

GOTNS220

REM INSERT

PRINT " "::LC=LC+{:LI&(LCH=" "

FORMN=I+1TOLC

TFRSCALISI(NI)=34THENPRINT" /8" ;

TFRSCOLISIND YCO>R4THENPRIMTLISINY

MEXT

FORM=ITOLC :PRINT"N"; :NEXT

FORN=LCTOI+1STEP-1:LIS(NY=LI$(N-1)

NEXT

5720 LI$CI+1=" "

5738 GOT05220

5743 REM CLRSOR <-

5790 I=1-1:]FI<ATHEMI=@:GOTNS22@

5760 PRINT"W';

5779 GNOTN5220

5720 REM CURSOR ->

5792 I=1+1:IFIDLCTHENLI&CI)=" "

5802 PRINTFL$(2)::60T05220

6002 REM CLERR ENTRIES SUBROUTIME

6012 PRINT"H"; :FORR=1TOEN(1) :PRIMT"M"; :NEXT

€020 FORU=1TOT~1

6230 FORR=1TOEX(L) :PRINT" " :NEXT

6049 TFENCLI+13C>999THEN FORR=1+EMLLID+EX (LI TOEM, I+
Y:PRINT"MI"; :NEXT

62452 NEXT:RETURN

RERDY.

The next stage is to include a read of the file
into the machine from cassette, validation of
the fields on the screen according to the
requirement, using the numeric check routine
described earlier where appropriate, and stor-
ing the information collected back onto
cassette. The same principle will work for a
diskette serial file.

12 REM CUSTOMER

A OPFEM 4.4

A REM DIMENSIONS FOR MAIN PROGRAM - CUSTAMER LPDA
TE

42 DIM CHE(92) . A£(99,4) ,P1£(99) ., 1$(92.4) P24.99) . R
LE(9)

32 REM DIMENSIONS FOR SCREEM HANDLING ROUTINE

b
€2 DIM LI£(212 BN EY(20) . STH(20)

75

76

]

D el et s i sl * 22]
B i) T s D R D) D

TP=12
TMPUTYLOAD CUSTOMER DATA": AN#
TFAN$="Y" THENGOSL/R432

GNSURSRA: CLOSEL
CASIURL 130 : IFASCIOHEY =134 THEN1 40

IFP=1AHMNE=ATHENMA=YAL { SH$) : GOSUIRSOA : GOT
PHQHB1°@ PnQUBlQ?R GNTA114

0112

REM FUNCTIDN SUBPDUTIME

A L=1:002R270
P S1=H0
A CN$CS1)=5T$(2)

FORQ=1T04 :A$(S1. MI=STE2+00 “HEXT
P1&(81)y=2T&(7)
FORD=1TO4 : NS, QY=CTH 7400 tHEXT
P24(21)=CT£(12)

W=13:GOSURZ7A

BLA(S1=CTE(13)

FORW=1T020: STHVI="" HEXT

RETURN

@ REM MUMERIC CHECK SURROUTIME
2 REM TF “YALID. NO IS RETURMED AS “NO/

NO=YALCETECHD) : STE=CTRECND) : TEF=STE(L)

TFNO=GANDLEN(Ta4Y=ATHEN420

TFLEFT(STE. 13=" "THENST#=RIGHTS(STS, LEN(STH) -
1) :GOTO210

Wi4=LEFT$/TS$. 1) IFW1$="A"0R1$=" "THENTZ#=RIC
HT$(TSE, LEMCTSSY-1) 16070220

1FT24=CT&THEN42A
IFLISE="_ "THENMS$=" ":G0

HO4=RIGHT$(T2%. 1)
IFMQ$-" "nPU°$-"ﬂ"nPug$="_"THEMTSg,Lg;Tg(ngjL

TO370

GASUR ’Fﬁ

TFeT4=TE4THEN42A

TFST$CO>TSETHENPRINT"TIRAD DATA "STH(1) :E=1:60T0
110

E=0:RETURNM

REM ROUTIME TO LOAD CUSTOMER NATA

PRIMNT"REMOVE PROGRAM £ LOAD CLSTOMER TAPE"

OPEM1. 1.4, "CLISTOMER"
TMPUT#1 . MO TFNO=99aTHENS3A

A ST£I1I=CTREINOD

FORK=2TOTP
INPUT#1 . ST#MD
IFSTEMY="¥"THENST#(H=""
MEXT

GASUB15A: GATN4LA

PRIMT"REMOVE CIISTOMER & LOAD SCREEN TAPE"

542 INPUT"TYPE RETURM WHEM RERDY":Af

520 CLOZEL:RETURM

6@ REM LINE CLEAR ON SCREEM SURRNMITINE

570 FORZ=1T04Q:PRINT" " :MEXT

580 RETURH

REM FTLL SCREEM WITH EXISTIMG IMFO

CH$=I| "

W=1:G0S1JR270

S1=h0

ST#015=8TRE(21D

STE(2)=CHECS1D

FORO=1T04: STEC2+00=REF(S1. 0O 'HEXT

STH(7)=P1$(S1)

FORQ=1TN4:STE(7+Q)=D$CS) . QA 1 MEYT

9T$(13)‘BL$(31\

PRINT"S"SPC(ENC1Y):;

A FORT=1T02Q: IFLEM(STE(T) XEXCTITHENSTA/ TY=RIGHT
ECETECTILENCSTE(T -1

720 PRINTSTEITY : : IFEN(T+1)=093THEN75A

730 PRINTSPCOEN(T+1)-EN{TI-LENCSTS(TI))

740 HEXT

758 RETURN

760 PEM WRITE AWAY DATA SUROLTINE

779 PRINT"TLOAD CUSTOMER TAPE"

720 OPEM1.1.1,"CUSTOMER"

730 FORND=1T033

2800 IFCHECNO)=""THENS4Q

PRINT#1 , NO:PRIMT#1, CNECNON

FORQ=1T04: TFASCNO, O3 " THENPRINT#1 . RECNO, 0) : 6

nTn84a

2 PRINTH#1. "#"

2 MEXT

@ TFP1£CNOYCOU M THENPRINT#H1 . RL&MO) 1 AOTOR70

A PRIMT&L, "

7@ FORO=1T704: IFN&CHO. 0YO" " THEMPRINT#H1 . DECND, Q)
070290

230 PRINTH#1. "%"

89@ NEXT

90R TFP2ECNAYLI" "THENBRTHTHL . PRECNNY 6

219 PRINTHL, "#"

920 TFBLEINOYO""THENPRIMT#1 . BLECNO) 1 6O

933 PRINTHI. "$"

4@ MEXT

9%@ PRINT#1,999

96a CLOSE)

97@ PRINT"CISTOMER TAPE UPDATED" :RETURM

2208 REM BUILD SCREEN SUBROUTINE

290 P=1:T=1:0F=1023:CF=55295 SC$="CCREEN"

1008 PRINT"LOAN SCREEM TAPE"

1812 OPEM1.1.@,8C4:PRINT"D"

1220 INPUT#1.A, A% : IFA=993THENEN/ T =R RETLIRN

NTN920
TO942

1932
1042
1059
18602
1079
1220
1690
1192
1110
1120

128

AC=ARSC/MIDECAE, R, 1)) :PK=AC
IFAC>ARTHENPK=RC-64

TFRCDASTHENPK=RC-32

POKEOF+R+R. PK

POKECF+R+R. 1
IFLENZA$Y=1RNDRE="("THENEN/ T =R+1

IFLEN(A& =1ANNAE="Y"THEMEX(T)=A-EM(T) : T=T+1
IFR=LENCA$)THENR=1 : GOTN1020

RETURM

REM ACCEPT IMPUT SURROUTINE

REM /B’ 18 THE START POSITION OF THE CURRENT
LIME.

REM 1/ 1S THE CURRENT POSITION IN THE LINE,
REM 7T 1§ THE CURRENT POSITIOM IM THE PRINT
LIME WHEN PRINTING.

2 PEM /LC/ 15 THE LAST CHARACTER POSITION IN TH

€ CURRENT LINME.

REM ‘N’ 12 & POSITION IN THE CLRRENT LIME USE
D DURING LIME MANIPLLATION,

REM “LI%¢>’ IS AM ARRAY OF 2Q SIMCLE CHARS, E
ACH PEPRESENTING ONE LINE PSN

REM “FL’ IS THE CLRSOR.

1=Q:P=1:CHE=" "

PPINTIIM’II ; .
FORO=1TOENCPY :PRINT "SI : 1 MEVT

FLEC =" E £(2)="

REM MEXT FIELD EMTRY POINT

LC=LENC(STEPY) ’

IFLCOOATHENFORM=1TOLC LISCMY=MITE(STEIPY. M, 13
‘NEWT

IFAAC(CHEI=133THEN1 552

REM NEXT CHAR ENTRY POINT

IFLCLITHENLC=1

TFLODITHENFLE(2)=LTI4(T+1): IF ASCILTI#(T+12)=24
THENF! &£/2)="g/m"

A IFLC=ITHENFL&/2)=" "

IFI>=EX(PITHENCH$=CHR£(13) : GOTO1550

A FORL=1TN2
A FORK=1T030

CETCHE PRINTFLECLY"H":

@ TFCH$<>""THEN1410

NEXT
NEXT
60701302

2@ PRINTFL$/2>"H"; : IFASC/CHE)=2ATHEN] A

IFASC(CH&>=14RTHEN173@

A IFASC(CHEI=157THEN1860

IFASC(CH&)=29THEN1902
IFASC(CHE)=133THEN1330
IFASCACHE)=134THENRETLIRH
IFASCLCHEY=135THENRETLIRN
IFASC(CH$)=130RASC(CHE)I=141 THEN1550

IFASCYCHE}CI2THEN1290
IFASCACHS)>127ANDASC(CHE Y £1SATHEN1290

A CRE=CHE

528 IFASCICHE)=R4THENCAS="54/8"

I=1+1 :PRINTCAS: :LI$(12=CH$: GATO1290

A LI$CI)=CHs
@ REM STORETIMG

3N$= nn

¥ TEEMCP+] YC>A99THENFORG=ENCP Y + I TOEN(P+1)~1 : PRI

HT"M"; tHEXT

FORTI=1TOLC+1
SHE=SHEHLTRCT) I LTR(TY="" NENT
ST#PY=SH%: TFPL31GOTO1620
IFCNECOYALCSNEY YOO "ANDE=ATHENGOSLIBS9A : PRINT"
"SPCCENC2Y) :CHE=" ¥

P=P+{

1=0:1C=0
IFEM(P)»=899THENRETLIRM
60701259

REM DELETE
1=1-1:IFI<ATHENT=R:G0T01290
Le=LC-1

A PRINTCHS:

FORN=2TOEX(PY-T:PRINT"M"; :NEXT : PRINT" »":

A FORN=ATOEX(P)~T:PRINT"H": :NEXT
A FORN=T+1TOLC+1:LIRCNY=LIKIN+1D

HEXT

GOTN1290

REM IMSERT

PRINT " ";:LC=LC+1:LI$(LCH=" "
FORN=T1+1TOLC

TFASCLLISCNY »=24THENPRINT " 4/ 8" ;
IFRSCILTSCHIIOOIMTHENPRINTLISIMY
NEXT

A FORN=ITOLC:PRINT"N": :MEXT
A FORN=LCTOI+1STEP-1:LI#(NY=LT&(N-1D

MEXT

LI$CI+15=" "
G0TN1234

REM CURSOR (-
1=1-1:IFI<ATHENT=A
PRINT"N";

160701292

A GOT01290

REM CLURSOR ->

B I=T+1:IFIZLCTHENLI#(T0=" "

PRINTFL$(2); :G0T01290

A REM CLEAR EMTRIES SURROUTIME
A PRINT"S": :FORR=1TOENC LY :PRINT"N" i :NEXT
A FORU=1TOT

IFEX (UMY OATHENFORR=1TOEX /L) :PRINT" " :NEXT

A TFENCIH1)L3999THEN : FORR=1+ENCID+EX LD TOENCLIHL

3 :PRINTNIM; :NEXT

77

78

23 NEXT
1992 PRINT" =i
AA GOSURSAA

20192 RETURN
2020 OPEN 1.1,Q, "CUSTOMER"
2030 TNPUTH#1.R¢

2044 PRINT A%

2052 INPUT B4

206@ I1FB$="Y¥"GNTO2020

RERDY.

Another useful little routine for business
programs is a date routine for displaying todays
date in the top right hand corner of the screen.
The parts you want can be selected from the
program below which operates on a VIC 20.

130 rem SRR

110 rem Wk ok
120 rem Wikdate-vic20 ok
130 rem ¥¥ Nk

140 ram sl
150 v1336878:3bm36879:83836826:rem define colour &
sound

160 Print "¥":Poke sb, 186

170 Prdnt sowiioioimulRkicloRsisionionon

180 Print "M enter today’s date W

192 print " sekoieliolmsiosoloiomion

200 dim m$(12)

210 for m=1 to 12:read m${m):next

220 data Jan,feb,mar,apr.may, Jun, Jul,aus,sep,oct,n
ov,dec

230

240 inPut"day";a$: a=val(as)

250 inPut "month";b$:bsval(bs)

260 if a=@ then pPrint "invalid day":goto 420

270 if b=@ then Print "invalid month":gotod20

280 on b Soto 310,300,310,330,310,330, 310,310,330,

310,330,310

250 :

300 if a)29 then print "invalid day":goto 420

310 if ad31 then Print "invalid day":9oto420

320 goto 350

330 if a>30 then Print "invalid day":9otod420

340 goto 350

350 if b>12 then Print "invalid month":gotod2o

360 inPut "year";c$:cmval(cs)

370 if c/4COint(c/4) and a>28 then Print "invalid
day":goto 420

380 if left$(cs$,2)(0"19" then ct="19"+c$:cm1900+c

390 if 1984)>¢ then Print "invalid vyear":9oto 420
400 9oto 530

410 :

420 ream Nl

430 rem M bleep ¥

448 rem MRk

450 poke v1,15

460 pPoke 36876,223

470 for nm] to 3500

480 next

490 poke v1,0

300 Poke 83,0

510 goto 248

520 :

330 Print"ERDRRRERRRMI";

540 poke sb,27:rem restore to normal colours
330 print as"/"bs"/"c$

ready,

Many people use spreadsheet programs and
you can buy one of the standards on the
market. However, if you wish to play around
with the idea, this program may help:

5 REM DATA

18 ND=10

2n SC=53281:RN=5228@:POKE SC. 1

3 POKE A£52.123:REM % REPEAT KEYS ¥¥

42 DIM DT4012.1@) . MN$C12).T12)

50 FOR MN=1 TN 12:READ MN&(MND

60 MNSIMNI=" B +MNS(MND+1" tNEXT

78 DATA JANUARY.FERRUARY . MARCH. APRIL . MAY. TUNE. NNV
-AUGUST . SEPTEMRER . OCTORER

22 NATA NOVEMBER.DECEMRER

92 OPEN 1.@:PRINT"TH"

108 PRINT"¥MMCET DATA FROM TAPE OR EMTER?"

185 PRINT "ENTER NO, MONTH TO START EMTERING AT"

112 INPUT#1.TE$:PRINT:PRINT

114 MB=VAL(TE$>:IF MB=@ OR MB>12 THEN MB=1

115 IF LEFTH#(TES. 123"T" THEN 199

120 OPEM 2.1.9."DRATA" :FOR MN=1T012:FORDT=1TOND: INP
UTH2. DT4CMN. DT

13@ IF DTS(MN.DTH)="#" THEN 170

148 TOMND=T(MNY+YAL (DTHCMN. DT (NEXT DT, MN:CLOSE2

150 TF MM>12 THEM 250

162 FOR MN=MN TO 12:FOR DT=1 7O ND:IF LEM(DTSIMN.D
TY))=ATHENDT#(MM. DTH=" "

17@ MEXT DT,MM:GOTO 250

189 -

129 FOR MN=MBTO 12

208 PRINT MNECMND

FOR DT=1 TO ND
INPLIT#1 . DT4(MN. DTY :PRINT
TF DTE(MM.DT)="%" THEN 150

19

20

30

49

50 PRINT"D"
ca

65 REM ¥¥brddbdribbdb i s bbb s p i
R REM #%4% LIHAT MONTH? biddd

7 PEM ddddddpipiiinkrviicoioinyrionk ¥

an
229 PRINT ":tINPUT#1 . MR&

299 IF MRe="¥%" THEN RLIN

221 TF MB&="T" THEN. GOSIIR 432:G0TD 263
312 PRIWT"Y

222 FOR M=@ TOQ 2:MM=MB+M

344 IF MN=13 THEM MRB=0:MM=MR+HN

359 PRINT 3" TARCCNI¥1R) i MNECMNY

364 FOR DT=1 TO 1@

A PRINT TARC/MIFIRI:DTHMM. DT
A NEXT DT

% PRINT TARC(MM#{3d:"— "
7 PRINT TARCINI¥12):TOMMY
@ MEXT M

2 PRINT:PRINT:PRINT
= GOTO 265

e

[7]

a

a

REM# 3ok bbb sy b b b bbb
REM¥¥¥¥¥ TAPE OUTPLIT Eadidd
A REMEEEE R RS SRR bbb bbb b bbby ¥
430 OPEN 2.1.1,"DATA"
442 FOR MM=1 7O 12
450 FOR DT=1 TO 14
460 PRINTH#2. DT(MM.DT) :CHRE(1D)
472 IF DTH(MN. DTH="%" TUEM 493
4283 MEXT NT.MM
430 CLOSE 2:RETURN

READY.

again on tape afterwards.

TAPE HANDLING

TMNY=T/MNYSYRLCDTECMN, DTY) tHEXT DT.MH

27
272 PRINT"™MONTHC(ENTER NO 1-12/T7 FOR TAPE OUTPUT)

2
329 MB=YAL/MRE):IF MB=A OR MR>12 THEM MR=!

The program uses a 2 dimensional array
to hold information for each month of the year,
and totals the information by month. The data
is read from tape if required, and can be stored

The two programs below are a pair for pro-
grammed learning. The first, TEACHER
allows questions and multiple choice answers
to be set up on a tape. The second, PUPIL
allows the pupil to be tested and scored against
the data set up on tape.

19
22

D= DD NRDABRDD = DDD DB WD DR =D D0 N DB W=D DD DD D DD

BB B) 1D) 1) 1) V)) 1) LD N I 1D 1D R 1D (W) 1) [1) 1) ¢b 1oa i=a 1b e pa (= e jea e b= 00 00 XY L B LD
91D 01D D DD D DN D DD D D D 1D 1D N DD D DIV D LMD ID DD DD DD

PEM TEACHER
OPEN4. 4
DIMLI$C191)
SR=36879:R=1
POKESR. 26
PRINTCHR$414)"T e ."wl~[/ &~ "
PP I NT " S ——— | |

INPUT" RINTER V¥ OR M":PR&
PRINT"LOAD DATA TAPE, PRESS _ECORD & “LAY"
MRIT37151.64. 64

OPEN1.1.1."DATA"

PRINT "MaLIESTION"A"N"

GNSLR470

NlI$=CRE:

REM TEST FOR END OF PROGRAM.
IFLEFTSCOUSE, 1)="#"THEN4AA

REM SET UP CORRECT ANSWER.
PRINT"§WNSHERR"

PRINT" ©:

GOSUR4ZE

AHE=CRE

REM SET P ALTERNATIVE ANSHERS.
FORM=1T03 .
PRINT"SARONG ALTERMATTVER®

PRINT" ";

GNSUR47A

LR$(M)Y=CRE&
IFLEFTECLRE M) . 1)="¥"THEN290

NEXTM

M=M-~1 ‘
IFM=1THENPRINT "4/ ALTERNATIVES!W" : GATN220
PRINTH#1, QLS

PRTMTH#1 . AMNS
£OPP=1TOM: PRINT#1, WR$(PY : NEXTP
IFPRESH "W THEN3R0
PRINT#4,CHRE(17)"eLIESTION "A" “0li¢
PRINT#4, CHREC 1 7Y "ANSUER " ANS
PRINT#4,CHR$(17) "0RONG ALTERNATIVES"
EORP=1TOM: PRINT#4 . CHRE(17 HRE(P) 1 HEXTP
A=A+1

GOTN122

PRINT#1 . OLIE

PRINT""RNGRAM COMPLETE, "

PRINTA~1"@UESTIONS SET"

79

80

DI R

A RN A RUEL R L RS I 8 RS RS, A)
W0 A

~
N
D DD

730
744
750
76a
7va

789

79@
202
21a
220
232
242
|50

260
a7a
2@
290
)

A REMESHbdbvbbkbbes

CLOSEY

' CLOSE4

PRINT"#TOP TAPE. REWIND AWD LABEL"

END

REM LINE SETTING LP SURROUTINE

1=0:LC=0

FLEC1I="3" FL§(2y=" *

REM MRIN L0OP

IFLCCITHENLC=]

TFLEDTTHENFLS(2)=L T80 T41) : IFRGCCLISCT+1))=34TH
ENFL$(2)="gm"

IFLC=ITHENFL$(2)=" @

IFLC3183THENCHE=CHRS (13) : 6OTO720

FORL=1T02

FORK=1T030

BETCHE - PRINTFLECLY "I ;

TFCHEC" " THENG20

NEXTH

NEXTL

BOTOS e

PRINTFL$(2)"HI" ; : IFRSC(CHEI =00THEN7SD

IFRSC(CHE)=148THENASE

IFRASCCCHE)=1S7THENIAR

IFASCCCHS)=29THEN1 000

IFASCCCHE) =1 30RASC(CHEI =141 THEN720

IFASCCCHS) C32THENSAA

IFASCCCHS)> 1 27ANDASC(CHE) <1 6ATHENSAR

CR$=CHS

IFASC(CHE)=34THENCAS=" & m"

#¥ LINE SET ¥
i hbiant

PRINT: SRe=""

FORI=1TOLCH

SRE=SREHLISCI) (LISLTI="" :NEXT I:

PRINT

RETLIRN

REMEHEHHRIIHO *
bbbibbiatannd

1=1-1: IF1<ATHENI=2: AOTOSER

LE=LE-1

PRINTCHS;

FORN=T+1TOLCH (LI$CNI=LISCN+1)

NEXTN

A0TOS20

REMEHHEFEREFFIRY ¥
FHERORROPEY

PRINT® ";:LC=LC+1:LI$(LCY=" ©

FORN=T+1T0LC

IFASC(LI$CN Y=34THENPRINT" /@ ;

TFRSCOLICND YCORATHENPRINTLISCND ;

NEXTH

DELETE %%

INSERT %%

210 FORN=ITOLC:PRINT"N": :HEXTN
926 FORM=LCTOT+1STEP-1:LI$(M)=LT$CH-1)
930 NEXTH
42 L I§(I+1d=" 1"
960 REM#kdkbbdbb kbbb
FHEERER R
97@ I=1-1:IFI<ATHENI=Q:GOTOSAA
92@ PRINT"HM:
994 GOTOSAR
1000 REM¥Mk$Fybbsviens
Feer bk
1018 I=1+1:IFISLCTHENLI$CI)=" ©
1020 PRINTFL$(2): :60TO50Q

¥ CURSOR <~ ¥*
¥ CURSOR -> #¥

READY.

2 REM PUPTL

A SR=3ER79:N=1

A POKE SR, 29

A PRINTCHR$(14)"7 (R
A PRINT" —

A PRINT"LORAD QUESTIOM TAPE &
A UATT37151.64.64

2 OPEN1.1.9, "DRTA"

PRESS “La "

118 REM GET THE QUESTION

120 QUE=RI&1)

132 TFLEFTSCAUE. 1)="¥"THEN43Q

142 AN$=RI$(2)

120 FORJ=1T04

168 WRE(TH=" o

170 NEXTJ

180 WR$IQ-1)=ANE

198 FORM=1T00-2

200 LRE(MI=RI£M+2)

212 HE¥TM

220 PRINT"D)

232 PRINT "

242 PRINT"N"QLI$"R"

250 REM PANDOMISE THE ANSHER POSITION IM THE LIST

262 R=INT/RND{1D¥Q-1)+1)

270 CR=0-A

2230 FORK=1T0Q-1

292 PRINT"SEI"K"R"UR$(A)

200 A=A+1: IFA>0-1THENA=1

312 HEXTK

320 REM LORD NEXT FROM TAPE BEFORE ACCEPTING ANSWE
R

SUESTION"N

230 GNSURSAR

342 INPUTANS

359 AN=YAL/ANS)

362 REM SCORING. WR = NO, WRONG; RI = MO. RIGHT,
7@ IFAN=CRTHENRI=RI+1 :PRINT"§HORRECTE" : T=993
232323 IFAMCOCRTHENWR=WR+1 :PRINT"™MORONG -B" :T=2000
352 PRIMT" "UR&(R-1)

400 MN=N+1

412 FORK=1TOT:MEXTK

420 6070119

420 PRINT"JIEST COMPLETE. MW"

449 PRINT N-1"®UESTIONS AMSHEREDM"

450 PRINTRI" CORRECTM"

460 PRIMTUR" WROMGH"

470 CLOSEY

422 PRINT ""RESS S

432 END

S5@@ REM GET NEXT

519 R=Q

520 GOSUBT8A:RI$(1)=5RE

532 IFLEFT(RI$C(1), 1)="%"THENZ?Q

542 FORO=2T0OS:GOSURS8A:RI$(OI=CRE: IFLEFTH(RISCOY, |
="¥"THEN36A

339 MEXT

569 Q=R-1

578 RETURN

38@ SRe=""

599 GET#H1.IN¢:SRE=SR$+IN&

€00 IFIH$=CHR$(13)0RINS=CHR$(141) THENRETLIRH

619 GOTOF9Q

N TAPE"

READY.

PRINTING

A screen dump program is always useful to
produce on the printer a copy of what is at
present on the screen.

@ REM PRINT SCREEN (TOP 22 LINES)

@ SC=1024:0PEN4. 4:CMD4:PRINT CHR$(14);

A FOR ¥=0 T 22

@ FOR =0 TO 39

B PK=PEEK (%+(Y#40)+SC) | LE=PK

S5 IF PKY127 THEN PK=PK-128:PRINT CHR$(12);
60 IF PK=96 THEN LE=32:60T0 150

70 IF PK<32 OR PKD9E THEN LE=PK+64:60TO 150
8@ IF PKC9E AND PKDER THEN LE=PK+32:60T0 15@
99 IF PK>96 THEM LE=PK+54

158 PRINT CHR$(LEICHR$(146);

168 NEXT ¥:PRINT:NEXT ¥
17@ PRINT#4:CLOSE4:END

RERDY,

GAME

Every book has to have at least one game. Here
are two, one for the CBM 64 and the second for
the VIC 20 No further explanation is required
(or will be given)!

REM #¥¥FFEF¥SFEFEFEF SRS F S S bd ¥ ¥y

REM #dddbbbbbdbedbbbbrbbddibpihbvss

REM #¥¥ ¥

REM ¥¥% CAR CHALLEMGE ¥¥¥

REM ##¥ *d¥

REM #¥% RY M & T HILL *¥¥

RPEM #¥% ¥

PEM *¥¥ddbbbbbbpbbibbbbbbbbgiydbbie

REM #¥¥#ddddbdhdbdb bbb b s i sk ¥ ¥
SC=53281:POKE SC. 1

PRINT"TTHEBNBRRE# ¥%¥ MCAR CHALLEMOER #¥d%¥"
PRINT "HUpRBBREBREHIGH SCORE =" HT

PRINT "MpOOMBRMBFITHERE ARE @ LEVELS. 9 BETIH

G THE ERSTIEST, AMD 1"
148 PRINT " THE MOST DIFFICULT®
152 PRINT " imnnonnRNaRREEBRNLEVE]. OF TIFFICY
LT&) "

168 PRINT TRR/{2Q):

170 GET KY$:IF YALCKYE)=0 THEM 17@

180 ’=UQL(K?$)=PEINT K¢

Pt e I B U A B PV S
WM = DD DD m D DD DD

[I~ I B

210 POKE A58, 128:PEM:SET REPEAT KEYS ON FOR ALL ¥E

e

220 BD=S3280 POKE RD.L

230 CR=1637:CL=55296~1024 :¥=Q1 : TV=81: (=1
240 :

25

269

2?@ REM #4% START P %%

22Q ¢

59@ PRINT "TTeiEi LEVEL :=M"{
=":N1
PP-1€?“'PFM *¥ PE“ET fQP POS #%¢

JUEHT SCORE:=N":HT: "§iB0:

R?*"Hﬂﬂ.“.. LU

81

DRI DD D DD D

N B e B B B B B A A RS B A s YD
Q0 N B) D = D D 00 N LTy g

D DR D

FOR N=1 TO 13:PRINT:PRINT RIGHT$(RS.| EMCA$I-25
Y INEXT

PRINT © bmm G TART -~ 1y

FOR N=1 TO 2:PRINT:PRINT RIGHT§(R%.LEN(ASI-25)
“HEXT

BET Kys:1F KYeI" THEM 26A

FOR M=1 TO 1000:NEXT

A ¥=A

REM Skt v bbb bbb bbb s vine
A REM #4¥¥¥¥ THE PROG TTSELF #¥%k¥é
REM #3444 ¥F b rpksbbssbbbbbsd by

A ONSUR £70:REM ¥4+ PRINT RORD #%¥
A IF CH=2 THEM CH=0:G0TN 510

@ GOTO 41Q

REM #ddkk¥ ENDING #d¥s¥
PRINT "TYTHTWITII"

PRINT "S"SC:IF SCHHI THEM HT=ef
FOR N=1 TD 2000:NEXT

A ¥=0:0=f+1

¢aTo 278

REM ¥¥#¥k# SHAPES NN ROAD #dwwe
RE="¥ #":RETLRN
R$="n " :PETIIRN

A RE="IEE B :RETURN

Ri="4 4" :RETIRM
BE="2+ 4":RETIRM
R$="x X":RETIRN

REM #¥¥4¥¥ PRINTING ROAD ¥¥¥¥&
N=¥+l

IF XL THEN PRINT:GNTO 732
PD=INT(RNDZ 1)%E)+1

ON RD GOSUR £0Q.610.620.620.544. €50

PRINT TAR(EHTHT(RNDCS)I¥9)) i BE:¥=0

PRINT A%
RETLIRN

REM ¥¥¥¥ MOVE CAR %¥¥¥

IF PEEK(CRY(>32 AMD PEEVC(CRYSM THEM CH=2:RETI
PH

GET K¢

IF KY$="2" THEN CR=CR-1

IF K¥$="M" THEN CR=CR+1

A IF KY¢="®" THEM CGOTO 166
A POKE CR.V:POKE CR4CL.Q
40 PETIIRN

PEATY,

1 W=R3AB78:51=3A274:5C=36372:POKE V.10:52=81+1:53=5

241

R=PEAR: POKESE. 27 D1$="Seeemam” : N3¢="Moe" :A
15="VBBNBBNOBDI" R25="1DRRNI"

D26=" MODOMD" : HA%="TES ¥ HHF BHANGHANTHEHE S
" ETH= R

1 IF PEEK(4@56){>Q THEN R=4096

P=R+1:READMOS : IFLOE=""THEN?
GATOS
GOSUR?2
L=0:RESTORE :RD=INT(RND{1}%R>
FORN=ATORD: READWOS : NEXT
LM=LEM{LO%) : PRINTHAS : PRINTIRE " MO A1 &
FORM=1TOLN:PRINT"#" ; :NEXTHN: T1$="000008"
FORH=1TN16@ :NEXT
POKES1.@:POKESC. 27 : GETKY$ IFKY4$=""THEN13
FORM=1TOLM
TFKY$=MID%(W0$. N, 1 Y THENPOKES] . 250 : POKESC, 255:60
To22
NEXTM:FORN=1TOLHN
TFKY$=MID$(WO%. N, 1)THEHGOTOLR
NEXTPRIMTD1$:D2¢;A24"W" ; ‘L=L+1:POKES1. 150:POKE
SC.24
FORN=GTOL : PRINT"N" ; :NEXT : PRINTKYS
OHLGOSUR27,2R8.29,30.31, 32,323, 24,35, 36, 37,38. 39,
44,41
£aTo12
PRINTD1S:ALE"I":
FORY=1TOM:PRIMT"NI" ; :NEXT :PRINTKYS
FORX=A+23ATOR+230+LN: IFPEEK (X)=182THEN26
MEXT:GOTN4€

€ H=hi+1:60TO1S

PRINTD1£:D24"W — " :RETURM

PRINTD14: 124" M :RETURN

PRINTD1%: D24, A24" W" :RETLIRH

PRINTD1£:D2¢" [RI MM CW1 TN OB COE O8I ORI OCWI "2 RE
TURN

PRINTD1$: 024" xpREr"2EN." :RETURN

PRINT Dis"¥ewBBLTL" :RETLRN -

PRIMTD1&"NBRL___" :RETLRN

PRINTD1#:A2%" ¥ 811" :RETURN

PRINTD14: A24" ¥ " : RETLRN

36 PRINTD14:A24$" WEh." - RETURN
37 PRINTD1$;R2¢" XL :RETURM
2 PRINTD1$:D3$:A2¢"7) &' :RETURN
28 PRIMNTD14:D3¢" BBl :RETURN

PRINTD14: D34 AZ$"IM" :RETURN

1 POKESE. 24 :POKES!, 128:PRINTD1$: A14" MM HOS : FORN=1

T010
FORX=1T0192 : NEXTX : PRINTDL " MMBBNBtAL-" - PRINTD
Buci e LLL LN I

3 FORX=1T0100 :HEXTX :PRINTD1¢" X0®BRRI B " PRINTDI$

iDRE"THBRALAR."
NEXTH:FORY=1TN1000 : NEXT : POKES1 . 8 IFSEDATHENSE=0

PRINT"'D2¢"NpBBIYOL HAVE LOST!!":GOTOSS
POKES1.@:FORI=1T010AR :NEXT : PRINT"TW"D24:A2¢" 'S

TSIALE"$ ¥

PRINTD14:A2¢" M¥LELL DONE!#%"

PRINTD1$; A2$" M #"A1$: ST FORH=128T02
SSETEPR

POKESC, N:POKES3. N

FORX=1T0100: NEXTX : NEXTN: POKESR. @: POKESC, 27 : SE=5
E+INT(S58-YAL(TI&))-(L¥50)

SE=INT(SE/1@) : SE=SE¥1Q

PRINT"THM"A24: STSA14"¥"SPCI1AY "¥"

FRINT"H"A2¢" MAMIELL DONE!#"

PRINT" SO A2¢"¥"SPCO1AY "$"A14:STE

PRINT"XMOLl NOW HAYE R SCORE 0OF:":PRINT A1$:SE

PRINT"¥@@iOLLD wYOUl LIKE ANOTHERGN?"

GETKYS: IFKYSOO"N"ANDKYSS Y THENS?

IFKY$="""THENR

PRINT"GOOD BYE!!":FORM=1TO100@:HEXT :PRINT"TE" :P
OKES1.@:POKES2.Q

POKES3. @ POKESC, 27 1 END

DATAFISH. CAR . ARACK . WATER. FTMISH. TRBLE. CARPET. VA
2E.FLOMER. DESK. CURTAIN

DATARETLIRN . CLIF . FORK . KNIFE . PAM, CLIPBOARD. PICTURE.
PLANT . BOOK., BLOCK, FIRE. ICE

DATARADIN. LIGHT, TELEVISION, CRSSETTE ., BECALISE LHE
H.WHERE . THERE. THEIR.FOSSIL

DATASNONKER . SCHONL , FEATHER . TERCHER ., WARK . PLAY . BE
T QUILT . ROAD. FATHER

DATAMOTHER . SON. SUN, DRUGHTER ., COLISTH, SWITCH. APPLE
- ORAMGE . PERR . BANANA

. DATAKARLLPAPER . RUG, FURNITLURE . RIKE . CYCLE . MOTOR, BU

LR.GLASS. DOOR. ATLAS

DATAGARS . RRICK . YELLOW. RED. MHITE. LEAF . LEAVES. MARD
O BROWN, BLUE, RAIN . WIMDOL

DATAPINK . INDIGO. PLIRPLE, BLACK . GREEN. YIOLET . LEMOM
+LILAC, GREY.RUST

DATAREM. PENCIL . DRUM. TRUMPET . PTIANQ. Y IOLTH. FOLLY .
WELLINGTON, SOCK, SHIRT

DATAYEST . JUMPER. TIE. TRQUSERS . BLOUSE . TEETH. EYES,
EARS . MOUITH. NOSE .. LEG, RRM

DATAFEET . THIMK,

PRINTHAS : POKESC. 27

! PRIMT"¥BIPOLI MUST DECIPHER THEMORD IN THE BLOCK

NF weeeR/ S, IF YOU FAIL."

PRIMT"YOL HAMG: "

5 FORN=1T703000:NEXT:POKESC. 24

L=L+1:0NLGOSUR27.28.29,30,31.,32.33,34, 35, 26,37,
33.39.40

IFLLISTHEN?R

POKESL, 122:FORK=1T015

FORM=1TOX%2@: NEXTN

FPRINTD1¢: A24" 0.0/

PRINTD1£; A24" XOmelml M

FORN=1T0X#%20: NEXTH

PRINTD14:A2¢" 0@l O "

PRINTD14: A24" ¥OQMALAR." : NEXTY,

POKE S1.@:FOR HN=1 TO 200@:MEXT M

PRINTHR®:POKESC, 27

PRINT"MIF YOU WIM.YOU SCORE:"

FRINT"XYm" : FORN=1T01002: NEXTN: POKESC., 21

FORX=ATO3ROSTEP1A

FORK=1T0100 :NEXTN: POKES1 . (X/18>+220

PRINTA2$" MSCORE =":¥:NEXT¥:FORN=1T0S0Q: NEXT

& PRINTA2¢"XMIPSHIT AMY KEYE":POKES].@:FORH=1TNiQ

A:NEXT
GETKYS: IFKY$=""THENS3
RETURN

RERDY.

GRAPH PLOTTING

This program plots a low resolution graph with
offsets. It is useful to show whether there are
trends before going into more sophisticated

analysis.

1@ REM LOW RES GRAPH PLOT WITH OFFSET ¥ AMD ¥ AXES

2@ REM ITEMZ TO BE PLOTTED ARE HELNM TH %0) AND VOO

3@ REM My 19 MAX YALLUE OF ¥ FOUMD IN ARRAY

4@ REM WY 18 MIN WALUE OF ¥ FOUMD TH ARRAY

S@ REM SIMTLARLY FOR MY GNTI NV

£/ REM NA T2 MA¥ NO, OF TTEMS TN BE PLOTTED

£S5 D=1:DEF FNRIXI=CINTCOM¥0)I+.535/0

£6 DIM ¥{20).9028)

7a

76 FOR T=1 TN 20

77 THPUT "M, 9" i¥CT5.WeTY TR ¥011=-398 OR ¥(1)=~999
THEM 72

78 NEXT

79 MY=R:MY=0:HY=X(1) THY=YC 1) (REM THITTALTSE LIMTTS

83

84

aa FOR T=1 T0 24

90 TF ¥(Tv=-933 OR Y(I)=-339 THEN NA=J-1:G0TN 15@:
REM END OF EMTRIES IN X OR ¥

190 IF XOTIOMY THEN MX=XCI):REM PLISH 1P MAY IF REQ
I'IRED

118 TF YOIO3MY THEN MY=Y(I):REM DITTO

120 IF XOTXCHM THEM N¥=XOTY:REM PUSH DOWN LOWER 11
MIT TF REQUIRED |

1280 IF YOIMMY THEM MM=Y(TY:REM DITTO

140 NEXT T
158 PRINT "2
162 FOR I=1 70 2Q:PRINT " I":NEXT:REM SET UP WERT?

CAL LEFT LINE FOR ¥ AXIS

178 PRINT""

18a FOR T=1 TQ 3Q:PRINT "Hm": MEXT:PRINT:REM SET U
P HORTZONTAL LINE FOR ¥ AXIS

REM ¥-A¥IS

PRINT FHACHY)

PRINT TAR(ITIFNACMK)

REM Y-RXIS

PRINT "¥"

MY$=CTRE(FNACMYI Y :FOR T=1 TO LEMCMYE)Y :PRINT MT
DECMYE T 10 NEXT T

204 FOR K=LENCMYSY-1 T0 15:PRIMT:MEXT K

20% NY$=STRE(FNACNYY)Y :FOR T=1 TO LEM(HY$) :PRTNT M1
TECMPE. T 10 HENT T

DQT}JTII Hll

REM GPAPH TTSRIF

FOR T=1 TO HA

RERCTY Y=

YP=18~1 Q% W=N) /MY =hY 3 HP=24 £ W= N 125/ MY =N

N N) M) = =
D ® DD DD
DR = D@D

HOJRAS IS]

£ i)) . s
DR RN A D

(LSO]

=

FOR =1 TO YP:PRINT"M": :MEWT |

PRINT TAR(NXPY: "4

PRIMT "o

HEXT T

PRIMT"S®" :GOTA 29@:REM HOLTI TO PREVWEMT ‘RPERTV/SQ
POTLING GRAPH

REM CHANGE 298 To EXIT TO NEXT PART NF YOUR PR
QAGRAM

(SIS I I (S)
o))

L 30
2R DD

D
B
i)

READY,

High resolution graphics can be slow but
obviously will give a more precise picture than
anything constructed above. One of the restric-
tions of CBM BASIC is that there are no
language commands for graphics, sound or
colour and all this manipulation has to be
done by use of POKE commands. This is illus-

trated by the high resolution graphics program
below, for the CBM 64, which will draw a
curve represented by the formula entered in
the formula section, in this case a circle. Note
that the X-like symbol in the listing is in
fact [I. Il is only shown in the cursor up mode
of listing.

100 rem hish resolution Plotting on screen (or 152
2 Printer)

110 sc=53281 :bd=532680:rem define screen and border
clour variables

120 Poke ac,1:Poke bd,6:Print "H3"

130 Poke €50,128:rem key rePeat

140 open 1.,6,1:rem 9raphics Printer (1528) if avai
lable

150 -

160 bm=8192:px=1:rem bitmap (bm) and Pixel on/off

170 print "clear screen?"

180 9et kys:if ky$="" then 180

190 :

200 :

210 Poke 53272,Peek(53272) or 8:rem switch display
gcreen to location of bit map

220 poke 53265.Peek(33265) or 32

230 rem enter bit maP 2 colour inPutmode (bit S of
vic 2 chip)

2;3 for i=1024 to 2023:pPoke i,1:next

2 H

260 if ky$="n" or ky$="N" then 300

270 for i=bm to bm+79959

280 if peek(i){>® then Poke 1,0

290 next

300 :

310 pPoke 53288,3

3209 :

330 for x=~10 to 10:y=Q:g90sub 520:next

340 for y=-10 to 10:x=0:90s3ub 320 next

350 Poke bd,S

360 rem MowkNRiorioRNOIMNKN RN

370 rem ok formula L]
380 rem NoikioriokikrokiolioiliolokloklcrkOk
390 r=2%6

400

410 for 1=0 to 360 step 10:rem steP trades sPeed {
or resolution

420 :

430 r=80:rem ¥¥¥ radius

440 x=r#sin(1%%/189)

458 y=r#cos(1¥X/180)

460

470 9osub 520

480 next

490 :

500 9oto 810:rem menu

310 :

520 rem Neololikioioiokiolioklol okl ¥
330 rem ¥E¥ setting Pixel Nolok

540 rem dlkioRRIIRICIIIIIOREIII
550 9osub 910:poke Pk,P

368 return

570 :

SQ0 rem MRkl NNk KOk
590 rem A% re-set Aok

680 rem BRIl

610 poke 53265,Peek{53265) and 223

620 poke 93272.21 ‘rem ¥¥ set char
set Pointer

630 pPrint "¥MEhi there"

€40 return

650 :
66O rem NNkl OOk ok
670 rem k¥ Printout N

680 rem Bomkkkisokiliikiolkekorik

690 poke bd.2

700 :

718 for y=@ to 199

720 for x=@ to 319

730 gosub 910

740 pspeek (Pk)

750 if P=(P or (21bit)) then Print#l,"m";x-1,-1ky:
Print#l, "d"ix, ~1%y

760 next x,y

770

780 poke bd.S

790 return

800 :

S10 rem sk ORISR NN

820 rem Wik last menu Ao

830 rem sekiiokioiilioRiioRsNR IR N NIk

840 pPoke bd.7

850 get ky$:if ky$="" then 850

660 if kys$="p" then 660

878 if ky$="x" then 90sub J80:end

880 if ky$="r" then run

3890 9oto 830

900

10 rem Aok NNk

920 rem Nk setting Position ok

930 rem AR IORNIIR KNI NI NN

340

950 xx=x+160

960 yy=100-y :rem invert Sraph

370 col=int(xx/8) rou=int(yy/8)
382 line=yy and 7

390 Pi=bm+rouk320+8¥zol+line
1002 bit=7={xx and 7)

1910 Papeek(Pk) or (2Mit)

1028 return

1232

~eads,

The above program can be easily adapted,
using different locations for the POKEs, for the
VIC 20, although you will be tight for space if
you try to do anything useful on an unexpand-
ed VIC 20. Sprites, however, are only available
on the 64 and as the manual does not give a
routine for generating them, one is included
here. The numbers to be used for POKEing
into the sprite data area are listed on the
printer at the end of the program.

10 rem sPrite generator

100 rem ob is start Poke loc of orid

1190 rem cl is colour for Pokes

120 rem v is start Poke loc of video chip

130 rem yn is a flag. (fill/not fill sPace on orid
)

149 rem sc is colour of screen,bd is colour of bor
der

150 sc=33281 :bdeT32080: ob=1109: c1wT5296-1024 :Print”
"poke sc,i

160 rem Wik Print toP row of nos Mk

178 print ";ifor n=l to 24:Print rights(strs
(), 1), inext:Print

180 rem W¥¥ Print orid Nk

190 for n=i to 21:x$="":{f n{10 then xg="
200 print "%";x$;:n; "Nl PPRPPPRPPPPPPPPPPPPPPRPPP"
210 next

220 pPrint" R, ¥
230

240

250 rem MRRmNsoRNoRNsRrsoRokioR NokmRNoRIoKNoKR
260 rem Wik key oPerations (move) NN
270 rem NokiokmokiorsokioRioRmooloroir
200 set kys:if kys="" then 280

290 bow=ob

300 if ky$="TI" then ob=ob+40:90to 390:dn
310 if ky$="N" then ob=ob-40:9oto 350:up
320 if ky$="N" then ob=cb+i:goto 390:rit
330 if kys="U" then ob=ob-1:90to 3950:1ft

85

86

340 if kys=" " or asc(ky$)=160 then nai:if ynwl th
en n=0

3%0 yn=n

360 if ky$="e" then 480:rem Wik ending

370

380

390 if Peek(ob){>80 and Peek(ob){>96+1268 then ob=b
o:rem WK check for off-9rid

400 poke ob,80:Poke ob+cl,3:Poke ob,96+128:poke ob
+¢1,12:if yn=1 then 420

410 poke ob,80:Poke ob+cl,3

420 9oto 280

430 :

440 :

450 ram KRR RNOK

460 rem Wk workin® out aprite L L

470 rem MHHMOKHORIIICOIOOINIKIORIORIORION

480 pPoke sc,6:dim sP(63):rem move dim to start {f
modified to recucle this

490 for l1=1 to 21

300 for 12=1 to 3

910 no=1023+((12=1)¥8)+(11%40)

520 for 13=i+no to 8+no

330 if Peek(13+45)m224 then m=m+21(8-(13-n0))

340 next 13

350 ap(rid=m:prisri+] m=Q

560 next 12

570 next 11

3560 :

590 ram NN printout Wk

680 open 4,4:cmdd Print"X" for n=@ to 62:Print sp(

6 n)iinext n:print#d

10 :

620 :

€30

640 :

630 :

660 Print"me"

670 v=53248:Poke v+21,4:rem sPrite 3

€60 Poke 2042,13:ram ¥k data loc

690 for n=@ to 62: Poke 832+n,sP(n) :next:rem Wik p
oke in data

700 y=100:x=y:Poke v+4i,1

710 get ku$:if ky$="" then 710

720 xx=x:yyay

730 if ky$="TI" then y=y+3:rem down

740 if ky$="X" then ymy-3:rem up

750 if ky$="N" then x=x+3:rem risht

760 if kys="lI" then x=x~3:rem left

770 if %0233 or x<O or ¥>233 or y<{0 then x=xx'y=yy

780 Poke v+d4,x:rem ¥ix loc of sprite 3

790 Poke v+3,y:rem Wiy loc of sPrite 3
800 soto 710

ready.,

Finally, you may be interested in the little
routine used to print these listings in 50 col
format for convenience of printing in this
book. First a listing must be made to the tape
by loading any program say PROGRAM for
which the listing is required, and typing in
direct mode

OPEN 1,1,1,”LISTING"”

...press play/record and wait for READY.
CMD1:LIST

...wait for the listing to finish, then
PRINT # 1 followed by CLOSE 1

Then load the program below, set up the
printer and run.

10 opPen 1,1,0,"1isting":open 4,4:ct=0

20 det#l,as:if st OB then 50

29 In$=lns+as

30 ctuct+!l:if ag$mchr$(13)then ct=0:90sub 60

48 if ct=50 then ct=0:g903ub E€Q:Print#4:Printh4,"

"e
¢

45 9oto 20

.50 Print#diclosel:closed

55 end
60 Print#d, Ins; : InSschr$(17) ireturn

ready,

VSECTION 4 Glossary of Common Terms

Addressing

The computer needs to talk to its memory and
to various peripherals. Each memory location
and peripheral has an address, usually unique,
which the computer uses to get it to accept or
send information. For non unique addresses,
the computer must have only one item at a
time responding or there will be trouble. It is
therefore important to ensure that a cartridge is
not fitted while extra RAM memory occupying
the same address is switched in.

Algorithm

The method used for solving a problem. As the
designer and programmer cannot solve the
actual problems the computer will meet, all
they can do is to provide it with the means or
algorithm required to solve these problems.

Array

A set of variables held as a single list e.g.
A(1),A(2)..... or as a multi dimensional array or
matrix e.g. B$(1,1),B$(1,2).. when variables are
related such as a set of cars which may be
identified by serial numbers 1 to 20. Then the
drivers’ names would be held as say NA$(N)
where N is the car number. Two dimensional
arrays are useful when comparing month-by-
month expenses for the 20 cars when EX(15,3)
could represent the expenses in March for car
number 15.

ASCII

American Standard Code for Information
Interchange. This is one of the standard con-
ventions for converting characters to numbers
as stored on a computer or sent along a
communications link. The other main stan-
dard is EBCDIC which differs only slightly.

Assembler

An aid to writing programs in machine code.
Instead of writing down the actual machine
code entries as must be done in POKE state-
ments, this allows the use of mnemonics such
as LDA (load A register). Not covered by this
book.

Base

Normal decimal numbers are to the base 10.
Other bases used are binary (2), octal (8) and
hexadecimal (16). Binary digits can only be 1
or 0, octal digits are between 0 and 7, and
hexadecimal digits are between @ and 15 (i.e.
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Whereas people are familiar with decimal,
computers work in binary. Three binary digits
can be dispayed as a number between 0@ and 7
(octal) and 4 binary digits can be expressed as
hexadecimal, so making these two particularly
useful in writing down long strings of binary
digits without making it difficult for the human
observer to convert them back again, as each
digit is individually converted to 3 or 4 binary
digits. For example decimal 63 is binary 111111
or OCT 77 or HEX 3F.

BASIC

Beginners All-purpose Symbolic Instruction
Code - the language supplied with almost all
microcomputers, both business and home, the
high level language described in this book.
High level means that it does the work of con-
verting your wishes from an English-like
language to machine code and memory storage
without troubling you with the details.
COBOL, FORTRAN and RPG are also high
level languages. Low level languages like
Assembler require you to know a great deal

87

88

about how the processor and some other chips
operate.

Binary

See Base.

Bit

An element of a computer. In almost all com-
puters today this element can be in one of only
two states represented by 1 and 0 ie. as a
binary digit.

Boolean Logic
The logic used in AND OR NOT statements

(q.v.).

Buffer

An area of memory held for temporary storage
before moving data around in larger chunks —
usually for writing out to cassette, which
requires 192 bytes, or to disk or printer. These
buffers are handled by the computer and do not
normally need any direct intervention by the
programmer. They can be in the computer
memory itself or in the peripherals.

Bug

An error, usually in software but sometimes
used to refer to problems in the design of a chip
or other hardware.

Byte

A contiguous set of bits, usually 8 (always 8 on
these machines) in number, occupying one
memory location. This width is sufficient to
hold an ASCII character, converted to a
number between 0 and 255, and this therefore
often represents one character, e.g. 65 is ASCII
code for ‘A’, 66 is ASCII code for ‘B’.

Code

Any computer language statements. In this
book code almost always means BASIC high
level language code.

Compiler

A compiler scans the BASIC code before it is
run and sets up the machine code ready for the
run. The BASIC interpreter normally used (the
one you get with the system) deals with every
line as it reaches it whereas the compiler has
scanned them all to produce more efficient
code. Unfortunately a true high efficiency
compiler does not to my knowledge exist at the
time of writing, but there are intermediate
compilers which can still improve speed
performance by about a factor of 5, and save
some space.

Default

This describes what will happen if you make
no positive decision in a particular case. For
instance, if you do not DIMension an array
before the program comes across it, its dimen-
sions will defaultto 11.

Device

Any piece of hardware e.g. DEVICE NOT
PRESENT as a message when addressing, say
the printer, means that the computer is not
getting the right response and therefore does
not recognise it as present. See Peripherals.

Function

A mathematical formula that can be defined at
the start of a program and then used as short-
hand within the computer (see FN), or its
ordinary English meaning as in ‘the function of
the keyboard is to allow data entry’.

Garbage

A term referring to the small pieces of memory
left after string manipulation has altered
lengths of strings and left spaces in between too
small to be useful. Garbage collection takes
place when the strings are shuffled about to
create one large usable space. See FRE.

Hex
See Base.

1/0

The standard abbreviation for Input/output to
or from the computer from its peripherals or
other items in the outside world.

Input
Input is information coming into the computer
from outside.

Interface

The contact between a computer and its peri-
pherals or its contact with the outside world
through the RS232 interface or the user ports.
The RS232 interface is a standard hardware
socket, but the VIC/CBM 64 only has 5 volt
output and must be converted to 12 volt stan-
dard for compatibility with most other RS232
devices.

Keywords

Words having a specific meaning to BASIC
such as GOTO. Using long BASIC variable
names, there is always a chance that variables
may be confused (by the Interpreter) with Key-
words. TOTAL is confused with the keyword
TO and will give a SYNTAX ERROR.

Kilobyte (k)
One thousand bytes, or to be exact 1024 bytes
of memory.

Logic

Logic is the structure on which we try to build
our computer systems. The computer is a hard
taskmaster and reveals the flaws in our logical
powers! (see also AND NOT OR boolean logic)

Logical line
A logical line is up to 80 characters long.
Because the screen cannot hold that number of

characters, there can be more than one screen
line per logical line. When entering BASIC
lines these .are only terminated by a
<RETURN>. The screen lines have little
significance to the program except when work-
ing on screen displays.

Machine code

The natural language of any computer, consist-
ing, fundamentally, of a series of ON-OFF
switches, represented by the binary numbers @
and 1.

In an 8 bit computer, each machine code
instruction is provided by a block of eight
binary digits, which for convenience, we
normally convert to either Hexadecimal or
decimal numbers, as long strings of zeros and
ones can be unwieldy and difficult to re-
member.

Short lengths of machine code can be created
by POKEing numbers into RAM locations.
This can be done only for a few locations, with-
out becoming thoroughly confused, and it is
better to use an Assembler for any significant
lengths of code. Remember that machine code
does not insulate you from crashing the system,
like BASIC does, so frequent SAVEs to disk of
any BASIC using POKEs and SYS statements
is desirable. It is essential to SAVE any
machine code program before running it for
the first time.

Nesting

Nesting is the very useful technique of placing
loops inside each other in order to process
arrays or other large structured data. FOR
...NEXT loops can be nested, as can sub-
routines (GOSUB). Examples abound in the
main text (FOR,GOSUB) and in Section 3.

89

90

Octal
Not often used now — see Base.

Output

The transfer of information from the computer
to its peripherals or the outside environment
(e.g. network).

Peripherals

The devices attached to the computer to allow
it to interact effectively with the outside world.
Examples are monitor, printer, tape cassette
unit and disk drive. See Device.

Port

A plug connection for peripherals. The user
ports are plug connections for anything you
care to connect. However as these ports con-
nect directly to the works of the computer
caution is advised!

RAM

Random Access Memory is memory on chips
within the machine, the contents of which can
be changed as required by the programmer or
the interpreter.

Real

Means that the facility (e.g. memory) you are
using is actually present on the machine. Not
relevant to most micros — all the memory you
can access by POKE and PEEK is really there
—see Virtual.

Real numbers
Numbers expressed to one or more decimal
places. The opposite of integers.

ROM

Read Only Memory is memory with a fixed
pattern burnt into the chips which the com-
puter can interpret as either data or programs.
The BASIC interpreter is held in this way, and
read into RAM on starting the CBM 64.

Software
Programs used to make the computer operate.

Statement
A statement is BASIC code terminated by a
colon ora <RETURN >, whichever is sooner.

Structured Programs

These are built up of subroutines (or the
equivalent in other languages) in a systematic
and ordered manner. GOTOs are rare as each
subroutine returns only to the subroutine that
called it, or to the main program code which
consists mainly of a series of GOSUBs.

Syntax

The structure or ‘grammar’ of a language,
whether it is English, German or BASIC is
known as the syntax. Bad BASIC syntax will
produce a SYNTAX ERROR and no further
progress will be possible until this is corrected.
In other words, syntax is the rule book for the
language.

Transparent

The facility you are using is not visible to you.
Loading and use of the BASIC interpreter is
transparent because it all happens without you
having to know any more than the rules of the
BASIC language. See also Virtual.

Variable

A variable is the name given by you to a loca-
tion or locations in memory where information
is held. BASIC decides where to put the varia-
ble and how much space to allow for it from
the way you use it and from its name termina-
tor if any (i.e. $ for strings and % for integers).
For example if you say A=2 in your program,
BASIC will check to see if A exists and if not
will create a location for it. It will then put the
value 2 in that location. If A already exists, the
new value you are assigning to it will overwrite

(replace) any previous value.

Virtual

This term is used when your machine pretends
it has facilities that it does not have. Some
machines have only 64 kbytes of memory but if
the user wants to use more than that, some of
the 64k can be stored on disk and replaced by
disk memory which is given addresses above
64k, so appearing to the user (you, that is) as if
it had, say, 128k. Not a facility provided by
CBM machines, but you can use it in your own
programs to store part of a spreadsheet on disk
if it’s too large to go in memory.

Remember:

If you can see it and it’s there, it’s real

If you can see it but it’s not there, it’s virtual

If you can’t see it but it’s there, it’s transparent
If you can’t see it and it’s not there, it’s gone!

Appendix A - Control Characters used in
the Programs

"®" - HOME

ll:’ll - CLR

“M" - CURSOR DOWN
"7 - CURSOR UP
"' - CURSOR RIGHT
"81" - CURSOR LEFT
"@" - REVERSE ON
"®" - REVERSE OFF

RERDY.

RERDY.

n 'Il
" =II
" ‘r’n
" kll
" an
" iiﬁl
" gll
n mn
n ill
"a“
" =II
" ull
L llll
n Hn
n llu
" .Ol

BLACK - CTRL & 1
WHITE - ETC

RED

CYAN

FiRPLE

GREEN

BLUE

YELLOW

F1 - FUHCTION KEYS
F2

F3

F4

FS

F6

F?

F8

control characters used in the Pro9rams

L all
" En
" EI"
n ml!
" ll"
" “"
B~
n au
n ="
n a"
n mll
L gll
" a“
"Ii“
" gu
" ‘:'Il
"y
n "II
n =ll
" ’l"
" Hll
" !ll

g

[N TR N T T A AN T AN FNY N I N A N N I NN B JENE BN NN B)

home

clr

cursor down
cursor up
cursor risht
cursor left
reverse on
reverse off
black - ctrl & 1
vhite - etc
red

cyan

Purple

Ireen

blue

yellow

f1 =~ function keus
f2

3

4

3

fé

7

a8

91

ASCII

92

Appendix B — Characters Printed for ASCII Values
UPPER LOWER

33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
s8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

UPPER LOWER ASCII

!
L 1]

QT0ZICAGHIOTIMEOWIAIVIAS ~YONOAALWONHAON | +¥vA\PIhE

JVOSB#FhﬁfﬂﬁOQﬂUﬁEQVHh“"mmﬂmuhwnﬂﬂ\'I‘+*Vﬂ\kxh#!_

82
83
84
85
86
87
88
8
99
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
128
126
127

161
162

|1 1=2 1 $3umANLCXECCHNT

1™ A3-%40_ 20X . ~¢| 81\ /T\,2 "]

1™ 2%-"4N<XE<CANANVOZIrAGnIQMMuOWD | taubnNEXELE R

ASCII

163
164
165
166
167
168
169
170
171
172
173
174
173
176
17?
178
179

UPPER LOWER

CLOLN/T A= =218 "t Ll D ™"t bl d rar VR8I

NAQUAZIrAGHIATMIMBOWD | "L 4" S) | |a™ T2 Fald rar ST _87I

ASCII

212
213
214
213
216
217
218
219
220
221
222
223
224
223
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
233
234
255

UPPER

™ 43-"40_30X.~

AL "L @™ 74 bl ra xR _E7

LOWER

ZX-®4LNLCXELCH

XL "N ™ L Fald ra N2 87

Appendix C Some Useful Memory

Locations

HEX
ADDRESS

DECIMAL LOCATION

vica2g :

COMMODORE 64

DESCRIP-
TION

00091-9002

o091

9913

go16

0926-992A

g928-992C

992D-9@2E

0@2F-g030

0931-9932

9033-9934

9037-9938

1-2

19

22

38-42

43-44

45-46

47-48

49-50

51-52

55-56

19

22

38-42

43-44

45-46

47-48

49-5¢

51-52

55-56

User jump to
location (high
byte - low byte)
651@ On-Chip
8-Bit 1/0 Regis-
ter

FlagINPUT
Prompt. POKE
19,1 suppresses
the ? but also
affects PRINT-
ing, so must be
restored to @
immediately
afterwards
Pointer to
temporary string
stack-35 in
here supresses
line numbers in
listings

Floating Point
Product Of
Multiply
Pointer to start
of BASIC
program
Pointer to start
of variables
(following pro-
gram)

Pointer to start
of arrays
(following vari-
ables)

Pointer to posi-
tion after end of
arrays

Pointer to

~ bottom of string

storage (moving
down)

Highest address
used by BASIC

P339-9@3A
993B-993C
g@3D-P@3E

PO3F-0040
99410942
oe43-9@44
90945-90946

2047-9048

2049-904A

297A-0978

J98B-P08F

9099

9091

29092
9998

9999
g@9A
9998

QOAD-OGA2
90B2-3@B3

ooB8
g0oB9
goBA
g@BB-2@BC

57-58
59-60
61-62

63-64
65-66
67-68
69-70

71-72

73-74

122-123

139-143

144

145

146
1562

163
164
155

160-162
178-179

184
185
186
187-188

57-58
59-60
61-62

63-64
65-66
67-68
69-79

71-72

73-74

122-123

139-143

144

145

146
162

153
154
155

160-162
178-179

184
185
186
187-188

Current BASIC
line number
Previous BASIC
line number
Pointer to
BASIC state-
ment for CONT
Current DATA
line number
Pointer to cur-
rent DATA item
Vector for input
routine

Current BASIC
variable name
pointer

Current BASIC
variable data
pointer

Index variable
pointer for
FOR/NEXT
Pointer to cur-
rent byte of
BASIC text
Floating RND
function Seed
Value

Status word ST
Flag:STOP
key/RVS key
Timing constant
for tape
Number of open
files or pointer to
file table
Default input
device(@)
Default output
device(3)

Tape character
parity

Clock

Pointer to start
of tape buffer
Current logical
file number
Current secon-
dary address
Current device
number
Current file
name pointer

93

@9Cs

g@ce

gac7

ggcs

9@C9-gaCA
ggcc

gaco

@@CE
PaCF
9@Dg

g9D1-9gD2
29903
ggD4

9905
@906
ggD8
JOF3-gaFa

9277-9289
92819282
9283-9284
9286

94

197

198

199

299

201-202
204

205

206
297
208

209-219
211
212

213
214
216
243-244

631-64¢9
641-642
643-644
646

197

198

199

200

201-292
2g4

205

206
297
208

209-219
211
212

213
214
216
243-244

631-640
641-642
643-644
646

Current key
pressed
CHR$(n) #=No
key

Number of
characters in
keyboard buffer
Inverse video on
or off: g=Off
:1=0n

Pointer to end of
logical line for
INPUT

Cursor X-Y pos,
start of INPUT
Cursor blink
enable @ =flash
cursor
Timer:Count-
down to toggle
(switch on or
off) cursor
Character under
cursor

Flag:Last cursor
blink On/ff
FlagINPUT or
GET from key-
board

Current screen
address

Cursor position
online
Flag:Editor in
quote mode
OFF=g: ON=1
Length of screen
line (physical)
Screen row
where cursor is
Flag:Insert
mode >@=INST
Painter to cur-
rent area of
colour
Keyboard buffer
queue

Pointer to start
of memory
Pointer to top of
memory
Current char-
acter colourin
range @-15

@287

@288

@289

@28A

@288
@28C
@28D

@319
2311-9312
2314
@33C93FB
PAPO-9T7ET
@7F8-QGTFF
GAG3-GFFF
#80@-9FFF
1090-11FF
POG-CFFF
D@@G-DFFF

1E@Q-1FFF
900d

901

647

648

649

659

651
652
653

788-789
828-1919

1924-4995

4996-4607
(expanded)

768@-8191
(unexpanded)
36864

36865

647

648

649

650

651
652
653

784
785-786

788-789
828-1919
1024-2023

20492947

2048
40959

49152-
563247

53248~
57343

Background
colour under
cursor

Top of screen
memory (page
no.)

Size of keyboard
buffer (queue
length), normally
10.
Flag:REPEAT
key used $8@
(dec 128)
=repeat all
Repeat —speed
counter
Repeat—-delay
counter

Bits@,1 and 2
are flags for
keys SHIFT
CBMCTRLeg.
7 =all three keys
depressed

USR function
jump instruction
USR address
low byte/high
byte

Clock interrupt
Tape |/0 buffer
byte screen
memory area
Sprite data
pointers

3K expansion
RAM area
Normal BASIC
program space
Screen memory

RAM 4996
bytes
Input/Output
devices and
colour RAM
Screen memory

Horizontal posi-
tion of screen -
normally 12
Vertical position
of screen
—normally 38

90@2 36866 Width of box—
normally 150

90PA-90FE | 36874-36878 Sounds and
volume

Appendix D Error Codes

BAD DATA indicates that string data has been
received from a file where the program expected
numbers, i.e. the program was reading the received
information into numeric variables.

BAD SUBSCRIPToccurs when an array is being used
and the subscript (or for a multi-dimensioned array, one
of the subscripts) is out of the range specified in a DIM
statement. If no DIM statement has been entered by
the programmer, the subscript is assumed to be
between @ and 1. For example 12 A (X)=25 will

give a BAD SUBSCRIPT report if X is not within the
DIMensions set in the DIM A () statement at the time
that line 12@ above is executed.

BREAK is not really an error message. It occurs
whenever the program was stopped by the <STOP>
key or a STOP in the program. Variables can be altered
before continuing.

CAN'T CONTINUE will be displayed ifa CONT is
typed when the program is unable to resume where it
left off. This will occur for a syntax error because the
statement cannot be understood and will also occur if
the program has been edited, as it has then been
rearranged in memory, and all variables cleared. If the
program has stopped because of a syntax or similar
error, it is possible to continue running the program by
GOTO avalid line. This can be useful if the error has
occurred in a line such as a PRINT statement which
does not affect the logic of the program. GOTO the line
logically following the error line will allow the program
to continue while still retaining the values of all
variables set. Variables can be altered at this point if
desired, before resuming.

DEVICE NOT PRESENT usually appears if the device
referred to is not present — exactly as the message
says! You may have forgotten to plug it in or switch it
on or initialise it, or you may have it on the wrong
channel number. (Disk is usually 8 and printer 4, but
they can be changed - see the manuals.) Sometimes

after a read or write error while using disks the error
will appear on trying to SAVE a program. This can be
cleared without losing information by a VERIFY.

DIVISION BY ZERO. As you will remember from
school this is not allowed in the real world.

EXTRA IGNORED. Too many items in response to an
INPUT. This usually occurs because a comma has
been unintentionally included in response to an input.
The last item(s) entered are rejected.

FILE NOT FOUND means what it says - i.e. no file of
this name on disk.

FILE NOT OPEN means that you have tried to use a
file not yet opened. Check your program logic.

FILE OPEN. Once a file has been opened it cannot be

" opened again, nor can the same number be used to

open any other file. Close it before trying to continue.

FORMULA TOO COMPLEX. You have to be pretty
smart to get this one! Break it down into simpler
expressions until both you and the computer can
understand it.

ILLEGAL DIRECT occurs when using statements
such as INPUT in direct mode. Such statements are
only valid within a program.

ILLEGAL QUANTITY. A number is out of range. This
can happen for a variety of reasons and is explained
within the main body of the book in the places it can
occur. It can also occur anywhere where an integer is
> 32767 or < -32768 or in extreme circumstances
where ordinary numerics are greater than about 1@ to
the power of 38 or less than 10 to the power-39
using the E notation. It is difficult to imagine what you
would be doing to get either of these last two errors.

LOAD (ERROR) means a corrupt tape, dirty heads or
perhaps an incorrect disk initialisation causing the disk
directory (BAM) to become corrupt. Always give your
disks different identifiers and ID numbers and then this
problem should not occur.

NEXT WITHOUT FOR is usually obvious but watch
out for nested loops where you have inadvertently used
the same variable in two FOR statements.

NOT INPUT FILE. You told the computer it was an
output file so you can’t now go reading from it.

95

96

NOT OUTPUT FILE. No writing to an input file!

OUT OF DATA means your DATA is finished and you
are trying to go on READing it without having first
done a RESTORE. Have you missed out a DATA item?

OUT OF MEMORY. This can occur for two reasons.
(a) The RAM is full because you have written a large

program or have put a large number of strings in

memory during program execution. Check the memory

‘with a FRE before running the program, and another

FRE after the program has carried out a few
manipulations. A clue to string problems is that the
program will stop for a few moments to a few minutes
while the poor thing rushes around memory tidying up
strings to make room for more, a process known as
garbage collection. The cure is to tidy up your program
or data strings (keep some on file perhaps) or to expand
your VIC, or to buy a compiler for your 64.

(b) There are too many nested GOSUBs or FOR
loops. This is indicated by the fact that a FRE reveals
plenty of memory. It is rare for this problem to occur,
except as a result of a program error where incorrect
logic has caused FOR loops or GOSUBs to be called
repeatedly from within themselves. See FOR and
GOSUB.

OVERFLOW means that a calculation gives a result
which is too large for the numeric variable to handle i.e.
greater than 1.7@141884E+38. Note that this error
does not occur for integers which always give ILLEGAL
QUANTITY as error.

REDIM’D ARRAY occurs when an array has been
dimensioned twice or used (and thus dimensioned by
the computer) before the DIM statement. Note that
this means that DIM statements at the start of your
program should not be included in any loop, but only
executed once at the start of your program.

REDO FROM START means that letters instead of
numbers have been typed in response to an INPUT.
The problem can also occur because of the INPUT
(g.v.) bug.

RETURN WITHOUT GOSUB means what is says. It
usually arises because you have forgotten to include an
END or STOP between the main program and the
subroutines, or a RETURN is missing at the end of a
previous subroutine. This allows the program to

continue into the wrong area of code where it meets a
RETURN without having been sent there.

STRING TOO LONG -only 255 characters maximum
are allowed in a string.

SYNTAX indicates that the computer cannot
understand the intention of the programmer in writing
the BASIC line. Usually the problem is a missing
comma or THEN or mis-spelt BASIC word. The
machine actually does know a bit more than it tells you,
as it may have got half way along a line before
discovering a problem, but it only actually gives you the
line number. There are two solutions to a SYNTAX
ERROR that cannot be easily found. One is to get a
programmers toolkit which has a facility to point to the
position where the problem was found, and the other is
to break down your statement line until the syntax
problem has become apparent. Look particularly for
peculiarities like BASIC keywords embedded in
variable names if your names are longer than 2
characters.

TYPE MISMATCH appears when a numeric type is
assigned to a string variable or vice versa. Note that
this error does not appear for assignments of integers
to numerics and vice versa. Truncation can occur in
these circumstances (see Introduction).

UNDEF’'D FUNCTION. User defined functions must
be defined in a DEF FN statement before use.

UNDEF’'D STATEMENT means thata GOTO or
similar statement refers to a line number which does
not exist in this program.

VERIFY occurs if the information read off the tape or
disk is not the same as that present in the computer.
Check that the tape heads are clean and that the
drive/tape unit is away from possible sources of
interference including the TV set. Then check that you
are verifying the correct item and try the SAVE and
VERIFY again.

