

The Commodore Programmer's Route Map
for the Commodore 64 and VIC 20
Commodore Basic

Gordon Hill

W. Foulsham & Co. Ltd.
London· New York· Toronto· Cape Town· Sydney

-.

ACKNOWLEDGEMENTS
I am indebted to my parents, Mr and Mrs L.G.
Hill for checking my use or abuse of the
English language and the readability of the
book, and to John Spence for his detailed
checking of the text for technical meaning,
grammar and punctuation. With the help of
Peter Jennings and my children Martin,
Timothy and Susan, who ran all the programs
or examples given in the book, a number of
errors and omissions were rectified. I am very
grateful to them for their help.

W. Foulsharn & Company Limited
Yeovil Road, Slough, Berkshire, SLl 4JH

ISBN 0-572-01284-5

Copyright© 1984 W. Foulsham & Co. Ltd.

All rights reserved.
The Copyright Act (1956) prohibits (subject to certain
very limited exceptions) the making of copies of any
copyright work or of a substantial part of such a work,
including the making of copies by photocopying or
similar process. Written permission to make a copy or
copies must therefore normally be obtained from the
publisher in advance. It is advisable also to consult the
publisher if in any doubt as to the legality of any copying
which is to be undertaken.

Photoset in Great Britain by
M. B. Graphics (Typesetting) Services
and printed in Great Britain by
St Edmundsbury Press, Bury St Edmunds, Suffolk.

PREFACE
There is now a wide variety of books available
for the CBM home computers, but few of them
really get stuck into the practical problems that
affiict any programmer once he is past the
beginner stage. This book can't do the work for
you, but it can help you get things working in
several ways.

Right at the start when you begin to use your
machine with the help of your manual, you
will often find an explanation difficult to
follow. Reference to this book may help by
giving another way oflooking at things.

In Section 1 it gives you an idea how good
programmers - professionals and amateurs -
go about designing programs, and the types of
problems they tend to run in to.

Section 2 will help you with BASIC language
problems, how to get the best use from it and
what to look for if it fails to work the way you
wanted it to. Examples for most of the key­
words help you to understand their purpose or
can be used as part of your program.

Section 3 gives you a number of working
routines that you can include in your pro­
grams, or you can use the ideas to write similar
routines of your own.

The rest of the book contains useful refer­
ence information missing from or not easy to
find in the manual that comes with your
machine.

Commodore BASIC, as used in the VIC 20
and CBM 64 is not very friendly in comparison
with some other dialects around and in com­
parison with the all-singing - all-dancing
BASICs used by many home computers. For
instance, while CBM BASIC has about 60
statements and functions, some other

machines have 100 or more. Many regard it as
primitive or even archaic (it dates from about
1977!). Where else do you find a computer like
.the CBM 64 that requires half a dozen five
figure POKEs to play a single note? But that's
not the whole story. The limited vocabulary
means a more compact interpreter (meaning
more memory for your program) and often
more efficient code - provided you understand
the subtleties and nuances of the language.

Programmers who have used other machines
will find Section 2 a rapid reference to the
particular qualities of this BASIC and the
examples here and in Section 3 illustrate many
ways in which the language can be used to
overcome its apparent limitations.

Your computer is a very powerful and versa­
tile machine and this book will help you to get
the best results from it.

CONTENTS

Section 1 Introduction
INPUT 33
INPUT# 35

The Aim of the Book 6 INT 36
LEFT$ 37

Writing in BASIC 7 LEN 38
Programming Hints 10 LET 38
Arithmetic 10 LIST 38
Comparisons 11 LOAD 39·
File Handling 12 LOG 40
Creating Serial and Random Access flles 13 (MERGE) 41
File Buffers 14 MID$ 41

Section 2 Basic Functions
NEW 42
NEXT 43
NOT, 43

ABS 17 ON ', 44
AND 17 OPEN 45
ASC 19 OR 46
ATN 20 PEEK 48
CHR$ 20 POKE 49
CLOSE 20 POS 50
CLR 21 PRINT 50
CMD 22 PRINT# 51
CONT 22 READ 52
cos 23 REM 53
DATA 23 RESTORE 54
DEFFN 23 RETURN 55
DIM 24 RIGHT$ 55
END 25 RND 55
EXP 25 RUN 56
FN 25 SAVE 57
FOR 25 SON 58
FRE 28 SIN 58
GET 29 SPC 58
GET# 30 SQR 59
GO SUB 30 STATUS 59
GOTO 31 STEP 60
IF 32 STOP 60

STR$ 60 Default 88
SYS 61 Device 88
TAB 61 Function 88
TAN 62 Garbage 88
TIME 62 Hex 89
USR 63 110 89
VAL 63 Input 89
VERIFY 64 Interface 89
WAIT 64 Keywords 89

Kilobyte 89

Section 3 Useful Routines Logic 89
Logical line 89

Introduction 65 Machine code 89
Sort 66 Nesting 89
Numeric Check 68 Octal 90
Random Groups 69 Output 90
Base Converter 70 Peripherals 90
Business Forms 71 Port 90
Tape Handling 79 RAM 90
Printing 81 Real 90
Game 81 ROM 90
Graph Plotting 83 Software 90

Statement 90
Section 4 Glossary of Terms Structured programs 90

Syntax 90
Addressing 87 Transparent 90
Algorithm 87 Variable 90
Array 87 Virtual 91
ASCII 87
Assembler 87 APPENDIX A CONTROL CHARACTERS
Base 87 USED IN THE PROGRAMS 91
BASIC 87
Binary 88 APPENDIXB CHARACTERS PRINTED
Bit 88 FOR ASCII VALVES 92
Boolean Logic 88
Buffer 88 APPENDIXC SOME USEFUL MEMORY
Bug .. 88 LOCATIONS 93
Byte 88
Code 88 APPENDIXD ERROR CODES 95
Compiler 88

SECTION 1 INTRODUCTION

6

The Aim of the Book
This book is intended for those users or owners
of a Commodore VIC 20 or CBM 64 who aim
to be serious programmers and would like a
more in-depth guide than that provided by the
user handbook. It can be used in conjunction
with the handbook, or by itself for those who
are already acquainted with BASIC. Those
who have spent some time programming in
PET or VIC BASIC may still find that this
book allows them to make fuller use of the
facilities of the language. Converts from other
BASICs will find that the detailed descriptions
of Commodore BASIC functions given here
provide the means for a rapid transition.

The book contains detailed descriptions of
all BASIC functions in Section 2, and some
general information and useful routines in
Section 3. The detailed descriptions are in­
tended to overcome the frustration felt by
programmers who know where a program is
going wrong through normal debugging
methods, but are unsure exactly how the
BASIC functions operate. For instance, many
programmers have been held up for hours on
the bug in the INPUT (q.v.) function. Section 3
gives a collection of commonly required
subroutines, mostly built into programs, which
can speed up development of a program either
by the direct incorporation of routines into
your program or by showing ways in which
problems can be tackled.

Hardware is not dealt with in this book.
However, one of the major plus points for the
VIC 20 and CBM 64 is the ease with which

Commodore supplied or compatible acces­
sories can be attached, and the way in which
they operate without either affecting the
operating system or taking away memory from
the BASIC RAM area. Most users will there­
fore be able to attach and use these for simple
applications such as LOADing, SA VEing and
PRINTing without too much difficulty. Of
course, for more sophisticated applications and
many disk applications, a deeper understand­
ing of the peripheral operations is required.
These are all explained in the relevant man­
uals, but are not easy for many people to
understand and require careful study. For this
reason, I have explained certain aspects of file
handling at some length at the end of this
section.

Writing in BASIC
Writing short programs in BASIC is not diffi­
cult with the aid of.the guide which comes with
the computer, or other introductions to the
language. However, writing more complex
programs speedily and efficiently is more diffi­
cult than most people realise until they have
tried it themselves. Hours can go by like
minutes when debugging programs.

There is no easy solution to this (that's why
trained professional programmers are so well
paid), but it is very easy to ignore the problem
until much time has been wasted. Even profes­
sional programmers working on large software
projects have fallen into the trap of believing
that the programs they have undertaken would
be easier to write than they in fact turned out to
be, causing expensive disasters.

This problem of writing large and complex
programs was not realised until about 15 years
ago because before that, most computer hard­
ware was not powerful enough to develop
really sophisticated programs. At that time the
largest computer available to me at Edinburgh
was the University Atlas which cost (as I recall)
several hundred thousand pounds and had
only 64 kbytes of main memory! The only
'micro' we had was an Olivetti Pl01 which was
driven by an electric motor like the old
fashioned calculators you may have read
about. Then, in the late sixties, as powerful
computers began to become available to more
and more people, it became possible to create
complex systems which could only have been
dreamed about previously. Few people foresaw
the problems of complex software and this led
to the software crisis of the sixties when many

sophisticated systems proved much more diffi­
cult to create than expected, or failed
altogether.

To understand why this happened and why
it will also happen to your programs, unless
you take due precautions, think of a program
of 100 lines. You can probably completely
understand what you have written and can go
almost at once to the piece of code that carries
out a given task. To write two similar programs
of 100 lines each will obviously take about
twice as long as writing one. To write a
program of 200 lines combining two 100-line
programs requires not only the writing of the
two modules but also the process of joining up
the code and ensuring that the two functions do
not interfere. In addition, it becomes more
difficult for you to remember exactly what you
have done and where.

To put it another way, for every line of code
you write there is a probability (perhaps 1 % for
each line in a 100-line program) of it interact­
ing undesirably with another line of code in the
program (i.e. causing a bug). The larger the
program, the more chance there is of this
(perhaps 3% for each line in a 200-line pro­
gram etc), until one reaches the stage where the
creation of a new line is almost bound to
introduce a bug somewhere else. Worse still,
the changing of a line somewhere to cure a bug
will create one or more different bugs else­
where in the system, leaving a situation where
a program can never be made to work
properly. This problem requires the use of
special design methods to minimise the inter­
action between different parts of the program.

7

8

?

~N
You will probably think that all this doesn't
apply to you and that you will just be careful
not to make mistakes. Well, don't forget I told
you so!

To write really complex programs requires a
knowledge of design methods beyond the scope
of this book, but a methodical approach
following a few common sense ground rules
will serve well for the average 100- to 200-line
program and will pave the way for more com­
plex professional type of programming later.

. Design and procedural suggestions are as
follows.

1. Before switching on the machine or open­
ing a BASIC manual, work out what you want
to do and write it down in pencil on any handy
piece of paper. Check it over to see if all your
required features are present, but resist the
temptation to add features that can be added
later after the initial program has been tested
out.

Then work out the steps you will need to
take to do it, also in pencil. Unless you are
possessed of a very logical mind and have a
clear idea of what you want to do before you
start, you will fmd yourself making much use
of the rubber; hence the suggestion that you
design in pencil. However keen you are to get
on with the coding, remember that it is much

easier to play about with your ideas in pencil
than to amend reams of code, particularly if
you don't have a printer. (For meaning of code
as used in computer terms see the Glossary in
Section 4).

If you want to check out a particular
machine function - perhaps to time nested
FOR loops - then by all means write a program
directly onto the machine, but don't be
tempted to do serious work this way.

2. When you have worked out your ideas,
make up some code (i.e. a series of BASIC
statements) to do it in the simplest possible
way, allowing for non-essential options to be
added later, and don't worry too much about
sound and colour. Take particular care to get
the code right on paper before typing it in,
particularly if you don't have a printer.

3. Type the code into your machine, SAVE it
and try it. If (or in most cases when!) it doesn't
work, first check that your program has been
typed in correctly and then that it follows the
logic of your design by checking it line by line.
As you make corrections on the machine,
mark them on your program sheet so that you
know exactly where you stand, or periodically
produce a listing on your printer. Check any
BASIC statements you are doubtful about
under the appropriate heading in this book.

4. If the program still doesn't work and you
cannot see anything obviously wrong with it,
try a process of elimination by using a toolkit
(see below) or by placing STOPs or PRINTs at
various places in the program and using CONT
to continue the program from STOP to STOP.
This will allow you to follow the path the
program has taken and at each STOP you can

check all variables to see if they have the values
you expect. It is worthwhile performing a "dry
run" to see exactly what the variables ought to
be at any given point in the program, by work­
ing manually through the BASIC, otherwise it
is easy to convince yourself that the variables
are what you expect simply because they look
reasonable.

For example: 10 A=1 :8=2
20C=A+B
25STOP
30D=A*B

when STOP is reached ?A should give 1
?B should give 2
?C should give 3

and ifthe program has run for the first time:
?D should give 0

D, of course, should be zero because we have
not yet set it. However, a very common prob­
lem that arises in mid program is that variables
that should have been, say, zero have been set
to another value elsewhere in the program. So
be careful not to assume it is zero until you
have checked it.

Remember that as soon as you change the
program, even just by placing the cursor on a
program line and pressing <RETURN>, all
values are lost (become 0), strings are cleared
and CONT is disabled.

The use of a toolkit, mentioned above, can
simplify coding and debugging in a number of
ways such as automatic renumbering of lines,
tracing the progress of a program by displaying
the line numbers on the screen, explaining the
'syntax error' in more detail, single-stepping
the program line by line and dumping all
variables to the screen. Your local dealer will
have details of toolkits available for program
development. Although useful, a toolkit will
not compensate for poor program design.

5. Once you have confidence that your pro­
gram is working as it should, then proceed to
add colours and sound as required and tidy up
or rearrange the screen. A thorough program
check is now in order, using the program in as
many ways as you can imagine, including
invalid commands or replies. If possible get
someone else to run through it as well. This
person need have no knowledge of program­
ming and can be a friend or someone in the
family who would like to try out your program
in the same way that arcade games are used by
people with no knowledge at all about pro­
gramming. When he has finished, be prepared
to accept constructive criticism with a good
grace, even if some of it is not in your opinion
valid, otherwise you may not get the same help
again!

At this point you will have discovered the
"wouldn't it be nice if' syndrome. Make a list
of all the nice goodies you would like in your
program and select the ones you will use.
Don't choose any that involve much rewriting

9

IO

'<>;. __

of code already produced - this probably
means that your original design was incompa­
tible with the items you are thinking
of adding, and avoid those which seem compli­
cated or vaguely defined. Also, if you intend to
try to sell your software, be very careful before
adding extra pieces of accessory hardware to
your machine because your program requires
them. These extras will limit your market­
place. If you decide that some of the features
you want require extensive modification of the
existing program, the best course is usually to
throw the program away and start again, per­
haps using some of the routines from your old
program again. Your efforts will not have been
wasted because you will have learned a lot
about design and coding, and will be less likely
to make the same mistakes again.

Programming Hints
1. If possible (i.e. if sufficient memory exists -
see below) use any variable for one purpose
only. This reduces the possibility of a variable
being set to an unexpected value for one part of
the program while being used for another. It
also makes debugging a lot easier as values set
up throughout the program are not overwritten
by other routines.

Space occupied by variables is as follows:
Integers e.g. X% 2 bytes each
Decimal numbers e.g.
X 5 bytes each
Strings e.g. X$ I byte per char. + 3
Arrays. as above for each

element,+ 5, + 2
per dimension

With only 2 bytes available for integers, the
values are restricted to between 32767 and

-32768. Attempting to exceed these limnits
will lead to an ILLEGAL QUANTITY
ERROR.

2. Use REM statements wherever possible to
make the program readable and to record the
purpose of each variable.

3. Use only one or two character variable
identifiers e.g. AB, A I, AB%, AB$, AB$(X),
AC%(Dl%,D2%). VIC64 BASIC recognises
only the ftrst two characters but does not give
an error if more than two are used. Thus
BLACK and BLUE will be treated by BASIC
as if they were the same identifier BL. Unfor­
tunately, this means that the variables cannot
easily be given meaningful names, which
makes the code difficult to read. Hence, it is all
the more important to use REM statements to
explain what each variable does. One particu­
larly frustrating problem that can occur,
happens when a BASIC keyword is acciden­
tally incorporated in a variable name. NOTE
for instance will be interpreted as NOT E, the
result of which is usually a syntax error on
what appears to be a perfectly good line.

4. Number lines in multiples of 10 and make
extensive use of subroutines numbered well
apart from each other. This makes changing
the program much easier.

Arithmetic
Arithmetic in BASIC is very versatile and easy
to use, following normal mathematical rules.
The meanings of such expressions as A+B,
A-B, A *B/C are obvious and for more complex
expressions, the order of precedence of opera-

tors is " (power of) * I+- < > . As an example,
the expression A+B*C " 2 will be evaluated by
squaring C, multiplying that by B and then
adding A. Changing the order of precedence is
easily achieved by using brackets e.g. (A+B*C)
" 2 will be evaluated by multiplying B
by C, adding A and then squaring the result.
For use of < and > as operators see below
under 'Comparisons'.

Conventional arithmetic can take place on
one of two variable types. The default type -
the one normally used - is an ordinary decimal
floating point number. If a % sign is added to
the variable name, this becomes an integer
type with no figures after the decimal point
(e.g. AB%). Note that in Commodore BASIC
AB% is a totally different variable from AB or
AB$. You can use all three in your program
without any risk of them conflicting except
through use of the wrong type! Although,
ideally, you should use integers for indexing of
arrays or FOR/NEXT loops etc, in practice it
is not possible on the CBM 64 or VIC 20.
Arithmetic is actually slower using integers, as
the interpreter converts integers to floating
point numbers before processing them and
then truncates them to integer form again! All
you save is variable space (see above). How­
ever, if you decide to use a compiler to speed
things up, this will benefit greatly from the
inclusion of integer (%) variables wherever
possible.

Although not arithmetic, strings can be
"added" which have the effect of concatenating
them (running them together) e.g "J" +
"OHN" will give "JOHN":

PRINT "J" +"OHN"
prints JOHN as does

PRINTAS+BS
where A$ contains "J" and B$ "OHN"

Comparisons
Six comparisons are available:

Greater than >
Less than <
Equal to =
Not equal to < >
Greater than or equal to > =
Less than or equalto < =

Their meaning is obvious for numerics, but
they can also be used for strings which are
compared character by character, the test
being performed on the ASCII (see Glossary,
Section 4) value of the character concerned, so
that words, for instance, are compared as they
might be when consulting a dictionary.

e.g. ABC comes before ABCD
ABCD comes before ABD

Unlike some versions of BASIC, Commo­
dore BASIC supports boolean algebra beyond
the usual AND OR NOT combinations. For
the uninitiated this can lead to some strange
looking program lines e.g.

C=(A> 1)

gives -1 if A is greater than 1, or 0 if A is less
than or equal to 1 and similarly for the other
comparisons. In all cases -1 represents "true"
and 0 represents false.

A=A+(A>10)

will reduce A by one unless it has reached 10.
The brackets are important as otherwise the
"+"will happen first, leaving A as -1 or 0 after
the first operation of the line, depending on A's
starting value.

11

12

FORX=1 T020
AS=LEFT$(A$,LEN(A$)+

(LEN(A$)>10))
NEXTX

will truncate string A$ by removing 20
characters but will not allow the string to drop
below 10 characters.

PRINT CHR$(NR+48-(NR>9)*7)

will print any number between 0 and 15 as its
hex character (e.g. 1 prints "1" and 15 prints
"F").

File handling
One area of program writing that seems to
cause more confusion than any other - at least
for beginners - is that offde handling.

In essence, there are three types of ftle that
you can use on most microcomputers. (There
are more types on larger computers.) They are:

Program files
Serial data files
Random Access data ftles

Program files are those you use every time you
save a BASIC program to casssette tape or disk.
All the information is saved in line number
order, and any ancillary information you need
to store - such as names and addresses - could
be kept in DATA statements, often at the end
of the program.

The great advantage of a program file is that
it is taken care of automatically by the com­
puter operating system, with the LOAD,
SA VE and VERIFY functions. Once the
program is working, there is very little that can

, go wrong.

On the other hand, there are two very serious
limitations. Firstly, program data files are very
inflexible; you can't enter any of the stored
information while the program is running. If
you want to amend, for example, an address or
telephone number, you have to STOP the
program, LIST it to find the appropriate
DATA statement (not always an easy task!) and
edit the offending program line.

The problem is even worse if you need to add
information to the DATA statements, because
then you need also to change the part of the
program that READs the DATA - often a
FOR/NEXT loop.

The other limitation is memory size. You
can include sufficient information to fill the
memory space available between the end of
your BASIC program and the top of RAM.
This might represent a limit of perhaps
100-150 names, addresses and telephone
numbers (on a CBM 64) - none of which,
remember, can be changed other than by
someone who knows a bit about programming!

Serial data files
A much better way to store data that might
require up-dating or expanding, is to use a
serial data ftle. If you only have a cassette
system, this is in fact your only alternative. As
with a program ftle, a serial data ftle stores the
data in a continuous and contiguous stream
from beginning to end, and so is subject to the
same memory space limitations as a program
file. The big difference is that data can be
accessed, amended, deleted and added to while
the program is running, then re-saved to tape
(or disk) in its revised form before the program
ends.

Once the program has been written and de­
bugged, virtually anyone can use it to store,

retrieve and amend the data without any
knowledge of how the program was written.

i .
Random access data files The third type of
data file - random access - frees you from
almost all memory limitations, but can only be
used with disk systems. The number of records
you can store is limited only by the amount of
room on the disk - or on several disks.

Ifan individual record consists of, say,

NAME
TITLE
ADDRESS
TELEPHONE NUMBER
DATE OF BIRTH
DATE OF JOINING
OFFICE HELD
SPECIAL INTERESTS
DATE SUBSCRIPTION DUE

you could quite easily maintain around 600
such records on a modest, unexpanded VIC
20, provided you had a disk drive.

There are snags, of course. Random access
file handling programs can seem more difficult
to write and each record must be a fixed length
so that the computer can work out where to
find it. It also takes slightly longer for the
computer to access each record because it has
first to start up the disk drive, locate and load
the record and then display it on the screen.

Even these minor irritations can be largely
overcome or minimised by techniques such as
using a serial file, loaded in at the start of the
program, as an index to the random file on
disk. So, in practice, random access files
though largely ignored by home computer
users, are often the obvious choice for serious
applications.

Creating serial and random
access files
Serial data files are the ones most commonly
used and they are the only data files that can be
handled on cassette. A serial file consists of
a continuous stream of information from
beginning to end, with no organisation other
than that which the programmer structures
when writing his data.

In just the same way that you have to open a
filing cabinet drawer before you can start work
on a particular file, so you have to OPEN a
serial data file (or random access flle) before
you can start reading information from it, or
before writing information into it. When you
have finished with it you must then neatly
CLOSE the file. If you do not, the computer
does not know that you have come to the end
and will not mark the flle end or put the last of
the data away from its working area (see
below). It can not be OPENed for reading and
writing simultaneously and must be opened at
the beginning and read or written from begin­
ning to end by the program. Thus, it is not
possible to go backwards, so once the file is
closed it is necessary to start again.

As mentioned above, when opening the file
it can only be opened for reading or opened for
writing, not both. When writing, it starts from
the beginning and writes until closed. This
means that once a file has been written it
cannot be updated except as follows:

(a) OPEN the serial file for reading.
(b) Copy the contents to a temporary serial

file using GET and PRINT, CLOSE it or read
(INPUT# or GET#) the specified variables
into a suitable area such as a large array.

(c) CLOSE the serial file.
(d) OPEN the serial file for writing - the

13

14

computer now assumes it is empty.
(e) Write (PRINT#) back the contents

from specified variables or from the temporary
ftle created after opening it for reading. This
overwrites the ftle that was previously held
there.

(f) Add the new information to the end of
the ftle, or combined with (e) above, insert new
or modified information as required.

This may seem strange to someone unused to
computing ftles, but if it were not so, then
every time a file was opened for writing the
cassette tape would have to start at the begin­
ning and run right through to find the end.
Don't worry if you can't immediately under­
stand the procedures above at a first reading, it
will become clear once you set about using
serial ftles and work out what you want to do
using the 1/0 (Input/Output) instructions
(OPEN#, CLOSE#, INPUT#, GET#,
PRINT#)

The data would then progressively overwrite
any other ftles following on the tape.

Random files are only to be found on disk.
The disk manual explains these, and how to
use them to build indexed files. Here the file is
set up with a fixed size and with records
ordered in a particular fashion, gaps being left
in the structure for future inserts. Each record
has an address or record number so records can
be easily inserted, deleted and replaced. The
number ofrecords is limited only by the size of
the disk, but practically for the sort of informa­
tion described earlier it would be one record
per sector (each sector having 254 bytes avail­
able for information).

File Buffers
All ftles are addressed from the computer using
buffers. For programming purposes these
buffers are said to be transparent to the user,
i.e. the programmer does not have to worry
about handling them as this is done by the
computer. However it helps to follow the way
programs operate, to understand the buffer
system. To take the cassette case, each time a
character or a string is sent to a cassette file, it
does not make sense to start the cassette motor,
wait for it to reach speed, send a character,
then stop, and repeat the process for each item
of data it wants to save. So, by convention,
characters are saved up in a buffer and then
when the buffer is full (192 characters for a
cassette) the entire buffer is written to the tape
in one go.

When the program finishes using the ftle,
any information left in the buffer will not have
been put on to the tape because it won't have
reached the total of 192 characters needed to
cause an automatic writing of the contents of
the buffer to tape. So we must make sure that
the information in the buffer is not lost, by
'forcing' it to be written to tape. This is done by
using the CLOSE command which writes
away the rest of the data to be stored. The input
and output to disk and the output to the printer
are handled in the same way. Reading works in
the reverse manner.

A few routines to handle disk access are
shown above opposite.

110 oPen 15.8,15
1..30 Print "iill" · ?olte 53281, 1 'Poke 53280.· 3
140 Pri·n':. "P'----------------
150 Print "211
160 Print ucn---------------
! :'0 Print tab<10>; ""i'd - chrector11"
180 ::-rint tab(10);"~ - scratch"
190 Print tab< 10> i "'O"n - new disk"
200 Prir-t tab<10):"W- - rename a file"
205 Pri11t ta.b(10); "'°"< - exit"
206 Print ta.b<10);"w - error status"
210 Print "llDenter the letter:"
220 Print "•EilliiHlllDiliil tl "
230 9et k11$: if kll$="" then 230
240 Print "*illliHiiiliilliii .. 1 .. 111" ikll$
250 if lt11$1:"d" then 300
260 if k11$="s" then 1000
270 if kllS="n" then 9osub 1200
280 if k11$="r" then 9osub 1400
284 if k11$= 11 e" the11 9osub 1700
285 if k11t="x" then c:lose 1: close 15: Print "ml": en

d
290 9oto 140
300 rem *****************************
31~ rem *** disk direc:tor11 ***
320 rem *****************************
325 oPen l 1810. "$0": rem for dir
330 f=0 .
340 9etltLaS.b$
350 9etltl.a$,b$:gettl,a$,b$
360 9osub 530:9osub 600:9osub 680
370 d$= 11 8 11 +fl$+ 11 :"+tP$
'380 Pn·nt "P'-----------------

II· __ ,
390 Print "211 ~irector11 Ill of "; d$
400 Print .. ----------------

410 9etltl. a$, b$
420 9eU1,d.b$
430 9osub 530.9osub 600.9osub 680
435 if flt='"' then 470
440 bl$=ri9hts(bl$,2) =9osub 740:rem Printin9
450 f=f+1: if 016 then f=0=9os•J.b ~'i10:9oto 380
460 9~to 410
470 re~ ***** end1n9 *****
474 Print " 'Ill" ;bl$;" blocks freelll"
475 9osub s10:c1ose
480 9oto 140
490 .
500 :
510 9et k11S·if' k11t= 11 " then 510

520 retv.rn
530 rerr. **** rea.din9 no.blocks ta.ken v.P b1:1 each

file ****
'540 c=0
'550 if d()"" then c0 asc(a$) :rem readi1"19 no.blocks

taken b1:1 file
560 if b$0"" then c:=c:+asc(b$)$256=rer.~ ditto
570 blockS=strS(c):rem bl$
580 return
590
600 rem **** readin9 name - looks for quotes ***

* 610 fl$="''
620 getltLb$: if st00 then fl$="" :return
630 if b$('.>chrt(34) then 620:rem look for quotes
640 9et# i.. b$: if bl<>chr$ < 34) then fl S=fl S+bS : 9oto

~40:rem ** eac:h file name
650 9ett1,b$:if bS=chr$(32) then 650
660 1'eturn
670
680 rem**** t1:1Pe of file ****
690 cf="":if f\S="" then return
700 c:$=c:S+b$: 9et4H, b$: if' b$0"" ther1 700
710 tPS=leftS(ct,3)
720 return
730 :
740 re~ **** Printin9 ****
750 Print ""; b\$; ":I"; tab<3>; f\$; ta.b<18>; "" i tPS
760 return
770 :
780 :
790 :
1000 Print "!llP,__ _____________ _

II• _,
1010 Print "Ill lsc:ratchl"
1020 Print ----------------..
1030 inPut "file na~e";f\S
1040 Printl15, "scratc:h0: "f\$
1050 9osub 2000
1060 9oto 140 1200 Print__ _____________ _

II•
__ ,

1210 Print "Ill lnew diskl"
1220 Print "------------------..
1230 inPut "disk na~e=";dmS
1240 i nPut II id no. (oPtiona 0:11 ; OP$
1250 Pri ntlt15, "ne•.i0: "; dmf", ";OPS
1260 9osub 2000
1270 return
1400 Print "P-.--------------

11 •
__ ,

15

16

1410 Print "Ill
1420 Print---------------

--11

1430 inPut "old file na.111ell";onf
1440 i nPut "new file na111ell11 ; nn$
1450 Pri nttt15, 11 rena.111e0: ";nnf"•"on$
1460 9osub 2000
1470 return
1480 :
1700 re111 ***'''''**'''''***************
1710 re111 *** routine for check ***
1720 re111 *******************''*******'*
1721 Print "191--------------

II• __ ,
1722 Print "Ill •rror s.ta.tusl"

1723 Print ----------------..
1730 9osub 2000
1740 if en•0 then Print en,e111f,t,s
1750 9et kllf : if k !If•'"' then 1750
1760 return
1770 :
2000 re111 ''''***'********''*''**'*****
2010 re111 *** check disk *''
2020 re111 *'*'*'*'''****'****'***'*'*'* 2030 inPutll5,en,elllf,t,s
2040 if en•0 or en•l then return
2050 Print en.e111f,t,s
2060 for n•l to 1000:next:return

SECTION 2 BASIC FUNCTIONS
This section includes a detailed description of
the BASIC functions of the CBM language as
applied to the VIC 20 or CBM 64. The
language was derived from the PET BASIC
which means that many programs written on
PETs from 1977 onwards are not difficult to
convert for use on the newer machines.

Conventions used in the syntax are as
follows:
< and > indicates an entry of the type
described within the angle brackets.
[and] indicate an optional entry.
() and , are typed as shown.

The examples below the syntax statement
under each BASIC word use the conventions
mentioned above.

BASIC words can be abbreviated by using
the table in the manual or by remembering that
the abbreviation consists of sufficient letters to
allow the word to be differentiated from other
words, with the last letter shifted. PRINT is an
exception, for this the abbreviation is just'?'

Description
Gives a number without its sign.

Syntax
ABS (<numeric>)

e.g. ABS(-1) gives 1.

Function Very simply, ABS leaves a positive
number as it is and removes the sign on a
negative number making it positive. Not often
used, two examples are shown below.

X=SQR(ABS(Y))
will prevent a square root being attempted on a
negative number.

X=ABS(A-B)
finds the difference between two numbers
when it is not known which is the larger of the
two.

Description
Logical AND operator.

Syntax
<operand> AND <operand>

e.g. IF (A=l) AND (B=l) THEN
(the brackets are optional)

Function
AND is a binary function i.e. it works between
two operands. It has two main functions:

1. As part of a logical test in an IF statement
where AND indicates that both conditions
must be satisfied e.g.

IF A<=3 AND A>=1 THEN 50

will go to line 50 if A lies between 1 and 3
inclusive.

2. As a logical function on binary numbers
with the following truth table which applies to
each bit in a basic numeric variable:

X Y XANDY
1 1 1
1 0 0
0 1 0
0 0 0

17

18

so that A=80 AND 48 will give 16 as follows:

128 64 32 16 8 4 2 1

80 in binary is
48 in binary is

AND gives 16
as

0 1 0
0 0 1

0 0 0

1 0 0 0 0
1 0 0 0 0

0 0 0 0

where 80 represents, say, menu items 2 and 3
chosen and 48 a check for items 3 or 4

The maximum size of binary number which
can be handled thus is 16 bits or two 8 bit
bytes. This is the size of a basic integer (%)
variable between -32768 and 32767 in decimal
(being 10000000 00000000 and 01111111
11111111 in binary with decimal zero being
00000000 00000000). Note that here the
leftmost bit determines if the number is
negative or positive. A zero means it is
positive; a 1 that it is negative. All numbers
must be expressed in decimal as the VIC and
CBM 64 have no facilities for handling binary
numbers.

As an example of type 1 we might wish to
verify entries on cassette, (read by an
INPUT#) against the original entries on paper
(read by an INPUT)

10 INPUT "CAR AND
COLOUR";A$,B$
20 INPUT#1,C$,D$
30 IF AS=CS AND BS=DS THEN
PRINT "ENTRY VERIFIED"
40GOTO 10

Type 2 can be used for pattern matching
when looking at a byte which does not repre­
sent a number but a pattern. For instance there
may be 8 items on a menu screen from which

one wishes to select items 2 and 5. This could
be stored as a bit pattern 01001000, which is
later matched against 10000000 to see if the
first item on the menu was selected, against
0100000 for the second item and so on. In the
first case 128 AND 72 gives 0 (try it!), so item 1
on the menu was not specified, and in the
second case 64 AND 72 gives 64, so item 2 on
the menu was specified. A typical menu might
appear on the screen as follows:

I •::881-ii 1::111 Lii.i
SELECT OPTIONS FOR TEST

(uP to 3) Selected

1 Histor"°'
2 Geo9raPh"°'
3 En9lish
4 French
!5 Gerl'V'l.a..n
6 Chel'V'listr~
7 Ph:.Jsic:::s
a Biolo9~

SELECT? 1.,4.,9
1 selected
4 selected
a :selected

*
*

See also the other logical operators OR and
NOT.

A small menu program for the CBM 64
using the AND function is given below. To
maintain a simple presentation, checking of
numbers input for range and other detailed
validation is not included, but this program
could form a basis for a multiple choice menu
selection.
10 REM MENU SELECTION
20 REM SET IJP SCREEN l.JITH MENU OPTIONS DISPLA'i'ED
30 PRINT CHR$<14) ":1"TAB05) II :Illa!-., ',.-/ '"'"

40 PRINT .. ,..,_ --1 n1 -.r /• ..r _ 1 -,, (IJP TO 3)"
50 PRINT TA'l30'5)"~•ELECTED~"
60 FOR I=1T08:READ IT$
70 PRINT I;IT$:NEXT J:PprNT:PRINT
80 INPUT "~,-,_--1~·.:s1_(1),SL(2).SU3)
90 REM ALLOW THE 3 SELECTJONS
100 FOR J=l TO 3:PRINT "~" :J3P=1/2
110 IF SL(J)=0 THEH 140
120 FOR K=l TO su.n :PRINT:'f3P=BP•n:HEXT ll':Ms=MS OP

BP
130 PRINT TA'f3(°2111)"*"
140 NEXT J
150 REM TEST FOR ITEM(S) SELECTED
160 PRINT "~"
170 IF MS AND ! THEN PRINT "1 SELECTED"
180 IF MS AND 2 THEH PRINT "2 SELECTED"
190 IF MS AND 4 THEN PRINT "3 SELECTED"
200 IF MS AND 8 THEN PRINT "4 SELECTED"
210 IF MS AND 16THEN PRINT "5 SELECTED"
220 IF MS AND 32THEN PRINT 11 6 SELECTED"
230 IF MS AND 64THEN PRINT "7 SELECTED"
240 IF MS AND128THEN PRINT "8 SELECTED"
250 STOP
260 DATA II IISTORY" .. "I EOGRAPHY" .. "~GLISH"' "-RENCH" ..

"IERMAN","-+lEMISTRY"
270 DATA "~YSICS"," I IOLOG'""

Identical program with printer set to lower case
mode.
10 rerri rrienu. SP. 1 ect ion
20 rerri set uP screen with rrienu oPtions disPlal!ed
30 Print chr$(14)"Jll"ta.b05)"ftl"EST MENUlll"
40 Print "SELECT OPTIONS FOR TEST(ltP to 3)"
50 Print tab<15)"1Selected'Mlll"
60 f'or i=1toa:read it$
70 Print i.:;.u:next i:Print:Print
80 i nPut "ISELECT-00" .: :=. l< D, s l<2) .. s H3)
90 re!'f a. l l •:>w the 3 se 1 ecti ons
100 f'or J=1 to 3:print "111111" :bp=1/2
110 if' sl<.D=0 th1>Yl 140
120 f'or k=1 to sl(J) :priY'lt.:bP=bP*2:-next k :rris=rris or

bP
130 Print tab(20)"!1!"
140 next j

150 refft t.est f'or it.e111(s) selected
160 Print "i!iiiliiliiiiiilHHl!il!l11

170 if' ms a.nd 1 then Print "1 !;.elected"
180 if' ms and 2 tht·•1 Print "2 selected"
190 if' ms and 4 then Print "3 :!',elected"
200 if' ms and 8 then Print "4 selected"
210 if' ms and 16then Print "5 :!'.el•»:ted"
220 if' ms and 32then Print "6 selected"

230 if' 111s and 64then Pr!.r.t "? ,..e11>ct1>d 11

240 if' ms a.nd128t.hen Print "8 selected"
250 stoP
260 data "Historll", "Geo9ra.Phll" .. "En9l ish", "Fr,,,.nch",

"Germ.B.n", "Chemi.:!',trll"
270 data "Phiisics" .. ":Biolo9ll"

I ASC

Description
Gives the ASCII value of the first character in
a string.

Syntax
ASC(<string>)

e.g. ASC ("2 ") is 50
ASC ("A") is 65
ASC ("B") is 66

Function
ASC is the reverse operation to CHR$ and
gives the ASCII equivalent number of the first
character in a string. If no character is present
an "ILLEGAL QUANTITY" error occurs.

A character in a string is stored in memory
as a number. This number is found in the
ASCII conversion table. in your user manual,
for upper case mode. Lower case mode is
stored in exactly the same way and using the
same numbers as for the equivalent upper case.
This is because the machine does not recognise
any difference in storage between upper and
lower case mode, and the character displayed
by a PRINT statement or otherwise on the
screen depends entirely on the mode that the
computer is operating in at the time. For
convenience the complete table (excluding
control codes but including lower case) is
shown in Appendix A.

As examples:
PRINT ASC(X$)-48

19

20

will give the value of a single digit number
stored as a string character (if X$ is 2 the
answer will be 2).

PRINT ASC("JONES")

will give only the the value of 'T' i.e. 74. If
other values within a string are required this
can be done using MID$ e.g.

PRINT ASC(MID$("JONES",2, 1)

will give the ASCII value of the second
character of the string "JONES".

PRINT ASC(A$+CHR$(0))

will prevent an ILLEGAL QUANTITY error
occurring if A$ contains no characters.

Description
Trigonometric arctan.

Syntax
ATN(<numeric>)

e.g. ATN(2+A)

Function
This is the complement of TAN, turning a
tangent back into an angle (in radians) e.g.

A=ATN(B)*180/Il

converts a tangent to an angle in degrees.
Your machine has a II function, so II is

available direct and there is no need to derive it
from the trigonometric functions. For interest,
on computers without a II function, pi can be
derived from ATN as Il=ATN(1)*4. This is

because the angle whose tangent is 1 is 45
degrees or IT! 4 radians.

CHR$

Description
Converts a number to its ASCII equivalent.

Syntax
CHR$(<numeric>)

e.g. CHR$(50) gives the string "2" in both
modes
CHR$(65) gives the string "A" or "a"

Function
This is the reverse instruction to ASC, and the
concept is explained there. The number must
be between 0 and 255 or an ILLEGAL
QUANTITY error results. A non-integer is
truncated e.g. CHR$(50.89) still gives 2. It
is very useful for storing codes which cannot
be printed directly as, for example, the
<RETURN> key which is CHR$(13). It is
also useful for changing the printer modes
(explained in the printer manual). CHR$(34)
encodes the " sign, which is otherwise very
difficult to handle as ·the computer enters "
(quote) mode every time you type it on the
screen.

See also ASC and the table of CHR$ values
and strings in Appendix A.

, CLOSE

Description
Closes a flle.

Syntax
CLOSE < flle number>

e.g. CLOSE 4 closes flle no.4

Function
CLOSE informs the computer that the pro­
gram has finished processing a ftle or device
(e.g. printer), either permanently or tempora­
rily. CLOSE is necessary so that at the end of
processing the ftle can be properly cleared from
the system. Therefore when writing to a ftle,
any remaining information waiting in the ftle
buffer to be processed is sent to the disk, cas­
sette or printer and the end of ftle marker is
written, if requested. The input-output (I-0)
channel is also freed in the case of the printer
(but see also PRINT# and CMD), which
ensures that disk information (sent along the
same line) is not held up by the printer await­
ing information.

If the ftle number is given as a zero, a
message such as NOT INPUT FILE ERROR
will appear. If the file number is not an integer
it will be truncated to an integer, and if a file
number is specified that had not been opened,
no action is taken but no error messages are
given. Ifa string is given (instead of a number) a
TYPE MISMATCH ERROR occurs.

CLOSE can be used directly or within a
program. It is worth noting that closing ftles
can take some time especially when closing the
cassette, as time has to be taken to write the
cassette buffer. In the case of serial cassette
ftles, remember to rewind before opening again
if required in the same program.

100FOR1=1TO10:CLOSE l:NEXT

closes any ftles with numbers between 1 and 10
that have been opened.

Note that CLOSE on its own does not work
on CBM computers, although available on
many others where it closes all open flles

See also Section 1 on flle handling and 1-0.

Description
Clears all BASIC variables.

Syntax
CLR

Function
CLR clears all BASIC from RAM except the
screen RAM (which means the screen is not
cleared) and the BASIC program itself which is
there as if it had just been loaded. This is not a
clever instruction, it doesn't close files for
instance, so it is necessary to make sure every­
thing is closed before using it. Assembler
(machine language) and other locations such as
sound and colour are not affected

21

22

Description
Alters the output from the screen to another
device.

Syntax
CMD <file number>[,< string>]

e.g. CMD4 reallocates output to the printer
which has been previously opened as file
number4

Function
This very useful command used mainly in
direct mode, but also available for program
use, requires an OPEN to have been executed
for the file required and then sends all system
or program output to that file. The file may, of
course, be a device such as a printer, with a file
number associated with it by the OPEN
command. Any PRINT or LIST data will be
sent to the file until the CMD statement is
reversed.

A PRINT* sent to the output, followed by a
CLOSE command to write the buffer away and
revert to the screen, ends the sending of the
data.

An error such as SYNTAX ERROR cancels
the CMD and returns output to the screen, but
a PRINT# should still be used in direct mode
to clear any device or it may not respond when
the next output is sent to it, and the system will
hang up, waiting.

OPEN4,4:CMD4:LIST will list a
program
PRINT#4:CLOSE4 reverts to the

screen.

See also PRINT# and OPEN.

CONT

Description
Continues a STOPped program.

Syntax
CONT.

Function
This is normally used after a STOP to resume
the program. It can also be used after the
<STOP> key has been depressed or after an
END. It won't work (CAN'T CONTINUE) if
any program editing has taken place - and this
includes pressing <RETURN> in the middle
of a BASIC line even if no changes have been
incorporated. It also won't work if an error has
occurred either to stop the program or while,
say, looking at variables after the program has
stopped. See also STOP and END.

Description
Trigonometric cosine function, provided in a
right angled triangle by the equation COS A=
adjacent side/hypotenuse.

Syntax
COS (<NUMERIC>) e.g. COS (0) gives 1

Function
The cosine of an angle (in radians) is produced.
See also TAN, SIN and the table of other
trigonometric functions in your user manual.

h

Cos&:!.
b

I

DATA

Description
Provides data embedded in the program.

Syntax
DATA <constant> [,<constant>]

e.g. DATA 10,JAMES,12,MARGE,"AT
HOME:456,AT WORK:2292"

Function
For the way DATA is used see READ. The
constants in DATA statements must be
enclosed in quotes if they contain commas,
colons or cursor control characters.

DEF FN

Description
Defmes a mathematical function.

Syntax
DEF FN <name>(<numeric variable>)=
<numeric>

e.g. DEF FNA(N)=N+l/N

Function
If you have a complicated formula used in
several places, it is best defined at the start of
the program with the DEF FN statement to
save space later. This is frequently used with
RND. A DEF FN should appear near the start
of the program amongst other non executable
statements such as DIM.

Some examples:

DEF FNA(N)=INT(RND(1)*N+1)

gives a random integer number between 1 and
N whenever the function is called, perhaps by
A=FNA(5) giving 1,2,3,4 or 5. The DEF sta~e-

23

24

ment is in an early line, perhaps 50 or so,
directly after the REM statements describing

· the program, and the calls (e.g. A=FNA(5) or
A=FNA(7) or A=FNA(X)) occur whenever it
is required to perform the function defmed.
So A=FNA(7) would be equivalent to
A=INT(RND(l)*7+ 1). The letters after the
FN enable you to have as many such formulae
defined at the start of your program as you
wish. For example:

DEF FNB(R)=Il*R2

gives the area of a circle whenever called by say
AR=FNB(10) the area ofa circle of radius 10.

DEF FNRD(X)=INT(((10-N)*X)+0.5)/
(10-N)

rounds off to N decimal places and

DEF FNM12(X)=12*(X/12-INT(X/12))

converts a 24 hour clock into a 12 hour clock.
Remember to check that the function you

want is not already explicitly defined in BASIC
e.g.

SIN(X)/COS(X)

is equivalent to TAN(X) so there is no need for

DEF FNA(X)=SIN(X)/COS(X).

Description
Dimensions an array

Syntax
DIM <arrayname>(<number>[,

<number>])
e.g. DIM A$(25) is an array of26

elements (0-25 incl)
DIM B(l 1,11) is an array of 144
elements in two dimensions

Function
An array is a collection of variables ordered
one after the other in list form or matrix form if
greater then one dimension. This makes it
easier to process a list within a FOR loop or
wherever indexing is used:

or

100FOR1=1TO10
110 INPUT "NAME";NA$(1)
120 NEXT I

100FOR1=1TO10
110 INPUT "NAME";NA$(1)
120 FOR J=1 TO 4
130 INPUT "ADDRESS";AD$(1,J)
140 NEXT J,I

will fill a list of names or names and addresses.
Every array must be dimensioned either by
using a DIM statement or by letting the com­
puter do it for you. If there is no DIM state­
ment, your array will be dimensioned with 11
elements from 0 tol0 or 121(11*11) elements
if a two dimensional array, 11 *11 *11 for a
three dimensional array and so on the first time
the program encounters it while running. If
you dimension an array twice (i.e. if the
program runs through a DIM twice or does its
own implicit DIM before finding yours) an
error REDIM'D ARRAY will occur. Any
DIM statements should therefore be put at the
beginning of the program directly after any
introductory REM statements. Note that as
multi dimensional arrays use a lot of space, two

dimensional arrays should be used with care,
three dimensional arrays only on very special
applications and four dimensional arrays will
prove almost impossible to use anyway.

See also FOR.

Description
Stops a BASIC program.

Syntax
END

Function
END has the same function as STOP except
that the message BREAK IN LINE ... does not
occur. See STOP for further details.

END is a neat way of ending programs and it
is better than just allowing the program to run
off the end of the code. It ensures that the
program ends where you want it to, so that if
you put a subroutine or error handling routine
for instance, beyond the end of the main
program code it won't get run unintentionally:

170 FOR N=1 TO 10:
PRINT#4,N:NEXT
180 GOSUB 300
190 CLOSE1 :CLOSE4
200 END

300 REM SUBROUTINE

More than one END can appear in a program.

Calculates powers of the constant e.

Syntax
EXP (<numeric>)

e.g. EXP(Il) is 23.1406926

Function
The mathematical exponential constant e is
raised to the power given by <numeric> . It is
related to the LOG function which uses a base
ofe, for example EXP(LOG(10)) IS 10.

Useful in many mathematical equations, the
mathematician alone understands!

SeeDEFFN.

Description
Control statement for the generation of a loop.

Syntax
FOR <variable>=< numeric 1 >TO

< numeric2 >[STEP< numeric3 >]

NEXT [<variable>]
e.g. FOR X=l TO 10: :NEXT

Function
FOR allows the program to loop round a sec­
tion of code enclosed by the FOR and NEXT
statements a controlled number of times,
usually (numeric2-numeric 1)/numeric3. If the
optional STEP is not entered, a step of 1 is
assumed.

After each NEXT, the variable is increment­
ed and a test is made to see if it is greater than
the control end < numeric2 >. If it is, the
program continues with the statement after

25

26

NEXT, otherwise the loop is entered again.
Note that this means that the FOR loop will
always execute at least once. This differs from
many other BASICs where the FOR loop is not
performed at all unless the conditions for it are
satisfied at the entry point.

There is nothing to prevent manipulation of
numerics 1,2 and 3 within the loop if they are
variables, but obviously care must be taken
doing this as it makes the logic of the program
more difficult to follow, and it sometimes
becomes quite difficult to calculate how many
times the loop will actually execute for any
given set of conditions. There is also nothing to
prevent you jumping out of the FOR loop if
some other condition such as end ofline or end
offile is encountered.

Note that STEP can be negative as well as
positive, allowing you to step down an array
from the top as well as up from the bottom. It is
essential to specify STEP when negative.

At the end of the FOR loop, if it completes
normally, the <variable> has the value it had
for its last test at NEXT, which will be more/
less than the maximum/minimum specified by
TO and will be the value the next STEP has
incremented or decremented it to when finding
that it was outside the bounds of the loop.

10 FORX=1TO10
20 PRINTX
30NEXT
40:

X is always 11 on exit.

Jumping out ofa loop

100 LN=1
110 FOR X=1TO10

120 PRINTY$(X);
130 IF POS(0) > LN TH EN 300
140 NEXTX
150 PRINT:PRINT "OK
I N"LN"CHARS":EN D

. . . .
300 REM LINE FULL ROUTINE
310 PRINT:REM SKIP A LINE
320 PRINT "TOO MANY WORDS TO
FIT I N"LN"CHARS":PRI NT:LN=LN+ 1
330GOTO110

The value of X on exit depends on the
lengths of the strings in the array Y$(X) when
the code is run and the program continues to
look for another NEXT after line 300 so design
and debugging becomes that bit more difficult.
Furthermore a loop variable used internally by
BASIC is left on the BASIC stack and will not
be removed until a CLR or RUN. A better way
might be as follows:

100 LN=1
110 FORX=1TO10
120 PRINTY$(X);
130 IF POS(0)>LN THEN GOSUB

300:X=11
140 NEXTX
150 IF X=12 THEN 110

. . . .
300 REM LINE FULL SUBROUTINE
310 PRINT:REM SKIP A LINE
320 PRINT "TOO MANY WORDS TO
FIT IN"LN"CHARS":PRINT:LN=LN+1
330RETURN

X is 11 on exit if the string fitted or 12 if it did
not.

In all cases the variable following NEXT
is optional and is used for clarity only. If
not used the speed of the loop is much
increased.

If an attempt is made to change the STEP
after the loop is running, nothing happens, as
once the STEP has been set up it cannot be
changed even if the variable used to set it is
changed. Thus the code below will not work to
increase the size of the step from within the
loop:

100Y=1
110FORX=1TO1000STEPY
120 PRINTX;
130 IFX>9THEN Y=10
140 IF X> 99 THEN Y=100
150 NEXT

.
X is 1001 on exit.

Lines 130 and 140 alter Y but have no effect on
the step.

A FOR loop can also be used for a simple
delay, perhaps to give people a chance to read
a screen. Delays can be better handled in other
ways in machine language, but for BASIC
programmers this is an acceptable method
unless the code is to be compiled, in which case
the delay will be much reduced due to the
greater efficiency of the compiled code.
Another method is to use the internal clock,
which will work unless the cassette is in opera­
tion actually reading or writing.

FOR loop delay:
FORX=l TO UHHl:NEXT

Time delay:
100 Tl$-"000000":REM
SET INTERNAL CLOCK
110 IF Tl< (5*60)THEN

110:REM WAIT FOR CLOCK
120

(see under TIME for explanation of Tl$ and
Tl)

This gives a precisely timed 5 second delay,
whereas the only way to determine the time in
a FOR loop is by experiment. However the
FOR loop is a little more compact in code.
Compiled code is much more efficient and
therefore much faster and will thus shorten
considerably such timing loops.

A FOR loop should normally be used for
stepping up or down an array:

FOR 1=1 T016:AR(l)=0:NEXT:REM
CLEARS AN ARRAY
or:

10 DIM AR(16)
100FOR 1=16TO 1 STEP-1:1F
AR(I)< >0THEN PRINT I
110 NEXT

Nested loops are very powerful and you will
soon find occasion to use them. A two dimen­
sional array, perhaps a draughts board can be
set up this way:

100 REM CLEAR ENTRIES ON
DRAUGHTS OR CHESSBOARD
110FORl=1 TOS
120 FORJ=1TO8
130 08$(1.J)=""
140 NEXT J,I

27

28

The maximum number of FOR statements
that can be nested is 10, which is more than
adequate. Only a program error should give
the condition OUT OF MEMORY. If using
multiple nested FORs be careful not to use the
same variable in any two loops. If you do the
result will be a NEXT WITHOUT FOR error.

An example of FOR loops nested 3 deep is
given below:

10 REM THREECOM
20 REM PRODUCES ALL SUMS OF AN'i' 3 OF THE NUMBERS E

NTERED .
30 REM STOPS WHEN OPTIONAL MATCH FOUND
40 OPE~l 4.• 4
60 INPUT "NUMBER TO MATCH" _; NM
70 N=1
80 INPUT"l~EH NUMBER"_; A(N): IF A(N)=0 THEN X=N-1: GO

TO 100
90 N=N+1=GOTO 80
100 CMD4
105 FOR ~l=l TO X-2
110 FOR A=N+l TO X-1
120 FOR B=A+l TO X
130 Z= A<N)+A(A)+A
140 PRINT Z" ".' : IF Z=NM THEN PRUIT "1'11"A(N); A(R); A

"=" :END
150 NEXT: PRINT: NEXT: PRINT: NE>ff
160 PRINT#4=CLOSE4:END

READ'•'·

Some of the examples in Section 3 also use
nested FOR loops See also NEXT.

Description
Performs garbage collection and gives free
space available.

Syntax
FRE(<dummy>)

e.g. FRE(8)

Function
In BASIC, strings and other variables are
created dynamically and also deleted and
extended dynamically, which makes it impos­
sible to arrange all the data neatly in memory.
Some gaps and thus wasted memory are bound
to occur. For instance if a string A$ is first
created by A$="LONG AND COMPLICAT­
ED ERROR MESSAGE" and B$ is then
created as another string, A$ and B$ are
created one after the other in memory (string
space, to be precise). This means that if A$
becomes the shorter "SHORT AND SIMPLE
ERROR MESSAGE" then a few spare bytes
appear, which cannot be used unless another
string is the same length or less than the hole
created. In this manner, as a program goes on
manipulating strings, the free memory gets
scattered about within the computer and this
will stop BASIC from time to time when it runs
out of space and has to do a garbage collection.

Garbage collection is the computer jargon
for repacking all these strings, recovering all
the free space and packing it into one area.
FRE carries out this garbage collection and
gives the amount of memory free. If the
amount of memory spare when your program
is running is small, it is often advantageous to
do a FRE from time to time to prevent the
program having to do it at a time not of your
choosing. For example you might use FRE to
do a garbage collection while a menu or
instructions are being displayed on the screen
then the delay caused by the garbage collection
will not normally be noticed.

There is a bug in FRE which shows up on the
CBM 64 in that FRE gives a negative number if
more than 32k of BASIC memory is available.
The correct answer is given by adding 64k
(65536) to the FRE number or by:

FRE(S)-(FRE(S) < 0)*65536

which you will need in a program if checking to
ensure that the user has sufficient space to
continue.

start of string CS

A$ 8$ C$

I . ,. String pointers

- / ~ tr"

SH ORT AN DJ S I MP L E ER ROR ME
s s A G E N E X T S T RI NG t

unused space

Description
Examines the keyboard for character entry.

Syntax
GET <variable>[,< variable>]

e.g. GET A$

Function
GET picks up any keyboard entry. If nothing
has been entered since the last GET, an empty
string (or 0 if the variable is a numeric type) is
returned. GET does not wait and the program
proceeds immediately with the next statement,
so the usual way to use it is to return to the
GET until something is found e.g.

10 GET AS:IF AS="" THEN 10

GET is more flexible than INPUT and has
many advantages, but is usually a bit more
complicated to program.

Commas, RETURNs and any other charac­
ters can be used.

String length can be up to 196 characters.
Undesired characters (perhaps cursor con­

trols) can be ignored by the program, or certain
keys or combinations of keys only accepted e.g.

or:

10 GET AS:I F VAL(AS)=0 TH EN 10

10 GET AS:IF AS=""THEN 10
20 IFVAL(AS)< >0THEN 50:REM
ACCEPT A NUMBER
30 IFASC(AS)>63 ANDASC(AS)<

71THEN50:REM HEX A TO F
40GOTO 10
50 REM PROGRAM CONTINUES
WITH A HEX CHARACTER IN AS

Unlike INPUT, GET does not echo the
input characters on the screen, which gives you
the flexibility of echoing just the ones you
want, using PRINT or POKE statements.

The expanded syntax GET A$,B$,.. is not
often used because in normal use GET will
only pick up one character. However ifthere is
a delay before the GET, this gives time for keys
to be pressed and stored internally in the key­
board buffer, which has the characteristics of a
queue, until the GET is encountered which
reads them:

110 FOR X=1 TO 10000:NEXT
120 GET AS,BS,CS,DS ...

A maximum of 10 characters can be held in

29

30

the keyboard queue: any more than 10 are lost
unless GET has taken some from the front of
the queue. Unlike INPUT, if GET finds a
mismatch when a numeric is given a non­
numeric key, SYNTAX ERROR appears and
the program stops. It is therefore always best to
use a string variable (e.g. A$ and then convert
to a numeric by using V AL(A$) with a pro­
gram check for non-numeri~s if required). For
example, if"A" is entered in error instead of a
number when the program is at a line contain­
ing GET X or GET X%, there will be a
SYNTAX ERROR. In addition, the normal
check shown above (10 GET A$:IF
A$=""THEN 10) cannot work and must be
replaced by something like:

10 GET A:IF A=0THEN 10

which means that 0 cannot be entered as a
valid reply.

GET =it

Description
Reads characters singly from a ftle or device.

Syntax
GET# <ftle number> ,<variable> [,<vari­
able>

e.g. GET# l ,A,B$,C

Function
GET# works the same way as GET except
that the data comes from a ftle or device
instead of the keyboard. No characters are
specially treated, but are simply read one at a
time and placed in successive variable names.
This means that any data separation characters
inserted in the ftle when writing (perhaps
commas and RETURNs) must be analysed

separately by the BASIC program. Before
GET# can be used the ftle being accessed must
have been OPENed. As an example:

10 OPEN 8,8,8,"0:FILE1"
20GET#8,A$
30 IFA$=CHR$(13) THEN 50:REM
LOOK FOR RETURN
40 LN$=LN$+A$:GOTO 20
50 PRINT LNS:LNS="":GOTO 20

CLOSES

When using GET# on cassette, the charac­
ters are read out of the cassette buffer which is
reftlled as required (see Fiie Handling in
Section 1) from time to time. The program
pauses and the clock stops while tape input or
output is in progress.

GOSUB

Description
Calls a subroutine.

Syntax
GOSUB <line number>

e.g.GOSUB 500

Function
GOSUB causes control to be transferred to the
line number specified and stores the return
address as the statement following the
GOSUB. Control is passed back when a
RETURN is encountered in the subroutine e.g.

10 REM SET UP SCREEN
20GOSUB 1000
30 PRINT N

100 END
1000 REM CLEAR SCREEN AND SET
PAGE
1010 PRINT <cir>

II> > > > > > > > > > > > > > ";
1020 PRINT "PAGE";
1030 RETURN

Lines executed will be: 10 20 1000 1010
1020 1030 30 etc Notice the END at line
100. This is a useful safety precaution at the
end of any program before subroutines start so
as to prevent the program dropping through
from the main program into the subroutine
accidentally and causing a RETURN
WITHOUT GOSUB error. Subroutines can
equally well be placed at the front of the pro­
gram before main code with a jump from say
line 10 to the main code.

GOSUBs can be nested i.e. a routine can call
another routine, which itself can call another.
It is easy to nest subroutines accidentally by
forgetting to put RETURN in. This can lead to
most peculiar results as the code being execut­
ed is totally unexpected, and the return from
any other GOSUB so entered will be to the
wrong place. This is because the return line
number is picked off the stack as the last one
put there.

GOSUBs can be nested up to an unbeliev­
able 24 deep, so always check your RETURNs
particularly carefully in complicated code.

The purpose of GOSUB is to allow frequent­
ly repeated code to be put in one place and
called from any part of the program. It can also
be used to make the code more understand­
able, by taking out detail from the main code
into subroutines thus allowing both the main

code logic and the subroutine logic to be
followed more easily. Note that a GOSUB can
point to any valid line including a REM line,
but cannot point to an undefined line. Calcu­
lated line numbers cannot be used:

100 A=10:GOSU BA

is invalid.
See also ON.

GOTO

Description
Jumps to another part of the program.

Syntax
GO TO <line number> or equivalently
GOTO <line number>. e.g. GOTO 70

Function
GOTO is an unconditional jump to another
part of the program without returning. This
should be avoided wherever possible except for
short loops (as in GET handling), for ON (q.v.)
or for simple skip overs (see IF) or errors. This
is because unrestricted use of GOTOs make the
logic of a program more difficult to follow,
particularly if used indiscriminately or with
flags (see design hints in Section 1). The inter­
twining logical paths created by large numbers
of GOTO statements result in what is com­
monly known as 'spaghetti software'. If you
find that your program seems to need this kind
of structure (or more accurately non-structure)
it is wise to have another look at the logic of
your design and see if it can be rearranged.
Unfortunately BASIC was not designed as a
structured language, and you will find in Sec­
tion 3 fairly frequent use of GOTO in some
examples. Note that these are not used to jump
at will about the code.

31

32

Highly structured programs are undoubtedly
slower than well written unstructured code.
However, in practice it is so much easier to
write structured code and thus it is usually
more etftcient than all but the best of unstruc­
tured code. If you find performance is a prob­
lem consider using short sections of machine
code within loops where the BASIC program
spends much of its time, or alternatively use a
compiler. No attempt is made to explain either
in this book but the Commodore Program­
mers' Reference Guide for your machine is a
good starting point for machine code, and
compiler manuals are available with the com­
piler software. Use GOTO in an error situa­
tion to display an error and terminate proces­
sing; use GOSUB if just displaying an error
message with some of error processing and
continuing:

100GET#1,A$:REM GET A
CHARACTER FROM TAPE
110 IFVAL(A$)=0GOTO1000:REM
SHOULD ONLY CONTAIN
NUMERICS

or equivalently

110 IFVAL(A$)=0THEN 1000:REM

(omitting the GOTO after the THEN
if you wish)

1000 REM ERROR EXIT
1010 PRINT "NON NUMERIC
ENTRY"
1020 PRINT "PROGRAM ERROR­
ENDS"
1030 END

or, using GOSUB and returning

100GET#1,A$:REM GET A
CHARACTER FROM TAPE
110 IFVAL(A$)=0GOSUB1000:REM
SHOULD ONLY CONTAIN
NUMERICS

1000 REM ERROR ROUTINE
1010 PRINT "WARNING- NON­
NUMERIC ON TAPE"
1020 PRINT "PROGRAM
CONTINUES"
1030 RETURN

See also ON.

Description
Conditional statement allowing branching.

Syntax
1. IF <condition> THEN <line number>

or equivalently IF <condition> GOTO
<line number>

e.g. IF X:::0 THEN 1000
2. IF <condition> THEN <state-

ment>
e.g. IF X:::0 THEN PRINT "FUEL

EXHAUSTED":Y=l 5:
Note that <condition> can be a complex

condition containing logical operators AND,
OR or NOT (see below)

Function
IF is followed by a condition which can be
numeric or string and can include strings,
numbers and variables related by logical

operators and comparisons, but must avoid
data mismatches e.g.

50 IF A='/J AND BS="ABC"THEN
GOSUB1000

No ELSE is available in this BASIC so to
achieve the same effect a GOTO has to be used
e.g.

50 IF A=0AND BS="YES"THEN
C$=T1$ ELSE C$="0"

must be written
50 IF A='/J AND BS="YES"THEN
C$=T1$:GOTO 70
60 C$="0"
70 :

Statements following a THEN in the same
BASIC line are not executed ifthe IF condition
is not satisfied, so in line 50 above if A is 1 the
program moves directly to line 60. If only a
small number of statements is required after a
THEN, this is satisfactory, otherwise .., a
GOSUB is required e.g.

100 IF A='/J AND B$="YES"TH EN
PRINT "THIS CONDITION IS OK":
C$=T1$:PRINT"AT TIME"LEFT$
(Tl$,2)"MINUTES"

cannot be coded as it stands because there is no
provision in BASIC for lines longer than about
80 characters, and while some juggling can
take place removing spaces and using abbre­
viations, this can be more trouble than it is
worth in loss of clarity and problems with later
editing. It should therefore be written:

100 IFA='/JAND BS="YES"THEN
GOSUB1000

. . . .
1000 PRINT "THIS CONDITION IS
OK":C$=T1$
1010 PRINT "ATTIME"LEFT$
(Tl$,2) "MINUTES"
1040 RETURN

INPUT

Description
A simple method of acquiring information
from the keyboard, already formatted as a
string or number.

Syntax
INPUT ["<prompt>";] <variable>[,
<variable>]

e.g. INPUT "ENTER YOUR NAME,
AGE";NA$,AG

Function
When a program reaches the INPUT state­
ment the prompt, if any, is produced and a
"?" is printed on the screen, the latter being
produced even if there is no prompt. The
program stops and awaits input which is stored
away in the variable list and may be

(a) a string
(b)anumber
(c) a series of strings and/or numbers separ­
ated by commas

depending on the variables requested by the
program. In any case, if nothing at all is
entered (except <RETURN>) the contents of
the program variables are unchanged. For
example, if NA$ contains JOHN and AG

33

34

contains 35, then a single press of the
<RETURN> key will leave them unchanged.

If a response is entered, all the variables
must be given values e.g. JOHN,36 ..

Note that the use of the prompt is just a
shorthand way of writing PRINT
"PROMPT";:INPUT

If too many replies are entered the program
resumes giving a warning message "EXTRA
IGNORED", and leaving out the extra items.
The same effect occurs if a comma is inadver­
tently included, of course, as this is recognised
as a string separator.

If too few are entered, the program will not
continue but will produce a double prompt
"??" to indicate that more entries are required.

A couple of examples illustrate the use of
INPUT:

10 INPUT "AM I A CLEVERVIC";IN$
20 PRINT 'TM INTERESTED THAT
YOUSAY"IN$
30 PRINT "DO YOU FIND THIS
CONVERSATION INTERESTING"
401NPUTIN$
50 PRINT "I THINK "IN$"TOO"

5 FOR N=1TO5:A(N)=0:NEXT
10 INPUT "HOW MANY CHILDREN
";NO
20 ON NO GOSUB 90.80,70,60,50
30 PRINT "THE AVERAGE AGE
IS"(A(1)+A(2)+A(3)+A(4)+A(5))/NO
40GOT05
50 INPUT A(5)
60 INPUT A(4)
70 INPUT A(3)
80 INPUT A(2)

90 INPUT A(1)
100RETURN

As can be seen above INPUT is easy to
program within its limitations.

Some errors are checked for you and give the
message REDO FROM START. These errors
are mismatch errors such as entering non
numeric data in an integer or numeric field.
e.g. "ABC" in A or A%. However, no error
message is given for a decimal number being
entered into an integer field, but it will be
truncated. So if 5.1 is entered into A% it
becomes5.

The insert/delete key and the cursor left/
right control can be used to modify the input
string without explicit programming, in just
the same way that you would edit a line in the
listing. The up/down cursor controls can also
be used amongst others, but the use of these
leads to unpredictable results.

No commas or RETURNs can be used in
strings because these are separators and ter­
minators. GET must be used in such cases. The
string length is also limited to 80 characters.
There is a known bug in Commodore BASIC
where information displayed on the screen
before an INPUT statement can become
incorporated in the message picked up by
INPUT e.g.

10 INPUT "DO YOU THINK l'M
CLEVER"; IN$
20 PRINT 'TM INTERESTED THAT
YOU SAY"IN$

IN$ will pick up "DO YOU THINK I'M
CLEVER"on the VIC as well as any message
typed in. The problem is not so apparent on
the CBM 64 as the screen line length is 40.

The problem occurs when a previously
PRINTed or INPUT string covers more than
one line on the screen, with the INPUT
prompt occurring on the same logical line i.e.
for any INPUT statement with a MESSAGE
greater than 22 characters (40 for the CBM 64),
or for any PRINT statement longer than this
length and terminated with a semi-colon. All
similar constructions have the same problem
so there is no simple "fiddle" to get round the
problem, which should be avoided by using
GET if necessary.

A program cannot be interrupted using the
<STOP> key when a reply to INPUT is
awaited. It is then neccessary to press
<STOP> and <RESTORE> and start the
program again.

Other considerations
The prompt and input can be made invisible
on the screen by printing the background
colour control character at the end of the
MESSAGE. e.g. on a white screen:

10 INPUT "PASSWORD{white}";A$
20 PRINT "{blue}OK"

where {white} is obtained by pressing
<CTRL> and 2 together and tblue} using
<CTRL> and 7.

so that the letters are the same colour as the
background and thus invisible. Of course the
VIC, screen, cursors etc all continue to func­
tion normally - you just can't see anything.
When (or before) the next PRINT or INPUT is
executed the letters must be made visible again
by a suitable control character. ·

GET is much more flexible than INPUT and
can perform all the INPUT functions. GET

should be the normal choice of the advanced
programmer, but as it requires more compli­
cated programming techniques, INPUT will
normally be used by those with less BASIC
experience.

INPUT II

Description
A simple method of acquiring information
from an open file, the screen or other external
device, in string or numeric form.

Syntax
INPUT# < ftle number> , <variable> ,
[<variable>

e.g. INPUT# 1,NA$(1),AG(I)
as part of a program loading a list of
names and ages in arrays NA$ and AG.

Function
This works in the same way as INPUT (q.v.)
and has similar restrictions. The variables are
separated by a <RETURN>, comma or
colon and the required number of variables
will be picked up from the file or device rather
than from the screen (unless the screen has
been designated as an input device with a
CMD). Anything left over in the input after the
last separator will be lost, and input will be
ignored until the next <RETURN>, so it is
important to ensure that input data is properly
structured with exactly the right number of
separators before the carriage return and
exactly the right types of input used to match
the syntax of the INPUT statement e.g.

10 INPUT=tt=1,A,NA$,B

must be matched on the cassette by a series of
number/ comma/ string/ comma/ number/

35

36

<RETURN>. Note particularly that no error
message is given when data is lost and the
program continues to read from the tape as if
nothing were wrong, so particular care is re­
quired here. Separators can be commas, semi­
colons or colons.

If you run off the end of the file while
INPUTting or try to read a string longer than
80 characters a "STRING TOO LONG" error
appears and the program stops with a BREAK
ERROR. It is therefore best to place your own
end of data marker, say ZZZ on the file and
look for it in the program that reads the data.

Quite complicated data patterns can be read
e.g.

10 INPUT#1,NO$,Q$,A$:1F
N0$="ZZZ"THEN GOTO 400:REM
READ COMPLETE
20 IF 0$="ZZZ"OR A$="ZZZ"THEN
300:REM ERROR
30 FOR 1=1 TO VAL(N0$):
INPUT# 1,W$(1)
40 IFW$(1)="ZZZ"THEN 300:REM
ERROR
50 NEXT I
60GOTO 10

reads a question, answer and a variable num­
ber of wrong alternatives to construct a multi­
ple choice type question. The routine expects a
terminating ZZZ in NO$. If it finds it anywhere
else it is an error.

GET# is more flexible than INPUT# and
will perform the same functions. If the format
of the incoming data is well defmed in strings it
is best to use INPUT# but if in doubt about
unwanted characters such as commas, colons,
semi-colons or <RETURN>s (other than as
separators) then use GET#.

Description
A simple truncation function which returns an
integer value of a number or expression.

Syntax
INT (<numeric>)

e.g. A=INT(B)

Function
INT reduces the expression to the next lower
whole number, i.e. for a positive expression the
decimal point and figures to the right are re­
moved; for a negative expression the next
lowest whole number is returned. If a number
is already an integer it is unchanged. A simple
check that an integer number has been used as
a reply to an input statement might be

10 INPUT "NO OF CHILDREN",NO
20 IF NO=INT(NO) THEN 40
30 PRINT "HOW DID YOU MANAGE
THE"NO-INT(NO): GOTO 10

INT is a simple and straightforward function
and can be used for rounding decimal numbers
more simply than say LEFT$ e.g. to round a
money amount of £12.345 in A to £12.35 in
B:

10 B=INT(A*100+0.5)/100

Note that as the next lower whole number is
selected by INT, to get rounding 0.5 must be
added to the number to be rounded, thus bring­
ing it over the next number if it is closer to that
number than the one below.

Truncation is carried out by multiplying the
number by 100, taking its integer and then

dividing that by 1 (iJ(iJ with the effect that the
decimal place is shifted two places into the
number:

10 B=INT(A*100)/100 (try with A as
12.345)

If Bis replaced by B% in the above examples
the INT function is unnecessary so this should
be borne in mind as a simpler alternative ifthe
variable is never required to be fractional, e.g.
B%=A instead of the above exam~

3'333 .

LEFT$

Description
A string manipulation function extracting or
replacing part of a string starting from the left.

Syntax
LEFf$ (<string>,< integer>)

e.g. LEFT$(" JOHN SMITH",4) gives JOHN

Function
LEFf$ takes the leftmost <integer> charac­
ters of the string. The integer must evaluate to
between 0 and 255. Useful in truncation or as
part of a string analysis routine.

A$=LEFT$(B$, 1)

takes the leftmost character of a string - useful
for checking a Yes/No type answer by looking

at the first character.
Quite complex syntax can be used here with

good effect e.g.

A$=LEFT$(B$,LEN(B$-1))

removes the last letter of a string.

10 IF LEN(B$)<20THEN 50
20 PRINT LEFT$(B$,20)
30 B$=RIGHT$(B$,LEN(B$)-20)
40GOTO 10
50 PRINT 8$

. prints the data in B$ in widths of20.
Another example shows how to prevent

words spilling over from one screen line to
another on the VIC. (For the CBM 64 use 40
instead of 22.) Line 20 takes the leftmost 22
characters of the text in C$. Line 30 removes
part words from the line by shortening to the
first space. Line 50 replaces the original text
string with the new version which has had
removed the part already PRINTed. This
process is repeated by returning to line 10.

10 IF LEN(C$)<22 THEN PRINT
C$:GOT070
20 D$=LEFT$(C$,21)
30 IF RIGHT$(D$,1)< >" "THEN
D$=LEFT$(D$,LEN(D$)-1):GOTO30
40 PRINT 0$
50 C$=RIGHT$(C$,(LEN(C$)­
(LEN(D$)+1)))
60GOTO 10
70END

LEFf$, RIGHT$, MID$, and LEN make up
the range of BASIC string handling functions
and, as hinted above, can be programmed to a

37

38

quite sophisticated level without necessarily
writing a lot of code. However, as can also be
seen above, it can be quite diflicult to follow
the logic, so REMs or separate program notes
are in order. Also note that after considerable
string manipulation the memory can become
quite cluttered with discarded bits of string and
the occasional FRE can be useful (q.v.).

Description
Gives the length of a string.

Syntax
LEN (<string>)

e.g. A$=" 19 CHARACTER STRING"
LEN(A$) gives 19

Function
LEN counts all characters including spaces
and non printing characters. See LEFf$ and
RIGHT$ for some useful examples of string
manipulation using LEN. Other uses are e.g.

IF LEN(A$)=1 AND A$="X"THEN

tests for the single character X.

110FOR1=1 TO LEN(A$)
120 IF MID$(A$,l,1)="E"THEN
CN=CN+1
130 NEXT

counts the number of Es in string A$

Description
Assignment.

Syntax
[LET] <variable>=< expression>

e.g. LET A=5 or LET A$=B$+C$

Function
LET assigns a value or a string to a variable
and is a very common statement. The word
LET is optional and is therefore almost invari­
ably left out to save typing and memory. This

is unfortunate, particularly for beginners as for
instance A=A+5 is nonsense to the ordinary
person, whereas the meaning of LET A=A+5 is
much more obvious.

LIST

Description
Lists all or part of a program.
Syntax
LIST [[<first line>]-[< last line>]]

e;g. UST lists the entire program
LIST 100 lists line 100
LIST 100-200 lists lines 100 to 200

inclusive
LIST-100 lists lines up to 100

Function
This LISTS required lines on the requested
device (usually screen but can be printer). If
used within a program, LIST must be the last
instruction, as after a LIST, control is returned
to the BASIC system and READY is displayed.

LISTing about 10 lines at a time on the VIC
and 20 on the CBM 64 is enough to fill the
screen for a normal program.

Listing to a printer can be carried out as
follows:

OPEN 4,4:REM OPENS CHANNEL
TO PRINTER WITH ADDRESSING 4

CMD4:REM PASSES OUTPUT TO
PRINTER

LIST

and then, when the listing is complete

I

PRINT=t1=4:REM PASSES OUTPUT
BACK TO SCREEN

by terminating output to the printer using a
null PRINT* statement. It is important not to
forget the last line, as otherwise output, includ­
ing the READY prompt, continues to go to the
printer. The printer is normally device 4, but
this can be changed to 5 by a switch on the
rear, when the example above will contain 5
instead of 4.

LOAD

Description
Loads and optionally RUNs a program.

Syntax
LOAD ["<filename>"][,< device>]
[,<address>]

e.g. LOAD loads the next program on cas­
sette.

100 LOAD A$,8 loads the program
from disk, the name of which is set up in
A$ by the currently running program,
andRUNsit.

Function
This loads a program from a program file on
the specified device (usually 1 for cassette and
8 for disk). If executed from within a program,
on completion of the LOAD, the newly
LOADed program will run, which does not of
course apply in direct mode. This allows pro­
grams to be loaded serially and run one after
the other, or even looped round to run one or a
series of programs repeatedly.Obviously in the
case of a loop the cassette has to be rewound

39

40

and at some point the program must pause to
allow\this. On LOAD, any previous program in
memory is lost, whether it is a direct LOAD or
a LOAD from a program. As MERGE is not
directly available, there is no built in single
command way of adding one program to
another already in memory (but see
'MERGE'). The LOADing of a menu pro­
gram can allow the selection of other programs
e.g.

110 IF CH=1 THEN
A$="PROGRAM1"
120 IF CH=2 THEN
A$="PROGRAM2"
130 IF CH=3 THEN
A$="PROGRAM3"
140 LOAD A$,8

will load A$ from disk and run it. It is also
possible to do this from cassette by omitting
the '8' but it may take some time if the required
program is some distance down the tape.

Unfortunately if the second program is
larger than the first, the system crashes! Yes, it
goes horribly wrong because two locations in
the BASIC area have not been set properly.
These locations are the pointer to the start of
BASIC variables at 45 and 46 in both the CBM
64 and VIC. These must therefore be reset by
e.g.

PO KE 45, < number1 >:PO KE
46, < number2 > :CLR

where numberl and number2 are found by
PEEKing 45 and 46 after writing the program.
These numbers determine where the BASIC
variable area ought to be. The line above is
included as the first line of your program if it is

chained (LOADed from another program) and
must be changed whenever the program is
modified.

If the filename is not entered, the first file on
the cassette is LOADed or an error message
given if the disk is addressed. If the filename is
"*" the first file on the disk directory is loaded,
with a FILE NOT FOUND error if this is not a
program file. If the device is not entered, the
cassette is assumed.

The secondary address is not normally used.
An address of 1 will, on the CBM 64, cause the
program to be loaded at the memory location
from which it was saved, rather than automati­
cally in the BASIC area. This could be useful if
the BASIC pointers have been moved about to
allow some machine code.

A load from cassette followed by an im­
mediate run can be achieved by simply press­
ing <SHIFT> and <RUN> tog~ther.

Description
Natural logarithm.

Syntax
LOG (<numeric>)

e.g. LOG (10) gives 2.30258509

Function
LOG finds the natural (base e) logarithm
(usually abbreviated to log) of a number or
expression. This is not the same as the logs
shown in school log tables or most slide rules
which are to the base 10 and can be obtained as
follows:

LOG (A)/LOG (10) returns log base 10 of A

To return from a log to the original number
(i.e. antilogarithm usually .abreviated to anti-

log) multiply by the base to the power given by
the log. As an example using base 10 logs, if the
log is I and the antilog is wanted this is 10 A I
(10 to the power of I) which is 10. lfthe log is 2
the antilog is 10 A2 which is 100

AL=BSALG where AL is the antilog required
BS is the log base
LG is the log

(MERGE)

Description
Merges two programs.

Syntax
None.

Description
This facility does not exist in the CBM BASIC.
However it is extremely useful to be able to
write programs in chunks and then to MERGE
them. The easy way of doing so is to buy a tool­
kit such as the VIC 20 programmers' aid car­
tridge, otherwise it can be done as follows:

Write your first program to cassette as a
serial file e.g.

OPEN 1,1,1,"PROGRAM1":CMD1:
LIST

followed by
PRINT#1:CLOSE1

Then to merge with another program,
rewind the cassette and load it using

PO KE 19, 1 setting the input prompt flag

and finally clear the screen and move down

three cursor positions to where the cursor
would be after a PRINT CHR$(19) and then

PRINT CHR$(19):POKE 198,1:
POKE 631, 13:POKE 153,1

where
PRINT CHR$(19) clears the screen
PO KE 198, 1 sets I character in

keyboard buffer
queue

PO KE 631, 13 sets that character to
<RETURN>

PO KE 1 53, 1 sets default input
from cassette
instead of keyboard

thus simulating someone typing into the
machine the listing that was saved to cassette.
End with a CLOSE 1 after ignoring the
SYNTAX ERROR.

MID$

Description
A string manipulation function extracting or
replacing any contiguous part of a string.

Syntax
MID$(< string> , <numeric I >[,<numeric
2>]

e.g. MID$("JOHN SMITH ESQ",6,5} gives
SMITH

Function
MID$ takes the first position of the string to be
extracted from the left as numeric! and
extracts numeric2 characters beyond that. If
numeric2 is greater than the remaining string
length, or is not entered, the rest of the string is
taken. Numeric2 must be between 0 and 255
and numeric! between I and 255. No syntax

41

42

error is returned if numeric2 is 0 but obviously
nothing will be returned by MID$.

MID$ can be usefully used in string index­
ing e.g.

10 AS= .. JANFEBMARAPRMAYJUN
JULAUGSEPOCTNOVDEC" .
50 INPUT "MONTH NUMBER'"C . ' .
100 B$=MID$(A$,C*3-2,3)
110 REM EXTRACTS THE MONTH
USING THE MONTH NO. INC

See also LEFT$ and RIGHT$

Description
Clears program and deletes variables.

Syntax
NEW.

Function
NEW can be used directly or within a pro­
gram, in which case it clears everything BASIC
including itself. It can therefore be. used as a
rather primitive security device by clearing a
program from memory under certain condi­
tions, although additional line blanking (so

that the line containing the NEW is not visible)
is also required, if the program is not compiled
e.g.

100 INPUT "DATE (DDMMYY)";
DAS
110 IF VAL(RIGHT$(DA$,2))>84
THEN NEW

Programs containing these statements will
automatically delete if used beyond 1984. The
cassette or disk copy is, of course, not affected.

CBM 64 sprites, machine code and high
resolution graphics are not cleared and of
course POKEs that have been performed
remain in effect, so in many cases where these
have been used it may be necessary to press
<STOP> and <RESTORE> or even switch
the machine off and on again

NEXT

Description
Gives the repeat point in a FOR loop.

Syntax
NEXT [<counter>],[<counter>]

Function
NEXT returns the program to the most recent
FOR statement that has not already been
matched with a NEXT. If this does not corre­
spond to the FOR identifier, a NEXT WITH­
OUT FOR error occurs i.e. NEXT on its own
cannot cause this error if there is a FOR cur­
rent as it will automatically match that FOR
and assume that the identifier in the FOR
statement is the one intended in the NEXT.
However, it is safer (but much slower) to use an
identifier (e.g. NEXT I rather than just NEXT)
so that the BASIC interpreter can check the
syntax and thus your logic.

If the exit condition has been reached, the
program will continue by returning to the FOR
to test it and then skipping to the code directly
after the NEXT.

See FOR.

Description
Logical NOT.

Syntax
NOT <operand>

e.g.A=NOTB

Function
NOT is a unary logical operator, i.e. it works
on just one operand, and has two functions.

1. As an operator on an item, in which case
the item is converted to an integer between

-32768 and 32767 and the bit pattern reversed
e.g.

A=NOT 32767 gives A as-32768.
32767 binary is
0111111111111111
-32768 binary is
10000000 00000000

The machine interprets the left hand (most
significant) bit in an integer as a sign bit. If set,
the integer is negative, otherwise positive.

2. As part of an IF statement, in effect IF
NOT ... THEN ...

or

e.g.

100 IF NOT AS="YES"THEN PRINT
"AS IS NOT YES"

10 IF NOT (A=B) THEN A=A+1:
GOT010

is equivalent to
10 IFA=B THEN 30
20 A=A+1 :GOTO 10
30

In line 10 (A=B) evaluates as -1 if true and 0
if false- see Comparisons in Section 1.

NOT is best used purely as a logical operator
in the two senses explained above, and not as
shorthand for arithmetic operations except on
integers, as ILLEGAL QUANTITY errors will
ensue if numbers above 32767 are used and
decimal numbers will be truncated. NOT X%
is equivalent to -XO/o-1 between 32767 and
-32768 because the bit pattern in the 16 bit
integer is reversed. (The same applies to other

43

44

numeric variable types provided they contain
only integers.)

Description
A multiple switch.

Syntax
ON <variable> {GO TO} <linenumber>

{GOSUB}
[,<line number>

e.g. ON A GOSUB 1000,1100,1200,1300,
1000,1200

Function
ON is a software switch that allows a multiple
branch in one instruction and is very useful for
table or data driven programs where the path is
not determined by program logic but by a table
or by data read from a file or input from the
screen; e.g. if a screen is displayed as

MAIN MENU

1. LOAD STOCK FILE FROM
CASSETTE/DISK

2. SA VE AMENDED FILE TO
CASSETTE/DISK

3. ENTER NEW STOCK ITEMS

4. AMEND STOCK AMOUNTS

5.REVIEW

6.REPORTS

SELECT ITEM REQUIRED?

then code to perform the relevant functions
could be selected as below (repeating the code
that produces the last line above)

10 INPUT "SELECT FUNCTION
REQUIRED";MN$
20 ON VAL(MN$) GOTO 100,200,
300,400,500,600
30 PRINT "INVALID CHOICE":
GOT010

or from a file ...
10GET#1,MN
20 ON MN GOTO 100,200,500, 100,

300,400, 100
30 PRINT "ERROR ON INPUT

TAPE"
40END

If the variable (e.g. MN) is 0 or greater than
the highest number in the list, the program will
continue with the next statement which dis­
plays an error message and stops. (It could
return to the selection with a GOTO.) If it is

greater than 255 or negative an ILLEGAL
QUANTITY error occurs. If it is not an integer
the fractional part is ignored.

ON replaces a whole series of IF statements
provided that the selection criteria can be
converted to a sequential series of numbers e.g.
if the reply to a menu was ABC or Din MN$.

MAIN MENU

A. LOAD STOCK FILE FROM
CASSETTE/DISK

B. SA VE AMENDED FILE TO
CASSETTE/DISK

C. ENTER NEW STOCK ITEMS

D. AMEND STOCK AMOUNTS

etc

110 N:=ASC(MN$)-64
120 0 N N GOTO 200,300,400,500
130 PRINT "INVALID REPLY"

or even

FILE MENU

C. CREA TE FILE

K.KILLFILE

A. AMEND FILE

110 N:=ASC(MN$)-64
120 0 N N GOTO 300, 130, 130,
130, 100, 130, 130, 130, 130, 130,200
130 PRINT "INVALID REPLY"

will handle a reply ofC, Kor A
Unrelated variables and complex conditions

cannot be handled and in these cases IF must
be used or a table of values set up.

Although in general programming terms the
use of GOTO is not recommended, in the case
of ON it should normally be used rather than
GOSUB as otherwise invalid entries cannot
easily be checked in the statement following
the ON statement. ~~=;;;;::--r----

OPEN

Description
Opens files or channels to peripherals.

Syntax
OPEN <file number>,[< device>
[,<operation>][,"< file name>
[,<file type>][,< mode>]"]

e.g. OPEN 1,1,0,"DATA"opens a ftle on
cassette named DATA in READ mode and
gives it a number 1.

Function
OPEN sets up a channel for the transfer of
information to or from the computer. This can
then be used by CMD, GET#, INPUT# and
PRINT# statements until it is closed with a
CLOSE.

45

46

The ftle number is the number that all other
file handling statements, such as the ones
above, will use to identify it. It should be
between 1 and 127. Numbers over 127 can be
used but were intended for 1/0 use and not as
ftles. A good convention is to use the same file
numbers for devices as the device number for
cassette screen and printer and then numbers
from 8 upwards for disk ftles.

The device can be 1 for the supplied cassette,
2 for a second cassette (which must be Commo­
dore or Commodore compatible as unlike
other home computers ordinary cassette
players are not usable), 4 or 5 for the printer
depending on a selector switch on the printer,
and 8 upwards for disk drives. No entry
defaults to 1 (the cassette).

The operation indicates what the file will be
used for:

0 =OPEN for reading from cassette - this is
the value if nothing is entered.

1 =OPEN for writing to cassette without end
of tape (or file) marker.

2 = OPEN for writing with end of tape
marker. ·
(The end of tape (or file) marker can be used to
prevent accidentally reading past the end of the
data on a file on a subsequent read.)

2-14 = secondary addresses for use with the
disk unit.

The file name is a string of between 1 and 16
characters which is the name that will be set up
on the disk or cassette when writing, or
searched for when reading.

The file type is sequential (SEQ) if not
entered. The other types are relative (REL),
random which is only applicable to disk files or
program (PRG) which is used by the system
during LOAD and SA VE etc.

The file mode is only used for disk and can

be R for read (the default if no mode is entered)
or W for write.

All this may seem rather complicated, and
for someone unused to microcomputer files on
disk it can be rather difficult. Careful study of
the disk manual and an ability to understand
file handling concepts is required and is
beyond the scope of this book. It is in fact all
there in the disk manual but will require some
perseverance. However for cassette and printer
use it is not too much ofa problem:

OPEN 1,1,9,"DATA" for read and OPEN
1,1,1,"DATA" for write are all that is required
for the cassette. OPEN 4,4 opens a normal
printer after which information can be sent to
the screen using CMD or PRINT# 4. See
LIST for the procedure needed to list a
program to the printer.

See also CLOSE, CMD, PRINT#, GET#,
INPUT#.

Description
Logical OR operator.

Syntax
<operand> OR <operand>

e.g. IF (A=l) OR (A=2) THEN ... (brackets
are optional) ·

Function
OR is a binary function, i.e. it works between
two operands and has two functions:

1. As part of a logical test in an IF statement
where OR indicates that either condition can
be satisfied to satisfy the IF e.g.

IF A=B OR A=C THEN 50.

IFA%=1 OR A%=2 OR A%=3 THEN 50

will go to line 50 for any integer between 1 and
3 inclusive.

10 INPUT "MENU NUMBER";MN%
20IFMN%<00RMN%>5THEN100

will check that a menu entry lies between 1 and
5. Line 100 is the start of the error routine. See
ON for a description of menu handling and
some examples. ON can be clumsy where the
spread of possible replies is too great and OR is
therefore a possible alternative as is a series of
IFs. Beware that occassionally this OR test
does not work due to a bug in BASIC

2. As a logical function on binary numbers
with the following truth table which applies to
each bit in the integer part of a BASIC variable:

X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0

so that A=88 OR 48 will give 64+32+16 = 112

128 64 32 16 8 4 2 I -decimal values
of bits

0 1 0 1 0 0 0 0 80
OR 0 0 1 1 0 0 0 0 48

0 1 1 1 0 0 0 0 112

The maximum size of binary number which
can be handled in this way is 16 bits or two 8
bit bytes. This is the size of a BASIC integer
variable and in decimal is between-32768 and
32767 (being 10000000 00000000 and
01111111 11111111 with decimal zero being
00000000 00000000 of course). All numbers
have to be expressed in decimal as unfortun­
ately the VIC and CBM 64 (in common with
most BASICs) have no handling of binary
numbers except through decimal numbers.

There are many different ways of carrying
out branching comparisons and binary logical
functions. Once your design has clearly stated
the logic required, a truth table should be set
up to show what is required. This is then
implemented with OR NOT AND statements
as required, in the simplest fashion. Equivalent
statements abound:

(a) IF A%=0 OR A%=1 OR A%=2 OR
A%=3THEN ...

(b) IF A%<=0AND A%>=3 THEN ...
(c) IF NOT(A%<0 OR A%>3)

THEN ...

are all equivalent, and the one used should be
the one that is clearest to understand and
reflects the design. A choice of several un­
related numbers (or strings) requires format (a),
a range requires format (b). It is difficult to
think of circumstances in which format (c)
would be preferable.

It is also easy to write incorrect logic or even
meaningless logic:

47

48

IF A< >4 OR A< >5 THEN

is always true but the computer is not smart
enough to recognise this and give an error
message, so you have to do it by checking your
code by hand or when testing the flow of logic
during debugging.

~))-
See also AND, NOT.

PEEK

Description
Examines a memory location.

Syntax
PEEK (<location>)

e.g. PEEK (1024) gets the contents of the
first screen location on a
CBM64.

PEEK (7680) gets the same for an unex­
panded VIC.

Function
If PEEK is used on a valid memory location,
the value of the bit pattern of the 8 bit byte is
found and expressed as a decimal number. A
location of less than 0 or more than 65535
causes the error ILLEGAL QUANTITY to
appear. If on the VIC the memory location is
not valid (no memory exists at this location) an
undefined value will be returned, but no error
message, so it is important to check that the
memory you have and your PEEKs and
POKEs are consistent. PEEK and POKE are
the BASIC way of direct communication with

machine memory and therefore they are
extremely varied in usage, including being able
to get into and modify the BASIC operating
system. This is beyond the scope of this book.
Common uses will be found in your user
manual, so · they are not repeated here.
Remember that <location> can be an expres­
sion, so indexing and logical operations are
possible:

PEEK (1024+(V-1)*40+(H-1))

gives the screen contents at location H position
across the screen and V vertical lines down the
screen for the CBM 64.

It is sometimes convenient to show location
numbers in 2 bytes as this shows more clearly
where they are in memory. For instance upper
case characters on the CBM 64 start at 53248
or 208*256+0, this latter being easier to
remember and use for offsets to the various
characters in the character set. The formula for
PEEKing a 16 bit address is

AD=PEEK(X)+PEEK(X+1)*2~6

for two adjacent locations with the least signifi­
cant or low order byte first.

See also GET* which can read from the
screen, and WAIT which waits for a location to
change.

POKE

Description
Sets the contents of a memory location.

Syntax
POKE <location> ,<integer>

e.g. POKE 1024,1 sets the character A into
the top left hand comer of the CBM 64 screen.

POKE 7680,l sets the character A into
the top left hand comer of the VIC screen.

Function
POKE is the complement of PEEK, setting any
8 bit location in memory. The location follows
the same rules as for PEEK. The integer must
evaluate to between 0 and 255 or the
ILLEGAL QUANTITY error appears. This is
because an 8 bit location can only contain
numbers between 0 and 255.

POKEing values into ROM or non-existent
memory locations will obviously not work, but
there's no error message so take care! Also as
POKE is not restricted to any part of memory,
an ill advised POKE or one in a runaway loop
(see FOR) can crash the operating system or
cause other unpredictable effects, with possible
loss of program. If your program contains
POKEs, it is therefore prudent to SA VE it after
typing it in and each time substantial modifica­
tions are made.

POKEs can be used to set up screens (nor­
mal or graphic), operate the sound system or
even to set up a few lines of machine code.
Most uses of POKE are described adequately
in your CBM 64 or VIC manual, but for
machine code a good understanding of the
machine hardware and operating system is
required to achieve anything significant,
together with some programming expertise of
course. The CBM 64 and VIC are a little un-

usual in the number of intrinsic functions
carried out by POKE instead of say SOUND
or COLOUR commands which do not exist in
this BASIC.

To set up machine code in BASIC, work out
a start address and the code statements
required and then load them with a routine
such as

100FOR1=1TO10
110 READ N:POKE (BS+l),N:NEXT I
120 DATA

where 10 code statements held in DATA are to
be entered, starting at address BS. The DATA
statements have to be decimal which takes
some working out!

POKE can be used in place of PRINT, if you
don't want to disturb the cursor position while
putting something on the screen. lfV is the ver­
tical and H is the horizontal position required a
formula to do this would be

POKE (1024+(V-1)*40+(H-1)),1 for
theCBM64
POKE (7680+(V-1)*22+(H-1)),1 for
the unexpanded VIC

for the character A in this example, and a simi­
lar expression for the colour. The expression
could of course be set up by, say A=V*22+H on
the previous line.

Try working out the same in PRINT - much
more complicated for just one character.
Normal text and header output is better
handled by PRINT.

The general formula for POKEing in a 16 bit
number to two 8 bit bytes is

POKE X,NO-INT(N0/266)*266:

49

50

POKE X+1,INT(N0/256)

where X is the least significant part of the
word.

Description
Gives the cursor position.

Syntax
POS (<dummy>)

e.g. POS(0)

Function
POS returns the position of the cursor in a
given logical line, i.e. between 0 and 79, where
0 to 39 is on the first screen line (64), 40-79 is
on the second screen line, and similarly for the
VIC. The dummy is ignored. As an example
POS(0) returning a value of 20 is directly above
a value of 60 in a line of information that
spreads over 2 lines of the screen:

110 IF POS(0)+LEN(WD$)<39 THEN
PRINT WO$" ";:INPUT# 1,
WDS:GOTO 110

120 PRINT:GOT0110

will prevent words being read from cassette file
from being split between lines.

I

PRINT

Description
Outputs information to a specified device.

Syntax
PRINT [<variable>[{;}]]

{,}
e.g. PRINT AB;
concatenates and prints A$ and B$ and does

not move to the next line.

Function
PRINT is an extremely versatile statement, so
its function can be broken down as follows:
1. Detailed Syntax
PRINT on its own produces a new line.

PRINT <variable> causes the contents of
the variable to be displayed on the output
device, followed by a new line. The variable
can be any string or expression. Some variables
are specific to PRINT. These are TAB and
SPC.

A comma causes formatting similar to tabu­
lation on a typewriter, the tab positions being
10 apart from 10 to 70. A semi-colon causes
the next item or PRINT statement to
follow directly on the same line.

If neither a semi-colon nor a comma is used,
items within this PRINT statement are con­
catenated on the same line, but the next
PRINT statement follows on the next
line.

2. Formatting of Output
This varies slightly depending on the device to
which the output is being sent. This device is
not specified in the PRINT statement, and will
be the screen unless a CMD statement has
been executed directing all PRINT statements
to another device

Numeric items are preceded by a space or
minus sign and followed by a space. Trailing
zeros are removed e.g. 25.10 becomes 25.1 and
25.00 becomes 25. Literal strings (e.g.
"STRING ") are printed exactly as shown with
a few special exceptions, but note that SPC(X)
is not quite the same as printing X spaces since
SPC does not delete information previously
present in the spaced out area. The exceptions
above are " (quotes) which terminate a
string, <RETURN> and <SHIFT I
RETURN> . Cursor control characters can be
put inside quotes and appear as shown in
Appendix B when typed in and will cause the
relevant cursor actions when PRINTed.

Colour controls within strings cause the
colour of the succeeding character to change
when PRINTed. Within the quotes they
appear as various graphic characters as shown
in your VIC/CBM 64 manual and also in
Appendix B (for the main colours).

The <INST/DEL> keys perform their
normal functions within quotes, so that the
reverse T for DEL following INST will appear
and will have that effect in printing e.g.

PRINT "FORMINCJBA T

will appear as FORMAT. It is best to avoid
this feature if possible as LISTing will not
show the full line and thus editing is tricky.

Some other fiddling about with the informa­
tion within quotes is possible but equally
tricky. For instance spaces are left for special
characters, the line is completed with
<RETURN> and the cursor controls are
used to get back into the line.

Experimentation is the only way to really
understand these features.

To avoid all the above drama, use should be

made of CHR$ to encode special characters,
e.g. to switch the display to lower case use

PRINT CHR$(14)

Note that if the output is to the printer
CHR$(17) must be used instead and has to be
repeated at the start of every line or it goes back
into upper case mode. CHR$(14) on the
printer is double width mode. Other CHR$
characters on the printer retain their effect
until cancelled e.g. by PRINT CHR$(15).

POKE may also be used occasionally (q.v.)
and PRINT# may be used instead of CMD
and PRINT when writing to the printer. This
is often the preferred mode as then repeated
use of the CMD statement to switch control is
avoided.

PRINT#

Description
Prints directly to a file or device.

Syntax
PRINT# <file number> ,[<variable>[{;}]]

{,}
e.g. PRINT# 1,A$

Function
PRINT# is very similar to PRINT, but is used
to write data to a logical file (which may be
output to the printer direct).

The comma, semi-colon or blank are all
interpreted as input separators but are not
passed through as characters or separators
to the file unless within quotes when they are
treated like any other character; i.e. items are
written one after the other without separators.
Commas cause spaces to be written to the file

51

52

after each variable or group of variables bet­
ween commas to make its total length up to 10.
At the end of a PRINT :ff statement, if
no punctuation exists, a carriage return and
line feed are output. Any punctuation by
comma or semi-colon causes the next
PRINT statement to put characters in the next
character position, again without separators. A
line can be up to 255 characters long. To
separate the variables on file (cassette or disk),
CHR$(13) should be used instead of
<RETURN>:

110 CR$=CHR$(13)
120PRINT#1,

ACRBCRC$CRS~

Before a PRINT :ff can be used an OPEN state­
ment must have been executed for the file or
device. It is possible to OPEN the screen for
output as with any other device, enabling the
same code to be used for printing both to
screen and printer. A CLOSE must be execut­
ed before program end or the file will be left
incomplete.

Example - to compact and store a list of
names:

10OPEN1, 1, 1 ,'~AME":CR$=
CHR$(13)
20 PRINT "ENTER NAMES; ENTER*
TO COMPLETE FORENAMES IF< 3"
30 PRINT "SURNAME,
FORENAMES, TO FINISH ENTER*
IN SURNAME"
40 INPUT S$,F1 $,F2$,F3$
50 IF SS="*"THEN CLOSE1:END
60 PRINT:ff1,SCRF1$
70 IF F1$="*"THEN 30
80PRINT#1,F2$
90 IF F2$="*"THEN 30
100 PRINT:ff1,F3$:GOTO 30

READ

Description
Reads from a DAT A statement.

Syntax
READ <variable>[,<variable>]

Function
Information is transferred from the DATA
statements as if they were a sequential file. The
first READ picks up the first DATA line and
then works its way through the DATA items
until all variables specified have been filled.
The next READ follows on where the previous
one left off until a RESTORE statement
resets the data pointer to the start.

OUT OF DATA appears ifthe READ tries
to go beyond the end of the DATA and
SYNTAX ERROR appears if there is a type
mis-match. The line identified is the line
containing the DATA item. READ can be used
to simulate data input from a file when
developing a program, or for fixed patterns
such as characters or music. It can also be used
as a fixed table of values to control a program
e.g.

110 READ CL%
120 ON CL% GOTO 100,200,
300,400,500

DATA has the advantage over files in that it
is fast, with no waiting for file buffers to be
loaded, and convenient, as it is already in the
program. However, for large amounts of
DATA, memory becomes a problem and of
course there is no easy way of reorganising
DATA, which can only be done by careful
editing of the program.

Field structures cannot easily be shown in

complex cases and the omission of one item
in a sequence will throw out the organisation of
the data. This can be avoided in a file by
writing a 'data take-on program' which guards
against the user making such errors:

110 READ DT1: IF DT1 >127 OR
DT1=0THEN 300:REM ERROR
110 READ DT2: IF DT2=0THEN 300

in a loop reading a series of values of character
codes (DT 1) and their positions on a line
(DT2).

INPUT# OR GET# should almost always
be used instead of DATA. (In most other com­
puter languages DATA or its equivalent does
not exist.) The effect of READ can better be
achieved for tables by DIMensioning a number
of arrays and reading information into them
from files by GET# statements. A "data"
pointer then can be set to anywhere
within the arrays and not just to the beginning
with RESTORE. Initial values can be set with
data statements, and read into an array after
which they can be processed or modified at
will e.g.

110 FOR 1=1 TO 10
120 READ DT:DT(l)=DT
130 NEXT

or from a file:

110FOR1=1TO10
120GET#1,DT:DT(l)=DT
130 NEXT

not forgetting to open and close the file as
required.

See also DATA, RESTORE

Description
Comment statement.

Syntax
REM [<text>]

Function
The REM statement itself has no function as
far as the computer is concerned, although its
line number can be used as target for a GOTO
or GOSUB statement. Its purpose is to allow
the programmer to note important details of
the program, or headings for subroutines or
other distinctive sections of code. In any
program, REM is a very useful reminder of
what has been done and why, or as a heading to
identify a section of the program. In
Commodore BASIC REM is particularly
important as it is difficult to attach meanings to
variables which can only (safely) be two
characters. Thus without REM, programs tend
to resemble a jungle of indecipherable code.

53

54

The text of a REM statement can be any
character except <RETURN> which termin­
ates the line.

If only blank lines are required for format­
~ing a listing, a lone colon e.g. 110: will serve
mstead of REM, and will not cause a
SYNTAX ERROR! The same applies after a
GOTO as anything thereafter is never accessed
by the program, but this is not recommended
as changes to the program (GOSUB instead of
GOTO) may cause problems.

REM statements should be used at the
beginning of a program to give general infor­
mation such as title and date last amended
and a section should then be included to
identify the variables e.g.

REM L=LENGTH W=WIDTH
H=HEIGHT V=VOLUME

Un.fortunately REMs do occupy space and
margmally slow a program down, so if you are
short of space transfer your REM statements to
a piece of paper kept with the program. Beware
of long programs without reasonable use of
REMs which are often impossible to fmish.
Larg~ well written commercial programs are
~eavily com~e!lted, and it is worth noting that
if you are wntmg large programs it is worth­
while getting a compiler. This will compact
your code and remove all REM statements
fr~~ the, running version while leaving your
ongmal (source') code intact.

RESTORE

Description
Resets the READ pointer to the first DAT A
item.

Syntax
RESTORE

Function
Each READ processes further DATA state­
ments until ~ RESTORE occurs, after which
the READ picks up the first DATA statement
again. RESTORE might be used as part of a
loop to allow a musical program to be played
repeatedly or repeat information on a screen.

Unlike many dialects of BASIC, CBM com­
puters do not have a RESTORE <line num­
ber> function, so to return to a given DATA
statement (not being the first one) requires a
combination of RESTORE and dummy
READS:

110 RESTORE
120 FOR N=1TO100:READ OMS:
NEXTN

to reach item no. 101

See also READ, DATA

RETURN

Description
Terminates a subroutine.

Syntax
RETURN

Function
Every subroutine must be terminated by a
RETURN which transfers control to the state­
ment following the GOSUB statement. Note
that failure to put a RETURN at the right
place will simply cause the program to run
wild through any code following that point. No
SYNTAX ERROR can appear as the com­
puter does not know when to expect a
RETURN. One should be vigilant over this
problem to avoid having painful debugging ses­
sions. See also GOSUB.

RIGHT$

Description
A string manipulation function which extracts
part of a string starting from the right.

Syntax
RIGHT$(< string> , <integer>)

e.g. RIGHT$("JOHN SMITH",5) GIVES
SMITH

Function
RIGHT$ takes the rightmost <integer>
characters of the string. The integer must
evaluate to between 0 and 255. This is
useful in truncation or as part of a string
analysis routine and quite complex syntax
can be used here with good effect. For
examples see LEFT$ and MID$ and also
INT which is valuable for rounding and

truncating numerics and is easier to use
than the string functions under these circum­
stances.

Description
A pseudo random number generator.

Syntax
RND (<numeric>)

e.g. RND(l)

Function
The RND function is useful to create a floating
point number between 0 and 1. The numeric is
a dummy when positive and generates the
numbers in a fixed repeatable sequence. To
start such a sequence a negative number should
be used to provide the seed for the generator, in
other words to restart the generator at the
beginning of a known pseudo random
sequence. The sequence of random numbers
generated depends on the negative numeric
used to set up the sequence. The negative
number RND does not itself generate a random

55

56

number that can be used in a sequence. If the
numeric is zero there is no fixed repeatable
sequence. If a known sequence is not required,
it is possible to use RND without seeding e.g. ,

10 GET A$:1F A$=""THEN 10
20 PRINT""
30 FOR N=1TO4:PRINT

INT(RND(1)*6+1):NEXT
40GOTO 10

simulates throwing 4 dice on pressing any key.

As can be seen from the example, to get a
maximum random number of 6 requires that 1
is added to RND(l)*6 as the random number
generator will never produce a value of exactly
1 and so INT(RND(1)*6) will be between 0 and
5 instead of 1 and 6 as required.

Description
Starts_ a program.

Syntax
RUN [<line number>]

e.g. RUN

Function
RUN is normally used directly from the key­
board to start a program but can be run from
within a program, when its effect is rather like
a GOTO except that it implies a CLR state­
ment clearing not only variables and arrays,
but loop counters and subroutine pointers,
just as if the program had been loaded and
started for the first time. If a line number is
specified it starts the program from that line
which must exist even if only as a REM or lone
colon, otherwise the message UNDEF'D
ST A TEMENT appears.

60 IF CU$="NEW"THEN RUN 100
70 IF CU$< >"NEW"THEN RUN 200

re-initialises from one of two starting points.
Be careful ofDIMensioned arrays as any array
dimension statements are cleared by typing
RUN.

Don't use RUN when debugging using
STOP statements, CONT should be used.

SAVE

Description
Saves a program.

Syntax
SA VE [< [@0:]program name>][,< device
number>][,<address>)

e.g. SA VE "PROGRAM" ,8

saves a program named "PROGRAM"to disk,
PROGRAM being currently not on disk.

Function
SA VE stores a program to cassette or disk,
giving it any name up to 10 characters long.
The '@0' is not part of the'name but is required
if the original program on disk under the same
name is to be overwritten. The device number
is 1 (cassette) if nothing is entered. If 8 is
entered, the program is saved to the disk desig­
nated on device 8 (the usual device number).
The address, if used, has only 3 values which
are as follows:

1. The cassette/ disk copy being made will be
loaded back at the same place in memory
where it currently resides, when LOADed
again.

2. An end of tape marker is put on tape.

3. Both functions 1 and 2 are carried out.

If a disk is used, a filename must be given, as
the disk is not a serial device like a cassette.
The SA VEd program is put on to a convenient
space on the disk and the disk programs are not
in any particular order. On cassette a filename
need not be given, when the program will be
saved without a name. However, it is

sensible to give it a name so that you can check
when loading that you have the right one.
Beware of the fact that the cassette can load on
a part match, so LOAD P will load the first
program whose name begins with P.

Programs on cassette are SA VEd one after
the other in the order of the SA VEs. SA VE can
be used from within a program but if
in main code this can occupy a lot of time
during debugging if long programs need to be
SA VEd to tape every time a small bug is
corrected. SA VEing a long program can take
over 10 minutes. An exception might be made
for a program containing POKEs or machine
code calls SYS or USR which might wipe out
or corrupt the operating system, e.g.

10 SAVE "POKEPROG"
20 DEF

saves the program before any code is executed.
A better method would be:

1GOTO10
2 SAVE "PROGRAM"
3STOP
4 VERIFY "PROGRAM"
5STOP
10 REM START OF PROGRAM

where RUN 2 will SA VE the program, and,
after the cassette has been rewound, CONT
will VERIFY it and CONT again will run it.

A good discipline is to mark all changes on
your listing as you go along, or on a piece of
paper if you have no printer, so that
in case of disaster you know exactly what has
been done, and also to save when the listing
becomes difficult to read or you stop for a
break.

57

58

SA VE all important or lengthy programs on
alternate cassettes so that damage or corrup­
tion on one cassette does not cause loss of all
your work.

~1+
~~j~--..al~:

Description
Logical test of the sign ofa number.

Syntax
SGN (<numeric>)

e.g. SGN (A-1)

Function
If the numeric evaluates to a positive number
the SGN is 1, ifit is 0, 0 and if negative then -1.
An example is

50 ON SGN(A)+2 GOSUB1000,
2000,3000

which is a neat way of branching three ways,
especially as ELSE does not exist. This could
be used where a money amount is printed in
the debit column if negative, the credit column
if positive or not printed at all if zero.

Description
Trigonometric sine function, giving the ratio of
the side opposite and the hypotenuse in a right
angled triangle.

Syntax
SIN (<numeric>)

e.g. SIN (1) gives 0.84147

Function
The sine of an angle (in radians) is produced.
See also TAN, COS and the table of other
trigonometric functions in your user manual.
Example:

SIN(Il/4)

gives the sine of 45 degrees=0.707106781

h

Description
Produces spaces in a PRINT statement.

Syntax
SPC(<numeric>)

e.g. SPC(5) moves the cursor 5 spaces to the
right

Function
SPC steps the cursor along, without printing,
by the number of spaces specified. On the
screen this leaves anything previously on the
screen unchanged, but obviously on other
devices it writes spaces. Line overflow is pre­
vented in all cases by automatic
<RETURN>s where required. The numeric
must evaluate to between 1 and 255 (or 254 for
disk files) e.g. in,

PRINT SPC(l*40+J}

will move the PRINT position down I lines
and along J spaces if the expression is less than
255 (CBM 64).

PRINT " " actually prints spaces rather
than skipping them and TAB gets to a pre­
dicted position beyond the existing cursor
position thus often avoiding the need to
recount spaces every time a program changes
slightly. See also POKE.

Description
Square root function.

Syntax
SQR (<numeric>)

e.g. SQR(4) gives 2

Function
Gives the square root of a number or expres­
sion. The computer cannot handle imaginary
numbers, so the numeric must not be
negative (error ILLEGAL QUANTITY
appears).

STATUS

Description
Variable holding the status of the file most
recently operated on.

Syntax
ST

Function
ST is zero for an ordinary 1/0 operation. Bits
are set in the 8 bit ST word for any conditions
that arise, as follows:

ST (Bit) Cassette
0

1

2 Short block
3 Longblock
4 Non-

recoverable
read error/
mismatch on
LOAD/
VERIFY

5 Checksum

Serial 110 Disk
Timeout-
write
Timeout-
read

error.
6 Endoffde

End of
End of input file

e.g.

7 Endoftape Device not
present

100 IF ST=64THEN1000

. . . .
1000 PRINT "END OF FILE-NO
ERRORS"

59

60

tests for end of ftle without other error condi­
tions. 64 is binary 01000000 representing the
end offde condition.

STEP

Description
Defines amount of step in a FOR loop.

Syntax
See FOR.

Function
See FOR. Note that if STEP is not explicitly
coded BASIC assumes a STEP of 1. In back­
ward counting loops therefore, STEP has to be
specified.

STOP

Description
Halts a BASIC program.

Syntax
STOP.

Function
STOP simulates a depression of the <STOP>
key. The BASIC program waits and all its
variables are available to examine or change.
The message given by the system is BREAK IN
LINE... and the line number followed by
READY as the machine returns to command
mode. To restart type CONT or to skip to
another part of the program type GOTO <line
number>. The program then resumes without
resetting stacks or variables.

The STOP function is extremely useful in
finding the bugs in a program. You can check if
a program follows a given path by placing
STOPs in it and can check the variables within

the program to see if they are at the expected
values.

This function is very similar to END except
that the END does not produce a BREAK IN
LINE error message.

STR$

Description
Converts a numeric to a string.

Syntax
STR$ (<numeric>)

Function
Evaluates a numeric or numeric expression as
if it were to be PRINTed and converts each
numeric character to its ASCII character
equivalent. The first character is always a
space or negative sign e.g.

PRINT STR$(4.5E5)

gives" 450000" (length 7)

This function is not often used except during
disk handling as the work is considerable,
chiefly because one often needs to get an exact
match between the strings and the expected
results when these are converted back to
numerics. For example 45.00 is converted to
45 by VAL, while 45.01 remains as 45.01.
However see the number checking routine in
Section 3.

Description
Starts a machine code subroutine.

Syntax
SYS <location>

e.g. SYS 828 starts a machine code program
in the cassette buffer, starting at decimal
828.

Function
The safety of BASIC is left behind, all com­
mands must be programmed in machine
language using an assembler or a series of
POKEs in the BASIC program. Good luck, but
watch out as any error may sink you! Don't
forget to end your machine code on an
RTS if you want it to come back to the BASIC
program.

It is beyond the scope of this book to
describe machine level programming, usually
required to obtain speed or special features of
the hardware. It is worth considering that a
BASIC compiler may achieve the same effect,
with far less effort.

SYS should be used in preference to the
other BASIC machine code call, USR, which
is more difficult to use without any real
advantages.

Description
Moves the cursor to a defined position in the
logical line.

Syntax
TAB (<numeric>)

e.g. TAB (35)

Function
TAB acts in the same way as a typewriter TAB
but can run on beyond the logical line length of
80 characters, up to 255 positions in total
(from the start of the line). E.g.

110 PRINT "MAR"TAB(10) "APR"
TAB(20) "MAY"TAB(30)"JUNE"
120 FOR N=1TO5
130 PRINT S$(N, 1)TAB(10)
S$(N,2)TAB(20) S$(N,3)TAB(30)
S$(N,4)
150 NEXT

prints 5 sets of (say) monthly sales figures (held

61

62

in a two dimensional string array S$ as equal
length strings) in neat columns.

· Or on the printer:

110 PRINT "MAR"TAB(7)"APR"
TAB(7)"MAY"TAB(7) etc

produces the same effect, from which can be
seen that TAB works like SPC for the printer.

Description
Trigonometric tangent function being the
result of the side opposite to the angle divided
by the side adjacent to the angle in any right
angled triangle.

Syntax
TAN (<numeric>)

e.g. TAN (Il/4)=1 (actually comes out as .9
recurring)

Function
The tangent of an angle (in radians) is pro­
duced. See also SIN, COS and the table of
other trigonometric functions given in your
user manual. As the tangent, unlike SIN or
COS can approach infinity, an error
DIVISION BY ZERO will appear if the

Tad..!
l

tangent is too close to Il/2 or a multiple there­
of. (I.e. BASIC cannot handle infinite numbers,
so a test must be incorporated to bypass TAN
and give an answer of INFINITE if the tangent
ofll/2, is expected to be requested).

TIME

Description
Reads an internal clock.

Syntax
TlorTI$.

Function
The function TI starts at 0 on power up and
can be reset at any time using TI$ (trying to
reset with TI=0 gives a syntax error). e.g.

Tl$="000000"

It counts time accurately (even if it's on a 50
Hz supply) in l/60 second units (except when
cassette Input or Output is taking place) as a
pure count in TI but as a string of six
numerics of the format "HHMMSS"in Tl$. It
can usefully be used as a keyboard timer e.g.

10 Tl$="000000"
20GETA$:1FTl<10*60AND
AS=""THEN 20
30 IF AS=""THEN PRINT "MISSED-
10SECONDS UP":END
40 PRINT "YOU TOOK "Tl/60
"SECONDS":GOTO 10

As an illustrative program the CLOCK pro­
gram below shows how to set up and display
hours minutes and seconds. METRONOME
gives a method of creating a fixed time interval.

1 REM CLOCK
2 POKE 53281,1
3 PRINT 11 _:1!.,.,llJ!""'!O:Cl""llJ!""'llJ!Cl""llJ!""'!aB"'"'lJ:l"TAF<l5) _; "--"
5 PRINT "~"TAF<15).;"I ! "
7 PRINT "'1I~~"TFIF(15) _; 11--11

10 PRINT "~QI'.~"_;_; AF(16) ,; LEFU(TU:, 2) .: ": "_;
MID$(T!!$,,3,2)":"R!GHT$(TJ$,2)

12 POKE 53280 .. INT<RND(1)*16)~1
20 T$=Tl$
30 IF T$=Tl$ THEN 30
40 GOTO 10

Printer in lower case mode.

100 rem metrono111e - vie 20
110 v1•36878=sl•36874=Poke v\, 15=tif="000000"
120 inPut "lalll:>eatslmin"ibtf
130 Print "IDlenter c to Chanh • to end

II

140 bt-val<btf): if bt-S then Print "0 1• too slow!
11 :goto 110

1:50 Mt?.•60*68/bt:rern Pulses/sec * secs I no. beats
Ptr min

160 <aet k11f:if k11S•"•" then 210
170 if k11S- 11 c11 then 120
188 if mt?.>ti then 160:rern wait for clock tick or

cornMnd
198 Pok• s1,129:poke s1,0
200 ti .. "808080" :goto 160
210 Pok• s1,e:Poke v\,e:end

rHdll.

Description
Starts a machine code routine.

Syntax
USR(<numeric>)

e.g. X=USR(A*2+4)

Function
USR calls a subroutine in the location pointed
to by memory locations I and 2 (VIC) or 785
and 786 (CBM 64). This must be set
up by POKEs before USR is called. The

numeric is stored in the floating point accumu­
lator at the start of the subroutine and the
result of the machine code routine is left in 97
for the BASIC program when control is re­
turned with an RTS machine language
statement. See also SYS which is easier to use
and more flexible.

VAL ·

Description
· Extracts the numeric content of a string.

Syntax
VAL(< string>)

e.g. VAL(" 1.01 A") gives 1.01

Function
Starting from the left, VAL extracts first a sign,
if present, then numerics and one decimal full
stop, until a non-numeric or second full stop is
reached. The number is then stripped of lead­
ing and trailing zeros to be held as a conven­
tional numeric. e.g.

VAL ("-1.0.01 A") gives-1
VAL(" ABC") gives 0
VAL(" ABC123") gives 0
VAL ("-25.43") gives-25.43

VAL is the converse operation to STR$,
and has rather more use. When using INPUT
for numerics, an error occurs and the
program terminates if a non-numeric is
entered in a numeric field. It is therefore
advisable to use a string variable and
VAL e.g.

10 INPUT "NUMBER 1TO9";A$
20 IFVAL(A$)<1 ORVAL(A$)>9
GOT010

63

64

30 PRINT "OK"

See also the number checking routine in Sec­
tion 3 and INPUT.

VERIFY

Description
Checks a SA VEd program.

Syntax
VERIFY ["<program name>"][,< device>]

e.g. VERIFY "PROGRAM"'

Function
The program name is read from the device
(defaults to cassette if not specified) and checks
against the contents of memory. A VERIFY
ERROR message is produced if the title and
data contents do not exactly match. VERIFY
can also be used within a program e.g.

5010SAVE "@0:PROGRAM",8
5020 VERIFY "PROGRAM",8
5030 PRINT "END":END

Note that this cannot be used on cassette
without a WAIT at 5015 or

5015 PRINT "REWIND CASSETTE,
PRESS PLAY THEN RETURN"
5017 INPUT AS

otherwise the program goes straight into
VERIFY as the tape is still running.

Description
The program waits for an external event.

Syntax
WAIT <location> , <mask I > ,[< mask2 >]

e.g. WAIT 1,48 waits for cassette to be
stopped on CBM 64.
(48 is the bit pattern 00110000 set in
location I when the tape starts, and cleared
when it stops)

Function
WAIT halts the BASIC program until an exter­
nal event such as the pressing of a key on the
cassette recorder or the expiry of time occurs.
It does this by watching the location specified
for a defined pattern. Normally the location
will be one of the I-0 registers or a related
position. This location need not be a
number, an expression will be evaluated to an
integer even if it is not, in fact, an integer.

To define the pattern being WAITed for, the
contents of the location are ANDed with
mask I, complemented and ANDed with
mask2, if present. In other words, if any loca­
tion bits are I in positions corresponding to Is
in maskl or 0 in positions corresponding to ls
in mask2, the wait is over and the program
proceeds.

SECTION 3 USEFUL ROUTINES

Introduction
The examples set out in this section of the book
are intended to illustrate the way programs can
be built up using the BASIC described in detail
in Section 2. The BASIC syntax (i.e. language
construction) is very flexible, and commands
can be combined or nested in countless dif­
ferent ways and to a complex level before the
interpreter can no longer cope. In fact the usual
limitation is the ability of the human brain to
easily understand complex constructs that
limits the complexity of code, rather than
BASIC. Complex solutions are therefore better
implemented by carefully constructed com­
binations of simple easy to understand code,
than by convoluted code nested deep in FOR
loops and GOSUBs with a sprinkling of
GOfOs.

To get started on the computer is extremely
easy, but many people don't realise this. After
a little while playing with the machine, reading
from the manual, most children can produce a
simple program like PROTEST below, which
apart from line 5 is exactly as it was written by
my 9 year old daughter.

5 REM PROTEST
10 PRINT"BOOOOOOO HOOOOOOOO"
20 PRIHT"I CAN'T PLAY FOOTBALL"
30 PRIHT"MUM WON'T LET ME."
40 PRINT"HELP ME"
50 PRINT"
60 PRINT"HELP ME"
70 GOTO 10

READY.

Another slightly longer program which
requires little knowledge of BASIC, but an
understanding of the way sound and colour is
generated (in your VIC 20 manual) is as
follows.

10 REM MUSIC
20 SC=53281 : PRINT ":1": POKE SC .. 1
30 CL=55296=S=54272=FOR N=S TO S+24=POKE N,0=NEXT
4;3 POKE SD+5 .• 9 : POKE SD+9 .• 0 : POKE SD+24, 1 !;i
50 READ DA .. TA.· LN
60 REM RANDOM COLOURED SQIJARES ON THE SCREEN
70 RD=INT<RND<l)f1000)
80 POKE RD+1024,32+128
90 CO=INT(RND<1>*17>=IF C0=1 THEN 90
100 IF DA=999 THEN RESTORE:GOTO 50
110 POKE RD+CL,CO
120 :
130 REM PLA'11 NOTE
140 POKE SD+1..DA:POKE SD, TA:POKE SD+4,33
150 FOR N=1 TO L~l:t2:NEXT
160 POKE SD+4,32
170 GOTO '50

180 REM ************DATA***************** **
**********DATA*****************

190 DATA 14, 107, 150.· 19 .. 63 .. 300
200 DATA 21..154 .. 150,22,227,300
210 DATA 28,214, 150 .• 25, 177,300
220 DAtA 19 .. 63 .. 150, 19,63 .. 300
230 DATA 38, 126, 150, 38.· 126, 300
240 DATA 38,126,150,34,75,300
250 DATA 2s,214,150,2a,214,600
260 DATA 38,126,75,38,126,75
270 DATA 38,126,300,21,154,150
280 DATA 22 .• 227,300 .. 28.·214, 150
290 DATA 25 .• 1771150, 19, 63, 150
300 DATA 19, 63.· 150
310 DATA 19.·631300
320 DATA 19,63,150
330 DATA 19, 63, 300.19 .. 63, 150
340 DATA 18 .. 42,300, 18,42 .. 150
350 DATA 19, 63 .• 300
360 DATA 999,999,999

READY.

65

66

The first few lines of this program generate
random colours in random positions on the
screen, and the last few lines generate the
music from the data read in line 190. The data
is used exclusively to generate the music.

The examples that follow are in some cases
quite complex and although all have been
tested or used for various applications, the
sharp programmers amongst you will very
probably feel there are better ways of carrying
out some of these functions. If so then this
book has served its purpose and of course I
would be pleased to hear of any improvements.

SORT

The two programs below both work on the
principle of a bubble sort. Starting with the first
two items in the list of numbers or words, the
program compares them and swaps them if the
order is wrong. It then goes on to the second
and third items, third and fourth items and so
on to the bottom of the list. Having passed the
list once it then repeats the process until the
items are all in the right order, i.e. no further
swaps are carried out during a pass of the list.
Thus an item at the bottom of the list will rise
one postion at a time until it arrives under the
item next to which it belongs.

10 S1=36874=POKE 36878,15=POKE 36879 .. 30
20 GOSUB 300
30 PRINT"~NTER El=lCH NUMBER .. AND ~JHEN 'IO

U HAVEF IN I SHED, PRESS 'RE'fURW • "
40 PR INT"~ UP TO ONE HUNDRED NUMBERS MAY BE EN

TERED"
50 PRINT"~ •:.!IT A~!Y KEY:" : GOSIJB 290
60 PRINT":'l"=AM=100=DIM NO<AM)
70 FOR N=lTOAM
80 PRINT"tl::NTER NIJMBERll"N":l=111!"
90 INPUT NO$
100 !F ~l0$=" II THEN 150
110 N0<N)=VAL<N0$): NOt:=""

120 X=X+1
130 FOR L=1 T025: POKE St +t.. 240: NEXT: POKE St +1.. 0
140 NE::<T N

150 REM*************** ** SORTING **

160 GOSUB 300 : PR I NT" 1i$.OO SORT H!G •• "
170 AM=X=X=0=N=1
180 PRINT")] PLEASE: t.JRTT •• "II
1.90 T"'" ~!O(~D)N0(N+1) THEN NO=NO(~l) :~!Q(N)=NO(N+1) =N

0<N+1) =NO : X=0
200 X='.:<+1: N=N+1: IF N)=AM THEM N=1
210 IF X<>AM THEN 190
220 REM*************** ** PRINTING **

2313 GOSUB 300=PRINT"~"
240 FOR N=1 TO AM
250 P=P+1: IF P/18=I~JT(P/18'THEN GOSUB 280=PRINT":0.l

260 IF NOnoo0 THEtl PRINT "l"NO(N)
270 NEXT N : PR INT II ~ND OF LI ST II : END
280 PRINT"i :.t-IIT A~l'f KEY"
290 GET KYt::IF KY$="" THEN 290
300 PRINT":'JMI*** =-iUt:1BER SORT l~*'t*ll"
31.0 RETURN

READY.

10 REM ~!O SORT
20 REM SORTS ~!UMBERS INTO ASCENitHlG OF.'.I1ER
30 VL=54296=:SD=53280=SC=53281=SD=54272=REM COLOUR

& SOUND
40 POKE Vl.· 15 : REM VOLUME
50 POKE BD, 6 : POKE SC2 .. 1 : REM SCREE~! COLOURS
60 POKE SD+6 .• 248 : REM sou~m
70 GOSUB 490
80 PRINT":Mfl(ENTER EACH NUMBER .. A~lD"
90 PRINT TAB(8) "i·lHEN 'r'OU HAVE FINISHED"
100 PRIHT TAB:'.iD"PRESS 'RETURW. II

110 PR I NT TAB <10) "lMJP TO ONE THOUSAND
~!UMBERS MA'" BE E~ffERED"

120 PR INT II ~~F,00 l!ll-I IT AN'1' KE'i:11 : GOSUB 4
80

130 AM=1000:rIM NO<AM)
140 FOR N=lTOAM
150 PR I NT II= ENTER NIJMBERll11 w ~: ~II
160 INPUT II ".:NO$
170 !F HO$="" THEN 290
180 N0(N)=l/AL(N0$):HQ$=" 11

190 X=X+1
200 POKE SD+5,190
210 POKE SD+6 .. 248

220 POKE SD+ 1.· 20+ !NH RND (D t20) : POKE SD .. 37
230 POKE SD+4 ..17
240 FOR L=l TO 100'NEXT L
250 POKE SD+4,0
260 POKE SD+5,0'P0KE SD+€,0
270 NEXT N
280 :

290 REM*******'H* SORTING ***********
300 :
310 TI$="000000"
320 GOSIJE 490'PRINT"~ SORTHIG •• "
330 AM=X:X=0:N=1
340 PRINT"'-! PLEASE l•JAIT ••• II
350 IF NO(N))NO<N+D THEN NO=NO<H) :NO<N)=N!)<N+D :N

OHi+ D=NO: X=0
360 X=X+l :N=N+1: IF N)=AM THEN N=l
370 IF X()AM THEN 350
380 T:t:=TI$
390 :
400 REM******* PRINTING NUMBERS *******
410 :
420 GOSIJB 490: PRINT"JIJ"
430 FOR N=1 TO AM
440 P=P+1: IF P/18=!NT(P/18HHEN GOSUB 510
450 IF ~lQ(N)00 THEN PRINT TAB(TB) .: "l!!"NO<N>
460 NEXT N:PRINT TAB<TB)i "'.'ll:END OF LIST~" :PRHff"

":END
470 PRINT"! ~HT AHY KEY"
480 GET K't'~:: IF KY:f:="" THEN 480
490 PRINT":OO lft'f*'f :t-llJMBER SORT IW.'f'f*XI"
500 RETIJRN
510 A=A+1:TB=A'f12:IF A=3THEN A=-1:GOSIJB 470:QOTO 5

10
520 PRINT"~":RETURN

READY.

5 ~EM*************** ** WORD SORT 'f'f !I!

10 S1=36874:POKE 368?8 .• 15:POKE 36879.-30
20 GOSIJB 300
30 PRINT"tlmlENTER EACH l~ORD , AND l•ll-!EN •..10

IJ HAVEFINISHED.· PRESS 'RETURN'.
40 PRINT"~ IJP TO ONE HllNDREil WORDS MAY BE EN

TE:RED"
50 PRINT"~ llf!IT ANY KEY~" : GOSIJB 290
60 PRINT":']" :AM=100:DIM NO:t:<AM)
70 FOR N=lTOAM
80 PRINT"~NTER WORDll"N 11 :=:i1111

90 INPIJT NO$

100 IF NO$="" THEN 150
110 NO$<N)=NO$: NO$='"'
120 X=X+1
130 t:OSIJB 320
140 NEXT N

150 REM*************** t'f SORTING 'f'f

160 GOSIJB 300:PRINT"~ SORTING •• "
170 AM=x:x:0:N=l
180 PRINT"llJ PLEASE !JAIT. , • "
190 IF NO$ (N))NO$ (N+ 0 THEN NO$=NO$ (N) : NO$ (1-0 =NO$ (

N+D :NO$(N+D=N0~::0:=0
200 :x'.=X+! : N=N+1: IF N)=AM THEN N=1
210 IF X()AM THEN 190
220 REM'ft'f'f'f'ft'f:+'t'f'f'ft'f 'f:+' PRINTING tt

230 GOSUB 300:PRINT"'.Q!l"
240 FOR N=1 TO AM
250 P=P+t:IF P/18=INT(P/18'THEN GOSLIB 280:PRINT"~

II

260 IF N0$(N)()"" THEN P!;>IN'l' "1"~1Qt(N):QQSIJB 320
270 NEXT W PRUIT "~" : END
280 PRINT"ll :l-IIT FIN',1 KEV"
2~0 GET KY:t::IF KYt="" THEN 290
300 PR INT II :.11 .. **** !lolORD SORT P1'4E'f•••:-J"
310 RETURN
320 R=INT(RND<D'f10) :FOR L=1T025:POKE S1+t..235+R:N

E:O:T : POKE S 1 + t.. 0: RETURN

READY.

10 VL=54296::BD=53280:SC=53281:s:D-=54272=REM VOLUME
AND COLOIJRS

20 POKE \IL,15
30 POKE BD .. 6:POKE SC.l
40 POKE SD+6 .. · 248
50 GOSUB 470
60 PRINT"~ EmER EACH MORD , AND"
70 PRINT TAB(8)"WHEN 'r'OU HAVE FINISHED"
80 PRINT TAB(11)"PP.ESS 'RETIJRW."
90 PRINT TAB<10)"~JP TO ONE THOUSAND

l·JORDS MAY BE ENTERED"
100 PRINT"~ ff-IIT AN'-' V.E',.'~": ':?OSL'P 4

60
110 AM=1000:DIM N0$(AM)
120 FOR N=1TOAM
130 PRINT":I ENTER ~JORDll"N"~:~"
140 INPUT II ": N0$(N)
150 IF NOt(N)="" THEN 2613
160 X=X+l

67

68

170 POKE SD•'5.-190
180 POKE SD+6 .. 248
190 POKE SD+ 1.. 20+ H-IT< RND (D *20) : POl<E SD .. 37
200 POKE SD+4.-17
210 FOR L:::1 TO l(!l!HlE::<T :..
220 POKE SD:0
230 POKE SD+ 1.. 0 : POKE SD+4, 0
240 NEXT N
250 :
260 REM********** SORTING ***********
270 REM IJSES BIJBPLE SORT - COMPARES PAIRS
280 :
290 Tl$="001?000"
300 GOSUB 470:PRINT"~ SORTING .. "
310 AM=X=X=0=N=1
320 PRINT":e.I PLEASE HAIT ••• "
330 IF N0$(N))N0:t.(N+D THEN NOt=~JO:t.~N) :NQ$(N)=N0t(

N+1):NO$(N+1>=NOt-:X=0
340 X=X+1:N=N+1:IF N)=AM THEN N=l
350 IF X()AM THEN 330
360 T$=TU:
370 :
380 REM******* PR!NTHIG l·!OP.DS *****•*
390 :
400 GOSUB 470: PRH!T":e.I"
410 FOR N=1 TO AM
420 P=f41: IF P/18=INT(P/18HHE~1 ?!JSUB ·190
430 IF N0$(M){)"" THEN PRINT TAP<TB) .: "l"N0$(M)
440 NEXT N: PRINT TAB<TlD .: ":'1.lllEND OF LIST!!!JI": PRnlT"

":END .
450 PRUIT"• :!HIT ANY !<E'-'"
460 GET KY$:!!:' l(V:t.='"' T~EN 46!!1
470 PRINT":'nl f~tttt =-ioRD SORT llil'****)!I"
480 RETURN
490 A=A+1:TB=A•20:IF A=2THEN ::1-,,-1:".?IJSUB 4~0:GQTO 4

. 90
500 PRIHT"~": RETURN

READY.

The bubble sort is easy to understand but
very inefficient under most circumstances.
Many better sorts exist; most are difficult to
understand but usually fairly easy to use by
incorporating them as subroutines in your
program. One such subroutine is shown below.

1 REM tt J IS NO OF WORDS TO GO
3 REM tt S IS NO OF WORDS DONE, OR THE

4 REM t!ll POSITION IN.THE ARRAY.
5 REM tt A$() IS THE ARRAY
6 REM ** THIS PROO LOOKS. AT EACH
7.REM t!ll IHDIVIDUAL WORD, AND SORTS IT
8 REM !11!11 OUT ON ITS OWN, AND THEN GOES
9 REM ** ON TO THE NEXT WORD.
10 FOR N=1 TO 100
20 INPUT f.1$<H)
30 IF A$(N)'""!ll" THEN 100
40 NEXT N
100 REM QUICKSORT ROUTINE
110 DIM SL<100>,sR<100>
120 S=1=SL<1>=1=SR<1>=N
130 L=SL.<S>=R=SR<S>=S=S-1
140 ImL=J•R=X$=Rt(INT<<L+R)/2))
130 IF AS<I><XS THEN I=I+t:GOTO 150
160 IF X$(A$(J) THEN J=J-1=GOTO. 160
170 IF I>J THEN 1190
180 Wl=At<I>=At<I>aRl(J):A$(J)=W$:I=I+1=J=J-1
190 IF I<~J THEN 150
200 IF I>=R THEN 220
210 S-S+t:SL(S)=I:SR<S>•R
220 R=J=IF L<R THEN 140
230 IF SOB THEN 130
240 FOR N•1 TO 100=PRINT A$<N>=NEXT

READY.

NUMERIC CHECK

There are a number of numeric checks that can
be carried out to see if a string that has been
input is a numeric. The simplest is the VAL
function, but this does not cater for the case of
0 or where some extraneous characters have
been added. The cases most commonly consi­
dered are integer, money and decimal.
However there is no reason why binary or
hexadecimal or octal cannot be checked for by
writing special validation routines using all or
part of the general routine for a decimal
number given below.

10 REM NUMERIC CHECK ROUTINE. CHECKS flDECIMAL E:NTR
Y OF UP TO NINf. NIJMERALS

20 REM 1F VALID ~J!JMBER rn 'NO$·' TO:: RETIJF.t·lED AS 't·m

30 1 NPUT" TEST l~IJMBER" .: NO:t
40 NO=\JAL nio:t.) : CV:t=STR$ff-Jr,.:,
50 REM STRTP ni:-i:- l_ERDFJG SPACES AND ZEROS AND TRAI

UNG SPACES
60 IF LEFU<NO:t.. D=" "THEN NO:t=RIGHT$(~lQ:t..LEWN0$)

-!):GOTO 50
65 IF LEFT$(N0$, 1)="0"A~lD ~!O:t.0"0" THE~l f.JO:t.=RIGHT:t.

(NO:t., LENOlO:t.)-1): GOTO 50
70 ri:- 1-EFT:t.W<:t., 1)=" "THIO:N CK:t=R!GHT:t.r 1·:v:r..1 J::WCV:t.)

-1)
80 ri:- P!Gl-IT:t.OJO:t.. D=" "THEN NO:t=LEFnnm$,LEWNO:t.>

-1) :GOTO 70
90 IF NO:t.=CK$ THEM PRHlT "OK"
100 PR !HT NO$.: II " .: CK$
!.10 GOTO 30

READ'T'.

The string manipulation in the above
routine may also be of some interest. It pro­
vides a method of reducing a string until
unwanted filler characters have been entirely
removed.

RANDOM GROUPS

The dice rolling and holding program below
illustrates the use of random numbers in a
selection from 1 to 6, then incorporated in
pictures of dice. The sound effects are also
randomly generated. Note the use of the screen
as an input device.

10 POKE 53280 , 3 : POKE 5328 J. , 1 : GOSIJB 11300
15 D!M HDf25)
?.\:I OPE~J 1 · 0
30 GOSUF 10113
40 PR1NT"'IO no YOU 1.JRNT INSTRIJCTIO~lS?"

45 PRINT TAF(11.:n:
50 I NPIJTtt 1 . '.'N:t
60 IF LEl:'T$('.JN:t.' 1)<".'>"'.J" Tl.lJ::~J1 C:(:l

"'0 Gl!Sl_l'I: 10~0: PR!t.JT ":@M "FRESS tP'f Tl) IPOLL
THE DICE"

80 PRINT "~ PRESS A ltJUMBER'1' TO lf:'.HANGE1"

90 Pl;>T~lT" Tl.IE NlJMBER Oi:' '[ITri::-111 ROI.LED"
rn0 PP.TNT:PPTNT:PR!HT" PPEss lfi!!I AHD THE tJ-Jo o

i:- THE D!E"
1.10 POHJT" Tf"J lf-101_11'1 1'.l!CE"
'· '2!? 00 HJT " TO SEPl?l:'OTi:' !l ! E lJANT HlG TO PE "
1 ?"' Pl;' 1NT II 91-!ELD•.. TYPE A COMMA.· THEN RETURW
!. ?-0 PP\f.JT 11~ ~~1nP~J',..•1<E',1•rro•F;TART"
1 .ii:, GET i(I,!$: ! t:' !f'.J:t.= II " Tl.JJ:'~J 140
1. ';.111 Gr1SI rR 11'100: PRFJT
1 ~5 Pl:::M***********lil KE',.OS *************** ***

·····•***************•········
1 '3!'.! ~::T k''.J-t : Ti:' V'-'"-= II II Tl.IE}J 160
1c.c: T~ qSC(KY$)=13 THEN CH=2
1 ?0 IF l<'.'J$="H 11 THEN GOS!JP 500
17 0:- TF l<V:t.)= 11 0" A~JD !l'V${= 11 9 11 Q~l!• CH=2 TH~~J GOSIJF 9

80
l 80 !F v•,.01:='> 11 0 11 AND V'J<t-=< 11 9" THEN GOSUB 990: !F DC)

24 THEN CH=2:GOTO 155
190 !t:" V'.1${) 11 R11 THEN lt.0
200 P\:'.Mlillillil***lilw**** Pp!~JTT~JG "'********** ***

20'5 CH=?
210 FOR ~!=1 TO DC :POVE Lt:'. HJT(Rl·ffJf 0*200)+1: Pnvi:- l.J

t:',INTfRND(l)*?A0)+1
215 PRTNT 11 •ll 11 ~l 11 Qll": :i:-op N~l=l TO u:WSTR:t.0·0) :PPHJ

T II fl 11 .: : NEXT N~J

'220 PR! ~lT 11 I .~-.. :•HHl!l11 :

230 PP FJT II "11" I :iill!!l!llll11 :

240 Pp I ~JT II 1 ••• , l ljillllll11 .:

'.'O::lil PPT~JT" , !Qlllll" .:
260 PR INT II .___, '.TIT1 .. lllr.I" .:
265 FOP 1-=1 TO 24: ri:- ~!=HD(U Tl.JJ;:~J Pl:J!~JT"••H•n11 : :r;

OTO 290
2.St. HEXT L
2fS7 ~PJNT 11)fJll Qlll ~Ill '."!T',_l! .. 111 .:

270 RD=INT(RHD(1)*6)+1
280 ON RD GOSIJF 400 .. <l~r-l.4?0 431'.ll 4.ir-1 4":0
29~ Ii:' N/8=!t~T(l.Jl8'Tl.JPJ PRtt-ff:PRHJT:PRIMT
380 POKE HF .. 0:POKE LF .. 0
390 NEXT N: PRHJT 11~11 .: : GOTO 155: Ri:M START c:iGA Tl·l
400 PRINT"l!l0tll••rrn11 .: : RETURN
410 PR INT II)f)ll•OO'Ol"'Tml11 .: : RETURN
420 PR!NT")f)ll'.'.Jl•"'Tmr1 .: :RETURN
430 PRINT")f)ll•ll:-IGlllDll"'Tmt•t11 : : RJO:TUPN
440 PRIMT")fJlll•!lliJJ.1.Qlllllll'.'11"TT)•l11 : : RETIJR~l
450 PRI~JT"~••11tQlllllllQlllllll'.'TTT1ll" .: : RETURN
500 REM********************************
510 REM*** HOLD THE DICE ***
520 REM********************************
524 FOR H=1 TO 24'Hl\(H)=0:NEY.T H
525 H=0
530 H=H+1

69

70

540 GET KY$: IF KY$='"' THEN 540
550 IF KY$=" .. II THEN HD<H'=l,1AUHD$): HD$="": GOTO 530
560 IF ASCO(V$)=13 THEN HD(H)=VAUHD$) :HD$="" :PIUN

T II~ '.9.0011 : RETIJRN
570 II=' V.Y$("0" OP. lt'.'1:'> 11 '=! 11 T!-IFN 540
51ClGI Hll1!=Hll$+K',i$
590 PR! ~IT II II!" HD$: GOTQ 530
600 :
980 DC:t=" " : CH=0 : GOSIJB 1 l'le-0 : pi;- T HT : i:-op ~1= 1. rn ?4 • HD<

~n,,-@· NS::'>!T' l:'l='Tl_lf;'~l
9~t\ T)r$=DC~+l(Y$:DC=VAL'DCot:):RETIJRN

1000 PRINT 11 '.'mlllllll!ll!lltllllm*** ROLU.''--R~DIE :
'!'***":RETURN

1010 REM****"'****** SET \Jl'.lrri= 1. **•***** **

1015 SD=54272
1020 FOR N=SD TO SD+?.4 : PQKE N .· 0 : NEYT
1030 POKt SD+24: !. 5 : l:'J::M ** VOLUME
1040 POL<t SD+5,190:REM **ATTACK/DECAY
1050 POKE Sfl+6 .. 24S:REM ** SIJS.IRELEASE
1060 LF = SD
1070 HF = SD+l.
1090 POKE SD+4: 17 : Rl=M ** 1,JRl.IEl='l'.lRM
111. 0 l';'E:TIJRN

RE:AJ)V,

BASE CONVERTER

The base converter program below provides a
useful utility for hexadecimal (hex) to decimal
and the reverse conversion. Once in hex it is
easy to produce binary, as each hex character
maps directly on to 4 binary bits. See AND,
and OR for the methods that can be used for bit
manipulation.

10 SC=53281:POKE sc,1:REM SET SCREEN TO WHITE
20 REM!l!ll!fll!tll!ll!******** ** CONVERTER **

*************** .
30 GOSUB 610:PRINT"llUl.llOO HEX-DEC OR DEC-HEX ?"

40 PRINT"l!I
50 PRINT"
60 PRINT"·
70 PRINT"llllll

Iii :FOR IHEX-DEC"
am :FOR •DEC-HEX"
IE I.FOR IENDIHGLI"

llS I.FOR ISTOPPING WHILE ENTERING
NUMBERS"

80 GET KY$: IF K'1'$0"H" AND KY$0"D"AND KYSO"E"THE
N 80

90 PRINT"::'.J"
100 IF KYS="E" THEN END
110 IF KYS="H" THEN 370
120 REM!l!ll!ll!************* ** VARIABLES **

130 REM DES IS DECIMAL NUMBER ENTERED
140 REM DE IS ITS NUMERIC EQUIVALENT
150 REM DSS = STRING OF NOS FROM DE WITHOUT LEADIN

G SPACE - FOR NO. VALIDATION
160 REM D AND E ARE VARIP.BLES FOR NUMBER MANIPULAT

ION .
170 REM RE$() IS HEX REMAINDER AFTER N+1TH DIVISIO

N
180 REM**************** ** DECIMAL-HEX**

190 GOSUB 610:PRINT":w.I DECIMAL HEXADECIMAL

II

200 INPUT DES:DE=VAUDE$):D=DE:N=0:IF DEt,,."S" THEN
20

210 DS$=RIGHT$<STRS<DE),LEN(STRS<DE>)-1):REM REMOV
ES SPACE BEFORE NO.

220 IF DS$0DES THEN PRIHT"NOT DECIMAL":GIJTO 200:R
EM DECIMAL CHECK

230 E=IHT(D/16>
240 :
250 RE$(N>=STRS(D-E•16):D=E
260 IF VAL<RE$(N)))9 THEN REf<N>=CHR$(VAL<RE$(N))+

55)
270 :
280 IF D<10 THEN 330
290 :
300 N=N+1:GOTO 230
310 REM•lll BUILD.UP HEX NO. FROM ~RRAY.
320 REM·HES=HEX NO.
330 HEf="":IF D>0 THEN HE$=HE$+STR$(D)
340 FOR L=N TO 0 STEP-t:HES=HE$+RIGHTS<RE$(L),1):N

EXT
350 PRINT "'."!"TAB<18);HEt:
360 GOTO 200
370 REM***********•*** *•HEXADEC-DEC!I!$.. , , , ..
380 IJOSUB 610:PRINT"DI HEXADECIMAL DECIMALI''

390 HES=1111 :INPUT HEf::H=LEN(HEf)+t:IF HE$1111S11 THEN
20

400 IF H-1>10 THEN PRINT" SHORTER NUMBER PLEASE!":
GOTO 390

410 :
420 REM CREATE AND CHECK ARRAY

430 FOR H=H-1 TO 1 STEP-1:RE$CH-H>=MIDt<HEt,H,1>:H
H•ASCCREt<H-H))

440 IF HN>70 THEN PRINT "HOT HEX!":OOTO 390
4~ IF HH<48 THEN PRINT "HOT HEX!":ooTO 390
460 IF~ AND HN<~. THEN PRINT "NOT HEXl":OOTO

390
478 IF HN>64 THEN RE<H-H>•ASC<REt<H-N))_,,:NEXT N:
. OOTO 510
480 RE<H-H)=VAL<RE$(H-N)):HEXT H
490 :
500 REM BUILD DECIMAL NUMBER ITEM BY ITEM <EACH IT

EM IS BET~IEEH 0 AHD 15)
510 FOR L=1 TO H-1:D(L)=RE<L>•<16t<L-1)):HE¥.T
520 :
530 FOR L=1 TO H-1:DE=DE+D(L):NEXT:REM ADI.I UP Tl-IE

ITEMS
540 REMf'-* PRIHTIHOf'-*
550 PRINT "'.'1"TAB<18);DE:DE=0
560 OOTO 390
570
580 :
590 :
600 :
610 PRIHT":'IfJ ~··*' ICl'Cli..N!f.IPE~l!ITIEIR

***":RETURN

READY.

10 rem******'*****'** ** converter ••

*''""''''**'* 20 9osub 480:Print"llllll hex-dee or dee-hex ?"
30 Print"R 11"1 llf'or hx-dec"
40 Pl"int" ltl llf'ol" l:lec-hex"
50 Pl"int" lie llf'or l?ndin9="
55 Pl"int"!lll Its llf'ol" lstoPPin9 whi leentel"in9 numb

el"s"
60 9et kii$: if' ki1$0"h" and kdO"d"and kiiS<>"e"the

n 60
70 Pl"int"l:&"
75 if' ki1S="e" then end
80 if' kllS="h" then 280
90 re111*'****'***"**" ** deci111al-hex!l!!I!
100 9osub 480=Pl"int"llEI decimal ·hexadecimal9''
110 inPut deS:de=val<deS) :d=de:n=0: if' deS:o"s" then

10
120 :
130 e=int(d/16>
140 :
150 reS<n>=strS(d-e!l!16):d=e
160 if' va\(l"eS(n)))9 then ref(n)=chl"$(val(l"eS(n))+

55)

170 :
180 if d<10 then 220
190 :
200 n=n+1:9oto 130
210 re111!1!!1! wol"kin9 '*
220 heS="":if d>0 then heS=heS+strS(d)
230 for l=n to 0 steP-1:tief=heS+ri9ht$(re$(1),1):n

ext
250 Print ":.l"tab(14>)heS
260 9oto 110
280 rem"****"'**"'* !l!!l!hexadec-dec*!I!
290 9osub 480:Print"ll hexaded111al deci111al"
300 inPut het:h=\en(heS)+1:if he$•"s" then 10
310 :
320 for n•h-1 to 1 steP-1:re$(h-n>=111id$(he$,n,l>
330 if' asc(re$(h-n)))64 then re(h-n>=asc(re$(h-n))

-ss..: next n : 9oto 360
340 re(h~n>=va1(re$(h-n)):next n
350 :
360 for 1=1 to h-1:d(1)=re(1)t(l6t<1-1)):next
370 :
380 for 1=1 to h ... l :de=de+d(l) :next
390 rell!!l!Q Pl"intin9*'111
480 Pl"int "Jl"tab(14>;de:de=0
410 9oto 300
440
4~:
460 :
470 :
480 Pl"i nt"mnn,....,,1e•tt1e1t- Bn!l!t": l"etul"

n

In this program the colon has been used to
make the code more readable by separating
blocks of code. In other machine BASICs the
apostrophe (') would be used as shorthand for
REM, but this is not available in VIC/CBM 64
BASIC, so the dummy statement represented
by colon can be used in a line on its own .

BUSINESS FORMS

A requirement in business is to be able to enter
information onto a form-style layout in order
to set up records on disk or tape. This makes

71

72

the entry of information a much more routine
affair that can be left to non-computer trained
staff who are guided through the entries by the
form layout.

The first program listed is a screen form
creation program that allows a programmer or
non-programmer to lay out a screen and then
store it on tape. This saves a lot of coding in
screen handling programs which simply pick
up and use the appropriate form from tape (or
disk). In this program, the screen is set up by
moving the cursor around and setting up
strings or entry fields wherever required. The
program is then run and picks up and com­
presses the data on the screen (first 20 lines)
before writing it to tape. Brackets () are used to
delineate the areas where entries are to be
made. The program stores only the start posi­
tion and contents of strings (defined as contain­
ing no more than one contiguous space) and
the start position and length of the spaces to be
reserved for entries ('permitted fields'). The rest
of the screen (empty space and the last two
lines) are ignored. Note the use offunction keys
to allow rapid entry.

5 REM SCRGEN - GENERATES A SCREEN FORMAT OH A TAPE
ALLOWING TEXT ENTRY AND •••

15 REM BRACKETS TO INDICATE l~HERE FIELDS WILL BE EN
TERED BY A PROGRAM USIHG •••

7 THE STORED SCREEN FORMAT
8 REM RUH '.BY SETTING UP THE REQUIRED SCREEN AHD TH

EH PRESSING RUH
9 REM SAfmSTRT ADDRESS OF STRING
10 OPENL 1.0 1 .. "SCREEN"
20 SC=1023:PK=32
30 REM**t ONLY FIRST 20 LINES OF SCREEN ARE COHSID

ERED -40 FOROF•1TOS00:REM WORK THROUGH 20 LINES OF SCREE
H (800 POSITIONS)

50 PR=PK:PK=PEEK(SC+OF):CRt=CHP.$(PK)
52 IFPK<32THEHCR$=CHR$(PK+64)
54 IFPK>63THENCRt=CHRf<PK+32>

70 IFPK=32ANDPR=32THEN105
80 IFPK=32ANDPR032THEHPRINTl1 .. SA: PP.nmu .. SR$: GOTO

105
90 IFPK<>32AHDPR=32THEHSA=OF-t:SR$•CRf:GOT0105
100 SR$•SR$+CRt:GOT0105
105 HEXT
107 PRIHTt1,999:PRIHTl1,"EHD"
110 CLOSE!
120 PRINT "SCREEN STORED TO TAPE"
130 END
133 REM TEST ROUTINE TO CHECK THE SCREEN GENERATED

ABOVE BY DISPLAYING IT
135 OPEN1,1,0,"SCREEN":J=1=0F•1023:CF=5529:5
137 PRINT"~"
140 IHPUTl1,A,AS=IFA=999THEHPRIHT"~

":END
142 AC•ASC<MIDt(R$,J,1)):PKmRC
144 IFAC)63'.THENPl<-AC-64
146 IFAC>~-AC-32
Hl0 POl<EOF+A+J, PK
1~ POKECF+A+J,1
160 IFJ-t.EH(Al)THEHJ•1:0QTQ140
16:5 J•J+t:OOT0142

READY.

The next program will appear at first sight to
have nothing whatever to do with the first
program or with business forms, but it is an
essential tool for building forms programs and
has uses elsewhere. This second program is
an extremely primitive word processor/line
editor. When the program is running, a line
can be typed and characters can be changed or
deleted just as if in the screen editor excluding
the vertical cursor movement, working on one
line at a time. When <RETURN> is pressed,
the line is typed out to the printer. As most of
this program simulates the operating charac­
teristics of the machine with no program in
memory, there is probably a rather neat way of
doing this in machine code using calls to
BASIC ROM subroutines, but if we stick to
BASIC, then this is the way it must be done.
10 REM TYPER 64
20 BD=5328EPSC=53281

30 REM 'I' IS THE CLIRREHT POSITION IH THE LINE.
40 REM 'J' IS THE CLIRRENT POSITION IH THE PRINT LI

HE l.JHEH PRI HT ING.
50 REM 'LC' IS THE LAST CHARACTER POSITION IN THE

CLIRREHT LINE.
60 REM 'H' !S A POSITION IH THE CLIRREHT LINE LISED

DIJRING LINE MAHIPULRTIOH.
70 REM 'USO' IS RH ARRAY OF 80 SIHOLE CHARS, EAC

H REPRESENTING ONE LINE POSITION.
80 REM 'Fl' IS THE CLIRSOR.
90 OPEN 4,4: I=0:PfJKE SC, 1 :POKE BD.·3
100 PRINT ":::"CHR$(14)
110 DIM Ut<81)
120 FLt<D="~" :FL$(2)=" "
1~ REM
140 IF LC<I THEN LC=I
150 IF LC)I THEN Fl$(2)=LI$(I+1):IF RSC<LJ$(J+1))=

34 THEN FLt<2>="1'!"
160 IF.' LC=! THEN Flf(2)=" "
170 IF LC>79 THEN CHS=CHR$(13): 00 TO 380
180 FORL=1T02
190 FORK=1T030
200 GET CHf:PRIHTFLfCU"lr' .:
210 !F CHSO""THEN 260
220 HEY.T K
:nt! NEXT L
240 GOTO 140
230 IF I=LC THEN PRINT" II"
260 PRINT FLf<2>"1";~IF RSC<CHt)=20 THEN 4'50
270 IF ASC<CHt>=1'48 THEN 520:REM INSERT
280 IF RSC<CHt>=137 THEN ~:REM CLIRSIJR <-
290 IF RSC<CHt>=29 THEN 630:REM CURSOR ->
300 YF RSC(CH$)=133 THEN .CLOSE4:EHD:REM FN KEY 1 C

AUSES EXIT
310 IF RSC(CH$)=13 OR RSC<CH$)=141 THEN 380:REM RE

TURN KEY
320 IF RSC<CHt><32 THEN 130:P.EM IONORE IHVRLID CHA

RACTERS
330 IF RSCCCH$))127 RHDASC<CH$)(160 THEN 130:REM I

GHORE MORE INVALID CHARACTERS
340 CRt=CHt
330 IF RSC<CHt> .. 34 THEN CRf="d'!!":REM SPECIAL HRHD

LING FOR "
360 I=I+1:PRINT CAt;:Lif<I)=CHf:GIJ TO 1~0
370 Lit<I>=CHt
388 REM!l!•ff111_.f*'" ff PRIHTIN". 111$ --·-····· 390 PRINT:SNtaan
400 FOR J•1 TO LC+1
410 SHt-SNt+LifCJ):Ltf(J)="":HEXT J:
420 PRINTl4,Cf-RtC17>SHt 4- REM PRIHTl8,SH$

440 I•tPLC•0= 00 TO 138
4~ REMfffflll"'*'"*" ff DELETE ff

-···*'""'" 460 I=t-1:JF I<0 THEN I=0:f3Q TO 130
470 LC=LC-1
480 PRINT CH$.:
490 FOR H=I+1 TO LC+1=L!$(H)=LJ$(H+1)
500 NEXT H
510 00 TO 130
520 REMlll!l!!l!!l!!l!!l!!l!lll!l!!l!$!11111!11!1! 11!!1! INSERT t• • •••••••••••••• 530 :LC=LC+1 :LifCLC>=" "
540 PRINT CHP.$(148);
550 FOR N=LC TO !+1 STEP -1:LJ$(N>=Lit<H-1)
560 NEXT ~l
570 lI$(1+1)=" "
580 GO TO 130
590 REM!l!!l!!ll!l!t!l!lll!I!$****** $!11 CURSOR <- 11111!

!1!!1!!11!1!!1!*'1!$!11!11!1!*'1!111*
600 I=I-1:IF I<0 THEN I=0:f30 TO 130
610 PRINT "II".:
620 GO TO 130
630 REMtt!l!!ll*llltllltf.!11111111!11!11 !11!11 CURSOR -> !I!* *•*
640 I=I+1: IF !:>LC THEN Lit(D"'" "
650 PRINT FL$(2);:oo TO 130

RERDY.

Although the VIC is not really suitable as a
business machine for most applications,this
particular routine is useful on its own, so below
is a VIC version of the same program.

5 REM!l!!ll!ll!l!!ll!lllll!lllll!lllll!l!VIC 20 T'.iPER*!l!*!llllllll!ll!l!!l!!ll*lll
10 REM '!' IS THE CURRENT POSITION IN THE LINE.
20 REM 'J' IS THE CURRENT POSITION IH THE PRINT LI

HE WHEN PRINTING.
30 REM 'LC' IS THE LRST CHRRRCTER POSITION IH THE

CURRENT LINE.
40 REM 'H' IS R POSITION IN THE CIJRRENT LINE LISED

DIJRIHG LINE MANIPULATION.
50 REM 'LIS<>' IS AN ARRAY OF 80 SINGLE CHARS, EAC

H PEPRESEHTIHG ONE LINE POSITION.
60 REM 'FL' IS THE CURSOR.
70 OPEN 4,4: I=0
90 PRINT ":l:"CHRS< 14>
90 DIM LIS:CS1)
100 FL$(1)="!!f":FL$(2)=" "
110 REM
120 IF LC(I THEN LC=I

73

74

130 IF LC>I THEN FL$<2>=LI$0+D: IF ASC(lI$(I+1))=
34 THEN Fl$(2>="111'!"

140 IF LC=I THEN FL$(2)=" II

150 IF LC)79 THEN CH$=CHR$(13): GO TO 350
160 FORL=1T02
170 FORK=1T030
180 GET CH$:PRINTFLS<L>"ll";
190 IF CHt()'"'THEN 240
200 NEXT K
210 NEXT L
220 GOTO 120
230 IF I=LC THEN PRINT" II"
240 PRINT FL$<2>"1f';: IF ASC<CHt>=20 THEN 430
250 IF ASC<CHt>=148 THEN 500
260 IF ASC<CHt>=157 THEN 590
270 IF ASC<CH$)=29 THEN 640
280 IF ASC<CH$)=133 THEN CLOSE4:END
290 IF ASC<CH$)=13 OR ASC<CH$)=141 THEN 350
300 IF ASC(CH$)(32 THEN 110
310 IF ASC<CH$))127 ANDASC<CH$)(160 THEN 110
320 CA$=CH$
325 IF ASC(CH$)=34 THEN CA$="111'!"
330 I=I+1:PRIRT CAt;:LI$(I)=CH$:Go TO 110
340 LU<I>=CH$
350 REM*************** ** PRINTING **

. ***************
360 PRINT:SN$=""
370 FOR J=1 TO LC+t
380 SN$=SN$+lI$(J) :U$(J)="" :NEXT J:
390 PRINT•4,CHRt(17)SN$
400 REM PRINT•8,SN$
420 I=0:LC=0: GO TO 110
430 REM*************** tt DELETE **

"*******
440 I=I-1:IF 1(0 THEN I=0:oo TO 110
450 LO=LC-1
460 PRINT CHS;
470 FOR H=I+1 TO LC+1:Lit<N>=LI$(N+1)
480 ~EXT N
490 GO TO 110
500 REMH************* ** INSERT tt

''****'*''***** .
510 PRINT II "; :LC=LC+i:LI$(LC>=" II

520 FOR H=I+1 TO LC
522 IF ASC(Ut.(~I) >=34 THEN. PRINT 11 111'!!" .:
524 !!=' ASC<LUO.J))034 THEN PRINT Llt.<N) .:
530 NEXT N
540 FOR N=I TO LC:PRIHT "II".: :NEXT N
550 FOR N=LC TO I+1 STEP -1:Lit.<N>=Lit.<N-1)
560 NEXT N
570 Lit<I+1)=" "
590 GO TO 110

....

590 REM************'t** *"'= CURSOR <- *'t

61.0 I=I-l:IF !(0 THEN !=0:Go TO 110
'520 PR HJT II II" .:
630 GO TO 110
640 REM**'t************ ** CURSOR -) **

650 I=I+l: IF DLC THEN L!t(!)=" "
670 PRINT Fl_:t.(2): : GO TO 110

READ'T'-

Now defming all the fields in TYPER64
variably instead of as a standard 80 characters
long, and if the output is written to an array
rather than the printer, then the combination
of this program with a routine to read the
screen format created earlier, will provide a
business entry form:

5 REM SCREENIJSE
10 DIM L!:t.(8!) · E:W20). EX<20) .• ST$(20>
20 GOSIJB4000
30 GOSUB5100:IFST$(1)= 11*11 THEN50
40 GOSUBl 00 : GOSIJB6000 : GOT030
50 PRINT"DONE":END
100 REM FUNCTION SIJBPOIJT INE
110 RETURN
4000 REM BUILD SCREEN SUBROUTINE
4010 TNPUT "SCREEN NAME"; SCf:
4020 R=1:T=1:0F=1023:CF=~5?.95
4030 OPE:N 1.. 1. " 0 . C : PR INT":'.l"
4A40 I NPIJT• 1 , A, At. : I FA=999THENE~l (T) =A : RETURN
4042 AC=ASC<MID$(A$.. R .. 1)):PK=AC
4044 IFAC)63THENPK=AC-64
4046 IFAC>95THENPV.=AC-32
4050 POKEOF +A+R .•PK
4060 POKECF+A+R .. 1
4070 IFLEN(A$)=1ANDA$="<"THENEN<T)-=A+l
4090 I FLEW Af:) = 1 ANDA$=") "Tf-IE:NElU T) =l=l-EN< T> : T=T + 1
4~90 IFR=l_E:WA$)THENR=1: OOT04040
4100 R:R+1:GQT04042
5100 REM ACCEPT INPUT SUBROUTINE
5110 REM 'P' IS THE START POSITION 01= Tl-IE CURRENT

LINE.
5120 REM 'I' IS THE CURRENT POS!T!ON IN THE LINE.
5130 REM 'J' IS THE CURRENT POSTTION IN T!-!E PRtlo.IT

. LINE l~!-!E:~J PRINTING-

51 <.tr.I PFM 'LC' IS THE LAST CHARACTER POSITION rn TH
E CURREMT L HlL

5150 REM ·'W IS A POSITION n1 THE CIJP.Pl=NT UNE USE
D l)IJRIN(; L HIE MA~HPIJLATION.

5160 REM 'LUO' IS A~J APPA'.,> OF 80 SINGLE CHARS.· E
ACH REPRESENT I NG O~lE LT NF P~~~

51 70 REM ·'FL" TS THI= r1_IRSOR.
5180 T=0:P=1
5190 PRHff"~::il" .:
5200 FORQ=1TOEWP): PRH1T"•I" .: : NE:x:T
5210 FL:tO)="?-" :i=t.:t.r2)=" "
5220 REM
5230 IFLC<ITHE~1LC=I
5240 IFLC>ITHENFLS(2)=L'SrI+1):Jl= ASC(LTtrI+!))=34

THENFLt(2)="~'!!!1"

5250 IFLC=ITHENFLt(2)=" "
5260 IFLC:>=EX(P'THE~JCfJ-t=r·HP.$(1 ~'.· :·r.oT05470
527r-1 !=OP.I = 1 TO-:::
5280 FORK=1T03!3
5290 GETCHS: PRINTFL:t(U "91":
530~ IFCH:t0""THEN5350
53!.0 ~lEXT
5320 NE:•:T
5330 GOT05230
5340 IFI=LCTHENPPlHT" II"
5350 PRINTFL$(2) "II".: : IFASC(CH$)=20THEN5560
5360 IFASC(CHS)=148THEN5630
5370 IFASC(CH$)=157THEN5740
5380 !l=ASC(CHSl=29THEN5780
53-=10 TFRC:C(CHS)=133THENRETURN
5395 IFASC<CH$)=134THENSH(1)="*":RETURN
5400 IFASC<CHS)=130RASC(CH$)=141THEN5470

5410 IFASC(CH$)(32THEN5220
5420 IFASC(CH$))127ANDASC<CH$)(160THEN5220
5430 CAS=CHS
5440 IFASC(CH$)=34THENCA$="~'!!!!"
5450 I=I+l. :PRH1TCAS: :U$0)=CH$:GOT05220
5460 US< D=CHf:
5470 REM STOREING
5480 SN$=""
5500 IFEN(P+1)()999THENFORQ=EN(P)+ITOEN(P+1)-1:PRI

NT" •I" .: : NEXT
5510 FORJ=1TOLC+1
5520 SNS=SNS+LI $ (.J) : LI$ <-J) =" " : NEXT
5530 ST$(P)=SNS:P=P+1
5535 I=0:LC=0
5540 IFEN<P)=999THENRETURN
5550 GOT05220
5560 REM DELETE
5570 I=I-1:IFI(0THEN!=0:GOT05220
5580 L.C=LC-1
5590 PRINTCHS.:

5592 FORN=2TOEX(P)-l: PRINT"•I"; : NEXT: PRHff") ";
5594 FORN=0TOEX(P)-I : PRINT" II".: : NEXT
5600 FOR~l=I+1 TOLC+l: Ll$(N)=lI$(N+1)
5610 NE)<:T
5620 GOT05220
5630 REM INSERT
5640 PRINT " ": :LC=LC+1 :LI:t.(LC)=" "
5650 FOPN=l+!.TOLC
5660 IFASC(LI$(N))=34THENPRitff" ~'!!I".:
5670 IFASC(ll$(N))()34THENPRINTL 1$(N) .:
5680 NEXT
5690 FOR~l= I TOLC : PR INT" II" _: : NEXT
5700 FORN=LCTOI+1STEP-1:LIS(N)=LI$(N-1)
5710 NEXT
5720 Ll$(1+1)=" "
5730 GOT05220
5740 REM CURSOR <-
5750 I=! -1 : ff! (0THEN! =0 : GOT05?.20
5760 PRH!T"ll" .:
5770 GOT05220
5780 REM CURSOR -)
5790 I=I+l: IFDLCTHENLI$0)=" "
5800 PR I NTFL$ (2) .: : GOT05220
6000 REM .CLEAR nffRIES SIJBROUTHlE
6010 PR INT"~" .: : FORR= 1 TOEN< 1) : PR HlT "•I" .: : NEXT
6020 FORIJ=lTOT-1
6030 FORR= 1TOEX (IJ) : PR !NT" " _; : NEXT
6040 I FEN (IJ+ 1) 0999THal : !=ORR= 1. +EN (1J) +EX< U) TOEN < U+ 1

) : PRINT"•I" .: : NEXT
6050 NEXT:RETLIRN

READY.

The next stage is to include a read of the ftle
into the machine from cassette, validation of
the fields on the screen according to the
requirement, using the numeric check routine
described earlier where appropriate, and stor­
ing the information collected back onto
cassette. The same principle will work for a
diskette serial ftle.

if?. REM CUSTOMER
20 OPEN 4 .. 4
30 REM DIMENSIONS FOR MAIN PROGRAM - CIJSTr_'!Mt:'.i;> IJPDA

TE
40 DIM CN$(9?) A$(99 .. 4),PU:(99),D$(99 .. 4),P2f:C99),B

L$(99)
50 REM DIMENSIONS FOR SCREEM HANDLING ROUTINE
60 DIM LI$(81),EN(20),E~C20),ST$(20)

75

76

7\'.l TP=13
80 !NPIJT"LOAD CUSTOMER DATA".: AN$
90 IFANt.="Y"THENGOSUB430
100 GOSUB980=CLOSE1
110 GOSUB1130=IFASC<CH$)=134THEH140
120 IFP=1Al.!DE=0THENNO=VAUSN$):1JOSUB590=GOT0110
130 GOSUB150=GOSIJE1930=00T0110
140 GOSUB760=CLOSE4=END
150 REM FfJ~lCTION S!JEROIJTINE
! 150 l·l= 1 : GOSIJP2?'0
170 Sl=NO
180 CN$(S1)=ST$(2)
190 FORQ=1T04=A$(S1,Q)=ST$(2~Q):NEXT
200 P1$(S1)=ST$(7)
210 FORQ=1T04=D$(S1,Q)=ST$(?'~Q):NEXT
220 P2$(S1~=ST$(12>
230 l·l= 13 : GOSIJB270
240 BL$(S1)=ST$(13)
250 FORV=1T020=ST$(V)="":NEXT
260 RETURN
2'70 REM NUMERIC CHECK SU:BROIJTINE
28!3 REM !F \IALID .. NO IS RETURNED AS 'NO'
290 NO=VAUST:t.(l.J)):ST$=STR$(NO):TS$=ST$(m
300 !FN0=0ANDLEN<TS$)=0THEN420
310 IFLEFT$(ST$, 1)=" "T!-IENST$=RIGHT$(ST$, '...EN<SU)­

D :GOT0310
320 lU$=LEFT$(TS$.. 1): IF~l1$="0"0Rl.J1$=" "THENTS$=R!G

HT$ (TS$.• LEW TS$)-1) : GOT0320
330 IFTS$=ST$THEN420
340 IF~JS$=" • "THEN~IS$= II " : GOT0370
350 l·IS$=RIGHT$(TS$.. 1)
360 IF~IS$=" "ORl•IS$="0"0Rl•IS$=". "THEMTS<t"''-E!!'T$(TS$, L

EN<TS$)-1)=GOT0340
370 IFRIGHU<TS$, 1)=" "THENTS$=LEFT$(TS$, LEN(TS$)-

D
380 PRINT"~"
390 GOSUE 560
400 !FST$=TS$THEN420
•Hf! IFST$0TS$THENPRINT"1BAD DATA "ST$(l·J) :E=1 :GOTO

110
420 E=0=RETIJRN
430 REM ROUTINE TO LOAD CUSTOMER m:rn::i
440 PR!HT"REIVIOVE PROGRAM & LOAD CUSTOMER TAPE"
4511! OPENL 1: 0, "CUSTOMER"
460 INPUT#1, NO: !FN0=9~~THEN530
470 ST$(1)=STR$(N0)
480 FORW=2TOTP
490 INPIJT#1: ST$(l.J)
500 IFST$(m=11 !1! 11 THENST:t.O•D= 1111

510 NEXT
520 GOSUB150=GOT0460
530 PR!NT"REMOl/E CUSTOMER & LOAD SCREEN TAPE"

540 INPIJT"T'T'PE RETURN l·IHEN READY" .:A$
550 CLOSEt:RETLIRN
5611! REM LINE CLEAR ON SCREEM S!_IPRIJIJTINE
570 FORZ= 1 T040 : PR INT" " .: : NEXT
580 .RETIJR~l
590 REM FJLL SCREEN lolITH EXISTING H!FO
600 CH$=""
610 1•1=1 : GOSUB270
620 Sl=NO
630 ST$(1)=STR$(S1)
64e ST$(2)=CN$(S1)
650 FORQ=1T04:ST$(2+Q)=A$(SLQ) :NEXT
660 ST$(7)=P1$(S1)
670 FORQ=1T04=ST$(7+Q)=D$(S!,Q):NEXT
690 ST$(12)=P2$(S1)
690 ST$(13>=BL$(S1>
700 PRINT"!IS"SPC<EW 1)) .:
710 FORT=1T020=IFLEN(ST$(T)))EX(T)THENST$(T)=RIG~T

$(ST$(T) .• LEWST$(T) ~-1)
?20 PR!NTST$(T) .: : IFEN<T+1)=999THEN750
730 PRINTSPC<EWT+!)-EN<T>-LEN(ST$(T))) .:
740 NEXT
750 RETURN
760 REM l•IR ITE A~IAY DATA SIJPOIJT n.IE
770 PRINT":.'l.OAD CUSTOMER TAPE"
780 OPEN1: 1, 1.· "CUSTOMER"
790 FORN0=1T099
800 IFCNf<NO)=""THEN940
810 PRINT#!, NO: PRINT#! .. CN1=('-!IJ)
920 FOR0.=1T04: !FA$<N0,Q)()""THENPRINT#LA$(N0,Q) :13

OT0940
~30 PRINT#!, "!II"
940 NEXT
950 IFP1$(N0)()""THENPRINT#1,P1$(1.JIJ):~OT0070
960 PP.!NTtt1,"!ll"
0?0 FIJRQ=1 T04 : IFD$<NO' Q) ()II II THENPR INT# 1 ' Df <NO' Q) : G

OT08~0
880 PRINT#!,"*"
990 NEXT
900 IFP2$(N0)() 1111 Tl-lENPRI1.JT!t1 .. P2$(NO):GOT0920
~1~ PRINT#L "Ill"
920 IFBL$<N0)0" "THENPRINT#1, PL$(N0): GOT0940
930 PRINT#!,"•"
940 NEXT
950 PRINT#1,999
960 CLOSE1
970 PRINT"CIJSTOMER TAPE.IJPDATED":RETURN
980 REM BUILD SCREEN SUBROUTINE
990 R=t:T:l!OF=1023!CF=55295:sc:i="SCREEN"
1000 PRINT"LOAD SCREEN TAPE"
101@ OPEN1 .. 1.0,sc:i:PRINT":'l"
1020 I NPIJTIU , A, At: IFR=999THENEW T) =A: RETIJRN

1030 AC~ASC(MlD$(A$,R,1)):PK=AC
1040 IFAC)63THENPK=AC-64
1050 !FAC)95THENPK=AC-32
1060 POKEOF+A+R,PK
1070 POKECF+A+R,1
1080 IFLEN(A$)=1AHDA$="("THENEN<T~=A+1
1090 IFLEN<F!t.)=1AtJ))A$=") "THE"IEX(T)=A-EN(T): T=T+l
1100 IFR=LEN(A$)Tl-IENR=1:GQT01020
1110 R=R+1:GQT01030
1120 RETURN
1130 REM ACCEPT I HPIJT S!JP~QIJT ! !'IE
1140 RE~ 'O' IS THE START POSITION OF THE CURRENT

LINE.
1150 REM 'I' IS THE CURRENT POSITION IN THE L!tJC::.
1160 REM 'J' IS THE CIJP.RENT POSITION IN THE PRINT

LINE WHEN PRINTING.
11?0 P.EM 'LC' IS THE LAST CHARACTER POSITION IN T~

E CURRENT LINE.
1180 REM 'N' !S. Fl POSITION IN THE CIJRP.ENT LINE USE

D DURING LINE MANIPULATION.
1190 REM 'LifO' IS AN ARRAY OF 80 srnr:tE CHARS.· E

A~H OEPP.C::SENTING ONE LINE PSN
1200 REM 'FL' IS THE CURSOR.
1210 I=0:P:1:CH$=11 II

1220 PP.INT"~•".: .
1230 FORQ=lTOEN(P) :PRH!T"N'' .: :MEYT
1240 FL$(1)= 11 • 11 :FL$(2)=" II

!250 REl'I NEXT FIELD EHTRY POINT
1260 LC=LEN<ST$(P)) .
1270 !FLC<'.'>0THENFOP.N=1 TOLC : LI$ <t-D =M In$ (ST$ (P) .• N, D

:l>JEYT
1280 !FPSC<CH$)=133THEN1550
1290 REM NEXT CHAR ENTRY POINT
1300 IFLC<ITHENLC=I
1310 IFLC)ITHENFL$(2>=Lit<I+1):IF AS~<L!t<I+1))=34

11-1E"lr:1_$ (2 > =" =i' r
!'320 IFLC=ITHENFl.$(2)=" II

1330 IFI>=EX<P>'Q-IENCH$=CHR$(13):GQTO!S50
rn40 FORL=1T02
1350 FORK=1T030
1.360 GETCI-!$: PR!tJTFL$(L) "II".:
1 '370 IFCH$<'.'>'"'THEN1410
1380 NEXT
1390 NEXT
1400 GOT01300
1410 PRINTFl.$(2)"11";:IFASC<CHt>=20THEN1660
1420 IFASC<CH$)=14STHEN1750
1430 IFASC<CHf)=157THEN1860
1440 IFRSC<CH$>=29THEN1900
1450 IFASC<CH$)=133THEN1550
1460 IFASC<CHf)=134THENRETURtJ
1470 IFASC<CH$)=135THENRETURN
1480 IFASC<CH$)=130RASC<CH$)=141THEN1550

1490 IFASC<CH$)(32THEN1290
1500 IFASC<CH$))127ANDASC<CH$)(160THEN1290
1510 CAt.=CM$
l.520 IFASC<CH$)=34THENCA$=" =i'!!"
1530 I=!+1:PRINTCA$;:LI$<I>=CH$:GOT01290
1540 Lit<I>=CH$
15~0 REM STOREING
1560 SN:f:=""
1570 Ir:'EN(P+1)()999THENFORQ=EN<P>+ITOEN<P+1)-1:PP.I

NT" •I" .: : NEXT
1580 FORJ=!TOLC+l
1590 SN$=SN$+Ll$(.J) :ut<.n="" :IJE~T
1600 ST$(P)=SN$:!FP()1GOT01620
!.1510 I FCN$(\lftl(SN$))0" "ANDE=0THENGOSIJB590: PRINT "!:8

"SPC(EN(2)) .: : CH$=" II

1620 P=P+l
1630 I=0:LC=0
1640 IFEWP)=999THENRETURN
1650 GOT01250
1660 REM DELETE
1670 I=I-1:IFI<0THENI=0:GOT01290
1680 LC=LC-1
1!590 PRINTCH$;
1700 FORN=2TOEX(P)-I: PRINT"•I" .: : NEXT: PRINT") ".:
1710 FORN=0TOEX(P)-I :PRINT"ll" .: :NEXT
1720 FORN=1+1TOLC+1:LI$(N)=LI$(N+1)
1730 NEXT
1740 GOT01290
1750 REM INSEP.T
1"7150 P~INT II "· .: : LC=LC+1: lI$(LC)=" II

1770 FORN=I+1TOLC
1780 !FASC(Ll$<H) >=34THENPRINT" :II'!!".:
1790 IFASC(LI$(N))()34THENPR!NTLI$(N);
1800 NEXT
1810 FORN=ITOLC:PRINT"ll".: :NEXT
1820 FORN=LCTOI+1STEP-1:LI$(N)=Ll$(N-1)
1830 NEXT
1840 LI$(!+1)=" II

1850 G.OT01290
1860 REM CURSOR <-·
18?0 I=t-1:1FI(0THEHI=0:00T01290
1880 PRINT"ll";
1890 GOT01290
1900 REM CURSOR -)
1910 1"'1+1: IFI>LCTHENlI$(D=" II

1920 PRINTFL$(2);:GOT01290
1930 REM CLEAR ENTRIES SIJBROIJTINE
1940 PRINT"lll" .: : FORP.=1TOEN<1) : PRINT"•I" .: : NEY.T
1950 FORIJ=lTOT .
1960 IFEX<tl)00THENFORR=1TOEX(IJ) :PRINT" ".::NEXT
1970 IFEN<IJ+1)<'.'>999THEN:FORR=1+EN<IJ>+EX<IJ>TOENW+1

) :PR!NT"•I" .: :NEXT

77

78

1980 NEXT
1990 PRINT"~"
2000 GOSUB560
2010 RETURN
2020 OPEN 1 .. 1 .. 0.· "CUSTOMER"
2030 INPUT#!.. A$
2040 PR HIT A$
2050 INPIJT 11$
2060 IFB$:"Y"GOT02030

READY.

Another useful little routine for business
programs is a date routine for displaying todays
date in the top right hand comer of the screen.
The parts you want can be selected from the
program below which operates on a VIC 20.

100 re111 ***************
110 re111 ** **
120 re111 **date-vic20 **
130 re111 ** **
140 re111 ***************
130 vl•36878:1t>-36879:s3•36826:re111 define colour &

sound
160 Print "lf' :potct 1b1186
170 Print "**""*'**'*'****'***"'"
180 Print "* enter todu's date *"
190 Print "'**"'***'*'***'********"
200 di111 111S(12)
210 for 111•1 to 12:r1ad 111f(111):n1xt
220 data Jan1feb1111ar1aPr1111&Y1Jun1Jul1&U911eP1oct1n

ov1dec
230
240 i nPut"da11 11 ;as: a•val<at>
230 inP1.1t 11 111onth11 ibS:b•val<bS>
260 if a•0 thtn Print "invalid day" :goto 420
270 if b•0 then Print "invalid 111onth" :eoto420
280 on b toto 310139013181330131013381318131013301

31013301310
290 :
300 if a)29 then Print "invalid da11 11 :goto 420
318 if a)31 thtn Print "invalid da11 11 :toto420
320 toto 330
330 if &)38 thtn Print "invalid da11 11 :toto420
340 toto 338
39 if b>12 thtn Print "invalid 111onth11 :eoto428
360 inPut "YHr";cs:c•val<ct>
370 if cl4<>intCc/4) and'a>28 thtn Print "invalid

day " : 9oto 420
380 if ltf'ttCct12><>"19" then ct•"19"+ct:c•1900+c

390 if 1984)c thtn Print "invalid Har" :goto 420
400 toto 330
410 :
420 re111 ****"'*****
430 re111 * blteP **
440 rt111 **********
450 Poke vl 1 15
460 Pokt 36876,223
470 for n•1 to 300
480 next
490 Pokt vl, 0
300 Poke 1310
510 toto 240
320 :
330 Print"•"'""'"''";
340 Poke 1b127:re111 restore to nor111al ~olours
390 Print d 11 / 11 bt 11 / 11 ct

readi1.

Many people use spreadsheet programs and
you can buy one of the standards on the
market. However, if you wish to play around
with the idea, this program may help:
5 REM DATA
10 ND:10
20 SC:53281:BD:53280:POKE sc .. 1
30 POKE 650 .• 128 : REM *' REPEAT KEYS 11'•
40 DIM DT$(12,10),MN$(12),T(!2)
50 FOR MN=1 TO 12:READ MN$(MN)
60 MN$(MN)=" t!lf"+MNt<MN)+"~": NEXT
70 DATA JANUARY.• FEBRUARY, MARCH .. APRIL: MR'J · JUNE .. JU!_ \J

,AIJGIJST,.SEi:!TE111BER .. OCTOBER
80 1)RTA NOVEMBER .. DECEMBER
90 OPEN 1,.0:PRINT":'lll"
100 PRINT"~ET DATA FROM TAPE OR EMTER?"
105 PRINT "ENTER NO. MONTH TO START ENTERING AT"
110 INPIJT#1..TE$:PRINT:PRINT
114 MB=VAL<TE$):IF MB=0 OR MB)12 THEH MB=1
115 IF LEFTt.<TE$, l)()"T" THEH !90
120 OPE~l 2: 1.. ~: "DPTA" : FOR MH= 1TO12 : FORDT= 1TOHD : HIP

IJTl2.· DTt<MH .• DT>
130 IF DU<MN,DT>="ll!" THEH 170
140 T<MN)=T<MN)+VAL<DTf<MN .. Dn):NEYT DT .. MN:CLOSE2
150 r i: MN) 12 THE~l 250
160 FOR MN=MN TO 12:FoR DT=1 TO ND: IF LE~l(DU<MN,D

T))=0THENDTt.<MN .. DT>=" II

170 HEXT DT,MH:GOTO 2'50
180 :
1?0 FQR MN=Ml!TO 12
200 PRUIT MH$(MN)

210 FOR DT=1 TO ND
220 INPIJT!t1, DU(MN .. DT) =PRINT
230 !F DTt(M~J .. DT)="•" THEN 15t:l
240 T(MN)=T(Ml.J)•llALCOTt(M!-LDT)) =NEXT DT,MN
250 PRINT"'.']"
260 :
265 REM •••*************'**************
266 REM **** l·JHAT MONTH" ••••
26? PEM *****••••······················
270 PRINT"'."1'10NTH(ENTER NO 1-12/T FOR TAPE OIJTPl_IT)

111
280 PP!NT II II.: : INPIJT!tl. MJ:l<t
290 IF Ml!!f:="*" THEN RIJN
29! !F MBt="T" THENGOSIJB 430=GOTO 265
300 MB=IJAL(MBf;): !F MB=0 f)R MJ:l)12 THEN MP=!
310 PP.!NT"'.'l"
320 t:OR ~1=0 TQ 2 : M~l=M1:1•~1
330 !F ~2 AND MN=13 THEN MN=1
340 IF MN=13 THEN MB=0=MN=MB•N
350 PRINT "~'.:TAB((N)*13) .: MNt(MN)
360 FOR DT=1 TO 10
370 PP.INT TR'.R((N)*13'.• .: DTt<M~1 .. DT)
380 NEXT DT
385 PRINT TABUNH'13) .: 11--11

387 PRINT TAB((N)*13) :TtMN)
390 NEXT N
392 PRINT: PRINT'. Pl:'!l.JT
395 GOTO ~65
396 '.
400 REM********************************
410 REM***** TAPE OIJTPIJT •••!!'•
420 REM********************************
430 OPEN 2. t..1, "DATA"
440 FOR M~1= 1 TO 12
450 FOR DT=1 TO 10
460 PRINT!t2 .. DTt(MN, DT) .: CHR!t.(13)
4?0 IF DT!f:(MN, DT)="•" T~t:~J 4'!1A
480 NOO DT·MN - - -
490 CLOSE 2=RETIJRN

READY.

The program uses a 2 dimensional array
to hold inform~tion for each month of the year,
and totals the mformation by month. The data
is read from tape if required, and can be stored
again on tape afterwards.

TAPE HANDLING

The two programs below are a pair for pro­
grammed learning. The first, TEACHER
allows questions and multiple choice answers
to be set up on a tape. The second PUPIL
allows the pupil to be tested and scored against
the data set up on tape.
10 REM TEACHER
20 OPEN4,4
30 DIMLI$<19D
40 SB=3687'=1=fl=1
50 POKESB.. 26
150 PRIMTCHP.$(14)"'.'] -., -.r./ .-, II

70 PRINT"
80 INPIJT"-P!HTER .., OR M" ·'PR«
90 PR!HT"UJR~ DRTQ TAPE .. PRESS -ECORD ~' l.A'.,I"
100 l•JAIT37151..64 .. 64
110 OPEN1,1,1,"DATA"
120 PRINT"l'lllllJESTJON"A"I"
!.30 GOSUB470
140 QIJt=SRt
150 REM TEST FOR ~ND OF PROGRAM.
l.6".! IFLl'.':l=T$(QIJ$, 1)="*"THE~1400
170 REM SET IJP CORRECT ANSlolER.
180 PR I !·IT" •~NSW'.:RI"
!85 PP.INT" ".:
190 GOS1JP4?f.1
?.0!!' A~l$::SP:t.

21 ~ !:'EM SET UP AL TEP.NAT I VE ANSl•JERS.
220 FORM=!T03
230 PRINT"~RONG ALTEP.NAT!VEI"
235 PP INT" ".:
240 GOS1JB470
250 l·JRt(M)=SR$
260 !FIJ:Fn(l.JP.$'!"), 1)="*"THE~~290
2?0 NEXTM
280 M=M-1
290 IFM=1 THENPRINT"•.-1J Al TERNATil/ES ! I": GOT0220
'31?0 Pp! ~JT!t1 .• QIJ$
'3 !0 i=>R ! t.JTtt !: Fl~l~
'32t:I C"l)PP:: 1 TOM : PR rnrt t.. l•JR$ (P) : NEXTP
330 IFPR$()"'-"'THEN380
340 PR !HT#4 .. CHR$ (1 ?) "•IJESTI ON "A II "QIJ$
3':'!!' PQ IMT#4, CHP.:t (17) II tNSlol".:R " AN:t.
360 PP!t.JT!t4 · CHRtO ?) "ORO~JG (!!l TEP.NATIVES"
37 0 FORP= 1 TOM : PRINT#4 .. CHP.$ (17 >t•JR$ (P) : ~1EXTP
380 ~=A•1
390 GOTO 1. 20
40~ PRHIT!t1, QIJ$
410 PP.·It.JT"-POGRAM COMPLETE."
420 PRINTA-1"elJESTIONS SET"

79

80

430 CLOSE1
440 CLOSE4
450 PRIHT"•TOP TAPE: REl•IUlD AHD LABEL"
4'50 END
470 REM LINE SETTIHG IJP SIJBROIJTIHE
480 I=0:LC=0
490 FL$(1)="~":FL$(2)=" II

500 REM MAIN LOOP
510 IFLC<ITHEHLC=I
520 !FLC)ITHEHFL$(2)=L! .. (!+1):IFASC(Ll$(I+1))=34TH

EHFL$(2)=" :A'!!"
530 IFLC=ITHEHFL$(2)=" II

540 IFLC)189THEHCH$=CHR$(13):GOT0720
550 FORL=1T02
560 FORK=1T030
570 OETCM$:PRINTFL$(L) 11 lr1 .:

580 !FCH$0""THEH620
590 HEXTK
600 HEXTL
610 GOT0510
620 PRIHTFL$(2)"11" .: : IFASC<CH$)=20Tl-lEN780
630 !FASC<CH$)=148THEN850
640 IFASC<CH$)=157THEN960
650 IFASC<CH$)=29THEN1000
660 IFASC(CH$)=130RASC<CH$)=141THEN720
670 IFASC<CH$)(32THEN500
680 IFASC<CH$))127ANDASC<CH$)(160THEN500
690 CA$=CH$
700 IFASC(CH$)=34THENCA$="~'!!"
710 I=I+1 :PRINTCA$.: :LI$(J)=CHf::t:;OT('.1500
720 REM•********'***** ** LINE SET **

*************'*
730 PRINT:SRf:=""
740 FORJ=1TOLC+1
750 SR$=SR$+lI$(J): lI$(.])="": NEXT J:
760 PRINT
770 RETIJRN
780' REM*************** ** DELETE **

*'*******'*****
790 I=I-1:IFI<0THENI=0:GOT0500
S00 LC=LC-1
810 PRIHTCH$;
820 FORN=I+1TOLC+t:LI$(H)=LI$(N+1)
830 NEXTN
840 OOT0500
850 REM*************** ** INSERT **
060 PRINT" ".: :Lc=Lc+1 :uf:<LC)=" "
870 FORH=I+1TOLC
8S0 IFASC<LI$<N))=34THENPRIHT" :A'!!";
890 IFASC<Ll$(N))()34THENPRINTLI$(N);
9130 NE'.x!TN

910 FORN=ITOLC:PRIHT"ll"; :NEXTN
920 FORN=LCTOI+1STEP-1:LI$(N)=L!$(N-1)
930 NEXTN
940 LI$CI+1)=" II

~50 GOT0500
960 REM******•******'* ** CURSOR <- **

'•**'******
970 I=I-t:IFI<0THENI=0:GOT0500
980 PRIHT"ll" .:
990 GOT0500
1000 REM***'**'*****'** ** CURSOR -) **

'**************
1010 I=I+l: IFDLCTHENL1$(J)=" II

1020 PRIHTFL$(2);:GQT0500

READY.

10 REM PUPIL
20 Sl!=36879:N=1
30 POKE SB,29
40 PRINTCHR$<14)":'] 1-.i II
50 PRINT" _,,
60 PRIHT"UJAD QUESTION T~PS:: ~ PRESS Ltl"
?0 ~IA!T37151, 64.• 64
80 OPENl, 1,0 .. "DATA"
90 REM GET INITIAL DATA
100 OOSUB500
110 REM OET THE QUESTION
120 QU$=Rif:(1)
130 IFLEFT$CQIJ$, D="f"THEN430
140 AN$=RI$(2)
150 FORJ=1T04
160 WR$(.])=" II

170 NEXTJ
180 WR$(Q-1)=AN$
190 FORM=1TOQ-2
200 l·IR$(M)=RU:(f'1+2)
210 NE'.>!TM
220 Pp~NT":'l IUESTIOH"N
230 PP.INT II

240 PP.IHT"~"QU!f:"I"

250 REM RANDOMISE THE ANSIJEP. POSITION IN THE LIST
260 A=IHT<RND(l),(Q-1)+1)
2?0 CR=Q-A
280 FORK=lTOQ-1
290 PRINT"LWl"K"l"iWR$(A)
300 A=A+1:IFA)Q-1THENA=1
310 NE'.><TK
320 REM LOAD NE~T FROM TAPE BEFORE ACCEPTING ANSWE

R
330 GOSUB500

340 IHPIJTAN$
350 AN=VAUANt)
360 REM SCORING, WR = NO. WRONG; RI = NO. RIGHT.
370 IFAN=CRTHENRI=RI +1 : Pll'INT"lt-1.JRRECT•" : T=999
380 IFANOCRTHEHIJR=WR+1 : PR INT":l)ROHG -•" : T=2000
390 PRUIT" "~!Rt(R-1)
400 N=N+1
410 FORK=1TOT=NEXTV.
42~ Gi:iT0110
430 PRINT":'JI EST COMPLETE.•"
440 PRINT N-f"llJESTIONS ANSWERED•"
450 PRINTRI" CORRECn"
460 PRINTWR" ~JP.ONG•"
470 CLOSE1
4$.!0 PRINT """'RESS STOP ON TAPE"
490 END
500 REM GET NEXT
510 R=Q
520 GOSll'.85e0=Rit(1)=SR$
530 IFLEFU(Rl$(1),1)="•"THEN~?0
540 FORQ=2T05=GOSIJB580=RI$(Q)=SRt=IFLEFTt.(Rl$(Q),1

)="*"THEN560
550 NEXT
560 Q=Q-1
570 RETIJRN
580 SR$=""
590 GETi1,INt:SP.$=SRf+IN$
600 IFINf=CHR$(13)0RINt=CHRf(141>THENRETIJRN
610 GOT0590

READY.

PRINTING

A screen dump program is always useful to
produce on the printer a copy of what is at
present on the screen.

10 REM PRINT SCREEN (TOP 22 LINES>
20 SC= 1024: OPEN4, 4 : CMD4 : PR INT CHP.$ <14) .:
30 FOR Y=0 TO 22
40 FOR X=0 TO 39
·50 PK=PEEK<X+<Y*40)+SC>=LE=PK
55 IF PK)127 THEN PK=PK-128: PRINT CHR$<18) _;
60 IF PK=96 THEN LE=32=GOTO 150
70 IF PK<32 OR PK)96 THEN LE=PK+64=GOTO 150
80 IF PK<96 AND Pl()63 THEN LE=PK+32=GOTO 150
90 IF PK)96 THEN LE=PK+64
150 PRINT CHRt(LE)CHR$(146);

160 NEXT X=PRINT=NEXT Y
170 PRINTi4=CLOSE4=END

READY.

GAME

Every book has to have at least one game. Here
are two, one for the CBM 64 and the second for
the VIC 20 No further explanation is required
(or will be given)!

10 REM •••****•*****•••••****•*•*******
20 REM ********************************
3~ RE:M *** ***
40 REM t.t*. CAR CHALLENGE ***
50 REM *** **•
60 REM *** BY M & T HILL ***
70 REM *** ***
80 REM ********************************
90 REM *************************•******
100 SC=53281 :POKE sc .. 1
110 PRINT":'IQllll .. tHS.!IE*** ~AR CHALLENGEll *****"
120 PRINT "~tt••• .. ll-HGH SCORE :: 0 :HI
130 PP.INT "~"tmHERE ARE 9 LEVELS, 9 BEIN

G THE EASIEST.• AND 1" .:
140 PRINT " THE MOST DIFFICULT"
150 PRINT "~~!~""""LEVEL OF DIFFICIJ

LTY="
160 PRINT TAB<20).:
170 GET KYt.=IF VAL(KY$)::0 THEN 170
180 L=VAVK'T'$): PRINT KY$
l.90 :
200 :
210 POKE 650,128=REM=SET REPEAT KEYS ON FOR ALL V.E

vs
220 BD=53280 POKE: !lD.-t
230 CR=16~7=CL=55296-1024=V=81=TV=81=G=1
240 :
250 :
260 :
270 REM It~'+' START IJP **>I'
280 :
290 PR !NT II ::'MlOll LEVEL : =~11 L.: 11 HH SCORE : =l\1111 _;HI.; "1'30:

=".:G
300 CR=1637=REM ** RESET CAR POS ***
310 POKE CR.• V: POKE CR+CL 0 : TU= 11000000 11

320 A$= 11~ , ..
I II

81

82

330 FOR N=1 TO 13:PRINT:PRIHT RIGHU<A:t,LEN<Af:'-'25
) :NEXT

340 PR INT II 1-----START-----I , ..
3'.50 FOR N=l TO 9:PRINT:PRINT RIOHU(Flt.LEN(Af:'-25)

:NEXT
360 GET K'T'$: IF KY$0 II II T!JEIJ 360
370 FOR ~l= 1 TO t t:l0l'.1:1-JEXT
3s:!~ X=0
390 :

400 REM **********************-*******
410 REM ****** THE PROO ITSELF ******
420 REM *****************************
430 :
440 OOSIJB IS70:REM *** PRINT ROAD ***
450 IF CH=2 THEN CH=0:f3QTO 510
460 :
4 70 GOSIJB 770 : REM *** M0\.11:'. ci:i"' ***
490 :
490 GOTO 410
~~t,'.I :

510 REM ****** ENDING *****
520 PRINT "'.Tn'ITWIT ! ! II
530 SC=VAL(Tif)*(10-L)
540 PP.INT ":!:"SC: IF SC)HI THEW !.!~.,,SC

550 FOF! N= !. TO 2000 : NEXT
5~0 X=0:0=G+1
570 GOTO 270
590 :
590 REM ****** SHAPES OH ROl:ID *****
600 Bf:="* *":F!ETIJR"'
610 Bf:="O Q": PETIJRN
62t:l P~="• I!": RETIJF!N
630 M="• +":F!ETURN
640 Bt=":!+ +":RETURN
650 Bf=" 'IX X" : RETURN
660 :
670 REM ****** PR!IJT!NG ROAD *****
690 X=X+1
690 IF X{)L THEN PR!NT:GOTO ?30
700 RD=INT<RHD(1)*6)+1
710 ON RD GOSIJP 1500: 610 .. 620 .. 630 -1540.· 650
720 PRIMT Ti:l:!!'6~INT<RND<5)*9)).:Bf:X=0
730 :
740 PRINT A$
750 RETURN
760 :
770 REM **** MOVE CAR ***-*
790 IF PEEK<CR)032 A~ID· PEEK<CR)')·V THEN CH=2:r;uu

ON
?90 GET KYf:
900 !F K'i'$="2" THEN CR=CR-1
910 IF KY$="M" THEN CR=CR+l

920 IF KY:t="ii" THEN GOTO 1.Af71
930 POKE CR .. V : oovi; CC>+CL: 0
94t:l PE:T!JRN

1 \1=36878: S 1 =36974 : SC=36879 : POKE V .• 10 : S2=S1+1 : S3=S
2+1

2 A=7680: POKESC.· 27: DU="~": fl3$="Jlaw.oo": A
1$="•11111111""""" :A2$="•ttHI"

3 D2$=" .~" : HAf:=":llff=*******:t-IANGMANllil'******
":ST$="************"

4 IF PEEK<4096){)0 THEN A=4096
5 B=B+1 :READ~JO$: IFWO$=""THEN7
6 GOT05
7 OOSUB72
8 L=0:RESTORE:RD=INT<RND<l>*B)
9 FORN=0TORD:READWOf:NEXT
10 LN=LEN<~JO$) : PRINTHA:t : PRINTD3$"'.IMWJ" Al$.:
1l FORN=l TOLN: PRINT"~".: : NEXTN: TI:t="000000"
12 FORN=1T0100=NEXT
13 POKES1 .• 0 : POKESC, 27: GETKY$: I FKY$=" "THEN 13
14 FORN=tTOLN
15 I FKY$=MI Dt <WO$.• N, 1) THENPOKES1 , 250 : POKESC .• 255: GO

T022
16 NEXTN:FORN=1TOLN
17 IFKY$=MID$(l.JO$, N, 1)THEtlGOT013
18 NEXT:·PRHITD1$.:D2S;A2$"11"; =L=L+t :POKES1, 150:POKE

SC,24
19 FORN=0TOL: PR INT"•I" .: : NEXT : PRINTKY$
20 ONLGOSIJB27, 29, 29,30, 31, 32.• 33, 34, 35, 36 .. 37, 38 .. 39,

40,41
21 .GOT012
22 PRINTD1$.: A1$"11";
23 FORX=1TON:PRINT"•I"; :NEXT=PRINTKY$
24 FORX=A+230TOA+230+LN:IFPEEK(X)=102THEN26
25 NEXT:GOT046
26 N=N+t:GOT015
27 PRINTDU:;D2f"i --., =RETIJP.N
29 PRINTD1f.:D2$"F" =RETURN
29 PRINTD1$;D2$;A2$"~":RETIJRN
30 PRINTD1$;D2$" !"II rll rll rll rll rll rll rll rll I" =RE

TURN
31 PRINTD1$iD2$""'"1' "1111\" =RETURN
32 PRINT Dtf:"'.mHl/.1/" =RETIJRN ·
33 PRINTD1$""'"'--": RETIJRN
34 PRINTDl $; A2t"i IDll" : RETURN
35 PRINTD1$iA2$"lll.aJ":RETURN
36 PRINTDU.:A2$"'.IMWJll'.." :RETURN
3? PRINTD1$.:A2f"UOV" =RETLIRN
38 PR INTD1 $.: D3$.: A2f:" 1~ ~" : RETURN
39 PRINTDlS.: D3$"•"tV": RETURN

40 PR INTD 1$.: D3$.: A2$ II •t·,." : RETURN
41 POKESC .. 24: POKES! .. 128:PR!NTD1$.:A1$"~"lol0$:FORN=1

T010
4 2 FORX= 1TO100 : NEXTX : PR INTD 1 $")MQl•Ht--.~l.-'" : PR IMTD 1 $

.: D3$ II '."11•11111 ~· "
43 FOR:>i,=1T0100:NEXT:x::PRINTD1$").MQl•HI JI ":PRINTD1$

.: D3$ II '."JH!!ll .. -11\-"
44 NEXTN: FOR:i<=1 T01000: NEXT: POKES!, 0: IFSE)0THENSE=0

45 PRINT":'l"D2$"J•Htr0U HAVE LOST! ! ": GOT056
46 POKES!.• 0: FORI=1 T01000: NEXT: PRINT":'Jl"D2$.: A2$"1"S

T$;AI$"* •"
47 PRINTD1$.:A2$"m~JELL DONE!*"
48 PRINTD1$; A2$"J.m* ll'"AI$.: SU: FOR~l=128T02

55STEP3
49 POKESC.N:POKES3,N
50 FORX= 1TO100 : NEXTX : NEXTN : POKES3 .• 0 : POKESC .• 27 : SE=S

E+ INH550-VAL<Tl$))-(U~50)
51 SE=INT<SE/10):SE=SE*10
52 PRINT":'Jl:w:l"A2$.: SUAl$"*"SPU 10) "*"
53 PRINT"l=l"A2$"~~JELL DONE!*"
54 PRIMT"~"A2$"*"SPC(10) "ll'"AI$.: SU
55 PR INT" ~r'OU NO~J HAVE A SCORE OF : " : PR Hff A 1 $.: SE
56 PRIMT":wn.JOULD '-.'OU LIKE ANOTHERGO?"
57 GETK'1'$: IFKY$0"N"ANDKY$0'"-.'"THEN57
58 I FK'r$= '""" THEN8
59 PRINT"GOOD BYE! ! ": FORN=l T01000: NEXT: PRINT":'J:": P

OKES1 .. 0:POKES2.0
60 POKES3 .. 0 : POKESC .. 27 : ENI1
61 DATAFI SH.• CAR, ABACK, MATER .. F HH SH, TABLE, CARPET, \IA

SE , FLOl•JER, DESK, CIJRTA I ~I
62 DATARETURN, CUP • FORK, KN I FE, PAN .. CUPBOARD · PICTURE,

PLANT .. BOOK.· BLOCK, FIRE, ICE
63 DATARAD I 0, LIGHT .. TELEVISION.• CASSETTE · BECAUSE . l·lHE

N, l·JHERE , THERE, THEIR, FOSSIL
64 DATASNOOKER, SCHOOL, FEFlTHER, TEACHER, l·JORK , PLAY , BE

D,QUILT,ROAD.FATHER
155 DATAMOTHER .. SON, SUN .• DAUGHTER, COUSIN.• Sl4ITCH .. APPLE

· ORANGE .. PEAR .. BANANA
66 DATAHALLPAPER .. RUG, FURNITURE· BIKE .• CYCLE, MOTOR, BU

LB .. GLASS, DOOR, ATLAS
67 DATAGAS .• BR I CK, YELLOl·J .• RED, !·lH I TE .. LEAF, LEAVES .. MARO

Ot·I, BROWt~ .. BLUE, RAIN .. l4INDOL•J
68 DATAPINK .. INDIGO .• PURPLE, BLACK, GREEN .. VIOLET, LEMO~l

, LILAC, GREY .• RUST
69 DATAPEN, PENCIL, DRUM, TRUMPET, PI ANO.• VIOLIN, FOLL'" ,

~JELLINGTON, SOCK .• SHIRT
70 DATAVEST .• JUMPER.• TIE, TROUSERS.• BLOUSE, TEETH, EYES,

EARS .. MOUTH.• NOSE .. LEG, ARM
71 DATAFEET .. THINK,
72 PR!NTHA$:POKESC.27
73 PRHff"JltrOU MUST DECIPHER THEl-JORD IN THE BLOCK

OF ~'S. IF YOU FAIL II

74 PRHff"YOU HANG: II

75 FORN=1T03000:NEXT:POKESC.24
76 L=L+l :O~ILGOSUB27 .. 28, 29, 30.· 31 .. 32, 33, 34, 35. 31;. 37,

38.39 .. 40
77 IFL<15THE~l76
78 POKESl.· 128:FORX=1T015
79 FORN=1TOX*20:NEXTN
80 PR INTD 1 $.: A2$ II '.WMQt--.0/"
81 PRHITD1$.:A2$"~1 JI II

82 FORN=1TOX*20:NEXTN
83 PRINTDl$_: .. A2$"'.WMQI 0 II

84 PR INTD 1$.: A2$"~L.-.I\." : ~lEXTX
85 POKE St.0:FOR ~1=1 TO 2000:NEXT N
86 PRINTHA$:POKESC,27
87 PRIHT":w:JIF YOU HIN. YOU SCORE: II

88 PR INT II ~II : FORN= 1TO1000 : NE:>l,TN : POKESC .. 31
89 FORX=0T0300STEP10
90 FORN= 1TO100 : NEXTN : POKES 1.. OU 10) +220
91 PRINTA2$"'.'llSCORE =":x:NEXTX:FORN=1T0500:Noo
92 PRINTA2$"'.IMlr.l:l-IIT ANY KE'i'I" :POKESt..0:FOR~l=1T010

0:NEXT
93 GETKY$: IFKY$=" "THEN93
94 RETURN

READY.

GRAPH PLOTTING

This program plots a low resolution graph with
offsets. It is useful to show whether there are
trends before going into more sophisticated
analysis.

l. 0 REM LOl•J RES GRAPH PLOT l·J ! TH OFFSET X AND Y AXES

20 Rt:M ITEMS TO BE PLOTTED APE HEl..T1 TN '.>10 R~JD YO

31.'.1 Rt:M M'.>I JS MR)<'. VfiLUE OF X FOUND IN ARRAY
40 REM NX IS MIH VALUE OF '.><'. FOIJ~l:D TN RRRFW
50 REM S!M!l_PRL'·' FOR MY R~rn l.JY
60 l:'.:IOM ~JR TS ~11'1'.~ NO. OF ITEMS TO BE PLJTTED
65 Q=1: DEF FNACr:)=(HlT' 'X*Q)+. 5))/Q

66 DIM XC20),Y(20)
70 :
76 FOR T=1 TO 20
77 HIPIJT "X,'i'".:X(T).Y(T):!F '.>l'n=-999 OR Y(!)=-999

THEN 79
78 NEXT
79 MX=0'M'i'=0:~1X=XCD :HY=Y(l) :REM rNITIALISE LJMTT~

83

84

80 FOR .!=1 TO 20
90 ff 'i<(.!~=-999 OR Y(J)=-999 THEN NA=.J-1 :ooTO 150:

REM END OF ENTRIES·IN XOR Y
100 IF X(J))MY. THEN MX=X<J):REM PIJSH I.JP MFIX IF REQ

IJIRED
110 11=' Y(.J))MY THEN MY=V(.J): REM DITTO
120 IF X(J)(NX THEN NX=X(.J): REM PIJSH DOloJN LOl•!ER U

MIT !F REQ!JIRED .
13£3 IF ',.'(.J)<".~JIJ Tl-IS::N NV=Y(.J): REM DITTO
!.40 NEXT .J
150 PRINT "'.']"
160 FOR I=1 TO 20=PRINT" J":NEXT=REM SET IJP VERT!

CRL LEFT LINE FOR Y AXIS
170 PRINT"1"
180 t=OR !=1 TO '38=PRINT ":a.".: =NEXT=PRINT=REM SET IJ

P HORIZONTAL LINE FOR X AXIS
189 REM X-AXIS
19£3 PR!NT FNA<NX) .:
200 PRJNT TA~(35)FNA<MX)
2!'.11 REM Y-AXIS
202 PRINT "liJ"
203 MY$=STR$(FNA(M'.,i)) :FOR !=1 TO LEWMY$) :PRINT M:r

D$(M'.,r$, I.. D :NEXT I
204 FOR K=LEN(MYt'l-1 TO 15=PRINT:NEXT K
205 NY$=STP.$<FNA<NY)):FOR I=1 TO LEN<NY$):PRINT MI

D$ nlY$: L D : ~JEXT !
210 PRINT"~"
215 REM GP.APH nsi::r_F
?.20 FQP !=!. TO NA
230 X=X (.]) : Y=Y (J)
240 YP=19-19*(Y-NY)/tMY-NY):XP=2+(X-NX)*35/(MX-NX)

250 FOR L=1 TO yp:PR!NT"l.l": :Mt=:'>c'T L
2€0 PRINT TRll('.>(P) .: "+"
??Iii PR!NT "liJ"
280 NEY.T .J
290 PRlNT"liJ"=GOTO 290=REM HOLD TO PREVENT 'P.EADV'S

POIUNG GRAPH
300 REM CHANGF.: 29fll TO EXIT TO NEXT PART OF YOUR PR

OGRAM

READY.

High resolution graphics can be slow but
obviously will give a more precise picture than
anything constructed above. One of the restric­
tions of CBM BASIC is that there are no
language commands for graphics, sound or
colour and all this manipulation has to be
done by use of POKE commands. This is illus-

trated by the high resolution graphics program
below, for the CBM 64, which will draw a
curve represented by the formula entered in
the formula section, in this case a circle. Note
that the X-like symbol in the listing is in
fact II. II is only shown in the cursor up mode
oflisting.

100 re~ hi9h resolution Plott1n9 on screen <or 152
0 Printer)

110 sc=53281:bd•53280:re~ define screen and border
clour variables

120 Poke sc, 1 :poke bd,6=Print "Ill"
130 Poke 650,12e:re~ ke~ rePeat
140 oPen 1,s,1:re~ 9raPhics Printer <1520> if avai

lab le
150 :
160 b~•8192=Px=1=re~ bit~aP <b~) and Pixel on/off
170 Print "clear screen?"
180 9et k»S=if k~S•"" then 180
190 :
200 :
210 Poke 53272,Peek(53272) or 8=re~ switch disPla~

screen to location of bit ~aP
220 Poke 532651Peek(53265> or 32
230 re~ enter bit ~aP 2 colour inPutMode (bit 5 of

vie 2 chiP)
240 for i•1024 to 2023=Poke i,t:next
250 :
260 if k»f•"n" or bS•"N" then 300
270 for i•bM to ~+7999
280 if Peek<i><>0 then Poke i.0
290 next
300 :
310 Poke 53280,3
320 :
330 for x•-10 to 10=~-e=9osub s20:next
340 for ~·-10 to 10:x-eJ:9osub 520=next
350 Poke bd,5
360 re~ *******************************
370 re~ *** for~ula ***
380 reM *******************************
390 r .. 256
400 :
410 for 1•0 to 360 steP 10:rem steP trades sPeed f

or resolution
420 :
430 r=80=re~ *** radius
440 x=rtsin<1*X1180)
450 ~=rtcos<l*X1180>

460 :
470 90SUb 520
480 next
490 :
500 9oto 010:rem menu
510 :
520 rem ******************************'
530 rem *** set.tin9 Pixel ***
540 rem *******************************
550 9osub 910:Poke Pk,P
560 return
570 :
580 rem *******************************
590 rem !11!11111 re-set ***
600 rem *******************************
610 Poke 53265,Peek(53265) and 223
620 Poke 53272,21 :rem 111111 set c:har

set Pointer
630 Print "Di there"
640 return
650 :
660 rem *******************************
670 rem *** Printout !11111111

680 rem *******************************
690 Poke bd,2
700 :
710 for ll•0 to 199
720 for x•0 to 319
730 9osub 910
740 P11Peek(Pk)
750 if P•(P or <21bi t)) then Pri ntlU, "m"; x-1, -lillld:

Pri nt4tL "d" ix. -l*ll
760 next XIII
770 :
780 Poke bd.5
790 return
800 :
810 rem ******************************
820 rem *** last menu ***
830 rem ******************************
840 Poke bd,7
850 9et kldf:if kldf•"" then 850
860 if k~f'""P" then 660
870 if k11S•"x" then 9osub 590:end
880 if' kl1S11"r" then run
990 9oto 850
900 :
910 rem ******************************
920 rem *** settin9 Position 111111

930 rem ******************************
940 :
950 xx111 x+160
960 llll=100-ll:rem invert 9raPh

970 c:o t•i nt<x>:/8): row=i nt(i:ill/8)
980 tine=ll~ and 7
990 Pk =bm+roviill320+8illr.:o t +tine
1000 bit=7-(xx and 7)
!010 P•Peek(Pk) or <21bit)
10~0 r-et.;.r- ~
:~3~

The above program can be easily adapted,
using different locations for the POKEs, for the
VIC 20, although you will be tight for space if
you try to do anything useful on an unexpand­
ed VIC 20. Sprites, however, are only available
on the 64 and as the manual does not give a
routine for generating them, one is included
here. The numbers to be used for POKEing
into the sprite data area are listed on the
printer at the end of the program.

10 rem sPrite 9enerator
100 rem ob is start Pok• loc: of 9rid
110 rem c:1 is c:otour for Pokes
120 rem v is start Poke \oc: of video c:hiP
130 rem wn is a f1a9. (fi11/not fi11 sPac:e on 9rid

)

140 rem sc: is c:o\our of sc:rten,bd is c:olour of bor
der

150 sc:•5328l:bd•53280:ob•l109:c:\•55296-1024:print"
" : Poke sc:, 1

160 rem *** Print toP row of nos ***
170 Print " "i :for n1111 to 24:Print ri9htf<strS

(n),1); :next:Print
·180 rem *** Print 9rid ***
190 for n•1 to 21: ><f•"": if n<10 then ><$•" 11

200 P"" int "I" i xt in i "II PPPPPPPPPPPPPPPPPPPPPPPP"
210 ne><t
220 Print" 81"
230 :
240 :
250 rem *************************'"'****
260 rem *** ktw oPerations <~ove> ***
270 rem ***************""*'***********"'
280 9tt kd: if kwf•'"' then 280
290 bo•ob
300 if k11ta 11 D11 then ob•ob+49:90to 398:dn
310 if kwf•"I" then obaob-40:90to J98:up
320 if kldfll"JI" then obaob+l :90to a:rit
330 if k wf•"ll" then ob=ob-1 : 9oto 3911J: 1 ft

85

86

340 if k11f•" n or asc(k11t)•168 then n•1: if 11n•l th
en n•0

350 Yn•n
360 if k11t•"e" then 480:re111 *** endin9
370 :
380 :
390 if Peek(ob><>80 and Ptek(ob)()96+128 then ob•b

o:r1111 ** check for off-9rid
4C!IC!I Poke ob,80:Pokt ob+c\,5:poke ob.96+128:Poke ob

+c1.12:if 11n11 l then 420
410 Poke ob.e0:Poke ob+c\,5
420 9oto 280
430 :
440 :
450 re111 '******************************
460 re111 *** workin9 out •Pritt **
470 re111 *************'***************** 480 Poke 1c.6:di111 aP(65):r1111 111ove di111 to start if

111odified to rec11c\e this
490 for 11•1 to 21
500 for 12•1 to 3
510 no•1023+<<12-1)1118>+<1111140)
520 for 13•1+no to 8+no
530 if Ptek(\3+45>•224 then 111""111+2t(8-(13-no))
540 ne>Ct 13
550 aP<ri)11111:ri•ri+1:11199
560 ne><t 12
570 ne>et 11
580 :
590 re111 111111111 Printout ***
600 oPen 4,4:Clfld4:pri'l'lt"•" :for n•0 to 62:Print SP(

n);:ne><t n:Printi4
610
620
630
640
650
668 Print"•"
670 v-53248:Poke v+21,4:re111 sPrite 3
680 Poke 2042,13:re111 111111 data \oc
690 for n•0 to 62= Poke 832+n.sP(n):ne>et=re111 111111111 P

oke in data
700 11•100=><•11:Poke v+41,1
710 9et k11t:tf k11S•"" then 710
720)()(•)(:11111911
730 if k11,."I" then 111111+3=re111 down
740 if k11S-"•" then 11•11-3:re111 uP
750 if k11S•11 .. 11 then x•>e+3:re111 ri9ht
760 if k11,."ll" then ><•><-3:r1111 left
770 if ><>255 or x<0 or 11>255 or 11<0 then x•x><:1111J111

780 Poke v+41x:re111 lll*x \oc of aPritt 3

790 Poke v+5,11=re111 11111111 \oc of sPrite 3
800 9oto 710

read11.

Finally, you may be interested in the little
routine used to print these listings in 50 col
format for convenience of printing in this
book. First a listing must be made to the tape
by loading any program say PROGRAM for
which the listing is required, and typing in
direct mode

OPEN 1,1,1,"LISTING"

... press play/record and wait for READY.

CMD1:LIST

... wait for the listing to fmish, then

PRINT# 1 followed by CLOSE 1

Then load the program below, set up the
printer and run.

10 oPen 1,1,0,"1istin9":open 4,4:ct•0
20 9eti1.at:tf st<>B then 50
25 1nf•1nf+a$
30 ct•ct+l:if aS•chrS(13)then ct•0=9osub 60
40 if c:t•50 then ct•0:9osub 60:Printt4:Pl"inti4,"

II•

' 45 9oto 20
.50 Printt4:c\ose1:c\ose4
55 end
60 Printi4,\nf;:\nf•chrf(17):return

read11.

SECTION 4 Glossary of Common Terms
Addressing
The computer needs to talk to its memory and
to various peripherals. Each memory location
and peripheral has an address, usually unique,
which the computer uses to get it to accept or
send information. For non unique addresses,
the computer must have only one item at a
time responding or there will be trouble. It is
therefore important to ensure that a cartridge is
not fitted while extra RAM memory occupying
the same address is switched in.

Algorithm
The method used for solving a problem. As the
designer and programmer cannot solve the
actual problems the computer will meet, all
they can do is to provide it with the means or
algorithm required to solve these problems.

Array
A set of variables held as a single list e.g.
A(l),A(2) or as a multi dimensional array or
matrix e.g. B$(1,l),B$(1,2) .. when variables are
related such as a set of cars which may be
identified by serial numbers 1 to 20. Then the
drivers' names would be held as say NA$(N)
where N is the car number. Two dimensional
arrays are useful when comparing month-by­
month expenses for the 20 cars when EX(l5,3)
could represent the expenses in March for car
number 15.

ASCII
American Standard Code for Information
Interchange. This is one of the standard con­
ventions for converting characters to numbers
as stored on a computer or sent along a
communications link. The other main stan­
dard is EBCDIC which differs only slightly.

Assembler
An aid to writing programs in machine code.
Instead of writing down the actual machine
code entries as must be done in POKE state­
ments, this allows the use of mnemonics such
as LDA (load A register). Not covered by this
book.
Base
Normal decimal numbers are to the base 10.
Other bases used are binary (2), octal (8) and
hexadecimal (16). Binary digits can only be 1
or 0, octal digits are between 0 and 7, and
hexadecimal digits are between 0 and 15 (i.e.
0,1,2,3,4,5,6,7 ,8,9,A,B,C,D,E,F).

Whereas people are familiar with decimal,
computers work in binary. Three binary digits
can be dispayed as a number between 0 and 7
(octal) and 4 binary digits can be expressed as
hexadecimal, so making these two particularly
useful in writing down long strings of binary
digits without making it difficult for the human
observer to convert them back again, as each
digit is individually converted to 3 or 4 binary
digits. For example decimal 63 is binary 111111
or OCT 77 or HEX 3F.
BASIC
Beginners All-purpose Symbolic Instruction
Code - the language supplied with almost all
microcomputers, both business and home, the
high level language described in this book.
High level means that it does the work of con­
verting your wishes from an English-like
language to machine code and memory storage
without troubling you with the details.
COBOL, FORTRAN and RPG are also high
level languages. Low level languages like
Assembler require you to know a great deal

87

88

about how the processor and some other chips
operate.
Binary
See Base.

Bit
An element of a computer. In almost all com­
puters today this element can be in one of only
two states represented by 1 and 0 i.e. as a
binary digit.

Boolean Logic
The logic used in AND OR NOT statements
(q.v.).

Buffer
An area of memory held for temporary storage
before moving data around in larger chunks -
usually for writing out to cassette, which
requires 192 bytes, or to disk or printer. These
buffers are handled by the computer and do not
normally need any direct intervention by the
programmer. They can be in the computer
memory itself or in the peripherals.

Bug
An error, usually in software but sometimes
used to refer to problems in the design of a chip
or other hardware.

Byte
A contiguous set of bits, usually 8 (always .8 on
these machines) in number, occupying one
memory location. This width is sufficient to
hold an ASCII character, converted to a
number between 0 and 255, and this therefore
often represents one character, e.g. 65 is ASCII
code for 'A', 66 is ASCII code for 'B'.

Code
Any computer language statements. In this
book code almost always means BASIC high
level language code.

Compiler
A compiler scans the BASIC code before it is
run and sets up the machine code ready for the
run. The BASIC interpreter normally used {the
one you get with the system) deals with every
line as it reaches it whereas the compiler has
scanned them all to produce more efficient
code. Unfortunately a true high efficiency
compiler does not to my knowledge exist at the
time of writing, but there are intermediate
compilers which can still improve speed
performance by about a factor of 5, and save
some space.

Default
This describes what will happen if you make
no positive decision in a particular case. For
instance, if you do not DIMension an array
before the program comes across it, its dimen­
sions will default to 11.

Device
Any piece of hardware e.g. DEVICE NOT
PRESENT as a message when addressing, say
the printer, means that the computer is not
getting the right response and therefore does
not recognise it as present. See Peripherals.

Function
A mathematical formula that can be defined at
the start of a program and then used as short­
hand within the computer (see FN), or its
ordinary English meaning as in 'the function of
the keyboard is to allow data entry'.

Garbage
A term referring to the small pieces of memory
left after string manipulation has altered
lengths of strings and left spaces in between too
small to be useful. Garbage collection takes
place when the strings are shuffled about to
create one large usable space. See FRE.

Hex
See Base.

1/0
The standard abbreviation for Input/output to
or from the computer from its peripherals or
other items in the outside world.

Input
Input is information coming into the computer
from outside.

Interface
The contact between a computer and its peri­
pherals or its contact with the outside world
through the RS232 interface or the user ports.
The RS232 interface is a standard hardware
socket, but the VIC/CBM 64 only has 5 volt
output and must be converted to 12 volt stan­
dard for compatibility with most other RS232
devices.

Keywords
Words having a specific meaning to BASIC
such as GOfO. Using long BASIC variable
names, there is always a chance that variables
may be confused (by the Interpreter) with Key­
words. TOTAL is confused with the keyword
TO and will give a SYNTAX ERROR.

Kilobyte (k)
One thousand bytes, or to be exact 1024 bytes
of memory.

Logic
Logic is the structure on which we try to build
our computer systems. The computer is a hard
taskmaster and reveals the flaws in our logical
powers! (see also AND NOf OR boolean logic)

Logical line
A logical line is up to 80 characters long.
Because the screen cannot hold that number of

characters, there can be more than one screen
line per logical line. When entering BASIC
lines these .are only terminated by a
<RETURN>. The screen lines have little
significance to the program except when work­
ing on screen displays.

Machine code
The natural language of any computer, consist­
ing, fundamentally, of a series of ON-OFF
switches, represented by the binary numbers 0
and 1.

In an 8 bit computer, each machine code
instruction is provided by a block of eight
binary digits, which for convenience, we
normally convert to either Hexadecimal or
decimal numbers, as long strings of zeros and
ones can be unwieldy and difficult to re­
member.

Short lengths of machine code can be created
by POKEing numbers into RAM locations.
This can be done only for a few locations, with­
out becoming thoroughly confused, and it is
better to use an Assembler for any significant
lengths of code. Remember that machine code
does not insulate you from crashing the system,
like BASIC does, so frequent SA VEs to disk of
any BASIC using POKEs and SYS statements
is desirable. It is essential to SA VE any
machine code program before running it for
the first time.

Nesting
Nesting is the very useful technique of placing
loops inside each other in order to process
arrays or other large structured data. FOR
... NEXT loops can be nested, as can sub­
routines (GOSUB). Examples abound in the
main text (FOR,GOSUB) and in Section .3.

89

90

Octal
Not often used now - see Base.

Output
The transfer of information from the computer
to its peripherals or the outside environment
(e.g. network).

Peripherals
The devices attached to the computer to allow
it to interact effectively with the outside world.
Examples are monitor, printer, tape cassette
unit and disk drive. See Device.

Port
A plug connection for peripherals. The user
ports are plug connections for anything you
care to connect. However as these ports con­
nect directly to the works of the computer
caution is advised!

RAM
Random Access Memory is memory on chips
within the machine, the contents of which can
be changed as required by the programmer or
the interpreter.

Real
Means that the facility (e.g. memory) you are
using is actually present on the machine. Not
relevant to most micros - all the memory you
can access by POKE and PEEK is really there
- see Virtual.

Real numbers
Numbers expressed to one or more decimal
places. The opposite of integers.

ROM
Read Only Memory is memory with a fixed
pattern burnt into the chips which the com­
puter can interpret as either data or programs.
The BASIC interpreter is held in this way, and
read into RAM on starting the CBM 64.

Software
Programs used to make the computer operate.

Statement
A statement is BASIC code terminated by a
colon or a <RETURN> , whichever is sooner.

Structured Programs
These are built up of subroutines (or the
equivalent in other languages) in a systematic
and ordered manner. GOTOs are rare as each
subroutine returns only to the subroutine that
called it, or to the main program code which
consists mainly ofa series of GOSUBs.

Syntax
The structure or 'grammar' of a language,
whether it is English, German or BASIC is
known as the syntax. Bad BASIC syntax will
produce a SYNTAX ERROR and no further
progress will be possible until this is corrected.
In other words, syntax is the rule book for the
language.

Transparent
The facility you are using is not visible to you.
Loading and use of the BASIC interpreter is
transparent because it all happens without you
having to know any more than the rules of the
BASIC language. See also Virtual.

Variable
A variable is the name given by you to a loca­
tion or locations in memory where information
is held. BASIC decides where to put the varia­
ble and how much space to allow for it from
the way you use it and from its name termina­
tor if any (i.e. $ for strings and% for integers).
For example if you say A=2 in your program,
BASIC will check to see if A exists and if not
will create a location for it. It will then put the
value 2 in that location. If A already exists, the
new value you are assigning to it will overwrite

(replace) any previous value.

Virtual
This term is used when your machine pretends
it has facilities that it does not have. Some
machines have only 64 kbytes of memory but if
the user wants to use more than that, some of
the 64k can be stored on disk and replaced by
disk memory which is given addresses above
64k, so appearing to the user (you, that is) as if
it had, say, 128k. Not a facility provided by
CBM machines, but you can use it in your own
programs to store part of a spreadsheet on disk
ifit's too large to go in memory.

Remember:
If you can see it and it's there, it's real
If you can see it but it's not there, it's virtual
If you can't see it but it's there, it's transparent
If you can't see it and it's not there, it's gone!

Appendix A - Control Characters used in
the Programs

11 1811 - HOME
":l" - CLR
"XI" - CURSOR DOWN
11 '.'111 - CURSOR UP
"•I" - CURSOR RIGHT
"II" - CURSOR LEFT
":Iii" - REVERSE ON
"!" - REVERSE OFF

READ'T'.

READY.

"I" - BLACK - CTRL & 1
II •• ; - WHITE - ETC
11 !111 - RED
"""" - CYAN
"I" - PURPLE
"II" - GREEN
11 : 11 - BLUE
"Iii" - YELLOW
II i" - F 1 - FIJ~lCTI ON KE'T'S
"I" - F2
"!" - F3
"I" - F4
"II" - F5
"I" - F6
"II" - F7
"I" - !=8

o:•ntrc 1 characters u.sed in the P ro9ra111s

"1!1" - ho111e
"18" - clr
"21" - cursor down
"XI" - cursor uP
"•I" - cursor ri9ht
"II" - cursor lef't
'"I" - reverse on
":Iii" - reverse of'f'
"II" - black - ctrl & 1
"511" - white - etc
"!1" - red
"I" - c11an
"I" - PurPle
"II" - 9reen
11 : 11 - blue
"-00" - 11el low
11 :I" - f'l - function ke11s
"II" - f'2
"Ill" - f'3
"N" - f'4
")IJ" - f'5
"I" - f'6
II :111 - f'7

"•" - rs

91

Appendix B - Characters Printed for ASCII Values

ASCII UPPER LOWER ASCII UPPER LOWER ASCII UPPER LOWER ASCII UPPER LOWER

33 ! ! 82 R 163 212 T
34 83 s s 164 213 "' u
35 41= • 84 T t. 165 I I 214 x v
36 • • Be u u 166 • • 215 0 w
37 ::-: ::-: 86 v v 167 I I 216 • x
38 & & 87 w w 168 llW llW 217 I 'T'
39 .,,. .,,. 88 x >< 169 ~ • 218 • z
40 ((89 y :w 178 I I 219 + +
41)) 9lll z z 171 228 I • 42 Ill Ill 91 [[172 • • 221 I I
43 + + 92 £ £ 173 222 x
44 ~ ~ 93 l l 174 .., .., 223 ~ $8:
45 94 1'" 1'" 175 - 224
46 - - 95 + +- 176 r r 22S I I
47 .r ~ 96 177 226 - -48 0 0 97 • A 178 .,. .,. 227
49 1 1 98 I B 179 -I -I 228
50 2 2 99 c 188 I I 229 I I
51 3 3 180 D 181 I I 238 • • 52 4 4 101 E 182 I I 231 I
33 3 3 102 F 183 232 #II

54 6 6 103 I G 184 233 ~ -55 7 7 104 I H 185 - - 234 I ~

56 e e 105 I 186 --' 235 .. I

57 9 9 186 ... J 187 • • 236 • ..
58 107 J K 188 • • 237 .. •
59 ; ; UIS L L 189 238,
60 < < 189 M 190 • • 239 ..,
61 - - 118 / N 191 240 r
62 > > 111 r 0 192 241 r

63 ? ? 112 , p 193 • Fl 242,.
64 113 • Q 194 I B 243 -I -r

65 Fl ... 114 R 195 c 244 I -I
66 B b 115 • s 196 D 245 I I

67 c c 116 I T 197 E 246 I I
68 D d 117 "' u 198 F 247 I
69 E .. 118 x v 199 I a 248
70 F -r 119 0 w 2ee I H 249 -71 a 9 120 • x 281 I 250 --' -72 H 121 I 'T' 21l12 ... J 2S1 •
73 I 1 122 • z 203 J K 252 • • • 74 J J 123 + + 284 L L 2S3
·75 I< k 124 I 205 M 254 •

!II!
76 L 1 125 I 286 / 255 •

I N 1T
77 M IV'! 126 ;.; 207 r 0 ;.;
78 N n 127 ~ # 288 , p
79 0 0 289 • Q
ea p p 161 I I 210 R
81 Q '1:11 162 - - 211 • s

92

Appendix C Some Useful Memory ~39-0'fl3A 57-58 57-58 Current BASIC
line number

Locations flfl38-4'13C 59-6'1 59-60 Previous BASIC
line number

'1'13 D-'1'13 E 61-62 61-62 Pointer to
HEX DECIMAL LOCATION DESCRIP- BASIC state-

ADDRESS VIC2fl : COMMODORE 64 TION ment for CONT
flfl3HJ'14fl 63-64 63-64 Current DATA

line number
flflfl1-flflfl2 1-2 User jump to '1'14 1-'1'142 65-66 65-66 Pointer to cur-

location (high rent DATA item
byte - low byte) '1'143-11044 67-68 67-68 Vector for input

'111111 651 fl On-Chip routine
8-Bit 1/0 Regis- '11145-'1'146 69-7'1 69-7'1 Current BASIC
ter variable name

'1'113 19 19 Flag:INPUT pointer
Prompt POKE '11147-'1'148 71-72 71-72 Current BASIC
19, 1 suppresses variable data
the ? but also pointer
affects PRINT- flfl49....flfl4A 73-74 73-74 Index variable
ing, so must be pointer for
restored to <I FOR/NEXT
immediately 11117 A-flfl7B 122-123 122-123 Pointer to cur-
afterwards rent byte of

'1'116 22 22 Pointer to BASIC text
temporary string flfl88-4'18F 139-143 139-143 Floating RND
stack-35 in function Seed
here supresses Value
line numbers in '1'1911 144 144 Status word ST
listings '1'191 145 145 Flag:STOP

flfl26-flfl2A 38-42 38-42 Floating Point key/RVS key
Product Of '1'192 146 146 Timing constant
Multiply for tape

flfl2B-flfl2C 43-44 43-44 Pointer to start '1'198 152 152 Number of open
of BASIC files or pointer to
program file table

'1'12 D-'1'12 E 45-46 45-46 Pointer to start '1'199 153 153 Default input
of variables device(fl)
(following pro- flfl9A 154 154 Default output
gram) device(3)

flfl2HJ'13fl 47-48 47-48 Pointer to start flfl9B 155 155 Tape character
of arrays parity
(following vari- flflAfl-flflA2 160-162 16'1--162 Clock
ables) flflB2-flflB3 178-179 178-179 Pointer to start

0031-11032 49-50 49-50 Pointer to posi- of tape buffer
tion after end of '1'188 184 184 Current logical
arrays file number

'1'133-'11134 51-52 51-52 Pointer to flflB9 185 185 Current secon-
bottom of string dary address
storage (moving 0'1BA 186 186 Current device
down) number

0'137-'11138 55-56 55-56 Highest address flflB B-fl!IBC 187-188 187-188 Current file
used by BASIC name pointer

93

0'0'C5 197 197 Current key 0'287 647 647 Background
pressed colour under
CHR$(n) !i1=No cursor
key 0'288 648 648 Top of screen

0'0'C6 198 198 Number of memory (page
characters in no.)
keyboard buffer 0'289 649 649 Size of keyboard

0'0'C7 199 199 Inverse video on buffer (queue
or off: 0=0ff length), normally
:1=0n 10'.

0'0'C8 20'0' 20'0' Pointer to end of 0'28A 650' 650' Flag:REPEAT
logical line for keyused$80'
INPUT (dee 128)

0'0'C9-00'CA 20'1-20'2 20'1-20'2 Cursor X-Y pos, :::repeat all
start of INPUT 0'28B 651 651 Repeat- speed

0'0'CC 20'4 20'4 Cursor blink counter
enable 0' =flash 0'28C 652 652 Repeat- delay
cursor counter

0'0'CO 20'5 20'5 Timer.Count- 0'280 653 653 Bits 0', 1 and 2
down to toggle are flags for
(switch on or keys SHIFT
off) cursor CBM CTRLe.g.

0'0'CE 20'6 20'6 Character under 7 =all three keys
cursor depressed

0'0'CF 20'7 20'7 Flag: Last cursor 0'310' 784 USR function
blink On/ff jump instruction

0'0'00' 20'8 20'8 Flag:INPUT or 0'311-0312 785-786 USRaddress
GET from key- low byte/high
board byte

0'0'01-00'02 20'9-210' 209-210' Current screen 0'314 788-789 788-789 Clock interrupt
address 0'33C-03FB 828-10'19 828-10'19 Tape 1/0 buffer

0'0'03 211 211 Cursor position 0'40'0-07E7 10'24-20'23 byte screen
on line memory area

0'0'04 212 212 Flag:Editor in 07F8-07FF 20'40-20'47 Sprite data
quote mode pointers
OFF4:0N=1 0'40'0-0FFF 10'24-40'95 3 K expansion

0'0'05 213 213 Length of screen RAM area
line (physical) 0'80'0-9FFF 20'48-. Normal BASIC

0'0'06 214 214 Screen row 40'959 program space
where cursor is 10'0'0-11 FF 40'96-460'7 Screen memory

0'0'08 216 216 Flag:lnsert (expanded)
mode > !i1=1 NST 0'0'0-CFFF 49152- RAM40'96

0'0'F3-00'F4 243-244 243-244 Pointer to cur- 53247 bytes
rent area of 00'0'0-0FFF 53248- Input/Output
colour 57343 devices and

0'277-0280' 631-640' 631-640' Keyboard buffer colour RAM
queue 1 E0'0-1 FFF 7680-8191 Screen memory

0'281-0282 641-642 641-642 Pointer to start (unexpanded)
of memory 90'0'0' 36864 Horizontal posi-

0'283-0284 643-644 643-644 Pointer to top of tion of screen -
memory normally 12

0'286 646 646 Current char- 90'0'1 36865 Vertical position
acter colour in of screen
rangef<J-15 -normally38

94

9""2 36866

9""A-9""E 36874-36878

Appendix D Error Codes

Width of box­
normally 15"
Sounds and
volume

BAD DATA indicates that string data has been
received from a file where the program expected
numbers, i.e. the program was reading the received
information into numeric variables.

BAD SUBSCRIPToccurs when an array is being used
and the subscript (or for a multi-dimensioned array, one
of the subscripts) is out of the range specified in a DIM
statement. If no DIM statement has been entered by
the programmer, the subscript is assumed to be
between fi and 1 fi. For example 12fi A (X)=.25 will
give a BAD SUBSCRIPT report if X is not within the
DIMensions set in the DIM A() statement atthe time
that line 12fi above is executed.

BREAK is not really an error message. It occurs
whenever the program was stopped by the <STOP>
key or a STOP in the program. Variables can be altered
before continuing.

CAN'T CONTINUE will be displayed if a CONT is
typed when the program is unable to resume where it
left off. This will occur for a syntax error because the
statement cannot be understood and will also occur if
the program has been edited, as it has then been
rearranged in memory, and all variables cleared. If the
program has stopped because of a syntax or similar
error, it is possible to continue running the program by
GOTO a valid line. This can be useful if the error has
occurred in a line such as a PRINT statement which
does not affect the logic of the program. GOTO the line
logically following the error line will allow the program
to continue while still retaining the values of all
variables set. Variables can be altered at this point if
desired, before resuming.

DEVICE NOT PRESENT usually appears if the device
referred to is not present- exactly as the message
says! You may have forgotten to plug it in or switch it
on or initialise it, or you may have it on the wrong
channel number. (Disk is usually 8 and printer 4, but
they can be changed - see the manuals.) Sometimes

after a read or write error while using disks the error
will appear on trying to SAVE a program. This can be
cleared without losing information by a VERIFY.

DIVISION BY ZERO. As you will remember from
school this is not allowed in the real world.

EXTRA IGNORED. Too many items in response to an
INPUT. This usually occurs because a comma has
been unintentionally included in response to an input.
The last item(s) entered are rejected.

FILE NOT FOUND means what it says-i.e. no file of
this name on disk.

FILE NOT OPEN means that you have tried to use a
file not yet opened. Check your program logic.

FILE OPEN. Once a file has been opened it cannot be
· opened again, nor can the same number be used to

open any other file. Close it before trying to continue.

FORMULA TOO COMPLEX. You have to be pretty
smart to get this one I Break it down into simpler
expressions until both you and the computer can
understand it.

ILLEGAL DIRECT occurs when using statements
such as INPUT in direct mode. Such statements are
only valid within a program.

ILLEGAL QUANTITY. A number is out of range. This
can happen for a variety of reasons and is explained
within the main body of the book in the places it can
occur. It can also occur anywhere where an integer is
> 32767 or< -32768 or in extreme circumstances
where ordinary numerics are greater than about·1 fi to
the power of 38 or less than 1 fi to the power-39
using the E notation. It is difficult to imagine what you
would be doing to get either of these last two errors.

LOAD (ERROR) means a corrupt tape, dirty heads or
perhaps an incorrect disk initialisation causing the disk
directory (BAM) to become corrupt. Always give your
disks different identifiers and ID numbers and then this
problem should not occur.

NEXT WITHOUT FOR is usually obvious but watch
out for nested loops where you have inadvertently used
the same variable in two FOR statements.

NOT INPUT FILE. You told the computer it was an
output file so you can't now go reading from it.

95

96

NOT OUTPUT FILE. No writing to an input file I

OUT OF DATA means your DATA is finished and you
are trying to go on READing it without having first
done a RESTORE. Have you missed out a DATA item?

OUT OF MEMORY. This can occur for two reasons.
(a) The RAM is full because you have written a large

program or have put a large number of strings in
memory during program execution. Check the memory
. with a FRE before running the program, and another
FRE after the program has carried out a few
manipulations. A clue to string problems is that the
program will stop for a few moments to a few minutes
while the poor thing rushes around memory tidying up
strings to make room for more, a process known as
garbage collection. The cure is to tidy up your program
or data strings (keep some on file perhaps) or to expand
your VIC, or to buy a compiler for your 64.

(b) There are too many nested GOSUBs or FOR
loops. This is indicated by the fact that a FRE reveals
plenty of memory. It is rare for this problem to occur,
except as a result of a program error where incorrect
logic has caused FOR loops or GOSUBs to be called
repeatedly from within themselves. See FOR and
GOSUB.

OVERFLOW means that a calculation gives a result
which is too large for the numeric variable to handle i.e.
greaterthan 1.7f1141884E+38. Note thatthis error
does not occur for integers which always give ILLEGAL
QUANTITY as error.

REDIM'D ARRAY occurs when an array has been
dimensioned twice or used (and thus dimensioned by
the computer) before the DIM statement. Note that
this means that DIM statements at the start of your
program should not be included in any loop, but only
executed once at the start of your program.

REDO FROM START means that letters instead of
numbers have been typed in response to an IN PUT.
The problem can also occur because of the IN PUT
(q.v.) bug.

RETURN WITHOUT GOSUB means what is says. It
usually arises because you have forgotten to include an
END or STOP between the main program and the
subroutines, or a RETURN is missing at the end of a
previous subroutine. This allows the program to

continue into the wrong area of code where it meets a
RETURN without having been sent there.

STRING TOO LONG-only 255 characters maximum
are allowed in a string.

SYNTAX indicates that the computer cannot
understand the intention of the programmer in writing
the BASIC line. Usually the problem is a missing
comma or THEN or mis-spelt BASIC word. The
machine actually does know a bit more than it tells you,
as it may have got half way along a line before
discovering a problem, but it only actually gives you the
line number. There are two solutions to a SYNTAX
ERROR that cannot be easily found. One is to get a
programmers toolkit which has a facility to point to the
position where the problem was found, and the other is
to break down your statement line until the syntax
problem has become apparent. Look particularly for
peculiarities like BASIC keywords embedded in
variable names if your names are longer than 2
characters.

TYPE MISMATCH appears when a numeric type is
assigned to a string variable or vice versa. Note that
this error does not appear for assignments of integers
to numerics and vice versa. Truncation can occur in
these circumstances (see Introduction).

UNDEF'D FUNCTION. User defined functions must
be defined in a DEF FN statement before use.

UNDEF'D STATEMENT means that a GOTO or
similar statement refers to a line number which does
not exist in this program.

VERIFY occurs if the information read off the tape or
disk is not the same as that present in the computer.
Check that the tape heads are clean and that the
drive/tape unit is away from possible sources of
interference including the TV set. Then check that you
are verifying the correct item and try the SAVE and
VERIFY again.

