

Turbacharge
your C::ommodore 64

Turbacharge
your Commodore 64

Peter Warlock

.......
Longman:=

Commodore is a registered Trade Mark
of Commodore Business Machines.

Longman Group Limited
Longman House, Burnt Mill, Harlow,
Essex CM20 2JE, England
and Associated Companies throughout the
world.

©Longman Group Limited 1984

All rights reserved. No part of this
publication may be reproduced, stored in
a retrieval system or transmitted in any
form or by any means, electronic,
mechanical, photocopying, recording or
otherwise, without the prior permission of
the Copyright owner.

First published 1984

ISBN 0 582 91605 4

Printed in UK by Parkway Illustrated Press,
Abingdon

Designed, illustrated and edited by
ContractBooks,London

The programs listed in this book have been
carefully tested, but the publishers cannot
be held responsible for problems that
might occur in running them.

Contents
CHAPTER l
Program structure and design 7

CHAPTER2
Built-in and user-defined functions 19

CHAPTER3
Interactive programming 27

CHAPTER4
Information handling 39

CHAPTERS
Introduction to graphics 53

CHAPTERS
Advanced colour 69

CHAPTER7
High resolution graphics 75

CHAPTERS
Introduction to sprites 83

CHAPTER9
Advanced sprites 91

CHAPTER 10
Animation 105
CHAPTER 11
Sound 119

CHAPTER 12
Interfacing 137

APPENDIX
Design aids 149
INDEX 166

In some of the example programs,
instructions appear in square brackets
like this:

10 PRINT "[HOME]"

Do not type these words. Instead
substitute the relevant control symbol
from the keyboard.

•
Program structure

and design

7

There are things in programming that
are obviously good - a routine that
speeds things up, a way of doing a task
that saves programming time or a way
of producing some special graphics
effect. It's harder to see the benefit of
structured programming although if
you believe some people, it's
impossible to write a good program in
Basic because of its lack of structured
commands. On the other hand there is
a body of opinion that says if a program
works it doesn't matter if it looks a
mess or what language it's written in.

START

CONCEPT

OUTLINE

FLOWCHART

However, structure is good for you and
in the long run it brings a number of
benefits - once you get into the habit,
structured programs are easier to
write because you will be able to
make extensive use of programs you
have already written. Also, very few of
your programs will be perfect first
time - you'll want to make use of new
techniques as you learn them, or
update your programs as you add to
your system with disk drives, printers
etc. This updating is a lot easier if you
can go back to your program and see
immediately how it works.
Unstructured programs which GOTO
different sections apparently at
random, which jump out of subroutines
and loops and which introduce new
variables in the middle of routines will
take so long to untangle that you'll
probably waste time writing them from
scratch, or give up in frustration and
never update the thing at all.

The easiest way to write a bad
program is to get an idea, sit down at
the keyboard and start poundingaway.

8
Program structure and design

DETAILED
PLANNING

REVIEW and
CHECK

KEY-IN

..., ...
DEBUG

(this should
hardly be
necessary)

STOP

START

PROGRAM
CONTROL

r-------------,
SUBROUTINES

DATA INPUT

SORT ROUTINE

DATA ANALYSIS

PRINTOUT

GET KEY

L ____________ J

9

The ideal way to write a good
program is to have it all but finished
before you turn on the computer. This,
of course, is a counsel of perfection but
it's something to aim at.

The key to structured programming is
the subroutine. Subroutines bring a
number of advantages not least of
which is that if you need a routine to
sort a list of items you can write it, save
it to tape or disk and then use it
whenever you need a similar routine.
Also when you write a new program
you do not have to break off the new
writing to reinvent the wheel. You can
use a stub like this:

100 GOSUB 1000: REM SORT
ROUTINE

1000 REM *** SORT GOES
HERE ***

1010 RETURN

This means that the program will
work as it stands (up to a point) and
you can add the sort later.

Think of programs in terms of
control sections calling all of the
required subroutines and it becomes
easier to update them later. The use of
GOSUB also eliminates the greatest
source of confusion in programs - a
mass of GOTOs. Regardless of
arguments about elegance the best
reason for avoiding GOTO is that when
debugging a program you can only get
about 20 lines of code on screen and a
GOTO will force you to list another
section, then jump back again.
GOSUBs indicate self-contained
routines that you can often ignore at
that point.

Program structure and design

An acceptable use of GOTO is
something like thiS:

111JllJ GET AS: IF AS = '"'
THEN 111JllJ

Subroutines will also save you time
and memory. If your program has
dozens of lines like that one you only
need to write it once as a subroutine
and then replace the others with
GOSUBs.

AS A RULE

The main rule of subroutines is that
there should be only one way in and
one way out. Never do this:

111J GOSUB 111JllJ
211J
311J

111JllJ START OF ROUTINE
1111J
1211J IF AS = "EXIT" THEN 211J
1311J
1411J RETURN

TRY THIS

If it's necessary to make an early exit
from the routine jump to the RETURN
line. Not only does this make it easier
to follow the logic of the program,
there is a practical reason. Enter this
and run it:

10 GOSUB 100
20 END

100 GOTO 10

Obviously you haven't run out of
memory. What has been exhausted is
a part of memory called the stack.

10
Program structure and design

10

10

GO SUB

GOSUB stores the line
number on the stack

RETURN

RETURN takes it off

•

150

2000

2500

4000

10

10

10

10

10

10

10

FULL!

f+-f REWRNI

11

Every time the computer GOSUBs it
saves the address of the branching
point on the stack so it knows where to
go to when it meets the RETURN
statement. If it never gets to the
RETURN the stack fills up.

Subroutines of the kind we've
discussed so far are a convenience.
But they can be made a powerful tool if
the computer can decide which of
several routines to use. The most
common method of determining a
branch is the IF .. THEN statement
which can be thought of like this: IF
condition THEN action.

The power of IF .. THEN comes from
the number of ways the computer can
examine the condition. The symbols
=, <, >, <>are called logical
operators and mean equal, less than,
greater than, and not equal
respectively:

10 A = 10: B = 5
20 IF A = B THEN PRINT

"A = B''
30 IF A < B THEN PRINT

"A IS LESS THAN B''
40 IF A > B THEN PRINT

"A IS GREATER THAN B''
50 IF A <> B THEN PRINT

"A DOES NOT EQUAL B''

We can also combine conditions
using the operators AND and OR:

60 IF A = 10 OR B = 10
THEN PRINT "ONE
CONDITION IS TRUE"

70 IF A = 10 AND A = B
THEN PRINT "BOTH
CONDITIONS ARE TRUE"

Program structure and design

This range of checks gives
computers most of their 'intelligence'
in the sense that they can perform an
action appropriate to the conditions.

However, ifthere is a wide range of
possible conditions the program will
need many IF .. THEN statements to
determine what to do. If you write the
actions as a series of subroutines,

Values
for A
andB

.._,,,.
~

NO ..

NO .,

YES~·

YES~··

however, you can make things simpler
using ON .. GOSUB. This takes the
form:

100 ON X GOSUB 200,300,
400,500,600

If X = 1 then the subroutine at 200
will be performed, if X = 2 then
routine 300 is called and so on.

12

PRINT
"A=B"

PRINT
"A<B"

Program structure and design

A? GOSUB'

1 100

2 200

3 300

40 ON A GOSUB 100, 200,
300

TRY THIS

Try this to see the principle in action:

10 PRINT "PRESS 1, 2 OR 3
20 GET A$: IF A$ = II"

THEN 20
30 A = VAL CA$)
40 ON A GOSUB 100, 200,

300
50 GOTO 10

100 PRINT "YOU PRESSED 1"
110 RETURN
200 PRINT ''YOU PRESSED 2"
210 RETURN
300 PRINT ''YOU PRESSED 3"
310 RETURN

Note that if A has a value other than 1
to 3 the ON .. GOSUB is ignored.

13

This has obvious uses in menus
where the user is given a choice of
actions and can select one by pressing
a number. However, you can use quite
complex expressions to determine the
branch. As an example, think of a
game where, depending on the
player's score, a different hazard will
appear. Let's say hazard 1 appears at
1000 points and higher, hazard 2 at
2000 points and so on. We can work
things out like this:

10 A = INT(SCORE/1000)
20 ON A GOSUB 1000, 2000,

3000

The INT function in line 10 simply
strips off the numbers after the
decimal point so if the score is 1539
then 1539/1000 = 1.539 and INT(l.539)
= 1 so the subroutine at line 1000 is
performed.

Another tool to help you to produce
structured programs is the
FOR. .NEXT loop. This allows you to
tell the computer to do something a
certain number of times:

10 FOR I = 1 TO 10
20 PRINT ''THIS IS "I
30 NEXT

It is useful for repetitive tasks.
Imagine a program to POKE a space
into every screen position:

10 POKE 1024, 32
20 POKE 1025, 32
30 POKE 1026, 32

and so on. You'd need 1,000 lines like
that.

Program structure and design

SET START
AND END

DO ACTION

FOR..
TO ..

2QI POKE SC, 32
3QI NEXT

You can make the STEP as large as
you want, or make it negative and the
64 counts backwards:

1QI FOR I = 1QIQI TO QI STEP
- 5

20 PRINT I;
30 NEXT

You can also have loops inside other
loops, a process calling nesting:

"W 10 FOR I = 1 TO 12
2QI FOR J = 1 TO 12
30 PRINT I*J
4QI NEXT J

NEXT. . SQI NEXT I

Or you could do it this way:

10 SC = 1024
20 POKE SC, 32
30 SC = SC + 1
40 IF SC = 1024 + 999

THEN END
SQI GOTO 2QI

This gets the 64 to do some of the work
but it's still a bit long and complicated.

10 FOR SC = 1024 TO 2023
2QI POKE SC, 32
3QI NEXT

is much neater and faster.
You can also get the 64 to count in

stages using the STEP extension. To
put a space in every alternate screen
position use this:

1QI FOR SC = 1024 TO 2023
STEP 2

This will print out the multiplication
tables up to 12 x 12.

AS A RULE

The important rule with nested loops is
that you must finish the last loop first.
Try changing lines 40 and 50 like this:

40 NEXT I
SQI NEXT J

· You can remove one NEXT like this:

40 NEXT J ,I

14

or remove the variable names like this:

40 NEXT
SQI NEXT

If you leave out the variable names
from the NEXT statement the 64 will
automatically finish the loops in the
correct order. The only reason for
including them is to help during
debugging - you can take them out
after that.

Program structure and design

NO

NO

SET RANGE
LOOP I

SET RANGE
LOOPJ

ACTION

•• YES

...., ..

15

AS A RULE

The last rule concerning loops is the
same as the one about GOSUBs: never
jump out of a loop without finishing it.
This is wrong:

10 FOR I = 1 TO 50
20 IF I = 25 THEN GOTO 40
30 NEXT
40 REM *** REST OF PROGRAM

The reason is the same as for

GOSUBs: the 64 uses stack space to
keep track of loops and the stack will
fill up if you leave early. However,
quite often you will want to skip the
remainder of a loop for reasons of
speed. Do it this way:

10 FOR I = 1 TO 50
20 IF I = 25 THEN I = 50
30 NEXT
40 REM *** REST OF PROGRAM

This way the last NEXT is always

executed and the 64 can keep its
books tidy.

One of the most common uses of loops
is as delays in a program - in music to
let a note sound for the right length of
time, or to let the user read something
on screen. However, FOR. .NEXT is a
very fast command and trying to guess
the amount of time a loop will take is a
very haphazard affair. To help you out
the 64 has a built-in clock which counts
in hours, minutes, seconds and 60ths of
seconds so you can create delays of
very precise lengths.

Program structure and design

0 4 3

The 64 has been
on just over four and
a half hours.

5 7

The clock is based on an interval
timer which is set to zero when the 64
is turned on and is updated every 60th
of a second. The timer is held in the
variable TI so:

11/J PRINT TI/61/J "SECONDS
SINCE POWER ON"

21/J GOTO 11/J

will give a constant display of
computing time in seconds.

TI is a 'read only' variable which
means you can't alter it. However,
there is another clock held in TI$
which is updated by TI and you can
alter this. Try it:

11/J PRINT TI$
21/J TIS = "l/Jl/JllJllJl/Jl/J''
31/J PRINT TI$

The string of zeroes can be thought
of as hours, minutes and seconds like
this: hh/mm/ss and the clock works on
a 24-hour basis so 13 hours is one
o'clock. Using the string operators (see
chapter 4 for more details) we can split
TI$ into its parts:

11/J H$ = LEFT$(TI$,2)
21/J MS = MIDSCTIS,3,2)
31/J SS = RIGHTSCTIS,2)
41/J PRINT H$ II HOURS"
50 PRINT MS II MINUTES"
61/J PRINT SS II SECONDS"

16

TRY THIS

As a more practical example here's a
simple reaction timer that should help
you to get to know the keyboard a little
better. The computer will print a word
at random and measure how long it
takes you to type it.

5 PRINT CHR$C147>
11/J DIM WSC11/J)
21/J POKE 53281/J,llJ: POKE

53281,llJ
31/J POKE 646, 7
41/J GOSUB 51/JllJ
51/J PRINT "PRESS SPACE BAR

WHEN READY"
61/J GET A$: IF A$ <> II "

THEN 61/J
71/J X = INTCRND(1)*10+1)
81/J PRINT:PRINT W$(X)
91/J TI$ = "l/Jl/JllJllJl/Jl/J''

11/JllJ INPUT IN$

0 0 0 2 4 2

Program structure and design

105

110
120
130
140

150
160

170

180
199
500
510
520
600

610

IF IN$ <> W$(X) THEN Checklist
PRINT "TRY AGAIN'': GOTO
100 In this chapter you've learned:
T = VAL(TI$) D Why you should try to write
PRINT CHR$(147) structured programs.
PRINT "YOU TOOK ";
IF T>100 THEN PRINT D How and why to use subroutines
"MORE THAN A MINUTE": (and how not to use them).
GOTO 160 D The power of branches and how to PRINT T II SECONDS" program them.
PRINT: PRINT "PRESS
RETURN TO CONTINUE" D How to use the IF .. THEN statement
GET A$: IF A$ <> CHR$ and some of its limitations.
(13) THEN 170 D How the ON .. GOSUB statement

GOTO 50 gives you extra power and
END flexibility.
FOR I = 1 TO 10
READ W$(1): NEXT D How and why to use loops for
RETURN repetitive tasks.
DATA TYPE,HELP, D How to use the internal clock for
QUIT ,NEXT ,ZEAL delays and measuring time.
DATA BURN,JEST,
WALK, ROOM, COST

HELP

YOU TOOK MORE THAN A MINUTE
PRESS RETURN TO CONTINUE

17
Program structure and design

-----Projects-----

D Examine some of your earlier
programs for unstructured
techniques and try to amend them to
incorporate branches, subroutines
and loops.

D Start a subroutine library on one
dedicated tape or disk Look out for
new, slicker routines in books and
magazines and add them to your
collection. (This is not to suggest that
you write programs as nothing more
than amalgamations of other
people's ideas. But there are too
many new programs to be written to
waste time looking for ways to solve
old problems.)

D Write a program to display a
clock on screer (either digital or
using some kind of graphics
screen) which allows the user to
set the time in hours, minutes and
seconds.

18
Program structure and design

•
Built-in and user-defined

functions

19

One of the mistaken beliefs that many
people have about computers is that
you need to be good at mathematics to
use them. This is completely untrue,
although it's easy to see how it came
about. After all, at their lowest level
computers work with nothing but
numbers. But one of the reasons for
having a micro is that it can do maths
quicker and more reliably than us
humans.

That said, the more you know about
numbers the better you can program
your 64. Numbers are necessary for all
sorts of applications, from simple
FOR. .~EXT loops, to working out

20

display positions for simple graphics,
all the way to complex trigonometry
and solid geometry for advanced high
resolution graphics.

In this chapter we'll look at some of
the built-in commands- called
functions - that you can use to let the 64
handle the hard maths in your
programs.

Random numbers are just what they
sound like - numbers that are
determined by chance and should be
impossible to predict. There are all
sorts of uses for them - in card games

Built-in and user-defined functions

where you want a random shuffle; in
simulations - games or serious - where
you want to introduce the element of
luck or unpredictability; in adventures
where things like the weather can
influence the play. In real life we put
these things down to luck; in
computers it's down to random
numbers.

The function for random numbers is
the RND statement and looks like this:

A = RND(1)

This produces a number between 0
and .999999999. You may have noticed
the first sentence of this section says
random numbers 'should be
impossible to predict'. But fry this
program: first switch your computer off
and then on again.

10 FOR I = 1 TO 10
20 PRINT RND(1);
30 NEXT

This will print 10 numbers across the
screen in an apparently random order.
Save the program, switch off, then load
and run it again. If you compare the
numbers generated by these two runs,
you'll see that they are the same. But
edit line 20 as follows and try the
experiment again:

20 PRINT RNDC0);

21

The reason for the difference is that
computers do not generate true
random numbers but what are called
pseudo random numbers. Using the
form RND(l) starts the generation from
the same place in the sequence, but
using RND(O) picks numbers from
elsewhere in the sequence.

To generate a range of numbers use
the following form of statement:

A = INTCRND(1) * 10 + 1)

This would give numbers in the
range 1 to 10. To get a middle range,
for example between 10 and 15, use
this:

A = INT(RND(1) * 5 +10)

Built-in and user-defined functions

The last few programming examples
introduced another mathematical
function, the INT statement. This takes
a number and chops off everything
after the decimal point:
INT(1. 53965) becomes 1
INT(5.32333) becomes 5

l DECIMAL
INTEGER FRACTION

113;456

You will most often see INT used in
conjunction with RND but there are
other uses. For example, you cannot
POKE fractions into memory locations
so if you want, say, the nearest screen
location to a number use INT(X + .5).
This has the same effect as using
integer variables (eg, A%, D%(1,5)
etc). Note that in the following
statement, the INT is redundant:

10 A% = INTCX>

A% will automatically perform the
INT function.

These two functions are connected to
plus and minus values of numbers.
SGN will reveal whether a number is
positive or negative. For example:

A = SGN(3) results in A = 1
A = SGN(-3) results in A = -1
A = SGN(O) results in A = 0

22

It is not the most used Basic function
but possible uses include games to see
if the player has run out of fuel or

ABS. SGN

5 5

4 4

3 3

2 2

0 0 0

-1

2 -2

3 -3 -1

4 -4

5 -5
I

Built-in and user-defined functions

ammunition, or accounts programs to
see if a bank account has gone into the
red.

ABS returns the absolute value of a
number, regardless of whether it is
positive or negative:

A = ABS(25) results in A = 25
A = ABS(- 25) results in A = 25

Again, it is not a common function
but it has one extremely helpful use -
in toggles. A toggle is a handy form of
switch and works like this: a toggled
switch becomes on if it was off, and off
if it was on. It eliminates the need for
two switches or keys to control one
condition. In the following ~xample,
ABS allows you to switch between
reverse letters by pressing the F 1 key.
Try typing something and then toggle
the Fl key a couple of times.

These are the trigonometry functions
and are used in geometry. In
computing you will come across them
most often in high resolution graphics

~y
x ATN(Y/x) = angle a

~y
x SIN(a) = Y/H

23

11ll PRINT CHRSC147)
21ll GETAS: IF AS = "" THEN

21ll
31ll IF AS = CHRSC133) THEN

GOSUB 11lllll: GOTO 21ll
41ll IF REV = 1 THEN PRINT

CHRSC 18);
Sill PRINT AS;: PRINT

CHRSC146);
61ll GOTO 21ll
99 REM *** TOGGLE ROUTINE

11lllll REV = REV - 1
111ll REV = ABSCREV)
121ll RETURN

Can you work out the logic of the
subroutine, bearing in mind that REV
is automatically set to 0 when the
program is run? Write a program to
get the same effect without using ABS.

and they all take the form:

A = ATNCB): C = COSCO):
E = SIN(F): G = TAN(H)

~y
x COS(a) = JSIH

~y
x TAN(a) = Y/x

Built-in and user-defined functions

A point to beware of here concerns
the way your 64 handles angles. Most
of us think of angles in degrees with
360 degrees in a circle and 90 degrees
in a right angle. The 64 measures
angles in the mathematician's form of
radians, so when using any of the trig
functions, you must convert the results
into degrees if that's what you want.

D To convert degrees to radians
multiply by Pi/180, eg 45 degrees =
45 * (Pi/180) = 0. 79 radians

D To convert radians to degrees
multiply by 180/Pi, eg 2 radians =
2 * (180/Pi) = 114.59 degrees

2PiRads

24

Trigonometry functions, along with
some of the other math functions like
j (exponentiation) are among the

slowest Basic functions on the 64. A
program that heavily relies on these is
going to run very slowly. One way of
speeding things up is to work out as
many values as possible in advance
and use these as tables in arrays. This
is especially crucial in games where
speed is of the essence and cutting
down on processing time can make all
the difference between an enjoyable
game and a boring, jerky time-waster.

r

1 Radian

Built-in and user-defined functions

The ability to define your own
mathematical functions is among the
most useful and least used tools on the
64. If your programs are full of
repeated lines like A= INT (RND(l) *
100+1) then user-defined functions
can save memory and your own
programming time.

One possible reason for the under
use of this feature is the clumsy syntax
required. We need the statement, a
name for the function, an argument
then the expression to be evaluated.
Let's see if we can sort this lot out.

There are two stages to Using user
defined functions, hereafter referred
to as FN. The first step is to define the
function using the DEF FN statement
which goes something like this:

DEF FN A (X) = 2 + 4

This is about as simple as we can
make things. This function is called FN
A and is used like this:

A = FN A (X)

where A will equal 6 in this case.
Obviously there's more than this and

we can make the function a great deal
more complicated (the 64 will let you
know when you've gone too far with a
FORMULA TOO COMPLEX error). In
the RND example given on page 16,
we could reduce it to this:

DEF FN A (X) = INTCRND(1) *
10 + 1)

and then replace the statement
throughout the program with:

A = FN A (X)

25

So far X has been a dummy
argument, having no effect on things.
But if we bring X into play we can
increase the power and convenience
even further. Suppose we want a
general function to calculate a range of
random numbers. We can change FN
A like this:

DEF FN A (X) = INT(RND(1) *
x + 1)

Now to get a number in the range 1
to 10 we can use:

A = FN A (10)

The name of the function can be any
valid numerical variable (eg, X, YY,
Zl), and the argument in brackets
works like any other variable. The 64
will evaluate it automatically, eg:

Z = FN G2 (X/45+6)

Using user-defined functions does
not offer a great speed improvement,
but if you get into the habit of using
them your programs will be neater,
tighter, and less wasteful of memory.
Try converting some of your programs
and see the difference.

Built-in and user-defined functions

----Checklist----

In this chapter you've learned:

D How RND works and how to
generate a range of random
numbers.

D How the .INT function works and
when to use it.

D How to use ABS and SGN and when
they can be useful.

D How to define your own
mathematical functions using DEF
FN.

D How to use these functions in your
programs with FN(X).

-----Projects-----

0 Write a program to POKE random
characters at random positions on
screen and in random colours.

D Use your own functions with DEF FN
to perform the calculations.

D Convert either a program you've
written or one from a book or
magazine to use DEF FN and FN(X).

26
Built-in and user-defined functions

•
Interactive programming

27

With the exception of the shortest of
utilities, all programs are interactive to
some degree. A program that
searches a mass of data is not very
interactive, games are highly
interactive and word processing
programs perhaps most interactive of
all. Interaction in this sense means the
way in which the program gets
information from the user, and how it
presents information back via the
screen, printer or other peripherals.

It can be summed up in that most
abused piece of computer jargon,
'user friendliness'. From the
programmer's view, it means making
your programs easy to use and easy to
understand, debugged and failsafe.

In this chapter we'll look at ways of
making your programs helpful,

interesting and consistent, and at ways
of debugging and error trapping. One
point to note immediately is that it is
difficult if not impossible to make a
program completely foolproof. As the
old saying goes, you just haven't
imagined a creative enough fool, but
that doesn't mean you shouldn't try to
anticipate potential errors and
eliminate them, a process also known
as mug-trapping. More important,
perhaps, is that your programs should
be failsafe - if an inventive idiot does
use your program the consequences
should not cause the destruction of
data by overwriting tapes and disks,
and the program should not crash
leaving the user with the tedious
process of reloading the program and
re-entering all of the lost data.

DDDDDDDD CJ
DDDDDDDCJ CJ
DDDDDDDD CJ
DDDDDDDD D

28
Interactive programming

The two main ways of acquiring
information or commands from the
user are the INPUT and GET
commands. However, there are many
more ways to skin this particular cat.
What about joysticks and light pens?
Even at the keyboard there is a third
way - a direct PEEK to the keyboard.
There are pros and cons to GET and
INPUT. GET is very quick, requiring
only a single keypress, but what if you
want more than a single character?
The usual choice is INPUT, but this has
complications. Enter this two-line
program and run it:

10 INPUT "ENTER A NUMBER";A
20 GOTO 10

Now type in a number and press
RETURN. So far so good. Next type in
2,000 including the comma. You might
know that the micro wants that as 2000

29

- no comma - but our inventive idiot
doesn't. Finally type in ONE
HUNDRED in letters. Another good
display ruined.

Interactive programming

The second disadvantage to INPUT
is the necessity to press RETURN as
well. If you have used INPUT
throughout the program, it is
momentarily confusing to encounter a
GET where the program gallops away
before your hand reaches RETURN.

A minor point concerns the 'Press
any key' kind of routine. Bear in mind
that our inventive idiot will hit keys like
CTRL, SHIFT, RESTORE and your
program will wait forever for almost
any key to be pressed.

PRESS SPACE TO GO ON

30

There are similar drawbacks in the
yes/no responses. Try this:

10 PRINT CHRS(14): REM
LOWER CASE

20 PRINT "CONTINUE? (Y /N)"
30 GET AS:IF AS = "" THEN

30
40 IF AS = ''Y" THEN PRINT

''YES"
50 IF AS = "N" THEN PRINT

"NO"
60 GOTO 30

Run the program and when asked
the question hold down the shift key
and press "y'' or "n". Nothing happens
because the 64 sees a distinct
difference between "Y'' and "y". Line 40
would have to look something like this:

40 IF AS = ''Y" OR AS = "y''
THEN etc

Interactive programming

One final point in this area: what
happens if the user accidentally
presses SHIFT and Commodore keys
together? Your carefully designed
screen display becomes a mess.
However briefly, it destroys the image
of professionalism. PRINT CHR$(8)
prevents this from happening and
PRINT CHR$(9) puts things back to
normal.

TRY THIS

Finally on this subject, here's an input
routine that you can make as safe as
you wish by making a variety of
characters illegal.

1QIQIQI INS = II": IN = QI
1Ql1QI GET AS: IF AS=""

THEN 1Ql1QI
1Ql2QI IF AS = CHRSC13) AND

IN = QI THEN 1Ql1QI
1Ql3QI IF AS = CHRSC13) AND

IN > QI THEN 1Ql9QI

Wrong:
----~~~~~--~

NAME? JOHN SMITH
AGE? 17
ADDRESS? 45 SOME STREET, ANYT
OWN, SUSSEX
HIT AKEY

31

1Ql4QI IF ASCCAS) < 33 OR
ASC(A$) > 95 THEN
1Ql1QI

1Ql5111 PRINT AS;: INS = INS
+ AS: IN = IN + 1

11116111 GOTO 11111111
11119111 RETURN

AB it stands this routine will accept
only the alphanumeric characters in
normal text mode (ie, no colour codes
or graphics characters). You can
amend this by altering the parameters
in line 1040. It will not accept a null
string.

Further changes you could make
include the addition of a flashing
cursor, the ability to delete some of the
input and the option of using upper
and lower case letters.

The input string is returned to the
main program in IN$.

Using this routine it's possible to add
an extra professional touch by setting
up defined boxes on screen to accept
the input.

Subject data

NAME: I John Smith I AGE:@]

ADDRESS: j 45 Some Street

TOWN: I Anytown I COUNTY: I Sussex I
Press RETURN to continue

Interactive programming

So far we've looked at getting
information but what about commands,
particularly in the realm of game
playing? Generally, the difference is
one of speed - the game should
respond to the command as quickly as
possible (adventures are an obvious
exception).

INPUT is ruled out by the need to
press the RETURN key so GET is the
more common method. Here's a
simple example which shows the main
limitation. Use W to go up, X to go
down, A to go left and D to go right.

10 POKE 53280, 0: POKE
53281, 0

20 SC = 1024: L = 40
30 co = 54272
40 P = SC + 20 + L * 12
50 POKE P, 81 : POKE P +

co, 1
60 P1 = P
70 GET AS: IF AS = 1111

THEN 60
80 IF AS = "W" THEN P1 ==

p - L
90 IF AS = "X" THEN P1 =

p + L
100 IF AS = "A" THEN P1 =

p - 1
110 IF AS = "D" THEN P1 =

p + 1

There is another way to achieve the
same effect and that is by PEEKing the
keyboard direct. Location 197 holds
the value of the current key pressed
and returns a value of 64 if no key is

120 IF P1 < SC OR P1 >
2023 THEN 60

130 P = P1
140 GOTO 50

This moves a ball around the screen,
but for fast movement try holding a key
down. Nothing happens because once
the 64 has GOT the keypress it won't
recognise another until you let go. You
have to press the key repeatedly. We
can get round this problem by making
all the keys repeat in the manner of the
space bar and the cursor keys. Add
the following:

45 POKE 650, 255

Now try again.

held down. The snag is that these
values do not correspond to either the
screen display codes, or the CHR$
codes. The table contains the values
for all of the keys.

32
Interactive programming

~=57 1=56 2=59 3=8 4=11 5=16 6=19
7~24 8=27 9=32 0=35 +=40 -=43 £=48
0=62 W=9 E=l4 R=l7 T=22 Y=25 U=30
1=33 0=38 P=41 @=46 *=49 t =54 A=lO
S=l3 D=l8 F~21 G=26 H=29 J=34 K=37
1=42 :=45 ;=50 ==53 Z=l2 X=23 C=20
V=31 B=28 N=39 M=36 ,=47 .=44 /=55

cursorup=7 cursorright=2return=1 space=60 Fl=4 F3=5 F5=6 F7=3

Among the other advantages of this
method are that shifted, CTRLed and
unshifted keys have the same values so
the.need for additional checks is
reduced, and we get auto-repeat using
this routine. Amend the program
above as follows:

70 Q = PEEK(197) :IF Q =
64 THEN 70

80 IF Q = 9 THEN P1 =
p - L

90 IF Q = 23 THEN P1 =
p + L

This is perhaps even more important
than the way in which the program
gets information from the user because

DO

100 IF Q = 10 THEN P1 =
p - 1

110 IF Q = 18 THEN P1 =
p + 1

This method also makes using the
function keys as controls easier to
evaluate since they have consecutive
values (although beware F7). They
become a natural choice for
ON .. GOSUB routines.

33

there are even more danger areas,
and more ways in which you can make
things easy for the user.

DON'T

Interactive programming

By using reverse video, colour and the
careful use of graphics, and the
positioning of items on screen, you can
give your displays a very professional
feel. Think how boring those programs
are that have everything - input and
output - in the same colour, all in
capital letters, all down the side of the
screen.

Even worse are the programs that
try to liven things up and get it wrong
with clashing colours, misaligned
headings and cluttered masses of data.

TRY THIS

This short program displays all the
foreground/background colour
combinations on the 64. You can see
which work best together but
generally the plain backgrounds -
black, white, and the greys - are
preferable to oranges and bright
greens.

10 AS = ''THE QUICK BROWN
FOX"

20 FOR B = 0 TO 15
30 FOR F = 0 TO 15
40 PRINT CHR$(147)
50 POKE 53280, B: POKE

53281, B
60 POKE 646, F: PRINT
70 FOR D = 1 TO 500:

NEXT D
80 NEXT F, B
90 POKE 646, 1

For programs which have lots of
text, keep the border colour the s.ame
as the screen. This is also good with
some types of games since it gives the

34

impression of a larger screen.
However, the border can be used to

good effect in some ways. For
example, use different colours to help
the user to keep track of where he or
she is in the program. Use one colour
for data entry, another for data
retrieval and use red for danger when
deleting information. You can also step
through the border colours to signify
that the computer is still working
although nothing appears on screen.
This is much more effective than a
simple 'please wait ... ' message.

Interactive programming

We can use sound in a similar fashion.
Chapter 11 will discuss sound in a
great deal more detail - for now we'll
confine ourselves to beeps and buzzes
in much the same way as TV quiz
shows greet right and wrong answers.

TRY THIS

10 PRINT CHR$C147): GOSUB
500

20 PRINT "DO YOU LOVE YOUR
MICRO?"

30 GET A$: IF A$ = II II

THEN 30
40 IF A$ = ''Y" THEN GOSUB

200
50 IF A$ = "N" THEN GOSUB

300
60 GOTO 10

199 REM *** PLEASANT CHIME

35

200 POKE S + 5, 12: POKE
s + 6, 10

210 POKE S + 1, 65: POKE
s, 50

220 POKE S + 4, 17
230 FOR I = 1 TO 250: NEXT
240 POKE S + 4, 16
250 RETURN
299 REM *** UNPLEASANT

BUZZ ***
300 POKE S + 3, 118: POKE

s + 2, 35
310 POKE S + 5, 62: POKE

s + 6, 0
320 POKE S + 1 , 5: POKE S,

50
330 POKE S + 4, 65
340 FOR I = 1 TO 250: NEXT
350 POKE S + 4, 64
360 RETURN
499 REM *** INITIALISE SID

CHIP ***
500 s = 54272
510 FOR I = 0 TO 24
520 POKE S + I, 0: NEXT
530 POKE S+24, 15
540 RETURN

This simple use of sound is one of
the easiest yet most effective ways of
making your programs more
professional and pleasant to use.

Some micros have a Basic command
ON ERROR which directs the program
to jump to a routine written by the
programmer to handle mistakes.
Unfortunately the 64 does not have this
command so it is up to you to make
sure no errors can arise, otherwise the
program will crash with an error
message.

Interactive programming

There are a number of Basic tools at already printed in those five spaces
your disposal to help in setting up your will not be overwritten.
displays to be readable.

Cursor controls: These are useful for
the relative positioning of text and
graphics but can be clumsy in working
out absolute positions. For example, if
you want to put a word in the middle of
the last screen line you need 25 cursor
downs, and 15-20 cursor rights.

TAB() and SPC(): can do away with
the strings of cursor rights. TAB can
have an argument from 0 to 255 where
0 is at the extreme left of the screen.
Note that if the cursor is already past
the position designated it will skip to
that position on the next line.

SPC works relative to the current
position, so SPC(5) will move the
cursor five places to the right. It does
not print five spaces so anything

Punctuation: easily overlooked for
screen formatting are the , and ;
operators. The comma works like a
pre-set tab stop on a typewriter. Think
of the screen as divided into four
columns of ten places. The comma will
set the cursor position to the next
available column.

The semicolon(;) keeps the cursor
position immediately next to the last
thing printed. This program
demonstrates the different effects:

10 PRINT CHR$(147)
20 FOR I = 1 TO 12
30 PRINT INT(RND(1)*10);
40 NEXT
50 FOR I = 1 TO 12
60 PRINT INT(RND(1)*10),
70 NEXT

EJ[!J
PRINT" Ii]"

EJ(:) EJ
PRINT"lIJ" PRINT" OJ"

PRINT"m::J"

36
Interactive programming

Undoubtedly the greatest help to
screen formatting is a PRINT AT
command but again the 64 does not
have one. This combines the speed of
the PRINT statement with the ease of
POKE in locating a screen position.
Fortunately PRINT AT is fairly easy to
implement using a short machine code
routine. Enter the following program:

1030 DATA 32, 241, 183,
134, 87, 32, 241

1040 DATA 183, 134, 88,
165, 87, 201, 40

1050 DATA 176, 6, 165, 88,
201, 25, 144

1060 DATA 3, 76, 72, 178,
166, 88, 164

1070 DATA 87, 24, 32, 240,
255, 32, 253 10

20
30

900
999

1000

1010

1020
1029

PRINT CHR$(147): GOSUB 1080 DATA 174, 76, 160,
170 1000

AT = 49152
SYS AT, 10, 10,''TEST
STRING"
END
REM *** LOAD MACHINE
CODE ***
FOR I = 0 TO 38:
READ A
POKE 49152 + I, A:
NEXT
RETURN
REM *** MACHINE CODE
DATA ***

COLUMNS

01 3 6 7 9 11 13 16 17 19 21 23 26 27 29 31 33 36 37 39
OL..L..IL...L..L...l.."--'--'-1-1-1...l.."-""-'-1-1-11-1-1.""-'-1-1-1L...L..L-++-'--'-1-1-1-+-+""-'-~
1L..L..1L...L..L...l.."--'--1-l-l-l..J.....L...l--'-l-l-ll-l-l....l--'-l-l-IL....l....J.4-l--'--l-l-l-I-+-+-'-'-~

ROWS 11~1-1-1-H-++-+-H-++++-+-H-++-+++-+-ll-++-++++-t-+-+-++++-~
13L..L..IL...L..L-l-l--'--1-1-1-1..J.....L...l--'-1-1-11-1-1.-'-'-~L....1....J.4-1--'--l-l-l-l-+-+...I--'-~

16L..L..IL...L..l...l.."--'--'-1-1-1-1-1-""-'-1-1-11-1-1.-'-'-~1-1-1.-++-'--'-1-1-1-++""-'-~
17L..L..IL...L..L...l.."--'--l-l-l-l..J.....L...l--'-1-1-11-1-1.-'-'-~L....1....J.4-1-++-l-l-l-++...I--'-~

19L..L..ll-l-l..J.....L++-+-H-++++-+-+-l-++-+++-+-ll-++-++++-+-H-++++-+-t

2}1-1-11-1-1.4-1-+-+-ll-l-l-H-++-t-+-+-++++-+-H--l-l-++-+-+-1-++-++++-H

231-1-11-1-1.4-!-+-+-11-1-i-l-l--'--1-l-l-l..J.....L...l--'-l-l-ll-l-l.++-+-+-11-++-++-'--l-H
26L..L.Jw.....L...l-L.J.....L...L...L..1..J....J.....L..J..._J.....L..l..J.....L..L..J..._J.....L..1..J.....L..L..LJ....LJL....l....J...J...J....L..J..._~

SYS AT COLUMN, ROW,

37
Interactive programming

TRY THIS

Now let's try a simple demonstration
using our version of PRINT AT, SYS
AT. Our version uses the syntax

SYS AT, X, Y, "STRING"

where X is between 0 and 39 and Y is
between 0 and 24.

Add the following routine:

40 A$ = " DEMO "
50 8$ = CHR$(18) + A$ +

CHR$(146)
60 Y = 12: FOR X = 0

TO 17
70 SYS AT, X, Y, A$
80 FOR D = 1 TO 50:

NEXT D, x
90 SYS AT, X, Y, 8$

100 FOR D = 1 TO 100:
110 SYS AT, X, Y, A$
120 FOR D = 1 TO 100:
130 GOTO 90

NEXT

NEXT

----checklist----

In this chapter you've learned:

D Why you should error-trap your
programs and some techniques for
doing so.

D An alternative to INPUT and GET for
getting information from the user.

D A faster way of getting single-key
commands using PEEK(l97).

D Some techniques for making your
programs more professional using
colour and sound.

D A fast and easy way to format
displays using SYS AT.

----·Projects-----

38

D Write a program to accept a name
and address from the user using the
foolproof INPUT routine.

D Develop the INPUT routine so that
cursor and colour controls are
illegal (check for CHR$ codes).

D Use SYS AT to display the
information back again with the
screen neatly divided into
information, command and message
areas.

Interactive programming

•
Information handling

39

Reduced to the simplest level
computers are nothing more than
information processors, whether that
information is in pure number form or
numbers representing a company's
accounts, a memo to the managing
director or the relative positions of a
space invader and your missile base.
Some of that information is looked after
automatically by the operating system
-·the Basic language ROM in the case
of the 64. Variables and strings are
stored at the top of memory above
your Basic program while information
to be displayed on your TV or monitor
is kept in a special part of RAM called
screen memory.

However, to get the most from the 64
it is up to you to organise the
information to suit the different tasks. In
the last chapter we looked at ways of
getting information from the user of a
program. Here we'll see how to
organise the data so that the program
can make the best use of it.

The most obvious means of storing
data is by way of the DATA statement.
This Basic keyword tells the program
that what follows is not to be acted on
but is merely a list of numbers or
strings or both. The program gets at
this information using the READ
statement:

100 FOR I = 1 TO 3: READ
A: NEXT

110 DATA 50, 25, 10
This program successively sets A to

50, 25 and 10. If for some reason you
want to set A to 50 again you need to
RESTORE the data pointer to the

DATA

50

25 Pointer

10

beginning and then READ A once
more. This obviously has limitations.
On some micros you can RESTORE the
data pointer to a given line number but
the 64 doesn't have this facility. So to
get at information in the middle of a
group of DATA statements you have to
go back to the start and then use a ·
dummy loop to READ past the items
you don't want before reaching the
target number or string.

READ and DATA can be used to
good effect when you have the
information to start with: for example,
in setting up sprites or user-defined
graphics, or for holding the data for a
piece of music. The obvious limitation
of DATA statements is that the
information is fixed when the program
is written. Although it is possible to
manipulate the way the 64 stores a
program to incorporate new DATA
statements, it is little more than a
programmer's trick and it remains a
very inflexible way of storing and
using information.

40
Information handling

Arrays provide us with a much better
way and are perhaps the most
powerful programming tool available
to the Basic programmer. They
provide a neat and logical way of
storing information and can be
changed according to need.

The command to set up an array is

the DIM statement, which tells the
micro to DIMension an area of memory
and to give it a name. Think of it like
this: DIM A(30) instructs the 64 to set
up a large box called A containing 31
smaller boxes called A(O), A(l), A(2)
and so on. Technically, the smaller
boxes are called subscripts of the

41
Information handling

array. In this case the computer
expects the boxes to store numbers.
You can also define string arrays using
DIM A$(X). This will hold up to X + l
strings (never forget the A(O)
subscript).

Using arrays has some obvious
benefits. For example, if you have
three related variables you don't have
to give them three separate names
such as A$ = JOHN: B$ = ALAN:
C$ =GEORGE. You can useA$(1),
A$(2), A$(3). Note that A$(1) and Al$
are completely different variables and
you can use them both in the same
program - you may get confused but
the 64 will cope perfectly.

Suppose you want to keep a record
of the best selling records each week.
Without using an array the program is

'I'$(.. ,0)

0

1

2

3

4

5

6

7

8

9

going to get complicated and might go
something like this:

10 INPUT T1$: REM RECORD 1
20 INPUT T2$: REM RECORD 2

100 INPUT T0$: REM
RECORD 10

You'd also need a separate group of
strings to hold the names of the artists.
If, at a later date, you need to find out
whether world-famous band The
Bloggs appeared in the chart and at
what position, you'll need a morass of
IF .. THEN constructions to get the
answer.

Using an array, things are much
easier:

'I'$(9, 1)

'I'$(.. , 1)

42
Information handling

10 DIMT$(9): REM 10 TITLES
20 FOR I = 0 TO 9: INPUT

T$(I): NEXT: REM ENTER
10 TITLES

We have reduced a dozen lines of
program to two. To keep a matching
record of the artists simply requires
the addition of another dimension. We
can amend our two-line program as
follows:

10 DIM T$(9,1)
20 FOR I = 0 TO 9
30 INPUT T$(I,0): REM GET

TITLE
40 INPUT T$(1, 1): REM GET

ARTIST
50 NEXT

Now checking on The Bloggs is
easy:

100 A = 11 : FOR I = 0 TO
9: REM SET FLAG AND
BEGIN LOOP

120 IF T$CI, 1) = "THE
BLOGGS" THEN A = I :
I = 9: REM SET FLAG
AND EXIT LOOP

130 NEXT .
140 IF A = 11 THEN PRINT

"NOT FOUND": END
150 PRINT "THE BLOGGS ARE

AT NO."; A

If you want more than one week - a
whole year for example - just add
another dimension: DIM T$(9, 1,51).
This aspect of arrays - being able to
have several dimensions - gives them
even more power. The only danger
with using multi-dimensional arrays is
that you may become confused about
which subscripts represent what
information. Liberal use of REM
statements and a little care should
keep everything straight.

Another consideration in using arrays
is the amount of available memory.
Arrays can take up a frightening
amount of RAM which may not be used
so be careful to dimension arrays to a
reasonable size. If at the start of the
program you have to guess at the size
of array you need, be sure to go back
later and set it correctly. Enter the
following to see the principle in action:

10 DIM A$(600,20)

Enter PRINT FRE(O)-(FRE(O)<O)*
65536 and note the answer. Now run
this one-line memory eater and check
memory again. This is why you cannot
get a real idea of a program's size
unless it has been run.

AS A RULE

Two other points about arrays.
Wherever possible DIM all arrays in
the first line of a program. This should
ensure that you don't dimension them
twice resulting in a REDIM'D ARRAY
ERROR If you need to reset an array
you must perform a CLR first which
will wipe out all your other variables as
well. Secondly, although it is not
necessary to DIM an array of fewer
than 11 elements, you should do so. It
keeps things tidy.

So far we've looked at storing and
manipulating data in large chunks.
What about smaller pieces of
information like individual words?

43
Information handling

Basic provides a number of commands
that let us examine information and
change things around at this level. The
three most important are the string
operators RIGHT$, MID$ and LEFT$.

You may read elsewhere that it is
possible to add strings: A$ = B$ + C$.
This is misleading - what is actually
happening is that the strings are joined
and while you cannot subtract strings
you can divide them up again.

RIGHT$ operates on the rightmost
portion of a string and takes the form
A$= RIGHT$(B$,5). In this case A$
will be set to the five characters on the
right ofB$.

LEFT$ works m a similar manner
at the other end of the string.

The potentially confusing one of the
three is MID$. This takes the middle
portion of a string but here 'the middle'
can be any part of a string or even all
ofit.

IfB$ = "123456789", MID$ (B$,4,3)
will produce "456", the three
characters starting at position 4. This is
the obvious use but MID$ almost
makes RIGHT$ and LEFT$ redundant:
MID$ (B$, l,4) will produce "1234",
MID$ (B$,5,5) gives "56789" and MID$
(B$, l, 9) returns the whole of B$. So why
use RIGHT$ and LEFT$ at all? Because
you can see at a glance that RIGHT$
(B$,6) is doing something to the end of
a string, while unless you know exactly
how long B$ is, MID$ (B$,3,25) tells you
very little.

At this point there is one other string
operator that we need and that is LEN.
This gives the length of a string. If B$ is
once more "123456789" then LEN(B$)
will return the number 9.

B$="ANY"
C$="THING"
A$="B$+C$
A$="ANYTHING"

B$="EVERYWHERE"
A$="RIGHT$(B$,5)
A$="WHERE"

How Many?
RIGHT$

lslTIRlr !NIGi ITlol IBIEI

Is IL I I I c IE I ol . I

B$="EVERYWHERE"
A$="LEFT$(B$,3)
A$="EVE"

44
Information handling

TRY THIS

Using string operators we can get the
computer to work some of the
information needed by a program. In
the following example the computer
will determine Christian names and
surnames from a single input string:

10 SP = 0: INPUT ''WHAT IS
YOUR NAME"; N$

20 N = LEN(N$)

30 FOR I = 1 TO N: IF MID$
(N$,I, 1) = II " THEN SP
= I: I = N

40 NEXT
50 IF SP = 0 THEN 10
60 C$ = LEFT$ (N$,SP-1)
70 S$ = RIGHT$ (N$,N-SP)
80 PRINT "CHRISTIAN NAME

= "C$
90 PRINT "SURNAME = "S$

SP N

+ +
..

LEFT$
(N$,SP-l)

In line 10 the user enters his or her
name, for example "Jane Smith".
Line 20 gives the length of the string, in
this case 10. Line 30 does the work for
us, stepping through the name string a
character at a time until it finds a
space. At this point I = 5 so it sets the
space pointer to five and I equal to N
and exits the loop in line 40. If no space
had been included the entry would be
invalid so the program goes to line 10
for another try.

Line 60 takes the letters to the left of
SP and calls them the Christian name.
Line 70 gets the other end and calls it
the surname.

...
RIGHT$

(N$,N-SP)

The VAL function is also a string
operator. It gives the numeric value of
a string: A= VAL("45.2") sets A= 45.2.
However, it also takes only the
numbers from a string:

10 INPUT "AGE AND NAME";N$
20 PRINT VAL(N$)

is a simple way of extracting the
numbers from the input string. But it
will only work if the number is at the
start of the string. PRINT
V AL("XYZ 123") will return a zero.

45
Information handling

In order to see how these ideas work
in practice let's take a look at one of
the most common types of programs to
make use of arrays and string
manipulation: an adventure game.
Since most adventures are quite long,
and it's not much fun trying to solve an
adventure you've typed in yourself,
this one will be quite short, hence its
title: the Shortest Adventure in the
World. However, it works in much the
same way as larger games of this type
and if you follow it through you should
be able to tackle a larger project. It's
only a question of scale.

First let's look at what we need.

Obviously, a map is necessary to be
able to locate what's where. We also
require a number of descriptions of
locations and objects. The other major
requirement is the vocabulary of the
game - what words the computer will
understand.

Next, we need to consider the
structure of the program. The map can
be most simply imagined as a square
building, three rooms wide by three
deep. All of the information will be
held initially in DATA statements -
room descriptions, objects and the
vocabulary of nouns and verbs.
However, it would be unworkable to

46
Information handling

operate on these using READ and
RESTORE so we'll transfer them to
arrays where they'll be more
accessible.

Keeping track of the player's
location is a matter of having a pointer
while, as is customary in these games,
commands will be in the form of verb,
noun (go west, get knife) and can be
handled quite simply by our string
slicing routine to sort out LEFT$ and
RIGHT$. Apart from a few other
variables to keep track of odds and
ends, that's all there is to it but as you'll
see, adventures involve large amounts
of programming and even a miniature
like this takes a lot of code.

10 PRINTCHR$(147)
CHR$(30)

20 POKE53280,0:
POKE53281,0

30 L=1:GOSUB1000

1$(2,0)

ONA RICKETY
STAIRCASE

A straightforward start. These lines
simply set up the screen colours
(green text on a black background),
set the player's location L to the start
and go to the initialisation routine at
1000.

40 PRINT"YOU · ARE ";
L$(L,0)

50 PRINT"POSSIBLE EXITS
ARE ";

60 FORI=1TOLEN(L$(L,1))
70 E$=MI0$(L$(L,1),l,1):

E=VAL(E$)
80 PRINTE$(E)"";:

NEXT: PRINT
90 PRINT''WHAT SHALL I DO

NOW?"

This block is the main display
section. 1$(1,0) holds the description
of the current location. 1$(1, 1) is a
related string which holds the possible
exits.

Note: 1$(0, 0) is not used

47
Information handling

YOU ARE IN A DARK DAMP CELLAR
THICK WITH COBWEBS.
POSSIBLE EXITS ARE EAST
WHAT SHALL I DO NOW?

Lines 70 and 80 slice the string
and print the valid directions which
are held in a master direction array,
E$().

100 GOSUB500
110 I FV$<>"GO''THENPRINT"l

DON'T KNOW HOW TO DO
THAT":GOT090

We'll come to the routine at 500
shortly. Line 110 checks to see
whether the user has entered a valid
verb command. In our very limited
example the only allowable verb is
GO. To extend the program you could
call another subroutine here to check
for all possible legal commands and
act on them accordingly.

120 GOSUB600
130 IFD=-9THENPRINT"I

CAN'T GO THAT WAY":
GOT050

D is a direction flag with a default
value of -9 which is changed by the
entry of a valid direction, ie north,
south, east or west.

140 EX=-1
150 FORI=1TOLENCL$CL,1))
160 IFD=VALCMIDCLCL,1),

I,1))THENEX=D

170 NEXT
180 IFEX=-1THENPRINT"I

CAN'T GO THAT WAY":
GOT050

190 L=L+DCD)
200 IFL=11THEN800
210 GOT040

These lines control the movement of
the player. Having already checked
that the direction is legal, the program
now checks to see if the direction is
valid at the current location. EX is
another flag which is changed if the
direction chosen matches one of the
possible directions held in L$(L, 1). Ifit
doesn't change then a suitable
message is printed, followed by the
legal directions again.

Line 190 updates the position in
much the same way as screen
locations work. Possible directions are
up (-3), down (+3), right (+ 1) and left
(-1). These values are held in array
D().

Finally line 200 checks to see if you
have left the house before returning to
the core routine at line 40.

500 C$=" ": INPUTC$:V=0
510 C=LENCC$): FORI=1TOC
520 IFMIDCC,I,1)~" "

THENV=I: I=C

48
Information handling

CLEAR SCREEN
GOSUB INITIALIZATION

PRINT LOCATION
AND EXITS

GOSUBINPUT

.. YES

GOSUB EXIT CHECK

.... YES

CHANGE
LOCATION

49
Information handling

SUBROUTINES

500-INPUT
600- EXIT CHECK

1000- INITIALIZATION

STOP

530 NEXT:IF V=0 THEN 500
540 V$=LE FT$ (C$, V-1)
550 N$=RIGHT$(C$,C-V)
560 RETURN

You should recognise this routine
from earlier in this chapter. It is the
same one that we used to get Christian
names and surnames from an input
string. It does exactly the same job for
verb and noun, returned in V$ and N$.

600 D=-9: FORI=1 T04
610 IFN$=E$(1)THEND=I:I=4
620 NEXT
630 RETURN

A short routine to check whether the
user has entered a valid direction (ie
they haven't typed in GO UP, GO OUT
or GO MAD). In a full-scale adventure
you would need a longer section to
check for all valid nouns, check to see
whether the player had them or could
see them and then take appropriate
action depending on the verb
command.

800 PRINT"YOU ARE OUTSIDE
THE HOUSE. WELL DONE!"

999 END

The conclusion, reached when you
step out of the front door.

1000 DIML$(9,1), E$(4),D(4)
101121 E$(1)="NORTH": E$(2)=

"EAST": E$ (3)="SOUTH":
E$(4)=''WEST"

1020 D(1)=-3:D(2)=1 :DC3)=
+3:D(4)=-1 .

1030 FORI=1T09:READL$(1,0):
READL$CI,1):NEXT

1040 RETURN

The set-up lines which dimension
the arrays for locations, exits and
direction values, and move the
description strings from the DAT A

statements into the array.

11115111 DATA''IN A DARK DAMP
CELLAR THICK
WITH COBWEBS" ,2

111160 DATA"ON A RICKETY
STAIRCASE. IT DOES
NOT FEEL VERY SAFE" ,24

1070 DATA"AT THE TOP OF THE
STAIRS BEHIND AN OPEN
WOODEN DOOR" ,43

108111 DATA"IN THE DINING
ROOM, LONG SINCE
ABANDONED'' ,23

1090 DATA"IN THE KITCHEN.
THERE IS A
CUPBOARD HERE",24

110111 DATA"AT THE CORNER OF
A CORRIDOR. THERE
IS A DOOR LEADING
NORTH", 134

1110 DATA"IN THE LIVING
ROOM THOUGH NO-ONE
HAS LIVED HERE FOR A
WHILE",12

1120 DATA"IN THE FRONT
HALL. THE DOOR IS TO
THE SOUTH" ,243

1130 DATA"IN THE STUDY
WHICH APPEARS TO
HAVE BEEN
RANSACKED", 14

Finally, the DATA statements
themselves. Here we have only
minimal descriptions of nine rooms. A
full-scale adventure might have 50 or
100 rooms and each requires a
description. You would also need
DAT A and arrays to hold all of the
objects appearing in your adventure
and all the valid commands. It is this
mass of data which makes adventures
so demanding on memory.

Although this adventure will take
you longer to type in than to solve, it
demonstrates the tools you need to

50
Information handling

write this kind of program. In the
Projects you'll find some ideas on
how to extend it into something more
entertaining.

----Checklist----

In this chapter you've learned:

0 How to use DATA statements for
information handling and their
limitations.

0 How to set up arrays using the DIM
statement.

0 How to manipulate the information
~eld in arrays.

0 The extra power of multi-dimen
sional arrays and how to use them.

0 How to use the string operators
LEFT$, RIGHT$ and MID$.

0 How to put these ideas into practical
use in a simple demonstration
adventure game.

STAMP FILE
PROGRAM OPTIONS

1 UPDATE FILE
2 SEARCH FILE
3 LOADFILE
4 SAVEFILE

----•Projects----•

0 Write a simple filing system which
could be used by enthusiasts in their
hobby (record and stamp
collections, or to catalogue books
and magazine articles). These are
the steps you might take:

l Set up multi-dimensional arrays to
hold the information.

2 Use the foolproof INPUT routine
from chapter 3 to get the information
and then put it into the arrays,
perhaps using some kind of loop to
update pointers.

3 After reading chapter 12 you'll be
able to incorporate routines to save
the information to tape or disk so
write the program in structured,
modular fashion. This will make it
easy to add new routines.

4 Add a search facility using the string
operators to find a given item.

' : /
YOUR CHOICE? - · ·- -/:'

61
Information handling

0 Extend The Shortest Adventure in
the World into a more enjoyable
game. Here are some ideas:

1 Add a list of verbs like LOOK,
TAKE, DROP etc. These can be
held in an array V$() and add a
routine to search the array for a
match.

2 Add a few objects (nouns) that the
player can collect or use along the
way. You might have treasures, food
or a tool to overcome some obstacle.
These will be held in array N$().

3 Perhaps you could put some food in
the kitchen and a vicious dog at the
front door. The player would have to
keep the food and feed the dog to
escape. (Allow for the player
ruining his chances by letting him
eat the food.) This could be handled
by a dedicated subroutine.

4 Last but not least, open things up by
adding extra rooms. You could
create a 4 x 4 map then add the
new room descriptions and alter the
direction values to + 1, -1, +4 and
-4.

If you have a friend with a 64,
swap your different versions as
puzzles to be solved. You can share
the problems and it encourages you
to be inventive.

52
Information handling

•
Introduction to graphics

53

One of the most exciting areas of micro
programming is the creation and
display of graphics. In the ancient days
of mainframe and mini computers
there were no space invader games,
no graphical adventures because the
computers had no real display
facilities. All of the output was on
paper via a printer. Since then the
larger computers have learned from
the micros and many can now produce
colour graphics displays of a far higher
standard than is possible on a home
computer. However, most micros have
the ability to make colourful and
exciting displays.

In terms of capability, your
Commodore 64 is one of the best.
Unfortunately, the version of Basic on
the 64 is quite primitive and there are
no commands to allow you to use the
graphics easily. That is not to say that
producing graphics is very difficult -
it's just more time-consuming and a bit
more complicated. For example, on
some machines you can change the
screen colour by use of a PAPER
command and the border colour by a
BORDER command. On the 64 it's
necessary to use POKE 53281 and
POKE 53280 respectively.

1063 SCREEN MEMORY
1024
10641-+-++-+-t-+-t-t-++-+-t-t-11-+-+-+-+-+-+-t-+-t-t-++-+-+-+-ll-+-+-+--+-+-+-ll-+-+-I

1104 t-t-++-+-t-+-t-t-++-+-+-+-i-+-+-+-+-+-+-t-+-t-t-++-+-+-+-ll-+-+-+--+-+-+-ll-+-+-1
1144 11841-+-+-+-+-t-+-+-+-+-tt-+-+-+-+-t-+-t-+-+-+-+-tt-+-+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-tH

12241-+-++-+-t-+-t-t-++-+-+-+-'l-+-+-+-+-+-+-t-+-t-+-++-+-+-+-ll-+-+-+--+-+-+-ll-+-t-I
12641-+-++-+-t-+-t-t-++-+-+-+-i-+-+-+-+-+-+-t-+-t-+-++-+-+-+-ll-+-+-+--+-+-+-ll-+-+-I
13041-+-++-+-t-+-t-t-++-+-+-+-i-+-+-+-+-+-+-t-+-t-+-++-+-+-+-lt-+-+-+--+-+-+-ll-+-+-I
13441-+-+-+-+-t-+-+-+-+-tt-+-+-+-+-+-+-+-+-+-+-+-tt-+-+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-tH
13841-+-+-+-+-t-+-t-t-+-+-+-t-+-t-t-+-+-+-+-+-t-+-t-+-T-t--+-+-+-lt-t-+-+-+-+-t-il-+-t-I
1424
14641-+-+-+-+-t-+-+-+-+-tt-+-+-+-+-+-+-+-+-+-+-+-tt-+-+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-tH

15041-+-+-+-+-t-+-t-t-++-+-+-+-t-t-+-+-+-+-+-t-+-t-+-T-t--+-t-t-il-+-+-+-+-+-t-il-+-t-I
15441-+-+-+-+-t-+-+-+-+-tt-+-+-+-+-t-+-+-+-+-+-+-tt-+-+-+-+-t-+-+-+--+-+-+-t-+-+-+-+-tH
15841-+-+-+-+-t-+-t-t-++-+-+-+-t-t-+-+-+-+-+-t-+-t-t-T-t--+-t-+-it-+-+-+-+-+-t-il-+-t-I
16241-+--+-+-+-t-+-+-+-+-tt-+-+-+-+-t-+-+-+-+-+-+-tt-t-+-+-+-t-+-+-+--+-+-+-t-+-+-+-t-lt-1
16641-1--+-+-+-1-+-+-+-+-11-+-+-+-+-1-+-+-+-+-+-+-11-+-+-+-+-1-+-+-+--+-+-+-1-+--+-+-t-ll-I
1704 17441-+-+-+-+-t-+-+-+-+-tt-+-+-+-+-t-+-+-+-+-+-+-tt-+-+-+-+-t-+-+-+--+-+-+-t-+-+-+-t-11-t

17841-+++~-+-1-++-+-+-+-+-1-+-++++~-+-1-++-+-+-+-+-11-+-++++-+-11-+-t-i
18241-+++~-+-1-++-+-+-+-+-1-+-++++~-+-1-++-+-+-+-+-11-+-++++-+-11-+-t-i
18641-+++~-+-1-++-+-+-+-+-1-+-++++~-+-1-++-+-+-+-+-11-+-++++-+-11-+-t-i
19041-1-+-+-+-t-+-i-+-++-+-+-+-i-+-+-+--+-+-+-+-+-t-+-++-+-+-+-i-+-+-+--+-+-+-il-+-+-I
19441-1--+-+-+-i-+-+-+-+-li-+-+-+-+-+-+-+-+-+-+-+-tl-+-+-+-+-t-+-+-+-+-+-+-t-+-+-+-+-1-t
1984 2023

64
Introduction to graphics

55
Introduction to graphics

Let's take a quick tour of the 64's
graphics 'factory', the VIC-II chip.

When you switch on your 64 you are
in what is known as normal text mode.
This means that all of the display is
held in a part of RAM called screen
memory which is 1,000 locations
starting at 1024. The 64 divides this up
into 25 lines of 40 giving the text screen
resolution of 40 x 25. When typing in
direct mode, or using the PRINT
command, the VIC chip manages the
display automatically. It will PRINT
each character, one after the other,
until it reaches the end of the line
when it 'wraps round' to the left side of
the next line. To put characters
somewhere else on the screen you can
use a number of commands such as
TAB(), SPC(), or use the cursor control
codes.

In normal text mode you can use the
shift and Commodore keys to print
capital letters and graphics symbols.
By pressing both these keys at once
you switch to what is called typewriter
mode where all letters are lower case
unless you 'shift' them.

In either mode you can display
characters in any of 16 colours on a
background of one of 16 colours.
However, you can use another mode
called 'extended background colour'
which allows you to use 16 foreground,
and 16 background colours. The catch
here is that you are restricted to 64
different characters. (You will soon
realise, if you haven't done so already,
that most graphics modes involve
compromises and trade offs - more
colours for fewer characters, or a
higher resolution for fewer colours.)

Although the graphics characters

are obviously useful for creating forms
and charts, they are also an easy way
of creating characters for games. Try
this for a simple alien fighter:

10 PRINT CHR$C147)
20 POKE 1524,98:POKE

1525,87:POKE 1526,98
30 POKE 55796,2:POKE

55797,2:POKE 55798,2

However, as useful as the block
graphics are, there will come a time
when you want something more. The
64 allows you to get it in the form of
user-defined characters. On some
machines you are limited to designing
a handful of your own graphics but on
the 64 you can change the whole
character set if you wish. This gives
you the opportunity to use another
colour mode as well - multicolour
mode. There's nothing to stop you
using multicolour mode anyway but try
this and you'll see the problem: enter
directly

POKE 53270, PEEK (53270)
OR 16

As you can see, things look a little
confused. To get back to normal just
press RUN/STOP and RESTORE.

Multicolour mode is genuinely
useful with user-defined characters
because you can design the graphics
to take advantage ofit. In multicolour,
the horizontal resolution is halved (four
dots instead of eight) but you can have
twice as many colours.

Yet another graphics mode on the
64 allows you to display extremely
detailed pictures. This is high
resolution mode and gives 320 dots

56
Introduction to graphics

across the screen and 200 dots down.
Combining high resolution and
multicolour has the expected effect -
dot resolution is halved horizontally,
but the colour resolution is doubled.

The final section in the 64 graphics
factory is the sprite maker. Sprites are
perhaps the most exciting feature,
allowing you to create detailed and
colourful graphics and move them
about with (comparative) ease.
Although sprites may appear difficult
without Basic commands to help, you
only need to be methodical and
patient to get the most from them.

All of these graphics and colour
modes are under the control of the VIC
chip. In the following sections we'll see
how you in turn can control VIC and
add these tools to your programming
toolkit. But first there are two things we
need to consider. You already know
how to manipulate bytes of information
using PEEK and POKE. Now you need
to be able to manipulate bits, the eight
parts that make up a byte. Secondly,
you need to know how the VIC chip
'sees' the memory locations of the 64
and how you can control this.

You are probably familiar with the
logical operators AND and OR and can
probably make sense of the following
line:

IF A = 10 AND B = 1 OR
B = 2 THEN GOTO 500

But what about this one:

POKE 1, PEEK(1) AND 251

To understand how Boolean - or
logical - operators work on numbers
we have to look at them at the binary
level. A single byte number can be in
the range 0 to 255. To see why this is so
look at this:

Bits
Content

7 6 5 4 3 2 l 0
0 0 0 0 0 0 0 0

In binary each bit can be either a 0
or a 1. In this example all the bits are
off (set to 0) so the value of the byte is
0. If all the bits are on, the byte has the
value 255:

Bits 7 6 5 4 3 2 1 0
Content 1 1 1 1 1 1 1 1
Value 128 64 32 16 8 4 2 1

To get the value 129 we must turn on
the first and last bits:

Bits 7 6 5 4 3 2 1 0
Content 1 0 0 0 0 0 0 1
Value 128 0 0 0 0 0 0 l

With this information can you work
out the value of the following bytes?

B~ 7 6 5 4 3 2 l 0
Content 0 l 0 0 0 0 l 0
B~ 7 6 5 4 3 2 l 0
Content 0 0 l 1 l 0 0 0

The first totals 66 (64 + 2) and the
second totals 56 (32 + 16 + 8).

Obviously, then, to turn off all the
bits of byte X, we could use POKE X,O.
To turn on bits 0 and 1 we POKE X,3.
However, this last command also has
the effect of turning off bits 2, 3, 4, 5, 6
and 7. This is where AND and OR
come in. Using them we can turn
individual bits on or off without
affecting the rest of the byte.

To do this we take the number or

57
Introduction to graphics

byte we want to work with, then AND
or OR it with another number.

OR is used to set bits without
affecting the rest of the byte. For
example, to set bit 1 - regardless of
whether it is on or off - we use POKE
X, PEEK(X) OR 2. This gets the value of
X and whether bit 1 is on OR off, turns
it on. To turn bit 1 off we use AND in
the following way: POKE X, PEEK(X)
AND (255-2). To see why this works
let's assume X = 135:

Bits 7 6 5 4 3 2 1 0
Content 1 0 0 0 0 1 1 1
Value 128 0 0 0 0 4 2 1

1 0 0 0 0 1
AND 1 1 1 1 1 0

= 1 0 0 0 0 0

As you can see we have successfully
switched off bit 1.

Finally, we can see whether any bits

are on or off using the following: IF
PEEK(X) AND 2 = 2 then bit 1 is on. IF
PEEK(X) AND 2 = 0 then bit 1 is off.

You may be wondering why all of this
manipulating of bits is necessary. One
reason is the way the designers of the
64 decided to use some of the memory
locations. If you have a number of
conditions which can be determined
by a yes/no or on/off condition it is
wasteful to use a whole byte for this. A
single bit will do the job. So, many of
the conditions in the 64 can be altered
by changing a single bit. This means
that one byte can control up to eight
different functions. If you have 16
possible conditions, then half a byte
(called a nybble) is sufficient. This is
how the colour screen memory is
mapped. If it .took one byte for each
screen location colour RAM would
occupy nearly lK. Using a nybble for
each location means the 1,000 positions
can be individually coloured using
only 500 bytes of RAM.

In the VIC chip, many of the
locations are multi-purpose
controllers, using one or more bits as
switches. For example, one byte can
determine the on or off condition of
eight sprites.

Here's a brief look at the memory
map of the 64. There is 64K of RAM
memory, the maximum that the 6510
main processor can 'see'. The VIC
chip, however, can only see 16K at a
time. Most of the parts of RAM are
divided up into regular blocks of 4 or
8K: the character generator takes 4K,
Basic takes 8K, and a high resolution
screen would take 8K.

68
Introduction to graphics

Because of the l 6K limitation on the
VIC chip, if you want to use your own
graphics, or set up a high resolution
screen, it's necessary to manipulate
blocks of memory and you can do this
in two ways. The first is known as
paging and is the way in which the 64
appears to have more than one set of

RAM or ROM in the same place. The
overlying blocks can be paged in or
out, depending on what you are trying
to do. The second is using a window
and is the way the VIC chip looks at
memory. It is possible to move the
VIC's window up and down the
memory map, allowing it to see

..-------------16354

USER
RAM

--------------!CHARACTER
SET GHOST

_____ -1---....+-.!.~IMA;.;;;;.;.;G~E=----

- - - - i--.....:....-2048
- - - - 1----1024

59
Introduction to graphics

0 BANKO

lK SYSTEM STORAGE

different areas of RAM for different
functions.

These techniques are extremely
powerful and allow immense
flexibility. For example, the paging
technique allows the 64 to have more
than SOK of memory despite the 64K
limitations on an eight-bit machine.
They also mean that it is possible for
machine code programmers to use up
to 52K of memory with the Kemal

When you turn on the 64 you have
more than 60 graphics characters
directly available from the keyboard,
or through POKEs to screen memory.
It is easy to scorn these as useful
graphics tools but when combined
with colour and reverse images, and a
little imagination, they are a quick and
easy way to start programming
graphics.

Within the limitations of the 64's
Basic, there are still several ways of
displaying characters. For example, a
direct POKE to screen memory, using
the PRINT command with quote mode,
or by using the CHR$ codes.

On many machines POKE is not only a
more elegant way of using block
graphics, it is faster. However, the 64's
POKE command is much slower than
PRINT, especially where you are using
a composite character, ie one made
up of several individual graphics like
our three-part alien spaceship in the
previous chapter. It is much quicker to

operating system routines present, or
SOK if they are prepared to write all of
the housekeeping routines
themselves. This is why you can run
other languages on the 64 without
losing any of the free memory space.

Although this may seem
complicated, it will become clear as
we look at the different VIC functions
in the following sections.

define the composite character as a
string and print it on screen:

10 AL$ = CHR$(171) +
CHR$(113) + CHR$(179)

20 PRINT CHR$(147)
30 FOR I = 1 TO 5: PRINT

CHR$(17): NEXT
40 PRINT TAB(19) ;AL$

60
Introduction to graphics

If we want our character to use more
than one line, we use cursor controls to
position the graphics. To give the ship
a tailfin, add this:

15 AL$ = AL$ + CHR$(157) +
CHR$(157) + CHR$(145) +
CHR$(178)

I

Just as there's more than one way to
print the character, there are several
ways of adding colour. With print the
most obvious is the use of the colour
CTRL keys. However, POKE 646 has
the same effect. If you wanted to
change colours in logical order it

would be complicated using PRINT
and the colour codes, but using a
FOR. .NEXT loop and POKEs to 646
would do the job easily.

Having to POKE colour values into
colour memory is largely responsible
for the slowness of POKEing graphics.
However, there are occasions when it
can be useful to use this technique. By
POKEing your display first, you can set
up the screen while it is invisible, then
bring it into view by either changing
the screen colour, or by changing the
colour values for a section of the
screen.

FOR THIS USE:

15 AL$ = AL$ + CHR$(157) + CHR$(157) +
CHR$(145) + CHR$(178)

AS A RULE

There is one other technique that you
should always use when POKEing to
the screen. Set up the key locations as
variables at the start of your program.
Not only is it easier to remember
POKE SC + 40 than POKE 1064, but if

you later change the program so that
screen memory is in a different
location, you don't have to change
every single screen and colour POKE.
Simply change the value of your
variables.

61
Introduction to graphics

TRY THIS

These two short examples illustrate
these points.

10 SC = 1024: CO = 54272:
PRINT CHRS(147>

20 FOR I = 0 TO 399
30 POKE SC+I, 160
40 POKE SC+I+C0,6
50 NEXT
60 PRINT "[HOME, 12 CURSOR

DOWN] PRESS A KEY"
70 GET AS: IF AS = '"'

THEN 70

55296

/
+5 4272

(
1024

80 POKE 53280, 14: POKE
53281,14

90 END

Press RUN/STOP and RESTORE and
change line 70:

70 MD = SC + 199
75 FOR I = 0 TO 199: POKE

MD + CO + I, 14: POKE
MD + CO - I, 14: NEXT

~

\
\

COLOUR I
MEMORY

~

' I SCREEN I
·MEMORY

62
Introduction to graphics

Sooner or later you'll exhaust the
possibilities of block graphics and
you'll want to be able to display your
own characters. The 64 lets you do
that. These are the steps to take:

Depending on your programming
needs there may be additional steps
such as moving screen memory. The
reason for this is the 16K limitation on
the VIC chip. First, look at how the VIC
chip sees the character information.
The character generator is held in
RAM starting at 53248 in eight blocks
of 512 bytes.

53248 Upper case characters
53760 Graphics
54272 Reversed upper case characters
54784 Reversed graphics
55296 Lower case characters
55808 Upper case and graphics
56320 Reversed lower case characters
56832 Reversed upper case and

graphics

Since each character is made up of
eight rows of eight dots, eight bytes
are needed for every letter and
graphic. Each of the blocks above
contains 64 characters.

A safe place to put your characters
is at 12288 (remember that because
the VIC chip is normally looking at the

ADDRESS CONTENT

53248 60

53249 102

53250 llO

53251 llO

53252 96

53253 98

53254 60

53255 0

63
Introduction to graphics

first 16K of memory the character set
must be in this area. How does the VIC
chip see it if it's normally at 53248?
Because of a clever trick of
programming, a ghost image appears
in the first 16K.)

Before we copy some characters
and create a few new ones, there are a
couple of other points to note. To read
the character generator we need to
flip out the VO ROM which appears
above it. We also need to stop the
computer being interrupted during the
copying. (Interrupts occur every 60th
of a second when the 64 does its
housekeeping and include checking
the keyboard. If the VO block is not
present the micro will crash.)

This copies the first 64 characters
into RAM. Line 20 looks complicated.
What it does is tell the VIC chip where
in the current l 6K of RAM the
character memory is stored.

Line 30 lowers the top of Basic

Enter NEW and type in the following
program:

10 PRINT CHR$(147)
20 POKE 53272,CPEEKC53272)

AND 240) OR 12
30 POKE 52,48: POKE

56,48: CLR
40 POKE 56334, PEEKC56334)

AND 254
50 POKE 1, PEEK(1) AND 251
60 FOR I = 0 TO 511
70 POKE 12288 + I,

PEEKC53248 + 1)
80 NEXT
90 POKE 1, PEEK(1) OR 4

100 POKE 56334, PEEK(56334)
OR 1

memory to make sure our new
character set is not written over by
Basic variables. Line 40 switches off
the interrupts and line 50 flips the VO
ROM out and the character ROM in.

Lines 60-80 do the copying, taking

64
Introduction to graphics

the character values for the first 64
characters and putting them into the
new location. The last lines flip the I/O
block back in and turn on the
interrupts.

To see if this has worked try typing
something. If the alphabet appears
normal, try pressing the shift and
Commodore keys to get lower case. If
everything turns to garbage the

CHARACTER 0-(ii·

':.I·'.·'1 .. ,1_,-~·,:1,.~'.t.'~ .. '.·'1,.~'.·'~-~ .. '.t_,~_.'~ .. ' .. '~ .. '1 -~_, __ ,1_1,_~_,.~_,_~.'~ .. ' .. ·'~,:~:-~:-~_,·~ .. '.·'1 __ .'~ .. '1.~_.,.1_, ~tI1tt ~tit~.~~r~ tr)tl~ 11tmm t-----f.l~~~~--+-~~~

: __ ,i __ ,1_ .. '~ .. -'~_.,1 __ ,1 __ ,1 __ ,1_.'~ ... '1 __ ,f __ .'~ .. '1_ .. '~ .. '~:·,~ .. '1 _:'.'_,~_.,1 __ .'~_.,i __ .'~_.'~.--'~_.'~.--'~_.,i __ ,-.:,:~_.:~_.,1_ .. '~ .. '1 mm~~~-~~-~~.~~.11.~ ~~~~~~imr m~

program has worked. Press shift and
Commodore again.

Now the useful part - creating our own
characters. First we need to design
them on a piece of 8 x 8 squared paper.

128 64 32 16 8 4 2

= 102

= 102

= 102

65
Introduction to graphics

Let's change the @ character to a
space invader.

We need eight numbers to define
the new character and these are
stored as DATA statements so add line
1000 to the program:

1000 DATA 60, 231, 231,
60, 60, 102, 102, 102

(To make sure the program doesn't
run into this line also add 999 END.)
Now add the following:

110 PRINT "@", "@", "@"
120 FOR I = 0 TO 7:

READ A
130 POKE 12288 + I, A
140 NEXT

When you RUN this, you should see
the three @ characters change to
space invaders on screen. Now
whenever you press the @ key the
space invader will appear.

There is one severe limitation to our
example. By placing the character set
in the first 16K and lowering memory
to protect it, we are left with only about
lOK of Basic space. For many
programs this might not be a problem
but there is little point in buying a 64K
computer and ending up with only lOK
after a simple program like this.

The answer is to move everything
around. For example, instead of
lowering the top of Basic, we could
raise the bottom so that Basic starts
about 16K. This would give us about
20K which is better. The problem here
is that any program in the normal Basic
space would be lost. The answer is to
have a loader program. This would set

up the new characters and raise the
bottom of memory before loading the
main program.

Better still is to move the VIC window
higher into memory. The following
program does this.

5 POKE 51, 255: POKE 52,
127

10 POKE 55, 255: POKE 56,
127

20 OC = 53248: NC = 32768
30 POKE 56578, PEEK(56578)

OR 3
40 POKE 56576,

(PEEK(56576) AND 252)
OR 1

50 POKE 53272,
(PEEK(53272) AND 15)
OR 48

60 POKE 53272,
(PEEK(53272) AND 240)
OR 0

70 POKE 648, 140
80 POKE 56334, PEEK(56334)

AND 254
90 POKE 1, PEEK(1) AND

251
100 FOR I = 0 TO 511
110 POKE NC + I, PEEK

(OC + I)

120 NEXT
130 POKE1, PEEK(1) OR 4
140 POKE 56334, PEEKC56334)

OR 1
The new memory map looks like this

to the VIC chip:
32768 - 34815 Character data
34816-35839 Sprit,e data (16 sprites)
35840 - 36839 Screen memory
36856 - 36863 Sprite pointers

66
Introduction to graphics

Because the VIC chip expects to
look at 2K of character data at a time,
the character set has the 2K from 32768
to 34815 but we only copied down the
first 64 characters. This means that
there is space in the character area for

192 user-defined characters. The
alternatives would be to copy more
characters from ROM or to use the free
space for more sprite data. The latter
course would give space for a total of
40 sets of sprite data.

67
Introduction to graphics

----·Checklist----

In this chapter you've learned:

D A little about the different display
and colour modes.

D How to manipulate individual bits
and bytes using AND and OR.

D Ho:vv the 64 memory map works.

D How to create and display your own
graphics characters.

D An alternative way to organise
memory to give more space for
sprites and user-defined characters.

----•Projects----

D Create a character set for your
favourite game (eg, Pacman, space
invaders or Scramble type
graphics).

D Make sure you can make it work
with the character set at 12288 and
at 32768.

D Write a graphics editor program.
These are the steps you might take:

I Set up the memory map for user
defined characters.

2 Display a working grid of 8 x 8
full-sized characters.

3 Using cursor keys allows the user to
move about the grid turning blocks
on or off.

4 Create the character: if a block in
row 1 is on, then set that pixel in
byte 1 on, etc.

5 Save the new graphics set to tape or
display the data values for the new
graphics.

68
Introduction to graphics

Advanced colour

69

Back in chapter 5 the various colour
modes of the 64 were mentioned and it
was said that user-defined characters
were needed to make the most of
multicolour mode. This powerful mode

The first option after the normal colour
display is called extended
background colour mode. We have
already seen that, under normal
circumstances, screen memory has
1,000 locations for character
information and a matching number for
colour. This gives us the choice of any
one of 16 colours for the background
and any or all of 16 colours for the
foreground. However, it means that all
characters on screen will have a
common background unless printed in
reverse. But as the name 'reverse
video' implies, all that happens here is
that background becomes foreground
and vice versa.

Extended background colour gives
you a great deal more control over the

is also very useful with high resolution
graphics, so now let's take a look at it
in detail, along with the other colour
facilities available.

colour of individual characters. In
effect, you can now have any
foreground colour combined with any
background colour for every character
position on screen. In other words, you
could have a green character on a
white background next to a blue
character on a yellow background.

The mode is turned on by a POKE to
location 53265. We need to set bit 6 to
a 1 like this:

POKE 53265, PEEKC53265) OR
64

(Using your new knowledge of
Boolean operators, can you work out
how to turn off the bit and get back to
normal? The answer is giv~n below.)

TRY THIS

Enter the line above in direct mode
and experiment a little. Try printing a
few characters, then go into reverse
mode with CTRL 9 and print a few
more. Unexpectedly you don't get
reversed characters. You will see
instead that the same characters
appear but on a different background
colour.

As always there is a trade-off
involved. In this case we gain the extra
colour flexibility at the cost of the

number of characters. In extended
background colour mode you can only
display the first 64 characters (the
upper case alphabet, numbers and a
few graphics) or your first 64 user
defined characters.

This compromise is forced because
the extra colour information is held in
the high two bits of the character code.
To see how it works print first an A,
then a shifted A, then the same
charncters in reverse.

70
Advanced colour

The extra colour information is also
stored in locations 53281to53284. Try
fOKEing colour codes in these and
see what happens.

or

To turn off the mode use:

POKE 53265, PEEK(53265) AND
(255 - 64)

POKE 53265, PEEK(53265) AND
191

Because of the limitation in the
number of characters available
extended background colour is not
used often but you might use it to
create colourful and eye-catching title
screens.

By halving the horizontal dot
resolution we can have four
pairs of bits giving the four
colour patterns like this:

00 = background (screen)
colour

01 = background colour 1
10 = background colour 2
11 = foreground (character)

colour

The registers are as follows:

Screen colour at 53281
Background colour 1 at 53282
Background colour 2 at 53283
Foreground colour in colour
RAM

We saw in the introduction to graphics
that multicolour mode is all but useless
with standard graphics because of the
change in dot resolution. However,
there are two areas in which it
becomes a very powerful tool: user
defined characters and high resolution
graphics.

Multicolour mode gives us even
more flexibility than extended
background colour - four colours in
every character position. The
drawback, as we have seen, is that
horizontal resolution is halved.

The four colours are dictated, first
by the bit patterns in the character
bytes, and second, by the values of the
colour registers. Look at the box to see
how this works.

Look at this example. Let's set
the screen colourto black,
foreground colour to yellow,
background colour 1 to dark
green and background colour 2
to light green:

POKE 53281,0: POKE
53282,5: POKE 53283,13

Foreground colour obviously
depends where on screen the
character will appear but
suppose it's at 1024. The colour
location is 55296 so for yellow:

POKE 55296, 7

71
Advanced colour

If we put the letter A into 1024 now it will appear like this:

Standard

rn =00

=01

TRY THIS

To see what's happening a little better
let's design some characters to take
advantage of multicolour mode. First,
load the program from chapter 5
which sets up the character set for
user-defined characters.

Now we'll redesign the first four
characters (@. A, B, C) to make a 2 x 2
composite character.

The data statements for our new
design work out like this:

1000 DATA 15, 63, 53, 53,
53, 53, 63, 15

1010 DATA 252, 255, 215,
215, 215, 215, 255,
252

Multicolour

= 10

=11

1020 DATA 12, 12, 0, 0, 0,
0, 0, 0

1030 DATA 12, 12, 0, 0, 0,
0, 0, 0

Now we can add a line to put the
new design into memory:

150 FOR I= 0 TO 31: READ
A: POKE 12288 + I, A:
NEXT

Now we need to turn on multicolour
mode:

160 POKE .53270, PEEKC53270)
OR 16

And now set the colour registers:

170 POKE 53281, 6: REM
SCREEN = BLUE

72
Advanced colour

180 POKE 53282, 1: REM
COLOUR 1 = WHITE

190 POKE 53283, 7: REM
COLOUR 2 = YELLOW

The next section is to display our
new characters:

200 POKE 1523, 0: POKE
1524, 1

210 POKE 1563, 2: POKE
1564, 3

220 POKE 55795, 8: POKE
55796, 8

230 POKE 55835, 8: POKE
55836, 8

16
1--+--j,,,,,d

63
1--1---#.~

63
L--1.--

63
~-1---14~

63
L--1.--

63_.____

63
L--1.--

16

12 :I:::I: :i:::::::
1--~....J....----L~~~------L----l

12 1llii ::::::t:::
1--~....J....----L~~~------L----l

0
l--~....J....----L~"-....j.._--4-----L----l

0
l--~....J....----L~"-....j.._--4-----1-----l

0
l--~....J....----L~"-....j.._--4-----1-----l

0
l--~....J....----l-~"-....j.._--4-----1-----l

0
l---l--L-----l-~1--4--4-----1---1

0
L--l-....L.---1.~L--'-....J....----1---'

The last step demonstrates one of
the most powerful features of
multicolour mode. By changing the
value in one of the colour registers to a
new colour, every dot displayed in that
colour will change instantly. Try it:

240 FOR I = 1 TO 500: NEXT
250 POKE 53282, 4

Multicolour characters are a very
powerful tool - most commercial
games programs make extensive use
of this mode and you can see how
effective it can be. Keep
experimenting.

l--+--l----+--l~;~w~n~®~tl--+--112
::::II\ !Iiili 12

l--4--L-----1---1~""""'------1----1

0
l--~-L-----1---11--4--4-----1----1

0
l--4--L-----1---11--4--4-----1----1

0
l--~-4-----1----11--4--4-----L--I

0
l--4--L--+---11--4--4-----L--I

0
1---1--+--+--ll--+--L--+--I

0
.__......___,__.___,~_.____.____.____.

73
Advanced colour

As with multicolour characters we can
display four colours in the 8 x 8 cells
but horizontal resolution is halved from
320 to 160. The advantage here is the
extra colour resolution.

In normal high resolution mode if
you draw a line in one colour, then
draw a second in another colour which
enters an 8 x 8 character cell already
occupied by the first, the dots in that
area of the first line will change colour.
This can ruin a carefully created
display. Using multicolour each pair of
dots can be in any of the 16 possible
colours without affecting any other
pair.

Obviously the background colour
will appear where no bits in the bit
pair are on. To get foreground colour
in any character cell POKE the colour
code into 55296 + cell number then
turn on both bits.

To get background colour 1, turn on
the second bit of each pair. Referring
to the high resolution program in

chapter 7, set X like this:

500 FOR X = 51 TO 100
STEP 2

This will draw a line from 50 to 100
turning on bits 51, 53, 55 etc. Similarly
to draw in background colour 2, use:

500 FOR X = 50 TO 99
STEP 2

This turns on bits 50, 52, 54 etc.
There is an extra POKE to get into

multicolour bit mapped mode. In
addition to POKE 53270, PEEK(53270)
OR 16, we need POKE 53265,
PEEK(53265) OR 32.

To turn off multicolour use:

POKE 53265, PEEKC53265) AND
223: POKE 53270,
PEEKC53270) AND 239.

----Checklist:----

In this chapter you've learned:

D How to use extended background
colour mode.

D How to use multicolour mode.

-----Project-----

D Create a full-blown title page for an
imaginary game using user-defined
characters and the different colour
modes. (Save it - you might write
the game one day.)

74
Advanced colour

•
High resolution graphics

75

High resolution, or bit map, graphics is
perhaps the area of micro
programming which provokes most
interest among would-be
programmers and yet it is one of the
least used facilities on most home
computers. The reason for this is that a
colourful hi-res display can be
extremely impressive but actually
achieving it can be cumbersome and
very slow.

A moment's examination shows the
problems. As the name bit mapping
indicates, every single dot on the
screen is controlled by one bit of RAM.
On the 64 with a 40 x 25 character
screen, this means there are 40 x 8
dots across and 25 x 8 dots down -
320 x 200 or 64,000 dots, all of which
must be controlled by your program.

In addition, the 64 has no commands
in Basic to let you use this capability
and in any case, Basic is generally
much too slow. High resolution
displays are really only practical with
machine code. The alternative is to
buy one of the many Basic extension
programs which add new commands
to Basic allowing you to create hi-res
screens relatively quickly and with
considerably greater ease.

However, all of this is not to say that
it can't be done from the ordinary
machine.

The main question, as with user
defined characters, is where to locate
the bit map in memory. The answer is
the same. In fact the simplest way to
implement high resolution is to think of
the screen in terms of an 8K block of
user-defined graphics. To put it
another way, in user-defined graphics
the screen changes but the characters
stay the same. In high resolution the
screen stays the same but the
characters change to produce the

display.
The simplest place to put the hi-res

screen for experimentation is at 8192.
The memory location controlling the
position is the same as controls the
character set - 53272 - and the
command is:

POKE 53272, PEEK(53272)
OR 8

This puts the screen at the eighth lK
block above the bottom of the VIC
window, or 8192.

Next we tell the 64 that we want bit
mapped graphics with this command:

POKE 53265, PEEK(53265)
OR 32

Enter these two lines as a program
then RUN it and see what happens. To
get back to normal press RUN/STOP
and RESTORE. The reason for the
garbage is that the memory locations
we're using for the bit map contain
random values. Before we do anything
we have to clear all these locations by
POKEing them with zeroes. The other
requirement is to prevent Basic from
overwriting our new screen.

With these routines our program
now looks like this:

76

10 POKE 52, 32: POKE 56,
32

2f1l PRINT CHR$(147): SC=
8192: co = 1024

30 POKE 53272, PEEK(53272)
OR 8

40 POKE 53265, PEEK(53265)
OR 32

50 FOR I = SC TO SC + 7999
60 POKE I, 0: NEXT

The next point to consider is the
colour of our hi-res screen. The colour
information is stored, not in the normal
colour RAM, but in the original low

High resolution graphics

resolution screen starting at 1024.
Foreground and background colours
are determined by the two nybbles in
each byte. So to get a white
foreground and black background we
must POKE all 1000 locations with 16:

Colour codes for bit mapped screen

70 FOR I = CO TO CO + 999
80 POKE I, 16: NEXT

Now, at last, we're ready to start the
actual drawing and this is where things
get complicated.

Colour Foreground Background
0 Black

White
Red
Cyan
Purple
Green
Blue
Yellow
Orange
Brown
Light Red
Dark Grey
Medium Grey
Light Green
Light Blue
Light Grey

FOREGROUND

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

112 + 6 = 118
= 16 x 7
YELLOW BLUE

To determine the value to be
POKEd into the colour location simply
take the value of the background
colour and add it to the value of the
foreground colour. For example, a

77

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BACKGROUND

0

black background and white
foreground gives 16. A yellow
foreground on a blue background
gives 118.

High resolution graphics

BYTEO

BYTE!

BYTE2

BYTE3

BYTE4

BYTE5

BYTE6

BYTE7

CHAR
0

CHAR
40

CHAR
920

CHAR
960

BYTE 8

BYTE 9

BYTE 10

BYTE 11

BYTE12

BYTE13

BYTE14

BYTE15

CHAR
1

78
High resolution graphics

CHAR
38

CHAR
998

CHAR
39

CHAR
79

CHAR
959

CHAR
999

If you look at the bit map diagram
you'll see that the usual logic of screen
memory breaks down here because of
the way in which the screen bytes are
stored. If we want to draw a line from
top to bottom of the screen it is not
sufficient to specify a starting point and
then increase or decrease the co
ordinates regularly. So first we need a
routine to calculate the position of each
dot in memory in terms of an X and Y
co-ordinate.

If we think of the screen again as
being 40 characters across we can
determine which character position
the target dot is in by CH = INT (X/8).
Similarly the row will equal INT(Y/8).
The line in the character position
equals Y AND 7. So we can calculate
the byte as follows:

BY = SC + RO * 320 + CH *
8 + LN

25.25 75.25------.

25,75••••5.75

The target bit = 7 - (X AND 7). To
turn it on use this: POKE BY, PEEK
(BY) OR 2 j Bl.

If all of this sounds like mathematical
mumbo-jumbo, don't worry. The idea
is to be able to use it so just add this
subroutine to our program:

1000 CH = INT(X/8)
1010 RO = INTCY/8)
1020 LN = Y AND 7
1030 BY = SC + RO * 320 +

8 * CH + LN
1040 BI = 7 - ex AND 7)
105,0 POKE BY, PEEKCBY) OR

(2 j Bl)
1060 RETURN

With this routine incorporated we
can now think of the screen in
straightforward terms. The top left
corner is 0,0; the right is 319,0; bottom
left is 0, 199 and bottom right is 319, 199.

319
J:: .•..•. v.

199 ----------------319,199

79
High resolution graphics

Let's add some lines that will
actually draw something (and stop the
program running into the subroutine):

2QJQJ y = 25
210 FOR X = 25 TO 75
220 GOSUB 1QJQJQJ
230 NEXT
240 FOR Y = 25 TO 75
250 GOSUB 1QJQJQJ
26Ql NEXT
27Ql FOR X = 75 TO 25

STEP -1
280 GOSUB 1QJQJQJ
29Ql NEXT
3QJQJ FOR Y = 75 TO 25

STEP -1
310 GOSUB 1QJQJQJ
32Ql NEXT
999 END

Finally, let's add a routine to put
everything back to normal before the
program finishes. This routine will wait
for the RETURN key to be pressed and
then bring things to a tidy conclusion:

7QJQJ GET A$: !FA$ <>
CHR$(13) THEN 7QJQJ

710 PRINT CHR$(147)
720 POKE 53265, PEEK(53265)

AND 223
73QJ POKE 53272, PEEK(53272)

AND (255-8)

If you run this program now you can
see a perfect demonstration of the
speed of Basic hi-res plotting. Any
complex display is going to take at
least several minutes. We can gain a
slight increase in speed by using
predetermined values when turning
on the pixel in this line:

POKE BY, PEEK(BY) OR
2 t BI
The t is the symbol for

exponentiation and in this line gives us

2 to the power of BI. Exponentiation is
one of the slowest functions on the 64
so by working the values out in
advance we save a little time. Add the
following subroutine to the program:

2QJQJQJ DIM A (7)
2Ql1Ql FOR I = QI TO 7
2Ql2Ql A(!) = 2 t I
2Ql3Ql NEXT
2Ql4Ql RETURN

Now amend line 1050 as follows:

1Ql5Ql POKE BY, PEEK(BY) OR
A(Bl)

And add:

5 GOSUB 2QJQJQJ

Even this is not going to speed
things up dramatically and it's obvious
that you won't be able to use these
routines for hi-res animation. However,
you could certainly create a hi-res
background for a game and use sprites
in the foreground.

One last thing remains: how to turn
off a pixel. You may recall from the
chapter on Boolean operators that we
use OR to turn on a bit and AND (255 -
BIT) to turn it off. Using the routines
given above, the following line will
turn off the target pixel:

POKE BY, PEEK(BY) AND (255
- A(BI))

If you enter and save this program,
you'll find a routine in the chapter on
interfacing which will allow you to use
a joystick to create a high resolution
sketchpad.

80

One of the trickiest high resolution
routines is the circle, largely because
of the more complex equations
needed to plot all the points around
the circumference.

There are a number of different

High resolution graphics

methods which largely involve
compromises between speed,
simplicity and the quality of the final
image. The one that follows is not the
fastest or the best, but it is the simplest.
You can add it as a subroutine to the
high resolution program.

400
5000

5010

5020

GOSUB 5000
XC = 160: YC = 100:
R = 25:REM SET CIRCLE
CENTRE AND RADIUS
FOR X1 = -R TO R:
Y1 1= SQR(R*R-X1*X1)
X = XC + X1: Y = YC
+ Y1

81

5030 GOSUB 1000: REM PLOT
POINT

5040 Y = YC - Y1
5050 GOSUB 1000
5060 NEXT
5070 RETURN

Try changing line 5010 to STEP in
larger or smaller increments and see
the effects. Smaller steps produce a
better-looking circle while larger
steps are much faster.

For a better routine, try one of the
many books dedicated to computer
graphics.

0
0

High resolution graphics

----Checklist----

In this chapter you've learned:

D How to set up a high resolution
graphics screen.

D How the 64 'sees' the screen in high
resolution mode.

D How to use colour with bit-mapped
graphics.

D }low to turn a pixel on and off.

-----Projects-----

D Get a high resolution screen with
the reconfigured memory map from
chapters.

D Write a program to switch from a
normal text screen to a high
resolution screen and back again.
Hint: the bit-map screen will be
untouched if it's protected from
Basic. The text screen will have to
be stored somewhere (copied into
an array?) and then reinstated.

82
High resolution graphics ·

Introduction to sprites

r . j~~~l~--~b -~·-~'=·---,=-+~1-
~.' -~~ --~-<;•.·,~,~~-----+-~-•~v-~--11-
! . +~-+~~+ ... ~ w -,,i"": """'i"'. !--t--+ rn7:
', ___;' '
(,

83

Sprites are perhaps the single most
powerful graphics feature of the
Commodore 64 - or any home micro
come to that. Also sometimes called
Moveable Object Blocks (MOBs) they
allow you to create high resolution
characters which can be moved
around the screen with ease.

On many home computers the only
way to create moving displays is to
print a character, pause, delete it,
pause, print it again in another
position. If this object is to move over a
second, there is a further step in that
the background object has to be
remembered' and replaced after the

moving object has passed on. On the
64 sprites do away with most of these
steps. Once the character is defined, it
is only necessary to tell it where to be
- the computer takes care of all the
other details.

Unfortunately, the power of sprites is
lost to most programmers because of
the simple dialect of Basic on the 64.
Commodore, sadly, decided not to
add extra commands to allow the
simple use of sprites so it is a
painstaking business. However, the
advantages are well worth the effort so
let's see if we can take some of the
pain out of the process.

84
Introduction to sprites

First, what exactly is a sprite? On the
64 each sprite has a resolution of 24
horizontal dots by 21 vertical dots.
From what you have learned of high
resolution graphics you might guess
that each sprite needs 63 bytes to
define it (3 bytes wide x 21 bytes
deep). The 64 demands that each set
of sprite data be separated by a zero,
so each data block is 64 bytes long.

For practical purposes you can have
eight sprites on screen at any time. It is
possible to greatly increase this
number but it requires some very
advanced machine code
programming to do so. However, it is
possible to have many more sprites in
memory at once - eight is simply the
display limit. For example, you could
have four versions of each sprite and
display them in rotation. The limiting
factor is the memory available to the
VIC chip (remember the 16K
window?). 255 sets of data is the
absolute limit, although you would
rarely need more than a dozen or so.

So for each sprite you need a
minimum of 64 data statements.
Everything else is provided in
hardware.

There are a number of locations in the
64 memory map that control various
aspects of the sprites. Not surprisingly,
most of these are in the VIC chip.

First are the sprite data pointers.
These are a single byte each and are
always the last eight bytes of the lK of
screen memory so if you move the

screen, the sprite pointers move as
well. Under normal circumstances
they are at 2040 to 2047. The content of
a pointer register is a number
between 0 and 255 which tells the 64
which block of 64 bytes contains the
data for the sprite. For example:

100 POKE 2040, 13

tells the 64 that the data for sprite 0
begins at 13 * 64 or location 832
counting from the bottom of the VIC
window.

When you turn on the VIC there are
only a few places readily available for
your sprite data. Obviously you can't
use 1024 to 2023 because the screen
memory is here. Other forbidden
zones include most of the first 1024
locations because they contain the
operating system pointers, and
locations 2048 upwards because this is
the start of Basic storage. By raising the
bottom of Basic more space can be
gained but there are three places
readily available and for most
purposes these will be sufficient.
These are in the cassette buffer
starting at 832, 896 and 960.

You can probably guess some of the
sprite controls - on/off switches for
each sprite, X and Y locations and the
registers to control the colour of the
eight sprites.

However, there are some advanced
features too. Sprites have a fixed
priority in relation to one another. This
means that if more than one sprite
appears in the same place, the lowest
numbered sprite will appear 'in front'
of the others. But you can make sprites

85
Introduction to sprites

appear either behind or in front of
background characters.

There are also registers which allow
you to detect collisions between
sprites and between sprites and the
background display, to set individual
sprites to multicolour, and even to
expand them horizontally or vertically
or both.

As you can see this is a very
powerful collection of features. And
you might have guessed the time has
come to roll up our sleeves and start
POKEing.

TRY THIS

Generally a sprite will be created in
precisely the same way as a user
defined character, using READ and
DATA statements. But for a quick
demonstration let's use a solid square:

10 FOR I = Ill TO 62
20 POKE 832 + I, 255
30 NEXT

Next, set the sprite pointer for sprite
0 to 832 which is data block 13:

40 POKE 2040, 13

Finally, put the sprite into the middle
of the screen, set the colour to white,
and turn it on:

50 POKE 53248, 160
60 POKE 53249, 100
70 POKE 53287, 1
80 POKE 53269, 1

Notice that when the program ends
the sprite is still there on the screen. In
direct mode enter:

POKE 53248, 50

86
Introduction to sprites

DEFINE
THE

SPRITE

SET SPRITE
POINTER

SETX,Y
POSITION

COLOUR
SPRITE

TURN ON

Now switch the sprite to background
priority with:

POKE 53275, 1

To turn off the sprite enter: POKE
53269, 0 or press RUN/STOP and
RESTORE.

Let's move the sprite around by
adding a few lines:

90 FOR X = 0 TO 200
100 POKE 53248, X
110 NEXT
120 GOTO 90

Run this and notice the way the
sprite scrolls into view from the left.
This is because the sprite area is
larger than the display area.

Visible
display

area
0
to

255

We'll consider sprite positioning in
more detail in the next chapter. First
let's see how to create a more
interesting sprite. The data is laid out
in this fashion:

Byte 1 Byte 2 Byte 3
Byte 4 Byte 5 Byte 6
Byte 7 etc

and so on for all 63 bytes.
Just as with user-defined graphics

each dot in the sprite is turned on by
setting the relevant bit to a 1. We then
add up the bits to arrive at the byte
values for our data statements. (This is
one of the reasons why programming
sprites can be such a chore - to create

4-----24 to 255 -+---..-t-4--

87
Introduction to sprites

DATA
128643216 8 4 2 l

192, 0, 0,
224, 0, 0,
112, 7, 128,
60, 15, 128,
30, 30, 0,
15, 60, 0,
7, 252, 0,

27, 248, 0,
31. 248, 0,
63, 252, 0,

127, 252, 0,
127, 248, 128,
63, 241, 192,

7, 227, 224,
l. 199, 192,
0, 143, 128,
0, 31, 0,
0, 14, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,

128643216 8 4 2

four sprites involves working out and
entering over 250 values.) TRY THIS

A glance at the accompanying table
shows that many single registers
control all eight sprites. This means
that we need to manipulate each of the
eight bits individually in order to
control one or more sprites without
affecting the remainder.

For example, location V + 21
contains the bit switches to turn sprites
on or off. To turn on sprite 3 we could
use POKE V+21, 8. However, this
would have the side effect of turning
off all the other sprites. So use POKE
V+21, PEEK(V+21) OR (2 j 3).
Alternatively, work out the value of
2 j 3 (8) and use that instead. To turn
on more than one sprite, calculate the
values and add them together. For
example, to turn on sprites 0 and 7 use
POKE V+21, PEEK(V+21) OR 129.

88
Introduction to sprites

Note: for ease of programming use V
as the base of the video chip.

Register

v
V+l
V+2
V+3
V+4
v+5
V+6
V+7
V+8
V+9
V+lO
V+ll
V+l2
V+l3
V+l4
V+l5
V+l6
V+21
V+23
V+27
V+28
V+29
V+30
V+31
V+37
V+38
V+39
V+40
V+41
V+42
V+43
V+44
V+45
V+46

Location

53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53269
53271
53275
53276
53277
53278
53279
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294

Function

sprite 0 X value
sprite 0 Y value
sprite 1 X
sprite 1 Y
sprite 2 X
sprite 2 Y
sprite 3 X
sprite 3 Y
sprite 4 X
sprite 4 Y
sprite 5 X
sprite 5 Y
sprite 6 X
sprite 6 Y
sprite 7 X
sprite 7 Y
x > 255*
sprites on/off
expand sprites vertically
sprite/background priorities
multicolour sprites
expand sprites horizontally
sprite-sprite collisions
sprite-background collisions
sprite multicolour 0
sprite multicolour 1
sprite 0 colour
sprite 1 colour
sprite 2 colour
sprite 3 colour
sprite 4 colour
sprite 5 colour
sprite 6 colour
sprite 7 colour

Note that there are gaps in this table
where registers in the VIC chip are
used for facilities other than sprites.

*V + 16 (location 53264) is used to set
horizontal positions greater than 255.
See chapter 9 for more details.

89
Introduction to sprites

----Checklist----

In this chapter you've learned:

D The theory of sprites.

D The locations in the VIC chip that
control sprite functions.

D How the sprite data is stored.

D How to display sprites in colour.

-----Project-----

0 Using the reconfigured memory
map in chapter 5 adapt the 'square
sprite' program to work (remember
the data pointers and data storage
area will move).

90
Introduction to sprites

Advanced sprites

91

. In the last chapter we looked at how
easy it can be to get a sprite on screen.
Now let's look in more detail at getting
a sprite of our own design to move
about. If necessary, refer back to the
table of sprite registers to see what's
happening.

The first stage is to create the sprite
using squared or graph paper. The
'pointing hand' from the last chapter
can be reduced to the following data
statements:

1000 DATA 192, 0, 0, 224,
0, 0, 112, 7

1010 DATA 128, 60, 15,
128, 30, 30, 0, 15

1020 DATA 60, 0, 7, 252,
0, 27, 248, 0

1030 DATA 31, 248, 0, 63,
252, 0, 127, 252

1040 DATA 0, 127, 248,
128, 63, 241, 192, 7

1050 DATA 227, 224, 1,
199, 192, 0, 143, 128

1060 DATA 0, 31, 0, 0, 14,
0, 0, 0

1070 DATA 0, 0, 0, 0, 0,
0, 0, 0

To put the data into the correct
place is a simple job for a FOR .NEXT
loop. We'll put the hand into the data
space starting at 832 which is block 13
and set V to the base address of the
VIC chip:

10 PRINT CHR$(147)
20 v = 53248
30 POKE 2040, 13
40 FOR I = 0 TO 62
50 READ A: POKE 832+1, A
60 NEXT

If everything has been done
correctly a white pointing hand should
appear in the centre of the screen. In
fact, it will be slightly off centre. In the
last chapter we mentioned that the
visible area is smaller than the display
area.

This is deliberate and allows you to
scroll your sprites into view from
behind the border area. The borders
are 23 pixels wide at the sides and 49
pixels deep at the top and bottom. So
to have the whole of the sprite in view,
the X coordinate must be greater than
23 and the Y coordinate must be
between 50 and 229.

92
Advanced sprites

Let's add some lines to our program
and put the sprite into action.

70 x = 24: y = 60
80 POKE V+21 , 1
90 POKE V+39, 1

100 IF X+7 > 255 THEN X =
24: Y = Y+8: PRINT
CHR$(13); ·

105 IF Y>255 THEN END
110 POKE V ,X: POKE V+1, Y
120 GETA$: IF A$ = II,, THEN

120
130 FOR X = X TO X+?: POKE

V,X: NEXT
140 PRINTA$;
150 GOTO 100

Referring back to the table of sprite
registers you'll see that lines 80 and 90
turn on the sprite and set the colour to
white. Line 100 looks odd here
because it's checking for a condition
before anything has happened,
specifically to see whether the sprite is

moving too far across the screen (more
on this in a minute). If X would become
too great the sprite is moved down and
back to the left of the screen.

Line 110 displays the sprite and then
the program waits for you to press a
key. Run the amended program and
when the sprite appears, type
something on the keyboard and see
what happens.

This is a simple example of how to
relate what the sprite is doing to what
happens on the normal text screen.
Provided that the sprite position is set
to the first print position it's easy to
keep track of things. Simply move the
sprite eight pixels across the screen to
the next print position, or eight pixels
down to the next screen line.

But what if you don't know in
advance where the sprite will be? We
can work out the nearest print position

-.... _.-------11 320 pixels ; ;,-----...1_..-

..
93

Advanced sprites

quite simply. If the sprite is at X
position 86 and Y position 140 it works
out like this:
screen column= INT(X-24)/8
screen row = INT(Y -50)/8

Remember that we have to deduct
24 and 50 for the border areas. In this
case we get 86-24 = 62, divided by
8 = 7 and 6 left over; and 140-50 = 90
divided by 8 = 11 and 2 left over so the
top left comer of the sprite is in the
seventh column across and the
eleventh row down.

TRY THIS

With this information, change our
program so that you can print a
message in the middle of the screen.
Hint: Making a sprite appear in

I SPRITE (COLUMN l) I

reverse video is easy with the
following line. It simply turns off all the
dots that were on and vice versa. In
this case assume that the sprite data is
in the block starting at location 832:

FOR I = 832 TO 832 + 62:
POKE I, 255 - PEEK(!):
NEXT

So far our sprite movement has been
confined to the left of the screen with X
values less than 255. This is because
we cannot POKE a value larger than
this into any memory location.
However, we will often want to use the
full screen width and there is a
register that allows us to do this. In the
sprite register table this is location

INUMBERI

I REVERSED SPRITE I I 255-NUMBERI

94
Advanced sprites

254

252

248

240

224

V+ 16 (53264).
Normally this holds the value 0. By

changing it we can tell the 64 that a
sprite has crossed the line and that the
VIC chip should now put it on the right
of the screen. Each of the eight bits
controls one of the eight sprites and it
works like this:

Imagine sprite 0 moving across the
screen. When the X coordinate in
location V reaches 255 it cannot go any
higher (or an ILLEGAL QUANTITY
ERROR will result). We now POKE
V + 16, 1 and this resets X to 0 but the X
coordinate now starts at 256.

For example, on the high resolution
screen we have positions 0 to 319
across the screen. If sprite 0 is at 200
the relevant registers will look like
this:

PEEK(V) = 200
PEEK(V+16) = 0

When sprite 0 'crosses the line' and
is now at position 256, the registers
must look like this:

PEEK(V) = 0
PEEK(V+16) =
At position 319 the sprite will vanish

behind the righthand border but the
registers will look like this:

PEEK(V) = 91
PEEKCV+16) = 1

Making use of Boolean operators
once more we can work out the values
for V + 16 if more than one sprite has
crossed the line. For example, if sprite
7 is at position 300thenV+16 will be
set to 128. If sprites l and 2 are over
the line then V + 16 will be set to 6.

If you expect your sprite to use the
full screen you need to include the
following check:

500 IF X + X1 > 255 THEN
POKE V+16, 1: POKE V,
0

where Xl is the increment for the
horizontal position. If you want your
sprite to disappear on the right and
reappear on the left then this line will
do the trick:

500 IF PEEK CV+16) = 1 AND
X > 91 THEN POKE V, 0:
POKE V+16, 0

Both of these examples apply to
sprite 0 only.

96
Advanced sprites

Another feature of sprites on the 64 is
the ability to double their size both
horizontally and vertically with a single
POKE. The relevant registers are

BO
EXPANDY
POKEV+23 ..

DO EXPANDX
POKEV+29 ..

V + 29 and V + 23 respectively, and
once more these two locations use
their eight bits as on/off switches for
the eight sprites.

~,, OEE
t

0
rn

96
Advanced sprites

To expand sprite N, use the
following line:

POKE V+29, PEEKCV+29) OR
2tN

and to unexpand it use:

POKE V+29, PEEK(V+29) AND
(255-(2 t N))

One of the keys to computer animation
is the ability to detect and act upon
collisions. Think of almost any
computer game and the chances are it
will depend in some way on this ability
- missiles hitting targets, balls
rebounding from obstacles, cars
running off the road.

Collision detection with sprites is
made easy by the presence of two
registers in the VIC chip: V +30 and
V +31. These record collisions
between sprites and between a sprite

,----

I

I

L

L - - - -

and the background characters
respectively. Each bit is set when the
corresponding sprite is involved in a
collision. For example, ifPEEK(V+31)
= 16 then sprite 4 has hit something.

r----

"l

:-1 I

L
I

_J
Ink dots must coincide

_J to make a collision

97
Advanced sprites

TRY THIS

The following program will
demonstrate the points using two
simple sprites. It will move them about
and produce a suitable message on
collision.

10 PRINT CHR$(147)
20 v = 53248
30 FOR I = 832 TO 832

+ 64
40 POKE I, 255: NEXT
50 POKE 2040, 13: POKE

2041, 13: POKE V+21, 3
60 POKE V+39, 1: POKE

V+40, 7
70 POKE V, 75
80 POKE V+3, 200
90 FOR 1=1 TO 200

100 POKE V+1, I
110 POKE V+2, 250-1
120 REM: POKE V+30, 0
130 A = PEEKCV+30)
140 IF A <> 0 THEN 160
150 NEXT: GOTO 90
160 PRINT "CRASH ! "
170 END

Note line 120 which would set the
collision register to zero. This may
seem strange but in some programs it
is necessary to prevent an old collision
from messing things up. Its purpose
here would be to make sure that we
only detect collisions when we are
looking for them. In this program it isn't
really necessary, hence the REM
statement which makes it ineffective.
Edit the line to remove the REM then
run the program two or three times in a
row and see what difference it makes.

In this case the job is easy because
we are dealing with only two sprites so
if V +30 is set at all our two sprites have
collided. How do we detect collisions

where there are more than two
sprites? The bit values give us the
answer.

For example, if PEEK(V + 30) = 128
then sprite 7 (bit value 127) and sprite
0 (bit value 1) have collided. If the
value of V +30 is 255 then all the sprites
have collided.

The problem here, of course, is that
all the sprites may be in one place, or
they may have hit in groups of two or
three, so a further check of each
sprite's X and Y positions is necessary.

Similarly in detecting sprite to
background collisions, there is no way
of telling what background character
is involved. You need to use the
technique given earlier to convert the
sprite's position into a screen position,
and see what's there.

In this example we have three sprites
on screen, sprites 0, 1 and 2. If at this
point we were to PEEK (V +30) and
PEEK (V +31) we would get the values
5 and 2 respectively indicating that
sprites 0 and 2 have collided with each
other, and sprite 1 has hit a
background character.

At this point there's no way of telling
which character has been hit so we
need the following kind of routine:

100 ROW = PEEKCV+3) - 50
110 ROW = INTCROW/8)
120 COL = PEEK(V+2) - 24
130 COL = INTCCOL/8)
140 HIT = 1024 + COL * ROW

Now we can find the screen code of
the character in the collision by PEEK
(HIT) which, in this case, will give us
42 - an asterisk.

98
Advanced sprites

Sprite 1 I<

, r

The conclusion to be drawn from all
this is: don't be too ambihous in your
programs. If you have eight sprites
whizzing about on screen and the
game depends on sprite to sprite

In the same way that we can use
multicolour mode with user-defined
characters and in high resolution bit
map mode, we can have multicolour
sprites.

Multicolour sprites have the usual
disadvantage of horizontal resolution
being halved- from 24 to 12 dots- and

I Sprite 2 U; Sprite O

collisions, or sprite to background
collisions, you have to allow for the
time it will take the 64 to find out what's
hitting what. The action will likely slow
down to a crawl.

each dot becomes two pixels wide.
The four colours available are
contained in four locations: the screen
colour (background); sprite
multicolour 1 (register V +37); sprite
multicolour 2 (register V +38); and the
normal sprite colour registers
between V +39 and V +46. However,

99
Advanced sprites

just to keep things interesting
Commodore decided that multicolour
sprites would work a little differently
from the other multicolour modes.
Whereas user-defined graphics and
bit map mode have 11 as the bit pair
for the main colour, sprites use bit pair

One of the advantages of multicolour
sprites is that you can have some
sprites in normal mode and others in
multicolour. The choice is yours and is
controlled by register V + 28, another
of those single byte locations that
controls eight sprires. To turn a sprite
to multicolour, you have to set the
relevant bit of V + 28. Use this line to

Remember what happened when we
turned on multicolour mode with
normal text? They became a colourful
mess. The same will happen with your

10. Bit pair 11 takes its colour from
multi-colour 2 (V +38).

If all of this sounds a little confusing,
it's only because there are a number of
locations to keep track of. If you
approach things methodically, you
shouldn't go far wrong.

switch sprite N without affecting any
other sprite:

POKE V+28, PEEKCV+28) OR
2jN

and to turn it back to normal:

POKE V+28, PEEKCV+28) AND
C255 - 2jN)

sprites unless you design them
specifically to take advantage of
multicolour mode. If you need to have
two versions of the same sprite

100
Advanced sprites

Multicolour space invader - colour map

Background Multicolour 1

CJ=OO IJlfJll=Ol

A space invader design marked for
colour in bit pairs. The actual bit
design is overleaf.

Sprite colour •=10

101
Advanced sprites

Multicolour 2 •=11

alternating between normal and
multicolour modes you must design it
twice and then change the sprite
pointer to look at the required version.

Another point to beware while using
multicolour mode concerns collision
detection. In normal mode a collision
will be flagged if any part of the sprite
which is on hits another non
transparent object. In multicolour
mode, however, the 64 considers bit
pair 01 to be transparent too. So if you
design a multicolour sprite which
largely uses multicolour 1, you may
have problems detecting a collision.

On the other hand this can be useful
if you want a sprite on screen which
should not cause collisions. Just make it
all multicolour 1.

Now let's go through the process of
creating a multicolour sprite step by
step - in this case, our old friend the

1
1 1

1 1 1
1 1 1 1 1
1 l 1 1 1
1 l 1

1
l
1
1
1
1

space invader.
The first stage is to design the sprite

on squared paper. It is a help to use
graph paper marked off into a 24 x 21
grid, then mark each pair of squares
going across for the bit pairs.

Use different pens, or three kinds of
·shading, for the different colours
otherwise it is easy to get confused.

Next, work out the values of the 63
bytes. If necessary, transfer your
colour design onto another grid
marked in pixel pairs.

Third, write the Basic routine to
POKE the data values into the sprite
data block

Finally, set the colour registers to
·the values you want, like this:

1
1
1
1 1

POKE V+29, 1: REM turn on
multicolour
POKE V+39, 1: REM sprite
colour white
POKE V+37, 5: REM
multicolour 1 green
POKE V+38, 2: REM
multicolour 2 red

1
1 1
1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 I
1 1

1
1

1
1

1 1
1

1 1
1
1

1 I 1 1 I
1 1 1 1 1
1 1 1 1
1 1 1 1

1
1
1 1

1
1

102
Advanced sprites

1 1
1 1
1
1

1
1
1

(START Jf' Wt™-~~~ •
YES

~
WORK IN
BIT PAIRS

~NO

DESIGN&
WRITE DATA

ROUTINE ..
SET SPRITE

POINTER .. ~
YES SET COLOUR

~ REGISTERS
&TURNON

MULTI-COLOUR

.NO

SET SPRITE

'f COLOUR ..
YES

.~

SETX.Y ~
POSITIONS ~

TURN ON L
1.~tF~-i'f'.,i,>T1i;,.1;'f-'.-:- ;:/, 3~<

103
Advanced sprites

It's worth saying again at this point:
sprites take time to set up but if you
proceed logically and carefully you
should not have much trouble and the
results are well worthwhile.

----checklist----

In this chapter you have learned:

D How to design your own sprites.

D How to relate the sprite display area
to the normal display screens.

D How to use the full width of the
screen for sprite displays.

D How to expand sprites.

D How to detect sprite and
background collisions.

D How to define a multicolour sprite
and set the multicolour registers.

-----Projects-----

D Amend the 'writing hand' program
to use the full-width screen.

D Write a program to move a sprite of
your own design around the screen.
Position random blocks on screen
and delete them when your sprite
comes into contact.

104
Advanced sprites

Ii!
H

I lli u

Animation

105

Some micro owners use their
computers for word processing, some
for storing information, some for simply
learning about computers but the one
use almost every owner has in
common is computer games - lone
spaceships fighting off the alien
hordes, heroic humanoids leaping past
falling hazards, racing cars hurtling
round grand prix circuits.

And the thing that makes a
computer game unique is graphic
animation. Only computers have the
power to keep large numbers of
objects moving on screen in response
to the player and in the Commodore 64
you have a powerful tool to help you
explore the techniques of animation.

In this chapter we'll look at the
different ways of animating objects
using block graphics and sprites, and
at ways of speeding things up when
Basic starts to run out of steam.

At the simplest level animation
involves displaying an object, pausing,
blanking it out then displaying it in a
slightly different position. The easiest
example is a moving ball since it
doesn't change when moving, unlike
people and animals.

TRY THIS

Try the following example:

10 PRINT CHR$(147)
20 POKE 53280, 0: POKE

53281, QI
30 x = 0: y = 13
40 SC = 1024: CO = 54272
50 L = SC + X + Y * 40

106
Animation

60 POKE L, 88: POKE L +
co, 1

70 FOR D = 1 TO 50: NEXT
80 POKEL, 32
90 x = x + 1

100 IF X > 39 THEN X = 0
110 GOTO 50

This program simply moves a ball from
one side of the screen to the other and
then starts again but it involves most of ·
the principles of animation.

There are several points to note:

D The use of variables for the start of
screen memory (SC) and the value
to be added to get colour memory
(CO).

D The use of X and Y coordinates to
determine the screen position.

D The simple calculation to work out
the screen location of the object
(line 50). X tells the 64 how far
across the screen the object is, Y*40
tells it how far down the screen.

D The delay loop in line 70. Try
changing the value here and then
delete it altogether and see the
difference.

Suppose we want to confine the object
within the screen as though the screen
border were physically solid. This
involves another important factor in
animation - response to boundaries.

107
Animation

Edit line 20 like this:

20 POKE 53280, 6: POKE
53281, 0

Now we need to add two new
variables to control the change in
direction: DX and DY:

35 DX = 1 : DY = 0

Finally make the following changes:

90 X = X + DX: Y = Y +
DY

1QJQJ IF X = 39 THEN DX =
-1

110 IF X = 0 THEN DX = 1
120 GOTO 50

Run the program now and the ball
will appear to bounce from one side of
the screen to the other.

The introduction of DY allows us to
move the ball up and down as well as
across the screen. Change the value of
DY in line 35 to 1 and add these lines:

105 IF Y = 24 THEN DY =
-1

115 IF Y = 0 THEN DY = 1

So far so good. But our response
depends on the edges of the screen.
What if we wanted to introduce
another obstacle? This is a little more
complicated but hardly difficult. First
let's put the obstacle on screen: add
this subroutine and line 45:

45 GOSUB 500
500 OB = SC + 19 + Y * 12
510 POKE OB, 160: POKE OB

+ co, 7
520 POKE 08+1, 160: POKE

OB+1 + co, 7
530 RETURN

Next the crucial part - to determine

108
Animation

• 0 .~ ~.

~ ~
•

~- ~
I I

if our ball has hit the blocks. Actually,
we check to see if it would hit the
blocks next move. Because the ball
has four possible directions we should
check four possible locations but we
can take a shortcut by saying in effect,
'if the new location is not a space then
DX= -DX'.

Make the following additions:

55 IFPEEK(L) <> 32 THEN
DX = -DX: GOTO 90

85 GOSUB 200
200 IFPEEKCL+DX) <> 32

THEN DX = -DX
210 IFPEEKCL+DY) <> 32

THEN DY = -DY
220 RETURN

To abbreviate the program a little
we can change lines 100 to 115 like
this:

100 IF X = 39 OR X = 0
THEN DX = -DX

110 IF Y = 24 OR Y = 0
THEN DY = -DY

thus making the necessary checks in
two lines not four.

The above program is not the most
efficient or elegant way of doing things
but if you have followed things so far
you should have a good basis for
understanding the way simple
animation works.

Let's look at another way of giving the
impression of movement. Instead of
moving the foreground object around
the screen, this time we'll move a
background while the object remains
stationary.

The following program displays a
crude plane flying above a random
landscape.

109
Animation

5 DIM S(3): S(1)=162:
SC2)=175: S(3)=185

10 PRINT CHRSC147)
20 POKE 53280, Ill: POKE

53281, Ill
30 SC = 1024: CO = 54272
40 GOSUB 100
50 FOR I = 1 TO 160
60 PRINTPOS; MIDSCSS,I,40)
70 PRINT OBS
80 FOR D = 1 TO 50: NEXT
90 NEXT I
95 GOTO 50
99 END

100 OBS = "[HOME + 5

Although some of this may look
complex, it is quite a simple program.
Lines 100 and 110 create the plane,
lines 130 to 170 create the random
landscape using the CHR$ values set

CURSOR DOWNS]" +
CHRSC182)

110 OBS = OBS + CHRSC162)+
CHRSC185)+CHRSC175)+
CHRSC175)

120 PO$ = "[HOME + 15
CURSOR DOWNS]"

130 FOR I = 1 TO 60: SSS =
SSS+ CHRSC164): NEXT

140 FOR I = 1 TO 100: S =
INTCRNDC0)*3+1)

150 SS = SS + CHRSCSCS>)
160 NEXT
170 SS = SSS + SS + SSS
180 RETURN

in the array S(3). The action is carried
out in lines 50-95 which repeatedly
print a slightly different part of the
landscape string S$.

110
Animation

TRY THIS

If you run this you may see the
potential for a simple game. AB an
exercise, try to introduce a bombing
routine. This would be easy since the
position of the plane doesn't change
and only one keypress is needed.
Once you get this to work, introduce
targets into the landscape string and
check for hits using the same
technique as in our bouncing ball
program.

In this case we used only strings
which are printed onto the screen. The
method you choose will depend on the
kind of animation you are using. For
lots of small objects, POKE is probably
the best technique while for large,
composite characters, PRINTing a
string will be quicker. If you use the

AB we have already seen in the
chapters on sprites, many of the
problems of animation, such as

SYS AT command from chapter 3 you
can have the speed of PRINT plus the
convenience of POKE.

However, there is one circumstance
which demands that you use POKE
and PEEK for animation and that is
where you need to know what other
objects are on screen and where they
are. Try to imagine a routine using
PRINT only which would determine
whether your object has hit anything
else, and if it is to pass over the
background, what colour it should be
after your foreground object is gone. It
could be done but it would be very
time consuming and wasteful of
memory. PEEK solves all of these
problems simply and (relatively)
efficiently.

restoring background displays and
detecting collisions, are made easier
using sprites.

111
Animation

But sprites also take the hard work out
of a new technique - true animation. So
far we have looked at simple
characters that remain the same
throughout the program. But things in
the real world are seldom like that.
They change with motion or when we
see them from different angles.

By manipulating the sprite data
pointers we can display many

consecutive images, each slightly
different, to create the impression of
motion.

The other major advantage is that
block graphics always look slightly
jerky because we can only move them
eight pixels at a time. Sprites can be
moved a single pixel in any direction
giving a very smooth motion that
makes the difference between
professional and amateur software.

TRY THIS

The following program uses three
pictures of a helicopter with the rotor
blades in different positions and
displays them successively to create
the impression of rotor movement. You
can move the chopper up down and
sideways using the keys A, D, W and
X. (Note that the program does not
check for illegal values of X and Y.)

%.$1,·
"···-.... ~.-...... .

,, •..

112
Animation

10 PRINTCHR$(147):GOSUB 310 DATA0,0,0,0,0,0,0,0,0,
1000 0,0,0

20 V=53248:S=13:X=50:Y=75 315 REM *** SPRITE 3 DATA
30 POKEV+21,1: ***

POKEV+39,1:POKEV+29,1 320 DATA0,20,0,0,12,
40 POKEV,X:POKEV+1,Y 0,0,12,0,128,63,224,192
50 POKE2040,S 330 DATA96,48,224,224,24,
60 Q=PEEK(197):IFQ=64 255,255,252

THEN120 340 DATA255,255,254,127,
70 IFQ=9THENY=Y-1 255,252,48,7
80 IFQ=23THENY=Y+1 350 DATA216,0,6,24,0,31,
90 IFQ=10THENX=X-1 254,0,0,0,0,0

100 IFQ=18THENX=X+1 360 DATA0,0,0,0,0,0,0,0,0,
110 GOT0130 0,0,0,0,0,0
120 FORD=1T015: NEXT 370 DATA0,0,0,0,0,0,0,0
130 S=S+1:IFS=16THENS=13 999 REM *** DEFINE
140 GOT040 SPRITES ***
150 END 1000 FORI=0T0191:READA
199 REM *** SPRITE 1 DATA 1010 POKE832+I,A:NEXT

*** 1020 RETURN
200 DATA63,255,255,0,12,0,

0,12,0,128
210 DATA63,224,192,96,48,

224,224,24
220 DATA255,255,252,255,

255,254,127
230 DATA255,252,48,7,216,0,

6,24,0,31
240 DATA254,0,0,0,0,0,0,0,

0,0,0,0,0,0
250 DATA0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
255 REM *** SPRITE 2 DATA

260 DATA3,255,240,0,

12,0,0,12,0,128,63
270 DATA224,192,96,48,224,

224,24,255
280 DATA255,252,255,255,

254,127,255
290 DATA252,48,7,216,0,6,

24,0,31,254,0
300 DATA0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0

113
Animation

This method is the simplest way of
displaying successive images. The
sprite pointer S is first set to the lowest
data block, 13. The program then
PEEKs the keyboard for a control key.
If none is found (Q=64) it jumps to
line 120 which is a delay loop and then
increments the data pointer to the next
sprite image before looping back.

If a control key is pressed the X or Y
coordinate is updated and the delay
loop is skipped since an equivalent
amount oftime has been consumed in
the IF .. THEN sequence. If the delay
loop was performed every time, the
rotors would spin slower every time a
key was pressed.

In all our animation programs so far we
have used delay loops when
displaying the foreground objects.
However, these programs have been
very simple. When your own
programs get more complicated, .using
sound and moving many more ob1ects,
you will find that you must not only
eliminate the delays, but find ways of
speeding up the program to keep the
animation as smooth and fast as
possible.

We have already discussed some of
the methods in earlier chapters. For
example, using the machine code SYS
AT routine instead of POKE or cursor
strings; putting your most used and
time crucial subroutines at the start of
the program etc.

A new technique, particularly useful
in animation, is to work out as many as

possible of the calculations used by
the program in advance. You can do
this either when you write the
program, or get the computer to do it
during the initialisation phase before
the action begins.

As a general rule, if it's easy for the
computer it's harder or slower for you.
Conversely, if you do as much of the
computer's work as possible before
the program is run, it will run much
faster.

Having worked out the information
you can use arrays to store it and the
computer can use these as 'look-up'
tables. For example: if you want to
display more than two or three
successive animated images, and the
image to be displayed depends on the
command received, you could hold
them in an array and have the
command simply change a pointer.

There are a number of other simple
techniques you aan use to speed up
Basic programs but as usual there is a
trade off. This generally comes in the
form of memory taken versus speed of
execution - the fastest techniques will
take slightly more of your free RAM
but in a 64K computer that shouldn't
matter too much.

Tip l: unless every byte is crucial
use floating point numbers.

The first go-faster method involves
integer variables (A% etc). On many
micros these not only take less space -
the computer doesn't need to leave
space for numbers after the decimal
point - but run faster too. However,
Commodore computers handle them
in an odd way. If you want to do any
arithmetic with them - addition,
multiplication or anything else - the 64
will convert them back to floating
point, do the arithmetic, then convert

114
Animation

INTEGER
A%=57

FLOATING POINT
(57·000)

CALCULATE
(57·000 + 3·000)

FLOATING POINT
(60·000)

INTEGER
(60)

them to integer again. That conversion
takes time.

Tip 2: Use literal strings for faster
execution.

The second tip also has to do with
the way the 64 manipulates its data in
order to work with it - this time on
strings. It is faster to use literal strings
than defined strings. For example, if
you define A$ = "THE QUICK BROWN
FOX", it will take the 64 longer to
PRINT A$, than it will to PRINT "THE
QUICK BROWN FOX". In fact, the
second version is almost twice as fast.

115
Animation

PRINT A$ I
~..............,>

LOOKUP
CHARACTER IN A$

,,, ..
NO

Tip 3: Use defined variables for
numbers.

This is exactly the opposite of tip 2.
Here your programs will run faster if
you use POKE SC, SP than if you use
POKE 1024, 32. It's nearly two-and-a
half times faster actually. This is
because the 64 reads those numbers
as ASCII codes. It then converts them
to integers and then further converts
them to floating point and back again.

This is particularly important in
FOR. .NEXT loops where number
routines can be handled dozens,
perhaps hundreds of times. Look at
these times:

10 FOR I = 1 TO 100
20 POKE 1024 + I, 32
30 NEXT

will take about a second to run.

10 SC = 1024: SP = 32
20 FOR I = 1 TO 100
30 POKE SC+ I, SP
40 NEXT

would take just over half a second.
A small difference perhaps, but in the
course of a program it could be
sufficient time to add an extra moving
graphic, or a sound routine.

Animation is probably the most
testing of tasks for a computer running
under Basic. Although all of the
strictures about structured
programming hold true there is only
one hard and fast rule:
If it works in the way you want it to
work it's a good program. In arcade
type games the action is 90 per cent of
everything so if a convoluted,
unstructured program results in quick,
slick animation who cares what rules
you've broken. Just make sure you
know how it works.

116
Animation

D' J
(

----checklist----

In this chapter you've learned:

D The theory of animation and how to
implement it simply using block
graphics.

D An alternative method of simulating
motion by moving the background.

D How sprites make moving graphics
very simple.

D How to create true animation by
displaying different images of the
same object.

D How to detect collisions and have
your program react to them.

D How to squeeze a little extra speed
out of Basic.

----•Projects-----

0 Using the bouncing ball routines
write a Breakout game. Breakout is
old hat by today's standards of
computer games but it is
surprisingly addictive and is a good
training exercise for more
complicated programs. All of the
necessary routines are given:
simply put them together and add
a scoring system.

D Combine the two animation
techniques given (moving an object
and moving the background) to
produce a bomber game where the
plane can move up and down over a
scrolling landscape.

117
Animation

D Add extra sprite data to the
helicopter program so that the
helicopter can move both ways.
Write a program to make use of this
(perhaps a change from death and
destruction - make it a rescue
helicopter picking up stranded
humanoids. You could use user
defined graphics for the
humanoids).

D When you master these techniques,
write an ambitious animated
'cartoon' using the full eight sprites
for eight versions of the same object
- perhaps a person running or a
butterfly flying.

118
Animation

•
Sound

- -,

\\

119

Your Commodore 64 has arguably the
most powerful sound synthesiser on
any personal computer. The chip
which gives the 64 its extraordinary
abilities is the Sound Interface Device
- SID - which has three voices, four
programmable waveforms including
noise, the ability to vary the 'shape' of a
sound, filters and a multitude of special
effects. What all of the jargon means is
that you can create music, mimic a
range of instruments and sounds from
violins to aircraft engines and even
create sounds that have never been
heard before.

On first sight, programming sound
looks to be a frightening task since
there are so many registers to be set
and so many possible values to choose
from. However, it really isn't difficult.
AB with graphics, the process is simply

complicated by the fact that there are
no Basic statements to allow you to
control sound. We have to use POKE
every time. This chapter will give you
a simple step-by-step guide to
producing sound, but first we need to
learn some of the technical terms
involved.

The waveform of a sound describes
the way it would look if you could see
it. The 64 has four waveforms you can
choose from: triangle, sawtooth, pulse
and noise.

Triangle waveforms produce
smooth, mellow sounds like flutes and
oboes, Sawtooth is a much rougher

TRIANGLE

SAWTOOTH

PULSE

~

ty±4(W
~ti{-

NOISE ~
120

Sound

sound, brassy like trumpets or organs.
Noise is a random waveform that can
make sounds from winds to waves
rushing on a beach to percussion and
gunshots.

The fourth waveform, pulse, is a little
different. If you select a pulse wave
form you also have to set a value for the
width of the pulse. This can range from
0 to 4096 and the middle value, 2048,
will produce a square wave. Low
values make very narrow waves and
can be difficult to hear, high values are
a much wider wave and generally
produce better results. Pulse waves
give a range of sounds that can be
similar to both triangle and sawtooth or
very different from either.

Violin: J~

Xylophone:

The envelope of a sound describes the
way it develops - how quickly it
reaches maximum volume (attack),
how it descends to the average volume
(decay), how long it will hold the
average (sustain), and how it fades to
silence (release). These are the terms
which give envelopes their common
name: ADSR envelopes.

The 64 allows you to set all these
things so that you can produce a range
of sounds. For example, an organ is
almost all sustain with a very short
attack and decay and no release, a
xylophone is all attack and release,
and a guitar sound would be short
attack and decay, medium sustain and
quite a long release.

SUSTAIN

DELAY

I I

1 RELEASE I
I I

I I

I

RELEASE

121
Sound

The pitch of a note governs whether it
is high or low and pitch is organised in
notes (A, C sharp, E flat etc) and
octaves. Pitch on the 64 has a range of
0 to 65,536 which covers about eight
octaves and some notes can be so high
or low that you may not hear them.
Because of the range of values the 64
needs two registers to hold the pitch
(also called the frequency). The two
values are obtained by dividing the
number by 256 to get the high value,
then subtracting the high value from
the whole number to get the low value.
Fortunately page 152 of the user
manual that comes free with your 64
has these values already worked out
for you.

Now let's see how to make sounds on
the 64. There are two separate stages:

D Set up the SID chip for use.

D Set up the registers for the sound.

Setting up the SID chip should be
done as a subroutine and executed
first in any program you write that uses
sound. Enter this and save it for use
later.

10000 S = 54272: REM START
OF SID

10010 FOR I = 0 TO 24:
POKE S+I, 0

10020 NEXT: REM CLEAR ALL
REGISTERS

10030 POKE S+24, 15: REM
MAXIMUM VOLUME

10040 RETURN

122
Sound

SETUP
SID

ATTACK/DECAY
POKES+ 5

SUSTAIN/RELEASE
POKES+ 6

HIGH VALUE
OF NOTE

POKES+ 1

LOW VALUE
OF NOTE
POKES

SET WAVEFORM
&START

POKES+ 4

DURATION LOOP

ENDNOTE
.,,.,;:;::-/" -.-,

::··:::,_,,,

After this routine SID is ready for
use. Now we can set things up to play
a note.

Register Description
0 voice 1, low frequency
1 voice 1, high frequency
2 voice 1, low pulse rate
3 voice 1, high pulse rate
4 voice 1, control register

for gate, ring mod,
sync and waveform

5 voice 1, attack/decay rate
6 voice 1, sustain/release

rate
7 voice 2, low frequency
8 voice 2, high frequency
9 voice 2, low pulse rate

10 voice 2, high pulse rate
11 voice 2, control register

for gate, ring mod,
sync and waveform

12 voice 2, attack/decay rate
13 voice 2, sustain/release

rate
14 voice 3, low frequency
15 voice 3, high frequency
16 voice 3, low pulse rate
17 voice 3, high pulse rate

TRY THIS

10 GOSUB 10000
20 POKE S+5, 130: REM

ATTACK/DECAY
30 POKE S+6, 72: REM

SUSTAIN/RELEASE
40 POKE S+1, 8: REM HIGH

FREQUENCY
50 POKE S, 147: REM LOW

FREQUENCY
60 POKE S+4, 33: REM

SAWTOOTH WAVEFORM AND
START NOTE

70 FOR D = 1 TO 250: NEXT
80 POKE S+4, 32: REM TURN

OFF SOUND
90 END

Register Description
18 voice 3, control register

for gate, ring mod,
sync and waveform

19 voice 3, attack/decay rate
20 voice 3, sustain/release

rate
21 filter high frequency cut-

off
22 filter low frequency cut-off
23 filter control for voices

plus resonance
24 volume control plus filter

type
25 read value generated by

game paddle x
26 read value generated by

game paddle y
27 digitised output of voice 3

high frequency
28 digitised output of voice 3

waveform
Note: registers 27 and 28 can be
used for modulating the output of
other voices under software control.

123
Sound

ATTACK

s+ s I o I 0 0

128 64 32 16

short

This seems a lot of steps just to play
one note but remember that once they
have been taken you can play music of
any length and the only thing to
change will be the note frequency.

The accompanying chart breaks
down the SID registers in the same
way we looked at the sprite registers
in the VIC chip. Now let's look at some
of them in detail.
Attack/Decay: register S+5 controls
these rates for voice 1 depending on
the values you enter:

long medium short shortest
attack: 128 64 32 16
decay: 8 4 2 .1

As you might guess we are dealing
with bit manipulation here and by
combining these values (setting
different bits) we can fine-tune the
attack/decay rates. For example, we
can get an extremely long attack rate
by setting all of the high bits to get a
value of240(128+64+32+16). Ifwe
put 240 into S+5 we would get the
longest possible attack rate and no
decay. To get decay we need to add in
values between 1 and 15. 15 would
give us the longest possible decay rate
(8+4+2+1).

Try varying the values for S+5 in the
program above and see the difference
they can make.

I
DECAY

0 I 1 I
8 4 2 1

16 + 7 23

medium

Sustain/Release: these registers (S+6
for voice 1) work in the same way as
attack/decay with the four high bits
controlling sustain and the low four bits
controlling release, and again the
longest sustain rate is given by the
value 240 and the longest release
by 15.

Try altering the values in S+6 in the
program for different effects.
Waveform: register S+4 does a lot
more than govern the waveform for
voice l. It is actually the control
register for that voice. As usual
different bits handle different
functions. The waveforms are handled
by bits 4 to 7 like this:

Bit 0 is called the gate bit and when
set to 1 starts the sound (which is why
we POKE S+4, 33 in the program). The
envelope generator swings into action
and begins the attack/decay/sustain
part of the envelope. When this cycle
is complete or the gate bit is set to

124
Sound

special effects

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 1

GATE (ON/OFF)

TRIANGLE (32) TURNED ON (1)

zero, the release part of the envelope
begins. If the gate bit is set before that
has finished the envelope cycle starts
over immediately.

Bits 1 and 2 control two of the most
advanced features of SID, ring
modulation and sync effects. We'll look
at those later.

Bit 3 is called the test bit and doesn't
really do anything helpful.

TRY THIS

To make it easier to try out the
different combinations of ADSR and
envelopes here's a program that does
it for you - the SID Laboratory.

10 PRINTCHR$(147) :
POKE53280,0:POKE53281,0

20 POKE646,7:GOSUB5000
29 REM *** SET UP SCREEN

DISPLAY ***
30 SYSAT,11,1,''[revJ SID

CHIP LABORATORY [off]"
40 SYSAT ,8,3,''SET RATES

USING 0 (LOWEST)"

125
Sound

50 SYSAT,15,4,"0R 15
(HIGHEST>"

60 SYSAT ,0,5," - - - - -

- - - _,,
70 SYSAT,1,6,A$
80 SYSAT,2,7,D$
90 SYSAT,0,8,S$

100 SYSAT,0,9,R$
110 SYSAT ,0, 10," - - - - -

- - - _,,
120 SYSAT,4,11,W$
130 SYSAT, 15, 11,"1 ''W1$:

SYSAT ,27, 11 ,''2 ''W2$
140 SYSAT, 15, 13,''3 ''W3$:

SYSAT ,27, 13,"4 ''W4$
150 SYSAT,1,15,"PULSE

WIDTH:"
160 SYSAT ,0, 16," - - - - -

- - - _,,

This first section calls the set-up
routines and creates the display. /

199 REM *** GET SOUND
VALUES ***

2111111 FORI=lllT03
21111 SYSAT, 15,6+I,'' ";
22111 INPUT IN$
23111 IN(I)=VAL(IN$):IF

INCI>>15 OR IN(I)<lll
THEN21111

24111 SYSAT,14,6+I,IN(I)
25111 NEXT
26111 SYSAT,4,11,"[rev]

''W$"[off]"
27111 GETIN$:W=VALCIN$):

IFW<10RW>4THEN27111
28111 SYSAT,4,11,W$
29111 IFW=1THENSYSAT,17,11,

"[rev]''W1$: WF=17
3111111 IFW=2THENSYSAT,29,11,

"[rev]''W2$: WF=33
310 IFW=4THENSYSAT,29,13,

"[revJ''W4$:WF=129
32111 I FW<>3THEN37111

and low bytes in the subroutine at 500.

415 SYSAT,7,23,"PRESS
RETURN TO CONTINUE";

42111 SYSAT,7,24,"0R SPACE
TO REPEAT NOTE";

425 GETA$
43111 IF A$=" "THENGOSUB5111111:

GOT0425
435 IFA$<>CHR$(13)THEN425
44111 FORI=lllT03
445 SYSAT,15,6+I,'' ":REM 2

SPACES
45111 NEXT
455 SYSAT,15,15,

" "· REM 7
SPACES

46111 SYSAT,7,24,''

SPACES
";: REM 24

465 SYSAT,7,23,''

SPACES
47111 GOT0120

";: REM 24

33111 SYSAT, 17, 13,"[rev]''W3$:
This short section offers you the

choice of hearing the note again or of
setting up a different sound. The space
bar was chosen because it auto
repeats. In other words you can hold it
down to hear the sound several times
in rapid succession. You get a better
idea of how well it works that way.

WF=65
34111 SYSAT, 1, 15,"[rev]PULSE

WIDTH:[off] "
35111 SYSAT,15,15,"";:

INPUT PW$
36111 PW=VAL(PW$):IFPW>411196

OR PW<lll THEN35111
37111 SYSAT,1,15,"PULSE

WIDTH:"
380 SYSAT ,7 ,23,''PRESS F1

TO PLAY NOTE";
39111 GET IN$: IFIN$<>CHR$

(133)THEN380
4111111 GOSUB5111111

The main control section. This
allows you to set the various rates for
attack, decay, sustain and release and
to choose a waveform. If you select
pulse, it then asks for the pulse width.
The pulse width is broken into high

126
Sound

499 REM *** PLAY THE
SOUND ***

500 POKES+24,15
51111 POKES+5,IN(lll)*16+IN(1)
52111 POKES+6,IN(2)*16+IN(3)
53111 PH=INT(PW/256):PL=

PW-Ptl*256
54111 POKES+3,PH:POKES+2,PL
55111 POKES+1,34:POKES,75
56111 POKES+4,WF
57111 FORD=1T05111111:NEXT
58111 POKES+4,WF-1
59111 POKES+1,0:POKES,lll
6111111 RETURN

This is where the business is done.
Line 500 sets the volume. Although it
has already been set by the early
subroutine, it is included here so that if
you develop the program further you
can control the volume as well as the
other variables. 510 and 520 set attack
(IN(O)), decay (IN(l)), and sustain
(IN(2)), and release (IN(3)) rates.
Notice how the high bits in the
registers are set by multiplying the
input value by 16.

4999 REM *** SYS AT
ROUTINE ***

5000 FORI=0T038:READA:
POKE49152+I,A:NEXT

5010 AT=49152
5020 DATA32,241,183,134,87,

32,241
5030 DATA183,134,88,165,87,

201,40
5040 DATA176,6,165,88,201,

25,144
5050 DATA3,76,72,178,166,

88,164

If you experiment with the SID
Laboratory program you will see how
much flexibility SID gives you using
only the basic abilities of the sound
chip. Now let's look at some of the
more advanced techniques.

The first technique here is filtering.
Filtering lets you select which parts of
the frequency will be output and
works in much the same way as the
tone, or bass and treble controls work
on a hi-fi system. There are three kinds
of filters built into SID: high pass, low
pass and bandpass. High pass, as the
name suggests, filters out the low

5060 DATA87,24,32,240,255,
32,253

5070 DATA174,76,160,170
5099 REM *** INITIALISE

VARIABLES ***
5100 S=54272:PW=0:DIMINC3)
5110 AS="ATTACK RATE:"
5120 DS="DECAY RATE:"
5130 SS="SUSTAIN RATE:"
5140 RS="RELEASE RATE:"
5150 WS="WAVEFORM:"
5160 W1S=''TRIANGLE": W2$=

"SAWTOOTH''
5170 W3$="PULSE": W4$="NOISE"
5199 REM *** CLEAR SID

CHIP ***
5200 FORI=0T024:POKES+I,0:

NEXT
5210 POKES+24, 15
5220 RETURN

The subroutines to set up the SYS
AT command, program variables and
initialise the SID chip.

frequencies and lets through the high
ones. Low pass works the other way
around, while bandpass cuts off high
and low frequencies while passing
those in the middle.

You can also combine high and low
pass filters to create a fourth, the notch
reject filter. This works in the opposite
way to a bandpass, cutting out middle
frequencies and passing high and low.

Filters are controlled by registers
S+2l, 22, 23 and 24. 21and22 combine
to give the cut off frequency - the point
at which the filter becomes active.

S+23 is another of the 64's multi-

127
Sound

Low

Low

Amount
passed

High pass filter

Frequency

Low pass filter

Frequency

128
Sound

Band pass filter

Frequency

Notch reject filter

Frequency

switch registers. Bits 0 to 2 turn on
filtering for voices 1 to 3 respectively.
Bits 4 to 6 control the resonance of the
filters. Resonance causes a sharper
sound to be produced and playing
around with this can create some
interesting sounds such as wah-wah
effects.

S+24, as well as being the volume
control, allows you to choose the filter
types. Bit 4 sets low pass and produces
richer sounds. Bit 5 selects bandpass
which makes the sound thinner and bit
6 is high pass producing 'tinny' sounds.

Bit 7 disconnects voice 3 from the
output and is used in modulation
effects to prevent voice 3 from
producing odd, unwanted noises.

The following program is a very
simple demonstration of just two of the
many effects you can get using filters.
It allows you to hear one note
unfiltered or affected by a high or low
pass filter.

10 GOSUB 10000
20 POKES+1,40:POKES,50
30 POKES+5,17:POKES+6,36
40 PRINTCHR$(147)
50 PRINT"SELECT FILTER

TYPE: ";
60 PRINT"1 HIGH PASS"
70 PRINTTAB(20)"2 LOW

PASS"
80 PRINTTAB(20)"3 NO

FILTER"
90 GETA$: IFA$<>"1"ANDA$

<>"2"ANDA$<>"3"THEN90
100 F=VAL(A$):PRINT:

PRINTF
110 POKES+24,FCF>+15

112 POKES+23,1:IFF=3THEN
POKES+23,0

115 POKES+21,18:POKES+22,
128

120 POKES+4 ,33
130 PRINT:PRINT"PRESS

SPACE TO CONTINUE OR
RETURN TO END"

140 GETA$: I FA$=" "THEN 140
150 !FA$=" "THENPOKES+4,

32:GOT040
160 POKES+4,32:END

10000 S=54272
10010 FORI=0T024:POKES+I,0
10020 NEXT
10030 POKES+24,15
10040 F(1)=64:F(2)=16:

F(3)=0
10050 RETURN

The SID filters are possibly its most
important feature since they give you
so much control over the noise output.

Ring modulation and synchronis
ation are similar in that both let you
affect the output of a voice with the
output of the lower voice. For example,
you can sync voice 1 with voice 3, or
voice 2 with voice 1. By setting bit 1 of
the control register for a voice, the
frequency of the voice is synchronised
with the frequency of the lower voice.
Obviously the lower voice must be set
to some frequency, preferably lower
than the higher voice.

Ring modulation is controlled by bit
2 of the control register and the lower
voice must be set to triangular
waveform at some frequency other
than zero.

129
Sound

The following program demonstrates
these two effects by affecting voice 1
with voice 3.

10 GOSUB 10000
20 PRINTCHR$(147)
30 PRINT:PRINT''THIS IS

THE PURE SOUND"
40 FORD=1T01000:NEXT:

GOSUB 200
50 PRINT:PRINT"THIS IS

WITH SYNC"
60 FORD=1T01000:NEXT:

GOSUB 300
70 PRINT: PRINT"THIS IS

RING MOD"
80 FORD=1T01000:NEXT:

GOSUB 400
90 PRINT"PRESS RETURN TO

PLAY IT AGAIN"
100 GETA$:IFA$<>CHR$(13)

THEN100
110 GOT010
200 POKES+1,130:POKES,100
210 POKES+5,8:POKES+6,72
220 POKES+4 ,33
230 FORD=1T0500:NEXT
240 POKES+4 ,32
250 RETURN
300 POKES+15,6:POKES+14,

100
310 POKES+19,72:POKES+20,

72
320 POKES+18,33:POKES+4,

35
330 FORD=1T0500:NEXT
340 POKES+18,0:POKES+4,0
350 RETURN
400 POKES+15,6:POKES+14,

100
410 POKES+19, 72: POKES+20,

72
420 POKES+4,21

430 FORD=1T0500:NEXT
440 POKES+18,0:POKES+4,0
450 RETURN

10000 S=54272
10010 FORI=0T024:POKES+I,0
10020 NEXT
10030 POKES+24,15
10040 RETURN

Now that you know how to control the
various registers in SID, what about
putting them to use? Music is relatively
easy to program since once the
registers are set, it is simply a matter of
playing notes in sequence.

TRY THIS

The common way of producing
music is to hold the1note values in
DAT A statements and READ them,
like this:

10 GOSUB 10000
20 POKES+5, 17
30 POKES+6,65
40 READH,L,D
50 I FH=-1THEN200
60 POKES+1,H:POKES,L
70 POKES+4 ,33
80 FORI=1TOD*250:NEXT
90 POKES+4,32

100 GOT040
200 END
300 DATA?,53,2,7,53,1,10,

205,1,10,205,2
310 DATA8,23,1,8,147,1,8,

23,1
320 DATA? ,53,5
330 DATA10,205,1,12,216,

1,14,107,2

130
Sound

340 DATA12,216,1,10,205,
1,12,32,1,9,159,1

350 DATA10,205,5,-1,-1,-1
10000 S=54272
10010 FORI=0T024:POKES+I,0
10020 NEXT
10030 POKES+24,15
10040 RETURN

This simple arrangement
demonstrates all that's necessary to
produce music on the 64. The DATA
statements break down into groups of
three: high frequency, low frequency
and time delay. The frequency values
for the notes are read and POKEd into

MINIM 2 CROTCHETS 4 QUAVERS

Sand S+ 1 and the note is played for
D*250 before the gate bit is unset and
the next values are read. Obviously the
burden is working out the DAT A
statements.

No book - least of all this one - can
teach you music but if you are already
familiar with simple musical theory you
should be able to work out simple
tunes. A variety of time signatures can
be played by varying the delays, and
harmony, chords and bass lines can all
be incorporated using all three voices.
Simply add the extra DATA for each
voice to play.

If you don't know music, there are
three courses of action open: learn it,
get a musical friend to work out the
DATA, or leave music alone and stick
to sound effects.

8 SEMI-QUAVERS

0 dd JJJJ JJJJJJJJ
DOTTED CROTCHET

d.dJ
DOTTED QUAVER

J.JJ

I SET TIME v ALUES:

MIN 2000

CROT MIN/2

SEMI CROT/2

QUAV SEMI/2

DOTCROT CROT+ QUAV

DQUAV QUAV +SEMI

To change timing now, you only need to
reset the MIN value.

131
Sound

2 octaves in the key of C

A MIDDLEC

A

B

c

D

E

F

G

A

B

c
D

E

F

G

A

HIGH

14

16

17

19

21

22

25

28

32

34

38

43

45

51

57

132
Sound

LOW

107

47

37

63

154

227

177

214

94

75

126

52

198

97

172

Happily in this department no prior
training is necessary since, if you
choose your games carefully, you can
make up the rules. After all who's to
say that Epsilon space fighters don't
sound like this on take-off:

10 GOSUB 10000
20 POKES+5,16:POKES+19,

16
30 POKES+6,190:POKES+20,

190
40 FORT=ST025STEP.5

As you can see, the SID chip is
capable of producing a near infinite
variety of sounds. As was pointed out
at the start of this chapter, there are
even sounds that have never been
heard before. Now that you know
which registers control which effects
it's all up to you. Experimentation is the

Piano:
POKE S+5,9: REM ATTACK/
DECAY
POKE S+6,16: REM SUSTAIN/
RELEASE
POKE S+3,100: REM LOW PULSE
POKE S+2,1: REM HIGH PULSE
POKE S+4,65: REM PULSE
WAVEFORM

50 POKES+4,33:POKES+18,
129

60 POKES+ 1 , 9+ T : POKES+
15,T

70 POKES,150:POKES+14,50
80 POKES+4,0:POKES+18,0
90 NEXT
99 END

10000 S=54272
10010 FORl=0T024:POKES+l,0
10020 NEXT
10030 POKES+24,15
10040 RETURN

key to sound on the 64 and the
programs here could form the basis of
many others to let you explore the SID
chip in full. However, so that you can
start putting sound into your programs
straightaway, here is the beginning of
a 'sound library' which gives the
settings for a few useful sounds.

Organ:
POKE S+5,0: REM ATTACK/
DECAY
POKE S+6,242: REM SUSTAIN/
RELEASE
POKE S+4,33: REM SAWTOOTH
WAVEFORM

133
Sound

Xylophone:
POKE S+S,9: REM ATTACK/
DECAY
POKE S+6,0: REM SUSTAIN/
RELEASE
POKE S+4,17: REM TRIANGLE
WAVEFORM

Trumpet:
POKE S+S,96: REM ATTACK/
DECAY
POKE S+ 1 , 16: REM SUSTAIN/
RELEASE
POKE S+4,33: REM SAWTOOTH
WAVEFORM

Cymbal:
POKE S+S,9: REM ATTACK/
DECAY
POKE S+6,0: REM SUSTAIN/
RELEASE
POKE S+4,129: REM NOISE
WAVEFORM

Bell:
POKE S+0,0: REM LOW
FREQUENCY
POKE S+1,125: REM HIGH
FREQUENCY
POKE S+S,9: REM ATTACK/
DECAY
POKE S+6,9: REM SUSTAIN/
RELEASE
POKE S+15,30: REM VOICE 3
HIGH FREQUENCY
POKE S+4,21: REM TRIANGLE
WAVEFORM WITH RING
MODULATION

Explosion:

134
Sound

POKE S+0,180: REM LOW
FREQUENCY
POKE S+1,2: REM HIGH
FREQUENCY
POKE S+S,9: REM ATTACK/
DECAY
POKE S+6,224: REM SUSTAIN/
RELEASE
POKE S+4,129: REM NOISE
WAVEFORM
POKE S+24,5-15: REM VARY
VOLUME

Gunshot:
POKE S+0,200: REM LOW
FREQUENCY
POKE S+1,40: REM HIGH
FREQUENCY
POKE S+S,15: REM ATTACK/
DECAY
POKE S+6,2: REM SUSTAIN/
RELEASE
POKE S+4,129: REM NOISE
WAVEFORM
POKE S+24,15-1: REM
DECREASE VOLUME

Keep a notebook handy as you try
new combinations of SID settings and
jot down the interesting values. And
remember, all of the above are basic
sounds: try adding filters and other
effects.

----Checklist---
In this chapter you've learned:

D The functions of the different SID
chip registers.

D What waveforms are and how to
program them.

D What envelopes are and how to
program them.

D How to create a simple sound.

D How to define a piece of music to be
played by the 64.

D How to use the filters in the SID chip.

D A little of the advanced features of
SID including ring modulation and
synchronisation.

-----Projects----

D Write a program to play a single
note then add these stages:

1 Filter the note to the best effect.
2 Vary the frequency as the note is

played.
3 Vary the resonance as the note is

played.
4 Vary the volume as the note is

played.
5 Add a second voice in harmony

(try an octave lower - halve the
frequency - or an octave higher -
double the frequency.

D Add a subroutine to the SID
Laboratory program to allow you to
try different filter settings.

D Write a 'synthesiser' program to let
you play the 64 as a musical
instrument. These are the steps you
might take:

1 Hold the note values in an array.
2 Use the bottom row of the

keyboard (Z to!) for whole notes
and the second row (A to =) for
sharps and flats. Look up the note
values in the User Manual.

3 Use PEEK (197) to get keypresses
and use the values generated as
pointers to the note array.

4 Set up the SID chip using a
subroutine for envelope and
waveform so that only the note
pitch will change.

136
Sound

5 When this works add more routines
to allow different waveforms and
envelopes. These could be
selected by the function keys
(again use PEEK(l97).

6 Add more of the features you want
like wah-wah effects, or single-key
chords.

136
Sound

Interfacing

.-.-,, u
'$'~~~£{0J~,fi?~~

137 .

With the exception of joysticks all
inpuVoutput operations on the 64
depend on the concept offiles, device
numbers and addresses. Don't worry if
the technical terms sound off-putting -
110 is really quite simple and the
jargon easy to understand. Joysticks
are different, partly because they are
input only, but largely because they
don't use the file system. Instead we're
back with our old friend PEEK so we'll
deal with them first.

The 64 has two joystick ports at the
right of the machine marked port 1 and
port 2. Perhaps surprisingly, most
games use port 2 for joystick control
but there is a good reason for this. All
inpuVoutput is handled by two

.........................
.......

.......

dedicated 1/0 chips one of which deals
with port 2 and things like serial
devices (printers, disk drives, etc)
while the other looks after port 1, the
keyboard and a couple of other things.
It is the fact that the second chip copes
with port 1 and the keyboard that
causes problems. If you have a joystick
try this simple experiment: plug it into
port 1, turn on the 64 then move the
joystick around rapidly. You should
see random characters appearing on
screen. This is because the operating
system isn't sure whether the signals
are coming from the keyboard or the
joystick port. Under program control
the problem is worse and if the
joystick is moved at the same time as a
key is pressed the 64 will often crash,
forcing you to switch off.

So as a general rule, always use port
2 for joysticks. ·

138
Interfacing

TRY THIS

Actually reading the values generated
by the joystick is fairly simple if you
have understood the section on bit
manipulation in chapter 5. Plug in a
joystick to port 2 and enter and run this
short progra.m:

11/J JY = PEEKC56321/J)
21/J PRINT CHR$(147);

ABSCJY-127)
31/J GOTO 11/J

If everything is working properly a
zero will appear at the top 'left of the
screen. Move the joystick and watch
the number change. Now press the
fire button. Finally, hold down the fire
button and move the joystick.

4+1=5

•

The joystick is simply a collection of
five switches. When the fire button is
pressed or the joystick is moved, one
or more of the switches is closed and
the value appears in location 56320.
Diagonal movement is sensed as two
switches closing and their values are
added together. It all decodes like
this:

JY value Direction
0 none
1 up
2 down
4 left
8 right
5 up/left
6 down/left
9 up/right

10 down/right
16 fire

Values greater than 16 give direction
plus fire. Subtract 16 for direction.

9=8+1

..........

4 • 8

4+2=6 2 10=8+2

FIRE= 16

139
Interfacing

Knowing this, joystick control becomes
very simple. You could either have a
series of IF .. THEN statements to work
out the correct action or use an array to
hold the values. Here's a simple
program using arrays to draw a trail of
asterisks around the screen under
joystick control.

10 DIM MC10): JS = 56320
20 GOSUB 1000
30 SC = 1024: CO = 54272
40 L = 1523
50 POKE L, 42: POKE L +

CO, 1
60 JV = ABSCPEEKCJS)

127): IF JV > 10
THEN 50

70 L = L + MC J Y)
80 IF L < SC OR L > SC

+ 1023 THEN L = L -
MCJY)

90 GOTO 50
1000 PRINT CHR$(147)
1010 MC0) = 0: MC1) = -40
1020 MC2) = 40: M(4) = -1
1030 MC5) = -41: MC6) = 39
1040 MC8) = 1: M(9) = -39
1050 MC10) = 41
1060 RETURN
The array M() holds the directions

generated by the joystick which gives
a simple means of updating screen
location L. Line 80 is a check to make
sure the asterisk stays on-screen
although you will be able to wrap
around from one line to the next.

Using the principles of this program
and some of the ideas from chapter 7
we can now create a high resolution
sketchpad. This one, however, offers
some time-saving machine code
routines. Machine code is beyond the
scope of this book but suffice it to say

that these routines do exactly what the
Basic routines in chapter 7 do but
several times faster.

10 PRINTCHR$C147):GOSUB
4000

20 HI=49152: CL=49180:
C0=49210

30 SC=8192:JS=56320
40 SYSHI:SYSCL:POKE255,

100:SYSCO
50 X=160:Y=100
60 JY=ABSCPEEKCJS)-127)
70 X=X+MCJY,1):Y=Y+M

CJ y ,0)
80 GOSUB1000
90 GOT060

100 END
999 REM *** PLOT X AND Y

1000 CH=INTCX/8)
1010 RO=INTCY/8)
1020 LN=YAND7
1030 BY=SC+R0*320+8*CH+LN
1040 BI=7-CXAND7)
1050 POKEBY,PEEKCBY)OR

C2 j Bl)
1060 RETURN
3999 REM *** SET UP

MACHINE CODE ***
4000 FORI=0T098:READA:

POKE49152+I,A:
4010 NEXT:SYS49152
4019 REM *** SET UP

JOYSTICK VALUES ***
4020 DIM MC11ll, 1)
4030 FORI=1T010:READMCI,0):

READMCI,1)
4040 NEXT
4050 RETURN
5000 REM *** M/C DATA ***
5010 DATA169,32,133,52,133,

56,169,147

140
Interfacing

5020

5030

5040

5050

5060

5070

5080

5090

5100

5110

5120

5200

1-41 1-40 1-39
M(5) M(l) M(9)

1-1
1

1+1
M(4) M(8)

1+39 1+40 1+41
M(6) M(2) M(lO)

DATA32,210,255,173,24, 5210 DATA -1,0,1,0,0,0,0,
208,9,8,141 -1,-1,-1
DATA24,208,173,17,208, 5220 DATA 1,1,0,0,0,1,-1,
9,32,141,17 1,-1, 1
DATA208,96,169,0,133,
251,169,32 There are several points to note

DATA133,252,166,252, here. The machine code is set up so

160,0,169,0 that you can call the routines by

DATA145,251,200,208, variable names: HI lowers the top of

251,232,224,64 memory and creates the bit-map

DATA240,5,134,252,76, screen; CL clears the screen; and CO

36,192,96,169 sets the colours. The colour value is

DATA0,133,253,169,4, POKEd into location 255 in line 40. By

133,254,165 consulting the colour chart in chapter 7

DATA255,166,254,160, you can change the colours by putting

0,145,253,200 the new value into line 40.

DATA208,251,232,224, We also need a two-dimensional

7,240,5,134 array for M() this time because we

DATA254,76,70,192, need X and Y values, Yin MQY,0) and

160,0,230,254 XinMQY,l).

DATA145,253,200,192, See the Checklist at the end of this

233,208,249,96 chapter for ideas on extending this

REM *** JOYSTICK DATA program.

141

Interfacing

Now let's take a look at other input/
output programming, specifically the
cassette recorder, disk drive and
printers.

At the start of this chapter we
mentioned files, device numbers and
addresses. On some computers there
are special commands for
communicating with peripheral
devices such as LPRINT and LLIST for
printers. The 64 Basic does not have
these. Instead it treats all external
devices as files although you have to
tell it which device is being used by
declaring the device number. These
are the device numbers:

Device
Cassette
Modem
Screen
Printer
Plotter
Disk

Number
1
2
3
4/5
6
8-11

There are futher rules about device
numbers which depend on precisely
what kind of operation is to be
performed but we'll discuss those as
they arise.

In connection with 1/0, addresses
have a different meaning from normal.
They do not refer to memory loca!ion_s
but tell the 64 what kind of operation is
involved. They are called secondary
addresses (although there are no
primary addresses-confusing isn't it?).

DISK
DRIVE

Ii--------, 8 ,__ ____ _

SECONDARY ADDRESS

142
Interfacing

FILE
NUMB EB

. There are only half a dozen Basic
commands and statements associated
with VO and you will be familiar with
some of them already. The first of them
is OPEN which works like this:

10 OPEN 2, 1

The first number is the file number.
The 64, as already noted, handles VO
in terms of files. You can have several
files open at once but each must have a
unique number otherwise the 64
doesn't know which you want.

The second number is the device
number, in this case the cassette
recorder. It is at this point that
secondary addresses enter the
picture. There are several default
addresses (which means the computer
assumes you want them unless you say

DEVICE NO.

otherwise). With the cassette recorder
the default is 0 which means a read
operation. So our line above could look
like this:

10 OPEN 2,1,0

which means the same thing, or:

10 OPEN 2, 1 , 1

which means a write operation. Read
simply means that the 64 is to get
information from the device. Write
means it will send information to the
device.

We can also give our files a name as
well as a number:

10 OPEN 2, 1, 1,"ADDRESS
BOOK"

SECONDARY ADDRESS

143
Interfacing

Note that some secondary addresses
have specific meanings. In addition to
the 0 and 1 associated with the
cassette, here are some more:
OPEN 1, 1,2 writes an end-of-file mark
to the cassette.
OPEN 15,8, 15 opens the command
channel on the disk drive.
OPEN 1,4,0 opens a printer file in
upper case and graphics.
OPEN 1,4,7 opens a printer file in
lower/upper case.

On the whole the disk drive works in
much the same way as the cassette
unit but in some cases has a longer
syntax. See the disk drive user's
manual for details.

Having opened the file, how do we use
it? There are three commands: GET*
and INPUT* for reading data, and
PRINT* for writing data. These are
used in conjunction with the file
number specified when the file was
opened so to write a string to the
cassette we could use this:

10 OPEN 1 , 1 , 1
20 PRINT* 1,"THIS IS A

TEST"
30 PRINT* 1,CHR$(13)
40 CLOSE 1

Another I/O command sneaked in
there: CLOSE. Logically it does
exactly the opposite of OPEN and
requires only the file number - the 64
will know what the device number is.
Also note that items must be separated
by a carriage return (CHR$(13)).

To get our string back again (having
first rewound the tape) we open the
file, and read the strings:

10 OPEN 1, 1,0
20 INPUT* 1,A$
30 CLOSE1
40 PRINTA$

GET* and INPUT* work in much
the same way as GET and INPUT from
the keyboard: GET* will retrieve
single characters. INPUT* requires a
carriage return at the end.

An important point to note is that
commas and semicolons have odd
effects on tape and disk files,
formatting the data in the way they
affect screen formats. In other words if
you print a comma to a file it will insert
10 spaces in the data. To get round this
you must either eliminate them from
your files altogether or do a string
search and replace them with some
other character, reversing the process
when they are read back from tape.

The last I/O statement is CMD. This
commands the 64 to send all output to
the file specified. It is most often used
to list a program to a printer:

OPEN 4,4:CMD4:LIST

followed by:

PRINT* 4: CLOSE4

The most common form of storage is in
saving and loading programs. This is
identical for tape and disk except that

144
Interfacing

loading and saving to disk must specify
device number 8:

LOAD "PROGRAM" ,8: REM FROM
DISK
LOAD "PROGRAM'' : REM FROM
TAPE

The most used 'extra' with loading
and saving is in this form:

LOAD "PROGRAM", 1, 1: REM TAPE
LOAD "PROGRAM'',8, 1: REM DISK

This tells the 64 to load the program
into the same part of memory from
which it was saved.

NAME

TRY THIS .

Loading and saving information is not
so simple. However, provided you
approach things logically, it isn't very
difficult. Let's look at how to create a
simple file which can be stored on
tape or disk and read back again. In
this case it will be a very short address
book holding three names and
telephone numbers.

~
ADDRESS . • . . • %-<ff;

&>\)
NAME ··

ADDRESS

146
Interfacing

10
20

30

40

50

60
70

80
100

110
120
130

PRINTCHR$(147) 140
PRINT:PRINTTABC10)
"1 CREATE A FILE" 150
PRINT:PRINTTABC10) 160
"2 SAVE A FILE" 200
PRINT:PRINTTABC10) 210
''3 LOAD A FI LE"
PRINT:PRINTTABC10) 220
"4 EXIT"
GETIN$: IFIN$='"'THEN60 230
ONVAL(IN$)GOSUB100,200,
300,450
GOT010
DIMA$(3,2):PRINTCHR$
(147)
FORI=1T03
INPUT"NAME ";A$Cl,0)
PRINT: INPUT"TOWN
";A$(I, 1)

A$(I,J)

A$(.. ,0)

NAME

A$(1, ..)

A$(2, ..)

A$(3, ..)

240
250
260
270
280
300
310

A$(.. ,l)

TOWN

146
Interfacing

PRINT: INPUT"PHONE
NUMBER ";A$(I,2)
NEXT
RETURN
PRINTCHR$(147)
PRINT: INPUT"TAPE OR
DISK CT/D)";D$
I FD$=''T"THENOPEN1, 1, 1,
"ADDRESS BOOK''
I FD$=''D"THENOPEN1,8,1,
"ADDRESS BOOK,S,W"
FORI=1T03:FORJ=0T02
PRINT* 1,A$(I,J)
NEXT:NEXT
CLOSE1
RETURN
PRINTCHR$C147)
PRINT: INPUT''TAPE OR
DISK CT/D)";D$

A$(.. ,2)

TEL

320

330

340
350
360
370
380
390
400
410

420

430
450

I FD$="T"THENOPEN1, 1,0,
"ADDRESS BOOK''
I FD$="D''THENOPEN1 ,8,0
"ADDRESS BOOK,S ,R"
FORI=1T03:FORJ=0T02
INPUT* 1,ASCI,J)
NEXT:NEXT
CLOSE1
FORI=1T03:FORJ=0T02
PRINTASCI,J),
NEXT:PRINT:NEXT
PRINT: PRINT"PRESS
RETURN''
GETIN$: I FINS<>CHR$(13)
THEN420
RETURN
PRINTCHR$(147):END

The main thing to note here is that
the information is written to the tape or
disk in a straightforward manner and it
must be retrieved in exactly the same
order otherwise problems will result.

Although this looks like a long way of
saving three names and telephone
numbers, it wouldn't be very much
longer to hold a hundred or more.
Simply extend the loop and the size of
A$() and add some kind of routine to
handle the printing out of names and
numbers.

This kind of file is known as
sequential because the information is
stored in the order in which it is
written, and must be loaded and
searched in the same way. This is the
only kind of file that can be used with
tape storage. Disks can use more
powerful files called relative and
random access files but these are
much more complicated to write.
There are good examples in the disk
drive user's manual.

----Checklist---
In this chapter you've learned:

D How to read the joystick port for
better program control.

D How to open files to cassette and
disk.

D How to write information to tape or
disk.

D How to recover information from
tape or disk files.

D How to use other I/O commands and
their syntax.

-----Projects-----

0 The sketchpad program leaves a lot
to be desired.

Add some of the following features:
1 A sprite cursor so that you can see

where the drawing position is. Try
the pointing hand, or a pen.

2 Allow the rubbing out of points.
What about using the fire button as
a toggle switch between draw and
erase? Have the sprite cursor
change colour to signify which is in
effect.

3 Add a routine to allow the user to
choose the colours on screen and
change the drawing colour at will.

4 Altho1:1gh it would be very slow, try
a routme to save the design to tape
or disk. Use a loop to PEEK the
screen location then PRINT the
values to a file.

D Extend the address book program
or incorporate a similar routine into
a simple database as suggested in
chapter 4.

147
Interfacing

Appendix: design aids

149

Bit
value 128 64 32 16 8

150
Appendix: design aids

4 2

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

151
Appendix: design aids

1024

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

152
Appendix: design aids

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

163
Appendix: design aids

Index

166

A
ABS 22, 23
ADSR 121, 122, 123, 124
adventures 46, 47, 48, 52
AND 11, 57, 58, 64
animation 106-118
arrays 41,42,43, 44,47, 50
ATN 23
attack 121, 122, 124

B
bit map 76-82
block graphics 56, 60
Boolean operators 57, 58
branches 8-13

c
cassette recorder 138, 142--146
character generator 63, 64, 65
CHR$ 60, 61, 109, 110
CLOSE 144, 146
CMD 144
colour 70, 77
cos 23
cursor controls 32, 33, 36

D
DATA 40, 46, 50, 130, 131
decay 121, 122, 124
DEFFN 25
delay loops 15, 114, 115
device numbers 142
DIM 41, 42, 43
disk drive 138, 142, 144, 147

E
envelopes 121, 122, 124
error trapping 28, 29, 30, 31, 35
expanded sprites 89, 96
extented background mode 56, 70

156
Index

F
FOR. .NEXT 13, 14, 15
filters 127, 128, 129
frequency 122

G
gate 124, 125
GET 29, 30, 31, 32
GET=IF 144, 146
GOSUB ~13
GOTO 8, 9, 10

B
high resolution graphics 56, 57, 76-82, 140, 141

I
IF .. THEN 11, 12, 13
INPUT 29, 30, 31, 32
INPUT=IF 144, 146
input/output 13~147
INT 21, 22
internal clock 15, 16, 17

J
joysticks 138, 139, 140, 141

L
LEFT$ 43, 44, 48, 50
Len 43,44,48,50
LOAD 145, 146
logical files 142
logical operators 11
loops 13, 14, 15

M
MID$ 43, 44, 109, 110
multi-dimensional arrays 42, 43
multicolour bit map 74
multicolour mode 56, 70, 71, 72, 73, 99, 100, 101

167
Index

N
nesting 14

0
ON .. GOSUB 12, 13
OPEN 143, 144, 146, 147
OR 11, 57, 58, 64

p
PEEK 106, 107, 109, 110, 111
pitch 122
POKE 106, 107, 109, 110, 111
printer 138, 144
PRINT# 144, 146
PRINT AT 36, 37, 38

R
radians 24
random numbers 20, 21, 22
READ 40, 47, 50, 130, 131
release 121, 122, 124
repeating keys 32, 33
RESTORE 40, 47
RETURN 10, 11
RIGHT$ 43, 44
ring modulation 128, 129, 130
RND 20, 21, 22

s
SAVE 145, 146
screen colour 29, 33, 34
screen memory 106, 107, 108
secondary address 142
sequential files · 147
SGN 22
SID chip 120, 122, 123, 125, 126
SIN 23
sound 35, 120-136
SPC 36
sprites 84-104, 111, 112, 113
sprite collisions 89, 97, 98, 99
sprite colour 89

158
Index

sprite coordinates 89, 92
sprite data 87, 88, 92
sprite pointers 85, 86
sprite registers 89
stack 10, 11, 15
STEP 14
strings 43, 44, 48, 50, 109, 110
structured programs 8, 9
sustain 121, 122, 124
synchronisation 128, 129, 130

T
TAB 36
TAN 23
textmode 56
TI 16
TI$ 16
trigonometry 23, 24

u
user-defined functions 25
user-defined graphics 63, 64, 65

v
VAL 44
VIC chip 56-60, 63, 64, 76, 85, 89

w
waveforms 120, 121, 124

169
Index

Programming with
adde.d power

Turbacharge your Cammadare 64

BETTER PROGRAMMING
Turbocharge your Commodore 64 tells you how the

professionals do it. It concentrates on putting more power
where it matters - in your hands.

It shows how you can exploit your Commodore 64 to the
full and how to approach programming problems

the right way.

IN-DEPTH EXPLORATION ·
The Commodore 64 is still unexplored territory for many

people. This book shows some of the ways in which it can
be stretched, some of the ways in which its strengths and
weaknesses can be exploited. You could do it for yourself

- but not in a hurry. That's where Turbocharge your
Commodore 64 comes in.

THE RIGHT STUFF
Turbocharge your Commodore 64 gives expert insights

into the full power of your Commodore 64. There are
powerful graphics and sound routines and many K's

worth of listings for you to explore and develop.

FOR THE PROFESSIONAL TOUCH IN YOUR
PROGRAMS.

TURBOCHARGE YOUR COMMODORE 64

~llh

Longman a;
Computer
Books

ISBN · 0-582-91605-4

9 780582 916050

