

Ross Symons is a 16-year-old student, who lives in
Tyabb, about 15 miles from Melbourne, in Australia.
He is a keen sportsman, and spends most of his leisure
time when not programming his computers (he has
three) on the playing field.

First Steps in Machine
Code on the
Commodore 64

Ross Symons

W vy

CORG! ‘Wesiey

First Steps in Machine Code on the Commodore 64
A CORGI/ADDISON-WESLEY BOOK 0 552 99128 7

First publication in Great Britain

PRINTING HISTORY
Corgi/Addison-Wesley edition published 1984

Copyright © Addison-Wesley 1984
Designed by Brian Shorrock

Conditions of sale

1. This book is sold subject to the condition that it shall not, by
way of trade or otherwise, be lent, re-sold, hired out or otherwise
circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and
without a similar condition including this condition being

imposed on the subsequent purchaser.

2. This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be re-sold in the UK below the net price
fixed by the publishers for the book.

This book is set by 11/12 Mallard

Corgi Books are published by Transworld Publishers Ltd.,
Century House, 61-63 Uxbridge Road, Ealing, London W5 5SA

Made and printed in West Germany by Mohndruck, Giitersloh

The programs presented in this book have been included for their
instructional and entertainment value. They have been tested
with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs.

Contents

Introduction

Chapter One -

Hexadecimal and binary notation
Chapter Two -

The assembler/disassembler
Chapter Three — Accessing machine code
Chapter Four — Loading registers
Chapter Five -

Storing the registers in memory
Chapter Six —

Increment, decrement and transfer
Chapter Seven — Jumping
Chapter Eight -

The processor status register
Chapter Nine — Compare instructions
Chapter Ten — Conditional branching
Chapter Eleven -

Storing registers on the stack
Chapter Twelve -

Subtraction and addition
Chapter Thirteen - Shifting and rotating
Chapter Fourteen — Logical instructions
Chapter Fifteen — Interrupts
Chapter Sixteen — Program creation

Appendices: A — Useful memory locations

B - 6510 instruction set

16
18

28

38
47

53
55
65

73

77
85
92
100
105

Introduction

Welcome to the world of machine code on the Commo-
dore 64. All you need is this book and your trusty com-
puter, and you’re on your way.

I've written this book to take you from where you are
now — with a knowledge of BASIC, but little or none of
machine code programming - to the point where
you’ll have a good knowledge of the fundamentals of
machine code on the Commodore 64. I've gone through
all the instructions — one by one - and included a
host of sample programs to show them in use.

Machine code is not an easy subject to master. You’ll
have to concentrate, and work slowly through the book.
But, if you do, I assure you that by the end you'll have a
good knowledge of the fundamental building blocks of
Commodore 64 machine code. Then, it is up to you to put
these blocks together to create dazzling programs of
your own.

To show you how effective these can be, I've included
two complete games which are a mixture of machine
code and BASIC. The first one is called PUB SQUASH,
and the second is a racing car game. Both of these ran
so fast when they were first written, I had to add delay
loops to slow them down enough for you to see them!
That fact alone illustrates one of the great attractions
of working in machine code.

Don’t try to hurry through this'book. You are acquir-
ing a skill which will bring you a lot of satisfaction in
the coming years, so it is worth getting it right from the
beginning. Enter every program as you come to it, and
make sure you understand each program before moving
on to the next one. I assure you the effort will be worth-
while.

I'd like to thank Tim Hartnell for the assistance he
gave me while I was writing this book.
Time to get underway,

Ross Symons,
Tyabb, Victoria, Australia.
1984

CHAPTER ONE
HEXADECIMAL ANI
BINARY NOTATION

In assembly language there are two different forms of
numbers apart from decimal. These number systems
are called ‘binary’ and ‘hexadecimal’ notation.

)
.i]

Hexadecimal Notation

Hexadecimal numbers are numbers based on sixteen,
just as decimal numbers are based on ten. Hexa-
decimal digits range from a value of O to 15, and use
the figures 1, 2, 3,4,5,6,7,8,9,A,B,C,D,Eand F.

Here is a list of hexadecimal numbers and their
decimal equivalents:

Decimal
Equivalent

— 1

Hexadecimal

a O N =
a O N

|
0o N O

— 9
— 10
11
— 12
— 13
— 14
— 15

M mMmOO W >» © 0 N O

The table is suitable when you’re only dealing in single
digits, like 9. It cannot be used for digits such as AF or
AQE. To find out the decimal equivalent of multiple digit
numbers we must examine how they are constructed.
For this example, we will use the decimal number
6754. The following will show how this number is
constructed:

6754 = 6*103+7*102+5"101+4*10°

In the same way as above we can see how a hexa-
decimal number is made up. We will use the number
A045 (hexadecimal):

A045 = A*163+0*162+4*16'+5"16° =
10*4096+0*256+4*16+5%1 = 41029

As shown above, powers of digits in a number
increase as you go to the left.

2

Over 90% of the numbers in this book are hexadecimal,
and therefore it is advisable that you learn to use
hexadecimal numbers. However, if you're lazy, you can
use the program in the next chapter which will convert
numbers from decimal to hex (abbreviation for hexa-
decimal) and from hex to decimal.

Binary Notation

You may have come across binary numbers before if
you have created sprites on your computer. Binary
digits are based on two, and are either O or 1. Here is a
table with binary numbers and their decimal and hex
equivalents:

Binary Decimal dnzg;::;
1 — 1 — 1
10 — 2 — 2
11 — 3 — 3
100 —_ 4 — 4
101 — 5 — 5
110 — 6 — 6
111 — 7 — 7
1000 — 8 — 8
1001 — 9 — 9
1010 — 10 — A

1011 — 11 —
1100 — 12 —
1101 — 13 —
1110 — 14 —
1111 — 15 _

mm OO @

The above table, like the earlier one, can be only used
for simple numbers. To convert more complex numbers
we must examine how binary numbers are formed. For
the following example we will use binary 10110010:

10110010 = 1*27+0*26+1*25+1*24+0"
23+0*22+1*21+2%0°

1*128+0*64+1*32+1*16+0*8+0"
4+1*2+0"1

1284+0+32+16+0+0+2+0

178

The above method is time-consuming and so is not the
best way to convert binary to decimal. However, the
example does show you how binary numbers are
formed. If you have designed your own sprites, you
will be familiar with this method:

1286432168421

1 01 10010= 128+32+16+2
= 178

To work in this way, you first write down the table (728
64 etc.) and write your binary number directly under it,
as in the above example. After this, write down every
number in the table which has a 1 below it. Thenall you
do is add the numbers you have written down. The
result is the decimal equivalent of the binary number.

CHAPTER TWO —
ASSEMBLER/
DISASSEMBLER

BASIC is not the true language of the Commodore 64,
although the computer enables you to use BASIC by
interpreting it into assembly language.

To write directly in assembly language we must use an
interpreter. The interpreter will change the assembly
language that you write into numbers that the
computer can understand.

There is an interpreter in this chapter. It’s called an
‘assembler’, because it assembles assembly language
into numbers (machine code). The same program has a
disassembler option which will convert machine code
back to assembly language.

Most of this book was written with this assembler and
before you continue with the following chapters it is
necessary to type the following program into your
machine and save it.

1 OPENS@, @

16 PRINT"{CLR}ASSEMBLER/DISASSEMBLER" :PR
INT"BY ROSS SYMONS, 1984"

20 PRINT"{CUR DN}1.ASSEMBLE CODE"

3@ PRINT"{CUR DN3}Z2.DISASSEMBLE CODE"

4% PRIMT"{CUR DN3}3.CHR% INTERFRETATION"
S@ PRINT"{CUR DN}4.DATA INTERPRETATION"
68 PRINT"{CUR DN3S.SAVE MEMORY"

78 PRINT"{CUR DN}&.LOAD MEMORY"

89 PRINT"{CUR DN3}7.EXECUTE CODE"

%@ PRINT"{CUR DN3}8.HEX-DECIMAL CCOMNVERSI
on"

199 POKE198,8:WAIT198,1:GETAS

119 A=ASC (A%$) -48: IFA<GORA>STHEMN 1060

126 PRINT:ON A GOSUB 1000, 4000, 5000, 5800
, 7B00, 7600 , 3000, 9090

139 GOTO1@

1988 INPUT"START OF CODE ";P%:IFLEN(PS$)<
>4THEN 1999

1619 HEX$=LEFT%(P%$,2) : GOSUBZ@@0: P=DEC¥25
&

1615 HEX$=RIGHT®$ (P%,2) : GOSUB2@@8: P=P+DEC
1626 PRINTPS;" ";:INPUTHSO,C$:PRINT:L=LE
N(C%) : IFL=@THEN1@2g

1622 IFC%="X"THENRETURN

1925 IF L=3THENB1=1:C3%=C%:0P=-1:G0OTO123
o]

1839 FOR R=1TOLEN(CS)

1646 IFMID$(CH,R,1)="¢$"THENCI$=LEFTH(CS,
R-1) :R=LEN(C%)

1050 NEXT

1668 FOR R=LEN(C%)TO1STEP-1

1670 C2$=MID$(CH,R, 1) :IFC2%< "G "ANDCZ2E=7>"
@ " THENC2%=RIGHT$ (C%, LEN(C$) -R) 1 R=1

1880 NEX

1998 C3%=C1$+C2%:CA$=MIDS(CE,LEN(C1%) +2,
LEM(C®) -LEN(C3%) -1)

1995 IFLEN(CA%)<>2ANDLEN(CA4%) < >4THENPRIN
TSPC(18);"{CUR UP3}?INCORRECT DIGITS":GOT
019209

1190 HI$=LEFT$(C4%,2) :LO$=RIGHT$(C4%,2)
1110 HEX$=HI%$:GOSUB20@@:HI=DEC

1120 HEX$=LO0%:GOSUB2@@@:L0=DEC

1200 OP=-1

1219 IFLEN(CA4%)=2THENB1=2

1220 IFLEM(C4%)=4THENB1=3

1230 RESTORE

1246 FOR R=@ TO 255

1259 READOP%:BY=ASC(LEFT$(0P%,1))-48:IFB
¥<>B1THEN1270

1255 OP$=RIGHT$ (0OP%,LEMN(OP$) -1)

1240 IFOP$=C3I%THENOP=R:R=255

1279 NEXT

1280 IFOP=-1THENPRINTSPC(18);"{CUR UP3}?U
NKMOWN CODE":GOTO102@

129¢ IFOP=16&60ROP=430R0OP=8@0R0OP=1120R0P=1
440R0P=1760R0OF=2080R0OF=248THEN 1330

139@ IFB1=3THENPOKEP,OP:POKEP+1,L0:POKEP
+2,HI

1395 IFB1=2THENPOKEP,OP:POKEP+1,L0

1397 IFB1=1THENPOKEF, OP

1319 P=P+B1:DEC=P:GOSUB3Q@0: PE=HEX$

1320 GOTO1G1@

1338 AD=HI¥256+L0:DI=g

1348 IF AD»P THEN DI=AD-P:IF DI>127 THEN
FRINTSPC(18);"{CUR UP3?BAD BRANCH":GOTO1
G110

1350 IF AD<{PTHENDI=(F-AD)¥-1:IF DI<-128
THEMFRIMTSPC (18) ; "{CUR UP}7?BAD BRANCH":G
OTOL@1E

1360
1365
1367
1370
1380
ydal51a
ZH1@
2020
2836
2040
2050
2060
3000
3919
3920
3630
3040
3@50
3960
307@
U39
3699
3199
3119
4000

IFDI<@THEMLO=254+DI
IFDI=@THENLO=254
IFDI=1THENLO=255
IFDI>1THENLO=DI-2
B1=2:G0OTO1385

DEC=@

FOR R=@TO1

S=ASC(MID% (HEX$,2-R, 1)) -48
IFS>1@THENS=5-7

IF S<{16ANDS>-1THENDEC=DEC+ (1&4~R) %5
NEXT

RETURN

D(1)=INT(DEC/A4@96)
DEC=DEC-D (1) %4996
D(2)=INT(DEC/256)
DEC=DEC-D(2) ¥256
D(3)=INT(DEC/16&)
DEC=DEC-D(3) %16
D(4)=DEC:HEX®%=""

FOR R=1T04

IF D(R) >?THEND (R)=D(R) +7
HEX$=HEX$+CHRS$ (D (R) +48)
NEXT

RETURN

INPUT"START OF CODE ";P%:IFLEM(P$)<

>4THENAGO S

Ag1e
&

4620
4g39
4949
EY17)
4953
4955
3060
o

HEX®=LEFT$ (P%,2) : GOSUB2008: P=DEC*25

HEX$=RIGHT% (P%,2) : GOSUBZ86@&: P=F+DEC
OF=FEEK (P) :RESTORE:FOR R=6TOOF
READOPS
NMEXT:BY=VAL(LEFTS(0P%,1)):0T%=""
IFOP$="7?"THENOF®="27227"IBY=1
L=LEM(0OP%) -1:0P%=RIGHT®% (0OP%, L)
IFBY=1THENOF$=RIGHT$ (0OP%,3) : GOTO411

4665 IFOP=160R0OP=480R0OP=8Q0R0OP=1120R0P=1
440R0F=17&0R0OF=2080R0OP=249THEN4 189

497@8 IFRIGHT$(0P$,3)=").Y"THENOT®=").Y":
OP$=LEFT%(0P%,L-3) :GOTO4129

4988 IFRIGHT®S(0OP%,2)=".X"THENOT®=".X":0P
HS=LEFTH (0P%,L-2)

4998 IFRIGHT$(0P%,2)=".Y"THENOT®=".Y" 0P

S=LEFTE(0OP%,L-2)
4108 IFRIGHTS(0OP%,3)=".X)"THENOT®=".X)":
OPE=LEFTS(0P%,L-3):6G0T04124

41835 IFRIGHTS(0P%,1)=")"THENQT®=")":0P%=
LEFTS(0OP%,L-1)

4110 IFBY=1THENPRINTP%;" ";0P%

4126 IFBY=2THENDEC=PEEK(P+1) :GOSUB3999:P
RINTP®; " ";0P%:"$"iRIGHTH(HEX®,2);0T$
4139 IFBY=3THENDEC=PEEK(P+2) ¥256+PEEK (FP+
1) :GOSUB3g@@:PRINTPS; " "j;0P%; "$"jHEX$; 0T
%

4149 P=P+BY:DEC=P:GOSUB3999: PE=HEXS$

4150 GETA%: IFAS="X"THEMNRETURN

4160 IF As<>""THENFORR=0TO19@:NEXT:GOTO4
159

41780 GOTO49109

4180 DI=PEEK(P+1):IFDI>127THENDI=(256&6-DI
Y¥-1

4199 DEC=P+DI+2:G0OSUB3@Q@:BY=2

42800 PRINTPS;" "j0P%$; "$";HEXS
4218 GOTO414@
S@gg INFUT"START OF INTERPRETATION "jP%:

IFLEN(P%) { >4THENSQGGG

@18 HEX$=LEFT$(P%,2):G0O0SUB20@L: F=DEC¥25
&

SP20 HEX$=RIGHTH(FP$,2):G0SUBZ200@: P=P+DEC
5036 PRINTP$;" {(RVS ON}"j3;:FOR R=@g TO 19
S3@4€8 CH=PEEK(P+R)

10

5058 IFCH<{320RCH>25THEMCH=32

Sg68 PRIMTCHRS (CH) ;3

S@7E MNEXT

SP8d F=P+20:DEC=P:GOSUB3800: PE=HEX%

5998 PRINT

Z1gd GETA%: IFA%S="X"THEMRETURN

5116 IF As=" "THEMFORR=GTO166:NEXT:GOTOS
194

51206 GOTOSE19

6gdeg INPUT"START OF DATA "iP%:IFLENM(P%) <

>4THENGGGY
618 HEXS=LEFT$(P%$,2) :GOSUBZ2@8@0: P=DEC%25

&

6820 HEX$=RIGHT$(P%,2):G0SUB2@@@: P=P+DEC
6039 PRIMTP$;" "35:FOR S=@ TO %

6949 DEC=PEEK(P+S5) :GOSUB390@

69589 PRINT" "jRIGHTS(HEX®S,2) 3

&d68 NEXT

68790 P=P+1@:DEC=P:GOSUB39@09: PE=HEX%
&6038@ PRINT
658 GETA$: IFAS="X"THEMRETURN

61g@ IF A%=" "THENFORR=GTO166:NEXT:GOTO&
(% %]

6116 GOTO&O1EG

7988 IMPUT"DISK OR TAPE (D/T) "3A%:AS=LE

FTS (A%, 1) : IFA%="T" THENPOKE251, 1
791@ IFA%="D"THENPOKE251,8

7026 IFA%Z»"D"ANDA%< > "T" THEN?99@

7@3@ INPUT"FILENAME (1-& CHARACTERS) "3A
$: IFLEN (A%) >60RLEN (A%) =@THEN7@30

7@49 POKES20,LEN(A%) : FORR=GTOLEN (A%) -1
7950 POKES21+R,ASC(MIDE (A%, R+1,1))

706@ MNEXT:O0P$="SAVE ":IFZ=-1THENOP%="LO0A
D

707@ PRINT"START OF ";0P%;:INPUTHSE,P%:P

11

RINT

76086 HEX%=LEFT% (P%$,2) : GOSUBZ2008: POKE253,
DEC

78%9@ HEX%=RIGHTS (P%$,2) : GOSUB2@@8: POKE252
,DEC: IFZ=-1THEN? 130

7168 PRINT"END OF ";0P%;:INPUTHSE,PSs:PRI
NT

7119 HEXS=LEFT$(P%$,2):G0SUB20080: POKE1@21
, DEC

7129 HEX$=RIGHTS$(P%,2) : GOSUB29@@: FOKE1@2
@, DEC

7139 RESTORE:FORR=8T0255:READA%: NEXT
7149 FORR=@T026:READA:POKE&67F+R,A:NEXT
7158 IFZ=-1THENFORR=@T026:READA:POKE&7F+
R,A:NEXT

7168 Z=@:5YS679:RETURN

760@ Z=-1:G0TO7909

8@@@ INPUT"ADDRESS OF THE CODE ";P%:IFLE
N(P%) < >4THENSZ9G .

8013 HEX$=LEFT$(P%$,2):GOSUBZ2@0@@: P=DEG¥25
&

830920 HEX$=RIGHT$(P%,2) : GOSUB2@@@: P=P+DEC
8939 SYS(P) '
8049 PRINT:PRINT" AR XR YR sSp"
8959 DEC=FPEEK(78@) : GOSUB3000: ARS=RIGHTS (
HEX%, 2)

8069 DEC=PEEK(781) :GO0SUB3@0@@: XR$=RIGHTS (
HEX%, 2)

8978 DEC=PEEK(782) : GOSUB3998: YR$=RIGHTS (
HEX%, 2)

8089 POKESZ2@, 186:FPOKES21,96:5YS820

8999 DEC=PEEK(781) :GOSUB300@:SPH=RIGHTS (
HEX$, 2)

819@ PRINT®" "3 AR " "3 KRB " "3 YR$;
" " SPS$

12

811@ FRINT:PRIMT"PRESS ANY KEY":POKE198,

F:WAIT198, 1

8120 RETURN

?@@e INPUT"HEX TO DECIMAL (H) OR DECIMAL
TQO HEX (D) ";A%:A$=LEFTS(AS, 1)

9¢1@ IFA%<>"H"ANDA%< >"D" THENS GG

9020 IFA$="H"THENS 100

2938 PRINT:PRINT"USE NUMBERS BETWEEN @ A

ND 45535 ONLY"

S@4g INPUTHSE, A%: IFA$="X" THENRETURN

9@5@ DEC=VAL (A%$) : IFDEC >655350RDEC{@THEN?

@30

2068 GOSUB3IGE@: PRINTTAB(18) ; HEXS

9@70 GOTO9G4Q

91@@ PRINT:PRINT"USE ONE TO FOUR DIGIT N

UMBERS"

9116 INPUTHSE,HEXS$: IFHEX$="X" THENRETURN

9120 IFLEN(HEX%) >4THENS 100

9125 IFLEN(HEX%)=10RLEN (HEX%) =3THENHEX$=
"g" +HEXS

9130 P=@:IFLEN(HEX$)=2THENGOSUB28@8d:G0OTO
9159

2140 A%$=HEX$:HEX%=LEFT$ (A%, 2) : GOSUB280g:
P=DEC¥256:HEX$=RIGHTS$ (A%, 2) : GOSUBZ200@
915@ P=P+DEC:PRINTTAB(10);P:G0OTO9110
1689@ DATA" 1BRK", "20RA(.X) ", "2n non nor,
"20RA","2ZASL","?","1PHP", "20RAH#", "1ASL"
19816 DATA"?","?","30RA","3ASL","?", "3BP
L", "20RA() . Y","2", "?n _non "30RA. X"

19026 DATA"2ASL.X","?","1CLC","30RA.X","
Pu mpn wow wIQRA.X","3ASL.X","?","3ISR"
16638 DATA"ZAND(.X)","?","?" "2BIT", "2AN
D", "2ROL","?","1PLP", "2AND#", " 1ROL"

1g@49g DATA"?","3BIT","3AND","3ROL","?",;"
SB"II" . IIEAND() -YI! . !l'?ll s ll'?l‘ s ll?ll

13

16@5@ DATA"ZAND.X", "2ROL.X","?","1SEC","
3AND.Y","?", " npn wIAND. X", "SROL.X"
16660 DATA"Z?","1RTI","2EOR(.X)","2","?",
npn WREQR","2LSR","?","1PHA", "2EOR#"
19979 DATA"1LSR","?","3IMP", "3EOR", "3LSR
m,mPn W"3IBYC","2EOR().Y", "7, PN, nPn
10980 DATA"Z2EOR.X","2LSR.X","?","1CLI","
3EQR.Y","?", ", "2" "IEQR.X", "3LSR. X"
19898 DATA"?","1RTS","2ADC(.X)","?","?",
"P","2ADC", "2ROR","?","1PLA", "2ADCH"
19166 DATA"1ROR","?","3JMP()", "3ADC", "3R
OR","?","3BVUS","2ADC().Y","2" "2, »o"
19119 DATA"2ADC.X","2ROR.X","?","1SEI","
3ADC.Y","?","?", "?" "3IADC.X", "IROR.X"
19126 DATA"?","?2" , "2STA(.X)","?", "n?" »25
TY","25TA", "25TX","?", "1DEY","?2", "1 TXA"
19138 DATA"?","33TY", "3STA", "3STX","?","
3BCC","253TA().Y","2","2" "25TY, X"

19140 DATA"2STA. X", "2STX.Y","?2","1TYA", "
3STA.Y","1TXS","2","2" , "3STA. X", "2", "o
19159 DATA"ZLDYH","2LDA(.X) ", "2LDX#","?"
s "2LDY", "2LDA", "2LDX","?", "1 TAY", "2LDAH"
19166 DATA"1TAX","?","3LDY", "3LDA", "3LDX
"L MPM L M"3BCS", "2LDA() LY, P, "R "2 DY, X"
1917@ DATA"2LDA.X","2LDX.Y","?","1CLV", "
3LDA.Y","1TSX","?2" , "3LDY.X", "3LDA. X"
19188 DATA"3LDX.Y","?","2CPYH", "2CMP (. X)
m, MM, PN MRCPY", "2CMP", "2DEC", " ?"

19198 DATA"1INY","2CMPH#","1DEX","?", "3CP
¥Y","3CMP","3DEC","?", "3BMNE", "2CMP () . ¥"
19268 DATA"?","2","2" "2CMP.X","2DEC.X",
moN MICLD", "3CMP.Y","P","Pn non n3ICMP, X"
1921G DATA"3IDEC.X","?", "2CPXH#", "2SBC (.X)
MMM NP MRCPXY, "25BC", "2INC", "?"

19226 DATA"1INX","2SBCH","1NOP","?", "3CP

14

X","3SBC","3INC","?","3BEQ", "2SBC () .Y"
1923@ DATA"?","?2", "?" "25BC.X", "2INC.X",
mPn "1SED","3SBC.Y"," P, PN, v

16249 DATA"3SBC.X","3INC.X","?"

19258 DATALl66,251,32,186,255,173,52,3,16
2,53,1608,3,32,189,255,174,252,3, 172,253
16268 DATA3, 169,252,32,216, 255,96

19300 DATA166,251,32,186,255,173,52,3,16
2,53,168 ,3,32

19319 DATAL189,255,174,252,3,172,253,3,16
9,9,32,213,255,96

There will be explanations on how to use the program
in following chapters.

156

CHAPTER THREE —
ACCESSING
MACHINE CODE

Now that you have finished typing out the assembler
program, RUN it. There should be a menu on the
screen. Press the 1 key. The computer should then
prompt you with ‘START OF CODE?’ Answer this by
typing CO00 and RETURN.

Now you will be in a position to enter assembly
language at ‘location’ C000. In assembly language we
don’t have line numbers but instead have addresses.
CO000 is an address. You don’'t know any assembly
language yet so press X and RETURN. This will return
you to the main menu.

Now press 2. Again you will be prompted with ‘START
OF CODE'. This time answer it with F301. The
computer will now be printing out the instructions from
address F301 and onward. It doesn’t matter that you
don’t understand what is being printed. You will
understand it shortly.

To stop the printing, hold the SPACE BAR down. Now
press X again. You should return to the main menu.
Press 7. This time, when you are prompted with
‘ADDRESS OF THE CODE’, type FFD2. The computer
will now RUN the assembly language at the address
FFD2 and print some numbers and characters on the
screen. These numbers and characters will be
explained in the next chapter. Press any key and you
will be returned to the main menu.

16

After this, press 8, then D. This allows you to enter
decimal numbers and the computer will convert them
to hex. After you have tried a few, press X. Now press
8 again, then H. Now you will be able to enter hex
numbers and the computer will convert them to
decimal. Press X if you want to return to the main menu.

17

CHAPTER FOUR —
LOADING REGISTERS

There are three main registers in assembly language
on the Commodore 64. These registers may be
thought of as variables. These three variables or
registers are called the Accumulator (A), X register
and Y register. Unlike BASIC variables these can only
have values from zero to 255 (0 - FF in hex).

To make a register equal to a value, we must /oad it
with that value. For example: In BASIC, to make the
variable A equal 55, we would type ‘A =55" In
assembly language it would be ‘LDA# $37’, the LDA
stands for ‘load A. The # means ‘with the following
value’ and the $ means a hex number. The A register is
loaded with 37 and not 55 because we must use hex
numbers in assembly language, and 37 in hex is the
same as 55 decimal.

Registers may be loaded in many different ways. The
one above is called Inmediate. In due course, I'll show
you all the ways to load registers. However, first we'’ll
discuss how to use the assembler to write the
assembly language.

LOAD and RUN the assembler. Press 1, then type
C000, we will put our code at addresses CO00 and on.

Now type ‘LDA# $37’ and press RETURN. When the
cursor re-appears type RTS. This RTS instruction will
return the computer to BASIC when it is RUN. If you
don’t put an RTS at the end of an assembly language
program, the computer won't return and could CRASH.

18

The code that you have typed in would look like this:
CIPE LDARES?
cagz RT3

Now press X. You should return to the main menu.
Press 7. You should be prompted with ‘ADDRESS OF
CODE’. Type C000 and press RETURN. The computer
will now run the assembly language that you typed in.
The A register will be loaded with 37.

After the computer has returned from the assembly
language, it will print out the values of the registers on
the screen. AR stands for A register, XR for X register,
YR for Y register and SP for Stack Pointer. (Don't worry
about the SP for now, as | will explain this in later
chapters.)

Notice that the A register has a value of 37, the value
that we loaded it with. The X register and Y register
can be loaded in the same way, here are some
examples:

COO@ LDXHHTA

Cagz RTZ

COTE LDYHSBSH

Cagz2 RT3

19

The first example loads the X register with 9A, the
second loads the Y register with 50. (It is important to
remember that all the figures given in this chapter and
following chapters are hexadecimal, unless | state
otherwise.)

Zero Page

Before reading on you should be familiar with the PEEK
statement. If not, consult your User’s Guide, pages 62
and 126. All of the following instructions perform PEEK
functions. Zero Page is the name given to the
addresses between O and FF.

In BASIC, to make the variable A equal the value of
location C5, we would type ‘A = PEEK (197)’ (197 is
decimal for C5). In assembly language it is ‘LDS$C5’.
The difference between this and the previous load
instruction, as you can see, is that there is no # sign.

Here is a demonstration program which loads the A
register with the value of location C5. Remember to
use option 7 on the main menu to run it.

CELEd LLDABCT

CO@ges =73

The X and Y registers can be loaded in the same way:

20

Cgug LDIXsDX

Cgagz ETZ

CHYE LDVHLE

cagz RrRT

m

The first example loads the X register with the value of
location D7. The second program loads the Y register
with the value of location 03. Note that it is 03 and not
3. Although they mean the same thing, the assembler
will only accept two-digit or four-digit numbers.

Indexed Addressing
(Zero Page)

In BASIC if you wanted to make the variable A equal
location 45+X you would type ‘A = PEEK (45+X).
The assembly language equivalent is ‘LDA$45.X". Here
is a program to do this:

COP@ LDABAS, X
CO@gz RTS
In the previous example, if X had a value of 10 then the

A register would have been loaded with the value of
location 55.

21

The Xregister can be loaded with the Y register as an
index, but not with the A register or itself. In the
following example, the X register will be loaded with
the value of location 67, because the Y register is
equal to 27 and 40+27=67:

COVY LDYHSZ7

CEUEZ LDXHE4@.Y

COUs RTS
The Y register can also be loaded in this way, using
the X register as the index. The following program

loads the Y register with the value of location 03
(1+2=3):

Coge LD-H$02
CEF2 LDY$G1. X

Caga RTS

Absolute Addressing

Unlike Zero Page addressing which has a limited
range, Absolute enables you to use figures ranging
from 00 to FFFF.

Location 0286 holds the current colour of the cursor.

To find out the colour of the cursor we can make the A
register equal to the value of location 0286.

22

Here is the program which will do this:

COgOad LDASEZES

After you have run through it once, change the colour
of the cursor. As you change the colour of the cursor,
the value will change.

The X and Y registers can also be loaded in this way.

Absolute
Indexed Addressing

This is much the same as Zero Page Indexed Address-
ing. However, because it is absolute you can use
numbers ranging from 00 to FFFF.

The A register can use either the X or Y register as an
index. On the Commodore 64 the screen starts at
address 0400. So, to load the A register with the first
character on the screen we would type ‘LDS$0400’. If
we wanted to load the A register with Xth character on
the screen we would use ‘LDA$0400.X..

Here is a program to load the Xth character on the
screen:

C&og LDXHBEUZ

CPe? LDASSIET . X

Cg8= RTZ

23

If you change the value of the X register, you will load
the A register with a different character.

The Xregister can also be loaded in this way, although
it can only use the Y register as an index.

The Y register uses the X register as an index in
Absolute Indexed Addressing.

Indexed
Indirect Addressing

Only the A register can use this addressing. Before we
go any further, it’s important that you understand what
the terms ‘Hl byte’ and ‘LOW byte’ mean.

LOW byte is the first two digits of an address. For
example, in the address FEA9, the LOW byte is A9.
The address 764F has a LOW byte of 4F.

HI byte is the second pair of digits in an address. The
address FEA9 has a HI byte of FE, and 764F has a Hi
byte of 76.

Let’s join our bytes to Indexed Indirect Addressing to
carry out the instruction ‘LDA($40.X). When the
computer comes across this instruction, it adds the
value of the X register to the number in brackets. For
this example, let's assume that the X register equals
10. If we did make this assumption, the total inside the
brackets would be 50. (For this example, let’s assume
that location 50 equals D2.) Then the computer will

24

get the HI byte from location 51 (we’ll assume that
location 51 equals FF).

The computer now has a LOW byte and a Hl byte, so it
can form an address. The address will be FFD2, LOW
byte D2,HI byte FF. Now that the address has been
formed the A register will be loaded with the value of
location FFD2.

| will go through another example before we actually
use this instruction on the computer. For this example,
assume that the X register equals 20, location 30
equals 43 and location 31 equals FE. The instruction
for this example will be ‘LDA($10.X). The LOW byte
will be the value of location 30, which is 43. The HI
byte would be the value of location 31, which is FE.
The complete address will be FE43, so the A register
will be loaded with the value of location FE43:

COUE LDXHSOB
CETZ LDA(HZ2H.X)
Ca@4 RTS
When you RUN the program the A register should end
up with a value of OB. All | should need to tell you is:-

location 2B equals O1; location 2C equals 08; and
location 0801 equals OB.

25

Indirect
Indexed Addressing

Like the last mode, this one can only be used by the A
register. An example of this mode in use is
‘LDA($78).Y. The computer gets its LOW byte from
location 78, then its Hl byte from location 79. After it
forms an address, it adds the value of the Y register to
the address.

If location 78 equalled 56, location 79 equalled 98 and
the Y register equalled 03 then the following would
happen:

The LOW byte (location 78) would be 56, the HI byte
(location 79) would be 98. The address would
therefore be 9856, although this wouldn’t be the final
address. The computer would next add the value of the
Y register to the address to get a final address of
9859. The A register would then be loaded with the
value of location 9859.

Here is an example program:
TOG0 LDYHEIO
CESEZ LDA(SER) LY
CO04 RTS

In the above example, location 43 equals 04, location
44 equals 02 and location 0204 equals 20.

26

There are no more load instructions for you to learn,
so here’s a small test of your knowledge to date:

Location AO holds the HI byte of the 64’s clock.
Location A1 holds the MID byte (two middle digits) and
location A2 holds the LOW byte.

How might you read the whole clock, all at once?

There are many answers to this question, although the
best answer follows.

COGET LDASAD
CAP2 LDXHAL
CHS3 LLDYHAZ
Cogs RIS
Whether your program is the same as this one doesn't
really matter, so long as it worked. If your program

doesn’t work | suggest that you go back over this
chapter carefully.

27

CHAPTER FIVE —
STORING

THE REGISTERS
IN MEMORY

Now that we know how to load registers it is important
that we know how to store the values of them. We will
need to store the registers because there are only
three of them. Could you imagine writing a BASIC
program with just three variables?

In this chapter you will learn how to store registers in
memory. Once they are in memory you can load the
values back into the registers at will, using the
instructions from the previous chapter.

Zero Page Addressing

The first store instruction we will examine is STA. This
stands for Store the A register. We are using Zero
Pages so we will be able to store the A register in
locations 00 to FF.

The following program stores the A register in location

FB:
CO0@ LDAHESO

CogZ STA%FB
Capd RT3

28

Execute the program, then return to the main menu.
Now press 4. You should then be prompted with
‘START OF DATA?’ Type OOFB then RETURN. The
computer will start printing out numbers. These
numbers are the values of memory locations. Notice
that the first one is 80, the value we stored in location
FB.

The X and Y registers can also have their values
stored in Zero Page. They use the instructions STX
(Store the X register in memory) and STY (Store the Y
register in memory).

Here is an example of each:
COPE LDXHEZ2S

COOZ STXEFE

Cova RTS

COOE LDYHSLOD
Cogz STY%CB
C8g4 RTS

After you execute the code you can check that it
worked by using option 4 from the main menu.

29

Zero Page
Indexed Addressing

This works in the same way as it did for the load
instructions, except for the fact that this time we are
storing. For this instruction the A register uses the X
register as an index. ‘STA$25.X’ is an example of an
actual instruction. This one would store the A register
at location 25+X (X register).

Here is a program to show this:

CO@E LDXH#B4S

C@GZ2 LDAHSFF

COEd4 3TABZS.X

CGEO& RTS
The A register is stored in location 6A, because 25+X
= 25+45 = 6A. You can check this by using option 4
on the main menu.
The X register can also store itself in this way,
although it uses the Y register as an index. The Y
register uses the X register as an index when it stored
by this method.

Here is an example of each:

30

COEY LDXHE3G
C@g2 LDYHSED

Cogq4 STHKEFQO.Y

Cogd6 RTS

COEE LDYHBOY
CEPZ LDHHSFGD
Co@a ITYHL1.X
oG RTS
The first example stores the X register in location F5,
because FO+Y = FO+5 = F5. The second example

stores the Y register in location 101, because 11+X
= 11+F0 =101.

Absolute Addressing

All three registers can use Absolute Addressing to
store themselves. We will examine the A register first.

As you might recall, | told you that the colour of the
cursor is stored at location 0286.

The following program will change the colour of the
cursor by changing the value of location 0286:

31

Cogge LDAHSSYI
CRE2 STASEEHZ286

CEOgs RTS

By changing the value of the A register in the previous
program, you can change the colour, that is, you load
the A register with a different value.

Location 028A controls the key repeat. If this location
equals 80 then the keys repeat, otherwise they don't.

The following program uses the X register to set key
repeat:

Co998 LDXH#E8T
COg2 STXHBGZ28A

Cg@3 RTS

To test that it worked, break out of the program using
RUN/STOP and hold a key down.

Location D020 holds the background colour of the
screen.

The following program will use the Y register to
change the colour of the background:

Cogg LDYHSOOD
Cogz STYSDGZY

C@@sS RTS

32

By changing the value that Y is loaded with you can
change the background colour to the one that you
want.

Absolute
Indexed Addressing

The A register is the only register that can be stored
using Absolute Indexed Addressing. This time the A
register may use either the X or Y register as an index.

The following programs store a character on the
screen. See if you can spot them:

COey LDXHSBZ?
CE@dZ2 LDAHSZ1
caes STAFGADD . X

CE@? RTS

£AGE LDYHSFE

CU@Z2 LDAHSZ21

CEga STASGAGT . X

CHUT RTS
The first program stores a character in the top left of
the screen, the second stores a character on the right
side of the screen. They both work because the

33

screen memory starts at location 0400.

Indexed
Indirect Addressing

Again the A register is the only register that can use
this form of addressing. An example of this instruction
would be ‘STA($32.X)". If this instruction was executed
and X equalled 14, then the LOW byte would be the
value of location 46 (32+X) and the HI byte would be
the value of location 47. After this the computer would
form an address and store the A register at that
location.

Here is an example program (a full explanation follows
the program): '

Cugiy LDXH$B21
Cag2 STXEFB
Ceogq LDXH#SDE
Cggs STXSFC
CEo@8 LDAHSOO
COgA LDXH$O1
{@EC 3STA(HFA. X)

CadE RTS

34

When you RUN the assembly, the background colour
should change.

C000:

C002:
C004:
CO006:
C00s8:
COOA:
CO00C:

this line loads the X register with the LOW
byte.

the LOW byte is stored in location FB.

the X register is loaded with the HI byte.
the HI byte is stored in location FC.

this loads the A register with 00.

the X register is loaded with 01.

the computer gets the LOW byte from
location FB (FA+X), then the HI byte from
location FC (FA+X+1). The computer then
forms the address D021, which is the
location which holds the background colour.
The A register is then stored there, changing
the colour to black.

Indirect
Indexed Addressing

As you know, the A register is the only register which
can use this form of addressing. This form of address-
ing is much like the previous one, except that it uses
the Y register as an index and it adds the Y register
after the address has been formed, not before.

Here is a program to show this. It stores a character in
the top left of the screen:

35

C000:
Co0o02:
C004:
CO006:
C008:

COO0A:
C00C:

CO99g LDXH%K28
C@@2 STHEFB
Coga LDX#%G4
Cods STXHFC

Cda8 LDY#HS$28

Co@OA LDAHS23
CEEGC STA(SEFB) .Y

CO8E RTS

this loads the X register with the LOW byte.
the LOW byte is now stored in location FB.

now the Xregister is loaded with the Hi byte.
the HI byte is stored in location FC.

now the Y register (the index) is loaded with
28.

the A register is loaded with 23.

the computer gets the LOW byte from
location FB, then the HIl byte from location
FC. It then forms the address 0400, next it
adds Y to the address making it 0428. The A
register is then stored at that address.

That was the final store instruction. Before you move
onto the next chapter, | have devised another test for

you.

The border colour is controlled by location D020 and
the background colour is controlled by location DO21.

36

The problem is:
Can you make a program that changes the border to
the same colour as the background?
The answer follows.
CW@@ LDASDEZ21
C@@3 STASDEZ2Q

Cods RTS

The above answer is not the only answer, as we could
have done it with the X or Y registers. If your answer is
similar to mine, and it works, then proceed with the
next chapter. If it didn't, then | advise you to go through
the chapter again.

37

CHAPTER SIX
INCREMENT,
DECREMENT
AND TRANSFER

Having only three registers sometimes becomes
frustrating and on occasions it isn’t practical to store
the registers. We can get over this problem by trans-
ferring the value of one register to another.

For example, if the A register had a value that we didn’t
want to lose and we needed to use the A register for
another function, we could transfer its value to the X
register. This would be done with the instruction TAX,
which stands for Transfer A to X. After the A register
had been used, we could transfer the value from the X
register back to A register. We do this with the
instruction TXA (Transfer X to A).

In this example program, the A register is used, but still
ends up with the value it started with:

CoBa TAX

Co981 LDAHBGD

Ceo3 STASDOZE
Cagé TXA

Ceg? RTS

38

C000: transfer the value of the A register to the X
register.

CO001: load the A register with 00.

C003: store the A register in location D020 (this
changes the border to black).

C006: transfer the original value back into the A
register.

The Y register can also be transferred, using TYA
(Transfer Y to A) and TAY (Transfer A to Y).

INX and INY

INX stands for Increment the X register. This means
add 01 to the Xregister. INY stands for Increment the Y
register, which means add 01 to the Y register.

Here is an example of each:

Cgg9 LDXH$D1
Cogz2 INX

CHE3 RTS

COgZg LDYHEOS8
cggz2 INY

CEa3 RTS

39

In the first example, the X register is increased from a
value of 01 to 02. In the second example the Y register
is incremented from a value of 08 to 09.

Increment

Memory, like registers, can be incremented. Memory is
incremented by using the command INC (INCrement
memory).

Zero Page Addressing

‘INC$45’ is an example of the increment instruction
using Zero Page.

The following program makes location FB equal 04,
and then increments it to a value of 05:

CH99 LDA#$SG9
Cogeg2 STA%FB
Cgagd4 IMCS$FB
Cogs RTS

To check whether it worked or not, use option 4 on the
main menu.

40

Zero Page Indexed

The INC instruction uses the X register as an index for
this mode of addressing. An example of this instruction
is INC$97.X’, which would increment location 97 +X.

This next program increments location 9A from a value
of 44 to 45:

Crigd LDAH$449
(CIg2 STASPA
CO04 LDXHBG3I
CEHgE INCHEP7. X
Coo8 RTS

Again, to check it use option 4 on the main menu.

Absolute Addressing

With this instruction, you can increment any location in
memory. Every time you execute the next program, the
border changes colour:

Cood INCSHEDO26

Cge3 RTS

The border will keep changing each time you execute
the program because the program increments location
D020, which holds the colour of the border.

41

Absolute
Indexed Addressing

Again the X register is used as an index. The following
program will show a peculiarity of the increment
instructions:

CA99 LDAHSFF

CAg2 STASO7FS

C@EES INCHO7F8

CO@8 RTS
If you use option 4 on the main menu you will see that
the result of the increment is 00. This is an important
point to remember. It means that any register or

location of memory which equals FF before it is
incremented will end up as 00.

DEX and DEY

DEX stands for DEcrement the X register, and means
subtract 01 from the X register. DEY stands for
DEcrement the Y register, and means subtract 01 from
the Y register.

Here is an example of each:

42

Cogd LDXHEES
C@@Z2 DEX

Cegp3 RTS

Co%g LDYHSEH?
Caggz D™

ST ST
TUEE RT3

Zero Page Addressing

Now we move onto the next instruction, DEC, which
stands for DECrement memory.

Here is an example of Zero Page DEC:

COgg LDAH#E4S
Cog2 STASFB
Cgg4 DECSFB

Cog& RTS

The program, when executed, stores 45 in location FB,
then this is decremented to 44.

43

Zero Page Indexed

For this instruction the X register is used as an index. |
think it is worth noting that the BASIC ROM stores
some of its values on Zero Page. That is why, when
using Zero Page, you have to be careful which
locations you alter. The Commodore 64 Reference
Guide provides useful information on this.

Here is an example program for Zero Page Indexed
INC:

Cogad LDAHSFF
Ce@2 STASCC

Cogd LDXHEGC
Cod6 INCHCE.X

C@@g8 RTS

After you have executed this program the cursor
should be flashing. We changed location CC, which is
where the BASIC ROM stores the cursor enable.

Absolute Addressing

With this instruction you can decrement any memory
location, as in the following program:

44

CO9gYg DECHOZ86

Cgaz RTS

Each time you execute this program the cursor colour
will change. This is because location 0286 holds the
cursor colour.

Absolute
Indexed Addressing

The X register is used as an index for this instruction:
COGG LDAHSOO

Cudz2 STASG3FD
COYS LDKH%E1D
Cda> DEC$@O3Ed. x

Ceg@gA RTS

After you have RUN the program, check the value of
location O3FD, using option 4 on the main menu. It
should be FF. This happened because we decre-
mented a memory location which had a value of 00.
From this we can see that any location that is equal to
00, and is decremented, will end up with a value of FF.

That was the last instruction in this chapter, so it’s test
time again!

45

As you may have noticed, the A register has no
decrement instruction, nor has it an increment
instruction. The problem:

Load the A register with 55 and decrement it to a value
of 54. (HINT!! Transfer).

There are two equally good answers. See if you can
work them both out before seeing how | did it.

Code LDAHESS
Cago2 TAY
Caag3 DEY
Cagg4 TYA

Caa3 RTS

OR
CUPP LDAHESS

Caa2 TAX
Coa3 DEX
Caga TXA

Cg@sS RTS

If your program worked, or better still you had either of
the above, then proceed with the next chapter.
Otherwise | suggest you go over this chapter again
carefully.)

46

CHAPTER SEVEN —
JUMPING

Before reading on it is necessary for you to be familiar
with BASIC’s GOTO and GOSUB. Explanations on
these can be found in the User Guide.

JMP

This instruction is very similar to the GOTO
instruction. If you want to jump to a new address you
can use this instruction.

For example, if you wanted to jump to the address
B0O0O, you would type JMP$BO0O0O.

Here is an example program (a full explanation follows
the program):

COu0 IMPHCAAS
COG3 LDAHSOY
CgeS RTS

Cg@s LDARSEFF

Coug8 RTS

47

C000: jump to location C0O06.

C003: this loads the A register with 00, although it
will never be executed, because we have
jumped over it.

C005: this would return the computer to BASIC,
although it has also been jumped over.

C006: this is where the computer has jumped to.
This line loads the A register with FF.

C008: return to BASIC.

Indirect Addressing

The JMP command supports indirect addressing. It is
written in the form JMP ($XXXX), where XXXX is a four-
digit hex number.

When you execute this instruction the program will
stop, and the cursor will appear. This happens
because the LOW byte for error messages is stored at
location 0302, and the HI byte is stored at location
0303. When it is executed the computer jumps to the
error message routine and stops, because there is no
error.

SYS

You may have come across this before. It isn’t an
assembly language command but in fact is BASIC. This
command will go to machine code and return to BASIC

a8

when it encounters an RTS statement. For example,
CO000 in hex is the same as 49152 in decimal, so to
RUN any of the programs that we have done so far just
type ‘SYS 49152’ The SYS command is used after you
have written the assembly language routine, and no
longer need the assembler.

JSR and the STACK

Every time you have executed an assembly language
program the assembler has told you the values of the
registers, including the SP register. it is now time to
tell you what the SP is.

SP stands for Stack Pointer. You may have heard of the
stack before. The stack is the place where return
addresses are put. That is, when the computer goes on
a GOSUB, the line number that it must go back to when
the RETURN statement is executed is stored on the
stack.

These are the main points to note:
The computer stores the address on the stack.

The computer meets a return statement.

The computer gets the address back off the
stack.

The computer “returns’” to that address.

49

The assembly language equivalent for GOSUB is JSR,
which stands for Jump to Sub-Routine. The equivalent
for the RETURN statement is RTS, which stands for
Return from Sub-routine. The stack behaves in the
same way for JSR and RTS as it does for GOSUB and
RETURN.

The actual stack is 255 bytes of memory that
stretches from location 0100 to O1FF. The stack
pointer points to the next free byte on the stack. The
stack pointer starts off with a value of FF, which points
to location O1FF, then BASIC takes a few bytes off and
we end up with the stack pointer pointing to location
O1EF.

Each time you use a JSR instruction or a SYS the
computer saves the LOW byte of the return address
onto the stack, then it decrements the stack pointer.
After that the HI byte of the return address is stored on
the stack, and once again the stack pointer is decre-
mented.

Each time you use an RTS statement the computer
takes the HI byte off the stack and increments the
stack pointer. It then takes the LOW byte off the stack
and increments the stack pointer again. The computer
then forms the return address by putting the LOW and
HI bytes together. After the address has been formed
the computer returns to that address.

By jumping to subroutines that BASIC uses we can
print characters, move the cursor and the like. To print
a character, you load the A register with the ASCII
value of that character and JSR$FFD2:

50

Co99 LDAHESG]L
Coa?2 JSR$FFD2

Caas RTS

This program prints the letter A, because the A
register is loaded with the ASCII value of the letter A
before the routine is called. To print other characters,
look at the ASCII chart on pages 135-137 of your
User’s Manual.

This next routine sets the x and y co-ordinates of the
cursor. First you load the X register with the x
co-ordinate, then the Y register with the y co-ordinate.
Now type CLC (this command will be explained in the
next chapter), then JSR$FFFO:

CO@g@ LDXHEGD
C@dZ LDYHSBLES

Caggq CLC

CUES JISR&FFF@

Co¥8 RTS

As should be obvious, the cursor was set to the upper
left of the screen. By combining the two previous
routines you should be able to print any character at
any position on the screen.

That concludes this chapter, so here is another
problem for you to solve:

51

Can you clear the screen and set the cursor to 01,017

Cedd LDAHSF3
Cegz2 JSR$FFDZ
COdS LDXH$G1
COd? LDYH®BO1
CgEe? CLC

COgA JSREFFF9g
COOD RTS

The above program prints a clear home (ASCII 93 hex
or 147 decimal) and then sets the cursor to 01,01.

If you didn’t get the above or your program didn’t work
then don’'t worry, so long as you know how the
program works. If you don’t know how it works then |
advise you once again to read over this chapter.

52

CHAPTER EIGHT
THE PROCESSOR
STATUS REGISTER

The Processor Status Register (P register) tells us the
state of the computer. We will discover how to test the
status in the next chapter. In this chapter | will show
you what the P register is.

As you know, a byte has eight bits, and each of those
bits may be a O or a 1. The P register uses each bit as
a flag. Each bit is set or reset, depending on the status
of the computer.

Here is an explanation of what each bit does:

Bit 7: this is called the negative flag. This bit is set
to 1 when the result of operation is a number
between 80 and FF. For example, LDA# $C7
would set this bit. The bit is reset if the result
of an operation is between 00 and 7F.

Bit 6: this is called the overflow flag. It is set when
an increment goes above 7F or a decrement
goes below 80. Otherwise it is reset.

Bit 5: this bit doesn’t do anything; it isn’t used.

Bit 4: this flag is for BRK (force break) and this will
be discussed later.

Bit 3: this bit is called the Decimal flag. This will
also be discussed later.

53

Bit 2: this flag is called IRQ disable and, once
again, will be discussed later, along with the
BRK flag.

Bit 1: this bit is the Zero flag. It is set if the result of
an operation is 00, otherwise it is reset.

Bit O: this bit is called the carry flag. You will learn
more about this flag in the next chapter.

Setting and
Clearing Flags

Some of the flags have commands that will set them to
1 or reset to O as follows:

CLC: Clear the carry flag.
SEC: Set the carry flag.

CLD: Clear the Decimal flag.
SED: Set the Decimal flag.

CLI: Clear the IRQ flag.
SEl: Set the IRQ flag.

CLV: Clear the Overflow flag.

54

CHAPTER NINE —
COMPARE
INSTRUCTIONS

Before we begin studying the compare instructions it
is necessary for you to add the following lines to your
assembler:

5U4@ FRINTIPRINT"{CLR} AR XR YR
SP "

&65@ DEC=PEEK (783)

5050 GOSUB3OO@:SP$=RIGHTS (HEXS$, 2)

8161 POKE?60,8:POKE761, 184: POKEFS2, 961 SY
5760

8102 BI$="":BI=PEEK(786):FOR R=7TO@STEP-
1:IFBI< (2"R) THENBI®=BI%+" @":GOTO8166
8164 BI$=BIS+" 1":BI=BI-(2~R)

8106 NEXT

8168 PRIMT"{CUR DNJI{CUR DN} N V - B D I
Z C":FRINTHIS

After you have typed them in re-SAVE the assembler.

These new lines find the value of the P register and
print out the value of each flag.

There are three compare instructions, one for each of
the X, Y and A registers. The compare instruction for
the X register is CPX, which stands for Compare the X
register. The Y register's compare instruction is CPY,
which stands for Compare the Y register. The A
register’'s compare instructionis CMP, which stands for
Compare the A register.

55

Immediate Addressing

This is the form of addressing with the # symbol. An
example of the A register’s compare instruction would
be ‘CMP# $67'. This would compare the A register
with the 67. The results of compare instructions are as
follows:

1. If the register is less than the data it is compared
with, the Negative (N) flag is set.

2. If the register and the data are equal the Zero and
Carry flag will be set.

3. Ifthe register is greater than the data the Carry flag
is set.

The above points are important, they cater for every
result of a compare instruction.

Here is an example of CMP using Immediate address-
ing:
COOY LDAHSSS

Caaz CHMPH%ZQ

Cegad RTS

After you execute the program you will see that the
Negative flag is set. This happens because the
register (A register) is less than the data (70).

56

Here is another example, this time using CPX:

COOE LDXHE67

COP2 CPXHSBE7

COEa RTS
The Carry flag and the Zero flag will be set when this
program is executed. This happens because the
register (X register) and the data (67) are equal.
Here’s yet another example, this time using CPY:

COEE LDYHBEO

COP2 CPYHEZ2O

CHgq RTS

Only the Carry flag is set this time, because the
register (Y register) is greater than the data (20).

Zero Page Addressing

All of the registers can be compared with locations on
Zero Page. The first one we will look at is CMP:

57

CO08 LDXHEED
CGEZ STXEFB
Ceda LDAHSGS
Cod6 CMPSFB

Co@8 RTS

The A register is found to be less than location FB,
because the Negative flag was set.

Here are examples of CPX and CPY:
COOQ LDAHSS?
C@Y2 STASFD
CO@4 LDXH#H58
C@gé CPYXEFD

Coa8 RTS

Cddd LDAHSE3G
Ce@2 STASFE
Cod4 LDYHEIQD
Cags6 CPYSFE

cage8 RTS

58

The first program sets the Carry flag because the
register (X) is greater than the data (57). The second
program sets both the Carry and Zero flags because
the register (Y) is equal to the data (30).

Zero Page
Indexed Addressing

The A register is the only register that has Zero Paged
Indexed addressing for the compare instruction. The X
register is used as the index:

COP9 LDXHE109
Coo2 LDARSG1
Cgg4 CMP&HBZF. X

C@ggé RTS

The above program compares the A register with
location C7 (B7+X). Location C7 controls reverse/
non-reverse printing. If it is equal to 01 then the
computer prints reverse. Therefore if you are printing
in reverse and you execute the above program the
Carry and Zero flags will be set.

59

Absolute Addressing

All three registers can use this form of addressing for
comparing.

Here are examples of each:

COg00 LDAHEO1

Cag2 CMP$428&

Coa@s RTS

COog LDXHEEW
CHdZ2 CPX$DE15

Cg@s RTS

COgd LDYHSOY

Coa2 CPY%@2%1

CEa@s RTS

The first example tests the A register against location
0286. The second tests the X register against location
D015, which holds the sprite enable flags. The final
program tests the Y register against location 0291.

60

Absolute
Indexed Addressing

The A register is the only register that supports this
form of addressing for its compare instruction. The X
register is used as an index as you can see in this
example program:

CEP@ LDXH$EF?
Cag2 LDAH%64
Cgga CHMP$E209. X

Cage”? RTZS

The above program compares the A register with the
first location of the keyboard buffer, location 0277.
The Y register can also be used as an index for this
instruction.

Indexed
Indirect Addressing

Again the A register is the only register which
supports this form of addressing. This time the X
register is the only register that can be used as the
index.

61

Here is an example program:

CO000:
C002:
C004:
CO006:
C008:
COOA:
CO00C:

COOE:

Cre@ LDYHSOD
Cx@2 STYSFB
Cada LDYHSLH3

Cogé STYSFC

Cog8 LDXH%1B

COGA LDAHSZD
Cg@C CMP (BEQ. X)

COgE RTS

this loads the Y register with OD.

this stores the Y register in location FB.
now the Y register is loaded with 03.

the Y register is stored in location FC.

this loads the X register with 1B.

now the A register is loaded with 20.

the computer gets the LOW byte from
location FB and the HI byte from location FC.
It then forms the address 030D and com-
pares the value of that location against the A
register.

this returns the computer to BASIC.

62

Indirect
Indexed Addressing

The A register is the only register to have this form of
addressing. This time the Y register is used as an

index:

C000:
Ccoo02:
C004:
C00e6:
Co00s8:
COOA:
COo0C:

Cogad LLXH#$09
COE2 STASFD
Cogaq LDXKH%64
CPd6 STHKEFE

Cog8 LDYHEGS

COogA LDAH%1G
COaC CHMP(%EFD).Y

COBE RTS

this loads the X register with 00.

this stores the X register in location FD.
now the X register is loaded with 04.

then it is stored in location FE.

this loads the Y register with 09.

now the A register is loaded with 10.

the LOW byte comes from location FD and
the HI byte from location FE. Then the
computer forms the address 0400. After that,
it adds the value of the Y register to the
address, ending in the address 0409. The A
register is then compared to the value of this
location.

63

That was the last instruction for this chapter, so we
now have a problem to test your knowledge on the
compare instructions.

The A register contains an unknown value. When
tested against the number 34 the Carry flag is set.
When compared to 55 the Negative flag is set. Select
one of the following answers:

A. The A register contains a value less than 34.

B. The A register contains a value between 35 and
54,

C. The Aregister has a value greater than 55.

The answer is B. If you didn’t get the answer, just read

the first two pages of this chapter before proceeding
to the next chapter.

64

CHAPTER TEN
CONDITIONAL
BRANCHING

Conditional branches are like BASIC’'s IF ... THEN. ..
statement. They carry out operations such as ‘if the
Negative flag is set branch to’. There are eight
different conditional branch instructions which are
explained in this chapter.

BCC
(Branch on Carry Clear)

The BCC instruction will cause a branch if the Carry
flag is clear (reset). An example of the BCC instruction
is ‘BCC$CO09'. This instruction would branch to the
address CO0O09 if the Carry flag is clear, otherwise it
would continue with the next instruction. This kind of
branch is called RELATIVE addressing. That means it
has a certain range, relative to its present address.

This range is how far it can branch. These branch
instructions can branch 80 (decimal 128) locations
backward and 7F (decimal 127) locations forward.
This means that a branch instruction, BCC$COFO, at
location CO00 would be out of range, although if the
instruction was BCC$CO7F it would be within range. If
the instruction BCC$CO00 was at location C090 it
would be out of range, although if the instruction was
BCC$CO010 it would not.

65

You don’'t have to worry about this, because the
assembler will tell you when you are out of range. If
you are out of range the assembler will give you the
message ‘BAD BRANCH..

The following program compares the A register with a
number, and branches if the A register is less than the
number:

CO08 LDAHEZO

Ceeg2 CMPHSE3IY
Cdgq4 BCCHCOG7
@96 RTS

Coag? STASDOZ2G

Cag@nA RTS

C000: this loads the A register with 20.

C002: the A register compared to 30, which sets
the Negative flag.

C004: abranch is taken to location C007, because
the Carry flag is clear.

CO006: if the branch wasn’'t taken the computer
would return to BASIC.

C007: this stores the A register in location D020,
which changes the border colour.

COOA: this returns the computer to BASIC.

66

BCS

(Branch on Carry Set)

This instruction is the

opposite of BCC. It branches

when the Carry flag is set:

Cooo

Coa3

Caas

Cea?

Cegs

CoaA

CHAD

LDX%8286

CPX#$41

BNE&C@@8

RTS

LDAHSGD

STA%G286

RTS

In the above example the A register is loaded with the
colour of the cursor. This is compared to O1. If it is
equal to, or greater than 01, a branch is taken to CO07
where it is made equal to 00.

67

BNE
Branch on Result
not Zero)

This instruction causes a branch if the Zero flag is not
set. The following example is a time delay which | have
used often in machine code games programs:

COgg LDXH%0Q

Cag2 LDYHSGY

Ce@4 DEX

CO9YS BNE®CEG4
Cgag? DEY

C9@8 BNE$COG4

COgA RTS

This mightn’t seem much of a time delay when you run
it, but it executes around 130,000 instructions.

This is how it runs:

C000: loads the X register with 00.

C002: loads the Y register with 00.

C004: the Xregister is then decremented to a value
of FF, which sets the Negative flag and resets
the Zero flag.

68

CO005:
C007:

Co0o0s8:
COOA:

because the Zero flag has been reset, the
branch is taken back to location C004.

this instruction is executed when the X
register has been decremented to 00. The
actual instruction decrements the Y register.
this causes a branch back to location C004
if the Y register wasn’t decremented to 00.
this returns the computer to BASIC.

BEQ

(B

Branch on Result Zero)

This is the opposite to BNE. It causes a branch when

the Zero flag is not set:

Coog

Ca@3

Coes

Cogé

Caogs

Co@B

LDAEE28A

BEQECEAS

RTS

LDAHEBO

STASI28A

RTS

The program tests whether location 028A equals 00. If
it does a branch is taken to location CO006. If the
branch was taken, location 028A is set to 80 which
sets the key repeat.

69

BMI
(Branch on Result Minus)

This instruction causes a branch if the Negative flag is
set, as in this example program:

Coed LDAHE29
CEdz2 CMFPHE3Q
Ce@4q4 BMISCOE?
Cggs RTS

CEd? LDAHEOD
COg% STASDEZY

C@@C RTS

The program tests the A register against 30, and
because the A register is less than 30, the Negative
flag is set. The branch is then taken to CO07 and the
border colour is changed.

BPL
(Branch on Result Plus)

This is the opposite of BMI. It causes a branch if the
Negative flag is clear.

70

Here is an example:

CO00 LDXH%E3Q
Coaz2 STASFB
TH@4 LDYHEIQ
C@ds CFY$FB
Cees BPL$COOB
CagagA RTS

CdagrB STY$D@21

COPUE RTS

The program changed the colour of the screen,
because the branch was taken from location C008 to
location COOB.

BVC and BVS

These commands cause branches depending on the
Overflow flag. BVC causes a branch if the Overflow
flag is clear. BVS will cause a branch if the Overflow
flag is set. There will be more said about the Overflow
flag and these instructions in chapter twelve.

It is time for another test. The problem is:

71

Devise a program that
times.

Caes
Cogz
Cg@q
Cogz
CaEs8

CeggA

OR
of=7]]
Coa2

Coaq

Caaz

Ccagas

Cadgn

Either of the above programs will work.

will PRINT the letter A 255

LDXH$HQ

LDA#%41

JSR$FFDZ2

INX

BNE$C@9d4

RTS

LDYHEHD

LDAHE41

JSR$FFD2

INY

BNE®C@@4

RTS

If you

understand how they work then continue with the next
chapter. Otherwise perhaps you’d better revise the

previous two chapters.

72

CHAPTER ELEVEN —
STORING REGISTERS
ON THE STACK

As you already know, we are restricted greatly when
working in the machine code on the Commodore 64 by
only having three registers. You are probably thinking
‘but we can store them in memory, or even transfer
them. Even transferring or storing the registers may
not be possible or practical in some situations.

We get around this by storing registers on the stack.
This chapter shows you how to save registers to the
stack and how to take them back off.

PLA and PHA

PHA stands for Push the A register on the stack. When
you push the A register on the stack its value is stored
in the location pointed to by the Stack Pointer (SP).
Then the SP is decremented, so that it points to the
next free byte on the stack. For example, if the SP
equals 89 and you push the A register on the stack the
A register will be transferred to location 0189. The SP
will be decremented to equal 88.

PLA stands for Pull the A register off the stack. Once
you have stored the A register on the stack you use
this instruction to get it back off the stack and into the
A register. For example, if the SP equals 92 and you

73

use the PLA statement, then the A register will be
loaded with location 0193. The SP will then be
incremented to a value of 93.

Here is an example of saving the A register to the

stack, using it for another purpose, and then retrieving
it off the stack:

Cogd LDAHS3G
Cegg2 PHA

Cag@3 LDAHSEGYS
Cg@S STASDEZ20G
Co@8 PLA

Ceg@? RTS

PHP and PLP

PHP stands for Push the P register onto the stack. PHP
has the same effect on the stack as PHA.

PLP stands for Pull the P register from the stack. PLP
has the same effect on the stack as PLA.

Here is an example of saving the P register to the
stack and retrieving it again:

74

Cood LDAHELDY
Coe2 PHP
CE@3 LDAHESE

Ca85 STASRGZ8A

Cogs PLP

Cou? RTS

TXS and TSX

There are two transfer instructions that | have not yet
told you about. The first one is TSX, which stands for
Transfer the Stack pointer to the X register. The other
one is TXS, which stands for Transfer the X register to
the Stack Pointer. Both can be used to make sure that
the Stack Pointer doesn’t equal zero.

Notes

* When pushing any numbers on the stack, always
remember to take them back off the stack. If you
don’t take values off the stack the system may crash
when it executes an RTS statement.

* Numbers are pulled off the stack in the reverse
order that they were put on. For example, if the
numbers 1, 2, 3, 4, 5 and 6 are put on the stack in
that order, they would be taken off in the following

75

order: 6, 5, 4, 3, 2and 1. (This order is referred to as
‘last in — first out’.)

Here is a problem for you to ponder before going on to
the next chapter:

Transfer all registers to the stack, and then retrieve

them all. COBT PHP

COO1 FHA
Caa2 TXA
Cd@3 FHA
Caga TYA
CO@sS PHA

Codd PLA

Ca@l TAY
Caga2 PLA
Cav3 TAX
Cod4 PLA

Cges PLP

The first program puts the registers on the stack and
the second takes them off.

It isn’t too important that you managed to create the
above programs, but it is important that you
understand them.

76

CHAPTER TWELVE —
SUBTRACTION
AND ADDITION

This chapter deals with the mathematical functions of
the 6510 (the 64’s microprocessor). The 6510 can
only handle subtraction and addition, and both are
carried out with the A register. This is why the A
register is called the accumulator.

(Add to Accumulator
with Carry)

By now you should know all of the addressing modes.
That is, you should know what Zero Page addressing,
Absolute addressing and all the rest are. Therefore, |
won't be outlining every addressing mode of an
instruction any more.

The instruction, ADC, causes a value and the Carry
flag to be added to the A register. For example, if the
Carry flag is set, the A register has a value of 40 and
you use the instruction ADC# $03, the A register will
end up with a value of 44. This happens because the
computer would add 03 to 40, giving it 43, then it
would add the Carry flag to that, giving it a final value
of 44,

77

If the Carry flag had not been set, the value of the A
register would have been 43. Before addition we can
use the command CLC to Clear the Carry so that an
extra O1 isn’t added to the final answer.

Here is an example program which adds 02 and 02
together:

CUoE LDAH%EGZ2
Ceggz CLC
COg3 ADCHBLHZ2

COEs RTS

~ The previous program added 02 to 02, and of course
the answer was 04.

Here is another program. Again it adds 02 to 02, but
this time the Carry flag is set:

CUgg LDAH%OZ
Capz2 SEC
COd3 ADCH®HO2

ndgs RTS

The result of the addition is 05, because the Carry flag
was added as well as 02. If the Carry flag was clear
and you added 06 to 04 you would get an answer of
OA.

78

Sometimes it isn’t practical to use this sort of addition,
i.e|you would rather have adecimalresult.ltispossible
to get the A register to carry out decimal addition by
setting the Decimal flag. This is done by using the SED
(Set Decimal flag) instruction. When the Decimal flag is
set an addition such as 05 plus 07 will equal 12, and
not OC. Before returning to BASIC you must clear the
Decimal flag, as the BASIC interpreter will crash if it is

set.

Here is an example of Decimal addition:

CO@@g SED

COO1 LDAHSG?
COT3 CLC
COP4 ADCHEES
C@G& CLD
COU7 RTS
This will give the A register a value of 13. If the

Decimal flag hadn’t been set before the addition the A
register would have had a value of OD.

79

Notes on ADC

* The Carry flag will be set if an addition exceeds 255
under normal circumstances. However, if the
Decimal flag is set, the Carry will be set if an
addition exceeds 99.

* The Zero flag will be set if the addition results in
zero.

* The Negative flag will be set if the addition results in
a number between 80 and FF.

* The Overflow flag will be set if the result of an
addition exceeds 7F.

* Always reset the Decimal flag before returning to
BASIC, otherwise the computer will crash.

* ADC can support the following modes of address-
ing:
IMMEDIATE (ADC# $Z2)
ZERO PAGE (ADC$Z2)
ZERO PAGE INDEXED (ADCS$ZZ.X)
ABSOLUTE (ADC$Z2ZZ22)

ABSOLUTE INDEXED (ADC$2ZZZ.X or
ADC$2222.Y)

INDEXED INDIRECT (ADC($ZZ.X))
INDIRECT INDEXED (ADC ($22).Y)

In the above table ZZ means a two-digit number and

80

27277 means a four-digit hex number.

SBC

(Subtract from

a Register with Borrow)
SBC is used to subtract a value from the A register. If
the Carry flag isn’t set, an extra 01 is taken from the A

register. If the Carry flag is set, the Carry flag is
ignored by the subtraction.

Here is an example. Notice we set the Carry flag so
that it will be ignored:

CEOU LDAHBAO

Ca@gz2 SEC

COE3 SBCHFZ2O

Caads5 RTS

The result in the A register is 20, because 40-20 =
20. Had the Carry flag been clear the A register would
have had a value of 1F, because an extra 01 would
have been subtracted.

SBC can also use the decimal mode. When the
Decimal flag is set the SBC command subtracts in
decimal notation. For example, if the Decimal flag is
set and you take 01 from 20 you would get an answer
of 19, not 1F.

81

Here is an example of Decimal subtraction:
CEET LDAHSSE
C@d@z2 SED
CEE3 SEC
CO@EA SBCHB1S
C@@& CLD
CA@7 RTS
The above program subtracts 15 from 60, and

because the Decimal and Carry flags are set, the
answer left in the A register is 45.

Notes on SBC

* The Carry flag will be set if the result of a sub-
traction is Zero or positive.

* The Zero flag will be set if the result is 00.

* The Negative flag is set if the result is less than 00.
In that case the seventh bit of the A register will be
set.

* The Overflow flag is set if the subtraction is less
than -80.

82

* The following addressing modes are supported by
SBC:
IMMEDIATE (SBC # $22)
ZERO PAGE (SBC$Z2)
ZERO PAGE INDEXED (SBC$ZZ.X)
ABSOLUTE (SBC$2777)

ABSOLUTE INDEXED (SBC$22Z2Z.X or
SBC$Z22Z2.Y)

INDEXED INDIRECT (SBC($ZZ.X))
INDIRECT INDEXED (SBC($22).Y)

Here’'s a problem to test your understanding of this
chapter.

Make a program that will add the Y register to the X
register, and add that total to the A register. You may
use the following instructions:

PHA, PLA, CLC, RTS, TXA, TAX, STY$FE, STXS$FE,
ADCSFE.

You may use each one more than once. If you can't

think of a program using these instructions, work out
your own.

83

Here’s the answer:

Cag9a

Cagg1

Cogaz2

Coaq
C@@S
Coeaz
Cga8
Cogs

CO9B

Coac

CeoE

Note that this program isn’t the only answer to the
problem. If your program is different to the above
program and it works, then it is probably just as good.

PHA

T*A

STY%FE

CLC

ADCSFE

TAX

PLA

STX$FE

CLC

ADCSFE

RTS

84

CHAPTER THIRTEEN
SHIFTING
AND ROTATION

This chapter, and the one following it, rely heavily on a
knowledge of binary numbers. With the following lines,
the assembler will convert the values of the registers
to binary numbers. Load your assembler and enter the
following:

3¢53 DEC=PEEK(78@) :GOSUB3%900: BA%s=BI%: GOS

UE38e@: ARE=RIGHTS (HEXS$, 2)
8869 DEC=PEEK(781) :GOSUBBY90: BX$%=BI%: GOS

UB38@9: “RE=RIGHTH (HEXS%, 2)
807¢d DEC=PEEK (782):G0SUB8%@@:BY$=BI%: GOS

UB3009: YRE=RIGHTS (HEX$, 2)

8199 PRINT"{CUR DN}AR= ";BA®%:PRINT"{CUR
DN}XR= "j;BX%:PRINT"{CUR DN}YR= ";BYS
9869 BI=DEC:BI%$="":FOR R=7TO@STEP-1:IFBI

<{2"R)THENBI%=BI%+" @":GOTOBF2G
8719 BI$=BI%+" 1":BI=BI-(2"R)
8920 NMNEXT:RETURN

After you have typed the lines in, re-save your
assembler.

85

ASL
(A register Shift Left)

ASL causes a shift of one bit to the left. Here is a
diagram:

Carry 7 0

- 0]

When you use this instruction a O enters bit O, bit O
enters bit 1, bit 1 enters bit 2, and so on, until bit 7
enters the Carry flag.

Here is an example showing a value before and after
an ASL instruction:

Before rotation:

Carry flag = 0, memory to be rotated = 10010110
After rotation:

Carry flag = 1, memory = 00101100

You should be able to see that the memory was shifted

one bit to the left and the Carry received the seventh
bit.

86

Here is a program that shifts the A register from a value
of 81 (10000001) to 2 (00000010) and sets the Carry
flag:

Co9@a L_.DAH#$31
Ceo2 AsSL
Cgg3 RTS

CO@4 LDYHEGS

Ca8s RTS

The above program sets the Carry flag because bit 7,
which was 1, was shifted into the Carry flag.

The next program shifts a memory location. The X

register holds the value before the shift, and the Y
register holds the value after the shift:

Ca@@ L DXHEACS
Ce@2 STXSFE

Ceaq4 ASLSFE

Codé LDYSFE

Cg@s RTS

87

LSR
(Logical Shift Right)

This does the opposite of ASL. It shifts memory one bit
to the right. Here is a diagram of LSR:

0 7 Carry
0 >

The whole byte is shifted one bit right and a O enters
bit O, while bit 7 enters the Carry flag. Here is an
example program that shifts the A register from a value
of A7 (10100111) to 53 (01010011) and sets the
Carry flag:

Coo@ LDAHEAZ

CoP2 LSR

COg83 RTS

* LSR and ASL both support the following modes of
addressing:

ACCUMULATOR (A REGISTER) ADDRESSING
(ASL, LSR)
ZERO PAGE ADDRESSING (LSRZZ, ASLZ7)

ZERO PAGE INDEXED ADDRESSING (LSR$ZZ.X,
ASL$ZZ X)

88

ABSOLUTE ADDRESSING (LSR$zz22Z,
ASL$27277)

ABSOLUTE INDEXED ADDRESSING
(LSR$22ZZ.X, ASL$Z2Z22Z.X)

ROL
(Rotate One bit Left)

‘ROL is exactly the same as ASL, except instead ofa 0
entering bit 0, the Carry flag is shifted there. Here is a
diagram:

Carry 7 0
= 0 -l
F
As the diagram shows, the Carry flag enters bit O and
the whole byte is shifted one bit to the left. Here is an
example program that shifts the A register from a value

of 81 (10000001) to 3 (00000011). Notice that the
Carry flag is set before the rotation.

Cowd LDAH%ES1

Cge2 SEC

89

Ce@3 ROL

Ceg4d4 RTS

The Aregister ended up with 3, because the Carry flag
entered bit O, the register was shifted left, then bit 7

entered the Carry flag.

ROR
(Rotate One bit Right)

This instruction is the opposite of ROL. It causes the
Carry flag to enter bit 7, the memory to be shifted right
and bit 7 to enter the Carry flag. Here is a diagram:

7 0 Carry

>—

<%

In the next program, FF (11111111) is rotated to 7F
(01111111), and the Carry is also set as a result:

Co9d LDAHSFF

Cog2 CLC

90

CO93 ROE

Cadgq RTS

* Both ROL and ROR support the same modes of
addressing as ASL and LSR.

It is time again for you to solve a problem.

Before a rotate or shift takes place the A register
equals 78 (01111000) and the Carry flag is set. After
the rotation the A register has a value of F1 and the
Carry flag is clear. Which instruction did | use: ROL,
ROR, ASL or LSR?

The instruction | used was ROL. Here is the actual
program | used:

COPY LDARSTS
C@@Z SEC
CEP3 ROL
cogq4 RTS
If you didn’t get ROL as the answer, but can under-
stand your mistake, then continue. If, however, you are

unsure please re-read this chapter very carefully as it
covers a great deal in a small amount of text.

91

CHAPTER FOURTEEN
— LOGICAL
INSTRUCTIONS

Logical instructions change the bits of a byte. Unlike
most of the instructions we have studied so far, they
may store values in bit. This chapter explains every
logical instruction on the 6510.

AND
(AND Memory with the
A Register)

This does the same as BASIC’s AND instruction. The A
register is the only register that can use the AND
instruction. The actual instruction compares each bit
in a number with each bit in another number. If two bits
are set (1) the result will have that bit set. Otherwise it
will be reset (0).

Here is an example:

10111010
10001011

10001010

92

The two numbers above the line are being ANDed. The
number below the line is the result. Notice that the
result has bits set that were set in both of the numbers
that were ANDed. When you use the AND instruction in
assembly language the A register always ends up with
the result.

Here is an example in which 45 (010000101) is ANDed
with CE (11001110):

COEd LDAHSEA4S
CogZ2 ANDHSBCE

Codd4 RTS

The AND instruction is useful in turning certain bits off.
For example to turn bit O off you would AND the
number with FE (11111110). If you wanted to turn bits
7 and O off you would AND the number with 7E
(01111110).

Notes on AND

* |If the result is between 80 and FF the Negative flag
will be set.

* |f the result is 00 then Zero flag will be set.

* The A register supports the following modes of
addressing for the AND instruction:

93

IMMEDIATE (AND# $22)

ZERO PAGE (AND$Z2)

ZERO PAGE INDEXED (AND$ZZ.X)
ABSOLUTE (AND$2ZZ2)

ABSOLUTE INDEXED (AND$ZZZZ.X) or
(AND$ZZZZ.Y)

INDEXED INDIRECT (AND($2Z.X))
INDIRECT INDEXED (AND($22).Y)

(OR memory with the

A register)

This operates in the same way as BASIC's OR
instruction. Two numbers are compared bit by bit. If
either or both of the bits are set, that bit will be set in
the result.

Here is an example:

10111001
00100101

10111101

The number below the line is the result of the OR. OR
can be used to turn certain bits of a byte on.

Here is a program that turns the seventh bit of location
028A on:

94

Cood LDASEZ28A
Caag3 ORAHSBO

CogS STASUZS8A

CgEs RTS

The previous program turns the key repeat on,
because bit 7 controls key repeat, 1 = on, O = off.
The A register always gets the result of an ORA.

Notes on ORA

* |If the result is between 80 and FF the Negative flag
will be set.

* |If the result is 00 the Zero flag will be set.

* The A register supports the following modes of
addressing for ORA:

IMMEDIATE (ORA# $Z2)

ZERO PAGE (ORA$Z2)

ZERO PAGE INDEXED (ORA$ZZ.X)
ABSOLUTE (ORA$ZZ22)

ABSOLUTE INDEXED (ORA$ZZZZ.X) or
(ORA$Z222.Y)

INDEXED INDIRECT (ORA($2Z.X))
INDIRECT INDEXED (ORA($22).Y)

95

(Emluswe Or with the
A register)

This is exactly the same as ORA, with one difference. If
the A register and the value it is tested against both
have the same bit set that bit will be a 0 in the result.

Here is an example:

11001011
01010010

10011001

The result is the number below the line. From the
example you should be able to see the difference
between EOR and ORA.

Here is a program that switches the screen colour
each time you run it.

CeE@ LDASDE21
COgd3 EORH$G7
Ceds 3STASDEZ21
CEOE8 RTS

The program works because each time it is run it
inverts bit 0, 1 and 2.

96

Notes on EOR

* |f the result of an EOR is between 80 and FF the
Negative flag will be set.

* |f the result is 00 the Zero flag will be set.
* The Aregister supports the following modes of EOR:

IMMEDIATE (EOR# $22)

ZERO PAGE (ORA$Z2)

ZERO PAGE INDEXED (ORA$ZZ.X)
ABSOLUTE (ORA$Z2772)

ABSOLUTE INDEXED (ORA$Z2ZZZ.X) or
(ORA$Z2Z222.Y)

INDEXED INDIRECT (ORA($2Z.X))
INDIRECT INDEXED (ORA($22).Y)

BIT
(Test bits in memory
with a register)

Unlike most of the instructions we have looked at so
far, this instruction does not affect registers or
memory. When you use this instruction the memory’s
seventh bit goes to the Negative flag and its sixth bit
goes to the Overflow flag. The A register is then
ANDed with the memory, and if the result is 00 the Zero
flag is set. The result of this AND is not stored
anywhere.

97

Here is an example in which the A register is BiTed
with location FB:

COgEd LDXHEBA
CHg2 STX%FB
Ce@4 LDAHSESS

CoPg6 BIT%FB

C@gas RTS

The BIT command has only two modes of addressing;
Zero Page and Absolute. It can usually only serve one
purpose which is to test the status of a byte of
memory.

BIT was the last logical instruction to be covered, so
we have come to the end of yet another chapter. Here
is a problem to test your knowledge of logical
instructions:
| wrote a program to lead the A register with A9
(10101001). It then performed a logical instruction
and the A register ended up with 08 (00001000). What
was the logical instruction performed in the program?
CO@@ LDAHSASD
COEGZ EOR#$AL

Cggq4 RTS

98

The program above is the same as the one in the
problem. As you can see the answer to the problem is
EOR# $A1. This diagram will show you how it worked:

A register = 10101001
data = 10100001
A register = 00001000

99

CHAPTER FIFTEEN —
INTERRUPTS

There is yet another register we have not yet
discussed yet. It is called the PC (Program Counter).
The PC works independently, that is it does everything
on its own. The PC keeps track of which address the
computer is at. For example, if the computer was
executing an instruction at address CO000, the PC
would equal C000.

Interrupts, as their name suggest, interrupt the normal
flow of a program. Every 1/60th of a second the
Commodore is interrupted. It is interrupted to update
the clock and scan the keyboard.

We can use this to our advantage. We can change the
interrupt so that it jumps to our routines every 1/60th
sec. We can do this by changing the vector that the
interrupt jumps through.

A vector is two bytes which point to an address and
are in LOW-HI byte form.

The vector for this interrupt (IRQ-Interrupt Request) is
at locations 0314 and 0315. This vector normally
points to location EA31. When we change the vector
to point to our routine we must end our routine with
‘JMPS$EA31’. This will ensure that the keyboard will be
scanned and the clock updated.

Here is a program to change the IRQ vector to point to
location CO10:

100

Cage SEI
CO@1l LDAHS1E
Coa3 STA%LH314

CEE6 LDAHECE

Cogs STA%P31S

Co@B CLI

CgeC RTS

Make sure you don’t run this program before we write
a routine at location C010. You would have probably
noticed the SEl and CLI instructions in the program.
SEl sets the IRQ disable. That means that when the IRQ
flag equals 1, interrupts are ignored. The CLI instruc-
tion clears the IRQ flag and enables interrupts.

Here is the routine that we will run using the IRQ
routine:

CO1g INCHDOZ2G

Ca13 JMP$EAZL

Now, after you have typed in the above, run the
assembly language at location C000. The screen
should start flickering. This happens because the
screen is changing colour so rapidly that your eyes
can’t keep up with it.

101

Note

While you are changing the IRQ vector, always set the
IRQ flag. After you have changed the vector you can
then use the CLI command to clear the IRQ flag.

BRK
(Force Break)

BRK, like IRQ, is an interrupt. There is, however, a
difference. BRK is an instruction. When you use the
BRK instruction, a jump is taken through a vector at
locations 0316 and 0317.

We can change the vector to point to any location
where we have a routine, but first we must learn more
about BRK.

When a BRK instruction is executed, it jumps through
its vector to yet another routine. It is then returned by
the RTI instruction, which stands for Return from
Interrupt. RTI is exactly the same as RTS, except it
returns from interrupts, not subroutines.

When the RT! instruction is executed the PC is taken
off the stack and it is incremented twice.

The fact that the PC is incremented twice means that it
won't return to the next address, but to the one after
that. That means that we must fill up the location after
the BRK. We can fill this location with a NOP
instruction. NOP stands for No Operation, this

102

instruction does absolutely nothing except take up
space.

This shows how BRK works:

CO00 BRK (This causes the computer to go
through the vector.)

C001 NOP (This instruction is “skipped’’.)
Co002. .. (The computer returns to this instruction
after an RTI instruction)

The following program changes the BRK vector and
then uses the BRK instruction:

CO@@ LDAHS1D

Cog2 STASE316

CP3S LDAHBCO

CO97? STASG317

CagA BRK

C@@B NOP

CeOC RTS
Don't run it until you enter the following routine:

Ca1g INCH@286

C@13 RTI

103

Each time you run the program at location CO00 the
cursor colour will change. This happens because the
BRK increments location 0286, which holds the
current cursor colour.

There is no test for this chapter as | think you should
read it twice anyway. When dealing with interrupts you
have to be very careful.

You have now learned every command that the 6510

microprocessor offers. Now we get to the good bits;
learning how to use that knowledge.

104

CHAPTER SIXTEEN
PROGRAM CREATION

By now you know the C64’'s machine code instruc-
tions. There is only one more thing to learn, how to put
everything you know together to form practical
programs.

One of the best ways to learn this is to carefully study
completed programs such as the ones in this chapter.

We have two games programmes. Both games are a
mixture of BASIC and machine code. The BASIC part
sets up sprites and the like.

The first one is called PUB SQUASH. It is modelled on
the very first arcade game made in 1976. The bat is
controlled with the F1 and F3 keys.

Here is the BASIC listing:

@ REM PUB S@UASH BY ROSS SYMONS, i98+
19 IFPEEK(4%152)<>1465THENMLOAD"GAMEL (2)"
4 8,1,1

2¢ GOSUB1@@@:REM SET UP SFRITES
30 PRINT"{CLR3}":FOR P=1024T01@54
4@ POKEP, 169

S9 POKER&G+P, 168
&8 NEXT

7@ FOR P=1@94TO2009STEP4Q
8@ POKEFP, 159
26 NEXT

105

1@ PRINT"{CUR DN3}PRESS ANY KEY TO PLAY"
:POKE198,8:WAIT198,1:POKE251,9: POKE252, @
:5C=0

116 PRINT"{CUR UP} "
126 GOSUB3@@:REM PRINT SCORE ETC...

130 POKE&79, 1:POKE&8D, 255

149 SYS49152:POKE251,PEEK(251) +1

15@ IFPEEK(251)<STHENPOKEV, 253:POKEV+1,5

@+ INT (RND (1) ¥289) +1:GOTO120

16@ GOSUB3@Y

176 GOTO10@

380 SC=SC+PEEK(252) :PRINT" {HOME3}{CUR DN3
{CUR L3{CUR L3}{CUR L3}{CUR L3{CUR L3}{CUR
L3{CUR L3}{CUR L3{CUR L3}BALLS {CUR DN3{CU
R L¥{CUR L3}{CUR L3{CUR L3{CUR L3}{CUR LM
ISSED{CUR DM3}{CUR L3>{CUR L3}{CUR L3{CUR L
3{CUR L3";PEEK(251)

310 POKE252,@:PRINT"{CUR DN3}{CUR DN3}{CUR
DM3I{CUR L3{CUR L3}{CUR L3{CUR L3{CUR L3¢
CUR L3{CUR L3}{CUR L3}{CUR L3}SCORE {CUR DN
}{CUR L3}{CUR L3}{CUR L3{CUR L3{CUR L3 ¢
CUR L3}{CUR L3}{CUR L3}";SC

330 RETURN

999 END

190@ POKES328@,9:POKES3281,0

1916 V=53248

1926 POKEV, 253:POKEV+1, 198

19630 POKEV+39, 1:POKE284@, 13

1949 FOR P=@T0&2

1650 POKES3Z2+P,@

1868 POKES96+P,

1988 NEXT

1990 POKES863, 68: POKES66, 68

11968 POKES&9, 69:POKES?Z, 60

1119 POKEZ2@41,14

106

1120
113¢g
1149
1156
1169

FOR P=@TOS9STEP3

POKES®6+P, 31

MEXT
POKEV+21,3:POKEV+2, 24: POKEV+3, 190
RETURN

If you are using cassettes to store your programs,
change line 10 to the following:

19 IFPEEK(49152)<>165THENLOAD" ", 1,1

After you have typed out the BASIC program, SAVE it,
but don’t RUN it. Now, using the assembler, type in the
following assembly language:

Coog LDA%CS

Coa2 CMPH®4E

Cog4 BEQ$CH14

Cog&6 CMPH®ES

Cg@8 BNE$CGED

CogA INCHDOGS

CogD CMPH%O49

COOF BNE$C@14

Co11 DEC$DO@3

107

Cg14d

Cglé

cglis

Ca12

C@iB

Co1cC

CO1E

Coz1

Co23

Caz25

caz>

Ca2A

Cg2D

Ce31

Co36

LDXH%20

LDYHB20

DEY

BNE%C@18

DEX

BNE®C@16

LDASDEI 1

CMPH%36

BCSHCO2Z2A

LDAHSG1

STAEGZ2A7

LDASDEOO1

CMPHSED

BCCHCEO36

LDAHSFF

STASRG2A7

LDASDOSO

CMPHEFC

108

COgZB

Ca3D

CO3F

co4a2

C@as

cCaa?z

Cc@4a8

C@g4R

Cag4D

Ca4aF

Cas1

Cgs54

Ca36

Cos?2

Co3A

COSD

Cosw

Cas3

BCC%C@a2

LDAHSFF

STASG2A8

LDASDOGY

BNE&C@48

RTS

LDASDO1E

ANDHEG1

BER®CESSE

LDAHSS1

STASE2A8

INCSFC

LDASDGII

CLC

ADCEHGZASB

STASDOLGY

LDA%$DEOG1

CLC

109

Cd64 ADCEOTAZ
Cas? STASDOE1

CO6A IMPHCOLGE

After you have typed it in, return to the main menu. Now
press 5. You should be prompted with a question as to
which filing system you are using. Enter D or T, D for
disk, T for tape. After this you will be asked for the file
name. Enter ‘GAME1’. Now you will be asked for the
start and end addresses of the program. The start
address is C000 and the end address is C062. Disk
users will have to rename the program with
OPEN15,8,15, “RO:GAME1 (2)= GAME1".

When loading assembly language from BASIC you
should have extra parameters after the file name in the
LOAD statement. These extra parameters are 1,1. This
loads a program back into the memory space it came
from.

Our second game pits you, a racing car driver, against
the track. The track is constantly changing, and there
is a different race every time you play. The F1 and F3
keys are used to steer your way through the course.

Here is the BASIC part of the listing:

110

1@ REM¥¥INDI S@@%#BY ROSS SYMONS, 1984

20 IFPEEK(49152)<>1465THENLOAD"GAMEZ (Z)"
48,1,1

3¢ GOSUB1@@@:REM SET UP SPRITE

49 PRINT"{CLR3PRESS ANY KEY TO BEGIN":PO
KE198,0:WAIT198, 1

5@ FOR P=940T01020

&9 POKEP, INT(RND(1)%253) +2

78 NEXT

8¢ POKE1@920,7:POKE1@821,16:POKE1G22,0: POK
EV+31,0

99 FOR P=1063T013464STEP4Q

169 POKEP, 160

118 NEXT

120 FOR P=1623TOZ@0@STEP4Y

138 POKEP, 169

146 NEXT
158 SYS491352

166 IF PEEK(1822)=8THENPRINT" {HOME}YAHOO

'1'YOU MADE IT!!":FORP=8TOZEE9:NEXT::RUN
176 PRINT"{HOME>BAD LUCK,MAYBE NEXT TIME

": FORP=@TOZ@8@: NEXT : RUN
199@ POKES328@,@:POKES3281,0
1618 V=53248
192@ POKEV, 38:POKEV+1, 150
1930 POKEV+3%,1:POKEZ2049, 13
1940 FOR P=@T062:READ A
1950 FOKES832+P,A
106@ MEXT
1970 POKEV+21,1:POKEV+28,1
1988 RETURN
1690 DATAY,9,0,0,0,0,20,9,0,206,0,0,20,1,
64,20,1,64,42,178,128,42, 179, 160
1196 DATA42,178,168,21,85,84,42, 170, 168,
42,170,168,42,179,128,20,1,64,20, 1, 64
111¢ DATAZH,9,9,20,0,0,0,9,9,0,0,08,0,0,0
,9,0,0
111

If you are using tapes to store your program, change
line 20 to the following:

20 IFPEEK(49152)<>1&65THENLOAD"", 1,1
Don’t RUN the program, just SAVE it or it will CRASH.

Here is the assembly language listing:
C@GE LDABCS

Cog2 CMPH$49
Cg@4 BEQ%CO14
Cogs CMPHEGS
Cags BNESCOEOD
CagoA ISRECEDS
CIGD CMFPH$E4
CagF BNE%CO@14
C@l11l JSRKCOFF
Calg LDXHEZ2Q9

CA16 LDYHEZ2G

CP18 DEY

CO1% BMESCE18

Cg1B DEX

112

Ca1C

CO1E

Co2@

Ca23

CO25

caz27

Caz2A

CozC

CO2F

Co31

Co34

C@35

CcCe3?

Ca32

CaiA

Ca@3D

C@3E

BNE®C@16

LDAHS13

JSREFFD2

LDXHEOG

LDAH#$1D

JSR®FFD2

LDAH%14

JSR&FFD2

LDAHSEGD

JSR&EFFD2

INX

CPXH#%18

BNE®C@25

CLC

PHP

LDXHEQD

FLP

ROLEO3ICE. X

113

Cad1l

ceaz2

C@43

Cca45

caa?

Cea48

Co4A
Cg4D

Co4F

Ces2

C@33

Cas8

Cg5SB

C@sDh

COSF

Cags2

CA&S

Coo8

PHP

INX

CPX#%3C

BNE®C@3D

PLP

BCC*HCES8

LDASE3IFC

BEQ®COSF

DEC%@3FC

DECS@3FD

JMPHECEHES

LDASG3FC

CMPH#$GD

BEQSCO4IF

INC$@3FC

INCSG3FD

LDX$EG3IFD

LDYH®E26

114

Ca6A
C@aB

CO6E

Cagzg

Ce73

Carze6

co7r8

Care

cag’C

C@7E

ce8l

Cc@s4g

Co8s

cag?

C@38A

C@8cC

C@8F

Ceo21

CLC
JSREFFFg@

LDAHSEAS

JSR&FFD2

LDX$EEG3FC

LDVHEZS

CLC

JSR$FFF&

LDAHEASE

JSR&FFD2

LDASI3FB

BNESCE87

RTS

LDASDEI1F

BMESCO8F

IJMPECOED

LDARSEI]L

STASLG3IFE

115

Ce74 RTS

CE2S INCHDEG1
Cg%8 INCHEDEG1
C&dsB INCHDEE1
C@GZE RTS

CO?F DEC$Dg@1
CHgAZ DECSDEE1
CYAS DECHDEF1

C@AAB RTS

After you have typed out the program, return to the
main menu. Now SAVE the program under the file name
‘GAME2. The start address is CO00 and the end
address is COBO. Disk users will have to rename the
program with OPEN15,8,15, “RO:GAME2 (2)=
GAME?2".

116

APPEND

IX A

USEFUL
MEMORY LOCATIONS

The following memory locations are the locations | felt
would be useful to the beginner. For a complete guide
to the Commodore 64 memory usage buy the
Commodore 64 Reference Guide.

LOCATION
0014-0015

02B-002C

002D-002E
002F-0030
0031-0032
0090
00C5

00C6

OOF3-00F4

USE

This is where BASIC stores integer
variables while doing calculations.

Pointer to the start of BASIC text
(LOW-HI byte form).

Pointer to the start of BASIC Variables.
Pointer to the start of BASIC Arrays.
Pointer to the end (+ 1) of BASIC arrays.
Kernal input/output Status Word: ST.

Current Key pressed, you may load
registers with this value or find out
which keys are pressed. 64 means no
key has been pressed.

This holds the number of characters in
the keyboard buffer.

This points to the location of the screen
colour memory.

117

0277-0280 This is the Keyboard buffer.
0281-0282 Pointer for the bottom of memory.
0283-0284 Pointer for the top of memory.

0286 Holds the current cursor colour.

0289 This holds the size of the keyboard
buffer.

028A If this is $80 the keys will repeat,
otherwise they won't.

030C Storage for the A register.

030D Storage for the X register.

030E Storage for the Y register.

O30F Storage for the SP register.

033C-03FB Tape Buffer. Disk users may use this for
their assembly language programs or
sprites.

APPENDIX B

6510
INSTRUCTION SET

MCS6510 MICROPROCESSOR

ADC Add Memory to Accumulator with Carry
AND “AND’’ Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

118

BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BYC
BVS

CLC
CLD
CLI

CLV
CMP
CPX
CPY

DEC
DEX
DEY

ECR
INC
INX
INY
JMP
JSR

LDA
LDX

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Result not Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-Or” Memory with Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump to New Location Saving Return
Address

Load Accumulator with Memory
Load Index X with Memory

119

LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR

RTI
RTS

SBC

SEC
SED
SEIl

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Index Y with Memory
Shift Right One Bit (Memory or Accumulator)

No Operation
“OR” Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with
Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

120

‘ Ross Symons first introduces you
to the disassembler and explains its use. After making this
acquaintance, the complete instruction set for
the 6510 (the chip at the heart of
your computer) is listed. Each instruction
is explained with the aid of a demonstration
program which will help even the
newcomer to machine code to get to grips
with the C64 and extract the most
from this powerful micro. Other sections
include a discussion of the KERNAL
operating system, and'its applications such
as printing, input/output devices,
and seanning the keyboard,
are also considered.

ISBN 0-552-99128~7

Price Only

00495
UK £4.95
Nz $12.95
*AUS $9.95
*Recommended
9 "780552"991285

