

Better Programming
for Your Commodore 64

Henry Mullish is senior research scientist and
I lecturer in computer science at the· Courant
, Institute of Mathematical Science, New York

University. Born in London in 1927, he joined
New York University in 1956. He has
published several books on computer
languages, and is the author of three books of
computer games.

Dov Kruger is studying electrical engineering
and computer science at the Stevens Institute
of Technology in Hoboken. When he was
sixteen he wrote, with Henry Mullish,
Appkso/t BASIC: from the ground up (1983),
and they have since published another book
together.

l

Henry Mullish
and Dov Kruger

Better
Programming
for Your
Commodore 64

Fontana Paperbacks

First published in the USA by Simon & Schuster 1984
First published in Great Britain by Fontana Paperbacks 1984

Copyright © Henry Mullish and Dov Kruger 1984

Reproduced, printed and bound in Great Britain by
Hazell, Watson & Viney Limited,
member of the BPCC Group,
Aylesbury, Bucks

Conditions of Sale
This book is sold subject to the condition
that it shall not, by way of trade or otherwise,
be lent, re-sold, hired out or otherwise circulated
without the publisher's prior consent in any form of
binding or cover other than that in which it is
published and without a similar condition
including this condition being imposed
on the subsequent purchaser

Contents
Introduction 7

CHAPTER 1 Immediate or Direct Mode 13

CHAPTER 2 Programming 27

CHAPTER 3 The Power of BASIC 45

CHAPTER 4 Structured Programming 75

CHAPTER 5 Numeric Functions and Logical 103
Operators

CHAPTER 6 Introduction to Character String 131
Manipulation

CHAPTER 7 Arrays 163

CHAPTER 8 Advanced String Manipulation 184

CHAPTER 9 Nesting Loops 202

CHAPTER 10 Audio-Visual Program Enhancement 218

CHAPTER 11 Debugging 234

Glossary 247

AppendixA· 261

AppendixB 263

AppendixC 267

Introduction

In the past few years, prices of computers have dropped sharply,
while at the same time their quality and power have increased. Most
of them were selling for well above $1,000. It seemed to be a general
rule that any computer below this price level was classified (and was
regarded by many) as a toy. It was not until the beginning of 1983
that Commodore Business Machines (CBM) released its bombshell
-the Commodore 64, which sold for the unprecedented low price
of $595. Within six months, the price of the Commodore 64 was
further reduced to under $200, making it by far the most powerful
computer available in its price range. This development was made
possible by improved mass production techniques. It has become
the one true "people's computer," providing the novice and experi
enced programmer alike with a powerful, versatile, and expandable
machine.

The Commodore 64 has, as its name implies, 64,000 (64K)
"bytes" (characters) of programmable memory and comes equipped
with a long list of standard features and available options. These
include advanced graphics capability; 16 display colors, a screen
that displays 25 rows of 40 columns each; animation with sprites
(programmable graphics characters); a three-voice music synthe
sizer and a "white noise" generator; a 6510 chip (an improved
central processor similar to that used in the Apple, Atari, and
other leading computers); a built-in serial interface to allow for
communication with various external devices, such as printers; a
port to allow plug-in cartridges to expand further its capabilities;
and finally, two ports to allow input from joysticks, paddles, or a
light pen.

However, these are not its only desirable features. There are many
other options available, including cartridges to support CP/M (a
popular operating system), LOGO (the increasingly widespread ed
ucationallanguage), a cassette tape recorder, a disk drive, a printer,

7

8 • Introduction

and a modem (for communication through,the telephone with other
computers).

The keyboard on the Commodore 64 has 66 full-stroke keys,
including four programmable function keys that may be defined
within a program for special uses. By taking advantage of its key
board buffer, it is possible to type up to ten characters ahead while
the machine is performing other tasks. Special graphics symbols
may be produced directly from the keyboard, or they may be defined
by the programmer should their creation, become necessary. The
full, standard character set that is built into the machine includes
both upper and lower case although the BASIC programming lan
guage recognizes only upper case.

Getting Started

Once you have the computer connected, it would be a good idea .'
to become familiar· with the keyboard since this is the primary
method by which you will communicate with the computer. The
keyboard is quite similar to that of a standard typewriter-with
some important exceptions. The RETURN key for example, which
is found on electric typewriters, plays a special role. When it is
pressed, the line typed in is sent to the heart of the computer for
processing. This is important to remember because if it is not
pressed after a command has been issued, the computer simply waits
indefinitely, doing absolutely nothing,until it is pressed. After a
little practice, remembering to press the RETURN key becomes an
automatic reflex.

The SHIFT key works in a manner similar to that on a standard
typewriter. However, in addition to enabling you to type in either
upper or lower case or to access the rightmost of the two graphics
symbols on the front side of many of the keys, it allows other keys
to perform a variety of operations. One of these is the CLRlHOME
key, which positions the "cursor" at the "home" position of the
screen-the cursor being the flashing square on the screen that tells
you where the next character will be displayed. The "home" posi
tion is the top lefthand corner of the screen. Holding down the

Introduction • 9

SHIFT key while pressing CLRlHOME not only places the cursor
in the home position but also clears the screen.

The CTRL (control) key allows you to perform some specialized
operations, one of which is setting the color of the screen. This is
accomplished by holding down CTRL and pressing one of the keys
labeled "1" through "8". When both keys are released, anything
you type appears on the screen in the specified color. For example,
if CTRL-2 (the way to indicate pressing both the control key and
the 2 key) is pressed, the flashing cursor turns white and all subse
quently typed characters appear in white. The CTRL key is always
used in conjunction with other keys, never by itself; it is effectively
another type of SHIFT, allowing other keys to perform a variety of
useful functions.

The Commodore key (the key bearing the famous Commodore
logo located at the bottom left of the keyboard) is yet another type
of shift key. Among its uses are setting the color in a manner iden
tical to that for the CTRL key. However, whereas using the CTRL
key permits access to the first eight colors, the Commodore key
allows for a second set of eight colors, as shown in the accompanying
table.

Keys Color Obtained Keys Color Obtained
, CTRL-l black COMo! orange

CTRL-2 white COM-2 brown
CTRL-3 red COM-3 light red
CTRL-4 cyan COM-4 gray!
CTRL-S purple COM-S gray 2
CTRL-6 green COM-6 light green
CTRL-7 blue COM-7 light blue
CTRL-8 yellow COM-8 gray 3/

You do not have to memorize these color codes since this table
may always be referred to when the need arises. There are several
other keys that have not yet been mentioned-such as the RUNI
STOP and INST/DEL keys-but these will be covered later in the
book at the appropriate time.

We assume that you have access to a Commodore 64 computer

10 • Introduction

with a television (black and white or color) and either a datasette
(the Commodore cassette recorder) or a disk drive. Th~ purpose of
both the datasette and the disk is to save permanently programs and
data which you may type into the computer. This is a very important
asset because the computer irretrievably loses the complete contents
of its memory every time it is switched off. (Imagine if you forgot
everything you know each time you went to sleep and had to relearn
everything in the morning.) Once a program has been saved onto
either cassette or disk, it may be read into the computer as often as
is necessary without any retyping whatever. We will describe later
the commands needed to accomplish this task.

As you work your way through this book you will come to realize
that at your fingertips you have access to a computer far more pow
erful than that had by almost any university or corporation a mere
generation ago. Today, with the aid of the English-like language
called BASIC, you will learn how to control the computer so that it
can perform many useful and interesting chores, whether they be of
business, education, or home economics.

The BASIC language was developed in the mid-1960s at Dart
mouth College, New Hampshire, under the direction of Professors
John Kemeny and Thomas Kurtz. It was intended to be simple to
learn and use and also inexpensive to implement. In these respects
it has achieved its aims magnificently. It was designed to be an
interactive language-providing the programmer with an easy
means of feeding information into the machine while it is in the
process 'of solving a problem. Thus the user is able to obtain imme
diate responses to what is typed in at the keyboard.

BASIC was developed for the beginner who perhaps would be
expected to convert to other, more specialized languages as his or
her skills developed. Since its inception, however, BASIC has
undergone considerable evolution, to the extent that it has become
the standard language for microcomputers such as the Commodore
64. In its extended form (which is the dialect available on the Com
modore 64) it has turned out to be of importance not only for hobby
and educational purposes but also for business and many industrial
applications.

In the following chapters, all the commands found in Commodore

Introduction I! 11

64 BASIC are discussed in detail and are explained with the aid of a
large variety of programs designed to teach you as effectively as
possible to write error-free, well-designed programs. In today's
world, handling information has become one of the most critical of
skills. Perhaps it is true to say that the power of a modern nation
can be measured better in terms of the sum total of its computer
expertise than by the size of its armies. Whether you are a profes
sional, a factory worker, or a student, you will learn not only the
complete repertoire of the BASIC language but also, by example
and description, how to program this and any other machine in
clear, organized BASIC, written in a consistent, structured style. If
this is your first exposure to computers we take this opportunity to
welcome you to the wonderful world of programming.

You are about to set out on a journey that may prove to change
some aspect of your life. The road ahead is both interesting and
challenging and, you are cautioned, may even prove to be addictive.
But what a delightful and acceptable addiction it is. In the words of
the sixth-century B.C. Chinese philosopher Lao-Tzu, the reputed
founder of Taoism, "The journey of a thousand miles begins with
the first step."

You have just made thilt first step. Good luck.

CHAPTER

n
Immediat, or Direct
Mode

In this chapter you will be introduced to some fundamental con
cepts of computer programming. Among them are

. I

• direct versus indirect mode
• the meaning of a "literal" I

• the use of the double quotation symbol
• the PRINT instruction and its abbreviated form
• the arithmetic operators
• the result of dividing by zero
.. the SQR function
• the print zones
• the effect of the semicolon in a PRINT statement
• the Commodore 64 as a calculator

. • what is meant by "scientific notation"
• the so-called hierarchy of the ma~ematical operators
• the use of parentheses -

Although the Commodore 64 isa computer, it can be instructed
to perform arithmetic operations as if it were a calculator. It can
print messages or evaluate mathematical expressions with uncanny
speed and accuracy. Calculations may be performed in what is called
immediate or direct mode, as opposed to storing the instructions for
later use, a mode often called deferred or indirect or sometimes pro-

13

.J

14.- BETTER PROGRAMMING FOR YOUR COMMODORE 64

gram mode. For now, you will explore some options in direct mode
and thereby become acquainted with some useful features that you
will be using later on when you learn the fundamentals of program-
ming.

Defining and Printing a Literal

A literal is a sequence of characters enclosed within double quo
tation marks. However, for a literal to be meaningful to the com
puter, it must be associated with a command. The most common
type of command is the PRINT instruction, by which" messages may
be displayed on the screen. Here are some typical examples of
PRINT statements incorporating literals:

PRINT "THE COMMODORE 64 IS A PERSONAL
COMPUTER"

PRINT "WITH MORE BYTES fOR THE BUCK."
PRINT "WE SHALL SHORTLY LEARN HOW TO

PROGRAM IT."

Since anything at all may be included in a literal, it does not follow
that every statement displayed on the screen is necessarily true. For
example,

PRINT "2 + 2 = 94.234"

cheerfully prints the message that 2 and 2 is equal to 94.234.
When program instructions are performed by the computer (exe

cuted) the characters between the quotation marks are printed ver
batim. When a PRINT statement is issued, the message is
immediately displayed on the screen. Should the message be longer
than the width of the screen, it is continued to the beginning of the
next line without causing any errors. In this way, PRINT statements
up to 80 characters (two lines) long may be used.

Since the double quotation sign is the symbol used to "delimit" a
literal-that is, it defines the literal's beginning and end-the sign

Immediate or Direct Mode - IS

itself cannot be used as one of the characters within the literal. For
the time being, the apostrophe may be used as a substitute symbol
for the double quotation mark. Later, you will learn other methods
of circumventing this restriction.

The computer is extremely literal in its interpretation of com
mands. Should, by mistake, the instruction

PRIMT "HELLO TO ALL YOU COMMODORE 64
PROGRAMMERS"

be typed in, the computer will respond with ?SYNT AX ERROR
because it does not recognize the command PRIMT.

Since the PRINT instruction is used so much in BASIC, the
Commodore 64 has a special feature to expedite its use. A question
mark (the single character) may be substituted for the entire word
PRINT. That is, the instruction

? "WHAT A WEIRD COMMAND THIS APPEARS TO
BEl"

prints the literal enclosed in the quotation marks, just as if the
question mark were replaced by the command PRINT.

The Arithmetic Operators

In additipn to printing out messages, the Commodore 64 has the
capability to act as a supercalculator. For example, the instruction

PRINT 2 + 3

followed by RETURN (as usual) prints the result of 5, in much the
same way as would a calculator. By the same token, the instruction

PRINT If - 5

where the minus sign is the symbol for subtraction, produces the
value -1. When used in this context it is called a binary operator

16 • BETI'ERPROGRAMMING FOR YOUR COMMODORE 64

because it operates on two values. The minus sign is also used for
what is known as negation. Any number preceded by a minus sign
is a negative number. If the number is already negative, it becomes
positive. When the negative sign is used in this fashion, it is called
a unary operator because it operates on one value. An example of the .
minus sign in its unary form is

PRINT -5

Similarly, the statement

PRINT --5

displays the negative of negative 5 (which is 5).
Multiplication uses the asterisk symbol

This instruction prints 42 immediately after the RETURN key is
pressed. In the same way division is effected by using the slash
symbol, /, as shown in the next example:

? 15 / 5

This yields the result of 3. There is a special case of division that is
illegal-division by zero. Any attempt to do so generates the mes
sage

?DIVISION BY ZERO ERROR

and execution of the program is terminated. The error message is
printed because, according to the rules of mathematics, no number
can be divided by zero. Try this yourself. In fact, try it twice-first
with the question mark and then by typing PRINT ..

The 64 also has the capability to handle fractional values (often
called real numbers). For example,

Immediate or Direct Mode • 17

PRINT 10.4 -I 2

produces the result of5.2.
There is one more arithmetic operator. It is the exponentiation

symbol, which raises a number to a power. This function is repre
sented on the Commodore by the symbol i. An example of its use
is

PRINT 2 f 4

which displays the number 16 (or 2 x 2 x 2 x 2).

The Square Root Function

Although not, strictly speaking, a true operator, the square root
function is so frequently used in conjunction with the mathematical
operators that it must be mentioned with them. In BASIC, the
square root of a number is usually found by typing SQR followed
by the number, which must be enclosed within parentheses. For
example, in order to display the square root of 5, the following
command is used:

PRINT SQR(S)

Those who are mathematically inclined may know that the square
root is the inverse of the square of a number. In other words, the
statements

PRINT SQR(4 f 2)
PRINT SQR (4) f 2

both return 4 because the two operations, t and SQR, cancel each
other out, in much the same way as in the statement

PRINT 4 / 2 * 2

18 • BE'lTEllPROGRAMMING FOR YOUR COMMODORE 64

Here the division by 2 is canceled by the subsequent multiplication
by 2, demonstrating that multiplication and division are inverse
operations.

Print Zones

The instruction

PRINT 5,-17

where Ii comma separates'the two constants,S and -17, prints the
constants in a special way .. The screen is automatically divided into
four zones, each of which occupies ten sp~ces. The number 5 is
printed in the first of these zones, and the number - 17 is printed
in the second. Both appear at the left of the zones as shown (the 5 is
printed in the second column because the computer reserves the first
column for a possible negative sign):

5 - 1 7
column numbers 1 2 3 4 5 6 7 8 91011121314151617181920

Using the Semicolon

Whenever a positive number is printed, it is always preceded by
a blank space. Thus the constant 5 is printed in column 2. Negative
numbers, on the other hand, are preceded by a minus sign-instead
of a space. All numbers when printed, whether positive or negative,
are followed by a space. In the previous example, the space falls
within the zones of ten columns each. In the following example, the
semicolon is used instead of the comma. Since the zones are ignored
when the semicolon is used, the format of printed numbers becomes
visible. Therefore, the statement

PRINT 4;15;-22

Immediate or Direct Mode • ·19

appears as

4 15 -22 ----------
column numbers 1 2 3 4 5 6 ,7 8 9 10

where the number 4 is printed in position 2 (being preceded by a
space because it is positive) and followed by a space (as are all
numbers). The next number, IS, is also preceded and followed by a
sp~ce for the same reasons. The last number on the line, - 22, is
not preceded by a space because it has a minus sign. It is also
followed by a space although this is not visible because it is the last
number of the list to be printed.

On the other hand, a comma between literals in a PRINT state
ment forces the printed items into their corresponding zones with
no added spaces, and a semicolon joins them, as illustrated in the
following examples: *

PRINT "ABRA"~"CADABRA"
ABRA CADABRA

READY.

PRINT "ABRA"i"CADABRA"
ABRACADABRA

READY.

The word "READY." is automatically displayed by the system at
the end of the output (usually after one blank line) to inform you,
the programmer, that. the computer has completed its task and is
ready to accept further instructions.

In program mode, as you will soon learn, one sometimes places a

* Throughout this book, OUTPUT (characters generated by the computer) appears
in dot-matrix type. INPUT (characters that the reader must type in) appears in
normal, fully formed type.

20 • BBTrERPROGRAMMlNG FOR YOUR COMMODORE 64

semicolon or comma at the end of a PRINT statement in order to
force the next PRINT instruction to display its output adjacent to
the previous printout. The semicolon simply "splices" the two
fields, placing them close together, whereas a trailing comma has
the effect of forcing subsequent ouwut to appear in the next zone
over.

Scientific Notation

On occasion it is necessary to work with numbers so small or so
large that the Commodore 64 cannot represent them in the standard
decimal notation-even within its maximum capacity, which is nine
digits. In such cases, the computer resorts to so-called "scientific
notation." On the Commodore 64, scientific notation uses the letter
E (for exponent) in the following manner. The number (written in
scientific notation)

2.98 X lOll

appears on the screen as 2.98E+ 11, where the letter E stands for
"times 10 to the power." This simply means that the number is
such that the decimal point is located 11 places to the right of its
shown position. In the case of a negative value following the E, such
as 5.7216E-I0, the decimal place is actually located 10 places to
the left of the position displayed. The number 5.7216E-I0 would
therefore be equivalent to .00000000057216, which is too long a
number to be displayed by the Commodore.

The Hierarchy of the Mathematical Operators

Examine the following instruction and try to guess what answer
the computer would yield:

PRINT 2 + 3 * 4

Immediate or Direct Mode • 21

Perhaps you would like to confirm your answer with a pocket cal
culator first. It might be of interest to you to know that it is possible
for two working calculators (depending on the particular type used)
to give totally different answers to this question. In Commodore 64
BASIC (and indeed, any other dialect of the language) the answer
given will always be 14 because it evaluates arithmetic expressions
according to the algebraic rules of precedence. This means that in
any given arithmetic expression, exponentiation takes place first,
followed by negation (the unary minus), followed by multiplication
and division (in left-to-right order), and finally addition and subtrac
tion (again in left-to-right order). This may be summarized in the
following way:

Precedence level (highest to lowest)

t

* and I
+ and-

exponentiation
negation (unary minus)
multiplication and division (same level)
addition and subtraction (same level)

The following expression and subsequent stages of solution, illus
trate the order of operations the Commodore obeys:

9 + 2 t 3 /2* 4 - 1

First, the exponentiation takes place. The term 2 t 3 is reduced to
the number 8. The expression is now treated as shown:

9 + 8 / 2 * 4 - 1

Next, all multiplications and divisions are executed. Since both are
on the same "level" in the hierarchy, they are executed in a left-to
right order. That is to say, 8 is first divided by 2, giving 4, and then
multiplied by 4, giving 16. The resulting expression then becomes
the following:

9 + lb - 1

22 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

At this stage, addition and subtraction, also being on the same level
as each other, are executed in a left-to-right sequence. The expres
sion finally becomes the single value 24.

Sometimes, it is desirable to group together terms of an expres
sion. This may be done by placing parentheses around the desired
ter:ms. Whatever is enclosed within parentheses is acted on first,
however, in the same order of precedence just discussed. S~ that in
the example

(4 + 12) / 2

the addition is performed first since it is enclosed within parenthe
ses. Therefore, the answer is 16 / 2, which is 8, rather than 4 + 6,
which would yield the false result of 10.

If an expression contains parentheses within parentheses, the
terms in the innermost parentheses are evaluated first. This is illus
trated in the next example:

«3 + 7) * 2) - 5

in which the innermost parentheses containing 3 + 7 is evaluated
first, yielding 10. This is then multiplied by 2, giving 20, and finally
5 is subtracted, giving the result of 15. As long as the parentheses
are balanced, no harm is done by enclosing the whole expression in
yet another set of parentheses. The expression

4 + 5

and

««4 + 5»»
are equivalent to all intents and purposes. The redundant parenthe
ses in the second version never create errors even though they are
more time-consuming to type. However, should the inclusion of
redundant parentheses enhance the clarity of an expression, you
should feel free to use them.

Immediate or Direct Mode • 23

Review Questions

1 • What is a literal?

A literal is a group of characters enclosed by double quotation
marks. The quotation signs are not part of the literal; they
merely indicate where the literal begins and ends (delimiters).
A literal is often included in a PRINT statement. When the
literal is printed the quotation signs do not appear, only what
ever is enclosed between the double quotation signs.

2 • What role does the PRINT instruction play?

It causes the computer to display the specified information on
the screen.

3 • What symbol is used for
(a) addition?
(b) subtraction?
(c) division?
(d) multiplication?
(e) expon~ntiation?

(a) + (b) - (c)/ (d) * (e) t

4 • What is special about division by zero?

Division by zero is illegal and causes the message

?DIVISION BY ZERO ERROR

to be displayed.

5 • How would you represent the number 42400000 in scientific
and exponential (E) notation?

Scientific notation: 4.24 x 107

Exponential form: 4.24E + 7

24 .• BETTERPROGRAMMJNGFOR YOUR COMMODORE 64

6 • Which of the five arithmetic operators has the highest prece
dence?

Exponentiation (represented by the symbol i).

7 • Name two operations which have the same precedence level?

Addition and subtraction; multiplication and division.

8 • Which has the higher precedence-addition or subtraction?

Neither. Since they are on the same level, whichever comes
first in a left-to-right scan of the expression is performed first.
The same rule applies to multiplication and division.

9 • Of what use are parentheses?

Parentheses are used to group together terms of an expression
that are to be evaluated first. For example, to find the average
of 5 and 6 in one instruction, parentheses would have to be
used as shown:

PRINT (5 + b) I 2

yielding the answer 5.5. If the parentheses were omitted, the
answer would be 5 + 3, which is 8 and is not the average.

10 • Is it legal, that is, permissible, to enclose an expression with
redundant parentheses?

Yes. This is particularly desirable if the 'added parentheses add
clarity to the expression.

11 • What is the effect of separating items of a PRINT statement
by a comma?

The items are printed in separate zones.

12 • What is the effect of separating the items of a PRINT state-
ment with a semicolon? .

Immediate or Direct Mode • 2S

The items are printed close together, the zones being totally
ignored.

13 • What is the effect of a semicolon at the end of a PRINT state
ment?

A semicolon inhibits the automatic advance of the line feed,
thereby causing the items in a subsequent PRINT list to be
printed adjacent to the current one. This effect is possible,
however, only in program mode.

HANDs-ON PRACTICE

1. Print out your full name in immediate mode.
2. Print the name of your favorite television personality.
3. Have the computer calculate and display the result of multiplying

17 by 34.
4. Find out exactly what happens if the word "PRINT" is mis

spelled.
S. Instead of typing the letters of the word "PRINT", use its alter

nate form, the question mark, to print out the current day of the
week. Use this method from now on to save time.

6. Print out your age divided by zero. Observe the message and the
number that is generated. If you are lucky, this is the last time
you will see it.

7. Using a PRINT statement, display the numbers 1,2,3, and 4 in
separate zones of the screen.

8. Use semicolons instead of the commas,in question 7 and compare
the spacing.

9. Calculate the square root of 123 by using the square-root function
and by raising the number to the power Y2. Do both answers
agree?

TRY YOUR HAND AT THESE

What is displayed by the following statements:
1. PRINT
2. PRINT 5 + 4 * 3

26- BETl'EllPROGRAMMlNG FOR YOUR COMMODORE 64

3; PRINT 3 + (2 * 3)
4. PRINT 2 t (1 + 4 / 2)
5. PRINT 4 t 1 /2
6. PRINT «(5 * (4 * (3 + 7) / 2) - 3)))
7. ?3 + 4 * 5
8. ?(S + 2) / 0
9. ?O / (2 + 10)

CHAPTER

~
Programming

What is Programming?

In this chapter you will learn the fundamentals of programming
in BASIC, the primary focus of this book. Among the many topics
to be covered are

• the definition of a program
• line numbers and their significance
• direct and indirect modes
• executing programs by using the RUN command
• the role played by the END statement
• sequential processing of the program instructions
• examining programs by using the LIST command
• inserting statements into a program
• editing and modifying a program
• cursor control keys
• INSTIDEL keys
• CLRlHOME key
• erasing the program

Now that you have had some experience in using the computer in
immediate mode, the time has come to learn how to exploit it in
indirect, or deferred, mode. This is by far the most usual mode in
which the computer is used. The advantages of program mode are·

27

28 II BETIERPROGRAMMING FOR YOUR COMMODORE 64 .

considerable. You can construct a long list of instructions which
may be deferred until some later time before they are acted on,
thereby enabling you to construct a very complex sequence of in
structions which can be run as often as you like without having to
type them in again. In immediate mode they would have to be

. retyped each time they are required.
A program is nothing more than a specific set of computer instruc

tions (such as those we have already seen) designed to solve a partic
ular problem. The programmer assumes the responsibility of
specifying each of the program instructions. The instructions are
stored in memory until a command is issued to execute them. It is
for this reason that a program is executed in what is known as
deferred or indirect mode. To execute a program the RUN command
is used. It executes whatever program resides in memory at the time.
Before typing in a program, it is recommended that you type the
command NEW, which clears the memory in preparation for a new
program.

In deferred mode, each program instruction must be preceded by
a line number, which may be any whole number from zero to
63,999. (Incidentally, commas are never included in a number when
it is part of a computer program; the previous number would be
written as 63999, without the comma.) The presence of a line num
ber is what differentiates an indirect command from a direct one.
As seen in the last chapter, as soon as a command without a line
number is typed (followed by RETURN) it is executed and the
results are displayed on the screen. The instruction is not stored
anywhere and therefore cannot be recalled later except by retyping
it. This is what is known as a direct command. After the direct
command

PRINT 5 + 2

is executed, the result of 7 is displayed on the screen, followed by
the reassuring "READY." ,to advise the User that the computer is

,ready to accept further instructions. When the same command is
given in indirect form,

PJogramming - 29

1111 PRINT 5 + 2

the computer does not display anything; it merely stores the instrUc
tion and waits for further commands. If the programmer were to
type in a second indirect instruction,

2111 PRINT "THE COMMODORE IS STORING THIS
LINE"

it too is tacitly accepted and stqred into memory. In order to execute
these two commands, the RUN command is issued. This command
does not take a line number, as the programmer wishes to execute
the program, not add another line to it. As soon as the RETURN
key is pressed, the computer responds by executing all the com
mands placed in program memory-in order of line number.

In some versions of BASIC found on other computers it is neces
sary for the last line of every BASIC program to be an END state
ment. Although this is not required on the Commodore, it can,
nevertheless, be included without any detriment to the program. If
it is included, it does not have to be the last instruction in the
program, as is the case in most other versions of BASIC. In fact,
several separate END statements may appear in a single Commo
dore 64 program. Whenever the END statement is executed, the
program is terminated immediately.

Line numbers may be entered in any order at all; the computer
will automatically sort the individual instructions into ascending
order of line number, so that when the program is run, each instruc
tion is executed in the order of ascending line number. Each line-is
executed completely before the next one is even looked at-like
reading a book; as soon as one line is completely read, the reader
automatically goes to the next line, and so on.

To verify that this operation does indeed occur, you may type in
another line with a line number lower than either of the other two:

5 PRINT "THIS IS NOW THE FIRST LINE"

When the amended program is again executed (by means of the
RUN command) the output appears as

30 • BETTERPROGRAMMING FOR YOUR COMMODORE 64

THIS IS NOW THE FIRST LINE
7
THE COMMODORE IS STORING THIS LINE

READY •.

showing clearly that the three-lined program was executed in order
of ascending line number. This feature is particularly useful when
you want to modify programs, either because they contain errors or
because you want to improve them.

To view the complete program you use the LIST command. Once
a~n, this command does not take a line number, for you wish to
view the program, not place the command within the program. The
LIST command may be obtained by typing either the word "LIST"
(followed by the RETURN key) or its permissible abbreviation,
which is the letter "L" followed by a shifted "I" (and then RE
TURN). Whichever method is used, the following listing should
now appear on the screen:

LIST

5 PRINT "THIS IS NOW THE FIRST LINE"
10 PRINT 5 + 2
20 PRINT "THE COMMODORE IS STORING THIS

LINE"

READY.

This program prints each line of output on consecutive lines. If
you wanted to separate them with blank lines, "null" PRINT state
ments may be included. For example, you can type

7 PRINT
15 PRINT

which are automatically inserted in their correct positions in the
program and have the effect of printing blank lines between each of
the three printed lines.

When executing a program, it is not always desirable to start from
the beginning. Perhaps the programmer is interested in checking

Programming • 31

out just a small section of code, which may reside somewhere in the
middle of the program. The command

RUN 157121

. executes the program beginning with line 1570 and extending to the
end of the program. Similarly, not all the program need be listed. A
single line of a program may be listed by typing the line number
after the command LIST. So that

LIST 234121

lists line 2340 only. (Notice the difference between the action of
RUN and LIST when followed by a single line number.) In order
to list a program from a given line to the end of the program, the
line number in question and a dash must follow the LIST command,
as shown in the following example, where lines 190 to the end of the
program are listed:

LIST 19121 -

To list the segment of code between two given lines, the instruc
tion LIST is followed by the first line number, a dash,. and the
second line number. In other words, the instruction

LIST 492 - 875

lists the program from lines 492 to 875 inclusive. The screen can
contain a maximum of 25 lines, each consisting of 40 columns. If a
large program is to be listed, the screen is not able to contain it all
at one time. When the program is listed, it will fill the screen and
then the top line will continually disappear from the top of the
screen to make room for each new line at the bottom. This process
is known as scrolling. The difficulty is that the computer scrolls so
fast that people have trouble keeping up with it. For the viewer to
examine each line of the program, a special "slow-motion" feature
is included.

When anything is being printed on the screen, simply hold down
the CTRL key. As long as it is held down, output to the screen is

32 • BE'lTER PROGRAMMING FOR YOUR COMMODORE 64

slowed down .. 1f you need to take a longer look at a section of a
program than the slow-motion feature permits, you have a choice of
options. First, you can list the specific lines that you are interested
in. They will then appear stationary on the screen. The second
alternative is to list the program until you reach the part you wish
to examine and then press the RUN/STOP key quickly-before the
screen scrolls too far. Unfortunately, this command halts the listing
and it is impossible to resume displaying the steps of the program
without issuing another LIST command.

Numbering the Lines of a Program

One of the glaring realities of computer programming is that pro
grams are invariably changed after they are written, for one of many
different reasons. An error might be found in the program or the
demands made of the program might have altered or, in the case of
an income-tax program, for example, the government may have
issued new guidelines which make obsolete the old version of the
program. Whatever the reason, it is strongly suggested that assigned
line numbers not be in consecutive order. In other words, it is not a
good idea to assign the line numbers

12121 1211 1212 1213

to four successive lines of a program because it is impossible to insert
lines between these numbers should the occasion demand. It is gen
erally advisable to begin at line 100 and skip line numbers in steps
of ten. The following program illustrates the typical manner in
which line numbers should be selected:

PROGRAM 2-1

12121 PRINT " THE COMMODORE"
1121 PRINT "HAS A MEMORY CAPACITY OF"
1221 PRINT " b4K"

RUN
THE COMMODORE

HAS A MEMORY. CAPACITY OF
64K

READY.

Editing and Modifying a Program.

Programming a 33

You will find that when you write computer programs, they will
probably not work·the first time-perhaps the first few times. Ex
perience has shown that very few programs work at the first try the
way they were designed to, no matter how skillful or intelligent the
programmer may be. The computer is totally objective when exe
cuting programs. It does not care who you are, what your position
is, what rank you hold, or what your salary bracket is. A program
ming error is still a programming error-even if it is only a matter .
of a missing comma. Indeed, you may rest assured. that few of the
programs illustrated in this book worked the first time.

In light of this.fact, it is essential for any computer to allow for
fast, simple modification of programs, since changes will always
have to be made. Commodore BASIC provides a built-in, advanced
screen editor which makes this task rather easy.

Replacing a Line

In order to correct a line, you may simply retype it with the same
line number. When the RETURN key is. pressed at the end of the
line, the new line replaces the previous version. This operation may
be seen in the following illustration: .

LIST
100 PRINT "THERE IS A MISTEAK IN THIS LINE"
110 PRINT "BUT THIS LINE IS FINE~

READY.

34 • BElTEIlPROGRAMMING FOR YOUR COMMODORE 64

The following line is now typed:

lBB PRINT "NOT ANYMORE THERE ISN'T"

yielding when relisted

LIST
100 PRINT "NOT ANYMORE THERE ISN'T"
110 PRINT "BUT THIS LINE IS FINE"

READY.
To erase a line from a program completely, simply type in the line
number and press the RETURN key. This move replaces the old
line with anew, blank line. For example,

LIST
100 PRINT "THIS IS A LINE TO BE DELETED"

RI£:AOY.
The follpwing two lines are typed:

lBB
LIST

READY.

Using the Cursor Control Keys

The most frequent error when typing a program into the com
puter is mistyping a character. If it were done on a regular type
writer, you could either start again on a fresh page or use white-out.
However, neither step is necessary on the Commodore. Assuming
that the mistake was noticed immediately after it was typed, a simple
touch of the INSTIDEL (insert/delete) key will delete it. The char
acter immediately to the left of the flashing cursor then disappears,
and you can type the correct character in its place.

Often, however, the mistake is not found until you have typed
further in the line, as in the following example:

Programming • 35

17B PRIMT 5 + ~ * 3_

Deleting each preceding character until the cursor is in the position

17B PRI

is both unnecessary and wastes time because correctly type charac
ters will be unnecessarily erased. The best way to make the change
is to use the cursor control keys. On the bottom right of the main
keyboard, there are two special cursor control keys that, when used
in conjunction with the SHIFT key, enable you to move the cursor
left, right, up, or down. These cursor control keys do not destroy
characters over which the cursor passes. All you need do is move
the cursor left twelve spaces until it is in the position shown:

17B PRIMT 5 +. 2 * 3

At this point, merely type in the correct character (N). The line
then appears as

17B PRINT 5 + 2 * 3

If at this point the line is finished, simply press RETURN. If not,
move the cursor to the end of the line by hitting the right cursor
control key (---..) eleven times. From this point on, the line may be
typed to its completion and the RETURN key pressed.

There is a common situation in which the cursor keys do not work
the way you might expect. If you are in the middle of typing a
literal-that is to say, the opening quote sign has been typed-the
cursor control keys produce unexpected graphics symbols, rather
than simply moving the cursor as they ordinarily do. The reason for
this is that once the opening quotation mark has been typed, the
computer is in "quote" mode. We take advantage of this mode in
Chapter 10, where we discuss the embedding of special characters
within a literal. For the present, we recommend that if a character
within or before a literal is to be corrected, complete the literal with

36 • BETfERPROGRAMMING FOR YOUR COMMOOORE64

the closing quotation mark (which negates quote mode). All correc
tions can then be made in the normal way.

Suppose now that you have just typed a line and pressed the
RETURN key.

13B PRINT "THE OCMMODORE 64 IS THE
GREATEST"

The cursor is now located at the next line, but the letters "CO" of
the name "COMMODORE" have been transposed. In order to
correct the error, use the upward cursor control key to place the
cursor on the appropriate line. Once there, the procedure to use is
identical to that described above (since the closing quotation mark
has been typed, quote mode will not be entered), After the correc
tions "have been made, be sure to press the RETURN key again, or
the computer will not register the change.

Using the INST/QEL Key to Insert a Character

Suppose you mistyped the word "COMMITTEE" in a literal,

lBB PRINT "THE COMMITEE MEMBERS WERE
ELECTED"

and the cursor is located at the end of the line prior to the line being
entered. What you wish to do is to insert another "T" in the mis
spelled word. Rather than moving the cursor to the location of the
error and retyping the whole line from that point on, you should use
the INST (insert) function (obtained by holding down SHIFT and
pressing the INSTIDEL key simultaneously), which makes it pos
sible to insert a character in the required position. The first step, of
course, is to move the cursor to the position where the letter must
be inserted-that is, to the immediate right of the letter "I."

lBB PRINT "THE COMMITEE MEMBERS WERE
ELECTED"

Programming a 37

At this point, press the INST/DEL key while holding down
SHIFT, ·thereby generating a space to the immediate right of the
cursor and pushing the rest of the line of text one space to the right,
If more than one character must be inserted, the process may be
repeated as often as is necessary by simply holding down the keys;
they are repeated automatically. The desired character (or charac
ters) may now be inserted, and the line entered by pressing RE
TURN.

In the same way information can be inserted in the middle of a
line, so characters may be deleted, by using the INST/DEL key. As
the following example shows, the INST/DEL key erases the char
acter immediately to the left of the cursor.

46~ PRINT "WATCH THII~ CAREFULLY!"

If this operation is performed in the middle of a line, the following
occurs:

46~ PRINT "WATCH THIS CAREFULLYI"

where not only has the character to the left of the cursor been deleted
but the line has "closed up" to account for it. In other words, the
INST/DEL key deletes not only the character but the room that was
provided for it as well.

The CLRlHOME Key

Wherever the cursor might be on the screen, hitting the HOME
key has the effect of relocating it to its "home" position, which is
the top lefthand comer of the screen. This is useful when there is a
need to edit a line located near the top of the screen, since it brings
the cursor to the vicinity of the line instantly. Holding down SHIFT
at'the same time as pressing the HOME key has the additional effect
of clearing the screen. This operation is useful when the display is
cluttered, making it difficult to concentrate on the line at hand.
Clearing the screen before editing a line is always a good idea (the

38 • BETl'ERPROGRAMMING FOR YOUR COMMODORB64

program still resides in memory and is not affected). All you need
do then is to list the program in question. In this way, the line to be
modified appears alone on the screen, making the job of correcting
it that much easier.

Erasing the Program in Memory

When you are finished with an old program and wish to write
another, you should first clear program memory. If it is not done,
the statements from the new program will be merged into the old
one because the computer has no way of knowing that you want the
two programs kept separate. For example, if the two lines

1B PRINT "THIS IS THE"
2B PRINT "FIRST PROGRAM"

. are in memory, and two lines from a new program are typed in,

1B PRINT "THIS IS"
15 PRINT "THE SECOND PROGRAM"

the lines are merely added to the already existing program, resulting
in the following amended single program:

1B PRINT "THIS IS"
15 PRINT "THE SECOND PROGRAM"
28 PRINT "FIRST PROGRAM"

This consists of bits and pieces of both programs, effectively non
sense. The way to avoid this problem is to erase the first program
entirely by means of the NEW command. The proper sequence of

, commands is, therefore,

'LIST

10 PRINT "THIS IS THE"
20 PRINT "FIRST PROGRAM"
READY.

Programming - 39

NEW

LIS T (This step is not necessary. It is only used to
show that there is no program in memory. The
second program can now be entered.)

READY.

1B PRINT "THIS IS"
15 PRINT "THE SECOND PROGRAM"
LIST

10 PRINT "THIS IS"
15 PRINT "THE SECOND PROGRAM"
READY.

Review Questions

1 • What is a program?

A program is a specific set of computer instructions designed
to solve a particular problem.

2· Is the line number 123.45 valid in Commodore BASIC?

No. Only integers (whole numbers) between 0 and 63999 are
permitted as line numbers.

3 • What differentiates a direct instruction from an indirect one?

An indirect instruction has a line number whereas a direct
instruction does not.

4 • What is the function of the RETURN key?

It transmits the line just typed into the computer.

5 • What command causes execution of a program to commence?

The RUN command.

40 • BET'l'ER PROGRAMMING FOR YOUR COMMODORE 64

6 • What is the effect of running the following program?

1121121 PRINT "3 + 4 * 5 = 2"
11121 PRINT 3 + 4 * 5
12121 PRINT 1121121 - 25 I 5
13121 PRINT 25 - 1121121 I 5

3 + a * 5 = 2
23
85
5

READY.

7 • Does the last statement have to be the END statement in
Commodore BASIC?

No, but the END statement may be used anywhere, if desired.

8 • Must program lines be entered in ascending numerical order?

No. The computer automatically inserts each new line at its
correct position (according to line number) each time one is
entered.

9 • What is the meaning of the instruction

RUN· 2121121121

It has the effect of executing the program in memory, begin
ning from line 2000.

10 • What is the effect of the statement

LIST 2121121121

The instruction at line 2000 only is displayed (listed).

11 • What is the meaning of the instruction

41

LIST 4111111 -

All lines beginning with 40p and extending to the end of the
program are listed.

12 • How may lines 500 to 620 of a program be listed?

By typing

LIST 5111111 :.. 62111

13 • How many lines of text may be displayed on the screen?

Up to 25.

14 • How many columns may be displayed on me screen?

Up to 40.

15 • What is meant by scrolling?

The top line of the screen is replaced by the line immediately
below it, whlc1i in turn is replaced by the line below it. The
contents of the screen thus Shift upward to make room for a
new line at the bottom.

16 • How can a scrolling screen tie slowed down?

By pressing the CTRL key.

17 • How is it possible to resume scrolling a screen at normal speed
once it has been slowed down?

By releasing the CTRL key.

18 • Why isn't it a good idea to give consecutive line numbers to a
segment of code? .

Because it prevents the possibility of inserting lines later on
should the need arise.

B.P.c64·-S

42 iI BE'ITERPROGBAMMlNG FOR YOUR COMMODORE"

19 " Which of the following commands is invalid?
a. 100 PRINT .
b. 110 Print 'Hr
c. 120 PRINT 'WE GOT YER~UMBA'
d. 130pRiNt
e. 140 PRint

a. Valid.
b. Invalid (lower case not permitted in a BASIC instruction).
c. Valid.
d. Invalid (same as above) .
. e. Invalid (same as above).

20 " What is the effect of pressing the CLRlHOME key?

It moves .the cursor to the "home" position at the top left of
the screen. .

21 • What is the effect of pressing CLRlHOME while holding
downSHIFT?

The screen is cleared and the cursor moved to the "home"
.. p,osition.

22 • What role is played by the INST function?

It allows for insertion of a character (or characters) in a BASIC .
line.

23 " What is the effect of the DEL function?

The character at the cursor location is deleted and all charac
ters to the right of the cursor move left to "close up" the line.

24 • How are the functions mST and .DEL obtained?

DEL is obtained by simply pressing the INST/DEL key.
INST is obtained by pressing the same key while holding down
SHIFT.

Programming - 43

25 • If a program contains a line whose number is 125, and the
programmer types the number 125 followed by RETURN,
what happens?

Line 125 is erased. All other lines remain intact.

26 • If a program contains a line 400, and another line.is subse
quently given the number 400, how does this affect the pro
gram?

The first line 400 is erased and is replaced by the second one.

27 • What is the effect of the NEW command?

The NEW command clears any program in memory to allow
for a new program to be typed.

HANDS-ON PRACTICE

1. What difference is there in the output produced by the following
two programs? Type them in and see for yourself.

VERSION 1

lBB PRINT "HOW ARE YOU?"
lB5 PRINT "FINE THANK YOU"
llB END

VERSION 2

lB5 PRINT "FINE THANK YOU"
lBB PRINT "HOW ARE YOU?"

2. LIST version 2, using two methods.
3. Type in the following line and do not hit RETURN:

lB PRINT "THIS IS A BERRY PORLY SPELT
LITTERAL"

44 • BETl'ERPROGRAMMING FOR YOUR COMMODORE 64

Modify the line so that the very poorly spelled literal is correctly
typed.

4. Having pressed RETURN in question 3, assume that line 10
must now be erased. Type in the number 10 and hit the RE
TURN key. Now list the program. What has happened?

TRY YOUR HAND AT THESE

1. Write a program to print your name, address, and social security
number.

2. Write a program to display the following output:

FORTRAN IS SIMPLE;
COBOL IS FUN.
PASCAL IS USEFUL
BUT BASIC'S THE ONE.-

CHAPTER

35----
The Power of BASIC

In this chapter you will get down to the fundamentals of computer
progr~g. Now that you have learned some of the commands
available in BASIC you will incorporate them into viable computer
programs that can perform useful functions. In particular, you will
become familiar with the following:

• the concept of the loop
• the GOTO instruction
• scrolling information across the screen
• the CTRL slow-scroll feature
• the infinite loop .
• halting a program (RUN/STOP)
• semicolons within PRINT statements
• defining variables
• the assignment statement
• rules for constructing variable names
• common pitfalls in constructing variable names
• counting
.. initializing variables
• an introduction to decision making in Commodore BASIC (IF ...

THEN)
• the relational operators
• interacting with the computer by using the INPUT statement
• the READ, DATA, and RESTORE statements
• the trailer technique
• storing programs on cassette and disk

45

46 • BETTER PROGRAMMING FOR YOUJl COMMOOOREM

The Concept of the Loop

Consider, for the moment, the following program, which consists
of two l~es, each of which prints a literal.

PROGRAM 3-1

1BB PRINT "***************************"
11B PRINT "========================c=="
RUN

==========================~

READY.

This program, as you may well have guessed, prints one line of
asterisks followed by another line of equal signs. If, for some reason,
you now wanted to amend the program so that it would fill the
screen with alternating lines of asterisks and equal signs, you could
merely add additional lines identical to lines 100 and 110. They
might be numbered 120, 130, 140, 150, and so .on. However, this
program would be very ' inefficient and particularly tedious to type.
Since any new lines will only be repetitions of the first two, BASIC
provides several ways to repeat the two desired instructions as many . ,
times as necessary. The simplest of these is the GOTO instruction,
which unconditionally "goes to" the line number specified in the
GOTO statement. In Program 3-2, the GOTO statement tells the
computer to go to the line specified': The effect is that the instruc
tions are repeated until the GOTO is executed again, endlessly. In
other words, a "loop" is creatJd. The loop is the single most vital
concept that separates the computer from other machines for the
simple reason that the computer caD be instructed. to repeat boring

. tasks endlessly; without human intervention. Without this looping
capability it would hardly be worthwhile resorting to a computer for
many of the problems for which it is used. Program 3-2, which
follows, is an example of one containing an endless or infinite loop.

The Power of BASIC • 47

PRoGRAM 3-2

100 PRINT "********************"
110 PRINT "===================="
120 GOTO 100,

RUN
******************** .
====================

====================
[and so on]

In a short while the screen is filled, but the program keeps printing
the two lines of output without end. As a result, the top line keeps
moving off the top of the screen, and every line moves up, to be
filled immediately by the succeeding line. This occurs so fast that
the text seems to remain stationary, although you may notice that it
does seem to blink.

By now, you may be wondering how to stop the demon program
that you have set in motion! Have no fear, there is always a way to
stop a program. At the very worst, you can always pull the plug.
There is, however, a more elegant way to accomplish the same
purpose and retain the contents of memory intact as well. In order
to terminate a program that is in an infinite loop, you may press
RUN/STOP. This is sometimes referred to as "breaking" the pro
gram. Although it, too, is not the most elegant way to terminate a
program, it usually does the trick. If the RUN/STOP key doesn't
work, try holding it down and pressing RESTORE (located above
the RETURN key). This move has the additional benefit of resetting
the screen color to normal and clearing the screen at the same time ..
. Now study the following two-line program. You will notice that

line 100 is the familiar-looking PRINT statement containing a li~ral
-but this time the literal is terminated by a semicolon. In BASIC a
trailing semicolon at the end of a PRINT statement suppresses the
normal carriage return, which ordinarily causes the subsequent
PRINT statement to start at the beginning of a new line. As a result,
the next line of text is displayed immediately to the right of the

48 • BETI'ER PROGRAMMING FOR YOUllCOMMODORE 64

literal contained by the PRINT statement with the semicolon. When
Program 3~3 is run, the whole screen is filled with the literal, which
is repeatedend-to-end.

PROGRAM 3-3, VERSION 1

1mm PRINT "MAY THE FORCE BE WITH YOU";
11m.GOTO 1mB

RUN
MAY THE FORCE BE WITH YOUMAY THE FORCE B
E WITH YOUMAY THE FORCE BE WITH YOUMAY T
HE

[and so on]

If you want to improve the appearance of the printout by separat
ing the displayed phrase by a blank, you must insert a space at the
end of the literal but before the closing quote. In the next version of
the program, a blank space has been included after the word "YOU"
in line 100:

PROGRAM 3-3, VERSION 2

1mm PRINT "MAY THE FORCE BE WITH YOU ";
11m GOT,O 1mm

RUN
MAY THE FORCE BE WITH YOU MAY THE FORCE
BE WITH YOU MAY THE FORCE BE WITH YOU MA
V THE
[and so on]

Variables and Assignment

The programs illustrated so far have not done anything very ex
citing. In fact, all they have done is to print out some literals. It is
time now to learn how to instruct the machine to compute, which .
is, after all, the major purpose of a computer.

The Power of BASIC • 49

First, consider a program that computes numerical results. Sup
pose you are interested in finding the average of 5 and 6. One way
to approach this problem is to print the result directly, as follows:

PRINT (5 + b) 1 2

An alternate method is to assign the constants 5 and 6 to specific
locations in the computer's memory and then apply the required
operations to the contents of those memory locations. This concept
is used in algebta, where terms like x and y are used to denote
unknown quantities, which in BASIC are known as variables. These
are in contrast to constants (such as 5, 3.14159, 2.71828, and
"BINGO"), whose values always remain the same. The program
that follows assigns the value 5 to the variable X and 6 to the vari-

. able Y. Once these values have been assigned, the program averages
the two values, producing the desired result .

. In BASIC, assigning'values is accomplished by the assignment,
or LET, statement. In most versions of BASIC available today (and
certainly including Commodore BASIC), the word "LET" may al
ways be omitted without any loss of meaning; nor does its omission
generate an error of any kind. In the next program two of the
assignment statements have the word "LET", whereas the third
does not.

PROGRAM 3-4, VERSION 1

lItJI1I LET X = 5
11111 LET V = b
120 Z = (X + V) 1.2
130 PRINT Z

RUN
5·.5

READY.

It is important to note that even if line 130 were omitted, the
Value of Z· would still be calculated-even though it would not be
apparent to the programmer. The only way the computed value of

50 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

Z can be displayed is to explicitly instruct the computer to print it
by using the PRINT instruction. If the valu~ of Z is not going to be
referred to again subsequently, it is possible to bypass the assign
ment in line 120 and evaluate the result within the PRINT instruc
tion itself, as is shown in the next version of the program.

PROGRAM 3-4, VERSION 2

1BB LET X = 5
11B LET V = b
12B PRINT (X + V) / 2

RUN
5.5

READY.

Lines 100 and 110 are examples of assignment statements, by
which values are stored in variables. It is probably true to say that
the assignment statement is the most commonly used statement not
just in BASIC but also in most other programming languages. By
means of these assignment statements a complex series of computa
tions can be designed, making the program extremely versatile. The
program could then be u&ed to solve a host of problems, ranging
from a spreadsheet program to an exciting game. In fact, assignment
statements are the building blocks from which sophisticated pro
grams are made.

The Structure of an Assignment Statement

The general format of the assignment statement is

J I
line-number LET 'Variable-name = expression

The value of the expression on the right of the equals sign is
evaluated. The expression on the right of the equals sign in an

nePowerofBASIC • 51

assignment statement may consist of a single constant or a series of
arithmetic operations. Some examples are

52
5 + b
A + 8 - C + 21 3
((2 + 3) t 2)
A * (8 + C 1 9111)
SQR (8 t 2 - 4 * A * C)

After the expression is evaluated and reduced to a single number it
is then stored in the computer's memory, in the location specified
by the variable on the left of the equals sign. Thus, although the
assignment statement looks like a static instruction, it is in fact
dynamic.

As we have said, the line number in a program must always be an
integer between zero and 63,999. Since the word "LET" is optional,
but when used involves a certain amount of additional work on the
part of the programmer, we shall n~t include it in future programs.
However, if you think that its inclusion adds greater clarity to your
programs, you should feel free to use it as often as you like.

Variable names must conform to certain rules in order to be ac
ceptable to Commodore BASIC. The first requirement is that they .
always start with a letter of the alphabet. After tlie firs~ character,
any letter or digit may follow, in ariy combination, up to a maximum
length, which is limited only by the maximum size permitted for
program instructions. (On the Commodore 64, it is two lines on the
screen, or 80 characters.) Although a variable name may be com
posed of many characters, only the first two are recognized by Com
modore BASIC. That is, the variables RICHARD and RICK are
treated as one by the computer since they·both start with the letters
"RI".

Naming variables is an important element of good programming
technique. Of course, most programmers select short names because
long names are not only too time-consuming to type but also take
up valuable room in memory. There is a certain benefit to be derived
from long variable names though, because they help in the docu-

52 • mfi'EKPIlOGRAMMINGFORYOURCOMMODORE64

mentation of a program (making it understandable to another pro
grammer). The following are typical valid variable names:

DUMMY X SUMl984 SALE~ QP984Z

Here are some' examples of some invalid variable names, together
with the reasons why they are unacceptable to the computer:

Invalid Variable
Name

1984CBM
A?B.C

Reason for Rejection

Name must begin with an alphabetic.
No special characters are permitted.

A variable is also invalid if it is a BASIC command. Therefore,
the assignment statements

425 LET RUN = 12
43B PRINT = 1

are invalid since both the words "RUN" and "PRINT" are key
words. Similarly, any variable name that contains a keyword, for
example, "REPRINTED", is also illegal and generates an error
message. A complete list of Commodore BASIC keywords may be
found in Appendix A.

In an assignment statement, the variable name must always be
followed by an equals sign. It bears repeating that the assignment
statement instructs the computer to evaluate the expression that
appears to the right of the equals sign, reduces it to a single number
(if it is not already a single number), ,and stores this single value into
the computer's memory in the location specified by the variable
name to the left of the equals sign.

Counting

In the neXt. program there are two assignment statements. The
first of them sets the value of COUNT to zero. The second adds 1

The Power of BASIC • S3

to the current value of COUNT each time the loop is executed.
Within the loop the current value of COUNT is printed out. This
program is intended to illustrate an important concept in BASIC
p~gramming~that of countm8. It is useful when a process must
be repeated a given number of times. Study Program 3-5 for a few
moments and try to understand what it accomplishes. Pay special
attention to line 110, where the variable COUNT appears on both
sides of the equals sign.

PROGRAM 3-5

11liliJ COUNT=11I
11111 COUNT=COUNT+1
12111 PRINT COUNT
13111 GOTO 11111

RUN
1
2
3
4
5
6
7

[and so on]

The variable name selected in this program to store the value of
the count is appropriately called "COUNT". It is set to zero in line.
100 because in the next line (line 110) 1 is added to it. It is clear that
in order for 1 to be added to any variable, it must have a value. The
process of setting the starting or initial value for a variable is called
initializing. Actually, on the Commodore 64 there is no need to
initialize variables to zero because they are automatically set to zero
when the RUN command is executed. Nevertheless, experience will
show that it isa good programming habit to initialize all variables,
and. we enthusiastically encourage it. Indeed, we shall take this ad
vice. ourselves in all the programs illustrated in this book.

The statement in line 110 of Program 3-5, on close scrutiny, looks
somewhat ridiculous, particularly when looked at from an algebraic
point of view:

S4 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

118 COUNT = COUNT + 1

Mter all, how can COUNT ever be equal to COUNT + I? The
answer is that the statement is an assignment rather than an alge
braic equation. As already emphasized, the expression on the right
of the equals sign is first evaluated and the result stored in the
variable· speCified on the left of the equals sign. Once COUNT is
initialized to zero, 1 is then added to its value, and the result, 1, is
stored in the variable on the left. In this case the variable name on
the left is also COUNT. What this means then is that the value of
COUNT on the right represents its "old"· value, whereas that on
the left reflects the "current" or updated vaJue. Therefore, it can be
said that statement 110 simply means this: add 1 to the current value
of COUNT. Whenever a variable is upgraded in this way it must
always appear on both sides of the equals sign.

The IF .•• THEN Statement

The previous counting program is, of course, an infinite loop that
prints out the numbers 1, 2, 3, 4 ... ad infinitum. As you will
remember, in order to terminate an infinite loop you have to press
the RUN/STOP key. But suppose you want the program to termi
nate automatically as soon as the number 5 has been printed. To
accomplish this, the computer's decision-making capabilities have
to be exploited. The BASIC command that enables decisions to be
made is called the IF statement, which comes in various formats:

line number IF condition lis true THEN GOTO line number

\

which may be shortened to

line number IF condition is true THEN line number

or may be expressed in an alternate form as

line number IF condition is true GOTO line number

, The Power of BASIC • 55

For example, the statement

laB IF A = B THEN GOTO 5HB

tests the current values of A and B.lfthey are equal, control is sent
directly to line 500. If they are not equal, the THEN clause is
completely ignored and, instead, control drops (falls through) to the
next statement. As was just shown, the following three segments of
code have the same effect:

lBB IF A = B THEN 5BB
lBa IF A = B GOTO 5BB
18B IF A = B THEN GOTO 5BB

Relational Operators

As used in the previous IF statements, the equals sign behaves as
a relational operator, comparing the two values A and B, rather than
setting the variables equal to each other. There are, of course, other
ways to test the relationship between two values. In BASIC they are

Symbol

=
<>or><

>
=>or>=

<
=< or <=

Meaning
equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

Here now is the program that prints out the first five numbers,
one number per line:

PROGRAM 3-6

lBB COUNT = B
l1B COUNT = COUNT + 1

(

S6 • BETI'ERPROGRAMMING FOR YOUR COMMODO~ 64

12111 PRINT COUNT
13111 IF COUNT < 5 THEN 1LI1I

RUN
1
2
3
LI
5

READY.

In line 130, a test is made to determine whether th~ current value
of COUNT is less than 5. If it is (meaning that five lines of output
have not yet been printed), control is sent to line 110, where the
value of COUNT is incremented by 1 and the current value of
COUNT is printed out. This process is repeated by the loop. The
moment the value of COUNT becomes equal to 5, the test "is
COUNT < 5" fails and control drops to the next line. Since there
is no next line, BASIC automatically terminates execution of the
: program.

It is worth pondering for a moment what the effect would be if,
in line 130, control were sent to the first statement of the program,
line 100, where COUNT is initialized to zero. If this were done, the
current value of COUNT would be reinitialized to zero every time
around the loop. For this reason, the value of COUNT would always
be less than S. It is therefore an example of an infinite loop, so called
because it would continue forever.

The INPUT Statement

One of the great advantages of microcomputers, such as the Com
modore 64, is that they can be used interactively. That is, during
actual execution of the program, information can be fed to the com
puter. You might want to run a program several times, each time
having it work with different data, without modifying the program.

ne Power of BASIC • S7

You might want intermediate results printed ou~ to help you trace

the course of the program.
You have already seen how values can be assigned to variables by

means of the assignment statement. Another method is the INPUT
statement,· which promotes interactive communication with the
computer during the execution of the program. For example, the
instruction

UJB INPUT X

prints out a question mark (called the prompt character in this con
text) during execution of the program and waits for the user to type
in a value for the variable X. Once this has been done and the
RETURN key has been pressed, exec~tion oCthe program resumes,
with X having assumed the value typed in by the user. Until the
RETURN key is pressed, no further action is taken by the com
puter. It will simply wait there doing nothing-forever, if neces
sary. It is therefore considered a wise practice to precede every
INPUT statement with a PRINT statement advising the user (even
if that user is you) what kind of information to type in when the
prompt appears. For example, if a program computes the area of a
.rectangle, given its length and width, the PRINT statement request
ing this information should contain instructions such as those in
lines 100 and 110 in the following program.

PRooRAM3-7

lBB PRINT "ENTER LENGTH OF RECTANGLE: ";
llB INPUT L
12B PRINT "ENTER WIDTH OF RECTANGLE: ";
13B INPUT W
14B AREA = L * W
15121 PRINT
lbB PRINT "THE AREA OF THE RECTANGLE IS:";AREA

..

RUN
ENTER LENGTH OF RECTANGLE: 11B
ENTER WIDTH OF RECTANGL~: 13

58 • BET'l'intPROGRAMMlNG FOR YOUR COMMODORE 64

THE AREA OF THE RECTANGLE IS: 30

READY.

We emphasize that it is considered a sound practice to precede all
INPUT statements with clear instructions to the user; the author of
the program may not be (and often is not) the only person to use the
program. Thus familiarity with the program can never be assumed
by its author. Even the original authors tend to forget details of their
own programs after a while. Moreover, in more complicated pro
grams, several INPUT statements might be necessary, each of
which may require completely different information. The careful
selection of suitable PRINT statements can make the difference
between a successfully run program-and a useless one.

The combination of INPUT and PRINT is so common that Com
modore BASIC provides a convenient way to merge the two state
ments into one. For example, the two lines 100 and 110 in Program
3-7 may be combined into the single statement

1BB INPUT "ENTER LENGTH OF RECTANGLE: ";L

The limitation is that the literal may not be longer than 38 charac
ters. When this instruction is encountered during execution of the
program, the literal is printed first and then immediately the prompt
character (the question mark), inviting the user to type in the re-. . ,
quired iriformation-followed, of course, by the use of the RE-
TURN key. No computation is performed; the computer waits
indefinitely until the RETURN key is pressed.

You are not confined to a single variable with an INPUT state
ment. In fact, you may have as many as can fit in a program state
ment. The only restriction is that each variable name must be
separ~ted from the next by a comma. Of course, there must be at
least one variable name at all times. Whether one variable name or
more are listed, however, only one prompt is displayed for any given
INPUT statement when the instruction is executed. In the following
program, three values representing the three sides of a triangle are
typed in-in resPonse to a single INPUT statement. The area of the

The Power of BASIC • S9

triangle is then computed according to Heron's formula, which is
based on the semiperimeter, represented by the variable s:

a + b + c s=----
2

According to Heron's formula, the area of a triangle with sides a, b,
and c is

Area = Vs(s-a)(s-b)(s-c)

PROGRAM 3-8

188 INPUT "ENTER THE 3 SIDES: ";A,B,C
118 SEMIPER = (A + B + C) I 2
128 TEMP = SEMIPER * (SEMIPER - A) *

(SEMIPER - B) * (SEMIPER - C)
138 IF TEMP <= 8 THEN GOTO 178
148 AREA = SQR(TEMP)
158 PRINT "THE AREA OF THE TRIANGLE IS ";

AREA
168 END
178 PRINT "THIS IS NOT A VALID TRIANGLE"

Although we stated in Chapter 2 that the END statement is ordi
narily superfluous, one is included in Program 3-8 to prevent the
printing of the error message in line 170. This line is necessary in
the event that the values of A, B, and C selected for the triangle are
invalid.

The READ, DATA, and RESTORE Statements

On occasion it is necessary to provide a program with data which
do not change between different runs of the program. Such data
may be stored in a DATA statement and read by a READ statement.
In fact, the READ statement must always be used in conjunction
with a DATA statement. As with the INPUT, the READ statement

60 • BETl'ERPROGRAMMING FOR YOUR COMMODORE 64

may 'access more than one item. If more than one variable is listed
in the READ statement or more than one item is· specified in a
DATA statement, they must be separated by commas.

A DATA statement may be placed anywhere at all within a pro
gram. It is a special kind of statement in that it is never executed
but is merely referred to by the READ statement. A DATA state
ment may hold as many values as can be placed within the 80-
character limit of the line. Moreover, as many DATA statements as
are necessary may be included in any given program. If more than
one DATA statement is present they may be conceptualized as one
continuous list of data items. The DATA statements are accessed
by the READ command in the order of their line numbers.

Program 3-9 demonstrates the manner in which data are accessed
by a READ intruction:

PROGRAM 3-9

188 READ A
118 PRINT A
128 \READ 8,(
138 PRINT 8,(
148 DATA 2,3,4

RUN
2
3

READY.

The following two programs also demonstrate different ways to
structure READ and DATA statements:

PROGRAM 3-10, VERSION 1

188 READ A,8,(,D
118 PRINT A,8,C,D
128 DATA 2
138 DATA 6,1,8

RUN
2

READY.

s

PROGRAM 3-10, VERSION 2

lBB READ A,B,C,D
llB PRINT A,B,C,D
12B DATA 2,6,1,8

RUN
2

READY.

s

The Power of BASIC - 61

1 B

1 B

When writing long programs containing DATA statements it is
generally a good programming practice to place them at the end of
the program so that they lI,18y be easily and quickly found by a
programmer. Examples of ~e properties of READ and'DATA
statements are illustrated further in the following program. ,We shall
discuss them in detail after you have had a chance to study the
program.

PROGRAM 3-11

lBB READ A,B,C
11111 READ D,E,F
12B PRINT F,E,D
13111 PRINT B,C,A
14111 DATA 1111,],5
15111 DATA].,2,3,4

RUN
La
15

READY.

3
1

2
10

62 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

When a READ command is encountered, it accesses the first item
of data in the first DATA statement of the program. In line 100 of
this example, therefore, the variables A, B, and C take on the values
10, 15, and 1, respectively, since these are the first three values
specified in the DATA statements. In line 110, the values 2,3, and
4 are assigned to the variables D, E, and F, respectively. The READ
statement behaves, therefore, in a manner very similar to the assign
ment statement; in fact, it is simply another option which may be
used for assigning values to variables.

As we have said, there is a one-to-one correspondence between
the list of variables in the READ statement and the items listed in
the DATA statement. This fact implies that for every variable spec
ified by the READ statement there is a value specified.in the DATA
statement. In Program 3-12, in which the variables A, B, and C are
read, only two data items are specified-which leads to the error
message

?OUT OF DATA.

PROGRAM 3-12

llZ1lZ1 READ A,B,C
l11Z1 PRINT A,B,C
121Z1 DATA llZ1~2121

RUN
?OUT OF DATA ERROR IN 100

READY.

In this case, the data supplied are insufficient to satisfy the READ
instruction in line 100. The program therefore terminates at that
point, indicating at which line the READ statement was unsatisfied.
·In Program 3-13, the opposite case occurs-that is, more data exist
than are necessary. As is shown, ,the excess data are merely ignored
and no error message is generated.

PROGRAM 3-13

1I11B READ A,B,C
llB PRINT A,B,C

The Power of BASIC • 63

12B DATA 1.45,2,5,8,999,627,-5,32.345

RUN
1.lI5

READY.

2

The Trailer Technique

5

Suppose a DATA statement contains an unknown niunber of
positive values and you want to find out exactly how many there are.
It is possible to have the computer count the number of items pres
ent in the DATA statement by terminating the items with a number
easily distinguishable from all the other numbers. For example, any _
negative number could be used. In the next program, the items
stored in the DATA statements are counted and subsequently dis
played on the screen. The value - 1 serves as a signal that all the
data items have been read. Since this technique involves a special
dwnmy value, - 1, that "trails" all the way at the end of the data
items, it is known as the trailer technique. The dummy value is
sometimes called an end-of-data tag.

PROGRAM 3-14

lBB COUNT = B
],lB READ A
12B IF A = -1 THEN GOTO 16B
13B PRINT A
14B COUNT = COUNT + 1
15B GOTO llB
16B PRINT
17B PRINT "THERE ARE";COUNT;"DATA ITEMS

PRESENT."

64 -BETTERPROGRAMMING FOR YOUR. COMMODORE 64

18B DATA 2,55,82,lBB.2,b7.999~89B
19B ,DATA -1

RUN
z
55
82
100.2
87.999
890

THERE ARE 8 DATA ITEMS PRESENT.

READY.

In line 100 the variable COUNT is set to zero, representing the
number of items found thus far in the DATA statement. As you will
recall, this is known as initializing the variable to zero. Then the
first vEnue of A is read. By examining the DATA statement, it will
be seen that $e first value of A is 2. This value is immediately tested
against- 1. Since they are not equal, the value 2 must be one of the
data items, and control drops down to line 130, where the current
value of A, which is equal to 2, is printed out. The value of COUNT
is then incremented by 1, and line 150 instructs the computer to go
back to line 110, where the next value of A is read. This process
repeats itself until the trailing item is r~ad. The test in line 120 then
succeeds, and control is sent to line 160, where a blank line is
printed, followed by the final line of output, wpich displays the
number of items stored in the DATA statements. Notice that the
value - 1 is not included in this count because when the trailing
iteIll is encountered, control is immediately sent to line 160, which
skips over both the PRINT and incrementing instructions.

The DATA statement may be viewed as if there is an invisible
pointer pointing to the first available item in the first (possibly the
only) DATA statement. As soon as that item has been read, it moves
over to the next item in preparation for the next READ instruction.
It is often. extremely useful to be able to reset the pointer to the
beginning of the DATA items. For example, if you were interested
in calculating the average of the numbers in the DATA statements
(using the trailer technique), one method would be to count first

· The Power of BASIC • 65

how many items there 'were (as was done in Program 3",14). The
sum of all the items could then be calculated and the result divided
by the previously determined number of items present (stored in
COUNT). This method requires some way of resetting (restoring)
the pointer to its initial position. In BASIC this is accomplished by
means of the RESTORE statement. It is used in ·the next program,
where the average of a list of items stored in a DATA statement is
calculated.

PROGRAM 3-15

11lHll ,COUNT = III
111ll READ X
128 IFX = ~9999 THEN GOTO 1b8
138 PRINT X;
149 COUNT= COUNT + 1
151ll GOTO 111ll
lb8 RESTORE .
178 SUM·= 8
:L88 READ X
198 IF X = -9999 THEN GOTO 22B
281ll SUM = SUM + X
21111 GOTO 18111
228 AVERAGE = SUM I COUNT
238 PRINT
24111 'PRINT "THE NUMBER OF ITEMS =";COUNT
258 PRINT "THE AVERAGE =";AVERAGE
2b8'DATA S,b,7~8
278 DATA 9,18
288 DATA -9999

RUN
5 B 7 8 8 10

THE NUMBER OF ITEMS = 6
THE AVERAGE = 7.5

READY.

In this program, the variable being read is called X, and the trailer
item has been arbitrarily defined as - 9999.Mter COUNT has been
initialized to zero and the first value of X read, X is· tested against

66 • BBTIERPROGRAMMING FOR YOUR COMMODORB 64

- 9999. If they are not equal, control drops to line 130, where the
current value of X is printed. You will notice, however, that the

,PRINT instruction is terminated with a semicolon. This has the
effect of printing the value of X in. packed format;. that is, the
numbers are printed on the same line, separated by one space, rather
than printed in the four zones produced bY,the comma. The value
of COUNT is then incremented by 1, as one more data item has
been read. The process is repeated within the loop until the trailer
item (- 9999) is encountered. At that point, control is sent to line
160, where the RESTORE instruction is located. The effect of this
instruction is to restore the pointer back to the beginning of the
DATA statements (line 260) and the variable SUM is then initialized
to zero. Each data item is then reread and-as long as it is not equal
to - 9999-each one in turn is added to the total (stored in the
variable SUM). Once the trailing item is encountered for the second .
time, the average is calculated by dividing the sum of all the items

I (excluding the trailer) by the number of data items present (again
excluding the trailer). The number of items and their average is then
printed out and the program is terminated.

Program Storage

When a BASIC program is typed into the Commodore 64, it is
stored in its internal memory. However, this is only temporary
memory, for if you were to switch the machine off, or if a power
failure were suddenly to occur, the complete contents of memory
would be lost. This, of course, could be a disastrous situation. In
order to store information permanently, some other device must be
used. The most common device today is the Datasette (the Com
modore digital cassette recorder). In order to store a BASIC pro
gram to a cassette, it is necessary to position the tape to a vacant
area that is available for storage. This step is followed by the com
mand

SAVE "program name"

. ne Power of BASIC • 67
. .

in which the word "SAVE" is followed by a user-defined program
name enclosed in double quotation marks. Any character may be
used in the program name, which may be from 1 to 16 characters in
~ength~in contrast to variable names in which the characters are
restricted to the letters of the alphabet and the digits 0 through 9.
When saving to tape, the program name may be omitted, but this is
not a good idea as it makes it impossible to retrieve the program by
name.

Once the program has been saved to tape, the· computer may be
switched off without any fear of losing information. For all intents
and purposes, the program is saved-forever. Anytime subse
quently, the saved information may be ~etrieved from the cassette
and loaded into memory. In Commodore BASIC the command to
load a previously saved program is

LOAD "program name"

where "program name" is the name under which the program was
saved.

Saving Programs to Disk

For those users fortunate enough to own a disk drive, saving
programs is even easier than to tape. The identical commands are
used, LOAD and SAVE, with the exception that they must be
followed by a deVice specification. Since the disk drive has been
assigned the device number 8,.the commands appear as

SA VB "program name",8

and

LOAD "program name" ,8

There are additional commands that are required for a disk drive,
however. First, to save any information, the disk on w~ch it is to

68 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

be stored must be initialized. This is accomplished by the somewhat
cryptic command

OPEN 15,8,15,"N0:disk name,ID"

where "disk name" is the name you wish to call the disk and "ID"
is an arbitrary number. An example of this statement is

OPEN lS,8,lS,"NB:BINGO,1"

which initializes the disk, preparing it to store programs and other.
data. This process takes some time, so a little patience is required.

Another additional and extremely useful command is

LOAD "$",8
..

which loads in the names of all the programs residing on the disk
and, when listed, identifies them and the amount of space each
occupies.

Review Questions

1 " What is a loop?

A loop is a segment of code that is executed repeatedly.

2 • Which instruction sends control unconditionally to another
statement? .

The GOTO statement.

3 • Can a GOTO statement branch to a line number greater than
or less than the current one?

Certainly.

4 • What is the name given to the constant upward move of infor
mation off the screen?

Scrolling.

The Power of BASIC • 69

5 • What is an infinite loop?

An infinite loop is aloop that never ends.

6 • How mayan infinite loop be terminated?

By hitting the RUN/STOP key.

7 • What is the effect of terminating a PRINT statement with a
semicolon?

It suppresses the carriage return, allowing the next PRINT
statement to continue at the current print position.

8 • What is a variable?

A variable is a symbolic name for a location in memory which
holds a value. The value may be changed at any time.

9 • What is a constant?

A value that always remains the same-such as 5, 7.29,
-2.9901,3.14159, and "HELLO"

10 • What statement assigns the variable A to 10 in Commodore
BASIC?

LET A = 1121

11 .' Is the word "LET" required by Commodore BASIC? j

No, it is optional.

12 • In order for the computer to display a value, what instruction
must be present?

The PRINT instruction.

13 • Maya BASIC instruction have a line number of O?

Yes. The valid range is 0 through 63999.

70 • BETrERPROGRAMMINGFOR YOUR COMMODORE 64

14 • Which of the following variable names are valid?

a. BINGO b. 1984SALES c. PROFITILOSS
d. X229FFCX e. SOCIAL.SECURlTY.NUMBER
f. AAABBBCCCDDDEEEFFFGGGHHHIllJJJ1234567890

a. Invalid (contains the keyword GO of GOTO).
b. Invalid (must not begin with a digit).
c. Invalid (no special characters allowed).
d. Valid.
e. Invalid (no special characters allowed).
f. Valid (although only the first two letters are significant).

IS • What is the maximum length of a variable name?

A variable name has no maximum length. It must, however,
fit on a line consisting of no more than 80 characters.

16 • What symbol is always present in an assignment statement?

The equals sign.

17 • What is the meaning of the instruction

TOTAL = TOTAL + 1

Add 1 to the variable TOTAL.

·18 • Whatis meant by the term initializing?

When a variable is initially set to some value before it is used
in a computation, it is said to be initialized.

19 • H a variable is not initialized, how does the Commodore 64
treat it?

As though it were initialized to zero.

20 • What is the name of the instruction that permits a decision to
be made in BASIC?

The IF .•• THEN statement.

no Power of BASIC • 71

21 " Write an equivalent statement to the following:

IF A = B THEN GOTO 177

Either

IF A = B THEN 177

or

IF A = B GOTO 177

22 " What is the purpose of the END stat~ment in a program?

To force the termination of the run at the point where it is
placed, thereby avoiding executing sections of the program

. that should not be processed.

23 • What is printed by the following program:
I

UJB READ X
11m IF X > 15 THEN 14m
12m IF x > 5m THEN 15m
13m IF X> 75 THEN 16m
l~m PRINT "BINGO"
15m PRINT "SHMINGO"

.16B PRINT "ZINGO"
17m DATA 45

BINGO
SHMINGO
ZINGO

READY.

When X is tested against 15 in line 110, control is sent directly
to line 140. Mter executing the PRINT instruction in line 140,
control continues to the following statements in the ordinary
way.

72 • BETTER. PROGRAMMING FOR. YOUR COMMODORE 64

24 • What are the symbols for
a. greater than? b. less than? c. not equal to?

a. > b. < c. <> or ><

2S • What is printed by the following program:

1~0 READ X, X, X, X
110 PRINT X, X, X, X
12~ DATA 1, 2, 3, 5

5 5 5

READY.

5

Each of the four values, 1, 2, 3, and S, are successively read
into the variable X; Each time a new X is read, the previous
one is replaced. Therefore, when X is printed out it is only the
last value which is displayed four times.

26 • Where may DATA statements be placed in a program?

Anywhere. They do not affect the way a program is executed.

27 • If a program contains a READ statement, what else must it
contain?

A DATA statement.

28 • If a READ statement contains a list of five variables, how
many data items should there be?

At least five.

29 • If a READ statement contains a list of ten variables, how
many DATA statements must be present?

At least one. However, it must contain l:it least ten data items.

The Power of BASIC • 73

30 • What do the READ, INPUT, and assignment statements
have in common?

They each assign values to variables.

31 • What is the effect of having an insufficient number of data
items for a READ instruction?

An ?OUT OF DATA ERROR message is displayed and exe
cution of the program is terminated.

32 • What is the effect of the RESTORE statement?

The RESTORE statement returns the data pointer to the first
item of the first DATA statement in a program.

33 • How would you save a program called "PAYROLL" to ta~?

By using the command

SAVE "PAYROLL"

34 • How would you retrieve the same program from tape?

By using the command:

LOAD "PAYROLL"

HANDS-ON PRACTICE

1. Type in the following program. Before running·it, come to your
own conclusion as to what the output should be.

lBB PRINT "BASIC MEANS POWER TO THE
PEOPLE";

llB GOTO 1121121

2. Determine what the following program prints and why. How
does it' end?

(
74 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

1111111 X = 1
11111 X = X + 1
12111 GOTO 11111

, 3. Try setting some variables in immediate mode. For example,
type

X = 5
PRINT X

Reassign a new value to' X and print it out again.
What do you notice?

4. Type in and run the following program:

1111111 X = 1
11121 PRINT X
12111 X = X + 1
13111 If X < 1111111 THEN GO TO 11111

Determine ahead of time what the output should be.

TRY YOUR HAND AT THESE

. 1. Write a program that prints out the value of X, X2, and X3,
where X is a user-typed value (use the INPUT statement).

2. Write a program to print the square root of the numbers from 1
through 100 (use a loop and make sure it terminates correctly).

3. Write a program that computes the Celsius temperature, given
the Fahrenheit equivalent: C = 5/9(F - 32).

4. Write a program that reverses the temperatures in question 3:
F = 9/5C + 32.

5. Write a program to compute the simple interest accrued by in
vesting $4,000 for 6 years at the rate of 71/4 percent per annum.

fV = PV * (1 + RATE/1I11B) i NUMYEARS

CHAPTER

~.~----
Structured
Programming

In this chapter, you will learn some of the critical tools of modern
computer programming, including

• the principles of structured programming
• the need to eliminate GOTO statements
• the FOR .•• NEXT loop
• the empty FOR .•. NEXT loop
• trapping invalid data
• multiple-line statements
• determining the sum of the integers from 1 to N
• the STEP clause
• internal documentation
• the Newton-Raphson iteration scheme
• introduction to subroutines

Programming has been inexistence for a little less than 40 years.
Before 1947 no modern electronic computer had yet been invented.
Even in the early 1950s programming was an arcane art practiced
by only a handful of PhD's in the most prestigious universities in
the country. It is from those years that the myths of the evil, all
encompassing computer spring.

The explosive growth of computers caused by vastly improved,
ever more complex, and cheaper electronic parts took . the world by
surprise. There developed a crucial shortage of computer program-

75

76 • BETIERPROGRAMMING FOR YOUR COMMODORE 64

mers, a shortage which continues to the present day. It was in the
first of the boom days that the programmers' credo, under pressure
from their managers, began as "get it done-no matter what the

. cost."
Since those crude beginnings, a whole new science has sprung up

around computers. With the evolution of computers and the passing
of time, the philosophies of progran1ming have made radical shifts.

The first of these changes is the attitude toward "getting it done."
No longer is emphasis placed on getting the program to work im
mediately but rather on setting it up in an orderly fashion. The
reason for this change is that the program should be easily amended
if necessary and, equally important, be readily understood and mod
ified by another programmer. The techniques used in modem-day
programming are incorporated into a style called structured program
ming. In essence, it is a collection of suggestions and guidelines
regarding programming practices.

There are several major principles of structured Pl'ogramming.
One of the most important is that large problems should be broken
up into a series of smaller problems, each of which is more easily
manageable (a sort of "divide and conquer" approach). Each sub
problem is codea separately into a so-called "module," which is then
integrated into the program as a whole.

Another important principle, called top-down programming, is to
make each individual module as simple as is feasible. This require
ment involves a flow of control, starting from the "top" of the pro
gram and descending "down" to the bottom as directly as possible.

Although BASIC generally is not the most suitable language for
structured programming, some special. enhancements have been
added to the Commodore dialect that promote this favored style. All
these enhancements, together with the standard structured BASIC
features, are covered in great detail in this chapter.

Looping

The GOTO statement has come under considerable criticism by
professional programmers because, in the short history of computer

Stru.cturecI Programming • 77

programming, it has been abused more than any other instrUction.
Trying to follow the logic of a program that incorporates a long
sequence of GOTOs is both complex and exasperating. H you read
the following program, which includes no more than five GOTO
statements, you will get an idea of what· confusion can result from
the abuse of this instrUction. The program certainly works, but that
is hardly any justification for its complexity.

PROGRAM 4-1

],111111 GOTO],5111
.],],111 GOTO],3111

],2111 GOTO],],111
],3111 PftINT "THIS IS NOT A STftUCTUftED PftOGftAM"
14111 GOTO·16111
],5111 GOTO],2111
],6111 END

Although this is an exaggerated example, the fact is that most
programs contain loops. In fact, it is felt by many programmers that
a program that does not contain a loop is not worth writing in the
first place. However, a leading authority on Computet ptogramming
and one of the main proponents of structured programming, Edsger
Dijkstra, is of the opinion that the quality of a program is inversely
proportional to the number of GOTOs pre$eDt in it. How are we to
reconcile his stand on the GOTO statement with the necessity for
loops in every program?

As one answer to this question, Commodore BASIC provides
special constrUcts that preclude the use of the GOTO statement in
some cases. The first of these is the FOR ..• NEXT loop.

However, before getting involved with this loop, study the fol
lowing program carefully and try to determine for yourself what it
does.

PROGRAM 4-2, VERSION 1

],111111 I =],
],1111 PftINT "HI THEftE"

t .

78 • BETTERPIlOORAMMlNG FOil YOUR. COMMODORE 64

12111 I = I + 1
13111 IF I > 3111111111 THEN ~5111
14121 GOTO 11121
15121 END \

It is clear that the literal "HI THERE", is printed many times.
The question is, how many times? Is the answer 2,999, 3,000, 3,001
-or perhaps some other number? The exact number can be de
duced by replacing the number 3000 by a smaller and more manage
able number such as 3. The program can then be traced by "playing
computer," and whatever applies to 3 will apply equally to 3000.
Since it will become clear that when line 130 compares I against 3

. (rather than 3000) a total of 3 lines are printed, it therefore m~s
that when 3000 is placed in line 130, exactly 3,000 lines are printed.

The FOR ••• NEXT loop

In computer programming it is often necessary for a sequence of
instructions to be executed a specific number of times. The method
just employed above does not make this number of repetitions im
mediately apparent to the average reader. BASIC does provide,
however, a streamlined equivalent to this segment of code. Instead
of the six lines of code required by using an IF ... THEN state
ment and worse-the dreaded GOTO statement-the following
program accomplishes exactly the same purpose; but it is clearer,
leaves no room for ambiguity, and moreover requires fewer lines,
and therefore means less work. In short, it is a far more elegant
solution to the problem.

PROGRAM 4-2, VERSION 2

1111121 FOR I = 1 TO 3121121111
11111 PRINT "HI THERE"
12111 NEXT I
13111 END

Structured Programming .• 79

The END statment has been included only for the sake of consis
tency wi.th version I-where; it was necessary to have a line for the
GOTO to send control. In version 2, the END statement is superflu
ous but not incorrect.

The format for the FOR .•. NEXT loop is .

line number FOR index variable .= starting value TO final value

[body of loop]

line number NEXT index variable

The index variable name used with the FOR statement must be
the same as that used in the NEXT statement, although in Com
modore BASIC the variable name in the ~EXT statement is op
tional. All the instructions beginning with the FOR statement and
ending with the NEXT statement are regarded as the body of the
loop.

When a FOR • . . NEXT loop is encountered in a program, the
starting and ending values are immediately computed and are st{)red
for the duration of the loop. The starting value is then placed in the
index variable. A test is then made to determine whether the index
variable is greater than the ending value. If it is, the body of the
loop is skipped over, and control is sent to the statement immedi
ately following the NEXT statement. If the starting value is less
than or equal to the ending value, the body of the loop is executed.
On reaching the NEXT statement, the index variable (called I in
Program 4-2, version 2) is automatically incremented by 1, and the
process is repeated until the index variable is, indeed, greater than
the ending value. As soon as this occurs, the loop is terminated and
control is sent to the statement following the NEXT statement. In
this way, controlled looping may occur without resort to the GOTO
statement.

Here are some of the rules governing the FOR ... NEXT loop.

1. The index variable (sometimes called the control varia
ble) is just another variable in the program. Within the

80 • BETrER PROGRAMMING FOR YOUR COMMODORE 64

lccp its value may be used in the same manner as any
cther variable; it may be printed and used in a. calcula
ticn. As a rule, ho.wever, its value should no.t be
changed-this sho.uld be left to. the auto.matic o.peratio.n
o.f the FOR ..• NEXT lccp itself. By changing the
value o.f the index (as in the fo.llo.wing example)

1BB FOR I = 1 TO 1mm
11m PRINT Ii
12m I = 2mb
13B NEXT I

the value of the variable I suddenly beco.mes 206
after executing line 120. When 206 is co.mpared to.
the final value in the FOR statement (which is 100),
the lco.p is terminated immediately, since 206 is greater
than 100. This ccnfusing situatio.n sho.uld always be
avo.ided.

2. On exiting frcm a FOR ... NEXT loop the value o.f
the index variable is no.t the final value but the final
value plus the increment. This is true fo.r mo.st versio.ns
o.fBASIC.

3. Entry to., a FOR ... NEXT loop sho.uld always be
made thro.ugh the FOR statement. The body cf the
lccp shculd nct be entered from o.utside the lco.p, as
illustrated in the fo.llo.wing example:

1mm FOR I = 1 ·TO 3
11m PRINT Ii
12B NEXT I
130 GOTO 11m

RUN
2 3 LI

?NEXT WITHOUT FOR ERROR IN 120 ,

READY.

Struc~d.Programming • 81

4. There is a nesting limit of nine levels. That is, nine
FOR ... NEXT loops may be encased within another.
However, care should be taken that all the index vari

. abIes used have different names.\ (Nested loops will be
discussed in detail shortly.)

5. If nested loops are used their ranges should not overlap.

The following program illustrates a simple application of a FOR
... NEXT loop. It prints out the value of the index I, 12, and the
square root of I, for all values of I ranging from 1 to 10. This
program shows that the index of a loop may be used in a computa
tion, as may any other ordinary variable.

PROGRAM 4-3

12H!! FOR I = 1 TO 121
11111 PRINT 1,1 * I,SQR(I)
12121 NEXT I

RUN
1 1 1
2 4 1.41421358
3 9 1.73205081
4 18 2
5 25 2.23808798
8 38 2.lIlI948974
7 49 2.64575131
8 '84 2.82842713
9 81 3
10 100 3.18227788

READY.

If the starting value of the index is greater than the ending value,
the loop is executed once-with the starting vaIue. This 'operation
may be seen 'in the following program, where the literal "WHAT'S
GOING ON?" is printed, once.

82 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

PROGRAM 4-4

1BB FOR I = 1B TO 1
11B PRINT "WHAT'S GOING ON?"
12B NEXT I

RUN
WHAT'S GOING ON?

READY.

In the next program, there are no statements forming the body of
the loop. Despite the fact that this omission may seem to be an
error, such loops are commonly used to create delays; For example,
a delay might be necessary in a program in which the user has to
view the contents of ' the screen before pro ceding to the next step.
For the message to remain on the screen long enough to be read and
understood, a delay loop could be inserted in the program. As fast
as the computer is, it still takes some finite time to execute a FOR
.. _. NEXT loop-so programmers frequently include an "empty
loop" to slow the computer down when it threatens to exceed the
capacity of the human eye to keep track of what's being displayed.
On the Commodore 64, a: loop ranging from 1 to 10,000 takes ap
proximately 15 seconds to execute. (Don't forget, when writing a
program never use commas to separate the thousands from the rest
of the number, as in, for example, lO,OOO. Its inClusion will always
result in an error message.)

PROGRAM 4-5

1BB FOR I = 1 TO 1BBBB
11B NEXT I

In the following program, the user is asked to type in a positive
integer, N. The program then proceeds to calculate the sum of the
integers from 1 to N, using a FOR .•. NEXT loop.

PROGRAM 4-6, VERSION 1

1121121 SUM = 121

Structured Programming • 83

11121 INPUT' "ENTER YOUR VALUE fORN: ";N
12121 fOR I = 1 TO N
13121 SUM = SUM + I
14121 NEXT I
lSB PRINT "THE SUM OF THE INTEGERS FROM 1

TO";N;"IS:";SUM

RUN
ENTER YOUR VALUE FOR N: 6
THE SUM OF THE INTEGERS FROM 1 TO B IS: 21

READY.

This program may be criticized because it allows a user to type in
a nonpositive value for N. For example, values such as -7 and - 2
are not acceptable for this problem; It does not require much inge
nuity, however, to include a "trap" in the program to "catch" any
such user errors. An appropriate message could be prulted, stating
the nature of the error, should it be made. This step has, in fact,
been taken in the next version of the program, where in line 120 the
value of N is tested to be sure that it is greater than zero. If it is,
control passes to line ISO. If it's not, a warning message is printed
(line 130), and the INPUT statement is repeated.

PROGRAM'4-6, VERSION 2

1121121 SUM = 121
11121 INPUT "ENTER YOUR VALUE FOR N: ";N
12121 IF N>B THEN GOTO lSH
13121 PRINT "SORRY, N MUST BE POSITIVE"
14121 GOTO 11121
lSB FOR I = 1 TO N
16121 SUM = SUM + I
17121 NEXT I
18121 PRINT "THE SUM OF THE INTEGER.S FROM 1

TO" ;'N; "IS:"; SUM

84 .. BE'ITERPROGItAMMING FOR YOUR COMMODORE 64

. RUN
ENfER YOUR VALUE FOR N: -3
SORRY. N MUST BE POSITIVE
E.NTER YOUR VALUE FOR N: 1111
THE SUM OF THE INTEGERS FROM 1 TO 10 IS: 55

READY.

Once again, the program deserves some criticism. The astute
reader will notice that although you have just learned how to avoid
the GOTO in looping, the last program contains not one but two
GOTOs. You shall now learn a new construct which eliminates one
of the GOTOs. The other one cannot easily be eliminated. In gen
eral, BASIC programmers cannQt totally escape the use of the
GOTO statement, however much they may want to; it simply must
be used sparingly and judiciously.

PROGRAM +'6, VERSION 3

1111111 SUM = 111
11111 INPUT "ENTER YOUR VALUE FOR N: ";N
12111 IF N <= 111 THEN PRINT "SORRY, N MUST BE

POSITIVE":GOTO 11111
13111 FOR I = 1 TO N
14111 SUM = SUM + I
15111 NEXT I
1bl1l PRINT "THE SUM OF THE INTEGERS FROM 1

TO";N;"IS:";SUM

Multiple-Line Statements

In version 3 of the program, which functions identically to version
2, the THEN clause in line 120 contains two BASIC statements on
the same line. The word "THEN" may be followed by any number
of valid statements, provided they are separated by colons and do

Structured Programming - 85

not exceed the maximum permissible line length of 80 characters.
This multiple statement is executed only if the test proves to be·
true. If the test proves false, all the statements following the word
THEN are skipped over. This type of multiple-line statement (more
than one command on a given line number) is legal, not only in an
IF ... THEN statement, but also in any other normal program
line. For example, the statements

lBB PRINT "DO YOU KNOW"
llB PRINT "WHERE YOUR CHILDREN ARE?"

.which print the two literals on separate lines, may be condensed into
the single instruction

lBB PRINT "DO YOU KNOW":PRINT "WHERE YOUR
CHILDREN ARE?"

whicbalso prints the literals on two separate lines.
You have already seen how the sum of the integers from 1 to N

may be computed with a FOR ... NEXT loop. Although the prob
lem is useful as a demonstration of the manner in which the FOR
•.. NEXT loop works, it is not the most efficient way to calculate
the sum. A far better method is one attributed to the famous German
mathematician and astronomer Karl Friedrich Gauss (1777 - 1855),
who discovered it at the tender age of seven. He proved that the
sum of the integers from 1 to N may be computed direcdy by the
formula .

S _NCN + 1)
~- 2 .

The following and final version of the program which utilizes. this
formula is by far the most efficient. Not only is it shorter to Write
but also it uses less computer time because, regardless of the value
of N, only one addition, one multiplication, and one division are
required. For large values of N ,the saving in time over the FOR
• 1 • NEXT method is considerable.

86 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

PROGRAM 4-6, VERSION 4

lmm INPUT "ENTER YOUR VALUE fOR N: ";N
11m ~f N <= m THEN PRINT "SORRY~ N MUST BE

POSITIVE":GOTO lmm
12m SUM = N * (N + 1) I 2
13m PRINT "THE SUM Of THE INTEGtRS fROM 1

TO";N;"IS:";SUM

Again, the values produced are identical to those shown for ver
sion 2. The difference between the two versions li~ in the manner
(and corresponding efficiency) with which the result is calculated.

We would now like to return to the FOR .•• NEXT loop and
consider several features not yet discussed. We have already ex
plained that when the NEXT instruction is executed, the value of
the index is incremented by 1. This does not always have to be the
case, however. The full FOR statement contains a STEP clause
following the ending value, specifying the increment that is added
to the index each time around the loop. If the STEP clause is omit
ted, the increment is assumed to be 1. This option was deliberately
provided by the designers of the language, since 99 percent of FOR
... NEXT loops do indeed use an increment of 1.

If a FOR .. ~ NEXT loop uses a step other than 1, the number
of times the loop is executed may be calculated exactly .. Assuming
the general form

FORI = JTOKSTEPL

the number of times the loop is executed is give~ by the formula:
I

INT (K ~ J) + 1

In the following program, the sum of the integers from 1 to N is
first calculated by using the Gauss formula. Then by means of two
separate FOR ... NEXT loops, the sum of the odd integers from
1 to N and the sum of the even integers from 2 to N are computed.
These two sums are then added together and compared to the result
produced by the Gauss formula.

Structured Programming • 87

PROGRAM 4-7

lmm INPUT "ENTER YOUR VALUE fOR N: ";N
11m If N <= m THEN PRINT "SORRY, N MUST BE

POSITIVE":GOTO lmm
12m SUM =N * (N + 1) / 2
13m ODDSUM = m
14m fOR I =,1 TO N STEP 2
15B ODDSUM = ODDSUM + I
lbB NEXT I
17B EVENSUM=B
18B fOR 1=2 TO N STEP 2
l'B EVENSUM = EVENSUM + I
2mB NEXT I
21m If SUM <>EVENSUM + ODD SUM THEN PRINT

"THE~E'S AN ERROR 'SOMEWHERE ••• ":~ND
22B PRINT "THE SUM Of THE EVEN NUMBERS =";

EVENSUM
23B PRINT "THE SUM Of THE ODD NUMBERS =";

ODDSUM
24B PRINT "THE GAUSSIAN TOTAL =";SUM

RUN
£NTER THE VALuE FOR N~ -7
SORRY, N MUST BE POSITIVE·
ENTER THE VALUE FOR Nt 8
THE SUM OF THE EVEN NUMBERS = 20
THE SUM OF THE ODD NUMBERS • 18
THE GAUSSIAN TOTAL = 38

READY.

The STEP value need not be confined to a positive, or whole
number. In the following program, a step value of .25 is used. The
program prints out all the values between 1 and 3 in steps of .25.

PROGRAM 4-8

lBB fOR K= 1 TO 3 STEP .25
11m PRINT K;
12B NEXT K

"

88 • BErtERPROGRAMMING FOR YOUR COMMODORE 64

RUN
1 1.25 1.5 1.75 2 2.25 2~5 2.75 3

READY.

The values are printed in packed format because of the semicolon .
placed at the end of the PRINT statement in line 110.

The next example demonstrates the capability of the FOR ...
NEXT loop to count backwards. It merely prints out (in packed
format) the values of the index as it proceeds from 5 to ,-4 in steps
of -1.

PROGRAM 4-9

lmm FOR Q = 5 T~ -4 STEP -1
11m PRINT Qi
12m NEXT Q

RUN
5 4 3 2 1 0 -1 -2 -3 -4

READY.

Although the examples shown thus far have all cOntained specific
constants for the starting, ending, and step values of the index, these
values need not be specified explicitly. Ea~ one of these three values
may be replaced. by an expression. For example, the statement

lmm FOR K = A + 2 * B TO Q f 2 I (4 * X
+ L) STEP ~4 I 7 *J

is perfectly valid, as indeed is the simpler statement

·lmm FOR I = X TO Y STEP Z'

Intemal Documentation of Programs

. Although the programs illustrated so far are sufficiently straight
forward so as not to require any special explanation, industry-level

Structured Programming - 89

programs can be very long and complex. In such programs, it is the
responsibility of the author to include adequate documentation of
the program to enable any other programmer to modify it if neces
sary. We have already shown by example how to create variable
names that are self-descriptive (ODDSUM rather than X22FFS12
or some such nonsense). Commodore BASIC permits the inclusion
of explanatory remarks anywhere at all in the program. These re
marks. may be inserted by means of the REM statement, which
REMinds you of the logic of the program so that you_will REMem
ber the important features. Whatever follows the REM statement is
regarded as a REMark and is ignored by the computer, except that
it is printed out in a listing of the program. Nothing in a REM
statement affects the execution of a program in any way.
, In addition to internal documentation (which does not appear
during execution of the program), another commendable practice is
to print a descriptive heading before any other output is produced
by the program. At the option of the author, the author's name,
address, and telephone number, as weU as the date the program was
written, may also be included. Both internal and external documen
tation are considered to be primary attributes of structured pro
gramming. The following program, which performs several
calculations and prints the result, contains samples of such internal
documeIitation-several REM statements.

PROGRAM 4-10

1 III III
11111
12111
13 III
14111

1 Sill

lblll
17111
18 III
19111

~E~:lDEMONSTRATION OF THE REM STATEMENT

B = 2
C = 1
Xl = (-B + SQR(B t 2 - 4 * A * C» /
(2 * A)
X2 = (-B - SQR(B t 2 - 4 * A * C» /
(2 * A)
REM BOTH ROOTS HAVE NOW BEEN COMPUTED
REM NOW THEY ARE PRINTED .
PRINT "THE ROOTS ARE:",Xl,X2
REM: THE END

9Q • BE'ITERPROGRAMMING FOR YOUR COMMOOORE64

RUN
THE ROOTS ARE: -1 -1

READY.

In the following program a simple and quite interesting conjecture
is examined. Given any positive integer, the conjecture states that if
it is even, it should be divided by 2. However~ if it is odd, it should
be multiplied by 3 and 1 added to the result. Wltichever the case
may be, th~ procedure is repeated in this way until 1 is reached.
According to the conjecture, all positive integers converge to 1 when
treated in this manner. The truth is, it has'never been proven to be
true or false. Perhaps you can find a value for which it will not work.
Should you try, good luck! In any case, it provides an excellent
showcase for illustratiI:lg the use of structured logic.

PROGRAM 4-11.

lm~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11~ PRINT "* *~
12~ PRINT"* CONVERGENCE-TO-l CONJECTURE *"
13~ PRINT "* *~
14~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15~ PRINT
lb~ INPUT "PLEASE TYPE IN A POSITIVE,INTEGER: ";~
l7~ IF N <= ~ THEN PRINT "SORRY, N MUST BE

POSITIVE":GOTO l6B
l8B PRINT N;
19B IF N=l THEN PRINT:PRINT "THE CONJECTURE

HOLDS":END
2~B IF N I 2 = INT(N I 2) THEN N = N I 2:

GO TO l8B \
21B N = 3 * N + 1
22B GOTO l8B

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
*
*
*

CONVERGENCE-TO-l CONJECTURE
*
*
*

Structured Programming • 91

PLEASE TYPE IN
14 7 22 11

5 16 8 4 2
THE CONJECTURE

READY.

A POSITIVE INTEGER: 14
34 17 52 26 13 40
1

HOLDS

The Newton-Raphson Iteration Scheme

20 10

The next program illustrates further some of the features of struc
tured programming. As you are aware, we have often resorted to
the SQR function. to calculate the square root of an expression.
Whenever a square root is required, the computer has to follow
systematically a sequence of instructions expressly designed to cal
culate the square root of any given value. Such a sequence of instruc
tions is, in fact, stored in the computer. In the next program, a
nearly identical method is used to calculate the square root of any
'inputted number. The result is-then checked against the built-in
SQR function to convince the programmer that the method really
does work.

The method used is attributed to Sir Isaac Newton and a contem
porary of his named Raphson. According to the Newton-Raphson
technique, a guess is made at the square root of the number. The
closer the guess is to the actual square root, the quicker the square
root is found. The process involves continually calculating new ap.d
more accurate guesses by an "iteration" process, that is, one involv
ing a loop. The loop is terminated when the latest guess is accurate
to within some predetermined accuracy, say four decimal places. If
the number whose· square root you wish to find is X, and you make
an initial guess, GUESS, at its square root, the new guess is given
by the formula

GUESS = (GUESS + X I GUESS) I 2

To find out if the newly generated value of GUESS is, in fact, the
required square root, you have to test whether the absolute value

92 • BETTERPROG~G FOR YOUR COMMODORE 64

(given by the function ABS) of the guess squared divided by 'X
minus 1 is less than some small value (usually called epsilon):

ABS(GUESS f 2 I X - 1) < .BBBBBl

The reason for this is that if GUESS is truly close to the square root,
when it is squared it should be extremely close to the original value
stored in X. This being the case, when 1 is subtracted from it, the
result must be ~ery close to zero. If it is so close that it is less than
.000001, you accept that value of GUESS as a very good approxi-'
mation of the square root-at least, to the sixth decimal place.

PROGRAM 4-12 -

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* NEWTON-RAPHSON ITERATION SCHEME *"
13B PRINT "* *~
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
lbB INPUT "PLEASE ENTER YOUR VALUE FOR X: ";X
l7B INPUT "AND NOW YOUR INITIAL GUESS: ";GUESS
18B IF ABS(GUESS f 2 I X - 1) <.BBBB~l THEN 21B
19B GUESS = (GUESS + X I GUESS) / 2
2BB GOTO l8B
21B PRINT "THE SQUARE ROOT OF";X;"IS:";GUESS
22B PRINT "USING THE SQR FUNCTION, THE RESULT

IS:";SQR(X)

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* NEWTON-RAPHSoN ITERATION SCHEME *
* *

PLEASE ENTER YOUR VALUE FOR X: 123
AND NOW YOUR INITIAL GUESS: 43
THE SQUARE ROOT OF 123 IS: 11.090537~
USING ~HE SQR FUNCTION, THE RESULT IS: 11.0905365

READY.

Structured Programming - 93

Ali Elementary Introduction to Subroutines

When programs are written in structured style they are divided
into separate modules, each of which has its own clearly defined role
to play. Generally, the first or "main" routine triggers the secondary
routines. Each of these may in turn call on other routines, which
may be used to subdivide further a complex problem. According to
structured-programming ad~ocates, programs written in this highly
disciplined approach are error-resistant; accurate; faster to write,
execute, and understand; and, therefore, easier to maintain.

In BASIC, program segments designed to be modules may be
called into action in what are known as subroutines. A subroutine is
"called" or invoked by the GOSUB statement. Following the key
word GOSUB is a line number indicating where in the program the
subroutine is located. If it is at line 1000, the calling ins~ction
would read

line number GOSUB 1000

The last executable statement in the subroutine must be a RETURN
statement, which returns control to the "calling" routine, in partic
ular to the statement immediately following the GOSUB instruction.
If the same subroutine is called from different points in the program
(as is often done to great advantage) the RETURN statement always
returns control to the statement immediately following the GOSUB
that invoked it, a feat that GOTO statements are utterly unable to
emulate. The fundamental difference between the GOTO and the
GOSUB statements is that the former sends control unconditionally
to a given location in the program, as specified by the line number.
On the other hand, when a GOSUB statement is used, the computer

. "remembers" the location containing the GOSUB with the under
standing that it will return there (or, at least, to the statement fol
lowing it) when the RETURN statement is encoimtered.

Subroutines are particularly useful when a segment of code is used
at many different places within the program. In suc'h situations, the
subroutine need appear only once in the program, regardless of how

94 • BETI'ERPROGRAMMING FOR YOUR COMMODORE 64

often it is called. This element not only lends itself to shorter pro
grams but also speeds up the process of writing them. However, as
was previously mentioned, subroutines are useful as modules, even
if they are not repeatedly executed. The following program is a
simple illustration of subroutines.

PROGRAM 4-13

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT ~* *"
12B PRINT."* FIRST ILLUSTRATION OF SUBROUTINES *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15121 PRINT
lbB PRINT "A";
17B GOSUB lBBB
18B PRINT "B";
19B GOSUB lfZ1BB
2BB PRINT "en;
21B GOSUB lfZ1l21B
22B END
lBBB REM
lB1B REM: SUBROUTINE PRINTS A LINE OF ASTERISKS
lB2B' REM
lB3B PRINT " ********************"
lB4fZ1 RETURN

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * FIRST ILLUSTRATION OF SUBROUTINES *
*

A ********************
B ********************
C ********************

READY..

*

Structured Programming • 95

Mter printing out the heading in lines 100 through 150, this
program proceeds to print the literal "A" in line. 160. At that point,
the subroutine that begins in line 1000 is invoked by the statement
"GOSUB 1000." Control is immediately sent to line 1000, and the
subroutine priilts the line of asterisks. Upon encountering the RE
TURN statement in line 1040, control is returned to the statement
following 170, which is 180. Line 180 prints the literal "B" and is .
followed by line 190, which again invokes the subroutine in line
1000. The asterisks are printed out once again and control returns
to the line after the calling of GOSUB-this time, line 200. The
same process is repeated after pnntingthe literal "C." Admittedly,
this is a rather contrived example, but later on, when you have
covered more material, subroutines will be exploited to great advan
tage.

Review Questions

1 • AccordiIig to the proponents of structured programming, what
is the most important aspect in the creation of a program?

A program must be easy to understand and modify. Even if it
takes much longer to create a program in structured style, it
saves time in the long run.

2 • What is the output of the following program:

100 FOR W = 1 TO 3
110 PRINT W;W * 2
120 .NEXT W

RUN
2

2 1I
3 6

READY.

96 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

3 • In the following FOR ... NEXT loop~, how many times will
the body of the loops be executed?

a. lBB FOR ZERO = 1 TO 5
.11B N.EXT· ZERO

b. lBB FOR DEG = -3 TO 3
lUI NEXT DEG

c. lBB FOR J = 5 TO 1 STEP .1
lUI NEXT J

d. lBB FOR CYNDY = 3 TO 6· STEP .25
llB NEXT CYNDY

e. lBB FOR SIT .= 1 TO 5 STEP .5
llB NEXT SIT

f. lBB FOR NYU = 3 TO 1 STEP -.75
llB NEXT NYU

a. 5 times.
b. 7 times (the variable degree takes on the values - 3, - 2,

-1, 0, 1, 2, and 3). . .
c. 1 time (the starting value of the index variable J is already

greater than the ending value, and the step value is posi
tive).

d. 13 times.
e. 9 times.
f. 3 times. The index takes on the values 3, 2.25, and 1.5.

When it becomes .75 (which is less than 1), the loop ter
minates.

4 • Assuming that A, B, C, and D have the values 2, 3, 6, and .5,
respectively, what output would you expect to the following
program segment?

lBB IF A < 8 THEN PRINT "A IS LESS THAN
8"

llB IF 8 + C < D THEN PRINT A;8;C;D
12B IF A t 2 < 8 .t 2 THEN PRINT "IS THAT

SO?"

A IS .LESS THAN 6
.IS THAT SO?

READY.

Structured Programmiag • 97

5 • How many lines of output are printed by the following pro
gram segment? .

una PRINT "TWAS BRILLIG": PRINT "AND THE
SLITHV TOGES"

116 PRINT "DID GVRE AND GIMBOL":PRINT
"IN THE WABE"

Four lines (note the number of print statements).

6 • Write an equivalent but shotter version of the statement

fOR I = 1 TO 16 STEP 1

fOR I = 1 TO lIZl

7 • What is the purpose of the REM statement?

The REM statement is used for internally documenting a pro
gram .. It is displayed in the listing of a program but in no way
affects its execution.

8 • How is a subroutine invoked?

By ~eans of the GOSUBstatement.

9 • What is the essential difference between the GOTO and
GOSUB statements?

The GOTO is an unconditional transfer of control to a given
line number. From that point, execution of the program con
tinues in its normal, sequential fashion (unless redirected by
another GOTO). With the GoSUB instruction, however, a

98 • BETTER PROGRAMMING FOR YOUR COMMODORE 64·

boomerang effect takes place. Mter co~trol is sent to the spec
ified subroutine, the subroutine's instructions are executed se
quentially until the RETURN statement is encountered. Then
controtis returned to the calling routine-in particular, to the
line following the GOSUB instruction.

10 • How many times maya subroutine be called?

There is no limit to the number of times a subroutine may be
called.

11 • What must be the last executable statement in a subroutine?

The RETURN statement.

12 • What is the maximum number of subroutines that may appear
in a program?

The number of subroutines is restricted only by the available
memory.

HANDS-ON PRACTICE

1. Type.in and run the following program:

lBB FOR I = lB TO 1
llB PRINT I
12B NEXT I
13B PRINT "HOW ABOUT THAT?"

Why does it execute the body of the loop only once?

2. Examine the following program and determine the differennral
ues that the index assumes. Confirm your conclusion by running
the program.

lBB FOR I = 44 TO llB STEP 5
llB PRINT I
12B NEXT I

Structured Programming • 99

TRy YOUR HAND AT THEsE

1. Determine what the following progriml does and rewrite it in a
simpler form. Run both programs to confirm your conclusions.
(Hint: One statement is never executed.)

Utili GOTO 15fl1
110 GOTO 130
120 PRINT "RIDICULOUS":END
130 GOTO 120
140 PRINT "EQUALLY RIDICULOUS"
150 GQTO 110

2. Rewrite the following programs in a more structlu:ed form using
the FOR ..• NEXT loop.

a. 100 I = 1
110 I = I + 2.5
120 PRINT I
13B IF I <= lfl1 THEN llB'

b. 10B R = 2.5
110 PRINT R
12111 R ='R+.5
13B IF R > 5.5 THEN 15B
140 GO.TO 110
150 END

3. Write a program that asks the user to type in a number repre
senting a height measured in inches. The program should print
that number and its equivalent in feet, yards, and miles.
(Note: There are 12 inches to the foot, 3 feet to the yard, and
1,760 yards to the mile.)

4. Assuming there are 2.54 centimeters to the inch, convert an
inputted value of centimeters to its equivalent in yards, feet,
and inches. .

5. Write a program that accepts as input two values: th~ price and
the amount of tax on a purchase. Calculate the total cost for
each sale and print out.the relevant details.

100 •. BErumPROGRAMMING FOR YOUR COMMODORE 64

6. The sum of $2,000 is invested for a period of five years in a
savings account which pays annual interest of 6 percent. Write
a program to calculate the interest accrued and the final value.
(Hint: Use a FOR .•• NEXT loop).

7. Modify program 5 ~o that the user is free to type the principal,
time period, and interest rate of one's choice.

8. Write a program to sum the squares of the integers from M to
N, where M and N are both user-inputted values.

9. Write a program to calclllate the first N'terms of the Fibonacci
sequence, where each number (not including the first two seed
numbers) is the sum of the two preceding ones, as follows: 1,
1,2, 3, 5, 8, 13,21,34, 55, 89, and so on.

10. Modify the program specified in question 8 to print out all the
numbers in the sequence that are less than N.

11. Write It BASIC program that evaluates the algebraic equation

3x2 + 5(x + 4)3 + 3
Y = 3x + 19

for values of x ranging from 1 to 10 in steps of 0.25. Print out
the values of x and the corresponding values of y in a table
containing suitable headings. Once the table is printed, print a
message saying "this is the end of the table."

12. Write a program that "sings" the famous drinking song "bottles
of beer." A sample stanza is given:

3 bottles of beer on the wall,
3 bottles of beer; ,.
if one of those bottles should happen to fall-
2 bottles of beer on the wall.

The program should count down from 10 to 1.
13. Write a program that computes the sum of the senes

1 1 1 1 1
4 + "1 + 10 + 13 + ... 301

Structured Programming - 101

14. Write a program to compute the sum of the series

(The exclamation mark denotes factorial. Factorial 3 for exam
ple, written as 3!, is 3 x 2 x 1. Similarly, 6! is 6 x 5 x 4 x
3 x 2 x 1. Factorial O! is defined as 1.)

This series is equivalent to

1 1 1 1 1 1
1 + 1 + 2 + 6 + 24 + . . . + 39916800

(If you are mathematically inclined, you may find that the value
"' obtained is of special interest. It is, in fact, the universal con-

stant e, which has a value of 2.718281828)
15. Write a program to determine if a number is even or odd.
16. Write a program to determine if an inputted number is prime

or not. (A number is considered to be prime if it is not eveJily
divisible by any whole number except itself and 1. So that 17,
11, and 7 are all prime numbers, whereas 28 is not, being
divisible by 14, among others.)

17. Write a program to compute the average weekly wage earned
by five employees. The number of hours worked and rate per
hour are given and should be stored in DATA statements within
the program.

Number ofBours Worked

10
42
57
28
3

Rate of Pay

5.50
3.35

10.92
8.85

50.65

18. Modify the program you wrote for question 17 so that any
employee who worked more than 40 hours is paid at time-and-

102 • BftlERPROGRAMMlNG FOR YOVRCOMMODORE 64

a-half. (Round off the pay to the nearest dollar before printing
it.) At the end, deterinine the total pay earned by all the em
ployees and display it at the end of the program after skipping
four lines. .

(

CHAPTER

.~
Numeric Functions and
Logical Operators

In this chapter, you will become familiar with many of the math
ematical tools which. make Commodore BASIC a powerful program
ming language. Even if you are not particularly math-oriented, it is
a good idea to farhiliarize yourself with all the math tools tha~ ~
Commodore 64 provides. Many programming techniques are po~
sible only by using these mathematical tools. If you do not, as yet,
know trigonometry, some of the functions in this chapter may seem
meaningless to you. However, they are included here for the sake of
completeness, and if necessary, you may always refer to this chapter
as the occasion demands. In particular, you will learn about

II the SQR function
• the INT function
• the ABS function
II the SGN function
• the trigonometric functions (SIN, COS, TAN, ATN)
• the logarithmic functions (EXP, LOG)
• the RND function
.11 the logical operators (AND, OR, NOT)
• Boolean values

. . II the complete hierarchy of the operators
• swapping two values
• user-defined functions

103

104 • :JmTTER.PROGRAMMING FOR YOUR COMMODORE 64

In general, certain procedures are performed so frequendy that
BASIC provides the programmer with built-in functions (also called
library functions) that enable quick computation with a minimum
of effort. You have already encountered the SQR function, which
yields the square root of an expression-without a written program.
All that is necessary is the library function, SQR, followed by a pair
of parentheses in which is enclosed the nonnegative expression
whose square root is required. For example, to store the square root
of 169 into the variable X, all you need write is

x = SQR(1b9)

Printing X displays the square root of 169, which is 13. Fortunately
for us, the Commodore ~4 prov~des many other useful 'functiQns
which can be accessed just as easily. Every function follows the same
design. They all consist of three letters followed by parentheses,
into which the "argument" (the value to be operated on by the
function) is included. The argument can be an expression,

PRINT SQR(5B + 25 + 12 + b + 3 + 1 + 3)
10 ,

READY.

or it may involve variables:

x = 2

READY.

Y = 3

READY.

PRINT SQR(X t 4'+ V t 2)
5

READY.

Numeric Functions and Logical Operators • 105

There are a total of 11 numeric functions built into the Commo
dore 64. One particularly useful routine (as you will discover when
your knowledge of programming expands) is the INT function. This
is known mathematically as the "greatest integer" function (in some
other computer languages, as the "FLOOR command") and is de
fined as returning the highest integer value that is less than the
argument. For example,

PRINT INT(2.3)

displays the truncated value 2, because 2 is the largest integer that
is less than 2.3. Similarly,

Q = -4.2
PRINT INT(Q), INT(-2.9), INT(2.9)

displays the values - S, - 3, and 2 in the first three print zones.
The reason for this may be seen by examining the following number
line:

(I II II I I I
-S -4 -~-2 -1 0

Q -2.9
1 2 I!

2.9

)

4 S 6 7

The values returned by the INT function can be visualized as the
first integer immediately to the left of the value in question on the
number line.

An example of a problem that uses the INT function is in deter
mining how many quarters are contained in a given sum of money.
You know, for examp'e, without having to resort to a computer that
$4.50 is equivalent to 18 quarters. However, if you have an amount
such as $3.20, its equivalent value in quarters is 12, with a remain
der of 20 cents. The number of quarters' that can "fit" into a given
sum of money is given by the general formula

INT (amount / .25)

106 • BE'ITERPROGRAMMING FORYOUR COMMODORE 64

so that the number of quarters in $3.20 is

3.20/.25 = 12.8

Since you cannot have .8 of a quarter, the answer is arrived at by
taking the greatest integer less than 12.8, which is 12. Indeed, 12 is
the integer portion of 12.8.

The ASS Function

Another commonly used routine (one you already have come
across but only. in passing) is the ABS (absolute) function .. The
absolute value of a number is always positive. In fact, it represents
its distance away from zero on the number line, as illustrated in the
following number line where the absolute values of - 5.2 and 3 are
shown:

-4 '-3 -2 -1

3 is 3 units to
the right of zero

I 1 2 i
I I I

o
- 5.2 ~< ____ -'--_--ll

~ 5.2 is 5.2 units
to the left of zero

4

I
5

I)

For example, if a' tourist visiting New York City's famous Fifth
Avenue walks from Seventeenth to Thirtieth Street, you would say
that the distance covered is 30 - 17 (which is 13) blocks. On the
other hand, if the visitor were to walk back from Thirtieth to Sev
enteenth Street, by that argument the distance covered would be 17
- 30 (which is -13) blocks. Obviously, the distance is the same in
both directions; what we are interested in is the absolute value of

Numeric FunCtioDS and Logical Operators • 107

me difference-namely, 13 blocks. You may notice that an interest
ing property of absolute values is that the distance may be expressed
in two different ways that yield the identical results:

ABS(start - finish)

and

ABS(jinish - start)

The SGN Function

On occasion it is useful to determine the sign of an expression.
This is the purpose of the SGN (signum) function, which returns
the value -1 for any negative number, 0 for a value of zero, and
+ 1 for any positive value. It is illustrated in the following program.

PROGRAM 5-1

lmm PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11m PRINT "* *"
12m PRINT"* ILLUSTRATION OF THE SGN FUNCTION *"
13m PRINT "* *"
14m PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15m PRINT
16m SUM = m
17m READ A
18m IF A = -9~99 THEN 21m
19m SUM = SUM + SGN(A)

. 2mm GOTO 17m
21m IF SGN(SUM)=1 THEN PRINT "THERE ARE"~SUM~

"MORE POSe THAN NEG. NUMBERS":END
22m IF SGN(SUM) = -1 THEN PRINT "THERE ARE"~

-SUM;"MORE NEG THAN POS NUMBERS":END
238 PRINT "SAME NUMBER OF POSe AND NEG. NUMBERS"
24m DATA 5,4,3,-2,-1,8,-3,-4,~5,-9999

108 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * ILLUSTRATION OF THE SGN FUNCTION *
* * *=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

THERE ARE Z MORE NEGATIVE THAN POSITIVE NUMBERS

READY.

In this program the first value of A is S. Since 5 is positive,
SGN(A) yields the value 1. This value is added to the value of SUM,
which was initialized to zero. Each time a negative number is read,
SGN(A) yields the result of -1, which is also added to SUM. If
more negative than positive numbers are included in the DATA
statement '(as is the case in this example) the final value of SUM is
less than zero. To make this value more meaningful, its absolute
value is taken by the ABS function, thus converting it to a positive
number.

The Trigonometric Functions

The commonly used trigonometric functions sine, cosine, and
tangent are also available by using the library functions SIN, COS,
and TAN. In each case,the argument specifies the angle in radian
measure. The only inverse function ordinarily available is the ATN,
or arctangent function, which returns the arctangent (in radians) of
the argument. In the following table, some typical trigonometric

. expressions are evaluated: .

Expression

SIN(O)
SIN(3.1415926535)
COS(O)
COS(3.1415926535)
TAN(O)
TAN(ATN(2))

Value Returned

o
o
1

-1
o
2

Numeric Functions and Logical Operators • 109

In the last example shown, since TAN and A TN are inverse
functions, they cancel each other out and return the original argu
ment. Other less commonly used trigonometric functions have not
been implemented into Commodore BASIC.

Logarithmic FUnctions

The natural logarithm of a number is found by the LOG function.
Mathematically, it returns the power to which the universal constant
e is raised to equal the argument. This may be written as

ex = argument

or as it is often expressed

x = In (argument)

where x is the value returned and e is approximately equal to
2.71828183. Examples of the LOG function in BASIC follow:

PRINT LOG(1)
o

READY.
PRINT LOG(2.71828183)

1

READY.

It is often desirable to take a logarithm to some base other than e.
The so-called common logarithm, for example, has a base of 10. To
convert from the natural logarithm to any other base, the following
formula may be used:

LOG(y)
x = LOG(b)

where x is the logarithm of y to the base b. Written in BASIC,
therefore, the common logarithm of 100 can be computed by

110 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

PRINT LOG(leS) I LOG(le)
2

READY.

The inverse function of LOG is EXP, which raises e to the power
specified by the argument, as shown in the following examples:

PRINT EXP(IZI)
1

READY.
PRINT EXP(l)

2.71828183

READY.

The Random Function (RND)

For many types of numerical computation and for many computer
games as well, the computer's ability to generate random numbers
-numbers chosen from the computer's "hat" -can be very useful.
The function RND generates a random number between 0 and 1
(not including 1) to provide this important feature". With the RND
function, the value of the argument is unimportant; only its sign is
examined. The first and simplest form of the random function is the
instruction

PRINT RND(X)

(where X is any positive number), which displays a random value
such as

.328780872

The fact of the matter is, however, that these random numbers
are not truly random; they are "pseudo-random." Each time the

Numeric Functions and Logical Operators • 111

computer is turned on and a random number is generated by the
RND function, the same number will always result. This is equiva
lent to knowing in advance who will win a horse race or how a
thrown die will roll. In 'fact, the series of random values is predict-

. able not only for the first number but also for any sequence of
numbers since these numbers are generated by a standard formula
stored· within the computer. For most purposes, the sequence of
numbers generated by this method is random enough and quite
satisfactory. If it is necessary to start the sequence from a different
number each time the program is run, the sequence can be made to
start from a different point. This is known as "reseeding" the ran
dom number generator and is accomplished by the RND function
with an argument of 0:

PRINT RND (121)

This statement uses the RND(O) function to restart the random
number sequence from an unknown point, making it more random
since we can no longer predict where in the sequence it is. The value
returned by RND(O) is also between 0 and 1 (not including 1), but
its value depends on how long the computer has been switched on.
This value is measured in such -fine units that it is impossible for a
human to predict what the number will be.

The RND function provides one other option. If the argument of
the function is made negative, a certain value will be returned. The
returned value differs for each argument used, but it will always be
the same for the same negative argument. For example, the state
ment

PRINT RND(-1)

displays the value

Z.991961172E-08

and will do so every time the statement is executed, whereas the
statement

112 • BETTERPROORAMMING FOR YOUR COMMODORE 64

PRINTRND(-4)

always returns the value

2.882111BB2E-08.

The capability of the computer to produce random numbers is
indeed one of its most fascinating features. In the following pro
gram, a series of coin flips is simulated by using the random function
generator. Any number between 0 and .5 (notinc1uding .5) is re
garded as "heads" and all other numbers as "tails." The user enters
a value for N which specifies the number of flips to be simulated.

PROGRAM 5-2

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT "* COIN FLIPPING *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
lbB INPUT "HOW MANY FLIPS";N
17B HEADS = B:TAILS = B
18B FOR I = 1 TON
19B IF RND(l) < .5 THEN HEADS = HEADS + 1:

GOTO 21B I

2BB TAILS = TAILS + 1
21B NEXT I
22B PRINT "THERE WERE";HEADS;"HEADS AND";

TAILS;"TAILS."
23B PH = HEADS / (HEADS + TAILS) * lBB
24B PT = TAILS / (HEADS + TAILS) * lBB
25B PRINT "THE PERCENTAGE OF HEADS =";PH
2bB PRINT "THE PERCENTAGE OF TAILS =";PT

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

COIN FLI PPING *
*

Numeric Functions and Lo~cal Operators iii 113

HOW MANY FLIPS? LB

THERE WERE 4 HEADS AND 6 TAILS
THE PERCENTAGE OF HEADS = 40
THE PERCENTAGE DF TAILS = 60

READY.

Logical Operators

If two IF . . . THEN statements send control to the same state
ment number, they may be combin~d into one statement by the
logical operators. On the Commodore 64 there are three such oper
ators, called "AND," "OR," and "NOT." Each one performs what
are known as logical or Boolean operations on numeric values. A
logical operator takes either one or two true or false values ,and
returns a single true or false result. An operand of a logical operator
is considered to be "true" if it is not equal to zero. If it is equal to
zero, it is considered to be "false." The following analogies will help
to clarify these concepts.

The logical operator AND is used exactly as it is in everyday
English. Suppose, for example, Johnny is promised a new bike if he
takes out the garbage on a regular basis and also does well in school.
In order to qualify for the bike he is going to have to succeed in
both chores. The inclusion of the word and implies simultaneity
at the ~e time. If he does well in school but forgets to dispose of
the garbage, he-has to go without the promised bike. If he remem
bers to take care of the garbage but flunks school, again he is out of
luck. Suppose, for example, you want the user to type in a positive
integer value for N in response to an INPUT statement. The test
ensuring that N is both positive and an integer could be done in two
separate IF ... THEN statements:

LBB If N > B THEN GOTO 25B

25B IF N = INT(N)THEN GOTO 4bB

114 • BE'ITERPROGRAMMINGFOR YOUR COMMODORE 64

If both conditions are "true" simultaneously, control is sent to line
460. These separate statements may be combined into a single state
ment (whose meaning is more obvious) by using them with the
logical operator AND in the following way:

1BB IF N > BAND N = INT(N) THEN GOTO 4bB

If either N is not greater than zero or N is not equal to the integer
portion of N, the statement is false, and control falls through to the
next statement in line (presumably to line 110). This would also
happen if both conditions were false. For the whole statement to be
true, both conditions have to be true. (In logic, the AND operator
is called the conjunction operator.)

Another frequently encountered logical situation is that of the
inclusive or. In this case, only one of the conditions has to be true
for the whole expresson to be true. If they are both true, again the
whole expression is true. Thus, this version of the OR statement is
called the "inclusive OR" -it includes the case where both condi
tions are true. It is used in a manner identical. to thilt in which the
word or is used in English. For example, if Mary is promised a new
phonograph if either (1) she does the dishes on a regular basis or (2)
gets an A in all her courses in school, she only has to satisfy one of
the two requirements to qualify for the phonograph. (Of course, the
chances are very good that being the kind of person that she Un
doubtedly is, she will both do the dishes and excel in school.)

The third logical operator, NOT, unlike the others, uses a single
true or false value and returns a single true or false value. The NOT
operator reverses the truth value of the expression to its right. For
example, the statement

1BB IF NOT (X > 1) THEN 5bB

transfers control to line number 560 if the value of X is not greater
than 1.

The maIlIler in which all these logical operators work may be
illustrated by the followmg truth tables. In the tables, T stands for
true and F for false. If you study the table you will notice that it

Numeric Functions and Logical Operators • 115

reveals in a nutshell everything that we have said concerning the
AND, OR, and NOT logical operators. For example, if you want
to know the result of combining a f~se with another false, using the
AND logibd operator, you will see from the table under the caption
AND that false and false results in false. The same is true wh~il they
are combined with the OR logical operator. You can confirm this
yourself by again looking at the table. The NOT operator works in
a slighdy different manner since it operates on only one value.
Again, by looking at the table it will immediately be seen that the
NOT operator reverses the truth value of the expression to its right.
So that NOT false is true and NOT true is false.

AND OR NOT
AB Result AD Result A Result

FF F F F F T F
FT F FT T F T
TF F TF T
TT T TT T

Boolean Values

Despite outward appearances, the instruction

PRINT 5 = b

does have meaning in BASIC, which treats the statement as a com
mand to examine the question is 5 = 6? The answer to this question
is either "yes" or "no." There is no room in computer science for
"maybe." Clearly, the assertion is false because 5 is not equal to 6.
Since this is so, the computer prints 0, which is the value it associ
ates with false. The implied assertion in the command

PRINT 5 > 4

similarly must be either true or false. (It is, of course, true; 5 is
greater than 4). The computer associates the value -1 with true, in

116 • BETTERPROGltAMMING FOR YOUR COMMODORE 64

the same manner that it associates 0 with false. In fact, any nonzero
value is also regarded as true on the Commodore, even though -1
is the only value that is printed. These typeS ofvalu~where'there

are only two possible alternatives-are known as Boolean values,
nariled after the famous British logician George Boole. t

Since -1 is associated with true by Commodore BASIC, the
statement

lB IF -1 THEN SBB

also has meaning. This instruction always transfers control to line
500 since the IF condition is always satisfied. Although this state
ment may appear to be worthless, as any GOTO behaves identically,
such statements can be useful in special situations where a variable
is substituted for the constant. For example, the program segment

lBB L = 2
lUi X = L < 5
128 IF X THEN PRINT "L IS LESS THAN 5"

prints the literal "L IS LESS THAN 5" only if the variable X is
true. Since L is defined as 2, and 2 is indeed less than 5, the variable
X assumes the logical value to be . true-causing the literal to be
printed. It is pointed out that the Commodore 64 also treats any
nonzero value (1,5, -19, and so on) as representing true.

An Overview of the Order of Operations

Thus far, we have discussed the order of operations in connection
, with the arithmetic operators only. The notion may be considerably
expanded, however, as we consider all the typeS of operators we
have now covered.

In all cases, par~theses override any built-in precedence. That
is, putting parentheses around an expression ensures that it is eval
uated first. If there is more" than one set of parentheses, the inner
most is evaluated first, extending outward.

Numeric Functions and Logical Operators • 117

After parentheses come the following:

function calls (such as SQR, SIN, and so on)
exponentiation (i)
the unary minus (for example, - 9)
multiplication <*) and division (I) (on the same level)
addition (+) and subtraction (-) (on the same level)'
relational operators [<,<=, =<, =, >=, =>, >, <>, ><]
the NOT operator
AND
OR

For example, the statement

x = SQR(144) + SQR(3 + 6) * ABS(-6 I 3)
- 4 i (2* SGN (11» < 5 OR
INT(123.4) > 1B i 2

reduces to the following stages during execution:

X = 12 + 3 * 2 - 4 i (2 * 1) < 5 OR 123
> 1B i 2 \

X = 12 + 3 * 2 - 4 t 2 < 5 OR 123 > 1B
i 2

X = 12 + 3 * 2 - 16 < 5 OR 123 > 1BB

X = 12 + 6 - 16 < 5 OR 123 > 1BB

X = 2 < 5 OR 123 > 1BI2I

X = -1 OR -1

X = -1

Since - 1 is the Commodore 64's way of storing the value true, X is
evaluated to be the value true. Admittedly, this is a rather involved
example, but it does possess the virtue of covering the order of

118 • BETI'ER PROGRAMMING FOR YOUR COMMODORE 64

operations in its entirety. Although it may at first glance seem con
fusing to the uninitiated, working through this example step by step
will prove to be most informative.

The Pendulum Problem

The period of a pendulum, or the time it takes for one complete
swing, is given by the formula

T - 2"~
where T is measured in seconds, 1T is the constant 3.141593, L is
the length of the pendulum (measured in feet), and g is the acceler
ation due to gravity (usually given as 32 feet per second per second).
The longer the leng$ of the pendulum, the longer it takes for a
complete swing. (Tie a heavy object ~o a piece of string and confirm .
for yourself that the longer the string, the longer each swing takes.)

Suppose you wanted to print out a table of results showing the
relationship between the length of the pendulum and its period
with the length ranging from a given m.immum to a given maximum,
in steps of a given increment. The following program, usiIig the
familiar FOR ..• NEXT loop, produces such a table. There are
two additional points in the program worth noting. The first is the
use of consecutive commas in the PRINT statement at line 200,
which has the effect of skipping over the second zone, so that. the
column heading matches with the displayed data. The reason this
step is necessary is because each zone consists of ten positions,
whereas the first heading-"LENGTH (IN FEET)"-contains
more than ten characters. It thus overflows the zone and causes the
comma to skip to the next availabie zone. The second point is the
curious spelling of the variable LNGTH. It would be more reason
able to spell this variable LENGTH. Thisjs not possible on the
Commodore 64, however, because it contains the keyword LEN-

Numeric Functions and Logical Operators • 119

a function you shall come . across when dealing with character
strings.

PROGRAM 5-3

19~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11~ PRINT "* *"
12~ PRINT"-* THE PENDULUM PROBLEM VERSION 1 *"
13~ PRINT "* *"
14~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15~ PRINT
16~ PI = 3.141593:G = 32:REM SET CONSTANTS
17~ INPUT "ENTER YOUR MIN, MAX AND INCREMENT: ";

MIN,MAX,INC
18~ PRINT"LENGTH (IN FEET)","PERIOD (IN SECS)":

PRINT
19~ FOR LNGTH = MIN TO MAX STEP INC
2B~ PRINT LNGTH,,2 * PI * SQR(LNGTH / G)
21~ NEXT LNGTH

RUN
~=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

* * * THE PENDULUM PROBLEM VERSION 1 *
* * *=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

ENTER YOUR MINIMUM, MAXIMUM, AND INCREMENT: 1,5,.5

LENGTH (IN FEET)

1
1.5
2
2.5'
3
3.5

.4
4.5
5

READY.

PERIOD (IN SECS)

1.11072086
1.36034967
1.5707965
1.75620388
1.92382496
2.07796845
2.~2144171
2.35619475
2.48364734

120 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

It is worth contemplating what the result would be if this above
program were run with the minimum and maximum typed in in
reverse order. In that case, since the starting value of the FOR ...
NEXT loop would be larger than the ending value, the loop would
be executed once and once only. On the Commodore 64 a FOR ...
NEXT loop is always executed at least once, regardless of the begin
ning and ending values specified in the FOR statement. Since it is
easy to inadyertantly reverse two values, such as the minimum and
the maximum, a programming solution should be sought to detect
and possibly correct such an error. To detect such an error, all that
need be done is to include a simple IF statement to determine if
MIN is greater than MAX. Should this be the case, the two values
stored in MIN and MAX should be switched. At first blush, it
would appear that this may be accomplished by means of the follow
ing two statements:

MIN = MAX
MAX = MIN

Unfortunately, because control always operates sequentially, this
step places the value stored in MAX in both MIN and MAX, as is
shown in the following "game play":

Action Taken
(none)
MIN = MAX
MAX = MIN

In a similar manner, the instructions

MAX = MIN
MIN = MAX

MIN MAX
10 4
4 4
4 4

stores the value that is in MIN into both MIN and MAX. Therefore,
neither method is successful. What is required is for a third location
to be used into which either MIN or MAX is temporarily stored.
Let's call such a location "HOLD": .

Numeric Functions and Logical Operators • 121

HOLD = MIN
MIN = MAX
MAX = HOLD

This time, a copy of the value in MIN is first stored in HOLD so
that it is not lost when the value of MAX is placed in MIN. The
success of this technique-will be seen in the following game play,
which uses the same values as before:

Action Taken

(none)
HOLD = MIN
MIN = MAX
MAX = HOLD

HOLD

(undefined)
10
10
10

MIN MAX.

10 4
10 4
4 4
4 I 10
MIN and MAX

are now swapped

This swapping technique is incorporated into the next. version of
the program, which first insures that the three inputted values are
positive and then checks to be sure that the minimum is less than
the maximum. If it is not, the values of MIN and MAX are
swapped, through the previous technique.

PROGRAM 5-4

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* THE PENDULUM PROBLEM VERSION 2 *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*-=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
16B PI = 3.141593:G = 32:REM SET CONSTANTS
17B INPUT "ENTER YOUR MIN, MAX AND INCREMENT: ";

MIN,MAX,INC
18B IF MIN <= B OR MAX <= B OR INC <= B THEN

PRINT "POS· VALUES ONLY":GOTO 17B
19B IF MIN> MAX THEN HOLD = MIN:MIN = MAX:MAX

= HOLD:PRINT "ERROR CORRECTED"

B.p.064·-8

122 .. BETTER PROGRAMMING FOR YOUR. COMMODORE 64

2BB PRINT"LENGTH (IN FEET)","PERIOD (IN
SECS)":PRINT

21B FOR LNGTH = MIN TO MAX STEP INC
22B PRINT LNGTH,,2 * PI * SQR1LNGTH / G)
239 NEXT LNGTH

This program serves several important purposes. First, it dem
onstrates some of the critical programming techniques that you have
covered so far. These include swapping two valueS, the multiple-IF
statement, the multiple-line statement, use of the SQR function, use
of the STEP clause in a FOR . . . NEXT loop, the legitimate use
of tile GOTO statement, and ~e practice of assigning meaningful
names to the constants and variables used in a program. It will
become clear to you that these same techniques can be applied to
any formula, regardless of the discipline from which it derives,
without your even knowing the basis for the formula. No matter
what the formula is, the programmer can in most cases easily and
quickly write a program to produce a massive table of results, if
need be.

User-Defined Functions

Although Commodore BASIC provides many useful built-in func
tions, occasions will arise when there is no function available for the
particular operation you wish to perform. For such purposes, you
are at liberty to define your own function. Once it has been defined,
it may be used in much the same way as are the built-in functions.
In Commodore BASIC, the definition of h function is limited to a
single statement. The first step in defining a user-function is to name
it. A function name consists of any valid variable name and must be
placed in a definition statement of the form

DEF FN function name = expression

For example, to define a function called "CUBEROOT" that com
putes the cube root of 7, we may write .

1BB DEF FN CUBEROOT = 1 t (1 / 3)

Numeric Functions and Logical Operators • 123

Every time the cube root of 7 is required, all that is necessary is to
write

fN CUBEROOT

Thus, the statement

PRINT fN CUBEROOT

displays the cube root of 7. Obviously, the usefulness of this func
tion as written is limited by the fact that it always computes the
cube root of 7; never the cube root of any other expression. Without

" such flexibility there is no inherent advantage to using the function
instead of a variable in which the cube root of 7 has been stored.
The power of user-defined functions is that they may have argu
ments just as built-in functions do.

The form of a function with arguments is

DEF FN function name (argument) = expression

Although in the DEF (definition) statement they must be valid var
iable names, the arguments do not affect the main program variables
in any way; they merely provide a method for defining the compu
tation to "be performed by the function. For example, the statement

11211Z! DEf fN CUBEROOT (X) = X f (1 / 3)

does not affect the value in the variable X that appears in the main
program because X is used here only to define the function. The

" way the function actually works is quite simple. Each time it is
invoked, the argument must be supplied by the main program. For
example, the instruction

2BB PRINT fN CUBEROOT(S)

substitutes the constant S for every o~currence of the variable X in
the function definition. The function may then be conceptualized as

124·11 BETTER PROGRAMMING FOR YOUR COMMODORE 64

DEF FN CUBEROOT = 5 t (L / 3)

and the value is displayed.
In the next program, a user-defined function called "POLY

NOME" is used to compute the value of the function for the integers
from 1 to 5.

PROGRAM 5-5

lBB PRINT "*=*=*=*=*=~=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
l2B PRINT "* USER-DEFINED FUNCTIONS EXAMPLE 1· *"
l3B PRINT "* *"
l~B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~*=*=*=*"
l5B PRINT I

lbB DEF FN POLYNOME(X) = X t 3 - 5 * X t 2 + 72
* X - 1

17~ PRINT "NUMBER", "VALUE OF FUNCTION"
l8~ FOR I = 1 TO 5
19~ PRINT I,FN POLYNOME(I)
2f2lB NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * USER-DEFINED FUNCTIONS EXAMPLE 1 *
* * *=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

NUMBER VALUE OF FUNCTION
1 87
2 131
3 187
4 271
5 358

READY.

Although this ' program is somewhat artificial, it does, neverthe
less, demonstrate the proper use of user-defined ~ctions. In this

Numeric Functions and Logical Operators • 125

case, it would have been just as easy to place the expression where
the value is required (in line 190). Ideally, the function should play
a more realistic role by replacing what would otherwise entail many
more involved expressions.

In the next program, user-defined functions are used to advantage
because certain calculations (in this case, converting between radian
and degree measure) are performed more than once. Instead of typ
ing in the· conversion factor at each point where it is required, a call
to the user-defined function is made. You will notice that the con-

. stant 'iT is used in both definitions of the functions. On the Commo
dore 64, the value of 'iT is accessable directly by means of the 'iT key.

PROGRAM 5-6

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* MORE USER-DEFINED FUNCTIONS *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~*"
15121 PRINT
16B DEF FN DEGTRAD(X) = X * w / 18B
17121 DEF FN RADlDEG(X) = X * 18B / w
18B INPUT "ENTER TWO ANGLES IN DEGREES: ";A,B
19B PRINT "ANGLES ARE";FN DEGTRAD(A);"AND";FN

DEGTRAD(B);"RADIANS."
2BB PRINT"THE SINE OF";A;"DEGREES IS";SIN(FN

DEGTRAD(A»
21B PRINT"THE COSINE OF";B;"DEGREES IS";COS(FN

DEGTRAD(B»
22B PRINT:PRINT
23B INPUT "NOW TYPE IN TWO ANGLES IN RADIANS: ";

C,D
24B P~INT "ANGLES ARE";FN RADTDEG(C);"AND";FN

RADTD~G(D);"DEGREES."

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

MORE USER-DEFINED FUNCTIONS *
*

126 • BETTER PROGRAMMING FOR YOUR COMMODQRE64

ENTER TWO ANGLES IN DEGREES: ? 45,3B
ANGLES ARE .785398183 AND .523598775 RADIANS
THE SINE OF 45 DEGREES IS .707108781
THE COSINE OF 30 DEGREES IS .888025404

ENTER TWO ANGLES IN RADIANS: ? .5,1
ANGLES ARE 28.8478898 AND 57.2957795 DEGREES

. READY.

Review ·Questions

1- What must surround the argument of any built-in or user
defined functions?

Parentheses must enclose the argument of every function.

2 - What function returns the square ropt of an expression?

SQR

3 - What is the effect of the statement

PRINT SQR(5 - lBB)

An ?ILLEGAL QUANTITY ERROR is produced. (The
SQR function accepts only nonnegative argUments.)

4 - What is printed by the following statements?
a. PRINT SQ.R (5 + 2B)
b. PRINT INT (5.29)
c. PRINT SQR(INT(135.b + 9.1B4»
d. PRINT ASS (-4), ASS (lBB - 144),

ASS(INT(-2.b) * 2)
e. X = lB - SGN(-lB)
(PRINT SGN(-52 * -2)

Numeric Functions and Logical Operators • 127

a. 5 b. 5 c. 12 d. 4 44 B
e. Nothing is printed out because the line does not include a

PRINT statement. However, the value of X is 11.
f. 1 (Two negative numbers multiplied together yield a pos

itive result. The SGN function returns' the value 1 for any
positive value.)

5 • What angular measure is assumed by the trigonometric func
tions implemented in Commodore BASIC?

All the trigonometric functions on the Commodore 64 assume
radian measure.

6 • When the square-root function is used, what is assumed?

That the argument is either zero or positive.

7 • The LOG function built into Commodore BASIC uses what
base?

The base used is the mathematical constant e, or 2.718.

8 • What is the mathematical name of the preceding logarithm?

The natural logarithm.

9 • How can the logarithm of the variable X to, say,' case 2 be
derived in Commodore BASIC?

L = LOG(X) / LOG(2)

10 • What is the range of numbers returned by the RND function?

O<=n<1

11 • How may the integers between 1 and 6 be generated with the
RND function?

N = INT(RND(I) * 6) + 1

'.

128 • BETI'ERPROG~G FOR YOUR COMMODORE 64

12 ." Describe the actions taken by the following separate state
ments:

L la IF 2 < 3 AND 5 > 6 THEN P~INT
"YEA"

b. 2a IF 5.2 = INT(5.2) OR 2 < 9 THEN
PRINT "YES"

c. 3a IF NOT (4 > la) THEN PRINT
"REALLY"

a. No output is printed (control drops to the subsequent state
ment).

b. YES
c. REALLY

13 " What is the purpose of the DEF FN statement?

To enable programmers to define their own functions.

14 • . Does a "dummy" variable in a DEF FN statement affect vari
ables in the program?

No.

15 • Maya function be an argument in itself?

Yes. The innermost function is computed first, and the value
returned is used by the function to calculate a sec~nd value.

HANDS-ON PRACTICE

Find the square root of

54 + 3(4 - 1.6)

Use the SQR function and confirm the result by raising the expres
sion to the Vz power.

Numeric Functions and Logical Operators • 129

TRY YOUR HAND AT THESE

1. Write a program to read in a value X and determine whether it
is positive or negative (some appropriate message should be
printed) and whether it is a whole number or not. (Hint: Use
the INT function.) .

2. Write a program to print out a table of logarithms in an inputted
base. The table should range between some inputted minimum
and maximum values.

3. Write the single line to produce a random integer between 10
and 20.

4. Write a similar line to produce a random integer between 7 and
77~

5. Write a program that prints 100 random numbers, each of
which is between 3.0 and 65.2.

6. Replace the following groups of IF statements with more suc
cinct versions by using the logical operators.

L lBB IF X = 1 THEN lBBB
llB IF Y = 45 THEN lBBB
12B IF Z <> 22.4 THEN lBBB

b. lBB IF X = 1 THEN 1121BB
lBBB IF Y + 3 <> 25 THEN 2BBB

. c. lf2JB IF B i 2 - 4 * A * C < B
THEN lBIlIB

lBBB IF Q = 5BTHEN 2537

d. lf2lB IF B = 2 THEN 12B
llB IF F = 52 THEN lBBI2I

7. Write a program to determine which of the integers between 1
and 4,098 are perfect squares. (A perfect square is a number
whose square root is an integer.) (Hint: Determine whether the
square root is an integer by using the method you devised in
question 1.)

130 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

8. Write a program to generate 2,500 random numbers between 1
and 1,000, but print only those that are both even and multiples
of5.

9. A number is considered "gracious" if it is both odd and a
multiple of 3. If a number is negative anq divisible by 101, it is
"audacious." If a number conforms to both these criteria (that
is, it is both gracious and audacious) it is "great." Write a
program that prints out whether an inputted number is gra
cious, audacious, or great.

10. Write a program that inputs a minimum, maximum, and incre
ment value for a radius. The program should print a table of
results showing the current radius, the circumference of a circle
of that radius (271'r), the area of the circle (-n-rl), apd the volume
of a sphere of that radius (trrr3). The program should test that
the minimum value is smaller than the maximum. If it is not, a
switch should be made and an appropriate comment printed
before the desired table is produced.

CHAPTER

®
Introduction to
Character String
Manipulation

In the opinion of many people, the material dealt with in this
chapter is one of the most interesting aspects of BASIC program
ming. Since the subject is so extensive we have decided to devote
this chapter to the more elementary (basic?) operations, leaving the
more complex features and techniques for later on. If you have had
occasion to work on a word processor, you will appreciate the im
mense advantage that computers have over the standard typewriter,
being able to modify the material instead of retyping it. In BASIC
(and with the Commodore 64's dialect in particular) it is possible to
see the rudiments of a text-handling system from which a word
processor can be developed. In this chapter, we shall deal not so
much with the numeric manipulation capabilities of the computer
as with its ability to handle textual material as data. In particular,
you will be introduced to the following concepts:

• storing ·literals in variables
• rules for naming string variables
• the LEN function
• the null string
• testing a string for equality
• the LEFT$ function

131

132 • BETI'ERPROGRAMMING FOR YOUR COMMODORE 64

• the RIGHT$ function
• the MID$ function (both versions)
• the LEFT$, RIGHT$, and MID$ commands
• concatenating strings ,
• converting string data to numeric data and back (VAL, STR$)
• setting the time (TIME$)
• the TI function
• controlling the horizontal cursor position (TAB, SPC)
• determining the horizontal cursor position (POS)

You may indeed be one of the many people who feel strongly that
working with text}lal data not only generates a greater sense of ac
complishment and reward but also is an even greater source of fun
than working solely with numbers .. Since the development of the
word processor, the whole' question of the manipUlation of textual
data has assumed increasing importance, and in the years to come it
is inevitable that this area will become even more highly developed.

You, have already dealt on numerous occasions with strings. The
simple instruction

100 PRINT "HELLO"

, contains the character string (a string of characters) HELLO. Just
as we may print a constant,

100 PRINT 5

or store it in a variable,

110 X = 5

so we can store a character string. However, its variable name must
terminate with a dollar sign. In all other respects, character string
variables obey the identical naming rules as do numeric variables.

In the following program, the salutation

"WE WISH YOU THE BEST OF LUCK!"

Introduction to Character String Manipulation. • 133

is stored in the cnaracterstring MESSAGE$. Once it is stored there,
it may be accessed as often as desired. Since the variable MES
SAGE$ is contained in a PRINT statement within a FOR ..•
NEXT loop that is executed five times, the message is printed on

. separate lines five times.

PROGRAM 6-1

1~~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11~ PRINT "* *"
121Zl PRINT"* ASSIGNING A STRtNG VARIABLE *"
13~ PRINT "* *"
14~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15~ PRINT
16~ MESSAGE$ = "WE WISH YOU THE BEST OF LUCKI"
171Zl FOR I = 1 TO 5
18~ PRINT MESSAGE$
191Zl NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* ASSIGNING A STRING VARIABLE *
* *
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

WE WISH YOU THE BEST OF LUCK!
WE WISH YOU THE BEST OF LUCK!
WE WISH YOU THE BEST OF LUCK!
WE WISH YOU THE BEST OF LUCK!
WE WISH YOU THE BEST OF LUCK!

READY,

The simplest question that can be asked about a string is: How
long is it? This vital statistic may be found by using the LEN
function. For example, the statement

PRINT LEN("THIS IS A SHORT STRING")

displays the value 22, which is the number of characters in the
string, including spaces, for the computer considers a space to be a

134 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

character just as any letter or symbol. A special string with a length
of zero is called the null string. It is specified as two consecutive
quotation signs with no space between them and serves the same

. role in string manipulation that zero plays in numerical computa
tion. In the same way that a numeric variable can be cleared by
'setting it to zero, so can a string variable be set to "no string" by
assigning the null string to it.

Testing Strings for Equality

String. values, like numeric values, may be compared. It is per
fectly valid, for example, to type

1~~ IF A$ = "YES" THEN GOTO 12~~

which tests the value of the character string stored in A$ against the
literal "YES". If they match, the comparison is true and control is
sent to line 1200; if not, control passes on to the next statement in
line. Unfortunately, because BASIC differentiates between upper
and lowercase letters, the character "a" is different from the char
acter "A", and therefore they would not match in a comparison.
The programmer must constantly watch for this error because· it is
extremely easy to fall prey to it.

The following program flirtatiously asks the user for a date by
using the INPUT command to enter the necessary information. The
program assumes a rather personal, almost conversational character
·because of its use of character strings.

PROGRAM 6-2

1~~ PR'INT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11~ PRINT "* *"
12~ PRINT"* SALVATION FOR THE LOVELORN *"
13~ PRINT "* *"
14~ PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15~ PRINT
lb~ INPUT "HI CUTIEI WHAT'S YOUR NAME";NAME$

Introduction to Character String Manipulation • 13S

17m PRINT "THAT'S A NICE NAMEI ARE .YOU A BOY
O.R A GIRL, "; NAME$

18f21 INPUT SEX$
19f21 IF SEX$ = "BOY" THEN PRINT "GOOD, I'M A

GIRL. BUSY TONIGHT?":END
2f21m IF SEX$ = "GIRL" THEN PRINT "GOOD, I'M A

BOY. BUSY TONIGHT?":END
21f21 PRINT "MY, YOU'RE STRANGE •.. "

RUN

*
* SALVATION FOR THE LOVELORN

*
*

* * *=*=*=*=*=*=*!*=*=*=*=*=*=*=*=*=*=*=* .,

HI CUTIE! WHAT'S YOUR NAME? JENNIFER
THAT'S A NICE NAME! ARE YOU A BOY OR A GIRLt
JENNIFER? GIRL
GOOD! I'M A BOY.
WHAT ARE YOU DOING TONIGHT?

READY.

RUN

'HI CUTIE! WHAT'S YOUR NAME? DAVID
THAT'S A NICE NAME! ARE YOU A BOY DR A GIRLt
DAVID? BOY
GOOD! I'M A GIRL.
WHAT ARE YOU DOING TONIGHT?

READY.

RUN

HI CUTIE! WHAT'S YOUR NAME? NEBISH
THAT'S A NICE NAME! AR~ YOU A BOY OR A GIRLt
NEBISH? ISH
MYt YOU'RE STRANGE •••

READY.

136 • BETl'ER PROGRAMMING FOR YOUR COMMODORE 64

As soon as QIe heading is printed out, line 160 brashly asks for
the user's name. In line 170, the program incorporates the name
typed (stored in the variable NAME$) into its message, giving it a
conversational qUality. If in answer to the question printed in line
170, the answer "BOY" is typed, the computer responds by saying
that it is a girl and viCe versa. For those who are not sure what they
are, an appropriate message is gen,erated.

String Slicing Operations

THE LEFT$ FUNCTION

It is often necessary to examine sections of a string-and perhaps
change them. You might, for example, want to examine the leftmost
three characters of a string. This is possible by using the LEFT$
function, which examines the leftmost characters of a string without
changing its contents at all. The format of the function is .

LEFT$(string, number of characters to slice)

where string is the string itself within quotation marks or simply the
string variable. For example,

LEFT$("ISN'T THIS AMAZING?",2)

generates a copy of the two leftmost characters, which make up the
word

IS

In the following program, the literal "RULE BRITT ANIA" is
assigned to· the string variable MESSAGE$. Within a FOR .•.
NEXT loop, successively larger "slices" of the string are printed
out. The last and longest slice is the original string.

Introduction to Character String Manipulation • 137

PROGRAM 6-3

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT "* ILLUSTRATION OF LEFT$ SLICING *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
lSB PRINT
lbB INPUT "ENTER YOUR MESSAGE ";MESSAGE$
17B FOR I = 1 TO LEN(MESSAGE$)
18B PRINT LEFT$(MESSAGE$,I)
19B NEXT I

RUN
==*=*=*=*=~=*=*=*=*=*=*=*=*=*=*=*=*

* *
* ILLUSTRATION OF lEFT$ SLICING *
* *

ENTER YOUR MESSAGE: ? RULE BRITTANIA
R
RU
RUL
RULE
RULE
RULE B
RULE BR
RULE BRI
RULE BRIT
RULE BRITT
RULE BRITTA
RULE BRITTAN
RULE BRITTANI
RULE BR ITTAN I A

READY.

This program references the user-typed string stored in MES
SAGE$. Within the FOR ... NEXT loop extending from line 170

8.P.c64·-9

138 • BETTER PROGRAMMING FOR YOURCOMMODORE 64
\

to 190, the index I varies from 1 to the length of the string MES
SAGE$ (which is 14). Since the second parameter of the function
LEFT$ is I, the length of the slice examined begins with 1 and ends
with 14.

TheRIGHT$ Function

The companion to the LEFT$ function is the RIGHT$. As you
will have guessed from its name, its role is to generate a copy of the
rightmost n characters, where n is the second of the parameters that
have to be supplied by the programmer. For example, the instruc
tion

PRINT RIGHT${"COMMODORE EATS APPLES",6)

references the six rightmost characters of the string, "APPLES". In
the following program the literal "COMMODORE EATS AP
PLES" is stored in the string variable PHRASE$. By means of a
FOR . . . NEXT loop, the rightmost slice of the .string is printed
out, beginning with a slice of 1 character (the rightmost) and ending
with the entire string, which has a length of 21.

PROGRAM 6-4

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=$=*=*=*=*=*=*=*"
llB PRINT "* *"
l2B PRINT"* ILLUSTRATION OF RIGHT$ SLICING *"
l3B PRINT "* *"
l4B PRINT "*=*=$=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
l5B PRINT
l6B INPUT "ENTER YOUR MESSAGE ";MESSAGE$
l7B FOR I = 1 TO LEN(MESSAGE$)
l8B PRINT RIGHT$(MESSAGE$,I)
19B NEXT I

Introduction to Character String Manipulation • 139

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * ILLUSTRATION OF RIGHTS FUNCTION *
* *
==*=*=*=*=~=*=*=*=*=*=*=*=*=*=*=*=*

ENTER YOUR MESSAGE? COMMODORE EATS APPLES
S
ES
LES
PLES
PPLES
APPLES

APPLES
S APPLES
TS APPLES
ATS APPLES
EATS APPLES

EATS APPLES
E EATS APPLES

.RE EATS APPLES
ORE EATS APPLES
OORE EATS APPLES
OOORE EATS APPLES
MOOORE EATS APPLES
MMOOORE EATS APPLES
OMMODORE EATS APPLES
COMMODORE EATS APPLES

READY.

The MID$ Function

The last of the slicing functions available is the MID$ function,
which as you might imagine, generates a copy of the middle section
of a string. In order to provide additional options, the MID$ func
tion is available' in two forms . .The first has the format

MID$(string, starting position)
l'

140 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

which references all the characters begiruiing at the specified starting
position and extending to the end of the string. Although it may
seem as if the MID$ function behaves in a manner identical to that
of the ~IGHT$ function, this is true only for special cases. The '
following example illustrates the difference between the MID$ and
RIGHT$ functions:

A$="FOR WHOM THE BELL TOLLS"
PRINT MID$(A$,14), RIGHT$(A$,14)
BELL TOLLS THE BELL TOLLS

READY.

In the case of MID$, the characters starting with the fourteenth
position and extending all the way to the end of the string are
printed, whereas in the case of RIGHT$, the rightmost 14 charac
ters are printed. It is clear that these string slices are not the same.
By contrast, however, the strings referenced by MID$ and RIGHT$
iIi. the following special case are indeed the same, but only because
the string happens to have an odd number of characters and the
string slice begins at the midpoint:

PRINT MID$("HALLELUJAH!",b),RIGHT$
("HALLELUJAH!",b)
LUJAH! LUJAH!

READY.

In the following program (~hich uses the only version of MID$
described so far) slices of the literal "HI THERE!" are printed
within a FOR . . . NEXT loop. The slices get smaller and smaller
because, as the index gets larger, the characters after the position
specified by the index become fewer and fewer.

PROGRAM 6-5

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llS PRINT "* *"
l2B PRINT"* ILLUSTRATION OF MID$ VERSION 1 *"
l3B PRINT "* *"
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"

Introduction to Character String Manipulation • 141

15121 PRINT
16121 INPUT "ENTER YOUR MESSAGE ";MESSAGE$
17121 FOR I = 1 TO LEN(MESSAGE$)
18121 PRINT MID$(MESSAGE$,I,2)
19121 NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=~=*=*=*=*=*

* * * ILLUSTRATION OF MID$ VERSION 1 *
* * *=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

ENTER YOUR MESSAGE:? HI THERE!
HI THERE!
I THERE!
THERE!

THERE!
HERE!
ERE!
RE!
E!

READY.

The second version of the MID$ function uses a third parameter,
which specifies the length of a substring of the original character
string so that

MID$("FRATERNIZATION",2,3)

references the substring that begins with the second character and
extends for a length of three characters. The substring referenced is
therefore the word "RAT." In the following program, the user is
asked to input a phrase. Once this has been done, the phrase is
printed out in its entirety and then in adjacent pairs of characters.

142 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

PROGRAM 6-6

lmm PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*,
11m PRINT "* *'
12B PRINT"* ILLUSTRATION OF MID$ VERSION 2 *'
13m PRINT "* *'
14m PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
15B PRINT
16m INPUT "ENTER YOUR MESSAGE "iMESSAGE$
17m FOR I =1 TO LEN(MESSAGE$)
18m PRINT MID$(MESSAGE$,I,2)
19121 NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* ILLUSTRATION OF MID$ VERSION 2 *
*

ENTER YOUR MESSAGE ? COMPUTER
CO
OM
MP
PU
UT
TE
ER
R

READY.

Printing a String in Reverse

*

You will recall that adding a semicolon to· the end of a PRINT
statement inhibits the generation of a carriage return. The next
program exploits this fact, and with the use of a FOR . . . NEXT
loop in which the index counts. backwards, an inputted phrase is
printed out in reverse.

Introduction to Character String Manipulation • 143

PROGRAM 6-7

100 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
110 PRINT "* *"
120 PRINT"* PRINTING A STRING 'SDRAWKCAB' *"
130 PRINT "* *"
140 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
150 PRINT
lb0 INPUT "PLEASE ENTER A PHRASE: ";PHRASE$
170 PRINT "THANK yOU. I WILL NOW PRINT IT OUT

BACKWARDS:"
180 PRINT:PRINT
190 FOR I=LEN(PHRASE$) TO 1 STEP -1
200 PRINT MID$(PHRASE$,I,l);
210 NEXT I
220 PRINT
230 INPUT "DO YOU WANT ANOTHER ROUND (YES OR

NO): ";AGAIN$
240 IF AGAIN$ = "YES" THEN 150

RUN

*
*
*

PRINTING A STRING 'SDRAWKCAB'

PLEASE ENTER A PHRASE: ? MUST If

*
*
*

THANK YOU. I WILL NOW PRINT IT OUT BACKWARDS:
?I TSUM

DO YOU WANT ANOTHER ROUND? (YES OR NO): ? YES

PLEASE ENTER A PHRASE: ? I LIKE THIS
THANK YOU. I WILL NOW PRINT IT OUT BACKWARDS:
SIHT EKIL I

DO YOU WANT ANOTHER ROUND? (YES OR NO): ? NO

READY.

·144. BETI'ERPROGRAMMINGFORYOURCOMMODORE64

After each phrase has been printed out in reverse the user is asked
if another round is desired. Another character string variable (in this
case, AGAIN$) is used to store the user's response of "YES" or
"NO". This response is then tested within the program against the
literal "YES". If they match, control is sent immediately to line
150, which allows the process to be repeated. Any response other
than YES is equivalent to typing NO.

This program illustrates a little of the conversational mood it is
possible to create between the computer and the user. Mter the

. phrase is typed in, the computer courteously thanks the user and
tells him or her what it is about to do next. This so-called'friendli
ness is rapidly becoming a standard in modern computer program
ming~ circles since it relieves the user of much unnecessary anxiety.
You will frequently hear the phrase user friend~ being applied to
programs that explicitly ask for the required information and ad
dress the user in an informative, disarming way.

Returning now to the program, you will see that the actual mech
anism by which the program prints out the string in reverse order is
contained in lines 190 through 210. Successive slices ofone-charac
ter strings are printed stax;ting at position

LEN(PHRASE$)

which is the end of the string, and extending to position 1, the
beginning of the string.

Concatenation of Character Strings

It is also possible to attach two strings end-to-end. If for example,

A$ = "BREAK" ..

and

B$ = "FAST"

Introduction to Character String Manipulation - 145

it is possible to store the single literal "BREAKFAST" into the
string variable C$ by a process known as concatenation, as we caJ:}.

see in the following example:

($ = A$ + 8$

Here the concatenation symbol is the plus sign, the same symbol
that is used for addition in arithmetic. In a sense, the plus sign plays
the role of "adding together" two literals.

The concatenation operator also allows the computer to store
strings in reverse order (as opposed merely to printing in reverse
order). This is done in the following program, where the phrase
stored in MESSAGE$ is reversed into REVERSE$.

PROGRAM 6-8

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* REVERSING STRINGS VERSION 1 *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
'lbB INPUT "ENTER YOUR MESSAGE PLEASE:, "iMESSAGE$
17B REVERSE$ = ""
18B PRINT "YOUR MESSAGE IN REVERSE IS:"
19B FOR I = LEN(MESSAGE$) TO 1 STEP -1
2BB ~EVERSE$ = REVERSE$ + MID$(MESSAGE$,I,l)
21B NEXT I
22B PRINT REVERSE$

RUN

*
*
*

REVERSING STRINGS VERSION 1 *
*
*

ENTER YOUR MESSAGE PLEASE: ? ALL'S WELL THAT
ENDS WELLI

146 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

YOUR MESSAGE IN REVERSE IS:
!LLEW SONE TAHT LLEW S'LLA

READY.

In this program the user is asked to enter a phrase, vrhich is stored
. in MESSAGE$. The variable REVERSE$ is then set to the null

string so that later on it can be "added" to. Within the FOR
NEXT loop, one character at a time (beginning with the last) is
successively added to the end of REVERSE$. At this point, both
the original and the reversed strings are printed out. The sequence
of events that occurs is illustrated in the following action play,
based on the assumption that the phrase typed in is the word
"BINGO".

Action Taken PHRASE$ ·REVERSE$
(none) "BINGO" ""
REVERSE$ = REVERSE$

+ MID$(MESSAGE$,S,l) "BINGO" "0"
REVERSE$ = REVERSE$
;, + MID$(MESSAGE$,4,1) "BINGO" "OG"
REVERSE$ = REVERSE$

+ MID$(MESSAGE$,3,1) "BINGO" "OGN"
REVERSE$ = REVERSE$

+ MID$(MESSAGE$,2,1) "BINGO" "OGNI"
REVERSE$ = REVERSE$

+ MID$(MESSAGE$,l,l) "BINGO" "OGNIB"

In computer programming in general, but in Commodore BASIC
in particular, there are often several ways to solve the same problem.
A result identical to that just obtained is produced by the next
version of the program, where the index of the FOR . . . NEXT
loop counts up from 1 to the length of the inputted string, each time
adding a single-character "slice" to the front of REVERSE$. This
process is illustrated in the following action play, where the inputted
phrase is "CAT".

Introduction to Character String Manipulation • 147

Action Taken
(none)

MESSAGE$ REVERSE$

REVERSE$ = MID$(MESSAGE$,l,l)
+ REVERSE$

REVERSE$ = MID$(MESSAGE$,2,1)
+ REVERSE$

REVERSE$ = MID$(MESSAGE$,3,1)
+ REVERSE$

"CAT"

"CAT"

"CAT"

"CAT"

''''

"C"

"At"

"TAC"

A close scrutiny of Program 6-9 will confirm that the action play
just indicated does in fact reflect that used in the program.

PROGRAM 6-9

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* REVERSING STRINGS VERSION 2 *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
lSB PRINT
lbB INPUT "ENTER YOUR MESSAGE: ";MESSAGE$
17B REVERSE$ = ""
18B PRINT "YOUR MESSAGE IN REVERSE IS:"
198 FOR I = 1 TO LEN(MESSAGE$)

-2BB REVERSE$ = MID$(MESSAGE$,I,l) + REVERSE$
21B NEXT I
22B PRINT REVERSE$

RUN
d=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
*
*
*

REVERSING STRINGS VERSION 2 *
*
*

ENTER YOUR MESSAGE: ? MARY HAD A LITTLE LAMB
YOUR MESSAGE IN REVERSE IS:
6MAL ELTTIL A DAH YRAM

READY.

148 • BE1TER.PROGRAMMJNG FOil YOUR COMMODORE 64

The VAL and STR$ Functions

Although numeric and string variables are useful, there are cer- .
tain restrictions on ~ch. For example, a string can never be oper
ated upon arithmetically, so that

2 * "DOG"

is not equal to "2 DOGS". Even when the literal contains just a
number, such as in the expression

4 * "127"

it cannot be evaluated since the first operand is numeric and the
second is a character string. Sometimes, however, it becomes nec
essary to operate arithmetically on a string that contains a numeric
quantity. In such cases, the string may be converted to its equivalent
numeric value by means of a function called "VAL." The VAL
function ignores all spaces and initiates a left-to-right scan for a

. numeric value within the string. If the first nonspace character is
not a digit or a sign (+ or -) the value returned is zero. Here are
some examples: '

Command
PRINT V AL(" 123")
PRINT V AL(" - 2")
PRINT VAL("2.65")
PRINT V AL("1 + 9")
PRINT V AL("ABRACADABRA")
PRINT V AL(" + 5")
PRINT VAL("3") + VAL("4")
PRINT V AL("5E3")
PRINT VAL("5.6E-2")
PRINT V AL(" 123ZERO")
PRINT V AL(1)

Value Returned
123
-2

2.65
1
o
5
7

5000
.056
123

? TYPE MISMATCH ERROR
(argument must be a string)

Introduction to Character String Manipulation • 149

In the following program the VAL function is used to extract the
numeric digits of a string and add them together ..

PROGRAM 6-10

1mB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
l1B PRINT "* *"
12B PRINT "* ILLUSTRATION OF THE VAL FUNCTION *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
1SB PRINT
16B INPUT "ENTER YOUR STRING: ";S$
17B SUM = B
18B FOR I = 1 TO LEN(S$)
19B SUM = SUM + VAL(MlD$(S$,I,1»
2BB NEXT I
21B PRINT "THE SUM OF THE DIGITS IS: ";SUM

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * ILLUSTRATION OF THE VAL FUNCTION *
* *
* = * = *"= * = * = * = * = * = * = * = * = * = * = * = * = * = * = * = *

ENTER YOUR STRING: ? 3 98 AF16C2-4
THE SUM bF THE DIGITS IS: 33

READY.

After printing the heading the user is asked to enter a literal, which
is stored in the variable S$. (Avoid using the more reasonable vari
able name "STRING$" because it contains the reserved word
"STR"). On the assumption that the string contains embedded nu
merics, the program scans each character of the string, going from
left to right. Each time a digit is encountered, the VAL function
converts it to its numeric equivalent, which is added to SUM (ini
tialized to zero at the beginning of the program). If on the other
hand, the character is not a digit, the value zero is returned by the

150 • BE'ITER PROGRAMMING FOR YOUR COMMODORE 64

VAL function and the value of SUM is left unchanged. In this
program, the inputted string is

3 98 AFlbC2-4

The sum of 33 is obtained by adding the digits 3, 9, 8, 1, 6, 2, and
4. Since each substring is only one character long, the substrings
"98" and "-4" are tteated as the separate entities "9", "8", "-",
and "4", which have values of9, 8, 0, and 4, respectively.

The inverse of the VAL function is called "STR$." The role
played by STR$ is to convert its numeric argument to a character
string. Some examples are given in the following table.

Command
PRINT STR$(5)
PRINT STR$(3 + 4)
PRINT STR$(lE4)
PRINT STR$(1.23)
PRINT STR$(- 4.2E - 20)

Value Returned
"5"
"7"
"10000"
"1.23"
"-4.2E - 20"

In the following program the STR$ function is used to determine
the number of digits in its numeric argument. The variable name
selected for the length of the string is called "LNGTH" rather than
the more reasonable name "LENGTH" because, as you will recall,
the latter contains the reserved word "LEN."

PROGRAM 6-11 ,

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
llB PRINT "* *'
l2B PRINT "* ILLUSTRATION OF THE STR$ FUNCTION *'
l3B PRINT "* *'
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
lSB PRINT
lbB INPUT "ENTER YOUR NUMBER ~LEASE: ";NUMBER
l7B LNGTH = LEN(STR$(NUMBER))-l
l8B PRINT "YOUR NUMBER,";NUMBER;"CONTAINS";LNGTH;

"DIGITS"

Introduction to Character String Manipulation • 151

RUN

* * * ILLUSTRATION ,OF THE STR$ FUNCTION *
*

ENTER YOUR NUMBER PLEASE: ? 5744
YOUR NUMBERt 5744 CONTAINS 4 DIGITS

READY.

*

In line 170, "- 1" is necessary because the STR$ function provides
an extra space for the sign of the number (positive or negative).

You might be interested in a totally different way to solve this
problem. The number of digits contained by any number may be
found by computing the logarithm to the base 10 (the common
logarithm) of that number, adding 1, and taking the integer portion
of the result.

The Built-in Variable TI$

One of the most useful features of the Commodore 64 is its ability
to keep track of the time once it has been typed into the computer~
The manner in which the time may be set is the same as any ordinary
string variable. The form of the literal between the quotation marks
is

"hhmmss"

where hh represents the number of hours in military time (from 0
to 23), mm represents the minutes (from 0 to 59), and ss the seconds
(from 0 to 59). To set the time to 10:41 A.M., for example, the
command

T1$ = "1f2141"

152- BE'ITER PROGRAMMING FOR YOUR COMMODORE 64

is used. This command· automatically sets the seconds to zero. In a
similar manner, the time may be set to 5:24:30 P.M. by the com
mand

1I$ = "17243111"

where the number 1724 is the 24-hour form for 5:24 P.M. and 30 is
the number of seconds.

Once TI$ has been set it may be accessed any time, just as may
any ordinary string variable. In the following program the time (in
24-hour format) is continuously displayed on the screen.

PROGRAM 6-12

1111111 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
11111 PRINT "* *'
12111 PRINT"* ILLUSTRATION OF TI$ FUNCTION *'
13111 PRINT "* *'
14111 PRINT rl*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*,
15111 PRINT
lbl1l INPUT "ENTER THE TIME IN THE FORM HHMMSS ->"~

TI$
17111 PRINT TI$
18111 GOTO 17111

In this program, the time is entered as a character string in the
form "hhmmss". However, since any character whatever is accepted
into a character string, this method of entering the time tends to be
error-prone. For example, there is nothing to prevent a careless user
from typing in something like 4:46pm which results in an ?ILLE
GAL QUANTITY ERROR message.

To avoid this possibility, the following approach can be adopted.
Instead of inputting a character string, the user types in the hours,
minutes, and seconds individu811y-:-in response to individual
prompts from the program. All the values may then be validated
within the program so that any illegal values typed in may be re
jected instantly. Furthermore, Program 6-12 suffers from the defect
of displaying the time continuously down the lefthand margin of the
screen-at its own frenetic electronic speed. In this way, more than
<?ne entry is displayed per second since the computer completes the

Introduction to Character String Manipulation • 153

loop more than once per second. In the next, improved version of
the program, not only is the time. validated but also it is updated
(uptimed?) on the screen once per second by 'comparing the curre.nt
time with the last printed time (stored in the variable TEMP$).

PROGRAM 6-13

1121121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11121 PRINT "* *"
12121 PRINT"* DISPLAYING THE TIME ONCE PER SEC *"
13121 PRINT "* *"
14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15121 PRINT
lbB A$="B"
17121 INPUT "ENTER THE HOUR IN MILITARY TIME: ";HRS
18121 IF HRS < 121 OR HRS > 23 OR HRS <> INT(HRS)

THEN PRINT "MUST BE B-23":GOTO 17121 .
19121 H$ = MID$(STR$(HRS),2)
2121121 IF LEN(H$) < 2 THEN H$ = A$ + H$
21121 INPUT "ENTER THE MINUTE (121-59): ~;MIN
22121 IF MIN < 121 OR MIN> 59 OR MIN <> INT(MIN)

. THEN PRINT "ONLY B-59":GOTO 21121
23121 M$ = MID$(STR$(MIN),2)
24121 IF LEN(M$) < 2 THEN M$ = A$ + M$
25121 INPUT "ENTER THE SECONDS (121-59): ";SEC
2bB IF SEC < 121 OR SEC> 59 OR SEC <> INT(SEC)

THEN PRINT "ONLY B-59":GOTO 25121
27121 S$ = .MID$(STR$(SEC),2)
28121 IF LEN(S$) < 2 THEN S$ = A$ + S$
29121 TIME$ = H$ + M$ + S$
3B!2J TEMP$ = ""
31!2J IF TEMP$ <> TIME$ THEN TEMP$ = TIME$:PRINT

TEMP$
32'" GOTO 31121

In lines 160 to 210 of this program the user's typed responses for
the hours, minutes, and seconds are entered and validated. If any
one of them is found to be invalid, it is immediately rejected and the
liser is given the opportunity to retype that value. in line 220, the
three numeric variables HRS, MIN, and SEC are converted to their
equivalent strings and concatenated to form the time. Once in this
readable form the resulting six-character string is stored in TIME$,

B.P.c64·-' O

154 • BETI'ER PROGRAMMING FOR YOUR COMMODORE 64

simply another variable whose first two "letters are TI and is thus
equivalent to TI$ (TIGER$ would work just as well but would be .
less mnemonic). The infinite loop in lines 310 through 320 has the
effect of printing out the time only once per second. As already said,
this operation is accomplished by virtue of the fact that the time is
displayed only when it is different from the previously printed time
stored in TEMP$.

The TI Numeric Function

From the moment the Commodore 64 is switched on, the number
of sixtieths of a second it has been on is constantly updated and
stored in the numeric variable TI. For many applications it is useful
to be able to measure the time between two events in a program.
The TI function can be used directly in calculations involving inter
vals of time. It accesses the same timer as does the TI$ function,
even though it returns. the time in a different form. One situation in
which it is particularly useful is timing a certain segment of a pro
gram.

For example, suppose you wish to determine the exact amount of
time that a segment of code (such as the following segment, which
contains a double nest of loops) takes to execute

14121 S = 121
15121 FOR I = 1 TO 11210
16121 FOR J = 1 TO 1!{J
17121 X = I t 2 * J t 3
18121 S == S + X
19121 NEXT J
2121121 NEXT I

To time this segment of code you can simply insert the following
two statements:

135 T = TI
21215 PRINT (TI - T) / 6121;"SECONDS W;RE

USED"

Jllst insert a statement storing the time into a variable before the
segment, and a statement printing the time minus the stored time

Introduction to Character String Manipulation • lSS

after the event. The number printed is the length of time taken to
execute the segment of code (in sixtieths of a second). In order to
return the number in seconds, simply divide by 60. Later on you
shall use this function to great advantage.

The TAD Function

Now that you have covered some aspects of string manipulation,
the time has arrived to learn how to print strings in an elegant
fashion. For this purpose there is the TAB function, which behaves
in a manner very similar to the TAB key on an ordinary typewriter.
PRINT T AB(n) tabs over to position number n of the screen. The'
contents of the parentheses may be a specific number or an expres
sion that' is evaluated before it is acted on. The expression must be
an integer, as it is impossible to TAB over a fraction of a space: If
the expression turns out not to.be an integer,BASIC automatically
rounds it off to the nearest whole number. If the value of the
rounded integer is not within the range zero through 255, an error
results. If the current print position is already beyond space n, the
TAB function applies to the position n on the subsequent line.
T AB(O) is considered the leftmost position. In the same way that a
PRINT statement may terminate with a semicolon (which affects
the printing of the following items) so the appearance of a TAB
specification at the end of a PRINT statement positions the subse
quent print at position n of the current line. In the following pro
gram, the TAB function is used to print a literal diagonally down
the screen.

PROGRAM 6-14

10a PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
110 PRINT "* *"
120 PRINT "* ~LLUSTRATION OF THE TAB FUNCTION *"
130 PRINT "* *"
140 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
150 PRINT
1b0 FOR 1=10 TO 0 STEP -1
170 PRINT TAB(I);"HOW NOW BROWN COW?"
180 NEXT I

156 • BEITER PROGRAMMING FOR YOUR COMMODORE 64

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* * * ILLUSTRATION OF THE TAB FUNCTION *
* *

HOW NOW BROWN COW?
HOW NOW BROWN COW?

HOW NOW BROWN COW?
HOW NOW BROWN CO~?

HOW NOW BROWN COW?
HOW NOW BROWN COW?

HOW NOW BROWN COW?
HOW NOW BROWN COW?

HOW NOW aROWN COW?
HOW NOW BROWN COW?

HOW NOW BROWN COW?

READY.

In the next example, both the TAB and MID$ functions are
illustrated. Mter the user has typed in a phrase, it is first printed
out in regular fashion. Then successive pairs of characters are
printed out diagonally, the index value of the loop being used as the
argument of the TAB function to position the printing of each line.

PROGRAM 6-15

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
llB PRINT "* *'
12B PRINT"* ILLUSTRATION OF MID$ AND TAB *'
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
15B PRINT
lbB INPUT "ENTER A PHRASE PLEASE: "iPHRASE$
17B PRINT "YOUR PHRASE IS: "iPHRASE$
18B PRINT,
19B FOR I =1 TO LEN(PHRASE$)
2BB PRINT TAB(I + lb)iMID$(PHRASE$,1,2)
21B NEXT I

Introduction to Character String Manipulation • IS7

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

ILLUSTRATION OF MID$ AND TAB *
*

ENTER A PHRASE PLEASE: ? CABBAGE PATCH
YOUR PHRASE IS: CABBAGE PATCH

READY.

CA
AB

BA
AG

GE
E

P
PA

AT
TC

CH
H

You will notice that the final line of output consists of the single
letter "H". Unlike the "E" found six lines above it, the character
immediately to its right is not a space-even though the difference
between the two is not immediately visible. There is, however, no
character whatever to the right of the letter "H" because it is the
last character of the string. Nevertheless, the MID$ function at
tempts to reference a character to its right and, finding none, treats
it as a null string.

The SPC Function

The TAB instruction just described positions the cursor at a given
location relative to the lefthand margin of the screen. The argument
of the TAB function, therefore, refers to an absolute position on the
current line. Rather than specify the position in this way, it is often

158 • BETTER PROGRAMMING FOa YOUR COMMQDORE 64

more convenient to specify a position relative to the current posi
tion. This is precisely the role played by the SPC (space) func
tion, which in a PRINT statement, causes displayed information to
skip a specified number of spaces to the right. For example, the in
struction

PRINT "HELLO"i SPC(5)i "GOODBYE"

displays

H ELL 0 GOO D BYE -----------------
column numbers o I 2 3 4 5 6 7 8 910111213141516

with five blank spaces between the two literals.
The specified number of spaces must be within the range zero

through 255 inclusive. If the number is not an integer, it is rounded
to the nearest one.

The POS Function

It is occasionally useful to determine the position at which the
cursor is located in addition to specifying what it should be set to.
This is done by means of the POS function, which re,turns a num
ber, between 0 and 79, specifying the POSition at which the next
PRINT statement will begin. POS takes only a dummy argument;
that is, the argument must be there but its value does not matter. A
typical command for the POS function is

1121121 X = POS(I2I)

You have by now been exposed to some of the more important
building blocks with which all text-handling systems (such as word
processors) are constructed. You will now appreciate that a com
puter can cope with textual data almost as easily as with numeric
data. To fully exploit the power of the computer, however, you must
learn how to handle mass data, which in BASIC is done by the use
of what are called arrays, the subject of the next chapter.

Introduction to Character String Manipulation • 159

Review Questions

1 • What is the last character of every string variable name?

A dollar sign ($).

2 • What is the length of the string

"WELCOME ALL YOU MERRY PEOPLE"

It is 28 characters long, including spaces.

3 • What is the name of the function that returns the length of a
string?

The LEN function.

4 • What is the shortest string possible?

The null string, which has a length of zero.

5 .. What is the value of
a. LEFT$ ("COMPUTER", 2)
b. LEFT$("CURIOUS",3)
c. LEFT-$ ("RHYME", 121)
d. LEFT$ ("STRANGE", 2121)
e. LEFT$ ("MYSTERIOUS", LEN ("MYSTERIOUS")

- 3)

a. CO
b. CUR
c. (the null string)
d. STRANGE
e. MYSTER I (The length of the string is 10. Subtracting 3

yields 7. LEFT$("MYSTERIOUS",7) yields the answer.)

6 .. What does the RIGHT$ function do?

It slices off a copy of the rightinost characters as specified by
the argUment.

160 • BETI'ERPROGRAMMINGFOR YOUR COMMODORE 64

7 • What values are returned by the following?
a. RIGHT$ ("INTRIGUING", 4)
b. RIGHT$ ("SHIMMER", 3)
c. RIGHT$ ("TECHNIQUE", 5)
d. RIGHT$ ("HUMOROUS" ,LEN ("MAN") - 2)
e. RIGHT$ (LEFT$ ("MISSISSIPPI", 7) ,3)

a. UING
b. MER
c. NIQUE
d. S
e. ISS

8 g What is returned by
a. MID$ ("I CAME, I SAW, I CONQUERED", 9)
b. MID$("I CAME, I,SAW, I CONQUERED",lb)
c. MID$ ("PEDANTIC", 4)
d. MID$("FRIENDLV",4,3)
e. MID$ ("CONFUSING", LEN ("CHAPTERS") I 2)
(MID$(LEFT$("UNCOMMON",5) + "P" +

RIGHT$("DISLEXIC",S),3,7)

a. I SAW t I CONQUERED
b. I CONQUERED
c. ANTIC
d. END
e. FUSING
f. COMPLEX

-9 • What is the concatenation symbol?

The plus sign (+).

, 10 • What is printed by the statement:

PRINT "BLACK" + "JACK"

. BLACKJACK

Introduction to Character String Manipula~on • 161

11 m What role is played by the VAL function?

\ It strips its string argument of any included spaces and returns
its numeric value. If a letter is encountered in the string, the
embedded number is considered to terminate at that point.

12 • What does the STR$ function accomplish?

It converts its numeric argument to a character string .

. 13 • What command is used to set the time in Commodore BASIC?

TIME$ = "hhmmss"
where the time is expressed in military (24-hour) format and
hh represents the hours, mm the minutes, and ss the seconds.

14 • What· statement is always associated with the TAB and SPC
functions?

The PRINT statement.

HANDs ON PRACTICE

1. Type in the following program ~d try to determine what it will
do before running it.

lBIlI A$ = ""
11111 FOR I = 1 TO 1111
12121 A$ = A$ + MID$("LONGSTRING",I)
13111 NEXT I
14111 PRINT A$

TRY YOUR HAND AT THESE

1. Write a program that requests the full name of the user and
displays the length of that name in characters (including spaces
and any punctuation).

2. Write a program that requests the user's full name and prints the
. first name, the middle initial, and the last name.

162 • BE'ITERPROGRAMMING FOR YOUR COMMODORE 64

3. What does the following statement do:

If LEN("THIS IS A LONG STRING ") = 22
THEN PRINT "YES"

4. Write a program that requests a message and a character to search
for. The program should print the number of times the character
was found in the message.

5. Write a program that allows for the inputting of a sweepstake
entryJs name and address. The program should use this infor
mation to generate a form letter such as this:

Name of person: Ms. Diana Windsor
Address: 140 NW Wash D.C 10234

Dear Ms. Windsor:

January 1, 1999
Ms. Diana Windsor
140 NW Wash D.C. 10234 I

We are pleased to inform you that you have a chance to win a grand prize
in our sweepstakes-$lO,OOO,OOO paid to you at the rate of $1000.00 a
week. You must enter within a week to be eligible for this prize, so please
hurry.

Sincerely yours,
James Hamill

CHAPTER

~----
Arrays

Computers are renowned for their remarkable ability to handle
l~ge masses of data swiftly, efficiep.tly, and accurately. In order to
do all this, BASIC provides the programmer with what are known
as arrays-entities that permit the manipulation of long lists of num
bers. The concepts described in this chapt~r are extremely impor
tant for anyone who wants to do serious, useful programming, and
it is quite likely that this part of the text will have to be read several
times before the material is completely absorbed. Among the new
concepts you will be introduced to are the following:

• subscripts
• an array as an ordered list of numbers
• the DIMension statement
• filling an array with data
• generating a random array

., • finding the maximum and minimum of an array, together with
their positions

• calculation of Pearson's correlation coefficient
• the STOP instruction
• multidimensional arrays
• the CLRstatement
II finding out the amount of free memory (FRE)

In all the programs you have examined so far, there was no diffi
cwtyin assigning suitable names to the different variables because

163

164 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

they were so few in number. The situation would be considerably
different, however, if you had to assign a different variable name to
each of, say, 100 students in a class-perhaps to compute their
average class weight. Assigning 100 different names is not only
extremely tedious and burdensome but even worse, is highly error
prone. The problem is further compounded when the numbers in
volved are even larger than 100. With, say, 1,000 people in a school,
the problem ceases to be at all manageable if tackled in this manner.
A much more elegant way to approach the problem is to assign one
name for all the values. However, at first glance it would seem that
if this were done, it would be impossible to distingUish between one
item and another. There is some truth to this answer, but you can
borrow a technique used frequently in mathematics-that is, to
specify the name of the item together with its position in 1he list of
numbers. For example, the first item has position 1; the second,
position 2; and so on. The hundredth item would therefore have the
position 100. In mathematics, the position nUmber (called the index)
is written as a subscript just below the line in a smaller typeface than
the name associated with it. For example, we could write

where the small numbers life the subscripts. Since on most comput- I

ers it is impossible to indicate a subscript 'in this manner, the con
vention is to enclose it in parentheses. Let us now assume that all
the 100 items referred to are assigned the common variable name X.
The first value of X may then be denoted as XCI); the second may
. be written as X(2); and so on.

When the same variable name is used to describe a list of different
numbers or values, the list is called an array. An array carries the
notion that the. items are listed in a definite order. This concept is
not exactly new. Students are often ranked according to how high
their average is. The top student is regarded as "number I" (he or
she has a subscript of 1). The student who comes in second corre
spondingly has a SUbscript of 2. In Commodore BASIC, an array of
more than ten elements (actually 11, as you shall soon see) must be
specifically "dimensioned" by means of a DIM statement. That is,

Arrays • 165

the programmer must state how much room is to be reserved for the
elements of the array so that the computer can reserve memory space
for them. For example, the statement

Ullil DIM X (5~UI)

sets aside 501 locations for the sUbscript variable X. The reason
there are 501 locations as opposed to 500 is because allowance is
made for X(O), which is useful in some mathematical and scientific
applications. The statement

2~~ DIM V(b~~), Z(75B)

sets aside 601 locations for the array Y and 751 locations for the
array Z. If a variable (such as X) is subscripted before a correspond
ing DIM statement is encountered, Commodor~ BASIC automati
cally sets aside 11 locations for the array, X(O) through X(10).
Attempting to access an element beyond its dimensioned value
causes a

?BAD SUBSCRIPT ERROR

to be displayed and the program is terminated.
Once a variable has been dimensioned, it cannot be redimen

sioned within the body of the program (unless it is first cleared, a
feature we shall discuss shortly). If a variable such as X has been
subscripted without a corresponding dimension statement, it is con
sidered as though it were dimensioned with

DIM X(1~)

and so it may not be redimensioned explicitly. If this is attempted,
the message

?REDIM'D ARRAV ERROR

appears and the program is terminated.

166 • BEITER. PROGRAMMING FOR YOUR COMMODORE 64

In the following program, an· array of ten numbers is typed in by
the user. These numbers are summed, and their average is found.
Then the difference between the average and each of the elements
in the array is computed and printed out. Notice'that once the
elements have been stored in the array, they may be accessed as
often as is necessary,' making the problem considerably more man
ageable.

PROGRAM 7-1

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
llB PRINT "* *'
l2B PRINT "* INPUTTING AN ARRAY *'
l3B PRINT "* *'
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
l5B PRINT
l6B DIM X UB)
l7B PRINT "TYPE IN lB VALUES, ONE AT A TIME"
l8B FOR I = 1 TO lB
19B INPUT XCI)
2BI2I NEXT I
21B REM
22B REM: NOW COMPUTE THE AVERAGE
23B REM
24B SUM = B
25B FOR I = 1 TO lB
26121 SUM = SUM + XCI)
27B NEXT I
28B AVERAGE = SUM I lB
29121 REM
3121121 REM: PRINT THE DIFFERENCE BETWEEN AV AND

EACH ELEMENT
31B REM
32121 PRINT "THE AVERAGE IS:"iAVERAGE
33121 PRINT:PRINT "AND HERE ARE THE DIFFERENCES

FROM THE AVERAGE:"
34121 FOR I = 1 TO lB
35121 PRINT AVERAGE - XCI);
36B NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

TYPE
? 23
? 4
? 14
? 23
? 21
? 13
? 3
? 2
? 25
? 19
THE

INPUTTING AN ARRAY

IN' 10 VALUES t ONE AT A

AVERAGE IS: 111.7

TIME

*
*

Arrays • 167

AND HERE ARE THE DIFFERENCES FRO~ THE AVERAGE:
-8.3 10.7 .888888899 -8.3 -8.3 1.7 11.7
12.7 -10.3 -1I.3

READY.

An interesting point to note is the slight error that is introduced
when the third value (14) is subtracted from the average (14.7). You
would expect 14.7 - 14 to yield the result of 0.7. However, the
computer actually displays the result as .699999999, a value slightly
less than that expected. This is due to the fact that the Commodore
64 performs all its computations in binary (base 2). Just as there are
certain fractions that cannot be expressed as finite decimals (for
example, the value i), so are there numbers that cannot be exactly
expressed in binary. The small resulting errors are called round-off
errors.

Although this program performs its task flawlessly, it can, never
theless, be criticized for the fact that it works for one case and one
case only-when the number of elements in the array is equal to
ten. If the number is anything but ten, the program as shown is

168 • BB1"I'ER. PROGRAMMING FOR YOUR COMMODORE 64

quite useless. The matter is easily rectified, however, by deciding
on some maximum value for the dimensioned array, say 100. Then
the specified number of elements can be typed in and tested to be
sure that it is a positive integer not exceeding the value 100. Every
time the constant 10 appears in the last program it may be replaced
by the variable N (representing the number of elements in the
array), thereby providing a much more general pr.ogram.

This is precisely what is done in the next version of the program,
where the user is asked to type in the desired value for N. This
value is first tested to be sure that it is a valid number. If it. is, the
user is then asked to type in each element of the array, one at a time,
each time the question mark prompt appears. Once the N numbers
have been inputted, the array is printed out in packed format, fol
lowed by the difference of each element from the average. However,
if the value of N is invalid, after a mild rebuke the user is asked to
type in another value. No maner how often an invalid N is typed
in, the computer merely provides an opportunity to correct the
inputted yalue without ever losing its temper. If only some of our
teachers had this kind of unlimited patience!

PROGRAM 7-2

lBB PRINT "#=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
llB PRINT "* *'
12B PRINT "* INPUTTING A VARIABLE LENGTH ARRAY *'
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
15B PRINT
16B INPUT "HOW MANY ELEMENTS";N
17B IF N <= B OR N > 1BB OR N <> INT(N) THEN

PRINT "TRY AGAIN":GOTO 16B
18B DIM X(N)
19B PRINT"TYPE IN";N;"NUMBERS ONE AT A TIME"
2BB FOR I = 1 TO N
21B INPUT XlI)
22B· NEXT I
23B REM
24B REM: CALCULATE AVERAGE

250 REM
260 SUM = 0
270 FOR I = 1 TO N
280 SUM = SUM + X(I)
290 NEXT I
300 AVERAGE = SUM I N
310 REM

Arrays. 169

320 REM: CALCULATE DIFFERENCES FROM AVERAGE
330 REM
340 PRINT "THE AVERAGE IS:";AVERAGE
350 PRINT "AND HERE ARE THE DIFFER£NCES FROM

THE AVERAGE:"
36B FOR I = 1 TO N
370 PRINT AVERAGE - X(I);
380 NEXT I

RUN

==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* INPUTTING A VARIABLE LENGTH ARRAY *
*

HOW MANY ELEMENTS ? 0
TRY AGAIN
HOW MANY ELEMENTS ? -7
TRY AGAIN
HOW MANY ELEMENTS ? 3
TYPE IN 3 NUMBERS ONE AT A TIME
? 10
? 5
? 27

. THE AVERAGE IS: ill

*

AND HERE ARE THE DIFFERENCES FROM THE AVERAGE:
II 9 -13

READY.

8.p.064·- 11

170 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

Dynamically Allocated Arrays

To make a program more flexible, the size of lhe dimension for
an array may be left to the user to decide at the time of execution
(as in Program 7-2, above). A previously defined variable name,
such as N, may be substituted for the dimensioned value. Whatever
valid number is typed into N is regarded as the dimension of the
array. The ability to dynamically allocate room for arrays is made
possible by a statement of the following type:

DIM X{N)

This capability is not common to all versions of BASIC, although
increasingly, recent releases of the more sophisticated versions of
the language have this useful feature. The maximum allowable value
ofN is 32,767, but the actual limitation is a somewhat lower number
since the amount of memory available to the programmer is limited.

Finding the Maximum and Minimum of an Array

There are several methods used for finding the lowest and highest
numbers of an array. The method described here may be regarded .
as the "natural" method, since it is probably the way the human
mind goes about it. To find the minimum of a list of numbers, an
assumption is made that the first element is the smallest. This tem
porary minimum is then compared successively with each element
of the array until the last one has been compared. Whenever an
element is found which is smaller than the temporary minimum,
that element replaces the value stored as the temporary minimum.
This strategy may be seen in the following illustration, where an
array, X, is composed oftive elements:

X

Value

(1)

4

(2)

6

(3) (4) (5)

8 2 1

Arrays • 171

Assigning to MIN the first element as the temporary minimum value
(4), these steps follow:

X(2)< MIN? (no)
X(3)< MIN? (no)
X(4)< MIN? (yes) therefore MIN = 2
X(S)< MIN? (yes) therefore MIN = 1

The maximum of the array is found by a similar method in which
the first element of the array is regarded as the temporary maximum.
It is successively compared with each element of the array, replacing
the contents of the temporary maximum each time an element is
found that is larger than the current maximum. In the following
program, the minimum, the maximum, -and their locations within
the array are calculated and printed. For the purpose of this program
we shall arbitrarily limit the length of the array to 1,000 elements.
Subroutines are used to break up the problem into its various natu-
ral modules. ,

The first subroutine, beginning in line 1000, simply generates N
random integers between 1 and 1,000. Once the array has been
generated and stored, the RETURN statement is encountered and
control is sent back to the statement following line 190. Here, an
other GOSUB statement is encountered and control is sent to the
subroutine beginning in line 2000, which finds the minimum, the
maximum, and their locations. The strategy used in the subroutine
is to assume that the first element of the array is both the minimum
and the maximum. This being the case, the locations of the mini
mum·and the nlaximum are therefore both 1. The FOR ... NEXT
loop begins with 2 rather than 1 because the first element has already
been stored in MIN and MAX; they are merely being tested against
the rest of the elements, which have the subscripts 2 . . . N.

Each time a new minimum or maximum is found, the correspond
ing value of the index is stored in SLOe (for small location) or
BLOC (for big location) so that they always reflect the position of
the current minimum and maximum respectively. When the loop is
satisfied, the contents of MIN and MAX are the true minimum and
maximum, and SLOe and BLOC will ultimately contain the loca-

172 • BETTERPROGRAMMING FOR YOUR C,OMMODORE64

tions at which they were found. (It would be clearer to use the names
MINLOC for SLOC and MAXLOC for BLOC, but the computer
would not distinguish them from MIN and MAX, since the first
two letters are identical.)

The difference between the minimum and the maximum is called
the range of the array. This is computed in a separate subroutine
beginning in line 4000.

PROGRAM 7-3

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
l1B PRINT "* *'
12B PRINT"* FINDING MIN, MAX AND LOCATIONS *'
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
15B PRINT:PRINT
lbB INPUT "ENTER THE ARRAY SIZE: ";N
17B IF N <= B OR N > lBBB OR N <> INT(N) THEN

PRINT "MUST BE B<N<=1BBS":GOTO lbB
18B DIM ARRAY(N)
19B GOSUB lBBB
2BB GOSUB 2BBB
21B GOSUB 3BBB
22B GOSUB 4SBB
23B END
lBBB REM
lB1B REM:SUBROUTINE TO GENERATE THE ARRAY
lB2B REM
lB3B FOR I = 1 TO N
lB4B ARRAY(I) = INT(RND(1) * lBSB) + 1
lB5f21NEXT I
1I21blZl RETURN
2BIZlB REM
2B1B REM:SUBROUTINE TO PRINT OUT THE ARRAY IN

PACKED FORMAT
2B2B REM
2B3B FOR I = 1 TO N
2B4B PRINT ARRAY(I);
2B5B NEXT I
2Bbf21 PRINT:PRINT

Arrays • 173

2"1117111 RETURN
3111111111 REM
31111111 REM: SUBROUTINE TO FIND THE MIN, MAX AND

THEIR LOCATIONS
31112111 REM
31113111 MIN = ARRAY(l):MAX = ARRAY(l):SLOC = 1:

BLOC = 1
31114111 FOR I = 2 TO N
31115111 IF ARRAY(I) < MIN THEN MIN = ARRAY(I):

SLOC= I
3111bl1l Ir ARRAY(I) > MAX THEN MAX = ARRAY(I):

BLOC = I
31117111 NEXT I
31118111 PRINT "THE MINIMUM OF THE ARRAY IS";MIN;

"IN LOCATION";SLOC:PRINT
31119111 PRINT "THE MAXIMUM OF THE ARRAY IS";MAX;

"IN LOCATION";BLOC:PRINT
31111111 RETURN
4111111111 REM
41111111 REM: PRINT THE RANGE
41112111 REM
41113111 PRINT "THE RANGE IS:";MAX-MIN
41114111 RETURN

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

* * * FINDING MINt MAX AND LOCATIONS *

* *

ENTER THE NUMBER OF ELEMENTS IN THE ARRAY;
MUST BE 0<N<~1000
ENTER THE NUMBER OF ELEMENTS IN THE ARRAY;
MUST BE 0(N(=1000
ENTER THE NUMBER OF ELEMENTS IN THE ARRAY;

5 942 241 345 SSl

?

?

?

THE MINIMUM OF THE ARRAY IS 5 IN LOCATION 1
THE MAXIMUM OF THE ARRAY IS 942 IN LOCATION 2
THE RANGE IS; 937

READY.

111

-s
5

174 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

Pearson's Correlation Coefficient

In statiatics, it is often important to calculate the correlation be
tween two sets of variables. It is well known that there is a high
positive correlation between height and weight; that is, the taller a
person is, the more that person probably weighs. Students are told
that the mO,l"e they study, the better their grades will be. If this
advice is true, it would indicate a positive correlation. Examples of
negative correlations abound. The more money you spend, the less
you have left. Dentists tell us that the more candy we eat, the fewer
natural teeth we will have left in adult life.

The Pearson correlation coefficient formula is used to calculate
the degree of positive or negative correlation between two sets of
data. What is interesting about it is that regardless of the data used,
the formula' always produces a result that lies between -1 and 1
inclusive. The only exception to this general rule is if one of the two
variables under study is constant. Should this be the case, the pro
gram would find itself trying to take the square root of a negative
quantity. Since this would lead to an error message in BASIC, the
program tests for this contingency, and if found, the program is
halted immediately with an explanatory message.

It should be noted that the correlation coefficient can be calculated
without resorting to arrays. However, the reason for doing so here
is that once the correlation coefficient has been calculated, the ele
ments of both arrays are left intact and further statistical analyses
may then be performed on them. Indeed, this is one of the major
reasons for using arrays.

Suppose then, we have the two arrays X and Y,

x y
4 2
5 7
6 4

10 8
20 16

where an X 'value of 4 corresponds to a Y value of 2, and an X of 5
with a Y of 7, and so on. Without needing to know the mathematical

Arrays • 175

rationale, we note that in order to calculate the correlation coeffi-·
cient, three more columns must be constructed: one for X x Y
(denoted in mathematics as XV), another for X2, and a third for yz.

x r XY Xl yl

4 2 8 16 4
5 7 35 25 49
6 4 24 36 16

10 8 80 100 64
20 16 320 400 256

Now each of these five columns is surtuned:.

45 37 467 577 389

The five sums are nQw substituted into the somewhat forbidding-
looking formula .

nlxy - IxIy
r = -yr C=nI=x=2 =-=(I~x=)2=) =(n===Iy2==-=(:::::I=~)=2)

from which the correlation coefficient, r, is calculated. Do not be
intimidated by the recurring use of the Greek sigma, written I. It
simply stands for "the sum of." ,
, Notice the immense amount of work performed by the FOR ...
NEXT loops, especially if N is very large. In fact, the FOR . . .
NEXT loop was designed expressly for this kind of operation.

PROGRAM 7-4

111Z1
121Z1
131Z1
141Z1
151Z1
161Z1
171Z1

PRINT "* *"
PRINT "* PEARSON'S CORRELATION COEFFICIENT *"
PRINT "* . *"
PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
PRINT:PRINT
INPUT "WHAT IS YOUR VALUE 9F ~:";N
IF N < IZI OR N <> INT(N) THEN PRINT "SORRY,
TRY AGAIN":GOTO 161Z1

176-. BETTER PROGRAMMING FOR YOUR COMMODORE 64

18B DIM X(N),V(N)
19B FOR I = 1 TO N
2BB INPUT "X,V";X(I),V(I)
211Z1 NEXT I
22B PRINT
231Z1 FOR I = 1 TO N
241Z1 XSUM = XSUM + X(I)
25B VSUM = VSUM + Y(I)
26B XVSUM = XVSUM +X(I) * Y(I)
27B XXSUM = XXSUM + X(I) * X(I)
281Z1 YVSUM = YVSUM + V(I) * Y(I)
29B NEXT I
3BB NUMER = N * XYSUM - XSUM * YSUM
31B TEMP = (N * XXSUM - XSUM i 2) * (N * VVSUM

- VSUM i 2)
32B IF TEMP <= B THEN PRINT "DATA INVALID":STOP
331Z1 DENOM = SQR(TEMP)
34B R = NUMER / DENOM
35B PRINT "CORRELATION COEFFICIENT =";R

RUN

* * * PEARSON'S CORRELATION COEFFICIENT *
*

WHAT IS YOUR VALUE OF N? .7
SORRY. TRY AGAIN
WHAT IS YOUR VALUE OF N? -123
SORRY. TRY AGAIN
WHAT IS YOUR VALUE OF N? 5
X.Y? 4,2
X.Y? 5,7
X.Y? 6,4
x.Y~ lB,8
X.Y? 2B,16

CORRELATION COEFFIOIENT = .851850432

READY.

*

Arrays • 177

Mter the user has typed in the value of N, representing thenum
ber of elements in the X and Y arrays, N is tested tc;> be sure it is
both positive and an integer. If either of these conditions fails, a
message is displayed telling the user to try again. If N is valid,
control is sent to the DIM statement, which sets aside enough space
for the two arrays X and Y. WIthin the FOR ... NEXT loop,
extending from . line 190 to line 210, each element of X together with
the corresponding element of Y is entered. As soon as N pairs of
values have been typed in, the loop is satisfied, a blank line is
printed, and the major FOR . . . NEXT loop, beginning in line 230
and ending in 290, computes the five sums used in the computation
of the correlation coefficient. Once this loop is satisfied, the value of
NUMER (standing for "numerator") is calculated. The expression
under the square-root sign is then computed and placed in the vari
able TEMP.

Provided that the value of TEMP is greater than zero, the data
are considered valid. The square root of TEMP is then taken and
stored in DENOM, and the value of R is computed. If it turns out
that TEMP is less than or equal to zero, the message "DATA IN
VALID" is displayed, and execution of the program is stopped by
means of the STOP instrUcti()n. The STOP differs from the END
statement in that it displays the line number at which the termina
tion occurred. It has much the same effect as does the RUN/STOP
key and is treated in the same way. Since it produces what is, in

. effect, an error message, it is considered inelegant and is not used
except where the user's attention is being directed to the line in
which the run was terminated.

Multidimensional Arrays

The arrays discussed so far were, without exception, one-dimen
sional. That is, they consisted of a list of numbers in a specific order.
However, it is often convenient to arrange data in terms of rows and
columns, in much the same way that a railway schedule is laid out.
Such an arrangement of data is called a matrix. If you have diffi~ulty
picturing a in~trix, think of it as an array, each of whose elements is

178 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

also an array. In Commodore BASIC, a matrix (two-dimensional
array) is dimensioned in much the same way as is a one-dimensional
array. The only difference is that for each dimension, a maximum
subscript is supplied. For example, in order to reserve room for the
two-dimensional array X consisting of three rows and four columns,
the dimension statement

DIM X(3,4)

is used. As with one-dimensional arrays, if the dimension statement
is omitted, it is as if the maximum value of each subscript is 10. In
other words, typing

PRINT W(4,4)

without first dimensioning the matrix W, automatically performs
the implied statement .

DIM W(ll21,ll21)

Commodore BASIC does not limit the programmer to two-dimen
sional arrays. As a matter of fact, there may be up to 255 dimen
sions, although this maximum seems like a practical impossibility in
light of the restrictions imposed by the length of a BASIC program
line and the amount of memory available.

Memory Considerations and Arrays

Arrays, as we have already mentioned, use up m~mory. In fact,
they are the primary users of memory in BASIC. After all, whereas
it is hard to write a 6,000-line program, it takes only a second to
write the statement

DIM A(bl2ll2ll2l)

which instantly sets aside 6,001 memory locations. When dimen
sioning an array, each location takes up memory space, which is

Arrays • 179

measured in what are known as bytes. As you may already know, the
Commodore 64 (as its name implies) has a maximum capacity of
.64K (more than 64,000 bytes). Any request for space beyond the
physical capacity of the system generates the message

tOUT Of MEMORY ERROR.

Mter some memory overhead- (a section of memory that the com
puter needs for internal processing) is subtracted, the remaining

. number of free bytes (38911) is displayed on the screen when BASIC
is first entered. Each element <?f an array uses up 5 bytes of memory.
Therefore, the preceding example useS 6,001 x 5, or 30,005 bytes
to store the data, plus another 8 bytes for overhead. In other words,
this single innocuous little dimension statement uses approximately
75 percent of the available memory.

Suppose you need to dimension an array of size 7500 in a pro
gram. At a later point in the program, another array of size 6000 is
needed-for a totally different purpose. If the data stored in the
first array are still needed, you are stuck-you will have run head
long into the memory barrier. If, however, there is no longer any
need to access the data in the firSt array, there are two alternatives.
The first possibility is to reuse the array by reinitiaHzing it in a loop
(erasing all 6,000 elements creates a substantial delay) and then to
use the .array for the new purpose. The major objection to this
course of action is not the time factor, however, but the fact that it
is bad programming .practice and confusing to use the same array
for two totally different purposes. The other, more preferable
choice, is to erase the entire array from memory and start from
scratch by dimensioning a new one. This may be done by using the
CLR (clear) command, which simply takes the form

line number CLR

Unfortunately, the CLR statement is not selective; it destroys all
variables (arrays, strings, normal variables, records required for
FOR •.• NEXT loops that are not yet satisfied, and so on), not
ju$t the desired array. It .s therefore very important to be sure that

180 • BETl'ERPROGRAMMlNG FOR YOUR COMMODORE 64

the CLR instruction is not invoked within a FOR . . . NEXT loop
or a subroutine or when the value of a variable is needed for further
computation. .
. It is worth noting that arrays consisting solely of integers use only
2 bytes per element. Therefore it is worthwhile to use integer arra~s
wherever they are feasible in order to conserve memory space. In
this: way, the problem of running out of memory may often be totally
avoided.

In the following two pseudo-programs, identical arrays are used.
In the first, however, an .

?OUT OF MEMORY ERROR

is generated, whereas the second avoids the problem by erasing
arrays that are no longer required by the program.

PROGRAM 7-5, VERSION 1

lB8 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
118 PRINT "* *'
128 PRINT "*' MEMORY HOG .VERSION 1 *'
138 PRINT "* *'
148 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
15B PRINT
168 DIM A(48B8),B(3BBB)
178 DIM X(5BB8)'

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
*
*
*

MEMORY HOG VERSION 1

?OUT OF MEMORY ERROR IN 170

READY.

*
*
*

Arrays • 181

PROGRAM 7-5, VERSION 2

1121121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11121 PRINT "* *"
12121 PRINT "* MEMORY HOG VERSION 2 *"
13121 PRINT "* *"
14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=$=*=*=*"
15121 PRINT
16m DIM A(4I21BI2I),B(3121121121)
17121 REM: HERE-IT IS ASSUMED THAT THERE IS NO NEED
18121 REM: FOR THE DATA STORED IN ARRAYS A AND B
19121 CLR
2121121 DIM X(5121I21B)

The FRE(~) Function

Although arrays are, in -the average program., the largest consum
ers of memory, they are by no means the only ones. The program
itself takes up memory space, and naturally, the larger and more
complex it is,the more memory it uses. Since it is sometimes im
portant to know precisely how much memory is free, Commodore
BASIC provides a function that returns this important value. It
takes a dummy numeric argument, so that the statements

x = FRE(I2I)
X = FRE(98.6)

each produce' the identical result-the amount of free memory
(specified in units called bytes, which are roughly equivalent to char
acters). In this example, this number is stored into the variable X.
The FRE function may be used interchangeably with any numeric
value, so that it may be used in statements such as the following:

Q = FRE(I2I)
PRINT FRE(l)
TRUE = FRE(I2I) > 2121121121

182 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

Review Questions

1 • What is an array?

An array is a sequence of items that share the same name and
are distinguished from each other by a subscript that defines
their positions in the array.

2 • What statement reserves room for an array?

The DIM statement ..

3 • Is a dimension statement necessary for every array?

No; any array that is not dimensioned is automatically assigned
11 locations by the system. However, it is good prQgl'amming
practice to dimension every array used.

4 • What is the effect of accessing an element of an array beyond
its dimensioned range?

The error message

?BAD SUBSCRIPT ERROR.

is generated .

. 5 • May more than one array be dimensioned by the saine DIM
statement?

Yes. The array names in the DIM statement must merely be
separated by commas.

6 • What is a dynamic array?

A dynamic array is one whose dimensioned size is specified by
I

a variable and is assigned during execution of the program.

Arrays. 183

7 .. What convention has been adopted in BASIC to indicate a
sUbscript?

The sUbscript is enclosed within parentheses.

8 • What does the CLR command do?

It erases all variables, arrays, active FOR ... NEXT loop
storage, and so on.

9 .. What is the meaning of the value returned by the FRE func
tion?

It is the number of unused bytes left in BASIC memory.

CHAPTER

~
Advanced String
Manipulation

Now that you have covered FOR ... NEXT loops and some of
the more common string functions, the time has ·come to learn some
more about manipulating characters contained within strings. In
this chapter you will learn

• how to read character strings from DATA statements
• string arrays
• the ASC and CHR$ functions
• the ASCII character code
• a simple method of testing for palindromes
• the GET statement

Reading String Values from DATA StatementS

The READ . . . DATA. combination, which allows data to be
listed in a DATA· statement and read by the READ statement,
can store litenus, as well as numeric items. The strings may be
enclosed in quotation marks (or not) at the discretion of the pro
grammer.

In the following program the DATA statements contain an em
ployee's name and social security number. As each is read, it is
simply printed out.

184

Advanced String Manipulation • 185

PROGRAM 8-1

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT "* READ/DATA WITH STRINGS *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
16B READ EMPNAME$,SSN
17B IF EMPNAME$ = "THE LAST ONE" THEN END
18B PRINT EMPNAME$,SSN
19B GOTO 16B
2BB DATA "ABRAHAM LINCOLN",132444583
21B DATA "STEPHEN DECATUR",999777555
22S DATA "GEORGE WASHINGTON",123456789
23B DATA "NANCY REAGAN",lBBBBBmBl
24m DATA "THO~AS JONES",111222333
25B DATA "THE LAST ONE",m

RUN

*
*
*

READ/DATA WITH STRINGS

ABRAHAM LINCOLN
STEPHEN DECATUR
GEORGE WASHINGTON
NANCY REAGAN
TOM JONES

READY.

132111111583
999777555
1231158789
100000001
l11Z?Z333

*
.*
*

Within the loop, successive pairs of names and corresponding social
security numbers are read from DATA statements. The trailing
items are "THE LAST ONE" , o. The 0 is added at the end because
two values are read every time the READ statement is executed.
The last time around, when the trailer items are read, two values
must be supplied, or the program is terminated with an

B.P.c64·- ro

186 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

tOUT OF DATA ERROR

It should be pointed out that the DATA statements could have
been merged into a single statement. However, since two items are
read at a time, it is much clearer to a reader of the program if they
are listed in the manner shown. For further clarity, the quotation
marks are placed around each of the character strings to reinforce
the notion that they are, indeed, strings.

String Arrays

Each of the arrays we have used so far contained elements that
were numeric. This need not always be the case, however. Commo
dore BASIC supports arrays in which each element is a character
string rather than a numeric quantity. Just as with numeric arrays,
if no dimension statement is provided before a reference is made to
the string array;- the computer sets aside 11 locations (including the
zero) for the string array. The only difference between the two types

of arrays is that the name selected for the string array must, as you
probably will have guessed, terminate with a dollar sign, in the usual
way. The statement

DIM A$(llala)

sets aside room for 101 string elements for the array A$.
To help you become thoroughly familiar with the concept of

string arrays, the following program is presented. It stores in the
array DAY$ the names of the seven days of the week. The user is
asked to type in an integer N ranging from 1- to 7; the computer
then prints out the the name of the corresponding day.

PROGRAM 8-2

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
llla PRINT "* *'
121a PRINT"* ILLUSTRATION OF STRING ARRAYS *r
l31a PRINT "* *'
l41a PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r

Advanced String Manipulation • 187

15121 PRINT
16121 DIM DAY$(7)
17121 DAY$(l) = "SUNDAY"
18121 DAY$(2) = "MONDAY"
19121 DAY$(3) = "TUESDAY"
2121121 DAY$(4) = "WEDNESDAY"
21121 DAY$(5) = "THURSDAY"
22121 DAY$(6) = "FRIDAY"
23121 DAY$(7) = "SATUR]AY"
24121 PRINT
25121 INPUT "WHICH DAY OF THE WEEK DO YOU WANT";N
26121 PRINT "DAY NUMBER";N;"IS: ";DAY$(N)
27121 PRINT:INPUT"MORE? (TYPE YES OR NO):";AGAIN$
28121 IF AGAIN$ = "YES" THEN 24121
29121 IF AGAIN$ <> "NO" THEN PRINT "I BEG YOUR

PARDON; TRY AGAIN.":GOTO 27121

RUN

* * * ILLUSTRATION OF STRING ARRAYS *
*

WHICH DAY OF THE WEEK DO YOU WANT? 2
DAY NUMBER 2 IS MONDAY

. MORE? (TYPE-'YES' DR 'No~): ?VUP
I BEG YOUR PARDON; TRY AGAIN.

MORE? (TYPE 'YES' DR 'NO'): ?YES

WHICH DAY OF THE WEEK DO YOU WANT? 5
DAY NUMBER 5 IS THURSDAY

READY.

*

In this program, each element of the string array DAY$ was
defined by seven successive assignment statements. An alternative
is to store the strings in DATA statements and READ them into
the array from within a loop.

188 • BE'ITEllPROGRAMMING FOR YOUR COMMODORE 64

The ASC and CHR$ Functions

. Although on the surface it may appear that the computer is quite
adept at manipulating characters, this is not exactly true. The com
puter actually treats all data-whether numeric or not-as num
bers. Every symbol recognized by the Commodore 64 is assigned a
specific numeric representation according to a modified version of
the so-called ASCII (pronounced as-key) code. The acronym stands
for American Standard Code·for Information Interchange and is by
far the most popular standard among all those used throughout the
computing world. For your reference a complete table of the char
acters that can be generated on the Commodore 64 is included in
Appendix C at the back of this book.

In BASIC, the ASCII value of any character may be obtained by
the ASC function which takes the form

variable name = ASC(string value)

For example, if you were interested in the ASCII code for the letter.
"c" you. could write

or

CODE = ASC("C")
PRINT CODE

87

READY.

PRINT ASC("C")
67

READY.

As do VAL and STR$, ASC has a complementary, or reverse,
function. It is called the "CHR$ function" and returns the character
string representation of any given ASCII value. Since the ASCII

Advanced String Manipulation • 189

code for capital letter "D" is 68, it may be deduced and confirmed
on the computer that

CHR$(b8)

returns the capital letter "D".

Testing for Palindromes

We shall now turn to matters of literature, instructing the com
puter to operate not on numeric data but on textual material. For
your first ventur~ into this field you shall type in an English phrase
(the phrase could be expressed in any language, really, as long as it
is written with the Latin alphabet, the letters shown on the keys of
your Commodore computer).

'A palindrome is a phrase that reads the same backwards and
forwards. There are many such words in the English language, in-
cluding .

I, eye, peep, level, madam, and pop,

to name a few. The classical phrase that is a true palindrome is

ABLE WAS I ERE I SAW ELBA

where without any change whatever, the phrase reads exactly the
same backwards and forwards. The purpose of the next program is
to identify such palindromes. \

PROGRAM 8-3

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
118 PRINT "* *"
128 PRINT "* SIMPLE PALINDROME TESTER *"
138 PRINT "*, *"
148 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"

190 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

150 PRINT
lbH INPUT "PLEASE ENTER YOUR PHRASE:";PHRASE$
170 FOR I = LEN(PHRASE$)TO 1 STEP -1
180 REVERSE$ = REVERSE$ + MID$(PHRASE$,I,l)
190 NEXT I
200 IF PHRASE$ = REVERSE$ THEN PRINT "YOUR PHRASE

IS A PALINDROME":END
210 PRINT "YOUR PHRASE IS NOT A PALINDROME"

RUN ,
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
*
*
*

SIMPLE PALINDROME TESTER

PLEASE ENTER YOUR PHRASE: ? MADAM
YOUR PHRASE IS A PALINDROME

READY.

RUN

PLEASE ENTER YOUR PHRASE: ? REALLY
YOUR PHRASE IS NOT A PALINDROME

READY.

*
*
*

In this program the user types in a phrase which is stored inter
nally under the string variable name PHRASE$. Within the FOR

.... NEXT loop, extending from line 170 to 190, each character of
the phrase (beginning with the last) is added to the string variable
,REVERSE$, which since it hasn't been initialized, is initialized
by default to the null string~ When the FOR ... NEXT loop has
done its work, the reverse of the original string will be stored
in REVERSE$. In line 200 this reversed version of the string is
tested for equality with the original string residing in' PHRASE$. -
If they prove to be equal to each other, the phrase must be a pal
indrom~; otherwise it is not. In either case, an appropriate state
ment is printed.

Advanced String Manipulation • 191

Elementary Textual Analysis

With all its mathematical abilities the Commodore 64 can also
actually help you become aware of-and improve-your writing.
One way you can do so is to perform a statistical analysis of your
text, which can reveal whether you use certain w.ords too frequently,
your sentences are of a (too?) consistent length, and many other
interesting stylistic features.

Analyses of textual material often demand the ability to count the
number of words in a given passage. The best strategy for counting
the words is simply to count the number of intervening spaces. Then
1 is added to the result because the first word is not preceded by a
space. In the following program, the average word length of an
inputted phrase is computed and printed out.

PROGRAM 8.,4

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT"* COUNTING WORDS IN A PASSAGE *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
16B INPUT "PLEASE ENTER YOUR TEXT: ";PHRASE$
17B LNGTH = LEN(PHRASE$):COUNT = B
18B fOR I = 1 TO LNGTH
19B If MID$(PHRASE$,I,l) = CHR$(32) THEN COUNT

= COUNT + 1
2111111 NEXT I
21B AVLNG = (LNGTH - COUNT) I (COUNT + 1)
22B PRINT
23B PRINT "IN THE PHRASE: ";PHRASE$
24B PRINT "THERE ARE:";COUNT + l;"WORDS WITH AN

AVERAGE LENGTH Of:";AVLNG
RUN
==,=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* COUNTING WORDS IN A PASSAGE *
* * *=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

192 • BETIER PROGRAMMING FOR YOUR COMMODORE 64

PLEASE ENTER YOUR TEXT: ? WHERE THERE'S A WILL
THERE'S A WAY

IN THE PHRASE: WHERE THERE'S A WILL THERE'S A WAY
THERE ARE: 7 WORDS WITH AN AVERAGE LENGTH OF: 4

READY.

In this program, the user is invited to input any phrase at all.
First, the length of the phrase is determined by the LEN function,
and COUNT, representing the count of spaces found, is set to zero.
The number of words present is then found by examining the length
of the string for intervening spaces. Once the number of spaces has
been found, 1 is added to reflect the number of words present. Line
190 performs this test by comparing each character of the string to
the character with the ASCII code 32, which represents a space.
You might well ask why the comparison wasn't made with a space
directly-in other words, with the literal " ". The answer is that
the Commodore 64 behaves rather strangely on this score and,
counter to convention, treats the space within quotes as the lower
case space (ASCII code 160) rather than the normal 32. When ASCII
character 160 is compared to what was typed in (ASCII character
32) the comparison fails; the two are not the same. We therefore
must- resort to the CHR$ function. \

Once the total number of words present is calculated; the average
length per word is found by subtracting the number of spaces
(stored in COUNT) from LNGTH (as they are not part of the word)
and dividing by the number of words found (COUNT + 1).

A common feature of word processing is the ability to replace all
occurrences of a given string with another string. For example, a
typist not very expert at spelling might have erroneously spelled the
word receive as recieve. If this error has been committed consistently
throughout a long report, a considerable amount of time and effort
may be saved by resorting to this "search and replace" feature. In
the following program, a simple illustration of this type of problem
is presented. This rudimentary program only works on one string's
worth of text (up to 255 characters). In all the essentials, however,
it duplicates this most useful feature of full-fledged word processors.

Advanced String Manipulation • 193

PROGRAM 8-5

1121121 PRINT "*=*=-*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11121 PRINT "* *"
12121 PRINT "* SEARCH AND REPLACE *"
13121 PRINT "* *"
14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"

·15121 PRINT
16121 INPUT "ENTER SENTENCE TO BE SCANNED:";SENT$
17121 INPUT"REPLACE ALL OCCURRENCES OF:";REP$
18121 INPUT "WITH:";SUB$
19121 LNGTH = LEN(SENT$):REPLNGTH = LEN(REP$)
2121121 OUT$ = ""
21121 COUNT = 121
22121 I = 1
23121 IF REP$ = MID$(SENT$,I,REPLNGTH) THEN GOSUB

1121121121:GOTO 25121
24121 OUT$ = OUT$+ MID$(SENT$,I,l)
25121 I = I + 1: IF I <= LNGTH THEN 23121
26121 PRINT
27121 PRINT "THE AMENDED SENTENCE IS NOW:"
28121 PRINT OUT$
29121 PRINT COUNT;"REPLACEMENt(S) WERE MADE"
3121121 PRINT .
31121 INPUT "DO YOU WANT TO GO AGAIN (YES OR NO)";

AGAIN$
32121 IFAGAIN$ = "YES" THEN 15121
33121 IF AGAIN$<>"NO"THEN PRINT"TYPE YES OR NO,

NOT: ";AGAIN$:GOTO 31121
34121 END
1121121121 OUT$ = OUT$ + SUB$
11211121 I = I + REPLNGTH - 1
11212121 COUNT = COUNT + 1
lB3121 RETURN

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

SEARCH AND REPLACE *
*

194 • BE'ITERPROGRAMMING FOR YOUR COMMODORE 64

ENTER SENTENCE TO BE SCANNED: ? MAY THE BEST MAN
WIN
REPLACE ALL OCCURRENCES OF: ? BEST
WITH: ? WORST

THE AMENDED SENTENCE IS NOW:
MAY THE WORST MAN WIN.

1 REPLACEMENT(S) WERE MADE

DO YOU WANT TO GO AGAIN (YES DR NO)? YES

ENTER SENTENCE TO BE SCANNED: ? HE WHO LAUGHS
LAST LASTS LAST
REPLACE ALL OCCURRENCES OF: ? LAST
WITH: ? FIRST

THE AMENDED SENTENCE IS NOW:
HE WHO LAUGHS FIRST FIRSTS FIRST

3 REPLACEMENT(S) WERE MADE

DO YOU WANT TO GO AGAIN (YES DR NO)? MAYBE
TYPE YES DR NOt NOT: MAYBE
DO YOU WANT TO GO AGAIN (YES DR NO)? NO

READY.

In this program, the user is invited to enter any sentence, which
is stored in the variable SENT$. The user is then asked to type in
the string of characters for which SENT$ is to be scanned, which is
stored in REP$. As a third input, a request is made to type in the
desired replacement for any occurrences found in SENT$. From
this point on, the program runs under its own steam. The length of
SENT$ is stored in LNGTH, and the length of REP$ is stored in
the variable REPLNGTH. COUNT, which stands for the number
of times a replacement is made, is initially set to zero. Then, within
a loop, successive slices of SENT$ are compared to REP$. If a
match is successful, the replacement string, SUB$, is tacked on to
the end of OUT$, which starts out as the null string. One is also

Advanced String Manipulation • 195

added to the contents of the variable COUNT, meaning that a re
placement has been made. Finally, REPLENGTH - 1 is added
to the index I to skip over the body of the matching substring. If
the match is unsuccessfUl, the letter that did not match is added
to the end of OUT$ and the substring (beginning at the subsequent
letter) is examined. The process is shown in stages in the following
example:

is:

SENT$ = ','THE CAT SAT ON THE MAT"
REP$ = "AT"
SUB$ = "LEW"
COUNT = 0
OUT$ = ''''

"TH" = "AT" ? (no) OUT$ = "T"
"HE" = "AT" ? (no) OUT$ = "TH"
"E "= "AT" ? (no) OUT$ = "THE"
" C" = "AT" ? (no) OUT$ = "THE "
"CA" = "AT"? (no) OUT$ = "THE C"
"AT" = "AT" ? (yes!) OUT$ = OUT$ + "LEW"

and COUNT = COUNT + 1 (now it is 1)
I = I + REPLNGTH - 1 (now it is 7)
I = I + 1 (now it is 8)

" S" = "AT"? (no) OUT$ = "THE CLEW"
[and so on]

By the time this program is finished, of course, the sentence will be
the nonsensical "THE CLEW SLEW ON THE MLEW".

Another feature of this program is that the answer to the "go
again" question is tested for both "YES" and "NO". Previously,
we assumed that any response other than "YES" was "NO". In
other words, a response of "Y", "YEA", or "YUP", all of which
are probably intended as a positive response, were taken to be neg
ative. Even an ambivalent answer of "MAYBE" was regarded as a _
negative response. In this program, however, if AGAIN$ is not

196 • BETTERPROGRAMMlNG FOR YOUR COMMODORE 64

equal to "YES", a test is made as to whether it is "NO" .. If it is
neither "YES" nor "NO", it is clear that an improper response has
been made. Whatever this response was-be it "MA YBE~', "YEP",
or something like "GO JUMP IN A LAKE"-it is stored in
AGAIN$ and is printed out in an admonishing tone in the sentence

TYPE YES DR NOt NOT: (whatever was typed in)

In this way, the programmer insures that only a "YES" or "NO"
response is accepted. Even at the expense of some extra labor, this
type of "error trapping" is an excellent idea.

The GET Command

When a user types data into the computer interactively, time is
not usually important, the primary consideration being accuracy.
However, there are many classes of problems in which the time
taken for a response is critical. For .example, a timed-reponse quiz
must wait for the allotted time only and then move on to the next
question-whether or not a response has been entered. In "shoot
'em-up" games, the opposing electronic army must move to the
attack whether or not the player responds. Obviously, the INPUT
statement-which waits indefinitely for a response, followed by a
RETURN, before resuming execution-cannot be used for this
purpose. The GET command is. the BASIC programming tool de
signed t? solve these and other similar problems. Before illustrating
this command, however, we must introduce a new concept
namely, the keyboard buffer.

Befo~e being accessed by the computer, all typed characters are
stored into the keyboard buffer, an intermediate storage ar~ which
temporarily holds up to ten typed characters until the computer is
ready to operate on them. Usually the computer accesses the typed
characters so rapidly that it is not apparent that they are stored at
all. To demonstrate that the buffer exists, therefore, we shall artifi
cially keep the computer "busy" by executing a delay loop 10,000
times. If characters ~e typed in during execution of the loop, no

Advanced String Manipulation • 197

action is taken, but they will appear almost instantly as soon as the
INPUT statement is executed. If more than ten characters are typed
in, only the first ten will appear-the rest being lost because of
"buffer overload."

PROGRAM 8-6

1121121 PRINT "*=*=*=*=*=*=*=*=*=*="*=*=*=*=*=*=*=*=*"
11121 PRINT "* *"
12121 PRINT"* ILLUSTRATION Of INPUT BUffER *"
13121 PRINT "* *"
14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15121 PRINT
16121 PRINT "TVPE IN SOME LETTERS NOW"
17121 fOR DELAV = 1 TO 1121121121121
18121 NEXT DELAV
19121 INPUT A$

As opposed to the \INPUT statement, GET scans the keyboard
buffer for one character. If it is there, the character is returned into
the specified variable name. For example, the intruction

1121121 GET A$

removes the first character from the buffer and stores it into A$.
Similarly, the statement

1121121 GET B

removes· the first character from the buffer and places it in the
numeric variable B. It is not advisable to use this version of the GET
statement, however, as a ?SYNTAX ERROR is generated when a
character other than a digit is typed in.

In the next program, the GET statement is used to scan the
keyboard repeatedly and terminate the loop when the first key is
pressed. At that point, the message "GOODBYE FOR NOW" is
printed.

198 • BETTER PROGRAMMING FOR YOUR ~OMMODORE 64

PROGRAM 8-7

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
llB PRINT "* *'
12B PRINT"* ILLUSTRATION OF THE GET COMMAND *r
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~
15B PRINT
lbB PRINT "HIT ANY KEY TO CONTINUE"
17B GET GARBAGE$: IF GARBAGE$ = "" THEN 17B
18B PRINT "GOODBYE FOR NOW"

In the next program, advantage is taken of the TIME function in
conjunction with the GET statement. The purpose of the program
is to simulate a sophisticated stopwatch. The user is asked to hit the
S key to start and stop the clock. In addition, lap time may be
obtained by pressing the L key, the clock may be reset to zero by
pressing C, and the program may be terminated by typing Q once
the stopwatch is started. Since the elapsed time is stored in sixtieths
of a second, it is first divided by 60 before being printed out.

PROGRAM 8-8

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
llB PRINT "* *"
12B PRINT "* STOPWATCH SIMULATOR *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
lbB PRINT "HIT S TO START AND STOP THE STOPWATCH"
17B T = B
18B GET COMMND$
199 IF COMMND$ = "C" THEN PRINT "CLEAR":GOTO 17B
2BB IF COMMND$ <> "S" THEN 18B
21B BEGIN = TIME: PRINT ~~TART": PRINT
22B GET COMMND$
23B IF COMMND$ = "L" THEN PRINT "LAP:";T + (TIME

- BEGIN) I bB:GOTO 22B
24B IF COMMND$ = "S" THEN T = T+(TIME-BEGIN)/bB:

PRINT:PRINT T; "STOP":GOTO 18B

Advanced String Manipulation • 199

25B IF COMMND$ <> "Q" THEN 22B
2bB PRINT "QUIT"

By now you will have a fairly good idea of what string manipula
tion is all about. By combining these techniques with other pro
gramming features, quite sophisticated and useful effects can be
accomplished. The results are really remarkable because, after all,
the computer is completely inanimate, composed as it is of metal,
plastic, and wires. It relies on your creativity to be truly useful and.
entertaining.

Review Questions

1 .. What kinds of data may be stored in a DATA statement?

Both numeric and alphanumeric.

2 .. Must alphabetic data stored in a DATA'statement be enclosed
in quotation marks?

No. The comma separating the data items functions asa delim
iter (separator) and therefore the quotes are optional. If a

. comma is desired as part of the string, however, that string
must be placed in quotation marks.

3 • What is implied by the following statement?

DIM Z$(5BIZIB)
That room has been reserved in memory for 5,001 elements of
the character string array Z$.

4 • Is the following statement valid?

DIM A(T$)
No. The subscript of an array must have a numeric value.

5 • What is the purpose of the ASC function?

200 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

It returns the ASCII value of the given character. If a string of
more than length 1 is specified, the value returned is the ASCII
value of the first character.

6 • What does the following statement do?

PRINT CHR$(ASC("D"»

It displays the capital letter "D" on the screen because the
ASC function first returns the ASCII code of the literal "D"
(which is 68). The CHR$ function then accepts the given num
ber and returns the corresponding character (in this case, the
original character).

7 • Why is COMMND$ used instead of COMMAND$ in Pro
gram 8-8?

Because the name COMMAND contains the keyword AND.

HANDS-ON PRACTICE

1. If a DATA statement contains literals, they mayor may not be
enclosed in quotation marks at the discretion of the programmer.
Write a program to convince yourself of the truth of this state
ment .

. TRY YOUR HAND AT THESE

lao Write a program that reads the twelve months of the year from
DATA statements into an array.

lb. Modify this program so that it allows the user to type in the
number of a month and returns the name of the month.

lc. Allow for repeated use and accept only "OUI" and "NON" as
valid reponses.

2. Write a program that coUnts the number of vowels in any input
ted string.

Advanced String Manipulation • 201

3. Write a program that accepts any input until the RETURN key
is hit and stores it in the variable A$. (Note: INPUT does not
work in this manner, since it recognizes a comma as a separator,
so use GET in a loop.)

B.P. c64.-13

CHAPTER

CW ____ _

Nesting Loops

In this chapter you will be introduced to some of the most pow
erful features found in the BASIC language and some entertaining
examples of their applications. These include

• nests of FOR' ... NEXT loops
• the sum-of-the-digits-cubed problem
• the word-ream;mgement problem
• the telephone problem
• nesting other loop constructs
• nesting subroutines
• nesting subroutines and loops

Nested FOR .•. NEXT Loops

In all the programs illustrated so far in which several loops ap
peared, there was no connection between one loop and the other.
Each FOR . . . NEXT loop was executed wh'enever it appeared in
the normal sequence of the program and was "satisfied" before the
subsequent FOR ... NEXT loop was entered. Thus they could be
described as being independent of each other. Being independent,
they could all have the same index variables; it really did not matter
because each FOR statement initialized the value of the index vari
able when it was first encountered. The following diagram illustrates
this corlcept:

202

NestingLoops • 203

•
•
•

[and so on]

It is possible in BASIC, however, to enclose completely one FOR
. . . NEXT loop within another. Such an arrangement is called a
nest of loops because it is reminiscent of the way a bird builds its
nest-layer on layer. As you shall soon see, a nest ofloops is a very
powerful programming tool. .

In the following program, a nest of loops is created with an outer
index I and an inner index J.

PROGRAM 9-1, VERSION 1

1121121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11121 PRINT "* *"
12121 PRINT '"* NESTING LOOPS VERSION 1 *"
13121 PRINT "* *"
14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15121 PRINT
16121 PRINT " I"," J"
17121 PRINT
18121 FOR I = 1 TO 3
19121 FOR J = 1 TO 2
2121121 PRINT I,J

204 • BElTER PROGRAMMING FOR YOUR COMMODORE 64

210 NEXT J
220 NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
*
*
*

I

1
1
2
2
3
3

READY.

NESTING LOOPS VERSION 1

J

2
1
2
1
2

*
*
*

A careful look at the output of this program shows that the inner
loop is satisfied each time the outer loop goes around once. This
concept is easily visualized when the identical program is put into
the following form:

PROGRAM 9-1, VERSION 2

100 PRINT "*=*=*=*=*~*=*=*=*=*=*=*=*=*=*=*=*=*=*r
110 PRINT "* *'
120 PRINT "* NESTING LOOPS VERSION 2 *'
130 PRINT "* *'
140 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
150 PRINT
160 PRINT " I"," J"
170 PRINT
180 fOR I = 1 TO 3
190 fOR J = 1 TO 2:PRINt I,J:NEXT J
200 NEXT I

Nesting Loops • 205

In this form, it is evident that line 200 is executed each time around
the loop. Each time the line is executed, the FOR .. : NEXT loop
with the index variable J goes through a complete cycle. Since many
people feel that this forin is intuitively easier to follow, this might
be the preferred way.

Whenever loops are nested, their index variables must have dif
ferent names. If they are the same, the following situation arises.
(We use variable indents in these samples to illustrate the beginning
and end of nested loops; the computer, however, will delete the
extra spaces.)

11Z11Z1 FOR I = 1 TO 3
111Z1 FOR I = 1 TO 2
121Z1 PRINT I
131Z1 NEXT I
141Z1 NEXT I

RUN
1
2

?NEXT WITHOUT FOR ERROR IN 140
READY.

As stated earlier, the NEXT statement need not take a variable;
indeed it is increasingly common not to include the index variable
name. This omission makes for slightly increased speed, even if it
loses a little self-documentation. For purposes of clarity, however,
beginners should always include the index variable name. If the
index variable is omitted from the NEXT statement, it is associated
with the last unclosed FOR statement. Thus, for example, the fol
lowing program segment is perfectly legal on the Commodore 64:

11Z11Z11Z1 FOR I = 1 TO 995
11Z111Z1 PRINT I
11Z121Z1 NEXT

It is equivalent to

206 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

1BBB FOR I = 1 TO 995
1B1B· PRINT I
1B2B NEXT I

The same principle applies to nested loops, as may be seen from
the following example:

5bB FOR I = 1 TO 2
57B FOR J = 1 TO 4
58111 PRINT "GET IT?"
59fZ1 FOR K = 1 TO 15
bBB PRINT, I,J,K
b1B NEXT
b2B NEXT
b3B NEXT

As before, omitting the index variable from the NEXT statement is
perfectly acceptable and is equivalent to the following:

5bB FOR I = 1 TO 2
57B FOR J = 1 TO 4
58B PRINT "GET IT?"
59B FOR K = 1 TO 15
bBB PRINT I,J,K
b1B NEXT K
b2B . NEXT J
b3B NEXT I

If nested loops have the same endpoint, a single NEXT statement
may be used for all of them. In the following program, such a
NEXT statement is used, saving a line.

PROGRAM 9-2

1BB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
11B PRINT "* *'
12B PRINT"* ILLUSTRATION OF MULTIPLE NEXTS *'
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'

l51tJ PRINT
lbltJ FOR I = 1 TO 4
l71tJ FOR J = 2 TO 3
l81tJ FOR K = 5 TO b
191tJ PRINT I,J,K
21tJ1tJ NEXT K,J,I

Nesting Loops • 207

Lines 170 through 200 are exactlY,equivalent to

l71tJ FOR I = 1 TO 4
l8B FOR J = 2 TO 3
191tJ FOR K = 5 TO b
21tJ1tJ PRINT I,J,K
211tJ NEXT K
221tJ NEXT J
231tJ NEXT I

The order of the index variables as listed in the NEXT statement is
of vital importance since, when loops are nested, they must not
intersect. The reason for this restriction is shown in the following
flawed program segment, where an error message is triggered:

lltJltJ FOR X = 1 TO 3
llltJ FOR Y = 1 TO 2
l21tJ PRINT X,Y'
l31tJ NEXT X
l41tJ NEXT Y

RUN
1 1
2 1
3 1
4 2

?NEXT WITHOUT FOR ERROR IN 130
READY.

For those who prefer graphic illustrations to the numeric exam
ples shown, the following program containing a nest of loops might
be of interest.

. 208 • BETTERPRoqRAMMJNG FOR YOUR COMMODORE 64

PROGRAM 9-3

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
llB PRINT "* *'
12B PRINT "* GRAPHICS ILLUSTRATION OF NESTING *r
13B PRINT "* *'
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
15B PRINT
lbB FOR I = 1 TO 3
17B PRINT "**********"
18B FOR J = 1 TO 2
19m PRINT n ::::::::::"

2BB NEXT J,I

RUN
~=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*

* * * GRAPHICS ILLUSTRATION OF NESTING *
*

•• II ••• II •• /I
II III II II II II I II II ..

II .. II II II II II II II II
.. II II II II II II II II II

II II II II II II II II II II
II II II II II II II a II II

II II II II II II II II II II
II II II II II II II II II II

II II II II II II II II II II
II II II II II II II II II II

READY.

*

Nesting has many practical applications. For example, in the fol
lowing program a multiplication table of the numbers between any
two inputted integers is printed out. (In the two sections that follow
we will explore how nests are used to solve a math problem and to
manipulate character strings.)

Nesting Loops • 209 .

PRo~RAM9-4

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=.=*=*=*=*"
llB PRINT "* *"
12B PRINT"* PRINTING A MULTIPLICATION TABLE *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
15B PRINT
lbB INPUT "ENTER YOUR TWO INTE~ERS:";A,B
17B If A > B THEN TEMP = A: A = B: B = TEMP
18B PRINT
19B fOR I =A TO B
2BB fOR J = A TO B
21B PRINT I;"*";J;TAB(lB);"=";I * J
22B NEXT J
231.'1 NEXT I

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
* PRINTING A MULTIPLICATION TABLE *
* *

ENTER YOUR TWO INTEGERS: ? 5,1

1 * 1 - 1
1 * 2 2
1 * 3 3

[and so on]

READY.

The Sum-of-the-Cube-of-the-Digits Problem

This is an interesting mathematics problem that requires nesting
to solve. The problem is to print out all the three-digit numbers that
equal the sum of the cubes of the individual digits. One such num
ber is 153 because

210 • BETI'ERPROGRAMMING lFOR YOUR COMMODORE 64

153 = (1 t 3) + (5 t 3) + (3 t 3)

One method of solving the problem is to set up a nest of three
loops, where the in.dex of each loop corresponds to one of the digits
of the number. This approach is taken in the following program,
which prints out four such numbers.

PROGRAM 9-5

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*r
.11B PRINT "* *r

12B PRINT"* THE SUM-OF-THE-(UBES PROBLEM *r
l3B PRINT "* *r
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~
l5B PRINT
l6B FOR H = 1 TO 9
l7B FOR T = B TO 9
l8B FOR U = B TO 9
19B IF H*H*H + T*T*T + U*U*U = lBB*H + 1B*T + U

THEN PRINT 1BB*H + 1B*T + U
2BB NEXT U,T,H

RUN
==*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
* *
*
*

153
370
371
407

THE SUM-OF-THE-CUBES PROBLEM

READY.

*
*

The control variables H, T, and U correspond to the hundreds,
tens, and units digits of all possible three-digit numbers. Since the
numbers below 100 do not qualify as three-digit numbers, the digit

NestingLoops • 211

stored in H ranges from 1 to 9 (rather than 0 to 9), which would
yield all the numbers from 0 to 999. For each increment in the H
loop, the T digit moves from 0 to 9, as does the U digit for each
increment of the T digit. For each of the 900 combinations, the
cubes of the H, T, and U digits are added and compared to the
number itself-IOO times the hundreds digit, plus 10 times the tens
digit, plus the units digit. If the two values are equal, the three-digit
number is printed out by storing the value of the number in TEMP
and printing it out. This step is taken because if the individual digits
were printed out separately, they would not be displayed contig
uously.

The Word-Combination Problem

I.n the following program, a five-letter word is rearranged ~to
every possible combination of its component letters by means of five
nested FOR . . . NEXT loops. You might be interested in running
the program yourself and examining the output.

PROGRAM 9-6

lBB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
119 PRINT "* *"
12B PRINT "* REARRANGING A FIVE-LETTERED WORD *"
13B PRINT "* *"
14B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
lSB PRINT
lbB INPUT"ENTER YOUR FIVE-LETTERED WORD:";WD$
17B IF LEN(WD$) <>S THEN lbB
18B FOR I = 1 TO S
19B FOR J = 1 TO S
2BB IF J = .1 THEN 32B
21B FOR K = 1 TOS
22B IF K = J OR K = I THEN 31B
23B FOR L = 1 TO S
249 IF L = K OR L = J OR L = I THEN 3BB
aSB FOR M = 1 TO S

212 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

2bB IF M = L OR M = K OR M = J OR M = I THEN 29B
27B PRINT MID$(WD$,I,l);MID$(WD$,J,l);MID$(WD$,

K,l);
28B PRINT MID$(WD$,L,l);MID$(WD$,M,l);" ";
291Z1 NEXT M
3BB NEXT L
31B NEXT K
32111 NEXT J
331Z1 NEXT I

The inputted word is first checked to be sure that it is composed
of five letters. If it isn't, it is rejected and another word is requested.
Once it has passed the five-letter test, each letter of the word is
successively jumbled by printing the first, second, third, fourth,
and fifth letter in each of the possible positions. This step is accom
plished by means of a nest of five FOR . . . NEXT loops in which
provision is made to ignore all those combinations where the value
of the indexes are the same. Whenever this happens (for example,
'when J is equal to I) control is sent to the corresponding NEXT
statement, effectively ignoring such combinations.

The Telephone Problem

When new telephone numbers are issued, they are invariably
given in the form of seven-digit numbers rather than the old system
of two letters followed by five digits. The change was necessitated
because of the vast increase in telephone numbers that were required
across the United States. Contrary to what the telephone authorities
might say, it is not always easy to remember a seven-digit number.
The purpose of the following program is to try to alleviate this
difficulty. If you examine the dial on the typical telephone, you will
notice that the number 2 is associated with the letters A, B, and C;
3 with D, E, and F; and so on. The digits 1 and 0 have no letters
associated with them, nor do the letters Q or Z appear on the dial.

In the program that follows, a user is asked to type in a seven
digit telephone number. The seven-character number is accepted as
a string and is then sliced into its component parts, each of which is

Nesting Loops • 213

stored into the array PHNE. (PHNE is not called PHONE because
the latter contains the keyword ON.) The conversion from the string
to its numeric representation is accomplished by slicing it with the
MID$ function, taking the ASCII value, and subtracting 48. Since
the ASCII code for 0 is 48', 49 is the code for 1, and so on, this
operation places the value of the digit typed into the array rHNE.

Once the seven digits have been entered into the array PHNE, a
nest of seven loops is used to compose seven-character words con
sisting of every possible combination of the letters associated with
the digits. Since there are 3 i 7 combinations, the output consists
of well over 2,000 words-from which, it is hoped, at least one
suitable name can be selected that can be more easily remembered
than the seven-digit number. Since the digits 0 and 1 have no alpha
betic equivalents, they are retained as is. One warning though: If
you run this program, be prepared for voluminous output.

PROGRAM 9-7

100 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
110 PRINT "* *"
120 PRINT"* THE TELEPHONE NUMBER PROBLEM *"
130 PRINT "* *"
140 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
150 PRINT
lb0 DIM REF$(9),PHNE(7)
170 FOR I = 0 TO 9
180 READ REF$(I)
190 NEXT I
200 INPUT "ENTER YOUR TELEPHONE NUMBER:";PHNE$
21a FOR I = 1 TO 7
220 PHNE(I) = ASC(MID$(PHNE$,I,l» - 48
230 NEXT I
240 PRINT:PRINT
2S0 FOR A = 1 TO 3
2b0 FOR B = 1 TO 3
270 FOR C = 1 TO 3
280 FOR D = 1 TO 3
290 FOR E = 1.TO 3
300 FOR F = 1 TO 3
310 FOR'G = 1 TO 3

214 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

329 PRINT MID$(REF$(PHNE(l»,A,l);
339 PRINT MID$(REF$(PHNE(2»,B,1);
349 PRINT MID$(REF$(PHNE(3»,C,1);
359 PRINT MID$(REF$(PHNE(4»,D,1);
369 PRINT MID$(REF$(PHNE(S»,E,l);
379 PRINT MID$(REF$(PHNE(6»,F,1);
389 PRINT MID$(REF$(PHNE(7»,G,1)" ";
399 NEXT G,F,E,D,C,B,A
499 DATA "999","111","ABC","DEF","GHI","JKL",

"MNO","PRS","TUV","WXV"

Nesting Other Structures

Not only, can FOR ... NEXT loops be nested, but so may
GOTO loops and IF . . . THEN statements. For example, the fol
lowing program segment performs a "counting" FOR ... NEXT
loop for as long as the user enters a "c" for "continue."

1999
1919
1929
1939
1949
1959

FOR I = 1 TO 19
PRINT I;

NEXT I
PRINT
INPUT "HIT C TO
IF AGAIN$ = "C"

CONTINUE: ";AGAIN$
THEN 1999

Loops, moreover, are not the only structures that can be nested.
Subroutines may also be nested-and frequently, are, as shown in
the following program segment:

1999 GOSUB 2999
1919 PRINT "BACK IN THE MAIN ROUTINE"
1929 END
2999 PRINT "SUBROUTINE A"
2ra19 GOSUB 39ra9
2929 PRINT "BACK IN SUBROUTINE A"
2939 RETURN
3ra99 PRINT "SUBROUTINE B"
3919 PRINT "STILL IN SUBROUTINE B"
3929 RETURN

RUN
SUBROUTINE A
SUBROUTINE B
STILL IN SUBROUTINE B
BACK IN SUBROUTINE A
BACK IN THE MAIN ROUTINE

READY.

Nesting Loops • 215

In this program segment, control is initially sent to the subroutine
beginning in line 2000. Once there, the literal "SUBROUTINE A"
is printed. Atthat point, the subroutine beginning in line 3000 is
invoked, which has the effect of printing out the literals "SUBROU
TINE B" and "STILL IN SUBROUTINE B". Execution of the
RETURN statement in line 3020 sends control back to line 2020,
which prints the message "BACK IN SUBROUTINE A". Control
then drops to the next line, which returns control to line 1010.
Subsequently the pIessage "BACK IN THE MAIN PROGRAM"
is printed out, at which time the program segment terminates.

It is also possible to call a subroutine from within a FOR . . .
NEXT loop. This is not regarded as an exit from the loop. For
example, the following segment of code is perfectly legal:

1mmB FOR I = 1 TO S
1IZI1m GOSUB 2BB!2I
lm2m NEXT I
1L?I3m END
2mm!21 PRINT I, 2 * I
2m1lZ1 RETURN

RUN
1 2
2 it
3 6
it 8
5 10

READY.

216 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

Review Questions

1 • What is a nest of loops?

A nest of loops is a structure in which at least one loop is
completely enclosed within another.

2 • What must be true about the names of the index variables in
nested FOR ... NEXT loops?

They must each have a different name.

3 • What is the result if nested FOR ... NEXT loops are given
identical index-variable names?

A ?NEXT WITHOUT FOR ERROR diagnostic message is
displayed and the program terminated.

4 " What happens if the order of the indexes as specified in the
NEXT statement or statements does not reflect the order as
specified in the FOR statements?

A ?NEXT WITHOUT FOR ERROR message is displayed
and the program is terminated.

5 " Is it mandatory for the NEXT statement to include the index
variable name?

No, it is perfectly correct to omit it.

6 • What is the effect of omitting the index-variable name in a
NEXT statement?

The NEXT automatically references the last unclosed FOR
statement.

7 " What will the following program print?

lBB fOR I = 1 TO 3
llB PRINT "I ";

Nesting Loops • 217

128 FOR J = 1 TO 4
138 PRINT nJ n. ,
148 NEXT J
151Z1 NEXT I

I J J J J I J J J J I J J J J

READY.

HANDS-ON PRACTICE

1. Write a one-line instruction to print out the pairs of numbers as
follows:

(1 ,1) (2, 2) (3, 3)
(2 ,1) (2, 2) (2, 3)
(3 , 1) (3, 2) (3, 3)

2. Write equivalent statements to

FOR 1=1 TO 3:FOR J=l TO 3:FOR K=4 TO 3.2
STEP -.l:NEXT K,J,1

/

TRY YOUR HAND AT THESE

1. Write a program to generate the sum of the factorials from 1 to
N, where N is a user-inputted integer. (The x factorial is defined
mathematically as x(x - l)(x - 2) ... (1). For example, 5 fac
torial (also written 5!) is equal to 5(4)(3)(2)(1) = 120.)

2. Write a-program to print out the prime numbers from 3 to 1,000.
(A prime number is an integer that is not evenly divisible by any
integer other than itself and 1, for example, 17.)

CHAPTER

il@ ___ _
Audio-Visual Program
Enhancement

Up to now we have explored the way BASIC handles numeric and
textual data on the Commodore 64. In this chapter we will introduce
what are known as the graphics and sound-generation features of
the Commodore 64-those features that affect the screen display
and the waveforms produced by the highly sophisticated music synthe
sizer. In particular you will learn about

• the· special graphics characters shown on many of the keys
• the Commodore ASCII character set
• converting a character to its ASCII equivalent
• converting an ASCII number to its equivalent character
• embedding control characters in quotation marks
• clearing the screen
• controlling the colors
• the PEEK function and the POKE command
• setting the background color of the. screen
• incorporating sound into a program
.. the general characteristics of a sound wave
• the four waveform types
• the Commodore SID chip
"setting the sound parameters: frequency, volume, envelope

(ADSR), waveform

218

Audio-Visual Program Enhancement - 219

The Commodore 64 can produce a wide range of special charac
ters known as graphics characters. Many of these characters can be
combined on the screen (or printed out) to make designs that are
both useful and beautiful. You will notice that on the front side of
most of the keys, there are two strange-looking symbols enclosed in
boxes. The righthand one is obtained by holding down the SHIFT
while pressing the appropriate key, and the left one is obtained by
simultaneously holding down the Commodore key and the required
key. By using combinations of these characters it is possible to
display a wide variety of shapes and designs that may enhance a
program's display.

There are also lowercase characters and special "mode-changing"
symbols that control the manner in which the entire display is rep
resented. With so many characters available and (for technical rea
sons) with only 256 codes to represent them, the designers of the
Commodore 64 resorted to the clever technique of having two dif
ferent character sets. The difficulty is that characters from both sets
cannot be displayed simultaneously. It is possible to switch between
the two character sets by pressing the Commodore and SHIFT keys
simultaneously. Normally, code number 65 represents the character
"A", but when the Commodore-SHIFT combination is used every
capital A on the screen instantly changes to lower case and all sub
sequently printed A's are also lower case. All graphics characters
accessed by the SHIFT key are converted into upper case in a
similar manner.

You are already familiar with the standard uppercase symbols
used for writing programs since these are the only ones we have used
in the text. The graphics and lowercase symbols are used for deco
rative purposes. The mode-changing characters, by contrast, have a
definite effect in the way characters are displayed on the screen. For
example, pressing the CLRlHOME key generates the special
HOME character, which brings the flashing cursor to the top left of
the screen. Pressing SHIFT-CLRlHOME clears the screen before
moving the cursor to the home position. Other mode-changing char
acters· include CTRL-l to CTRL-8 and Commodore-l to Commo
dore-8, which control the colors of all characters subsequently
displayed. Others are CTRL-9 (RVS ON), which causes all subse-

220 • BE~ PROGRAMMING FOR YOUR COMMODORE 64

quently displayed characters to appear in reverse image (switches
the foreground and background colors), and CTRL-O (RVS OFF),
which cancels the action ofCTRL-9.

It is unfonunate that all these mode-changing characters take
effect immediately after being typed. If they did not, you could
include them in a program for subsequent activation. But if you
type, for example,

1121

and then press the SHIFT-CLRlHOME combination, all that hap
pens is that the screen clears before line 10 can be entered. The
solution is to include the desired character in a PRINT statement.
When an opening quotation sign is typed, indicating the stan of a
literal, the Commodore 64 automatically defers action until the lit
era! is printed. For example,

A$="

followed by the SHIFT-CLRlHOME .combination does not in-
. stantly clear the screen but instead displays on the screen the char

acter representing CLR (an inverse hean). Typing the end quote
and then pressing RETURN has the effect of setting A$ to the
character that clears t4e screen and sends the cursor to the home
position. The screen is not affected, however, until the value in A$
is printed out. The general principle may be observed in the follow
ing program, which clears the screen and prints a row of asterisks
diagonally down the display. Immediately after the screen is filled,
it is cleared and the same action takes place in the other diagonal
directioIi. Thi~ process continues indefinitely.

PROGRAM 10-1

19121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
11121 PRINT "* *~
12121 PRINT". ILLUSTRATION OF CLEARING SCREEN *"
13121 PRINT "* *~

14121 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"

Audio-Visual Program Enhancement. 221

1521 PRINT
1621 PRINT "1:1"
1721 FOR I = 1 TO 24
1821 PRINT TAB(I);"************"
1921 NEXT I
22121 PRINT "a"
2121 FOR I = 2~ TO 1 STEP -1
2221 PRINT TAB(I);"************"
2321 NEXT I
2421 GOTO 1621

Each of the characters on the Commodore 64 is represented inter
nally (as already mentioned) by the ASCII code, which ranges from
zero to 255. Since it is often easier to manipulate data in the form of
numbers, two built-in functtons exist to translate between the two
representations. The first function, ASC, takes a string and converts
it to its numeric form. You will remember that the statement

PRINT ASC("A")

displays the value 65, which is the Commodore's way of storing the
character A. If the argument of the ASC function is longer than one
character, only the first character is converted. The statement

PRINT ASC("CONTEMPLATION")

displays the value 67 because the internal representation of the letter
C (the first letter of the literal) is 67. Also recall that the complemen
tary function to ASC is the CHR$ function. It converts the numeric
represen,tation of a character to the character itself. For example,
the statement,

PRINT CHR$(66)

displays the character B.
In the following program some of the printable characters avail

able on the Commodore 64 are displayed together with their nu
meric codes. The codes representing the characters displayed range

222 • BEITER PROGRAMMING FOR YOUR COMMODORE 64

from 160 to 255. After each character is printed the computer waits
until a key is pressed, which gives the viewer a chance to examine
the character set. For fast viewing, the user may hold down the
space bar (or any other repeating key, for that matter).

PROGRAM 10-2

l~B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
llB PRINT "* *'
l2B PRINT "* THE CHARACTER CODES *'
l3B PRINT "* *'
l4B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
l5B PRINT
lbB FOR I = lbB TO 255
17B PRINT I,CHR$(I)
l8B GET X$~IF X$ = nn THEN l8B
19B NEXT I 1

The Commodore 64's ability to display fascinating color is illus
trated in the next program, where some interesting patterns are
generated by printing two given characters of the character set in
the complete spectrum of colors. The first line of the program clears
the screen, as character 147 is none other than the CLR character.
This may be verified by typing the instruction

PRINT ASC("

followe~ by the SHIFT-CLRlHOME combination, the end quote,
and the final parenthesis. Thus, when you print the character whose
code number is 147, you are actually displaying the character for
clearing the screen. After the screen is cleared and the standard
heading printed out, the user is asked to enter two character codes,
which are stored in the variables A and B. Mter initializing A$ to
the null string, the program proceeds to concatenate the characters
represented by the codes A and B into TEMP$. Twenty copies of
TEMP$ are then copied end-to-end into A$, and B$ is set to A$
shifted over by one position. At this point, alternating lines of A$
and B$ are displayed in the various colors available· on the Commo-

Audio-Visual Program Enhancement - 223

dore, filling the screen with triangles in a pleasing pattern. To view
the pattern in a more leisurely manner, the user holds down the
control key. The DATA statement contains the equivalent codes to
the characters controlling the color. .

PROGRAM 10-3

lmm PRINT CHR$(147)
11m PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
12m PRINT "* *"
13m PRINT "* GRAPHIC DESIGN GENERATOR *"
14m PRINT "* *"
15m PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
lbm PRINT
'17m INPUT "ENTER TWO NUMERIC CHARACTER CODES: ";

A,B
18m A$ = "":tEMP$ = CHR$(A) + CHR$(B):FOR I = 1

TO 2m:A$ = A$ + TEMP$:NEXT I
19m B$ = MID$(A$,2) + LEFT$(A$,1)
2mm RESTORE
21m fOR I = 1 TO 1b
22m READ COL
23m If I / 2 = INT(I / 2}THEN PRINT CHR$(18);

CHR$(COL);A$;:GOTO 25m
24m PRINT CHR$(18);CHR$(COL);B$;
25m NEXT I
2bm GOTO 2mm
27m DATA 144,5,28,159,15b,3m,31,158,129,149,15H,

15.1,152,153,154,155

(We recommend that you try character codes. 169 and 223 for the
first values for A and B, as they are particularly pleasing to the eye.)

There is virtually no end to the variety of the combinations pos
sible by using different characters and colors. The following pro
gram, for example, displays a multicolored pattern by printing
triangles with RVS alternately ON and OFF-by printing
CHR$(18) and CHR$(I46) respectively-with the colors changing
randomly and continuously.' The strategy employed this time is
reading the color codes from a DATA statement into the array COL.

224 • BETTER. PROGRAMMING FOR YOUR COMMODORE 64

Only 15 (rather than 16) are read into the array because color num
ber 7 (which is omitted) is the background color and so creates a
"hole" in the sequence of patterns.

PROGRAM 10-4

lmm PRINT CHR$(147}
llB PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
12m PRINT "* *
13B PRINT"* ANOTHER INTERESTING PATTERN *'
14B PRINT "* *
15B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*'
lblil PRINT
171i1 INPUT "ENTER TWO CHARACTER CODES: ";Cl,C2
18B DIM COL(15)
191i1 FOR I = 1 TO 15=READ COL(I):NEXT I
21i11i1 PRINT CHR$(18)+CHR$(Cl)+CHR$(14b)+CHR$(C2)

+CHR$(COL(INT{RND(1)*15)+1»;
211i1 PRINT CHR$(18)+CHR$(C2)+CHR$(14b)+CHR$(Cl)

+CHR$(COL(INT(RND(1)*15)+1»;
221i1 GOTO 21i1m
231i1 DATA 144,5,28,159,15b,31i1,31,158,129,149,151i1,

151,152,153,154,155

Direct Machine Access with PEEJI{ and POKE

Extensive as Commodore BASIC is, there are many features of
the ~chine that are not supported by it. Many of the advanced
features such as sprite control, changing the character set, and sound
generation can be effected only by special commands that are able
to access selectively parts of the memory that BASIC ordinarily is
not able to reach. Unfortunately,the scope of this book prevents us
from entering into this area in detail. Indeed, a sizable work could
be written solely on this point.

As was mentioned previously, the Commodore 64has 65,536
distinct memory locations, each of which is capable of holding a
number from 0 to 255. By using the POKE command in BASIC any
one of these memory locationS may be set to any legal value. In

Audio-Visual Program Enhancement • 225

addition, anyone of these locations may be: examined by use of the
PEEK function. For example,

POKE 51Z11Z11Z1,3

followed by

PRINT PEEK(51Z11Z11Z1)

displays the value 3 that was stored in location 5000 by the POKE
command. Certain locations (particularly those in the high areas of
memory-above 50,000) create special effects. By taking advantage
of these features it is possible to exploit the computer to its fullest.

One particular instance in which POKE allows for manipulation
of the machine in a way that is impossible otherwise is changing the
background color of the screen to any specified color. The command
needed is

POKE 53281,N

where N is the color code ranging from 0 to 15.

Sound Generation

Even though the material needed to generate sound is somewhat
more involved than any yet encountered, nevertheless, the incredi
ble excitement that can be incorporated into programs-especially
games-by taking advantage of this feature makes mastering it
worth the effort. Moreover, it is not necessary to have any previous
knowledge of music to create some very interesting sounds on the
Commodore 64.

The Commodore sound chip (called the "SID," for Sound Inter
face Device) is actually a sophisticated peripheral processor, that is,
a computer in its own right. The SID is connected to the heart of
the Commodore 64 by the 25 locations from 54,272 to 54,296. It is
by manipulating the contents of these addresses that the spectacular

226 • BEITER PROGRAMMING FOR YOUR COMMODORE 64

variety of effects are accomplished. As you will have guessed, in
BASIC this can be done only through POKEs.

The sounds we hear (no matter how complex they may be) are
really combinations of vibrations impinging on the eat. There are,
however, relatively pure vibrations which we recognize. as notes.
These notes have specific frequencies, which are the first values that
must be set when creating a sound on the Commodore 64. The
whole Western system of music is based on ratios between these
frequencies.

In order to create a sound, it is necessary to specify some kind of
waveform, the basic vibrational energy which more complicated pa
rameters shape into the final sound. The SID chip allows for four
distinct waveforms:

White noise (for sound effects)

Pulse (a square wave) r1Jl.J"L

Sawtooth ~

Triangular ~

Two other important parameters are the attack/decay and sustain!
release values, which determine what is referred to as the "enve
lope" of the wave that makes up the tohe. When one of the four
simple waveform types is emitted, it starts out quietly and rises in
volume to a maximum predetermined intensity. The rate at which
this process occurs is known as the attack. It then dies down from
its peak volume to some lower volume. The fall rate is known as the
decay. The lower volume to which the note drops is called the sustain
level. Finally, when the note stops, it falls from the sustain level to
zero volume, at a rate which is called the release.

Using these four values, the timbre, or musical quality, of the
note may be controlled. The difference between a piano, an electric
guitar, and a clarinet is entirely due to the shape of the waveforms
they emit. By properly modifying the ADSR and other envelope
parameters, it is possible to simulate a wide variety of musical

Audio-Visual Program Enhancement a 227

sounds. The waveform. also affects the sound, but in a more subtle
way; the envelope changes the general characteristics of the tone
sharp, gradual, and so on-whereas the waveform.' makes the sound
more like the pluck of a harp string or a piano-slight changes in
the musical quality of the tone. I

When generating sound on the Commodore 64, the first action is
to erase all previous values from the SID chip so that any residual
values there will not affect the generated tone. T~s stop is accom
plished by setting locations 54272 through 54296 to zero by the
following line:

160 FOR I = 54272 TO 54296:POKE I,0:NEXT
I

Next, set the desired ADSR values. Each of these is a number from
o to 15, where 15 is the highest legal value and 0 is the lowest. These
values may be set by the following statements:

170 POKE 54277, A * 16 + D
180 POKE 54278, S * 16 + R

where the variables A, D, S, and R contain the ADSR values (0
through 15). Next, the volume (the overall loudness of the emitted
sound) must be set, again to a number between 0 and 15. This step
is accomplished by the statement

190 POKE 54296,V

where V is the volume. Then the frequency must be set to a number
between 0 Hz and 65,535 Hz. Since it cannot all fit into a single.
byte, it is divided into high- and low-order portions. If the fre
quency is stored in the variable F, the statement

200 HF=INT(F / 256}:POKE 54273, HF:POKE
54272,F - HF * 256

sets both portions correctly. (HF is an arbitrary variable name that
stands for the high part of the frequency. The low part of the fre-

228 11 BETI'ER PROGRAMMING FOR YOUR COMMODORE 64

quency is computed by using the values of F and HF.) Finally, the
waveform must be set. This value may be calculated by looking up
the corresponding value in the following table. Note that two wave
forms may not be combined. The result which is obtained by adding
their corresponding values does not sound very pleasant at all.

Waveform
White noise
Square
Sawtooth
Triangular

Value
128
64
32
16

A value is entered by specifying one of these waveforms by the
statement

21B POKE 54276, W + 1

where the variable W contains the waveform value (one of the four
numbers listed in the table). The 1 that is added at the end of the
statement is included to trigger the start of the AID phase. Mer a
user-defined delay (which is usually accomplished with a delay loop,
where the length of the delay represents the duration that the note
is to be sustained);

22B FOR DELAV = 1 TO 5B:NEXTDELAV

the release phase is begun by means of the s~tement

23B POKE S4276,W

The following program implements these features. It requests a
frequency from the user, proceeds to play the note in the form of a
triangular wave, and then goes back to request another note in an
infinite loop. We recommend frequencies above 220, since anything
lower might be inaudible. (Remember the upper limit is 65,535.)

Audio-Visual Program Enhancement .• 229

PROGRAM 10-5

1mB PRINT CHR$(147)
11m PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
12m PRINT "* *"
13m PRINT "* NOTE GENERATION *"
14m PRINT "* *"
15B PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*"
16m PRINT
17m FOR' I = 54272 TO 54296:POKE I,B:NEXT I
18m POKE 54277,~ * 16 + 9:REM AID
19m POKE 54278,m * 16 + 9:REM SIR
2mm POKE 54296,15:REM MAXIMUM VOLUME
21m INPUT "ENTER THE DESIRED FREQUENCY:";F
22m HF = INT(F I 256):POKE 54273,HF:POKE 54272,

F - HF * 256
23~ POKE 54276,17
24m FOR T = 1 TO 5m:NEXT T
25m POKE 54276,16
26m INPUT "ANY MORE";AGAIN$
27m IF AGAIN$ = "YES" THEN 21B
28B POKE '54296, B

There are many more features associated with the SID chip. The
Commodore 64 is truly a highly sophisticated sound generator.
However, taking full advantage of its versatility requires a great deal
more time and effort and programming difficulty. As you can see
from the preceding example, which merely sounds out a single note,
a more thorough treatment of the subject is well beyond the scope
of this book. Still, even a limited amount of sound can infuse a
program with excitement.

Here is another sound program, which simulates the sound of a
jet plane.

230 • BETTER PROGRAMMING FOR YOUR COMMODORE 64

PROGRAM 10-6

lBB PRINT CHR$(147)
118 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~
128 PRINT "* *'
13B PRINT "* JET *'
14B PRINT "* *'
158 PRINT "*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*~
16B PRINT
17B S = 54272:Q = .97
18B FOR I = S TO S + 24:POKE I,B:NEXT I
19B POKE S + 5,89:POKE S+6,24B
2BB POKE S+24,15
21B POKE S + 4, 129
22B INPUT "ENTER YOUR HIGH AND LOW FREQUENCY:";

HI,LO
23B IF HI < LO THEN TEMP = HI:HI = LO:LO = TEMP
24B F = HI
25B HF = INT(F / '256):LF = F - HF * 256
26B POKE S+l,HF:POKE S,LF
27B F = F * Q
28B IF F < LO OR F > HI THEN Q = l/Q:FOR T = 1

TO 5B:NEXT T
298 GOTO 25B

White Noise

This program is very similar to the previous one in that it pro
duces sounds by using most of the same POKEs. However, it dif
fers, first, because it does not stop after one tone but sweeps a range
between two specified frequencies in an infinite loop. Second, it
produces the chaotic roar of a jet plane overhead rather than a pure.
musical tone; this sound is obtained by setting the waveform to what
is known as "white noise" rather than a pure tone. White noise is
analogous to white light-which is a mixture of all the colors of the
spectrum. In a similar manner, white noise is a mixture of many
random frequencies, which combine to sound like a "hissing" noise.
The hiss can be turned into an explosive sound by setting the attack
and decay values for very sharp rise and fall (15 for each).

Audio-Visual Program Enhancement - 231

Multiple Voices

The Commodore 64 supports more than just one voice at a time.
In fact, it permits three different simultaneous sounds, each with its
own ADSR, frequency, waveform, and other values. The locations
that are POKEd for the additional voices are quite similar; just add
seven to each location, as will be observed fro~ the following table.
The one exception, you will note, is the volume location, which is
common to each of the voices. Therefore, the intensity of the tone

I for each of the voices is the same; all that can be controlled is the
general loudness of the sound produced-not the mix.

Some of the Most Popular Sound Memory Locations
Location

54272/3
54274/5

54276

54277/8
54296

Explanation
Frequency of tone to be produced.
Specifies the shape of the wave if it's of the pulse (square)
type.
Specifies (among other things) the type of the waveform
and switches between the A, D,and S phases of the en
velope and the R.
Specifies the A, D, S, and R.
Sets the volume.

Review Questions

1 • How are the righthand graphics symbols on most of the keys
obtained?

By holding down SHIFT while pressing the appropriate key.

2 .. How are the lefthand graphics symbols accessed?

By holding down the Commodore key and the required key.

3 • What is the effect of the instruction PRINT CHR$(l47)?

It clears the screen.

232 • BETTER PRoGRAMMING FOR YOUR COMMODORE 64

4 • What is the effect of the PEEK function?
I

It returns the value of the specified memory location.

5 • What is the purpose of the POKE command?

It sets the value of a given memory location to a specified value
from 0 to 255.

6 • Given the statements

POKE 212148,59
PRINT PEEK(212148)

'Yhat (if anything) is displayed on the screen?

The number 59.

7 .. Given the program segment

POKE 212155,96
PRINT PEEK(551212)

what is printed?

There is not enough information given to determine what
would be printed; it depends on the value stored in location
5502 at the time.

8 II What is the effect of the statement

POKE 53281,1

The background color of the screen changes to white.

9 11 What range of locations controls the sound capabilities of the
Commodore 64?

Locations 54272 to 54296.

Audio-Visual Program Enhancement • 233

10 • What do the letters ADSR stand for?

Attack (the rise rate), decay (the fall rate), sustain (the length
of time the note takes before it begins to trail off), and release

. (the rate of the trail-off).

11 • How is the SID chip cleared?

By setting all the locations in the range 54272 to 54296 to o.

12 • What is white noise?

White noise is a random mixture of frequencies.

13 • How many voices are permitted on the Commodore 64?

A maximum of three voices are permitted.

TRY YOUR HAND AT THESE

1. Write a program that plays a concert A (frequency 440).
2. Write a program that plays an A in four different octaves. (Hint:

A note one octave above another has a frequency of twice the
lower octave.)

3. Write a program to simulate a wailing siren ..
4. Write a program to take a message typed in English, convert it

to international Morse code, and sound it out. The standard to
be used is that a dash is three times as long as a dot.

5. Using the white-noise generator, devise a program to simulate
the sound of a machine gun.

B.P.c64·- J 5

CHAPTER

nn
Debugging

In computer programming it is a universal truth that no program
worthy of the name runs the way one expects it to the first time, no
matter how experienced the programmer. What distinguishes the

. good programmer ft:om the bad, however, is·the approach adopted
in finding and correcting the errors. The proper way to go about
eradicating errorS is to expect the program to contain them at the
outset and so be prepared for them when they arise.

The aim of this chapter is to give you the tools to prevent some of
the most common errors from, arising in the first place, and when
they occur, (rather than should they occur), to help find and elimi
nate them. Among programmers, all errors are known as bugs and
the process of getting rid of them is called debugging.

There are two major types of errors. The first falls under the
broad category of syntax errors. The second group involves errors
of logic. Syntax errors ~e by far the easiest to detect. In fact, the
computer does it for you automatically by printing a diagnostic
message advising you of the nature of the error and pinpointing the
offending line. All the programmer need do is understand the nature
of the error and correct it. Errors of logic, on the other hand, cannot
be detected by the computer and are sometimes quite difficult to
track down. They are often caused by misconceptions of the prob
lem and unforseen special cases.

234

Debugging. 235

Syntax Errors

Just like natural languages, BASIC adheres to grammatical rules.
In this section we will explore the most frequently encountered
syntax errors. One of the commonest types is the mistyping of a
keyword, for example, PRUNT for PRINT. This error is detected
by the system during execution of the program and not when the
line is entered. If the offending statement is in line 20 the message

?SYNTAX ERROR IN 20

appears. At this point, the pro1X\r procedure is to LIST the offend
ing line by typiJ?g in

LIST 2111

Mter the offending line has been scrutinized and the error found,
the line is modified, after which the program can be run again. Some
of the most common syntax errors occur repeatedly in a program.
Misspelling of keywords is probably the most common,. followed
closely by variable names containing keywords, some of which
might be unfamiliar to you and are thus difficult to detect. Some
innocent-looking though invalid variable names follow:

Variable Name

WIDGET
LENGTH
BINGO
FORGOTTEN
STINGY

. STUFF
MORE
COMMAND
FRIEND
PHOSPHORUS
TONE
FOREIGN

Keywotd Included

GET
LEN
GO
FOR,GO
ST (An abbreviation for STATUS)
ST
OR
AND
END
OR
TO
FOR

236 • BETfERPROGRAMMlNG FOR YOUR COMMODORE 64

Variable Name

PALLETTE
DIME
TREAD
SPOON
TOGETHER
THOROUGH
NOTHING
SHIFT
FORGET
DEFINITION

Keyword Included

LET
DIM
READ
ON
TO, GET
OR
NOT
IF
FOR, GET
DEF,ON'

Now that you have been made aware of this feature, can you see any
problems that might be caused by the variable name "OPPOSI
TION"? It happens to contain the keyword "ON" and so is invalid.

A more obscure type of syntax error is an arithmetic expression
in which the parentheses are not balanced. The Commodore 64
simply does not tell you that the parentheses are unbalanced. In
stead, it rudely gives the standard .?SYNT AX ERROR message,
leaving the bewildered programmer to wonder what is wrong. An
example of this tYPe of error follows:

A = (3 * 1) / (2 / 5 + 16 t (3 - 2)

Although a quick glance at this statement might not reveal anything
wrong, a closer scrutiny will show that there are three left parenthe
ses, and only two right ones. Of course, just having an equal number
of opening and closing parentheses is no guarantee that the expres
sion is acceptable. The next example does, in fact, ~ontain two left
and two right parentheses. Since they face the wrong direction,
however, the computer flags it as a syntax error.

8 =)3 + 2(* (4 + 5)

Mathematical expressions must also be written in a certain way,
even if other ways are valid in "normal" math. For example, al

\ though implied multiplication is perfectly valid in algebra and ordi-

Debugging • 237

nary arithmetic, any attempt to use implied mUltiplication in a
BASIC statement will lead to problems. Thus, although

x = Sa + 6bc

is a fine example of an algebraic expression, it cannot be written in
BASIC in that form. Instead, it must be written as

x = 5 * A + 6 * B * C

Errors Qf Logic

Once all the syntax errors have been corrected, some programs
still stubbornly refuse to ruri to completion. A typical example fol
lows.

PROGRAM 11-1

lB fOR I = -5 TO 5
2B PRINT III,
3B NEXT I
RUN

1
1
1
1
1

?DIVISION BY ZERO ERROR IN 20
READY.

This kind of error can be infuriating because the program seems to
work for some values but not for others. As usual, the offending
line should be listed out. It reads

2B PRINT I I I

By taking advantage of the information contained in the ettor mes
sage, it becomes obvious that the program must be dividing by zero,

238 • BE'lTERPROGRAMMING FOR YOUR COMMODORE 64

which· is an illegal operation. At this point, the value of I can be
printed out in immediate mode. It will then be seen that its value
indeed is zero. Upon examination of the loop, it becomes clear that
its index, I, does indeed take on the value of 0 when going from - 5
to 5 and hence, division of 0 by 0 is performed. Now that the nature
of the problem is understood, it remains for the programmer to
correct the error. One way would be to include an.IF statement
b~fore the calculation of I / I is performed. For example,

lS IF I = B THEN PRINT "VALUE
UNDEFINED":GOTO 3B

which avoids the special case of division by zero.
Another common type of error, but fortunately one that is easily

~etected, is the ?TYPE MISMATCH error. It is caused by assigning
a value of one type to a variable of a different type, for example, in
the following lines of code:

COM$ = 426
MOD = "DORE"
W(REF$) = 6
FOR INDEX$ = 1 TO S

Examine the following program and try to determine if it will run
without difficulty.

PROGRAM 11-2

lB DIM X(lBB)
2B FOR I = 1 TO lBB:X(I) = INT(RND(l) * 100)

+ l:NEXT I
3B FOR J = 1 TO lBB
4B NEXT J
SB PRINT X(J)

Even though the array X is generated by the index I, when print
ing it out there is no reason at all to stay resolutely with the index I.
Using the index J is perfectly acceptable, as long as J ranges from 0

Debugging .• 239

to 100 (the dimensioned size of X) In this case, however, X(n is
printed outside of the FOR ... NEXT loop. In such a, situation,
the, vallie of the index J is 101, 1 more than the dimensioned value,
the reason being that a FOR ... NEXT loop behaves identically to
the following section of code:

10 J = 1

[body of loop]

100 J = J + 1
110 IF J <= 100 THEN 20

The only way this loop is exited is when J becomes equal to 101. In
a similarfashion, the index of a FOR . . . NEXT loop that has been
"satisfied" will always be 1 greater than the ending value specified
in the FOR statement. Therefore, an error is generated when the
attempt is made to print out the value of X(101), which is nonexis
tent. The obvious correction to make here is to place the PRINT
instruction inside the loop, thereby performing what was originally
desired, namely, the printing out of each of the 100 elements of the
array, one beneath the other.

A much more subtle error is the kind that does not generate a
diagnostic message at all. For example, if instead of writing

lB PRINT "HI THERE"

you omitted the quotation marks entirely, the variable HITHERE
would be printed. In the assumption tltat it had never been assigned
a value, the number printed out would be O.

Another common mishap involving the omission of quotation
signs in literals is forgetting the trailing quotation sign. Any further
commands on that line become part of the literal and, as a result,
are not executed as intended. For example,

2B PRINT "HELLO:IF X > Y THEN GOTO SH
,

is treated by the computer as the li~eral

·240 • BE1TERPROGRAMMING FOR YOUR COMMODORE 64

. "HELLO:IF X > Y THEN GOTO SB"

In the event that the programmer forgets the trailing quotation sign
it is supplied automatically by the system and no error message is
displayed.

When dealing with loops, certain errors repeatedly crop up. For
example, consider the following program:

PROGRAM 11-3

lB'DIM X(lIZ1B)
21Z1 FOR I = 1 TO lBIZI:X(I) = I:NEXT I
31Z1 PRINT X(J)
4B FOR J = 1 TO llZ1B
SB NEXT J

Here the intention is to print out all 100 elements of the array X.
Notice, however, that the PRINT instruction is located outside the
loop rather than within. The sUbscript J is therefore not defined and
defaults to the value O. Printing out X(O) (which is undefined) pro
duces the value O. As a result, 0 is displayed by the PRINT state
ment. You will notice that this particular errOr, although similar to
the one made in Program 11-2, does not generate an error message,
whereas Program 11-2 did. In practice, this type of error is much
harder to detect beCause the program does generate results. Com
pare this situation with the following case:

PROGRAM 11-4

lB DIM X (lBB)
2B FOR I = 1 TO lBB:X(I) = I:NEXT I
3B FOR J = 1 TO lBB
4B PRINT X(P)
SB NEXT J

Here the value of P (never having been defined) is zero. Line 40,
which prints X(P), is then equivalent to PRINT X(O). Since X(O)
has also never been set, it too is treated as zero, and as a result, 100
zeros are printed out.

Debugging • 241

Sometimes a nest of loops is set up with identical index names.
This error is not actually detected by Commodore BASIC except
during execution, when the second NEXT is reached. The ;error
message: ?NEXT WITHOUT FOR is displayed. The following
program would create such an error.

PROGRAM 11-5

1111 FOR I = 1 TO S
2111 FOR I = 1 TO 1111
3B PRINT I
4B NEXT I
Sill NEXT I

When the first FOR I is encountered in line 10, I-is initially set to
1. Then the inner loop is entered and again I is set to 1. This in
itself does not violate any rule of BASIC. At this point, however, all
record of the original I is lost. When the inner loop is satisfied and
control drops to line SO, the system detects what it regards as a
NEXT I without its corresponding FOR statement, generating the
error message quoted.

A more subtle error is ,engendered when two variables, both of
which begin with the same two characters, are used in a program.
For example,

PROGRAM 11-6 .

1111 blAGES1 = 10
2111 blAGES2 = 2121
3111 PRINT blAGES1,blAGES2

prints the value 20 for each of the variables, WAGES 1 and
W AGES2. Since both..,variable names begin with the letters W A,
they are considered to be identical. Therefore, it is tantamount to
writing the program as

1111 blA = 1111
2111 blA = 2111
3111 PRINT blA,blA

242 • BETI'ER PROGRAMMING FOR YOUR COMMODORE 64

In this form, it becomes obvious that the value 10 is displaced by
the second assignment statement. The value of W A becomes 20 and
is printed twice. Watch out for this one-it is very, very subtle and
can be very hard to trace. '

Trial Runs

Even when a program seems to be running smoothly (the surest
sign that something important has been overlooked, according to
one of the many versions of Murphy's Law) and results are printing
out, it is no guarantee whatever that the results are, in fact, correct.
Suppose, for example, you wish to calculate the average of two user
supplied numbers A and B and have written the following program
to do it:

PROGRAM 11-7

lB INPUT A,B
2B AVERAGE = A + 8 / 2
3B PRINT A,B,AVERAGE

This program prints the values of A and B, followed by not the
average of A and B but rather the value of A + (B / 2), which.is
definitely not the average. This error is caused by the algebraic{)rder
of operations, in which, you will remember, division takes prece
dence over addition. The correct way to write line 20 is

2B AVERAGE = (A + B) I 2

\

In' a more complex situation, the only way such an error can be
detected is by comparing the printed resuits with some previously
calculated answers. The program should be trusted only after it has
passed a rigorous series of tests.

Sometimes a program will work perfectly for some data but not
for others. The following program, for example, is designed to solve
quadratic equations.

Debugging .• ·243

PROGRAM 11-8

1m PRINT "TYPE IN THE VALUES OF A, BAND C"
2m ,INPUT A,B,C
3m Xl = '(-B + SQR(B t 2 - 4 * A ~ C» I (2 * A)
4m X2 = (-B - SQR(B t 2- 4 * A * C» I (2 * A)
5m PRINT "ROOTl =";Xl
bH PRINT "ROOT2 =";X2

SAMPLE OUTPUT RUN 1

TYPE IN YOUR VALUES OF At Bt AND C
?1,2,1
ROOTl = -1
ROOT2 = -1
READY.

SAMPLE OUTPUT RUN 2

TYPE IN YOUR VALUES OFAt Bt AND C
?1,2,5
? ILLEGAL QUANTITY ERROR
READY.

The error created in the second run is caused by the fact that for
the values chosen for A, B, and C, the discriminant-B f 2 - 4 *
A * C-is negative. Trying to take the square root of a negative
quantity causes the diagnostic message to be displayed and the run ,
terminated immediately. The correct approach is to define the dis
criminant separately and to test it before taking. its square root. If
the discriminant is a negative quantity, the square root cannot ordi
narily be calculated. Only if it is equal to or greater than zero sh~uld
the square-root function be applied. A co,rrect program would be of
the following form. .

PROGRAM 11-9

1m PRINT "TYPE IN YOUR VALUES FOR A~B AND'C"
2JINPUT A,B,C

244 • BETI'ER PROGRAMMING FOR YOUR COMMODORE 64

31a DfSC = 8 T 2 - 4 * A * C
41a IF DISC < Ia THEN PRINT "ROOTS ARE

IMAGINARY":END
Sia Xl = (-8 = SQR(DISC» / (2 * A)
bla X2 = (-8 - SQR(DISC» / (2 * A)
71a PRINT "ROOTl =";Xl
81a PRINT "ROOT2 =";X2

There will almost always be data that will cause a hastily or care
lessly written program to "bomb." There is only one spre way to be
convinced that the program will always work as designed and that
is to test it out with every conceivable type of data. Unfortunately,
this is impossible because there are usually far too many possibilities
to test. Therefore, you have to settle for the most reasonable type of
errors and construct test data accordingly. The best way to do so is
to try deliberately to concoct data that will stop your program from
running and counter every possibility you have thought of. Even so,
experience has shown that some errors will remain, no matter how
diligent you are, since we all have our own preconceived notions of
approaching a problem. For close to absolute certainty many differ
ent people must test the program over a considerable period of time.

An excellent way to minimize debugging time and the creation of
errors is to adopt what has come to be known as "defensive" pro
gramming. Once you are resigned to the inevitability of making
mistakes, you may insert instructions to print out intermediate re
sults at critical points. This step helps to localize any errors found
to within a few lines of code. Mter the program has been checked
out, the print instructions can be deleted.

Another strategy that works very well in conjunction with the two
methods just described is to arrange error traps for the various types
of erroneous input. If a program is designed to accept numbers in
the range 1 through 100, you should set up a "filter" or "trap" to
ensure that no input outside that range is accepted. By stopping bad
values right at the source, you avoid a major source of error and
headache.

Occasionally, the nature of an error will be so puzzling that no
amount of systematic debugging helps to reveal its source. Even in

Debugging - 245

such cases, however, all is not lost. The best course for the program
mer to follow in such situations is to simply "play computer." By
carrying out each of the programming instructions-using a pocket
calculator if necessary-the programmer can see what goes wrong
as it happens.

In this chapter, we have tried to give you the tools and techniques
to find and eliminate bugs, ihnd when they occur. Even though the
techniques may be known, good debugging requires a firm com
mand of the language and a lot of experience, some of it quite bitter.
Often, the programming novice tends to become discouraged all too
quickly. A good practice is to stop work on the problem after a
certain frustration level has been reached; it will do no· good. to
continue past that point. Returning to the problem at some later
time when you are more refreshed often helps. Another helpful hint
is to ask a friend to take a look at your program, even if he or she is
not particularly adept at programming. It is usually easier for some
one else to spot your elementary mistake than it is for you, in the
same way that it is often easier to give advice than to receive that
very same advice yourself.

GI0551ry

Access mode: A technique used to obtain a specific logical record from,
or put a logical record into, a file.

Access time: The length of time it takes for information to be written to
or read from a diskette.

Accoustic coupler: A special type of modem which allows a standard
telephone headset to be attached to a terminal or computer to allow for
transmission of data.

Accumulator: . A holding register in the computer's arithmetic logic unit
that holds instructions for input/output operations. It performs arithme
tic operations.

Accuracy: The quality of being free from error. On a machine this is
actually measured and refers to the size of the error between the actual
number and its value as stored in the machine.

Address: A number or name that identifies a particular location in mem-
ory, in a register, or in some other data source. .

Algorithm: A finite set of well-defined rules for the solution of a problem
in a finite number of steps.

Allocate: To assign a resource, such as a diskette file or a part of memory,
to a specific task.

Alphabetic: A letter of the alphabet.
Alphanumeric or Al~hameric: Data presented in both alphabetic and

numeric form, such as in a mailing list. These data may contain the digits
o through 9 and the letters A through Z in any combination.

ALU: Arithmetic Logic Unit.
ANSI: American National Standards Institute, an association of computer

manufacturers and users whose purpose is to standardize computer lan
guages ..

Applications software: A program or group of programs written in high
level languages which perform specific tasks, such as word processing,
general ledger and mailing list, and so on.

Architecture: The actual physical layout and construction of a microcom
puter.

Argument: A value that is passed from a calling program to a function.
Arithmetic expression: An expression consisting only of numbers and

operators, such as 4 + 7 * C.
Arithmetic logic unit: The device within the CPU that performs all the

arithmetic operations, such as addition, subtraction, multiplication, and
division.

247

248 • Glossary

Arithmetic operator: A symbol that tells the computer to perform an
arithmetic operation. The operators are + for addition, - for subtrac
tion, * for multiplication, / for division and t for exponentiation (raising
a number to a power).

Arithmetic overflow: When the result of an operation exceeds the capac
ity of the intended unit of storage.

Arithmetic variable: A location in memory where a numeric variable is
stored .

.\fray: A one-dimensional set of elements arranged in tabular form.
ASCn: A simple code system that converts symbols and numbers into

numeric values the computer can understand. For example, when upper
case A is typed in at the keyboard it is converted to the number 0010001
before being sent to the CPU. (The binary number 0010001 is equivalent
to the decimal number 17.) The acronym (pronounced askey) stands for
American Standard Code for Information Interchange.

Assembly language: A prograIDIiung language that uses mnemonic sym
bols. An assembler converts the mnemonics into machine language.

Background: The area: which surrounds the subject; in particular, the
part of the display screen surrounding a character.

Backup: A copy of any program or other information stored on a cassette
or disk. Backups usually are stored in a safe place and are used if a bug
develops in the original. Cassettes and disks tend to wear out with fre
quent use.

BASIC: An acronym for Beginner's All-purpose Symbolic Instuction
Code, a high-level computer language designed for beginners. The most
common microcomputer language, it was developed at Dartmouth Col
lege by Dr. Thomas Kurtz and Dr. John Kemeny in 1965.

Batch processing: The breaking down of items or jobs into different
groups (batches) which are processed together at one time-for example,
in a payroll system, instructing the computer to print paychecks for all
administrative personnel at one time.

Baud: A unit of information tranfer. In microcomputers, the baud is
defined as bits per second.

Baud rate: The rate at which information is transferred from one com
puter to another over telephone lines or cables. When telephone lines are
used, most computers transfer information at the rate of 300 baud (300
bits per second), or about 37 characters a second.

Binary number: A number system with the base 2 that uses only two
digits, 0 and 1, to express all numeric values.

Bit: The basic unit of computer memory. It is short for binary digit and
can take on a value of either 0 or 1. Computers "think" in bits. Each
number and letter that goes into a computer is translated into a unique
series of electronic impUlses. Each impulse, actually a level of voltage

Glossary • 249

. coursing through' the computer's circuitrY, is usually represented on
paper by a 0 or 1. Each combination of bits, representing a letter or
number, is called a byte. There are eight bits in a byte.

Blank: A part of a data medium in which no characters are recorded.
Also, the space character.

Boolean value: A numeric value that is interpreted as "true" (if it is not
zero) or "false" (if it is true).

Boot: This is the initialization program that sets up the computer when it
is turned on.

Bootstrap: An existing version, perhaps a primitive version, of a com
puter program that is used to establish another version of the program. It
can be thought of as a program that loads itself.

Bps: Bits per second.
Branch: A program segment that tells the computer to skip certain line

numbers and possibly return to them later.
Break: To interrupt execution of a program. The computer has a control

key labeled "BREAK." \.
Bubble sort: A technique for sorting a list of items into sequence. Pairs

of items are examined and exchanged if they are out of sequence. This
process is repeated until the list is sorted.

Buffer: A temporary storage register used to hold data for further pro
cessing.

Bug: A problem that causes a program or the computer itself to malfunc
tion.

Bus: A circuit or group of circuits which provides an electronic pathway
between two or more microprocessors or input/output devices, such as a
keyboard and a computer.

Byte: A group of eight bits (or a memory cell that can hold eight bits)
usually treated as a single unit. It t~es one byte to store each unit of
information. For example, the word "TABLE" would require five bytes,
one for each letter.

CAl: Computer Aided Instruction, the process of teaching by computer.
This is a system of individualized instruction that uses a computer pro
gram as the teaching medium.

Call: To bring a computer program, a routine, or a subroutine into effect,
usually by specifying the entry conditions and jumping to an entry point.

Cassette drive: A tape cassette machine designed for use with a computer.
Cassettes are usually modified audio cassette tape recorders.

Cathode Ray Tube: The picture tube of a television set is a CRT. A
television or a monitor is often used to display computer output.

Central Processing Unit: This is the heart of the computer. It contains
the circuits that control the interpretation and execution of instructions.

Character: Any letter, number, or other basic unit of communication

250 • Glossary

produced by a computer. Normally, one byte represents one character in
a personal computer's language.

Character printer: ,Any device that prints one character at a time in a
series across a page, just like a standard typewriter.

Chip: The building block of a computer. Chips with different functions
are delicately wired together and arranged, usually, on a small piece of
silicon or other semiconductor material.

Clock: A device that generates periodic signals to synchronize the com
puter's operations. Each signal is called a clock pulse or clock lick.

COBOL: An acronym for COmmon Business Oriented Language, a high
level language generally used with medium-sized or large computers for
business problems.

Code: (1) A system of symbols and rules for representing the transmittal
and storage of information. (2) Program instructions.

Command: An instruction that tells the computer to perform an operation
immediately.

Comment: A statement used to document a program. Comments include
information that may be helpful in running the program or reviewing the
output listing.

Compatibility: Any computer's ability to interconnect directly with an
other device without special equipment, programs, or codes.

Compiler: A computer program that translates high-level language state
ments into machine language.

Compression: Arranging data so that they take up a minimal amount of
space.

Computer: Technically speaking, the computer comprises only the CPU
and the board and the chips connected to it. But when people speak of a
computer, they usually mean to include the other components, like disk
drives, a monitor, and a keyboard. What was once a room-sized assembly
of 19,000 vacuum tubes has, through technological development since
the 1950s, shrunk to the size of a fingernail. The thousands of micro
scopic electronic circuits, crowded into Ii space less than Va-inch square,
became known as a microprocessor. It is, in fact, an electronic device that
can receive and follow instructions and then use these instructions to
perform calculations or compile, select, or correlate data. The primary
difference between a computer and a calculator is that a computer can
manipulate text, display graphics and make decisions.

Computer Assisted Instruction (CAl): A teaching method in which a
computer is used to help students learn. Various CAl methods include
driII and skill programs, simulations, and computer literacy exercises.

Computer language: The specific syntax, vocabulary, and grammar
through which a computer can be instructed to carry out various func

, tions and operations.

Glossary • 251

Computer Iitera~y: The knowledge of the fundamentals of computer op
erations and the rudiments of computer programming. A person with this
knowledge is said to be computer literate.

Concatenation: The operation that joms two strings together in the order
specified, forming a single string with a length equal to the sum of the
lengths of the two strings.

Console: The equipment used for communication between the operator
and the computer.

Constant: A fixed value or data item.
Control character: A character whose occurrence in a particular context

initiates, modifies, or stops a control operation. A control operation is an
action that affects the recording, processing, transmission, or interpreta

. tion of data; for example, carriage return, font change, or end of trans-
mission.

Control key: A special key that is used in conjunction with another key
causes the computer to perform special functions. For example, pressing
the control key in conjunction with the up arrow key causes the cursor to
move up.

Controller: A device that can be attached directly to the computer or to
an external mechanical device so that objects on the screen can be moved
around. Joysticks and game paddles are both controllers.

CPU: Central Processing Unit. This is the "brain" of the computer and
is located on a chip which is called the microprocessor, or the CPU. It is
an electronic "traffic cop," handling all the information that comes into
the computer from the keyboard or the disk drives and then sending it
back to the monitor or to the disk drives. It performs all calculations.
The CPU of the mM PC is an 8088 chip and is manufactured by the
Intel Corp. Apple II computers run on an entirely different chip, the
6502, made by MOS Technology. The Commodore 64 uses the 6510
(similar to the 6502.) An often-used microprocessor is the Z80, made ·by
Zilog. Almost all microprocessors have CPUs that work with information
either 8 bits or 16 bits at a time. Ac~ordingly, they are called 8-bit or 16-
bit machines. Generally, 16-bit are faster than 8-bit computers. The
Commodore 64 and Apple lIe are 8-bit machines, whereas the IBM PC
microcomputer has a 16-bit CPU.

Cursor: The little flashing symbol (usually a square) on the screen that
indicates where the next character will be displayed.

Daisy wheel printer: A printing machine whose moving head has a num
ber (usually 96) of radial arms or petals with a type character at the end
of each.

Data: Any kind of information composed of letters, numbers, symbols,
and so on, which can be processed by a computer.

Data base: Any collection of information, such as a list of accounts, ad-

252 II Glossary

dress lists, or newspaper stories. A data base management system enables
a computer to store . large amounts of information and then son it in
almost any manner. For example, a company's data base could give a list
of customers by zip code, by credit line, alphabetically by name or by
telephone number. The data base program takes care of managing the
storage and retrieval of data.

Debug: To find and eliminate all errors in a program or a computer.
Default: A value or option that is assumed when none is specified by the

programmer.
Delimiter: A character that groups or separates words or values in a line

of input.
Diagnostic: Penaining to the detection and isolation of a malfunction or

mistake.
Digital computer: A computer that uses to represent infonnation a series

of electronic "on"s and "off"s, which are converted to (or from) binary
numbers. Microcomputers are all digital computers, as opposed to analog
computers.

Directory: A list of the file names stored on a disk.
Disk: A fiat, rotating, circular sheet coated with magnetic material that is

used to store bits of infonnation in a compact form.
Disk drive: The most effective device for storing information, the disk

drive is like a small record player. Its motor turns a circular piece of
plastic, called a disk, which is similar in looks to a 45 rpm phonograph
record. A disk drive has a magnetic head that moves across the disk,
reading and writing data.

Diskette: A floppy disk that is 5 '14 or 8 inches in diameter. It is encased
in a stiff, square paper jacket for protection. Disks store not only infor
mation that the computer produces but also the instructions, called pro
grams, that the computer needs in order to function. Not all disk drives
are created equal. Different drives record different amounts of infonna
tion on each disk. Some drives put information on both sides of a disk.
These are called double-sided drives. Others, single-sided drives, record
on only one side. Beyond that, some drives pack more information onto
a disk than others. Drives with double-density capacity store much more
data than do single-density drives. The density of a drive refers to the
amount of data per track encoded on a disk. The tracks, unlike the spiral
ing grooves on a phonograph record, are arranged in concentric circles,
like rings within rings. The most widely used microcomputer floppy disk
is 5-Y4 inches in diameter. But some drives use disks that are 8 inches, 3
inches, or 3-'12 inches in diameter. The Commodore 64 uses 5-Y4-inch
floppy disks. Some disk drives are built into the compartment that houses
the computer. Others, like those used by the Apple lIe microcomputer,

Glossary • 253

are housed in separate boxes and are connected to the computer by cables.
In addition to floppy disk drives, there are hard disk drives, which rap
idly spin hard, metal disks.

Documentation: All the available information about a particular com
puter, computer program, or ~t of programs. It usually contains operat
ing instructions, troubleshooting hints, and so on.

Dot-matrix printer: A printer that forms characters as patterns of dots.
The dots lie within a grid of definite dimensions, such as 7-by-9 dots.

Edit: To make changes in a program or data.
Element: A member of a set; in particular, an item in an array.
Enabled: A state of the processing unit that allows certain types of inter

ruptions.
End of file (EOF): A "marker" immediately following the last record of a

file, signaling the end of that file.
Execute: To run.a computer program or part of a program.
File: An organized collection of related records. A payroll file would have

a complete payroll record for each employee.
Flag: Any of various types of indicators used for identification, for exam

ple, a character that signals the occurrence of some condition.
Floppy disk: A flexible plastic disk coated with magnetic recording ma

terial on which computer data may be stored.
Flowchart: A graphical representation of the sequenCe of operations

within an information system.
Folding: A technique for converting data to a desired form when it

doesn't start out in that form. For example, lowercase letters may be
folded to uppercase.

Formatting: The process of organizing a .diskette into tracks and sectors
so that the computer can access it.

FORTRAN: An acronym for FORmula TRANslation. It is a high-level
computer language used for scientific and mathematical applications.

Function: A procedure that returns a value depending on the value of one
or more independent variables in a specified way. More generally, the
specific purpose of a thing or its characteristic action.

Function key: A keyboard key that tells the computer to perform a spe
cific action.

GIGO: An acronym for Garbage In, Garbage Out.
Glitch: An error or problem in computer components or physical appa-
. ratus. .

Graphics: The ability of a computer to show pictures, line draWings,
special characters, and so on, on the CRT or printer.

Hard copy: A copy of the computer's output printed on paper or on some
other permanent medium.

B,p, c64,-16

254 • Glossary

Hardware: All the physical components of a computer system, including
the computer itself, the printer, and the monitor.

Hierarchy: A strUcture having several levels, arranged in a treelike form.
"Hierarchy of operations" refers to the relative priority assigned to arith
metic or logical operations that must be performed.

High-level language: A computer language that uses simple English
words to represent computer commands. For example, the command
RUN in BASIC tells the computer to run (execute) a program.

Home computer: A microcomputer or personal computer. Its definition
keeps changing as the price of comr··ters keeps falling and machines
become more powerful. It is characteristically defined by price-usually
less than $800. COll)puters with additional internal memory and storage
capacity (costing somewhat more, of course) are known as personal com
puters. They are more powerful than home computers and are big enough
for word processing, some financial planning, other serious work-and
for playing games. Although they are called "personal," they are found
in the offices of many companies. More expensive are business microcom
puters, which generally have still more memory and storage capacity.
They can use sophisticated software for financial analysis, data base man
agement, and communication with large mainframe computers, the big
gest computers made.

Housecleaning: The process by which BASIC compresses string spa~,
collecting all its useful data, and frees up unused areas of memory that
were once used for strings.

IC: Abbreviation for "Integrated Circuit," which holds in a plastic or
ceramic case a tiny chip of semiconductor material. Thousands of
transistors, capacitors, and other electronic components are fixed on
each IC.

Impact printer: A type of printer that produces information on paper by
actually striking a ribbon onto a sheet of paper, in the manner of a
typewriter.

Implicit declaration: The establishment of a dimension for an array with
out it having been explicitly declared in a DIM statement.

Increment: A value used to alter a counter.
Initialize: To set counters, switches, addresses, or contents of memory to

zero or other starting values at the beginning of, or at prescribed points
in, the operation of computer routine.

Input: The data which are transferred from the keyboard, a diskette, or a
. cassette to the internal RAM memory.

Input device: A device used to enter information into the computer.
Input/Output: The process of entering data into or receiving data out of a

computer.

Glossary • 255

Instruction: Properly coded information that causes the computer to per
form certain operations.

Integer: One of the numbers 0,1,2,3, ... and their negative values.
Integrated circuit: A group of components that form a complete minia

turized electronic circuit consisting of a number of transistors plus asso
ciated circuits. These components are fabricated together on a single
piece of semiconductor material, usually silicon.

Interactive: A computer system that responds immediately to user input.
Interface: A device that allows two devices to communicate with each

other.
Interpreter: A program that translates a high-level language such as

BASIC into a machine language so that it can be used in the computer.
It is slower and less efficient than a compiler but much easier for program-

. -mers to use.
Interrupt: To stop a process in such a way that it can be resumed.
Inverse video: A process. that allows you to show dark text on a light

background on the CRT. Normally, light text is shown on a dark back
ground.

Invoke: To activate a procedure at one of its entry points.
110: An abbreviation for "input/output."
Jack: A plug socket on a computer.
Joystick controller: A box with a movable stick attached. When con

nected to the computer, motion of the stick causes objects on the screen
to move around.

K: An abbreviation for "kilo," a prefix meaning 1,000. Thus 4K of mem
ory is about 4,000 bytes. More exactly, lK is 1,024 bytes so 4K represents
4,096 bytes, but 4K is a convenient way of keeping track of it.

Keyword: One of the predefined words of a programming language; a
reserved word.

Language: Any code that allows humans to communicate with a com
puter. Computer languages vary greatly in their complexity, starting
with the native idiom of the CPU, which is machine language-the
Is and Os of binary code. Next comes assembly language represented
in letters and numbers that can be more easily used by people. Above
those are "high-level" languages, like BASIC, FORTRAN, and
COBOL. These higher-level languages use easily understood letters,
words, and numbers and turn them into machine language for the
computer's use. -

Line number: A number that defines a line of programming in a high
level language such as BASIC. Each line of the program begins with a
line number\. The computer executes the program in line number order,
startfug witli the lowest number.

256 • Glossary

Line printer: Any printer that prints one line at a time rather than one
character at a time.

Literal: An explicit representation of a value, especially a string valuo; a
constant.

Location: Any place in which data may be stored.
Logic: A systemized interconnection of devices in a computer circuit that

causes it to perform certain functions.
Logo: A high-level language designed at MIT for use in educational set

tings.
Loop: A series of programming instructions that recycle. The last instruc

tion in the loop tells the computer to return to the first instruction.
Intentional loops have some means of escape built into them. Uninten
tionalloops, caused by programmer error, can only be stopped by press
ing the BREAK key or turning the computer off.

M: Mega; one million. When referring to memory, two to the twentieth
power; 1,048,576 in decimal notation.

Machine infinity: The largest number that can be represented in a com
puter's internal format.

Machine Iangwlge: The lowest-level language. It is a pattern of binary
coding that tells the computer what to do.

Mainframe: Originally meant the CPU, now refers to large computers.
However, in microcomputers, the cabinet that holds the CPU is also
called a mainframe.

Mantissa: For a number expressed in Boating point notation, the numeral
that is not the exponent.

Mass storage: The files of computer data that are stored on media other
than the computer's main memory (RAM), such as cassettes or diSkettes.

Matrix: A set of numbers or terms arranged in rows and columns. Each
element is accessed in terms of its subscript.

Memory: The internal hardware in the computer that stores information
for further use.

Microcomputer: A fully operational small computer that uses a micropro
cessor as its CPU.

Microprocessor: A central processing unit contained on a single chip,
Minicomputer: A small to medium-sized computer offering a range of

capabilities somewhere between those of a microcomputer and a main
frame.

Minifloppy: Diskette.
Modem: A modulating and demodulating device that enables computers

to communicate over telephone lines. Electronic signals from the com
puter are converted into sound, which in tum, are reconverted into elec
tronic signals at the other end. An accoustic coupler is a modem device
into which a telephone can be placed.

Glossary • 257

MoDitor: A television receiver or CRT device used to display computer
output.

Nest: Used to incorporate structure of some kind into another structure
of the same kind. For example, you can nest loops within other loops, or

, call subroutines from other subroutines.
Network: An interconnected group of microcomputers or terminals

linked together for specific purposes.
Notation: A set of symbols, and the rules for their use, for the represen

tation of data.
NuB: Empty, having no meaning; in particular, a string with no charac~

ters in it.
On-line: Interactive
Operand: That which is operated on. For example, in the expression

A = B OR C
OR is the operator and B and C are the operands.
Operation: A well-defined action that when applied to any permissible

combination of known entities, produces a new entity.
Output: Information or data transferred from the internal memory of the

computer to some external device, such as a CRT, a mass-storage device,
or a printer.

Output device: A device designed to take information out of a computer.
Overflow: When the result of an operation exceeds the capacity of the

intended unit of storage.
Parallel: The performance of two or more operations or functions at the

same time. For instance, a parallel port accepts all eight bits of a byte at
one time, in contrast to a serial port that accepts only one bit at a time.

Parameter: A name in a procedure that is used to refer to an argument
passed to that procedure.

Pascal: A powerful, high-level computer language for business and gen
eral use. It is named for the French philosopher and mathematician Blaise
Pascal (1623 - 1662).

PEEK: A BASIC command that tells the computer to look into a specific
location in the computer's memory and see what is stored there.

Peripheral: - Any 110 device, such as a prfuter.
Personal computer: Microcomputer; home computer.
POKE: A BASIC command that tells the computer to put a new number

into a specific location in the computer's memory.
Ports: Points of access to a computer. These channels through which

computers send and receive data are either serial or parallel. That is, they
send or receive data one bit at a time (serially) or several bits at the same
time (in parallel). Telephone communication, for example, is done seri
ally.

258 .. Glossary

Position: In a string, each location that may be occupied by a character
and that may be identified by a number.

Precision: A measure of the ability to distinguish between nearly equal
values.

Printer: A device for producing paper copies (hard copy) of the data
output by the computer. There are two basic kinds of printers for micro
computers-dot matrix and letter quality. The first kind forms letters by
striking the paper with small pins, forming each letter with a pattern of
dots. As the technology has advanced, more and more pins are being used
for each letter, resulting in a denser image. Some dot-matrix printers
squeeze the dots so closely together that they look almost like letter
quality print, which is made by machines that form letters with a single
impact, as do traditional typewriters. When dot-matrix printers produce
letters that are close to the quality of traditional electric typewriters, the
result is often called "correspondence-quality" print. Letter-quality
printers run at speeds between 12 and 40 characters per second, and dot
matrix printers can run as fast as 150 characters per second. Dot-matrix
printers generally cost less than do letter-quality printers, although as
technology advances the cost of both kinds is falling. Many letter-quality
printers are called "daisy wheel printers" because they use print elements
that resemble daisies, rather than the ball-type print element on an IBM
electric typewriter.

Printout: Any sheet of paper, or collection of paper (hard copy), a com
puter printer produces.

Program: An organized group of instructions written in a language the
computer understands, directing it to a solution to a problem.

Programming: The process of writing a program in a language a computer
can understand.

Prompt: A symbol, usually a question mark, that appears on the screen,
indicating that it is awaiting information.

Queue: A line or list of items waiting for service; the first item that went
into the queue is the first item td be serviced.

Random access memory (RAM): The read/write memory available for
use in the computer. Through random access the compllter can retrieve
or deposit information instantly at any memory address.

Random number generator: A program statement or hardware device
that provides a number that cannot be predicted. This is very useful in
decision-making programs. For instance, using a random number gener
ator, the computer can simulate dice rolls.

Range: The set of values that a quantity or function may take.
Read: The act of taking data from a storage device, such as a diskette,

and placing it in the computer's memory.
Read only memory: A random access memory device that has perma-

Glossary • 259

nently stored information. The contents of this memory are set during
manufacture.

Recursive: Pertaining to a process in which each step. makes use of the
results of earlier steps, such as when a function calls itself.

Register: A small temporary storage device in the computer. It holds data
that the computer is about to use.

Reserved word: A word that is defined in a programming language for a
special purpose, and that you cannot use as a variable name.

Response time: The time it takes a computer to answer a question or
accept a line of input.

RETURN key: Causes the next character to be printed in the left column
of the screen.

ROM: Read Only Memory.
Routine: Part of a program, or a sequence of instructions called by a

program, that may have some general or frequent use.
Row: A horizontal arrangement of characters or other expressions~
Scalar: A value or variable that is not an array.
Scan: To examine sequentially, part by part.
Scrollin~: The ability to move lines displayed on a CRT terminal screen

either up or down.
Sector: The smallest block of data that can be written to or read from a

disk file.
Segment: A particUlar 64K-byte area of memory.
Semiconductor: A metal or other material (such as silicon) with proper

ties between those of conductors and insulators. Its electrical resistance
can be changed by electricity, light, or heat.

Software: The instructions by which a computer operates, also known as
programs. The information produced by the computer is generally called
data. Software is the electronic instructions that enable the user to tell
the computer what t9 do.

Sort: A procedure that arranges a group of elements into some kind of
sequence-for example, sorting them into alphabetical order.

Spread sheet: A program that sets up an electronic spread sheet in which
the lines and columns are automatically calculated according to formulas
chosen by the user. When one number is changed, the program automat
ically changes all the sums and multiples that are affected.

State~eDt: A meaningful expression that may describe or specify opera
tions and is complete in the context of the particular programming lan
guage.

Storage device: A unit into which data can be entered, retained, and
retrieved, for example, punched cards, magnetic tapes, disks, floppy
disks.

String: A set of letters, numbers, and/or characters.

260 • Glossary

Structured programming: A method of programming in which clarity is
emphasized through three basic control structures.

Subroutine: A part of a program that can be executed by a single state
ment. It is especially. useful when a certain part of the program has to be
executed many times or has to be accessed from different points in the
program.

Subscript: A number that identifies the position of an element in-an array.
Syntax: The rules governing the structure of a language.
System: All the various hardware components that make the computer

usable, including the computer itself, printer, joystick controller, disk
drive, and so on.

Tape drives: Some less expensive microcomputers use tape recorders in
stead of disk drives to store information and programs. Tape drives are
very slow in comparison, however, because they store data sequentially.
It is time,consuming for the tape recorder to wind and rt!wind a tape,
looking for information. And it is impossible for the computer to insert
data among other data on a tape.

Target: In an assignment statement, the variable whose value is being set.
Terminal: An input/output device used to communicate with a computer

and receive information from it.
Text editor: A computer program ~at permits the contents of memory

to be changed. It can modify either data or the program.
Trailing: Located at the end ofa string or number.
Transistor: A semiconductor device that acts primarily as an amplifier or

a current switch.
Trap: A set of conditions that describe an event to be intercepted and the

action to be taken after the interception.
Truncate: To remove the ending elements from a string.
Variable: A quantity that can assume any of a given set of values.
Variable-length record: A record having a length independent of the

length of other records in the file.
Word processor: A very special computer program that helps to manip

ulate text. It permits the writing of documents, allows inserts or changes
of words or paragraphs, and prints the document letter perfect.

Write: To store data on external media such as diskette or cassette. The
expI:ession "write to diskette" means that the information stored in the
computer's memory is sent to the diskette, where it is stored perma
nently.

Appendix A

Abbreviations for
BASIC Keywords

One of BASIC's more attractive features is that it allows you to
abbreviate commands such as PRINT, RETURN, and POKE. In
almost every case the abbreviation consists of the .first letter of the
command word followed by· the shifted second letter. The following
list contains all of the keywords in Commodore BASIC as well as
their abbreviations. The right-hand column shows you the graphic
representation of the abbreviation as it appears on the screen.

Com- Com.
mand Abbreviation Appearance maud Abbreviation Appearance

ABS ASIDFf·B A rn END ESIDFf-N E 0
AND ASHIFT-N A 0 EXP ESHIFT-X E ~
Ase ASIDFf-S A ~ FN NONE FN

ATN ASHIFT-T A D FOR FSIDFf-O F 0
CHR$ eSmFT-H C []] FRE FSIDFf-R F ~
CLOSE CLSHIFT-O CLO GET GSIDFf-E G El
CLR CSHIFT·L C 0 GET# NONE GET#

CMD CSIDFT-M C rsJ GOSUB GOSHIFf-S GO[!}

CONT CSmFT-O C 0 GOTO GSHIFf-O GO

COS NONE COS IF NONE IF

DATA DSIDFf-A D~ INPUT NONE INPUT

DEF DSmFT-E DEJ INPUT# ISIDFf-N I IZI
DIM. DSIDFf-I D&J INT NONE INT

261

262 • AppendixA

Com- Com-
mand Abbreviation Appearance mand Abbreviation Appearance

LEFf$ LESHIFf-F LEg RIGHT$ RSHIFf-I R~
LEN NONE LEN 'RND RSHIFT-N R[ZI

LET LSHIFf-E LEI RUN RSHIFf-U RG3

LIST LSHIFf-I L~ SAVE S SHIFf-A S~
LOAD LSHIFf-O LO SGN S SHIFT-G S []
LOG NONE LOG SIN S SHIFf-I S !;]

MID$ M SHIFf-I MbJ Spc(S SHIFT-P sO
NEW NONE NEW SQR ' SSHIFTtl; S 8]

/"/(

NEXT NSHIFT-E NEj STATUS ST ST

NOT N SHIFT-O NO STEP ST SHIFf-E .STEI

ON NONE ON STOP S SHIFf-T S[]

OPEN OSHIFT-P 00 STR$ ST SHIFf-R STg

OR NONE OR SYS S SHIFT-Y sO
PEEK PSHIFT-E P EJ TAB(TSHIFf-A T~
POKE PSHIFT-O P 0 TAN NONE TAN

POS NONE POS THEN TSHIFT-H TO

PRINT ? ? TIME TI TI

PRINT# PSHIFT-R P bJ TIME$ TI$ TI$
,I

READ RSHIFT-E R EJ USR U SHIFf~S U~
REM NONE REM VAL V SHIFT-A V~
RESTORE RE SHIFf-S RE~ VERIFY VSHIFf-E VEJ

RETURN RE SHIFT-T RE[] WAIT W SHIFT-A W~

AppendixB

Screen Display Codes

The Commodore has two separate character sets, only one of,
which can be used (or displayed) at a time. Each set is available
direcdy from· the keyboard and can be alternately accessed by si
multaneously pressing the SHIFT and Commodore keys. Either set
can be accessed from BASIC with the POKE command: POKE
53272,21 for Set 1 and POKE 53272,23 for Set 2. You can then
poke the numbers for individual characters into the screen memory
(locations 1024-2023). For example,

POKE 1024,94

yields either 71' or It depending on the set you have selected, at
location 1024. Also, while this chart lists only codes 0-127, pok
ing 128-225 will create reverse images of the characters. Further
more, you can control the color of each character by poking a special
section of memory (55296-56295) along with a color code (1-16).
For convenience many symbols and characters are available from
both sets. (To print a character with the CHR$ function, see Appen-

,dix C.)

Set 1 Set 2 POKE Set 1 Set 2 POKE Set 1 Set 2 POKE

@

A

B

a

b

o

2

C

D

E

I C

d

e

3

4

5

F

G

H

f

g

h

6

7

8

263

264 • Appendix B

Set 1 Set 2 POKE Set! Set 2 POKE Set! Set 2 POKE

I 9 % % 37 ~ A 65

J 10 & & 38 rn B 66

K k 11 39 E3 C 67

L 12 40 EJ D 68

M m 13 41 El ·E 69

N n 14 * * 42 bJ F 70

0 0 15 + + 43 [J G 71

P p 16 44 [] H 72

Q q 17 45 5J 73

R ·r 18 46 ~ J 74

S s 19 47 ~ K 75

T 20 0 0 48 0 L 76

U u 21 49 rsJ M 77

V v 22 2 2 50 2] N 78

W w 23 3 3 51 0 0 79

X x . 24 4 4 52 0 P 80

Y Y 25 5 5 53 III Q 81

Z z 26 6 6 54 I:J R 82

27 7 7 55 ~ S 83

£ £ 28 8 8 56 D T 84

]] 29 9 9 57 en U 85

t t 30 : ,\', 58 ~ V 86

+- +- 31 59 C W 87

SPACE SPACE 32 < < 60 ~ X . 88

33 61 OJ y' 89

34 > > 62 [I] Z 90

35 ? ? 63 EB EB 91

$ $ 36 E3 E3 64 IJ IJ 92

Appendix B • 265

Setl Set 2 POKE Set 1 Set 2 POKE Setl Sell POKE

OJ OJ 93 ~ ~ 105 IJ IJ 117

IfB fB 94 [] [] 106 [] [] 118

~ II 95 IE rn 107 Lj LI 119

SPACE SPACE 96 ~ [II 108 ~ ~ 120

IJ IJ 97 [g [g 109 .~ ~ 121

.~ ~ 98 6J EiJ 110 0 0 122

0 0 99 ~ c:J 111 iJ [I] 123

D 0 100 [[j [[j 112 ~ ~ 124

0 0 101 E!3 f:g 113 t!J t!J 125

III II 102 Ea·Ea il4 r!J ~ 126

0 0 103 8J 8J 115 ~ ~ 127

-'iii! ~ 104 (] [] 116

AppendixC

Ascn and CHR$ Codes

You can enhance your ability to manipulate character strings in
BASIC by using the ASCII code. The following table lists the deci
mal value of all the characters in Commodore 64 BASIC. Typing

PRINT CHR$(X)
, ,

where X is a value in the right hand column, will yield the corre
sponding character in the left-hand column. TYPing

PRINT ASC ("X")

where X is a character in the left-hand column, will yield the corre
sponding decimal value.

Deci- Deci- Deci- Deci-
<:bar- mal Char- mal Char- mal . Char- mal
acter Value acter Value acter Value acter Value

0 12 24 $ 36

1 RETURN. 13 25 % 37

2 LowerCase 14 26 & 38

3 15 27 39

4 16 Red 28 (40

White 5 CRSDown 17 CRS Right 29) 41

6 RVSON 18 Green 30 * 42

7 HOME 19 Blue 31 + 43
DISABLES
SHIFT-COM 8 DEL 20 SPACE 32 , 44
ENABLES
SHIFT-COM 9 21 ! 33 - 45

10 22 " 34 46

11 23 # 35 I 47

267

268 • Appendix C

Deci- Deci- Deci- Decl-
Char- mal Char- mal Char- mal Char- mal
acter Value acter Value acter Value acter Value

0 48 J 74 El 100 1m 126

1 49 K 75 EI 101 ~ 127

2 50 L 76 g 102 128

3 51 M 77 D 103 Orange 129

4 52 N 78 [] 104 130

5 53 0 79 ~ 105 131

6 54 P 80 ~ 106 132

7 55 Q 81 ~ 107 fl 133

8 56 R 82 0 108 f3 134

9 57 S 83 LSJ 109 fS 135

: 58 T 84 !Zj 110 fl 136

; 59 U 85 0 1ll 12 137

< 60 V 86 0 112 f4 138

= 61 W 87 II 113 f6 139

> 62 X 88 0 114 f8 140

? 63 Y 89 ~ 1lS RETURN· 141

(il 64 Z 90 D 116 UpperCase 142

A 65 [91 Cd 117 143

B 66 £ 92 ~ 118 Black 144

C 67 1 93 C 119 CRSUp 145

D 68 i 94 ~ 120 RVSOFF 146

E 69 +- 95 [] 121 CLR 147

F 70 B 96 [l] 122 INST 148

G 71 [!] 97 EE 123 Brown 149

H 72 IT! 98 IJ 124 Lt. Red 150

I 73 B 99 IT! 125 G rey 1 151

Deei- Deei-
Char- mal Char- mal Char-
aeter Value acter Value acler

Grey 2 152 .. 162
,r.

Lt. Green . 153 D 163 cg
Lt. Blue 154 0 164 6J
Grey 3 155 0 165 ~
Purple 156 II 166 In
CRS Left 157 0 167 e3
Yellow 158 IiiiiiI 168 53
Cyan 159 ~ 169 []
SPACE 160 [] 170 []

IJ 161 [EI 171 (]

Values 192-223 are the same as 96-127.
Values 224-254 are the same as 160-190.
Value 255 is the same as 126.

Appendix C • 269

Decl- Decl-
mal Char- mal
Value acter Value

172 [J 182

173 Lj 183 ~

174 ~ 184

175 ~' 185

176 0 186

177 ~ 187

178 ~ 188

179 E!] 189

180 ~ 190

181 ~ 191

ABOUT THE AUTHORS

HENRY MULLISH is Senior Research Scientist and Lecturer in Com
puter Science at the Courant Institute of Mathematical Sciences of
New York University. He is the author of over a dozen books on
computer programming.

Dov KRUGER went to high school in New York City and attended
his first computer course, sponsored by NYU, at the age of 11. At
the age of 16 he entered Stevens Institute of Technology where he
is now a freshman in the electrical engineering/computer science
department. He has previously co-authored Applesoft BASIC: From
the Ground Up and Zappers: 23 Games for the TI-99/4A, bot;h of
them with Henry Mullish.

