David Thom od Viec Numbers

APUBLICATION OF =————xr=
= PSIDAGCG=—0F

!

A2 0000NANNANANANAAAAANAAAARANANAANAAAAAAAN

slslslale

—

inioiainisiaipiniaiaisialisiainialainisisisiaialialnlnleinlalalalais e tOLAi

-

THE
SOFTWARE
PROTECT ION
HANDBOOK

For the C-64

DAVID THOM
and

VIC NUMBERS

~ COVER and ILLUSTRATION

ACE CAMPBELL

© 1984 PSIDAC

ALL RIGHTS RESERVED

PUBLISHER'S NOTE

This book is written as an information guide for
those who wish to learn about and experiment with
software protection and duplication methods. It is
not intended to encourage theft or illegal wuses of
copyrighted software.

All information in this book is accurate insofar
as can be determined by the authors and publisher. No
liability can be assumed for any inaccuracies which may
be inadvertently contained herein.

The user of this information must assume all
liabilities associated with its use. The user must
also assume all risk to person or property associated
with the use of the circuitry described in this book.
It 1is recommended that the user be technically
competent to determine the suitability of the
application. In no event shall the authors or
publisher be liable for incidental or consequential
damages in connection with the use of the information
in this book.

C-64, VIC-20,and MONITOR$8000 are trademarks of
Commodore Business Machine, Inc.

Romulator, Tapeworm, PSIPACK and its program names
are all trademarks of PSIDAC.

*** PROGRAM NOTES **¥*

Most of the Basic programs will require that you
use CBM "shorthand" when typing to avoid excess memory
use.

Programs have been written for the Commodore 1541
disk and 1525 printer. Many of the programs have been
tested on a version of the MSD. The programs which
"talk" to the drive controller such as Diskpicker and
error analyzers will not work with MSD. The others may
work.

THE SOFTWARE PROTECTION HANDBOOK

Copyright ¢ 1984 by PSIDAC. All rights reserved. No
part of this publication may be distributed by any
means. The circuits and programs contained herein and
on the PSIPACK disk may be copied for personal use. No
part of this book may be reproduced for publication.

SPH-64 V1284 USD19.95

THIRD PRINTING
2

DONONNNNNANNNNNANNNNANNAAANNNANANNANAANAAAAAAAA

O

~—-

e

alalalalalalalalalalalalalalalalalalfalialalalalalialalialafalalalalalalalalalalalalale

FOREWORD

The philoaopy of thia book embraces

thrnee main goala.

/. To provide broad view of protection
from laws and ethica through tools and

tecﬁniquA.

2. To alent you, the consumen, of the
"vicioua cincle” natunre of
protection/protection bneakens, and the
potential c04t~of getting caugﬁt in thia

apinal.

3. 7o remove aome of the myateny
aunnounding the aubject while providing a.

uaefu[aefenenca document.

Chapter 1.....

Chapter 2.....

Chapter 3.....

Chapter U.....

Chapter 5.....

Chapter 6.....

Chapter 7.....

Appendix Aee..
Appendix B....

Appendix C....

*%% CONTENTS **¥%

Introduction. Rules, Regulations, and Ethics
for copying software.

Tools. Description of tools provided in this
book as well as other helpful tools for
breaking protected programs.

Maps. C-64 and 1541 disk memory maps with
explanations. Also special memory locations
and configurations used for protection

purposes.

Protection Methods. Current and future
techniques used to protect software. Covers
disks, cartridges and tapes.

Tapes. Specific procedures, circuits and
software to duplicate tapes. Tapeworm,

k Cloneplug, and Trelo.
Disks. Procedures, and programs to copy and
analyze protection on disk. DD-1, Fastback,
Superdirectory, Disk-Editor, T/S Analyzer,
Error Analyzer, Diskpicker, Relocate/lLoader,
and Linkster.

Cartridges. Saving cartridges to disk and
tape. Romulator system.

CBM ASCI1=-CHR$~- SCREEN CODES Chart.
Monitor use with Diskpicker.

Autorun Booters- Machine and Basic version.

AN

~— -~

slalalalalalslalelals

o

~

N = o~

alalalalalalalalalalalalalalalnlaialalalalalaiaialalalslalalele

nono

¥% CONTENTS CONT. *¥*

Appendix D.... Sector Byte identifications. Resetting
Pg. 205 Deleted programs or files.

Appendix E.... Reset switch wiring.
Pg. 207

Appendix F.... GCR sector encoding explanations. Sector maps
Pg. 208 in GCR with notes.

Appendix G.... Products available from PSIDAC.
Pg. 211

Appendix H.... Interrupt routine techniques.
Pg. 212

DISK NAME = PSIFPACK (C)1984 VBN 3RD ED.

TYPE TRACK SECTOR NAME BLKS
PRG i7 @ iFSIMAIN "2
FRG 17 1 2PSIHAIN “ 2
FRG 28 1z SUPERDIRECTORY * 8
PRG i9 i3 DISK-EDITOR “« 7
FRG i7 i7 RELOCATE/LOADER * 2
PRG 13 2 DISKPICKER " 28
FRG 19 k3 T/5 ANALYZER "le
PRG 19 7] FASTBARCK =7
FRG i7 i5 iDUPDALC =17
FRG 16 7 2DUPDALC * 17
FRG 2e 2 ADMACH 1
PFRG 2 3 MACHRELOS 1
FRG 28 4 IROMULARTOR "4
PRG 28 & 2ROMULATOR g
FRG i? =] IMACH 1
PR 23 Ed ANALYMACH "l
PRG 17 s SUPERMONSSG V1 Y
PRG 19 4 ERROR ANALYZER * 7
PRG 7 & 28 NO HEADER 0
PRG 17 7 21 ERASE TRK =1
FRG 17 14 22 NO DATA =1
FRG i& 5] 23 DATCHKSUM L ¢
FRG is i SY¥NC WRITER "1
PRG i? S HELP "G
RRG 17 2 WRITE HOR ol
PRG 17 2 READ HDR 1
PRG i% 14 COPY HDR 1
PRG i¢ 7 2ON HDR "
FRG i 18 iCON HDR ¢l
PRG 16 s LINKSTER “ 3
PRG i4s @ TMACHRELO R |
PR 14 i5 TRELO -7
FRG 1% & SYNC ONLY 1
FRG) 1z 1TRKFMT Yl
=RG 17 17 TRACK CHECK toia

5

PREFACE

The writing of this book was undertaken as a result of
the large number of inquiries and strong interest developed
after the release of our first book "The Software Pirate's
Handbook for the VIC-20" (SPH-20). This book will follow a
similar format to the SPH-20 and, although each are complete
books 1in their own right, this book is designed as a
complement to SPH-20.

The SPH-64 will expand on both the philosophy and
technique of duplicating software. In doing so we want to
dispel many of the doubts and fears that people often have
about copying software. We also want to be sure that the
legal issues are understood so that we do not promote theft
or black-marketing of software which clearly are crimes. At
the same time we will show you how to protect your own
investments by making back-up copies of a variety of
"protected" forms of software.

This book will first cover our philosophy for copying,
and specific 1legal considerations. In the following
chapters we will outline technical theory and concepts with
specific numbered procedures and the program listings at the
end of applicable chapters. In many cases you will be able
to go directly to the specific procedure for the type of
copy you wish to make. However for a better understanding
or in case of difficulty in making a copy, you may need to
refer to the sections which give attention to theory and

concepts. In this manner you should be able to gain an
understanding of the kinds of protection that you are
encountering so that you can deduce possible

"countermeasures".

The ultimate purpose of this book is not to provide you
with the "newest thing" in copy history, but rather, we will
try to provide you with primary tools and knowledge of
protection systems. These tools are not candied for appeal
but are essential utilities which are themselves open and
unprotected so that you can use, study, and adapt them to a
continually changing market. Our experience has shown that
"packaged" protection breaking software becomes obsolete as
fast as it is written, leaving the consumer with yet another
hole to pour money into. Adaptive programs and user skills
are necessary to stay current. In light of this, we offer
this book, not as the final word, but as what may be the
first technical reference document available on the subject.
Together with the programs included, this makes a powerful
analytical package for defeating protected software.

We greatly hope that you find this book informative,
understandable, and USEFUL!

The authors.

Yalatalalalalalolalalalalalalalalalalalnlatalalalialialalalalalalalalaliaiatalalalale

e latalalalalalalalalalalalalalalaiaiaialalainiaiaialaiaiaialalatalalalalalaliake!

A

% CHAPTER ONE *

INTRODUCTION

PIRACY...an issue so clouded with fear, intrigue,
and misinformation that you dare only to utter it in
safe, familiar company. The original title of this
book was to be "The Software Pirate's Handbook II", but
had to be changed after several advertisers flatly
refused to advertise a book of that title in spite of
the fact that the book was never meant to encourage
piracy in any form. The use of "Pirate" was intended as
a light-hearted reference to any copying process, and
to inspire a certain tendancy of humankind; the

attraction to things mysterious or secret.

Unfortunately, there is a great deal of hocus-
pocus and puffery being used to cloak the alleged
brainchildren of this new market. This reletively new

consumer product - software - is being hawked, with all

the vigor and claims of mysterious powers,like the
patent medicines of earlier years. This technocratic
rhetoric is replete with all the rumored pitfalls and
warnings of what may happen to you or your equipment if
you try to exercise your documented legal right to copy
the product. All of this has the detrimental end effect
of deluding the consumer into purchasing overpriced,
underperforming products. In our opinion this will
most certainly undermine the strong beginning and
curiosity the home microcomputer market now has. It is
our goal to provide the public with some knowldge,
tools, and attitudes that will be a start in changing
this situation. I see two futures for home
microcomputing, one with software and computers
accepted and used by many, and the other with software
and computers rejected as expensive "hyped" toys of a

bygone fad.

At this point we must separate the difference
between what is acceptable copying and what is Piracy.
Quite simply, the intent of the wuser will decide the
question. Copying'for sale, distribution or other non-
personal uses is Piracy. Copying for backup, archival,
study, and other personal uses is not piracy. Loaning
your original to another person for temporary use is
not piracy. (If that ever were changed we may as well
burn the libraries and return to the Dark Ages!)
However copying an original you do not own is

unethical.

We should start to analyze this whole issue of

8

alalalalalalalalalalalalalaialalaislaialalniaialalialatalalalalalalatalalatalalalata)

AAAAAAAAAAAAAAAAAAASAAAAEAAANANAAAANAANAAANANAA

copying software by first classifying software amongst
the products with which it belongs. This will also help
to peel away some of the misinformation that surrounds
the issue. To get very basic, software is a set of
instructions which produce a desired effect on a
physical system. Software is written with letters and
numbers and can be embodied in many different forms
such as; verbal, magnetic recording, paper, solid state
and so on...just 1like this book or a piece of music or
a recipe for example. The fact is that the examples
that I have given are just as common or 1likely to be
found in one of the formats listed as software itself,
with the exception of solid state, which refers mainly
to ROM memory. The reason that books and other
typically printed materials are not commonly found in
this format is that they inherently contain vastly
greater amounts of data than the average program. Any
one of these also often cost more to produce, take more
expensive equipment, and more +time to write than a
piece of software. How strange it is then that software
should sell for tens of times more money than these

other 1like products!

I suppose that the real mystique of software, and
the factor most capitalized on, 1is it's code-like
nature. Few people are professional programmers and
thus cannot really understand the mysterious language
of the program. Some might say that all that is
important -is that the user be able to use the program

and that the degree of secrecy or protection applied to

the program is not a concern. We feel that this is a

9

.

little 1like a homemakers magazine saying that you
should only be able to eat the end result of a recipe,
not be able to understand the words and numbers which
define the end produét! If you only wish to eat and
care less about the ingredients, that ' is your
perogative, but if you like to understand what you are
eating, there really should be no great mystery‘about

the ingredients.

When it comes to making a copy of a piece of
software many people get cold feet. In selling the
"Pirate's Handbook" for the Vic-20, we advertised "for
archival use only". We recieved many promises, signed
statements and so on from our customers that they would
‘" use it only for "archival" purposes. I am sorry that so
many people have been bullied into thinking that they
might be required to make such a statement in the first
place. I have yet to meet a person who felt the need to
sign an affadavit before running up to the local
grocery store to make a copy of a magazine article,
pages of a book, recipe or whatever. Probably the only
situation even near in comparison would be the fear of
attempting to photocopy a dollar bill to try in a bill

changer. (it doesn't work!)

A recent manifestation of this biased thinking on
software appears in a proposal being considered for
state law in Louisiana. The law, if enacted, would
mandate that the act of .purchasing and subsequently
opening the package of a piece of software, would

inherently place the "opener" in a legal contract with

ksl iniaiaiaiaia ittt e lalalala e kel el alalalala i aIa YA e e ke AAA alale!

Y el e e N e e N e Y o N e Y o N e e N Y N e e N e e e N e Y e e N N e N e N e Y e N e e VN Ve Ve Ve Y N W

the seller. The purchaser would be obligated to refrain
from copying, distributing, and whatever else they
throw in. I hope they have a lot of jail space in

Louisiana!

One of my favorite analogies which may help you to
put this whole ethical question in perspective is the
recipe analogy. Consider the fact that a recipe 1like
software is a set of written instructions which cause a
desired effect on a physical system. Like software, it
requires a sequence of steps to be performed in the
correct order in real time. Both require specialized
hardware to perform their respective functions. As with
computer hardware, a complete cooking system easily
costs thousands of dollars. Developing a unique recipe
requires specialized skill as well as a great deal of

time.

Some of the major differences are a result of the
general perception of a recipe as an ordinary everyday
commodity often given away and the perception of a
program as a highly valuable and unfathomable product.
It is easy to believe that a great deal more knowledge
and effort goes 1into a program than a recipe. However
there are a 1lot of professionally trained chefs who
would argue otherwise! Judging from some of the
"professional" software that I have seen marketed, I am

quite sure that they are right!

If you can then, consider that these diverse yet
similar copyrightable literary forms should be given

equal treatment and respect when we think of copying.

11

Are womens clubs and church groups that exchange
recipes (many of which are blatantly copied from the
pages of magazines) commiting an act of piracy?
Probably they are in the strictest sense, but who
really cares!? It doesn't appear that their doing so
has seriously affected the market. If taken case by
case, each category of information market has a similar
situation. For each of these markets there is some
form of equipment and general knowledge of methods for
making copies of the copyrighted product. Your right to
own and . know these facts has never really been
disallowed. Otherwise, tape recorders, photocopy
machines, and probably even cameras could have been
outlawed due to their potential for illegal use in
copying protected information. Each of these markets
also face the real threat of blatant piracy by those
who would profit by use of copy technology. The current
misunderstanding of the ethical question of copying
software is not a result of a factual difference in the
nature of software but rather a simple difference in
the typical perception of software versus more commonly

understood information like a recipe.

Historically software has been a closely guarded
secret of the company owning it. This results largely
from the fact that prior to 1980 software had no legal
form of protection. It did not fall under patent law or
copyright 1law. Also most software was for larger
businesses as home use was not that extensive.
Naturally the market was limited and the price

necessarily high. As a result companies were rightfully

12

AAAAANAAAAAANAAAAAANAAAAAANAAAAAAAAAAAANAAANAAAA

worried about being ripped-off by those who might copy
their software and sell it without fear of punity. This
unfortunatly, happened toe -often. More recently for
example, Franklin computer copied many versions of
Apple computer's operating system. The uncertanty of
the new laws protecting software prevented Apple from
stopping this apparently obvious case of piracy.
Although the two companies finally came to an out of
court settlement, the 3rd U.S. Circuit Court of Appéals
in Philadelphia ruled that the software was protected
under current copyright law. "Piracy" of this form
could quite literally, bankrupt a company. The
operating systems of a microcomputer are closely linked
to the hardware design of a system. A company stands to
lose the fantastic amount of investment that it takes
to set up production and marketing if unscrupulous
persons pirate these software systems to install in a
competing computer. In effect, this creates a limited
monopoly for the original manufacturer. If a competitor
wishes to make a 100% compatible alternate, the
operating system he uses must be identical in
performance. For technical reasens, +this is virtually
impossible to do without copying the operating system!
Although legal protection for ROM based operating
systems has -been upheld in court, the issue is long

from being settled.

The heart of the copyright intent is that the
specific expression of an idea is copyrightable but the
idea is not. Ideas must be free of legal encumbrances.

However, if the idea can only be expressed in one way

13

without losing its meaning, then the ability to protect
that idea becomes very limited. The same sort of thing
is true when prbduct names become so common as to be
considered generic. Legal protection is lost. Thus I
can talk about crescent wrenches and skill saws

without worrying about the 1legal ramifications. There
is not a clearly defined legal answer available for

this problem with operating system software. The real
answer may lie in the intent of the person making the

copy.

From another viewpoint, an applications package
which may take a month or so for a single person to
write and an average investment to produce and market
should not be priced4 as the 'basis for a lifelong
income. This does not mean that it should be stolen and
distributed according to some modern Robin Hoodian
mentality. It does mean that the over-pricing of
applications software creates a climate where such
piracy is going to be common. If the price better
accommodated the market, the tendancy of people to

distribute copyrighted software would greatly diminish.

Protection of software 1is clearly no£ the answer.
I would not even recommend that anyone buy softﬁare if
the protection methods seem too strong. fhe ability to
make backups and expect a reliable and compatible
product are rights 6f a consumer. As later chapters
will bear out, ISOme of the more elaborate protection
schemes éan prove rather unreliable. Often they are

obvious encumbrances to smooth loading and running of a

14

2 lalalalalalalalalalalnialalalaintalalalslalnialalalalalalalalalatelatalalatala¥a¥e

\

Y

AAAAAAAAAAAAEAAAANAAAAAANAAEAAAAAAAAAAAAAAAA

program. Furthermore, in the case of disks, they often
are not compatible with other brands of disk drives.
The real clincher is that Commodore, or any other drive
manufacturer, reserve the right to update their drive
hardware/software at any time as needed. Protection
schemes which operate beyond the defined specifications
of the system would not necessarily work on an
"updated" system! The drive manufacturer has no
obligation to try to figure out what has been done
beyond the original accepted specifications. If you
don't believe this 1is a real problem, try talking to

anyone who has bought "Commodore compatible" hardware.

The difficulty of backing up highly protected
software places you in the vulnerable position of
facing complete system crash and resulting data loss.
In many cases I can think of it would be totally
unacceptable to even run a program without having a
backup accessible within minutes. Although failure of
the storage medium is more common with tapes and disks,
it is still possible with cartridges. The ma jor
problems with cartridges are that a 1lot of wear and
tear is placed on the port by constantly changing
cartridges. As anyone experienced in failure analysis
could tell you, the weakest link in many electronic
systems is the mechanical interface such as edge
connectors. I have seen them become 1loose, bent,
intermittent and who knows what else. One popular
solution has been to use expander boards with

switchable slots but these are quite expensive and

15

still 1limit the total number of cartridges you may use
without switching. Our solution is to use an external
RAM memory which can be loaded from tape or disk and
then emulate the original ROM cartridge. This way, the
RAM unit is left in the computer and does not interfere
with any other operation. When desired, the cartridge
program which was previously saved on disk or tape can
be loaded and reloaded as needed. Your cartridges can
be put away safely and be used only to make backups.
The obvious problem with this system is that people who
don't own the cartridge could illegaly obtain copies of
the tape or disk and use the program without purchasing
it. We strongly discourage this. It is an illegal act
of piracy. Chapter 7 gives specific details on this

system.

The point of importance is that without a backup
copy of each program you endanger yourself needlessly.
Feeble attempts of software houses to remedy this by
offering backups if your original fails, simply do not
solve the problems. This is true even IF the backup
policy is quick and promises a replacement within say
24hrs. What happens if the original company goes out of
business? What if the user faces a deadline or is in
the middle of a presentation? In some cases a delay of
more than some minutes can be devastating. In our
opinion there is only one rule and all should take
heed: Only a fool runs a program without a backup but
it is a fools fool who runs a program without a backup
of the backup! For those really important programs we

recommend that backups be stored in two different

16

AN M

4

e e N N N N W W N N o N e e N e Y o W N e N e N e N e e e N e N e e e N e N Y e e e N e Y e e Y T

locations. In one case, oOne of our programs was
recovered from a disk which had it's protective cover
cut away and had been thrown in the trash - after being
passed around to show how they were constructed! One
of the first things you should do especially with a new

disk or tape is to make a backup.

It is likely that you may hear about a "great"
program but find out it 1is uncopiable or very hard to
copy. We ask; are you willing to suffer the
consequences of a failure with no backup? Is it then,
really such a great program? The truth is that such a
program rewritten with no protection is much more
valuable and marketable. The irony is that selling a
program with significant modification may not even BE a
violation of copyrights. "Reverse engineering", an
accepted industrial practice of distilling the
underlying principals of a product and then marketing
your own version, has always been a common source of

"improved" products.

Another issue which creates a problem for those
who purchase software is the lack of documentation of
the program itself. Not all people want or care to try
to modify a program to suit their application but for
many the original program may be ill suited to their
needs. These people have a legitimate need to be able
to 1list and modify the program. Without adequate
documentation, this is nearly impossible. Our
philosophy is that if you buy our book we are happy to

give you our listings and you may make any changes that

17

suit your special wishes. We feel that all software
should be sold with listings and documentation or that
they should be available for a reasonable price. The
ability to customize 1is a unique feature of software
which should be capitalized on instead of hidden. Some
products are naturally customizable some are not. The
custom car parts industry has made a fortune on this
very fact. Occasionally a potentially valuable piece of
software is totally useless to a person because of the

inability to modify it.

The consumer has a legal right to expect a product
to perform the "normal" functions associated with that
type of product. In 1legal terms this is known as the
merchantability of a product. Imagine that you buy an
"all purpose" fertilizer for flowers. After reading all
directions and using it, your roses do great but all
your other flowers die. Let's say that after talking to
your friend, a chemist, you find that it would work on
other flowers - IF you had specialized knowledge of the
‘chemical compounds used and how they could be applied
successfully to other flowers. A lawyer would probably
tell you that you have legal grounds for recovery
because the product is not merchantable as an all
purpose fertilizer without sufficient instructions on
how to use it successfully, and any "normal"
application does more harm than good. In the
microcomputer business, there are many programs sold
with the implication that they will do many things.
Only after purchasing might you find out that it would
require specialized knowledge or even modification to

18

MAAAAAAAAAAAAAAAAAAA AN A A A A A A

make it work to reasonable expectations. Since backup
copying of owned software is a legal right I wonder if
a copy protected program itself violates the principal
of merchantability. As long as we have that right it is

reasonable to expect software to be copyable.

Time and again various industries have gone
through this "secrets" game only to find in the eﬁd
that a large number of the consumers have a right,
need, and demand to know what's inside. Limiting or
protecting this information can only 1limit the
useability of the equipment and also limits the growth
of add-ons which make the original product more useful.
Software houses would certainly view this as opening
the door wide to the pirates. Already terrified by loss
>f profits due to piracy they find more and more
elaborate and costly protection to be the answer. Yet
this is the very thing that makes the market so
attractive to the pirates in the first place! Take away
the protection and high price, and who would need a

pirate anyway!?

In strict legal terms, software has been protected
by U.S. copyright 1law since 1980. Anyone who makes a
copy of software and gives it away or sells it is in
direct violation of these laws and prosecution is
available. Other information forms have survived very
well with copyright law as the only means of
protection. The pricing has been set by the accepted
method of market determination and copying and

exchanging amongst small groups or by friends has never

19

seriously affected the market. The thought of a ladies
sewing circle being sued for exchanging patterns seems
ludicrous because it is. Large scale piracy does not
occur as a result of grocery store photocopy machines
because the original is priced low enough that it
wouldn't be profitable. With the areas of legality
clearly defined, no one should feel intimidated or
afraid to make a copy of software for backup purposes.
The existance of copying hardware, software, and
information should be no more threatening than a
photocopy machine or tape recorder and the knowledge of

how to use them!

20

alalalalalalaialalalalalalalalsisialalalaisialalalniatalalalalatalatalalatalatatale!

lalalalalalalalalalalalala el lalat e ta e Yo tala te fatate talatalala falatatatafa tatalate

%%* CHAPTER TWO ***

TOOLS

Without a doubt the C64 is a powerful computer and
a very versatile tool. However, the first time that you
try to save a protected program you might suddenly feel
like a child given the task of decrypting a classified
and encoded top-secret document. A myriad 6f questions
immediately present themselves. Where do you start?
What kind of program is it? What methods of protection
have been applied? Is there any way to list it? Where
does the program reside in memory? And so on... It is
often difficult to decide which questions to ask in the

first place!

It would be wonderful if someone made a super-
copier that would copy any software with the ease that
a photocopy machine will copy this page. Unfortunately,

there is just no way that a single answer will cover

21

the wide variety of possibilities available for copy
protection. The only way to really be equipped for the
task is to have various specialized tools. Most of the
jobs cannot be accomplished with only one of the tools
but will require skilled application of many different
tools. The key here is skill. The most effective tool
you can posses is a sound knowledge of how software can
be protected so that you can make a meaningful analysis
of each situation and apply the correct tools with the

greatest amount of skill.

In this chapter we will concentrate on
familiarizing you with the kinds of tools to use on
three categories of software media. These are,
cartridges, disks, and tapes. Within these categories
we will define "levels" of protection as they apply.
The descriptions of tools will aquaint you with the
general applications of the tools but we will leave out
the specifics of use until the 1later chapters, which
will list the procedures in a very detailed fashion. If
breaking protected software 1is all new to you, this
chapter should give you a good general understanding of
what you are up against and what tools are available
to help you. This should also help you develop plans of
attack when you come up against a protected program

that you need to back-up.

~-Cartridges--

Cartridges are unique in that they are a form of

protection in themselves. That is to say that the very

22

aYalalalalalalalalalnlalainialalalaliaialalalalalalnialalalsiInisaialiaisiaiaisiaiaiainl

AAAAAAAAAAAAAAAAAAAAAAAASESAAAAAAASAAAAAANAAA

!

features of the cartridge are what protect the program
that it contains. The fact that the computer is
designed to autorun cartridges makes it difficult to
break into and 1list the program or save it to another
format. Since most people don't have PROM memory
burning facilities, they cannot expect to make a "copy
cartridge" from an original cartridge. Furthermore, the
cost of PROM burners and circuit boards to implement a

copy cartridge would make it expensive anyway.

Actually cartridges are not that prone to failure.
The simple excuse of making a duplicate cartridge for
back-up purposes really isn't realistic in view of PROM
making costs. We have.déveloped a method that can be
used to transfer cartridge programs to tape or disk and
then run in a RAM expander! This makes the process very
cheap if applied for many cartridges. With this system
it becomes desirable to have back-ups for all
cartridges you own. After all, if the cost is a little
disk or tape real-estate, why not have a copy? There
are good reasons to want a tape or disk copy, such as
avoiding the hassle of continuously plugging and
unplugging cartridges when changing programs. Making a
modification of a program residing in a cartridge can't
be accomplished unless the program can be put into RAM
and run in RAM. A single disk can contain a whole
library of programs while the cartridge holds only one.
Having drawers full of odd shapped cartridges is a real
pain. If, for example, you need to transport a library
of cartridges to work each day, you would need an extra

lunchbucket! But with your cartridge library on disk,

23

your software is very transportable.

Remember that all these 1limitations in the
cartridge medium are mostly to make copying less
likely. It would be much cheaper for a software house
to sell all of it's software on either tape or disk.
Magnetic media does not require a circuit board or
specially manufactured circuits and enclosures.
Cartridges exist largely because of the fear of piracy.
As is often the case, those with legitimate needs are

penalized by actions of those with illegitimate greed.

When the C64 is powered up one of the housekeeping
chores that it does is to check to see if a cartridge
is plugged in. Part of this is accomplished by two pins
on the cartridge edge connector which are identified by
the names GAME and EXROM. The job of these pins is to
control the way the memory is configured on the C64 so
that the computer will allow Basic, Kernal and ROM to
be located as necessary. The initialization routines
also check memory 1locations where a cartfidge resides
to see if an access code is found there. These codes
then tell the compﬁter that there indeed is a cartridge
and they pass information to the computer so it knows
where to start running the program from. A program
doesn't need to start at the beginning of the cartridge
memory to run. Most of the time the entry point is not
at the beginning but further on in cartridge memory.
Following is an Interrogate dump of the first several
bytes of a typical ROM cartridge. Notice the ASCII

(reversed) display which shows the access code CBM80.

24

alalalatalalalalalalatalatalalalalalelatalata et e ta e ta talata e tata o o Ve N Vo e Ve o

AAAAAAAAAAANAAAAAAACAAAAAASAAAAAAAAAANANAANANAAN

The first four bytes before this code give the cold

start and warm start addresses respectively.

CS $8394 Ws $83A0

—~——
. uu@m 94 23 AB 83 C3 C2 CD 28
| concEREEELTE 30 B2 EB SA 3@ SF EE 3D
iuﬁyﬁﬁﬁﬁﬁﬁ AZ CB o8 8@ 57 80 57 EE
[cFRPlcPRl 57 48 81 C4 84 4@ 12 CA
ZEANPIGEEE CA 4A 1% 48 C4 B4 81 08

--ROMULATOR--

Romulator is a cartridge copy system that comes in
three versions. One for the VIC-20, one for C64 tape
systems and one for C64 disk systems. The C64 versions
are 1identified as 2Romulator for disk and 3Romulator
for tape. 1In this book we will refer to the C64 system
as Romulator and 1leave the numbers out except when
needed for specific procedures etc. Romulator consists
of a special program which moves the contents of the
cartridge then saves it to the magnetic medium being
used. A special Romulator circuit card is used which
allows changing the configuration of the GAME and EXROM
lines thus preventing auto starting. This card is used
with both the tape and disk versions of the C64
software. The circuit card also has a socket for an 8K
or 16K RAM expander. The RAM expander is the key since
the tape or disk program can be downloaded to the RAM.
The RAM is made to look like a ROM cartridge by the use
of a write enable line which prevents erasing of the
program by software means. Finally, the RAM location

can be changed so that it will reside anywhere commonly

25

used by commercial cartridges.

The general process 1is to use the Romulator
circuit card to determine the normal cartridge
configuration, next set the switches to defeat the
autorun and then to copy the contents of the cartridge
to the selected magnetic medium. The Romulator card
with RAM is 1left in the computer. It does not
interfere with any other operation. The cartridge can
be stored away safely. When desired to run the program,
it is downloaded into the expander RAM which is then
write protected and switched into the configuration for
the cartridge being run. A system reset button on the
Romulator card is then pressed to force a cold start.
Since the computer will see the cartridge configuration
and cartridge codes, it will run the program as though
the cartridge itself were plugged in! This can be done
with 8K or 16K cartridges. To date we have not found
one that it will not work with. Chapter seven lists the
exact procedures to follow as well as the programs and

circuits needed.

This book has been written with the aid of Quick
Brown Fox word processor which we run on a Romulator
system. The cartridge is safely stored in a drawer. It
is very nice to be free of the anxiety of having some
unexpected "glitch" destroy the cartridge and put us
temporarily out of business. Also gone is the fear that
an overworked edge connector will become intermittent
or fail altogether. If you decide to set up a Romulator

system for your computer you will find it a valuable

26

alalalalalalalalalalalalaiaisialaiatalalalalaialalalalalatatatatatalatalatatalalale

AAAAAAAAAANANAAAAAAAAAAAAASAAAAANAAAAAANAAAAAAA

accessory.
~~DISKS--

There are a wider variety of protection schemes in
existence for disk than any other medium. It is
understandable that software houses have developed soO
many forms of protection since an unprotected disk is
so easy to copy. Many people would be tempted to avoid
purchasing by copying from a friend, and a few might
even try to make a profit by selling pirated copies at
a much lower price. The protection methods we will
cover will help you to protect your own disk softﬁare
and to break protection when you need to make a back-
up of one you have purchased. As a consumer, you should
avoid purchasing "super protected" disks because of the
limitations and insecurity they force upon the user. If
the super protected program is the best thing around,
you will have to weigh the disadvantages versus the
quality of the software. You might perhaps settle with
purchasing a second original if you need maximum
protection from the eventual disk crash. When
appropriate, we will spell out specific limitations and
problems to normal function introduced by some forms of

protection.

We will define "levels" of protection to make our
discussion easier. These are not in 1line with any
"standard level", but are merely to give us a yardstick
in comparing different kinds of protection. This may
also help you in classifying programs that you wish to
copy so that you can select the most appropriate form

of "attack".

27

-~PROTECTION LEVELS--

Level O.....Unprotected. Can be saved by loading and
saving. Contains basic only or basic 1loaded machine
language.

Level 1l.....Contains auto-run feature and a STOP
disable poke in program. Doesn't allow saving but can
be direct copied or Relocate/loaded and saved. (see
copy systems; Direct Duplicator-1 [DD-1] and
Relocate/Loader)

Level 2.....Contains "bad sector" errors on disk which
prevents most commercial disk duplicators from reading
past. Creates "shuts off in the middle of copying"
syndrome with many disk copy programs. May also contain
Ll techniques. DD-1 will copy these.

Level 3.....Same as above except program will not run
without error sectors being put back into the copy.
Requires Error Maker program or modification of program
to take out sections which "look" for bad sectors.

Level 4.....This is what we will call "advanced" error
protection. It involves altering the parameters of the
normal drive formatting and/or writing. This will

produce symptoms such as extra tracks, specially
encoded data or format info, modified headers, "data
under errors", and so on. The so called "half tracking"
is one of these non-standard writing techniques. This
seems to be the direction of newer software and can
create severe compatibility problems. Diskpicker can be
used to both analyze and develop routines to break
anything that fits into the altered DOS category, as
that is its primary purpose.

Level 5.....Disk requires hardware module to operate.
"Dongle" protected. Requires Dongle synthesizer or
modification of program so that it does not look for
dongle. This 1is a "valid" form of protection if it

allows backup disks to be made. It will minimize
"Piracy" while giving the owner crash protection.

This 1listing does not attempt to cover every
possibility under the sun but it does cover the more
common methods that we have encountered. For those
levels which require modification of the program, you
will need an understanding of how to disassemble

programs to make the necessary changes. A full fluency

28

Salalalalalalalalalalaiaiaialaialalalaialalaiaialatalatalalalalatalalatalalalaa¥el

AAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A

in machine language is beyond the scope of this book
and really is an aquired skill. We will try to define
the process however to give you some chance. Your own
interest in going further is up to you. Level 4 is
probably the one that you should avoid purchasing in
the first place If you can find a similar program of
similar quality without the protection. Don't be fooled
though; a highly protected program has no relation
whatsoever to the quality of the program. I have seen
public domain programs that are significantly better

than expensive commercial versions!

Attacking level four protection can be done with
Diskpicker. The error making and header modifying
routines we give will get you started in this

direction.

—— WHOLE DISK DUPLICATORS --

Direct Duplicator-1 was written by Vic Numbers
and is listed as a part of this book. PSIDAC holds
copyrights on this program. DD-1 overcomes many of the
limitations of other "whole disk" copiers. This is
especially true for protected disks containing errors
which will stop some copiers. Other copiers may
attempt to "second guess" where the errors might be and
do those sections last, which does not often work. DD-
1 does a sector by sector duplication of every track
and sector on the disk. It will transfer the contents
of bad sectors but cannot reproduce an error. Most

duplicators that can get through the errors can't

29

duplicate the errors so programs called Error Makers
are needed. These programs and means of clearing errors
will be described later. DD-1 has a version for single
disk owners and a version for dual disk owners. The
single disk version (1DUPDAC and 1PSIMAIN) will require
swapping disks. The dual disk version (2DUPDAC and
2PSIMAIN) is essentially a hands free system. Both
Vérsions will print the type of error on the screen or
optionally to the printer, if the original contains
"error protection". This 1is a powerful feature that
gives needed information if you have to reinstall

errors or modify the copied program to make it run.

One very unusual feature is a "fast write" mode
which tests each byte of data on a sector and skips
over any sector which contains normal format data but
no program data. This will in no way affect the
validity of the copy but it can cut the time to make a
duplicate almost in half. Another really handy feature
is the ability to write more than one copy per original
read. The idea 1is that once DD-1 has read a buffer
full of data (150 blocks) that this data can be written
to more than one disk. This saves the extra read which
would be redundant since the buffer still contains the
data until a new 150 block section is read. Thus making
many copies of the same disk can be accomplished at a
very fast rate. This is very handy for disks of
programs that you have written and wish to distribute.
Generally, if the original contains more than three
programs and you wish to make several copies, you will

save time by using the fast write mode and multiple

30

Al el a e le e et e e NeRe N e Ne Ne Ve N Ne N e N e We We W W W W e W e e W e e N e N N N e T Y T

el a Ve e N e e N N N N e N e N N e N e N N e e N N e N Y Y e T e N Ve Y laTa lalalalalalatalale

copy features of DD-1. Since this system is written in
machine language (DUPDAC) with a basic controller

(PSIMAIN) speed and flexibility are natural.

DD-1 is simple to use and usually overcomes
protection on the original. Since the whole process is
very direct, you will avoid spending the time required
to get an understanding of what is being done on the

disk. It is best for the lower levels of protection.

There are several other noteworthy copier programs
on the market which you might find especially suited to
your needs. We will point out some of their advantages
and limitations from our viewpoint. Clone Machine is
the trade name of a set of programs released by Micro
Ware, of Butler, New Jersey. It offers a whole disk
backup program along with other programs similar to the
variety we give you in chapter 6. We will cover the
other types of tools later in this chapter. The Clone
Machine disk duplicater program provides a "graphic"
display indicating the reading and writing of sectors.
The version we used 1locked up when an error was
encountered. This meant writing down track and sector,
then returning to menu options and then +trying to
continue the copy process from the point ended. We
found this extremely cumbersome compared to the
automatic error skipping features of DD-1. The whole
menu process can sometimes be tedious since typically
you will be doing the same thing over and over. It is
tiresome having to keep telling it that you're using

device 8 each time!

31

Clone machine uses a 120 block buffer which allows
reasonable copy times for backup purposes. Uses for
multiple copies or high speed are not supported, and
copying an original with 1lots of protection errors
would be frustrating. In most respects though, Clone
Machine does what is says it will and can be useful.
The Unguard error writer scemed to function well, it
provides a simple direct way of writing errors back
onto a disk. The problem will be mainly one of
obsolecence as new forms of protection hit the shelves.
Our biggest complaint would be the price. At $49.95 it

is hard to justify owning for the value obtained.

Another good copier is Supercopy by Richvale
Telecommunications. It 1s relatively fast and has a
nice menu display. Once again, the program is locked up
giving you little opportunity to modify it and keep it
current with the changing forms of protection. We
believe a copy program should be open so that as new
forms of protection come along you can add routines to

accomodate them.

There are several very new entries to the market
(mid 1984) that you may wish to consider. The ma jor
features are that they provide fast copy times (4
minute average) and automatic error writing including
the "current popular errors". The copy protection used
by these programs does indicate their inevitable
obsolescence however. In the mean time though they are

certainly "state-of-the-art"! Among those we have tried

32

alatalalatatalale e lata et el Ve Na e Yo N e Ve N e N e Ve Na Ve Ve Na N N N N N e N W N N N e NN Y

ANAAAAAAAANAAAAAAAAAAAAASASAAAANAAAAAAANAAAAAA

or that have come well recommended are "DI-SECTOR" from
Starpoint Software of Gazelle, California, "GEMINI 2.0"
available from Computron Business Systems of Portland,
Oregon, and "ULTRA COPY" from Ultrabyte of Dearborn,
MI. There may be more good copiers hatching than there
are good programs to copy!

We have included two programs which will greatly
simplify and speed up copying disks with several
errors. The programs are T/S Analyzer and Fastback. T/S
is used to examine the disk sector by sector and log
any errors found. The check is made out through
track number 35. This 1log can be saved on
another disk for 1later use or simply examined to see
what you are up against. The primary purpose for the
log is to tell Fastback which sectors to copy and which
ones to skip. Any unused sector or a sector containing
an error are skipped. This results in a very fast copy.
The original time spent to make the error log is spread
over the total number of backups that you make.
Fastback need waste no time repeating the error
checking on each copy as does DD-1 and most other
copiers. Another note is that the logging routine which
takes about 10 minutes can operate unattended unlike
the copier programs themselves. After doing the
Fastback you can go back with an error maker and
replace the error sectors as needed, or remove the

sections of the program that look for the errors.

There are several copy programs "floating" around
that you may run into.We have commonly found that the

whole disk copiers usually have no fast or multiple

33

features and often are awkward in handling errors.
Although DD-1 cannot solve every copy situation, we
have tried to make it economical to own and easy to
use. T/S Analyzer and Fastback are especially handy if
you intend to make several backups. T/S Analyzer by
itself is useful if you want to find out what kind of
errors you are going to find on a particular disk. (See

listings chapter 6)

Contrary to how it may sound, a Dumb copier is
probably the most effective way to duplicate "smart"
protected disks. The principle of dumb copying is that
data is fed from one drive to another without going
through the logic of the system. This 1is basically a
dubbing process. The effectiveness of protection in
the first place relies on the fact that your disk drive
has a computer inside that decides which data from the
diskette is good, which is bad, and which is ugly.
The dumb copier could care less, it writes what it
sees! We have not heard of any system of this type yet
on the market for 1low end users. We are currently
considering developing and marketing such a system. At

this point a lot depends on the market interest.
--— OTHER TOOLS --

Superdirectory is what its name says it is. When
you run into programs which cannot be copied by whole
disk means and when you load them and they take off
running... it's time for Superdirectory. As you know,
the Load"$",8 tells you whats on the disk but it

doesn't tell eveything! Superdirectory will tell you a

34

AAANAAANANAAANAAAAAAANAAAAAAAANAAAAAAAAAAAAAAANA

AAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAEAAAAAAAAA

SUFERDIRECTORY

DISK MHAME = PSIPACK V1 C(84:

TYPE

PRG
PRG
PR3
FRG
FRG
FRG
PR
FRG
PR
FRG

TRACK

SECTOR

5]
1

W w

(2] [} (4]

$

w

=W N A0 S T b = WO S W= R =

(4]

HAME

1FSIMAIN
ZPSIMAIMN
SUFERDIRECTORY
DISK-EDITOR
RELOCATE/LORDER
DISKPICKER

T/S AMALYZER
FASTBACK
1DUPDAC
2DUFDAC

ADMACH
MACHRELOD
3ROMULATOR
2ROMULATOR
ZMACH
FNALPMACH

MONI TOR$E899
ERROR AMAL'YZER
29 MO HERDER
21 ERASE TRK
22 MO DATA

23 DATCHKSUM
SYNC WRITER

HE|

LP
WRITE HDR
READ HDR
COPY HDR
COM HIR
1COM _HIDR
LINKSTER
TMRCHRELO
TRELD

35

ELKS HE:{. ADD
6501

-~

N

-3

2
551
1F453
9391

RV e R N e e Ll - X Lttt R Lt VR K121 (VY N

DEC. ADD

2045
2943
2842

lot about whats on your disk so that you can decide how

to handle each program and file.

On the opposite page is a sample printout of a
Superdirectory listing. Note that as well as the name
and number of blocks, you are also told the starting
track and sector for each. Note also that DELeted
programs are listed. Until they have actually been
written over, they are still on the disk. This can be
used for protection since one normally wouldn't even
know they were present! Appendix D shows how to restore
scratched programs. The most valuable feature of
Superdirectory is the second section which 1lists each
program byrits starting track and sector and gives the
hex and decimal equivalents of its starting address in
the computer. This makes it easy to separate machine
routines from basic routines and to locate autorun and
other protection boot systems that load in normally
below hex 080l1. With this info you can often load and
"pick" programs separately. Without knowing these
addresses, you can load them but you don't know where

to find them!

Error Analyzer has two primary functions. One is
.to do a quick track by track check for normal sync
formatting. This is done out to track 44 so that as
well as finding Erased tracks it will also tell you if
anything has been put beyond the normal track ranges.
This operation can be done in a few seconds and is a
good idea on a new program disk to get an idea of what

you are up against. The second mode is a sector by

36

!

AAANAAAANAAANAAANAAAAAAAAAAAANAAANAAAANANANAANAA

alalalalalalaialalalalaialalaialalalalalslaiaiaialalnliaiaialalalatalatalalatalalel

sector check which is similar but gives you a complete
listing of errors by sector. Unlike T/S analyzer, this
one does not make a log of errors for Fastback. The
other difference is that it is a machine controlled
read which operates OUTSIDE of the normal DOS. This
improves its ability to "tolerate" the errors it finds
without bumping and grinding the head in the process.
The error listings can be printed if desired for a

permanent record.

Relocate/Loader is another useful tool in
"picking" programs. For example you will prqbably be
able to load and‘pick any program addressed above hex
0801 but the ones starting lower than this may lock up
the computer. The trick is to load them somewhere else
and pick them. Once the "picking" is done, yoﬁ can sﬁvg
them and change the address on the disk so that thef
load back to where they were supposed to. Somtimes
rather than even - picking a program, you may simply
reload it so that it won't run or lock up. Then you can
save the program - which defeats the purpose of the
lockup anyway! The saved version of the relocated
program will need two bytes changed on the disk so that
it will then load back to its normal disk location and
run normally. A 50K byte buffer is available for your
relocated programs. All efforts were made to keep
Relocate/loader itself small. There ig also a tape
version called Trelo which is describgﬁ' in the tape

section of this chapter and chapter 5.

Disk-Editor is a program that will display any

37

sector of the disk on the screen and allow you to
change any bytes in that sector. This will give you the
ability to change the address contained in the first
track and sector of a program which tells where that
program loads to in the computer. This is normally done
on programs that have been saved with Relocate/loader
techniques. Also you may find occasions when you would
like to scramble some data on a particular sector,
reactivate a deleted file or otherwise confound some
location on a disk. Some other programs similar to this
are called disk doctors and also have the ability to

change data on the disk.

Error Makers are programs which can reproduce
certain errors on a disk. This is usually accomplished
by sending a machine language program to the computer
in the disk which tells it to do something outside its
normal operating paramaters. Often there will be
compatibility problems when using these with disks
other than the 1541 since the operating system programs
used by other manufacturers are not identical to the

1541.

Diskpicker is a disk drive software development
system which allows you to write, 1load, and execute
programs directly in the disk drive memory. We have
provided the more commom error routines which can be
senit-to.the disk drive to write the errors as desired
on a disk. The primary purpose of Diskpicker however is
to give you a development system on which you can

devise your own error writing, modified formating,

38

AAAAAAAAAANAAAANAAAANN

Yalalalalalalalalalainialalaiatalatalalataln

A AAAAAA A AN A A E A A A A A

encrypted data writing, routines and so on. As
Diskpicker is designed, it 1lets you develop a routine
such as an error writer, send it to the disk and
execute it and then read the disk to see 1if it

operated the way you wanted. Since the market will
continually change with new errors and techniques for
protection, Diskpicker gives you a way to develop and
use new error routines as needed. Alternately, if you
are not into machine programming, you may be able to
find someone with an error making routine and you can
then use Diskpicker to send it and execute it.
Commercial error writing programs do not generally
allow for this and are thus prematurely obsolete. The
Diskpicker requires Monitor$8000 by Commodore to give
it the monitor features although other monitors can be
used by changing the auto load and monitor call
locations. Other monitors should not be located at
$C000)as this area is used by Diskpicker. Beyond that
it is a unique program that gives you a chance to stay

current in this volatile pastime.

Linkster is a simple basic program that gives you
a display and printout of the tracks and sectors used
by a program. It 1is very handy when you need to know
exactly which tracks and sectors are being used by any

given program.

There are some other tools which you may like to
have that we have not included in our kit. Two notable
tools are BAM view and Track and Sector display. These

are readily available in the public domain and are

39

furnished on the demo with your 1541 drive, thus we
have made no effort to include our own version. The Bam
view is nice to give you a more graphical display of
what tracks and sectors have been used on a disk. The
track and sector display is similar to what you get
when you use our Disk-Editor. A block at a time can be
displayed or printed. The data is in hex with the ASCII
representation shown off to the side. This is nice as
it allows you to see things like names and other
"coherent" data. It 1is a passive program only, and
unlike the Disk-Editor which allows you to change

contents of these locations.

The next group of tools that you may need to use
are the most powerful but also the hardest to use. They
are the Editor/Assemblers. To the uninitiated, these
allow you to writé, view, change, save, and generally
manipulate machine_language programs. The secret that
most programmers and pirates alike try to keep is that
in order to become really proficient at breaking
protected programs you need an understanding of machine
language and the use of editor/assemblers. There are
too many possibilities for any likelyhood of ever
seeing an vundefeatable protection breaker. Get an
editor/assembler and start learning how to use it. You
may never become a machine language programmer, but it
will be a powerful tool even if your ability is

limited.

There are many E/As that will do the job and feel

free to use one that you like. If you have no previous

40

alalalalalalalainialniainisiainialalaiaialalniaiaiaiaialalatalatata e Yo ta Ve Vol Ve e

S el alal et e e N e N e e e e e N e e P N e Ve W Ve W NV

experience we recommend two which Commodore sells on a
disk called "Commodore 64 Macro Assembler Development
System". The two programs are called "Monitor$8000" and
"Monitor$CO00" after the hex locations in which they
reside. We recommend these partly because the entire
range of memory can be accessed with these two. If a
program happens to extend up into the area used by one
of the assemblers, you can always use the other! Also
the command structure is identical for each which makes
switching quite painless. Also this assembler is
readily available . You will need it to use Diskpicker.
There are two ma jor weaknesses which are nearly
unforgivable in a commercial system thpugh. The first
is that they will not save the memory locations where
they reside, so you can't copy them. We have included
a range of memory locations 1in Appendix B which you
should change in Monitor$8000 so that this problem can
be eliminated. In this manner Monitor$8000 can be
modified so that it will save any range in memory. The
second problem is that page zero cannot be saved or
restored from a monitor command and thus it is awkward
to go back and forth between basic and assembler. We
have included a wutility routine "ZMACH" that can be
loaded when using the monitors to do this. With these
fixes you should find them quite usefull in attacking

machine programs and various forms of protection.

The use of E/As and the details of machine
language are complete subjects in themselves. Many good
books exist on the subject and you should purchase one

along with the Commodore 64 Reference guide. Two books,

41

either of which will get you started on machine
language are "Programming the 6502" by Lawrence
Leventhal and "6502 Software Design" by Leo J. Scanlon.
The 64 reference guide is especially important because
of the Kernal explanations and the complete memory maps
which can be a great aid in trying to figure out what a
program is doing. The two 6502 machine language books
give good expanations of machine language commands and
simple examples of their use. Many of the routines that
you will be disassembling involve jumps to Kernal
routines along with specialized machine routines. By
tracing the kernal jumps in theé program you can often
get a "skeleton" of it. By £filling in with what the
specialized machine programs are doing you can then

learn what has been done.

A good calculator with Hex to Decimal conversions
is invaluable to a serious machine programmer. The

Sharp EL-510S is a good as well as inexpensive choice.

—-— Summary --

The simplest thing to do when first trying to back
up a disk program is to try to make a direct whole-
disk copy. If this copy will not run as is, you can
then go back to see what kind of errors showed up in
duplication. If using our copier you will already have
a printout of this info. If you are quite certain that
the original makes heavy use of error protection, you

should first use Error Analyzer to check the disk out

42

alalalniaiaials

alatalalat el ala el a et et e et el e Fa el o N o N e Na Ve N N N e N e e e e e P W e

alalalalalalalalalalaiainiaiaiaiaiaisiaiaialsiaiaiaiaiaialalalialaiaisiaialaialialals

and depending on what you find, perhaps run T/S
Analyzer to get an error log. The error log should be
saved on a disk reserved for this purpose. A Fastback
can then be done, wutilizing the error 1log. Next use
an error maker to try to reproduce these kinds of
errors in the copy. If this fails, use a program such
as SuperDirectory to 1locate what kind of programs are
on the disk and where they load to. Where possible load
these programs and list or dissassemble them as
appropriate for the kind of program involved. Locate
the sections which 1look for the errors, extra tracks,
etc. and take these sections out. When programs autorun
preventing listing, use Relocate/Loader to load then
dissassemble. For more ideas on use of these programs

see the chapters which cover specific applications.

If you obtain versions of the kinds of programs we
have discussed and become proficient at using them, you
will be able to break many forms of protection. As
with any complex job, it 1is an art which depends
largely on aquired skill. In this book we do not hope
to solve every problem for you but rather to give you a
guide to follow and explain the major tools and their
use. If and when software falls into line with the rest
of the informatioﬁ market, these problems of exotic

protection may dissappear.
-~ Tapes --

Compared to disks and cartridges, tape protection
is very easy to circumvent. The main reason for this is
that the tape medium simply does not provide for any

43

really sophisticated "lock outs". A magnetic tape
recorder is a very "dumb" peripheral device compared to
a disk recorder. It contains‘no microprocessor or 1qgic
control devices which need to be fooled or bypassed as
does a disk drive. The serial nature of the tape does
not allow for sophisticated file handling and the
kinds of access code checking that disks may use. In
fact, if a program of interest is available both on
disk or tape, you may choose to purchase the tape and
make your back-ups on disk! You can then enjoy the
speed and versatility of the disk while avoiding the
sophisticated forms of protection which the disk

version may contain!

The most effective way of copying a taped program
is to use the "Clone" method which we describe in
chapter 5. The effectiveness of this system is due to
the fact that it is an entirely "dumb copier”. A dumb
copier makes no attempt to interpret any data, it has
no means to do so. Information coming from one
datasette is rerouted via a special plug and fed into
another datasette. One plays whatever is on the tape
while the other records whatever is on the tape. The
data omr the backup is an exact match to the original

complete with any protection and so on.

When using cloning for duplication you should be
aware of the fact that a cloned copy is never quite as
good as a "computer saved" copy. The amount of
degradation is minimal and will not cause any problems

if the clone is made from an original tape. If clones

44

AN MNANMNA

AAAANAAAAAAANAAAAAAAAAAAMEAAAMAAAAAAA A A A A A

are made of clones, there will be a mulpiplicatinn
effect so that after about four or five generations the
copy would be unuseable. You might think of this as
sort of a problem of inbreeding. The best practice is
to clone the original and use the clone, Kkeeping the
original stored safely away in case your clone is
damaged. 1In this manner all clones will be first

generation and will not exhibit mutant tendencies!

Another way to make tape copies is to try to save
them directly. One noteworthy form of tape protection
against this relies on an autorun routine in the
program. These are 1loaded below hex $0801 in memory.
The usual trick is to use a short autorun program which
also disables the STOP key so that you cannot break and
list the main program(s). Often there may be more than
one program, each of which can be loaded and saved
normally as long ‘as the autorun section is not loaded.
If the datasette runs and stops and runs again while
loading a program, this is probably the case. The
autorun section can be saved separately by using the

tape version of Relocate/Loader, Trelo.

If you decide to try to copy tape programs by
loading and saving, you will need to know whether they
are basic or machine language and where the machine
sections reside in memory. Chapter 3 details.the tape
buffer which can be used to extract the beginning and
ending addresses of programs being loaded. 1In order to
be effective at this kind of work we recommend that you

add a "Load Data Audio" circuit to your computer. Tape

45

programs contain a "header® section which contains the
name and locations. By 1listening to the program load
with the audio circuit, you can stop the recorder at
the appropriate times and Peek at the tape buffer to
find out the starting and ending locations. An
editor/assembler is helpful in this also so that you
can get a full hex display of the important buffer
locations and also directly save the machine programs

to the backup tape or disk.

This completes our discussion of tools for
duplicating software. Although other tools and methods
exist, this is a good sampling of the essentials. As
with any craft, you will probably find yourself
collecting a variety of specialized tools to solve
special problems. As your skill with the simple tools
increases, you will begin to understand the

applications for the more advanced tools.

ANAAANAANAAANAAA

MO ANNANAANAANAANAAANANANAAAAANAAAA

e et ey a et N N N Ve N N N N e N e e e N N R N e W e T la e lalalatalaiaialaiaialalale

*%** CHAPTER THREE ***

MAPS

For many applications of the computer we do not
need to know much about the memory of the system.
Usually we can be happy knowing that we will not run
out of useable memory space. When it comes to
duplicating programs however, working without a memory
map is like trying to find a house in a strange city
without a roadmap. "Getting into" a protected program
will often require that we know something about where
it normally resides in memory or how the computer is
configured to run that program. This chapter will give
you the maps and information about system configuration
that you will need. This chapter should be used as a
reference when you get into situations which require
you to locate programs. Do not worry about memorizing
this information, you will be better off just

familiarizing yourself with what kind of information is

47

here, then look it up when you need it.

We will cover five topics concerning memory as

follows:

Normal configuration.
Software reconfiguration.
Hardware reconfiguration.
Special locations.

Disk memory.

NORMAL CONFIGURATION

Figure 3.1 shows the normal configuration for the
C64. Note that the memory addresses are given both in
hex and in decimal. 1In this configuration the areas
shown shaded are RAM available to the user. For basic
programs the memory must be contiguous. Thus the
area from 2048 to 40960 (38911 bytes) is available for

basic programs.

Basic ROM starts at $A000 and extends to $BFFF.
That méans that in normal configuration, this area is
occupied by Basic and cannot be used otherwise. Another
free RAM zone begins at $C000 but can only be used for
machine programs or data storage kinds of jobs since it
is not contiguous with the other free RAM. The area at
$C000 is 4K (4096) bytes, extending to $CFFF. A basic
program can poke values to the 4K RAM at $C000 thus
increasing the available RAM without reconfiguring.
Alternately, this RAM: at $C000 could be used for

machine subroutines which basic could call thus

48

ialalalalalalalalaalniaiaiatiaialalialalalaiaialaliainialaininialiaialiaiaiakaiaalnie!

elalalalaialnliaialialaliaialialialialiaialisliaiaiaiaiainiainiaiaiainiainialiaialialalialialiale!

reducing the requirements

space.

for uninterupted memory

49

SOFTWARE RECONFIGURATION

One of the unique features of the C64 is the way
its memory can be reconfigured. This is made possible
because the C64 contains 64K of RAM located between hex
$0000 and $FFFF. The ROM and I/0 areas shown on figure
3.1 actually contain RAM "underneath" them. The 6510
microprocessor used in the C64 allows the programmer to
switch memory blocks in or out. If the 6510
microprocessor chip had more than 16 address lines,
the process of reconfiguring memory would not be
necessary. The 16 address lines limit it to directly
addressing 64K of memory. By using a special output
port at location $0001, the 6510 "turns on or off"
these memory blocks which are addregsed "on top of each
other". Actually, the ROM and I/0 are normally "in",
while the RAM underneath is accessed by switching the
ROM "out". So Basic ROM is normally seen at $A000 and
KERNAL ROM is normally seen at $E000. The I/O section
hex $D000 to $DFFF has three possible memories to talk
'to. Normally it is I/0. By changing location 1 to a

value such as decimal 51, the character ROM can be

Slalalalalalalalalalalaiaialalalaialalalalatiatalalatialalaintalatatatatala¥alala¥ale

OAAAAAANAAAAAAAAAAAAAANAAAAAAAANAAAAAAAAAAA A A

FFFF

EOOO

[a]s]els)

cooo

AO00O0

8000

6000

4000

0800

0400

0000
HEX

FIG. 3.1

MEMORY MAP
COMMODORE C-64

KERNAL ROM

(8K)

4K 1/0
(CHARACTER ROM)

4K RAM

BASIC ROM
(8K)

8K RAM
oA
CARTRIDGE ROM

8K RAM

8K RAM

14K RAM

1K SCREEN RAM

1K CONTROL ZONE
ZERO PAGE

51

65535

57344
53248

49152

40960

32768

24576

16384

2048

1024

DEC

switched into the D000 to DFFF 1locations. A value of

decimal 48 will switch the D000 to DFFF RAM in.

In the case of BASIC and KERNAL areas, the
underlying RAM can be written to at any time but can
only be read if the ROM is switched out. Thus a basic
program can poke values into these "hidden" RAM
locations or a machine program can Store to these
locations. To read the contents of this memory the ROM
must be switched out by the accessing program. This
means that the program that reads these 1locations
cannot be BASIC because the BASIC ROM and/or KERNAL
ROM will be "shut off" during the access time. For
example, if the KERNAL area 1is “off" the machine
routine must not access KERNAL routines during the time
the hidden memory is being read. If Basic is off, the
calling routine must not use any basic statements. One
important note is that switching the KERNAL off also
disables Basic. Also if using the I/0 area, the program
reading the underlying RAM must not contain any
interrupts, keyboard or I/0 calls, in addition to not
using BASIC or KERNAL routines. Outside of these
limitations, the memory reconfiguration is a good
feature which allows the €64 to go far beyond the
limitations of a normal 8/16 bit computer.
Unfortunately, it also makes for quite a bit of
confusion for many users and makes some forms of
protection harder to analyze and break. In some cases,
knowing the normal configuration for a program you are

trying to break will be of paramount importance.

52

aIalalalalaialalialialnlalalalala el a ekt a el el el e et el a e Ve e Ve Ve N e e Ve N e ¥ Na W

DAAAAAAAAAAAAAAA A A A Ao A A A S

Three of the bits at location $0001 hex control
the configuration of the ROM and I/0 memory. Table 3.1
shows the hex, binary and decimal' values used to
reconfigure the port. Most often you would use a small
machine routine to set the value at location $0001 for
the configuration desired, then access the memory,
finally resetting the value at $0001 to 37 before
returning to basic or accessing normal I/0 or KERNAL

routines.

------ TABLE 3.1 ——m—m-
Value at Loc $0001
HEX BINARY | DEC CONFIGURATION
37 110111 55 Normal (Map fig 3.1)
36 110110 | 54 BASIC out
35 110101 53 KERNAL & BASIC out
34 110100 | 52 BAS -KERN -I/0 out (64K RAM)
33 110011 51 1/0 out
32 110010 50 I/0 & BASIC out
31 110001 | 49 1/0 & KERNAL & BASIC out
30 110000 | 48 1/0-BAS —-KERN out (64K RAM)

Although the values in table 3.1 are the "normal®
state for the data in location $0001, there are other

situations which may cause these values to appear

53

different than the ones listed in table 3.1. The reason
for this is that the value at location $0001 is the
result of eight bits of binary informaiion and only the
last three of these bits actually control memory
configuration. The other bits which go together to make
up the value have to do with the cassette port. Simply
storing one of the hex values listed in location $0001
will achieve the desired result but is not the
"cleanest" in programming. terms. A better method when
you need to shut OFF one bit of eight, is to use the
logical AND instruction. When you need to turn ON one
bit without affecting the rest, the ORA (logical OR)
instruction is best. Table 3.2 gives the pre-
‘calculated values to AND or OR for changing memory
configurations. Think of the AND as disabling certain
ROMs while the OR (ORA machine) will reset to normal. A
disable program for removing basic might 1look 1like
this:

LDA #$FE

AND $01

STA $01

RTS
A resetting routine: .

LDA #$01

ORA $01

STA $01
RTS

slalalalalalalalalalalniatalalalalalalalalalata talalalatalalatatata o ot Yoo e Vale

latalalalalalalalalslalalaialalals o lalalalalalalalalala lalalalalata e la e lalalale

Disable # (AND) .

Enable # (OR)| Configuration

HEX HEX i
2- FE 01 Basic out
3- FD 02 KERN & BASIC out
4- FC 03 KERN BAS I/0 out
5- FB 04 I/0 out
6- FA 05 I/0 BAS out
7- F9 06 I/0 BAS KERN out
8- F8 07 I/0 BAS KERN out

HARDWARE RECONFIGURATION

(CARTRIDGES)

As you can see, the useable memory controlled by
the addressing limitations of an 8/16 bit
microprocessor, is pretty well filled up! The problem
then arises of where to put cartridge programs. Leaving
a certain area unused as the VIC 20 does, would meaﬁ a’
limitation of user RAM or a tradeoff in sophistication
of the normal system. Rather than allow this, the
Commodore designers included another memory
reconfiguration scheme that could be controlled by the
cartridge itself. The concept being that cartridge
programs would occupy RAM locations starting at hex
8000 or hex A000, with a hardware system of switching
out the normal memory in these 1locations. This still
leaves a lot of RAM available if needed by the
cartridge program and, in the case of A000 cartridges,

uses BASIC area which is not often needed since most

55

cartridges are machine language.

An interesting fact is that the cartridge program
could again reconfigure memory once it starts
operation. In many cases this would foil attempts to
transfer the cartridge program to RAM inside the C64
and running it from there. Some cartridge programs can
pe operated from C64 memory without using the
cartridge! This is not a very predictable method though
as even a simple "write over" loop in the program could
eliminate any possibility of running in RAM without
write protection. This along with the chance that the
program could reconfigure memory when it runs,
convinced us. that the only viable way of running
cartridge programs without using the cartridge would be
through the use of an external RAM with write protect
capability, which essentially emulates ROM. Thus the
Romulator system described in chapter seven provides a

very reliable cartridge elimination scheme.

The hardware reconfiguration necessary for the
cartridges involves two 1lines which are connected to
the expansion port of yéur ¢64. These two lines are
named GAME and EXROM and they are normally at logic one
with no cartridge plugged in. In‘general, these lines
are either individually or both grounded by the
cartridge to control the memory configuration of the
C64. Table 3.3 details the possible combinations of
these lines and indicates what areas are made
available. Actually there is no specific rule for

exactly where in these areas a cartridge must start for

56

alalalalalalalalalalalalalalaiaialalataialatatatatalalalatalala Vale tatatata ta fa¥ala!

.

OAAAAAAAARAAANAAAAAAASAAAAAAAMEAAA A AASAANAAA A

any given line configuration. However unfortunate this
might be, it has little effect on our ability to copy
and operate the cartridge in external RAM such as the
Romulator system does. All that is important is that
you know the normal state of these 1lines with the
particular cartridge in question. Chapter seven
outlines a very simple non-destructive way to find out

the normal starting location used by the cartridge ROM.

------ TABLE 3.3 —————-
GAME EXROM MEMORY CONFIGURATION
1 NORMAL- no cartridge in.
0 1 $8000 & AO0O0 & EOO0O0 available
0 Location $8000 available
0 0 BASIC out $8000 & $A000 available

Hardware reconfiguration will be needed if you are
doing cartridge backups. The Romulator system provides
you with the necessary hardware to accomplish this for
the majority of 8K and 16K cartridges currently:

available.

There are several areas in the C64 memory that are

of particular concern to anyone breaking protected

57

programs. These locations or areas of memory either
contain information that you may need to duplicate a
particular protected program, or they may be locations
used for purposes of disabling the keyboard, auto-
start routines and so on. One area of especial interest
is the "control zone" which is indicated on figure 3.1.
This zone which resides between $0000 and $0400 is
mainly used by the operating system to store
"housekeeping" data such as pointérs, vectors, flags
and so on. The "zero page" ($0000 to OOFF" is located
in this zone. The memory maps in the Commodore 64
Programmer's Reference Guide spells out the function of
every assigned location in the control zone. There are
three fairly good size "free" areas within the control
zone that you need to be aware of. The tape buffer

$033C-$03FB is one and an uﬂused area $02A7-$02FF is
the other and $0100-$01FF the third. Although the tape
buffer area and the $0100 area have other jobs, you

will see them used for directly loaded routines.

The tape buffer has two characteristics of
interest to us. One is that upon loading a tape header
from a program, it will contain the starting and ending
addresses of that program. Figure 3.2 shows the first
few locations of the tape buffer and indicates what
information the bytes 1located.there contain. Note the
way the starting and ending address of the program that
has been loaded is determined. Second, the buffer area
of the tape buffer is often used for a short control
program or data storage. Programs in the buffer area

can be written there from disk or tape or sometimes

alalaialaialiaialalalalialalalalalatelalatalalalalatalalala oo tatala ot e ta Yo Yo Fa e b

el el Y N Y N N e N N N o N Fe e W W e W W N e W W W e W e e N e Y e Ve N Y Ve N Y Ve W W

FIGURE 3.2

TAPE BUFFER

Byte function
&
address

Sample of
first five bytes

Identification of the first five locations of the

tape buffer. (#33C - @340)

All values in Hex.

TAPE
HEX

BUFFER MAP

#33C

STARTING & ENDING ADDRESS &
STATUS BYTE

#3ud 16 BYTES USED FOR PROGRAM

9350

NAME

sueg

TRANSFER FROM TAPE TO

REMAINDER OF BUFFER USED
/" TO STORE TAPE DATA DURING “

I~

SAMPLE MONITOR DISPLAY OF DATA IN TAPE BUFFER

ASCII

HEX

4 N

' 033C.....NAM 03

' 0344E PSIDAC 45

' 034Ceeeees.. 00

.' 0354..... «so 00
' 035C.eeees.. 00

' 0364........ 00

.' 036C..c0e... 00

00 14 00 16"

20 50 53 49
00 00 00 00
00 00 00 OO0
00 00 00 00
00 00 00 o0
00 00 00 OO0

4p
a3
00

00
00
00

placed there via a "poking" routine in another
location. Since this area would only be affected by a
tape 1load, it is protected from being destroyed by
normal means such as resets etc. Also it is not obvious
to the uninitiated and thus provides a small measure of
secrecy. Routines here must be in machine language as
it is not contiguous with user RAM. The size limits the
extent of the program, bﬁt it is perfect for boot or

protection routines and access codes.

The unused memory at $02A7-$02FF has similar
applications. This is an insidious area because it
borders on the BASIC vector locations. The significance
of this is that if each of these five vector locations
contain the starting address of a routine, any
RUN/RESTORE attempt will force an automatic jump into
the routine. In this manner, an attempt to break a
program for listing or disassembly cannot be done from
the keyboard. Most importantly’ though is that if these
vector locations are loaded to from tape or disk, upon
completion of the 1load the program they point to will
run! This is the elusive method for AUTORUN! The trick
to using autorun is that the program must be in the
computer BEFORE these 1locations are loaded to. Since
one of the purposes of autorun is to prevent listing of
programs before the user RUNs.them, that means that the
program to be autorun must be 1loaded along with but
before the vectors. The only area before the vectors
big enough to contain a program is the $02A7 to $02FF
area. Although not 1large this area is perfect to boot

in a main program and run it. RUN/RESTORE will simply

60

alalalalalalalalalalatatatalalatalataletalalatatetalalalatatalatalataiata fala falale

Y

alalalalalalaliaiaialatalatelaletatelelalalialalalalalalaiaiaialainiaiaiaiaiala tatale)

restart the program as long as the vectors are set! The
Relocate/loader process in chapter six gives the
procedure to get around this and save these routines or
examine them. Appendix C lists an autorun routine that
you can use with your own programs if you wish. Note

locations specified for addresses and load options.

The =zone at $0100 has sometimeé been used for
autorun boots. Most of the same ideas apply to it as
the other areas we have already talked about. You
should once again. be alert for addresses shown up by
Superdirectory which reside in this =zone. The
Relocate/loader is a - perfect way to save these

routines.

As usual, the possibilites for using or modifying
certain 1locations in the control zone are limitless.
Ultimately, you need the ability to find out what
locations a program is using in the control zone and

then analyzing the result for each particular case.

Some programs, especially basic will need to have
the basic vector ‘locations intact, that is the
autostart method would interfere with the normal
operation of a basic routine. When this case occurs,
the autostart may be used as a loader but from the
moment the basic prégram is accessed, the five vectors
will need to be restored. There is a method which will
prevent any basic program from being “Stopped" and
listed which requires no special sepafate routines.
That is to execute a POKE808,225 somewhere near the

beginning of the program. This location is the KERNAL

61

STOP routine vector and poking 225 there prevents the
computer from doing the STOP routine when the STOP key

is pressed!

As a general rule you should be especially
watchful of pokes or stores to any control page
locations. Pay particular attention to any changes of
vector addresses as they cause the computer to go to
the wrong place when that routine or condition arises.
This allows protectors to keep people from using
"normal"” means to 1look at their programs. For more
information, you will need tbe ' Programmers Reference
Guide or-one of the other clones of this guide which
£ill most bookstore computer bookshelves. Probably the
most fertile range to study and 1look for in programs
are address locations $02A7 through $03FF. This range
contains the five BASIC vectors and thirteen KERNAL
vectors as well as the largest unused 2zone and the

tape buffer.

The tools included in this book are just the
beginning in breaking protection. The whole protection
dilemma is dynamic in nature and even as we write this
book, someoné somewhere is bound to be devising a new
and more diabolical scheme. Every time you buy another
utility guaranteed to break "all forms of protection"
you will eventually find something it won't work on.
Information and understanding are the most important

keys you can have to unlocking protection.

62

AAAAAAAAAAAAAEASAAAAAAAAAAAAAAAAANAAAAAAA A A

Perhaps one of the best kept secrets of the
Commodore family of equipment is information concerning
the disk drive. Most of the information around is a
slightly fermented product of the grapevine... So and
so said this... what'isname said that. The information
and procedures being used with the disk range from
gibberish to genius. What we have managed to distill
from all this is somewhere between and although I know

it is not genius, I hope you won't find it gibberish!

In this section ye will give you a simplified disk
map, figure 3.3 as well as point out a few of the afeas
of special interest. The VIAs which are used in the
disk drive are detailed in figure 3.4. ' For diskette
formatting, we will refer you to your User's Manual.
Appendix F shows a GCR (group coded recording) map of a
typical disk sector. You should also note the GCR
header organization as it is slightly different from
what the disk manual implies. The rest of this chapter
will explain the areas shown on the maps in figure 3.3

and 3.4.

The ROM used in the disk 1is 16K and provides a
unique operating system (DOS) in which the vast
majority of all disk functions are accomplished by
software. This is the hardware-software tradeoff which
gives designers the choice of making fast and
relatively expensive hardware intensive products
versus slower, cheaper software intensive products.

The Commodore directive was to produce an inexpensive

63

FIGURE 3.3

MEMORY MAP
1541 DISK
FFFF
16K ROM
DISK OPERATING SYSTEM
(D.0.8.)
co00 _| '
.
MIRROR 16K Hot/ﬁz/ff;;
- //
sooo. ////////////////%
67FF - /39 S !,
6000 %i:j;//i/?{gﬂoﬂ EK,ZSF /%fé%
47FF_ : 2
))
4000 /:;;;é%%;
a7Fr-'_ :
2000 __ ﬁééjﬁ;
wcor _E= S Ratsaty
1coo
180F
1800 _
07FF _
o700 _§ s1x
0600 -} RAM BUFFERS S—
0500} (FF) BYTES EACH ——
0400 _]
0300 ___ _
0200 STACK
0100 :
ZERO PAGE
oooo

ALL AODDRESSES IN HEX
DOTTED AREA UNUSED

64

UNUSED

2048 BYTES
(2K) RAM

aiaialiaialalalalalalaliaialialiaialalalalialialelaiaialialaialaliaialaiaialiaiaialia i aia e e

AAAAAAAAAAAAAAAAEAAAAAASAAAAAAAAAAAAAAAAAA

disk which inherently requires the use of software for
as many functions as possible. Although much too long
to detail here, you can get a complete disassembly of
this ROM by using Diskpicker which is explained in more
detail in chapter six. If you are serious about
programming the disk, you should take the time to do
this. Be sure to have lots of paper ready for your
printer and a couple hours of time. 16K is a lot to

transfer and print!

As a user, you ‘'can control the ROM only to the
extent that you may use (JSR to) the routines contained
there. However, those with the knowlege and equipment,
could ‘"burn" another set of ROMs with some of the
routines specially modified. The purpose of this might
then be to cause the disk to write in an abnormal
manner which could not be reproduced by normal disk
drives. If this is done in a manner that does not
interfere with normal reading operations, it would be a
very effective protection scheme. The users "normal®"
operating system could not copy or write in the same
way as the manufacturers "abnormal" operating system.
The only hope would be if the user, by analyzing the
protection, could write a routine that could be fitted
into an unused RAM buffer in the disk memory. In some
cases, oOne could reproduce the way the disk was
protected. This is one of the primary purposes of
Diskpicker; to allow user machine language programs to
be developed, tested, and operated in the disk RAM.
The major problem in implementing such routines will be

the 1limited RAM available. If the protection DOS
65

routine is called by an earlier DOS routine, the users
RAM routine would need both, as well as any others in
the chain. The whole thing starts to become quite
large. The reason is that the normal DOS is going to
call routines within its address space,- this does not
always allow jumping out to hAM routines then back and
so on. Only a modified ROM could provide this
capability. There are still many routines you can use
parts of from RAM calls however. As chapter six will
show you, our error writing routines involve exactly

this kind of process.

The ROM area from $C000 to $F24C serves mostly
for the software oriented tasks of interpreting,
manipulating data and so on. This you will probably not
have a lot of reason to modify. The ROM from $F24D to
$FFFF contains the hardware control routines. These
routines control such things as selecting tracks and
sectors, starting motors, selecting reading and writing
and so on. Many of the error writing jobs can. be
accomplished by wusing these routines or modified
versions of them. A source code listing, which you may
be able to 1locate through a user group, can be an

invaluable aid in using these routines.

The RAM used. by the disk is 2K in size. The RAM
provides the zero page ($0000-$00FF) which is required
by 6502 based systems. Two pages $0100-$02FF are
reserved for additional pointers, stack requiremepts,
and so on. $025B-$02BO0 which is in this area is used

for RAM array and takes care of file handling. $02bl-

66

AN AAAANAAAAANAANANAAANAAANANANAAAANAANAANAANAANAAAA

AAAAAAAAAAANAAAAAAAAAAAASAAAAAAAAAAAAANAAAAA

$02FF is for output buffer information such as error
codgs and directory. The rest of the RAM area is
divided into 256 byte “"buffers". There are five of
these buffers which have the primary job of holding the
data comming from and going to the disk. They are
allocated as néeded by the DOS. User. programs can be
located in these buffers and called by the user
commands. The first 18 bytes of the buffer at $0500 are

often used for a jump table to user routines.

By far the most important area of these RAM
locations is the $0000-$0005 which is the job queue,
and $0006-$0012 which provides the respective headérs
(track and sector) for the job in the quehe. Note that

there are two RAM locations for each job location.

In addition to the ROM and RAM, there are also two
Versatile Interface adapters which are seen by the disk
CPU as memory locations. By nature, a VIA occupies only
16 memory locations. Figure 3.4 shows what is found at
each 1location of a VIA., The first VIA is normally
"seen" at $1800-$180F. 1Its primary job is to control
the serial bus. It is connected directly to the serial
bus and has the job of taking data from. the internal
data bus and sending it out on the serial bus and vice
versa. The second VIA is, normally "seen" at $1CO00-
$1COF and its job is to serve as hardware controller.
It is connected to the circuits which driQe the motors,
sense write protect, and controls the read/write logic
for the head. The hardware signals are transmitted to

and from the VIA directly from the internal disk data

67

FIGURE 3.4
1541 DISK VIA MAP

oo 1/0 REGISTER B
01 1/0 REGISTER A (WITH HANDSHAKE)
] o2 DATA DIRECTION REGISTER B (DDR-B)
03 DATA DIRECTION REGISTER A (DDR-A)
04 TIMER ONE LOW BYTE (CLRS INT ON READ)
os TIMER ONE HIGH BYTE (CLAS INT ON WRITE)
06 TIMER ONE LOW BYTE TO LOAD
o7 TIMER ONE HIGH BYTE TO LOAD
o8 TIMER TWO LOW BYTE
09 TIMER TWO HIGH BYTE
0A SHIFT REGISTER
o8 AUXILIARY CONTROL REGISTER (ACR)
oc PERIPHERAL CONTROL REGISTER (PCR)
oo INTERAUPT FLAG REGISTER (IFR)
OE INTERRUPT ENABLE REGISTER (IER)
OF 1/0 REGISTER A (WITHOUT HANDSHAKE)

The 1541 drive uses two VIAs. One is primarily used in

communicating with the serial bus while the other is
primarily used for hardware control. The VIA occupies
16 memory locations (00-OF). The specific FfFunction
desired can be accessed at one of these locations as
indicated. Note that either VIA can be READ from or
WRITTEN to, thus a port would be an input if it is
being READ and an output if it is being WRITTEN to.
This is taken care of with the normal READ/WRITE
control line from the microprocessor.

AAANAAANAAAAANAAAA

BTN YN Ne N e N Ve W Nan W W Wa Wan e W W Wee W W Wen W

AAAAAAAAAAANAAAAAAAESAAAAAAAAASAAAAAAAAAAAAAA

bus. As you can see from figure 3.4, among the other
functions, the VIAs have directly addressable timers

which are used as needed by the DOS.

One interesting fact about the 1541 drive is the
"mirroring" of memory that is shown on the map figure
3.3. As shown, the devices which make up the disk
memory can be seen at more than one location in the
map. The ROM at two 16K areas, the RAM at four 2K
1ocgtions, and each VIA at 256 16 byte locations (not
shown). The reason for this is the way the disk
hardware decodes memory. It was simply cheaper and
easier to decode only the necessary address lines to
place the memory in its designed locations. When only
some of the address 1lines are decoded to define a
memory block, that block will be "mirrored" at every
other location defined by those lines. In order to get
unique positions in memory, all address lines must be
decoded. Mirroring causes no problems so 1long as two
decoded blocks do not overlap each other. It &an
produce some confusion though if you are not aware of
it and you "discover" what looks like important data at
say $2003. What you would be seeing is actually the
zero page data at $0003! A programmer could confuse
those studying his code by accessing the same data with

different addresses.

Other sources for information on the disk include
the 1541 Maintenance Manual by Michael Peltier, which
covers the system hardware if you need to make repairs.

You will not find it much help for software

69

applications though. The User's Manual that comes with
the drive should be refered to for diagrams on how the
diskette is configured with tracks and sectors. However
note appendix F f?r the correct header format map. One
final interesting note is that the drive can be forced
beyond track 35 by software control. Chapter six covers

this in detail.

70

YR NN NanNenNan W Wen W Wen Wen

AN AAANAA™

AAAAAAAAAAANAAAAAAASAAAAESAASAAANAAAAANAAAAAAA

*** CHAPTER FOUR ***

PROTECTION CONCEPTS

Software protection concepts have evolved from
relatively simple schemes to very complex ones. In the
rush to find ways to keep users out of programs,
methods have been developed at an incredible pace. Each
new form of protection then spawns a whole new set of
breaker programs and copying techniques. The results of
this vicious cycle takes its toll on programmers AND
users. If you have been playing in this game for even a
short time you have perhaps already.bought some breaker
products only to find that some new form of protection
foils the methods it uses. So once again you are in the
market for the latest breaker system and so on and éo
on.... We cannot offer a total solution to this nor I
doubt, can anyone else. The ultimate answer for disks
will probably take the form of a mechanical "dumb

copier" which will not interpret any data but simply

71

read and write an exact copy. Although it still
wouldn't be a gudrantee against certain forms of
protection. This chapter will cover a variety of the
techniques currently being used. Chapters five six and
seven will then list specific procedures. Your ability
to stay current .with the ever changing techniques
depends on your practice and motivation. We will start
off with information about disk then go on to

cartridge and finally tape protection methods.

There are really two things to consider when
breaking protection. One is; do you just need a copy?,
and two is do you need to modify the program (code) to
customize it for your application? Where applicable we
will try to include information to help you get
listings of protected programs. Often you can learn
quite a bit by studying listings of protected programs.
In many cases, modifying the program so that the
prqtection no longer exists will give you a much more
valuable commodity. With your modified version, you
won't have to play all the protection games if you need

an additional backup copy!

Chapter two defined some arbitrary 1levels of
protection. Here we will expand on this information

giving you more detail on the protection in contrast

with our earlier focus on tools available for breaking

the various levels.

72

AANANANAANANAAAANAANAAANAANAAAAANAAOAAANAAANAANAAANAAANA

etV Ve Y N e N e e N e Y e Y Y Ialalnialalaininlnialalaiaiaiaialainiaiaiaialaiaials)

LEVEL O.... Although this level is "unprotected"
there are a few points that a beginner should be aware
of. If the program is in Basic, it may involve more
than one program which the user would need to copy
separately. Since these are often chain loaded, it is
important not to run the program. It should be loaded,
saved to the béckup then perhaps run to see if it loads
any other programs. In a similar fashion, the program
might access data files which would not be saved by the
save command. Often the program might * be in machine
language and a simpie save will not work since that is
for basic only. Even though the machine routines are
“unprotected", you may need to use something like
Superdirectory to find the address range of the program
so that you can save it with an Editor/Assembler. The
E/A's require that you know the beginning and ending
address of the program to save it. 1In general, with
unprotected programs,-if you wish to copy by Saving you
need to know the details of what kind of program it is
and what all it needs to operate correctly. The
simplest method of duplicating such programs is to use
a BAM type copier. Virtually any whole disk copier

will also work.

LEVEL 1l.... Programs in this category use some
sort of autorﬁn feature which prevenés the user from
making listings, and directly Saving the program. The
added use of a STOP disable poke keeps the user from
simply pressing the stop key to see whats in the
program. On programs that ask for data from the

keyboard or use a peripheral device, you can sometimes

73

break into them by giving the computer some value out
of range or unplugging the device the program is
talking to. The idea is to force some kind of error
which will return control to the user. At that point
listings etc can be done. Usually the program will
intercept the error codes and return control to the
program, so you will need to be devious in the kinds of
things you try. We were able to break into a well
protected word processor and generate complete listings
by unplugging the cassette connector while the program
was writing a file. Other ways to get into such
programs involve more coherent means such as
relocate/loading which prevents autoruns as the data
does not go into the vector table that the programmer
wanted. Then by saving the program without the autorun
or with a modified autorun, the disk can be edited so
that when the copy is loaded it goes to the right place
but no 1longer has the protection! The complete
procedure for this 1is in chapter six. Once again if
making a backup 1is your only concern and you do hot
need to get into the code, you can use BAM copiers or
whole disk copiers. The advantage of relocate/loading
is that in essence it gives you a new unprotected
program which you can list and modify at will. The BAM
and whole disk copiers will give you a "clone" of the
original which will still contain the autorun and non-
STOP features as originally written. The final choice

depends on your needs.

LEVEL 2.... has been defined as including those

programs which wuse disk errors to stop whole disk

74

AANAANAAAAMNAAAAAANANAAAAAAANAAANANANAANAANAAANA

AAAAAAAAAAAAAAAAAAAAAAANASAMAAAAMAMSEAAAAAANAA A

duplication. In this case, the errors will only stop
duplicators which do not reset or "handle" errors.
Although "o01d" as the protection methods go, there are
several "whole disk" duplicator programs which will
stop if the disk indicates that there is an error on
the disk. The kind of error could be one of many
possibilities but generally falls into the category of
tampered headers or data on the disk. Regardless of the
specific error, the duplicator stops because the disk
drive tells the computer in essence that the diskette
is defective. This of course is exactly what .the
protectors want to happen so that you will not get a
useable copy. Most of the more recent entries on the
duplicator mArket can handle this kind of error
situation. There are various possibilities but the
concept is to "skip over" any sector in which the disk
drive sees an error. Some such as DD-1 will go ahead
and transmit the data on the sector in question in many
cases. Essentially it just ignores the errors that the
disk drive says are there, and goes on to the next
sector. This level of protection can be broken by error
tolerant duplicators. Alternately, the relocate/load
method can be used on this protection level. This
level of protection usually includes the autorun and
non-STOP features. Otherwise there would be nothing
stopping the user from simply loading and saving the
program. The program itself has no relation to the
errors, they are just inserted on a blank track or
sector to disable copiers which don't have error

tolerant routines.

75

LEVEL 3.... This 1level is more typical of much
current software. In this elaborate scheme, disks will
have errors and autoruns as described earlier but to
complicate matters, the program or a loader will check
to see if the errors are present at the right locations
on the disk. If the errors are not there, the program
will not run, or it will crash. This is called error
checking and if a program employs error checking you
will need to either get rid of the error checking
routines or you will need to put the same errors back
on the backup disk as the original had .(and in the
correct places). One popular place to put the error
checking routines is in a loader that runs after the
autorun boot has started things up. The order is
something like this: A very small autorun routine loads
to the control =zone resetting vectors and forcing
itself to run. This autorun then boots in a loader
program which is more sophisticated and handles the
loading and error checking for the main disk
program(s). If the loader doesn't find the proper
errors in the correct locations it will not continue to
load the main program or will cauée a crash etc. 1In
addition to checking for the errors, the loader program
may be responsible for actually deciding which tracks
and sectors to load and in what order. This way a main
program can be saved and have its BAM erased. As long
as the person who writes the 1loader knows which order
the tracks and sectors need to be loaded. Interspersed
amongst the valid data 1loads the 1loader can check

predefined tracks and sectors for specific errors. By

76

ANAAANANAAAAAAANAAAAAAAAAAANANAAAAANAAANAAAAAANN

alalalalalsiaialaialslalsiaiaialsiaiaialslialalaialaiaialalalalfalalaialalalalalale

using a table of tracks to 1load and ones to error
check, a very high degree of protection is obtained.
Our disk analyzer 1is helpful both in making protected
programs and backing up ones that have been protected
in this manner. It will give you a sector by sector
list of which ones coptain data and which ones contain
errors as well as what kind of error. When the main
program has finally 1loaded correctly, it will run
taking control of the system preventing breaks or
normal methods of stopping. The main program may or may
not perform further checks for errors on tracks and
sectors depending on how it is designed. The simplest
approach for these programs 1is to use an error
analyzing routine and whole disk copier and then use an
error writer to make errors on the backup - exactly
like they were on the original. The major problem with
this is keeping up to date on the errors that you can

write onto your backup disk. As the state of the art

.progresses, you find that you need to be able to write

an increasingly large number of different kinds of
errors. The other method which is harder is to
relocate/load and disassemble the loader routines and
locate error checking sections. Again, the disk
analyzer printout will help because it will tell you
which sectors contain errors. Upon inspection of the
loader you will know which sectors it is expecting to
find errors in and spotting that data is easier. With
the "Hunt" command of an editor/assembler you can
systematically search through large amounts of code to

locate occurances of likely command sequences. Practice

77

and experience arc the key to doing this successfully.

In general you will be looking for a sequence of CMP #$XX

(XX= hex error code value) followed by a BEQ or maybe

BNE**,

The error writing process itself involes a fairly
cumbersome system of writing special routines which are
loaded into the disk drive RAM and executed by the disk
drive microprocessor. The routines are basically mutant
versions of the disks own formatting and data writing
routines. In other words, if you have just saved a
program which you wish to protect by these means (or
made a backup which needs them), by running one of
these mutated routines, you can cause something 1like
one sector header to be formatted differently than the
normal pattern for that disk. Other possibilities
include erasing an entire track of data or completely

.

wiping out a sector.

The level three will at some point check to see if
errors are present before a run will be allowed.
Alternately the errors might be checked within the

program.

LEVEL 4.... This in many ways is just an extension
of Level 3 but there is a sly twist. The errors
involved in this 1level of protection include with the
others, the trick of putting data beyond the normal 35
tracks defined in the original drive design, or writing
data where none would be expected and can't be
recovered by the DOS read functions. Both the extra
tracks and the "hidden" data require modified DOS

78

aialalalalalalalialalaia

-

AAANAANAANAAAAAAAAAAANANAAAAAANANAAM

AAAAAAAAAAANAAEAAAESEAAANAAAAAAAASASAAAANAAAAAS

routines to be 1loaded. These DOS routines are machine
prodrams that operate similar to the normal ones in the
disk but they are designed to find the hidden data
whereas the normal routines would simply return an
error. -The "extra track" protection could involve
simply writing sync beyond track 35 or even go as far
as putting data out there. There are other unexpected
places to "hide" data such as between the last and
first sector of any given track. This area is normally
defined as a "gap", but data can be written and read
here using modified DOS routines. Another trick is to
erase all or part of a track and then to write data in
the erased part. Thié data will not have the usual
headers, so it must be read with a special routine. One
way to find such data is to find the last valid sector
using an error analyzer, then begin reading the data
found AFTER this block. In this manner you can recover
a couple of sectors worth of the hidden data. This
process can be repeated with a change in the timing so
that you see more and more of the data. Often a couple
blocks worth is all you need. The diskpicker HDR read
routine is useful for this purpose. Changing the sector
number to an illegal value has a similar effect to

these others. The disk may only expect to find perhaps

.20 sectors on a given track but the protected disk will

have some sectors with numbers higher than this. To
recover this data, you would again go to a header
reading routine. In essence, Yyou will get the data
First, then save it under a valid number. The last

thing would be to change the copy header so that it

79

looked like the original. Errors can be "spliced" into
a copy disk by reading the bad part off the original
and writing it verbatim to the copy. (See Diskpicker

Procedure)

Once again though, in these processes the drive is
being manipulated by mutant programs to perform these
"unnatural acts". We discourage both the wuse and
purchase of software with this form of protection as
there are some valid questions as to the effects this
can have on a drive. First of all, there are many
1541s, especially the earlier models, which seem to get
out of align if the head is forced to "bump"

excessively. (Bumping is when the head goes to the end

and bumps several times) These programs only aggravate

this situation as you may have already discovered. A
good quality drive mechanism should be able to handle
this without problems but this problem does exist and
will occur on some drives. You will just have to live
with it if you decide to purchase a program with such
protection and it adversely affects your drive. 1In the
least these programs will wusually take their time
loading with a undue share of bumping, chattering,
blinking, and various other assorted paranormal

responses.

Another dilemma with this level of protection is
that it may not be compatible' with drives of other
manufacturers. How a drive loads and saves data is a
function of the hardware and software design of the

drive. When a drive is as software dependant as

80

AAAA

AAANAANAAANANAAAANAAAANAACAAAANAAANAANAAAAAM

alalalalalalalalalalalalelalalalalalalalale lalalala lalalalaialalalalalala talala T

Commodore's are, a 100% compatible drive would have to
have the disk operating system copied verbatim.
Although this has been done before with some computers,
it is legally questionable. It is generally accepted
that totally compatible means 99% compatible while most
"compatible” equipment really comes in at a much lower
percentage. What 1is reasonable to expect is that a
compatible disk drive can save and load it's own
programs and load commercial software that is recorded
WITHIN ORIGINAL EQUIPMENT MANUFACTURERS SPECIFICATIONS.
With level 4 software the protection is not within the
design éarameters of the drive so it is anybodies guess
what it will and what it won't work on. It is something
like an oil company putting in a additive to gasoline
which rots out engine gasket material without ever
bothering to check it out with car manufacturers! Thus
programs, error writers and copiers that work at these
levels will in general be uncompatible with drives
other than the 1541. You simply cannot expect equipment
manufacturers to be able to forsee the various ways

programmers might try to "defile the DOS".

Making duplicates of this kind of software, if
necessary, can be done like level three. The error
maker will need to have the capability of writing data
or errors beyond the normal tracks. The best approach
for this level would be to remove the error checking
from the loader or main program so that you won't have
to worry about all the error checking problems every
time you load the program. This is done virtually the

same as the others, with relocate loads and

81

dissassembly.

LEVEL 5.... This may be the most effective
protection method in current use as well as the most
valid. It works on the principle of a hardware "key"
which is usually plugged in to the joystick port. As
the program runs it can periodically check to see if
the Kkey is in and crash itself if it is not! The
hardware key is effective for several reasons but thé
most noteworthy is that most people have no means of
duplicating the piece of hardware. Even if they could
it would be a time consuming task to first figure out
what the key contains and then make a similar one.
Removing the sections of the program that check for the
key would be the best approach but certainly not easy.
As opposed to the error checking which requires the
disk to run and consume quite a bit of time, the
hardware key can be validated in a matter of
microseconds and has 1little or no degrading effect on
the program. This 1is why error checking routines are
often in a loader, so that they do not steal time from
the main program. Many programs would be of little use
if the protection system had to run the disk for a few
seconds every so often in the middle of what you were
trying to do. The hardware key does not suffer these
limitations. It is possible to check for the valid key
literally hundreds of times within the main body of the
program, without noticeable time lag! If the checking
is done during an interrupt cycle, the time.taken is
almost unmeasurable. Appendix H shows how an interrupt
routine can be easily accessed from a main program.

82

ANA

AN ANANAAANAANAANAAAANANAAAAAANAANANAAAANAAANAANAA

ANAAAAANAAANAANAAAANAAEAAAAN A AANAAAAANANAANANAA A

The key itself could be as simple as a plug with
certain pins shorted to ground which the computer would
see as a specific value anytime it 1looked at the
joystick port. Using just the five joystick switches
allows 31 possible code values that could be hardwired
into a small plug. This will be defined as.a.passive
key. You can easily make one of these for your own
protected programs! This would not be too hard to
defeat though if the user realized that it was just a

hardwired setup.

In more elaborate schemes, the protector can use a
ROM chip which is addressed by a code sent on the lines
and responds with a different value for each code. The
circuit could send pulses of a certain frequency or‘in
a certain pattern as the code. If desired the protector
could use a complete microprocessor on a chip to
respond with a very complex set of passkeys. There is

simply no imagineable l1limit to what could be done.

Unfortunately we can offer no simple solution to
the hardware key systems. If the key is the only
protection, and the disk itself can be easily backed
up, then you have little reason to worry. Your
requirement for backup ability has been met while still
protecting the seller from wanton distribution. We feel
that it would be wunethical for us to encourage
reproduction of these keys. Thus in this respect, we
feel key protection is valid as long as you can back up

the magnetic medium.

83

One final word about compiled basic programs. The

compiled program has been transformed into it's machine
language cquivalent, which among other things, makes it
harder to analyze. Using protection on compiled

programs makes a very effective means of protection.

In the future we hope to =see prices of software
come into line with value. New forms of protection are
on the horizon but along with them comes the questions
of compatibilty and effectivness against inspired

pirating.

Compared to disks, cartridges are quite simple.
However due to the hardware necéssary to make and use
backups, the procedures are less well known. The real
heart of cartridge protection is the autostart feature
of the cartridge. Since it is running all the time, how
do you disassemble or save it? The answer is just about

as simple; do not let it autostart!

Understanding an doing this depends on realizing
that the only time the cartridge will autostart-is when
the computer is first turned on or the coldstart or
reset is initiated. If we disconnect certain lines on
the cartridge and then turn on the computer the
computer will not know the cartridge is there so the
autostart will not occur. We can then switch the
cartridge into certain areas of the computer and "look"
at the contents or save them to tape or disk. An

external RAM system which emulates ROM through the use

84

BASR

alalalalalalaialaialalalaialais iaialainiaininlainisiaiala lniniaialalalaialals

alalalalelololotololatolotolalalalotalalalalalalalalalalalalaialatalalalolalalalala

of a write protect can later be 1loaded with the
original cartridge code, switched into the correct
location, then run as though it were the cartridge

itself!

The most difficult obstacle to overcome with
cartridges is the duplication of the hardware memory.
configuration used by the original. (See Chap. 3
lHlardwvare Reconfiguration) Although the C64 is "filled"
up with memory, the cartridges can be "switched" in
place of some other memory device. Even though this is
not protection in the true sense, it has the same
effect. The Romulator system (Chap. 7) g%vés you a
procedure which does not require you to know
specifically "where" the cartridge is seen at. All that
is required is that you determine the configuration of
the GAME and EXROM lines which ultimately control what
the computer does with memory and start up routines. We
have encountered no other forms of protection with

cartridges.

Tapes have severe 1limitations in the kinds of
protection available compared to disks. As with the
others, the autorun can and usually is used. The
locations and method is really the same as the disk
except that the autorun routine will boot in from the

tape instead of the disk.

In the next chapter we will cover the clone system

which will duplicate all tapes regardless of protection

85

FIGURE 4.1
LOAD DATA AUDIO & SAVE DATA AUDIO

LOAD
1
comPUTER E Ka
[1) : >
H TO RECORDER
1
Al } > Sa
[]
L
-———l
]
SAVE
—— |
comruren)
05 ey —_— IKn
70 RECORDER
Al o D
sa
L]
L
-l
l.
CASSETTE PORT PIN # FUNCTION
A= Ground
L I B-2 |45 Volts
C- Cagsette Motor
D~ Cassette READ
A 8 ¢ o t ¢ B-5 |Cassette WRITE
F-6 |Cassette Switch

The LOAD data audio circuit provides an audio output during
LOAD operations. This is useful in determining characteristics
of pre-recorded program tapes. It also provides a simpl? way
to align the tape head by "ear". (Chapter five - Head alignment{ ;
.procedure). Installation can be in the computer or on lines /
D-l} and A~1 where they enter the datasette. If you are using
a Tapeworm, or similar interface, parts can be mounted on the
interface unit itself. (Use earphone for speaker)

The SAVE data audio circuit is primarily for "Relocate Loading"
which is detailed in chapter five. You may choose to wire two
aligator clips to an earphone with a 1K ohm series resistor.
In this mammer, you can simply clip it across E-5 and A-1 when
you are performing header changes . The SAVE data audio
circuit provides audio only during the time that the computer
is saving data to tape.

. 86

AA A A AN A A A A A A AN A A A A A A A A

used. As with disks, often a tape program will load in
several sections which each set up certain parameters
of the program and all are‘needed to run. If a save is
attempted after loading the program only part would be
saved and it would be useless. To duplicate this by
other than cloneing requires that you know when each
section starts and stops so that you can stop the tape
and put in you blank to make a copy. Also, 1if you try
this, be alert for machine sections mixed between basic
sections. You will need to use an editor/assembler for

the machine sections.

Figure 4.1 shows the connections for an audio
output which greatly helps in identifying separate load.
sections. A taped program consists of a tone leader
followed by a short data burst (header) then another
tone leader followed by a longer data burst which is
the program. If you hope to copy taped programs by

saving, you will find the circuits very helpful.

The one protection that tapes can use is the
hardware key. However there is nothing to prevent you
from making backup tapes, it will just keep you from
distributing them or running on more than one computer.
As with disks, this is not a real problem then for your
own use. The one drawback is the reliance on the key

itself, if it fries, you are out of business!

87

**% CHAPTER FIVE **¥*

TAPES

Thé very size of the C64 memory allows programmers
to write some very powerful programs. As these programs
require large amounts of data, they also tend to be
quite slow if 1loaded from a datasette. As a result,
tapes are not as popular as with the Vic 20. However,
even if you .primarily use a disk drive, it is still
handy to have a tape drive available. You may encounter
a taped version of a program you wish to have. The cost
of a datasette may prevent you from wanting to own one
for this somewhat rare function. In answer to this we
have developed a simple device which lets you avoid the
expense of a datasette. Chapter five features TAPEWORM
(tm) which is an inexpensive interface for standard
recorders. If you do not own a datasette this circuit

will allow you to -add a tape drive for very little

88

aaialslalaialalalalniaialalnlalalalalalalainialalialalalatal e tatala et e Ve la e a la e

Yalalalalalaialalaialalalaialalaiaiaialialalalaiaiaialaiaiaiaiainialniaialatalatale

expense. If you already own a datasette and wish to
"clone" tapes using audio type duplication, the
Tapeworm will provide you with the means to add another
drive as required for dubbing purposes. Another of the
ma jor differences is that if you wish to do audio work
such as message playback or time lapse recording etc.
the inherent Tapeworm cassette motor interface will
make this possible. Audio work cannot be done at all
with the datasette since it utilizes digital signal
processing. Tapeworm makes no change to an audio
recorder circuits. It is entirely an external device
which turns digital computer data into audio signals
for the recorder and the opposite function of
converting the audio output of the tape recorder to a

digital level signal for the computer. The theory of

.operation will give more technical detail about these

aspects for those so inclined.

This chapter also features CLONEPLUG (tm) which is‘
a simple plug that allows audio dubbing of digital
tapes. In essence, Cloneplug 1is a dumb copier so
virtually any tape can be duplicated. Although some
have had success with doing this with two audio
recorders, it is very unlikely that purely audio clones
will work very well. The amount of signal degradation
is severe if the data is not converted to digital
format. An audio clone is even worse in successive
generations which have been cloned from a previous
clone. The clone method we will show you relies on
digital signals or audio-conditioned digital signals so

that cloning can be done over several generations

89 .

without the inbreeding problems.

DESCRIPTION

TAPEWORM provides the proper interface circuitry

between the Vic 20 and C64 computers and most standard

cassette tape recorders.

FEATURES

- The TAPEWORM is an inexpensive and reliable alternative

to thebpurchase of single use cassette data recorders

such as the datasette.

When not being used with the computer, your cassette
recorder can be used for normal recording applications.
No changes or modifications need be made to your

recorder.

TAPEWORM allows the computer to control the cassette
recorder to play and record voice/sound information
under program command; i.e., telephone answering...
security monitoring... slide show sound... time lapse

recording... etc.

TAPEWORM allows manual adjustment of the volume output

level of the cassette recorder so that you have the

20

AANAAANANAAAAAAAAAAAANNAAAAANAAANAAAAANANANANANAAAMNA

] *93706580 O3} WodJ TBUITS UVH OU3 03 ToA
-oT Te1T19TP oy3 segojsed £I3Tnogto gloI ‘Butlerd ueym °JopJdoded oyg
uo gndui DIW oY3 PeeJ 03 TeuITs degndulod oY3 SUOT3Tpuod wromede] eyl
¢Butpaooed ueym °seAsM easnbs Ag oq 3snu gndut pus jndino Jejndwo)

91

¥31NdWOD

W,\/\/\

L*S 3€N9Id
WYHOYIQ Y2079 WYOM3dVL

W W W VW W W W W o o e e A N e e S W N S N N N

ability to compensate for tape quality variations.

With an optional modification, the data can be heard
during the load operations to aid in analyzing
protection methods.

A.C. adapters are not needed. The cassette and TAPEWORM
obtain all power from the computer just 1like a
datasette does.

Used with CLONEPLUG, TAPEWORM facilitates tape
duplication using standard recorders and or one
datasette and one standard recorder. (fig. 5.7)

Simple to hook up. Ear, Mic, an power plugs provide all
cassette interface connections without modifying
recorder.

Recommended tape recorder: SANYO SLIM 1 or SLIM 2.
Other tape recorders may work with TAPEWORM. Variations
in record 1eve1s; fidelity, 6VDC connector polarity,
voltages, etc. between manufacturers requires some
technical discretion before making cassette recorder

substitution.

TAPEWORM THEORY OF OPERATION

Refer to figure 5.1 for the block diagram showing
function of Tapeworm. Note the cassette write and
cassette read signals drawn at the left of the diagram
by the computer block. As shown, both are five volt
square waves. This 1is the normal digital signal the

computer ekpects to "see". Cassette recorders on the

92

s lalalalalalalnialaiaiaialsiaiaiaiala iniainiainiatatatalalalatata o talata tata Yake

alalalalalala e e ta e e el Ve ta e Nt e Ve e Ve N e VN Ve N ¥l e Ve Ve ta Ve Vo N a Vala Ve ta VaNa N

other hand, do not like five volt square waves. 'They .
are much better suited to smoother waveforms like the
sinewave shown at lower right. Furthermore, a
microphone input on a cassette recorder expects to see

a 10mV to 20mvV (0.020V) signal, NOT 5 volts!

To accomplish this, the signal from the computer
is fed through the input circuitry consisting of IClA
and the 1K/100 ohm voltage divider. IClA functions as
an integrator which rounds off the 5V square waves from
the computer. The voltage divider then reduces the
voltage 1level seen at the Mic input of the cassette
deck to about 20mV. The sketches of the signals in

figure 5.1 show the approximate shaping taking place.

For loading programs to the computer, the output
of the tape recorder is a sinewave of about 6 volts.
The output circuitry consisting of ICIB ' and Ql must
provide a clean squarewave of 5 volts to the computer.
IC1B is designed as a high gain clipping amplifier and
Q1 provides a fast risetime 5 volt square wave of the
correct polarity. This is fed into the cassette read

line of the cassette port on the computer.

As you can see from the schematic figure 5.2, the
cassette switch line is always grounded. This causes
the computer to always think the buttons of the
cassette are depressed so that the computer will not
print the "Press Play...." messages. This is done to
eliminate the need for wiring inside the cassette deck
to the switch which closes when the buttons are

depressed. If you are technically able to determine the,

93

wiring on your particular deck and wish to do so, the
circuit board has provision for this. Simply cut the
ground 1link on 1line F6 and wire it to the switch in
your deck. As this is awkward to do, we do not

recommend it.

The Tapeworm board obtains operating power from
the computer via the 5VDC output on pin B2. Six volt DC
power is fed directly from the computer pin C3 to your
cassette deck. There is enough power at this output to
easily drive mos£ modern 6VDC recorders. You should be

careful of polarity for your recorder. (see note below)

ASSEMBLY

Figures 5.2-5.4 give the schematics and layouts
for Tapeworm. Appendix D 1lists kits available from

PSIDAC or you may use your own resources.

Before installing any parts, the circuit board
should be cleaned with alcohol and scrubbing pad so
that the copper is bright and shiny. All parts are
installed from the BLANK side of the board with the
leads protfuding through the holes on the copper FOIL
side of the board. Soldering should be done with radio
grade rosin core solder and a small, clean soldering
iron of 25 to 40 watts maximum. Be especially careful
to orient the IC correctly. Use the pin 1 dot or

notched end and the component layout for reference.

The edge connector is soldered directly to the PC

94

AAANAANAAAAAAANAAAAANAAAAAAANAANAAAAANAANANAANAMNA

YO3TMS 0330858)

‘| ZiTum e33esswp
QvEy ©330858D
J030[{ ©340888)
S3TOA S+
punoap

NOILONNA L40d ML1ISSVD

_I.I||||.|.J

> +

Z UMAAY

— -
o
-

N —

i+ \
¥va

i

95

AW

Y3LINdWO)D

— N

L ELeR Tolok b]

_ e —— e—

m

_

|

_

_

_

|

_

OO—W —

N 0068 W1 IN _

Vv f M.C »

_
L

' JILVW3HIOS WHOM3dJV.L
nevoo 1 [2°S 34N9Id

VW W W UW W R W W W e W e e WU W W W W e W W W WUV W W WY

FIGURE 5.3
PRINTED CIRCUIT LAYOUT

, lapeworm

POSITIVE PC LAYOUT (FOIL SIDE SHOWN)

PT# QTY DESCRIPTION

RADIO SHACK EQUIV.

c1 1 .0047uf Disc Cap. 12V
ce 1 . 1uf Disc Cap. 12V
Cc3 1 .47uf Electrolytic 16V
IC1 1 LM3300 Quad OP Amp
Q1 1 2N3904 NPN Transistor
R1 1 100 ohm Resistor
R2-3]| 2 1K ohm Resistor
R4 1 4.7K ohm Resistor
RS 1 10K ohm Resistor
R6 1 22K ohm Resistor
R7 1 100K ohm Resistor
A8-9 | 2 1M ohm Resistor
(All resistors 1/4 Watt) .
EC1 1 6 pin .156" edge connector
P1-2| 2 1/8" Mini phone plug
P3 1 DC plug (to match recrdr)

272-130

272-135

272-1417
276-1713
276-2016
271-1311
271-1321
271-1330
271-1335
271-1339
271-1347
271-1356

PSIDAC #CONN::
274-286
274-1551

Misc - Wire ties,

% For complete kit,

solder, Mic. wire, etc.

see Appendix G-Price List.

96

AAANANAAANAAAAAAAAAANANAAAANANAAANANAAAANNANAANAAANAN

-

1191 WIS OANYVS + o V

- ——) @
S¥IGUOOIW ISOW + R

1NOAY LN3NOJWOI
¥°S 3”N9Id

*OdvY08 O34 30 30IS 31IS0dd0 3HL NO SI 1I04 310N

.@

33

(mor3s 238)

97

o IETITI)

board traces. You should first make a small solder
"puddle" on cach of the end foil traces which are for
the edge connector. By holding the edge connector in
alignment and then heating it's terminal with your
iron, you can "tack" the lead in place. Do the same
with the other end. This will hold the connector firmly
in place. If necessary, you can remelt and reposition
the connector until it is perfectly aligned. Then
.solder the middle terminals down to the foil. [Iinally,
go back and resolder the two end terminals to get a

good shiny connection.

Note that the Mic ground is not soldered at the PC
board end. It is soldered at the Plug end. This
prevents "ground loop" interference while still
maintaining shield properties of the cable. Aﬁ optional
LED circuit is shown in the schematic. You can add this
by drilling extra holes in the PC board. The LED will
light up when data is being 1loaded to the computer.
This hélps you determine whether data is present as
well as being an aid in deducing the number of separate
data 1loads the program must go through to run. Some
prefer this to the audio modifications shown in chapter

4 and later in this chapter.

POLARITY

Be extra careful in wiring the audio plug. If you
use any recorder other than the Sanyo recommended, you
will need to determine the polarity. Most recorders

98

ANAAANAAANAAAAAAANAAANNAAMAMAAANANMNAAANAANAAAAAAA

alalalalalalalalalaialalalalaialnlialalalalaietaln tatata el Ve Yo e e

e lalalalake

have a negative center pin. Sanyo is opposite! See
figure 5.4 inset. If your recorder has the positive
lead connected to the Mic and Ear ground pins (Positive
ground system) you will not be able to use Tapeworm.

(Some Panasonics are wired this way)

If you make a mistake on the power connections, it
will blow the computer fuse. It is highly .unlikely to

cause any other damage.

USE OF TAPEWORM

HOOK-UP

- Always plug the Tapeworm into the computer COMPONENT
SIDE UP with the computer TURNED OFF!

- Make sure all cassette recorder switches are up or
OFF before switching the computer on.

- Use high output, low noise tapes of good quality.

- Insert MIC and EAR plugs into the cassette jacks
marked MIC and EAR.

- Insert Tapeworm plug marked DC6V into the cassette

jack marked DC6V or 6V power.

OPERATION

-~ Turn on computer.

- You can advance or rewind tapes at this time.

- The cassette recorder volume should be sét to about
3/4 of full volume. This setting may vary depending on
tape quality and recorder used.

- The motor can be disabled by typing SAVE or S shift A
99

RETURN then hitting Run/Stop.

- The computer SAVE, LOAD, and VERIFY operations will
néw function in accordance with the computer
instruction guide.

NOTE: The "PRESS PLAY ON TAPE" and "PRESS PLAY AND
RECORD ON TAPE" messages will not be displayed when
using the unmodified Tapeworm.

- REWIND of tape is best accomplished by placing
computer in READY state and using the VERIFY command.
This will turn on the motor voltage and give you
control of the tape deck.

-Press RUN/STOP to disable manual control.

- We recémmend that ¥you always advance tape past the
leader when performing SAVE operations so that no data

is lost trying to record on leader.
OPTIONAL MODIFICATION

When the Tapeworm EAR plug is in the jack on your
recorder, the speaker is shut off by a switch built
into the jack. By jumping this switch with a resistor,
a comfortable audio output will be obtained. This is a
feature you may 1like. It allows you to hear when data
is present on the tape. Figure 5.5 shows how to do this
on a Sanyo Slim 1 or 2. For other recorders, use the

information in figure 4.1.

100

AAAAAAAANAAAAANAAAANNAAAAAAANAAAAAANANAAAAANAA

S latalalalaialaiaialalnlalalaiaielalainialaialelaialelatalatalatalatatalaYalaVala e

USE A SMALL PIECE OF TAPE UNDER
RESISTOR FOR INSULATION

FIGURE 5.5

SANYO SLIM I & II
(USE FIG.4.1 FOR OTHER RECORDERS)

HEAD ALIGNMENT

Normally all tapes recorded on your recorder will
be in alignment with the tape head and each other.
However, tapes made on different recorders or some
commercial tapes may not be aligned with your machine,
resulting in difficult loading. If you are using an
older tape recorder, you may need to align it with a
commercially made tape before using it extensively.
This will assure accurate loads of commercial tapes AND
your own tapes. It is not a good idea to change the
alignment once it 1is adjusted for normal tracking.,
Otherwise you will end up with a mess of misaligned
tapes, each requiring realignment to load properly. BE
SURE IT IS NECESSARY BEFORE PROCEEDING WITH HEAD
ALIGNMENT!

101

If you are using a datasette you will need to wire
the "LOAD DATA AUDIO" circuit (fig. 4.1), or use an
oscilloscope. If you have this circuit already or it's
equivalent, simply ignore the reference to "Ear Plug"

in the following procedure.

Unplug "Ear" plug.

-~ Put in tape do not close cover.

Locate alignment hole left of tape head. (see sketch)

Set volume 1/4 to 1/2 of full - Press Play.

Adjust screw for loudest output. **Do not turn far! A

slight adjustment back and forth only!**

TYPICAL LOCATION OF HEAD
ALIGNMENT HOLE

ADDITIONAL INFORMATION

102

ANAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAANASAANNNM

YN VN W W W W W W W N N e N e e N e e e N e e W e W N e N e e e Y Y e e e N Y N e N e Y e N Y

Other brands of recorders usually work well with
Tapeworm. However, if recorder voltage is different
than 6VDC, you cannot use the power plug supplied.
Instead, you can use the adapter or power source
normally supplied with your recorder. This will require
that you control your recorder MANUALLY since Tapworm

normally controls the recorder through the 6VDC power

plug.

Another inherent feature of using a standard
recorder with Tapeworm is that it is still a normal
recorder and as such cén be used for audio work under
control of your computer. By unplugging the Mic and Ear
plugs and using only the 6VDC power plug, the computer
can start and stop the recorder under program command.
The most efficient way to do this is to use a line
similar to this for turning motor ON:
100POKEl,PEEK(1)AND223
For turning motor OFF:

110POKE1l, PEEK(1)0OR32

CLONING

Fighting tape protection schemes can be a
frustrating experience. In the least, it can become
more time consuming than desireable especially if you
just need to make a backup so that you can file the
original for safekeeping. For these reasons we suggest
that under all normal circumstances that you simply
"Clone" the original wusing the cloneplug system we

describe. As a dumb copier, the cloning method does not

103

FIGURE 5.6a
CLONE CIRCUITRY

CASSETTE PORT CLONE PLUG
90° Plug

N\,
7

FIGURE 5.6b

7’ * CLONE MOD. ON TAPEWORM

SPDT _ SWITCH

UTAPESLTRACES

Figure 5.6a is the schematic of a clone pluge. Note that if
You are using one or more datasettes, that you will need the
90° plug. See figure 5.8 for PC layout.

Figure .6b shows how to modify a Tapeworm so that you will
not need a clone plug. (You must use two standard recorders
which work in the normal manner with Tapeworm to use this
modification) You can either modify the artwork of figure
5.3 or remove traces from two lower pads and use jumpers for
changes indicated in solid black. Clone is C-D, normal C-N,

104

alalalalalalalalelalatalalalalatalalala talalala et o talale ot tala ot fata e e Vo Yo ta!

AAAAAAAAAAANAAAAAMAAAAAAAAAAAASAAAAAAAAAAAAA

depend on or vary with the type of protection used.

Although we have heard of some people obtaining
useable copies with a straight audio to audio method
and two tape recorders, we do not feel that it is a
very good method. The reason lies in the fact that the
signals used by the computer are not exactly the same
as audio signals. The frequency requirements and
tolerance to wow and flutter is not as great with these
digital signals. As a result, the audio to audio method
induces problems which are minor in audio recordings
but seriously degrade digital data. If attempted at
all, the audio method should use high quality reel to
reel recorders and the copies should always be made

from an original.

The Cloneplug system is a simple arrangement which
uses the Tapeworm and/or datasette itself to restore
the digital characteristics of the signals before
sending them on to the recorder making the copy. This
will normally allow good clones up to four or five
"generations" removed from the original. However, when
possible, best results are still obtained when the

original is used for cloning.

One ma jor feature of the Cloneplug system is that
you can use two standard recorders and one Tapeworm, oOr
two datasettes and no Tapeworm, or a combination of a
standard with Tapeworm and a datasette! Figure 5.7
shows the different hookups to match the equipment you
have available. This way you should be able to use
cloning with a minimum hardware aquisition.

105

co4

CASSETTE

PORTY

FIGURE 5.7
CLONE HOOK-UPs

TAPEWORM

TWO STANDARD RECORDERS

PLAYBACK

‘DECK

RECORD
DECK

0°piug (USED ONLY for RECORD)

®

ONE DATASETTE AND ONE RECORDER

' [;[

T

PLAYBACK
‘DECK

DATASETTE

D

‘DECK

©

4
cLONE
rLUG

90° Plug

T «—

DATASETTE
1

PLAYBACK

D

TWO DATASETTES

DATASETTE
2
RECORD

OAAAAANANAAAANANAAAANANAANAAAAANNAAAAAANANNAAAANAA

AAAAAAAAAAAAAAAACSAAAAAAEAAAAAAAAAAAAAAAA A A

CLONING PROCEDURE

Before cloning, be sure that the recorders that
you are using are compatible with the Tapeworm and C64.
If you are using datasettes only and no standard

recorders, you will not need to worry about Tapeworm.

1. Determine the correct hookup from figure 5.7 based on
the type of recorders you are using.
2. Place original tape in PLAYBACK DECK. NOTE: PLAYBACK

DECK plugs into main (horizontal) edge of Cloneplug.

3. Place blank tape in RECORD DECK. NOTE: RECORD DFCK, if
using 5.7b or 5.7c, plugs into vertical (90 degree)
plug of Cloneplug.

4. Make sure proper cassette buttons are set. Enter LOAD
command on computer.

5. When done , verify clone by loading it.

6. Best results are obtained if you record the clone on
the same deck as you normally use to load programs when

not cloning.

SAVING TAPES

There are times when you may wish to Save a
program via the computer instead of cloning. The
biggest advantage to doing this is that the "Saved"

program 1is equal in quality to an original tape.

107

7
T-!
.l.

+

-
(]

FIGURE 5.8

SUPER CLONE PLUG PC BOARD

SOLDER _90° PLUG HERE (foil to left)

90° PLUG

!4

===F- -~
.

[

°

|
|- -

*a IS
L] =)
L]]
.|.__/l . [: * N

1:1 LAYOUT

90° PLUG IS FOR RECORD ONLY (SEE FIG. 5.7)
— —

EPOXY BEAD

FOIL SIDEUP & FRONT

SOLDER TRACES

108

alslalalalalaialaialainialalalatalalalalatalalalatalalalala Ialatale'

alalelals

alala

AAAAAAAAAAAAAAAAAEAASEAAAAAAAAAEAAAAAAAAA A A

Secondly, you do not have to use two recorders and play

around with external hardware. The main disadvantage is
that you need to havé a good handle on the protection
being used. Often this will mean simply to know how
MANY sections a program loads in, where the sections
load TO, and whether the program sections are MACHINE *
or BASIC. Following is a general outline of procedures
to make direct computer saved copies of many taped

programs.

Start by determining the number of separate loads
taking place. This can be done by listening for the
long tone leader followed by the short header burst.
Another way is to watch the screen for the FOUND

interval which occurs after the header.

STOP the computer after each header 1load (before
data load) and use an editor/assembler to read the tape
buffer. Write down the starting and ending address
given on each header. NOTE: DO NOT LOAD THE PROGRAM

SECTIONS. Fast forward past these to the next header.

When done you should have a 1list that looks

something like this:

lrst PRG. Starts $02A7 Ends $030B
2nd PRG. Starts $0801 Ends $30FF

3rd PRG. Starts $C000 Ends $C400

Remember that your 1list values will be in hex.
Programs that load below $0801 probably have something

to do with autorun and will require relocate/loading

.“

109

(sce separate scction this chapter) to 1load and save.
Write R/L by cach of these on your list. The programs
above $0801 can be saved separately as machine or
basic. If they are at $0801 you can load them
separately and list them to see if they make sense as
basic routines. If so, write BASIC beside them and when
you save them for your final duplicate, they will be
saved via the basic "SAVE" command. Assume the rest are
machine language, they will be saved with the
editor/assembler. Write Mach. beside each of these on

your 1list.

To make the backup, you will need to save each
program in order on your copy tape. Using your list,
perform a LOAD"",1,1 and the appropriate save for each
program. (Use TRELO and its special save procedure on
those indicated R/L) If all goes well, your final tape
will have an exact copy of the original programs. If
you are so inclined, you may try to defeat the autorun
feature all together so that your copy will be easier

to duplicate for future backups.

MACHINE SAVES

If you are not familiar with editor assemblers, it
may seem like a big chore to do machine saves. This is
not true, it is a very simple process which you need to
know. We recommend the use of Monitor$8000 and
Monitor$C000 which Commodore sells on it's "Commodore
64 Macro Assembler Development System". (see chapter 2)

When modified according to appendix B, any area in

110

s lalalalals

alolalatels

‘alaltalalatate) e A A ff\f\ Y tntalatelaYeaYaYa ettt Ye Y

e tatlalalalatalalalalalalnialalalalaiaiataialiaiaialainiaialalatale e talalaYala e el

memory can be saved with the "S" (save) command as
follows:
S'prg name",0l,beginning hex address, ending hex
address

NOTE:the 0Ol indicates tape drive. For disk use 08.

As you can see, this 1is a natural with the

information provided by the tape buffer.

RELOCATE LOADER for TAPE

TRELO-TMACHRELO

The main purpose of the Relocate 1load (r/1)
process is to force programs to load in the wrong place
so that autorun and other "disabling" features will not
operate.. This allows you to "get into" the program and
find out what it does. 1In some cases, we just want to
be able té Save the program, which of course can't be
done if it is running. The basis of the technique given
here 1is that autorun routines which keep you from
getting into programs are normally loaded into memory

locations in the "control zone" before $0801.

The tape relocate/loader will shift the program
up in memory to $2000. Thus a autorun which normally
loads to $0100 will be loaded by the R/L to $2000.
This relocating process will keep the program ,from
running. ‘The save is performed by 7TRELO as a machine
save from $2000 to the "new end" of the program. TRELO
does all the calculations for you and displays the

original addresses so you can replace them in the tape

11

header.

Since the relocated program SAVEs from an
abnormal location, it will not yet load and run
correctly. The trick is to EDIT the header data that
tells the program where it will 1load to. 1In other
words, your copy must haVe a different header put on so
that it will load to the normal location instead of the
relocated area. This procedure 1is called "header
swapping” and. can be tricky. It will require the use of
the "Save Data" audio circuit of figure 4.1 or split
second timing. If you use the timing method you only
have about +/- 0.5 seconds to react. Also close
attention needs to be paid to the EXACT start of the
header on the tape. The process involves replacing the
relocated copy's header with a "normal" one. The
following step by step procedure will simplify this

process for you.

RELOCATE/LOADER PROCEDURE

Load and run TRELO.

Follow prompts to make relocated copy. Before making
the new header, study the following steps. They direct
you through the process of putting a NEW header over
the one with the relocated address. (TRELO keeps track
of the correct addresses for you)

Connect "Save data audio" .circuit or obtain accurate
STOPWATCH. The audio method is more reliable. (With
some monitors, you can turn up the volume and it will

pick up the SAVE audio, eliminating the need for the

112

NS AN ASAAMNAMNMAAAAAANMM

AAANAAAAAAANAAAAAAAAAANAANAAAAMAAEAASAAANAANAAAA A A

circuit or stopwatch. Check this by SAVING a program
with your monitor volume at full)_.

4.Set wup relocated copy tape at the very beginning of
FIRST tone leader. This positioning is critical if
using timing.

5. Follow prompts. By listening to data, allow to save
ONLY THE HEADER, then STOP tape recorder. (Or time for
13.1 seconds)

6. If all went well, your relocated program will have a
"normal" header which will cause it to load and run as
it should! .

HINT: Practice listening to tape saves and loads to get
used to the "sound" of headers and data loads. (see
sketch) With a 1little practice, you will be able to
accurately respond to the short break between. You
must use the same name on the relocated copy and the
doctored header so that the time for the header will
not change. Be careful to start the tape in the same
place when editing as wﬁen the relocate load was done.

This will prevent it from recording over the data.

TAPE HEADER CONFIGURATION SKETCH

ALLOWABLE OVERLAP (HDR SWAP)

7

TAPE TO DISK TRELO PROCEDURE

113

1. Load TRELO and RUN.

2. Follow prompts for disk. WRITE DOWN ORIGINAIL STARTING
ADDRESS! Convert to HEX, break into HIGH byte and LOW
byte. 1ie: if calculated value is $02A7 ligh byte =02
Low byte =A7.

3. When process is finished, use SUPERDIRECTORY to find
the starting TRACK and SECTOR used by the disk to store
your program.

4. Use DISK-EDITOR to change the starting ADDRESS on the
Relocated copy back to what you calculated. (Original
Aadress) The third 1location from the top left on Disk-
Editor display is the LOW byte. Replace the THIRD BYTE
TO.YOUR CALCULATED LOW BYTE. The Fourth location is the
HIGH byte. Change the FOURTH LOCATION TO YOUR
CALCULATED HIGH BYTE. Hit RETURN and follow prompts to
save data. (Chapter six has more info on DISK-
EDITOR)

5. Relocated copy should now run normally. NOTE: NOT ALI
PROGRAMS CAN BE SUCCESSFULLY COPIED WITH THIS

PROCEDURE.

NOTE: If exchanging program medlum from tape to disk, or

vice versa, remember to change the device number in
the booter section.

114

alalalalalalalainiaiaialaiaialalalalalatala ot et o ta e te ta o Ve Ve Ya e Vet Ve Ve Ve e We W

alalalalalalalalalalalalalaisialalelalalalalalalalalalelalaletalalatatalalala latale

TRELO
t IFA=HTHEMA=1 :LOAD" THACHRELD", 3,1
2 POKES3239, 11 :POKES3221,11
2 PRINT"IIMA . TRELO/LOADER WPSIDAC (C>24 B (PREINT" A" :GOTOLS
5 FRINT"&PUT CFY TAPE IN DRIVE - SET FOR A4 RECORDS":FRINT"®FREZZ FT"
9 GETAS: IFASCC "W THEHD
19 FRINT"MIAVING “;HF$;" FROM ":BG:" TO “;EA:ZYSE043
11 IFCKS="D" THENDFEN1S,3, 15 INPUT#1S, AS, B, C3, I FRINT" A"AS, BS, 05, DE : CLOSELS
12 PO 7.1 -FORESSH42, 1 INFUT"MaMAKE MEW TAPE HERDER";AKE
13 IFRA "THEHIBU
14 IFCK$="D"THEN280:END

15 PRINT"®FLACE ORIGINAL TAPE IH DRIYE":POKE1,PEEK:L)AHDZZ2
28 FRINT"SFERFORM TAPE LOAD... WHEM FOUHD MESSAGE"

21 FRINT"MAPFEARS, TRUM/STOPA THEM EMTER GRUH25R" -EMD
25 POKES2,20:FOKES6, 26: POKES328@, 11 : POKES3281, 11

26 AH=PEEK(FEEK(829) : BH=PEEK (8325 : BL=FEEK (331}
27 0D=(PEEK(&) +PEEK. (8227 1 DE=(FEEK (832)#255) +FEEk."
23 BG=224256° F‘O'JKE254 »32:POKEZ253,9

39 PRINT"TIMM TRELO/LOADER @PSIDAC (CH24 VEHA"

32 FOKEL, PEEK(1)ANDZE3: PRINT"MAREWNIND TAFE !:PESS F7 WHEW DOME"

33 GETR$: [FASS "HIM THENSS

34 POKE1, PEEK<1)0R32:PRINT"J#PRESS FLAY W "

35 INFUT !JII-IFU‘I' SEAACTE FILEMAME" S MF$:ML=LEHCHFE) (POKEZST . HL

49 5Y:3399:3: 3331093

45 F’F'IHT"'TW OF BYTES="BY;" " :EA=EG+BY

59 FRINT"@ORIGIMAL STARTING ADDRESS = ";0D:PRIMT'ADRIGIHAL ENDING ADDFESS = ":0
S5 IHPUT"SGAYE DM T-D";CK$: IFCK$="T"THENS

59 PRINT"TFREP DISK TO COFY - F7 WHEN READY":POKES47,3:FOKESR42. 2:G0TO2

169 FOKES38, AH: POKESZ3, AL : POKES32, BH:FOKES31, BL: POKE2S4, AH: FOKEZS3, AL

195 POKE17S5, BH:POKE174, BL

115 PRINT"TIM # ROUTINE TO REPLACE TAPE HEARDER %"

129 POKEL,FEEKC(1AMD22Z3:PRINT"®M SREMIND TRPE TO EXFACT BEGIMHIHGE"
125 PRINT"®F? WHEHN RERDY!"

129 GETRS: IFAS<O"NI"THEN 138-

149 PRINT"TTIFRESS PLAY AND RECORDS *:POKEL, FEEK (1 0R 2

159 PRINT"SRITIME FOR =EXACTLYM 13.1 SECOMDS....." :FRINT"STHEH HIT &FUMSSTOFSE"
159 PRINT"®F7 WHEHM READY"

179 GETAS$: IFA$<>"BI"THEN1?O

133 5YS8943

299 PRINT"MJSE DISK-EDITOR TO RESETW LOAD TOMm ADDRESS"

(BY=0E-0D

115

1F43
1F4E
1F4D
1F4F
1FS1
1FS4
1FSE
1FS3
1F3A
1F5D
1F5F
1F&l
1FE3
1F58
iFe3
1FBA
1F&B
1FEE
1F?78
1F72
1F74
1F??
1F?79
1F7B

1IF?D .:

1F28
1F32
1F34
1Fg6
1F38
1F3A
1F3C
1FSE
1F31
1F34
1F35
1F97
1F2H
1FaC

1F3E ¢

1F3F
1FR@
1FA3
1FRS
1FRE
1FA?
1FA3
1FAC
1FAF
1FEQ
1FEe2

TMACHRELO

|1 s x i x w0 (W]
S A0 5

235 1F
@l
a1
(5]%]

BA FF J:

ED FF .

DS FF

R 1F

95 1F

EAR FF .

BD FF

08 FF
RB 1IF

A7 82

FE
46
EA

Do)
MW

JER
LDA
LD
LDY
SR
LDA
LDx
Loy
SR
LDA
LDk

LDy

JSR
RTS

JER

STH

LD%
LDY
JSK
J5R
RTS

3TH
HND

ERK
LI

STH
DEX
BHE
RTS

$1F35
#4061
#3091
#E00
$FFER
3FE
#3241
#3073
$FFBD
#3013
3$FD
$FE
FFFDS
$1FFAB

$1F33
#s0al

X #3091

#3FF
$FFERA
1 $FB
#3E1
#3092

. $FFEBD

3FD
$FC
$FE
3FD
#3FC
3HE
$AF
SFFDS
$1FAB

01
$92A7
#3FE
381

$U2RAT7
$01

3FE
$a34a, 4
#9289, ¥

$1FA3

116

a0

alalalalalalalainialaialalalalaislaiaiaisiaiaiale

‘Bl

ﬁ

@

@)
O

)
(@)
O
@
O
O

AAAAAAAARAAARAAAAAAAAAAAAAAAAEAAESEAAAAAAAAAAA

*** CHAPTER SIX ***

DISKS

If the point has not been. made clear enough yet,
let me restate it here, at the beginning of the chapter
yoﬁ may have turned to first. There is not now, and may
never be, a single software solution to the protection
used on disks. Regardless of the optimism of
advertisements in general, neither we nor anyone else
can offer a 100% solution or method for protection
breaking. The more you understand the disk drive and
it's potential, the clearer this point becomes. What
happens is that as a consumer you get caught in an
endless vicious cycle of new protections and new
products to break them. Everyone makes money at your
expense! The true solutions lie in your ability to
become a "detective" of sorts and to have tools that
are adaptable to the situation. With this in mind; we

make 1little attempt to supply overglossed, (and

117

pricéd), declining term software. Instead we have
developed some raw utilities which allow you to obtain
information, 1look into and modify programs, override
disk operating systems, and in general, to give you

control of what should be done.

This chapter consists of three main sections. The
first will cover each of the disk utilities in terms of
what it 1is, generally what it does, and special
operating details. Chapter two gives a shorter, less
specific introduction to the various utilities for
disk, tape, and cartridge. The second part of this
chapter will give you some spécific procedures to
follow 1in attacking different types of problems. It
will cover some of the common ways you would combine
several utilities in a logical sequence to breaking a
program. The third section gives you the actual
listings of the programs and any pertinent 1loading

details.
SECTION 1 - UTILITIES
SUPERDIRECTORY

Gives you an expanded directory of whats listed in
the normal disk directory. The additional features
include identification of the starting track and sector
for each program and file, 1listing of deleted programs
and files, and the starting address of each program
given in hex and decimal. Although this may seem
innocuous at first glance, it 1is recally a Kkey to

determining what you may be up against on a given
-

118

AAAARAAAAAAAAAAAAAAANAAAAANAAAAAANNAD

™M

NatelalalalalalalatlalalatalatalalalaiaiaiaiaialainlalalniaiatalatatatataYatalatakel

program. If for example, the program shows a starting
address of less than $0801, it will affect the control
zone and may be an autostart. Relocating will probably
be needed if you wish to save or pick. The number of
bloéks used by the program will give you an idea of
what its function may be. Again, a short routine loaded
first is likely autorun or autoboot. If the program
begins at 0801, it is probably basic and if loaded by
itself, you will probably be able to list it. There is
however, no reason that it cannot be machine language,
so be ready to try disassembly also. Do not run a
routine first, often the program can be listed befdre
you run it but you may lose controi after you run it.
In addition, if the program is loaded separately, it
may not run correctly as the other sections are often

needed.

Programs starting in the $033C-$03FF range are
usually machine routines or access keys which reside in
the tape buffer. In these you should look for a
meaningful dissassembly or ASCII code representing

information.

Programs above $0801 will often be machine
language routines or hex data used by the main program.
Blocks in the $8000 and $C000 range are popular for

machine programs and data.

Superdirectory utilizes the machine routine
"ADMACH" in its operation. Loading and running
Superdirectory will automatically load ADMACH. Use of

Superdirectory is simple, after loading and running, it

119

will give you the option of sending the output to the
printer as well as the screén, then asking for the disk
to be examined. We recommend that you print a
Superdirectory for every disk you have, and make it one

of the first things you do with new disks.

RELOCATE/LOADER

One of the disadvantages of using whole disk
copiers is that an entire disk may be required when
only a small portion of that disk is actually used.
Many people like to combine similar programs on a disk
so that they might have several games on one disk,
several utilities on another, business packages on
another, and so on. In order to "pack" a disk with
different programs you usually need to use normal basic
or machine SAVE commands. As you well know, commercial
prgrams do not usually lend themselves to this

operation.

The premise of Relocate/loader is that if a
program is loaded to the WRONG PLACE, it will not take
control of the system. Thus you are free to SAVE at
will. The R/L has the SAVE routine as an inherent part
of its operation. The most important thing to remember
is that the relocated copy will always have a starting
address of $0A00, regardless of wherc the original was
supposed to reside. Thus the relocated copy cannot RUN
until its starting address has been doctored. That is

one of the primary purposes of Disk-Editor.

120

alalslaialalalslalalslaialaiaisialalaiaialainiaiaialaialainiaiaiale

ANAAAA

oo

lalalalalalalalalalelalalalalalalslalnialaiaialaiainialaiaiatalatalatataYalalatale

If ybu wish to pick the program, you can use the

relocated version before you change the address back.

The disk version of Relocate/Loader uses a short
basic program to .control the machine relocating
programs. The machine routines are loaded through the
basic main program. "MACHRELO" is the name of these
machine routines. One of the things done by the system
is that basic 1is switched out during the relocating
process. This along with the compact size of the basic
main and machine routines allows us to squeeze in a 50K
bytevbuffer. The size of this buffer should allow the
use of R/L on the vast majority of "long" programs.

DISK-FEDITOR

Aé one of the primary uses of Disk-Editor is to
allow you to change the addresses contained on a disk,
we will go into this next. Each sector of the disk
contains header information and then a "block" of data
which is 256 bytes in size (binary, actual GCR format
is longer by 4:5 ratio, see Appendix F). Disk-Editor
allows you to dump any block on the disk to examine it
or to change any of the data contained in the block. On
every block, the first two bytes of data tell which
block is next on the disk. In this manner, the drive
can "1ink" all of the blocks together which belong to
any given program. Disk-Editor shows the 1links in
green. On the first block of a program, the second and
third bytes give the starting address (hex) of the
program. These are the two byées you need to change

when "resetting"” the address, on a relocated program.

121

Once these addresses have been reset to their original

values, the relocated program can be loaded an run as
though it were the original! Remember that the two
bytes you change are in hex and in the standard 6502
format of low byte first, high byte second. Also
remember that they are contained on the starting sector
of the program. These locations in the rest of the

sectors contain program data.

There may be times when you will want to change
some of the data within a particular sector of a disk.
Disk-Editor gives you this option. It is simple to use,
you postition the cursor over the bytes you wish to
change, and type in the new values. When you have
completed all the changes for a given sector, hitting
the RETURN key cause the changes to be read and prompt
you on whether you desire to actually write the changes

oﬁto the disk.

Disk-Editor is a basic program which loads its
machine subroutines under the name ADMACH. As with the
others, you must run the basic program to load the
machine routines. If you gét into a situation where you
need to re-RUN the main program, you can always skip
the first line which callé the machine load, as long as
the machine program has not been wiped out in some
manner. This is true of all of our basic/machine
programs.

LINKSTER

Linkster 1is a basic program which gives you a
complete 1list of sector 1links for a given program.

122

- -~ - - - P -

alalalalalalaialainiaiaiaiaiaininiaiatalalalaiainialalale

e Wan Wan Wan

)

ANAANAAAA

alalata

Nl e el lale e lala e lala talala laininlalatatalalatatala e

Linkster allows you to specify which track and sector
you would like to begin with, then it will print a list
of all the tracks and sectors wused from that point in
the program. You do not have to start linking from the
beginning, it will just give you the ones from the
point you choose. Linkster also counts the number of
blocks from the point you started. The printout can be

screen only or screen and printer.

Other than simply finding out where a program is
stored on your disk{ linkster can be used to find bad
sectors when a program disk becomeé defective and
looses some data. If you have a program which loads for
a bit and then stops and returns % disk error, use
linkster to find out which sector the error is coming
from. You can then concentrate on "fixing" the sector.
If it is really bad you may be able to change the
previous 1link so that the program "skips" the bad
sector. In some cases you can list the program and
replace what is missing by hand and then resave the
"repai;ed" program!

ERROR ANALYZER

Error Analyzer checks an entire disk for errors by
either a sector by sector check or by a track by track
check. Error Analyzer checks tracks all the way to 44.
This gives you the ability to find out if any level 4
protection has been used on the disk. The track by
track check 1is primarily a sync locator which can
indicate if sync has been wiped out on any nhormal

tracks and if any has been written on the "extra" inner

123

tracks above 35. Many of the protection methods such as
wiping out a track, erasing sync, or writing to the
extra tracks can be detected by this program. If any
information or protection codes have been written to
the "extra" tracks, this is the only program that will

detect that, and do so in a short amount of time.

The track by track check only takes about 45
seconds and is a good idea as a primary test on new
programs. The sector by sector test takes longer but is
more thorough. When errors are found the program is
designed so as to not "bump" the disk head which can be
detrimental to alignment on some disk drives. Instead
it wuses a machine programming technique which will
recheck each track or sector four times and then go on
to the next. You will appreciate this feature on disks
witﬁ lots of crrors. It is quicker, cleaner, safer, and

doesn't make your disk sound like its having a cow.

Error Analyzer has printer options on both checks.
This will give you a convenient paper listing of the
errors found. These printouts supplied by our programs
should be used as a "map" as you work back through your
copied program to get it operating. With current
protection involving many errors in various locations,
you will need these printouts to work your way through
the "patching" chores on your copy disk.

T/S ANALY7ER

T/S Analyzer has the primary purpose of producing
a error log which can be stored as a file and passed

along to Fastback. Although T/S does not have the

124

~-

alalalalalalalalalalaialaialalsialaiaiaininiaialaiaiaininialaiale

~

~

ANAANAA

el e la ettt el ettt tala ta lalalatalalatatla la o la lalalala ta talala latatala'

advanced reading technique of Error analyzer, it does
have several logging options and serves as a map maker
for Fastback. If you plan to be doing a lot of copying,
you should format a disk especially to hold your T/S
error logs. In this manner, the log only need be done
once when the disk to be copied is new. As time goes
on, you will build a file of error logs and if you ever
need to do another backup you can simply load Fastback
and through it, the appropriate error log for the
program in question. The output of T/S tells both what
errors are encountered as well as which sectors contain
data and which sectors are unused on the disk. This can
be helpful to 1locate sectors which have data but are
not called through the normal linking method. 1If a
sector has been destroyed, linkster cannot find out
what is beyond the bad sector. T/S can give you a clue
as where to pick up from!

T/S 1loads its machine routines under the name
"ANALYMACH". As before, this is done in the first line
of the program. T/S gives you four options. First to
analyze the Tracks and Sectors on the disk being
tested. Once this 1is done you have the choice of (2)
printing the log or (3) saving it to your log disk. The
final opéion is to load an error log previously saved.
You can then print that if you desire. This allows you
to make your 1logs at one time and then later as the
need arises or it becomes appropriate, you can make a
printout. The number of errors counted is kept track of
and printed out for your convenience.

FASTBACK

125

The error log from T/S, which Fastbhack asks for,
relieves Fastback from having to bother with any empty
or bad sectors on the disk. Only those with valid data
are 1loaded into the buffer and subsequently saved on
your copy disk. Thus Fastback is just about as fast as
a copier can be. The operation is comparable to a BAM
copier which only copies those sectors containing
program. The difference 1is that it is not using an
easily destroyed BAM but rather a verified 1list of

which sectors have data and are copiable.

Once a Fastback copy has been made, you can use
the error log printouts which indicate where changes,
or errors need to be. Error writers or Diskpicker can
be used to put errors on. Alternately you may choose to
list/disassemble the program and try to modify the
sections which look for the errors. There may be data
in the sectors with errors that you will need to
recover. Fastback 1loads its machine counterpart
"ANALYMACH" in the first line of the program.

DD-1

DD-1 is the name of a group of four programs which
provide direct duplication via whole disk copy. The
programs are 1DUPDAC and its controller 1PSIMAIN which
are for single disk copies. 2DUPDAC and its basic
controller 2PSIMAIN are used for whole disk copies with
two disk drives. Although not as advanced in technique
as Fastback, you will find DD-1 is very handy to make

an on the spot backup of a less protected disk. It can

126

alalalalalalelalalainialalaininiainiaiaininisiaialaiaininiaiaiale

Do

~

alelals

lalalalalalalalelalalalalalalalalalalalelalalalalalalalalalalalalatalelatalatatale

be quite fast if the original is only partially full

and you make use of the fast copy features.

The programs are able to copy many of the 1lower
level protection disks since they provide a direct
track by track duplication which does not depend on
BAMs, and it skips over errors. A 150 block buffer is
used for a minimum number of swaps. Track and sector
manipulations are handled by machine routines for
maximum reading and writing speed. Error decoding
allows simple operation and circumvents many error

protection schemes.

The system also features an error display which
can be sent to a printer for logging and later error
writing or removal. DD-1 will skip sectors which
contain errors designed to stop whole disk copiers. If
the program requires the errors to be present you can

use diskpicker or an error writer to replace them.

The, "fast write" feature of DD-1 causes the
program to skip over the writing of any sectors which
contain only format data and no program data. For
compatibility with other drives, this can be set to
look for a normal format of "ONEs" or "“ZEROs". The
program checks the contents of the sector before

writing it and if it contains only format data it will

skip to the next.

The Multiple Copy Option allows making more than
one copy per original - without rereading the original.

This will allow you to.read in a section of the

127

original, then write it to soveral copies, and so on.
This saves a great amount of time since the original is

only read once.

After chosing either 1 or 2 disk drives, the
corresponding DUPDAC is loaded. Then type NEW and load

the basic PSIMAIN version that corresponds to the

number of drives you are using. The options and

procedure for DD-1 are given in the procedure part of
this chapter (section '2).

DISKPICKER

Diskpicker is a machine 1language development
system for the 1541 disk drive. It is designed to allow
you to develop machine language routines in the C64
memory space and then transfer them to the disk drive.
From there, the routines can be executed from a control
menu in Diskpicker. The memory transfer features of
diskpicker allow you to transfer any or all of the disk
drive memory contents into the C64 memory spacc. It can
then be examined, printed, modified an so on. Since
Diskpicker uses the Commodore MONITOR$8000, you have a
full featured editor assembler for accomplishing the
various machine 1language tasks. Diskpicker also
utilizes ZMACH which gives it the ability to switch

effortlessly between its basic and machine functions.

You may wish to make a ROM listing of your disk
drive ROM using diskpicker. The 16K size will make a
rather large printout however. The disk controller
routines that you will need the most reside from F24D

to FFFF and thus makes a much shorter listing.

128

alalalalalsiaiaialalaiaiainiaiainisiaininiaiaialialaliais Iatakake

alatalalalalalaialalalalalialaialaiaiaiaiaiaiaielalalaliaiaialniaiaiaiaiaiaiaialala¥a

In addition to writing routines to be sent to the
disk drive, you will also be able to load sectors from
the disk drive and transfer them back to computer
memory to sce what is there. Diskpicker allows you to
look at header images , and other format information
that you normally couldn't see. Also modified headers
can be created which will produce errors if read
normally. With diskpicker, special machine language
routines can be written to find and read data after
these modified headers. This gives you the power to
experiment with protection methods of your own as well

as read out data that would otherwise be hidden.

The specific procedure for Diskpicker will be
given in the next section but the menu options
available are as follows:
l...Transfer disk memory to buffer (in C64)
2...Enable monitor (machine E/A)
3...Transfer (C64) buffer to disk memory space.
4...Direct execute user program.
5...Job Que execute user program.
6...Load Sector to disk buffer.
7...Initialize disk I/O.

8...Format Diskette.

ZMACH

Zmach 1is a short machine routine which you can
load any time you are using an editor assembler,

particularly Monitor$8000. Zmach provides you with a

129

way to save and restore zero page as you qo back and
forth between basic and machine language. This is
necessary to prevent. "lock up" of the computer when
eXiting from the editor assembler. When loaded, before
going to the E/A, you SAVE ZERO PAGE by typing SYS49152
RETURN. Later, after you exit from the machine monitor,

you type SYS49184 to RESTORE ZERO PAGE.

SECTION 2 -- PROCEDURES

We will start this section with general procedure
to follow with any new disk and then we will cover
remaining individual wutility programs with special
notes to make you aware of additional options that may

not be obvious from a users standpoint.

l...Do a SUPERDIRECTORY 1listing of what is on your new
disk. If you have a printer, make a hard copy for your

records.

2...Run an ERROR ANAI.YZER TRACK check. This will identify
use of error protection and extra tracks. Make hardcopy
if errors show up. Next do a TRACK and SECTOR analysis,

making hardcopy as needed.

3...Choose copy method. DD-1, FASTBACK or RELOCATE/LOAD.

Go directly to procedure for mcthod chosen.

DD-1 PROCEDURE

130

aalalalalalalalalalalalalalnialainiaialaiaiaiaiaialaiaiatalatale

alalsln

~-

AAAA

lalalalalalalalalaialaliaialalialaliaiaiaialaiaisiaialniaiaiaialaialatala laYalala¥alel

1...SELECT and LOAD "1DUPDAC",8,1 then NEW and LOAD

"1PSIMAIN",8 for single drive users.

2...SELECT" and LOAD "2DUPDAC",8,1 then NEW and LOAD

")PSIMAIN",8 for dual drives.

3...PRINTER option. List and change line 1 P=0 to P=1 to
turn on printer. F7 must be pressed after each error
printout unless last 1line of program is changed from
SYS49903 to SYS49881. NOTE: if you use this option a
lot you may wish to save the modified version for your
own use. We have chosen this method of configuratioh

over a menu to conserve memory for buffer space.

4...SET TFAST COPY MODE. Run selected DD-1 program with
disk to be copied but STOP after the first few sectors
have been read on track one. ?PEEK (2561) and
?PEEK(2562). If both are 1 then POKE49747,1 and
POKE49751,1. If both PEEKs were 0O, then do nothing. O

is default value for DD-1 FAST COPY.

5...SET MULTIPLE COPY option. Default makes one copy.
POKE49174, [number of EXTRA copies desired]. Note that
the value you poke will produce that many EXTRA write
cycles. Thus poke 1 for 2 copies, 2 for 3 copies and so

on. The default value of 0 produces one copy.

6...DUAL DISKS; device number 8 for original disk, and

device number 9 for copy disk.

131

7...Run DD-1 program chosen. You must usec previously
formatted disks for copies since DD-1 has no format
option. If you forget, just RUN/STOP and format disks
in normal way. (Do not use wedge), then RUN again.

Follow PROMPTS on screen.

8...Bell indicates program read or write is active. TRack,
SECtor, and ERRor displays indicate current 1location
and any errors encountered. You will have time to write
the info down if an error was found. You must press F7

after error to continue with copy process.

FASTBACK PROCEDURE

1...LOAD and run T/S analyzer. Follow PROMPTS. Make error
printout if desired. SAVE error log on disk reserved

for that purpose.

2...LOAD and RUN FASTBACK. Follow PROMPTS.

3...After copy is done, use error log and error maker or

Diskpicker to write errors back on copy disk.

4...As an alternate to error writing, try to disassemble
original program and remove error checking routines. As
these routines may be in the boot, you may need to use

Relocate/Loader to get into these routines.

RELOCATE/LOADER PROCEDURE

132

~

s lelalslelnlalalalalnialaialalaialalalalalalaialaliatalatalatatatelate e taltataYa el

~er

P N N e e e L N Y N W N N N N e Y N e W N e N N N N N b N Fa Ve Y N a ke R e Y X K Kay

1...LOAD and RUN RELOCATE/LOADER.

2...Follow PROMPTS and select program from original disk

to be Relocate/loaded.
3...Type in EXACT program name when asked for it.

4...Save the Relocated copy. If you are trying to pick the
program you can load Editor /Assemblers or other tools
needed for picking. The relocated copy can be loaded as
often as needed for study purposes. It will have a
starting address of $0A00 or decimal 2560. You do not
need to change the start address until you are done
“"picking". While picking, you can save the program as a

normal machine language routine.

5...1If relocating has been done to COPY and if you have
completed any needed changes and now need to reset

address, go to the DISK-EDITOR PROCEDURE.

DISK-EDITOR PROCEDURE

1...LOAD and RUN DISK-EDITOR.

2...Follow PROMPTs and select track and sector desired to
edit. .IF RESETTING ADDRESS, this will be the first
track and sector for the program. If you do not know
which is the first track and sector you will need to do

a Superdirectory listing to find out.

133

3...0nce desired sector has been loaded, you will have a
display with the hex values of each byte in the sector.
The first two arc green and are the NEXT ‘TRACK and
SECTOR values IN HEX. (Convert these to decimal to find
next track and sector and convert any desired values to
hex before trying to replace current ones) For example
if next track and sector 1is given as 17 10; the
decimal value is 23 16. If you wish to change this link

to to say track 1 sector 12 you would type in 01 OC.

4...If you want to change the LOAD-TO address, it is given
in the 3rd and 4th bytes. (Two following the green
ones) Remember this only applies to the first sector of
the program, all others contain data in this location.
The values are in hex with the low byte first and the
high byte second. If you are looking at a
relocate/saved copy, you would see in this location
these numbers: 00 0OA Which means that the program
will load to location $0A00. If you are resetting the
address back to what is used on the original disk, 1look
up the correct start address from the HEX.ADD column of

your Superdircctory listing of that disk.
5...0nce all desired changes have been made, follow the

PROMPTS to either SAVE changed sector or get another

one. SAVED scctor will replace itself on the disk.

134

AAAAAANAAAAAANAAAAAAAANANAAAAANAAAAAAAANAANAANNMNA

~— N

PN N NN NN N NN NN N N NN NN NN NS

DISKPICKER PROCEDURE

The uses of Diskpicker go well beyond what a
simple procedure can give you. As it is a system that
allows you to develop programs to use in the disk, we
will explain how to use the options and give you some
example error routines which you can send to the disk.
Beyond this, you will need fluency in machine language
to be sucessful. Note that you must obtain a copy of
MONTITOR$8000 which should be saved on your PSIPACK
disk. Other monitors may be used if you want to change
the program lines that 1load and call MONITOR$8000.
(SYS32768 is the call). Remember that other monitors
cannot occupy the beginning of basic RAM or $C000
locations. You will need some free RAM to use as buffer
space for developing routines and for storing
information read from the disk. Typically a couple of K

will be enough.

1...LOAD and RUN Diskpicker.

2...MENU OPTION 1 - Transfer disk memory to buffer.

The purpose of this option is to allow any valid
locations 1in the disk drive to be transfered to the
memory of the C64 from where you can dissassemble,
study, and modify as desired. The monitor printer
options will allow you to make printouts of this

memory. Since the total RAM in the disk is only 2K in

135

size, you have plenty of room in the 64 for this

purpose. The requirements of Diskpicker do limit you to

using memory between $3000 and $7FFF which is 20K.

Option one will ask for the starting and ending
DISK locations you want to transfer to the C64. These
must be in HEX! It will then ask you where you wvant the
C64 buffer which will recieve the data to be. We
STRONGLY recommend that you always use the same page
offset. Thus if you want to transfer disk $0300-$03FF
to the C64 you should use a buffer start such as 3300
or 4300 or 5300 etc. This will make disassembly more
meaningful because all page addresses will be the same.
NOTE: We define OO-FF as location address; 000-F00 as

page address; and 0000-F000 as block address.

2...MENU OPTION 2 - Enable Monitor Mode.

This option puts you into the editor assembler. We

. use Monitor$8000 (by Commodore) for this purpose. The
typical E/A features are available in this mode. For
example, you can select a memory area and write a
machine routine which can be transfered to the disk by
option ‘3. When 1looking at information that you have
loaded from a disk through disk memory, we recommend
using the I (interrogate) command which will give you
an ASCII as well as hex dump. This can be useful when
looking for acess codes or particular info which would
be meaningful in ASCII. Keep a copy of figure 3.3 (disk

map) handy when using the monitor.

To EXIT the monitor mode, type G C020. This will

136

lalalslalalalalalalaiaiaialalaialalalalalalalalatatalalatalalalalatalalatalalatals)

alalalalalalalalaiaialalalalnialalelainiatalalalelelate e tala Ve Vale Ve Ve Ve Ve Yo Ve Ve e

return you to the main menu in basic mode. Your
programs or data that you were working on will remain
intact as long as you do not try to transfer something
on top of them or erase them with a monitor command.
This gives you the ability to keep many "images" of

disk memory or machine routines in memory at one time.

3...Transfer Buffer to Disk Memory

This option allows you to send the data or program
that you have in the C64 buffer space TO the disk drive
memory. Remember that the disk uses $0000 to $02FF for
system purposes and you will not normally transfer
programs to these locations. The buffers in the disk,
0300, 0400, 0500, 0600, and 0700 are perfect for such

uses. s

4...Direct Execute User Program.

Assuming you have transferred a program to the
disk drive, this option will allow you tq cause that
program to be executed! You will be asked for. the
address (hex) in the disk at which you want execution
to begin. The proper commands will be sent by
Diskpicker to cause that program to RUN in the disk
memory. It is a good idea to make sure a scratch disk
is in the drive the first few times you try a routine

in case it backfires.

Direct Execute is primarily for routines which
manipulate data rather than routines which control

reading or writing to sectors. The reason for this is

137

that direct execute does not provide for automatic

track and sector preparation as does Job Que Execute.

5...Job Que Execute.

This option provides execution of your routine AS
A PART OF one of the EXISTANT DISK ROUTINES. In other
words, if you select lets say a Job Que WRITE, the
drive will find the track and sector you have selected,
and then execute your routine. Normally your routine
would be designed to affect what might normally have
been done through the disk routines. The job que
functions save you the trouble of trying to get the

motors going, find track and sector, etc.

The following 1list gives the direct execute
commands:
128—READ -Reads in selected sector.
144-WRITE -Writes to selected sector.
160-VERIFY -Compares sector with one in memory.
176-SEEK TRACK -Locates specified track.
184-SEEK SEC -Locates specified sector.
192-BUMP -Runs head to stop and bumps (resets head)
208-JUMP -Jumps to specified memory location.
224-EXECUTE -Puts Track and Sector to be affected in
Que, finds track and sector, loads the header there and
goes to your machine routine. Note that your machine
routine or its jump vector must start at the beginning
of onc of the five buffers, $0300 through $0700. Since
data is read from the disk header, variables in the

drive memory will be affected.

138

a¥alalalalalalalalalalalalalalalalatelale le Ve ta Ve Yata Ve Ve Ve Ve Ve ¥e Vo Ve Vo Ve We Ve Fa W Wal

N N Y Y N e N e e e e e e e R N e e e N e e N e Y e Y e e Y e N e N Y Y T N Ve N N W e Ve e N Ve N a ¥

6...Load Sector To Disk Buffer

This option will ask you for the headers (track
and sector) and will then load that sector to the disk
memory. From there it can be transferred to C64 Memory
for study. This option is useful to examine specific

sectors.

7...Initialize disk I/0

This is essentially a RESET command which returns
the disk to power up conditions. It does so without
wiping out all of memory like a C64 RESET would do.
Useful when you need to be sure the disk is clear for
other operations. It is a good idea to use this
command anf time you have uncovered and error and wish
to send new commands to the disk. This makes sure the

disk is ready to receive the data properly.

8...Format Diskette.

This option allows to format a diskette without
breaking out of program. This can be useful since you
will typically be trying to do things which can "mess"

up your practice scratch disk!

9...Resetting.

If the system 1locks up, use SYS49184 for a-warm
reset. In extreme cases you may need a reset button or

turn off the computer. (See Appendix E). X is used to

139

escape an input mode question.

ADVANCED TECHNIQUES

In making protection, there are some things which
go beyond simply writing an error and having the
program test the error by trying to load the sector.
Error writing programs to date leave you with little other
option. There are many things possible of which we will

try to start you thinking about a few.

Consider first, how a disk sector or partial
track could be erased. The disk would normally find
this sector by its header, which can't be done if it
has been erased. However, if you know which sector is
bad, you can tell the disk to look for the sector in
front of it, which is good. Once the preceeding good
sector is found, the disk is programmed to wait for a
certain period and write some data. This data then goes
to the "nonexistant" sector. A similar process can be
‘used to read this data. A quite effective means of
protection since it is difficult to reproduce the exact

parameters used to write the data! This variation can

be used on the "extra" tracks beyond 35.

Other ways ‘to protect include putting data in the
GAP at the end of a track. If your copy maker is not
aware that data is there it will not look there. With
the machine routines we have included, the gap data can

be read in a fashion similar to the above process.

140

¥ alalalalatalalala et a ta Y et et e Ve N e Ve N N Ve Ve N N e Ve N e N N N N e N e Ve N e Ve Ya Y a Ya Ya W a W

lalatlalalatelaiatalateielete e e la e lalnlaialainlelalalalaianlalinialatalalatelale e

Tracks and Sectors can be given illegal numbers by
changing this data in the header. (Appendix F) The
normal DOS will not accept out of range values. A
machine routine used by the disk drive can do this. The
diskette could also be entirely or partially formatted
in an abnormal pattern which would only be recognized

by a modified DOS routine.

Another devious means would be to write "encoded"
sync pulses on an unused part of the disk. These sync
pulses could be encoded by a means as simple as
spacing. In other words, the time between consecutive
sync pulses would have to be exactly according to a
predetermined VARIABLE spacing, or the program checking
them would abort. Breaking such a system would require
a sophisticated analysis of the diskette which cannot

be done through normal DOS routines.

These examples should give you a clearer idea of
what can be done if you go outside the confines of the
DOS and develop both reading and writing routines. It
is hard enough to understand how the normal DOS
routines function, let alone trying to figure out what
someone has done beyond this. These methods by nature
will not be compatible with other drives. It is also
interesting to note that copier programs usually will
not copy themselves... in other words they are
obsoleted by their own manufacturers since they have
developed protection that foils their OWN product!! If
they can do it, so can anybody else. If a copy program

cannot copy itself, you may rest certain that within a

141

VERY short time there will be many new programs out

that it also cannot copy! If the market continues to

develop in this direction, we will likely continue with

our development of a disk "Dumb Copier". Such a system
will put to rest any protection that does not involve
external hardware or physical modification of the disk

drive.

ERROR WRITING PROCEDURE

Following are some examples of how to send error
writing routines to the disk via Diskpicker. In the
program section of this chapter we have listings for
all the error routines included. You may prefer to
write a basic program which "sends" these routines to
the disk and then executes them. We have chosen not to
as such error writers are abundant already and become

outdated as fast as they are sold. If you become

familiar with the techniques of Diskpicker, you will be

able to add and modify routines as YOU see fit.

IMPORTANT : Although every attempt was made to make
these procedures compatible with all 1541s, there are
apparently four revisions of the DOS ROM put out by
Commodore. As explained earlier, this can 1lead to
compatibility problems with many forms of protected
software AS WELL AS error making procedures. This is
why such protection is of questionable validity. We
can not guarantee that all error making routines will

work on all past and future versions.

142

slatalalalalaialalatalalatatalatalatatale)

e e e N N N Y e e N W e N e W e N e e e W e e e e e e W e N e e e N e e N e Y e Y R W

2.

3.

4.
5.
6.
7.
8.
9.

SPECIAL INSTRUCTIONS AND CAUTIONS

NOTE:These techniques should not be attempted if you do
not understand the underlying principles.
Indiscriminate use could cause the disk head to stick
which may require partial disassembly to correct!!

To Escape back to Main Menu, Input letter X for
requested input value.

To escape from Monitor$8000, input G C020. (requires
space btween G & C020)

If disk or computer locks up, (and if you have a reset
button), press reset and enter SYS49184 to restore
system.

Always Format disk to be written to with the same disk
ID# as the original. :

G

Never select tracks above 44 or disk head will bang
against end stop and may get stuck. If this happens you
will need to open disk case and gently push head back
to center.

If head gets stuck, first try by using Initialize
operation or call the Job Que Bump command, #192.

Always input valid header # and data for track & sector
when using the Job Que.

ERROR 20 NO HEADER

Erases header from specified track and sector.
Load and run Diskpicker.
Select menu option 2. Set printer choice “N".

Input L"20 NO HEADER",08 After load, Input G
C020.

Place diskette to be written on in drive.
Select menu option 7.

Select menu option 3.

Input disk start address 0300.

Input disk end address 034F.

Input Buffer address 3300.

10.After Data transfer to disk, select menu option 5.

11.Input Job choice 224. Select choice 1 (0300) for

execute address. FOR ONE SECTOR SET MULTISECTOR='N’
FOR ALL SECTORS, SET MULTISECTOR='Y’

143

12,

13.

*

14,

15.

16.

17.

18.

* %

1.

2.

3.

a.

5.

For header #1, input track # desired to write ON.

For header#2, input value ONE LESS than sector desired
to write ON. (USE O FOR SECTOR #s 1)

Note: If sector O is to be written to, select the
highest sector number on this track. (see drive user
manual). i.e.: Input a 20 if sector O on track 1 is
being chosen.

REPEAT the above steps 8-11 for writing type 20 errors
to other headers of your choice. * Intermixing read,
write and load operations may write over the error
routine being held in the disk memory buffer.

To test your errors, select option 5 (Job Que Execute).

Input job choice 128.

For header #1 , enter track #desired to read, and for
header#2, enter the sector number to read.

If everything went right, you will see the proper error
message and OP status code.

For error routines 21 ERASE TRACK, 22 NO DATA, 23
DATCHKSUM, and SYNC WRITER, repeat the same
instructions as given above EXCEPT select the EXACT
track and sector #s you wish to write on. (No wrap
around is needed on sector 0) The SYNC WRITER routine
is usually used to write sync pulses to tracks from 35
thru 44. This will change the error returned when
reading these areas from sync not found to HEADER NOT
[FOUND. :

READ HEADER

This routine reads the GCR header from a disk and
allows you to put it in the computer for analysis or
modification. By using this routine and the HDR WRITE
you can "SPLICE" bad headers from original disks on to
your copy disks. In many cases this is more effective
than trying to reproduce the header errors that have
been used for protection.

Load and run Diskpicker.
Select Menu option 2 and printer choice "N".

Input L"READ HDR",08 after 1load, input L"COPY
HDR", 08

After load, input. G C020

I’lace diskette to be read into drive.

144

ANAAAANAANAANAANANAAANANANAANAAAAAANAAA

I IaIalalalalale!

PN AN NN NN NN NN N AN AN S A A

6. Select menu option 7 then option 3.

7. Input disk start address 0300

8. Input disk end address 034F

9. Input buffer address 4300

10.After data transfer, select menu option 5.

11.Input Job choice 224 and select choice 1 for execute

address of 0300. FOR ONE SECTOR, MULTISECTOR='N’ FOR ALL
SECTORS MULTISECTOR='Y" :

12.For header #1, enter track header you wish to copy is
on.

13.For header #2, enter sector value ONE LESS than sector
value with header you want. ie: Input O if sector 1 was
choice.
** For sectors 0, select last sector on that track!

14.Select menu option 1.

" 15.Input disk start address of 0400.

16.Input disk end address of OS5SFF.
17.Input buffer address of 6400.

18.After data transfer, select menu option 2 and desired
printer option.

19.Use memory dump command (M) of monitor to display GCR
image of the header and data now contained in computer
memory locations from 6400 to 65FF. See Appendix F for

explanation of GCR image. G C020 will return you to
main menu.

COPY HEADER

Writes GCR image of header from disk buffer to
object diskette. Useful for ERROR SPLICING.
1. Follow steps 1-19 for Read Hdr routine.
2. Insert disk to be written to in drive. (object disk)
3. Select menu option 3.
4. Input disk start address 0300.
5. Input disk end address 035F.
6. Input buffer address 3300.

7. After transfer of program to disk, select menu option
5.

145

8.

9.

10.

Input Job Choice 224 and select choice 1 for execute
address of 0300.FOR GNE SECTOR, MULTISECTOR='N’ FOR ALL
SECTORS MULTISECTOR="Y"'

For header #1, enter the track header is to be written
to.

For header#2, enter sector value ONE LESS than desired
sector to be written to. ie: Input O if 1 1is your
choice.

* If choice is 0, "use highest sector value on THAT track,

11.

8.

9.

10.

as described in other procedures.

If everything went right, you can use READ HDR steps 5
thru 19 to 1look at and verify the new header just
written!!

EXTRA NOTES

Remember, Diskpicker is designed to give you
control of exactly what is written and sent to the
disk. It is a disk development system especially for
experimenting with and testing modified DOS routines.
Do not confuse its intent with that of "turnkey" error
writers which are simple to use but restrict you to
what they have decided should be used for errors. Such
programs are obsolete shortly after they are sold. With
Diskpicker you can concentrate on collecting modified
DOS routines which are by nature short and easily
traded, and use Diskpicker to transfer and execute
these routines. Dedicated error writers generally try
to keep you from getting into the program let alone
modify and update it.

Below are listed some protection possibilities to
look for on original diskettes:

Missing or extra sync bytes. Use READ HDR to look for
this.

Misbing header or illegal header ID.
False header checksum.

Illegal or missing sectors.

False ID numbers.

Protection data in GAP area.

Missing or illegal data block ID byte.
Data block missing.

False data checksum.

Protcection data in end of track GAP.

146

-

IS Iala el alalalalaiala el el el a el el e ia el alaiala e akakale

aYare

AAAAAAAAAAAAAAAAAAEAAAAAAAAESAAAAAAAAAAAAAA

11.Protection data encoded using sync pulse
combinations.

*Note: It 1is possible to achieve some of the above
errors on tracks 36 thru 44 as these are readily
available using the disk controller software.

Even though protection errors will cause 1loading
problems under normal conditions, it is a fairly simple
process to recover useable data from a bad sector. This
is done by analyzing the error and writing a short
machine program to recover the data. The trick is to
sync up on a previous sector's sync pulse and count
bytes to the 1location you wish to read from. When
counting bytes, sync pulses show up as ONE byte even
though several have occurred. A valid sync pulse does
not always show up on a GCR sector read out as an "FF".

The general philosophy for precise error writing
is to place the GCR data you wish to record in one of
the disk memory buffers, find a valid sync pulse on a
nearby preceeding sector, count . bytes up to the area
you wish to write to, switch the disk controller to its
write mode and dump the buffer to the diskette.
Switching from read to write is Best accomplished
during the gap time when GCR 55's are being read.

The read/write techniques just described will
allow a clever programmer to read or write desired
information to/from any place on the diskette!! Good
luck!!!

*kk IMPORTANT: When switching diskettes during

Diskpicker procedures, be sure to perform
Initialization - Menu option seven. This will i1nsure
that the drive page zero memory locations are
initialized to the current diskette identification
parameters. THIS DOES NOT HAPPEN ON POWER UP!

147

CREATE HEADER ERRORS

1. For checksum error in header, 1load 1C€ON HDRthrough
monitor mode of Diskpicker.

2. If checksum in header error is not desired, load CONHDR
through monitor mode.

3. Load WRITE HDR through monitor mode.
PUT OBJECT DISKETTE IN DRIVE.

4, Select 6 from main menu and enter track# and sector#
desired.

5. Select choice 1 - (Transfer disk mem. to buffer)
Start addr. 0000
End addr. OOFF
Buff. addr. 6000

6. Interogate memory locations 6000 -6030 form monitor
mode. Refer to Appendix F "Important Disk Memory
Locations" to identify byte functions.

7. Change locations to value desired to create errors.
Disk ID #s might normally be changed.

8. The GCR image of this hdr can be seen in computer
buffer 1locations 6024-602B. (Which come from disk
memory 0024-002B) sgLECT 3 FROM MAIN MENU START ADDR @816
END ADDR ©01B BUFF RDDR 6016

9. Select 3 from main menu.

Start addr. 0300
End addr. O31F
Buff. addr. 5300

10.Select 4 from main menu. Entry addr. 0300

11.GCR 1image is now in disk memory locations 03E0-03E7,
ready for transfer to the object disk. Make sure object
disk is inserted in drive.

12.Select 3 from main menu.
Start addr. 0300
End addr. 036F
Buff. addr. 3300

13. Select 5 from main menu. Job choice = 224. For
execute start addr, select 1 (0300) :

14. For Hdr #1, wuse track desired. For Hdr#2, use ONE
LESS than desired. ("wraparound as 1in earlier
procedures). ic: For sector 1 enter a O.

15.r'o check errors, follow read header techniques.

148

AN AAANAAAAAAAAANAANANAANAANAAMAANAAAAA

ANAAAAAAAAAAAA A A A EAAAAAAAAASAAAAAAAAAAASAAD

CWNCU & W=

1PSIMAIN

5'v549891 :P=0

$Y349844

3'vS49516: X=PEEK (4916@) : OHXGOTO4, 3,5, 16

T=PEEK(49156) : S=PEEK<(49157) :PRINT#15, "U1:"2;@; T;S: GOSUB25: 5¥YS43€91 : GOTO3
$'v549858: Z=0

3¥3549939: X=PEEK(49161) : ONXGOT07,6.2,18,5

T=PEEK{49158) : S=PEEK{49159) : SY549745: IFPEEK(43173)=1ANDZ=1THEHS
PRINT#1S, “B-P: "2;9:5Y549718:PRINT#15, "U2: "2, 6, T, 3:G0SUB25: 2=1 : 50T0S

19 3v549872:END

25 PRINT"SITRK. "T"H " :PRINT"MBEC. "5"0 ": INPUTH#15.RA%.B$
26 PRINT"NERR. “"A$"TTITIT': IFA$="00" THENRETURN

27 IFP=1THENOPEMN4,4:PRINT#4,T,S,A$, B$:CLOSE4

28 S'YS43903:RETURN

07 =4 1 UL & (0 I >

2PSIMAIN

3Y549778:P=0

3'v543316:M=0

3549516 X=PEEK(42168) : OMXGOT04, 3,5, 10 ’
T=PEEK{49156) : S=PEEK{(49157) :PRINT#15, "U1:"2;0; T;5: GOSUB2S: 3YS42631 : GOTO3
3'Y549832:M=1:2=0

3'v543694 : X=PEEK(43161) : ONXGOTO7. 6,2, 18,5

=PEEK{49153) : 3=PEEK(49153) : §'YS49745: IFPEEK(49173»=1ANDZ=1THENE
PRIMT#1S,"B-P:"2,0:5YS49713: PRINT#15, "U2:"2;0; T, 53:G0SUB25: 2=1 - GOTOE
3'7549848: END

2S5 PRINT"ITRK. "T"N_ “:PRIMT"MSEC. "S"N ": INPUT#15,A$.B$
26 PRINT"#ERR. "A$"TTITITI":IFA$="08"THENRETURN

27 1FP=1THEHNOPEN4,4 :FPRINT#4,7,5,A$, B$:CLOSEY

28 IFM=BTHENSYS49867 : RETURN

3349377 :RETURN

149

DUPDAC DATA
:C008 00 00 OB OB 11 F8 11 23
:CO010 03 OF 23 08 09 00 00 00
1DUPDAC

cBels
CalA
ceic
CO1E
cozv
cezz
£az4
caze
ca28
CazB
cazc
CazE
838
2833

caze .

ce33
Ca3C
CO3F
ca42
£a45
043
848
CB4E
CBS1
Ca54
Ces7
CESA
COSE
Casc
[1) 5
CBSE
Cosa
CHE3
CBES
Cos38
CBsA
COeD
Cave
Cav2
Ca73
carv
CB7A
sa7rC
CO7E
Ce39
B33
s 114

LDA
STH
STH
LDA
STA
STH
Loy
LDA
STH
INY
CcPY
BNE
LDA
STA
LDA
STA
LDA
STA
LDA
STH
LDA
5TA
LDA
STA
LDA
STA
RT3
BRK
BRK
BRK

- LDA

co
FF

FF
FF

FF

FF
FF

LIK
Loy
JER
LDA
J3R
JSR
LDA
LDX
LoY
JSR
LDA
LDX
LDY
J3R
JSR
RT3

#3090
$FB .
$FD
#$0R
$FC
$FE
#3006
#3400

$C@aa, v

#30A

$Ce23
s$Coen
$Dazad
$C0dB
$Daz1
$Ca11
$D418
$Ccvac
$D4@3
$Co6D
$D486
3Co19
30400
$CO0F
304081

#30F
3C813
#30F
$FFBA
#300

$FFBD.

$FFCa
#3502
$C813
#3502
$FFBA
#3591
#$12
#$C0
3$FFBD
$FFCa

150

ces7?
@33
ca39
casA
CO3B
Ca3aDp
CasF
Cca31
Cas3
Coss
€a93
CasB
cescC
CosD
COsSE
CasF
CoORO
CBR2
CBAS
CBA7
ConRA
CoRC
CORF
CaB2
8B4
COB?
C@B3
COBC

CBEE .

Caco
cecz
Cacs
Ccacsa
cacs
cach
CacB
cacC
cach
CBCE
cane
ceps3
Cans
cane
CoDA
CoDB
CaDD
CBDE
C@DF
CBES
CBE1
CBE3
CBE6
CBE3
CBER
COED
CBEE
.aFa9
CHF1
CBFZ
CAaF4

E9

FF
FF

ce
FF

FF
FF

co
FF

FF
FF

CD

FF .

FF

CE

BRK
BRK
BRK
ERK
LDA
3TA
STH
LoA
JSR

JSR
RTS
BRK

BRK
BRE
LDA
LD
Loy
JSR
LDA
JSR

SR
LDA
LDR
LnY
JER

LD?

IMX

ERK
LD

CcHP
BEG@
J3R
IME
BME
RTS
CLC
LDR
LDR

#$9A
3FC
3FE
#$02
3$FFC3
#3aF
3FFC3

#30F
3CB14
#30F
$FFBH
#3008
$FFBD
$FFCO
#3902
$Co14
#3092
$FFBA
#301
#3512
#3C0a
$FFBD
$FFCa

#4500
SCDF@. <
#3064

3 $CaDD

$FFD2
$CoDg

#3006
SCEBC, ¥
#3504
$COF9
$FFD2

$CHES

#$99
SCEES. ¥

aka AN AMAAAOSAAMAMNAMNANAAANANANMNNNNN

AAAAAAAAAAAAANAAAAAAAAAAEAAESAAAAEAANAAAAANAAA

1DUPDAC -

C3 o4 CHP
Fo 8e EEQ
28 D2 FF JSR
ES THA
D3 F3 BNE
28 E4 FF JSR
c3 88 CHP
Do F9 ENE
58 "RTS
@9 BRK
50) BRK
AE OF C@ LDX
8E 94 D4 5TX
CA DE¥
8E 64 D4 3TX
€0 RTS
B3 BRK
29 BRK
A3 24 LDA
8D 79 CE STA
60 RTS
89 BRK
%1% BRK
18 cLC
A2 99 LD¥
ED B3 CE LDA
C3 64 CchP
F3 66 BEQ
28 D2 FF JSR
ES T INX
D8 F3 BNE
50 RTS
29 BRK
=% BRK
18 cLC
A2 69 LDX
BD F5 CE LDA
C3 04 cHMP
F3 @6 BEQ
28 D2 FF JSR
E3 THX
DB F3 BME
1] RTS
08 BRK
5] BRK
18 cLC
A2 20 LDX
BD 13 CF LIA
C3 B4 ChHP
FB 86 BEG
20 D2 FF JSR
ES IMZ
D3 F3 ENE
59 RT3
[205] BRK
B8 BRK
i8 CLC
A2 B9 LDA
ED 32 CF LDA
3 B4 CMP

#4094
$Cio1
$FFD2

$COF4
$FFE4
#5388

$C101

$CaoF
$D484

$D404

#3084
$CE72

#300
$CEB9. 4
#3064
$C1308
$FFU2

$C123

#3060
$CEFS, X
#3064
$C143
3FFD2

$C136

#3200
$CF13, %
#3204
$C156
$FFD2

$C143

#3008
BCF32, 4
#1304

cle6l
C1e3
C165
C1s67
C169
Clén
C16B
Ciléc
C16D
ci7a
ci72
Ci74
Ci77
Ci7A
ci7C
Ci7E
C180
. C183
Cig4
Ci36
ci88
C1i%8A
C13D
C18E
Ci191
c192
C194
C197
Ci9A
Ci9B
C15E
CiAl
CiA2
CiAS
CiRs
CiRA9
C1iAC
C1AF
CiB2
C1B4
CiB6
C1B9
CiBC
C1BF
cice
CiC1
cic2
cic3
cic4
CI1CS
cics
ciCcA
cicc
CICF
ciD2
CiD4
C1D6
c103
c1D9
1DC

151

1]
Dz

F3

FF

ce

ca

ce
co

CF
cae

CF
co

ca
e
ca

Cce
co
C1

Cce

ce
CcF

BEQ
JSR
IHZ
BHE
RTS
BRK.
BRK
cLC
LD~
CPX
BEQ
LDY
LDA
CHP
EHE
LDX
5TA
RTS
CcHP
BHE
LDX
STA
IMY
3TY
RTS

STA
IMY

STA
MY
LDA
5TA
INY
STY
LDA
CMP
BHE
LDA
STA
LDK
JSR
RTS
BRK
ERK
BRK
ERK
cLC
LDR®
CPx
BEQ®
LDY
LDA
CHMP
ENE
LDx®
IHY
LDA
CMP

$C169
$FFD2

3C15C

$C008
#3591
$C1AC
$C000
$CF7e.Y
#$EB
$C184
#3064
$Co63

#3FF
$C192
#$03
$C098

$Coae

#301
$C008
$CoB4

$CF7s.Y
3$C0a5

$CF76,Y
$Coaz

$CO00
$C005
$Co02
$C1B3
#5062

3$C003
$CooF
$C109B

$C003
#3501
$C203
$C001
$CF76. %
#$FF
$C1E9
#3093

$CF76, %
#$BB

1DUPDAC --—

08 82 BHE $C1EZ C2SA C8 INY

Az B4 LDX #3084 C25E DI® F7? BHE $C254
3E 09 Co STR 3CBB9 C25D A2 B1 LDX #$61
3C @1 Ce STY $C661 C25F BE 15 CY 3TX $CO1S
56 RTS C262 EE 87 0O INC $CE67
Az 91 LDX #3081 C265 E6 FE INC $FE
SE 89 CB STX $Cew9 C267 &9 RTS

8D 96 CO STA $CE@es C263 A2 o8 LDX #$00
c3 IHY C26A BSE 15 CO STX $C@1s
B9 76 CF LDA $CF76.Y C26D 60 RTS

8D @97 Co STA $C007 C26E @0 BRK

c8 INY C26F 00 BRK

B3 76 CF LDR $CF76.Y C270 89 ERK

3D 93 Co STA $C003 Cc271 09 BRK

c8 INY C272 20 CD CO JSR $C6CD
38C @1 Co STY sCeal C275 20 Ep CO J5R $COED
AD 67 CO LDA $Ca@7 C278 20 F1 CB JSR $COF1
CD @3 C8 CMP $C@93 C27B 20 @B C1 JSR $C1@B
10 95 BNE $C218 C27E 2@ 18 C1 JSR $C118
A2 B2 LDX #3062 £281 26 CD C8 JSR $CGCD
8E 99 CO 5TX $COB9 £284 28 33 C1 JSR $C133
AE BF C8 LDX 3$COOF C287 60 RTS

26 @B C1 JSR $C10B £228 89 BRK

56 RTS £289 69 BRK.

@0 BRK Cz3A @9 BRK

2%) BRK C28B 00 BRE

T BRK C2sC 26 CD C8 JSR $CACD
(7] BRK C28F 20 26 C1 JSR $C120
13 cLC C292 20 F1 CB JSR $CoF1
A2 82 LDA #3682 €295 28 @B C1 JSR $C10B
28 CE& FF JSR $FFCo C293 20 CD C@ JSR $CGCD
A3 09 LDY #3500 C29B 20-46 C1 JSR $C145
20 AS FF JSR $FFAS CZ9E° 60 RTS

31 FB STA (3FB>,Y C29F 80 BRK

c3 INY C2A9 00 BRK

I8 F8 BME 3$C223 CZA1 90 BRK

E6 FC INC 3FC C2RZ 08 BRK

29 CC FF JSR $FFCC C2A3 26 CD C@ JSR -$CECD
EE 85 CB INC $C@6S C2A6 28 59 C1 JSR $C159
) RTS C2f9 20 F1 .CO J3R 3COF1
Pa5) BRK C2AC 29 @B C1 JSR 3C1GE
86 . BRK C2AF €0 RTS

18 cLC C2BA 00 BRK

R2 B2 LDX #302 - C2B1 B9 BRK

28 C2 FF JSR $FFCI C2ZB2 99 . BRK

A9 60 LDY #3500 CZE3 B9 BRK

Bl FD LDR <$FD>.% C2B4 20 2B C@ JSR $CB2B
20 A8 FF J3R $FFA3 C2B7 2@ 72 C2 JSR $C272
c3 INY C2BA 28 SE CB JSR $COSE
D3 Fa ENE $C23E C2BD 20 FB C2 JSR $C2FB
E5 FE INC $FE C2CH 60 RTS

28 CC FF JSR $FFCC £2C1 @9 BREK

EE @7 ©@ INC $C0a7 C2C2 26 Sk CO JSR $COSE
59 RTS C2CS 28 2C C2 JSR $C28C
] BRE C2C8 28 SE 0B JSR $CASE
B3 ERE C2CB 20 93 C3 J3R $C363
13 CLC CztE 68 RTS

AR B3 LDY #3089 C2CF 98 BRK

Bl FI LDR C$FD3,Y CzD3 2@ ZB CB JSR $COZB
C3 69 CMP #3693
D9 BE BME 3C2:58

152

ﬁ

~

~

PN

AN ANANAANAANANAANAANAAAAANANAANANANAAAAAAAAAAA

ANAAAAARAAAANAAAAAAAAAAAAAESEAAAAAAAAANAAAAA A A A

c2o3
206
cz2D7
c2p38
c2D3
canc
C2DF
C2EQ
C2E1
CZE2
C2E3
C2ES
C2E?
CZ2E3
C2EC
C2ED
C2EE
C2EF
C2F2
C2FS
C2F8
C2F9
C2FA
C2FB
C2FD
C300
Cc3o1
£362
£393
c385
£308
C30B
Cc38C
C30E
Cc310
c311
C312
C313
C316
317
C21A
C31D
C31F
£322
c324
£326
£328
C32A
c32D
C32F
£332
C333

-C336

£333
C33A
£33C
C33F
o341
2343

1DUPDAC —~~

20 A3 C2 JSR
60

5 0%]

B
SE

50)
17

09
o]
3C

@9
FS

ca
ca

coe

ce
co

ce

e
03

[

co
co

co

co

a3
co

9

RTS
BRK
BRK
JSR
JSR
RTS
BRK
BRK
BRK
LDA
3TA
3TA
JSR
RTS
BRK
BRK
JSR
JSR
JSR
RTS
BRK
BRK
LDA
STA
RTS
BRK
BRK
LDvY
LDA
STR
INY
CPY
BNE
RTS
BRK
BRK
JSR
CcLC
LDA
cMP
BEQ
LDA
cHP
BEQ
CHP
BEQ
INC
LoY
LDA
3TAR
INY
CPY
BME
LDX
5TA
LDA

$C2ZA3

$COSE
3$CO5E

#40A
$34
$38
$C018

3$CO3B
3$C1081
$CBSE

#3009
3$Co17

#$00

$C0ae9,"%
$833C, Y

#3093
$C385

$CiC4

$Co17
$Ca16
$C343
$Coa39
#301

$C243
#3062

$C343
$CO17
#2309

$633C,

kg

$C008, 7

#3599
$C32F
#3505
$CE09
#50A
£33

153

10UPDAC - --- DATA TABLE

CDF3 23 26 26 20 20 20 20 28 CFD3 12 LE 08 12 1F @8 &2 FF
CDF8 28 85 72 72 7?2 72 72 72 CFE@ IF @2 11 20 98 11 21 6@
CEBB 72 72 72 72 7272 72 72 CFES 11 22 ¥ 11 23 @0 11 FF
CE@8 72 72 72 72 72 72 72 72 (CFFP BB ©Q 69 99 60 00 53 @0
CE1B 72 72 72 @D 20 20 20 20 CFFS 92 GO 09 93 69 09 68 51
CE13 20 20 20 20 @5 43 2D 36
CEZ8 34 20 44 49 S3 4B 20 42
CE23 41 43 4B 2D S5 50 29 31
CE30 44 55 50 44 41 43 0D 20
CE38 20 20 26 20 20 20 20 65
CE48 A3 A3 A3 A3 A3 A3 A3 A3
CE48 A3 A3 A3 A3 A3 A3 A3 A3
CES® A2 A3 A3 A3 A3 A3 A3 A3
CE5E2 A3 6D 20 20 20 20 20 29
CESO 20 20 260 20 20 28 20 1E
CESS 28 43 239 20 59 53 49 44
CE?9 41 43 28 9E 31 32 38 33
CE?2 OD 84 9F 9F 42 59 20 56
CE30 49 43 20 4E 55 4D 42 45
CE338 52 53 @D 84 11 11 11 11
CE98 SE 2A 29 2R 28 49 4E 53
CE33 45 52 S54 20 4F 52 49 47
CERB 49 4E 41 4C 20 44 49 53
CER3 4B 28 4% 4E 29 44 S52 49
CEBG 56 45 20 2A 20 2R 0D @4
CEB2 11 11 11 11 85 2A 28 2A
CECO 26 49 4E 53 45 52 54 208
CEC2 43 4F 50 S9 20 44 49 53
CED® 4B 2@ 49 4E 20 44 52 49
CEDS 56 45 20 2R 20 2A 8D 94
CEE® 11 11 9F 2A 28 2R 29 50
ZEES 52 45 53 53 28 46 37 20
CEF® 2A 20 2A BD B4 11 11 SE
CEF3 2R 20 2R 28 52 45 41 44
CFo0 20 4D 4F 44 45 20 45 4E
CFBs 41 42 4C 45 44 20 2R 208
CF18 2A 8D 84 11 11 85 2A 208
CF18 2A 20 57 52 49 54 45 20
CF20 4D 4F 44 45 20 45 4E 41
CFZ23 42 4C 45 44 20 2R 29 2A
CF39 9D 94 11 11 9F SF 2R 20
CF33 2A 20 44 55 S50 4C 49 43
CF40 41 54 49 4F 4E 20 43 4F
CF43 4D S0 4C 45 54 45 20 2A
CF58 20 2A @D 11 11 2R 20 2A
CF58 20 S2 45 4D 4F 56 45 29
CF58 44 49 53 43 20 2A 20 2A
CFE3 B0 94 50 80 00 PO VO 69
CF70 09 89 B9 0Q P9 ¢B A1 99
CF73 15 82 60 15 93 89 1S 04
CF39 8@ 15 05 89 15 86 69 15
CF33 67 90 15 98 90 83 FF 93
CF98 83 15 69 68 15 6A 88 15
CF38 6B 86 15 9C 99 1S5 3D 26
CFA2 1S5 BE 90 15 OF 08 96 FF
CFAS OF 96 15 19 99 15 11 60
CFEO 15 12 99 13 13 98 13 14
CFE2 99 13 15 99 13 16 86 11
CFCB FF 15 11 13 17 @8 13 13
CFC3 88 13 13 88 12 1A 89 12
CFDO 1B @8 12 1C 98 12 1D 99

~

-~

ialalaiaialalslaiainisiaialalaiaiaiaiaialalalnlaiatatatalalaiataYalalalaiaiaats e

el a e et e e N N N N e e N e N e e N e N e N e N N e N e N e Y T Tala it e tatatatata Ve N W b

DUPDAC DA'T'A

:C008 00 00 OB OB 11 F8 11 23
$C010 03 OF 23 08 09 00 00 00

Co13
C91A
Ceic
CO1E
£o20
a2z
ca24
cozé
cozg
CB2B
£B2C
CA2E
ca39
£H33
£H36
£a39
CO3C
CO3F
Co42
£243
£a43
CB4B
CA4qE
cas1
Co54
Cos57
CA5A

A9

a

oa

A
FE

FF

FF
FF

co
FF

FF
FF

LpA
5TA
STA
LDA
STA
5TA
LDY
LDA
STA
INY
CPY
BME
LDA
5TA
LDA
STA
LDA
STA
LDA
3TA
LDR
STA
LDA
STR

LDA.

STA
RT3
BRK

#3090
$FB
$FD
#30A
SFC
$FE
#3600
#4990
$Coge. Y

#30R

$Co28
$CA0A
$D020
$CO9B
s$De21
$Co11
$D418
$Co0C
$D485
$Co8D
30495
$C010
304909
$CO0F
3$D401

BRK -

BRK
LDA
LDA
Loy
JSR
LDA
JSR
JSR
LDA
LDX
LoY
J3R
LDA
LDX
LDY
JSR
J5R
RTS
BRK
BRK
BRK
BRK
LDA
STA
3TR

#30F
$Ca13
#30F
$FFBA
#3009
$FFBD
$FFCO
#3092
$CA13
#3062
3$FFBA
#3201
#2312
#sCe
3FFBD
SFFCa

#306R
$FC
$FE

2DUPDAC

cas1
£a93
Co26
co98
CA9B
£a3C
CasD
Ca9E
Ca3F
cong
cenz
COAS
CoA?
COAR
CORC
CoAF
CeB2
CoB4
Cap?
CABY
CoBC
COBE
CBco
cacz
Ccacs
cacs
cacs
CacRh
"CaCB
cacc
Cacp
CBCE
CoDd
CaD3
CaDns
cep7?
CODA
CODB
CADD
CADE
CADF
COED
CoE1
COE3
CBES
COES
CAER
COED
COEE
CoFa
CoF1
Ccar2
CoF4
CoF?

155

FF
FF

FF

FF
FF

ce
FF

FF
FF

CD

FF

CE

FF

CE

LDA
J3R
LDA
JER
RTS
BRK
BREK
BRK
BRK
LDA
LD¥
LpvY
JER
LDA
JER
JSR
LDA
LD
Loy
J3R
LDA
LDX
Loy
JSR
JSR
RTS
BRK
BRK
BRK
BRK
cLC
LDX
LDA
chMP
BEQ
JSR
INK

RTS
BRK
BRK
cLC
LDX
LDA
CMP
BEQ
JSR
IMA
BHE
RTS
cLC
LD

cMP

#3092
$FFC3
#$aF
FFFC2

#$09F
$Co14
#20F
$FFBA
#4600
$FFED
$FFCo
#3502
$Cald

$FFBA
#301
#412
#3C0
$FFBD
SFFCO

#4009
$CDFO. X
#3204
$CBDD
$FFD2

$CODa

#3009
$CE3C, %
#3604
$COFO
3$FFD2

$CRE3
#5099

2CEEB, %
#3904

COF3

COFB

COFE

COFF

c161

C164
C106
Cies
Ciao
Ci6A
Ci6B
Ci6E
Cci1

ci12
C115
Clié
c117?
c113
CiiA
Ci1D
C11E
C11F
Cizo
c121

C123
cizé
c123
ciaA
12D
CI12E
C130
C131
C132
C133
C134
Ci36
C139
C13B
C13D
C140
ci41
ci43
Cl44
C145
Ccl46
C147
C143

ci4cC -

C14E
158
c153
c154
Cc156
C157

2DUPDAC -

06
D2

F3
E4
82
F9

oF
24

64

a4
79

FF .

FF .

co
D4

D4

CE

CE

FF

CE

FF

CF

FF .

$C161
$FFD2

$COF4
$FFE4

#3283
$Ci1o1

$CooF
$D484

$D404

#304
$CE73

#$00

$CEBS. X

#3094
$C130
$FFD2

$C123

#3009

$CEFS. ¥

#s04
$C143
$FFD2

$C136

#300

3CF13,X

#$04
$C156
$FFD2

3$C149

156

ciSs
C15S9
CiSA
cisc
C1SF
ciel
C163
Ci166
Ci67
€163
Ci6R
C16B
CisC
C16D
Civo
civ2
Ci74
Cci77v
C17A
ci7C
C17E
ci18a
c1383
Ccig4
Cci86
Cc138
c18na
C13D
c

c131
c192
C194
€157
C19A
C19B
C13E
C1A1
C1A2
C1R5
C1A3
C1A9
C1AC
C1AF
C1B2
C1B4
C1B6
C1B9
C1BC
C1BF
c1ca
C1C1
c1C2
c1C3
c1c4

CF

FF .

co

ca
CF

ca

cae
cae
Cco
ca

CF
co

CF
co

co
ce
ce

ce
C1

STX
STA

IHY

INY
3TY
LDA
CHP
BNE
LDX
STX
LDX
JSR
RTS
BRK
BRK

BRK
cLe

#3090
$CF32, 4
#3004
0169

. 3FFD2

$C15C

$Ca03
#s01
SC1AC
$C000
$CF76.Y
#$BB
$C184
#3094
$Cove

#SFF
$C192
#3563

» $C608

$Coo0

#$01
$Cea3
$C004

SCF76,Y%
$CoaS

SCF7S.Y
$Co02

$C009
$Ca0S5
$C062
$C1B3
#3062

$C062
$CBOF
$C16E

MO NNAAAAAANAANANAANAARAAAAAAAAAA

YOO

~

AAAAA

ala¥e

A A

R N e Ll Ll el ot Ta lata la ta lata ol oo latalakalalalalalalakaiey

CiCS
Cic3
CiCA
cicc
CICF
cib2
cip4
CiD6
ciDs
ciD3
cipe
C1DE
ClEB
CiE2
C1ES
CiES
CiE9
CiEB
CiEE
CiF1
CiF2
CIF5S
CiF2
CiF2
CiFC
C1FF
c208
ca2e2
C206
c2a9
C20B
26D
c219
213
c2ié
cz17
2218
c213
c21R
C21B
c21C
C21E
c221
c223
c226
£228
c229
C22B
c22D
238
£233

.Cc234

£2335
ca3e

2DUPDAC - -

ca

CF

co
co

ca
ce

CcF
ca

CF
ca

co
co
ca

co
Ci

FF
FF

FF
co

LDX
CPX
BEQ
LDY
LDA
cHP
BNE
LDX%
IHY
LDA
CcMP
BNE
LDX
STX
sTY
RTS
LDA
STX
STA
INY
LDA
3TA
INY
LDA
37A
INY
sTY
LoA
chMP
BNE
LDX
3TX
LDX
JSR
RTS
BRK
BRK
BRK
BRK
cLc
LDX
JER
LDY
JSR
STA
INY
BHE
INC
J5R
INC
RTS
BRK
BRK
cLC

$C009
#5091
$C203
$Co01
$CF76.
#3FF
$C1E9
#$83

$CF76.Y
#$BB
$C1E2
4304
$COd9
$CO01

#3501
$Ca09
$C9096

SCF76.Y
$Coa?

$CF76,Y
$C093

$Co01
$C007
$C0083
$C210
#$02

$coa9
$COBF
$C16B

#5092
$FFC6
#3060
$FFAS
($FB),%

3$C223
$FC

$FFCC
$C005

c2sv
cz39
c£23c
C23E
C24a
czd3
c244
ca46
c243
C24B
C24E
C24F
Cc259
ca251
c£252
C£254
£256
c258
C25AR
C25B
Cc25D
C25F
cz62
C265
c267
C£268
C2éR
Cc26D
C26E
C26F
279
ca271
cav2
c27v4
C276
ca78
C27B
C27E
£281
c284
casv
C28A
Cc28D
c290
Cc293
Cc296
297
c298
Cc23B
C29E

c2A1

157

FF

FF .

FF
co

Co !

ca

ca

#5902
$FFCS
#3500

$FD) .
: $FFAZ

$C22E
$FE

$FFCC
$COE7

#3500

C$FDD,

#3090
$C263

$C254
#3201

¥ 3Ce15

$Cea7
3FE

#3600
3$Co15

#$0A
$34
$38
s3Co18
$COCD
3$COED
$CAF1
$C10B
3C113

} $COCD

3C129
$COF1
3C10B

$CO2B
$CacD
$C133
$C@5SE

C2R4
C2RS
C2A6
C2R?7
C2RAS
C2AB
C2RE
C2B1
C2B4
C2BS -
C2B6
C2B7
C2B8
C2BB
C2BE
cact
c2c4
czcv
c2cs
czcs
C2CA
CzCB
C2CE
C2D1
c2pz
CczDp3
£2D4
cz2ns
c208
C2DB

CDFQ 33
CDF3 20
CEGD 72
CEG3 72
CE18 72
CE138 20
CE28 34
CE23 41
CE39 44
CE33 20
CE43 A3
CE48 A3
CESB R3
CES3 A3
CEGO 208
CES3 28
CE78 41
CE73 9D
CE38 49
CES38 52
CESB 3E
CE?3 45
CERG 43
CEAS 4B
CEBB 56
CEE2 11
CECH 208
CEC3 43
CEDD 4B

2DUPDAC

3B
CD
45
AB

3B

50

Cco
]
Ci
Co

ca

CDh Coa
39 Ci
F1 Ca
8B C1

3B C9

SE C9 .

8B CO
A8 Co

RTS
BRK
ERK
ERK
J5R
J35R
JSR
JSR
RTS
BRK
BRK
BRK
JSR
JSR
JSR
JSR
J5R
RTS
BRK
BRK
BRK
JER

BRK
BRK
JSR
JSR
RTS

DATA TABLE

28
a5
72
72
72

$Cv3B
$COCD
3C145
$CoR8

$Co3B
s$Cach
$C159
$COF1
$C1oB

$Ca3B
$CaSE

$CO8B
$Cone

CED5
CEED
CEES
CEFO@
CEF3
CFag
CFos
CFig
CFi3
CF29
CF23
CF38
CF33
CF40
CF48
CF58
CFS8
CFén
CF63
CF78
CF73
CF30
CF38
CF39
CF38
CFRB
CFA3
CFB9
CFB8
CFCa
CFC3
CFI9
CFD3
CFEQ
CFE3
- CFFQ
CFF3

158

alatalalalatalelalatatalelototalslatatalatatatalate

~-

~

~

alelelale

@

alatalalalalalalalala el e el e Nl el Y el e el e e el e el Y el al e la ol ata el a e Yaka kel

SUPERDIRECTORY

S_IFA=GTHENA=1 :LOAD"ADMACH" , 8, 1

18 POKES32£@, 11:POKES3281,11: TR=18:SE=1:DIMA<308> : DIME{ 260
15 H¥$="0123456782ABCIEF"

18 P=9: INPUT"JJ#PRINTER Y/N";YN$: IFYH$=""" THEHF=1

28 PRINT"TR SUPERDIFECTORYE <C>34 FSIDAC %BHA"

25 IFP=1THENOPEN4,4:PRINTH4 :PRINT#4,CHR$16) " 1SSUPERDIRECTORY" : FRINT#4 : CLOSE4
39 PRINT"WMIMSERT SOURCE DISK IM DRIVE"

35 INPUT"MDISK NAME";DN$

48 IFPD=1THENS@

41 PRINT"¥OFRESS F?"

42 GETAS: IFASCO "WI" THEM42

45 IFP=1THEMOPEN4.,4 :PRINT#4, "DISK NAME = "DN$:PRIMTH#4:CLOSES
3@ DPEM1S,3,15:0PEN2,3,2, "#" :PRINT#15,"U1:"2,0; TR, SE

€0 5YS49152

78 CLOSE2:CLOSE1S

20 FORRP=0T0255

168 A(RP)>=PEEK(RP+52392)

1280 HEXT

125 TR=A¢@):SE=AC1) :

139 PRINT“IDITYPE TRACK SECTOR HAME BLESH"

132 IFPD=1THENOPEN4,4:GOT0138

133 IFPCO1THEN136

134 OPEM4,4:PRINTH#4,"TYPE TRACK SECTOR HAME ELKS" :PRINT#4
136 IFP=1THENPD=1

133 FORRP=2T0226STEP32:0K=1:FT$="

133 TK=A(RP+1) :SK=A(RP+2) :NB=A(RP+28) : IFTK=GTHENCLOSEY : G0TOZ99

149 IFACRP>=0THENFT$="DEL" :OK=1

145 IFACRP)>=13@THENFT$="FRG" : OK=1

159 IFACRP)=132THENF T$="REL" : OK=0

155 IFACRP)Y=123THENFT$="SEQ" : OK=9

160 PRINTFTS;

165 IFP=1THENPRINTH#4,FT$;

172 PRINTTAB(S)TK; TAB(12)SK;

175 IFP=1THEMPRINT#4,CHR$<16>"07"TK;CHR$(16>"16"3K:CHRE(16)"27":

173 IFOK=1THENB(C)=TK:B(C+1)=SK:C=C+2

138 PRINTTABC18); :FORT#=3T018: PRINTCHR$(ACRP+TX)>) ; :NEXT :PRINTTAB(342HB
135 IFP=1THEHFORTX=3T018:PRINT#4,CHR$CAC(RP+TK)) ; ‘HEXT : PRINT#4, CHR$(165 " 34" HE
198 NEXT:CLOSE4

209 [FAC@)O9THENGOTO40

339 PRINT"APRESS F7m"

335 GETA$: IFASL{S "W THEM30S

319 PRINT"IITRACK SECTOR HEX.ADD DEC.ADD" : PRINT

315 IFP{>1THEN320

313 OPEN4,4:PRINT#4:PRINT#4,"TRACK SECTOR HEX.ADD DEC.ADD" :PRINT#4
313 CLOSE4

329 PC=1:FORRP=ATOC-25TEP2

330 TR=B(RP):SE=B(RP+1)

349 OPEN1S,3,13:0PEN2,8,2. "#" :PRINT#15,"U1:"2:0; TR:SE

359 3YS42152

360 CLOSE2:CLOSE1S5:PC=PC+1

364 IFP=1THEN370

365 IFPC<>18G0T0370

367 PRINT"SPRESS F78"

363 GETAS: IFAS{O """ THEN3ES

363 PC=1:PRINT"JTRACK 3ECTOR HEX.ADD DEC .ADD":PRINT

370 AL=PEEK(S52394) :AH=PEEK(S52995) : AT=2S64AH+AL

375 50SUB1080

380 PRINTTR; TRB(9»SE; TRB(13>D3$; TRB(29)AT

232 IFPC<>1THEN358

385 OPEN4,4

236 PRI¥T04:TR;CHR3(16)"07"$E;CHR3(lG)“lS”DS;CHRS(lG)"ZS“RT=CLGSE4

398 NEX

429 PRINT"MPRESS F7"

419 GETAS: IFAS$<O "N THEN419

329 RUN1@

1600 X=AT:D$=""

1085 D(1)=INT(X/4096) : XK=X-(D{1)%4@96) : D(2)=INT(X/256) : K=K~ (D(2)%256)
1919 D(3)=INT(X/16) :D(4)=X=(D(3)*16>

1020 FORI=1T04:D$=D$+MID$CHKS, (DCIX+1), 1) :NEXT

1062 RETIRN CHANGE THESE LINES FOR NON-COMMODORE PRINTERS

25 IFP=1THENOPEN%,4: PRINTH4 :PRINTHSG, TAB (15) "SUPERDIRECTORY " : PRINTH4 : CLOSE4
165 IFP=1THENPRINTNG,FT$; TAB(B7) TKs

172 PRINTTAB (5) TK; TAB (12> SKs

17 eeem Rasisg ey

17 = =TK: =6K: 2

léO PRINTTAB(18) 3 :FORTX=3T018:PRINTC¢ORC(A(RP+TX))3 :NEXT:PRINTTQB(Zﬁ)NB

185 IFP=1THENFORTX=3T018: PRINTH4, CHRS (A (RP+TX)) 5 : NEXT:PRINTHé, TRB (2)NB

284 PRINTHG . TR: TAB(4)SE; TAB(5)DS: TAB (7Y AT: CLOSES

159

Cooo
cavl
cenas
coas
cen?
C8a3
CooB
CoBE
ce10
cei3
ca1s
caie
ce1s
Co1B
caic
Ccein
CB1E
CBiF
caz2e
cezi
Cca23
£e25
cez27
Ce23
CazZB
Ca2E
cese
ca32
Co35
Ca36
cB33
Ca2B
Cca3c
Ca3Dd
Co3E

ADMACH

13
A3
85
A9
85

cLc
LDA
5TA
LDA
5TA
LDX
FF JSR
Loy
FF JSR
STA
INY
BHE
FF J5R
RTS
BRK
BRK
BRK
BRK
CLC
LDA
STR
LDA
3TA
LDX
FF JSR
Loy
LDA
FF JSR
INY
BNE
FF J3R
RTS
BRK
BRK
CPY

160

#300
$FB
#3CF
$FC
#4082
$FFCe
#3990
$FFAS
($FBY .Y

$C010
$FFCC .

#300
$FB
#3CF
$FC
#$02
$FFC3
#300
($FB), Y
3FFAS

$Co38
$FFCC

#$3D

SR

N

N

-~

AAAAAAAANAAAAAMAAAANANAAAAAAAAAANANA

AARNAAAANA

e

NN N NN NN NN) N NN NN NN N

DISK-EDITOR

10 IFA=BTHENA=1 :LOAD"ADMACH", 8, 1

28 POKES3280. 11:POKES3281,11: DINFI(SGB) DIHFIS(SBO) HX$="0123455739ABCDEF "
25 P=0: INPUT"IJSPRINTER Y/N";¥N$: IFVNS="V"THENP=1

30 PRINT" A DISK-EDITORE (C) PSIDAC VBN

48 IFP=1THENOPEN4,4:PRINT#4:PRINT#4,CHR$(16) " 13DISK~EDI TOR" : PRINT#4 : CLOSE4
50 PRINT"H INSERT SOURCE DISK IN DRIVE":INPUT"¥ DISK MAME";DN$
838 IFP=1THENOPEN4,4:PRINT#4, "DISK MAME = "DN$:PRINT#4:CLOSE4
110 INPUT"M INPUT TRACK # “;TR:INPUT"M INPUT SECTOR # “,;SE

129 OPEN1S,8,15:0PEN2,8,2, "#" :PRINT#1S, "U1:2;8; TR, SE : SYS49152: CLOSEZ
125 INPUT#15,A$,B$,C$, D$:PRINT" M “"A$, BS,CS, D$"N" :CLOSELS

138 FORRP=0T0255:A(RP)=PEEK(RP+52992) : NEXT

148 PRINT")"; :RP=0:FORXA=0T020 :FORYAR=1T012:GOSUB160A: PRINTD$" “; :RP=RP+1
158 NEXT:PRINT" ®; :NEXT

160 FORRP=RPT0255:GOSUB1000: PRINTDS" “; :NEXT:PRINT

165 PRINT"TRACK “TR" SECTOR “SE: lFPﬂaTHEN200

178 OPEN4,4:RP=0

173 FORXA=9T020: FORVR=17012 GOSUB1980:PRINTH#4,D$" “; :RP=RP+1
136 NEXT:PRINT#4," “:NE

128 FORRP=RPT0253: BOSUBIBBG PRINT#4,D$" “; :MEXT:PRINT#4

135 PRINT#4, "TRACK "TR" SECTOR "SE:CLOSE4

208 FORCL=55296T055296+5: POKECL , 13: NEXT

205 5YS63487 : PRINT S0DMIDIDIUDOOUNNANDICRIPLERSE WAITS";

210 SL=1024: BL=52992:FORBC=0T0255

220 Z=PEEK(SL) : IFX=32THENSL=3L+1 : GOT0228

238 IFX>47THENK=(X-48)#16:G0T0260

240 IFX<7THENX=(X+9)#16:G0T0260

2590 PRINT“IDW ILLEGAL DATA FOUND":END

266 POKESL,32:SL=SL+1: YSPEEK(SL)

270 IFY>47THENY=Y-48:G0T0300

280 IFY{?7THENY=Y+9:G0T0369 .

299 GOT0250

3019 MT=K+Y:POKEBL,MNT : BL=] BLﬂ POKESL;32 SL=SL+1:HEXT

329 PRIMT" READY DISK T

340 PRINT"W PRESS F? TQ SFIVE" PRINT"M PRESS F1 TO NOT SAvE"
350 GETX$

360 IFx$="W"THENPRINT"}" :GOTO390

370 IFX$="w"THENPRINT")" :GOTO110@

338 GOT0350

339 OPEM1S,3,15:0PEN2,8,2,"#" :PRINT#135, “B-P:"2;9

409 5'v343184:PRINT#1S5, "U2:"2;0; TR, SE :CLOSE2

410 INPUT#15,R$,B$,C%, D$:PRINT"A “ﬁS:BS,CSaDS CLOSEL3

415 PRINT"® TO USE PGM. AGAIN PRESS F7"

428 GETX3$: IFX$="0I"THENRUN2@

449 GOT0420

999 END

1983 X=A(RP) :D$=""

1910 D1=INT(X/16) :D$=D$+MIDCHX,D1+1,1)

1928 D2=INT(X-16#D1) : D$=D$+MID$(HX$,D2+1, 1) :RETURN

FOR NON-COMMODORE PRINTERS CHANGE THESE LINES

4@ IFP=1THENOPEN%,4:PRINTH4:PRINTH4, TAB (13) *"DISK-EDITOR® : PRINT#4 : CLOSE4

161

ERROR ANALYZER

10 POKES3230,11:POKES3231,11:P=4:0=8:RT=1:HT=3
29 DIMER$C11) :FORRF=1T011:FERDER$CRP) :MEXT
38 DATA"ALL OK","MO HERDER FOUND"."HO SYNC FOUMD"."DATA ELOCK HOT FOUND"
40 DATA"CHECKSUM ERROR IN DATA"."BYTE DECODINS ERFOE"."WRITE “ERIFY ERROR"
59 DRTR"WRITE PROTECT ON"."CHECK SUM ERROR IN HERDER",“LUHG DATA BLOCK®
69 DATA"DISK 1D MISMATCH"
30 DATA 1,17,0,20,18,24.0,18,25,30.0.17,31,35,0,15.3€,44,8. 15
85 OPEN15.D,15,"18" :CLOSE1S
96 PRINT"T ERROR AHALYZERN PSIDACCC>24 “BN"
160 PRINT"HMSINSERT SOURCE DISK IM DRIVE":PRINT"PRESS F7
110 GETF7$: IFF?3<>"H"THEN119
115 PR=0: INPUT"WPRINTER '7/N";YN$: IFYN$="Y"THENFPR=1
120 INPUT “¥DISK NAME"; DN$
122 PRINT"SELECT CHOICE":PRINT"MI(1)=L0OG ERRUR3"
123 PRINT"M(2)=L0G UNFORMATTED TRACKSM"
124 THPUTCHS$: CH=YAL(CH$) :PRINT " 24" : ONCHGOT0128, 200
125 PRINT"()":G60T0122
128 IFPR=1THENOPEN4,P:PRINT#4," ERRCR LUG FOR "DN$:PRINT#4:CLOSE4
148 FORPP=1T05:READFT,LT,FS,LS
{Qg $0§TC=FTTOLT=FORSC=FST0LS50PEN15:D:15
€9 T=l
176 PRINT#1S, "M-W"CHR$(6)CHRS$(BICHRS{ 1)CHR$(TC)
122 FRINT#1S, “M~H"CHR$(?)CHR${@)CHR$(1)CHR$(SC)
158 PRINT#1S, "M-H"CHR$(B)CHR$(B)CHRS$(1)CHR$(128)
200 PRIMT#15, "M-R"CHR$(@)CHR$(0) :GET#13, A% XaASCCA$+CHRS (V) : IFX>127THENZOG
292 IFX=1THEN210
2035 T=T+1:IFTCONTTHENL?9
219 CLOSE1S:PRINT"ER#"X; TAB(S) "TR#"TC; TRB(12)"SE#"SC: PRINTERS K5 A"
220 IFX=10RRT=1THEM 1600
230 IFPR=QTHEM265
235 OPEN4,P
259 PRINT#4, "ER#"X" TR# "TC;CHR$C16)"B6SEH# "SC;CHR$(1€)"24"ERS(X? :CLIZE4
269 30T01000 .
265 GOSUB2008
289 GOTO1960
369 IFPR=1THENOPEN4.P:PRINTH#4, "UNFORMATTED TRACK LOG FOR "DN$:FRINTH#4:CLOZE4
310 FORTR=1T044:0PEN1S,D, 1S
320 PRINT#1S, "M-M"CHR$(S)CHR$(@)CHR$(1>CHR$(TR)
339 PRINT#1S5, "M-W"CHR$(?)CHR$(Q)CHRE(13CHRS(@A)
348 PRINT#15, "M-W"CHR$(@)CHR$(@ICHR${1)CHR3(128)
350 PRINT#1S, "M-R"CHR$(BICHRS(O) :GET#1S5, A% K=ASC{AS+CHRE <) : IFX> 127 THEHZ5G
368 CLOSELS
355 FM$="S'YMC FOUND": IF¥=3THENFM$="UNFORMATTED"
375 PRINT"TRACK “TR; TABC(12)FM$
335 IFFR=1ANDX=3THEN OPEM4,P:PRINT#4,"TRACK “TR;CHR${153"12"Fi$: CLOSES
399 MEXT:G0SUBZ069:G0T0SS
999 END
1968 HEXT : NEXT : NEXT
1913 GOSUB20@A: GOTO35
2689 PRINT"APRESS F? TO CONTINUEAM"
2010 GETF?73: IFF7$CO M"THEN2019
2029 RETURN

INSERT LINE 112 OPEN13,D,13,*10” :CLOSE1S

CHANGE FOLLOWING LINES FOR NON-COMMCDORE FRINTERS
258 PRINTH4, “ERH"X® TR# °TC;TAB(B6) “SEH "SC;TAB (24)ER$ (X) : CLOSE4
383 IFPR=1ANDX=3THEN OPEN4.P:PRINTH4. "TRACK "TR:TAB(1ZyFM$:CLOSE4

NOTE: The following options for Error Analyzer are
included for your benefit:

LINE 10 RT=0 for STOP on ERROR, or RAT=1 to run through.
LINE 140 For non-extended (0-35) "formatted track check",
Change PP=1 TO 5 to PP=1 TO 4.

LINE 310 Set TR=1T044 for complete sync check. Set
TA=1T035 for non-extended sync check, or set TR=36T044 to
only check "extra'" tracks for sync.

NOTE: IF DISK LOCKS UP BEYOND TRACK 35, OPEN DRIVE DOOR.
Some diskette manufacturers certification methods may
cause variations in what is "Ffound" in the extra tracks.

162

aXalslalalaialalalalaniuislniniainiaialiaiaiaiaiaiaialate

(

~ O~ -

AN A

A A
M e e e N et s

alalalalalalalalalalalalalalaiaialalalalalalalaleaializlalalaiaialslalalalaialalalale)

1

I A

Qoo

8
Xy

QOO T L e L s [e
bR

LINKSTER

FRIMT"O TWLIMKSTER MKC» PSIDAC 1984 DTw"
FOKES325@, 11 :POKES3281, 11 :P=9:DR=2

IHFUT" SFRINTER QN Y/ H",FR$

IFPR$="%"THEHWF=1: INPUT"®SFRG MHAME" :NM$:GOTOL4E
IFFR$<2"H" THEH190

FRINT"D MLIHNKSTER MCC> FSIDAC 1284 DTW"
FRINT"MEHNTER STARTING TRACK & SECTOR"
INFUT"BITRACK" ; TR: INFUT"MSECTOR" ; SE : FRINT
IFF=1THEHNOFEH4 . 4 : PRINT#4, NMSCHR$(13) " START IMG
LH=1:CT=1

G LN=LM+1 :OFEH1S5. DR, 15:0OFENS, DR. 3. "#"
3 FRINT#15. "B-R":3; IR; TR: SE: GOTOE00

FRINT#15, "B-F"; 3,8
GET#3. 0% IFGE=""THEHR$=CHR$<0)

24¢ TR=AZC{%) : IFTR=G0RTRO3STHENZ20
S0 GETHI. WE: IFWE=""THENHF=CHR$ (@)

CLOSE3: CLOSELS: SE=ASC(MS)
IFP=1ANDLH=ETHEMOFEMY . 4 :PRINTH#4, " " :CLOSE4
IFLH=5THEMFRIMT : LH=1

220 FRINTTR"NMSE"-";

IFF=1{ THEMOFEH4, 4 :FRINT#4, TR, SE” - "; CLOSE4
CT=CT+1 :G0TO200

FRIWT" EMWDIHG TR/SECH"
IFF=1THEHOFEHY, 4 :PRINT#4," ~ EHDIHG TRZSEC"

CTR SECI-"TRISECLOSES

8 IFF=1THENFRINT#4, CHR$(13)CT" ELOCKS USED" :PRINTH#4: CLIzED

FRINTCT" ELOCKS UZED W
FRIMT"FRESS F7 TO RUN AGRIM":CLOSE15:CLOSES
GETCKS : IFCK$L5 "I THEN3T®

389 RUH

IHFUT#15,ERS, B$.C%. D$: IFERE="0Q"THENGOTD 220

520 PRIMT"RCORRECT FROBLEM ~ FRESS F7"

B GETCES$: IFCK

30" THENG3G

54 FRINTYT) ar

CLOSE3:CLOSE1S:GOTO1SA

ADY.

163

0 FRINT :FRINT"WERREOR COMDITION "ERS$,E$" "CF" "DF"w"

WVWAONOALEWON -

RELOCATE/LOADER

IFA=GTHEMNA=1 : LOAD"MACHRELO",8, 1

POKES2, 19:POKES6, 18 POKES3280, 11 POKES:3231. 11
PRINT"ZIMW RELO/LOADER BPSIDAC <C)24 YENR!

PRINT"#PUT ORIG. DISK IM DRIVE"

INPUT"SIINPUT FILEMAME";MF$:HL=LENINF$) :POKE231, ML
FORLP=1TOMNL : POKES19+LP,ASC{MIDSCNF$, LP, 135 - MEXT : 558480
ER=PEEK{175)#256+PEEK(174) : PRINT" ## BYTES ="ER-2360Q
PRINT"APUT CPY DISK IM DRIVE":PRIMNT"®PRESS F7"

- GETAS$: IFA$C>"MI" THEN3

18 PRINT"MSAYING "MF$" FROM 2560 TO"ER:SYSB7S5:CLR
11 OPEM15,3,15: INPUT#15,A%, B%,C%, D$:PRINT"N"A$, B%$,C$, D$:CLOSELS

164

o

slslalslelslslalslslnlalslelalalalalalaialainiaiaiaialaialaiaisialaiaiainininls

AmﬁamﬁAmnmhﬁﬁﬁﬁmﬁmﬁmmﬁmmﬁmémhmmﬁmmﬁmﬁmmmﬁﬁ

MACHRELO

29 BA FF

20 BD FF

28 IS FF

28 A9 @3

28 95 @3

29 BA FF

20 BD FF

20 D8 FF
20 A a3

8D A7 a2

AD A7 @2

J5R
LDA
LD
LDY
JSR
LDA
LD
Loy
JSR
LDA
LDX
LDY
JER
JSR
RTS
BRK
JSR
LDA
LDX
LDY
JSR
LDA
LDX
LD

J3R

$0395
#3085
#303
#4909
$FFBA
$FB
#$34
#3a3
$FFBD
#3009
#4090
#40A
$FFDS
$03F8

39393
#308
#3083
#3FF
$FFBA
$FB
#334
#3503
$FFBD

165

A AV YA TS PN & 5]

10 IFA=BTHENA=]: LOAD QNRLVHALH':B 1

11 DATAALL OK","NO HERDER 12NO SYNC *,*NO DATA *
12 DATA*DATA CHECK SuM*®, *X*,

13 DATA*X*, *CHKSUM IN HDR*®, 'X“

14 DATA"BAD ID*

13 DIMER$(11) : FORRP=1T011:READERS (RP) : NEXT
18 POKES4296,15: POKES4277,17:POKES4278, 248: POKES4272 '3 POKE54”73 35
“0 POKES 280, 11: POKES3281,11:5L.=49152: POKE5S1233,1:D=8

60 GOSUB16@A: OPEN1S, D, 15, 10" : C

50 PRINT"{SC}{YL} T/% ANQLYZER(LG) PSIDAC(CB4 UBN*
gg ;R%NT'(CD}(CD}(CV} *# % MENU % % «*

73 PRINT*{CD}WH} (2YPRINT T/S5 STATUS LOG*

88 PRINT"{CD}{WH)} (3)LOQD 1/5 STATUS LOG"

83 PRINT"(CD)}{WH))SAUE T/S STATUS LOG*

9@ INPUT"{CDX YL} LECT CHOggE(UH)'sCH‘ CH=VAL (CHS)

108
2080
210
218
"“a
230
440
242

2 OPEN1S,D,15:0PEN2,D,2, "#"

@ POKESL., TC: SL=SL#I POKESL , SC: SL=SL+1: POKESL , SS: SL=SL+1

DATAL,17,0, 20, 18, 24,8, 18, 25,30,8,17, 31, 35,0, 16
LOSE1S

*
D}HWH) (1)ANALYZE T/S_DATA*

ONCHGOTQ280, 480, 600 8a8: GOT

PRINT *(SC}INSERT SOURCE DISK IN DRIVE®:PRINT*PRESS F?*
GETF7$:IFF7${) "{F7)"* THE

INPUT*{CD)DISK

PRINT'(SC){YL)T/S DRTQ ANRLYZER ENARBLED{WH}*
FORPP=1T04:READFT,LT,FS.LS

FORTCtFTTOLT FORSC-FSTOLS

PRINTM1S. 'H—U'CHRQ 4) CHRS (@) CHR$ (1) CHR$ (TC)
PRINTH1S, "M-W*CHR$ (?) CHR$ (@) CHR$ (1) CHR$ (SC)
PRINTR1S, *M-W"CHRS (@) CHRS (@) CHR$ (1) CHR$ (128}
PRINTH15, *M-R*CHRS$ () CHR$ (0) : GETH15, Q% : Q=ASC (Q$+CHRS (B)) : IFQ) 127THENZS5
IFQ()ITHEN&BB
PRINTH15, "U1:"2;8; TC; SC
SYSS1264 : SS=PEEK (31232) : GOSUB 1020
EN=Q:NM$=ER$ (@) : TR=TC: SE=5C
IFQ{) 1 THENSS=Q: EC=EC+1:GOT0320
NM$="DATA" : IFSS=1THENNM$="UNUSED*

CLOSE2: GOSUB16GS
PRINT®TRK"TAB (3) TC; TAB(8) *SEC"TAB (11) SC; TAB (16) "CODE " TAB (18) 55; TAB (25) NM$

alainialalalaiainiaialalataislalatalaialatalats

333 NEXT:NEXT:NEXT .
348 PRINT*{{D)"EC"ERRORS “OUNTED' FORTD=1T03@80: NEXT:GOT048 ;
498 PRINT"{CD)PRINT MODE ENABL
402 OPEN4.P: PRINTH4 PPINTM4,' * ! * DISK ANALYSIS * * ®*:PRINTHG
403 PRINTH4, " NAME = "DNs$:PRINT
410 PRINTN4," TRK SEC CODE STATUS"PRINTH#
415 FORBL=49152T051198STEP3
420 X=PEEK(BL) : Y'PEEK(BL+1) Z=PEEK (BL+2))
4308 MS$="READ ERRC
440 IFZtGTH{NﬂSte'DATR'
450 IFZ=1THENMSS="UNUSEC"
458 PRINTHG, X CHR‘(lé)'Gé Y;CHR$(16) *13" i CHR$ (16) "12°Z; CHR$ (14) "20"MS$.
478 NEXT:CLOSES: 048 ‘
460 PRINT® (SC}LOAD HODE(CD}' PRINT"INSERT STATUS LOG DISK IN DRIVE®:PRINT"PRESS F7
2 GETF78: IFF78 () "{F7)°*THENB2 (
685 INPUT'{SC}(YL}INPUT STATUS LOG NAME"; NF$:DN$=NF$
610 NL=LEN(NF$) : POKEZ231,NL: FORLP=1TONL : POKE&78+LP, ASC (MID$ (NF$,LP, 1)) (:)
613 NEXT:5Y5513068: OPEN15,D,15: INPUTH15,A$,B$,Cs,D$: PRINTAS,BS, C$,D$
6¢0 GOSUB18a5: FORTD=1103800: NEXT: GOT040 (:)
89 PRINT®(SCYSAVE MODE{(CD}":PRINT®INSERT STATUS LOG DISK IN DRIVE®:PRINT®PRESS F7
89” GETF7$: IFF7$<) *{F7)"THENBOZ (:
883 INPUT® (SC}(YL}INPUT STATUS LOG NAME"; NF$:DN$=NF$
810 NL=LEN(NF$) : POKE251,NL: FORLP=1TONL : POKE478+LP, ASC (MID$ (NF$,LF. 1)} (:~
8135 NEXT: SYS51335 OPEN15,D,13: INPUTH15,As,B$, s, D$:PRINTAS,Bs,C$,D$
382 gﬁguelaas :FORTD=1T03000: NEXT: GOT040 (:)
1808 POKES4276. 35 POKE44 27634 :RETURN (:)
1885 CLOSE15:RETUR
CHANGE THIS LINE FOR NON-COMMODORE PRINTERS (n
468 PRINTHG, X; TAB (B2) Vi TAB (B2) Z; TAB (83) MSe (‘
NOTE: T/S Analyzer may indicate data on tracks ()
containing only fFormat data. This will be appafent on »
some partially full disks which indicate data in the ()
First track. If you suspect this to be the case, ()
POKES1233,0 (disk formatted with zeros) or POKES1233,1
(disk formatted with ones). (1
G
O
166 O

~—

o

PNN NN NN N NN NN NN NN NN NN NN NN NN N

FASTBACK

10 IFR=9THEHA=1 : LOAD"ANALYMACH" .8, 1
15 POKES2, 15:POKESK, 16: POKES32381, 11 : POKES2229, 11
20 POKEDS4236, 15:POKES4277, 17 :FOKES4272, 245 : POKES4272, 3 POKES427 %, 35: [=5
:g Ps4915‘ JE=51138: B3=4636 : BE=43953 : RF=B5: lIP=BS
3 ° - "
49 FORLP=1T03:READISC(LP) :NEXT :DATA 0.255,255. 255, 253. 255, 255. 255
45 GOSUB1990:0PENLS, 8,15, " 10" :CLOSE1S
S50 PRINT"A FASTBACKEI PSIDAC(C)>84 VBN"
PRINT"MAINSERT STATUS LOG DISK IN DRIVE":GOSUB1959
70 IMNPUT"JINPUT STATUS LOG NAME";NF$:HL=LEN(NF$) :POKE251,HL
73 FORLP=1TONL : POKE678+LP, ASCCMIDS(HF$,LP, 157 :MEXT:3¥551363
80 OPEN13,3,15:G05UB1879:GOSUB1630
90 INPUT"JIMPUT HUMBER OF COPIES";NC
169 FRIMT"JINSERT SOURCE DISK IN DRIVE":GOSUB1950
192 PRINT"M READ MODE EMABLEDMY"
165 IFJ3=JETHEN499
119 35=FEEK¢JS+2) :0K=9:FORCS=1TO08: IFaS-IS(Ca)THENOK-l HEXT
120 JS=J3+3: IFOKCS 1 THEM1GS
200 IFRP=BETHEH YS=J5-3:60T0400
210 TR=PEEK(JS-3):SE=PEEK(JS-2) : POKERP TR:POKERP+1 . 5E : RP=RP+2
229 HI=INT{RP/256) :LO=RP-(H1#256) : POKE252,L0: POKE253, H1 : 50SUB19260
249 50SUB2003:PRINT#1S, "U1:"2;0; TR; 5E: 5¥YS51376: GOSUB 1609
259 RP=RP+256::G05UB19708:G0T0195
400 FORCC=1TONC
419 PRINT"JINSERT COPY DISK IN DRIVE":GOSUB1050
415 PRINT" A WRITE MODE EMABLEDMY"
420 IFHP=RPTHENS09
430 GOSUB2010:S'v5(51452) : TR=PEEK(672) : SE=PEEK(680) :UP=lP+2
448 G0SUB2019:L0=WUP-(HI#256) : POKE252,L0:POKE253, H1
468 GOSUB1938:G0SUB2009
479 PRINT#1S,"B-P:"2;9: fSSl4a4 PRINT#1S,"UJ2:"2;0: TR, SE: G0OSUB1999
475- 30SUB1079: IFA$="00" THEN4!
439 GUSUB19389:PRINT"ICLEAR ERROR THEN" : GOSUB1959 : PRINT (1" : G0TO466
420 WP=WP+256:60T0420
589 WP=BS:NEXT: IF JS{>JETHENRP=BS :GOT0109
510 PR;NT“mO # % DUPLICATION COMPLETE # # #":G0SUB1080:RUN1IS
993 EN
1000 POKES42?6;3S POKES42?G 34:RETURN
1059 PRINT"PRESS F
1055 GETF?s: IFF?S()“IWTHENlGSS
1060 RETURN
1979 INPUT#15,R$,B$,C$.D$
1075 PRINT"N"SP$:PRINT"1"A$" “BS" “C$" "D$"'TTI":CLOSE2:CLOSE1S:OPEMIS.2. 15
1078 CLOSE1S:RETURN
1930 FORTD=1T03000:NEXT :RETURN
18398 PRINTSPS:PRINT"TTRACK"TAB(S) TR, TAB(19)>"SECTOR"TABC 1523E - RETURH
2009 OPEN15,D, 15:0PEN2.D.2, “#" :RETURN -
2019 HI=INT(UP/256) :LO=WP-(HI¥256) : POKE252,L0: POKE253 - HI :RETURH

(L)
(]

167

« s e e e

L I e R e R e T R I I e I A I IR I I I I I I I I

€840
c8s41
C843
€846
C848
c84B
CB4E
cest
€853
c8356
c859
c8se
€8s¢
C83E
860
ceé2
€863
c868
€869

CB6A

4:71:]
c8sc
CB4E
ceze
€872
c875
€877
c87¢9
€878
C87E
c880
c8e3
cBs8s
cess
€886
(414
<889
cess
c88D
cgeeo
ce92
c8ee
896
c899
c898
c890
C89F
CBA1
CB8A3
C8AS
C8RA7
C8RA
C8AB
C8AC
C8AD
CBAE
CBAF
[a3:]-1-)
c883

ES
ez

c8

FF

FF

FF

cs
FF

FF

FF

FF

FF

FF

FF

cs

ANALYMACH

#4006

sC8ze
HeO2Z

$FFC6
$FFAS
$FFAS
®eo0

$FFAS
sCce21
$C865

HSFE
$C853
Heo1
40820
$FFCC

Hs08
Ws08
HSFF
$FFBA
$FB
NS$A7
“s02
$FFBD
He00
$FFDS

#e08
Hse8
HSFF
$FFBA
$FB

A7
#e02
$FFBD
“s00
$FB

#sCo
$FC

HSFB
Hs02
L1 14:]
$FFD8

$CBES
#$02

168

% % % % v v v e v ® v e v e v o mee ® e omeow oeN we meou ouw wowew o oweow e e weee oeewowew o woe e e~

FE
a1

EB
eo
FC
A7

FC

Fé

FF

FF

FF
cs

c8

FF

FF

FF
ce

JSR
LDY

$FFCS
HeB0O
$FFAS
($FC), ¥

$C8BA
$FFCC
$CBF &

$CBES8
#soz
$FFC9
#$00
($FC)» Y
$FFRB

$C8D6
$FFCC
$CBF 4

$61
$FE
HSFE
$01

$FE
$01

$C8BES8
#4060
($FQ) Y
$82A7, Y

($FC), ¥
$02AR7,Y
$C8F &

— o~

AAAAAAAAAAAAAANAANAANANAAAAAAAAANAAA

e

A

o

AANAA

YN e N N N e N e N e N Y e N N e N e e N e e e N e N e e N e N e Y N el e e e N e Ve Ve Ve Ve Ve Ve Wi

39 IFA= THENA=2: LoRD- TG B0 181

39 POKESZ, 31: POKESS. 31 81 DISKPICKER pg1
33 5Y549152: RUNG

49 POKES32B0. 11 POKESI281, 11: CLR:DIMERS (11) :GOSUB 1080

$3 PRINTISCH(VL) DISKPICKER(LG) PSIDAC(C)B4 VBNCWH)®

NT® NU_
6@ PRINT" TRQNSFER DISK MEHORY TO BUFFER*
ENﬂBL OR MODE*

PR E_MON
70 PR NT' ISFER BLFFER TO DISK MEMORY®
75 PRINT® DIRECT EXE"UTE USER PROG!

78 PRINT® JOB QUE EXECUTE USER PROGR!
8@ PRINT"(&) LOAD SECTOR TO DISK BUFFER"
82 PRINT*{CD} (7" INITIALIZE

393 PRINT® (CD)(S) FORMAT DISKET E'

94 PRINT®{CD}(®) POSITION RERD/WRITE HEAD®
83 IM’UT'(CD)SELECT CHOICE® ; CH$: CH=UAL (CHS)
88 IFCH)STHEN4Q

90 3N$ £070 180, 300, 400, 500, 400, 700 . 800, 709, 805

93 GOTO
109 PRINT*(SC}{CD)>{1) TRANSFER DISK MEMORY TO BUFFER®:GOSUBZ000
105 INPUT'(CD)INPUT DISK ST“RT ADDRESS" 5 X$: GOSUBIBM Sﬁ*‘
8 INPUT*(CDXINPYU END ADDRESS® »X9: GOSUB1808
12 INPUT*{ D)IWT BU!-'FER RDDRESS®; X$: GOSUB1000: BR!X IFX(BI?“THENGOSUB"‘O%
123 IFX3> 327467 THENGOSUB2@40
130 PRINT {CD)DISK MEM. TO BUFF. TRANSFER IN PROCESS®:PRINT"{CD}BYTE COUNT =":
140 NB=EA-SA: SH-INT‘SQ/"S&) SL=SA~ (SH¥254)
150 OPENIS 8:13:FORLP=0TONB
16@ PRINT#H 15.'M—R'FHRS (SL) CHRS (SH) : GETH13,A8: PN:RSC(AH»CM"B))
170 POKEBA,PN:BA=BA+1:SL=SL+1: IFSLeZSSTHENSL =@ : SHeGH+
173 PRINTTAB(12)LP*{CU}* : NEXT
180 CLOSE15:PRINT*{CD)}(CD}END TRANSFER®: FORTD’ITOJWB NEXT:RUN4G
308 INPUT*{CDIPRINTER ‘//N°®;YN$: IFYN$=*Y* THENP
302 IFYNS$ <> *Y"ANDYNS () °N*" THENPRINT"CUK"‘U}(CU}' GOTO300
g?g gsgNT ISPtlTHENOPEN‘ 1 4:CMDG

END
4@ PRINT®(SCH{CD}(3) TRANSFER BUFFER TO DISK MEMORY®:GOSUBZO0@
Z?a INM;gT {CD)INPUT DISK STRRT N)DRESS;(; X(,E GOSUBI%O%QSA-\
=
420 INPUT® (CD)INPUT BUFFER QDDRESS i X$: GOSUB1888: BA=X: IFX {81 F2THENGOSUBZ@3@
425 IFX)SZ?&?THENGOSUB 040
430 PR {CD)BUFF. TO DISK MEM. TRANSFER IN PROCESS®:PRINT"{CD)BYTE COUNT =°;
m EQ-SQ SH‘INT(SQ/-Sé) SL=5A- (SH®236)
450 OPEN13,8,15:FORLP=0TONB
460 PN=PEEK (BR) : PRINTH13, "M-W"CHRS (S5L) CHRS (SH)CHRO\])CHRC(PN)
470 BA=BA+1:SL=SL+1: IFSL*.:SéTI-ENSL*O SHaSH+1
475 PRINTTAB(12)LP*{CU}" : NEXT
480 CLOSEIS PRINT*{CD}{ CDJEND TRANSFER®:FORTD=1T030@0:NEXT: RUN4B
59@ PRIN '(SC)(LD)(&) DIRECT EXECUTE USER PROGRAM® : GOSUBZ@99
@3 INPUT*{CO}INPUT DISK PROG., ENTRY ADDRESS®:X$:GOSUB166@: SA=x
519 SH=INT(SA/2 56) SL=SA- (SH*Z236)
2@ OPEN13,8,13:PRINTH1S, "M-E*CHR$ (SL) CHRS (SH) : CLOSE1S
530 PRINT"{CD)}PROGRAM EXECUTION E LED':CLOSEIS:FORTD=1T03%9:NEXT: RUN4B
4@@ PRINT*(SCHCD}(5' JOB QUE EXECUTE USER PROGRAM®:GOSUB
g?g PRINT*(CO}INPUT JOB CHOICE{CD)':PRINT"128=READ": PRINT'Mé'HR!TE' PRINT® 168=VERIFY
813
817
618
620

3 o o o o o o
8888888
YT eYy

o~~~
At
PR e s 204

09
-ml—o

Fal
>
O
li

PRINT®176=GEEK" : PRINT* 18425EC SEEK® : PRINT*192=BUMP* : PRINT * 288=J
-Igénr'~"4=§é%curs' INPUT* {CDJCHOICE " ; CH$: CH=VAL (CH$) : X$=CHS : GOSUB1109
’
IFCHC) 23¢THENS
2@ PRINT®(5C)SELECT EXECUTE STARTING ADDRESS®:PRINT"(CD)ADDRESSES AVAILABLE ARE:"
435 PRINT*(CD)(1)=0300" : PRINT* (2) s8460" : PRINT * (3) =8560" : PRINT® (4) =0408"
428 PRINT® (5)=0700"
438 INPUT*(CD)CHOIZE®; CHS: X$=CH$: GOSUB1166
£32 C1=VAL (CH$Y : ONC1GOT0648, 640, 648, 648, 540
&35 6070620
459 GOSUBZ880
442 OK$="N": INPUT*{20MULTI SECTOR Y./N*:OKS$
543 INFUT®(SCIHCD) INPUT HEADER W1 *iX$:TNSUAL (X8 : [FX$="X"THENGOSUB1100
648 TFOK$=*Y ¥ THENFORSN=2BTOBSTEP-1: GOT0651
550 INPUT*{CD}INPUT HEADER M2 °;X$:SN=VAL (X$) : IFX$="X"THENGOSUB1188@
451 OPEN13,8,15
652 IFCH{) 224 THENGSS
653 IFC1=1THENPRINTH1S, *M=*CHRS (63) CHR'S () CHRS (1) CHRS (C1-1)
&3¢ IFCLO 1THENPRINTHL 15, *M-WSCHRS (@) CHRS (3) CHRS (3) CHRS (76) CHRS (@) CHRS (C1+2)
535 PRINTH1S. *M-W* 2HRS (6) CHRS (@) CHRS (1) CHR'S (TN)
660 PRINTH1S, *M-W*CHRS (7) CHRS (@) CHRS (1) CHR'S (SN}
663 PRINTH1S, “H-d" CHRS (@) CHRS (B) CHRS (1) CHRS (CH)
470 PRINT"{CD)PROGRAM EXECUTION ENA
§78 PRINTHLS, *H-R"CHRY (B) CHRS (B) : GETHIS, @3 OP=ASC (ACHRS (0)) IFOPY127THENSTS
499 PRINTI(CDITRK. TN SEC, TUS CODE =
485 PRINT*{VL)}{CD}"ER$ (0 Lo
&9 IFOKE-'V THENQLOSEIS NEXT GOSUB2063: RUN4B

693 CLOSELS: 2800

780 PRINT*(SC){CD}(é) LOAD SECTOR 70 DISK BUFFER®:G0OSUB2@888

795 INPUT*(CD}INPUT TRACK TN=UAL (X$) :GOSUB1100

710 INPUT"{CD}INPUT :E"'TOR H -Xt SN=UAL (%$) : GOSUB1 16@ 169

715 OPEN1S.8,15:0PENZ, 8,2

720 PRIN‘IMS. *U1:*2;@; TN; SN: INPUTH15, RS, Bs, s, D8 : PRINT*(CD}*As,B$.Cs.D¢
S 03809: NEXT

FORTO=1T
@ CLOSE2:CLOSE1S: RUN4@
OPEN1S. 6,15, * 10 ’CLOSElS RUNGO®
S PRINT®(SCH}CD)}(9) POSITION RERD/WRITE HEAD®:TRe=
? %gg;z(%’i NEBS TRACK URNTED‘:TR‘ TROVRL(TR') HT-TR-'INT(TR) IFTR$="X" THENRUN4®
5 0PEN15.B-15:'1’0' PRINTH1S, "M-W"CHRS (@) CHR$ (@) CHR$ (1) CHR$ (192) : CLOSE15
0 QRTD=1T03008: NEXT

OPEN1S5,8,13:PRINTH1S, "M-W"CHRS (4) CHR® (B) CHR$ (1) CHR$ (TR)
30 PRINTH1S, *M-W"CHRS (0 ‘ (O)Ctﬂt (1) CHRS (176}

I'ENC LOSE1S:
850 PRINTH1 ’M-R'CﬂRC(O)GﬂO(ZB) GETN1S, X$: XsASC (X$+CHRS (8))
835 BI‘XRNDS BI=BI-1:BI 'BIﬂND XRNDZSZ ORBI

857 PRINT®(CD} TRACK = °TR" OEAD PHASE = °B

86@ PRINTN1S, *M-UW*CHRS (@) CHRS (28) CHRS (1) CHRS (HP) : CLOSE1S5: FORTD=1T03@@3: NEXT

863
980 PRINT*(SCYINSERT DISKETTE TO BE FORMATTED®:GOSUB208G
905 INPUT*{CDIDISKETTE NAME®;Xx$:NM$=X$:GOSUB1160
910 INPUT*{CDIDISKETTE 1D*®iX$: ID$=X$:GOSUB1160: GOSUBZ2@BD
)FORMAT ENABLED PLEASE WAIT®

3,8,13:PRIN TNIS»'NO *NM$; Cﬂﬂt (44);10%: lNPUT“lS A$°B$ »C8,D8
080 IFXO = * X * THENRUN+

ORI=1704:D$ (1) =MIDS (XS, I.l) NEXT

203 F
210 FORI'IYOQ D(I)=VAL (DS (1))
0”0 IFDO(IJB‘Q'THEND(I'SIB

ggg 'Iég;(l)t‘F'TREND(D'lS

360 D(1)=D (1) #6096:D(2)=D(2) #256: D (3) =D (3) %16: X=D (1) +D (2) +D(3) +D (4)
180 IFX$ () "X"THENRETURN

103

2080 PRINT*(CD)}CHECK DISK THEN PRESS F7*°
‘40}’8 GETF?7s: IFF78<) "(F?7)°THEN2010

3080 FORRP=1TO011:RE)«T

3010 DGTA'RLL OK* . *NO HERDER FOUND®,"NO SYNC FOUND®,°DATA BLOCK NOT FOUND*
3020 DATA®CHECKSUM ERROR IN DRTA' *BYTE_DECODING ERROR® , WRITE VERIFY ERROR®
3230 DATA*WRITE PROTECT ON®, *CHECKSUM ERROR IN HERDER®.°®LONG DATA BLOCK®

3040 DATR"DISK ID ﬂlSﬂATCH'

3858 RESTORE:RETURN

£ZMALH .» COIF @@ BRK
.» COB® 28 C3 FF JSR SFFC3 .. CB20 28 C3 FF JSR SFFC3
., COB3 AD O1 @8 LDR sPBO1 .» CB23 A2 08 LDX N800
.. COB& 85 FD STA SFD .. CO2S BD 40 CB LDA $C040.X
.+ COB8 AD @2 08 LDR s0802 .» CO28 95 00 STA $00.X
.» COBB 85 FE STA SFE .» CO2A EB INX
.» COBD A2 00 LDX ws@e ., C02B DO F8 BNE $C025
.» COOF BS5 00 LDA $08.X .» CO2D RS FD LDR SFD
.+ CO11 9D 40 CO STA $C84B.X .., CO2F 8D 81 88 STA s@eel
.» CB1&4 EB INX .+ CO32 AS FE LDA SFE
.» CO15 DO Fe BNE $C@OeF .» CO34 8D B2 @8 STA 80882
.» COL7 40 RTS .+ CO37 60 RTS
., Co18 @@ BRK .
., CO19 08 BRK
.. CB1A 08 BRK
., CO1B 08 BRK
., CoiC @0 BRK
.» CO1D @0 BRK

, CO1E 00 BRK

*NOTE: ZMACH can be used to recover any program after a

crash and reset! Use following procedure:
1. First load "ZMACH",8,1
2. Type NEW [RETURN].
3. Load your program, type SYS49152 [RETURN]

4. To restore your program after a reset or new, type

SYS49184 [RETURN]
170

URN
5930 PRINT®(VL}{CD)BUFF RDDRESS TOO LOU(UH)' FORTO=1T028@0: NEXT:PRINT*{SC)*:G0T0120: RETURN
2840 PRINT*{YL)}{CD)BUFF ADDRESS TOO HIGH{WH)®:FORTD=1T02828:NEXT:PRINT®{SC)*:G0T0120: RETURN

AAANAAANANN

alalalalalalnilalalalniaialaialatatalaiaiatalalalataiaiealals

AAAAAARAANANAAAAAAAEA A AN EANASAANANANAAAA A A

3396
3382
3304
3z06
3303
Z36A
336D
3318
3313
3315
3316
3318
3313
321B
331E
3328
3328
3326
3328
332A
332D
332F
3332
3334
3335
3337
3338
333A
333D
333F
3342
3344
3347
3343

3368
3383
3385
3387
3368R
3z8C
336F
3311
3314
2316
3318
331A
331B
331C
331E
331F
2221
33z¢

3328

NO HEADER
86 LDA 306
@3 STA $83
@7 LDA %87
B3 STA $@%
75 LIA #373
81 90 STA $9901
35 F3 JSR $F395
18 FS JSR 3F518
88 LIY #3$09
CLY
FE BYC $3315
IEY .
FA _ BHE $3315
56 F5 JSR $F536
FF LDA #SFF
83 1C S5TA $1C@3
ec 1C LDA $1C8C
{F AND #S1F
Co ORA #%C0
8C 1C 5TA $1CGC
@3 LDA #3099
@1 1C 5TA $1C@1
8@ LDY #$90
CLY
FE BYC %3335
DEY
FA BHE $3334
8@ FE JSR $FEQ@
88 LDA #3992
@1 28 STA 30991
P8 LDv #3090
35 F3 J3R $F335
@1 LDA #3901
€3 F3 JMP $FI63
ERASE TRACK
8C 1C LDA $1COC
iF AND #31F
Co ORA #3Co
@c 1C 5TA $1COC
FF_ LDA #3FF
83 1C 5TA $1C03
S5 LDA #3535
@1 1C STA $1CG1
28 LDK #3283
@@ LDY #3090
FE BVC $3318
CLY
DEY
FA BHE $3318
DEX
F? BNE $3318
@@ FE JSR $FEGE
21 LDA #5381
€9 F9 JMP $F3€3

3327
3323
332A
332C
332D
332F
333z
3334
3337
3333

33686
33083
3385
33087
3383
33688

3368
3383
23385
3367
336A
3380
IEBF
3311
3313
3315
3318
331R
331B
331C
331E
3329
3322
3325
3327
3328
3322
352E
332C
Z3ZE
333

3333

171

NO DATA

& LIA
98 3TA
ar LDA
B3 STA
73 LDA
ai B8 STA
95 F3 J5R
18 F5 JSR
FF LDA
@3 1C STA
ac iC LDA-
1F AMD
cae ORA
aC 1C 3Th
@9 LDA
81 1C 5TA
29 LoY

cLvY
FE BYC

DEY
FR EME
B8 FE JSR
58 LDA
B1 @8 3TA
a1 LDR
53 F3 JMP

23 DATCHKSUM

28 E9 FS J3R
43 77 EOR
85 3A STH
A9 36 LDA
35 68 STA
4C 86 FS JMP
SYNC WRITER

AD ac 1C LIA
29 1F AND
B9 CB ORA
2D ec 1IC STA
A3 FF LIA
3D 83 1C 3TA
A2 28 LD®
A8 B8 Lov%
A% 90 LDA
8D B3 1C STA
S8 FE BYC
B3 CLY
82 © DEY
D8 FA EHE
A8 G4 Lo
AS FF LDA
2D @3 1C 5TA
58 FE BYC
B3 CLY
a8 DEY
DE FA ENE
CH DEX
e ES EHE
28 v@ FE JSR
Az 81 LDA
4C 82 F3 JMP

386
$68
$av
35
#5758
$8601
$F355
$F519
#5FF
$1CB3
$icac
#$1F
#$Cm
$1CoC
#3500
$1Co1
#3009

$332R

$3323
$FE@O
#$00
$6061
#3491
$F3e3

$FSES
#377
$3R
#3350
$06
$F386

$1C8C
#$1F
#3CH
$1C8C
#4FF
F1Ca3
#3282
#5009
#3080
$1CB3
$3313

$3318
#5049
#3FF
$icez
$3325

33325

$3321%3
$FEGE
#4681
$F263

COPY HDR CON HDR
28 18 FS JSR $F516 5309 A3 B8 LDA #3580
Fz 83 LDX #3568 Sig2 45 16 EOR $16
Sg FE BVC $3365 534 45 17 EOR $17
B2 CLY 5386 45 18 EOR $18
CA LEx 5305 45 13 EOR $13
D8 FR BNE $3285 S3BR 55 1A STA $1A
Az 54 LDX #$54 338C 28 34 F3 JSR 3F334
58 FE EVC $338D J36F A8 85 LDY #3085
B3 cLY S311 A2 88 LDX #3508
CA LEX 5313 BS 24 LDA 324,%
B FA BME $336D 3313 3D E& B3 STA $B3ED, X
A3 FF . LDA #3FF 5318 ES I
80 B3 1C STA $1C63 5313 &5 LEY
HD BC 1C LDA $100C S31A D@ F7 BNE $5313
23 1F AHD #$1F S2C &0 RTS
B3 CO ORA #$00
gg E—E ic S;H S;EEC 1CON HDR
22 A3 LDA # . e s
26 5D Bl 1C STH $ical S304 45 17 EOR £10
= cLY ‘ Tem e - - -
ES - 5386 45 18 EDR 313
=R 58 FE BVL $332R 5365 45 19 EOR $13
2 ES LLY S536A 43 77 EOR #$77
D - CA DEX 536C 85 1A STA $1A
E DB PR BHE $332A SI6E 20 34 F3 JSR $F934
@ 2 BF LDx #30F 5311 AB 83 LDv #509
= Aaoep LDv #208 5313 A2 B8 LDX #3099
24 B9 89 b4 LDA $8400,Y S35 ps o4 LDA $24.x
;D2 FE BV #3337 3317 9D E0 63 STR suaEd,«
5D 81 1C STA $1C01 e i 1ns
i
=3 o S31C D@ F?7 BHE #3315
CA : S31E 50 RTS

D8 F3 BHE %3334
58 FE BYC 33341
B3 CcLY

AD B¢ 1C LDA $1CBC
B9 EB ORA #2E6

2D @c 1C 2TR $1Cec

“RZ B8 LDA #$08
8D @3 1C 5TA $1CH3
A2 @@ LDA #3683
35 Bl STA $61

] LDY #5906
2B 35 F3 JSR $F355
A3 31 LDA #2081
4C 83 F3 JMP 3F363

172

alelalelelelnlolnio

SARLBEALS

alsiaisaisiaisiniaiainisisiainisisiaialalalnininiaislals.

AN el et la el latata tala o tatalalalalalniniainlialalatalalaialalaYalalnlalel

WRITE HDR READ HDR
2B 1B FS JSR $FS18 198 26 1B FS JSE $FSiD
Az 98 LD¥ #5988 o1 &298 3 Sk 1z
S@ FE BYC $3395 > 3393 pa oo LDY Wsbo
T - St oyt -0
BE CLy . 3}86 53 FE 333 4304
CH DER v 4385 B &
i .. 4389 DB FR BHE 4305
D8 FA BHE %3305 I 33BB 20 54 F5 JSR 3F334
Az 54 LDx #354 .» 438E QG 06 LDV H36@
58 FE BYC $338D .. 4218 58 FE BUC $4313
B oLy .» 4312 BE oLy
L L .0 %313 AD 91 1C LDA #1031
2310 ES E gstj $3950 -+ 4316 97 BB B4 57A $0460.Y
o] H E £330 RIS L i
3313 AD FF LDA #5FF -+ 9318 DA EG BNE 84310
- - - -)= 1= i 1 a1 % D i
3313 3D @3 %# E;: :itgg 'j,;;:g gg FE Egg $431E
t (51 '\ , R e (AR
iF AND #3$1F > 9321 D Bl LS LDR sical
CB ORA #3C0 roa35s I3 99 B3 T +858e.
gc 1C 5TA #1080 v 4328 08 FL BNE $431E
= . = ;e LD HiGE
EE tg@ g:gi L4330 8581 TR $B1
do LU . .. G3ZE Q@ 0@ LDV #$EE
a1l 1C STA $1C81 . 4338 23 95 FI JSR $FI95
CLY G35 & 6 ro i BRSL
i e A 40 &% F9 FRLT
FE BYC #332A 2233 o8 BRK
cLY .r 4339 83 BREK
DEX .. 4338 08 BR

FA BME $332A
B3 LDA #3083
3 LDY #3085

S ElB B3 LDA $083EB.Y
FE BYC $3337
. CLY
g1 1C 3TA $1C81
IMY
DEX

F3 BHE %3334
2 a5 LDx #3585
55 LDA #3355
FE BYC #3345
cLY
Bl 1C 3TA $1cBl
DE=x

9 F7 BHE #3345
8 FE BYC $334E
BC 1C LDA $1CBC
33 EB ORA #3EO
53D aC 1C 3TA $icCec
8a LDA #3099
83 1C STA $1C63
5]%] LDA #$893
Bi S5TH $91
Ba LDY #$500
5 95 F3 JSR #$F3393
g1 LDA #2591
52 F3 JMF 3F363

173

*** CHAPTER SEVEN ***

CARTRIDGES

This chapter is primarily a reference aid for
building and using the ROMULATOR system. We will
summarize the major points of cartridge duplication
theory, but for a complete understanding, you will need
to cover the material under the Cartridge headings in

chapters 2, 3, and 4.

As discussed in the earlier sections, the autorun
feature of a cartridge makes it impossible to "get
into" via normal methods such as STOP RESTORE and so
on. The autorun is a part of the power-up job of the
C64, so defeating it requires the cartridge to be
"invisible" during power-up. Once the system is running
under user control, you are then able to get into the
cartridge for saving, disassembling and whatever else

you may want to do. This 1is one of the main tasks of

174

slalalaiaialalalalalniainialainlaiaiatiaialaiaiatalalalalaiaiaisialalalalaiatalainlia

YN N Y e e e N N N N e N e N e N e N e e e N N e N Y e N e W e e VR e N N e Ve Ve e Y

the Romulator card.

The next area of concern with cartridges is the
way they reconfigure memory. Two of the lines to the
cartridge (GAME and EXROM) control the way the C64
organizes its internal RAM and ROM. There are four
combinations which are shown in table 3.3. Once again,
the Romulator circuit card overrides the cartridge and
allows you to change the configuration. In this manner
you can easily find out the normal configuration used

by the cartridge.

The fact that a cartridge is a ROM based program
affords it another kind of protection. That is that the
program can "write" data to the ROM locations, but this
will not change the data actually stored there. 1In
other words, the program cannot "erase itself"! If you
run a ROM based program in RAM, a write enable lire is
necessary. This enable can be turned OFF which in
effect protects the RAM from write-over. It then works
just like a ROM with the exception that it will lose
data when power is removed. The Romulator card has a
write enable switch as well as a socket into which you
plug an 8K or 16K Vic-20 RAM expander card. These were
chosen because they are readily available at a
reasonable price. Many C64 owners started with a Vic-
20 and still have expander cards. In the case of 16K
duplication the card will also need block switching.
(The Romulator Switch Card is illustrated in this
chapter and 1is available for those with Commodore

cartridges without the switching capability) If your

175

RAM already has the ability to switch either half of
the 16K into block one or two or OFF, you will not need
a switchcard. (Note that this reference is to the Vic-

20 block one and two, not C64 RAM area)

It is possible to run some cartridge programs in
the computer RAM. The general procedure is to find the
normal location of the ROM program, load or transfer
the contents of the ROM to its equivalent location in
RAM. You mustvthen determine the normal entry point of
the program (sometimes the first two bytes of the
program) and SYS to that location. You may wish to
experiment with this procedure but we have not found it
predictable enough to write about. The Romulator system
on the other hand, has proven effective for every

cartridge we have thus far encountered.

ROMULATOR HARDWARE

SYSTEM DESCRIPTION

The Romulator system consists of a special circuit
card and a program which are used together to transfer
the contents of ROM based cartridges to tape or disk.
We will refer to the copies as "cartridge tapes" or
"cartridge disks". To run the cartridge tapes or disks
you must supply a 8K or 16K Vic-20 RAM expander (for
16K cartridges you must have 16K RAM with block
switching). The Romulator with RAM plugged in need not
be removed from the expansion port. It will not affect
normal computer operations. Cartridge disks/tapes can

be loaded and run at will. In addition, a cartridge

176

Iaininiaininiaia e ialinla el alalalatala el al el la e eIt a e te e e Vi N e K K NN Ra

alatelalalalalalalaiaialalalaletalalalalnialiatala el ettt et ta ta e Vet Ve e Ya N te |

program can be "switched" out and in without reloading,\\\>//

as long as power is not interrupted. Another handy
feature when using a 16K RAM is that two 8K cartridge
disks/tapes can be resident at one time allowing you to
simply switch between them. An edge connector at the
back allows cartridges to also be plugged in and

operated without removing Romulator.

THEORY OF OPERATION

Figure 7.1 shows the Romulator schematic. Note
that the data and address bus (A0-A12) pass
uninterrupted to both the cartridge and RAM slots on
the Romulator card. The GAME and EXROM 1lines however
are intercepted by the card so that you have complete
manual control of the system configuration. A Reset
button is also provided for cold starts. Write enable

is on board in case your RAM does not provide it.

The key to the system is the 74138 decoder and
block switching system. We have chosen the $4000 block
to serve as RAM buffer for cartridges since it allows
other user programs below; and 16K worth of transfered
ROM above. The Romulator program will transfer the
contents of cartridges to $4000, and also saves them
from there. A jumper rail is provided if you wish to

modify this for your own reasons.

The ROML and ROMH lines are normally used by the
computer to select the cartridge according to the

location forced by EXROM and GAME 1lines. With these

177

LUUUUUUUVYUUUUUUUUUUUUU UV U UYL UY VUYLV Y U

ROM

ﬂmOn_nm._.

(CARTRIDGES)

c
218 sv
1 |a 7 EEDY
sga 6 |, 7aLs138 _u|.a\J 4000 W
. Lk —-Y R
o5V |n o l||0\ \
. s LnOIIIlO q ﬂ> sv
9 o
7 & M c8
R 77 8 _ "
u _ 0\\MYWI M MW<
_ B
| aomH o— oRA | | ™

ViC 20

RAM

f———dBLock |

BLOCK 2

\ﬁ

o 0CM

Y

cos |
K
CART.
H
stot
E

2

3
-.»».).N
1]

8

5

8

9

[4

e

o— oEX
S RESET

et wRITE

FIGURE 7.1
ROMULATOR SCHEMATIC

ALL RESISTORS 22K OHMS
ALL CAPACITORS 0.1 MFD

178

NN NN NN NN NN N

lines open and GAME and EXROM open, the computer cannot
"see" the cartridge. To avoid conflicts with the basic
ROM (ROMH), we will always connect the ROM to be copied
to the ROML 1line. The T switch makes this transfer if
the cartridge is normally selected by ROMH. By first
turning on EXROM, reseting, then switching the
cartridge into ROML, any ROM can be forced to appear at
$8000 without running! The RAM need not be active at
this time although it does not affect the operation if
it is. The Romulator program then performs the transfer
to $4000 and the Save. The process is repeated for 16K
cartridges. For 16Ks, you will first save the ROML half

then the ROMH half using the T switch.

The 1loading process requires the RAM to be
situated at $4000 with the R switch, write Enable
should be ON. A normal load is done, then if 16K the
load is repeated with the other half of the ' RAM and
other half of the cartridge disk. The RAM is then
switched into the location used by that cartridge using
the CA and AA switch or the C8 and A8 switches. (
Switches ending in 'A for ROMH cartridges and '8 for
ROMLs). Then by switching OFF write enable and setting
GAME and EXROM, the RESET will start 'the cartridge

program!

Though the theory may seem a little confusing, the
step by step procedure given later will make the

process quite simple.

ASSEMBLY

179

VOUUULULUUUWLUUUUUUUUUUUUU DU UUUU LU WU U U U

NHHL 31V7d ONVY S370H H31SI1934 310N

D

Vi1 37v0S : Vot 1N0AV1 Od 30IS dOL
va 8 B

Jvaisd

il

/

0000000V

0]Oj0j0 0000000

HOLVINKWoY

.@. B 2% 34N9Id

HINOHHL 31Vd ONV S310H H31SI93H

LAOAYT Od 30IS WOLi09 1oV :
c) 8¢ DVL

b21DyC

. Ll 3Tvas

o
181

¢

ittt

gc
&

0000pPOO

HOLlvInwod 9 2°£4 34N9Id

We do not recommend that you try to build your own
circuits wunless you have had considerable experience
doing so. The damage possible to your computer system
through improperly built' circuits would far outweigh

the slight cost advantage you may obtain.

If you have the experience necessary you will find
the layout straight-forward. The ROM socket is soldered
directly to the pads at the end of the board. Note the
correct orientation of the IC and switches. The RAM

socket is mounted near the center of the board. The PC

" board is double sided, note the Top and Bottom side

layouts. All through-hole feeds should be soldered top
and bottom side or plated through. Be careful not to
make solder bridges between adjacent traces on the PC

board. See Appendix G for assembled unit availability.

16K RAM SWITCH MODIFICATION

If you own a Commodore 16K RAM and wish to be able
to do 16K cartridges, you will need a RAM switch card.
No changes are required if you are only interested in
doing 8K cartridges and will be using an 8K expander
addressed for block one. (Vic-20 block) Figures 7.3 and
7.4 show the schematic and PC layout for this. With the
card installed in your RAM, you will have the ability
to switch either 8K half of the 16K into block one or
two. Figure 7.5 shows the positioning of the card in

the Commodore RAM case. If you have another brand of

182

~

alalalalalalalalalalalalatalalalatalalatalatalaletatalalata et te et ata Yalata Yale)

Yttt ta e Vet N e N e N e N e N e N e N e N N e N e e e Y el e W e W e e e N Y N e W W W W W e e

|

FIGURE 7.3
RAM SWITCHCARD

-

54-
4 4\;/0—'—-.&“2
TO Trst
RAM - 8K
3) o o>—dsuar
(SEE FIG. 7.6)

BLK2
2nd
8K
ﬂ/c'— BLK1

FIGURE 7.4 FOIL AND COMPONENT LAYOUTS (shown 1:1 size)

54321

PSIDAC

O

) 84
+

DOT,

22K}
22K}~

1234
Bagg

ncIm N

ISegpe

JAQreq

®

COMPONENT SIDE

183

FIGURE 7.5

SWITCH CARD OR ENTATION

& VIC 16K RAM
CARTRIDGE

RAM CARTRIDGE SHOWN FROM BOTTOM

184

alalalalalalalalalalnlalalalalalalalalalalaialalatalalalalalalalaliatalalalalaials

Nt lalalalalalalalalalalalalalalalniniaialaialalalalatatalalala e lalalalalakakale

“1.

2.

3.

RAM, you will have to have some other switching system.

16K RAM SWITCH INSTALLATION

FOR COMMODORE RAMS

Disassemble 16K case. (1 screw, 4 snaps)
Orient RAM SWITCH as shown in figure 7.5.

Use small piece of tape to hold board as shown in
figure 7.6. You should be looking at the soldered side
of the RAM and the foil side of the SWITCH CARD. The
large hole in the SWITCH CARD should be aligned with
the screw hole of the RAM.

Pretin SWITCH CARD numbered pads with SMALL puddle of
solder.

Tack solder Kkynar wire from numbered pads on SWITCH
CARD to 1like numbered pads on RAM. (1 to 1, 2 to 2, 3
to 3...)

Make certain jumpers on RAM at location indicated are
cut. If switch is in this position, make sure all
switches are OFF. (Some have 4 switches for half and a
jumper for other half. All must be OPEN!

Double check all connections. Make certain that wire
insulation is close enough to pad so inter-pad shorts

cannot occur.

YOUR NEW BLOCK SELECT SWITCHES ARE:
IN 2 N ¢%
F S
& &
Q¥ &

ON]
3 a4

FEl 2
[Bnd 8K HALF | |1rst 8K HALF]
185

~

UUUUUUULUWULUUUUUULUUUULUWUUUUUUUUUUWWUUUUUUUUWU

KHOLIMS 3HIND3Y LON 00 SWYH X%8)

S%gg %G%g%%@fgg

g 000000000007 000000 5
DD 0
"SH3dIWNr 1NJ S 440 3dv
Dm_ D S| 3YIH S3IHOLIMS 3IHNS I)NVW
000000000000 ‘ ﬂ, 000000000000
£l 9 .
-} (lew) oo ° OO () ()
o =) o0 ° OO oo O
=)) 00 ° 20 |l 00 o
() 00 oo vals °c o0 | oa O]
o oo o0 oo oo O]
-} oo 00 = 29| g8)
-] 058 oSl | o0 | =]) =
o (=) oo -] oo |l 00)
= 55 88 g7llBl ssl_22 g
=) (/) =le! \ A=) 00 =00 O
g i S

J

DZHIMDJGm 31IHM

4 i
[1
NMOHS WYH 40 30IS WolLoS | @an_ 070H 01 3dvl
. t WYH 3HO0OOWWOD S

ONIHIM WYH OL OYVOHJILIMS
9°4 3HN9IA

AAAAAAAAAAAAAAAAAAAAAAAAAAASESAAAANANAAAAAAAA

ROMULATOR PROCEDURE 8K

The following instructions give the step by step
procedure for using the Romulator system. We will refer
all operations to disk. Just replace word "disk" with
"tape" if you are using tape. Tape requires 3ROMULATOR
program, disk uses 2ROMULATOR or, abbreviated, 2R*.
Note that the Romulator circuit card with RAM may be
left "permanently" plugged into computer. If you are
not otherwise using expansion port it will not affect
normal operation. All steps below assume it is already

plugged in.

SAVING 8K CARTRIDGES

With power OFF, plug cartridge to copy into the

Romulator cartridge socket. All Romulator switches
should be OFF.
Turn ON computer. Using table 7.1, try each combination
of GAME, EXROM, A8, and AA. (follow each by pressing
RESET). One of the combinations should result in
RUNNING of the cartridge. If not, it may be 16K, go to
16K save procedure. WRITE DOWN the combination used
which made it RUN. (Such as A8-C8-GM-EX)

Turn OFF all switches. Turn ON EXROM and press RESET.
30719 Bytes Free message should appear.

Using information obtained in above steps, now turn ON

switch A8 if you wrote down A8. Use switch T if you

187

wrote down AA.

LOAD appropriate Romulator program then perform
SYS3291. Romulator title notice should appear. Follow
prompts. NAME should be less than 16 characters ...Do
NOT use quotes.

For additional backups repeat step 5 from SYS3291 only!

NOTE: A copy can be made from a copy by using editor
assembler and loading cartridge disk then Saving $4000
to $6000. . You may find this easier than wusing the
ROMULATOR procedure to make backups of the disk at a

later date.

LOADING-RUNNING CARTRIDGE DISKS/TAPES

Switch all Romulator Switches OFF. Turn ON switch R,
and WRITE ENABLE. Switch RAM switch so RAM is in Block
one. (When loading secon& half of 16K, use second half
of RAM in block one...First half all OFF.)

Press RESET. 38911 message should appear. LOAD
cartridge disk using "prg name",8,1 or tape with "prg
name",1,1.

When done loading, Switch WRITE ENABLE OFF. (For 16K
switch first half of RAM gut of block one and switch

second half in then repeat step 2. When done, Write

Enable OFF, first half of RAM into block 1 second half
into block 2, also turn R OFF!)

Turn ON the switches you wrote down from SAVE procedure
table 7.1. This information should be kept with the

program. One convenient way is to include as part of

188

BN

AANOAANAAAAAAAAANANAAAAAAANAANANAANAANAA

alals

Y alalalalalele Vel Ve N Ve N N Ve R Ve Ve N Na N N N N N N Ve Fa Ve Vel 1o Yalalata Falata Ve

program name.

5. Press RESET button and program should RUN!
~-TABLE 7.1--
—— TEST WRITE DOWN
GM EX A8 AA
ON OFF ON OFF A8-C8-GM
OFF ON ON OFF A8-C8-EX
ON ON ON OFF A8-C8-GM-EX
ON OFF _OFF__ON AA-CA~-GM
OFF _ON OFF ON AA~-CA-EX
ON ON OFF ON AA-CA-GM-EX
16K SAVE PROCEDURE
The main difference between 16K and 8K procedure is
that the 16K has to be handled in halves. You should
think of your RAM as having a First half and a Second
half. The ROM will be saved one half at a time. Each
half is saved identically except that the T switch is
used to place the second half of the ROM into position
so Romulator can see and save it. These steps assume
that you already Xknow the cartridge is a 16K as
discovered by the first few steps of the 8K procedure.
1. Use the first three patterns of TEST on table 7.1 to
determine the RUN configuration. However, AA & A8
should both be on for each 16K test.
2. When you discover the correct pattern for RUNNING write
down the configuration indicated.
3. Turn OFF all switches. Turn ON EXROM and press RESET.

189

30719 message should appear.

LOAD the appropriate version of Romulator (tape or
disk). SYS3291 , Romulator title should appear. SWITCH
A8 ON!

Follow prompts. For NAME use a 1 followed by program
name to indicate 1lrst half. Name must be less than 16
characters, do NOT use quotes.

When done turn OFF all switches and turn ON EXROM.
Press RESET, 30719 message should appear. Turn ON
T.

Type SYS3291. (You do not need to reload it as long as
power wasn't interupted).

Again follow prompts. Use a 2 in front of name to
indicate second half of program.

This completes 16K SAVE procedure. You now have the
program in two halves called "lname" and "2name". The
LOAD RUN procedure covers the method of running both 8K

and 16K cartridge disks/tapes.

-—- PROGRAMS ---

Following are the listings in assembly code
(machine code is used for data tab;es). Note that there
is a data table starting at $0A00 and extending to the
beginning of the program area, $0BD6. We recommend the
use of an editor assembler Memory command to type in
the table and the Assemble command for the program.
2ROMULATOR is for disk saves and 3ROMULATOR is for
tapes. PSIDAC supplies a complete disk of the programs

in this book if you do not wish to type these by hand.

190

AAAAAAAAAAAAAAANAAAAAAANANANAAANAANAAAAAANAAAA

r
|

-~

AAAAAAAAAAANANAAAA A

ANAAANAAAAAAAANAAAE A A

BRBO
B8RO
BR10
BAR13
BR20
BA28
BA30
BR33
BR4D
BR48
BASG
]
BREO
BR63

_ BA7Y8

BATS
BA3G
BAR33
BA30
BA33
BAARG
BAAS
BRBH
BAB3
BACA
BACS
BRDG
BRD3

‘ORED

BARES
BAFS
8AF3
(5):1510)
8BBS
BE1D
BB18
9B20
AaB23
BB38
BEB33

 @B40

8B43
BBSH
BB58
#BE3
@B53
BB7E
BEva
AB3B
BEC8
BB5B

'@B38

BEAG
BER3
BBEO

BEES 2
aBCa :

BEBC3
@EBDo

DATA TABLE

B8BDE
BED3
9EDB
BBIE
HBEB
HEEZ
BBES
BERES
BEEA
BEED
BEF8
BEBF3
BEFS
BEFS
GEFC

BEFF -

BCez
BLes
BCes
BLHE
BCHE
Bl
BC14
BCi1s
BCis
BC17
BCis
" BC1A
BC1D
BLiF
pCz1
BCzd
BCz2s
B2y
BCzs
BCzs
BC2A
- BCZE
BC2D
as38
BaC32
B34
BL3?
BC33
BL3A
BL3B
BC3c
acsd
BLEE
849
BC473
ac4s5
BC47
BC4A

3ROMULATOR -

BE
FE

BA
BA

9R

LDA
5TA
LDA
STA
LDA
5TH
LDA
STA
LDA

STR.

LDA
3TA
LDA
3TR
LIA
STA
LIA
STHR
LIR
5TH
LIA

STR’

RTS
BRK
ERK
BRK
LDK
LDA

CHP

FF

2R

FF

aB

FF

BEG
JER
IM&E
BHE
RTS
BRK
EBRK
BRK
LDx
LDA
CHP
BEQ
JSR
I
EBHE
K]
ERK,
BRK
BRK
LDK
LA
CMP
BEQ
JER
TH

SBADE
$FB_
$OREC
$FC

$6AGD

$FD
$0ABE
$FE
$6ABO

$0628

'$8AG1

$0821
$0AB7
$D418
$0RB2Z

$D485

$0RE3
30405
$BR86
$D488
$ERBS
$D491

#$00

$0RA26. X

#3604
$8C27
$FFD2

$9C1A

#$90

$BRC1. ¥

#3504
$8C3A
$FFD2

$9C2D

#4090

$0B4E. »

#3084
$3C4D
$FFD2

192

BL4E
BL4D
BC4E
BC4F
aCse
acsi
8Cs3
8csSe
acss
BCSA
8CsD
BC5E

Brse

acsl
Blez
BCes
acs4
BCEvY
BCE3
BLER
5
BLED
BCEE
ac71
BC74
8c?s
BC738
acvs
BC7B

BCyD -

BC7F
BaCs1
aCsz
ac34
BL36
B3Ca3
BL3A
BC3B
BLEE
BCse
BC31
ac3z2
aCss3
BC34
BLss
BC33
BCac
i C]
BLSF
BCAL
ACR4
BCAY
BCAR
BCAD

E4
38

F5

8B

FF

FF

R
4

o4

FF
oA

ac
8R

A

EHE
RTE
ERK
ERE
ERK
LD¥
LDA
CHF
EER
JER
THK
EHE
RTS
ERK
ERK
BRK
JER
CHP
EME
RTS
ERK
BRK
LIX
STX
DEX
3TX
RTS
LDA
Loy
LIA
3TA
IHY
CpRy
BME
INC
IMC
IM:
CPA
BHE
RTS
BREK
BRK
BRK
Loy
JER
STH
IMY
CcHP
EMNE
J35R
STY
LIA
LDx
Loy

£8C48

#$09
$UB7E, X
#3604
$BCc8
$FFDZ

$8CS

(]

$FFE4
#3588
$0Ce4

$BRABS
$D404

$D484

#3600
#3060
($FBy.Y
CBFD.Y

#3089
$8C7D
$FC
$FE

$8A0F
$9CTE

#3080
$FFCF
$OR1E, ¥

#$9D

$aC3S
$8CEE
FBR0A
$0RB3
$BRE3
#3FF

issisialaiaiaisisielsiatacaiaiaialaslslalainlnIaIAIAIAIAI A IAISIAEAIAIATS

el alala el e e N N e N N e e N e N e N e N N N e N Y N N N e e W N N e N e e N W e

3ROMULATOR ..

28 BA FF
AD 9A BR
A2 16

28 ED FF
AD 2D BA

AD GE BR

26 D2 FF

AE 18 BA
AC 11 BA

28 D3 FF .

JER

193

$FFBA
$OABA
#%16
#40R

: $FFED

$3ABD
$FD
$0RBE
3FE
#3600
$FFD2
#$FD
$6A10
$8A11
$FFD3

$8BD6
$aCis
$0C2E
$6C64
$8C6E
$aC73
$8C3E
3$8C94
$ac51
$aC6E
$6C54
$8C6E

BREB
BRES
BF1Y
BR1S
BRZY
BRZ3
BR3B
BR33
BR40
BR43
BRSA
BRS3
BR5B
BRES
BR7E

BR?S

BREB
BR35
BRI8

BRZ3 .

HAAG
BRAS
BAED

BARB3

BRCH
BRCS
BRDG
BARDS
BRED
BRES
BAFD
BRFS
9B89
BBBS
BB1O

BB1E& 2

BBz8
aBzs
BB3G
BB38
aB46

9B43 Z

BB50
aB53
BESD
AES3
@E73
BE?S
BESE
B8B53
@B59

@aBss ;

BERY

4Rz 2

AEB4G
@ER3
ABCH
ABCS

GEDE@

DATA TABLE

11

23
[5%]
aa

Qoono

iolalaletalatalatatolalelotaintalalatalatalatalaiotalalalatatelotalatelatla

-

lalalalaiaiaiaiaialialalatalalalaiaiaialaiaialalalniaiaiaiaiaiataleatalalala Ve lala el

ABDS
BBED3Z
BEDEB
8BDE

BBED

BBES3
BBES
B@BES
BBER
BEBED
BBFB
AEBF3
BEBF6
BEF3
BEFC
BEFF
BCaz
BCes
BCes
JCeB
BLBE
aci1
BC14
BC1s
\9Cls
BaCiv
813
ac1A
G8C1D
aciF
Bara1
Brz4
aczs
827
BLes
aca2s
BC2ZR
[(e}
aczD
aCc38
B3z
B34
acs3r?
ac3a
AczA
BC3B
aczc
Acso
BC3E
ac4a
BC43
ae43
Bac47?
BC4R

2ROMULATOR -

FF .

BR

FF

9B

FF

LDA
STA
LDA
STA
LDA
STA
LDA
STA

$EABE
$FE

$8RBC
$FC

$0ABD
$FD

$9ABE
$FE

$ER0R
$0029
3$9AB1
$D821
$0RB7
$D413
$0R6Z
3045
$6RB3
$D406
$ORBE
$D400
$8RBS5
$D4a1

#$00
$OR25. ¥
#3504
$ac27
$FFD2

$9C1iA

n #5009

$08RC1. ¥
#3064
$8C3A

2 3FFD2

$8C2D

#$00
$8B4E. ¥
#3504
$9C4D
$FFD2

BC4E
BC4D
BL4E
BL4F
pCS6
BCs1
BCs3
8Cse
BCS58
BCSA
BCSD
BCSE
BLeo
BC61
aCe2
BCe3
BLo4
ace?
BLes
BCEB
Bcéec
BLED
@C6E
acri
BC74
B8C7S
8Cvs
BCTo
BC7B
BC7D
BCy
pC31
Braz
aCa4
BCse
8Cs3
BC2A
ACZE
BLCSE
BC3g
acal
Bacsz
BC33
BCa4
BLI6
pCas
acsc
@CsD
ACSF
BCA1
BCA4
BCAY
BLCAA
BLCAC

195

E4

F3

85

BHE
RT3

~ BRK

@B

FF

FF

BA
D4

D4

FF
BA

BA
BA
FF

EBRK
ERK
LDx
LDA
cHP
EEQ
JER
TN

ERK
ERK
ERK
JSR
cHP
BHNE
RETS
ERK
BRK
LDx
STx
DEX
5TH
RTS
LDx
LDY
LDA
3TA
INY
CPY
BNE
INC
INC
IN&
CF¥
ENE
RTS
BRK
BRK
ERE
LDY
JSR
5TR
IHY
CHMP
BHE
sTY
LDA
LDR
LoY
J3R

$ac4a

#3008

$8B7E.

#4064
$0C60
$FFDZ

$8C53

$FFE4
#5325
$6C54

$BABS
$D404

$0404

#$09
#5060

®

($FBI,Y

($FDD .

#2080
$68C7D
$FC
3FE

$AABF
3$8CTB

#3509
$FFCF

$BR1E.

#50D
$8C36
$BROA
$BAOE
$BAB3
#$FF

$FFBA

kg

ACAF
BLE2
GRS
ACEs
BCES
BCBC
BCEE
BCCl
BCcC3
9CCsS
BCes
BCCE
BCCE
BCCF
Bchz
acDs
acoy
acns
BCTA
PCDE
BCIE
BCEl
GCE4
BCE?
BCER
BCED
3acFg
BCF3
BCF&
BCF3

2ROMULATOR - -

aF
16

oA
FF
B
oA
2A
B
FF

ac
FF

LIA
LI
LIY
JER
LDA
STH
LIA
3TA
LIA
LI
LovY
J5R
RTS
J3R
JER
CMP
ENE
RTS
BRE,
JER
JSR
J3R
JSR
J3R
J5R
J5R
J5R
J3R
J3R
RTS

196

FORER
#¥1lc
#30A
%#FFED
$0RBTD
$FD
FEAZE
FFE
#$FD
FEA1Y
$0R11
$FFDE

$BCEE
SFFE4
#5285

$ECCF

$8BL6
$aciz
$0C2E
£0C54
$8CEE
$8C73
$0C3E
$8C54
$8C51
$aCCF

alalale

alelalale

A e~

- o~ -

-

~.

CAANAANNANAAAAAAAAAANAAAAAANAAAAAANAA

N AR A AP A A A A e

APPENDIX A
HEX-CHR$ & SCREEN CODES CHART

CBM VALUE CHR DISPLAYED SCREEN CODE VALUE
[HEX CHR$ MODE-UPR MODE-LWR HEX SCRAN DEC SCRN

oo a] I

01 1

o2 2

03 3

04 4

05 5 WHT i

06 6 :

07 7 ;

os 8 SH/C OFF :

09 =] SH/C ON :

DA 10

oB 11

oc 12

oD 13 RET

DE 14 LWR/CS ON

OF 15

10 16

11 17 C/DN

12 18 AVS/ON

13 19 CLR/HM

14 20 INST/DEL

15 21

16 22

17 23

18 24

19 25

1A 26

1B 27

1c 28 RED

1D 29 C/RT

1E 30 GRN

1F 31 BLU

20 32 SPACE 20 32

21 33 ! ! 21 33

22 34 " " 22 34

23 35 # # 23 35

24 36 $ $ 24 36

25 37 % % 25 37

26 38 s s 26 38

27 39 ' * 27 39

28 40 ((28 40

29 41)) 29 a1

2A 42 * % 2A 42

2B 43 + + 2B 43

a2c a4 , s 2c 44

2D 45 - - 2D 45

2E 46 . . 2E 46

2F a7 / / 2F 47

30 48 1] 0 30 48

31 49 1 1 31 49

32 50 2 2 32 50
[|

197

‘>'L—'|"D'_'N-<><S<C—|CDID'UGZZF7<LHIG'I'HTIDOUJ)@-O\/II/\‘“ CcWONDUODLW

S/%
S/A
S/B
s/c
S/D
S/E
S/F
S/G
S/H
s/I
s/J
S/K
s/L
S/M
S/N

?

N

§ ZZFALCHIOTMMOOD>»W +IfhANK X E<Ccd) TOTOI3IHAHITAO NWO0OQ0OOTDOD @UVIA« -~0ONOUDdW

3

1E

30

/

\

—

ANAAAAAANAAAAAAA

QOO

Qo000

O

C)

Yt e N N e N N e N N e N e N e N e N Y N e N e N N N e Y e N N Y N W W N Ve R R e N N e Ve Ve Y e

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

138
139
140
141
142
143
144
145
146

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

s/0
s/P
s/Q
S/R
S/Ss
s/T
s/u
s/v
S/W
S/X
s/Y
s/z
S/+
c/-
s/-
Pi

C/*

SH/RET
UPR CS ON|

BLK
CR/UP
RVS ON
CLR/HM
INST/DEL

PUR
CR/LFT
YEL
CYN
SPC
c/K
c/1
c/T
c/a
c/G
C/+
c/M
c/ke
Sk
c/N

N<XE<C-H0OIBOTO

Lg CKRABD
Diag Lns

Diag Lns

199.

1)\
AB 171 c/Q 6B 107
AC 172 c/D &6C 108,
AD 173 c/z 60 109
AE 174 c/s 6E 110
AF 175 c/P &F 111
BOD 176 C/A 70 112
81 177 c/E 71 113
82 178 C/R 72 114
B3 179 C/W 73 115
84 180 | C/H 74 116
85 181 c/J 75 117
B6 182 c/L 76 118
B7 183 c/Y 77 119
B8 184 | C/U 78 120
BS 185 c/0 79 121
BA 186 s/@ CK MARK 7A 122
BB 187 C/F 7B 123
BC 188 c/c 7C 124
BD 189 c/X 70 125
BE 190 c/v 7E 126
BF 191 c/8 7F 127

NOTE: This table shows which characters will be displayed for
any value of CBM ASCII code. The two left columns give the
values in hex and decimal (dec used for CHR$). The 2nd and
3rd columns show what will be displayed or what control mode
affected, depending whether the computer is in the UPPER CASE
MODE (column 2), or LOWER CASE MODE (column 3). The last two
columns give the hex and decimal values used for the SCREEN
DISPLAY CODES. The decimal value is used to POKE directly to
screen locations, while the hex is used if Storing to screen
locations from a machine routine.. Note that S/ followed by a
letter means the SHIFTED letter which is the right hand
graphic symbol on your key. A C/ means the COMMODORE KEY
which produces the left hand graphic symbol on your keyboard.

200

aXalalatela¥slalalela el le e R e Ne Ve N N N N N Y e N N Y Y Yala et atatalatataYtaYate

APPENDIX B
MONITOR USE WITH DISKPICKER

Other monitors can be substituted for MONITOR$8000
in Diskpicker by changing 1line 10 with alternate

monitor's name, and by changing the SYS to the
monitor's entry point in 1line 310 +to that of the
monitor you are using. Note that the alternate monitor

should reside between $8000-$BFFF.

All Diskpicker functions except #2 - Monitor Mode
can be used without a Monitor. This gives you the
ability to load and execute error utilities etc. The
procedure for this is:

Delete line 10. Change line 20 to read: IFA=0 THEN A=1
:LOAD "ZMACH",8,1

Press RUN/STOP - RESTORE then load "the desired
utility program'",8,1 then type NEW [RETURN]

SYS49184 [RETURN] Then follow normal Diskpicker
procedure section for error writing routine.

HESMON- cartridge can be used in lieu of
MONITOR$8000. However, you will lose the ability to
easily recover from lockup conditions which normally
require reset and ZMACH restore features. Use the
following changes and procedure:

DELETE DISKPICKER LINE 10 and 20. Change line 35 to
read: RUN40
Change line 310 to read SYS 36466
TO USE- Plug in HESMON, +turn computer ON, EXIT HESMON
with "XC" command.
Load "DISKPICKER",8 and modify as above then RUN.
Use RESTORE key to enter HESMON instead of Menu item
2! - To return from HESMON, type "X" command then RUN.

SUPERMONE4.V1 -Is part of the Commodore 64
Software Bonus Pack and seems to be readily available
in the public domain. It can be used in place of
Monitor$8000. Modify Diskpicker as follows:

Load "SUPERMONB4.V1'",8 then RUN. Monitor prompt screen
should appear. Use "X'" command to EXIT to basic. Insert
PSIPACK disk and LOAD "DISKPICKER",8

Delete 1line 10. Change limne 20 IF A=0 THEN
A=1:LOAD'"ZMACH",8, 1
Change line 310 to read: POKES3281,3

SYS(PEEK (43)+256%PEEK (44)+127)
RUN Diskpicker as per procedure sections.

If you save the MODIFIED DISKPICKER, you need follow
only step 1 in order to RUN Diskpicker with
SUPERMON! !

If you are unable to locate SUPERMON or the COMMODORE
BONUS PACK, we will supply a copy of SUPERMON for a
handling fee of $5.00.

If your MONITOR$8000 will not save itself, change
hex locationms $86EC through $86F7 to EA (These are
NOPs) . MONITOR$8000 can be easily saved using
RELOCATE/LOADER procedures.

201

APPENDIX C
AUTO-BOOTERS

Following are two samples of autorun booters. One
is for booting machine routines and the other for
basic. We have chosen 02A7-030C for the booter
routines. Use an editor to assemble them in these
locations. Remember that when you load the routine from
the tape or disk it will call the program identified
by the NAME bytes. To set the names and messages you
wish to use, 1look up the HEX CBM ASCII value for the

‘letter and control functions in appendix A.

The first part of the routine sends a name to the
screen to indicate that the booter is operating. The
routine for machime has more available space for this
message. The basic routine simply sends the name that
you are calling with the loader.

Next the standard Commodore format for setting
logical file, device number, name, and loading the RAM
is used. Note that the device number is listed as $08
(disk) tape is $01.

Fimally, in the machine booter, it jumps to the
starting address of the machine routine that was
loaded. The basic routine sets necessary basic pointers
and restores 0302-030B vectors before it runs.

It is a good idea to use the no-break Poke 808,255
in your basic program. You should play around with some
simple test routines before you commit the loader to
service.

To set the names and messages you wish to use,

look up the HEX CBM ASCII value for the letter and
control functions in appendix A.

202

e~ ~—

AAAAAAAAAANAA

alatateYelololotatala

slalalslalelalala

NN NN NN N NN NN NN N NN NN NN NN N NN NN N NN N N N

.» 02A7 A2 00 LDX
., O2A9 BD F6 02 LDA
.» 02AC 20 D2 FF JSR
.. O2AF ES8 INX
., 02BO EO 04 CPX
.» 02B2 DO F5 BNE
.» 02B4 A9 10 LDA
., 02B6 A2 08 LDX
., 02B8 A0 01 LDY
., 02BA 20 BA FF JSR
., 02BD A9 04 LDA
., 02BF A2 F6 LDX
., 02Cc1 AO 02 LDY
., 02C3 20 BD FF JSR
.» 02C6 A9 00 LDA
., 02c8 85 9D STA
., 02CA 20 D5 FF JSR
., 02CD 86 2D STX
., 02CF 84 2E STY
., 02D1 A2 OC LDX
., 02D3 BD E9 02 LDA
., 02D6 9D FF 02 STA
., 02D9 cCA DEX
., 02DA DO F7 BNE
., 02DC A9 00 LDA
., 02DE 85 7A STA
., 02E0 A9 08 LDA
., O2E2 85 7B STA
.» 02E4 20 60 A6 JSR
., 02E7 4C AE A7 JMP

., O2EA 8B
., O2EB E3
., O2EC 83

.» O2ED A4 7C
., O2EF A5 1A
., 02F1 A7

., O2F2 E4 A7
.» O02F4 86 AE

. HEX DATA

.:02EA 8B E3 83 A4
.:02F2 E4 A7 86 AE
.:02FA 02 86 AE 00
.:0302 A7 02 A7 02
.:030A A7 02 00 00

.' O2EA.C.$ %.' 8B
.' O2F2D'..TEST E4
.' O2FA......64 02
.' 0302'.'.'.'. A7
.' 030A'.....LH A7

APPENDIX C

BASIC AUTOBOOTER

#3 OO
$02F6,X
$FFD2

GET NAMF AT

SEND TO

#304 SCREEN

$02A9 _

e }
%
J
]

#$01

$FFBA
#$04
#$F6 —
#$02 —
$FFBD
#$00
$9D
$FFD5
$2D

$2E
#3$0C
$02E9,X
$02FF,X

NAM E(AT
2F§

0
LO
RA

RESET
VEC.

EX.

$02D3

#$00 BASIC
$7a PRG-
#$08
$7B
$A660
$A7AE)

A5 1A A7
45 53 54
00 36 34

00 4C 48

83 A4 7C A5 1A A7
86 AE 54 45 53 54
AE 00 00 00 36 34
A7 02 A7 02 A7 02
00 00 00 00 4cC 48

203

., 0237 A2 00 LDX #$00

., 02A9 BD DO 02 LDA $02D0,X SEND

., O2AC 20 D2 FF JSR $FFD2 SCREEN

., O2AF EB8 INX MSG

., 02B0O EO 1E CPX #$1E

., 02B2 DO F5 BNE $02A9

' 02B4 A9 10 LDA #$10 } LFS

., 02B6 A2 08 LDX #$08

., 02B8 A0 01 LDY #$01 -

., 02BA 20 BA FF JSR $FFBA

., 02BD A9 04 LDA #$04

.) 02BF A2 FO LDX #$FO NME

., 02C1 A0 02 LDY #$02

.., 02C3 20 BD FF JSR $FFBD

., 02C6 A9 00 LDA #$00

., 02c8 85 9D STA $9D

., 02CA 20 D5 FF JSR $FFD5

.’ 020D 4c 00 45 JMp $4500 — EX MACH.

MSG & NME HEX

.:02D0 93 05 20 20 50 53 49 44

.:02D8 41 43 20 1E 41 55 54 02

©:02E0 42 4F 4F 54 20 9F 20 20

©:02E8 20 20 20 20 20 20 20 20

©:02F0 4D 41 43 48 00 00 00 00

~:02F8 00 00 00 00 00 00 00 00

©:0300 36 34 A7 02 A7 02 A7 02

©:0308 A7 02 A7 02 00 00 00 00

HEX DATA SHOWING ASCII CHAs
ASCII
0200.7 ~P3ID 93 05 20 20 50 53 49 44
02D8AC .AUT. 41 43 20 1E 41 55 54 02
02EOBOOT . 42 4F 4F 54 20 9F 20 20
02E8 20 20 20 20 20 20 20 20
02FOMACH.... 4D 41 43 48 00 00 00 00
02F8........ 00 00 00 00 00 00 00 00
030064'.'.'. 36 34 A7 02 A7 02 A7 02
0308'.'..... A7 02 A7 02 00 00 00 00
204

APPENDIX C cont

MACHINE AUTOBOOTER

LOAD
MACH. PGM

O
Q)
O
O

alalela

OO0 ON0

O

Nl e e e Y N N e e e la e ta e talala i lalalatalala e tabe)

data sectors.

[234 56
iZ @4 82 i1 BE 31
|34E ARG FB AB AR AS

o OE oo B0 60 Bo
‘Gl 3z 58 53 4% 4D

FD AD AE AE AR 6O

BB 0R 82 An 0B OF
45 52 44 45 52 45
Ao BE GG 80 AE QG

me 96 52 13 8L 44

[=1°4
42 54 4F 52 AE Ae
o Bp 95 0B O% 58
12 52 45 4C 4F 43
4i 44 4% 52 AE 98
G B2 B2 98 @e e
$E SB 4% 42 4F 45

AG BE o8 oo a8 6o
a8 B B2 1% @2 34
4C 55 SR 45 52 A
BE 96 OB 66 60 66

2 D4 42

AE Q@

SECTOR

BF 21

AR AG

@A ag

£ 55 Tb 44

FS AGS AB AD AD @8
BE GE HE @8 ag
41 4 3 AE
AG B 5]5]
85 8o 52 5 4l
4F AB F A FE A
o Be o G Ga
g =% 52 4F 4D 35
AE AE AS AE AB 6
G B @4 Ga 68 88
4L S5 4 41 T4 49F
AR B0 0O BE B85 66
oE Be 22 1% 82 SA
AB AB AR AD AE AG
GE BP9 G 28 @69
83 41 4 41 40 52
AB AB A FAB AG OO

BE By @1 6@
TRACK 18 SECTOR

written over.

written over.

APPENDIX D

SECTOR EXPLANATIONS

The following information shows typical directory and

The important bytes have been numbered and

7
5
i
Bz
41
o
g2
43
B
43

8
53
A2
B
43
oo
13
54
B

43
A
ag
4E
(5]4]
G
4F
@e
4k
A8
514
43
ae
Bz
AE
ae
2
AB
@a

3 4F

[214]

4T
51
(5]
AE
ge
5z
Sz
(514
2D

e

5 48

=

the list identifies the meaning of the numbered bytes.
The first part is for the directory and the second part
for program data sectors.
*%Tells how to undelete a file.

910 1] 12

41 4%
walise
1 1.Next directory track-12HEX

BYTE ¥

[l

A é@ =18DEC.

a|E @g@

55 5p 2-Next sector-04HEX =04DEC.
=i 8

6; gg 3.Type of File-82HEX

45 44 OO=DELETED

aE @ 81=SEQUENTIAL

g2 11 82=PROGRAM

4F 84=RELATIVE

ae

52 4.0isk File starting track-
fA@ 11HEX =17DEC

e
4] S.Disk File starting sector-
By OOHEX =00DEC.

11
AB 6.File NAME-1
2]%]

7. -P
z 8. -s
4]5]
169 -I
A
6@ 10. -M
41
AB 11 -A
]
4C 12, -I
8]
14 43, -N
(3L5]
3214.Ending characters -AO

gg15.Next Entry file type-82HEX

Ha1B.Next sector

an Data continues as above to
ég the end of directory{
aE'*F:i.le name data is the hex

conversion of CHR$ codes.

*% UNDELETE A FILE

You can undelete a file only if the data has not been

Any time something has been saved on a disk
some of the data has likely been
To undelete a file, change the file type

with a deleted file,

entry back to its original number. ie:0n a program file
this byte should be changed to 82.

205

HON WL WD -
(5]
(4]

03&%&3&3&3&303&!*&
2}

(4]
ny
@)
4]

[REORA K]
W i) D

2

[DRE

5

pu L RX LI N
@)
w

[2X]

1}
L
L
D

3A BE

TRACK

34 l?ig? 31
sz |36-

17 SECTOR
2 3B
3R SA B2 31
SE 34 32 38
Be 99 22 @5

9D 26 26 22
22 98 22 91

b 60 po 66
17 SECTOR

@e 1B 8&
3D B8 83
Bz Cz 28
8% 34 2C
B4 08 54
3A 33 B2
98 31 3¢
3k 54 3B
36 39 31
34 39 38

APPENDIX O cont

ez
Be
34
33
B2
Cz

2C 2

53
3R
35

@1 8@ 9E 34 29 38 ,

pe SE
SE 34 .

2t 35 5
26 34 4

39 39 o

2C 31 ¢

26 34 ,

The following information

explains how program sectors
are configured.

.Next track -11HEX =17DEC
.Next sector -0AHEX=10DEC
.Load TO address low byte=01
-Load TO address high byte=08

*Thus load address =$0801 or

2049 DECIMAL.

Program DATA (in HEX)

" "

.Continues to end (see next

sector and explanation#9
and #10)

.End byte of THIS sector.

(part of data)

.Indicates no next sector if

00, otherwise same as above

except 4 8 5 would be data
not addresses.

31 35 10.Last program byte.

206

— -

aislslnislanisislainisininialninle

A

aieisiniolaleialalaimln

PN NN NN NS NN

NN NN N PN SN NN N NN NN NSNS S

MOMENTARY
CONTACT N.O.

APPENDIX E
RESET SWITCH

TACK SOLDER WIRES HERE

OUTPUT PORT TOP VIEW

--INSTALLATION INSTRUCTIONS --

A Reset switch is useful for breakiné out of
lockup conditions without erasing RAM data.

Tack salder two fine wires to OUTPUT PORT

pins 1 and 3. To keep solder from flowing
over the entire edge connector pad, you should
put a piece of masking tape over the pads,
exposing only the top end for soldering. The
switch can be mounted at any convenient
location where it is not likely to be
accidentally pushed. If the location you use
is not close to the port, loop the wires
through the ferrite donut to preserve EMI

shielding properties.

207

APPENDIX F
GCR INFORMATION

The normal binary information sent from the
computer to the disk is the binary equivalent of the
CBM ASCII. However when the information is to be stored
on a diskette, the DOS converts the CBM ASCII to
another format called Group Coded Recording (GCR). In
this process, the standard eight bit code has two extra
bits added to it. Thus the GCR equivalent of the ASCII
is a 10 bit number. When you load this GCR data into
RAM and view it, you are only seeing eight of the ten
bits at a time, so it is more difficult to analyze the
HEX GCR code. The other effect this has is that a 256
byte block actually takes about 320 8-bit locations on
the disk.

Following we have listed a GCR Sector Map, an
example printout of a GCR Sector Image, and a list
of the Disk drive memory locations that hold GCR header
images.

IMPORTANT DISK MEMORY LOCATIONS
HEADER IMAGES

Loc. BINARY DATA
$0016 Disk ID HI
$0017 Disk ID LO
$0018 Track

$0019 Sector

$001A Checksum
------ GCR DATA —=w---
$0024 Header block ID (HBID)
$0025 Checksum
$0026 Sector

$0027 Track

$0028 ID1
$002A IDe

1

PN NN NN NN NN N NN NSNS NN NS NS N N S N A A

APPENDIX F cont
GCR BYTE MAP FOR A SECTOR

BEGIN SECTOR
FF (5) Sync Bytes

52 Header block ID byte
XX (7) Header bytes

XX - Checksum

XX Sector

XX Track

XX ID1

XX Ine

55 (11) Gap bytes

55 1

FF (5) Sync Bytes

55 Data block ID Byte
XX (324) Data block bytes
XX DATA

Checksum

55 (7) Gap bytes

Next Sector starts here.

*Note: The end of track Gap contains several "AA" GCR
clear bytes.

209

APPENDIX F cont
GCR IMAGE EXAMPLE

2D 4B
D4 ES
2 4k 52
1 BS 2D
52 Dd

S ES 2D
LIRS S22 g

5 55

[4

D 1

ﬂ@SJ
Be 5

52 D4
zD 4B
4 BS
4B 52
ES 2D

B G2 D4
S 2D 4B ¢
52 D4 BES

4F 52
ES 2D

i«n

2D 4B

ES
52
2l
g

4E
B:‘

D
D4
4B

BES 2D
92 D4
2D 4B
iz BS
4E S

ES 2
52 D4
20 4B !
2 D4 ES
4k Sz
ES 2D
e Id

45
Bg
’D
D4
4B
ES

210

S2=HDR BLOCK ID

. 6400 |52| 6E ES 2D 72 58 DF 65 HEADER
548355 55 55 65 5 _ EADER GAP (55)
L EGIRSS 55 o° ; 33 SsYNC (FF or 7F) 55=Data
5415 32 SH D4 A3 AD EA 7C DD block ID
. 37 7S CE 75 SD ED 2B 4R DATA
. =2 B4 AD 2B 4A D2 B4 AS

. B 23 4R 52 94 AS 29 4A 52

. 4 AS 29 52 52 94 AS 29

. 2 SA D4 E9 C3 ER 7C DD

. v 7?5 CB 76 SD ED 2B 4R

B 2 B4 HD 2B 4R D2 B4 AS

. S 4R 32 94 AS 22 4A 52

. 4 AS 2% 52 52 94 RS 29
.ih4h4 32 9C D4 A7 CD EF 7R SC
.:a4ru 73 CE ?6 SF 27 3D D3

. B 3D 3? C3 F2 02 B4 AS

. S 4R 5 94 AS 29 4R 52

. 4 HS 29 49 52 34 RS 29

. 2 SC DS DY 35 D3 7C DD

. S ¢S CF ¥3 3D 297 BS OIS

. 3 7 B4 AD 2B 48 T2 B4 RS
CEdAZ 22 4R 52 34 AS 29 4R 52
CEdES 24 /S 29 57 52 24 AS 29
CE4E3 32 SR DY 37 C9 CF 73 5D
6408 37 4D CE ”P 3C F3 55 CD
25408 VS SC OB? 3% CF FC B4 RS
CE4DE 23 4R 52 “4 A3 22 4R 52
EADE 24 /S 29 S22 S2 24 AS 29
CedER 32 SH SS 27 33 09 PC LD
CE4EZ BFY A2 D2 P4 DD BT 2D F2
.:quu 02 B4 AD 2B 4A D2 B4 A3

. A 52 94 AS 29 4A 52 paTa
. 29 BB 52 34 AS 23

. Z DS 97 BR 55 7C E4

. LE 72 IC I7 ES FR

. =D 2B 47 D2 Bd RS

. 42 34 A5 23 4R Sz

. 23 49 52 94 AS 29

. DS 27 52 CB 7C DE

.] CE 74 DD BD 2B 4A

. D’ Ed HD 2B 4R D2 E4 RS

. 822 4R 52 34 HS 29 4A 52

. 5 ‘:’4 HJ ¢.. a57 '5-_ 97]jq

FORMATTED ONLY

~

~-

R N T - — - -

-~

AAAAAANAAASAAAAAAAAAAAAAAAAAAAANAAAAAAANAAA

alalalalalialalalelalalete Ve le Ve N N N Ve N f o Y lalalalalatalalaiatiala il talatela te

APPENDIX G

PRICE LIST
884-1284

dokdokieok C-B4PRODUCTS siesiedksdesdesiesiodk

PART# DESCRIPTION PRICE(US)
SPH-64 Software Protection Handbook for C-64 $19.95
PPK-1 PSIPACK disk of SPH-64 programs. (Instructions in

SPHE4 only) $16.95
SPH-B4-D| SPH-64 book and PPK-1 disk combination. $29.95
AMA-2 Romulator for C-64 (requires 8K or 16K Vic .

compatible AAM expander) $339.95
AS-2 16KRAM switch. (see text) (kit) $9.95
SC-1 Super Clone Plug kit. (VIC & 64) $9.95
TK-1 Tapeworm Kit. All parts, PC 8§ inst.(VIC & B4) $19.95
Cs-1 Reset switch Kit. (VIC & 64) $6.95

kakddkkk VIC 8§ Misc PRODUCTS ek

SPH-20 Software Protection Handbook for the VIC $9.95
PT-1 Pirate's Tape of programs in SPH-20 $9.95
AMK-1 Romulator, VIC version (kit) $19.95
PA-1 Protection Arsenal for VIC 20. Pirates Tape,

Tapeworm Kit, Vic RAomulator, Super Clone kit. $49.95
SHIRT "Software Pirates" T-Shirt White Skull and

Crossbones on jet-black Shirt. (S-M-L) $9.95
MON-1 ""SUPERMON" Disk Can be used in place of

Monitor$8000. See Appendix B, S.00

*Shipping-- add 10% to order total. ($5.00
maximum)

*0Overseas Airmail-- add $6.00 Orders including
SPH-64 or many items, add $10.00

*Canada-- allow for current exchange rate or
obtain money order in US dollars.

%% If not available at your local dealer, you may
order directly from:

PSIDAC Products Div.
7326 N. Atlantic
Portland, OR 97217

Prices subject to change without notice.

211

APPENDIX H
INTERRUPTS

At roughly 1/60 second intervals, the C-64 takes a
"time out" from the user program to do some of its own
internal housekeeping. This is the "hardware interrupt”
cycle which is a normal part of computer systems. Since
it is automatic by nature, the user need not worry
about it for normal purposes. The user CAN take
advantage of it for his own routines. The limitation is
that the routines should be short and in machine
language.

A control zone vector at $0314 and $0315 holds the
address that tells where the routines to be executed
during the interrupt are. This value is normally $EA31.
You can write a routine wherever convenient and change
the value at $0314 and $0315 to point to your new
routine. Remember that the 64 still needs to do its
own routines; so at the END of your routine you must
have a JMP $EA31 so that the normal housekeeping will
get done.

*** LIMITED WARRANTY **¥*

The PSIPACK diskette is guaranteed only to be free
of defects in material and to 1load on a Commodore 64
computer from a Commodore 1541 disk drive.

PERIOD: This coverage extends for 30 days from the
date of purchase.

LIMITATIONS: No guarantee can be made concerning
its application. Changes made by Commodore to the Disk
Operating System ROM may defeat or invalidate functions
of the programs we have provided. Neither PSIDAC nor
any of its authorized distributors may assume any
liability for incidental or consequential damages which
occur through use of this product or to damages caused
by misuse or abuse.

REMEDY: PSIDAC will replace a diskette only if it
is found to be defective in materials, workmanship, or
recording and only if returned within the 30 day
warranty period. PSIDAC will not replace diskettes
which will not 1load due to misaligned heads on the
users equipment.

212

P N Y e L Ll la e e e lalala lala lalalalaialaiatalaiatalalaialalalaiatalale

THIRD EDITION ADDITIONS

The following procedures work with Dbiskpicker to
accomplish additional error writing capabilities.
CREATE ERROR #27
Places error 27 on all sectors of desired track.

1. Load "1CON HDR",08 through monitor mode of Diskpicker.

2. Load "WRITE HDR",08 through monitor mode. Then G C020

3. Put object diskette in drive.

4. Select 6 from main menu and enter track # and scctor #
desired to be errored. *If sector desired is in doubt, use
sector #1

5. Select-3 from main menu.

Start Addr 0300

End Addr O031F

Buff Addr 5300
6. Select 4 from main menu. Entry addr 0300.
7. Select 3 from main menu.

Start Addr 0300

End Addr O036F

Buff Addr 3300

8. Select 5 from main menu Job choice= 224. For execute
start addr, select 1 =(0300)

9. For "Multi Sector Y/N", select Y.

10. For HDR#1l, use track# to be errored.
TO CHECK ERROR 27

1. Select 5 from main menu. Job choice = 128.

2. For "Multi Sector Y/N", select Y.

3. For HDR#1 use track # just errored in above procedure.
* Sectors should read "Checksum Error In leader"

For more 27 crrors repeat starting at step 4.

213

CREATE ERROR 29
Places "29" error on all sectors of desired track.

1. Load "CON HDR" through monitor mode of Diskpicker.

2. Load "WRITE HDR",08 through monitor mode. Then type G
C020 [RETURN]

3. Put object diskette in drive.

4. Select 6 from main menu and enter track# and sector#
desired to error. *If in doubt, use sector #1.

5. Select 1 from main menu.
Start Addr 0016
End Addr OO01B
Buff Addr 6016
6. Dump memory locations 6016-601B from monitor mode.

7. Change memory locations $6016 and $6017 to the Hex value
of the desired ID#s. *Refer to appendix F.

8. Select 3 from main menu
Start Addr 0016
End Addr 001B
Buff Addr 6016
9. Select 3 from main menu
Start Addr 0300
End Addr O031F
Buff Addr 5300
10. Select 4 from main menu, Entry addr 0300
11. Select 3 from main menu
Start Addr 0300
End Addr O036F
Buff Addr 3300

12. Select 5 from main menu. Job choice=224. For execute
start addr select 1=(0300).

13. For Multi Sector Y/N, select Y.
14. For HdAr#1l use track# to be errored.

TO CHECK ERROR 29

1. Select 5 from main menu. Job choice = 128.

2., For Multi Sector Y/N, select Y.

214

alalalalalsialalalalatalatatalotaleYatolatalatotale

e N2t s e

AAAAAAAA A

-

]
|

P Y e e e L e T T Y T ta e et ta e Ve ta Y Yata Yata e ke e latalaialake

3. For HDR#] use track # just errored.
* Sectors should read "DISK ID MISMATCH®
* For more 29 Errors, repeat procedure from step 4.

ASSIGN ILLEGAL SECTOR #"

This procedure will substitute an illegal sector #
onto the diskette in place of a legal one. The illegal
sector can be read using the Job Que - menu option 5.
Whenever a header not found error is encountered, make sure
that illegal sectoring has not been used. This is done by
loading a sector using the Job Que read function to see if
the sector can be found in the illegal ranges specified in
the table following step 7 of this procedurec.

1. Load "CON HDR" through monitor mode of Dbiskpicker.
2. Load "WRITE HDR" through monitor mode.
3. DPut object diskette in drive.

4. Select 6 from main menu and enter track# and sector #
desired to be changed to illegal value.

5. Select 1 from main menu,
Start Addr 0016
End Addr 001B
Buff Addr 6016

6. View memory locations 6016-601B from monitor mode. Refer
to appendix F GCR info to identify byte function.

7. Change data at memory location $6019 to hex value of
sector # you want to substitute for sector # chosen in step

4. 'The range of acceptable illegal sectors are:
‘’RACKS LEGAL SECTORS ILLEGAL SECTORS
—————————— DEC. HEX
1-17 0-20 21-25 15-19
18-24 0-18 19-23 13-17
25-30 0-17 18-22 12-16
31-35 0-16 17-21 11-15

8. Select 3 from main menu
Start Addr 0016
End Addr 001B
Buff Addr 6016

9. Select 3 from main menu
Start Addr 0300
Fnd Addr 031F
Buff Addr 5300

10. Select 4 from main menu. Entry Addr 0300.

11. Select 3 from main menu
Start Addr 0300
End Addr O0O36F
Butf Addr 3300

215

12. Select 5 from main menu. Job choice =224. For Execute
Start Addr, select 1 (0300)

13. For Multi Sector Y/N, select °'N'.

14. For HDR #1, use track # selected in step 6.

15. For HDR #2 Use one less than sector # selected in step 6.
("Wraparound" as in earlier procedures... ie. for sector 1
enter a 0)

TO CHECK ILLEGAL SECTOR NUMBER

1. Select 5 from main menu. Job choice= 128.

2. For Multi Sector Y/N, select 'N',

3. For HDR #1 use track # selected in step 6 above.

4., For HDR #2, use DECIMAL value of illegal sector number
you selected in step 7.

5. Even though it is an illegal value, the DOS should find
the sector and load the data into the disk buffer. The
sector selected in step 4 is now re-assigned to an illegal
value. This can be verified by repeating check procedure
steps 1-3 with a 'Y' for Multi sector question, step 2.
With a little imagination, this can be used for protecting
your own programs quite effectively.

SYNC ONLY
Phis process will cover any desired track with GCR
FF's for the purpose of locking up most current whole disk
copy programs. By using this routine on several unused
tracks, especially the lower numbered ones, you can help
protect your own software.
1. Load and Run Diskpicker.

2. Select menu option 2, printer choice 'N'.

3. Input L"SYNC ONLY",08 to load machine routine. After
load is done, Type G C020

4. Place diskette to be errored into drive.
5. Select menu option 7.
6. Select menu option 3.

Start Addr 0300

End Addr O034F

Buff Addr 3300

7. After data transfer to disk, select menu option 5.

8. Input Job choice 224. Select execute address 1 (0300).

216

alslale

RPN ~ -

~

)

ANAAAAAAAANAAAANCAAAAAAA A

SINISIGINLY

- N - o~

alalalstelalelslale

W

alalalalalalalalalala el et el ala talata fala lalia e la e lala ala e kalalalnialake:

9. For Multi sector Y/N, select 'N'.
10. For Header #1, input track # to be errored.
11. For header #2, input sector #O0.

12. Repeat procedure steps 7 through 10 for additional sync
only errors.

13. To test your errors select option 5. Job Que execute
addr 128.

14. For Multi Sector Y/N, select 'N'.
15. For Header #1, enter track

with error.
16. For Header #2, enter sector #O0.

17. If everything went right, the disk will lock up and
continue to look for the sector you selected.

18. The only way to escape this error is to open the drive
door until a sync not found error shows on the monitor.

ONE TRACK FORMAT

This routine will reformat a single track. Can be used
to repair any whole track error such as 22, 27, 29, Sync
only, Multi-No Header. This routine can also be used to
create 29 errors on a track.

** You will need a reset switch as described to
facilitate the use of this procedure.

1. Load "1TRKFMT",08 through the monitor mode of diskpicker.
Then type G C020

2. Put object diskette in drive.
3. Select 7 from main menu.

4, Select 2 from main menu and change data in memory
locations $3312 (ID HI) and $3313 (ID LOW) to ID#s you
want. IDs different than the one the disk was formatted
with (False ID) will reformat the track to produce a 29
error. Correct ID#s (same as disk formatted ID) will
provide normal reformat. See appendix A column 1 for the
HEX values to use for ID characters of your choice. ie. the
hex codes for an ID of "VN"=56 4E. (56 is ID HI and 4E is
ID LOW)

When done, enter G C020

5. Select menu option 3.
Start Addr 0300
End Addr 0315
Buff Addr 3300)

217

6. Select menu option 5. Job choice = 224. For execute addr,
select 1 (0300).

7. For Multi Sector Y/N, choose 'N'.
8. For HDR #1 use track desired to be reformatted.
9. For HDR #2 use sector O.

10. Wait about 5 seconds then press computer reset. (non
critical time).

11. Type in SYS49184 then [RETURN].

12. Select menu option 7, if disk LED lamp flashes, repeat
this step.

TO CHECK
1. Select menu option 5. Job choice=128.
2. For Multi Sector Y/N, choose 'Y',
3. For HDR #1, select track number just reformatted.
4. Refer to the error codes returned on your monitor which
indicate result of your attempts.
DETERMINING ID NUMBERS

This process will allow you to find out the Hex value
of ID#s on specific tracks and sectors of the disk.

1. Assuming Diskpicker is loaded, put object diskette in
drive.

2. Select 7 from main menu.

3. Select 6 from main menu, input Track # desired, Input
Sector # desired.

4. Select 1 from main menu.
Start Addr 0012
End Addr OO1F
Buff Addr 6012

5. Select 2 from menu and interrogate memory locations 6012-
6018

MEMORY LOCATION DEFINITIONS

DISK ADDR BUFF ADDR

$0012 $6012= Disk ID HI

$0013 $6013= Disk ID LOW

$0016 $6016= Sector ID HI

$0017 $6017= Sector ID LOW

$0018 $6018= Track #

$0019 $6019= Sector #

$001A $601A= HDR Checksum
218

\

I lalatateinintstelsIntnlotalatelstalelatalatalelnlsiniatetatatelatala tatatota Yo tate

-~ e

- RN

,

el lalalalalale lataletalalalalalala tala e lnia lnle Inla taiatalalata e tate Fa Yo Yo Ve

1.
2.
3.

4.

TRACK CHECK

The track check program was designed to provide the
following information for full and half tracks. -

Disk master ID in Hex.

Actual track found in each physical track location.
Header ID#s in hex for each physical track location.
Status of error for each physical track location.

To operate; 1load and:-run "TRACK CHECK". Follow the
screen prompts to provide your choice of options. P-Trk
data returns the physical track called for. D-Trk returns
the actual track found in any physical track location. In
some forms of protection the actual track found will be
different than the normal track number designed to be in
that location. IDH and IDL return the actual header ID#s
found in the physical track location. If you choose the
half track option the data returned may or may not be
reliable because normal track widths often overlap the half
track areas. This program will not return valid data for
illegal tracks having abnormal bit densities. If an
abnormal bit density exists on a particular physical track
location, it will show up as a header not found error or
some other erratic non repeatable error.

The only commercial program diskettes we have found
using half track or bit density errors have been on highly
protected copy programs written to run on 1541 drives only.
This makes these programs incompatible on other so called
"Commodore compatible" drives. We have found some
commercial disks with more than one track 35. Track Check
will prove useful for most present day commercial programs.

FORMATTING ILLEGAL TRACKS

This procedure will format a new illegal track onto
the diskette in place of an existing legal track. This
process can also be accomplished in between tracks known as
half tracks. For example: Track 34 could be reformatted as
a track 35 resulting in two track 34s. Likewise, a physical
location of 29.5 could be reformatted as a track 33 etc.

It is best not to reformat a physical track location
with format data containing more sectors than will fit in
that location. To reformat physical track 35 as a track 1
would present a problem becapse track 1 format data
contains too many sectors to fit into the physical track 35

219

location. It is possible to have illegal ID#s on the
illegally formatted tracks.

An effective protection method can be wutilized by
formatting higher numbered track format data onto lower
physical track locations. This makes these tracks
unreadable under normal circumstances because the data will
be formatted at a lower than normal bit density rate for
that physical track. Disk memory location $1C00 bits 5 & 6
control the bit density rate.

BIT DENSITY CONTROL TABLE

TRACK BITS/SEC $1co0
Bit 6 Bit 5
1-17 307,692.31 1 1
18-24 285,714.29 1 0
25-30 266,666.67 0 1
31-35 250,000.00 0 0

To test this concept try the following procedure by
formatting physical track 1 with format data for track 35.
You will notice that you can find the headers etc. using
the check procedure but you will not be able to read
headers/data from track 1 using the T/S analyzer or Track
Check programs as the data density is not normal in this
location.

The theory of this method is to make the disk drive
memory think that it is set for track 35 and the read write
head over track 35 while in reality the read write head is
over track 1! This method also forces an illegal bit
density number into memory location $1CO0O0. By combining
illegal half tracks and illegal ID#s with illegal bit
densities you can achieve a high 1level of software
protection.

ILLEGAL TRACK FORMATTING

1. Load "1TRKFMT",08 through the monitor mode of Diskpicker.
Then G C020. :

2. Put object diskette in drive.

3. Select 6 from main menu and enter the track # you want to
use fo; format data. Then enter sector 0. This sets up the
DOS pointers and data variables in the drive memory.

4. Select menu option 1
Start Addr 0000
End Addr OOFF
Buff Addr 6000
‘This stores the Disk zero page in computer buffer.

5. Select menu option 9 Position read write head. Enter
your track choice for the physical track position you wish
to format with the format data determined in step 3.

6. Select menu option 3.

220

slalalelnlatalalslelatalolalatalstalatetatate il Yatolatatatetate!

R

’

einisiale

aYatele

\

et late lnialalalalalalalalalelalalaiainialatalelalalalata el alala et lalakalalaie

Start Addr 0000

End Addr OOFF

Buff Addr 6000

This step restores the drive page zero to contain data for
"jillegal" track selected in step 3.

7. Select 2 from main menu and change the data in memory
locations $3312(ID HI) and $3313 (ID LOW) to the ID#s you
want. Then enter G C020. (If in question about ID you want
to use see section on determining ID numbers or use Track
Check on original program if making backups.

8. Select menu option 3.
Start Addr 0300
End Addr 0315
Buff Addr 3300

9. Select menu option 5. Job Choice = 224. For execute Addr
select 1=(0300) . .

10. For multi sector Y/N select N.

11. For Hdr#l use the data track number selected in step 3.
12. For HDR#2 use sector O.

13. Wait about 5 seconds then press computer reset.

14. Type in SYS 49184 [RETURN]

15. Select menu option 9. For track select track 18.

16. Select menu option 7. If disk LED lamp flashes repeat
this step.

* EXAMPLE
If you chose track 32 for step 3 and track 34.5 for step 4,
then you will have two track #32s, one in physical track
position 32 and one in physical track postion 34.5.

TO CHECK

1. Select 6 from main menu and enter the track # that you

chose in step 3 of the format procedure. Then enter sector
0.

2. Select menu option 1
Start Addr 0000
End Addr OOFF
Buff Addr 6000

3. Select menu option 9 Position read write head. Enter the
physical track position you selected in .step 4 of the
format procedure.

4, Select menu option 3.
Start Addr 0000
End Addr OOFF
Buff Addr 6000

221

-

6. For Multi

7. For header i1

Soctor Y/N Select Y.

5. Select menu option 5.

select
this check procedurce.

Job choice

the track

8. Refer Lo the error codes returned
resulls of your attempt.

you

used in step 1 of

on your monitor for the

9. Select menu option 9, For track select track 18.

10, Select menu option

this step.

3300
3303
3305
3307
330A
330¢
330K
3311

3314
3316
3318
331A
3318
331C
331F
3311
3321

3324

33206
3329

332A

3300
3302
3304
3307
3309
330¢
3301
3311

3015

7.

SYNC ONLY

AD
29
09
8D
A9

If disk LED lamp flashes, repeat

0c 1c
1F
co
oc 1c
FF
03 1c
FF
01 1cC
28
00
FE

69 F9

L'FRKFMT

AS
85

06
51
12 03
12
13 03
13
C7 FA

03 1c¢

222

LDA
AND
ORA

LDA
STA
LDA
STA
LbX
LDY
BVC
CLV
DFY
BNE
DEX
BNE
JSR

JMP
BRK
BRK

LDA
STA
LDA
STA
LDA
STA
JMP
BRK
NOP
NOP

BRK

STA

$1coc
#$1F
#$co
$1coc¢
#$FF
$1c03
#$FF
$1C01
#$28
#$00
$3318

$3318

$3318
$FEO00
#3501

$FO69

$06
$51
$0312
$12
$0313

$FACT

$1Cc03

;

alalaiolelnlnlnlnislainieininiainisialatalaialalalalnialalntiaia a el aLaalS A

e YV Ve Y e L R Ve Ve

N Y e T Y Y Y Y Y U Y Y W Y W Vo W Vo W Vo W

10 POKES3"39 11:POKES3281,11:P=4:D=8: HX$="0123456789ABCDEF "
12 OPEN1S5,8, 151'16“ CLos| E 5
15 PRINT®{SCH{YL} TRACK CHECK{LG} PSIDAC(C)84 VBN":FORTD=1T02000@:NEXT
28 CH$="NORM®:PRINT"{SC}WH}SELECT CHOICE' PRINT*{CD)(1) NORMAL TRACK CHECK"®
3a PRINT (LD}‘“) HALF TRACK CHECK{CDX*
48 I $: IFCH$="1" THENCH$="NORM"
50 IFFHS"°'THENLH$“HALF
108 PRINT"{CD>{WH}INSERT SOURCE DISK 1IN DRIVE":PRINT"PRESS F7*"
118 GETF7$: IFF7¢{) "{F7}"THEN11G
115 PR=8: INPUT"{CD}PRINTER Y/N®;YN$: IFYN$="Y"THENPR=1
128 INPUT °{CD)DISK NAME®;DN$
125 PRINT*{CD3}TRACK LOG FOR "DN$
izg 55251§T25N0PE"3~ :PRINTH4, " TRACK LOG FOR "DN$:PRINTH&4:CLOSES
156 PRINTH15, *M-R* CHRS'IS)CHR‘(G) GET#H15, MH$: MH=ASC (MH$+CHR$ ())
152 ¥X=MH:GOSURIZ008: MH$=D$¢
153 PRINTMIS,'M-R'CHRt(l?)CHRt(O) GETH#135,ML$:ML=ASC (ML$+CHR$ (@) : CLOSE15
158 ¥X=ML:GOSUBI009:ML$=Ds
166 PRINT*{CDXMASTER IDH = "MH$;ML$" IN HEX(CD)*
162 IFPR=1THENOPENG,P:PRINTH#4, “MARSTER IDH = "MH$:ML$" IN HEX":PRINTH4
165 PRINT*{CD¥P-TRK D-TRK IDH IDL STATUS{CD}"®
170 IFPR=1THEN:PRINTH4,"P-TRK D-TRK 1IDH IDL STATUS":PRINTH#4:CLOSE4
172 IFCH$="HALF * THENGOSUBSGE :
175 FORTR=1TC042
182 IFCth‘HALF'THENGOSUBQBG GOSUB760
183 IFCH$="NGRM® THENGQSUB268: GOSUBZTS
185 NEXT: IFCH$="HALF " THENGOSUBSB@
198 CLOSE1S: RUN
200 OPEM15.D,1
2@5 PRINTH1S, "M -u CHR®$ {2¢) CHR$ (@) CHR$ (1) CHR$ (&)
206 PRINTH1S, *M-W"CHR$ (22) CHR¢ (8) CHR$ (1) CHR$ (@)
207 PRINTH1S. *M-W"CHR$ (23) CHR$ (@) CHR$ (1) CHR$ (0)
210 PRINTHIS.'M-N'CHR%(A)CHRS(B)CHRQ(i)CHRQCTR)
220 PRINTN1S5. "M-W°CHR$ (7) CHR$ (@) CHR$ (1) CHR$:@)
230 PRINTH1S, 'M-U'PHRQ(B)CHRS(G)CHRs(1)CHR$(176)
260 PRINTH15. "M-R"CHR$(@)CHRS
250 GETNIS AS: (-QSC(R$+CHR$(B)) IFX) 127 THEN248
254 OP$=" ":IFX=3THENOP$="NO SYNC FOUND*
258 IFX=:THENOP$='N0 HDR FOUND*
258 IFX=9THENOP$="HDR CHKSUM ERROR®
260 PRINTH#1S, "M-R*CHR$ (24) CHR$ (@) : GET#1S5,CT$: CT=ASC (CT$+CHRS (@))
263 PRINTH1S, "M-R*"CHR$ (22) CHR$ (@) : GETH15, IH$: IH=ASC (IH$+CHR$ (@))
248 X=IH:GOSLIB3000: IH$=D%
270 PRINTH1S. *M-R"CHR$ (23) CHR$ (@) : GETH15, IL$: IL=ASC (IL$+CHR$ (@) 3 :CLOSE15
272 X=IL:GOSUR3009: IL$=0%
275 IFCT (X @ANDCT <> TRTHENOP$="ILLEGAL TRACK"
280 RETURH
295 PRINTTR: TAB(4): CT; TRB(13) 5 IH$: TAB(17) 5 IL$; TAB{(22) : OP$
283 IFIL=9ANDIH=BTHEN3@8
3@5 IFIL <YMLORIH{>MHTHENPRINT® * % % % % % BAD IDH * % % % % *¥{CD}":QK=1
368 IFPR=1THENGOSUBR16/8
310 RETURN
588 QPEM1S,[C, 15
51@ PRINTH15, "M-R"CHR$ (@) CHR$123)
512 GETHLS, £%:¥=ASC (X$+CHRS (8) }
515 RI=XAND3:BI=BI+1:BI=BIAND3:HP={XAND252)O0RR1
g%g gg%g;gisy'H—U'”HR%fB)CHR$(“B)CHR$(1)CHR$(HP) CLOSELS
780 PRINTTR"{CL>.53";TAB{6):CT: TAB(13): IH$; TAB(17); IL$; TAR(22) ; OP$
716 IFIL=8ANDIH=9THEN718
715 IFIL<3MLORIH () MHTHENPRINT® # % % % % ¥ BAD IDH % * x % * %{CD>":0K=1
7i8 IFPR—ITHENGOSUSZBBB
728 PETURN
1899 GPEM4,F
1810 PRINTHe.TR; CHR$(16) *@8°CT; CHR$ (16) 14 IH$; CHR$(16) "18" ILt,CHRt(lé)'“4 OPs$
1820 IFCK=1THENCK=D:PRINTHS, " % % % % % BAD IDH # % % % % »°
163@ CLOSE4:FETURN
20680 OPENS. P
2010 PRINTH4.TR".S"CHR$(146) "@8"CT: CHRS (16) "14"IH$; CHR$ (16) "18°ILS$;
2812 PRIMNTH4,CHR$ (14) "24°CP¢
20268 IFQOK=1THENOK=OG:PRINTH#4,® % % # % % % BAD IDH * % % % % »*
29370 CLOSE4:RETURN
3066 D$=" *:D1=INT{X/16):08%=D$+MID$ (HX$,D1+1,1)
3319 D2=INT (¥-14%D1} : D$=D$+MIDS (HX$,D2+1, 1) RETURN

223

224

\

—_—

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA‘A‘AAAAAAAA/

ABOUT THE AUTHORS

Vie Numbenrsa and David Thom have been
involved in «a wgnkéng asroclation Lon
oven seven yeana. /ﬁey fonmed PSIDAC asr a
pantnenaﬁép to deve[op and manket
electronic devicea and Aoftwane.

Vie Numbenra haxr an extenalve
éackgnound in electronica. fHe hanr 15
yeana of expentence (n cuastom deaégned
automatic teat ayatems wused fonrn fault

analysis at a aval weapons teating
faciiity.

David Thom har been involved with
app[icatéona of mLCROPROCCAAORA fon
electro-mechanical Agatema control as
well as video gamenx. Mr. Thom alao
senved an éngéneendn(MQnagem foa
Windmildda [ntennational 5&ven4d{éed oven

a two yean peniod.

Since thein annsociation, Numbensr and
lhom have been involved in numerouas
industnial and commencial projecta. [hom
and Numbens headed an englneening team (n
deaignéng @ micropnrocesiron contno[ien_%om
a 150Kl wind electnical genenatonr. /Aey
have alsro coopeaated in deALgnLnQ
computem&ged adventiaéng dLApLagA ar well

ar producing and sellin noducts fon the
V1cC20 and £-64. i f

Aftem Aucceaafu[[manrketin a
ﬁandéooé and kita foa the VIC-20, Numbenra
and Thom decided to continue with a monre
aenioun and in deptﬁ Atudy on the C-64.
Thia book isr the pnoduct 0{ that goa[.

THE
SOF TWARE
PROTECTION
HANDBOOK
For the C-64

CONTRARY TO POPULAR BELIEF, WHEN YOU BUY

SOFTWARE, YOU OWN MORE THAN JUST THE

LIGHT RAYS FROM YOUR TV!

IT IS TIME TJO DEFROCK THE WIZARDS BYF
RELEASING [INFORMATION ON THE "BLACK ARTS"

OF PROTECTION. YOU NO [ONGER NEED SEEK
OUT THE CRUMBS OF INFORMATION DOLED OUT
3Y THE LOCAL WIZARD OR HINTED AT IN THE
MAGAZINES.

THIS MANUAL WILL HELP YOU "BLOW THE LOCKS
OFF!" PROTECTED SOFTWARE! THE SOF TWARE
PROTECTION HANDBOOK LETS YOU KNOW WHERE
You STAND LEGALLY AND PROVIDES
INFORMATION ON PROTECTION TECHNIQUES AND
BREAKING FOR EACH CATEGORY OF SOFTWARE;
DISKS, CARTRIDGES, AND TAPES. THIS MANUAL
ALSO GIVES THE LISTINGS AND PROCEDURES

FOR ELEVEN PROTECT ION ANALYSIS AND

BREAKING TOOLS.

THE REFERENCE VALUE ALONE WILL KEEP YOU
TURNING BACK TO THIS BOOK FOR AS LONG AS
YOU OWN YOUR COMPUTER. YOUR BIGGEST
PROBLEM WILL BE IN KEEPING YOUR COMPUT ING
FRIENDS FROM BORROWING YOUR COPY OF THIS
SOOKR! '

A PSIDAC PUBLICAT ION
7326 N. ATLANTIC
PORTLAND, OREGON
97217

~

L~ ~

o

®

