Not for resale

The Hitch'hiker’ms
Guide to GEOS

A Potpourri of Technical Programming Notes

(provided “as is” without support)

April 1988

Copyright ©1988, 1989 Berkeley Softworks.

This is a copyrighted work and is not in the public domain. However, you méy use, copy, and
distribute this document without fee, provided you do the following:

* You display this page prominently in all copiés of this work.

* You provide copies of this work free of charge or charge only a distribution fee for the
physical act of transferring a copy.

Please distribute copies of this work as widely as possible.

Note: Berkeley Softworks makes no representations about the suitability of this work for any
purpose. It is provided “as is” without warranty or support of any kind.

BERKELEY SOFTWORKS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
WORK, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL BERKELEY SOFTWORKS BE LIABLE FOR ANY
SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTIONS, ARISING
-OUT OF OR IN CONNECTION WITH THE USE OF THIS WORK.

Introduction (second edit / MGL) 1/13/88 12:22 PM

Introduction

In 1986, Berkeley Softworks pioneered GEOS — the Graphic Environment Operating System —
for the Commodore 64. GEOS dffered the power of an icon/windowing operating system, once
thought possible”.on the likes of Apple's Macintosh, to one of the world's lowest priced
microcomputers. The computing community quickly recognized this innovation as significant: the
Software Publisher's Association (SPA) gave GEOS a Technical Achievement Award and
Commodore Business Machines endorsed it as the official operating system for the Commodore
64. Some industry critics even said it brought the Commodore 64 out of obsolescence. Since that
time, GEOS has been ported to the Commodore 128 and, most recently, to the Apple II family of
computers. Boasting an installed base approaching one-million units, GEOS not only promises to
be around for some time, but to grow into the operating system for low-end computers

-

re

Why Develop GEOS Applications

GEOS provides an environment for programmers and software companies to quickly and
efficiently develop sophisticated applications. GEOS insulates the programmer from the frustrating
details and dirty work usually associated with application development. By using the GEOS
facilities for disk file handling, screen graphics, menus, icons, dialog boxes, printer and input
device support, the application can concentrate on doing what it does best, applying itself to the
task at hand, using the GEOS system resources, routines, and user-interface facilities to both speed
program development and build better programs. : : :

Consistent User-interface

A very large portion of GEOS is devoted to supporting the user-interface. The GEOS interface has
proven popular with thousands of users, and an application that takes advantage of this will likely
be well received because the users will already be familiar with the basic program operation. Once
a user has learned to operate geoWrite, for example, it is a smooth transition to another application
such as geoCalc.

Large Installed Base and Portability

GEOS is currently available for three machines: the Commodore 64, the Commodore 128, and the
Apple I1. There are hundreds of thousands of owners who use GEOS on these machines and there
is a correspondingly large demand for follow-on products. With careful programming, an
application can be developed to run under all available system configurations with only minor
changes. Berkeley Softworks plans to port GEOS to other 6502-based microcomputers, thereby
further increasing the user base. As the popularity of GEOS grows, so does the market for your
product. ‘

Application Integration _

- GEOS offers a flexible cut and paste facility for text and graphic images. These photo scraps and
text scraps allow applications to share data: a word processor can use graphics from a paint
program and a graph and charting application can use data from a spreadsheet. The scrap format is
standard and allows applications from different manufacturers to exchange data. Berkeley
Softworks is currently developing a second-generation scrap facility for object-oriented graphics
such as those used in desktop publishing and CAD programs.

Introduction (second edit / MGL) 1/13/88 12:22 PM

Input and Output Technology
GEOS supports the concept of a device driver. A device driver is a small program Wthh co-resides
with the GEOS Kemal and communicates with I/O devices. Device drivers translates data and
parameters from a generalized format that GEOS understands into a format relevant to the specific
device. GEOS has input drivers for mice, joysticks, light pens, and other input devices, printer
drivers for text and graphic output devices (including laser printers), and disk drivers for storage
devices such as floppy disk drives, hard disks, and RAM expansion units (RAMdisks). As new
devices become available, it is merely necessary to write a driver to support it.

What Exactly is GEOS?

First and foremost, GEOS is an operating system: a unified means for an application to interact
with peripherals and system resources. GEOS is also an environment — specifically, a graphics-
based user-interface environment offering a standard library of routines and visual-based controls,
such as menus and icons. And finally, GEOS is a programmer's toolbox, providing routines for
double-precision integer math, random-number generation, and memory manipulation..

GEOS as a general term can represent full range of concepts — an operating system, a
user environment, the deskTop, a group of integrated applications — but in this book it
usually refers specifically to the GEOS Kernal, the resident portion of the operating
system with which the application deals with.

GEOS As an Operating System
College textbook writers are forever coming up with splendid new metaphors to descnbc operating
systems. But as the coach of a baseball team or the governor of California, an operating system has
the same basic function: it is the manager of a computer, providing facilities for controlling the
- system while isolating the application from the underlying hardware. An operating system allows
the application to function in higher-level abstract terms such as "load a file into memory" rather
than "let a bit rotate into the serial I/O shift register and send an acknowledge signal." The -
operating system will handle the laborious tasks of reading disk files, moving the mouse pointer,
and printing to the printer.

GEOS provides the following basic operating system functions:

+ Complete management of system initialization, multiple RAM banks, interrupt
processing, keyboard/joystick/mouse input, as well as an application environment that
supports dynamic overlays for programs larger than available memory, desk
accessories, and the ability to launch other applications.

* A sophisticated disk file system that supports multiple drives, fast disk I/O, and RAM
disks.

+ Time-based processes. allowing a limited form of multitasking within an application.

« Printer output support, offering a unified way to deal with a wide variety of printers.

Introduction (second edit / MGL) 1/13/88 12:22 PM

GEOS As a Graphic and User-Interface Environment

Interactive graphic interfaces have become the norm for modern day productivity. GEOS provides
a services for placing lines, rectangles, and images on the screen, as well as handling menus,
icons, and dialog boxes. Using the GEOS graphic elements make applications look better and
easier to use.

GEOS provides the following graphic and user-interface functions:
¢ Multi-level dynamic menus which can be placed anywhere on the screen. GEOS
automatically handles the user's interaction with the menus without permanently -
disrupting the display.

» Icons — graphic pictures the user can click on to perform some function.

» Complete dialog box library offering a standard set of dialog boxes (such as the file-
selector) ready for use. The application may also define its own custom dialog boxes.

» A library of graphic primitives for drawing points, lines, patterned rectangles, and
pasting photo scraps from programs like geoPaint.

* Sprite support. (Sprites are small graphic images which overlay the display screen and
can be moved easily. The mouse pointer, for example, is a sprite.)

A secondary screen buffer for undo operations.

GEOS As a Programmer's Toolbox

.GEOS also contains a large library of general support routines for math operations, string
manipulations, and other functions. This relieves the application programmer of the task of writing
and debugging common routines ("re-inventing the wheel" as it were).

GEOS provides the following support routines:

* Double-precision (two-byte) math: shifting, signed and unsigned multiplication and
division, random number generation, etc.

+ Copy and compare string operations.
* Memory functions for initializing, filling, clearing, and moving.

+ Miscellaneous routines for performing cyclic redundancy checks (CRC), initialization,
error handling, and machine-specific functions.

Development System Recommendations

There are many ways to develop GEOS applications. Berkeley Softworks, for example, uses a
UNIX™ based 6502 cross assembler and proprietary in-circuit emulators to design, test, and
debug GEOS applications. Most developer's, however, will find this method too costly or
~ impractical and will opt to develop directly on the target machines. Anticipating this, Berkeley

Introduction (second edit / MGL) 1/13/88 12:22 PM

Softworks has developed geoProgrammer, an assembler, linker, debugger package designed
specifically for building GEOS applications.

geoProgrammer

geoProgrammer is a sophlstlcated set of assembly language development tools designed
specifically for building GEOS applications. geoProgrammer is a scaled-down version of the
UNIX™ based development environment Berkeley Softworks actually uses to develop GEOS
programs. In fact, nearly all the functionality of our microPORT™ system has been preserved in
the conversion to the GEOS environment. All sample source code, equates, and examples in this
book are designed for uses with geoProgrammer. ' :

The geoProgrammer development system consists of three major components:

geoAssembler, the workhorse of the system, takes 6502 assembly language source code and
creates linkable object files. ,

» Reads source text from geoWrite documents; automatically converts graphic and icon
images into binary data.

* Recognizes standard MOS Technology 6502 assembly language mnemonics and
addressing modes.

+ Allows over 1,000 symbol, label, and equate definitions, each up to 20 characters long.

+ Full 16-bit expression evaluator allows any combmauon of anthrnetlc and logical
operations. :

» Supports local labels, as targets for branch instructions.
» Extensive macro facility with nested invocation and multiple arguments.
» Conditional assembly, memory segmentation, and space allocation directives.

* Generates relocatable object files with external definitions, encouraging modular
programming.

geoLinker takes object files created with geoAssembler and links them together, resolving all
cross-references and generating a runable GEOS application file.

» Accepts a link command file created with geoWrite. _

* Creates all GEOS applications types (sequential, desk accessory, and VLIR), allowing a
customized header block and file icon. geoLinker will also create standard Commodore
applications which do not require GEOS to run.

* Resolves external definitions and cross-refcrences, SuUpports complex expression
evaluation at link-time. o

* Allows over 1,700 unique, externally referenced symbols. , N)

* Supports VLIR overlay modules.

Introduction (second edit / MGL) 1/13/88 12:22 PM

geoDebugger allows you to interactively track-down and eliminate bugs and errors in your GEOS
applications.

Resides with your application and maintains two independent displays: a graphlcs screen
for your application and a text screen for debugging.

Automatically takes advantage of a RAM-expansion unit, allowing you to debug
applications which use all of available program space.

Complete set of memory examination and modification commands, including memory
dump, fill, move, compare, and find. : :

Symbolic assembly and disassembly.

Supports up to eight conditional breakpoints.

Single-step, subroutine step, loop, next, and execute commands.

RESTORE key stops program execution and enters the debugger at any time.

Contains a full-featured macro programming language to automate multiple keystrokes
and customize the debugger command set.

Commodore 64
GEOS was first implemented on the Commodore 64, and currently there are more GEOS
applications for this system than the Apple II or the Commodore 128. The following is

recommended for developing under this environment:

L]

Commodore 64 or 64c computer.

Commodore 1351 mouse.

At least one 1541 or 1571 disk drive.
Commodore 1764 or 1751 RAM-expansion unit.
GEOS supported printer. '

The basic GEOS operating system (GEOS 64), version 1.3 or later which includes
geoWrite and geoPaint.

geoProgrammer for the Commodore 64.

- Commodore 128

The Commodore 128 may be the ideal environment for prototyping and developmg GEOS

applications because it can be used to create programs which run under GEOS 64 (in 64 emulation
mode) and GEOS 128. The 128 sports a larger memory capacity, and geoProgrammer takes
advantage of this extra space for symbol and macro tables. The following is recommended for
developing under this environment:

Introduction (second edit / MGL) ©1/13/88 12:22 PM

» Commodore 128 computer.

» Commodore 1351 mouse.

» Atleast one 1541 or 1571 disk drive.

» Commodore 1764 or 1751 RAM-expansion unit.
» GEOS supported printer.

» The basic GEOS operating system (GEOS 64), version 1.3 or later Wthh includes
geoWrite and geoPaint.

» The basic GEOS 128 operating system, version 1.3 or later which includes geoWrite
128 and geoPaint 128.

» geoProgrammer for the Commodore 128.

Apple 1I
The Apple II is the latest addition to the GEOS family. The following is recommended for
developing in this environment:

* Apple IIe, Ilc, or lgs computer.
» Apple Mouse card.

* At least one floppy disk drive.

* RAM card or hard disk.

» GEOS supported printer.

» The basic GEOS operating system (Apple GEOS), which includes gebWrite and
geoPaint.

» geoProgrammer for the Apple II.

Other Useful GEOS Applications
In addition to those applications listed above, you may find the following useful:

» GEOS Icon Editor for customizing you icons.

 Photo Manager and Text Manager for cutting and pasting text and graphics to and from
your geoProgrammer source code modulcs

-« Text Grabber for converting any 6502 source code ydu may have already written to
geoWrite.

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Graphic Routines

As the name GEOS (Graphics Environment Operating System) implies, screen graphics are central
to both the operating system and its applications. GEOS provides a number of graphic primitives
("primitive" because they are the basis of more complex objects) for drawing points, lines,
rectangles, and other objects, as well as displaying bitmap images such as those cut from geoPaint.
GEOS also provides graphic support routines for undoing regions, inverting areas, scrolling,.and
directly accessing the screen memory.

Drawing with the built-in GEOS routines increases program portability by making much of the
internal, machine-dependent screen architecture transparent to the application. When you draw a
line, for example, you merely supply the two endpoints. GEOS takes care of calculating the proper
pixel locations and modifying the screen memory. This allows an application to use the same code
to draw lines on machines with very different graphics hardware and spares the programmer from
dealing directly with screen memory.

Introduction to GEOS Graphics

If you look closely at a monitor or television screen, you will notice that the image is made up of
many small dots. These small dots, called pixels, can be either on or off and are represented in
memory by 1's and O's, respectively. A pixel with a value of one is considered ser and a pixel of
value zero is considered clear. This binary, or bitwise, representation of images is refered to as
bitmapped graphics, and a bitmap is a picture or image created in this way.

0 [[o o

oo

0011110000
0001110000
0001111000
0000111000
0000000000
0000000000
0000000000 .
0000000000
0000000000
0000000000

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Color

Although some hardware configurations support color graphics, GEOS assumes that the screen is
a monochromatic device; that is, GEOS only deals with one drawing color and one background
color. Typically, the drawing color is black, like ink and the background color is white, like a piece
of paper. Depending on the monitor being used and the Preference Manager settings, the actual
displayed colors may be different. We will refer to the color displayed by a zero-pixel as the
background color and the color displayed with a one-pixel as the drawing color. Applications that
support multiple drawing colors, such as the Commodore 64 version of geoPaint, must do so on
their own, bypassing GEOS (at the expense of portability) to provide multiple colors on the screen.

The GEOS Virtual Screen

The GEOS screen is often referred to as virtual screen, one whose layout and internal storage
characteristics exist independent of any underlying graphics hardware. For this reason, the GEOS
screen is fundamentally identical under all versions of the operating system.

The GEOS screen is a rectangular array of pixels arranged like a sheet of graph paper. Each pixel
on the screen has a corresponding (x,y) coordinate. The x-axis begins with zero and runs
horizontally (left to right) across the screen, and the y-axis begins with zero and runs vertically (top
to bottom) down the screen. The maximum x- and y-positions, because they differ from machine
to machine, are calculated by subtracting one from the GEOS constants SC_PIX_ WIDTH and
SC_PIX_HEIGHT.

(0,0) - - (SC_PIX_WIDTH-1, 0
Xincreasing
=
3 GEOS
2 SCREEN COORDINATES
g.
Y
(0, SC_PIX_HEIGHT-1) (SC_PIX_WIDTH-1, SC_PIX_HEIGHT-1)

Important: GEOS does no clipping or range-checking on coordinates passed to it. If you pass
it invalid data or coordinates, the results are unpredictable and will often crash the
application. '

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

GEOS 128 40/80-Column Support

Because applications that run under GEOS 128 may want to take advantage of both the 40- and 80-
column screen modes, the following conventions have been adopted for the screen width and
height constants:

* The following constants can be used to access the dimensions of the 40- or 80-column

screen specifically:
SC 40 WIDTH Pixel width of 40-column screen.
SC 40 HEIGHT Pixel height of 40-column screen.
SC 80 WIDTH | Pixel width of 80-column screen.
SC 80 HEIGHT - Pixel height of 80-column screen.

* If the application is designed to run under GEOS 128 only and not run under GEOS 64
(the C64 constant is set to $00 and the C128 constant is set to $01), then the standard
SC_PIX_WIDTH and SC_PIX_HEIGHT constants take on the following values:

SC PIX WIDTH Pixel width of 80-column screen.
SC PIX HEIGHT Pixel height of 80-column screen.

o If the application is designed to run under GEOS 64 and GEOS 128 (both the C64
constant and the C128 constant set to $01), then the standard SC_PIX_WIDTH and
SC_PIX_HEIGHT constants take on the following values:

SC PIX WIDTH Pixel width of 40-column screen.
S_CrPIX HEIGHT PixelEEht of 40-column screen.

This is because the application (typically) will be written with the 40-column screen in
mind. At runtime, the application can check to see which version of GEOS it is running
under and add doubling bits to the appropriate coordinate values so that the 40-column
coordinates will be normalized automatically when GEOS 128 is in 80-column mode.

An application can use the following subroutine to determine whether it is running under GEOS
128 or GEOS 64:

Lif (0)
tttt*i*t***i**ttt***it*t*t**t**tttt*t'**i***ttttittt*t'i****tt'**titt***t***t*tt
Checkl128:

Check for GEOS 128.

Pass:
nothing

Returns:
st minus flag set if running under GEOS 128,

Example usage:

jsr Checkl128 o)
bpl 108 signore if under GEOS 64

jsr DoDoubling ielse, patch x-coordinates with doubling bits
108:

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

*I‘t*ﬁtt*ﬁ*t**i*t***tt*i'l’*ﬁ*'ﬁ*i**i*“*i*"’**'*ti***!*****t*t**i**‘!i***tt*'ii*ti

.endif

Check128: .
lda #512 ; cl28Flag not guaranteed to be valid in version 1.2 and lower
cmp version ; first see if version <= 1.2
bpl 108 ; if so; branch and say C64. Note this is a signed comparison.
; (it WILL NOT work if GEOS goes beyond version $7f!)
’

lda cl28Flag ; else set minus based on high bit cl28Flag

108:
rts

When running under GEOS 128, the graphMode variable may be checked to determine whether
GEOS is in 40- or 80-column mode: ’ -

bit graphMode ; check 40/80 mode bits
bpl Cé64Mode ; branch if in 40-column mode
; else, handle as 80-column...

For more information, refer to "GEOS 128 X-poisition and Bitmap Doubling" in this chapter. Also
see NormalizeX in the Routine Reference Section.

Inclusive Dimensions

All dimensions and GEOS coordinates are inclusive: a line contains the endpoints which define it,
and a rectangle includes the lines that make up its sides. For example, a rectangle defined by an
upper-left corner of (10,10) and a lower-right corner of (20,20) would include the lines around its
perimeter defined by the points (10,10), (10,20), (20,10), and (20,20).

‘Linear Bitmap | . .

For the purpose of bitmap compaction and patterns, the GEOS screen is treated as a linear bitmap,
a contiguous block of bytes with each bit controlling an individual pixel. The bytes are lined up
end-to-end for each screen line: The high-order bit (bit 7) of each byte controls the leftmost pixel
and the low-order bit (bit 0) controls the rightmost pixel.

x-axis
.
P>
X,
@ byteO byte 1
Y
GEOS Virtual Screen

Keep in mind that this is a conceptual organization of the screen; the actual in-memory storage of
the screen and bitmap data may be very different. .

Dividing the Screen Into Cards
Many GEOS routines subdivide the GEOS virtual screen into 8x8-pixel blocks called cards. A card
is a two-dimensional unit of measurement eight pixels on each side. The first card begins in the

Yo

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

upper-left comner of the screen (0, 0) and extends to (7, 7). The next card is just to the right of the
first and extends from (8, 0) to (15, 7).

Cards are always aligned to eight pixel boundaries called card boundaries (pixel positions 0, 8, 16,
24, etc.). Aligning an object to a card boundary is called card alignment, and the position of an
object expressed in cards is called its card position. Pixel position (32, 72), for example, would
correspond to card position (4, 9) because 32/8 = 4 and 72/8 = 9). The card width of an object is
its width in cards, and the card height is its height in cards. An entire row of cards is called a
cardrow.

The card is a convenient unit of measurement because its dimensions, 8x8, which is a power of 2,
lend themselves to simple binary arithmetic. For example, converting a pixel position to a card
position is merely a matter shifting right three times.

Example:

t**ti**!******tttti****i**t**ti*t*t*'i*ti*t*i*‘*tit*i*'kttti*t**t*i*t*****t**ttit*
;MseToCardPos:
;converts current mouse positions to card position

.
’

;Pass: nothing
;Uses: MouseXPos, MouseYPos
;Returns: rOL mouse card x-position (byte)
H rOH mouse card y-position (byte)
;Destroys: a,x,y
H _ (mgl)
LA 2SS R AR R AR RS2SR X X222 R i i s 2 22 2 X2 2222222 X222 R 22 2" 2 2"
MseToCardPos:
php ; save current interrupt disable status
sei ; disable interrupts so mouseXPos doesn't change
MoveW MouseXPos,r0 ; copy mouse x-position to zp work reg (ro)
Plp ; reset interrupt status asap.
1dx #r0 ; divide x-position (r0) by 8
1dy #3 ; (shift right 3 times)
jsr DShiftRight ; this gives us the card x-position in rOL
lda MouseYPos ; get mouse y-position
1lsr a ; and shift right 3 times
1sr a ; which is a divide by 8
1sr a ; and gives us the card y-position in a
sta r0H ; set down card y-position
rts ; exit ’

Cards are also convenient because they map directly to the internal storage format of the
Commodore 40-column graphics screen. (Converting to other formats, such as the Commodore
128 80-column screen or the Apple II double hi-res screen, requires additional translation. This
translation is handled automatically by the GEOS graphics routines.)

Display Buffering

Normally the application has control of the screen. But when an itém such as a dialog box or a
menu is displayed, GEOS overwrites the screen. When the dialog box is removed or the menu is
retracted, GEOS needs to restore the portion of the screen it destroyed. For this purpose, GEOS

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

maintains a background screen buffer. Most of the time, the background buffer contains an exact
copy of the foreground screen (the screen that is displayed) because GEOS normally sends
graphics data to both screen buffers. When a temporary object is displayed, however, it is only
drawn to the foreground screen. Removing the object, or recovering the original area of the screen,
is then simply a matter of copying pixels from the background buffer to the foreground screen. The
GEOS dialog box and menu routines handle this sort of recovery automatically.

dispBufferOn

Usually the application will want to draw to both buffers so that GEOS can properly recover the
foreground screen after menus and dialog boxes. If graphics are only drawn to one buffer and a
menu is brought down or a dialog box is displayed, the subsequent recover may restore the wrong
data. : _

However, sometimes an application may want to limit drawing to only the foreground or
background screen buffer. GEOS graphics and text routines use the global variable
dispBufferOn to determine whether to draw to the foreground screen, the background buffer, or
both simultaneously. Bits 6 and 7 of dispBufferOn determine the writing and reading mode:

1 Lo)) I— / .

bit 7: i 1 — use foreground screen.
i 0 —do not use foreground screen.
bit 6: 1 — use background buffer.
0 — do not use background buffer.
bits 5-0: reserved for future use — should always be 0.

There are some constants which allow you to gain access to these bits:

ST_WR_FORE use foreground.
ST_WR_BACK use background.

. and they can be used in following manner:

;Use both foreground screen and background buffer (normal).
LoadB dispBufferOn, #(ST_WR_FORE | ST_WR_BACK)

;Use foreground screen only.
LoadB dispBufferOn, #ST_WR_FORE

;Use background buffer ohly.
LoadB dispBufferOn, #ST_WR_BACK

bits 6 and 7 of dispBufferOn are both zero, GEOS considers this an undefined
state and will not produce useful results. In most cases, the internal address calculations
will force your graphic objects to appear in the center of the drawing area where they
can do little harm. If the center line on the screen becomes garbled, dispBufferOn
probably contains a bad value.

Using dispBufferOn ’ A ;

Typically applications leave dispBufferOn set to draw to both screens, whereas most desk:
accessories will only draw to the foreground screen. In some situations, an application may want
to limit drawing to the foreground screen so that it may recover from the background buffer at a

later time. Internally this is what GEOS does when it opens a menu or dialog box: the object is

N

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

only drawn to the foreground screen, and when it needs to be erased, the original data is recovered
from the background buffer. dispBufferOn can also be used to pre-draw complex objects in the
background buffer (ST_WR_BACK) and make them instantly appear on the foreground screen
by doing a recover.]

An application must take special precautions.when using dispBufferOn to draw selectively to
one buffer or the other. For example, when GEOS automatically recovers from a menu or a dialog
box, it recovers the data from the background buffer. If the background buffer has not been
updated (the application has been drawing with the ST_WR_BACK bit cleared, for example),
then the menu or dialog may recover the wrong data.

Since dialog boxes are only displayed when the the application calls DoDIgBox and menus are
only opened while GEOS is in MainLoop, the application has some control over GEOS's
automatic recovering. The application can postpone displaying dialog boxes and returning to
MainLoop until the foreground screen and background buffer contain the same data. If an
application must return to MainLoop while the buffers contain different data (to let processes run,
for example), it can always disable menus by clearing the MENUON_BIT bit of mouseOn. The
menus may be reenabled again by restoring the MENUON_BIT bit of mouseON:

Example: 7
. HeAdben .
StopMenus:
MoveB mouseOn, oldMouseOn ; save current enable status for later
rmbf MENUON_BIT, mouseOn ; disable menus temporarily
rts ; exit,

RestartMenus:
. lda oldMouseOn
and # (%1 <<MENUON_BIT)

get old menu enable status
ignore all but menu bit

Se Se we N s

ora mouseOn restore old menu bit
sta mouseOn in current mouseOn byte
rts ¢ exit
oldMouseOn: .byte $00 ; temp save area for mouseOn variable

Using the Background Buffer as Extra Memory

Some applications are so starved for memory that they opt to use the background buffer for
program code or data. To do this, they must always keep the ST_WR_BACK bit of
dispBufferOn clear so that the background buffer is not corrupted with graphic data.

If you disable the background buffer, GEOS cannot automatically recover after menus and dialog
boxes. The application must provide its own routine for restoring the foreground screen. There is a
GEOS vector called RecoverVector, which normally points to the RecoverRectangle
routine. Whenever GEOS needs to recover from a menu, dialog box, or desk accessory, it sets up
parameters as if it were going to call RecoverRectangle and jsr's indirectly through the address
in RecoverVector. If the application is using the background buffer, it must place the address of
its own screen recover routine in RecoverVector. When GEOS needs to recover a portion of the
screen, it will jsr to the application's recover routine with the following register values describing
the rectangular area to recover: : v

r3 X1 — x-coordinate of upper-left (word).
r2L Y1 — y-coordinate of upper-left (byte).
rd4 X2 — x-coordinate of lower-rjght (word).
r2H Y2 — y-coordinate of lower-right (byte).

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

where (X1,Y1) is the upper-left corner and (X2,Y2) is the lower-right corner of the rectangular
area to recover. The rectangle's coordinates are inclusive. The application must then use these
values to restore the portion of the screen that lies within the rectangle's boundaries and return with
an rts. This recovery can be as simple as filling with a halftoned pattern or as involved as
redrawing graphic and text objects that fall within the rectangular recover area.

Most of the larger Berkeley Softworks GEOS applications use a technique called
saveFGlrecoverFG (short for "save foreground” and "recover background") to save and recover
the foreground screen when displaying menus and dialog boxes. Basically, saveFG will save a
rectangular subregion of the foreground screen to a special buffer just before GEOS displays a
menu or a dialog box. When GEOS tries to recover from the background buffer, recoverFG
restores the data from the special buffer. Although the size of the buffer varies from application to
application, it will seldom be larger than 5.5K (just large enough to hold the largest standard
dialog box).

Transferring data to and from the buffer is fairly straightforward. With the Commdore 40-column
screen, it is mostly a matter of calculating the proper address offsets and copying bytes. With the
GEOS 128 80-column screen, the process is complicated a bit because the bytes must be read from
the VDC chip's RAM. With Apple GEOS, the process is simplicity itself because there are two
routines for saving and restoring automatically: saveFG and recoverFG.

The real trick is knowing how to intercept the normal GEOS menu and dialog box drawing and
recovering mechanisms. Dialog boxes are the easiest because they are always called by the
_application. The program only needs to save the foreground screen area prior to calling
DoDIgBox. The size of the dialog box can be caculated from its table (be sure to account for any
shadow) and the foreground data can be copied into the saveFG buffer. When the dialog box is
finished, GEOS will jsr through RecoverVector. The application installs its own recoverFG
routine into RecoverVector and restores the foreground area from the saveFG buffer. The
GEOS dialog box recovery does have one quirk that concerns shadowed dialog boxes. GEOS
shadowed dialog boxes consists of two overlapping rectangular areas: the actual dialog box and the
slightly offset shadow rectangle. GEOS first calls through RecoverVector once for the region
bounded by the shadow box, then again for the region bounded by the dialog box. When saving
the foreground area, the entire dialog box region (the area bounded by the union of all eight corner
points) should be saved and a special flag should be set so that the area is only recovered once.
Under Apple GEOS, the recovery of dialog box shadows can be suppressed by setting
recoverOnce to a non-zero value. When recoverOnce is non-zero, GEOS only vectors through
RecoverVector once with the bounding rectangle of the dialog box. The application's recover
routine will need to compensate for the shadow box. For more information on dialog boxes, refer
to Chapter @DLG@. »

Saving the foreground area before a menu is displayed is a bit tougher because GEOS displays
menus at MainLoop, the application has little notice that a submenu is opening up. Fortunately,
there is a workaround: GEOS supports a special type of sub-menu called a dynamic sub-menu.
Just before a dynamic sub-menu opens, GEOS calls a subroutine whose address is stored in the
menu data structure. This opporunity can be used to save the foreground screen area before GEOS
draws the menu by calculating the bounding rectangle from the menu structure. When GEOS
recovers a menu, it calls through RecoverVector as it does with dialog boxes. With multiple
sub-menus, the menus are always recovered in the reverse order they were drawn. For more
information on menus, refer to Chapter @ICNMENU@

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Manual Imprinting and Recovering
Within an application, data can be moved between the foreground screen and background buffer
with GEOS routines that copy data to and from the two areas. Copying data from the foreground
screen to the background buffer is called imprinting, and copying data from the background buffer
to the foreground screen is called recovering. There are GEOS routines for imprinting and
recovering points, lines, and rectangular regions.

Some Possible dispBufferOn Complications

When drawing with both buffers enabled (with both foreground and background bits set in
dispBufferOn), GEOS requires that the foreground screen and the background buffer contain
exactly the same data. If they are different, the results of graphic operations may be unpredictable.
If you need to draw to the foreground screen and the background buffer when they contain
different data, you must perform the graphic operation once by writing only to the foreground
screen, and then a second time, writing only to the background buffer — you cannot write to both
of screen areas simultaneously if they contain different data.

Machine Dependencies

The GEOS graphics routines hide much of the underlying hardware from the application. This
allows the same code to run under a variety of different environments with very few changes.
However, it is sometimes necessary to optimize graphic routines for a specific machine. This can
be as simple as taking advantage of color display capabilities or as complex as direct screen
memory manipulation. Either way, an application should only resort to such tactics when the
desired effect cannot be achieved through the standard graphics routines. Be aware that
- circumventing the GEOS Kernal will very likely increase your development time and that there is
no guarantee that the techniques will be compatible with future versions of GEOS.

Commodore 64

The Commore 64 version of GEOS uses the standard high-resolution bitmap mode (not mult-color
bitmap mode), which is 320 pixels wide by 200 pixels high. Memory is mapped to the screen in
eight-byte stacks called cards: byte 0 controls pixels (0,0) through (7,0), with bit 7 on the left and
bit 0 on the right, and byte 1 controls the same pixels on the line below, which is pixels (0,1)
through (7,1). This stacking continues through byte 7, which controls pixels (0,7) through (7,7)
and completes the 8x8-pixel card. Byte 8 begins the next card, controlling pixels (8,0) through
(15,0). The screen memory begins at SCREEN_BASE and occupies 8,000 bytes, extending to
SCREEN_BASE+7999. The background buffer begins at BACK_SCR_BASE and extends
to BACK_SCR_BASE+7999.

GEOS does not directly support the foreground and background color options of the standard
high-resolution bitmap mode. The color matrix, located from COLOR_MATRIX to
COLOR_MATRIX+999, is set to a constant foreground and background color as determined
by the Preference Manager. If an application wants to support color (like geoPaint), it must manage
the color matrix itself. Each byte in the color matrix sets the foreground and background colors of a
card (8x8 pixel block): color byte 0 sets the colors for card 0 (bitmap bytes 0-7) and color byte 1
sets the colors for card 1 (bitmap bytes 8-15). Before the application exits, it must restore the
original color matrix. This best done by saving the first byte and then filling the color matrix before
calling EnterDeskTop, as the following code fragments illustrate:

Example:

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

;On entry, save off the first byte of the color matrix
MoveB COLOR_MATRIX, saveColor

:0n exit, fill the color matrix with ‘the saved value
LoadW rO0,#1000 scolor matrix is 1000 bytes
LoadW rl, #COLOR_MATRIX
MoveB saveColor,r2L ;fill with original coclor
jsr FillRam

Commodore 128

In 40-column mode, GEOS 128 screen memory is identical to the Commodore 64. In 80-column
mode, GEOS 128 uses the high-resolution 640x200 mode supported by the 8563 VDC (Video
Display Controller) chip.. The foreground screen memory is not stored in the normal Commodore
memory but on the VDC chip instead. The VDC RAM is accessed indirectly through the VDC
control registers. The screen occupies 16,000 bytes, and each byte is accessed one at time by its
address within the VDC display RAM(the first screen byte is at 0, the last at 15999). Bits are
mapped sequentially from memory to the screen pixels: bits 7 through 0 of byte O (in that order)
control the first seven pixels, (0,0) through (7,0). The following byte controls the next seven
pixels, (8,0) through (15,0). And so on for the remainder of the screen. The following two
subroutines will access bytes in the VDC screen RAM when GEOS 128 is in 80-column mode:

Example:

P AR AR LR A LA RS s il sl st ittt sttt sl ittt it ittty

.
’

X

;Sta80Fore -~ stores byte to 128 80-column foreground screen
7Lda80Fore . -- loads byte from 128 80-column foreground screen
;

;sPass:

Fi rS = address in foreground memory

i A = data value (for Sta80Fore)

;

sReturns:

; A = data value (for Lda80Fore)

;

;Destroyed:

;

;Note: Call TempHideMouse to disable software sprites before accessing
foreground screen directly.

. we

(mgl)

;*****it**t**it*tit**tii****t*****itt****'kt**t****ttt*t*ii**f**t***i*t*it******
:Constants for VDC internal registers

VDC_HI_UPDATE = 18 ;update hi-byte of VDC pointer
VDC_LO_UPDATE = 19 ;update 1o-byte‘of VDC pointer
VDC_DATA = 31 ;data byte at current VDC pointer
Sta80Fore:

i Send data byte to the VDC chip
: jsr. NewVDCAddress
ldx #VDC_DATA

Update VDC address with fg'scréen pointer (rS)
request VDC data register

e Se we

stx vDC
308: bit vDC ; test VDC status
bpl 308 ¢ loop till VDC ready for data byte
sta VDC+1 ; store data byte
rts ; exit

10

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Lda80Fore:

; Get data byte from the VDC chip
jsr NewVDCAddress
ldx = #VDC_DATA

Update VDC address with fg screen pointer (r5)
request VDC data register

Se Se S we Se

stx vDC
308: bit vDC teést VDC status
bpl 308 loop till data byte ready
lda VDC+1 ; get data byte
Irts ; exit
NewVDCAddress:

; Transfer value in r5 to VDC internal hi/lo address register.
; Destroys: x

1dx #VDC_HI_UPDATE ; ask VDC for high byte
stx vDC
10$: bit vDC check VDC status

bpl 108

1dx r5H

stx VDC+1

ldx #VDC_LO_UPDATE

and loop till VDC ready
store hi-byte of address
to VDC chip

ask VDC for low-byte

Ne Se e Se v ve

stx vDC ;

20$: bit vDC ; check VDC status
bpl 20$; and loop till VDC ready
1dx r5L ; store lo-byte of address
stx VDC+1 ; to VDC chip
rts ; exit

For more information on controlling the 8563 VDC chip, refer to the Commodore 128
Programmer’s Reference Guide.

Before writing directly to the 80-column foreground screen, be sure to call TempHideMouse to

temporarily disable the virtual sprites (for more information, refer to TempHideMouse in -

Chapter XX). .

Because the 80-column screen requires a 16,000-byte background buffer, GEOS 128 (when in 80-
column mode) uses the 8,000-byte 40-column screen foreground buffer (SCREEN_BASE to
SCREEN_BASE+7999) for store the first 100 scanlines of background buffer data and the
8,000-byte foreground screen buffer (BACK_SCR_BASE to BACK_SCR_BASE+7999)
to store the last 100 scanlines of background buffer data. Because these data areas are not

contiguous, an application that directly accesses the background screen must compensate for this
break.

Apple 11

Apple GEOS uses the double hi-res screen, which is 560 pixels wide by 192 pixels high. The
seven lower bits (0-6) of each graphic byte are displayed in bit O to bit 6 order on the screen, and
bit 7 is ignored (not displayed). That is, Pixel (0,0) is controlled by bit 0 of byte 0, pixel (1,0) is
controlled by bit 1 of byte 0, and pixel (7,0) is controlled by bit O of byte 1. The graphic screen is
located in memory at SCREEN_BASE ($2000) to SCREEN_BASE+$1fff ($3£ff) in both the
main and auxiliary memory banks. The bytes in main memory are mapped to odd byte positions on
- the screen (bytes 1,3,5...), and the bytes in auxiliary memory are mapped to even byte positions
on the screen (byte 0,2,4...). This means that adjacent bytes on the screen are in separate banks of
memory. For example, byte 0 is located at $2000 in the auxiliary bank and byte 1 is located at
$2000 in the main memory bank. (For more information on accessing the Apple foreground screen
across memory banks, refer to GetScanLine in the Routine Reference Section.)

11

Graphics Routines (fourth edit / MGL) . 4/24/88 8:13 PM

Apple GEOS uses over 7K of tables to efficiently map pixel positions to screen memory bytes,
thereby avoiding time-consuming shift and convert algorithms. If an application writes directly to
screen memory, keep in mind that it will need to handle this pixel conversion manually. Also,
before writing directly to the Apple screen, be sure-to call TempHideMouse to temporarily
disable the virtual sprites (for more information, refer to TempHideMouse in Routine Reference
Section).)

Porting Considerations and Techniques

Outside of the normal considerations for porting a GEOS application from one machine to another,
there are a few additional elements which pertain specifically to graphics.

Apple GEOS and GEOS 128 Virtual Sprites

Apple GEOS and GEOS 128 (in 80-column mode) render sprites entirely in software by modifying
the actual bitmap screen. (GEOS 64 and GEOS 128 in 40-column mode, use the hardware sprite
capabilities of the VIC chip.) In order to properly treat these virtual sprites as if they were apart
from the bitmap screen, they must be erased before any graphic operation, whether drawing,
testing, imprinting, or recovering, is done. To do this, Apple GEOS and GEOS 128 provide the
TempHideMouse routine to temporarily remove all sprites. The sprites are not redrawn until the
application returns to MainLoop. Normal GEOS graphics and text routines will automatically call
TempHideMouse; only applications that are directly accessing the foreground screen area need
call TempHideMouse. For more information, refer to TempHideMouse in the Routine
Reference Section "Software Sprites” in Chapter @ SPRITE@.

GEOS 128 X-position and Bitmap Doubling :

Because the GEOS 128 80-column bitmap screen has a horizontal resolution exactly twice that of
GEOS 64 (640 vs. 320), GEOS 128 supports the ability to automatically double the x-
coordinate(s) of graphic and text objects, and the width of bitmap objects, by setting special bits in
the x-position and width calling parameter(s). This allows the visual elements of a GEOS 64
application to run in 80-column mode under GEOS 128 with a minimum of effort. The special bits
can also be added at run-time to dynamically configure a program to run correctly under both
GEOS 64 and GEOS 128. X-position and bitmap doubling is supported by nearly every GEOS
128 routine that writes to the screen (including text, dialog box, and icon routines).

The following constants may be bitwise or'ed into GEOS 128 x-coordinates and bitmap widths to
take advantage of the automatic 80-column doubling features:

12

Graphics Routines (fourth edit / MGL)

4/24/88 8:13 PM .

DOUBLE_W

coordinates, such as those passed to Rectangle and
DrawPoint. -

K1 DOUBLE_B For doubling byte-length values. A byte-len tvalue s
W, either a card x-position or a card width, both of which
[&0/‘" apply almost exclusively to bitmap routines, such as

BitmapUp and BitmapClip.

ADDI_ W

Used in conjunction with DOUBLE_W; adds one to
a doubled word-length value. This allows addressing
odd-coordinates, as when drawing a one-pixel frame
around a filled rectangle. :

Y

ed in conjunctiopwith DOUBLE_B; adds-one t
doubled byte lengtﬁn\/;’lup./ou /ZB /yo /n

These doubling bits have no effect when GEOS 128 is in 40-column mode but come to life when

For doubling word-length values. Normal x-\

3

Se i~

(0=

& Dov'T™ Fagast
THIS &5 UsEc.

OEsSN' T wae
Loz 5“(4"7/05
%

GEOS 128 is in 80-column mode. For example, the following code fragment will frame a filled “‘/8&7%,
rectangle. It will appear similarly in both 40- and 80-column modes.

Example:
X1 = 35
X2 = 301
Y1l = 40
Y2 = 100

;left edge
;right edge
;top edge
;bottom edge

;Draw a filled rectangle using the current pattern

Isr i_Rectangle. 7inline call’
.byte Y1 . ' iyl
.byte Y2 sy2
.word (X1|DOUBLE_WI|ADD1_W) ix1 with doubled width + space on left for frame
.word (X2|DOUBLE_W) :%x2 with doubled width
jsr i_FrameRectangle 7inline call
.byte Y1 1yl
.byte. Y2 iy2
.word (X1{DOUBLE_W) :x1 with doubled width
.word (X2|DOUBLE_W|ADD1_W) ix2 with doubled width + offset for frame
.byte Sff ;solid line pattern
rts sexit
NOTE: GEOS 128 filters all word-length x-coordinates (but not widths or byte-length x-

coordinates) through the routine NormalizeX to process the doubling. For more
detailed information on how this routine works, refer to its documentation in this
chapter. NormalizeX will also double signed x-coordinates. If the x-coordinate is a
signed number (like you might pass to SmallPutChar), then the double bits must be

exclusive-or'ed into the x-coordinate parameters rather than simply or'ed.

The graphic elements of existing GEOS 64 applications can be ported to run under GEOS 128 with
a minimum of effort by taking advantage of the GEOS 128 doubling bits. However, once the
doubling bits have been installed, the application will no longer run under GEOS 64. The simplest
approach to this problem is to have two entirely different applications. One designed to run under
GEOS 64 and the other designed to run under GEOS 128. The doubling bits may be controlled at
assembly-time with conditional assembly, as the following example illustrates.

Example:

13

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

DblDemol: -

;Will assemble differently depending on the status of the C64 and C128 assembly 1
;constants. If assembling for GEOS 64, doubling constants will be set to zero so

;that they will not affect the x-positions. If assembling for GEOS 64, doubling !
;constants will be set according to geosConstants file so that graphic operations

:will double automatically in 128 mdde.

QVED
Jif (C128 ~*~ C64) ;C64/C128 flags must be mutually exclusive! ~—-/~4

JAf 1Cc128 ;1f not assembling for GEOS 128, force doubling P\fj
;constants to harmless values so GEOS 64 graphics (:C?A/Q/71A4:
;routines don't get confused.

DOUBLE_B = $00 . > . /Lﬁ-l@
DOUBLE_W = 50000
ADD1_W = $0000
.endif
BM_XPOS = (32/8) ;byte x-position of bitmap (40-col)
BM_YPOS = 20 o - :y-position of bitmap
Bitmap:
BM_WIDTH = PicW :byte bitmap width (40-col)
BM_HEGHT = PicH " ;bitmap height)
FPATTERN = %11111111 ;pattern fdr surrounding frame
DoBmap: -

;Place the bitmap on the screen, loading the registers with
;inline data (note double-width settings).

jsr i_BitmapUp :inline call
.word Bitmap :bitmap address
.byte (BM_XPOS|DOUBLE_B) ;I Xpos
.byte BM_YPOS ;ypos
.byte (BM_WIDTH|DOUBLEB) ;width
.byte BM_HEIGHT . sheight

90$: rts sexit

.else ;(both C128 & C64 constagts were both true or both false)

.echo "DblDemo routinéd signed to assemble for both GEOS 64 and GEOS 128!"™
.endif 4

Designing an application so that it runs well under both GEOS 64 and GEOS 128 is a more
difficult task. It usually involves using self-modifying code: part of the initialization code for each
- module can check the version of GEOS it is running under (use the Check128 subroutine

illustrated in "GEOS 128 40/80-Column Support" in this chapter) and add the proper doubling-bits
to all relevant x-coordinates.

14

Graphics Routines - (fourth edit / MGL) 4/24/88. 8:13 PM

Apple Bitmap Doubling and Aux-memory Bitmaps

Apple GEOS supports the ability to automatically double the width of bitmap objects by setting
special bits in the x-width calling parameter(s). This allows GEOS 64 bitmaps to be converted to
Apple GEOS with a minimum of effort. By doubling the width, a similar appearance can be
maintained. Apple GEOS bitmap routines can also specify whether the bitmap data is in main
memory or auxiliary memory by setting special bits in the x-position parameters. Bitmap doubling
and aux-memory specification applies to the following routines and any other higher-level routines
which depend on these for placing bitmaps on screen (such as DoIcons):

 BitmapUp

* NewBitUp

« BitmapClip

» NewBitClip

* BitOhterClip

* NewBitOtherClip

Because Apple GEOS allows widths specified by byte values (as in BitmapUp) and widths
specified by word values (as in NewBitUp), there are different bits and constants to use for
doubling the width, depending on the number of bytes (one or two) in the parameter. To double
the width of a bitmap, bitwise-or one of the following constants into the width parameter:

15

DOUBLE = . Ser (o)
G EN A < DOUBLE W For doubling word-length values. \ ’
ot DOUBLE_B For doubling byte-Tength values.
To force Apple GEOS to grab the bitmap data from auxiliary memory, bitwise-or the bitmap x-
position with one of the following values, depending on whether the x-position is a byte-length or
~ word-length parameter: _ ' . :
“ SEN~ 10ph
INAUX B for byte-length x-position parameters. .
INAUX W for word-length x-position parameters.
For more information on the bits to set for bitmap doubling and auxiliary memory specificatiion,
refer to the documentation of the specific routines in Routine Reference Section.
Example:
:Put a bitmap up, using an address in auxiliary memory and .doubling its width
LoadW r0, #MyAuxBitmap ;aux addre;s of bitmap
LoadW r3,#(MY_XPOS|INAUX_W) ;x-position + in-aux flag
LoadB rlH, #MY_YPOS ;y-coordinate
LoadB 1r2,#(MY_CWIDTH*8) |DOUBLE|W ;width = card width * 8 + doubling bit
LoadB rlL, #MY_HEIGHT ;height ‘
jsr NewBitUp ;put bitmap on screen
"—‘J

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Points and Lines

Points .
The simplest graphic operation involves setting, clearing, or testing the state of an individual pixel,
or point, on the screen. GEOS provides two routines for working with points:

» DrawPoint Set or Clear a single point.
» TestPoint Test a single point: is it set or clear?

Horizontal and Vertical Lines | ' o

Due to the rectangular nature of bitmapped graphics, horizontal and vertical lines are inherently fast
and easy to create and manipulate. GEOS provides five routines for working with horizontal and
vertical lines:

» HorizontalLine Draw a horizontal line with a repeating bit pattern.

* VerticalLine Draw a vertical line with a repeating bit pattern.

» InvertLine Invert the pixels in a horizontal line.

» ImprintLine Imprint a horizontal line to the background buffer.

» RecoverLine Recover a horizontal line from the background buffer.

Line Patterns.

Both HorizontalLine and VerticalLine use a byte-sized bit pattern when creating the line. Each
bit in the pattern byte represents a pixel in the line: wherever a one appears in the pattern byte, the
corresponding pixel will be set, and wherever a zero appears , the corresponding pixel will be
cleared. This allows lines which vary from solid (all 1's) to dashed (a mixture of 1's and 0's) to
.Clear (all 0's). Note: this concept of a line-pattern is different from the 8x8 GEOS fill patterns used
for rectangles.

Bits in the pattern byte are used left-to-right for horizontal lines and top-to-bottom in vertical lines,
where bit 7 is at the left and the top, respectively. A bit pattern of %11110000 would create a
horizontal line like:

| _HEEN _____ EEEN

and a vertical line like:

16

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

The pattern byte is always drawn as if aligned to an eight-pixel boundary. If the endpoints of a line
do not coincide with eight-pixel boundaries, then bits are masked off the appropriate ends. The
effect of this is that a pattern is always aligned to specific pixels, regardless of the endpoints and
that adjacent lines drawn in the same pattern will line up. That is, positions 0, 8, 16, 24, etc. will
always depend on pattern bit 7, and positions 1,9, 17, 25, etc. will always depend on pattern bit 6.

NOTE: Because of the internal=memory layout of screen memory, horizontal lines will often

draw up to eight times faster than vertical lines.

Diagonal Lines

For the same reason that bitmap displays are well-suited for displaying horizontal and vertical
lines, they are ill-suited for displaying diagonal lines. A smooth, even-density line cannot be drawn
diagonally between two points (except at 45-degree angles) — the points on the line must be
approximated in a stairstep fashion: : ' E

GEOS provides one routine for drawing and recovering a line between two arbitrary points:

|- DrawLine Draw Or recover a line between any two points. |

DrawLine does not utilize a pattern byte; it will either set or clear all pixels between the two
endpoints.

DrawLine is the most general-purpose drawing routine. It can be used to draw single
points (both endpoints the same), horizontal and vertical lines, or lines at arbitrary
angles. However, it is burdened by this flexibility, making it appreciably slower than

the other plotting routines.

Patterns and Rectangles

Fill PatternsB kegg u/ NEAT q:,/

17

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

GEOS uses two types of patterns: line patterns and fill patterns. A line pattern is a one-byte
repeating pixel pattern used by routines like HorizontalLine and VerticalLine, and a fill pattern
is an 8x8 pixel block represented by eight bytes in memory and used by routines like Rectangle.
Line patterns are discussed in "Points and Lines" earlier in this chapter. Fill patterns are discussed
here.

A 50% fill pattern might be defined by the following:

.byte %10101010
.byte $%01010101
.byte %10101010
.byte $01010101
.byte $%10101010
.byte %01010101
.byte $%10101010
.byte %01010101

The pattern has alternating set and clear pixels. Drawing a filled rectangle in this pattern would
produce a medium-dark block.

All versions of the GEOS Kernal contains the following predefined patterns:

18

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Appl? GEOS contains an additional, user-defined pattern which is left for the application to
modify.

Fills occur in the current pattern. The current pattern can be changed with the following routine:

I' SetPattern ' Sét the current pattern. - o |

To use one of the system patterns, the application would first call SetPattern with the appropriate
pattern number. SetPattern calculates the proper pattern address, the address of the eight-byte

19

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

block, and places it in the GEOS variable curPattern (formerly currentPattern). Any
subsequent call to a routine which uses a system pattern will index off of the address in
curPattern to access the 8x8 block. Some applications, finding the need to define their own
patterns, modify either the address in curPattern to point to their own eight-byte pattern or use
the address in curPattern (after a valid call to SetPattern) to modify the GEOS system patterns
directly. This technique will work on both GEOS 64 and GEOS 128, but will not on Apple GEOS
because the patterns are stored in a fairly inaccessible portion of memory. Apple GEOS provides
two routines for accessing and redefing patterns:

- GetPattern Download a GEOS pattern to an eight-byte buffer.
» SetUserPattern Upload an eight-byte buffer to a GEOS pattern.

TE:

GEOS does not restore the system patterns when an application exits. If an application
modifies the patterns, it should restore them when it exits unless it is desirable for the
next application to inherit the redefined patterns (as with the GEOS Pattern Editor).

Rectangles

Rectangles in GEOS are defined by their upper-left and lower-right corners. The upper-left is
usually referred to as (X1,Y1) and the lower-right as (X2,Y2), where X1, X2, Y1, and Y2 are
valid x and y screen positions. From these two coordinates, the rectangle routines can determine
the coordinates of the other two corners:

(X1,Y1) (X2,Y1

(X1,Y2) (X2,Y2

GEOS provides five routines for dealing with rectangular regions:

[+ Rectangle "Draw a solid rectangle using the current fill pattern. _

* FrameRectangle Draw an unfilled rectangle (bounding frame).

* InvertRectangle Invert the pixels in a rectangular area.

» ImprintRectangle Imprint a rectangular area to the background buffer.

. RecoverRectangIe Recover a rectangular area from the backEround buffer.

Bit-mapped Images

All graphic picture objects, such as icons and Photo Scrap images cut from geoPaint, are stored
internally in GEOS Compacted Bitmap Format to save space. When you paste an image or icon
into a geoProgrammer source file, it is in compacted bitmap format, and when you read a geoPaint
image, it too is in compacted bitmap format. If a compacted image were to be copied directly to the
screen, it would very likely be unrecognizable. GEOS bitmap routines first decompact the image
and then transfer it to the screen area.

20

Graphics Routines (fourth edit/ MGL) 4/24/88 8:13 PM

Standard Bitmap Routines
All versions of GEOS support the following bitmap routines:

[« BitmapUp Place a full compacted bitmap on the screen.

» BitmapClip Place a rectangular subset of a compacted bitmap on the screen.

* BitOtherClip Special version of BitMapClip which uses an application-
defined routine to collect the compacted bitmap data a byte at a
time, allowing the image to come from disk or other I/O device.

GEOS bitmaps are compacted from the GEOS virtual screen format rather than the internal machine
format. Because the standard bitmap routines deal with byte-sized chunks (eight-pixels at a time),
the following apply: ' .

+ Horizontally, the bitmap occupies pixels up to the nearest eight-pixel (byte) boundary.
That is: a bitmap of five pixels is extended to eight and a bitmap of 30 pixels is extended to
32 pixels. Bitmaps which are not evenly divisable by eight (in the horizontal direction) are
usually padded with zero bits. ‘

» Bitmaps can only be placed at eight-pixel intervals on the x-axis (0, 8, 16...). This
limitation does not apply to the y-axis.

Apple GEOS, however, provides two extended bitmap routines for overcoming these limitations.
These routines might eventually be incorporated into GEOS 64 and GEOS 128.

Apple GEOS Extended Bitmap Routines

The Apple GEOS extended bitmap routines allow bitmaps of any pixel width and do not force the
bitmap to be drawn on eight-pixel x-axis boundaries. These bitmaps are still compacted in byte-
sized chunks, but by specifying a pixel width, any extra bits at the end of the last byte are ignored
(masked out) when the bitmap is displayed. Apple GEOS offers three new bitmap routines:

* NewBitUp “Pixel width and positioning version of BitmapUp.
* NewBitClip Pixel width and positioning version of BitmapClip.
* NewBitOtherClip Pixel width and positioning version of BitOtherClip.

GEOS Compacted Bitmap Format

The GEOS compacted bitmap format relies on the observation that pixel patterns in bitmap images
are frequently repetitive. If you were to examine a rectangular area of the screen (in GEOS linear
bitmap format) it would often be the case that adjacent bytes would be identical. The compacted
bitmap format encodes this redundancy into groups of bytes called packets. Each packet can
decompress to a large number of bytes in the actual bitmap.

21

Graphics Routines (fourth edit / MGL)

Packet Format
Each packet in a GEOS compacted bitmap follows a specific format. The first byte of each packet
is called the count byte and is part of the packet header. Depending on its value, it has the
following significance: .

4/24/88 8:13 PM

COUNT (HEX) SIGNIFICANCE

0 (300) reserved for future use.

1-127 ($00 -7 repeat: repeat the following byte count times. The total length of
this packet is two bytes and decompresses to count bytes in the
actual bitmap.

128 ($80) reserved for future use. _

120219 | ($81—9$db) | wunique: use the next count—128 bytes literally. The total length

' of this packet is (count-128)+1 or count-127 bytes and
decompresses to count—128 bytes.

220 ($dc) reserved for future use.

221 -255 ($dd - 3) bigcount: the next byte is a bigcount value in the range 2

through 255. The following count-220 bytes comprise data in
repeat and unique format that should be repeated bigcount
times. The total length of this packet depends on the decompacted
size of the.repeat and unique packets. A bigcount cannot
containt another bigcount.

Decompaction Walkthrough
Given the following compacted data:

25, 0, 133, 240, 220, 10, 0, 7, 224, 4, 3, 10, 5, 3

.byte

The decompaction routine would interpret it like this:

repeat: the decompaction routine encounters the count value 25. Since it is in the range
1-127, the following byte (0), is repeated 25 times:

0,00000,0000000000000000000
133, 240, 220, 10, 0,

unique: the next packet begins with a count of 133,which is in the range 129-219. The
next 133-128 = 4 bytes are used once each:

240, 220, 10, 0, 7

[224, 74, 3, 10, 5, 3 |

bigcount: the final packet begins with a count of 24 which is in the range 221-255.
This signals a two byte header and the following byte, the bigcount, is 4. These two
bytes are interpreted to mean repeat the next 224-220 = 4 bytes four times. The next four.
bytes, however, are expected to be in the unique and repeat compacted formats. In this
case, its 3,10 (repeat: 10 three times) and 5,3 (repeat: 3 five times), which in turn are
repeated four times:

22

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM .

10101033333101010333331010103333310
101033333

Compacting Strategy

The easiest way to compact a bitmap image is to let geoPaint do it for you by cutting the image out
as a photo scrap and pasting it directly into your geoProgrammer source code. Sometimes this
method is impractical and you will want to compress images directly from within an application.
The following subroutine can be used to compact bitmap data:

Lif (0)

XXX XX

******I’****i’*'*"****!!!ﬁ**"*ﬁ***'k'**'*fi'i**"****it*ttﬁ**’****"*'!’*I***!f'*l’**t*?!*

~ BitCompact

KhRXER X

DESCRIP

*******i**“*i'*I’*t*"*t******l’*itt*************‘I**itti*'i‘t*t*****t*t*‘ii****!*l!*l*!

TION: -
Converts linear bitmap data into compacted bitmap format, suitable
for passing to routines such as BitmapUp.

When compacting bitmaps directly from screen memory, the data must

must first be converted from the internal screen format to linear

bitmap format. The left edge of the source bitmap must start on a

card boundary and the right edge must extend to the end of another — <

card boundary. (Under Apple GEOS, strictly speaking, the miéeht m Si El\,/
not fully extend to a card boundary because the new bitmap routines

(NewBitUp, NewBitClip, etc.) can mask bits at the right edge.)

This bitmap data must then be converted to a linear format, where

the first byte represents the first eight pixels of the upper-left
corner of the bitmap, the next byte represents the next eight pixels
and so on to the right edge of the bitmap. The byte following the
last byte in a single line of a bitmap is the first byte of the next
line. (The actual dimensions of the bitmap will be reconstructed from
the WIDTH and HEIGHT parameters passed to the bitmap display routine.

To convert from internal screen format to linear bitmap format:

Ce4: Set dispBufferOn appropriately (to reflect which
screen buffer to grap data from) and...

Cnvrt40:
1dx yPos ; get y coord of top of bitmap
jsr GetScanline : use it to calc screen ptrs
lda xPos ; get x pixel coord (lo byte)
and #%11111000 ; strip off 3 bits for card x-position
clc ; Add card offset to
adc 5L ; base pointer (lo byte first)
R 00 sta r5L
N :7 lda xPos+1 ; (hi byte also)
) adc r5H
) : sta rS5H

;At this point, (r5) points to the first byte in
;the bitmap (upper-left corner).

Now step through each byte in this scanline by adding

8 to the pointer in r5 (compensating for the card architecture)

to get to the next byte, and repeat this process for each line

in the bitmap (incrementing yPos appropriately for each scanline).

Cl28: (40-column, same as C64; B80-column, read on...)
Conveniently, the 80-column data is already in linear bitmap

23

Graphics Routines (fourth edit / MGL) . 4/24/88 8:13 PM

format. The data. will probably be coming from the
background buffer because the foreground screen is
entirely contained on the VDC chip's internal RAM and
is difficult to access...

Cnvrt890:
bit graphicsMode
bpl Cnvrtd40 handle 40 like Cé64
PushB dispBufferOn save current dispBuffer
LoadB dispBufferOn,#ST_WR_BACK ;force use of back buffer

make sure in 80-col mode

~e

~e “e

1dx yPos ; get y coordinate

jsxr GetScanline : use it to calc screen ptrs

Movew xPos,r0 ; copy x-position to zp work reg

ldx #r0 ; divide r0 by 8)

1ldy #3 ; (shift right 3 times)

-jsr .DShiftRight ; this gives us the card offset

AddW r0,r6 ; add card (byte) offset to scanline addr.
;At this point (ré) points to the first byte of the

;bitmap.

Now step each byte in this scanline by adding
1 to the pointer in ré to get to the next byte,
and repeat this process for each line in the
bitmap (incrementing yPos appropriately).

Apple: Use the Apple GEOS Kernal routines ReadScanline
and ReadBacklLine to convert the internal Apple
screen format into linear bitmap format. Nice and simple.

CALLED BY:
 PASSED:)
ro Pointer to destination buffer to store compacted data
(this buffer must be at least 1 and 1/64 of size of the
uncompacted data because it is possible, but unlikely, that
the compacted data will actually be larger than the ucompacted
data) .
rl Pointer to linear bitmap data to compact.
r2 # of bytes to compact.
RETURNS:
r0 Points to byte following last byte in compacted data.
DESTROYED:

a,xXx,y, rl-re

PSEUDO CODE / STRATEGY:
Starts with the first source byte and counts the number of identical bytes
following it to determine whether to generate a UNIQUE or REPEAT packet. If
there are three or less identical bytes in a row, a UNIQUE packet is generated,
four or more generates a REPEAT packet. The packet is placed in the destination
buffer and this process is then repeated until all bytes in the source buffer
have been compressed.

KNOWN BUGS / SIDE EFFECTS / IDEAS:
Only uses the UNIQUE and REPEAT compaction types. The BIGCOUNT compaction type is
such that it is difficult to determine the compaction payoff point. BIGCOUNT could
be used to compress adjacent scanlines that are identical because this type of check
would be trivial. The basic scanline could be compressed with UNIQUE and REPEAT, then
duplicated by placing it inside a BIGCOUNT.

This routine is not limited to compressing bitmap data. In fact, it works quite

24

Graphics Routines (fourth edit / MGL)

4/24/88 8:13 PM

well cn any data where strings of identical bytes are common (e.g., fonts). It does
not, for example, compress text very efficiently. A Huffman-based algorithm yields
better results.

(mgl)

LA AL SRR ARl SRRl iS22 2222222t R ittt it sttt XXX R RN

.encif

MAX_REPEAT
MAX_UNIQUE
UNIQ_THRESH

BitCompact:
10S:

jsr
cmp
ble

sta
ldy
sta
lda
iny
sta
AddVW
bra
20$:

jsr

ldy
ora
sta
30S:
lda
iny
sta
cpy
bne
inc
AddBW
dec

100S:
AddBW
SubBW
lda
ora
bne
rts

CountRepeat:

1ldy
ldx

= 127
= 91
= 3
CountRepeat

#UNIQ_THRESH
208 '

rS5L

#0
(r0),y
(rl),y

(r0),y
42,10
100s

GetUnique

#0
4580
(r0) ,y

(rl),y

(xr0),y
r5L
308
r5L
r5L,x0
5L

r5L,rl
rS5L,r2
r2L
r2H
108

#0
#0

. we we

~

~e Se we

Ne Se Ve Ne We v e Se e Se e

Ne We Ne We We Se Se Se e “e

Ne Se we we we

Se Se we <~

e we we we we

~

e Se e e we we

maximum repeat COUNT value

maximum unique COUNT value

byte count threshold, beyond which a REPEAT type
should be used instead of UNIQUE.

rl = current addr in source buffer

r0 = current addr in destination buffer
r2 = # bytes left in source

count the # of identical bytes here
Enough repeats to justify REPEAT type?
No, go use UNIQUE

yes, use REPEAT (A = # to repeat)
store repeat # for later

init. index into buffers

store repeat # to destination

get repeat value

point to next byte in dest buffer
store to destination buffer

move up dest. pointer

exit. ’

use UNIQUE
Calc # of unique bytes to use

‘(A = number of unique)

init. index into buffers.

convert unique count to packet count value

store to dest.buffer

get first unique value

increment pointer pointer

store to destination buffer

done yet? (r5L = repeat #)

loop till done copying

convert to # to add to dest pointer
move up destination pointer

correct back to # done

fall through to-exit

move up source pointer

subtract off # left in source buffer
check for zero bytes left

more to do?

if so, loop

else, exit.

rl = current pointer into source buffer

r0 = current pointer into destination buffer
r2 = number of bytes left in source
initialize relative buffer index

initalize current repeat count

25

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

lda (rl),y ; get first byte
sta rélL ; keep in r6L. This is the byte we're trying
; to match.
105: ; 3
lda r2H ; more than 255 bytes left in source?
bne 208 ; if so, ignore # check
cpx r2L ; else, are we at the last byte?
beg 90$; if so, exit
20s: ;
cpx #MAX_REPEAT ; check repeat count with max # of repeats
beq 90$; if at maximum, branch to exit.
lda (rl),y ; does it actually match?
cmp réL ; check against 1lst byte
bne 90$; if no match, exit
inx ; else, we found a match. increment repeat count
iny ; move to next byte in source
:NOTE -- following branch changed to save a byte. y is never incremented to $00.
: bra 108 ; and loop to check it
bne 108 ; branch always... iny above will always clear z flag
90s: ; ’
txa ; return repeat count in A
Irts ; exit
GetUnique:
PushW rl ; Save orig pointer
LoadB 5L, #0 ; start none unique
10§: H
inc r5L ; do one more unique
1dx rSL ; get # unique so far
lda r2H ; lots left?
bne 20$; if so, skip end check
cpx r2lL ; all of them?
begq 90$; if yes, then that many
20S: H '
cpx #MAX_UNIQUE ; max # unique
beq 90s N ; if full, do them
AddVW #1,rl ; move up a byte
jsr CountRepeat ; how many of the following bytes are repeats?
cmp #UNIQ_THRESH ; Enough to warrant a REPEAT packet?
ble 108 : No, go stuff them in this UNIQUE packet
: Yes, close this UNIQUE packet.
90s: H
PopW rl ; retrieve start pointer
lda rSL ; get # to do unique
rts

Direct Screen Access and Block Copying

Direct Screen Access

One purpose of an operating system such as GEOS is to insulate the application from the
peculiarities of the machine it is running on, allowing the programmer to worry more abot how the
application will function than how it will interact with the hardware. However, becduse of the

- complexity of GEOS graphics routines, it is sometimes necessary, for performance reasons, to

bypass the operating system and manipulate the screen memory directly. Although this practice is
not recommended — it increases portability problems, defeating much of the purpose of a GEOS

26

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

— it is a reality. And with that in mind, Berkeley Softworks built routines into GEOS to facilitate
direct screen access. The following routine exists in all versions of the Kernal:

|° GetScanLine Calculate the address of the first byte of a particular screen line. |

And these two additional routines exist in Apple GEOS:

» GetScreenLine Copy a horizontal line (in internal format) from the screen to an
application's buffer.

* PutScreenLine Copy a horizontal line (in internal format) from an application's
buffer to the screen. '

GetScreenLine and PutScreenLine are intended to let the application directly access the Apple
double hi-res screen without worrying about bank switching on alternate bytes. The screen is
treated as a contiguous block, as if the alternating bytes in the two memory banks were actually
adjacent in memory. These routines are not well-suited for scrolling large regions (they are too
slow), but are sufficient for drawing with small brushes. For scrolling, use the block copy
routines.

Linear Bitmap Conversion (Apple GEOS)

Because the Apple's pixel memory mapping scheme is so convoluted, Apple GEOS provides
routines to convert a line of data (in Apple's internal format) to linear bitmap data, where pixels
occupy contiguous bits in contiguous bytes:

* ReadScanline "Translates a screen line from the foregorund screen from Apple
internal format to linear bitmap format.

» ReacBackLine Translates a screen line from the background buffer from Apple
internal format to linear bitmap format.

Although it would seem that routines which translate in the other direction — from linear bitmap
format to Apple format — are necessary, BitmapUp can be used for this purpose. Merely
prepend a 70 to the front of the linear bitmap and call BitmapUp as if the line were a bitmap 70
bytes wide and one pixel high.

Block Copy and Scrolling (Apple GEOS)
Apple GEOS also extends the direct screen access facilities by offering three block copy routines
which are useful for scrolling and moving rectangular areas of the screen:

*Co pyLine C-Dopics a horizontal line from one area of the foreground screen to
another.

» CopyScreenBlock Copies a rectangular area from one part of the screen to another.

* CopyFullScreen Copies a rectangle of the full width of the screen (but of variable
height) to another position vertically.

Although these routines deal directly with the screen, the screen architecturé is actually transparent
to the application. Therefore, future versions of GEOS may implement these functions.

27

Graphics Routines (fourth edit / MGL) 4/24/88 8:13 PM

Special Graphics Related Routines

GEOS provides a few graphics-related routines which don't fit nicely into any other category:

"Execute a string of graphics commands.

e GraphicsStrin
« DivideBySeven

Quickly divide a screen coordinate by seven for direct screen
access (Apple GEOS only).

» NormalizeX

Adjust an x-coordinate (under GEOS 128 only) to compensate for
the higher-resolution 80-column mode.

* SetNewMode

ChanLGEOS 128 Eaphlcs mode (40/80-column).

28

lcons, Menus, and- Other Mouse Presses

Icons, Menus, and Other Mouse Presses

When the user clicks the mouse button, GEOS determines whether the mouse pointer was
positioned over an icon, a menu item, or some other region of the screen. GEOS has a unique
method of handling a mouse press for each of these cases. If the user pressed on an icon, GEOS
calls the appropriate icon event routine. If the user pressed on a menu, GEOS opens up a sub-
menu or calls the appropriate menu event routine, whichever is applicable. And if the user pressed
somewhere else, GEOS calls through otherPressVector, letting the application handle (or
ignore) these "other" mouse presses.

Icons

When you open a disk by clicking on its picture, delete a file by dragging it to the trash can, or
click on the CANCEL button in a dialog box, you are dealing with icons, small pictorial
representations of program functions. A GEOS icon is a bitmapped image, whether the picture of a
disk or a button-shaped rectangle, that allows the user to interact with the application. When the
application enables icons, GEOS draws them to the screen and then keeps track of their positions.
When the user clicks on an icon, an icon event is generated, and the application is given control
with information concerning which icon was selected.

Icon Table Structure

The information for all active screen icons is stored in a data structure called the icon table. GEOS
only deals with one icon table at a time. The icon table consists of an icon table header and a
number of icon entries. The whole table is stored sequentially in memory with the header first,
followed by the individual icon entries. .

Icon Table Header
The icon table header is a four byte structure which tells GEOS how many icons to expect in the
structure and where to position the mouse when the icons are enabled. It is in the following format:

Icon Table Header:

Index Constant Size Description
+0 OFF I NUM byte Total number of icons in this table.
+1 OFF_I_MX ward Initial mouse x-position. If $0000, mouse positiion will not
be altered.
+3 OFF I MY byte Initial mouse y-position.

This first byte reflects the number of icon entries in the icon table (and, hence, the number of icons
that can be displayed). The table can specify up to MAX_ICONS icons.

The next word (bytes 1 and 2) is an absolute screen x-coordinate and the following byte (byte 3) is
an absolute screen y-coordinate. The mouse will be positioned to this coordinate when the icons
are first displayed. If you do not want the mouse positioned, set the x-coordinate word to $0000,
which will signal Dolcons to leave the mouse positions alone.

lcons, Menus, and Other Mouse Presses

Icon Entries
Following the icon table header are the icon entries, one for each specified in the OFF_I_NUM
byte in the icon table header. Each icon entry is a seven-byte structure in the following format:

Icon Entries:

Index Constant Size Description

+0 OFF_I_PIC word Pointer to compacted bitmap picture data for this icon. If set
to $0000, icon is disabled.

+2 OFF I X byte Card x-position for icon bitmap.

+3 OFF 1 Y byte Y-position of icon bitmap.

+4 OFF 1 WIDTH byte Card width of icon bitmap.

+5 OFF I HEIGHT byte Pixel height of icon bitmap.

+6 OFF 1 EVENT word Pointer to icon event routine to call if this icon is selected.

The first word (OFF_I_PIC) is a pointer to the compacted bitmap data for-the icon. The icon can
be of any size (up to the full size of the screen). If this word is set to NULL ($0000), the icon is
disabled.

The third byte (OFF_I_X) is the x byte-position of the icon. The x byte-position is the x-position
in bytes — icons are placed on the screen by BitmapUp and so must appear on an eight-pixel
boundary. The byte-position' can be calculated by dividing the pixel-position by eight
(x_byte_position = x_pixel_position/8).

The fourth byte (OFF_I_Y) is the pixel position of the top of the icon. The icon will be placed at
(x_byte_position*8 , y_pixel_position).

The next two bytes (OFF_I_WIDTH and OFF_I_HEIGHT) are the width in bytes and height
in pixels, respectively. These values correspond to the geoProgrammer internal variables PicW
and PicH when they are assigned immediately after a pasted icon image.

The final word (OFF_I_EVENT) is the address of the icon event handler associated with this
icon.

Sample Icon Table

The following data block defines three icons which are placed near the middle of the screen. The
mouse is positioned over the first icon:

;'t'ki**t*t*****t’**'kt'kt**i*ii***it'ﬁi'ﬁtt**!i*t*t***t*"ﬁ*iﬁttﬁt*t***t*t**i'***i**************t*
;SAMPLE ICON TABLE
;*t*i**t***ttt*ittti******'t**iii'**titti'ii**ﬁf**ii*ﬁti*i’ttt**'ktt*t**t*ii*ttt***tii*ttt’ti**
;Icon positions and bitmap data

I_SPACE =1 ispace between our icons (in cards)

PaintIcon:

PAINTW = PicW

Icons, Menus, and Other Mouse Presses

PAINTH = PicH
PAINTX = 16/8
PAINTY = 80

Writelcon:

WRITEW PicW

WRITEH PicH

WRITEX = PAINTX + PAINTW + I_SPACE
WRITEY = PAINTY

PublishIcon:

PUBLISHW = PicW

PUBLISHH = PicH

PUBLISHX = WRITEX + WRITEW + I_SPACE

PUBLISHY = WRITEY

\\ ;The actual icon data structure to pass to Dolcons follows

IconTable:

I_header: .
.byte NUMOFICONS ;snumber of icon entries
.word (PAINTX*8) + (PAINTW*8/2) ;position mouse over paint icon
.byte PAINTY + PAINTH/2 ;

I_entries:

PaintIStruct:
.word PaintIcon ;pointer to bitmap
.byte PAINTX, PAINTY sicon position
.byte PAINTW, PAINTH ;icon width, height
.word PaintEvent ;event handler

WritelStruct: :
.word Writelcon ;pointer to bitmap
.byte WRITEX, WRITEY :+icon position
.byte WRITEW, WRITEH sicon width, height
.word WriteEvent sevent handler

PublishIStruct:
.word Publishlcon ;pointer to bitmap
.byte PUBLISHX, PUBLISHY sicon position
.byte PUBLISHW, PUBLISHH ?icon width, height
-.word PublishEvent ‘7event handler

NUMOF ICONS = (*-I_entries)/IESIZE ;number of icons in table

;Dummy icon event routines which do nothing but return
PaintEvent:
WriteEvent:

Icons, Menus, and Other Mouse Presses

PublishEvent:
rts

Installing Icons

When an application is first loaded, GEOS will not have an active icon structure. GEOS must be
given the address of the applications icon table before MainLoop can display and track the user's
interaction with them. GEOS provides one routine for installing icons

[FDolcons Display and activate an icon tabie. 1

Dolcons draws the enabled icons and instructs MainLoop to begin watching for a single- or
double-click on one. The icon table stays activated and enabled until the ICONS_ON_BIT of
mouseOn is cleared or another icon table is installed by calling Dolcons with the address of a
different icon structure. In either case, the old icons are not erased from the screen by GEOS.

Dolcons will draw to the foreground screen and background buffer depending on the value of
dispBufferOn. Icons are usually permanent structures in a display and so often warrant being
drawn to both screens. If icons are only drawn to the foreground screen, they will not be recovered
after a menu or dialog box.

Example:

;**t*t*ti**iiI*'tti*t*i*i*t*****i**ttttttit*tt**t*ktl*****t***iﬁt!*t**tt*t***********t**

: IconsUp Draw and intialize our icons

.
’

;***ti*ii*t**tiﬁ**t**i**ttt*t*t*tt'*ti*i**iﬁt*i***iQ*tit**ttt*t*tt****itt*ii**t'it**tift

.
’

IconsUp:
LoadB dispBufferOn, # (ST_WR_FORE | ST_WR_BACK) ;draw to both buffers
LoadW 1rO0,#IconTable ;point to icon table
jsr Dolcons sinstall icons
rts ;jexit

Due to a limitation in the icon-scanning code, the application must always install an

icon table with at least one icon. If the application is not using icons, create a
dummy icon table with one icon (see below).

;t*i*ﬁt*ittt*t*ttﬁﬁt'***ﬁ**itt*******ti*t*it**i*t**ﬁttt*ttttt*itti**i****!t

iNoIcons Install a dummy icon table. For use in applications that
; aren't using icons. Call early in the initialization of the
; : application, before returning to MainLoop.

.
’
;**ﬁ*iit**i**t***ﬁt*t**t**i*ﬁt****i*ﬁIti*it*t*****tt*tttit*tt**t***t**tt**t

.
’

NolIcons:
LoadW rO0,#DummyIconTable ;point to dummy icon table
jmp DoIcons - sinstall. Let Dolcons rts
DummyIconTable:
.byte 1 ;one icon
.word $0000 ;dummy mouse x (don't reposition)
.byte $00 ;dummy mouse y
.word $0000 ;bitmap pointer to $0000 (disabled)
.byte $00 ;dummy Xx-pos

lcons, Menus, and Other Mouse Presses

.byte $00 ;dummy y-pos
.byte 1,1 sdummy width and height
.word $0000 ;dummy event handler

MainLoop and Icon Event Handlers

When the user clicks the mouse button on an active icon, GEOS MainLoop will recognize this as
an icon event and call the icon event handler associated with the particular icon. The icon event
handler is given control with the number of the icon in rOL (the icon number is based on the
icon's position in the table: the first icon is icon 0). Before the event handler is called, though,
MainLoop might flash or invert the icon depending on which of the following values is in
iconSelFlag: '

Constants for iconSelFlag:

ST NOTHING The icon event handler is immediately called; the icon image is untouched.

ST_FLASH The icon is inverted for selectionFlash vblanks and then reverted to its
normal state before the event handler is called.

ST_INVERT The icon is inverted (foreground screen image only) before the event handler is

called. The event handler will usually want to revert the image before returning
to MainLoop by calculating the bounding rectangle of the icon, loading
dispBufferOn with ST_WR_FORE, and calling InvertRectan&le.

Detecting Single- and Double-clicks on Icons

When the user first clicks on an icon, GEOS loads the global variable dblClickCount with the

GEOS constant CLICK_COUNT. GEOS then calls the icon event handler with rOH set to-
FALSE, indicating a single-click. dblClickCount is decremented at interrupt level every vblank.

If the icon event handler returns to MainLoop and the the user again clicks on the icon before

dblClickCount reaches zero, GEOS calls the icon event handler a second time with rOH set to

TRUE to indicate a double-click.

Checking for a double-click or a single-click (but not both) on a particular icon is trivial: merely
check rOH. If rOH is TRUE when you're looking for a single-click or its FALSE when you're
looking for a double-click, then return to MainLoop immediately. Otherwise, process the click
appropriately. This way, if the user single-clicks on an icon which requires double-clicking or
double-clicks on an icon which requires single-clicking, the event will be ignored.

However, checking for both a double- or a single-click on the same icon (and performing different
actions) is a bit more complicated because of the way double-clicks are processed: during the brief
interval between the first and second clicks of a double-click, the icon event handler will be called
with rOH set to FALSE, which will appear as a single-click; when the second press happens
before dblClickCount hits zero, the icon event handler is called a second time with rOH set to
TRUE, which will appear as a double-click. There is no simple way (using the GEOS double-
click facility) to distinguish a single-click which is part of a double-click from a single-click which
stands alone

“There are two reliable ways to handle single- and double-click actions on icons: the additive

function method and the polled mouse method. The additive function method relies on a simple
single-click event which toggles some state in the application and a double-click event (usually
more complicated) which happens in addition to the single-click event. The GEOS deskTop uses
the additive function method for selecting (inverting) file icons on a single-click and selecting and
opening them on a double-click. The icon event handler first checks the state of rOH. If it is

Icons, Menus, and Other Mouse Presses

FALSE (single-click) then the icon (and an associated selection flag) is inverted. If it is TRUE
(double-click) then the file is opened. If the user single-clicks, the icon is merely inverted. If the
user double-clicks, the icon is inverted (on the first click) and then processed as if opened (on the
second click).

Example:

PR R R R R R R R s A A ARl sl ittt ittt Rl

Icon double-click handler
additive function method

. ~e

~ we

,ott!*****i’lt'kt**t'k***tt**t************t*****i'it**'ti**tt*i*t!t****t*!*t*'ki**t’l***i*t*’k**t
IconEventl:
lda rOH ’ ;check double-click flag ’ .
bne 108 sbranch if second click of a double-click
;else, this is a single-click or the
;first push of a double-click,

jsr InvertlIcon H :so just invert the selection
bra 90$;and exit.
~10S:
jsr Openlcon ;double~-click detected, go process it
;fall through to exit
90$:

rts ;return to MainLoop

The polled-mouse method can be used when the single-click and double-click functions are
mutually exclusive. When a single-click is detected the icon event handler, rather than returning to
MainLoop and letting GEOS manage the double-click, handles it manually by loading
dblIClickCount with a delay and watching mouseData for a release followed by a second click.

. ®
L] .
Example:
LA AL 22222222222 2222222 2 2 222 22222 2 222 2222222 2222 2222222222 2222 X R X 22 R R R R R 2 R R "R R 22 E R T3

Icon double-click handler . .
polled mouse method

Ne “e wo wo

LEAAA AR AR R R Rt sl sy e ey e ety I R YT L

.

IconEvent2:

:User pressed mouse once, start double-click counter going
LoadB dblClickCount, #CLICK_COUNT ;start delay

;Loop until double-click counter times-out or button is released

108$:
lda dblClickCount ;scheck double-click timer
beq 308 ;If timed-out, no double-click
lda mouseData ;Else, check for release
bpl 108 ;loop until released

imouse was released,loop until double-click counter times-out or
sbutton is pressed a seccnd time.

20S$:
lda dblClickCount j;check double-click timer
beq 308) ;If timed-out, no double-click
lda mouseData ' .iElse, check for second press
. bmi 208 . :loop until pressed
;Double-click detected (no single-click)
‘3087 jsr DoDoubleClick © :do double-click stuff
il bra 90$ sexit

:Single-click detected (no double-click)
'..\7\>) + ",r

6 . I

lcons, Menus, and Other Mouse Presses

' jsr DoSingleClick ;do single-click stuff
;and fall through to exit
;Exit
90$: rts ;return to MainLoop -

These techniques for handling single- and double-clicks are described here as they
pertain to icons; they are not directly applicable to applications that detect mouse clicks
through otherPressVector. When control vectors through otherPressVector, the
value in rOH is meaningless. For more information on otherPressVector, refer to
"Other Mouse Presses" in this chapter.

Other Things to Know About Icons

Icon Releases and otherPressVector

When the user clicks on an active icon, MainLoop will call the proper icon event routine rather
than vectoring through otherPressVector. However, the routine pointed to by
otherPressVector will get called when the mouse is released. Applications that aren't using
otherPressVector can disable this vectoring by storing a. $0000 into otherPressVector
(30000 is actually its default value). Applications that depend on otherPressVector, however,
can check mouseData and ignore all releases.

Example:

;OtherPressVector routine that ignores releases (high bit of mouseData is set on releases)

MyOtherPress: ;control comes here from otherPressVector
lda mouseData ;check state of the mouse button
bmi. 90$ signore it if it's a release
jsr PressDown ;otherwise process the press’
90§:
rts ;return to Mainloop

For more information on otherPressVector, refer to "Other Mouse Presses" in this chapter.

Icon Precedence

GEOS draws icons sequentially. Therefore, if icons overlap, the ones which are drawn later will
be drawn on top. When the user clicks somewhere on the screen, GEOS scans the icon table in this
same order, looking for an icon whose rectangular boundaries enclose the coordinates of the
mouse pointer. If more than one icon occupies the coordinate position, the icon that is defined first
in the icon table (and therefore drawn on bottom) will be given the icon event. If an active menu
and an icon overlap, the menu will always be given precedence.

Disabling Icons

An application can disable an icon in the current icon structure by clearing the OFF_PIC_ICON
word of the icon (setting it to $0000). If an icon is disabled prior to a call to DolIcons, the icon
will not be drawn. If an icon is disabled after the call to Dolcons, the icon will remain on the
screen but will be ignored during the icon scan. The application can reenable the icon by restoring
the OFF_PIC_PICON word to its original value. (Actually, any non-zero value will do because
reenal?lliing)an icon does not redraw it, it only restores the coordinates to MainLoop's active
search list. :

icons, Menus, and Other Mouse Presses

GEOS 128 Icon Doubling

as with bitmaps, special flags in the icon data structure can be set to automatically double the x-
position and/or icon width when GEOS 128 is running in 80-column mode. To have an an icon's
x-position automatically doubled in 80-column mode, bitwise-or the OFF_I_X parameter with
DOUBLE_B. To double an icon's width in 80-column mode, bitwise-or the OFF_I_WIDTH
parameter with DOUBLE_B. These bits will be ignormed when GEOS 128 is running in 40-
column mode. Do not, however, use these doubling bits when running under GEOS 64. GEOS 64
will try to treat the doubling bit as part of the coordinate or width value rather than a special-case
flag. For more information, refer to "GEOS 128 X-position and Bitmap Doubling" in Chapter

@GR@.
Example:

;ttt'tti*ﬁ*t*t********tt*i**ti******t**ttt'***ii*t**it***t*****’ttiit*i:***ttﬁ**t*tit*tti*itt

;SAMPLE GEOS 128 ICON TABLE THAT USES AUTOMATIC DOUBLING FEATURE

}***t***i****,*.*******f******t**l’**i**'t***t*****'**iﬁ*"*ft***'***i't'***I*f*tilt't*i**tii

L1f 1c128
.echo Error: cannot assemble GEOS 128 specific code without C128 flag set
.else

PaintIcon:

PAINTW = PicW
PAINTH = PicH
PAINTX = 16/8
PAINTY = 80

;The actual icon data structure to pass to Dolcons follows

IconTable:

I_header:
.byte NUMOFICONS ;number of icon entries
.word ((PAINTX*8) + (PAINTW*8/2)) | DOUBLE_W) ;position mouse over paint icon
.byte PAINTY + PAINTH/2 ;

I_entries:

PaintIStruct:
.word PaintIcon ;pointer to bitmap
.byte (PAINTX | DOUBLE_B) ~ ix card position (dbl in 80-column mode)
.byte PAINTY ;y-position
.byte (PAINTW | DOUBLE_B) sicon width (dbl in 80-column mode)
.byte PAINTH sicon height :
.word PaintEvent ;event handler

NUMOFICONS = (*-I_entries)/IESIZE snumber of icons in table

;Dummy icon event routines whiéh do nothing but :etuin

PaintEvent: ‘ :
rts

.endif

Ilcons, Menus, and Other Mouse Presses

Apple GEOS Double-width and Aux-memory Icons .
As with Apple GEOS bitmaps, special flags can be set in the icon data structure to double an icon's
width and/or look for the icon image data in auxiliary memory. To double an icon's width, bitwise-
or the OFF_I_WIDTH parameter with DOUBLE_B. To mark the OFF I _PIC word as an
address in auxiliary memory, bitwise-or the OFF_I X parameter with INAUX_B. For more
information, refer to "Apple Bitmap Doubling and Aux-memory Bitmaps" in Chapter @ GR@.

Menus

Menus, one of the most common and powerful user-interface facilities provided by GEOS, allow
the application to offer lists of items and options to the user. The familiar menus of the GEOS
deskTop, for example, provide options for selecting desk accessories, manipulating files, copying
disks, and opening applications. Virtually every GEOS-based program will take advantage of these
capabilities, providing a consistent interface across applications.

GEOS menus come in two flavors: horizontal and vertical. The main menu, the menu which is
always displayed, is usually of the horizontal type and is typically placed at the top of the screen.
Each selection in the main menu usually has a corresponding vertical sub-menu that opens up when
an item in the main menu is chosen. These sub-menus can contain items that trigger the application
to perform some action. They can also lead to further levels of sub-menus. For example, a
horizontal main menu item can open up to a vertical menu, which can have items which then open
up other horizontal sub-menus, which can then lead to other vertical menus, and so on.

Division of Labor with Menus

GEOS divides the labor of handling menus between itself and the application. The GEOS Kernal
handles all of the user's interaction with the menus. This includes drawing the menu items,
opening up necessary sub-menus, and restoring the §creen area from the background buffer when
the menus are retracted. MainLoop manages the menus, keeping track of which items the user
selects. If the user moves off of the menu area without making a selection, GEOS automatically
retracts the menus without alerting the application.

If the user selects a menu item which generates a menu event, the application's menu event handler
is called with the menus left open. Leaving the menus open allows the application to choose when
and how to retract them: all the way back to the main menu, up one or more levels (for multiple
sub-menus), or up no levels (keeping the current menu open). This lets the application choose the
menu level which is given control upon return, thereby allowing multiple selections from a sub-
menu without forcing the user to repeatedly traverse the full menu tree for each option. '

Menu Data Structure

The main menuy, all its sub-menus, their individual selectable items, and various attributes
associated with each menu and each item are all stored in a hierarchical data structure called the
- menu tree. Conceptually, a menu tree with multiple sub-menus might have the following layout:

lcons, Menus, and Other Mouse Presses

GeosText:

Level 0 Level 2

Level 1 - Level 3 .

Sample Menu Tree

The main menu (or level 0) is the first element in the tree; it is the menu that is always displayed
while menus are enabled. Each item in a main menu will usually point to a secondary menu or
submenu. Items in these submenus can point to events (alerts to the application that an item was
i selected) or they can point to additional submenus. Menus are linked together by address pointers.

| Sub-menus are sometimes referred to as child menus, and the menu which spawned the sub-menu

as its parent. Sub-menus can be nested to a depth determined by the GEOS constant
MAX_M_NESTING, which reflects the internal variable space allocated to menus. The depth or
level of the current menu can be determined by the GEOS variable menuNumber, which can
range from 0 to (MAX_M_NESTING-1).

In memory, all menus, whether the main menu or its children, are stored in the same basic menu
structure format. Each menu is comprised of a single menu header block followed by a number of
menu item blocks (one for each selectable item in the menu):

10

lcons, Menus, and Other Mouse Presses

MENU_ACTION

If the menu item is of the MENU_ACTION type, GEOS flashes the menu inverted for
selectionFlash vblanks. selectionFlash is a GEOS variable which is initialized with the
constant SELECTION_DELAY, but may be adjusted by the application. MainLoop will then
call the menu event routine whose address is in the item structure, passing the number of the
selected item in the accumulator (item numbers start with zero). One of the first things a menu
event routine must do, among its own duties, is specify which menu level MainLoop should
return to when it gets control. This is done by calling one of the GEOS routines designed for this

purpose:

« ReDoMenu Reactvate the menu at the current level.
* DoPreviousMenu Retract the current sub-menu and reactivate the menu at the
~ previous level.

* GotoFirstMenu Retract all sub-menus and reactivate the menu at the main menu
: level.

These routines retract menus as necessary (recovering from the background buffer) and sets special
flags which tell MainLoop what has happened; MainLoop is not given control at this time —
that is the job of the menu event handler's rts. If an application's menu event handler does not call
one of these routines before it returns to MainLoop, the menu will remain open but inactive.

NOTE: A menu remains on the foreground screen untili DoPreviousMenu or
GotoFirstMenu is called to retract it. If graphics need to be drawn in the area'
obscured by a menu, but menus cannot be retracted, then limit drawing to th .
background buffer by setting the proper bits in dispBufferOn. i

Specializéd Menu Recover Routines

GEOS provides two very low-level menu routines which recover areas obscured by menus from
the background buffer. Usually these routines are only called internally by the higher-level menu
routines such as DoPreviousMenu. They are of little use in most applications and are included in
the jump table mainly for historical reasons. There are two routines:

[« RecoverMenu Recovers the current menu from the background buffer to tne
foreground screen.

* RecoverAllMenus Recovers all extant menus and sub-menus from the background
buffer to the foreground screen.

Advanced Menu Ideas

Menu routines can be as clever as desired. One common technique involves dynarrlically modifying
the text strings associated with menu items. This can be used, for example, to add asterisks nextto -
currently active options as they are selected.

16

LW
R

lcons, Menus, and Other Mouse Presses

Menus and Mouse-Fault Interaction

How GEOS uses Mouse Faults
In general, the following is true:

* When a menu is down, the system interrupt-level mouse-processing routine is checking
for two types of mouse faults: the mouse moving outside of the rectangle defined by
mouseTop, mouseBottom, mouseLeft, and mouseRight and the mouse moving off
“of the menu. It sets bits in mouseFault accordingly.

o If the menu is unconstrained, mouseTop, mouseBottom, mouseLeft, and
mouseRight are set to full-screen dimensions, thereby ruling out this type of mouse fault.

o If the menu is constrained, mouseTop, mouseBottom, mouseLeft, and
mouseRight are set to the dimensions of the current menu's rcctangle This will kcep the
mouse from moving off of the menu area (and will also generate a mouse fault when an
edge is encountered).

e The system mouse fault routine (called through mouseFaultVec) checks the
mouseFault variable. If the mouse faulted by moving off of the menu (only possible if
the menu is unconstrained), DoPreviousMenu is called. If the user moved off of the
sub-menu without moving onto another menu, mouse menu faults will continue to retract
menus until only the main menu is displayed. If the mouse faulted by attempting to move
beyond the mouseTop on a vertical sub-menu or mouseLeft on a horizontal sub-menu
(only poss1ble ona constramed menu) then DoPreviousMenu is called.

Application's Use of Mouse Faults

When the user is interacting with menus, the system uses the mouse fault variables (mouseTop,
mouseBottom, mouseLeft, and mouseRight) and expects its own fault service routine to be
called through mouseFaultVec. If an application needs use mouse faults for its own purposes,
should first disable menus by clearing the MENUON_BIT of mouseOn Before reenabling
menus, it should set the fault variables to the full screen dimensions and call StartMouseMode to
restore the system's fault service routine:

A AAAAALALER S SR At s il il il ittt il lds)

sRoutine to restore the mouse service routines to an
soperational state after an application's use of
;smouse faults through mouseFaultVec. Should be called
:;before menus are reenabled.

’
;*t**t*ttt**t'***t***Q*ttt***tt**t*t**tt***t*i**t'*****
ResetMouse:

i—-- Following lines changed to save bytes

; LoadW mouseleft, #0 ;sreset mouse left to left screen edge
; LoadB mouseTop, #0 ;sand mouse top to top screen edge
lda #0 H
sta mouseleft H
sta - mouseleft+l ;
sta mouseTop .
JAf (C128)
LoadW rO,#(SC_40_WIDTH-1 | DOUBLE_W | ADD1_W) ;put in zp reg to normalize
ldx #ro0 ;point to register
jsr NormalizeX ;double if in 80-column
MoveW rO,mouseRight ;mouse right to right screen edge

.else ; (APPLE || C64)

17

lcons, Menus, and Other Mouse Presses

LoadW mouseRight, #SC_PIX_ WIDTH-1 ;smouse right to right screen edge
.endif

LoadB mouseBottom, #SC_PIX_HEIGHT-1 imouse bottom to bottom screen edge

clc ;don't reposition mouse...

jsr StartMouseMode .

Irts sexit

Sample Menu

Other Mouse Presses

When the user clicks the mouse somewhere on the screen where there is no active menu or icon,
GEOS consideres this an "other" press and checks otherPressVector for an application-
provided subroutine. If otherPressVector is $0000, then the press is ignored. if
otherPressVector contains anything but $0000, GEOS treats the value as an absolute address
and simulates an indirect jsr to that address. otherPressVector defaults to $0000 at application
startup.

otherPressVector gets called on all presses that are not on an active icon or menu and on all
releases, whether on a menu, icon, or anywhere else. In most cases, the application will want to
ignore the releases. This is done simply by checking mouseData for the current state of the
mouse button, as in:-

lda mouseData icheck state of the mouse button
bpl 10$) ;branch to handle presses .
rts - . ;but return immediately to ignore releases

10$:

Because otherPressVector gets called on each press (and release),'any double-click detection
must be performed manually by the other-press routine. Handling double-clicks through

18

lcons, Menus, and Other Mouse Presses

otherPressVector is similar to the polled mouse method used with icons, the major difference
being a check for releases on entry. :

Example:
iIgnore releases on entry .
lda mouseData ;check state of the mouse button
bpl 5% sbranch to handle presses
rts ;but return immediately to ignore releases

5§:
;User pressed mouse once, start double-click counter going
LoadB dblClickCount,#CLICK COUNT ;start delay

;Loop until double-click counter times-out or button is released)

10S:
lda dblClickCount ;check double-click timer
beq 308 :If timed-out, no double-click
lda mouseData ;Else, check for release
bpl 108 ;loop until released

;mouse was released,loop until double-click counter times-out or
;button is pressed a second time.

20S:
1da dblClickCount ;check double-click timer
beq 308 ;If timed-out, no double-click
lda mouseData ;Else, check for second press
bmi 208 ;loop until pressed
jDouble-click detected (no single-click)
/é?ﬁ: jsr DoDoubleClick ;do double-click stuff

!
t

bra 90$ sjexit

‘~;Singlé-ciick detected (no double-click)

‘~~1§ jsr DoSingleClick ;do single-click stuff

H ;and.fall through to exit
;Exit
90Ss: Its sreturn to MainLoop

19

Process Library

Process Library

A process is a is an event that is triggered on a regular basis by a timer. This allows GEOS to
generate an event at specific time intervals, such as 20 times per second, once every minute, or five
times each hour. Processes allow a limited form of multitasking, where many short routines can
appear to run concurrently with MainLoop. Thus an application could update an alarm clock and
scroll the work area while calculating a cell in a spreadsheet. Applications can also use processes to
monitor the mouse. geoPaint, for example, uses a process to monitor the mouse's position when
using the line tool; when the mouse moves, the process prints the new line length in the status
window. geoPublish operates in a similar manner, using a process to update the values in the
coordinate boxes as the user moves the across the preview page. '

Note: Processes do not provide true multitasking. There is no interrupt-driven context
switching, nor any concurrence (where two routines run simultaneously). Processes
are best thought of as events triggered off of MainLoop just like any other event.
When one process is running, the next process in line won't get executed until the first
finishes and returns to MainLoop.

Process Nomenclature

There are a number of terms associated with processes. Each process has a countdown timer.
When the countdown timer reaches zero or times-out, the process becomes runable. If a process is
frozen, its timer is not being decremented. The timer will continue when the process is unfrozen. If
a process is blocked, a process event will not be generated until the process becomes unblocked.

Process Data Structure

The application must initialize the GEOS process handler with a process data structure. The
process data structure contains the necessary information for all the desired processes. The table
can specify up to MAX PROCESSES (formerly MAXIMUM_PROCESSES) processes.
Each process in the table 1s in the following format:

HERD &y

process times-out.

Index Constant Size Description
+0 | OFE_P_EVENT | word | Pointer to event routine that 1s called when this

+2 OFF_P_TIMER | word | Timer initialization value: number of vblanks to

wait between one event trigger and the next. -

The first word is the address of the process event handler. The process event handler is much like
any other event handler: it is called by MainLoop when process becomes runable (as opposed to,
say, when the user clicks on an icon or selects a menu item) and is expected to return with an rts.

The second word is the number of vblanks to wait between one event trigger and the next. If the
the OFF_P_TIMER word of a process is set to 20, for example, then the process event handler
will be called every 20 vblanks (about 3 times per second on NTSC machines and 2.5 times per
second on PAL machines). ' o ' '

IQ/

Process Library

Sample Process Table _

The following data block defines three processes, each with a different process event handler. The
first process will execute once every 10 vblanks, the second will execute once every second, and
the third will execute once every five minutes. Notice the use of the FRAME_RATE constant to
calculate the correct vblank delay for PAL and NTSC machines and the automatic assignment of
process constants with (* — PrTable)/PSIZE.

;ttttf***It*t*!*****tttt**t***'**iitt*t***titttti'*tti*

;Sample process data structure
;tttiR****Itt*tttttt**t*t**t*****t't****ti*iti*t**t*tt*

ocC

PrTable:

;J\. MOUSE CHECK PROCESS***

: Check mouse position and change pointer form as

: necessary. oc ' ‘ _

MOUSECHECK = (*-P;@able)/PSIZE ;process number
.word CheckMouse ;jprocess event routine
.word 10 ;check every 10 vblanks

;*** REAL-TIME CLOCK PROCESS ***

H Increment a r%il-time clock counter every second

RTCLOCK = (*-P;Fable)/PSIZE ;process number
.word Tick ;jprocess event routine
.word FRAME_RATE ;one second worth of vblanks

;*** SCREEN-SAVER PROCESS ***

; Save the screen by turning off colors after five
H minutes. oc
SCRNSAVER = (*-Pg?able)/PSIZE ;process number

.word ScreenSave ;jprocess event routine

.word 5*60*FRAME_RATE ;frames in 5 minutes

: ;delay = 5 min* 60 sec/min * frames/sec)
NUM_PROC = (*-ProcTable)/PSIZE&?/EP,/;number of processes in this table ~vol r|
;for passing to InitProcesses

JAf (NUM_PROC > MAX PROCESSES) ;check for too many processes

echo Warning: too many processes
.endif

Process Management

Installing Processes
The application must install its processes by telling GEOS the location of the process data structure
and the number of processes in the structure. GEOS provides one routine for installing processes:

[F TnitProcesses Initialize and install processes.

InitProcesses copies the process data structure into an internal area of mer: :: v, hidden from the
application. GEOS maintains the processes within this internal area, keepi: ~ack of the event
routine addresses, the timer initialization values (used to reload the timers aftc: -2y time-out), the
current value of the timer, and the state of each process (i.e., frozen, block:d, runable). The
application's copy of the process data structure is no longer needed because GEOS remembers this
information until a subsequent call to InitProcesses.

Process Library

Example:

;*** Initialize process table ***
LoadW r0,#ProcTable ;point at process data structure
lda #NUM_PROC ;pass actual number of processes
jsr InitProcesses ;call GEOS to install processes

;processes in table are now blocked and frozen

Starting and Restarting Processes

When a process table is installed, the processes do not begin executing immediately because all
processes are initialized as frozen. GEOS provides a routine to simultaneously unblock and
- unfreeze a single process while reinitializing its countdown timer:

[RestartProcess Initialize a process's imer value then unblock and unfreeze it. |

RestartProcess should always be used to start a process for the first time, otherwise the timer
will begin in an unknown state.

Example:
;*** Start all processes ***
1dx #NUM_PROC-1 ;process numbers range from O to NUM_PROC-1
10$:
jsr RestartProcess ;reset timer, unblock, and unfreeze process
dex ;next process
bpl 108 :loop until done

RestartProcess can also be used rewind a process to the beginning of its cycle. One application
for this is a screen-saver utility which blanks the screen after, say, five minutes of inactivity to
prevent phosphor bumn-in. A five-minute process is established which, when it triggers an event,
blanks the screen. Any routine which detects activity from the user (a mouse movement, button
press, keypress, etc.) before the screen is blanked can call RestartProcess to reset the screen-
saver countdown timer to its initial five minute value.

Freezing and Blocking Processes '

When a process is frozen, its timer is no longer decremented every vblank. It will therefore never
time-out and generate a process event. When a process is unfrozen, its timer again begins counting
from the point where it was frozen. GEOS provides the following routines for freezing and
unfreezing a process's timer:

* FreezeProcess Freeze a process's countdown timer at its current value.
» UnfreezeProcess Resume (unfreeze) a process's countdown timer.

Example:
;*** Freeze all processes ***
php . ;disable interrupts to synchronize freezing
sei) ; ' : ' a
1dx #NUM_PROC-1 ;process numbers range from 0 to NUM PROC-1
10$: - '
ysr FreezeProcess sfreeze process
dex ;snext process
bpl 108 . iloop until done
plp ;restore interrupt status

Process Library

A process may also be blocked. Blocking a process temporarily prevents the event service routine
from being executed. It does not stop the timer from decrementing, but when the timer reaches zero
and the process bcomes runable, the event is not generated. When a process is subsequently
unblocked, its events will again be generated. GEOS provides the following routines for blocking

and unblocking processes:
< BlockProcess Block a process's events.

+ UnblockProcess Allow a process's events to go through.

Example:

;*** Block mouse-checking process **x
ldx #MOUSECHECK ;process number of mouse check
jsr BlockProcess sblock it

;*** Unblock Real-time clock process ***
1dx #RTCLOCK ;process number of real-time clock
jsr UnblockProcess sunblock it

When a timer reaches zer: ‘times-out), its process becomes runable. An internal GEOS flag (called
the runable flag) is set, .ndicating to MainLoop that an event is pending. The timer is then
restarted with its initializz“‘on value. MainLoop will ignore the runable flag as long as the process
is blocked. When the pro. :ss is later unblocked, MainLoop will see the runable flag, recognize it
as a pending event, and caii the appropriate service routine. However, multiple pending events are
ignored: if a blocked process's timer reaches zero more than once, only one event will be generated
when it is unblocked.

Freezing vs. Blocking ,

The differences between freezing and blocking are in many cases unimportant to the application.

However, a good understanding of their subtleties will prevent problems that may arise if the

wrong method is used. .
Normally, a process's timer is decremented every vblank. If a process is frozen, however, the
GEOS vblank interrupt routine will ignore the associated timer. The timer value will not change -
and, hence, will never reach zero. The process will never become runable. If you think of a
process as a wind-up alarm clock, freezing is equivalent to disconnecting the drive spring — even
the second hand stops moving.

Freezing a process only guarantees that the process will not subsequently become runable. The
process may in fact already be marked as runable and GEOS is only awaiting the next pass through
MainLoop to generate an event. (A process that is marked as runable but not yet run is said to be
apending event.) '

If a process is blocked (but not also frozen), GEOS Interrupt Level will continue to decrement the
associated timer. If the timer reaches zero, GEOS will reset the timer and make the process
runable. But MainLoop will ignore the process and not generate an event because the process is
blocked. If the process is later unblocked, the event will be generated during the next pass through

MainLoop. Using the alarm clock analogy, freezing is equivalent to disconnecting the alarm bell
— the clock continues to run but the alarm does not sound unless the bell is reconnected.

The only way td absolutely disable a process — both stopping its clock and preventing any
pending events to get through — is to freeze and block it.

Example:

Process Library

;ﬁ*'****t*i**tt*iQt**t***i*’t*t*it*ﬁ"'!"'I'k*ttt*iit**iti*'k***ﬁi'**'*'tiit"i"*tt*'ttit't

iStopProcess - freeze a process timer and block any pending events
;UnstopProcess - unfreeze and unblock the process
H .
;Pass: X = process number
H
;Returns: X unchanged
:
;Destroys: a
:-tt:ttitt**t'*it'tt'ttti*i*tttttititt*ii't*ﬁt**tt*t*ti'*t“t"tti**i**iit*tt**i'i****tttit
StopProcess:
jsr FreezeProcess ;not that it really matters, but we'll freeze first
jmp BlockProcess ;then block (let BlockProcess rts)
UnstopProcess:
jsr UnblockProcess ;unblock first
jmp UnfreezeProcess sthen unfreeze (let UnfreezeProcess rts)

Forcing a Process Event
Sometimes it is desirable to force a process to run on the next pass through MainLoop,
independent of its timer value. GEOS provides one routine for this:

[FEnableProcess Makes a process runable immediately.

EnableProcess merely sets the runable flag in the hidden process table. When MainLoop
encounters a process with this flag set, it will attempt to generate an event, just as if the timer had
decremented to zero. This means that EnableProcess has no priveleged status and cannot
override a blocked state. However, because it doesn't depend on (or affect) the current timer value,
the process can become runable even with a frozen timer. :

The Nitty-gritty of Processes

Processes involve a complex (but hopefully transparent to the application) interaction between
multiple levels of GEOS. In advanced uses, it may be necessary to understand this interaction. The
following discussing clarifies some of the fine points of processes.

Interrupt Level and MainLoop Level ,

Processes involve two distinct levels of GEOS: interrupt level and MainLoop level. Every vblank
an IRQ (Interrupt ReQuest) signal is generated by the computer hardware. Part of the GEOS
interrupt service routine manages process timers: if a process exists and it is not frozen, its timer is
decremented. When the timer reaches zero, the interrupt level routine sets the associated runable
flag and restarts the timer with its initialization value. The process event routine is not called at this
time.

If for some reason interrupts are disabled (usually by setting the interrupt disable flag with an sei
instruction) and a vblank occurs, the interrupt will be ignored and the process timers, therefore,

~will not be decremented during that vblank. This is usually not a problem because interrupts are

normally enabled. However, be aware that some operating system functions (such as disk 1/O)
disable interrupts. '

Process Library

During a normal pass through MainLoop, GEOS will examine the active processes. If a
process's runable flag is set and it is not blocked, MainLoop clears the runable flag and and calls
the process. If a process is blocked, MainLoop ignores it.

Because of the way MainLoop and the interrupt level interact, there is a certain level of
imprecision with processes:

1: If a process has a very low timer initialization value (e.g., less than five) such that it is
possible it will time-out more than once during the time it takes for a single pass through
MainLoop, MainLoop may miss some of these time-outs.Each time the timer reaches
zero it sets the runable flag, but since there is only one runable flag per process,
MainLoop has no way of knowing if it should generate more than one event.

2: It is impossible to guarantee any precise relationship (e.g., a timer difference less than
five) between two or more timers. Although all processes that time-out during the same
interrupt will become runable at that time, the interrupt may occur while MainLoop is
the midst of handling processes: processes that have already been passed-by may bec~
runable but not get executed until the next time through MairLoop, which cou!d
fraction of a second later.

For more Information refer to Chapter @ ML&INTS@.

Process Synchronization

It is sometimes desirable to maintain a synchronized relationship between the timer values of two
or more processes. This is nontrivial because even if the calls to restart, freeze, or unfreeze these
timers are done immediately after each other, there is always a slight chance that the vblank
interrupt will occur after the status of some of the timers has changed but before all have been
changed. For example: if an application is trying to freeze three timers simultaneously and the
interrupt happens after the first timer has been frozen but before the other two, the remaining two
timers will still be decremented. To circumvent this problem, bracket the calls by disabling

interrupts before freezing, blocking, or restarting, and reenabling afterward. This is best done as in
the following example:

;*** RESTART CLOCK PROCESSES AT THE SAME TIME ***

.
’

RstartP:
php ;save interrupt disable flag
sei ;disable interrupts (stopping timers)
1dx #RTCLOCK ;restart clock
jsr RestartProcess
1dx #SCRNSAVER ;restart screen-saver
jsr RestartProcess
plp ;restore interrupt disable status

Disabling Processes While Menus Are Down

Because MainLoop is still running when menus are down, process events continue to occur. It is
often desirable to disable a process while the user has a sub-menu opened. The easiest way to
handle this situation is to check menuNumber at the beginning of the process event routine. If
‘menuNumber is non-zero, then a menu is down and the event routine can exit early:

PrEventRoutine:
lda menuNumber ;check menu level
bne 90$;and exit immediately if a menu is down
jsr DoPrEvent . ;else, process the event normally
90S:
rts ;return to MainLoop

e

Process Library

Sleeping

Sleeping is a method of stopping execution of a routine for a specified amount of time. That is: a
routine can stop itself and "go to sleep,” requesting MainLoop to wake it up at a later time. GEOS
provides one routine for sleeping:

[Steep Pause execution for a given ime interval. |

Sleep does not actually suspend execution of the processor. When the application does a jsr
Sleep, GEOS sets up a hidden timer, much like a process timer, that is decremented during the
vblank interrupt. It removes the return address from the stack (which corresponds to the jsr
Sleep) and saves it for later use, then perfoms an rts. Since the return address on the stack no
longer corresponds to the jsr Sleep, control is returned to a jsr one level lower. In many cases,
this will return control directly to MainLoop.

When the timer decrements to zero, a wake-up flag is set, and, on the next pass through
MainLoop, the sleeping routine will be called with a jsr to the instruction that immediately
follows the jsr sleep. When the routine finishes with an rts (or another jsr Sleep), MainLoop
will resume processing.

mportant: Any temporary values pushed onto the stack must be pulled off prior to calling
Sleep. Also, when a routine is awoken, the values in the processor registers and
the GEOS pseudoregisters will most certainly contain different values from when it
went to sleep. This is because MainLoop has been running full-speed, calling
events and doing its own internal processing, thereby changing these values. If a
routine needs to pass data from before it sleeps to after it awakes, it must do so in

its own variable space.

Sleep can be used to set up temporary, run-once.processes by placing calls to Sleep inside
subroutines. For example, an educational program may want to flash items on the screen and make
a noise when the student selects a correct answer. The routines that handle these "bells and
whistles" can be established using Sleep without needlessly complicating the function that deals
with correct answers. The following code fragment illustrates this idea:

'o*t*t**t**tttttt*t***ttt*tt*ttt*t'ktttttf**ttttt*t't**tt**'t**t*t
;

;Routine to handle a correct answer. Does some graphics, makes
;some noise, and adjusts the student's score.

H
;tt*'k***tt*t**tit'k*****itt*ittttt'ttt*tttttttttt't***t*t*tttt*t'k

BELL_DELAY = 60 ;length of bell
FLASH_DELAY = 23 ;delay between flashes
Correct:

IncW score ;score += 1

jsr Bell ;start the bell going

jsr Flash ;start the answer flashing
rts : :

Process Library

:t******i**t*'lﬁ*i*t**it*t*****t*'t**iﬁ***t*ttt**i***!**"**'******

Subroutine: If sound is enabled (user-determined), start the
bell sound and then go to sleep; Sleep
returns control to the routine that called us

Whén we wake up, we stop the bell sound and return
to MainLoop

If sound is disabled, then the rts returns

directly to the routine that called us.
(A2 2 A R A R AR AR R R R R 2R R R R LR R R L R R R TR TR TY

ell:
lda soundFlag ;check sound flag
beqg 90$ sexit if user turned sound off
jsr BellOn ' ;else, turn the bell on-
LoadW 'rO0,BELL_DELAY ;and delay before turning off
jsr Sleep . . :by going to sleep (think rts)
jsr BellOff ;turn bell off when we awake
90S§:
rts jexit

'-**'*!t*i*******t****'*i’it*iRtiit'it*it**ﬁ'l**i**i'i'*****tt****i

;Subroutine: Invert the answer. Go to sleep. Re-invert the

i answer when we wake up.
'0t******t'lk***'k**ttt***'k****i*ii**It*t***t*t**t*ii'*******titi****
Flash:
jsr InvAnswer ;Graphically invert the answer
LoadW rO,FLASH_DELAY ;and delay before reverting
jsr Sleep iby going to sleep (think rts)
jsr InvAnswer ;when we awake, revert the image
rts sexit

D
\ o’
~o

Math Routines

Math Routines

One of the major limitations of eight-bit microprocessors such as the 6502 is their math capabilites:
they can only operate directly on eight-bit quantites (0-255), and multiplication and division require
extensive computational energy. For the sake of the application programmer, GEOS has some of
the more popular arithmetic routines built into the Kernal. These include double-precison (two-
byte) shifting, as well as multiplication and divison.

Parameter Passing to Math Routines

The math routines use a flexible parameter passing convention: rather than putting values into
specific GEOS pseudoregisters, the application can place the values in any zero-page location
(almost) and then tell GEOS where to find the values by passing the address of the of the
parameter. Because the parameters are located on zero-page, their addresses are one-byte quantites
that can be passed in the x and y index registers. For example, a GEOS math routine might require
two word values. The application could place these values in pseudoregisters a0 and al, then call
a GEOS math routine, like Ddiv (double-precision divide) with the address of a0 and al in the x
and y registers. '

Example:
1ldx #a0 ;load up address of first parameter
ldy #al ;and address of other parameter

isr Ddiv ;divide the word in a0 by the word in a1

Double-precision Shifting

The 6502 provides instructions for shifting eight-bit quantites left and right but no instructions for

directing these operations on 16-bit (double-precision) numbers. GEOS provides two routines for
double-precision shifting:

e DShiftLeft Arithmetically left-shifts a 16-bit word value,
e DS ﬁlftRi&ht Eithmeticallygght-shifts a 16-bit word value.

Double-Precision Arithmetic

Many of the possible double-precision arithmetic operations (such as word+word addition) are
provided with GEOS macros. The standard set of GEOS macros, which include the likes of
AddW and SubW, are listed in Appendix XX. Many double-precision operations, however, such
as multiplication and division, are complicated enough to warrant an actual subroutine. GEOS
provides many of these routines, some of which have signed and unsigned incarnations.

Math

Ne Ne Ne e Se “e

Routines

Signed vs. Unsigned Arithmetic

6502 arithmetic operations rely on the two's complement numbering system — an artifact of binary
math — to provide both signed and unsigned operations with the same instructions (adc and sbc).
For example, an adc #$6¢ can be seen as either adding 188 to the accumulator (unsigned math: all
eight bits represent the positive number; any carry out of bit 7 indicates an overflow) or as adding a
-68 to the accumulator (signed math: the high-bit, bit 7, holds the sign and any carry out of bit 6
indicates an overflow). The 6502 haslittle trouble adding and subtracting these two's-complement

signed numbers. Operations such as multiplication and division, however, need to special-case the
sign of the numbers. :

Incrementing and Decrementing
GEOS has only one routine in the category of incrcmenﬁng and decrementing:

[Ddec Decrements a word, setting a flag if the value reaches zero. |

However, because incrementing and decrementing words are such common operations, Berkeley

Softworks has created a set of macros specifically designed for incrementing and decrementing
word values: '

’o*tt*'**i**ii*tttiittttttft*iitiii*i'ki'kii*ii*t****it*'k'ttii*ﬁ**'t*

then the zero flag in the status register is set.

;IncW

; Increment Word - IncW addr

; .

: Args: addr - address of word to increment

H

; Action: IncW increments a word. If the result is zero,
r

;

(2 X2 22 22 2 2 222222222222 22222223222 2222222222222 2222222222222t
.macro IncW addr :
inc addr ;increment low-byte

.bne done ;branch if no carry into hi-byte
inc addr+1 spropagate carry into hi-byte
done: ;z-flag is set if both hi & low were $00

.endm

;***itti*****t**t******t**tt*tt*iﬁ*'*t*i*i***t**titt**i*'kti**ttttt

then the zero flag in the status register is set.
a and x registers are destroyed.

;DecW

: Decrement Word - DecW zpaddr

H

; Args: zpaddr - zero-page address of word to decrement
H

; Action: DecW Decrements a word. If the result is zero,

H

;

;*ﬁt*i*tt**ﬁt***tiﬁﬁﬁit*ii**tii**t*’.ii**iﬁi*'**tittti*ﬁittt*i**tt*
.macro DecW zpaddr
ldx #zpaddr ;1load x with address of word for call
jsr Ddec ;call GEOS routine
;2z-flag is set if both hi & low were $00
.endm .

I R L A A 2 2 2 2 A A A A A A 2 22X 2222222222222

Decrement Word 42 - DecW2 addr
(fast version)

Args: addr -- address of word to decrement

~e e

Action: DecW2 decrements a word with inline code. No
flags are set on reaching $0000. Destroys a.

~e ~e

'0*i‘l***t'**t*'t*"*t****i***t**ri*****t*‘ktt****t‘l*tt*"i*tt*i*'&****

.macro DecW2 addr

lda addr ;get low byte
bne noOvrflw ;if low_byte != $00, then skip high byte dec
dec addr+1 ;decrement hi-byte
noOvrflw:
dec addr ;decrement low-byte

.endm

Routines

Most applications will use IncW and DecW to take advantage of the flags which are set when the
values reach zero. However, DecW2 can be useful when a word needs to be decremented quickly

- and the zero flag is not needed.

Unsigned Arithmetic
GEOS provides the following routines for arithmetic with unsigned numbers:

produce an unsigned word result.

< BBMult ﬁyte-by-byte multiply: multiplies two unsigned byte operands to

unsigned byte to produce an unsigned word result.

* BMult Word-by-byte multiply: multiplies an unsigned word and an

unsigned words to produce an unsigned word result.

* DMult Word-by-word (double-precision) multiply: multiplies two

word by another to produce an unsigned word result.

* Ddiv Word-by-word (double-precision) division: divides one unsigned

Example:

.
’

ConvToUnits

This routine converts a pixel measurement to inches or, optionally,
centimeters, at the rate of 80 pixels per inch or 31.5 pixels per
centimeter.

Ne We e We v we

pass:

r0 - number to convert (in pixels)
return:

r0 - inches / centimeters

rllL - tenths of an inch / millimeters
affects:

nothing
destroys:

a, X, y, ro-rl, r8-r9

Ne S Se ve e

~

~ e

e we ~o

-
Lo}

AMERICAN ;decide whether inches or centimeters is
: ;appropriate
: . INCHES = TRUE
.else - ;!AMERICAN
: INCHES = FALSE
.endif

ConvUnits:

LA AR AR R AL R RS sl e ey I R Y R A 3
L]

LA AR SRR RS R Rl R s Rl L R R L R R R R R e . S R 2 L X]

Math Routines

if INCHES

ldx
ldy
jsr

#r0
#2
DShiftRight

.else ;CENTIMETERS

--- Following lines changed

; LoadW

; ldx

H 1dy

; jsr
LoadB
1dx
1dy
jsr
LoadW
1dx
1dy
sr

.endif

IncW
LoadWw
idx
idy
jsr
MoveB
1sr
rts

rl,#40
#r0
#rl
DMult
rl, #40
#ro0
#rl
BMult
rl,#63
#r0
#rl
Ddiv

ro0
r1,#20
#r0

#rl
Ddiv
r8L,rllL
rllL

Signed Arithmetic
GEOS provides the following routines for arithmetic with signed numbers:

.
’

.
’

e Se we

.
.
v
.
’
.
.
.
’
.
’
.

.
v

Se Se “e

.
12

First, convert r0 to length in 1/20 of
standard units

x START INCHES SPECIFIC CODE ***

For ENGLISH, need to multiply by
20 1

80 dots/inch 4

which amounts to a divide by four
(/4 = two right shifts)

; r0 = r0>>2 (r0 = r0/4)

*** START OF CENTIMETER SPECIFIC CODE ***

‘Fot centimeters, need to do multiply by
20 40

31.5 dots/cm 63

H
to save bytes

LUK T A

e

Ne v N

.
’

Se e Se Sa ~» e Se we ~e

First multiply by 40

(word value) ’

(byte value)

r0 = r0*40 (byte by word multiply)
then divide by 63

r0 = r0/63

*** START OF COMMON CODE **=*

r0 = result in 1/20ths

add in one more 1/20th, for rounding

now divide by 20 (to move decimal over one)
dividend

divisor

r0 = r0/20 (r0 = result in proper unit)

rlL = 1/20ths

and convert to 1/10ths (rounded)

exit

« Dabs

Computes the absolute value of a two's-complement signed word.

ate

Negates a signed word by doing a two's complement sign-switch.

[Dﬁnsih

A\

Signed word-by-word (double-precision) division: divides one
two's complement word by another to produce an signed word
result. -

There is no signed double-precision multiply routine in the GEOS Kernal. The following
subroutine can be used to multiply two signed words together.

;*****t*tt********t********'k*t***'k**t***ﬁ*it.*t'k*ttti**ii*‘*tt***t*

Math

DSmult double-precision signed multiply.

pass: X - zpage address of multiplicand

; y - zpage address of multiplier

;returns: signed result in address pointed to by x

; word pointed to by y is absolute-value of the
; multiplier passed

H %, Y unchanged

;Strategy:

; Establish the sign of the result: if the signs of the
multiplicand and the multiplier are different, then the result
is negative; otherwise, the result is positive. Make both the
multiplicand and the multiplier positive, do unsigned
multiplication on those, then adjust the sign of the result

Se Se Se N

; to reflect the signs of the original numbers.
sdestroys: a, ré - r8 (mgl)
;t*t**'*******tti***t*k*******i***it*t**t*t****i*ttt****'tii*t*tt*
DSmult:
lda zpage+l, x ;get sign of multiplicand (hi-byte)
eor zpage+l,y ;and compare with sign of multiplier
php ;save the result for when we come back
jsr Dabs smultiplicand = abs(multiplicand)
stx réL ;save multiplicand index
tya ;put multiplier index into x
tax ;for call to Dabs
jsr Dabs ;multiplier = abs(multiplier)
1dx rélL ;restore multiplier index
jsr Dmult ;do multiplication as if unsigned
plp ;get back sign of result
bpl 90$;ignore sign-change if result positive
jst Dnegate ;otherwise, make the .result negative
90s:
rts o

Dividing by Zero

Routines

Division by zero is an undefined mathematical operation. The two GEOS division routines (Ddiv
and DSdiv) do not check for a zero divisor and will end up returning incorrect results. It is easy to

divide-by-zero error checking to these two routines:

Example:
;titt'**tt*t*tt**t**ttt'ttttt*tt*tit**ii*i***tii**it**t**iii*t*tttfit**tii*tittittt*tt*ttt*
;NewDdiv -- Ddiv with divide-by-zero error checking
;NewDSdiv -- DSdiv with divide-by-zero error checking
;
;Pass: X zp address of dividend
; y zp address of divisor
H .
iReturns X,y unchanged
© 2 : - 2Zp,X result
; r8 remainder
; a $00 <= no error
; sff -- divide by zero error
: st set to reflect error code in accumulator
H
;Destroys r9

Math Routines

.
’

;*********'********t*ﬁ*ttt'ttt**!***'*’i*tt'itit** T~

DIVIDE_BY_ZERO

NewDdiv:
lda
ora
bne
lda
rts

10s:
jsr
lda
rts

NewDSdiv:
lda
ora
bne
lda
rts

108$:

Jf

.endif
jsr
Jif
.endif
lda
rts

JAf

.endif

= $ff

zpage, y

zpage,y

108

$DIVIDE_BY ZERO

Ddiv
#S00

zpage,y

zpage,y

108

$DIVIDE_BY ZERO

Apple
stx Xsave

DSdiv
Apple
ldx Xsave

#3500

Apple

.ramsect

Xsave .block 1
.psect

;get low byte of divisor

sand high byte of divisor

;1f either is non-zero, go divide
;jreturn error

sexit

;

;divide

;and return no error

;iget low byte of divisor

;and high byte of divisor

;if either is non-zero, go divide
;return error

sexit

save x-register because Apple destroys

ivide
estore x-register because that ageos destroyed

e e e Se e Se Se S
QO

;and return no error

.
’

jtemp x register save variable for ageos
’
H
H

; .

(AR E2 AL 22 2222222222222 R 222222

/s P

TF, -‘/ Fonts, and Keyboard Input

Text, Fonts, and Keyboard Input

At one point or another, almost every application will need to place text directly on the screen or get
keyboard input from the user.

GEOS text output facilities support disk-loaded fonts, multiple point sizes, and additive style
attributes. The application can use GEOS text routines to print individual characters, one at a time,
or entire strings, including strings with embedded style changes and special cursor positioning
codes. GEOS will automatically restrict character printing to margins allowing text to be confined

- within screen or window edges. GEOS even contains a routine for formatting and printing decimal

integers.

GEOS keyboard input facilities the translation of keyboard input to text output by mapping most
keypress so that they correspond to the printable characters within the GEOS ASCII character set.
GEOS will buffer keypresses and use them to trigger MainLoop events, giving the application
full control of keypresses as they arrive. And if desired, GEOS can also automate the process of
character input, prompting the user for a complete line of text.

Text Basics

Fonts and Point Sizes

Fonts come in various shapes and sizes and usually bear monikers like BSW 9, Humbolt 12, and
Boalt 10. A font is a complete set of characters of a particular size and typeface. In typesetting, the
height of a character is measured in points (approximately 1/72 inch), so Humbolt 12 would be a
12 point (1/6 inch) Humbolt font. A text point in GEOS is similar to a typesetter's point: when
printed to the screen, each GEOS point corresponds to one screen pixel. GEOS printer drivers map
screen pixels to 1/80 inch dots on the paper to work best with 80 dot-per-inch printers.A GEOS
1/80 inch point is, therefore, very close to a typsetter's 1/72 inch point.

GEOS has one resident font, BSW 9 (Berkeley Softworks 9 point). The application can load as
many additional fonts as memory will allow. Fonts require approximately one to three kilobytes of
memory.

Proportional Fonts

Computer text fonts are typically monospaced fonts. The characters of a monospaced font are all
the same width, compromising the appearance of the thinnest and widest characters. GEOS fonts
are proportional fonts, fonts whose characters are of variable widths. Proportional fonts tend to
look better than monospaced fonts because thinner characters occupy less space than wider

characters; a lower-case "i," for example, is often less than 1/5th the width of an upper-case "W."

Character Width and Height
Although some characters are taller than others, all characters in a given font are treated as if they
are the same height. This height is the font's point size. A 10 point font has a height of ten pixels.

If a character's image is smaller than 10 pixels, it is because its definition includes white pixels at

the top or bottom. The height of the current font is stored in the GEOS variable curHeight.
Although fonts taller than 28 points are rare (some megafonts are as tall as 48 points), a font could
theoretically be as tall as 255 points.

Text, Fonts, and Keyboard Input

Because GEOS uses proportional fonts, the width of each character is determined by its pixel
definition — the thinner characters occupy fewer pixels horizontally t~an the wider characters.
Most character definitions include a few columns of white pixels on the right side so that the next
character will print an appropriate distance to the right. If this space didn't exist, adjacent characters
would appear crowded. The width of any single character cannot exceed 57 plxels after adding any
style attributes, which means that the plamtext version of the character can be no wider than 54
pixels.

The Baseline

Each font has a baseline, an imaginary line that intersects the bottom half of its character images.
The baseline is used to align the characters vertically and can be thought of as the line upon which
characters rest. The baseline is specified by a relative pixel offset from the top of the characters (the
baseline offset). Any portion of a character that falls below the baseline is called a descender. For
example, an 18 point font might have a baseline offset of 15, which means that the 15th pixel row
of the character would rest on the baseline. Any pixels in the 16th, 17th, or 18th row of the
character's definition form part of a descender. The baseline offset for the current font is stored in
the GEOS variable baselineOffset. The application may increment or decrement the value in this
variable to print subscript or superscript characters

The following diagram illustrates the relationship between the baseline and the font height:

font
height

descender

baseline

The y-position passed to GEOS printing routines usually refers to the position of the baseline, not
the top of the character. Most of the character will appear above that position, with any descender
appearing below. If it is necessary to print text relative to the top of the characters, a simple
transformation can be used: .

charYPos = graphicsYPos + baselineOffset

Where graphicsYPos is the true pixel position of the top of the characters, charYPos is the
transformed position to pass to text routines, and baselineOffset is the value in the global
variable of that name.

Styles '

The basic character stylc of a font is called plaintext. Applying additional style attributes to the
- plaintext modifies the appearance of the characters. There are five available style attirbutes: reverse,

italic, bold, outline, and underline. These styles may be mixed and matched in any combmanon,

resulting in hybrids such as pold jtalic underline. The current style attributes are stored in the

variable currentMode. Whenever GEOS outputs a character, it first alters the image (in an

internal buffer) based on the flags in this variable:

Se Se we we

'0i*t*’t*i****"*i'ﬁti'i'i*'**t'tt!**iit"ti't*'**""I"'k*"*'******

Math

Action: DecW2 decrements a word with inline code. No
flags are set on reaching $0000. Destroys a.

.macro DecW2 addr

lda addr ;get low byte
bne noOvrflw ;if low_byte != $00, then skip high byte dec
dec addr+1 ;decrement hi-byte
noOvrflw:
dec addr ;decrement low-byte

.endm

Routines

Most applications will use IncW and DecW to take advantage of the flags which are set when the
values reach zero. However, DecW2 can be useful when a word needs to be decremented quickly
and the zero flag is not needed.

Unsigned Arithmetic
GEOS provides the following routines for arithmetic with unsigned numbers:

e BEMult

produce an unsigned word result.

Byte-by-byte multiply: multiplies two unsigned byte operands to

* BMult Word-by-byte multiply: multiplies an unsigned word and an

unsigned byte to produce an unsigned word result.

* DMult Word-by-word (double-precision) multiply: multiplies two

unsigned words to produce an unsigned word result.

* Ddiv Word-by-word (double-precision) division: divides one unsigned

word by another to produce an unsigned word result.

Example:

,ot*t*tt*t**ﬁ*itw*t*iititt*t***itttti**itt*tt***ti*****i**tt*t****t**itt*t*******t***t**
L]

.
v
.
r
.
v
.
’
.
’
.
.
.
4
’
.
’
.
.
.
’
.
’
’
.
.

e <~

ConvToUnits

This routine converts a pixel measurement to inches or, optionally,
centimeters, at the rate of 80 pixels per inch or 31.5 pixels per
centimeter.

pass:

r0 - number to convert (in pixels)
return:

r0 - inches / centimeters

rlL - tenths of an inch / millimeters
affects:

nothing
destroys:

a, x, y, r0-rl, r8-r9

;ttt*itti*******it*t**'tti't'*t'ﬁt*tt!t'kitttiﬁ*t‘.t*t"*ttt****"*t*t*tttititttt**‘t*titt

Jif

.else

.endif

. INCHES = TRUE

AMERICAN ;sdecide whether inches or centimeters is
;appropriate

; 'AMERICAN
INCHES = FALSE

ConvUnits:

Math Routines

Jif INCHES

1dx
1dy
jsr

$#r0
#2

DShiftRight

.else ;CENTIMETERS

LoadW
1dx
1dy
jsr
LoadB
1dx
1ldy
jsr
LoadW
1ldx
ldy
jsr
.endif

e N W we

~

IncW
LoadW
idx
idy
jsr
MoveB
1sr
rts

Signed Arithmetic

--- Following lines changed

r11#40
$ro
#rl
DMult
rl,#40
#x0
#rl
BMult
rl,#63
#r0
#rl

' Ddiv

r0
rl,#20
#ro0

#rl
Ddiv
r8L,rlL
rllL

e Se Se ~e

o~

Ne “e Se Se e

e v~

Se Se Ss m: Se Se we “e

~e

First, convert r0 to length in 1/20 of
standard units

#x*x START INCHES SPECIFIC CODE **=*
For ENGLISH, need to multiply by
20 1

80 dots/inch 4

which amounts to a divide by four
(/4 = two right shifts)

r0 = r0>>2 (r0 = r0/4)
*%** START OF CENTIMETER SPECIFIC CODE ***

‘For centimeters, need to do multiply by
20 40

31.5 dots/cm 63

o save bytes

First multiply by 40

(word value) ’

(byte value)

r0 = r0*40 (byte by word multiply)
then divide by 63

r0 = r0/63

%* START OF COMMON CODE *

r0 = result in 1/20ths

add in one more 1/20th, for rounding

now divide by 20 (to move decimal over one)
dividend

divisor

r0 = r0/20 (r0 = result in proper unit)

rlL = 1/20ths

and convert to 1/10ths (rounded)

exit

GEOS provides the following routines for arithmetic with signed numbers:

< Dabs

Computes the absolute value of a two's-complement signed word.

ate

Negates a signed word by doing a two's complement sign-switch.

| :j)ﬁnsfn

A\

Signed word-by-word (double-precision) division: divides one
two'ls complement word by another to produce an signed word
result. o

There is no signed double-precision multiply routine in the GEOS Kernal. The following
subroutine can be used to multiply two signed words together.

'o'k*ti****t*t*t**!*t***'k**t*'k*t**tt*tt*'litiittﬁttt*tt***ittiitiiit*

Math

DSmult double-precision signed multiply.

;pass: x - zpage address of multiplicand

H y - zpage address of multiplier

;returns: signed result in address pointed to by-x'

; word pointed to by y is absolute-value of the
H multiplier passed

; X, Y unchanged

.
.

;Strategy:

H Establish the sign of the result: if the signs of the
; multiplicand and the multiplier are different, then the result
H is negative; otherwise, the result is positive. Make both the
; multiplicand and the multiplier positive, do unsigned
H multiplication on those, then adjust the sign of the result
; to reflect the signs of the original numbers.
;destroys: a, ré - r8 (mgl)
;tt'*ttt**ii**tiittRtt*'****tii**t*!*i!ittt*t*i**i'i*ii*ti*iit*ttt
DSmult:
lda zpage+1l, x ;get sign of multiplicand (hi-byte)
eor zpage+l,y ;and compare with sign of multiplier
php ;save the result for when we come back
jsr Dabs smultiplicand = abs(multiplicand)
stx réL ;save multiplicand index
tya ;put multiplier index into x
tax ;for call to Dabs
jsr Dabs ;multiplier = abs(multiplier)
ldx rélL ;restore multiplier index
jsr Dmult ;do multiplication as if unsigned
. plp ;get back sign of result
bpl 90$;ignore sign-change if result positive
jsr Dnegate ;jotherwise, make the .result negative
90$:
rts °

Dividing by Zero

Routines

Division by zero is an undefined mathematical operation. The two GEOS division routines (Ddiv
and DSdiv) do not check for a zero divisor and will end up returning incorrect results. It is easy to

divide-by-zero error checking to these two routines:

Example:
;t**1**'k*tttttttt*itt**i*tttt*iti't**tt’ﬁit'ﬁit*t*i*i****'kt**t****ti*****iittﬁ*t*ttiti*****t*
;NewDdiv -- Ddiv with divide-by-zero error checking
;NewDSdiv -- DSdiv with divide-by-zero error checking
H
;Pass: X zp address of dividend
: y zp address of divisor
; .
iReturns X,y unchanged
; : - ZPp,X result
H r8 remainder
H a $00 -- no error
Sff -- divide by zero error
st set to reflect error code in accumulator

e we e “e

Destroys r9

Math Routines

.
’

'oﬁ*'iﬁ**itt**l"*tti**'*'*t**'t*t*it***ttl*t*i'iit’ . -

DIVIDE_BY ZERO

NewDdiv:
lda
ora
bne
lda
rts

10S:
jsr
lda
rts

NewDSdiv:
lda
ora
bne
lda
rts

108:

WJAf

.endif
jsr
JAf
.endif
lda
rts

Jif

.endif

= $ff

zpage,y

zpage,y

108
$DIVIDE_BY_ZERO

Ddiv
#s00

zpage, y

zpage, y

108

#DIVIDE_BY ZERO

Apple
stx Xsave

DSdiv

Apple
ldx Xsave

#s00

_Apple

.ramsect
Xsave .block 1
.psect

;get low byte of divisor

sand high byte of divisor

;1f either is non-zero, go divide
;return error

sexit

;

:divide

;and return no error

;get low byte of divisor

;and high byte of divisor

;if either is non-zero, go divide
jreturn error

sexit

.
’

;save x-register because Apple destroys
;
;
;divide
;restore x-register because that ageos destroyed

and return no error

e e e Se

temp x register save variable for ageos

Se v

~e weo “e

AR TR R A T A AR RRE AR AR AR AT RRTY

/s o e

CFFs .‘/ Fonts, and Keyboard Input

Text, Fonts, and Keyboard Input

At one point or another, almost every application will need to place text directly on the screen or get
keyboard input from the user.

GEOS text output facilities support disk-loaded fonts, multiple point sizes, and additive style
attributes. The application can use GEOS text routines to print individual characters, one at a time,
or entire strings, including strings with embedded style changes and special cursor positioning
codes. GEOS will automatically restrict character printing to margins allowing text to be confined

- within screen or window edges. GEOS even contains a routine for formatting and printing decimal

integers.

GEOS keyboard input facilities the translation of keyboard input to text output by mapping most
keypress so that they correspond to the printable characters within the GEOS ASCII character set.
GEOS will buffer keypresses and use them to trigger MainLoop events, giving the application
full control of keypresses as they arrive. And if desired, GEOS can also automate the process of
character input, prompting the user for a complete line of text.

Text Basics

Fonts and Point Sizes

Fonts come in various shapes and sizes and usually bear monikers like BSW 9, Humbolt 12, and
Boalt 10. A font is a complete set of characters of a particular size and typeface. In typesetting, the
height of a character is measured in points (approximately 1/72 inch), so Humbolt 12 would be a
12 point (1/6 inch) Humbolt font. A text point in GEOS is similar to a typesetter's point: when
printed to the screen, each GEOS point corresponds to one screen pixel. GEOS printer drivers map
screen pixels to 1/80 inch dots on the paper to work best with 80 dot-per-inch printers. A GEOS
1/80 inch point is, therefore, very close to a typsetter's 1/72 inch point.

GEOS has one resident font, BSW 9 (Berkeley Softworks 9 point). The application can load as
many additional fonts as memory will allow. Fonts require approximately one to three kilobytes of
memory.

Proportional Fonts

Computer text fonts are typically monospaced fonts. The characters of a monospaced font are all
the same width, compromising the appearance of the thinnest and widest characters. GEOS fonts
are proportional fonts, fonts whose characters are of variable widths. Proportional fonts tend to
look better than monospaced fonts because thinner characters occupy less space than wider
characters; a lower-case "i," for example, is often less than 1/5th the width of an upper-case "W."

Character Width and Height
Although some characters are taller than others, all characters in a given font are treated as if they
are the same height. This height is the font's point size. A 10 point font has a height of ten pixels.

If a character's image is smaller than 10 pixels, it is because its definition includes white pixels at

the top or bottom. The height of the current font is stored in the GEOS variable curHeight.
Although fonts taller than 28 points are rare (some megafonts are as tall as 48 points), a font could
theoretically be as tall as 255 points.

Text, Fonts, and Keyboard Input

Because GEOS uses proportional fonts, the width of each character is determined by its pixel
definition — the thinner characters occupy fewer pixels horizontally t~an the wider characters.
Most character definitions include a few columns of white pixels on the right side so that the next
character will print an appropriate distance to the right. If this space didn't exist, adjacent characters
would appear crowded. The width of any single character cannot exceed 57 pixels after adding any
style attributes, which means that the plaintext version of the character can be no wider than 54
pixels. :

The Baseline

Each font has a baseline, an imaginary line that intersects the bottom half of its character images.
The baseline is used to align the characters vertically and can be thought of as the line upon which
characters rest. The baseline is specified by a relative pixel offset from the top of the characters (the
baseline offset). Any portion of a character that falls below the baseline is called a descender. For
example, an 18 point font might have a baseline offset of 15, which means that the 15th pixel row
of the character would rest on the baseline. Any pixels in the 16th, 17th, or 18th row of the
character's definition form part of a descender. The baseline offset for the current font is stored in
the GEOS variable baselineOffset. The application may increment or decrement the value in this
variable to print subscript or superscript characters

The following diagram illustrates the relationship between the baseline and the font height:

font
height

descender

baseline

The y-position passed to GEOS printing routines usually refers to the position of the baseline, not
the top of the character. Most of the character will appear above that position, with any descender
appearing below. If it is necessary to print text relative to the top of the characters, a simple
transformation can be used:

charYPos = graphicsYPos + baselineOffset

Where graphicsYPos is the true pixel position of the top of the characters, charYPos is the
transformed position to pass to text routines, and baselineOffset is the value in the global
variable of that name.

Styles .

‘I’hg basic character style of a font is called plaintext. Applying additional style attributes to the
- plaintext modifies the appearance of the characters. There are five available style attirbutes: reverse,

italic, bold, outline, and underline. These styles may be mixed and matched in any combination,

resulting in hybrids such as bold italic underline. The current style attributes are stored in the

variable currentMode. Whenever GEOS outputs a character, it first alters the image (in an

internal buffer) based on the flags in this variable:

!\J

/ Fonts, and Keyboard Input

TCrVveE HERE,

v

7 6 5 4 3 2 1 0
57 [b6 [b5 [b4 b3 [b2 [bl [O |

b7 underline: 1 = on; 0 = off.

b6 boldface: 1 = on; 0 = off.

bS reverse: 1 =on; 0 = off.

b4 italic: 1 = on; 0 = off.

b3 outline: 1 = on; 0 = off.

b2t superscript: 1 = on; 0 = off.

b1t subscript: 1 = on; 0 = off. . S
b0 unused? FAsr 13¢AST on/ AfrLe,

TSuperscript and subscript characters are not supported by the standard text routines. However, geoWrite
uses these bits in its ruler escapes. An application can print superscript and subscript by characters by
changing the value in baselineOffset before printing: subtracting a constant will superscript the
following characters and adding a constant will subscript the following characters. Additionally, some Apple
GEOS printer drivers support these two bits when SetMode is used to format ASCII output.

Normally it is not necessary to modify the bits of currentMode directly. Special style codes can
be embedded directly in text strings.

Style attributes temporarily modify the plaintext definition of the character and, in some cases,
change the size and ultimate shape of the character:

Underline Inverts the pixels of the line below the baseline. The size of the character
does not change.

Boldface ‘The character image is shifted onto itself by one pixel. The width of the
character increases by one. :

Outline Transforms the character into an outline style. This transformation occurs
after boldfacing and underlining. #€3cwi d WIOW Jvgretce 3> 2

Italic Pairs of lines above the baseline are shifted nght and pairs of lines below

the baseline are shifted left. Thus the baseline is not changed, the two
lines above it are shifted to the right one pixel, the next two are shifted
four pixels from their original position, and so forth. The effect of this is
to take the character rectangle and lean it into a parallelogram. The width is
not actually changed. The same number of italicized characters will fit on a
line as non-italicized characters, and because the shifting is consistent
from character to character, adjacent italic characters will appear next to
each other correctly. However, if a non-italic character immediately.
follows an italic character, the non-italic character will overwrite right side
of the shifted italic character. This can be avoided by inserting an italicized
space character. :
Reverse Reverses the pixel image of the character. This is the last transformation to
take place. THZ SI2E fofS wno~ CHANC[

Although, at this time, style attributes affect the printed size of a character in a
predictable fashion, the application should not perform these calculations itself but use
the GEOS GetRealSize routine to ensure compatibility with future versions of the
operating system. For more information, refer to "Calculating Character Widths" in this

chapter.

(Qy

Text, Fonts, and Keyboard Input

How GEOS Prints Characters

When a character is printed, a rectangular area the width of the character and the height of the
current font is stamped onto the background, leaving cleared pixels surrounding the character.
When writing to a clear background, the cleared pixels around the character will mesh with the

cleared background, leaving no trace. But when writing to a pattemned background, the background
will be overwritten:

ext is stamped

e balllckgrgund.

There is no simple way to print to a non-cleared background without getting clear pixels
surrounding the characters. Solutions usually involve accessing screen memory directly.

Text and dispBufferOn

Like graphics routines, most text routines use the special bits in dispBufferOn to direct printing
to the foreground screen or the background buffer as necessary. For more information on using
dispBufferOn, refer to "Display Buffering" in Chapter @GR@.

GEOS 128 Character X-position Doubling

GEOS 128 text routines pass character x-coordinates through NormalizeX, allowing automatic
x-position doubling. (The character width is never doubled, only the x-position). Character x-
position doubling is very much like graphic x-positions doubling and is explained in "GEOS 128
X-position and Bitmap Doubling" in Chapter @GR@. There is one notable difference: because
smallPutChar will accept negative x-positions (allowing characters to be clipped at the left screen
screen edge), the DOUBLE_W and ADD1_W constants should be bitwise exclusive-or'ed into
the x-positions as opposed to merely bitwise or'ed. This will maintain the correct sign information
with negative numbers.

Character Codes

Each character in GEOS is referenced by a single-byte code called a character code. GEOS

character codes are based upon the ASCII character set, offering 128 possible characters

(numbered 0-127). GEOS reserves the first 32 codes (0-31) as escape codes. Escape codes are

non-printing characters that provide special functions, such as boldface enabling and text-cursor

positioning. Character codes 32 through 126 represent the 95 basic ASCII characters, consisting of
- upper- and lower-case letters, numbers, and punctuation symbols. The 127th character is a special
deletion character: a blank space as wide as the widest character, used internally for deleting and
backspacing.

Most GEOS fonts do not offer characters for codes above 127 except in one special instance: the
standard system character set (BSW 9) includes a 128th character that is a visual representation of
the shortcut key (a Commodore symbol on Commodore computers and a filled Apple logo on

Fonts, and Keyboard Input

Apple computers). There is no inherent limitation in the text routines that would prevent an
application from printing characters corresponding to codes 129 through 159, assuming the current
font has image definitions for these character codes. The printing routines cannot handle character
codes beyond 159, however. The text routines do no range-checking on character codes; do not try
to print a character that does not exist in the current font. -

A complete list of GEOS character codes appears in Appendix @ TBL@.

Printing Single Characters

GEOS will print text at the string level or at the character level. The high-level string routines,
where many characters are printed at once, will often provide all the text facilities an application
evers need outside the environment of a dialog box. However, in return for generality, string-level
routines sacrifice some of the flexibility offered by character level routines.Character level routines,
where text is printed a character at a time, require the application to do some of the work: deciding
which character to print next and where to place it. Because of this overhead, t is tempting to
dispense with text at the character level, relying entirely on the string level routines instead. But the
character level routines are the basic text output building blocks and the string level routines depend
upon them greatly. For this reason, it helps to understand character output even when dealing
entirely with string-level output.

GEOS provides two character-level routines that are available in all configurations of GEOS:

« PutChar Process a single character code. Processes escape codes and only
prints the character if it lies entirely within the left and right
A _margins (leftMargin, rightMargin).
* SmallPutChar Draw a single character. Does not check margins for proper]
placement. Does not handle escape codes. Prints partial characters,
clipping at margin edges.

And one routine that only exists in Apple GEOS:

'« EraseCharacter Erase a character from the screen, accounting for the current font
' and style attributes. .

PutChar is the basic character handling routine. It will attempt to print any character within the
range 32 through 256 ($20 through $ff) as well as process any escape codes (character codes less
than 32), such as style escapes. It will also check to make sure that the character image will fit
entirely within the left and right margins. SmallPutChar, on the other hand, carries none of the
overhead necessary for processing escape codes and checking margins; it is smaller (hence, the
narge) alr}% fas&elll' but requires that the application send it appropriate data. Do not send escape codes
to SmallPutChar. '

Typically an application will call PutChar in a loop, using SmallPutChar to print a portion of a
character that crosses a margin boundary. SmallPutChar can also be used by an application that
does its own range-checking, thereby avoiding any redundancy. Be sure to only send
SmallPutChar character codes for printable characters. -

PutChar and Margin Faults
Prior to printing a character, .Pu§Char checks two system variables, leftMargin and
rightMargin. When an application is first run, these two margin variables default to the screen

Text, Fonts, and Keyboard Input

edges (0 and SC_PIX_WIDTH-1, respectively). If any part of the current character will fall
outside one of these two margins, the character is not printed. Instead, GEOS jsr's through
stringFaultVec with the following parameters:

r1l1 Character x-position. If the character exceeded the right margin, then this is the
position GEOS tried to place the offending character. If the character fell outside of
the left margin, then'the width of the offending character was added to the x-
position, making this the position for the next character.

rl1H Character y-position.

Note: When Apple GEOS vectors through StringFaultVec, the current values of r11 and
_ r1H are stored on the alternate zero-page. Do a sta ALTZP_ON before accessing
them and a sta ALTZP_OFF after accessing them. When the string fault routine

returns, PutChar will automatically copy these working registers over to the main
zero-page.

stringFaultVec defaults to $0000. Because GEOS uses the conditional jsr mechanism,
CallRoutine, a $0000 will cause character faults to be ignored.

There are many ways to handle a margin faults (including ignoring them entirely), . Faults on the
left margin are usually ignored or not even bothered with because printing will usually begin
predictably ar the left margin, thereby precluding that type of fault. But faults on the right margin,
(which are less predictable) will often get special handling, such as using SmallPutChar to
output the fractional portion of the character that lies to the left of rightMargin.

There is one unfortunate problem with faults through PutChar: the fault routine has no direct way
of knowing which character should be printed and so will lose some of its generality by needing
access to data that should be local to the routine that calls PutChar. One simple way around this
problem is to use a global variable — call it something like lastChar — to hold the character code
of the character being printed, or perhaps, make it a pointer into memory (PutString does just that
with r0). This way the fault routine will know which character caused the fault.

Example:

'-itiiti*t*tti*****tt*iitit*t**t*i*i*ﬁti***ttit***t*ttitiiiiﬁitiii*
;macro: PutChar char (char = character code)
;
H Macro to replace jsr PutChar in your code so that lastChar
; holds the value of the last character printed
H
'o**ttt******ittt*t*i**it*i*t**t**tt*tttiti***t*t*i****titt**tti*i*
.macro PutChar character
sta lastChar ;character is already in A-reg
jsr PutChar
.endm

~Calculating the Size of a Character

Text formatting techniques such as right justification require the application to know the size of a
character before it is printed. GEOS offers two routines for calculating the size of a character:

Fonts, and Keyboard Input

- GetCharwidth Calculates the pixel width of a character as it exists in the font (in
its plaintext form). Ignores any current style attributes.

» GetRealSize Calculates the pixel height, width, and baseline offset for a
character, accounting for any style attributes.

These routines can be used in succession to calculate the printed size of any character combination,
whether groups of random characters, individual words, or complete sentences. ’

. GrRaomsres O~
Partial Character Clipping

Confining text output to a window on the.screen is called clipping. Characters that will appear
outside the window's margins are not printed; they are "clipped," so to speak. Sometimes,
however, it is desirable to print the portion of the offending character that lies within the margin
and only clip the portion that lies outside the window area. This sort of clipping is called partial
character clipping.

Top and Bottom Character Clipping

Both PutChar and SmallPutChar handle top and bottom partial character clipping. Any portion
of a character that lies outside of the vertical range specified by windowTop and
windowBottom will not be printed. windowTop and windowBottom default to the full
screen dimensions (0 and SC_PIX_HEIGHT-1, respectively). They may be changed by the
application before printing text.

Left and Right Character Clipping with SmallPutChar

Whenever a character crosses the left or right margin boundary, PutChar vectors through
StringFaultVec without printing the character. SmallPutChar, unlike PutChar, will not
generate string faults. If a character crosses a margin boundary, SmallPutChar will print the
portion of the character that lies within the margin.

SmallPutChar will also accept small negative values as the character x-position, allowing
characters to be clipped at the left screen edge by placing leftMargin at 0.

Clipping at the left margin, including negative x-position clipping, is not supported by

early versions of GEOS 64 (earlier than version 1.4) — the entire character is clipped
instead. Left margin clipping is supported on all other version of GEOS: GEOS 64
v1.4 and above, GEOS 128 (in both 64 and 128 mode), and Apple GEOS. Early
versios of Apple GEOS (versions earlier than 2.0.3) did not properly clip at the left-
margin.

Manual Character Clipping

Once of the criticisms of GEOS is the iconsistent and sometimes capricious character clipping
capabilities — not all versions of GEOS fully support partial character clipping and the versions
that do have inherent ideosyncracies. A carefully dcsif‘éd program can usually work around these
limitations. Some applications, however, will need a reliable method to perform partial character
clipping. The following ClipChar subroutine will properly clip and print a character that partially
exceeds one of the left or right margins. Be aware that ClipChar does quite a bit of caculation and
should only be used in special cases where controlled character clipping is needed.

Example:

Text, Fonts, and Keyboard Input

JAf (0)
'titt*"ttiii*'ti**Ii**iﬁ*t"t'"t'it***ttttt'l'*ii'***ti****'**t**t'titi***i’ﬁi**t*
ClipChar -- print a character, clipping to window margins.

Description: -

Draw a character, clipping it EXACTLY to leftMargin, rightMargin,
windowTop and windowBottom

Operates by temporarily modifying the font definition (making the
character thinner, so as to fit in the margin).

Pass:

a - character to print

rll - x position

rlH - y position .
Return:

rll - x position for next char

rlH - y position for next char
Destroyed:

a, X, y, r2-rloL

LA A AL AR AR SRR AR AL AR sl el R R R R R R R TR LR R R R R R R R R R R R RN R e

.endif
ClipChar:
sta rllL ;store character
1dx currentMode ;get width of character
jsr GetRealSize H
dey ;use width - 1 to calc last position
tya H
add rlllL ;r2 = last pixel that char covers
sta r2L H
lda $0 . H
adc rlly 3
sta r2H 2
CmpW r2,leftMargin ;check for char entirely off window
blt 3s ;if so then exit
CmpW rightMargin, rill ;
bge 5% H
3s$:
AddWVW r2,1,rll ;rll = one pixel beyond where char would have gone
rts sexit
5s§: :
lda rllL ;push old width table values
sub $#32 ;get card #
sta r3L ;
asl a H
tay ;
1dx $0 ;
10$:
lda (curIndexTable),y ;store this char's index values
sta savedWidths, x H
iny ;
inx ;
cpx #4 H
bne 108 #loop to copy values
CmpW leftMargin,rll 2
blt 30% H
lda r3L H
asl a H
tay ;
H

lda leftMargin check for clipping on left

sl

Fonts, and Keyboard Input

sub rillL

clc H
adc (curIndexTable),y H
sta (curIndexTable),y ?
iny H
lda #0 H
adc (curIndexTable),y H
sta (curlndexTable),y H
MoveW leftMargin,rll H
30s: .
CmpW r2,rightMargin H
blt 50$:
lda r2L :check for clipping on right
sub rightMargin ;
sta . r3H ' ;save amount to subtract
lda r3L) H
asl a H
tay H
iny H
iny H
lda (curIndexTable),y ;
sub r3H ;
sta (curIndexTable),y . H
iny H
lda (curIndexTable),y H
sbc $0 ;
sta (curIndexTable),y ;
508:
lda rllL ;draw the character !!
pha ;save it for later
jsr SmallPutChar ;
pla) H
sub. =~ #32 H
asl a ;recover old widths
tay H
ldx $#0 ;
60$:
lda savedWidths, x H
sta (curIndexTable),y ;
iny ;
inx :
cpx #4 ;
bne 60$ H
rts ;
.ramsect
savedWidths: ;values from inde§ tabel stored here
.block 4
.psect

Printing Decimal Integers (PutDecimal)

One of the unfortunate side-effects of binary math is the conversion necessary to print numbers in
decimal. Fortunately, GEOS offers a routine to remove this drudgery from the application:.

‘|. PutDecimal " Format and print'a 16-bit, positive integer ' |

PutDecimal is like a combination of character and string level routines. The application passes it
a single 16-bit, positive integer, some formatting codes (e.g., right justify, left justify, suppress

Text, Fonts, and Keyboard Input

leading zeros), and a printing position. PutDecimal converts the binary number into a series of
one to five numeric characters and calls PutChar to output each one.

String Level Routines

Many applications will never need cbmplex text output and can rely on GEOS's string-level
routines for simple text output and input. GEOS provides two string-level text routines, one for
printing strings to the screen and one for getting strings through the keyboard.

- PutStrin Print a string to the screen. A
» GetString Get a string from the keyboard using a cursor prompt and echoing
characters to the screen as they are typed.

GEOS Strings .

A GEOS string is a null-terminated group of character codes. (Null-terminated means the end of
the string is marked by a NULL character ($00).) These strings can contain alphanumeric
characters as well as special escape codes for changing the style attributes or changing the printing
position.

There is no basic limit to the possible length of a string; GEOS processes the string one character at
a time until it encounters the NULL, which it interprets as the end of the string. If the string is not
terminated, GEOS will have way of knowing where the end of the string is and will continue
printing until it encounters a $00 in memory.

A simple string of ASCII characters might look like this:

Stringl:
.byte "This is a simple string.",NULL -

The above string, including the NULL, is 25 characters long (and therefore 25 bytes long also). .
Escape codes may be embedded within the string to effect changes while printing. An individual
word, for example, may be underlined by embedding an ULINEON escape code before the word
and an ULINEOFTF after it as in:

String2:
.byte "This word is "
.byte ULINEON, "underlined", ULINEOFF,".", NULL

The embedded escape codes change the style attribute bits in currentMode mid-string, resulting
in something like:

This word is underlined.
PutString

PutString offers a simple way to handle text output. It is really does nothing more than call
PutChar in a loop, so issues that apply to PutChar, such as top and bottom character clipping,
also apply to PutString. PutString directly supports a feature that PutChar doesn't, though:
multibyte escape codes, such as GOTOXY,which require r0 to contain a pointer to the auxiliary

10

Fonts, and Keyboard Input

bytes in a multibyte sequence (PutString maintains r0 automatically, allowing the extra
parameters to be embedded directly in the string). Printing a string to the screen with PutString

involves specifying a position to begin printing and passing a pointer to a null-terminated string:

_Example:

Rt A 2 2 2 2 R R R T RIS I SRS AR AL A AL LA AL AR AR

Example use of PutString. Places a test string onto the

windowBottom contain their default, startup values (full

; screen. Assumes that leftMargin, rightMargin, windowTop and

screen dimensions).
.”i'tt'i"t!**i*tt****i*it*t*t*it*ti*tit*itt*t*'iQ*t*’liiiti**t**t

40 ;x-position of first character

STR_X =

STR_Y = 100 ;y-position of character baseline
Print:

LoadB dispBuffOn,#(ST_WR_FORE | ST_WR_BACK) tboth buffers!

LoadW rll,#STR_X ;string x-postion

LoadB rlH,#STR_Y ;string y-position

LoadW 1r0,#String ;address of text string

jst PutString ;print the string

rts jexit
String:

.byte "This is a test.", NULL snull-terminated string

String Faults (Left or Right Margin Exceeded)

Because PutString calls PutChar, if any part of the current character will fall outside of
leftMargin or rightMargin, the character is not printed. Instead, GEOS jsr's through
stringFaultVec with the following parameters: ' :

rl1 Character x-position. If the character exceeded the right margin, then this is the
“position GEOS tried to place the offending character. If the character fell outside of
the left margin, then the width of the offending character was added to the x-
position, making this the position for the next character.
r1H Character y-position.
r0 Pointer to the offending character in the string. Only valid with PutString, unused

by Putchar.

r1H, and r0 are stored on the alternate zero-page. D

accessing them and a sta ALTZP_OFF after accessing them. When the string fault
routine returns, PutString will automatically copy these working registers over to the
main zero-page.

GEOS 64 and GEOS 128 do nothing special to handle these string faults. If the application has not
installed its own string fault routine, stringFaultVec it should contain a default value of $0000,
which will cause the string fault to be ignored. If this is the case, the following will happen:

o If part of the character was outside of the left margin, the width of the offending

character was added to the x-position in r11 before the fault. PutString moves on to
the next character in the string and attempts to print it at this new position.

11

Text, Fonts, and Keyboard Input

o If part of the character was inside the left margin but outside the right margin,
PutString leaves the x-position unchanged and moves on to the next character in the
string.

The strategy behind this system is to only print the portion of the string that lies entirely within the
left and right margins. Unfortunately, this strategy is flawed. Whenever the right margin is
encountered, PutString should stop completely. But it doesn't. It continues searching through
the string, looking for a character that will fit. This can be a problem when a thin character follows
a wide character. For example, trying to print the word "working" with only a few pixels of space
before the right margin, PrintString would try to print the "w," but since it doesn't fit, would
move on and try its luck with the following "o." But the "0" won't fit either, so it moves on until it
encounters the "i," which just happens to fit in the available space. PutString proudly prints the
"i," t}iinking it has done a good thing, entirely unaware that the proper sequence of characters has
been lost.

The Apple GEOS version of PutString offers a partial solution to this problem. If
stringFaultVec contains $0000, it installs a temporary string fault routine (PutStringFault).
PutStringFault immediately terminates string printing on any fault (left or right margin) by
moving r0 forward to point to the null. To disable the Apple PutStringFault so that Apple
GEOS PutString is identical to GEOS 64 and GEOS 128 PutString, point StringFaultVec to
an rts prior to calling PutString. PutStringFault can be implemented on GEOS 64 and GEOS
128 by placing the following routine into StringFaultVec prior to calling PutString:

;ttiii*tii*tt*ttt*ittt*ttit*ttt*tt*ttt**ﬁ**t**ttitti*titttt'*tttt*

;PutStrFault (for GEOS 64/128 only)

r

:String fault routine for duplicating the Apple GEOS PutString
;fault handling on GEOS 64 and GEOS 128. Immediately terminates
;string printing when any fault (left or right margin) is
;igenerated by setting r0 to point at the end of the string.

;t***i**t*titi***i*t*i*t*iitt**ti'itttt*i*t*ttttiitttiitttt*ttt**t .
PutStrFault:

;Go through the string looking for the null

ldy 1 ;load index to look at next character
bne ~20$) g ;always branch -- don't inc on 1lst pass
(‘ i
20§: ’
IncW r0 ;check next character
108: lda (r0),y :;get character
bne - 208 :loop until we find null

;Return to PutString pointing at a null
rts

The above technique, however, has two flaws: if a character lies outside the left margin, printing is
aborted, and, with either type of fault, the application has no way of knowing which character in
the string caused the fault. The following routine, SmartPutString, will solve both these
problems. If a character lies outside the left margin, it is skipped, and if it lies outside the right
margin, SmartPutString returns with r0 pointing to the character in the string that caused it to
terminate. If r0 points to a NULL, then SmartPutString was able to print the whole string and
terminated normally.

if 0 .

;i****ti*iittt'****ttt*t**i***fttﬁtitQQ*ttttttﬁ*i*f*t**i*tti****tﬁ

;SmartPutString

12

Fonts, and Keyboard

New front-end to PutString that handles right-edge string
faults by exiting immediately rather than moving through
the string until it finds a character that fits. It operates
by replacing the current string fault service routine with
its own routine that tricks PutString into thinking it
encountered a null on a right-margin fault.

Ne %o e Se Ne we N

~e

Pass: same as PutString. The string must not be located
in zero-page ($00-Sff).

Returns: same as PutString, except that if the string
faulted, then rl5 points to the offending character
rather than the null at the end of the string. If
rl5 = $0000, then the string printed without a fault

e We we e S Se

Destroys: same as PutString.

Ne Se Se ve e

Note: No inline support.
;itiii****t*i*i*t*t**'*t*t!*ttt*it**i*tt*ti***t********ittitiiittt

.endif
SmartPutString:

;Insert our own string fault routine into stringFaultVec,
;saving the old one so that we can restore it when we leave.
PushW stringFaultVec ;save old

LoadW stringFaultVec,#FaultFix sinstall new

;Clear the flag that alerts us to a right-edge fault. If the high
:ibyte of rl5 is zero then PutString returns immediately because
;our string never encountered the right edge.

LoadW rl5,4#0 ;clear rl5 to $0000

;Call PutString with our string fault routine in place
jsr PutString

90s:
;Restore the old string fault routine
PopW StringFaultVec

sReturn
rts

;t'tt't’*ttt!*tttt'k**tt*tit*'k**ttt*tti**tt"'i'ttt*i!*t*it‘i't*tt*

;FaultFix

3
.

;Our own string fault routine that sets up the string pointer
;so that PutString is tricked into thinking it encountered a
;NULL when the right margin is exceeded.

H LA A2 RS2 A2 A2 2222 SRR3R 2 2R 2 2R R R 2R 2 22" 22 X R X 2 R R RE R
FaultFix:

;Check to see if we exceeded the right margin or if we just ’
shaven't reached the left margin yet. If the right margin was

inot exceeded, return early -~ the text routine handles this

;case appropriately.If the first character in the string will not

;fit within either margin, we treat it as if the right margin was

iexceeded. Don't need to normalize the coordinates under GEOS 128

ibecause the character output routine has already taken care of

;this for us.

Jif (APPLE) ;Apple GEOS hides registers

13

Input

Text, Fonts, and Keyboard Input

sta ALTZP_ON ’ ;on aux. zpage.

.endif

CmpW rightMargin,rll ;check x with right edge
ble 90$ sexit if right not exceeded;

;the character was outside the
;left edge.

;Save the pointer to the offending character in rl5 (which is left
;juntouched by the normal PutString)

lda rOL

1ldx rOH

Jif (APPLE) sneed to change rlS on main zp if apple
_sta ALTZP_OFF

.endif

stx rl1SH

sta rlSL

.if (APPLE) ;jreturn Apple to

sta ALTZP_ON ;saux. zpage.

.endif

;Change the string pointer so that PutString thinks the next
;jcharacter is a null.

LoadW 1r0, #(FakeNull-1) ;jone less to compensate for
iincrement that PutString will
;do before it checks.

90$:
sReturn to let PutString do its stuff
.if (APPLE)
sta ALTZP_OFF
.endif
rts ;jreturn to to StringFault caller

FakeNull: .byte NULL - snull for FaultFix

. Embedding Style Changes Within a String
A string may contain embedded escape codes for changing the style attributes mid-string. For
example, if while printing a string GEOS encounters a BOLDON (24) escape code, then
PutString will temporarily escape from normal processing to set the boldface bit in
currentMode. Any characters thereafter will be printed in boldface.

Style changes are typically cumulative. If a OUTLINEON code is sent, for example, then the
outline style attribute will be added to current set of attirbutes. If boldface was already set, then
subsequent characters will be both outlined and boldfaced. The PLAINTEXT escape code
returns text to its normal, unaltered state.

When PutString is first called, it begins printing in the styles specified by the value in
currentMode and when it returns, currentMode retains the most recent value, reflecting any
style-change escapes. The next call to PutString (or any other GEOS printing routine) will
continue printing in that style. To guarantee printing in a particular style without inheriting any
style attributes from previous strings, the first character in the string should be a PLAINTEXT
escape code. Any specific style escape codes can then follow.

Position Escapes (Moving the Printing Position Mid-string)

GEOS provides escape codes for changing the current printing position. Like other escape codes,
these can be embedded within the string. Some of them are simple, such as LF and UPLINE,
which move the current printing position down one line or up one line, respectively, based on the

14

Fonts, and Keyboard Input

height of the current font. Others, such as GOTOX, GOTOY, and GOTOXY, require byte or
word pixel coordinates to be embedded within the string immediately after the escape code.

Example:

String: .
.byte HOME ;start in the upper-left corner
.byte LF :move down one line.so we have room

.byte “This “,LF,"is ",LF, "stepping ",LF-
.byte "Down",LF"ward",CR

.byte LF, "HELLO"

.byte GOTOXY

.word 40 ix-position
.byte 15 ;1y-position of baseline
.byte "Look! I moved."

.byte NULL

Escaping to a Graphics String

GEOS provides a special escape code (ESC_GRAPHICS) that takes the remainder of a string
and treats it as input to the GraphicsString routine. This allows graphics command to be
embedded within a text string, which is useful for creating complex displays, especially those that
require graphics to be drawn over text. The current pen positions for the graphics are unitialized so
the first graphics string command should be a MOVEPENTO.

Example:

TextGraphics: sstring with both text and graphics
.byte GOTOXY
.word 20
.byte 20
.byte "BOX: "
.byte ESC_GRAPHICS
.byte MOVEPENTO .
.word 10

.byte 10
.byte RECTANGLETO
.word 50

not resume PutString processing. .

If it is necessary to print additional text after graphics, the ESC_PUTSTRING

command may be used to escape from GraphicsString. A subsequent NULL will

still mark the end of the string. Be aware that each context-switch between these two

routines allocates additional 6502 stack space that is not released until the NULL
terminator is encountered.

GetString .

GetString provides a convenient way for an application to get text input from the user without
using a dialog box. GetString takes care of intercepting keypresses and echoing the characters to
the screen. The beauty of GetString is that it builds the string concurrently with the rest of

15

Text, Fonts, and Keyboard Input

MainLoop, allowing menus, icons, and processes to remain functional while the user is typing in
the string. ’

‘When you call GetString, you place the address you want GEOS to call when the user presses
[Return] into keyVector. GEOS saves this address, prints out an optional default string, and
inserts its own routine (SystemStringService) into keyVector, assuming control of future
keypresses. GEOS then returns back to the application with an rts, which is left to return to
MainLoop in its normal course of events. As MainLoop encounters keypresses, it vectors
through keyVector, calling SystemStringService. SystemStringService masks out invalid
keypresses and prints valid characters, backspacing as necessary when the backspace key is
pressed. When the [Return] key is gressed GEOS clears keyVector and calls the event routine
specified in keyVector when GetString was called. The null-terminated string is passed in a
buffer.

GetString has a variety of options and flags that are described compeletely in the GetString
reference section. These include specifying a maximum length for the entered string, providing a
default string, and enabling an option to give application control of string faults. But GetString is
of limited usefullness, and applications that rely on a lot of this type of keyboard and text
interaction might warrant a customized string/keyboard routine.

GetString and dispBufferOn

GetString uses the Putchar routine to print text to the screen, and Putchar depends on the
value in dispBufferOn to decide where to direct its output. Because SystemStringService | ~/o/~
runs concurrently with other MainLoop events — events that might alter the state of | €rvirze
dispBufferOn — it needs a way to override the current value of dispBufferOn, otherwise text | cigy, -
will print based on the current value of dispBufferOn, which, depending on the events running [v, o7
off of MainLoop, may contain different values on every keypress, sending characters to different

screen buffers at different times. Peo,

P
Some early versions of GEOS used bit 5 of dispBufferOn as a flag to limit GetString's x>
character printing to the foreground screen. This bit, however,is no longer guaranteed to have this 7,25
effect and should always be zero.

s o
One solution to controlling where Getsmng sends its characwrs dcmonsmned below, mvolves o0& ‘):; Ve
patching into keyVector and updating ingService gets
control. qades]
r1Pon) -
WJdf o ANTE .
NewGetsString

New front-end to GetString that wedges into keyVector befo;
CringService gets control. This routine uses Stringbatch to
ahpBuff.er 45 that. 4 bolds tre valua chat it

ing was first called, making every
e print eonuumuy It otherwise acts just like

same as GetString.

Returns: same as GetString.

same as GetString.

endif ’

Text, Fonts, and Keyboard Input

H keyboard buffer,.
;t'lttitti*tﬁi**'**'l"tt"t'ti'l'l'tttti***t!"'l'ftttitti****’t*i**'ttt*t*
DoNewKeys:

1dx $#s00 ;start at beginning of buffer
108:

lda newKeys, x ;get a key

beq 208 sexit loop if it's the null

nop :do nothing with this keypress

inx ;jpoint to next position

bne 10$;always branch (X should never go to 0)
20s:

;We've encountered the NULL and therefore gone through the entire
;string. Clear the buffer by storing the null in the first.
;position of the string.

sta newKeys+0

99s:
: rts sexit

Ignoring Keys While Menus are Down

Becuase MainLoop is still running full-speed when menus are down, keyVector will still ber
vectored through on a regular basis. The application may want to postpone any text output or
keypress interpretation when menus are down. Checking for this case is simple:

lda menuNumber ;check current menu level
bne 99$ l: ;; ;leave if any menus are down

Implementing Shortcuts

Shortcut keys are a common user-interface facility found in GEOS applications. Briefly, a shortcut
key is a key combination that allows the quick selection of a menu item or function in the
application. Typically shortcuts are distinguished from other keypresses by pressing the shortcut
key (the Commodore logo or the filled Apple logo) while typing another key. Key combinations
that include the shortcut key will have the high-bit set, which makes them easy to recognize. Even
if an application is not using shortcuts, it will most likely want to at least filter out all shortcut keys.

To process shortcut keys, the normal key handler (the one the application installs into keyVector)
should first check the high-bit of the keypress and branch to the shortcut key handler if the bit is
set:

KeyHandle:
lda menuNumber ;check current menu level
bne 99§ . signore keys while menus down
lda keyData tget the keypress
bmi 108 ;was it a shortcut?
jsr NormalKey . ;no, process normally
bra 99$ sexit
10S:
isr ShortKey ;yes, process as a shortcut
99S:
rts sexit

The shortcut key handler will need to decide what to do based on the key that was pressed. Usually
the shortcut bit (bit 7) will be removed, the character will then be converted to uppercase, and the
resulting character code will be used to search through a table of valid shortcut keys. If the
particular shortcut key is not supported, the handler just returns, ignoring the keypress. If the key
is implemented, the handler needs to call an appropriate subroutine to process the shortcut key:

24

Foms, and Keyboard

,-'t*""'*"'"!**"""!i*itttttt'l’tI""tlﬁt""'t"'*ii‘li"’*""

;Shortcut key handler. Call with keycode in A-register

'oﬁ***'f'*t'*t'*"i**t*******tl’ti’*'**f'***’*'**t**ti**’***!*'ﬁt*ti*"

ShortKey:
;Do some minor conversion on the keycode i
and #~SHORTCUT slop off shortcut bit
cmp $'at ;check if lowercase
blt 108 : sbranch if less than "a"
cmp #'z2'+1 ;or greater than "z"
bge 108 ;
sec : ;it's lowercase: convert to upper
sbc #('a'-'a") ;by subtracting the ASCII difference
;between a lowercase 'a' and an
juppercase ‘A’
10$:

;Now that we have a shortcut key, we go searching through
;a table of valid shortcut keys, looking for a match. Use Y-reg
;to index so we can use X-reg later for CallRoutine.

1ldy #NUM_SHORTCUTS ;start at top of table
20S$:
cmp shortCuts,y ;check for a keycode match ">
beq 30$;branch if found
dey ;else, try next
bpl 208 ;loop until done. NOTE: must
;not have more than 127 shortcuts
;or this branch will fail!
bmi 99§ sno match, ignore this key
308:

;We've found a match. Get the corresponding routine address from
;the jump table and call the routine

1ldx h_shortCutTbl,y ;get high address of routine
lda 1_shortCutTbl,y ;and low address
jsr CallRoutine ;call the routine
99$:
rts sexit

;*ﬁ'******i***'*t****t**t***i*iﬁii*'iii**"***ﬁ*it*****fi*'ittit*f

:Table of shortcut keys and their corresponding routines
;'titt*'*it*****t*t*i*it*tlit"lIi*ttti*tfittittii*it'*'tt*t**it**t

;Valid shortcut keys

shortCuts:

.byte '0' ;1 undo

.byte *'T° ;2 text

.byte 'p° ;3 print

.byte 'Q° ;4 quit

.byte 'N* ;5 new document

.byte ‘G ; goto page

.byte 'B! ;7 Dboldface toggle

.byte 10! : outline toggle

.byte '1° ;9 italic toggle

.byte rp¢ +10 underline toggle

.byte 'p! ;11 delete

.byte r'c¢ 112 copy

.byte ‘'sv : 213 scroll

.byte 'L» ;14 load document
NUM_SHORTCUTS == (* - shortCuts - 1) ;number of shortcuts
JAf (NUM_SHORTCUTS > 127)

.echo WARNING: too many shortcuts
.endif

25

Input

Text, Fonts, and Keyboard Input

:Table of low bytes of shortcut routine
1_shortCutTbl:

.byte [DoUndo ;1
.byte [DoText ;2
.byte [DoPrint ;3
.byte [DoQuit 74
.byte [DoNew 5
.byte [DoGoto ;6
.byte [DoBoldface 37
.byte [DoOutline ;8
.byte [DolItalic i 9
.byte [DoUnderline ;10
.byte [DoDelete 211
.byte [DoCopy 112
.byte [DoScroll ;13
.byte [Doload ;14

:Table of high bytes of shortcut routine
h_shortCutTbl:

.byte]DoUndo ;1
.byte]DoText 32
.byte]DoPrint ;3
.byte]DoQuit 24
.byte]DoNew ;5
.byte]DoGoto ;6
.byte JDoBoldface 37
.byte]DoOutline ;8
.byte]Doltalic ;9
.byte)DoUnderline ;10
.byte]DoDelete 211
.byte]DoCopy 212
.byte]DoScroll ;13
.byte]DoLoad ;14

The Text Entry Prompt

Whenever an application will be accepting text input, it is a good idea to offer a prompt, or cursor,
to mark the point at which text will appear. GEOS offers three routines for automatically
configuring sprite #1 to act as a text entry prompt:

 InitTextPrompt Initalize sprite #1 for use as a text prompt.

» PromptOn Turn on the prompt (show the text cursor on the screen).

» PromptOff Turn off the prompt (remove the text cursor from the screen).

The prompt automatically flashes on the screen without disrupting the display and can be resized
to reflect the point size of a particular font.

26

Fonts, and Keyboard Input

fmportant: Interrupts should always be disabled and alphaF!ag should be cleared when

PromptOff is called. The following subroutine illustrates the proper use of
PromptOff:
KillPrompt:

php i : ;save i status

sei ;disable interrupts

jsr PromptOff . ;prompt = off

LoadB alphaFlag,#O—-&&iggg_iigﬁg_{lgg___é>

plp ;restore i status

res jexit

Sample Keyboard Entry Routine

As an example, we will use some of the concepts covered in this chapter in real-world code. The
following routine will patch into keyVector and output text as keys are pressed:

;*** CONSTANTS *==*

TXT_LEFT == 10 ;text left margin
TXT RIGHT == (SC_PIX_WIDTH - TXT_LEFT) ;text right margin
TXT_TOP == 20 ;text top margin
TXT_BOT == (SC_PIX_HEIGHT - TXT_TOP) ;text bottom margin

;jtext (x,y) starting position
TXT_X == 20
TXT_Y == 50

;size of the text buffer

TXTBUFSIZE == $200 :1/2K is far more than enough for jﬁ
¢ ;now., To accept multiple lines,

;the buffer will need to grow

;Characters to accept before buffer overflow fault
MAX_ CHARS == 30

Jif 0

; **tt**t*tt*t*tt**i*ttt*tttttt**t***ﬁ*it'ttt’k*ttt*t*t*'k*****ttt**t
;StartText:

Initializes the text input process by loading the proper
vectors, setting flags, etc. Wedges KeyIn into keyVector to
intercept keypresses and output them to a single line.

“e we Se e e v

Pass: nothing

Returns: text input routine in keyVector

Destroys: ?

Ne Se e e N

;iit**i*tﬁ*t*i'k****t*'**tt_****ttttttt*i**tt*ttt*tit*i'kt*ti*titt*t"

.endif
StartText:

;Send our text output to both screens
LoadB textDispBufOn, # (ST_WR_FORE | ST_WR_BACK)

27

Text, Fonts, and Keyboard Input

;Install our character handler
LoadW keyVector, #Keyln ;keypresses vector thru here
LoadW stringFaultVec, #TextFault sand string faults here

;Install the system font and clear all text attributes

jsr UseSystemFont:
lda #PLAINTEXT
jsr PutChar

;Set the left and right margins
LoadW 1leftMargin, #TXT_LEFT
LoadW rightMargin, #TXT_RIGHT

;Set the top and bottom margins
LoadW windowTop, #TXT_TOP
LoadW windowBottom, TXT_BOT

;Set the text starting position
LoadW stringX, #$TXT_X
LoadB stringY, #TXT_Y

7Initialize the prompt

lda currentHeight
jsr InitTextPrompt
jsr PromptOn

;Point at the start of the line buffer
LoadW txtBuf, #bigTextBuffer ;where to start
LoadB txtBuflndex, #0 ;index from start

iMax number of characters to accept
LoadB txtInMax, #MAX_CHARS

sAnd where control goes if we go over...
LoadW - bufFaultVec, #BufOverflow

;Turn text on N
LoadB textOn, #TRUE

JExit
rts

.ramsect

sBuffer that will hold all the text we enter. We let the key input
sroutine build it up a line at a time by passing .

bigTextBuffer: .block TXTBUFSIZE
textDispBufOn: .block 1 sholds dispBufferOn value for text
txtInMax: .block 1 " inumber of characters that will
;generate buffer overflow fault
textOn: .block 1 ijtext is ON flag. (TRUE = ON)
JAf ((* & SEf) == Sff) 71f indirect jump vector straddles a page -3
.block 1 ;boundary, fix it to compensate for a bug =2

.endif +in the 6502 architecture
bufFaultVec .block 2 :

.psect

:t*'***tt*******'i**ti****ti***'ﬁttt***i**i**l*t*t***t*ittitttﬁ**'t

;KeylIn:

.
v

;When a key is pressed, control comes here off of MainLoop

28

.
;i
’0*l"Ii*iI'"l."""t*tii*!"I'"i**I'*i'ii'*i***"t"*it**it*i‘"'*

KeylIn:
lda menuNumber ;check current menu level
bne 99s ;ignore keys while menus down
lda keyData ;get the keypress
bmi 108 ;was it a shortcut?
jsr NormalKey ;no, process normally
bra 99$ jexit
10s:
jsr ShortKey ;yes, process as a shortcut
99%:
rts sexit

;*It'k***itt**i***i*ittiit**'!***tt****t*I*ifi***'i**i**t***ttt_****

;ShortKey:

.
’

;Control comes here when shortcut keys are pressed
;
:*tt*tt**ti'i*itt*itii*it.*tit*ttt*it*ti'.*****ﬁ**ti***ﬁ**t*tﬁ*t*t*

ShortKey:
rts ;no shortcut key handler now. just

;'k*t**i’******'tttttit*’*ttt****i'l*!**'kit‘i*t!tttf't'*****tt*t**t*t

;NormalKey:

Control comes here when non-shortcut keys are pressed

Se Ne e we

(2222222 222222222222 222222222222 2222222222222t i i s st it ittt l

SPACE = 32 ;first printable character code
NormalKey:
;Return immediately if text is off
lda textOn
bne 5$;branch if text on
rts H
58:
jsr KillPrompt ;turn the prompt off

;Save the current value of dispBufferOn and load up the correct
;value for text output.

PushB dispBufferOn

MoveB textDispBufOn,dispBufferOn

;Load the current cursor position into the PutChar position
;registers, just in case we need to use them later.

MoveW stringX,rll :x printing position

lda stringY ;convert y cursor position to
clc :baseline position

adc baselineOffset H

sta rlH ;Y printing position

;Process the character

lda keyData iget the kéypress again
cmp #SPACE scmp with first printable char
bge 408 sbranch if printable

;Check the control character against a table of special action
skeys. Use Y-reg to index so we can use X-reg later for

Fonts, and Keyboard

ignore keypress.

29

Input

Text, Fonts, and Keyboard Input

;CallRoutine.
ldy #NUM_CTRL
208:
cmp ctrlKeys,y
beq 308
dey -
bpl 208
bmi 88$
305:

;start at top of table

;

;check for a keycode match

;branch if key matches takle entry
;jelse, try next’

;loop until done. NOTE: must not

.+have more than 127 special keys

sor this branch will fail!

;no match was found, ignore this key

;We've found a match on a control character. Get the corresponding
;routine address from the jump table and call the routine

o ldx . h_CtrlThl,y
lda 1_CtrlTbl,y
jsr CallRoutine
bra 88s

40%:

;get high address of routine
;and low address

;call the routine

;go clean up and exit

;It's a normal alphanumeric character. Output it to the
;screen and save it in the text buffer

pha

ldy txtBuflIndex
sta (txtBuf),y

iny

lda #NULL

sta (txtBuf),y

sty txtBuflIndex
pla

jsr PutChar

MoveW rll,stringX
lda txtBuflIndex
cmp txtInMax

blt 88$

lda bufFaultVec
1dx bufFaultVec+1l
jsr CallRoutine

88S$:
;Clean up
lda textOn
beq 99$
jsr PromptOn
99s§:

PopB dispBufferOn
rts

;save the character code

;pointer into current text buffer
;place the character into the buffer
;point to next position in buffer
;and null-terminate the string

.
’

;set down the new index value

;get the character code back. (Note:
; we could have pulled it off of

; keyData, but future versions may
: pre-process or translate the char
; code in the A-reg before passing)
;print it on the screen

supdate the prompt X-position

;swas that the last character we

;can accept?

;OK if under max.

;otherwise, call buffer overflow
;routine

.
.

;sonly re-enable the prompt if text
;is still on (might have changed!)
;turn the prompt back on

;restore dispBufferOn
;Exit

PRk kA A AR A A A A AR AR LA AR E AT R AR TR AN AR RR AR RN R AR AT RRRRKE

;Table of control keys and their corresponding routines
;tt*'i**ﬁtt*t**ifﬁ*tt*******t****i*t*it*??i'ttt'ititti****i*ttttt*

iValid control keys
ctrlKeys:
" .byte CR
.byte BACKSPACE
.byte KEY DELETE
<byte KEY INSERT

30

;1 Carriage return
;2 backspace

:3 ditto

24

Fonts, and

.byte KEY_RIGHT ;5 ditto
NUM_CTRL == (* - ctrlKeys - 1) ;number of cecntrol keys
Jif (NUM_CTRL > 127)

.echo WARNING: too many control keys

.byte [DcReturn

.byte ~[DoBackSpace
.byte [DcBackSpace
.byte [DoBackSpace
.byte [DoBackSpace

nw““n
s W N e

:Tablé of high bytes of control key routine addresses
h_CtriTbl: -

.byte]DoReturn ;
.byte)DoBackSpace ;2
.byte]DoBackSpace ;
.byte]DoBackSpace H
.byte]DoBackSpace 1S
;Exit
rts
.ramsect
tempDisp: .block 1 ;temporary hold for dispBufferOn
sysKeySave: .block 2 ;holds address of system key routine
.psect

;t*tr'!tt**tit*t*t**it*******i*t**t*ﬁ*i***i'*t***ti**"i*t**I*l***

;KillPrompt:

.
H .

;Proper way to use PromptOff. Disable interrupts and
;clears alphaFlag. .

.
.

;tit*******‘*itt't'it*t****tt**i*i**t'******t'*i*****i"!lii"'*'*

KillPrompt:
php ' ;save i status
sei ;disable interrupts
jsr PromptOff ;prompt = off
LoadB alphaFlag, #0 ;clear alpha flag
plp ;restore i status
rts sexit

f!itt*i***t**t**t**tt*t******it**ﬁ**t*t***it*tttt*i**ft*t*t**'*i**
;DoReturn:

Process a carriage return

Se Se v we

L2222 22 2 22 2 X R R R RS 2222222222222 XXX 2222 R Rl s

DoReturn:

;No real carriage return handler, yet. Just shut text off
LoadB textOn, #FALSE ;.
rts . .

;t****t****t***********i"**t***ttfi'i****lt*ttttii*ii*****’***it*

;DoBackspace:

.
v

;Process a- backspace

Keyboard Input

31

Text, Fonts, and Keyboard Input

.
’
:wIt*'i****t*l’tt'i*ii'***t**'ﬁt**ttt**!**ﬁt*'*"t**t*t*t*ki**iflit*

DoloBackspace:
1ldy txtBufIndex ;get ptr into current text buffer
beq 99s% :+1f no characters in buffer, exit
dey ;back up a character
sty txtBufIndex 7and make the new index permanent
lda (txtBuf),y ;get the character we want to delete
jsr EraseCharacter ;and remove it from the screen
1ldy txtBufIndex :get the index to the character we
lda #NULL ;we just deleted and make it the
sta (txtBuf),y ;null-terminator
MoveW rl1,stringX ;update the cursor's x-position
99s: ;.
res . sexit

lo******'l*t******f*****t***'t**t***'ﬁ***'*Q***t**************tlt**ii

;EraseCharacter:

.
.

;Physically remove a character from the screen
;tt*tt"k**ﬁ*‘tt*t*t*****i**t******t*****'tt*t******i***ii*itt*'***

if (C64 || C128) ;This routine is in the Apple GEOS jump table
EraseCharacter:
MoveW rl1,r4 scurrent X is rectangle's right edge
1ldx currentMode ;get the mode we're in
jsr GetRealSize ;go calc the size of the character
sta r3L ;set down baseline offset
lda rlH ;calc top of character by subtracting
sec ;baseline offset from y-position
sbc r3L H
sta = r2L ;and making top edge of rectangle
txa ;add char height to top edge
clc ;to calc bottom edge
adc r2L
sta r2H sand make bottom of rectangle
sty r3L ;set down width so we can subtract it
sec ;from the current x-position to
sbc rilL ;find the character's starting
sta r3L ;sposition
1ldy rllH
bes 108 ;subtract one from hi if borrow
dey
10$:
sty r3H ;make left edge of rectangle
jsr Rectangle serase in current pattern
rts ;jexit
.endif

bR R AR SRSttt il it st i io it iiad ittt ssd]

;BufOverflow:

What to do if the buffer hits its maximum.

LA AA AR AR AR 222 R X SR iRt 22 222 s

Se Se e e

BufOverflow: . -

;No real overflow handler, yet. Just shut text off
LoadB textOn, $FALSE :
rts H

;ﬁ**i*t*t**t*****'*t*****ﬁ*****'**t*****"*i**i*i**i***ﬁ'****ﬁ****t

;TextFault:

32

Fonts, and Keyboard Input

string faults come here.

~e W v~

LA A SRS R SRR A RS RS2 S R 22 22222ttt it Rl

TextFault:
;Nc real text fault handler, yet. Just shut text off
LoadB textOn,#FALSE : .

rts

~

33

MainLoop and Interrupt Level: a Technical Breakdown

MainLoop and Interrupt Level: a
Technical Breakdown

The GEOS Kernal operates on two distinct levels: MainLoop Level and Interrupt Level. MainLoop
Level is characterized by the GEOS MainLoop — a never-ending loop at the heart of GEOS that
routes events to the application. Whenever the application does not have control, MainLoop
usually does.

But there is also Interrupt Level. Periodically (usually every 1/60th of a second) the computer
hardware temporarily interrupts the microprocessor. The processor may be in the middle of
MainLoop, deep within a GEOS routine, or somewhere in the applcation. Either way, the 6502
immediately suspends whatever it is doing and passes control to the GEOS Interrupt Level.
Interrupt Level scans the keyboard circuitry, moves the mouse pointer, flashes the text prompt,
decrements timers, and performs other low-level tasks. Interrupt Level operates independently of
MainLoop and ensures that certain things get done on a regular basis. When the Interrupt Level
processing is complete, control returns to the point where the original interrupt occurred.

Whatever GEOS does at Interrupt Level is mostly transparent to the application. Only when an
application strays from the beaten path will it need to worry about the specifics of Interrupt Level
processing.

This is a technical discussion of MainLoop and Interrupt Level. For a more general
discussion, refer to Chapter @GEOSAPPS@.

MainLoop Level

When GEOS starts an application, it first initializes the operating system and then jsr's to the
application's start address. The application is expected to perform its basic startup procedures,
such as initializing its menus, icons, and processes, and the return immediately with an rts. This

rts will place GEOS at the beginning of MainLoop. MainLoop is primarily a small, endless
loop of function calls:

MainLoop Service Routines

MainLoop itself is rather short. The meat of its function is hidden in the various service routines
that it calls. Because these service routines interact directly with the application, it is useful to
understand the specific conditions that affect their operation. The pseudo-code diagrams at the end
of this chapter illustrate the operation of the more important service routines.

Patching Into MainLoop

Although most applications can function entirely off of events, some may find the need to install

. their own service routine directly off of MainLoop. GEOS has a single vector for this purpose:
applicationMain, which usually contains $0000 and is therefore unused. By placing a routine

address into this vector, GEOS will call through this vector every pass through MainLoop. To

remove this call, the application can again store $0000 into the vector. '

MainLoop and Interrupt Level: a Technical Breakdown

The Basics of Interrupt Level

Interrupt Level is primarily responsible for maintaining the interactive and time-based apsects of
GEOS. Interrupt Level updates the mouse state and the mouse cursor position, watches for double-
clicks, decrements process and sleep timers, gets keyboard input, flashes the prompt, and
generates a new random number every vblank, among other (more obscure) tasks.

The Vertical Blank Interrupt

The Interrupt Level interrupt is tied directly to the video circuitry. In order to keep the screen

phosphors glowing, the image must be redrawn, or refreshed, many times per second. Each

complete coverage of the picture tube is called a frame, and the rate at which frames are drawn is
. called the frame rate or refresh rate. :

At the end of each frame, the electron beam is switched off and returned to thé upper left corner of
the picture tube to begin drawing again. This period when the beam is off is called the vertical
blank, or vblank. Every vblank, the IRQ (Interrupt ReQuest) line on the 6502 is pulled low. If the
interrupt disable bit in the status register is clear (as jt usually should be), an interrupt is generated.
This interrupt is often called the vblank interrupt./GEOS uses the vblank interrupt as the basis for
its Interrupt Level processing.

The vblank interrupt, along with the scanning of the video frame, occurs in a precisely timed
sequence: 60 times per second on NTSC monitors (the United States standard) and 50 times per
second on PAL monitors (the European standard).The GEOS FRAME_RATE constant reflects
the number of frames per second (either 50 or 60) depending on the state of the PAL and NTSC
constants.

How to Disable Interrupts

Because the vblank interupt is an IRQ (Interrupt ReQuest), the 6502 has the option of ingoring the
request. To disable IRQ interrupts, an application need only set the interrupt disable bit in the
6502's status register using the sei (SEt Interrupt disable bit) instruction. Because GEOS depends
on Interrupt Level executing on a timely basis, an application should disable interrupts only when
absolutely needs to and then only for short periods of time. If an interupt occurs while the
interrupt-disable bit is set, the interrupt will not be serviced. If too many interrupts are missed,
much of the real-time features of GEOS — the mouse pointer, processes, double click detection,
etc. — will become sluggish. :

In conventional 6502 programming, it is standard practice to surround blocks of interupt-sensitive
code with an sei-cli sequence: an initial sei to disable interrupts and an ending cli to reenable
interrupts. This, however, is not a totally safe practice because the cli always reenables interrupts
regardless of their original state. If interrupts were originally disabled, the cli may inadvertently
reenable them. As applications get large, it becomes easier to embed these interrupt disable/enable
sequences deep within subroutines. If one subroutine disables interrupts then calls another
subroutine that then performs a cli (returning with interrupts enabled when they shouldn't be), the
results may be a disasterous bug.

It is good to practice a little defensive coding and get into the habit of saving the interupt status
when disabling them around blocks of code. The following sequence works well: - :

php ;savé current interrupt diéable status
sel ;disable interupts :

; (interrupt-sensitive code goes here)

as?

MainLoop and Interrupt Level: a Technical Breakdown

plp ;restore old interrupt status

This php-sei-plp method will save, set, and then restore the interrupt disable bit. This way
interrupts won't be inadvertently reenabled when they're expected to be disabled.

Apple GEOS Interrupts

Unlike the Commodore computers, the Apple Ile does not generate its own vblank IRQ interrupts.
This function is usually provided by external hardware plugged into slot 7: the Apple mouse card
or the Berkeley Softworks IRQ Management Card. If neither of these devices is present and there
is no other interrupt source, Apple GEOS will generate software interrupts.

Apple Software Interrupts =

GEOS may occasionally be run on systems with no interrupt source. This is an unfortunate
situation because GEOS depends heavily on interrupt processing. GEOS will recognize this
configuration and generate software interrupts during MainLoop by calling IrqMiddle. With
applications that don't have time-consuming event routines hanging off of MainLoop, Interrupt
Level processing will occur often enough to make the system usable. If system degradation is too
great, an application can simulate its own software interrupts as necessary. For more information,
refer to IrqMiddle in the Routine Reference Section.

Example:

;**tt***tttit****'*t*****t*tiﬁ*ttitt**tti****tti"tti*tt**it'*ﬁ***t't****t******ii***t***

;DoSoftlInts

’
;Description: Simulate vblank interrupts under Apple GEOS when no interrupt source is

; present.

;

;Pass:: nothing

: L]
;Destroys: a,x,y

.
.
;tt******itti*****ittt**t*'t*'tt*t*ttttt*ﬁ*t*t*ti**itttt*itt'ii*ttt*t*tt*t***tiit'*tttiit

DoSoftlInts:

bit intSource ;check interrupt source

bne 108 ;exit if hardware interrupt source

php ;else, generate soft interrupt

sei ;disable interrupts (just in case)

jsr IrqMiddle ;software interrupt now!

plp ;restore old interrupt status
10$: - —

: ¢ NIE RRUP/
The Apple GEOS Inteprupt Management Card
The Berkeley Softworks anagement card requires reenabling after every interrupt in order to
generate next interrupt. Part of the Apple Interrupt Level processing reenables the IRQ-Gererato -
garq to interrupt on the next vblank. Normally this will keep interrupts triggering on a regular 7%
asis. .

| | | | Ces
- However, if the Wnerates an interupt while the 6502 interrupt disable bitis | e

set, the interrupt service routine will not run, and the IRQ Management card will never be ro
reenabled for the next interrupt. Js/~
%

MainLoop and Interrupt Level: a Technical Breakdown

Apple GEOS attempts to keep interrupts running by reenabling the IRQ Management card during
MainLoop and whenever a call through the jump table switches banks. Normally applications
will do this often enough in their normal operation to reenable the IRQ Management card ron a
regular basis. It is conceivable, however, that in some very odd cases neither of these
circumstances will occur often enough (very odd cases, indeed— if an application is both disabling
interrupts and not going back to MainLoop, there is probably something fundamentally wrong
with the structure of the program). An application can reenable the IRQ Management cardwhen
necessary with the following sequence:

WHEAN PotiLlac

bit intSource ;check the interrupt source o
bvec 5% ;ignore if not BSW card IRQ Manager NHE M se
sta IRQ_GEN ;jotherwise, trigger IRQ Manager

5%:

Important Things to Know About Interi‘upt Level

The vblank interrupt service routine is one of the most complex aspects of GEOS. Fortunately,
most applications will need to know little more about the Interupt Level process than its basic
functionioning. However, there are some unavoidable conflicts between Interupt Level and
normal, mainstream processing, and these are important to know.

Two-byte Variables

During non-interrupt level processing, it is important to disable interrupts before referencing a
word value that might get changed at Interrupt Level or changing a word value that might get
referenced at Interupt Level. A two-byte quantity requires two memory accesses, and there is a
small chance that an interrupt may occur after the first byte has been accessed but before the second
byte has been accessed. This can result in a situation where a word value has the high-byte of one
number and the low-byte of another. Take for example the variable mouseXPos, which is
modified at Interrupt Level. The seemingly innocent code fragment below illustrates the problem:

MoveW mouseXPos,o0ldX ;update our old mouse x-position with current mouse x

Which exands to the following at assembly time:

lda mouseXPos supdate our old mouse x-position with current mouse
sta oldX
lda mouseXPos+1

sta oldX+1

If an interrupt occurs between the Ida mouseXPos and the subsequent lda mouseXPos+1,
the result word result stored in oldX may be entirely wrong. The solution is to temporarily disable .
interrupts around the access:

php ;disable interrupts around access

sei ;

MoveW mouseXPos,0ldX ;update our old mouse x-position with current mouse x
plp ;restore old interrupt status

Be aware, though, that the php-sei-plp sequence has its own set of ideosyncracies: the plp
restores the entire status register, not just the interrupt disable bit, thereby overwriting any new
condition codes. Therefore, disabling as in :

php ;disable interrupts around compare
sei H

MainLoop and Interrupt Level: a Technical Breakdown

CmpW mouseXPos, 0ldX ;compare current X with Old X
pPlp srestore interrupts

would defeat the whole purpose of the CmpW. In such cases, the condition codes can, of course,
be tested before the plp. A better solution, however, would disable interrupts, shadow the word
value to a temporary variable, restore the interrupt disable status, then do all checking against this
temporary value, which won't get changed by Interrupt Level.

Example:
;Check if mouse is within the left and right text margin
IsMselInMargins:
php ;disable interrupts around mouseXPos access
sei sand copy current pos to a working location
MoveW mouseXPos,r0 H
plp ;restore interrupts
CmpW r0,leftMargin ;check left margin
bge 108 sbranch if inside left
lda #FALSE ;else, flag fault
beq 99s :branch always to exit
108: R
CmpW rO0,rightMargin ;check right margin AN WI}A/OV/,\
ble 20$: ;branch if inside right rspmesre s/,
lda #FALSE ;else, flag fault
beq 99$;branch always to exit
208:
lda #TRUE ;no fault (inside text margins)
99s$:
rts ;jexit

N—

Word variables to be careful with include mouseXPos, mouseLeft, mouseRight,
intTopVector, and intBotVector, all of which are either read or written to by Interrupt level.

The Decimal Mode Flag

GEOS adopts the convention that the normal operating state of the computer has decimal mode
disabled. Any routine that enables decimal mode must also disable it. Versions of GEOS 64 prior
to v1.2 do not disable decimal mode during interrupt level processing. If operating under one of
these versions, it is necessary to disable interrupts prior to using the decimal mode flag.

Patching Into Interrupt Level

Very few applications will need access to the system at Interrupt Level. Most tasks that would
traditionally require the use of a time-based interrupt can be handled deftly enough with GEOS
processes. If an application can drive itself entirely off of MainLoop events, it should. The world
of Interrupt Level is a delicate one; it is very easy to disrupt the entire system by doing the wrong
thing during Interrupt Level. With that said, though, GEOS provides two vectors that allow an

application that knows what it's doing to tap directly into Interrupt Level: intTopVector and
intBotVector. ’

As illustrated in the Interrupt Level pseudo-code at the end of this chapter, control passes through
these two vectors at different points in the interrrupt process. intTopVector allows the
application to patch in before most of the Interrupt Level processing has occurred and

intBotc\c’lector allows the application to patch in after most of the Interrupt Level processing has
occurred.

MainLoop and Interrupt Level: a Technical Breakdown

The application should always disable interrupts before loading a new address into
either intTopVector or intBotVector. The program will very likely crash if this

mportant:

precaution is not taken.

System Use of intTopVector and intBotVector

GEOS 64 and GEOS 128 use intTop Vector to point to InterruptMain, a vital function of the
Commodore GEOS Interrupt Level, whereas Apple GEOS does not use either of these vectors.
The application can use either intTopVector or intBotVector under Apple GEOS without any
worry. However, under Commodore GEOS, an application that uses intTopVector should call
the address that was originally in intTopVector when it is done.This will ensure that the
Commodore GEOS InterruptMain will be executed properly.

Example:

:Install our interrupt routine into intTopVector

Installlnt:
php ;disable interrupts
sei
MoveW intTopVector,oldTopVector ;save address of current routine
LoadW intTopVector, #MyIntRout ;install our interrupt routine
plp ;jrestore interrupts
Its

;Remove our interrupt routine from intTopVector, replacing it with old.

Removelnt
php ;disable interrupts
sei
MoveW oldTopVector, intTopVector ;restore old routine
plp . : ;jrestore interrupts
rts

;My interrupt service routine .

MyIntRout:
;nothing to do yet...
lda oldTopVector ;exit by vectoring through
1ldx oldTopVector+l ;o0ld interrupt routine
jmp CallRoutine slet it rts...

Guidlines for Interrupt Level Routines
There are a few general guidelines for any routine that patches into Interrupt Level:

» Keep the routines short. Interrupt level is not the place for time-consuming code.

+ Stay away from GEOS. Some routines will work correctly at interrupt level and other
won't. Even worse, the ones that won't work might only show this trait after your
product has been released and in the hands of users for months. (It is O.K., though, to
use CallRoutine, as many of the examples in this chapter illustrate.)

* Never clear the interrupt disable bit.

Following these guidelines will keep your Interrupt Level routines as innocuous as possible.

v

MainLoop and Interrupt Level: a Technical Breakdown

Interrupt Level Pseudo-Code

The following pseudo-code diagram

s illustrate the general Interrupt Level constructs in each of the

three systems (GEOS 64, GEOS 128, Apple GEOS). This information can be crucial when trying
to track down a subtle interaction between the various levels of GEOS.

GEOS 64 and GEOS 128 Interrupt Level

CBMinterruptLevel:

{

/ * Context Save:

Save out any information about the System configuration that we might destroy */

Save6502Regs();
SaveGEOSRegs();
SaveCBMState();
SetlOin();

DblClicks();
if (GEOS128)

{ DoMouse();
DoSetMouss();

}

DoKeyboard();
DoAlarmSnd();

I* save the status of the A, X, Y, and S registers */
* save r0-ri5 and a few internal variables*/
/" save state of Commodore memory banks */
I set RAM 1 and I/O registers in. Much of Kernal
is now inaccessible®*/

" decrement dblClickCount if non-zero */
" GEOS 128 updates mouse here */

I"and also calls SetMouse in mouse driver. SetMouse
doesn't exists in GEOS 64 input drivers.*/

I* scan the keyboard and add a char to the queue if key pressed */
I* update timer for alarm sound duration */

/ * Application can paitch into the following two vectors. The application's routine should
always end by indirectly calling the routine whose address was originally installed in
the vector. Use CallRoutine in the Kernal (it's bank is in) in case the pointer is $0000.

*

Callindirect(intTopVector) /* call indirectly through intTopVector. On the C64/128, this

points to InterruptMain. */

Calllndirect(intBotVector) /* call indirectly through intBotVector. This is usually

/ * Context Restore:

Res o Save

}

$0000, which Calllndirect ignores. */

S AVRD)

information about the system configuration that we might-destroy
RestoreCBMState();
RestoreGEOSRegs();
Restore6502Regs();
ReturnFromIRQ();

I’ put memory banks back as they were */
I* restore r0-r15, etc.*/

I* restore A, X, Y, and S registers */

r* pick up where we left off */

MainLoop and Interrupt Level: a Technical Breakdowp

GEOS 64 and GEOS 128 InterruptMain

, *
InteruptMain:
Called through intTopVector under GEOS 64/128. This is *VERY" different from
InterruptMain under Apple GEOS!

*

InterruptMain:

{

- if (GEOS84) -
{ DoMouse(); / * GEOS 64 updates mouse here */
}
UpdateProcesses(); ! * Update the process timers */
UpdateSleeps(); / * Update the sleep timers */
UpdatePrompt(); / * Flash/Update the text prompt */
GetNewRandom(); / * jsr GetRandom in Kernal */
Return();

}

MainLoop and Interrupt Level: a Technical Breakdown

Apple GEOS Interrupt Level

ApplelnterruptLevel:
{

/ * Context Save:)
Save out any information about the system configuration that we might destroy */

Save6502Regs(); I* save the status of the A, X, Y, and S registers */
SaveAppleState(); I* save state of Apple memory banks */

/" Set memory configuration to normal/default state */

RamReadOff();

RamWriteOff();

Page20fi();

AIRZPOff();

IrgMiddle(); /" main IRQ processing */

/ * Context Restore:
Save out any information about the system configuration that we might destroy */

RestoreAppleStats(); r* put memory banks back as they were */
Restore6502Regs(); I* restore A, X, Y, and S registers */
ReturnFromIRQ(); /* pick up where we left off */

MainLoop and Interrupt Level: a Technical Breakdown

Apple GEOS IrgMiddle

/ -
IrgMiddle (APPLE VERSION).)
This is *VERY" different from InterruptMain under CBM GEOS!
This is where software generated interrupts are sent.

v/
irg r7iddle

~ SaveGEOSRegs(); " /" save ro-r15 and a few internal variables*/

/ * Application can patch into the following vector to get control before most of the
Interrupt Level processing has occurred. */
Calllndirect(intTopVector) /* call indirectly through intTopVector. On the Apple this
defaults to $0000, which Callindirect ignores */

/ * Apple GEOS draws the mouse cursor (soft sprite #0) at interrupt level so that it can
minimize flicker by aveiding the raster beam. However, because diffent interrupt
sources (mouse vs. BSW IRQ Generator) pull the IRQ line low at different times in the
Vblank sequence, the sprite is either drawn earlier or later depending on its position
on the screen. */

if (intSource != BSWIRQ) /* if the BSW IRQ card generated the interrupt... */

{ if (mouseYPos < 40) & if mouse is at the top of the screen... */

{ doMouselLater = TRUE /* then avoid the beam by drawing it later */

_ }
else
{ AppleSoftMouseService(); /* else, draw it now.*/ .
}
}
DblClicks(); " decrement dblClickCount if non-zero */
DoMouse(); / * update mouse now */

/ * Turn on aux. memory and give the clock driver control */

RamReadOn(); /* switch auxiliary memory in */

RamWnrtOn();

ReadClockint(); " call to aux. memory jump table for clock driver */

- RamReadOff(); /* put main memory back in:*/

RamWrtOff();

DoKeyboard(); /* scan the keyboard and add a char to the queue if key pressed */
UpdateProcesses(); / * Update the process timers */

UpdateSleeps(); / * Update the sleep timers */

UpdatePrompt(); / * Flash/Update the text prompt */
' GetNewRandom(); / * jsr GetRandom in Kernal */ -

/ * Call the auxiliary device driver interrupt code®/
AuxDIint();

/ * Application can patch into the following vector to get control after most of the
Interrupt Level processing has occurred. */

10

MainLoop and Interrupt Level: a. Technical Breakdown
Calllndirect(intBotVector) /* call indirectly through intBotVector. This is usually
$0000, which Calllndirect ignores. */

/* if the BSW IRQ card generated the interrupt and we haven't done the mouse yet... */
if ((intSource == BSWIRQ) && (doMouselLater == TRUE))

{ AppleSoftMouseService(); /* then draw the mouse now */
}

RestoreGEOSRegs(); /* restore r0-r15, etc. */
Return();

11

MainLoop and Interrupt Level: a Technical Breakdown

UpdateProcesses

UpdateProcesses:

{ if (numProcesses > 0) / * Only do this if there are processes in the table */
for (EachProcess) " go through each process in the table */

if (Process = FROZEN) /* only if unfrozen... */

{ DecrementTimer(); = /* count down one tick */
if (Timer == 0) ' r~ if timer timed-out
{ Process = RUNABLE; /* make it runable */
ResetTimer(); /* and reset the counter */
}
)
}
}
Return();
}
UpdateSleeps
UpdateSleeps:
if (numSleeping > 0) / * Only do this if there routines are sleeping */
for (EachSleeping) /* go through each sleeping routine */
if (SleepTimer : /* if counter not zero, then still asleep! */
{ Decrement. " I* so count down one tick */
}
}
}

12

MainLoop and Interrupt Level: a -Technical Breakdown

UpdatePrompt
UpdatePrompt:
if (alphaFlag(BIT7) == 1) /" prc‘>mpt enabled if hi-bit of alphaFlag set */
{ DecrementAlphaFlagTimer(); " dec timer in lower 6 bits of alphaFlag */
i{f ((alphaFlag&$3f) == 0) r* if time to change prompt state */

" Toggle the state of the prompt */

if (PromptState == ON) /* bit 6 of alphaFlag = 1 */
{ PromptOff(); '

}

else
{ PromptOn();
}
}
Return();
}
DoMouse
DoMouse:
{
UpdateMouss(); / * call input device driver for new positioning */
if (mouseOn(MOUSEON_BIT) == 1) /*if mouse is on... */
{ L]
FaultCheck(); " check for faults */
" Commodore machines draw the mouse here, Apples don't */
if (GEOS64 || GEOS128) rr if CBM machine... */
{
DrawSprite(mousePicture) I* copy mouse picture into sprite data table*/
PosSprite(mouseXpox,mouseYpos) /* position the sprite */
if (GEOS64) / * if GEOS 64... */
{ EnablSprite(MOUSE) /* always enable the sprite each time */
}
Return();
}

13

MainLoop and Interrupt Level: a Technical Breakdown

AppleSoftMouseService

/* Routine to move/draw the mouse (sprite #0) during interrupt level on the Apple.
GEOS 128 soft-sprite handler does a similar update during MainLoop.*/

AppleSoftMouseService:

14

/* Only draw the mouse if sprite #0 is enabled and mouse is not temporarily off */

if ((mobenble(BIT_0) == 1) && (offFlag(BIT_7) == 0)

{

}

/* OK to update the mouse, only erase if not yet erased */
if (offFlag(BIT_6) == 0)) /* if mouse not yet erased... */

/* Has the mouse moved since last time? Only erase if no movement */

if ((lastYPos ! = (mouseYPos)) ||
(lastXPos = (mouseXPos)))
{

}

EraseSoftMouse(lastXPos,lastYPos); /* erase if mouse moved */
}
offFlag = FALSE; I flag: mouse is on and drawn */
/* make current position the old position for erasure next time around */
lastYPos = mouseYPos;

lastXPos = mouseXPos;

DrawSoftMouse(mouseXPos,mouseYpos); r* draw at new position */

Return();

MainLoop and Interrupt Level: a Technical Breakdown

FaultCheck

FaultCheck:

{

/* Check mouse against left constraint and left screen edge*/

if ((mouseXPos < mouseleft) || (mouseXPos < 0))

{ mouseXPos = mouseleft; /* force mouse to constraint*/
faultData(OFFLEFT_BIT) = 1; /* show left fault */

}

/* Check mouse against right constraint and right screen edge*/

if ((mouseXPos > mouseRight) || (mouseXPos > SC_PIX_WIDTH-1))

{ mouseXPos = mouseRight; /* stop mouse at edge */
faultData(OFFRIGHT_BIT) = 1; I show right fault */

}

I* Check mouse against top constraint and top screen edge*/

if ((mouseYPos < mouseTop) || (mouseYPos < 0))

{ mouseYPos = mouseTop; " stop mouse at edge */
faultData(OFFTOP_BIT) = 1; I* show top fault */

}

/* Check mouse against bottom constraint and bottom screen edge*/

if ((mouseYPos > mouseBottom) || (mouseYPos > SC_PIX_HEIGHT-1))

{ mouseYPos = mouseBottom; I* stop mouse at edge */
faultData(OFFBOTTOM_BIT) = 1; /* show bottom fault */.

) . .

if (mouseOn(i\AENUON_BIT) == 1) /* if menus on, see if mouse is off current menu */

I

if ((mouseYPos < menuTop) ||

(mouseYPos > menuBottom) ||
(mouseXPos < menuLseft) ||
(mouseXPos > menuRight)

) /* if mouse outside any menu edge... */

{ faultData(OFFMENU_BIT) = 1; /* show menu fault */

}

}

Return();

15

MainLoop and Interrupt Level: a Technical Breakdown

MainLoop Level Pseudo-Code

The following pseudo-code diagrams illustrate the general MainLoop Level constructs in each of
the three systems (GEOS 64, GEOS 128, Apple GEOS). This pseudo-code is useful for
determining exactly how icons, menus, and other event-generating mechanisms interact with your

application.
MainLoop
MainLoop:
while (TRUE) r* This loop is never ending */
if (APPLE) /* Apple specific */
{ if (offFlag(BIT7) == 1) /* If mouse cursor was turned off... */
{ offFlag = $40; /* Turn it back on now that we're in MainLoop */
}
}
KeyboardService(); /* service keyboard and related MainLoop functions */
ProcessService(); /* service processes */
SleepService(); I* service sleeping routines */
if (APPLE) ‘ /* Apple differs here, too*/
{ : i .
AuxDMain(); I let aux driver's MainLoop routine do what it needs to */
ReadClock(); I* Get clock driver to set the time and date variables */

AppleTimeService(); /* service the apple time */

if (intSource == Software) /* if generating software interrupts... */

{

}
}

else

InterruptMain(); /* simulate interrupts */

CBMTimeService(); /" service the Commodore time */

}

Callindirect(applicationMain); / * Call any application code that NEEDS to be handled
Every MainLoop */
} /* endwhile */

16

MainLoop and Interrupt Level: a Technical Breakdown

KeyboardService

KeyboardService:

{

)

if (C128 || APPLE) I GEOS 128 and Apple GEOS handle sprites here */

{ SoftSprHandler();
}

/" RUN THROUGH THE BITS IN PRESSFLAG AND DISPATCH AS NECESSARY.
THESE DISPATCHES GO THROUGH VECTORS THAT TYPICALLY DEFAULT TO
GEOS ROUTINES FOR HANDLING THE VARIOUS USER-INPUTS */

/* input device changed vector (currently unused by GEOS) */
if (pressFlag(INPUT_BIT) == 1) /* if input device changed */
{
pressFlag(INPUT_BIT) = 0) /* clear flag */
Callindirect(inputVector) r" and go through vector <<$0000>>"/

}

* state of mouse changed vector (mouse moved; state of button changed)
mouseVector usually points to an internal GEOS routine SystemMouseService()*/
if (pressFlag(MOUSE_BIT) == 1) /* if mouse state changed... */

{
pressFlag(MOUSE_BIT) = 0) /* clear flag */

Calllndirect(mouseVector) /" and go through vector <<SystemMouseService>>"/

/* keyboard character ready

keyVector defaults to $0000. */
if (pressFlag(KEYPRESS_BIT) == 1) /* if key in queuse... */
{

keyData = GetCharFromQueue(); /* get keypress */
if (QUEUE_EMPTY) r* if no more keys in the queus... */
{

pressFlag(KEYPRESS_BIT) = 0); /* clear flag */

Calllndirect(keyVector) r* go through vector <<$0000>>*/
}

/* any mouse faults since last time?
mouseFaultVec usually points to an internal GEOS routine SystemFaultService()*/

if (faultData != 0) r* if any faults... */
Callindirect(mouseFaultVec); /* go through vector <<SystemFaultService>>"/
faultData = 0; " and clear faults afterward */

) _ _

Return();

17

MainLoop and Interrupt Level: a Technical Breakdown

/ * If no processes, ignore */

" go through each process in the table.
(start with last in table & work backward) */

if ((Process == (RUNABLE & ~BLOCKED)) /* only if runable & not blocked */
{ Process == ~RUNNABLE; /* clear runable flag */

/* and generate a process event by calling the
routine in the table. */

/ * If no slee; - immerg ff

" go through eacii ;- ...=ss in the table.
(start with last in table & work backward) */

/* if counter zero, then time to awake! */

/* remove this sleeper from the internal list */
/" and go wake it up*/

ProcessService
ProcessService:
{
if (numProcesses > 0)
for (EachProcess)
ProcessEvent();
}
}
}
Return();
}
SleepService
SleepService:
{
if (numSleeping > 0)
{
for (EachSleeping)
{ L]
if (SleepTimer = 0)
{
RemoveSleep();
WakeUp();
}
}
Return();
}

18

MainLoop and Interrupt Level: a Technical Breakdown

SytemMouseService

SleepService:
{ .
if (mouseData(BIT_7) == DOWN) /* if mouse button down (bit == 0)... */
{
if (mouseOn(MOUSEON_BIT) == 1) /* if mouse checking is on... */
{ ~ .
if (mouseON(MENUON_BIT) == 1) /* if menus scanning is on... */
{
/" Check if the mouse is within the currently active menu (level O/mam) */
if ((mouseYPos > menuTop) && 4
(mouseYPos < menuBottom) &&
(mouseXPos > menulLseft) &&

: (mouseXPos < menuRight))

{ .
MenuSaervice(); /* mouse was pressed on menu, go handle it */
Return(); /* Return without checking icons */

}

}

" Not on a menu, see if press was on an icon */

if (mouseOn(ICONSON_BIT) == 1) /* if icon scanning is on... */
{

I* search through the icon table locking for a match */
for (Eachlcon)

{
if (icon(OFF_I_PIC) != $0000) / * if icon not disabled... */

if (MouseOnlcon() == TRUE) /* if mouse on top of this icon... */

{

r* flash or invert icon as necessary */

if (iconSelFlag(ST_FLASH_BIT)) /* flash icon? */

{ Inverticon(); /* invert once */
Sleep(selectionFlash); I* sleep awhile */
Inverticon(); /* invert back again */

}

else if (iconSleFlag(ST_INVERT_BIT)) /* invert icon? */

{ Inverticon(); /* just invert */

}

I* check for double click */
if (DBL_CLICK) /* if this is the second click of a dbl click...*/

{ roH = TRUE; /* set double click flag */

}

else , / * else, set single click flag *
{ roH = FALSE; ' »

b .

/* call the icon event routine*/

roL = icon; I tell event routine which icon */

Callindirect(icon(OFF_I_EVENT)); /* generate an event */

19

MainLoop and Interrupt Levei: = Tachnical Breakdown

Re .:n(); /* break out of the for loop (check no more icons!) */

}
}

/* If we got here, the following is true:
1) mouse button was released (as opposed to pressed)
- or -
2) mouse was pressed, but not on an icon nor on a menu
0/ .
Callindirect(otherPressVec); /* it's an "other” press.. "other" as in something the
system doesn't really care about */

20

MainLoop and Interrupt Level: a Technical Breakdown

SytemFaUItService

SystemFaultService:
{ .
* only deal with faults if the mouse is on, menu scanning is enabled, and we've got a
submenu down... */
if ((mouseOn(MOUSEON_BIT) == 1) && (mouseOn(MENUON_BIT) == 1) &&
{menuNumber > 0))
{

if (menuType == CONSTRAINED)

{ .

/* for constrained menus... */ : :

I* If mouse faulted off the top of a vertical menu or off the left of a horizontal
menu, then we go to the previous menu. Otherwise, the fault is ignored because
the menu is constrained */

if ((menuType == VERTICAL && faultData(OFFTOP_BIT) == TRUE) ||

(menuType == HORIZONTAL &4& faultData(OFFLEFT_BIT) == TRUE))

{

}
}
else /" menuType == UNCONSTRAINED */
{

DoPreviousMenu();

DoPreviousMenu(); / * always try to go to the previous menu. If mouse didn't
. move onto the previous menu, then next pass through
mainloop will see this as a fault and try to remove
that menu, and so on until we're back to the main menu
*
} e
Return();

21

Alphabetical Listing of
Routines

AllocateBlock

AllocateBlock (apple, C64, C128) mid-level disk

Function: Allocate a disk block, marking it as in use.

Parameters: Commodore: ' - o
ré6L track number of block (byte).
r6H sector number of block (byte).

Apple:
ré block number (word).
Uses: curDrive
Commodore:
curDirHead this buffer must contain the current directory header.
dir2Head? (BAM for 1571 and 1581 drives only)
dir3Headt (BAM for 1581 drive only)
Apple:
curVBIlkno! ~ used by VBM cacheing routines.

VBMchangedt used by VBM cacheing routines.
numVBMBIks' used by VBM cacheing routines.

tused internally by GEOS disk routines; applications generally don't use.

Returns: X error ($00 = no error); Commodore only: returns BAD_BAM if block

already allocated.

ré unchanged.

Apple:

[carry flag is set if block is already in use.

Alters: Commodore:

curDirHead BAM updated to reflect newly allocated block.
dir2Head! (BAM for 1571 and 1581 drives only)
dir3Head!t (BAM for 1581 drive only)

Apple: '
‘curVBIknot used by VBM cacheing routines.

VBMchangedt set to TRUE by VBM cacheing routines to indicate cached
VBM block has changed and needs to be flushed

tused internally by GEOS disk routines; applications generally don't use.
Destroys: a,y, r7,r8H.
Description: AllocateBlock allocates a single block on this disk by setting the appropriate

flag in the allocation map (the BAM on Commodore computers and the VBM on
Apple computers). '

AllocateBlock

Commodore:

Apple:

If the sector is already allocated then a BAD _BAM error is returned.
AllocateBlock does not automatically write out the BAM. See PutDirHead
for more information on writing out the BAM.

- The Commodore 1541 device drivers do not have a jump table entry for

AllocateBlock. All other device drivers, however, do. The following
subroutine will properly allocate a block on any device, including the 1541.

2 2SR RR X ERRR R XR RS2 222 2 22222 Rt

;
; NewAllocateBlock -- allocate specific block in BAM
with any CBM GEOS device driver.

e we

H Pass: réL, r6H track,sector to allocate

;

H Uses: BAM in curDirHead

;

H Returns: x error status ($00 = success, BAD_BAM =

~

block already in use, etc.)

~e “e

Destroys: a,y,r7,r8H

IEZITRITERERE RSS2SR 2R 222222 Rl Rl Rl ll]

if (C64 1| Cl28)

.
’
.

NewAllocateBlock:
ldy curDrive ; get current drive
lda driveType-8,y ; get drive type
and #SOf ; keep only drive format
cmp #DRV_1571 ; see if 1571 or above
bece 15418 ; branch if 1541
jmp AllocateBlock ; else, use driver routine
1541$:
jsr FindBAMBit ; get BAM bit info
beq 1108 ; Lf zero, then it's not free
; otherwise, it's free...
lda r8H ; get bit mask for BAM
eor #SEE ; convert to clearing mask
and curDirHead, x ; and with BAM byte to clear
; bit and show as allocated
sta curDirHead, x ; and store back.
ldx r7H ; get base of track's entry
dec curDirHead, x ; dec # free blocks this track
ldx #sS00 ; show no error
rts ; exit
110S:
ldx #BAD_BAM ; show error -- already in use
rts 7 exit :
.endif

Apple GEOS did not include AllocateBlock in its jump table until version 2.1.
The following patch places the entry into the jump table, thereby allowing
applications to call AllocateBlock under version 2.0 (which was the first
version of Apple GEOS).

.if (APPLE)

LowSwitch = $fclé ; direct entries into Kernal; do not use
o_AllocateBlock = $45¢cl ; except for authorized patches

JMPABS = $4c ; JMP absolute opcode

VER_2_0 = $20 : version 2.0

PatchAllocateBlock:

Example:

See also:

AllocateBlock

lda version ; get Kernal version number

cmp #VER_2_0 ; check against version 2.0

bne 99s ; if not v2.0, then no patch necessary

lda #JMPABS ; store jmp LowSwitch into main

sta AllocateBlock ; jump table

lda #[LowSwitch . ;

sta AllocateBlock+l H

lda -~ #)LowSwitch ' ;

sta AllocateBlock+2 ;

sta RAMWRT_ON ; switch in aux bank

lda #JMPABS ; store jmp o_AllocateBlock into aux

sta AllocateBlock ; jump table

lda #(o_AllocateBlock ;

sta AllocateBlock+1l ;

lda #)o_AllocateBlock ;

sta AllocateBlock+2 ;

sta RAMWRT_OFF ; switch back to main bank
99$: rts ; exit
.endif ; (APPLE)

MoveW DiskBlock, ré6 ; block to allocate
Jif (C64 || C128)

jsr NewAllocateBlock ; (see above)

cpx #BAD_BAM ; BAD_BAM means block in use

begq 200$; branch if block already in use

txa ; check for other error

beg 150% ; branch if no error *

jmp MyDiskError ; call error handler with error in x
.else ; (APPLE) R

jsr "AllocateBlock ; Allocate the block

php ; save status of allocation

txa ; get error status

beq 100$; branch if no error

plp ; error: fix stack

jmp MyDiskError ; call error handler with error in x
100$:

plp ; restore status of allocation

becs 200$; branch if block already in use
.endif
1508: ; block was free and is now allocated

;-=-- code to handle new block goes here ---

2005: ; block is not free...
;=--- code to handle block already.allocted goes here ---

MyDiskError: ; error occurred...
;--- code to handle disk errors goes here ---

.ramsect

DiskBlock .block 2 ; disk block to allocate
.psect

SetNextFree, BlkAlloc, FreeBlock.

AppendRecord

AppendRecord (apple, Cs4, C128) VLIR disk

Function:

Parameters:

Uses:

Returns:

Alters:

Destroys:

Description:

Adds an empty record after the current record in the index table, moving all
subsequent records down one slot to make room.

none.
curDrive
fileWrittent if FALSE, assumes record just opened (or updated) and
reads BAM/VBM into memory.
curRecord current record pointer
fileHeader VLIR index table stored in this buffer.
ommodore:
curType GEOS 64 v1.3 and later: for detecting REU shadowing.
curDirHead current dirzciory header/BAM.
dir2Headt (BAM for i537! and 1581 drives only)
dir3Head! (BAM for 1581 drive only)
Apple:
curVBlknot used by VBM cacheing routines.

VBMchangedt used by VBM cacheing routines.
numVBMBIkst used by VBM cacheing routines.

tused internally by GEOS disk routines; applications generally don't use.

X error ($00 = no error).

curRecord new record becomes the current record.

usedRecords incremented by one.

fileWrittent set to TRUE to indicate the file has been altered since last
updated.

fileHeader new record added to index table.

Commodore:

curDirHead directory header read in if fileWritten is FALSE on call.
tused internally by GEOS disk routines; applications generally don't use.
a,y, rOL, r1L, rd4.

AppendRecord inserts an empty VLIR record following the current record in
the index table of an open VLIR file, moving all subsequent records down in the
record list. The new record becomes the current record. A VLIR file can have a
up to MAX_VLIR_RECS records (127 on the Commodore and 254 on the
Apple). If adding a record exceeds this value, then an OUT_OF_RECORDS
error is returned. '

A record added with AppendRecord occupies no disk space until data is written
to it. The new record is marked as empty in the VLIR index table. (When a VLIR
file is first created by SaveFile, all records are marked as unused). Some
applications call AppendRecord repeatedly after creating a new file until an

Note:

Apple:

CBM:

Example:

See also:

AppendRecord

OUT_OF_RECORDS error is returned. This marks all the records as used and
prepares them to accept data with calls to WriteRecord.

AppendRecord does not write the VLIR index table out to the disk. Call
CloseRecordFile or UpdateRecordFile to save the mdex table when all

-modifications are complete.

An empty record is marked with $ffff in the VLIR index table (stored in the buffer
at fileHeader). An unused record is marked with $0000. Use PointRecord to
check the status of a particular record (unused, empty, or filled).

An empty record is marked with $ff00 in the VLIR index table (stored in the
buffer at fileHeader). An unused record is marked with $0000. Use

PointRecord to check the status of a particular record (unused, empty, or
filled).

SaveRecord:

LoadW r0, #Filename ; pointer to filename

jsr OpenRecordFile ; open VLIR file

txa ; check open status

bne 99$% ; exit on error

lda appendPoint ; get record to append to

jsr PointRecord ; go to that record

txa ; check point status

bne 99s ; exit on error

jsr AppendRecord ; append a record at this point

LoadW r7, #BufStart ; point at data buffer

LoadW r2, #BUFLENGTH ; bytes in buffer (bufEnd-bufStart):

jsr WriteRecord ; write buffer to record

txa ; get write status

bne 99$; exit on error

jsr CloseRecordFile ; close VLIR file
99S$:

rts ; return with any error in x
.ramsect
appendPoint: .block 1 ; record to append to
Filename: .block NAME_LENGTH+1 ¢ holds null-terminated filename
BufStart .block 1024 ; data buffer
BUFLENGTH = (* - bufStart)+1 ; length of buffer
.psect

InsertRecord, DeleteRecord, PointRecord.

RPN

v

AuxDEXxit

AuxDEXxit (Apple)

aux driver

Function:
Parameters:
Returns:
Destroys:

Description:

Example:

De-install and remove the current aux driver.
none. | |

a bit 7 set if reinitialization required.
assume X, y, r0-rls.

The GEOS deskTop calls AuxDEXxit prior to loading a new aux driver. This
allows the current aux driver to deinstall itself properly, removing any hooks it
may have placed into the operating system. A RAMdisk aux driver, for example,
would need to remove itself from the device table before it can be replaced. The
GEOS deskTop and the Configure utility, for example, will call AuxDEXxit prior
to replacing the current auxiliary driver.

If bit 7 of a is set on return, then this indicates that the device table has changed
and a reset is in order. The deskTop, for example, will reinitialize itself if bit 7 is
set. This is equivalent to choosing RESET from the options menu.

*
SAMPLE AuxDExit ROUTINE ***

I X E RSS2 22 222 222 R 222222222222 2222 2R Rt 2Rttt R 22222 R 2222

o_AuxDExit =-- Deinstall RamFactor Auxiliary driver

X 2 24

. wo N

~. Se

Synopsis: Before loading another aux driver, control vectors
through the AuxDExit entry in the aux driver's jump
table. This is the AuxDExit routine for the Ram Factor
RAM disk driver. We leave the drive in the drive list

but restore the original ProDOS vector.

Ne e N N

~.

Called by: Aux driver jump table 4uxDExit entry.

~

e we

Pass: Nothing

. we

Returns: X error status (NOT_IMPLEMENTED is returned if unable to
uninstall
A = 0 for no RESET needed

= $80 if reset needed

Se e W

~

;'i*t*t*ti't*i***tt**"'ti’t***'*'**it*'t#****ttitit**#*ii'ti'*ﬁ***iii********ﬁ

AUXRESET = $80 ; flag to force RESET function if we change
; the drive tables
AUXNORESET "= $00 ; and for not resetting...
r
RamExit: ;
lda L1344 ;
sta DD_Command H
1dx curDrive ; Get current drive
jsr IsPatched ; Check current drive against this driver
beq 1108 ; Can't uninstall current drive, do error
ldy #AUXNORESET ; assume no reset necessary
1dx numCrives ; We're OK. go through each drive in the
; drive table and if it's a RAM factor,
; then restore the old vector
10$: ;
jsr IsPatched ; see if this drive 1s patched

bne
ldy
lda
sta
lda
sta
205
dex
bpl
100s:
tya
1ldx
res
110%:
1dx
lda
rts

IsPatched:

lda
cmp
bne
lda
cmp
rts

208

#AUXRESET
auxDevTabLo, x
devTablo, x
auxDevTabHi, x
devTabHi, x

108
#NO_ERROR

#NOT_IMPLEMENTED
#AUXNORESET

devTabHi, x
#)PatchRamFactor
208

devTablLo, x

[PatchRamFactor

we we v

~. v

Se e Ne Ne Se We Ve e We Se Ne Ne e wo

~

Se Ve Se we N we

AuxDEXxit

if not, then skip it
found a patched entry, enable RESET
and put back the real entry point

try next drive
and loop until no more

put RESET flag in accumulator
and return no error
exit

return error
no need to RESET

Pass: device number in X

Returns: result of compare in ST
Check address of this aux patch
against vector in device table for
equality.

exit

AuxDint

AuxDInt (Apple) aux driver

Function: Aux driver Interrupt Level routine.

Parameters: none.

Returns: nothing.

Destroys: assume a, X, y, r0-rls.

Description: Apple GEOS calls AuxDInt during Interrupt Level. This allows an aux driver to
have routines that execute at Interrupt Level. With a hardware interrupt source,
Interrupt Level will execute approximately every vertical blank (60 times per
second).
An aux driver that has no need for Interrupt Level processing should simply
perform an rts.

See also: AuxDMain.

AuxDKeyFilter

AUXDKgFilter (Apple) aux driver

Function:

Parameters:
Returns:
Destroys:

Description:

Note:

Example:

Aux-driver keypress filter; pre-processes keyboard input so aux driver may
interpret special keystrokes. ‘ :

a KEY —key as scanhcd from keyboard‘ circuitry.
a translated character or NULL if filtering out.
X,y

An application does not call AuxDKeyFilter directly. The Apple GEOS
keyboard scanning routine calls AuxDKeyFilter at Interrupt Level immediately
after calling KeyFilter. This allows the aux driver to translate, remap, or filter-
out certain keypresses.

A typical AuxDKeyFilter routine compares the KEY parameter against a list of
specific keypresses. If there is no match, then AuxDKeyFilter returns without
altering the KEY code. If there is a match, AuxDKeyFilter can perform some
action in response and return a different KEY value or a KEY value of NULL.
(A KEY value of NULL effectively filters out the keypress because GEOS
ignores the "null-key" value, never placing the key in the keyboard input queue.)

IfKEY is NULL when AuxDKeyFilter is called, then a key was pressed but it
has already been processed by some other prior filter (most likeley KeyFilter)
and should be ignored. - '

The KEY parameter comes from the Apple hardware register KEYBD_DATA.
GEOS then sets high-bit is set to reflect the state of the Option or € key
(keyboards that have one, don't have the other). If bit 7 is set, then that key is
pressed. To detect the state of the G key, check the OPEN_APPLE hardware
location.

;Check for open-apple key
bit OPEN_APPLE ;scheck open apple key status
bmi OpenPressed ;sbranch if pressed

;*** SAMPLE AuxDKeyFilter ROUTINE ***

oti*ti’l*f".'***i*’*i*i'it*!'*'*!*i*i**i*tt'*’t**’**'i**I*******i*'ﬁ!t*tﬁt‘*t

o_AuxDKeyFilter -- key filter routine for screen dump aux driver

w.

Synopsis: At each keypress, GEOS vectors through the aux driver's
AuxDKeyFilter jump table entry which points here.

Called by: AuxDKeyFilter entry in Aux driver's jump table.

Pass: key in A

Returns: key value unchanged or NULL if it's the key we're looking
for

Se Ne Ne Ne Ne Ne Ne Ne N Se Ne W

;**titi*ﬁ*t'!t!'**"*"lt***'l’**'k*******i'*"********'iﬁi*i.ﬁ'tit*i*t***"i*t

MAGIC_KEY = ($80 | ') ;close-apple + shift + 1

o_AuxDKeyFilter:

AuxDKeyFilter

See also:

10

-cmp
bne
jsr
lda

99%:
rts

DoDump:

KeyFilter.

#MAGIC_KEY
99$

DoDump
#NULL

~

Se We Ne v we

check keypress against our key
if no match, then ignore

else, do screen dump

and return a null key

exit

;=== code to handle screen dump goes here ---

N

AuxDMain

AuxDMain (Apple) aux driver

Function: Aux driver MainLoop Level processing.
Parameters: none. '

Returns: nothing.

Destroys: assume a, X, y, r0-rls.

Description: Apple GEOS calls AuxDMain on every pass through MainLoop. This allows
an aux driver to have MainLoop Level functions.

An aux driver that has no need for MainLoop Level processing should simply
rts.

See also: AuxDInt.

11

BBMuit

BBMult (Apple, C64, C128)

math

Function:

Parameters:

Returns:

Destroys:

Description:

Note:

Example:

SeeAlso:

12

Unsigned byte-by-byte multiply: multiplies two unsigned byte operands to
produce an unsigned word result.

X OPERAND1 — zero-pagé' address of single-byte multiplicand in the
low-byte of a word variable (byte pointer to a word variable).
y OPERAND?2 — zero-page address of the byte multiplier (byte pointer to

a byte variable).
Note: result= OPERANDI(byte) * OPERAND2(byte).

X, ¥, and byte pointed to by OPERAND2 unchanged.
word pointed to by OPERAND1 contains the word result.

a, r7L, r8

BBMult is an unsigned byte-by-byte multiplication routine that multiplies two
bytes to produce a 16-bit word result (low/high order). The byte in OPERAND1
is multiplied by the byte in OPERAND? and the result is stored as a word back in
OPERANDI. Note thatOPERANDI starts out as a byte parameter but becomes a
word result with the high-byte at OPERAND 1+1.

Because r7 and r8 are destroyed in the multiplication process, they cannot be
used to hold either operand.

No overflow can occur when multiplying two bytes becuase the result alWays fits
in a word ($fP*$ff = $fe01).

; Multiply rll by rlH and store the word result in r2

MoveB rlL,r2L ; r2L <- rlL copy of OPERAND1

© ldx #r2lL ; point to copy of OPERAND1 (r2L)
ldx #rlH ; point to OPERAND2 (rlH)
jsr BBMult ; r2 <= r2L * r2H do multiplication

BMult, DMult, Ddiv, DSdiv.

Bell

Bell (Apple) utility

Function: Makes a bxjef beeping sound through the Apple's internal speaker. -

Parameters: none. : D

Returns: nothing.

Destroys: X,y

Description: Bell sounds a 1000 Hz signal through the Apple's internal speaker. The sound
lasts approximately 1/10th of a second.

Note: Bell does not return until after the full duration of the sound. Interrupts are

C64 & C128:

disabled during this period. The interrupt-disable status is restored when Bell
returns.

The following routine provides a bell sound under Commodore GEOS. It is
provided for portability.

Jif (C64 || C128) ; only for Commodore versions; use Kernal
; routine on Apple.

,-**it*ittt*tt*i*t*it*it'ttttt***ii**ttii*ti***’i*'kt****i**t**tt*i’**tttttt**

iBell -- Make a bell sound on C64/128

; . -)

;Author: Dan Kaufman (w Chris Hawley) :

; (mgl)

'0***i*t*i*'ti'ﬁt‘tiitii*t*tt'ii*iit****t***'**ti**********'h***i’*t****'k*it**

.
’

;Pass: Nothing

sReturn: Nothing

;Destroyed: a

;Synopsis: This routine allows you to have the c64 beep when the user

makes a mistake or does something he shouldn't.

~e

~

'-'*"**'ki’i*i'i*i*iﬁ*itﬁtfii***Q.iit***'ﬁ'i*i"'iit'tit*i*ti*'****i'tt't***i*i

sidBase _ = $D400

voicelRegs = sidBase
freqlol = volcelRegs
freqHil = voicelRegs+l
PWLol = voicelRegs+2
PWHil = voicelRegs+3
controlRegl = voicelRegs+4
att_decl = voicelRegs+5
sus_rell = voicelRegs+6
FCLo = voicelRegs+7+7+$7
FCHi = voicelRegs+7+7+$8
res_filt = voicelRegs+7+7+$9
mode_vol = voicelRegs+7+7+$A
pulse = %01000001
SOUND_ON = $30

Bell:
PushB CPU_DATA sswitch to I/O space

LoadB CPU_DATA, #I0_IN

13

Bell

Example:

14

LoadB
sta
LoadB
LoadB
LoadwW
LoadB
sta
sta
LoadB
LoadB
LoadB
LoadB
LoadB
PopB
rts

.endif ; (Cé64

controlRegl, #0
att_decl

mode_vol, #518
sus_rell, #SOUND_ON
PWLol, #5800

FCLo, #0

FCHi

res_filt)
att_decl, #6-
sus_rell, #0
freqlol, #SDF
freqHil, #$25
controlRegl, #pulse
CPU_DATA

11 C128)

;*** Beep three times =**~*
; Runs off of MainLoop by using Sleep
BELL_INTERVAL = (FRAME_RATE/10)

BeepThrice:
jsr
LoadW
isr
jsr
LoadW
jsr
jmp

Bell

r0, #BELL_INTERVAL
Sleep

Bell

r0, #BELL_INTERVAL
Sleep

Bell

;approx.

~ e

~e “e

~ we

sound
pause

sound
pause

sound

;twiddle sound chip

;return to memory space

1/10 second

the bell
a bit

the bell again
a bit

the bell again and let bell rts »

e

BitmapClip

BitmapClip (Apple, C64, C128) graphics

Function:

Parameters:

Uses:

Returns:

Destroys:

Description:

Place a rectangular subset of a compacted bitmap on the screen.

r0 DATA — pointer to the compacted bitmap data (word).

rlL XPOS — x card position: pixel_position /8 (byte). '

rlH Y — y-coordinate (byte).

r2L . W_WIDTH — clipping window width in cards: pixel_width/8 (byte).

r2H W_HEIGHT — height in pixels of clipping window (byte).

rl1L DX1 — delta-x1: offset of left edge of clipping window in cards from
left edge of full bitmap (byte).

rl11H DX2 — delta-x2: offset of right edge of clipping window in cards from
right edge of full bitmap (byte).

r12 DY1 — delta-y1: offset of