

~

OBJECT CODE INSTRUCTION OPERAND FORMAT

F5 X SBC ADDR.X

F6 X INC ADDR.X

F8 SED

F9 XX SBC ADDR2.Y

FD XX SBC ADDR2.X

FE XX INC ADDR2.X

Notes:
'X' or 'XX' in the first column refers to the number of bytes following the opcode.
'ADDR'refers to a single byte address.
'ADDR2' refers to a two byte address.
'DIS' refers to displacement.
'DATA'refers to a data byte.

28

··commo(Jore64··
mastercode assembler

:&
SUNSHINE

---- -

, ,

....c. enceand Mark England

reserved. No part of this publication may be
oced, stored in a retrieval system, or transmitted in anyor.by any means, electronic, mechanical, photocopying,

"acoti and/or otherwise, without the prior written
permisSion of thePublishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by The Leagrave Press Ltd.

(ii)

Contents

Introduction
Mastercode Features
Loading Mastercode
Mastercode Output
The Main Menu
The Disassembler
The File Editor
The Assembler
Assembler Directives
Labels
Expressions
Variables
The Symbol Table
Comments in Programs
Loading Registers with Characters
Error Messages
Number Bases
Location of Code for Assembled Programs
Using Machine Code with BASIC
Available Instructions and Formats

Page
1
1
2
2
2
6
8
11
13
16
16
16
17
18
18
18
19
19
21
22

'"
(iii)

....c. enceand Mark England

reserved. No part of this publication may be
oced, stored in a retrieval system, or transmitted in anyor.by any means, electronic, mechanical, photocopying,

"acoti and/or otherwise, without the prior written
permisSion of thePublishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by The Leagrave Press Ltd.

(ii)

Contents

Introduction
Mastercode Features
Loading Mastercode
Mastercode Output
The Main Menu
The Disassembler
The File Editor
The Assembler
Assembler Directives
Labels
Expressions
Variables
The Symbol Table
Comments in Programs
Loading Registers with Characters
Error Messages
Number Bases
Location of Code for Assembled Programs
Using Machine Code with BASIC
Available Instructions and Formats

Page
1
1
2
2
2
6
8
11
13
16
16
16
17
18
18
18
19
19
21
22

'"
(iii)

~

OBJECT CODE INSTRUCTION OPERAND FORMAT

F5 X SBC ADDR.X

F6 X INC ADDR.X

F8 SED

F9 XX SBC ADDR2.Y

FD XX SBC ADDR2.X

FE XX INC ADDR2.X

Notes:
'X' or 'XX' in the first column refers to the number of bytes following the opcode.
'ADDR'refers to a single byte address.
'ADDR2' refers to a two byte address.
'DIS' refers to displacement.
'DATA'refers to a data byte.

28

ntroduction
Mastercode is a substantial and complex program, providing a host of features
of use to anyone interested in machine code programming on the Commodore
64, Despite its complexity Mastercode is designed with the user in mind and is
far easier to use than many inferior assembler/disassemblers. All of
Mastercode's many facilities are called up by means of clear menus and prompts
which appear as the program runs. There are no obscure commands to enter
to make full use of Mastercode and with an hour or so's practice you will be
making the most of its power. :', ..

Even though Mastercode is simple to use, however, careful reading of this
manual, before .you begin to use the program, will pay dividends, As with all
machine code programming, incorrect use of the assembler, or placing of code
into reversed areas, can easily 'crash' your system, If that happens nothing will
be harmed but you will probably lose any programs you have entered and have
to load Mastercode again. Proper preparation will save you a great deal of time
and trouble in the long run.

Needless to say, this brief handbook is not intended as an introduction to the
subject of 6502/6510 machine code programming, The Mastercode program
itself is ideal for those with little knowledge of machine code since its clear
presentation makes the variety of tasks associated with entering machine code
programs. more simple to comprehend, Nevertheless, if you are starting out with
machine code we would recommend that you purchase a good book on 6502
programming before attempting to use this or any other assembler.

Mastercode Features ,
Mastercode will provide you with the following facilities, all of Which will be
explained in this manual:
1) The Machine Code Monitor, including:
a) output of memory to screen or printer
b) modification of memory
c) execution of machine code programs
d) saving of machine code files onto tape or disc
e) loading of machine code files from tape or disc
f) step by step tracing of the execution of a machine code program, including
display of register contents.
2) The Disassembler, including translation into assembly languages of the
contents of any area of memory, whether the 64's ROM or a user program. Output
may be sent either to the screen or to a printer.
3) The File Editor, including:
a) entry of numbered lines of assembly language instructions
b) listing, individually or in blocks, of previously entered lines
c) deletion, individually or in blocks, of existing lines
d) renumbering of existing lines
e) saving of assembly language files to tape or disc
f) loading of assembly language files from tape or disc

'"

,

g) addition of a block of memory specified by the user to the user's assembly
.program. .
4) The Assembler, allowing the translation of assembly language programs into
machine code with full error checking, labelling and a range of assembler
directives.

Loading Mastercode
Your Mastercode tape contains two full recordings of all the necessary data, one
on each Side. To load Mastercode into your 64, simply ensure that your cassette
unit IS properly connected and that the Masteroode tape is fully rewound, then
press SHIFT/RUN and start the tape on command. Because of the size of the
Mastercode program and the relative slowness of the 64's cassette loading
.system, It takes- around 11 minutes to fully load the program. During this period
the screen Will be set first to pink and then, when the final tables of data begin
to be loaded, to green. In this latter stage you will see the Mastercode title
flashing bnefly on and off _ this is normal ahd indicates that loading is proceeding
properly. .

At the end of the Mastercode program the tape contains another short program
for your use, RELOADER. It IS not relevant to the initial loading of Mastercode
and ItS use ISexplained under the section Location of Code. If you wish to save
RELOADER for regular use, simple leave the tape in the position it was when
Mastercode finished loading then. when you have finished with Mastercode:load
RELOADER Into the memory as a normal BASIC program and save on a tape
or disc of your own.

MAff'l MENU OPTION 1: Memory Modify
On calling up this function you will be asked to specify a start address in
hexadecimal or decimal (all start and end addresses in the Mastercode program
may be input in decimal or hexadecimal, with hexadecimal numbers preceded
by 's'. Mastercode will then display the address you have specified, the contents
of the byte at that address (in hexadecimal) and the four command letters
available, namely '+' '_', 'I' and 'E'. Entry of '+' or '_' will result in the byte after
or before the current byte being displayed, while entry of 'E' will return you to the.
main menu. To modilY the contents of the byte currently displayed, enter 'I' and
then, in response to the prompt 'BYTE' enter the new value (again in decimal or
hex) you wish to store at that location. The next byte of memory will then be
displayed.
MAIN MENU OPTION 2: Memory Dump .
On calling up this function you will be asked to specify your chosen start address
and whether you wish to oqtput to a printer (if connected). Mastercode will then
display the contents of an area of memory in lines of eight bytes, each preceded
by the address of the first byte in the line. On the right of the display will be printed
a table showing the locations of any normal characters such as letters or digits.
This will allow you to identify the location of any strings which may be held in the
area of memory you are examining without having to translate the byte values.
Characters with an ASCII value outside the range 32-90 are not printed but
represented by a single dot in the table. At the end of each screenful of data you
may either continue or return to the main menu.

Given below is a specimen memory dump using this facility:

Mastercode Output
Table 1 : Specimen Memory Dump

When Mastercode is fully loaded it will begin by asking you what input/output A19E 54 4F 4F 20 40 41 4E 59 TOO MANY

devtces are connected. The program is capable of dealing with three such A1A6 20 46 49 4C 45 D3 46 49 FILE.FI

devices: a) a cassette unit, b) a disc drive and c) a printer. All such external AlAE 4C 45 20 4F 50 45 CE 46 LE OPE.F

devices have a 'device number' when they are used by the 64 and Mastercode A1B6 49 4C 45 20 4E 4F 54 20 ILE NOT

Will treat them as device numbers 1, 8 and 4 respectively- Mastercode will not A1BE 4F 50 45 CE 46 49 .4C 45 OPE. FILE

subsequently allow Input from or output to any devices which are not specified A1C6 20 4E 4F 54 20 46 4F 55 NOT FOU

as being present at thls point. A1CE 4E C4 44 45 56 49 43 45 N.DEVICE
A106 20 4E 4F 54 20 50 52 45 NOT PRE

. The Main Menu AlOE 53 45 4E 04 4E .4F 54 20 SEN. NOT

Having specified the devices present you will encounter the main program menu,
A1E6 49 4E 50 55 54 20 46 49 INPUT FI
AlEE 4C C5 4E 4F 54 20 4F 55 L.NOT OU

which allows access individually to the functions of the Monitor and to enter the A1F6 54 50·55 54 20 46 49 4C TPUT FIL
Disassembler, File Editor and Assembler. The functions of the Monitor will be A1FE C5 4D 49 53 53 49 4E 47 .MISSING
explained individuallyfirs!: A206 20 46 49 4'C 45 20 4E 41 FILE NA

MAIN MENU 0: Exit to Basic ' A20E 4D C5 49 4C 4C 45 47-41 M.ILLEGA

Entering this option from the main menu quits the Mastercode program. Having A216 4C 20 44 45 56 49 43 45 L DEVICE

left the program all variables are lost and the only way to re-enter Mastercode A21E 20 4E 55 40 42 45 02 4E NUMBE.N

ISto reload the program from tape. A226 45 58 54 20 57 49 54 48 EXT WITH
....

2 3

,

g) addition of a block of memory specified by the user to the user's assembly
.program. .
4) The Assembler, allowing the translation of assembly language programs into
machine code with full error checking, labelling and a range of assembler
directives.

Loading Mastercode
Your Mastercode tape contains two full recordings of all the necessary data, one
on each Side. To load Mastercode into your 64, simply ensure that your cassette
unit IS properly connected and that the Masteroode tape is fully rewound, then
press SHIFT/RUN and start the tape on command. Because of the size of the
Mastercode program and the relative slowness of the 64's cassette loading
.system, It takes- around 11 minutes to fully load the program. During this period
the screen Will be set first to pink and then, when the final tables of data begin
to be loaded, to green. In this latter stage you will see the Mastercode title
flashing bnefly on and off _ this is normal ahd indicates that loading is proceeding
properly. .

At the end of the Mastercode program the tape contains another short program
for your use, RELOADER. It IS not relevant to the initial loading of Mastercode
and ItS use ISexplained under the section Location of Code. If you wish to save
RELOADER for regular use, simple leave the tape in the position it was when
Mastercode finished loading then. when you have finished with Mastercode:load
RELOADER Into the memory as a normal BASIC program and save on a tape
or disc of your own.

MAff'l MENU OPTION 1: Memory Modify
On calling up this function you will be asked to specify a start address in
hexadecimal or decimal (all start and end addresses in the Mastercode program
may be input in decimal or hexadecimal, with hexadecimal numbers preceded
by 's'. Mastercode will then display the address you have specified, the contents
of the byte at that address (in hexadecimal) and the four command letters
available, namely '+' '_', 'I' and 'E'. Entry of '+' or '_' will result in the byte after
or before the current byte being displayed, while entry of 'E' will return you to the.
main menu. To modilY the contents of the byte currently displayed, enter 'I' and
then, in response to the prompt 'BYTE' enter the new value (again in decimal or
hex) you wish to store at that location. The next byte of memory will then be
displayed.
MAIN MENU OPTION 2: Memory Dump .
On calling up this function you will be asked to specify your chosen start address
and whether you wish to oqtput to a printer (if connected). Mastercode will then
display the contents of an area of memory in lines of eight bytes, each preceded
by the address of the first byte in the line. On the right of the display will be printed
a table showing the locations of any normal characters such as letters or digits.
This will allow you to identify the location of any strings which may be held in the
area of memory you are examining without having to translate the byte values.
Characters with an ASCII value outside the range 32-90 are not printed but
represented by a single dot in the table. At the end of each screenful of data you
may either continue or return to the main menu.

Given below is a specimen memory dump using this facility:

Mastercode Output
Table 1 : Specimen Memory Dump

When Mastercode is fully loaded it will begin by asking you what input/output A19E 54 4F 4F 20 40 41 4E 59 TOO MANY

devtces are connected. The program is capable of dealing with three such A1A6 20 46 49 4C 45 D3 46 49 FILE.FI

devices: a) a cassette unit, b) a disc drive and c) a printer. All such external AlAE 4C 45 20 4F 50 45 CE 46 LE OPE.F

devices have a 'device number' when they are used by the 64 and Mastercode A1B6 49 4C 45 20 4E 4F 54 20 ILE NOT

Will treat them as device numbers 1, 8 and 4 respectively- Mastercode will not A1BE 4F 50 45 CE 46 49 .4C 45 OPE. FILE

subsequently allow Input from or output to any devices which are not specified A1C6 20 4E 4F 54 20 46 4F 55 NOT FOU

as being present at thls point. A1CE 4E C4 44 45 56 49 43 45 N.DEVICE
A106 20 4E 4F 54 20 50 52 45 NOT PRE

. The Main Menu AlOE 53 45 4E 04 4E .4F 54 20 SEN. NOT

Having specified the devices present you will encounter the main program menu,
A1E6 49 4E 50 55 54 20 46 49 INPUT FI
AlEE 4C C5 4E 4F 54 20 4F 55 L.NOT OU

which allows access individually to the functions of the Monitor and to enter the A1F6 54 50·55 54 20 46 49 4C TPUT FIL
Disassembler, File Editor and Assembler. The functions of the Monitor will be A1FE C5 4D 49 53 53 49 4E 47 .MISSING
explained individuallyfirs!: A206 20 46 49 4'C 45 20 4E 41 FILE NA

MAIN MENU 0: Exit to Basic ' A20E 4D C5 49 4C 4C 45 47-41 M.ILLEGA

Entering this option from the main menu quits the Mastercode program. Having A216 4C 20 44 45 56 49 43 45 L DEVICE

left the program all variables are lost and the only way to re-enter Mastercode A21E 20 4E 55 40 42 45 02 4E NUMBE.N

ISto reload the program from tape. A226 45 58 54 20 57 49 54 48 EXT WITH
....

2 3

,

I,

I

The area displayed in this table is part of the ROM containing the BASIC error
messages and illustrates the use of the display of ASCII characters.

MAIN MENU OPTION 3: Machine Code Execute
If you haveentered a machine code program into the memory, either directly or
using the Assembler, calling this function will allow· you to run ·it. SUch routines
should end with the instruction 'RTS' in order to return execution to Mastercode.
Care should be taken not to corrupt the 'return stack' during the course of the
machine code program or the execution of the main Mastercode may be
terminated. It is of course possible to use the stack but any values placed onto
it should be removed before execution is returned to Mastercode - this is no more
than good programming practice in leaving any machine code routine.'

MAIN MENU OPTION 4: Load Machine Code
Using this function a file consisting of the contents of an area of memory
previously saved using Mastercode (see next menu function) may be reloaded
into memory in their original position. To accomplish this it will be necessary to
remember the file name under which it was originally saved. Note that the original
contents of the area of memory into which the file isJoaded will be lost, so if they
are important save them first. This function is particularly useful in developing
long machine code programs in parts. Before each section of the program is
developed, the program thus far can be reloaded.·into memory and the new
section assembled so as to tag onto the end of it.

MAIN MENU OPTION 5: Save Machine Code
Using this function, any area of memory may be saved to tape or disc for later
reloading by Mastercode. You will be askedtospecity the output device you wish
to use and will not be permitted to output to one which you did not say was

• present at the beginning of the program. You must' also specify the start and
finish addresses of the area of memory you wish to save. The main use of this
program function will be the saving of machine code programs generated by the
Assembler.

If you wish to load machine code files into memory 'later without using
Mastercode, the following lines of BASIC may be used:

10 INPUT "FILE NAME"; IN$ (Note: the file name should be terminated with ',S,R'
if you are loading from a disc)
200PEN 2, (device number) ,O,IN$: INPUT#2,IN$
30INPUT#2,SA,EA

. 40 FORX = SA TO EA: INPUT#2, T:POKE X,T:NEXT: CLOSE2

MAIN MENU OPTION 9: Trace Machine Code
·Using this function a machine code program may be 'stepped through' with each
instruction being executed only when you press the 'F1' function key. The
instruction itself is displayed in a disassembled: form, together with the values
of the CP,U registers before the instruction is executed. Pressing 'F2' (SHIFT/F1)
terminates the execution of the machine code routine. Note that faulty code, an
incorrect start-point halfway through an instruction or tables of data in the

4

memory may result in the message 'INVALID OPCODE' being displayed for
some instructions.

Trace is a powerful aid in debugging faulty machine code programs. It will
even allow you to step through routines in the 64's ROM and examine their
functioning. It is especially useful inihe case of programs which 'lock up' in a
loop. Trace can be used to detect this fault and to break out of the loop simply
by pressing F2. Trace will also point out invalid instructions and refuse to execute
them.

To use Trace, simply call it up, specify the address in memory at which
execution is to begin and whether output is to be to the screen or a printer.

The Trace routine has one main limitation in that it cannot retum sensible data
for instructions which access addresses in page 1 of memory (100-1 FF hex)
since this area of memory, mostly taken up by the 'return stack', is used by the
Mastercode program in executing the trace routine. The Trace routine uses its
own simulated stack held in an array to allow other instructions which affect the
stack such as calls to subroutines. pushes and pulls, to be simulated without
corrupting the main stack.

Given below is a specimen output of the Trace facility operating on a short
machine code routine:

Table 2: Trace of MachIne Code RoutIne

A474 A976 LDA *$76
REGISTER A 76
REGISTER X 00
REGISTER Y 00
REGISTER P 30
REGISTER S FF

A476 A0A3 LDY *$A3
REGISTER A 76
REGISTER X 00
REGISTER Y A3
REGISTER p B0
REGISTER S FF

.",

5

I,

I

The area displayed in this table is part of the ROM containing the BASIC error
messages and illustrates the use of the display of ASCII characters.

MAIN MENU OPTION 3: Machine Code Execute
If you haveentered a machine code program into the memory, either directly or
using the Assembler, calling this function will allow· you to run ·it. SUch routines
should end with the instruction 'RTS' in order to return execution to Mastercode.
Care should be taken not to corrupt the 'return stack' during the course of the
machine code program or the execution of the main Mastercode may be
terminated. It is of course possible to use the stack but any values placed onto
it should be removed before execution is returned to Mastercode - this is no more
than good programming practice in leaving any machine code routine.'

MAIN MENU OPTION 4: Load Machine Code
Using this function a file consisting of the contents of an area of memory
previously saved using Mastercode (see next menu function) may be reloaded
into memory in their original position. To accomplish this it will be necessary to
remember the file name under which it was originally saved. Note that the original
contents of the area of memory into which the file isJoaded will be lost, so if they
are important save them first. This function is particularly useful in developing
long machine code programs in parts. Before each section of the program is
developed, the program thus far can be reloaded.·into memory and the new
section assembled so as to tag onto the end of it.

MAIN MENU OPTION 5: Save Machine Code
Using this function, any area of memory may be saved to tape or disc for later
reloading by Mastercode. You will be askedtospecity the output device you wish
to use and will not be permitted to output to one which you did not say was

• present at the beginning of the program. You must' also specify the start and
finish addresses of the area of memory you wish to save. The main use of this
program function will be the saving of machine code programs generated by the
Assembler.

If you wish to load machine code files into memory 'later without using
Mastercode, the following lines of BASIC may be used:

10 INPUT "FILE NAME"; IN$ (Note: the file name should be terminated with ',S,R'
if you are loading from a disc)
200PEN 2, (device number) ,O,IN$: INPUT#2,IN$
30INPUT#2,SA,EA

. 40 FORX = SA TO EA: INPUT#2, T:POKE X,T:NEXT: CLOSE2

MAIN MENU OPTION 9: Trace Machine Code
·Using this function a machine code program may be 'stepped through' with each
instruction being executed only when you press the 'F1' function key. The
instruction itself is displayed in a disassembled: form, together with the values
of the CP,U registers before the instruction is executed. Pressing 'F2' (SHIFT/F1)
terminates the execution of the machine code routine. Note that faulty code, an
incorrect start-point halfway through an instruction or tables of data in the

4

memory may result in the message 'INVALID OPCODE' being displayed for
some instructions.

Trace is a powerful aid in debugging faulty machine code programs. It will
even allow you to step through routines in the 64's ROM and examine their
functioning. It is especially useful inihe case of programs which 'lock up' in a
loop. Trace can be used to detect this fault and to break out of the loop simply
by pressing F2. Trace will also point out invalid instructions and refuse to execute
them.

To use Trace, simply call it up, specify the address in memory at which
execution is to begin and whether output is to be to the screen or a printer.

The Trace routine has one main limitation in that it cannot retum sensible data
for instructions which access addresses in page 1 of memory (100-1 FF hex)
since this area of memory, mostly taken up by the 'return stack', is used by the
Mastercode program in executing the trace routine. The Trace routine uses its
own simulated stack held in an array to allow other instructions which affect the
stack such as calls to subroutines. pushes and pulls, to be simulated without
corrupting the main stack.

Given below is a specimen output of the Trace facility operating on a short
machine code routine:

Table 2: Trace of MachIne Code RoutIne

A474 A976 LDA *$76
REGISTER A 76
REGISTER X 00
REGISTER Y 00
REGISTER P 30
REGISTER S FF

A476 A0A3 LDY *$A3
REGISTER A 76
REGISTER X 00
REGISTER Y A3
REGISTER p B0
REGISTER S FF

.",

5

rr 'f
A478 201EA8 JSR $AB1E
REGISTER A 76
REGISTER X 00
REGISTER Y A3
REGISTER P B0
REGISTER S FO

ABlE 2087B4
REGISTER A
REGISTER X
REGISTER Y
REG1_SIER P
REGISTER S

JSR $B487
76
00
A3
B0
FB

B487 A222 LOX 11$22
REGISTER A 76
REGISTER X 22
REGISTER Y A3
REGISTER P 30
REGISTER S FB

Note that the steps in the trace follow the jump made in the third instruction to
a new location in memory.

This concludes the options available using the Monitor section of the program.
The remaining options available on the main menu permit you to enter other
program sections.

The Disassembler
The Mastercode Disassembler is capable of providing assembly language
translations of all 6502/6510 machine code instructions in the standard format
laid down by Mostechnology (now part of the Commodore Semiconductor
Group), the designers of the 6502 and 651 0 CPU_chip. The disassembly includes
the address of the instruction, the contents of the bytes involved and the
assembly language representation itself. Given below is a specimen output
taken from the ~4's Basio Interpreter:

6

Table 3: Specimen Disassembly

A474 A976 LOA 11$76
A476 A'0A3 LOY II$A3
A478 211llEAB JSR $AB1E
A47B A980 LOA 11$80
A470 2090FF JSR $FF'i'1Il
A480 6C0203 JMP ($1Il311l2)
A483 2060A5 JSR $A560
A486 867A STX $7A
~488 847B STY $78
A48A 21117300 JSR $1Il073
A480 AA TAX
A4SE FIIlF0 SEQ $A4811l
A490 A2FF LDX II$FF
A492 863A STX $3A
A494 901116 BCC $A49C
A496 211l79A5 JSR $A579
A499 4CE1A7 JMP $A7El
A49C 211l6BA9 JSR $A96B,
A49F 2079A5 _JSR $A579
A4A2 840B STY $IIlB

This is a disassembly from the same start address as Trace began working on
in Table 2. Note that, unlike Trace, the Disassembler is not affected by the jump
instructions, it simply ploughs through the area of memory in sequential order.

To enter the Disassembler, specify option 6 on the main menu. You will be
asked to give the start address for Disassembly and to choose between output
to screen or printer. Memory will be disassembled in blocks of 20 instructions,
with a prompt to continue or quit at the end of each.

One point to note in relation to the assembler is the presence of '???' flags in
the listings which it produces. These signify that a combination of bytes has been
encountered in the memory which cannot be translated into a valid assembly
language instruction. This can be for one ofthree reasons:
a) The code is actually invalid eg an improperly written program you have
entered yourself.
b) You have asked the Disassembler to begin its disassembly partway through
a valid instruction. In this case it may take several rejected bytes before it comes
across the beginning of a valid instruction.
c) The Disassembler may have encountered a table (or individual bytes) of data
in the memory. Such tables are purely there to store data and do not represent
machine code instructions. Care should be taken in the interpretation of

....
7

rr 'f
A478 201EA8 JSR $AB1E
REGISTER A 76
REGISTER X 00
REGISTER Y A3
REGISTER P B0
REGISTER S FO

ABlE 2087B4
REGISTER A
REGISTER X
REGISTER Y
REG1_SIER P
REGISTER S

JSR $B487
76
00
A3
B0
FB

B487 A222 LOX 11$22
REGISTER A 76
REGISTER X 22
REGISTER Y A3
REGISTER P 30
REGISTER S FB

Note that the steps in the trace follow the jump made in the third instruction to
a new location in memory.

This concludes the options available using the Monitor section of the program.
The remaining options available on the main menu permit you to enter other
program sections.

The Disassembler
The Mastercode Disassembler is capable of providing assembly language
translations of all 6502/6510 machine code instructions in the standard format
laid down by Mostechnology (now part of the Commodore Semiconductor
Group), the designers of the 6502 and 651 0 CPU_chip. The disassembly includes
the address of the instruction, the contents of the bytes involved and the
assembly language representation itself. Given below is a specimen output
taken from the ~4's Basio Interpreter:

6

Table 3: Specimen Disassembly

A474 A976 LOA 11$76
A476 A'0A3 LOY II$A3
A478 211llEAB JSR $AB1E
A47B A980 LOA 11$80
A470 2090FF JSR $FF'i'1Il
A480 6C0203 JMP ($1Il311l2)
A483 2060A5 JSR $A560
A486 867A STX $7A
~488 847B STY $78
A48A 21117300 JSR $1Il073
A480 AA TAX
A4SE FIIlF0 SEQ $A4811l
A490 A2FF LDX II$FF
A492 863A STX $3A
A494 901116 BCC $A49C
A496 211l79A5 JSR $A579
A499 4CE1A7 JMP $A7El
A49C 211l6BA9 JSR $A96B,
A49F 2079A5 _JSR $A579
A4A2 840B STY $IIlB

This is a disassembly from the same start address as Trace began working on
in Table 2. Note that, unlike Trace, the Disassembler is not affected by the jump
instructions, it simply ploughs through the area of memory in sequential order.

To enter the Disassembler, specify option 6 on the main menu. You will be
asked to give the start address for Disassembly and to choose between output
to screen or printer. Memory will be disassembled in blocks of 20 instructions,
with a prompt to continue or quit at the end of each.

One point to note in relation to the assembler is the presence of '???' flags in
the listings which it produces. These signify that a combination of bytes has been
encountered in the memory which cannot be translated into a valid assembly
language instruction. This can be for one ofthree reasons:
a) The code is actually invalid eg an improperly written program you have
entered yourself.
b) You have asked the Disassembler to begin its disassembly partway through
a valid instruction. In this case it may take several rejected bytes before it comes
across the beginning of a valid instruction.
c) The Disassembler may have encountered a table (or individual bytes) of data
in the memory. Such tables are purely there to store data and do not represent
machine code instructions. Care should be taken in the interpretation of

....
7

'disassembled instructions which appear Interspersed with numbers of '???'
indicators, These instructions are probably combinations of data bytes which
only look like assembly language,

At the end of tables it is also possible that the Disassembler may be confused
by the last one or two bytes of data combining with the first byte of the instruction
which follows the table, to produce a spurious instruction, This is a problem
common to all Disassemblers- they can only report what is actually there and
if, purely by chance, it is a recognisable machine code instruction then it must
be reported as such, When tables are encountered in the memory it is wise to
stop the Disassembler and to start it again at the byte which appears to follow
the table, then start it at the next byte, then the next. If the first start produces
sensible code, while the following two do not then the first start probably
represents the instruction which follows the table, If, however, two or more of the
starts produce sensible (but different) instructions, then you will have 10 decide
for yourself where the table ends and the machine code instructions
recommence,

The mai n use of the Disassembler will be to examine the contents of your own
programs, especially those which you have assembled in parts, to check that
they are correct before you execute them, It can also be used to deepen your
understanding of the internal workings of.the 64 by examining the contents of
ROM routines in the Interpreter and the Kernal. _

The File Editor
While it is perfectly possible to enter machine code programs into memory
directly using the Monitor, most programmers prefer to enter their programs in
the form of 'source files' of assembly language and to leave it to an assembler
to do the work of translating the program into valid machine code, The File Editor
provides you with a convenient means of entering assembly language programs,
editing them in a variety of ways and saving them to tape or disc for subsequent'
use, The File Editor is entered by specifying option 7 on the main menu and has
its own separate menu of facilities which are described below, '

FILE EDITOR MENU OPTION 0: Exit From File Editor
Having entered the File Editor you may return to the main menu at any time by
entering this option on the menu,

FILE EDITOR MENU OPTION 1: Input Line(s)
The Assembler is set up to work on assembly language programs expressed in
numbered lines similar to those of a BASIC program, To input a line to the File
Editor, call up this option and, when the '?' prompt appears, enter a line number
followed by the assembly language instruction you require, Line numbers may

8

be in the range 1-99999 and lines will be automatically inserted into t~e ille in
the correct position indicated by the line number, The File Editor Will
automatically insert a space between Ihe line number and the main body of the
file,but will not space ouUheopcode mnemonic and the operand, ,

The total number of lines which may be entered In anyone file IS1000, provided
that this does not exceed the overall memory limit of 15K available to the user
with Mastercode.

Individual lines may be deleleO from the file by entering their line number only,
To quit this option press ~ETURN without entering a new line and execution

will be returnedto the File Edllormenu,
Note that a line may be no longer than 80 characters and may not contain either

commas or semi-colons,

FILE EDITOR MENU OPTION 2: UstUnes
This option allows sections of a to be listed in the same manner as a BASIC
program,

On calling up this function you be asked 10 specify the firs! and last lines
to be listed, Pressinq RETURN, without arry lines specltled, will lis! the Whole of
the file, The format for specifying a of part of Ihe file can be any of the
following;

-570 • would list all lines up to line 510
460- would list all lines from 460 onwards ,
300-500 would list all lines from 300 0500 incIusive_ In the event that the. hnes

specified as the ends oftheJC.OgeS are not pres~nl in the file the listing
will be done from the line alter the firs one specified to the hne before
the last one specified,

If you are lisiing more than a single screenful of,lineS at one time then the
scrolling of the lines may be slowed down bydepressmg theCTRLkey, ,

At the end of the listfng ille program jumps to line entry mode, thus enabling
you to enter lines with the listing displayed on the screen, QUitting the function
is therefore exactly the same as quitting the previous function, that IS to say by
pressing RETURN without entering a line,
FILE EDITOR MENU OPTION 3: DeleteLines , '
This option works in the same way as List except that lines in the range specitied
are deleted from the file,

FILE EDITOR MENU OPTION 4: Renumber File ", '
Calling this 'option will renumber all the e)(isting lines of your file, startinq With line
10 and proceeding in steps of 10,

FILE EDITOR MENU OPTION 5; Initialise File ,
Calling this option deletes the current contents of the file, thus allowinq a new
file to be entered, Note that when loading assembly language flies back from
tape or disc the reloaded file will be merged into the existing file unless the
existing file is first deleted using this option,

j

'.~
9

'disassembled instructions which appear Interspersed with numbers of '???'
indicators, These instructions are probably combinations of data bytes which
only look like assembly language,

At the end of tables it is also possible that the Disassembler may be confused
by the last one or two bytes of data combining with the first byte of the instruction
which follows the table, to produce a spurious instruction, This is a problem
common to all Disassemblers- they can only report what is actually there and
if, purely by chance, it is a recognisable machine code instruction then it must
be reported as such, When tables are encountered in the memory it is wise to
stop the Disassembler and to start it again at the byte which appears to follow
the table, then start it at the next byte, then the next. If the first start produces
sensible code, while the following two do not then the first start probably
represents the instruction which follows the table, If, however, two or more of the
starts produce sensible (but different) instructions, then you will have 10 decide
for yourself where the table ends and the machine code instructions
recommence,

The mai n use of the Disassembler will be to examine the contents of your own
programs, especially those which you have assembled in parts, to check that
they are correct before you execute them, It can also be used to deepen your
understanding of the internal workings of.the 64 by examining the contents of
ROM routines in the Interpreter and the Kernal. _

The File Editor
While it is perfectly possible to enter machine code programs into memory
directly using the Monitor, most programmers prefer to enter their programs in
the form of 'source files' of assembly language and to leave it to an assembler
to do the work of translating the program into valid machine code, The File Editor
provides you with a convenient means of entering assembly language programs,
editing them in a variety of ways and saving them to tape or disc for subsequent'
use, The File Editor is entered by specifying option 7 on the main menu and has
its own separate menu of facilities which are described below, '

FILE EDITOR MENU OPTION 0: Exit From File Editor
Having entered the File Editor you may return to the main menu at any time by
entering this option on the menu,

FILE EDITOR MENU OPTION 1: Input Line(s)
The Assembler is set up to work on assembly language programs expressed in
numbered lines similar to those of a BASIC program, To input a line to the File
Editor, call up this option and, when the '?' prompt appears, enter a line number
followed by the assembly language instruction you require, Line numbers may

8

be in the range 1-99999 and lines will be automatically inserted into t~e ille in
the correct position indicated by the line number, The File Editor Will
automatically insert a space between Ihe line number and the main body of the
file,but will not space ouUheopcode mnemonic and the operand, ,

The total number of lines which may be entered In anyone file IS1000, provided
that this does not exceed the overall memory limit of 15K available to the user
with Mastercode.

Individual lines may be deleleO from the file by entering their line number only,
To quit this option press ~ETURN without entering a new line and execution

will be returnedto the File Edllormenu,
Note that a line may be no longer than 80 characters and may not contain either

commas or semi-colons,

FILE EDITOR MENU OPTION 2: UstUnes
This option allows sections of a to be listed in the same manner as a BASIC
program,

On calling up this function you be asked 10 specify the firs! and last lines
to be listed, Pressinq RETURN, without arry lines specltled, will lis! the Whole of
the file, The format for specifying a of part of Ihe file can be any of the
following;

-570 • would list all lines up to line 510
460- would list all lines from 460 onwards ,
300-500 would list all lines from 300 0500 incIusive_ In the event that the. hnes

specified as the ends oftheJC.OgeS are not pres~nl in the file the listing
will be done from the line alter the firs one specified to the hne before
the last one specified,

If you are lisiing more than a single screenful of,lineS at one time then the
scrolling of the lines may be slowed down bydepressmg theCTRLkey, ,

At the end of the listfng ille program jumps to line entry mode, thus enabling
you to enter lines with the listing displayed on the screen, QUitting the function
is therefore exactly the same as quitting the previous function, that IS to say by
pressing RETURN without entering a line,
FILE EDITOR MENU OPTION 3: DeleteLines , '
This option works in the same way as List except that lines in the range specitied
are deleted from the file,

FILE EDITOR MENU OPTION 4: Renumber File ", '
Calling this 'option will renumber all the e)(isting lines of your file, startinq With line
10 and proceeding in steps of 10,

FILE EDITOR MENU OPTION 5; Initialise File ,
Calling this option deletes the current contents of the file, thus allowinq a new
file to be entered, Note that when loading assembly language flies back from
tape or disc the reloaded file will be merged into the existing file unless the
existing file is first deleted using this option,

j

'.~
9

FILE EDITOR MENU OPTIONS 6 AND 7: Saving and Loading Files
Assembly language source files may be saved to or loaded from tape or disc
uSing these options. As with machine code files using the Monitor, you will be
asked to specify the outpuVinput device and a name for the file. It is wise to
choose names which distinguish clearly between assembly language files and
machine code files since Mastercode will not allow a machine code file to be
loaded by means of the Rle Editor or an assembly language file by means of the
MOnitor. A simple way of distinguishing between the two types is to precede the
chosen filename . 'M-' or'S.' depending on the type of file.

The Save function is also used to output the file to a printer by specifying device
4 when asked for the output device. Given below is a typical short listing
prepared using the fileeditor:

Table 4: Assembly Language File

MASTERCODE/S
* 10 LDA #$A9
* 20 LDX 11$01
* 30 JSR $AB1E
* 40 LDA $0
* 50 AND $FE
* 60 STA 0
* 70 RTS
END

FILE EDITOR MENU OPTION 8: Add Machine Code to file
The Mastercode assembler allows one or more individual bytes of rnachine.code
or tables to be entered directly into an assembly language program using the
BYT directive (see Assembler Directives). This option makes use of that
capability by allowing you to specify an area of memory which will then be placed .
Into your assembly language program in BYT form, that is with each byte value
specified rather than as assembly language instructions. This allows routines
from the ROM or from a machine code program already resident in memorY to
be added to the current file.

Data is added to the current file in the form of numbered lines of 15 bytes each,
with each line number incremented by five. Before specifying the line number
at which insertion is to begin you should ensure that the lines inserted will not
overwrite an existing line of the file. There is no need to specify a finish line when
using this option since this will not affect the way in which lines are inserted.

10

Table 5: Lines Inserted Into file using Add Machine Code to File.

MASTERCODE/S
* 10 BYT $A~.$76.$A0.$A3.$20.$lE.$AB.$
A9. $80. $20.$90. $FF.$6C. $02. $03
* 15 BYT $20.$60.$A5.$86.$7A.$84.$7B.$
20. $73. $00.$AA.$F0.$F0. $A2.$FF
* 20 BY~ $86.$~A.$90.$06.$20.$79.$A5.$
4C.$El.$A7.$20.$6B.$A9.$20.$79
* 25 BYT $AS.$84.$0B
END

You may notice that these are me same bytes which were disassembled in Table
3.
FILE EDITOR MENU OPTION 9: Change Device Number
Calling this option allows you to change the current inpuVoutput device. You can
only specify a device which was presentwhen the program was first run.

In using the File Editor it should be remembered that though It allows the
convenient entry of lines to an assembly language file, it does not in itself make
any check that the lines entered are valid instructions. lis only check is that each
line does commence with a line number. Note also that when inputting assembly
language instructions, any commas in the format should be replaced with full
stops.

The Assembler
The Mastercode Assembler accepts all the standard assembler mnemonics,
with the exception that commas should be replaced by full-stops. Mastercode
is a two-pass assembler, scanning the program once to ascertain the addresses
of any labels and the value of any variables specified and the second time to
actually assemble the program into machine code. All legal 6502 assembly
language instructions (the same set as the 64's 651 a CPU) are accepted.

The assembler is entered by specifying option 8 from the main menu and, once
entered, three main options are immediately available, as.tollows:
1a) ASSI;:MBLE TO MEMORY: the file entered by means of the File Editor is
translated into machine code and placed into the memory. As mentioned In the
commentary on the Monitor, programs may be conflated with previously
assembled programs by loading an existing machine code program Into
memory (using the Monitor) and then starting assembly of the second program
at the byte following the end of the first program; thus overcoming any problems
you may have with the limitation of a single file to 1000 lines. Note that variables
and labels from the first program must be redeciared for the second - they are
not carried over.
b) ASSEMBLE WITHOUT PLACING IN MEMORY: the file is assembled, with a
full listing of all addresses and their contents but memory IS unchanged. This....

11

FILE EDITOR MENU OPTIONS 6 AND 7: Saving and Loading Files
Assembly language source files may be saved to or loaded from tape or disc
uSing these options. As with machine code files using the Monitor, you will be
asked to specify the outpuVinput device and a name for the file. It is wise to
choose names which distinguish clearly between assembly language files and
machine code files since Mastercode will not allow a machine code file to be
loaded by means of the Rle Editor or an assembly language file by means of the
MOnitor. A simple way of distinguishing between the two types is to precede the
chosen filename . 'M-' or'S.' depending on the type of file.

The Save function is also used to output the file to a printer by specifying device
4 when asked for the output device. Given below is a typical short listing
prepared using the fileeditor:

Table 4: Assembly Language File

MASTERCODE/S
* 10 LDA #$A9
* 20 LDX 11$01
* 30 JSR $AB1E
* 40 LDA $0
* 50 AND $FE
* 60 STA 0
* 70 RTS
END

FILE EDITOR MENU OPTION 8: Add Machine Code to file
The Mastercode assembler allows one or more individual bytes of rnachine.code
or tables to be entered directly into an assembly language program using the
BYT directive (see Assembler Directives). This option makes use of that
capability by allowing you to specify an area of memory which will then be placed .
Into your assembly language program in BYT form, that is with each byte value
specified rather than as assembly language instructions. This allows routines
from the ROM or from a machine code program already resident in memorY to
be added to the current file.

Data is added to the current file in the form of numbered lines of 15 bytes each,
with each line number incremented by five. Before specifying the line number
at which insertion is to begin you should ensure that the lines inserted will not
overwrite an existing line of the file. There is no need to specify a finish line when
using this option since this will not affect the way in which lines are inserted.

10

Table 5: Lines Inserted Into file using Add Machine Code to File.

MASTERCODE/S
* 10 BYT $A~.$76.$A0.$A3.$20.$lE.$AB.$
A9. $80. $20.$90. $FF.$6C. $02. $03
* 15 BYT $20.$60.$A5.$86.$7A.$84.$7B.$
20. $73. $00.$AA.$F0.$F0. $A2.$FF
* 20 BY~ $86.$~A.$90.$06.$20.$79.$A5.$
4C.$El.$A7.$20.$6B.$A9.$20.$79
* 25 BYT $AS.$84.$0B
END

You may notice that these are me same bytes which were disassembled in Table
3.
FILE EDITOR MENU OPTION 9: Change Device Number
Calling this option allows you to change the current inpuVoutput device. You can
only specify a device which was presentwhen the program was first run.

In using the File Editor it should be remembered that though It allows the
convenient entry of lines to an assembly language file, it does not in itself make
any check that the lines entered are valid instructions. lis only check is that each
line does commence with a line number. Note also that when inputting assembly
language instructions, any commas in the format should be replaced with full
stops.

The Assembler
The Mastercode Assembler accepts all the standard assembler mnemonics,
with the exception that commas should be replaced by full-stops. Mastercode
is a two-pass assembler, scanning the program once to ascertain the addresses
of any labels and the value of any variables specified and the second time to
actually assemble the program into machine code. All legal 6502 assembly
language instructions (the same set as the 64's 651 a CPU) are accepted.

The assembler is entered by specifying option 8 from the main menu and, once
entered, three main options are immediately available, as.tollows:
1a) ASSI;:MBLE TO MEMORY: the file entered by means of the File Editor is
translated into machine code and placed into the memory. As mentioned In the
commentary on the Monitor, programs may be conflated with previously
assembled programs by loading an existing machine code program Into
memory (using the Monitor) and then starting assembly of the second program
at the byte following the end of the first program; thus overcoming any problems
you may have with the limitation of a single file to 1000 lines. Note that variables
and labels from the first program must be redeciared for the second - they are
not carried over.
b) ASSEMBLE WITHOUT PLACING IN MEMORY: the file is assembled, with a
full listing of all addresses and their contents but memory IS unchanged. This....

11

option is ideal for use when checking programs for errors without disturbing the
present contents of the memory.
2a) EHROR ONLY LISTING: only those instructions which contain errors will be
printed, tdgetherwith an indication of the nature of the error.

Table 6: ERROR ONt Y Ustlng of File

ADD. DATA SOURCE CODE
20 LDA *::t.A9

~NDORRECT NUMBER BASE ERROR
40 JSR 8$AB1E

ADDRESSING MODE NOT AVAILBLE WITH THI
S OPCODl;:ERROR

50 STA $10000~:===============Z=============A
DOUBLE BYTE OUT OF RANGE ERROR

TOTAL ERRORS IN FILE --- 3

2b) FULL LISTING: the full listing of the program is printed including indications
of any errors. Note that if there are two errors on the same line, only one will be
indicated on anyone assembly. Subsequent assemblies will flag any remaining
errors once the first batch have been corrected._.

Table 7: Full listing of the same file

ADD. DATA
00

SOURCE CODE
10 PRT
20 LDA *::t.A9===~=========================A

INCORRECT NUMBER BASE ERROR
02 A201 30 LDX 8$01

40 JSR *$AB1E
-==================-==="""

ADDRESSING MODE NOT AVAILBLE WITH THI
S OPCODE ERROR

50 STA $10000======================~========A
DOUBLE BYTE OUT OF RANGE ERROR

07 8500 60 STA 0
09 60 70 RTS

TOTAL ERRORS IN FILE 3

12

3) ASSEMBLE TO DEVICE: This option allows you to assemble the program in
the form of a file on tape or disc. The advantage of this is that programs may be
assembled as if to an area of memory which is in fact unavailable when using
Mastercode. The file may then be reloaded into the memory as an independent
program using the RELOADER program which follows Mastercode on your tape.
For a fuller discussion of this see Location of Code.

Display of Assembled Program .
The program being assembled is displayed twice, once line by line during Pass
1, when only the current line of assernbiytanquaqe is displayed and again during
Pass 2 with the address at which the instruction will be assembled, the contents
of the bytes involved and the assembly language instruction.

Assembler Directives
The Assembler provides 7 'directives' for the convenience of the user. These are
not assembly language instructions which will be translated into machine code
for inclusion in the eventual machine code program but lnstructions which can
be included in a file and which modify the manner in which the Assembler
processes the file. The seven assembler directives a~e: -

1) ORG (address) .
This directive indicates that the assembly language instruction following it is to
be assembled at the address specified - subsequent instructions will follow on
from that address. A single assembly language program may contain several
'ORG directives indicating sections of the program, or even individual bytes, to
be placed in entirely different areas of memory. Files which do not contain an
ORG directive or instructions which precede the first ORG directive in a program
will be assembled beginning at address zero, crashing the system. For this
reason it is wise to assemble the file first without placing it into memory so that
mistakes may be rectified before anything irrecoverable is done.

'..
13

option is ideal for use when checking programs for errors without disturbing the
present contents of the memory.
2a) EHROR ONLY LISTING: only those instructions which contain errors will be
printed, tdgetherwith an indication of the nature of the error.

Table 6: ERROR ONt Y Ustlng of File

ADD. DATA SOURCE CODE
20 LDA *::t.A9

~NDORRECT NUMBER BASE ERROR
40 JSR 8$AB1E

ADDRESSING MODE NOT AVAILBLE WITH THI
S OPCODl;:ERROR

50 STA $10000~:===============Z=============A
DOUBLE BYTE OUT OF RANGE ERROR

TOTAL ERRORS IN FILE --- 3

2b) FULL LISTING: the full listing of the program is printed including indications
of any errors. Note that if there are two errors on the same line, only one will be
indicated on anyone assembly. Subsequent assemblies will flag any remaining
errors once the first batch have been corrected._.

Table 7: Full listing of the same file

ADD. DATA
00

SOURCE CODE
10 PRT
20 LDA *::t.A9===~=========================A

INCORRECT NUMBER BASE ERROR
02 A201 30 LDX 8$01

40 JSR *$AB1E
-==================-==="""

ADDRESSING MODE NOT AVAILBLE WITH THI
S OPCODE ERROR

50 STA $10000======================~========A
DOUBLE BYTE OUT OF RANGE ERROR

07 8500 60 STA 0
09 60 70 RTS

TOTAL ERRORS IN FILE 3

12

3) ASSEMBLE TO DEVICE: This option allows you to assemble the program in
the form of a file on tape or disc. The advantage of this is that programs may be
assembled as if to an area of memory which is in fact unavailable when using
Mastercode. The file may then be reloaded into the memory as an independent
program using the RELOADER program which follows Mastercode on your tape.
For a fuller discussion of this see Location of Code.

Display of Assembled Program .
The program being assembled is displayed twice, once line by line during Pass
1, when only the current line of assernbiytanquaqe is displayed and again during
Pass 2 with the address at which the instruction will be assembled, the contents
of the bytes involved and the assembly language instruction.

Assembler Directives
The Assembler provides 7 'directives' for the convenience of the user. These are
not assembly language instructions which will be translated into machine code
for inclusion in the eventual machine code program but lnstructions which can
be included in a file and which modify the manner in which the Assembler
processes the file. The seven assembler directives a~e: -

1) ORG (address) .
This directive indicates that the assembly language instruction following it is to
be assembled at the address specified - subsequent instructions will follow on
from that address. A single assembly language program may contain several
'ORG directives indicating sections of the program, or even individual bytes, to
be placed in entirely different areas of memory. Files which do not contain an
ORG directive or instructions which precede the first ORG directive in a program
will be assembled beginning at address zero, crashing the system. For this
reason it is wise to assemble the file first without placing it into memory so that
mistakes may be rectified before anything irrecoverable is done.

'..
13

Table 8: Assembled Program using 'ORG'

ADD. DATA SOURCE CODE
)11111 .1111PRT
111111 2111SYM
0111 25 ORG $2A8
2AB 0B 26 PHP
2A9 A90111 3111PS LDA *$11I11I

~2AB 4B 4111PHA
2AC A90111 5111AS LDA #$0111
2AE A200 60 XS LDX *$00
2B0 A000 70 YS LDY #$00
2B2 2B B0 PLP
2B3 EA 90 NOP
2B4 EA 100 NOP
2B5 EA 110 NOP
286 0B 120 PHP
2B7 BDAD02 130 STA AS+1
2BA 8EAF02 ~40 STX X'S+l
2BD BCB102 150 STY YS+1
2C0 68 160 PLA
2C1 8DAA02 170 STA PS+1
2C4 28 175 PLP
2C5 60 1B0 RTS
2C6 191'1 END

TOTAL ERRORS IN FILE --- 0

PS 2A9
AS 2AC
XS 2AE
YS 2B0
TOTAL NUMBER OF SYMBOLS --.,. 4

2)PRT
. Following this directive output of the assembled program is diverted from the
screen to the printer on Pass 2, PRT may be included at any point during the
program so that half of the assembled listing can be sent to the screen and the
remainder to a printer. You will note that all the assembled listings given in this
handbook include a PRT directive, for obvious reasons.

3)SYM
This .indicates that the 'symbol table' containing values of variables and

_addresses at which labelled lines are assembled is to be appended to the listing.
For an example of the effect of SYM see under~Variables and Labels.

14

4)END
Whenever encountered. directive)enminates assembly - it does not have to
be placed at the end of a program. When END is used as the last line of a
program, its address sig . es the first free byte of memory which will follow the
assembled program. Table 8 (above) illustrates the use of this directive.

5)BYT
This directive allows a senes of one byte values to be specified in a line,
separated by full-stops. The values will be entered directly into memory, The
format of BYT is illustrated by tbe example given below,

Table 9: Listing using 'BIT

ADD. DATA SOURCE CODE
00 10 PRT
00 A510 20 LOA $10
02 BSFE 30 STA $FE
04 60 III RTS
05 21113F1II5 50 BYT $20.&77.%101
0B 60 END

TOTAL ERRORS IK FILE --- 0

(For an explanation of the number of formalS used in line 50 see NUMBER BASE
below),

6)DBY
Similar to BYT except that the value specified may be up to two byte range (0-
65535), The two bytes will be placed into memory with the high byte first.

Table 10: Listing using 'DBY'

ADD. DATA SOURCE CODE
00 10 PRT
00 A510 20 LDA $10
02 B5FE 30 STA $FE
04 60 40 RTS
05 123407 50 DBY $1234.&3421
09 60 END

TOTAL ERRORS IN FILE --- 0

7)WRD
As DBY except that the two bytes are placed intornernory with the low byte first.

15

Table 8: Assembled Program using 'ORG'

ADD. DATA SOURCE CODE
)11111 .1111PRT
111111 2111SYM
0111 25 ORG $2A8
2AB 0B 26 PHP
2A9 A90111 3111PS LDA *$11I11I

~2AB 4B 4111PHA
2AC A90111 5111AS LDA #$0111
2AE A200 60 XS LDX *$00
2B0 A000 70 YS LDY #$00
2B2 2B B0 PLP
2B3 EA 90 NOP
2B4 EA 100 NOP
2B5 EA 110 NOP
286 0B 120 PHP
2B7 BDAD02 130 STA AS+1
2BA 8EAF02 ~40 STX X'S+l
2BD BCB102 150 STY YS+1
2C0 68 160 PLA
2C1 8DAA02 170 STA PS+1
2C4 28 175 PLP
2C5 60 1B0 RTS
2C6 191'1 END

TOTAL ERRORS IN FILE --- 0

PS 2A9
AS 2AC
XS 2AE
YS 2B0
TOTAL NUMBER OF SYMBOLS --.,. 4

2)PRT
. Following this directive output of the assembled program is diverted from the
screen to the printer on Pass 2, PRT may be included at any point during the
program so that half of the assembled listing can be sent to the screen and the
remainder to a printer. You will note that all the assembled listings given in this
handbook include a PRT directive, for obvious reasons.

3)SYM
This .indicates that the 'symbol table' containing values of variables and

_addresses at which labelled lines are assembled is to be appended to the listing.
For an example of the effect of SYM see under~Variables and Labels.

14

4)END
Whenever encountered. directive)enminates assembly - it does not have to
be placed at the end of a program. When END is used as the last line of a
program, its address sig . es the first free byte of memory which will follow the
assembled program. Table 8 (above) illustrates the use of this directive.

5)BYT
This directive allows a senes of one byte values to be specified in a line,
separated by full-stops. The values will be entered directly into memory, The
format of BYT is illustrated by tbe example given below,

Table 9: Listing using 'BIT

ADD. DATA SOURCE CODE
00 10 PRT
00 A510 20 LOA $10
02 BSFE 30 STA $FE
04 60 III RTS
05 21113F1II5 50 BYT $20.&77.%101
0B 60 END

TOTAL ERRORS IK FILE --- 0

(For an explanation of the number of formalS used in line 50 see NUMBER BASE
below),

6)DBY
Similar to BYT except that the value specified may be up to two byte range (0-
65535), The two bytes will be placed into memory with the high byte first.

Table 10: Listing using 'DBY'

ADD. DATA SOURCE CODE
00 10 PRT
00 A510 20 LDA $10
02 B5FE 30 STA $FE
04 60 40 RTS
05 123407 50 DBY $1234.&3421
09 60 END

TOTAL ERRORS IN FILE --- 0

7)WRD
As DBY except that the two bytes are placed intornernory with the low byte first.

15

Table 11: Listing using 'WRD'

ADD.
00
00
02
04
05
09

A510
85FE
60
34120A

DATA SOURCE CODE
10 PRT
20 LOA $10
30 STA $FE
40 RTS
50 WRD $1234.&3412
60 END

TOTAL ERRORS IN FILE --- 0

Labels
When writing an assembly language program it is usually not possible to foresee
exactly where each instruction will be placed in memory, thus creating a problem
when It comes to specifying the address to which jumps of various kinds are to
be made. A properly written assembler wjll therefore provide the facility to 'label'
Indlvl.dual instructions In order that in ffie rest of the program jumps may be
specified to thai label rather than an address having to be specified. On Pass
1 through the program the assembler will determine the address of each of the
labelled lines and assign that address as the value of the label. On Pass 2, any
Jumps which are specified to a lapelled line will have the value of the label
inserted as the destination of the jump. Mastercode accepts 'labels up to six
characters In length. The use of labels is illustrated by the listing given in 'Table
12,

'Expressions
o.ne.of the most useful features of the Mastercode program is its ability to cope
With simple expressions in assembly language programs. Such variables may
be defined using +, - .. or I, though brackets are not permitted.Expressions may
be used to directly load memory locations orto define variables.

Variables
The Mastercode Assembler allows variables to be declared and altered during
the course of .the assembly language program. Variables are assessed during
Pass 1 and the correct values inserted into the program on Pass 2.

It is important to remember when defining variables that no variable may be
used to set the value of another variable until it has been defined. Defining a
variable after It has already been used in such an expression will result in the
UNDEFINED LABEL ERROR when it is first used. No variable may be defined
more than once, though if a variable has been invalidly defined (for instance by
setting It equal to another variable which has not been defined), it may be used
subsequently after any '=' in a line though its value will be zero. If, having been
Improperly defined, it is later REdefined, the same error which was given for the
first, faulty, definition will be flagged until that original definition is removed from

16

the program. Any other the same variable more than once will
result in an error.

The use of variables isiUustrated by the following listing:

Table 12: Assembly ding Variables and Expressions.

ADD. DAT SOURCE CODE
00 10 PRT
00 15 SYM
00 17 ORG :f.C000
C000 A90 20 LOA #KEY-KEY/256*256
C002 A2D0 30 LOX #KEY/256
C01?l4 00 40 BNE LABEL
C0i216 4C9EAl 50 JMP $A19E
CI1,)09- 8D1- 60 LABEL STA ASAVE
C00C 8E14C2 70 STX XSAVE
C00F SCI5C 80 STY YSAVE
C012 60 90 RTS
C013 100 ASAVE
C013 110 XSAVE = ASAVE+1
C013 120 YSAVE = XSAVE+l

.C013 130 KEY $0000
C013 140 END ,:~
TOTAL ERRORS IN FILE ---

LABEL C009
ASAVE C0.13
XSAVE C014
YSAVE C0'15
KEY D000
TOTAL NUMBER OF SYMBOLS --- 5

I
, I

The Symbol Table
On Pass 1, as mentioned, labels and variables are assessed for use in final
assembly of the program and stored in an array known as the 'symbol table'. The
only limitation on this' process is that a maximum of 100 labels or variables is
permitted. If.this maximum is passed during the assembly of a program an error
message is generated and assembly terminates. Inclusion of the directive SYM
at any point during the assembly language program will cause the assembler
to print out the contents of the symbol table after the assembled listing. Note that
the value of improperly defined labels and variables in the symbol table will
always be zero.

A specimen symbol table is shown in Table 12 above.

17

Table 11: Listing using 'WRD'

ADD.
00
00
02
04
05
09

A510
85FE
60
34120A

DATA SOURCE CODE
10 PRT
20 LOA $10
30 STA $FE
40 RTS
50 WRD $1234.&3412
60 END

TOTAL ERRORS IN FILE --- 0

Labels
When writing an assembly language program it is usually not possible to foresee
exactly where each instruction will be placed in memory, thus creating a problem
when It comes to specifying the address to which jumps of various kinds are to
be made. A properly written assembler wjll therefore provide the facility to 'label'
Indlvl.dual instructions In order that in ffie rest of the program jumps may be
specified to thai label rather than an address having to be specified. On Pass
1 through the program the assembler will determine the address of each of the
labelled lines and assign that address as the value of the label. On Pass 2, any
Jumps which are specified to a lapelled line will have the value of the label
inserted as the destination of the jump. Mastercode accepts 'labels up to six
characters In length. The use of labels is illustrated by the listing given in 'Table
12,

'Expressions
o.ne.of the most useful features of the Mastercode program is its ability to cope
With simple expressions in assembly language programs. Such variables may
be defined using +, - .. or I, though brackets are not permitted.Expressions may
be used to directly load memory locations orto define variables.

Variables
The Mastercode Assembler allows variables to be declared and altered during
the course of .the assembly language program. Variables are assessed during
Pass 1 and the correct values inserted into the program on Pass 2.

It is important to remember when defining variables that no variable may be
used to set the value of another variable until it has been defined. Defining a
variable after It has already been used in such an expression will result in the
UNDEFINED LABEL ERROR when it is first used. No variable may be defined
more than once, though if a variable has been invalidly defined (for instance by
setting It equal to another variable which has not been defined), it may be used
subsequently after any '=' in a line though its value will be zero. If, having been
Improperly defined, it is later REdefined, the same error which was given for the
first, faulty, definition will be flagged until that original definition is removed from

16

the program. Any other the same variable more than once will
result in an error.

The use of variables isiUustrated by the following listing:

Table 12: Assembly ding Variables and Expressions.

ADD. DAT SOURCE CODE
00 10 PRT
00 15 SYM
00 17 ORG :f.C000
C000 A90 20 LOA #KEY-KEY/256*256
C002 A2D0 30 LOX #KEY/256
C01?l4 00 40 BNE LABEL
C0i216 4C9EAl 50 JMP $A19E
CI1,)09- 8D1- 60 LABEL STA ASAVE
C00C 8E14C2 70 STX XSAVE
C00F SCI5C 80 STY YSAVE
C012 60 90 RTS
C013 100 ASAVE
C013 110 XSAVE = ASAVE+1
C013 120 YSAVE = XSAVE+l

.C013 130 KEY $0000
C013 140 END ,:~
TOTAL ERRORS IN FILE ---

LABEL C009
ASAVE C0.13
XSAVE C014
YSAVE C0'15
KEY D000
TOTAL NUMBER OF SYMBOLS --- 5

I
, I

The Symbol Table
On Pass 1, as mentioned, labels and variables are assessed for use in final
assembly of the program and stored in an array known as the 'symbol table'. The
only limitation on this' process is that a maximum of 100 labels or variables is
permitted. If.this maximum is passed during the assembly of a program an error
message is generated and assembly terminates. Inclusion of the directive SYM
at any point during the assembly language program will cause the assembler
to print out the contents of the symbol table after the assembled listing. Note that
the value of improperly defined labels and variables in the symbol table will
always be zero.

A specimen symbol table is shown in Table 12 above.

17

Comments in Programs
Mastercode allows comments to be entered into programs provided that each
comment stands on a line on its own" and that the comment line starts with a semi-
colon.

Loading Registers with Characters
It is often necessary during the course of programs to load individual registers
with the value of an ASCII character for the purposes of comparison with the
contents 01 some other memory location. This can be done for all immediate
mode instructions by including the character as the operand, preceded by a

- quotation marl\. eg LOA #'F would load the accumulator with the ASCII value of
'F'

Error Messages
The Mastercode Assembler provides full error checking of assembly language
programs and generates a variety of error messages to indicate faults in a
program. When an error is flagged, either in an error only listing or a full listing,
the offending line is displayed, together with the relevant error message and a
rough indication of where in the line the error occurs. The error rnessaqes are
as follows:
1) SINGLE BYTE OUT OF RANGE: this signifies that an attempt has been made
to load a single byte or an 8 bit register with a value outside the range 0-255.
2) DOUBLE BYTE OUT OF RANGE: an attempt has been made to load a sixteen
bit location (2 bytes) with a value outside the range 0-65535.
3) INVALID OPERAND OR OPCODE: either the opcode mnemonic or the format

• of the operand do not conform to a known opcode or operand.
4) INVALID OPERATOR: an attempt has been made to use a mathematical
operator which Mastercode cannot deal with (see Variables).
5) INDEX IS NOT X OR Y: the format of the instruction suggests that an indexed
addressing mode is required but neither the X nor Y register has been specified
as the index register.
6) LABEL IS NOT ALPHANUMERIC: an attempt has been made to define a label
name which contains characters which are not letters or numeric digits.
7) INCORRECT NUMBER BASE: the format of a number entered into the program
does not conform to the necessary format of the number base specified (see
Number Base).
8) LABEL DEFINED TWICE: an attempt has been made to use the same label
for two different lines. '
9) BRANCH OUT OF RANGE: branch instructions may only refer to addresses
which are in the range +127 to -128 relative to the address of the first byte
following the branch instruction. This error is given if that limit is exceeded.
10) UNDEFINED LABEL: reference has been made to a label in the program but

, no line with that label has been discovered.
11) OUT OF SYMBOL SPACE: the maximum number of labels and variables
(100) has been exceeded.

18

12) DIVISION BY ZERO: an a1;emp has been made to obtain the product of an
expression which involvesoMsionbyzero.
13) ADDRESSING MODE NOT AVAILABLE WITH THIS OPCODE: both the
opcode and the operand may be legal but they are not found together in the
6502/6510 instructionsel

Number Bases
Values may be entered into an assembly language program in anyone of four
bases, namely hexadec8'naJ (base=16), decimal (base=10), octal (base=8)
and binary (base=2). The formats are as follows: .
Hexadecimal: number preceded by '$' eg $FF =255 decimal.
Decimal: numberwilhoutidentifier, eg 255.
Octal: number preceded by'&'eg&377 = 255 decimal. .
Binary: numberprecededby'%' eg % 11111111 = 255 decimal.

Invalid inputs, for ir\stanceSl2AZ. which do not conform to the number base
specified will be flagged . a suiIabIe error ~es~age. The exception to ttns IS
the case of hexadecimal runbers begin With one of the characters A-F
but omit the '$' identifier. These be interpreted as labels and an undefined
label error will begeneraled.

Given below is a specimen - ofa program employing numbers of different
bases.

Table 13: Listing using different Number Bases.

ADD.
11)111
00
03
06
09
0C
00

DATA SOURCE CODE
10 PRT
20 LDA $J00
30 LDX 7.100000000
40 LDY 256
50 STA &400
60 RTS
70 END

AD0001
AE0001
AC0001
8011111101
60

TOTAL ERRORS IN FILE --- 0

TOTAL NUMBER OF SYMBOLS --- 0

Location of Code for Assembled Programs . .
Mastercode is designed to make use of the 'invisible' 4K area of RAM beginning
at COOOhex for the assembly of programs. This area provides more space than
most machine code programmers will ever require for their programs. If you do
wish to enter programs of more than AK in length or wish to relocate your
programs for any reason then you have the facility to assemble the program to
the area commencing at COOOfor testing. Then you can assemble It to tape or
disc but with the ORG set at another location, with subsequent sections of the

19

Comments in Programs
Mastercode allows comments to be entered into programs provided that each
comment stands on a line on its own" and that the comment line starts with a semi-
colon.

Loading Registers with Characters
It is often necessary during the course of programs to load individual registers
with the value of an ASCII character for the purposes of comparison with the
contents 01 some other memory location. This can be done for all immediate
mode instructions by including the character as the operand, preceded by a

- quotation marl\. eg LOA #'F would load the accumulator with the ASCII value of
'F'

Error Messages
The Mastercode Assembler provides full error checking of assembly language
programs and generates a variety of error messages to indicate faults in a
program. When an error is flagged, either in an error only listing or a full listing,
the offending line is displayed, together with the relevant error message and a
rough indication of where in the line the error occurs. The error rnessaqes are
as follows:
1) SINGLE BYTE OUT OF RANGE: this signifies that an attempt has been made
to load a single byte or an 8 bit register with a value outside the range 0-255.
2) DOUBLE BYTE OUT OF RANGE: an attempt has been made to load a sixteen
bit location (2 bytes) with a value outside the range 0-65535.
3) INVALID OPERAND OR OPCODE: either the opcode mnemonic or the format

• of the operand do not conform to a known opcode or operand.
4) INVALID OPERATOR: an attempt has been made to use a mathematical
operator which Mastercode cannot deal with (see Variables).
5) INDEX IS NOT X OR Y: the format of the instruction suggests that an indexed
addressing mode is required but neither the X nor Y register has been specified
as the index register.
6) LABEL IS NOT ALPHANUMERIC: an attempt has been made to define a label
name which contains characters which are not letters or numeric digits.
7) INCORRECT NUMBER BASE: the format of a number entered into the program
does not conform to the necessary format of the number base specified (see
Number Base).
8) LABEL DEFINED TWICE: an attempt has been made to use the same label
for two different lines. '
9) BRANCH OUT OF RANGE: branch instructions may only refer to addresses
which are in the range +127 to -128 relative to the address of the first byte
following the branch instruction. This error is given if that limit is exceeded.
10) UNDEFINED LABEL: reference has been made to a label in the program but

, no line with that label has been discovered.
11) OUT OF SYMBOL SPACE: the maximum number of labels and variables
(100) has been exceeded.

18

12) DIVISION BY ZERO: an a1;emp has been made to obtain the product of an
expression which involvesoMsionbyzero.
13) ADDRESSING MODE NOT AVAILABLE WITH THIS OPCODE: both the
opcode and the operand may be legal but they are not found together in the
6502/6510 instructionsel

Number Bases
Values may be entered into an assembly language program in anyone of four
bases, namely hexadec8'naJ (base=16), decimal (base=10), octal (base=8)
and binary (base=2). The formats are as follows: .
Hexadecimal: number preceded by '$' eg $FF =255 decimal.
Decimal: numberwilhoutidentifier, eg 255.
Octal: number preceded by'&'eg&377 = 255 decimal. .
Binary: numberprecededby'%' eg % 11111111 = 255 decimal.

Invalid inputs, for ir\stanceSl2AZ. which do not conform to the number base
specified will be flagged . a suiIabIe error ~es~age. The exception to ttns IS
the case of hexadecimal runbers begin With one of the characters A-F
but omit the '$' identifier. These be interpreted as labels and an undefined
label error will begeneraled.

Given below is a specimen - ofa program employing numbers of different
bases.

Table 13: Listing using different Number Bases.

ADD.
11)111
00
03
06
09
0C
00

DATA SOURCE CODE
10 PRT
20 LDA $J00
30 LDX 7.100000000
40 LDY 256
50 STA &400
60 RTS
70 END

AD0001
AE0001
AC0001
8011111101
60

TOTAL ERRORS IN FILE --- 0

TOTAL NUMBER OF SYMBOLS --- 0

Location of Code for Assembled Programs . .
Mastercode is designed to make use of the 'invisible' 4K area of RAM beginning
at COOOhex for the assembly of programs. This area provides more space than
most machine code programmers will ever require for their programs. If you do
wish to enter programs of more than AK in length or wish to relocate your
programs for any reason then you have the facility to assemble the program to
the area commencing at COOOfor testing. Then you can assemble It to tape or
disc but with the ORG set at another location, with subsequent sections of the

19

overall program being assembled to tape or disc in such a way that, when
reloaded into the memory, the sections will form a single continuous program.
The method for assemb log taDeor d sc was described under the commentary
on the asse "o re assem ed programs into the desired area of

orogram located on the tape following the
program will automatically load the

at the Jocation specified when it was

which illustrate the methods involved in
progIaITI sections so that they will eventually

8Icslrllltllngprogram assembled In parts.

MTA -SOURCE CODE
113 F'RT
213 ORG $C13130

A9A9 30 LDA #$A9
A200 40 LDX #$11113

C1Il04 5lp END

TOTAL ERRORS IN' FILE --- 111

TOTAL NUMBER OF SYMBOLS --- 13

ADD. DATA SOURCE CODE
111111 113 F'RT
1313 2111ORG $C131114
C004 21111EAB 3111LABEL JSR $AB1E
C01117 85FC 4111STA $FC
C01119 86FD 50 STX $FD
CI1II1IB 6111END

TOTAL ERRORS IN FILE --- 111

LABEL C01114
TOTAL NUMBER OF SYMBOLS ---- 1

20

ADD. MTA SOURCE CODE
00 10 PRT
00 20 ORG $CI2II1IB
C00B 30 LABEL = $C13134
C13I21B CA 4111DEX
C00C D0F6 50 BNE LABEL
C00E 6121 60 RTS
C00F 70 END

TOTAL ERROFfS IN FILE --- 13

LABEL C004
TOTAL NUMBER OF SYMBOLS --- 1

Note that each section of the program begins at the address of the END
statement of the previous section and that labels referring to previous sections
are declared as variables, since they will no longer be contained_in the symbol
table. .

Programs which are small enough to fit into the 4K area beginning at COOOhex
may be saved using the straightforward Machine Code Save function of the
Monitor and reloaded with the simple BASIC program gillen under the
commentary for that section. Having reloaded the machine code program into
memory it is run with a straightforward SYS command to the address at which
the program's instructions begin. If you store data at the beginning of your
machine code program remember that the ORG of the problem will not be the
same as the address which will be specified in theSYS command.

Using Machine Code with BASIC
Machine code programs written with the aid of Mastercode'can be used in BASIC
programs in one of two ways:
(i) If the program is a straightforward machine code file saved from memory use
the lines given above under Machine Code Save to reload the code.
(ii) If the machine code program was 'assembled to device' then the Reloader
program at the end otthe Mastercode tape must be used to place it in memory.
If you place your code in the memory area beginning at COOOhex, all you then
need do is to SYS the correct memory address. If, for some reason, you wish to
load the code into the area of memory which is normally used by the BASIC
system then it will be necessary to first lower the top of memory pointer by
POKEing a new value into the system variable at locations 55-56 decimal. Make
sure you leave enough room for your BASIC program and any variables and
strings it may require and then assemble your machine code program so that
it will fall above the new top of memory, using the BASIC program to reload the

'..
21

\' '.

overall program being assembled to tape or disc in such a way that, when
reloaded into the memory, the sections will form a single continuous program.
The method for assemb log taDeor d sc was described under the commentary
on the asse "o re assem ed programs into the desired area of

orogram located on the tape following the
program will automatically load the

at the Jocation specified when it was

which illustrate the methods involved in
progIaITI sections so that they will eventually

8Icslrllltllngprogram assembled In parts.

MTA -SOURCE CODE
113 F'RT
213 ORG $C13130

A9A9 30 LDA #$A9
A200 40 LDX #$11113

C1Il04 5lp END

TOTAL ERRORS IN' FILE --- 111

TOTAL NUMBER OF SYMBOLS --- 13

ADD. DATA SOURCE CODE
111111 113 F'RT
1313 2111ORG $C131114
C004 21111EAB 3111LABEL JSR $AB1E
C01117 85FC 4111STA $FC
C01119 86FD 50 STX $FD
CI1II1IB 6111END

TOTAL ERRORS IN FILE --- 111

LABEL C01114
TOTAL NUMBER OF SYMBOLS ---- 1

20

ADD. MTA SOURCE CODE
00 10 PRT
00 20 ORG $CI2II1IB
C00B 30 LABEL = $C13134
C13I21B CA 4111DEX
C00C D0F6 50 BNE LABEL
C00E 6121 60 RTS
C00F 70 END

TOTAL ERROFfS IN FILE --- 13

LABEL C004
TOTAL NUMBER OF SYMBOLS --- 1

Note that each section of the program begins at the address of the END
statement of the previous section and that labels referring to previous sections
are declared as variables, since they will no longer be contained_in the symbol
table. .

Programs which are small enough to fit into the 4K area beginning at COOOhex
may be saved using the straightforward Machine Code Save function of the
Monitor and reloaded with the simple BASIC program gillen under the
commentary for that section. Having reloaded the machine code program into
memory it is run with a straightforward SYS command to the address at which
the program's instructions begin. If you store data at the beginning of your
machine code program remember that the ORG of the problem will not be the
same as the address which will be specified in theSYS command.

Using Machine Code with BASIC
Machine code programs written with the aid of Mastercode'can be used in BASIC
programs in one of two ways:
(i) If the program is a straightforward machine code file saved from memory use
the lines given above under Machine Code Save to reload the code.
(ii) If the machine code program was 'assembled to device' then the Reloader
program at the end otthe Mastercode tape must be used to place it in memory.
If you place your code in the memory area beginning at COOOhex, all you then
need do is to SYS the correct memory address. If, for some reason, you wish to
load the code into the area of memory which is normally used by the BASIC
system then it will be necessary to first lower the top of memory pointer by
POKEing a new value into the system variable at locations 55-56 decimal. Make
sure you leave enough room for your BASIC program and any variables and
strings it may require and then assemble your machine code program so that
it will fall above the new top of memory, using the BASIC program to reload the

'..
21

\' '.

assembled code into the correct position. OBJECT CODE INSTRUCTION OPERAND FORMATRemember that the simple loader given in the commentary on Machine Code
Save will only load a file back into the same area of memory as that from which 25 X AND ADDR
it was saved. RELOADER, on the other hand will only load a file assembled to
tape or disc using the assembler. 26 X ROL ADDR

Warning: The Mastercode will stop with an error if you attempt to RUN 28 PLP
the assembler when no lines of assembly language have been entered.

Table 15: Available Instructions and Formats. 29 X AND #DATA

OBJECT CODE INSTRUCTION OPERAND FORMAT 2A ROL A

00 BRK 2C XX BIT ADDR2

01 X ORA (ADDR.X) 20 XX AND ADDR2

05 X ORA ADDR 2E XX ROL ADDR2

06 X ASL AD DR 30 X BMI DIS

08 PHP 31 X AND (ADDR).Y

09 X ORA #DATA 35 X AND ·ADDR.X

OA ASL A 36 X ROL ADDRX

00 XX ORA ADDR2 38 SEC

OE XX ASL ADDR2 39 XX AND ADDR2.Y

10 X BPL DIS 3D XX AND ADDR2.X

11 X ORA (ADDR).Y 3E XX ROL ADDR2.X

15 X ORA ADDR.X 40 RTI

16 X ASL ADDR.X 41 X EOR (AD DR.X)

18 CLC 45 X EOR ADDR

19 XX ORA ADDR2.Y 46 X LSR ADDR

10 XX ORA ADDR2.X 48 PHA

1E XX ASL ADDR2.X 49 X EOR #DATA

20 XX JSR LABEL 4A LSR A

21 ·X AND (ADDR.X) 4C XX JMP LABEL

24 X BIT AD DR 40 XX EOR ADDR2

'..
22 23

~.~
I •

assembled code into the correct position. OBJECT CODE INSTRUCTION OPERAND FORMATRemember that the simple loader given in the commentary on Machine Code
Save will only load a file back into the same area of memory as that from which 25 X AND ADDR
it was saved. RELOADER, on the other hand will only load a file assembled to
tape or disc using the assembler. 26 X ROL ADDR

Warning: The Mastercode will stop with an error if you attempt to RUN 28 PLP
the assembler when no lines of assembly language have been entered.

Table 15: Available Instructions and Formats. 29 X AND #DATA

OBJECT CODE INSTRUCTION OPERAND FORMAT 2A ROL A

00 BRK 2C XX BIT ADDR2

01 X ORA (ADDR.X) 20 XX AND ADDR2

05 X ORA ADDR 2E XX ROL ADDR2

06 X ASL AD DR 30 X BMI DIS

08 PHP 31 X AND (ADDR).Y

09 X ORA #DATA 35 X AND ·ADDR.X

OA ASL A 36 X ROL ADDRX

00 XX ORA ADDR2 38 SEC

OE XX ASL ADDR2 39 XX AND ADDR2.Y

10 X BPL DIS 3D XX AND ADDR2.X

11 X ORA (ADDR).Y 3E XX ROL ADDR2.X

15 X ORA ADDR.X 40 RTI

16 X ASL ADDR.X 41 X EOR (AD DR.X)

18 CLC 45 X EOR ADDR

19 XX ORA ADDR2.Y 46 X LSR ADDR

10 XX ORA ADDR2.X 48 PHA

1E XX ASL ADDR2.X 49 X EOR #DATA

20 XX JSR LABEL 4A LSR A

21 ·X AND (ADDR.X) 4C XX JMP LABEL

24 X BIT AD DR 40 XX EOR ADDR2

'..
22 23

~.~
I •

OBJECT CODE INSTRUCTION OPERAND FORMAT OBJECT CODE INSTRUCTION OPERAND FORMAT

4E XX LSR ADDR2 7D XX ADC ADDR2.X

50 X_- BVC DIS 7E XX ROR ADDR2.X

51 X EOR (ADDR).Y 81 X STA (ADDRX)

55 X EOR ADDR.X 84 X STY ADDR

56 X LSR ADDR.X 85 X STII ADDR

58 CLI 86 X STX ADDR

59 XX EOR AOOR2.Y 88 DEY

5D XX EOR AOOR2.X 8A TXA

5E XX LSR ADDR2.X 8C XX STY ADDR2

60 RTS 8D XX STA ADDR2

61 X AOC (ADDRX) 8E XX STX ADDR2

65 X ADC ADDR 90 X BCC DIS

66 X ROR ADDR 9) X STA (ADDR).Y

68 PLA 94 X STY AODR.X

69 X AOC #DATA 95 X STA ADDR.X

6A ROR A 96 X STX ADDY.Y

6C XX JMP (LABEL) 98 TYA

6D XX ADC ADDR2 99 XX STA ADDR2.Y ..t,

9A TXS
/'"

6E XX ROR ADDR2

70 X BVS DIS 9D XX STA ADDR2.X

71 X ADC (ADDR).Y AO X LOY #DATA

75 X ADC AODR.X A1 X .LDA (ADDRX)

76 X ROR AODR.X A2· X LOX #DATA

78 SEI A4X LOY ADDR

79 XX ADC ADDR2.Y A5 X LOA AODR

-,
24 25

,

OBJECT CODE INSTRUCTION OPERAND FORMAT OBJECT CODE INSTRUCTION OPERAND FORMAT

4E XX LSR ADDR2 7D XX ADC ADDR2.X

50 X_- BVC DIS 7E XX ROR ADDR2.X

51 X EOR (ADDR).Y 81 X STA (ADDRX)

55 X EOR ADDR.X 84 X STY ADDR

56 X LSR ADDR.X 85 X STII ADDR

58 CLI 86 X STX ADDR

59 XX EOR AOOR2.Y 88 DEY

5D XX EOR AOOR2.X 8A TXA

5E XX LSR ADDR2.X 8C XX STY ADDR2

60 RTS 8D XX STA ADDR2

61 X AOC (ADDRX) 8E XX STX ADDR2

65 X ADC ADDR 90 X BCC DIS

66 X ROR ADDR 9) X STA (ADDR).Y

68 PLA 94 X STY AODR.X

69 X AOC #DATA 95 X STA ADDR.X

6A ROR A 96 X STX ADDY.Y

6C XX JMP (LABEL) 98 TYA

6D XX ADC ADDR2 99 XX STA ADDR2.Y ..t,

9A TXS
/'"

6E XX ROR ADDR2

70 X BVS DIS 9D XX STA ADDR2.X

71 X ADC (ADDR).Y AO X LOY #DATA

75 X ADC AODR.X A1 X .LDA (ADDRX)

76 X ROR AODR.X A2· X LOX #DATA

78 SEI A4X LOY ADDR

79 XX ADC ADDR2.Y A5 X LOA AODR

-,
24 25

,

OBJECT CODE INSTRUCTION OPERAND FORMAT OBJECT CODE INSTRUCTION OPERAND FORMAT

A6 X LOX ADDR CA DEX

A8 TAY CC XX CPY ADDR2

A9 X LDA #DATA CD XX CMP ADDR2

AA TAX CE XX DEC ADDR2

AC XX LOY ADDR2 DO X Bf\lE DIS

AD XX LOA ADDR2 01 X CMP (ADDR).Y

AE XX LOX ADDR2 D5 X CMP ADDR.X

BO X BCS DIS 06 X DEC· ADDR.X

B1 X LOA - (ADDR)Y 08 CLD

B4 X LOY ADDR.X 09 XX CMP ADDR2.Y

B5 X LOA ADDR.X DO XX CMP ADDR2X

B6 X LOX ADDR.Y DE XX DEC ADDR2')(
<I

B8 CLV EO, X CPX #DATA

B9 XX LOA ADDR2.Y E1 X SBC (ADDR.X)

BA TSX E4 X CPX ADDR

BC XX LOY ADDR2.X E5 X SBC ADDR

BD XX LOA ADDR2.X E6 X INC AD DR

BE XX LOX ADDR2.Y E8 INX

CO X CPY #DATA E9 X SBC #DATA

C1 X CMP (ADDR.X) EA NOP

C4 X CPY ADDR EC XX CPX ADDR2

C5 X CMP ADDR ED XX .SBC ADDR2

C6 X DEC ADDR EE XX INC ADDR2

(::8 INY FO X BEQ DIS

C9 X CMP #DATA F1 X SBC (ADDR).Y

"

26 27

" r-

OBJECT CODE INSTRUCTION OPERAND FORMAT OBJECT CODE INSTRUCTION OPERAND FORMAT

A6 X LOX ADDR CA DEX

A8 TAY CC XX CPY ADDR2

A9 X LDA #DATA CD XX CMP ADDR2

AA TAX CE XX DEC ADDR2

AC XX LOY ADDR2 DO X Bf\lE DIS

AD XX LOA ADDR2 01 X CMP (ADDR).Y

AE XX LOX ADDR2 D5 X CMP ADDR.X

BO X BCS DIS 06 X DEC· ADDR.X

B1 X LOA - (ADDR)Y 08 CLD

B4 X LOY ADDR.X 09 XX CMP ADDR2.Y

B5 X LOA ADDR.X DO XX CMP ADDR2X

B6 X LOX ADDR.Y DE XX DEC ADDR2')(
<I

B8 CLV EO, X CPX #DATA

B9 XX LOA ADDR2.Y E1 X SBC (ADDR.X)

BA TSX E4 X CPX ADDR

BC XX LOY ADDR2.X E5 X SBC ADDR

BD XX LOA ADDR2.X E6 X INC AD DR

BE XX LOX ADDR2.Y E8 INX

CO X CPY #DATA E9 X SBC #DATA

C1 X CMP (ADDR.X) EA NOP

C4 X CPY ADDR EC XX CPX ADDR2

C5 X CMP ADDR ED XX .SBC ADDR2

C6 X DEC ADDR EE XX INC ADDR2

(::8 INY FO X BEQ DIS

C9 X CMP #DATA F1 X SBC (ADDR).Y

"

26 27

" r-

~

OBJECT CODE INSTRUCTION OPERAND FORMAT

F5 X SBC ADDR.X

F6 X INC ADDR.X

F8 SED

F9 XX SBC ADDR2.Y

FD XX SBC ADDR2.X

FE XX INC ADDR2.X

Notes:
'X' or 'XX' in the first column refers to the number of bytes following the opcode.
'ADDR'refers to a single byte address.
'ADDR2' refers to a two byte address.
'DIS' refers to displacement.
'DATA'refers to a data byte.

28

~

OBJECT CODE INSTRUCTION OPERAND FORMAT

F5 X SBC ADDR.X

F6 X INC ADDR.X

F8 SED

F9 XX SBC ADDR2.Y

FD XX SBC ADDR2.X

FE XX INC ADDR2.X

Notes:
'X' or 'XX' in the first column refers to the number of bytes following the opcode.
'ADDR'refers to a single byte address.
'ADDR2' refers to a two byte address.
'DIS' refers to displacement.
'DATA'refers to a data byte.

28

© Copyright Scot Pressltd 1983
.AII rights reserved. No part of this program. packaging or
documentation may be reproduced in any form. Unauthorised ,
copying, hiring, lending or sale and repurchase prohibited.

Printed in UK

© Copyright Scot Pressltd 1983
.AII rights reserved. No part of this program. packaging or
documentation may be reproduced in any form. Unauthorised ,
copying, hiring, lending or sale and repurchase prohibited.

Printed in UK

	left-cropped
	right-cropped

