

software development package for high resolution,
multicolor, sprite and turtle graphics, sound

and game features for the COMMODORE-64

(C)1983 Roy C. Wainwright

= = = = = = = = =

P.O. BOX7211,Grand Rapids, Ml 49510

Third Printing - November 1983

COPYRIGHT NOTICE

ABACUS Software makes this package available for use on a
single computer only. It is unlawful to copy any of the
software onto any medium for any purpose other than backup.
It is unlawful to give away or resell copies of any part cf
this package. Any unauthorized distribution of this product
deprives the authors of their deserved royalties. For use on
multiple computers, please contact ABACUS Software to make
such arrangements.

WARRANTY

ABACUS Software makes no warranties, expressed or implied as
to the fitness of this software package for a particular
purpose. In no event will ABACUS Software be liable for
consequential damages. ABACUS Software will replace any copy
of the software which is unreadable if returned within 90
days of purchase. Thereafter it will charge a nominal fee
for replacement.
If you are not satisfied with our software, you may return
it in original condition within 30 days of purchase with
your receipt for a refund. We want you to be a happy
customer.

PREFACE

ULTRABASIC-64 is the "ultimate" software package for those
that want to use the wonderful features for which you bought
the COMMODORE 64. ULTRABASIC-64 gives you easy to use
graphics, fun to use TURTLE graphics, POKEless music and
sound, convenient game features and a screen dump to the
printer. It's a very powerful bag of tools for software
development.
The Roy Wainwright family lives in a quiet rural area of
Pennsylvania - probably 700 miles or so from Grand Rapids.
Therefore most of the details of Roy's software development
is handled over the phone or by mail. But that does not seem
to slow Roy down. ULTRABASIC-64 is Roy's third major package
for the COMMODORE 64. And he's done this in less than 8
months in addition to his duties as a husband, father and
data processing executive.
And he has more software packages close to completion.
The final specifications for this package were completed in
a hotel room 2500 miles from both Pennsylvania and Michigan.
But we've been busy putting the finishing touches on the
software and readying the documentation. We feel that
ULTRABASIC-64 is the finest package for software development
available for the COMMODORE 64.
Once again we owe a great deal of thanks to Roy and Ann
Wainwright and family. They have a great deal of patience to
put up with our late night calls and last minute changes.

Arnie Lee
May 4, 1983
Grand Rapids, MI

TABLE OF CONTENTS

I. INTRODUCTION.. 1
II. GETTING STARTED USING ULTRABASIC-64................ 3
III. COMMAND FORMATS.....................................6
IV. HIRES/MULTICOLOR GRAPHICS

A. GRAPHIC DISPLAY FORMAT..........................7
FIGURE 1 SCREEN LAYOUT............................8

B. DISPLACEMENT OF AXES..............................8
C. SCREEN SELECTION................................. 9
D. SAVING GRAPHIC DISPLAYS.......................... 9
E. HIRES/MULTICOLOR COMMANDS....................... 10
F. SCREEN CONTROL COMMANDS......................... 15

V. SPRITE GRAPHICS
A. INTRODUCTION TO SPRITES..........................16
B. SPRITE PICTURES.................................17
C. SPRITE COMMANDS................................. 19
D. SPRITE EXAMPLE.................................. 22

VI. TURTLE GRAPHICS.................................... 23
VII. GAME FEATURES

A. INPUT FUNCTIONS................................. 26
B. TIMERS...28
C. SPRITE COLLISION FUNCTIONS......................29

VIII. SOUND FEATURES..................................... 30
IX. OTHER FEATURES..................................... 35

X. PROGRAMMING NOTES
A. GENERAL INFORMATION............................. 37
B. THREE-DIMENSIONAL PLOTTING......................37
C. MEMORY ORGANIZATION............................. 38
D. COLOR MEMORY PROBLEM............................38

XI. ERRORS... 39
XII. COMMAND SUMMARY.................................... 40

APPENDIX A-NOTE EQUIVALENTS........................42
APPENDIX B-A SHORT LESSON IN HEXADECIMAL NUMBERS..43
APPENDIX C-COLOR NUMBER TABLE..................... 45
APPENDIX D-PRINTER INTERFACE SUPPORT.............. 46

I. INTRODUCTION

The COMMODORE 64 is a marvelous computer. It has excellent
color graphics, quality sprite animation, unsurpassed music
and sound synthesis capabilities, sophisticated game
features, and much more - all at a very affordable price.
But many of these features are hard to use without resorting
to POKEs, PEEKs, trial and error. ULTRABASIC-64 is a
software package that makes it simple to use these features.
ULTRABASIC-64 makes it easy to do any of the following:

* Plot in either high resolution or multicolor modes.
You can plot dots, lines, boxes and circles.

* Define and manipulate sprites in either high
resolution or multicolor modes.

* Create sound effects and music using any or all of
the three voices.

* Detect sprite/sprite or sprite/background colli­
sions

* Read the joystick, game paddle or lightpen ports
directly.

* Draw using a very friendly set of TURTLE graphics
commands.

* Get hardcopy of the graphics screen in either of
two sizes on a Commodore, or EPSON compatible or
OKIDATA printer.

ULTRABASIC-64 adds 50 commands to BASIC. ULTRABASIC-64 does
not perform magic - it merely makes it easy to use those
features of your COMMODORE 64 which made you buy the
computer in the first place. Once ULTRABASIC-64 is
initialized these extra commands may be used with the other
standard BASIC commands to create spectacular programs.
Commands may be used in a running program or directly from
the keyboard. Programs which use any ULTRABASIC-64 commands
may be SAVEd, LISTed or LOADed, just like any other BASIC
program. (However ULTRABASIC-64 must first be initialized).
By using ULTRABASIC-64 commands in a simple BASIC program
you can show off the truly amazing capabilities of your
computer.
The ULTRABASIC-64 package consists of several parts:

* this user's manual
* a program for loading ULTRABASIC-64 for use with

a COMMODORE 1515 or 1525 printer called UBCBM
* a program for loading ULTRABASIC-64 for use with

an EPSON MX-80 or FX-80 printer UBBPSON
* a program for loading ULTRABASIC-64 for use with

several OKIDATA Microline printers UBOKI

1

tically RON by one of the above initializers)
called ULTRA

* a demonstration program called UBDEMO
* Part I of a tutorial on using ULTRABASIC-64
called UBTUT0R1.

* Part II of a tutorial on using ULTRABASIC-64
called UBTUTOR2.

The next section is GETTING STARTED USING ULTRABASIC-64. It
will show you how to set up and use the ULTRABASIC—64
commands, demos and tutorials. The rest of the manual is
organized in sections that describe the various groups of
features.

2

II. GETTING STARTED USING ULTRABASIC-64

In this section we show you how to use ULTRABASIC-64. You
will learn how to initialize ULTRABASIC-64 and run the
sample programs that are part cf the package.
The distribution cassette or diskette contains the following:

NAME CONTENTS
UBCBM the initializer for ULTRABASIC when using

a COMMODORE 1515 or 1525 printer
UBEPSON the initializer for ULTRABASIC when using

an EPSON MX-80 or FX-80 printer
UBOKI the initializer for ULTRABASIC when using

an OKIDATA Microline printer
ULTRA the ULTRABASIC-64 interpreter which adds

the 50 commands to BASIC.
UBDEMO a program which shows off most of the

features of the ULTRABASIC-64 package
UBTUTOR1 tutorial on the use of the new commands
UBTUTOR2 tutorial (cont) on the use of the new commands

Follow these directions and you will be able to run the
sample programs:
1. If using cassette, insert the distribution cassette

intothe cassette drive making sure it is rewound.
or

If using diskette, carefully insert the distribution
diskette into the drive and close the disk drive door.

2. There are three different "Initializers" for
ULTRABASIC-64. If you are not using a printer, it does
not matter which initializer you use.
One initializer sets up ULTRABASIC-64 for use with a
COMMODORE 1515 or 1525 printer for hardcopy. This
program is called UBCBM.
A second initializer sets up ULTRABASIC-64 for use with
an EPSON MX-80, FX-80 RX-80 or GEMINI series printer.
This program is called UBEPSON.
A third initializer sets up ULTRABASIC-64 for use with
an OKIDATA Microline series printer. This programis
called UBOKI.
If using cassette type: LOAD "UBCBM", LOAD "UBEPSON"
or LOAD "UBOKI" and press the RETURN key. Press PLAY
on the cassette recorder when asked to do so by the
computer. When the message FOUND "UBCBM" (or UBEPSON or
UBOKI) appears on the screen, press the C« key to
continue the loading.

or

3

If using diskette type: LOAD "UBCBM",8, LOAD
"UBEPSON",8 or LOAD "UBOKI",8 and press the RETURN key.

3. When the appropriate initializer is loaded, READY will
reappear on the screen. Type RUN and press the RETURN
key. If using UBEPSON or UBOKI then the computer
prompts you to enter a:

SECONDARY ADDRESS NUMBER (0-255)
If you printer interface does not need or respond to
secondary addresses with the printer OPEN command, then
press <RETURN>. If a secondary address is needed to
configure the interface, then key in the number
followed by <RETURN >. See APPENDIX D for more
information. The next prompt is:

ASCII TRANSLATE? (Y/N)
If your interface does not change the 8 bit codes in
any way, then press N (no). If your interface
translates Commodore ASCII to standard ASCII, then
answer Y, and ULTRABASIC-64 pre-translates the graphic
data so your interface prints properly.
Next ULTRABASIC-64 interpreter is automatically loaded
and run from either cassette or diskette. At this point

ULTRABASIC is Initialized
A short introduction will appear on the screen.
Press STOP on the cassette recorder if using cassette.

4. Now you can run the demonstration program. If using
cassette type: LOAD "UBDEMO" and press the RETURN key
to load the demonstration program from cassette. Press
PLAY on the cassette recorder when asked to do so by
your computer. When FOUND "UBDEMO" appears on the
screen, press the C» key to continue the loading.

or
If using diskette type: LOAD "UBDEMO",8 and press the
RETURN key to load the demonstration program from
diskette.

5. Using either cassette or diskette type RUN and press
the RETURN key. The demo program will begin. The
screen displays will appear in both high resolution and
multicolor mode! This demo shows off most of the
features of ULTRABASIC-64 and will run for several
minutes as it goes through its paces. You may interrupt
it by pressing the RUN/STOP key on the keyboard. Press
the F5 key to switch to the text screen.

6. If you LIST the program you will see the commands that
do the plotting. This is an easy way to learn the use

4

of the ULTRABA3IC-64 commands.
7. A easier way to learn about the new graphics commands

is from the tutorial. It contains a ~step-by-step
description of most of the commands.

8. If using cassette type: L0AD"UBTUT0R1" and press the
RETURN key to load part I of the tutorial program. When
FOUND "UBTUT0R1" appears on the screen press the C“ key
to continue loading.

or
If using diskette type: LOAD "UBTUTORl",8 and press the
RETURN key. The tutorial will begin.
Just follow the directions and learn how to use
ULTRABASIC-64. Part II of the tutorial is loaded the
same way but the name is UBTUT0R2.

5

III. COMMAND FORMATS

ULTRABASIC—64 commands have a simple command structure. The
graphics commands operate in both the hires and multicolor
graphic modes. In the two modes, the commands are nearly
identical except for the occasional use of extra color
parameters for multicolor mode.
The commands usually have one or more variables (parame­
ters). These must be separated by commas. The parameter may
be any valid BASIC expression.
For example, each of these is a valid parameter:

A
25*A+15
20*SIN(X/180)
FNA(X)+12

The expression need not be enclosed in (), although doing so
helps make the program easier to read. Spaces are allowed
and also help make the program easier to read.
Colors are designated by the number in TABLE 1. For conven­
ience, we have used the numbers on the top of the COMMODORE-
64 keys 1-8 represent the first 8 colors in TABLE 1.

OR NUMBER COLOR
1 BLACK
2 WHITE
3 RED
4 CYAN
5 PURPLE
6 GREEN
7 BLUE
8 YELLOW
9 ORANGE
10 BROWN
11 LIGHT RED
12 DARK GRAY
13 MEDIUM GRAY
14 LIGHT GREEN
15 LIGHT BLUE
16 LIGHT GRAY

Note that these are not the same color numbers that you POKE
to color memory.

TABLE 1 COLOR NUMBERS

6

IV. HIRES/MULTICOLOR GRAPHICS

A. GRAPHICS DISPLAY FORMAT
The ULTRABASIC-64 display screen is laid out corresponding
to normal graphing arrangements. The x-axis_goes from left
to the right and the y-axis goes from bottom of the screen
to the top. X values range from 0 on the left to 319 on the
right. Y values range from 0 on the bottom to 199 at the
top. Point 0,0 (x = 0, y=»0) is at the lower left corner and
point 319,199 (x-319, y=199) is at the upper right corner.
When functions to be displayed have both plus and minus
values, it is necessary to move the axes to the center of
the screen by adding constant values in the plotting
commands (see section entitled DISPLACEMENT OF AXES).
There are two different graphics modes on the COMMODORE-64.
They are HIGH RESOLUTION and MULTICOLOR. To select the
screen background color, border color and the mode use the
HIRES or MULTI commands. The plotting color is controlled by
a color number in the command.
Each multicolor point is twice as wide on the screen as each
hires point. To keep the proportions and mathematics simple,
each multicolor point is also twice as high. In order to
make the commands easy to use, the coordinates are the same,
but in multicolor commands, only the even numbered points
are used. You should use a STEP 2 in any FOR-loops since
points 0,2,4,6 are next to each other in multicolor mode.
The graphic display area is made up internally of 25 rows
with 40 sections (cells) in each row (FIGURE 1). Each cell
consists of 64 points (8X8) in hires mode or 16 points (4X4)
points in multicolor mode. In hires mode, there may be only
the background color (set by the HIRES or BLOCK commands)
and a plot command color. If two different plot commands put
different colors into the cell, all points within the cell
will take on the color of the most recent command.
In multicolor mode, there is a background color (only one
for the entire screen) allowed plus three different plot
command colors. You can think of it easiest by imagining
three paintbrushes per cell. Each brush may have any color,
but only three are allowed. Colors are designated in
commands using numbers 1-16 (1-8 correspond to the keys).
Paintbrush "A" is used normally. Paintbrush "B" will be used
if the color number is 101-116, and paintbrush "C" will be
used if the number is 201-216. (To use paintbrush "B", just
add 100 to the color number; to use paintbrush "C", just add
200 to the color number).
For most work, you can probably forget about the
paintbrushes.

7

40 sections
199

y J
y f
y J
y f
f f
y f
y jr
y J
y «T
S €
J f
J jr
J y
J j
J t
J y
jr y
i y
J y
J y

04------------------------ -------------------- x ------------------------- --------------------------> 31

25
rows

FIGURE 1 SCREEN LAYOUT

P. DISPLACMKNT OF AXES
To move the x-axis up to the center of the screen, simply
add 100 to the Y-value, For example, use DOTX,Y+100,2. To
d r a w a line as the X-axis, use the c o m m a n d
DRAVO,100,319,100,2.
In a similar way, the Y-axis can be placed in the center of
the screen. Add 160 to the X-value. For example use
DOTX+160,Y+100,2. The new Y-axis can be shown with a command
0RAV160,0,160,199,2.

8

C. SCREEN SELECTION
DLTRABASIC—64 has two display screens. The normal BASIC text
screen is separate from the screen areas used to build tie
graphic displays. You can switch from the graphic display to
the BASIC text screen by pressing Function key 5 (F5). The
graphics program is not interrupted by this process. Func­
tion key 7 (F7) will switch back to the graphic display.
Your program will automatically switch to the graphic screen
when display commands are executed.

D. SAVING GRAPHIC DISPLAYS
Graphic displays can be dumped (saved) directly to tape or
disk . Pressing Function key 2 (shift and FI) during a
graphic display program will switch the screen to normal
(text) mode, and display a filename and device prompt.
Simply key the filename enclosed in "" and press the RETDRN
key ("" is ok). The standard device is the cassette recorder
but you may add a and a different device number after
the filename (such as disk: ',8'). The graphic display will
reappear as dumping takes place.
Graphic displays can be read from tape or disk by pressing
Function key 4 (SHIFT & F3). The prompt and actions are tie
same as with the dump function key.

9

E. HIRES/MULTICOLOR COMMANDS

HIRES a,b - setup High RESolution screen
This command clears the screen and sets the screen and
border colors for subsequent high-resolution graphics.
a - this is a value between 1 and 16 which sets the

screen color. This number is chosen from TABLE 1.
b - this is a value between 1 and 16 which sets the

border color and is also chosen from TABLE 1.

MULTI a,b - setup MULTIcolor screen.
This command clears the screen and sets the screen and
border colors for subsequent multicolor graphics.
a - this is a value between 1 and 16 which sets the

screen color. This number is chosen from TABLE 1.
b - this is a value between 1 and 16 which sets the

border color and is also chosen from TABLE 1.

TIC a,b,c - TIC mark the screen
This command places tic marks of the specified color
along the edges of the display area. These tic marks
provide a scale that is useful in measuring distances on
the screen.
a - this value is the tic mark interval in the x-

direction (horizontal)
b - this value is the tic mark interval in the y-

direction (vertical)
c - this value selects the color of the tic marks (see

TABLE 1).
For example TIC 10,15,7 will plot blue(7) tic marks at
x»0, x»10, x*20, etc. and at y=*0, y*15, y*30, etc.

DOT x,y,c - plot a DOT (point)
This command plots a single point of the chosen color at
the position given by the x value and the y value.
x - This value is the x-coordinate (0-319) of the point.
y - This value is the y-coordinate (0-199) of the point.

10

r

c - This is the value which specifies the color of the
point (TABLE 1).

DRAW xl,yl,x2,y2,c - DRAW a line
This command draws a straight line of the specified
color starting at point xl,yl and going to point x2,y2.
xl - This is the x-coordinate of the first point on the

1 ine.
yl - This is the y-coordinate of the first point of the

line.
x2 - This is the x-coordinate of the end point of the

line.
y2 - This is the y-coordinate of the end point of the

line.
c - This is the color of the line (see TABLE 1).

BOX xl,yl,x2,y2,c - draw a BOX
This command draws a box (rectangle) of the specified
color with its two diagonal corners at the coordinates
xl,yl and x2,y2
xl - This is the x-coordinate of the first corner of the

box.
yl - This is the y-coordinate of the first corner of the

box.
x2 - This is the x-cooordinate of the diagonally

opposite corner of the box.
y2 - This is the y-coordinate of the diagonally opposite

corner of the box.
c - This is the color of the box (see TABLE 1).

CIRCLE x,y,r,c,xf,yf - draw a CIRCLE
This command draws a circle of the specified color with
the center at the point specified by x and y. The
radius of the circle is given by the r value. The x-
factor xf or y-factor yf is optional and is a "squash"
factor. It is a number between 0 and 1000. To adjust the
width of a circle to 80% of normal, the x-factor is set
to 800. To adjust the height of a circle to 70% of
normal, the y-factor is set to 700. A factor of 0 is

11

ignored. E.g. To squeeze a circle down in height to 70%,
simply add the parameters ,0,700 to a CIRCLE command.
x - The x-coordinate of the center of the circle.
y - The y-coordinate of the center of the circle.
r - The radius of the circle.

c - The is the color of the CIRCLE (see TABLE 1).
xf - The x-factor to multiply times X-coordinate
yf - The y-factor to multiply times Y-coordinate

CHAR g,x,y,o,"string" - display CHARacters
This command displays the string of characters given in
the command. The string may be a value, character
string or a string variable. The characters are 8
points high and wide in high-resolution mode and 16
points high and wide in multicolor mode. The characters
are displayed in the color specified.
g - This value selects one of the C-64's character

sets:
1 - upper case letters, numbers and graphics
2 - reversed upper case letters, numbers and graphics
3 - upper and lower case letters and numbers.
4 - reversed upper and lower case letters and numbers

x - This is the x-coordinate of the upper left point of
the first letter of the string.

y - This is the y-coordinate of the upper left point of
the first letter of the string.

c - This is the color cf the characters (see TABLE 1).
"string" - This is the character string to be
displayed. This command functions much the same as
the BASIC PRINT command. If a number or numeric
variable is given for this parameter, it is
converted and displayed. Strings may be
concatenated (such as A$ + "DATA").

Note In order to properly create the literal for
character sets 3 and 4, you should switch the C-64
screen to upper/lower case mode by pressing the SHIFT
and C- keys at the same time. Then, what you see in the
string is what will be displayed.

12

BLOCK xl,yl,x2,y2,c - BLOCK of color
This command fills a rectangular area of the screen in
the specified color. The block is defined by two
diagonal corners, Just as in the BOX command. The block
is filled using the 8xP character cells (see Figure 1),
so the edges are automatically adjusted to be multiples
of 8 in the x and y directions.
xl - This is the x-coordinate of the first corner of the

block.
yl - This is the y-coordinate of the first corner of the

block.
x2 - This is the x-coordinate of the diagonally opposite

corner of the block.
y2 - This is the y-coordinate of the diagonally opposite

corner of the block.
c - This is the color of the block (see TABLE 1).
In high resolution mode, the block is written in the
background color, permitting plotting on top of it. In
multicolor mode, the block is written by one of the
three "paintbrushes", selected by the range of the color
number selected (1-16, 101-116, or 201-216).

MODE a - set MODE of display
This command controls the plotting mode for all
commands. There are three modes:
0 - (MODE 0) This is the normal mode of operation. It

is automatically set by the HIRES or MULTI com­
mands. In this mode, the selected point(s) are
turned on.

1 - (MODE 1) This is the erase mode. After this com­
mand is executed, all plotting turns the specified
point(s) off, erasing them from the display. The
point is made the same color as the background
color.

2 - (MODE 2) This is the reversing mode. When this has
been set, if a point is initially off, it is turned
on. If initially on, its turned off. This mode may
be used to erase part of a display by displaying it
a second time. It is also useful to draw a pattern
which will be visible, even though it crosses other
points turned on or off.

Note - These modes stay in effect until another mode
command is issued or a HIRES or MULTI command. There­

13

fore, to reset plotting to normal, give a MODE 0
command.

PILL x,y,c,e - FILL an area

This command fills an area with the specified color.
The filling starts at the x and y coordinates given and
proceeds until the entire area contains the color.

x - The x coordinate of a point inside the area (really
doesn't matter where inside).

y - The y-coordinate of the point inside the area .
c - The color to be used to fill the area.
e - This parameter is NOT allowed in HIRES filling. In

MULTICOLOR filling, this is the hundreds (0,1 or 2)
of the color used to draw the edge of the area. In
other words, this parameter tells the program which
of the three "paintbrushes" was used to draw the
edge of the area.

Note - In multicolor mode, you cannot fill the area with
the same "paintbrush" as was used to draw the edge.

PIXEL(x.y) - return the PIXEL value
This is not a command. It is a function, like the BASIC
functions INT, SIN, PEEK, etc. The PIXEL function
returns a value depending on the color at the point
designated by the x and y coordinates.
The value is 0 if no color is present (background
color).
The value is 1 if the point is on in high-resolution
mode.
The value is 1-3 if the point is on in multicolor mode-

1 if the point was written with a color 1-16
2 if the point was written with a color 101-116
3 if the point was written with a color 202-216

Examples of uses are:
PRINT PIXEL (x,y)
IF PIXEL (x,y) = 2 THEN

14

F- SCREEN CONTROL COMMANDS

DUMP "filename"!,devj - DUMP graphic display
This command saves the entire graphic display to tape or
disk.
"filename" - this is the name of the graphic display

which is to be dumped to tape or disk. For tape, it
is valid to specify "" in which case there will be no
f ilename.

[,dev] - this is the device number for either the tape
or disk. If you wish to save the graphic display to
tape, it is not necessary to specify ",1" since this
is the default. To save to disk, specify ",8" which
is the device number of the disk drive.

GREAD "filename"!,dev] - READ the graphic display
This command restores (reads) the entire graphic display
from tape or disk.
"filename" - this is the name of the graphic display

which is to be read from the tape or disk.
[,dev] - this is the device number for either the tape

or disk. If you wish to read the graphic display from
tape, it is not necessary to spcify ",1" since this
is the default. To read the graphic display from
disk, specify ",8" which is the device number of the
disk drive.

NORM - switch the screen to NORMal (BASIC text)
This command places the COMMODORE-64 into the NORMAL
text mode. You can switch between graphics and text in
programs mode by alternately using the NORM and GRAPH
commands.

GRAPH - switch the screen to GRAPHICS display
This command places the COMMODORE-64 into graphic
display mode. You can switch between graphic and text
mode in programs by alternately using the NORM and GRAPH
commands.

15

V. SPRITE GRAPHICS

A. INTRODUCTION TO SPRITES
In addition to all of the graphic capabilites described
above, ULTRABASIC-64 can help you manage sprites easily.
The sprite is a hook, upon which you "hang" a little pic­
ture. The picture is called a sprite pattern and it may be
either hires (all one color) or multicolor. Once you have
put the picture on the hook, you can move the hook (and the
picture hanging on it) easily around the screen. Animation
of the picture is easy because you can change the picture on
the hook.
Here's how to do it.
The first step is drawing the picture you want to hang onto
the sprite. ULTRABASIC-64 provides four different ways of
coding the picture in your BASIC program (more about this
later).

The second step is copying the picture into a special area
of memory (we call them sprite slots). ULTRABASIC-64 pro­
vides room for 15 different pictures at any one time (al­
though new ones may be copied in over old ones).
The third step is turning on the sprite, attaching the
picture and defining size and colors.
The fourth step is moving the sprite around the screen under
program control. During this time while the picture is
being shown, you may change the picture, change the colors,
size, etc. of the picture attached to the sprite.
The last step (optional) is turning the sprite off.

16

B. SPRITE PICTURES

A hires sprite picture is 24 dots wide and 21 dots high.
Usually you will draw the pattern on a piece of graph paper.
In single color mode, each of those dots may be either on or
off (1 or 0). In a multicolor sprite picture, it is 12
points wide, each point may be 0,1,2 or 3, which selects
whether nothing shows at that point (0) or which of the
three colors (1,2 or 3) is to display at that point, (note
that these points and colors are completely separate from
the colors and points in the other commands).
In the sprite section of the COMMODORE 64 manual they des­
cribe an example and go through the difficult work of coding
the picture into BASIC DATA statements. If you have sprite
patterns already coded that way, we have included the SDA1A
command which is just like the DATA command for a sprite
picture. However, there's a much easier way-
For a hires (single color) sprite picture, code the pattern
using the BIT command.
BIT"000000000000000000000000"
A hires sprite picture can coded (and seen) in BASIC using
21 lines of the BIT command. A " must follow the word BIT,
and there must be 24 numbers (0 or 1) before the closing ".
There must be 20 more lines of BIT commands following the
first. Remarks are allowed after the second " on any line.
When these lines are Listed on the screen or printer, you
can see the pattern quite easily.
For a multicolor sprite picture, code the pattern using the
C0IX5RS command.
COLORS "012301230123"
The COLORS command is very similar to the BIT command,
except that there are only 12 digits within the " " and the
numbers may be 0, 1, 2, or 3.
The color of a hires sprite and the color 1 of a multicolor
sprite may different for each sprite. Colors 2 and 3 in
multicolor sprites are shared by all sprites, so they must
be chosen carefully. Note that the patterns don't contain
the actual color, they only contain a color selection digit.
The actual colors are assigned when the sprite is turned on.
The fourth way a sprite picture may be coded is in hexadeci­
mal , using the HEX command. The HEX statement may be used in
place of the BIT or SDATA statements.
HEX”OF"

17

This command contains 21 bytes of data in hexadecimal, or 42
nibbles of digits. The digits allowed are 0-9 and A-F.
There must be three lines of HEX statements to completely
code a sprite. While HEX is more complicated than BIT or
COLORS, it takes up less space in programs. You must convert
your BIT values to hexadecimal values and place them into
the HEX statements.

Any of these four statements may be used to define a sprite
picture and they may be mixed within a program. The only
requirement is that only one method may be used per sprite
picture.
Here's a comparison of three methods using the Commodore
balloon (pg 70 of the COMMODORE 64 User's Guide)
Note-the line numbers used don't matter, as long as the
lines are together.
These commands (BIT, HEX, COLORS & SDATA) are treated as REM
lines by BASIC and bypassed.
901 SDATA"0,127,0,1,255,192,3,255,224,3,231,224"
902 SDATA"7,217,240,7,223,240,7,217,240,3,231,224"
903 SDATA"3,255,224,3,255,224,2,255,160,1,127,64"
904 SDATA"1,62,64,0,156,128,0,156,128,0,73,0,0,73,0"
905 SDATA"0,62,0,0,62,0,0,62,0,0,28, 0"
901 HEX”007F0001FFC003FFE003E3E007D9F007DFF007D9FO"
902 HEX"03E7E003FFE003FFE002FFA0017F40013E40009C80"
903 HEX"009C80004900004900003E00003E00003E00001C00"

901 BIT"000000000111111100000000"
902 B IT"OOOOOOOU111111111000000"
903 BIT"000000111111111111100000"
904 BIT"000000111110001111100000"
905 BIT"000001111101100111110000"
906 BIT"000001111101111111110000"
907 BIT”000001111101100111110000"
908 BIT”000000111110011111100000"
909 BIT"000000111111111111100000"
910 BIT"000000111111111111100000"
911 BIT"000000101111111110100000"
912 BIT"000000010111111101000000"
913 BIT"000000010011111001000000"
914 BIT"000000001001110010000000"
915 BIT"000000001001110010000000"
916 BIT"000000000100100100000000"
917 BIT"000000000100100100000000"
918 BIT"000000000011111000000000"
919 BIT"000000000011111000000000"
920 BIT"000000000011111000000000"
921 B^"000000000001110000000000"

18

C. SPRITE COMMANDS

After the sprite picture(s) has been coded into your pro­
gram, you may use the following command to control the
sprites.

COPY a,11111 - COPY sprite image
a - sprite slot number 1-15.
11111 - line number of the first BIT,COLORS, HEX or SDATA
command to be copied. If this line number is missing or
there is something wrong with the picture data, an
UNDEFINED LINE NUMBER error will be returned, pointii g
to the COPY statement. The copy statements may he
anywhere within the program, but normally they are
executed before the command which turns the sprite on.

SPRITE n,s,m,p,x,ytcl,c2,c3 - turn SPRITE on
This command attaches a picture to a specified sprite,
sets up several attributes for the sprite picture and
finally turns the sprite on.
The variables in the command are:
n - The sprite number being started (1-8). Note that

sprite 1 has the highest priority and will show in
front of any sprite of lower priority number.

s - slot number where the sprite picture has been COPY'd
(the number in the COPY command).

m - multicolor control:
0 = high-resolution (one-color) sprite
1 = multicolor sprite

p - priority control for the sprite vs background:
0 = sprite in front of background.
1 = sprite behind background.

x - x-expand:
0 = sprite picture normal size (24 pixels wide) in

x-direction.
1 = sprite picture double width in x-direction (48

pixels).
y - y-expand

0 = sprite picture normal size (21 pixels high)
in y-direction.

19

1 = sprite picture double height (42 pixels).
cl - sprite color (hires sprite mode) or color 1 in

multicolor sprite mode. (See TABLE 1)
c2 - In multicolor sprite mode only, the color 2 color

number. Note that this is shared by all multicolor
sprites. This value is not needed for hires sprites.
(See TABLE 1)

c3 - color 3 of multicolor sprites. The same notes apply
as with c2. (See TABLE 1)

OFF n - turn sprite OFF
This command turns the sprite off.
n - the sprite number

PLACE n.sx.sy - Place a sprite
This command positions a sprite on the screen. The sprite
controls in the COMMODORE-64 use different x and y
coordinates from normal graphics. This is to allow
sprites to be moved out beyond the normal screen area.
Therefore you have to compute the x and y positions for
sprites as follows:
sprite x = graphic x + 24
sprite y = graphic y + 6
n - sprite number
sx - sprite x position of upper left corner of sprite
sy - sprite y position of upper left corner of sprite

ROTATE d,m,s - Rotate a sprite
This command turns a sprite pattern 90 degrees within its
slot. In order to rotate a sprite pattern, it must have
the same number of elements in both directions. For a
hires pattern, only the left 21 of the 24 bits on each row
are used (the other 3 won't be rotated). For a multicolor
pattern, all 12 color elements used per row of the
pattern, but only the first 12 of the 21 rows are be used.

d = direction:

20

0 = clockwise
non-zero = counter clockwise

m = multicolor:
0 = hires sprite is being rotated
1 = multicolor sprite is being rotated

s = slot number (1-15)

21

D. SPRITE EXAMPLE
The easiest way to understand these sprite commands is by
trying the following example.

After ULTRABASIC-64 is initialized, enter the following
BASIC program:
Don't key the comments in []

10 HIRES 1,7 [setup black screen, blue border]
20 COPY 5,901 (copy the sprite picture starting

in line 901 to sprite slot 5]
30 SPRITE 3,5,0,0,1,1,5 [turn on sprite 3, with picture

from slot 5, single color,
normal priority, expand x & y
sizes, in purple (color 5)]

40 FOR Y*50 TO 230 STEP 40 [do display with various
y-positions up the screen]

50 FOR X=0 TO 345 [move across screen]
60 PLACE 3,X,Y [position the sprite]
70 NEXTX
80 NEXTY

Now copy any of the three balloon patterns from page 17 into
lines starting with 901. Run this program and you should
see the balloon move across the bottom of the screen, then
make passes at increasing heights.
Now experiment with changing the pattern, x & y expand,
color.

22

VI. TURTLE GRAPHICS
ULTRABASIC-64 includes TURTLE graphics. The turtle is a
colorful creature that can move about on the screen. The
turtle carries a pen and is capable of leaving a trail as he
moves about. TURTLE commands instruct the turtle to turn and
move.
The turtle normally starts in the center of the screen,
pointing towards the top of the screen (north). Turns are
specified in degrees (0-360). A positive number turns the
turtle in the clockwise direction. A negative number turns
the turtle in the counter-clockwise direction. There is also
a command which turns the turtle to a specific direction.
The directions and degrees are as follows:

0
/v
J
f

270 <---+---> 90
Jf

V
180

TURTLE COMMANDS

TURTLE c[,x,y] - initialize turtle
The turtle is placed in the middle of the screen
(x»160, y=100) unless an x and y position is specified.
c ■ color of the turtle and default line color (1-16)
x =• starting x position of the turtle (0-319)
y = starting y position of the turtle (0-199)
NOTE - sprite number 8 and slots 12-15 are used by the

turtle! Therefore you may not define and use spirte
8 nor use slots 12-15 while you are using any of
the TURTLE commands.

TCOLOR c - set the turtle line color
This command changes the color of the line with which
the turtle draws. The color of the turtle does not
change.
c * line color (1-16)

TDP - lift the turtle pen
This commands lifts the turtle's pen from the screen.
When it moves with the pen up, the turtle moves
without leaving a trail

TDOWN - put the turtle pen down
This command puts the turtle's pen down onto the
screen. When it moves with the pen down, the turtle
leaves a line in its trail.

TURH d - Turn the turtle
This command causes the turtle to turn, clockwise if d
is positive or counter-clockwise if d is negative. The
turtle on the screen may not appear to move for small
changes in direction. However, the lines will be drawn
at their correct angle.
d =* number of degrees to turn

TURNTO d - point the turtle in a direction
This command turns the turtle to a specific direction.
The direction corresponds to the degrees on a compass
with the top of the screen corresponding to 0 degrees
(north), the bottom of the screen corresponding to 180
degrees (south), etc.
d =* direction (in degrees)

24

MOVE a - move turtle
This command causes the turtle to move a given number
of points in the direction it is pointing.
a - number of points

BYE - make turtle disappear
This command makes the turtle disappear from the screen
(although he can still draw). This command permits the
turtle to draw more quickly since drawing can be done
faster if the turtle is not visible.

TPOS(v)
This function reutrns the turtle's position or
d irection.
The letter inside the parenthesis () determines
whether the value returned is the x-coordinate, y-
coordinate or the angle of the turtle.
v = A returns the angle the turtle is pointing
v = X returns the x position
v = Y returns the y position
The value may be used to set a variable (W1=TP0S(X)) or
in a test command (IF TP0S(Y)>1Q0 THEN GOTO 150).

25

VII. GAME FEATURES
ULTRABASIC—64 has several features that are especially
suitable for use in games. The features are broken into
input functions, collision detection and timer functions.

A. INPUT FUNCTIONS

JOY(p) - joystick function
The JOY function reads either joystick port p.

P = li joystick port 1
2, joystick port 2

The value returned is the sum of the following:
1 = North
2 = South
4 = West
8 = East
16 = Fire button
For example if the joystick were being held in the
southeast direction and the fire button was being
pressed, the value would be 2 (South) + 8 (East) + 16
(Fire button) = 26.

PADDLE(p.d) - game paddle function
The PADDLE function reads the position of the game
paddle. There are two paddles connected to each of the
two game ports. The ports are designated 1 and 2. The
paddles connected to each port are designated as X and
Y.
p = 1, port 1

2, port 2
d = X, paddle X

Y, paddle Y
NOTE - the fire buttons on the paddles are read by the
JOY function. The fire button on the X paddle returns a
4 value and the Y paddle returns a value of 8 (12 if
both).

26

PEN(c) - lightpen function
The position of the lightpen may be read by the PEN
function. Either the x-coordinate or y-coordinate may
be read.
c = X, to read the X-coordinate

= Y, to read the Y-coordinate
NOTE - If your lightpen has a "trigger", then the JOY
function can be used to determine if the lightpen has
trigger has been activated. Joystick function JOY(l)
will return a value of 16 if the trigger has been
pressed.

27

B. TIMERS
ULTRABASIC-64 makes it very convenient to keep track of the
duration of different events. Ten timers (called counters)
are available. They all count down (like an oven timer).
Counters 0 through 4 count down in jiffies (l/60th of a
second). Counters 5 through 9 count down in seconds.
A counter is set using the SCTR command and read using the
CTR function.

SCTR c,v - set counter
c = counter number(0-9)
v = value to set counter (1-65000)

CTR(c) - read counter
c = counter to be read(0-9)

NOTE - both the HIRES and MULTI commands reset the counters.
You should be aware of this if you are timing some events
and must also use either of those commands.

28

C. SPRITE COLLISION FUNCTION
Collisions between sprites and between a sprite and a
background pattern can be detected with the SCOLL and BCOLL
functions. The function is true (-1) if the specified
collision(s) have occurred, and false (0) if not.

SCOLL(sl,s2[,s3,..s8]) - sprite/spritecol1ision function

si, s2, etc. are the sprite numbers to be tested. The
test is true only if ALL sprites specified are in
collision with each other.
For example:

SCOLL(2,3) is true only if sprites 2 and 3 collide.
SC0LL(1,4,5) is true only if sprites 1 and 4 and

5 are in collision.

BCOLL(sl[,s2,..s8]) - sprite/background collision function
si, s2, etc. are the sprites to be tested for collision
with anything in the background. Unlike SCOLL, this
function is true if ANY of the sprites are in collision
with the background.

NOTE - In multicolor mode, only objects in the lxx or
2xx colors will be detected by this test. Objects
written with 'regular colors (1-16)' will not be seen
by this test.
Examples:

BC0LL(2) is true if sprite 2 hits a lxx or 2xx
color object in the background.

BC0LL(1,3) is true if EITHER sprite 1 or 3 hits a
lxx or 2xx object in the background.

NOTE - The COMMODORE 64 collision registers are set
(latched) upon a collision and stay set until the register
is "read' during a SCOLL or BCOLL function. If the collision

> still exists after the test, the registers are set again. If
your program takes a while to test for a collision, the
sprites may have been moved apart, but the register is still
set until the collision test is made. To avoid any problems,
test for collisions very soon after each sprite movement
occurs.

29

VIII. SOUND FEATURES
There are three sound generators in the COMMODORE 64. Each
is designated by the number - 1, 2 or 3. To make it easy to
use, ULTRABASIC-64 sets up generator 1 to be a standard
square-wave, 2 is set to a sawtooth waveform (reedy sound)
and 3 is set up as a noise burst sound. The tone
characteristics of each generator may be changed by the GEN
and VOL commands.

There are two ways to make sound - by using the SOUND
command or by starting a TUNE pattern.
The SOUND command is the easiet to use:

SOUND a,p,d - start a SOUf’D
The SOUND command lets you specify the generator (1-3),
the pitch (1-127, see Appendix A for note correspond­
ence) and the duration (0-255 60ths of a second).
a = generator - 1, 2, or 3.
p = pitch (0 = low, 127 = high)
d = duration (in 60ths of a second)

If you want to change the characteristics of the generators,
you can use the GEN command as outlined below:

GEN a,b,c,d,e,f,g,h,i - set up generator
a = generator - 1, 2, or 3
b = waveform:

1 = triangle
2 = sawtooth
4 = pulse
8 “ noise
(You can add up several values to make new
sounds, but the results are unpredictable)

c = attack speed
0 = instant
15 = slowest attack on each note

d = decay speed (how fast the initial sound drops to
the sustain level)

0 « instant
15 * very slow decay

e = sustain level (the level of the sound after the

30

initial attack and decay)
0 = silent
15 = full volume

f = release speed (how fast the sound dies away after
it is stopped)

0 = instant
15 ■ very slow decay /

g = duty cycle, for pulse waveforms
0-15 A 50% duty cycle (7) results in a square

wave
h = synchronization control

The generators may he locked together
(synchronized). This parameter determines if
this generator is or is not locked.

0 = no synchronization
1 = synchronize

i = ring modulator control.
The sounds of two generators may be
modulated by one another if this control is on.

0 = no modulation
1 * ring modulation on

The VOL command sets the control which apply to all
generators:

VOL a,b,c,d,e - volume-filter control
The VOL command sets the controls which apply to all
generators
a = overall sound level

0 = no sound
15 = loudest sound

b = filter mode
1 = low pass filter mode
2 = band pass filter mode
4 = high pass filter mode
8 = turns off the sound from generator 3 (useful

with synch and ring mod).
These values may be added together for multiple
modes.

c = filter control
1 = send generator 1 output thru filter
2 = send generator 2 output thru filter
4 = send generator 3 output thru filter
8 = send external sound input thru filter

d = filter frequency - control the center or cutoff
frequency of the filter

31

0 « low
15 * high

e = filter resonance (controls how sharp the filter is)
0 - very flat cutoff
15 - very sharp cutoff

The other method of making sound is by starting a TONE
pattern. The pitch of each tone generator can be programmed,
started and timed separately, and all of this runs simul­
taneously with the rest of your OLTRABASIC-64 program!
A pattern is a set of instructions for controlling the
generator. A pattern is composed of several segments (or
parts). There are two numbers needed for each segment of a
tune - the pitch or increment and the duration.
Because it is compact, all of the information to control the
TONE is written in hexadecimal notation in a TDATA pattern.
If you are not familiar with hexadecimal notation, see
APPENDIX B.
A TDATA pattern starts with the opening pitch value in
hexadecimal (such as 38). The next hexadecimal number speci­
fies how many jiffies (l/60th of a second) to hold the
pitch. When the time has expired, OLTRABASIC-64
automatically looks at the next value and time segment
within that literal. From this point onward, the value is
the amount that the pitch should be increased (or decreased)
each jiffy. The time determines how long the incrementing
(or decrementing) is to continue. Again, when the time is
up, OLTRABASIC-64 looks at the next value and time segment.
The tone is shut off if the time in the literal is 00.
For example:

TheTDATA pattern "38090108FF0800100000" is processed
as such —
3809 set the tone generator to pitch 38 hexadecimal

(56 decimal)
0108 increment the pitch by 1 eachjiffy for 8 jiffies
FF08 decrement the pitch by 1 each jiffy for 8 jiffies

(FF hexadecimal =* -1 decimal)
0010 no change to pitch (increment 00) for 10 hex

(16 decimal) jiffies
0000 turn off the tone since the time value is 00

Additional features are included to expand the flexibility.
An increment value of hex 80 turns the generator off for tt-e
spcified time. Another hex 80 turns it back on. If at the
" at the end of the literal is found before the 00 time
entry, ULTRABASIC-64 goes back to the beginning of the

32

literal and starts over. This allows the sound pattern to
repeat as long as you wish. Since the first entry in the
literal sets the starting pitch, it is bypassed if the first
hex digit is 8-F (greater than 127 decimal).
For example, a high-low siren is:

10 SET 1,99
20 TUNE 1,255
30 END
99 TDATA"8010FB01001005010010"
E010 sets the pitch to 96 decimal and bypass on repert
FB01 lower the pitch by 5 for 1 jiffy
OOlOhold the pitch for 16 jiffies (lOhexis 16

decimal)
0501 raise the pitch by 5 for 1 jiffy
0010 hold the pitch for 16 jiffies

quote says to repeat, bypassing 8010. Therefore
the next step is

FB01 to lower the pitch by 5, and on and on.

If you create a tune which does not shut itself off, then
you can press the Function 1 key (FI) which turns off all of
the generators.
The TDATA pattern is used with any of the three tone genera­
tors. It is attached to the tone generator with the SET
command and started with the TUNE command.

TDATA"PPTTIITTIITT....... " - define TONE pattern
This statement defines a pattern that can be used to
control the generators.
The format of the data within the quotes " "is:
" P T J I D J I T J J 3T I T T
segmentlsegment2segment3...............segmentN

P = Hexadecimal value to set original pitch 00-7F.
To bypass this segment on repeat, use 80-FF.

T = Duration of segment. If T=00, signals the end
► of the tune

I = Increment (decrement) value each l/60th of
second.
If 1=00, pitch is held constant
If 1=80, pitch is turned off (second 80 turns

it on again.
If quote is encountered, pointer is sent to the

beginning of the literal (will bypass 1st
segement if P is 80-FF).

33

SET a,11111 - set up TONE pattern
a * generator - 1, 2 or 3
11111” line number of the TDATA pattern to be used

by the TUNE command

TUNE a,d - start TUNE pattern
This command starts the designated tone generator. The
TUNE command turns the generator on only for a
specified time unless the time value is 255, in which
case the generator stays on until the TDATA program
turns it off.
a =* generator - 1, 2, or 3
d =* duration (60ths of a second)

34

IX. OTHER FEATURES

A. REPEATing commands
Because there are often times when a pattern must be
repeated (especially when using TURTLE graphics commands),
the repeat commands have been included.
They work as follows:
The commands to be repeated are enclosed in brackets [].
The number of times the group of commands is to be repeated
is indicated by a number and colon (:) following the left
bracket --
[3: :J indicates that the commands ... will le
repeated three times. There must be a colon (:) before the
right bracket.
Repeats may be nested to a depth of 30. The [] may be on
different lines. Any BASIC commands may be included.

[n: :] - repeat between brackets
n = number of times to repeat the commands

B. :EXIT from REPEAT
It is often desirable to leave a REPEAT loop before the
repeat count has completed. The :EXIT command is used for
this purpose.
An example:

5

10
20
30
40

The turtle coipmand TURN 30 (meaning turn 30 degrees) will be
performed 15 times unless the turtle's angular position is
greater than 180. In this case the REPEAT loop is exited and

CHAR 1,50,75,"START"
[15: TURN 30: IF TPOS(A) > 180 THEN :EXIT
:]
CHAR 1,50,50,"DONE"

35

statement number 40 will be performed. Note that the ending
bracket :] is on a separate line in order for the IF
statement to work correctly.

20 [15: TURN 30: IF TPOS(A)>180 THEN :BXIT :]
The above example will not work correctly because the ending
bracket is never encountered whenf the turtle's angular
position is not greater than 180 because the IF statement is
not satisfied. Therefore the ending bracket should be on a
separate line when an IF statement is present within the
REPEAT loop.

:EXIT] - exit from a REPEAT loop

C. HARDCOPY of graphics screen
ULTRABASIC-64 can reproduce the graphics screen onto your
COMMODORE, EPSON MX-80, FX-80 or RX-80, Gemini or OKIDATA
Microline printer. The entire screen is sent to the printer.
A full screen requires 4 1/2 minutes to reproduce on the
COMMODORE 1515 or 1525 printer and about 1 1/2 minutes on an
EPSON FX-80 printer.

HARD d,s - hardcopy to printer
This command prints the graphics screen in either of two
sizes onto your COMMODORE, EPSON, GEMINI or OKIDATA dot
matrix printer in graphics mode.
d= device number (default is 4, the standard printer

device)
s - size 0 = IX display, prints horizontally

1 = 2X display, prints vertically

36

Z. PROGRAMMING NOTES

A. GENERAL INFORMATION
The ULTRABASIC—64 interpreter is a 6502 machine language
program which "wedges" itself into BASIC. After loading the
interpreter, type RUN and press the RETURN key. The
COMMMODORE 64 will display the program title. Any of your
programs may now be loaded using the standard LOAD commands
(LOAD"" or LOAD"",8). Graphic displays may be restored
(READ) to the screen by pressing function key F4 (F3 and the
SHIFT key).
The display commands may be used in BASIC programs as you
would use any BASIC commands. There is one restriction:
IF and REM commands require a colon (:) before the graphic
command for proper operation. For example---IF A”5 THEN
DOT 2,3,5 will plot the point at 2,3 every time, regardless
of the value of A. For proper operation of the IF, change
the statement to - IF A—5 THEN : DOT 2,3,5. This will plot
the point only if A = 5. The REM also needs the color to
bypass any graphic command following the REM.
BASIC programs which use ULTRABASIC-64 may be saved to tape
or disk just like other BASIC programs. When later reloading
these program, be sure that the ULTRABASIC—64 interpreter is
loaded and linked to BASIC (by typing RUN).
Because ULTRABASIC-64 sometimes disables the clock, the
timekeeping of your COMMODORE 64 may not be precise. You
should keep this in mind if you are using ULTRABASIC-64 and
the built-in clock at the same time.
When you are finished using this program, reset the
COMMODORE 64 by turning the power ot£ and then on again or
by typing SYS 64738. This frees all memory that is occupied
and unlinks ULTRABASIC-64 from BASIC.

B. THREE-DIMENSIONAL PLOTTING
Three dimensional function plotting is not really very
difficult. There are two FOR loops set up, one going frcm
left to right (X) and within that, a loop scanning from
front to back (Y). The Y-axis is tilted by multiplying the
Y-value by approximately .7. The computed Z-value is added
to the Y-value. To hide the lines which should not be
visible, plotting starts with a low value of y (towards the
front) and increases (towards the back). If the total of .7Y
+ the function value (Z) is less than the prior point, it is
not shown, as it would be hidden from view. UBDEMO has a
sample 3D plotting routine.

C. MEMORY ORGANIZTION
DECIMAL HEX USAGE

2048-7424 $0800-$2C00 ULTRABASIC-64 INTERPRETER
7552-32767 $2C00-$7FFF your BASIC program area

32768-33727 $8000-$83BF SPRITE PATTERN AREA
33728-33791 $83C0-$83FF GRAPHICS CHIP REGISTER SAVE AREA
33792-34815 $8400-$87FF GRAPHIC SCREEN POINTERS
34816-35839 $8800-$8BFF GRAPHIC SCREEN COLOR SAVE
35840-36863 $8C00-$8FFF AREA FOR BASIC SCREEN
36894-40959 $9000-$9FFF CHARACTER ROM
40960-49151 $A000-$BFFF BIT MAPPING AREA
55296-56319 $D800-$DBFF COLOR MEMORY DYNAMIC AREA

D. COLOR MEMORY PROBLEM
There is only one color memory area inside the COMMODORE 64,
so it must be shared by both the graphic screen and the
BASIC screen. To conserve time and space, the color
information from the BASIC scren is not saved. Therefore if
you write something using a cursor color, it will come back
standard blue after flipping the screen.
The second problem is that the BASIC screen is always
active, even if you're looking at the graphic screen. This
causes no problem, except that 200+ colors in multicolor
have to put their color information into the common color
memory area. If your program writes to the BASIC screen, no
problem, unless it causes the BASIC screen to scroll. When
scrolling takes place, the color memory area is scrolled
also---although it may contain your graphic colors. When
this happens, you'll see the 200+ colors scroll up through
your display. This often happens when your program ends and
BASIC says READY.
There are two ways to prevent this--
First, make sure the BASIC screen stays clean by PRINTing a
CLR (shift HOME) at the start of your graphic program.
Second, don't let BASIC say READY until you want it to. Do
this by putting an intentional loop into the program at the
end — such as 999 GOTO 999. BASIC will hang here. Shift
the screen to BASIC (use F5) and then press STOP. The
display can be viewed by pressing the F7 key.

38

XI. ERRORS

As OLTRABASIC-64 reads your commands, it checks to see if
the required parameters are present.
In most cases it will indicate an error with a ?SYNTAX ERROR
message. If the command was issued in a running program, the
line number of the bad statement is shown. Generally, the
problem will be too many or too few parameters. Simply check
the statement against the proper form in the manual, correct
it and retry.
The COPY statement is slightly different.
If the target line number (1st line of HEX, SDATA, BIT or
COLORS is missing or not one of those words) an 7UNDEFINED
LINE NUMBER message will appear. The line number shown will
be that of the COPY statement.
If the first character after the HEX, BIT or COLORS isn't a
" (quote) then the message COPY LINE LENGTH will appear,
along with a ?SYNTAX ERROR referencing the COPY statement.
If there are not enough characters in the line of the HEX
(42), BIT (24) or COLORS (12), then the COPY LINE LENGTH
error will also appear.
If there are fewer lines than needed in the HEX (3), BIT
(21) or COLORS (21) or if all lines are not the same type,
the message COPY LINE COUNT error will appear, along with a
?SYNTAX ERROR pointing to the COPY statement.

39

XIII. COMMAND SUMMARY

HIRES/MULTICOLOR COMMANDS
setup high resolution screen
setup multicolor screen
tic mark the screen edges
plot a single point
plot a line
plot a box (rectangle)
plot a circle
display graphic text characters
block fill
set plot mode
fill a region
function which tests for points

on/off

save graphic display to tape/disk
restore graphic display from

tape/disk
switch screen to normal text screen
switch screen to graphic display

copy sprite picture from line
SPRITE n,s,iB,p,xly,cl>c2>c3 - turn on sprite
OFF n - turn off sprite
PLACE n,sx,xy - move sprite
ROTATE (1,01,8 - rotate sprite
SPRITE PICTURE DEFINITIONS
BIT"bbbbbbbbbbbbbbbbbbbbbbbb" - hires definition

requires 21 lines
COLORS"cccccccccccc" - multicolor definition

requires 21 lines
HEX"hh" - alternate

hires definition requires
3 lines.

SDATA"val,val,val,val,val, . . - alternate data definition
requires 63 values

TURTLE GRAPHICS COMMANDS
TURTLE c.x.y
TCOLOR c
TUP
TDOWN

40

initialize turtle
set turtle line color
lift the turtle pen
put the turtle pen down

HIRES a,b
MULTI a,b
TIC a,b,c
DOT x,y,c
DRAV xl,yl,x2,y2,c
BOX xl,yl,x2,y2,c
CIRCLE x,y,r,c
CHAR g,x,y,c,"string" -
BLOCK xl,yl,x2,y2,c
MODE a
FILL x.y.cl,a]
PIXEL(x.y)

SCREEN CONTROL COMMANDS
DUMP "filename"!,devJ ~
GREAD "filename"!,dev]-
NORM
GRAPH
SPRITE COMMANDS
COPY a,11111

TURN d
TURNTO d
MOVE a
BYE
TPOS(v)

turn the turtle
point the turtle
move turtle
make turtle disappear
return position or direction

INPUT FUNCTIONS
JOY(P)
PADDLE(p.d)
PEN(c)

return joystick position
return paddle value
return lightpen value

TIMERS
SCTR c,v
CTR(c)
COLLISION FUNCTIONS
SC0LL(sl,s2[,s3,..s8])
BCOLL(sl[,s2,...s81)

SOUND COMMANDS
SOUND a,p,d
GEN a,b,c,d,e,f,g,h,i
VOL t,b,c,d,e
SET a,11111
TDATA"ppttiittiitt
TUNE a ,d
OTHER COMMANDS

set counter
read counter

return sprite/sprite
collison value

return sprite/background
collision value

play simple sound
setupgenerator control
common generator control
set generator pattern

- define TONE pattern
play complex pattern

[N: :J - repeat commands within
brackets

:EXIT - leave repeat
HARD d - hard copy to printer

41

APPENDIX A - NOTE EQUIVALENTS

ITE DECIMAL VALUE
G3 12
A3 14
B3 16
C4 17
D4 19
E4 21
F4 22
G4 25
A4 28
B4 32
C5 34
D5 38
E5 43
F5 45
G5 51
A5 57
B5 64
C6 68
D6 76
E6 86
F6 91
G6 102
A6 1*15

HEX VALUE
OC
OE
10
11
13
15
16
19
1C
20
22
26
2B
2D
33
39
40
44
4C
56
5B
66
73

42

APPENDIX B
A short lesson in hexadecimal numbers

Computers represent data in binary format. It the binary number
system, a digit may take on a value of either 0 or 1. EAch digit
position in the binary number system has a value that is a power
of 2, just as each digit in the decimal number system has a value
that is a power of 10.

BINARY NUMBER SYSTEM
Power of 2 7 6 5 4 3 2 1 0

Value 128 64 32 15 8 4 2 1
DECIMAL NUMBER SYSTEM

Power of 10 5 4 3 2 1 0
Value 100000 10000 1000 100 10 1

So if you want to represent the decimal number 17 in the binary
number system, you would use the string of binary digits 10001
which would stand for:

I X 24 + 0 X 23 + 0 X 22 + 0 X 21 + 0 X 2°
= 16 + 0 + 0 + 0 + 1
= 17

Representing numbers as a string of binary digits (commonly
called "bits") would look as shown:

Decimal Binary Decimal Binary
0 0 13 1101
1 1 14 1110
2 10 15 1111
3 11 16 10000
4 100 17 10001
5 101 18 10010
6 110 19 10011
7 111 20 10100
8 1000 21 10101
9 1001 22 10110

10 1010 23 10111
11 1011 24 11000
12 1100 25 11001

Eight bits (remember - binary digits) is called a byte. A byte is
the smallest accessible unit of data in the COMMODORE 64. Eight
bits is capable of representing a value equivalent to decimal
255.
A string of eight bits however, is not easy to read or write.

43

I

Because they are awkward to Interpret, bits are often represented
in the hexadecimal numbering system (base 16). Each hexadecimal
digit stands for four bits.

Hexadecimal notation uses 16 symbols to represent the 16
different values. These symbols are the numerals 0 through 9 and
the letters A through F. Below is an equivalency chart:

DECIMAL BINARY HEXADEt
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

To convert binary numbers to hexadecimal notation, divide the
binary number into groups of four bits, starting at the righthand
side. Replace each group of four bits by the corresponding
hexadecimal symbol. If the left most group of bits is not a full
four bits, then fill in with zeros. The example below illustrates
this:

101001101011010110 * [binary number]
0010/1001/1010/1101/0110 - [4-bit groups]

2 9 A D 6 [hexadecimal number]

44

APPENDIX C - COLOR NUMBERS

OR NUMBER COLOR
1 BLACK
2 WHITE
3 RED
4 CYAN
5 PURPLE
6 GREEN
7 BLUE
8 YELLOW
9 ORANGE
10 BROWN
11 LIGHT RED
12 DARK GRAY
13 MEDIUM GRAY
14 LIGHT GREEN
15 LIGHT BLUE
16 LIGHT GRAY

Note that these are not the same color numbers that you POKE
to color memory.

45

APPENDIX D - PRINTER/INTERFACE SUPPORT

ULTRABASIC-64 supports the Commodore 1515 and 1525E printers
if they are connected directly to the Commodore 64 or 1541
disk drive via the serial cable. To support these printers
you should load and run 0BCB1I at startup.
OLTRABASIC-64 supports the Epson MX-80 and MX-100 with
Graftrax, the FX-80, FX-100 and RX-80, and the Gemini 10 and
15 printers. To support these printers you should load and
run UBBPSON at startup.
DLTRABASIC-64 also supports the following OKIDATA printers:

MICROLINE 92
MICROLINE 82A with OKIGRAPH kit
MICROLINE 83A with OKIGRAPH kit
MICROLINE 93
MICROLINE 84 STEP 2

To support these printers you should LOAD and RUN UBOKI at
startup.
For either UBBPSON or 0BOKI you must have one of the
following parallel printer interfaces:

SECONDARY TRANSLATE SWITCHES
MANUFACTURER MODEL ADDRESS________ (Y/N)_________ ON
CARDCO CARD? 5 N
Wichita, KS
ECX, Inc. C-6401 O N *
Walnut Creek, CA

MICROWORLD MW-302 0 Y 3,4
ELECTRONIX 0 N 3

Lakewood, CO
MSD, Inc. CPI 0 N 1,3,5
Dallas, TX

* requires that the three-position switch is set to
the center position

The SECONDARY ADDRESS and ASCII TRANSLATE? prompts should be
answered as per the above table.

46

I-------- -----

m n j i m

f .O to x 7211, ©rand Rapid*. M l 49S10 614 / 2410610

