MICRO MANUAL

for SUPER-FORTH 64™
By Bruce Jordan

©COPYRIGHT PARSEC RESEARCH 1985, all rights reserved.
*This software has a traceable serial number embedded within the system. This manual and the computer programs on
the accompanying floppy disks which are described by this manual are copyrighted and contain proprietary information
belonging to Parsec Reserarch.
This manual may not be copied, photocopied, reproduced, translated or reduced to machine readable form, in whole or
in part, without the prior written consent of Parsec Research,
The accompanying floppy disks may not be duplicated, in whole or in part, for any purpose. Ne copies of the floppy

disks or this manual or the listings of the programs on the floppy disks may be sold or given to any person or other
entity. Notwithstanding the above, the accompanying disks may be duplicated for the sole use of the original purchaser.

SUPERFORTH 64 is a TM of PARSEC RESEARCH

SUPER FORTH MICRO MANUAL

INTRODUCTION

The object of the MICRO MANUAL is to get the person that
has little prior knowledge of FORTH using the SUPER FORTH system
as quickly as possible. If you have no prior knowledge of FORTH,
we strongly suggest that you get a copy of STARTING FORTH, by Leo
Brodie. STARTING FORTH is an excellent first book on the subject,
and can be ordered directly from PARSEC RESEARCH.

SUPER FORTH MICRO MANUAL

ABOUT FORTH

The MICRO MANUAL assumes that your programming experience
has been largely that of BASIC and machine language. So you may
be asking yourself: "What’s so different about FORTH, aside from
the fact that it runs faster than BASIC?" The answer is: FORTH is
like no other programming language you’ve ever used!

Think for a moment about how you program in BASIC. You
usually start with an idea about what you want your program to
do. Then you try to get the big picture of how the program is
going to accomplish its task. Finally, you start writing the
code, which means writing a long series of numbered lines of
statements that, depending on the complexity, interconnect and
intertwine into a huge maze of hopefully correct instructions.
However, if you're one of the mortals, you know as well as I that
getting it right the first time is seldom the case; and tracking
down a bug in a large BASIC program can range anywhere from
unpleasant to down right nightmarish. Programming in machine
language is about the same, only worse. But why should this be
the case?

Much of the problem with BASIC and machine language
programming lies in their unstructured nature. When programming
in BASIC, people have a tendency to just start typing
instructions until they reach what they think is the end. BASIC
supports this sort of programming, even though it’s not very
efficient. Think about the last BASIC program you wrote. It
probably contained several IF/THEN statements linked to a whole
slew of GOTO commands that were created as needed, or because vou
forgot to include something. These GOTO commands probably ran
here and there all through the program. Sure, GOTO commands are
convenient, but at the same time, it’s real easy to cut your own
throat with them. In fact, most of the problems programmers have
with BASIC can be traced directly to GOTO commands.

BASIC programs must be taken as a total when de-bugging.
By this, I mean that when you run your BASIC program for the
first time, and it doesn’t work properly, you know that the error
is in there somewhere, but finding exactly where is usually a
matter of guess work. Executing just one small part of a BASIC
program to look for a suspected bug is almost impossible if that
section contains several GOTO and GOSUB commands. And if you do
find the problem, you don’t have any guarantee that the change
you've made is not going to cause something else in your program
to go awry. However, FORTH was designed with just these problems
in mind.

SUPER FORTH MICRO MANUAL

FORTH is a STRUCTURED PROGRAMMING LANGUAGE.

In essence, what this means 1s: NO GOTO STATEMENTS. A
program written in FORTH has a rather elegant, linear gquality to
it. Each command follows the last in a one-command-at-a-time
fashion, yet FORTH’s structure isn’t so linear that it cramps
your style. By the use of different specialized LOOPing commands,
FORTHEH becomes as flexible, if not more flexible, than BASIC. By
the use of loops and linear programming, program code becomes
much more straight-forward and readable. But the real power of
FORTH, the key to its structured nature and ease of de-bugging
lies in its modular nature.

FORTH is a MODULAR PROGRAMMING LANGUAGE.

You program in FORTH by creating small, simple modules
that perform specific tasks. Then you string these modules
together to create your program. It s like making a program out
of a whole bunch of little programs; and edch of the little
programs (modules) may be executed by themselves for the purpose
of testing. For instance, below is one of these modules. When
executed, it will print HI THERE!.

: HELLO ." HI THERE!" ;

Every module created in FORTH has three things in common.
First, the module starts with a COLON. Second, a module must have
a name. In the above example, the name is "HELLO". Finally, a
module must end with a SEMICOLON to mark the end of the module.
Everything else between the NAME and the SEMICOLON is your code.
For instance, in the above example ." (Pronounced DOT QUOTATION)
was used. DOT QUOTATION tells your computer to print everything
following the guotation mark until it finds the ending quotation
mark. In this case it prints HI THERE!.’

In FORTH, modules are called WORDS. when FORTH WORDS are
created they're COMPILED into a collection of WORDS in the
computer ‘s memory. This collection of FORTH WORDS is called the
DICTIONARY. WORDS can even be linked together to form new WORDS
and, in turn, programs. What you wind up with is highly
structured code that’s more compact, runs more efficiently and
faster than an eguivalent BASIC program.

Here’'s an example of linking WORDS together:

SUPER FORTH MICRO MANUAL

: HELLO ." HI THERE!" ; (OUR FIRST MODULE)
: GREET ." WELCOME TO SUPER FORTH" ; (PRINTS WELCOME TO SUPER)
({ FORTH ON THE SCREEN)

THEN WE CAN LINK THESE TWO MODULES TOGETHER:

: SAYHI HELLC GREET ;

Now, anytime we execute SAYHI, by typihg SAYHI followed by a
CARRIAGE RETURN (Or by having another word execute it.), we get

HI THERE! WELCOME TO SUPER FORTH! printed on the screen. As
another example, we could use our two modules like this:

: 10HI 10 0 DO SAYHI LOOP ; (REMEMBER: SAYHI IS ACTUALLY TWO WORDS.

The module 10HI will print HI THERE! WELCOME TO SUPER FORTH!
on the screen ten times.

With BASIC, you have a certain number of commands
available, and that’s all. However, notice that with FORTH, each
little WORD you create can be used in either the program or the
immediate mode. What this means is each WORD once created acts as
a8 brand new command! FORTH is EXTENSIBLE. You can keep adding new
commands to your system as long as available memory holds out!

S50 what does this mean in terms of programming ease? It
means that since our program is a series of smaller, stand-alone
WORDS, de-bugging a program is a darn sight less painful. Each
WORD can be easily tested to see if it’s the culprit. And if a
WORD needs to be changed, it can be without having to re-write
the entire program. But this is only the beginning.

So far, we’ve said that FORTH is: A high-level language,
it executes fast, its modular form makes it easier to program
with and de-bug, and its also extendable. So, what makes SUPER
FORTH SUPER? SUPER FORTH takes the concepts of FORTH programming
ease one step further by supplying, already written, many of the
of more complicated modules that you would have to write
yourself! This saves you from having to re-invent the wheel, and
gets you closer to getting your job done. For instance, you
probably know that your COMMODORE 64 is a powerful graphics
machine, with hi-res bitmapping, multi-color capabilities,
sprites, the works! But you also know that the 64 s BASIC is
completely devoid of graphics commands, and if you've ever tried
doing graphics programming, you know how painful that can be!
SUPER FORTH to the rescue! SUPER FORTH is loaded with graphic
commands all ready to go. You can set up hi-res screens,
split-screens, draw lines, circles, ellipses; change colors,

)

SUPER FORTH MICRO MANUAL

erase, just about anything you can think of. The same is true for
music, interrupts, string handling, I/O applications and more.
SUPER FORTH makes your 64 talk your language, instead of you
mumbling its! But, enough about what SUPER FORTH can do, let’s

get started so YOU can start DOING.

SUPER FORTH MICRO MANUAL

GETTING STARTED

NOTE: Whenever you see: <CR> this means for you to hit the
RETURN key.

The first thing you want to do is to make a working copy
of your SUPER-FORTH disk. A working copy differs from a backup
copy in that there will be no FORTH screens on your working copy.,
as there are on your Master disk (The master disk is the one you
purchased form PARSEC RESEARCH.). If you don’t know what FORTH
screens are, don’t worry, they will be discussed later. If you
wish to make a backup copy of your Master disk, instead of a
working copy, follow the instructions for BACKUP in the Backup
Utilities section in the main manual.

MAKING A WORKING COPY

1. Turn on your computer and disk-drive.

2. Insert your SUPER FORTH disk into your disk-drive, and
type: LOAD"SUPER FORTH 64",8 and hit RETURN.

3. When your computer is finished loading, type RUN and hit
RETURN. The message: SUPER FORTH 64 VERSION... will
appear on the screen.

4. Remove your SUPER FORTH disk, and put it away in a safe
place.
5. Insert a new, formatted disk into your disk~drive, and

type: SAVE-FORTH. Your disk-drive will start running.
When it stops, you now have your working copy of SUPER
FORTH.

NOTE : SAVE-FORTH does not copy the SUPER FORTH extension
screens from the master disk to your working disk. These
screens have already been compiled into the system, and
are included only for re-configuring SUPER FORTH.

SUPER FORTH MICRO MANUAL

THE STACK

By far, the most important aspect of FORTH is the STACK.
The STACK is what makes FORTH what it is, and is the source of
the most confusion for BASIC programmers.

Just about everything that FORTH does is centered around
the STACK. Consider a mathematical operation in BASIC, say,
adding two numbers, and then multiplying by a third number:

10 A=5:B=6:C=2
20 D=A+B*C
30 PRINT D

RUN
17

READY.

Notice that in BASIC, we assign values to variables, then we
perform mathematical operations on the variables. With FORTH,
however, when we perform these sorts of operations, we use an
area in memory called the STACK. First, we put the values on the
STACK, either directly, or by reading in the contents of a memory
location. Then we perform our operations on the numbers. This is
really a lot simpler than it sounds. The main thing to remember
is that most operations in FORTH occur on the STACK.

The STACK has a FIRST-IN-LAST-OUT structure. What this
means is if we enter three numbers, say 3 4 and 5, since the 5
was entered last, it will be the number on top of the STACK, with
4 next and 3 at the bottom of the STACK.
EXAMPLE :

The . "period" (PRONOUNCED DOT), is the FORTH word for printing out
a number on the STACK. Lets enter our three numbers now...

3 4 5 <CR> OK

We now have three numbers sitting on the STACK. We can see these
numbers by printing them using the DOT command:

. <CR> 5 OK
. <CR> 4 OK

SUPER FORTH MICRO MANUAL

<CR> 3 OK (LETS DO DOT ONE MORE TIME.)
. <CR>
"STACK EMPTY (NOTHING ELSE ON THE STACK)

Notice that 5 was the first number out, though it was the last
entered, and 3 was the last number out, though it was the first
entered. This is what is meant by FIRST-IN-LAST-OUT structure.
This leads to a rather unfamiliar way of doing math, but it works
out well once you get used to it. For instance, let’s use FORTH
to do the same math operation that we did in the BASIC example:

5 6 + 2 * <CR> OK (THE RESULT IS NOW ON THE STACK AND THE REST}
(OF THE NUMBERS ARE GONE.)

If we print out our result, we get...
.<CR> 17 OK

Notice that with FORTH, the operator (+ - * /) appears after a
pair of numbers, and not between them. Let’s try an example
using subtraction:

17 5 - <CR> OK
<CR> 12 OK

Once again, the number we subtracted from went on the stack
first, followed by the number we subtracted from it, followed by
the operator. As a general rule, all FORTH words take the
operand first, followed by the operator.

One of the mistakes that beginning FORTH users frequently
make in connection with the STACK is the over use of variables.
In BASIC, almost everything is assigned a variable. However, good
FORTH programming technique requires that the use of variables be
kept. to a minimum. The key to this is learning how to use the
FORTH STACK MANIPULATION words. The beginner will place a couple
of values on the STACK, do something with them, then place a
third value on the STACK. Then he or she may say: "Oh Heck! (Or
something like that) The value on the bottom of the STACK is the
one I want to be on top." So, he or she will create a couple of
variables to temporarily hold some of the STACK values so that
they can get the STACK in the order needed.

However, by the use of the STACK MANIPULATION words,
large numbers of values can be kept on the STACK, and easily
moved about in any way desired. Variables, when ever possible,
should be used only for data.

SUPER FORTH MICRO MANUAL

SWAP

OVER

ROT

ROLL

PICK

DUP

FORTH STACK MANIPULATION WORDS

Swaps the two top numbers on the stack.

Copies the second value on the stack to the top of
the stack.

Rotates the third value on the stack to the top
of the stack.

Moves the nth value on the stack on to the top
of the stack.

Copies the nth value on the stack to the top of
the stack.

Duplicates the top number on the stack.

By gaining a good understanding of how to use these words, your
programs will be more readable, will execute faster and will be

more compact.

- 10 -

SUPER FORTH MICRO MANUAL

THE COLON DEFINITION

The next thing you should know is how to create a FORTH
COLON DEFINITION.

All COLON DEFINITIONS have two things in common: they
always begin with a COLON, and they almost always end with a
SEMI-COLON. The COLON tells SUPER FORTH that what follows is to
be compiled into the system, and the SEMI-COLON signals the end
of the definition.

EXAMPLE :
: HELLO ." HI THERE! " ; (THIS IS A COLON DEFINITION)

Notice the COLON at the beginning of the line, and the SEMI-COLON
at the end. Type the above line, including all spaces, followed
by a carriage return. Now, type HELLO and hit RETURN. If you ‘ve
done everything correctly...

HI THERE! OK

should appear on the screen. Congratulations! you’'ve just created
your first FORTH word. By the way, the "QK" is SUPER FORTH's way
of telling you that it’s finished. OK is FORTH's equivalent of
"READY" in BASIC. Also, note that unlike COMMODORE BASIC, FORTH
commands must be separated by spaces. Also, the entire definition
need not be on the same line:

EXAMPLE

: TEST2 ." THIS IS ON ONE LINE" <CR>
10 0 DO <CR>

65 EMIT <CR>

LOOP ; <CR> QK

The above example will work fine, even though parts of
the definition are on different lines. Just make sure to hit a
carriage return at the end of each line, and end the definition
with a semi-colon.

Now all that remains is to start creating your own COLON
DEFINITIONS by combining different SUPER FORTH commands.

BUT REMEMBER

- 11 -

SUPER FORTH MICRO MANUAL

1, ALL COLON DEFINITIONS MUST START WITH A'COLON AND END
WITH A SEMI-COLON.

2a FORTH COMMANDS MUST BE SEPARATED BY SPACES.

- 12 -

ot ¥

SUPER FORTH MICRO MANUAL

USING FORTH SCREENS

The next question is: "If I'm just making up these little
words all over the place, how will I keep track of them long
enough to make a program of any size?" The answer is: FORTH
Editor Screens.

Try this: format a blank disk® You don‘t want any
other sequential or program files on the same disk that will
contains FORTH Editor Screens (More about this later.). Next, put
it into your disk-~drive and type 1 LIST followed by a carriage
return. You will see something like this appear on your screen:

SCREEN #1
0
1
2

)

)

)
3)
4)
5)
6)
7)
8)
9)
0)

1
11)
12)
13)
14)
15)
CK

This is a blank FORTH EDITOR SCREEN. Note that you have 16 (0-15)
lines to use for entering code, and each line can hold up to 64
characters. However, the number of lines to a screen, and the
number of characters per line can be changed if desired. For more
on this, consult the section on editor words in the main manual.

You use these EDITOR screens to create larger programs.
To see some examples of this look in the back of your main
manual. There, you will find many of the FORTH listings for the
various SUPER FORTH extensions. These screens have already been
compiled into the system, and are provided for reference, and to
allow you to re-configure your SUPER FORTH. Another place where

See pg3 of SF64 manual- * N@:diskname,id* DOS

- 13 -

SUPER FORTH MICRO MANUAL

these FORTH Extensions are listed is on your Master disk. To see
them, insert your Master disk, type the number of the screen you
wish to see, and type LIST.

Screens allow you to make larger programs containing many
COLON DEFINITIONS. To enter code, use the cursor keys to get to a
particular line number, just as you would with BASIC. Type in
your code and then hit return. Make sure to leave a space between
the line numbers and your code.
EXAMPLE :
TYPE. ..
1 LIST <CR>
W <CR>
W "WIPES" the screen clear. ALWAYS DO THIS! Even if the screen
looks empty, there may be non-printing characters hiding on the
screen that can really screw things up.

Next, fill in screen 1 as shown below. Remember the carriage
return at the end of the lines.

SCREEN1
0) «: TEST 10 0 DO ." THIS IS A SCREEN TEST"
1) LOOP ;
2)

3) : TEST2 10 0 DO ." SUPER FORTH"
4) TEST LOOP ;
5) (THIS IS A COMMENT)
6} { THIS IS ANOTHER COMMENT)
7)
8)
9)
10)
11)
12)
13)
14)
15)
OK

Note the comments contained within the parentheses. The
‘parentheses allow you to add comments to your screens, but unlike
BASIC, FORTH comments are not compiled into the system, and do
not slow down execution.

- 14 -

SUPER FORTH MICRO MANUAL

* Note, also, that there must be one space between the
first parentheses and the start of your comment.

Now, move the cursor off the FORTH EDITOR SCREEN and
type:

F <CR>

You will hear your disk-drive start. What you have just done is
created a FORTH screen and saved it to the disk. To show you what
you just did, type:

EMPTY-BUFFERS <CR>

This will clear out any screens held in memory, including the one
you just created. Now type 1 LIST. You will hear your drive start
again, and the screen you just created will appear. As you see,
your FORTH screen is on the disk. If for some reason you want to
change it, simply make your changes, and type F once again, and
your new version of the screen will be saved in place of the old
version. It’s as easy as that.

With the default SUPER FORTH system, as many as eight
EDITOR screens can be kept in memory at one time. However, by
using the FORTH command: #BUFF you can change the number of
EDITOR screens that the system can hold. See the main manual for
more on this.

There are many powerful editing commands contained in
SUPER FORTH. Refer to the Editor section in your main manual for
more on these.

LOADING FORTH EDITOR SCREENS

The next question is: When we get our FORTH code onto
screens, how do we turn our screens into working programs? We do
this by LOADING the screens. There are two words for doing this: ’
LOAD and THRU.

LOAD loads a single screen, or a series of screens strung
together by the FORTH command "-->". THRU is used to load a
series of separate screens.

For example, if we have just one screen we wish to load,

- 15 =

SUPER FORTH MICRO MANUAL

like the one we just created, then we use LOAD. Try this. Type
the screen number, followed by LOAD:

1 LOAD <CR>
Now, type: TEST2 <CR>

A whole bunch of printing should appear on your screen. What we
just did was to load the colon definitions contained on screen #1
into the SUPER FORTH system.

Another time when we use LOAD is when we don 't have
enough room on a particular screen to finish a colon definition:

ONLY THE LAST FEW LINES OF THE EDITOR SCREEN ARE SHOWN.

12)

13)

14} : TEST3 10 0 DO TEST2 PAGE

15) ." THIS IS A BLANK SCREEN" 5 BKGND (NO ROOM TO FINISH)

OK

The "-->" command allows us to continue the definition on the
next screen:

13)
14) : TEST 3 10 0 DO TEST2 PAGE
15) -->
OK
SCREEN #2
0) ." THIS IS A BLANK SCREEN" 5 BKGND
1) 5 EMIT ." NOT ANYMORE!"
2} LOOP ;
3)
4)

Screens linked in this way are ALWAYS loaded using LOAD.

Now, let’s say that we have a program made up of a series
of colon definitions that take up several screens, and there are
no colon definitions that cross over to the next EDITOR screen as
in the last example. Then we can use the word THRU for loading
the screens.

SUPER FORTH MICRO MANUAL

Say that our program took up screens 5-16. To load them,
you would type the starting number of the EDITOR screens to be
loaded, followed by the ending number of the EDITOR screens to be
loaded, followed by the command THRU:

5 16 THRU
This would load all of the screens from screen 5 to screen 16.

Once your FORTH screens are loaded, your program will
execute just as any other FORTH word, by typing it ’s name.
However, now you have several choices about how your program is
used and kept. Since your FORTH screens are saved on disk, you
can call them up each time you restart SUPER FORTH and load them
back into the system, or you can use the FORTH command SAVE-FORTH
to create another working copy of your SUPER FORTH system, but
this working copy will contain your program already loaded into
the system, and ready to run. Yet another choice is to use the
SUPER FORTH command "APPLICATION" to create a stand-alone program
that will run on any COMMODORE 64, with or without SUPER FORTH!
APPLICATION makes the SUPER FORTH system "invisible" to anyone
using your program, and therefore, allows you to write programs
using SUPER FORTH that you may market freely, without paying
license fees. For more on this, consult the main manual.

THINGS TO REMEMBER ABOUT SCREENS

1, NEVER PUT FORTH SCREENS ON A DISK WITH ANYTHING
ELSE!

Screens use Relative files, and can write over other
files on the disk, and visa versa. Always keep your
screens on a separate disk. This is why your working copy
was made without the SUPER FORTH Extension Screens.

2. EACH LINE OF A SCREEN HAS A LENGTH OF SIXTY FOUR
CHARACTERS.

3. ALWAYS WIPE EDITOR SCREENS BEFORE USING!

4. ALWAYS HIT A CARRIAGE RETURN AT THE END OF THE LINE.

53 USE LOAD WHEN COMPILING A SINGLE FORTH SCREEN, OR A
SERIES OF FORTH SCREENS LINKED TOGETHER WITH "-->".

6. USE THRU FOR COMPILING A SERIES OF SELF-CONTAINED

FORTH SCREENS.

SUPER FORTH MICRO MANUAL

CcoPY
EDITOR
FLUSH
L

N L
PL

LIST

sC

SM

NEVER USE "-->" WITH THRU

DON'T FORGET TO USE "F" TO SAVE EDITOR SCREENS WHEN

FINISHED EDITING!

Screen #0 is reserved for documentation purposes only.
Never put part of a program on this screen. IT WILL

NOT LOAD!

LIST OF EDITOR COMMANDS

Copy.a screen.

Enter EDITOR mode.

Flush a screen to the disk.w F
List current editor screen.

List next -editor screen.

List previous editor screen.
List screen, and enter EDITOR mode.
Kill a line.

Move a line.

Open a line.

Copy line fro different screen.
Move line from different screen.
Wipe a screen clean.

Extract a line.

- 18 -

=

STRUCTURED TOP-DOWN/BOTTOM-UP PROGRAMMING

A unique feature of FORTH is its ability to allow you to
do TOP-DOWN/BOTTOM-UP PROGRAMMING; and this means a savings of
time and effort between the conception of a program and its
completion. Here’s how it works. Say you want your computer to do
something: a video game, a spread sheet, walk your dog, or
whatever. In TOP~DOWN/BOTTOM-UP PROGRAMMING, you start by
defining the widest possible task first, then you break down that
task into smaller and smaller tasks until you reach the smallest
increment. Then it’s just a matter of writing a WORD for each one
of the smallest tasks, and combining these WORDS into
HIGHER-LEVEL WORDS, and those WORDS into yet HIGHER-LEVEL WORDS
until you reach the top (where you started from) as one single
WORD.

EXAMPLE :

As a simple example of TOP-DOWN/BOTTOM UP programming,
we ‘'re going to create a word that will draw a box anywhere on a
hi-res screen, and then fiill the box in to form a square.
We start by choosing the highest level wotrd. We’ll call it:

SQUARE *

Next, we think about what we’ll need to get SQUARE to
work. Well, first, I said we would make a "box" and then fill it
in, so SQUARE must contain the two words:

BOX and S-FILL

BOX, will make the box on the screen, and S-FILL will fill in the
box to make a square. But now we need to think about what will
go into these two words. Let’s take BOX first.

We have to start drawing from somewhere, so we need to
mark the start. Also, a box needs sides. Therefore, we need four
words that will draw the sides of the box. We“ll call our words:

START TOP RIGHTSIDE BOTTOM and LEFTSIDE

* Your programming should begin by writing on paper.
-19_

SUPER FORTH MICRO MANUAL

Knowing that SUPER FORTH has good graphics commands, we
reason that we can probably define these four words using
available SUPER FORTH commands. So, our design of this part of
the program is finished. Now for S-FILL.

Since a square is a very regular shape, we reason that it
can easily be filled in with a bunch of straight lines, and since
we can use a simple DO loop to draw any number of lines we
choose, we reascn that S-FILL can be written as a single FORTH
word. This finishes the design phase of our command SQUARE. Now
all that remains is to write the code for the various words and
then string them together. Keep in mind we“ll be doing this from
the BOTTOM-UP. Here's how:

First, using a newly formatted disk, we bring up a FORTH
EDITOR SCREEN, by typing 10 LIST.

Next, we WIPE the screen clear, by typing W.
Now, we enter our code:

(It s unnecessary to enter comments)

SCREEN #10
0) (TOP-DOWN/BOTTOM-UP PROGRAMMING DEMO)
1)
2) : START (XY --- X Y)
3) 2DUP B-PLOT ;
4) |
5) +: TOP ({ X Y === X Y)
6) SWAP 50 + SWAP 2DUP B-LINE ;
7)
8) ¢+ RIGHTSIDE (X ¥ ~~- X Y)
9) 50 + 2DUP B-LINE :;
10)
11} :+ BOTTOM (X ¥ =—— X Y)
12) SWAP 50 - SWAP 2DUP B-LINE ;
13)
14) : LEFTSIDE (X Y --- X Y)

15) 50 - 2DUP B-LINE ;

We now have the words for drawing the various sides of the box.
We will move on to writing the code for S-FILL.

We need another FORTH EDITOR SCREEN, so type N L. This
will bring up SCREEN #11. Now type W to WIPE the SCREEN.

—- 20 -

SUPER FORTH MICRO MANUAL

We said S-FILL will fill in the box by drawing a bunch of
horizontal lines across the box. Then what we want is a word that
will draw a line form one side of the box to the other, and then
repeat this action from the top of the box to the bottom. Since
we have the starting point on the stack (Left there by the word
BOX.), and since we can use the INDEX of a DO loop, S-FILL should
be a fairly straight-forward word to write.

By the way, don’t worry if you don’t understand the code.
We ‘'re doing this only to learn the concept of TOP-DOWN/BOTTOM-UP
programming.

Here’s the code for S-FILL:

SCREEN #11
0) (TOP-DOWN/BOTTOM-UP PROGRAMMING DEMO)
1)
2) : S-FILL (X Y =-=--)
3) DUP {(SAVE A COPY OF Y)
4) 50 + { ADD 50 TO Y: THAT S HOW TALL QUR BOX IS)
5) SWAP DO
6) DUP 50 + SWAP
7) DUP I B-PLOT (GET INDEX OF LOOP/SET STARTING POINT)
8) SWAP I B-LINE {(DRAW LINE)
9) LOOP
10) DROP ; (GET RID OF ANYTHING ON THE STACK)
11)
12)
13)
14)
15)

Now, we’'ll get one more SCREEN to define our words of the next
level, and then the final level: Type N L, then W.

We can now enter the code for the next level of words:

SCREEN #12

0) (TOP-DOWN BOTTOM~UP PROGRAMMING DEMO }

1)

2) (BOX LEAVES SOMETHING ON THE STACK FOR S-FILL TO USE)
3)

4) : BOX (X Y -—— X Y)

5) START TOP RIGHTSIDE BOTTOM LEFTSIDE

6)

7) (NOW COMES OUR HIGHEST LEVEL WORD)

8)

9) : SQUARE (X Y ~--- X Y DRAW A SQUARE AT X,Y)
10) BOX S-FILL ;

11)

- 21 -

SUPER FORTH MICRO MANUAL

12)
13)
14)
15}

Finally, type F to FLUSH this last SCREEN to the disk. We can now

LOAD our newly created words and see if they work.

Type:
10 12 THRU

Your computer should pause. for a moment, while it’s compiling the

words, then print the message OK. If something goes wrong,
re-list your EDITOR SCREENS and look for errors.

Let s test SQUARE: \

Type 20 D-SPLIT 7 BITMAP 0 20 D-POSITION

This will give you a split graphics screen. Now type:
100 100 SQUARE"

and a square should appear on the screen. Try it a few more
times:

45 50 SQUARE

150 10 SQUARE

0 0 SQUARE

When you're finished, type: 0 BITMAP 0 D-SPLIT.

Congratulations! You ve just successfully completed your first
STRUCTURED, TOP-DOWN/BOTTOM UP program.

—.22_

SUPER FORTH MICRO MANUAL

REMEMBER

We designed our program from the TOP-DOWN, like this:

SQUARE

e e . — —————————— — A = b - —

BOX S-FILL

START TOP RIGHTSIDE BOTTOM LEFTSIDE
But we wrote the program from the BOTTOM-UP, like this:

START T?P RIGHTSIDE BOTTOM LEFTSIDE
|

e S e ————— T —

SQUARE

The fact that each FORTH word defined is itself a
mini-program, and that FORTH words can be used in the defining of
other FORTH words, allows us to program in this TOP-DOWN/BOTTOM
UP fashion. And if the program doesn’t work for some reason,
FORTH ‘s modular nature allows us to test each of the modules

- 23 -

SUPER FORTH MICRO MANUAL

™
until we find out which one we need to change. Alsoc, if we need
to add something {We usually do.), this can be done by creating
another FORTH word that can be easily included into the program,
without screwing everything else up.
Once you get the hang of creating and writing your
programs in this fashion you’ll find that your productivity will
increase at least three fold! That’s a fact.
~
A

- 24 -

SUPER FORTH / STARTING FORTH DIFFERENCES

1. ?STACK :

The book

STARTING FORTH uses ?STACK for a different purpeose. Starting
FORTH s use is to test for an underflow condition. While SUPER
FORTH ‘s uses ?STACK to test if the stack is out of bounds.

2. TICK :

There are two differences between TICK " ~ " in STARTING FORTH
and SUPER FORTH:

First, the STARTING FORTH version of TICK returns the CODE FIELD
ADDRESS (CFA) of a word, while SUPER FORTH s version of TICK
returns the PARAMETER FIELD ADDRESS (PFA) of a word. To obtain the
Code Field Address of a word using TICK, use TICK followed by

the command CFA.

EXAMPLE :
" EMIT CFA <CR> OK (LEAVES THE CODE FIELD ADDRESS ON THE STACK)

Second, STARTING FORTH s version of TICK can be used within a
colon definition to compile the Code Field Address (CFA)} of the
next word in the input stream. However, using TICK in a

SUPER FORTH (79-STANDARD) colon definition will cause the
Parameter Field Address (PFA) of the next word in the
definition to be compiled into the definition.

EXAMPLE :

-

: TEST DUP ;

In the above colon definition, TICK will compile the PFA of DUP
into the definition of TEST.

To compile the next word in the input stream (as STARTING FORTH s
version of TICK does), use [COMPILE]

EXAMPLE :
: HELLO ." HI THERE " ;

r

: TEST [COMPILE] CFA EXECUTE ; (COMPILES CFA OF A WORD AND)

{ EXECUTES IT.)

29a

TEST HELLO <CR> HI THERE OK

3. LITERAL :

The word literal does not work the same as the example on page
304 of STARTING FORTH. SUPER FORTH s version of LITERAL must have
the values generated within the definition using the left and
right square brackets ([]).

EXAMPLE
: TEST [123] LITERAL ;
TEST 123 OK

However, there is a way to take values directly from the stack,
by generating a duplicate of the stack value while compiling:

HERE 10 ALLOT (CREATE A 10 BYTE AREA IN MEMORY)
: LIMITS 2* [DUP] LITERAL + ; DROP

The DUP in square brackets makes a copy of the top value on the
STACK that LITERAL can use,

4. S0 :

The explanation of S0 on page 247 of STARTING FORTH says that it
points to the bottom of the parameter stack and the address

of the input buffer. In SUPER FORTH, S0 points ONLY to

the bottom of the stack. TIB points to the input buffer,

5. TEXT :

STARTING FORTH s version of TEXT differs from SUPER FORTH'S.
SUPER FORTH s version puts the character count at the beginning
of the string, while STARTING FORTH S version uses no character
count. Because of this, the example of GREET on page 274 of
STARTING FORTH will not work correctly. To get this example to
work, it should read: ‘

: GREET ." HELLO " MY-NAME COUNT TYPE
." 4 I SPEAK FORTH." ;

Similarly, the example of GREET on page 276 has two differences:

First, it uses TEXT in the same conflicting way as in the example

a4

above, and Second; the example on page 276 uses S0 for the input
buffer pointer. This should be changed to TIB (Top of Input
Buffer) for the SUPER FORTH system.

The example on page 276 should read:

: GREET CR ." WHAT'S YOUR NAME?" TIB @ 40 EXPECT
0 >IN ! 1 TEXT CR ." HELLO,"
PAD COUNT TYPE ." , I SPEAK FORTH."

6. PLUS :

The example for PLUS on page 277 doesn’t work because STARTING
FORTH s definition for NUMBER is different than SUPER FORTH s

7. SIGN :

There is a difference in how STARTING FORTH and SUPER FORTH use
the word SIGN.

The example on page 171 of Starting FORTH, shows the definition
of .$ as follows:

: .$ SWAP OVER DABS
<# # # 46 HOLD #S SIGN 36 HOLD #> TYPE SPACE ;

This definition supposedly allows you to input a number such as
123.23, and then by calling $. the number will be printed in the
format: $123.23.

However, if the number you enter is negative, eg: -123.23, .$
will not print the negative sign.

In order to get the negative sign, a ROT should precede SIGN. For
instance, for the above example to work with SUPER FORTH, it
should be in the form:

: .$ SWAP OVER DABS
<# # # 46 HOLD #S 36 HOLD ROT SIGN #> TYPE SPACE ;

Now, when 123.23 is entered, .$ returns $123.23, and if -123.23
is entered, .$ returns -$123.23.

Notice also, that the position of SIGN the within definition was

changed to place the minus sign at the very beginning of the
pictured string.

24C

SUPER FORTH MICRO MANUAL

THE FORTH ASSEMBLER

Now we ‘re going to deal with a slightly more advanced *
subject: The FORTH Assembler, and FORTH assembly language
programming. FORTH assembly code is a lot like standard 6502
assembly code, except that FORTH assembly code maintains the
"Structured" programming approach of FORTH. What this means is
you will not see any of the standard 6502 branching commands in
FORTH Assembly language (BEQ, BNE, BMI,...)}. Instead, FORTH
Assembly language uses the same IF/THEN, BEGIN/UNTIL, BEGIN/AGAIN
structure as FORTH. More on this in a minute. First, lets see how
to define a machine language word using the FORTH Assembler.

The first thing to remember is that FORTH Assembly
language definitions start with the word CODE. This tells the
FORTH Assembler that what follows is a FORTH Assembly language
definition. After the word CODE comes the name of the definition,
then the machine language instructions, and finally, the command
END-CODE to end the FORTH Assembly language definition.

EXAMPLE :

CODE TEST (THE NAME OF QOUR FORTH ASSEMBLY LANGUAGE WORD IS TEST)
45 4 LDA, (LOAD THE ACCUMULATOR WITH 45)

32768 STA, (STORE THE ACCUMULATOR AT MEMORY LOCATION 32768)

NEXT JMP, (RETURN FROM ASSEMBLY LANGUAGE TO FORTH)

END-CODE (END DEFINITION)

The neat thing about the FORTH Assembler is the really beautiful
way that the machine code blends with SUPER FORTH. Since our
little machine language definition was defined using the FORTH
Assembler, all you need do to get it to execute is to type its
name as you would with any FORTH word:

EXAMPLE :

TEST <CR> (EXECUTE MACHINE LANGUAGE ROUTiNE)

To see that "TEST" has worked, type:

32768 @ . <CR>

This will print the contents of memory location 32768, which
should now be 45.

Remember, FORTH Assembly words can be freely used in and

* This section is for those already familiar with assembler code,

- 25 =~

SUPER FORTH MICRO MANUAL

with standard FORTH words.
There are a couple of things to note here in our example;

1. Notice that CODE and END-CODE act much the same as the
colon and semi-colon in standard FORTH.

2. Notice that the commands are entered in Reverse Notation:
Instead of LDA # 45, you enter 45 # LDA,. The rule
is: Operand first, followed by operator.

3. Notice that each operator is followed by a comma: LDA,
STA, JMPp,.
4. A FORTH assembly language CODE definition MUST have

an instruction at the end of the routine that will send
it back to the FORTH operating system. The NEXT JMP,
command is one of these EXIT ROUTINES. Others are: POP
JMP,, POPTWO JMP,, PUSH JMP, and PUT JMP, (Sounds like
Olympic track and field events!). These different EXIT
ROUTINES allow you to pass information between your FORTH
Assembly language words and the FORTH operatlng system.
You will find them covered in detail in the main manual,
in the FORTH Assembler section.

BRANCHING

As stated earlier, FORTH Assembly language does not use the
branching commands used in 6502 Assembly language. Instead, it
uses the structured looping words of FORTH in conjunction with
the 6502 status register.

EXAMPLE : We're going to use one of the COMMODORE KERNAL routines
to print two hundred and fifty six A’s on the screen..

HEX { SET HEXIDECIMAL NUMBER BASE.)

CODE AAA { AAA IS THE NAME OF THE ROUTINE.)

XSAVE STX, { SAVE X REGISTER.)

0 # LDX, (LOAD X REG. WITH 0.)

41 # LDA, (LOAD ACCUM. WITH ASCII VALUE FOR "A" IN BEX)
BEGIN, { BEGIN THE LOOP)

FFD2 JSR, (KERNAL ROUTINE TO PRINT CONTENTS OF ACCUM.)
INX, (INCREMENT X REG..)

0 # CPX, (COMPARE X REG. TO 0.)

0= UNTIL, (EXIT LOOP ONLY IF X REG.=0.)

= 26 =

SUPER FORTH MICRO MANUAL

XSAVE LDX, (RESTORE X REGISTER.)
NEXT JMP, { EXIT ROUTINE.)
END-CODE { END DEFINITION.)

After entering the above definition, type: AAA <CR>, and
part of the screen will be covered with A’s.

The 0= in the third to the last line is a command that
tests the ZERO flag of the 6502 STATUS REGISTER. This along with
the BEGIN-UNTIL is equivalent to the BEQ command in 6502 Assembly
Language. There are other flag words: 0<, 0< NOT, CS, CS NOT, VS
and V5 NOT. These words are covered in the main manual.

Note that in the above example, we saved the X register.
This is one of the few ENTRY/EXIT conditions you have to be
careful of. The X register is used to keep track of the FORTH
parameter stack. Therefore, whenever you write a machine language
definition that might effect the X register, save the contents of
the X register by storing it in the special memory location XSAVE,
and then restore it just before the EXIT ROUTINE by loading the X
register from XSAVE.

Also note that just like all other FORTH Assembly
Commands, "BEGIN," and "UNTIL," both are followed by commas. The
same is true for all FORTH Assembly Language branching
instructions.

One final note: FORTH Assembly Language definitions may
be put on screens, and you can put more than one FORTH Assembly
Language command on a line. Also, you can use variable names,
instead of numerical addresses in FORTH Assembly Language words.
Some of the standard FORTH words can be used within your FORTH
Assembly Language words, and you can even create and use MACROs.
Again, all of this is covered in the main manual.

USING YOUR OWN MACHINE LANGUAGE ROUTINES WITH SUPER FORTH

It s possible to use machine language routines with SUPER
FORTH that were not created with the SUPER FORTH Machine Language
Assembler. The following is a description of the procedure. It is
assumed that you have the routine on disk in a machine language
program file.

Make sure that your machine language routine ends with an
RTS,

- 27 =

SUPER FORTH MICRO MANUAL

2. Create an area in memory large enough for your machine
language routine, using the FORTH words "CREATE" and
"ALLOT".

3. Use LOADRAM to load your machine language routine into
the newly created area.

4. Call the routine by using GO.

EXAMPLE :

We will load from disk, a hypothetical machine language
routine called "TEST1" which is exactly one hundred bytes long.

We have already made sure that TEST1 ends in an RTS.
CREATE HOLE 100 ALLOT <CR> (CREATE AREA IN DICTIONARY.)
HOLE " TEST1" LOADRAM <CR> { TEST1 IS NCW IN HOLE)

Now type:

HOLE GO <CR>

and the routine will execute.

We can even make this a FORTH word, by including the address and
the GO instruction into a definition:

: TEST1] HOLE GO ;

Now, whenever the FORTH word TEST]1 is executed, the machine
language routine at HOLE will execute. SLICK!

- 28 -

J

SUPER FORTH MICRO MANUAL

A FEW FORTH PROGRAMMING TECHNIQUES.

The following is a list of programming techniques commonly used
in FORTH programming:

1. Whenever possible, try to do it on the stack. Try to stay
away from using large numbers of variables as pointers,
flags and indexes.

2. Make your definitions as short as possible. If a single
colon definition is starting to fill up a screen, it’s
better FORTH strategy to break it up into several words.

3. It s better to place fewer commands on a line and use
more lines and more screens, then to pack FORTH screen
lines completely full.

4. Whenever possible, use comments. You“"ll be glad you did
later. Remember, unlike BASIC REM statements, FORTH
comments aren’t compiled into definitions, and therefore
they do not slow down execution.

5. Indent nested LOOPS and nested IF/THEN statements. This
makes it a lot easier to see what’s going on.

EXAMPLE :

SCREEN #1

0)

1) : TEST 100 0 DO ." THIS IS" CR

2) 10 0 DO ." SUPER" CR LOOP (WE INDENT INNER LOOP)

3) ." FORTH" CR LOOP ;

4)

5)

6. To take best advantage of the TOP DOWN programming
structure of FORTH, it s better to start programming on
paper, rather than on the screen as you might with BASIC.

7. On FORTH screens, line zero is usually reserved for a

comment, and not program code. This allows you to use the
word INDEX to search through a group of FORTH screens
guickly and easily.

- 29 =

SUPER FORTH MICRO MANUAL

79-STANDARD REFERENCE WORD LIST

The following is a short list of a few of the more commonly used
79-STANDARD FORTH words. This is by no means a complete list. For
a complete list, consult the main manual.

ABS

ALLOT

AND

BEGIN

BLOCK

C!

ce

CONSTANT
DECIMAL
DEPTH

DO

DROP

DUP

ELSE

EMIT
EMPTY-BUFFERS

EXPECT

Change the top value on the stack into its
absolute value.

Allocate a number of bytes in the dictionary for
a list, or table.

Logical AND.

Starts a loop of an unpredictable number of
times.

Brings data stored on disk into memory.

Store a byte into the address on the top of the
stack.

Fetch a byte from the address on the top of the
stack.

Defines a name for a value which doesn’t change.
Sets to ten the base of displayed numbers.
Calculate how many values are on the stack.
Start a loop of a known number of times.
Discards the top value on the stack.

Duplicates the top value on the stack.

Marks a program path to execute if decision value
is false.

Send a character to the display.
Erase the storage area reserved for disk blocks.

Obtain a number of characters form the keyboard.

SUPER FORTH MICRO MANUAL

FLUSH
FORGET
HEX
IF
KEY
LEAVE

LIST

LOAD

LOOP

MOD

NOT
OR

OVER

REPEAT

ROT
SPACE
SWAP
THEN
UNTIL
VARIABLE
WHILE

>R

Write data in memory out to disk.

Remove user defined word from dictionary.

Sets to 16 the base for displayed numbers.
Marks the start of a branch or decision choice.
Obtain one character from keyboard.

Marks a midpoint exit for a DO-loop.

Display the the text contents of a storage block
(Displays a FORTH Editing Screen).

Compiles into the dictionary a program stored in
text form on disk.

Marks the end of a DO-loop.

Divide two values on the stack, leaving only the
remainder.

Reverses a truth value from true to false,
Logical OR.

Duplicates the second stack value and places it
on the top of the stack.

An alternate ending for a BEGIN-loop. Used with
WHILE.

Rotate the third number on the stack to the top.
Print a space.

Interchanges the top two numbers on the stack.
Marks the end of an IF...ELSE...THEN decision.
Marks the end of a BEGIN-loop.

Defines a name for a two byte storage cell.
Marks a mid-loop exit in a BEGIN/REPEAT loop.

Moves a number from the parameter stack to the
return stack.

- 31 -

SUPER FORTH MICRO MANUAL

R>

0<

0>

1+

2+

Moves a number from the return stack to the
parameter stack.

Create a dictionary entry for the word following

the colon.

Ends the dictionary entry for the word.
Multiplies two numbers on top of the stack.
Divides . two numbers on top of the stack,

Divides two numbers, leaving both quotient and
remainder. '

Adds two numbers on top of the stack.
Subtracts two numbers on top of the stack.
Stores a two byte value into an address.

Adds the number on the top of the stack to the
contents of an address.

Fetches a value from an address.
Returns the Parameter Field Address of a word.
Compares two values on the stack for equality.

Test if top value on stack is equal to zero.

Test if second stack value is less than top stack

value.
Test if top stack value is less than zero,

Test if second stack value is greater than top
stack value.

Test if top stack value is greater than zero.
Increases top stack value by one.
Decreases top stack value by one.

Increases top stack value by two.

- 32 -

——

SUPER FORTH MICRO MANUAL

2- Decreases top stack value by two.

- 33 -

SUPER FORTH MICRO MANUAL

BASIC TO SUPER FORTH TRANSLATION TABLE

The following table is intended only as a stepping-stone to get
BASIC programners thinking in terms of FORTH. Do not make the
mistake of using BASIC programmlng strategy for FORTH programming.
FORTH structured programming is more efficient and more powerful
(See section on structured TOP-DOWN/BOTTOM-UP PROGRAMMING).

Return absolute wvalue of
number.

AND :

Logically AND two numbers

ASC :

Return ASCII value of a
character in a string.

ATN

Returns arctangent of
a number.

CHRS :

Convert ASCII code to
character.

CLOSE :
Close an opened channel.
CLR :

Re-allocate memory.

SUPER FORTH

Return absolute value of a number
on the stack.

AND :

Logically AND two numbers on the
stack.

NO SIMILAR COMMAND *

FATN :

In floating point mode, returns
arctangent of a number on the
stack.

NO SIMILAR COMMAND * EMIT

CLOSE :
Close an open channel.

NO SIMILAR COMMAND *

- 34 -

SUPER FORTH MICRO MANUAL

CMD :

Re-direct output.
CONT :

Re-start program.
Cos :

Returns cosine of a
number.

DATA ;:

Store information within
a program.

DEF FN :
Define a function.
DIM :

Define an array.

END :

End a program.

EXP :

Return e to the power
of x.

FRE :

Return amount of
available RaAM.

GET :
Read keyboard.

GET#

CMD CMDI
Re-direct input and output.

NO SIMILAR COMMAND *

FCOS :

In floating point mede, returns
cosine of a number on the stack.

c, .,

Store information within a
dictionary location.

NO SIMILAR COMMAND *

1ARRAY 2ARRAY MDIM LDIM

befine various dimensional
matrices.

EXIT QUIT :

Exit execution of FORTH words.
FEXP :

In floating point mode, return e
to the power of the number on the
stack.

FRE :

Return amount of available RAM.

?TERMINAL :
Read keyboard.

GET# :

- 35 -

SUPER FORTH MICRO MANUAL

Get character from a file.
GOSUB :

Go to subroutine.

GOTO

execute program out of
seqguence.

IF...THEN... :
Perform a decision.
INPUT :

Input information.

INPUT# :

Input information from
a file.

INT :

Return the integer value
of a number.

LEFTS :

Return left string.

LEN :

Return length of string.
LIST ;

List program.

LOAD

Load a program into
memory.

Get character from a file.

NO SIMILAR COMMAND *

NO SIMILAR COMMAND *

IF...ELSE...THEN... CASE :
Perform a decision.
INPUT KEY SINPUT :

Input various forms of
information.

INPUT# :

Input information from a file.

FINT

In floating point mode, return
the integer value of a number on
the stack.

LEFTS :

Return left string.

SLEN :

Return length of string.

LIST DECOMPILE :

List FORTH screens, decompile
FORTH word.

LOAD :

Load a set of FORTH screens and
compile them into memory.

36 -

SUPER FORTH MICRO MANUAL

LOG : FLOG FLOGX :
Return natural log In floating point mode, return
of a number. various log functions of a number

on the stack.

MIDS : MIDS :

Return middle string. Return middle string.

NEW : FORGET EMPTY :

Delete program. Delete FORTH words.

NEXT : DO...LOOP BEGIN...AGAIN
BEGIN...UNTIL BEGIN...WHILE... :

Looping structure. Various looping structures.

NOT : NOT :

Reverse logical value. Reverse logical value.

OPEN : OPEN :

Open a file. Open a file.

OR : OR :

Logically ORs two numbers. Logically ORs two numbers.

PEEK : @ :

Reads a memory location. Fetch value from memory
location, placing it on the
stack.

POKE : LI

Store a value in memory. Store a value in memory.

PRINT : . $. .85 EMIT :

Print a string or value. Various printing commands.

PRINT# : PRINT#

Print to a file. Print to a file.

- 37 =

SUPER FORTH MICRO MANUAL

READ :

Read DATA statements.
REM :

Commentary.

RESTORE :

Reset DATA pointer.
RETURN :

Return from subroutine.
RIGHTS

Return right string.
RUN :

Run program.

SAVE :

Save a program.

SGN :

Returns signum value
of a number.

SIN

Returns sine value of a
number.

SPC
Print spaces.
SOR :

Return square root of a
number.

NO SIMILAR COMMAND *

{) :
Commentary.

NO SIMILAR COMMAND *

LEAVE :

Exit a DO 1loop.
RIGHTS :

Return right string.
"Type name of word" :
Execute FORTH word.

FLUSH SAVE-BUFFERS SAVE-FORTH
APPLICATION :

Various saving commands.

FSGN :

In floating point, mode returns
signum value of number on the
stack.

FSIN :

In floating point mode, returns
sine of a number on the stack.

SPACES :
Print spaces.
FSOR :

In floating point, return
square root of a number.

- 38 -

SUPER FORTH MICRO MANUAL

STATUS :
Return 1I/0 status.
STRS .:

Convert numeral to ASCII
string.

5YS

Jump to memory location.
TAN :

Return the tangent of a
number.

VAL

Return numeric value of
a string.

WAIT :

Wait for condition.

ST :
Return I/0 status.
<# #S SIGN HOLD #>

Converts numerals to ASCII string.

S¥S SYSCALL :

Jump to memory location.

FTAN :

In floating point mode, return
the tangent of a number on the
stack.

SVAL :

Return numeric value of a string.

BEGIN. ..UNTIL BEGIN...WHILE

Loop until condition.

*=These commands are either unnecessary, or FORTH performs them

differently.

39 -

SUPER FORTH MICRO MANUAL

#BUFF 15

~-> 15

. B8

79-STANDARD WORD LIST 30
: 11

;11

APPLICATION 17

backup copy 7

BASIC translations 34
characters per line 13
CODE 25

colon definition 11
comments 14

DOT 8

EMPTY-BUFFERS 15

END-CODE 25

exit routines 26
extending the system 17

F 15

FIRST-IN-LAST-OUT structure 8
FORTH Assembler 25

FORTH Assembler looping words
FORTH Assembler syntax 26
FORTH Assembly Branching 26
FORTH EDITOR SCREENS 13
FORTH Extensions 13

FORTH math operation 9
FORTH versus BASIC 8
FORTH word syntax 9

GO 28

lines per screen 13

LIST 14

LOAD 15

loading machine language files
loading other programs 27
loading screens 15
LOADRAM 28

master disk 7

OK 11

programming technique 29
relative files 17
SAVE-FORTH 7

Index

25

27

40 -

SUPER FORTHE MICRO MANUAL

saving FORTH screens 15
screen zero 18

SQUARE 19

stack B8

stack manipulation words 9
stack order 8

STARTING FORTH 2

status register 27
structured programming 25
THRU 15
TOP-DOWN/BOTTOM-UP PROGRAMMING 19
W 14

WIPE 14

word list 30

working copy 7

X register 27

XSAVE 27

~ 41 -

