'FASSEM

THE FAST ONE

The Assembler/Disassembler for your CBM 64

Variables and Labels

All variable names with the excepti
r ption of arrays can now be of
must not cgntam reserved words (such as TO and FOR)and m?,sf:::gzg-th' bul:
sv?teml variable names (such as ST and TI). For example, MESSAGE1 Sg'l: -
rrzt.ogn_:sed as be_lng_ different from MESSAGE2s. Svst;am variables a:e ns(:::
B:g?msed by their first two letters only, to maintain compatability with existin
C programs. Any space included in variable names are ignored :

EXAMPLES: CIA1 =66320 |

CIA2=56576

SID=$D400

MESSAGE$="PRESS ANY KEY TO BEGIN”

IN
KEYBOARD%=PEEK(197)

A new command has been included to make use of variables much easier

LVAR

FORMAT: LvAR
ABBREVIATION: L shift v

ACTION: Lists all current numeric variables |
with their values, in the order that
useful when writing machine code
values of all labels after assembly,

integar and floating point) together
they were created. This command is very
Programs, as it can be used to examine the

The Assembler

Assembler source code is written
tommands to initiate and finish asse
are used and no spaces are necessar
the operand. Multi-statement lines ar.
single statement lines as these are m

PC

on ordinary BASIC lines, with special
mbly. Standard 6510 (6502} mnemonics
¥ between the assembler mnemonic and
€ allowed, although it is wise to use only
uch easiertoreadandalter at a later sfage.

memory just above the BAS
operations. However, PC can
start of any piece of machine
EXAMPLES: PC=16384
PC=BEGINNING

IC interpreter, which is not affected by BA- ¢
be changed at any time and should be set to 1=
code before it is assembled. .

The location where the next machine code instruction will be assembled canbe
found by examining the value of PC.

EXAMPLES: PRINTPC
FINISH=PC

PC can also be changed at any time during assembly, by placing the appropriate
instruction in the source code. This allows several pieces of machine code to be
assembled at different places in memory during the same assembly.

Entering and Exiting the Assembler

When the command ENTER is encountered in a program, control is handed over
to the assembler and pass one is initiated. The position of the ENTER command
is stored for pass two, as is the current value of PC. During pass one, all label
addresses are calculated and the syntax of the machine code instructions is
checked. The current value of PC, which is updated continuously is used in place
of all unknown labels, so that the addressing modes of instructions in which
they occur can be calculated accurately.

When the command EXIT, or the end of the program is encountered during pass
one, pass two of the assembler is initiated. During this pass, the source code is
actually assembled and stored in memory. When EXIT, or the end of the program
is encountered during this pass, control is handed back to the BASIC interpreter.
This allows machine code to be mixed with BASIC, although the full power of
machine code can only be realised if it is used alone.

The Source Code

As stated earlier, the assembler uses standard 65610 (6502) mnemonics. In the
following, XXX represents a three letter assembler mnemonic.

ADDRESSING MODE FORMAT
ACCUMULATOR XXX A
IMMEDIATE XXX operand
ABSOLUTE XXX operand
ZERO PAGE XXX operand

XXX operand, X or LDA operand, Y
XXX operand, X or LDA operand, Y
XXX (operand, X)

XXX (operand), Y

XXX (operand)

XXX operand or XXX operand(see below)

INDEXED ABSOLUTE
INDEXED ZERO PAGE
INDEXED INDIRECT
INDIRECT INDEXED
INDIRECT ABSOLUTE
RELATIVE

Accumulator Addressing

Because of the existence of this acaressing mode, it is unwise to use the variable
A as a label. In some cases, it could be read as part of an assembler instruction.

Branch Instructions

Branch instructions require an offset, which is added to the low byte of the
current program counter if the branch is valid. In practice it is tedious to have to
calculate the offset, so the assembler calculates it automatically from the
current value of PC and the operand, which of course can be a label.

EXAMPLES: BNE FINISH
BCS sCOFB

The assembler allows an offset to be used if desired. If the branch is forwards,
count the number of bytes between the branch instruction and the destination
instruction, without including either. If the branch is backwards, count the
number of bytes between the destination instruction and the branch instruction,
including both, and subtract this from 256 (hex 100). The result is the offset,
which should be used as the operand.

EXAMPLES: BNE#3
BEQHSFO

All numeric operands can be any numeric expression, providing it can be
reduced to-a number in the correct range. The assembler automatically uses
zero page addressing in place of absolute addressing wherever possible.

Comments

Anything following a semi-colon in the source code is treated as a comment
(similar to a REM statement in a BASIC program). Comments can appear alone
on a line or they can follow an instruction.

EXAMPLES: 210 LDA LO(IRQVEC); GET LOW BYTE
1230; ROUTINE TO GET DIRECTION
3500 RTS: EXIT ROUTINE

NOTE: Reserved keywords in acomment are still tokenized (stored as one byte in
the source program). Therefore, abbreviations of keywords will appear as the
entire keyword when the program is listed (? will appear as PRINT etc.). This is
unfortunate, but necessary because the semi-colon is also used in PRINT
statements, where the code following must be tokenized.

Defining Labels

Labels are defined by placing a full stop followed by the Ilabel name at the
relevant position in the source code. Labels are treated as ordina ryfloa;n:g polmt
variables and are stored in the same way. Each iahgltakes up s:ven y es{p_ulg
the length of the name in memory. It is therefore wise to keep t Tnameshalrlé
short. A sensible length is from four to eight characters. The ia"he name s Puh
indicate what the machine code routine is todo, as this njakes Si-gﬁ;é;irégs ;nz
program at a later stage much easier. (See also the section on

LABELS).

EXAMPLES: 100 .TRANSFER
170 HELP
1870 .BIGBANG

Assembler Directives
BYT

BYT is followed by single byte numbers (or numeric expressions wh:ci‘rt;:lér;tzi
reduced to a single byte) separated by ccmmas. These num:EI‘S are s
memory in the order in which they appear in the source code.

EXAMPLES: 130 BYTSFF,$C0,223,ASC ("H").2
1120 BYTO,1,2,128,129,130

WRD

WRD is followed by double byte numbers (or numeric expressions v;l'lnch :;:\Obre
reduced to two bytes) separated by commas. The numbers_are stored inm Y
in standard 6510 format (the low byte followed by the high byte).

EXAMPLES: 210 WRDIRQVEC, NMIVEC, DEEK(792)
330 WRD$COOO, $COFB, $C11D

NUM _ |)
NUM is similar to WRD, but the numbers are stored with the high byte first.

EXAMPLES: 1710 NUM1000,2000,3000,4000
2130 NUMSC1,5C2,5C3

TXT

TXT is followed by a string expression. The ASCII code of each character inthe ¢

string is stored in memory.

EXAMPLES: 1200 TXT”"PRESS ANY KEY TO BEGIN”
1930 TXTMESSAGE1$+MESSAGE2$

Display of Assembly Code

SETHEX

FORMAT: SETHEX
ABBREVIATION: S shift E

This command sets output of the assembler and disassembler to hexadecimal
mode. When the assembler is loaded and when RUN/STOP and RESTORE are
pressed, output is automatically set to this mode.

SETDEC

FORMAT: SETDEC
ABBREVIATION: SET shift D

This command sets output of the assembler and disassembler to decimal mode.
OFF

This assembler directive switches output from the assembler off.
ON

This assembler directive switches output from the assembler on. During

tahsserr!hler pasds thwo, the code is sent to the current output device (see output to
e printer and the OUT command). Qutput is automatically switched

the ENTER command is executed. i SIS

EXAMPLES OF OUTPUT FORMAT

HEXADECIMAL MODE

Ccooo 20 A9 CA JSR SBRTN1
Co03. A9 20 LDA $20
Co05 20 D2 FF JSR $FFD2
DECIMAL MODE 49152 32 169 202 JSR SBRTN1
491556 169 32 LDA $20
49157 32 210 255 JSR $FFD2

Assembler Error Messages
Pass One Errors
Redef'd Label Error

The same label has been defined twice, or a label has been defined with the
same name as an existing floating point variable. This error message will al%o
occur if the same piece of code is assembled twice, without clearing the
variables after the first assembly.

Syntax Error

This error can occur in a number of different circumstances. Alabel name which
contains a reserved keyword will generate this error, as will an assembler
mnemonic that is not recognised. Although spaces are not usually required
between mnemonics and operands, they are necessary in some cases, for
example in the instruction STA NAME. Without the space, the TA and N would
be tokenized as the function TAN, which of course would not be recognised by
the assembler. There are several ways in which this tokenization can occur and
if an unexpected syntax error is reported, this may well be what is wrong.

Pass Two Errors
Branch Qut of Range Error

This error message occurs when a branch instruction could notbranch as far as
the destination address. Relative branches are limited to distances of 127 bytes
forwards and 128 bytes backwards. If this error occurs, use a different
construction for the branch.
For example, replace BEQ LABEL1 with BNE LABEL2

JMP LABEL1

LABEL2

Undef’d Variable Error

this error indicates that either a label or a variable used in an operand has not
been defined.

In addition to these errors, all normal BASIC errors concerning numeric
operations can occur during pass two.

The Disassembler
DISASSEMBLE

FORMAT: DISASSEMBLEstart,end
ABBREVIATION: DIS shift A

this command disassembles the area of memory from the start address to the
end address. If the comma is included and the end address is omitted, the
disassembly will not stop until the RUN/STOP key is pressed. If both the comma
and the end address are omitted, only the start address will be disassembled.
Disassembly can be paused by pressing the space bar and re-started in the same
way. While the pause is on, pressing return will insert blank lines. Pressing the
H key switches output to hexadecimal mode and the D key switches output to
decimal mode. Disassembly can be stopped at any time by pressing the
RUN/STOP key. See also the SETHEX, SETDEC and OUT commands.

Disassembly Format
Address Byte 1, Byte 2, Byte 3, Assembler Code, ASCIl Codes Screen Codes.

Dots are substituted for those ASCIl characters that would cause a messy
screen display. The screen codes are the characters that would result if BYTET,
BYTE2 and BYTE3 were poked to the Commodore 64 screen.

EXAMINE

FORMAT: EXAMINEstart,end
ABBREVIATION: EXA shift M

This command lists the contents of the memory locations from the start address
to the end address, giving them in decimal, hexadecimal and binary. If the
comma is included and the end address is omitted, listing will continue until the
RUN/STOP key is pressed. If both the comma and the end address are omitted,
only the contents of the start address will be listed. The controls are the same as
those for disassembly. See also the SETHEX, SETDEC and OUT commands.

Examine Format

Address Decimal, Hexadecimal, Binary, ASCIl Code, Screen Code.

Where the ASCIl code is a control character, the effect of this character is
printed in reverse field.

BLACK
WHITE

CYAN
PURPLE
GREEN
BLUE
YELLOW
ORANGE
BROWN
L. RED
D. GREY
M. GREY
L. GREEN
L. BLUE
L. GREY
L-CASE
U-CASE
C/S ON
C/8 OFF
SPACE
CRSR-L
CRSR-R
CRSR-U
CRSR-D
RVS ON
RVS OFF

HOME
INSERT
DELETE
FUNC 1
FUNC 2
FUNC 3
FUNC 4
FUNC 5
FUNC 6
FUNC 7
FUNC 8
RETURN
S/RTN

Forground colour Black
Forground colour White
Forground colour Red
Forground colour Cyan
Forground colour Purple
Forground colour Green
Forground colour Blue
Forground colour Yellow
Forground colour Orange
Forground colour Brown
Forground colour Light Red
Forground colour Dark Grey
Forground colour Medium Grey
Forground colour Light Green
Forground colour Light Blue
Forground colour Light Grey
Switch to lower case
Switch to upper case
Enable commodore. shift
Disable commodore/shift
Space

Move cursor left

Maove cursor right

Move cursor up

Maove cursor down

Turn reverse field on

Turn Reverse field off

Clear screen

Home cursor

Insert space

Delete character

Function key 1

Function key 2

Function key 3

Function key 4

Function key 5

Function key 6

Function key 7

Function key 8

Carriage return

Shift return

| OUTPUT TO DEVICES OTHER THAN THE SCREEN EXTENSIONS TO BASIC
|. Disk Commands

.‘ Out In all DISK COMMANDS, device and drive numbers are optional. If they are left
I FORMAT: OUTfile, string out, the computer assumes that the device number is eight and the drive number
ABBREVIATION: O shift U is zero. the drive number should be omitted if you are using a single drive.

ACTION: This command has exactly the same effect as the CMD command in
| commodore BASIC (which is still available), with the exception that output is Din

| sent to the screen as well as to the file. This is necessary because of the way in FORMAT: DIRdevice, drive
which the assembler and disassembler format their output. CMD will NOT work ABBREVIATION: NONE
with the assembler and disassembler.

EXAMPLES: OUT4 ACTION: Lists the directory of a disk.
OUTF EXAMPLES: DIR
OUT4,MESSAGES$ DIRA

To send a disassembly to a printer, merely open a file to the printer, use the OUT DIRA%, B%

command and instruct the computer to disassemble the code. DIR9, 1

EXAMPLES: OPEN4,4:0UT4:DISASSEMBLESC1AD,$C20A:PRINT 4:CLOSE4
OPEN4:EXAMINE49200,49317:PRINT 4:CLOSE4 STATUS

NOTE: The screen codes will not be sent to the printer. 1 FORMAT: STATUSdevice

ABREVIATION: ST shift A
ACTION: Reads and displays the disk error channel.

EXAMPLES: STATUS
STATUS10
STATUSA

corPy

FORMAT: 1 COPY”newname=oldname”, device, drive
2 COPY"newfile=oldfile,oldfile2,oldfile3,
oldfile 4, device drive

. ABBREVIATION: CO shift P

ACTION: 1.Makes a copy of a program or file on a disk.
2 .Combines from two to four sequential files ACTION: on a disk.

EXAMPLES: COPY“BACKUP=ORIGINAL"
COPY“MASTERFILE=NAMES,ADDRESSESS PHONE
NUMBERS",9 A
COPY"GAME=0BJECT CODE",8.1

DISK

FORMAT: DISK “name, ID” device.drive
ABBREVIATION: DI shift S

ACTION: Formats a disk. The ID is a two character code wihch should be
different for each disk. This command can also be used to rename and clear the
directory of a disk which has already been formatted. To do this , the ID code
must be omitted.

EXAMPLES: DISK"OBJECT CODE,OC”
DISK"GAMES DISK".9

INIT

FORMAT: INITdevice,drive
ABBREVIATION: IN shift |

ACTION: Initialises the disk drive, copying the Block
Availability Map (BAM) from the disk into drive
memory This command must be used when two
disks with the same ID code are exchanged.

EXAMPLES: INIT
INITA,.B
INITS

RENAME

FORMAT: RENAME ‘newname=oldname’,device drive
ABBREVIATION: RE shift N

ACTION: Renames a file on the disk. !

EXAMPLES: RENAME”OBJECT CODE=GAME 0OBJ”
RENAME"”NAMES=FILE1",9
RENAMENS$+"="+0%$,10,1

SCRATCH

FORMAT: SCRATCH ‘name’,device,drive
ABBREVIATION: S shift C

ACTION: Erases a file from the disk.

EXAMPLES: SCRATCH"SOURCE CODE"
SCRATCHAS,9

TIDY

FORMAT: TiDYdevice drive
ABBREVIATION: T shift |

ACTION: Validates a disk. This reorganises the disk, creating a new BAM. This
command should never be used on a disk which contains random files.

EXAMPLES: TIDY

TIDY8 1
TIDYA%

PROGRAMMING COMMANDS
“Programming Commands

APPEND

FORMAT: APPEND “name” device
ABBREVIATION: A shift P

ACTION: Appends a program on tape or disk to the one currently in memory. The
appended program will appear at the end of the original program when it is listed.
This command generates a SYNTAX ERROR if used in a program.

EXAMPLES: APPEND “"PROG2"
APPENDAS 8

AUTO

FORMAT: AUTQstart, increment
ABBREVIATION: A shift U

ACTION: Generates line numbers automnatically. The start and increment are
optional and if left out, the computer assumes that both are ten. If the current
line number is changed using the cursor, the increment will be added to the new
number to give the next line. To return to normal operation, either enter a blank
line {which will not be deleted) or enter an immediate command.

EXAMPLES: AUTO
AUTO100,1
AUTO1000

DELETE

FORMAT: DELETEfirstline-lastline
ABBREVIATION: DE shift L

ACTION: Deletes the specified range of program lines.

EXAMPLES: DELETE10-350
DELETE-400
DELETES00-

FIND

FORMAT: FINDstring
ABBREVIATION: F shift |

ACTION: Searches a program for occurences of a string and lists all lines in
which it is found. '

EXAMPLES: FINDPRINT
FINDJSR $FFDB

oLD

FORMAT: OLD
ABBREVIATION: O shift L

ACTION: Recovers a program when it has been NEWed or a cold reset has been
performed. This command will not work it new program lines have been entered
or variables have been defined. .

RENUMBER

FORMAT: RENUMBERSstart,increment
ABBREVIATION: REN shift U

ACTION: Renumbers a program, changing all RUN, GOTO, GOSUB, ON...GOTO,
ON..GOSUB, THEN and RESTORE commands. The start and increment are
optional and if left out, the computer assumes that both are ten.

EXAMPLES: RENUMBER

RENUMBER100,1
RENUMBER1000

RKILL
FORMAT: RKILL
ABBREVIATION: R shift K

ACTION: Removes all REM statements on multi-statement lines and the
commenis following REM statements if they occur alone onaline, sothat GOTO
and GOSUB statements refering to such lines still work

Memory Handling Gommands
BLOAD

FORMAT:BLOAD " name” start location,device
ABBREVIATION: B shift L

ACTION: Loads a program from tape or disk at the start location. This command
will not work if the program was saved on tape with a secondary address of one.
Instead, the program would load at the.location from which it was saved.

EXAMPLES: BLOAD”OBJECT CODE",$CO00 8
BLOADAS S

BSAVE

FORMAT: BSAVE"name” start location.end location+1 device,secondary address
ABBREVIATION: B shift S

ACTION: Saves the block of memaory from the start location to the end location.
The secondary address only applies if saving to tape. A secondary address of one
means that the program will always load at the same location in memory. A
secondary address of two causes an end-of -tape marker to follow the program
and a secondary address of three combines both these functions.

EXAMPLES: BSAVE”OBJECT CODE",$C0O00,$D000.8
: BSAVEAS,S.E+1
BSAVE"O:GAME OBJ”,16384,32768,10

BVERIFY

FORMAT: BVERIFY "name"”,device
ABBREVIATION: B shift V

ACTION: Compares the program on tape or disk with the contents of memory
starting at the location from which it was saved. If using tape, the name and
device can be ommitted. If no name is given, the first program found will be
verified.

EXAMPLES: BVERIFY*OBJECT CODE".8
BVERIFY
BVERIFY"0:GAME OB.J" 10

CLEAR

FORMAT: CLEARIlocation
ABBREVIATION: CL shift E

ACTION: Sets the top of memory and clears all variables and labels. Since the
KERNAL MEMTOP routine is called, no RS232 channels should be opened before
using this command.

EXAMPLES: CLEAR$4000
CLEARA

DOKE

FORMAT: DOKElocation,number

ABBREVIATION:D shift O

ACTION: Stores a two-byte number in memory at a given location in standard
6510 format, i.e., the low byte of the number followed by the high byte.

EXAMPLES: DOKE$4000,$FFFF
DOKEA.B
DOKE788,49152

FILL

FORMAT: FiLLstart,end,number
ABBREVIATION: FI shift L

ACTION: Fills the memory from the start location to the end location with the
given number.

EXAMPLES: FILL$4000,$5000,0
FILLS,E,N
FILL8192,16384,255

MOVE
FORMAT: MOVEstart,end,destination
ABBREVIATION: M shift O
ACTION: Moves the given block of memory to the destination location.
EXAMPLES: MOVES$4000,$5000,$6000
MOVES.E.D
MOVE14*4096,65535,16384
" Functions
DEEK

FORMAT: DEEK|location)
ABBREVIATION: DE shift E

ACTION: Returns an integer in the range O to 65535 (hex O to FFFF) which is read
from two consecutive memory locations, the first of which contains the low byte
of the number and the second the high byte.

EXAMPLES: PRINTDEEK(SFFFC)
IFDEEK(I=5000THENPRINTI
HI

FORMAT: Hl{inumber)
ABBREVIATION: NONE

ACTION: Returns the high byte of a number in the range O to 65535 (hex O to
FFFF).

EXAMPLES: PRINTHI{59953)
H=HI(A)
LO

FORMAT: LO{number)
ABBREVIATION: NONE

ACTION: Returns the low byte of a number in the range O to 65535 (hex O to
FFFF)

EXAMPLES: PRINTLO (59953)
L=LO(A)

Special Functions

Bin

FORMAT: PRINTBINnumber
ABBREVIATION: B shift |

ACTION: Prints the Binary Form of a number in the Range O to 85535 (hex O to FFFF) I

EXAMPLES: PRINT BIN 234D
EXAMPLES: PRINT BINA+B*256

HEX
FORMAT: Print Hex Number
ABBREVIATION: H shift E

ACTION: Prints the hexadecimal form of a number in the range 0 to 65535 (hex 0 |

to FFFF).

EXAMPLES: PRINTHEX%1110011000
PRINTHEXA/256+B

$

ACTION: The $ symbol precedes a hexadecimal number in the range O to FFFF.
Hexadecimal numbers are evaluated much faster than decimal number and are
also much faster than decimal numbers and are also much more convenient
when dealing with memory, so it is wise to use them wherever possible.
EXAMPLES: A=$ABSF it
PRINTBINS2FBC
POKEA,$80

%

ACTION: The % symbol precedes a binary number in the range O to
1111111111111111. Binary numbers are useful when designing characters
and when it is important to affect only certain bits of a memory location. As with
hexadecimal numbers, binary numbers are evaluated much faster than
equivalent decimal numbers.

EXAMPLES: PRINT%1101101
POKECH,%10011001
POKES3270,PEEK(53270)AND%11001111
Extended Commands
ASC
This command now returns zero when it is used with a null string.
EXAMPLES: PRINTASC (*)

FRE

This command now returns the correct value for the amount of free memory,
even if it exceeds 32K. It also no longer requires a ‘dummy value’,

EXAMPLES: PRINTFRE

X=FRE
LIST
This command now lists only line O when the instruction LISTO is executed.
POS

. This command no longer requires a ‘dummy value’.

=
EXAMPLES: PRINTPOS

P=POS
RESTORE

This command can now be used to RESTORE the data pointer to a given line.

EXAMPLES: RESTORE
RESTORE2000

NOTE: The INPUT, READ and VAL commands have been extended so that they
will now accept hexadecimal and binary numbers.

THE CHARACTER EDITOR

Operation

The character editor can be used to define two different character sets at the
same time.

Set 1 - 12288 to 14335, $3000 to $37FF
Set 2 - 14336 1o 16383, $3800 to $3FFF

Loading and saving of character sets is performed while the editor is NOT
running, using the BLOAD and BSAVE commands. This allows relocation of the
characters in memory. One or both sets can be saved at the same time.

Loading

BLOAD"data name” address,device

The address is the start location of the character set in memory (see the BLOAD
command). The device number can be omitted if using tape.

EXAMPLES

BLOAD"SET 17, 12288.8

BLOAD"SET 2", $3800
BLOAD”BOTH SETS", §3000,9

Saving
BSAVE''data name" start.end device
‘The start number is the start address of the character setin me mory and the end

number is the finish address plus 1 {see the BSAVE command). The device
number can be omitted if using tape.

EXAMPLES

BSAVE"SET 17, 12288, 143368

BSAVE"SET 2", $3800, $4000

BSAVE"BOTH SETS”, $3000, $4000.9

Of course, the character sets need not be loaded inthe specified area of memory
once they have been defined. By changing the address in the BLOAD command,
a character set can be loaded almost anywhere in memaory.

oo

The Editor Itself

" Before running the character editor, any previously defined characters should

be loaded as described above.

To break out of the editdr to load or save a character set, hold down RUN/STOP
and press RESTORE. The editor and character sets will still be in memory, totally
unaffected. In fact, because the editor sets the top of memory to 12288 ($3000)
when it is run, the character sets are virtually impossible to corrupt accidentally.

Brief instructions describing the functions of various keys are included in the
=ditor, but for canvenience there follows a list of all the keys and their functions:

KEY FUNCTION

Plot Pixel

Unplot Pixel

Change background colour of upper portion of screen
Change background colour of lower portion of screen
Change foreground colour of upper portion of screen
Change foreground colour of lower portion of screen
Change border colour

Change multicolour 1/extended colour 1

Change multicolour 2/extended colour 2

Change extended colour 3

Transfer ROM character set to RAM (UPPER or LOWER case)
Clear character set (use carefully!)

Switch to multicolour mode
Switch to extended colour mode

m.<

Invert character

Rotate character +90 degrees
Rotate character —90 degrees
Roll character left one pixel
Roll character right one pixel
Roll character up one pixel
Roll character down one pixel

+

oCc3r|

n

Get character from set (RETURN to exit)
Choose new destination character (RETURN to exit)

m m
oW

Switch to character set 1
Switch to character set 2

-
~J

In addition to these functions, the cursor control keys operate as usual, as do
HOME and CLR (which clears the character). In addition, all keys have an auto-
repeat.

How the Program Works

The character editor, besides being a useful and versatile utility, also shows how
many of the extra commands are used.

There follows a description of the functions of some of the major parts of the
program, for reference when learning how the assembler and the extra
commands work:

LINE 10

Sets top of memory to 12288 ($3000) thus protecting the character sets.
LINES 20-40

Define variables for the assembler source code.
LINE 50

Tells the assembler to begin assembly at address 49152 ($COOQO) - the start of a
free 4K buffer area above BASIC. ;

LINES 60-70
Enter assembler mode and switch output off.
LINES 80-3550

This is the assembler source code (see the section on the assembler). The
routine labelled IRQ handles the split screen graphics used in the character
editor. All of the routines have been given fairly explanatory labels (a wise
practise!) and it should be relatively simple to determine which routines handle
which functions.

LINE 3560

Exits assembler mode, returning to normal operation.
LINES 3570-5510

These lines contain only BASIC commands and all subroutines carry a REM
statement explaining their particular function. Notice the use of explanatory
variable names which have names more than two letters long. Try breaking out
of the editor while itisrunning, then use the LVAR command to see the values of
all currently defined numeric variables and labels - this command can be
extremely useful for ‘de-bugging’.

