Here’s a truly amazing machine lan-
guage assembler for the 64 and 128 (in
64 mode). “Fast Assembler” supports
multiple statement lines, labels, and
macro-like “include” files. It can as-
semble to memory or to disk. Written
very compactly, it occupies only
about 2600 bytes, leaving the rest of
memory for your source code. It also
adds to the BASIC editor several new
features useful to both BASIC and
machine language programmers.

Symbolic label-based assemblers
are the most convenient way to
write machine language (ML) pro-
grams. The instructions are entered
as source code and later assembled
into object code (the actual ML pro-
gram—the numbers in memory).
And rather than using memory lo-
cations, you can name routines
with meaningful labels. It's as if
you could enter GOSUB JOYSTICK
in BASIC.

Saving Memory By Using
The BASIC Editor

You write your ML programs for
“The Fast Assembler”’ (FA) with the
64’s BASIC editor. You save to tape
or disk as you would a BASIC pro-
gram, and listing it to a printer is
exactly the same as listing BASIC.

The FA is an extension of the
BASIC interpreter especially de-
signed for writing programs in ma-
chine language. Writing it as a
BASIC extension kept the program

Yves Han

short (under 2600 bytes) because
many subroutines of the BASIC in-
terpreter could be used. Some mod-
ifications have been made to BASIC
to make writing programs easier.
To do this, the BASIC ROM had to
be copied to its matching RAM.

Even if you don’t write pro-
grams in machine language, you
can still use the assembler because
of the new features added to BASIC
and the extra BASIC commands.
The assembler will execute a BASIC
program just like normal BASIC
would.

To start up FA, first load it as if
it were a BASIC program (don’t use
a secondary address of 1, just type
LOAD “Fast Assembler”,8. Then
type RUN. The enabling SYS is
built into the first line of the pro-
gram. The screen will clear, and a
message will appear at the top of
the screen, indicating FA has been
enabled. You can now start pro-
gramming—in BASIC or machine
language.

BASIC Modifications

And Enhancements
The following changes have been
made to the BASIC interpreter:

* Structured listings. Spaces
between the line number and the
first character on the line are not
deleted. This makes it possible to
indent lines and make listings easi-
er to read.

« List pause. You can freeze a
listing by holding down the SHIFT

The Fast Assembler

key or pressing SHIFT-LOCK. List-
ing can be continued by releasing
the SHIFT key.

» ASCII translations and hex-
adecimal/binary numbers. In
arithmetic expressions, you can use
hexadecimal and binary numbers.
Hexadecimal numbers should be
preceded by “$” and binary num-
bers by “%". You can also use a
character preceded by a single
quote ("A is the same as ASC(“A"")).
You can also use this to find the
value of a BASIC token. For ex-
ample, PRINT ‘END will print the
value 128, which is the BASIC code
for END. If you put a space be-
tween the quote and the character,
the ASCII value of the space will be
taken instead of the character.

* Variable and function
names. The rules for variable and
function names have been changed
a little bit. Instead of the first two,
the first eight characters are recog-
nized. FA recognizes NUMBER1
and NUMBER2 as separate vari-
ables, while ordinary BASIC would
consider them the same variable
(NU). Variables may contain but
not be equal to BASIC/assembler
commands or mnemonics: LAND is
a legitimate variable name, even
though it contains the keyword
AND. But variable labels starting
with TI or ST (reserved keywords)
are not automatically set to zero the
first time you use them. An excep-
tion to the eight character names is
that only the first two characters of

44 Best of COMPUTE! and Gazette

array variables are significant.

» Keywords. Because variable
and function names may contain
keywords, FA has to be able to
decide whether a keyword is a key-
word or part of a variable or func-
tion name. So the assembler
recognizes a keyword if it's fol-
lowed by a space or nonalphabetic
character. For example, in PRINT
“OK” the keyword PRINT will be
recognized as a PRINT command,
but in A$="OK":PRINTA$, the
keyword PRINT is recognized as
part of the variable name
PRINTAS. You would have to in-
sert a space (PRINT A$) if you
wanted to print the variable A$.

* REM and DATA. Capital let-
ters in REM and DATA lines are
listed as capital letters and not as
tokenized BASIC keywords. For ex-
ample, 10 rem AB lists as it is en-
tered and not as 10 rem atnpeek as
normal BASIC would do.

New BASIC Commands
AUTO step value

This command turns automatic line
numbering on and defines the step
value between the line numbers. To
enter AUTO mode, type AUTO fol-
lowed by the step value and press
RETURN. Then enter a line with a
line number. The next line number
prints automatically. To leave auto
mode, move the cursor to an empty
line and press RETURN. To turn
automatic line numbering off alto-
gether, enter AUTO only.

You can also use this command
to delete part of a program. Turn
automatic line numbering on with a
step value of one. Type the number
of the first line you want to delete
and press RETURN. Keep pressing
RETURN until you've reached the
end of the section you want to de-
lete. Instead of pressing RETURN
again and again, you can enter
POKE 650,128 and hold RETURN
down until you've reached the last
line to be erased.

OLD

If you accidentally type NEW, you
can restore your program with this
command. It can also be used if
you've installed a reset button. If
you've assembled a program and
are testing it, sometimes your com-
puter locks up. Use the reset button
and then enter SYS 4408 to restart

the assembler and type OLD to re-
store the source program. If your
program has not destroyed the as-
sembler or the source program, ev-
erything will be there.

Semicolon ()

This has the same function as the
REM statement. It need not be sep-
arated with a colon from the pre-
ceding command. For example:

10 X=0:REM SET X TO ZERO

is the same as
10 X=0;SET X TO ZERO

The semicolon in the commands
PRINT and INPUT is not treated as
a REM statement but as a separator.

Using Labels As Variables
And Addresses

Label names follow the same rules
as variable names. They can be
used in arithmetic expressions like
normal variables. You can define a
label in two ways:

You can place the label name
just before the command to which
you want to refer. If more com-
mands are on the same line, you
must separate the label from the
commands with a colon.

Or you can label the current
program counter: LABEL-
NAME=*, The asterisk (*) is a spe-
cial variable which gives the value
of the program counter. The
counter is the address where the
next instruction or datum will be
placed. You can only read the vari-
able *. You cannot assign a value to
it with the statement *=expr.

Here’s an example of using la-
bels to mark routines in a program
(don’t type this in, it’s only a frag-
ment of a program):

50 JSR DISPLAY1; JUMP TO LABELED
SUBROUTINE (LINE 90)

60 LDA $FF: BNE SKIPIT ; CONDI-
TIONAL BRANCH AHEAD TO
SKIPIT

70 TYA

80 SKIPIT: LDX #4: STA $8000,X: RTS;
TARGET OF BRANCH IN 60

90 DISPLAY1="* ; THIS LABELS THE
CURRENT PROGRAM COUNTER

100 ;

110 LDA #65: JSR $SFFD2: RTS

Remember that in the lines
above, the semicolon marks the be-
ginning of a comment which, like a
REM, is ignored by FA. The tech-
nique in line 90 is valuable if you

think you may be adding some
code at the beginning of the rou-
tine. As listed, the subroutine called
DISPLAY1 starts with LDA #65,
but later you could go in and add
some lines between 90 and 110.

Three Passes To Assemble
Three passes are required to assem-
ble source code (what you write)
into object code (an executable ML
program that the computer can fol-
low). But FA doesn’t do it by itself.
You have to insert a loop that re-
peats three times with BASIC
commands:

10 FOR PASS=1TO 3
: (Insert source code)

90 NEXT PASS:END

If you use an invalid address-
ing mode such as LSR (expr)y
you'll see ILLEGAL ADDRESSING-
MODE ERROR. Mnemonics can
only be used in program mode—
that is, in a program you execute
with RUN. If you enter a mnemonic
in direct mode, you'll see ILLEGAL
DIRECT ERROR.

Also note that for Immediate
Addressing, the argument can be
an actual number or an arithmetic
expression with a value in the range
0-255. Or you can substitute a
string expression, in which case the
assembler takes the ASCII value of
the first character as the argument.
If the string length is zero, the argu-
ment becomes zero.

Assembler Commands
Assembler commands which write
data to the output device can only
be used in program mode, other-
wise you'll get ILLEGAL DIRECT
ERROR. All assembler commands
must be included in every pass.

ORG address,mode,device,name
This command must be used at the
start of each pass. It does several
things. First, it sets the origin
(ORG), the memory address for the
beginning of the ML program. It
assigns an initial value to the pro-
gram counter. It also sets the as-
sembler mode, which should be
zero on the first two passes and one
on the third and last. ORG also sets
the output device and filename (if
necessary).

Not all arguments are neces-
sary. Also permitted are:

Best of COMPUTE! and Gazette 45

ORG
ORG address
ORG address,mode

Default values for the argu-
ments are:
address = 49152 (=$C000)
mode = 0
device = 0 and no name

If you use a mnemonic or as-
sembler command before you've
used the command ORG, you’ll see
UNDEF'D LOCATION COUNTER
ERROR.

The address assigns a value to
the program counter. Usually, you
use more than one pass to assemble
the source program. Only during
the last pass should the object code
be written to memory or to the out-
put device. Mode tells the assem-
bler when the last pass is reached.
Zero means it’s not the last pass, so
no object code should be produced,
and there’s no range checking for
arguments and no checking for too
large branches.

On the final pass, you should
set the mode to one, which signals
the last pass, when object code is
written to the output device.

Finally, you set the device
number of the output device and a
string expression which contains
the filename if the object code is not
written to memory. Zero means the
output device is memory. Be careful
not to write to memory locations
where the assembler is placed
($0801-$121B) or where the BASIC
interpreter is placed ($A000-
$BFFF).

A device number in the range
8-11 means the output device is a
disk drive. If mode is equal to one,
the assembler will open a PRG file
with the name specified in the argu-
ment name. The logical file number
will be eight.

BYTE expression,expression,...
This command writes numbers or
characters to memory or the select-
ed output device. It can have one or
more arithmetic or string expres-
sions separated by commas. Arith-
metic expressions must give a
positive value less than 256. The
value will be placed in one byte.
Each character of a string expres-
sion will be placed in one byte.

WORD expression,expression, ...
This has the same function as BYTE

except that values of arithmetic ex-
pressions must be positive and less
than 65536. The value will be
placed in two bytes in low/high
format.

INCLUDE name,device

This command assembles a file
from disk and inserts the resulting
object code into memory or the out-
put device. The file must be a nor-
mal PRG file and may not contain
BASIC commands which cause a
branch to another line or stop the
program. Also not permitted are the
BASIC commands DEF, RETURN,
CLR, NEW, and the assembler
commands SEND and INCLUDE.

The file is opened with a logi-
cal file number of nine. The file is
closed when the end of the file is
reached. The name is the filename
you're including, and the device
number can be 8-11 (use 8 if you
have a single drive). If you have
only one disk drive and you assem-
ble to disk, the file(s) for the com-
mand INCLUDE must be on the
same disk to which you assemble.

All variables and labels are
global, which means you can pass
parameters to INCLUDE files so
they can work like macro-instruc-
tions. Let’s say you're writing a pro-
gram that needs to access several
different disk files, and there are
several points in the program that
use the Kernal routines SETLFS,
SETNAM, and OPEN. You could
write the source code that performs
these Kernal calls and save it to disk
under the program name “OPEN"
to be used later. Then, in the main
program, use INCLUDE “OPEN"
,8. When the source code is com-
piled, the series of commands from
the OPEN file are automatically in-
serted in the proper place in the
object code.

SEND stringexpr

The command SEND may be used
only if the object program is written
to disk. It’s used to link object code
to a BASIC program. Stringexpr
must contain a BASIC line with line
number. If you forget the line num-
ber, you’ll get MISSING LINE
NUMBER ERROR. If you want to
send more than one line, you must
use SEND for each line, and you
have to send the lines in the right
order. You must send the lines

before the actual object code is writ-
ten to disk. The address in the ORG
command must be the start of
BASIC RAM (2049).

UNSEND

If you load a program which con-
sists of both BASIC and ML, the
interpreter has to know where the
BASIC part ends. UNSEND places
a mark which the computer recog-
nizes as the end of the BASIC part.

Example Programs

100 FOR PASS=1 TO 3:PRINT
“PASS"PASS

110 ORG $C000

120 IF PAS=3 THEN OFG $C000,1

130 START: LDX #0

140 LOOP: LDA TEXT,X:PRINT TEXT,

150 BEQ EXIT

160 JSR $FFD2

170 INX

180 BNE LOOP

190 EXIT: RTS

200 PRINT *

210 TEXT: BYTE “EXAMPLE 17,0

220 NEXT PASS:END

Lines 110 and 120 show how
to use the command ORG. In every
pass, line 110 sets mode 0. But in
pass three, line 120 sets mode 1.
The object code will start at 49152
(hexadecimal $C000). Line 200
prints the current value of the loca-
tion counter (*).

You can assemble the program
with the command RUN. The pro-
gram will give the following

output:

PASS1 0 49165
PASS2 49165 49166
PASS3 49166 49166

The first column is the pass
number. The second column is the
value of the label TEXT in the in-
struction LDA TEXT,X in line 140.
The third column is the value the
label should have when the source
code is assembled. You can see that
only in pass three are these values
equal to each other. This is because
the assembler defaults to zero-page
addressing. In pass one, TEXT has a
value less than 256 so zero-page
addressing is assumed. This means
a two-byte instruction instead of
three. The value assigned to TEXT
will be too low, as you can see in
pass one. In pass two, this value,
which is too low, will be used in
assembling line 140. The assembler
decides not to use zero-page ad-
dressing, so TEXT is assigned the
correct value. In pass three, the cor-

46 Best of COMPUTE! and Gazette

rect value replaces the previously
incorrect values during assembly.

5; EXAMPLE PROGRAM 2

6;

10 PRINT CHR$(147)

11 DEF FN H(X)=INT(X/256)

12 DEF FN L(X)=X-256*FN H(X)

20 PRINT:PRINT” Loader maker”

30 PRINT:PRINT” Enter the name of the
program that”

40 PRINT” has to be loaded by the
loader.”

50 INPUT” >";NAME$

60 PRINT:PRINT” Enter the name of the
loader.”

70 INPUT” >";N$

80 PRINT:PRINT” Enter the address to
execute the”

90 PRINT” pi am.”

100 INPUT” >";ADDRESS:ADDRESS =

ADDRESS-1

105 ;

110 FOR PASS=1 TO 3

115;

120 ORG 2049

130 IF PASS=3 THEN ORG 2049,1,8,N$

135;

140 SEND “10 SYS+STRS$(LOADER)

150 UNSEND

155;

160 LOADER: LDA #8:TAX:LDY #1

170 JSR SFFBA

180 LDX #FN L(NAME)

190 LDY #FN H(NAME)

200 LDA #LEN(NAMES$)

210 JSR $FFBD

220 LDA #FN H(ADDRESS):
PHA

230 LDA #FN L(ADDRESS):
PHA

240 LDA #0:JMP $55D5

250 NAME: BYTE NAMES$

255 ;

260 NEXT PASS:CLOSE 8:END

The above example program
shows how to use the commands
SEND and UNSEND to write a pro-
gram that includes a SYS within a
BASIC line.

The main routine at 160-250
illustrates how to load another pro-
gram from an ML program. Note
that the lines up to 100 are BASIC;
they prepare the variables and de-
fined functions for use in the source
code. If you assemble the program
with the command RUN, you'll get
a program that can load another ML
program from disk and execute it.
The object code will be written to
disk.

In line 140, the command
SEND writes a BASIC line to the
output device by which you can
load and run the program as if it
were a normal BASIC program.
Line 150 marks the end of the
BASIC part of the object code.

The INPUTSs in lines 50, 70,

and 100 permit you to enter the
parameters for the object program
when the source program is assem-
bled. In this way you can make
different object programs with one
source program.

Another advantage of writing
the assembler as a BASIC extension
is that you can assemble a program
to the top of memory. Use the fol-
lowing construction to do this:

100 POKE 56,PEEK(56)—4:CLR

110 TOPOFMEM =PEEK(55) +256*(PEEK
(56)+4)

120 ADDRESS=0:MODE=0

130 FOR PASS=1TO 3

140 ORG ADDRESS

150 IF PASS=3 THEN ORG ADDRESS,
MODE

. Source code

900 NEXT PASS

910 IF MODE=1 THEN END
920 ADDRESS=TOPOFMEM —*
930 MODE=1:GOTO 130

In this program, the source
code goes through six passes. Dur-
ing the first three passes the loca-
tion counter remains at zero. Mode
0 is used so the object program will
not be written to the output device.
The length of the program is calcu-
lated and subtracted from TOPOF-
MEM. This address is used in the
second three passes to assemble to
the top of memory. MODE is set to
one so the assembler will write the
object code to the output device
during the sixth pass (actually pass
three of the second time around).
Line 100 is used to reserve 1K at the
top of memory for the object
program.

Large Programs

If your source program won't fit
into memory, you can split your
program and use the command IN-
CLUDE. For example:

10 FOR PASS=1TO 3

20 ORG ADDRESS
30 IF PASS=3 THEN ORG ADDRESS,1

: Part 1 of source code

90 INCLUDE “PART 2”,8
100 INCLUDE “PART 3”8
110 NEXT PASS:END

The labels and variables used
in the INCLUDE files will be global
variables, which means you can use
them in arithmetic expressions ev-
erywhere in the program.

Another possibility is chaining
the programs, but then you can't
use a FOR-NEXT loop for the
passes. You must use another way
to define the passes. For example:
FIRSTPROGRAM
10 PASS=PASS + 1:IF PASS=4 THEN

END

20 ORG ADDRESS
30 IF PASS=3 THEN ORG ADDRESS,1

. Source code

90 i.OAD"SECONDPROGRAM",B
SECONDPROGRAM

. Source code

9% i.DAD"FIRSTPROGRAM",S

Note that these are just exam-
ples. You'd have to insert your own
source code as indicated. To chain
programs, you would load and exe-
cute the first program. It controls
the number of passes and loads the
next program. The next program
loads the following program and so
on until the last program, which
must load the first again. (]

COMMODORE
AUTHORIZED
SERVICE

POWER SUPPLY (C-64) $29.95
C-64 REPAIR 44.95
1541/1571 ALIGNMENT 35.00
1541 REPAIR & ALIGNMENT 75.00
C-128 REPAIR 75.00
1571 REPAIR 95.00
POWER SUPPLY (C-128) 84.95
EXTENDED WARRANTY CALL

Free Return Freight - Continental US
Add $10 for APO, FPO, AIR
Save COD charge - send Check or
Money Order. (Purchase Order Accepted)

Second Source
Engineering

2664 Mercantile Drive
Rancho Cordova, CA 95670
(916) 635-3725

Best of COMPUTE! and Gazette 47

