COHEI0DOER
LASDRS
GENIUS

AT

"LASAR GHH
ma ST
TASH"

[
o

o

"DLOADM
"EHERASH"
"EENEIOE"
TRALMON"
M LOIATY
“HON"

= I FUR = 1)

(=]

(=]

53
70

L1}
Lre
L=

David Haynes
Stamp

CONTENTS

64 - MAC

INTRODUCTION

i

LOADING

1.1 Loading from Disk

1.2 Loading from Tape

6502 ASSEMBLY LANGUAGE

2.1 Notation
22 Assembay

w

nguaqe Statements
Directive Statements
1.1.BYTE

.2 .DBYTE

.3 .WOCRD

1.4 .PAD

1.6 .END

1.6 . Bl OCK

g =
.8
1.9

*

ORG
.10 DEFMAC
11 .ENDMAC
.12 Macro Invocations
A3UFEQ
J4.0FNEQ
.15 IFPCS
A6 UFNEG
17 AFEND
18 ELSE

(20 PRINT
29 ST
222 NOLIST
.23 .PAGE
.24 PAGEF
.26 SKIP
26 TITLE
.27 WIDTH
.28 HEIGHT
29 INTNUM
2 2 1.30 .FILE
2.2.2 Instruction Stataments
2.2.3 Comment Statements

Mmmm\)MI\JN'\JM"«J._\JII‘\J_I\J;\J!\:!\J{\JNNM'\JMNMMMNMI\)#

MRNPORNNRMNRNRORNORNNRRDRROR NN NN RN RN
—4—!-4-—)-—!.—\—&—\-‘-—!—.—._’_]_!_1—!_.‘._.__‘ ._-\—l..-l-l-‘-—ll-.-\ h

ARITHMETIC EXPRESSIONS IN COMMAND MODE

THE EDITOR

4.1 Using the Editor

4.2 Function Keys

4.3 Entering Lines of Assenblv Language
4 4 EDITOR

4.5RESIDENT

4.6 DISK

4.7 LIST

4.8 PRINT

4.9DELETE

4 10 RENUMBER

.18 Exampie of Conditional Assembly

10.

1.

411 MEM
4.12 NEW
413 AUTO
4.14 MANUAL
4.15 MOVE
4.16 COPY
417 FIND
4.18 CHANGE

EDITOR ERROR MESSAGES

LOADING AND SAVING

6.1 LOAD

6.2 SAVE

6.3 FSAVE

6.4 MLOAD

6.5 MSAVE

6.6 OLOAD

6.7 OSAVE

6.80C+ and OC—

6.3 The Loader Program

USING A PRINTER

7.1 CENTRO

7.2 CTRL

7.3’

7.4 Printer Pagination
7.4.1 INTNUM
7.4.2 SETPAGE
7.4.3 SKIP
7.44TITLE

7.5 Setting up the Printer

DOS SUPPORT

8.1@
8.1.1. Format a Disk
8.1.2 Delete a File
8.1.3 Rename a File
8.1.4 Validate s Disk
8.1.5 Duplicate a Disk
8.1.6 Copy a File

8.1.7 Print the Directory
8.1.8 Read Error Channea!

8.2 Pattern Matching
8.3 DEVICE
8.4 Using more than one Drive

THE ASSEMBLER IN RESIDENT MODE

9.1 ASM
9.2 OFFSET
9.3 RUN

THE ASSEMBLER IN DISK MODE

10.1 Linked Files
10.2 Using Macros in Disk Mode
10.3 ASM

ASSEMBLER ERROR MESSAGES

10
10
1]
10
10
10
16
"

ik

12

12
12
12
12
12
12
13
13
13

.13

14
14
14
14
14
14
14
14

15

15
15
15

15
15

15
15
15

LD

16
16

16

16
17
17

17

17
17
17

64-MON

12. MONITOR COMMANDS

12.1 DECIMAL

12.2 HEX

12.3CALC

12.4 MLIST

12.5 MDUMP

12.6 MFIND

12.7 COMPARE

12.8 MFILL

12.9 MMOVE

12.10 RELOC

12.11 MCHANGE

12,12 USR

12.13 DUSR

12.14 The Symbolic Disassembler
12.14.1 BYTE
12.14.2 ASCIH
12.14.3 WORD
12.14.4 DBYTE
12.14.5 TABLES
12.14.6 TABDEL
12.14.7 TABCLR
12.14.8 Defining Symbols
12.14.9 DASM
12.14.10 FDASM

12.158Y8

13. 'MONITOR ERROR MESSAGES

14. THE DEBUGGER/TRACER

14.1 OPT
14.1.1 JSR MODE
14.1.2 STEP MODE
14.1.3 ADDRESS MQDE
14.1.4 REGISTER MODE

14.2 DISP

14.3 DISTAB

14.4 DISDEL

14.5 DISCLR

14.6 REGS

14.7 LOC

14.8 LOCDEL

14.9 LOCCLR

14.10 TRACE

15. 6502 ARCHITECTURE
15.1 Byte-length Registers
15.2 Word-length Registers
15.3 Flags

16 6502 INSTRUCTION SET

17. 6502 ADDRESSING MODES

-18. NUMBER BASE TABLE/OP-CODES

BEEHBBEBERNEEER R

23
23

24
24
26

6502 MONITOR AND ANALYSER
INTRODUCTION
TAPE MAP

1. OPERATING INSTRUCTIONS

g 1.1 Using the Standard version
1.2 Using the Relocatable Version

2, SCREEN LAYOUT

3. THE EDITOR
31 Entering Commands

4. MONITOR COMMANDS
41 The Commands in Detail

5, . DEBUG COMMANDS

5.1 Single Stepping

5.2 Slow Running

53 Breakpoints

5.4 Breakpeint Types
5.4.1 Encountering Breakpoints
5.4.2 Breakpoint Commands

6. INPUT/QUTPUT COMMANDS
7 ERROR MESSAGES

8. THE ANALYSER

8.1 introducing Anatyser Forth
Analyser Commands

Using Analyser Forth

Analyser Forth Reserved Words
Defined Words

8.51 Register Values

2 o600
[0 B = N

8.5.2 Using the 6502 Machine Stack from Forth
853 Memory Addressing

8.5.4 Arithmetic Operators

8.65 Logic Operators

8.5.6 Relational Operators

8.5.7 Other Operators

8.5.8 Stack Operations

B.6.9 Other Words

B.6 Exampie Definitions
8.7 Memory Details

88 The RESTORE Button
8.9 Analyser Examples

APPENDIX A — SUMMARY OF COMMANDS

GENIUS FOR THE COMMODORE 64
by David Hunter, Martin Lewis and Andrew Foord

Genius is a complete machine code development system for the Commodore 64 and
comprises three compatible parts. The first two parts, 84-MAC and 64-MON, load as one
file and the third, the monitor analyser, loads separately. Many of the 84-MON features are
replicated by the monitoranalyser but the latter also has a number of very nowerful
extensions, in particular the analyser.

64-MAC/MON

64 MAC/MON provides a comprehensive set of over 70 commands for writing and
debugging assembly language proarams on the COMMODORE 64, It includes a line editor
for the creation of source text, a full two-pass macro assembler, a symbolic disassembler,
a machine code monitor and a tracer. i

The editor autematically checks the syntax of lines as they are typed in, and formats the
source text when It is listed. It includes biock delete, move and copy as well as search and
replace commands and automatic line numbering.

The assembler can be operated in either ‘resident’ or 'disk’ mode. Resident mode is ideal
for learning about assembly language or writing small programs - assembly is extremely
fast, at over 20,000 lines per minute. Because text is tokenised when in memory, programs
of aver 2,500 lines can be written without having to use disk mode. In disk mode, linkedfiles
on floppy disk may be assembled. The size of program that can be written in this mannsr is
only limited by the amount of mass storage available; about 8,500 lines of code inthe case
of the 1541 single floppy disk. The assembler also includes conditional assembly, cross-
referencing and a printer pagination facility. ;

The machine-code monitor commands allow direct inspection and modification of
memory - commands to list, move, relocate, compare, modify, search and disassemble
blocks of memory are included. Up to 16 blocks which are printed as .BYTE, WORD or
_DBYTE directives when disassembling may be defined.)

The tracer can single step through a machine-code program, displaying the register
contents and the contents of up to 16 memory locations after executing each instruction,
Options exist to suppress single stepping and register printing or to print only the program
counter. Up to 16 locations can be defined at which the registers are always printed, even if
register printing is disabled. :

Two copies of 64 MAC/MON are supplied with the disk version - one is located in low
memory and ane in high memory. Only the low memory version is supplied on tape.

The low memary version cccupies memory from $0800 to $47FF. The BASIC ROM from
$A000 to $BFFF is switched out of memory after 64 MAC/MON has loaded, or after using
RUN/STOP-RESTORE. However, 84 MAC/MON will still operate correctly if you re-enable
the ROM by setting bit 0 of location 1.

The high memory versien resides from $8000 to $CFFF. The BASIC ROM is enabied
whenever memory is accessed by oné of the monitor commands,

Note that in both cases, full use of the zero page by the user's programs is allowed.

1. LOADING

1.1 LOADING FROM DISK

After switching on the computer system, insert the floppy disk into the drive and type-
the following:

‘LOAD "GENASM" ,8,1%

After about ten seconds you are asked to press ""L" or ""H" to select between the low
and high memory versions. Once you have done this it takes approximaiely one minute
to ioad.

1.2 LOADING FROM TAPE
The programs are arranged on the tapes as follows:

Tape 1: Side A: The standard monitor/analyser program which resides at 3000
decimal -
Side B; A relocatable version of the monitor/analyser program.

Tape 2: Side A: Assembler/Monitor {Turbo Loading) "GENASM”
Object Code Loader "LOADER"
Side B: AssermnblerMonitor (Normal Loading) "GENASHY

To load in the assembler, switch the machine on and insert Tape 2 into the tape unit at
either Side A or Side B. Prass SHIFT RUN-STOP and press PLAY in the usual way.

1.3 MEMORY ALLOCATION
When 64-MAC/MON has loaded, the following message is printed:
i o 64=-MAC/MON V1.5L '
COPYRIGHT 1986 DAVID HUNTER

NEW (Y/NI? Y
TEXT MEMORY?

Unless you wish to reserve memory for your own machine code routines, hit RETURN
- this reserves memory from $4800 to $SCFFF for use as text storage, giving 34816 bytes

free. Otherwise, type in the lower and upper limits of memory to be used, separated by
a comma.

Al BYTES FREE' message is then printed, followed by the READY prompt.

Note that the computer’s memaory is completely cleared after loading, but it remains
unaltered after subsequent NEW commands.

The following locations in pages 2 and 3 are altered by 64-MAC/MON:

$0200 1o $0258 used for temporary storage.

$0314 to $0315 IRQ re-vectored for function keys.

$0316 to $0317 BRK

$0318 to $0319 NMI re-vectored for RUN/STOP-RESTORE.

2. 6502 ASSEMBLY LANGUAGE

This section is not intended to teach assembly language programming - if you are a
novice to the subject, we suggest that you read '6502 Assembly Language
Programming’ by Lance A. Leventhal, which is published by McGraw-Hill. Another
worthwhile text is 6502 Assembly Language Subroutines' by Leventhal and Saville,
published by Osborne/McGraw-Hill. However, the information presenfed here should
suffice if you have knowledge of another microprocessor.

2.1 NOTATION

2.1.1 A <label> consists of a letter followed by up to fourteen of the following
characters:

. JAt"Jzt A :Or“rgt s ,':f , ;Ir : ;$:
"Examples: COMPARESNAMES OUTPUT3 T9
'2,1.2 A <numerical constant> consists of one of the following:

“%" followed by a binary number
“@" followed by an octal number
a decimal number 3

2

“$" followed by a hexadecimal number)
“'" followed by an ascii character (followed by an optional second
quote)

Examples: X00001101 $ACDY 7 19 '&'

2.1.3 An <expression consists of <numerical constant>s and/or -label~s separated
by the following operators:

“+" add

*—" subtract

“* multiply

" divide

Y77 exclusive-or

“&" logical and
There is no operator precedence, and brackets may not be used (this only appiies_ to
<expression=s that are included as part of an assembly language programj, If < ig
placed before an expression, it is converted to a ‘&255" at the end of the expression
when printing; similarly, =" is converted to /256" ‘

Examples: NUMBERSBASE+3 <INTERPRETER-1 INPUTSBUFFER/Z256
'IZI+1

2.1.4 A <string constant> is a number of ASCH characters enclosed iri single quotes. If
ane of the characters is to be a quote then two successive quotes must be used.

Examples: 'BPLBMIBCCBCSBNEBEAQBVCBYS' " 'sa"X!

2.2 ASSEMBLY LANGUAGE STATEMENTS
There are three types of assembler statements: directives, instructions and comments.

2.2.1 Directive Statements

These may be considered as instructions which are obeyed at assembly time rather than
run time. A directive statement consists of the following: :

<iabel> <directive™> <loperand> <comment>

The label and comment fields are optional, and the operand field is not required in some
cases. This assembier supports 27 directives, details of which are given below:

2.2.1.1 .BYTE directive

This is used to define single-byte constants. It should be followed by a number of
< expression>s and/or <string constant>s separated by commas.

Examples:

POWERSOF2 .BYTE 1,2,4,8;
HEXCHARS .BYTE '012345

V.
0
2.2.1.2 .DBYTE directive

This has the same syntax as .BYTE but it generates two-byte constants in high-byte/low-
‘byte order.

2.2,1.3 .WORD directive . -
This is the same as .DBYTE but the constants are in_low-byte/high-byte order.

2.2.1.4 PAD directive
The .PAD directive is used to pad out an area of program with NOP byies.

Examples: .PAD *&SFFO0+256-%
.PAD 6 :

2.2.1.5 END directive

_This is used to mark the end of an assembly language program. It is optional if the
- assembler is being used in resident mode.

2.2.1.6 .BLOCK directive

- This directive is used to reserve space - it is followed by an expression which is added
- fo the location counter.

Examples: - INPUTSBUFFER .BLOCK 72
XPOS .BLOCK 2
2.2.1.7 {equals] directive
The '=" directive is used to aguaie a label to an < expression.-.
Examples: é:TERRUPTPERIOD=?§06JSﬁMPLERATE

Itis imp-oria‘nt to realise that these calculations are carrigd oul at assembly 1ime, not run-
time. -]
2218 LAt

*%' is a reserved symbol which refers to the location counter during assembiy. The
program location counter may be set like this: #*=39000, and blocks of memory may
also be reserved:

INPUTSBUFFER *=%+72
2.2.1.9 .0RG directive '

This is used to set the program location origin.
" Example: .0RG 39000

Although tlhis éppears to be the same as *=$9000, there is a subtle difference
_between them which is expfained in section 9.3

2.21 ..?p.‘DEF_MAC directive

This directive should be plaﬁ&d at the start of a macro definition. The label preceding the
directive defines the macro name. It should be followed by a list of formal parameter
labels separated by commas. :

2.2.1.11 .ENDMAC directive

ENDMAC is used at the end of a macro definition.

' 2:2.1.12 Macro Invocations

To call a macro in the program body, its name should be preceded by a colen and
followed by -a list-of actual parameter expressions separated by commas.

Example... 1230 OUTPUT -DEFMAC -STRRT,MODE”

1240 M LDA H#STARTRZS55
1250 LDY H#START/256
1260 LDX #MODE

1270 JSR PRINT

1280 ’ .ENDMAC

'3450 s . BNE LOOP B,
3460 :0UTPUT ALPHA+6,3

In resident mode, macros can be defined anywhere in the text- either before or after they
are used, atthough it is best to keep thém near the top of the program as this speeds up
assembly. When assembling programs in disk mode, all macro definttions must be in
the first file. _

if a symbol is defined inside a macro and the macro 1s called more than once then a
‘abel defined twice’ error message will be printed. To circumvent this problem, use the
%! symbo! as in the following exampler

100 DELAY .DEFMAC DEL
110 LDX #DEL
120 ; DEX

130 BNE -1

140 . _ENDMAC

960 . DELAY 10
990 : :DELAY 20

2.2.1.13 IFEQ directive

If. the expression following this directive is zero, assembly continues as normal,
otherwise code generation is suppressed until the next .ELSE or .IFEND.

2.2.1.14 IFNEQ directive : _
If the expression following this directive is non-zero, assembly continues as normal,
otherwise code generation is suppressed until the next .ELSE or AFEND.

2.2.1.15 .IFPOS directive

If the expression following this directive is in the range 1 to 32767, assembly continues
as normal, otherwise code geheration is suppressed until the next .ELSE or JFEND.
2.2.1.16 .IFNEG directive e 3

if the expression following this directive is in’the range 32768 to 65535, assembly
continues as normal, atherwise code generation is:suppressed until the next .ELSE or
LFEND. - 2

2.2.1.17 IFEND directive

This is used at the end of a conditional assembly JF constiuct- assembly after it,
proceeds as normal, - ; .

2.2.1.18 .ELSE directive

<This works like the ELSE statement in extended BASICs- if code generation is
suppressed, it is enabled, and vice-versa. : '

2.2.1.19 Examples of conditional assembliy:

17450 OUTPUT .IFEQ CBM&4

17460 JSR SFFfD2 ;CBM64 QUTPUT R

17470 BCS ERROR1 -OUTINE
17480 -ELSE

17490 STX TEMP

175?0 TAX

17510 JSR %0238 JORICATMOS OUTP :
17520 LDX TEMP AL b
12530 PHA

17540 LDA KEYCHAR

17550 CMP H%83 ;CONTROL-C?

17560 BE® ERRORZ

17570 PLA

17580 .IFEND

2750 LDA HPRINTERONEZS5S

2760 " LDY HPRINTERON/256

2770 BIT PRINTERFLAG

2780 ; BM1 PRINTMESSAGE

2790 PRHI =PRINTEROFF/256

2300 : -IFNEQ@ PRINTERON/Z56-PRHI
2810 : LDY #PRHI

2820 : x -IFEND

2830 LDA #PRINTEROFFE2Z55

2840 PRINTMESSAGE JSR OUTPUTSMESSAGE

2.2.1.20 .PRINT directive

This directive should be followed b i ~ i ;
> LIVE Y 8 <string constant™ which .
the directive is encountered during assemhl\E e pf'"?“}d -

Example: 19270 MESSAGES

19280 MSG1 .BYTE '?SYNTAX ERROR',O

19290 MSG2 .BYTE 'NUMBER TO0BIG',0

196440 MSG1 _.BYTE ‘'FOUND '

19450 MSGEND -4

]gzgg .IFNEQ MSGEND-MESSAGES/256

= .PRINT "MESSAGE TABLE IS LONGER

THAN 256 BYTES®

19480 LEND

19490 -IFEND
6

2.2.1.21 .LIST directive

This directive turns on the generation of an assembler listing, except if object code is
being assembled to disk or tape.

2.2.1.22 NOLIST directive

This turns off the generation of an assembler listing.

2.2.1.23 .PAGE directive
If an assembiler listing is being ottput to the printer, this diractive will start a new page.

2.2.1.24 PAGEIF directive

This should be followed by an <expression=>- if this is greater than the number of lines
left on the page, a new page is taken, otherwise one line is skipped. This only takes place
if an assembier listing is being cutput on the printer.

Example: ".PAGELF 24

2.2.1.25 .SKIP directive

This is used to print a certain number of blank lines when assembling a listing to the
printer. :

Example: .SKIP 2
If the number is left out, a default value of 115 assumed.

2.2.1.26 TITLE directive

This skould be followed by a ~string constant> which will be printed at the top of each
new page on the printer.. -

Example: .TITLE 'C6% MACRO ASSEMBLER'

2.2.1.27 WIDTH directive
This sets the number of characters printed per line op the printer.
Example: .WIDTH 96

2.2.1.28 HEIGHT directive
This gets the number of lines printed per page on the printer.
Example: .HEIGHT. 66

2.2.1.29 .AINTNUM directive ;
This initialisas the printer page number to zero.

2.2.1.30 .FILE directive ¢ _

This directive is used to link files together in disk mode. At the end of each file, there
should be a .FILE directive followed by a <string constant= consisting of the name of
the next disk file. :

Example; _FILE 'ASM4®

22131 All directives, apart from .PAGE, END and .ENDMAC may be abbreviataed 1o
their first three letters. : Sdeg

’ Example: .BYT $C9,%A9,%89

 2.2.2 Instruction statements

An instruction statement consists of:

. <label> <opcode mnemonic> <operand> <comment=

7

The <tabel> and <comment~ fields are optional. Details of the allowable <opcode

mnamonic>s and <operand=>s are given in sections 16 and 17 of this manual

- respectively.

If during the first pass of assemb! i i '
J ; ly an instruction which has both zero page and absolute
addressing modes has as iis operand an undefined expression, as ir?ﬂ?is example:

10 *12345

%g ABCDEF ol
JMP ABCDEF

40 FIVE =5 &

and the expression is evaluated durin ' [
@58 ring the second pass as being less than 256, th
assembler will insert an extra NOP byte before the next label dgefinition durind th:

second pass.
2.2.3 Comment statements
A comment statement consists of the following:
; <comment>

The <ccomment> may be any commentary whatsoever.

3. ARITHMETIC EXPRESSIONS IN COMMAND MODE

3.1 in command mode, line numbers, memary locations and so

< exXpression>s, as defir]ed in 2,1.3, with the d?’fference that br::u.:immt:r;l ﬁtrgyegslfssesgdar’?g
operator precedence exists. A '#" is used to represent the logical-or sperator. A full
-stop may l_:le used to represent the last result from the CALC comimand, and I*"‘Iabu.al‘»
gives the line number in which a label is defined. : 4 g

3.2 A <string.> i T i :
Selieigesre: g is .deﬁned as g series of charactgrs bound_ed by one of thelz following
l"#$%&*{}" Fouf oY

lf‘.tﬁ? ?string} iz to be'followled by an end-_-of;-lin__e, tha delin":_eters may be omitted.

4. USING THE EDIT dR =

4.1 The screen editor may be used as in-BASIC Th : "
k) d - . The RUN/STOF key terminates a listi
?]E ;any time. CTRL slows dawn printing and the SPACE bar)can b‘eyused I'cn:n ta\r\r'lpolrsarrri.i!g
ait a llstlln_g- pressing it again restarts the listing. £ - i

4.2 FUNCTION KEYS -

'-lfhe function keys may ba c_ieﬁned as faliows, where n is the number of the fun.ctien key:
Fn=<string> ’)

The back-arrow ke_y at the 1op left of the kéyboard can be used to rep'resent- RETURN
Examples: -. F7=% .BYTE % o
- : F4=ASM,L

4.3 ENTERING LINES OF ASSEMBLY LANGUAGE

If you type in & line number followed by a line of 6502 assembly language, the editor will
put the line into memory according to its line number {these may be 1 to 65535). A line
number followed by RETURN deietes that line, and a line with number zero will be put
immediately after the last ine entered or deteted.

If the editor finds a syntax error ina line of source code, it prints an arrgw pointing to
the error and an error message. This feature can he suppressed using the EDITOR

command. /
In any situation which could result in the destruction of the source text, the editor will
prompt with "ARE YOU SURE ¢Y/N)? ' before proceeding.

In the following list of commands, sach one is followed by its abbreviated version in
brackets. - . i

4.4 EDITOR (ED.} ¢command

This command puts the assembler into ‘EDITOR” mode which disables the autematic
syntax checking of lines; in this mode the text is not tokenised and therefore cannot be
assembled, Entering or leaving this mode destroys any text that is in mamory.

4.5 RESIDENT (RES.) command

This command puts the assembler into '‘RESIDENT' mode in which programs may be
assembled directly from memaory. Further details are given in section 9 of this manual.

4.6 DISK (DISC or D! command

This command puts the assembler intc ‘DISK’ mode in which programs may be
assembled from disk. Further details are given in section 10 of this manual. ;

4.7 LIST (L.} command _

This is used to list lines of text. it may be followed by one or more tine specifications
{separatad by semicclons) of the following types:) E

<line number=

=first line=,<iast line>

< last line>

=first lines, :

Missing out the line specifications will tist the whole source text.

Exarnples; LIST
LIST 23790 '
L. 'PRINTMNEMONIC,
LIST ,100;110;150,160
L Eg- 23994 ;
LIST 100,100+70

4.8 PRINT (P.) command

" This is the same as LIST but no line numbers are printed.

4.9 DELETE (D.) command

This command is used o ﬂelexe,lines from the source text- the syntax is the same as for
LIST. The editor wili iist the lines and then prompt with. "ARE YOU SURE (Y/N)? '
before the lines are actually deleted - hit Y’ to carty out the deletion.

Examples: 0. 23770 ;

DEL 1440;2680;3725,3737

© 410 RENUMBER (R.) command
. This renumbers lines in the text. it may take any of the following forms:

.9’

RENUMBER
first line no.= 10, step size10

RENUMBER X

first line no.= X, step size=10
RENUMBER XY

first line no.=X, step size=Y

If renumbering would cause a fine number greater than 65535 to be generated, the text

.Is} rer_wumpered from lina 1 in steps of 1. After renumbering, the [ast line number +step
size is printed. |

Examples: RENUMBER
R.10000
REN. 100,25
4.11 MEM (M.} command

This command returns a message giving the free memory tots! and the current editor
made. If the source fite is very long there will be a delay of a few seconds while symbaol
table garbage collection is carried out.

4.12 NEW {N.) command

This erases the source program in memory and then prompts for the memory to be
reserved for source text.

413 AUTO (AU.) command

This puts the computer into AUTO mode- after a line number and text is entered, the
next line number is-automatically printed. The default value of the step size is 10. This
can be changed by placing the new valus after the command. ifthe step size is zero, line
number Os only are printed. To stop the printing of the numbers, enter a blank line,

Examples: AU.
AUTO 5

4.14 MANUAL (MA.}) command
This brings the computer out of AUTO mode,

4.15 MOVE (MO.) command

This command is used to move a block of lines from one part of the text io another. It
takes the following form: .

MOVE < new line number><first line>,< last line:-

After the lines have been moved, the first line is renumbered to the <new line numberz,
the rest being renumbered to line 0. If the <new line number:> alreadv exists, an error
message is printed, : :

Examples: MOVE 1475=2510,2850
MO. 23000=570,810

4.16 COPY (CO.} command

T’his_ is similar to MOVE, the difference being that the lines are not deleted from their
original position once they have beer moved '

4.17 FIND (Fl.) command

This command is used to find theiccation of a sequence of characters in the text. It takes
- the following forms: .

FIND <stringz-
FIND <string’> <.iine specification>

10

The secand form should be used if it is desired to search only a part of the text. Wher
the <string > is found, the line in which it appears is printed.

Examples: FIND "JSR"
FIND R HEXOUT& 1140,2930

4,18 CHANGE (CH.} command

This command is used to change all occurrences of a particular series of characters. It
should be followed by two strings and a line specification. The delimiter at the end of
the first string should npt be duplicated at the start of the second string.

Examples: CH.!HEXQOUT!'HEXSBYTESOUT!
CHANGE %JSR QUTCHX%ZJSR QUTCHRYX 3980,7620

5. EDITOR ERROR MESSAGES
The following error messages can be generated by the editor:

QUT OF FUNGTION KEY SPACE
All the function key definitions may not total more than 119 chracters.

NUMBER T0O BIG

EXPRESSION T00 COMPLEX :
An expression has too many levels of nested parenthesis.

DIVISION BY ZERO

LABEL TO0 LONG] b
A iabel was found which is longer than 15 characters; the editor uses only the first 15.

LABEL DOES NOT BEGIN WITH A LETTER
“A" IS A RESERVED LABEL

6502 OP-CODES ARE RESERVED LABELS)
A 6502 op-code mnemonic was used as part of an expression.

BAD INDEX e =)
Index must be X or Y. This message is also generated if either (<expression>Y} or
{<expression>>) X are encountered.

BAD DIRECTIVE : : -
A string was found after a fuil stop which is not one of the legal directives.

* FULL *
You have run out of memory space.

FILE ERROR

STRING TOO LONG
The maximum length allowable is 64 characters.

OUT OF RANGE ; e
An attempt was made to move a block of text to a location within itself.

SYNTAX ERROR ;
The error does not fall into one of the above categories.

1

6. LOADING AND SAVING
6.1 LOAD (LO.) command

This is used to load source files into memory. It should be followed by a <string™ for
the filename.

To merge a file onto the program in memory, foliow the filename with a comma
{optional) and the line number where the text is to be inserted. The text is always
inserted. before the line specified if it exists, Using this facility, subroutines that have
been previously written, debugged and saved can be incorporatad into a program.

If a line is Icaded which is not valid, it is listed on the screen to be corrected after
loading.

Examples: LOAD XBASIC
LCAD XHEXPRINTZ 200
Lo. !'At!
LGAD

LOAD (SOURCE(,300
6.2 SAVE {SA.) command

This saves the source text to disk or tape. The filename may be followed by a line
specification {as defined in Section 4.7) if only part of the source file is to be saved.

Exarmiples: SAVYE $PART63 100,400
SAVE
SAVE @0:ASM1

Source text is saved in a compressed format: all unnecessary spaces are removed, and
any that remain are removed and bit 7 of the next character is set,

6.3 FSAVE (F.) command

TI'_lis command is similar to SAVE, but the text is saved formatted as it would be printed,
without any text comipression.

6.4 MLOAD (ML.) command

This i_s used to load machine-code files that have been saved in the standard format. To
load it at a different address than it was saved at, follow the filename with the new start
address; this may be preceded by a comma.

Examples: MLOAD LOADER
MLOAD
MLOAD 'SPRITES',$8000

6.5 MSAVE (MS.}) command

This saves machine-code in the standard format. The command should be foliowed by
the filename, start address and end address, all separated by commas.

Examples: MSAVE XTITLE SCREENX ,34000,%C000
MSAVE $OUTPUT PATCHS ,$C000,%Cc180

6.6 OLOAD (OL.) command

This loads object code that has been saved in ASCH format; this 15 the format used for
objact code files generated by the assembler

The command should ba followed by the filename.
Example: OLOAD "OBJECT'

Each byte of dala to be stored is converted into two half byles which are translated into
their ASCH equivalents (‘0" to “F'). Each output record begins with a ;' character. The
next byte is the number of data bytes contained in the record. The record’s starting
address High {1 byte, 2 characters), starting address Low {1 byte, 2 characters) and data
{maximum 24 bytes, 48 characters) follow. Each record is terminated by the record's
checksum (2 bytes, 4 characters) and a carriage return. -

12

The fast record saved has zerc data bytes lindicated by :00). The starting addrass field
is replaced by a four digit hexadecimal number representing the total number of data
records contained in the file, followed by the record’s usual checksum digits,

Examples:
;)EI 80%001’?EEDDCCBBAADD9988??-6655443322112233'4&5566??88990AFC
;0000010007

Note: A program is supplied with Laser Genius under the filename "LOADER” which
loads data in ASCl format and can be run from BASIC.

6.7 OSAVE {0S.) Command

This saves object code in ASCI format, details of which are given above. The command
is followed by a filename, and the start and end addresses separated by commas. More
than one block of data may be saved by separating several start and end address pairs
with semicolons.

Examples: SAVE &TESTFILE&,$4C00,%5000
SAVE $PART6%,%$6000,%7000;%81F3,38230

6.8 OC+ and OC- commands

After executing the OC+ command, all object code is saved in a compact format in
which bytes are output directly to disk rather than being printed n hex and the record
start character is *:" rather than ;" :

The OC- command is used to revert to the normai format.

6.9 The 'LOADER" Program

Supplied on both the tape and disc version of Laser Genius is the LOADER program
which enables object code produced by the assembler’'s ASM,0 command to be lpaded
into the Commodore’s memory outside of the assembler. The program works in the
same way as the OLOAD command.

TAPE: The program can be found on tape 2, side A, after the turbo version of
GENASM. To ioad use SHIFT and RUN/STOP.

DISC: The pregram can bé loaded from disc using:
LOAD "LOADER" ,8,1
The program will run automatically.

Once tha program has lnaded it will ask for a hexadecimal offset. This offsat is the same
as that given by the OFFSET command (see 8.2) from within the assembier. It allows
code to be loaded intc memory at a different place from where it was assembled.
Normally you will only need to press enter for this prompt. Next the program asks for
the filename of the object code to be loaded {on the tape version you can just press
enterl.

Assuming that the file loads and is converted correctly the code can then be executed
from BASIC using SYS or from the Monitor/Analyser using slow running or single

stepping.

7. USING A PRINTER

7.1 CENTRO (C.) command

The assembier is set to use a serial bus printer (device number 4] upcn mitialisation. T.D
use it with a centronics interface printer connected to the user port, type ' CENTRO+ '
To revert to the serial bus printer; use 'CENTRO- 1

13

7.2 CTRL (CT.}) cammand

This can be used to send a series of control codes to the printer for initialisation
purposes, It should be followed by one or more <. expression s separated by commas.

Example: CTRL 27.,'Mm

7.2 * cammand

Placing an asterisk before any command will direct its output 1o the printer.
Examples: *L . 4920,5260

*ASM,L,C
7.4 Printer Pagination

At the top of each new page, a heading consisting of a utle and a page number is
printed. The following commands are available (sume are also assembler directives):

7.4.1 INTNUM command
This sets the current page number to zero.

7.4.2 SETPAGE command

;I"his is used to define the paper size. The command can exist in either of the following
orms:)

SETPAGE X Sets the paper width to X.
SETPAGE X,Y Sets the paperwidth to X and page height to Y.

The minimum value for either of these parameters is 16; the maximum is 127,
To disable paging, set the page length to zero.

7.4.3 SKIP command.
This is used to skip a certain number of lines.
Example: SKIP 15

7.4:4 TITLE command

This seté_ the tit?e that is printed at the top of each new page.
Example: TITLE SOURCE CODE LISTING

75 Setting up the Printer.

After loading the assembier, position the print head at the top of a new page. This
ensures that subsequent page headings will be properly aligned.

The paper width and height are set to B0 and 66 respectively after 64-MAC/MON has
been loaded.

7.6 P# Command

This cemmand is us'ed' to change the device number which 64-MAC/MON uses for the
printer. Normally this is set to device number 4. To change it, follow P# by the new
device number.

Example: To change the device number to 6, for a printer/plotter, you would
use:)

PH# 6

14

8. DOS SUPPORT
8.1 & (or >} command
This sends a command to the disk drive. The legal commands are:

8.1.1 Format a Disk: @N<drive number=:<disk name> XX

XX is a unigue 2-character identifler; omitting it, results in all files being deleted rather
than re-formatting the whole disk.

Exampile: ANO:DISK 1,99

8.1.2 Delete a File: @S- drive number=:<filename>
Pattern matching using “** and ‘7" may be used 1o delete groups of files.
Examples: >S5T:ASM#*
AS0:0BJECT
8.1.3 Rename a File: @R<drive number>:-new file name == <old file name>
Example: @#R0O:PROGRAM=P6
2.1.4 Validate a Disk: aV=drive number:-
This reconstructs the Block Availability Map on the disk. If you suspect that a disk is
corrupted, this command will prevent further corruption of files. It should also be usad
if you have any files on the disk that are not properly closed.
8.1.5 Duplicate Disk: @D+ destination drive number - <source drive number:

Example: - &pi=0

8.1.6 Copy File: @C<drive number=:<new file> -<drive number=:<old file>=
This command can also be used to concatenate several files:
aC - drive number:: = new file > = < drive number=:=file 12> <drive number:-:<file 2:>
A maximum of four files can be joined in this manner.
Examples: >C0:PROGZ2=0:PROG1
acl: SOUR_CE=|3:A1_,D:A2
8.1.7 Print Directory: @$--drive number=:<filename=
The 'DIR’ command can be usad instead of ‘8%

Examples: >%
@30z ASM=*
A31:MONITORS?000
DIR S$0:A* -
DIR

8.1.8 Read Error Channel; 8@ or > or ERR _

This will print out an error number, error name, and track and sector numbers.
Further details of these commands can be found in your disk drive manual. For a single
disk drive, the <drive number> should always be 0. ;

8.2 Pattern Matching ;

Pattern matching can be used with LOAD and DOS commands. The two symbois used
are '*' (signifies ‘with anything following’} and *2', which matches with any
character.

For example, 'COM???7R*" can be used to specify ‘COMMODORE’ and ‘COMPUTERS'
but not ‘'COMBINATION'.

15

8.3 DEVICE (DEV. or #) command

 This is used to change the device number used in LOAD, SAVE and DOS commands.

Example:

‘DEVICE 1 will allow loading and saving of files from tape.

8.4 Using more than one Disk Drive Unit.

Drive numbers 2 to 7 may be used to specify device numbers 9 to 11 as shown in the

table below:
USER FILENAME DEVICE DISK FILENAME
O:filename 8 O:filename
a0:filename 8 a0 filename
1 :fih?name g 1:filename
a1:filename 8 a1:filename

- 2:filename g O:filename
a2:filename g a0 filename
3:'fiit:3name 9 1:filename
a3:filename g a1:filename
4:filename 10 O:filename
dd:filename 10 B0 filename
5:fi|¢?name 10 1-filename
a5:filename 10 a1:filename
6:filename 11 0:filename
a6:filename 31 A 0:filename
7:fil{aname 11 1:filename
a7:filename 11 2 1:filename
N.B. Due to the lack of bus arbitration on the serial bus, the system will hang if you

try to write to one disk drive while reading from another.

85 The * 1 * Filename

If you save a fiie_und‘er the filename “ 7', the assembler will use the filename in a
comment on the first line of the source program currently in memeory. For example, if
the first line is: 2 :)

: 10 ;80:PROG b
typing "SAVE 1 ' is equivalent to typing 'SAVE 20:PROG’.

9. THE ASSEMBLER IN RESIDENT MODE
in RESIDENT mode, the source file is held in memory.
9.1 ASM (A.}) command

This command assembles the source file. It mav b |
g ; . y be followed by letters, preceded b
commas, which are used to select various options: Y s 5

L A full assembler listing is generated.
M Assembles directly to memory.
(6] Assembies object code to tape or disk.
c - A concordance listing is generated.
Examples: ASM,0
At
16

9.1.1 Each line of the assembler listing consists of the following:
tine number, address {in hex), object code, source line.

9.1.2 if object code is assembled to tape or disk, you are ;:_arompted for the object
filename bafare assembly starts. The object code file is closed if any errors occur. Note
that the object code generated by the assembler cannot be loaded directly into memory
- it must be loaded using either the OLOAD cormmand in the 64 MAC/MON or the special

object code loader program supplied.

91.3 Two concordance listings are actually printed: the first has the labels in
alphabetical order, and the second has them in nqmerical_urder. Ea_ch ling of the
concordance listing contains the label, its value, the line that it was defined in and the
fines in which it was referred to. This is printed after the assembler listing.

9.1.4 If an error is found, a pointer will be printed pointing to the error, followed by an
error message. A full list of error massages is given in Part 11 of this manual,

9.2 OFFSET (0.} command
This sets an offset which is added to the location counter when objuct code is being
output using the O or M options. This offset also applies to the QLAD, OSAVE and
menitor-type commands.
Examples: QOFFSET $9800

0.$E00Q0

9.3 RUN command

This command assembles and executes an assembly language program, allocating

marnory to place the abject code in. y : ; _
The start address of ihe program itself should be defined with a .ORG directive {see
Section 2.2.1.9), but when the location counter is set to reserve space, *= shquld be

used.

10. Ti-lE ASSEMBLER IN DISK MODE

10.1 Linked Files 2

1In DISK mode, the source program is held on disk as a series of linked files. The files are
tinked with .FILE directives {see Section 2.2.1.30}. The last file should finish with an .END
directive {Section 2.2.1.5).

10.2 Using Macros in Disk Mode

All macros must be defined in the first file; this is kept in memory throughout the
assembly. This file should be short, so as to ieave as much space as possible for th_e
symbol table. if there is a symbol table overflow, a "* FULL *' error message is
printed, and assembly is aborted. :

10.3 ASM (A.) command

in disk mode, the ASM command should not be foltowed by option letters as in resident
mode. Instead, the computer asks if a listing, concordance listing or object code is to be
generated. When prompted for the source filename, give the name of the first file.

H there is a source file in memory, you are given the option of saving it since it will be
destroyed by assembly in disk mode; if you do not wish to save it, hit “eturn when you
are prompted for the filename.

17

11. ASSEMBLER ERROR MESSAGES

The assembier can generate the following error messages:

FWD REF OR UNDEFINED LABEL IN .BLOCK OR ORIGIN DIRECTIVE
-BYTE DIRECTIVE DATA TOO BIG

The .BYTE directive can only accept data less than 256.

BRANCH QUT OF RANGE

A refative branch must be to an address within the range * 128 to *+129.
BAD OP-CODE/OPERAND COMBINATION

LABEL ALREADY DEFINED

IMMEDIATE OPERAND TOO BIG .
immediate operands must be less than 256,

IRRESOLVASLE FWD REF OR UNDEFINED LABEL
The label has not been defined in the source file.

MACROS NESTED TOO DEEP
Macros can be nested up to a maximum of 32 deep.

TOO MANY _ENDMACS
An .ENDMAC was found without a corresponding .DEFMAC.

TOO MANY .DEFMACS
A .DEFMAC was found inside a macro definition. This message is alsc generated if the
assembiler runs off the end of the source text in the middie of a macro.

WRONG NUMBER OF PARAMETERS

The wrong number of parameters were used in a macro call.
UNDEFINED MACRO

CONCORDANCE TABLE OVERFLOW

This message is printed at the end of assembly.

CONTEXYT ERROR IN DISK FILE)
Disk mode only; a line was found in the source file which is not a valld line of 6502
assembly language. This probably means that the disk is corrupted.

ASSEMBLY TO RESERVED MEMORY
An attempt was made to assemble on top of zero page, the source text, the symbol table
or the assembler. This also happens if there is not enough room for the object code in

the RUN command. This message is only given if an assembly to memory is being
carried out.

12. MACHINE CODE MONITOR COMMANDS

These commands allow you to inspect and modify memory directly; they include a
symbolic disassembler. The offset as set by the OFF3ET command is added to all
locations when they are referred to.

A ~byte string.» is defined as a series of <string constant>s (see Section 2.1.4} andfor
expressions (see Section 3.1} sepaiated by commas.

Example: 1,2,"ABC' .9

12.1 DECIMAL [DE.} command

This puts the monitor commands into DECIMAL mode: all numerical output is in base
10.

18

12.2 HEX (H.) command
This puts the monitor commands into HEX mede: All numerical output is in basse 16.

12.3 CALC {?) command
This evaluates an expression and prints the result as an ASCIH character, and in binary,
octal, decimal and hex.
Examples: CALEC "A'+1 ;
‘B 201000010 2102 066 342
READY.

2 (9+3) /4
. 200000011 2003 003 303
READY.

12.4 MLIST eommand

This prints the contents of memory in both numerical and ASCIl form. |t can take two
forms:

- MLIST <start address> :

Lists memory 8 lines at-a time. Hit <return> to continue, otherwise type in the next
command.

MLIST «start address>»,<end address
Lists & block of memory continuously.

For a different output format, replace MLIST in the above with:

MLISTA <no. bytes per lingl-,<no. spaces between bytes>» <no. linefeeds between
lines>,

To change e byte in memory, simply move the cursor over it, change'it and hit
<returnz. If you don't hit < return®, the byte in memory will not be changed in memory
even if it is changed on the screen.

12,5 MDUMP (DUMP or MD.) command

This is similar to MLIST, the difference being that memory is not printed as ASCII
characters, :

12.6 MFIND [MF.}) command

This prints the addresses of all occurrences of a sequence of bytes between two
addresses:

MFIND <byte string= > <start address>, <end address>
Examples: MFIND $68,%20,%15,5DF>3EQ61,8F83C
MFIND "BASIC'>%A000,%C000
12.7 COMPARE {CO.) command
This compares one block of memory with another, printing any differences:
COMPARE <start address 1>=<start address 2>,<end address 2>
Example: If the memary contents are: ;

$8000: $01 $02 303 304 305 306 307 $08
$9000: 301 $03 $02 304 $05 $66 $07 308

then the following would be printed:
COMPARE $8000=%9060,%%2008

$8001=%02,%9001=%03
$8002=%03,%9002=%02
$8005=806,%89005=866
READY. i 19

12.8 MFILL (FILL) command
This fills a block of memary with 2 sequence of one or more bytes:

MFEILL =start address> ~ end address>-<byte string >
Examples: MFILL $D800,%DCO0=0,1,2,3,4,5,6,7.,8,9,

100 T2y B T ils
MFILL $8000,%39000=%EA

12.9 MMOVE (MM.) command
This moves a block of memory from one place to another:

MMOVE < new start address > <.old start address =, < oid end address>
Example: MMOVE $BOCD=3%012,%9200

12.10 RELOC (REL.) command

This is similar to MMOVE, the difference being that all JMPs etc. are thanged so that the
program will run at the new address.

Example: RELOC $5000=%A000,%C000

it iz also possible to place the relocated program in a different part of memory from
where it will run:

RELOC <memory address >, < run address>=-=old block start’>,~~old block end =

12.11 MCHANGE (MCH.) command
This finds all occurrences of a sequence of bytes and replaces it with another:

MCHANGE = old byte string;r» = < new byte string> = «<start address>,<end
address>

Example: MCHANGES20,%91,%$19>%20,%95,%819>8C%00,%CA00

12.12 USR (U.} command

This performs a user-defined operation on a biock of memery. A subroutine must be
supplied which carries out the required operation on the accumulator:

USR <subroutine -address > = < start of block>,<end of block~

Example: - Add 1 to all locations between $8000 and $30G0
A Assemble into memory:

10 *=8%9800

20 CLC

30 ADC H1

40 RTS

2. UUSR $9800=%8000,3%%000
"The X and Y registers may be used in the subroutine

12.13 DUSR (DU.) command

This carries out a user-defined operation on double-byte quantities in a block of
memory. A subroutine must be supplied which carries out the required operation on the
accumulator {(LOW} and X (HIGH}. -

Example: Subtract 1 from each entry in a table of addresses between $CBUU and
; $CB4C.
Assemble into memory:
10 *=%C000
20 SEC
30 st #1 _
20

40 BLS RETURN
50 DEX
60 RETURN RTS

2. DUSR $C000=3CB0O0,$LB4C
The Y register may be used in the subroutine.

12.14 The Symbolic Disassembler
12.14.1 BYTE (B.} command

This is used to define blocks of memory which are printed as .BYTE directives when
disassembling; the command should be followed by the lower and upper limits of the
biock, separated by cormmas. Up to 16 blocks can be held in memory at once, and more
than one can be defined at a time by separating the blocks by semicolons.

Example: BYTE $9164,%9197;%9304,%93038

12.14.2 ASCIl {ASC.) command

This is similar to .BYTE, but any ASCIl characters are cutpul as <sti1g constanis.
12.14.3 WORD (W.}) command

This is similar to .BYTE, but it defines blocks which are pr'i.n-ted as WORD diractives.
12.14.4 BBYTE {DB) command

This Is similar to .BYTE, but it defines blocks whict are printed as .DBYTE directives.
12.14.5 TABLES (TA.) command

This prints out a table of the blocks of memaory defined in the above four commands,
12.14.6 TABDEL command

This has the same syntax as the byte command, but it deletes an entry from the table,
12.14.7 TABCLR command ¥

This removes all entries from the table defined by the BYTE, ASCIl, WORD and DBYTE
commands.

12.14.8 Defining Symbols for use by the Disassembler

if the symbol table has been destroyed by printing out the '‘BYTES FREE' message, the
disassembler output is non-symbolic, and the address and object code are also printed.
After an error-free assembly, the disassembier will search the symbol table when
printing out any constants. The address and object code is not printed out in this mode.
Thus, an assembler source file consisting of '="' directives should be used to define
symbals for use by the disassembler; the number of symbels is only limited by the
memory size, about 1500 if the full 34k is being used for text starage.

12.14.9 DASM (DA.} command
This command is used to disassemble maching code in memory. It can take two forms:-

DASM < address>
This disassembles in blocks of 23 lines. Hit <return> to continue, or type in the naxt
command.

DASM <start address>,<end address>
This disassembles a block of memory continuously.

12.14.10 FDASM command
This is used to disassemble to disk or tape:

FDASM <filename> <start address™>,<end address>

Example: FDASM #BASIC# $A000,3%C000
21

12.15 8YS command
This coammand calls @ machine code subrouting.
Example: SYS %9804

12.16 Aithough ali of the available zero page is used by the 64-MAC/MON, this memaory
can be used in your own routines as it is exchanged with a set of temporary storage
{ocations when fetching or storing bytes in memory. Alse, in the high memory version,
the BASIC ROM is switched on when accessing memory, so that it is possible to
disassemble it or use subroutines from it in your own programs.

13. MONITOR ERROR MESSAGES

The monitor commands can generate the following error messages!:
WRONG LENGTH

The two byte strings in 8 MCHANGE command are of different length.
NOT IN TABLE

An attempt was made toc delete a non existant table entry.

TABLE FULL
The tables can each hold only 18 entries.

OUT OF.RANGE
An attempt was made ta RELOCate a program to a location within jtself.

14. THE DEBUGGER/TRACER
14.1 OPT command

This command is used to select the tracer’'s mode of operation. The command should
be followed by zero or more of the following letters, each preceded by a comma:

J : JSR mode.

S : STEP mode.

A . ADDRESS mode:
‘R : REGISTER mode.

14.1.1 ¥ JSR mode is enabled, all JSR instructions are executed rather than traced, and
tracing stops when a BTS instruction is found. This mode should be used for debugging
subroutines, where the lower level subroutines have already been similarly debugged.

14.1.2 in STEP mode, you must press return each time the registers are displayed. To
terminate the trace, type in the next command as usual. :

14,13 In ADDRESS mode, the address of sach instruction executed is printed out,

14.1.4 in REGISTER mode, the register contents are printed at each instruction. If this
mode is disabled, they are only displayed upon ‘display-points’ {see section 14.2).

14.2 DISP command

This is used to set the 'display points’ at which the register contents are always printed

out. Several display points may be specified by separating them with commas. A

maximum of 16 dispiay points may be specified. ‘Display points’ are not the same as

conventionat breakpoints ; they are detected by the software in the tracer rather than
" - 22 -

using a hardware BRK instruction, and they therefore are not detected if @ machine-code
program is run using the SYS command, but, unlike breakpoints, they may be sat in
RACM routines.

Example: D1ISP $8000,%8120

14.3 DISTAB command
This prints out a table of all the current "display points”.

14.4 DISDEL command

This has the same syntax as DISP but it deletes items from the table.

14.5 DISCLR command
This clears all entries from the display point table,

14.6 REGS command

This prints out the contents of the CPU registers as used by TRACE. The register
contents can be modified in the same way as memory locations with MLIST {see section
12.4). Only the contents of A, X, Y, S and P are relevant to the SYS instruction - SYS
ignores the value of PC as given by REGS and the value of PC after SYS is .nvalid.

14.7 LOC command

This has the same syntax as the DISP command and is used to specify memory locations
whose cohtents are always printed out along with the registers.”

14.8 LOCDEL command

This has the same syntax as LOC but it deletes items from the table.

14.9 LOCCLR command

This deletes all entries from the table of locations specified by the LOC command. (A
LOCTAB command is not included since the REGS command will print out a list of the
iocations in the table},

14.10 TRACE command

This starts tracing at the memaory location given by PC's value as it is printed out by the
REGS command. If a BRK or an illegal instruction is found while tracing, a message is
printed containing PC's current value and tracing Is halted.- -

15. 6502 ARCHITECTURE
15.1 Byte-length registers:

A {accumulator)

P (processor status flag register)
S {stack pointer)

X {index register X)

Y (index register Y)

The general purpose user registers are A, X and Y. The stack pointer always cohtains the
least significant byte of the next available stack location in page 1 {$0100 to $01FF). The
P register consists of a set of seven status flags.

15.2 Word-length registers:

PC icomputer counter}
23

Note: Pairs .Of memory locations in page zero may be used as word-tength registers
to hold indirect addresses. The lower address holds the least significent (or
i?_w} byte and the higher hoids the most significant {or high) byte. Since the
6502 provides automatic wraparound, addresses $00FF and $0000 provide a
rarely used pair.

15.3 Flags:
The flags are arranged in the P register as follows:
bit flag purpose

C Carry

Z Zero

IRQ interrupt disable
Decimal mode

BRK command

Unused (aiways setto 1)
QOverfiow

Negative {sign}

NDU B WSO
Z<XDWO TN

16. THE 6502 INSTRUCTION SET

flL--’;‘. - Add memory to accumulatar with carry.
flaygs affected: N,Z,CV (Z is invalid if in decimal mode}.

AND - Logical 'and’ accumulator with memaory.
flags affected: N,Z

ASL - Arithmetic shift left.
_{Bft 7 gees to C flag, a 0 is shifted into bit zero}. flags affected: N.Z,C

BCC - Branch to destination if C flag=0
BCS - Branch to destination if C flag=1
BEQ - Branch to destination if Z Hag=1

BIT - Bit test. Logical "and’s ACC with memory and sets Z on the result but does

i 1 oes not alter
the contents of ACC. Bit 7 of memory goes to the N flag, and bit 6 ¢
flags affected: N,Z,V g & i

BMI - Branch to destination if N flag=1
BNE - Branch to destination if Z flag=0
BPL - Branch to destination if N flag=0
BRK - Forca IRQ interrupt.

BVC - Branch to destination if V flag=0

BVS - Branch to destination if V flag=1

CLC - Clear the carry flag.
flags affected: C{=0}

CLD - Clear the decimal mode flag.
flags affected: D{=0}

CLi - Clear the interrupt disable flag.
flags affected: I{- 0)

CLV - Clear the overflow flag.
flags affected: V{=0)
(;MP - Compare accumulator with memory.
fiags affected: N.Z,C
24

CPX - Compare X index register with memaory.
flags affected: N,Z.C

CPY - Compare Y index register with memory.
flags affected: N.ZC

DEC - Decrament memory.
flags affected: N,Z

DEX - Decrement X index register.
flags affected; N.Z :

DEY - Decrement Y index register.

flags affected: N.Z

EQOR - Exclusive-or memory with accumulator.
fiags affected: N,Z

INC - Increment memory.
flags affected: N,Z

INX - increment X index register.

flags affected: N.Z

INY - Increment Y index register.
flags affected: N,Z

JME - Jump to new location.

JSR - Jump to a subroutine.Pushes the program counter+2 onto the stack and then
jumps to the location.

LDA - Laad agcumulator from memory'.
flags affected: N.Z

LDX - Load X index ragister from memary.
flags affected: N,Z

LDY - Load Y index register from memory.
flags affected: N.Z

LSR - Logical shift right. (Bit zero goes to carry, and a zero is shifted into bit 7.)
flags affected: N{=0).Z
NOP - No operation.

ORA - Logical ‘or’ accumulator with memory.
fiags affected: N.Z

PHA - Push accumulator onto the stack.
PHP - Push processor status register onto the stack.

PLA - Pull accumulator from the stack.
flags affected: N,Z

PLP - Pull procesor status register from the stack.

flags affected: restored

BOL - Rotate left through carry. (Carry is shifted into bit 0 and bit 7 is shifted into carry.)
flags affected: N.Z,.C

ROR - Rotate right through carry. {Carry is shifted into bit 7 and bit 0 is shifted into carry.)
fiags affected: N,Z,C

RTI - Return from interrupt. Pulls status register and program counter off the stack.
Flags affected: restored

RTS - Return from subroutine. Pulls an address off the stack, adds 1 and jumps to that
iocation. :

SBC - Subtracts memory from accumulator with carry. {Carry acts as an inverted
borrow.}
flags affected: N,Z,C\V (Z is invalid if in decimal mode).

5

SEC - Set the carry flag.
flags affected: C{=1}

SED - Set the decimal mode flag.
flags affected: D{=1)

SEl - Set the interrupt disable fiag.
flags affected: {=1}

STA - Store accumuiator in memaory.
STX - Store the X-index register in memory.
STY - Store the Y-index register in memaory.

TAX - Transfer the accumulator to the X index register.
flags affected: N,Z

TAY - Transfer the accumulator to the Y index register.
tlags affected: N,Z2

TSX - Transfer the stack pointer to the X index register,
flags affected: N.Z

TXA - Transfer the X index register to the accumulator.
flags affected: N,Z

TXS - Transfer the X index register to the stack pointer.

© TYA - Transfer the Y index register to the accumulator.
flags affected: N7 i

17. THE 6502 ADDRESSING MODES
N.B. = All 16-bit addresses are stored in memory with the least significant byte first.

17.1 IMMEDIATE ADDRESSING
The operand is contained in the second byte of the instruction.

Length: - 2 bytes
Assembier Notation: H< expression™
Example: LDA BCR

17.2 ABSOLUTE ADDRESSING
The 2Znd and 3rd bytes of the instruction form the effective address.

Length: 3 bytes
Assemnbler Notation: <expression>

Example: INC 34975

17.3 ABSOLUTE, X ADDRESSING

The effective address is formed by adding the X-register to the address in the 2nd and
3rd bytes of the [hstruction.

Length: : 3 bytes
Assembler Notation: <expression> X
Exampie: CMP TABLE,X

17.4 ABSOLUTE,Y ADDRESSING

The effective address is formed by adding the Y-register to the address in the 2nd and
3rd bytes of the instruction.

26

Length: 3 bytas :
Assembier Notation: <expressionsY
Exampia: INC$1000,Y

17.5 ZERO PAGE ADDRESSING

The second byte of the instruction is the low-order 8 bits of the effective address; the
high-order byle is zero.

Length: 2 bytes
Assembler Notation: ZexXpression s
Example: iNC 100

17.6 ZERO PAGE, X ADDRESSING

The X register is added to the 2nd byte of the instruction to give the fow-order 8 bits of
the effective address; the high-ordar byte is always zero.

Length: 2 bytes
Assembler Notation: expression =, X
Exampie: STABUFFER,X

17.7-ZERO PAGE,Y ADDRESSING

The Y register is added to the 2nd byte of the instruction to give the lc. - order B bits of
the effective address; the high-order byte is always zero.

Length: ; Z bytes
Assembler Notation: “expression =Y

Example:/ . STX B33.,Y

17.8 RELATIVE ADDRESSING

The 2nd byte of the instruction is a signed offset which is added to the program counter
to give the effective address. The assembler automatically calculates the offset from the
operand given.

Length: 2 bytes
Assembler Notation: expression
Example: - BNE LOOP

17.8 ACCUMULATOR ADDRESSING _
The accumulator is the (}_psréﬂd of the instruction.

Length: 1 byte
Assembler Notation: A
Example: LSRA

17.10 IMPLIED ADDRESSING

This addressing mode is implied by the instruction; no operand exists.
Length: 1 byte

Example: DEY

7.11 INDIRECT ADDRESSING

The 2nd and 3rd bytes of the instruction contain a pointer to the 16-bit effective address
of the instruction. Due to an error in the 6502’s design, this will not work correctly if the
2nd and 3rd bytes of the instruction cross a page boundary.

Length: 3 bytes
Assembler Notation: {<expression>)
Example: JMP (VECTOR)

27

17.12 INDIRECT,Y ADDRESSING 18. NUMBER BASE CONVERSION TABLE WITH 8502 OP-CODES

The effective address is calculated by adding the Y register to a 18-bit address contained

in page zero which is pointed to by the Znd byte of the instruction. £ 00000000 2000 00D $00 BRK IMPLIED
Length: 2 bytes 2400000001 2001 001 $017 ORA INDIRECT,X
A bler Notation: < ession>),Y 200000010 @002 002 $02 UNUSED
E::fnrgle?r far I:[_ge:arps%s[;o)n,f %00000011 2003 D03 $03 UNUSED
%00G00100 A#004 004 $04 UNUSED
17.13 INDIR X ADDRESSING) %000060101 a005 005 305 ORA ZERO PAGE
o .D ; " b 00000110 Aa006 006 $06 ASL ZERO PAGE
The Znd byte of the instruction and the X register are added to give the address of two 00000111 23007 007 $07 UNUSED
locations in page zero which hold the effective address. 400001000 2010 008 $08 PHP IMPLIED
Length: 2 bytes %00001001 a011 009 309 ORA IMMEDIATE
Assembler Notation: (<expression=,X) . 00001010 a012 010 $0A ASL ACCUMULATOR
Example:- LDA (aRKTp‘é,x) %00001011 2013 011 $08 UNUSED
’ 1 %000011700 2074 012 $0C UNUSED
The notations for zero page and absolute addressing modes are the same - the 400001101 8015 013 $0D ORA ABSOLUTE
assembler decides which mode to use. 00001110 2016 014 $OE ASL ABSOLUTE
%»00001111 a@17 015 $0F UKNUSED
#00010000 ab20 016 -%10 BPL RELATIVE

%00010001 &0217 017 $11 ORA INDIRECT,Y
#00010010 9022 018 $12 UNUSED
%#00010011 a023 019 $13 UNUSED
%#00010100 «024 020 $14 UNUSED
%00010101 a025 021 ORA ZERO PAGE,X
#00010110 28026 022 ASL ZERC PAGE.,X
#00010111 @027 023 UNUSED
%#00011000 2030 024 €LC IMPLIED
#00011001 @031 025 CRA ABSOLUTE,Y
%00011010 2032 026 UNUSED
#00011011 2033 027 $18B UNUSED
%#00011100 2034 028 $1C UNUSED
%»00011101 a035 029 $1D ORA ABSOLUTE, X
%#00011110 8036 030 $1FE ASL ABSOLUTE,X
%00011111 2037 031 $1F UNUSED
%00100000 2040 032 $20 JSR ABSOLUTE
%00100001 a041 033 $217 AND INDIRECT,X
#0010C010 2042 034 $22 UNUSED
%00100011 @043 035 $23 UNUSED
#00100100 w044 036 $24 BIT ZERC PAGE
#00100101 2045 037 %25 AND ZERD PAGE
#00100110 28046 038 $26 ROL ZERO PAGE
%»00100111 2047 039 327 UNUSED
00101000 8050 040 $28 PLP IMPLIED
%#001010017 2051 041 $29 AND IMMEDIATE
%00101010 2052 042 $2A ROL ACCUMULATOR
%00101011 9053 043 $2B UNUSED
%00101100 2054 044 $2C BIT ABSCOLUTE
%00101101 2055 045 $2D AND ABSOLUTE

1110

111

WA
e i i e il
OO~

00101 @056 046 $2E ROL ABSOLUTE
%00101 @057 047 $2F UNUSED
%00110000 @060 048 $30 BMI RELATIVE
%00110001 30671 069 $31 AND INDIRECT,X
%00110010 2062 050 $32 UNUSED
%00110011 @063 051 $33 UNUSED
%00110100 a064 052 $34 UNUSED ;
4001101071 @065 053 $35 AND ZERO PAGE X
%001101710 2066 054 $36 ROL ZERO PAGE,X
%00110111 28067 055 $37 UNUSED
#00111000 a070 056 $38 SEC IMPLIED
%»00111001 @071 057 $39 AND ABSOLUTE,Y

28 i 29

%01000600
%010000601
%01000010
#01000011
%01000100
%»01000101
#01000110
%01000117
#01001000
%01001007
0106010610
#010010Q171

Z01010111
%01011000
401011001
%01011010
201011011
4201011100
%#01011101
%01011110
#01011111
%»01300000
#01100001
#011000%0
401100011

al72
ab73
al74
a075
al7é
al7?
d
2101
2102
8103
2104
#1085
w106
a107

@127
8130
@131
2132
28133
2134
2135
2136
2137
2140
28141
wth2
8143
144
a145
2146
D147
2150
2151
8152
@153
8154
@155
2156
@157
3160
2161
@162
24163
#164
2165
a1é66

b b b
o000
DC =i O~ LN

RS T I N I NSPUAL a R QY
[T W, S - e P e N o]

(el i SRV S ¥ AN R s

UNUSED

UNUSED

UNUSED

AND ABSOLUTE,X
ROL ABSOLUTE, X
UNUSED

RTI IMPLIED
EOR INDIRECT
UNUSED

UNUSED

UNUSED

EQR ZERO PAGE
LSR ZERD PAGE
UNUSED

PHA IMPLIED
EOR IMMEDIATE
LSR ACCUMULATOR
UNUSED

JMP ABSOLUTE
EOR ABSOLUTE
LSR ABSOLUTE
UNUSED

BVC RELATIVE
EOR INDIRECT,Y
UNUSED

UNUSED

UNUSED

EQOR ZERO PAGE,X
LSR ZERO PAGE,X
UNUSED

CLI IMPLIED
FOR ABSOLUTE,Y
UNUSED"

UNUSED

UNUSED

EOR ABSOLUTE,X
LSR ABSOLUTE, X
UNUSED

RTS IMPLIED -
ADC INDIRECT,X
UNUSED

UNUSED

UNUSED

ADC ZERO PAGE
ROR ZERO PAGE-
UNUSED

PLA IMPLIED
ADC IMMEDIATE
ROR ACCUMULATOR
UNUSED

JMP INDIRECT
ADC ABSOLUTE
ROR ABSOLUTE
UNUSED

BVS RELATIVE
ADC INDIRECT,Y

$72 UNUSED

873 UNUSED

$74 UNUSED :
%75 ADC ZERC PAGE,X
$76 ROR ZERO PAGE X

30

%*10000001
#10000010
410000011
%100090100
%10000101
#1000C110
£10000111
£10001000
4100017001
%10001010
100801011
%10001100
10001101
#10001110
£10001111
410010000
“10010001
10010010
410010011
£10010100 .
#10010101
£1001011¢0
#100170111
210011000
%10011007
#10011010

%#10100000
#10100001
%10100010
%10100011
. %10100100
%10100101
410100110
%101001717 @247
%101010600
%10101001
#10101010
»10101011
%10101100

2200
2207
az02
@203
w204
8205
2206
2207
@210

M Pd DO T N
R A G
o R Y

aclv
3220
@z2e
@222
@223
Q224
@225
8226
w227
0230
w23
@232
@233
a234
@235
a236
8237
8240
@241
Q2h?
A243
Bhé
D245
B246

3 £ |1 &) 8 B gy

#250
@251
az2s52
@253
@ad54
@255
2256
8257
8260
azé
azé2
@263

L SR N, NP . (. S N e
o N0, RV, LS N, RV RV, AV RV
Do~V g =

SN
O~ O
[W

PER S

o
L

UNUSED

SEL IMPLIED
ADC ABSOLUTE,Y
UNUSED

UNUSED

UNUSED

ADC ABSOLUTE,X
ROR ABSOLUTE,X
UNUSED ;
UNUSED

STA INDIRECT,X
UNUSED

UNUSED

STY ZERO PAGE
STA ZERO PAGE
STX ZERO PAGE
UNUSED

DEY IMPLIED
UNUSED

TXA IMPLIED
UNUSED

STY ABSOLUTE
STA ABSOLUTE
STX ABSOLUTE
UNUSED

BCC RELATIVE
STA INDIRECT,Y
UNUSED

UNUSED

STY ZERO PAGE,X
STA ZERO-PAGE,X
STX ZERQ PAGE,Y
UNUSED

TYA IMPLIED
STA ABSOLUTE,Y
TXS IMPLIED
STA ABSOLUTE,X
UNUSED

UNUSED

UNUSED

UNUSED

LDY IMMERIATE
LDA INDIRECT,X
LDX IMMEDIATE
UNUSED ;
LDY ZERC PAGE
LA ZERO PAGE
LDX ZERO PAGE
UNUSED

TAY IMPLIED
LDA IMMEDIATE
TAX IMPLIED
UNUSED

LDY ABSOLUTE
LDA ABSOLUTE
LDX ABSOLUTE
UNUSED _
BCS RELATIVE
LDA INDIRECT,Y
UNUSED

$B3 UNUSEED

31

%10110100 @264 180 $B& LDY ZERQ PAGE,X %11110001 8367 247 :F?. ’SaC:SIENDDIRECUY
%10110101 @265 181 $B5 LDA ZERO PAGE, X 411110010 8362 242 FS. ut :JISED
%10110110 2266 182 $B6 LDX ZERO PAGE,Y %11110011 3363 243 SF3 UNU
%10110111 8267 183 $B7 UNUSED %11110100 8364 264 SE4 UNUSED
%10111000 @270 184 $B8 CLV IMPLIED %111101071 8365 245 $F5 SBL ZERO PAGE,X
%10111001 2271 185 $BY% LDA ABSOLUTE,Y 11110110 8366 246 $F6 INC TERO PAGE,X
%10111010 @272 186 $BA TSX IMPLIED 11110111 8367 247 $F7 UNUSED
111011 8273 187 $BB UNUSED %11111000 8370 248 $F8 SED IMPLIED
111100 2274 188 $BC LDY ABSOLUTE,X 11111001 3371 249 $F9 SBC ABSOLUTE,Y
111101 2275 189 $BD LDA ABSOLUTE,X 711111010 @372 250 $FA UNUSED
111110 8276 190 $BE LDX ABSOLUTE,Y %11111011 2373 251 $FB UNUSED
111111 8277 197 $BF UNUSED %11111100 @374 252 $FC UNUSED
000000 R300 192 $CO CPY IMMEDIATE %11111101 8375 253 $FD SBC ABSOLUTE, X
000001 &30% 193 $C1 CMP INDIRECT,X %11111110 8376 254 SFE INC ABSOLUTE,X
2302 194 $C2 UNUSED %¥11111111 @377 255 $FF UNUSED

000011 @303 195 $C3 UNUSED

000100 @304 1946 $C4 CPY ZERO PAGE
000101 ’8305 197 3C5 CMP ZERO PAGE
000110 2306 198 $C6 DEC ZERO PAGE
000111 3307 19% $C7 UNUSED

001000 a310 200 $C8 INY IMPLIED
01001 8311 201 $C9 CMP IMMEDIATE
1010 2312 202 $CA DEX IMPLIED
011 @313 203 $CB UNUSED

100 @314 204 $CC CPY ABSOLUTE
101 @315 205 $CD CMP ABSOLUTE
110 3316 206 $CE DEC ABSOLUTE
01111 8317 207 $CF UNUSED
£11010000 8320 208 $D0 BNE RELATIVE
#11010001 @321 209 $p1 CMP INDIRECT,Y
#11010010 8322 210 $Db2 UNUSED
411010011 8323 211 $D3 UNUSED
411010100 2324 $D4 UNUSED

' 01 a325 $D5 CMP ZERO PAGE,X
10 a326 $D6 DEC ZERO PAGE,X
11 8327 $D7 UNUSED

00 2330 $D8 CLD IMPLIED

01 a331 $D9 CMP ABSOLUTE,Y
10 @332 $DA UNUSED

11 2333 $pB UNUSED
00
01
10
11
0o
01

Al A Am-dadaAsaaLsaDDooOocoO
(=]
[an]
o
o
-
[

R e R SIS SRS NS MR NE MR e RE RS e S
R ST R " 5 ST G . P Q. SR RIS G W SIS U QRN S W S %

#110

-2

L

-
PPN MNP PPIM

{ % [R N VS S S N Y
OV~ g

D334 $DC UNUSED
@335 $DD CMP ABSOLUTE,X
@336 $DE DEC ABSOLUTE,X
@337 223 SDF UNUSED
@340 224 $EO CPX IMMEDIATE
@341 225 $E1 $BC INDIRECT X
10 2342 226 $E2 UNUSED
011 @343 227 $E3 UNUSED ;
100 @344 228 $E4L CPX ZERO PAGE
101 2345 229 $E5 SBC ZERO PAGE
110 28346 230 SE6 INC ZERO PAGE
111 8347 231 $E7 UNUSED
000 2340 232 SE8 INX IMPLIED
01 2357 233 $E9 SBC IMMEDIATE
10 @352 234 SEA NOP IMPLIED
1 8353 235 $EB UNUSED
0 @354 236 SEC CPX ABSOLUTE
1 @355 237 $ED SBC ABSOLUTE
0 @356 238 $EE INC ABSOLUTE
1
0

(A N
[AVEaN
[W

@357 239 SEF UNUSED
@360 240 $F0 BEQ RELATIVE

32 33

EE R S L S P b G R L L LS
-
RN NI T O QR U NOE N N QU YO WO S WP S e Y e I o Y e s Moo o |

S G L PO Y S W S MY U SST WSO W R ST I . YT R, I W N S
UK. Y "SI, 'VRPHIE “PRNIE YL 'R YEPUNN ‘UL, WL WAL “JPUL 'SP WL 'S YL YL . . e R e

6502 MONITOR AND ANALYSER
By Martin lL.ewis and Andrew Foord

INTRODUCTION

The Manitor is an essential tool in the debugging of machine code programs. it has all
the facilities of a normal monitor plus many new features. The standard commands
allow memory to be examined, searched, aditad, moved oy filled; programs can be run
at normal speed; breakpoints set and machine code disassembled to the screen or
printer. Additional features include slow running of programs, single stepping and the
Analyser. The Analyser allows conditions to be trapped when running a pregram; you
rmay, for example, want to know when in your program a certain area of memory is writ-
ten to, or when a register takes on a particular value, From the analyser you can define
conditions and then when running machine code the analyser will inform you when any
of these have been fulfilled.) '

TAPE MAP

Sids A : The standard Moniter’/Analyser program which resides at 3000 decimal.
Side B : A relocatable copy of the Monitor/Analyser program.

1. OPERATING INSTRUCTIONS
1.1 Using the Standard Version
The standard version is located at 3000 {decimal) and is approximately 12500 bytes long.
TAPE: The monitor can be found on tape 1, side A, Press SHIFT and RUNSTOP to load.

DISC: 7o load the standard version of the monitor from disc, use the following com-
mand:

LOAD "GENMON",8,1

and it will run automatically.

1.2 Using the Relocatable Version

The relocatable versicn of the monitor allows the manitor to be loaded into any part of :
the memory from 3000 (decimal) to 40704. Once loaded, the program will ask you where
you would fike it to be located. Enter a decimal addrass in the range 3000 to 40704:

TAPE: The relocatable version can be found on tape 1, side B. Use SHIFT and RUN/
STOP to load.

DISC: The disc version of the refocatable monitor can be loaded using:
LOAD "RELMON" 8,1
and it will run automatically.

NOTE: When the monitor is entered the BASIC ROM is automatically paged out. When
the EXIT command is executed, the ROM is paged in again before réturning to
BASIC. If your relocated copy of the monitor (which has iength 12300 bytes) lies
partially under the ROM, you should not execute ROM ON.

The 256 bytes immediately after the monitor ase utilised by the monitor for
temporary stack storage. :)

34

2. SCREEN LAYOUT
The screen is split into four different windows:

1. The top right hand corner window displays the current state of the 6502 registers.
The top line gives the value of the program counter and a disassembly of the in-
struction at that address. The next line of information shows the status flags
{N:sign, Z:zera, Cicarry, liinterrupt, Didecimal, V:overflow). Next the contents of
the S, A, X and Y registers ara displayed and the value of ADDR is given {this value
will be discussed later). The top seven values on the machine stack are shown
down the right hand sida. Finally the state of the ROM (BASIC ROM $A00C-SBFFF}
is shown.

2. The top left window is used to show disassembly, the contents of the analyser
stack and the printout of some other monitor commands.

3. Below the top two windows there is a Hex and ASCHl dump of a section of mem-
ory, the area dumped is indicated by the valus of the memaory peinter, whose
exact location is shown by a > <<’ on the middle line of the dump.

4. Below this there is space for printing error messages and for inputting of com-
mands.

Several commands clear the whole screen to print their results. At the end of displaying
the information the user is asked to press a key and the screen will revert back to normal
format.

3. THE EDITOR

The monitor's editor allows the input of up to 39 characters at a time on the bottom line
of the display. The follewing keys can be used to edit the line:

cursar left/right Move along line

DEL Delete previous character.

INST (shift DEL) insert a space.

CTRLL Clear the editing area.

RETURN Execute the command in the editing area. If there is an error

in the command, contralf is passed back to the editor with the
cursor placed close to the error. Pressing RETURN with
nothing in the editing area causes the display to be updated.

In the lower half of the screen there is a memory display. On the middle line of the dump
there is a cursor (> <) which shows the current position of the mermory pointer. The
mermory pointer can be moved arcund the memory using the following keys:

F5 Increment the memaory pointer.

F6 (shift F5) Decrernent the memory pointer.

F7 Add 8 to the memory pointer.

F8 {shift F7) Subtract 8 from the memaory pointer.

The memory pointer can be set to a particular value using the MEM= command.

As stated before, the top left of the screen is usually used for displaying a disassembly
and the following keys can be used to update this:]

F1 Scroll the screen and show the next line {or if the top left has
been cleared get the disassembly back again).
F3 Show the next page of the disassembly.
35

You can inspect the program at a particular address using the DISS command {see 4.1).

3.1 ENTERING COMMANDS
Numbers can be entered in one of four number bases as shown below:

Decimal 4785

Hexadecimal $12B1 {preceded by a '$’)
Octal 811261 {preceded by a '@’}
Binary %100101011001 {preceded by a "%’}

A single ASCIl character can be used to represent a number by enclosing it in quotes,
e.g. “A" is equivalent to the number 65.

ON and OFF have the values 1 and 0 respectively and can be used instead of these
numbers.

The monitor has a built-in calculater which means that alt parameters can be entered as
expressions which are evaluated with Reverse Polish arithmetic. Reverse Polish
arithretic and the calcuiator are discussed in detail in the analyser section of the
manual. Al that you need to remember is that the operator follows the operands:

e.g. 2+ 3

is replaced by 23 +

So to increment the memory pointer by 64 you would enter:
MEM= MEM 64 +

There are in fact numerous different operations available and you can include the values
of registers and flags in your calculations. .

4, MONITOR COMMANDS

The foliowing notation is used for command syntax: parameters are enclosed in "<" and
‘= type brackets and optional parameters are enclosed in [’ and ‘1'. For example, FRED
<x® [,=y>] would mean that the command whose name is FRED can be followed by
ane or two pararmneters, one called <x> and the other an optional parameter called <y>.
The meanings of the parameter names are given below. y

<byte> A number in the range 0 to 255.

<word = A number in the range 0 to 65535.

<count™ As <word>.

~<addr> An address in the range 0 to 65535,

-start> As < addr>.

<finish> As <addr>.

<flag™> Either 0 or 1 {or ON or OFF).

<db number> A DB number in the range 1 {o 8.

<brk number> A breakpoint number in the range 110 8.
<filename=>- A string of up to 16 characters enclosed in quotes.
<byte list> A series of numbers whose individual values do not

exceed 255. A string of more than one character
may be entered. Each character is treated as a separate
number. :

36

4,1 THE COMMANDS IN DETAIL

A=< byte>=

X=-hyte> e.g. X=6

Y= (:by‘le';;

S=<byte:

P=<byte>

Aésigns a value to a register.
PC=<word> e.g. PC=%8000
Assigns a value to the program counter.
MEM=<addr> e.g.MEM=3C500

Sets the memory pointer ta a particular value.
DATA <bvyte list:~ e.g. DATA "HELLOY .13

Places a list of bytes at the memeory location pointad to by the memory pointer. ' can
be used as an .abbreivation of the command DATA.

eg. -"HELLO™,13

EXIT -

Returns to whatever called the monitor. As long as the monitor's workspace is not
overwritten, all the options and breakpoints and other definitions set by the user will be
retained. 1t should be re-entered with a 8YS 3000 {or the new start address if you are
using a relocated version). ;

NOTE: The BASIC ROM {$3A000-$BFFF) is paged back on exit from the monitor.
FILL <start>,<finish>,<byte> eg. FILL $4000,35FFF,0

The block of memory from <start> to <finish > inclusive will be filled with the value of
“<byte. |

DUMP [<start> [,<finish>=]] e.qg. DUMP
: or DUMP $C000O
or DUMP $CO00,%C100

Gives a HEX and ASCIl dump of memory onto the screen. With no parameters the dump
starts from the current value of the memory pointer and continues until the STOP key
is-pressed. With one parameter the dump-starts from the specified address until the
STOP key is pressed. With two parameters the dump continues untii either the STOP key
is pressed or the secend address is reached.

LDUMP [=start= [<finish™>]]
This command is the same as DUMP except that the output is sent to the printer.
MOVE <start1>, <finish> = start2 > e.g. MOVE $1000,81000,$A000

The block of memory from <start]1> to <finish> inclusive is copied into the area
starting at <start2>. Note that the MOVE command is intelligent and so overlapping
blocks will not cause corruption.

CHECK <startiz <finish> <start2 > e.g. CHECK $1000,%1000,5A000

This command compares two blocks of memory. The area from <start1> to <finish>
is compared with the area starting from <start2>. if the two blocks are the same ihen
the 'OK' message is printed, else 'Failed at <addr>"' is printed, where <addr=>
is the address of the first mismatch. :

SEARCH <start>>,<finish>,<byte list> e.g SEARCH $8000,$A7FF,$5A,%BB

The block of memaory defined by <istart> and <finish > inclusive is searched for the first
accurrance of the specified string of bytes. If no match is found then 'string not
found" is printed, otherwise 'Found-at ~addr>' is printed, where < addr> is the
" _address of the first match. {f a match is found then the memory pointer is set to the value
of <addr>. To find the next cocurrance use the NEXT command.

. DB [<:db number> [, <start>,<finish>]] e.g. DB

NEXT

The search specified by the most recent SEARCH command is continued so that the next
occurrance of the string can be found. If no SEARCH command has been use_d before or
the last search had failed to find any more matches, a "No search string' error
is given. g

SEl

. Sets the | flag {disabling interrupts},

CLI
Clears the | flag {enabling interrupts).

NOTE: " When single stepping or slow running, interrupts are automaticatly enabled
after each instruction, so do not try to single step code which performs the task
of changing the interrupt vector. This portion of code must be executed at full
speed.

LOAD - filename= [,<addr=]

The load command tries to load the specified file {if using TAPE the filename need not
he given} and place it at the given address. If an address is not given the file will be

~loaded into the position it accupied before it had been saved.

SAVE -~ filename> —start:, < finish>
The block of memory from <start= to <finish:= is saved to the setected device.

JUMP [<addr =]

The machine code at the specified address is executed at normal 6502 speed. On entry
10 the code the actual 6502 registers are set to the values held by the monitor. Also the
machine stack is copied down from waorkspace. If one or more breakpoints are defined
then these are loaded into memory. The only way 1o return to the monitor is fo use a
breakpoint. {If no parameter is given then the value of PCis used).

" CALL [<addr>] :
" This command is the same as the JUMP command except that a JSR (a call} is used to

execute the machine code program so that an RTS can be used to return to the monitor.
On returaing to the monitor the registers are stored and the stack is copied back into
workspace. Breakpoints are also recognised during a CALL command. -

- DISS <addr> eg. DISS $1000

Disassembles to the window in the top left of the screen. (See the notes on the editor

~and F1 oand FSJ

LIST <addr>- [, <finish>»] eg.LIST3000,3500

" This command disassembles to the full screen. If only one parameter is given then it owill
~ continue until the STOP key is pressed. If both are given then it will continue until either

the STOP key is pressed or the =finish:> is reached.

LLIST <start= [,<finish=}

o Same as LIST except that output is also sentto the printer. X

DB 3
DB 7,%8000,3800F

The DB command aliows you 1o define sections of memory to be displayed as data
instead of machine code. Up o 8 areas can be defined and are numbered from 1 to 8.
With no parameters, the DB command displays the current selection of data areas. With
one parameter, a number from 1 to 8, the specified data area is removed from the list.
With three parameters, a data area can be defined.

5. DEBUG COMMANDS
5.1 Single Stepping

From the monitor's editer the following keys can be used to perform single stepping
operations:

CTRL! z _ Increment the value of PC

CTRLD Decrement the value of PC.

CTRLK Skip the next instruction.

CTRLS Single step the instruction at the current PC value

-and make PC paoint to the next instruction. if
you have executed a SLOWCALL OFF then CAlLLs
and JUMPs into the ROM will be executed at full speed.

CTRLE . As CTRL S except that JSRs and JMPs are executed
at full 6502 speed.

SLOWCALL <flag =

This changes the operation of single stepping and slow running. If the flag is OFF then
any calls or jumps to the operating system ROM are executed at full speed. If the flag
is ON then the calls or jumps are single stepped as normal

NOTE: Ihe SLOWCALL command does not affect CTRL E, or slow running in modes
to 7.
5.2 Slow Running

A_ slow run is an automatic single stepping. There are four different modes of screen
display when slow running:

0. No screen update after each instruction is executed.
1. Only the memory dump is updated.

2. Only the register display is updated.

3. Both register and memory dumps are updated.

Slow running has several avantages:
1. The STOP key can be used to halt the program.
When debugging programs it is useful to see what is happening in slow maotion.
Breakpoints can be set in ROM programs.
The analyser can be used to debug programs.

;s N

The TRACE command can be used to give a list of instructions executed.
There are eight modes of slow running, numbered 0 to 7:

Mode - Screen Update "~ Stepping Type
¢ 0 CTRLS
1 1 CTRLS
2 2 CTRLS
3 3 CTRLS
39

4 4 CTRLE

5 1 CTRLE

8 2 CTRLE

7 3 CTRLE
SLOW =<byte

Starts a program slow running from the address held in PC.
WORK=-<start >, <finish> :

The work command sets up a buffer where the addresses for the TRACE gommand are
stored.,

 TRACE

During a slow run the value of PC for each instruction is stored in memaory, the TRACE
command prints out these instructions. The number of addresses remambered is the
number that can he stored in the workspace defined by the user. If no workspace has
heen defined then no addresses will be saved. Each time a SLOW is executed the
workspace is cleared.

The TRACE command starts from the oldest address that it can remember and works
forward until it reaches the point at which the pragram stopped. The lsting can be
paused by pressing a key and restarted by pressing any other. Pressing the RUN/STOP
key returns control back to the editor.

TRACE n
As above but only the last n instructions are printed.

- LTRACE

Same as TRACE but output goes to the printer.

LTRACE n
As LTHACE hut only the last n instructions are printed.

5.3 BREAKPOINTS

Breakpoints are special controls inserted into @ program 1o make it change its mode of
execution, it could cause the program to stop and return to the monitor {a normal
hreakpoint) or it could change the mode of execution to fast mode or one of the slow
maodes (8 special breakpomnt). Up to eight breakpaints can be defined at any one time.

Breakpuints are implemented differently depending on what mode of execution you are
using at the Ume; there are two modes: slow running {automatic single stepping) and
fast execution (JUMP or CALL commands}.

5.3.1 Fast Execution

When running at full 6502 speed, breakpoints will only be recogised in RAM (since a
machine code BRK instruction has to be put into the program). The BRK instructions are
loaded into RAM just before execution begins and the original contents are put back
when control returns to the maonitor.

532 Slow Running

_Breakpaints can be in ROM or RAM when stow running since nothing is actually ptaced
_into memory. Each time an instruction is run the value of PC is compared to the
breakpoint addresses.

5.4 BREAKPOINT TYPES i
_ There are 18 different types of breakpoints, all of them recognised in either slow or fast

modes. The first type is the normal breakpoint which stops execution when it is

~encauntered. The other 17 have special functions and aré numbered 0 to 16. Types O to

40

7, when encountered, change the mode of execution to the slow mode corresponding
1o the breakpoint type. Types 8 to 15 are breakpoinis with counters; each time a
breakpoint is encountered the counter is decremented, and when the count reaches zero
execution is halted. Thae table below shows the differences between them.

TYPE EFFECT

Continue in slow mode 0

Continue in slow mode 1

Continug in slow mode 2

Continue in sfow mode 3

Continue in slow mode 4

Continue in slow mode 5

Continue in slow mode 6

Cantinue in siow mode 7

Decrement count, hait if zero else slow mode 0
Decrement count, hait if zero alse slow mode 1
Decrement count, halt if zero eise slow mode 2
Decrement count, halt if zero else siow mode 3
Decrement count, halt if zero else slow mode 4
Decrement count, halt if zero glse slow mode b
Decrement count, halt if zerp else siow mode 6
Decrement count, halt if zero eise siow mode 7
Continue at full 6502 speed.

o) »
CWmPH =W -0

—a
-

P R . e T]
W f O R

Breakpoints, once defined, can be turned on and off; a breakpoint in the off state is
ignored if encountered. |

Breakpeint type 16, when encountered, changes the execution mode from slow to fast.
The instruction at the breakpoint is single stepped before the mode change is made,
even when encountered in fast mode. This means that execution is slowed temporarily.

5.4.1 Encountering Breakpoints

if a breskpoint occurs and the program execution s stopped, the message
"Breakpoint <number>" ig printed (where <number> is the number of the
* breakpoint that caused the haltl. PC is equal to the address at which the breakpoint
oeeurred, To continue from a breakpoint either turn off the breakpoint and continue with
a JUMP, CALL or SLOW, or if you require the breakpeint to stay active then single step
past the breakpoint and-then continue execution.

If a breakpoint is encountered and it cannot be identified {a BRK instruction in a
program} then the message "BREAKPOINT <addr>" (s given, whére <addr> is the
address at which the BRK instruction was encountered, '

5.4.2 Breakpoint Commands S
BREAK <hrk number>,<flag>,<addr> e.g. BREAK. 2 ,0N,$C000

Defines a normal b;'eakpoint, Any previous definition will be lost. The flag indicates the
state that the breakpoini will be left in after it has been encountared. Initially the
breakpoint wil! be ON,

DEFBRK <brk number>,<type>,<addr=> [,<count>]

Defines a special breakpoint. A count parameter is required only if the type is between
8 and 15, and this is the initial value of the counter. : :

Breakpoint types 0 to 7 and 16 always stay on after they have been exeéuted: Types 8
to 15 also stay on as long as the count has not reached zero yet, when it does the
breakpoint will be turned off.”

BRK <lbrk number=>,<flag>
Sets the state of the specified breakpoint to that of the flag. Turning one off will still keep
_the definition. Turning on a count type hreakpoint will reset its counter to its initial value.

~ DELETE <brk number =
41

ECOHHANB ABANDONNED

Deletes a breakpoint definition.

LBRK

Lists the breakpoints giving their type (either BRK for normal, SF for type 16, or number},
their addresses and their current states (ON or OFF). Breakpoint types 8 to 15 also
display initial and current count values.

6. INPUT/OUTPUT COMMANDS

DEC Makes the monitor print addresses and numbers in decimal.
HEX Makes the monitor print addresses and numbers in
hexadecimal.

MSK Make disk the selected storage device, and also read the status
of the disk drive, The status is displayed on the error message
line.

DiSK “<command>" Send a disk command to the disk drive, e.g. DISK
"SO0:rname" to erase a file, or PISK "NO:name,ID" to
format a disk, or DISK “V" to validate a disk.

TAPE Make tape the selected storage device.

CBM Tells the monitor to use a Commodore printar {default).
CENTRONICS Tells the monitor to use a Centronics interface {if
fitted to the user port).

CLR <flag>> i ON is given as the flag, then the screen wiill be cleared
whenever a jump to a program is made, using JUMP, CALL or
SLOW. If OFF is the flag then the screen will not be cleared. The
default state (its state whean the monitor is first loaded} is OFF.

LENGTH= " - This sets the page length when using & printer with the
Centronics port. If a value 0 is given {default} then no action is
taken.

DIR Read the directory of the disk drive (the DISK command must be

used first to select the disk)

7. ERROR MESSAGES
QK The last command was executed without errors.
COMMAND NOT KNOWN
NUMBER TOO BIG

BAD NUMBER The monitor can't understand a parameter.
START>FINISH :

The monitor can’t understand this command.

A number is out of range.

<start>> and <finish> parameters were enterad
with the <stari>> number greater than
the <finish>.

BAD OPCODE When single stepping or slow running the

maonitor has found an opcode which it cannot
executs.

This may occur if the stop key was pressed
or an error cceurred during SAVE/LOAD type
commands.

42

STOP PRESSED The STOP key has been pressed.
FOUND AT See the SEARCH command.
FAILEDAT See the CHECK command.

NQ SEARCH STRING See the SEARCH command.
STRINGNOT FOUND See the SEARCH command.

BAD FILENAME An illegal filename was given for a LOAD/SAVE/
DEFLOAD: DEFSAVE command.

TOOMANY OPERANDS Too many parameters are given after a command.

TOO FEWOPERANDS Not enough parameters are given after a

command.

DEVICE NOT PRESENT This is given during a LOAD or SAVE command
if the disk drive is not present (and has been

selected) or if a disk error is encounterad.

Given during 2 LOAD/SAVE operation if the
file can’t be found.

FILE NOT FOUND

BAD FILE Given during DEFLOAD command if file is not
found or it is of the wrong format.
READ ERROR Given while reading from tape or disk if there is

a loading error.
BREAKFPOINT NOT DEFINED
BREAKPOINT Given when a breakpoint halts execution.

PROGRAM SPACE UNDEFINED The user has definad no space for the Forth
: dictionary. {(See PROG=1.

OUT OF PROGRAM SPACE There is no more room left for Forth definitions.

WORD ALREADY KNOWN This Forth word already exisis in the dictionary.
{You will have to give your new word a different

name}.

There is no definition after the ! or WORD
command..

NODEFINITION

WORD NOT KNOWN The interpreter can’t firid this Forth word in

the dictionary.

STACKEMPTY The Forth stack is empty and an operation needs
a number,

The Forth stack contains more than one number
after a STOP word has been interpreted.

STACK NOT EMPTY

DIVISIONBY ZERO

QUT OF STACK SPACE The Forth stack is full.

8. THE ANALYSER

The analyser allows the definition of intelligent breakpoints which cause a program that
is slow running to stop when a particular condition occurs. The conditions that can be

" monitored are: the state of the flags, values of registers, the contents of memory and il
memory has been written to or read from.

Conditions are set up using a subset of the language calied Forth (for those who already
know Forth, the words already defined for the analyser Forth are listed at the end of this
section). ;

43

Before anything can be done with the analyser, some space for user definitions must be
reserved, this is done using the PROG= <start>,<finish> command (where <start> and
<finish> define a block of memory to be used as program space}. To start with about
250 bytes of program space will be sufficient. if the monitor has been icaded in at 3000
and is the only program in memory, the area from $4000 should be free, so use
PROG=54002,$4100.

8.1 Introducing Analyser Forth

The analyser uses a dialect of Forth as the preakpoint controlling language for three
reasons. Firstly, a Forth compiler is gasy to implement and does not require a lot of
memory io run in. Secondly, the code generated is very compact. Thirdly, and most
importantly, Forth programs execute very rapidly. This latter quality is essential if the
analyser is to be of any practical use.

Those users who are familiar with Forth should have no problems with this dialect but
should still read this section carefully. We do not recommend newcomers to the

language purchasing a text on Forth because the analyser uses only a very small subset
of the words and the exampies in this section are aimed to provide sufficient tutorial.

8.2 Analyser Commands
EVAL

This will evaluate any Forth expression and then print out the contents of the stack in
the top left hand corner of the screen.

Forth uses Reverse Polish arithmetic to carry out expression evaluation. What this
means is that the operands are placed on the stack BEFORE the operator. This means
that 3 + 4 would be replaced by 3 4 + and so on. Below are some examples.

Expression Reverse Polish
e+5%4 254 %+
L2435 * 425+ 4%
2=30/5 2305/ -
(2-30) /5 230-5/

e.g. EVAL 3 4 + 2 6 = would print 7 12 {see section 8.3).
{'?' can be used as an abbreviation for the EVAL command, e.g. 7 3 4 +).
PROG<start>>,<finish=>e.g. PROG= 38000 ,%80FF
Sets the area which is to be used for the storage of Forth words.

CLEAR

Clears the user dictionary, removing all the words.

ANALYSER <flag> ¢.g. ANALYSER OFF

Enables or disables the analyser from working during a slow run.

WORD <word name> <Zdefinition:=
‘or I <<word name> <definition >

Defines an analyser word, <word name> must be made of alpha-numeric characters
-anly and should not have been defined before. <definition> is at least one number or
~analyser Forth word.

*LDEF

_:.,Print out all the user Forth word definitions.
'PDEF

s above but output is also sent to the printer.

E
EDEFSAVE ~filename:

;ﬁtare the user defined words onto the selected storage device.
' 44 :

DEFLOAD =filename>=

Add the user words stored in the file to the words already held. {filename only optional
when using TAPEL

EDIT <word name™

This command prints out the definition of the specified word, if known, and then anters
the editor to aliow you to change the definition. Entering the line by pressing RETURN
causes the word to be changed to the new definition, if there is an error of some sort
in the line then the old word is untouched. New storage space is used up for the new
definition and not the space used for the old one, that space is ignored and wasted so
eventuaily i you do a lot of editing you will run out of space. If this happens simply
DEFSAVE all the words to tape or disk and use the CLEAR command followed by the
DEFLOAD command to get the words back again. This clears out all the old definitions
and rebuiids its list of correct definitions.

NOTE: I you try to EDIT a definition which expands to more than 40 characters the
excess will spill onto the next line. This will cause problems for the editor since
initially the cursor is left at the end of the second line but once it is moved on
to the first line it cannot be moved back onto the second line again. It is rare
for definitions to take up mere than 40 characters, but it may help to perform
editing of such lines in DEC mode instead of HEX since numbers are printed in
less characters in DEC mode.

8.3 Using Analyser Forth

When processing a Forth definition the analyser works along the definition from left to
right dealing with each number or operator in turn. Numbers are simply placed on the
“stack”, Operators are interpreted and the required function performed. "Stack” in the
context of this discussion is the analyser stack, not the 6502 stack. How would the
analyser evaluate the following string?

6234 + *x +
As each term is encountered, working from left to right, it is processed.

Stack
6 ie a number so it is placed on the stack 6
2 is a number so it is placed on the stack 62
3 is a number so it is placed on the stack 523
4 is a number so it is placed on the stack 6234

-+ ig an operator so it is interpreted. The effect of the + operator is to take the last two
stack entries, add them and put the resuit on the stack: 3

4 is removed from the stack 62 3
3 is removed from the stack 62
the sum 7 is placed on the stack 627

* |5 an operator so it is interpreted. The effect of the * operator is to take the last two
_stack entries, muitiply them and put the product on the stack:

7 is removed from the stack 6 2
2 is removed from the stack 6
the product 14 1s placed on the stack 6 14

+ is an operator so it is interpreted. The last two stack entries are removed, added and
the resuit is placed on the stack:

14 is removed from the stack 6
B is removed from the stack
the sum 20 is placed on the stack 20

The EVAL command allows a line of analyser Forth to be executed immediately and
shall be used to introduce the language to you. Forth uses a stack to store all its data,
to get Forth to do anything for you, you must put data on the stack first, for exampie you
might want to add the numbers 2 and 3 together using the EVAL command. First you
must place the two numbers on the stack, to do this type:

45

EVAL 2 3 {and press ENTER)
The following will appear (as long as program space has been defined):
STATE OF STACK:

$3
$2

ENTER COMMAND

This shows you that the analyser has placed the twoe numbers on the stack. The stack
is known as a first-in-last-oiit structure because you can keep adding items but if you
want to get at something that was placed on the stack earlier on you must remove
everything above it first. For example, say you place the numbers 1, 2 and 3 on the stack
ia that order. 1 is on the bottom of the stack and 3 is on the top; to get at 1 again you
must first remove the 3 and then the 2. So numbers placed on the stack are read off in
the opposite order to which they went on.

To add the two numbers together, Forth has a word called ' + ' which it understands to
mean addition, it takes the top two stack entries and adds them together, placing the
result on the top of the stack, so now type:

EVAL 2 3 +

-and, hey presto, you get the answer $5 (note the analyser is printing the stack in

hexadecimal - to change this to decimal printing enter DEC (& RETURN)).
To demonstrate how the stack works, try:
EVAL1 23 +

This leaves 5 and 1 on the stack, showing that the two most recent entries are added
together. Now try:

EVAL 3 2 1T -+

The answer should be 4; to see why, look at the diagram below {the *state of
stack' diagram shows the bottom of the stack to the teft):

WORD STATE QF STACK EXPLANATION

CEVAL empty clears the stack
3 3 puts 3 on the top of the stack
2 32 adds 2 to the top of the stack
1 224 adds 1 to the top of the stack
31 2 minus 1 equals 1
+ 4 3 plus 1eguals 4
Note that '—’ is another Forth word, this time meaning subtraction {you can find all the

defined words listed at the end of this section}.

Instead of putting numbers on the stack you could use the values of the 6602 registers,
for example, EVAL X Y + will place the values of X and Y on the stack, add them
together and put the answer back on the stack. Try the following:

x=100

Y=200

EVAL X Y +
The answer should be 300 (decimal). Executing a word that requires items on the stack
when none are there will cause a "Stack Empty” error to be printed. For example,
EVAL + will give such an error,

As mentioned above, +, —, X and Y are all defined words, you can define your own
words by using the WORD command, for example:

WORD FRED DUP *

This defines a word calied FRED which gives the square of the number held on top of

the stack. DUP is a defined word which makes a copy of the top stack item onto the stack

and '*' is ‘multiply’. Note that when you enter this line nothing is exscuied, the
45

definition is just stored away in a program space. To list any definitions you have made
tand to see how much space you have left use the LDEF (list definitions} command. Now
ry!

EVAL 4 FRED 5 FRED

Y_ou-should get the answers 16 and 26 {since 4 squared is 16 and b squared is 25); the
diagram shows what happens:

WORD STATE OF STACK EXPLANATION

EVAL empty stack cleared

4 4 4 placed on stack

FRED—DUP 4 4 another copy placed on stack
—k 16 multiply the top two items

5 16 & 5 placed on stack

FRED -DUP T another copy placed on stack
— 16 25 multiply the top two items

The definition FRED can only be used after it has been defined, otherwisea 'word not
known' error is given. Also FRED can't be redefined using another WORD command, it
can only be altered using the EDIT command. Since word names could consist of numeric
characters only itis possible (but not advisable) to redefine numbers; for exampie, try this:

WORD 10 11
EVAL 10 10 +

The answer printed will be 22 since you have redefined the number 10 to give the value 11.
To remove all definitions from the program space use the CLEAR command.
To change the definition of a word use the EDIT <-word name> command

STOP Definitions

To get the analyser to test for conditions while running a program, a stop must be defined.
This is a word with the name STOP followed by a single digit from 0 to 9, e.g. STOP1 or
STOP7. This STOP can be used like any other word definition but during SLOW running the
stops are evaluated after every instruction has been executed. At the end of the STOP
definition you should leave one number {usually a flag) on the stack, if this value is non-

zero {true_} the program will stop and the number of the STOP in which the hait was caused
will be printed. -

After a STOP definition the next instruction to be exetuted is displayed, not the one first
executed, since PC always points to the next instruction to be executed.

To explain the use of STOPs we will need a demonstration program, type in the
following list of commands: : N

MEM=35000
DATA $A0,%$0,3A9,%1,%99,.%0,%4,818,%69
DATA $1,%$C8,%C0,%F,3D0,%F5,%60

This will load a short machine code program into the memory at $5000 (which shouid

be free’if the monitor/analyser is the only thing loaded) the disassembly of the code is
shown below. g

$5000: LDY #30
$5002: LDA #8351
$5004: STA $400,Y
$5007: CLC
$5008: ADC #%1
$500A: INY

$500B: CPY HSF
$500D: BNE $5004
$500F: RTS

Check that you have these instructions in memory by entering:

Diss $5000 47

You should now see these lines on the screen, with some extra instructions at the end
which we shall ignore.

“The program puts characters onto the screen in the top left window.

To run this program type:
CALL $5000
and you should get some characters displayed to the screen.
Suppose we want the routine to stop when the Y register contained a 3; to do this we

need to define a STOP:

CLEAR remove any old definitions
WORD STOPO Y 3 =
STOPO has now been set up to detect when Y = 3. The Forth word '="' compares the

two numbers on the stack. if they are equal, 1 is put on the stack, otherwise 0 is put on

“the stack.

The anaiysar can only be used white SLOW running, not fast executing; to execuie the
program type:

PCc=%5000
SLOW 3

Some characters will be displayed, then the monitor will print "STOP NUMBER O' and
"press any key'. When you pressa key the monitor screen display will be updated.
In our second example we will introduce four important new words. ADDR, RD, WR and
ACF are analyser words that allow the detection of reading or writing of memory (see
the list of definitions). Using the same program as above type in the following
definitions:

CLEAR

WORD SCREEN ADDR %0404 =

WORD STOPO SCREEN WR &

The definition SCREEN, returns 1 {a true flag] if the last instruction accessed the memory
location $0404 (a location in screen memaoryl, otherwise it returns 0. The word & is used
to ensure that the STOP only occurs if SCREEN is true AND {&) memory is being written
to. Now run the program using:

PC=%5000
SLOW 3

The analyser will now stop st the CLC instruction [since the STA instruction previously
had written to the location $404 and this is checked after this instruction had been
executad]. The analyser can also be used to check that a particular value is written 1o
memory:

CLEAR

WORD VALUE ADDR Ca 6 =
WORD STOPO VALUE WR &

The analyser will check if the value written to memory is & {screen code for ‘F') and if
s0 it will halt just after the 'F’ had been put onto the screen.

There are several general points to note about the analyser:

1. The logical operator ‘&' and the bitwise operator ‘OR’ can be used to chain
conditions together, for example “condition? AND (condition2 OR condition3}”
would be converted to Forth as: ?

condition2 condition3 OR condition]l &

2. The WORD command can be abbreviated to 1<word name> <definition>, for
example:

'FRED 1 1 +

3. Up to ten STOPs can be defined (STOPO to STOPS) but it is worth remembering
that the more definitions there are, the slower the program will run.

8.4 Analyser Forth Reserved Words

in the following list of definitions, a stack diagram is given for each word. This shows
how the word affects the stack. In these diagrams the ' > " sign splits the ‘before’ and
‘after’ parts. Numbers on the stack are represented by ni, n2 and n3; these are 16 bit
Integers and so are in the range 0 to 65535. Sometimes words use flags and f1, 12 and
f3 represent these. A flag uses zero to represent false and a non-zero value {usually 1}
to represent true.

Here is an example:
ntnz > f1

This would mean that the definition would expect at least two numbers on the stack,
where n2 is the top stack item and n1 is the next stack item. After the word had been
exscuted n1 and n2 would have been removed, leaving a flag {which has the vaiue of
0 or 1) on the top of the stack. A 'STACK EMPTY ' error is given if there are insufficient
items on the stack when the command is executed.

8.5 DEFINED WORDS
8.5.1 Register Values:

PC > nl This places the current vaiue of PC onto the stack.

AXYSP > nt This places the value of the specified register
onto the stack.

NF,ZF,CF,|,DF VF P This places the value of the specified flag onto
the stack.

NF Sign flag

ZF Zero flag

CF Carry flag

I Interrupt flag

DF Decimal flag

VF Overflow flag

85.2 Using the 6502 Machine Stack from Forth

POP > nl

This word takes the iast byte entered on the machine stack {converts it to a 16 bit form
with msb=0} and puts it anto the Forth stack.
PUSH '

This word takes the top number off the Forth stack and if it is less than 256 it puts this
onto the machine stack as a single byte. If it is greater than 255 then a BAD NUMBER
error is generated. ¢

8.5.3 Memory Addressing

ADDR > ni

ADDR places the address of the last memory location accessed on the stack. If the most
recent instruction did not write to, or read from, memory then ADDR will return the
value 0. Not all memory accessed by an instruction is recorded; the following do not
affect ADDR: :

PHA, PHP, PLA, PLP, RTS, RTi, BRK
All of the addressing modes are recognised including those which use the registers.

ADDR can be used from the EVAL command and it will reflect the actions of the
instruction PC 1s painting to at that moment.
RD,WR,ACF »

49

Ail three instructions leave a flag on the stack. RD leaves a true flag (1) if the last
instruction read from memory otherwise it leaves false (0). WR leaves a true flag if the
last instruction wrote to memory. ACF leaves a true flag if the last instruction accessed
memory (i.e. either read or write).

Some instructions read and write to the sarne location; they are:
Increments or decrements of a meamory location
Rotations of memory tocations

8.5.4 Arithmetic Operations

+ addition nt n2 > n3 (n3=nt+n2)
- subtraction nd. BE ¥ nd {n3=nt-n2)
* multiplication nt ng > n3 {(n3=n1*n2)
/ division nt n2 > n3 {(n3=n1/n2)

These four mathematical operators use the top two stack items as their operands, if
there are less than two numbers on the stack at the beginning of the worda "Stack
Empty ' erroris given. The operands are removed before the answer is placed on the
stack.,

Note that the analyser stores its numbers as 16 bit integers, i.e. a number from 0 to
65535 and so negative numbers and numbers greater than 685535 cannot be entered. The
analyser has no overflow error and so only the least significant 16 bits of any answer is
ever remembered, the following examples demonstrate this:

EVAL 65535 1 + gives the answer 0
EVALO 1 - gives the answer 65535
EVAL 500 500 * gives the answer 53392

Since numbers are stored as integers, the result of division will be reunded down to a
whole number, e.g. 10 & / will give the answer 2 instead of 2.5.

8.5.5 Logic Operators

AND bitwise AND nl n2 > n3
OR bitwise OR nt n2 > n3
XOR bitwise exclusive-OR nl n2 > n3
NOT bitwise complement nl > n3

These four operators perform the given bitwise logic operations on the top two stack
items {only one for NOT) and after removing the operands the answer is placed on the
stack. The logic operations are performed on the full 16 bits of 2 number and the tables
below show the effect on the individual bits for the four operations:

OANDO =10 QORO=0 O0X0RO0=0 NOT O =1
0AND 1 =0 DOR1=1 0XOR1=1 NOT1=0
TANDO =20 10R0=1 1X0R0=1
TAND 1 =1 10R1=1 1X0R1=0
‘8.5.6 Relational Operatars
= n1 equal to n2? nlnz>{1
> n1 greater than n2? nlnz>f1
< n1less than n2? nling>f1
>= n1 greater than or equal to n27 ntng>f1
=< n1 less than or equal to n2? ntn2>»f1
<> n1 not equal to n2? ntnz>f1
= n1 equati to 07 nt>f1
0> n1 not equal to 07 nt>f1

:These operators compars either the top two numbers on the stack, or the top stack item,
“with 0. f1 is either 1 or 0 to represent true or false. A 'Stack Empty ' error is given
if there are insufficient items on the stack. As with other operators the operands are
rremoved from the stack before the answer is placed on the stack.

& Logical AND 1 2 > 3.

30

If the top two stack sysiems are both non-zero, & true flag {1} is put in their place,
otherwise they are replaced by a false flag (0}, The & operator can be used to chain
conditions together, where any non-zero value on the stack represents a true condition
and a zero value represents faise. This word acts differentiy to the word AND since 1 2
AND would produce the answer &, even though 1 and 2 both represent true conditions.
The bitwise OR word can be used for chaining conditions together and 0= can be used
to perform the logical NOT. For example you may want to convert the following to
analyser Forth:

“Stop if condition1 is false and either conditionZ or condition3 are true”
This is translated to:

(NOT condition?} AND {condition2 OR condition3]
and can be written in analyser Forth as:

STOP1: condition1 0= condition2 condition2 OR &

8.5.7 Other Operators

Ca byte fetch nl 2 fe

The address on the top of the stack is replaced by the byte contained in that address.
o word fetch nl > n2

This word is like the C@ word except that two bytes are fetched from memory. E.g. to
find ‘the address held at 23100 {low byte} and 23101 (high byie) use: 23100 8 .

BIT bit test 1 1 R - s |

This word expects two numbers on the stack, n1 and n2. The result, 1, is a copy of the
n2th bit of n1. n2 should be in the range 0 to 15 {since numbers are stored in 16 bits}
and is taken in modulus 16 if greater than 15 (i.e. 31 represents bit 15 etc.j.

8.5.8 Stack Operations

DUP nt > n1 ni
Duplicates the top item on the stack.

SWAP n1 n2 > n2 nl
Swaps the top two stack items over.

OVER nt n2 > a1l nZ2 ni

The second from iop stack item is copied onto the top of the stack without removing it
from its original position.

ROT “nd oz ‘a3 ¥ np2 n3 nf
Rotates the top three stack items around as shown in the diagram.

8.5.9 Other Words

ON has the value 1 > 1

Places 1 on the stack.

OFF has the value 0 o 0

Places 0 on the stack.

MEM has the value of the memary > nil
pointer

Places the value of the memaory pointer on the stack.

AaMEM > n1l
Stacks the address at which the value of MEM is stored.
81

e.g. AMEM $61D3 !

would set MEM to $61D3.

UPDATE ¥ Rt B

This tests 1 and if it is non-zero then the screen display (memory dump and register
displays) is updated. n1 contrels which windows are updated.

If n1 is 0 then nothing is displayed

it n1 is 1 then the memory dump is given

if n1 is 2 then the registers are displayed

if n1 is 3 then the memory dump is given and the registers are displayed

if n1 is greater than 3 then n1 MOD 3 is used.

CALL nt>

This calls the r{zachine code routine at address n1. This is provided so that you can add
your own routines to the analyser easily. The X and Y registers are loaded with the

add:}'ess of a date area used by the analyser. (X contains the low byte and Y the high
onel.

- The data areas contain the following:

0 Store for the A register

i Store for the X register

2 Store for the Y register

3 Store for the P register

4 Store for the S register
5,6 Address of a routine to take a number off the Forth stack
7.8 Address of a routine to put a number onto the Forth stack

Sa these coutd, for instance, be accessed by:

STX %19
STY %1A
LDY #location wanted
LDA ($19),Y '

You are given the addresses of routines which will pop and push numbers onto the
Forth stack. Each number on the stack is stored as two bytes, se the high byte is stored

_in the X register and the low byte in the Y register.

e.q. STX %1%
CS5TY $14A - store address of data area
LDY #5
LA (3192 ,Y ; get eddress of the ‘getnum’ routine
STA getnum
INY

LDA (819).,Y
STA getnum+1

INY

LDA (319).,Y ; get address of the ‘putnum’ routine
STA putnum E

INY

LDA ($19),Y
STA putnum+l

; put number 426 onto the stack

Lpx #1
LbY #170 ;T *256 + 170 =424
JSR putnum ;

1 get the number back
JSR getnum

» the value 426 shouid be in the registers
52

RTS
putnum DEFB 34C
DEFW 0O ; ; storage area for vectors to the ‘getnum’ and
; ‘putnum’ routines
getnum DEFB $4C
DEFW O
IF i1 >

f the flag is true then the rest of the line is executed, If the flag is false then the rest of
the definition is not executed.

! nl n2 >

This stores the 16 bit number n1 at address n2.
cl nl n2 >

This stores the 8 bit number n1 at the address nZ2.
?PAUSE f1 >

This waits for a key to be pressed if the flag is true, and continues once a key has been
pressed. If the flag was false, no action takes piace. :

DROP nl >
The top number on the stack is deleted.
NOP

This operation has no effect whatsoever. It is used for a blank definition, or if you want
to slow a Forth word down slightly.

KEY > nl

Stack the ASCIl value of the last key pressed. This is included to allow external control
of your STOP definitions. If no key is pressed 0 is put onto the stack.

eg: KEY "A'" = NOT IF TEST

This would cause TEST to be executed unless "A” were pressed.

OPCODE : + S 1

n1 is the opcode vatue of the last instruction exacuted.

STACK > nl

A1 is the start address of the workspace used to store the machine stack. So STACK S
+ gives the address of the top of the machine stack.

8.6 EXAMPLE DEFINITIONS

Given below are a list of useful words that can be defined and then used to construct
more pawerful definitions {none of the definitions already exist in the analyser and so
must be defined by you when you require them):

RANGE range checking n1 n2 n3 > f1
IRANGE ROT SWAP OVER >= ROT ROT <= &

Checks if the value n1 is in the range of n2 to n3 inclusive, for example ADDR #8000
#80FF RANGE checks if ADDR lies in the range #8000 to #B0FF inclusive.

WORD STATE OF STACK

RANGE n1n2n3
ROT nZ n3 nil
SWAP n2n1n3
OVER nZ2nin3ni
>= n2nt f1
ROT nlfin2
ROT fin2nl
<= f1fe

& 3

MEMWR Memory protection nl n2 » 1
IMEMWR ADDR >= SWAP ADDR <= & MWR &

This word can be used to protect areas of memory from being written to {or test if they
are written to) by the machine code being slow run. n1 and n2 represent the start and
finish addresses of an area of memory that is being protected. For example:

'STOP9 #8000 #8FFF MEMWR #0 #1FF MEMWR OR

This stop definition would cause the program to stop if it starts to write to the area from
either #8000 to #8FFF inclusive or #0 to #1FF inclusive.

LXOR Logical exclusive-OR f1 f2 > 13
1.XOR 0> SWAP G> XOR

The word LXOR is different to XOR since it treats the two numbers on top of the stack
as flags (Ofalse, 0<>TRUE). The logical XOR can be used to chain conditions, for
example you might want a program to stop if either condition1 or condition? were true
but not if both are true, this would be written:

ISTOPD condition? condition2 LXOR

8.7 Memory Details

There will be two versions of the Analyser’Monitor program supplied; one resides in a
low area of memory and ihe other is a relocatable version.

The Analyser/Monitor uses the following zero-page locations:
$22,%23,%24,%25,%26,%27,%28,%2°9

They may be used by you in a machine code program when fast executing it, but do not

use these locations when single stepping or when slow running. 3

8.8 The RESTORE Button

If you get inte difficulties when using this program, even if one of your programs
crashes when fast executing, the RESTORE button can be used as a ‘panic’ button. This
bution causes a non maskable interrupt {it means that the 6502 must stop what it is
doing and go back to the start of the monitor).

WARNING: Sometimes some very strange things may happen if you use this
facility. Only use this button if you have to! You can normally use the
STOP key.

8.9 Analyser Examples
The following section shows how the Analyser can be used to track down bugs; it

~assumes that the area of memory around $8000 is free.
. To demonstrate the analyser we need a program with a bug in it.
Example 1

“Bpecification: The program given below (shouid] add up the ten numbers held in the

bytes from $8000 to $8009 and place the total in the last element of the table.

$800A LDY ¥3%0
$800C LDA #30
$800E CLC

$80D0F ADC $8000,Y
$8012 INY

$8013 CPY #3A
$8015 BNE $800E
$8017 STA 38000,Y
$801A RTS

To enter this program into memory type the following:

MEM=8800A
DATA 3$A0,0,%A9,0,%18,%79, 0 $80,%C8
DATA" $CO, $A SDD SF? $99 $8El 560

This program requires ten numbers in the locations $800C to $8009; 1o place some data
there, use:

MEM=3$8000

paTA 1,2,3,4,5,6,7,8,9,0

To make surg that we have the program and data in the memory we can check it by
listing it, but first define the memory from $8000 to $8009 as & data area using the
command.

DB 1,%8000,%8009
and use this to list it:
LIST $8000,3801B
The program can be run using:
 CALL $800A

The answer, which is 45 {$2D}, should have been placed in the last ocation of the table,
i.e. $8009 {the location originally containing 0). Examining $8009 shows that it still holds
the value 0, a BUG! If we list the program using LIST we alsc notice that the program
has become corrupied, the byte at $800A has changed from $SA0 to $2D. Assuming we
didn’t know immediately why the pmgram isn’'t working, we could use the Analyser to
find out why the total is not being placed in 38009 and why the byie at $800A is be! r*g
cortupted.

First define some program space.

PROG=38100,%$82FF
We could start out by trying to find out why the byie at $800A was corrupted.
NOTE:

In this case there is only one instruction which writes to memory, the instruction at
$8017. Using the analyser illustrates how a similar bug in a much larger program could
be found, where memory wouid be written to in many places and only cne would be
causing the bug. :

The following definition will set up the analyser to detect when this byte is being writien
to:

!STOP1 ADDR S$800A = WR &
Before we can run the program again the byte at $800A should be returned to its original
value:!

MEM=$5800A

DATA $AQ0
Now run the program again:

PC=$800A

SLOW 3 (the analyser only works in SLOW modes}

The program will stop with "press any key' as usual, but in addition gives the error
message "Stop number $1" indicating that STOP1 has given a TRUE value. The
instruction shown is BTS, so the instruction just executed was STA $8000,Y. This will
tell us that the answer is being piaced in the wrong place, $800A instead of $8009.

To see exactly what is happening we can single step the program but since the program

locps around several times this might take quite a while, especially since we can assume

that the addition part of the program is working. Suppose we want to single step fram
when the tast byte of the table is read, up to there we can slow run the pragram.

55

FINIT PNT TABLE ! $7002 0 c!

‘IDECPNT PNT DUP @ 1 - !

JPRINT 1 3 UPDATE 1 ?PAUSE

The following definition sets up STOP1 to detsct when the last byte in the table is read
{$80091;

CLEAR
!STOP1 ADDR $800% = RD &

Now we run the program again {remember to correct the program first):

MEM=$800A
DATA $AD
PC=%3800A
SLOW 0

The program will now stop at INY since the last instruction read $8009. We can now use
the single stepping to see what happens from ncw on. Using Control S single step past
iNY, CPY and BNE until you reach STA. You will note that Y=3%A and so the address it
will write to is {shown by the value of ADDR} $800A. This is because INY is executed at
the end of the last run of the loop. We can’t remove this so a DEY will have to be inserted
just after the BNE, To do this enter:

MEM$3017
DATA $88,3%99,%50,%80,%60

Now run the program:
CALL $300a

. Afterwards examine the byte at $8009; it should be 45 ($2D), the sum of
©1,2,3.45,6,7,8.98,0. Type:

LIST 3$3000,3801¢C

" and you will see that the pregram has not been corrupted. Running the program again

will give the result 90 {$5A] since the sum is now that of 1,2,3,4,5,6,7,8,9,45.
Example 2

The following example is included firstly because it is a fairly comprehensive axample
of the analyser’'s use, and secondly because it performs a test that some programmers
may find useful at some stage.

tInder normat circumstances a subrouting is exited with the stack in the same state as
it was when the routine was entered. A common source of error (and one which is often
difficult to trace) oceurs when routines are called recursively. The definition in this
example will cause a screen update and pause, if a return is encountered with the Stack
in a different state to that which was produced by the most recent call.

DEFINITION DESCRIPTION

ITABLE $7003 Sets the start of the table
which holds the stack
values,

'PNT $7000 Sets the address for the

pointer into the table.

Initialises the tabie and
table pointer.

TINCPNT PNT DUP @& 1 + ! Increments the table

pointer.

Decrements the table
pointer.

Updates the front panei
display and waits for a
key press.)

Fetches the last stack
pointer value and
compares it with the
current stack pointer
value. If they differ then
the front panel display

fCHECK PNT @ C& S <> IF PRINT

is updated.
1JSR OPCODE %20 = IF PNT & § C! Checks to see if the last
INCPNT instruction executed was

a JSR. If so, then the current
value of the stack pointer is
entered into the table and the
pointer is incremented.

IRTS PC Ca %60 = 1F DECPNT if the current instruction is an

CHECK RTS then the pointer is
decremented and a CHECK
performed to ensure that the
stack is in the same state as
it was when the last JSR was
exacutad.

'STOPO JSR RTS %0 Defines a stop condition that
checks for matched calls

and returns. Note the $0
which prevents termination.
This means that the check
will run indefinitely.

Usin'g the Example Definition

The definitions given above can now be used to track down stack errors in your
proegrams, but first note that before slow running any code with these definitions the
Analyser program must first be initialised with:

EVAL INIT

Note also that the program wili only work with the sloweall option turned on, so use:
SLOWCALL ON

before testing any programs.

To show the use of these definitions we have supplied an example program:

.ORG #9000 _
LDA #32 ; start with a space {*)
LOQP JSR CHROUT ; print a character
JSR PAUSE ; wait a bit
CLC ; increment character counter
ADC #1
cMP #127 ; repeat until character 127 is reached
BNE LOOP
RTS slefin
PAUSE PHA ; use two nested loops to cause
LDX #64 ; a time delay '
PAUSE1 LpY #0 5
PAUSEZ DEY
BNE PAUSEZ
DEX
BNE PAUSE? ;
JSR GEYKEY : check if a key has been pressed
CMP #O
BNE PAUWS ; jurnp if a key has been pressed
PLA

RTS 57

PAWS JSR GETKEY ; wait until another key has been
CMP #0 ; pressed and then return
BEQ PAWS
PLA
RTS

GETKEY =8$FFE4
CHROUT =%5FFD2

To enter this program from the Monitor type the following:

MEM=$9000 _
DATA $A9,$20,$20,$D2,%FF,$20,510,$90
DATA $18,$69,1,5C9,87F,3D0,5F3,360
DATA $48,$A2,$40,3A0,0,%$88,%D0,$FD
DATA SCA,$DO,SF8,$20,$E4,$FF,$C9,0
DATA $D0,2,$68,3560,320,$E4,8FF,$C9
DATA 0,$F0,$F9,368,360

As it stands the example program works, to see what it does type
CALL $9000 :

The program prints & set of characters on the screen with a small time delay between
gach character. Pressing a key starts and stops the printing.

We will now introduce a bug. Type the following:
MEM=39028B
DATA S$EA

This modification to the program will change the PLA at the end of the ‘PAWS’ routine
into a NOP. The program will now only work properly if the ‘PAWS’ routine is not used
{i.e. no key is pressed). Pressing a key will cause a crash.

; Commodore ROM routines

Say we wanted to use the Analyser to help track down the bug {assuming we didn’t
glready know where it was). First reserve some analyser program space using:

PROG=$8000,%8400

gnd then type in the definitions given. above. Use LDEF to check that y'nu have typed
them in correctly. '

The example program uses two nested ioops to cause a time delay, slow running this
would take a long time. To speed this section of the program up while slow running we
ean use two breakpoints to make this piece of code {from $9011 to $3018) to be exscuted
at normal 6502 speed. To do this enter the following:

DEFBRK 1,16,$9011
DEFBRK 2,0,3%901B

We can now run the program under the Analyser:

PC=%9000
SLOWCALL ON
EVAL INIT
SLOW O

Leave the program te run and you will see that characters are being printed (slowly).
@pw press a key, this will take us into the 'PAWS' routine where the computer will loop
g_q;ltil another key is pressed. Pressing another key will cause the display to be updated.
PC.now points to the RTS at $302C, indicating that the stack is not sét up properly for
g.return. This is where we would expect an error to occur since we now have no PLA

instruction at the end of ‘PAWS’ to match the PHA at $2010. If we put the PLA back {first
press RUN/STOP):

MEM=3902B
DATA 360

and run the program again:

PC=%9000
EVAL INIT
SLOW D

The program will continue happily even if you press a key to stop and start the printing.

APPENDIX A -

COMMAND
A=

ANALYSER

BREAK

BRK

CALL

CALL
CBM
CENTRONICS

CHECK

CLEAR
CLR
DATA
DB

DB
DB

DEC
DEFBRK

DEFBRK

SUMMARY OF COMMANDS
PARAMETER
“Ibyte>

<flag>

<brknumber>, <flag>,<addr >

< brknumber> <flag>

< addr>

<_start1>,<finish1 >, <start2>>

=flag:=

< byte-list=>

=db numbaear:>-

<db number>,<start>,
<finish=)

<brk numbers, <type™,<addr:>

<brk number>,<typez,
<address> <<count>

ACTION

Assigns value in <byte>> to the A
register. .

Switchi the analyser on or off
according to the flag. (flag =
ON or OFF).

Define breakpoint number <brk
number>. if the address <addr> s
mat, the monitor will resume
control. The breakpoint may be set
to remain on or off. ;

The breakpoint <brknumber> s
switched on or off according to the
value of <flag>.

A call to the address in PC is

made. Code executes at normal
6502 speed, but a return address is
put onto the stack.

As above but control is passed to
the code at address <addr>.

Selects the CBM port as the printer
port.)

Seiects the Centronics port as the
printer port,

Compares byte for byte, the
contents of memory, lying between
=.startt> and <finish1>.inclusive,
with the area starting at <start2>.

Resets the program space and
switches the analyser on.

Defines screen state on running .
program.

The byte list is ptaced into
memory (abreviated to “.").

Lists the current selection of data
areas.

Deletes the specified data area.
Defines a data arga.

Sets number printing to decimal.

Define a SPECIAL breakpoint
number <brk number>. If the
address < addr> is met, the
monitor will act according to the
value of type,

Define SPECIAL breakpoint number
<brk number>, If the address

< addr> is met then <count:>

is decremented. When <count>
reaches zeru the monitor will act
according to the value of <type=.

DEFLOAD

DEFSAVE

DELETE
DISK

DIsK
DISS

DUMP

DUMP

DUMP

EDIT

EVAL

EXIT

FILL

HEX

- JUMP

JUMP

LBRK
LDEF
LDUMP

LENGTH
_ LIST

UST

"<string>"

"<zstring ="

< hrk number=>

“< disk command>="
<addr=

<sgtart>

<gtart>,<finish> -

- <word name:>

<definition=

<start> < finish> < byte>

<addr>

<number=

< gtart>

61

Load the analyser definitions from

the file called " <string>".

Save the current analyser
definitions to a file named
"<string>". :

Removes the breakpoint
<“hrk number> definition.

Select the disk drive as current
input/ output device, and read
its status.

Send a command to the disk drive.

Disassemble the contents of
memaory from address <addr>>
onwards.

Qutput the contents of memory,
starting at address MEM, 1o the
screen until STOP is pressed.

As above but start at the address
specified by <-addr>.

As above but finish if address
< finish = is reached or if the STOP
key is pressed.

Edit the spacified analyser
definition.

Evaluate the definition and print
out the state of the analyser
stack.

Return control to the program that
catied the monitor.

The value <bytez is placed in the
memaory area ranging from
<gtart= to <finish>,

Sets number printing to
hexadecimal.

Pass control to the machine code
starting at the address in PC. Code
will execute at normal 6502 speed.
Unless breakpoints are
encouniered the moniter will not
be re-entered.

As above but contro! is passed to
the program at <<addr.

List any defined breakpoints..

List the user’s analyser definitions.

As with the DUMP commands but
output is sent to the printer.

Sets the printer page length.

Disassemble to the full screen
starting at the address in PC.

As above but start at address
<addrz.

LsT

LLIST
LOAD
LOAD

LTRACE

LTRACE
MEM=

MOVE
NEXT

P=
PDEF

PROG=

ROM
SAVE

SEARCH

SLOW

SLOWCALL

TAPE

TRACE

TRACE

<start>,<finish>

<file name>

<file name>,<addr>

<number:
<addrz

< gtart1>,<finish1 >, <start2>

< byte>

<start>,<finish>

<flag>

=filename>,<sta ﬁ,f--,<finish>
<gtart>, <finish =,
< byte list>>

<slow mode number:

< flag>

<byte:

<number:

As above but stop when address
<finish> is reached.

As with the LIST commands but
output is also sent to the printer,

Load the specified file to the
address found in the header block.

The file is loaded into memory
to the address specified.

The contents of the TRACE
memory will be listed to the
printer.

As LTRACE but only the last n
instructions are printed.

The memory pointer is set to the
value of <addr=,

Copy the contents of memory
tying between < start1> and
<finish1> inclusive, to the area
starting at address <stari2>.

Finds the next occurrance of the
search string in the memory range
given in the last SEARCH
command.

The Processor Status register is
given the value of <byte’.

As LDEF but output is also sent to
the printer. :

Define the memory between
<start>> and <finish> as the
analyser program space.

Page the ROM in or out.

The contents of memaory lying
between <start> and <finish>
is-saved to a file.

The block of memory specified
is searched for the <byte list>
given.

Start a program slow running with
update of the monitor display
according to the value of the mode
number.

Determines the action of a ROM
CALL when siow running.

The stack pointer is given the value
of <byte>,

Select the tape recorder as the
currentinput/output device.

The contents of the TRACE .
memory are displayed to the

full screen,

As TRACE but only the fastn
instruc’tions are displayed.

<word name:> <definition> Define an analyser word.. 'ASSEMBLEH INDEX 64-MAC

<start>,<finish> Sets aside a workspace for TRACE. ‘Arithmetic Expressians in Command Mode 3
<byte> The X register is given the Assembler Error Messages 18
value of <byte>. ‘Agsembly Language, 6502 a
<byte= The Y register is given the value ﬁgﬁmblv Language Statements 16 1?
of <byte>. AUTO ; 10
As DATA. _CEINTRO 13
CHANGE - 11
As EVAL. -Command Mode,; Arithmetic Expressions in 8
As WORD. Comment Statements 8
‘Conditional Assembly ‘Example]
‘Copy a file ' 15
COPY _ 10
ETRL : 14
Delete a file 15
DELETE - : 9
“DEVICE . 16
Directive Statements 3
DiSK 8
Disk Mode 17
DOS Support 15
Duplicate a disk 16
Editor, using the 8
EDITOR 9
Editor Error Messages 1
FIND 10
Format a disk 15
FSAVE : S 12
Funtion Keys 8
GENASM 1,2
INTNUM 14
Instruction Statements ke
Linked Files _ -17
LIST ; 3
LOAD ; 12
Loader Program 13
-Loading _ -12
Loading from disk 1
~Loading from tape 2
_Macro Invocations 4
“Macros in Disk Mode 17
MANUAL 10
~MEM 10
“MLOAD - 12,
“MOVE 10
* MSAVE 12
“NEW _ y 10
“Notation 2
" 0C+ 13
=0C~ : 13
COFFSET 17
=0OLOAD 12
“OSAVE 13
*Pattern matching - 15
FPRINT i 9
: Print the directory 15
+ Primter, using a 13 .
- Printer Pagination 14
% Read error channel 158

Rename a file
RENUMBER
Resident Mode
RESIDENT
RUN

SAVE

Saving
Setting up the printer
SETPAGE
SKiP

TITLE
Validate a disk
.BLOCK
.BYTE
DBYTE
.DEFMAC
.ELSE

LEND
.ENDMAC
FILE
HEIGHT
AFEND

AFEQ

AFNEQ
AFNEG -
AFPOS
ANTNUM
LIST
.NOLIST -
.ORG

PAD

.PAGE
.PAGEIF
.PRINT

SKIP

TITLE .
WIDTH
WORD

)

—_—
=
ARbLUSNSNSOSNSWASISN SOOI~ B PO bW s

ek

MONITOR INDEX 64-MON

Address Mode
Addressing Modes (6502)
ASCII

Architecture (6502)

BYTE

CALC

COMPARE

DASM

DBYTE

-Debugger/Trace
. DECIMAL
:Defining Symbaols

DISCLR
DISDEL

. DISP
" DISTAB

DUSR

FDASM

Fiags

HEX

Instruction set {6502}

_JSR MODE

LOC
LOCCLR
LOCDEL

- MCHANGE

MDUMP

MFIND

MFILL

MLIST

MMOVE

Monitor Error Messages
Number base table/op-codes
OPT

Register Mode
Registers - Byte-length
Registers - Word-length
REGS

RELOC

‘Step Mode

Symbolic Disassembler

-8YS

TABCLR

‘TABDEL

TABLES
TRACE

USR
“WORD

MONITOR ANALYSER INDEX

A:;‘.

ADDR

ANALYSER

Analyser

Analyser Commands
Analyser Examples
Analyser Forth
Analyser Forth Reserved Words
Aritnmetic Operators
BIT

BREAK

Breakpoints
Breakpoint Commands
Breakpoint Types :
Breakpoints — encountering
BRK

Ca

CALL

CBM

CENTRONICS

CHECK

CLEAR

Cil

CLR

Commands in detail
Command Summary
C!

DATA

DB

Debug Commands
DEC .

DEFBRK

Defined Words
Definitions — Example
DEFLOAD

DEFSAVE

DELETE

DIR

DISK

DISS

DROP

DUMP

DUP

EDIT-

Editor

Entering Commands
Error Messages -
EVAL .

Example Definitions
Examples — Analyser
EXIT

Fast Execution

FILL

GENMON

HEX

IF

Input/Output Commands
Introduction

Jump

67

37, 60

44, 60
43
44

44,45
49

52
41, 60
40
41
40
41
41, 60

38, 62, 60 -

42, 60
42, 60
37, 60
44, 60

42, 60
37
60

51
37. 60
38, 60

39
42,60
41, 60

45, 61
44, 61
41, 61

42
42, 61
38, 61

37, 61

8t

45, 61

42
44, 61

37. 61
37, 61
34

42,61
53
42
34
38, 61

- KEY 51

. LBRK 42, 61
- LDEF a4, 61
. LDUMP 37,61
- LENGTH 61
- LENGTH= 42
- LsT 38, 61, 62
LLIST 38, 62
. LOAD 38, 62
" Logic Operators 50
LTRACE 40, 62
" LXOR 54
~Machine Stack (6502) from Forth 49
. MEM 51
“MEM= : . 37,62
“Memory Addressing 49
- Memory Details ’ 54
~MEMWR 54
“Monitor Commands 36
" MOVE 37,62
 NEXT , 38, 62
- NOP 53
OFF 51
ON 51
- OPCODE : 53
- Operating Instructions 34
Operators — Arithmetic 50
Operators — Other 51
Operators — Relational : 50
OVER 51
p= 37,62
PC= 37
PDEF - 44, 62
POP 49
PROG= 62
PUSH 49
BRANGE 53
Register Values 49
Relational Operators 80
. Relocatable Version — using the 34
Reserved Words — Analyser Forth 49
"RESTORE Button 54
"ROM 62
-ROT 51
8= 37,62
“SAVE 38, 62
“Screen Layout 35
. SEARCH 37,62
SSEF - 38
“8ingle Stepping 39
SLOW 40, 62
-SLOWCALL - 62
-Slow Running ' 39, 40
“STACK 53
“Stack Operations 51
Standard version - using the 34
“Summary of Commands 60
SWAP 51
TAPE 42,62
“Tape Map : 34
TRACE e 39, 40, 62

UPDATE
WORD
WORK=
*=

Y=
@MEM
7PAUSE
&

]

?

52
44,63

37, 63

37,63
51

59
53, 63

63

NOTES

