MetaBASIC:

Programmer’s Problem Solver

Kevin Mykytyn, Editorial Programmer

Here’s a utility that
will change the wa
you program. It adds
32 new debugging and
testing commands to
Commodore 64 BASIC,
working by itself or in
conjunction with a
machine language
monitor/assembler.

properly called a develop-
ment system or writing/
debugging tool. The new
commands you add cannot
be used inside a program,
they work only in im-
mediate mode.

New languages and
extensions have several
advantages. But they also
have a major drawback:

You've bought your first car and it runs well. But
when you take it out on the highway, you're dis-
mayed to find that it won’t go faster than 45
miles per hour. What do you do?

Take it to your favorite mechanic and he
might give you three options: Remove the engine
and replace it with a brand new one. Or add
some fancy turbo-charging fuel-injected
doohickeys to the engine you already have. Or,
without adding anything, you could tune it up,
using a special machine that measures the en-
gine’s performance.

A BASIC Tune-Up

You can add new programming commands to
your 64 in three similar ways. The first is to toss
out BASIC and create a whole new language (a
more powerful engine) based on your ideas of
what a programming language should do.

The second method, a language extension,
keeps BASIC but adds some new programming
commands (for sound, high-res graphics, or other
specialized functions). You keep the BASIC en-
gine, but add some additional parts which make
it work faster or more efficiently. Simons” BASIC
and the Super Expander 64 are examples of an
extension.

The third way is like a tune-up which
doesn’t change the engine. You add direct mode
commands for debugging. This is not a new lan-
guage or even an extension of BASIC, it's more
114 COMPUTE!'s Gazette April 1985

You have to load the lan-
guage or extension before you load the main pro-
gram, or the program just won’t work.

The nice thing about a development system
like “MetaBASIC” is that it’s there when you
need it, during the time you're writing and tun-
ing up a program. But once you've finished the
program, you don’t need MetaBASIC to run it—
you can disconnect the tune-up machine.

An Introduction To MetaBASIC

MetaBASIC uses English mnemonics, so you
don’t have to memorize a lot of SYS numbers.
And if you forget the new words, you can either
refer back to this article or type HELP.

BASIC programmers have 12 new com-
mands at their fingertips. For writing programs,
AUTO, KEY, and UNNEW. For examining and
altering programs, CHANGE, DELETE, FIND,
RENUM, and VCHANGE. And DUMP, SPEED,
TRACE, and TROFF help during debugging
sessions.

If you're writing in machine language, you
can use some of the BASIC problem solvers, as
well as MEMORY, MONITOR, NUMBER, and @.

To control MetaBASIC, you have DEFAULT,
HELP, INT, and QUIT.

Disk commands include BSAVE, CAT,
DLIST, ERR, MERGE, READ, RESAVE,
SCRATCH, SEND, and START.

Finally, there’s LLIST if you have a printer,
and TERMINAL if you have a modem.

MetaBASIC Commands

Here’s an alphabetical list of the new commands and how to use them, with examples.
MetaBASIC commands and strings appear in boldface and numbers appear in italics. Anything

enclosed in parentheses is optional.

If something is described as a disk command, it won’t work unless you have a disk drive.
However, some of the ML programming aids can be useful in BASIC and vice versa.

AUTO—BASIC Programming
Syntax: AUTO startnum, increment

AUTO can take some of the drudgery out of
writing a program. It automatically numbers a
program, starting at the first number, in-
crementing by the second. Separate the num-
bers with a comma. After you press RETURN
over a line, the next number is automatically
printed. The current line number can be
changed by using the INST/DEL (delete) key
and replacing it with another number.

Press RUN/STOP to escape from AUTO.

Example: AUTO100,10 starts at 100 and
numbers by 10.

BSAVE—Disk Command (see also RESAVE)

Syntax: BSAVE “filename”, start address, end
address + 1

BSAVE (Binary SAVE) saves a chunk of mem-
ory to disk, from the starting address to the
ending address. Put the program name inside
quotation marks, and use commas to separate
the name, starting address, and ending ad-
dress. It’s important that you add one to the
actual ending address. You can use this com-
mand to make backups of machine language
programs, as long as you know the starting
and ending addresses. BSAVE can also func-
tion to save sections of screen memory, custom
character sets, or high-res screens.

The numbers should be in decimal. If you
need to translate from hexadecimal to decimal,
see NUMBER (below).

After you BSAVE to disk, you can load it
back with LOAD “filename”,8,1.

Example: BSAVE “METABASIC” ,36864 ,40961
to make a customized backup of MetaBASIC.
By saving 100 bytes past the actual end of the
program, you conveniently save all previously
entered DEFAULT and KEY definitions. The
next time you load the BSAVEd MetaBASIC,
type INT and DEFAULT to regain them.

CAT—Disk Command (see also DLIST,
READ)
Syntax: CAT

Anytime you want to look at the entire disk
directory, use CAT (for CATalog). The BASIC
program currently in memory will remain un-

disturbed. To see specific portions of the direc-
tory, see DLIST.

CHANGE—BASIC Programming (see also
FIND, VCHANGE)

Syntax: CHANGE @OLD@NEW@

(,startnum, endnum)

CHANGE @“OLD”"@“NEW”@

(,startnum, endnum)

CHANGE searches through the program in
memory, changing every occurrence of the old
string to the new one. The strings can be up to
30 characters long, and must be bracketed by
the commercial at sign (@). All lines in which
changes are made are listed to the screen.

The first format will change BASIC com-
mands and variable names. The second format
should be used to change strings. If you omit
the line numbers, CHANGE affects the whole
program. If you want to change only one sec-
tion, add the starting and ending line numbers,
marked off by commas.

Example: CHANGE @X@QQ@,1,200
changes the variable X to QQ in lines 1-200.
To change the name Charles to John through-
out the program, CHANGE
@"“CHARLES”@"“JOHN"@.

DEFAULT—MetaBASIC Command (see also
INT, QUIT)

Syntax: DEFAULT border, background, text,
device#

When you hit RUN/STOP-RESTORE, the

screen reverts to the default colors of light blue

characters on a dark blue screen, whether you

like it or not. And several commands like

LOAD and SAVE default to tape. DEFAULT

lets you change these values to whatever you

prefer.

If you have a disk drive, you can change
the device number to 8. If you want to use
your second drive (device nine) for SAVEs,
change the default to 9. If your 64 is hooked
up to a black-and-white TV, change the
character/background color to a more readable
combination.

Note: You cannot use any of the new disk
commands once you change the default device
number to 1 (tape). To disable DEFAULT (and
go back to normal), use the MONITOR

or

116 COMPUTE!'s Gazette April 1985

command below.

Example: DEFAULT1,1,0,8 changes border
and background to white, characters to black,
and device number to 8. If you press
RUN/STOP-RESTORE, you'll see black
characters on a white background. And you'll
be able to type SAVE"filename” (without add-
ing a ,8).

DELETE—BASIC Programming

Syntax: DELETE startnum-endnum

DELETE removes a range of lines from your

program. Separate the starting line number

from the ending number with a dash (-).
Example: DELETE200-250 erases lines
200-250.

DLIST—Disk Command (see also CAT,
READ)

Syntax: DLIST “filename”

This command lists a BASIC program from
disk to the screen, without affecting what'’s
currently in memory. The program name must
be enclosed in quotation marks. DLIST enables
you to look at a program before using MERGE
or SCRATCH.

It also allows you to read portions of the
directory. DLIST “$:A*" displays all disk files
beginning with the letter A.

Example: DLIST “BASICPROGRAM”
reads the file from disk and lists it to the
screen.

DUMP—BASIC Programming
Syntax: DUMP

Use DUMP to examine the current values of
all non-array variables in a program. If the
program is running, press RUN/STOP and
type DUMP. To resume, type CONT.

ERR—Disk Command
Syntax: ERR

ERR reads the disk error channel. Use it when
the red light on the disk drive starts blinking.

FIND—BASIC Programming (see also
CHANGE, VCHANGE)

Syntax: FIND @string@ (,startnum, endnum)
or FIND @"string”@ (,startnum, endnum)

This allows you to find any word, variable, or
other string within a program. Each line
containing the search string is listed to the
screen. If you wish to search just one section
of the program, add the starting and ending
line numbers, separated by commas.

If you're trying to find BASIC keywords

(like PRINT or REM), use the first format. It
also works for variables and numbers. The sec-
ond format should be used when you're look-
ing for strings or items inside quotation marks.

Example: FIND @A =@ searches for
lines where variable A is defined.

HELP—MetaBASIC Command
Syntax: HELP
Whenever you are unsure of the commands

available in MetaBASIC, type HELP for a com-
plete list.

INT—MetaBASIC Command (see also
DEFAULT, QUIT)

Syntax: INT

Some features of MetaBASIC are interrupt-
driven. If you reset the interrupts (with the
MONITOR command), the function keys and
the SPEED function may no longer work. INT
puts the interrupts back in place.

KEY—BASIC Programming (see also INT)
Syntax: KEY function#, “command or string”

This command adds a lot of flexibility to
MetaBASIC, allowing you to define each of the
eight function keys as a different command or
string.

The command, up to ten letters in length,
must be inside quotation marks. There are two
special characters. The back arrow acts as a
carriage return, so you don’t have to press RE-
TURN after BASIC commands. Also, the apos-
trophe (SHIFT-7) counts as a double quotation
mark.

Using KEY, you can load other utilities
you may own, and SYS to them with a tap of
a function key. Or you can do a one-key RUN
or LIST.

If you want to permanently define the
function keys and screen/text colors, you can
use KEY and DEFAULT and then BSAVE
“MetaBASIC” using the starting and ending
addresses above. The definitions will be saved
along with the program.

If the interrupts are accidentally reset, you
may have to use the INT command to re-
enable the KEY function.

Examples:

KEY1,”{CLR}LIST100-<" clears the
screen and lists from line 100 on whenever
you press f1 (the back arrow means RETURN
will happen automatically). You could also
abbreviate LIST with L SHIFT-I.

KEY7,“DATA” could be useful with auto-
matic line numbering (see AUTO) if you're
writing a program with a lot of DATA state-

COMPUTE!'s Gazette April 1985 117

ments. After entering a line, press RETURN
and you'll see the next line number. Then
press f7 and the word DATA automatically
appears.

KEY2,“VERIFY*'«" defines f2 to print
VERIFY”*” plus a RETURN (note the apos-
trophes have been changed to quotation
marks). If you've used DEFAULT to change
the device number to 8, pressing f2 will auto-
matically verify the program most recently
saved to disk.

LLIST—Printer Command
Syntax: LLIST (startnum-endnunt)

This command lists a program, but the listing
is sent to a printer rather than to the screen.
Line numbers are optional. The syntax for
LLIST is identical to the regular LIST.

Example: LLIST10-20 to list lines 10-20 to
the printer.

MEMORY—ML Programming (see also @)
Syntax: MEMORY start address (-end address)

You can examine any section of memory with
this command. Use decimal numbers (not hex)
for the starting and ending addresses. The val-
ues in memory are displayed, six bytes per
line, in decimal. In addition, the equivalent
ASCII characters are printed in reverse to the
right (if there’s no corresponding ASCII
character, a period is printed).

If you omit the ending address, MEMORY
43 for example, you'll see the contents of two
bytes (43 and 44). This makes it easier to look
at two byte pointers—Ilike 43 and 44 which
point to the beginning of BASIC memory.

To change memory, you can use the @
command, described below.

Example: Enter MEMORY 41374-41474
and you'll see the first few error messages
(note that the ASCII value of the last character
is always added to 128). Or, load a BASIC pro-
gram, and type MEMORY 2048-2148 to see
how programs are stored in memory.

MERGE—Disk Command

Syntax: MERGE “program name”

MERGE reads a program from disk, lists each
line to the screen, and adds the line to the pro-
gram in memory. If the programs have com-
mon line numbers, the program on disk takes
precedence. Say they both contain a line 250.
The line 250 from the disk program will re-
place line 250 in memory.

Before using this command, you may
want to use DLIST to make sure you're merg-
ing the right program. And if there are

conflicting line numbers, you can use RENUM
to renumber one of the two programs. If you
want to merge just part of one program, use
DELETE to eliminate the unwanted lines.

MONITOR—ML Programming (see also INT)
Syntax: MONITOR

If you have a machine language monitor in
memory, you can enter it with MONITOR
(providing it is enabled with a BRK). To use
MetaBASIC with a monitor, you must load
MetaBASIC, type NEW, and SYS36864. Next,
load the monitor, type NEW, and SYS to the
starting address (which will set up the BRK
vector to point to the monitor).

MONITOR does several other things, as
well. It changes border, background, and text
colors back to their default values (light blue
on dark blue). It also sets interrupts to normal,
which disables the function key definitions
(see KEY) and SPEED command. You can get
them back with the INT command.

NUMBER—ML Programming

Syntax: NUMBER $hexnum
or NUMBER decnum

NUMBER allows you to convert back and
forth between decimal and hexadecimal. Put a
dollar sign ($) in front of hex numbers. In
addition, the number is converted to low-
byte/high-byte format (in decimal) and the
equivalent binary number (marked by a per-
cent sign).

Examples:

NUMBER $100

256

01

9%100000000

NUMBER 34

$22

340

%100010

QUIT—MetaBASIC Command

Syntax: QUIT

This resets all vectors and disables all
MetaBASIC commands. The one thing it does
not do is restore the top of memory pointer.
MetaBASIC is still protected from BASIC. Re-
enter the program with SYS36864 or
SYS9*4096.

READ—Disk Command (see also CAT,
DLIST)

Syntax: READ “seq filename”

READ allows you to examine sequential disk
files. The information in the file is displayed to

118 COMPUTE!'s Gazette April 1985

the screen, without altering whatever program
is in memory.

In the rare case that you want to use the
BASIC READ command from direct mode (to
see if all DATA statements have been read),
you can precede it with a colon.

RENUM—BASIC Programming
Syntax: RENUM (startnum)(,increment)

This command renumbers the entire BASIC
program in memory (you can’t renumber just
part of the program), starting at the specified
line number. The increment size is optional;
RENUM defaults to 10. If you omit the starting
number, it will start at line 10.

In addition to renumbering BASIC lines,
all references in GOTOs, GOSUBs, ON-
GOTOs, ON-GOSUBs, IF-THENS, etc. are
taken care of. One word of caution: GOTO is
covered, but GO TO (with a space in the mid-
dle) is not. Use FIND before renumbering to
look for occurrences of GO TO.

Example: RENUM 100,20 renumbers a
program, starting at line 100, counting up by
20s.

RESAVE—Disk Command (see also BSAVE)
Syntax: RESAVE “filename”

The disk command save-with-replace (SAVE
“@:filename”) first saves the program and then
scratches the older version, so there must al-
ways be enough free space on the disk for the
new version of the program. This can cause
problems if you don’t have enough available
space.

Save-with-replace is also sometimes un-
reliable and should be avoided (although some
experts dispute this).

RESAVE reverses the order—first it
scratches the old version of your program from
disk, and then does a regular SAVE, solving
both of the above problems.

SCRATCH—Disk Command
Syntax: SCRATCH “filename”
SCRATCH does the same thing as OPEN
15,8,15: PRINT#15,S0:filename”: CLOSE 15,
but it's easier to type. It scratches a file from
the disk. If you have just inserted the disk into
the drive, it’s a good idea to initialize it first
(see SEND). You can use wildcards to scratch
more than one program—SCRATCH “A*"” will
get rid of all files beginning with the letter A.
Example: SCRATCH “SPACEGAME” re-
moves the program named SPACEGAME from
the disk.

SEND—Disk Command
Syntax: SEND “disk command”

This is a convenient way to send disk com-
mands to channel 15. SEND”I0” initializes the
drive, SEND"“V0’’ validates the disk, SEND
“RO:newname=oldname’” renames a disk file,
and so on. For more information about disk
commands, see the 1541 User’s Manual.

SPEED—BASIC Programming
Syntax: SPEED number

SPEED followed by a number from 0 to 255
changes the printing speed. The higher the
number, the slower the speed. Try typing
SPEED 255 (the slowest you can make it) and
then list a program. You can get back to nor-
mal with SPEED 0. If it doesn’t work, try us-
ing INT (see above) to correct the interrupts.

SPEED is also useful when you're using
the TRACE command.

START—Disk Command
Syntax: START “filename”

If you forget where a machine language pro-
gram begins, put the disk in the drive and use
this command. This can help when you have
forgotten the SYS that starts a program.

Example: START “METABASIC” should
display 36864 on the screen.

TERMINAL—Modem Command

Syntax: TERMINAL

If you own a Commodore modem (and it’s
plugged into your 64), TERMINAL transforms
your computer into a 300 baud “dumb” termi-
nal you can use to talk to standard-ASCII bul-
letin boards or information services like
CompuServe. You can’t change any of the de-
fault parameters (like full-duplex), nor can you
upload or download text or programs.

To return to BASIC, press the £ (English
pound) key; do not press RUN/STOP-
RESTORE. A note of caution: Memory loca-
tions 52736-53247 are used for buffers, so any
program in this area will be overwritten.

TRACE—BASIC Programming (see also
TROFF)

Syntax: TRACE followed by RUN.

If you're debugging a BASIC program, TRACE
helps you see what'’s happening. As each line
is executed, its line number is printed on the
screen. Use the SHIFT or CTRL key to tem-
porarily halt the program. SPEED controls the
speed of execution, and TROFF turns off
TRACE.

COMPUTE!'s Gazette April 1985 119

TROFF—BASIC Programming (see also
TRACE)

Syntax: TROFF

This command turns off the TRACE function.

UNNEW—BASIC Programming

Syntax: UNNEW

You may never need this command, but it’s

nice to have it available. If you accidentally

type NEW and you want to retrieve the pro-
gram, use UNNEW to get it back.

VCHANGE—BASIC Programming (see also
CHANGE, FIND)
Syntax: VCHANGE @OLD@NEW@
(,startnum, endnum)
or VCHANGE @“OLD”@"“NEW”@
(,startnum, endnum)

VCHANGE (Verify CHANGE) works just like
CHANGE (see above), except you get to
choose whether or not the change is made.
Each line containing the old string is dis-

played, with each occurrence of the string
marked with a filled-in circle. If you press Y,
the change is made. Press N if you want to
skip to the next one.

@—ML Programming (see also MEMORY)
Syntax: @ start address, number, number....

This works like POKE, except it allows you to
put a series of numbers into consecutive mem-
ory locations. For example, if you want to
change border and background color to white,
you would use @53280,1,1. The first 1 goes
into 53280, the second into 53281. If you add
more numbers, separated by commas, they are
POKEd into the next locations: 53282, 53283,
and so on.

You can also use this in conjunction with
MEMORY. First, PEEK at a series of locations
using MEMORY. Then change the information
there by putting @ before each line you want
to change. Cursor over to the number you
want to change, change it, and press RETURN.

Typing It In
MetaBASIC is written entirely in machine lan-
guage, and MLX is required to type it in.
If you don't already have a copy of MLX for
the 64, type it in and save it to tape or disk.
The program resides at the top of memory,
where BASIC programs (including MLX) store
dynamic strings. To protect this section of mem-
ory, you must enter POKE644,144:5YS58260
before loading MLX. Otherwise, the variables
will overwrite MetaBASIC. Then, load MLX and
run it. Give it the following information:

Starting Address: 36864
Ending Address: 40805

Next, following the MLX instructions, enter
MetaBASIC and save it.
To use MetaBASIC, follow these steps:

1. LOAD"MetaBASIC”,8,1 (for disk) or
LOAD"”MetaBASIC”,1,1 (tape).

2. Type NEW

3. SYS36864 (or SYS9*4096)

The program uses 4K at the top of BASIC
memory (which leaves you with 35K for your
programs). The first thing it does is move the top
of BASIC pointer down, to protect itself from
variables. After the SYS, it may seem that noth-
ing is happening. But MetaBASIC is running in
the background, and you now have 32 new com-

120 COMPUTE!'s Gazette April 1985

mands to help you write and debug programs.

Special Notes

Always type NEW after loading MetaBASIC.

One feature that works automatically is LIST
Pause. When you're listing a program, hold
down CTRL, SHIFT, or the Commodore key to
temporarily halt it.

RUN/STOP-RESTORE is available in both
program mode and direct mode. But if you want
to interrupt any of the utilities like RENUM, use
the RUN/STOP key by itself (not RUN/STOP-
RESTORE).

The commands work only in direct mode;
you cannot add them to programs. Also, you're
limited to one command per line (although you
can still use multi-statement lines inside your
programs). Unlike ordinary BASIC commands,
there are no abbreviations. You must type out
the entire MetaBASIC command. If it seems to be
working incorrectly, make sure the syntax is
correct.

Machine language programmers should
remember that MetaBASIC occupies memory
locations $9000-9FFF. The 4K which begins at
$C000 is available for programs like Micromon
or for your own ML programs. Be sure to load
and run MetaBASIC before loading any other
programs. See program listing on page 141. @

	Compute_Gazette_022 1 2008_08_27_22_59_53.pdf
	Compute_Gazette_022 2 2008_08_26_17_17_54.pdf

