applications
book

RODNAY ZIAKS $302 (/>

6502
applications
book

AAAAAAAAAA

EEEEEEEEEEEEEEEEEE

Every effort has been made to supply complete and accurate information. How-
ever, Sybex assumes no responsibility for its use; nor any infringements of patents or
other rights of third parties which would result. No license is granted by the equipment
manufacturers under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice.

In particular, technical characteristics and prices are subject to rapid change.
Comparisons and evaluations are presented for their educational value and for guidance
principles. The reader is referred to the manufacturer’s data for exact specifications.

Copyright © 1979 SYBEX Inc. World Rights reserved. No part of this publica-
tion may be stored in a retrieval system, copied, transmitted, or reproduced in any way,
including, but not limited to, photocopy, photography, magnetic or other recording,
without the prior written permission of the publisher.

Library of Congress Card Number: 78-73740
ISBN 0-89588-015-6

Printed in the United States of America
Printing 109876543

ACKNOWLEDGEMENTS

Many persons have contributed to the checkout, development or improvement of
these programs. Special acknowledgements are due by the author to: Pierre Le Beux,
Daniel David, Jaff Lin, Eric Martinot, Tricourt, and to Eric Novikoff (ASM6S
assembler).

The following persons have also contributed valuable comments on the final draft of
the manuscript, and their contribution is gratefully acknowledged: John McClenon,
Doug Trusty, Philip Hooper, Daniel David, Robert Chitsum, and John Smith.

The following companies have provided access to valuable information or resources
at an early date, and their contribution is gratefully acknowledged: Rockwell Interna-
tional, Synertek Systems, Apple.

The listings of Chapter Four, part 1 have been produced on a Rockwell System 65.
The listings of part 2 have been produced with the ASM65 assembler listed in
Appendix A.

Art Credits:
Daniel Lenoury (Cover Design)
Barry Janoff and Renate Woodbury (Technical Art)

THE 6502 SERIES

BOOKS
Vol. I—Programming the 6502 (Ref. C202)
Vol. 2—Programming Exercises for the 6502 (Ref. C203)
Vol. 3—6502 Applications Book (Ref. D302)
Vol. 4—6502 Games Book

SOFTWARE
6502 Assembler in BASIC
Games Cassette for SYM
Application Programs
8080 Simulator for 6502 (KIM and APPLE versions)

EDUCATIONAL SYSTEM

Computeacherm™
Games Board™

PREFACE

This book presents practical application techniques for the 6502
microprocessor. It assumes an elementary knowledge of microproces-
sor programming on the level of the preceding book in this series (Ref-
erence C202: Programming the 6502). Understanding how to program
the microprocessor chip itself (the 6502) is only a prerequisite for the
actual programming of a microprocessor board connected to real
devices. The next problem is to learn how to write actual applica-
tion programs involving the input/output ports and other facilities
available in a real system. This book addresses itself to this problem.
It will present the techniques and programs required for typical appli-
cations, using the actual input-output chips available on a board.

The programs presented in this book will require a minimum of ac-
tual hardware to be effectively implemented. The user is therefore en-
couraged to practice the concepts and techniques presented here on
actual hardware. A realistic description of possible applications boards
will be presented. The programs are applicable to any 6502-based mi-
crocomputer board such as the KIM, the SYM, the AIM 65, or others.
Many programs can be run directly on one or more of these boards
while others will require some changes. However, the concepts and
techniques are common to all.

The application programs presented in this book will allow the reader
to build a complete home alarm system, which includes fire detection and
other features, an electronic piano, a motor speed regulator, an appli-
ance or hobby-train controller, a time-of-day clock, a simulated traf-
fic control system, a morse code generator, an industrial control loop
for temperature control, including analog-to-digital conversion, and
more.

This book is intended to teach all the basic skills required to apply
the 6502 to real life applications. It is preceded in our 6502 series by
““C202 - Programming the 6502, and followed by ‘G402 - 6502
Games.”’

TABLE OF CONTENTS

TABLE OF ILLUSTRATIONSccovviiinnnee.

I.
II.

III.

Iv.

VI.

INTRODUCTIONccvviiinnnnnne.l 11
THE INPUT OUTPUT CHIPS15

Introduction. Basic Definitions. The 6520 PIA. The 6522. Programming
the 6522. The 6530 ROM-RAM 1/0 Timer (RRIOT). The 6532. Summary.

6502 SYSTEMS........ciiivviiiiiennnn....64

Introduction. Standard 6502 System. The KIM-1. The SYM-1. The AIM 65.
Other boards.

BASICTECHNIQUES78

Introduction

SECTION 1: THE TECHNIQUES

Relays. Switches. Speaker. A Morse Generator. Time of Day Clock. A
Home Control Program. A Telephone Dialer.

SECTION 2: COMBINATIONS OF TECHNIQUES

Introduction. Generating a Siren Sound. Sensing an Input Pulse. Pulse
Measurement. A Simple Music Program. KIM Traffic Control. Learn the
Multiplication Table. Summary.

INDUSTRIAL AND HOME APPLICATIONS 145

Introduction. A Traffic Control System. Dot Matrix LED. Displaying
Switch Values. Tone Generation. Music. A Burglar Alarm. DC Motor
Control. Analog to Digital Conversion (A Heat Sensor). Summary.

THE PERIPHERALS216

Introduction. Keyboard. Paper Tape Reader or ASCII Keyboard. Micro-
printer. Summary. :

VII. CONCLUSIONS. ... c.iiiiiiviennnenennes 241
APPENDIX A - A 6502 ASSEMBLER IN BASIC.... 243

Introduction. General Description. Using the Assembler. Syntax.
HP2000F BASIC.

APPENDIX B -MULTIPLICATION GAME:

THEPROGRAMcciiiitiennnanacnnes 259
APPENDIX C - PROGRAM LISTINGS
(Chapterd Partl)cocvvvveeennnnnnes 262

- Program 4-1: Morse

- Program 4-2: Time of Day -
- Program 4-3: Home Control
- Program 4-4: Phone Dialer

APPENDIX D - HEXADECIMAL
CONVERSIONTABILEccovvieennnn 273

APPENDIX E - ASCII CONVERSIONTABIE..... 274

APPENDIX F - 6502 INSTRUCTIONS 275

1-1
2-1

2-27

2-30

2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40

TABLE OF
ILLUSTRATIONS

Standard Programming Form
Typical P1O.....

The 6520 PIA
6520 Internal Architecture

6520 Memory Map
6520 Register Selection
6520 Control Registers
6520 CA2 CONLIOl ...uvvvieniinriniiinriiiiienieneenereenenneaes
6520 CB2 Control
Interrupt Control (CAl, CBI Inputs)
Identifying the PIOccoviiviniiiiiiiiirninicireninceeen
Identifying the Ports..........
6522 Internal Architecture ...
6522 VIAMEMOTY Map ..cvivevniiiiiinceiareinienirnconianianans
6522 REZISLETS cevuvruernrinneneiniarieneernrenseieenaeneeseniennees
Using the 6522: STADDRA ...coviviiiniiiiieiniiniineinineens
Using the 6522: STADDRB
Using the 6522: STAORA
Using the 6522: LDA ORB..............
Peripheral Control Registercccceeeuvininnee
Interrupt Flag Enable Register (IFR/IER)
Control Lines Function (ACR)cecevevennenen
PCR Detailed Operation (courtesy:Rockwell)
Continued: PCR Detailed Operation
Reading Data When Ready
6522-Auxiliary Control Register
Interrupt REGIStErS ... cvvviriniiniiiiniiiiiicinenieinieeanans
6522-Auxiliary Control Register Controls Timer 1 Modes...
6522-Auxiliary Control Register Selects Timer 1

Operating Modescoevvviininiiiiniieninieeeecenees
Timer Addressingocoveveiieneeenininineiiieieiiniinneninn.
Timer 1 in Free Running Mode
Shift Register Control
6522 Register Selection is Direct.......c.oocveveeveneiiienrenieninns
Connecting Multiple 6522’s-Generating an IRQ
6530 Internal Architecture
6530 MemoryMapceeeeeet
6532 Internal Architecture
6532 AdAressingceoeueeeririiininniiiiiiiicrieen e,
Comparison Chart of the Four PIO’s ...c..ocvcviiniininnininns

Organization of a ‘‘Standard’’6520 System
Photo Of KIM-1 ...oiviiiiiiiiiiiiiiin vt cane s

[SN U USSR I PR Y. SV SRR

OO0 AWN—=O

Auuuuwuuv}»uwuwwwuww

o
]

4-15

4-35
4-36

KIM-1 Internal Organizationccceeeuveievuennennnnnen.
KIM-1 Memory Map
KIM Application Connectorccoveveeiireeeennencernennen.
KIM Expansion CONNECtOrcvuuviuinenneeninnsineenneenees
SYMPhOtO ...ccevvenveniiniinninnee :
SYM-1 Internal Organization ...
System Memory Mapcociviininemeereinieniirenenenneecisneenes
RAMMEMOIrYy Map ..covivininiiiniiiieniniiniieinineninenenenense
Expansion Connector (E)

Application Connector (A)
Auxiliary Application Connector (AA)ccccevevevnrnenranens
Memory Map for the 6522°sceeeveiinienieieieniiniennans
Memory Map for the 6532coevuneneen

The Four Buffered Outputscc.......

Keyboard and LED Connection
AIM 65 is a Board with Mini-Printer and Full Keyboard
KIM/SYM/AIM Connector Compatibility.

Complete System with Power Supply, Microcomputer
Board, Tape Recorder and Applications Board
V002 1013 (- o J T OO PO PN
6530 Relay INterface ...oevveeinvinriieninieninniniiiicnnn.
Connecting a Simple Relay erereeeenra
Precautions on Device Sidecoccvivinianiniiiiniiiinininnnn,
Connecting a Double Pole Relayc..ccevvvvinneniinannes
Connecting Two Relaystothe PIOcoovviieiiiiininnnss
External Circuit for the Relays
Memory Map for 6522 #3ccuieneee cerreeen
Port Bof6522#3 ...vviniininiiiiiiininieiiiiiicire e
Detail of Relay Connection on the Applications Board
Connecting an SPSToeviiiiiiiiiiiiiiniiiiinns
Connecting an SPDTcovivieieiiiiiiiiiniiiiiininiienenene
Connecting Four SPDT Switches to the SYM
An SPDT Switch ..c.ccuviniiiiniiiiiiiiiinianes
Connection Detail for Four SPDT’s e,
Connecting the Speaker F .
Obtaining a Louder Outputcccevviureninreieniensnieencnens
Memory Allocation for the Morse Program
Morse Transmission Flowchart
Converting Morse to Binary
Converting ASCII to Morse
Morse Equivalence Tablecoovvenriiiniininiiiininieninnnns
Flowchart for Generating Hexadecimal Morse Code
Square Wave Generates Tone in Speakerccccveenenans
6522 Auxiliary Registercooevivniiniiiiiiiiininnenninnnnn,
Timing Diagram for Tone Generationc........
Program for Using Timer 1..........c.ccovenvennenen.
Generating Tone of Set Duration with Timer 1...
6522 ACR Selects Timer Modes ...
Bits6and 7 of ACRc.cueee.
The MOrse Programcccviviiiinererniiicrniniereninninenns
Using Indexed Addressing to Retrieve Morse Code
Memory Map for Timer 1c..cocvevieiiiinieninninincnninian
Flow Chart for Delay
Time-of-Day Memory Map ...
Time-0f Day ClOCK ..vuvviiiieniiiniininieriiiiiieniiniieiinen

4-37
4-38
4-39
4-40
4-41
4-42

4-43

4-44
4-45

4-48

— et ks bt pk bt et bt bt \D) OO

1
[S53
SV IAVNBRWLWN—-O

A A A A A A LA A A LA A A A A A A A A e e

i
[]
—

5-22

The Time-of-Day Programcccceveueencinieneeneencenne.
Home Control Program
The Telephone Frequenciesccceeeviviiniinirnereceneeeneans
Phone Dialer Flow Chartccouveveiinriinieninirnnieniionnnes
Phone Dialer Programccceeevveeiiiiveeeninninriiensenenennes
Telephone Dialer: Indirect Indexed Access and

MeEMOTY MaAP ..eiviuiiinieiiieieerienenearieniacnterecnrenecnrasnsncnes
Loading the TIMercccuiirieiienieiiiririeeeeerieeaneieenenes
Computing the Timer Constantscceeeeeeniariecnneneeniess
Suggested Hardware Improvement for Cleaner Frequencies
A SIren Soundcccoveviiiieiiiiiiieieerrereiea e rereenaens
Siren Flowchart-Up Ramp
Stopping at Nmaxcceueeieiienieniniininienicinennene.
Siren Program for the Flowchart of Fig 4-47.
Connecting a Speaker (Improved)ccccvveereenininnnnens
Connecting Switch and Speakercoccevviinieniinninnian..
Detailed Flowchartcccooveenieiiiiiiniinninoeioniceneenes
Switch Closure Measurement Programcccovuveiananens
Switch Time Measurec.cvvieeieiiiiineieniinnenrnenrennenns
The Switch Time Program: Measurement and

Tone Generationcc.eeueuierenenrenenereenrecassncecrasassnsnnns
250 ms Delay Flowchartccccoevvvviiiieciiiinninnineannnes
250ms Delayccceeniiiiiiniinneiiciiineaees ereseesrasenaniens
Time 10 Flow Chart
Generating a 0.1 Second Delay
Mozart SONALINE c..vuerieninreeriricnriiriieieereoriesieasensenenes
Bach Choralcoviviininiiiriiiiic e
‘“‘Au clair de la lune”

Play Sound Flowchart
Playing a Tunec.ocevunenrenenes

Traffic Flowchart

Traffic Controllerccccevvviiiiinieiiiiiniiininiiininininn

The Application Board #2ccoocevveiiiiiiiiiiiininnnennns
Underside Shows Wire-Wrapcocoeviiiiiiiniininninnnens
For Convenience, Application Cables Connect to Board
Board Layoutcceiviiiniiiinieiiiiiiieieci s
H1 & H2 Connectors
H3 & H4 Connectors
The Traffic Control System
Connecting the LED’S c...couviviviiiiiiniiiiiiinininicnnenns
Actual LED Connection
Night Pattern ...ocuvviieiiieiiieneiiieiaeereenerernesennresnesnennes
Traffic Light Simulation—Night Mode (Program 5-1).......
Pattern for Addressing the LED Pairs
Loop Tuningccccevuniinnienniennniennns
DayModec.ovvuniiiiiiiiiiiiinii e
Traffic Light Simulation—Day Mode (Program 5-2)
ASXTDotMatrix LEDcoouiiuiiiiiiiiniiiiiiicniinienenes
Connecting the 5 X7 LEDccciiviiiiiiieniiniiniinniieennen,
The Connectors to the LEDccoocviiviniiniiiniininneannen,
Displaying a ¢‘0”’)
Displaying ““1””cveiiicinennnnns .
Driving a Dot Matrix LED ... ceerereaens
A Dot Matrix Tableccccccvniinicninnaanns
Basic LED Matrix Display (Program 5-3)ccccvuuueee.

114
118
119
120
121

123
124
126
127
128
128
128
129
130
131
132
133
134

134
135
136
136
137
138

146

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
6-1

6-2

6-3

6-4

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-2
A-3

Displaying a Switch Valueccoeieiiiiniiniiiiincenicnnnns
Advanced LED Matrix Display (Program 5-4)
Speaker CONNECtIONuvuvvnieeiniiinrernrernrrenenenrnreeranones
Basic Speaker Activation (Program 5-5) ..
Binary Switches Specify Tone................
Music Frequency Tablecccceiviiinieiiirininnenenninenennes
Music Program Flowchart ccooeevivviiiieenieeennenn.
The Music Program (Program 5-6)
Connections for Music Program
The Photo-Transistor Circuit (on Socket M3)......
Alarm FIowchart ..occvevininiceiiiiiiirneiiircinerien e
A SIrenSoundcccoviiiiiiiiiiiii e
Burglar Alarm (Program 5-7)ccooevievicricniinieenninianines
Motor Circuit et rerreereerenaenranes
Digital Speed Controlcceceviviiiiiciiceiiirieinrinineneens
Simplified Speed Diagramc.coccevecinenieniniecenineiennnee
DC Motor Speed CUIVEcvuvevenenrnerereernrenenennenieniess
The Connections
DC Motor Flowchart
The Waveformsc..ccovvuniniinnns .
Motor Control (Program 5-8)ccecvvvvviriienenneneniennnes
Connection for ADCcuiiiiiiiiiniiiiiiiiiienereenneienens
Successive AppProximationsc.vcucveereernneineenns
Successive Approximation Flowchart
ADC INterfacecc.eveenirinniiieniirrienreniinicererenaneraenns
Connectionto Hac.ooviiiiiiiiiiiiiiiiiiiieicncceieer e enens
ADC Memory Map
ADC Flowchartc.ccovevieiienninnannnn.
Analog-Digital Converter (Program 5-9).c.cocevvveneens

Connecting the Keyboardc.cceeuinee
Step 2: Reading IORA after Key Closure ...
Step 3: Writing IORA '
Step 4: Read back IORA
Keyboard Character Codes Table
Keyboard Flowchartcccceeenee,
Keyboard Program (Program 6:1)
Indexed Addressing for Table Access
Converting the Character ID # to ASCII
Punched 8-Level Paper Tapecccovvvieiencennnnn
Paper Tape Reader Hardware
PTR Connection Details
Paper-Tape Reader Interface...................
PTR Flowchartccccoevvencenincninnnnnnnes
PTRMemoryMapcccceeveenenienrnnnnnnnns
PTR/Keyboard Program (Program 6-2)
Indirect Indexed Access: STA ($00), Y
Basic Printer Interfaceco.ecvevevnreninnens

Printer Connection ereteereiraernenearaeaes
Flowchart for Printer Program N
Printer Memory Mapc.ccceernirrenerenenorenennenereneennns
Printer Program (Program 6-3)cccceeveienieiinnneenenniens
Indexed Indirect Access
Actual 20-Character Printoutc..ccccuveenenes

Sample Run with ASM65ccoeviiviiininnnnnne.
The Symbol Tablecceuveiinniiriienineiernreninnens cere
6502 Assembler Listing (copyright ©1979,SybexInc.)c.cevuen..s

237
239

CHAPTER1

INTRODUCTION

When learning how to program, understanding the operation of the
microprocessor itself is only the first problem which must be solved.
This is the problem addressed by our book, ref C202, Programming
the 6502. The next problem is to learn how to program effectively, us-
ing input/output devices connected to the microprocessor board. This
is the purpose of this book. Naturally, no book can completely cover
all possible devices. A selection, therefore, has been made among the
.Aimportant input/output devices usually connected to a 6502, and ap-
plication programs are presented, which are likely to fit a majority of
applications.

First, you will learn how to effectively program a PIO, the parallel
input/output chip. You will learn to use polling or interrupts. You will
learn to generate pulses, measure delays, and control actual input/
output devices such as switches, relays, or more complex devices such
as a digital to analog converter, a motor, and others. You will also
learn how to use more complex input/output chips such as a program-
mable timer. Additional interfaces will be presented for simple de-
vices, so that you may actually build an applications board and prac-
tice on it.

In order to learn programming effectively, you are strongly encour-
aged to practice. It is indeed the only real way of becoming a proficient
programmer. In order to practice, you will need a microcomputer
board such as the KIM, the SYM, the AIM65, or any other 6502
board. Because all boards normally provide at least one PIO (often 2),
and at least 2 timers (sometimes more), all programs presented in this
book should run on any of these boards with minor variations, if any.

11

6502 APPLICATIONS BOOK

The additional hardware which you will need in order to run speci-
fic programs will be discussed in Chapters 4, 5 and 6. It is minimal and
easily obtainable. In particular, you will find in Chapters 4, 5 and 6 the
description of suggested applications boards which can be constructed
from common components at low cost. It will allow you to run the |
programs in the chapter, using your microcomputer board and the s
applications board. It is suggested that you consider building it in |
order to practice. |

However, it is not indispensable. You will learn all the basic tech-
niques by merely reading the book. If you wish to grow from there,
then actual practice is strongly recommended.

Connecting Your Microprocessor to the Real World

Connecting the microprocessor itself to the real world first involves
building a basic microprocessor board, then connecting it to actual de-
vices. Both hardware and software interfaces will be required to con-
nect actual devices to the board. This book will present in detail both
the hardware components and the programs required for the most
commonly used devices. In order to design industrial programs nor-
mally involving expensive devices such as traffic signals, simulated
devices will be used on the applications board, using LED’s for exam-
ple. If the program were to be applied to a real traffic system, only the
interface hardware would usually be changed. The program would re-
main essentially identical. The skills you will learn are, therefore, ap-
plicable to real life situations.

The Pedagogy

When reading this book, you will usually ‘‘learn by doing.”
Each program will be presented in detail: its purpose, its flow-chart,
the hardware interface, the devices, the program itself, and the com-
plete analysis of the techniques used. Each chapter is essentially self-
contained. For example it is not necessary that you understand all the
PIO features of Chapter 2 to read Chapter 3. However, sequential read-
ing is recommended for a complete understanding. The contents of
Chapter 2 introduce all the usual parallel I/O chips used in a 6502
system, from the 6520 to the 6532. Since all existing 6502 boards to
date use these standard chips, this chapter should be read by all those
who are not familiar with them.

12

INTRODUCTION

Chapter Three presents the ‘‘Standard 6502 Board’’, and some well-
known variations: KIM, SYM, AIM65 (others exist). Most examples
presented in the book will run directly on a SYM, and with simple
changes, on a KIM, or other boards.

Chapter Four introduces the basic application techniques for con-
necting simple devices: relays, switches, speaker. The first applica-
tions board will be used for applications ranging from a Morse gen-
erator to a telephone dialer.

Chapter Five presents more complex home and industrial applica-
tions. The second applications board will be used for applications
ranging from simulated traffic control and analog-to-digital conver-
sion to a complete home burglar alarm or an electronic piano.

In Chapter Six actual low-cost peripherals are connected to a micro-
computer board: from paper-tape-reader to keyboard and printer.

Finally, a summary and synthesis are presented in Chapter Seven.

You will also find in Appendix A a complete assembler for the 6502,
written in BASIC, to facilitate your development of complex programs
requiring an assembler.

You will find on the next page a Standard Programming Form de-
signed to facilitate writing your 6502 programs.

13

6502 APPLICATIONS BOOK

8461 X38AS @ 1yB1iAdod

INIWWOD ANVJ3dO WINW 1391 € Z L SS3daav
SNOILDONALSNI JI1EWISSY DINOLWAS TVYWIDIAVXIH
Ill..\lll 133HS q 7 alvd JOHLNV WA0O4 ONIWWVYIOONd
WVI90ud QY¥VYANVY1LS

Fig. 1-1: Standard Programming Form

14

CHAPTER 2

THE INPUT
OUTPUT CHIPS

INTRODUCTION

In this book, we will connect a variety of input-output devices to a
6502 board in order to realize practical microcomputer applications. It
is therefore essential to understand the input-output resources of a
6502 system. The reader who is not familiar with the basic terms or
with the basic techniques (such as ‘‘polling’’) is encouraged to review
them in the previous volume of this series, reference C202 (Program-
ming the 6502).

In this chapter, we will review systematically the parallel input-
output chips used on nearly every 6502 board to provide the required
input-output facilities. It is indispensable to understand at least how a
“PIO,’* such as a 6522 works, before proceeding to the application
chapters. The exact details of the timer operation or other exotic
resources (such as a shifter) are not essential in a first reading and
could ‘be skipped. Also, the exact details and formats of the various
registers inside the 6520, 6522, 6530, and 6532 are not important to
memorize. They are provided here as a reference for the following
chapters.

It is therefore suggested that you read carefully at least one of the
sections on a PIO such as the 6520 or the 6522, without trying to
remember all the details, but focussing on the way they operate. Nearly
every application will make use of a PIO, i.e. of one of the chips
presented in this section.

15

—

6502 APPLICATIONS BOOK

In addition to these chips, most microcomputer boards will provide
some other specialized input-output interfaces, such as a cassette in-
terface or a CRT interface. The interested reader is referred to the
manufacturer’s literature or to the reference book C207 (‘‘Micro-
processor Interfacing Techniques’’) for details on these specific
interfaces.

BASIC DEFINITIONS

This section is a reminder of the terms we will use in this chapter.

The three essentiat input-output facilities on nearly every micro-
computer board, are the ‘“‘P10O,”’ the ““UART,’’ and the ‘‘timer. Let
us examine them:

CRA DORA PDRA [e— CAl
e— CA2
=4 R 8
3 82s| [BeZ
para Bus N ég §§; g;gc:bponm
CRB DDRB PDRB
Ve 8
REGISTER| —{RSO § 3 C:::> PORTB
SELECT | ——»{RS! s |
IRQA <—] e CB2
RQB *+— [e—— CBI

Fig. 2-1: Typical PIO

The PIO

The ““PIO’’ or ““parallel input-output chip,”’ is a component which
provides at least two parallel eight-bit ports. In a PIO, the use of
each line of each port is usually programmable in direction. The direc-
tion of each line is usually determined by the contents of a ‘‘data-
direction register’’ associated with each port. Whenever a specific bit

16

THE INPUT OUTPUT CHIPS

of the data direction register is ‘‘0’’, for example, the corresponding
line on the port will be an input. Prior to using the PIO, the program-
mer will first have to load the contents of the data-direction register of
each port, in order to define in which direction the lines will be used.
Specific additional constraints may be imposed by manufacturer such
as restricting lines to be programmable in direction in groups of four,
or else assigning special functions to some bit positions such as bit six
and bit seven. Some of these restrictions will be encountered in the
chips presented in this chapter. The internal block diagram of the
‘‘standard PIO”’ is shown in Fig 2-1. The two buffers for port A and
port B appear on the right of the illustration. The data-direction regis-
ter associated with each port appears to the left of these buffers. Addi-
tionally, two control registers are provided in this simplified diagram.
The control register is required to specify the function of the control
signals which are provided by this PIO. In particular, it must deter-
mine and control the ‘‘hand-shaking’’ procedure, and whether the
control signals will trigger flags or interrupts, and also whether a low-
to-high transition, or a high-to-low transition, should be used for ex-
ample. Typically, the programmer will have to specify the contents of
the control register prior to making any use of the control lines sup-
plied by the component. Also the programmer will look up the con-
tents of the control register to determine whether an internal interrupt
or other special condition has been detected (status information).

In addition to the two data ports, a PIO should also supply control
lines to allow automated hand-shaking with a peripheral. These con-
trol lines are shown on the right side of the standard PIO of Fig 2-1,
and are labeled respectively CA1l, CA2 for port A, and CB1, CB2 for
port B.

As an example of a hand-shaking procedure, the external peripheral
might supply a “DATA READY”’ signal on CAl. The microproces-
sor would then respond with a “DATA REQUEST”’ signal on CA2.
Additionally, when a ‘‘data ready’’ signal is received on CAl, it should
be flagged in the control register, and an interrupt request might be
generated externally in order to alert the 6502 to this event. This is a
typical simple example of the control sequence required for effective
hand-shaking. Much of this procedure is automated inside the stan-
dard PIO, and the options are defined by the contents of the control
register. The specific details will be presented for each of the PIO’s we
will describe, beginning on page 20.

17

R R ————

6502 APPLICATIONS BOOK

The Timer

A basic requirement in most practical applications is the ability to
generate specific delays. Delays can be measured by software tech-
niques or else by hardware timers. As long as no interrupts are used in
the system, delays can usually be generated conveniently by software
loops (see reference C202 for details). However, in more complex
situations, or in situations where interrupts may occur, it is desirable
to use one or more external hardware timers to generate or measure
fixed delays.

Using the Timer on Output

In its simplest form, a hardware timer is a counter equipped with a
register (8 bits or 16 bits). When used in output mode, the timer’s
register is loaded with a given value by the program. It is then given a
‘‘go ahead” signal and it starts counting. Most timers will use the
system clock, but not necessarily (usually a one MHz clock =one-
microsecond pulses). The number placed in the counter’s register will
be decremented by one for every successive clock pulse. If the value
placed in the register was N, the contents of the counter will have
decremented to zero after N pulses, that is after N microseconds,
assuming one-microsecond pulses. Whenever the counter decrements
to zero, a signal will be generated which will set a status flag in the timer
chip and/or generate an external interrupt. Depending on the preci-
sion required, the program will either poll timer devices or else accept
interrupts. Typical programs will be presented in this chapter.

If the timer were equipped with a single 8-bit register, it could count
only from one to 256. The maximum delay would only be 256 micro-
secpnds with a standard clock. This delay is too short for most appli-
cations. Naturally, it would be possible to use the interrupt generated
at the end of the 256 microseconds to update a memory location, then
test whether this memory location had reached a specific value.
However, this would result in inaccurate time measurement and a
somewhat cumbersome process. Therefore, a timer which is equipped
with an 8-bit register would be insufficient. Two techniques are
used to overcome this limitation. Conceptually, the simpplest one
is to use a 16-bit register for the counter. The counter may then
count from 1 to 64K, i.e., from one microsecond to 65,536 micro-
seconds or approximately 65 milliseconds. This is indeed sufficient for
most applications. However, this technique requires that the timer be

18

THE INPUT QUTPUT CHIPS

loaded in at least two operations, since the data-bus is only 8-bit wide.
First, the program must load one half of the register, then it must
load the other half, an inconvenience.

The other technique to generate delays over a wide range is to use
internal divide circuits within the timer. Such a timer will then appear
to the programmer as a device equipped with perhaps four registers.
For example, if the first register is used, then the delay generated will
be expressed in clock units (1 microsecond typical). If the second
register is used, then the delay unit will be 8 times the clock cycle; in
the third one the timing unit will be 64 times the clock cycle, and in the
next one the timing will be 1,024 times the clock cycle (or approximately
one millisecond, assuming a 1 MHz clock). This approach is somewhat
more convenient to the programmer and offers the possibility of load-
ing the timer in a single operation, yet using it over a wide range. How-
ever, the internal complexity of the device is increased.

Using the Timer On Input

A timer may be used on input to measure the duration of an exter-
nal pulse, or else the time elapsed between two successive pulses. In
this case, the initial contents of the timer counter are zero and the
counter will increment its internal register with each timing interval.
Once the delay has been measured, a flag will be set by the device or
else an external interrupt may be generated, and the program will be
responsible for reading the contents of the counter register which in-
dicate the external event duration.

Pulse Trains

A timer may be used not only to generate or measure a pulse, but also
to generate or count a train of pulses. Whenever a delay is generated or
measured for a pulse, the timer mode is usually called a ‘‘one-shot”’
mode. When a train of pulses is generated, it is often called a
‘“‘free-running’’ mode. Additionally, a number of options can be pro-
vided to specify whether a high-to-low transition or else a low-to-high
transition of the signal should be used to activate or stop the timer, or
else whether levels should be considered rather than pulses. Addi-
tionally, the timing and logical value of interrupt flags can be
specified. Further, the conditions under which the internal status is set
and reset are usually programmable. Because of the large number of
possible variations, each timer device tends to have a strong personal-
ity and needs to be studied in detail before being used.

19

6502 APPLICATIONS BOOK

The UART

“UART”’ stands for ‘‘Universal Asynchronous Receiver Trans-
ceiver.”’ The essential function of the UART is to perform serial-to-
parallel, and parallel-to-serial conversions. Additionally, the standard
UART provides a number of options usually required for serial com-
munications with external devices such as parity (checking, inhibition
or generation) and start and stop bits. The conversion is performed by
an internal shifter. Such a shifter may also be incorporated in some
input-output chips. ;

Actual 6502 Input-Output Devices

Virtually every 6502-based board will require at least 2 PIO’s and
one timer. These functions will be typically provided by a combination
of 6520 and 6530 chips or by a combination of 6522 and 6532 chips.
The 6520 and 6530, which will be described below, are the original
input-output chips which were introduced by MOS Technology. The
6502 is now manufactured by several other manufacturers, such as
Synertek and Rockwell, and additional support chips have been intro-
duced, such as the 6522 and the 6532. Still other support chips will
probably be introduced in the future.

At this time, however, the most important chips are the 6520, the
6530, the 6522, and the 6532. These four essential input-output chips
will be described now.

-———— CAl
DATA ": w} CONTROL(A)
BuS o7 - -
PAG | +———a
-—
———> | %0} ragister pam——
i | RS1 | s@lect — } PORTA
ADORESS —
8US = | CS1 -—
cs2 chip PA | +———a
select red
—_— —
-—
(§2)——n={ encble 6520 T eomre
-—
—_ | PIA —
CONTROL | . | RS P87 | ———e
sus
- | A = B2
CONTROL (B)
e | ROE ~4——— CBI

Fig 2-2: The 6520 PIA

20

THE INPUT OUTPUT CHIPS
THE 6520 (PIA)

The 6520 is almost a pure ‘‘PI0O,’’ as we have defined it. it has been
designed as a pin-for-pin replacement for the Motorola M6820, and
has been called by the manufacturer a ‘‘peripheral interface adapter’’
or ‘““PIA.” The signals of the 6520 are shown on Fig 2-2. Its internal ar-

chitecture is shown in Fig 2-3.

Referring to Fig 2-3, it can be seen that this device provides two
parallel input-output ports, port A and port B. Each port is equipped
with a buffer. However, the two ports are not quite identical, and the
buffer really works only as an output buffer, not as an input one. A
data-direction register (‘*‘DDR’’) is available for each port, and
specifies the direction of each line of the port. A value ‘“‘0’’ in this
DDR specifies an input, and a value ““1°’ specifies an output. The
choice of conventions stems from a safety consideration: whenever a
“RESET?” is applied, the contents of all registers will be zeroed and

8
L]

8
[

R/W
enable —

Fig 2-3: 6520 Internal Architecture

21

6502 APPLICATIONS BOOK

. the data-direction register will become all zeroes. As a result, all lines
will be configured as inputs; this is the safe way to start a system. No
external pulse can be generated until the program has started execu-
tion.

Additionally, each port is equipped with two registers, the control
register and the output register. The data sent by the 6502 to the
device are gated to the output register (ORA) of the specified port,
where they are held. The function of the control register (CRA) will
be explained below. It specifies the role of various control options
and contains status information for each port.

Finally, each port is equipped with two external control lines, la-
beled CAl, and CA2 for port A. CAl is a monodirectional line from the
device to the 6520. CA2 is a bidirectional line, which may be used
either as an input or an output.

The two ports are logically equivalent and symmetrical, as indicated
on Fig 2-3. However, practical differences exist. In particular, the
drive capability of port B is superior to port A, and the role of the con-
trol signals is not completely symmetrical.

Looking now at the left of Fig 2-3, or at Fig 2-2, the data bus con-
nects the internal buffer of the 6520 to the system data bus. Two in-
terrupt requests may be generated by the device, if so specified by the
contents of the control registers for port A and B; they are respectively
IRQA and IRQB. Finally, three chip-select inputs must be specified
for the device, and are labeled CS1, CS2, and CS3. This design was
used by Motorola in order to allow the convenient direct connection
of up to 8 separate devices to the data bus, without the necessity of an
external address decoder. In practice, the high number of chip-select
inputs on the chip may have resulted in a disadvantage which will be
pointed out below (one register-select missing). Two register-select in-
puts are provided, and connected to the address bus. They are labeled
RSO and RS1. This means that the 6520 device appears to the pro-
grammer as four memory locations. This may seem surprising since
we have just determined (see Fig 2-3) that there are four registers per
port, i.e. a total of eight registers. How can one address 8 registers with
only 4 addresses? This is a problem brought about by the pin number
limitation of the device. One bit of the control-register, bit 2, is used
to multiplex between the two sets of registers. When bit 2 of the con-
trol register is equal to ¢‘0,” the data-direction for that port is selected.
Wheniitis *‘1,”” the peripheral-interface buffer is selected.

Finally, three more control lines are available: ‘‘R/W*’ (read or
write), ‘‘enable’’ (usually phase two of the clock), and finally ‘‘reset.”’

22

THE INPUT OUTPUT CHIPS

+5v
9 output
= o
-—»' 1

passive pull-up resistor
1.6 m A sink = 1Tl lood

+5v +5v

~— input

r

resistor pull-up
1 TTL load

Fig. 2-4: Buffer A

+fV
| L. N
L

ecurrent drive:

no pull-up. 1mA sink at 1.5V
high-Z input. soutput is high impedance
when lines are “input”’

+
[¢,)
<

= oulput
““1” may not be> 2.4V

,,M-Lrj%__

Fig. 2-5: Buffer B

Differences between Port A and Port B

Port A and port B, even though they are logically equivalent, are
physically dissimilar. The buffers of port A use passive pull-ups. They
can sink 1.6 mA, making the buffers capable of driving a standard

23

e ———————————— .
6502 APPLICATIONS BOOK

TTL load. On port B, the buffers are push-pull devices (see Fig 2-4
and 2-5). Since they are active devices, the logic ‘‘1’’ voltage may not
be higher than 2.4 volts (versus Voo in the case of port A). However
they have a superior current drive (ImA at 1.5v), so that they can be
directly connected to LED’s, or to Darlington transistor switches.
Finally, when port B is used as input, the output buffer enters a high-
impedance mode, so that the input will have a high impedance (more
than one Megohm). The details of the port A buffer are shown on
Fig 2-4, and the details of the port B buffer are shown on Fig 2-5.

DDRA / IORA

CRA

DDRB / IORB

CRB

Fig. 2-6: 6520 Memory Map

The Internal Registers

Let us consider now in more detail the specific resources and
peculiarities of the 6520. First, as we have already noted, the 6520 is
equipped with 6 internal registers: the two buffers (which share the
address of the output register), the two data direction registers, and
the two control registers. However, because of the pin number limita-
tion, only two register-select pins are available on the device, called
respectively RSO and RS1. The resulting 6520 memory map is shown
on Fig 2-6. It shows that registers DDRA and IORA for example,
share the same logical memory address. The control-register is
addressed independently. The 6520 differentiates internally between
the DDRA and the IORA by the value of bit 2 of the control register.
The register selection is presented on Fig 2-7. Whenever bit 2 of the
control register is *‘0,”’ the DDR is selected. Whenever it is ‘‘1,”’ the
10 register or buffer-register, is selected. The control register is the on-
ly register which can be addressed directly by RSO and RS1 since it is

24

THE INPUT OUTPUT CHIPS

logically necessary to specify the contents of this control register prior
to accessing the other registers.

RS1 RSO |CRA-2 | CRB-2 | REGISTER SELECTED

0 [o} 1 - BUFFER A
0 0 0 - DDRA

0 1 - - CRA

1 0 - 1 BUFFER B
¥ 0 - [DDRB

1 1 - - CRB

Fig. 2.7: 6520 Register Selection

This scheme implies that the initialization of this device is somewhat
more complex than it should be, and that, if the program should need
to access successively the DDRA and the IORA, additional instruc-
tions must be inserted to modify the contents of bit 2 of the CRA
every time. This is indeed inconvenient.

The Control Register

The contents of the control register are shown on Fig 2-8. It has al-
ready been pointed out that bit 2 of this register performs a special
function: it differentiates between the DDR and the IOR register for
that port. The other bits within the register provide control options for
the two control lines available on each port, and 2 bits are reserved for
status or interrupt information. The control register A functions are
controlled by bits 3, 4, and 5 and are shown on Fig 2-9.

IRQ1 | IRQ2 CA/B2 control |DDRA/B| CA/BI
select control

Fig. 2-8: 6520 Control Registers

25

6502 APPLICATIONS BOOK

CRABIT MODE EFFECT
5 4 3
1 0 0 | Handshake [*CAl interrupt input fransi-

onread |[tion sets CA2 high.
*Read Port A instruction
sets CA2 low.

1 0 1 | Pulse output|*Read Port A data sets CA2
low for one cycle (=
acknowledge to device).

1 1 0 Manual |sets CA2 low
Output

1 1 1 Manual |sets CA2 high
Output

Fig. 2-9: 6520 CA2 Control

CRBBIT MODE EFFECT
5 4 3
1 0 0 Handshake | ®CB1 interrupt input transi-

on write' | tion sets CB2 high.
*Write Port B data sets
CB2 low.

1 o] 1 | Pulse Output] *Write Port B data sets CB2
low for one cycle (=
acknowledge to device).

1 1 0 Manual sets CB2 low
Qutput

1 1 1 Manual sets CB2 high
Output

Fig. 2-10: 6320 CB2 Control

The functions of the two control lines of port B are controlled by
bits 3, 4, and 5 of its control register and shown on Fig 2-10. Bits 0 and
| 1 provide interrupt control for the CAl and CB1 inputs. They are
| shown on Fig 2-11.

26

THE INPUT OUTPUT CHIPS

CRBIT ACTIVE TRANSITION IRQ OUTPUT
1 0 OF INPUT SIGNAL
0 negative disable (high)
1 negative enable (will go low
when CRA bit 7 set
by CA1/CB1
transition)
1 0 positive disable (high)
1 1 positive enable (as above)

Fig 2-11: Interrupt Control (CA1, CB1 Inputs)

Using the 6520

After a “RESET”’ has been applied, the contents of all the registers
will be zero. The 6520 must, therefore, first be initialized to specify the
input and output configurations on both its ports. The control op-
tions of the control register must also be specified and the 6520 should
normally be left with a ““1”” in bit position 2 of the control register, so
that the IOR register can be accessed directly by the 6502.

A typical sequence is:

LDA #$0F 00001111 = 4 INPUTS, 4
OUTPUTS

STA DDRA CONFIGURE DIRECTION

LDA #CONTROL CONTROL OPTIONS:
BIT 2=1 TO ADDRESS
IORA

STA CRA

Input-Output

Sending data out on port A would be accomplished by the following
two instructions (assuming CRA-bit2 =*“1""):
LDA #DATA OR ELSE LDA $20 (FROM
MEMORY)

STA IORA

27

6502 APPLICATIONS BOOK

Reading an input connected to the 6520 is accomplished by:

LDA IORA _
STA $20 SAVE IT IN MEMORY

We are saving here the contents of the accumulator immediately in
memory location 20 (hexadecimal). However, this line is not indispen-
sable. In many cases, we will simply read the contents of IORA in the
accumulator and then perhaps check their value but not necessarily
store them.

6520 Warnings

In addition to the dissimilarities between port A and port B, some
specific features of the control functions should be remembered. In
particular, bits 6 and 7 are cleared on A or B if 6 is input and if read-
ing. Also, to clear bit 7, one reads port B data. The CB2 handshake,
unlike the CA2 handshake, is for writing B data (CA2 operates for
read or write). Finally, bit 6 or 7 may cause an interrupt.

Polling the 6520’s

The simplest way to poll several 6520’s is to check the status of bits
6 and 7 of the control register. When both bits 6 and 7 are ‘0,”’ the de-
vice does not require any service. If either bit is *“1,’’ an internal inter-
rupt has been generated, and service is required.

Technique 1

In order to identify quickly which one of four devices has requested
service, a sequential table access technique may be used, provided the
addresses of the 4 devices are sequential in the memory. Address n will
be allocated to CRAI, address n + 1 to CRBI, address n + 2 to
CRA2, address n + 3 to CRB3, etc. The program can then make use
of the indexed indirect addressing feature and is shown below:

START LDX #8 INDEX
NEXT LDA (BASE-1,X) ACCESSNEXT CR
BMI SERVICE IRQ ON?
DEX X=X-1
- BEQ START
BNE NEXT

28

THE INPUT OUTPUT CHIPS

BASE -WORD CRA1 PIO #1 PORTA

-WORD CRB 1 PORT B
-WORD CRA 2 PIO #2 PORT A
-WORD CRB 2 PORT A
-WORD CRA 3 PIO #3 PORTA
-WORD CRB 3 PORT B
-WORD CRA 4 PIO # PORT A
-WORD CRB 4 PORT B

Fig. 2-12: Identifying the PIO

Index register X is set to the initial value ‘“8”’ and will be successively
decremented by 1, every time we go through the polling loop. The
accumulator is loaded with the contents of the last enrty in the table
first:

LDA (BASE-I, X)

If bit 7 was set (bit 7 is the sign bit or *‘N’’ flag), a branch will occur to
the service routine:

BMI SERVICE
If the N flag was not set, X is decremented, and the next CR is checked:

DEX
BEQ START RESTART IF X=0
BNE NEXT GO ONIF X IS NOT 0

Improvement: would switching the last two instructions speed up the
program?

Technique 2

Within each CRA, two status bits must be checked: bits 6 and 7.
The ““BIT”’ instruction of the 6502 has been created for this specific
purpose. It is a nondestructive comparison which will check the con-
tents of bits 6 and 7. The program for polling the 6520’s appears on
Fig 2-13. '

BIT CRA

29

e .

6502 APPLICATIONS BOOK
BMI IRQA7
BVC NOTAl
IRQA6 ce A2 IRQ FOUND (Bit 6)
iRQA7 < A1l IRQ FOUND (BIT 7)

NOTAl BIT CRB SAME FOR PORT B

BMI IRQB7
BVC NEXT2

IRQB6 e B2 IRQ FOUND (BIT 6)

IRQBT y B1 IRQ FOUND (BIT 7)

NEXT2 BIT .. NEXT 6520

Fig. 2-13: Identifying the Ports

The “‘BIT”’ instruction is used to test whether either bits 6 or 7 are a
“1”’. This is performed by:

BIT CRA

We must then test whether bit 6 or 7 was set to ‘“1.”” The BIT
instruction sets V flag and the N flag, so that these two flags can now
be tested;

BMI IRQA7 BIT7 =1
BVC NOTAl NO INTERRUPT FOUND

If none of the flags were set, a branch will occur to NOT Al, where
the CRB will be checked. Bit 7 is tested with the BMI instruction. If
bit 7 was one, the sign bit N will have been set, and the routine at
address IRQA7 will be executed.

Otherwise, bit 6 was the bit that was set and the routine at address
IRQAG, following the BMI, will be executed. '

This sequence can be executed for any number of 6520’s. Note that
this procedure gives higher priority to A7 than A6.

30

THE INPUT OUTPUT CHIPS

DATA BUS

N

LATCH (T21-1) |
) “PORTB
Hleoms ; ; Qu—
3 fcounms. — N
) Presen

H

Fig 2-14: 6522 Internal Architecture

THE 6522

The 6522, introduced by MOS Technology, and also manufactured
by Rockwell International and Synertek, is the successor device to the 6520.

The 6522 chip, called the VIA (Versatile Interface Adapter), is a
PIO-timer-shifter combination. It is equipped internally with 16 regis-
ters which are shown on Fig 2-14. The corresponding memory map is
on Fig 2-15.

Four sets of registers can be distinguished as to their function:

. The PIO registers (addresses 0 through 3, plus address F).
. The timer registers (two timers, addresses 4 through 9.

. The shift register (address A).

. The control registers (addresses B through E).

B oW N —

These four sets will now be examined in detail to explain the capa-
bilities of the 6522.

31

32

used for control-affects handshake

6502 APPLICATIONS BOOK
00 ORB (PBO TO PB7) 170 data, port A
o1 ORA (PAQ TO PA7)
02 DDR B data direction
registers
03 DDR A
04 TiLl-L/TICL counter-low
05 TIC-H counter-high
06 TIL-L latch-low
07 TIL-H latch-high
latch-low
08 T2L-L/T2C-L counter-low
09 T2C-H counter-high
0A SR shift register
08 ACR auxiliary
oC PCR (CA1,CA2,CB2,CBY) peripheral }
ob IFR flags }
OE IR enable
outputregister A
OF ORA (does not affect handshake)
Fig. 2-15: 6522 VIA Memory Map
RS3 RS2 RSI RSO
©c o o0 o 00 ore | T
[} [} [1 o1 ORA + hondahoke
o o 1 o 2 DDRE
o o 1 03 ODRA
4] 1 0 4] 04 TI-LW/TICLR) "I,T!;;T—]:ITI;:E)_
0 1 0 1 05 | TICHRYTILH+ TIC-HW) ”"ﬁml‘; (;)"—'-
o 1 1 0 o md
o) ¥ ' (% TH-H +clear T1 ini Flog(W)
T o o o o8 TA4WYT2CAR) ¥ clear 12 Int Flog(W)
' ° o ® Sl + u:e?rci}m‘ri;:;m
voo 1 o Ga s |
v o 1 8 ax | T
1 1 0 o oc PCR
R ® ~
T 1 1 o0 o€ ® o
R o orA no handshoke

Fig. 2-16: 6522 Registers

timer }

timer 2 i

function
control

interrupt
control

TIMER T

THE INPUT OUTPUT CHIPS

The PIO Section

The PIO Section provides two 8-bit bidirectional ports. Each port is
equipped with an input/output register. They are called respectively
ORA and ORB for port A and port B. They are shown on Fig 2-14.
Each register is associated with a direction register, respectively DDRA
AND DDRB. Whenever the corresponding bit of the data direction
register is set to “‘1”’ the line connected to the OR will be an output.
Whenever the data direction bit is ‘0’’, the corresponding line will be
an input. The polarity has been chosen so that all lines are iniput when
a ‘“‘reset’’ is applied.

There is an asymmetry in this PIO: Port A is equipped with two OR
registers, with and without the handshake feature.

Using the PIO

Before using the PIO as input or output, the data-direction registers
must be loaded with the proper value to configure the corresponding
bits of the 1/0 registers as input or output. As an example, let us con-
figure here Port A as an output and Port B as an input.

DATA BUS

l

OUIFGT
ORA

INTERRUPT CONTROL

FORT & Al

s e =

P

- g S —

[FERIPHERAL (PCR)|
SHIFT REG
FUNCTION CONTROL SR

(T1i-m)
_patoH o oo
H [LLN]) P S—
¥
z acH
<counTER— —
1C-4)
N EEED 2 i PORT B
3 (12¢.w) pA—— A o
2 | countte- — — 5 815 =B O3 * N
(24} ’: 2
< 2 (P87 Tt
[y—
S;W-— CHIP
c&:—-— CONTROL
[}

I S

RSO &S| RS2 RS3 +5v

Fig 2-17: Using the 6522: STA DDRA

33

R R E———————————————

6502 APPLICATIONS BOOK

DATA BUS = 2NN ORI A
2 <[« -
5| e g5l :>0urpu1
2 <8R
INTERRUPT CONTROL
—————l
HAGS (IFR) contao @
—d
RQ e ENABLE (IER) CoRROL éz;
RIPHERAL (PCR)
IXIIARY(ACR|
SHIFT REG
FUNCTION CONTROL SR
{TiL-m)
_RAICH - m e
I [{INE)
H
= (TIC.H)
-COUNTER — -
3]
pwickazg § = roRTS
H < of
< (12C-H) S ql H A
Z | counter: - — s IR ¢ J NPUT
ey S (P87 = 1M
[y—
P— CHIP
S —— CONTROL
&2
RS0 RS} RS2 RS) +5v

Fig 2-18: Using the 6522: STA DDRB

LDA #3FF “11111111” = OUTPUT
STA DDRA

LDA #0

STA DDRB BisINPUT

(see Fig 2-17 and 2-18)
Let us now output the value ‘‘00000001’’ on Port A (see Fig 2-19):

LDA #5301 “00000001°°
STA ORA

34

THE INPUT OUTPUT CHIPS

OuTPUT
INTIRRUPT CONTROL
b CAT
A2
ENABLE (1R} e
o =
o
im)
= Ty
e
H (MC-H)
[COUNTER— —
me-1y
ATOH (1L 3 z PORTB
H 2 H e 3 o2
Hleowi 4L T Gmm— Y
a4 <8 ©
3 1PB7 = TunE)
+5v
Fig 2-19: Using the 6522: STA ORA
DATA BUS 3 | PORT A
REPEN S L
2 8|5 *38|3¢)
5§§ 3°|= L 4
INTERRUPT CONTROL
e CA)
FLAGS (IFR) coNTROL caz
(1)
RQ ENABLE (IER) CONTROL _—..—‘ 2
RIP-ERAL (PCR)
XILARY(ACR]|
P
FUNCTION CONTROL b3
{Tiemy
- RA CH = - - -
- M-t}
H
B 1C-H)
| COUNTER— —
mc.1)
TCH 5
LT Ry ¥ PORTB
5
oot SoEEREe
axy 2 (787 = Tt
I
ga/w-_‘-
& — CONTROL
fas]

RSO RS} RS2 RSY +5v

Fig 2-20: Using the 6522: LDA ORB

35

R R

6502 APPLICATIONS BOOK

Finally, let us read the value of Port B into the accumulator (see Fig
2-20).
LDA ORB

Whenever using the OR registers, it is usually necessary to check a status
signal to make sure that the device being spoken to is ready to listen or to
transmit. This is call handshaking. The operation of the control
signals required to implement it will be explained now.

The Two Control Signals (Peripheral Control Register)

Each port is equipped with two control lines, named CAl, CA2,
and CB1, CB2 (see Fig 2-14, on the right side). For example, before
sesnding data to a printer device, such as a Teletype, the micro-
processor must ascertain that the printer is not busy, and is ready
to accept the next character. This will be accomplished by a hand-
shaking procedure.

Whenever the printer is no longer busy, it is ready to accept the next
character, and it will send a pulse or a level transition to the 6522. This
level transition, or pulse, must be detected and latched by the device,
then tested by the program. The signal will be transmitted to one of
the two control inputs, CA1 or CB1.

The 6522 allows great flexibility in specifying the nature of the signal
coming in or out.

It is possible to specify whether a high-to-low (or ‘‘negative’’) tran-
sition (a falling edge) or alow-to-high (or ‘“positive’’) transition (arising
edge) will trigger the internal interrupt flag. This is specified by bit 0 (for
CALl) and bit 4 (for CB1) of the peripheral control register (PCR). <‘0”’
corresponds to the high-to-low transition, and ‘‘1°’’ corresponds to the
low-to-high transition (see Fig 2-21).

7 6 5 4 3 2 1 0
CB2 CB1 CA2 CA1l
control control contro! control

Fig. 2-21: Peripheral Control Register

36

THE INPUT OUTPUT CHIPS

IRQ(R
EN(\(N T T2 | CB! | CB2 | SR | CAl | CA2

Fig. 2-22: Interrupt Flag Enable Register (IFR/IER)

CRBIT ACTIVE TRANSITION IRQ OUTPUT
1 0 OF INPUT SIGNAL
0 0 negative disable (high)
1 negative enable (will go low
when CRA bit 7 set
by CA1/CBI
transition)
1 0 positive disable (high)
1 1 positive enable (as above)

Fig. 2-23: Control Lines Function (ACR)

Once the nature of the signal has been specified, it becomes possible
to test it.

Checking status: It is possible to detect whether a transition has oc-
curred by testing the contents of bits 1 or 4 (for CA1 and CB1 respec-
tively) of the interrupt-flag register (IFR) (see Fig 2-22). This bit will be
“‘0’’ as long as no signal has been received, and will become ‘‘1’’ once
the appropriate transition has been detected. After reading a ‘1’
status, it must be possible to reset it so that one can move on to the detec-
tion of the next event. This will be accomplished either by writing a ‘1"’
into the appropriate bit position of the register, or else by reading, or
writing, the corresponding input/output data register.

37

6502 APPLICATIONS BOOK
PCR3 PCR2 PCR1 Mode
0 0 0 | CA2 Negative Edge Interrupt (IFRO/ORA Clear)

Mode—Set CA2 interrupt flag (IFRO) on a negative
transition of the input signal. Clear IFRO on a read or
write of the Peripheral A Output Register (ORA) or by
writing logic 1 into IFRO.

0 0 0 |CA2 Negative Edge Interrupt (IFRO Clear) Mode—Set
IFRO on a negative transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic 1 into IFRO.

0 1 0 | CA2 Positive Edge Interrupt (IFRO/ORA Clear) Mode—
Set CA2 interrupt flag on a positive transition of the CA2
input signal. Clear IFRO with a read or write of the
Peripheral A Qutput Register.

0 1 1 |CA2 Positive Edge Interrupt (IFRO Clear) Mode—Set
IFRO on a positive transition of the CA2 input signal. |
Reading or writing ORA does not clear the CA2 interrupt
flag. Clear IFRO by writing logic 1 into IFRO.

1 0 0 |CA2 Handshake Output Mode—Set CA2 output low on a
read or write of the Peripheral A Output Register. Reset
CA2 high with an active transition on CAl.

1 0 1 | CA2 Pulse Output Mode—CA2 goes low for one cycle
following a read or write of the Peripheral A Output
Register.

1 1 0 | CA2 Output Low Mode—The CA2 output is held low in
this mode. .

1 1 1 | CA2 Output High Mode—The CA2 output is held high in
this mode.

Fig. 2-24: PCR Detailed Operation (courtesy: Rockwell)

PCR7 PCR6 PCRS Mode

0 0 0 | CB2 Negative Edge Interrupt (IF3/ORB Clear) Mode—Set
CB?2 interrupt flag (IFR3) on a negative transition of the
CB2 input signal. Clear IFR3 on a read or write of the
Peripheral B Output Register (ORB) or by writing logic 1
into IFR3.

0 0 1 | CB2 Negative Edge Interrupt (IFR3 Clear) Mode—Set
IFR3 on a negative transition of the CB2 input signal.
Reading or writing ORB does not clear the interrupt flag.
Clear IFR3 by writing logic 1 into IFR3.

Fig. 2-25: Continued - PCR Detailed Operation

38

THE INPUT OUTPUT CHIPS

CB2 Positive Edge Interrupt (IFR3/0ORB Clear) Mode—
Set CB2 input signal. Clear the CB2 interrupt flag on a
read or write of ORB or by writing logic 1 into IFR3.

CB2 Positive Edge Interrupt (IFR3 Clear) Mode—Set IFR3
on a positive transition of the CB2 input signal. Reading or|
writing ORB does not clear the CB2 interrupt flag. Clear
IFR3 by writing logic 1 into IFR3.

CB2 Handshake Output Mode—Set CB2 low on a write
ORB operation. Reset CB2 high with an active transition
of the CBI input signal.

CB2 Pulse Output Mode—Set CB2 low for one cycle
following a write ORB operation.

CB2 Manual Output Low Mode—The CB2 output is held
low on this mode.

CB2 Manual Output High Mode—The CB2 output is held
high in this mode.

Fig. 2-25: PCR Detailed Operation (continued)

6522

L

CAl ready

DEVICE

DDRA ORA

Fig. 2-26: Reading Data When Ready

A Simple Input Example

Let us specify a low-to-high ‘‘ready’’ transition from the peripheral,
and an input configuration on Port A (see Fig 2-26). Whenever the data
is ready, it will be read into the accumulator. The program is:

LDA #0
STA DDRA SETINPUTS

39

6502 APPLICATIONS BOOK
LDA #1
STA PCR CA1 INTERRUPT LOW-TO-
HIGH
WAIT LDA IFR READ INT FLAGS
AND #3502 00000010 MASK BIT 1
FOR CAl

BEQ WAIT READY?
LDA ORA READ DATA IN

Improvement: Can you modify the two instructions ‘“LDA IFR AND #302” to

improve efficiency?
7,6 5 4,3, 2 1 0 |
i T | l
n g | PA]
n CON- SHIFT REGISTER LATCH [LATCH
CONTROL | 1RO CONTROL ENABLE {ENABLE

Fig. 2-27: 6522 - Auxiliary Control Register

Latching the Input/Output

The input and output of the 6522 are not symmetrical. Outputs are
always latched. This is why the input/output register is called OR (out-
put register). Inputs are not necessarily latched. This is specified by bits
““0’” and ‘“1”’ (respectively port A ‘and port B) of the auxiliary control
register (ACR). Whenever these bits are ‘0, no latching oc-
curs on input. Whenever these bits are set to ‘‘1,”” the inputs are latched
(see Fig 2-27). When an input is not latched, the program is actually
reading the value of the input lines connected to the port it is reading.
When the inputs are latched, the latch is enabled by the active transi-
tion of CAl or CBI1, depending on the port used. The value is then
preserved in the latch register until the next pulse is received on the
control line. Danger: on output, the program reads the latch controls,
which may or may not be the same as the contents of OR.

Sending a Control Signal Out

CA2 or CB2 are used to provide a control strobe (see Fig 2-14).

40

THE INPUT OUTPUT CHIPS

Since these lines are bidirectional, they must be configured for output
by setting the peripheral control register bit 3 or 7 respectively (for A2
or B2) (see Fig 2-24).

The nature of the signal can be specified to be either a level or a
pulse. ““0”’ in bits 2 or 6 respectively (for A or B) corresponds to a
pulse. ‘‘1”’ corresponds to a level. Whenever a level is specified, it is
possible to specify either a positive value or a negative value. This is
accomplished by setting or clearing bits 1 and 5 respectively (for A2
and B2) (see Fig 2-24).

Finally, when a pulse is generated, its duration can be controlled
with bits 1 and 5 (respectively for A2 and B2) of the control register.
Whenever the bit is set to “‘0,”’ a single cycle strobe will be generated.
Whenever this bit is set to ‘‘1,”’ an output pulse will be generated,
which will remain low from the time the OR register is accessed (read
or write) until the next signal transition on CAl or CBI.

Summary of Control Output

A pulse of virtually any duration and polarity can be specified. It
can be used to poll an external device (interrogate it), to acknowledge
a data transfer, to move on to another device connected to the same
line, or to control the state of the device (on, off, or other option).

A summary of the peripheral control register bits is shown on Fig
2-21, and the details are shown on Fig 2-24 and 2-25.

7) 5 4 3 2 1 0

R | IRQ

ser T 4 72 4 cB1 4 CB2 4+ SR —-CAl 4 CA2

clear
conirol

IER

Fig. 2-28: Interrupt Registers

Interrupts

Interrupts are controlled by two registers, the interrupt enable reg-
ister (IER), and the interrupt flag register (IFR). The registers are

41

e
6502 APPLICATIONS BOOK

shown on Fig 2-28. They share the same memory address. One is an
input register, the other an output register.

The interrupt flag register IFR is an input register. Each bit position
from 0 to will be set whenever an interrupt is detected on any of the
external lines (CAl1, CA2, CB1, CB2), on the shift register (SR), on
any of the two timers (T1 and T2). Bit 7 is set whenever any other bit is
set in the register.

The interrupt enable register (IER) will enable or disable interrupts
from any of the sources. The bit positions in IER match the ones of
IFR (see Fig 2-28). Whenever a bit position is “‘0,”’ the corresponding
interrupt is disabled and will not be sent. Whenever it is ““1,”’ it is en-
abled, and if an interrupt occurs, it will be recorded. It becomes then
possible for the program to read the contents of the IFR register and
test any relevant bit to determine whether an interrupt has occurred.
In order to set or clear conveniently any of the IER bitq, bit position 7
of IER is used in conjunction with a read or write signal and the con-
tents of the data bus are then copied into the IER register. If IER bit 7
is <“0”’, each ‘1>’ will clear an enable flag. If bit 7 is **1°’, each *“1”’
written into IER will set an enable.

Example: Let us enable CAl and CA2 interrupts, and disable all
others (see Fig 2-28):

LDA #$7C ‘01111100 = CLEAR BITS

2TO 6

STA IER

LDA #3$83 10000011 = ENABLE BITS
0 AND 1

STA IER

Exercise 2-1: Write a program-to enable CBI interrupts, and disable
others.

Exercise 2-2: Disable CBI and CB2, leaving others unchanged.
Identifying the Interrupt

i Whenever several interrupts can occur simultaneously, i.e., when-
ever several bits of the IFR are used, the program will have to check

the contents of IFR and determine which interrupt has occurred. The
order in which it checks these bits will determine the priority of the

42

e ——————
THE INPUT OUTPUT CHIPS

corresponding interrupt. For example, if an interrupt from T1 has
highest priority, then this is the bit which should be checked first. The
simplest way to check the contents of IFR is to shift its contents right
or left by one position and check the value of the bit which falls off
(into the Carry bit) by testing the carry bit. This technique assigns pri-
orities in a right-to-left or left-to-right manner to the signals of Fig
2-28.

Exercise 2-3: Look at Fig 2-28. List the devices in order of effective
priority, assuming that the contents of IFR are shifted left by the poll-
ing program.

Naturally it is also possible to check for combinations of interrupts
by checking the values of specific bits in the IFR register. For more
details on interrupts and polling, refer to Chapter 3 of ref. C202.

The Timers

The 6522 is equipped with two interval timers. These timers can be
used as inputs or as outputs.

When used as an output, a timer may generate either an output sig-
nal or a train of pulses.

When used as an input, a timer will measure the duration of a pulse,
or else will count the number of pulses received. When generating or
reading a pulse of set duration, the timer is said to be in ‘‘one-shot”’
mode. Either timer 1 or timer 2 of the 6522 can be used in this manner.

When used to generate or to count a continuous train of pulses, the
timer is said to be in a ‘‘free-running mode.”’ Only timer 1 may be used
in this manner.

Prior to using any timer in output mode, its counter register must be
loaded with a value: when generating pulses, the counter will either
contain the number of clock pulses to be generated, or the duration of
the pulse.

When using the timer on input, its register must be cleared. When
counting pulses, it will contain the number of pulses so far. When
sensing a pulse, it will contain its duration.

Timer 1 versus Timer 2

Timer 2 may be used on input to count pulses applied to PB6 of
IORB (see Fig 2-14). When used on output, it can only generate a

43

4

Fig 2-29: 6522: Auxiliary Control Register Controls T1 Modes

6502 APPLICATIONS BOOK

pulse of set duration on PB6. It cannot generate a train of pulses.
Either one of these two modes is selected by bit § of the auxiliary con-
trol register (ACR) (see Fig 2-27).
mode, and ‘“1”’ to the pulse-counting mode.

6

T
|

0 ONE-SHOT MODE
1 FREE RUNNING MODE

ACR

I —e

0 OUTPUT 1O PB7 DISABLED
1: OUTPUT 1O PBY ENABLED

Timer 1 is different from Timer 2 and offers additional possibilities.
It has four operating modes which are shown on Fig 2-29. It can be
used either in one-shot mode or in free-running mode. Additionally, it
may either enable or disable an output on PB7. The mode is specified
by bit 6 of the auxiliary control register. It is ‘‘0>’ for one-shot opera-
tion and ¢‘1”’ for free-running mode.

Bit 7 specifies whether PB7 is enabled or disabled. When ‘0,”’ PB7
is disables, when ‘‘1,”” PB7 is enabled (see Fig 2-30).

““0” corresponds to the one-shot

ACR7 ACR 6 MODE
OUTPUT FREE RUN
ENABLE ENABLE
0 0 Generate time out INT when T1 loaded
(ONE-SHOT) PB7 disabled.
0 1 Generate continuous INT
(FREE RUN) PB7 disabled.
1 0 Generate INT and output pulse on PB7 everytime
(ONE-SHOT) T1 is loaded. '
=one-shot and programmable width pulse.
1 1 Generate continuous INT and square wave
(FREE RUN) output on PB7.

Fig. 2-30: 6522 - Auxiliary Control Register Selects

Timer 1 Operating Modes

2ttt

THE INPUT OUTPUT CHIPS

Loading the Counters

Each timer uses a 16-bit counter. The low part must be loaded first
and the high part must be loaded next. Loading the high part of the
counter automatically clears the timer interrupt flag and starts the
timer running. Timer 1 is also equipped with a true 16-bit latch, while
Timer 2 is not. This enables Timer 1 to operate continuously, in ‘“‘free-
running’’ mode; the latch is automatically transferred to the counter
when the counter reaches zero. For Timer 1, the values of the latches
may be read or written without affecting the counters. This is used to
generate waveforms of arbitrary complexity.

The details of timer addressing are shown on Fig 2-31.

ADDRESS WRITE READ

--04 TIL-L TiC-L/
+ clear T1 int flag
--05 TIL-H + TIC-H TIC-H
+ TIL-L»TIC-L
TIMER 1 + clear Tl int flag

--06 TIL-L THL-L
--07 TIL-H TiL-H

+ clear Tl int flag

--08 T2l-L T2C-C
+ clear T2int flag
TIMER 2 -
--09 T2C-H T2C-H
T2L-L »T2CL

+ clear T2 int flag

Fig. 2-31: Timer Addressing

Real Duration

The actual waveform from Timer 1 is shown on Fig 2-32. Note that
the real duration is the value of the count (‘‘N”’) plus 2, or the value of
the count plus 1.5. In order to obtain a more exact timing, the user
should therefore load in the counter register the desired number of
periods minus 2.

45

6502 APPLICATIONS BOOK

N+ 15
WRITE ; :)
TICM
b} l-——————N+I5ty:|n ; N + 2 cycl 4
! L S

Fig. 2-32: Timer 1 in Free Running Mode

The Shift Register

The shift register is provided for serial-to-parallel or parallel-to-
serial conversion. The shifting speed can be controlled by three time
sources: Timer 2, Phase 2 of the clock ($2), and an external clock. The
external timing source is specified by bits 2 and 3 of the auxiliary con-
trol register (see Fig 2-27). Bit 4 of the auxiliary control register speci-
fies input or output. The complete table showing the function of these
bits appears on Fig 2-33.

ACR4 | ACR3 | ACR2 Mode
0 0 0 |Shift register disabled.
0 0 1 |Shift in under control of Timer 2.
0 1 0 |Shift in under control of @2 pulses.
0 1 1 |Shift in under control of external clock pulses.
1 0 0 |Free-running output at rate determined by Timer 2.
1 0 1 |Shift out under control of Timer 2.
1 1 0 |Shift out under control of the @2 pulses.
1 1 1 |Shift out under control of external clock pulses.

Fig. 2-33 Shift Register Control

On output, the user will load the shift register. This will automati-
cally start the timing and shifting process. Whenever 8 bits will have
been shifted out of the register, the interrupt flag (bit 2 of the interrupt
flag register) will be set automatically. It can then be tested by the
program.

46

THE INPUT OUTPUT CHIPS

On input, the shift register must be initialized to some value such as
0’ in order to start the timing process. It will then start capturing
bits at the frequency of the specified timing source, such as timer 2,
phase 2 of the clock, or an external clock, as specified by bits 2, 3, 4 of
the ACR. Whenever 8 bits have been accumulated, the corresponding
interrupt flag of IFR will be triggered. The program will deposit a
value such as ‘‘0”’ in the SR, then test continuously the value of IFR
bit 2. Whenever an interrupt is detected, the shift is complete. The
shift register should then be disabled by zeroing bits 2, 3, 4 of ACR,
while the program is storing data away. Naturally if data is coming in
continuously, the shift register will not be disabled and the program
should “‘come back’’ quickly enough not to lose data.

PROGRAMMING THE 6522

The 6522 is a combination PIO, timer, and shifter. The basic input-
output operations on the PIO are performed essentially as on the
6520, except that the registers may be selected directly and that one
does not need to switch bit 2 of the control register to differentiate be-
tween them. This leads to simpler and shorter programming. How-
ever, the control facilities provided by the 6522 are extensive, and
quite different from those of the 6520. Let us therefore examine first
some examples of basic input-output, then some examples of the con-
trol options.

Basic Input

Input is accomplished by loading all zeroes in the data direction reg-
ister of the port which is to act as input, then reading the contents of
the OR. In this simple program, we will, in addition, store the data,
which has just been read, into memory location 20. The program ap-
pears below:

INPUT LDA #0
STA DDRA PORT A IS INPUT
LDA ORA READ DATA (IF VALID)
STA $20 SAVE THEM IN MEMORY

47

6502 APPLICATIONS BOOK
RS3| RS2} RS1 | RSO | R/W] REGISTER COMMENT
0 0 0 0 w ORB
0 0 0 0 R IRB
0 0 0 1 w ORA controls handshake
0 0 0 i R IRA
0 0 1 0 - DDRB
0 0 i 1 - DDRA
8 1 8 8 w TiL-L latch
0 1 0 1 R TiC-L counter
0 1 0 i TIC-H Til-Linto TIC-L
0 1 1 0 TIL-L
0 1 1 1 Tit-H
1 0 0 0 w T2L-L latch
! 0 0 0 R T2C-L counter
11olol T2C-H | triggers T2L-L into T2C-L
1 0 1 0 SR
1 0 1 1 ACR
1 1 0 0 PCR
1 1 0 1 IFR
1 1 1 0 IER
1 1 1 1 ORA no effect on handshakes

Fig. 2-34: 6522 Register Selection is Direct

Basic Output

Output is performed in exactly the same way as input; the data
direction register for port B will be loaded for all ones, thus specifying
all outputs. The data to be sent to port B is assumed to reside at mem-
ory location 20 so that it will be first loaded into the accumulator, then
transferred to the ORB. The reader will remember that there is no in-
struction in the 6502 which allows transferring directly from memory
location 20 to ORB. An extra instruction is therefore required to
transfer first the data from memory into the accumulator, and then
from the accumulator to ORB. The program appears below:

OUTPUT LDA #$FF
STA DDRB B = OUTPUT
LDA $20 GET DATA FROM MEMORY
STA ORB OUTPUT IT

48

THE INPUT OUTPUT CHIPS

Using the Control Options

We will configure here port A as all inputs. It will be assumed that
the peripheral or device connected to port A will send the ‘‘data
ready’’ strobe on line CA1l. The strobe will be active during its low-to-
high transition. The 6522 will have to detect this ‘‘data ready’’ strobe
transition, and the program will poll the 6522 to determine whether
any data has been received. If data has been received, it will read it
and store it at location 20 in memory. The program has already been
developed (see “‘Basic Input’’ page 39) and appears again below:

READYIN LDA #0 A = INPUT
STA DDRA
LDA #1 CAl INTLO TO H’
STA PCR
TEST LDA IFR TEST BIT 1
AND #8$2 00000010 BINARY
BEQ TEST =1?
LDA ORA READ DATA
STA $20 SAVE IN MEMORY

As usual, the data direction register is set to all zeroes to configure
ORA as inputs: :

LDA #0
STA DDRA

The control register PCR will now be conditioned so that an internal
interrupt is generated whenever a low-to-high transition occurs:

LDA #1
STA PCR

The two instructions above load the binary value 00000001 into PCR.
Referring to Fig 2-23, the reader should verify that this is indeed the
correct value. Bit zero of the peripheral control register PCR specifies
which active transition of the input signal will be recognized. Since we
want the CAl interrupt flag to be set by a positive transition (low-to-
high), PCRO must be set to the value 1.

Bits 6 and 7 of the ACR relate to the timer 1 operating mode. Since
the timer is not being used, their contents are irrelevant here. Bits 2, 3,

49

R ——

6502 APPLICATIONS BOOK

and 4 of ACR specify the operation of the shift register. Since the shift
register is not used here, they should be zero, as specified on Fig 2-33.
Bit 5 of the ACR is T2 control, and therefore unused here. Bit 1 is the
PB latch enable, and is unused here. Bit zero is the port A latch en--
able. When specified (by writing a ‘‘1’’), data present on the A input
will be latched whenever the CAl interrupt flag is set. This would be
accomplished by:

LDA #1
STA ACR

Since we assume here that polling is used, instead of a hardware in-
terrupt, the program will be responsible for reading the contents of the
interrupt flag and determining whether an interrupt has occurred. The
contents of the interrupt flag register are shown in Fig 2-28. Bit position
1 of the IFR needs to be tested in order to determine whether the CA1l
‘““data ready’’ signal has been received. This is performed by the fol-
lowing three instructions:

TEST LDA IFR
AND #3$2
BEQ TEST

The AND instruction masks out all bits except bit position 1 so that it
can be tested.

As long as bit 1 is zero, this program will remain in this polling
loop. Once the ‘‘data ready’’ signal has been recognized, data can be
read from the ORA and transferred to their final memory location,
which we will assume to be, as usual, memory location 20:

LDA ORA
STA §20

Reading the contents of ORA into the accumulator will also automati-
cally clear bit 1 of IFR (the CA1 status indicator), so that the internal
interrupt will be automatically reset.

It is important to remember that interrupt flags must explicitly be
cleared every time they are used. The 6522 is organized in such a way
that the ‘‘normal’’ operation, such as reading the contents of ORA
after detecting an interrupt, will take care of it automatically. How-
ever, the reader should be alert to the fact that if he should use ‘‘non-
standard programming,’’ errors might occur as the interrupt flag
might remain continuously on. A technique which may be used in such
a case is to write back the contents of IFR after reading it:

50

THE INPUT OUTPUT CHIPS

STA IFR

This ‘‘programming trick’’ will reset only the bit which had been set to
‘1, >’ thus effectively clearing the bit without modifying any other
(unless more than one bit was ‘“1”’).

A Handshake Protocol on Input

We will assume here that the complete handshake sequence is used:
first the program is responsible for sending a ‘‘start” pulse (active
high) to the device. Later, the device will respond with a ‘‘data ready”’
strobe (active high-to-low here), and the program will be responsible
for determining that the signal has been received, then transferring the
data into memory location 20. The program appears below:

NSHAKE LDA #0
STA DDRA A ISINPUT
STA ACR
LDA #30C BITS 2 AND 3 ON
STA PCR CLEAR START PULSE
LDA #$0E BITS 1, 2, 3 ON
STA PCR GENERATE START ON CA2

LDA #30C
STA PCR CLEARIT
WAIT LDA IFR INTERRUPT?

AND #302 (START PULSE?)
BEQ WAIT POLLING LOOP
LDA ORA DATA READY
STA $20 SAVE IN MEMORY

Let us examine the program. As usual, port A is conditioned as input
by storing zeroes in the DDRA:

LDA #0
STA DDRA ZERO DDRA
STA ACR

We will assume here that no latching is necessary on input (see previ-
ous program if you wish to latch data on input). The PCR register
must now be conditioned so that a start pulse will be generated, active
high. The level of CA2 (the line which we will use to provide the start
signal CAl can only be used as input) will first be set low, then high,
to guarantee a low-to-high transition. Conditioning the CA2 output

51

6502 APPLICATIONS BOOK

low is accomplished by loading the value ‘110"’ respectively in bits 3,
2, and 1 of PCR (see Fig 2-24). This is accomplished by the following
instructions:

LDA #$0C 00001100
STA PCR

Next, the level on the CA2 output must be specified as high. This is ac-
complished by loading the value ““111”" in bits 3, 2, 1 of PCR:

LDA #S0E 00001110
STA PCR "

We will assume here that a brief pulse is sufficient to provide the
“start’’ signal. Some devices might require that this pulse be of a long-
er duration. In such a case, a delay would have to be added at this
point to guarantee that the pulse remains high for a specific duration
of time. Here, we will simply turn the signal off again:

LDA #0C 00001100
STA PCR

At this point, we proceed, as in the previous program, by polling bit
one of the IFR to detect whether the CA1 has been set to one:

WAIT LDA IFR
AND #$02 00000010
BEQ WAIT

Then, as above, the data is read from ORA and stored in memory
location 20:

LDA ORA
STA %20

6502
139
o522 6522 s

il bl

Fig. 2-35: Connecting Multiple 6522's -
Generating an IRQ

52

THE INPUT OUTPUT CHIPS

Using Multiple 6522’s

In the case in which multiple 6522’s are used, their interrupt request
output IRQ is usually connected to the IRQ line as shown in Fig 2-35.
However, once an IRQ is received by the 6502, the program must
determine which 6522 originated it. A polling loop is generally used.
This polling loop will interrogate in turn each IFR of the devices to
determine which one has generated an interrupt. This information is
readily -available in bit 7 of the interrupt flag register, as shown in Fig
2-22. The reader will recall that bit 7 is universally used as a preferred
position for polling, since once the contents of the register under test
are loaded into the accumulator, the contents of bit 7 will condition
the sign bit of the microprocessor flags register (bit N). The next in-
struction in the program may readily test bit N and determine whether
it was “‘0”’ or “‘1.”” This is exactly what the polling program does here.
A typical polling program appears below:

LDA IFRI

BPL NEXTI
INTFOUND{ - - - (IDENTIFY 1 OF 7 CAUSES)
NEXTI LDA IFR2

BPL NEXT2

The program loads the contents of the IFR of the first 6522 and tests
whether it is positive. If it is positive, no interrupt has been generated
by the device and the program tests the next one, and so on. However,
if the device is found to have generated an interrupt, a specific routine
must then determine what to do next. Let us examine it.

Identifying One of 7 Possible Internal Interrupts for the 6522

Referring to Fig 2-22, it can be seen that seven possible conditions may
set an internal interrupt in the IFR register of the 6522: T1, T2, CBI,
CB2, SR, CAl, CA2. If all of the internal resources of the 6522 are
used simultaneously, as is often the case, then all possibilities should
be checked. A simple program which will identify one out of 7 inter-
rupts appears below:

53

S
6502 APPLICATIONS BOOK

ONEOF7 ASL A
BMI TIMERI

ASL A
BMI TIMER2

ASL A

The program checks successively bit 6, bit 5, bit 4, etc., by simply
shifting the contents of the accumulator left by one bit position every
time. It should be noted that the order in which the shifts occur estab-
lish a priority of the interrupts within the device. Using the program
as shown above, Timer 1 will have the highest priority, then Timer 2,
etc. The user might want to assign different priorities to the interrupts
by testing the bits in a different order.

Generating Delays with a Timer

The reader should study the details of the timers in the manufac-
turer’s data sheets before using them. Timer 2 is simpler than Timer 1.
Both timers are not identical, and it is important to understand their
specific characteristics before using them. Since a complete study of
the timer operating modes is not necessary for the purposes of this
book, we will show here two typical examples of the generation of de-
lays, using respectively Timer 2 and Timer 1. Other examples will be
presented in the applications chapters.

Generating a One-Shot Delay with Timer 2
The program appears below:

ONESHOT2 LDA #0 '
STA ACR SELECT MODE
STA T2LL LOW-LATCH=0
LDA #$01 DELAY DURATION
STA T2CH HIGH PART =01HEX. START
LDA #3$20 MASK

LOOP BIT IFR TIME OUT?

BEQ LOOP
LDA T2CL CLEAR TIMER 2 INTERRUPT

Bits 6 and 7 of the ACR must be set to zero to specify the one-shot

54

THE INPUT OUTPUT CHIPS

mode (PB7 not used with T2). Since we assume here that none of the
other resources such as the shift register are being used, we simply
load all zeroes into the ACR register:

LDA #0
STA ACR

Timer 2, like Timer 1, contains a 16-bit OR so that the two halves of
the register must be loaded separately. We will first load the low half,
then the high half:

STA T2LL
LDA #301
STA T2CH

Loading the value $01 into T2C-H also results in clearing any inter-
rupt flag and starting the counter automatically.

Fig 2-28 shows that bit 5 of the IFR is the one indicating that Timer
2 has timed out. Bit S of the IFR therefore must be tested for the value
““1.”” This is accomplished by the next three instructions:

LDA #$20 BIT 5=1
LOOP BIT IFR
BEQ LOOP

The value 20 hexadecimal is equal to ‘‘00100000.”’ It is used to test
whether bit § is indeed a‘‘1.”’ The BIT instruction performs a logical
AND, without modifying the contents of the accumulator. As long as
bit 5 remains ¢‘0,”’ the program loops, waiting for the Timer 2 inter-
rupt. Whenever Timer 2 generates the interrupt, it is detected, and the
program exits the loop.

Finally, the program must explicitly clear the Timer 2 interrupt be-
fore branching to another task. This could be accomplished by reload-
ing a new value into the counter register. However, since this program
should be useful in any environment, we make no assumption as to
what will be done after this program terminates. The interrupt flag
will be cleared either by writing into T2C-H or by reading T2C-L.
Since we do not want to start the counter running again, we will not
write in T2C-H, but instead read T2C-L, simply to clear the interrupt:

LDA T2CL

55

6502 APPLICATIONS BOOK

Generating a One-Shot Delay with Timer 1

We will use Timer 1 here in a manner essentially analogous to Timer:
2 above. However, Timer 1 is equipped with a true 16-bit latch regis-
ter, unlike Timer 2. Ther program appears below:

ONESHOT1 LDA #0
STA ACR 1-SHOT MODE - NO PB7
PULSES
STA TILL LOW LATCH
LDA #301 DELAY
STA TICH LOADS ALSO TI1CL AND

STARTS
LDA #320

LOOP BIT IFR TIME OUT?
BEQ LOOP

LDA TILL CLEAR INT FLAG

The program is essentially analogous to the one above, and should be
self explanatory. The only difference is that the low latch is loaded
first, then the program writes into T1C-H, the high part of the counter
proper. This instruction also results in transferring the contents of
TIL-L into T1C-L (see Fig 2-34 showing the 6522 internal registers)
and starts the counter. The rest of the program is identical.

Generating a Pulse

The above programs will generate a delay for a program. If an ac-
tual pulse must be generated, then the proper output pin must be spe-
cified. For Timer 1, the PB7 pin will be used to provide the output
pulse PB7 will be an output if either DDRB7 or ACR7 equals ““1.”

Timer 2 does not send a direct pulse on a pin for output. The pulse
must be generated by adding instructions which explicitly turn on and
off one of the bits of the port. However, Timer 2 may count pulses
easily in its pulse-counting mode. Pin PB6 is then used for this pur-
pose. This underlines again the practical differences between these
timers. In any practical application, the reader is encouraged to review
the manufacturer’s data sheets to take best advantage of them.

56

THE INPUT OUTPUT CHIPS

Shifting in and out

The shift register SR is connected to pin CB2 of the 6522. All pulses
will be generated or sensed on this specific pin. The combination of
bits 2, 3, and 4 of the ACR determines the way in which the shifter
operates. The 8 combinations are shown on Fig 2-33 above.

In our examples so far, the contents of bits 2, 3, 4 of the ACR have
always been zero, so that the shifter register was disabled. The shifter
will shift in or shift out under control of one of three possible timing
sources: Timer 2, Phase 2 of the clock, or an external clock. In addi-
tion, it provides a special mode with a free running output at the rate
determined by Timer 2. The reader is again referred to the manufac-
turer’s data sheets for the complete specifications on the shifter. We
will simply present here two typical examples of shifting in and shift-
ing out.

Shifting in With an External Clock
The program appears below:

SHIFTIN LDA #0
STA ACR CLEAR SR
LDA #3$0C EXTERNAL CLOCK MODE
STA ACR START SHIFTER

LOOP LDA IFR DONE FLAG?

AND #304 TEST BIT 2
BEQ LOOP WAITING LOOP
LDA SR READ 8 BITS INTO ACC
STA $20 SAVE IN MEMORY

The shift register is first cleared by loading zeroes into the ACR:

LDA #0
STA ACR

Then the correct operating mode is specified by loading the value
““011”” in bits 4, 3, 2, respectively of the ACR:

LDA #$0C
STA ACR

57

6502 APPLICATIONS BOOK

This specifies a shift-in under control of an external clock (see Fig
2-33).

Once the 8 shifts have occurred, the shifting mechanism is auto-
matically disabled, and the SR interrupt flag is set in the IFR register.
After the shifting has been started, the program therefore simply
checks the contents of bit position 2 of the IFR (see Fig 2-28) to verify
whether it is ‘“1.>” The polling loop appears below:

LOOP LDA [IFR
AND #3$04
BEQ LOOP

At this point, the contents of shift register SR simply need to be
transferred into memory location 20 as usual:

LDA SR
STA 320

Shifting out Under Phase 2 Control

The program is essentially similar to the one above except that the
control bits to be loaded in the ACR are different, in order to specify
the proper operating mode. Assuming that we simply have to send one
word of 8 bits out, no waiting loop is necessary here to determine
whether the shift is finished or not. The program appears below:

SHIFTOUT LDA #0
STA ACR CLEAR SR
LDA #$18
STA ACR $2 OUT MODE
LDA $20 READ DATA FROM
MEMORY
STA SR

As above, the shift register is first cleared, then the ACR is loaded
with the value ‘“18”’ hexadecimal, which specifies the combination
‘110" into bit positions 4,3 and 2. This specifies the shift out at a rate
controlled by phase 2 of the system clock:

LDA #0
STA ACR

58

THE INPUT OUTPUT CHIPS

LDA #$18
STA ACR

The data is then fetched from memory location 20, and deposited into
the shift register. Depositing the data into the shift register automati-
cally starts it.

LDA $20
STA SR

If we had to send a succession of 8-bit words, the program here should
wait for one shift to be completed before starting the next one. This
would be accomplished by a waiting loop like the one above. Once 8
bits have been shifted out, the 6522 automatically sets bit 2 of the IFR
(see Fig 2-28) . The program therefore would simply test continuously
bit 2 of the IFR until it takes the value ‘‘1.”” Once the value ‘“1°’ has
been detected, the shift will be resumed.

Summary of the 6522

The three functions of this component are: PI1O, timer, shift. Addi-
tionally, complex control signals can be specified for the PIO and the
timer. The function of the possible control signals and options has
been described. This component should be viewed as a set of three sep-
arate functions. The functions of Port A and Port B are essentially
similar but not symmetric'al: the two timers have some common fea-
tures but offer different possibilities. Finally, the shift register is
essentially symmetrical on input and output and can be used to receive
or transmit bits or words at any set frequency from a number of exter-
nal clock sources.

Exercise 2-4: Save in a 2-word memory table at location BUFFER two
successive data words from DEVICE 1. DEVICE 1 supplies an active
low-to-high READY strobe. It requires an acknowledge signal (high
pulse).

Exercise 2-5: Same as 2-4, except DEVICE 1 requires an active-low
START pulse, and responds with the READY signal.

Exercise 2-6: Send data to DEVICE 2 from memory location BUF-
FER. DEVICE 2 supplies a BUSY signal when not ready.

59

6502 APPLICATIONS BOOK

Exercise 2-7: Same as 2-5, but DEVICE 2 requires a STATUS strobe
to supply a READY/BUSY answer.

Exercise 2-8: Turn a printer on witha ‘‘1°’ on the control line, wait for
READY, send a character, turn it off.

Exercise 2-9: Count 10 input pulses on PB6.
Exercise 2-10: Generate a pulse of 1 ms on PB7.

Exercise 2-11: Shift out 8 bits from memory location BUFFER at
Timer 2 rate.

DATA
BUS

X8
[} o
o
&
& PORT B
2
o
ADDRESS (PB&/PBS = C51/C52;
ADDRESS
Bus C:> pecooer | P87 =IRQ)
A -A9
s
2
@2 CONTROL
W
S

Fig. 2-36: 6530 Internal Architecture

60

THE INPUT OUTPUT CHIPS

THE 6530 ROM-RAM 1/0 TIMER (RRIOT)
(RRIOT stands for ROM-RAM-1/0-Timer).

The 6530 is a special combination component which combines four
functions usually distinct: a PIO, a timer, a RAM and a ROM. The in-
ternal architecture of the 6530 is shown on Fig2-36. It is equipped
with the usual two PIO ports, each one of them with its own data-di-
rection register. However, there are no control lines or interrupt logic
associated with the ports. The timer is connected to port B. The RAM
memory provides 64 bytes, the ROM provides 1K bytes. A ROM, once
programmed, cannot be changed. Since it is uneconomical to produce
ROM’s in small quantities, the 6530 is only used in situations where a
large number of identical components is going to be produced. As an
example, the KIM board uses two 6530’s which contain the internal
control program or ‘‘monitor.”’

Three pins on this component have a dual function: CS1 and CS2
are mask options intead of PB6 and PBS. Also, PB7 may be used as
an interrupt request IRQ.

The Interval Timer

The interval timer is equipped with an 8-bit register, and may be
used in one of four modes. Depending on the values AO and Al of the

A2 Al A0
0O 0 0 BUFFER A
o 0 1 -
DDRA Note: A3 specifies
whether interrupt
o 1 0 BUFFER B is used.
o T 1 DDRB
10 0 TIMER 1T +IRQ to PB7
1 o 1 (W) TIMER 8T NO IRQ to PB7
(R)INT FLAG
1 1 0 TIMER 64T +IRQ to PB7
1 1 1 TIMER 10247 NO IRQ to OB7
(R)INT FLAG

Fig. 2-37: 6530 Memory Map

61

6502 APPLICATIONS BOOK

address lines, it will count in increments of 1, 8, 64, 1024 times the sys-
tem clock. To the programmer, the timer appears as a set of 4 memory
locations as shown in Fig 2-37.

When using the timer, pin PB7 may be used as an interrupt pin.
When used as an interrupt, pin PB7 must be programmed as an input.
When not used as an interrupt, it may be used for any usual purpose.
For details on the utilization of PB7 as interrupt, the reader is referred
to the manufacturer’s data sheets.

THE 6532 RIOT

The 6532 is essentially a 6530 without the ROM. The RAM, how-
ever, is larger: it provides 128 words. In addition, the PA7 line on this
device may be used an an edge-detecting input. When this mode is used,
an active transition will set an internal interrupt flag (bit 6 of the inter-
rupt flag register).

The internal architecture of the 6532 is shown in Fig 2-38. The ad-
dressing of the chip is shown in Fig 2-39. The rest of the operation of
the 6532 is essentially like that of the 6530.

Ports A and B are not symmetrical. The main difference between
the two ports is that port B is equipped with push-pull buffers which
are capable of sourcing 3 mA at 1.5 volts. This allows the direct con-
nection of this port to LED’s or Darlington transistors. Further, port
A reads directly from the pins. On port B, data is read from the output
register instead of the peripheral pins.

—
S
ey H i pl
® <~ (A7 moy be control)
1286x8
e
ADDRESS
BUS :3 ADORESS
(AO-A8) DECODER
= ; K—. o
g; § (87 moy be control}
CONTROL ‘
o2 GE
RES -
L o

Fig. 2-38: 6532 Internal Architecture

62

THE INPUT OUTPUT CHIPS

rad
w

Ad | A3

9
2
>
o
o

SELECTION

- RAM
- ORA
- DDRA
ORB
DDRB

WRITE TIMER +1T

+87

+ 641

+ 10247

READ TIMER

READ INTERRUPT FLAG
WRITE EDGE DETECT CONTROL

0O—~0=0 "

-t - ot - - O
P = =00 —~=00 ¢

« -0 -0 —

- ———-—_-—_D OO0

O~=0000 "+

0

.

disable (O) enable (1) INT from timer 10 IRQ
** disable (O) enable (1} INT from PA7 10 IRQ *
*** negative (0)/positive (1) edge detect

Fig. 2-39: 6532 Addressing

SUMMARY

Most applications will require at least the use of two or more ports
on one or more PIO’s, and the use of a programmable timer. Still
more complex applications will require the use of control signals and
the possible use of automated shifts. All the components we have re-
viewed - the 6520, the 6522, the 6530 and the 6532 - provide two PIO
ports. Except for the 6520, they all provide at least one programmable
timer. A comparison table of the four input-output devices appears
on Fig 2-40.

One or more of the above PI1O’s will be used in all the applications
in this book.

6520 6522 6530 6532
PORT A LINES 8 8 8 8
PORT B LINES 8 8 5t08 8
CONTROLLINES, A 2 2 o] 0
CONTROL LINES, B 2 2 o 0
DDRA 1 1 yes yes
DDRB 1 1 yes yes
TIMER - yes yes yes
TIMER 2 - yes - -
ROM - - 1K X 8 -
RAM - - 64 X 8 128 X 8
OTHER - add ‘| control registers 4 timer ratios 4 timer ratios
INTERRUPT 2 1 optional 1

Fig 2-40: Comparison Chart of the Four PIO's

63

CHAPTER 3

6502 SYSTEMS

INTRODUCTION

The applications presented in this volume will be connected to a
‘“‘standard’’ 6502 system. The organization of such a ‘‘standard
system’’ will therefore be presented first. Then, some real 6502 boards
will be described and will be shown to be consistent with the standard
model just introduced.

In order to present realistic applications, it is necessary to define an
exact hardware configuration to which the applications are effectively
connected. The majority of the examples presented in the book are di-
rectly applicable to the SYM board, and can be readily adapted to the
KIM board. One section of the next chapter will specifically present
KIM programs. SYBEX does not endorse any board or any manufac-
turer. Simply, for educational purposes, it is more practical to present
applications directly applicable to existing boards, rather than invent a
fictitious one. Most programs written for the SYM are compatible with
the KIM, and can be readily adapted to other boards, such as the
AIMBG65. The reader is encouraged to exercise his own judgment in deter-
mining which board will be best suited to his needs.

The architecture of the KIM, SYM, and AIM 65 are presented in this
chapter. SYM is presented in more detail so that the reader who does not
have a SYM can understand the interconnections used in the application
programs presented in the following chapters. However, it should be
stressed again that any other board can be used, and that the changes re-
quired in the programs are usually minor.

64

6502 SYSTEMS

A “STANDARD” 6502 SYSTEM

Any standard microprocessor system includes at least the microproc-
essor unit (MPU) and its clock circuit, the ROM, the RAM, and one or
more PIO’s. The organization of such a standard system, using the
6502, is shown in Fig 3-1.

oo "ADDRESS BUS > EXPANSION

= U o Ul

PORT A

RAM ROM PIO

6502 : : s 10 DEVICES
<:>co~m01
o1 U1 $9p

¢ DATA BUS >
< CONTROL BUS [iz j>

IL'@'

A CONTROL
10GIC

EXPANSION

Fig. 3-1: Organization of a "‘Standard" 6520 System

The 6502 incorporates most of the clock’s circuitry within the micro-
processor chip, so that only an external crystal and an oscillating circuit are
necessary. The 6502 and its clock circuit are shown on the left of the
illustration. The 6502, like any *‘standard’’ microprocessor, creates three
busses: the address bus (16 lines), the data bus (8 lines, bi-direc-
tional), and finally the control bus.

In the standard system, the RAM memory (read-write memory), the
ROM memory (read-only memory), and the PI1O are shown as separate
chips connected to the 3 busses. The ROM will typically contain a moni-
tor program necessary for using the microprocessor board resources, or
else user programs (in industrial applications). The PIO will create two
ports (8 lines each) for communicating with external devices, plus perhaps
some additional control lines. In any practical application, at least two
PIO’s will be necessary to provide a sufficient number of 1/0 lines. Some

65

6502 APPLICATIONS BOOK

additional logic is usually required for address decoding and other
functions. _

Because several combination-chips are available in the 6502 family,
the ROM, the RAM, and the PIO may be combined on one or more
chips. However, any system using the 6502 will normally incorporate all
the logical elements of Fig 3-1.

Let us now examine some real boards and how they relate to our stan-
dard board.

Fig. 3-2: Photo of KIM-1

THE KIM-1

The KIM-1 was an early board introduced by MOS Technology in
support of their 6502 microprocessor. It incorporates a minimal number
of components, is equipped with a hexadecimal keyboard and with 6
LED’s, so that it can be used as a low-cost stand-alone complete micro-
computer board. It is shown on Fig 3-2. Its internal organization is
shown on Fig 3-3.

The KIM-1 includes a separate 1K by 8 RAM (for the user) and two
6530 combination chips. The reader will recall from the previous chap-

66

6502 SYSTEMS

ter that the 6530 is a combination chip providing a PIO, a programma-
ble timer, a ROM, and a RAM. On this board, thereis no need for an ex-
ternal ROM memory since the amount of ROM memory provided by
the two 6530’s is sufficient to contain the system monitor. Each 6530
also contains 64 bytes of RAM which are partly used by the system
monitor.

aocx EXPANSION
et ADORESS 8US > CONNECIOR

1K X8 6530 0%

6502 RAM #2 #

’ <: 6530
-

ROM

- ﬁi W@QJHI T
U

CONTROL BUS >
CONTROL
L0GIC

0s)

Fig. 3-3: KIM-1 Internal Organization

Additionally, the board is equipped with a keyboard, 6 LED’s, a tape
recorder interface, and a teletype interface. It can be expanded exter-
nally through two edge connectors, called respectively the expansion
connector and applications connector, as shown on Fig. 3-3. The
system memory-map is shown on Fig 3-4. The signals for the two con-
nectors of the KIM are shown on Fig 3-5 and 3-6.

The reader should ascertain that the organization of this board does
meet the description of our standard 6502 system as shown on Fig 3-1.
The details of the pin interconnects are useful to those readers who will
want to connect the applications presented here to this particular board.

67

6502 APPLICATIONS BOOK

REGISTER BUFFER

STACK POINTER

4K
EXPANSION

64 Byte RAM, 653041 KIM RAM +Applications RAM
64 Byte RAM, 653042

1/0 & Timer, 653041 (KIM 1/0)

170 & Timer, 6530#2 (Applications 1/0)

1C00 Kim
ROM
6530 #1
N "\j Fig. 3-4: KIM-1 Memory Map
(EXPANSION)

22 KB Col D Z KB Row 1
21 KB Col A Y KBColC
20 KB Col E X KB Row?2
19 KBColB W KB Col G
18 KBColF V KB Row 3
17 KBRowO U TTY PTR
16 PBS T TTY KYBD
15 PB7 S TTY PTR RTRN (+)
14 PAO R TTY KYBD RTRN (+)
13 PB4 P AUDIO OUT HI
12 PB3 N +12V
11 PB2 M AUDIO OUT LO
10 PBI1 L AUDIO IN
9 PBO K DECODE ENAB
8 PA7 J K7
7 PA6 H KS
6 PAS F K4
5 PA4 E K3
4 PAIl D K2
3 PA2 C Kl
2 PA3 B KO
1 Vss(GND) A Ve (+5V)

Fig 3-5: KIM Application Connector

(=)
-]

ool el R R SR O B N T NS Y
O = N WH WU J0\OO —

N W A LN 0O

Fig. 3-6: KIM Expansion Connector

Vss (GND)
Vee (+5)

SST OUT
K6
DBO
DBI
DB2
DB3
DB4
DB5
DB6
DB7
RST
NMI
RO
IRQ
g1
RDY
SYNC

Fig. 3.7: SYM

PEWOUMNMI-REZZOURu-HC <E X <N

6502 SYSTEMS

RAM/R/W
(17}
PLL TEST
R/W
R/W
2
ABIS
ABl4
ABI3
ABI2
ABI1
ABI0
AB9
ABS
AB7
AB6
ABS
AB4
AB3
AB2
ABI
ABO

69

6502 APPLICATIONS BOOK

THE SYM-1

The SYM-1 board was introduced by Synertek Systems as an expand-
ed version of the previous board. A photo of the SYM appears on Fig
3-7. Its internal organization is shown on Fig 3-8.

XTAL

Tl BT

g

8

H
CONNECTOR

L

CONNECTOR

KEYPAD

CONNECTOR
AUX PORTS OPTIONAL PORTS
) L] ®)

Fig. 3-8: SYM-1 Internal Organization

The essential differences from the previous board are:

* Itis equipped with a separate 4K by 8 ROM. A larger ROM size al-
lows a more complex monitor to reside on the board.

e Itis equipped with more complex input-output chips and has three
of them instead of two, thereby offering more IO ports and resources.
Because of the extra ports, it also has one more applications connector
than the previous board.

¢ Additional input-output facilities are available such as four input-
output buffers and part of a CRT interface.

Other miscellaneous differences exist between these boards but are
not relevant for the purposes of this book.

The system memory map is shown on Fig 3-9, and a more detailed
RAM memory map is shown on Fig 3-10. The details of the three con-
nectors are shown respectively on Fig 3-11, 3-12, and 3-13.

70

mz
;

ON BOARD RAM
{1K TO 4K}

8000 ON BOARD ROM
MONITOR (4K)

170 DEVICES
6522 #1, 6522 #2, 6532 RAM,
6532170, 6522 #3

€000, OPTIONAL ROM
8K BASIC
E000 OPTIONAL ROM

ASSEMBLER/EDITOR

INTERRUPT VECTORS (6532)

Fig. 3-9: System Memory Map

0000 ON-BOARD RAM
B
O1FF STACK
ON-BOARD RAM
o2FF | _ DT
03FF ON-BOARD RAM
0400
OPTIONAL
ON-BOARD
RAM
O7FF
0800
OPTIONAL
ON-BOARD
RAM
OBFF
0C00
OPTIONAL
ON-BOARD
RAM
OFFF

Fig. 3-10: RAM Memory Map

feact o
’ PAGE 1

! PAGE 2
, PAGE 3

6502 SYSTEMS

g) |

S —

6502 APPLICATIONS BOOK

1 SYNC A ABO
2 RDY B ABI
3) C AB2
4 IRQ D AB3
5 RO E AB4
6 NMI F ABS
7 RES H AB6
8 DB7 J AB7
9 DB6 K ABS8
10 DBS L AB9
11 DB4 M ABI10
12 DB3 N ABI1
13 DB2 P ABI12
14 DBI R AB13
15 DBO0 S AB14
16 18 T ABI5
17 DBOUT (1) u
18 POR \% R/W
19 Unused w R/W
20 Unused X AUD TEST
21 +5V Y [73
22 GND Z RAM-R/W
Fig. 3-11: Expansion Connector (E)
1 GND A +5V
2 APA3 B 00
3 APA2 C 04
4 APALI D- 08
5 APA4 E 0C
6 APAS F 10
7 APA6 H 14
8 APA7 J IC
9 APBO K 18
10 APBI1 L Audio In
Fig. 3-12: Application Connector (A)
72

11
12
13
14
15
16
17
18
19
10
21
22

APB2
APB3
APB4
APAO
APB7
APBS
KBROW 0
KB COL F
KB COL B
KB COL E
KB COL A
KB COL D

(1): Jumper Option

O 00 3O\ WL ph W —

10
11
12
13
14
15
16
17
18
19
20
21
22

N~ XE<<odTvmvwzZZ

6502 SYSTEMS

Audio Out (LO)

RCN-1 (1)

Audio Out (HI)

TTY KB RTN (+)

TTY PTR (+)

TTY KB RTN (-)

TTY PTR (-)

KB ROW 3
KB COL G
KB ROW 2
KB COL C
KB ROW 1

Fig. 3-12: Application Connector (A) - (continued)

GND
— VN
2PA 1
2CA2
2CB2
2PB7
2PBS
2PB3
2PB1
2PA7
2PAS
2PA3
RES
3CB1
3PB2
3PBO
3PA6
3PA3
3PA4
3PAS
3 PB5 (B)
3 PB7(B)

(B): Buffered
Fig. 3-13: Auxiliary Application Connector (AA)

N~ XE<cOCHIwZIrtRaITmmMmOO®»

+5V
+Ve
2PA2
2PAO
2CA1l
2CB2
2PB6
2PB4
2PB2
2PBO
2PA 6
2PA4
3CA 1
SCOPE
3PB3
3PB1
3PA7
3PAO
3PA I
3PA2
3 PB4 (B)
3 PB6(B)

73

ABOO ORS (P8O TO PB7) 1/0 data, port A
ABO! ORA (PAQ TO PA7) ied for conrol-offecn hondshoke
02 bor 8 doto direction
registers
ABGY OOR A
AbO4 nLUnct counter-low
AbOS TICH counter-high
timer |
Ab0s L Jateh-low ‘
ApO7 TIiLH laich-high |
|
lotch-low |
Ax00 TZUT2CL caunter-low i
timer 2
AbO? T2C-H counler-low
ABOA SR shift register
Ab08 ACR ouliliory
} tunction
ABOC FCR (CA1,CA2,CB2.CB1) peripheral cantrol
ALOD L flogs } N
ALOE ® enable control
ABOF output regisier A
ORA {does nol atfect handshake)
b=0for VIAFI,
b= g for VIA 2,
b=Clor VIA 3,

Fig. 3-14: Memory Map for the 6522's

A4IF TIMER + 1024
A41E TIMER + 64T
A41D TIMER + 8T
A41C TIMER 1T

(W) EDGE DETECT
Ad07 (R)INT FLAGS
Ad06 | (W) EDGE DETECT
(R) TIMER
Ad0s | (W)EDGE DETECT
(R) INT FLAGS
(W) EDGE DETECT
A404 (R) TIMER
A403 DDRB
A402 ORB
A401 DDRA
A400 ORA

Fig. 3-15: Memory Map for the 6332

74

6502 SYSTEMS

The memory map for the 6522’s is shown on Fig 3-14, while the mem-
ory map for the 6532 is shown on Fig 3-15.

Since some implementation details will be used (or worked around) in
some of the application programs, two relevant details are presented
below.

Fig 3-16 shows the four buffered outputs available on PB4 through
PB7 of 6522 #3. Fig 3-17 shows the connection to the LED’s and the
keyboard.

6522
#3

AA CONNECTOR

pB5 p—————{ BUFFER_}——o0 21
P |——— (B }—o 2
O 22

PB7 BUFFER

Fig. 3-16: The Four Buffered Outputs

THE AIM 65

The AIM 65 is shown on Fig 3-18. This unit, developed by Rockwell
International, consists of two boards. One of them is the microcompu-
ter board, equipped with a 20-column dot-matrix printer, and a 20-char-
acter alphanumeric display. The second board is a full ASCII keyboard,
which is attached directly to the other one. The printer operates at up to
120 lines per minute, using a five-by-seven dot matrix to print the com-
plete ASCII 64-character set (upper case only). In its minimal version,
the AIM 65 is equipped with a comprehensive monitor (8K) 1K of RAM,
two 6522’s, one 6532, plus the usual interfaces (teletype, two audio cas-
sette interfaces, and naturally the keyboard interface). Several addi-
tional chips can easily be placed on the board. Further, the user appli-

75

6502 APPLICATIONS BOOK

o >
<
o
?
4
>
0 <

ERERIBEINE RS

L

EE oE mE EEiEnin
BEEETEERING RS N)

® c SR e

L] R
d J J wd

PA7 W] F—A[

S | 1
=

2
mrhrhrhrhrhrmh
It
mhrhrhrmaraoh
COCo ottt

LiC

3
o N o >

BND AN -

f

Fig. 3-17: Keyboard and LED Connection

Fig 3-18 : AIM 65 is a Board with Mini-Printer
and Full Keyboard

76

6502 SYSTEMS

cations connector is identical to those described for the previous
boards. A user developing applications for this specific board will there-
fore only have to modify the programs presented here to fit the memory
assignments of the AIM 65 PIO’s.

OTHER BOARDS

Other boards are manufactured by various manufacturers such as
Ohio Scientific.

Overall, all 6502 boards fit the description of our “‘standard system.”’
As long as they use the same 1/0 chips (and nearly all do, as these chips
offer strong advantages), there should be virtually no modification
needed to the programs presented in this book, except for the PIO ad-
dresses, and the possible unavailability of specific 1/0 lines.

The SYM A and E connectors are equivalent to the KIM and AIM
edge connectors. The vertical board, on the left of the power supply of
Fig 3-19 below, is a 16K memory expansion board connected through the
E connector.

At the foreground, two experiments are connected through the A con-
nector: a hexadecimal keyboard, and a microprinter. They are described
in chapter 6.

,”39.

Fig 3-19: KIM/SYM/AIM Connector Compatibility

77

CHAPTER 4

BASIC TECHNIQUES

INTRODUCTION

In this chapter, we will connect a 6502 board to basic input-output
devices. We will connect it to simple output devices such as light-emit-
ting-diodes (LED’s), relays, and a loudspeaker. On input, we will con-
nect it to a set of switches. Then, we will use these resources to start
developing simple application programs, such as a Morse generator, a
time-of-day clock, a simple home control program, and even an auto-
matic telephone dialer. We will then present direct applications of
these techniques: a siren, a pulse meter, a music program, a mathe-
matical game. Then, in the following chapter we will develop more
complex programs using these basic input-output devices and more
complex ones.

Few components are needed to actually realize the applications
board for this chapter. A picture of the board is shown in Fig 4-0.
All the components can be purchased at low cost from any electronics
store. The reader is strongly encouraged to acquire these few electronic
components and to wire them as indicated in this chapter, in order to
effectively apply the programs that will be described. Naturally, this
will require access to a 6502-based board.

In order to present real programs, the hardware configuration of
the SYM board is used in the first part, and the KIM for the second
one. However, all of these programs should run with minimal modifi-
cations on any other 6502 board (see Chapter 2).

78

BASIC TECHNIQUES

The programs to be developed in this chapter are simple, but they as-
sume a basic understanding of the 6502 instructions, as provided by
the preceding book in the series, reference C202 (‘‘Programming the
6502°’).

The list of components required for the applications programs in
this chapter is:

perforated board (1)

switches 4

LED driver (1)

LED’s (1 or more)

12 V relays 3)

speaker (1) (high impedance preferred)
variable resistor (1)

resistors

male 120 V AC plug (1)
female 120 AC plugs 2)

The hardware connection of the various components on the board
will be described for each application.

1t is not indispensable to assemble an applications board to understand
this chapter. However, many exercises will be suggested in this chapter
and the following ones. Although they can be developed on paper, true
programming expertise is best acquired through actual experimenta-
tion. The reader is therefore again encouraged, either before or after
reading this book, to start programming on real hardware.

The goal of this chapter is to teach the basic hardware and software
interfacing techniques which are required to connect any ‘‘standard”’
6502 board to simple external devices. At the end of this chapter, you
should know how to use the main resources of the input-output chips,
and how to write programs which will sense and control input-output
devices. We will build upon this knowledge in the next chapter and
develop more complex industrial and home applications.

79

6502 APPLICATIONS BOOK

Fig. 4-0: Complete System with Power Supply, Micro-
computer Board, Tape Recorder and Applications Board

80

BASIC TECHNIQUES

SECTION 1: THE TECHNIQUES
RELAYS

A relay is used to control an external high voltage or high current
circuit: the control circuit is isolated from the external one through the
relay. A relay requires DC current. The current flows through a coil,
producing a magnetic field. This field will provoke in turn the closure
of a movable contact. The external circuit may be alternating current
(AQ) or direct current (DC). In order to control external devices using
a significant current of voltage, such as appliances, we will use relays.

The SYM board has a special provision for high current or high
voltage devices. Four buffered output ports are available on the
board. They are respectively connected to bits 4, 5, 6, and 7 of the in-
put-output register B of the PIO (6522-U29) (see Fig 4-1). We will,
therfore, directly use these special outputs which can control relays.
On any other board which has only PIO outputs (such as KIM) a tran-
sistor or buffer must be used. The use of a 7404 Hex Inverter is
shown on Fig 4-2 to control three external relays from two output lines
of a 6530.

6522
#3

AA CONNECTOR

PBS 2
pes |——(BUFER }—o 2
P87 f————— BUFFER |—o0 22

Fig. 4-1:1/0O Buffers

81

6502 APPLICATIONS BOOK

RILAY)
- S e eyt &
7404 i

1 NI N]

GNN ’ " VELAYD

L

RILAY 2

> a & =~

Fig. 4-2: 6330 Relay Interface

The Hardware Interface

The connection diagram for a single relay appears on Fig 4-3. This
relay may be, for example, a 12 volt relay with a 50 to 500 ohms coil.
The contact can be SPST (Single pole, single throw = one contact) or
SPDT (Single pole, double throw = two contacts) at 10-15 amps. The
current rating of the relay contacts should be sufficient to handle the
external device connected to it. Most house appliances do not draw
more than 10 to 15 amps so that the above specifications should be
sufficient for home applications.

OUTPUT ———e—1 é
%u N EXTERNAL
DEVICE
+12v

Fig. 4-3: Connecting a Simple Relay

Note on the illustration that a clipping diode is connected in parallel
to the coil. This is an important precaution with any relay to avoid
damage to the P10 buffer or amplifier. A reverse voltage spike occurs
when the relay is turned off. Any diode which will handle the voltage
may be used. For example, an IN914 should be sufficient for our pur-
poses.

82

BASIC TECHNIQUES

e DI INES

RESISTOR

Fig. 4-4: Precautions on Device Side

On the device side of the relay, two precautions can be taken: a
capacitor may be placed in parallel to the output to absorb the surge
due to contact closure (this insures a longer life for the relay contacts);
also, if a significant current may be drawn, a resistor should be placed
in series (see Fig 4-4).

A double-pole relay can be connected in exactly the same manner,
and the connection diagram appears in Fig 4-5. Such a relay is capa-
ble of switching two independent, separate circuits simultaneously.

1R

&
a

(3 CONTACT DUAL OUTPUT)

Fig. 4-5: Connecting a Double Pole Relay

Let us now consider a practical application. We will connect two re-
lays, R1 and R2 respectively, to bits 6 and 7 of port B of the SYM PIO.
These two relays will be used to control AC devices. In the simplest
case, we will assume that these AC devices are two independent lamps.
This will allow us to test the program easily, by merely verifying
whether the lamps are turned on and off correctly. Naturally, instead
of a lamp, the device could be any household device or appliance
which does not overload the relay. The interconnect diagram appears
in Fig 4-6.

83

6502 APPLICATIONS BOOK

RELAY R1
AA-22 ’
(PB7) ot
EXTERNAL
CIRCUIT
o——
+12v /
RELAY R2
AA-Z oO——t—0
(PBe) =2
[T © EXTERNAL
O—4———0 CIRCUITS
+12v o =% m— 1

Fig. 4-6: Connecting Two Relays to the PIO

Let us inspect Figs 3-11, 3-12 and 3-13 showing the connection points
for the three SYM connectors: we see that the four buffered oputputs,
called PB4, PBS, PB6 and PB7, are available repectively on pins Y,
21, Z and 22. The connection points marked PBS through PB7 on our
illustration, therefore, simply need to be connected by a wire to the
appropriate pin of the ‘‘auxiliary application connector.”’

CONNECT
TO 120V AC | RELAY 2
OUTLET
o]

CTRL2

G RELAY 1

(ANY OTHER RELAY)

3 V
']

[[
[[
1l o

¥

120v 120V
FEMALE FEMALE
UG UG

Fig. 4-7: External Circuit for the Relays

84

BASIC TECHNIQUES

On the external circuit side of the relay, one AC plug is used which
will be connected into a wall outlet and supply power to the two out-
lets which will be controlled by the microcomputer. These two female
outlets are connected to the relays as indicated on Fig 4-7. They are
powered in parallel from the AC plug. However, either one of them
can be turned on independently under microcomputer control. Let us
now implement the software control for these relays.

AC00 IOR-B
ACO05 TIC-H
ACO06 Ti-L
AC07 TIL-H
ACOB ACR
ACOF

Fig 4-8: Memory Map for 65322 #3 (Third 6522 of SYM)

The Software Interface

Each of the two circuits connected to relays R1 and R2 will be
turned on whenever the corresponding relay is actuated. The relay will
be turned on by setting the corresponding control bit to 1. By inspect-
ing Fig 4-8, it can be seen that Port B for the 6522 #3 is located at
Memory Address AC00. The contents of memory location AC00 are
illustrated on Fig 4-9. Let us now turn the relays on and off.

85

6502 APPLICATIONS BOOK

MEMORY ADDRESS
acoo | 71 el s| 4 3] 2] o

—> PB4 (UNUSED)
PB5 (RELAY R3)
PB6 (RELAY R2)
PE7 (RELAY R1)

Yvyy

Fig. 4-9: Port B of 6522 #3

First, we must configure Port B as an output port. To simplify, we
will specify that bits O through 7 be outputs, even though we use here
only bits 5, 6, and 7. The convention could be changed in a different
application. It will be remembered from Chapter 2 that, in order to
specify the direction in which input-output lines will be used, the
corresponding bit position of the Data Direction Register must be
loaded with a zero or a one. A one in the Data Direction Register will
specify an output. A zero will specify an input. Loading all ones in the
Data Direction Register guarantees that all bits will be used as out-

puts.

r—-
o T o
Vo u
[]]
w
CTRL
o i1 o— CMN2
1 %‘
1"
[X]
tH
H
21 RELAY |
Y RELAY 2
Z RELAY3

Fig. 4-10: Detail of Relay Connection
on the Applications Board
As a remark, when programming, it is a good policy to always make
things as simple and consistent as possible. Since we assume here that
(for the time being) no other devices are connected to the other lines of
Port B, it is safer to configure all lines as either inputs or outputs.

86

BASIC TECHNIQUES

Specifying all bits as outputs will be accomplished by the following
two instructions: .

LDA #$FF LOAD A IMMEDIATE WITH 11111111
STA $AC02 STORE A INTO ADDRESS AC02
HEXADECIMAL

It can be verified on Fig 4-8 that AC02 is the address of the Data Di-
rection Register for Port B of the 6522 device #3. ““FF’’ hexadecimal is
equivalent to ““11111111”’ binary. Let us now turn on the relay con-
nected to PB6.

LDA $AC00 READ CURRENT VALUE OF PB
ORA #$40 FORCE PB6 TO 1
STA SAC00 OUTPUT

The first instruction is used to read the current value of Port B. Be-
cause several devices or relays may be presently connected to Port B,
we do not want to simply write a pattern such as ‘01000000’ into
Port B; this would turn on the relay connected to PB6, but would also
turn off all the other relays! Therefore, we want to read the present
status of PB and only change a single bit, PB6. The change is accom-
plished with the logical OR instruction, the second in our program
(ORA). The logical OR respects the integrity of all the bits, and forces
to ““1”’ the specified bit location. If we wanted to turn on PB7 instead
of PB6, the pattern ‘80’ (hexadecimal) would be used, instead of
‘“40.”’ Finally, the resulting bit pattern is stored at address ACO00,
which corresponds to PB; the relay connected to PB6 is then turned on.

Exercise 4-1: Write the three-instruction program which will turn on
the relays connected to PB6 and PB7 simultaneously.

Let us now turn off the relay connected to PB6:
LDA $AC00 READ THE CURRENT STATUS OF PB
AND #3BF - SET BIT 6 TO 0
STA $ACO00 STORE RESULTING VALUE IN PB
The logical-AND instruction is used to force a ‘‘0”’ at the specified bit

location. All other bit locations are not affected. (‘‘BF’’ hexadecimal
is “10111111”’ in binary.)

87

R R R R

6502 APPLICATIONS BOOK

Note: The AND instruction is traditionally used to zero a specified
bit location. However, an identical result may be obtained using the
EOR instruction. The program remains the same except that the AND
instruction becomes:

EOR #8$40

The advantage is that the pattern used to turn off is the same as the
one used to turn on. This eliminates a possible mistake. The reader
should naturally verify that this is a legitimate way to force a zero.
This is because the exclusive OR of ““1’’ and ¢“1”’ is ¢‘0.”’ If bit 6 was
a‘“l1,” the ‘40" pattern will therefore force it to a zero. All other bits -
will be unaffected.

Verification

Let us verify now that these simple instructions are indeed sufficient
to turn our relays on and off. We will connect two lamps, or two de-
vices, to the two relays and type in these instructions at the keyboard,
then verify that the lamps are turned on or off. Since the keyboard re-
quires that input be in hexadecimal form, here is the hexadecimal
equivalent of the two above programs:

To turn the relay on:

AD 00 AC

09 PATTERN (PATTERN stands for an 8 bit pattern)
8D 00 AC

The program to turn the relay off is:
AD 00 AC

49 PATTERN

8D 00 AC

If you have a board you should now key in these two programs and
verify their correct operation.

SWITCHES

Two main types of switches may be connected: a push-button
(SPST switch) or a two-position switch (SPDT). The connection of an
SPST is illustrated in Fig 4-11. With the connection indicated, the
switch is in the logical state ‘‘1°’ when the contact is open and in state
«“0** when the contact is closed. If the opposite should be desirable,
the polarities would simply be reversed on the switch contact.

BASIC TECHNIQUES

The connection of an SPDT switch (a two position switch) is illus-
trated in Fig 4-12. The connection is straightforward. One of the con-
tact positions will be logical state ‘‘1,”” while the other one will be logi-
cal state “‘0.”

+5v

% 10K
INPUT /
PORT ¢ T

GND

Fig. 4-11: Connecting an SPST

+5v

$

GND

Fig. 4-12: Connecting an SPDT

Connecting Four Switches

We will use lines 1, 2, 3, and 4 of Port B of the 6522, as four input
lines used to sense the status of the external switches. The actual con-
nection appears on Fig 4-13. Let us examine the program.

+5V—0
PB)
(A—10) o <)Iswivch S1
GND +5v—0
(APB?I) o ls itch 52
_ ‘_O° w
- +5V ——0 GND
(A—12) ORwirchs3
PB4 GND +v—o0
(A—13) © olswiich s4

GND

Fig. 4-13: Connecting Four SPDT Switches to the SYM

89

6502 APPLICATIONS BOOK

GRNO =

H
-+
H

Fig. 4-14: An SPDT Switch

MAIN

| | |
| H] H | H I
R e

' A 13 12 " 10

Fig. 4-15: Connection Detail for Four SPDT’s

The Software Interface

We first need to configure PB1, PB2, PB3, and PB4 as input lines
on Port B. This is accomplished by loading the appropriate pattern in
address ‘°A002,”’ the data direction register for Port B.

LDA #$EO SET BITS 01234 AS INPUTS
STA $A002

The pattern ‘“E0’’ is used to configure lines 0, 1, 2, 3, 4 as inputs
and lines 5, 6, 7 as outputs (they may be connected to external relays).
““E0’’ hexadecimal is ““11100000”’ in binary. Each ‘‘0”’ sets an input.
Each ¢‘1”’ sets an output. ‘‘E1’’ could also be used.

Let us now read the value of the switch and branch to a specified
memory location determined by this value.

LDA #SWITCHPTR “02” FOR SI, ‘04’ FOR S2, ‘08"’
FOR 83, ‘10’ FOR $4

BIT $A000 A000 IS ADDRESS

BEQ ANYADDRESS WILL BRANCH TO SPECIFIED
ADDRESS IF SWITCH WAS ZERO
(OFF)

90

BASIC TECHNIQUES

Alternatively, if we wish to branch to a specified memory location if
the switch is ‘‘1”’ (on), we would substitute the instruction BNE in-
stead of the BEQ in the last line of the program.

Testing the Program on the Board
The hexadecimal code for the above program is:

A9 SWITCHPTR
2C 00 AO
FO ANYADDRESS or ‘“‘DO’’ ANYADDRESS

SPEAKER

An external speaker may be connected directly to a pin of one of the
PIO devices. Pin 7 is often more powerful and is generally used. On
the 6522 device, the polarity of the PB7 output signal can be controlled
by one of the internal interval timers. The timer will be used to gener-
ate a tone of given frequency. The preferred position for connecting
the speaker will therefore be PB7. The connection diagram appears

on Fig 4-16.
-
PB7 _—
(A—15) ~
~

+5v

Fig. 4-16: Connecting the Speaker
When the buffered output of the SYM is used (6522 #3) a resistor
should be placed in series with the speaker to limit the output current.

Instead of connecting the speaker directly to a PIO output pin, the
circuit of Fig 4-17 may be used to provide a louder sound.

pa—
1

Fig. 4-17: Obtaining a Louder Output

ouTPUT
AN © A

+5v

Warning: a variable resistor is shown on Fig 4-17 for convenience.
However, if it is set to zero, it will probably burn, and destroy the cor-
responding output transistor (this applies also to SYM).

91

e e

6502 APPLICATIONS BOOK

The Software Interface

A sound can be generated by the speaker by merely turning it on
and off at the desired frequency. The sound will not be as ‘‘clean
sounding’’ as one from a musical instrument since it will have been
generated by a square wave. However, it will be sufficient for our
needs and can be clearly identified by its frequency. We will now build
a practical application

A MORSE GENERATOR

We will develop here a program capable of generating a Morse code
corresponding to any letter of the alphabet. Ths program will activate
a loudspeaker, so that we can verify that the proper Morse code is be-
ing generated. In addition, it will have the capability of turning on or
off an external device so that this morse code could for example be
transmitted over a communications link.

2001 W
o

Fig. 4-18: Memory Allocation for the Morse Program

The conventions used by this program are the following:

The program itself will be stored in Page 3 of the RAM, i.e., start-
ing at location 300. This is illustrated on Fig 4-18. This program con-
tains a Morse equivalence table which will serve to generate the proper
bit pattern for any given ASCII character. It will be shown below how
this table is generated. It is assumed that the first character to be con-
verted to Morse is contained in the accumulator at the time the pro-
gram is started.

92

BASIC TECHNIQUES

Further, the speed of the transmission will be adjustable through
the variable SPEED, stored in Page 0 at memory location FO (See Fig
4-18). Each time unit (such as the duration of a dot in Morse code) is
expressed internally in milliseconds. Putting the value 100 into vari-
able ‘‘SPEED’’ will result in the duration being 1/10th of a second.

Before the program is started, it is assumed that CHAR and SPEED
‘have valid contents, and that the accumulator contains the first
character to be transmitted. An external subroutine could call this
subroutine repeatedly in order to transmit a string of characters. It is the
responsibility of this subroutine to deposit a character in the
accumulator every time it calls the Morse transmitter.

Let us now examine the algorithm used to transmit the Morse code.

{

GET ASCH CHARACTER

IN ACCUMULATOR
YES
SPACE?
SPACE
NO DELAY
VALID ASCI1?
[2C.5A) HEX ExiT 7 PERIODS

CONVERT TO
MORSE CODE

— 3% |

SHIFT OUT NEXT
MORSE BIT

!

GENERATE SHORT
OR LONG TONE

]

DELAY 1 PERIOD

i
e >

'yss

DELAY 2 PERIODS
=SPACE BITS

t f

DELAY BETWEEN
SUCCESSIVE CHARACTERS

Exit Fig. 4-19: Morse Transmission Flow Chart

93

B R ———

6502 APPLICATIONS BOOK

This algorithm is illustrated on the flow-chart of Fig 4-19. The pro-
gram first checks for a space character. If found, it will generate no
signal for seven time periods, plus the delay between successive char-
acters.

It then verifies that the ASCII character contained in the accu-
mulator has a valid hexadecimal code. Legal codes must be between
“2C”’ and “‘5A”’ inclusive, in hexadecimal (assuming a 7-bit ASCII
code). Otherwise, an error exit occurs. After validation of character
code, this ASCII code must be converted to its morse equivalent.
The technique will be explained later.

The binary encoding of the morse code will consist of a ““START”’
bit (a ‘1), followed by a ‘0"’ for a ¢.”’, and a “1’’ for a ““—"",
All unused bits within the 8-bit word, to the left of the start bit,
will be set to ““0.>” This conversion will be performed by the program
by a table lookup described later. Let us now assume that the binary
version of the morse code has been obtained. The sequence of tones
must be generated. The contents of the accumulator will be shifted out
left until the START is found. Following the detection of the START
bit, every ““0”’ will be interpreted as a ‘‘-”> and every ‘“1”’ will be inter-
preted as a ‘“‘—"’, up to the eighth bit. For every ‘‘0”’ shifted out, a
short tone will be generated. For every ““1’’ shifted out, a long tone will
be generated. The tone generation will also be described later in detail.

After generating the tone corresponding to a bit, a 1-period waiting
time is inserted, and the next bit of the Morse code is checked until the
last one (the eighth) has been found.

Following the transmission of the squence of tones for a Morse
character, a two period delay is generated. This corresponds to “‘space”’
bits which are normally inserted at the end of every transmission for a
character. A one-period delay is then generated which separates suc-

cessive characters.
IN A BINARY CODE:
BINCO0E = 00000001~

GET NEXT SIGNAL

OF MORSE CODE
i
@ Yo pone
NO

YES

NO @
{DASH) ‘ (DOT)
SHIFT BINCODE LEFT SHIFT BINCODE LEFT
ENTER A 1" ON RIGHT ENTER A "0 ON RIGHT

Fig. 4-20: Converting Morse to Binary

94

BASIC TECHNIQUES

The sequence is clearly illustrated on the flow-chart of Fig 4-20 and
should be verified by the reader. Let us now examine in detail the spe-
cific problems which we have not yet resolved.

Converting ASCII to Binary Morse

We want to establish here a correspondance table between the ASCII
character and the binary representation of its Morse code. Let us illus-
trate this in an example.

The character ““‘B’’ has a Morse codeof “‘— ... >,

Every ““ -’ will be encoded by a “‘1,”” and every ‘-’ by a “‘0’’. The
binary equivalent of ¢“— - . .”’ is, therefore, ‘“1000°’.

In addition, by convention, we will add a START bit (a ‘1°’) to the
left of the code we have just generated. The resulting code at this point
is: ““11000.”’ Finally, every binary Morse code will be contained in an
eight-bit word. The remaining bits to the left of the START bit will now
be set to zero. Our resulting eight-bit code is therefore: ““00011000.°’
In hexadecimal, this is <“18°.

The hexadecimal representation of the binary morse encoding for B
is: <“18”,

As an example, the table below shows the hexadecimal equivalent
of A, B, C, D. A complete equivalence table for all legal morse characters
appears on Fig 4-22. The algorithm corresponding to the technique
just described is illustrated by the flow-chart of Fig 4-23.

Letter ASCII Morse binary hexadecimal
A 41 . — 00000101 05
B 42 —_— 00011000 18
C 43 ——. 00011010 1A
D 44 — 00001100 oC

Fig. 4-21: Converting ASCIl to Morse

95

R R

6502 APPLICATIONS BOOK

We now have established an equivalence table for all the ASCII
characters. This table will be called the ‘“Morse table’’ and will be
stored at the end of the program (see Fig 4-18). Whenever we re-
quire the Morse code equivalent of a specific character, we will access
the proper entry table and find there the binary code. This will be de-
.scribed later when we discuss the actual program.

Hex
Character Morse Code ASCl Table Value
...... 2C 73
— —_— e — 2D 31
[[— 2E 55
/ —_—e— 2F 32
g | ————- k1] 3F
T] === 31 2F
2l === 32 27
3 cee— — 33 23
4 e — 34 21
s 1 L. 35 20
6 —_—e 36 k1"
7 —_— - 37 38
8 | @ ———-.. 38 3C
9 | ——=—=-—. 39 3E
: User definable 3A 21
: “ " 3B 21
< ‘" ” 3C a1
= . . 3D a1
> “ ” 3E z1
2) ee=— 3F 4C
@ User definable 42 21
A — 41 a5
B — 42 18
C —_— 43 1A
D —_ 4 2C
E 45 @2
F — 46 12
G —_ 47 SE
H 48 12
1 49 24
J _—— 4A 17
K —_— 4B 2D
L - 4C 14
M _—— 4D a7
N — 4E 26
(o] _——— 4F @F
P - — 50 16
Q —_—— 51 1D
R —_ 52 A
S 53 28
T — 54 23
U — s 29
v - 56 11
w —_—— 57 2B
X — — 58 19
Y —— - 59 1B
z —— SA 1C

Fig. 4-22: Morse Equivalence Table

96

EXAMINE RIGHT SYMBOL
OF MORSE CODE

NEXTBI =1

BASIC TECHNIQUES

NEXTBIT=0

YES

—

SHIFT NEXT BIT RIGHT
INTO RESULT

!

EXAMINE NEXT MORSE
SYMBOL

ANY LEFT?

JNO

SHIFTIN A 1"

1

SHIFTIN QS UP TO 8 BITS

!

ourt

r___._l

Fig. 4-23: Flow Chart for Generating Hexidecimal

Morse Code

Generating a Tone with the Timer

Our next problem will be to generate a tone of set duration and fre-
quency. We will use here a timer.

-——

T/2

<—/—N=1/T
~

Fig. 4-24: Square Wave Generates Tone in Speaker

97

R
6502 APPLICATIONS BOOK

The tone will be generated at the speaker by sending it a square
wave of the required frequency. This is illustrated by Fig 4-24. The
timer can be used to generate this waveform automatically. In order to
obtain this result, we will set the appropriate bits in the control register
ACR (see Fig 4-25), then simply control the length of time during
which this tone or wave form is generated. The actual timing diagram
appears in Fig 4-26. §2 at the top of the illustration is Phase 2 of the
system clock. In most standard 6502 systems the clock has a 1 micro-
second period. The pulse generated by this timer appears on the PB7
output pin. It will last N + 1.5 subcycles, where N is the value depos-
ited in the counter. This is because the counter of the timer decrements
from N down to 0, and inverses the output port with the next high-to-
low transition of the clock. This is illustrated on Fig 4-26. An interrupt
(IRQ) is also generated at the same time, but will not be used here.

7 4, 6 5 4 3, 2 1 0
T T LI
T2 PB PA
1l CON- SHIFT REGISTER | |aTCH |tATCH
CONTROL | TROL CONTROL ENABLE [ENABLE

Fig. 4-25: 6522 Auxiliary Register

~ N+15

N I 0) 5
¢ J_L/—Lﬂ'\.ﬂﬂS‘LJ’L
WRITE . .
TICH
Pw—_—_T} R’L
our

] N+ 1 S eycles N + Zcycles———of

out [

Fig. 4-26: Timing Diagram for Tone Generation

98

BASIC TECHNIQUES

In order to use the timer, we must, therefore, deposit an appropri-
ate value N in its counter. However, as soon as the contents of the
counter are written, the counter starts running. Since the counter is a
16-bit register, we cannot load it in a single data transfer from the
microprocessor. It must be latched. The timer is, therefore, equipped
with an internal 16-bit latch called T1L. The low part of the latch is
called T1L-L, while the high part of the latch is called TIL-H. The
value N will be deposited in TIL-L and in TIL-H. At this point the
16-bit contents are specified but nothing happens yet. In order to start
the timer, we will give a special. command which will transfer the con-
tents of the latch into the actual counter. This is the ““write TIC-H”
command which appears on the fourth line of Fig 4-27:

LDA #VALUE LO

STA $A006 LOAD LOW LATCH

LDA #VALUE HI

STA $A007 LOAD HI LATCH

STA $A005 TRANSFER LATCH=START

Fig 4-27: Program to use Timer 1

{

SET ACR6 AND
ACR7TO"1”"
= SET FREE RUNINING MODE

{

STORE VALUE
IN LATCH

K|

LOAD IT
INTO COUNTER
=START TONE

f

PLAY TONE FOR
DURATION “'DELAY""

|

TURN OFF ACR7
= STOP TONE

f

out

Fig 4-28: Generate Tone of Set Duration with Timer 1

929

6502 APPLICATIONS BOOK

The sequence of events to use the timer should now be clear. It is de-
scribed on the flow chart of Fig 4-28. First, we will set the appropriate
bits of the control register ACR to the required values. The timer
operates in ‘‘free-running’’ mode where it generates a square output
on PB7. This is obtained by setting bits 6 and 7 of ACR to “‘0”” and
““1” (see Fig 4-29 and 4-30). Next, the appropriate value N will be
stored in the latch. Then, it will be transferred into the counter itself to
start it. This will be the starting point for the tone being generated.
Every time that the counter decrements to zero, it will reload the value
stored in its latch register automatically. The timer will therefore from
now on automatically generate a square wave with a half-period of
approximately N+2. (This is approximate because the low part of the
pulse hasan N + 1.5 duration whereas the upper part of it hasan N +
2 duration).

ACR7 ACR 6 MODE

OUTPUT FREE RUN
ENABLE ENABLE

0 0 Generate time out INT when Tl loaded
(ONE-SHOT) PB7 disabled.

0 1 Generate continuous INT
(FREE RUN) PB7 disabled.

1 0 Generate INT and output pulse on PB7 everytime
{ONE-SHOT) T1 is loaded.

=one-shot and programmable width pulse.

1 1 Generate continuous INT and square wave
(FREE RUN) output on PB7.

Fig. 4-29: 6522 ACR Selects Timer Modes

L]
|

0: ONE-SHOT MODE
1: FREE RUNNING MODE

0: OUTPUT TO PB7 DISABLED
1: OUTPUT TO PB7 ENABLED

Fig. 4-30: Bits 6 and 7 of ACR

100

BASIC TECHNIQUES

LINE ¢ tCC LIND

9902 0500 STHIS 1S A SUFROUTINE MWHICH ACCEFTS ASCIT CHARACTERS

0007 0600 PIN THE RANGE 2CH Y0 SAH (FLUS 20H FOR SFACE' AND FLAYS
0004 0000 STHEIR MORSE COLE EBUIVILENT ON A SFEANER WOOIID UR T0

0005 0000 PFE7. 6522-U2S. IT ALSO TUSNS ON AND OFF FEO. 4522-

G004 0000 5U2Ss AND WITH A SUITAELE DRIVER. THIS RIT Cin REV &

0007 0000 STRANSMITTER. A MAIN FROGRAM WILL CALL THIS SUKFOUTINE
0008 0n00 FUITH THE ASCII MHARACTER TN THE ACCUMULATGE.

0009 €000 JEXAMFLES OF THE MAIN FROGRAM WOULD BE ONE THAT

0010 0000 SGETS INFUT FROM A'TERMINAL AND SENDS WORSE CODE OUT

Q011 0000 iTHROUGH THIS FROGRAM, OF A PROGRAM WHICH KANDOMTZES

0012 0000 i A SERIES A CHARACTERS AND' SENDS THEm FOR COLE FRACTICE.
0013 6000 iTHE FORMAT FOR THE MORSE CODE CAHRACTERS IN TeE TABKLE

0014 0000 31§ 1 MOVING FEC® LEFT TO RIGHT , THE FIRST HIGH .
0015 0000 SEIT (A ONE) IS THE START BIT. ANL AFTER THIS «

0014 0000 {EACH ONE IS A TASH, AND EACH ZERO IS A DOT.

0017 0000 SPEED=3F0

0018 0000 COUNT=3F 1

0019 0000 CHAR=$F2

0020 0000 .=$300

0021 0300: C? 20 MORSE CHF #320 $1F A SFACE, DO SPACE ROUTINE

0022 0302: FO 47 KEQD SFACE

0023 0304 C9 2C ChF #32C JSEE IF ASCLL COLE

0024 0308: 90 4E BCC EXIT i IS LESS THEN 2CH» AND RETURN IF SO.
0025 0308: C? SB CnF 35K 5SEE IF ASCIT1 CODE IS OVER

0026 030A: RO 4A BCS EXIT : “aH: AND REILRN IF SO

0027 030C: AA TAX JFUT CODE TN INDEX REGISTER

0028 030D: BL 45 03 LDA TAKLE-$2C,X ;GET MORSE CHARACTER

0029 0310: A0 08 LDY 938 FNUMEER OF EITS 1D BE ROIATED FROM ACCUMULATOR
0030 0312: 84 F1 STY COUNT

0031 0314: 0A STARTB ASL A

0032 031Si Cé F1 DEC COUNT

0033 0317: 90 FB BCC STARTE SSHIFT A UNTIL START RIT FOUND

0034 0319: BS F2 STA CHAR

0035 031B: AS F2 NEXT LDA CHAR

0035 031D: 0A asL A iNOW SHIFT DUT MORSE CODE (1xDASH, 0=DOT)
0037 031E: 85 F2 STA CHAR .

0038 0320: A0 O1 LOY 931 i00T= 1 TIAE FERIOD, DEFAULT TO NOT
0039 0322: 90 02 BCC SEND i1F CARRY CLEAR: 0NT

0040 0324: A0 03 LDY #$3 FELSE DASH (3 TIME FERIODS)

0041 ¥ THIS SECTION SENDS A MIGH OUTFUT FOR (Y REGISTER) NU
0042 7OF TIME FERIODS, AND THEN A LOW FOR 1 TIME FERIOD.

0043 0324: A9 CO SEND LDA #3C0

0044 0328: 8D OK AO STA $A0OK PSET TIMERK MODE TOFFEE KUNNING MDDE
0045 032B: A9 00 LA €30 i THIS valnE,

0046 0320% 8D 04 AO STA $A006

0047 0330: A9 04 LDA #304 3 AND THIZ YALUC PFTEFRING THE TONE
0048 ©0332: 8D 07 AD STAa $A007 OF THE DUTHUT (APERNC tannspy .
0049 0335: 8L 05 AO STA $A00% FTMIS STAATS TONE

0050 0338: A9 01 LuA 831 STURN ON NOTEUT KIT-FED

0051 033A: 8D 00 AO STA 34000

0052 033D: 20 57 03 JSR DELAY ¢DELAYFOR ELEMENT TIME FCRIND

0053 0340: A9 00 LbA #30

0054 03421 8L OB AO STA $A00K iTURN NFF TONF

0055 0345: 8D 00 A0 STA 34000 STURN OFF NUTFUT BIT 7FhO)

00S6 03481 A0 01 LDY #301

00%7 ‘034A: 20757 03 JSR DELAY ' FLELAY FOF | TIME FERIOL(SFACE LZTWCEN ELERENTS)
0058 034D €4 Fi DEC COUNT 4PECREMENT COUNT -SEE LF 8 BITS WFRE ROTATED
0059 034F: DO CA BNE NEXT } IF NDT. DD ANOTHER ELEMENT

0060 0351: A0 02 FINISH LDY 982 FDELAY FOR 3(TWO HERE PLUS PREVIOUS SPACE
0061 0333: 20 7 03 JSK DELAY # AT END OF LAST ELEMENI) TIME PERINDS(SPACE BET
0062 0356: 60 EXIT RIS

0043 i THIS DELAYS FOR (Y REGISTER) SSFEEDS.004 SECONDS

0044 0357: 98 DELAY Tva

0045 03s8: 0a ast A

0046 0339: OA asL A

0067 035a: AB TaY

0068 03SB: AS FO b3 LDA SFEED

0069 035n: a2 Fa b2 LDX #%Fa

0070 035F: Ca o BEX

0071 0380: DO Fb FNE DL

0072 0362 38 SEC

0073 0343: €9 01 SRE 931

0074 0363: DO Fé BNE D2 IDELAY FOK 7 TIME PERIODS

0075 0387: 88 nEY i (SPACE FETWEEN WOXDS)

0076 034B: DO F1 BNE D3 JRETURN FROM MORSE FRNGRAM

0077 038A: 60 RTS

0077 036B: a0 07 SPACE LDY

0077 036D: 20 %7 03 ISR

0077 0370: 00 KIS

0077 03713 73 TARLE .RYTE $73,331,955,832,83F,82F

0077 0372: 31

0078 0373: &4

0078 0374: 32

0078 o375: 3F

0078 0378: 2F

0078 0377: 27 BYTE $27:$23,921,%20+930,$38
0078 0378: 23

0079 0379: 21

0079 0374 20

0079 037B: 30

oory 037C: 38

0679 037D: 3C “RYTE $3C+$3E+301,3011801+301
0079 037€: 3E

0080 037F: 01

0080 0380: 01

0080 0381: OL

0080 0382: 01

0080 0383: 01 LBYTE $01,
0080 0384: 4C

0031 03es: o1

4Cr$01,30S,818,%14

Fig. 4-31: The Morse Program
(Full-size listing in Appendix C)

101

6502 APPLICATIONS BOOK

0081 0384: 05

©0n1 0387: 18

ocp1 0388: 1A

nogy 0389: oOC «BYTE $0C»$02+812,40E+910,804
0081 038A: 02

0og2 038B: 12

ona> 038C: OE

008> 038D: 10

0082 O3BE: 04

nosr 038F: 17 VBYTE $17,800:$14,407,308,80F
0082 0390: 0U

0083 0391: 14

0083 0392: 07

0083 0393: 06

0083 0394: OF

0083 0395: 14 LBYTE $165310:30A,308,$03+309
0083 0394: 1D

0084 0397: 0A

0084 0398: 08

0084 0399: 03

0084 039A: 09

0084 039B: 11 BYTE $11,80R+$1%.81K,81C
0085 039C: oR

00BY 039D: 19

Q085 03%E: 1B

ongs 0I9F: 1C

SYMKOL TABLE:
FEED

Si 0GF O COUNT 00F 1 CHAR 00F 2
MOKSE 0300 STARTE 0314 NEXT 031K
SEND 0326 FINISH 0351 EXIT 0358
DELAY 0357 D3 035K U 03sn
vi 035F SFACE 036K TAKLE 0371

Fig. 4-31: The Morse Program (continued)

The tone must be played during a set duration called here ‘“DE-
LAY.’”’ The duration of this delay can be implemented through soft-
ware or hardware techniques. A software loop will be used in this pro-
gram. Finally, the tone must be stopped when the specified delay has
been achieved. This will be performed by turning off bit 7 of ACR.

The reader should refer to the flow-chart of Fig 4-28 and make sure
that he understands the sequence of actions necessary to use the timer.
The actual implementation will be presented below along with the pro-
gram.

The Morse Program

We will follow here the flow-chart which has been presented on Fig
4-19 and develop the corresponding program. A number of specific
techniques will be used in this program:

Indexed addressing will be used to retrieve the binary encoding of
the Morse code for a given ASCII character.

The hardware timer will be used to generate a tone of fixed fre-
quency. A software delay will be implemented to regulate the duration
of the tone.

102

BASIC TECHNIQUES

Nested loops will be used to implement a multiplication in the delay
loop.

Let us now examine the program. It assumes that the accumulator
has been loaded with the value of the ASCII character whose Morse
code is to be transmitted. (See memory map on Fig 4-18). For flexibil-
ity, the speed of transmission is adjustable. It is expressed in units of 1
milliseconds (.001 second). The variable ““SPEED’’ at memory loca-
tion ““00F0’’ must be set prior to entering this program. For example,
if “SPEED”’ is set to the value 1000, the duration of a ‘*-*> will be
1000 x .001 = 1 second. The program will reside in Page 3, starting
at address ‘‘0300”’ hexadecimal.

The beginning of the program is:

SPEED = $00F0
COUNT = $00F1
CHAR = $00F2

* = 30300

The first four lines are assembler directives. The first three direc-
tives assign respectively the memory addresses 00F0, 00F1, 00F2, to
SPEED, COUNT, and CHAR respectively. The fourth directive spe-
cifies the value of the pseudo address-counter to be 0300 hexadecimal,
i.e., specifies that the first executable instruction in the program will
reside at memory address 0300.

We must first check that the character in the accumulator is a legal
code. This is accomplished by:

MORSE CMP #$20 IS IT A SPACE CODE?

BEQ SPACE _
CMP #32C ERROR IF LESS THAN 2C
BCC EXIT

CMP #3$5B OR MORE THAN 5B

BCS EXIT

The first two lines check whether the character in the accumulator is
a ‘‘space’’ character (20 hexadecimal). If so, a delay of seven time
periods is implemented followed by the normal delay between charac-
ters.

The next four instructions verify that the ASCII code is between
“2C” and ““5A” inclusive. This is the range of valid ASCII characters

103

6502 APPLICATIONS BOOK

for Morse transmission. If an illegal character is found, an error is
detected, and a jump occurs to location ‘‘EXIT.”’ In order to keep the
program simple and educational, no specific action is taken here at
location EXIT to flag the error. The reader is strongly encouraged (as
an exercise) to add specific instructions at location EXIT which will
flag the erroneous character found in the accumulator. In this pro-
gram, there will simply be no transmission for this erroneous char-
acter.

Once a legal ASCII character has been found in the accumulator, it
must be converted into the binary code which will be used to generate
the sequence of sounds. The binary Morse code corresponding to
every permissible ASCII character is stored at the end of the program,
from memory location 36B to memory location 399. We would like to
retrieve the first entry of the table for the ASCII character 2C, the
next entry of this table for the next sequential ASCII character, and so
on. This is a typical case where we wish to use indexed addressing.
However, an extra problem arises here: the ASCII characters are num-
bered from 2C on, rather than from ‘‘0’’ or from ‘‘1”’ on. The solu-
tion is quite simple, and appears below:

TAX
LDA TABLE-$2C,X

The ASCII is transferred into the index register X so that it may be
used as an offset. In order to take into account the fact that the charac-
ters are numbered from 2C on, the base of the table is simply specified
to be not the real base at address 36B, but the address table minus 2C
(hexadecimal). The binary code can then be loaded in the accumulator
with a single indexed memory access (see Fig 4-32).

TABIE—2C
CHARACTER
— ASCIl 2C
TABLE": 3A (FIRST CHARACTER)
MORSE
TABLE
TNDEX
o X: CHARACTER

Fig 4-32: Using Indexed Addressing to Retrieve Morse Code

104

BASIC TECHNIQUES

Our binary Morse code is now in the accumulator. Let us recall here
that this code contains a leading 1, which is the START bit, followed
by the 0’s and the 1’s representing the dashes and the periods. Any un-
used bits to the left of the START bit have been set to 0. The contents
of the accumulator will, therefore, be shifted left until a START bit is
found, then the “‘real” bits corresponding to the dashes and the periods
will be used to generate sounds. The program is:

LDY #3$08 NUMBER OF BITS TO BE ROTATED

FROM A
STY COUNT
STARTB ASL A
DEC COUNT
BCC STARTB SHIFT A UNTIL START BIT FOUND
STA CHAR
NEXT LDA CHAR
ASL A SHIFT OUR MORSE CODE (1 = DASH,
0=DOT)
STA CHAR DOT=1 TIME PERIOD, DEFAULT
TO DOT
LDY #3$01

BCC SEND IF CARRY CLEAR, DOT
LDY #303 ELSE DASH (THREE TIME PERIODS)

The index register Y would normally be used as a counter in order to
stop the successive left shifts of A, once 8 bits have been shifted out.
However, the SEND routine, which will generate the sound, requires
that the Y register be loaded with a duration of the sound to be gen-
erated. We can, therefore, not use index register Y for the purpose of
shifting out the bits. The next idea that comes to mind is to reuse the
index register X which is now available. Unfortunately, our conven-
tion in this program is that the DELAY routine uses index register X.
Since neither of the two Index Registers is available as a counter, we
will have to use a memory location. This is location COUNT. An im-
portant remark is that when writing the program, we might well have
coded this portion of the program before coding routines SEND or
DELAY. In such a case, we would probably have used index regis-
ter X or Y here to store the number of bits to be shifted from the accu-
mulator. Later on, we would have discovered the necessity of using
these same registers in the routines SEND or DELAY. This is when

105

6502 APPLICATIONS BOOK

programming discipline takes its full importance. If it is found that
other routines should require the use of X and Y, one must go back in
the coding and change the code in the program that precedes by using
a memory location named COUNT instead of a register. Forgetting to
do this is unfortunately a classical error. In that case, the other rou-
tines will accidentally destroy the contents of registers X and Y, and a
severe programming error will occur. As a programming discipline, it
is therefore strongly recommended fo write explicitly in the comments
at the beginning of every routine which registers are changed or de-
stroyed by this routine. The conventions for communicating and pass-
ing information between subroutines or segments of a program should
be completely clear before writing a new routine.

The left-most zeroes contained in the accumulator are ignored and its
contents are shifted out until a START bit is found. Once the START
bit has been found, every bit shifted out of the left of the accumulator
represents either a ‘>’ or a ‘“—’’ depending on whether it is ‘‘0’’ or
““1.”” Once the bit shifted out of the accumulator has been identified,
we will go to location SEND in order to generate the appropriate tone.
Since the contents of the accumulator will be changed by the subse-
quent processing, they must be preserved in memory prior to going to
SEND. This is the purpose of the second instruction STA CHAR.

ADDRESS WRITE READ
--04 TIL-L nc-/
+ clear T1 int flag
--05 TIL-H + T1C-H TIC-H
+ TiL-L»=TI1C-L
TIMER 1 + clear T1 int flag
--06 TiL-L TIL-L
--07 TIL-H TIL-H

+ clear T1 int flag

.- 08 T2L-L T2C-C
+ clear T2 int flag
TIMER 2 -
--09 T2C-H T2C-H
T2L-L »=T2CL

+ clear 72 int flag

Fig. 4-33: Memory Map for Timer 1

106

BASIC TECHNIQUES

Having thus preserved the accumulator’s contents at the memory loca-
tion CHAR, the Index Register Y is loaded with the duration corre-
sponding to the bit which just fell through the accumulator: a “‘1”” if it
was a dot, a “‘3”’ if it was a dash. The purpose of the STA CHAR, fol-
lowed by LDA CHAR, which seems useless, is due to our desire to re-
enter this program at ‘“NEXT”’ with an LDA CHAR instruction.

The SEND Routine

The SEND routine uses timer 1 of the 6522 to generate the tone of
set frequency. The memory map for the timer appears on Fig 4-33.
The timer must first be set in the free-running mode. This is accom-
plished by:

SEND - LDA #$CO
STA #A00B

The value CO is deposited at address AOOB which is the ACR or
Control Register. It turns on bits 6 and 7 as required by the timer (see
Fig 4-29 for details). The value 0400 hexadecimal is then deposited at
memory addresses A006,A007:

LDA #$00
STA $A006
LDA #3504
STA $A007

These memory locations are respectively the low and the high part
of the T1L or latch. It sets the frequency of the tone to be generated.
0400 hexadecimal is in binary: 00000100 00000000 or 1024. A half-
period of the clock is approximately N + 2 or 1026. The period is
therefore:

T = 2052 microseconds
And the frequency is N = 1 = T = approximately 500 HZ

We must now start the tone and stop it after the specified duration.
The tone is turned on by:

STA $A005

This instruction transfers the contents of the latch into the counter

107

6502 APPLICATIONS BOOK

register and starts the external waveform. We have indicated that
this program also turns on ‘‘manually’’ PBO0 so that an external device
such as a transmitter can be activated simultaneously with the genera-
tion of the tone in the speaker. This is accomplished by:

LDA #301
STA $A000

It is assumed here that PBO has been configured as an output port
prior to execution of this program.

The duration of the tone is implemented by the subroutine DELAY:
JSR DELAY. We will examine it below. Once the tone duration has
elapsed, it must be turned off. This is accomplished by:

LDA #$00
STA $A00B TURN OFF TONE
STA $A000 TURN OFF OUTPUT BIT (PB0)

Finally, we must leave one unit of silence between two tones. This
is implemented by:

- LDY #3501
JSR DELAY 1-PERIOD DELAY

Finally, we must decrement our bit counter, contained at memory
location COUNT, in order to check whether any more bits need to be
shifted from the accumulator. This is accomplished by:

DEC COUNT 8 BITS DONE?
BNE NEXT IF NOT, GO BACK

Once a complete character has been transmitted, two more units of
delay must be implemented to separate this character from the next
one. This is accomplished by:

FINISH LDY #8302

JSR DELAY
EXIT RTS

108

BASIC TECHNIQUES

The DELAY Subroutine

This subroutine will implement a delay of: (contents of Y
Register) X (SPEED) X .001 seconds. The delay will, therefore,
be computed as the multiplication of three numbers. We will use
here a special technique of nested loops in order to avoid performing
a classical multiplication. The routine appears below:

DELAY LDA SPEED
D2 LDX #$FA
D1 DEX
BNE DI
SEC
SBC #301
BNE D2
DEY
BNE DELAY
RTS

The corresponding flow-chart appears on Fig 4-34.

DELAY

&
_—".{ A= SPEED]
—

{

COUNTER=CT] D2

]m

I COUNTER = COUNTER— 1
=
OUTER DELAY

LOOP YES

i
[A=A]

Fig. 4-34: Flow Chart for Delay
109

6502 APPLICATIONS BOOK

The first delay loop is the one corresponding to D1. Let us compute
its duration (the time of each instruction is in parentheses):

(3) LDA SPEED

(2) LDX #3C6 C6 HEX = 198 DECIMAL
(2) DEX

(3) BNED1

The duration of the delay introduced by these first four instructions of
the programis: 3 + 2 + (2 + 3) X 198 — 1 = 994 microseconds.
The following two instructions are:

(2) SEC
(2) SBC #$01

Their durations are two microseconds each. These two instructions
add, therefore, an additional delay of 4 microseconds. They are used
to subtract 1 from the content of the accumulator. This is because
both Index Registers X and Y are already used in this program as
counters, so that the accumulator must be used as a third counter. Un-
fortunately, there is no decrement instruction which operates directly
on the accumulator and a formal subtract instruction must be used.
The reader will remember that the carry must be set prior to a sub-
tract. This is the purpose of the SEC instruction prior to the SBC. The
next instruction is:

(2/3) BNE D2

This is a second delay loop. Every time that the branch is successful,
it requires three microseconds, and when it is not successful it requires
2 microseconds. The total delay from the entry point DELAY to this
point in the subroutine is, therefore, 995 + 7 = 1002 microseconds =
1 millisecond.

A delay of 1 millisecond will be generated every time that the loop
D2 is executed. Since D2 contains the value of SPEED, these two
loops are implementing a delay of SPEED x .00l second, which is
what we wanted. Once this total delay of SPEED x .001 second has
been achieved, one more loop is implemented using the Y Register:

DEY '
BNE DELAY
RTS

110

BASIC TECHNIQUES

This final loop multiplies the previous delay by the value contained
in Register Y. At this point, we have obtained the desired total delay
Y x SPEED x .001 seconds, and we return (RTS).

Using the program. In order to use this program, it is suggested that
you choose a slow transmission speed initially, unless you are familiar
with Morse code, and that you generate a single character at a time.
Once you see that your program works correctly, you should write a
short subroutine which will feed characters to your Morse program.
You can then verify that the Morse transmission proceeds correctly
for any string of characters.

Exercise 4-2: Write a subroutine which will feed your program a string
of N characters contained in a table starting at address TABLE.

Exercise 4-3: Read the keyboard, and generate the corresponding
Morse signals.

TIME OF DAY CLOCK

We will develop here a Time of Day Clock routine which will main-
tain the time in hours, minutes, and seconds in three dedicated mem-
ory locations. If desired, this program could be readily extended to
store fractions of a second, or any other time unit desired. The mem-
ory map for this program appears on Fig 4-35. As usual, memory
locations in Page O (zero) are reserved for the variables. The hours,
minutes, and seconds are stored respectively at memory locations
00F4 (hexadecimal), 00F5, 00F6. One more memory location is used:
00F7 contains the variable COUNT.

oo

TG

T

[N
CURRENT s M

T Fo SCS vy
” COUNt
| ACOB. . WR
[** ADoE
PAGE § PAGE) TIMER

Fig. 4-35: Time-of-Day Memory Map

111

e ——
6502 APPLICATIONS BOOK

To start the clock, the program will be typed in, then the current
24-hour time plus one minute should be entered in locations SECS,
MIN, HOUR.

Then A7 must be entered in location A67E (for SYM), and 03 in
location A67F. This is an interrupt vector, and will be explained later.
Finally, enter ‘GO 0390; then, at the exact time which has been en-
tered in SECS, MIN, HOUR, press ‘“‘CR”’.

The correct time will be kept from now on by the clock in SECS,
MIN, HOUR.

The variable COUNT stores 20th of a second units. It is initialized
with the value 20, then decremented every 20th of a second. The decre-
mentation signal is a hardware interrupt generated by an interval timer
contained in the 6522. The flow-chart for the program appears on Fig
4-36. The first phase is the initialization phase where the timer is load-
ed with the appropriate counter value to generate an interrupt after
50 milliseconds (1/20th of a second). Variable COUNT is initialized to
the value 20, and the timer is started.

Whenever the timer times out, 1/20th of a second has elapsed and
an interrupt is generated. On receiving an interrupt, the microproces-
sor will preserve its registers, reload the counter register of the timer
with the appropriate constant for the generation of another interrupt
50 milliseconds later, and start the timer. The memory location
COUNT will be decremented, since a 20th of a second has elapsed.
The value of this location will be tested for the value ¢‘0.”’ If it is not
““0,” exit from this routine occurs. Whenever COUNT goes through
the value ¢‘0,”’ it is reset to ‘‘20,”’ and the memory location SECS (the
number of seconds) is incremented by 1.

Every time that SECS is incremented by 1, it is checked for the value
“60.”” If the value 60 is reached, SECS must be reset to “‘0’’ and MIN
(the number of minutes) must be incremented. Similarly, MIN must
be checked for the value ¢‘60.”” If MIN has reached ““60,’’ it is reset to
0’ and the number of hours is incremented. If the number of hours
reaches ‘‘24,”’ it is reset to ‘0.’ Exit from this routine then occurs.
The program will remain dormant until the next interrupt is received.
In order to display the contents of this time-of-day clock, the user
needs simply to examine the contents of memory locations F4, F5, and
F6. A display routine could also be written to display the value of
these memory locations automatically.

The program appears on Fig 4-37 and it is self-explanatory. The
first segment of the program is the initialization segment INIT which
sets the variable COUNT to ‘20’ decimal = ‘14’ hexadecimal. It

112

BASIC TECHNIQUES

INITIALIZE COUNT TO
20 (1/20th sec.) LOAD TIMER
WiTH 50 MS count

L START TIMER]

RETURN

CLOCK
(INTERRUPT)

[PRESERVE STATUS 1
I RELOAD TIMER j
WITH 50 MS

t
L START TIITAER]

[TICK OFF 1/20th sec. J
(DECREMENT COUNT)

1 =07 N
1 seccm ELAPSED) —2— EXIT
* YES
L RESTORE COUNT]
1020

l INCREMENT SECONDS
INDICATOR "“SECS”

INCREMENT MINUTES

NO
MINUTES = 60? - EXIT

YES

RESET MIN. TO ZERO
INCREMENT HOURS

Fig. 4-36: Time-of-Day ‘ NO
Clock _..Exn
* YES

I RESET HOUR TO I
ZERO

I RESTORE REGISTERS |

)

EXIT

113

6502 APPLICATIONS BOOK

LINE® LOC CODE LINE
(FIRST LOAD A7 IN LOCATION ASTE, AND 03 Ih AOTH
0002 w000 THIS IS A REAL TIME CLOCK ROUTINE W HICH MAINTAINS
0003 0000 STHE CURRENT TIME IN THE LOCATIONS SEC (00F$), MIN
0004 0000 400F3), AND HOUR w00F &) [24 HOUR TMLE). IT IS BRANCHED TO
0008 000 :BY THE TIME OUT OF THE INTERRUPT TIMER, WHICH
00Ds [“AUSES AN INTERRUPT AND BRANCH TO THE CLOCK
[SROUTINE TWENTY TIMES PER SECOND. THE CLOCK ROUTINE
o008 000D SAND INTERVAL TIMER MUST BE INITIALIZED FIRST THF
0009 QU0 :CODE "INIT* DOES THIS, AND IT MUST BE HRANCHED 10 TO
0010 0000 START THE CLOCK TO INITIALIZE, PUT THE CLRRENT TiMI
it w00 :THE CLOCK ROUTINE W ILL BE STARTED IN SEC. MIN, AND
{HOUR, THEN ISSUE THE COMMAND "GO 039 CR” AT THAT
SEXACT TIME. NOTHING ELSE MUST BE DONE
2 oo COUNT =300F7 {COUNTFR FOR TWENTIETHS O} A SEC
W) oo SECS = $00F6 CURRENT TIME
004 U0
0015 o000
0016 0000 :TIMER MODE REGISTER
0017 0000 LOW ORDER TIMER CONSTANT
0018 0000 :HIGH ORDER TIMER CONSTANT
w9 0000
W0 0% AV INIT LDA 14 SET TO FIRST TWENTY
0021 092 BF STA COUNT COUNTS
0022 03% SDOBAD STA ACR SET BITS 8 AND 7 LOW
IN ACR
0023 W1 A9CO LDA 10 SET BITS 8 AND 7 HIGH IN
0024 039 EDOEAD STA SAOE {THE INTERRUPT ENABLE
REGISTER (TO ENABLE
JINTERRUPTS FROM TIMER 1)
02s 0MC A930 LDA £330 STORE C3%0 IN TIMER
0026 QME SDOSAD STATILL (DELAY CONSTANT FOR
0027 WAL AICY LDA 13C3 . OMS)
002 @Al EDOSAO STA TIHC iTHIS STARTS TIMER
0B A6 © RTS {RETURN TO MONITOR
003 03AT 08 CLOCK PHP SAVE STATUS
) 0AS M PHA
0031 Ay FI SED
0033 WAA A0 LDA riso STORE C350 IN TIMER
M 0AC IDO6AD STATILE {DELAY CONSTANT FOR
0035 OIAF A9C3 LDA #5C3 L OMS)
003 03B1 EDOS AO STA TIHC THIS STARTS TIMER
0037 @B C6F7 DEC COUNT DECREMENT COUNT OF
STWENTY
03 mBs DO3) BNE EXIT EXIT IF WE HAVE NOT
:COUNTED TO TWENTY YET
0039 B3 A9Ie LDA 1514 ELSE RESTORE COUNT—
0060 OBA SF7 STA COUNT A FULL SECOND HAS PASSED
0041 03BC Aj01 LDA #3501
042 @mBE 18 cLe
043 QBF 65 F6 ADC SECS JADD 1 TO SEC
0D 03CI $5Fe STA SECS
0 B3 Ve CMP #3560 iSEE IF 60 SECONDS
0046 0CS D022 BNE EXIT IF NOT, EXIT
0047 0T A9OD LDA 1300 {ELSE RESET SECONDS TO0
e (e] 5Fe STA SECS
049 0CB A9} LDA 301
s 0XD 18 ac
0031 OCE 6SFS ADC MIN {AND ADD 1 TO MINUTES
0032 D0 B3FS STAMIN
w3 ;D2 e CMP 1360 SEE IF 60 MINUTES
0084 03D4 DO} BNE EXIT iIF NOT, EXIT
0035 0ID6 A900 LDA 1300
00 03D8 $SFS STAMIN {ELSE RESET MINUTES TO0
00s7 IDA A90) LDA 130!
00s8 03DC 18 cc
003 0IDD 65 Fa ADC HOUR :AND ADD | TO HOUR
0060 0IDF . 85F4 STA HOUR
we! OEI OM CMP U4 SEE IF 24 HOURS
0062 O03E3 DOO4 BNEEXIT JF NOT, EXIT
006} 03ES A900 LDA #3500
0064 OE7 F4 STA HOUR JELSE RESET HOURTOOQ
0065 0IE9 o EXIT PLA \RESTORE STATUS
e OEA B PLP
0067 MEER RT1
ERRORS = 0000 <0000>
SYMBOL TABLE
SYMBOL VALUE
ACR AgoB CQLOCK @A? COUNT ooF7 EXIT 0EY
HOUR 00Fa INFT %0 MIN [PLS WEA
SECS QOFe TIHC A0S TILL A0S
END OF ASSEMBLY

Fig. 4-37: The Time-of-Day Program
(Full-size Listing in Appendix C)

114

BASIC TECHNIQUES

also loads the timer with the appropriate count to generate a 50 milli-
second delay. The memory map for the timer appears on Fig 4-35.
Timer 1 of the 6522 is used. The table showing the bits for condi-
tioning this device appear on Fig 4-25 and 4-29. This timer can be used
in either a one-shot mode or a free-running mode. In a one-shot mode,
a single interrupt (and possibly an output pulse on PB7) will be gener-
ated every time that the internal timer’s counter decrements to 0
(zero). In the free-running mode, the counter will be automatically re-
loaded from the internal latch and continuous interrupts (and possibly
a pulse on PB7) will be generated. Since the output pin PB7 is not used
in this application, bit 7 of the ACR (auxiliary control register) will be
set to “‘0’’. There is then a choice between a one-shot mode and a free-
running mode. In the one-shot mode, the counter must be explicitly
reloaded every time an interrupt is generated. In the free-running
mode, the timer will automatically reload the internal counter from its
latch. However, the interrupt flag must be cleared explicitly either by
writing into T1C-H or by modifying the interrupt flag directly. The
two options are essentially identical in terms of programming effort.
The free-running mode may yield a more accurate time measurement,
since the timer runs continuously and automatically going from the
value ‘0’ to the value corresponding to the 50 millisecond delay.
Since a free-running mode has been used in the Morse program, we
~ will use here a one-shot mode. The reader is encouraged to try using
the alternative mode as an exercise. Using the one-shot mode is speci-
fied by setting bit ACR6 to ‘‘0”’. All other bits of the ACR register are
not used here and will be set to ‘‘0’’. Bits 7 and 8 are set to “‘0”’ in
ACR, specifying the one-shot mode with PB7 disabled.

Next, the interrupt flags register must be properly conditioned.
When read, this register is viewed as the Interrupt Flag Register, IFR.
When written into, it is called the Interrupt Enable Register, IER. In
order to set specific bits of the IER, bit 7 of IER must be set to 1. For
each ‘“1”’ specified in register locations O through 6, a ‘1’ will be
written in the register, enabling the appropriate condition. A “‘0’’ in
any bit position will not clear the specified bit position in the IER reg-
ister, but leave the contents unchanged. Clearing is accomplished by
specifying a ‘“0”’ in bit position 7 and then specifying a ‘‘1’’ for every
bit position that needs to be cleared. In this instance, we simply want
to enable an interrupt from timer T1. We will therefore write at the
memory location corresponding to IER the value ‘‘11000000,” or
““C0”’ hexadecimal (see Chapter 2 for detail).

115

6502 APPLICATIONS BOOK

Finally, we must load the appropriate constant in the timer to gen-
erate the delay which will generate and interrupt after 50 milli-
seconds. The value C350 hexadecimal (=50,000 decimal) is there-
fore loaded into the counter. It will be noted in the routine INIT that
first the low part of the latch is loaded, then the high part of the coun-
ter is loaded. Loading into the high part of the counter results in trans-
ferring the lower part of the latch automatically to the lower part of
the counter and starting the timer at the same time.

The INIT subroutine appears below:

COUNT = $00F7 1/20 THS OF A SECOND
SECS = $00F6

MIN = $00F5

HOUR = $00F4

ACR = $A00B TIMER MODE REGISTER
TILL = $A006 LOW ORDER TIMER CT
TICH = $A005 HIGH ORDER TIMER CT

INIT LDA #3$14 FIRST 20 COUNTS
STA COUNT
STA ACR BITS 8 AND 7 LOW IN ACR
LDA #3CO0 BITS 8 AND 7 HIGH

STA $SAO0OE IN INTERRUPT ENABLE REGISTER
LDA #3850 STORE-C350 IN TIMER

STATILL (CT FOR 50 MS)
LDA #$C3 ,
STA TICH START TIMER
RTS

The initialization has now been completed, and the main program is
executed from location CLOCK on. It will be noted that all additions
within the routine CLOCK are performed in decimal mode. This is
why the decimal flag is set with instruction SED. This way, when dis-
playing the contents of the memory locations, they will be displayed
one digit per LED in the usual decimal manner rather than in hexa-
decimal format.

Following execution of the INIT subroutine, a return occurs to the
monitor. Provided no key is touched on the keyboard, nothing will
happen until an interrupt time-out occurs. Upon detection of the

116

BASIC TECHNIQUES

interrupt, an automatic branch will occur to the clock. Whenever an
interrupt occurs in the 6502, it branches automatically to memory loca-
tion FFFE,FFFF where it finds the interrupt vector, i.e., the next
address to be installed in the program counter register. On the
SYM, the user pre-loads memory locations A67E and A67F with
the desired interrupt vector. The SYM monitor, which is in execu-
tion at all times that the user program is not running, duplicates
automatically the contents of memory locations A600 through A67F
at addresses FF80 to FFFF. Thus, the contents of A67E and A67F are
automatically copied by the SYM monitor to memory addresses
FFFE, FFFF. At the time the interrupt occurs, it will branch to FFFE,
FFFF, and it will find there the 16 bit contents to be installed in the
program counter register.

CLOCK is the interrupt routine which is entered every time the
interrupt is received. It saves the registers P (the status register) and
A (the accumulator). It does not need to save the other registers as
it will not be needing them.

It then reloads the timer counter with the value C350 hexadecimal
= 50,000 decimal and starts the timer again. Loading the counter
automatically clears the previous interrupt.

The routine then checks successively whether the variable COUNT
has reached the value ‘“20”’, the variable SECS has reached the value
““60”’, the variable MIN has reached the value ‘60’’, or the variable
HOUR has reached the value ‘“24’’. If any one of these variables has
reached its limit value, it is reset to ¢‘0’’, as indicated in the flow-chart
of Fig 4-36, or the program of Fig 4-37.

Finally, the routine exits by restoring the two registers it had saved,
A and P, and executing an RTI (Return From Interrupt).

A HOME CONTROL PROGRAM

A generalized home control program will monitor the status of a
Time of Day Clock, as well as the status of an alarm system, and take
various actions depending on the time of the day or on the alarm con-
dition detected. We will use here the time of day clock program which
has been developed above, display the time of the day, then depending
upon the time of the day, specific actions will be taken by closing one
or more relays. The program appears on Fig 4-38. The data-direction
register of Port B is set to OF hexadecimal in order to enable the four
low order bits for output (for the relays). Clearly, only those bit pcsi-
tions actually connected to relays should be specified as outputs. The

117

e —
6502 APPLICATIONS BOOK

others should remain inputs. As usual, as a precaution, an explicit in-
struction is included in the program to turn the relays off. This is per-
formed by depositing the value 00 hexadecimal at the memory loca-
tion for IORB (Address ACO00).

Two built-in routines of the SYM monitor are used by this program
to facilitate the output. The accumulator is loaded from memory loca-

LINE® 10K CODE LINE

W ww LTHIS IS A SIMPLE HOME CONTROL ROUTINE WHICH RUNS

ol o {THROUGH A LOOP EACH TIME THROUGH 1T DISPLAYS THE

e {CURRENT TIME AND BRANCHES TO A NUMBER OF USER

SUBROUHINES

s WHICH SLRVICE DLVICES.

ae ww IENAMPLES:

W ww 1) A SUBKOUTINE COULD CHECK THE CURRENT TIME AND

o o TURNON A LIGHT I} THE TIME WERE RIGHT

() i) A SUBROQUTINE COULD MOMITOR THE STATUS OF AN

Wi ww ALARM SYSTEM AND 1AKL APPRUPIIATE AUTION IF AN

ot e INTRUDER WERE DETECTED.

Wiz DDKE = $ALW

Wiy e IORB =3A0N

wie e HOUR = 300k

wis MIN = S00FS

wie aw QUTHYT = W2EA

w7 w SCAND = J906.

Wi o » = 3020

wiy w0 [CONTRL (LD B

w0 WL AYOF LDA #30F SET DATA DIRECTION

w2 oWy W02 AC STA DURB (REGISTER TO QUTPUT FOR
RELAYS

W uwe AW LDA 1500

w2 08 IDWAC STA I0RS ;TURN OFF RELAYS

M B ASKL LOOP 1DA HOUR STHIS IS THE MAIN CONTROL
LOOP

wis wD WEAW ISR OUTBY1 JOUTPUT CURRENT HOUR TO
DISPEAY

Wl ASES LDA MIN

w2y e WEHAR ISR OUTBYT HOUTPUT CURRENT MINUTE
10O DISPLAY

wa Wi wus ey JSK SCAND REFRESH (LIGHT) DISPLAY
WITH TIML

Wy Wis kA HYTE $EASEASEA

Wy W A

Wy WA LA

Wl oud LA BYTE SEASEA SEA

W ac kA

ww o ab rA

W Wik kA KYTE SEASEASEA

L TR [T Y

Wi ww EA

W Wl kA BYTE SEASEASLA

Wiz wn EA

w2 uny kA

wh W (2 BYTL SEA SEASEA

Wiy o kA iTHE USER CAN PLACE
JUMPS TO

o) W kA (SUBROUTINES HERE TO SER-
VICE DEVICES

W w2 EA BYTE SEASEA SEA

Wi ue kA
e oy EA
ws o2A kA BYTE SEA SEA SEA
wis w2 kA
wis WK kA

w020 kA BYTE SEASEASEA
wie unkt kA
W uwF EA
Wit ww o BA BYTE SEA SEASEA
wnr o oBi LA
Wi w kA
wie [D3}] EA BYTE SEA SEASEA

Wl WK kA

W wls kA

W e scoB@2 IMP LOOP
oMo o2

ERRONS = Us ou0us

Fig. 4-38: Home Control Proérum
(Full-size Listing in Appendix C)

118

BASIC TECHNIQUES

SYMBOL TABI|
SIMBUL VALUE

LONIML 02w LOLRY Acuz NHOUR wie 1ors Acw
Loop oy MiN wis QUTBYT s2bA SCAND w6

END OF ASSEMBLY

Fig 4-38: Home Control Program (continued)

tion HOUR which contains the time-of-day expressed in hours (see
the time of day routine), then a call is made to subroutine OUTBYT
which results in displaying the HOUR on the board’s display.
Similarly, the minutes are displayed by loading the accumulator
from memory location MIN and calling OUTBYT.

The OUTBYT routine is contained at memory location 82FA of the
monitor and displays the contents of A as two hex digits. Next, the
routine SCAND of the monitor (at memory address 8906) is used to
scan the display once. Once the time has been displayed, an appropri-
ate jump instruction will be executed if some set condition is met.
Since these conditions will vary with each application, they have been
left blank in the program and should be filled in by the reader. As an
exercise, it is suggested that the relays be turned on at 2 or 3 specified
times a few minutes apart. The noise made by the relays when closing
indicates that the program is working correctly. This should be done
prior to attaching any actual device to the relays. '

A TELEPHONE DIALER

We will develop here a program capable of dialing a number once it
has been deposited in the memory. With a regular telephone (rotary
dial), pulses are merely sent on the line. This should be simple at this

point, and we are going to develop here a program capable of generat-

LOW TONE

oo VTRBIITIRH 3778
Tone Pl2oBtiLIeN 478

b e e b e

Fig. 4-39: The Telephone Frequencies

119

6502 APPLICATIONS BOOK

ing the tone frequencies used in the U.S. for touch phones. The table
of telephone frequencies appears on Fig 4-39. Each digit will cause
two tones to be generated. The various frequencies have been chosen
carefully by the telephone company in order to avoid the possibility of
spurious harmonics, and to use the smallest bandwidth possible. They
range from 697 Hertz to 1477 Hertz as indicated on the illustration.

Our program will generate two tones simultaneously, which will be
fed into the same speaker. The frequencies will have to be accurate in

[DIGIT POINTER =0 l

—3 |
r GET;IGIT]

l INCREMENT DIGIT POINTER I

LAST {RIGHT

MOST) DIGIT? ourt

MULTIPLY NUMBER BY
4=|NDEX

i

SET TIMER MODES FOR
T1 AND T2

!

GET TONE 1
PUT IN TIMER 1

i

GET TONE 2
PUT IN TIMER 2

!

GENERATE TONE FOR
SET DURATION

!

TURN OFF
BOTH TIMERS

!

WAIT FOR SET
DURATION

L

Fig. 4-40: Phone Dialer Flow Chart

120

BASIC TECHNIQUES

order to be recognized by the telephone switching equipment. This
result can be obtained by using two timers. We will use here Timer A
and Timer B of our microprocessor board. Each timer will generate a
frequency, and the output of both timers will be sent to the loudspeak-
er. For more reliable results, the use of an operational amplifier for
the speaker is strongly recommended. However, the program would
remain unchanged. The flow-chart for the program appears on Fig
4-40. The number of digits for the telephone number is irrelevant.
This program will accommodate a telephone number of any length.
The first digit to be ‘“dialed’’ is obtained from the memory. An equiv-
alence table is kept in memory, which specifies the periods for the two
tones to be generated for each digit. More precisely, this table specifies
the half period, and since two tones are associated with every digit,
this table will use four bytes for every digit. The value of the digit
must therefore be multiplied by four in order to be used as an index
to this table.

The two table values will be obtained and loaded respectively in
Timer A and Timer B which will be started. The two tones will then be
generated automatically for a specified duration (say half a second or
one second). Then a silence interval will be enforced, and the next
digit will be fetched from memory. The process will be repeated until
all digits have been dialed. The flow-chart is straightforward. Let us
examine now the program. The complete program is shown on Fig
4-41.

LINE? LOC CODE LINE

00 oo :THIS IS A PROGRAM WHICH DIALS PRE STORED

Q03 . 0000 ;TELEPHONE NUMBERS. IT PRODUCES A TWO TONE OUTPUT

0004 0000 ;THROUGH A SPEAKER HOOKED UP IN CONFIGURATION 2

0003 0000 ATWO TONES—SEE SPEAKER). THESE TONES WILL ACTIVATE

0006 G000 A STANDARD TOUCH TONE PHONE WHEN THE SPEAKER IS

oo 0000 {PLACED DIRECTLY OVER THE MOUTH PIECE OF THE TELE.

0008 00U {PHONL. TO USE THE PROGRAM, PLACE THE PHONE

o0 u00 {NUMBER(S) ANYWHERE IN MEMORY, ONE DIGIT PEK BYTL,

0010 0000 :AND ENDING WITH OF (HEX). FOR EXAMPLE, THE NUMBER

0011 ouoo :435-1212 WOULD BE 05 05 05 01 02 01 02 OF (ALL HEX) IN

0012 0000 :MEMORY. THEN PLACE THE ADDRESS OF THE NUMBER,

0013 0000 ;LOW BYTE FIRST, IN THE LOCATIONS 00C0 AND 00C1.

0014 0000 THEN EITHER GO TO THIS ROUTINE FROM THE MONITOR

;OR JSR TO IT FROM ANOTHER PROGRAM.

1S 0000 NUMPTR = 30000 iTHIS POINTS TO THE ADDRESS OF
:THE TELEPHONE NUMBER

0016 0000 ONDEL = 340 ;THIS IS THE DELAY CONSTANT FOR
:THE TIME WHEN THE

0017 0000 OFFDEL = 520 {DELAY CONSTANT FOR THE TIME
:WHEN THE TONES ARE 0

0018 0000 DELCON « 3FF :GENERAL PURPOSE DELAY
:CONSTANT

0019 0000 ACRI = 3A00B :THESE ARE THE TIMER MODE
REGISTERS (TIMER 1)

0020 0000 ACR2= SACDB ATIMER 2)

0021 0000 TICH = 3A008 :THIS IS THE TIMER | COUNTER
A{HIGH BYTE)

022 0000 TILH « $A007 :TIMER | LATCH (HIGH BYTE)

001} 0000 TILL = SAG4 : (LOW BYTE)

0024 0000 T2CH = SACDS SAME AS TIMER | — FOR TIMER 2

o028 0000 T2LH =$ACDT

o 0000 TIL =3ACH

0027 0000 = $0300

0028 0W0 ADOO PHONE LDY #3500 ANDEX FOR DIGITS OF

{PHONE NUMBER

0029 032 BICO DIGIT LDA GAMEPTR). Y GET DIGIT

030 0304 a INY

0031 0305 C9OF CMP f30F SEE IF END OF PHONE

iNUMBER

Fig 4-41: Phone Dialer Program
(Full-size Listing in Appendix C)

121

R R

6502 APPLICATIONS BOOK

0032 0307 Doot BNE NOEND

0033 0309 LY RTS :RETURN IS SO (TO
:MONITOR OR CALLING
:PROGRAM)

0034 O0XA OAEAEA NOEND ASL A iMULTIPLY NUMBER BY
:FOUR TO INDEX TABLE

0033 0D 0A EAEA ASL A . (EACH TABLE ENTRY IS
: 4BYTES)

0% 0310 AA TAX INDEX FOR TABLE

o oM AICD LDA 500

0038 0313 4D OB AO STA ACRY SET TIMER MODE TO FREE

. :RUNNING ON BOTH TIMERS

0039 0316 8D OB AC STA ACR2

W« 0% BDIDOY LDA TABLEX :GET LOW ORDER, FIRST
:TONI

041 03IC 8D 04 AQ STATILL STORE IN TIMER]

0042 ONF E8 INX

043 @20 BDSDO3 LDA TABLEX GET HIGH ORDER, FIRST
:TONE

0044 0 D 07 AD STA TILH STORE TIMER 1

0045 026 3D O3AQ STA TICH :THIS STARTS TIMER 1
:GOING

004 03 B INX

0047 0324 BDSDOY LDA TABLEX :GET LOW ORDER, SECOND
iTONE

048 032D 8D 04 AC STA T2LL STORE IN TIMER 2

oM9 0% EA INX

% 03 BDSDO3 LDA TABLEX :GET HIGH ORDER, SECOND
iTONE

0051 034 EDOTAC STA T2LH STORE IN TIMER 2

0052 0337 D03 AC STA TICH iTHIS STARTS TIMER 2
iGOING

0053 OMA A240 LDX JONDEL :GET TONES-ON DELAY
JCONSTANT

0034 03C 205503 ON JSR DELAY :DELAY WHILE TONE IS ON

0053 O033F CA DEX

00%6 0340 DOFA BNE ON

0057 0M2 A900 LDA 300

0058 0M4 3D OB AD STA ACR} :TURN BOTH TIMERS OFF

0059 ©OM7 $DOBAC STA ACR2

0060 034A A220 LDX #OFFDEL JGET TONES-OFF DELAY
{CONSTANT

0061 @4C 203503 OFF JSR DELAY :DELAY WHILE TONE IS OFF

52 OMF CA DEX

0053 0% DOFA BNE OFF

0064 0352 4CO203 IMP DIGIT GO BACK FOR NEXT DIGIT
:OF PHONE NUMBER

o0ss @5y H

o0ss mss :THIS IS A SIMPLE DELAY ROUTINE FOR THE TONE ON AND

:OFF PERI

[:

0068 0035 ASFF DELAY LDA ¢DELCON iGET DELAY ‘CONSTANT

ey @7 % WAIT SEC iDELAY FOR THAT LONG

0070 0ss E90 SBC 1301

071 @sA DOFB BNE WAIT

072 0sC @ RTS

o3 0sD i

o4 @D :THIS IS A TABLE OF THE CONSTANTS FOR THE TONE

0078 03sD {FREQUENCIES FOR EACH TELEPHONE DIGIT. THE

e @D ;CONSTANTS ARE TWO BYTES LONG, LOW BYTE FIRST.

W @D :

o @D 1) TABLE .BYTE $1332.376.501 :TWO TONES FOR 0

oms 0SE @

ws @sF %

o 00 o

s 0l CD -BYTE $CD %02.89E.501 :TWO TONES FOR °I'

oy me @

W 0%3 9

09 met 0

000 oes CD BYTE CDS®R376.501 : 7

w0 oms @

e 0% %

w0 0 Ol

os1 med <D BYTE $CD.S@.353301 ;'3

081 oA @

o8I 0B 53

0081 06C o

0082 036D L (BYTE $29.302 35E.50)

0082 meE @

o082 OX%F 9%

w2 w0

0083 wn L -BYTE 389,302.576.301 : s

e @ @

0083 @7 %

we @ o

[TR TR] BYTE $89.502353.301 :

o084 % @

0084 on n

wee w1 o

o8s mM 4B BYTE S4BSO2SESOI : 7

0085 0A @

o08s @B %€

wss 0IC 0

0086 wiD 4B BYTE $4B,302.576,801 +

o0ss OF @

wes UE 7

wss 0 0

[T TR) BYTE $4B,502,553,801 | 9

Fig 4-41: Phone Dialer Program (continued)

122

BASIC TECHNIQUES

o7 02 @2

weT 0 8

w0 01

ooy 0388 END
LRRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

ACRI AWB T ACR2 ACOB DELAY 03358 DELCON QOFF
mGIT 0302 NOEND 030A NUMPTR 00CO OFF 4C
OFFDEL 0020 ON anc ONDEL 0040 PHONE 0300
TICH AUDS TILH A? TiLL AOO4 TICH ACDS
T2LH ACo? TLL ACOs TABLE 0D WAIT 0387

END OF ASSEMBLY

Fig 4-41: Phone Dialer Program (continued)

Register Y is used as a pointer to the current digit of the telephone
number being dialed. It is first initialized to 0:

PHONE LDY #$00

IMPTR
e —
- ADDRESS |

BASE
ADORESS

DiGIT

0
NUMPTR
ON OB
OFF DEL
Fig 4-42: Telephone Dialer:
Indirect Indexed
Access (top) and Memory
Map (bottom) hild

PAGE O

Next, the digit is obtained, using an indirect indexed addressing tech-
nique (see Fig 4-42). It is assumed that the complete telephone number
has been stored sequentially starting at address “NUMPTR”’, and is
terminated by the value “‘OF’’, which indicates the end of the tele-
phone number.

DIGIT LDA (NUMPTR),Y GETDIGIT

The index register Y is then incremented, so that it will point to the

next digit the next time around. We check if the last digit (‘‘0F’’) has
been found, and, if so, the program terminates:

123

S e e ——

6502 APPLICATIONS BOOK
INY
CMP #30F
BNE NOEND
RTS

We will assume that we have not yet reached the last digit of the tele-
phone number, and we will proceed. The value of the digit itself must
be multiplied by four since we have already pointed out that the equiv-
alence table between the digits and the half periods contains four
bytes per entry. The multiplication by four will be performed by two
successive left shifts. The result will then be stored in register X so that
it can be used as an index:

NOEND ASL A

ASL A
TAX
Next, both Timer A and Timer B are set to the free running mode:
LDA #$CO
STA ACRI
STA ACR2
EQUIVALENCE
TABLE
D |e—" TILL
4BYTES 02 TitH
PER ENTRY 53 TaLl
01 T2CH

(digit 3 is being dialed)

Fig. 4-43: Loading the Timer

They are then loaded each with the half-period retrieved from the
equivalence table (see Fig 4-43):

LDA TABLE, X
STA TILL
INX

124

BASIC TECHNIQUES

LDA TABLE, X
STA TILH

STA TICH

INX

LDA TABLE, X
STA T2LL

INX

LDA TABLE, X
STA T2LH
STA T2CH

Once both timers have been actuated, the tone must simply be gen-
erated for a set period of time. This duration is specified here by the
value ONDEL. The required delay is obtained by the subroutine
DELAY, and a secondary ‘“ON’’ loop.

LDX #ONDEL
ON JSR DELAY

DEX

BNE ON

Finally, once the tone has been generated for the correct duration,
both timers are simply turned off:

LDA #300
STA ACRI
STA ACR2

then a delay of silence is generated:

LDX #OFFDEL
OFF JSR DELAY

DEX

BNE OFF

and the program returns to the beginning in order to generate the
tones corresponding to the next digit:

JMP DIGIT

125

S

6502 APPLICATIONS BOOK

The DELAY routine is a classical one:

DELAY LDA #DELCON

WAIT SEC
SBC #%01
BNE WAIT
RTS

The equivalence table which specifies the half-period equivalence for
the tones to be generated appears at the end of the program on Fig
4-41.

Let us compute here the half periods corresponding to each of the
frequencies which have been generated. Seven frequencies must be
generated: 697, 770, 852, 941, 1209, 1336, 1477.

As an example, for a frequency N = 697Hz, the corresponding peri-
od is 1/N=1434.7 microseconds. The half period is therefore 717 mi-.
croseconds or 02CD hexadecimal.

DESIRED HALF N=HALF HEX
FREQUENCY PERIOD PERIOD —1.7 for Ex. 4-4
697 717.3 716 02CC
770 649.3 648 0288
852 586.8 585 0249
941 531.3 530 0212
1209 413.5 412 019C
1336 374.2 372 0174
1477 338.5 337 0151

Fig. 4-44: Computing the Timer Constants

Similarly, the half periods for the other frequencies appear on Fig
4-44. The corresponding hexadecimal values have been used in the
program of Fig 4-41.

Let us now examine some possible improvements to this basic pro-
gram.

Exercise 4-4: Some improvement is possible as to the precision with

126

BASIC TECHNIQUES

which the frequencies are generated. Referring to chapter 2 of this
book or else to a hardware manual, you will notice that Timer 1 in
free-running mode does not generate a tone of exactly the expected
frequency. In fact, it adds either 1.5 microseconds or 2 microseconds
to the half-period value that has been loaded in the counter register.
Recompute the half frequencies that should be used assuming that
both Timer 1 and Timer 2 add on the average 1.75 microseconds to
every half-period.

Note: Don’t look yet, but the answer is on Fig. 4-44.
Exercise 4-5: This program can also be improved functionally by add-
ing a programmable ‘‘silence’’ symbol. This is useful in some coun-
tries for international dialing or within a company to obtain access to
an outside line. One must first dial some digits to get a line then wait
for a specified duration before dialing the actual number. Incorporate
this change in the above program.

A hardware improvement for cleaner frequencies is shown below.

Tontt I }—ooun
’ 3 R ,_“——M/\‘_-{I—@Gw
TONE2 AN .

Fig 4-453: Suggested Hardware Improvement for Cleaner Frequencies

SECTION 2: COMBINATIONS
OF TECHNIQUES

INTRODUCTION

The programs presented in this section will use a combination of the
techniques presented in this chapter and will be developed for the KIM
board. The only significant difference between KIM and SYM for the
purposes of these exercises will be the location of the PIO’s in the
memory map. The interested reader is referred to Fig 2-4 for the actual
KIM memory map. Since the programs are written in assembly-level
language using symbolic labels and operands, most of them would be
identical for SYM. It is only during the assembly process (either

127

6502 APPLICATIONS BOOK

through an automatic assembler such as the one presented in Appen-
dix A, or through manual assembly), i.e., at the time the hexadecimal
representation for the instructions is generated, that differences will
appear due to the differences in memory assignments.

FREQUENCY

Nmax

NMIN

Fig. 4.46: A Siren Sound

i

[TURN SPEAKER ON]

‘ Fig. 4-47: Siren Flow Chart -
' 1 Up Ramp

| SWITCH SPEAKER STATE —J

]
r DELAY j
1
[DECREASE DELAY J ‘

{7 TURN SPEAKER ON]
= I B

SWITCH SPEAKER STATE
!
r DELAY]
|
r DECREASE DELAY J
V {es

r DELAY =MAX J
Flj. 4-48: Stopping at Nmax I

128

BASIC TECHNIQUES

GENERATING A SIREN SOUND

The graphic representation of a siren sound is shown on Fig 4-46.
This sound starts at the minimum frequency Nmin, and increases dur-
ing time T up to a maximum value called Npax. The tone frequency
drops then instantaneously to Nmin and resumes its upward progres-
sion until time 2T, and so on. The flow-chart for generating a sound
of increasing frequencies is shown on Fig 4-47. In addition, the maxi-
mum frequency should not exceed Npyax, or else the sound will be-
come inaudible (or else cannot be generated by the speaker any more).
The flow-chart for repeatedly generating the ramp is shown on
Fig 4-48.

The program is shown on Fig 4-49. It approximates the shape of
Fig 4-46.

+SIREN
14
FA =$1700
FAD =$1701
14
0000: FF DELAY .BYT $FF
«=%$40
0040: A% 01 LDA #3$01
0042: 8D 01 17 STA FAD
0045S: 80 00 17 STA FA
0048: EE 00 17 SWITCH INC PA
004E: A& 00 LOX DELAY
004D CA LOOF DEX
004E: DO FD HENE LOOF
0050: Cé 00 DEC DELAY
00523 4C 48 00 JMF SWITCH
3
SYMEOL TARLE:
FA 1700 FAD 1701 LELAY 0000
SWITCH 0048 LOOF 004D

DONE

Fig 4-49: Siren program for the flow chart of Fig 4-47

The speaker is attached to the IORA register (memory address
1700), in bit position zero. It can be attached directly. For a better
sound, the circuit of Fig 4-50 is reccommended. The data direction reg-
ister DDRA for this PIO must first be configured so that bit zero is an
output:

LDA #%01
STA PAD DDRA

129

6502 APPLICATIONS BOOK

on

K

Fig. 4-50: Connecting a Speaker (Improved)

The speaker can then be turned on. Turning the speaker on and off
can be easily accomplished by a programming trick. This consists of
using the INC instruction. This instruction will increment the contents
of the designated register and will generate successive numbers which
will be alternately odd and even. This guarantees that the right-most
bit (bit 0, to which the speaker is connected) will switch from the value
zero to the value one. This allows turning the speaker on and off with
only a single instruction, versus two if a different pattern had to be
loaded in the accumulator and then transferred to the ORA. Let us
turn the speaker off. The speaker will remain off for a duration speci-
fied by the constant ““DELAY.’’ The delay loop is the following:

STA PA INITIAL VALUE IN ORA
SWITCH INC PA

LDX DELAY
LOOP DEX

BNE LOOP

Once the value DELAY has been used, it is decremented:

DEC DELAY

This way, the next time around, the delay value will be smaller and the
tone will be higher in pitch. The speaker must now be switched:

JMP SWITCH

The program above implements the upramp of the siren sound as
shown on flow chart 4-47.

Exercise 4-7: Complete the program as per the flow-chart of Fig 4-48

130

BASIC TECHNIQUES

to generate successive upramps, and generate a true siren sound.

Exercise 4-8: Write a siren program which goes up in pitch, then
down, then up again, etc.

SENSING AN INPUT PULSE

In this program, a switch will be depressed and the program must
measure the duration during which the switch is held down, then
beep n times through the loudspeaker; where n is the time during
which the switch was depressed, expressed in seconds. The speaker is
connected to bit 0 of the IORA as in the preceding program. The switch
is connected to bit 7 of the IORA, for easy detection. The connection
is illustrated on Fig 4-51.

7 0

IORA

Fig. 4-51: Connecting Switch and Speaker

The flow-chart for the program is shown on Fig4-52. The delay
duration during which the key is pressed is measured in units of .25
seconds, then converted into seconds. The speaker is then activated
and timed.

The program is shown on Fig 4-53. It follows the previous flow-
chart and should be self-explanatory.

PULSE MEASUREMENT

In this program, the time during which the key was depressed will be
measured, and a sound will be generated. The number of beeps

131

6502 APPLICATIONS BOOK

SWITCH DOWN DURING DURATION

I COUNTER=0 I

I INITIALIZE PIO J

3 ‘ YES

[COUNTER = COUNTER + 1 J

r DELAY .25 SEC]

YES

SWITCH DOWN?

Notes ‘ -

¢COUNTER holds “’n”’

(number of beeps). DIVIDE COUNTER
. . BY 4=SECONDS

® Nis a duration.

——3 |

[N=DURATION

—3 4
r DEiAY

I SWITCH SPEAKER STATE —l

|
I

YES

r DELAY .25/SEC I
[COUNTER =COUNTER —1 |

—=

Fig. 4-52: Detailed Flow Chart

b

132

BASIC TECHNIQUES

T =$00
FA =$1700
FAL =$1701
¥
.=$40
0040 A? 01 LDA #01
0042% 8D 01 17 STA FAD iFAO IS OUTFUT
0045 A9 00 LDA #0
0047% 85 00 STA T
0049: 8D 00 17 STA FA
004C: AD 00 17 FOL LhA PA
004F: 30 FR EMI FOL FSWITCH UF?
0051 E& 00 CFT INC T
0053: A2 3D LOX #4300 #.25 SEC DELAY
0055 A0 00 EL2 LY %0
0057: C8 EL1 INY
0058: DO FI ENE ERL1
005A: EB INX
00SE: [0 F8 RNE BRL2
00Skr: Al 00 17 LDA FA
0060¢ 10 EF BFL CFT -
$SWITCH IS UF:! RING SFEAKER ONCE.
0062 46 00 LSR T sOIVIDE EY FOUR
0064: 46 00 LSR T
006468 A% 00 SOUND LDA #0
0068¢: A2 80 LDX #480
0046A¢ A0 00 cL2 LDY #00
006C: C8 cL1 INY
0040 1O FD RNE CL1
004F: 49 01 . EOR #1
0071: 8D 00 17 STA FA
0074 ES8 INX
0075: DO F3 BNE CL2
+NEW 1/4 SECOND LDELAY
0077: A2 3D LDX #$30
0079: A0 00 oL2 LDY #00
Q07B: CB oLt INY
Q07C: DO FI ENE DL 1
Q07E: ES8 INX
007F: 0O F8 ENE DL2
0081: Cé 00 DEC T
0083: 10 Et EFL SOUND
0085: 00 ERK
SYMHOL TARLE:
T 0000 FAa 1700 FAT 170t
FOL 004C CFT 0051 RL2 0053
BL1 0057 SOUND 0Q&% cL2 V06N
CL1 006C oL2 0077 oLt QO7H

DOME
Fig 4-53: Switch Closure Measurement Program

should be proportional to the duration of the switch closure.

The flow-chart for this program is essentially analogous to the pre-
vious one and it is shown on Fig 4-54. The corresponding program is
shown on Fig 4-55.

This program uses the DELAY subroutine which measures a .25
second delay. The flow-chart for this subroutine is shown on Fig
4-56. The corresponding program is shown on Fig 4-57.

133

6502 APPLICATIONS BOOK

0000: 00

0040: A9
0042: 85
0044: 80D
0047 A9
0049 8D
004C: AD
004F: 30
0051 E&
00S3: 20
0056: AD
0059¢ 10
O05E: AS
005Dt 0A
00SE: 0A
005F: 20
0062 4C

00
00
00
o1
01
00
FR
00
90
00
Fé
00

co
SH

SYMROL TABLE:

PA

FREQ

CFPT
DONE

134

INITIALIZE PIO
TIMER=0

I

TIMER=TIMER +1

S

DELAY 250 MS
[READ TIMER I
GENERATE SOUND OF
FREQUENCY PROPORTIONAL
TO TIMER FOR 1 SEC
|
Fig. 4-54: Switch Time Measure
PA =$1700
FAD =$1701
0L250 =$00%0
FREQ =$00CO
;
+=00
T LEYT $00
’
.=$40
LIIA #00
sTa T FINIT TIME
17 STA FA
LOA $01
17 STA Fal FBRIT O OUT
17 FOL LbA FA 3POLLING...
BMI FOL iNOT FRESSED,
CPT INC T 3 INCREMENT TIME
00 JSR DL250 5250 MS DELAY.
17 LDhA FA
EFL CFT
HERE Lpa T
ASL A FMFY EY TWO
ASL A }MFY BY TWO AGAIN
00 JSR FREQ ;s MAKE TONE.
00 JMF HERE :
1700 Fal 1701 oL250
00CO T 0000 FOL
0051 HERE 005K

Fig 4-55: The Switch Time Measurement Program:
Tone Generation

0090
004C

00CO0¢ 85
00C2: A%
00C4: A2
00C&6: A4
o0Cc8: C8
00C9: [0
QOCE: 49
oocp: 8D
oono: E8
oop1: DO
oon3: AS
o0ns: 60

EF
00
80
EF

FD
o1
00

F3
BF

17

SYMEOL TABLE:

FA
FL2
DONE

1
0

BASIC TECHNIQUES

iMAKES A TONEr USES REG. A

}ASSUMES FA SET FOR OUTFUT,

}FREQUENCY CONSTANT IN REG. A ON ENTRY
i

FA =$1700

F =$EF

+=$C0
FREQ STA F

LOA #0

LDX #480 fDURATION CONSTANT
FL2 Loy F sFREQUENCY CONSTANT IN Y
FL1 INY

ENE FL1

EOR #1

STA FA s TOGGLE FAQ

INX

ENE FL2

LDA F

RTS

700 F 00BF FREQ
océ FL1 0ocs

Fig 4-535: The Switch Time Program (continued)

[SAVE Y J
!

r X = 61X]

[Yio]

l -]

x

i

x

+
-

‘ YES
RESTORE Y I

out
Fig. 4-56: 250ms Delay Flow Chart

00Co

135

6502 APPLICATIONS BOOK

FXRKNK DL2S0 *KKXKXK
5250 MILLISECOND DELAY
$REG. Y UNAFFECTED

’

+=$90
0090 98 nL2s0 TYA iSAVE Y
0091 A2 3D LDX #3330
00933 A0 00 oL2 LItY #0
0095: C8 DLl INY # INNER LOOF
0096 DO FD ENE D1
0098: E8 INX
0099: DO F8 ENE DL2 FOUTER LOOF
009kK: A8 TAY fRESTORE Y
009C: 60 RTS
SYMEOL TARLE:
0L250 0090 L2 0093 L1 00935

DONE
Fig.4-57: 250ms Delay

Exercise 4-9: The flow-chart of Fig 4-55 has been written so that each
box in the flow-chart corresponds to one instruction in the program of
Fig 4-54. Using this flow-chart, or else the program, write on the left
of each box the duration of the delay it introduces. Compute the re-

sulting internal delay duration for this subroutine. Is it exactly 250
ms?

SET COUNTER LOCATION
TO DURATION VALUE

I!IIIIII!RnDHWR‘
STATUS

[DECREMENT COUNTER —I

S

YES

Fig. 4-58: Time 10 Flow Chart

136

BASIC TECHNIQUES

FRRIKE TIMELQ HX0kdkok
31/10 SECOND LDELAY

’
TIMER =$1707
D =$90
[
e
00%E: 86 %L TIMELO STX I
00A0: A9 62 T0 LOA #%62 sDECIMAL 98
00A2: 8D 07 17 STA TIMER
00AS: AD 07 17 T1 LIOA TIMER
00AB: 10 FR EFL T1
00AA: C6 9D LDEC D
00AC: [0 F2 ENE TO
00AE: 60 RTS
SYMBOL TARLE:
TIMER 1707 o 000D TIME10 009E
T0 00A0 T1 00AY .

Fig 4-59: Generating a 0.1 Second Delay

A SIMPLE MUSIC PROGRAM

As a preliminary step to playing music, now let us generate a sound
with the speaker, using a prégrammed delay. The flow-chart is shown
on Fig 4-58 and the delay subroutine is shown on Fig 4-59. Prior to
using the subroutine, the constant F must be loaded with the appro-
priate delay duration which will determine the frequency of the sound.

In order to generate music which has some resemblance to actual
tunes, it is necessary to generate a sound of specified frequency and
also to control its duration. The musical symbols used to indicate the
duration of a tone are shown below:

S

d=2

Musical Symbols j-= 3
=4

(. = +50%) d=6
O =8

O.=12

The dot which may follow a note indicates plus 50% duration. Over-
all, there are seven possible durations. Additionally, it is necessary to
represent a ‘‘silence’’. At a minimum, this information will require
three bits in an encoded format, or else four bits in a decoded format.
(A decoded format is one where the values 1, 2, 3, 4, 6, 8, and 12 are
represented by their actual binary representation.)

To represent the notes of one octave, A, B, C, D, E, F, G must be

137

6502 APPLICATIONS BOOK

represented, as well as the six half notes between them. This represents
a total of 13 keys for one octave. If more than one octave should be
used, then one full byte should be allocated to represent the tone. If
the reader is limited by the amount of memory available on his board,
he may wish to restrict his tunes to 16 possible keys and would then be
able to use an encoding where the left half of every byte represents the
duration and the right part of every byte represents the notes.

Here, we will play simple tunes and use a straightforward encoding
technique, where one full byte is allocated to the duration, and one
full byte is allocated to the note frequency. Three examples, a Mo-
zart Sonatine, a Bach Chorale and a popular children’s song are shown
on Fig 4-60, 4-61 and 4-62.

The flow-chart for the corresponding music program is shown on
Fig 4-63 and the program itself appears on Fig 4-64.

A .1 second timer is a simple preliminary subroutine which will gen-
erate a .1 second delay (see Figs 4-58, 4-59).

Address Duration F Note
00 09 20 ad A
04 4F do#d C#
4 04 6B mi E
6 05 12 sol# & G
8 01 20 la A
A 01 39 sid B
C OF 20 ao A
E 02 00
12 09 1C fatd F#
12 04 6B mid g
14 04 91 la A
16 04 6B mid g
18 04 59 d b
1A 09 4F do#d g
1C 00 00
1E
20

Fig. 4-60: Mozart Sonatine

138

BASIC TECHNIQUES

Address Duration F Note
00 88 44 do C
02 06 59 rée D
04 06 6B mi E
06 88 83 sol G
08 06 74 fa F
A 06 74 fa F
C 88 91 la A
E 06 83 sol G
10 06 - 83 sol G
12 88 A3 do C
14 06 9E si B
16 06 A3 “do C
18 06 83 sol G
1A 06 6B mi E
1C 06 44 do C
1E 88 59 re D
20 06 6B "mi E
22 06 20 la A
24 88 83 sol G
26 06 74 fa F
28 06 6B mi E
2A 88 59 rée D
2C 06 44 do C
2E 06 04 sol G
30 06 44 do C
32 88 39 si B
34 06 44 do C
36 06 6B mi E
38 06 83 sol G
3A OE A3 do C
3C - OE 44 do C
3E 00 00 '

Fig 4-61: Bach Chorale

139

6502 APPLICATIONS BOOK

Address Duration F Note
0 04 44 dod C
2 04 44 dod C
4 04 44 dod C
6 04 59 réd D
8 09 6B mid E
A 09 59 red D
C 04 44 dod C
E 04 6B mid E
10 04 59 réd D
12 04 59 réd D
14 09 44 dod C
16 10 00
18 04 44 dod C
1A 04 44 dod C
1C 04 44 dod C
IE 04 59 re d D
20 09 6B mid E
22 09 59 réd D
24 04 44 dod C
26 04 6B mid E
28 04 59 réd D
2A 04 59 réd D
2C 09 44 dod C
2E 00 00

Exercise 4-10: Verify whether the subroutine implements a .1 second
delay exactly. Verify the duration of every instruction and the number
of times that the loop is executed. Compute the corresponding delay.

KIM TRAFFIC CONTROL

A possible connection for a traffic control simulation is shown on
Fig 4-66. It is equipped with switches in every direction, which will be

Fig. 4-62: ""Au clair de la lune"

used to indicate the presence of a car or else a pedestrian call.

140

00103
0012
0015¢
oo18:
001A:
OO01Ek:
001D

A
8D
2C
10
ca
no
40

31
07 17
07 17
FE

F3

BASIC TECHNIQUES

“F CONTAINS DELAY

I X =DURATION 4]

s
]
— = 1

| Y =TONE DELAY l
Y=Y+ I

NO

- L SWITCH SPEAKER WITH A I
l X=X+1 '

“‘°

out

Fig. 4-63: Play Sound Flow Chart

PXKKKX FLAY A TUNE X¥HKX

FA =$1700
FAD =$1701
TIMER =$1707
+=00
ADIRS .=.+2
TEMF «=.tl
YSAVE v=e bl
F v=atl
H
.=%$10
TIME20 LIA #$31
STA TIMER
T1 BIT TIMER
BFL T1
DEX
BNE TIME20
" RTS

Fig 4-64: Playing a Tune

141

6502 APPLICATIONS BOOK

-

=420
0020: 84 03 FREQT STY YSAVE
0022: 85 04 STA F
0024: A? 31 FTO0 LIA #3%31
0026 80 07 17 STA TIMER
0029: A4 04 FT1 Loy F
002k: C8 FT2 INY
002C: [0 FD ENE FT2
002E: EE 00 17 INC FA
0031: 2C 07 17 RIT TIMER
0034: 10 F3 BFL FT1
0036: Ca FT3 DEX
0037: N0 EB BNE FTO
003?: A4 03 LItY YSAVE
Q03ER: 60 RTS

7

+=%$40
0040: A2 OF START LOX $$0F
0042 %A TXS
0043 A9 00 LIIA #3300
0045: 8D FaA 17 STA $17FA
0048: 8L FE 17 STA $17FE
004k: A9 1C LDlA $3$1C
0040r: B8l FE 17 STA $17FFR
0050: 8L FF 17 STA $17FF
Q053! A9 01 LDA #3$01
0055: 8D 01 17 STA FAD
00581 A0 00 ODACAFO LDY 8300
N0SAL H1 Q0 NEXT LA (ATDRS) » Y
005C: 8% 02 STA TEMF
Q0SE: 29 7F AND B3 7F
0040: AA TAX
0061 FN0 FS REQ DACAHFD
Q063: €8 INY
00440 BL 0N LA CADTRG) v
00650 FO 1O BEQ TOwML
0048 20 29 00 SR OFREQT
Q004H: 24 O2 BIT TEMF
Q040! 30 05 BMI AFTER
Q0AF: A2 02 LUX B302
2071 20 19 00 JEROTIMED
Q074 CA . AFTER INY
D075 a0 5N a0 fME HE T
20731 20 10 00 TuHE JER TImEL2O
O007RY FO F7 BEQ AFFER
SYMBOL TABLE:
FA 1700 FAD
ADNDRS 0000 TEMF
F 0004 TIME20
FREQT 0020 FTO
FT2 002R FT3
DACAFO 0058 NEXT
TONE 0078

FSTART TIMER

PSWITCH

(1720 SEC.)

SFEAKER

» TIME ELAFSED?

N0 GO ON.

s INTERRUFT VECTOR

iFAD IS

sOURATION

1701
0002
0010
0024
0036
Q0SA

Fig 4-64: Playing a Tune (continued)

142

QUTFUT

TIMER
YSAVE
T1
FT1
START
AFTER

1707
0003
0015
0029
0040
0074

BASIC TECHNIQUES

Exercise 4-11: Write a traffic control program which meets the follow-
ing specifications:

® Minimum yellow duration: 3 seconds

® Whenever a car presence is detected (by holding down one of the
switches) extend the green duration for that duration by three seconds.
® Maximum green duration in any direction: 2 minutes, if there is a
request in the opposite direction.

® Blink the lights at night (a night indication is provided by a separate
switch).

® A possible flow-chart for this program is shown on Fig 4-65. Write
the corresponding program.

A GREEN, 8 RED
Y =0 (ACTIVE DIRECTION = A}

YES

A RED, B GREEN
¥ = 1(8 01~ ACTIVE)

A GREEN. 8 RED
¥ =O{A DR~ ACTIVE)

Fig. 4-65: Traffic Flow Chart

LEARN THE MULTIPLICATION TABLE

As a final exercise, this program should teach the multiplication
table. The program should blink an LED or the loudspeaker n times,
with n between 1 and 10, then wait 2 seconds, then blink again p times,
with p between 1 and 10.

143

6502 APPLICATIONS BOOK

8 DIRECTION ie

L
[.

| i
,’, {msmcti OF A
ABSENCE | VEHICLE

A DIRECTION

<
?.
3 p

f——x PAIO)
< PAs (R}
——= PAXG)
}mk.)

Vee Vee Vo

—— PAsG)
DiRn A

.o -

10 1) p——t PA((0)
12 13 ek PAs(R)
vee] 14 7|60

L
» =

Fig. 4-66: Traffic Controller

The user must then push n times on a push-button switch to enter his
answer. An audible acknowledgment should be provided by the speak-
er. The user terminates his answer by not pushing on the switch for 3
seconds or more. If the answer was correct, the LED should light up
for five seconds. If the answer was not correct, the LED will blink.

Exercise 4-12: Design the corresponding flow chart, and write the pro-
gram. (This program is simple but somewhat longer than many of the
previous ones. If you really need the answer, it is shown in Appendix
B.)

SUMMARY

Simple input-output devices have now been connected to a 6502
board. We have learned how to realize simple hardware interfaces,
and how to develop simple applications software to sense and control
an external environment. Although the complexity of the applications
presented here has been kept low, more complex applications could be
developed using the same simple hardware. We are now ready to pro-
ceed to more complex programs and interfaces in Chapter 5: Indus-
trial and Home Applications.

144

CHAPTER 5

INDUSTRIAL AND HOME
APPLICATIONS

INTRODUCTION

The basic skills for connecting simple devices to a 6502-based micro-
computer board, and for developing the basic applications software,
have been presented in Chapter 4. Here, more complex devices will be
interfaced to the 6502 board, and more complex applications software
will be developed. The applications presented are typical home and
industrial control situations. In the next chapter, microcomputer
peripherals will be interfaced to the 6502 board.

The first application presented here will be a traffic-control simula-
tion. Traffic lights will be simulated by LED’s on the board and appli-
cation programs of increasing complexity will be developed. The pres-
ence of cars will even be detected by simulated loop detectors, normally
embedded in the pavement, and simulated here by push-button switches.
The skills required for developing these hardware and software interfaces
are those required by a real industrial control environment.

Then, a 5 x 7 dot matrix LED will be interfaced to this system. This
is a technique frequently used in the display of data. Dot matrices are
used, not just for LED’s, but to represent characters on a television
screen, or on a dot matrix printer. This dot matrix will be used to dis-
play actual switch values as sensed by the 6502 board.

Tones will then be generated with the loudspeaker in order to de-
velop simple music programs. The set of switches will be used to spe-
cify which note should be played. The skills acquired in controlling the
sound of the speaker will also be used by the next program to generate

145

6502 APPLICATIONS BOOK

sounds such as a siren.

The next application program will implement a burglar alarm system
for a home or a building. A light beam will be used as one of the de-
vices which detect a possible intrusion. Whenever the light beam is
interrupted the alarm will be sounded through the speaker. Many
additional improvements will also be proposed in the exercises.

The speed of an ordinary DC motor will then be controlled by the
computer. It is, in fact, quite simple to control the speed of a motor using
digital techniques. These techniques and the required hardware inter-
face will be presented.

In the next application, a heat sensing device will be connected to
the microprocessor board, and the temperature measurement will be
output in the form of an audible sound. The higher the temperature,
the higher the pitch of the tone will be. This will introduce the concept
of analog to digital conversion, and the actual hardware and software
techniques used to effect this conversion will be presented here.

The reader is encouraged to build the actual applications board #2
required by the programs in this chapter. All components used on this
board are low in cost, and normally readily available from an elec-
tronics shop (except perhaps for the digital to analog converter which
must often be ordered from a distributor). Photographs of the actual
board are shown on Fig 5-1, 5-2 and 5-3.

Fig. 5-1: The Application Board #2

146

INDUSTRIAL AND HOME APPLICATIONS

Fig. 5-3: For convenience Application Cables connect to board

147

6502 APPLICATIONS BOOK

In view of the limited number of ports normally available on the
output of the microcomputer board, four connectors labeled H1, H2,
H3, and H4 have been installed on the board to facilitate the connec-
tions and avoid rewiring between programs. These connectors have

“been designed to mate directly to the SYM external connection cables
but could be readily adapted to the output of other microcomputer
boards. For each application, it will be necessary to plug in one or

esscesscescee LED 13
..'Cmrg:{:... SMALL
MOTOR RELAY
L
BIG
R2 k3 RELAY 1
ol
08
oNg
oNe
® o
oHe
$33| 7404 [_—_|R4 BIG
RELAY 2
M (not used)
MC1408L8
mal| | B4
DAC| | M5 [[Me m7
LED E
He M2 MAT- M3
*0p RIX
0N=

LED’S

sw [sw| |sw| |sw] o Qe® 0Ow

B4 83 | [B2] |B1 | .used)

@O

OO

M8
SW Sw SW SW
A4 A3 A2 Al

Fig. 53-4: Board Layout

148

INDUSTRIAL AND HOME APPLICATIONS

two of the output cables coming from the board to the corresponding
connectors shown on the applications board. The details of each con-
nection will be indicated at the beginning of each application.

The component layout for the board is shown on Fig 5-4. The con-
nectors detail is shown on Fig 5-5-A and B. The details of each connec-
tion is shown within the paragraph corresponding to each application.

CONNECTOR
Hi
PIN NO

[t
9
vee o:T_.. MVVCC
G red ON THE
PAS = BOTTOM
8

4
o1580F (pas o2 me 12 $SIDE
Via #1) Pa3
I0RA } pag C,B -
(A00)) { pat o5 T
PAD |o 7
2LSBOF ppy |02 SWITCH A2
VIA XL 22
P8O SWITCHA)
1088
(A000)
CONNECTOR
H2
PIN NO.
VCCO-'\‘—-O
KD
W=
PA7 O———————e SWITCHB4
PAS " ’ B3
PASOA .~ B2
VIA X1 PA4 O B
10RA PR L M— v A4
A0) a2 ke 7 A3
PAl O A2
[—— TAl
{Ls8)
Po7 0-:?—- ROW 1 OF LED MATRIX (PIN 2}
PBS O—mmeemet= ROW 2 - (12)
VIA K '8
o .
ks) PB4 ROW 3 i 3
Ao { P83 ROW 4]
(EXCEPT | PB2 O ROWS (an
PBs) pey o-2L ROW & - (10)
PBO O ROW 7 (44

Fig. 5-5a: H1 and H2 Connectors

A wire-wrap technique has been used to connect the wires to the pins
on the back of the board as shown on Fig 5-2. It is naturally possible
to solder the wires. Do not forget the usual precautions in handling
LSI circuits: all instruments (including yourself) should be grounded.
As a final detail, the pot trimmer (variable resistor) connected in series
with the loudspeaker should not be set to the value zero. If it were,
the pot might burn when power is applied to the speaker, in the case of
a board like the SYM where the speaker would be connected to one of
the buffered outputs (in addition the output transistor is also likely to
burn out). An additional resistor in series with the speaker is recom-

149

6502 APPLICATIONS BOOK

mended for this reason.

The goal of this chapter is to teach you actual applications tech-
niques which should enable you to create either home applications of
significant complexity or to solve actual industrial control problems in
a realistic environment. At the end of this chapter, you should have
acquired all the basic skills required to start developing complex ap-
plications on your own. If specific interfacing problems should be en-
countered, reference C207 ‘‘Microprocessor Interfacing Techniques”’
is suggested.

Important note: In order to use one more input-output line, tran-
sistor 1 (centermost) of the four buffered ports of the SYM is bypassed.

The programs presented in this section have been designed to be
improved. The alert reader will notice that many improvements in
style are possible. Such improvements are proposed or described
in the exercise section at the end of every application. When reading
the programs, it is suggested that you watch for such possible im-
provements in the coding. However, it is only in the next chapter that
we will present optimized programs, once all other problems have
been solved.

Again, in this chapter, a large number of exercises will be proposed.
It is strongly recommended that most of these exercises be solved
either on paper or on a real microcomputer board. They have been
carefully designed to insure that concepts presented in the preced-
ing section were actually learned, and that you can use them creative-
ly. If you can solve the exercises without looking at this book, you will
have effectively learned how to resolve your own applications prob-

lems.
CONNECTOR CONNECTOR
3
PINNO iy
VI S —
GND o4 vec o——
Hvoldl =, G"°°_—+
ol ol PA7 o—-———-l/PBOFDAC(PINSy
A
\ORA | PA7 O—i——e—e (PHOTO TRANSISTOR} :: 7 :;Z . f‘;’;
ACO1 | PAS O~S——sm (MOTOR) vian) o s PRSI
P87 0—l2 e (SPEAKER) 1ORA (P8 0= es ‘q’
PBS o1o o (SMALLRELAY) PCT vt b - ‘;n N :];)
ViAw3 | PBS O BIGRELAY 1) PAl e /P2 " (11}
1ORB { PB4 Om——e- COL 5 OF LED MATRIX (PIN 13) .o 5 vm o
Ao | PRI o———ecOta v (14) 1sBOF 158 !
PB2 O e COLI - ®) VAN 2
° - cow /P (M-
PBI o-;———. oz .- oM ors P80 ARATOR O/P (MS - PIN 10)
P80 022 e COLI -) AC0O

Fig. 3-3b: H3 and H-4 Connectors

150

INDUSTRIAL AND HOME APPLICATIONS

A TRAFFIC CONTROL SYSTEM

We are going to develop programs to control a simulated intersec-
tion. The diagram of the intersection appears in Fig 5-6. It has two
directions of traffic flow identified as A and B. In traffic control jar-
gon they are called the ‘‘phases.’’ The two traffic lights for both direc-
tions of a phase, such as the two traffic lights for arterial A, will dis-
play the same color (green, yellow, or red) at the same time. Similarly,
the other two traffic lights for phase B will be turning on simultane-
ously. These four sets of traffic lights will be simulated on our board
by four sets of green, yellow, and red LED’s. Additionally, we will as-
sume that vehicle loop detectors have been embedded in the pavement
at the locations marked A-1, A-2, B-1, B-2 in the diagram of Fig 5-6.

8

EIECIOR

R
8z | Y
————] G

RYG

———{eod]
PETECTON
R

f

Dt 1ECTOR
A2

Q

<

o
>

DETECTOR

B

Fig. 5-6: The Traffic Control System

DDRA IORA 7404 N
o I /‘/1\ GREEN A
— _— 7
[Do——@—— YELOW A
S ——
20 T @———- REDA
3l Do——@—— GREEN B
4 {0 @ YELLOW B
— i
st %_@—_. RED B
el o LED PAIRS
S fd
7| o
L

(A0Q1)

3
g

Fig. 5-7: Connecting the LED's

151

—— :

6502 APPLICATIONS BOOK
They are called ‘‘loop detectors,”’
later.

Let us first examine the hardware connection of our ‘traffic lights”’
(in fact, the LEDs) to the microprocessor system. Referring to Fig 5-7,
we are connecting a 7404 driver to the IORA register of the 6522 #1.
The LED pairs appear on the right of the illustration. For clarity, only
one LED is shown on each line. In fact, two LEDs are connected in
parallel on each line since there are two sets of traffic lights for every
phase. The actual connection is shown on Fig 5-8. In order to config-
ure the low order 6 bits of IORA as outputs, the direction register,
DDRA, which appears to its left will have to be loaded with the proper
bit pattern: “00111111.”> A driver (the 7404) is necessary in order to
supply enough current to light up the LED’s.

and their role will be explained

CONNECTOR
H! LD AW
12
s MV
I ON THE
BOTTOM
p SIDE

k

vee
GND|
PAS
6158 0F | PAs
VIA L1 PA3
1ORA) pA2
woon | par
PAD
2LS80F pat e SWITCH A2

VIAL) 1§ peo ICH A1
s ! SWITC

{(AD00)

i
i

w]ofm[o|v{a

— T3]

:

I

Fig. 5-8: Actual LED Connection

R

l TURN RA ON I
AND YB OFF

r DELAY]

TURN RA OFF
AND YB ON

l DELAY |

S

Fig. 5-9: Night Pattern

152

INDUSTRIAL AND HOME APPLICATIONS

We are now going to develop programs for several traffic control
algorithms. Two main cases can be distinguished: the night pattern

(flashing lights), and the day pattern.

(Connection: Connector A to Connector H1)

0100
0102

A9
8D

A9
8D
A9
85

0105
0107
010A
010C

010E
o111
0113

20
A9
8D

0116
0118

A9
85

20
4C

Ol1A
011D

3F
03 A0

02

01 A0
FC

00

20 01
20
01 A0

FC
00

20 01
05 01

NIT2

NIGHT LDA

STA

LDA
STA
LDA
STA

JSR
LDA
STA

LDA
STA

JSR
JMP

#$3F
$A003

#3$02
$A001
$FC
$00

DLYA
#$20
$A001

#SFC
$00

DLYA
NIT2

*

Set VIA #1 DDRA = 3F for output
mode

Turn on yellow light in one direction
- count,

Set DLYA Count = $FC (i.e. —4)
at location $0000

Call DLYA

Turn on red light in the other
direction

Set DLYA count = $FC at
loc. $0000

Call DLYA

Repeat

Subroutine DLYA: This subroutine takes index from location 0000, loop
until this index incremented from a pre-set negative value to zero, the pre-set index
is used to control the length of delay.

0120
0122
0124
0125
0127
0129
012A
012C
012E

A2
A0
C8
Co
DO
E8
EO
DO
E6
0130 AS
0132 C9
0134 DO
0136 60

9D
71

00
FB

00

F4
00

00
00
EA

DLYA
LPXA
LPYA

LDX
LDY
INY
CPY
BNE
INX
CPX
BNE
INC

LDA
CMP
BNE
RTS

#39D
#371

#3$00
LPYA

#300
LPXA
$00

$00
#300
DLYA

—
Inner Outer
delay delay
loop loop

Increment delay count every time an
outer delay loop is completed

Loop till index = 0

Fig. 5-10: Traffic Light Simulation: Night Mode (Program 5-1)

153

6502 APPLICATIONS BOOK

Night Pattern

This is the simplest pattern. The traffic lights are flashing red in one
direction and amber in the other one. This traffic control strategy is
used for isolated intersections with a low amount of traffic at night.
The flow-chart corresponding to the algorithm appears on Fig 5-9. It
states that the red for one direction and the yellow for the other-one
are on or off simultaneously. They are both kept on or off for a fixed
duration called “DELAY”’. The program corresponding to this flow
chart appears on Fig 5-10. It consists of a main program called “NIGHT”’
and a delay subroutine called ‘“‘DLYA.”’ Let us examine the program.

Referring back to Fig 5-7, the Data Direction Register for the 6522
#1 must first be properly configured so that the lower six bits of IORA
will be the outputs which will drive the LEDs. This DDRA is located
at memory location A003 and the IORA is located at memory location
A001 (refer to Fig 3-6 for the 6522 memory map).

The first two instructions load the required contents in the Data Di-
rection Register:

NIGHT LDA #$3F
STA $A003 SET DDRA

We then simply have to deposit the appropriate pattern in the IORA
register to turn the required LEDs on or off. The pattern required for
addressing each LED pair appears on Fig 5-11.

BINARY HEX LIGHT
00000001 () GREEN A
00000010 02 YELLOW A
00000100 04 RED A
00001000 08 GREEN B
00010000 10 YELLOW B
00100000 20 RED B

Fig. 5-11: Pattern to Address the LED Pairs

154

INDUSTRIAL AND HOME APPLICATIONS

The next two lines of the program turn on the yellow for A by de-
positing the hexadecimal value ‘“02”’ in the IORA register.

NIT2 LDA #$02
STA $A001 . SET IORA

A delay must then be implemented. The delay value is deposited in the
accumulator and then stored at memory location ‘‘00’’ where it will be
found by the delay routine. A subroutine jump then occurs to DLYA.

LDA #$FC
STA $00
JSR DLYA

Once the specified delay has elapsed, the hexadecimal value ‘20’ is
deposited into the IORA. This will turn off yellow in direction A and
simultaneously turn on the red for direction B. As before, the delay
duration is deposited in memory location “‘0,”> and a jump occurs
again to the DLYA subroutine:

LDA #$20
STA $A001
LDA #SFC
STA $00

JSR DLYA

Finally, upon expiration of a specified delay, the program loops back
to location NIT2 where it turns on YA and turns off RB again:

JMP NIT2

The operation of the program should be completely straightforward at
this point. Let us examine the delay subroutine. The principle of delay
loops is to load a register or a memory location with a value and then
increment or decrement it until it reaches a set value. Since the reader
is presumably familiar with the decrementation technique (see ref
C202), we are here going to use an incrementation technique for a
change. However, it requires a few more instructions. An improve-
ment will be suggested in an exercise at the end of this section. The
delay subroutine appears in Fig 5-12. Since the delay to be implement-

155

6502 APPLICATIONS BOOK

ed is of the order of tens of seconds, it cannot be implemented as a sin-
gle loop. A single loop delay would load a register with the value 255
(hexadecimal FF) and decrement or increment from there. The result-
ing delay would not be sufficient. In order to implement the longer
delay, we will use nested loops: an inner delay loop, and at least one
outer delay loop which will be executed every time that the inner one
has counted out. Let us examine the program. Register X is used as the
outer loop counter. It is loaded with the hexadecimal value 9D. This
value will be justified later on:

DLYA LDX #$9D

The second instruction of the program loads register Y with the hex-
adecimal value 71. Y is the inner loop counter:

LPXA LDY #$71
The next three instructions implement the inner delay loop:

LPYA INY
CPY #300
BNE LPYA

Y is incremented until it reaches the value 0. Every time that the inner

delay loop counts out (i.e., that Y reaches the value 0), the outer coun-
ter X is incremented. This is the sixth instruction in the program:

INX

Every time that X is incremented, it is compared to the value 0, and
as long as the value 0 is not reached, the branch occurs back to LPXA
at the beginning of the inner delay loop:

CPX #8300
BNE LPXA

The resulting delay so far is, therefore, the inner delay value times the
number of times that the outer delay loop has been executed.

156

INDUSTRIAL AND HOME APPLICATIONS

Every time that this outer delay loop times out, our overall delay
counter at location 00 is incremented by 1:

INC $00

This is a third delay loop. The contents of memory location 00 are
tested against the value 00 every time that they are incremented.
Whenever the value 00 is reached, we exit from this routine. As long as
it does not reach the value 0, we go back to location DLYA, i.e., at the
beginning of the previous delay loop to execute the previous procedure
again:

LDA 3500
CMP #3$00
BNE DLYA
RTS

The overall structure of the program is shown on Fig 5-12, with its three
nested delay loops, and the timing of the instructions. The overall de-
lay will be equal to the contents of memory location 00 times the outer
loop delay times the inner loop delay. Let us compute this total delay
duration. The timing of the instructions appears on Fig 5-12. Let us
examine the inner loop first. Every time that it is executed, three in-
structions are executed lasting seven microseconds. To keep things
simple, we will require this inner loop to generate a delay of approxi-
mately 1 millisecond. The outer loop #1 will be responsible for imple-
menting a 100,000 millisecond delay (0.1 second).

(2) DLYA ILDX -—
(2) LPXA LDY
INY
g; INNER I LPYA cPY OUER
3) LooP BNE LPYA #
2 INX
223 CPX ?UTER
3) BNE LPXA 0,?”
(5) INC
(3) LDA
) CMP
A BNE DLYA
RTS

Fig 5-12: Loop Tuning

157

T/

6502 APPLICATIONS BOOK

Let us start with the value ¢‘80°° (hexadecimal) in register Y. This is
128 in binary, the middle of the range which can be obtained with 8
bits. Running through the inner delay loop will result in incrementing
Y 128 times. The total duration of the loop will, therefore, be 7 X 128

= 896 microseconds. Since we want to obtain a delay of approximately
1,024 microseconds for this inner loop, we must modify the value to
be loaded in register Y. Let us compute it. We want this value N to be
such that N X 7 = 1000. N must, therefore, be equal to 1000 + 7 =
142.86. The nearest integer is 143. Since, in this particular delay sub-
routine, we are incrementing the value contained in.Y, rather than de-
crementing it, we want to load in Y the value 256 — 143 = 113 decimal
or 71 hexadecimal. '

Let us now compute the duration of the delay introduced by the
outer delay loop #1. One traversal of the outer delay loop will result in
a delay equal to the duration of the first instruction of the program (at
address DLYA) plus the duration of the inner delay loop, plus the fol-
lowing three instructions up to and including the branch BMI LPXA.
The duration is:

24+ 7 X 143 4+ 7 = 1010 microseconds.

We want this outer delay loop #1 to implement a delay of .1 second
or 100,000 microseconds. The number of times P that it must be exe-
cuted must, therefore, be such that 1010 x P = 100000. P must there-
fore be equal to 100000 ~ 1010 = 99.

Again, since we are using an incrementing technique for the delay,
the number to be deposited in X must be such that it is incremented
exactly 99 times before it overflows into the value ¢‘00.”” The number
to be deposited in X must, therefore, be equal to 256 — 99 = 157 in
decimal or 9D hexadecimal. Let us now verify the total duration of the
delay we have implemented. The outer loop delay is equal to 99 X

1010 = 99990 microseconds. The remaining four instructions to be ex-

ecuted at the end of the DLYA subroutine represent a duration of
5+ 3 + 2 4+ 3 = 13 microseconds. 2 «(’s must be added for the first
instruction of DLYA.)
99990 + 15 = 100005 microseconds. This represents nearly exactly a
.1 second delay. In fact, it is so close to .1 second that you should be
able to clock this routine with a stop watch and verify the accuracy of
this method.

A word of caution: Remember that this subroutine uses an in-
crementing technique. The number to be deposited at memory loca-
tion 00 will control the number of tenths of a second of delay that the

158

INDUSTRIAL AND HOME APPLICATIONS

subroutine will introduce. However, the number to be deposited at
location 00 should be the complement of the actual number of tenths
of a second since it will be incremented until it overflows through 0. In
other words, to obtain a .4 second delay, you should not deposit
the value 4 at location 00 but deposit the value 256 — 4 = 252 decimal
= FC hexadecimal. This is what we did in the program of Fig 5-10
(night mode algorithm).
The time has come now to improve this delay routine:

Exercise 5-1: Rewrite the delay subroutine by using a decrementation
technique rather than an incrementation technique. Recompute the
numbers to be loaded in X and Y so that the resulting delay introduced
by the subroutine is approximately .1 second. What is the advantage
of using a decrementing technique rather than an incrementing
technique? '

Caution: If you decide to use the decrementing technique for the
delay, do not forget to change location 09FC in the memory. A differ-
ent constant must be loaded prior to calling this routine.

Exercise 5-2: Modify the program so that the lights flash every second.
Also, shorten it by using EOR to toggle the lights from one configur-
ation to another.

Day Mode

In this mode, each traffic light goes through a green, yellow, and
red sequence in the usual manner. As long as the light in direction A is
green or yellow, the light for B is red, and vice versa. The flow-chart
corresponding to the control algorithm appears on Fig 5-13. The ar-
rows on the right of the flow-chart indicate the length of time during
which each of the lights is on. If we call D1 the green duration for A,
D2 the yellow duration for A, D3 and D4 respectively the durations of
the green and yellow for B, we can see, by inspecting the diagram, that
the total duration of a cycle is D1 + D2 + D3 + D4.

At areal intersection, these delays are subject to constraints. In par-
ticular, the cycle of the intersection is normally between one minute
and two minutes. The maximum is due to the fact that most drivers
will not tolerate a red light duration of more than two minutes in any
direction: they will simply go through once their patience is exhausted,
assuming that the traffic light is malfunctioning. In addition, the

159

6502 APPLICATIONS BOOK

A »
GYR ave
GREEN AON
RED B ON e @
2
o

RED A ON
GREEN B ON

YELLOW B ON

Fig. 5-13: Day Mode (Off Commands not shown)

other delays are constrained by the clearances necessary for a vehicle
or a pedestrian to clear the intersection once he has entered it. The yel-
low time is also called the clearance time and represents the time that is
necessary for a car to clear the intersection. The green may have any
minimal duration as long as no pedestrians are crossing the intersec-
tion. However, if pedestrians may cross this intersection, the mini-
mum red duration should be such that a pedestrian may safely clear
the intersection. The duration of the red in direction B, for example, is
equal to D1 + D2. If we assume, for example, that the minimum yel-
low in direction A is equal to 3 seconds and that the minimum red for
direction B is equal to 10 seconds, we can see by inspecting Fig 5-13 that
the minimum duration for the green in direction AisD1 = 10 — 3 =
7 seconds. Mathematically:

If we set:
GREEN A = D1
YELLOW A = D2
GREEN B = D3
YELLOW B = D4
Then:
RED A = D3 + D4
REDB = D1 + D2

In general, the cycleis fixed,and D1 + D2 + D3 + D4 = CONSTANT.
In our program, we will use faster cycles than in real life. This is
simply because it is frustrating to wait for one or more minutes in

160

INDUSTRIAL AND HOME APPLICATIONS

order to observe the correct functioning of the traffic lights. For prac-
tical purposes, a cycle time of 10 to 20 seconds is desirable for testing
purposes, and the reader should now have acquired the skills to adjust
the delay easily, so that his microcomputer could be connected to a real
intersection. The program appears on Fig 5-14.

0140 A9 3F DAY LDA #$3F
0142 8D 03 A0 STA $A003 Set VIA #1 DDRA = $3F for output
mode
0145 A9 21 ONDAY LDA #$21
0147 8D 01 A0 STA $A001 Turn on green and red in two
directions

014A A9 DO LDA #3$DO

014C 85 00 STA $00 Set DLYA count = $DO at loc.
' $0000

014E 20 20 01 JSR DLYA Call delay

0151 A9 22 LDA #$22 Turn on yellow and red

0153 8D 01 A0 STA $A001

0156 A9 EA LDA #SEA

0158 85 00 STA $00 Set DLYA count = $EA

015A 20 20 O1 JSR DLYA Call delay

015D A9 0C LDA #$0C Turn on red and green

015F 8D 01 A0 STA $A001

0162 A9 DO LDA #3$D0

0164 85 00 STA $00 Set DLYA index = $D0O

0166 20 20 01 JSR DLYA Call delay

0169 A9 14 LDA #$14 Turn on red and yellow

016B 8D 01 A0 STA $A001

016E A9 E8 LDA #$ES8

0170 85 00 STA $00 Set DLYA index = $E8

0172 20 20 01 JSR DLYA Call delay

0175 4C 45 01 JMP ONDAY Repeat

Fig. 5-14 (Program 5-2): Traffic Light Simulation: Day Mode

(Connection: Connector A to Connector H1)

As in the previous program, the Data Direction Register DDRA
must be configured in the output mode to control the 6 LEDs connect-
ed to it. This is done by the first two instructions of the program:

DAY LDA #$3F
STA $A003

Then, the green for direction A and the red for direction B are turned
on by the next two instructions which load the appropriate bit pattern

161

6502 APPLICATIONS BOOK

(21 hexadecimal) in the 1/0 register:

ON DAY LDA #3521
STA $A001

A delay duration is then specified by depositing a value in memory
‘ocation 00 and by calling the delay subroutine:

LDA #$DO
STA 300
JSR DLYA

The process is then repeated for the yellow in direction A, the red in
direction A, and the green in direction B, and finally the yellow in
direction B, before coming back to the starting point:

LDA #$22 YELLOW A AND RED B
STA $A001

LDA #$EA

STA $00

JSR DLYA DELAY

LDA #$0C RED A AND GREEN B
STA $A001

LDA #$DO

STA $00

JSR DLYA DELAY

LDA #$14 RED B AND YELLOW B
STA $A001

LDA #$E8

STA $00

JSR DLYA DELAY

JMP ONDAY REPEAT

The reader should verify that the program corresponds exactly to the
flow-chart of Fig 5-13. Its interpretation should be completely straight

162

INDUSTRIAL AND HOME APPLICATIONS

forward now. The reader is strongly encouraged to try different time
constants than the ones indicated in the program and verify that the
timing is what he expects. Let us now consider improvements to this
traffic control algorithm.

For example, you can modify the program so that the yellow clear-
ance, the red clearance and the cycle durations be specified by the length
of time one of the switches is depressed after starting the program.

Exercise 5-3: Implement a ‘‘dynamic response algorithm *’ : the green
time for arterial A will be extended by five seconds every time a request
is sensed on the “‘loop detector’’ (a switch), up to a maximum green
duration of three minutes.

Exercise 5-4: Implement *‘pedestrian calls’’> by using the switches.
Green should be give to the pedestrian as soon as possible, while respec-
ting the minimum clearances.

Exercise 5-5 : Implement a “‘police switch’’: by pushing one of the
switches, the intersection will sequence manually through its sequence.
If pushed quickly twice, the intersection reverts to automatic.

DOT MATRIX LED

We willuseherea 5 x 7 dot-matrix LED display (see Fig 5-15). This
type of matrix is used in a number of applications. For example, dot
matrix printers often use a 5 x 7 dot matrix in order to print charac-
ters on paper. TV monitors or CRT displays also use a dot matrix in
order to display characters in the screen. 5 x 7 is the standard mini-
mal dot matrix for an acceptable representation of characters but it is
not the best in terms of readability. Larger dox matrices, such as 7 X
9, are used for improved readability, at increased cost. In this applica-

163

6502 APPLICATIONS BOOK

O0000O0O0
O00000O0
0000000
0000000
0000000

Fig. 5-15: A 5x7 Dot Matrix LED

tion we will directly connect a 5 x 7 LED dot matrix to the I/0 register
B of the 6522 #1 and to the 6522 #3. Ideally, drivers should be used
with LED’s in order to get sufficient light intensity. Here, to minimize
the parts count, we will connect the LED directly. This means that on
the actual board the LED’s will be dim and the display somewhat hard
to see. For improved performance add drivers on the lines. The con-
nection of the LED dot matrix is shown in Fig 5-16. The 7 rows num-
bered 1 through 7 are connected to bits 7,5,4,3,2,1, and 0 respectively
of the I/0 register B of the 6522 #1. Bit 6 of this IORB is not available
on the SYM board because the monitor dedicates bit 6 to the cassette
input function. The state of bit 6 will, therefore, be indifferent in what
will follow.

. The five columns of the LED display, labeled respectively 1 through
5, are connected to bits 0 through 4 of the IORB of the 6522 #3. This is
illustrated in Fig 5-16. The two IORB’s reside at addresses A000 and
ACO0 respectively.

164

VIA ¥
1ORA
ADOI

VIA #1
IORB

(EXCEPT
PBo)

CONNECTOR
H2
PIN NO

vCCot——
GND,
(3B,
PA7
Sy E—
PAS Crmmm——em

i

“I

652211
IORB

INDUSTRIAL AND HOME APPLICATIONS

{A000)

VIA 13
10RB

(ACO0)

Fig. 5-16: Connecting the 5x7 LED

SwWiTCH B4

B3
B2
81

A4
A3
A2
AY

ROW | OF LED MATRIX {PIN 2)

ROW 2
ROW 3
ROW 4
ROW S
ROW &
ROW 7

12)
3
(4
()
(10
(9}

CONNECTOR

PA7 O————= (PHOTO TRANSISTOR)

PAG Do (MOIOR)

87 C»‘b—— (SPEAKER})

PBo o”—o SMALL RELAY)

PBS O BIG REIAY 1)

PB4 e COL S CF LED MATRIX (PIN 13)

P63 Olo—e COL 4 i)

P82 O————Op CoLl i8)
PB) Ot CO1 2 (18
PO e (O (5)

Fig. 5-17: The Connectors to the LED

165

6502 APPLICATIONS BOOK

The basic problem is to select the appropriate combinations of rows
and columns to display the dots representing a character. Any charac-
ter of the alphabet can be generated with a 5 x 7 matrix. Here we will,
for example, display all the hexadecimal characters, i.e., the digits 0
through 9 and the letters A through F. Let us examine their encoding.

An-LED dot ‘‘on’’ will be represented by a ‘‘0’’ bit. An LED dot
““off”” will be represented by a ‘“1”’ bit. This is because an LED will be
turned on by grounding its row connection. The pattern required to

CHARACTER BINARY

o - W W a2 v~
-|oejoje|e o |-
o]l ~|l -| ~-|-1]-|e

0
1
1
i
1
!
1]

ol =l -t -1=-1]-1le
- ojoelejeje |-

ON N N N N NO)
| NONONORONON /|
e 00000

| NONONONORON
O N N N N NO

N OEnnn

Fig. 5-18: Displaying ""0"

OC e OO0 B v fefr |
OO e O O sfilvfolr]
O C e O O a v frlol 1
OO0 @00 s el |
O O . O O H 1 i [} 1 1
O O . O O 1 \ 1 L] 1 1
OO0 @00 o v | i]olv |

BF BF BF
S HHHAH

Fig. 5-19: Displaying "'1"

166

INDUSTRIAL AND HOME APPLICATIONS

display a ‘‘0’’ appears on Fig 5-18. Naturally, the user is free to choose
any other pattern and other encodings may be used. For example, as
an exercise, the user might want to display a *‘0’’ with square edges
rather than with round edges. It should be a simple matter to modify
the table accordingly.

The equivalent binary representation of the encoding appears on the
right of Fig 5-18. The hexadecimal equivalent is indicated at the bot-
tom of the binary table. The reader should remember that row 6 is not
used. It is indifferent, i.e., can be assumed to be either a ‘0’ or a
““1”’. For example, let us look at the hexadecimal encoding for charac-
ter 0>’ on Fig5-18 . The first column has the value ‘“1000001°°, or
more exactly ‘1-000001’’ where a ‘‘->’ represents the value of bit 6,
which is not used. Let us assume for example that bit 6 will be set at
““0’’. Then, the value of the first column is ‘10000001’ or *‘81’’ hexa-
decimal.

Similarly, the value of the second column is (adding a 0 for bit 6)
00111110 or ““3E” hexadecimal.

The five columns for the digit ‘‘0’’ are therefore:

81, 3E, 3E, 3E, 81

Let us look now at character ‘1. It is shown on Fig 5-19 and the re-
quired binary encoding appears on the right of the illustration.

Assuming that bit 6 is a ‘‘0,”’ the equivalent hexadecimal represen-
tations are:

BF, BF, 00, BF, BF

If we assume that bit 6 is set at the value 1, then the encoding would
be:

FF, FF, 40, FF, FF
Any one of the values ‘0’ or *“1”’ for bit 6 may be used for any one
of the columns as long as we do not use bit 6 for any purpose.

A complete table for encoding the characters ‘0’ through ‘‘F’’ is
shown on Fig 5-21.

167

6502 APPLICATIONS BOOK

Exercise 5-7: Show the shape of the characters 0 through F using this
table.

Exercise 5-8: Rewrite the table in a more consistent way assuming that
bit 6 is always “0”’.

[CONFIGURE ROWS l
AS QUTPUTS

CONFIGURE COLUMN
AS QUTPUTS

Em— N

[GET CHARACTER j
1

l POINT TO FIRST COLUMN]

L GET DOT PATTERN ‘l

L DISABLE COLUMNS l

L ENABLE ROW PATTERN l
1
L ENABLE COLUMN '

[POINT TO NEXT COLUMN 1

|

NEXT
COtum

[SHIFT COLUMN POINTER I

YES
(REPEAT

ALL DISPLAYED?

j No
| DELAY |
S

Fig. 5-20: Driving a Dot-Matrix LED

The flow chart for the LED dot matrix program appears on Fig
5-21. Both rows and columns are configured as outputs by loading the
appropriate bit patterns into the corresponding data direction registers
of the 6522. The dot pattern for the character must then be displayed.
The dots will be displayed in succession for every column of the LED.
For each character, the program must therefore access five successive

168

INDUSTRIAL AND HOME APPLICATIONS

entries in the dot-matrix table, corresponding to the five columns of
dots required to display the character. This particular program will
then cycle and display the character indefinitely. The dots are dis-
played by turning off the columns (erasing the previous pattern), then
enabling the row pattern corresponding to the desired dot positions,
and enabling the column on which they are to be illuminated. Then,
the next column must be displayed. All dots should be lit up for the
same period of time, if they are to appear as having a uniform inten-
sity to the observer. Further, all columns must be scanned in a time
period of less than 1/10 of a second if no visible blinking is to occur.
The delay routine at the end of the program is adjucted accordingly.
The program appears below and on the next page.

character |8 LSB addr | col 1 col 2 col 3 col 4 col 5
0 90 81 3E 3E 3E 81
1 95 FF FF 00 FF FF
2 9A DE 7C TA 76 CE
3 9F DD 76 76 76 C9
4 A4 F3 EB DB 00 FB
5 A9 05 76 76 76 79
6 AE Cl 76 76 76 D9
7 B3 7F 7F 7F 7F 00
8 B8 C9 76 76 76 9
9 BD CD 76 76 76 C1
A C2 EO DB 7B DB EO
B Cc7 00 76 76 76 Cc9
C CcC Cl 7E 7E 7E DD
D D1 00 7E 7E 7E C1
E D6 00 76 76 76 76
F DB 00 77 77 . 77 77

Table resides in memory locations 0090-00DF.

Fig. 5-21: A Dot Matrix Table

Connection: Connector A to Connector H2
Connector AA to Connector H3

This program gets 8 LSB character address from location 0001, then goes to
table shown on Fig 5-21 to pick up the data pattern for the selected character
and display it on the LED matrix.

Before executing this program, pre-load the 8 LSB of character address at loc-
0001.

The character pattern should be stored on Page 0 as indicated on Fig 5-21.

(The 8 MSB of character address are all 00 on Page 0)

Fig. 5-22: Basic LED Matrix Display (Program 5-3)

169

6502 APPLICATIONS BOOK

Note:

0180 A9

0182 8D
0185 A9

0187 8D

018A A9
018C 85

OI8E A2
0190 A5

0192 85
0194 A0

0196 Al
0198 8E

019B 8D
OI9E 8C
01Al, E6

01A3 98
01A4 4A

01A5 A8
01A6 CO

01A8 DO

O0lAA 4C
01AD A2
OIAF E8
‘01B0 EO
01B2 30
01B4 4C

Notes:

170

1y
2

02
IF

02

03

01

02
10

02

88

02

FF

00
FB
96

A character generator can be used to replace this table.

The LED matrix used is 5 x 7, i.e. 7 bits are needed to define the
the pattern of each column, but the above table uses 8 bits; this is
because the program uses VIA #1 1/0 register B to drive the 7 rows and
only 7 bits of this register can be used. Bit 6 is indifferent because it is
dedicated for ON BOARD CASSETTE IN only.

BSCLED LDA #$BF Before execution, 0001 should be

pre-set
A0 STA $A002 To the selected character addr.
LDA #$1F Set VIA #1 DDRB = BF to drive
7 rows
AC STA $AC02 Set VIA #3 DDRB = IF to drive
S columns
LDA #$00
STA $03 Set 8MSB of character addr =
00 at 0003
LDX #$00
RPTCHA LDA $01 Move the pre-set 8LSB of character
addr. from 0001 to 0002
STA $02
LDY #$10 Set (Y) = $10 for enabling last
column
NXTCOL LDA $02 (A) = current column pattern of
selected character
AC STX $AC00 Disable all columns before enable
rows
A0 STA S$A000 Enable rows
AC STY $AC00 Enable current column
INC $02 Advance address in ($0002) for next
column
TYA
LSR A Shift (Y) right by one bit for
enabling next column
TAY
CPY #300 (Y) = 00 means all 5 columns

displayed
BNE DLY3 If not, branch to DLY3 to
compensate timing (1), if yes,
repeat the whole character
0l JMP RPTCHA
DLY3 LDX #$FF
LP3 INX
CPX #3%00
BMI LP3
01 JMP NXTCOL Then go to enable next column

1) This compensation is needed or else the last column will always be

Fig. 5-22: (Continued)

INDUSTRIAL AND HOME APPLICATIONS

enabled longer making the last column brighter than the first 4
columns.

2) The compensation mentioned above only solves the problem par-
tially. The brightness is still not even, due to a different number of
LED’s enabled in each column. To solve this, a more detailed program
can be written to take the number of LED’s enabled for each column
into account for timing compensation.

Fig 5-22: (continued)

The program is shown here. The first four instructions of the
program condition the data direction registers for the rows and the
columns, specifying that they be outputs:

BSCLED LDA #$BF

STA $A002 SET VIA #1 = 7 ROWS
LDA #$1F
STA $AC02 SET VIA #2 = S COLUMNS

By convention, in this program, the table location of the character to
be displayed is contained at memory location ‘‘01”’ in page 0. The
location of the character to be displayed is, for example, 90 for the
character 0,”” 95 for character *“1,” and so on, as indicated in the ta-
ble at the beginning of the program. (An improved program will be
suggested below.) As an example, if we are to display the character
2,”’ then the value 9A must have been deposited at memory address
01. Since we will need to point successively to 5 table entries for each
of the columns corresponding to this character, we will need to gen-
erate the addresses 9A, 9B, 9C, 9D, and 9E. In order not to destroy
our original character pointer ‘“9A,’’ we will use two extra memory
locations at addresses 02 and 03 to contain the current pointer to the
column dots being displayed. Since we are operating in page 0, the
contents of memory location 03 will be set to “‘0’” (high order byte of
the address). This is accomplished by:

LDA #8300
STA $03

Whenever we enter the main display loop, register X will be assumed
to have the value “00°’. It will be used to disable an output register:

LDX #8300

171

L e
6502 APPLICATIONS BOOK

The first column we will point to is the one at the address specified
in location 01 (the character table entry pointer). We therefore trans-
fer the contents of memory location 01 to address 02:

RPTCHA LDA $01
STA $02

Register Y is used as a shift counter and, at the same time, to enable
selectively one of the columns. It is set initially to the value ‘“10”’ in
order to enable the first column:

LDY #310

The ‘17’ will then be shifted right by one bit position, in order to en-
able the next column, and so on. When the ‘1’ finally falls off the
register, all 5 columns have been displayed for the character, and the
loop may be restarted. Since this register is not only used to enable one
of the columns but also to count up to 5, it is labeled as a shift-coun-
ter. The dot pattern for the current column is obtained by accessing
the table entry at address 02:

NXTCOL LDA $02

The dot pattern is now contained in the accumulator. Let us display it.
All columns are first disabled by loading “0’’ in the IORB:

STX $AC00

The accumulator contents are then output to the IORB to enable the
rows:

STA $A000

Final'ly, the appropriate column is enabled and the selected LED will
light up:

STY $AC00

172

INDUSTRIAL AND HOME APPLICATIONS

An LED will light up only when it is connected to an active column
and to a grounded (0) row. Each ““0’’ in the dot pattern will light up
the corresponding dot in the selected column.

Memory location ‘“02”’ is then incremented, in order to point to the
next dot pattern entry for the character. We must then shift our col-
umn pointer right by one position and determine whether we have
already displayed all columns or not:

INC $02

TYA Y CANNOT BE SHIFTED
DIRECTLY

LSR A

TAY STORE RESULT BACK IN A

CPY #300

BNE DLY3

JMP RPTCHA

Since it is no possible to shift the Y register directly, it must first be
transferred to the accumulator, which is then shifted, and the contents
of the accumulator are copied back into register Y. The contents of
the accumulator are then tested for the value ‘‘0’’ (a program im-
provement may be suggested to the present coding). If the accumula-
tor is ‘‘0,”” we are finished and have displayed all 5 columns. Otherwise,
we must implement a delay during which the LED will light up and
then display the next column:

DLY3 LDX #3$FF
INX
CPX #300
BMI LP3
JMP NXTCOL

Index register X is used as a counter, and a traditional delay is achieved
by incrementing the index register a reasonable number of times, then
branching back to the next column at address NXTCOL.

173

e ESS———
6502 APPLICATIONS BOOK

Program improvements: In order to improve this program by re-
ducing the number of instructions, let us first consider some coding
modifications. Then, we will examine improvements to the functions
performed.

Exercise 5-9: Rewrite the delay routine DLY3 sothat it uses fewer in-
structions.

Exercise 5-10: Inspect the least three instructions of the routine NXT-

COL, from address 01A6 on (see Fig 5-22). Can you suggest another
way to test whether the last ““1”’ bit in Y has been shifted out?

Exercise 5-11: Add a routine to this program so that, instead of depos-
iting a pointer to the table entry at address 01, one needs to deposit only
the actual character value. With this routine, the user must be able
to deposit an actual value between ““0”’ and *‘F,”’ and have this pro-
gram display it correctly. In order to do this, one must convert the
character value to the table value. For example, “0°’ will correspond
to “90”’ (see table at the beginning of program 5-3), ““1”’ will correspond
to “95”’, and so on. The equation is: Starting address = 90 + code
X 5.

Note: Instead of performing a formal multiplication by five, one
can use a shortcut: Remember that shifting left by one bit position is
equivalent to a multiplcation by 2 and that 5 = 2+ 2 +1. A mult-
iplication by 4 can be accomplished by 2 successive left shifts.

Exercise 5-12: Write an additional routine which will display a string
of characters. It will assume that the starting address of the string of
characters is contained at memory location 01. Each character will be
displayed for one second. The string of characters may be terminated
by any code which is not between 0 and F. The program will then
pause for two seconds and display the string again.

Let us now consider improvements to the functions of the program.
We will add four switches and develop a program which displays the
hexadecimal value of the switches.

174

INDUSTRIAL AND HOME APPLICATIONS

DISPLAYING SWITCH VALUES

We will read here the values of four input switches in binary, and
display the corresponding hexadecimal character on the LED matrix.
The flow-chart for the algorithm appears on Fig 5-23. The program
reads the four switches, then points to the beginning of the conversion
table as defined in the previous program, then computes the table off-
set for the character to be displayed. The address in the table for the
binary code corresponding to the dots to be illuminated is obtained by
multiplying the value of the character by 5. This can be verified by in-

t 4

READ SWITCHES
A1TO A4

1

POINT TO CONVERSION
TABLE BASE

t

COMPUTE OFFSET
=CHARACTER X 5

!

DISPLAY CHARACTER

S

Fig. 5-23: Displaying a Switch Value

specting the table shown on Fig 5-22. The address of the first column
to be displayed is then computed and deposited in address 01 in page
0. The previous program is used to display the character on the LED
display. The program is:

Connection: Connector A to Connector H2
Connector AA to Connector H3
This program reads the switches Al to A4 to compute one of 16 hexadecimal values
and display it.
This program uses program 5-3 as a subroutine. Before execution, change program
5-3 as follows:
1) At loc. 01AA, data 4C should be changed to 60 (60 is the machine
code for RTS).
2) The timing compensation constant at loc. 01AE is FF, this should be
changed to FO, because this program enables the last column longer than
program 5-3.

Fig 5-24: Advanced LED Matrix Display (Program 5-4)

175

6502 APPLICATIONS BOOK

0200 A9 00 RDCHA LDA #300

0202 8D 03 A0 STA $A003 Set VIA #1 DDRA =00 for input
mode

0205 AD Ol A0 LDA $A001 Read switches Bl — B4 and Al — A4

0208 29 OF AND #$0F Ignore Bl — B4

020A A8 TAY Store A1 — A4 reading in (Y)

020B A2 90 LDX #3$90 Calculate character address and store
at loc. 0001. 90 is the base address

020D 86 Ol STX 301

020F A2 00 LDX #%00 Addition counter

0211 18 ADD CLC A contains switch reading

0212 65 01 ADC $01 Loop through the addition five times

0214 85 ol STA $01 90 + (A)

0216 98 TYA

0217 ES8 INX Restore switch value in A,

0218 E0O 05 CPX #%05 (X) = 5 means calculation completed

021A 30 F5 BMI ADD

021C 20 80 Ol JSR BSCLED Then call BSCLED for display

021F 4C 00 02 JMP RDCHA Then update switch reading

Fig. 5-24: (Continued)

The program appears on Fig 5-24. The first two instructions config-
ure the data direction register for port A as input, so that the switches
can be read:

RDCHA LDA #3$00
STA $A003

Then, the contents of switches Al through A4 are read. This program
ignores the value of switches B1 through B4.

LDA $A001
AND #3$0F MASK B1-B4

The contents indicated by the switches are saved in index register Y:
TAY
The start address of the table (90) is then stored at memory address 01:

LDX #$90
STX $01

176

INDUSTRIAL AND HOME APPLICATIONS

We will add to this start address the required offset to access the
first column of dots for the character specified by the switches. The
offset is computed by multiplying the value of the switches by 5. Index
register X is used as a counter from 0 to 5. It is initialized to zero:

LDX #$00

The contents of memory location 01 are incremented by 1:

ADD CLC
ADC $01
STA $01

The CLC instruction (clear carry) must be used prior to any addi-
tion. In addition, we assume that the binary mode has been set (the
6502 may operate either in binary mode or in decimal mode). Unless
otherwise specified, the 6502 will normally operate in binary mode,
since a reset operation will have cleared the flags register, thereby set-
ting the binary mode.

The value of the switches is then restored in the accumulator from
index register Y where it had been saved. The addition counter X is in-
cremented by 1 and tested against the value 5:

TYA

INX

CPX #$5
BMI ADD

As long as the value of 5 has not been reached, the addition is repeat-
ed. Once the value 5 has been reached, memory location 01 has been
conditioned to the proper value and the subroutine BSCLED (the pre-
vious LED display program) is called:

JSR BSCLED

The program then loops back in order to read the switches again and
display the character they specify:

JMP RDCHA

177

6502 APPLICATIONS BOOK

TONE GENERATION

We have seen in the previous chapter how a tone may be generated
by simply sending a square wave of the desired frequency to a speaker.
The square wave form is generated by turning the speaker alternative-
ly on and off. The duration during which the speaker is on or off is
called the half-period. The delay measurement may be performed by
software, or else by hardware, using the built-in interval timer of the
6522. This built-in interval timer has been used previously, and we will
use here a software method to control the delay duration. We will first
develop a basic program to generate a tone, then improve it to gen-
erate computer music.

(Note: Do not

adjust R4 CCW
all the way
> R4 otherwise transistor

B7 on MP board
may be too hot)

1,

SPEAKER

TO CONN H3
PIN15

Fig. 5-25: Speaker Connection

The hardware connection is shown on Fig 5-25. An additional resistor
of 50 ohms or more should be placed in series with the speaker to limit
the output current. The speaker is connected to the buffered output of
the SYM. Turning the variable resistor down to zero could burn out
both the pot and the output transistor on the board.

The technique used to generate a tone is the usual square wave method,
implemented by a delay subroutine.

178

INDUSTRIAL AND HOME APPLICATIONS

Connection: Connector A to Connector H2
Connector AA to Connector H3
This program activates the speaker with a pre-set frequency which has to be loaded
into loc. 0004 before execution.

0230 A9 80 BSCSPK LDA #$80

0232 8D 02 AC STA $AC02 Set VIA #3 DDRB = 80 for speaker
output

0235 A9 80 AGAIN LDA #380

0237 8D 00 AC STA $ACO0 Set speaker driver high = activate
speaker

023A 20 48 02 JSR DLYB Call delay

023D A9 00 LDA #300

023F 8D 00 AC STA $ACO00 Set speaker driver low = turn
speaker off

0242 20 48 02 JSR DLYB Call delay

0245 4C 30 02 JMP AGAIN Repeat

Subroutine DLYB: This subroutine is similar to subroutine DLYA except that
1) This delay is much shorter.
2) This delay takes delay index from loc. 0004 (the index should be a negative

value).
0248 A6 04 DLYB LDX $04 Load delay value into X
024A ES8 LPXB INX Increment X
024B EO0 00 CPX #300
024D 30 FB BMI LPXB Looptill(X) =0
024F 60 RTS

Fig. 5-26: Basic Speaker Activation (Program 5-5)

The delay parameter for this program must be loaded at memory
location 0004 prior to execution. It controls the frequency of the tone
which is generated. The program is shown on Fig 5-26. The data direc-
tion register B is configured for output on bit 7:

BSCSPK LDA #8380
STA $ACO02

The speaker is then turned on:

AGAIN LDA #880
STA $ACO00

179

6502 APPLICATIONS BOOK

The speaker is left on for a duration specified by the contents of mem-
ory location 0004, by calling the delay subroutine DLYB:

JSR DLYB

The speaker must then be turned off. This is accomplished by resetting
bit 7 of the IORB to “‘0”’:

LDA #300
STA $ACO00

The speaker must then be left off for the same duration and a call to
subroutine DLYB accomplishes this:

JSR DLYB

The program then loops on itself:

JMP AGAIN

The delay subroutine DLYB is essentially like the delay subroutine
DLYA of Program 5-1:

DYLB LDX $04 DELAY VALUE
LPXB INX COUNTER

CPX #300

BMI LPXB

RTS

Let us compute the duration of the delay introduced by this subrou-
tine. The duration of each instruction is indicated on the right of
each instruction below:

cycles

LDX $04)

—> INX 2

Loop CPX #300)
Il—_ BMI LPXB A3)

RTS (6)

180

INDUSTRIAL AND HOME APPLICATIONS

In addition, the JSR (Jump to Subroutine) instruction, used to call
this subroutine, introduces a 6-cycle delay. The loop is executed 256 —
4 = 252 times.

The total delay duration is therefore:

6 +2+2+2+3) x 252+ 6 =14 + 7 x 252 = 1778 microseconds

Exercise 5-13: Modify the delay routine by using a decrement instruc-
tion rather than an increment instruction.

Fig. 5-27: Binary Switches Specify Tone

MUSIC

The basic method for generating a tone of set frequency has been
presented. We want now to be able to play a tune. This program will
read the binary value of the three switches A-1 through A-3 and gen-
erate a tone corresponding to the switch setting (see Fig 5-27). The
note ‘“C”’ (do) will be generated for a *‘0°” switch setting, then a ‘D"’ (re)
for *“1”’, etc. A full octave plus one note, i.e., ‘‘C’’ through *“C’’, can
be played according to the setting of the three switches. This program
will use the previous one as a subroutine. Before executing it, the con-
tents of memory location 0245 should be changed from ‘‘4C’’ to
““60’*. A frequency table will be constructed first, which specifies the
duration of the half period of the square wave which generates the
tone. It appears on Fig 5-28.

181

6502 APPLICATIONS BOOK

0050 A2 80 TUNE LDX
0052 4C 74 02 JMP
0055 A2 9% LDX
0057 4C 74 02 IMP
00SA A2 9C LDX
005SC 4C 74 02 JIMP
00SF A2 A4 LDX
0061 4C 74 02 JMP
0064 A2 BO LDX
0066 4C 74 02 JMP
0069 A2 B8 LDX
006B 4C 74 02 JMP
006E A2 CO LDX
0070 4C 74 02 JMP
0073 A2 C4 LDX
0075 4C 74 02 IMP

182

#380
LD04
#390
LDO04
#39C
LD04
#3A4
LD04
#$BO
LDO04
#3$B8
LD04
#3$CO
LDO04
#3C4
LDO04

Frequency for middle C
Frequency for D
Frequency for E
Frequency for F
Frequency for G
Frequency for A
Frequency for B

Frequency for C

Fig. 5-28: Music Frequency Table

R

I READ SWITCHES —I
U UEN
TABLE OFFSET
= 5x SWITCHES
| OBTAIN PERIOD l
[TOAD DELAY VALUE ‘l
ATLOCATION 4
I PLAY NOTE l
| e |

Fig. 5-29: Music Program Flow Chart

0250

0252

0254

0257
0259
025C
025E
0260
0261
0263
0265
0267

0269
026B

026D
026F

0271
0274
0276
0279
027A

027C
027E

INDUSTRIAL AND HOME APPLICATIONS

Connection: Connector A to Connector H2

Connector AA to Connector H3

This program reads switches A1 — A3 and activates the speaker at 8 different
frequencies defined by the switches.

This program uses Program #5 as a subroutine, hence before execution data at loc.
0245 should be changed from 4C to 60.

This program branches to a frequency table for tuning. The frequency table has to

A9

85

8D

00 MUSIC LDA
05 STA
03 A0 STA

A0 CO KEY
AD 01 A0

29
85
18
65
65
65
65

85
A9

65
85

6C
86
20
88
Co

DO
4C

88 EEEER RES

®E

00
LD04
02 CBSPK

ERE

8

F8
57 02

LDY
LDA
AND
STA

CLC

ADC
ADC
ADC
ADC

STA
LDA

ADC
STA

JMP
STX
JSR

DEY
CPY

BNE
JMP

be loaded as follows before execution:

#300 Pre-load the 8MSB of indirect jump
address '

$05 At loc 0005 (= 00 because frequency
table is on page 0)

$A003 Set VIA #1 DDRA = 00 for input
mode

#3CO (YY) = delay constant for each frequency

#$A001 Read in switch setting

#307 Ignore upper five bits

$04 Save switch setting at $04

$04

$04

$04

$04 Calculate relative address in
frequency table

304

TUNE Add the base address of frequency
table

$04

$04 Store the calculated address (8LSB) at
loc. 0004

(30004) Jump indirect into frequency table

$04 Get the correct frequency constant

BSCSPK Call BSCSPK to activate speaker

#300 Loop till (Y) = 0 before sensing the

switches
CBSPK Again
KEY Go to sense switches again

Fig 5-30: The Music Program (Program 5-6)

The flow-chart for the algorithm appears on Fig 5-29. The program
reads the contents of the three switches, then computes the offset re-
quired to obtain the corresponding delay from the frequency table.

183

6502 APPLICATIONS BOOK

CONNECTOR

PA7 O~———— SWITCHB4
PAS O—————> ” B3
B2
VIA#1 | pag o3 v m
IORA $.
A00! 7 A3

PB7 O——=———» ROW 1 OF LED MATRIX (PIN 2)
PB5 O~ ROW 2 ” (12)
VIA #1
.
IORB PB4 02— ROW3 (3)

A000 { PB3 O—gr——> ROW4 ()

(ExCepT [PB2 O————» ROWS5 - ()
PB6) PBl O—&——» ROW 6 ” (10)
PBO 0—<5————» ROW7 & 9)

CONNECTOR
H3
PIN NO.

VCC o

GNDOL-:._
VoS = o
2 MSB

—12V ot
oFviags 'V

IORA { PA7 O—————% (PHOTO TRANSISTOR)
ACO PA6 O~ (MOTOR)

7 07— (SPEAKER)
PB6 Om——— (SMALL RELAY)
VIA#3 | PB5 o]—e——>(B|G RELAY 1)
JORB PB4 O—]—q—’ COL 5 OF LED MATRIX (PIN 13)
ACO0 | PB3 O—p——s-COL 4 " (14)
PB2 O coL3 & (8)
PB1 O—5———s COL2 . 2 ()
PBO O COL | ” (5)

Fig. 5-31: Connections For Music Program

e —
INDUSTRIAL AND HOME APPLICATIONS

This offset is equal to 5 times the value specified by the switches. The
period of the square wave is then obtained and the note is played for a
specified duration. The program then loops on itself so that the next
note (or the same) is played. The program is shown on Fig 5-30 and
the connections are shown on Fig 5-31. Locations 04 and 05 will be
used for an indirect jump. Since the frequency table resides in Page 0,
the contents of location 05 are immediately initialized to 0:

MUSIC LDA #$00
STA $05

The data direction register, DDRA, is then configured to ‘‘00’’ to spe-
cify the input mode:

STA $A003

The duration of the tone is specified by the contents of register Y
which correspond to an outer loop delay (to be explained below):

KEY LDY #3CO

The contents of the three switches A1, A2, and A3 are then read from
the IORA at location A00O1, and the upper 5 bits are masked (set to 0):

LDA #3$A001
AND #307

This switch setting is then saved at memory location 04 so that the ac-
cumulator can be used for other purposes:

STA $04

In order to compute the offset in the frequency table, the value ob-
tained from the switch is multiplied by 5. This is done here by adding
this value to itself 4 times:

ADC $04
ADC $04
ADC $04
ADC $04
STA $04

185

R T
6502 APPLICATIONS BOOK

The resulting offset value is then stored at memory location 04 and we
are now ready to obtain the half period from the frequency table:

LDA TUNE BASE ADDRESS

ADC 304

STA 304 BASE & DISPLACEMENT
JMP (30004) JUMP INDIRECT

STX 304 FREQUENCY CONSTANT

The value is returned in register X and saved at memory location 04
then the subroutine BSCSPK is called to activate the speaker:

CBSPK JSR BSCSPK

This speaker will be activated as many times as specified by the con-
tents of register Y:

DEY
CPY #300
BNE CBSPK

Finally, once the tone has been generated for the specified duration,
the keys are read again:

JMP KEY
Let us improve this program:

Exercise 5-14: We could simplify the frequency table by storingin it only
the binary value for the delay, i.e.: 380, 390, etc. Modify the program
above so that the switch setting is used as an index to retrieve the con-
tents of this new table. Note the significant improvement in the length
of the overall program.

Exercise 5-15: If you actually run this program on a microcomputer
board, you will notice a minor problem: The program does indeed
play the required note; however, you can hear at the same time a lower
frequency note. By inspecting carefully the last 5 instructions of the
music program, you should be able to determine what the problem is.
Can you propose a modified program which will eliminate this? (Hint:
The speaker may be turned off “‘too long’’.)

186

INDUSTRIAL AND HOME APPLICATIONS

Exercise 5-16: Looking at the instructions ‘‘ADC $04”° repeated 4
times, suggest a way to achieve the same result with fewer instructions,
if possible.

Exercise 5-17: The third instruction from the end is ‘“‘CPY #300”°. Is it
necessary?

The table used in the music program has been designed ‘‘by ear’’,
not by computing the correct frequencies. The values should now be
checked to determine how good this table is.

In America, the Standard Pitch is A4 = 440 Hz. The frequency of
notes doubles every twelve half notes. From tone T, to tone T, the
frequency is N, = '/2 x N,.

The frequencies are indicated on Fig 5-28 .

Exercise 5-18: Inspect the BSCSPK routine to compute its timing.
Knowing the periods of the notes (Fig 5-28), compute the correct
theoretical frequency constants. (Hint: Do not forget that the speaker
is alternately on and off for half a period.)

IVCC
\ 1 7

2.2K
HEP >
P0002 g[TOCONNH3
PIN 2
¢ —>
14
10
b
6
HEP
$9100

Fig. 5-32: The Photo-Transistor Circuit (on socket M3)

187

6502 APPLICATIONS BOOK

A BURGLAR ALARM

We are going to implement here a realistic home alarm system. En-
try in the home will be detected by a phototransistor-detector set; it is
assumed that the light emitter is normally on. Whenever the beam is
broken, the detector will indicate it and the alarm will be triggered.
This alarm will generate a siren sound in the speaker. Further im-
provements will be suggested at the end of the program.

READ PHOTO DETECTOR
STATUS

— 3 OFF

ACTIVATE SPEAKER
FOR SET DURATION

l INCREASE FREQUENCY

NO
- FREQUENCY?

YES
)

Fig. 5-33: Alarm Flow Chart

The connection of the phototransistor is shown on Fig 5-32, and the
flow-chart for the algorithm appears on Fig 5-33. We will read the
status of the detector. As long as it stays ‘‘on’’, nobody has broken
the beam, and we keep reading. Whenever the beam is broken, the
status of the detector will be “‘0’’ (‘‘off’’), and the speaker will be acti-
vated for a set duration. In order to generate a siren-like sound, the
frequency of this sound will be progressively increased until a maxi-
mum frequency is reached (see Fig 5-35). At this point, the status of
the photodetector will be probed again, and as long as it is off, the
siren will keep sounding. The program appears on Fig 5-34. The pho-
totransistor input is connected to bit 7 of the IORA of VIA #3 (see Fig
5-32).

138

INDUSTRIAL AND HOME APPLICATIONS

FREQUENCY

A

VA R ey L L

N1

Fig. 5-34: A Siren Sound

Connection: Connector A to connector H2
Connector AA to connector H3

This program senses the phototransistor output, if the output is high, which
means the phototransistor is the dark and is in the off-state, nothing
will happen, but if the output is low, which means the phototransistor
gets light and is in the on-state, then sound the alarm immediately.
If the opposite convention is preferred (normally on), change BEQ
to BNE.

This program also uses BSCSPK as a subroutine, hence loc. 0245 should
be changed to 60.

0281 A9 00 ALARM LDA #3$00

0283 8D 03 AC STA $AC03 Set VIA #3 DDRA = 00 for input
mode

0286 AD 01 AC DETECT LDA S$ACOl1 Read photo-transistor output

0289 29 80 AND #$80

028B C9 80 CMP #3$80

028D FO F7 BEQ DETECT If output = high, keep polling

028F A9 80 LDA #380 Else sound the alarm by setting the
initial

0291 85 04 STA $04 Frequency constant = 80 at loc. 0004

0293 A0 FO LP7 LDY #$F0 Set delay constant = FO at (Y)

0295 20 30 02 SOUND JSR BSCSPK Call BSCSPK to activate speaker

0298 C8 INY)

0299 CO 00 CPY #3$00 '

029B 30 F8 BMI SOUND Loop till (Y) = 0 before changing

frequency constant

Fig. 5-35: Burglar Alarm (Program 5-7) 189

6502 APPLICATIONS BOOK

029D A9 01 LDA #$01 Increment frequency constant by 1

029F 18 CLC

02A0 65 04 ADC $04

02A2 85 04 STA $04

02A4 C9 A8 CMP #3A8 Loop till highest frequency constant
= A8

02A6 30 EB BMI LP7

02A8 4C 86 02 JMP DETECT Then sense phototransistor o/p again

Fig. 5-35 (continued): Burglar Alarm

The first instructions of the program implement a polling loop
which tests the status of the phototransistor:

ALARM LDA #$00

STA $ACO03
DETECT LDA $ACOl
CMP #380

BEQ DETECT

As soon as the photodetector is off (on an experiment board, this will
be achieved by covering the LED detector with a finger or a piece of
cloth), the alarm will be sounded. The specified initial frequency con-
stant is loaded at memory address 04, and the tone duration for this
frequency is loaded in register Y. The previous subroutine BSCSPK is
then called to sound the speaker:

LDA #3$80
STA $04
LP7 LDY #S$FO
SOUND JSR BSCSPK
INY
CPY #$00
BMI SOUND

The subroutine is called as many times as necessary to implement the
secondary delay specified by register Y. The frequency constant is
then incremented by 1, stored back at memory location 04, and com-
pared against the maximum frequency. As long as the maximum fre-
quency has not been reached, the program keeps generating a sound
of increasing frequency.

190

INDUSTRIAL AND HOME APPLICATIONS

LDA #3501
CLC

ADC $04
STA $04
CMP #3A8
BMI LP7

JMP DETECT

Whenever the maximum frequency has been reached, the program
loops back to its starting point. Several improvements are possible.

In a realistic home use, this alarm system will be placed somewhere
inside a house and the photoelectric pair including a light-emitter and
a receiver will be placed somewhere in the house. (In practice, an in-
fra-red beam is often used as it is not visible to the eye.) It may be
positioned to protect a room or to protect the entrance to the house.
The program should be improved so that, once the alarm has been
turned on, it is possible to leave the house without triggering it. The
first exercise will bring this improvement:

Exercise 5-19: Modify the program so that the user may exit from the
house within two minutes after the system has been armed (turned
on). In other words, no alarm should be triggered for two minutes
after the program is turned on, regardless of the status of the photo-
detector. After that, the alarm should operate normally.

Another problem must be solved: Upon re-entering the house, we real-
ly do not want the alarm to sound immediately. We want to have the
time to walk to the microcomputer board and turn it off. The next ex-
ercise will take care of that:

Exercise 5-20: Once the alarm has been armed (after two minutes), it
should not sound until 30 seconds after detection of an entry.

Let us improve further: There might be some minor variations in the
light beam which may cause noise on the line. We do not want this to
trigger the alarm.

Exercise 5-21: Modify the program so that the alarm is triggered only

if the beam is interrupted for more than .05 second.

191

6502 APPLICATIONS BOOK

Let us keep improving: In case an animal should trigger the alarm, we
want to provide an automatic shut-off system. We want the alarm to
sound for two minutes after detection has occurred and then turn it-
self off.

Exercise 5-22: Modify the program so that the alarm will sound for
two minutes after detection has occurred and then turn itself off.

In addition, at the time that detection occurs we may want to take ad-
ditional action such as turning on the lights or else dialing the police.
This can be easily accomplished by merely turning on an external
relay.

Exercise 5-23: Modify the above program so that an external relay is
turned on every time that entry is detected.

Note that this feature can be used advantageously even if you cannot
dial the police automatically: You could connect a lamp to the relay
output so that even if an intruder came in and left quickly when the
alarm sounded, his intrusion would be revealed by the fact that the
lamp would be left turned on at the time you returned.

Exercise 5-24: Could we delete the instruction CPY #3$00 at address
0299?

Exercise 5-25: Add a “‘panic button’’ which you can press to activate
the alarm at any time. Modify the sound of the alarm so that neigh-
bors can differentiate between a “‘panic call’’ and an “‘alarm.”’

DC MOTOR CONTROL

The goal of this program is to control the speed of an ordinary DC
motor. A regular low-cost 12 volt hobby DC motor will be connected
to the microcomputer board, and the rotational speed will be specified
by switches. Three switches will be used, so that 8 different combina-
tions may be specified, corresponding to 8 rotational speeds. The
motor circuit is shown on Fig 5-36. The switches connection is shown
on Fig 5-27.

192

INDUSTRIAL AND HOME APPLICATIONS

FROM
CONN H3
PIN 3

NORMALLY
OFF
10
HEP
50025

Fig. 5-36: Motor Circuit

to h 12 13

PULSES
[} : 1 1
]]] 1
]]])
' ' 1 .
———— — — — — — — MAX
' '
I 1
t' ta :
SPE-E—D—QT —_ — — — — — AVIRAGE
[i
vl .
] t
—_— —_——_——_——_— — T — 4 — — — MIN

fig. 5-37: Digital Speed Control

193

6502 APPLICATIONS BOOK

PULSES —[L_] U

SPEED __—!——-—_/-R--'---‘yx——'—-_7

: | [
. ! !
|] |
X ! i
) ! !

Fig. 5-38: Simplified Speed Diagram

The principle used to control the speed of the motor is to turn it on
for a set duration, then turn it off. Because of its rotational inertia,
the motor will keep turning for a while. A new pulse will then be gen-
erated and the motor will be turned on again. It will accelerate again.
This pattern will be repeated. The resulting speed of the motor is
shown on Fig 5-37. A simplified diagram showing the same curve ap-
pears on Fig 5-38. It is essentially a saw-tooth curve where the motor
accelerates as long as power is applied, then decelerates until it receives
the next pulse. The average speed is indicated by the horizontal line
between the minimum and the maximum speeds on Fig 5-37. It can be
seen from the illustration that the speed will constantly oscillate be-
tween its minimum and its maximum values. If the speed must be de-
fined with good accuracy, then the minimum and the maximum speeds
will have to be close. This will be achieved by using shorter pulses.
However, as in any phenomenon that involves inertia and oscil-
lations, instabilities will occur. In particular, it should be noted on
the illustration that, if the ‘‘on’’ pulse is given before time ‘‘t,’’, then
the speed will not decrease and will keep increasing instead. This is be-
cause the inertia of the motor has not had the time to slow it down to
where the speed would decrease. More complex phenomena may still
occur. This topic will not be discussed in detail here. Simply, we will
design a program with adjustable delays and later adjust these delays
by trial and error so that they work with the type of motor we are us-
ing. The reader should simply be aware that these delays can be ad-
justed in various ways to improve the accuracy of the speed obtained
and/or to eliminate oscillation problems.

194

Vi — 4

INDUSTRIAL AND HOME APPLICATIONS

ODRA

b5220

to h

5-39: DC Motor Speed Curve

IORA

SWITCH A'

a

PAQ

¢

PAY

. A2

]

PA2

Al
f——

N o war ww - O

(A003)
CORA

652203

(AGOT
IORA

~Jlole|e]e}e

No wa wwn —-oO

0

(ACO3)

{ACO1}

—ed

Fig. 5-40: The Connections

The Hardware Connections

Two ports are used: on the 6522 #1 and on the 6522 #3. They are
shown on Fig 5-40. The IORA register is used as an input port for the
three switches. The switch setting will determine the speed of the
motor. The corresponding value of the DDRA is shown on the left of
the illustration. The IORA of 6522 #3 is used as an output port to con-
trol the motor itself. The motor is connected to bit 6 of the IORA. The
detail of the interface appears on Fig 5-36. The driver is required to in-
vert the signal and the transistor is used to provide sufficient current.

195

6502 APPLICATIONS BOOK

&

[TURN MOTOR ON]

t
l DELAY j
| I

[READ SWITCHES 1

l MULTIPLY BY DELAY UNIT j

l ADD MINIMUM DURATION |

f

[STORE COMPUTED DELAY]

l COUNTER=CYCLES l

(B

I TURN MOTOR ON —J
t

[DELAY B ‘l
t

[TURN MOTOR OFF j

[DELAY C j
i

l DECREMENT COUNTER j

e

Fig. 5-41: DC Motor Flow Chart

The Program

The flow-chart for the program is shown on Fig 5-41. The motor
will be turned on for a duration Ton, and turned off for a duration
Tofr. In this algorithm, the duration orr is fixed, and the duration
Ton is increased for every switch setting from ‘000’ to “‘111.”” The
minimum Ton duration here corresponds to the switch setting ¢‘000°’.

196

INDUSTRIAL AND HOME APPLICATIONS

The delay corresponding to a switch setting can be computed with the
formula:

Ton = MIN +Unit X switches.
Numerically, the constants used for the delays are:
DELAYorr = COH = 192 decimal

DELAYon~ = 80 + switches X 0BH =
128 + switches x 11 (decimal)

SWITCHES | 000{001 010|011 100101 f{110]111
DELAYQON | 128 | 139|150 | 161) 172 | 183 { 197 | 205

128
ON ON

OFF

000 —
0 192
161
ON
OFF
011 —
0 192
0 205
ON
OfF

1 — —

0 192

Fig. 5-42: The Waveforms

The waveforms generated by the various settings appear on Fig 5-42.
Let us now turn to the flow-chart of Fig 5-41. The motor is first turned
on for an initial duration to achieve initial rotational speed (otherwise,
a train of short pulses might not be able to get it started). The value of
the switches is then read and the resulting delay must be computed.
The value of the switches multiplied by the delay unit is added to the
minimum pulse duration. The resulting computed delay is stored. The

197

6502 APPLICATIONS BOOK

motor is then turned on for the computed delay duration. This is De-
lay B. Then the motor is turned off for a duration called Delay C. This
process is then repeated for several cycles in order for the speed to sta-
bilize. Then, the switches can be read again and, if the setting has been
changed, the new speed will be generated. Note that the built-in delay
implemented by repeating the cycle several times also takes care of the
switch bounce problem. If no delay was allowed for the speed to sta-
bilize, the switches should be debounced by hardware or by software
(see reference C207 for details on debouncing).

Connection: Connector A to connector H2
Connector AA to connector H3
This program reads switches A1 — A3 to define motor speed desired and rotates
the motor accordingly.
This program uses two subroutines: DLYA and DLYB.

02B0 A9 40 MOTOR LDA #$40

02B2 8D 03 AC STA $ACO03 Set VIA #3 DDRA = 40 for motor
driver output

02BS A9 00 LDA #300 Turn on motor for one DLYA
duration to obtain initial speed.

02B7 8D 01 AC STA $ACO1

02BA A9 FF LDA #$FF

02BC 85 00 STA $00

02BE 20 20 01 JSR DLYA

02C1 A9 00 LDA #3%00 Set VIA #1 DDRA = 00 for input
mode

02C3 8D 03 A0 STA $A003

02C6 AD 01 A0 MTRSP LDA $A001 Read switches

02C9 29 07 AND #$07 Ignore upper 5 bits

02CB A8 TAY (Y) = switch reading

02CC A9 OB LDA #$0B Set on-delay difference = 0B
between switch settings

02CE 85 06 STA $06

02D0 CO 00 LP8 CPY #$00

92D2 FO 07 BEQ ONDLY

02D4 18 CLC

02DS 65 06 ADC $06

02D7 88 DEY Loop till ($0006) = (switch reading
x $0B)

02D8 4C DO 02 JMP LP8

02DB 85 06 ONDLY STA $06

02DD A9 80 LDA #$80 Calculate the on-delay constant = 80

+ (switch reading X 0B)

. Fig. 5-43: Motor Control (Program 5-8)
198

02DF
02E0
02E2
02E4
02E6

02E8
02EA
02EC
02EF
02F2

02F4
02F6
02F8
02FB
02FE
02FF

0301
0303

18
65
85
A0
AS

85
A9
8D
20
A9

85
A9
8D
20
88
Co

30
4C

06
06
Co
06

o1
48
Co

&R

E3
C6

AC
02

AC
02

02

MTRON

CLC
ADC
STA
LDY
LDA

STA
LDA
STA
JSR

LDA

STA

MTROFF LDA

STA
JSR

DEY
CPY

BMI
IMP

INDUSTRIAL AND HOME APPLICATIONS

$06
$06
#3CO
$06

$04
#3500
$ACO1
DLYB
#3$CO

$04
#$40
$ACO1
DLYB

#300

MTRON
MTRSP

Store this constant at loc. 0006

Move (0006) to loc. 0004 before call
DLYB

Turn motor on

Then call DLYB

Set off-delay constant = CO,
independent of switch reading,
load this into loc. 0004

Turn motor off

Then call DLYB

Repeat this on-off sequence till (Y)
=00

Then read switch setting & repeat
over

Fig. 5-43: (Continued)

The program appears on Fig 5-43. The first four instructions turn
the motor on by conditioning the data direction register and placing
““0”’ in the data register:

AC

MOTOR

LDA
STA
LDA
STA

#340
$ACO3
#3$00
$ACOI

A delay value “FF’’ is then deposited at memory location ““00”’,
which is the agreed convention for passing a parameter to the subrou-
tine DLYA (see Program 5-1). The subroutine DLYA is then called. It
implements the initial delay required for the motor to achieve its initial
speed.

LDA
STA
JSR

#3FF

$00

DLYA

199

6502 APPLICATIONS BOOK

The value of the switches is then read:

LDA #$00
STA $A003
MTRSP LDA $A001

And the value of the lower three bits is extracted from the reading:

AND #307 MASK
TAY

For each switch position except ‘‘000”’, an additional duration unit
will be added to the minimum duration of ‘‘OB’’ hexadecimal. The
value of the switch reading is, therefore, saved in index register Y, and
the initial duration delay is loaded into memory location ¢‘06°’.

LDA #30B
STA $06

LP8 is an addition loop which will add the delay unit as many times as
specified by the switch setting:

LP8 CPY #%00
BEQ ONDLY
CLC
ADC $06
DEY
JMP LP8

Exercise 5-26: Can you modify the code above so that CPY #3500 is
unnecessary? Why?

Once ONDLY has been reached, memory location ‘‘06’’ contains the
additional duration for the pulse, as specified by the switches. It is
then added to the minimal duration of ‘‘80°° hexadecimal:

ONDLY STA $06

LDA #3$80
CLC

ADC 306
STA $06

200

INDUSTRIAL AND HOME APPLICATIONS

The Y register is then loaded with the value ‘‘C0’’ hexadecimal which

specifies the number of times that we will turn the motor on and off:
LDY #$C0

Once location MTRON has been reached, memory location ‘06’ con-

tains the constant necessary to implement the ‘‘on’’ delay. It is trans-
ferred to memory location ‘‘04’’ so that the subroutine DLYB may be

used. The motor is turned on and the delay is implemented:

MTRON LDA $06
STA $04
LDA #©0 TURN MOTOR ON
STA $ACO1
JSR DLYB

The off delay must then be implemented, and the value ‘‘C0O’’ hexa-
decimal is stored at memory location ‘“04’’. The motor is explicitly
turned off and the delay is implemented by the subroutine DLYB:

LDA #3CO
STA $04
MTROFF LDA #3$40 MOTOR OFF
STA $ACO0I
JSR DLYB

After the motor has been turned off, the loop counter Y is decrement-
ed. Index register Y is used here to count the number of times that the
on/off cycle will be executed. It has been loaded with the initial value
““C0’’ hexadecimal, and is decremented every time that the motor is
turned off. If the value ‘0’ has been reached, the program goes back
to the beginning and reads the next switch setting. If Y has not decre-
mented to ‘“0”’, then the program loops back to MTRON in order to
go again through an on/off cycle:

DEY

CPY #3000
BMI MTRON
JMP MTRSP

Let us now consider improvements to the program.

201

6502 APPLICATIONS BOOK

Exercise 5-26: Let us first perform some improvements in style: Exa-
mine the program corresponding to memory addresses 2D0 to 2DS8.
Can you suggest any improvement to the way the code has been writ-
ten?. (Hint: One instruction can be saved.)

Exercise 5-27: Same question for lines 02FF to 0303.

Exercise 5-28: This exercise is valuable if you are indeed performing
an experiment on a real motor: increase progressively the ‘‘off’’ delay
by changing the appropriate constant in the program. What happens?

Exercise 5-29: Same question by reducing the off delay. What is the
problem?

Exercise 5-30: Another algorithm which could be used would be to
send a variable number of ‘‘on’’ pulses of constant duration, i.e., to ad-
Just the duration of the ‘“‘off’’ delay rather than the ““‘on’’ delay. Can
you modify the program accordingly?

Important note. Because every motor has different characteristics, the
timings in the program are best determined by a trial and error proc-
ess. You are strongly encouraged to modify the various constants
which have been used, such as the minimum ‘‘on’’ delay, the mini-
mum ‘‘off”’ delay, and the timing increments until you obtain by ex-
perience the settings which give the best results. In addition, if you in-
tend to load the motor by connecting it to a real device, you will intro-
duce additional inertia and friction parameters. Additionally, low-
cost hobby motors may be poorly lubricated and after a period of a
few weeks or a few months may have much higher friction. They will
then require a much longer warm-up period and may also require
longer pulses. As long as you are aware of the mechanical mood of
your motor, you should be able to adjust the parameters accordingly.

Exercise 5-31: Can you determine what happens if you send very short
““on’’ pulses?

The above program is an open control loop where we are controlling
the speed of the motor but not measuring it. Let us suggest possible
improvements to this technique.

Exercise 5-32: Display the speed setting of the motor. The speed set-
ting of the motor could be identical to the switch setting, i.e., you
could just display a number between 0 and 7.

202

INDUSTRIAL AND HOME APPLICATIONS

In the next exercise, we are going to implement a real closed control
loop. This exercise is of special interest if you want to understand the
concept used to regulate a disk, for example. A simple and effective
way to measure the speed of the motor is to attach a cardboard disk to
the shaft. A hole, called the index hole, should be perforated in the
disk. Arrange the disk so that a light emiter is on one side of the disk
while a light receiver is on the other side. They sould be arranged
in such a way that when the hole passes in front of the light-
emitting diode, the light illuminates the receiver. (This is exactly what
is done on a computer floppy disk to detect the index hole.) Every time
that the receiver is illuminated, a pulse will be detected. By counting
the number of pulses per second, one obtains the exact rotational
speed of the motor in rotations per second. Using this information, it
is possible to adjust the duration, or the frequency, of the ‘“‘on’’ and
the ““off”” pulses to regulate the speed with great precision. The com-
parison between this technique and a floppy disk stops here, as, in a
floppy disk, the speed must be regulated with great precision and must
be regulated even during a partial rotation of the disk, not just on the
average. On a disk, additional information is therefore used: Informa-
tion is recorded on a track and the pulses are used to adjust the rota-
tional speed during part of a single revolution. In the case of our
motor, it is important to measure the actual speed, since any friction
or any load on the motor will modify its rotational speed. All the
hardware and software techniques necessary to implement this have
been already introduced.

Exercise 5-33: Write the program that will accomplish it.

ANALOG TO DIGITAL CONVERSION (A HEAT SENSOR)

A thermistor will be used here to measure temperature. Any other
heat sensing device could be used. The resistance of a thermistor
changes with the temperature. We will use this feature to detect tem-
perature changes in the environment and take action depending on the
temperature measured. The main problem is, given an analog value
(one which changes value continuously, here the resistance of the ther-
mistor), the main problem is to measure it with a binary number. This is
called the analog to digital conversion problem. Components exist today
which will perform this conversion essentially with a single compo-

203

6502 APPLICATIONS BOOK

nent. Here, we are going to use a less costly (and more educational)
solution which uses a digital-to-analog converter plus some opamps.
The analog-to-digital conversion will be performed by program. (For
details on analog to digital conversion techniques, the reader is re-
ferred to Chapter 5 of our reference book C207 Microprocessor Inter-
facing Techniques.)

We will use here a successive approximations technique. An initial
binary value will be generated, then converted to analog form. This
analog approximation will then be compared with a comparator to the
value generated by the thermistor. The result of the comparison, ‘0’
or ‘‘1”’ depending on whether it is smaller or greater, will be used to
generate the next successive approximation.

o522 1"
DORA 1ORA

DAC

—]

—

OPAMP

N o va W - O

AW (AOO1 }

DOKE 1088
c > < —~—— THERMISTOR

COMFARAION

N o v A LN -0

{ADQ2) (A000}

Fig. 5-44: Connection for ADC

The hardware connection used in this experiment is shown on Fig
5-44. The 8-bit output of IORA is connected to an 8-bit DAC, a digi-
tal-to-analog converter. This digital-to-analog converter. transforms
the 8-bit binary number into an analog signal whose value is then com-
pared to the one of the thermistor. The comparator output is connect-
ed back to bit 0 of IORB, where it can be sensed.

The algorithm will turn on in succession every bit of IORA from the
most significant bit (bit 7), down to bit 0.

The initial value tried will be ‘“10000000’°. If it is found to be too
small, then bit 7 will be left unchanged, and bit 6 will be turned on. In

204

INDUSTRIAL AND HOME APPLICATIONS

this example, the next approximation will be ‘11000000’ If at this
point the approximation is too high (as decided by reading the output
of the comparator), then bit 6 will be turned off. The next approxima-
tion will be *‘10100000°’. Bit 5 has been automatically turned on. And
SO on.

" SECOND FOURTH
TRY APPROXIMATION
[ET e ANALOG
Sl nieiebl SIGNAL
: faivs
FIRST
TRY
BIT7 BiT & BITS BIT4 ew ..
=1 =1 =1 =1
1 Q] 0 «—— APPROXIMATION

Fig. 5-45: Successive Approximations

l TURN ON MSB J
— |

| OUTPUT APPROXIMATION I

{

[READ COMPARATOR J

APPROX » ANALOG?

I TURN OFF CURRENT BIT]

Y

'NO

' MOVE DOWN ONE BIT.
TURN ITON

L 1

Fig. 5-46: Successive Approximation Flow Chart

205

6502 APPLICATIONS BOOK

The formal algorithm is illustrated on Fig 5-45, and on the flow
chart of Fig 5-46. The process continues until all 8 bits have been used.
The resulting binary value is the best possible approximation of the
analog value, with the precision afforded by an 8-bit representation.
Naturally, the process assumes that the algorithm is executed fast
enough, so that the analog value does not change faster than it can be
measured. Otherwise, a sample-and-hold circuit should be used.
The illustration of Fig 5-45 shows the successive-approximations
closing in on the exact value of the analog signal. Every time that a
new bit is used, the interval is divided by two.

+12v
1 5
(MSB) 13 1.5K< M6
2 I/pB 5 3.3k ho 3.3k B
— 12 M 4 12V
3 U7 6 14 3Api2 g Do M6
FROM \ 4 " 17p6 7 Mo AW . 8
CONN)5 "/p5 8| MC1408 | |2 2.2k 3.3K
H4e N6 I/pa 9 8BIT sz
PINS |7 Ti/p3 10| DAC O/P“K M5 "54
8 1/p2 11 M4 15 2840 13 314
9 _l/pl 12 2 M6 = v
(LSB)
16 3 = ADDITIONAL
39PF RESISTORS RECOMMENDED Y
14 ! 6— 11
M6 THERMISTOR
—12v () ms >0
8M7 3 + 8 TO CONN H4
7 PIN 22
+12v —12v
s a2 2 s
My = 2 M7 >
10 7 3|+ 2

Fig. 5-47: ADC Interface

The Hardware Connection

The hardware connection is shown in Fig 5-47 and 5-48. The DAC
used here is an MC1408, which requires a 12-volt power supply. Its
output drives the M5 opamp which feeds into the comparator input.
The thermistor appears at the bottom of the illustration, and feeds in-
to the other input of the comparator. The comparator output connects
to pin 22 of connector H4 and feeds into bit 0 of IORB for the 6522 #1.

206

INDUSTRIAL AND HOME APPLICATIONS

CONNECTOR
H4
PIN NO.

vccOA—»'

ol —

GND 1. (MSB)
. PA7 3 — |/P8 OF DAC (PIN 5)
PA& 04——-———> \/P7 ”(6)
PAS O————— I/P6 A7)
VIA #]
e | PAG O P57 (8)
"
AG01 | PA3 oo I/P4 (9)
PA2 O————— |/P3 " (10)
PAl o 1/P2 o)
PA0 O————— |/P] o
LSB OF (LSB) 02
VIA #1 22
[—— -
ors P80 COMPARATOR O/P (M5-PIN 10)
AQ0O

Fig. 5-48: Connection to H4

The Program

In this program, the value of the temperature measured on the ther-
mistor will be indicated by the frequency of a tone on the speaker. The
tone’s pitch will become higher as the temperature increases.

6522
0000 A000 IORB —
A0O1 IORA

A002 DDRB
A0Q3 DDRA

0004 | SPEAKER CT

0008 NEW APPROX

Fig. 5-49: ADC Memory Map

The memory map for the analog-to-digital conversion program is
shown on Fig 5-49. Memory location 4 is used to store the constant
used by the DLYB program, which generates a delay specified by the
value of the constant. Location 8 is used to store the new approxima-
tion being computed by the program. The 6522 #1 is shown at memory
locations A0OO and following.

207

6502 APPLICATIONS BOOK

1

1

ADC

INITIALIZE 6522 FOR DAC OUT-
PUT AND COMPARATOR INPUT

POINTER
REGISTER = 10000000

b

[NEW APPROX = POINTER REG

CONVERT NEW APPROX
TO ANALOG

!

I CONVERSION DELAY

!

l READ COMPARATOR OQUTPUT

YES

NO

NEW APPROX = OLD APPROX
FOR REG
(TURN CURRENT BIT OFF)

SAVE NEW APPROX

1

[SHIFT POINTER REG RIGHT

|

NO

NEW APPROX = OLD APPROX
+ POINTER REG

!

l SHIFT RIGHT NEW APPROX = CT

!

CT = CT ORBO HEX
(FORCEBIT7TO 1)

'

STORECT IN 04

|
—

CALL BSCSPK
= SOUND SPEAKER

!

L COUNT DURATION

208

Fig. 5-50: ADC Flow Chart

INDUSTRIAL AND HOME APPLICATIONS

The flow-chart appears on Fig 5-50. The 6522 is first initialized to
configure IORA as output for the DAC, and IORB bit O is used as
comparator input. The pointer register is set to its initial value of
“10000000” which is the initial approximation value. This pointer
register will point to the bit being turned on in the approximation se-
quence loop. The bit will be shifted rlght every time that a loop has
been completed.

The initial value of the approximation is set equal to the pointer reg-
ister. It is then converted to analog. A delay is implemented in order to
give enough time to the DAC to perform the conversion, then its out-
put is examined. If the comparator output is ‘‘1’’, then the new ap-
proximation is too small and its value does not need to be changed. If
the comparator output is ‘‘0’’, then the approximation value is too
high and the current bit must be turned off. Next, the pointer register
is shifted right by one bit position, in order to point to the next bit to
be used in this technique. If the last bit has been reached, the final ap-
proximation has been computed. If not, a new approximation is ob-
tained by adding the value of the pointer register to the old approxi-
mation and a new iteration is started.

Once an approximation value has been obtained, a tone must be
generated whose pitch depends on the value of the measurement. A
minimum tone frequency is used and the pitch constant is obtained by
adding the value of the approximation to this minimum frequency.
The speaker routine is then called to sound the speaker (BSCSPK).
After the speaker has sounded for a minimum period of time, the pro-
gram reads the value of the thermistor again.

On the board, the fastest way to obtain an audible response is to use
a soldering iron (or a cigarette) and put its tip close to the thermistor.
The sound coming from the speaker should increase quickly in pitch.
When the soldering iron is removed, the speaker will go through a re-
verse sequence. Naturally the thermistor could be located away from
the board. Properly isolated, it could be placed on a wall, in a cup, or
in any other device whose temperature should be measured. A thermo-
couple could also be used or be immersed in liquid so that the liquid’s
temperature could be measured. The temperature of the environment
could be controlled, for example, by using a heating coil connected to
one of the relays. One remaining problem would be to calibrate the
thermistor so that precise temperature measurements can be made.

209

6502 APPLICATIONS BOOK

Connection: Connector A to connector H4
Connector AA to connector H3

This program uses successive approximations with a DAC so that the analog
value of a thermistor can be sensed continuously. Then the approximated
digital value is used as a parameter to control the frequency of the
speaker. From the frequency change, one can tell whether the temperature
is increasing or decreasing.

Speaker frequency is proportional to temperature (or resistance

of the thermistor)

This program uses BSCSPK and DLYB subroutines.

0360 A9 FF ADC LDA
0362 8D 03 A0 STA
0365 A9 00 LDA
0367 8D 02 A0 STA
036A A9 80 FSTBIT LDA
036C A8 TAY
036D 85 08 STA
036F AS 08 NXTBIT LDA
0371 8D 01 A0 STA
0374 A2 20 LDX
0376 CA LP9 DEX
0377 EO 00 CPX
0379 10 FB BPL
037B AD 00 A0 LDA
037E 29 0l AND
0380 C9 01 CMP
0382 FO 05 BEQ
0384 98 TYA
0385 45 08 EOR
0387 85 08 STA
0389 98 SHFBIT TYA
038A 4A LSR
038B A8 TAY
038C C9 00 CMP
038E FO 08 BEQ
0390 18 CLC

210

#SFF

$A003 Set VIA #1 DDRA = FF for output
to drive DAC

#300

$A002 Set VIA #1 DDRB = 00 for input to
read comparator

#$80 Set MSB for approximation

(Y) stores current bit under test

$08 Loc. 0008 stores current value under
test

$08

$A001 Output current value to DAC

#$20 Delay for comparator to settle

#300

LP9

#$A000 Read comparator output

#301 Get bit 0

#301

SHFBIT Comparator output = 1 means DAC
output is still too low, keep
current value and go to shift bit
else, DAC output is too high
deduct current bit from current value,
then shift bit

$08

$08

A Right shift (Y) by 1 bit for next -
approximation

#300

ECHO (Y) = 0 means approximation
completed, go to turn on speaker

Fig. 5-31:Analog-Digital Converter (Program 3-9)

INDUSTRIAL AND HOME APPLICATIONS

0391 65 08 ADC $08 (Y) = 0, current value plus next bit
as the output to DAC for next
approximation

0393 85 08 STA $08

0395 4C 6F 03 JMP NXTBIT

0398 A0 FO ECHO LDY #3F0 Delay constant for each frequency

039A A5 08 LDA $08

039C 4A LSR A

039D 85 4 STA $04

039F A9 80 LDA #$80

03A1 05 04 ORA $04 Calculate corresponding frequency

constant and store it at loc. 0004
03A3 85 04 STA $04
03A5 20 30 02 SPKR JSR BSCSPK Call BSCSPK to activate speaker
03A8 88 DEY

03A9 CO 00 CPY #$00
03AB 30 F8 BMI SPKR
03AD 4C 6A 03 JMP FSTBIT Repeat for next approximation

sequence

Fig. 5-51: (Continued)

Let us now examine the program, then suggest improvements. The
program is shown on Fig 5-51. The first four instructions condition
the data direction registers for Ports A and B of the 6522 #1, respec-
tively as output (with a DAC), and as input (for the comparator):

ADC LDA #$FF
STA $A003 DDRA 1 = FF = OUTPUT
LDA #300

STA $A002 DDRBI = 00 = INPUT

The next two instructions store the literal value ‘‘80”’ hexadecimal into
register Y. This is the pointer register which is set to the initial value
‘10000000’ binary.

FSTBIT LDA #$80
TAY

The memory location ‘‘08’’ has been reserved to store the current ap-
proximation. It is initialized to 10000000:

STA $08

211

B E———
6502 APPLICATIONS BOOK

The main iteration loop is then entered. The binary approximation is
obtained from memory location ‘‘08”’ and sent to the DAC:

NXTBIT LDA $08
STA $A001

A delay is then implemented to allow the comparator to settle:

LDX #320
LP9 DEX

CPX #%00

BPL LP9

The output of the comparator is read:

LDA #A000 COMPARATOR OUTPUT

Bit 0 of IORB is then extracted and tested:

AND #3501 BITO
CMP #$01
BEQ SHFBIT

If its output is “‘1”’, the approximation is still too low, and the next bit
must simply be turned on. If it is ‘0,”’ the value is too high and the
current bit must be turned off:

TYA

EOR $08
STA $08

Having adjusted the value of the current approximation if necessary,
the pointer register is now shifted right for the next bit of the iteration:

SHFBIT TYA
LSR A

If the last bit has been reached, we have obtained the best possible ap-
proximation and we branch to location ECHO to sound the speaker:

TAY
CMP #300
BEQ ECHO

212

INDUSTRIAL AND HOME APPLICATIONS

Otherwise, we turn on the next bit of the approximation and we go
back to the beginning of the loop:

CLC .
ADC 308
STA $08

JMP NXTBIT

The ECHO routine will sound the speaker in function of the value
measured. In this routine, register Y is used to implement the delay
during which the speaker will be sounding. It is loaded here with the
initial value ‘‘FO”’ hexadecimal. The value of the approximation is
read from memory location ‘‘08”’, and shifted right by one bit posi-
tion. This means that the value of the last bit of the approximation
will not be reflected by a variation in the pitch of the note in this tech-
nique.

Bit 7 is forced to the value ‘“1’’, so that the speaker oscillates at a
minimum guaranteed frequency to be audible.

The resulting value is stored at memory location ‘‘04’” which used
to pass a parameter to the BSCSPK routine which has already been
presented:

ECHO LDY #$FO0

LDA $08
LSR A
STA 304
LDA #8380
ORA 3504
STA 304
SPK JSR BSCSPK ACTIVATE SPEAKER

Next, the routine is called and sounds the speaker at the specified fre-
quency. Register Y is then decremented and tested, and, as long as it
does not reach the value ‘0”’, the speaker will sound:

DEY
CPY #3500
BMI SPKR

JMP FSTBIT

213

6502 APPLICATIONS BOOK

Once the speaker has sounded for the set duration, the program re-
turns to the beginning of the approximation to sense again the status
of the thermistor.

Exercise 5-34: Display in hexadecimal the value of the approximation
you have obtained.

Exercise 5-35: Is it possible to eliminate all “CPY #300”° from
the program?

Exercise 5-36: Calibrate your thermistor by determining the computed
measurement which corresponds to given temperatures measured with
a thermometer. Store these values in a table so that you can display the
actual temperature and not the approximation register value.

Exercise 5-37: Modify the program so that the speaker will sound I to
10 times, depending on the temperature it is measuring. At room tem-
perature, it will sound once. At high temperature, it will sound 10
times. This is an audible way to communicate the results of the mea-
surement (with a poor precision).

Exercise 5-38: Having calibrated your thermistor, add a heating coil
(which can be obtained from a hardware store at low cost) and regu-
late the temperature of a glass of water so that the water remains at
precisely temperature T. Caution: Most thermistors are not water-
Dproof, so that they may have to be attached to the outside of the con-
tainer rather than immersed inside. However, you can also obtain
thermo-couples or other thermistors which are water resistant and can
be immersed directly into liquid.

Exercise 5-39: As a further improvement to your home burglar-alarm
system (see program 5-7), add a routine to the basic control loop that
checks the temperature periodically. If the temperature becomes larg-
er than a set level, say 35 degrees centigrade, then sound the alarm.
You have just implemented a fire detector.

Exercise 5-40: Another variation: The goal is to hold your soldering
iron at the appropriate distance of the thermistor to bring it to a tem-
perature of say 80°C. Modify your program so that it blinks an LED
quickly as long as the thermistor’s temperature is much less than the
desired temperature, then blinks slowly as you approach the desired
temperature level. Another LED should also be used to display wheth-
er you are over or under the desired temperature.

214

INDUSTRIAL AND HOME APPLICATIONS

SUMMARY

In this chapter, real world applications have been developed, rang-
ing from simple home control to complex industrial control. A variety
of input-output devices have been connected to the microprocessor
board, ranging from switches and LED’s to a DC motor, a thermistor,
and a photo-emitter-receiver pair. The selection of devices and tech-
niques presented here should enable you to start solving a large num-
ber of actual control problems. For more information on specific in-
terfacing techniques, refer to our reference C207, ‘‘Microprocessor
Interfacing Techniques”’. Also, to develop a true programming exper-
tise, experimenting is strongly encouraged.

In the next chapter, actual computer peripherals will be interfaced
to the 6502 board.

215

CHAPTER 6

THE PERIPHERALS

INTRODUCTION

In this chapter, we will connect the 6502 board to actual computer
peripherals. The programs in this section have been optimized to
demonstrate ‘‘elegant’’ techniques for solving problems, by using the
specific resources of the components involved.

First, we will connect a standard 16-key matrix keyboard and make
“‘clever’’ use of the input-output register capabilities to minimize the
number of instructions needed to identify the character and display it.
Next, we will manufacture a home-built paper-tape-reader at low cost.
In this application, the paper tape can simply be pulled manually
through the reader and will be correctly read by the microcomputer.
Finally, we will show how simple it is to connect a microprinter (or an
ASCII keyboard) to the microcomputer board. At this point, the read-
er should feel confident that he has acquired the skills required to
solve most usual problems encountered in actual applications.

The applications presented here are simple to realize, and useful.
The programs are directly applicable to SYM, KIM or AIM6S, with
minor changes. Practice is, therefore, again encouraged.

All the programs are short, and will provide valuable knowledge
even if you do not plan to connect a peripheral. Careful reading of
this chapter is recommended to all.

216

THE PERIPHERALS

KEYBOARD

We will first connect an external 16-key matrix keyboard (called a
hexadecimal keyboard) and identify the key which has been pressed.
The keyboard connection is shown on Fig 6-1. It is connected to the 8
bits of the IORA of a 6522. Bits 0 through 3 are connected to the rows,
while bits 4 through 7 are connected to the columns. On the diagram,
the key at the intersection of row 2 and column 7 has been pressed,
connecting the row to the column.

6522

o o} o4} g BT
]]]=1;1;£)J] 4]ls5]e6]|B
] 21:1}1)4)1/.2 i I
) 3,>1"1}1)1)3 I B
1 4| 0 P>

1 5|0 p

1 6l 0 |

] 7—5—,

(A003) (A0OT)

(BEFORE KEY CLOSURE)

Fig. 6-1: Connecting the Keyboard

The data direction register is configured for all outputs. A special
feature of the IORA of the 6522 will be used by this program. The
IORA is really a bi-directional register. We will condition all rows to
be 1’s and all columns to be 0’s. If a key is pressed, the corresponding
row will be grounded by the column connected to it through the switch.
When reading back the IORA, the ¢‘0”’ value in the corresponding
row will be written into the register. In our example, when reading
IORA after the key has been depressed, the resulting value will be
00001011’ in binary or ‘‘OB”’ in hexadecimal. Using a ‘‘line-rever-
sal technique”’ (for details, see our references C201 or C207), we will
write “11111011”’ binary or ‘“‘FB”’ hexadecimal in IORA. Since row num-
ber 2 is <‘0’’ (grounded), it will also ground column 7. When reading

217

6502 APPLICATIONS BOOK

back the contents of IORA, we will find the final value ‘01111011’
binary or ‘‘7B’’ hexadecimal. At every bit position of IORA where a
‘0’ is present, the corresponding row or column have been intercon-
nected. This technique will not only detect which switch has been
pressed, but will also detect errors, such as several keys being depressed
at the same time. If more than one key is depressed at any one time,
then there will be more than one ¢‘0’’ per nibble (group of 4 bits) in the

IORA.

DDRA IORA
| of 0
1 1 P !

A

1 21 o > -« 2
| 3l 1 P 3
] 4] 0 1>
1 510 |
) 61 0 Lo
1 71 o —

(A003) (A0OT)

DDRA IS

UNCHANGED

Fig. 6-2: Step 2 -Reading IORA After Key Closure

DDRA IORA
1 o] 1 pp— o
! 1 P !

Al

) 21 0 P 2
1 3l 1 - 3
1 4 1 -
] 511 P
1 61 1 lo—
) 7 1 >

(A003) (ACOT)

Fig. 6-3: Step 3 -Writing IORA

218

THE PERIPHERALS

DDRA IORA
1 of 1 b 0
] 11 !

Al

1 21 0 P> & 2
1 3l 1 P 3
1 4l 1 b
1 511 b
1 611 b
] 71 0 (>

(A003) (AODT)

Fig. 6-4: Step 4 -Read back IORA

In order to identify the character corresponding to the key which
has been pressed (a hexadecimal character between ‘“0>” and *‘F’’), we
will simply build a table giving the ASCII representation of the char-
acters for each legal pattern in IORA.

For example, we have just determined that when key ‘‘B’’ is pushed,
the pattern ‘“7B”’ hexadecimal is found in IORA. As an exercise the
reader is encouraged to compute the IORA pattern for other charac-
ters. The correspondence table is shown on Fig 6-5.

If ever an illegal code is found, it is ignored and the keyboard is
scanned again.

Finally, once the ASCII code for the character has been obtained, it
can be displayed. As an example here the display routine available as
part of the SYM board monitor is used to display the character. Modi-
fications will be suggested at the end of this section to display the char-
acters on other media.

[CHARACTER 0 i 2 3 4 5) 7 8 9] A Bl C} D E F
IDCODE OE JEO1 DO §BD JEB] OB | BB | €71 D7 | B7 | 77 | 78 | EE | BE] 7E | 7D
ASCII 30 31] 3233 134] 35]36]37] 38] 39| 41 |42 |43] 44] 45 | 46

Fig. 6-5: Keyboard Character Codes Tabie

219

6502 APPLICATIONS BOOK

Note: This program will use 3 monitor routines for convenience:
SCAND, HDOUT, ACCESS.

r INITIALIZE, ERASE MEMORYJ

PROTECT
I DDRA = OUTPUT 1
.
l SEND “00001111°"]
| READ IORA I
[FORCE COLUMN 1
BITSTO 1"
{
l WRITE BACK J

!
| READ IORA j

YES
FOUND IN TABLE?

:

I NEXT TABLE ENTRY j I LOOK UP ASCIt CODE]

NO ¢ [DISPLAY IT (HD OUT)]
*YES ' l
I SCAND

R

Fig. 6-6: Keyboard Flow Chart

The flow-chart for the program appears on Fig 6-6.

The program is first initialized, then the ‘“OF”’ (hexadecimal) pat-
tern is sent on IORA. The value of IORA is read back (without chang-
ing the DDRA!). This value does not need to be stored in a 6502 regis-
ter or in the memory, because of the bidirectional feature of the IORA
of this component. It will be latched into the component and remain
there. The four column bits are then forced to a ‘“1’’, and the new
IORA pattern is output. IORA is then read back so that the final bit

220

THE PERIPHERALS

pattern may be obtained. The pattern in the IO register is then matched
against all possible values in the ASCII table of Fig 6-5. If the IORA
code does not match the current table entry, the next one is looked up.
If none matches, then a branch back to the beginning of the loop oc-

curs.

The program is shown on Fig 6-7.

20
A9
8D
A2
8E
AD
09
8D
AD
D5
FO
CA
10
30
BS
20
20
4C
E7
EB
ED
EE
0040 37
34
31
43

s g :
MUOP ouwmnoTP»ouw

(=N - N

g

86
FF
03
OF
01
01
FO
0l
0l
30
05

F9
05
40
00
06
08
D7
DB
DD
DE
38
35
32
30

8B

A0

A0
A0

A0
A0

89

89

00

B7
BB
BD
BE
39

36

33

44

INIT JSR
LDA
STA

START LDX
STX
LDA
ORA
STA
LDA

LOOP CMP
BEQ
DEX
BPL
BMI

DISPL LDA
JSR

SCAN ISR
IMP

77 TAB BYTE

7B

7D

7E

41 ASCT BYTE
42
46
45

ACCESS

#SFF

DDRA DDRAisPAD
#3OF

IORA IORA is PA
IORA IORA is PA
#SFO

IORA IORA is PA
IORA IORA is PA
TAB, X

DISPL

LOOP

SCAN

ASCT, X

HDOUT

SCAND

START

$E7, $D7, 3B7, $77, $EB, $DB,
$BB, $7B, $ED, $DD, $BD,
$7D, $EE, $DE, $BE, $7E

)7’ 78’ ’9, YA, 74’ !5, 16’
'B,’1,°2,’3, F,’C, 0,
'D, ’E

Fig. 6-7: Keyboard Program (Program 6-1)

The initialization phase removes the memory protection feature, in
the case of the SYM board, by using the ACCESS subroutine, then
conditions the data direction register of Port A to be all outputs:

INIT

JSR
LDA
STA

ACCESS

#3FF “11111111”’=0OUTPUTS

DDRA

221

R TTEEEEETEE—————————

6502 APPLICATIONS BOOK

The ‘00001111’ pattern is then sent to the data register:

START LDX #3$0F “00001111”
STX IORA

It is immediately read back and the columns are forced to all 1’s by
oring it with the pattern *“11110000°’:

LDA IORA
ORA #3F0 11110000

The resulting pattern is sent to the data register (IORA):
STA IORA

It is immediately read back and it now contains the final pattern that
will be used to determine which key has been pressed:

LDA IORA

The code contained in the accumulator will now be compared in se-
quence to every entry in the table. Every time we have a table struc-
ture, the indexed addressing mode is conveniently used to access the
elements in sequence. The initial value of the index register if ‘‘OF”’
hexadecimal or ‘15’ decimal. A match will be attempted against the
last entry of the table (see Fig 6-7). Then the previous one will be test-
ed. Whenever a match is found a branch occurs to location DISPL:

LOOP CMP TABX
BEQ DISPL
DEX
BPL LOOP

If the match fails, then the index register X is decremented in anticipa-
tion of the next character match. It must be tested against the value
““0’’: When it decrements below ‘0’ and becomes negative, no valid
key has been detected and an exit occurs through SCAN:

BMI SCAN

At this point, register X indicates which character has been recog-

222

THE PERIPHERALS

TAB

CHARACTER CODE

TABLE +(X)

" i i X IS POINTER

TO TABLE ENTRY

HIGH ADDRESSES |

Fig. 6-8: Indexed Addressing for Table Access

nized. It contains a number between ‘‘0’’ and ‘‘15”’. We now want to
convert this number to the ASCII code required to display (or print)
the character we have recognized:

DSPL LDA ASCT, X

At location DISPL, the accumulator is loaded with the ASCII code
corresponding to the value of the character as determined by the value
of index register X. Again an indexed addressing technique is used for
this sequentially ordered data (see Fig 6-9). The subroutine HDOUT
(of the SYM) is then used and the character is displayed (SCAND rou-
tine of the SYM) before the keyboard scanning resumes:

JSR HDOUT
SCAN JSR SCAND
JMP START

223

6502 APPLICATIONS BOOK

INDEX

OFFSET
=8

LDA ASCT, X

Fig. 6-9: Converting the Character ID # to ASCII

Two tables of constants are used by the program. The first one is
called “TAB’’. The table contains the list of legal bit patterns that
may appear in IORA. The value of the index register X at the time it
reads one of these entries determines the identity of the key which has
been pressed. The second table used is called ‘“ASCT”’. It contains the
ASCII code for each of the digits of the keyboard.

These two tables appear at the end of the program on Fig 6-7. Note
that the index register X does not have to contain the actual hexadeci-
mal digit corresponding to the key which has been pressed. As long as
the two tables are arranged in matching sequence, the proper ASCII
code will be extracted for each legal binary pattern found in the table
TAB. This is why these two tables on the program are out of the hexa-
decimal sequence.

Exercise 6-1: Rearrange the two tables, TAB and ASCT of Fig 6-7, so
that the value of the index register X is always equal to the hexadeci-
mal value of the key which has been pressed on the keyboard.

Exercise 6-2: As an alternative to the above method, relabel the keys
of the keyboard, without changing the tables TAB and ASCT, so that
the value index register X corresponds to the key which has been
pressed.

224

THE PERIPHERALS

Let us suggest now some possible variations so that the digit which
has been detected can be displayed to the outside world in other ways:

Exercise 6-3: Sound the speaker once if character ‘1’ has been pressed.
Sound it twice if character ‘°2°° has been pressed, and so on.

Exercise 6-4: Using the Morse program which has been developed in
chapter 4 (see Program 4-3), modify the above program so that it
sounds the Morse code corresponding to each key pressed.

Exercise 6-5: Modify the above program so that it will sound a note
for each key pressed. One key should be dedicated to a silence. An-
other set of two keys can be used to determine the duration of the note
(durations 1, 2, and 4).

Exercise 6-6: Write a stored music program. You will first play a tune
by hitting the keys of the keyboard in the desired sequence. The first
50 notes (or any other number) of the tune should be memorized in the
memory of the system. Then hit a special key, and the program should
play back the tune that has just been memorized.

PAPER TAPE READER OR ASCII KEYBOARD

Connecting a decoded (ASCII) keyboard, or a paper tape reader in-
volves a nearly identical technique. The hardware interface involves 8
data bits (the 7 bit ASCII code plus parity), and an extra status bit in-
dicating that a character is available. A simple interface will be pre-
sented here for a ““home-built’’ simplified paper tape reader. The pro-
gram for a decoded keyboard would be nearly identical.

[] [J [] 0
[J LN J 1
[] [] 2
_____________________________________ sprocket holes
e oo 3
L4 [] L] 4
[] [J 5
L] o0 6
° o0 PARITY (7)

Fig. 6-10: Punched 8-level Paper-tape

225

6502 AﬁP‘L’iCAﬂONs BOOK

Paper tape has traditionally been used to store pr‘ grams in a reli-

. ~ab1e and economical form. Each character is represented 1
tape by a row of holes punched in it (see Fig 6-10). One hole, smaller
‘than the other, is used by the sprocket wheel whlch pos io the paper

Note: The emitter (not shown) comes over the detector,

The FPA100 emitter is located on the small board on top. The PTR is connected to the
6502 board via a flat ribbon through the A-connector (top).

Fig. 6-11: Paper Tape Reader Hardware

226

THE PERIPHERALS

tape. The other 8 holes (other types of codes exist using less holes) are
used to encode the character itself in ASCII format. The paper tape is
moved one hole position at a time, and the code corresponding to the
hole must be read by the reader. We will use here a pair of photo emit-
ters and detectors FPA100.

DATA

1/67417

1767417
STATUS

Fig. 6-12: PTR Connection Details

6522

DORA IORA
0 [Als
o 1 A4
[2 ASCH
a3 KEYBOARD
[3 A2 OrR
PORT A . PAPER-TAPE
° as READER
0 H ™
0 6 A7
o 7 PARITY a8
(ADOT)
10RB
PORT B
STATUS
0 4 Als
(A000)

Fig. 6-13: Paper Tape Reader Interface

227

6502 APPLICATIONS BOOK

The light-emitting diodes emit light continuously. When a hole
passes in front of the LED, the light will be transmitted and the photo-
detector placed on the other side will sense it. This will be a “1”°.
When no light is transmitted, a ‘‘0’’ will be detected. Note that the in-
tensity of the LED’s must be adjusted carefully, so that no light goes
through the paper tape in the absence of a hole (practical remarks will
be presented later). This very low-cost and simple paper-tape-reader
can be operated by hand by pulling the paper tape between the two
detectors. The program will synchronize itself, as we will see, on the
hole normally intended for the sprocket wheel. The hardware diagram
appears on Fig 6-11. The detailed connection of the light emmitting
diodes and of the hole detectors and the data detector circuits appear
on Fig 6-12. The microcomputer interface is shown on Fig 6-13. The
IORA of 6522 #1 is used as input for these data bits. The IORB of port
B of the same 6522 is used to read the status bit into its position 7.

The signals are conditioned by Schmitt triggers (7414). The two
sockets for the 7414’s are used as guides for the paper tape itself. The
signal corresponding to the detection of a sprocket hole is *‘0’’. The
signal corresponding to a data holeis <‘1”°.

[CHARACTER COUNTER = 0 I

Iﬁo X1 CHARACT
AVAILABLE?
YES

I READ IT

K|

[STORE IT IN LINE TABLE I

! TNCREMENT LHARACTER |
COUNT
=
———p- O
NO
S
NO

CHARACTER STILL
AVAILABLE?

(41

utT

NO

Fig. 6-14: PTR Flow Chart

228

THE PERIPHERALS

Note that a single resistor is used in this simple interface to drive all
LED’s. In practice, individual resistors could be used for each indivi-
dual LED. The value of the resistor must be adjusted carefully so that
just enough light goes through a hole to be detectable by the opposite
detector. Otherwise all 1’s (“‘11111111”°) will be detected continuously
if the light may go through a normal (fairly transparent) paper tape. If
you are experiencing trouble with the value of this resistor, you may
consider using initially black paper tape, or at least very opaque tape,
to eliminate this problem.

The flow-chart for the program is shown on Fig 6-14. A character
counter will be used to count the number of characters coming in. The
program remains in a waiting loop until the next character becomes
available. This will be detected by the presence of a sprocket hole over
the corresponding detector. Once the status signal indicates the avail-
ability of the character, it should be read quickly. It is read and stored
in aline tablein the memory. The character counteris then incremented.

By convention, the reading operation will be terminated either by a
““NULL’’ character (nothing punched on the tape), or else an explicit
‘‘carriage-return’’ character (CR). The program, therefore, checks for
the NULL character or ‘“CR”’, and, if they are found, it exits. If they
are not found, it can go back to the beginning of the loop. However,
before going back to the beginning of the loop, the program must wait
until the status information has been reset. Once the ‘‘character-avail-
able’’ signal has disappeared, it can go back to the beginning of the
loop and wait for the next character to become available.

The memory-map corresponding to this program is shown on Fig
6-15. The program appears on Fig 6-16.

0000 TABLE | A000 IORB
0001 | POINTER A00! IORA

CHARACTER -
TABLE

Fig. 6-15: PTR Memory Map

229

6502 APPLICATIONS BOOK
0002 A0 00 KBPT LDY #0
4 2C 00 A0 TS BIT IORB IORBisPB
7 30 FB BMI TS
9 AD o0l A0 LDA IORA IORAisPA
c 91 00 STA ($00), Y
E C8 INY
F C9 00 CMP #0
0011 FO 0B BEQ RET
3 C9 8D CMP #3$8D
s FO 07 BEQ RET
7 2C 00 A0 TE BIT IORB IORBisPB
A 10 FB BPL TE
c 30 E6 BMI TS
E 60 RET RTS

Fig 6-16: PTR/Keyboard Program (Program 6-2)

The program assumes that DDRA and DDRB have been initialized
with the proper values. Otherwise extra lines of initialization must be
added to the beginning of this program. Register Y is used as the char-
acter counter and is initialized to the value ¢‘0”’:

KBPT LDY #0

Next, the value of the status line must be tested, in order to determine
whether a character is available. It is connected to IORB bit 7 in order
to facilitate its detection:

TS BIT IORB
BMI TS

Bit 7 is a preferred bit position for connecting a status signal, since it is a
bit position which can be tested in one instruction: bit 7 is the ‘‘sign”’
bit. It sets the ‘N’ flag in the status register, which can be tested di-
rectly for ‘‘positive’’ and ‘‘negative’’ (‘‘0”’ or *‘1’’). Here, it is tested
by the BMI (branch on minus) instruction. As long as the signal is

230

THE PERIPHERALS

““1”’, no character is available. When it becomes ‘‘0’’, a character is
available. The accumulator can then be loaded with the data present
on the data lines:

LDA IORA READ DATA 1

The 8-bit character obtained from the paper-tape-reader must then be
stored at an appropriate memory location. It is assumed here that the
starting address of the line buffer has been deposited at memory loca-
tion ““00, 01.”’ An indirect addressing technique will be used in order to
access the first element of the table. In addition, the addressing mode
will be indexed by the value of Y, in order to access successively all ele-
ments of the table. The corresponding instruction is:

STA (300),Y
Let us examine this indirect indexed instruction here. The indirec-

tion specifies: ‘‘go to memory address ‘‘00’’ and use its contents as an
address (Step 1 on Fig 6-17).

00 LINE BUFFER

[} ADDRESS

“STEP 17"

¥
I LINE BUFFER L ADDRESS J
POSITION Y

LINE BUFFER

“STEP 2

+Y

CORRECT LOCATION

FINAL ADDRESS

Fig. 6-17: Indirect iIndexed Access: STA ($00), Y

Register Y is then used as an index: its contents are added to the
base address to provide the final address (Step 2 on Fig 6-17). The con-

231

6502 APPLICATIONS BOOK

tents of Y are the displacement within the line-buffer table, i.e., the
pointer to the current entry.

The character counter is then incremented, thus pointing to the next
available location in the line buffer, in anticipation of the next char-
acter:

INY

The character in the accumulator must now be tested for ‘““NULL’’ or
for a ‘‘carriage return,’’ to check whether the end of a line has been
reached. This is accomplished by the next four instructions:

CMP #0 NULL?

BEQ RET IF YES, EXIT
CMP #$8D CR?

BEQ RET IF YES, EXIT

Finally (refer to the flow-chart of Fig 6-14), we must wait for the
‘‘character-ready’’ signal to disappear before testing it again, or else
we would read twice the same character. This is accomplished by the
next 3 instructions:

TE BIT IORB TEST READY SIGNAL
BPL TE :
BMI TS

Finally, the subroutine terminates with the usual return instruction:

RET RTS

Exercise: 6-7: In addition to storing the character in a table, generate
through the speaker the Morse code corresponding to the character
being read. Be careful to generate the Morse code quickly enough so
that you do not lose characters on input. Alternatively you may decide
to pull the paper very slowly so that you have enough time to generate
the Morse output between two successive characters. Or as another
possible solution, you may decide to generate the Morse code only at
the end of the line when all the characters have been read. This is def-
initely the safest solution but it defers the enjoyment of verifying that
each character is being correctly read!

232

THE PERIPHERALS

Exercise 6-8: Connect eight LEDs on the PTR board, and light them
with the 6502, as each character is recognized.

Exercise 6-9: Sound an alarm if the parity bit is incorrect. (The parity
bit insures that the total number of bits for a given character is even or
odd, depending on the convention used. You must verify this.)

MICROPRINTER

Many small microprinters use electrosensitive paper, and print 20
characters across, using a dot matrix to form the characters. Examples
are Olivetti (various models) or Matsuhita. The bare printer requires
a small interface which will sent the appropriate signals to the print-
ing head, move the paper and manage the mechanical resources
of the printer mechanism. Once equipped with such a basic interface,
the microprinter can be connected to any microprocessor equipped
with a PIO (a programmable input/output port). Such a printer will
be used here and will be connected to the 6502 system via a 6522 and a
6532 port. Differences may exist if you are using a printer with a dif-
ferent interface. However, the logic of the program should be essen-
tially similar.

The program will print a 20-character line at a time. It will supply
the ‘‘start print’’ signal, then send the 20 characters in sequence. In
order to send a character, the program waits for the printer interface
to supply a “‘character request signal.”’ In response to this signal, the

]
6502 o
CHARACTER , :)
BOARD REQUEST - PRINTER
BUFFER |CONTRQY
INTERFACE
START PRINT iL
PRINTING
¥ B

PRINTER BUSY

Fig. 6-18: Basic Printer Interface

233

U

6502 APPLICATIONS BOOK
CONNECTOR
DORA 1ORA a
0 O] «xBa FACTI S——)
! ! b A9 |——eD2
! : e Al 0% { spn
6532
PORT A 3 3 XD A22 |~ D4 (DATA
4 4l xee AN |—0s
5 5 XBF A8 =D
o 6| xec AWl CHARACTER
REQUEST
7 7
(A401) (A400)
DORB IORB
! PBO ! | START
[)
-0
:sogr 8 °
°
o
[)
o
(A002) (A000)

Fig. 6-19: Printer Connection

program must supply the characters, or else the previous character
stored in the interface buffer will be printed by error. The character
will be supplied on the 6 data lines. A 6 bit character representation is
used (see Fig 6-18).

The hardware connection for the printer appears in Fig 6-19. Port A
of the 6532 is used and bit 0 of Port B of the 6522 is also used. The
IORA of the 6532 supplies the 6 data lines and receives on bit 6 the
‘“‘character request,”’ as indicated on the illustration. Bit 0 of the
IORB of the 6522 is used to generate the ‘‘start’’ signal. In addition,
the printer interface normally supplies a ‘‘printer busy’’ signal. It will
be ignored here and replaced by a software delay routine of 30 milli-
seconds. A flow-chart for the program appears on Fig 6-20.

The data-direction registers for the two PIOs are initialized. A start
pulse is generated to start the printer. The program then checks the
‘‘character request”’ line. The program waits at this point until a level
change indicates that a character is requested. It gets the next charac-
ter from one of the memory locations where the 20 character line is
stored (see Fig 6-21). The character is then sent to the printer. Once
the character has been sent, the program waits for the ‘‘character re-
quest’’ signal to disappear. It increments the character counter and
checks to see whether it has reached the value ““20.”’ If it has not

234

THE PERIPHERALS

INITIALIZE DIRECTION
REGISTERS AND RESET IORB

!

l GENERATE START PULSE J

L CHARACTER
REQUESTED?
NO QUESTED

YES

r GET NEXT CHARACTER I
r SEND CHARACTER 1

CHARACTER
REQUESTED?

YES

:

NO
C

| INCREMENT COUNTER I

o=
* YES
SEND “*SPACE" l

 TIMER 102430 HEX]

| NO
TIMEOUT?

* YES

out

R

———

Fig. 6-20: Flow Chart for Printer Program

reached the value ‘20, another character must be sent to the printer
and the loop is re-entered. Once the 20 characters have been sent to the
printer, a ‘‘space’ code is sent to the printer to terminate the line,
causing a line feed and a carriage return to be generated. (A different
convention may be used by a different interface.) Then a delay of 48
milliseconds must be provided for the mechanical elements of the
printer to position themselves for the next line. The internal timer of

235

6502 APPLICATIONS BOOK

the 6532 is used for this purpose and the timer word corresponding to
the 1024 times factor is used here. The 1024 factor corresponds to a
delay of 1024 microseconds or approximately 1 millisecond per delay
unit in the timer word. This word is loaded with ‘30"’ hexadecimal =
‘48’ decimal. Once it times out, the program exits.

The program is shown on Fig 6-22. The memory map for the printer
program is shown on Fig 6-21. The two memory locations ‘00’ and
‘01’ contain the pointer to the location of the first character in the
memory. In order to use this program, the user should load the value
“01’’ at memory location ‘“A002’> (DDRB), and ‘00’ in memory
location ‘“A000’’ (IORB) before turning the printer on. The memory
locations used by the input/output devices appear on the right of Fig
6-19. Let us examine the program.

[o4] CHAR - AO00 IORB
o1 POINTER (6522)
A002 DDRB
A400 {ORA
CHARACTER €82} o DORA
TABLE
(20
CHARACTERS)
A407 | TIMERFLAG
A4IF | TIMER 1024

Fig. 6-21: Printer Memory Map

236

THE PERIPHERALS

0200 A9 3F LINE LDA #33F Configure Port A
2 8D 01 Ad STA IORA
5 A0 01 LDY #1 Send start signal
7 8C 00 A0 STY IORB
A 88 DEY
B 8C 00 A0 STY IORB “0”’ output
E 2C 00 A4 TSTI BIT IORA Read status
0211 70 FB BVS TST1 Char request?
3 Bl 00 LDA (800),Y Load character
5 8D 00 A4 STA IORA Print it
8 2C 00 A4 TST2 BIT IORA Check status
B 50 FB BVC TST2
D C8 INY Next character
E C0 14 CPY #$14 20th?
0220 DO EC BNE TSTI
2 A9 20 LDA #3$20 Space/character
4 8D 00 Ad STA IORA
7 A9 30 LDA #3$30 Delay constant
9 8D IF Ad STA T1024 Timer X1024
C 2C 07 A4 TTIM BIT TIMFLG Timer status?
F 10 FB BPL TTIM
0231 60 RTS
0000 SO 00 WORD BUFFER
0050 30 31/32 33/34 BUFFER BYTE °0,°’l,’2,°’3,°4,°5,°6,'7,
35/36 37/38 39/40 ’8,’9,’W, ’A, ’B, ’C, 'D,
41,42 43,44 45,46 ’E, ’F, ’G, 'H, 'l
47/48 49
IORA is PA
IORBis PB

Fig. 6-22: Printer Program (Program 6-3)

The data direction register A is first initialized:

LINE LDA #3$3F
STA IORA

A start pulse is then generated by depositing the value ‘0000001 in
the IORB:

LDY #1 00000001
STY [IORB

237

6502 APPLICATIONS BOOK

IORB is then set to all 0 outputs:

DEY Y = ‘00000000
STY IORB

We must then check the ‘‘character request’’ line. If this lineis a ““1°’,
we keep looping. When it becomes a ‘‘0’’, we will get the next charac-
ter:

TST1 BIT IORA READ STATUS
BVS TSTI1

It should be remembered that the ‘“‘BIT”’ instruction will test a given
memory location without disturbing its contents. It will copy bits 6
and 7 respectively in the ‘““V’” and *“N”’ flags. We are interested here in
testing the value of bit 6 (refer to the printer connection on Fig 6-19).
The BVS instruction will test the value of the overflow flag “V’’,
which has been set to be identical to the value of bit 6 of IORB. Its
value is therefore the value of the ‘‘character-request’’ line. The next
character is obtained from the 20 character table stored at the memory
address contained in locations ‘00"’ and ‘‘01”’. An indirect access in-
struction will result in accessing the first entry of this table. For gen-
erality, we want this segment of the program to be able and retrieve
any entry within the table. As in any table organization, indexed ad-
dressing will, therefore, be used. Register Y is used here as the index
register. It contains initially the value ‘“00”’ which will be incremented
through the value 19 before we exit from the loop. An indexed indirect
addressing technique is used here:

LDA (300),Y

The indexed indirect access is illustrated on Fig 6-23. The contents of
memory location ‘0001’ are first accessed. They are then used as the
address of the base of the table to accessed. The contents of register Y
will be added to the contents of memory location 0001 and this final
address will be used as the address of the data to be fetched (see Fig
6-21). This data is the ASCII code for the character to be printed. It is
sent to IORA:

STA IORA

238

THE PERIPHERALS

00 TABLE
01 ADDRESS LDA (300), ¥
BASE (300)
+(Y)
CHARACTER FINAL ADDRESS =
BASE+Y

Fig 6-23: Indexed Indirect Access

Once the character has been sent, we must wait for the character re-
quest line to become ‘1’ again. A two-instruction loop is used exactly
as above:

TST2 BIT IORA
BVC TST2

The character counter (register Y) is then incremented:
INY

and tested against the limit value ‘20’’ decimal = ‘“14’’ hexadecimal.
As long as the limit value is not reached we re-enter the loop:

CPY #314
BNE TSTI

The code for the required ‘‘space’’ character is then output on IORA:

LDA #$20
STA IORA

Finally, we must guarantee the minimal delay between 2 successive

239

6502 APPLICATIONS BOOK

line printings. The 1,024 factor is used for the timer. The final 48 ms
delay is obtained by simply loading the appropriate memory location
with the constant specifying the number of milliseconds (refer to Fig
6-19 for the printer memory map):

LDA #$30 DECIMAL = 48
STA TI1024

The timer flag is then checked continuously until it becomes ““1”’,
indicating a timeout:

TTIM BIT TIMFLG
BPL TTIM

The actual printout for the sample 20 character line indicated in the
program appears on Fig 6-24:

Fig 6-24 : Actual 20-Character Printout

Exercise 6-10: Connect the printer and the paper-tape reader. The
printer should print the contents of the papertape at the end of every
line.

SUMMARY

In this chapter, actual peripherals have been interfaced both from a
hardware and software standpoint to the microcomputer board. Full
use has been made of the specific capabilities of the PIO registers, and
of the addressing techniques provided by the 6502 in order to optimize
the programs. The reader should now have acquired all the skills re-
quired for realizing his own applications programs in most usual
cases.

240

CHAPTER 7

CONCLUSIONS

This book has systematically introduced the hardware and software
techniques required to connect an actual 6502 board to the outside
world. The input-output chips have first been described, along with
usual 6502 boards. Then application programs of increasing complex-
ity have been presented in chapters 4, S, and 6. At this point, the read-
er should feel confident that he can connect his own 6502 board to
usual input-output devices and solve the hardware and software inter-
facing problems associated with this. In fact, the author believes that,
with the skills acquired now, the reader should be in a position to start
solving almost any applications problems of usual complexity. There
are naturally cases where specific interfacing problems exist and the
reader is encouraged to consult reference C207 ‘‘Microprocessor In-
terfacing Techniques’’ for that purpose. If at this point, the reader has
skipped the exercises, it is strongly suggested that he go back to chap-
ters 4, 5, and 6 and solve all exercises proposed in these chapters, first
on paper, then on a real microcomputer board.

The Next Step

If you have not built any applications board yet, the next logical
step is to go to your local electronics store and purchase the few low-
cost components required by the applications proposed here. You
should then try to write some programs by yourself, without consult-
ing this book, and make sure you have acquired the skills required to
solve these problems. Use your imagination and you can invent many

241

6502 APPLICATIONS BOOK

other possible applications, using the same limited hardware, or else
additional simple input-output devices.

For the reader interested in more complex programming tech-
niques required to implement complex algorithms, a third volume in
this series will be published, called ‘“6502 Games’’. In this volume,
much more complex algorithms are introduced, and described, which
will allow the reader to play a variety of games ranging from mind-
bender to magic squares. The hardware required for these games is
minimal (one 16-key keyboard, 15 LED’s and one loudspeaker).

It has been found that the time required by each person to learn how
to program varies very significantly from one person to the next.
However, the next logical step after reading any programming book
should be the same: practice. It is hoped that the contents of this book
will have brought you the skills for such successful practice.

242

APPENDIX A

A 6502 ASSEMBLER
IN BASIC

INTRODUCTION

Developing short programs for the 6502 may be done on paper, and
the programs may then be entered on a 6502 board. However, if longer
programs are to be developed (say more than a few dozen
instructions), or else if a large number of small programs is to be
developed, the convenience of an assembler becomes of significant im-
portance. Since it is assumed that most readers seriously interested in
applying a 6502 to real applications will start developing such pro-
grams, this book includes the full listing of an assembler for the 6502
written in BASIC for those who do not already have access to a 6502
assembler.

The advantage of an assembler for the 6502 written in BASIC is that
it can be run on any computer equipped with BASIC which may be ac-
cessible to the user. The version of BASIC used in this program is the
one available on Hewlett-Packard computers. It can be characterized
as a subset of most microcomputer BASICs in that it does not include
the features found on the latter ones. Using this assembler on a com-
puter having a different BASIC will involve a translation process.
However, the translation effort should be moderate, in view of the
fact that most popular BASICs available on microcomputers include
many more features than the one which has been used for this
assembler. This assembler is therefore essentially upwardly compatible.
In fact, a user who is good at programming in his BASIC will pro-

243

6502 APPLICATIONS BOOK

bably be capable of effecting a significant reduction in the number of
instructions used for this assembler.

This assembler has been used to assemble a large number of pro-
grams for the 6502 and has performed successfully. To the best of our
knowledge, it is therefore a reliable product. However, it is included
here for educational purposes only and not warranted for any purpose
whatsoever. A Microsoft BASIC version of this assembler will be
published in the near future for readers interested in this particular
version.

A complete listing of the assembler is shown in this section, and a
sample output demonstrating its operation is shown below.

All the programs at the end of Chapter Four have been assembled
with this assembler.

GENERAL DESCRIPTION

ASM 65 is a complete 6502 mnemonic assembler. It recognizes all
industry standard mnemonics, and will produce the standard hexa-
decimal listings, as shown on the example of Fig A-1.

In addition, this assembler provides the industry standard direc-
tives, with only exception the use of ‘“.”’ to indicate current location
assignments and references. The directives available are: .BYT,
.WORD,.DBYT,.TEXT. The user is referred to any manufacturer’s
assembler description for the details of these directives.

USING THE ASSEMBLER

The ASM 65 is written in Hewlett-Packard 2000 series F BASIC. A
description of the features of this particular BASIC implementation
appear later in this section. Few changes should be needed to adapt
this interpreter to other versions of BASIC to which the reader would
have access.

ASM 65 operates on serial files. A minimum of three files are equipped
and four are normally used. They are: the source file, the symbol
table file, a temporary file, and optionally a destination file distinct
from the source file.

The input file contains the assembly language instructions. It must

244

APPENDIX A

% CAT SRC
iMEMORY BLOCK MOVE PROGRAM
#MOVES UP TO 255 BYTES FROM A TABLE STARTING AT
3LOC1 TO A TABLE STARTING AT LOC2. LENGTH OF THE
SSECTION TO BE MOVED IS IN MOVLEN.
MOVLEN =%00
Loc1 =$200
Locz =$300
14
LDX MOVLEN 7LOAD LENGTH OF MOVE TO INDEX
LooP LDA LOC1,X iLOAD BRYTE TO EE MOVED
STA LOC2,X #STORE BYTE TO RE MOVED
DEX $COUNT DOWN
BPL LOOP 7IF NOT DONE» MOVE NEXT BYTE
RTS 3 DONE
% RUN ASM6S
SOURCE FILE ?SRC
OBJECT FILE ?DEST
FRINTOUT ?YES
ASSEMBLY BEGINS...
iMEMORY BLOCK MOVE PROGRAM
$MOVES UP TO 255 BYTES FROM A TABLE STARTING AT
#LOC1 TO A TABLE STARTING AT LOC2. LENGTH OF THE
$SECTION TO BE MOVED IS IN MOVLEN.
MOVLEN =$%00

LOC1 =$200
Locz =$300
4
0000: A6 00 LDX MOVLEN iLOAD LENGTH OF MOVE TO INDEX
0002: BD 00 02 LOOP LDA LOC1yX 7LOAD BYTE TO RE MOVED
00052 9D 00 03 STA LOC2¢X $STORE BYTE TO BE MOVED
00082 CA DEX #COUNT DOWN
0009: 10 F?7 BPL LOOP #IF NOT DONE» MOVE NEXT BYTE
000B: 60 RTS i DONE
SYMBOL TABLE:
HOVLEN 0000 Loc1 0200 Locz 0300
LOOF 0002

DONE

Fig A1: Using the ASM 65 Assembler

therefore contain ASCII text, and must be structured as per the rules
of the assembler syntax (described in the next section). In general, the
input lines can be written in free format, with the fields separated by
one or more spaces. However, any label must start in column one.
Any line without a label may not start in column one.

The assembler will automatically format the comment field on the
output file. However it will not format the other fields within the in-
structions so that the user may tabulate his input statements in any
reasonable way for clarity. This feature is intended to improve reada-
bility.

245

6502 APPLICATIONS BOOK

The output file is also ASCII text, including the representation of
all numbers. The output file may optionally be printed after the sec-
ond pass of the assembler has been executed. A prompt is printed on the
listing, or appears on the screen as “PRINTOUT?’’ and the user may
specify ‘‘yes’’ or ‘‘no.”’

The assembler provides extensive diagnostics and will describe all
errors it has identified, then list them on the output.

In this implementation, the error printout may contain various field
markers such as operator field limiters (‘‘!”’), and the internal unre-
solved reference delimiter (‘‘**”).

The symbol table gives the usual hexadecimal representation for all
symbolic labels used by the program. An example is shown in Fig A-2.

SYMBOL TABLE:

MOVLEN 0000 Loc1 0200 Locz2 0300
LOOP 0002
DONE

Fig A-2: The Symbol Table

SYNTAX
Constants

Constants may be expressed in any of the four usual number repre-
sentations:

¢ Hexadecimal: the constant must be preceded by a ““$’’. Exam-
ple: ‘“‘LDA $20” will load the accumulator from memory address
€¢20”’ hexadecimal.

¢ Binary: it must be preceded by a “‘%’’. Example: ‘“LDA
%11111111”” will load the accumulator with all ones.

* Decimal: usual representation. Example “LDA #0’* will load the
accumulator with the decimal value zero.

*ASCII: must be preceded by a ‘> . Example: “LDA’A” will
load the ASCII code for A into the accumulator.

Arithmetic Expressions

Arithmetic expressions may be used in the operator field, in a label

246

APPENDIX A

assignment, or in a memory allocation instruction.

The operand in an arithmetic expression may be a number expressed
in any representation, or a label, or a ‘‘.”’ (the current location sym-
bol) or any combination of those. The legal operators are ‘4’ and
““—.”, In the case where more than one operator is used, the arith-
metic expression will be evaluated from left to right.

Comments

Comments must be preceded by a ‘‘;”’. They may begin in any col-
umn including column one. All comments will be justified in the mid-
dle of the output sheet unless they begin in column one.

Memory Assignments

Memory assignments are performed by one or more of the four di-
rectives:

BYT — Assigns one byte of data to one memory loca-
tion.

.WORD — Assigns two bytes of data to two consecutive
memory locations, low order byte first.

.DBYT — Assigns two bytes of data to two consecutive
memory locations, high order byte first.

.TEXT — Converts an ASCII string to hex data, and

stores it in consecutive memory locations. The
string must be delimited by two identical non-
blank characters.

There is no end directive~ an end-of-file is used instead.

Example of a memory assignment:

BYT $2A, WORDCONST
.WORD 2, %10

HP2000F BASIC:

Hewlett-Packard BASIC is different from many common mini- and
microcomputer BASICs, but is easily adapted. The following is a list

247

T R
6502 APPLICATIONS BOOK

of features which'differ from most BASICs, or from the Dartmouth
standard.

Files

Files are declared in a FILES statement at the beginning of the pro-
gram and are numbered in the order in which they appear in it. The
ASSIGN statement assigns a file specified by its first argument to a file
number specified by the second argument. The third argument is a
dummy variable. A star appearing in a FILES statement means a file
will later be assigned to that file position by an ASSIGN statement.
The READ statement reads the file. Its first argument, preceded by a
“#’, is the file number of the file to be read from. If the record
number is one, and there is no semicolon, the statement serves to reset
the file pointer to &, as in ‘“READ #2, 1°’. Any arguments after the
semicolon are those variables to be read.

The PRINT statement is similar to the read statement. It also has a
special form, “PRINT #2,END”’, which makes an end-of-file marker
on the file.

The IF END # THEN statement operates in a way analogous to a
vectored interrupt. When an end-of-file occurs on a read, program ex-
ecution will continue at the line number mentioned after the THEN,
instead of causing the program to crash. This will occur even if the
computer is not currently executing the statement: i.e., the end-of-file
vector need only be specified once, unless it needs to be changed.

Strings

Strings are one dimensional, and can only be dimensioned as such.
To assign @ (zero) length to a string, or clear it, a statement of the type
“L$=* " is used. Characters in a string are referenced as follows:
to reference a substring within a larger string, the form ““T$(a,b)”’ is
used where a and b are expressions signifying respectively the first and
last character addresses in the main string of the desired substring.
Characters in a string are addressed from left to right, starting at 1.
Example: if A$=‘“ABCDE’’ and the statement ‘‘B$ = A$(2,3)”’ is ex-
ecuted, B$ will become *“BC”’.

The form ¢‘T$(a)’’ references all characters in T$ starting with
character #a and continuing on to the end of T$.

Example: if A$=°12345"’, A$(3) means the substring ‘‘345°’.

248

APPENDIX A

The string functions CHR$ and ASCS$, which respectively convert
an ASCII decimal number into a one-character string, and a one-
character string into its decimal ASCII equivalent are not available, so
ASMG65 reads a string of ordered ASCII characters from a system file
called SASCIIF, which it then uses for number and string conversion.

MAX returns the maximum of 2 values.
Example: “B=11 MAX 9"’ would yield 11.
MIN returns the minimum of 2 values.
LIN when in a print statement adds amount of linefeed specified in its
argument to output.

The above definitions are intended only as guidelines for the transla-
tion of ASM65 into other versions of BASIC.

Fig A-3: 6502 Assembler Listing
copyright © 1979, Sybex Inc.

ASM&S

10 REM : XX00KKkkXk 6502 MNEMONIC ASSEMBLERs VERSION 2.0 XkkKiKkkkkxR
20 REM

30 REM ¢ WRITTEN IN HP2000F TSS BRASIC.

40 REM ¢ CAN BE USED WITH ALL 45XX FROCESSORS AS MADE EBY COMMODOREr
S0 REM ¢! SYNERTEK» AND ROCKWELL.

&0 REM ! ALL MNEMONICS AND DIRECTIVES ARE INDUSTRY STANDARDy WITH
70 REM ¢ THE EXEPTION OF THE USE OF ‘.’ FOR CURRENT ADDRESS.

80 R=10

90 T9=0

100 A=0

110 DIM L$C721,M$072],080721,C8C721,28C72]»F$C721,T$0721
120 DIM ASC72],Ns$C72]

130 DIM I$C72]

140 L=0

150 FILES %»SYMTARyTEMPyX,$ASCIIF
160 PRINT °*SOURCE FILE °*;

170 INPUT Ts

180 PRINT “OBJECT FILE °*j

190 INFUT Os

200 ASSIGN Ts»,1,08

210 ASSIGN 0%,4,08

220 READ #1.1

230 FRINT #2»1

240 FRINT #3.1

250 R8=0

260 PRINT °PRINTOUT *;

270 INPUT Is

280 IF I$ <> "NO® THEN 300

290 R8=1

300 PRINT "ASSEMBLY BEGINS..."
310 C=0

249

6502 APPLICATIONS BOOK

320 IF END #1 THEN 2440

330 L$=""
340 I$=""
350 Ms$=""*
3460 0s=""°
370 Cs=""
380 Zs="'

390 L=L+1

400 REMXXXXXXXkkX SEPARATE TOKENSs STORE LAREL ASSIGNMENTS XXXXKXKXkXX
410 READ #131$

420 TS=C
430 IF Is="" THEN B30
440 P=1

450 Fs$=";"

4460 GOSUB 3970

470 IF F1=0 THEN 510

480 IF F1=1 THEN 800

490 Cs$=I$CF11]

500 Is=Is$C1»F1-11

510 IF IsC1,11=* * THEN 590
520 GOSUB 3790

530 Ls=P$

540 IF L$ <> *.* THEN 590

550 Ms$="."

560 GOSUB 4940

570 Ls=""

580 GOTO 840

590 GOSUB 3790

600 HM$=Ps$

610 IF M$L1,31=".W0" THEN 3110
62 IF M$[1,3]=".TE" THEN 3110
630 IF M$[C1,3]1=",BY" THEN 3110
640 IF M$C1,3]1=".0B" THEN 3110
650 IF M$ <> "* THEN 850

4660 Cs$=C$C1,34]

670 IF LEN(LS$)> <* O THEN 700
480 I$=I$[1,19)

690 GOTO B820

700 GOSUR 3790

710 Ns=Ps$
720 IF LEN(NS$) <> 0 THEN 750
730 T1i=C

740 GOTO 780

750 GOSUB 4070

760 IF T4=2 THEN 830

770 Ti1=F1

780 PRINT #25L$,T1

790 FRINT $237 END

800 I$=I$C1,LEN(IS$) MIN 551

810 Z$C17,17+LEN(IS$)]=I3

820 ZS$L(LEN(I$)+1%9 MAX 38) MIN 721=Cs$
830 PRINT #3iZ$,T5S

840 GOTO 320

850 IF M$[1,1] <> *",* THEN 1050
860 Pe="="

870 GOSUB 3970

880 IF P1>0 THEN 910

890 PRINT °MISSING ‘=’ IN LINE *jL
900 GOTD 3090

910 F=F1+1

920 GOSUB 3790

930 IF P$C1,1] <> ** THEN 960

940 PRINT °*MISSING ARGUMENT IN LINE *"iL
950 GOTD 3090

760 N$=P$

250

970

780

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

APPENDIX A

GOSUB 4070
IF T4 <» 2 THEN 1010
FRINT *ILLEGAL FORWARD REFERENCE IN LINE *jL
60OTO 3090

T1=C

C=F1

IF L$ <> ** THEN 780

GOTO 80O

RESTORE 5710

IF M$="' THEN 1140

FOR I=1 TO 56

READ T$

IF Ts=M$ THEN 1130

NEXT 1

PRINT "UNKNOWN OFCODE IN LINE *jL
6OTO 3090

0=1

IF L$="" THEN 1170

FRINT $2iL$,C

PRINT $2; END

GOSUB 3750

0$=P$
I$CP-LEN(O$)-1,P-LEN(O$)~13="1"
REMXRKXXKKKAX FIND ADDRESSING MODES, LOAD EFFECTIVE ADDRESS ¥H¥¥ik¥ikk
IF 0% <> "* THEN 1240

M=1

GOTO 2200

IF 0% <> "A® THEN 1270

M=2

GOTO 2200

IF 0$C1,13 <> "#°* THEN 1320

H=3

P=P+1

N$=0$023

GOTO 1870

IF M$C1+11 <> "B* THEN 1460

IF M$=*RIT* THEN 1460

H=12

N$=0$

GOSUR 4070

IF T4 <> 2 THEN 1400

A=-200

GOTO 1970

A=F1-C-2

IF A >= 0 THEN 1430

A=256+A

IF ABS(F1-C) <= 127 THEN 1970
PRINT *BRANCH OUT OF RANGE IN LINE *iL
6OTO 3090

P$="(*

P=P-LEN(0$)

GOSUB 3970

PS=P1

Fe="y*

GOSUE 3970

P6=P1

P7=0

IF NOT P6 THEN 1610

IF I$CP&6+1+F6+1] <> *X* THEN 1580
P7=1

GOTO 1610

IF I$CP6+1,P6+11="Y* THEN 1610
PRINT *BAL ADDRESSING MODE IN LINE *;L
GOTO 3090

IF PS <> 0 THEN 1780

251

B R EEEIEEE——EEEEEEE——

6502 APPLICATIONS BOOK

1620 GOSUB 3790

1630 N$=Fs

1640 IF NOT F& OR NOT F7 THEN 1670
1650 M=5

1660 GOTO 1710

1470 IF NOT P6 THEN 1700

1680 M=6

1690 GOTO 1710
1700 M=4

1710 GOSUR 4070
1720 A=F1

1730 IF T4 <> 2 THEN 1750

1740 A=-1000

1750 IF ABS(A) <= 255 THEN 1970
1760 M=M+3

1770 GOTO 1970

1780 GOSUB 3790

1790 N$=P$L[2]

1800 IF NOT Pé6 OR NOT P7 THEN 1830
1810 M=10

1820 GOTO 1870

1830 IF NOT Pé6 THEN 1860

1840 M=11

1850 GOTO 1870

1840 M=13

1870 GOSUB 4070

1880 A=F1

1890 IF (M <x 10 AND M <> 11) OR A <= 255 THEN 1920

1900 PRINT °VALUE TOO LARGE FOR ZERO PAGE IN LINE "}
1910 GOTO 3090

1920 IF T4 <> 2 THEN 1970

1930 A=-1000

1940 IF M=13 THEN 1970

1950 A=-200

1960 REMXOKXXXX%XXX PRINT OFCODES & EA ON FILE XXXXKKKKKXK
1970 IF A >»>= 0 THEN 2070

1980 Z$[10,11]3="%x%"

1990 C=C+1

2000 IF M <> 12 THEN 2020

2010 Z$C11,11]1=°"R°*

2020 W9=A+256

2030 IF W9 >= O THEN 2200

2040 Z$C13,147="%x"

2050 C=C+1

2060 GOTO 2200
2070 R=16

2080 I=A

2090 GOSUB 4940
2100 Ts=As

2110 A$="000"

2120 AsSCL4]1=Ts

2130 IF (M >»>= 3 AND M <= 6) OR (M >= 10 AND M <= 12) THEN 2180
2140 Z$C135141=ASCLEN(AS)-3,LEN(AS$)-2]

2150 Z$C10,111=ASLLEN(AS$)-1]

2160 C=C+2

2170 GOTO 2200

2180 Z$C10,111=ASLLEN(AS$)~1]

2190 C=C+t
2200 R=16
2210 I=TS

2220 GOSUB 4940

2230 T$="000"

2240 TsCAal=As

2250 Z$[1,41=TSCLEN(T$)-3]
2260 RESTORE 5140

252

2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910

APPENDIX A

FOR I=1 TO (0-1)%13+4M

READ Ts$

NEXT I

IF T$ <> * * THEN 2370

IF M>6 OR M<4 THEN 2350
M=M+3

C=T9

GOT0 1970

PRINT °*ILLEGAL ADDRESSING MODE IN LINE °*iL
GOTO0 3090

Z$(7,81=T$

Z$[5,51=":"

C=C+1

Z$L17»17+LENCIS) I=I$
ZSC(124LENCIS)) MAX 381=C$[1,72-(12+LEN(I$) MAX 38)1
PRINT #337Z$,75

GOTO 320

REM¥Kxokxkkkxkx SECOND PASS! RESOLVE FWD REFERENCES *XXXXkxkkxk
PRINT #27 END

PRINT #337 END

READ #2,1

L=0

READ #3,1

PRINT #4r1

IF END #3 THEN 2870

P=1

READ #37I$,T5S

L=L+1

IF Is$=**" THEN 2850

Pe="1"

GOSUR 3970

IF P1=0 OR P1=17 THEN 2610
P=P1

ISCPyFI=" *

IF I%010,10] > *x°* THEN 2850
GOSUR 3790

N$=F$

IF N$C1,11 <> *(* THEN 2660
N$=N$L[2]

GOSUR 4070

IF T4 <> 2 THEN 2700

PRINT °*IRRESOLVAELE FWD REF / RAD LABEL IN LINE *"jL
GOTO 3090

I=F1

IF IsC11,11] <> "R" THEN 2750
I=F1-T5-2

IF I »= 0 THEN 2750

I=1+4256

R=16

GOSUE 4940

T$=A%

A$=°000"

AS[4]1=T¢

IF I$L13,141 <> *x%* THEN 2840
I$C13,14]=A3CLENC(AS$)-3,LEN(AS)-1]
I$010,111=A3LLEN(AS)-1]

GOTO 2850
I$C010,111=ASCLEN(AS$)-11]

PRINT #431s

GOTO 2510

PRINT #4i END

IF k8=1 THEN 3080

IF END #4 THEN 2940

READ #4,1

READ #451%

253

I —————

6502 APPLICATIONS BOOK

2920 FRINT I$

2930 GOTO 2910

2940 READ #2,1

2950 PRINT LIN(2)3#"SYMBOL TAERLE:®
2960 IF END #2 THEN 3080

2970 FOR I6=1 TO 3

2980 READ #2i0$,T5

2990 R=16

3000 I=TS

3010 GOSUR 4940

3020 T$=°0000"

3030 TSCLEN(T$)+1]1=A$

3040 PRINT TAB((I4-1)%25+1)+083TAB((16-1)%25+13)s T$CLEN(T$)~31}
3050 NEXT Ié

3060 FPRINT

3070 GOTO 2970

3080 END

3090 FRINT *<"I$">"

3100 END

3110 REMXXKRKX¥xkXX FROCESS MEMORY LOADS XkkAkikkkkx
3120 Q7=1

3130 IF M$C2,3]1 <> °*TE" THEN 3260
3140 IF Q7 <> 1 THEN 3190

3150 GOSUB 3750

3160 P=P-LEN(F$)

3170 Os=IsCPyP1

3180 P=P+1

3190 IF P <= 72 THEN 3220

3200 PRINT "BAD DELIMITER IN LINE °iL
3210 GOTO 3090

3220 PsC11="‘"

3230 P$L2,2]1=I$[F,F]

3240 IF P$C2,21=0% THEN 320

3250 GOTOD 3280

3260 GOSUBR 3790

3270 Zs="

3280 P=P+1

3290 IF LEN(F$)=0 THEN 320

3300 N$=Ps$

3310 GOSUB 4070

3320 IF T4 <> 2 THEN 3350

3330 PRINT °*BAD LABEL IN MEMORY ASSIGNMENT OF LINE °*iL
3340 GOTO 3090

3350 R=16

3360 1I=F1

3370 GOSUER 4940

3380 Ts$=As

3390 A$="000"

3400 A$L41=T$

3410 IF M$[2,2] <> "W* THEN 3460
3420 7Z$010511]=ASLLEN(A$)-3,LEN(AS$)-2]
3430 Z$L7,8]1=ASCLEN(AS)-1]

3440 C=C+2

3450 GOTO 3560

3460 IF MsC2,21="D" THEN 3530

3470 IF F1<256 THEN 3500

3480 FRINT °"NUMBER TOO LARGE IN MEMORY ASSIGNMENT OF LINE "iL
3490 GOTO 3090

3500 Z$C7,81=ASCLEN(A$)-1]

3510 C=C+1

3520 GOTO 3560

3530 Z$[7yB1=ASLLEN(A$)-3,LEN(AS$)-2]
3540 Z$CL10+111=ASCLEN(AS$)-1]

3550 C=C+#1

3560 I=T5

254

3570
3580
3590
34600
3610
3620
3630
3640
34650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
40460
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220

APPENDIX A

R=16

GOSUER 4940

T$=°000"

T$C41=AS

Z$01+41=TSLLEN(T$)-3]

Z$L5,51="1"

IF @7 <» 1 THEN 3700

IF LEN(L$)=0 THEN 3470

FRINT #2iL$,T5

PRINT #2; END

Z$C17+17+LEN(IS) I=Is

Z$L(19+LENCI$)) MAX 381=C$L1,72-(19+LENCI$)) MAX 381
GOTO 3710

Z$=7$01/,15]

07=0

FRINT #3;Z$,T5

T5=C

GOTO 3130

REM XXX*¥%X ROUTINE TO ISOLATE TOKEN XXk¥X

REM : STARTS LOOKING FOR TOKEN AT Py PUTS IT IN F$, AND
REM : UPDATES F. IF ENTERED HERE, STOFS SCAN AT * ‘.
T9=1

REM : IF ENTERED HERE, STOFS SCAN AT * ‘s “4's /)y ‘="',
FOR I1=P TO LEN(I$)

IF I$CI1,I11 <> * * THEN 3830

NEXT I1

peut

FOR I2=I1 TO LENCIS)

IF I$CI2,I21=* * THEN 3920

IF T9=1 THEN 3900

IF I$CI2,I21="," THEN 3920

IF I$[I2,I21=")" THEN 3920

IF I$CI2,I2]=°=" THEN 3920
PSCLEN(P$)+11=I$[12,12]

NEXT I2

P=12

IF LEN(P$) <> O THEN 3950

F=P+1

T9=0

RETURN

REM ¥XXk% FIND SYMBOL ROUTINE XkXxxX

REM @ RETURNS F1=SYMLOC IF IT IS FOUND, F1=0
REM ¢ IF SYMEOL NOT FOUND

FOR I=P TO LEN(IS$)

IF ISCI,I1=F$C1,11 THEN 4050

NEXT I

F1=0

RETURN

P1=I

RETURN

REM X¥kXK NUMERIC STRING INTERPRETER %Kik
REM : SIMPLIFIES STRINGS OF LARELS AND NUMERIC EXFRESSIONS
REM : OF NUMBERS IN ANY BASEs FLUS ASCII CONSTANTS.
F1=W=0

As=""

FOR I=1 TO LEN(N$)

IF N$CI,IJ1="+° THEN 4180

IF N$CI,1] THEN 4180

IF NSLI»Il=")* THEN 4610

ASTLEN(A$) +11=N$LI1,1]

NEXT I

IF A$ <> *.* THEN 4210

F2=C

GOTO 4480

IF ASC1,13>"Z* THEN 4350

IF A$C1,11<"A" THEN 4350

255

6502 APPLICATIONS BOOK

4230 READ #2,1

4240 IF END #2 THEN 4330
4250 READ #2iT7$,T1

4260 IF T$ <> A$ THEN 4240
4270 F2=T1

4280 T4=3

4290 IF END #2 THEN 4320
4300 READ #2iT$»T1

4310 GOTO 4300

4320 GOTO 4480

4330 Ta4=2

4340 RETURN

4350 IF AsC1,11 <> *‘* THEN 4390
4360 A$=A$L2]

4370 GOSUR 4440

4380 GOTO 4480

4390 EB=10
4400 IF A$C1,11 <> "%Z* THEN 4430
4410 B=2

4420 GOTO 4450

4430 IF AsC1,1] <> "$" THEN 4440
4440 B=146

4450 AS=A$L2]

4440 GOSUB 4750

4470 F2=F

4480 IF W=2 THEN 4510

4490 F1=F1+F2

4500 GOTO 4520

4510 F1=F1-F2

4520 IF I »= LEN(N$) THEN 4610
4530 T$="+-"

4540 FOR W=1 TO LEN(TS)

455 IF T$CWsWI=NSLI»I1 THEN 4590
4560 NEXT W

4570 PRINT *ILLEGAL OFERATOR IN LINE "iL
4580 GOTO 3090

4590 As=""

4600 GOTO 4170

4610 T4=0

4620 KRETURN

4630 REM *xkxkx ASCII CHARACTER TO NUMEBER CONVERTER %XXXX
4640 As$=A$C1,13]

4650 F2=0

4660 READ #5»1

4670 READ #53T$

44680 FOR I=1 TO 72

4690 IF AS[1,11=T$CI»I1 THEN 4740
4700 F2=F2+1

4710 NEXT I

4720 F2=F2-8

4730 GOTO 4470

4740 RETURN

4750 REM xxxxx MULTI-RADIX STRING TO NUMEBER CONVERTER XXXXX
4760 REM ¢ B IS BASE OF NUMEER IN A$, F IS FRODUCT.
4770 F=0

4780 I1=0

4790 FOR I2=LEN(AS$) TO 1 STEF -1
4800 RESTORE 4910

4810 FOR N=0 TO E-1

4820 READ Fs$

4830 IF F$=A$CI2,I2]1 THEN 4870
4840 NEXT N

4850 FRINT *BAD NUMBER IN LINE *;sL
4860 GOTO 3090

4870 F=F+NXR"I1

256

4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
35030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
3390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
9520

I1=1I1+1
NEXT I2
RETURN
DATA "0°%»*1","2"» "3y %47, "°5%,"6",
DATA "E"»"F "y "G s "H"» "Iy "J"»"K*»
DATA *T s Uy VU "y W "y " X"y Y", 2"

APPENDIX A

7%
)

= A
"Mty

9%y
"Ny

A,
‘0"

"B",*C"»
"pr,uqe,

e

"RU,*g*

REM XXx%xX MULTI-RADIX NUMBER TO STRING CONVERTER
R IS BASE THAT A¢ WILL BE AS FRODUCT.

REM ! I IS INFUT NUMBER,
Ag=""
1=1

FOR N=20 TO O STEF -1

IF T/R™N »= 1 THEN 5020
NEXT N

N=N-1

QA=INT(T/R"N)

IF Q@ <= R-1 THEN 5050
Q=0

T=T-Q%R™N

RESTORE 4910

FOR S=0 TO Q

READ T$

NEXT S

ASCLEN(AS$)+13=T$
IF N:O THEN 5010

" RETURN

REM X¥0K0KKIOKKOIOKIOK KKk OFCODE TABLE KKK KO0OKKOKOK K

DATA ¢ *»* " "69","65"y*75","
DATA * *»* *»"29",°25","35","
DATA * *»*0A*r" *»"06"r*16"»"
DATA * ®,° 5,% =,% s,8 o,e
DATA * ", %,° =,= s, ¢ o,
DATA * %,% 5,5 s,5 s, o0
DATA * *,% %,% s,104e,% =,»
DATA * %,% %y *,¢ e o a
DATA * 5% "y 8,5 .5 e, u
DATA * *,% *,% t,% e, s e .
DATA *00%s° ®p% *,% =, 5 a4
DATA * ®p* ",% 2,5 e, 5 a.s
DATA ® *,* *,¢ =,5 a,s w,»
DATA *18"," et A A "yt
DATA "DB"s* "p* *p" ®,° 0,
DATA *58%,% *," "p" "y "y°
DATA *BB®»* *,% o,5 3 ,e a_e
DATA * *s" "»"C?*»"C5"»*'D5"»"*
DATA * *»* °*»"EO","EA"»" *"»°"
DATA * ®»" "5"CO"»"C4"»" "»*
DATA * *»* "»® "5°Cé6"»"D6"»"*
DATA "CA®y® *,* =, ,o s,
DATA °B8%,* *,* t,¢ s, s s_e
DATA * *»* "»"49","45","55","
DATA * 9" "»" *»"E6"9"Fé6"»"
DATA "EB",® *y% %y s,= s,
DATA "C8"9" "y% %yt 5,8 s
DATA * *,° ",% s,s =z 8 «,s
DATA * "y% ,% a,8 s, e o,
DATA * *»* *>*AP"s°*A5°,»"RB5°*»"
DATA * "»" "»"A2°,"A6"," *»°*
DATA * "»* °*»"A0"»"A4","R4°","*
DATA " *r*4A°,* 7'46'7'56'7'
DATA "EA"»* "9" "»" "y" %"
DATA * *»" *+"09°,"05°,"15°","
DATA *48°," *,° “yt ‘v "yt
DATA 08", *," *»" *y* ","
DATA "48%," ®,* %,% s,% s,
DATA "28%,° *,% e,5 = ,e s_»

RBé

AERR:) (MERA (MR LIRS S T T
Cyt20" s 30"y °39"»"21% 31y " °
SLUOE s TIE " T, tat man s,
I R I R A Y-7, LI I
I A T T I R A Y R
L I I = LI R
oL I I T T O RN R I S I R
I T N Y L
e," e,e a e w e s e e apge,s
I I I I PR T N I
I A I I PR I
L T T I Y Y L
T Y 2 L L
T N R R I R
L L O I
e N
I I N
*y*CD*»*"DD"y"D9*»"C1">"D1"y" ", *
SLTEC®,* *, Syt ot e s e a e e
I I I R I T I B
L UCE"y DE®," Syt 3,0 m e s e
I T I I I T
I A T AR B
."QD',.SD.'.59'7.41".51.’. ". .
CLYEET,CFE"s" "yt "8 e, s s s @
I T A A I
L N P I DA
940, %, s,e e.v a_ e s e4Ce
€,5D0%,% ", m,m e,w e e s s
"y*A0"» "RI"»"B?"»"A1"»"R1"," *»* °*
SLOAE " S, RE",t t,t s, =, s »
CLYACT,CRCT,t st t, e, m,e s
Yy T I L
T N P I I
"y "0D*» 1Dy "19","01" 211"yt O *
R R i A N I]
L O I T A T)
I’l I’l .,I I'I I’I I’I I'I .
L T R R S S)

6502 APPLICATIONS BOOK

5530 DATA * ",*"2A°

R ,u v, t0g8e, ,e v, e0E", yo o e, a s .
5540 DATA °* "rCOA"r" "84y "T76%" "rUS6E"s"TE" " ettt "
5550 DATA "40°," "y *,% e, 8 =3 5,0 o, LI I R
5560 DATA "60",* *,* *,* e,8 s .« a.s s a,e v, e, s
5570 DATA * et *»E?"»"ES">"FS*y* *»"ED",*FD*,»'F?","El1","F1°*
5580 DATA *38°,° L T I T S I O T A
5590 DATA °*F8°," L ML I I R L I LI R I R
5600 DATA *78%,* %,* 9,8 a,% e s 1 e e, O
5610 DATA * "»" *y" *»°*85","95°s* *»"BL",°*90","?9"»"81","91"
5620 DATA * *»" "y" "5"86"s° "»"96*»"BE",»* *»° .
5630 DATA * Syt " "y"84°,"94"," ‘y»"BC"»"* " yt " ® ¢
54640 DATA *AA%s® *,° L N I T, 1,e
5650 DATA "AB®s" *,* t,r t,r s,e a,s ., LI I N I]
5660 DATA "EA®»® ®y* o,% 5,8 «, s o2 o, v, s, s, .
5670 DATA °*BA%s" *y* ",* 8,¢ s s a2 a,u LI I I
5680 DATA "9A®,* *,° T - T, e o, LI A
5690 DATA "98%,* *,* ., s, e, e ., . B, e,e e
5700 REM XHO00OKKIOKKXKKKKK MNEMONIC TAELE ROOKKKKKOKK KKK K XX

5710 DATA “"ADC*»"AND"»"ASL"»"RCC*»*BCS"» "REQ"» *RIT*»"BMI*s "ENE"
5720 DATA "BPL®»"EBRK",»*RVUC®»"EBVS*,"CLC"»*"CLO"»*CLI®»*CLV" " "CMF",
5730 DATA °*DEC"»*"DEX"»"DEY* s "EOR" s "INC"» " INX"s "INY"»"JMP"»"JSR",
5740 DATA *LDY"»°LSR*y»*NOP"»*0ORA®»"FHA®» "FHP*» *FLA®»"FLF"»"ROL"»
5750 DATA "RTS®»*SRC"»"SEC","SED®*»*SEI*»"STA"»"STX*»"STY"»"TAX"»
5760 DATA "TXA®r*TXS*»°TYA®

5770 END

258

CEX
*LDA"
*ROR®
TAY

13
13
’
14

*CFY
*LDX
*RTI
*TSX

APPENDIX B

MULTIPLICATION GAME:
THE PROGRAM

FIOKKKOK MULT 30000k
i

N “$00

F =401

NSAVE =302

FSAVE =%$03

T =404
I =$90
X =$200
Y =$201

RESUL =$202
ASAVE =$240
XSAVE =%241
YSAVE =$242

FA =$1700

FAD =$1701

TIMER =%1707

’

.=$20

0020: A5 00 START LDA N
0022: 8L 02 STA NSAVE
Q0241 AL 01 LA F
0026 8% 03 STA FSAVE
0018 AY 01 LOA #$01
002A¢ BD 01 17 STA PAD
0020n: 20 GO 02 M1 JSR SOUND
0030: 20 90 00 JSR DL250

259

6502 APPLICATIONS BOOK
00333 Cé& 00 DEC N
0035 IO F& BNE M1
0037 A2 14 LDX $$14
0039 20 9L 00 JSR TIME1Q
003C: 20 50 02 h2 JSR SOUND
003F: 20 920 00 JSR DL250
0042 Cé6 01 DEC ¥
0044: DO F6 BNE M2
00446: AY 00 AGAIN LDA $0
0048: 85 04 STA T
004A: AD 00 17 PFOL LDOA FA
0040 30 FR EMI FOL
004F: E&6 04 BLUSL INC T
0051¢ ALl 00 17 M3 LDA FA
0054: 10 FK RFL M3
0056¢ A0 1F LDY #$1E
0058 A2 01 M4 LOX #1
00SAT 20 9E 00 JSR TIMELO
00Sn: AlL 00 17 LDA FA
0060: 10 ED RFL FLUS1
0042: 88 LEY
0063: 10 F3 EFL. M4
FANSWER COMFPLETE:
0065: As 02 LDX NSAVE
00467 A4 03 LIY FSAVE
0069: 20 10 02 JSK MULTI
Q06C: C% 04 CMF T
Q04E! FO OD BEEQ ERAVO
sWRONG ANSWER
Q070! A0 10 LOY #%10
0072¢ 20 S0 02 MS JSR SOQUND
0075¢ 20 Y0 00 JSR DL2S0
0078: 88 DEY
007%9: DO F7 BNE M3
O07R: FO C9? EEQ AGAIN
CORRECT ANSWER
Q0701: A0 20 ERAVD LOY #$20
007F: 20 SO 02 Mé JSR SOUNLD
0082: 848 DEY
0083 [0 FA ENE Mé
0083: 00 ERK
r
+=$90
0090 98 ODL2%0 TYA
00913 A2 3l LDX #$30
0093: A0 OO .2 LDY #0
0095: C8 ot INY
0094: LO FL BNE DL1
0098: EB INX
0099: LO +8 BNE DL2
009Kk A8 TAY
009C: 60 X RTS
’
+=$9F
Q0YE: 86 ¥I TIME1Q0 STX I
00A0: A9 62 TO LA #$62
00A2: 8D 07 17 STA TIMER
Q0AS: AD 07 17 T1 LDA TIMER
00AB! 10 FE EFL T1
00AA: C6 9L REC D
Q0AC: IO F2 ENE TO
00AE: 60 RTS
’
+=$210
0210: BE 00 02 MULTL STX X

SECOND
1 SEC SUEBROUTINE

3¢
.

i
i

sRKEY DOWN?T

PKEY UF?

RESULT IN T

JRESULT IN A

s CURATION IN 1/10
#98 BASE TEN
+TIMER 1024

SEC

APPENDIX B

0213: 8C 01 02 STY Y
0216% A0 0B LDY #8
0218% A9 00 LDA #0
021At 4E 00 02 ONE LSR X
0210 90 04 KCC TWO
021F: 18 cLe
0220¢ 6L 01 02 ALC Y
0223% 4A TWO LSR A
0224% 4E 02 02 ROR RESUL
0227: 88 DEY
0228% [0 FO ENE ONE
022A% AD 02 OO LDA RESUL
0220 &0 RTS
v
L =$250

0250% 8L 40 02 SOUND STA ASAVE
0253% BE 41 02 STX XSAVE
0256: 8C 42 02 STY YSAVE
0259: AY 00 LDA #0
02SK: A2 8O LDX $#$80
250t A0 00 GL2 LOY #0
025F: C8 CLL INY

0260% [0 FII ENE CL1
0242% 49 01 EOR #1
0264: 8 00 17 STA FA
0247% E8 INX
0268% 1O F3 ENE CL2
026A% All 40 02 LDA ASAVE
0260% AE 41 02 LDIX XSAVE
0270% AC 42 02 LIY YSAVE
02731 60 RTS

SYMEOL TAELE:

N 0000 F 0001 NSAVE 0002
FSAVE 0003 T 0004 b ooen
X 0200 Y 0201 RESUL 0202
ASAVE 0240 XSAVE 0241 YSAVE 0242
PA 1700 PAaDR 1701 TIMER 1707
START 0020 M1 002D M2 003C
AGAIN 00446 FOL 004A FLUS1 004F
M3 0051 M4 0058 MS 0072
BRAVO oo7n Mé 007F DL250 0090
oL2 0093 D1 0095 TIME10 00%E
T0 00A0 T1 00AS MULTI 0210
ONE 021A TWO 0223 SOUND 0250
CL2 025D CL1 025F
1ONE

261

APPENDIX C
PROGRAM LISTINGS

(Chapter 4, Part 1)

(500I634 3W1L €) H5WiI 35734 % AT
1 4HY3T0 AMMYD 4I¢ 1IN3IS 334

100 Ol 1MW 430 “dCIdEd 3WIL T =104 Ts¢ AI7
MYH3J VYIS
(101=0 “HSYd=1) 3103 3SMOW iN0 L4IHS MON$ v sy
MYHD viI7 LX3IN
. NVH] vis
UNMOZ 119 18945 TILINA ¥ L41HS: J18V1S 204
LNNOJ 33ad
v ISV d1MY1S
INNOJ ALS
HOLIVIANWNIIY W0Y¥d 2316104 335 01 SLIE H3AWNNE 8¢ A7
MILUYHVHG 130t X4JCe-3TdviE v
M3ILSIL3M X3IUNI Wl inde Xyl
05 31 NNTLIN AN 5 : 1IX3 S04
et nw 3105 1:128¢ 41 3384 45%% JWD
‘05 41 NAlidy gNe *HIC N3HL 8837 ST ¢ 1IX3 224
30T IIDEY 4T 3384 JCs4 4WD
3Jv4S 834
SNILNOY 32948 0 “30w3s v dIe 0Zs# 4WI 3SMOW
00 =
C4$=MVH]
14$=1NN0OJ
04¢=11334S

100 ¢ SI 0Y3Z HOVI 1INV 4HSYD & £1 3INC HOYIs

¢ SIKL M3LdY ONV 4418 IMYLE 3Jr. S1 (3ING ¥y L11d:

HOIH 15814 3HL ¢ 1H91d 01 1437 wld3 ONIAOW 3 BIf

FHVE 3R NI SHILOVMHYID FI00 ISHOW 3HL HOS LuwWwHd0d 3HL 4
2011043 3000 MU4 W3HL SINIS INY SMIALIVHEYHD & SITNIS 4 ¢
SZZIWOOINYM HILIHM WUMS0H5 ¥ 30U ‘WYNOOH4 SIKL HONOMHL®
AN0 JE0D 28H0» SIN3S ONY MONIWNIL Y WOsSd L1M4NI S139¢
33 ITN0M WEYO05d NIVW IHL 40 SITHWYXI4
_z:LLd 3HLI NI M3LOVHEVHG TI25¢ 3IHL HLImS
A7Im KUMO0Hd NIUK & *HILLIWSNYHL ¢
v-:p SMIATEO ITMULING v HLIM ANV s5Cn4
IN NO SNMNL 057V LT CSZMi-CCR9 “z34¢
45§ N0 LNZIAING3 2GCT 3ISHOW HITHL4
d04 HOT SN, HYS 0. HIT JONYN JHL NI4
11289 S143500¢ HITHM 3IN11N043NS ¥ S1 S1HJ ¢

SHILIVIVHD

aNIT

£0

-
<

10

<4

E]
e
94

14
80
£0 St

vt
45
3v
ac
L9

3¢y

ov00
46200
8£00
££00
9£00
5£00
v£00
££00
CEQO
1£00
0£00
6200
8200
4LE00
P00
5200
¥C00
£200
€zoo
1£00
0co0
6100
810¢
£10C
7100
5100
v100
€100
c100
T100
0700
6000
8000
£Z000
F000
000
v000
r00C
cGGo

Program 4-1: Morse (Fig 4-31 in text)

262

8) 09 10450 £L£00
< AV 10 2% 00 109£0 ££00
m (%% Javds 0 09 1H9E0 LLO00
zZ 09 1Y¥9£0 L4000
wl WYNYUNS JF5Y0W WOMS Ndanidve £ 14 01 :89¢0 9400
a (SAMOM NIIMLIT 3IV4S) ‘ 88 1£9£0 BLO00
<C SE0IY3d JWIL £ MOd4 AVT30¢ cil 94 00 :S59£0 /00
T4 10 63 1£9€0 ££00

8f 1Z9€0 <&L00

11 14 011 109€0 T/400

bED! 1 Y3 14570 0400

vied X171 o) v4 C 11520 6900

13345 v £i1 04 SY 1495£0 8900

AVL 89 VYSE0 L9000

v ISy v0 (65£0 ?900

v sv ¥0 :85£0 S900

YAl Av13] 86 4880 ¥900

SINODIS 00 x1334SH (NIIS103N A)Y NO4 SAVI3T SIHL ¢ £vyo0o

SiyM 11x3 09 195¢£0 2900

139 3J9ISHSTOINTG4 IWIL (IN3WIT3 L1SV1 40 ON3 1V ¢ A¥I130 0 NSP £0 (5 0OC 1£5£0 1900

32vdS SNUIA3 SN14 INIH OmL)dE MO4 AvI3T¢ Z¢4 AIT1 HSINIA 0 OY 1580 0900

INIWITI ¥3IHIONY 00 10N JI H 1X3IN 3N vl oa ¢ 6500

131w10N 3I¥4Mm 5114 8 J1 336~ INNDD LNIW3INI3u LN10D 231 14 99 8500

(SINTEYTNTS NOIMLTT FDVASIA0TYIS IRIL T o404 AVTET S AYI30 MSP £0 (5 OC 2500

T0%% AN 10 OY :8b£0 9500

3 1id AL ¢ 000vs$ Yl1S oY 00 08 :S5vL£0 5=00

dN0L 340 NdNLe A00VYS$ VIS oy d0 8 :Z¥LO0 P500

Oos# Y1 00 69 :0¥E£0 £500

0157 AWl ANIW3TTE 30447130 AYI30 MSP £0 ¢S 0T 1£E0 <500

000Ys$ W1S oY 00 U8 !VEELO 1500

GR4-118 1041006 NGO NAflLs Tet viIT 10 4Y :8££0 0500

3101 S1 16 SIHL¢ S00vs$ VIS oY SO 18 :(SE££0 4v00

100 3H1 ¢ L00V$ YIS oY <0 UB :TELO BYOO

S vadddy G0N L [SENTCa vos$ vil v0 &Y 0£EL0 (400

F00v¢$ V1S oy 90 18 :ACL0 V00

§31 0 SIHL ¢ 0%# v 00 6¥ :4Z£0 5V00

FIIUW ONINHOY 334400 FT0H M3W1L 1384 J00Ve VIS oY 90 108 3:8cLO0 vv0O

0d%% vl aN3sS 00 &Y 19TE0 £¥00

*d0IN34 3IWIJ T N0 MO ¥ N3IHL ONY ¢SI01¥3d 3IWIL J0¢ v00

AN ¢ M3ILSIOIM A) NO3 LN41IN0 HOIH ¥ SIN3S NOILJ3S SIHL ¢ Tv00

263

Morse (Continued)

Program 4-1

6502 APPLICATIONS BOOK

60¢4£03480%4Y03411T$PTS

40449044 /0%tT144110%4L 1%

v0$¢0T$43044CT$4CO¢400%

U1$48T¢4S0¢*T0%4Dv$4T10¢%

TO$ 104410341043 ¢40¢

BE$40ESC0CSTTS4ECELES

Eht LI I Rt R0 4 R $2% TF WA 2

31A8°

EFDN: 0

31A9°

31A8°

EIPR- A

ENDN:

EIDY:

ERELCA]

80
vo

21
40
?0
L0
vl
10
LY
vo
o1
30
cT
co
a0
vl
81
S0
10
at
10
10
10
10
10
3¢
ae
8¢
o
[oXat
1<

-
<

L2
E
El
g
ve
132
£L

1864£0
14680
19620
1G4E0
1v680
L4680
1C4E0
s T4£0
10680
14880
3820
+118£0
$28£0
+d48£0
1vBLo
16850
1880
:148%0
19810
158150
+¥8£0
1£8£0
:1CB8LO
:18£0
10820
HE AN
13480
taLg0
$0450
R PA XY
VLR
16480
18450
1LL80
19450
16450
ivLE0
1ELE0
1CLE0
11480

v800
+800
£800
£800
£800
£800
£800
£800
<800
CEGO
<BOG
<800
8O0
<800
1800
1800
1500
teod
18¢0
1600
0600
0800
0e00
Q800
0800
0800
6400
6400
6200
6400
6400
6400
8400
8400
8400
8400
BL00
8400
££00
£L00

Program 4-1: Morse (Continued)

264

APPENDIX C

1480
15£0
F580
2150
<400

ERI-LHT 39£0

ca ASE0
11X3 1520
1X3N v1g0
HYH]I 1400

3J94S
£a
HSINIZ
2414916
1NNOD

DT$+dTe¢46T$4H0ETTS 1A

4520
L5580
?cL0
00L£0
0300

Ta
AvT31d
AN3S
3SHOW
13348

$3T9YL T0FWAS

ar
91
-}
40
11
&0
£0

146£0
13650
11680
$06£0
186£0
1v6L£0
16650

5800
5800
5800
5800
¥800
¥800
vr800

Morse (Continued)

Program 4-1

265

6502 APPLICATIONS BOOK

LINE# LOC

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0390
0021 0392
0022 0394
0023 0397
0024 0399
0025 039C
0026 0395E
0027 03A1
0028 03A3
0029 03A6
0030 03A7
0031 03A8
0032 03A9
0033 03AA
0034 03AC
0035 03AF
0036 03B1
0037 03B4
0038 03B6
0039 03B8
0040 03BA
0041 03BC
0042 03BE
0043 03BF
0044 03C1
0045 03C3
0046 03Cs
0047 03C7
0048 03C9
0049 03CB
0050 03CD

266

CODE

A9 14
85 F7
8D 0B A0

A9CO
8D OE A0

A9 50
8D 06 AQ
A9C3
8D 0S5 A0
60

08

43

F8

A9 50
8D 06 AO
A9C3
8D 05 A0
C6 F7

D031

A9 14
85 F7
A901
18

65 F6
85 F6
C9 60
DO 22
A9 00
85 F6
A901
18

LINE

;FIRST LOAD A7 IN LOCATION A67E, AND 03 IN AO7F

;THIS IS A REAL TIME CLOCK ROUTINE WHICH MAINTAINS
;THE CURRENT TIME IN THE LOCATIONS SEC (00F6), MIN
;(00F5), AND HOUR (00F4) [24 HOUR TMEE]. IT IS BRANCHED TO
;BY THE TIME OUT OF THE INTERRUPT TIMER, WHICH
;CAUSES AN INTERRUPT AND BRANCH TO THE CLOCK
;ROUTINE TWENTY TIMES PER SECOND. THE CLOCK ROUTINE
JAND INTERVAL TIMER MUST BE INITIALIZED FIRST. THE
;CODE ‘INIT’ DOES THIS, AND IT MUST BE BRANCHED TO TO
;START THE CLOCK. TO INITIALIZE, PUT THE CURRENT TIME
;THE CLOCK ROUTINE WILL BE STARTED IN SEC, MIN, AND
;HOUR, THEN ISSUE THE COMMAND ‘GO 0390 CR’ AT THAT
;EXACT TIME. NOTHING ELSE MUST BE DONE.

COUNT =$00F7 ;COUNTER FOR TWENTIETHS OF A SEC

SECS =$00F6 ;CURRENT TIME

MIN = $00FS

HOUR = $00F4

ACR =$A00B ;TIMER MODE REGISTER

TILL =$A006 ;LOW ORDER TIMER CONSTANT

TIHC =$A005 ;HIGH ORDER TIMER CONSTANT
*=30390 .

INIT LDA #3814 ;SET TO FIRST TWENTY
STA COUNT ;COUNTS
STA ACR ;SET BITS 8 AND 7 LOW

;INACR

LDA #3$C0 »SET BITS 8 AND 7 HIGH IN
STA $A00E ;THE INTERRUPT ENABLE

;REGISTER (TO ENABLE
;INTERRUPTS FROM TIMER 1)

LDA #350 ;STORE C350 IN TIMER

STATILL ; (DELAY CONSTANT FOR

LDA #3C3 5 SOMS)

STA TIHC ;THIS STARTS TIMER

RTS ;RETURN TO MONITOR

CLOCK PHP ;SAVE STATUS

PHA

SED

LDA #350 ;STORE C350 IN TIMER

STATILL ; (DELAY CONSTANT FOR

LDA #3C3 3 SOMS)

STA TIHC ;THIS STARTS TIMER

DEC COUNT ;DECREMENT COUNT OF
;TWENTY

BNE EXIT ;EXIT IF WE HAVE NOT
;COUNTED TO TWENTY YET

LDA #$14 ;ELSE RESTORE COUNT—

STA COUNT ;A FULL SECOND HAS PASSED

LDA #$01

CLC

ADC SECS ;ADD 1 TO SEC

STA SECS

CMP #360 ;SEE IF 60 SECONDS

BNE EXIT ;IF NOT, EXIT

LDA #$00 ;ELSE RESET SECONDS TO 0

STA SECS

LDA #301

CLC

Program 4.2: Time of Day (Fig 4-37 in text)

0051
0052
0053
0054
0055
0056
0057
0058
0059

03CE
03D0
03D2
03D4
03D6
03D8
03DA
03DC
03DD
03DF
03E1
03E3
03ES
03E7
03E9
03EA
03EB

65 F5
8SFS
C9 60
DO 13
A9 00
85 F5
A90I

65 F4
85 F4
C924

A9 00
85 F4
68
28

ERRORS = 0000 <0000>

SYMBOL TABLE
SYMBOL VALUE
ACR A00B
HOUR 00F4
SECS 00F6
END OF ASSEMBLY

EXIT
CLOCK 03A7
INIT 0390
TIHC A005

ADC MIN
STA MIN
CMP #3860
BNE EXIT
L.DA #$00
STAMIN
LDA #$01
CLC

ADC HOUR
STA HOUR
CMP #$24
BNE EXIT
LDA #$00
STA HOUR
PLA

PLP

RTI

COUNT 00F7
MIN 00F5
TILL A006

APPENDIX C

;JAND ADD 1 TO MINUTES

;SEE IF 60 MINUTES
;IF NOT, EXIT

;ELSE RESET MINUTES TO 0

;AND ADD 1 TO HOUR

iSEE IF 24 HOURS
;IF NOT, EXIT

;ELSE RESET HOUR TO 0

;RESTORE STATUS
EXIT 03E9
PLS 03EA

Program 4-2: Time of Day (continued)

267

6502 APPLICATIONS BOOK

LINE# LOC CODE LINE

0002 0000 ;THIS IS A SIMPLE HOME CONTROL ROUTINE WHICH RUNS

0003 0000 ;THROUGH A LOOP, EACH TIME THROUGH IT DISPLAYS THE

0004 0000 ;CURRENT TIME AND BRANCHES TO A NUMBER OF USER

SUBROUTINES

0005 0000 ;WHICH SERVICE DEVICES.

0006 0000 ;EXAMPLES:

0007 0000 ;1) A SUBROUTINE COULD CHECK THE CURRENT TIME AND

0008 0000 TURN ON A LIGHT IF THE TIME WERE RIGHT.

0009 0000 i2) A SUBROUTINE COULD MONITOR THE STATUS OF AN

0010 0000 ; ALARM SYSTEM AND TAKE APPROPRIATE ACTION IF AN

0011 0000 ; INTRUDER WERE DETECTED.

0012 0000 DDRB =$ACO02

0013 0000 IORB=$AC00

0014 0000 HOUR =$00F4

0015 0000 MIN = $00F5

0016 0000 OUTBYT =$82FA

0017 0000 SCAND = $8906

0018 0000 +=$0200

0019 0200 D8 CONTRL CLD ;

0020 0201 A9OF LDA #S0F ;SET DATA DIRECTION

0021 0203 8D02AC STA DDRB ;REGISTER TO OUTPUT FOR
RELAYS

0022 0206 A900 LDA #500

0023 0208 8D 00AC STA IORB ;TURN OFF RELAYS

0024 020B ASF4 LOOP LDA HOUR {THIS IS THE MAIN CONTROL
LOOP

0025 020D 20 FA 82 JSR OUTBYT ;OUTPUT CURRENT HOUR TO
DISPLAY

0026 0210 ASFS LDA MIN

0027 0212 20FAR2 JSR OUTBYT ;OUTPUT CURRENT MINUTE
TO DISPLAY

0028 0215 200689 JSR SCAND ;REFRESH (LIGHT) DISPLAY
WITH TIME

0029 0218 EA .BYTE $EA,SEA SEA

0029 0219 EA

0029 021A EA

0030 021B EA .BYTE $EA,SEA SEA

0030 02IC EA

0030 021D EA .

0031 O021E EA .BYTE $EA SEA,SEA

0031 02IF EA

0031 0220 EA

0032 0221 EA .BYTE $EA SEA SEA

0032 0222 EA

0032 0223 EA

0033 0224 EA .BYTE $EA SEA SEA

0033 025 EA ;THE USER CAN PLACE
JUMPS TO

0033 026 EA ;SUBROUTINES HERE TO SER-
VICE DEVICES

0034 027 EA .BYTE $EA $EA,SEA

0034 028 EA

0034 029 EA

0035 02A EA .BYTE SEA,SEA SEA

0035 02B EA

0035 02C EA

0036 02D EA .BYTE SEA,SEA SEA

0036 O02E EA

268

Program 4.3: Home Control (Fig 4-38 in text)

0036
0037
0037
0037
0038

0038
0038
0039
0040

ERRORS = 0000<0000>

SYMBOL TABLE

022F
0230
0231
0232
0233

0234
0235
0236
0239

EA
EA
EA
EA
EA

EA
EA

.BYTE EA,SEA SEA

.BYTE $EA SEASEA

4C0B02 IMP LOOP

SYMBOL VALUE
CONTRL 0200
LOOP 020B
END OF ASSEMBLY

DDRB ACO2 HOUR 00F4 IORB
MIN 00F5 OUTBYT 82FA SCAND

Program 4.3: Home Control (continued)

APPENDIX C

ACO00
8906

269

6502 APPLICATIONS BOOK

LINE# LOC
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0000
002 0000
0023 0000
0024 0000
0025 0000
0026 0000
0027 0000
0028 0300
0029 0302
0030 0304
0031 0305
0032 0307
0033 0309
0034 030A
0035 030D
0036 0310
0037 0311
0038 0313
0039 0316
0040 0319
0041 031C
0042 O3IF
0043 0320

270

CODE

A0 00
Bi CO
C8

CS OF

DO 0l

0A EA EA

0A EA EA

AA
A9CO
8D 0B A0

8D 0B AC
BD 5D 03

8D 04 AO
E8
BD 5D 03

LINE

;THIS IS A PROGRAM WHICH DIALS PRE STORED
;TELEPHONE NUMBERS. IT PRODUCES A TWO TONE OUTPUT
;THROUGH A SPEAKER HOOKED UP IN CONFIGURATION 2
#(TWO TONES—SEE SPEAKER). THESE TONES WILL ACTIVATE
;A STANDARD TOUCH TONE PHONE WHEN THE SPEAKER IS
;PLACED DIRECTLY OVER THE MOUTH PIECE OF THE TELE-
;PHONE. TO USE THE PROGRAM, P1.ACE THE PHONE
;NUMBER(S) ANYWHERE IN MEMORY, ONE DIGIT PER BYTE,
;AND ENDING WITH OF (HEX). FOR EXAMPLE, THE NUMBER
;555-1212 WOULD BE 05 05 05 01 02 01 02 OF (ALL HEX) IN
;sMEMORY. THEN PLACE THE ADDRESS OF THE NUMBER,
;LOW BYTE FIRST, IN THE LOCATIONS 00C0 AND 00C1.
;THEN EITHER GO TO THIS ROUTINE FROM THE MONITOR
;OR JSR TO IT FROM ANOTHER PROGRAM.

NUMPTR = $00C0 ;THIS POINTS TO THE ADDRESS OF
;THE TELEPHONE NUMBER
ONDEL = 340 ;THIS IS THE DELAY CONSTANT FOR
;THE TIME WHEN THE
OFFDEL =$20 ;DELAY CONSTANT FOR THE TIME
;sWHEN THE TONES ARE 0
DELCON=$FF JGENERAL PURPOSE DELAY
;CONSTANT
ACRI] =$A00B ;THESE ARE THE TIMER MODE
;REGISTERS (TIMER 1)
ACR2=$ACOB J(TIMER 2)
TICH =$A005 ;THIS IS THE TIMER | COUNTER
;(HIGH BYTE)
TILH =$A007 ;TIMER | LATCH (HIGH BYTE)
TILL =$A004 ; (LOW BYTE)
T2CH =$ACO05 ;SAME AS TIMER | — FOR TIMER 2
T2LH =$AC07
T2LL = $AC04
*=$0300
PHONE LDY #$00 ;INDEX FOR DIGITS OF
;PHONE NUMBER
DIGIT LDA (NUMPTR)Y ;GET DIGIT
INY
CMP #$0F ;SEE IF END OF PHONE
;NUMBER
BNE NOEND
RTS ;RETURN IS SO (TO
;sMONITOR OR CALLING
;PROGRAM)
NOEND ASL A sMULTIPLY NUMBER BY
;FOUR TO INDEX TABLE
ASL A ; (EACH TABLE ENTRY IS
; 4 BYTES)
TAX ;X =INDEX FOR TABLE
LDA #3C0
STA ACRI ;SET TIMER MODE TO FREE
;RUNNING ON BOTH TIMERS
STA ACR2
LDA TABLE,X ;GET LOW ORDER, FIRST
;TONE
STA TILL ;STORE IN TIMER 1
INX
LDA TABLE,X ;GET HIGH ORDER, FIRST
;TONE

Program 4-4: Phone Dialer (Fig 4-41 in text)

0050

0051
0052

0053

0054
0055
0056

0057
0058
0059

0070
0071
0072
0073
0074
0075
0076
0077
0078
0078
0078
0078
0079
0079
0079
0079
0080
0080
0080
0080
0081
0081
0081
0081

0082

0323
0326

0329
032A

032D
0330
0331

0334
0337

033A

033C
033F
0340

0342
0344
0347

034A

034C
034F
0350
0352

0355
0355

0355
0355
0357
0358
035A
035C
035D
035D
035D
035D
035D
035D
035E
035F
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
036A
036B
036C
036D
036E

8D 07 A0
8D 05 A0

E8
BD 5D 03

8D 04 AC
E8
BD 5D 03

8D 07 AC
8D 05 AC

A2 40

205503
CA
DO FA

A9 00
8D 0B A0
8D 0B AC
A220

205503
CA

DO FA
4C 0203

A9 FF
38

E9 01

DO FB

13
02
76
0t
CD
02
9E
0l
CD

76
01
CD
02
53
01
89
02

APPENDIX C

STA TILH ;STORE TIMER 1

STA TICH ;THIS STARTS TIMER 1
;GOING

INX

LDA TABLE,X ;GET LOW ORDER, SECOND
;TONE

STA T2LL ;STORE IN TIMER 2

INX

LDA TABLE,X ;GET HIGH ORDER, SECOND
;TONE

STA T2LH ;STORE IN TIMER 2

STA T2CH ;THIS STARTS TIMER 2
;GOING

LDX #ONDEL ;GET TONES-ON DELAY
;CONSTANT

ON JSR DELAY ;DELAY WHILE TONE IS ON

DEX

BNE ON

LDA #300

STA ACRI ;TURN BOTH TIMERS OFF

STA ACR2

LDX #OFFDEL ;GET TONES-OFF DELAY
;CONSTANT

OFF JSR DELAY ;DELAY WHILE TONE IS OFF

DEX

BNE OFF

JMP DIGIT ;GO BACK FOR NEXT DIGIT

;OF PHONE NUMBER

;THIS IS A SIMPLE DELAY ROUTINE FOR THE TONE ON AND
;OFF PERI

DELAY LDA #DELCON ;GET DELAY CONSTANT

WAIT SEC ;DELAY FOR THAT LONG
SBC #301
BNE WAIT
RTS

;THIS IS A TABLE OF THE CONSTANTS FOR THE TONE
;FREQUENCIES FOR EACH TELEPHONE DIGIT. THE
;CONSTANTS ARE TWO BYTES LONG, LOW BYTE FIRST.

TABLE .BYTE $13,$02,876,01 ;TWO TONES FOR ‘0’

.BYTE $CD,$02,$9E,301 ;TWO TONES FOR ‘I’

.BYTE $CD,$02,$76,301 ; ‘2
.BYTE $CD,$02,$53,501 3
.BYTE $89,302,$9E,$01 ; ‘4’

Program 4-4: Phone Dialer (continued)

2N

6502 APPLICATIONS BOOK
0082 036F 9E
0082 0370 o1
0083 0371 89
0083 0372 02
0083 0373 76
0083 0374 01
0084 0375 89
0084 0376 02
0084 0377 53
0084 0378 01
0085 0379 4B
0085 037A 02
0085 037B 9E
0085 037C 01
0086 037D 4B
0086 037E 02
0086 037E 76
0086 0380 01
0087 0381 4B
0087 0382 02
0087 0383 53
0087 0384 01
0088 0385

ERRORS = 0000 <0000>

SYMBOL TABLE
SYMBOL VALUE
ACRI1 AO0OB
DIGIT 0302
OFFDEL 0020
TICH A00S
T2LH ACO07
END OF ASSEMBLY

272

ACR2 ACOB
NOEND 030A
ON 033C
TILH A007
T2LL ACO4

.BYTE $89,502,376,501

-BYTE $89,502,$53,501

.BYTE $4B,$02,$9E,$01

.BYTE $4B,$02,$76,501

.BYTE $4B,$02,$53,501

.END

DELAY 0355
NUMPTR 00CO
ONDEL 0040
TILL A004
TABLE 035D

DELCON
OFF
PHONE
T2CH
WAIT

Program 4-4: Phone Dialer (continued)

00FF
034C
0300
ACO5
0357

APPENDIX D
HEXADECIMAL

CONVERSION TABLE

HEX 0 1 2 3 4 5 6 7 8 9 A B C D _E F 00 000
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192
3 48 49 S50 51 52 53 54 55 56 57 S8 59 60 61 62 63 768 12288
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 | 20480
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 | 32768
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 | 36864
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 | 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

5 4 3 2 1 0
HEXI DEC HEXI DEC Hex[DEC HEXI DEC stl DEC HEXI DEC

0 ol o ol o ol 0 o] © o] 0 0

1 1,048,576 1 6553 1 409 1 256 1 16| 1 1

2 2.097,152] 2 131,072 2 8,192] 2 512] 2 2| 2 2

3 3145728} 3 196608 3 12,288 3 768| 3 8] 3 3

4 4,194,304] 4 262,144 4 16,384] 4 1,024] 4 61l 2 2

5 5242,880] 5 327,680] 5 20480} 5 1,280 5 8] 5 5

5 6.291,456| 6 393.216] 6 24,576] 6 1,536] 6 % | 6 5

7 7.340,032] 7 4s8752) 7 28e72| 7 172l 7 n2) 7 7

8 B.388.608| 8 524,288| 8 32,768 8 2,048| 8 128 | 8 8

o 9437184 o s589.824| 9 36864 9 2304] 9 14a] 9 9

A 10,485,760 A 655,360] A 40,960| A 2,560] A 160 | A 10

B 11,53433] 8 720896] B 45056 B 2816 B 176| B n

C 12,582,912 C 786,432] € 49.152] C 3072 € 192| C 12

D 13,631,488 D 851,968] D 53248] D 3328| D 208 D 13

E 14,680,004 E 917,504] E 57,384| E 3,584| € 224 | E 12

F 15728.640] F 983.040] F 61,440} F 3840) F 240] F 15

2713

6502 APPLICATIONS BOOK

ASCII CONVERSION

APPENDIX E

TABLE

274

HEX 0 1 2 3 4 5 6 7
BITS 000 001 010 011 100 101 110 111
0 0000 NUL DLE SPACE 0 @ P - o]
1 0001 | SOH DC1 | 1 A Q a q
2 0010 STX DC2 “ 2 B R b r
3 0011 ETX DC3 # 3 C S c [
4 0100 | EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E V) e u
6 0110 ACK SYN & 6 F v t v
7 0111 BEL ETB 7 G w g w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 | Y ' y
A 1010 LF suB * : J Z i z
B | 1011 | v Esc + Ko k|
c 1100 FF FS ' < L\ b
p | 1101 CR @GS - = M] m }
E 1110 SO RS . > N A N~
F 1111 St us / ? O <« o DEL
THE ASCII SYMBOLS
NUL ~Nul DLE —Data Link Escape
SOH —Start of Heading DC —Device Control
STX —Start of Text NAK —Negative Acknowiedge
ETX —End of Text SYN ~—Synchronous Iidie
EOT —End of Tranamission ETB —End of Transmission Block
ENQ —Enquiry CAN —Cancel
ACK —Acknowledge EM —End of Medium
BEL —Beil SUB ~—Substitute
BS —Backspace ESC —Escape
HT —Horizontal Tabulation FS ~—File Separator
LF —Line Feed GS —Group Separator
VT —Vertical Tabulation RS —Record Separator
FF —Form Feed US ~Unit Separator
CR —Carriage Return SP ~—Space (Blank)
SO —Shift Out DEL —Delete
S| ~Shiftin

ADC
AND
ASL
BCC
BCS

BIT
BMI

BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP

APPENDIX F

6502 INSTRUCTIONS
(ALPHABETIC)

Add with carry

Logical AND
Arithmetic Shift Left
Branch if carry clear
Branch if carry set
Branch if result = 0
Test bit

Branch if minus
Branch if not equal to 0
Branch if plus

Break

Branch if overflow clear
Branch if overflow set
Clear carry

Clear decimal flag
Clear interrupt disable
Clear overflow
Compare to accumulator
Compare to X

Compare to Y
Decrement memory
Decrement X
Decrement Y

Exclusive OR
Increment memory
Increment X

Increment Y

Jump

JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY

TXA
TXS
TYA

Jump to subroutine
Load accumulator
Load X

Load Y

Logical shift right
No operation

Logical OR

Push A

Push P status

Pull A

Pull P status

Rotate left

Rotate right

Return from interrupt
Return from subroutine
Subtract with carry
Set carry

Set decimal

Set interrupt disable
Store accumulator
Store X

Store Y

Transfer A to X
Transfer A to Y
TransferSP to X
Transfer X to A
Transfer X to SP
Transfer Y to A

275

6502 APPLICATIONS BOOK

INDEX

6502 Assembler 243
6520 20, 21
6520 Dangers vee 28
6522 20, 31,47,
48,161,164
20, 61
20, 61
61
A
ACR ..o,
active devices
AIMG6S ...coveirinninieenniens
alarmoeeveiniiiinininnns
alarm system
analog to digital conversion ... 203
application connector 72
arterialoveeveinieniiiniines 151
ASCII Keyboard 225
ASMG6Seviiniiiiniannns 244
audible response 209
auxiliary application
CONNECLOT «.euevrrerariassranees 73
auxiliary control
register (ACR)c.......... 44
B
basicinputcccceuneannt 47
beamcocveniriieniirieanens 188
bi-directional 217
bit viviirie e 238
board layout 148
bufferccocvevieiviienennnnns 22,23
buffered output 81
buffered ports 150
buffersc.coveeveeninninnnnnns 17
burglar alarm 188
17
17
17
17
chip-select 22
clearances.............. e 160
clipping diode 82
ClOCK tevveiveniirneicniennenns 18, 111

276

closed control 203
comparator veae 206
computer music 178
conclusions 241
CONNECLOTS «.vevvvrivnennnnnnen 148
control lines 22
control options 49
control register 25
control register (CRA) 22
D

DAC ..coiviiiieciccineeanns 204
Darlington ceen 62
data hole............. 228
dataready 17
data request 17
data-direction register 16
daymodeooenvnennnnn

DC motor control

DDRAcoiviiiiiiiiieaneenne
debouncing
decoded keyboard
delayccovvnvnnnenn
delay loopcvvnveniennennnn.
delayscooevvnvninnnns .

detector

dot matrix LED

driverooveeceiinieneninnann. 195
duration 45
duration of a pulse 43

E

electrosensitive 233
expansion connector 72
external clock 52

17

159

203

free-running 107

free-running mode 43
G

groundedcoveniinnennn 217

H

hand-shaking 17
handshake protocol 51
hardware timer 18
heating coil 209
hex invertercoocuuees 81
hexadecimal keyboard 217
home alarm 188
home control 117
HP2000F BASIC 247
I
indexholec.ceveueneinnnn 203
indexed addressing 102, 104,
222,223
indexed indirect 238
indexed indirect addressing 28
indirect addressing 231
indirectioncccccoenianne 231
industrial control 145,150
inertiaciveenes 194
input-output 15
input pulseccoeuvennenne 131
internal divide 19
INEEITUPL cvvvervnenennrenennns 17
interrupt routine 117
INtErrupts ...ovvevvenvncneesnns 11,17
interval timer.................. 61
introduction 11
IORA 24
IRQA 22
IRQB ..o 22
K
key 218
keyboard 67,175, 217
KIM 11, 61, 64,
66, 81, 127
L
LED .cooiiiiiiiiciceneenenne 165
light emitter 188, 203
line-reversal technique....... 217
loop detectorscu.... 145, 152
loudspeaker................... 149
M
MALCIX oevereninreenennenenonns 217
MEMOTY MAP vovvueiriinrnrnns 24
MiCroprinterc.ouee. 233
MONitoreeuenee 65
1Y o) 1IN 92
MOS Technology 20, 66
Motorola M6820 21

multiplication 174
multiplication table........... 143
TNUSIC vvvrrnrnineereaeenenennns 181
MUSIC Program 137
N

nested loopscceeeenienennt 103, 109
night pattern 153, 154
1111 | IR 229
(0]

OffS€t ceveererreeieeninieenenes 104
Olivetti ererreeea 233
one-shotcocevviieieneninnens 54
opamp.... ... 204,206
ORB...oooviviiieinceiecninns 48
output register (ORA) 22
output signal 43
output transistor . 149
overflowooeeievieninnnens 238
P

PAPEr tAPE ..vvvnninranraninss 226
paper-tape reader 225
parallel-to-serial conversion ... 46
parallel input-output 15
passive pull-ups 23
PedagogyY «.c.cevevenenniinannnen 12
peripherals 216
phase2c.cevvenn e 58
Phasescceviiiinnenenians 151
photo emitters 226
phototransistor 188
PIAcoiiviinnannne 20

PIO ...

5 11¢) | WS

pollingc.c..nvent

polling loop ..

polling the 6520’s 28
310 | ST PY 16
pot trimmer 149
precautionscoeueunennes 149
o3 1117 SN 75
programmable timer 11
programming form 14
PUISE .euiiiiiiiceeeees 56
pulse measurement 131
pulse trainscoveerennenn 19
PUISES «.enivenniiiiiiieieeanens 202
R

RAM ..o, 65
register selection 25
TElays .ovvneriiieniirrireeennnns 81

6502 APPLICATIONS BOOK

TESCL cuvenirniiinninrenrenrannons 21,27
Rockwell 31,65
ROM................ 203
rotational speed 203
RRIOT 61
RSI 24
RSO .oeeeieeeiceeirieenennns 24
S

sample-and-hold 206
saw-tooth curve . 194
SCAND 119
scanning . 223
Schmitt triggers ... 228
serial-to-parallel

shift register

shiftercovevveevinnininnns

siren

sirensoundc.ocuueneee

software delay

solderovvvvviiniiinennnneen,

SPDT

speaker ...

speed

spikecouneennn.

sprocket hole

SPST .cviiiiiiiiieiiicienenns 82
SQUAre Wavecceeuvnenens 92,178
standard system 64
status 117
status flag 18

278

successive approximations .. 204
switch values 175
SWItches ...oeveviniiniinnnnee. 11, 64, 70,
127, 148
Synertek 31
Synertek Systems 70
T
tableoceveriiiiiniiinnnnen. 222
thermistorc.coeeuen. 203
time-of-dayc.ceevvnenns 111
(310,15 SRR 15, 16, 18,
43,102
timerl ...oovviiiiiiiiniininines 43, 107
43
97,102
tone generation 178
traffic control
traffic lights
train of pulses
tUNE ..oveieninnennnnes
TV monitorsc..........
U
UART .o 16
\ 4
VIA e 31
w
WIF€-WIapcovvinrnneninnanes 149

<)

i.;
2
%
:
e
¢
:

AR

1.
2.

4

.

Microprocessor

Interfacing Techniques

Austin Lesea, Rodnay Zaks

464 pp., 320 illustr., Ref. C207, 5" X 8",
ISBN 0-89588-029-6, 3rd Edition, $15.95
Hardcover version: Ref. C207-H,

ISBN 0-89588-030-X, $25.00

MICROPROCESSOR
INTERFACING
TECHNIQUES

Microprocessor interfacing is no longer an art. It is
a set of techniques, and in some cases, just a set of
components. This book introduces basic interfacing
concepts, and then presents, in detail, implementation
techniques for both hardware and software. It covers
: the essential peripherals, from keyboard to floppy disk,
s as well as standard buses (S100 to IEEE 488) and intro-
: duces basic troubleshooting techniques. Third expanded

edition.

CONTENTS:

INTRODUCTION: Concepts, basic techniques, microprocessor control signals.
ASSEMBLING THE CENTRAL PROCESSING UNIT: introduction, system architecture,
addressing. The 8080 system, the 6800 system, the Z-80. Dynamic RAM interface. The
8085.

BASIC INPUT/OUTPUT: Memory vs. |/O mapping. Parallel input/output: techniques
and chips (PIO). Serial input/output: program and UART. The three input/output control
methods: polling, interrupts, DMA, Useful circuits.

INTERFACING THE PERIPHERALS: Keyboards, bounce, encoding, rollover. LED display.
Teletype. Paper-tape reader. Line printer. Magnetic-stripe credit-card reader. Cassette
interface. CRT display. CRTC. Floppy disk. CRC.

ANALOG-DIGITAL CONVERSION: Conceptual D/A, practical A/D, real products, the
A/D sampling theorem, successive approximation, integration, direct comparison con-
version. ADC and DAC. Interfacing D/As and A/Ds. Data collection subsystem, scaling
offset, conclusions.

BUS STANDARDS: Parallel: $100, 6800, IEEE-488, CAMAC. Serial: E1A-RS 232 C, RS 422,
RS 423, synchronous formats.

CASE STUDY: A 32-Channel Multiplexer: introduction, specifications, architecture, soft-
ware. CPU module, RAM module, USART module, host interface module, conclusion.
DIGITAL TROUBLESHOOTING: The problems. What goes wrong: components, noise,
software; the tools and the methods; VOM, DVM, oscilloscope, logic probes, signature
analysis, emulation, simulation, logic state analyzers. Case study: trouble history. The
perfect bench.

CONCLUSION-EVOLUTION: The new chips, one-chip systems. Plastic software.
APPENDIX A: Manufacturers

APPENDIX B: S100 Manufacturers

3.

4.

6.

7.

10.

Microprocessors:
From Chips to Systems
Rodnay Zaks

420 pp., 200 illustr., Ref. C201, 5" X 8'%",
ISBN 0-89588-042-3, 3rd Edition, $10.95

il

iﬁ%ﬁ%ﬁ%@ , ~ This book is a basic text on microprocessors for
Wil anyone with a technical or scientific background. It

covers all aspects of microprocessing, from basic
concepts to advanced interfacing techniques.

Independent from any manufacturer, it presents
“standard”’ principles and design techniques, including
the interconnect of a “standard” system, as well as
specific components. It introduces the MPU, how it
works internally, the system components (ROM, RAM,
UART, PIO, and others), the system interconnect, applica-
tions, programming, and the problems and techniques
of system development.

G

CONTENTS:

FUNDAMENTAL CONCEPTS: Introduction. Principles of operation. Buses. A pocket cal-
culator. The memory. Memory organization. Basic microprocessor definitions. Manu-
facturing a microprocessor. LS| technologies. Brief history of microprocessors. Silicon
Valley. Advantages of microprocessors. Summary.

INTERNAL OPERATION OF A MICROPROCESSOR: The constraints of LSI. Standard
microprocessor architecture. A case study: the 8080, the four main architectures.
SYSTEM COMPONENTS: The microprocessor families. The Memory. Input/output tech-
niques. UART. PIO. I/O management chips. Peripheral controller chips. Typical micro-
processor |/0 devices.

COMPARATIVE MICROPROCESSOR EVALUATION: Functional elements of an MPU.
Classifying microprocessors. 4-bit microprocessors. 4-bit 1-chip microcomputers. 8-bit
microprocessors. 8-bit 1-chip microcomputers. 16-bit microprocessors. 16-bit 1-chip
microcomputers. Bit-slice processors. Comparison summary. Microprocessor selection.
Summary.

SYSTEM INTERCONNECT: Standard system architecture. Assembling a CPU. Con-
necting the address bus. Connecting the memory. Connecting the input/output. System
interconnect. Conclusion.

MICROPROCESSOR APPLICATIONS: Application areas. Computer systems. Industrial
systems. Consumer applications. Special applications. Building a microprocessor appli-
cation. A front-panel controller. A paper-tape reader-punch controller. Analog input/
output. Case studies. Personal computing.

INTERFACING TECHNIQUES: Scope. Keyboard. LED display. Teletype. Floppy-disk.
CRT. Multimicroprocessors. Bus standards.

MICROPROCESSOR PROGRAMMING: Definitions. Internal representation of infor-
mation. External representation of information. Instruction formats. Assembly language
programming. A multiplication. Simulating digital logic. Limitations of programmed
logic. Microprocessor controlled music. Advantages of programming. Summary.
SYSTEM DEVELOPMENT: Development. Developing a program. Fundamental choices.
Development tools. Summary.

THE FUTURE: Infroduction. The yield. Technological evolution. Component evolution.
Social impact.

»

&

»

o

@

7.
8.

»

10.

1

Programming the 6502

Rodnay Zaks

= 392 pp., 200 illustr., Ref. C202, 5'%" X 8",
: ISBN 0-89588-046-6, 3rd Edition, $12.95

programming
fhe ®

This book is designed as a progressive, step-by-step
course, with exercises designed to test the reader at
every step. It covers the essential apsects of program-
ming, as well as the advantages and disadvantages of
the 6502, and brings the reader to the point where he/
she can write complete applications programs. For the
reader who wishes more, a companion volume, THE
6502 APPLICATIONS BOOK, is available.

RODNAY ZAKS

CONTENTS:

BASIC CONCEPTS: What is programming? Flowcharting information representation:
internal and external. Representing programs and data.

6502 HARDWARE ORGANIZATION: System architecture. Internal organization of
the 6502. The instruction execution cycle. Fetching and next instruction. 6502 registers.
The stack.

BASIC PROGRAMMING TECHNIQUES: Arithmetic programs: addition, subtraction.
BCD arithmetic. Multiplication. Division. Subroutines.

THE 6502 INSTRUCTION SET: Classes of instructions: data transfers, data processing,
test and branch, input/output, control. Instructions available on the 6502.
ADDRESSING TECHNIQUES: Addressing modes: implicit, immediate, absolute, direct,
relative, indexed (pre and post), indirect. Combination modes. Sample programs.
INPUT/OUTPUT TECHNIQUES: Basic input/output: generate a signal-delay generation.
Sensing pulses. Parallel and serial transfer. Communication with I/0O devices: hand-
shaking, LED, teletype, Input/output scheduling: polling interrupts, break.
INPUT/OUTPUT DEVICES: The standard PIO, the 6530, 6522, 6532.

APPLICATION EXAMPLES: Clearing memory, reading characters, testing a character,
bracket testing, parity generation, code conversion, largest element, sum of a table,
checksum, counting the zeroes.

DATA STRUCTURES: Pointers. Lists: sequential, directories, linked, queue, stack,
circular, trees, doubly linked. Searching and sorting. Application examples: lists, tree,
linear search, binary search, tree traversal, merging, bubble sort, hashing.
PROGRAM DEVELOPMENT: Programming choices. Software support-development
sequence. Hardware alternatives. Hardware resources. The assembler. Macros. Other
facilities.

CONCLUSIONS.

1.

6502 Games Book

Rodnay Zaks

250 pp., 150 illustr., Ref. G402, 5" X 84",
ISBN 0-89588-022-9, $12.95

This book is designed as an educational text on ad-
vanced programming techniques. It presents a compre-
hensive set of algorithms and programming techniques
for common computer games. All the programs are
developed for the 6502 at the assembly language level.

Because programs must reside within less than 1K
of memory in order to reside on a single board micro-
computer (such as the SYM used in this book), the book
covers virtually all aspects of advanced programming:
effective algorithm design, data structures design, and
effective coding techniques related to storage economy.

The reader will learn how to devise strategies
suitable for the solution of complex problems, typical
of those encountered in games. He/she can also use all
the resources of the 6502 and sharpen his/her skills at
advanced programming techniques. All the games
presented in this book can be played on a real board
(the SYM), and require a very few additional compo-
nents.

A pre-assembled games board is also available as
an option, as well as a cassette incorporating all the
programs presented in the book.

CONTENTS:

INTRODUCTION: The games board interconnect general organization.

MUSIC: Play tunes (13 notes, plus silence) from the keyboard! Notes are recorded in
memory for playback.

MAGIC SQUARES: Player must obtain a perfect square of LEDs by pressing keys. Each
key complements a portion of the pattern displayed.

HEXGUESS: Player must guess the secret number generated by the computer (a 2-digit
hexadecimal number). Computer responds by indicating how far off the player’s guess
is. A game is played in ten sets.

ECHO: The computer plays a tune and flashes lights. Player must duplicate the sequence
(called SIMON and FOLLOW ME by toy manufacturers’ trademarks).

TRANSLATE: The computer displays a binary number. Player must press the correct
hex key. For 2 players.

SLOTS: This is a Vegas-type slot machine. Player scores according to the LEDs lit at the
end of aspin.

SPINNER: A game of skill. Player must capture a light rotating around LED squares.
MINDBENDER: Computer generates a sequence. Player must guess the sequence by
trial and error. Computer indicates a correct match in the right position. (Called MASTER-
MIND, areg. TM by toy manufacturers.)

BLACKJACK: Play blackjack against the computer! Use a deck of 10 cards (LEDs). Player
must score 13, and can hit or pass. Don’t bust!

TIC-TAC-TOE: Player will lose! However, as player keeps losing, the computer will
drop its IQ level and give player a change to win. An excellent player will draw
continuously.

10.

11.

Programming the Z80

Rodnay Zaks

620 pp., 200 illustr., Ref. C280, 54" X 84",
ISBN 0-89588-047-4, 2nd Edition, $14.95

Like the books in the 6502 series, this book is
designed as a progressive, step-by-step course, with
exercises to test the reader at every step. It covers the
essential aspects of programming, as well as the ad-
vantages and disadvantages of the Z80, and brings the
reader to the point where he/she can write complete
applications programs. For the reader who wishes more,
a companion volume, the Z80 APPLICATIONS BOOK,
will soon be available.

CONTENTS:

BASIC CONCEPTS: What is programming? Flowcharting information representation:
internal and external. Representing programs and data.

Z80 HARDWARE ORGANIZATION: System architecture. Internal organization of the
Z80. The instruction execution cycle. Fetching the next instruction. Z80 registers. The
stack.

BASIC PROGRAMMING TECHNIQUES: Arithmetic programs: addition, subtraction.
BCD arithmetic. Multiplication. Division. Subroutines.

THE Z80 INSTRUCTION SET: Classes of instructions: data transfers, data processing,
test and branch, input/output, control. Instructions available on the Z80.

ADDRESSING TECHNIQUES.Addressing modes: implicit, immediate, absolute, direct
relative, indexed (pre- and post-), indirect. Combination of modes. Sample programs.
INPUT/OUTPUT TECHNIQUES: Basic input/output: generate a single-delay-genera-
tion. Sensing pulses. Parallel and serial transfer. Communication with 1/0 devices:
handshaking, LED, teletype. Input/output scheduling: polling interrupts, break.
INPUT/OUTPUT DEVICES: The standard PIO, the SI0. Other common devices.
APPLICATION EXAMPLES: Clearing memory, reading characters, testing a character,
bracket testing, parity generation, code conversion, largest element, sum of a table,
checksum, counting the zeroes.

DATA STRUCTURES: Pointers. Lists: sequential directories, linked, queue, stack, circular,
trees, doubly linked. Searching and sorting. Application examples lists, trees, linear
search, binary search, tree traversal.

PROGRAMMING CHOICES: Software support-development sequence. The assembler.
Macros. Other facilities.

CONCLUSIONS.

9.

10.

Programming the Z8000

Richard Mateosian
320pp., 133 illustr., Ref. C281, 5" X 82"
ISBN 0-89588-032-6, $15.95

This book describes, in detail, the architecture and
function of the Z8000 and its family of support chips. It
provides an introduction to machine language program-
ming using the Z8000, and presents many sample
28000 programs to illustrate programming techniques
and design principles. It even shows how clear, well-
organized programs can be written for complicated
subjects like interrupt 1/O programming and time-
sharing.

It is intended for anyone interested in the Z8000:
the electronic design engineer, the advanced program-
mer, or the beginner. PDP-11 users should find it
especially interesting, since the step from a PDP-11
system to a Z8000 system is a relatively easy one.

CONTENTS:

FUNDAMENTAL CONCEPTS: Algorithms. Flowcharts. Representation of information:

bits, bytes, words; hexadecimal; two’s complement arithmetic; BCD; floating point;

ASCII.

28000 HARDWARE ORGANIZATION: Registers. Stacks. Memory segmentation and

memory mapping. Separate address spaces for instructions, data, and stack. System

and normal modes. Z8001 and Z8002. CPU status. Traps and interrupts. Control registers.

Distributed processing. The CPU chip.

ELEMENTARY PROGRAMMING TECHNIQUES: An example: encryption of text. From

algorithms to finished programs: general design considerations, subroutines, the mod

function, symbolic addresses, Z8000 instructions and addressing modes, saving and

restoring register values, instruction timing.)

Z8000 INSTRUCTION SET: Division of instruction set into categories. Data paths for in-

structions. What the instructions do. Status bits and condition codes. Instruction formats.

Encoding of addressing modes. Use of the 45 instruction descriptions. Assembling and

disassembling by hand.

28000 ADDRESSING MODES: The five main addressing modes. The two restricted

addressing modes. Address formats in instructions. Immediate argument formats in in-
structions. Encoding of register fields. Relative addressing.

INPUT/OUTPUT TECHNIQUES: The I/0 bus. I/0 instructions and addresses. Levels
and pulses. Wait loops. Synchronous bit serial data transmission. Teletype 1/0. Half
duplex and full duplex operation. Parallel asynchronous data transmission. Transmission

bandwidth. Seven-segment display example. 170 scheduling: polling, interrupts. De-
tailed example: interrupt I/ routines for terminal device (CRT or TTY).

Z8000 PERIPHERAL COMPONENTS: Special /O instructions. The memory manage-
ment unit. The Z8000 component family. Serial 1/0. Parallel I/O. Counter/Timer circuits.

Unplanned features, the REFRESH register as a timer, the multi-micro synchronization

instructions as a one-bit I/O port.

UTILITY PROGRAMMING EXAMPLES: Terminal I/O initiator (to work with the interrupt
routines of Chapter 6).Ring buffer routines. Translation (associative search) routine.

Terminal interaction routines; output messages, ask questions, decipher answers, cur-
sor control, building output lines. Bit table routines. :
ADVANCED PROGRAMMING TECHNIQUES: Shareable programs. Storage manage-
ment. Timesharing. Stack management. Dispatch mechanism for SC system calls. System
initialization: RESET, initial sequence of instructions, interrupt vectors (program status area).

THE PROGRAM DEVELOPMENT ENVIRONMENT: Editors. Assemblers and loaders.

Debug tools. Development hardware: development systems, single-board computers.

SYBEX BIBLIOGRAPHY

VIDEO COURSES

Microprocessors - 12 hours (Ref. VI)

Military Microprocessor Systems - 6 hours (Ref. V3)
Bit-Slice - 6 hours (Ref. V5)

Microprocessor Interfacing Techniques - 6 hours (Ref. V7)

AUDIO COURSES

Introduction to Microprocessors - 214 hours (Ref. S1)
Programming Microprocessors - 2% hours (Ref. $2)
Designing a Microprocessor - 2/4 hours (Ref. S3)
Microprocessors - 12 hours (Ref. SB1)

Programming Microprocessors - 10 hours (Ref. SB2)
Military Microprocessor Systems - 6 hours (Ref. SB3)
Bit-Slice - 6 hours (Ref. SB5)

Industrial Microprocessor Systems - 4/ hours (Ref. SB6)
Microprocessor Interfacing Techniques - 6 hours (Ref. SB7)
Introduction to Personal Computing - 2% hours (Ref. SB10)

REFERENCE TEXTS

Practical Pascal (Ref. C102)
Introduction to Personal and Business Computing (Ref. C200)
Microprocessors (Ref. C201)
The 6502 Series
Volume-1: Programming the 6502 (Ref. C202)
Volume-2: Programming Exercises for the 6502 (Ref. C203)
Volume-3: 6502 Applications Book (Ref. D302)
Volume-4: 6502 Games (Ref. G402)
Microprocessor Interfacing Techniques (Ref. C207)
Programming the Z80 (Ref. C280)
Programming the Z80OOO (Ref. C281)
CP/M Handbook - with MP/M (Ref. D30OO)
International Microprocessor Dictionary - 10 languages (Ref. IMD)
Microprocessor Lexicon (Ref. X1)
Microprogrammed APL Implementation (Ref. Z10)

SOFTWARE

BAS 65™ 6502 Assembler in Microsoft BASIC (Ref. BAS 65)
8080 Simulator for KIM - Cassette Tape or 5” Diskette (Ref. $6580-KIM)
8080 Simulator for APPLE - Cassette Tape or 5" Diskette (Ref. 56580-APL)

SELF-STUDY SYSTEM

Computeacher™ (Ref. CPT)
Games Board™ (Ref. CPTG)

FOR A COMPLETE CATALOGUE
OF OUR PUBLICATIONS

USA

2344 Sixth Street

Berkeley, California 94710
Tel: (415) 848-8233

Telex: 336311

EUROPE

18 rue Planchat
75020 Paris, France
Tel: (1) 3703275
Telex: 211801

6502 Applications Book

Rodnay Zaks

“An excellent companion to Programming the 6502, [this

book] is highly useful for both the home experimenter and the
industrial designer.”

— Digital Design

THIS BOOK

presents practical applications techniques for the 6502. Use it and a few
low-cost components to build a complete home alarm system (including
fire protection), as well as an electronic piano, a motor speed-regulator,
a time-of-day clock, a simulated traffic control system, and a Morse
code generator. You can also design an industrial control loop for tem-
perature control (including analog-to-digital conversion), and your own
simple peripherals, from paper-tape reader to microprinter.

The 6502 Applications Book is truly the “Input/Output” book for the
6502, including more than 50 exercises designed for testing yourself at
every step.

THE AUTHOR

Dr. Rodnay Zaks has taught courses on programming and microprocessors
to several thousand people worldwide. He received his Ph.D. in Computer
Science from the University of California, Berkeley. Dr. Zaks developed
a microprogrammed APL implementation, and worked in Silicon Valley,
where he pioneered the use of microprocessors in industrial applications.
He has authored several best-selling books on microcomputers, now
available in ten languages.

This book, like the others in the series, is based on Dr. Zaks’ practical,
technical and teaching experience in the field of microcomputing.

ISBN 0-89588-015-6

