. TWIN CITIES 128 - ISSUE:#32 - JuLy 92 -

$3.95 MAGAZINE ONLY $9.95 MAGAZINE & DISK

i.‘i .

Take a look at CMD's Sizzling Summer Specials |

KAMLInk Packages
+ RAMLink, RAMCard Il and RTC

+ RAMLink Battery
+ 1 or 4 MB SIMM Module

1 MB RAMLink package $275.00
4 MB HAMLink package $375.00
Summol Sposl.als will be offered through August 31

SRR

« Corpact -Allthe features you've ever wanied from RAM :
expansion in acompact unit. Five capacities: 512K, 1,2,
4, and 8 megabytes. Dimensions: 6 x 3"w x 1*h.

+ Expandable - Now RDX Models allow for users to
expand RAMDrive up 1o 2, 4, and 8 megabytes.

+ Compatible -Use RAMDrive with GEGS, CP/M, Q-Llnk, ¢\<

BBS programs, productivity software and more.

+ Non-Volatile -External power supply eliminates drain on
computer power supply and relains data indefinitely.
Internal rechargeable batteries retain data up to 7 days. 2}
RDX units use an optional external battery and also retain :
data for up to 7 days.

« FAST - Up to 400x faster than a 1541; 20x faster than
RAMDOS; Built-in JitfyDOS speeds access to CMD Hard
Drives and JitfyDOS-equipped floppy drives. :

+ Easyto Use - Plugs into the cartridge port. Operates like £
a standard disk drive. Fike and disk copiers included along £
with partitioning, support ubiities, and new GEOS configure. 3

+ RD-DOS -Organize RAMinto asmany as 30 manageable §\
partitions that emulate 1541, 1571, & 1581 drives or 3
expand to the full RAM capacny with MS-DOS slyle %,,
subdirectories. Auloboot 64 and 128 mode programs. §

RD 512 $199.% RD-1 $245% RD-2 ,.«ss’ﬁ’~
RDX-1 $26495 RDX-2 $319.95 RDX4 $3%9.95 :
ROX-8 $549.95 RDXExiemalBafleyunt — $24.95

AityPOS

Hi-performance ROM upgrade - Performs all
disk accesses up to 15 times faster
Guaranteed 100% compatible « Built-in DOS
Wedge & file copier - Easy to install
(Please specify compuler & drive model with serial#)
JityDOS 64 or SX-64 $59.95

HD - RAMLInk Packages

+ RAMLink, RAMCard |1 0 MB and RTC
+ HD Series Hard Drive
+ Parallel Cable » Shipping $25.00

HD-20 Pkg $600 HD-40 Pkg $775 | Perfect Print Complete System
HD-100 Pkg 3975 HD-200 Pkg $1175 | * geoMakeBoot « Shipping Included

gatewy

A Powerful New Desktop for GECS 2.0
Task Switching * Three drive support
Access full capacity of HD, RAMLink,

RAMDiive, expanded REU's & GEORAM
galeWay 64 $20.85 - galeWay 128 $29.95

* RAMDrive 1 MB
* RAMDrive 2 MB

RAMDrive Specilals

GEOS Combo Package $60.00

SwiftLink Package
+ SwiftLink -232 Cartridge
+ DB 9 to DB 25 Modem Cable
+ Terminal and File Xfer Software
+ Shipping Charges Included
SwiftLink Package $45.00

$225.00
$275.00

ntities may be limited, contact CMD for avanlabllny CMD reserves tho nght to chango pncng n nscossary

R AR AR

Eliminates jagged output + Resolution up to 360 x 360 DPI (24 Pin), 240 x 216 DPI (9 Pm)
GEOCABLE compatible « Allows multiple copy printing « HQ drivers enhance graphic output
Perfect Print LQ is a complete print enhancemert package for GEGS that delivers the highest quality dot matrix
output possible. Includes a unique print utility and font set for enhancing GEOWRITE documents, utilities for
creamg fonts, and high quality drivers for other GEOS applications. Improves text and graphic output on
vitually al 8 & 24 pin dot malrix printers and supports font attributes such as italics, outline, underline, bold, etc.
Main system (All drivers, utilities, and 7 fonts) $34.95 « Font Package (42 LQ fonts) $29.95
Complele System (Ma|n System & 49 foms) 349 95 Shpplnngandlmg 85 00 Canada add 34.50

HARD DRIVES

The Ultimate In Mass Storage for the 64/128
+ Capacity -20 Mbto 200 Mb capacities enable you to
store the equivalent of up to 1250 1541 (170K) disks.
» Speed - The fastest Commodore compatble hard
drives. Speeds up to 50x faster than a 1541.

iility - ldealforuse withGEOS, CP/M, Q'Link,
BBS programs, productivity software and much more.

i » Compact Size - 3 1/2" SCSI technology aliows for a

compact case about the same size as a 1581.

+ Expandability -Chainuptosix SCSI devicesorconnect
to Macintosh, IBM-Compatible & Amiga computers.

+ Built-in Real Time Clock -Automatically time and date
stamps files and sets the GEOS clock.

%+ HD-DOS - Organize slorage into as many as 254

partitions that emulate 1541, 1571, & 1581 drives or
expand to 16Mb with MS-DOS style subdirectories.

+ Easy touse - Connects like a standard drive and easy
to read manual explains all facets of drive aperation.
Comes complete with copiers and maintainence utilities.

HD-20 CALL FOR PRICE
HD-40 $599.95

HD-100 $848:55— $799.95
HD-200 $1009-%5 $999.95

T R e TR TR BT oL vt

Suiiftiinic

Provides an industry-standard IBM style serial port that
communicates at speads from 300 to 38,400 baud and
provides refiable 1200 and 2400 bps using RS-232 Hayes-
compaible modems. Indudes terminal programs and
software for transferring fies b other computers.

SwitLink (Cart) $39.85 » SWIFTLink Cable $9.95

Power Backed REU Interface and
Expandable RAM Disk

» Non-Volatile Storage - Operates on its own extemal
power supply. Optional rechargeable battery back-up
retains data even during power outages.

» Compatible - Use GEOS, CP/M, Q-Link, BBS
programs, productivity software and more. RAM port
for connection of REU or GEORAM of any capacty.
Pass-thru port supports most cartridges.

+ User Expandable - Internal RAMCard allows
expansion up to 16 Mb by using standard SIMM's.

* FAST - Up to 400x faster than a 1541; 20x faster than
RAMDOS; Built-in JittyDOS plus parallel interface fo
speed access to CMD Hard Drives.

+ Easyto Use - Plugs into the Cartridge Port. Operates
like a standard disk drive. File and disk coplersincluded
along with partitioning and GEOS support utilities.

+ RL-DOS - Organize RAM into manageable partitions
that emulate 1541, 1571, & 1581 drives or expand to
the ful RAMcapacity with MS-DOS style subdirectories.

RAMLInk (no RAMCard) $179.95 Battory w/cable $24.95
RAMLink (w/ RAMCardll) $219.95 HD Parallel Cable$14.95
RAMLink (RAMCardIIRTC$239.95 RTC add-onKit $29.95
RAMCard Il wih RTC) ~ $79.95 1Mb SIMM $42.00
RAMCard II (without RTC$59.95 4MbSIMM $145.00

B TEAID

SID Symphorny adds a second complete SID chip to your 64 or 128
ardmbum.d mwl’maﬁawumdﬁdmﬂu

d.Enjoy hundreds
ofmblcamanmmmlmmul)liln ausoCMs
Music System book and SID editor to create original stered music.

SI0 Cartridge $30.95 » Compute's Music Book $22.95

JnﬂyDOS 128 or 128D $69.9 + Add1 Drive ROMs $290.95 galeWay 64/128 Combo $44.85 + Shipping: $5.00 Shipping: US: $6.00 (Car), $5.00 (Cable), §7.50 (Both) Shipping: US: $6.00 (Cart), $5.00 (Book), §7.50 (Both).

geoMakeB oot makes booting GEOS from nearly all devices and making back-up copies of the GEOS boot disk easy and convenient. Besides baing

Hard Drives, RAMLink and RAMDrive. geoMakeBoot is simple, inexpensive and easy to use. geoMakeBoot $12.95 + $2.00 shipping

q e () Ma k‘eﬁ 0 0 t compatible with virtually al CBM compatible devices, gooMakeBoot also eliminates the need for installing some desk accessories and supports CMD

>

CHD Hard Drives:
Jith/DOS:
RAHLink:
RAKDyivs:
Paywmend:

Ordering Information and Shipping Charges
Continental US: $25.00 per drive (UPS ground), $35.00 (2nd-Day), $45.00 (Nexi-Day). Canadk: $50.00 {Aemail). COD 1o U.S. only $5.00 add1 charge. Foreign peices: Add $100.00 ko U.S. Relad Price
Add $5.50 per oecher (UPS ground), $10.00 (2nd-Day Air), plus $5.00 for APO, FPO, AK, HI, and Camada, or $15.00 for overseas orders. No add shipping if crdesed with any hasd deive. COD's addt $5.00
US: $12.06 (UPS), $20.00 (2nd day), COD add $5.00. Canada: $23.00. Foreign: CALL
US: $8.50 (UPS), $46.00 (2nd day), COD add $5.00, Canada $18.00,RDX Ballery add $3, Fareignical
MA residents add 5% sales tax. We acoep! VISA, MasterC ard, Money Orders, C.0.D., and personal checks (allow 3 wesks for personal checks 1o clear). Credit card aeders provide the foliowing:

Card holders nasme, biling address, home/work phone, card number, expiration date and issuing bank.

Canadian Cust

can now contact HOLZ COMPUTER SUPPLY, Box 47008, Dover P.0., 3525 - 26th Ave., SE, Calgary, Alberta, Canada T2B 3B7 Phone: 403-272-1888 Fax: 403-272-2010

»WE VERIFY ALL CREDIT CARD INFORMATION AND PROSECUTE INDIVIDUALS ATTEMPTING TO PERPETRATE FRAUD -

mwmqsmmya:»wmmm*&w»m\ SRR

Creative Micro Desugns, Inc.

AR

OvD

15 Benton Drive, P.O. Box 646
East Longmeadow, MA 01028

ORDERS ONLY: 1-800-638-3263
Questions/Support; 1413-5250023 » FAX: 1413-525-0147 + BBS: 1413-525-0148
OmeHours:wzn SpmMthru Fri o

TWIN CITIES 128 - ISSUE #32 - JuLy 92
THE COMMODORE 128 JOURNAL

Table Of Contents ' l Page # Author
Internal Function Ram ceececceccsssss 14 “Richard Curcio
REVIEWS . ‘ AR

Recipeccceeececsn ceccecccscecrienescs.s04 . staff

Easy List .c.veceeeveccenncencncas ceececcess09 staff
SOFTWARE ' e

0S PLUS .cicvvecancons Ceciecssenes ceeeaan ...05 Mike Gilsdorf
Turbo Charging CP/Mccevncececccnns ...23 Steve Goldsmith
Calendar & Memo Writer ceceasacccnss .36 Ronald Robert
Dr.o0ctalcceeivecceccccnceccccccnsannsnos 13 JBEE & various
Servicing the C-128 Keyboard ceveescens 21 . Dave Farquhar
NeWS .uescesecccercsonssscsoccaen ceceesennn e e e25 staff

Geos M.L. Programming ceecsccnsoes ..32 Robert Knop
ADVERTISERS

‘CMD ¢ eceeeocscscsssosssscsscscecssacsoscssocasssll

JD's Computer Supply ..cccceececccccccccaces 04

MISC.

Cover‘......................................01

Class(y) AdS ...cevieeenccvoaccnn Seseesesaaas30

Legal - notlces, Subm1581ons,

Right to use, Ad rates cecseaenn ..31

Subscriptions ceeseecsesaann S P |

Checksum 128 Programceceeeeeeee p— 1

Mailing Page «.ceeeeecneseeeceooncacananns . .40

Pubiisher’Parsec, Inc. Editor:John Brown Other Authors: Tom Adams

Twin Cities 128 is - Publ;shed and Copyrighted 1992 in ‘whole by

Parsec, Inc POB. ‘111 'Salem, MA 01970-0111 USA All rlghts reserved.
PARSEC'S,Telephone number 1-508-745-9125 (9-5 EST Mon - Fri’ Answerlng
Machine/Voice) (10-2 EST Tues/Thur - Voice support when available) .

We can be contacted online:GEnie = C128.JBEE (everyday) CIS = 70661,443
(once a month). Twin Cities 128 is done completely, except some ads,
on a C-128 using Papercllp iii (text), Geos (graphics), and custom DTP
software. Our datahase is run on a C=128 using our own custom written
database software. Pages are output from a C-128 to a laser printer.
This magazine is” produced" from start to flnlsh on C—128 computers and
'~ we are proud of it! - N

This . maga21ne is dedicated to my mother to whom I gratefully owe all my.
successes and failures.

Twin Cities 128 - Page 03 A - Issue # 32

RECIPE 128

A software review - staff

HOME COOKING WITH

- HOME SPUN SOFTWARE.

Recipe is a program that comes to you on five
disks and it is for the C-128 in 80 column mode.
Each disk covers one area. There is a disk for
"Breads", "Desserts", "Entrees", "Vegetables", and
"Odds ’n’ Ends". There are 50 recipes on each
disk, enough to give the novice cook a good start.
You have room to add your own favorite recipes.
Each disk comes with its own loader program.

At the beginning you are faced with the
opening screen and a menu bar across the bottom.

F1 = List - Will list the 50 recipes on the disk.
You cannot cursor to the recipe and have it
displayed but must use F2.

F2 = View - Is the next option and you enter the
code of the recipe such as v-5 for the fifth
recipe on the vegetable disk.

F3 = Print - I couldn’t get this option to work.

F4 = Write - Lets you write your own recipe and
add it to the disk.

F5 = Edit - Gives you the option to edit any of
the recipes on the disk. Either the ones that
came with the program or ones of your own.

F7 = Quit - You are cautioned to always use this
key to exit the program to avoid possible file
€rrors. 7‘

HELP = Help - This is another key that didn’t work
possibly because of my configuration.

The quality of the recipes are on the whole
pretty good. Most are rather simple to make like,

.Double Crispy Chicken, Dill Spiced Carrots, Lemon

Mutfins, Escalloped Potatoes, and Prize-Winning

- Apple Pie. Pardon me while I go eat.

In the Odds’n’ Ends category there are recipes
for Potato-Celery soup, Cantaloupe Mousse, and a
Shake and Bake mixture. The recipes are quite
good and simple to make with this data base.

(continued on page # 9)

" Your Source for Top Quality Disks and h
Accessories - Free Shipping* too!

Diskettes Paper ‘
3-1/2" DSDD (30 ct) 29.95 20# One-Part Printer Paper,2500ct 29.95 -
3-1/2" DSHD (15 ct) 27.95 To Zip Codes 001-799 add an add'l 10.00
5-1/4" DSDD (30 ct) 16.95 18# One-Part Printer Paper,3000ct 32.95
5-1/4" DSHD (15 ct) 17.95 ToZip Codes 001-799 add an add'l 10.00
Disk Hold ' Carbonless Two-Part Paper, 1500 sets42 . 95
3-1/2". Holds 40 5. 95 To Zip Codes 001-799 add an add'l 10.00

- , .

Buy TWO for only 10.95 Miscellaneous
5-1/4", Holds 50 6.95 Surge Surpressor 38.95

Buy TWO for only 11.95

JD's Computer Supply

Ask about our Special Fu‘ndralslng
offer for User Groups!

P.O. Box 873, Pearl City, Hi 96782-0873

* Free shipping available on all prepaid orders of $30 or more. COD and orders on account will be billed actual shipping costs. Please I“(;W 14-21 days for our free
shipping service, 5-7 days for COD and account orders. UPS 2nd Day Air and ovemight delivery (to some locations) are available at additional cost. Hawaii
xesidcnls add 4% tax. Shipping to APO/FPO, AK, GU, PR will be billed at actual cost. All products are 100% g d. Not responsible for typographic 'erronJ

Twin Cities 128

Page 04 Issue # 32

I

0S PLUS
By Michael Gilsdorf

Change the Default Drive,
Display a Drive Prompt
and More!

OVERVIEW

OS Plus is a simple time-saving routine whose
purpose is to make the C-128 easier to use when in
direct mode. ‘Written entirely in machine
language, it is designed to work with both
JiffyDOS and non-JiffyDOS systems, and provides
some of the same features commonly found on other
operating systems such as CP/M and MS-DOS.

Some features of OS Plus are based upon the

- concept of a default drive. A default drive
provides you the convenience and freedom of not
having to type in device numbers every time a
command is-entered. The C128 uses this feature,
but unfortunately, it won’t allow you to change
the default settings. It always defaults to

device 8 for BASIC 7.0 commands, and device 1 (the
cassette) for BASIC 2.0. JiffyDos, on the other
hand, does allow you to specify the default drive,
but it only affects the JiffyDos commands - not
the standard Basic commands.

A partial‘ solution to the problem is to
replace the device number in commands with

PEEK(186), or if you own JiffyDOS, with PEEK(190).

For example, the command:
key 3,"diréctory u(peek(186))" + chr$(13)

will program the F3 key to display the directory
of the last device used. This technique will not
work though, if the last device was not a drive,
and it can be a little awkward at times if you
need to add file names or edit the command string.
Furthermore, if the command you want to use isn’t
assigned to one of the function keys, using
. 'PEEK(186) provides no real benefit in terms of

" reducing the number of key strokes.

- OS Plus overcomes these limitations by

allowing you to specify and change the default
drive for all the drive related BASIC commands:

append ‘backup -bload Eoot bsave

Now, when a device number does not appear in
the command string, Basic uses whatever default
drive you specified. This feature is only active
when the computer is in direct mode. That way, a
program that is running will not have its
operation accidently altered. Additionally, any
attempt to use the cassette wrll be redlrected to
the default drive. ,

OS Plus makes it easy to specify which drive
Basic should use as the default. Simply type the
drive letter followed by a carriage return, and OS
Plus will change the current default drive
setting. Each letter corresponds to a different
device number (e.g., A=8, B=9, etc.). Since legal
device numbers for drives range from 8 to 30,
valid drive letters are A to W.

OS Plus also provides a new informative
command prompt. When the computer is ready to
accept a command, instead of displaying a
"READY.", OS Plus now displays the default drive
letter followed by the error message associated
with that drive.

A> 00, 0K,00,00

The prompt serves both as a reminder of the
current drive so you do not accidently send a ,
command to the wrong device, and it eliminates the *

- need to Print DS$ when an error occurs on the

default drive. If the drive’s error light should

flash, OS Plus will automatically read and display
the error message. It always ensures the DS$

error message is read from the default drive -

even after using a BASIC 2.0 command. Moreover,
you can redisplay the prompt anytime by merely
pressing the return key on a blank line. To

. better illustrate how the default drive feature

operates, suppose the following command is
entered: :

B> 00, OK,O0,00
directory ul0: directory

After the command is issued, the directory for
device 10 is-displayed followed by the directory
for device 9 (the default). 'When the prompt
reappears it displays the error message of the

default drive:
catalog - collect ° concat - copy dclear
dclose directory dload dopen . dsave B> 00, OK,O(),OO
dverify header load open rename .
run save . scratch verify
Twin Cities 128 Page 05 Issue # 32

If an error had oécurred on device 10, it can
also be displayed by simply changing to drive C,
and reading the error message.

Besides providing a new command prompt and
programmable default drive, OS Plus also
reprograms the HELP key so it redisplays the last
command line. This feature too is found on MS-DOS
systems (i.e., the F3 key). Now if the previous
command is no longer visible on the screen, you
can display it again with a single key stroke,
edit it if you like, and re-execute it.

Lastly, OS Plus makes it easier to indent a
line of Basic'text. As most of you know, text can
‘be indented by typing a line number, a shifted
character, and then spacing or tabbing over to
where you wish the text to begin. After you press
the return key, the text remains indented when
it’s listed. However, this procedure requires an
extra key stroke, and if you edit the line, you
have to remember to retype the shifted character
again, otherwise you will loose the indentation.
OS Plus eliminates the need for a shifted
character or colon,

Sound like a lot of programming? Well
surprisingly, it’s all accomplished in less than
256 bytes! As you will see, we will be relying:
heavily on the ROM routines to do most of the work
for us.

PROGRAMMING OS PLUS

Except for a small patch to the CHRGOT routine
at $0386, OS Plus is designed to be wedged into
the operating system through the IMAIN vector at
$0302. Normally this vector points to the MAIN
routine in ROM ($4DC6) which is executed right
after READY is displayed. MAIN’s task is to
accept a command line, and determine if it is to
be executed immediately, or stored in memory as a
line of BASIC text. The BASIC loader (se¢ program
listing) places OS Plus in the RS232 output
buffer, initializes a few free bytes at the top of
page zero, and then activates OS Plus by changing
IMAIN to point to its starting address of $0D00.
Once OS Plus is finished executing, it returns
control back to the MAIN routine in ROM. The
purpose of the CHRGOT patch is to intercept the
drive related BASIC commands when in direct mode,
and have them use the default drive when no device
number was specified (or when the cassette was
chosen).

Now, let’s look at how a drive prompt can be
generated. OS Plus begins by reading $BE and
seeing if it contains a valid drive number. If
not, the previous drive is used. It also makes

“sure the output device is not on the serial bus;

otherwise, a conflict may occur when we attempt to
read and display the drive’s error message.
lda $90 ;check status of current
’ ;device
bmi . previous ;if not present then use
;previous drive
lda Sbe ;read default. drive

devchk cmp #508 ;is it 8 or higher?

bcc previous ;no
cmp #S1f ;is it less than 317
bce outchk ;yes, it’s a legal drive #

previous lda $fe
outchk ldx $9a

;8et previous drive

;8et current output device

cpx #S04 ;is it on serial bus?
bec readds ;no, read error channel
jmp skipmsg ;don’t display prompt

Once we have a valid drive number, the error
channel of the drive can now be read and stored as
DS$. If the device is not present, then the ROM
routine aborts and we trap the condition the next
time around when the status is read.

readds sta $011c ;set current drive

jsr $9243 ;setup to read new ds$
lda #Sbe ;set lo byte address

sta S04 -

lda #8879 ;set hi byte address

jsr $£980 ;finish setup then jsrfar

;879bc - read/save ds$

We have read the error channel and know the
drive is present, so now we can display the drive

letter and error message.

update lda $011c
: sta Sbe ;update default drive
sta Sfe ;update previous drive

;fetch current drive

display = clc

adc #$39 ;change device number to
;a letter

sta drive ;store it

jsr $9281 ;display prompt

byt $91 .;cursor-up (overwrite
;"ready.")

drive .byt $41,$3e,520 ;"a> " ;
.byt $00 ;end-of-string terminator
jsr $55e5 ;display ds$ - error

;message
jsr $5598 ;carriage return

skipmsg

Twin Cities 128

Page 06

Issue # 32

S LT YRS 0

e e i

ST

Before we begin writing the code to have the
HELP key repeat the last command line, let us ,
briefly look at how to reprogram the HELP and RUN
keys using BASIC. BASIC 7.0 provides us with the
KEY command to reprogram any of the eight function
keys F1 through F8. But it does not allow us to
reprogram the HELP or RUN keys - or does it? To
find out, let us examine the first few lines of
the KEY routine: -

60el jsr 887f4 ;read the key number
60e4 dex ;ddcrement the key number
o sby 1
- 6085 cpx #808 ;is the key number between
) oo . } ;0 and 77
L ".80e7 - bec S60ec - ;yes ' . ,
~60e8 - . jmp §7d28 - ;display "illegal quantity"
;error -)

60ec~6107" ;program ﬂm key

The purpose of these lines is to ensure the

' key is one of the eight function keys. If it is,
' the key is programmed, otherwise, an error message

d. Now, if these lines are by-passed,
t.hen thc kﬂy number is not checkedand we can

--program the HELP and RUN keys too! Like the KEY

command, we will have to confine our strings to a
maximum of 128 characters, and the key number must
be limited to a range from 0 to 9. The RUN key is

assigned a key number of 8, and the HELP key is

assigned 9. For example, to reprogram the HELP
key to display the drive error message, we simply
typﬁ: - . . :

" Now, that we know the Help key can be
reprogrammed using Basic, let us see how to do it
using machine language. The kernel routine which -
programs a function key, resides at $CCA2 via

- vector $FF65 (PFKEY). So that the previous -
command line will be displayed each time the HELP

key is pressed, we will have to program the key
each time a command line is entered. All that is

- required to use PFKEY i is to fill the CPU registers

with the information about the key we want to
program (i.., the key number, strmg length and
location). The command string is always stored in
the input buffer at $0200 pointed to by $3D/$3E
(TXTPTR). 'ﬂw following code programs the HELP
key. -

;initialize .y register to
;$£f before entering

;begin by finding length of
;comnand string

findlen iny ;next. character in command

PR : " istring
lda ($3d),y ‘;fetch character from input
. ;buffer
.bne findlen ;1f not end-of-line, keep
) ; searching
sty Sfd ");save length of string
bpl keynum ;if length less than 128

;characters, program key
null ldy #800 ;string too long, program
;key with null string

keynum . = ldx #80a - ;help key number+l

1da #53d ;address of string pointer
jsr SE££65 ;program the key {(pfkey)
bes null ;if out of memory, re-

;program key with null string

Nofe: After returning from PFKEY the carry
status is set if the string was too large to fit

* in memory. If this occurs, BASIC normally

displays an error message. We do not want to
display an error message here though, since it may
be a source of confusion. Instead, if the text is

too long to fit in memory, we will just reprog;ram
the HELP key with a null string,

The next feature we will program is the one

. which will maintain the spaces between the line -

number and the beginning of the text (i.e.,
indentation). Before we can write the code, we

first need to find out why these spaces are not
preserved. The problem can be found in the LINGET
routine at $50A0. This routine uses the CHRGET
subroutine to read in a line number a digit at a

time, and convert it into two hexadecimal numbers.
Since CHRGET skips over spaces, any trailing

spaces which happen to follow the line number are

ignored. LINGET ends when it finds the first
~nonvnummcchm'acwtwhehmnouspacc The

locanonoflhﬁmmwhaldby the text
pointer (TXTPTR) in'$3D/$3E. Next, the CRNCH

“routine at $430A is called to tokenize the text.

Its first duty is to save the value of TXTPTR so

it knows were the BASIC text begins. But this
pointer does not point to the first space after

the line number any more; instead it points to the -

~ first non-space character following the line

number! - -

' Twin Cities 128

Page' 07

Issue # 32

continue

jsr $0380

ldx $3d

stx Sff
jsr S$50a0

clc
lda Sff
adc $0a

cmp $3d
sta $S3d

beq continue
inc $3d

An easy way to solve the problem is move
TXTPTR back by using location $0A which holds the
number of digits in the line number. The
following code accomplishes the task.

;skip any leading spaces, .
;get first digit

;get pointer to first digit

;0f line number

;save text pointer

;linget - change line number

;to hex and store

;retrieve pointer

;add number of digits in
;line number

;any spaces after line
;number?

;save text poinﬁer

;no spaces, then continue

;skip a space

Now, let’s look at how to change the default

drive.

immed

ldy $fd

dey

bne iﬁmed
lda (S3d),y
sec

sbc #S39
Jjmp devchk

Jjmp $4dd8

The code below is fairly straight forward:

;fetch length of command
;string

;one character in string?
;no

;get first character

;change letter to number

;check if valid, ‘and change

;default drive

;return to the main routine

;in rom

The last remaining item is to write the CHRGOT

Now when CHRGOT is entered, it gets a byte then

passes control to the patch below:

;save contents of .a

;register

Jump jmp patch

patch sta $fb
lda $7£
bpl direct

;check for direct mode
:if direct mode, then
;execute patch

These next few lines restore CHRGOT so the

sta S££03
ldy #8502

copy2

lda $4286,y

sta $038d,y

dey
bpl

Jmp

copy2

50386

patch is not executed when a program is running.

;bank 14

;set to copy 3 bytes

; (sta S££03)

;fetch a byte

;copy it

;next byte

;if more bytes, continue
;copying

;execute a normal chrgot

At this point we know the computer is

operating in direct mode, so we need to check if a

Basioc command has been issued which uses a device

number.

This is done by checking the return

address on the stack, and seeing where the calling

routine originated.

direct pla

tay
pla

pha

;8et lo byte add;ess from
;8tack

;save it

;get hi byte address from
;stack

;put it back

These next lines look to see if a SA3E7 return

address was on the stack.

If so, we know that a

BASIC 7.0 command is being executed.

T T T N T R I - o T U o ey S

patch that will intercept the BASIC drive cpy #Se7 ;is lo byte address Se7?
commands. The following code is placed at the bne basic2 ;no o
beginning of OS Plus to change CHRGOT so it cmp #$a3 ;is hi byte address Sa3?
executes our patch whenever the computer is in bne basic2 ;no
direct mode. ' lda Sbe ;fetch default drive
sta S011c ;set as current device
ldy #S02 ;set to copy 3 bytes bne exit ;done - always exit
; (jmp patch)
copy lda jump,y ;£etch a byte It is not a BASIC 7.0 command so let’s see if
sta $038d,y ;copy it it is a BASIC 2.0 command by checking for a $91E5
dey ;next byte return address on the stack.
bpl copy ;if more bytes, continue
;copying basic2 cpy #Se5 ;is lo byte address S$Se5?
bne exit ;no
Twin Cities 128 Page 08" Issue # 32

i;

T S Y

<

cmp #8591 ;is hi byte address $91?
bne exit ;no

cpx #S01 ;is device the cassette?
bne exit ;no

ldx Sbe ;fetch default drive
stx Sba ;set as current device

These last lines restore the stack and register

contents, and then resume executing CHRGOT

exit tya ;retrieve lo byte address
pha ;put it back on stack
ldy #S$00 ;restore contents of
4 register
lda $fb ;restore contents of
;.a register
sta S£f03 ;bank 14
Jjmp $0390 ;continue with chrgot

Well, that is it! The complete routine with
all the features programmed is listed below. It
is pretty much as we described it, except for some
additional code to duplicate a portion of the MAIN
routine and a little more to disable the prompt
after a Basic program line is entered.

Type in OS Plus using "TC-128 Checksum" which
can be found elsewhere in this or a previous
issue. The checksum program occupies the same
position in memory as OS Plus, so be sure to save
OS Plus to disk before running it. Once you have
a working copy, you might want to include it as
part of your normal boot-up sequence. After you
begin using OS Plus you may find it to be one
utility you will not want to be without.

Questions or comments? You can reach me on
Q-LINK under the name "MIKEALL" or on GEnie
using "M.GILSDORF1". Until then...Easy DOS it!

See the next pages for the "os plus.v1.0.src"
and "os plus.v1.0.bas"

RECIPE 128

Software review continued from page 4

Like I said I couldn’t get the print function
to work, it may have something to do with my
configuration. The Servant, on a ROM chip, is
present on my computer. I tried to copy all the
disks to a single 1581 disk but you cannot do
that. You must use the 1541 disks supplied or a *

copy.

‘; .

In one way this is good, if you only want the
recipe for Soybean Sandwich Filling, you don’t
have to wait for all the recipes to load. It
would be nice to have the program on a 1581 disk
though. It would also be great to be able to
cursor up to the recipe you want and have it
displayed on the screen with a <RETURN>.

Another problem is that the program is device
dependant which means that it must be in drive 8.
Why do programmers make their programs run only
from device 8 (1541s) or not recognize the fact
that the people that buy the most hardware are
also the people that buy the most software. Sorry,
if it does not work properly with our extra
hardware or firmware, it will not work properly
with the readers’ equipment either.

The seventeen page, unnumbered, dot matrix
printed manual says if you have filled up
one of your recipe disks the authors will supply
an additional disk for that category for $3.00.
Another minus. »

I give this program a "C-". The recipes and
the concept are good but the form and packaging
needs work.

Buddy and Jo Anne Cowden

NCL Software 306 Highway 60 East
Dayton, TN 37321

$18.00 plus $1.50 S&H

EASYLIST
A Software review? - Staff

Easylist by Daniel Lee re-defines your
function keys with this program.

F1, gets the directory of disk in drive 8

F2, loads the disk directory into memory

F3, prints the directory

F4, clears the screen

F5, lists a Basic program in memory

F6, sends a RUN command with a <RETURN>
F7, is "DLOAD"

F8 is "DSAVE".

This a nice little program, but not worth any
money IMHO. It would make a nice type in as the
program is short, only 12 lines. For the person
just starting to use their computer this would
make a good addition to the rest of the utilities.

" We believe the price is'$3 for the disk and one*

sheet of instructions. Daniel Lee,
1031-B Scott Street, San Francisco, CA 94115

Twin Cities 128

Page 09

Issue # 32

PROGRAM

kc
hd
lg
eo
le
Jf
ge
o
hh
gm
gd
Jf
df
mj
Jjk
f1
bh
nb
cc
of
dm
1d
cm
cJ
hf
cb
&gp
cm
hf
ek
fa
ho
df
op
gm
nk
eg
Jjk

1m
dm
ci
me

Jjk
if

gm’

ok
ic
cl
bf
be
ek
oi

Jjm

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1480
1500
1510
1520

NAME: OS PLUS.V1.0.SRC

¥ Y Je v e de Fe de A e Yo I Fe P Ve Ve P Ve Y e P Ve Fe de I de e e o e e ek e e e e e e e e o
FRkIHRRRIRRR 05 plus V1.0 RRRRRRRRRRR O
Fe 9o e e e e Yo Je de e dede e e e de e e de o
L322 22 3] by michael gilsdorf Fededededededdokod
wHkkFR%® copyright (c) feb 1992 wiwkiiiiwiy
whddkkkk parsec inc PO box 111 deieidicdidicd

Feddkkkk salem ma 01970-0111 usa ¥F¥dwivdidorik

Ve e v v e v v v P v v e A 3 o A 3 o e Fe v o o de v e v o e o o Ve e e e e db e ke e e ke ok

; os plus is designed to be patched into the main ($0302)
; and chrgot ($0386) vectors. c128 mode only

; features:

; (1) allows default drive to be changed for all basic commands

; (2) displayd drive prompt and error message

; (3) help key displays last command

; (4) supports indentation of text in basic lines

copy

devchk

’

chkmore
previous

H

outchk

immed

newcmd

= $0d00 ;assemble in rs232 output buffer, bank 0
1dy #$02 ;set to copy 3 bytes (jmp patch)

lda jump,y ;fetch a byte

sta $038d,y ;copy it

dey ;next byte

bpl copy ;if more bytes, continue copying

sty S3c ; (curlin+l)

lda Sfec ;was a basic program line just entered"?
bpl skipmsg ;¥es, don’t display drive prompt

lda $90 ;check status of current device

bmi previous ;if device not present, use previous drive
lda Sbe ;default device no.

cmp #3508 ;is it 8 or higher"?

bec chkmore ;no

cmp #$1f ;is it less than 31"?

becc outchk ;yes, it’s a valid drive no.

tya

bpl immed ;illegal drive was entered

lda Sfe ;previous device no.

ldx $9a ;current output device no.

cpx #3804 ;is it on serial bus"?

bcc readds ;no

tya

bmi skipmsg ;don’t display prompt

jmp $4dd9 ;back to main - execute cmd

1dy $fd ;length of command line

;] [
‘dey : ;one character in string"?

bne immed) ;ﬁo

Twin Cities 128 Page 10

Issue # 32

PROGRAM NAME: OS PLUS.V1.0.SRC

(continued from previous page)

hi
la
ga
cd
gd
bp
an
ib
bm
pm
Jp
mf
oo
nd
ih
nb
ko
an
de
PJ
ji
fa
dl
cb
nk
kg
ee
db
fn
io
he
lec
ie
ig
om
dc
me
pl
ge
mc
In
mn
cf
fd
ia
bn
nl
£j
11
bj
da
la
ef

1530
1540
1550
1560

1570 ;

1580
1590

1600 ;

1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

’

cmdchk
noready

H

readds

update

’

dislay

drive

skipmsg

indent

setmsg

lda ($3d),y ;get first character

sec

sbc #$39 ;change letter to number

Jjmp devchk ;check if valid - change default drive
bne newcmd ;check for drive change command

jmp S4dba ;back to main - no "ready." prompt

sta S01llc ;set current drive

sty Sfd ;save .y flag

jsr $9243 :setup to read new ds$

lda #S$bc ;set lo byte address

sta $04

lda #879 ;set hi byte address

jsr $£980 ;finish setup, jsrfar $79bc - read/save ds$
ldy $fd ;was a drive change command issued"?

bmi update ;no

jsr S4d2a ;display: cr '"ready. cr

lda $011c ; fetch current drive

sta Sbe ;update default drive

sta Sfe ;update previous drive

cle

adc #8539 ;change device no. to letter

sta drive ;store it

jsr $9281 ; (bprimm) display prompt

.byt $91 ;"" cursor-up to overwrite "ready."

.byt $41,$3e,820 ;"a> "

.byt $00 ;end-of-string terminator

jsr $55e5 ;display ds$ - error message

jsr $5598 ;cr

jsr $4£93 ;(inlin) input line of text

jsr $7923 ;save.x=txtptr($3d)=Sff save.y=txtptr+1=$01
jsr $0380 ; (chrget) skip leading spaces, get 1lst char
pha:php ;save .a and .p

bcs setmsg ;1st char not a number - not a program line
ldx $3d ;get pointer to 1lst digit of line number
stx Sff ;save text pointer

jsr $50a0 ; (linget)change line # to hex,rtn.x=0.y=0
clc

lda Sff ;retrieve pointer

adc $0a ;add number of digits in line number

cmp $3d ;any spaces after line number'?

sta $3d ;save text pointer

beq setmsg ;no spaces, then continue

inc $3d ;skip a space

stx Sfc ;set message display flag

Twin Cities 128

Issue

#

32

PROGRAM NAME: OS PLUS.V1.0.SRC

(continued from previous page)

ie
fp
hh
cm
be
11
11
dlL
ck
cn
jl

In
of
bb
nj
of
jb
lh
pp
ie
bh
cd
bk
kj
gi
88
ae
8J
gi
8p
bg
be
hg
jd
ik
&p
jf
ea
Pm
ca
Jp
de
ih
ei
ao
co
op
nn
cl
dm
dg
ep
em

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

2170
2180
2190
2200
2210
2220
2230
2240

2250

2260
2270
2280
2290
2300

2310.

2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580

findlen

null
keynum

Jump
patch

copy2

direct

basic2

exit

dey
iny
lda
bne
sty
bpl
1dy
ldx
lda
jsr

bes

plp:

Jmp

Jmp
sta
lda
bpl

sta
1dy
lda
sta
dey
bpl
Jmp

pia:
pla:

cpy
bne
cmp
bne
lda
sta
bne
cpy
bne
cmp
bne
cpx
bne
ldx

stx

tya:

ldy
lda
sta

Jmp

.end

(83d),y
findlen
Sfd
keynum
#500
#50a
#33d
SE£65
null

pla
cmdchk
S4de5

patch
Sfb
S7f

direct

S££03
#502
$4286,y
$038d,y

copy2-
50386

tay
pha
#S5e7
basic2
#Sa3
basic2
Sbe
S011c
exit
#Se5
exit
#591
exit
#501
exit
Sbe
Sba
pha
#500
Sfb
S££03
$0390

;set to Sff

;search for end of command line

;save length of command string

;if length < 128 chars, program key

;string too long so null it
;help key number+l
;address of string pointer

;program the key (pfkey)

;if no memory,reprogram key with null

string

;retrieve .a and .p

;not a basic program line

;bagk to main - enper/delete basic line

;save .a

s,direct mode"?

iyes

;bank 14

;set to.copy 3 bytes (sta S£f03)

;fetch g byte
;copy it
;next byte

;if more bytes, continue copying

;chrgbt

:get. lo byte address from stack
;get hi byte address from stack

;is lo byte address Se7"?
;no
;is hi byte address S$Sa3"?
;no

:fetch default drive

:set default drive for basic 7.0

;jump always

;is lo byte address Se5"?
;no

;is hi byte address $91"7?
;no

;is device the cassette'?
;no

;fetch default drive

;set default drive for basi
:restore stack

;restore .y

;restore .a

;bank 14

;continue with chrgot

c

2.

Twin Cities 128

Page 12

Issue # 32

PROGRAM NAME: OS PLUS.V1.0.BAS

mo 100
en 110
kh 120
kj 130

B &

150
cc 160

ka 170

di 180

co 190

rem
rem
rem

rem

os plus v1.0

by michael gilsdorf
copyright (c) feb 92

parsec inc pob 111 salem ma

01870-0111

140 :

d=peek(186): if d<8 then d=8

for a=3328 to 3580: read b: poke a,b:

c=ctb: next

if ¢<>29413 then priht "error in

data
poke

statements": end
190,d: poke 254,d: poke 252,255

: rem initialize

poke

770,0: poke 771,13: rem.

activate os plus

Dr. OcTAL'S"
SHARP OPERATING TIPS

Tip #0001

‘Gateway & Switcher

From:JBEE '

' One of the really neat things about gateWay
(from CMD) is the task switcher that you can use
under Geos. This is especially handy when using
geoPaint to paste a image from one geoPaint to
another OR even the same picture!

Boot up Geos, run geoPaint, load your picture,
and hit the Escape key (saving geoPaint and the
document). Call this copy #01. Hit the Escape
key again saving the second copy. Call this copy
#02. Hit the Escape again. Now clip an area from

bj 200 print “"os plus v1.0 activated” geoPaint - Copy #01. The area is now saved to

fc 210 end disk as a "scrap”. Hit escape and enter Copy#02

bg 220 : , ‘ and post the scrap in a new position or over

8j 230 data 160, 2,185,180, 13,153,141, 3 something else. This makes lining up graphics for

fl 240 data 136, 16,247,132, 60,165,252, 16 things like disk labels a snap! Keep pasting from

md 250 data 100,185,144, 48, 13,165,190,201 Copy #01 to Copy #02. This trick works because

gi 260 data 8,144, 4,201, 31,144, 5,152 Geos saves only one paint scrap to a disk,

ol 270 data 16, 11,165,254,166,154,224, 4 replacing previously saved scraps with newer -ones

ne 280 data 144, 24,152, 48, 72, 76,217, 77 whenever you clip from a geoPaint. A note of

1d 290 data 164,253,136,208,248,177, 61, 56 caution: try not to scroll too much and close both

0j 300 data 233, 57, 76, 23, 13,208,241, 76 copies starting with Copy #02.

ap 310 data 186, 77,141, 28, 1,132,253, 32

ef 320 data - 67,146,169,188,133, 4,169,121

oc 330 data 32,128,249,164,253, 48, 3, 32 Tip #0002

gk 340 data 42,.77,173; 28, 1,133,190,133 Handyscanner

fa 350 data 254, 24,105, 57,141,107, 13, 32 From:J.Robbins

ah 360 data 129,146,145, 68, 62, 32, 0, 32 Use a flashlight over the green plastic window

bm 370 data 229, 85, 32,152, 85, 32,147, 79 " of the Handyscanner 64 on those dark background

jg 380 data -32, 35,121, 32,128, 3, 72, 8 pictures with the first position set on dither,

jp 380 data 176, 20,166, 61,134,255, 32,160 ; between a 200 and 250% capture, bright arrow lined

dh 400 data 80, 24,165,255,101, 10,197, 61 up with the solid arrow, and contrast lined up

ik 410 data 133, 61,240, 2,230, 61,134,252 with the large end of the arrow. Then the dark

jm 420 data 136,200,177, 61,208,251,132,253 background pictures transfer almost exactly the

ha 430 data 16, 2,160, 0,162, 10,169, 61 same as the Macpaints and Gifs do to geoPaint

bi 440 data 32,101,255,176,245, 40,104,176 . (except the color of course). He reports a blue

ca 450 data 140, 76,229, 77. 76,183, 13,133 filter gives the best results. After seeing some

gp 460 deta 251,165,127, 16, 17,141, 3,255 of his awesome geoPaints (digital captures) we

ne 470 data 160, 2,185,134, 66,153,141, 3 agree! '

bc 480 data 136, 16,247, 76,134, 3,104,168 ' '

bl 490 data 104, 72,182,231,208, 11,201,163

cc 500 data 208, :7,165,180,141, 28, 1,208 Tip #0003 o

op 510 data 16,192,228,208, 12,201,145,208 . C-1511

‘df 520 data 8,224, . 1,208, 4,166,180,134 From:Mike Minnig

mk 530 data 186,152, 72,180, 0,165,251,141 . If you have a C-128D and other disk drives you

18 540 data 3,255, 76,344, 3 must have been frustrated already by programs that

R ' ~will not boot from any other device number except
#8 or by Geos that will not recognize more than
three disk drives or performs a swap with one of
(continued on page 25)
Twin Cities 128 Page 13 Issue # 32

R |

INTERNAL FUNCTION RAM

By Richard Curcio

LF.R. REVISITED V2.1

My Internal Function Ram project as it
appeared in TC128 #29 has problems. This project
allowed the C128 to have a Static Ram in the empty
sdcket reserved for a function ROM or Eprom. The
circuit included battery-backup so the Static Ram
could retain its contents while the computer was
turned off. '

I offer no excuses for not detecting the
problems sooner. Instead, I offer a fixed and
(serendipitously) more versatile design, which
will, if you already have a ROM in the empty
socket, allow selection of it or the Static Ram,

“ via a switch or software. The program for the

original project has been revised as well.

I apologize for any frustrations the earlier
project may have caused.

OBSTACLES
A detailed recounting of how the original
design was supposed to work and why I thought that

.all was well -- in other words, what I had

overlooked -- would take up too much space. The
older circuit won’t harm the C128 and will perform
as described -- with limitations. If I took the

time to explain those limitations, I'm sure most
readers would agree that they’re unacceptable. So
let’s just get right to the new circuit.

The Bank 4-7 configurations of the C128 select
internal function ROM. In these standard banks a
ROM or Eprom in socket U36 occupies $8000 to $ffff
with a 4K gap at $d000 for 1/O. You can’t just
plug a Static Ram (Sram) into the empty socket
because 1) R/W is not present on the function ROM
socket and 2) when the Programmed Logic Array
(PLA) detects a WRite to what is supposed to be a
ROM location, the function ROM enable (called
/FROM in the P.R.G. schematic,) "goes away" and
system Ram is instead enabled and written. Since
the PLA won’t permit writing to a ROM or anything
else in the U36 socket, the new design bypasses
the PLA. This is not as difficult as one might
expect.

Two signals from the MMU called MSO and MS1
tell the PLA to enable system ROM, external or.

internal ROM, or system Ram. When MSO =0 and MS1

=1 internal ROM is selected. The PLA considers a
number of other signals in determining which
enable to generate. When R/W is low, the PLA
disregards the state of MS0/1. The new circuitry
removes R/W from the decision and substitutes the
"1" period of the two-speed system clock, which is
when the processor has control of the address and
data busses. The result is a nice, clean enable of
the proper duration.

THE CIRCUIT .

Figure 1 shows the new design in a mix of
mechanical and schematic representation. The
static Ram is inserted in the 128’s empty ROM
socket with its pins 1, 20, 27 and 28 bent out. A
74HC138 decoder receives MS0, MS1 and the 2MHz
clock on its inputs and its Y3 output enables the
Sram. This decoder MUST be an "HC part if

" battery-backup is included. The Sram and the

"HC138 are powered by the computer’s +5 volts OR
the battery. If you choose to omit the battery and

.diodes, insert the Sram’s pin 28 into the socket

and connect pin 16 of the '"HC138 to +5 volts.

The Sram’s Write Enable input /WE connects to
FR/W, a Read/Write internal to the 128. (It’s
called R/WA in the SAMs schematics.) It does not:
appear on the expansion connector, so an REU or
other external device cannot pull it low and alter
the Sram.(An REU-initiated WRite to what is
supposed to be a ROM bank will simply
"fall-through" to underlying system Ram, leaving
the Sram untouched.) In the low-profile 128, FR/W
is available at pin 1 of U57, inside the video
box, which is quite close to the empty ROM socket.
In the 128D, this signal is at pin 3 of U61, near
the left side of the main circuit board and also
close to the empty socket.

The nearest point to get the 2MHz clock on the
low-profile 128 is at pin 4 of U22, the 80 column
controller, which is also inside the video box. On
the ’D, different versions of this chip have 2MHz
on different pins. For certainty, obtain this
signal at pin 1 of the 8502 microprocessor, U6.
MSO0 and MS1 are at pins 18 and 17 respectively of
the PLA, U11, which is located at center front of
both the low-profile and ’D. (Although they are
rare, there are ’Ds in existence that use a
low-profile mother-board. For a positive
determination, count the number of dynamic Rams at
the front left of the board. Sixteen 16-pin ICs
indicates a low-profile board, while four 18-pin
chips means you have a true ’D.) :

Twin Cities 128

Page 14

Issue # 32

it et iy

i ey R g K e e b a

s T o S

T e aan i Thlie

Because the pih-out of the Sram is slightly

different from that of a ROM or Eprom, pin 1 must

be bent out and connected to address bit A14. On
my flat 128 I found A14 at the feed-through
immediately to the right of the "2" of the
identifier "R32" near U32 and U33. On the D, A14
is at pin 27 of ROMs U32 and U34 or pin 18 of U42
(74L.5244).

The 32K x8 static Ram could be a 62256, 43256
or 58256. For maximum battery life it should be a
low-power device (-L or -LP suffix,) having a
"standby" current consumption of 100 microAmps.
Regular power Srams have a standby current of 2
milliAmps, which is still pretty miniscule. |

. I installed the "HC138 in my low-profile 128

by sticking it to the main board upside-down using
double-stick foam tape. Connections were made by
wire wrapping directly to the pins. Lithium "co
batteries are available with solder-tabs, and

these can have wires soldered to them. A holder
for tab-less coin batteries can be constructed

with two rectangular pieces of un-etched printed
circuit board; solder wires to the bare copper,

put the battery in between the two pieces and hold
together with rubber bands and wrap the sandwich
with paper and more rubber bands. (Of course the
polarity of the battery is important, but the

diodes will prevent reversed polarity from -

damaging the Sram, "HC138 or the computer itself.)

This can then be tucked behind the video box or
someplace where it won’t flop around. In the D,

- - there’s enough room for a holder for two AA cells.

These won’t last as long as lithium, but they
should last their shelf life -- at least a few
years.

" Note that the Sram in the U36 socket still
receives the PLA-generated /FROM on its Output
Enable (/OE) pin. Normally the PLA enables each
ROM via /QE. A write will therefore disable the
Sram output and that’s fine; for the Sram, /OE is
"don’t care” when /WE =0. (Certain other memory
ICs require that /OE =1 when /WE =0.)

s

OPTIONS :
~ When the optional Write Protect switch within
the dotted lines in figure 1 is open, FR/W can’t

reach the Sram. Use this to prevent agcidental ~ =
writes to the Sram or to fully emulat‘e"‘an Epr'om. o

The 10k resistor on the "HC138 ’B mput
insures that the proper combination of inputs
causes output Y3 to go low, selecting the Sram. If

’B is made low by grounding it with the optional
Select switch, then another Sram or an Eprom could
be selected by connecting its /CS to Y1 (pin 12).
One would think that, since the 128 has only one *
empty socket, this idea is mere theory. There are
‘ways to obtain the room for a second 28-pin IC,

but different methods are needed for the

low-profile and 128D. These will covered later on.

TESTING/SOFI‘WARE

After installing the circuit, use the Machine
Language Monitor "m" command to display the first
page of the IFR: m 48000 <return>. You should see
random values. Cursor up to the m command and hit
return. If any of the previously dlsplayed values
charige, bank 4 is empty -- the Sram isn’t getting
enabled. Turn off your computer and find your
mistake. If the random bytes remain constant, fill
that first page w1th some value, say $55 or $aa:

f 48000 480ff 55

Now use the m command to confirm that the fill
was successful. If it was, turn off the computer,
wait a few seconds, then power up and confirm that
the battery-backed Sram retained the fill value.

Before your Internal Function Ram can be used
from Basic, it must be initialized. Use the mim
Transfer command to copy the routines in the last

. page of system ROM to the same locations in Bank

4;
t 605 £ff44 46605

Cursor up and change the "t" to a "c¢"
(Compare) and hit return. The mim should print
nothing, indicating that all the locations match.
Now transfer the system vectors to the last six
bytes of Bank 4:

¢ ffffa FEECF 4fffa

Ignore the "?" that appears upon completion.
You can'now safely access your IFR with Peek,
Poke, BLOAD, BSAVE and SYS. (The mim safely
accessed bank 4 before the initialization because
it disables interrupts during ‘m", "f", "t"and = .
"c".) Bear in mind, however, Poke and BLOAD will
also alter underlying system Ram (Ram 0 when Bank
4). Note also that the standard IFR Banks 4-7-and
12 include I/O in the $4000-dfff range. -

‘Program 1 is the loader for a Mover which will *
transfer data to the IFR without altering the

Twin Cities 128

Page 15

Issue # 32

system Ram under it. It is designed to reside and
execute in the IFR. The ml can be relocated to a
different start address by changing the variable .
SA in line 200. SA must be between 32768 and
48924. Access the routine with ‘

bank 12: sys sa, host bank, direction,,, host
start, host end, ifr start

You MUST use Bank 12, which includes the
Kernal and I/O. The host bank is system memory in
the standard Bank configurations; 0-3, 14 and 15.
Banks 4-13 are not allowed. This restriction can
be bypassed. Direction is zero to move data TO
internal function Ram and greater than zero to
recall data FROM that Ram. The three commas must
be present. Host start and end are self
explanatory, while IFR start must be at least
32768. No address can be greater than 65279, as
that would affect the MMU registers at $ff00-$ff04
and the important routines and vectors in page
$ff. As the routine moves data, it checks its
pointers and will halt the move and set the Carry
bit if either the source or destination reaches
page $ff. Carry is also set if either pointer
"wraps" to zero page -- which theoretically can’t
happen, but one never knows. Use the RREG function
to test the Carry from Basic. The routine does not
detect if an IFR destination will write over the
Mover itself.

The Mover calls the system INDSTA and INDFET
routines at their Ram 0 locations, instead of
through the Kernal jump table. Calling these
routines via the jump table is time consuming,
because the bank number is converted to a
configuration value for each byte. To speed things
up, the Mover performs the host bank to
configuration conversion just once. Also, to
access $d000-dfff of the Sram a modified Bank 4
must be used because the standard Banks include
I/0 in that range.

Because writing to the Sram also writes system
Ram, the Mover performs two loads and stores for
each byte moved to the IFR. First the byte in Ram
0 "under" the IFR destination is read and stored
on the stack. Then the host source byte is written
to the IFR, changing Ram 0 in the process. The-
byte on the stack is then restored to Ram 0. In
this way, we do not lose the use of the underlying
system Ram. This is why Banks 4-13 are not allowed
as "host." If the "from" portion of the routine
were to move data to the IFR as host, the byte
under the IFR destination would be lost. The "to"

operation would work properly, but this is a

"dumb" mover; if the source and destination are in
the same bank, and they overlap, the move becomes
a fill. If you really need to move data around

inside the IFR, and don’t care about the
under-bytes, you may use Banks 4-13 as host by
calling the routine at sa+27.

The "to" portion of the Mover assumes that the
MMU Pre-Configuration Register at $d501 (PCRA)
contains its default value, selecting the Bank 0
configuration when any value is stored in the
corresponding Load Configuration Register at $ff01
(LCRA).

I must emphasize that writing to Bank 4 or the
other internal function ROM configurations enables
the Static Ram and system Ram simultaneously, a
very different situation than what normally occurs
when attempting to write to ROM. Any routines you
place in your IFR should not use the short-cut
method of writing to an internal function ROM
region to accomplish a write of system Ram that is
not at the moment visible. Use INDSTA. However, if
the optional Write Protect switch is installed and
opened, then the Sram is as unwriteable as a ROM
or Eprom

128D PLUG-IN BOARD

In a 128D, to have a choice of Sram or Eprom
in Bank 4, a board can be constructed to plug into
the empty ROM socket. As shown in figure 2, socket
1is intended to hold an Eprom. This should be a
wire-wrap socket with "2-level" length pins. These
are long enough to allow the plug-in board to
clear the main board components that will be under
it; 3-level length pins are acceptable, but longer
than necessary and you may have trouble keeping
them properly aligned. The perforated board should
have "pad-per-hole" copper plating so that the
socket can be firmly soldered to it. Pin 20 of
socket 1 is cut close to the board so it does not
make contact with the corresponding receptacle of
the main board U36 socket. The two other sockets
could be solder "tail" or wire-wrap with the pins
cut as short as possible

Pins 28 and 1 of socket 1 bring +35 volts to
the plug-in board, while pin 14 supplies ground.
Each pin of socket 1 is wired to the same pin of
socket 2 EXCEPT for pins 1, 20, 27 and 28. Pin 27
of socket 1 connects to pin 1 of socket 2 (address
bit A14). Pin 27 of socket 2 is the Sram Write

Twin Cities 128

Page 16

Issue # 32

Enable /WE and it gets wired to FR/W, either
directly or through the optional switch. Both
28-pin sockets continue to receive /FROM at their
/OE pins 22. Pin 20 of each socket gets wired to
the specified "HC138 outputs. All other signals
from the main board can connect directly to the
plug-in or, better yet, through connectors and
pins so that the whole assembly can be removed
without unsoldering. There’s a large hole in the
front of the 128D chassis which will permit wires
from the plug-in to reach any switches you mount
on the front panel. Other, smaller holes can be
used to secure a double AA battery holder using
twist ties.

To have a second Sram instead of an Eprom, the
simplest method would be to plug it into socket 1
- with its pins 1, 22, 27 and 28 bent out and wired
as shown in figure 1. As illustrated in figure 2,
the plug-in is somewhat roomier than absolutely
necessary, but about as roomy as it ought to get.

LOW-PROFILE STRATEGY

To gain another 28-pin socket in the
low-profile 128 you need an Eprom programmer so
that the two 16K ROM:s holding Basic and the
Machine Language Monitor can be combined into one
27256 32K Eprom. One ROM, U33, holds the Basic
interpreter from $4000 to $7fff (call it baslo).
“The other ROM, U34, holds the rest of Basic and
the MLM (bashi, $8000 to $bfff). The original ROMs
can be copied without removing them from the
system board by saving their contents to disk:

bsave "baslo", b15, p16384 to p32768 (end +1)
bsave "bashi", b15, p32768 to p49152

- Burn baslo into the lower 16K (0-$3fff) of a

200 nanoSecond 27256 and bashi into the upper 16K
($4000-$7fff). It’s a good idea to label each
original ROM with the socket number it came from,
so they can be re-installed correctly, if needed.
(If your Eprommer software works only in C64 mode,
use the 128 mlm to transfer bashi to $4000-7fff in

Ram 0, then BSAVE "BASHI", B0, P16384 TO P32768.

In C64 mode load and burn each file separately.)

Figure 3 shows how I installed this Basic
Eprom in my flat 128. Diode logic enables the -
Eprom’s /OE when baslo (labeled /ROM2 in the
P.R.G. schematic) OR bashi (/ROM3) go low. These
s:gnals are obtained at feed-through holes near
the sockets. (Note that the bashi feed-through is
-partially covered by the U34 socket.)

Additionally, baslo pulls the Eprom’s A14 low,
selecting the lower 16K. The Sram can then be
installed in the U34 socket, and a function ROM or
ready programmed Eprom (if I ever get one,)
plugged into U36 with its pin 20 lifted and wired

to pin 14 of the "HC138. I could mstead install a
second Sram.

The Eprom could also be burned with baslo in
the UPPER 16K, and bashi in the lower, duplicating
the arrangement in 128D Roms. In this case, the
feed-through connections would be reversed, so
that bashi pulls pin 27 low. Incidentally, all 128
system ROMs have large areas containing $f; that
is, unused. Once a ROM has been copied to Eprom,
the ambitious might consider burning their own
routines into these unused areas. Note that the
128 Kernal ROM must be removed from the computer
to copy it because 4K of Z80 start-up code is
"hidden"” while the 128 is in 8502 native mode.

You’ll need to use another 128 or 64.

SOFT SELECT

Since a logic 0 or 1 on input B ofthe 'HC138
allows a choice of pins 12 or 14 as the device
enable, this can be accomplished via software,
instead of a switch. One possibility is to use a
Cassette control line. CASS SENSE, which detects
when play/record on the Datasette is pressed, is
normally an input. It defaults to logic 1 on
reset. Connect this to pin 2 of the 'THC138 and,
when low, it will select whatever is connected to
pin 14 (Y1). The first time you want to change the
state of CASS SENSE you’ll have to change bit 4 of
the data direction register at location 0: Poke 0,

. Peek(0) OR 16 (or the ml equivalent,) does this

without changing the other ddr bits. Thereafter, a

0 on bit 4 of location 1 will select pin 14 of the
"HC138 as the active output, while a 1 will select
pin 12. Use Poke 1, Peek(1) AND 239 for a zero bit

. 4, and Poke 1, Peek(1) OR 16 for a 1. (Note that’

some software, after manipulating location 1, may

~ mnot return it to the state in which it was found.

Be wary of programs that use custom characters in
40 columns or tinker with the VIC’s Color Memory
blocks. All the system routines that alter

location 1 do so in a "considerate” manner.)

'CASS SENSE is available at pin 26 of the 8502
(U6) or finger 6 of the cassette connector. If
CASS SENSE =1 selects Sram as the default Internal
Function device, you could write an auto-starting
program that looks for a certain keypress on start

- up to keep the Sram or select function ROM, if

any. All of this assumes you will not be using

Twin Cities 128

Page 17

_Issue # 32

cassette storage. el 530 data 132,195,133,196,162,195,160,172
hd 540 data 165,207,240, 65,142,170, 2,140

Note that ground on input C of the 'HC138 bo 550 data 185, 2,160, 0,169,255,197,173
selects pins 12 or 14 as active outputs. nb 560 data 240, 41,197,196,240, 37,162, 23
Connecting C instead to another control line (CASS an 570 data 32,162, 2,166,206, 32,175. 2
WRT?) would allow pins 10 and 7 to select two more ph 580 data 56,165,172,229,174,165,173,229
Internal Function devices for a total of four! pb 590 data 175,240, 18,230,172,208, 4,230
This, I think, might be taking things a bit too bl 600 data 173,240, 8,230,195,208, 8,230
far, especially in the cramped quarters of the pg 610 data 196,208, 4, 56, 96, 24, 96,165
flat 128. ji 620 data 207,208,201,240, 19,140,170, 2

' jm 630 data 142,185, 2,162, 23,189,203, 19

PROGRAM NAME: IFR.MOVER.BAS lg 640 data 157, 16, 1,202, 16,247,160, 0
kc 650 data 169,255,197,173,240,221,197,196

hn 100 rem written by richard curcio kg 660 data 240,217, 32, 16, 1, 56,176,185
di 110 rem copyright (c) 1992 ek 670 data 32,221, 2, 32, 15,136,162, 6

cd 120 rem parsec inc po box 111 km 680 data 76,201, 2,141, 1,255,177,195
co 130 rem salem ma 01970-0111 wusa fm 690 data 72,166,206, 32,162, 2,162, 23
mg 140 : fh 700 data 32,175, 2,104,145,195,162, 6
om 150. rem program name ’ifr.mover.bas" jo 710 data 76,201, 2

nk 160 :

ek 170 rem *** jnitialize bank 4 ***

na 180 bankl5:poke53274,0:rem irqgs off PROGRAM NAME: IFR.SRC

pc 190 fori=65285t065348 :rem ff05-ff44

ph 200 bank1l5:x=peek(i):bank4:pokei,x:next db 1000 sys4000

lc 210 fori=65530t065535 :rem fffa-ffff da 1010 ; -

al 220 bankl5:x=peek(i):banké4:pokei,x:next md 1020 ;written by richard curcio

mb 230 bankl5:poke53274,241:rem irqgs on . ed 1030 ;copyright (c) 1992

ck 240 : : no 1040 ;parsec inc po box 111

jd 250 rem *** jinstall ifr mover ¥*¥* fk 1050 ;salem ma 01970-0111 wusa

hg 260 rem !!! destroys ram 0 bytes !!! gd 1060 ;

fd 270 sa=34000:rem relocating bp 1070 ;program name ’ifr.src’

kg 280 ifsa<48923andsa>32768then300 ‘ hh 1080 ;

f1 290 print"bad address!":end . ib 1090 ;

ek 300 ck=0:bankl2 ag 1100 ;power assembler (buddyl28)

kf 310 fori=0to226:readd:pokesati,d:ck=ck+d Jjf 1110 ;

md 320 next km 1120 *= $84d0

kj 330 ifck=29213then350 kj 1130 ;

mc 340 print"error in data!":end be 1140 ;address = 34000 decimal

dp 350 x=sa+192:gosub420 ' In 1150 ;

mm 360 pokesat38,l:pokesa+39,h hk 1160 .bank 12

cc 370 x=sa+203:gosub420 . nb 1170 ;

hi 380 pokesa+166,1:pokesa+l67,h fg 1180 ;some assemblers might not allow a
eo 390 print"ifr mover installed in" dh 1190 ;rom bank. if so, assemble to ram 0
de 400 print"bank 12,"sa"to"sa+226 ad 1200 ;and use mlm to transfer to bank 4
bl 410 end pj 1210 ;

ng 420 h=int(x/256):1=x-h*256:return) jd 1220 .mem

ca 430 data 201, 16,144, 15,168, 15,162,125 an 1230 ;

jl 440 data 160, 40,133, 2,134, 3,132, 4 gm 1240 ;move to/from internal function ram
po 450 data 76,227, 2,201, 14,176 4,201 gp 1250 ;in bank4 (normally eprom or rom)
lm 460 data 4,176,233,134,207,170, 32,107 cl 1260 :

of 470 data 255,133,206,162, 11,189,192, 19 £f 1270 ;.a=bank (0-3,14,15), .x=0=to

jo 480 data 157, 16, 1,202, 16,247, 32, 16 ea 1280 :

dd 490 data 1,132,172,133,173, 32, 16, 1 pc 1290 setup cmp #$10 ;host bank <16

ah 500 data 201,255,240,200,132,174,133,175 gc 1300 : © becc xcp ;yes

bp 510 data 32,183,238,176,191, 32, 16, 1 ' fo 1310 ;

co 520 data 201,255,240,184,201,128,144,180 oe 1320 ;call basic illegal quéntity

Twin Cities 128 Page 18 Issue # 32

af

Jf
lc
hl
oi
pn
im

en

in

1330 ;using jmpfar

1340 ;

1350 illgty lda #SOf ;bank15

1360 : 1dx #87d ;addr hi

1370 : ldy #528 ;addr lo

1380 sta $S02

1390 stx $03

1400 : sty $04

1410 : jmp $02e3 ;jmpfar

1420 ;

1430 xcp cmp #S0e

1440 bcs ok ;banks 4-13
1450 : cmp #S04 ;not allowed
1460 : becs illqty

1470 ok stx Scf ;save direction
1480 tax

1490 jsr Sff6b ;get config.
1500 : sta Sce ;store it

1510

1520 ;copy code to low end of stack
1530 ;

1540 ldx #S80b

1550 cs1 lda stackl,x

1560 sta $0110,x

1570 dex

1580 : bpl csl

1590 : jsr $0110 ;call it

1600

1610 : sty Sac ;host start lo
1620 sta Sad ;host start hi
1630 jsr $0110 ;get host end
1640 : cmp #SEf

1650 : beq illqty ;page ff no good
1660 : sty Sae

1670 sta Saf

1680 : jsr Seeb7 ;start < end
1690 : bes illqgty

1700 : jsr 80110 ;get ifr start
1710 : cmp #SE£f

1720 : beq illqty

1730 : cmp #580

1740 : becec illqty ;<$8000 n.g.
1750 mlalt sty $c3

1760 : sta Sc4

1770 : ldx #Sc3

1780 ldy #Sac

1790 : lda Scf ;direction flag
1800 : beq movto

1810

1820 ;move data from int. func. ram
1830 ;

1840 : stx S02aa ;indfet pointer
1850 sty $02b9 :indsta pointer
1860 : 1dy #S00

1870 movfr 1lda #Sff

op
jb

kf
fm
bl
fn
fd

de
ao
if
kn

kd
nf
nh
ob
ch
Jf
jm
kj
bm
gm
he
ia
Jp
bh
pl
Ji

hl
aj
ii

BB

mo
kj
ob
hh
dp
gi
md
1d
ff
na
A]
ig
ei
jk
ce
ho

1880 :
1890 :
1900 :
1910 :
1920 :
1930
1940
1950 -
1860

1970

1980 :
1990
2000 :

2010

2020 :
2030 :
2040 -
2050 :

2060

2070 :
2080 :
2080 :

2100

2110 :

2120

2130 :

cmp
beq
cmp
beq
ldx
jsr
ldx
jsr
sec
lda
sbc
lda
sbc

cbump

beq
inc
bne
inc
beq
2222 inc
bne
inc
bne
fferr sec
rts
exit clc

rts

2140 ;

2150

2160 :
2170 :

2180
2190
2200
2210

2220 ;

2230

2240
2250 :

2260

2270 :

2280

2290 -

dtest lda
bne

~ beq

Sad
fferr
Sc4
fferr
#517
$02a2
Sce
S02af

Sac
Sae
Sad
Saf
exit
Sac
2222
Sad
fferr
$c3
dtest
Sc4
dtest

Scf

movfr

mov2

;page Sff n.g.

;bank4, no i/o
;do indfet

;get dest cnfg
;do indsta
;compare Sac/ad

;to Sae/af

;reached end

;increment pntr

;Sad rolled over

;rolled over

;complete move

;direction

;move data to int. func. ram,

;preserving underlying data,
;byte by byte

’

movto sty
stx
ldx
lda

sta

cs2

dex
bpl

2300 -

2310 :

2320

2330 :
2340
2350 :
2360 :

1dy
lda

cmp

mov2

beq
cmp

beq

2370 ;

2380 :

jsr

2390 -

2400 -
2410 :

secC

bcs

$02aa
$02b9
#3517

;indfet pointer
;indsta

;copy to stack

stack2,x

$0110,x

cs2

#3500
#SEE
Sad
fferr
Sc4

fferr

$0110

cbump

;page Sff n.g.

;stack code

Twin Cities 128

Page 19

Issue # 32

1i 2420 ;
ao 2430 ;these routines are moved to the
ci 2440 ;low end of the stack as needed.
ng 2450 ; IOSSOOIEOSIN
kd 2460 ;the first sets bank 15, calls IODSOOSEOHEN
en 2470 ;basic expression evaluator, sets EQCO?:QQG::E"UO E EE
og 2480 ;bank 12 and returns Cut v o &holder , [..
po 2490 ; FROM cocsscacaans
PO
ph 2500 stackl jsr $02dd ;part of jsrfar B e — Y) -
oc 2510 jsr $880f ;.y=lo, .a=hi a4 7AHC138 Sk
jeadpe. b <+
fb 2520 1dx #506 ;bank 12 +5u ¢ o fleefl] Q7
ot 2530 Jmp 50209 REARE == —RER ¢ * 3 :
da 2540 ; SelectJ ,l_ 5 oM
mm 2550 ;this code moves data from host . e 2 Ex
: . Figure 2
fn 2560 ;to int. funct. ram, preserving . (126D
ca 2570 ;ram 0 bytes Pluq—ln board for - RC.'92
£j 2580 ;
hf 2590 stack2 sta $ff01 ;lcra=ram0
hg 2600 lda ($c3),y;get byte
da 2610 pha ;save it
fg 2620 ldx Sce ;host config.
ah 2630 jsr $02a2 ;indfet - [‘l][:]
cp 2640 ldx #9517 ;bank4, no i/o ‘E
dg 2650 jsr S02af ;indsta ; %E
p 1S 4 [10K]
nl 2660 pla ;restore byte w e EPROM
Sl Bop [Basth] 27256
me 2670 sta (5c3),y;to ram 0 H
[
pc 2680 ldx #$06 ;bank 12 E’ . I EELEL
gc 2690 jmp $02c9 ;& rts g uzs, pin 22
me 2700 .end -
e
w
-]
=
2
i
b
i—, -
o
0
from ?4_HC138 :
o
— E N
cS -
20 ﬁ & [
Efe o 2 "
]
E-. | S-RAM
. —EPROM — |
EH. . At vpp1 28}-Uec | _
A12—2 27Rid |HE
2 (N _°oLes ar—{3 26f-A13
L)1) As—4 25(R8
+ As—5 24-A9
1M914 3 1ur% #*[a14) A4—6 231-Ait
+ = As—7 221-0E
o = a2—{s 21f-pe | _
battery I Resistor = 174 Watt 2;:;’0 fg;gg e
T N Diodes = 1N914 or 1N4148 pe11 18- D6
= R R et D112 17105
r p2-{13 16~ D4
N : | Gnd~{14 _15(-D3 |
Figure 1 : — 27256 —!
. + To +Ubb 43256, 62256
Internal Function RAM | o +5¢ 58256
RC92 .
Figure 4
pin assignments
Twin Cities 128 Page 20 Issue # 32

SERVICING THE C-128 KEYBOARD
by Dave Farquhar

DISCLAIMER

This modification will render any warranties
on your equipment null and void. The Author and
Publisher do not assume any liability for
Purchaser’s implementation of these instructions.
All information is believed to be accurate.

SERVICING THE C-128 KEYBOARD

Traditionally, Commodore microcomputers have
been extremely reliable. The C-128 is no
exception. However, nearly every computer,
Commodore or otherwise, eventually develops
problems with its keyboard, because it is exposed
to the elements much more than any other
component.

Such failures are usually caused by dust
accumulation on the printed board, a film
developing on the conductive rubber pads of one or
more keys, or a combination of the two.

When you fall victim to this problem, you
have several options. You could take the machine
to the local service center, if there is one, for
repair. But, this can be time-consuming and
expensive. You could replace the keyboard, but
C-128 keyboards can cost you $70 or more, if you
can find one. This price is outrageous when you
consider that Radio Shack sold surplus C-16
keyboards for years at $4.95 a pop. The last
option is to service the keyboard yourself.

This is not as monumental a task as it first
seems. Usually, it can be done in 20 minutes or
less, at a very low cost using household items.

You will need the following materials:

Flathead Screwdriver

3/32" or 2.4 mm Phillips screwdriver
3/16" or 3 mm hex socket

3.8 mm Phillips screwdriver
Soldering iron

3 containers

Cotton swab

Isopropanol or Rubbing Alcohol
Pencil Eraser

If you cannot match the screwdriver or socket
sizes exactly, don’t worry about it, the sizes are
approximate. Also, if you do not have a Phillips

screwdriver that fits, a flathead will do, but be
very careful not to strip the screw’s head.

It is best to read these instructions at least
once before attempting this project, and it is
probably best not to undertake it until failure
arises. This is not a difficult project, but I
feel that the old adage "If it ain’t broke, don’t
fix it" applies here.

This project should be undertaken on a
relatively dark surface, such as a dark table
cloth or bedsheet, so as to make it harder to lose
the screws. This is because sheet metal screws
are tough to find on a light surface because the
screws themselves are light in color.

The first and most difficult step is actually
opening the keyboard of the flat C-128. First,
unplug the power supply from the wall outlet.
Next, unplug the power supply from the computer.
Remove the screws on the bottom of the machine and
put them in one of the containers for retrieval.
Then, insert the flathead screwdriver near the
place where the seam angles. Gently pry out on
the lower half of the case, while simultaneously
prying in on the top half. The case should then
separate fairly easily.

The keyboard is bolted to the top half of the
case, and attached to the motherboard via a
grounding strap and a "D" connector. Unscrew the
grounding strap, and gently unplug the keyboard
with a rocking, upward motion, being extremely
careful not to bend or break the pins. Set the
lower half of the case aside.

Before proceeding further, it is a good idea
to now plug in the soldering iron, so it will be
ready when you need it.

Next, using the hex socket, unbolt the
keyboard from the top half of the case, being sure
to keep track of the bolts and their plastic
washers. Set aside the top half of the case. You
may wish to use a socket wrench for this, but I
find it just as easy to grasp the socket between
two fingers and turn it that way.

There are several methods to the actual
cleaning, presented below.

The slowest but most economical and most
thorough method involves a complete disassembly.
Gently remove the many tiny screws on the lower
surface of the keyboard, being extremely careful

Twin Cities 128

Issue # 32

not to lose them. Take your time, as the screws
are very easy to strip.

You will notice that 3 keys on the board have
soldered connections: shift lock, caps lock, and
40/80 display. You will need to de-solder these

“before you can disassemble the keyboard any

further. If you are uneasy about using a
soldering iron, you could clip these connections
with wire cutters, but you will lose use of those
3 keys. The desoldering process is simple: hold
the flathead screwdriver beneath the wire, touch
the soldering iron to the connection, and pry up
with the screwdriver as soon as the solder melts.
After all 6 connections have been detached, the
keyboard easily lifts away from the printed board.

Examine the printed board, especially the
areas beneath whatever keys have been
malfunctioning. Clean any offending areas with a
cotton swab soaked with alcohol. Next, examine
the rubber pads of the keyboard. A like-new pad
will have a slightly dull finish. If the computer
has been used in the vicinity of smokers,
humidifiers, or fireplaces, they may have
developed a nonconducting film on them. Clean any
offending pads with a pencil eraser (do not do
this to all of the pads, as it would be time-
consuming and would expose them to unnecessary
wear). Personally, I like the Pentel "Clic”
erasers, available in many college book stores,
because they are very thorough yet less abrasive
than most erasers, but any eraser should do.
Simply rub the eraser on each pad until its
surface is dull.

A second, less ambitious method simply
involves running the entire keyboard under hot
water for a few minutes and blow-drying it. This
will work, but may not eliminate the film on the
rubber pads. Also, if your community has
particularly hard water, you could be subjecting
your keyboard to excess mineral build-up, although
‘probably not enough to cause serious problems. Be
sure the keyboard is completely dry before
reassembly.

Another method simply requires soaking the
entire keyboard in an alcohol bath. This
procedure is thorough and faster drying than
water, but the alcohol could wash off the key
designations, or possibly damage the plastic. It
also may not be enough to remove film from the
contacts.

Re-assembly is relatively simple: just reverse
the disassembly process.

The final result of this project: a like-new
keyboard, money saved, and the satisfaction of
having done the job yourself. The cost was
negligible as well: just the price of this
magazine, the cost of the materials used, and your
time. Better deals are few and far between.

A few additional procedures will be mentioned
for people with well used and worn keyboards.

Before you close up your C-128 you can use a
good keycap plunger for a "dead" or "flat" one.

Since most people hardly use the shift/lock, Q, X,
or tab keys on a regular basis these are prime keys
to use to revive "flat" or "dead" ones. You could
also use the keys from the numerical keypad or from
the top row of number keys.

If your springs are weak you can always use the
springs from the C-16 keyboard mentioned earlier in
the article.

Though C-16 keyboards are not even close to a
match you can still use some of the parts. If you
cut the springs for the C-16 keycaps down to the
proper height (not an easy job) and carefully fit
them under the caps of the C-128 keyboard, they do
provide good enough bounce. The C-16 springs are
especially good for the F-Keys and other heavily
used keys.

One caution though, use care when removing the
keycaps because it is easy enough to damage the
keycap assembly. Since these seli for $8 a key
(a unit) a bit of caution and a light hand
is advised.

Dave Farquhar: This project is dedicated to
the memory of the late Norbert McGuire, who made
this entire project possible about 2 years ago by
loaning the author equipment and instructing him
in its use, changing him from an unenlightened
goof to an enlightened one. Thanks, I owe you
one.

Twin Cities 128 Page 22 Issue # 32

TurRBO CHARGING CP/M wiTH
"SG TooLs PROGRAMMER s TooL Box"
by Steve Goldsmith

Part 1 of 3 - Updated: 03/31/92

INTRODUCTION ‘ ‘

How would you like to have 80 column color
windows that pop up in a flash, drop down menus,
page flipping, full access to all the C128’s I/O
chips, and more in CP/M mode? Just imagine all
the applications you could create if you hada
programmer’s tool box customized for the C128 in
CP/M mode. Now you don’t have to imagine because
we are going to build our own CP/M tool box with
Turbo Pascal! I have used SG Tools to create a 80
column, color, windowing application, a VDC
640X200 PCX file viewer, and more in CP/M!

OVERVIEW

This series of articles is not intended to be
a tutorial of Pascal. If you have not used
Pascal, but are proficient in Basic or structured
Basic I recommend "Turbo Pascal for Basic
programmers"* from Que books. Pascal is easy to

‘learn because it was designed as a teaching

language like Basic and there are many good books
on Pascal programming. You can also port the tool
box modules to Mac, Rmac, Basic, C, or other
Pascal compilers, so even if you don’t program in

* Turbo Pascal you can still learn how to build a

C128 CP/M tool box.

The SG Tools tool box was created, so the
programmer can access all the C128’s features

~-under CP/M and create applications ready for the

90’s! We will start by covering all the low level
code needed to access the I/O chips, VDC, and
memory. The second installment will use these low
level modules to create page flipping, fast write,
and window modules to drive the 80 column screen.
The final installment will cover calling CP/M’s
BDOS functions, building apphcatmns and
customizing your new tool box.

WHY USE TURBO PASCAL?

* Pascalmdestgnedtobeacompﬂed
language unlike interpreted BASIC and the
resulting executable code is many times faster and
usually smaller than equivalent BASIC code.

* The Turbo Pascal System has a built in text
editor that uses Word Star commands. If you get a
compiler or run-time error the compiler puts your
cursor at the offending statement in the editor!

* Turbo PaScal‘cbmp‘i]es, assembles and links
programs to memory or a CP/M stand alone COM file
all in one step. COM files can be sold or

distributed. Many CP/M versions of BASIC, Pascal,

C, and Small C require a separaté¢ proprietary
run-time system file and/or have a separate slow
assemble and link process. ‘

* Source code can be ported to many different
types of computers that have Turbo Pascal
compilers. Ihave done this with a text adventure
game I wrote back in 1987. It was originally
written for MS DOS, but it compiled and ran
without modification under CP/M. If you want to
learn Object-Oriented programming you can step up
to Turbo Pascal 6.0 for Ms-Dos with _
Object-Oriented extensions and Borland’s own
Object-Oriented tool box called Turbo Vision. All
the stuff you learn with Turbo Pascal and CP/M you
can take with you to Ms-Dos, Mlcrosoft Windows,
and beyond. _

GETTING STARTED
Here is a list of items you will need to get
started “ :

The CP/M boot disk that came with your C128.
1 used the May 87 release to develop all my

programs

1 suggest you read the article "Superchargmg
Your CP/M BIOS, CCP, & Bootdisk Utilities" by
Randy Winchester in TC128 Issue #28. This will
give you helpful information on optimizing your
CP/M system as well as covering some good public

domam CP/M utllmes

TC-128 on disk. Due to the volume of source
code and | programs I strongly suggest ordermg the
TC-128 companion disk. Each disk will include all
source code, pre-compxled programs, and bonus
programs that can be run with or without Turbo
Pascal. This issue will include a 80 column color
window demonstrauon with sound!

: Turbo Pascal 2.0 or hlgher for CP/M There
are a couple of ways you can g0 to obtain a copy.

The cheapest way is to find someone at a CP/M

user’s group with an original copy of Turbo Pascal
2.0 or higher and buy it for $25.00 or less. 1

Twin Cities 128

Issue # 33

bought a bunch of CP/M stuff from a guy with an
Apple II CP/M system that included Turbo Pascal
-2.0.

You can also buy the latest and greatest Turbo
Pascal 3.1 for CP/M from Elliam Associates (listed
at the end of the article). Turbo Pascal 3.1is
$64.95 plus $3.50 shipping in the U.S.. They also
carry a large selection of CP/M software. Send
$1.00 to the listed address for their catalog.

Some useful utilities include: SID, other 8080
or Z80 disassemblers, MAC, RMAC, Native Z80
Assemblers or a Z80 macro library like the one
Commodore gives you with the 1581 version of CP/M.

Some type of file ut111ty program other than
PIP like SWEEP (New Sweep) for file maintenance.

Books that most Commodore programmers have
like: the "Commodore 128 Programmer’s Reference

Guide", "CP/M Plus Programmer’s Guide”, Compute!’s

"128 Programmer’s Guide", books on programming the
8080, Z80 and 6502, the December 1988: Volume 9,
Issue 2 of the "Transactor" has a good C-128 CP/M
Plus memory map with comments, "Programming the
Z80" in the August 1986 Issue 38, Volume 4,
COMPUTEY’s Gazette, or any other related material.

STRUCTURE OF TOOL BOX

Each module of SG tools is a separate include
(.INC) file. To add modules to your main program
use Turbo Pascal’s include file compiler
directive: [$I MODULE.INC] where "module" is the
name of the tool box module. It is best to keep
the modules as simple as possible, so you do not
have a lot of uncalled procedures which generate
dead code at compile time. You also want to be
able to reuse modules for many different
applications. Borland did not add units and smart
linking until Turbo Pascal 4.0 for Ms-Dos. So
make sure you call all or most of the procedures
in a module. Some modules may depend on others
being previously defined. This will become
clearer in the next issue when we cover fast
string writes and windows. Now that we have all
the basic information out of the way let’s start
programming some 1/O ports!

ACCESSING I/0 PORTS WITH THE Z80

As a C-64 or C-128 programmer you know how to
.access the Sid, Vic and Cia chips with 65XX "lda"
and "sta" instructions or Basic "peek" and "poke"
commands. But the Z80 works a little differently

with the C128’s I/O block. You cannot access the
1/O chips with Z80 LD type instructions, but the
Z80 can communicate with the C128’s I/O chips via
IN reg,(C) and OUT (C),reg instructions. We will
be using Turbo Pascal’s Inline method to insert |
8080 and Z80 machine code. You can easily create
in-line machine code by writing your Assembler
modules with MAC and using the output listing.
Just load the listing file in a text editor or

Turbo Pascal and use the machine code portion for
your in-line code.

The first SG Tools module is called PORT.INC.
This allows your applications to access the C-128’s
Input and Output chips.

(see the listing at the end of the article)

Problems with Turbo Pascal’s
PORT ARRAY

If you are an experienced Turbo Pascal
programmer you might say that Turbo Pascal already
has an I/O array called Port. To access a VIC
register you might use BorderColor : = Port[$d020].
This would be great if it worked on the C128, but
it doesn’t. I have found using Turbo Pascal’s
Port array to read the C128’s I/O block returns
false values. Like any other hacker I wrote a
simple program using Turbo Pascal’s Port array and
fired up my disassembler to find out why this
occurs. What I found is that Turbo Pascal uses IN
E,(C) and OUT (C),E just like my Portln and
PortOut, so why doesn’t it work? If you can find
the answer send it to JBEE or myself via GEnie.

- To be safe we will be using my port routines

because I know they work all the time on the C128!

I would like to stress that using Turbo Pascal’s

Port array to write works fine though. For an
example of this anomaly compile and run
PORT128.PAS or run PORT128.COM on the TC128
disk. PORT128 will read and display various 1/O
locations on the C128 with My PortIn and Turbo
Pascal’s Port array.

ACCESSING THE VDC

I was programming late one night on a IBM PC
in Dos and thought how great it would be if CP/M
had the nice user interfaces like Dos, Windows
3.X, Geos, native 64, and 128 mode applications.
You are probably saying to yourself that CP/M is
too slow to handle the windowing and full screen
updates required in a graphic operating
enviroment. Well, your right, but who needs CP/M
to read and write the screen? I’m sure you have
displayed characters directly to screen memory in

Twin Cities 128

Page 24

Issue # 32

native 64 or 128 mode instead of using the

Kernal’'s CHROUT routine because it is much faster.
Most of the professional tool boxes for IBM PC DOS
use direct screen /O instead of DOS or BIOS calls
for the same reason. Direct screen I/0 can also

be applied to CP/M on the C-128. \

oo s i LA gt
: L \

Our next SG Tools module is called VDC.INC.
It allows you to read and write VDC registers.
-Once again we will be using Inline code for speed.
(see the listing at the end of the article)

ACCESSING MEMORY
Your application can easily access memory with
Turbo Pascal’s Mem array.

To read memory use: Buffer : = Mem([$80];
To write memory use: Mem[$80] : = Buffer

Buffer is a byte type variable. Now that we

1
'1
¢
J

S T T e TR e e e—m—

flipping, 80 column video games, or whatever other
applications you can dream up!

If you have iny questions or ideas, send me a
message on GEnie at address "s.goldsmith2". Until
next time...

Mail address:
Elliamh' Associates

PO Box 2664
Atascadero, CA 93423

UPS address:
Elliam Associates

:4067 Arizona Ave.,

Atascadero, CA 93422
(805) 466-8440

(DR.OCTAL TIPS - CONTINUED PG #25)
your hardwired #11 devices. Here is a hatdwarc ‘

have a way to access the C128’s I/0 ports, VDC.and ’,: ' method I learned from a' fneﬁd.
memory let us see how fast they are. w¥ *Find ul13
‘ *Cut pin 1 at the point where it enters the board
using an exacto knife. Put a spst switch between
TIMING EVENTS IN pin 1 of the ic and where pin 1 used to enter the
TURBO PASCAL e motherboard. You can mount the switch anywhere,
- How fast is fast? Terms like "Turbo Chargmg £ * preferably uader the drive led. There is a lot of
and "Supercharging” do not really tell you how s room on the C-128d’s front panel.
fast a certain procedure is, so I created a timing *With the "ATN" line out of the serial loop
module called "timer.inc". It uses CIA #2’s "time (switch open), the device is effectively off the
of day" clock and does not affect CP/M’s system bus and will not be recognized, no rnatter what
time. The program I0Q128.PAS compares varigus 1/O dev1ce # you use for it.
operations by timing how long it takes to do
10,000 operations of each.. Total time in'seconds, . . .
tenth of seconds and operations per second are NEWS RELEASES:
displayed. My VDC routines are 30% faster than Note that news releases are NOT an endorsement
using Turbo Pascal’s Port array! My Portln and of the product. They are news tidbits available
PortOut are much slower that Turbo Pascal’s Port for your use in case you want to pursue somethmg
array, but they always work on the C-128. Turbo further that sounds interesting.
Pascal’s Port and Mem are the fastest I/O methods
of all. This is not surprising considering the Bookdisks: "Non-Abberrational Capitalism:Template
overhead of calling a procedure for port I/0 - for a New World Order" is a book on disk(s) that
compared to using the port array. The TIMER.INC comes on two double-sided 1541 diskettes, The
. file depends on PORT.INC being previously defined. diskettes also include a functional text reader
(see the listing at the end of the article) which allows the reader to print out the text
; files. Cost is $5 and available from: Paperless
- FINAL THOUGHTS < Press;! 109-47 117th St; Ozone Park, NY 11420
We have covered quite.a bit of ground W1th
this first installment! I encourage you to modify:: *Vldeo Board The Amn]:ary Video Board (AVB) is
the example programs and experiment with the . : basically a C-128 80 Column VDC chip with.64K Dram
C-128's I/O chips in|CP/M mode. If yourea.., . . to be plugged into your expansion port. AVB blank
hacker you may be able to tweak my medules for PCB, assembly and board options, parts list, and
greater speed. If you|do, add them to IQ128.PAS, examples are available for $34 plus $5 S&H from:
so we can compare methods. The modules prov1ded Gregory Clark, PO Box 660366, Sacramento CA 95866
here are fast enough to drive windows, page y o ' : :
- 3

Twin Cities 128

> Issue # 32

PROGRAM NAME: PORT.INC

To read a port you use: BorderColor := PortIn ($d020);
To write a port use: PortOut ($d020,BorderColor);
BorderColor is a byte type variable. ,
function PortiIn (MemLoc : integer) : byte;

var

Load : byte;
RegPair : integer;

begin
RegPair := MemLoc;
Inline (
SED/$4B/RegPair/ [1d bc, (RegPair)]
SED/$58/ [in e,(c)]
$7B/ [mov a,e]
$32/Load [sta Load]
)7
PortIn := Load
end;
procedure PortOut (MemLoc : integer;
' Value : byte);
var
- Store : byte;
RegPair : integer;
begin :
RegPair := MemLoc; : : :
Store := Value; [Store = byte value to store]
Inline (; .
SED/$4B/RegPair/ [1d bc, (RegPair))
$3aA/Store/ [1da Store]
$5F/ [mov e,a]
SED/S$59 [out (c),e]
) ' ’
end;

PROGRAM NAME: VDC.INC ,

To read a VDC register use: FgBgColor := ReadVDC (26)

To write a VDC register use: WriteVDC (26,FgBgColor)

FgBgColor is a byte type variable.

I have also included TPVDC.INC which uses TP's Port array instead
of Inline code.

function ReadVDC (Reg : byte) : byte;

var

Twin Cities 128 Page 26 : Issue # 32

PROGRAM NAME: VDC.INC (continued from previous‘page)'

VDCReg : byte;

~begin

VDCReg := Reg;

Inline (
$01/$00/$D6/
$3A/VDCReg/
SED/$79/
SED/$78/
SCB/S$7F/
$28/$FA/
soc/
SED/$78/
$32/VDCReg

): '

ReadVDC := VDCReg

end; :

procedure WriteVDC (

var
VDCReg,
VDCValue : byte;
begin |

VDCReg := Reg;

VDCValue := Value;

Inline (= -
$01/$00/$D6/
$3A/VDCReg/
SED/$79/
SED/$78/
SCB/$7F/
$28/$FA/
soc/ -

! $3A/VDCValue/

$ED/$79

)

end;

PROGRAM NAME: TIMER.

Reg
Value

[1xi
[lda
[outp
[inp
[bit
[jrz
[inr
[inp
[sta

¢ byte;

: byte);

“[1=xi

INC

To read time use: GetTOD; '
Values are stored in Global tod variables.

To set time use: SetTOD (Hours,Mins,Secs,Tehs);fk

const

cia2TODTen = $d4d08;
cia2TODSec = $dd09;
cia2TODMin = $ddOa;
cia2TODHrs = $ddOb;
cia2ConRegB = $ddof;

[1lda
[outp
[inp
[bit
[Jrz
[inr
[1da
[outp

PTOIXTNDOOD

b, $d600
VDCReg
a

a

7,a
rep

c

a
VDCReg

,$d600

D~
oo

point BC to $d600]
VDC req]

VDC reg to read]
get VDC status]
test status bit]
until bit high]

- point BC to $d601]

read VDC reqg]
stash result]

point BC to VDC]
VDC req]

put reg in VDC]
get VDC req]

check status]
until bit high]
point BC data regq]
value to store]

‘put value in VDC regq]

. Twin Cities 128

Page 27

“Issue # 32

var

todTen, todSec, todMin, todHrs

procedure GetTOD;
begin
todHrs := PortlIn
todMin := PortlIn
todSec := Portln
todTen := PortlIn
end;

(cia2TODHrs);
(cia2TODMin);
(cia2TODSec);
(cia2TODTen)

: byte;

procedure SetTOD (hh,mm,ss,tt : byte);

begin

PortOut (cia2ConRegB,$00);
PortOut (cia2TODHrs,hh);
PortOut (cia2TODMin,mm);

- PortOut (cia2TODSec,ss);

end;

- PortOut (cia2TODTen,tt)

MUSIC PROGRAM USING PORTOUT
PROGRAM NAME: MUSIC.COM

This simple program uses PortOut to play music with the SID

|
SG Tools (C) 1992 Parsec, Inc.

chip.

Music is a short music demo using PortOut to access the SID chip.

]

program. Music;

[$B~,R-]
[SI PORT.INC]

const

Sid = $d400; _
Music : array[0..50] of integer

(

25,177,250,
28,214,250,
25,177,250,
25,177,250,
25,177,125,
28,214,125,
32,94,750,

25,177,250,

28,214,250,

19,63,250,
19,63,250,

Twin Cities 128

Page 28

Issue # 32

PROGRAM NAME: MUSIC.COM (continued from previous page)

21,154,63,
24,63,63,
25,177,250,
24,63,125,
19,63,250
)

procedure ClearSID;
var
I : byte;
begin
for I := Sid to Sid+24 do
Portout (Sid,0)

end;

procedure Run;

var
I : byte;

begin
Portout (Sid+5,9); [attack/decay]
Portout (Sid+6,0); [sustain/release]
PortOut (Sid+24,15); [maximum volume]
for I := 0 to 16 do
begin

Write ('.');

PortOut (Sid+1,Music[I*3]
Portout (Sid,Music[I*3+1]

Portout (Sid+4,33);
Delay (Music[I*3+2]);
Portout (Sid+4,32);
Delay (10)
end;
ClearsSiD
end;

procedure Init;
begin

ClrScr;
ClearSID;

[high freq]

[lo freq]

[gate sawtooth]
[note duration]
[release sawtooth]

Writeln ('Music (C) 1992 Parsec, Inc. - All Rights Reserved');

Writeln;

Writeln ('Music will play a short song with the SID.');

Writeln
end;
begin

Init;

Run
end.

Twin Cities 128

Page 29 Issue # 32

Fe e e e de I o e I I o de o o I I o 3 I I o o o I o o S o S O S e o S o R ok e b ke b e e e e ok

* CLASS(Y) ADS *
e ¥ I e e I A e e e e e e e e e e e e e e e e e e b e e b e e e e e e e e e e e e e e e e o

These ads are free for TC128 subscribers and
advertisers. Commodore BBS and UG listings are
free to all.

All people with POBs have to submit a street
address to Parsec with a matching night time
telephone number (we will not release the street
address to anyone UNLESS there is an unresolved
problem with your ad). For sale and wanted ads
must include either an address (street or POB) OR
a telephone with the time to call. An example is,
(1-508-745-9125 EST 9-5 answering machine) so
people can easily contact you.

All ads will run until you ask for them to be
removed or until they are "bumped" off the listing
by a newer ad. The date the ad was 1lst run will
be expressed as 920105 (year 92, 1lst month, fifth
day).

ALL ADS *MUST* be submitted on either 1541 or
1581 disks as either PetAscii or straight Ascii
sequential text disk files, no exceptions! If you
can send matching hardcopy it would be appreciated.
We will take ads from subscribers through e-mail.
We are not responsible for anything including typos.
BUYER BEWARE!

The guidelines to buying through the mail are
unless you know the person well:

1) Buyers and sellers should insist on COD,
ship by UPS (if possible), cash or money order!
2) Get a telephone number!

3) Try to have some fun horse trading! :)

FOR SALE HARDWARE

*920201 - Clay MacDonald 303-927-4498

C128D, JD V6.0, fan, all docs, like new $300.00,

1581, JD, like new $100 - both units have device

switches. QBB 64 - $50, 1764(512k) - $100, Many
other items

*920201 Alex Dundek 612-645-6636
1571 - new in box - best offer over $150

*920221 Bill Golden, PSC 76 Box 2629 Army,
APO AP 96319-2628
1581 $135, 1571 $125, 1541 device #8 $65

FOR_SALE SOFTWARE

WANTED HARDWARE

*920220 John Stewart 602-378-6316

BI Buscard II IEEE Interface

CSI 425 or Interpod serial to IEEE interface

Users and/or Maintainence Manual MSD drive

WANTED SOFTWARE
*#920220 John Stewart 602-378-6316
Catalog program by Intergrated Software Systems

Masterdisk, Masterdual, Super-Masterdisk(preferred)
SI/FI - MISC
*#920709 Wanted - a complete set of the Transactor

magazines. Willing to pay $2.50 per issue - contact
Parsec Inc. by phone, mail, or e-mail.

BBS LISTINGS

USER GROUP LISTINGS

*920201 - Basic Bits Commodore Group, PO Box 447

PO Box 447, North Ridgeville OH 44039

*920225 - CBM Users Group of Lewis County
c/o Al Kistenmacher 2476 PeEll-McDonald Rd.
Chehalis, WA 98532

*#920310 - Boise Area Commodore Users Group
3213 Kelly Way, Boise, ID 83704-4620

*920626 - "Meeting 64/128 Users Through

the Mail”
1576B County Rd 2350 E. St. Joseph, IL 61873
is a correspondence User Group 6 years old
with 240 members. Dues $12. Write for more
information.

Twin Cities 128

Page

30 Issue # 32

Legal Notices, ads, submissions:

*No part of Twin Cities 128 the magazine or disk
may be copied in whole or in part for any reason.
*Twin Cities 128 may not be transmitted, stored,.
copied, or sold in any way, shape, or form except
by Parsec, Inc. Twin Cities 128 is sold only
through Parsec, Inc. Twin Cities 128 is

distributed by Parsec, Inc. and RIO computers.

* C-128, C-128D, CBM, and other names of

Commodore equipment are trademarks of Commodore
Business Machines. All other trademarks or service-
marks mentioned in this magazine belong to their
respective owners and are mentioned for their

benefit or for editorial purposes.

*Liteweir, Lweir, RUR U2, Software Light Years Ahead
of the Rest, Twin Cities 128=trademarks of Parsec,Inc.
NOTICE ABOUT SOFTWARE The programs and files on

our companion disk are COMMERCIAL programs and just
because you own a copy of the magazine DOES NOT
entitle you to a free copy of the disk and

programs. The Twin Cities 128 companion disks are
only sold legally through Parsec, Inc. and RIO
computers.

SOFTWARE NOTICE, RIGHT TO USE:¥

The software (or hardware) and routines published

in this magazine can be used free of charge only

if ALL of the following conditions are meet:

*1)The program is Public Domain, free, AND if you
were a subscriber when the issue was published.
*2)You have to give a written notice on your first
screen or title screen, where this type of phrase
can be clearly noted by the user (as an example):
"Sound Routines from Twin Cities 128 - issue #32".
"Graphic Routines from Twin Cities 128 - issue #32"
*3)You have to send us a copy on disk or upload the
program to our library on GEnie. Don’t send by email!
*4)If there is any kind of a charge for the program
either as commercial or shareware software, or if it
is a "demo" for a company, contact us FIRST before
releasing the software/hardware so we can talk

about the liscening fee. This usually will be some-
thing small, such as copy of the finished product.
If we find out after the fact it will cost

you *MUCH* more.
through the U.S. mail will be considered wvalid.
*These routines may not be uploaded to any network.

Only written releases from us

*These routines may NOT put into ANY disk library
collection - individual use only - no exceptions!
*Submissions:"submissions greedily accepted"
Average author rate is $25-$100 plus a free six
issue extension with the disk. We gladly consider
any program, article, software, or hardware for
publication.
done by established staff members that have already
‘had articles published. “*Ad fates: full page with '
color(s) $200+, full page B&W $150, 1/2 page $60.

Reviews of software and hardware are

‘usA | ' /

® % K X K R N K X K K K K K ¥ K K X X K X X X ¥ K ¥ £ X ® X % F % X X % % F X X ® % X ¥ * X X X X X £ ® * ¥

Twin Cities 128 Subscription Information

Magazine only:
6 issues a year - $20 for the US
6 issues a year - $26 all others

Magazine with companion disks:
6 issues a year - $36.50 for the US
6 issues a year - $46.50 for all others

User Group Rates (minimum of two subscriptions)
Magazine only:

6 issues a year - $17 for the US
Magazine with companion disks:
6 issues a year - $26.00 for the US

For the US:

The cost to add the companion disk to TC128
from a current subscription starting with
issue #32 is $4.00 for each remaining issue.

For all others:

The cost to add the companion disk to TC128
from a current subscription starting with
issue #32 is $6.00 for each remaining issue.

Effective 920201 we will acknowledge all
(re)subscriptions, change of addresses,

and subscription inquires by either a letter or
postcard.

How to read your address label:
1st line: ## # ABCXXXXXX.XXX

The first number is the issue on which your
subscription ends and the second number following
it will have a "1" if you are owed the companion
disk. The third set of letters & numbers is your
customer ID #. This may not be on all labels

2nd line:Attention line - usually not used

3rd line:Your Name

4th line:Your Address

5th line:City, State, Postal Code

6th line:Country (not written on US labels)

Make checks payable in U.S. funds to:
PARSEC INC

PO BOX 111 .
SALEM MA 01970-0111

¥ K K X K % X K X % K X X ¥ X K X X X X X £ X X £ X X £ X ¥ X ¥ X & € £ X ¥ X K £ ¥ ¥ X X X X ¥ ® ® X ¥ * *

Twin Cities 128

Page 31

Issue # 32

Geos MACHINE LANGUAGE PROGRAMMING
ON THE 128:

"THE TooLsS OF THE TRADE"

by Robert A. Knop Jr.

I. INTRODUCTION

Why would the prospective C-128 machine language
programmer want to program under Geos? For one,
the Geos128 operating system provides an excellent
user interface, which you might want to take
advantage of in your own programs. More
importantly, under Geos it is a lot easier to
write powerful user-friendly programs than it is
on a cold C-128. The Geos Kernal supplies routines
for icons, menus, dialogu¢ boxes, graphics, text,
and more, all available to an application, which
reduces the burden on the application’s
programmer. No longer do you have to worry about
"how" to implement a pull-down menu; tell Geos
what menus to put on the screen and what to do
when one is selected, and Geos takes care of the
rest.

II. YOUR PRIMARY PROGRAMMER’S TOOL.:
GEOPROGRAMMER

In 1987, Berkeley Softworks published
geoProgrammer, a complete software development
system for Geos64. GeoProgrammer has three parts.

First is geoAssembler, which does the dirty
work of converting your assembly language source
(written with geoWrite) into relocatable machine
language code. GeoAssembler is an extremely
powerful label-based assembler, complete with
local labels, macros, conditional assembly, an
impressive expression evaluation facility, and
more.

The second application, geoLinker, allows you
to build a program out of several separate
modules, each independently assembled with
geoAssembler. GeoLinker also allows you to create
VLIR applications. A VLIR application consists of
one memory resident module, as well as several
swap modules which are loaded from disk as needed.
This means you can write programs longer than the
memory space available. For instance, both -
geoWrite and geoPaint are VLIR applications.

The third and perhaps most imprgss;ive part of .
geoProgrammer is the geoDebugger. ‘With this, you
can set break points if your.code, step'through .

your code, examine memory, and track down
lingering bugs in your program. The original
geoDebugger came in two forms: the powerful
label-based SuperDebugger, available only if you
have a RAM expansion unit, and the scaled down
mini-Debugger.

Plus, aside from the three major applications,
a number of goodies come with the geoProgrammer
package. This includes a complete file of the
Geos symbols which you can include in your
source code, as well as a file of useful macros
for common operations like loading a memory
location with an immediate value. Full source
code to three sample do-nothing applications is
included. Which is useful in demonstrating
the structure of the various Geos application

types.

Shortly after the release of the first version
of geoProgrammer, advertisements started to appear
for the soon-to-be-released geoProgrammer2.0,
which promised support for the Commodore 128.
Unfortunately, geoProgrammer2.0 was never
published, but was left unfinished as Berkeley
Softworks (now GeoWorks) began to develop PC-Geos
for MS-DOS machines. Thus, it would seem that
potential Geos128 programmers were out of luck.
If they wanted to develop applications for
Geos128, they would have to do so under Geos64.
Fortunately, some Geos programmers were not
content to let things sit the way they were.

PATCHING GEOPROGRAMMER

As it is, the three geoProgrammer
applications, geoAssembler, geoLinker, and
geoDebugger, refuse to run under Geos128, due to a
flag in their headers which says that they can
only be run from Geos64. If that flag is changed,
geoAssembler and geoLinker "almost" run under
Geos128. More precisely, they do run, but things
are slightly out of kilter in 80 columns; and if
one is going to geoprogram on the 128, it would be
nice to take advantage of the 128’s two megahertz
fast mode available only in 80 columns.

All is not lost; at least two people have
developed patches for the geoProgrammer
applications which allow them to be run neatly
from Geos128. The patch I shall discuss,
"geoProgrammer Patch 2.1," was written by Robert

.- J.G. Norton; patches for the programs have also
~ been written by Jean F. Major.

Twin Cities 128

Issue # 32

Once the patch has been applied, geoAssembler

. and geoLinker both run quite nicely in 40 or 80
“columns under Geos128. The patched geoDebugger -
can only debug 40 column applications, and the
patched SuperDebugger trashes the 128’s RAM reboot
code. However, one need not concern oneself with
this, due to the existence of geoDebugger2.0, .

which 1 shall discuss shortly.

How does one perform this patch? The patch is
" designed to operate on an already installed

geoProgrammer. Moreover, it is wise to perform
the patch on a copy of your geoProgrammer
applications, rather than the original disk. This
is not a problem if you have both Geos64 and
Geos128, and if both hawe the same Kernal ID.
If, when installing one Kernal, you told it to
match itself to an application installed with the
other Kernal, then both Kernels will have the same
ID. If you are unsure whether both have the same
Kernal ID, try running a Geos64 program, say
geoPaint, from Geos128. If it doesn’t complain,
then you should be OK. In this case, you can
simply install the programs with Geos64, copy them
to another disk,.and perform the patch on the
second disk with Geos128.

If you don’t havef.chos64, don’t despair. In
order to install the programs with Geos128, you
must modify one byte in the header of each
application. To do this, you will need a disk
sector editor (such as Disk Doctor 128, or
DiskMon). Sector editor in hand, look at track
18, sector 1 ($12, $1) of your geoProgrammer disk.

"You should see the first block of the disk’s

. directory. Locate the directory entry for (say)
geoAssembler, That directory entry will look like
(sample DiskMon output):

>00b00 12 09 83.0a 04 47 45 4f
41.53.53 45-4d 42 4c 45
SRR ._geoassemble.

>00b10. 52 a0 a0 a0 a0 Oa 11 01
- 06 57-0b 02 0e 2f 56 00
Lo 2L oo .W. e, /Vn i 1

Immediately following the 16 character ﬁle
name (padded with $a0’s) is a track sector pair.
This is the track and sector of the header record
for geoAssembler- in this example, track 10,
sector 17 ($0a, $11). Read that sector. The 96th -
($60) byte of that sector should contain the value ,
128 ($80).

This is the flag which indicates that
geoAssembler cannot be run from Geos128.
Change this byte to 0, which indicates that the
application can be run from Geos128 in 40 columns.
Be very careful when doing this; a misstep could
scramble your geoProgrammer disk!

Repeat this procedure for geoLinker. Once
finished, you should be able to install both ,
programs with Geos128. Note that if you are using
a 1571 disk drive, you must temporarily configure
it (using, of course, Configure) as a 1541 for the
installation to work.

_ Now that you have installed the geoProgrammer
applications, copy them to a second disk; do not
patch your original copy of geoProgrammer. Then
copy the geoProgrammer Patch 2.1 program to that
disk. Simply double click on the Patch program,
follow the instructions the program gives you, and
you will have copy of geoAssembler and geoLinker
that can be cleanly run from Geos128! At this
point, in order to distinguish the patched
applications from the originals, you may want to
rename them to "GEOQASM 128" and "GEOLINK
128," or something along those lines. ‘

GEODEBUGGER 2.0
Although geoProgrammer 2.0 was never released,
it was reasonably close to being finished. In

particular, version 2.0 of the Debugger had been

nearly completed. ‘This Debugger features full 128
support. One impressive feature is the BackRAM
debugger. With this, one does not need an RAM
EXPANSION UNIT to run the SuperDebugger! The
SuperDebugger loads itself into the "othier" 64K of
the 128’s RAM, giving the full power of the
SuperDebugger without taking away any of your
application space.

Much to the delight of Geos programmers,
GeoWorks (the new name for Berkeley Softworks)
released the 2.0 debugger for informal
distribition as an upgrade for geoProgrammer
owners. What this means is, if you own
geoProgrammer, then you are entitled to upgrade to
the 2.0 Debugger by downloading it from Q-Link, or

‘wherever else you can find it. (Note, however,

that legally you must purchase geoProgrammer

before obtaining a copy of geoDebugger 2.0.)

Although geoDebugger 2.0 works quite nicely
as-is with the 128, this has not stopped people
from writing patches which enhance the
functionality of the debugger. For instance, in

Twin qities‘iza‘

Issue # 32

order to get the BackRAM debugger, you must hold
down the space bar while geoDebugger loads. Since
forgetting to do this loads the SuperDebugger into
your ram expansion unit, trashing the ram reboot
code, I wrote a patch (backdebug.patch) which
forces geoDebugger 2.0 to load the BackRAM
debugger. Other patches which improve upon the
2.0 debugger exist, such as Jean F. Major’s
"Debugger.Update."

COPING WITHOUT GEOPROGRAMMER

If you don’t have geoProgrammer, there do
exist (at least) two shareware Geos assemblers:
geoCope, by Bill Sharp, and the Springboard
Assembler by Jim Holloway. Both assemblers
produce Geos code, and work with Geos128, although
only in 40 column mode. Each of these assemblers
is a single unit; neither provides, nor requires,
a linker.

GeoCope comes with its own editor and
assembler, as well as with some sample files.
Since the assembler takes files from the editor,
you can’t use the full power of geoWrite to edit
your source code. The editor, while usable, isn’t
- nearly as powerful as geoWrite, and is at times
somewhat hard to use. For instance, you can’t use
the mouse to position the cursor, and I wasn’t
able to figure out how to move more than a line at
a time within a page. The assembler is label
based, allows the use of multiple source files
through the .include directive, and does support

. VLIR files. It is limited to 8K of object code.

- One thing nice about this assembler is that it
gives more information about the program being
assembled than does geoProgrammer.

The Springboard Assembler takes as its source -

geoWrite files. It too is label based, although

with certain commands (e.g. lda, sta) you can’t

use forward referenced labels. This makes it

difficult to put data blocks after the end of your

code. Like geoCope, the Springboard Assembler

lets you have separate source code modules.
However, there is no .include directive, so any

equates you use will have to be typed directly

into the source file that needs them.

If you are serious about programming in Geos,
you are going to want to get a hold of
geoProgrammer. However, if you just want to
dabble in programming Geos, or experiment with
some small things, then either of these assemblers

could be useful for you. The shareware price of
geoCope is $15; of the Springboard Assembler, $5.

III. TEXTWARE

The manual which comes with geoProgrammer is
excellent. It clearly and completely describes
the operation of all three geoProgrammer
applications. However, it assumes prior knowledge

‘of both assembly language and programming under

Geos.

"The Official Geos Programmers Reference Guide"
(PRG) from Bantam Books is a good book for
learning how to program under Geos. It assumes
knowledge of 6502 assembly language, and a user’s
familiarity with Geos, and from there quickly gets
you up to speed on the basics of programming in
Geos.

It describes the concept of event-driven
programming, and discusses how Geos uses this. It
goes on to describe how to create icons and menus,
and use them within your programs. Following a
chapter on how to convert applications- to Geos
format (which can be ignored by geoProgrammer
owners, since geoProgrammer takes care of all of
that for you), the book goes on to discuss using
graphics and text with Geos, as well as more
advanced topics such as processes, dialogue boxes,
the file system, input drivers, and printer
drivers.

Although occasionally obtuse, and sprinkled
with a truly amazing number of typos, the PRG is
very useful for the programmer who wants to learn
how to program Geos. Unfortunately, the PRG is
now out of print, but you may be able to find a
copy at a local used bookstore, or convince a
friend who no longer needs it to sell it to you.

When GeoWorks decided to make the move into
MS-DOS software, they stopped work on a second
Geos programming manual. ‘Although they maintain
the copyright, GeoWorks has released the latest
draft of this manual as the freely distributable
"Hitchhiker’s Guide to Geos". You can obtain this
manual by copying it from a friend, or by sending
$25 to GeoWorks.

'

Sporting an alphabetical list of all the Geos
Kernal routines, as well as chapters of updated
programming information and more in-depth
technical information about Geos64, Geos128, and

Twin Cities 128

Issue # 32

Apple Geos, the Hitchhiker’s Guide is a better
reference than the Programmer’s:Reference Guide.
It is more complete, and its information is more -
up-to-date and thus more reliable. Moreover, it
has some information specific to Geos on the

- Commodore 128, something lacking from the PRG.
Also, in spite of being a draft rather than a
final work, it has far fewer typos than the PRG!

- Before geoProgrammer or the PRG came out, an
individual by the name of Alexander Boyce
disassembled and deciphered the entire Geos64
~ kernal. The result of his efforts is his

shareware "Geos Programmer’s Reference Manual"
(not to be confused with the Official PRG by
Berkeley Software). This manual contains succinct
and clear documentation of the Geos Kernal
routines, as well as some general informational
topics. The information is not current (jt was
written long before Geos128 v2.0), and because
Boyce had to invent his own symbol names, his -
labels for routines are completely different from
the Geos standard.’ (If you can get your hands on

a copy of Volume 9, Issue 3 of the "Transactor”,
‘you will see that Francis Kostella has compiled a
complete cross reference between geoProgrammer
symbols and Boyce’s symbols.) .

Boyce’s manual is interesting as a different
writer’s explanation of the Geos Kernal; it is
also impressively accurate, although he does fail -
to note certain restrictions and conventions that
can be found in the official literature. (For
instance, he doesn’t note certain parts of zero
‘page which are off limits for Desk Accessories.)
He does address a few topics not found in either
the PRG or the Hitchhiker’s Guide (for example,
the geoPaint file format). It can be found, among
other places, in archived PETASCII format in the
GEnie FlagShip library under the names
GeosTECHREFx.ARC" where x is 1 2, and 3.

Fmally the standard progmmmmg refefences
for the 128 can come in handy;: This iricludes your

favorite book on 128 assembly language, as well as
other classics such as Bantam’s "Commodore 128
Programmer’s Reference Guide”, Compute! Books®

"Mapping the 128", and ABACUS’s "128 Internals". -

V. HARDWARE B AR -

Although in theory you oould geopmgtam the

C-128 with just a C-128, Geos128, and a 1541 disk

drive, practically speaking, at the very least you -
will need a 1571 or a second drive for anything

but small projects. Although an application may
only take up (say) 10K on a disk, its numerous
geoWrite assembly source files can become quite
large.

As with anything in Geos, the presence of an -
ram expansion unit makes everything much faster,
smoother, and easier. With a sufficiently large -

- ram disk (and for a large enough project, a

ram1571 may not be enough!), you can put
geoProgrammer, your source files, intermediate
files and final assembled and linked programs all -
on a ram disk (remembering to frequently copy"

“modified source files to a disk). Or, perhaps you

would prefer to use a shadowed drive. If pinched
for space, you can keep the applications and

" output files on a RAM DISK, and store the valuable

source files on a floppy. In any event, a ram
expansion unit'is almost a necessity if you want
to do much geoprogramming and stay sane.

V. CONCLUSION

Geoprogramming is not just for the 64. Thanks
to the efforts of some dedicated Geos128
programmers you can take advantage of the full
power of geoProgrammer completely from your
Commodore 128. If you have programmed in assembly
language before, you will be surprised how little
effort it takes to produce very impressive results
under the Geos operating system. ‘For a true
programmer, there is nothing like the- satisfaction
of seeing a complete, powcrful user-friendly
program ... with yeur name in the Info box!

The freely-distributable software discussed in
this article such as geoProgrammer Patch 2.1,
geoCope, and the Springboard Assembler, as well as
geoDebugger2.0, can be found on Q-Link, GEnie, and
the internet ftp site milton.u.washington.edu.
Also check other on-line services, and BBSs local
to your area.

Editor’s note: you can also find thése files
on Parsec’s public domain disks Geou 13, Geou 14
Geou 15, and Geeu 16. -~

Twin Cities 128

Pagé 35

Issue # 32

MEMO WRITER & CALENDAR

For CMD Hard Drives and
RamLinks

by Ronald Robert

INTRODUCTION

When I first got RamLink I wrote a two hne
program to read the hard drive clock and write the
time and date to the screen on power up. Then I
thought gee wouldn’t it be nice if I could leave
myself reminders and have them list on power up
too. Well having a 128 I wanted it to work in all
modes and be a relatively short program. The
following is what I came up with. I used some
Jiffy Dos commands in the programs-so if you want
to use them without Jiffy Dos (why would anyone
have a CMD hard drive and not have Jiffy Dos ?)
you’ll have to make some changes. By the way it
also works with the Ramcard II time clock. The
two programs are written in basic so they can be
easily customized.

MEMO WRITER

This is a text editor that creates a list of
up to 12 things to do. The list is stored by date
and used by the calendar program. The first few
lines set the storage device number and default
date, they can be changed as required. The
program will run in 64 or 128 mode in either 40 or
80 column mode. It starts by asking for the memo
date, this is the date that you want your list to
be displayed on. Once you input the date the
program checks for an existing memo for that date.
If one exists, it is loaded into the editor and
is displayed. The current memo date is shown at
the top of the screen then the 12 lines of the
things to do list. Below that is a list of
commands, they all use the Commodore key and a

- letter, they are as follows:

C -- Change line:

* This command will let you type the mformanon
on lines 1 thru 12. You will be aske&t which line
#, then you can type in the information. The line
can only be 36 characters long so don’t type past
the arrow. If you need more room use the next
line to complete your note. When you hit return
the line will be added to the list.

e
- o)
NS ol

D - Delete a line:

This will delete a line or a range of lmes
Ex. (3 to 3) will delete line three. (3 to 5)
will delete lines 3, 4 and 5.

I - Insert a line:
Will move the lines so you can put a note
between two existing lines.

S - Switch a line:
Can be used to exchange the posntlons of 2 of
the 12 memos.

P - Print a list:
Dumps the list of the 12 things to do to
device 4, the printer.

W - Write a file:

Saves the list to the storage device. NOTE:
It will automatically overwrite an c)nstmg file
of the same date.

R - Read file and Reset memo date:

This will change the memo date but when it
does it will check to see if there is already a
memo for that date. If there is the existing memo
will be loaded and the memo on the screen will be
overwritten.

Q - Quit:

Although the Commodore Q command is not listed
in the command box it is available and will reset
the computer.

NOTE: If you want to put leading spaces in a memo
to indent a line for instance, you must use
shifted spaces.

CALENDAR

Now that you have a list of thmgs to do you
need a utility to show it to you on the right day.
Well this is it. - The first few lines set the time
clock device # and the storage device # (should be
the same as the storage device # in memo writer)
these can also be changed as required.

This utility can be run when you want to check
your memos or set up as an autoboot file and will
display the date and time when ever you start your
computer, along with any messages that there are
for that particular day. If there are any
messages they will be listed then you will be
given the option to delete them. If you say yes
(Y) the file will be scratched and the screen will

Twin Cities 128

Issue # 32

clear. The next time you turn the computer on
that day there will be no messages. If you say no
(N) the screen will clear but the file will stay
intact so that the next time you power up the
message will be shown again.

I use the programs in ramlink (in the default
partition) and use the ramcard II clock so that is
what the programs are set up for. If you want to
use the hard drive and hard drive clock, you can,
by changing the variables as explained in the

 first few lines of both programs. I used the hard
drive clock before I upgraded to ramcard II and it
worked fine a little slower but fine. This
programalsorunsm64and12840and&)oolumn
modes.

The lines to change in “Calcndar;bas" for your
device numbers are on line # 160, the variables
"tc" and "sd".

The lines to change in "Memo.writer.bas" for
your device number is on line # 160, the vanables
nsdn

g8

ml
bh
fo
be

np
cn
eh

ERcBETER

na
nc
js
fi

330
340
350
360
370
380
380
400
410
420
430
440
450
460
470
480
490
500
510
520
530

openi15,sd,15: input#15, e:closels
ife=62thengoto420

print"delete today’s messages n"
forzq=1tol:printchr$(145);
forzq=1t023:printchr$(29);
ifd1S="y"thengoto430
ifdlS="n"thengoto41l0

:next

got0350
printchr§(147):printchr$(142)

new

scS="s:"+right$(dt$, 8)

8scS,sd

printchr$(147) :printchr$(142) :new
ifdy$="sun."thendy$="Sun.":return
ifdyS$="mon, "thendy$="Mon." :return
ifdyS$="tues"thendy$="Tues" :return
ifdyS="wed. "thendyS="Wed.":return
ifdyS="thur"thendyS$S="Thur":return
ifdys-"tri."thendys-"Fri;":roturn
ifdyS="sat."thendyS="Sat.":return

gota410

PROGRAM NAME: MEMO.WRITER.BAS

:next:input dl$

TC=Time Clock
SD=StOl’8gC Device eo 100 rem by ronald robert
AD$=Default Memo Date bh 110 rem copyright (c) 1992 by
id 120 rem parsec inc pob 111
ao 130 rem salem ma 01870-0111
pj 140 rem program name = memo.writer.bas
PROGRAM NAME: CALENDAR.BAS = - na 150 :
v _ bh 160 sd=08:adS="01/11/92"
eo 100 rem by ronald robert ah 170 printchrS$(14)
hh 110 rem copyright (c) 1992 by ph 180 rem sd is the program and memo storage
id 120 rem parsec inc. podb 111 device #.)
a0 130 rcn'qalcn ma 01870-0111 cn 180 rem ad$ is default memo date -
Ja idb rem p&o;xin name = calendar.bas dm 200 openl$5,sd,15,"i"
" na 150 :) bc 210 jg=1:dim tt$(12)
1d 160 tc=08:sd=08 - . ih 220 sp$=" : .
dj 170 rem tc = timeclock device #. np 230 poke 53280,15:poke 53281,15:poke 646,1
1h 180 rdm sd = memo anﬁ program storage device. #. ik 240 dS$="[SH/N]":n=1:g0t0l240
em 180 printchzﬂ(Ib?) =g 1£p0.k(215)-128thcns-s+20 dl 250 rem menu screen / d$ is option choice
cf 200 printchr$(14) ek 260 gosub 400 :
pb 210 openlS,tc,15 " ed 270 printchr$(147):print" : *+ad$
cp 220 printlS;veirat v oo 0l ba 280 print” list of things to do oo
" hp 230 get#l5)a$: t.s-tsus.azsamnhmzao ' ik 280 fori=1tol3:print chr$(17);:next
Jb 240-closels dn 300 priant™ {1 commodore key + letter "
pb 250 dtS=leftS(tS$,13) - E T dj 310 print" [C]=change line [I)=insert line "
1b 260 mmﬂl!ﬁdﬁ(tﬁ)s;s) AR s : dd 320 print” [D]=delete line = [S}=switch line "
1h 270 dy$=left§(tS,4):gosubsBo e o nl 330 print"” ' [Wl=write file [Pl1=print list "
ed 280 hrS»mid$(t8,15,5) S N N R A ol 340 print" [R]=read file and reset memo date "
nh 280 dnd=right$(t$,s) TR fa 350 print:print:printspc(38)"*"
lm 300 printtab(s)" today iic"dySﬂmS df 360 printspc(17)"dont type past here "'"',
io 310 printnab(s)‘ the time is "hrS$+dn$ mj 370 ifjg<>0then380
JJ 320 Btright$(dts,8),tc al 380 return.
Twin Cities 128 Page: 37 Issue # 32

bg 390 rem ab 910 ttS(x+1)=tt$(x)

if 400 printchr$(19):forzq=1to20:printchr$(17); bn 920 next
:nextzq k1 930 tt$(wn)=tt$
em 410 print” pf 940 goto 510
Jj 420 printchr$(19):forzq=1to20:printchr$(17); po 950 gosub 400
:nextzq mi 960 input” first number";ff
dn 430 return ' nj 970 if ££<1 or ££>12 then 1020
no 440 rem display . bm 980 gosub 400
jl 450 printchr$(19):print:print cn 990 input’ second number";sn
dl 460 for x=nton+ll me 1000 if sn<l or sn>12 then 1020
nd 470 print right$(str$(x),2);" ";ttS(x)+right$ kf 1010 ssS=ttS(ff):ttS(££)=ttS(sn):ttS(sn)=ss$
(sp$,36-(len(ttS$(x)))) ef 1020 goto 510
id 480 next:printchr$(19) B ci 1030 awS=adS$+",s,w"
hj 490 return ' lo 1040 print#15,"s0:"+ad$
kj 500 rem main menu hm 1050 open8,sd,8,aw$
gk 510 gosub260:jg=1 ol 1060 for x=1tol2
fo 520 gosub450 . dm 1070 if ttS(x)=""then tt$(x)=" "
nc 530 getd$:ifd$=""then530 nn 1080 print#8,ttS(x)
jb 540 if d$="[C=/C]"then630 mi 1090 next
cg 550 if d$="[C=/D]"then700 ga 1100 close8
cf 560 if d$¥"[C=/I]"then840 ka 1110 goto 510
ik 570 if d$="[C=/S]"then950 : cl 1120 al$=adS+",s,r"”
jh 580 if d$="[C=/W]"then1210 fo 1130 open8,sd,8,al$
jl 590 if d$="[C=/R]"thenl210 lo 1140 input#l5,a:ifa<>0thenl1190
oa 600 ifd$="[C=/P]"then1280 \ . ef 1150 forx=1tol2
nm 510‘i£d$="[C=/Q]"then13BO bj 1160 input#8,ttS(x)
lk 620 goto 530 . on 1170 if st=64thenl1190.
In 630 gosub 400 cc 1180 next
kg 640 input” what number";wn 1k 1190 close8
ck 650 if wn<l or wn>12 then 680 pk 1200 goto 510
nl 660 gosub 400 ' ad 1210 gosub400 .
pa 670 input" ";tt$(wn) om 1220 ifd$="[C=/R]"thenprint"Read Memo Date "+ad$;
bg 680 if len(tt$(wn))>36 then tt$(wn)="" ec 1230 ifd$="[C=/W]"thenprint"Write Memo Date "+ad$;
pk 690 goto 510 gp 1240 ifd$="[C=/N]"thendS="[C=/R]":print" set memo
ad 700 gosub 400 . . date "+ad$;
aa 710 input" from what number";ff ’ co 1250 fori=1tol0:printchr$(157); :nexti:input ad$
ef 720 if ff<1l or £f£f>12 then 830 ed 1260 ifdS$="[C=/W]"thenl030
cb 730 gosub 400 eg 1270 ifdS="[C=/R]"thenl120
ke 740 input” to what number";tn jb 1280 open4,4,7:close4:open4, 4,7
oo 750 if tn<ff or tn>12 then 830 g0 1290 print#4,chr$(14);"things to do : ";ad$
el 760 for x=ff to tn bj 1300 print#4
nl 770 tt$(x)="" og 1310 forx=1tol2
jb 780 next dh 1320 ifttS(x)=""thenttS(x)=" "
bl 790 if tn=12then830 jd 1330 print#4,rightS(str$(x),2);" ";tt$(x)
ga 800 for x=tn+ltol2 md 1340 next ‘
hn 810 ttS(x-(tntl)+££f)=ttS(x) . ' kl 1350 print#4,:print#4, :print#é, print#s, :
1j 820 next) print#4. :print#4, :print#s
ih 830 goto 510 ’ fn 1360 close4
ja 840 gosub 400 kf 1370 goto510
hj 850 input" what number";wn ak 1380 md=peek(215):ifmd=13thensys64738
no 860 if wn<l or wn>12 then 940 ci 1390 sys57344
ko 870 gosub 400 ; A note about letters inside of brackets [] within
kp 880 input" ";tt$ quotes. [C=/W] = Press the Commodore key with the W
hn 890 if len(tt$)>36 then 940 key. [SH/N] = Press a shifted N with the quotes.

ok 900 for x=11 to wn step-1

Twin Cities 128 Page 38 ‘ Issue # 32

TWIN CITIES 128 CHECKSUM PROGRAM BY MICHAEL GILSDORF OPEN 2,8,2,"0:FILENAME,S,W": CMD 2

If you decide to type in programs from Twin i
Cities 128 magazine, you should first type in and PRINT# 2: CLOSE 2
run TC128 Checksum. This program checks your The same technique can be used to send the
typing by generating a two-letter checksum each listing to a printer:
time you enter a program line and press the RETURN OPEN 2,4: CMD 2
key. The checksum is displayed in the upper left #
hand corner (home position) of the 40 or 80 column PRINT# 2: CLOSE 2
screen. To check for typing errors, compare the
checksum on the screen with the one appearing in The TC128 Checksum program is listed below.
the magazine listing. If they’'re different, then Be sure to save a copy to disk before running it.
you know you’ve made a typing error. The magazine Once run, it will automatically activate itself.

listing will show the correct two letter checksum

in front of each line number. 1 print chr$(147);"tc128 checksum v1.0"

TC128 Checksum will detect most typing errors 2 print "by mike gilsdorf (c) oct 91": print
such as transposed characters and misspellings 3 bank 15: for a=3328 to 3583: read d: poke a,d:
but can on rare occasion be fooled. It uses the t=t+d: next
line number and value of each character as well as 4 if t£<>29208 then print "data error": end
its position on the line to generate the checksum. 5 poke 770,0: poke 771,13
TC128 Checksum will ignore spaces unless they 6 print "tcl28 checksum activated"
appear inside quotes or within BASIC keywords. 7 print "to list, type: #": print
You can use BASIC keyword abbreviations such as ? 8 print "to deactivate, type:"
for PRINT without affecting the result. 9 print "poke 770,198: poke 771,77"

TC128 Checksum is also designed to make it 10
easier for you to indent text or enter blank 100 data 162, 255, 134, 60, 32, 147, 79, 134
lines. To indent text, simply type the line 105 data 61, 132, 62, 32, 128, 3, 170, 240
number, space or tab over to where you wish the 110 data 14, 144, 15, 201, 35, 208, 7, 166
text to begin, and then begin typing. This 115 data 45, 165, 46, 76, 223, 13, 56, 76
feature will improve the readability of your 120 data 212, 77, 32, 160, 80, 169, 32, 198
listings by making portions of your program such 125 data 61, 209, 61, 208, 8, 198, 61, 209
as FOR-NEXT loops and DO loops stand out more 130 data 61, 240, 250, 230, 61, 230, 61, 32
easily. To enter a blank line, type a line number 135 data 10, 67, 132, 13, 160, 0, 32, 89
followed by at least two spaces (or tab) and a 140 data 13, 56, 32, 240, 255, 32, 129, 146
shifted character. When the program is listed, 145 data 19, 18, 32, 78, 75, 32, 146, 27
only the line number will appear. 150 data 81, 0, 24, 32, 240, 255, 76, 234
30 FOR J=1 TO 80 155 data 77. 162, 0, 134, 251, 134, 254, 24

TC128 Checksum also has the ability to 160 data 165, 22, 101, 23, 133, 253, 177, 61
generate a checksum listing. This listing will 165 data 240, 33, 170, 224, 34, 208, 2, 230
show the checksum along side each line number as 170 data 251, 165, 251, 74, 176, 4, 224, 32
the program is listed. To begin the listing, type 175 data 240, 14, 166, 254, 177, 61, 24, 101
a # in direct mode (without a line number) as the 180 data 253, 133, 253, 202, 16, 246, 230, 254
first character on a line. Do not include any 185 data 200, 208, 218, 152, 208, 5, 169, 45
additional BASIC commands on the line; otherwise 190 data 168, 208, 17, 165, 253, 74, 74, 74
they will be ignored. Once the listing begins, 195 data 74, 24, 105, 65, 168, 165, 253, 41
you can use the NO SCROLL key or STOP key to pause 200 data 15, 24, 105, 65, 140, 75, 13, 140
or stop the listing as desired. You’ll find the 205 data 205, 13, 141, 76, 13, 141, 206, 13
checksum listing especially useful if you need to 210 data 96, 200, 32, 236, 66, 153, 20, 0
redisplay the checksums and double check the 215 data 192, 3, 208, 245, 200, 169, 63, 141
lines you’'ve already entered. 220 data 0, 255, 32, 89, 13, 169, 0, 141
OB 30 FOR J=1 TO 80 225 data 0, 255, 32, 129, 146, 78, 75, 32

Also, should you decide to submit a program 230 data 0, 166, 22, 165, 23, 32, 35, 81
listing to Twin Cities 128 magazine for 235 data 32, 181, 75, 166, 65, 165, 66, 134
publication, you can use the # command to save a 240 data 97, 134, 61, 133, 98, 133, 62, 32
checksum listing to disk. To create an a SEQ filg 245 data 152, 85, 160, 0, 32, 236, 66, 133

listing, type: 250 data 65, 200, 32, 236, 66, 133, 66, 208
’ 255 data 184, 197, 65, 208, 180, 76, 55, 77

Twin Cities 128 Page 39 Issue # 32

PARSEC INC
POB 111
SALEM MA 01970-0111 Usa

BULK RATE
U.S. POSTAGE
PAID

SALEM, MA
PERMIT NO. 188

ADDRESS CORRECTION

CUSTOMS INFORMATION:
REGULAR PRINTED MATTER

0 0 o
CINCINNATT
ROGER HOYER

5575 PLEASANT
HI
MILFORD Og 45150LL RD

ComMM. COMPUTER CLUB

