

DTL-BASIC 64 JETPACK

Copyright

License

Notice

(c} 1983 by Drive Technology Ltd.

All rights reserved., This manual contains proprietary
information which is protected by copyright. Copying of this
manual or the transmitting of Infomation contained herein by
any means whatsoever whether mechanical, electrical or
electronically is strictly forbidden. Users are raminded that a
condition of purchase is the acceptance that copyright rests
with Drive Technelogy Ltd., and that full responsibilty rests
with the registered user to protect such copyright.

Drive Technology Limited grants the registered user the right
to distribute the canpiled programs produced by DTL-BASIC 64
without payment of royalties provided that the following
copyright notice is clearly included in the distribution media

" Parts of this product are copyrighted by Drive Technology
Ltd., 1983"

A further condition of license is that DTL-BASIC 64 may only be
used 1In conjunction with the security key supplied with the
product or with additional keys supplied by the Distributors.

Drive Technology Ltd. shall not be liable for any loss or
damage resualting from the use of DTL-BASIC 64 or for incidental
or consequential damages 1n connection with the furnishing,
per formance, or use of this product.

Drive Technology Ltd., reserves the right to alter this product
without notice and without the obligation to notify any person
of such alterations.

Unless the Distributor is contacted in writing within 1¢ days from the
shipment of this program, 1t shall be assumed by the Distributor that
the registered user has read and fully accepted the above conditions.

Issue 4:

Published by: _

Dataview Wordcraft Limited,
Radix House,

Fast Street, Colchester
Essex, C@1 2XB, England

Tel: Colchester (0206) 869414
Telex: 987562

June 25th 1984,

DTL-BASIC 64 JETPACK

Contents

1. Introduction,

1.1 Versions available.

1.2 Purpose of this manual.,

1.3 How to use this manual.

1.4 Major benefits of DTL-BASIC 64.

2. Installation.

.1 Contents,

.2 The security key.

.3 Making backup copies.
2.3.]1 Disk versions.

2
2
2

3. Maln features of DTL-BASIC 64.

3.1 Regquirements.

3.2 The compilation process.

3.3 The run—-time library.

3.4 Combining Basic and machine code.
3.5 Extensions to Basic.

3.6 Tape Version - facilities available.

4. Operation of DTL-BASIC 64.

4.1 How to run the compiler
4,2.1 Disk versions,
4.2.2 Tape version.
4.2 Campilation options,
4.3 Function keys.
4.4 Compilation,
4.4.1 All versions.
4.4,2 Tape version.
4.5 Compilation statistics,
4,6 Termination options.
4.7 Operation of compiled programs.
4.8 Making copies. of compiled programs.
4,9 Special operation features.
4.16 Problems 7

5. Making the most of DTL-BASIC 64,
5.1 Achieving the best performance.
5.2 High speed sprite movement.
5.3 Improved programming style,
5.4 Utilising the extra memory.

-

ad NS D

N

Wy on

OO0 O~ ~d~]

11
11
12
13
14
14
14
15
16
16
1B
18
19
21

23
23
24
25

25

DTL-BASIC 64 JETPACK

6. Compiler Directives.

List of directives.

Integer conversion directives.
Special Integer mode,
Variable list positioning.
Pisabling the stop key.
Special Poke mode,

Inhibiting warning messages.

G OV h O
L] [] L ¥ L
~ TN U e L P

7. Chaining programs.

7.1 Chaining without sharing variables.
7.2 Chaining with sharing variables,

8. Information for users of machine code with Basic,
8.1 Variable list and array list formats.

8,2 Memory map.

8.3 Garbage collection,

8.4 Types of extension handled by the compiler.

Y. Errors.

9.1 Pass 1 errors,
9.2 Pass 2 errors.,
9.3 Run-time errors.
9.4 Warnings.

Appendices.

A. What is a compiler 7

B. Error numbers,

27

27
27
29
30
3]
31
32

33

33
33

35
35
35
35
36

38
38
38
39
40

41

4]

43

Chapter 1 DTL-BASIC 64 JETPACK Page 1

1. Introduction,

DTL-BASIC 64 1is a Basic compiler for the CBM 64. This
manual is for use with DTL-BASIC 64.4 (ie. release 4),
or a later release.

The function of a compiler 1s to convert a program from
its source form (ie. the form in which it is written)
into a more efficient form that can run much faster
than the original,

DTL-BASIC 64 has been specially optimised for the CBM
64 and it not only makes every Basic program a lot
faster but it will also make each program significantly
smaller; except for programs of only a few lines.

DTL-BASIC 64 1s 100% compatible with CBM 64 Basic. This
means that an existing Basic program can be coampiled,
without any alteration, to produce a program that
performs exactly the same, and yet is very much faster
and reguires less memory and disk space.

DTL-BASIC 64 is designed so that it can be used by
people with no programming knowledge to compile
existing programs; and yet for more experienced users a
range of facilities is provided to enable the full
potential of the CBM 64 to be realised.

DTL-BASIC 64 can be supplied either on tape or on disk.
The disk versions will work either on a disk unit
attached to the serial port or with one attached via an
IEEE-488 1nterface.

Note : a more detailed description of the differences
between a compiler and an interpreter is given in
Appendix A.

1.1 Versions available.

Versions of DTL-BASIC are available far the whole range of CBM machines
with the exception of the VIC 20.

For the CBM and SX64 there are three versions -

DTL-BASIC 64 JETPACK (Tape)
DTL-BASIC 64 JETPACK (Disk)
DTL.-BASIC 64 PROTECTOR

The tape version is for use on CBM 64 machines without a disk drive,
ie, with only a cassette tape unit for program storage.

The other two versions are for machines with a disk drive and are
identical except that the PROTECTOR version is for use by software
houses and provides protection for compiled programs against illegal

copy1ng.

This manual applies to all versions and except for where it explicitly
states otherwise the three versions are identical.

Chapter 1

DTL-BASIC 64 JETPACK Page 2

1.2 Purpose of this manual.

This manual describes how to use and operate all the
versions of DTL-BASIC 64,

No attempt is made to teach Basic programming or to
define the Basic language. This is not necessary due to
the high 1level of compatibility with the Basic
interpreter in the CBM and SX64,

1.3 How to use this manual.

This manual is intended for use both by programmers and
by non—-programers.

Before using the compiler all users should read
chapters 2,3 and 4 (covering installation, main
features and operation),.

The operation of DTL-BASIC 64 JETPACK (Tape) 1is
slightly different from the disk based versions and
there are separate sections within chapters 2,3 and 4
specially for the tape based version. This version also
has some limitations when compared to the disk versions
ard these are identified in section 3.6,

It 1s especially important that the user notes the
potentlal problem of disk corruption that can occur
when the replace option 1s used with the SAVE command
(see section 4.10). This is a problem in the DOS in the
disk drive and is nothing to do with the compiler,
However, if the compiler is used on a corrupt disk then
it may appear that the compiler 1is not working
correctly. Therefore, avoid using the replace option
with SAVE.

If the program to be compiled is a single program
consisting solely of standard Basic, ie. not involving
any machine code and does not chain in any other
program then the ramaining chapters can be left until
they are required.

1f two or more programs are chained together then
chapter 7 should be read before compiling; similarly,
if extensions to Basic, machine code or cartridge based
preducts are involved then refer to chapter 8.

Chapter 5 explains how to get the greatest benefit from
DTL~-BASIC 64. |

[t 18 1mportant to realise that, whatever speed
improvament is achieved by compiling a program without
any alteration, it is almost certain that very
significant additional improvements can be gained by
making slight changes. Often, this only involves the
addition of a single compiler directive at the front of
the program. The reasons for this are given in chapter
5 and chapter 6 describes the directives that are

Chapter 1

DTL-BASIC 64 JETPACK Page 3
available. A campiler directive is an instruction to
the compiler stored within the source program.

If any errors occur while campiling or runnmg camplled
programs then refer to chapter 9.

1.4 Major benefits of DTL-BASIC 64.

* compiled programs can run up to 25 times faster in
ideal situations -~ typical improvements are nommally in
the range of 5 to 15 times faster;

* compiled programs are between 5¢% and B@3% of the size
of uncompiled program which means not only that there
is more space for variables and arrays but that
programs will load faster and will need less disk

Space;
* compiled programs cannot be listed or altered;

* the compiler is totally canpatible with all the
features of CBM 64 Basic meaning that a Basic program
can be compiled without alteration;

* the compiler provides true integer arithmetic as well
as floating point arithmetic;

* the compiler is compatible with existing machine code
routines, ie. where a Basic program uses separate
machine code then that code should work with the
campiled Basic program without alteration;

* the compiler can compile programs incorporating
exténsions to Basic; ie. additional Basic statements
implemented by machine onde in ROM or RAM;

* the compiler is especially effective for campiling
games programs involving graphics. This is because
special attention has been paid to making the
statements used to control sprites as fast as possible,
A special directive is available to facilitate fast
sprite movement (see sections 5.1 and 5.2);

* great flexibility is offered to the programmer who
produces scophisticated suites of programs, For example,
the start address of the variable list can be defined
by the programmer and when chaining several programs
then the variables may, or may not be, shared between
the separate programs as required by the programmer., By
sharing variables time can often be saved by not having
to re-lcad information fram disk;

* DTL-BASIC 64 has 1its own garbage collection routine
which takes less than a second (on the interpreter
prograns involving a lot of string processing can
experience long delays due to the slow garbage

collection routine);

Chapter 1

DTL-BASIC 64 JETPACK Page 4

* a facility is provided to ease the transportation of
programs from other machines to the CBM and S$X64. This
enables PEEK/POKE addresses to be automatically
adjusted without changing every statement. This can be
very useful in many situations, eg. when a program
POKEs data directly to the screen.

Chapter 2

DTL-BASIC 64 JETPACK Page 5

2. Installation of DTL-BASIC 64.

2.1 Contents,

Your copy of DTL-BASIC 64 Jetpack should consist of :

- a DTL-BASIC 64 Jetpack campiler disk
- this manual
- a securilty key (not necessary for tape)

2.2 The security key.

The security key is a device designed to protect Drive
Technology's copyright, It is only by protecting the
preduct well that such a sophisticated product can be
made available at such a low price,

There are two keys available, one can be installed on
the cassete port with the lettered side facing
upwards,this is for use with the (BM 64; and another
which locates in joystick port 2, this would be used on
either the CBM or 58X 64 which does not have a cassette
port.

If the key is not present, or is not fitted correctly,
then when the compiler is run the machine will be
reset, 1le, the screen will revert to the state after

power up.

2.3 Making backup coples.

2.3.1 Disk

Before using the campiler for the first time it is
essential to make at least one copy. This protects you
in case your disk becomes corrupt for any reason.

Always use the copy disk and store the original in a
safe place.

versions,

The procedure for making a copy of the compiler disk on
a single drive disk unit is

- format a spare disk by means of a NEW command, eq.

OQPEN 15,8,15
PRINT 1%, "“N@:DTL-BASIC,C1"

Note : make sure that the identifier ("C1l" in this
example) 1s not the same as the compiler disk
identifier, ie. is not "64". -

- txansfer the six files from the compiler disk to the
copy disk; the six files are -

DTL-BASIC

DTL-BASIC-E (for use with DAM's IEEE cartridge)
RTL-64

DTL-BASIC-=-MC

Chapter 2

DTL-BASIC 64 JETPACK Page b

DTL-BASIC-MCE (used with a DAM's IEEE cartridge)
ERROR LOCATE

The procedure for coopying a file from one disk to
another is -

- insert the disk containing the file in the disk unit
~ load thé file to be copied with a LOAD comnand, eg.
LoaD “DTL-BASIC",8

~ remove the disk and replace with the second disk

- save the file with a SAVE comnand, eq.

SAVE "DTL-BASIC",8

The procedure for making a copy on a dual drive disk
unit is

OPEN 15,8,15
PRINT 15, "Dl=¢"

ie, Duplicate drive @ onto drive 1.

Chapter 3

DTL~-BASIC 64 JETPACK Page 7

3. Main features of DTL-BASIC 64 Jetpack.

3.1 Requiraments.

The tape version requires a standard CBM 64 plus a
cassette tape unit. The other versions reqgulre a
standard CBM 64 plus a disk drive (either a single or a
dual drive), or a standard SX 64.

The compiler can make use of a printer but one is not
essential.

Neither the compiler nor compiled programs use a ROM
cartridge s0 that the user is free t¢o use cartridge
software together with compiled programs, although in
some cases the cartridge programs may relocate and
conflict with the compiler,

3.2 The compilation process.

DTL-BASIC 64 1s complementary to the CBM Basic
interpreter due to its total compatabilty. This means
that programs can for convenience be developed and
debugged on the interpreter and when working can be
conplled for maximum speed and to reduce program size.

It is usual before campiling to make sure that the
program works on the interpreter. DTL-BASIC 64 does
make thorough checks for exrors both at compile time
(ie, whilst the program is being compiled) and at run-
time (ie. when the campiled program is being run) but
it is more convenient to detect and correct errors on
the interpreter, rather than the campiler,

The compilation process involves :
- loading and running the compiler;

- telling the compiler the name of the scurce file; ie.
the file containing the program to be campiled;

- telling the compiler the name for the object file;
ile., the file to be created by the campiler to held the
compiled program;

- oompilation is a two pass process; on the first pass
the source file is read a line at a time and a sami-
compiled version of the program is written to a work-
file. On the second pass the work-file is read back,
additional information is added and the object file is
created. Note that for DTL-BASIC 64 T the work-file is
held in memory in the area unused by Basic.

After the compilation is camplete the work-file is
deleted, and the object file may then be loaded and

run, or another program may be compiled.

Note that, for the disk based compilers, because the

Chapter 3

DTL-BASIC 64 JETPACK Page 8

program 1s never totally held within the campiler there
is no limit to the size of program that can’ be
conplled, Any program that will run on the interpreter
should be able to be compiled. For the tape based
version there is a limit on the size of program that
can be compiled - see section 3.6,

If required, the compiler can produce a listing of the
program and/or a report of any errors found.

In addition to the cowpiled program the compller
produces a file [N-name (where ‘name' 1s the name of
the compiled program). This file is not involved 1n
running the compiled program but is only needed if the
program has run~time errors (eg. DIVIDE BY ZERO ERROR)
that were not found before compilation - see chapter 9.

3.3 The run~time library,

The run-time library (file RTL-64) is a set of machine
code routines that must be in memory whilst a compiled
program is run,

It is not necessary for the user to load this file as,
every time a compiled program runs, the program first
checks to see whether the run-time library is in memory
and, 1if 1t 1is not, then it will load the (file
automatically from either disk or tape, ie. from
wherever the program was loaded. This means that the
disk or tape from which the first compiled program
program is loaded after power up should contain a copy
of RTL-64,

The run-time library is just less than BK bytes in size
but in order to avoid using up the valuable space
within the Basic area, ie. the 38K available to Basic,
the run-time library is stored outside this area 1In
some of the RAM that would otherwlise be unused.

For the benefit of machine code programmers, the run-
time library is stored in the 8K from SAGA9 to SBEFF
which 1s an area of RAM that cannot be directly
accessed from Basic. This leaves the 4K of accessible
RAM at SC0¢3 {ie. RAM that can be accessed via SYS,PEEK
and POKE) free for machine code and/or data (see
sections 8.2 and B.3).

3.4 Combining Basic and machine code.

Many Basic programs utilise machine code subroutines to
perform tasks that are not possible or are difficult in
Basic. With the greatly improved performance provided
by DTL-BASIC 64 it is possible to replace many machine
code routines with Basic code.

However, there will always be situations where same
machine code is desirable, DTL-BASIC 64 has been

Chapter 3

DTL-BASIC 64 JETPACK Page 9

especlally designed to ensure that in the vast majority
of cases machine code that works with a Basic program
on the interpreter will also work without alteration
with the compiled program. This is possible because the
canpiler preserves precisely the same format for page
zexo, the variable list, the array 1list and string
storage etc,

This means that machine c¢ode that, for example,
searches the variable list for a particular variable or
sorts a string array, will still work with a program
compiled by DTL-BASIC 64.

Further details are given in chapter 8.

3.5 Extensions to Basic.

One very useful feature of CBM machines is the way that
it is possible for additional features to be added to
the Basic by means of machine code routines either in
RAM or ROM (eg. ROM in a plug-in cartridge}.

DTL-BASIC 64 has features that enable programs using
such extensions to be compiled and run successfully
even though the compiler does not know the details of
the extensions. This means that programmers are free to
use extensions to Basic and are still able to obtaln
all the benefits of caupilation.

This is possible because when the compiler checks the
syntax " of a statement then if it cannot recognise the
first character of the statement (ie. 1f the character
does not start with either a legal keyword or an
alphabetic character) the compiler assumes that the
statement is wvalid but is an extension to standard
Basic,

The compiler embeds the text of the extension statement
in the campiled program exactly as it occurs in the
source program, precedes it by a special code arxd
follows it by a SYS call to the run-time library. When
the program is run and the run-time library detects the
speclal code, it sets up the page zero pointers to the
extension statement and calls the interpreter to
process it. The interpreter processes the statement as
though 1t was 1in a normal program and invokes the
additional machine code to implement the statement.
When the machine c©ode routine returns control the
interpreter cbeys the S5YS call and re—-enters the run-
time library.

The whole process can work because the machine code
finds the: variable and array lists etc, exactly as it

expects,

See chapter 8 for further information as to how
extensions (and SYS calls with parameters) are handled.

Chapter 3

CTL-BASIC 64 JETPACK Page 10

3.6 Tape version - facilities available.

The tape based version of the compiler provides a

subset of the facilities of the disk based compilers.

The main restriction is the size of program that can be
canpiled. This is because the whole program is held in
mamory during compilation which means that the largest
program that can be compiled by the tape based version
1S 12K bytes (ie. 12288 bytes). If an attempt is made
to compile a program that is too large then the
compiler will stop and give an error message,

The only other restrictions are that the directives
VL,RO and VN cannot be used with the tape based
canpiler (see chapter &) and the control file facility
cannot be used (see section 4.9).

Chapter 4

DTL-BASIC 64 JETPACK Page 11

4. Operation of DTL-BASIC 64.

4,1 How to run the compiler.

4.1.1 Disk versions.

The compiler disk actually contains two separate
coanpilers; one for simgle drive disk units (eg. the
1540 or 1541 units) and one for dual drive disk units
(eg. the 4040). The dual drive compiler will work with
drives attached to the serial port or with drives
attached via an 1EEE-488 cartridge.

When the dual drive compiler is used then the compiler
disk must be in drive @ and the program to be conpiled

mist be on the disk in drive one,

There are two ways of using the single drive compiler,
The first is to copy the program to be compiled onto
the same disk as the compiler {ie. by use of LOAD and
SAVE comnands). The second 18 to load and run the
canpiler and then remove the compiler disk and replace
it with the disk holding the program to be compiled,

If there are a number of programs on the disk it is
worth checking that sufficient free space exists for
the compiled program and for the work-files used by the
campiler, These files will be deleted at the end of the
compilation but will require space until then. As a
rough guide the free space available should be at least
equal to the size of the source file for the dual drive
canpiler and at least twice the size of the source file
for the single drive compiler.

It is possible to find the amount of free space by
displaying the disk directory, ie. type the commands

LLOAD “$",3

and when READY is displayed type

LIST

the size of each file and the free space on the disk
are given in terms of the number of blocks (a block is
256 bytas}.

If there is not enough free space some files will have
to be deleted (after being copied to other disks),

Before running the compiler first fit the security key
to the cassette interface (lettered side upwards) and
then type

LOAD "DTL-BASIC",8

for the single drive compiler

Chapter 4

4,1.2 Tape

DTL-BASIC 64 JETPACK Page 12

or
LOAD "DTL-BASIC-E",8

for the dual drive compiller;

ard when READY 1s displayed type.
RUN

There will be a pause while the two files (RTL-64 and
either DTL-BASIC-MC or DTL-BASIC-MCE) containing
machine code are loaded to memory.

version,

Throughout these instructions 1t is assumed that the
user will obey instructions from the operating system
to press keys on the tape unit, ie. the messages

PRESE PLAY ON TAPE
PRESS RBCORD & PLAY ON TAPE

will not be explicitly mentioned in this manual.

To load the compiler first put the compiler tape in the
tape unit and type

LOAD "DTL-BASICY
and when READY is displayed type

RUN

If this 1s the first time that the compiler has been
run since powering up the machine then there will be a
delay while the file "RTL-64" is loaded.

If this is the first time that the compiler has been
run since powering up the machine then there will be a
further delay while the file "DTL-BASIC-MC" is loaded.

Having once used the compiler then as long as the
machine 1s not turned off then the files RTL-64 and

DTL-BASIC-MC will remain in memory (in the area unused
by Basic) and will not have to be re-loaded when the
conpller is next run,

Chapter 4

DTL~-BASIC 64 JETPACK Page 13

4.2 Canpilation options.

The compiler will display the following list of options

source file
object file
print source
print errors
print stats
run identity

SO IR SECRRIG U BN
']
503

plus a set of commands selected by the function keys.

Each option field that is input is teminated by RETURN
or F1 (function key 1).

Type the name of the source file.
Type the name of the object file,

Unless any printing 1is required then the campilation
may be started by F3.

If printing is required then change the relevant "n's
tﬂ llyll .

1f "print source ?% is "y" then the whole program will
be printed during the compilation.

If "print errors ?" is "y" then any error messages will
also be printed,

If “print stats 2" is "y" then at the end of the
campllation some statistics will be printed giving the
relative sizes of the source and object files.

If any printing 1is selected the oontents of "run
1dentity"” will be printed at the start of the listing
to serve as an identification, eg. it may be convenient
to put in the date or time etc. so that when several
listings of the same program are kept then the correct
sequence can be determined. The "run identity" field
can be left blank 1f required.

The PROTECTOR version of the compiler has one
additional option to those listed above, ie.

key identity ? :

this specifies the key that is to be used with the
canpiled program; the possible inputs are -

"t - for the compiler key

n_-u

r ~ for the run-time key
the serial number - for a software house key

Chapter 4

DTL-BASIC 64 JETPACK Page 14

4.3 Function keys.

4.4 Campllation.

As mentioned earlier F1 moves on to the next option and
if there are no more options when it is pressed the
compllation will start,

Alternatively as soon as both the source and object
files have been named then F3 can be used to start the
compilation immediately.

If the user cannct remember the name of the source file
then F5 can be used on the disk based versions to
display a list of all the program files on the disk.

If it is realised that an option has been input wrongly
then F2 can be used to restart at the beginning.

If program to be campiled is on a different disk then
F4 can be used to allow the disk to be changed without
reloading the compiler.

F6 can be used to exit from the compiler without
perfomming a compilation,

4.4.1 All versions.

When the compllation has started then if any printing
is to be performed the campiler checks that the printer
is ready. If it is not the message

kkkk FIX PRINTER ****

1s flashed on the screen. The user can either select
the printer or press space to continue without
printing.

Note that on some machines there is a problem with the
VIC 1515 printer that causes the system to hang up. If
this occurs then it is necessary to turn off the
printer and turn it back on again. At least one line of
printing may be lost because of this.

During campllation the progress 1s reccorded on the
screen by displaying the number of the line heing
processed. y

If the compiler detects any errors in the source
program an error message will be displayed either on
the screen or on the printer. If a number of errors are
found then, when the screen is full of error messages
the compilation will pause s0 that the lines in error
may be noted before campilation resumes,

As well as error messages it is possible for warning
messages to be displayed. These occur when the campiler
believes that it has detected an extension to Basic but

Chapter 4

DTL-BASIC 64 JETPACK Page 15

may have found a syntax error. The reason for this is
explained in section 9.4.

At the end of compilation counts of the numbers of
error and warning messages are displayed and the
compilation statistics are output.

4.4.2 Tape version.

The tape based versions of the compiler requires some
additional operations by the user.

After the compilation options have been specified the
message

ENSURE TAPE CONTAINING "source file name"
[S IN TAPE UNIT

PRESS SPACE TO CONTINUE

is displayed and the compiler tape may be rewound and
ramoved., The tape that contains the program to be
compiled should then be installed in the tape unit,
When SPACE is pressed then the compilation will start.

When the program has been compiled the message
PRESS STOP ON TAPE UNIT

ABOUT TO CREATE "object file name"
ENSURE CORRECT TAPE IN TAPE UNIT

PRESS SPACE TO QONTINUE
is displayed.

The user now can leave the existing tape in the tape
unit, in which case the compiled program {(the object
file) will be written to the tape immediately behind
the uncompiled program (the source file).

Alternatively, the existing tape may be removed and
replaced by a blank tape; in this case the compiled
program will then be the first file on that tape.

In either case make sure that the STOP key 1s pressed
on the tape unit before SPACE is pressed.

After the compiled program has been written to tape the
user 1s asked

CREATE LINE NUMBER FILE ?

ie, should the compiler create a Line Number file (the
LN file). If the answer 1s "y" then the LN file will be
written to tape following the compiled program. This
can take some time for a large program so that it may

Chapter 4

4.5 Compilation

4.6 Termination

DTL-BASIC 64 JETPACK Page 16

be best to only create an LN file if it 1s needed, ie.
if the compiled program gives a run-time error (see
chapter 9). The IN file is used by the ERROR LOCATE
program to find the line number upon which the error
occurred,

statistics.

The compilation statistics produced at the end of the
compilation give the sizes of :

~ the source program
~ the object program
~ the object file

The slzes are given in terms of the number of bytes and
also in terms of the number oOf blocks and the number of
bytes in the last block (a block is 256 bytes), eg.

SOURCE PROGRAM SIZE - 4253 (16,157)

1e, 4253 bytes is 16 blocks plus 157 bytes (which would
require 17 blocks of disk space). ..

The program sizes are the amounts of memory occupied
when the program is run. The two sizes can be compared
to see what size reduction has been achieved.

The object file size exceeds the object program size
because the file normally holds both the program and
the variable list. By comparing the file size with the
program size, the size of the variable list can be
determined. Note the the variable list holds all the
normal variables but not the arrays. The arrays are
created dynamically at run-time,

options.

If any errors were detected during compilation then the
object file is not created and the source file will
have to be editted to correct the errors before it can
be compiled.

If there were no errors the the user has three optians
- o key "C" to complle another program;

- to key "L" to load and run the program that has just
been compiled;

- to press any other key to exit from the compiler;

Note that if the tape version 1s being used then the
option to compile another program is especially useful
as it enables a number of programs to be coaupiled
without having to reload the compiler. Also, the
facility for automatically loading the compiled program
should only be used with the tape version 1if the

Chapter 4 DTL-BASIC 64 JETPACK Page 17

compiled program is the first one on the tape. If this
is not the case then exit from the compiler and 1load
the canpiled program by means of a LOAD commard,

Chapter 4

DTL-BASIC 64 JETPACK Page 18

4.7 Operation of compiled programs.

Operation of compiled programs is 1dentical to that for
uncanpiled programs, ie., compiled programs are simply
LOADed and RUN just like uncompiled programs.

Compiled programs should perform exactly like
uncompiled programs - 1if they do not then refer to

section 4.10.

The first time a compiled pregram is run after the CBM
64 has been turned on there will be a delay while it
loads the file RTL-64. Each subsequent time that a
canpiled program is run then there will not be a delay
because the program will detect that RTL-64 1is already

in memory.

If a compiled program has been loaded from tape and
RTL-64 is not in memory then when the program 1s run 1t
will load RTL-64 therefore either RTL-64 should be on
the same tape or the tape will have to be changed for
one which contains a copy of RTL-64.

CONT cannot be used with compiled prograns. SYS 2061
should be used instead of CONT.

When a compiled program is stopped then variables and
array elements can be printed on the screen {for

debugging} as with interpreted programs.

4.8 Making copies of compiled programs.

If it is required to move a compiled program to another
disk use LOAD and SAVE as for uncomplled programs, eg.

LOAD "program name" ,8
change disk
SAVE "program name”,8

Note that a compiled program should not be SAVEd after
it has been run. De not forget that a copy of "“RTL-64"
15 normally needed on each disk contalning compiled

programs.

Coples of compilled programs on tape can be made in a
similar manner, eg.

LOAD “program name"
change tape
SAVE "program name"

Complled programs on disk may also be copied to tape by
means of LOAD and SAVE. Do not forget that any program
that may be run immediately after power up should be

Chapter 4 DTL-BASIC 64 JETPACK Page 19

followed on the tape by a copy of "RTL-64".

To save time when using programs loaded from tape it
may be convenient to have one program that 1s loaded
and run whenever the machine is turned on. This program
should be followed on the tape by "RTL-64" and then all
other compiled programs need not contain RTL-64 on the
tape since whenever they are run “RTL-64" will already
be 1n memory.

If programs being copied involve chaining or have a
separate variable list (see section 6.4 and chapter B8)
then do not forget to copy the VL file (refer to last
paragraph of 6.4 before copying the VL file). Note that
the order of files on tape should be

- the compiled program

- RTL-64 (this file is optional)

- the VL file {(eg "vl-abcd" where "abcd" is the name of
the compiled program) |

4.9 Special operation features.

There are two special features designed to make the
operation of the campiler even easier,

The first is invoked if the source file name has the
last four characters equal to “-src". In this case the
object file name will be generated automatically, eq.

if the source file name 1is
"abed-src"
then the compiler will call the object file

“atx:dil
This feature can best be used by renaming all source files to have the
"-src" suffix as this will ensure that the compiled programs will then
have the name that the user is familiar with. This is especially useful
when program chalning is used (ie. when one program LOADs another
program) as otherwise the LOAD statement within the program would have
to be altered.

The second speclal feature is available only on the disk based versions
and can be used when a number of programs on the same disk are to be
compliled. Rather than compiling each program separately a control file
can be used to give the compiler a list of the programs to be campiled.
The programs will then be compiled without any further action by the
user.

A control file is a normal file that has the last four characters equal
to "-con", eqg. "campile-con".

A control file is created and editted in the same manner as a pProgram

Chapter 4 DTL-BASIC 64 JETPACK Page 2¢

file and consists simply of a list of file names. Each file name should
be on a separate line and the first character of each line should be a

quote character (").

The first file name should be the name of the first source file to be
compiled amd the second file name should be the name of the
corresponding object file. The next file name should be the name of the
second source file to compile and so on . . .

I€ the "-src" option is used the the object file name is omitted.

eqg. A typical control file could be -

190 "filel"™
20 "cfilel"
36 "file2"
49 "cfile2"

50 "test-src"
(the trailing quote on each line is optional)
In this case three compilations will occur, 1ie,

"filel" will be compiled to give "cfilel"
"file2" will be canpiled to give "cfile2"
"test-src" will be compiled to give "test™

To start the compilation the name of the control file should be given
instead of the source file name, The printing options selected (and the
key option for the PROTECTQR version) will apply to all compilations.
If a printer 1s available then it 1is recommended that the option to
print errors should be selected to ensure that any errors are not lost.

Chapter 4

4.19 Problems ?

DTL-BASIC 64 JETPACK Page 21

If a compiled program does not appear to be rumning
exactly like the interpreted version it is likely that
the Special Integer mode must be selected. This is done
by means of the SI directive which is explained in more
detail in section 6.3,

I1f the machine is reset to the power up state when the
compiler is run then check that the security key is
fitted correctly,

If the compiler stops during compilation when the 1515
printer is in use then refer to section 4.4.1.

If a compiled program using either the VL ox RO
directive at the start of the program crashes when rxun
then check that the VL file 1is present on the disk,
Check also that the VL file has not been renamed.

If a program using a VL file does not work after being
copied onto a disk or tape then check that the first
variable in the program has only a single character
name (see section 6.4).

A camplled program should not be SAVEQ to create a new
copy once it has been RUN,

1f the compiler stops during a compilation on the 1540
or 1541 drives with a 'NO CHANNELS ERROR' or halts with
an error indicated on the disk drive the reason is
actually a read or write error. The wrong error message
is due to a bug in the DOS within the disk drive that
means that when an errxor occurs then 1f further
characters are read or written before a test for an
error 1is made then the wrong error message 1s
generated. The compiler cannot check for an error after
every character 1s read or written because this would
slow down disk i/o by a factor of three or four.

If the °'NO CHANNELS ERROR' occurs on a drive that
normally does not give any trouble then it is likely to

" be for one of two reasons. The first is that it is

simply a bad disk that should be replaced by one of
better quality. The second reason is that the disk may
have been written on a different drive (eg. a 4¢40)
that 1s apparently campatible. Although such disks can
be read on a 1540 or 1541 they do appear to be more
susceptible to errors than ones written on the same
drive, If this 1s the case make a new copy of the disk
on the drive upon which the compilation it to take
place,

The 1540 and 1541 can also corrupt files on occasions
so take care to have copies of all files and use
VALIDATE frequently to ensure that the disk is in a
good state. If a program becomes corrupt then perform a
VALIDATE and copy the file from a backup. Avoid using

Chapter 4

DTL-BASIC 64 JETPACK Page 22

the replace option (@) with the SAVE comand as its
repeated use c¢an cause corruption, Instead, when
editing a program then SCRATCH the old copy and use
SAVE without replace to create the new file,

Same Basic programs are ‘patched' in a special way by
the programmer s¢ that after loading they will run
auvtanatically, ie. without RUN being typed. Such a
program cannot be compiled directly but 1f the un-
patched program is compiled then 1t ought to be
possible to apply the patch to the compiled program.

Uncompiled programs can load campiled programs but Lt
1s not possible for a compiled program to directly load
and run an uncampiled program via a LOAD statement
within a compiled program, However, this will work if
the LOAD statment 1s obeyed outside the program. One
way of doing this 1s shown 1n the following sequence
which will load the uncompiled program “TEST".

1080 PRINT “<cls><home>LOAD “CHRS (34)"TEST"CHRS (34)",8"
1018 POKE 198,6:REM SET BUFFER LENGTH

1820 pATA 19,13,82,85,78,13:REM <home><cr>RUNLCR>

1030 FOR I=1 TO 6 :READ X: POKE 630 + I,X :NEXT

1340 NEW

{cls> is the clear screen character

<hane> is the hame character

Some Basic programs POKE the address of the start of
variables (45,46 decimal} to move the variables higher
up the memory. Such POKEs are not necessary in compiled
programs and may cause the program not to work (see
section 6,4 and chapter 7).

Chapter 5

DTL-BASIC 64 JETPACK Page 23

5. Making the most of DTL-BASIC 64 Jetpack.

5.1 Achieving the best performance.

Any program that has been compiled without any
alteration to the socurce file will run significantly
faster than on the interpreter. However, it 1s very
likely that by making one or two simple changes that
considerable additional improvements can be achieved.

The reason for this 1s that DTL-BASIC 64 supports
integer arithmetic as well as floating point
arithmetic, Integer operations are used for all
operations when both operands are integer, This applies
to all arithmetic, logical and relational operations.

Integer arithmetic is many times faster than Eloating
peint, and to achieve the best performance as much use
of integer arithmetic should be made as possible,

It 1is important to realise that, although the
interpreter supports integer variables, it does not do
any integer arithmetic, All integers are converted to
floating point before any arithmetic operation., For
this reason few existing programs make extensive use of
integers,

Obviously, when writing new programs that are to be
compiled, integers should be used as much as possible,

In order to save a user the trouble of having to work
through and edit an existing program to change real
variables to integers, DTL-BASIC 64 provides a way of
autanatically changing either all variables to integers
or certain specified variables. This 1is achieved by
means of the CS5 and CE directives which are described
fully in the next chapter.

All the user has to do is work through the program and
decide which varilables have got to be floating point;
ie, any variables which may hold a value greater than
32767, less than -32768, or which needs to hold numbers
with a fracticnal part, cannot be integers. All other
numeric variables can be converted to integers and the
speed up improvement can in some cases be dramatic,

The overall speed improvements that can be achieved can
vary considerably between different programs, There are
three main reascons for this :

- when a program is performing I/0 (input/output) then
the program can spend most of its time waiting for the
peripheral, eg. disk or printer., This waiting time can
be so great that even 1f the statament processing time
is many times faster, the overall speed improvement
will be not nearly so great;

- the performance of a program on the interpreter can

Chapter 5

DTL~BASIC 64 JETPACK Page 24

depend tramendously upon how the program 1is written.
For example, a routine at the front of a large program
can run several times faster than a similar routine at
the end of the program. wWhen oompiled, both routines
will take the same time, but the relative speed up
factors will vary considerably.

- some programs have to do a lot of floating point
arithmetic, eg. statistical programs and ones making
extensive use of the trig functions (SIN, COS etc.).
Such programs cannot make as much use as normal of
integers. However, there will almost always be soane
variables that can be converted, eg, variables used to
access arrays.

5.2 High speed sprite movement.

One common situation where high performance is required
1s whan moving sprites 1in game and graphics
applications, or when POKEiIng characters directly to
the screen. It 1s worthwhile paying particular
attention to the POKE statements involved and
especially those that are obeyed many times,

For example a typical statement might be
POKE G + 3, YP

where G could hold 53248 (the address of the display
chip)

Such a statement oould be moving a sprite, and may be
in a FOR loop, and will probably be obeyed many times,
In a compiled program the time for the floating point
addition will far exceed the time to do the POKE. A far
faster version would be to place a statement outside
the loop such as

GA =G + 3
and change the statement in the loop to
POKE GA, YP%

However, this is still not as fast as can be achieved,
because GA is a floating peint variable, and each time
the statement 1s obeyed it has to be converted to
integex, which again takes much longer than the POKE.

GA cannot simply be made integer because 53248 is too

big. DTL-BASIC 64 has a feature to overcome this
problem called Special Poke mode which is controlled by
the SP and NP directives (described in section 6.6).

Special Poke mode enables an offset to be applied to
all subsequent POKEs and PEEKs. In this case the offset
will be 53248 so that each POKE can now use an integer.

Chapter 5

DTL-BASIC 64 JETPACK Page 25

This means the earlier statements can becone -
GA% = 3

outside the loop and

POKE GA%,YP3%

inside the loop.

Such minor changes can- -have a dramatic effect on the
performance of programs making extensive use of PEEKsS
and POKEs,

Note also that disabling the stop key can also give a
small additional performance improvement - see section
6.5).

5.3 Improved programming style.

One benefit of using DTL-BASIC 64 which 18 not
immediately obvious is that 1t is possible to write
programs that are easler to understand and to modify,

The reason for this is that, in order to get the best
performance on the interpreter it 18 necessary to
anploy techniques that are bad programming practice,

eq.

- not using many REM statements;

- using each variable for many tasks (to reduce the
time spent searching the variable list);

- putting several statements on each line (to reduce
the time spent searching for line numbers);

- placing the most frequently used statements at the
front of the program,

These techniques (and others) can speed a program up oOn
the interpreter a certain amount but they do lead to
programs that are almost i1ncomprehensible.

1f a program 1s to be compiled, then none of these
techniques are necessary, and the programer can
concentrate upon producing well structured, clearly
understandable programs. This saves programming time in
the first place, and when a program is later modified
then the task is much easier,

5.4 Utilising the extra meamory.

When a program is compiled then the reduction in size
of the program can be considerable, This means that it
can often be worthwhile increasing the size of arrays

Chapter 5

DTL-BASIC 64 JETPACK Page 26

to utilise the extra space, or to keep more information
in memory to reduce the amount of disk I/0 required.

However, it is always convenient to be able to run the
same program on the interpreter when debugging, and if
arrays are larger, or i1f there are more arrays, then an
‘out of memory error' 1is possible., A simple way round
this 1s to make the program detect whether it 1s
compiled or not and to act accordingly. The way to do
this is to check the first byte of the first line of
the program. In a compiled program this byte will
always be a SYS token (158 decimal), eq.

Place the following statement near the start of the
program -

CP% = 0 : IF PEEK {2053) = 158 THEN CP% = 1
CP% can then be tested easily when required, eqg.

A% = 1008 : IF CP% <> @ THEN A% = 2040
DIM X(A%)

Chapter 6

DTL-BASIC 64 JETPACK Page 27

6. Campiler Directives.

A compiler directive is an instruction to the compiler
stored within the source file. The directives have the
form of a REM statement so that a program containing
directives may still be run on the interpreter, The
format of a directive is

REM ** (directive id> <directive text>

This format has been chosen to minimise the chance that
an existing REM will be seen as a directive by the
compller.

<directive 1d> is a two character identifier.

{directive text> is additional information {not always
present) - see the individual directive descriptions.

Most directives can only occur at the start of the
program (ie. before any non REM statements) and will be
ignored elsewhere 1in the program., However, some
directives can occur anywhere in the program and these
are indicated by an asterisk (*) in the list below,

The directives VL,RO and VN are not available on the
tape based version.

6.1 List of directives.

Directive Name

CS Convert Specified (for integer conversion)
CE Convert Excluding . (for integer conversion)
SI ‘Special Integer mode

VL, Variable List address

RO Root program (for chaining)

VN Variable Name file (for chaining)

DS Disable Stop key *

ES Enable Stop key &

sp Special Poke mode *

NP Notmal Poke mode *

NW No Warning messages

The directives RO and W are described in chapter 7.

6.2 Integer conversion directives.

These directives are used to tell the compiler which
tloating point variables and arrays are to treated as
integers.

CS means Convert all the Specified variables to
integers

CE means Convert all the floating point variables to

"integers Excluding those listed in the directive,

Chapter 6

DTL-BASIC 64 JETPACK Page 28

The CS or CE should be followed by a list of variable
names in brackets with the names separated by commas,

eg.

REM ** CS (Al,Z%,X2,X3)

maans oonvert all references to the names Al,2Z,X2,X3
to integer, ie. the program will be campiled as thougn
the variables were Al%,27%,X2%,X3%.

REM ** CE (Il,I2,I3)

means convert all floating point variables to integer
except 11,12 ard 13.

REM ** CE ()

means convert all floating point variables with no
exceptions,

Note that both arrays and variables are converted, eg.
in the first example, if there is a variable Al and an
array Al then both will be converted.

The compiler will generate an error message 1if an
integer already exists with the same name as a
converted variable, In such a case it is possible to
specify that the variable name is to be changed during
conversion, egd.

REM ** CS (X,Y => Y¥%,2)

will convert X and Z to X% and 2% respectively; but ¥
will be converted to YY%,.

REM ** CE (A,B => B1%,C)

will convert all variables except A and C; B will be
converted ard will become B1%,.

Note:

- that when changing name during conversion, the first
character of the two names must be the same;

-~ CS and CE directives cannot hoth be used in the same
program;

~ there may be more than one CS or CE directive in a

program, but the number of named variables cannot

exceed 129;

Even for new programs there may be a need to use the CS
or CE directives, because the interpreter does not
allow 1nteger FOR variables, even though in most
prograns FOR variables only ever hold integers. If it
is required to debug the program on the interpreter

Chapter ©

DTL-BASIC 64 JETPACK Page 29

floating point variables must be wused 1in FOR

statements. When the program is compiled then CS or CE
statements can be used to convert the FOR varlables to

integers. This will enable the best performance to be
obtained.

6.3 Special Integer mode,

Special integer mode is selected by the directive

REM ** SI

This mode only affects the result of divide and
exponentiation operations on lnteger operands.

The reason for this directive 1s that the compiler
cannot always be sure what the programmer intends for
these operators, when both operands are Integer. This
is because the nomal action for the coanpiler to take
when both operands are integer, is to perform an
integer operation, because {as has already be
explained) such operations are very much faster than
floating polint, With most integer operations there is
no problem, but for divide and exponentiation the
result can have a fractional part.

Consider the statement
At =B} / 2 * 4

now if B% = 3 then if an integer divide is used the
answer will be 4, but 1f a floating point divide is
used the answer will be 6,

On the 1interpreter the answer will be 6, because all
operations are floating peoint. For compiled programs in
normal integer mode the answer will be 4, because in
most situations when using integers the programmer
expects integer operations and they are much faster,

However, occasionally, this can cause the compiled
programs to work differently from the uncompiled
program, In such cases the use of special integer mode
will overcome the problen, ie, 1t will force the
compiler to always use floating point arithmetic for
divide and exponentiation.

Chapter b6

DTL-BASIC 64 JETPACK Page 30

6.4 Variable list positioning {(disk versions only).

Normally the compiler places the variable list
immediately behind the program, and the variable list
1s loaded together with the program from the object
file. This 1s usually precisely what is required.

In some situations there may be a need to position the
variable 1list higher in the memory, to leave space
between the end of the program and the start of
variables. Such space could for example be used for
sprite data. '

The VL directive can be used to achieve this and takes
the form

REM ** V[, <{gized>

where <size> is the size in bytes of the area between
the start of the program and the start of the variable
list, On the CBM 64 a Basic program starts at address
2049 ($0881 in hex) so that, for example, if the
directive

REM ** VL 15000

i3 used, then the variable list will be placed at
absolute address 15000 + 208493, which is 17049. If the
program occuples 10456 bytes (obtained from the
canpilation statistics) then the free space between the

program and the variable list will be 15000 - 194504,
ie. 4550 bytes.

When the VL directive is used then the variable list
will be stored in a separate file called "“WL-ABCD";
where "ABCD" 1s the name of the program., The Eirst time
the program is run the VL file will automatically be
loaded to the correct address. On subsequent runs of
the program the file will not be loaded as the program
will detect that it is already in the memory.

Sane programs utilise POKEs to locations 45 and/or 46
to set the address of the variable list. Such POKEs are
redundant in compiled programs. If a program does POKE
different values to 45,46 from those set by the
canpiled program then problems are likely to occur.

If a program is involved in chaining and shares
variables with other programs, then the VL directive
should not be used because the RO directive achieves
the same result.

Note that a problem can occur when copying a VL file to
another disk or to tape. When the VL file is LOADed to
mamory prior to a SAVE, the system can corrupt the
file. This occurs because 1t thinks the VL file 1s a
program, The problem will not occur 1if the first
variable used in the program has a single character

Chapter 6

DTL-BASIC 64 JETPACK Page 31

Name .

6.5 Disabling the stop key.

The directive

REM ** DS

disables the stop key, whilst
Rm % ES.

enables the stop key,

when a program is RUN the stop key is initially
enabled.

Programs run slightly faster with the stop key
disabled.

On the interpreter the stop key is tested on every
statement. For compiled programs in order to save time
the stop key 1s only tested on NEXT and IF statements.

Wwhen a program uses LOAD to chain in another program,
or to load some machine code etc, it is a good idea to
disable the stop key for the duration of the load,
because if stop is pressed in the middle of a load then
the program probably will not be able to be restarted
with a SYS 2¢61 (the compiled equivalent of CONT).

6.6 Special Poke mode.

Special poke mode allows an automatic adjustment of
POKE (and PEEK) addresses from those specified in the
program. There are a variety of situvations where this
can be convenlent, eg.

- to avoid the use of floating point and thus improve
performmance (see 5.2 for an example of this)

- when a program has been developed on another machine
for which the POKE addresses are different. This 1is
most likely to be useful in programs that make many
POKEs to the screen area which is at $8008 on most
other CBM machines but is at address $#48¢ on the CBM
64.

Special poke mode is enabled by the directive
REM ** 5P

and disabled by

REM ** NP

Before enabling the mode it is necessary to define the
adjustment to be made. This is done by POKEing a value

Chapter 6

DTL-BASIC 64 JETPACK Page 32

{while in normal mode) to location 41628, when special
poke mode 1s enabled this value will be exclusive-ORed
with the high byte of the address used in any POKE or
PEEK statements.

For example the statement
POKE 410@28,208

sets the value to 208 (SD@ 1in hex). Now since the
display chip starts at address 53248 ($DUBY) in hex)
then'when the special mode is enabled by

REM ** Sp

a subsequent POKE such as

POKE 3,YP%

will actually write YP% to 53248 + 3 (SD@@3).

As another example, suppose a program written on
another machine with the screen at $8000 hex was to be
run on the CBM 64 (where the screen 1s at $0408), and
the program POKEs information directly at the screen.

To handle this case the special poke mode value should
be $84 ({132 in decimal). This is because the result of
exclusive-0ORing $80 with 584 is $€4., The easy way to
think of it is, a bit set to one in the poke mode value
inverts the corresponding bit in the address, whilst a
zero leaves the corresponding bit the same,

Therefore, in order for the POKE statements to work on
the CBM 64, all that is necessary is to put

POKE 410828,132
REM ** SP

at the start of the program after whatever POKEs are
required to select the colour desired,

6.7 Inhibiting warning messages,

When a program uses extensions to Basic (see section
3.5) then for each extension a warning message 1is
normally generated. Such warnings can be inhibited by

the use of the directive

REM ** NW

Chapter 7 DTL-BASIC 64 JETPACK Page 33

7. Chaining programs.,

The term chaining 1S used to describe the practice
where one program loads another program on top of
itself by means of the LOAD statement, After the load
the new program runs automatically.

If a set of programs utilising chaining are to be
conpiled then there are two possible courses of action.
The programs can elther be cmnplled to share varilables
or not to share variables.

Sharing of variables occurs when a program 1is written
to access variables set up by a previcus program, ie,
the variables and arrays are preserved when the program
is changed.

Some chained programs do not share variables and in
such cases each program will normally start with a CLR
statement to get rid of the existing variables.

One common practice when chalning 1s for the first
program in the chain to POKE values into locations
45,46 which hold a peointer to the start of variables,
This 1s done to leave space for later programs in the
chain which are larger than the first. Such POKEs are
not necessary for compiled programs, and may in fact
cause the program not to run. In such cases, the
statements can either be removed, or made conditional
upon whether the program is compiled or not by using
the technique described in section 5.4.

7.1 Chaining without sharing variables,

In this case no special action is necessary in addition
to possibly removing same POKEs as mentioned above.

Each program 15 simply compiled as normal and each
object file will contain its own variable list as well
as the compiled program,

7.2 Chaining with sharing variables (disk versions only).

If variables are to be shared then the use of the
directives RO and VN are necessary., This 1s necessary
so that when each program is compiled the compiler can
be made aware of the variables used in the other
programs.

The first program in the chain should start with the
directive

REM ** RO (size>

where the function of <s1ze> 1s the same as for the VL
directive (see section 6.4 - all points made about VL
also apply to RO), ie. it defines the size of the
largest program in the chain and thus the position for

Chapter 7

DTL-BASIC 64 JETPACK Page 34

the variable list. Note that it is a good idea for the
value of <{size> to exceed the largest program size by a
certain amount to allow for program modifications,

The RO directive tells the compiler that it is
canpiling the root program of a chain and has the
effect that, at the end of the compilation a W file
will be created that records all the variable and array
names used and the addresses allocated to them, A VL
file will also be created holding the variable list.

The name of the VN file will be "VN-<name>" where
<name> is the name of the root program,

All the other programs involved in the chaining that
are to share variables should start with the directive

REM ** VN "<name>"
where <name> is the name ¢f the compiled root program.

The effect of the VN directive is to cause the compiler
to read in the specified VN file containing all the
variable names and addresses.

At the end of that compilation, if the program used any
new variable names, a new W file will be created -that
includes the new names,

When the root program is run the VL file will be loaded
to the address defined by the RO directive. The program
may then be overwritten by other programs as many times
as required and each will share the same variable list
that will remain in memory the whole time,

Note that there is one restriction on programs that
contain the RO and VN directive, and this is that DIM
statements must exist for all arrays that are
dimensioned in that program, ie. arrays without DIM
statements will not be automatically dimensioned to
have 11 elements, The compiler will give an error
message for any array which does not have a DIM
statement and which did not occur in the W file read
in at the start of the compilation.

To summarise, the first program in the chain should
include a directive such as

REM ** RO 22000

where the largest object program in the c¢hain does not
exceed 22080 bytes, All other programs that may be
chained and share variables, should include a directive

REM ** YN “MENU"

where "MENU" 1s the root name,

Chapter B

DTL-BASIC 64 JETPACK Page 35

8. Infomation for users of machine code with Basic.

Many Basic programs utilise machine code. The machine
code may held in RAM or ROM (eg. it may take the form
of a plug in cartridge). In general such machine code
will work unchanged with programs compiled by DTL-BASIC
64. This chapter aims to provide enough information so
that a programmer using machine code together with
Basic c¢an ensure that the program works as intended.

There are several ways of getting machine code into
memory, eg.

- loading from a file to SCPOG - SCFFF;

~ loading from a file to top of Basic memory;
-~ via a plug in ROM chip;)

- via POKE statements from code stored in DATA
statements to an area outside the program;

- via POKE statements from code stored in DATA
statements to an area within the program

(eg. to a REM statement);

Of all these techniques problems are only likely with
the last one (because REM statements are removed by the
canpller). Machine code must be stored outside of the
compiled program.

8.1 variable list and array list formats.

Many machine code routines access the variable and
acrray lists to pass data to, and from, a Basic program.
DTL-BASIC 64 Jetpack creates lists in exactly the same
formats and using the same page zero pointers as the
interpreter. This means that the machine code routines
should work without alteration,

There are just a couple of points to watch out for,

The first is that it is possible for the order of
variables in the 1list to differ from the order of
variables when the program 1is run under the
interpreter. The variables will be in the order that
they occur in the source listing rather than the order
in which they are referenced at run-time.

The second point concerns the array list; again the
order of entries may be different and there will be one
additional array. This will be the first array in the
list and its name consists of two null characters so
that a routine searching for a particular array will
work correctly.

The extra array 1is used by the cowpiler to keep track

of the addresses of the xest of the arrays as they are
created (because their sizes are not always known at

conpile time) and consists of a 4 byte header plus two
bytes for each array used in the program.

Chapter 8

.2 Memory map.

DIL~BASIC 64 JETPACK Page 36

The areas of RAM used by compiled programs are
Address Use

S0000 to $SP808 - as for interpretar (see note below);

50800 to $9FFF - holds the compiled program, variable
list array list, and strings organised
as for interpreter;

SAOB0 to SBFFF - holds the run-time library (loaded
from file RTL-64);

S5COP0 to SCFFF - unused;

5D@BY to SFFFF - used by Garbage Collection
{see B.3);

Note that the only byte in the area $000¢ - $08006 used
by a compiled program for a purpose different from the
interpreter is SO2FF which holds the flag to indicate
that the file RTL-64 1s loaded. A value of 3564
indicates that the file is loaded; any other wvalue
means that it will be loaded automatically when the
next compiled program is run,

Note also that the run-time library has to be located
at SaABP8 to S$BFFF so that the only machine code
routines that cannot work with a compiled program 18
one that uses this area of RAM.

8.3 Garbage collection,

Garbage collection is the process of reorganising the
string storage to recover unused space, The GC routine
in ROM can be very slow.

The run—time library contains its own QC routine that
is very fast. This routine works by copying all the
strings out of the string area to the normally unused
ROM area at SD@BB to SFFFF, and then copying the
strings back in a collected form.

Normally machine code will be located in the area $C009

to $CFFE (which 1is not used by the compiler). If a

program requlres more space than this for machine code
then all that is necessary is to adjust the size of the

area used by GC by adjusting its polinters. These
pointers are :

SAQG40,41 - address of start of GC area

5A042,43 - address of end (top) of GC area

Chapter 8

DTL-BASIC 64 JETPACK Page 37

If GC finds that there is not enough space for all the
strings then it will make several passes collecting a
portion of the strings each time. In such a case the
time for GC will increase a little but will still be
many times faster than the GC routine i1n ROM. Note that
the area defined by the two pointers above must be at
least 512 bytes in size otherwise the GC routine in ROM
will be used, This last point means that if an add on
product requires all the RAM from $CO8Q2 to $FEEF then a
compiled program will still work correctly provided
that 1t sets the size of the GC area (via the two
pointers described above) to less than 512 bytes,

Note that a machine code routine entered by a SYS call
cannot directly access the two pointers, as, on entry
to the routine the Basic interpreter will be mapped
into SAQQF to SBFFF instead of the run-time library.
The routine will have to adjust the 6510 memory
management registers itself, or alternatively the
pointers can be set from Basic (Basic PEEX anmd POKEs
access the run-time library rather than the
interpreter).

8.4 Types of extension handled by the compiler.

There are three ways in which extensions are added to
Basic and ALL will work with DTL-BASIC 64. The three
techniques are

- additional statement type starting with a non-
alphanumeric character;

- additional statement types starting with an unused
token (le. with a new keyword);

- 5YS calls with parameters; ie. additional parameters
following the address that are processed by the machine
code routine; |

The only restriction on the use of extensions is that
they should not include a colon character (":") other
than at the end of the statement. Also, if an extension
based on additional keywords is used, then listings
produced by the compiler will not print the new
keywords correctly.

Chapter 9

9. Errors,

DTL-BASIC 64 JETPACK Page 38

The compiler performs exhaustive checks while compiling
a program and reports all errors found. Errors can be
found during both Pass 1 and Pass 2. In addition,
further checks are made while the compiled program 1s
run to detect errors that cannot be found at compile
time.

If any compile time errors occur then the object file
is deleted by the campiler to ensure that the errors
are corrected before the compiled program is run.

There are three types of errors that can occur

Pass 1 errors;

Pagss 2 errors;

Run-ti1me errors,

In addition warning messages can occur during Pass 1

9.1 Pass 1 errors.

Pass 1 detects most errors because it checks the syntax
of each statement. When an error is detected an error
message 1s output following the line at which the error
was detected. The message contalns an error number and
also indicates the position in the line at which the
error was detected.

Note that the error may be before the point indicated.
This is because an error cannot always be detected
immediately, eg. in an expression, a missing bracket
will normmally not be apparent until the end of the
expression.

Appendix B contains a full list of the error numbers
and their meanirgs.

9.2 Pass 2 errors,

The main errors that can be found during Pass 2 are

undefined line numbers; ie. a GOTO or GOSUB to a line

nunber that does not exist.

The error message is siﬁply the line number containing
the error followed by a "U" to indicate an undefined
line number is referenced from that line, eq.

23510 U

In addition, at the end of pass 2 an error 41 can occur

Chapter 9 DTL-BASIC 64 JETPACK Page 39

if it is found that an array is used in a program
containing a VN or RO directive for which no DIM
statement has been compiled (see section 7.2).

9.3 Run-time errors,

When a compiled program runs, the run-time library
continually checks for errors and the following errors
can occur

- NEXT WITHOUT EOR
~ RETURN WITHOUT GOSUB
- QUT OF DATA

- ILLBGAL QUANTITY
- QVERFLOW

- OUT OF MEMORY

- BAD SUBSCRIPT

- REDIM'D ARRAY

~ DIVISION BY ZERO
= STRING TOC LONG
- FILE DATA

The above error messages are the same as those used by
the interpreter. The interpreter detects additional
errors not in the above list {(eg. syntax error) but the
compiler will find these errors at compile time,

The meaning of the above errors are exactly the same as
for the interpreter errors, Therefore, refer to the
Commodore manual if the meaning is unclear.

The one difference between the run-time errors from
compiled programs, and from interpreted programs, is
that the compiled program gives the address of the
statement containing the error rather than it's line
number, A special program called ERROR LOCATE is
provided to enable the line number to be found,

The procedure 1is

-make a note of the address of the error;

-load and run ERROR LOCATE;

-when requested, key in the program name (ie. the name
of the object file) and later the address of the error.
ERROR L[OCATE will display the line number of the

statement containing the error.

Note that the above procedure will only work if the LN
file for that program exists on the disk.

Chapter 9

9.4 Warnings.

DTL-BASIC 64 JETPACK Page 40

Warning messages occur when the compiler has detected
an extension to Basic (see section 3.5) to notify the
user that an extension has been found. The reason for
doing this is, that if a syntax error occurs at the
start of a statement, the compiler will treat it as an
extension to Basic rather than an error (there is no
way that the compiler could separate the two cases).
Therefore if warnings occur for lines on which the
programuer did not use an extension then an error must
exist.

Warning messages can be directed to either the screen
or the printer along with any error messages, and a

count of the warning messages 1s output at the end of
the compilation.

If a program frequently uses extensions to Basic then
many warnings will occur and in such a case the
programmer may not require them, Warning messages can
be turned off by the use of the No Warning directive at
the start of the program. In this cases no warning
messages will be produced but a count will still be
generated (see section 6.7).

Appendix A DTL-BASIC 64 JETPACK Page 41

Appendix A what is a compiler ?

This Appendix tries to outline the main differences between a compiler
and an interpreter,

The first point to realise is that a compiller and interpreter are
trying to achieve the same end, ie, they are both trying to provide a
way of running a pregram, They both have to perform a similar set of
tasks it i1s just that these tasks are performed at different times,

Consider what has to be done to 'run’ a program. A program consists of
a set of statements and each statement is simply a sequence of text
characters. The program is intended by the programmer to define an
algorithm, ie. it defines how a problem is to be solved or how a
particular task is to be performed. The algorithm is defined in temms
that are meaningful to the programmer but not very meaningful to the
computer,ie. in termms of variables, operators, functions and line
numnbers etc.

The main tasks that have to be performed on each statement before a
program can be run are

1. the type of the statement must be recognised;
2, the syntax of the statement must be checked;

3. for each variable name detected then the list of variables must be
searched to see if the variable has been allocated an address, if not
an address must be allocated;

4. for each reference to a line nunber (in a GOTO or a G:}SUB) the
address of the line must be determined;

5. for each expression the operator priority rules have to be applied
and any brackets taken in to account in order to determine the order of
evaluating the expression;

6. any non executable parts of the program such as spaces or comments
(REM statements in Basic) must be skipped and ignored;

7. finally the statement has to be obeyed.

Both compilers and 1interpreters have to perform all the above tasks
(and others); the difference is when the tasks are performed, This is
important because most statements in a program are executed more than
once and often many times. An intepreter performs the above tasks every
time that a statement is executed ard this means that the same work can
be repeated many times. Such repetition is obviously wasteful and can
be very time consuming,eg. a large program can have several hundred
variables so that each time a variable 1s referenced a long search may
be required. A compiler avoids such wasteful repetition by processing a
program and converting 1t to a different form, In this way each of
tasks 1 to © above are performed once only for each statement and only
task 7 must be performed many times, Tasks 1 to & are performed when
the program 1is campiled and only task 7 need be performed every time
the program is run.

Appendix A DTL-BASIC 64 JETPACK page 42

With an interpreter a program exists in only one form,ie. the text that
the programmer has written. With an compiler the program has two forms

~the text form;
~-the converted form;

To distinguish between the two the text form 15 normally called the
source code and the converted form the object (or binary) code. The
object code for a statement normally contains addresses where the
sonrce c¢ode has variable names and/or line numbers. Similarly
expressions are noxmally re-ordered to cater for operator priority and
brackets etc, Also all redundant information such as spaces,REMS and
line numbers etc. is omitted and complex statements are normally broken
down to a number of simple steps.

It should be clear fram this that by pre-processing (ie. complling) a
program a campiler can make the program run much faster but obviocusly
the compilation process takes time. The advantage of an interpreter is
that when a program is being frequently changed (eg. when it is beirg
debugged or modified) the source can simply be edited and the program
re—run, With a conpiler the program must first be re-compiled before a
change can be tested. The two techniques are thus complementary;
interpreters are best during the program development phase, but once a
program is working, a compiler is superior because it gives the best
program performance.

Appendix B OTL-BASIC 64 JETPACK Page 43

Appendix B Exror Numbers
ERROR CAUSE OF
NUMBER ERROR
1 syntax error
2 wrong type of operand
3 no 'TO' where one expected
4 illegal array subscript
5 no ')' where one expected
6 no ' (' where one expected
7 no ',' where one expected
8 no ';' where one expected
9 no 'THEN' or 'GOTO' where one expected .
19 no 'GOTQ' or 'GOSUB' where one expected
11 no 'FN' where one expected
12 constant too big (either > 255 or < d)
13 expression too complex
(shouldn't occur if program 18 OK on Interpreter)
14 syntax error in expression
15 too many '}'s
16 illegal operator in string expression
17 type mismatch
18 " illegal statement type (CONT or LIST)
19 program too big

(shouldn't occur for disk based versions
if program 1s OK on Interpreter)

29 a function name must be real

22 FOR variable cannot be an array element

23 wrong number of subscripts

24 integer too big

25 negative number illegal

26 cannot set ST,TI,DS or DS$

27 function variable must be real

28 no function where one expected

29 no operator or separator where one expected
30 type mismatch in relational expression

31 no line number where one expected

32 no operand where one expected

33 illegal CS or CE statement

34 bracket missing from CS or CE statanent

35 too many conversion variables (> 128)

36 error in CS or CE;no ',' or '=>' after name
37 error in CS or CE;no '%' where one expected
38 converted name clash in CS orx CE

40 no '=' wvhere one expected

41 default array found in overlay

42 too much DATA text (maximun amount of DATA

text 1s approximately 8508 bytes for the single drive
compller and 650¢ bytes for the tape compiler - there is
no limit for the dual drive compiler)

Appendix B DTL-BASIC 64 JETPACK Page 44

DTL BASIC USER REGISTRATION CARD

NAME:
COMPANY :
TITLE: | DEPARTMENT:

ADDRESS:

TELEPHONE:
COMPUTER TYPE: DISK y/n: TAPE y/n:
PRINTER TYPE:
POTHER PERIPHERALS:
DATE OF PURCHASE:
FROM:
HOW DID YOU LEARN ABOUT DTL-BASIC 64: DEALER y/n:
RETAILER y/n:

ANV ERTISEMENT 1in:

WHAT PARTICUOLAR FEATURES QF DTL~-BASIC MOST IMPRESSED YOU:

WHAT FEATURES WERE YOU DISAPPOINTED WITH:
SIGNATURE:

Please fill in the above and register with us as a user of DTL BASIC 64
JETPACK so that we may inform you when improvements are made to the
product.

Return this form to: DATAVIEW WORDCRAFT LTD,
RADIX HOUSE,
EAST STREET,
COLCHESTER,
Q0L 2XB.
ENGLAND .,

DTL-BASIC 64 Application Note

. —— . RN g i . — g —— ol il S S S N G SEny S S g S S . -

LR I L W

There is a problem that can occur in programs compiled by DTL-BASIC 64
that use the RS§232 port. This application note describes the problem,
explains the cause and how the problem may be avoided.

The problem i3 that during RS232 cperations the characters recieved or
transmitted may become garbled. This effect can apparently occur randomly
after a period of correct operation.

The problem occurs if a garbage collection c¢peration occurs whilst there
are characters in one of the RS§232 buffers.

Garbage collecticn 15 an coperation performed pericdically by the operating
system to tidy up the area of memory used to hold strings. The frequency
of garbage collection depends upon the the amount of free memory (used to
hold temporary strings) and the amount of string processing performed by
the program. For some programs garbage collection may cccur very
frequently which means that the use of the R5232 will almost always go
wrong unless special steps are taken to aviod the problem,

The reason why garbage collection (GC) causes problems is that compiled
programs use a special GC routine that is very fast (see section 8.3 in
the manual). However this routine uses RAM that is 'kehind' the kernel
ROM, Whilst this RAM i3 switched in the ROM i1s not accessible. The kernel
ROM holds the timer interrupt routine so the GC routine has to turn
interrupts off whilst it is acessing the RAM., This means that occasional
“timer interrupts may be delayed. -- e .

A delayed timer interrupt 1s normally not a problem unless RS232
operations are 1n progress as the RS8232 driver routines use timer
interrupts to control the baud rate. For this reason GC can cause the baud
rate to be inaccurate which causes characters to be garbled !

The simplest way of avoiding the problem 1is to turn off the fast GC so
that the standard CBM GC routine will be used. The way of doing this is
described in section 8.3 of the manual. The problem with this is that for
some programs the CBM GC routine can be very slow.

Another technique is to force a GC before using the RS232 port by issuing
a PRE. This will work fine as long as there is not another GC before the
R5232 buffer has emptied. Whether this will happen depends upon the amount
of free memory, the amount of string processing and the baud rate.

The amount of string processing may be reduced by minimising the amount of
string arithmetic that can occur whilst RS232 transfers are 1in progress;
eg, instead of a PRINT statement that includes a complex string expression
{which will generate a number ¢of temporary strings) it is better to
¢alculate the string earlier and set the result in a variable,do a FRE and
then PRINT the variable.

The baud rate affects the problem because if a slow cne is being used then
i1t may take several seconds to empty the RS5232 buffer. 1If this is the case
then after an RS232 operation it may be best to insert an appropriate

delay to give the buffer time to empty.

	000
	00i
	00ii
	00iii
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	an

