




•• 

TABLE OF CONTENTS 

INTRODUCTION • • • • • • • • • • • • • • • • 1 

SYSTEM REQUIREMENTS • • • • • • • • • • • • • 2 

DI-SECTOR MAIN MENU • • • • • • • • • • • • • 3 

OPTION A: PROTECTED BACKUP • • • • • • • • • 5 

OPTION B: UNPROTECTED BACKUP • • • • • • • • 6 

OPTION C: FILE BACKUP • • • • • • • • • • • • 6 

OPTION 0: DISK SECTOR EDITOR • • • • • • •• 7 
COMMAND 1: EDIT SECTORS •• • • • • •• 7 
COMMAND 2: DISPLAY BAM • • • • • • • •• 9 
COMMAND 3: SEND DOS COMMAND • • • • •• 9 
COMMAND 4: RETURN TO MAIN MENU. • • •• 9 

OPTION E: FORMAT EDITOR • • • • • • • • • •• 9 
* COMMAND SUMMARY * ...•...... 10 
COMMAND C: CREATE DISK BRRORS • • • •• 10 
COMMAND T: CHECK TRACK FOR ERRORS • • • 11 
COMMAND W: CHECK WHOLE DISK FOR ERRORS 

• • • • • • • • • • • • • • • • • • • • 11 
COMMAND R: REPAIR TRACK OF READ ERRORS 

• • • • • • • • • • • • • • • • • • • • 12 
COMMAND F: FORMAT A DISKETTE • • • • • • 12 
COMMAND B: BLOCK IDENTIFIER UTILITY • • 12 
COMMAND P: SOFTWARE WRITE PROTECT A 

DISK • • • • • • • • • • • • • • • 15 
COMMAND U: SOFTWARE UN-WRITE PROTECT A 

DISK • • • • • • • • • • • • • • • 15 

OPTION G: MACHINE LANGUAGE MONITOR · . . . ., 17 
Notation Conventions • Monitor 1n 

Documentation • • • • • • • • • • • 17 
Summary of StarMon Commands • • • • • • 19 
SET MEMORY • • • • • • • • • • • • • • • 20 



F ILL MEMORY • • • • • • • • • • • • • • 
TRANSFER MEMORY • • • • • • • • • • • • 
MEMORY DISPLAY • • • • • • . • • • . • • 
INTERPRET ASCII ••.••••• •.•• 
HUNT MEMORY • • • • • . • • • • • • . • 
COMPARE MEMORY • • • • • • • • • • • • . 
ASSEMBLE • . • • • • • • • • • • • • • • 
DISASSEMBLE • • • • • • • • • • • • . . 
UNDEFINED OPCODE DISASSEMBLY • • . . • • 
ASSEMBLE A SINGLE LINE • . • . • • . • • 
GO • • • • • • • • • • • • • • • • • • • 
JSR . . . • • • . • . . . 
REGISTER DISPLAY • • • • . 
SET REGISTERS ••• • . • 
OPERATE • • • • • • . • • 
LOAD • • • • • • • • • • • 
SAVE • • • • • • • • • • • 
DOS WEDGE • • • • • • • • 
BASE CONVERSION/MATH • • • 
EXI T • • • • • • • • • • • 

• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 

OPTION H: RENUMBER DRIVE • • • • • • • • • • 

OPTION I: QUIT- RETURN TO BASIC • • • • • • • 

* DI-SECTOR V3.0 CREDITS * • • • • • • • • • 

RECOMMENDED READING . • • • • • • • • • • • • 

RECOMMENDED WARES • • • • • • • • • • • • • • 

RECOMMENDED LISTENING • • • • • • • • • • • • 

MOST GLAMOUROUS MEMORY LOCATIONS • • • • • • 

* COMPUTER MEMORY LOCATIONS * • • • • • 

* 1541 JOB QUEUE COMMANDS RUNDOWN * • • 

* 1541 JOB QUEUE ERRORS RUNDOWN * • • • 

* 1541 JOB QUEUE LOCATIONS RUNDOWN * • • 

* 1541 MEMORY LOCATIONS * • • • • • • • 

21 
21 
22 
23 
23 
24 
25 
26 
26 
27 
27 
28 
28 
29 
29 
31 
31 
32 
33 
33 

33 

34 

34 

37 

38 

39 

40 
41 
41 
42 
42 
42 

APPENDIX A: 6502 UNDEFINED OPCODES •••.. 43 

INTRODUCTION 

Welcome to the world of disk utilities. This 
DI-SECTOR diskette contains many disk util
ities which represents over two years of hard 
work inside of the 1541 drive. This version 
of DI-SECTOR itself is credited with one full 
year of work. With all of this research & 
development we feel that we have created the 
best disk utility for the Commodore 1541 disk 
drive to date. 

DI-SECTOR V3.0 is fully menu driven, and 
contains many disk utilities for the beginning 
and advanced Commodore user. It contains a 
protected and unprotected disk copier for both 
1 and 2 disk drives, an easy to use file 
copier to transfer individual files between 
diskettes, a sector editor which allows 
individual sectors to be repaired or modified 
in HEX, ASCII, and assembler a full featured 
machine language monitor for both the computer 
and the disk drive, which supports undefined 
opcodes, indirect searching, etc, a format 
editor which has many advanced utilities such 
as creating/repairing disk errors, a block 
identifier utility which allows viewing of the 
latest protection schemes and a new Art's 
backup which copies the latest 
Electronic Arts (tm) games. 

MAKING BACKUPS & PIRACY 

The DI-SECTOR diskette is 
many reasons. One of which 

1 

not protected for 
is that we (the 



- - - ----,_ .. _. , 

producers) feel that you (the customer) have a 
right to a backup of your diskette in the 

-
case that it is damaged. We recommend that 
you make a backup of the DI-SECTOR diskette 
before you start using it, and put it in a safe 
place in the case of an emergency. You can 
backup the DI-SECTOR diskette with the 
unprotected disk copier (option B). 

We also feel that the protection of diskettes 
has gotten out of hand. Ever since the 
introduction of DI-SECTOR V2.0 there has been 
mass confusion on both sides of the protection 
wars. The vendors make protection that the 
current copiers can't copy, and the copy 
program vendors all race to copy the latest 
protection schemes. Copy protection is very 
expensive and time consuming; not only does 
it raise the price of the programs, but it 
delays the release as well. 

The only way that lack of disk protection will 
work is if people only use the backup copies 
for themselves, and not give them to other ,. 
people. 

SYSTEM REQUIREMENTS 

OI-SECTOR is compatible with the C-64 & C-128 
computers, with 1 or 2 disk drives. 

Assorted modules of the DI-SECTOR utility 
achieve their speed through the re-writing of 
the disk operating system (DOS). The modules 
that do this can only be used with Commodore 
1541 disk drives and COMPATIBLES. The follow-

2 

• • 1ng 1S a 
considered 

partial list of drives 
"compatible drives": 

that are 

TRUE COMPATIBLE WITH 1541 NOT TRUE COMPAT. 
---------------------------- ----------------
Commodore 1540, 1541, & 1571 
Comtel Enhancer 2000 
Indus GT disk drive 
Most "copy cat" drives 

MSD SO-l & SD-2 
Comm. SFD-1001 
Comm. 4040 
Hard disks 

will work with 
"non-true-compatible" drives. The following is 
a list of the modules, and their specific 
requirements: 

of the modules Some 

DI-SECTOR MODULE 
---------------------------
Option A: Nibble Backup 
Option B: Unprotected Backup 
Option C: File Backup 
Option 0: Sector Editor 
Option E: Format Editor 
Option F: Art's Backup 
Option G: STARMON Monitor 
Option H: Renumber Drive 

REQUIREMENTS 
---------------
True compat. 
True compat. 
All disk dri "es 
All disk drives 
True compat. 
True compat. 
All disk drives 
True compat./MSD 

Note: When using a C-128, you must be in C-64 
mode. 

Dr-SECTOR MAIN MENU 

The DI-SECTOR main menu allows 
of the many "sub-programs" 
system. To load the main menu 

LOAD ":*",8,1 [RETURN] 

3 

you to load any 
in the DI-SECTOR 
simply type: 



After a few 
with a menu 
at the bottom 
& destination 

moments, you will 
of the available 

of the menu, the 
drive settings. 

be presented 
options and, 

current source 

If the source & destination drive settings 
are acceptable, simply type the letter (A-I) 
that corresponds to the module you wish to 
load. 

If a single disk drive is present, it will be 
used as both the source and destination 
drive. If a second disk drive is available, 
then it will be chosen as the default dest
ination drive. 

If you do not wish to use the 
destination settings, you 
with the following keys: 

default source & 
may change them 

[Fi] increment source device number 
[F3] decrement source device number 
[FS] increment dest. device number 
[F7] decrement dest. device number 

Devices not present on the serial cable are 
displayed in light red. Pressing the [RETURN] 
key will restore the source and destination 
default settings. 

The SECTOR EDITOR, FORMAT EDITOR, STARMON, & 
ART'S BACKUP modules will default to the 
source drive for all I/O operations. 

Note: Pressing 
to look at the 

the left-arrow key allows you 
DI-SECTOR cover screen. 

4 

OPTION A: PROTECTED BACKUP .. 

This module allows you to backup protected 
diskettes, and should be used for duplicating 
commercially protected software. 

* COMMAND SUMMARY * 

[C] Begin copy process 
[0] Directory of diskette 
[B] Boot DI-SECTOR diskette (return to menu) 
[Q] Quit- Return to BASIC (warm start) 

If desired you may change, the beginning & 
ending track number and the track increment by 
pressing [RETURN] to move the cursor to the 
respective prompt and typing the appropriate 
numbers. The numbers accepted are 0-40; half 
tracks are allowed. 

Press [C) to begin the copy process, and you 
will be prompted to insert the appropriate 
disk(s). When using a single drive, five 
read/write passes will be required with a 6th 
required for disks needing parameters. You 
will be prompted to insert the required disks 
when necessary. If using 2 drives, no disk 
swapping will be required. 

Note: The parameters for a disk will be 
activated when using 1 drive only. If you 
wish to copy disks that need parameters (see 
enclosure), copy the disk using a single 
drive. 

Another Note: 
nibbler will 

When copying with 
"bump" the head of 

S 

2 drives, the 
the secondary 



drive for calibration purposes the first time 
it is used. 

OPTION B: UNPROTECTED BACKUP 

This module allows you to backup unprotected 
diskettes. This program should be used for 
copying your own programs, public domain 
disks, or disks that aren't protected; it 
will copy an entire disk in the fastest time 
possible. 

When using a single drive, 3 read/write passes 
will be required to duplicate the disk, and 
you will be prompted to swap disks when 
appropriate. Duplication with two drives 
requires no disk swapping and is considerably 
faster. 

Note: When copying with 
will "bump" the head of 
for calibration purposes 
used. 

2 drives, the copier 
the secondary drive 

the first time it is 

,-

This 
files 

[R] 
[CRSR 

OPTION C:FILE BACKUP 

option is used 
from diskette to 

for copying 
diskette. 

* COMMAND SUMMARY * 

individual 

Read directory of diskette 
KEYS] Move red "X" cursor around 

6 

[SPACE BAR] select/de-select file to be 
copied 

[A] Reverse file select status of 
all files 

[C] Copy selected files 
[S] Scratch selected files 
[F] Format a diskette 
[Q] Quit- Return to main menu 

Note: This file copier will copy a file of any 
length, even files larger that 64k long. In 
order to achieve this, the program uses 
the "append" command which may allocate an 
extra sector of the disk. Because of this, 
you may wish to validate the destination disk 
(DOS "V" command) after duplicating an extr-
emely large file, (over 200 blocks.) 

OPTION D: DISK SECTOR EDITOR 

This module allows 
mation about an 
point you are 
of 4 items: 

the user to display infor
individual disk. From this 

presented with a sub-menu 

COMMAND 1: EDIT SECTORS 

This major portion of the Sector Editor will 
allow you to read sectors, modify them in Hex 
or ASCII and write them back to the disk 
again. This section includes a help screen, 
which can be invoked by typing a questioh 
mark. The full command set is as follows: 

7 

\ 

"" .""""""","",.",.", , " .. " .. " . "-,, -,, _... ... , """ .•.. , 



H 

J 

M 

R 

W 

T 

F1 

F3 

F5 
•• 

F7 

Hex Entry. This allows you to enter 
Hex data. 
Jump. When executed with the cursor on 
the first byte of the sector, will jump 
to the next sector of the current file. 
Monitor. Sends you off into Starmon. 
Return by typing 'x'. 
Read Sector, this will move the 
cursor to the T window, and allow 
you to type in a track and sector. 
When that is completed, the selected 
track and sector will be read. 
write Sector. This will write the 
selected track and sector back to 
the disk after being modified. 
Text Entry. This allows 
enter ASCII text into the 
directly. 

you to 
buffer 

will increment the track 
read the new track/sector. 

pointer and 

will decrement track pointer and read 
the new track/sector. 

number 
If 

Will increment the sector 
read new track/sector • 
sector number is greater 
number of sectors on the track 
track will be incremented 
sector number will be zero. 

than 
then 
and 

and 
the 
the 
the 
the 

will decrement sector number and read 
new track/sector. If sector is less 
than zero then the track number will be 
decremented and the.sector will be set 
to the last sector of that track. 

The screen 
the ASCII 
followed by 

layout during this program includes 
display, the disk status line, 
the HEX display. To the right hand 

8 

side of the screen is the Track pointer, 
Sector poitner, position pointer, and Decimal, 
which is the decimal value of the byte under 
the cursor. 

COMMAND 2: DISPLAY BAM 

This feature will display the 
Map of the disk in the drive. 
un-allocated, while the dot 
sector is used. 

Block Allocation 
A dash mark is 

symbol means the 

COMMAND 3: SEND DOS COMMAND 

Here you can send a valid DOS command or take 
a directory (see apendix C.) 

COMMAND 4: RETURN TO MAIN MENU 

Return to the Di-Sector menu after a brief 
interlude with the cover mess. 

OPTION E: FORMAT EDITOR 

This module quickly formats disks and allows 
you to experiment with disk protection schemes, 
both primitive and advanced. To take FULL 
advantage of some of these options a fairly 
detailed background knowledge of the 1541 i$ 
desired. We recommend reading Inside Commodore 
DOS (see back of manual). 

9 



* COMMAND SUMMARY * 

[C] create disk errors 
[T] Check track for errors 
[W] Check whole disk for errors 
[R] Repair a track of read errors 
[F] Format a diskette 
[B] Block identifier utility 
[P] Software write protect a disk 
[U] Software un-write protect a disk 
[Q] Quit- return to main menu 

COMMAND C: CREATE DISK ERRORS 

This option allows you to create disk read 
errors 20, 21, 22, 23, 27 & 29. Disk errors 
were widely used for disk protection around 
the summer of 1983. Errors are a good way to 
start experimenting with disk protection. 

In order to use the create error utility, 
you simply have to enter the error number you 
wish to create, the track number, and the 
beginning and ending sector numbers. The 
following is a list of errors, the description 
of the errors, along with any comments and/or 
limitations of that error: 

NOTE: Error 21 is a very flaky error to 
write. Any slight deviation of your disk 
rotations speed will cause one sector too many, 
or one sector too few to be written to the 
disk. Do not try to adjust your speed, 
however, just repair the track and try again. 
In most instances it does not matter if you 
write too many error 21s to the track as most 
software protection schemes will not check. 

10 

Also, if you are 
write at least 
that error to any 

writing error 21, you 
FOUR consecutive sectors 
particular track. 

ERROR 20: BLOCK HEADER NOT FOUND 
ERROR 21: NO SYNC CHARACTER 
ERROR 22: DATA BLOCK NOT PRESENT 

MUST 
with 

(must enter data block identifier) 
ERROR 23: CHECKSUM ERROR IN DATA BLOCK 

(must enter data block checksum) 
ERROR 27: CHECKSUM ERROR IN HEADER BLOCK 

(WHOLE TRACK ONLY- must enter header 
block checksum for sector 0) 

ERROR 29: DISK ID MISMATCH 
(WHOLE TRACK ONLY- must enter ID) 

COMMAND T: CHECK TRACK FOR ERRORS 

This option allows you to check any track 
(1-35) for disk read errors. These are the 
same read errors that appear in the previous 
section (COMMAND C: CREATE DISK ERRORS). The 
information that is given is as follows: 

TRACK NUMBER, 
BYTE, HEADER 
CHECKSUM, and 

SECTOR NUMBER, ID HI BYTE, 
BLOCK CHECKSUM, DATA 

ERROR NUMBER if applicable. 

COMMAND W: CHECK WHOLE DISK FOR ERRORS 

ID LO 
BLOCK 

This option simply places the previous option 
(OPTION T: CHECK TRACK FOR ERRORS), in a loop 

• 
checking tracks 1 through 35. If an error is 
encountered on a track, the computer waits for 
a key press before continuing the check of the 
disk. 

11 

\ 



COMMAND R: REPAIR TRACK OF READ ERRORS 

This option repairs read errors on a disk. To 
use, simply enter number of track to be 
repaired (1-35). This utility reads all of 
the data off of the track, re-formats the 
track, and then writes the data back to the 
disk. 

COMMAND F: FORMAT A DISKETTE 

This is just a "simple" 8 second format 
utility, which allows you to format a diskette 
like the DOS "NEWO:" command. This utility 
also allows you to enter a 5 byte 10. The 
first 2 bytes are the standard 10 bytes, and 
the other three bytes are just for show. On a 
"normally" formatted diskette these bytes are 
usually' 2A'. If you only type 2 bytes for 
the 10, ' 2A' will be inserted automatically. 

Note: The first time you format a diskette, it 
will "bump" the head for positioning. Multiple 
fo~mats with this utility, however, will only 
"bump" the head once. 

COMMAND B: BLOCK IDENTIFIER UTILITY 

This is the most "advanced" utility in the 
Format Editor. It was conceived for the sake 
of looking at the newer protection schemes 
that don't use the standard DOS format. This 
means that you won't be shown if their are 
any DOS errors on the disk. This utility is 

12 

ideal for viewing 'ire-defined sector layout" 
protection schemes. Like the Epyx Breakdance 
protection having two sector 3's on track 16. 
Or looking at how track 34 extends to 34.5, 
35, and 35.5 on Electronic Art's protection. 
This utility is also useful in viewing "extra 
sectors", "re-defined block ID bytes" and 
-half-tracking" like OI-SECTOR V2.0's track 
8.5. 

This utility shows the following: 

BYTE RIGHT AFTER 
a $07 it prints 
prints "HEADER" 
where 'x· is the 

SYNC MARK (BLOCK 10)
"DATA", if it's a $08 
otherwise it prints 

byte it found. 

If it's 
then it 

NS (x) , 

THE NEXT 2 BYTES ARE THE 3rd & 4th bytes found 
after the sync mark. These bytes usually 
indicate the track and sector numbers on a 
header block. This is a common thing to 
change on the newer generi'c protection schemes. 

CURRENT DENSITY- The density indic~tor can be 
found on the upper left corner of the screen. 
It shows the current density. It shows up in 
light-red if you indicated a non-standard 
density for that track. You can indicate a 
non-standard density with the [0] command. 

NUMBER OF SECTORS- This 
sectors found on that 
the standard number of 
shows in light-red. 

13 

shows the number of 
track. If it is not 
sectors, this number 

• 



The following is a command summary of the 
Block ID utility. 

[R] Re-read current track 
[D] Change density of track, then re-read 
[?] Keyboard help screen (shows you this 

information) 
[0] Ouit- return to track prompt 

USE THE ARROW KEYS FOR THE FOLLOWING COMMANDS 

[UP] Step head out a full track 
[DN] Step head in a full track 
[LF] Step head out a half track 
[RT] Step head in a half track 

Note: The drive keeps running until you quit 
at the track prompt, and return to the format 
editor. The drive is initialized at this 
time. 

HOW IT WORKS/LIMITATIONS: 
This utility basically waits for a sync mark, 
records the next 5 GCR bytes and records the 
timer values in between sync marks. It does 
this 46 times. After this it converts all of 
the GCR bytes to data. It uses the timer 
values in between sync marks to determine where 
the "start" of the track is (the sector after 
the largest timer value). After this it tries 
to find similarities between the data to find 
the end of the track. with this information it 
assumes how many sectors are on the track. 

There are a lot of limitations in this util
ity. One is if there are sectors with the 
exact same header information for every header 
and data block on the entire track. This means 

14 

that the significant bytes in each 
sector lie after the first 5 GCR bytes. A 
very good example of this is' Datamost's 
Conan. Another limitation is not being able 
to look at multiple densities in a single 
sector, or picking apart a single sector at 
all. 

COMMAND P: SOFTWARE WRITE PROTECT A DISK 

This utility basically is an extension of the 
CREATE DISK ERRORS module. It creates a 
unique error- ERROR 73: CBM DOS V2.6 1541. 
This error is useful for simulating a write 
protect tab on a disk. Even though reading of 
a disk works properly, this error is incurred 
whenever a write to the disk is attempted. 

All 
ID 
$41 

this 
byte 
to a 

option is doing, is 
(track 18, sector 

$40. 

changing the DOS 
0, byte 2) from a 

COMMAND U: SOFTWARE UN-WRITE PROTECT A DISK 

This option "repairs" an ERROR 73 created with 
the previous option, SOFTWARE WRITE PROTECT A 
DISK. This returns both reading and writing 
of a disk back to "normal". 

This option changes the DOS ID byte back to 
$41. 

15 



OPTION E: ELECTRONIC ARTS (TM) BACKUP 

This module allows you to backup Electronic 
Arts (tm) programs. To use this module you 
first copy the original disk with the Nibble 
Backup (option A), and then select this 
option. You then press (F] to fix the backup 
of the disk. You will then be prompted to 
insert disk to be fixed (press [RETURN] to 
continue). At the end of this process (about 
5 seconds later) you will be prompted to 
remove the diskette, and place a write-protect 
tab on it. 

Other options in this module are: 
[D] Directory of diskette 
[B] Boot DI-SECTOR diskette (return to menu) 
[Q] Quit- Return to BASIC (warm start) 

Note: This module works on the principle of 
re-writing the boot so that checks to tracks 
34 & 35 are trapped and ignored. Electronic 
Arts' (tm) protection is written with a double 
wide head on tracks 34 & 35. You can view 
this with the Block Identifier Utility, and 
note how reliable the reading of sectors are 
on tracks 34-35.5 (most disk drives like the 
1541, screw up half tracks when writing 
standard tracks because of the trim heads) • 

The machine the creates these errors 
expensive, and a very good example of 
protection has gotten out of hand. 

16 

• 
1S very 

how disk 

OPTION G: MACHINE LANGUAGE MONITOR 

This option contains a very advanced machine 
language monitor which will allow you to write 
and debug programs of your own creation, or 
those of others. It is well suited to the 
beginner, as well as the advanced user. You 
will be prompted with a menu asking you where 
the monitor should load. You have a choice of 
800 hex, 8000, or COOO. Or you may at this 
time abort to the main menu. The monitor is 
also available from BASIC. The BASIC loading 
versions are loadable at three address for your 
convienience and are called the following: 

MON RUN 
MON 32768 
MON 49152 

To load the loaction $800 
monitor type LOAD "MON RUN",8 
to load the other 
LOAD"filename",8,1 then SYS 
32768) 

version of the 
and the RUN. 
versions type 

addr ( i • e. SYS 

Notation Conventions in Monitor Documentation 

<Numeric> is any of the following: 

Hexadecimal: 
'$' followed 

Examples: 

Decimal: '!' 
Examples: 

consisting of an 
by hexadecimal digits . 

$2020, 3F, $lABD 

optional 

followed by decimal digits. 
!21, !32767, !100 

17 

-----~------.---.------.---.-



Octal: '&' followed by octal digits. 

Examples: &37, &10 

Binary: '%' followed by binary digits. 
Examples: %11001010, %1100 

Operators: Any numeric can include the math 
operators + and -. For instance $100-!25 is a 
valid numeric, with the value of 231 decimal. 

<start-address> 
between $0000 and 

• 
1S any valid <numeric>, 
$FFFF. 

<end-mark> is a <numeric> is the 
end of a memory range. It can be 
either an address or a comma 
<numeric> length. 

address of the 
indicated with 
followed by a 

Example: M 8000 8100 or M 8000,100 
will display both display $100 byte of 

memory beginning at location $8000. 

<byte> is a <numeric> between 0 and $FF or 
text that is inside of quotes, which will 
ge~erate one <byte> per ASCII charactor. 

Examples: $34, 20, !100, or &37. 
Example of text: "ABCD" which generates the 
bytes $41 $42 $43 $44. 

<device> a 
between 0 
first disk 

valid 
and 15 

drive. 

<numeric> device 
decimal usually 8 

number 
for the 

Note that operands in braces 
optional, and will default to 
depending upon the command. 

18 

( and ) are - -various values 

Starmon has 6 command classes: Memory, 
Assembler, Execution, Register, Redirection, 
File manipulation, and Miscellaneous. 

Summary of StarMon Commands: 

Memory Commands 
: Set Memory 
F Fill Memory 
T Transfer Memory 
I Interpret as ASCII 
H Hunt memory 
C Compare memory 

Assembler Commands 
A Assemble bytes 
o Disassemble bytes 
U Undefined opcode disassembly 

Execution Commands 
G Go 
J JSR 

Register Commands 
R Register Display 
* Register Modify 

Redirection Command 
o Operate 

File Commands 

Misc 

L Load 
S Save 

Commands 
X Exit 
= Base conversion/Math 
@ Dos Wedge 

19 



Commands that operate on memory 

The following commands allow you to display, 
and modify memory: 

: (set memory) -Fill memory -Transfer -Memory display -Interpret memory as ASCII -Hunt for pattern. -Compare memory. -

[SET MEMORY] 

: <start address> <byte> .<byte> <byte> ••• 

The set memory command 
memory at start address 
are given on the command 

will begin modifying 
for as many bytes as 

line. 

Examples: 

:4000 10 &21 %10101 'HELLO' 
wi1l set memory from $4000 
cimal values $10, $11, $15, 
and $4F. 

• 

20 

with the hexade
$48, $45, $4C, $4C 

[FILL MEMORY] 

F <start address.> <end mark> <pattern> 

where <pattern> is a string of up to 32 bytes. 

Examples: 

F COOO C100 'PATTERN ' 10 %1010 
Will fill the memory from COOO to C100 
inclusive, with the repeating hexadecimal 
bytes $50 $41 $54 $54 $45 $52 $4E $20 $10 
$OA. 

F !2048,8 &37 
will fill the memory from 32767 decimal, for 8 
bytes with the value 37 octal. 

[TRANSFER MEMORY] 

T <source start address> 
ination start address> 

<end mark> <dest-

Transfers bytes from 
tion area. Examples: 

source area to destina-

T 8000 8100 4000 
Will move the bytes residing at $8000 through 
$8100 and duplicate them in the block $4000 
through $4100 • 

T 1000,!100 $9000 
Will move the bytes residing 
for 100 decimal bytes, to 
hexadecimal. Note that the 
'$9000' is optional. 

21 

at 1000 
location 

lSI in 

hex, 
9000 
the 

• 



Note that this command is especially useful in 
conjunction with the '0' command explained 
later, for copying RAM to and from the disk 
drive. 

[MEMORY OISPLAY] 

M ( <start address> ( <end mark> } } 

This command will display bytes from memory 
starting at start address and continuing until 
end mark. If no end mark is given, it assumes 
1 screenful of data. If no start address is 
given, it commences from the last address 
displayed. This command will always display 
at least eight bytes, and rounds the number of 
bytes displayed up to the next multiple of 
eight. 

Examples: 
M 8000 
will display one screenful of data in 
hexadecimal, and ASCII starting at 8000 hex. 
M 0020,164 
wi1l display 64 decimal bytes beginning at hex 
location 0020, in hex and ASCII. 
M 
This if executed directly after the M 0020,164 
will display the next screenful of memory, 
which will begin at 0060. 

• 

22 

[INTERPRET ASCII] 

I { <start address> { <end mark> } } 

This command will display the memory selected 
in ASCII. If no end mark is specified, one 
screen full will be displayed. This command, 
similar to 'M' will display at least 32 bytes, 
and will round up to the nearest multiple of 
32 bytes. Examples: 

I 8000 
Will display from 8000 hex, one screenful of 
memory in ASCII. 

I 14096,196 
will display 96 decimal bytes of data starting 
at 4096 decimal, in ASCII format. 

[HUNT MEMORY] 

H <start address) (end mark> <pattern> 

This command will search through memory 
searching for <pattern), which may include 
question marks for any position, which is a 
wildcard match. Examples: 

Assume that memory from $4000 contains the 
following data: 

:4000 34 22 11 45 21 56 3F lA 
:4008 2B 33 4F C2 19 24 2E 5F 

H 4000,F 1? 
will return all of the addresses between 4000 
and 400F where the top nibble equals 1, in this 
example, 4002, 4007, and 400C. 

23 



H 4000 7000 "F1SH" %11????1? 
Will Find such things as "fish", "fosh", "fesh" 
etc. as long as they are followed by a byte 
with the hi bit set. 

H 4000 7000 %01?????? 
will return all of the addresses 
which contain bytes which have bit 
bit 6 set. 

in the range 
7 reset, and 

This is probably the most 
the binary numerics, as 
search for specific bit 
instructions. 

[COMPARE MEMORY] 

useful location for 
it allows you to 

patterns or set of 

C <start address> <end mark> <compare address> 

This command will compare two areas of memory 
for differences. If a byte between the <start 
address> and <end mark> does not match a 
corresponding byte in the comparison area, then 
it's address will be printed. 

~ 

NOTE: This can be quite 
to compare two unrelated 
stop to abort. 

• 

a list if you attempt 
areas of memory; press 

Commands that manipulate Assembly Language 

There are 3 commands that allow you to program 
in assembly language. 

Assemble -Disassemble -

24 

Undefined opcode disassemble -: Assemble a single line of code -
[ASSEMBLE] 

A <address> <op-code> «operand» 

This will begin assembling code at 
you specify. 

Examples: 
A 8000 LOA #$41 

the address 

Will begin assembly mode, inserting the 
instruction LOA *$41 at location 8000. The 
monitor will then print on the following line, 
the next address, whereupon you have the 
option of hitting return again, and exiting 
assembly mode, or typing in another opcode 
such as: 

A 8002 LDX #$04 
Continuing ••. 
A 8004 SEC 
A 8005 DEX 
A 8006 LDA #"A" 
A 8008 <ret> 
• -

computer's output is under
illegal opcode, or the wrong 

an opcode is attempted, the 
print a question mark at the 

the syntax error ocurred, and 
be aborted. Undefined opcodes 
in the assembler. This inter~ 

well suited to the beginning 

Note that the 
lined. If an 
operand for 
monitor will 
point where 
assembly will 
may be used 
activity is 

• programm1.ng student. Also note that in the 

25 



operand field, the 
is decimal (!), and 

default 
not hex 

base 
( $) • 

for numerics 

For more 
consult a 
purpose. 

information on assembly 
book specifically written 

[DISASSEMBLE] 

D ( <start address> ( <end mark> } } 

language, 
for that 

This will begin disassembling code in memory, 
displaying it in hex, 6502 instructions, and 
at the right-hand edge of the screen, ASCII. 
Illegal instructions are marked with ??? in 
the opcode field. Note that at the beginning 
of each line is the character i, which will 
allow you to modify your code with the 
screen editor, and automatically re-assemble 
it. If an instruction passes over the end 
mark boundry, it will complete the display of 
that instruction. If the end mark is omitted, 
the disassembly will continue for 1 screen. If 
the start address is omitted, the disassembly 
will commence from the Current address. 

[UNDEFINED OPCODE DISASSEMBLY] 

U ( <start address> ( <end mark> } } 

Identical to Disassemble, 
will disassemble certain 
See Appendix A for a list 
opcodes. 

26 

excepting that it 
undefined opcodes. 
of valid undefined 

[ASSEMBLE A SINGLE LINE] 

i opcode (operand} 

This command is for conviniance of modification 
with the full screen editor. When doing a 
disassembly a "i" is printed a the begining of 
each line to facilitate modification of 
M.L. statements. To change an instruction, 
simply overtype it and press return. 

WARNING! typing an instruction longer in 
bytes than the current instruction will cause 
the next memory locations to be destroyed. 

Commands which execute code 
There are two commands that 
execute portions of your code. 

Go, and -JSR or Jump SubRoutine. -

[GO] 

G ( <address> } 

allow you 
They are: 

to 

Where address is any valid numeric where 
execution is to begin. When this command 
is executed the program counter is loaded 
with <address>, if given, and execution is 
passed to that location. If no address is 
given, then execution will continue with 
the current value of the program counter. 
Program execution will continue until it 
locates a BRK instruction ($00)' or until 
the operator taps the <RESTORE> key. If 
the program encounters the BRK instruction, 
the monitor will print out the registers, 
and the program counter will point to the BRK 

27 



instruction. If the (RESTORE> key was 
pressed, the monitor will return with the 
program counter pointing to the instruction 
that was to be executed before interrupted. 
Examples: 
G 132768 
Will beqin execution at 32768 decimal. 

G 
Will begin execution at current value of 
program Counter. 

[JSR] 

J ( <address> } 

This command is identical to GO, except 
that control will be returned to the monitor 
at the next RTS instruction. This is useful 
for testing subroutines. 

Commands that involve the registers 
•• 

There 
ation 

are two commands 
of registers. 

Register display, and -* Set Registers -
[REGISTER DISPLAY] 

R 

that allow the manipul-

This 
the 

command 
program 

will print out the contents of 
counter, the accumulator, the X 

28 

register, the 
the flags. 
Examples: 

Y register, stack 

R 
PC AC XR YR SP NV-BDIZC 

*2d20 · 04 34 '21 A9 %01000010 

[SET REGISTERS] 

* 
-

pointer and 

• 

This command is designed 
register display command. 
registers are displayed, 

to be used with the 
Note that when the 
the first character 

This facilitates 
modify registers, 
stand-alone, but 

on the line is a '*'. 
using the screen editor to 
yet this command can be used 
with great caution. 

Example: 

R 
PC AC XR YR SP NV-BDIZC 

*8020 10 23 34 53 %01001.001 

The registers and flags can 
typing the new contents in 
fields, and pressing the return 

Command for memorY redirection 

[OPERATE] 

be changed by 
the respective 
key. 

The '0' command, which stands for Operate, 
allows you to write code for your disk drive. 
The command takes one of three forms: 

o <return> which displays the current 
Input and Output memory, 

29 



o <i/o device> which sets both input and 
output to the same device memory, and 
o <input device> <output device> which 
allows any combination. 

By example~ 

o 8 (Sets all input and output to go 
to device 8) 
thus - M 1000 will display one screen of the 
drive memory. 

o 8 0 (Sets to input from drive, and 
output to computer.) 

thus - T 1000,100 4000 moves $100 bytes from 
drive memory location $1000 to $4000 in the 
computer memory.) 

This feature is for advanced programmers 
wishing to write custom code for their 
disk drive, or other intelligent peri
pherals. All memory commands will work with 
redirection, as will execution and assembly 
commands. Register commands, however will 
not work. 

Commands for loadin~ apg savin~ files 
The two commands Load and Save are for 
loading machine language programs from 
disk, and saving them to disk. Load and save 
only operate with computer memory. Memory 
redirection has no effect. 

30 

[LOAD] 

L "<file name>" <device> «start address» 

This command will go to the disk specified 
by <device> and attempt to load <file name>. 
If no start address is given, then the start 
address the file was saved with is used. If a 
start address is given, it will load the 
program at that location. 
Example: 

L "FISH" 8 
will go to the disk, and attempt to locate 
the file FISH and load it into memory at 
it's default location. If the file is not 
found it will leave memory unmodified and 
return with a prompt. If the file is found, 
it will be loaded into memory and the 
prompt returned. 

L "FROG" 8 2020 
will go to the 
file FROG and 
at 2020 hex. 

[SAVE] 

disk, 
load 

attempt 
it into 

to locate the 
memory starting 

S "<file name>" <device> <start address> 
<end mark> 

the bytes between 
mark, minus one byte, 

on <device>. If the 
it will not be over~ 

This command will save 
start address and end 
under the <file name> 
file already exists, 
written. 

31 



Example: 
A 4000 INC $D020 
A 4001 JMP $4000 
A 4004 <ret> 
.S "FISH" 8 4000 4004 -SAVING "FISH" 
• -

Miscellaneous Commands 

There are, 
commands, @ 
commands, = 
math, and X 

[DOS WEDGE] 

finally, three 
which allows you 
which does base 

for exit. 

@ <dos command> 

miscellaneous 
to execute DOS 
conversion and 

This command allows the user to execute one 
of several DOS commands. For a complete 
list of DOS commands, and how to use them, 
refer to the manual for your disk drive. 
Example: 

•• 
@$ 

Will return 
for the current 

@NO: FISH,SA 

the 
drive. 

Will format the 
it FISH and giving it 

directory information 

selected disk, 
the ID code, SA. 

32 

• nam1ng 

[BASE CONVERSION/MATH] 

= <numeric> 

This routine will 
of the valid 
bases • 

convert 
bases to 

one word from any 
all of the other 

Example: 
= !32767 
* $7FFF !32767 %01111111 
Note that instead of an 
be a graphics character. 

= "5"+3 

11111111 
asterisk, 

V $0056 186 %00000000 01010110 . 

= &40 
$0020 !32 %00000000 00100000 

[EXIT] 

X 

there will 

This command will return you to BASIC via the 
BASIC "warm start". When using monitor in 
sector editor, you will return to the edit 
sector screen. 

OPTION H: RENUMBER DRIVE 

This option contains a utility that allows you 
to renumber a device if you have two drives 
that are the same device number. This option 
is usually for 2 drive use when you don't own 
both drives. If you own both drives, the most 

33 



practical way is to permanently 
disk drive. This is explained 
modore 1541 users manual. 

renumber the 
in the Com-

After selecting this option, you 
prompted to select the device 
changed to. The default device 
but you can change this (OB-ll) 
& [F3] keys. You can return to 
at this time with the [Q] key. 

To continue, turn off all other 
the drive to be renumbered, 
[RETURN] key. 

will first be 
number to be 
number is 09, 
with the [Fl] 
the main menu 

drives except 
and press the 

You will then be prompted to turn on your 
other drives, and press [RETURN]. The drive 
is now renumbered, and you will return to the 

• 
ma~n menu. 

OPTION I: QUIT- RETURN TO BASIC 
.. 

This option 
the old BASIC 

simply returns 
warm start. 

you to BASIC via 

* DI-SECTOR V3.0 CREDITS * 

These are the people that 
bered for their efforts 
DI-SECTOR V3.0. 

34 

wish 
• 
~n 

to be remem
bringing you, 

Scott M. Blum ••••• Unprotected Backup 
File Backup 
Format Editor 
Menu, Cover Screen & Layout 
Manual, label & logo artwork 

Bruce Q. Hammond •• Sector Editor 
STARMON Mach. Lang. Monitor 
Original DI-SECTOR concept 
Fast Loader, and Manual 

Special thanks to Bryce Nesbitt for GCR 
convert routine in Unprotected Backup, 3.0 
raster routine on main menu, and for assorted 
technical help, and suggestions. 

Thanks to Stan Krute for teaching us assembly 
language, and encouraging interest in micro
computers (whatever they are). 

Thanks to Chip Gracey for technical help, and 
non-technical suggestions. 

Thanks to Scott Statton, who prefers edlin to 
Word Perfect because of its many bugs, for 
work on manual, assorted criticism, and 
borrowing money. 

Thanks to the entire Starpoint staff for 
sending out update notices, and surviving a 
half-dozen hackers wandering around writing 
disk utilities (VAH!). 

Thanks to 
for ALL 
ISEPIC. 

KILROY 
• bugs ~n 

for assuming 
this manual, 

35 

responsibility 
DI-SECTOR, and 

\ 



Three cheers for Bob Nolan, and 
the OI-SECTOR logo, label, ad, and 
artwork. 

his help on 
manual cover 

Thanks to 
can be 
wrong. 

Mr. 
used 

Murphy for inventing laws 
for blaiming when ANYTHING 

that 
goes 

And a very special thanks goes to the Pepsi 
Corporation for inventing Diet-Pepsi, without 
which this project would not have been 
possible. 

36 

And now, the part we have all been waiting for, 
your favorite and mine, the tm notices. (yea!) 

1540, 
all 

Commodore, C-64, C-128, 
SFD-1001, & 4040 are 
Commodore Business Machines. 

1541, 1571, 
trademarks of 

Electronic Arts is a trademark of Electronic 
Arts, Inc. 

MSD, SD-1 and MSD SD-2 are trademarks of MSD, 
Inc. 

Indus GT drive is a trademark of Indus, Inc. 

Comtel Enhancer 2000 is a trademark of Comtel, 
Inc. 

RECOMMENDED READING 

INSIDE COMMODORE DOS, by Richard 
Immers & Gerald Neufeld, Datamost- This book 
is an excellent introduction for all Commodore 
1541 disk drive programmers. It gives a 
rundown on what all the subroutines are, in a 
readable source form. It also explains GCR 
encoding, etc. The main problem with this 
book is that the authors didn't receive any 
royalties because Datamost is in "chapter 11". 

COMMODORE 
Commodore 
must for 
It gives 

• 

64 PROGRAMMER'S REFERENCE GUIDE, 
Business Machines- This book is a 

all serious Commodore 64 programmers 
all of the KERNAL locations, and a 

37 



rundown of what 
things. It's 
information's all 

they 
poorly 
there. 

all do, among other 
laid out, but the 

THE ANATOMY OF THE 1541 DISK DRIVE, Abacus 
Software. This is an OK version of the 1541 
disk drive's source code. The introduction is 
not worth buying the book for, and there are 
many errors in the source code itself. I 
would recommend listing the source code 
yourself, if you're serious about drive 

• programml.ng. 

THE HITCHHIKER'S GUIDE TO THE GALAXY, by 
Douglas Adams. A great book! This book is a 
comical science fiction adventure of Arthur 
Dent. This book holds the answer to the 
universe, and gives the reader incredible 
insight to life the universe & everything. 

IDEAS AND OPINIONS, by Albert Einstein. On 
the serious side. This book contains many 
essays which reveals the simple genius that 
Einstein is famous for. Physics are explained 
as ~ell as many humanitarian essays. 

RECOMMENDED WARES 

MERLIN MACRO ASSEMBLER, by Glen Bredon- THE 
BEST macro assembler for any 6502 machine. 
Available for the Commodore 64, and Apple II. 
Fully featured line editor, searching, 
assembling from memory, monitor, Sourceror 
disassembler all included. Very well docu
mented. Used to develop DI-SECTOR V3.0. 

38 

11/64 SYSTEM, by Chip Gracey- A development 
system which connects an Apple II to a 
Commodore 64. Assembly language development 
is done on the Apple version of MERLIN, and 
down loads the code to the Commodore after 
ASM. You only have to save your source once a 
day. A must for serious Commodore program
mers. Used to develop DI-SECTOR V3.0. 

KWIK WRITE WORD PROCESSOR, Datamost- The most 
under rated computer program to date. A very 
easy to use word processor for the Commodore 
64, with very clean editing. Fully menu 
driven, and on-line help. KWIK WRITE is under 
rated because it's only $19.95! 

MAC WRITE, Encore Systems- A 
decent word processor, that 
free with your Macintosh. 
drafts of this documentation. 

fine example of a 
best of all comes 

Used in early 

AMIGA PAINT, Electronic Arts- The best 
• 

graphics development package on any ml.cro-
computer. Similar to Macpaint but with very 
advanced features and the ability to take 
advant.age of the Amiga' s stunning graphics. 
Worth buying an Amiga for. 

RECOMMENDED LISTENING 

THE BEATLES- SGT. PEPPERS 
BAND, THE WHITE ALBUM, & 
rock at it's best. Listen 
"fab-four" from Liverpool, 

39 

• 
LONELY HEARTS CLUB 
ABBEY ROAD. 1960's 
to the phenomenal 

England at their 



best. John Lennon & Paul McCartney together 
form the world's most famous song writing 
team. George Harrison & Ringo Starr also 
perform some of their own songs. 

SIMON & GARFUNKEL- BOOKENDS, SOUNDS OF 
SILENCE, & BRIDGE OVER TROUBLED WATER. Paul 
Simon (voice accompanied b~ Art Garfunkel) 
tactfully combines beautiful poetry, witty 
criticism, folk and rock music to achieve an 
easy listening music experience containing 
magic which cannot be denied. 

MANNHEIM STEAMROLLER- FRESH AIRE I-V. A 
wonderful combination of classical and rock 
music. Music written by Chip Davis. Instru
ments used are piano, harpsichord, synthe
sizer, bass, lute, classical guitar, drums, 
recorder, oboe. Must be heard to appreciate. 

JEAN MICHAEL JARRE- EQUINOX. Some of the most 
creative and inspired synthesized music of the 
twentieth century. This, as well as other 
albums by ~h~s composer, combine a unique 
bleng of d~g~tal effects and musical virt
uosity. 

MOST GLAMOUROUS MEMORY LOCATIONS 

The following list of memory locations are for 
our benefit only. We figure that if we put 
these locations in the DI-SECTOR manual there 
will always be a copy of it laying aro~nd the 
Starpoint office. So much for honesty. 

40 

* COMPUTER MEMORY LOCATIONS * 

STATUS ••••••••• $90 
DEVICE ••••••••• $BA 
CURSCOL •••••••• $D3 
REPEATFLAG ••••• $028A 
PRINTDECIMAL ••• $BDCD 
VICCONTROL ••••• $D011 
ACPTR •••••••••• $FFA5 
CHKOUT ••••••••• $FFC9 
CHROUT ••••••••• $FFD2 
CLALL •••••••••• $FFE7 
CLRCHN ••••••••• $FFCC 
IOINIT ••••••••• $FFB4 
LOAD ••••••••••• $FFD5 
PLOT ••••••••••• $FFFO 
SAVE ••••••••••• $FFD8 
SETLFS ••••••••• $FFBA 
SETNAM ••••••••• $FFBD 
TKSA ••••••••••• $FF96 
UNTLK •••••••••• $FFAB 
BASICWARMST •••• $FCE2 

MSGFLG ••••••••• $9D 
CURSBLINK •••••• $CC 
CHARCOLOR •••••• $02B6 
TBUFFER •••••••• $0334 
BASICEND ••••••• $9FFF 
DATAPORTA •••••• $DDOO 
CHKIN •••••••••• $FFC6 
CHRIN •••••••••• $FFCF 
CIOUT •••••••••• $FFA8 
CLOSE •••••••••• $FFC3 
GETIN •••••••••• $FFE4 
LISTEN ••••••••• $FFBl 
OPEN ••••••••••• $FFCO 
RESTORE •••••••• $FFBA 
SECOND ••••••••• $FF93 
SETMSG ••••••••• $FF90 
TALK ••••••••••• $FFB4 
UNLSN •••••••••• $FFAE 
VECTOR ••••••••• $FFBD 

* 1541 JOB QUEUE COMMANDS RUNDOWN * 

READ SECTOR •••• $80 
VERIFY SECTOR •• $AO 
BUMP HEAD •••••• $CO 
EXECUTE CODE ••• $EO 

WRITE SECTOR ••• $90 
SEEK SECTOR •••• $BO 
JUMP TO CODE ••• $DO 

41 



* 1541 JOB QUEUE ERRORS RUNDOWN * 

OK, EVERYTHING COOL (ERROR 0) ••••••••••• $01 
HEADER BLOCK NOT FOUND (ERROR 20) ••••••• $02 
SYNC TIMEOUT- NO SYNC FOUND (ERROR 21) •• $03 
DATA BLOCK NOT FOUND (ERROR 22) ••••••••• $04 
DATA BLOCK CHECKSUM ERROR (ERROR 23) •••• $05 
WRITE VERIFY ERROR (ERROR 25) ••••••••••• $07 
WRITE PROTECT TAB ON (ERROR 26) ••••••••• $08 
HEADER BLOCK CHECKSUM ERROR (ERROR 27) •• $09 
ID MISMATCH ERROR (ERROR 29) •••.•••••••• $OB 

* 1541 JOB QUEUE LOCATIONS RUNDOWN * 

BUFF #0: CNTRL:$OO TK:$06 SC:$07 LOC:$0300 
BUFF #1: CNTRL:$Ol TK:$08 SC:$09 LOC:$0400 
BUFF #2: CNTRL:$02 TK:$OA SC:$OB LOC:$0500 
BUFF #3: CNTRL:$03 TK:$OC SC: $00 LOC:$0600 
BUFF #4: CNTRL:$04 TK:$OE SC:$OF LOC:$0700 
BUFF #5: CNTRL:$05 TK:$10 SC:$ll LOC:NORAM 

* 1541 MEMORY LOCATIONS * 
•• 

IDHI ••••••••••• $16 
TRACK •••••••••• $18 
HEADERCKSUM •••• $lA 
DVPNTR •••••...• $30 
DATABLKID •••.•• $38 
CHECKSUM ••••••• $3A 
DISKCNTRL •••••• $lCOO 
DATADIR4PORTA •• $lC03 
DISKINIT ••••••• $EAAO 
MAXSEC ••••••••• $F24B 
GET4GB ••••••••. $F7E6 
GET4GBTABLE •.•• $F8CO 
BIN2GCR (BLK) •• $F78F 

I DLO ••••••••••• $17 
SECTOR ••••••••• $19 
DRIVESTATUS •••• $20 
DVPNTRIND •••••• $34 
HDRBLKID ••••••. $39 
SERIALPORT .•••• $1800 
DATAPORTA •••••• $lC01 
PCR •••••••••••• $lCOC 
WARMINIT ••••••• $EB22 
PUT4GB ••••••••• $F6DO 
PUT4GBTABLE ••.• $F8AO 
GCR2BIN (BLK) •• $F8EO 

42 

APPENDIX A: 6502 UNDEFINED OPCODES 

ASO: ASL then ORA the result with the accum. 
RLA: ROL then AND the result with the accum. 
LSE: LSR then EOR the result with the accum. 
RRA: ROR then ADC the result with the accum. 
AXS: Store the result of A AND X 
LAX: LDA and LDX with the same data 
DCM: DEC memory and CMP the result with accum. 
INS: INC memory then SBC the result from accum. 
ALR: AND the accum. with data and LSR result 
ARR: AND the accum. with data and ROR result 
XAA: Store X AND data in the accumulator 
OAL: ORA with #$EE, AND result with data, then 
TAX 
SAX: SBC data from A AND result with X and 
store result in X 
NOP: No operation 
SKB: Skip byte (i.e. branch of +1) 
SKW: Skip word (i.e. branch of +2) 

43 



Intruction 
-------------
ASO (ASL,ORA) 
RLA (ROL,AND) 
LSE (LSR,EOR) 
RRA (ROR,ADC) 
AXS . (STX,STA) 
LAX 
OCM 
INS 
ALR 
ARR 
XAA 
OAL 
SAX 

NOP 
SO 
sn 

(LDX,LOA) 
(D£C,CMP) 
(INC,SBC) 
(ANO,LSR) 
(ANO,ROR) 
(TXA, ) 
(TAX,LDA) 
(DEX,CMP) 

6502 UNDEFINED OPCODES 

Abs Abs,X Abs,Y Zer Zer,X Zer,Y (Ind,X) 
--- ----- ----- --- ----- ----- -------
OF 1F 1B 07 17 03 
2F 3F 3B 27 37 23 
4F 5F 5B 47 57 43 
6F 7F 7B 67 77 63 
8F 87 97 83 
AF BF A7 B7 A3 
CF OF DB C7 07 C3 
EF FF FB E7 F7 E3 

lA,3A,SA,7A,DA,PA 
80,82,C2,B2,04,14,34,44,54,64,74,D4,P4 

• 

OC,lC,3C,5C,7C,DC,PC 

SERIAL BUS FROM COMPUIER TO DRIVE 

dala in 
•• 

clock in 

<1ala. OUl 

clock oul 
......... 

2 
I 

(Ind),Y -------
13 
33 
53 
73 

B3 
03 
F3 

Computer side ($DDOO) Drive side (S H~OO) 

44 

. . 

Imm 
---
OB 
2B 

4B 
6B 
8B 
AB 
CB 



r 

• 



r 
2 

DI-SECTOR V3.0 

Srarpoint Software revolut1onalized the eo..odore 64 ca.puter software 
market with the release of tbe yeT, (irst disk uti11l, ~ck8ge DI-SECTOR Vl.0. 
Then in the aUlmer of 1984, Star point SoCtwa n! did it 88s1n with the release 
of the first 3 .inute backup, Drive I'()H and For_t Editor with the infallOus 
Dr-SECTOR V2.0. How, Starpoint Software alte-pts to dumbfound all with the 
release of the fabled OJ-SECTOR V3.0. Han, people don't even believe their 
own eyes when they see this r_rkable product in action . The following are 
sa.e of the l.preasive features of this product: 

* Unprotected disk backup, archives disks in anI, 48 seconds with verif,! 

• Protected disk backup, archives disks in On17 1 .inute! 

* Copies ALL of the latest protection SCh~8 including denaity switching , 
hal! tracks, sync tracks, long blocks, duplicate blocks, date/header block 
errors and -are: 

• For.at a diskette in only 8 seconds! 

* Ultra fast file copier allows the copying of files Isrger than 64k long~ 
File Copier will copy between 1541, HSO, SFO 1001, hard disk drives, etc. 
easily and autc-atically! 

• All copiers have options for 1 or 2 1541 disk drives! 

• Full featured sector editor allows modifying of individual sectors in 
ASCII, HEX, or Assembler Language. 

• Powerful machine language monitor allows modlClcetions and debugging of 
prog ra_s in the computer and disk dr ive memory! Hany features of monitor 
include assemble, disassembly of undefined opcodes , indirec t searching, 
aearching with wildcards, etc. 

• Block Identifier Utility allows viewing of the latest protection schemes, 
including "Density SWitching", "lIa1£ Tracks", "Redefined Sec t or Layout", etc. 

• OI-SECTOR diskette NOT PROTECTED for unli~ited archival backups!:! 

• Create errors 20-21-22-23-27-29 easily and reliably ! 

• Repair da.aged diskette by removing read errors ! 

• All these utilities included on one diskette, 

ST~RPOINT SOfTWARE * l_'~2~2~S~.~,~::'.:a~Y _____ Y~':'k:a~. C:A~9:&o~7 _____ 1~9~16~1~8'~2~'6~1~83~1 ______ __ 

'" 




