
Design your own business information

programs in plain language—without

programming! Simply type the screen

layouts the way you want them, acid

any calculations you need—and

Code Writer'"' takes over.

You get your own

programs for information entry.

searches, updates, automatic,

calculations, etc. Programs to write

reports, print checks, letters, mailing

labels, nearly anything—all written

for you by Cede Writer'1'.

J

THE PLAIN LANGUAGE PROGRAM DESIGN SYSTEM.

TABL2 OF CONTENTS

Introducing Your CodeWriter

Read This First 2

That's Enough Theory 2

About Software Protection 3

Turning It On

Getting Started 4

CodeWriter Main Menu 5

Designing The Screen 6

The Prompt 8

Data Entry 9

Numbers 10

Monqy 11
Codewriter Concept 13

Multiplying Its Power

CodeWriter Power 14

Screen Reading 16

Creating Tour Program

Create Data Entry System 80

Which Drive For Data? 80

The Grand Total Fields 28

Computed Fields 84

CodeWriter Concept 85

How Many Records Needed? 87

The Key Field 88

Keeping Out Garbage 30

l Creativity 38

Running Your Program

The Maiden Voyage 34

File Preparation 35

Enter Data 36

Update Data 36

Look Up Record 38

Search Records 38

Delete Record 40

Verify Grand Totals 40

Exit 40
A Final Word 40

Appendix A 41

CodeVMter [A|

TABLE OF CONTENTS (con't.)

Reporting Your Results

The Report System 44

Just What's A Report? 48

Let's Begin (Disk E) 48

Use AU The Records? * 81

You're Done! 83

Designer's Reference 84

Just The Beginning 66

Taxt Is A Design Element 67

Variable Reports , 68

Clod^lMter [

—1
DEDICATION

The CODEWRTTER Program Series, developed over the last two

years, owes its existence to the following—who were never afraid

to walk in the dark:

Fred Allen

Larry Coke

DanKrttchevBkl

Paul Green

Warren Shore

Tony Thome, MBB

Special Commodore CBM 64 and Atari conversion work

Charles and Carol Butler

READ THIS FIRST

WATCH FOR THIS SYMBOL. This manual was written to be used with

several microcomputer systems. There will be a number of places

where the instructions in the manual won't be right for YOUR

computer. Whenever there's a chance of this, you'll see a large *

symbol in the margin. This means you might need to refer to your

USER NOTES CARD (supplied with your CODEWRTTER SYSTEM). The

card should clear thing* up.

(3y the way, your Home FQeWriter is part of a family of software

called CODEWRTTER. All references in this manual will describe

"CODEWRTTER" or "your CODEWRTTER SYSTEM". Your Home FUeWriter

is the starter system in the series.)

This manual was written to be as unique and useful as the

CODEWRTTER SYSTEM itself. That is a tall order. Please believe us when

we say that everyone at Dynatech Microsoftware worldwide has

worked to make CODEWRTTER among the most valuable programs you

can own.

There has been a great deal written about "Program Generation", both

good and bad, pro and con. Let's begin with a simple statement about

why THE CODEWRITER SYSTEM was developed over the last two years

(since 1980):

information around them. But computers deal in code while people deal

people, "programming" in arcane and unforgiving code gets in the way

more and more. The same people who understand the information a

computer holds must be able to control that information directly. In

this way, ideas can dominate rather than hardware.

THE CODEWRTTER SYSTEM allows the non-programmer with an idea for

computer. If the idea has elements which can be put on a soreen or

written on paper, CODEWRTTER will structure those elements so a

computer can accept them, retrieve them, reorder them and create a

pattern for understanding.

Of course, none of this is magic. CODEWRTTER only substitutes

"programming" with "Program Design". But the difference is critical.

The programmer has two problems at all times; One is the idea at hand

and tteseccmd is the job of reducing ttetito

more primitive than human thought.

While Program Design is a great deal easier, it is hardly trivial. The

simplicity of CODEWRTTER Program Design comes from dealing with a

problem directly in the designer's own language.

THAT8 nOUOH TH1ORY

CODEWRTTER will create all the computer oode needed to get a program

up and running on your oomputer. Once you're done "designing", you'll

see the oode written out on your computer soreen as it is automatically

recorded onto your disk.

For the most part, THE CODEWRTTER SYSTEM is "self documented"—

that is most of what you need to know to design a program is written

on the soreen for you and will re-

*

But use this manual anyway! There is very little more 'Theory"

inside. We have designed an example program—complete with

every single keystroke needed to create that program using only

human language.

Naturally, our example program is unlikely to do exactly the

things you bought CODEWRTTER to do. For now, that's not

important. The example will show a great number (but not all) of

the features of the CODEWRTTER system.

More importantly, the example program will show how these

features work together to solve a complex problem one step at a

time.

Put the manual in front of your computer where you can read it

comfortably. Turn your computer on and begin a process you'll not

You're about to increase your dominion over the single most

stimulating invention of the twentieth century. Have fiin. We envy

you and wish you well.

A WORD ABOUT SOFTWARE PROTECTION

At Etynatech Microsoftware we have some very definite ideas

about protecting software. We feel that both the software

developer and the software customer have rights which must be

protected. The developer must be protected from "unauthorized

use" of his work. After all, if the market place does not reward

the developer for his work the work will not be produced, not be

supported, and not be improved.

But workable software protection cannot exclude the customer's

rights. The paying customer makes all new software possible.

Thus, the customer should be able to use the software freely and

with confidence. A 'back-up' copy of your Commodore 64

CODEWR1TER disk is available at a small cost (See the coupon

included with your system). Also, a free one year guaranty is

part of your system cost. If your CODEWRTTER disk fails to

operate for any reason during this period, we'll replace it free.

Once your purchase is registered, you'll be notified of our toll-free

help line for any problems you might have with your
CODEWRTTER system.

In addition, whenever possible we'll add new features (or improve

existing features) to the CODEWTHTER system at no increase in

retail price. We'll be glad to UPGRADE your existing system free if

you'll simply send your disks in. Watch our ads for these

changes—or simply call to make sure your version is the latest.

Please enjoy your CODEWRTTER system. We developed it to be the

best.

□

GETTING STARTED

Before you begin working with your Commodore CBM 64

CODEWRTTER system, make sure you have the following:

A Commodore CBM 64 microcomputer

A1541 Commodore disk drive

'.A

4040 dual disk drive will also work, though this edition of

CODEWRTTER 64 will use only drive 0.)

A blank, formatted diskette.

A Commodore compatible printer is optional.

(SPECIAL NOTE: Some commodore compatible options like Skyles'

VicTree will interfere with CODEWRTTER operations. Please remove

them before you begin. If your system works erratically, check for

these optional items before continuing.)

Insert your CODEWRTTER disk (Disk 1 side up) in your disk drive.

Press the SHIFT and Commodore symbol key) lower left on

keyboard) TOGETHER. This will activate the UPPER/lower case

mode in which CODEWRTTER operates. Next, type the following

EXAdTY:

load "newmenu",8

After the program loads, your cursor (flashing square) will

return along with the 'READY1 message. Type run

After a short delay, the following screen should appear:

d-create date entry system

(-format a disk

s-set display colors

x-exlt to basic

If you have not already formatted a disk, do so now.

Press T and then RETURN

Pressing T will display a warning that formatting ERASES all

information on a disk. REMOVE the CODEWRPTER disk and insert

your own disk. Type 'y' and press RETURN. You'll be asked to

"name" your work disk using up to 16 characters and press

RETURN. Formatting usually takes between 90 seconds and Z

minutes. You'll then be asked if you need another disk 'formatted'.

Answer 'n' and press RETURN. You should now see the

CODEWRTTER System Main Menu again.

CodeWiltei?

ISSSSSI

1335*21

GODBWBHBR SYSTEM MAIN MENU

Once back at the main menu with a formatted disk, we're reaty to

create a data entry system. Press 'd' from the menu selection and

then RETURN.

s- Create screen layout

a- Create application

x- Return to Main Menu

Each CODEWRTTER data entry program begins with a SCREEN

LAYOUT. This is simply a form created on the screen which shows

what kind of information (data) the program operator is to enter

and how much space is allowed to do so. CODEWRTTER makes this

Press V and then RETURN

Screenwriter Generator

e- Edit or Create screen

c- Change field positions

s- Save screen layout to disk

I- Load screen layout from

disk

x- Exit to System Creation

Menu

We'll look at all the options on this menu before we're done, but

for now the task is to CREATE A SCREEN so:

Press 'e' and then RETURN

accomplish writing a screen. This is for future reference in using

CODEWRTTER. For now the screen instructions might make the job

look more complex than it really is. Let's exajnine the instructions

to sort things out:

CODEWRITER allows you to type anywhere on the screen to create

the entry form you want. The screen instructions will show which

keys on your computer allow you to move the cursor around the

screen.

Your CODEWRITER 64 system allows you to make printed copies of

printer connected to your syBtem to do this. You'll see a line at

the bottom of your work screen which reads:

Press f1 to read screen f3 hardcopy

The 'hardcopy' refers to printed copy. Simply press the £3 ftinction

key on your Commodore 64 to send an image of your screen design

to your printer.

ONIY ONE LIMITATION—You may NOT use column 40 of your

screen as part of your screen design. The cursor position indicator

(second line from the bottom) will let you know when you're in

this column. Put NO screen information there.

That's really all there is to writing on the CODEWRITER screen. We

will cover all of the information on the current screen as we

proceed with the example program. For now, just remember the

instruction screen is there to help you. Press RETURN. You'll see

another instruction screen. This, too, will be covered in our

example program. Again, remember the screens are there and

press RETURN.

DESIGNING THE PROGRAM SCREEN

You should now be looking at an almost blank screen, the

CODEWRITER screen is 40 columns across and 22 rows top to

bottom. You should see the cursor at the upper left and two lines

at the bottom of the screen:

Col: 1 Row: 1

Press f1 to read screen f3 hardcopy

The Col/Row line will TRACK the cursor position on the screen.

Try using the cursor kqys we described earlier. Watch the

numbers on the Col/Row line change as the cursor moves. This

CODEWRITER feature helps in counting positions when designing

your screen and is very valuable when you're trying to copy an

existing form to the screen for use in a program.

Before we begin our example program, we need to understand a

few terms about the way computers handle information. The

terms are FILE, RECORD, and FIELD:

Cod^/iiter [6

■ FILE—A FILE is a collection of information cm a singe suttfect.
thlifl fl. 1>AftAfcrahlo flio ia a nnlionHnn nf InfnnmofInn nn Wh« «nr~,

money to a partioular company. A stamp collection file contains all

the information about a certain stamp collection, etc.

RECORD—As we get more specific, we use the term RECORD.

Thus, within a stamp collection FILE, information about a certain

stamp would appear in a RECORD for that stamp. Within a

receivables FILE we would find RECORDS of the individual

FIELD—The FIELD is the most specific information. Within the

stamp collection FILE, the RECORDS for individual stamps would

country of origin, etc.

Don't be discouraged if everything you read is not dear the first

time through. We have tried to keep computer jargon to a

minimum in this manual, but a little is bound to creep in. If you

Getting information into your program, in the order you want and

the language clearest to you should be easy. Don't be afraid to

flgperiment. Yo^ may iim m ^FW Kf^^QldSJmjaLSC^n.'j^
type anywhere (except coL 40)—YOU CANT HURT CODEWRPTER

OR YOUR COMPUTER FROM THE KEYBOARD.

A SALES/INVOICE PROGRAM

this program idea because it gives a good indication of what the

CODEWRTFER system will do. To use our new vocabulary, we wish

to build and keep track of a FILE of sales over a certain period of

time. Each sale will be entered to a screen RECORD known,

naturally enough, as an invoice. Each invoice will contain FIELDS

to put the most specific information like; customer name, item

purchased, date, price paid, etc.

show what its use will be. The example in the shaded box below

uses an up arrow (|) as a SPECIAL MARKER on either side.

Your computer may use another character. Check the screen

instructions.

} ABC COMPANY SALES INVOICE \

What you have typed is known as a LABEL to the CODEWRTFER

system A LABEL is something written which is NOT associated

with information to be entered. Things like our title (Just

entered), copyright information on the screen, instructions for

the program operator, dotted lines and the like are all LABELS to

the system because they DONT ASK ANYONE TO REACT BY

ENTERING INFORMATION.

As you see our label example has the up arrow (|) symbol on ,

either side. This identifies screen information as a LABEL. The up

on the second row from the top. Even if screen material is simply

a line as below:

be sure to use UP ARROWS on BOTH SIDES.

By the way, don't be concerned if the invoice label you just typed

is not centered exactly as you wish. We'll take care of things like

that later.

THE PROMPT

Now for the part of our sales invoice screen that IS concerned

with information handling. Let's add some customer information

PROMPTS to our form. A PROMPT asks for INFORMATION TO BE

ENTERED. A PROMPT is always followed by at least one dot (.) or

a dotted line () to indicate HOW MUCH SPACE is

available'to enter the information requested by the PROMPT.

Thus we could add customer information PROMPTS to our sales

invoice screen and it would look as follows: (Don't worry about

typing exactly.)

| ABC Company Sales Invoice \

There are several thin$ we should notice about PROMPTS. As you

can see, there are no UP ARROWS. For the CODEWRITER system

to recognize your PROMPTS as the requests for information they

are, never use UP ARROWS. Also while each PROMPT must have a

dot (.) or dotted line () following it, the dotsDONT have

to come IMMEDIATELY AFTER the letters or numbers in the

PROMPT.

Look at the PROMPT 'Customer name'. After the final 'e' in 'name',

there are TWO SPACES BEFORE the line of dots begins. This allows

you to create screen forms which are easier to read because the

PROMPT for information needn't bump right against the

information itself.

In any ofyour screen designs, the number of DOTS which follow

the PROMPT determines HOW MANY characters of Information

(letters, numbers, symbols or spaces) may be entered to answer

I

GODEWRITEB CONCEPT

THE PROMPT—A PROMPT is a request for information toy the

program designer. It is always Mowed by a dot or dots to indicate

length of entry. It NEVER contains up arrows. The CODEWRTTER

system will search for the FIRST DOT following a PROMPT and

store the information which follows as the response to the

PROMPT. The total number of dots following a PROMPT should

never be more than 38 when using your 40 column computer.

There is one more tip concerning PROMPTS: Never put a dot (.)

into the PROMPT itself. This can happen where a PROMPT involves
an abbreviation as in—

Max. amount needed? (y or n)

This is simply a PROMPT asking for a yes or no (one letter)

response to the question 'Maximum amount needed?1 Can you see

'Max1 and consider 'Max' alone to be the PROMPT with a one-dot

response (Max.) CODEWRTTER would then read further (from

'amount needed', etc.) and consider this to be a second PROMPT.

Abbreviation is O.K. Simply leave out the pflrtpd aa in—,

Max amount needed? (y or n)

This will work fine.

DAIS SHIRT

response to a PROMPT. You may use either the American date

format or the European and CODEWRTTER will automatically write

code to check for the appropriate format and a valid date entry,

i.e. no July 40 or February 29 (when not a leap year), Formats

are as follows: To express the 15th day of June, 1983

American European

06/15/83 15/06/83

For now simply enter the empty date format. CODEWRTTER will .

ask for the American/European choice later.

../../..

Added to our current screen this would be:

CodeMiter

Add the date PROMPT to your screen. Whenever you wish date

information to be entered into your CODEWRTTER created

programs, use the ../. ./. ♦ format. The PROMPT may be

whatever you wish as:

Order Date ../../..
Member since ../../..

Date to dose ../../.. etc.

operator of your program enters a date, it will be as 02/05/81—

(You may type SPACES instead of leading zeros.) Later on in

CODEWRTTER as whether you wish American or European format

HUMBBB8

Up to now the information required by the PROMPTS on our sales

ALPHANUMERICS—jargon meaning IDEAS expressed in letters

and numbers. For example a name, an address, and a date are all

ALPHANUMERICS because of two things; They can be expressed in

letters and numbers AND they are NOT USUALDT part of any

CALCULATION—you don't add, subtract, multiply or divide them

even though they MAST include numbers.

NUMERICS, to your computer, are different. In the CODEWRTTER

system NUMERICS have two meanings of their own; They involve

NUMBERS ONIY, never letters, and they can be included in

CALCULATIONS. As we promised to avoidjargon, let us begin here

to refer to NUMERICS as simply numbers.

As we add a new line to our sales invoice screen you'll notice a

{ ABC Company Sales Invoice |

Customer name Date../../

Street address

See the new symbol? After the 5 dots following 'Quantity ordered',

we've added the # sign. This does two things; The # sign takes the

place of a dot, making the space for information total 6, and the #

"i tll th CODEWRTTER t tht th ifti t b"sign tells the CODEWRTTER system th^t. tha information to be
entered will be NUMBERS and ONEf NUMBERS. Thus the numbers

"may be part of a calculation—if the program designer wishes.

OoMHMter

□

include the new NUMBERS field for 'Quantity ordered'. Let's add

another field to the screen.

| ABC Company Sales Invoice f

Customer name Date ../../

Street address

City

Quantity ordered # ITEM

'ITEM1 and given it IB spaces for operator entry. Again, we didn't

Now it's time for a little 'housekeeping*. As we look at the latest

line on our sales invoice screen, it looks as though space is

running out too soon. Most invoice forms allow for 'Quantity',

'Item', 'price each', and 'total' all on a SINGLE LINE. The

CODEWRITER syBtem allowB ANYTHING on your form to be

{ ABC Company Sales Invoice f

Customer name Date ../../

Street address

City

ITEM

There. We've abbreviated 'Quantity ordered' to 'Quan' (no period)

and added space to the 'ITEM' PROMPT, allowing for a better

MONEY

The last type of PROMPT field CODEWRITER offers is for MONEY.

This field type simply stores numbers for all DECIMAL TYPE

CURRENCIES for a maximum of 2 places to the rigit of the

decimal point. The CODEWRITER program designer adds the $ sign

(the meaning here being 'money' rather than the American

dollar) to the end of the dotted entry line.

We can now complete our sales invoice form:

ABC Company Sales Invoice

Customer name Date../../.

Street address

City

.# ITEM Price $ Total

Tax

Invoice Totals

Look at the four new PROMPT fields before you type them onto

your screen. The PROMPTS 'Price1, 'Total', and 'Tax' are simple

MONEY fields. Trice' calls for an entry of 7 characters (6 dots

and the $ sign). 'Total' allowB for a 7 character entry (6 dots and

the $ sign), and so does 'Tax'. The PROMPT for 'Invoice Total'

may be confusing. Here the PROMPT ITSELF ends in the $ sign.
This is perfectly O.K. as long as you're careful

For Invoice Total $' the trailing $ sign in the PROMPT simply

allows the final form of the MONEY entry to read:

Invoice Total $ 125.75 instead of

Invoice Total 125.75

'.Asa

trailing sign, of course, the $ symbol could be ANY symbol

appropriate to the currency you are using. Only the $ sign at the
END of toe dotted line MUST be the $ sign as this is what tells

CODEWRITER it's handling MONEY.

As you can imagine, you need to be especially wary of accidental

dots in your PROMPTS where MONEY is involved.

GODBWRITER OONOEFT

FBOHPT FIELD TYPES

ALPHANUMERIC (letters, numbers, symbols)—need NO speoial

sign at the end of the dotted line. Ex. Name They

CANNOT be a part of a calculation.

DAIS—may use ANY PROMPT but MUST use the Input form

../../.. as In Member since ../../.. Th^r CANNOT be part of

a calculation.

A GEHERAL CAUTION—Do not use the comma (,) colon (:) or

semicolon (;) as part of your screen designs. These symbols

confuse the file handling operations of both your CODEWRTTER

DISABLED when CODEWRTTER is in use.

NUMERIC (numbers only)—may use ANY PROMPT but MUST

use the # sign at the end of the dotted line. Ex. Amount

Thqy CAN be part of a calculation.

MOHEY (numbers only)—may use ANY PROMPT but MUST use

the $ sign at the end of the dotted line. Ex. Price $They

CAN be part of a calculation.

BOTH A NUMBER AHD A MOHEY field need at least two

characters to define their length. For example, the fields CASH

PAID .$ or NUMBER USED .# both have two characters (the dot

and the sign) following the prompt. Use at LEAST two.

Cod^fciter [

80MB REAL CODBWRITBR POWER

Our sales file can be much more than an electronic

DESIGN. By adding six additional fields to our screen,

the CODEWRTTER sales program can become a very

efficient CREDIT JOURNAL while giving up to date

reports on both TOTAL ACCOUNTS RECEIVABLE and

TOTAL SALES. (Not bad for a first effort!)

Here is our screen with the six new fields:

□

The six new fields each have a specific job. Here's a look at them

Acct#

This allows each ABC Company customer to have his own

identity—even if names are alike. We have allowed for 5 places.

reasons for this; First the # sign would limit us to NUMBERS

ONIY. Some account numbers use both letters and numbers

(as T1450 etc.) to give greater variety using the fewest places.

Whenever CODEWRTTER sees this sign (or the $), it holds extra

computer memory space aside in case the information in the field

would be needed for use in a CALCULATION. Since we aren't likely

to use account numbers in any calculation, why not save

computer memory?

Cod^A/trter IS

Invoice #

This five-place field identifies a PARTICULAR SALE to our ABC

Company Customer. By using BOTH the Acct # AND this Invoice #,

we allow our CODEWRTTER program to group together, in its

memory, ALL the sales to the SAME Account number. We'll show

later why this helps. Again, we left off the # sign (for the same

reasons as the Acct # example above).

PAID ON ACCOUNT

against the particular invoice which is on the screen. We used the

$ sign because money is involved AND because this field WILL he

used in a calculation. We'll explain the calculation function later.

INVOICE BALANCE

This field will hold the DIFFERENCE between the amount shown

on screen as 'Invoice Total' and 'PAID ON ACCOUNT. Again, the $

sign is used because this field will always involve money. Also

we'll use 'INVOICE BALANCE' as part of a calculation. Our

CODEWRTTER program will he designed to calculate this amount

automatically.

TOTAL ACCOUNTS RECEIVABLE

This $ field is intended to give a RUNNING GRAND TOTAL of all
the balances carried in the field 'INVOICE BALANCE'. We have

placed this field on the screen below the ===== header line to

help show that the amount is a total of ALL the invoices in the file

rather than the particular invoice on the screen.

TOTAL SALES

Again, this $ field is a FILE WIDE GRAND TOTAL of ALL sales,

rather than relating to the invoice on the screen. We'll show later

how to design CODEWRTTER programs to perform the grand total

function.

Our sales invoice is now complete. Of course a real sales invoice

would have more lines to enter sales items and prices, hut for our

example this is enough. You are perfectly free to acyust the screen

until your invoice form looks as close to our example as you wish

to follow the manual.

I

Now the real magic of CODEWRITER will come clear. You may have

been asking yourself "What does drawing a screen form have to do

with writing a program?" The answer in the GODEWHTTER system

is "almost everything". CODEWRITER will ''read" the screen we

have Just created and develop AUTOMATICALIY the entire file

structure needed to make our program run. All the PROMPTS will

be saved in the right places. The 'dates' will be saved as 'dates',

creating this program is over!

SOREEH READIHO

Once you're satisfied with the screen on your computer, pressjSC A 1

to begin the "reading" we just spoke about. The screen will go

blank for a moment and our sales invoice form will be replaced by

the words "READING SCREEN". In a moment our screen will

return.

Certain PROMPT fields on the screen will be HIGHLIGHTED in

REVERSE and a question will appear at the bottom of the screen.

CODEWRITER will skip over any LABEIS, date andALPHANUMERIC

fields we've created and ask questions only about fields which

contain NUMERIC and MONEY information.

The program designer is asked here whether a particular

PROMPT field is to be "keyboard entered" or "program calculated".

This simply means: "Do you wish to have the program operator

enter the information the PROMPT requests or do you wish to

have CODEWRITER itself calculate the response?"

NOTE: The third choice, g for GLOBAL, allows your CODEWRITER

program to accumulate TOTALS from ALL the records in the file.

More about this later.

HIGHLIGHTED in REVERSE:

Quan | enter 'k' | The operator must enter this
from the (k)eyboard

Price enter 'k'

Total | enter 'p' | The CODEWRITER (p)rogram can
calculate t.hfa amount Ijy

multiplying "Quan" times

"Price". Why make extra work

for the operator.

Tax enter'p' | As long as the sales tax rate is[

constant for all items, your

CODEWRITER created program

will recall the rate as a

percentage and multiply this by

the "Total"

Cod^friter I b]

Invoice Total $ I enter 'p' I CODEWRITER will write program

1 -1 lines to direct the adding of
•Total" to "Tax"

PAID ON ACCOUNT |enter'k'| The program operator will enter
this amount.

INVOICE BALANCE enter 'p' Your CODEWRITER (p)rogram

1 will calculate this

TOTALACCOUNTS

RECEIVABLE lenter'g'l *» **& (g)rand total

TOTAL SALES enter 'gM CODEWRITER will ACCUMULATE

the Invoice Total amounts and

show the TOTAL whenever the

operator looks in the SALES FILE

Once all the appropriate fields have been designated either "k",

"p", or "g" ty the program designer, CODEWRITER will return to

the Screen Format Generator menu where the following choices

are offered:

□
(e)dit screen format

(c)hange screen format

(s)ave screen

For now; do NOTHING. Here is what the menu options mean:

EDIT SCREEN FORMAT—If the program designer wished to make

ENTRY CHANGES in the screen, he would use this option. By

ENTRY CHANGES we mean changes in the KIND of information to

be entered, such as adding or subtracting a PROMPT, or in the

SPACE allowed to respond to a PROMPT.

Once the V for edit is selected, the current screen in memory will

re-appear. CODEWRITER will then allow ANY changes to be made

to the screen as though it hadjust been typed in. All 'k' or 'p'

choice information needs to be RE-ENTERED before leaving the

CHANGE SCREEN FORMAT-This option is strictly for MOVING

later.

CoddWiiter

SAVE SCREEN—This option allowB the CURRENT screen in

memory (the one we just created) to be saved to the disk in the

drive. More about "Save Screen" later.

LOAD SCREEN—This option allows a previously saved screen to

be loaded from the disk In the drive. Thus ALREADY CREATED

programs made with CODEWRTTER could be modified later by

loading just the screen with this option and then going back to the

Edit Screen Format option to continue creating a NEW program. To

simply VERIFY proper screen save, Change Screen can work

better. More later.

EXIT TO SYSTEM CREATION—This option starts things over from

the beginning. BE CAREFUL HERE) If you choose the exit option

BEFORE saving your screen, the screen will be LOST.

Even though our current sales invoice screen shouldn't need any

changes, let's choose the CHANGE SCREEN option anyway—just

to watch how well it works.

type 'c' here

You should see an instruction screen to explain the workings of

"Change Screen". This is for future reference. Read over the

screen and then press RETURN.

Once again the sales invoice form should appear. The LABEL

I ABC COMPANY SALES INVOICE j should have the cursor at the

FIRST POSITION. Let's say you weren't satisfied with the way the

LABEL was centered on the screea Press the RETURN key and

the LABEL should change to REVERSE screen image.

A field SHOWN REVERSE this way Is reafly to be MOVED. Simply

use the cursor keys and move the LABEL anywhere on the screen

you wish! Should your moving label bump into another field on its

Journey around the screen, CODEWRTTER will automatically JUMP

the label to the next empty area in the direction it was being

moved. Once you're satisfied with the position of the moving field,

simply stop and press the RETURN key. The field will revert to the

normal print mode from REVERSE. ALL screen fields can be moved

in the same way.

Press ANY key (except RETURN) and you'll skip to the next field

where the process can be repeated as often as you like. With each

pressing of a key the cursor will move to the beginning of the next

field. The cursor will move over the fields in the SAME ORDER in

which the fields were FIRST ENTERED. Check your screen

instructions for the correct method to BACK UP through

proceeding fields.

Making "Changes" can lead to some confusion. Remember the

Change Screen routine does NOT alter any of the logic of the

screen CODEWRTTER has already read. Thus, if you move the

fields all over the screen, your CODEWRTTER program will

continue to prompt for the operator information in the SAME

ORDER in which you FIRST typed the fields in. If you'd like the

NEW screen positions to dictate the NEW order of operator entry

of data, you'll need to "read the screen" AGAIN with the Edit

Screen option.

To make permanent changes with Change Screen, one should:

L Move the fields around any way you wish from Change Screen.

2. Once changes are complete, press ESC to return to Screen

Format Generator.

3. Choose Edit Screen and your NEWLY ALTERED screen will

appear.

4. Make any ENTRY CHANGES (see Edit Screen) you wish to

further alter the screen if needed.

5. Step through the 'k\ 'p\ or 'g' choices again. Once complete,

you'll be back to the Screen Format Generator menu.

6. Choose "Save Screen" to save your new form permanently to

the CODEWRTTER disk work space. NOTE: If you have already

saved a screen in an OLD order and now wish to save the

screen with NEW field positions, give the NEW screen a NEW file

name.

As we don't require any permanent changes to our example

CODEWRITER warns us to be sure to save the screen. Once back

at Screen Format Generator, we are reacly to save our sales

invoice screen.

Press 's' here

CODEWRITER will ask the program designer to give a NAME to the

screen. A maximum of 10 characters is allowed and, as usual,

simple, appropriate names are best. In this case, the name of the

screen becomes the name of the PROGRAM to be created by

CODEWRITER. Do NOT use a slash (/) or a dot (.) as part of a

enter Invoice9 and press RETURN

It would be nice to VERIFY that our screen has been saved

correctly. Since we are now back to the familiar Screen Format

generator menu, we can VERIFY quite simply.

press T for load and RETURN

Codflfifriter

The "load" option will ask for the 'screen file name'. We chose

'invoice' so:

type Invoice' and press RETURN

The disk in the drive should spin and stop. Next the screen format

Generator menu appears. We could choose Edit screen to see our

newly loaded screen, but this would force the 'k' and 'p' choices

again. Instead we choose Change Screen:

press 'c' and RETURN

From Change Screen we are shown our sales invoice form again

which proves it has been saved correctly. To exit Change Screen

we press the fl key.

Screen creation is complete and we may now continue with

CODEWRITER program design.

press 'x' and RETURN

We get one last warning to save our screen. Quite a worrier, that

CODEWRITER!

CREATE DATA ENTRY SYSTEM

From the current menu we have the choices:

r—i

press 'a' and RETURN

CODEWRITER now announces that it will "produce the basic code

for a program you design". You may now enter a name (maximum

25 characters) and press RETURN. (The name will follow the

credit: PROGRAM Design by)

You are next asked for the name of the screen file. Be EXACT here

so the system can find our much maneuvered screen:

enter 'invoice1 and press RETURN

Cod^Mter 12o1

□

After a bit of whirring from the: drive, the sales invoice

screen should re-appear with a few changes; The arrows around

the LABEL ABC COMPANY SALES INVOICE should be gone. Also,

single dot following the PROMPT. You'll be asked:

Press Y and RETURN

If you press 'n\ you'll be returned to the request for "screen file

name" for another try at finding the screen fQe.

WHICH DRIVE FOR DMA

On your system, the prompt "Which drive for data DOES NOT

appear/You'll be hearing soon how to upgrade your system to use

more than one drive—for considerably more fQe space and power.

We have the reference in the manual for the future. You may

continue here if you like or SKIP to page 22.

The choice is important. Remember, you are now creating a data

entry program to control information. The information itself (the

controls it. Keeping the control program on one disk and the data

on another MAXIMIZES the amount of data you can control. On

the other hand, where disk capacity is enough and the

important, a one-disk system works fine.

Remember, the question means "which, drive for data" when your

PROGRAM IS COMPLETE AND RUNNING. (Users with twchdrive

CODEWRTTER syBtems will NOW have their program disk in the

second drive, but it will RUN in the first drive when it's finished.

The "data" can be on either the first or second drive.)

For our example program, enter the appropriate number for the

FIRST DRIVE.

□

THE GRAND TOTAL FIELDS

The next CODEWRTTBR request will be to define what kind of

GRAND TOTAI5 we want in the program being designed In our

accumulated in this Grand Total field

(kei—keiO.pel—pc4.or list)

our sales invoice, we included a total of 14 different FIELDS. We

then specified which of the information inputs would be

(k)eyboard entered, which would be calculated Xy the (p)rogram,

and which would be a (g)rand total of some other field.

The CODBWRTTER syBtem is now reafly to learn how the program

designer wishes to CALCULATE the information on the screen. To

make things easier, CODEWRTTER has ABBREVIATED the names of

the screen fields. Thus the FIRST field on the screen to be

keg, and so on. Naturally enough, the first field we chose to

designate (p)rogram (calculated becomes pel to CODEWRTTER.

Now, back to Grand Totals. CODEWRTTER is asking which screen

field is to be accumulated and displayed as a Grand Total after the

prompt "Total Accounts Receivable". Inside the parentheses are

the choices: kel to kelO, pel to po4. or 'list'.

Since it's difficult to remember WHICH field we designated as the

FIRST program calculated (pel), etc. CODEWRTTER offers the 'list'

option to display all our choices.

Type 'list' and RETURN

Keyboard Entered Fields:

ke1= Customer Name

ke3= Date

ke5= City

ke7= Quan

ke9= Price

program calculated fields:

pd= Total

pc3= Invoice Total

grand total fields:

ke2= Acct #

ke4= Street Address

ke6= INVOICE #

ke8= Item

ke10=PAID ON INVOICE

pc2= Tax

pc4= INVOICE BALANCE

gt1= TOTAL ACCOUNTS RECEIVABLE gt2= TOTAL SALES

□

Which of the screen prompts we designed will ADD UP TO a

GRAND TOTAL we can call "TOTAL ACCOUNTS RECEIVABLE"?

Stu<Jy the list. "Invoice Total"? Maybe, but what if we receive a

payment from a customer? The "Invoice Total" would, of course,

remain the same after a payment, but the amount the company is

owed (its receivables) would go down.

The correct answer is INVOICE BALANCE. Obviously, if we had a

Grand Total of the INVOICE BALANCE amounts from ALL invoices

we could call this figure our TOTAL ACCOUNTS RECEIVABLE.

The 'list' should still be on your screen. We can see that INVOICE

BALANCE is abbreviated by CODEWRTTER to po4.

press RETURN

Please specify which field is to be

accumulated in this grand total field,

[kei—keiO. pel—pc4, or'list')

\mm

□

type 'pc4' and press RETURN

This tells our CODEWRTTER program to accumulate ALL the

INVOICE BALANCE amounts from the entire file of invoices and

show the total in TOTAL ACCOUNTS RECEIVABLE on the screen.

ABC Sales file, he or she will always see this grand total on

display.

The next CODEWRTFER prompt asks for the field to accumulate as;

TOTAL SALES

This should now be easy. Type 'list' again. This time, of course,

'Invoice Total1 is correct as the amount to be accumulated as

TOTAL SALES. Press RETURN to go back to the prompt.

type 'pc3' and press RETURN

COMPUTED FIELDS

The CODEWRFTER screen now requests the computations for 4

computed fields. You'll be given an entire second screen of

information as to what this means and an entire screen as to

what is meant by 'self referencing* fields.

As before, these screens are reminders for later. We'll explain the

procedures here in detail. Read the two screens and press

RETURN.

The screen now shows:

Computed field #1

calculation for Total'

Type 'list' for field numbers

This is where you learn to be a Program Designer. Designing the

I
i aesssss i

Type 'list' to see your choices. As you look at the list of prompt

fields and their CODEWRTTER abbreviations, think. What is the

DEFINITION of 'Total'? In our invoice design, Total' (pel) means

'Quan' (ke7) multiplied ty Trice' (ke9).

We "design" this definition with CODEWRITER ty saying;

pd=ke7*ked

================== CODEWRITBR CONCEPT ===

As with most computers, the four basic arithmetic functions are:

+ means add

- means subtract

/ means divide

CODEWRTTER also allows the use of () to isolate formula

Parentheses are used to ISOLATE the calculations inside them for

SEPARATE COMPUTATION within a formula. An easy example

would be: pcl*pc2+(ke3-ke5) which means—First multiply pel

by pc2 and then add to this result the difference between ke3 and

ke5.

While CODEWRTTER will detect SOME mathematical errors (such

as forgetting a closed parentheses after using an open

parentheses), it CANNOT prevent all instances of incorrect math

a formula after you type it in. Once verified, however,

CODEWRTTER will try to audit what it can and then ACCEPT what

you wrote. Please be carefttl.

Here are the remaining program calculations for our Sales Invoice

design and an explanation of each. Follow the screen commands to

enter these:

program calculation meaning

pc2=pd*.O6

pc3=pc1+pc2

pc4=pc3-ke10

Tax(pc2)is6%oftheffotai

(pel) to the invoice. Thus, we

multiply pel by .06 to find Tax.

Invoice Total (pc3) is simply

Tbtal (pel) PLUS Tbx(pc2)

Invoice Balance (pc4) is the

result of Invoice Total (pc3)

MINUS PAID ON INVOICE (kelO).

CodeVMterpsi

As usual there are a few rules to keep in mind. We'll try to be

concise:

L Calculation definitions must deal in KNOWN IDEAS. Thus, you

cannot enter pc2=pc6-ke3. Can you see why? Calculations are

defined in the SAME ORDER in which thqy appear on the

screen (top to bottom, left to right). Thus, if you are defining

pc2 you CANNOT have defined already pc6—making pc6 an

UNKNOWN IDEA. This quandry is easier to avoid than you may

think. Simply design your screen so that your input prompts

PROGRESS in logical order (price before total, payment before

balance, etc.). CODEWRTTER will handle things from there.

2. Program calculations are the HEART of a good design. Use them

and even gt fields (subject to rule 1). They should be limited to

25 characters in overall length.

SELF REFERENCING FIELDS

There is a bit more power in CODEWRFTER calculations. The Self

Referencing field may seem abstract and confusing at first, but

it's JUST PERFECT for some jobs. Where the program designer

wishes to HOLD a PREVIOUS value while calculating a new one, he

needs a Self Referencing field.

An example is in order. In an Inventory program, a field named

BALANCE ON HAND will usually be designed to depend on two

others like QUANTITY IN and QUANTITY OUT.

Lets assume that QUANTITY IN is kel and QUANTITY OUT is ke2,

while BALANCE ON HAND is pcL

If we used a formula like pcl=kel-ke2 (which might seem

logical), our inventory would be a disaster. Can you see why? The

field of BALANCE ON HAND would always contain ONU the

LATEST results of the CURRENT difference between QUANTITY IN

and QUANTITY OUT.

What's needed for a field like BALANCE ON HAND is a way to

REMEMBER the current value, hold it, and then COMBINE it with

a new value. Though many methods for doing an Inventory exist,

one approach might be:

pc1=pd+(ke1-ke2)

CODEWRTTER sees this as Self Referencing since the pel appears

on BOTH sides of the = sign.

Another use for self referencing is In a pure "counting" field.

Since all 'pc' fields are automatically calculated EACH TIME a

record is looked up by the operator, a field named "Record Access

Times" (as pc5 for instance) could be designed to count the

number of times a records was looked up by defining it as:

pc5=pc5+1

CODEWHTTER will automatically create a special file for self

referencing fields whenever it sees a calculation with the SAME pc

on BOTH sides of the = sign. The program designer needn't do

anything hut write the formula.

Because the self referencing file will take extra space on the

program disk, CODEWRTTER will ask the designer to "confirm"

that this unique field is what the designer truly wishes. Simply

type 'c' to confirm as directed.

REMEMBER—The self-referencing field is for Program Calculated

(pc) fields only. The CODEWRTTER system contains special

features for AUTOMATIC UPDATING of Keyboard Entered (ke)

fields. These features are explained later, under "UPDATE DATA",

in the instructions for using ANY CODEWRTTER designed data

entry program. Don't worry if "self-referencing" is not quite clear

yet. Just keep in mind the following:

L "self-referencing" means holding an existing value while

combining it with a new one.

2. A self referencing field is ALWAYS program calculated

3. A keyboard entered field can do ALMOST the same thing

another way.

One last thing. Once defined, a self referencing field MUST have

some opening value (even zero) to function. This needn't be done

by the designer, but must be done the FIRST time the program

operator encounters the field on the screen. CODEWRTTER

anticipates this. Should a program operator pass a self referencing

field the first time WITHOUT entering a value, the prompt "You

must enter something" will appear at the bottom of the screen.

Again, a zero entry is fine.

THE NUMBER OF RECORDS NEEDED

Once field calculations are completed, CODEWRTTER will ask:

"What is the maximum number of records you want in the data

file (50 to)?"

This calculation is made automatically by CODEWRTTER and

depends on the amount of information in a screen design.

[271

pggg

CODEWRITER calculates the maximum for you and asks how many

you're likely to need in your file. CODEWRITER will then reserve

that specifying the maximum here will FILL the program disk.

Where you would like MORE than one program on the same disl

ask for the FEWEST records practicable for your use.

For our Sales Invoice example, a small record file will do.

enter '50' and press RETURN

Next, we are directed to "Type in the program title" and are

allowed 30 characters to do so. The program 'title' is NOT THE

SAME as the 'Screen file name' we chose earlier. This 'title' is

cosmetic only and will merely be printed above the menu

CODEWRITER will automatically create for your programs. The

'title' should simply describe what your program DOES.

ABC SALES RECORDS1

and press RETURN

THE KEY FIELD

You should now see on the screen the following questions:

"Which field is the kqy field (type 1 to - or 'list' to list fields)"

The "key field" is more computer jargon for a not too difficult idea.

The program which CODEWRITER is creating from our design will

store records in a file and then get them back as we need them. 1b

find a particular record (screen), the program conducts an

electronic 'search'. The program can simply look at every record

in file until it finds what we need, or it can go MUCH MORE

DIRECTIY to the record in question.

The difference is havinga "key" field to search for. Where one field

on our screen record is designated the "key", the CODEWRITER

created program can go to a SPECIAL INDEX of "keys" it had

previously set up. In a flash the needed screen appears.

There is no need for special computer knowledge to choose the

"kqy" field. The "kqy" is simply the one piece of information

(field) MOST UKEIY TO BE LOOKED UP when searching a file.

As an example, in a sales invoice file it is very likely that records

will be searched by 'Customer name' most often. Perhaps, in

another case, the screen form for the invoice contained a

'customer number' or 'account number'. Certainly either of these

would make a good "key" field as well.

OocBWMter

□

For the moment, type 'Li1 and press RETURN

You should see a screen like this:

f
Keyboard entered fields:

1. Customer name 2. Acct #

3. Date 4. Street Address

5. City 6. Invoice

7. Quan 8. Item

. 9. Price 10. Paid on Invoice,

Our choice is limited to the 10 fields designated 'keyboard entered1.
A 'program calculated' field can NEVER be a "key". The

CODEWRTTER system has numbered our fields from 1 to 10 and

entering the number only. Let's make 'Invoice #' the kqr.

enter '6' and press RETURN

MORB ABOUT KIT FHLDS

record is the most unique key.

For instance, in our invoice example the 'Acct #' key may be

REPEATED in many records (where the same customer buyB

jnany different times, for instance). Since the 'Acct #' entered is

the SAME for many records, each time a 'search' on the key field

is done many records will 'qualify' in the search. This will work,

but is not the MOST EFFICIENT way.

Try to devise a key which will be unique to a SINGLE record. In

our example, the Invoice* is best. This number wil be DIFFERENT
for each record entered.

Again, any keyboard entered field may be the \vy% and a key

which can refer to multiple records is O.K., but unique is best.

Since many CODEWRTTER applications will involve money, we can

use a bit more advice on the subject. Here are a few tips:

L CODEWRTTERwill allow an operator to enter simply 23. and

this will print as 23.00

2. An amount with NO numbers to the left of the decimal place as

in .ID will be printed later as 0.10

3. Where the program designer wishes to make sure that money

amounts line up top to bottom with the decimal points EVEN,

care should be taken to see that the DOTTED LINES for money

justify TO THE LEFT. For example:

left

.* (7 places)

* (9 places)

...t (4 places)

will result in a column of money amounts with the decimals in

line TOP TO BOTTOM even though the $ signs vary. The fact

that the dotted entry lines are justified LEFT will accomplish

this.

KEEPING OUT GARBAGE

We are almost finished with program design. This last section is

really optional, but it can be quite important.

Any collection of information can be made most valuable to the

extent it can be kept PURE. That is a file on stamps should not

contain an occasional recipe and a PROMPT field for price should

not allow letters to be typed in, etc.

Without some attempt at keeping out 'garbage1 entry, a file can

become an awful mess and lose a lot of its value.

You should now be looking at the first of two screens which show

how the GODEWRTTER system alJ

OUT ERRORS in operator entry.

OocBWMter [aol

I
like he other Instruction screens on the CODEWHITER disk, these

are for future reference. Let's go through them now for more

detailed understanding.

invoioe screen back into view and begin to HIGHLIGHT each of the

KEYBOARD ENTERED fields. At the bottom of the screen there is a

prompt line saying: Reject if: at the same time as ONE FIELD is

HIGHLIGHTED above.

The program designer is being asked, "What will not be accepted?"

entry process together. Remember, you can aJways type 'help1 to

see all the types of data traps again on the 2 screens. You

SHOULD study the screens as we go.

You'll see HIGHLIGHTED on the screen 'Customer name

etc.' and 'Reject if:' below.

enter 'no entry' and RETURN

This means that we have DEMANDED SOME ENTRY by the

operator of our program. Since 'Customer name' is quite

important, the operator musn't leave it blank or the sales record

could be confusing.

Once 'no entry' is typed and RETURN pressed, you'll see:

□
Error Message?

(cr= *** you must enter something ***)

CODEWRTTER is asking the program designer to write a message

was made. The "cr= *** you must enter something ***" means

that if the program designer wishes, the message "you must enter

something" will be entered AUTOMATIGALIY by CODEWRTTER as a

response to the 'no entry' error, (the cr means (c)arriage

(r)eturn or Just RETURN)

IS5SSSI

enter 'You must enter customer's name.1 and RETURN

As you'll see the SAME field will remain HIGHLIGHTED and the

Reject if: message will appear again, my? Because MORE than

one error could be made in the same field entry.

Let's say we want to prevent an entry which is TOO LONG. The

'name' field is 30 spaces. We can use the edit feature of

CODEWRTTER to automatically reject an entry longer than 29 (in

this case). The rule is; Where you wish to restrict length, allow

you wish to reject.

enter 'length) 29' and RETURN

Your CODEWRTTER program will then reject all entries MORE

THAN 29 spaces in length (The symbol after 'length' above means

'greater than'.) This prevents an operator from typing more

information than your screen form can accept. Regardless of any

edits you provide, your CODEWRTTER program will automatically
sound a BELL when an operator tries to type PAST THE BOUNDS

enter 'customer name cannot be over 29 spaces'

and RETURN

CREATIVITY IN PROGRAM DESIGN

through. The "attitude" of the created program toward its user,

and the general need for accuracy, is built at this point.

Rather than go through all of the fields in our example program,

we'll offer, instead, some suggested "edits" and messages. Once

devise yo

Field Name

Acct#

Acct#

INVOICE #

Quan

Price

ur own.

Reject if: (syntax)

contains 'ab'

length<5

no entry

not numeric

> 10000

Meaning

Invoice #CANNOT

contain ab'

Acct#'s MUST have

5 digits

AsKEYFIELD.it

MUST be entered

A quantity MUST be

entered as a number

No number OVER
10.000 will be

Message

"ab accounts only

in file 5."

"The Acct# entered

is too short"

"Please include

the invoiced"

"Please express

quantity as a number"

"Items costing over
$10,000 use form 3"

(Note: Though the following aren't in our example program, they

Last Name > 'D' No name beginning "This form for A to C
with D or later will names only"
be accepted

Part# =300 Don't accept 300 "Item 300 has been
dropped-see note 10"

SEX <> 'male' MUST be male "Use male only for this
survey"

WARNING: While edits can be COMBINED to test the SAME field for

different kinds of operator errors, some combinations are

LEATHAL—as they allow no entry at all (or eliminate a range of

entries by mistake). For instance, >"a" rules out EVERY lower

case letter entry. (Can you see why?) And >100, when combined

with <50, allows ONIY 50 to 100 to be entered.

you wish. Don't leave edits out entirely, though, as they can be

the'

PLBASB NOTE: If the "reject if:** syntax is still not dear, see

Appendix A at the end of the data entry section in this

Once the edit section is complete, CODEWRFTER asks if you would

like a special "end of data entry" message to be used in your

program. This message allows the program operator to either get a

new blank screen form to fill in or return to the program menu.

ONE bit of program LOGIC is automatic: If the operator presses the

RETURN key at the end of filling in a screen, a NEW SCREEN will

appear. And if "y" or 'yes' is entered, the program STOPS DATA

ENTRY and returns to the menu. Examples of "legal" messages

are:

"Are you rea<Jy to stop data entry y or n (RETURN = n)"

or

"To return to the Main Menu press "y", to continue press

RETURN"

If you'd rather not bother to compose any special message, simply

press the RETURN key and CODEWRTTER will write its own

message as shown on the screen.

This final C0DEWR1TER design choice is for date format.

Enter an 'a' for American or 'e' for European date

format in your program.

*'

Any field you designated 'date' (ty entering ../../.. to the

screen) will automatically he evaluated ty CODBWRTTER for legal

date entries.

THAT'S If!

Once the correct date format is selected, your syBtem is ready to

The procedures to do this will vary depending on which computer

you're using.

Check your USER NOTES CARD and he sure to follow the SCREEN

MESSAGES that are offered ty your CodeWriter syBtem.

To run your program immediately simply type: run and

press RETURN. Later, you run the program like any other piece of

software—there is no further need for CODEWRITER until your

next program design. Simply place your disk in the drive (after

proper power up). The 'program name' is the name of your

SCREEN FILE plus a /t. For example, if your screen file is named

joe your program name will he joe/t . Both the screen file name

and the t MUST he lower case.

The correct sequence for running your new software (once you

have turned your computer off) is the following (We'll assume the

screen file in namedjoe):

load"]oe/t",8

run

NOTE: Where you have already created a program with

First, find what's on the disk (load "$", 8 then list'). You'll see a

series of files with the same screen file name (but different

program would be loaded:

type load "invoice/t",8

□

(Naturally, if you used a different "screen file name", substitute

that name in front of the '/t' in the directory file name.)

Once the flashing cursor returns to the screen:

type 'run' and press RETURN

After a bit of disk activity, the Main Menu of your first

CODEWRTTER program should appear. Except for your name being

used instead of ours, it should look like this:

Program Design by Dynatech Microsoftware

ABC SALES RECORDS

File Preparation (First time onlyi). f

Enter data

u

Look up record I

Search records

Delete record d

Verify grand totals v

Exit... (After each session) x

Let's go through the menu options one at a time.

File Preparation—This is the CODEWRTTER utility which

prepares the disk designated to hold the data for the program. The

File Preparation utility will create enough disk space on the data

disk to hold the file the designer had requested. REMEMBER! This

utility is used ONIY the FIRST TIME a program is run. Once there

is data on a disk, the File Preparation utility will ERASE it to

'Prepare' a new file. Beware!

[35I

□

inter data—This gives the program operator a new and empty
screen form to fill in. At this point ONET the KEYBOARD ENTERED

fields are displayed (not program calculated, grand total or

labels). To stop the 'Enter data' sequence mid-screen, press the

fL key. Once a screen is complete, the operator will see a line

showing how many records have been entered into the file and

how many are left. Next the operator is asked whether the data

entry session is complete. If not a new screen is shown. If so, the

program returns to the MENU.

Update data—This program routine gives the operator a chance

to change any information already entered into a screen record.

The operator is asked to give the "key" information-that is the

data entered in the field designated "key" by the program

designer. Here's an example:

In our ABC SALES program, the "key" field is 'Acct #'. Thus, on

Update the operator first sees a prompt asking for the 'Acct #' of

the record to be 'Updated'. Once the Acct # of the record (invoice)

is entered and RETURN is pressed, the program searches the disk

for the record and displays it on the screen.

At the bottom of the screen, the prompt line displays:

If the record displayed is correct, press RETURN. You'll notice

that now ALL FIELDS and LABELS are displayed. The results of

program calculations appear and grand totals are listed where

they were designed. (NOTE: If the record displayed is not correct,

type 'n' and the program will continue to search.)

A new prompt now appears at the bottom of the screen. Using our

Invoice Program as an example, the prompt reads:

Which field to update (1-10, 'list', fL to cancel, RETURN to save)

mean the following:

1-10—This is a choice of field numbers to UPDATE from field #1 to

field #10. All are KEYBOARD ENTERED fields (the ONLY ones

intended by the program designer for the program operator to be

involved with).

list—Naturally, this gives the operator a list of the KEYBOARD

ENTERED fields showing which FIELD LABELS belong with each of

the 10 numbers. Once the operator sees which field # needs to be

UPDATED, RETURN is pressed, the record screen returns, and the

Fl—At any time during UPDATE, the operator may press fl and

cancel the update process. This returns the main menu.

RETURN—To COMPLETE and SAVE the update to disk file, press

RETURN.

This sequence illustrates the update process on our example

program:

L The operator notices that an incorrect price was used in a

customer invoice already on file.

2. The UPDATE routine is called with "u" and RETURN.

3. The Acct #, 1005, is entered as called for.

4. The first record displayed is the right Acct # but the WRONG

invoice, so 'n' and RETURN get a second invoice—which is

correct.

5. 'List' is called to get the field # for Trice', which is 9. The 9 is

entered and the cursor appears at the 'Price' field—now erased

and waiting for a new entry.

6. As soon as the new price is entered and RETURN is pressed,

the screen action begins! Not only is 'Price' updated, but ALL

the program calculated fields and grand total fields which in

some way depend on the price amount are also updated and

can be saved by pressing RETURN again once the revised

screen appears.

feature called (<(m)ore and (l)ess". Here's an example from our

ABC SALES program:

L.

invoices. The operator goes through the update routine and

finds that the field (#10) PAID ON INVOICE alreacjy contains a

payment amount. The customer is making a second payment on

the same open invoice.

2. Since in this case we don't want the amount NOW in PAID ON

INVOICE to be ERASED and replaced with the current payment,

the normal update won't do. (Let's say the amount currently in

PAID ON INVOICE is $15.00)

3. The operator chooses field #10 which places the cursor at PAID

ON INVOICE and OVERWRITES the $15.00 amount. Since the new

payment is $10.00 and we wish to ADD this amount to PAID ON

INVOICE, the payment is entered as 10.00m for more. The 'm'

ADDS the 10.00 to the previous 15.00 so when RETURN is

pressed, the new PAID ON INVOICE amount reads 25.00 and

once again all fields which relate to this change automatically.

Obviously, entering T (for less) as in 35.001 would SUBTRACT

55.00 from the amount aireaty entered.

while calculating a new one. The two are different. The m and 1

feature works ONIY on KEYBOARD ENTERED fields while self

referencing is ONIY for PROGRAM CALCULATED fields.

Keep "(m)ore and (l)ess' in mind for your future CODEWRTTER

applications. The feature is invaluable for inventory type

programs especially.

Look up record—When the T is used from the main menu, the

user first sees the key field alone on his screen. The ENTIRE key

field entry should be typed and then RETURN is pressed. Once a

record is correct, simply view as long as needed and then type x

and RETURN. This will return to the main menu. If the first

key), press RETURN and the program will search for another

Search records—This feature has two main purposes. One is to

find screen records where the "key" field information is unknown.

The second is to give the program operator a chance to view an

entire SERIES of screen records which are LINKED by search

boundaries the operator has chosen. Here's another example from

our ABC SALES program:

1 The operator wishes to find the invoice to "Abbott Jewelers"

but does not know the Acct # to find "Abbott Jewelers" with

the Look up command. The Search command is chosen instead.

2. After's' and RETURN are pressed, the operator sees the

prompt:

—

Since the operator doesn't want to see "all" of the invoices to find

"Abbott", the's' is pressed for 'selected' records.

3. Next the operator sees the prompt:

□
I

□

□

What field do you wish to select by?

(1-14 or 'list')

Here the operator types 'list' and sees a list of all 14 fields

(except grand totals). The operator wants to search

alphabetically so field #1, Customer Name, is selected for the
search.

4. The next prompt reads:

Here 'Smallest' means lowest in the alphabet. Notice that the

prompt offers 30 dots to fill in? That's because your CODEWRTTER

program "remembered" that field #1 was designed to have 30

characters maximum. The operator types 'Ab' which means that

records with 'Customer Name' beginning lower in the alphabet

range than "Abbott" (say Aaron, for instance) would be omitted

from the search. Remember a lower case letter is 'lower' than its

UPPERCASE counterpart (i.e. 'a' is lower than 'A').

5. The next prompt:

i—i
Largest item to select?

is answered; 'Abbott' so that nothing above 'Abbott' will be

searched. The records within the range will be displayed one at a

time along with the prompt:

Cod^Mter

r—1
To exit type x then RETURN,

to continue RETURN

record is displayed and then types x to halt the search.

A few more items concerning 'Search1:

L Onanalphabeticsearchof, say, A to D remember that a lower

eveiytiiingb^^

enter Aa or A and DZ as the two limits.

2. Remember that to a computer A is different from a. If you used

capital letters in your fields, use capitals in your search limits.

3. Where a search field is a date, you'll be offered ../../..
instead of dotted entries. You may search through a range of

dates.

Delete record—This menu option removes records from the file

disk. It works by asking the operator for the entry to the "kqy"

answering the "is this it" prompt with RETURN, the record is

deleted.

"rounding off" certain sums, the Verify' option is included. Simply

enter V and RETURN. No other entry is needed- All of the 'grand

total' fields on the screen will be checked for accurate mathematic

sums,

totals.

Exit—This is simple, but can be easy to forget. After EACH

session of data entry is complete, exit the program with THIS 'x'

RETURN option. Do NOT simply turn the computer off. The 'Exit'

routine in your program performs a number of very important

"computer housekeeping" tasks which keep the data file reaty for

reliable use.

A FINAL WORD

We have tried in this manual to show the major features of

CODEWRTTER and how these features work interactively to allow

things in detail and only hinted at others—all by design.

CODEWRTTER is a tool, to be discovered rather than explained.

This CODEWRTTER product is the first of a series aimed at making

PROGRAM DESIGN more powerftil and capable a function. We hope

never

Appendix A - The "Reject if:" roles

We thought it would be helpftil to have the two "reject if:" help

screens for your CODEWRTTBR program reproduced here for

Test name

screen one

GENERAL TESTS

example meaning to operator

'no entry'

'not numeric'

'numeric'

Test name exa

some entry required

use only numbers here

don't use numbers here

DATA SIZE TESTS

imple meaning to operator

'length >' length > 4 no more than 4 keystrokes allowed
'length <' length < 7 no less than 7 keystrokes allowed
length=' length=2 must NOT be 2 keystrokes

'length (> • length O 3 must be 3 keystrokes

screen two

'contains'

NUMBER TESTS

Test name example

•>'

•<•

Test name

>100

<20

=631

O17

must NOT be greater than 100

must be 20 or higher

must NOT equal 631

must equal 17

CHARACTER TESTS (note single quotes)

example meaning to operator

> 'd' must NOT be after "d" in the dictionary

< 'jo' must NOT precede "jo" in the dictionary
= bill must NOT be "bill"

<> 'male' must be "male"
contains 'abc' must NOT contain 3-letter group "abc"

The various symbols used in "reject if:" syntax may not be

familiar. Here's a detailed explanation. We'll take the tests in

order.

[4fl

Very often the most confusing aspect of the "reject if:" design is

the backward or opposite nature of the prompt: the designer is

asked to state what he does NOT want rather than what he does.

Help is on the way.

NO ENTRY—Since the purpose of "reject if:" tests is to let the

program operator know what is NOT accepted entry, "no entry"

as a test is vital When the program designer answers a "reject

if:" with "no entry" the meaning is: "Don't skip over this field—it

will be rejected if there is no entry."

Use the 'no entry' test when the field in question is the KEY

FIELD. Without tjie 'no entry' test, the operator could leave the

key field blank. With nothing in the kqy field, the ENTIRE SCREEN

RECORD would be lost to the CODEWRTTER system.

Anytime you wish to DEMAND SOME ENTRY to a field, use this

test.

NOT NUMERIC—Again we must think in opposites. Where a field

is designed for number type information only (Le. quantity,

number of days, part number, etc.) the designer should "reject" a

"not numeric" entry by the operator.

This is critically important where a number will be part of a

calculation. Obviously, if an operator answers a quantity question

with "two" instead of "2", the calculation function will not work.

NUMBBRIO—Where a designer wishes ONIZ TEXT to be entered

to a field, the syntax is; reject i£numeric - The CODEWRITER

program will not accept keystrokes 0 through 9 under this test.

LENGTH > —The meaning here is "length greater than". The " > "

sign the computer symbol for "greater than". Literally, what is to

the LEFT or LARGE side of the " > " is greater or larger.

In the case of "length", the "rq)ect if:" meaning is the number of

keystrokes (both spaces and characters) allowed for entry. Thus,

where NO MORE THAN a 5 digit number is acceptable entry, use

"length > 5" meaning "length greater than 5" as the correct test.

LENGTH < —No surprise here. The " < " symbol means "less

than". Thus, where a particular part number MUST HAVE at

LEAST 6 digits, for example, the test "length < 6" will prevent an

operator from entering a number whose length is too short.

LENGTH—Again, this is fairly clear. The meaning is 'length

equals". The test will screen out a SINGLE PARTICULAR LENGTH

as "rq)ect if: length=3". This test is not used very often, but

COMBINED with some other test, may be useful.

LENGTH < > —The " <> " symbol is computerese for "does not

equal". Where a designer wishes ONIY A SPECIFIC LENGTH of

entry and nothing more OR less, this test is used An entry of 6

keystrokes and NOTHING ELSE would be tested with, "reject if:

length <>6"

QUANTITY and TEXT

Where the four symbols," > ", " <M, "=", and " <> " are used

WITHOUT "length" and WITH numbers, thqy evaluate the

QUANTITY INVOLVED rather than the number of keystrokes.

> —This still means "greater than". Where you wish to prevent

an entry of ANY HIGHER QUANTITY than 100, for example, the

test is "reject if: >100".

< —As you'd expect, the "less than" symbol works to prevent

ANY LOWER QUANTITY than the designer wishes from being

entered To reject any lower entry than 50, for instance, the test

is "reflect if: < 50".

=—As before "equals" seeks out a SINGLE QUANTITY ONIY to

reject. Where, as an example, the ONLY wrong amount Is 200, the

designer tests for this with "reject If: =200".

< > —The symbol means "does not equal" as before. Used

without "length", the test is to SEEK OUT A SINGLE CORRECT

QUANTITY. Where the designer wants, say, only part 400 as a field

entry, the test is "rqject if: < > 400".

Be careful with "does not equal" as a test. Since it accepts ONIY

ONE quantity as correct, it cannot be combined with other

quantity tests.

LETTER TESTS

When used with quotation marks and letters, the " > ", " < ", "=",

and ' <> • test for POSITION IN THE ALPHABET OR DICTIONARY.

> " "—In the example > V. the meaning is "greater than

p" or "past p" in the alphabet. Using a SINGLE LETTER as we did

limits the test to the FIRST LETTER in an entry. Thus the test

'reject if: >"p"'would TRAP OUT all words beginning with r or

any other FIRST letter LATER THAN p In the alphabet.

determines the "greater than" or "later than" test. The test

'reject If: > 'mac'' would eliminate ALL WORDS later in the

dictionary than a word beginning with 'mac'.

< ' ' —Here the meaning becomes "lower than" a FIRST
letter or group of FIRST letters In the alphabet or dictionary. Tb

trap out ALL "d" words or lower in the alphabet, the test Is

'rqject if: < "e" '. Thus, only "e" words or higher could be entered.

=' ' —As before "equals" looks for ONE THING only. Where,

for some reason, the designer does not wish "frog" as an answer,

the correct test would be "rq|ect if: = •frog'. Several of these tests

can be combined on a single field to trap out a LIST of words or

letters not wanted.

< > < t _As i^fope, the "does not equal" symbol is used to

trap out ONE SINGLE ITEM. Therefore if "tractor" is the only

response the designer wishes to allow, it is demanded with "rqject

if: < > 'tractor'. Also as before the "does not equal" test

CANNOT be combined with others on the same field. It is seeking a

COHTAINS ' ' —The "contains" test is used ONIY with

words and letters within the GODEWHITER system. If, for

instance, a particular letter or group of letters is to be tested for,

"contains" will do the job.

Let's assume that a part number entry in some inventory

analysis is "B1300" and the designer wishes to allow NOTHING

from the "C" series (C1300, etc.) to get into the data by mistake.

The correct test for the 'Part Number' field would be 'reject if:

contains'^'1 All numbers and other letters would be ignored, but

any entry containing "C" would be reftised.

The "contains" test can also trap a CONTINUOUS GROUP of letters

ANYWHERE in a word or sentence. Thus the test 'reject if:

contains 'me'' would trap out 'me' as well as 'men' BUT AI£O

"some" and "stammer" (because they contain the 2-letter group

'me'). 'Contains' is a powerful test. Be careful.

Keep in mind that with all the letter and word tests, an UPPER

CASE letter is not the same as its lower case counterpart. You

may have to test for BOTH kinds of entry to really be sure you

keep out what you want out.

We hope this appendix makes the "reject if:" idea more clear.

Remember, while your program designs will be made more

powerful by using these tests, they are optional. Use them as you

are comfortable with them.

THE REPORT SYSTEM

The creating of "reports" from data entry programs is the real

information is "humanized". What was merely entered as it

happened, is now looked over, compared, sorted, and rigorously

manipulated until the program designer can answer the most

useful questions: What does this mean? Are there patterns to

what's happened? Of all the information we've collected, what's

significant?

CODEWRTTER, we've changed the rules a bit from the

CODEWRTTER data entry system. These new instructions will be

shorter and will assume the following:

L That you are familiar with the workings of CODEWRTTER-Disk 1.

For the most part the answering of screen prompts and the

syntax for entering calculations is the same.

2. That you will generally understand the screen prompts and will

be able to proceed. We will not include detailed examples with

the screen prompt explanations, but will instead use the

PROMPT SCREEN NUMBERS (usually in the upper right

corner) to refer you ahead in the instructions for more "in

depth" treatment—with examples.

Why the change? The CODEWRTTER Disk 1 data entry design

system includes many functions for creating in fact "on screen"

reports. By using the ability to calculate between fields and

CoaeWMter IM

display grand totals as you go, CODEWBTTER gives the program

designer a lot of what's needed for many kinds of reports.

Thus, the Report System is intended to he an invitation to

experiment with CODEWRTTER to find report formats not possible

with CODEWRITER alone.

Don't worry. We wouldn't leave you alone. At the end of the

screen prompt explanations, you'll find the DESIGNER'S

REFERENCE section of the Report System manual.

)a

screen explanation is expanded upon in DESIGNER'S REFERENCE,

you'll he alerted.

JUST WHAT 18 A REPORT?

The answer is not as obvious as you might think. The broader

your definition of "report", the better reports you'll design. Here

are a few ideas:

L Reports give the "status" of a file of information. How many

items are below a certain number, how many above, etc.

2. Reports seek out a pattern. If the designer imposes certain

conditions, how many of the entries in a file will qualify?

3. Reports pull together information to change its purpose. All the

headings from an invoice file can be pulled together to form a

mailing list.

LET'S BEGIH

Before your first CodeWriter report, you'll need to transfer two

programs from your CodeWriter Report System disk (the disk with

the data entry program you created).

We'll assume you are starting fresh with your Commodore CBM 64

showing the message below and your diskdrive is on.

♦♦♦♦COMMODORE 64 BASIC V2**"

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY
Do the Mowing EXACTLY:

1. Press the SHIFT and Commodore symbol keys at the same time to

switch to UPPER/lower case mode.

2. Place your CodeWriter Disk 2 (label facing up) into the drive.

3. "Type—load "sc6",8 andpressHBTURN.

4. Once loading is complete, remove the CodeWriter disk and insert

• your application disk in the drive.

5. l^pe— save"@0:sc8",8 and press RETURN.

6. Once saving is complete, remove your application disk and place

your CodeWriter Disk 2 back in the drive.

7. Type— load "sort",8 and press RETURN.

8. Once loading is complete, again switch disks, removing the

CodeWrtier Disk 2 and replacing in the drive your application

disk.

9. Ttype— save "@0:sort",8 and press RETURN.

The two needed programs (sc5 and sort) should now be on your

application disk. You can verify this by checking the contents of

your disk:

1. Type— load "»",8 and press RETURN.

2. After the 'reaty' re-appears, type— list and press RETURN.

You should see a list (or directory) of the program files on your

disk. The list should contain the "sc5" and "sort" programs as

file name of your data entry program.

Repeat the process, checking carefully, if all is not as expected.

Watch the red 'activity' light on your disk drive. If this light

flickers on and off during the load or save process, something may

be wrong with either the disk or drive.

To load the Codewriter Report System, place the Codewriter

disk (disk facing up) in the drive and type— load "report",8 and

press RETURN,

You'll see a brief copyright notice and the a reverse video

WARNING SCREEN. The screen asks for confirmation that the

they should be at this point, press the fl key to continue.

You'll need to SWAP DISKS again at this point. Remove the

CodeWriter disk from the drive and replace it with your

application disk. This disk contains the '/s' program and the Vpcf

program the Report System needs.

CodeWriter Concept: There are two points we should consider

before going further; One is the idea of a "record" as it's used in

the Report System. The second is using an 80 column screen on

your 40 column Commodore CBM 64.

1. A "report" is simply output from the data file of your choice, It

may be a standard sheet of figures arranged in column form

under headings you choose. It may also be a form letter using

data from the file to fill in "holes" you designed or even a check

or mfljiiTig label — they're all reports of a sort.

Thus, when you're asked (later) *How many records across

the page' you'll need, the meaning is; How wide is the screen

data entry record. We'll explain more later.

2. Your CodeWriter Report System allows you to create 80 column

wide reports to either the screen or to your printer. How is

this possible on a 40 column screen? When designing your

report, certain sections of the Report System allow you to FLIP

back and forth between TWO 40 column "screens". You'll

normally see the left "half' of your report design. To see the

right "half', press the)kqy (a shifted dot on your keyboard).

comma).

Enter the name of the screen file EXACTLY as you entered it

when designing your data entry system.

CodeVMter [461

I SCREEN I
R4

I SCREEN I
R5

_ Your report program title may use up to 30 characters.

R6

I SCREEN I
R7

|SCREEN I
R8

I SCREEN
R9

Enter 'a* or V remembering that your date format must be the

SAME as you used in data entry.

You may use up to 28 characters for design credit.

This is the way the title page for your report will look. If you

answer 'n' for no here, the title page will be ERASED and you'll be

returned to SCREEN R8.

2 DISK SWAPS HERE

Your computer screen should now instruct you to make the FIRST

of two disk swaps. In each case there will be a pause after you

two SWAP screens, After the second swap, you'll be ready to work

n screen R8.

The Report SyBtem will display all the PROGRAM CALCULATED

fields defined in the original data entry program. You'll see the

"name" of the field along with its 'pc#' and the calculation used

(one 'pc' at a time). For each 'pc' you see displayed, enter the

MAXIMUM LENGTH (4 to 9) that the field will need for this

report.

Here you are to declare NEW program calculated fields for use in

this report. The next available 'pc' # will be displayed. You enter
the calculations just as in the CODEWRITER data entry program.

However, you may not use the same 'pc' # on BOTH sides of the =

sign.

(For more on NEW 'pc' fields,

see DESIGN NOTES—R9)

Once the "definition" or calculation formula for each 'pc' is

entered, you'll be asked if the entry is valid. The report system

does some mathematical and syntax error checking of its own, but

not enough to eliminate ALL kinds of mistakes. Caution here will

The 'brief description' asked for here is to update the "list" of

fields so you'll be reminded that your NEW 'pc' is available in your

report—and for future 'pc' calculations.

The (d)ollar or (n)umber choice is for automatic formating. A 'd'

choice makes your NEW 'pc' display with two decimal places to the

right. A choice of 'n' is for normal numeric handling of the

quantity.

As with the ORIGINAL 'pc' fields, the Report §yBtem will next ask

about Tnarimntn length for these NEW 'pc' fields.

with any good report mechanism, the CODEWRITER Report System

looks at ONE RECORD at a time. Keep In mind, however, three

important choices you have:

L Not ALL records need to be included in a report. Some will be

IRRELEVANT to your report goals.

2. Not ALL PARTS (fields) of a record need to be included for
evaluation.

3. Only those records, or parts of records, you wish need to be

DISPLAYED or PRINTED at alL Your Report System design can

LOOK at a record and EVALUATE its content without going to

either screen or paper. Sometimes, just a summary is enough.

This Screen asks you to begin to VISUALIZE which parts of the

data entry file are important in the report you're designing now.

While your ORIGINAL data entry design may have used ALL of an

Our A5C Sales Invoice example (from CODEWRITER 1) used most

of the screen. But a CUSTOMER LIST could be extracted from

those screens by using ONIY the 'name', 'address', and 'city1 fields

directly on to mailing labels.

The question: "How many records do you wish displayed across

the page?" asks you to CONSIDER the following

L Your screen workspace is 80 columns (with the left/right

control) and your printed page space is naturally 80 columns.

If the SIGNIFICANT INFORMATION from one record can be

ACROSS on a screen (with space left over). You are, of course,

free to use the ENTIRE screen width (simply answer 1').

2. Remember, you'll be allowed to MOVE AROUND the contents of

including adding NEW TEXT and NEW'pc'fields.

The question: "How many lines long, etc" offers ALMOST the same

choices. A fall report page is 80 columns wide and 56 lines top to

bottom. Since most screens displays only 23 lines at a time, you

MAY want to consider that when declaring your record segment

size. You may, of course, display as much of an 80 by 66 page as

you wish to your screen. Your computer will SCROLL UP at your

command, after displaying 23 lines, and show the rest.

You'll always have the choice as to whether your report will be

printed to paper or displayed on the screen.

[481

first, but will be much more clear alter your first time through.

Just press on. Remember, mistakes are the way you know you're

The last question asked on this screen is to verify your previous

answers. A y or 'yes' sends you onward in the Report System.

An 'n' or 'no1 ERASES both your entries and returns to "How

many records across...", etc. There will be a short delay (5 - 8

seconds) while a new program loads.

This is where you design your report. As you see, a screen

segment has been drawn by the Report System according to the

dimensions you gave in SCREEN RID. The vertical dashes mark the

RIGHT HAND boundary ofyour report segment. The solid line is the

top-to-bottom boundary.

At the bottom of the screen is the familiar column and row

position indicator from GODEWR1TER L Here, however, your

cursor movements are limited to the boundaries of the screen

The prompt line contains the following options:

(E)nter— Allows a field to be positioned within the screen

segment. PressV (without RETURN) and you'll be
asked whether your entry is (k)qyboard entered,

(p)rogram calculated, or (t)ext. You'll be asked if you

want 'numeric formatting' on any 'ke' fields marked

with the # sign. Enter number of positions you need to

the RIGHT of the decimal point. Text' allows any

keyboard character to be typed as usual. The 'list'

option works as always. Press the fL key to stop

entering. After an (E)ntry, the cursor returns to its

LAST position. Move it to the NEXT place you wish to

(D)elete—Reverses the entry process. Any field, ke, pc, or text

can be erased by moving the cursor over the FIRST

character'and pressing 'd'. You'll be asked if you're

sure.

(M)ove— Allows any field already entered to be moved with the

normal cursor keys. In this mode, the ft key acts as

tab to the for right.

(H)elp— A ftill review of all screen entry procedures.

e(X)it— Press 'x' to stop the screen segment formatting

(For additional information on this procedure,

see DESIGNER'S REFERENCE R11)

I SCREEN I
R12

This is a look at the way your report record will appear when

repeated across the screen as you designed. You'll be asked if you

would like to repeat the format display. This is in case your

screen you designed. Press y and the original screen segment will

re-appear as you left it.

Do you want report headings and page numbering? In many kinds
of reports you will. But for projects like mailing lists, the report

The rule to keep in mind is: Where you want CONTINUOUS print

with NO BREAKS at all, answer that you don't want headings or

page numbers. Caution: some printers do not support paging and

with these CodeWriter will not give page numbers. The rest of the

report page will be as usual. Consult your printer manual.

You'll see a sample of the LEFT HALF of your report form (as in

Screen R13). To view the RIGHT HALF, prea&shifted dot). There
are a total of three lines for headings. The top line or lines are

normally used for a report heading, leaving a line for column

headings if you wish. To SKIP the second line, enter a space and

then press RETURN. Remember you may be working on HALF a

page at a time, so you'll need to be careful about centering.

A section is simply a part of a report. Each part, or section, may

be ENHREDT SEPARATE from the others in design make-up, logic,

etc.

Where you enter a choice of MORE than ONE section, the Report

SyBtem will automatically rep

appropriate number of times.

There will be short delay (5 - 8 seconds) while a new program

loads.

the designer to decide which data records to EVALUATE for the

check the designer wants. In other cases, only CERTAIN records

should be included based on the information found in a

PARTICULAR field within the record. Still other reports accept

records for review only if some COMBINATION of conditions exist

separate 'Accept if:' criteria from all the others. Only ONE 'Accept

if:' evaluation is allowed per SECTION of your report.

The design syntax for the 'Accept i£' statement is as in following

example:

Accept if: ke3 > 15

which means; Accept the record in question for inclusion in the

report IF the quantity held in field (k)eyboard (e)ntered 3 (ke3)

Study the example to be sure you can relate the syntax shown to

the definition offered above.

Should We Use All the records?

Where you wish ALL the records to be part of your report, as in a

complete summary, simply avoid all evaluations by entering 'all'
as in:

Accept i£ all

AND OR and NOT

The words 'and;, 'or\ and 'not' can help make the 'Accept i£'

statement a very sophisticated design tool. Here's an example of

theuseof'aad': ,^:^<&)OI6^

Accept i£ ke3="male" and ke4 > 25

Where ke3 is a field asking about sex and ke4 is a field for age to

be entered, this 'Accept i£' statement means:

"In this report I am interested ONIY in those records in the file

Again, look at the meaning and try to see how the 'Accept i£'

statement means the same thing.

You might be intimidated by the 'Accept if' idea at first. Don't

worry. It's simply a bit new. Use one or two in your early report

designs and you'll soon be thinking up more and more uses.

(For more about the 'Accept if:' features of your Report

System, DESIGNER'S REFERENCE R16a)

You will see the prompt "Do you want an overall summary?" only

The meaning is: "Would you like a summary of ALL your

summaries?".

In the next screen, you'll he asked about the kind of summary

information your report design will include.

There will he a short delay (5 - 8 seconds) while a new program

loads.

The Report System summary options are; Total, Average, Minimum

(or minima), and Maximum (maxima). You'll he offered the

chance to SUM UP any DOLLAR and/or NUMBER fields which get

INCLUDED in your report.

The Summary Work Screen will show the fields you have created

to date (with the usual 'list' option). Below the field numbers

you'll see the 4 kinds of summary options ONE AT A TIME. Simply

enter the field number (Le. ke8, pc3, etc.), and this field will be

added to the KIND of summary shown.

For example, where ke6 is the quantity of some part, and you

want your summary section to show the TOTAL of all those parts,

enter "ke6" when the word Total' is displayed for summary. Each

field number you designate for TotaTing will be displayed across

the 'Total' line.

When you're finished with fields to Total', press fl and the

Summary Work Screen will continue on to 'Average' in the same

way. Again, where you want an average for a field entry, type in

the field number and the designated field will be added to the line

for inclusion in the summary section.

The'Minimum' option will display in your summary the

SMALLEST of a particular quantity (Le. What was the least

amount of widgets ordered this month?). As you'd expect,

'Maximum' does the same thing finding the greatest number

among those evaluated by your report.

Here you get a chance to design your summary section again.

When you answer "y" to this option, your OLD summary is

ERASED and you RETURN to R18 to try again.

The CODEWRITER Report System will assign a 3 digit number of

your choice to each report you design. This makes identifying a

report easier where several are used or report titles are long.

I
YOOTUS DONE!

Once you've chosen the report number, you'll make one final DISK

SWAP to remove the OodeWriter Report System disk and replace it

with your application disk. Your report program will be saved to
thisdisk.

The time needed to create and save your report will be much less

than was used to create the data entry syBtem. Report program*

will average between 10 and 20 minutes creation time. Again,

automatic, so you may leave the computer, but be sure the

computer is not accidentally shut off while you're away.

THE SORT PROGRAM

The OodeWriter "sort" program was placed on the application disk

when we first began report design (see pages 4546). As the name

implies, this program sorts the information in a data file so a

report can be created most efficiently. For instance, where you

want an alphabetic listing of names, the sort program could

re-arrange the "name" fields in your data file automatically.

Where you wish to print out certain golf scores, for example, from

low score to high — sorting first by the "score" field makes it easy.

GAUTIONr Whether or not your report requires a sorting

operation, you MUST RUN THE SORT PROGRAM each time you run

a report. "Sort" updates certain iternal values in your data entry

program which keeps things tidy, so please don't forget.

The procedure to run a report is the following:

1. type— load "sort",8 and press RETURN.

2. type— run and press RETURN.

The sort program will ask for the number of report you wish to

run and will then run the appropriate report automatically. You'll

be asked for the field number by which you want to sort. Of

course, you needn't sort at all.

Not everything will be clear the first time you read it. Try a few

report ideas just to see what happens. Don't worry about

concepts more fully. Enjoy controlling information.

DESIGHBR'S REFERENCE SEOTIOH

SCREEN R9—The creation of NEW program calculated fields may

be a bit unclear. Why are new calculations needed? Let's look at

an example; In the ABC Sales data entry program, the calculations

operator—calculating price extensions, tax, totals, etc. The

calculations were appropriate to the program.

In a report program, the same information should he looked at in
a different way. Now that we have the information IN the file,

We'll use the following data entry field examples to create NEW

program calculations for a report;

ke9 = paid with order pc2 = invoice total gtl = total receivables

gt2 = total sales pc3 = invoice balance

Where the program designer would like an analysis of how much

each customer pays with his order in RELATION to the total order,

a NEW 'pc' called pc5 could he created for the report program:

pcB = (ke9/po2)*100

When asked for a "brief description" of the new pc (for the 'list'),

the program designer could call pc6— "% paid with order".

In this case the answer to "maximum length" would be 3 as a

Since it's wise to he aware of how much customers OWE in

relation to bow much has been SOLD, a new pc6 for the report

could be:

pc6 = (pc3/gtl)*100

and label the result "inv. bal. as % of rec."—meaning 'invoice

At this point a short but useful report could be written. Print out

only:

Customer name invoice #
percent paid with order ...% Balance as % of receivables ...%

Obviously, these examples are quite specific, but you should see

that the new calculations possible in the Report System expand

your design possibilities a great deal.

SCREEN Rll—What is a screen segment? The creation of a screen

entry screen—so that the report can deal with SPECIFIC parts of

collected information.

that it gives the designer ALL of the INFORMATION of the data

entry system, while allowing the FORM of the information to

change completely.

Remember, when the Report §yBtem 'reads' your data entry

program, it will retain ONIY the field names and spaces you

designed. It does NOT retain their positions on the data entry

screen. There is no need for this. The Report S|ystem offers you

the chance to pick and choose among the fields needed. Their

NEW positions within your report is entirely up to you.

A "record", within the Report System, is ANY field or group of

fields from the data entry screen record RE-ARRANGED any way

you wish. The screen segment created in work screen Rll is ONE

of these new 'sub-records' which you may REPEAT either across

an 80 column screen or down a 56 line page.

Let's begin with a fairly direct example; You would like to create a

mailing list 'report' from the information in your invoicing

program. You wish to 'strip off from the invoice form

ONIY—Customer name, address, city, state (or district), and zip

code (or other mail routing #).

You begin the design on work screen RIO. The first question is

'How many records across the page?' As we are designing a

mailing list, our screen segment (or record segment) is a single

MAILING LABEL

The work screen is 80 characters wide. If the 'name' entry space

in your data entry program is 25 characters or less, you could get

3 mailing label 'records' across (with tight margins). In our ABC

Sales example, we used 30 characters of space for 'Customer

name'. This means that we can format 2 labels. Across the report

screen. Thus, we answer '2' to the question 'How many records

across the screen?'

The next question on work screen RIO is 'How many lines long

(1 to 56)?' A standard design choice here would be "6". Most

mailing labels allow one blank line on top, 4 address lines, and one

blank line below.

Remember that on the data entry screen the SPACE to enter a

customer name was always PRECEEDED by the words 'Customer

name'. In the Report System the 'field label' 'Customer name' is

NOT connected to the space (the 30 dot line). This is to provide

Since we asked for a segment space of 40 spaces (80 divided by

our "2" choice) wide and 6 lines down, work screen Rll begins by

DRAWING that area on the screen. Tb begin label design, press 'e'

to Enter a field, and 'k' to designate that the field is 'Keyboard

entered'. You'll be prompted by Report §yBtem to help you stay

within the 40 ty 6 area. Press 'm' to Move your field around the

area with the cursor control keys. Use the normal 'list' option to

remind you of the numbers of the fields which contain the data

you want on your label.

Cod^WWter 155

Only the 'field type and #' are connected to the field space by

Report System. Thus, the mailing label record segment would look

like this on the report work screen:

kel

ke2

ke3 ke4...

This will work well as a mailing label. There is no need for

anything but the address data itself, so the lack of field labels is a

help.

Let's add a little advertising for ABC Sales on each label Press 'e'

to Enter screen information and the't' to designate the

information as 'text1. Move the screen cursor to just below the '

'ke3' entry and type; "ABC MEANS QUALITY1'. The label becomes:

kel

ke2....

ke3 ke4...

ABC MEANS QUALITY

Though it didn't matter here, when you enter a number field on to

Rll work screen, you'll be asked if you want 'numeric formatting'.

If you answer "y", you'll be asked 'How many digits to the right of

the decimal point?'. This allows you to specify the display format

of all numbers in the report. Where you want a number handled

as an integer (whole number only), answer '0' for the digits to

the right of the decimal point.

JUST THB BBCMHHIHO

The mailing label format is merely a simple way to introduce a few

of the possibilities of Report System. You needn't work in "screen

segments" at all. By answering "1" in screen RID (for 1 record

across) and 56 for the lines down, you have the space of more

than two full Commodore screens to design your report layout.

The more traditional 'columnar' type reports can be built by using

data entry fields and new program calculated 'report' fields

ACROSS the 80 column page:

ke5 Ke6 pc7 pc8 kell

Later, on work screen RIB, you can add a report title and column

The 1988 Grape Harvest

Grove location manager costp/vine vat cost grape variety

ke8 Ke6 pc7 pc8 kell

When run, the column format will simply fill-in down the screen

until the page size you chose (in lines) is full. Then a new page

with the same heading will begin. If your report goes to the

computer SCREEN instead of paper, the output display will stop

when the 25 line screen Is full and continue when RETURN is

TEXT IS A DESIGN ELEMENT

The text feature we used for the mailing label advertising line can

add lots of qre appeal and excitement to a report. Keep in mind

that the GODEWRITER Report System lets you MIX text and data

freely. Use the freedom. There's no reason a report on operations

can't look like a breezy memo:

The Wonder Wheel Company—Year 1982

rest of the wheel industry was down pc5%, Wonder showed an

encouraging pc8% increase—with a pc9% boost in market share.

Tb: ke3 in department ke6

We could not have come this far without your help. Your

department's pc3 $ contribution to sales represents
pcl2% of the total."

A 'report' can be a form letter, a check, a purchase order or

nearly anything which can be put to paper or screen. The report

is simp]y a way of organizing input information to do a job. Use

the design screens to create!

SCREEN RIM-CREATING THE 'ACCEPT IP' STATEMENT The best

report programs look at the fewest data record screens while

easiest to design and easiest to use.

The CODEWRTTER Report system allows the designer to "describe"

just the file information needed by using the 'Accept if:' statement.

In this reference section, we'll deal with 'Accept if:' as the

descriptive language it is. With a very few components, the 'Accept

if:' statement can be used to give amazingly complex instructions

to your report programs.

Here's a list of the components and how they can help:

The string constant—"string" is computer jargon for a

"connected group of letters or characters". The letters or

characters may form a word or words, but the real distinction

can't calculate two strings. In an 'Accept if:' statement, the String

Constant is for DESCRIBING SPECIFIC LETTERS OR CHARACTERS

to search for. Here's an example:

OocBHMter 1571

named "Smith". The 'last name' field is 'kel\ Since you don't want

your report program to look at any screen records not associated

with "Smith", you write;

Accept if: kel= "Smith"

Only the "Smith" records will be inspected. Putting the word

Smith in quotes makes it a string. It's called a String constant

because that particular 'Accept if statement will check ONIY for

"Smith". We'll look later at ways to make string checking

variable.

The Date Constant—To check for a specific date on the same

'constant' basis as the strings above, simply put the date within

'<©' signs—as in @12/10/82@. Thus, if your report design was to

look only at file information for records dated 6/12/82, and your

date field Is ke6, it Is expressed as:

Accept if: ke6= @6/12/82@

The idea to seek information only AFTER 6/12/82 looks like this:

Accept if: ke6 > @6/12/82@ ('>' means 'greater than')

As with strings, dates need not always be constant in an

expression. We'll show how this is done later.

A NUMBER can easily be used as a constant in an 'Accept if:'

statement with no special syntax needed. Where a report design is

to focus on quantities less than 50, for example, simply write:

Accept if: ke5 50 (ke5 being a'quantity1 here)

As before, a number can be variable as well as constant.

SINGE LIFB IS VARIABLE, SO ARE REPORTS

All the constants we've described can be very useful in report

design. Very often, however, the IDEA of a report will remain the

same, but the information needed must CHANGE each time the

report is run.

For instance, when we wrote the 'Accept if:' line to find all the

people named "Smith", in a file, the String Constant was fine. But

such a report would seek out ONIY "Smith" ALL THE TIME. It's

more helpful if we could write a report program which could

isolate one name, as before, but allow the user to CHANGE the

name being sought each time the report is run.

For this, the symbol 'va' is used—meaning 'Variable

Alphanumeric' or String Variable. Using the 'va' is simple. It's a

two-step process; First, assign some MEANING to a 'va' (adding a

number to remember which 'va' is which) and, secondly, writing a

QUESTION for the user of the report—asking for a response

which fits the meaning. Here's how:

CodeWiiter 158

Our simple one-name search, using a 'va' would read:

Accept if: kel=val

The T in val simply means it's the FIRST 'va' we've used (any

number could have been assigned). When the CODEWRTTER Report

System reads the 'Accept if:' statement, the 'va' will be detected.

The Report System will 'see' that the designer wants records

studied ONIZ when the contents of 'kel' (a name field) are the

same as 'val'. It also detects that there is currently NO MEANING

attached to 'val'. What is 'kel' supposed to be equal to?

Whenever a VARIABLE (like 'va') is detected in an 'Accept if:', the

CODEWRTTER Report System will ask the designer to 'write a user

prompt'—that is write a question or request asking for the

MEANING of the variable to be inserted when the report is run.

The user prompt for our one name search could be:

"For what name should this report search?"

The user would then enter a name (Xy typing it in), and report

would carry out its search duties.

Where the variable is a NUMBER, the procedures are the same

except that the designation 'vn' (variable number) is used

instead.

Using DATES as report variables is also the same—with one

exception. The designation is 'vd' (variable date), but 'vdl' is

ALWAYS THE SAME. The CODEWRTTER Report System will ask at

the beginning of every report "What is today's date?"—that is

the date the report is being run. This date is labeled 'vdl' tjy

CODEWRITER and reserved. When designing 'Accept if:' statements

involving variable dates, begin with 'vd2' or greater.

Naturally, you may use the 'vdl' in YOUR statements whenever

you'd like the date the report is run to be part of a condition—as

in:

Accept if: ke4< vdl

This comes in handy in a bill payment report, for instance. Where

'ke4' is the due date for a bill on file, the 'Accept if:' shown above

means: Let' look at ONIY the bills where the due date is EARLIER

than (less than) TODAY'S date. (i.e. which bills are overdue?)

AND, OR, 0 NOT (AS IF WE DIDN'T HAVE ENOUGH POWER)

You have now seen all the components of the 'Accept if:'

statement. From now on the increases in capability come from

COMBINING, EQUATING, or NEGATING them to form new ideas.

The words 'and', 'or' and 'not' are used here as in normal thought.

Let's go right to some examples:

Codel/Mter [sFl

Study the following until you see the sentence on the LEFT means

the SAME as the 'Accept if:' on the RIGHT.

IDEA Accept if:

Find all the male participants whose
names are after S' in the alphabet. Accept if: ke3="male" and ke5>"S"

Which voters, who approve the new

school tax. also voted for me in last

election? Accept if: ke9="yes" and ke11="yes"

Let's find the items which cause the

most returns or complaints. Accept if: pc3>10 or pc7>10

Which locations in New York State have

the best ratio of sales to payroll? Accept if: ke6="NY" and pc5/pc8>.50

Of all our customers from out of this Accept if: ke5 not "London" and
city, who spent over a certain sum? pc3>vn1

Show which shares, traded on the

New York Exchange, for Panama-

based companies, have price/earnings Accept if: ke3="NYSE" and ke5=

ratio less than 8. "Panama" and pc6<8

We need the names of all female

coronary patients admitted since Feb. Accept if: ke2="F" and ke3="C0" and

4.1981 who have been given at least 5 ke7>@02/04/81@ and pc2>4 and
doses of nitroglycerin. kei 2="nitroglycerin"

NOTE TO EXPERIENCED PROGRAMMERS: What follows 'Accept

if:' on a line is actually an OPEN WINDOW to all legal BASIC

statements. The examples used above are to show the uses of

'Accept if:' within the syntax covered in this manual. It is

certainly not our purpose here to include a primer on BASIC. By

all means, use the 'Accept if:' to its fullest extent by including any

BASIC statement that will fit on a single line. Work carefully,

however, CODEWRTTER can trap some hut not all syntax errors.

We have tried to include featues in the Report System which will

allow the greatest power and freedom to the designer and still

provide true alternative to programming in computer code. With

our best wishes, go forth and control information!

CODEWRITER IHDEX

Accept-If Statements 51,57,59,60

Alphanumeric Prompt Fields 10,13,16

American Data Format 10

Arrows—Up/Down/Left/Right 6
Blocks Free—Minimum 46

Cassette Port 3

Code Creation 53

CodeWriter

Backup Disks 3

Concepts 9,13,85

Loading 4

Manual 3

Safekeeping 3

Support 3

Column/Row Line 6

Columnar Format Reports 56,57

Cursor (CRSR) 6,18

Data Disk 21

Data Drive 81

Data Handling—One & Two Drive 81

Data/TBxt Mix (Reports) 57

4ate Constant (Reports) 58
Date Format 9,10,33,34

Dates (Data Entry) 9

bates (Reports) 59
Decimal Point (Reports) 56

Delete Record 40

Designer's Reference Section 54-60
Directory of Your Program 34

Disk Formatting 4

Disk Name 4

Disk Space 35

Dollar Fields....... 29,30

Etynatech Microsoftware 8

Edits 38-33

Error Messages 31

Error Messages—User Written 38

Error Tapes 30,38

European Date Format 10

Peld Length Limit 86

Field Numbers (Reports) 58

File—Definition 6-7

File Preparation 35,36

FilfrWide Grand Total 15

Formatting—Caution 4,

Garbage 30

Grand Total Display 84

Grand Totals 14-17,83,86,36,40

HELP (Command Option) 31

K$y Fields 8839,36,38

Keyboard-Entered Fields 16,17,88,86,38,56

Labels 7-8,81

Largest Item—Defined 39

CODBWRITBRIHDIX (con't.)

Letter TBsts , 43

list (Command Option) 22,24,26,39,47,52

Main Menu (CodeWriter) 4

Maximum Option (Reports) 52

Messages—Error/Operator 32

Minimum Option (Reports) 52

Module 3

Monsy Fields 11,12,14,16,29,47

Number Fields .10-11

Numeric Prompt Field 13

Operator Messages 32

Program Calculated Fields, or

PC Field 15-16, 22-26, 2930, 3637, 47, 55

Program Design 2

Program Generation 2

Program Generation Time • 34

Program Name 19,35

Program Title 28

Prompts 8-10, 21,23

Prompt Fields 12-13,16

Record

As Screen 27

Denned 6,7

Records

Search/Delete 3840

Maximum/Fewest Number of 27-28

Reject-If Statements 32-33

Reject-If Statements Rules 41,42,44

Report System 44-53

Accept-If Statements 51,57,59,60

Automatic Format 47

Average Option 52
Boundaries of Report 49

Choice—Screen/Paper 48

Column Heading 56
Commands-OR/AND/NOT 51

Continuous Print 50

Designing Reports 49

Field Enter/Move/Delete 49

FieldNumbers 82
Fields Used in ReportB 48

Format 50

Headings 50,56

Help 49
New Program Calculated Fields 47,54

Number of Lines 48

Program Title 47

Screen Size 48
Sections 50
Summary of Options 52

■tot 57

Variables

CODEWRITER INDEX (con't.)

Screen

As Record 7,27

Creation 5

Editing 17

Fields 14

Pile Name 19,34

Format 17

Format Generator 17-20

Label 7

Layout 5

Load 17-18

Options 5

Save 17,19

Space 5

Self-Referencing Fields 26-27,38

Single File Programs 7

Smallest Item—Defined 39

Software Protection 3

Sort Program 53

) - Screen 5

- Maximum in Prompts 8

String Constant (Reports) 57,58

String Variable 58

Summary Screen—Field Numbers 52

Support—Manufacturer 3

Syntax Errors-System Checks 60

Text as Design Element 57

TbtaJ Option (Reports) 52

Update Data Option 36,37

VA Symbol (Reports) 58-59

VD Symbol (Reports) 59

Your Generated Program Menu 35

Your New Program 34

CodeVV^itei?

\

This So-ftware Package

Contains

5 1/4" Disks

