|

-] SA k) EPDRT =]
T o 0
o 471\ q
a o
). o = = S = = O
b === a
o ~——— a 0
L——. : mg;:‘“ o e - vy = a :i
== =
o l=—- s :
g | LI T8 Y] g
W s a u
L=
S i1t | e
dg P g = g [J{m}
a
; I
=
-0
u by

Dasign your cwn business informaticn
programs in plain ianguage—withour
programming! Simply {ype the screen
layouts the way you want them, add
any caiculations you nsed-—and

Code Writer ™ takes over.

You get your own
programs for information entry.
searches, updates. automatic,
calculations, etc. Programs to write
reports, print checks, letters, mailing
labels. nearly anything-—ail written
for you by Code Writer

THE PLAIN LANGUAGE PROGRAM DESIGN SYSTEM. P\

introducing Your CodeWriter
ReAd ThIB FIPBt . ..o vt viiie i iiietnrreiiiecennnnnns P
That's Enough TheorYo vvriiiiieninnenererennans 2
About Software Protectionoiiiiiiiitn 3
Turning It On
GoettingStarted.ocviieiiiiiiiiiiiiii e 4
CodeWriter Main Menuccovvvvnnrnennencnnenns 5
Designing The SCPEencovvverrnnnreennnaasans 6
BT 7) 1+ PN 8
Data Bntryoovvviiiiiii it 9
NUDDEPE . .vvviieriiiereennenesennnneaannnnnnn 10
00 T 11
Codewriter COneePto vvr ittt 13
Multiplying Its Power
CodeWriter POWOD vvveneieneeneeenneeeeennnnas 14
Screen Readingcovviiiiii it riiiiaaaan 16
Creating Your Program
Create Data Entry Systemccoviiinnnnen 20
Which Drive For Data?ovvveiiniiiiinnnnnnn 20
The Grand Total Fieldsccovvvvevnnirennnnenes R
Computed Fieldsccovvviiiiiniiinnnnnnn. 24
CodeWriter CONGEDL . « oo oo ve e ee e eeceeeerrennnnnns 25
Self-Referencing Fieldscccvveeiinnnnnnnn 26
How Many Records Needed?cccvvinnnnn. 7
TheKey Fieldcovviiiiiiiiiiiiiiiaiiinnnen 28
Keeping Out Garbage..........covvviieiiininnnnnn, 30
Program Design Creativityccovvvivivnnnan, 32
Running Your Program
The Maiden Voyagecovviinreeeninneennnnns 34
FilePreparationccovviiiiiiiennenennnns 35
BNt Daba o .ot ie it iiie ittt i 36
Update Data ... ovvevee v e iiiiieinaaaas 36
Took UpReCOPdccvvvuunneennnnnnnnnnns 38
Search RECOPAS . ..o v v evnevnneennnenennnnonnan 38
Delete RBCOPA . .. oo v vt eieeieeiiii i enneenaann 40
Verify Grand Totalsoovvneeeinnnnnnneennnn 40
-« LN 40
AFINAIWOPA. . ..ot i iiieeineereeeneennennneennns 40
APPBNAIK AL oot iee et e 41

CodeWriter

TABLE OF CONTENTS (con't.)

Reporting Your Results
The Report Systemccoveieenennnnennnnnns 44
Just What's ARGDOTE?oviriinnninicenenennnnns 48
Lot's Begin (DISKII) . ..ovvvveenennernnennnonecnnees 48
Use AllThe Records?covvvuns feeeeeereanenes Bl
YoU're DOmBl . . vvvviiiiee i iiii ettt eeaaeas 83
Designer’'s Reference.cccevveeeererennnnnns B84
Just TheBeginningcovvverivrennnnnennecnns 66
Text Is A Design Element eeerereesrens 87
Variable Reportsccvvvvenenns teeeeneeerenaaes 88

DEDICATION

The CODEWRITER Program Series, developed over the last two ’
years, owes its existence to the following—who were never afraid
to walk in the dark:

Fred Allen

Larry Coke

Dan Kritchevski
Paul Green
Warren Shore
dJay Stein

Tony Thorne, MBE

Special Commodore CBM 64 and Atari conversion work
Charles and Carol Butler

CodeWriter [1]

RBAD THIS FIRST

WATCH FOR THIS SYMBOL. This manual was written to be used with
several microcomputer systems. There will be & numbsr of places
where the instructions in the manual won't be right for YOUR
computer. Whenever there's & chance of this, you'll ses a large *
gymbol in the margin. This means you might need to refer to your
USER NOTES CARD (supplied with your CODEWRITER SYSTEM). The
card should clear things up.

(By the way, your Home FileWriter is part of a family of software
called CODEWRITER. All references in this manual will describe
“CODEWRITER” or “your CODEWRITER SYSTEM". Your Home FileWriter
is the starter system in the series.)

This manual was written to be as unique and useful as the
CODEWRITER SYSTEM itself. That is & tall order. Pleass believe us when
we say that everyone at Dynatech Microsoftware worldwide has
worked to make CODEWRITER among the most valuable programs you
can own.

Therse has been & great deal written about “Program Generation”, both
good and bad, pro and con. Let's begin with a simple statement about
why THE CODEWRITER SYSTEM was developed over the last two years
(since 1880):

There 18 only one reason for computers. To allow peopls to control the
information around them. But computers deal in code while people deal
in ideas. As personal computers become available to more and more
people, “programming” in arcane and unforgiving code gets in the way
more and more. The same people who understand the information a
computer holds must be able to control that information directly. In
this way, ideas can dominate rather than hardware.

THE CODEWRITER SYSTEM allows the non-programmer with an idea for
ordering information to see that idea take shape on a personal
computer. If the idea has elements which can be put on a soresn or
written on paper, CODEWRITER will structure those elements so a
computer can accept them, retrieve them, re-order them and create a
pattern for understanding.

Of course, none of this is magic. CODEWRITER only substitutes
“programming” with “Program Design”. But the differencs is eritical.
The programmer has two problems at all times; One is the idea at hand
and the second is the job of reducing that idea to a “language” vastly
more primitive than human thought.

While Program Design is & great deal easier, it is hardly trivial. The
simplicity of CODEWRITER Program Design comes from dealing with a
problem direotly in the designer’s own language.

THAT'S B¥OUGH THEORY

CODEWRITER will oreate all the computer code needed to get a program
up and running on your computer. Onoe you're done “designing”, you'll
see the cods written out on your computer soreen as it is automatically
recorded onto your disk.

For the most part, THE CODEWRITER SYSTEM is “self documented”—
that is most of what you need to know to design a program is written
on the soreen for you and will re-

m.mh time you use the COdQWPltePE

But use this manual anyway! There is very little more “theory™
inside. We have designed an example program—complete with
gvery single keystroke needed to create that program using only
human language.

Naturally, our example program is unlikely to do exactly the
things you bought CODEWRITER to do. For now, that's not
important. The example will show a great number (but not all) of
the features of the CODEWRITER system.

More importantly, the example program will show how these
features work together to solve a complex problem one step at a
time.

Put the manual in front of your computer where you can read it
comfortably. Turn your computer on and begin a process you'll not
soon forget.

You're about to increase your dominion over the single most
stimulating invention of the twentieth century. Have fun. We envy
you and wish you well.

A WORD ABOUT SOFTWARE PROTECTION

At Dynatech Microsoftware we have some very definite ideas
about protecting software. We feel that both the software
developer and the software customer have rights which must be
protected. The developer must be protected from “unauthorized
use” of his work. After all, if the market place does not reward
the developer for his work the work will not be produced, not be
supported, and not be improved.

But workable software protection cannot exclude the customer’s
rights. The paying customer makes all new software possible.
Thus, the customer should be able to use the software freely and
with confidence. A "back-up’ copy of your Commodore 64
CODEWRITER disk is available at a small cost (See the coupon
included with your system). Also, & free one year guaranty is
part of your system cost. If your CODEWRITER disk fails to
operate for any reason during this period, we'll replace it fres.
Once your purchase is registered, you'll be notified of our toll-free
help line for any problems you might have with your
CODEWRITER system.

In addition, whenever possible we'll add new features (or improve
existing features) to the CODEWRITER system at no increase in
retail price. We'll be glad to UPGRADE your existing system free if
you'll simply send your disks in. Watch our ads for these
changes—or simply call to make sure your version is the latest.

Please enjoy your CODEWRITER system. We developed it to be the

) Coderiter [5]

Before you begin working with your Commodore CBM 64
CODEWRITER system, make sure you have the following:

A Commodore CBM 64 microcomputer
A 1641 Commodore disk drive

(In some cases a modified 1640 drive will do—ses your dealer. A
4040 dual disk drive will also work, though this edition of
CODEWRITER 64 will use only drive 0.)

A blank, formatted diskette.

A Commodore compatible printer is optional.

(SPECIAL NOTE: Some commodore compatible options like Skyles’
VicTree will interfere with CODEWRITER operations. Please remove
them before you begin. If your system works erratically, check for
these optional items before continuing.)

Insert your CODEWRITER disk (Disk 1 side up) in your disk drive.
Press the SHIFT and Commodore symbol key) lower left on
keyboard) TOGETHER. This will activate the UPPER/lower case
mode in which CODEWRITER operates. Next, type the following
EXACTILY:

load "newmenu’’,8

After the program loads, your cursor (flashing square) will
return along with the 'READY’ message: Type run
After a short delay, the following screen should appear:

Codewrliter System Main Menu
d-create date entry system

f4ormat a disk
s-got display colors
x-exit to basic

If you have not already formatted a disk, do so now.

Press ’f’ and then RETURN

Pressing 'f’ will display & warning that formatting ERASES all
information on a disk. REMOVE the CODEWRITER disk and insert
your own disk. Type 'y’ and press RETURN. You'll be asked to
‘“name" your work disk using up to 16 characters and press
RETURN. Formatting usually takes between 90 seconds and 2
minutes. You'll then be asked if you need another disk 'formatted’.
Answer 'n’ and press RETURN. You should now see the

CODEWRITER System Main Menu again.
CodeWriter [4]

Once back at the main menu with a formatted disk, we're ready to
create a data entry system. Press 'd’ from the menu selection and
then RETURN.

_ Create Data Entry System

s- Create screen layout
a- Create application
X- Return to Main Menu

Each CODEWRITER data, entry program begins with a SCREEN
LAYOUT. This is simply a form created on the screen which shows
what kind of information (data) the program operator is to enter
and how much space is allowed to do so. CODEWRITER makes this
process as easy as possible.

Press s’ and then RETURN

Screenwriter Generator

e- Edit or Create screen

¢c- Change field positions

s- Save screen layout to disk

|- Load screen layout from
disk

x- Exit to System Creation
Menu

We'll look at all the options on this menu before we're done, but
for now the task is to CREATE A SCREEN so:

Press ’e’ and then RETURN

You should be looking at a screen fuil of instructions on how to
accomplish writing a screen. This is for future reference in using
CODEWRITER. For now the screen instructions might make the job
look more complex than it really is. Let’s examine the instructions
to sort things out:

CodeWriter [[5]

CODEWRITER allows you to type anywhere on the screen to create
the entry form you want. The screen instructions will show which
keys on your computer allow you to move the cursor around the
screen.

Your CODEWRITER 64 system allows you to make printed copies of
your screen designs. You must have a Commodore (or compatible)
printer connected to your system to do this. You'll ses a line at
the bottom of your work screen which reads:

Press f1 to read screen {3 hardcopy

The *hardeopy’ refers to printed copy. Simply press the f3 function
key on your Commodore 64 to send an image of your screen design
to your printer.

ONILY ONE LIMITATION—You may NOT use column 40 of your
screen as part of your screen design. The cursor position indicator
(sscond line from the bottom) will let you know when you're in
this column. Put NO screen information there.

That’s really all there is to writing on the CODEWRITER screen. We
will cover all of the information on the current screen as we
proceed with the example program. For now, just remember the
instruction screen is there to help you. Press RETURN. You'll see
another instruction screen. This, too, will be covered in our
example program. Again, remember the screens are there and
press RETURN.

DESIGNING THE PROGRAM SCREEN

You should now be looking at an almost blank screen. the
CODEWRITER screen is 40 columns across and 22 rows top to
bottom. You should see the cursor at the upper left and two lines
at the bottom of the screen:

Col: 1 Row: 1--
Press f1 to read screen f3 hardcopy 48

The Col/Row line will TRACK the cursor position on the screen.
Try using the cursor keys we described earlier. Watch the
numbers on the Col/Row line change as the cursor moves. This
CODEWRITER feature helps in counting positions when designing
your screen and is very valuable when you're trying to copy an
existing form to the screen for use in a program.

Befors we begin our example program, we need to understand a
few terms about the way computers handle information. The

terms are FILE, RECORD, and FIELD:
CodeWriter |

FILBE—A FILE is a collection of information on a single subject.
thus a receivable file is a collestion of information on who owes
money to a particular company. A stamp collection file contains all
the information about a certain stamp collection, ete.

RECORD—As we get more specific, we use the term RECORD.
Thus, within a stamp collection FILE, information about a certain
stamp would appear in a RECORD for that stamp. Within a
receivables FILE we would find RECORDS of the individual
companies or people who owe money.

FIBLD-—The FIELD is the most specific information. Within the
stamp collection FILE, the RECORDS for individual stamps would
contain FIELDS of information like; the color of the stamp, the
country of origin, ete.

Don't be discouraged if everything you read is not clear the first
time through. We have tried to kesp computer jargon to a
minimum in this manual, but & little is bound to creep in. If you
work through the example program, things will begin to come
together.

Your CODEWRITER form screen is a remarkably flexible tool.
Getting information into your program, in the order you want and
thelanguageclearesttoyoushouldbe 648y n'tbea.ﬂ'a.idto

type anywhirs (axospt oL, 40)—YOU CAN'T HURT CODEWSTTRE
OR YOUR COMPUTER FROM THE KEYBOARD,

A SALES/INVOICE PROGRAM

Our example program is intended to keep track of sales. We chose
this program idea because it gives a good indication of what the
CODEWRITER system will do. To use our new vocabulary, we wish
to build and keep track of a FILE of sales over & certain period of
time. Each sale will be entered to a screen RECORD known,
naturally enough, as an invoice. Each invoice will contain FIELDS
to put the most specific information like; customer name, item
purchased, date, price paid, ete.

We should give our invoice form some kind of heading or label to
show what its use will be. The example in the shaded box below
uses an up arrow (4) as a SPECIAL MARKER on either side.
Your computer may use another character. Check the screen
instructions.

} ABC COMPANY SALES INVOICE 4

What you have typed is known as a LABEL to the CODEWRITER
system. A LABEL {s something written which is NOT associated
with information to be entered. Things like our title (just
entered), copyright information on the screen, instructions for
the program operator, dotted lines and the like are all LABELS to
the system because they DON'T ASK ANYONE TO REACT BY

ENTERING INFORMATION. Codg -

As you ses our label example has the up arrow (4) symbol on
_ either side. This identifies screen information as a LABEL. The up
* arrow key on your Commodore 64 is the second key from the right
ontheseeondrowﬁ'omthetop Even if screen material is simply
a line as below:

t
be sure to use UP ARROWS on BOTH SIDES.
By the way, don’t be concerned if the invoice label you just typed
- is not centered exactly as you wish. We'll take care ofthina like

that later.

THE PROMPT
~Now for the part of our sales invoice screen that IS concerned
with information handling. Let’s add some customer information
PROMPTS to our form. A PROMPT asks for INFORMATION TO BE
ENTERED. A PROMPT is always followed by at least one dot (.) or
adottedline (...... .+«) to indicate HOW MUCH SPACE is
available to enter the information requested by the PROMPT.

Thus we could add customer information PROMPTS to our sales
invoice screen and it would look as follows: (Don't worry about

typing exactly.)

f ABC Company Sales Invoice }

Customer name
Street address

There are several things we should notice about PROMPTS. As you
can ses, there are no UP ARROWS. For the CODEWRITER system
to recognize your PROMPTS as the requests for information they
are, never use UP ARROWS. Also while each PROMPT must have a

dot (.)or dotted ling (......) following it, the dots DON'T have
to come II IATEWAFI'ER the letters or numbers in the
PROMPT.

Look at the PROMPT 'Customer name’. After the final 'e’ in 'name’,
there are TWO SPACES BEFORE the line of dots begins. This allows
you to create screen forms which are easier to read bscause the
PROMPT for information needn’t bump right against the
information itself.

In any of your screen designs, the number of DOTS which follow
the PROMPT determines HOW MANY characters of information

(letters, numbers, symbols or spaces) may be entered to answer

that prompt.

CodeWriter

THE PROMPT—A PROMPT is a request for information by the
program designer. It is always followed by & dot or dots to indicate
length of entry. It NEVER contains up arrows. The CODEWRITER
system will search for the FIRST DOT following a PROMPT and
store the information which follows as the response to the
PROMPT. The total number of dots following a PROMPT should
never be more than 38 when using your 40 column computer.

There i8 one more tip concerning PROMPTS: Never put a dot (.)
into the PROMPT itself. This can happen where a PROMPT involves
an abbreviation as in—

Max. amount needed? (y or n)

This is simply & PROMPT asking for a yes or no (one letter)
response to the question 'Maximum amount needed?’ Can you ses
what's wrong? The CODEWRITER system will see the dot after
'Max’ and consider-"Max’ alone to be the PROMPT with & one-dot
response (Max.) CODEWRITER would then read further (from
‘amount needed’, ete.) and consider this to be a second PROMPT.

Abbreviation is 0.K. Simply leave out the pariod as jn— ,

Max amount needed? (y or n)
This will work fine.

DATE ENTRY

The CODEWRITER system handles dates as a special kind of
response to & PROMPT. You may use either the American date
format or the European and CODEWRITER will automatically write
code to check for the appropriate format and a valid date entry,
Le. no July 40 or February 29 (when not a leap year), Formats
are as follows: To express the 16th day of June, 1983

American European
06/16/83 16/06/83

For now simply enter the empty date format. CODEWRITER will .
ask for the American/European choice later.

Y Y
Added to our current screen this would be:

4 ABC Company Sales !nvnlca 4

Customer name
Street address

Add the date PROMPT to your screen. Whenever you wish date
information to be entered into your CODEWRITER created
programs, use the ../../.. format. The PROMPT may be
whatever you wish as:

Order Date Y
Member since ../../..
DatetoClose ../../.. ete.

Only the actual date entry format need be the same. When the
operator of your program enters a date, it will be as 02/05/81—
(You may type SPACES instead of leading zeros.) Later on in
program development you will be offered the choice by
CODEWRITER as whether you wish American or European format
date handling.

NUMBERS

Up to now the information required by the PROMPTS on our sales
invoice screen has been what your computer considers
ALPHANUMERICS—jargon meaning IDEAS expressed in letters
and numbers. For example a nams, an address, and a date are all
ALPHANUMERICS because of two things; They can be expressed in
letters and numbers AND they are NOT USUALLY part of any
CALCULATION—you don't add, subtract, multiply or divide them
even though they MAY include numbers.

NUMERICS, to your computer, are different. In the CODEWRITER
system NUMERICS have two meanings of their own; They involve
NUMBERS ONLY, never letters, and they can be included in
CALCULATIONS. As we promised to avoid jargon, let us begin here
to refer to NUMERICS as simply numbers.

As we add a new line to our sales invoice sereen you'll notice a
change: :

f ABC Company Sales Invoice f

Customer name Date../../..
Street address

See the new symbol? After the 5 dots following 'Quantity ordered’,
we've added the # sign. This does two things; The # sign takes the
place of a dot, making the space for information total 6, and the #

sign tells the CODEWRITER gystem that the information to be
entered will be NUMBERS and ONIY NUMBERS. Thus the numpers

may be part of a calculation—if the program designer wishes.

CodeWriter

By now your program screen should look like the one abovs and
include the new NUMBERS field for 'Quantity ordered'. Let’s add
another field to the screen. ’

* 4 ABC Company Sales Invalce 4

Customer name
Street address

Quantity ordered

As you ses, We've added ancther ALPHANUMERIC field called
'ITEM’ and given it 16 spaces for operator entry. Again, we didn't
need any symbol after the row of dots. Add the new field yourself.

Now it's time for a little "housekeeping'. As we look at the latest
line on our sales invoice screen, it looks as though space is
running out too soon. Most invoice forms allow for 'Quantity’,
"Item’, 'price each’, and 'total’ all on a SINGLE LINE. The
CODEWRITER system allows ANYTHING on your form to be
retyped as often as you like until it's just as you wish. Why not
take advantage?

4 ABC Company Sales Invaice 4

Customer name
Street address

There. We've abbreviated 'Quantity ordered’ to 'Quan’ (no period)
and added space to the 'ITEM’ PROMPT, allowing for a better
description of ITEM.

The last type of PROMPT field CODEWRITER offers is for MONEY.
This field type simply stores numbers for all DECIMAL TYPE
CURRENCIES for a maximum of 2 places to the right of the
decimal point. The CODEWRITER program designer adds the $ sign
(the meaning here being 'money’ rather than the American
dollar) to the end of the dotted entry line.

We can now complete our sales invoice form:

Codeiriter [11]

4 ABC Company Sales Invaice 4

Customer name
Street address

Look at the four new PROMPT fields before you type them onto
your sereen. The PROMPTS 'Price’, 'Total’, and 'Tax’ are simple
MONEY flelds. "Price’ calls for an entry of 7 charasters (6 dots
and the $ sign). "Total’ allows for a 7 character entry (6 dots and
the $ sign), and so does 'Tax’. The PROMPT for 'Invoice Total

may be confusing. Here the PROMPT ITSELF ends in the $ sign.
This is perfectly 0.K. as long as you're careful.

For 'Invoice Total $' the trailing $ sign in the PROMPT simply
allows the final form of the MONEY entry to read:

Invoice Total $ 126.76 instead of
Invoice Total 126.78

This is & purely cosmetic option for the program designer. As a
trailing sign, of courss, the $ symbol could be ANY symbol
appropriate to the currency you are using. Only the $ sign at the
END of the dotted line MUST be the $ sign as this is what tells
CODEWRITER it's handling MONEY.

As you can imagine, you need to be especially wary of accidental
dots in your PROMPTS where MONEY is involved.

PROMPT FIELD TYPES

ALPHANUMERIC (letters, numbers, symbols)—need NO special
sign at the end of the dotted line. Ex. Name They
CANNOT be a part of a calculation.

DATE—may use ANY PROMPT but MUST use the input form
../../.. asin Member since ../../.. They CANNOT be part of
a calculation.

A GENERAL CAUTION—Do not use the comma (,) colon (:) or
semicolon (;) as part of your screen designs. These symbols
confuse the file handling operations of both your CODEWRITER
gystem and your CBM 64. To prevent problems, these keys are
DISABLED when CODEWRITER is in use.

NUMBRIO (numbers only)—may use ANY PROMPT but MUST
use the # sign at the end of the dotted line. Ex. Amount

........... # They CAN be part of a calculation.

MONEY (numbers only)—may use ANY PROMPT but MUST use
the $ sign at the end of the dotted lins. Ex. Price $ They
CAN be part of a caleulation.

BOTH A NUMBER AND A MONEY field need at least two
characters to define their length. For example, the flelds CASH
PAID .$ or NUMBER USED .# both have two characters (the dot
and the sign) following the prompt. Use at LEAST two.

Our sales file can be much more than an electronic
invoice system. Let's get down to some real PROGRAM
DESIGN. By adding six additional fields to our screen,
the CODEWRITER sales program can become a very
efficient CREDIT JOURNAL while giving up to date
reports on both TOTAL ACCOUNTS RECEIVABLE and
TOTAL SALES. (Not bad for a first effort!)

Here is our screen with the six new fields:

4 ABC Company Sales Invoice 4

Customer name Acct #
Street address

Quan
Tax
Invoice Total

PAID ON ACCOUNT $ INVOICE BALANCE

!

TOTAL ACCOUNTS RECEIVABLE

The six new fields each have & specific job. Here's & look at them
one by one:

This allows each ABC Company customer to have his own
identity—even if names are alike. We have allowed for B places.
Notice there is no # sign after the dotted line. There are two
reasons for this; First the # sign would limit us to NUMBERS
ONIY. Some account numbers use both letters and numbers

(as T1450 ete.) to give greater variety using the fewest places.
Secondly, using the # sign requires a bit more computer memory.
Whenever CODEWRITER sees this sign (or the $), it holds extra
computer memory space aside in case the information in the field
would be needed for use in a CALCULATION. Since we aren't likely
to use account numbers in any calculation, why not save
computer memory?

Codeiriter [14]

Invoice # /

This five-place field identifies a PARTICULAR SALE to our ABC
Company Customer. By using BOTH the Acct # AND this Invoice #,
we allow our CODEWRITER program to group together, in its
memory, ALL the sales to the SAME Account number. We'll show
later why this helps. Again, we left off the # sign (for the same
reasons as the Acct # example above).

PAID ON ACCOUNT

This seven-place $ field will be used to record customer payments
against the particular invoice which is on the screen. We used the
$ sign because money is involved AND because this field WILL be
used in a caleulation. We'll explain the calculation function later.

INVOICE BALANCE

This field will hold the DIFFERENCE between the amount shown
on screen as 'Invoice Total’ and 'PAID ON ACCOUNT". Again, the $
sign is used because this field will always involve money. Also
we'll use "INVOICE BALANCE' as part of a calculation. Our
CODEWRITER program will be designed to calculate this amount
automatically.

TOTAL ACCOUNTS RECEIVABLE

This $ field is intended to give & RUNNING GRAND TOTAL of all
the balances carried in the field 'INVOICE BALANCE'. We have
placed this field on the screen below the ===== header line to
help show that the amount is & total of ALL the invoices in the file
rather than the particular invoice on the screen.

TOTAL SALES

Again, this $ field is a FILE WIDE GRAND TOTAL of ALL sales.
rather than relating to the invoice on the screen. We'll show later
how to design CODEWRITER programs to perform the grand total
function.

Our sales invoice is now complete. Of course a real sales invoice
would have more lines to enter sales items and prices, but for our
example this is enough. You are perfectly free to adjust the screen
until your invoice form looks as close to our example as you wish
to follow the manual.

Codeiriter 5]

Now the real magic of CODEWRITER will come clear. You may have
been asking yourself “What does drawing a screen form have to do
with writing a program?” The answer in the CODEWRITER system
is “almost everything”. CODEWRITER will “read” the screen we
have just created and develop AUTOMATICALLY the entire file
structure nesded to make our program run. All the PROMPTS will
be saved in the right places. The 'dates’ will be saved as 'dates’,
'money’ as ‘money’, ete. Most of the program designer’s work in
creating this program is over!

Once you're satisfled with the scresn on your computer, presaﬁ‘ ?1
to begin the “reading” we just spoke about. The scresn will go

blank for & moment and our sales invoice form will be replaced by

the words “READING SCREEN". In a moment our screen will

return.

Certain PROMPT fields on the screen will be HIGHLIGHTED in
REVERSE and a question will appear at the bottom of the screen.
CODEWRITER will skip over any LABELS, date and ALPHANUMERIC
flelds we've created and ask questions only about fields which
contain NUMERIC and MONEY information.

The program designer is asked here whether a particular
PROMPT field is to be “keyboard entered” or “program calculated”.
This simply means: “Do you wish to have the program operator
enter the information the PROMPT requests or do you wish to
have CODEWRITER itself calculate the response?”

NOTE: The third choics, g for GLOBAL, allows your CODEWRITER
program to accumulate TOTALS from ALL the records in the file.
More about this later.

In our sales invoice example answer the following as the fields are
HIGHLIGHTED in REVERSE:

Quan The operator must enter this

from the (k)eyboard

Total) -enter ’p’ | The CODEWRITER (p)rogram can
calculate this amount by
multiplying “Quan” times
“Price”. Why make extra work
for the operator.

Tax Aslongasthesalesta.xrateis

constant for all items, your
CODEWRITER oreated program
will recall the rate as a
percentage and multiply this by

the “Total”
CodeWriter

Invoice Total $ -_enter *p’ | CODEWRITER will write program
lines to direct the adding of
“'lbm" m lm"

PAID ON ACCOUNT The program operator will enter

this amount.

INVOICE BALANCE -enter ’p’ | Your CODEWRITER (p)rogram
will calculate this

TOTAL ACCOUNTS
RECEIVABLE for this (g)rand total.

TOTAL SALES CODEWRITER will ACCUMULATE
the Invoice Total amounts and
show the TOTAL whenever the
operator looks in the SALES FILE

Onos all the appropriate fields have been designated either “k”,
“p", or “g"” by the program designer, CODEWRITER will return to
the Screen Format Generator menu where the following choices
are offered:

(e}dit screen format
(c}hange screen format

(s)ave screen
(l)oad screen
(x) Exit to System Creation Menu -

For now, do NOTHING. Here is what the menu options mean:

EDIT SCREEN FORMAT—If the program designer wished to make
ENTRY CHANGES in the screen, he would use this option. By
ENTRY CHANGES we mean changes in the KIND of information to
be entered, such as adding or subtracting & PROMPT, or in the
SPACE allowed to respond to & PROMPT.

Once the ¢’ for edit is selected, the current sereen in memory will
re-appear. CODEWRITER will then allow ANY changes to be made
to the screen as though i had just been typed in. All 'k’ or 'p’
choice information needs to be RE-ENTERED before leaving the
Edit Screen option.

CHANGE SCREEN FORMAT—This option is strictly for MOVING
existing screen information around. No new fields may be added or
existing fields or labels removed. More about “Change Scresn”
later.

CodeWriter [17]

SAVE SCREEN—This option allows the CURRENT scresn in
memory (the one we just created) to be saved to the disk in the
drive. More about “Save Screen” later.

LOAD SCREEN—This option allows a previously saved screen to
be loaded from the disk in the drive. Thus ALREADY CREATED
programs made with CODEWRITER could be modified later by
loading just the screen with this option and then going back to the
Edit Screen Format option to continue creating a NEW program. To
simply VERIFY proper screen save, Change Screen can work
better. More later.

EXIT TO SYSTEM CREATION—This option starts things over from
the beginning. BE CAREFUL HERE! If you choose the exit option
BEFORE saving your screen, the screen will be LOST.

Even though our current sales invoice screen shouldn't need any
changes, let's choose the CHANGE SCREEN option anyway—just
to watch how well it works.

type ’c’ here

You should see an instruction screen to explain the workings of
“Change Screen”. This is for future reference. Read over the
screen and then press RETURN.

Once again the sales invoice form should appear. The LABEL

} ABC COMPANY SALES INVOICE 4 should have the cursor at the
FIRST POSITION. Let's say you weren't satisfied with the way the
LABEL was centered on the screen. Press the RETURN key and
the LABEL should change to REVERSE screen image.

A field SHOWN REVERSE this way is ready to be MOVED. Simply
use the cursor keys and move the LABEL anywhere on the scresn
you wish! Should your moving label bump into another fleld on its
journey around the screen, CODEWRITER will automatically JUMP
the label to the next empty area in the direction it was being
moved. Once you're satisfled with the position of the moving fleld,
simply stop and press the RETURN key. The fleld will revert to the
normal print mode from REVERSE. ALL screen flelds can be moved
in the same way.

Press ANY key (except RETURN) and you'll skip to the next field
where the process can be repeated as often as you like. With each
pressing of a key the cursor will move to the beginning of the next
field. The cursor will move over the fields in the SAME ORDER in
which the fields were FIRST ENTERED. Check your screen
instructions for the correct method to BACK UP through
preceeding fields.

Codeiriter

Making “Changes” can lead to some confusion. Remember the
Change Scresn routine does NOT alter any of the logic of the
screen CODEWRITER has already read Thus, if you move the
fields all over the screen, your CODEWRITER program will
continue to prompt for the operator information in the SAME
ORDER in which you FIRST typed the fields in. If you'd like the
NEW screen positions to dictate the NEW order of operator entry
of data, you'll need to “read the screen” AGAIN with the Edit
Screen option.

To make permanent changdes with Change Screen, one should:

1. Move the fields around any way you wish from Change Screen.

2. Once changes are complete, press ESC to return to Screen
Format Generator.

3. Choose Edit Screen and your NEWLY ALTERED screen will
appear.

4. Make any ENTRY CHANGES (see Edit Screen) you wish to
further alter the screen if needed.

B. Step through the 'k', ’p', or '¢’ choices again. Once complete,
you'll be back to the Screen Format Generator menu.

8. Choose “Save Screen” to save your new form permanently to
the CODEWRITER disk work space. NOTE: If you have already
saved a screen in an OLD order and now wish to save the
screen with NEW field positions, give the NEW screen a NEW file
name.

As we don’t require any permanent changes to our example
program, press f1 to leave the Change Screen option. Here
CODEWRITER warns us to bs sure to save the screen. Once back
at Screen Format Generator, we are ready to save our sales
invoice screen.

Press ’s’ here

CODEWRITER will ask the program designer to give a NAME to the
screen. A maximum of 10 characters is allowed and, as usual,
simple, appropriate names are best. In this case, the name of the
sereen becomes the name of the PROGRAM to be created by
CODEWRITER. Do NOT use a slash (/) or a dot (.) as part of a
screen name. Also, a screen file name must be lower case.

enter ’invoice’ and press RETURN

It would be nice to VERIFY that our screen has been saved
correctly. Since we are now back to the familiar Screen Format
generator menu, we can VERIFY quite simply.

press I’ for load and RETURN

CodeWiriter [12]

| +8 |

. [

:

The “load” option will ask for the 'screen file name'. We chose
'invoice’ so:

type ‘invoice’ and press RETURN

The disk in the drive should spin and stop. Next the screen format
Generator menu appears. We could choose Edit screen to ses our
newly loaded screen, but this would force the 'k’ and ’p’ choices
again. Instead we choose Change Screen:

press 'c’ and RETURN

From Change Screen we are shown our sales invoice form again
which proves it has been saved correctly. To exit Change Screen
we press the f1 key.

Screen creation is complete and we may now continue with
CODEWRITER program design.

press ’x’ and RETURN

We get one last warning to save our screen. Quite a worrier, that
CODEWRITER!

CREATE DATA ENTRY SYSTEM
From the current menu we have the choices:

s create screen layout

a create application
x return to Main Menu

press ’a’ and RETURN

CODEWRITER now announces that it will "produce the basic code
for a program you design”. You may now enter a name (maximum
25 characters) and press RETURN. (The name will follow the
credit: PROGRAM Design by)

You are next asked for the name of the screen file. Be EXACT here
8o the system can find our much maneuvered sereen:

enter ’invoice’ and press RETURN

CodeWriter [[20]

After a bit of whirring from the: drive, the sales invoice

screen should re-appear with a few changes; The arrows around
the LABEL ABC COMPANY SALES INVOICE should be gone. Also,
any flelds we designated (p)rogram calculated should have only a
single dot following the PROMPT. You'll be asked:

is this your screen format (y/n)?

If the screen you see is correct

Press 'y’ and RETURN

If you press 'n’, you'll be returned to the request for “screen file
name” for another try at finding the screen file.

On your system, the prompt “Which drive for data DOES NOT
appear. You'll be hearing soon how to upgrade your system to use
more than one drive—for considerably more file space and power.
We have the reference in the manual for the future. You may
continue hers if you like or SKIP to page 2.

The choice i8 important. Remember, you are now creating a data
entry program to control information. The information itself (the
data) need NOT be on the same disk as the program which
controls it. Keeping the control program on one disk and the data
on another MAXIMIZES the amount of data you can control. On
the other hand, where disk capacity is enough and the
convenience of both program and data on a single disk is
important, & one-disk system works fine.

Remember, the question means “which drive for data” when your
PROGRAM IS COMPLETE AND RUNNING. (Users with two-drive
CODEWRITER systems will NOW have their program disk in the
second drive, but it will RUN in the first drive when it's finished.
The “data” can be on either the first or second drive.)

For our example program, enter the appropriate number for the
FIRST DRIVE.

Codeiriter [21]

v

The next CODEWRITER request will be to define what kind of
GRAND TOTALS we want in the program being designed. In our
example, the prompt screen will say:

Please specify which field is to be
accumulated in this Grand Total field.
(ke1—ke10, pc1—pc4, or ‘list))

Total Accounts Receivable:

What does all that mean? When we first designed the screen for
our sales invoice, we included a total of 14 different FIELDS. We
then specified which of the information inputs would be
(k)eyboard entered, which would be calculated by the (p)rogeam,

- and which would be a (g)rand total of some other field

The CODEWRITER system is now ready to learn how the program
designer wishes to CALCULATE the information on the screen. To
make things easier, CODEWRITER has ABBREVIATED the names of
the screen fields. Thus the FIRST field on the screen to be
designated (k)eyboard (e)ntered becomes kel, the second becomes
ke, and so on. Naturally enough, the first field we chose to
designate (p)rogram (c)alculated becomes pel to CODEWRITER.

Now, back to Grand Totals. CODEWRITER is asking which screen
field is to be accumulated and displayed as a Grand Total after the
prompt “Total Accounts Receivable”. Inside the parentheses are
the choices: kel to kel0, pel to ped. or 'list’.

Since it's difficult to remember WHICH field we designated as the
FIRST program calculated (pel), etc. CODEWRITER offers the 'list’
option to display all our choices.

Type ’list’ and RETURN

CodeWiriter [22]

You should now see the following on the screen:

Keyboard Entered Fields:

kel= Customer Name ke2= Acct #

ke3= Date ked= Street Address
keS= City ke6= INVOICE #

ke7= Quan ke8= Item

ke9= Price ke10=PAID ON INVOICE

program calculated fields:

pcl= Total pe2= Tax
pe3= Invoice Total ped= INVOICE BALANCE

grand total fields:

gti= TOTAL ACCOUNTS RECEIVABLE gt2= TOTAL SALES

Again, back to the CODEWRITER prompt we're trying to answer.
We want our program to make it easier to get useful information.
Which of the sereen prompts we designed will ADD UP TO a
GRAND TOTAL we can call “TOTAL ACCOUNTS RECEIVABLE"?
Study the list. “Invoice Total"? Maybe, but what if we receive a
payment from a customer? The “Invoice Total” would, of courss,
remain the same after a payment, but the amount the company is
owed (its receivables) would go down.

The correct answer is INVOICE BALANCE. Obviously, if we had a
Grand Total of the INVOICE BALANCE amounts from ALL invoices
we could call this figure our TOTAL ACCOUNTS RECEIVABLE.

The 'list’ should still be on your scresn. We can see that INVOICE
BALANCE is abbreviated by CODEWRITER to pe4.

press RETURN

Agein we see prompt:

Please specify which field is to be
accumulated in this grand total field.
(ke1—ke10, pc1—pc4, or 'list))

TOTAL ACCOUNTS RECEIVABLE:

- type ’pc4’ and press RETURN

This tells our CODEWRITER program to accumulate ALL the
INVOICE BALANCE amounts from the entire file of invoices and
ghow the total in TOTAL ACCOUNTS RECEIVABLE on the screen.
Whenever the opsrator of our program looks at ANY invoice in the
ABC Sales file, he or she will always see this grand total on
display.

The next CODEWRITER prompt asks for the field to accumulate as;
TOTAL SALES
This should now be easy. Type 'list’ again. This time, of course,

"Invoice Total’ is correct as the amount to be accumulated as
TOTAL SALES. Press RETURN to go back to the prompt.

type ’pc3’ and press RETURN 3

The CODEWRITER screen now requests the computations for 4
computed fields. You'll be given an entire second scresn of
information as to what this means and an entire screen as to
what is meant by 'self referencing’ fields.

As before, these screens are reminders for later. We'll explain the
procedures here in detail. Read the two screens and press
RETURN.

The screen now shows:

Computed field #1
calculation for "Total’

Type ‘list’ for field numbers

pel=

This is where you learn to be & Program Designer. Designing the
screen was the most creative aspect of the job. Now comes the
real power.)

CodeWriter [2¢]

:

_Type 'list’ to see your choices. As you look at the list of prompt

fields and their CODEWRITER abbreviations, think. What is the
DEFINITION of "Total'? In our invoice design, ‘Total' (pel) means
‘Quan’ (ke7) multiplied by ‘Price’ (ked).

We “design” this definition with CODEWRITER by saying:

pci=ke7*ke9

As with most computers, the four basic arithmetic functions are:

+ means add

- means subtract
* means multiply
/ means divide

CODEWRITER also allows the use of () to isolate formula
components.

Parentheses are used to ISOLATE the calculations inside them for
SEPARATE COMPUTATION within a formula. An easy example
would be: pel*pe2+(ke3-ke5) which means—First multiply pel

. by peR and then add to this result the difference between ke3 and

keB.

While CODEWRITER will detect SOME mathematical errors (such
as forgetting a closed parentheses after using an open
parentheses), it CANNOT prevent all instances of incorrect math
from getting into a program. You'll be offered a chance to VERIFY
a formula after you type it in. Once verified, howsver,
CODEWRITER will try to audit what it can and then ACCEPT what
you wrote. Please be careful.

Here are the remaining program calculations for our Sales Invoice
design and an explanation of each. Follow the screen commands to
enter these;

program calculation meaning

pc2=pc1*.06 Tax (pe?) is 6% of the Total

(pel) to the invoice. Thus, we
multiply pel by .06 to find Tax.

pc3=pci1+pc2 Invoice Total (pc3) is simply
Total (pel) PLUS Tax (peR)

pcd=pc3-ket0 Invoice Balance (pe4) is the
result of Invoice Total (pe3)
MINUS PAID ON INVOICE (kel0).

Codeéiriter [[25]

As usual there are a few rules to keep in mind. We'll try to be
concise:

1 Calculation definitions must deal in KNOWN IDEAS. Thus, you
cannot enter peR=pe6-ke3. Can you see why? Calculations are
defined in the SAME ORDER in which they appear on the
sereen (top to bottom, left to right). Thus, if you are defining
pe? you CANNOT have defined already pe6—making pe8 an
UNKNOWN IDEA. This quandry is easier to avoid than you may
think. Simply design your screen so that your input prompts
PROGRESS in logical order (price before total, payment before
balancs, etc.). CODEWRITER will handle things from there.

2. Program calculations are the HEART of a good design. Use them
well. They may contain ANY combination of pe flelds, ke flelds
and even gt flelds (subject to rule 1). They should be limited to
25 characters in overall length.

SELF REFERENCING FIELDS

There is a bit more power in CODEWRITER calculations. The Self
Referencing field may seem abstract and confusing at first, but
it's JUST PERFECT for some jobs. Where the program designer
wishes to HOLD a PREVIOUS value while calculating a new one, he
needs a Self Referencing field.

An example is in order. In an inventory program, a field named
BALANCE ON HAND will usually be designed to depend on two
others like QUANTITY IN and QUANTITY OUT.

Lets assume that QUANTITY IN is kel and QUANTITY OUT is ke,
while BALANCE ON HAND is peL

If we used a formula like pel=kel-ke? (which might seem
logical), our inventory would be a disaster. Can you see why? The
field of BALANCE ON HAND would always contain ONLY the
LATEST results of the CURRENT difference bstween QUANTITY IN
and QUANTITY OUT.

What's needed for a field like BALANCE ON HAND is a way to
REMEMBER the current value, hold it, and then COMBINE it with
a new value. Though many methods for doing an inventory exist,
one approach might be:

pci=pc1+(kel-ke2)

CODEWRITER sess this as Self Referencing since the pcl appears
on BOTH sides of the = sign.

Another use for self referencing is in a pure “counting” field.
Since all 'pe’ fields are automatically caloulated EACH TIME a
record is looked up by the operator, a field named “Record Access
Times” (as peb for instance) could be designed to count the
number of times a records was looked up by defining it as:

CodeWriter

pc5=pc5+1

CODEWRITER will automatically create a special file for self
referencing fields whenever it sees a calculation with the SAME pc
on BOTH sides of the = sign. The program designer needn’t do
anything but write the formula.

Because the self referencing file will take extra space on the
program disk, CODEWRITER will ask the designer to “confirm”
that this unique field is what the designer truly wishes. Simply
type ‘¢’ to confirm as directed.

REMEMBER—The self-referencing field is for Program Calculated
(pe) fields only. The CODEWRITER system contains special
features for AUTOMATIC UPDATING of Keyboard Entered (ke)
fields. These features are explained later, under “UPDATE DATA",
in the instructions for using ANY CODEWRITER designed data
entry program. Don't worry if “self-referencing” is not quite clear
yet. Just keep in mind the following:

1 “gelf-referencing” means holding an existing value while
combining it with a new one.

2. A self referencing field is ALWAYS program calculated

3. A keyboard entered field can do ALMOST the same thing
another way.

One last thing. Once defined, a self referencing field MUST have
some opening value (even zero) to funetion. This nesdn't be done
by the designer, but must be done the FIRST time the program
operator encounters the field on the screen. CODEWRITER
anticipates this. Should a program operator pass a self referencing
field the first time WITHOUT entering a value, the prompt “You
must enter something” will appear at the bottom of the screen.
Again, a zero entry is fine.

THE NUMBER OF RECORDS NEEDED

Once field caloulations are completed, CODEWRITER will ask:

‘“What is the maximum number of records you want in the datd
file (80 to ~---)?"

This calculation is made automatically by CODEWRITER and
depends on the amount of information in a screen design.

CodeWriter

CODEWRITER calculates the maximum for you and asks how many
you're likely to need in your file. CODEWRITER will then reserve
the correct amount of space on your program disk. Remember
that specifying the maximum here will FILL the program disk.
Where you would like MORE than one program on the same disk,
ask for the FEWEST records practicable for your use.

For our Sales Invoice example, a small record ﬂle will do.

enter '50’ and press RETURN

Next, we are directed to “Type in the program title” and are
allowed 30 characters to do so. The program 'title’ is NOT THE
SAME as the ‘Screen file name’ we chose earlier. This 'title’ is
coametic only and will merely be printed above the menu
CODEWRITER will automatically create for your programs. The
'title’ should simply describe what your program DOES.

Enter something like

’ABC SALES RECORDS’

and press RETURN

THE KEY FIELD

You should now see on the screen the following questions:
“Which fleld is the key fleld (type 1 to -- or 'list’ to list flelds)”

The “key field” is more computer jargon for a not too difficult idea.
The program which CODEWRITER is creating from our design will
store records in a file and then get them back as we need them. To
find a particular record (screen), the program conducts an
electronic 'search’. The program can simply look at every record
in file until it finds what we need, or it can go MUCH MORE
DIRECTLY to the record in question.

The difference is having a “key” field to search for. Where one field
on our screen record is designated the “key”, the CODEWRITER
created program can go to & SPECIAL INDEX of “keys” it had
previously set up. In a flash the needed screen appears.

There is no need for special computer knowledge to choose the
“key" fleld. The “key” is simply the one piece of information
(fleld) MOST LIKELY TO BE LOOKED UP when searching a file.

As an example, in a sales invoice file it is very likely that records
will be searched by ‘Customer name’ most often. Perhaps, in
another case, the screen form for the invoice contained a
‘customer number’ or 'account number’. Certainly either of these
would make a good “key” fleld as well.

Codelicter [2]

For. the mament, type 'L{’ and press RETURN

You should see & sereen like this:

Keyboard entered fields:

1. Customer name 2. Acct #
3. Date 4, Street Address

5. City 6. Invoice
7. Quan 8. ltem
9. Price 10. Paid on Invoice

Our choice is limited to the 10 flelds designated 'keyboard entered’.
A ‘program caloulated’ fleld can NEVER be a “key”. The
CODEWRITER system has numbered our flelds from 1 to 10 and
has kept track of the numbers. Thus we can choose the “key” by
entering the number only. Let's make *Invoice #' the key.

enter '6’ and press RETURN

You may ssarch by ANY fleld on & record soreen. The key fleld is
simply the fastest and most direct way to search. To design the
BEST POSSIBLE key fleld, keep one rule in mind; The best key in a
record is the most uniqus key.

For instancs, in our invoice example the 'Acct #' key may be
REPEATED in many records (where the same customer buys
’many different times, for instance). Since the *Acct #' entered is
the SAME for many records, each time a 'search’ on the key fleld
i8 done many records will 'qualify’ in the ssarch. This will work,
but is not the MOST EFFICIENT way.

Try to dsvise a key which will be unique to a SINGLE record. In
our example, the Invoice# is best. This number wil be DIFFERENT
for each record entered.

Again, any keyboard entered fleld may be the 'key’ and a key
which can refer to multiple records is 0.K., but unique is best.

Since many CODEWRITER applications will involve money, we can
use a bit more advice on the subject. Here are a few tips:

1 CODEWRITER will allow an operator to enter simply 23. and
this will print as 23.00

CodeWiriter [20]

2. An amount with NO numbers to the left of the decimal place as
in .10 will be printed later as 0.10

3. Where the program designer wishes to make sure that money
amounts line up top to bottom with the decimal points EVEN,
care should be taken to see that the DOTTED LINES for money
Justify TO THE LEFT. For example:

left

will result in a column of money amounts with the decimals in
line TOP TO BOTTOM even though the $ signs vary. The fact
that the dotted entry lines are justified LEFT will accomplish
this.

Wo are almost finished with program design. This last section is
really optional, but it can be quite important.

Any collection of information can be made most valuable to the
extent it can be kept PURE. That is a file on stamps should not
contain an occasional recipe and a PROMPT field for price should
not allow letters to be typed in, ete.

Without some attempt at keeping out 'garbage’ entry, a file can
become an awful mess and lose a lot of its value.

You should now be looking at the first of two soreens which show
how the CODEWRITER system allows the program designer TRAP
OUT ERRORS in operator entry.

Like the other instruction screens on the CODEWRITER disk, these
are for future reference. Let's go throu@ them now for more

def understanding.

Once jpast the two screens, CODEWRITER will bring our-sales

invoi¢e scresn back into view and begin to HIGHLIGHT each of the

KEYBOARD ENTERED fields. At the bottom of the screen there is a

prompt line saying: Reject if: at the same time as ONE FIELD is

HIGHLIGHTED above.

The program designer is being asked, “What will not be accepted?”

CODEWRITER offers a complete arsenal of weapons to keep out
nonsense and a very good system for letting a program opsrator

* know when something is wrong.

In order to best use your Reject if: weapons, we'll go through the
entry process together. Remember, you can always type 'help’ to
ses all the types of data traps again on the 2 screens. You
SHOULD study the screens as we go.

You'll see HIGHLIGHTED on the screen 'Customer name
etc.’ and "Reject if:’ below.

enter 'no entry’ and RETURN

This means that we have DEMANDED SOME EN'I'RYbythe
operator of our program. Since 'Customer name’ is quite
important, the operator musn't leave it blank or the sales record

could be confusing.
Onoce 'no entry’ is typed and RETURN pressed, you'll see:

Error Message?

[er="** you must enter something ***)

CODEWRITER is asking the program designer to write & message
to the program operator EXPLAINING that the mistake 'no entry’
was made. The “cr= *** you must enter some ¥**" means
that if the program designer wishes, the message ‘“‘you must enter
something” will be entered AUTOMATICALLY by CODEWRITER as a
response to the 'no entry’ error. (the cr means (¢)arriage
(r)eturn or just RETURN)

Let’s write our own error message:

CodeWriter [(31]

enter ‘You must enter customer’s name.’ and RETURN

As you'll see the SAME field will remain HIGHLIGHTED and the

Reject if: message will appear again. Why? Because MORE than
one error could be mads in the same field entry.

Let's say we want to prevent an entry which is T0O LONG. The
‘name’ field is 30 spaces. We can use the edit feature of
CODEWRITER to automatically reject an entry longer than 29 (in
this case). The rule is; Where you wish to restrict length, allow
the space involved to be at least ONE SPACE MORE than the entry
you wish to reject.

enter ’length) 29’ and RETURN

Your CODEWRITER program will then reject all entries MORE
THAN 29 spaces in length. (The symbol after 'length’ above means
'greater than’.) This prevents an operator from typing more
information than your screen form can accept. Regardless of any
edits you provide, your CODEWRITER program will automatically
sound a BELL when an operator tries to type PAST THE BOUNDS
of your screen format size for a given field (1. more than 10

spaces in a 10 space fleld).

enter ’customer name cannot be over 29 spaces’
and RETURN

The choosing of edits and operator messages to trap out errors is
where the personality of the program designer really comes
through. The “attitude” of the created program toward its user,
and the general need for accuracy, is built at this point.

Rather than go through all of the fields in our example program,
we'll offer, instead, some suggested “edits” and messages. Once
you feel comfortable with the process of edit control, by all means
devise your own.

Field Name Reject if: (syntax] Meaning Message

Acct # contains ‘ab’ Invoice #CANNOT “ab accounts enly
contain ab’ infile 5.”

Acct # length<5 Acct #'s MUST have “The Acct # entered
5 digits is too short”

INVOICE # no entry As KEY FIELD, it “Please include
MUST be entered the invoice #.”

Quan not numeric A quantity MUST be “Please express
entered as a number quantity as a number”

Price) 10000 No number OVER “ltems costing over
10,000 will be $10,000 use form 3"
accepted

CodeWriter [32]

(Note: Though the following aren't in our example program, they

help to illustrate the edit process.) -
Last Name) ‘D’ No name beginning “This form for A to C
with D or later will names only”
] be accepted
Part # =300 Don't accept 300 “Item 300 has been
dropped-see note 10"
SEX () ‘male’ MUST be male “Use male only for this

survey”

WARNING: While edits can be COMBINED to test the SAME fleld for
different kinds of operator errors, some combinations are

" LEATHAL—as they allow no entry at all (or eliminate a range of

entries by mistake). For instance,)*“a” rules out EVERY lower
case letter entry. (Can you see why?) And) 100, when combined
with <80, allows ONILY 50 to 100 to be entered.

By studying these examples as well as the two edit screens, you
should be getting a good idea of the editing process. Remember,
CODEWRITER will process as many or as fow information edits as
you wish. Don't leave edits out entirely, though, as they can be
the “soul” of a good information file.

PLEASE NOTE: If the “reject if:” syntax is still not clear, see
Appendix A at the end of the data entry section in this

‘manual,

Oncs the edit section is complete, CODEWRITER asks if you would
like a special “end of data entry” message to be used in your
program. This message allows the program operator to either get a
new blank screen form to fill in or return to the program menu.

The Program Designer is free to choose his own language here, but
ONE bit of program LOGIC is automatic: If the operator presses the
RETURN key at the end of filling in a screen, & NEW SCREEN will
appear. And if “y” or 'yes’ is entered, the program STOPS DATA
ENTRY and returns to the menu. Examples of “legal” messages
are:

“‘Are you ready to stop data entry y or n (RETURN = n)”
or

‘“To return to the Main Menu press "y, to continue press
RETURN”

If you'd rather not bother to compose any special message, simply
press the RETURN key and CODEWRITER will write its own
message as shown on the screen.

This final CODEWRITER design choics is for date format.

Enter an ’a’ for American or ’e’ for European date
format in your program.

Codeiriter [33]

Any fleld you designated 'date' (by entering ../../.. tothe
goreen) will automatically be evaluated by CODEWRITER for legal
date entries.

THAT'S IT!

Oncs the correct date format is selected, your system is ready to
create a separate program disk to contain your new appliction.
The procedures to do this will vary depsnding on which computer
you're using.

Check your USER NOTES CARD and be sure to follow the SCREEN
MESSAGES that are offered by your CodeWriter system.

To run your program immediately simply type: run and
press RETURN. Later, you run the program like any other piece of
software—there is no further need for CODEWRITER until your
next program design. Simply place your disk in the drive (after
proper power up). The 'program name’ is the name of your
SCREEN FILE plus & /t . For example, if your screen file is named
joe your program name will be jos/t . Both the screen flle name
and the t MUST be lower case.

The correct sequence for running your new software (once you
have turned your computer off) is the following (We'll assume the
screen file in named joe):

load‘‘joe/t”,8
run

NOTE: Where you have already created a program with
CodeWriter you can load it into your computer’s memory easily.
First, find what's on the disk (load “¢”, 8 then "list’). You'll see a
series of files with the same screen file name (but different
suffixes). The '/T file is the one to load. For example, our ‘invoice’
program would be loaded:

type load ““invoice/t",8

(Naturally, if you used a different “screen flle name”, substitute
that name in front of the '/t’ in the directory file name.)

Once the flashing cursor returns to the screen:

type ’run’ and press RETURN

After a bit of disk activity, the Main Menu of your first :
CODEWRITER program should appear. Except for your name being
used instead of ours, it should look like this;

Program Design by Dynatech Microsoftware

ABC SALES RECORDS

File Preparation (First time only). f

Enter data
Update data
Look up record
Search records
Delete record

Let’s go through the menu options one at a time.

File Preparation—This is the CODEWRITER utility which
prepares the disk designated to hold the data for the program. The
File Preparation utility will create enough disk space on the data
disk to hold the file the designer had requested. REMEMBER! This
utility is used ONLY the FIRST TIME a program is run. Once there
is data on a disk, the File Preparation utility will ERASE it to
'Prepare’ a new file. Bewarel

CodeWriter [[35]

- Bnter data—This gives the program operator a new and empty
screen form to fill in. At this point ONIY the KEYBOARD ENTERED
fields are displayed (not program calculated, grand total or
labels). To stop the 'Enter data’ sequence mid-screen, press the

* fl key. Oncs a screen i8 complete, the operator will see a line
showing how many records have been entered into the file and
how many are left. Next the operator is asked whether the data
entry session is complete. If not & new screen is shown. If so, the
program returns to the MENU.

Update data—This program routine gives the operator a chance
to change any information already entered into a scresn record.
The operator is asked to give the “key” information-that is the
data entered in the field designated “key” by the pro@a.m
designer. Here's an example:

In our ABC SALES program, the “key” field is 'Acct #'. Thus, on
Update the operator first sees a prompt asking for the ’Acet #' of

- the record to be "'Updated’. Once the Acct # of the record (invoice)
is entered and RETURN is pressed, the program searches the disk
for the record and displays it on the screen.

At the bottom of the screen, the prompt line displays:

is this it? RETURN = yes

If the record displayed is correct, press RETURN. You'll notice
that now ALL FIELDS and LABELS are displayed. The results of
program calculations appear and grand totals are listed where
they were designed. (NOTE: If the record displayed is not correct,
type 'n’ and the program will continue to search.)

A new prompt now appears at the bottom of the screen. Using our
Invoice Program as an example, the prompt reads:

* * Which field to update (1-10, 'list’, f1 to cancel, RETURN to save)
The prompt choices, inside the parentheses separated by commas,
mean the following:

1-10—This is a choice of field numbers to UPDATE from field #1 to
field #10. All are KEYBOARD ENTERED fields (the ONIY ones
intended by the program designer for the program operator to be
involved with).

list—Naturally, this gives the operator a list of the KEYBOARD
ENTERED fields showing which FIELD LABELS belong with each of
the 10 numbers. Once the operator sees which field # needs to be
UPDATED, RETURN is pressed, the record screen returns, and the

update is ready for a choice.
Codeiriter

F1—At any time during UPDATE, the operator may press f1 and
cancel the update process. This returns the main menu.

RETURN—To COMPLETE and SAVE the update to disk file, press

This sequencs illustrates the update process on our example
program:

L The operator notices that an incorrect price was used in a
customer invoice already on file.

2. The UPDATE routine is called with “u” and RETURN.
- 3. The Acct #, 1005, is entered as called for.

4. The first record displayed is the right Acct # but the WRONG
invoics, 8o 'n’ and RETURN get a second invoice—which is
correct.

5. 'List’ is called to get the field # for 'Price’, which is 9. The 9 is
entered and the cursor appears at the 'Price’ field—now erased
and waiting for a new entry.

6. As soon as the new price is entered and RETURN is pressed,
the screen action begins| Not only is "Price’ updated, but ALL
the program calculated fields and grand total fields which in
some way depend on the price amount are also updated and
can be saved by pressing RETURN again once the revised
screen appears.

Before we leave the UPDATE routine, there is one more valuable
feature called “(m)ore and (1)ess”. Here's an example from our
ABC SALES program;

L A customer wishes to make a payment on one of his open
invoices. The operator goes through the update routine and
finds that the field (#10) PAID ON INVOICE already contains a
payment amount. The customer is making a second payment on
the same open invoice.

2. Since in this case we don't want the amount NOW in PAID ON
- INVOICE to be ERASED and replaced with the current payment,
the normal update won't do. (Let’s say the amount currently in
PAID ON INVOICE is $16.00)

3. The operator chooses fleld #10 which places the cursor at PAID
ON INVOICE and OVERWRITES the $16.00 amount. Since the new
payment is $10.00 and we wish to ADD this amount to PAID ON
INVOICE, the payment is entered as 10.00m for more. The 'm’
ADDS the 10.00 to the-previous 15.00 so when RETURN is
pressed, the new PAID ON INVOICE amount reads 28.00 and
once again all fields which relate to this change automatically.

Obviously, entering I’ (for less) as in 35.001 would SUBTRACT

36.00 from the amount already entered.
CodeWriter

One last point; The m and 1 feature at first seems the same as a
gelf referencing program calculated field, which holds an old value
while calculating a new one. The two are different. The m and 1
feature works ONIY on KEYBOARD ENTERED fields while self
referencing is ONLY for PROGRAM CALCULATED fields.

Keep “(m)ore and (1)ess’ in mind for your future CODEWRITER
applications. The feature is invaluable for inventory type
programs especially.

Look up record—When the I’ is used from the main menu, the
user first sees the key field alone on his screen. The ENTIRE key
field entry should be typed and then RETURN is pressed. Once a
full scresn appears, the user is offered a choice; If the screen
record is correct, simply view as long as needed and then type x
and RETURN. This will return to the main menu. If the first
screen seen i8 NOT correct (there may be several with the same
key), press RETURN and the program will search for another
screen record with the same key.

Search records—This feature has two main purposes. One is to
find screen records where the “key” field information is unknown.
The second is to give the program operator a chance to view an
entire SERIES of screen records which are LINKED by search
boundaries the operator has chosen. Here's another example from
our ABC SALES program:

1 The operator wishes to find the invoice to “Abbott Jewelers”
but does not know the Acct # to find “Abbott Jewelers” with
the Look up command. The Search command is chosen instead.

2. After 's’ and RETURN are pressed, the operator sees the
prompt:

Scan all or selected records?(a/s)

Since the operator doesn’t want to see “all” of the invoices to find
v “Abbott”, the 's’ is pressed for 'selected’ records.

3. Next the operator sees the prompt:

CodeWriter

What field do you wish to select by?
(1-14 or "list’)

Here the operator types 'list’ and sees a list of all 14 fields
(except grand totals). The operator wants to search
alphabetically so field #1, Customer Name, is selected for the
search.

4. The next prompt reads:

Smallest item to select?

Here 'Smallest’ means lowest in the alphabet. Notice that the
prompt offers 30 dots to fill in? That's because your CODEWRITER
program “remembered” that field #1 was designed to have 30
characters maximum. The operator types *Ab’ which means that
records with 'Customer Name' beginning lower in the alphabet
range than “Abbott” (say Aaron, for instance) would be omitted
from the search. Remember a lower case letter is 'lower’ than its
UPPERCASE counterpart (1.e. 'a’ is lower than 'A’).

8. The next prompt:

Largest item to select?

is answered; "Abbott’ so that nothing above 'Abbott’ will be
searched. The records within the range will be displayed one at a

time along with the prompt:
CodeWriter

To exit type x then RETURN,
to continue RETURN

and so the operator simply presses RETURN until the desired
record is displayed and then types x to halt the search.

A few more items concerning 'Search’:

L On an aiphabetic search of, say, A to D remember that a lower
limit of A is fine but D alone as the upper limit will lsave out

everything beyond D by itself. To search a file A through D,
enter Aa or A and DZ as the two limits.

2. Remember that to a computer A is different from a. If you used
capital letters in your fields, use capitals in your search limits.

3. Where a search field is a date, you'll be offered . ./../..
instead of dotted entries. You may search through a range of
dates.

Delete record—This menu option removes records from the file
disk. It works by asking the operator for the entry to the “key”
field and then displays the screen record in question. by
answering the “is this it” prompt with RETURN, the record i8
deleted.

Verify grand totals—Because of occasional instances of computer
“pounding off” certain sums, the 'Verify’ option is included. Simply
enter 'v’ and RETURN. No other entry is needed. All of the 'grand
total’ fields on the screen will be checked for acourate mathematic
gums. The Verify option appears ONLY when a file contains grand
totals.

Bxit—This is simple, but can be easy to forget. After EACH
session of data entry is complete, exit the program with THIS 'x’
RETURN option. Do NOT simply turn the computer off. The "Exit’
routine in your program performs a number of very important
“computer housekesping” tasks which keep the data file ready for
reliable use.

A FINAL WORD

Woe have tried in this manual to show the major features of
CODEWRITER and how these features work interactively to allow
the Program designer to control information. We've shown some
things in detail and only hinted at others—all by design.
CODEWRITER is & tool, to be discovered rather than explained

This CODEWRITER product is the first of a series aimed at making
PROGRAM DESIGN more powerful and capable a function. We hope
never to lose sight of the fact that your growth is our growth.

CodeWriter [40]

Appendix A — The “Reject if:" rules

We thought it would be helpful to have the two “reject if:” help
screens for your CODEWRITER program reproduced here for

easier reference.

screen one

GENERAL TESTS
Test name example meaning 1o operator
‘no entry’ - some entry required
‘not numeric’ - use only numbers here
‘numeric’ - don't use numbers here

DATA SIZE TESTS
Test name example meaning to operator
"length)’ length > 4 no more than 4 keystrokes allowed
"length ¢’ length< 7 no less than 7 keystrokes allowed
"length=' length=2 must NOT be 2 keystrokes
‘length (> - length{ >3 must be 3 keystrokes

screen two

NUMBER TESTS
Test name example meaning to operator
) »100 must NOT be greater than 100
¢ <20 must be 20 or higher
= =631 must NOT equal 631
L O17 must equal 17

CHARACTER TESTS (note single quotes)

Test name example meaning to operator
A yd' must NOT be after “d" in the dictionary
¢ o’ must NOT precede “jo” in the dictionary
= ='bill must NOT be “bill”
€ <> ‘male’ must be “male”
‘contains’ contains ‘abc’ must NOT contain 3-letter group “abc”

The various symbols used in “reject if:” syntax may not be
familiar. Here's & detailed explanation. We'll take the tests in

order.

Codeiriter [41]

Very often the most confusing aspect of the “reject if:” design is
the backward or opposite nature of the prompt: the designer is
asked to state what he doss NOT want rather than what he does.
Help is on the way.

NO ENTRY—Since the purpose of “reject if:” tests is to let the
program operator know what is NOT accepted entry, “no entry”
as a test i8 vital. When the program designer answers & “reject
if:” with “no entry” the meaning is: “Don’t skip over this field—it
will be rejected if there is no entry.” ‘

Use the 'no entry’ test when the field in question is the KEY
FIELD. Without the 'no entry’ test, the operator could leave the
key field blank. With nothing in the key field, the ENTIRE SCREEN
RECORD would be lost to the CODEWRITER system.

Anytime you wish to DEMAND SOME ENTRY to a field, use this
test.

NOT NUMERIC—Again we must think in opposites. Where a field
is designed for number type information only (i.e. quantity,
number of days, part number, etc.) the designer should “reject” a
“not numeric” entry by the operator.

This is critically important where a number will be part of a
calculation. Obviously, if an operator answers a quantity question
with “two” instead of “2", the calculation function will not work.

NUMBERIC—Where a designer wishes ONLY TEXT to be entered
to a fleld, the syntax is; reject if:numeric - The CODEWRITER
program will not accept keystrokes 0 through 9 under this test.

LENGTH > —The meaning here is “length greater than”. The “ > "
sign the computer symbol for “greater than”. Literally, what is to
the LEFT or LARGE side of the “ > ” is greater or larger.

In the case of “length”, the “reject if:” meaning is the number of
keystrokes (both spaces and characters) allowed for entry. Thus,
where NO MORE THAN a 5 digit number is acceptable entry, use
“length > 5" meaning “length greater than 8" as the correct test.

LENGTH < —No surprise here. The “ (" symbol means “less
than”. Thus, where a particular part number MUST HAVE at
LEAST 6 digits, for example, the test “length < 6" will prevent an
operator from entering & number whose length is too short.

LENGTH=-—Again, this i8 fairly clear. The meaning is “length
equals”. The test will screen out & SINGLE PARTICULAR LENGTH
as “reject if: length=3". This test is not used very often, but
COMBINED with some other test, may be useful.

LENGTH <> —The“ () " symbol is computerese for “does not
equal”. Where a designer wishes ONLY A SPECIFIC LENGTH of
entry and nothing more OR less, this test is used. An entry of 6
keystrokes and NOTHING ELSE would be tested with, “reject if:

length <> 6"
CodeWiriter [22]

QUANTITY and TEXT

Where the four symbols,* » *, *“ ¢”, “=", and * ¢ " are used
WITHOUT “length” and WITH numbers, they evaluate the
QUANTITY INVOLVED rather than the number of keystrokes.

> —This still means “greater than”. Where you wish to prevent
an entry of ANY HIGHER QUANTITY than 100, for example, the
test is “reject if: 100",

(—As you'd expect, the “less than” symbol works to prevent
ANY LOWER QUANTITY than the designer wishes from being
entered. To reject any lower entry than 50, for instance, the test
is “reject if: ¢ 50".

=—As before “equals” seeks out a SINGLE QUANTITY ONIY to
reject. Where, as an example, the ONLY wrong amount is 200, the
designer tests for this with “reject if: =200".

<> —The symbol means “does not equal” as before. Used
without “length”, the test is to SEEK OUT A SINGLE CORRECT
QUANTITY. Where the designer wants, say, only part 400 as a field
entry, the test is “reject if: < > 400".

Be careful with “does not equal” as a test. Since it accepts ONIY
ONE quantity as correct, it cannot be combined with other
quantity tests.

When used with quotation marks and letters, the) *, “ ¢ », “=",
and ‘ ()’ test for POSITION IN THE ALPHABET OR DICTIONARY.

)« "—In the example) ‘p’, the meaning is “greater than
p” or “past p” in the alphabet. Using a SINGLE LETTER as we did
limits the test to the FIRST LETTER in an entry. Thus the test
‘reject if: > “p”’ would TRAP OUT all words beginning with r or
any other FIRST letter LATER THAN p in the alphabet.

Where MORE than one letter is used, dictionary position
determines the “greater than” or “later than” test. The test
‘reject if: > ‘mac’ * would eliminate ALL WORDS later in the
dictionary than a word beginning with ‘mac’.

¢ ' —Here the meaning becomes “lower than” a FIRST
letter or group of FIRST letters in the alphabst or dictionary. To
trap out ALL “d” words or lower in the alphabet, the test is
'reject if: ¢ “¢”’. Thus, only “‘e” words or higher could be entered.

=! ' —As before “equals” looks for ONE THING only. Whers,
for some reason, the designer does not wish “frog” as an answer,
the correct test would be “reject if: = ‘frog . Several of these tests
can be combined on & single fleld to trap out a LIST of words or

letters not wanted.

¢)>*¢ '—Agbefore, the “does not equal” symbol is used to
trap out ONE SINGLE ITEM. Therefore if “tractor” is the only
response the designer wishes to allow, it is demanded with “reject
if: ¢) ‘tractor’. Also as before the “does not equal” test
CANNOT be combined with others on the same field. It is seeking a
single acceptable response.
CONTAINS ¢ ! —The “contains” test is used ONLY with
words and letters within the CODEWRITER system. If, for
instancs, & particular letter or group of letters is to be tested for,
“contains” will do the job.
Let's assume that a part number entry in some inventory
analysis is “B1200" and the designer wishes to allow NOTHING
from the “C” series (C1200, ete.) to get into the data by mistake.
The correct test for the 'Part Number’ field would be reject if:
contains“c” All numbers and other letters would be ignored, but
any entry containing “C" would be refused.
The “contains” test can also trap a CONTINUOUS GROUP of letters
ANYWHERE in & word or sentence. Thus the test 'reject if:
contains ‘me’ ' would trap out ‘me’ as well as ‘men’ BUT ALSO
“some" and “stammer” (because they contain the 2-letter group
‘me’). 'Containg’ is a powerful test. Be careful.
Keep in mind that with all the letter and word tests, an UPPER
CASE letter is not the same as its lower case counterpart. You
may have to test for BOTH kinds of entry to really be sure you
keep out what you want out.
We hope this appendix makes the “reject if:” idea more clear.
Remember, while your program designs will be made more
powerful by using these tests, they are optional. Use them as you
are comfortable with them.
THE REPORT SYSTEM
The creating of “reports” from data entry programs is the real
payoff in program design. This is where machine controlled
information is “humanized”. What was merely entered as it
happened, is now looked over, compared, sorted, and rigorously
manipulated until the program designer can answer the most
useful questions: What does this mean? Are there patterns to
what's happened? Of all the information we've collected, what's
significant?
In creating the instructions for The Report system for
CODEWRITER, we've changed the rules a bit from the
CODEWRITER data entry system. These new instructions will be
shorter and will assume the following:
1. That you are familiar with the workings of CODEWRITER-Disk 1.

For the most part the answering of scresn prompts and the
syntax for entering calculations is the same.-

2. That you will generally understand the screen prompts and will
be able to proceed. We will not include detailed examples with
the scresn prompt explanations, but will instead use the
PROMPT SCREEN NUMBERS (usually in the upper right
corner) to refer you ahead in the instructions for more “in
depth” treatment—with examples.

Why the change? The CODEWRITER Disk 1 data entry design

system includes many functions for creating in fact “on screen”

reports. By using the ability to calculate between fields and

CodeWriter

display grand totals as you go, CODEWRITER gives the program

designer a lot of what's needed for many kinds of reports.

Thus, the Report System is intended to be an invitation to

experiment with CODEWRITER to find report formats not possible

with CODEWRITER alone.

Don't worry. We wouldn't leave you alone. At the end of the

screen prompt explanations, you'll find the DESIGNER'S

REFERENCE section of the Report System manual.

DESIGNER'S REFERENCE is for the examples and fuller

explanations needed to get the most out of your system. Where a

screen explanation is expanded upon in DESIGNER'S REFERENCE,

you'll be alerted.

JUST WHAT IS A REPORT?

The answer is not as obvious as you might think. The broader

your definition of “report”, the better reports you'll design. Here

are a fow ideas:

1. Reports give the “status” of a file of information. How many
items are below a certain number, how many above, ete.

2. Reports sesk out a pattern. If the designer imposes certain
conditions, how many of the entries in a file will qualify?

3. Reports pull together information to change its purpose. All the

headings from an invoice flle can be pulled together to form a
mailing list.
LET'S BEGIN
Before your first CodeWriter report, you'll need to transfer two
programs from your CodeWriter Report System disk (the disk with
the data entry program you created).
We'll assume you are starting fresh with your Commodore CBM 64
showing the message below and your disk drive is on.
*+++COMMODORE 64 BASIC V2****
64K RAM SYSTEM 38911 BASIC BYTES FREE

READY

Do the following EXACTLY:

1. Press the SHIFT and Commodore symbol keys at the same time to
switch to UPPER/lower case mods.

{. Place your CodeWriter Disk 2 (label facing up) into the drive.

3. Type— load “sc6",8 and press RETURN.

4. Once loading is complete, remove the CodeWriter disk and insert
your application disk in the drive.

6. Type— save“@0:8c5" 8 and press RETURN.

6. Once saving is complete, remove your application disk and place
your CodeWriter Disk 2 back in the drive.

7. Type— load “sort”,8 and press RETURN.

8. Once loading is complete, again switch disks, removing the
CodeWrtier Disk 2 and replacing in the drive your application
disk.

9. Type— save “@0:sort”,8 and press RETURN.

The two needed programs (scB and sort) should now be on your
application disk. You can verify this by checking the contents of
your disk:

Coderiter [45)

1. Type— load “$”,8 and press RETURN.
2. After the 'ready’ re-appears, type— list and press RETURN.

You should see a list (or directory) of the program files on your
disk. The list should contain the “se5” and “sort” programs as
well as a series of programs whose names begin with the scresen
file name of your data entry program.

Repeat the process, checking carefully, if all is not as expected.
Watch the red 'activity’ light on your disk drive. If this light
flickers on and off during the load or save process, something may
be wrong with either the disk or drive.

To load the Codewriter Report System, place the Codewriter
disk (disk facing up) in the drive and type— load “report”,8 and
press RETURN. o i

You'll see a brief copyright notice and the a reverse video
WARNING SCREEN. The screen asks for confirmation that the
two needed programs are in place on your application disk. Since
they should be at this point, press the f1 key to continue.

You'll need to SWAP DISKS again at this point. Remove the
CodeWriter disk from the drive and replace it with your
application disk. This disk contains the '/s’ program and the '/pef
program the Report System needs.

CodeWriter Concept: There are two points we should consider
before going further; One is the idea of a “record” as it's used in
the Report System. The second is using an 80 column screen on
your 40 column Commodore CBM 64.

1. A “report” is simply output from the data file of your choice, It
may be a standard sheet of figures arranged in column form
under headings you choose. It may also be a form letter using
data from the file to fill in “holes” you designed or even a check
or mailing label — they’re all reports of a sort.

Thus, when you're asked (later) ‘How many records across
the page’ you'll need, the meaning is; How wide is the screen
segment needed to contain the information you want from ONE
data entry record. We'll explain more later.

2. Your CodeWriter Report System allows you to create 80 column
wide reports to either the screen or to your printer. How is
this possible on a 40 column screen? When designing your
report, certain sections of the Report System allow you to FLIP
back and forth between TWO 40 column “‘screens”. You'll
normally see the left “half” of your report design. To ses the
right “half”, press the)key (a shifted dot on your keyboard).
To return to the left segment, press the (key (a shifted
COMmIA).

Enter the name of the screen file EXACTLY as you entered it

when designing your data entry system.
CodeWriter

SCREEN

SCREEN
R9a

Enter 'a’ or ¢’ remembering that your date format must be the
SAME as you used in data entry.

You may use up to 28 charasters for design credit.

Your report program tltie may use up to 30 characters.

This s the way the title page for your report will look. If you
answer 'n’ for no here, the title page will be ERASED and you'll be
returned to SCREEN RB.

2 DISK SWAPS HERE

Your computer scresn should now instruct you to make the FIRST
of two disk swaps. In each case there will be a pause after you
press the key in question. Simply follow the instructions on the
two SWAP screens, After the second swap, you'll be ready to work
n screen R8.

The Report System will display all the PROGRAM CALCULATED
fields defined in the original data entry program. You'll see the
“name” of the field along with its 'pc#' and the calculation used
‘(one 'pe’ at a time). For each 'pe’ you see displayed, enter the
- MAXIMUM LENGTH (4 to 9) that the field will need for this
report.
Here you are to declare NEW program calculated fields for use in
this report. The next available 'pc’ # will be displayed. You enter
the calculations just as in the CODEWRITER data entry program.
However, you may not use the same 'pe’ # on BOTH sides of the =
sign.

(For more on NEW ’pc’ fields,
see DESIGN NOTES—RY)

Onos the “definition” or calculation formula for each 'po’ is
entered, you'll be asked if the entry is valid. The report system
does some mathematical and syntax error checking of its own, but
not enough to eliminate ALL kinds of mistakes. Caution here will

pay offl

The *brief description’ asked for here is to update the “list” of
fields 80 you'll be reminded that your NEW 'pe’ is available in your

. report—and for future 'pe’ calculations.

The (d)ollar or (n)umber choice is for automatic formating.-A 'd’
choice makes your NEW 'pc’ display with two decimal places to the
right. A choice of 'n’ is for normal numeric handling of the
quantity.

Codefiriter [47]

As with the ORIGINAL 'pe’ flelds, the Report System will next ask
about maximum length for these NEW 'pe’ fields.

We're getting close to the REAL POWER of the report System! As
with any good report mechanism, the CODEWRITER Report System
looks at ONE RECORD at a time. Keep in mind, however, three
important choices you have:

L Not ALL records need to be included in a report. Some will be
IRRELEVANT to your report goals.

. Not ALL PARTS (fields) of a record need to be included for
evaluation.

3. Only those records, or parts of records, you wish need to be
DISPLAYED or PRINTED at all. Your Report System design can
LOOK at a record and EVALUATE its content without going to
either screen or paper. Sometimes, just 8 summary is enough.

This Sereen asks you to begin to VISUALIZE which parts of the
data entry file are important in the report you're designing now.
While your ORIGINAL data entry design may have used ALL of an
40 column screen, this report may only concern a FEW of those
fislds. How large a SEGMENT of the screen or page will you need?

Our ABC Sales Invoice example (from CODEWRITER 1) used most
of the seresn. But & CUSTOMER LIST could be extracted from
those scresns by using ONLY the 'name', ‘address’, and ‘city’ flelds
and RE-ARRANGING them to fit 3-across on a screen segment OR
directly on to mailing labels.

The question: “How many records do you wish displayed across
the page?” asks you to CONSIDER the following:

1 Your screen workspace is 80 columns (with the left/right
control) and your printed page space is naturally 80 columns.
If the SIGNIFICANT INFORMATION from one record can be
re-arranged to fit a space 30 columns wide, you'll get TWO
ACROSS on a screen (with space left over). You are, of course,
free to use the ENTIRE screen width (simply answer '1').

. Remember, you'll be allowed to MOVE AROUND the contents of
your CODEWRITER data entry screen any way you wish—
including adding NEW TEXT and NEW 'pc’ fields.

The question: “How many lines long, etc” offers ALMOST the same
choices. A full report page is 80 columns wide and 56 lines top to
bottom. Since most scresns displays only 23 lines at a time, you
MAY want to consider that when declaring your record segment
size. You may, of courss, display as much of an 80 by 88 page as
you wish to your screen. Your computer will SCROLL UP at your
command, after displaying 23 lines, and show the rest.

You'll always have the choice as to whether your report will bs
printed to papsr or displayed on the screen.

CodeWriter [48]

DON'T WORRY! The idea of report design may seem remote at
first, but will be much more clear after your first time through.
dJust press on. Remember, mistakes are the way you know you're

. learning!

The last question asked on this screen is to verify your previous
answers. A 'y’ or 'yes’ sends you onward in the Report System.
An 'n’ or 'no’ ERASES both your entries and returns to “How
many records across . . .”, ete. There will be a short delay (6 -8
seconds) while & new program loads.

This is where you design your report. As you see, a screen
segment has been drawn by the Report System according to the
dimensions you gave in SCREEN R10. The vertical dashes mark the
RIGHT HAND boundary of your report segment. The solid line is the
top-to-bottom boundary.

At the bottom of the screen is the familiar column and row
position indicator from CODEWRITER 1. Here, however, your
cursor movements are limited to the boundaries of the screen

segment.
The prompt line contains the following options:

(E)nter— Allows a fleld to be positioned within the screen
segment. Press e’ (without RETURN) and you'll be
asked whether your entry is (k)eyboard entered,
(p)rogram calculated, or (t)ext. You'll be asked if you
want 'numeric formatting' on any 'ke’ flelds marked
with the # sign. Enter number of positions you need to
the RIGHT of the decimal point. ‘Text' allows any
keyboard character to be typed as usual. The 'list’
option works as always. Press the f1 key to stop
entering. After an (E)ntry, the cursor returns to its
LAST position. Move it to the NEXT place you wish to
enter.

(D)elete—Reverses the entry process. Any field, ke, pe, or text
can be erased by moving the cursor over the FIRST
character-and pressing 'd’. You'll be asked if you're
sure.

(M)ove— Allows any field already entered to be moved with the
normal cursor keys. In this mode, the 3 key acts as
tab to the far right.

(H)elp— A full review of all screen entry procedures. '

o(X)it— Press 'x’ to stop the screen segment formatting
process.

(For additional information on this procedure.
see DESIGNER’S REFERENCE R11)

Coderiter [[29]

 Stmply press RETURN after reading the screan.

This is a look at the way your report record will appear when
repeated across the screen as you designed. You'll be asked if you
would like to repeat the format display. This is in case your
format was longer than 23 lines and scrolled off the scresn. Next
Report System asks if you'd like to change anything about the
screen you dssigned. Press 'y’ and the original screen segment will
re-appear as you left it.

Do you want report headings and page numbering? In many kinds

of reports you will. But for projects like mailing lists, the report
headings and page numbers would simply waste labels.

The rule to keep in mind is: Where you want CONTINUOUS print
with NO BREAKS at all, answer that you don’t want hsadings or
page numbers. Caution: some printers do not support paging and

with these CodeWriter will not give page numbers. The rest of the
report page will be as usual. Consult your printer manual.

You'll ses a sample of the LEFT HALF of your report form (as in
Screen R13). To view the RIGHT HALF, pressp(shifted dot). There
are a total of three lines for headings. The top line or lines are
normally used for a report heading, leaving a line for column
headings if you wish. To SKIP the second line, enter a space and
then press RETURN. Remember you may be working on HALF a
page at a time, 80 you'll need to be careful about centering.
W BE (o e

Here the report system introduces the subject of report sections.
A section is simply a part of a report. Each part, or section, may
be ENTIRELY SEPARATE from the others in design make-up, logic,
ate.

Where you enter a choice of MORE than ONE section, the Report

System will automatically repeat the design process the
appropriate number of times.

There will be short delay (5 - 8 seconds) while & new program
loads.

CodeWriter [50]

This is where program design pays off. The Report System asks
the designer to decide which data records to EVALUATE for the
report. Some reports MUST look at all records to give the status

SCREEN check the designer wants. In other cases, only CERTAIN records

R16a should be included based on the information found in a

PARTICULAR field within the record. Still other reports accept
records for review only if some COMBINATION of conditions exist
in several fields. Again, each section of a report can have entirely
separate "Accept if:’ criteria from all the others. Only ONE 'Accept
if:’ evaluation is allowed per SECTION of your report.

The design syntax for the ‘Accept if:’ statement is as in following
example:

Accept if: ke3 > 18

which means; Accept the record in question for inclusion in the
report IF the quantity held in field (k)eyboard (e)ntered 3 (ke3)
is greater than 15.

Studythemmpletobesureyoucanrelexethesyntaxshnwnm
the definition offered above.

8hould We Use All the records?

Where you wish ALL the records to be part of your report, as in a
complete summary, simply avoid all evaluations by entering 'all’
as in:

Accept if: all
AND OR and NOT

The words 'and;, 'or’, and 'not’ can help make the 'Accept if:’
statement & very sophisticated design tool. Here’s an example of
the use of 'and: {‘\ pyred 2 RUOTEE .

Acoept if: ke3="male” a.nd ked > 28

Where ke3 is a fleld asking about sex and ke4 is a fleld for age to
be entered, this 'Accept if:’ statement means:

“In this report I am interested ONLY in those records in the file
where the sex is male AND the age is over 25.”

Again, look at the meaning and try to see how the *Accept if’
statement means the same thing.

You might be intimidated by the 'Accept it idea at first. Don’t
worry. It's simply a bit new. Use one or two in your early report
designs and you'll soon be thinking up mors and more uses.

(For more about the 'Accept if:’ features of your Report
System, DESIGNER’S REFERENCE R16a)

Coderiter [61]

You will ses the prompt “Do you want an overall summary?” only

SCREEN where you have asked for MORE than one section in your report.
R17 The meaning is: “Would you like a summary of ALL your
summaries?"

In the next sereen, you'll be asked about the kind of summary
information your report design will include.

There will be & short delay (5 - 8 seconds) while a new program
loads.

The Report System summary options are; Total, Average, Minimum

SCREEN (or minima), and Maximum (maxima). You'll b offered the
R18 chante to SUM UP any DOLLAR and/or NUMBER fields which get
INCLUDED in your report.

The Summary Work Screen will show the flelds you have created
to date (with the usual 'list’ option). Bslow the fleld numbers
you'll ses the 4 kinds of summary options ONE AT A TIME. Simply
enter the field number (ie. kes, pe3, eto.), and this field will be
added to the KIND of summary shown.

For example, where ke is the quantity of some part, and you
want your summary section to show the TOTAL of all those parts,
enter “ke8” when the word "Total’ is displayed for summary. Each
field number you designate for "Total'ing will be displayed across
the "Total’ line.

When you're finished with fields to "Total’, press f1 and the
Summary Work Screen will continue on to 'Average’ in the same
way. Again, where you want an average for a field entry, typs in
the field number and the designated field will be added to the line
for inclusion in the summary section.

The 'Minimum’ option will display in your summary the
SMALLEST of a particular quantity (i.e. What was the least
amount of widgets ordered this month?). As you'd expect,
"Maximum’ does the same thing; finding the greatest number
among those evaluated by your report.

Here you get a chance to design your summary section again.
When you answer “y” to this option, your OLD summary is
ERASED and you RETURN to R18 to try again.

The CODEWRITER Report System will assign a 3 digit number of
your choice to each report you design. This makes identifying a
report easier where several are used or report titles are long.

CodeWriter [52]

YOU'RE DONE!

Onos you've chosen the report numbsr, you'll make one final DISK
SWAP to remove the CodeWriter Report System disk and replace it
with your application disk. Your report progeam will be saved to
this disk.

The time needed to create and save your report will be much less
than was used to create the data entry system. Report programs
will average betwesn 10 and 20 minutes creation time. Again,
you'll see the program lines scroll to the scresn. The process is
automatic, 80 you may leave the computer, but be sure the
computer is not accidentally shut off while you're away.

THE SORT PROGRAM

The CodeWriter “sort” program was placed on the application disk
when we first began report design (see pages 4546). As the name
implies, this program sorts the information in a data file so a
report can be created most efficiently. For instance, where you
want an alphabstic listing of names, the sort program could
re-arrange the “name” fields in your data file automatically.
Where you wish to print out certain golf scores, for example, from
low score to high — sorting first by the “score” field makes it easy.

CAUTION: Whether or not your report requires a sorting
operation, you MUST RUN THE SORT PROGRAM each time you run
a report. “Sort” updates certain iternal values in your data entry
program which keeps things tidy, so please don't forget.

The procedure to run a report is the following:

1. type— load “sort”,8 and press RETURN.
. type— run and press RETURN.

The sort program will agk for the number of report you wish to
run and will then run the appropriate report automatically. You'll
be asked for the field number by which you want to sort. Of
course, you needn't sort at all.

Not everything will be clear the first time you read it. Try a few
report ideas just to ses what happens. Don't worry about

" mistakes. The next few pages will explain certain report writing
concepts more fully. Enjoy controlling information.

SCREEN R9—The creation of NEW program calculated fields may
be a bit unclear. Why are new calculations needed? Let's look at
an example; In the ABC Sales data entry program, the calculations
used were to make the DATA ENTRY process easier for the
operator—calculating price extensions, tax, totals, etc. The
caloulations were appropriate to the program.

In a report program, the same information should be looked at in
a different way. Now that we have the information IN the file,
douithaveaPA'ITERN‘?DoesthedatasuggestaTREND?

We'll use the following data entry field examples to crea.te NEW
program calculations for a report;

ke9 = paid with order poR = invoice total gt = total receivables
gtR = total sales pe3 = invoice balance

Where the program designer would like an analysis of how much
each customer pays with his order in RELATION to the total order,
a NEW 'pe’ called peb could be created for the report program:

poB = (ked/peR)*100

When asked for a “brief description” of the new pe (for the 'list'),
the program designer could call poB— “% paid with order”.
In this case the answer to “maximum length” would be 3 as a
percentage wouldn’t get above 100 (3 characters).

Since it's wise to be aware of how much customers OWE in
relation to how much has been SOLD, a new pe8 for the report
could be:

PoB = (po3/gt1)*100
and label the result “inv. bal. as % of rec.” —meaning 'invoice
balance as a percentage of receivables’.

At this point a short but useful report could be written. Print out
only:

CuStOMEr DAMEevvvveenrnens invoics #
percent paid with order ...% Balance as % of receivables ...%

Obviously, these examples are quite specific, but you should see
thatthznewoalcuhtionsposslblelntheneportSyatemexpa.nd
your design possibilities & great deal.

SCREEN R11—What is a screen segment? The creation of a scresn

segment allows the program designer to FOCUS the original data
entry screen—so that the report can deal with SPECIFIC parts of

The most important consideration in using the Report System is
that it gives the designer ALL of the INFORMATION of the data
entry system, while allowing the FORM of the information to
change completely. '

Remember, when the Report System 'reads’ your data entry
program, it will retain ONLY the field names and spaces you
designed. It does NOT retain their positions on the data entry
screen. There is no need for this. The Report System offers you
the chance to pick and choose among the fields needed. Their
NEW positions within your report is entirely up to you.

A “record”, within the Report System, is ANY field or group of
fields from the data, entry screen record RE-ARRANGED any way
you wish. The screen segment created in work screen R11 is ONE
of these new 'sub-records’ which you may REPEAT either across
an 80 column screen or down a 56 line page.

Let’s begin with a fairly direct example; You would like to create &
mailing list 'report’ from the information in your invoicing
program. You wish to 'strip off’ from the invoice form
ONILY—Customer name, address, city, state (or district), and zip
code (or other mail routing #).

You begin the design on work screen R10. The first question is
"How many records across the page?’ As we are designing a
mailing list, our screen segment (or record segment) is a single
MAILING LABEL.

The work screen is 80 characters wide. If the 'name’ entry space
in your data entry program is 6 characters or less, you could get
3 mailing label 'records’ across (with tight margins). In our ABC
Sales example, we used 30 characters of space for ‘Customer
name'. This means that we can format 2 labels. Across the report
screen. Thus, we answer '’ to the quesiton 'How many records
across the screen?’

The next question on work screen R10 is 'How many lines long
(1to 56)?" A standard design choice here would be “6”. Most
mailing labels allow one blank line on top, 4 address lines, and one
blank line below.

Remember that on the data entry screen the SPACE to enter a
customer name was always PRECEEDED by the words 'Customer
name'. In the Report System the 'field labsl’ 'Customer name' is
NOT connected to the space (the 30 dot line). This is to provide
the designer complete freedom to RE-LABEL the fields.

Since we asked for & segment space of 40 spaces (80 divided by
our “2” choice) wide and 6 lines down, work scresn R11 begins by
DRAWING that area on the screen. To begin label design, press ‘e’
to Enter a field, and 'k’ to designate that the field is 'Keyboard
entered’. You'll be prompted by Report System to help you stay
within the 40 by 6 area. Press 'm’ to Move your field around the
area with the cursor control keys. Use the normal 'list’ option to
remind you of the numbers of the fields which contain the data
you want on your label.

CodeWriter [55]

Only the 'fleld type and #' are connected to the field space by
Report System. Thus, the mailing label record segment would look

like this on the report work screen:
0)
<>
ked.......... ked.

This will work well as a mailing label. There is no need for
anything but the address data itself, so the lack of field labels is a
help.

Let's add a little advertising for ABC Sales on each label. Press ‘e’
to Enter screen information and the 't’ to designate the

information as 'text’. Move the screen cursor to just below the
'ke3’ entry and type; “ABC MEANS QUALITY". The label becomes:

Though it didn't matter here, when you enter a number field on to
R11 work screen, you'll be asked if you want 'numeric formatting'.
If you answer “y”, you'll be asked "How many digits to the right of
the decimal point?’. This allows you to specify the display format
of all numbers in the report. Where you want a numbsr handled
as an integer (whole number only), answer '0’ for the digits to
the right of the decimal point.

The mailing label forma$ is merely a simple way to introduce a fow
of the possibilities of Report System. You needn't work in “screen
segments” at all. By answering “1” in screen R10 (for 1 record
across) and 56 for the lines down, you have the space of more
than two full Commodore screens to design your report layout.

The more traditional 'columnar’ type reports can be built by using
data entry flelds and new program calculated 'report’ fields
ACROSS the 80 column page: ’

Later, on work screen R15, you can add a report title and column
headings:

The 1988 Grape Harvest

Grove location manager cost p/vine vat cost grape variety

When run, the column format will simply fillin down the scresn
until the page size you chose (in lines) is full. Then & new page
with the same headings will begin. If your report goes to the
computer SCREEN instead of paper, the output display will stop
when the 25 line screen is full and continue when RETURN is
pressed.

TEXT IS A DESIGN ELEMENT

The text feature we used for the mailing label advertising line can
add lots of eye appeal and excitement to a report. Kesp in mind
that the CODEWRITER Report System lets you MIX text and data
freely. Use the freedom. There’s no reason a report on operations
can't look like a breezy memo:

The Wonder Wheel Company— Year 1982

“Our greatest hopes for Wonder Wheel have come trus. While the
rest of the wheel industry was down pe6%, Wonder showed an
encouraging pe8% increase—with a pe8% boost in market share.

To:ked......oo0vvvnnennnnn. in department ke6.
We could not have come this far without your help. Your
department’s pe3. $ contribution to sales represents
pel2% of the total.”

A 'report’ can be a form letter, a check, a purchase order or
nearly anything which can be put to paper or screen. The report
is simply & way of organizing input information to do a job. Use
the design screens to createl

SCREEN R18A—CREATING THE 'ACCEPT IF* STATEMENT The best
report programs look at the fewest data record screens while
doing their work. This makes for fast, efficlent reports which are
easiest to design and easiest to use.

The CODEWRITER Report system allows the designer to “describe”
Just the file information needed by using the 'Accept if:' statement.
In this reference section, we'll deal with 'Accept if:’ as the
descriptive language it is. With & very few components, the 'Accept
if:’ statement can be used to give amazingly complex instructions
to your report programs.

Here's a list of the components and how they can help:

The string constant—“string” is computer jargon for a
“‘connected group of letters or characters”. The letters or
characters may form a word or words, but the real distinction
between strings and numbers is that numbers are grouped
together to desoribe a quantity—and strings aren’t. The computer
can’t calculate two strings. In an 'Accept if' statement, the String
Constant is for DESCRIBING SPECIFIC LETTERS OR CHARACTERS

to search for. Here's an example:
CodeWriter

You wish to get some informa_.tion on the people in the data file
named “Smith”. The 'last name’ field is 'kel’. Since you don’t want
your report program to look at any screen records not associated

-with “Smith”, you write;
— SWBE GBS
Accept if: kel= “Smith”

Only the “Smith” records will be inspected. Putting the word
Smith in quotes makes it a string. It’s called a String constant
because that particular 'Accept if’ statement will check ONLY for
“Smith”. We'll look later at ways to make string checking
variable.

The Date Constant—To check for a specific date on the same
‘constant’ basis as the strings above, simply put the date within
'@ signs—as in @12/10/82@. Thus, if your report design was to
look only at flle information for records dated 6/12/82, and your
date field is ke6, it is expressed as:

Accept if: ke6= @6/12/82@
The idea to seek information only AFTER 6/12/8R looks like this:
Accept if: ke6 > @6/12/82@ (’>' means ’greater than')

As with strings, dates need not always be constant in an
expression. We'll show how this is done later.

A NUMBER can easily be used as a constant in an 'Accept if:’
statement with no special syntax needed Where a report design is
to focus on quantities less than 50, for example, simply write:

Accept if: ke5 B0 (keb being a *quantity’ here)
As before, a number can be variable as well as constant.
SINCE LIFE IS VARIABLE, SO ARE REPORTS

All the constants we've described can be very useful in report
design. Very often, however, the IDEA of a report will remain the
same, but the information needed must CHANGE each time the
report is run.

For instance, when we wrote the 'Accept if:’ line to find all the
people named “Smith” in a file, the String Constant was fine. But
such a report would seek out ONLY “Smith” ALL THE TIME. It's
more helpful if we could write a report program which could
isolate one name, as before, but allow the user to CHANGE the
name being sought each time the report is run.

For this, the symbol 'va’ is used—meaning 'Variable
Alphanumeric’ or String Variable. Using the 'va’ is simple. It's a
two-step process; First, agsign some MEANING to a 'va' (adding a
number to remember which 'va’ is which) and, secondly, writing &
QUESTION for the user of the report—asking for a response

which fits the meaning. Here’s how:
CodeWriter [58]

Our simple one-name search, using a 'va’ would read:
Accept if: kel=val

The '1’ in val simply means it's the FIRST 'va' we've used (any
number could have been assigned). When the CODEWRITER Report
System reads the 'Accept if:’ statement, the 'va’ will be detected.

The Report System will 'see’ that the designer wants records
studied ONLY when the contents of 'kel’ (a name field) are the
same as 'val'. It also detects that there is currently NO MEANING
attached to 'val’. What is 'kel' supposed to be equal to?

Whenever a VARIABLE (like 'va’) is detected in an 'Accept if’, the
CODEWRITER Report System will ask the designer to 'write a user
prompt'—that is write a question or request asking for the
MEANING of the variable to be inserted when the report is run.

The user prompt for our one name search could be:
‘“For what name should this report search?”

The user would then enter a name (by typing it in), and report
would carry out its search duties.

Where the variable is a NUMBER, the procedures are the same
except that the designation 'vn’ (variable number) is used
instead.

Using DATES as report variables is also the same—with one
exception. The designation is 'vd’ (variable date), but 'vdl’ is
ATWAYS THE SAME. The CODEWRITER Report System will ask at
the beginning of every report ‘What is today’s date?” —that is
the date the report is being run. This date is labeled 'vdl' by
CODEWRITER and reserved. When designing 'Accept if:’ statements
involving variable dates, begin with 'vd®' or greater.

Naturally, you may use the 'vdl’ in YOUR statements whenever
you'd like the date the report is run to be part of a condition—as
in:

Accept if: ke4 < vdl

This comes in handy in & bill payment report, for instance. Where
'ke4’ i8 the due date for a bill on file, the 'Accept if:’ shown above
means: Let’ look at ONLY the bills where the due date is EARLIER
than (less than) TODAY'S date. (i.e. which bills are overdue?)

AND, OR, & NOT (AS IF WE DIDN'T HAVE ENOUGH POWER)
You have now seen all the components of the 'Accept if:’
statement. From now on the increases in capability come from

COMBINING, EQUATING, or NEGATING them to form new ideas.
The words ‘and’, ’or’ and 'not’ are used here as in normal thought.

Let's go right to some examples:
Coderiter

Study the following until you see the sentence on the LEFT means
the SAME as the 'Accept if:’ on the RIGHT.

IDEA Accept if:

Find all the male participants whose
names are after 'S’ in the alphabet. Accept if: ke3="male” and ke5>"S"

Which voters, who approve the new
school tax, also voted for me in last
election? Accept if: ke9="yes" and ke11="yes"

Let's find the items which cause the
most returns or complaints. Accept if: pc3>10 or pc7>10

Which locations in New York State have
the best ratio of sales to payroll? Accept if: ke6="NY" and pc5/pc8>.50

0f all our customers from out of this Accept if: ke5 not “London” and
city, who spent over a certain sum? pc3>vnl

Show which shares, traded on the

New York Exchange, for Panama-

based companies, have price/earnings Accept if: ke3="NYSE" and ke5=
ratio less than 8. “Panama” and pe6 <8

We need the names of all female

coronary patients admitted since Feb. Accept if: ke2="F" and ke3="C0" and
4, 1981 who have been given at least 5 ke7>@02/04/81@ and pc2>4 and
doses of nitroglycerin. kel2="nitroglycerin”

NOTE TO EXPERIENCED PROGRAMMERS: What follows 'Accept

if!’ on a line is actually an OPEN WINDOW to all legal BASIC
statements. The examples used above are to show the uses of
"Accept if:’ within the syntax covered in this manual. It is
certainly not our purpose here to include a primer on BASIC. By
all means, use the 'Accept if:' to its fullest extent by including any
BASIC statement that will fit on a single line. Work carefully,
however, CODEWRITER can trap some but not all syntax errors.

We have tried to include featues in the Report System which will
allow the greatest power and freedom to the designer and still
provide true alternative to programming in computer code. With
our best wishes, go forth and control information!

Accept-If Statements.oiiiiiiiinn, 51, §7, 89, 60
Alphanumeric Prompt Fields 10, 13, 16
American Data Formatcoiiiiiiiiiiiiinn, 10
Arrows—Up/Down/Left/Rightcovvvervinnennnennnn. 6
Blocks Free—Minimum.c.cveviierenceneeananas 46
Cassebto POPtooviiiiii i i i i i iee e 3
Code Creationovvviiineineenereneenaeenannnanas 53
CodeWriter
Backup DIBKS .. oovvvrtnieietiininiiiieiiieaaaanan 3
(610 11T 1 AP 9, 13, 28
.. 4
Manual.ottt i i i ittt e 3
Safekeeping.ovviiiiii i ittt 3
311 14) 010 o N U 3
Column/ROW LN . . . oo et iiiieieieeiieneeanann 6
Columnar Format Reports.ocvvvevivnennennnnns 66, 87
CUPBOP (CRSR) .o vveeeeeeeeneeennnnnnnnenenaneens 6,18
D03, . P 21
Data Drive .o ieit ittt ittt i e e, 21
Data Handling—One & TWo Drive........oovveveenennnn. 21
Data/Text MIX (REPOPEE) v vvvvrvernniennnnennnnnenns 87
Date Constant (REPOPEE)oeevnrrrreeennnnneennnns 58
DateFormat.........ccoveviviinnnnnennnnn, 9, 10, 33, 34
Dates (Data BOtTY) .. oovvinniiiiiiiiiennnennnnnnnns 9
Dates (REPOPES) . ..o vttt iiii it ii e eenenne, 59
Decimal Point (Report8)cvvvviiiiniiiiiineennnn 66
Delete RECOPA . . . o oo v v vt et iiieitiieienenenennn 40
Designer’s Reference Section.............. e eeeneeaa, 5460
Directory of Your Programcovvueinvnnenn... 34
Disk Formattingccoiiiiiiiniiiiiiiineeennnnnn 4
DISKNAME . ..iiiiieneeeennnnnnnnnnnneeeennns ...4
DiBK SPACE .« o v ittt ittt e e 35
DOUAP FIOIAS . .. ve e veeeeeeeeeeeneeeeaneeeennnnns 29, 30
Dynatech Microsoftware.............cocevnininennnnn.. [
2 L 3R-33
Error Messages «.oovveeennneeneeeeeeeennnnnneeensns 3l
Error Messages—User Written......................... 3R
ErrorTapesovviiiniiiiniiniiiiiieiennennnnn, 30, 3R
European Date Formatcovvviivivnneeennnnnnnss 10
Field Lengbh Limit.oiintiiiniii i innnnnn.. 26
Field Numbers (REPOPES) . .vvvvvveerennernnnneennnnnn. 52
File—Definitioncccviiiiiiiiiiiiinnns, 6-7
File Preparation 35, 36
File-Wide Grand Totalccvvvenevninnnnnnnnnnnn. 18
Formatting—Caution e, 4,
Garbageiiiiiiiiiii e feerieeeeaenaas 30
Grand Total DiSPlay .. .ovvveeerrenerennnnneennneennns 24
GrandTotals..........oovvvneininnnn, 1417, 23, 28, 36, 40
HELP (Command Option)cvvvvuvnennnnnneenennnnn 31
KeyFieldsccovviiiininnininennn. 28-29, 36, 38
Keyboard-Entered Fields 16, 17, 22, 26, 38, 56
LBDOI .« .'evneteee et et e 78,21
Largest Item—Definedccviiiviiiiiniinnnn. 39

CODEWRITER INDEX (con't.)
Lotter ToBt8 cvv i iie i e i i i e 43
List (Command Option)................. 22, 24, 26, 39, 47, B2
Main Menu (CodeWriter)ccvveivunnnnnenennnennn 4
Maximum Option (REpPOPts)oovvviievnneereennnnn 52
Messages—Error/Operatorc.c.citiiiiiiinn, 32
Minimum Option (Reports)ooineivenn s, 52
MOBUIB .+ v v teeeeee e te et i 3
Money Fields0ue, 11, 18, 14, 16, 29, 47
Number Fieldsccvvieiiiiermannieeannanens 10-11
Numeric Prompt Fieldooviiiiiiiii it 13
OpErator MBSSAZES . .. v covee e er et 32
Program Calculated Fields, or
PCField 15-16, 22-R6, R9-30, 36-37, 47, 55
Program DeSIgNovvviiiiiiiii i P
Program Generation i, 2
Program Generation Time e 34
Program Namecoeeinnernnnnnnnnnennns 19, 35
Program Titleco it i e 28
20511 Y 8-10, ’1, 23
Prompt FieldSt e 12-13, 16
Record
PN) o L P 7
D077 o AP 6,7
Records
56arCh/DBlBte. . vt e 3840
Maximum/Fewest Number ofccevvuunnnn. 27-28
Reject-If Statementsottt 3R-33
Reject-If Statements Rules 4], 42, 44
Report Systemooviiiiiiiiiiiii i 44-53
Accept-If Statements.oiiiiiinn 51, 7, 59, 60
Automatic Format.covvii it 47
Average Optionoovvriniiii e 52
Boundaries f RBPOPtvvvviiniirnnnnennannns 49
Choice—SCreen/Papel .. .vvvvererennnnneeeeeeennnns 48
Column Headingovvvveeetinniiiinnninnenannns 56
Commands-OR/AND/NOT.cvvteiiiiiiiieeaneenns 51
ContinuouS PPNt ..\ vveveevniiiniineiiernnenneannn 50
Designing REPOPtS . . . oo veve i 49
Field Enter/Move/Delete. . . .o covvvneernn e 49
Field NUMDEPS . ovvveee e iineeencnnenaennneannn 52
Fields Used N REPOPES . .o vovvvvieineeninnrennnnnnes 48
0) 9117 P 50
HeadiNgB . .vvvvvrvennereininnennnnneaannsonnns 50, 56
1)) YA 49
New Program Calculated Fieldsnn 47, 54
Number of LiNes . . oo v v veieerereneneereennnannns 48
Program Titleo vttt 47
QBB SIZO . o oo vt vttt e 48
SOCHIODS « oo vttt i i e 80
Summary of Optionsvvviiiiiiii s 52
0> 2 P 57
Variable ... vvvveriieiieerie i 58-59

CODEWRITER INDEX (con't.)
Screen :
ABRBCOPA. .. ettt ettt e 7,87
(6101210« P 5
DBBIEN ..ttt e e e e 56
Bditing . ..o i 17
) 14
FilloName........cooiiiiiiiineiinneennnnnnnn. 19, 34
Formab.......ooiiiii i 17
Format GBNerator...........ccovvvvnneneennnnnnn. 17-20
LabBl .« e e e e 7
Layoub . oo e e 5
. T« 17-18
10111 1) o 5
BVE . vttt e e e e e 17,19
ST+ B
Self-Referencing Fieldsccovvvivnnnn... R6-27, 38
Single File Programsoovveiiiieeieieeeeeenneennnns 7
Smallest Item—Definedccvevvviiiinnnnn.. 39
Software Protectioncoiiiiiiiiiiiiiinan., 3
SoPt PrOgramovviiiiiiii i e i 53
Space - SCrEENiiiiiiiiiiii i e i, 5
Space - Maximum in Promptsc.ccveviiiiiiiinnnn.. 8
String Constant (Reports)ovveevieennnnnnn. 57,58
StringVariablecooiiiii i e 58
Summary Screen—Field Numbers. 52
Support—Manufacturer.ovv et it i 3
Syntax Errors-System Checks...........ccovvvuennnnn... 60
TextasDesign Elementccoiviiinnennnnnnnn, 57
Total Option (Reports)covvvinnvininnrenennnnnnn 52
Update Data Optionccovvviiiiennnnn. 36, 37
VA Symbol (Reports)covvveeeniininnnnnnn. 58-59
VD Symbol (RePOrt8) « .o eee it iiiiiiiiininnnaannns 59
Your Generated Program Menu..........c.ccovuvuivnnennns 35
Your New PPogramvvevinnneennnnrennnenennns 34

Codewriter [}

This Software Fackage

‘ Contains QewWNoOOLS
’ 5 1/4" Disks (f+

J'

