
THE COMMODORE 64

MACRO ASSEMBLER

DEVELOPMENT SYSTEM

t commodore

COMPUTER

THE COMMODORE 64

MACRO ASSEMBLER

DEVELOPMENT SYSTEM

Copyright 1982. Commodore Business Machines

Professional Computer Division

1200 Wilson Drive

West Chester, PA 19380

COPYRIGHT

This software product is copyrighted and all rights reserved by

Commodore Business Machines, Incorporated. The distribution and

sale of this product are intended for the use of the original

purchaser only. Lawful users of this program are hereby licenced

only to read the program, from its medium into memory of a

computer, solely for the purpose of executing the program.

Duplicating, copying, selling or otherwise distributing this product is

a violation of the law.

This manuai is copyright and all rights are reserved. This document

may not, in whole or in part, be copied, photocopied, reproduced,

translated or reduced to any electronic medium or machine readabie

form without prior consent, in writing, from Commodore Business

Machines (CBM).

DISCLAIMER

COMMODORE BUSINESS MACHINES, INC. ("COMMODORE11)

MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH

RESPECT TO THE PROGRAM DESCRIBED HEREIN, ITS QUALITY.

PERFORMANCE, MERCHANTABILITY. OR FITNESS FOR ANY

PARTICULAR PURPOSE. THIS PROGRAM IS SOLD "AS IS". THE

ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH

THE BUYER. SHOULD THE PROGRAM PROVE DEFECTIVE

FOLLOWING ITS PURCHASE, THE BUYER (AND NOT THE

CREATOR OF THE PROGRAM. COMMODORE, THEIR

DISTRIBUTORS OR THEIR RETAILERS) ASSUMES THE ENTIRE

COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION

AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO

EVENT WILL COMMODORE BE LIABLE FOR DIRECT. INDIRECT,

INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM

ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT

ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED

WARRANTIES OR LIABILITIES FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR

EXCLUSION MAY NOT APPLY.

PREFACE

The Commodore 64 MACRO ASSEMBLER DEVELOPMENT SYSTEM

software package allows you to program in the native 6500 series

Assembly language code, directly on the Commodore 6d computer.

It provides you with a very powerful macro Assembler, editor,

loaders and two machine language monitors along with other

support routines. These development tools operate like and provide

the same level of direct machine interface as the Assemblers on

much larger computers.

This package contains everything that you will need to create,

Assemble, load and execute 6500 series Assembly language code.

You will notice that like the software contained on this diskette, this

user's manual is directed towards the experienced computer user

that already has some familiarity with the 6500 series Assembly

language and the operations of the Commodore 64 computer.

This product is not intended to provide the knowledge of 'how to' in

assembly language, but provides the software tools for the

experienced assembly language programmer.

It is recommended that the user obtain one or more of the reference

manuals listed below for a more detailed description of 6502

assembly language and the Commodore 64. (The publisher is listed

in parentheses.)

• 6502 Assembly Language Subroutines, Leventhal and Saville

(Osborne/McGraw-Hill)

• 6502 Software Design, Scanlon (Howard W. Sams & Co.)

• 6502 Assembly Language Programming, Leventhal

(Osborne/McGraw-Hill)

• Commodore 64 Programmer's Reference Guide

(Commodore/Howard W. Sams & Co.)

• Programming in 6502, Rodnay Zaks (Sybex)

This manual has been divided into five parts for easier reference.

Part One, "Introduction" provides a brief description of how an

assembler works along with some basic terminology used

throughout this manual. It is recommended that the novice user

read this section first to obtain a feel for the level of knowledge

needed to program in assembly language and use this manual.

Part Two, "'64 Macro Assembler Capabilities and Conventions", is

composed of Section 1-4 and describes those capabilities and

conventions used by this assembler.

Part Three, "Creating and Editing Assembly Source Files", is

composed of Sections 5-6 and decribes how to create and edit an

assembly language source file. Section 5 contains the instructions

for loading a support program or wedge. This program gives the

user additional commands for maintaining the disk and loading and

running programs. Section 6 contains the operating instructions for

loading and running the Editor64 program. This program allows the

user to create and edit assembly source files.

Part Four of the manual, "Assembling and Testing a Program", is

composed of Sections 7-9 and contains information on the programs

that allow the user to assemble, test, and debug object programs.

Section 7 describes the operation of the assembler program;

Section 8 describes the programs that must be used to load an

object program into memory; Section 9 describes the program that

allows the user to monitor memory for debugging purposes.

Finally. Par! Five, "Appendices", includes those charts and tables

that can be used as a reference to other sections. It also provides a

quick reference to the commands available when running certain

programs.

USER CONVENTIONS

Throughout this manual there are certain conventions used to help

make explanations less ambiguous. A list of these conventions is

given beiow. We recommend that the user become familiar with

these.

() Parentheses are used to denote an option. The only

exceptions to this rule are in those sections where

indirect indexed and indexed indirect addressing

are explained. In these cases the parentheses are

required.

label This is used to denote a label reference in an

assembler source program. The actuai label used is

determined by the programmer.

opcode This is used to denote one of the 6502 instructions

as specified in Appendix IV.

operand This is used to denote the operand, or argument

portion oi an instruction.

comments This is used to specify user comments-

filename This is used to specify a filename on disk. The

actual name is determined by the user.

filename* This is used to denote a wild card filename (i.e., a

filename that begins with the characters preceding

the '■■").

lower case Generally, lower case variables specify that it is up

variable to you to supply the actual data.

UPPER CASE Generally, UPPER CASE NAMES are the actual

NAME input to be typed.

TABLE OF CONTENTS

64 MACRO ASSEMBLER CAPABILITIES AND CONVENTIONS

1.0 INSTRUCTION FORMAT CONVENTIONS.. 3

1.1 Symbolic 5

1.2 Constants 6

1.3 Relative 7

1.4 Implied 7

1.5 Indexed Indirect 8

1.6 Indirect Indexed 9

2.0 ASSEMBLER DIRECTIVES 10

3.0 MACRO CAPABILITIES 14

4.0 OUTPUT FILES GENERATED BY THE ASSEMBLER 17

CREATING AND EDITING ASSEMBLY SOURCE FILES

5.0 ADDITIONAL BASIC DISK COMMANDS 19

5.1 Loading the DOS WEDGE64 Program 19

5.2 Using the DOS WEDGE64 Program 19

5.3 DOS WEDGE64 Program Commands 20

6.0 CREATING AND EDITING ASOURCE FILE 22

6.1 Loading the Editor64 Program 23

6.2 Using the Editor64 Program 23

6.3 Editor64 Program Commands 24

ASSEMBLING AND TESTING A PROGRAM

7.0 ASSEMBLING A SOURCE FILE 27

7.1 Loading the Assembler64 Program 27

7.2 Using the Assembler64 Program 28

8,0 LOADING AN OBJECT FILE 30

8.1 Loading the Loader Programs 30

8.2 Using the Loader Programs 31

9.0 TESTING AND DEBUGGING WITH THE MONITOR

PROGRAMS 32

9.1 Loading the MONITOR Programs 32

9.2 Using the MONITOR Programs 32

9.3 MONITOR Program Commands 33

APPENDICES

Appendix 1 OPERATING SYSTEM MEMORY MAP 40

Appendix II INPUT/OUTPUT REGISTER MAP 44

Appendix III DESCRIPTION OF FILES ON THE RELEASE DISK....51

Appendix IV 6500 SERIES MICROPROCESSOR INSTRUCTION

SET OPCODES 53

Appendix V A SAMPLE OUTPUT LISTING OF THE

COMMODORE 64 ASSEMBLER 55

Appendix VI EXPLANATION OF ERROR MESSAGES 57

Appendix VII ED1TOR64 COMMAND SUMMARY 64

Appendix VIM MONITOR COMMAND 65

Appendix IX DOS WEDGE64 COMMAND SUMMARY 66

INTRODUCTION

This manual describes the Assembly Language and assembly

process for Commodore 64 programs which use one of the 6500

series microprocessors. Several assemblers are available for 6500

series program development, each is slightly different in detail of

use. yef all are the same in principle. The 6500 series processors

include the 6502 through the 6515 (the instruction sets are identical).

The process of translating a mnemonic or symbolic form of a

computer program to actual machine code is called assembly, and a

program which performs the translation is an assembler. We refer to

the symbolic form of the program as source code and the actual

machine form as object code. The symbols used and rules of

association for those symbols are the Assembly Language. In

general, one Assembly Language statement will translate into one

machine instruction. This distinguishes an assmbler from a compiler

which may produce many machine instructions from a single

statement. An assembler which executes on a computer other than

the one for which code is generated, is called a cross-assembler.

Use of cross-assemblers for program development for

microprocessors is common because often a microcomputer

system has fewer resources than are needed for an assembler.

However, in the case of the Commodore 64, this is not true. With a

floppy disk and printer, the system is well suited for software

development.

Normaly, digital computers use the binary number system for

representation of data and instructions. Computers understand only

ones and zeroes corresponding to an 'ON' or "OFF' state. Users, on

the other hand, find it difficult to work with the binary number

system and hence, use a more convenient representation such as

octal (base 8). decimal {base 10), or hexadecimal (base 16). Two

representations of the 6500 series operation to 'load' information

into an 'accumulator' are:

10101001 (binary)

A9 (hexadecimal)

An instruction to move the value of 21 (decimal) to the accumulator

is:

A9 15 (hexadecimal)

Users still find numeric representations of instructions tedious to

work with, and hence1 have developed symboJic representations. For

example, the preceding instruction might be written as:

LDA #21

In this example, LDA is the symbol for A9, Load the Accumulator.

An assembler can translate the symbolic form LDA to the numeric

form A9.

Each machine instruction to be executed has a symbolic name

referred to as an operation code (opcode). The opcode for "store

accumulator" is STA. The opcode for "transfer accumulator to index

x" is TAX. The 56 opcodes for the 6500 series processors are

detailed in Appendix IV. A machine instruction in Assembly

Language consists of an opcode and perhaps operands, which

specify the data on which the operation is to be performed.

A label is a 'name' for a line of code. Instructions may be labelled

for reference by other instructions, as shown in:

L2 LDA #12

The label is L2, the opcode is LDA, and the operand is #12. At least

one blank must separate the three parts (fields) of the instruction.

Additional blanks may be inserted by the programmer for ease of

reading. Instructions for the 6500 series processors have at most

one operand and many have none. In these cases, the operation to

be performed is totally specified by the opcode as in CLC (Clear the

Carry Bit).

Programmming in Assembly Language requires learning the

instruction set (opcodes), addressing conventions for referencing

data, the data structures within the processor, as well as the

structure of Assembly Language programs. The user will be aided in

this by reading and studying the 6500 series hardware and

programming manuals suppled with this development package.

1.0 INSTRUCTION FORMAT CONVENTIONS

Assembler instructions for the Commodore 64 assembler are of two

basic types according to function:

• Machine instructions, and

• Assembler directives

Machine instructions correspond to the 56 operations implemented

on the 6500 series processors. The instruction format is;

(label) opcode (operand) (comments)

Fields are bracketed to indicate that they are optional. Labels and

comments are always optional and many opcodes such as RTS

(Return from Subroutine) do not require operands. A line may also

contain only a label or only a comment.

A typical instruction showing all four fields is:

LOOP LDA BETA.X :FETCH BETA INDEXED BY X

A field is defined as a string of characters separated by a space.

A label is an alphanumeric string of from one to six characters, the

first of which must be alpha. A label may not be any of the 56

opcodes, nor any of the special single characters, i.e. A, S, P, X or Y.

These special characters are used by the assembler to reference

the:

• Accumulator (A)

• Stack pointer (S)

• Processor status (P)

• Index registers (X and Y)

A label may begin in any column provided it is the first field of an

instruction. Labels are used on instructions as branch targets and

on data elements for reference in operands.

The operand portion of an instruction specifies either an address or

a value. An address may be computed by expression evaluation and

the assembler allows considerable flexibility in expression

formation. An Assembly Language expression consists of a string of

names and constants separated by operators, + . - , ', and / (add,

subtract, multiply, and divide). Expressions are evaluated by the

assembler to compute operand addresses. Expressions are

evaluated left to right with no operator precedence and no

parenthetical grouping. Note that expressions are evaluated at

assembly time and not execution time.

Any siring of characters following the operand field is considered a

comment and is listed, but not further processed. If the first non-

blank character of any record is a semi-colon (;), the record is

processed as a comment. On instructions which require no operand,

comments may follow the opcode. At least one space must

separate the fields of an instruction.

Appendix V presents a sample output listing from the assembler.

Various examples of instruction format are included.

1.1 Symbolic

Perhaps the most common operand addressing mode is the

symbolic form as in:

LDA BETA ;PUT BETA VALUE IN ACCUMULATOR

In this example, BETA is a label referencing a byte in memory that

contains the value io be loaded into the accumulator. BETA is a

label for an address at which the value is located, Similarly, in the

instruction:

LDA ALPHA + BETA

the address ALPHA + BETA is computed by the assembler, and the

value at the computer address is loaded into the accumulator.

Memory associated with the 6500 series processors is segmented

into pages of 256 bytes each. The first page, page zero, is treated

differently by the assembler and processor for optimization of

memory storage space. Many of the instructions have alternate

operation codes if the operand address is in page zero memory. In

those cases, the address is only one byte rather than the normaE

two. For example:

LDA BETA

If BETA is located at byte 4B in page zero memory, then the code

generated is A5 B4. This is called page zero addressing, If BETA is

at 01 3C in memory page one. the code generated is AD 3C 01. This

is an example of "absolute" addressing. Thus, to optimize storage

and execution time, a programmer should design with data areas in

page zero memory whenever possible. (Please avoid assembling

code in page zero, as problems may he encountered.) Remember,

the asembler makes decisions on which form to uset based on

operand address computation.

1.2 Constants

Constant values in Assembler Language can lake several forms. If a

constant is other than decimal, a prefix character is used to specify
type:

$ (Dollar sign) specifies hexadecimal

@ (Commercial at) specifies octal

% (Percent) specifies binary

(Apostrophe) specifies an ASCII literal character in

immediate instructions.

The absence of a prefix symbol indicates decial value. In the
statement:

LDA BETA + 5

the decimal number 5 is added to BETA to computer the address-

Similarly;

LDA BETA + S5F

denotes that the hexadecimal value of 5F is to be added to BETA

for the address computation.

The immediate mode of addressing is signified by a # (pound sign)
followed by a constant. For example;

LDA #2

specifies that the decimal value 2 is to be put into the accumulator.
Similarly;

LDA »'G

will load the ASCII value of the character G into the accumulator.

Since the accumulator is one byte, the value loaded must be in the

range of 0 lo 255 decimal.

Immediate mode addressing generates two or three bytes of

machine code (depending on whether or not zero page addressing is

used), the opcode, and the value to be used as operand. Note that

constant values can be used in address expressions and as values

in immediate mode addressing. They can aiso be used to initialize

locations as explained in a later section as assembler directives.

1.3 Relative

There are eight conditional branch instructions available to the user.

In this example:

BEQ START ;IF EQUAL BRANCH TO START

if the values compared are equal, a transfer to the instruction

labelled START is made. The branch address is a one byte positive

or negative offset which is added to the program counter during
execution. At the time the addition is made, the program counter is

pointing to the next instruction beyond the branch instruction. The
offset is based on the location of the next instruction. A branch

address must be within 127 bytes forward or 128 bytes backward
from the conditional branch instruction. An error will be flagged at

assembly time if a branch target falls outside the bounds for relative

addressing. Relative addressing is not used for any instructions

other than branch.

1.4 Implied

Twenty-five instructions such as TAX (Transfer Accumulator to Index

X) require no operand, and hence, are single byte instructions. Thus,

the operand addresses are implied by the operation code.

Four instructions. ASL, LSR, ROL and RORT are special in that the

accumulator, A, can be used as an operand. In this special case,

these four instructions are treated as implied mode addressing and

only an operation code is generated.

1,5 Indexed Indirect

In this mode, the operand address is computed by first adding the X

register (the index) to the argument in the operand (tn the example

below, BETA). The resulting value is the indirect page zero address

which contains the actual operand address. In this example:

LDA (BETATX)

the parentheses around the operand indicates indirect mode. In the

above example, the value in index register X is added to BETA. That

sum must reference a location in page zero memory. During

execution, the high order byte of the address is ignored: thus,

forcing a page zero address. The two bytes starting at that location

in page zero memory are taken as the address of the operand in low

byte, high byte format. For purposes of illustration, assume the

following:

BETA contains $12

X contains $4

Locations $0017 and $0016 contain $01 and S25

Location $0125 contains $37

Then BETA + X is $16. the address at location 516 is S0125. the

value at $0125 is $37. and hence the instruction LDA (8ETA.X) loads

the value $37 into the accumulator. (This addressing mode is often

used for accessing a table of address vectors in page zero.) This

form of addressing is shown in the following illustration.

LDA (BETA,X

BETA ^-

$16

S17

S0125

/
\

)

12 + 4—

LOW BYTE

25

HUGH BYTE

01

VALUE 37

S12 + $14 = $16

^*

1.6 Indirect Indexed

Another mode of indirect addressing uses index register Y and is

illustrated by:

LDA (GAMMA),Y

In this case. GAMMA references a page zero location at which an

address is to be found. The value in index Y is added to that

address to compute the actual address of the operand. Suppose for

example that.

GAMMA contains $38

Y contains S7

Locations SQ039 and $0038 contain $00 and S54

Location S005B contains $126

The address at S38 is $0054; seven is then added to this, giving an

effective address S005B. The value at S005B is $126 which is loaded

into the accumulator.

In indexed indirect, the index X is added to the operand prior to the

indirection. In indirect indexed, the indirection is done and then the

index Y is added to compute the effective address. Indirect mode is

always indexed except for a JMP instruction which allows a

absolute indirect address, as exemplified by JMP (DELTA) which

causes a branch to the address contained in locations DELTA and

DELTA + 1. The indirect indexed mode of addressing is shown in the

following illustration.

LDA (GAMMA).Y

GAMMA -*

S38

38

54

$39

S005B

00

VALUE 126

50054 + $7 = S5B

2.0 ASSEMBLER DIRECTIVES

There are eleven assembler directives used to reserve storage and

direct information to the assembler. Nine have symbolic names with

a period as the first character. The tenth, a symbolic equate, uses

an equals sign (=) to establish a value for a symbol- The eleventh,

asterisk. (') means Ihe value of the current location counter. This

corresponds to the ORG directive in some assemblers. It is

sometimes read as "here" or "this location". Some equate examples

are "RED-5. BLUE = SFF. and * = $200". A list of the directives is

given below (their use is explained in this section):

.BYTE .WORD .DBYTE .PAGE .SKIP

.OPT END .FILE .LIB

Labels and symbols other than directives may not begin with a

period.

Examples of assembler directives can be seen in the sample

Assembler program in Appendix V.

If desired, all directives which are preceded by the period may be

abbreviated to the period and three characters, e.g., '.BYT.

.BYTE is used to reserve one byte of memory and load it with a

value. The directive may contain multiple operands which will store

values in consecutive bytes. ASCII strings may be generated by

enclosing the string with quotes. (All quotes are "single" quotes, i.e,

SHIFT 7.) It should be noted, however, that there is a limitation of 40

ASCII characters that can be stored in each .BYTE directive.

HERE .BYTE 2

THERE .BYTE 1, $F, @3, %101, 7

ASCII .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form.

In general, any valid 6500 series expression which can be resolved

to eight bits, may be used in this directive. If it is desired to include

a quote in an ASCII string, insert two quotes in the string. For

example:

BYTE 'JIM"S CYCLE1

could be used to store:

JIM'S CYCLE

It should be noted that the use of arithmetic operations in the .BYTE

directive is not supported in this version of the package.

10

.WORD is used to reserve and load two bytes of data at a time Any

valid expression, except for ASCII strings, may be used in the

operand field. For example;

HERE .WORD 2

THERE .WORD 1, SFF03. @3

WHERE .WORD HERE, THERE

The most common use for WORD is to generate addresses as

shown in the previous example labelled "WHERE", which stores the

16 bit addresses ot -HERE11 and "THERE'. Addresses in the 6500

series are fetched from memory in the order low-byte, then htgh-

byte. Therefore. .WORD generates the value in this order.

The hexadecimal portion of the example (SFF03) would be stored

Q3tFF. if this order is not desired, use .DBYTE rather than ,WORD.

.DBTYE is exactly like .WORD, except the bytes are stored in high-

byte, low-byte order. For example:

.DBYTE $FF03

will generate FF,03. Thus, fields generated by .DBYTE may not be

used as indirect addresses.

Equal (=) is the EQUATE directive and is used to reserve memory

locations, reset the program counter O, or assign a value to a

symbol.

reserve one byte

reserve two bytes

set program counter

assign value

assign value

the '= " directive is very powerful and can be used for a wide variety

of purposes.

Asterisk (') directive is used to change the program counter. To

create an object code program that starts assembly at any address

greater than zero, the '•' directive must be used. For example.

" - S2001. starts assembling at address $200.

Expressions must not contain forward references or they will be

flagged as an error. For example:

- = C+D-E+F

wouid be legal if C. D. E and F are all defined, but would be illegal if

any of the variables were defined later on in the program. Note also

that expressions are evaluated in strict left to right order.

HERE

WHERE

4 = $200

NB = 8

MB=NB+
5
Q

*

101

■ +

* +

1

2

11

.PAGE is used to cause an immediate jump to top of page on the

output listing and may also be used to generate or reset the title

printed at the top of the output listing.

PAGE 'THIS IS A TITLE'

PAGE

PAGE 'NEW TITLE'

If a title is defined, it-will be printed at the top of each page until it

is redefined or cleared. A title may be cleared with:

.PAGE ' '

.SKIP is used to generate blank lines in a listing. The directive will

not appear, but its position may be found in a listing. The directive

is treated as a valid input "list" and the list number printed on the

left side of the listing will jump by two when the next line is printed.

.SKIP 2 skip two blank lines

.SKIP 3*2-1 skip five lines

SKIP skip one line

.OPT is the most powerful directive and is used to control the

generation of output fields, listings and expansion of ASCII strings

in BYTE directives. The options available are: ERRORS,

NOERRORS; LIST, NOLIST; GENERATE, NOGENERATE.

.OPT ERRORS, LIST. GENERATE

.OPT NOE, NOL, NOG

Also valid is:

OPT LIST. ERR

Default settings are:

.OPT LIST, ERR, NOGEN

12

Here are descriptions tor each of the options:

ERRORS NOERRORS:

Used to control creation ot a separate error file. The error tiie

contains the source line in error and the error message. This

facility is normally of greatest use to time sharing users who have

limited print capacity. The error file may be turned on and

examined until all errors have been corrected. This listing file may

then be examined. Another possibility is to run with:

.OPT ERROR, NOLIST

until all errors have been corrected, and then make one more run

with:

,OPT NOERRORS. LIST

LIST NOLIST:

Used to control the generation of the listing file which contains

source input, errors/warnings, code generation, symbol table and

instruction count if enabled.

GENERATE NOGENERATE:

Used to control printing of ASCII Strings in the .BYTE directive.

The first two characters will always be printed, and subsequent

characters will be printed (normally two bytes per line), if

GENERATE is used.

.END should be the last directive in a file and is used to signal the

physical end of the file. Its use is optional, but highly recommended

for program documentation.

.LIB allows the user to insert source code from another file into the

assembly. When the asembler encounters this directive, it

temporarily ceases reading source code from the current fi!e and

starts reading irom the file named in the .LIB. Processing of the

original source file resumes when end-of-file (EOF) or .END is

encountered in the library file. The control file containing the .LIB

can contain other assembler directives to turn the listing function

on and off. etc.

.FIL can be used to link another file to a current one during

assembly. A library file called by a .LIB may not contain another

.LJB. but it may contain a .FIL, A l_FIL' terminates assembly of the

file containing it and transfers source reading to the file named on

the OPERAND. There are no restrictions on the number of files

which may be linked by .FIL directives. Caution should be exercised

when using this directive to ensure that no circular linkages are

created. An assembler pass can only be terminated by (EOF) or

.END directive.

13

3.0 MACRO CAPABILITIES

Macros take the general form shown in the following code:

{label) .MAC macro name

TEXT OF MACRO

(label),MND

The directive .MAC defines a macro with the given macro name and

creates up to nine parameters for that macro. The user does not

explicitly declare parameters. Macros may contain arbitrary text,

except that they cannot contain the directives .MAC and .MND. The

directive .MND identifies the end of a macro definition. The labels

on .MAC and .MND are optional as denoted by the parenthesis. They

respectively label the first generated statement and the statement

immediately succeeding the last generated statement.

To call a macro, the user simply gives the marco name and lists the

parameters as indicated in the cali line below:

macroname parami, param2,

The macro name must be delimited by a space before the first

parameter as indicated above.

Within the text of the macro definition, a parameter is designated by

the temporary symbol ll?1T followed by a digit 1 through 9. Thus, l?3'

designates parameter 3. During assembly, if a macro call is

encountered, the text included in that macro is inserted into the

assembly at that point and the parameter names at the calling point

are substituted for the temporary names. If the user fails to supply a

parameter name when the macro is called, the assembler will

generate a name for that parameter (if one is needed) for the

duration of that call.

To give a brief example, suppose we wish to increment a double

precision (16-bit) quantity. Then, the macro definition to do this is:

.MAC DPINC ;DOUBLE PRECISION INCREMENT

INC ?1

BNE ?2

INC ?1 + 1

?2 .MND

When the macro is called to increment the variable COUNT, the

following call line is used.

DPINC COUNT

This generates the following code:

INC COUNT

BNE L001

INC COUNT+1

LO01

14

In this example, the internal label name ''LOOl11. is generated

automatically during macro expansion. Subsequent calls produce

distinct labels following the progression L002. L003. etc, If the

programmer supplies a second parameter ?n the calling line, instead

of leaving that parameter blank, the internal label name will be set

to the second parameter instead of L001.

Macro can call other macros, but the depth of the nesting cannot

exceed eight levels.

Empty Parameters

Empty parameters in call lines are denoted by commas:

FUNCTN AA,.,DO PARAMETERS ?2 AND ?3 ARE

EMPTY AS ARE: ?5 THROUGH ?9

FUNCTN ,.CC,.EE :?1, ?2. AND ?4 ARE EMPTY AS ARE

?6; THROUGH ^9

The calls on FUNCTN given here will result in different internal local

parameters being given generated names, or names supplied from

the programmer.

Concatenated Names

A macro parameter is supplied to a macro without leading or trailing

blanks, so that a parameter can be used to create new variable

names and allocate space for the variables.

DECLARED STORAGE

THIS IS A MACRO CALL

:THIS IS HOW IT EXPANDS

fTHIS IS A SECOND CALL

[THIS IS HOW THE SECOND CALL

EXPANDS

Notice that there are no blanks in the labels XXAA and XXA2.

XX? 1

XXAA

XXA2

.MAC

AA/OR

* = * +

.MND

DECL

WOR

' = " +

DECL

.WOR

* = * +

?2

5

10

DECL

0

AA.5

0

A2,10

15

Expressions As Parameters

Parameters of macros can be arbitrary expressions that do not

include embedded commas, semicolons, or blanks. When the

expressions are inserted into the macro definition, the expression

must make sense to the assembler.

MAC LSS ;IF ACCUM LESS THAN ?1 GOTO ?2

CMP ?1

BCS ?2

-MND

LSS XX + 5.EXIT ;COMPARE WITH LOCATION XX + 5

LSS #SF3,EXIT ;COMPARE WITH LITERAL

LSS (XX.UEXIT ILLEGAL—AN EMBEDDED COMMA

Assembler Output Format

Note: The macro assembler uses different rules than the previous

Commodore assembler in deciding how to format a print line. The

new rule is the following:

An identifier that begins in column 1 is printed as a label,

otherwise it is assumed to be an opcode.

This rule is identical to the rule used by the editor for the FORMAT

command. Hence, the FORMAT command now permits the user to

view the final printed format of edited files.

16

4.0 OUTPUT FILES GENERATED BY THE ASSEMBLER

There are three output files generated by the assembler. Each file is

optional and can be created through the use of the .OPT assembler

directive. The listing file contains the program list with errors and

the symbol table. The error file contains all error lines and errors (as

included in the listing file}. The interface file contains the object

code for the loader.

The cross reference file may optionally be generated by the

assembler. This file is used by the cross reference program to print

a report showing all variables, their declared addresses, and ail line

numbers in which each variable is used.

Listing File

The listing file will be produced unless the NOLIST option is used

on the .OPT assembler directive. This file is made up of two

sections: Program and Error List, and Symbol Table.

• Program and Error List

This listing will always be produced unless the NOLIST option is

selected. It contains the source statement of the program along

with the assembled code. Errors and warnings appear after

erroneous statements, (An explanation of error codes is presented in

Appendix VI.) A count of the errors and warnings found during the

assembly is presented at the end of the parogranv

• Symbol Table

The symbol take will always be produced unless the NOSYM option

is used. It contains a list of all symbols used in the program, and

their addresses.

17

Interface File

This file does not contain true object code, but data which can be

loaded and converted to machine code by the loader. The format for

the first and all succeeding records, except for the last record, is as

follows:

; n1nO a3a2a1aO (d1dO)1 (d1dO)2...(d1dO)23 x3x2x1xO

Where the following statements apply:

1. All characters (n,a,d,x) are the ASCII characters zero through F,

each representing a hexadecimal digit.

2. The semicolon is a record mark indicating the start of a record.

3. n1nO The number of bytes of data in this record (in

hexadecimal). Each pair of hexadecimal characters

(d1dO) represents a single byte.

4. a3a2a1aO The hexadecimal starting address for the record.

The a3 represents address bits 15 thru 12, etc. The

8-bit represented by (d1dO)1 is stored in address

a3a2a1aO: (d1dO}2 is stored in (a3a2a1aO)+ 1, etc.

5. (d1dO) Two hexadecimal digits representing an 8-bit byte

of data. (d1 = high-order 4 binary bits and dO -

low-order 4-bis). A maximum of 18 (Hex) or 24

(decimal) bytes of data per record is permitted.

6. x3x2x1xO Record check sum. This is the hexadecmial sum of
all characters in the record, including the n1nO and

a3a2a1aO, but excluding the record mark and the

check sum of characters. To generate the check

sum, each byte of data (represented by two ASCII

characters) is treated as 8 binary bits. The binary

sum of these 8-bit bytes is truncated to 16 binary

bits (4 hexadecimal digits) and is then represented

in the record as four ASCII characters (x3x2x1xO).

The format for the last record in a file is as follows:

; 00 c3c2dcO x3x2x1x0

1. ; 00 Zero bytes of data are in this record. The zeros

identify this as the final record in a file.

2. c3c2dcO This represents the total number of records (in

hexadecimal) in this file. NOT including the last

record.

3. x3x2xlxO Check sum for this record.

5.0 ADDITIONAL BASIC DISK COMMANDS (DOS SUPPORT

WEDGE)

On the release disk is a program which will aid you in performing

disk housekeeping functions (copying, scratching, renaming, reading

the directory, initializing the disk drive, checking the disk status, and

loading (and running) programs from disk. The commands that this

program provides are short and simple and are very usetul.

5.1 Loading the DOS WEDGE64 Program

When this program is loaded and executed, it "wedges" itself into

the operating system and BASIC interpreter. Thus, the wedge

checks all keyboard entries for its command characters before

passing the entry onto the BASIC interpreter. (This is done by

linking into the CHRGET routine in page zero).

To load the wedge program, enter:

LOAD "DOS WEDGE64".8,1

and press RETURN. This will load a program that "boots" the actual

wedge program into memory. Once loaded, type RUN and press

RETURN before removing the diskette. When the wedge program is

loaded, a copyright notice will be displayed.

5.2 Using the DOS WEDGE64 Program

The wedge program supports all of the same commands that are

included in BASIC (copy, scratch, rename, new a disk), a command

to read the directory (without overwriting memory), and commands

to load and run programs. The wedge program also provides you

with the capability of creating and maintaining volumes of files

(volumne creation allows you to group certain programs together)

and the capability to perform operations using a wild card filename

(and file whose name begins with certain charactersj.

Each command begins with a single character as specified in

Section 5.3. The character used depends on the command. The @

(commercial at sign) and > (greater than sign) are used

interchangeably to begin any of the disk housekeeping commands

or to read the directory. They are also used to reset or initialize the

drive, and to terminate the DOS Wedge. The t (up arrow) is used to

begin the command to load (at BASIC'S Start of Text address) and

automatically runs a program. The / (backslash) is used to begin

the command to load a program at BASIC'S Stan of Text address.

The % (percent sign) is used to begin the command to load a

program at its load address. Finally, the *■ (back arrow) is used to

begin the command for saving a file to disk.

19

5.3 DOS WEDGE64 Program Commands

A description of each command is given in the following pages.

Appendix IX provides a brief summary of the DOS WEDGE64

commands.

■a

Typing this character alone will provide the user with the current

disk status. This performs the same function as the following BASIC

code:

10 OPEN 15,8.15

20 INPUT#15,A.B$,C.D

30 PRINT A:BS;C;D

./r${drive}:(filename)n([volume]|

This command will read the directory from the disk drive specified

and print il to the screen. If filename is specified, only that file, if

present, will be displayed. If ' is specified, all files whose names

begin with the letters specified by filename will be printed. If

volumn is specified (where volume is the character id of that

volume}, then only those files contained on that volume will be

printed.

@ N(drive):diskname,id

This command will format a disk using the name and id specified.

m R(drive):newfile([volume]) = oldfile([volume])

This command will rename the file specified by oldfile to the name

specified by newfile.

^C(drive):newfile([volume]) = oldfile([volume])

This command will copy the file specified by oldfile to the name

specified by newfile. If [volume] is specified, the newfile will be

created on that volume.

■n S(drive):1ilenarnen<[volume])

This command scratches the file specified by filename. If * is

specified, all files beginning with the letters specified by filename

will be scratched. If [volume] is specified, only those files that are

contained on that volume will be scratched.

^Ul (drive}

This command will reset the DOS.

•;1 (drive)

This command will initialize the disk drive.

@Q

This command will terminate the wedge program.

20

/filename

This command will load the file specified by filename. For example:

/ASM.C64

will cause the program named "ASM.C64" to be loaded into

memory. This command does the same thing as the BASIC
command:

LOAD "ASM.C64",8

Please note that this command can only be used to load BASIC

programs, or machine code programs that are booted from BASIC.

This is because the computer will ignore the file's own load address

and will instead load at the current "Start of BASIC Text" area.

%filename

This command will load the file specified by filename at its own

load address. It does the same thing as the BASIC command:

LOAD *lfilename".8,1

where filename is the name of the program to load,

t filename

This command allows the user to load and run the program

specified by filename and does the same tiling as entering:

LOAD "filename",8

follows by the BASIC command RUN.

Again, please note that this command can only be used to load and

run BASIC programs, or machine code programs that are booted
from BASIC.

— filename

This command saves the program specified by filename to disk.

6.0 CREATING AND EDITING A SOURCE FILE

The editor is used to enter and modify source files for the

assembler. The editor retains all of the features of the BASIC screen

editor and allows AUTOmatic Sine numbering, FIND, CHANGE,

DELETE within a range, and reNUMBER. Other commands include

GET, PUT, BREAK, KILL, and FORMAT. All of the commands are

detailed in the summary at the end of this section.

The editor commands operate in a similar fashion to the commands

already existing in the computers BASIC. For practice, we suggest

that you try to create short example files using the editor

commands.

The data files on which the assembler operates are made up of

CBM ASCII characters with each line terminated by a carriage

return. The only restriction on data files is in naming. Due to the

method in which the assembler parses, spaces are not allowed in

filenames. The files are sequential and must be terminated by a zero

byte $00. When listing a directory, these files will show as file type

SEQ.

Each file's format is sequential, with a terminating zero byte ($00),

22

6.1 Loading the Editon34 Program

The editor must be loaded with the Basic LOAD command:

LOAD "EDITOR64'\8.1

or %0;EDITOR64 (if the wedge is enabled)

To initiate the editor, type •SYS49152". After typing the SYS

command, the editor will respond with a message indicating that

the 64 editor has been loaded. At this potnt, type a NEW command

to clear the text pointers. You are now ready to edit or enter

assembler source files.

6.2 Using the Editor64 Program

When the Editor64 Program is in operation, any BASIC statement

typed such as:

10 FOR 1 = 1 TO 10

will not be tokenized (converted into BASIC keyword tokens). Thus,

you cannot type a BASIC line with the editor turned on. To avoid

this problem, disable the editor with the 'KILL' command or reset

the computer to return to Basic.

Source files are loaded with the "GET" command. As the file is

loaded, the editor generates the line numbers automatically starting

at 1000. After editing the file, insure that the last, line in the file is a

.FILE or a .END assembler directive. Then, save the file on the disk

with the 'PUT' command.

Important: Be sure to save your completed file using the PUT

command BEFORE loading the assembler or your file will be last.

Refer to Appendix V!l for an Editor64 Command Summary.

23

6.3 Editor64 Program Commands

AUTO Line Numbering

The AUTO command generates new line numbers while entering a

new source code file. To enable the AUTO command] type the

following:

AUTO n1

where n1 is the optional increment between line numbers printed.

To disable the AUTO function, type the AUTO command without an

increment.

CHANGE string

The CHANGE command automatically locates and replaces one

string with another (multiple occurrences). This command is entered

in the following format:

CHANGE/stM/str2/ ,n1-n2

\ Delimits the str1 and str2 (use any character not in

either string)

siri Search string

str2 Replacement string

tn1-n2 Range parameters. The format is the same as the

LIST command in BASIC. If omitted, the whole file

is searched. (Optional)

CPUT Command

The CPUT command outputs source files with no unnecessary

spaces to the disk for later assembly. The syntax for this command

is the same as the PUT command.

DELETE

The DELETE function allows the user to delete several lines at a

time. Simply input the range of lines to be deleted (n1 through n2).

(The format is the same as the LIST command in BASIC).

DELETE n1-n2

To delete a single line, enter the line number alone on a blank line

and press RETURN.

24

FIND String

The FIND command is used to search lor and locate specific

character strings in text. Each occurrence of the string is printed on

the CRT. You can pause the printing with the space bar. Printing

can then be continued with the space barF or terminated with the

RUN/STOP key. The format of the FIND command is;

FIND/str1/ ,(n1 n2)

/ Delimiter (use a character not in the string)

stn Search string

,n1-n2 Range parameter. Same as the LIST command in

BASIC (Optional)

FORMATted Print

The FORMAT command is used to print the text file in tabbed

format like the assembler. For this function to work correctly, you

must type mnemonics in column two, or one space from labels.

FORMAT (n1-n2)

n1-n2 Range parameters of the same (ormat as LIST,

(Optional).

Note: ThJs command has the same controls as FIND. For example,

press space bar to halt printing and another space bar to restart

printing. Press the RUN/STOP key to terminate the program.

GET Files

This command is used to load assembler source text files into the

editor from disk. It can also be used to append to files already in

memory.

GET -filename" ,(ni)((n2)H(n3}

n1 Begins inputting source at this line in the file

currently in memory (Optional)

n2 Device number, default is 8 (Optional)

n3 Secondary address default is 8 (Optional)

Note: GET starts numbering lines at 1000 and incrementing the line

numbers by 10. If n1 is greater than any line number in memory, the

file being loaded is appended to the end of the current file.

25

KILL Command

This command causes the editor to disengage. To restart the editor,

type the same command used to start the editor (SYS49152).

LIST Command

The editor LIST command works in the same manner as the LIST

command jn BASIC,

LIST(n1}-(n2)

where ni-n2 specifies a range of lines. Valid parameters also include

'n1-' (which will list all lines from n1 to the end) and "-n2' (which will

list all lines from the beginning up to and including n2).

ReNUMBER Lines

The NUMBER function alllows the user to renumber all or part of

the file in memory.

NUMBER (n1).(n2),{n3)

n1 Old start line number (Optional)

n2 New start line number {Optional)

n3 Step size for resequence (Optional)

PUT Command

The PUT command outputs source files to the disk for later

assembly. PUT has the ability to output all or part of the memory

resident file.

PUT "filename" .(n1-n2),{n3Mn4)

n1 Starting line number (Optional)

n2 Ending line number (Optional)

n3 Device number, default is 8 (Optional)

n4 Secondary address, default is 8 (Optional)

If n1-n2,n3,n4 are left out, the whole file is output to the disk.

26

7.0 ASSEMBLING A SOURCE FILE

Once a source file is ready to assemble, you must first save it on
disk (by using the PUT command). Please be sure to do this before

loading the assembler program. Once this is completed, you will

load the assembler which will reside in the same area that BASIC
programs do.

7.1 Loading the Assembler64 Program

To load the assembler, type:

LOAD "ASSEMBLER64",8 (or /ASSEMBLER64 if the DOS

Wedge is loaded)

After loading is complete, type RUN and press RETURN. The

assembler will print a copyright notice and the first user prompt

when execution begins.

27

7.2 Using the Assembler64 Program

When a program is being assembled, the user has the option of

creating two types of files. The first type is an object file which
contains the data necessary to create a machine code program (by

the loader). The name of this file is specified by the user before
assembly starts. The remaining files are cross reference files. The

names for these files are automatically generated by the assembler

and are in the format ilXXLLOOO0" and "XXFF0000".

It should be noted however, that the assembler program will not

overwrite any of these files. If you wish to use the same object
filename each time you assemble a program, you must -scratch"

the old object file before you run the assembler. In the case of

cross reference files, the same procedure should be followed if you

want to create new cross reference files.

Although you will be given the option of creating both an object file
and cross reference files before assembly starts, only one of these

options can be chosen (because of the number of files open at one

time). If you want both files, run the assembly once with the object

file option, and once with the cross reference option.

When the assembler starts, the first prompt will be:

OBJECT FILE (CR OR D:NAME):

If you want the assembler to create an object file enter the filename

and press RETURN. If not, press RETURN.

Next you will be prompted with:

HARD COPY (CR/Y OR N)?

if you want a hardcopy printout, enter Y and press RETURN or
simply press RETURN. If not, enter N and press RETURN. This will

cause the output to be listed to the screen.

Next, you will be prompted with:

CROSS REFERENCE (CR/NO OR Y)?

If you want a cross reference file created, enter Y and press

RETURN. If not, simply press RETURN.

Finally, you will be prompted with:

SOURCE FILE NAME?

Enter the name of the source file that you wish to assemble.

After entering this last prompt, the assembler program begins to

execute. If during assembly, the symbol table overflows, the

assembly process will stop.

28

HALTING THE ASSEMBLER

When the assembler is running, operation may be halted by

pressing the RUN/STOP key. ff this is done, the assembly process

will be stopped and the program will wait for the user to either

continue the assembly or to terminate it completely. Press the B key

to terminate the assembly and return to BASIC. Pressing any other

key will continue the assembly process. This feature is useful for

users without printers, as the screen listing can be examined during
assembly.

CROSS REFERENCE FILES

If you chose to create a cross reference, two files will be created as

was mentioned above. To look at or produce a hardcopy printout of

this cross reference, you must first load the cross reference listing

program. To load this program, type:

LOAD "CROSSREF 64",8

Once this program is loaded, type RUN and press RETURN and the

cross reference listing program will prompt with:

HARD COPY (CR/Y OR N)?

Press RETURN if you want a hardcopy printout; otherwise, enter N

and press RETURN.

29

8.0 LOADING AN OBJECT FILE

The Commodore 64 Assembler produces portable output in an ASCII

format that can not be directly executed- This output must be

LOADED so the program can be executed. This is the function of a

Loader.

8.1 Loading the Loader Program

There are two versions of the loader included on the development

disk. Each version is positioned in a different area of RAM memory.

This allows the user to load anywhere in RAM by using the correct

loader. To load one of the Loader programs, type:

LOAD"filename",8r1

where filename is the program to be loaded. The following table

shows the names, load points and run commands for each loader.

Name Load Address Run Command

LO-LOAD.C64 $0800 RUN

HI-LOAD.C64 SC800 SYS 51200

30

8.2 Using the Loader Programs

Both the HI-LOAD and LO-LOAD loaders are about 512 bytes long

and operate in the same manner. When activated, the loaders print a

copyright notice and prompt the user fora load offset. The offset is

used to place object code into an address range other than the one

that it was assembled into. This allows the user to assemble for an

area where there is no RAM and load into a RAM area. The object

can then be programmed into EPROM etc..

The offset is a two byte hexadecimal address that is added to the

program addresses. If the program address plus the offset is greater

than SFFFF, the address wraps around through $0000. The following

examples show how offset works.

Address of Object CodeProgram Address

S0400

S3000

$0400

$9000

SE000

Offset

soooo

soooo

$2000

S9000

$4000

Addre

S0400

$3000

52400

$2000

$2000

After the offset is entered, the loader will prompt the user for the

object filename to be loaded. The loader will then initialize the drive,

search for the file, and start the load. As the data is loaded, the

program will print the input data to the CRT. This is for user

feedback only. When the load is completed, the loader prints the

message bEND OF LOAD1 and returns to BASIC.

There are three errors that can occur during a load {each is self

documenting):

BAD RECORD COUNT

NON-RAM LOAD

CHECKSUM ERROR

Errors are considered fatal; the load is terminated, the object file

is closed, and control is returned to BASIC.

31

9.0 TESTING AND DEBUGGING WITH THE MONITOR PROGRAMS

The MONITOR is the machine language monitor for the Commodore

64. This programming aid contains many features that will enable

you to create, modify and test machine language programs and

subroutines. The MONITOR'S purpose is to make it easy for you to

examine and change memory while debugging your program.

9.1 Loading the MONITOR Programs

There are two machine language monitors on the Commodore 64

Assembler Development disk: MONITOR$8000 and MONITOR$C000.
The only difference is the area of memory in which the program

resides. MONITORS8000 resides at memory location $8000 and

MONITORSC000 resides at memory location SC000. The two

MONITOR programs are both included in case one interferes with

the intended location lor the machine code program to reside.

To load and activate the appropriate monitor, enter:

LOAD "MONITOR$8000",8,1 (monitor at $8000)

SYS 32768

or

LOAD ■■MONITOR$C000",8,1 (monitor at SC000)
SYS 49152

9.2 Using the MONITOR Programs

The MONITOR programs will respond by displaying the CPU
registers, typing a period, and flashing the cursor. The period is a

prompt that lets you know the MONITOR program is waiting for your

command. The commands are described on the following pages.
Appendix VIII provides a summary of MONITOR commands.

To exit the MONITOR program, reset the machine.

9.3 MONITOR Program Commands

COMMAND: A

Purpose: Enter a line of assembly code.

Syntax: A(address)(opcode mnemonic)(operand)

(address): A four-digit hexadecimal number indicating the location in

memory to place the opcode.

{opcode mnemonic): A standard MOS assembly language

mnemonic, i.e. LDA, STX, ROR, etc. as defined in Appendix IV.

(operand): The operand, when required, can be of any of the legal

addressing modes. (For zero-page modes, a two digit hex number is

required whose value is less than or equal to $FF. For non-zero page

addresses, a four digit hex number whose value is less than or

equal to SFFFF is required.)

A RETURN is used to indicate the end of the assembly line. If there

are any errors on the line, a question mark is displayed to indicate

an error, and a period is typed on the next line. The screen editor

can be used to correct any errors on the original line.

After a line of code is successfully assembled, the assembler will

print a prompt containing the next legal memory location for an

instruction, so 'A' and the line number do not have to be typed more

than once when typing assembly language programs into the

Commodore 64. To exit this mode, press RETURN after the 'A'

prompt.

Example: .A1200 LDX #$00

.A 1202

COMMAND: C (COMPARE)

Purpose: Compare two areas of memory

Syntax: C(start address)(end address)(with address)

(Start Address): A four digit hex number indicating the start address

of the area of memory to compare against.

(End Address): A four digit hex number indicating the end address

of the area of memory to compare against.

(With Address): A four digit hex number indicating the start

addresss of the other area of memory to compare with.

The address fields should be separated by a valid delimiter, such as

a space or comma. If the two areas of memory are the same, then

64MON will print a period, indicating that the second area of

memory is the same as the first. The addresses, of any bytes in the

two areas which are different, are printed out on the screen in

descending order.

33

COMMAND: D (DISASSEMBLE)

Purpose: Disassemble machine code into assembly language

mnemonics and operands.

Syntax; D(address 1}(address 2)

(address 1): A four-digit hexadecimal starting address of the code to

be disassembled.

(address 2): An optional four-digit hexadecimal ending address of

the code to be disassembled.

The address fields should be separated by a delimiter such as a

space or comma. The format of the disassembly is only slightly

different than the input format of an assembly. The difference is that

the first character of a disassembly is a comma, rather than an 'A'

(for readability).

A disassembly listing can be modified using the screen editor. Make

any changes to the mnemonic or operand on the screen, then press

RETURN. This will enter the line and call the assembler for further

modifications.

A disassembly can be scrolled up or down on the screen via cursor

control. When a line of disassembly is at the bottom of the screen,

a cursor down will cause the screen to scroll up one line to display

another disassembled line of code. This also works for scrolling

backwards through a disassembly (i.e.T going to the top of the

screen and hitting cursor up).

Example: D 1000 1400

., 1000 LDA #$00

., 1002 ???

., 1003 BNE Sf1030

COMMAND: F (FILL)

Purpose: Fill a range of locations with a specified byte.

Syntax: Fladdress 1)(address 2)(byte)

(address 1): The first location to fill with the value specified by (byte)

(address 2): The last location to fill with the value specified by (byte)

(byte): A two digit hexadecimal number to be written into

consecutive memory locations

This command is useful for initializing data structures or any other

RAM area.

Example: F 0400 0518 EA

Fills memory locations from $0400 to $0518 with SEA (a NOP

instruction,)

34

COMMAND: G (GO)

Purpose: Begin execution of a program at a specified address.

Syntax: G(address}

(address): An optional argument specifying the new value of the

program counter and address where execution is to start. When the

address is left out, execution wili begin at the current PC. (The

current PC can be viewed using the R command.)

The GO command will restore all registers (displayabie by the R

command) and begin execution at the specified starting address.

Caution is recommended in using the GO command. (It may

sometimes be wise to set a breakpoint somewhere in the line of

program execution to prevent loss of control of the operating

system.)

Example: G 040C

Execution begins at location 040C.

COMMAND: H (HUNT)

Purpose: Hunt through memory within a specified range for all

occurrences of a set of bytes.

Syntax; H(address 1)(address 2)(data)

(address 1): Beginning address of hunt procedure

(address 2): Ending address of hunt procedure

(data): Data set to be searched (data may be hexadecimal or an

ASCII string)

An ASCII is specified by preceding the first character with a single

quote, i.e., 'STRING. Data may be single or multiple arguments.

Multiple two-digit hex arguments must be separated by a space

Example: H C000 FFFF 'READ ; Search for ASCII string READ

H A000 A101 A9 FF 4C; Search for data $A9, $FF, $4C.

in tnat sequence

35

COMMAND: I (INTERROGATE)

Purpose: Display memory in ASCII character format within the

specified address range.

Syntax: 1(address1)(address 2)

(address 1): Starting address of ASCII dump

(address 2): Ending address of ASCII dump

The ASCII characters are displayed in reverse video (to contrast the

character with the hexadecimal data displayed on the screen),

The display can be made to scroll by using the cursor up/down key.

This allows continuing the search beyond the search parameters.

When a line of the listing is at the bottom of the screen, a cursor

down will cause the screen to scroll up one line to display another

line of the listing. This also works for scrolling backwards (i.e.,

going to the top Of the screen and typing cursor up).

Note: When a character is not printable, it will be displayed as a

period (.).

Example: 1 C000 C020

Dispiays in REVERSE all data from SCOOO to SC020,

COMMAND: L (LOAD)

Purpose: Load a file from cassette or disk.

Syntax: L "filename".(device)

filename: Any legal Commodore 6^ filename

(device): A two-digit byte indicating the device number from which

to load

01 is cassette

08 is disk (or 09. etc.)

The LOAD command causes a file to be loaded into memory. The

starting address is contained in the first two bytes of the file (in a

PGM file), in other words, the LOAD command always loads a file

into the same pJace it was saved from. This is very important in

machine language work, since few programs are completely

relocatable. The file will be loaded into memory until the end of fite

marker (EOF) is found.

Example: L "SCREEN". 01 :reads a file from cassette

L 'TANK".O8 :reads a file from disk drive

36

COMMAND: M (MEMORY DISPLAY)

Purpose: To display memory as a hexadecimal dump within the

specified address range-

Syntax; M(address i)(address 2)

(address 1): First address of hex dump

(address 2): Last address of hex dump (Optional. If omitted, eight

bytes will be displayed.)

Memory is displayed in the following format:

.:AO48 7F E7 00 AA AA AE 02 FF

Memory content may be edited using the screen editor. To edit,

move the cursor to the data to be modified. Type the desired

correction and press RETURN. If there is a bad RAM location or if

an attempt to modify ROM has occurred, an error flag (?) will be

displayed.

As with the DISASSEMBLY and INTERROGATE commands, the

screen may be scrolled both up and down by using the cursor

controls.

Example: M 0000

.:0000 4C 7F EF AA 00 02 F7 FF

The first eight bytes of memory are displayed.

37

COMMAND: N (NEW LOCATOR)

Purpose: To relocate absolute memory references by adding an

offset to the operands of the target code.

Syntax: N{address i)(address 2)(offset)(ref 1)<ref 2)W

(address 1): Starting address of code to be modified

(address 2): Ending address of code to be modified

(offset): Value to be added to operand of instructions

Code moved from a high location to a low location in memory needs

a value which wraps around. For example, a piece of code moved

from SAOOO to $0400 will require an offset of $6400.

£A000 + $6400 = 310400, but since there is not a bit nine in the

computer, the result is $0400.

{ref 1): Any three byte instruction whose operand is greater than or

equal to {ref 1) and less than (ref 2} will be offset by the (offset)

value, i.e., the operand of the three byte instruction will be replaced

by 'operand + (offset)'.

(ref 2): Upper timit of operands to relocate (see ref 1). Any operand

with a value greater than or equal to (ret 2) will not be relocated.

W; Relocate word tables, (optional). Every two bytes will be offset if

the W is included. Relocation then becomes data independent.

Often it is useful to move a section of code from one area in

memory to another (see the "I11 command) to make room for more

code. Then by using the "N" command, the code can be changed to

run in the new address space.

COMMAND: R (REGISTER DISPLAY}

Purpose: Show important 6502 registers. The program status

register, program counter, the accumulator, the X and Y index

registers and the stack pointer are displayed.

Syntax: R

Note that the stack pointer is displayed without its implied eighth

bit. Since the eighth bit of the stack pointer has been mentioned, it

is appropriate to point out a bug in the 6502. When a PHP

instruction is executed, the stack eighth bit of the stack pointer is

ORe'd into the status byte and is stored on the stack with bit four

(the break flag!) always set. For 99.9% of atl applications, this

makes no difference. However, when this bug does turn up. it

causes problems which are very difficult to track down.

Example: R

PC SR AC XR YR SP

.; 057F 01 02 03 04 FE

COMMAND: S (SAVE)

Purpose; Save the contents of memory onto tape or disk,

Syntax: SMli1ename",(device),{address1).(address2)

filename: Any legal filename for saving the data. The filename must

be enclosed in double quotes; single quotes are illegal.

(device): Two possible devices are cassette and disk. To save on

cassette, use device 01. The device number of the Commodore 64

disk drive is usually 08.

(address 1): Starting address of memory to be saved

(address 2): Ending address of memory to be saved, plus one. All

data up to, but not including the byte of data at this address, whl be

saved.

The file created by this command is a load file, i,e.. the first two

bytes contain the starting address (address 1) of the data. The file

may be recalled using the 'L' command.

Example: 3 'GAME11.08,0400,OCOO

saves memory from S0400 to SOCOO onto disk.

COMMAND: T (TRANSFER)

Purpose; Transfer segments of memory from one memory area to

another.

Syntax: T(address 1)(address 2)(address 3)

{address 1): Starling address of data to be moved

(address 2): Ending address of data to be moved

(address 3}: Starting address of new location (where the data will be

placed)

Data can be moved from low memory to high memory or vice-versa.

Additional memory segments of any length can be moved forward or

backward any number of bytes, i.e.. shifted.

Example: T 1400 1600 1401

shifts data from $1400 up to and including $1600, one byte higher in

memory.

39

APPENDIX I OPERATING SYSTEM MEMORY MAP

Label

D6510

R6510

ADRAY1

ADRAY2

CHARAC

ENDCHR

TRMPOS

VERCK

COUNT

DIMFLG

VALTYP

INTFLG

GARBFL

SUBFLG

INPFLG

TANSGN

LINNUM

TEMPPT

LASTPT

TEMPST

INDEX

RESHC

TXTTAB

VARTAB

ARYTAB

STREND

Hex. Addr.

0000

0001

0002

0003-0004

0005-0006

0007

0008

0009

OOOA

000 B

OOOC

000D

000E

000F

0010

0011

0012

0013

0014-0015

0016

0017-0013

0019-0021

0022-0025

0026-002A

002B-002C

OO2DO02E

002F-0030

0031-0032

Dec. Loc.

0

1

2

3-4

5-6

7

&

g

10

11

12

13

14

15

16

17

ta

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

47-48

49-5C

Description

6510 On-Chip Data-Direction

Register

6510 On-Chip 8-Bit Input/

Output Register

Do Not Use

Jump Vector: Convert Floating

- Integer

Jump Vector: Convert Integer

-Floating

Search Character

Flag: Scan 1or Quote at End of

String

Screen Column From Last

TAB

Fiag: 0= Load 1 = Verify

Input Buffer Pointer/Number

of Subscripts

Flag: Default Array Dimension

Data Type; $ff = String

$00= Numeric

Data Type:$80 = Integer

$00= Floating

Flag: Data scan/LlST

quote/Garbage Collect

Flag: Subscript Ref/User

Function Call

Flag: $00= INPUT $40= GET

S98=READ

Flag; TAN sign/Comparison

Result

Flag: INPUT Prompt

Temp: Integer Value

Pointer: Temporary String

Stack

Last Temp String Address

Stack for Temporary Strings

Utility Pointer Area

Floating-Point Product of

Multiply

Pointer: Start of BASIC Text

Pointer: Start of BASIC

Variables

Pointer Start of BASIC Arrays

Pointer End of BASIC Arrays

40

Label

FRETOP

FRESPC

MEMSIZ

CURLIN

OLDUN

OLDTXT

DATLIN

DATPTR

INPPTR

VARNAM

VARPNT

FORPNT

FACEXP

FACHO

FACSGN

3GNFLG

BITS

ARGEXP

ARGHO

ARGSGN

ARISGN

FACOV

RODBS

RODBE

IRQTMP

ENABL

Hex. Addr.

0033-0034

00350036

0037-0038

0039-003A

003B-003C

003D-003E

003F-0040

0041-0042

00430044

0045-0046

0047-0048

0049-004A

004B-0060

0061

0062-0065

0066

0067

0068

0069

006A-006D

006 E

006F

0070

029 D

029 E

029F-02A0

02A1

02A2-02FF

02A6

02A7-02FF

Dec. Loc.

51-52

53-54

55-56

57-58

59-60

61-62

6364

65-66

67 68

69-70

71-72

73-74

75-96

97

98-101

102

103

104

105

106-109

110

111

112

669

670

671-672

673

674-677

678

679-767

Description

Pointer; Bottom of String

Storage

Utility String Pointer

Pointer: Highest Address

Used by BASIC

Current BASIC Line Number

Previous BASIC Line Number

Pointer: BASIC Statement for

CO NT

Current DATA Line Number

Pointer: Current DATA Item

Address

Vector: INPUT Routine

Current BASIC Variable Name

Pointer: Current BASIC

Variable Data

Pointer: Index Variable for

FOR/NEXT

Temp Pointer/Data Area

Floating-point Accumulator

#1: Exponent

Floating Accura #1: Mantissa

Floating Accum. #1: Sign

Pointer: Series Evaluation

Constant

Floating Accum. #1: Overflow

Digit

Floating-Point Accumulator

#2: Exponent

Floating Accum. #2: Mantissa

Floating Accum, #2: Sign

Sign Comparison Result:

Accum. #1 vs #2

Floating Accum. #1. Low-

Order (Rounding)

RS-232 Start of Output Buffer

(Page)

RS-232 Index to End of Output

Buffer

Holds IRQ Vector During Tape

I/O

RS-232 Current Enabled

Interrupts

Cassette Temp Data Area

Flag: 0= NTSC Video 1 = PAL

Video

Not Used

41

Label Hex, Addr. Dec, Loc.

I ERROR 0300-0301 768-769

IMAIN

ICRNCH

IQPLOP

IGONE

IEVAL

SAREG

SXREG

SYREG

SPREG

USRPOK

USRADD

CINV

CBINV

NMINV

IOPEN

ICLOSE

ICHKIN

ICKOUT

ICLRCH

I BASIN

IBSOUT

I STOP

IGETIN

tCLALL

USRCMD

ILOAD

ISAVE

TBUFFR

0302-0303

0304-0305

0306-0307

0308-0309

030A-030B

030C

030D

030 E

030 F

0310-0313

0314-0315

0314-0315

0316-0317

0318-0319

031A-031B

031C-031D
031E-031F

0320-0321

0322-0323

0324-0325

0326-0327

0328-0329

032A-032B

032C-032D

032E-032F

0330-0331

0332-0333

033C-03FB

770-771

772-773

774-775

776-777

778-779

780

781

782

7S3

784787

785-786

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

810-811

812-813

814-815

816-817

818-819

828-1019

Description

Vector: Print BASIC Error

Message

Vector: BASIC Warm Start

Vector: Tokenize BASIC Text

Vector: BASIC Text LIST

Vector: BASIC Char Dispatch

Vector; BASIC Token

Evaluation

Storage for 6502 .A Register

Storage for 6502 .X Register

Storage for 6502 .Y Register

Storage for 6502 .SP Register

USR Function Jump Instr ($4c}

USR Function Jump Address

Vector: Hardware IRQ

Interrupt

Vector: SRK Instr. Interrupt

Vector: Non-Maskable

Interrupt

Open a Logical File

Close a Specified Logical File

Kernal CHK1N Routine Vector

Open Channel for Output

Close Input and Output

Channels

Kernal CHRIN Routine Vector

Kernal CHROUT Routine

Vector

Scan Stop Key

Get Character from Keyboard

Queue (Keyboard Buffer)

Close a Specified Logical File

User-Defined Vector

Load RAM from a Device

Save RAM to a Device

Tape I/O Buffer

42

Label Hex. Addr. Dec. Loc.

ViCSCN 0400-07FF 1024-2047

0400-07E7 1024-2023

07F8-07FF 2040-2047

0800-9FFF 2048-40959

S000-9FFF 32768-40959

AO0O-BFFF 40960-49151

COOO-CFFF 49152-53247

DOOO-DFFF 53248-57343

EOOO-FFFF 57344-65535

Description

1024 Byte Screen Memory

Area

Video Matrix: 25 Lines x 40

Columns

Sprite Data Pointers

Normal SAStC Program Space

Optional Cartridge ROM - 8192

Bytes

BASIC ROM - 8192 Bytes (or

8K RAM)

RAM - 4096 Bytes

Input/Output Devices and

Color RAM or Character

Generator ROM or RAM - 4096

Bytes

Kernal ROM - 8192 Bytes (or

8K RAM)

43

APPENDIX II INPUT/OUTPUT REGISTER MAP

Hex. Decimal Bits Description

0000 0 0-7 MOS 6510 Data Direction Register

0001 1

Bit a 1:0utput Bit = 0: Input x = Don't Care

MOS 6510 Micro-Processor On-Chip I/O Port

d000-

dooo

dooi

d002

d003

d004

d005

d006

d007

d008

d009

dOOa

dOOb

dOOc

dOOd

dOOe

dOOf

d010

dO11

dO12

dO13

d0i4

dO15

dO16

dO2e

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

0

i

2

3

4

5

6-7

/LORAM Signal (0 = Switch BASIC ROM Out)

/HIRAM Signal (0 = Switch Kernal ROM Out}

/CHAREN Signal (0= Switch Char. ROM In)

Cassette Data Output Line

Cassette Switch Sense 1 = Switch Closed

Cassette Motor Control 1 = OFF 0 = ON

Undefined

5324B-54271 MOS 6567 Video Interface Controller (VIC)

7

6

5

A

3

2-0

7-6

5

Sprite 0 X Pos

Sprite 0 Y Pos

Sprite 1 X Pos

Sprite 1 Y Pos

Sprite 2 X Pos

Sprite 2 Y Pos

Sprite 3 X POS

Sprite 3 Y Pos

Sprite 4 X Pos

Sprite 4 Y Pos

Sprite 5 X Pos

Sprite 5 Y Pos

Sprite 6 X Pos

Sprite 6 Y Pos

Sprite 7 X Pos

Sprite 7 Y Pos

Sprites 0-7 X Pos (msb of X coord.)

VIC Control Register

Raster Compare: (Bit 8) See 53266

Extended Color Text Mode: l= Enable

Bit-Map ModeH = Enable

Blank Screen to Border Color: 0= Blank

Select 24/25 Row Text Display: 1 = 25 Rows

Smooth Scroll to Y Dot-Position (0-7)

Read Raster / Write Raster Value for Compare

IRQ

Light-Pen Latch X Pos

Light-Pen Latch Y Pos

Sprite Display Enable: 1= Enable

VIC Control Register

Unused

Reset VIC Chip: 1 = Reset 0= Normal

44

Hex. Decimal Bits Description

d0i7

d0i8

3019

dOia

dO1b

dOic

dO1d

dO1e

dOif

d020

d02i

dO22

dO23

dO24

dO25

dO26

dO27

6028

dO29

d02a

dO2b

d02c

dO2d

d02e

53271

53272

53273

53274

53275

53276

53277

53278

53279

53280

53281

53282

53283

53284

53285

53286

53287

53288

53289

53290

53291

53292

53293

53294

4

3

20

7-4

3-1

7

3

2

*

0

Multi-Color Mode: I- Enable (Text or Bit-Map)

Select 38/40 Column Text Display; I = 40 Cols

Smooth Scroll to X Pos (0-7)

Sprites 0-7 Expand 2x Vertical (Y): I - Expand

VIC Memory Control Register

Video Matrix (Screen) Base Address (in VIC

space)

Character Dot-Data Base Address (in VIC

space)

VIC Interrupt Flag Register (Bit = 1: IRQ

Occurred)

Set on Any Enabled VIC IRQ Condition

Light-Pen Triggered IRQ Flag

Sprite vs Sprite Collision IRQ Flag

Sprite vs Background Collision IRQ Flag

Raster Compare IRQ Flag

IRQ Mask Register: 1 — IRQ Enabled

Sprite vs Background Display Priority:

1 = Sprite

Sprites 0-7 Multi-Color Mode Select:

I = M.C.M.

Sprites 0-7 Expand 2x Horizontal (X):

1 = Expand

Sprite vs Sprite Collision Detect

Sprite vs Background Collision Detect

Border Color

Background Color 0

Background Color 1

Background Color 2

Background Color 3

Sprite Multi-Color Register 0

Sprite Multi-Color Register 1

Sprite 0 Color

Sprite 1 Color

Sprite 2 Color

Sprite 3 Color

Sprite 4 Color

Sprite 5 Color

Sprite 6 Color

Sprite 7 Color

d400-d7ff 54272-55295 MOS 6581 Sound Interface Device (SID)

cf400 54272

d401 54273

d402 54274

d403 54275 7-4

3-0

Voice I: Frequency Control, Low-Byte

Voice I: Frequency Control. High-Byte

Voice !: Pulse Waveform Width, Low-Byte

Unused

Voice 1: Pulse Waveform Width, High-Nybble

45

Hex. Decimal

d404 54276

d405 54277

d406 54278

d407 54279

d408 54280

d409 54281

d40a 54282

d40b 54283

d40c 54284

d40d 54285

d40e 54286

d40f 54287

d4iO 54288

Bits Description

Voice i: Control Register

7 Select Random Noise Waveform l = On

6 Select Pulse Waveform l = On

5 Select Sawtooth Waveform I = On

4 Select Triangle Waveform I = On

: Tesl Bit: I = Disabe Oscillator 1

2 Ring Modulate Osc. 1 with Osc. 3 Output

l = On

1 Synchronize Osc. 1 with Osc. 3 Frequency

l = On

0 Gate Bit: I = Start AtUDec/Sus 0= Start

Release

Envelope Generator I: Attack/Decay Cycle

Control

7-4 Select Attack Cycle Duration: 0-15

3-0 Select Decay Cycle Duration: 0-15

Envelope Generator I: Sustain/Release Cycle

Control

7-4 Select Release Cycle Duration: 0-15

Voice 2: Frequency Control, Low-Byte

Voice 2: Frequency Control, High-Byte

Voice 2: Pulse Waveform Width. Low-Byte

7-4 Unused

3-0 Voice 2: Pulse Waveform Width. High-Nybble

Voice 2: Control Register

7 Select Random Noise Waveform l = On

6 Select Pulse Waveform l = On

5 Select Sawtooth Waveform l = On

4 Select Triangle Waveform I = On

Test Bit: I = Disable Oscillator 2

2 Ring Modulate Osc 2 with Osc. 1 Output

I^On

1 Synchronize Osc. 2 with Osc. 1 Frequency

I-On

0 Gate Bit: i = Start Att/Dec/Sus 0 = Start

Release

Envelope Generator 2: Attack/Decay Cycle

Control

7-4 Select Attack Cycle Duration: 0-15

3-0 Select Decay Cycle Duration; 0-15

Envelope Generator 2: Sustain/Release Cycle

Control

7-4 Select Sustain Cycle Amplitude Level; 0 15

3-0 Select Release Cycle Duration: 0-15

Voice 3: Frequency Control, Low-Byte

Voice 3: Frequency Control. High-Byte

Voice 3: Pulse Waveform Width, Low-Byte

Hex. Decimal Bits Description

d411 54289 7-4 Unused

3-0 Voice 3: Pulse Waveform Width, High-Nybble

d4i2 54290 Voice 3: Control Register

7 Select Random Noise Waveform l = On

Select Pulse Waveform l = On

5 Select Sawtooth Waveform I = On

4 Select Triangle Waveform l = On

3 Test Bit: I = Disable Oscillator 3

2 Ring Modulate Osa 3 with Osc. 2 Output

l = On

Synchronize Osc. 3 with Osc. 2 Frequency

l = On

0 Gate Bit: I = Stan Att/Dec/Sus 0 = Start

Release

d413 54291 Envelope Generator 3: AttackyDecay Cycle

Control

7-4 Select Sustain Cycte Duration: 0-15

3-0 Select Release Cycle Duration: 0-15

d414 54292 Envelope Generator Sustain/Release Cycle

Control

7-4 Select Sustain Cycle Amplitude Level: 0-15

3-0 Select Release Cycle Duration: 0-15

d415 54293 Filter Cutoff Frequency: Low-Nybbie (Bits 2-0)

d416 54294 Filter Cutoff Frequency: High-Byte

d417 54295 Filter Resonance Control/Voice Input Control

7-4 Select Filter Resonance: Min = 0 Max = 15

3 Filter External Input: I = Yes 0=No

2 Filter Voice 3 Output: I = Yes 0=No

1 Filter Voice 2 Output: I = Yes 0=No

0 Filter Voice 1 Output: I = Yes 0 = No

d418 54296 Select Filter Mode and Volume

7 Cut-Off Voice 3 Output; I = Off 0 = On

6 Select Filter High-Pass Mode: I-On

5 Select Filter Band-Pass Mode: I-On

4 Select Filter Low-Pass Mode: l = On

3-0 Select Output Volume: OFF=0 Max =15

d4i9 54297 Analog/Digital Converter Game Paddle 1

(0-255)

d41A 54298 Analoc^Digital Converter: Game Paddle 2

(0-255)

d41B 54299 Oscillator 3 Random Number Generator

d4iC 54300 Envelope Generator 3 Output

d500-d7fl 54528-55295 SID Register Images

d800-dbff 55296-56319 Color Cntrl RAM (Only Bits 3-0 Present)

dcOO-dcff 56320-56335 MOS 6526 Complex Interlace Adapter

CIA)#1

4?

Hex. Decimal Bits

dcOO 56320

70

7-6

dcO1

dcO2

dcO3

dcO4

dcO5

dcO6

dcO7

dcOB

dcO9

dcOa

dcOb

dcOc

dcOd

54321

56322

56323

56324

56325

56326

56327

56328

56329

56330

56331

56332

56333

4

3-2

3-0

7-0

4

3-2

3-0

3

2

1

0

Description

Data Port A (Keyboard Joystick Paddles):

Game Port 2

Write Keyboard Column Values for Keyboard

Scan

Select Paddle Input Port: 01 = Port 1

10= Port 2

Joystick-2 Fire Button: 0= Fire

Paddle Fire Buttons: 0= Fire

Joystick-2 Direction: Bit = 1 Open Sw, Bit = 0

Closed

Data Port B (Keyboard Joystick Paddles

Lightpen)

Read Keyboard Row Values for Kybrd Scan

Joystick-1 Fire Button/Ughtpen Trigger

(O= Fire)

Paddle Fire Buttons: 0- Fire

Joystick-1 Direction: Bit= 1 Open Sw. Bit = 0

Closed

Data Direction Register -Pod A (56320)

Data Direction Register-Port B (56321)

Tinner A: Low-Byte

Timer A: High Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-of-Day Clock: 1/10 Seconds

Time-of-Day Clock: Seconds

Time-of-Day Clock: Minutes

Time-of-Day Clock: Hours + AM/PM Flag

(Bit 7)

Synchronous Serial I/O Data Buffer

CIA Interrupt Control Reg. {Read Flags/Write

Mask)

IRQ Flag (I = IRQ OccurredyMasK Set Minus

Clear Flag

FLAG1 IRQ {Cassette Read/Serial IEEE SRQ

Input)

Serial Port Interrupt

Time-of-Day Alarm Interrupt

Tinner B Underflow interrupt

Timer A Underflow Interrupt

48

Hex. Decimal Bits Description

dcOe 56334 CIA Control Register A

7 Time-of-Day Clock Frequency: 1 = 50 Hz

0=60 Hz

6 Serial Port Mode; I = Output 0= Input

5 Time A Counts: I = CNT Signals 0= System

02 Clock

4 Force-Load Timer A: I = YES

3 Time A Run Mode: I = Once 0 = Continuous

2 Timer A Output Mode to PB6: I = Toggle

0= Pulse

1 Time A Output to PB6: 1 = Yes 0= No

0 Start/Stop Time A: 1= Start 0 = Stop

dcOf 56335 CIA Control Register B

7 Set TOD Alarm/Clock: 1 = Alarm 0= Clock

6-5 Time B - Mode Select:

00 = Count System 02 Clock Pulses

01 = Count Positive CNT Transitions

10 = Count Timer A Underflow Pulses

11 = Count Timer A Underflows While CNT

Positive

4-0 Same as Control Register A: for Timer B

ddOO-ddff 56576-56591 MOS 6526 Complex tnterface Adapter

(CIA) #2

ddOO 56576 Data Port A (Serial IEEE, RS-232, VIC Memory

Ctl)

7 Serial IEEE Data Input

6 Serial IEEE Clock Pulse Input

5 Seriai IEEE Data Output

4 Serial IEEE Clock Pulse Output

3 Serial IEEE ATN Signal Output

2 RS-232 Data Output (User Port)

1-0 VIC Chip System Memory Bank Select

(Default =11)

ddO1 56577 Data Port B (User Port/RS-232 Signals)

7 User / RS-232 Data Set Ready

6 User / RS-232 Clear to Send

5 User - Undefined

4 User / RS-232 Carrier Detect

3 User / RS-232 Ring Indicator

2 User / RS 232 Data Terminal Ready

1 User / RS-232 Request to Send

0 User / RS-232 Received Data

/FLAG Userf RS-232 Receive: Detect Start-Bit (IRQ

Flag)

49

Hex. Decimal Bits

dcO2 56578

dcO3 56579

dcO4 56580

dcO5 56581

dcO6 56582

dcO7 56583

dcO8 56584

dcO9 56585

dcOa 56586

dcOb 56587

dcOc 56588

dcOd 56539

A

3

2

1

0

dcOe 56590

dcOf 56591

Description

Data Direction Register -Port A (56320)

Data Direction Register -Port B 456321)

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-of-Day Clock: 1/10 Seconds

Time-of-Day Clock: Seconds

Time-of-Day Clock: Minutes

Time-of-Day Clock; Hours + AM/PM Flag

(Bit 7)

Synchronous Serial I/O Data Buffer

CIA Interrupt Control Reg. (Read Flags/Write

Mask)

NMI Flag 0= NM1 OccurredVMask Set-Clear

Flag

FLAG2 NMI: Detects Start-Bit on Recv

Synchronous Serial Port Interrupt

Trme of-Day Alarm Interrupt

Timer B Interrupt

Timer A Interrupt

CIA Control Register A (Same Format at

56334}

CIA Control Register B (Same Format at

56335)

deOQ-defi 56832-57087 Reserved for Future t/O Expansion

dfOQ-dffi 57088-57343 Reserved for Future I/O Expansion

50

APPENDIX III DESCRIPTION OF FILES ON THE

RELEASE DISK

ASSEMBLER64

BOOT ALL

CROSSREF64

DOS 5.1

DOS WEDGE64

EDITOR64

See Section 7. This is the actual assembler

program which loads into low memory and

assembles the files which were created by the

EDITOR program. To load the assembler, type

LOAD +1ASSEMBLER64",8 or use the wedge load

command; then type RUN. Any source text files

not previousJy saved will be lost since the

assembler toads into the same area used.

This program loads and starts the DOS WEDGE,

the HI-LOADER, and the EDITOR all at the same

time. These three programs reside in different

areas in memory, allowing their use without

having to reload before switching programs.

This program is used to print out the cross

reference listing created by the assembler when

that option is specified at assembly time. The

program loads into low memory by using the

LOAD L'CROSSREFB4",8 command and is started

by typing RUN.

This file contains the machine code for the

wedge program. It is loaded automatically by

running the DOS WEDGE64 program.

See Section 5. This program is the "boot loader"

for the DOS 5.1 wedge program. It is the first

program on the disk so that the LOAD "*'\B

command can be used. After the program is

loaded, type RUN and the wedge will be loaded

and activated.

See Section 6. This program is used to create

and modify the source code files which will later

be assembled. To load the editor, type LOAD

"EOITOR64",8,1. After the program is loaded,

type SYS 49152 to activate. Then type NEW to

clear the pointers before proceeding to create or

edit any files. Be sure to save the source code

file using the PUT command before loading the

assembler.

51

LOLOADER64

and

HILOADER64

MONITORS8000

and

MON1TOR$COOO

See Section 8. These two programs are used to
load the sequential records which are created by

the assembler as its output or object file. When

one of these programs is run, it loads the object

file into memory in the specified location as true

machine code which can be executed. The only

difference between the two programs is that

LOLOADER loads at hex $0800 and HILOADER

64 loads a! hex SC800. They are both included in

case one of them interferes with the intended

location for the machine code to reside.

To load the S0800 version, type LOAD

"LOLOADER641'.8 and then type RUN. To load

the SC800 version, type LOAD "HILOADER64",8,1

and then type SYS51200.

See Section 9. These two monitor porgrams are

identical in function and are used primarily for
load and save binary machine code files in their

executable form.

They also allow the programmer many useful

commands for examining and changing programs

without having to run the whole assembly

process. The first loads at hex $8000 by typing
LOAD "MONITOR$8000",8,1 and is started by

typing SYS32768. The second loads at hex $C000
by typing LOAD ■■MONITOR$C000",8,1 and is

started by typing SYS49152.

52

APPENDIX IV 6500 SERIES MICROPROCESSOR
INSTRUCTION SET OPCODES

ADC Add with Carry to

Accumulator

AND "AND11 to Accumulator
ASL Shi1t Left One Bit

{Memory or Accumulator)

BCC Branch on Carry Dear

BCS Branch on Carry Set

BEQ Branch on Zero Result

BIT Test Bits in Memory with

Accumulator

BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force an Interrupt or Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLJ Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and

Accumulator

CPX Compare Memory and

Index Y

CPY Compare Memory and

Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR Exclusive-QR Memory with

Accumulator

INC Increment Memroy by One

INX Increment X by One

INY Increment Y by One

JMP Jump to New Location

JSR Jump to New Location

Saving Return Address

LDA Transfer Memory to

Accumulator

LDX Transfer Memory to Index X

LDY Transfer Memory to Index Y

LSR Shift One Bit Right (Memory

or Accumulator)

53

NOP Do Nothing - No Operation

ORA "OR" Memory with

Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on

Stack

PLA Pull Accumulator From Stack

PLP Pull Processor From Stack

ROL Rotate One Bit Left (Memory

or Accumulator)

ROR Rotate One Bit Right

(Memory or Accumulator)

RTI Return From Interrupt

RTS Return From Subroutine

SBC Subtract Memory and Carry

From Accumulator

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in

Memory

STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to

Index X

TAY Transfer Accumulator to

Index Y

TSX Transfer Stack to Index X

TXA Transfer Index X to

Accumulator

TXS Transfer Index X to Stack

Register

TYA Transfer Index Y to

Accumulator

54

APPENDIX V A SAMPLE OUTPUT LISTING OF THE

COMMODORE 64 ASSEMBLER

LINE** LOG CODE LINE

00161

00162

00163

00164

00165

00166

00167

00163

00169

00170

00171

00172

00173

00174

00175

00176

00177

00173

00179

00180

00181

00162

00183

001S4

00185

00186

00187

ooisa

00189

00190

00191

00192

00193

00194

00195

00196

00197

00198

00199

00200

00201

00202

00203

00204

00205

00206

00207

0020a

00209

CCE1

CCE1

CCE1

CCE1

CCE1

CCE3

CCE6

CCE8

CCE9

CCEB

CCEB

CCED

CCF0

CCFO

CCFO

CCFO

CCF3

CCF3

CCF3

CCF3

CCF3

CCF5

CCF7

CCF8

CCFB

CCFD

CCFF

CD01

CDO3

CD06

CDO8

CDOA

CD0C

COOE

CD10

CD12

CD12

CD15

CD17

CD18

CD1A

CD1A

CD1A

CD1C

CD1E

CD20

CD22

CD25

CD28

A2 02

BD OE CC

95 7C

CA

10 F8

A5BA

8D 77 CC

4C 4B CF

85 A6

86 A/

BA

BO 01 01

C9E6

FO 04

C9 8C

DO 17

BO 02 01

C9A7

FOOd

C9A4

D0 0C

A5 A6

A2O8

DO 19 CC

FO 11

CA

10 F8

A5 A6

A6 A7

C9 3A

BO 03

4C80 00

4C8A 00

INIT THE

GOOO

WEDGE

MEMORY MANAGER (STARTUP COMES HEP

LOX ff$02

LDA JUMP,X

:MOVE THREE BYTES

STACHRGOT+3.X

DEX

BPLWEDGE

LOA FA

STA SVFA

SAY HELLC .

JMP MSG

;USE CURRENT FA FOR

DEVICE ADDR

;PRINT HELLO (JSR/RTS)

THIS IS WH .". ■.. = ;v :: . IE WORK

START

FRYTWO

FINDIT

FINDC

NOTCMD

STRTS

STA BUFPT

STX BUFPT+1

TSX

LDAS0101.X

CWP#.GONE

BEQ TRY TWO

CMP#,MAIN

BNE NOTCMO

LOA JOIO'.X

CMP#iGONE

BEQ FINDIT

CMPtfcMAIN

BNE NOTCMO

LOA BUFPT

LDX#NCMD-1

COMP CMD.X

BEQ CALLW

DEX

6PL FINDC

LDA BUFPT

LDX BUFPT + 1

CMP*':

BCS STHTS

JMPCHRGOT+7

JMPCHROT + 17

;SAVE A, .X

lACTIVATED CALL IN

■GONE"

;FROM A RUNNING

PROGRAM??

;FROM DIRECT MODE??

; PROGRAM?

;DIRECT?

;GETTHE COMMAND

BACK

:FINO THE COMMAND

: RESTORE REGS

:CMPLETECHRGOT

;TO THE END OF CHRGOT

55

00210 CD28 CALL 10
00311 CD28 86 A9 STC CNTDN ;SAVE INDEX
S CO2A 8D7ACC STA FLAG ;SAVE THE COMMAND

FOR LATER

00213 CD2D 20A3CE LSR RDFiLE ;GET THE FILENAME AND
LENGTH

nd?14 CD30 A6 A5 LDX CNTDN ;HESTOBE INDEX
00215 CD32 A9 27 LDA #,FILE ;SET FILENAME ADDRESS

56

APPENDIX VI EXPLANATION OF ERROR MESSAGES

Error messages are given in the program listing accompanying the

statements in error. The following is a list of all error messages

which might be produced during assembly.

* "A MODE NOT ALLOWED

Following the legal opcode, and one or more spaces, is the letter A

followed by one or more spaces. The assembler is trying to use the
accumulator (A - accumulator mode) as the operand. However, the

opcode in the statement is one which does not allow reference to

the accumulator. Check for a statement labelled A (an illegal

statement), which this statement is referencing. If you were trying to

reference the accumulator, look up the valid operands for the
opcode used.

**A,X,Y,S,P RESERVED

A label on a statement is one of the five reserved names (A, X, Y, S
and P). They have special meaning to the assembler and therefore

cannot be used as labels. Use of one of these names will cause this

error message to be printed. No code will be generated for the

statement. The label does not get defined and will appear in the

symbol table as an undefined variable. Reference to such a label

elsewhere in the program will cause error messages to be printed as

if the label were never declared.

■'BRANCH OUT OF RANGE

All of the branch instructions {excluding the two jumps), are

assembled into type bytes of code. One byte is for the opcode and

the other for the address to branch to. The branch is taken relative

to the address of the beginning of the next instruction. If the value

of the byte is 0-127, the branch is forward; if the value is 128-255, the

branch is backward. (A negative branch is in two's complement

form). Therefore, a branch instruction can only branch forward 127 or

backward 128 bytes relative to the beginning o(the next instruction.

If an attempt is made to branch further than these limites, this error

message will be printed. To correct, restructure the program.

"CAN'T EVAL EXPRESSION

In evaluating an expression, the assembler found a character it

couldn't interpret as being par! of a valid expression. This can

happen if the field following an opcode contains special characters

not valid within expressions {i.e. parentheses). Check the operand

field and make sure only valid special characters are within a field
{between commas).

57

"DUPLICATE SYMBOL

The first field on the card is not an opcode so it is interpreted as a

label. If 1he current line is the first line in which that symbol appears

as a label (or on the left side of an equals sign), it is put into the

symbol table and tagged as defined in that line. However, if the

symbol has appeared ss a label, or on the left of an equate prior to

the current line, the assembler finds the label already in the symbol

table. The assembler does not allow redefinitions of symbols and

will, in this case, print this error message.

"FILE EXISTS

The FILE EXISTS error message occurs when the object file named

already exists on the diskette. This error can be corrected by

scratching the old file or changing the diskette.

"FILE NOT FOUND

The FILE NOT FOUND error message is displayed when one of the

following occurs:

• The source file was not found

• A .LIB specifies a nonexistent file

• A .FIL specifies a nonexistent file

The user should make sure that the filename is not misspelled, or

that the wrong diskette was placed in the disk drive.

"FORWARD REFERENCE

The expression on the right side of an equals sign contains a

symbol that hasn't been defined oreviously. One of the operations of

the assembler is to evaluate expressions or labels, and assign

addresses or values to them. The assembler processes the input

Source Code sequentially, which means that all of the symbols that

are encountered fall into two classes, i.e., already-defined symbols

and not-previously-encountered symbols, The assembler assigns

defined values and builds a table of undefined symbols. When a

previously used symbol is discovered, it is substituted into the

table. The assembler then processes all of the input statements a

second time using currently defined values.

A label or expression which uses a yet undefined value is

considered to be referenced forward to the to-be-defined value.

To aliow ior conformity of evaluating expressions, this assembler

allows for one level of forward reference so that the following code

is allowed.

Card Sequence label opcode operand

100 ' BNE NEWONE
200 NEWONE LDA #5

58

The following is not allowed:

Card Sequence label opcode operand

100 BNE NEWONE

200 NEWONE INC NEXT + 5

300 NEXT LDA #5

This feature should not disturb the normal use of labels. The

correction for this problem in this example is:

Card Sequence label opcode operand

100 ' BNE NEWONE
300 NEXT LDA #5

301 NEWONE INC NEXT+5

This error may also mean that the value on the right side of the ' = '

is not defined at all in the program, in which case, the cure is the

same as for undefined values.

The assembler cannot process more than one level of computed

forward reference. AM expressions with symbols that appear on the

right side of any equal sign must refer only to previously defined

symbols for the equate to be processed.

"ILLEGAL OPERAND TYPE

After finding an opcode that does not have an implied operand, the

assembler passes the operand field (the next non-blank field

following the opcode) and determines what type of operand it is

(indexed, absolute, etc.). If the type of operand found is not valid for

the opcode, this error message wifl be printed.

Check to see what types of operands are allowed for the opcode

and make sure the form of the operand type is correct (see the

section 1.1. on addressing modes).

Check for the operand field starting with a left parenthesis. If it is

supposed to be an indirect operand, recheck the correct format for

the two types available. If the format was wrong (missing right

parenthesis or index register), this error will be printed. Also check

for missing or wrong index registers in an indexed operand {form:

expression, index register).

"IMPROPER OPCODE

The assembler searches a tine until it finds the first non-blank

character string. If this string is not one of the 56 valid opcodes, it

assumes it is a label and places it in the symbol table. It then

continues parsing for the next non-blank character string. If none

are found, the next line will be read in and the assembly will

continue. However, if a second field is found, it is assumed to be an

opcode (since only one label is allowed per line). If this character

string is not a valid opcode, the error message is displayed.

59

This error can occur it opcodes are misspelled, in which case the

assembler will interpret the opcode as a label (if no label appears on

the card), It will then try to assemble the next field as the opcode. It

there is another field, this error will be printed.

Check for a misspelled opcode or for more than one label on a line.

"INDEXED MUST BE X OR Y

After finding a valid opcode, the assembler looks lor the operand. In

this case, the first character in the operand field is a left

parenthesis. The assembler interprets the -iext field as an indirect

address which, with the exception of the jump statement, must be

indexed by one of the index registers, X or Y. In the erroneous case,

the character that the assembler was trying to interpret as an index

register is not X or Y and this error message is printed.

Check for the operand field starting with a left parenthesis. If it is

supposed to be an indirect operand, recheck the correct format for

the two types available. If the format is wrong (missing right

parenthesis or index registers), this error will be printed, Also, check

for missing or wrong index registers in an indexed operand (form:

expression, index registers).

'" INDIRECT OUT OF RANGE

The assembler recognizes an indirect address by the parentheses

that surround it. If the field following an opcode has parentheses

around it, the assembler will try to assemble it as an indirect

address. If the operand field extends into absolute modet I.e., larger

than 255, (two bytes would be required to specify the address), this

error message will be printed.

This error will only occur if the operand field is in correct form (i.e.,

a index register following the address), and the address field is out

of page zero. To correct this, the address field must refer to page

zero memory. (The implied high order byte is 00).

''INVALID ADDRESS

An address referenced in an instruction, or the address in one of the

assembler directives (.BYTE, .DBYTE., .WORD), is invalid. In the case

of an instruction, the operand that is generated by the assembler

must be greater than or equal to zero, and less than or equal to

SFFFF (2 bytes long). (This excludes relative branches which are

limited to + 127 or - 128 from the next instruction.) If the operand

generates more than two bytes of code or is less than zero, this

error message will be printed. For the .BYTE directive, each operand

is limited to one byte. All address references must be greater than

or equat to zero.

This validity is checked after the operand is evaluated. Check for

values of symbols used in the operand field (see the symbol table

for this information).

60

" LABEL START NEED A-Z

The first non-blank field is not a valid opcode. Therefore, the

assembler tried to interpret it as a label. However, the first character

of the field does not begin with an alphabetic character and the

error message is printed.

Check for an unlabelled statement with only an operand field that

does start with a special character. Also check for an illegal tabel in

the instruction.

"LABEL TOO LONG

All symbols are limited to six characters in length. When parsing,

the assembler looks for one of the separating characters (usually a

blank) to find the end of a label or string. If other than one of these

separators is used, the error message will be printed providing that

the illegal separator causes "the symbol to extend beyond six

characters in length. Check for no spacing between labels and

opcodes. Also, check tor a comment card with a long first word that

doesn't begin with a semicolon. In this case the assembler is trying

to interpret part of the comment as a label.

**NON-ALPHANUMERIC

Labels are made up of one to six alphanumeric digits. The label field

must be separated from the opcode field by one or more blanks. If a

special character or other separator is between the label and the

opcode, this error message might be printed.

Each of the 56 valid opcodes are made up of three alphabetic

characters. They must be separated 1rom the operand field (if one is

necessary) by one or more blanks. If the opcode ends with a special

character {such as a comma), this error message will be printed.

In the case of a lone label or an opcode that needs no operand, they

can be followed directly by a semicolon to denote the rest of the

card as a comment (use of a semicolon tabs the comment out to

the next tab position).

**PC NEGATIVE - RESET 0

An assembled program is loaded into core in the range of position 0

to 64K (65535). This is the extent of the machine. A maximum of two

bytes can be used to define an address. Because there is no such

thing as negative memory, an attempt to reference a negative

position will cause this error and the program counter (or pointer to

the current memory location) to be reset to zero.

When this error occurs, the assembler continues assembling the

code with the new value of the program counter. This could cause

multiple bytes to be assembled into the same locations. Therefore,

care should be taken to keep the program counter within the proper

limits.

61

"RAN OFF END OF CARD

This error message will occur if the assembler is looking for a

needed field and runs off the end of the card (or line image) before

the field is found. The following should be checked for: a valid

opcode field without an operand field on the same card: an opcode

that was thought to take an implied operand! which in fact needed

an operand: an ASCII string that is missing the closing quote (make

sure any embedded quotes are doubled; to have a quote at the end

of the string, there must be three quotes, two for the embedded

quote and one to close off the string): a comma at the end of the

operand field indicates there are more operands to come: if there

aren't other operands, the assembler will run off the current line

looking for them.

"READ ERROR

This message refers to a disk drive read error Refer to your disk

drive manual for a description of these errors and their causes.

•-UNDEFINED DIRECTIVE

All assembler directives begin with a period. If a period is the first

character in a non-blank field, the asembler interprets the following

character string as a directive. If the character string that follows is

not a valid assembler directive, this error message will be printed.

Check for a misspelled directive or a period at the beginning of a

field that is not a directive.

''UNDEFINED SYMBOL

This error is generated by the second pass. If in the first pass the

assembler finds a symbol in the operand field (the field following

the opcode or an equals sign), that has not been defined yet, the

assembler puts the symbol into the table and flags it for

interpretation by pass two. if the symbol is defined (shows up on

the left of an equate or as the first non-blank fiefd in a statement),

pass one will define it and enter it in the symbol table. Therefore, a

symboJ in an operand fieldh found before the definition, will be

defined with a value when pass two assembles it. In this case, the

assembly process can be completed. This is what is meant by one

level of forward reference. (See Forward Reference Error).

However, if pass one doesn't find the symbol as a labei or on the

left of an equate, the assembler never enters it in the symbol table

as a defined symbol. When pass two tries to interpret the operand

field the symbol is in, there ts no corresponding value for the

symbol and the field cannot be interpreted. Therefore, the error

message is printed with no value for the operand.

This error will also occur if a reserved symbol A, X, Y, S, or P, is

used as a label and referred to elsewhere in the program. On the

statement that references the reserved symbol, the assembler sees

it as a symbol that has not been defined. Check for use of reserved

symbols, misspelled labels or missing labels to correct this error.

Note: When the assembler finds an expression (whether it is in an

OPERAND field or on the right of an equals sign) it tries to evaluate

the expression. If there is a symbol within the expression that hasn't

been defined yet, the assembler will flag it as a forward reference

and wait to evaluate it in the second pass. If the expression is on

the right side of an equal sign, the forward reference is a severe

error and will be flagged as such. However, if the expression is in an

OPERAND field of a valid OPCODE, the first pass will set aside two

bytes (or the value of the expression and flag it as a forward

reference. When the second pass fills in the value of the expression,

and the value of the expression is one byte long i.e., 256, the

instruction is one byte longer than required. This is because the

forward reference to page zero memory wastes one byte of memory

(the extra one that was saved). During the first pass, the assembler

didn't know how large the value was, so it saved for the largest

value which was two bytes.

63

APPENDIX VII EDITOR64 COMMAND SUMMARY

Command

AUTO n1

AUTO

CHANGE/s1/s2/,n1-n2

CHANG E/s1/s2/

CPUr'FILE"

DELETE n1-n2

FIND/s1/,n1-n2

FlND/si/

FORMAT n1-n2

GET"FILE",n1-n2,n3

GET"FILE"

KILL

LIST

NUMBER nltn2tn3

PUTllFILE"ln1-n2)n3]n4

PUT"FILE"

Description

Starts automatic line numbering

Shuts off auto

Change string in line range

Change string no range

Compacted PUT, unnecessary spaces are

removed

Delete range

Find string in line range

Find string no range

Print formatted

Bring in text from disk file

Short form GET

Disable the editor

List lines of text

Renumber text

Save text on disk file

Save text short form

APPENDIX VIII MONITOR COMMAND SUMMARY

ASSEMBLE

COMPARE

DISASSEMBLE

FILL

GO

HUNT

INTERROGATE

LOAD

MEMORY

NEW LOCATOR

REGISTERS

SAVE

TRANSFER

A

c

D

F

G

H

1

L

M

N

R

S

T

EXIT

Assemble a line of machine code

Compare two sections of memory and

report differences

Disassemble a line of 6502 code

Fill memory with the specified address

Start execution at the specified address

Hunt through memory for all

occurrences of certain bytes

interrrogate memory, showing the ASCII

values of the memory locations

Load a file from tape or disk

Display the hexadecimal values of

memory locations

Adjust machine language program after

moving it

Display the CPU registers

Save to tape or disk

Transier code from one section of

memory to another

Exit 64MON (BASIC wil! need to be

reset)

65

COMMAND

@C(dr):newfile([vol]) = oldfile([volJ)

@f(dr)

@N(dr);diskname,id

@R{dr):newfile([vol]) = oldfiie([voi])

©S(dr):filename('X(vol])

@UJ

@$(dr):{filename)(*)([vol])

/filename

%filename

t filename

*■ filename

DESCRIPTION

Current disk status

Copy a file

Initialize a drive

Format a disk

Kill the wedge program

Rename a file

Scratch a file

Reset the DOS

Read the directory

All DOS commands will go to

n where n is 8 to 15 inclusive

Load a file (at BASIC)

Load a file {at its own !oad

address)

Load a file (at BASIC) and run

it

Save a tile

Please Note: 'Vol' is any character enclosed in square brackets; 'dr'

must be 0 (zero) or 1 (one) for the respective drives.

66

t commodore

COMPUTER
CommDdore Business Machines. Inc.

1200 Wilson Drive • West. Chester. PA 193B0

Commodore Business Machines. Limited

3370 Pharmacy Avenue • AgmcourL, Ontario. M1W 2K4

Prinled in Hong Kong

