

-- -~'
I~

:;..

SALLY GREENWOOD LARSEN

d3\\ Micro Text Publications, Inc.
ISIItlRUl!OOI Prentice·Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress CataJogJng in Publication Data

Larsen, Sally Greenwood.
Sprite gIaphics lor the Commodore 64.

"A Spectrum Book."
Includes index.
1. Computer graphics. 2. Commodore 64 (Computer)

I. Title.
T385.L37 1983 001.64'43 83-21164
ISBN 0-13-838144-5
ISBN 0-13-838136-4 (pbk.)

©1983 by Sally Greenwood Larsen.
All rights reserved. No part of this book may be reproduced in any form or by any
means without permission in writing from Sally Greenwood Larsen.
A Spectrum Book. Printed in the United States of America.

10 9 8 7 6 5 4 3 2

ISBN 0-13-838144-5

ISBN 0-13-838136-4 {PBK.}

This book is available at a special discount when ordered in bulk quantities. Contact
Prentice-HaiL Inc .. General Publishing Division. Special Sales. Englewood Cliffs. N.J.
07632.

Prentice-Hall InternationaL Inc .. London
Prentice-Hall of Australia Ply. Limited. Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro

While every precaution has been taken in preparation of the programs of this book,
neither the publisher nor the author will assume any liability resulting directly or in
directly from use of the programs listed within.

Commodore 64 is a registered trademark of Commodore Business Machines, Inc.

DEDICATION
To the original members of the Old Fashioned
Recipe quartet:

Barb Gluth
Ronnie McGinn
Geri Shelton

whose music, humor, and caring gave me a year's
worth of wonderful memories. May our friend
ships last for the rest of our lives, no matter how
many miles may separate us.

ACKNOWLEDGMENTS
Putting together a book is always a major undertaking. I am

happy to be able to give credit to those people who made it all
possible.

Alan Rose, my publisher at Micro Text Publications, was the
driving force behind this work. Without him, you would not be
reading this book.

Greg Willmore, of Willmore Graphics in Milan, Illinois, pro
duced the color photographs. He spent extra time on this pro
ject, looking for just the right color combinations and camera
settings to arrive at the excellent results he was able to obtain.
Thanks, Greg. You did a first-class job.

Whenever one deals with computers, there will always be
unforeseen difficulties with hardware and software. (At this
point, I can think of several new corollaries for Murphy's Law.)
But I was fortunate enough to have the help and support of
Cosmos Computers, Bettendorf, Iowa. The owner, John Yigas,
and his staff went out of their way to be there with whatever I
needed, whenever I needed it. Thank you to John for the hard
ware help, to Bob Suominen for the printer adVice, to Elaine
Snyder for the tips on selecting word processing software, and
to Jay Martin, programmer extraordinaire, who guided me
through the dark forest of Boolean expressions. I appreciate the
help all of you gave to me so willingly.

TABLE OF CONTENTS

Introduction

I. Overview of Sprite Graphics. 1
2. Designing and Defining your Sprites. 6
3. Choosing Colors for your Sprites .. 34
4. Storing Sprites in Memory 39
5. Turning Sprites On and Off 46
6. Positioning your Sprites on the Screen. 50
7. Sprite Priorities. .. 58
8. Expanding your Sprites. .. 63
9. Moving and Animating Sprites on the Screen 69

10. Collision Detection 76
II. Multi-color Mode. .. 80
12. Incorporating Sprites into your Programs. 87
13. Binary Notation and Boolean Operations 155
14. Questions and Answers about Programming

with Sprites ... 171
15. Sprite Register Summary 181

Index .. 184

INTRODUCTION
May I make an observation here?
I'd be willing to bet that you've already read the chapter in

the Commodore 64 User's Guide which pertains to Sprite
graphics. I'd also be willing to bet that you understood very
little of it the first time through, right?

Right.
The whiz kids next door have been conquering the universe

for a month now on their home computer, but all you've been
able to do is type in the sample Sprite program and watch the
three balloons float around on the screen. And to be truthful,
you aren't even sure why that program works. Right?

Right.
Then this is the book for you. I was in the same position you

are, not so long ago, and I have carefully explained in this
book everything I wish I'd known when I started with Sprite
graphics. They really are as powerful, as impressive, and as
easy to use as the advertisements proclaim - once you under
stand how and why they work.

This book was written with the beginning or intermediate
programmer in mind. You do need a general understanding of
how your computer operates, and how to write simple pro
grams in BASIC, but I will supply the rest. I've even included a
chapter on binary notation and arithmetic, if you need a re
view (or you're learning it for the first time).

I can't promise that you'll be conquering the universe within
a half hour, but I can guarantee that when the kids next door
ask how you're getting along with your computer, you'll be
able to show them some animated graphics that will knock
their computerized socks off.

OVERVIEW OF
SPRITE GRAPHICS

Many of us would like to use high resolution graphics in our
programs, but find them to be too much work. Not only do you
have to plot each little dot in your figure, and go through
BASIC gymnastics to move it around on the screen as a unit,
but all too often the results are disappointing. The movement is
too slow or too jerky for your purposes, and you end up tossing
out the whole program.

Sprite graphics, a specially designed system of high resolu
tion color graphics built into the Commodore 64 computer,
solves many of these problems. It allows both experienced and
beginning programmers to produce professional-looking ani
mated graphics with a minimum of coding.

WHAT IS A SPRITE?
Each 24 by 21 dot Sprite is a shape designed by the program

mer. It can be all one color, or a combination of up to four
colors. The Sprite is placed on the screen by defining the X and
Y coordinates of the location desired. Movement is achieved by
"stepping" the Sprite through the coordinate values.

1

SPRITE GRAPHICS FOR THE COMMODORE 64

One of the most powerful (yet easiest to use) features of Sprite
graphics is dominance - choosing which Sprite should have
the "right of way" when they pass each other on the screen. Up
to eight Sprites can be displayed on the screen at once, each
moving in whatever direction the programmer chooses. Priority
is defined by the numbering system for the Sprites. Sprites with
lower numbers will have priority over higher-numbered
Sprites. So, if Sprites # 1 and #3 meet, Sprite # 1 will pass "in
front of" Sprite #3. This three-dimensional effect is further en
hanced when the colors of Sprite #3 appear through any
"holes" in Sprite # 1. This gives a marvelous feeling of depth to
the animation possible with Sprite graphics.

A built-in collision detection system allows the programmer
to direct the action based on Sprites coming into contact with
one another (a natural for designing arcade-style games). Col
lisions can also be detected between Sprites and any back
ground figures, such as the walls of a maze, or a boundary, or
even a word printed on the screen.

Sprites can be made larger than the originally defined size
by a very simple process. A Sprite can be expanded along the
X-axis, along the Y-axis, and along both axes.

Some Basic Sprite Facts
Before we look at a sample program, let's define a few basic

terms and ideas concerning Sprites.
The Commodore 64 is able to use Sprite graphics because it

has inside it a special microprocessor chip, referred to as the
Video Chip. This chip contains 46 areas to store information,
called REGISTERS. Each register is one byte long. That byte is
further broken down into eight BITS of information. Sometimes
we will be using the decimal value of the number stored in
each register. Other times it will be necessary to examine indi
vidual bits within the register. If you don't know a bit from a
byte, and a binary number sounds faintly unsavory to you, you
probably should read Chapter 13 before you go much further.
It contains a review of binary notation and how bits and bytes
work together. A good working knowledge of binary notation is
a must for programming with Sprites.

2

OVERVIEW OF SPRITE CRAPHICS

We must have a way to reference each of the registers in the
video chip. Each has a number, but these numbers are rather
large. (They start at 53248 and get worse.) Since each of the
registers we are examining is somewhere in the video chip,
and we know that the beginning address of the video chip is
53248, we can take advantage of that fact and express each
register as an offset from the beginning of the video chip. In
stead of referring to the Sprite Enable Register as location
53264, we can call it V + 16, where V = 53248. Either expression
has the same value, but it is much easier for the memory to
deal with V + 16.

Now you are wondering whose memory I mean - yours or
the computer's? Actually, both! The advantage for the memory
between your ears is obvious. For the computer, the expression
V + 16 takes less space in its memory; and is therefore more
efficient.

The Case For Clarity
Speaking of efficiency, I can just hear the comments some of

you more advanced programmers are making as you page
through this book and look at the program listings. You are
thinking that they will be somewhat inefficient to store and ex
ecute, the way I have all the statements laid out on separate
lines. Yes, you are correct. These programs are not coded for
efficiency. But there is a very good reason for this.

The purpose of this book is to teach you how Sprite graphics
work. My main objective in including program listings is to
give you easy-to-understand examples of what Sprites can do.
And even though "crunched" programs (ones with all the
spaces removed and absolutely everything that is unnecessary
taken out) may be more efficient to run, they aren't very easy to
read, or to understand.

There will be time later to crunch your own Sprite programs.
(Consult the crunching guide on page 24 in the Commodore 64
Programmer's Reference Guide for some good suggestions.) In
the meantime, I will write all my sample programs in a form
that will be easiest for you to read.

3

SPRITE CRAPHICS FOR THE COMMODORE 64

If you've looked through the index, you see this book does not
contain a section on how to do bit-mapped graphics, or any
other fancy type of graphics other than Sprites. It also does not
tell you how to add sound to your Sprite programs. The star of
this show is Sprite graphics, folks. If I tried to include every
thing else, you'd need a wheelbarrow to carry this book h9me.

One last thing to remember before we start. Even though we
will be working with eight Sprites, they are numbered zero
through seven, not one through eight. This takes a bit of getting
used to.

A SIMPLE
SAMPLESPRITEPROCRAM

I know you're anxious to have something to show on the
screen, so type this program in and run it. If you haven't made
any typographical errors in the DATA statements, you should
see a yellow butterfly floating diagonally down your screen.

10 REM SAMPLE SPRITE PROGRAM
15 REM UNCRUNCHED LISTING FOR READABILITY
20 V=53248
22 PRINT CHR$(147):POKE V+21,0
25 POKE 53280,5:POKE 53281,1
30 POKE 2040,192
40 FOR Y = 0 TO 62
50 READ A:POKE (192*64)+Y,A
70 NEXT Y
75 POKE V+39,7
80 POKE V+23,1:POKE V+29,1
88 Y=50:X=24
90 POKE V+O,X :POKE V+l,Y
95 POKE V+21,1
100 Y=Y+l:X=X+l
110 IF Y = 255 THEN Y = l:X=l
130 GOTO 90
10665 REM BUTTERFLY FROM CHAPTER 2
10670 DATA 2,0,64,49,0.,140
10680 DATA 120,129,30,252,66,63
10690 DATA 254,36,127,255,24,255

4

OVERVIEW OF SPRITE GRAPHICS

10700 DATA 255,153,255,255,219,255
10710 DATA 255,255,255,255,255,255
10720 DATA 255,255,255,255,255,255
10730 DATA 255,255,255,255,255,255
10740 DATA 255,255,255,255,255,255
10750 DATA 255,219,255,127,153,254
10760 DATA 63,24,252,30,24,120
10770 DATA 12,24,48

Program Highlights A guided tour of the highlights of this
sample program will help you understand our objectives in the
next ten chapters.

Line 20 - sets the location for the beginning of the video
chip.

Line 22 - clears the screen and turns off any Sprites which
might have been on the screen.

Line 25 - sets the screen background and border color
codes.

Line 30 - tells the program where in memory we will store
the DATA values for Sprite #0.

Lines 40 thru 70 - reads the 63 DATA values for this Sprite
into the correct memory locations.

Line 75 - assigns the color code for yellow to Sprite #0.
Line 80 - expands Sprite #0 to twice its normal length and.

twice its normal width.
Line 88 - initializes the values of the X and Y coordinates.
Line 90 - sets the X and Y coordinates to position Sprite #0

on the screen.
Line 95 - turns on Sprite #0.
Line 100 - increments the X and Y coordinate values, so the

Sprite will move across the screen.
Line 110 - sets the X and Y coordinate values back to 1

when Y reaches its maximum value of 255.
Line 130 - goes back to 90 to continue the Sprite's move

ment across the screen.
Lines 10670 thru 10770 - contain the numeric values used to

define the shape of the Sprite.

5

DESIGNING AND DEFINING
YOUR SPRITES

A Sprite is a high-resolution graphics shape composed of a
grid of tiny dots of light called PIXELS. These pixels light up on
your television screen or monitor to form patterns and shapes.
Each Sprite grid is 24 dots wide by 21 dots long, for a total of
504 dots. Each row in the Sprite is divided into three groups of
eight dots, for a reason you will see in just a moment.

I 2 ;, 4 ~ 6 1 8 9 10 II 12 13 14 l:i 16 17 18 19202 1 222' 24

ROWS (I r-+-t-+-t-+-H-1f-HH-1--+-1--+-1++++++-+1

20 r-+-t-+-t-+-H-1H-1--+-1--+-1++++++++-+1

Figure 2-1

6

DESIGNING AND DEFINING YOUR SPRITES

STARTINC OFF
Your first task in designing a Sprite is to decide which of

these dots you want "lighted" to form your Sprite shape. For
these examples we will build single-color Sprites. Sprites can
be made of up to four colors, using multi-color mode, but this is
a bit more complicated and will be covered in Chapter 11.

In our example, the Sprite shape will be a butterfly. The
shaded squares show the dots which will be lighted when the
Sprite is shown on the screen.

I 2 3 4

6

7' ".

8
9 .'

10 :

II .

12 '.

13 :

14 :

15 .'

16 .

17 ..

18

19

20

5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 2021 222324

. . . .

21L-~~~~~-L~~~~~~LJ-+~~'~'~~~~~

BUTTERFL Y SPRITE

Figure 2-2

7

SPRITE CRAPHICS FOR THE COMMODORE 64

Beginning Binaries
Once you have shaded in the Sprite shape you like, it has to

be coded into a form the computer can understand. To do this,
we convert each shaded dot on the grid into a "I" and make
each empty dot a "0." Each row in the grid is then divided into
three 8-digit binary numbers. In the butterfly example, the first
row across now becomes:

Figure 2-3

(If you need help with binary numbers, this is the time to
read through Chapter 13.)

Each of these 8-digit binary numbers will be converted into
their decimal equivalent. The resulting three decimal numbers
will be used in DATA statements later in the program.

= 2

(DECIMAL)

= 0

(DECIMAL)

Figure 2-4

= 64

(DECIMAL)

So the first line in the Sprite is converted into the following
DATA statement:

10 DATA 2,0,64

8

DESIGNING AND DEFINING YOUR SPRITES

We do the same for all 21 rows in the Sprite figure, and the
DATA statements end up like this:

1000 REM BUTTERFLY SPRITE EXAMPLE
1010 DATA 2~0~64
1020 DATA 49,0,140
1030 DATA 120 ~ 129,30
1040 DATA 252,66,63
1050 DATA 254,36,127
1060 DATA 255,24,255
1070 DATA 255,153,255
1080 DATA 255,219,255
1090 DATA 255,255,255
1100 DATA 255,255,255
1 1 1 0 DATA 255,255,255
1120 DATA 255,255,255
1130 DATA 255,255,255
1140 DATA 255,255,255
1150 DATA 255,255,255
1160 DATA 255,255,255
1170 DATA 255,219,255
1180 DATA 127,153,254
1190 DATA 63,24,252
1200 DATA 30,24,120
1210 DATA 12,24,48

You may be wondering why each data statement contains
only three numbers. This was done strictly for readability, and
so you can easily see which three numbers correspond to each
line in the Sprite grid. When you write your own Sprite pro
grams, you should put more numbers in each DATA statement,
for program efficiency.

Making Your Binary Conversion
Job Easier

Converting your Sprite drawing into these 63 data statements
is the most time-consuming (and boring) part of working with
Sprite graphics. One small mistake here, and your finished

9

SPRITE GRAPHICS FOR THE COMMODORE 64

Sprite can look totally unrecognizable. To make this process a
bit easier, try these ideas:

1. Use the binary conversion program given at the end of
Chapter 6 (page 78) in your Commodore 64 User's Guide.
Unless you speak fluent binary, mistakes can easily be
made when you convert your binary numbers to their dec
imal values. This little program will be a big help.

2. Look for sections of your Sprite where the pattern repeats. Of
course, lines which have areas of all blank dots, or areas
with all 8 dots shaded in are easily recognized. But don't
forget to look for other repeated patterns, too. If your shape
is symmetrical, there may be many repeated areas. (In our
butterfly example, Lines 8 and 17 are identical.)

3. Always count the number of decimal values you end up
with. If you don't have 63 numbers, something is missing.

4. Put REMARK statements in with your DATA statements,
showing where each new Sprite's DATA statements begin.
It's much easier to trace mistakes later, especially if you
know where each Sprite's 63 values begin.

S. Commercial software is available which allows you to
"draw" Sprites on the screen, make any kind of changes,
and then have the program translate the finished grid into
DATA statements. Most of these packages allow you to copy
and modify Sprites you have already done, change the col
ors to experiment with different effects, and view a series of
Sprites in animation sequence. Some packages will even ro
tate a Sprite for you within the grid (make your original
shape upside-down, for instance). If you plan to do a lot of
Sprite work, the $30-40 cost is well worth it. I find the pack
age I use to be especially helpful when I'm doing multi-color
Sprites, or an animation sequence. You can also find prog
rams in computer user magazines which do some of the
same things. (See list at end of chapter.)

THINGS TO CONSIDER WHEN
DESIGNING SPRITES

A 21 by 24 grid is not very large, if you are trying to design a
complex Sprite. In the beginning, you will get better results if

10

DESIGNING AND DEFINING YOUR SPRITES

you choose relatively simple shapes and make them fill as
much of the grid as possible. Sprites designed in this fashion
tend to show up better on the screen, and to work reasonably
well with a wider range of screen/Sprite color combinations.

As you work more with Sprites, you will see that some colors
"fight" each other on the screen, due to the way your television
set or monitor produces different colors. When battling colors
are placed next to each other, the edges may look blurred. This
effect will be intensified if the Sprite involved is very small, or
has small areas of color surrounded by large uncolored areas
where the background shows through.

[1

:: :

THE ISOLATED DOTS IN THE CENTER OF THIS
SPRITE MAY NOT BE EASILY SEEN WITH
SOME COLOR COMBINATIONS OF SPRITE AND

SCREEN BACKGROUND.

Figure 2-5

11

L,:

SPRITE CRAPHICS FOR THE COMMODORE 64

Interesting results can be obtained by making the "picture"
part of your Sprite out of the blank areas instead of the shaded
areas.

;; ' .

. :,.: ...

, '>~:,:<c, .,'0

Figure 2·6

Making "Siamese" Sprites
A single Sprite can be defined no larger than 24 dots across

by 21 dots down. However, if you need a larger grid to work
with, there is a way around this limitation. You can design
TWO Sprites that are constructed so that placed side by side on
the screen, they will make one large figure. Here's an exam
ple.

You want to make a Sprite in the shape of a house, but the
house you have in mind will not fit inside a single Sprite grid.

12

DESICNINC AND DEFININC YOUR SPRITES

So you design two Sprites - one to be the left side of the
house, the other to be the right side.

SPRITE GRID FOR LEFT SIDE OF HOUSE SPRITE GRID FOR RIGHT SIDE OF HOUSE

>1,
.-... ~<.: or: : , ., -; ~ ./;:- '-: : .".

«-.-

COMPLETED HOUSE MADE OF TWO SPRITES

Figure 2·7

When you position these two Sprites on the screen, you place
them so they touch and look like one large figure. As long as

13

· SPRITE CRAPHICS FOR THE COMMODORE 64

you are certain to move them around together, no one will be
the wiser!

As a matter of fact, your two Sprites wouldn't have to just
touch each other - they could actually "interlock." In this ex
ample, the two Sprites would be assigned different colors. If
they were positioned correctly, they would look like puzzle
pieces being assembled.

Figure 2-8

14

DESIGNING AND DEFINING YOUR SPRITES

FINDING IDEAS FOR
SPRITE SHAPES

Assuming you are not artistically inclined, where can you
find helpful ideas for how to draw Sprite shapes?

One of the most obvious sources is to look over peoples'
shoulders at the arcade. (Or you could make a great sacrifice
and playa few games yourself.) You will be pleasantly sur
prised to realize that many of your favorite (and very visually
exciting) games depend on simple shapes. There may be a lot
going on in the background, with colors changing and light
ning flashing as the universe tumbles around you, but the
shape that the player is manipulating is probably quite simple.
Spaceship Sprites are fun to do, because you really can't go
wrong. Just about any space ship design will look great against
an interesting graphics background.

It is relatively easy to find examples of typestyles for numer
als and letters of the alphabet which can be made with mostly
(or solely) straight lines.

Logos for products and companies can provide interesting
shapes and designs. Look around you to see how advertisers
can get an idea across by the suggestion of a shape.

A rather unlikely source, but one that can be helpful, is
counted cross-stitch or needlepoint pattern books. These pat
terns are built on squares, and the smaller ones will translate
quite nicely into Sprites. The only drawback is that many of
them will require more squares than you will have room for on
your 21 by 24 Sprite grid. You can find these books in hobby
and needlework shops or at your public library. However, be
prepared for strange looks from salespeople if you divulge your
motivation for looking through books of simple patterns!

SAMPLE SPRITE VALUES
If you prefer to wait a bit before designing your own Sprite

shapes, here are the values for some of the Sprites shown in
the color illustrations for this book. All these examples are sing
le-color Sprites. The multi-color Sprites are found in Chapter
11.

15

SPRITE CRAPHICS FOR THE COMMODORE 64

Outline Butterfly
This delicate Sprite has only an outline for a body. It does not

work well when you are using Sprite and screen background
colors which "fight" each other.

10135 REM OUTLINE BUTTERFLY
10140 DATA 3,0,192
10150 DATA 57,129,156,108,195
10160 DATA 54,198,102,99,131
10170 DATA 36,193,129,153,129
10180 DATA 128,219,1,128,126
10190 DATA 1,128,60,1,128
10200 DATA 24,1,128,24,1
10210 DATA 128,24,1,128,24
10220 DATA 1,128,24,1,128
10230 DATA 24,1,128,24,1
10240 DATA 128,126,3,96,219
10250 DATA 6,49,153,140,27
10260 DATA 24,216,14,24,112

Solid Butterfly with Straight Wings
This sturdy Sprite fills the Sprite grid completely from side to

side. It looks especially nice when combined with the other
types of butterfly Sprites.

10270 REM SOLID BUTTERFLY
10280 DATA 3,0,192,57,129
10290 DATA 156,124,195,62,254
10300 DATA 102,127,255,36,255
10310 DATA 255,153,255,255,219
10320 DATA 255,255,255,255,255
10330 DATA 255,255,255,255,255
10340 DATA 255,255,255,255,255
10350 DATA 255,255,255,255,255
10360 DATA 255,255,255,255,255
10370 DATA 255,255,255,255,255
10380 DATA 255,127,219,254,63
10390 DATA 153,252,31,24,248
10400 DATA 14,24,112

16

DESICNINC AND DEFININC YOUR SPRITES

Solid Butterfly with Notched Wings
Of all the butterfly Sprites, this is my masterpiece. It looks the

most like a real butterfly, and adds a bright touch to the screen,
since it can be defined in many different colors.

10405 REM NOTCHED WING BUTTERFLY
10410 DATA 3,0
10420 DATA 192,57,129,156,124
10430 DATA 195,62,254,102,127
10440 DATA 255,36,255,255,153
10450 DATA 255,127,219,254,63
10460 DATA 219,252,31,219,248
10470 DATA 15,219,240,15,219
10480 DATA 240,31,219,248,63
10490 DATA 219,252,127,219,254
10500 DATA 255,219,255,255,219
10510 DATA 255,255,219,255,127
10520 DATA 219,254,63,153,252
10530 DATA 31,24,248,14,24
10540 DATA 112

SOlid Fish
I wouldn't look for a fish like this in your aquarium, but it is

recognizable. This Sprite can be seen swimming underwater in
the color illustration of the lake scene.

10545 REM SOLID FISH
10550 DATA 0,0,0,0
10560 DATA 0,0,0,0,0
10570 DATA 0,0,0,3,240
10580 DATA 0,7,248,0,15
10590 DATA 252,3,28,254,3
10600 DATA 60,255,15,255,255
10610 DATA 254,31,255,252,31
10620 DATA 255,254,255,255,15
10630 DATA 31,254,3,15,252
10640 DATA 1,7,248,0,3
10650 DATA 240,0,0,0,0
10660 DATA 0,0,0,0,0
10670 DATA 0,0,0,0

17

SPRITE GRAPHICS FOR THE COMMODORE 64

Jellyfish/Octopus
I couldn't make this Sprite look much like either a jellyfish or

an actual octopus, but he did turn out to be rather cute. You
can also see him in the colored illustration of the lake scene.

10675 REM JELLYFISH
10680 DATA 3
10690 DATA 255,128,7,255,192
10700 DATA 15,24,224,31,255
10710 DATA 240,60,0,120,60
10720 DATA 0,120,63,255,248
10730 DATA 6,170,192,12,170
10740 DATA 96,25,170,48,51
10750 DATA 43,24,102,109,140
10760 DATA 204,196,196,204,198
10770 DATA 198,204,198,198,204
10780 DATA 198,198,204,198,198
10790 DATA 204,198,198,204,198
10800 DATA 198,204,198,198,204
10810 DATA 198,198

Man wearing Swim Suit
Yes, that is a tiny little bellybutton you see, if you look closely

at this Sprite. He can be seen standing on the dock in the col
ored illustration of the lake scene.

10950 REM MAN IN SWIMSUIT
10960 DATA 0,62,0,0,42
10970 DATA 0,0,62,0,0
10980 DATA 28,0,0,127,0
10990 DATA 1,255,192,3,62
11000 DATA 96,6,62,48,28
11010 DATA 54,56,8,62,16
11020 DATA 0,0,0,0,62
11030 DATA 0,0,62,0,0
11040 DATA 54,0,0,0,0
11050 DATA 0,54,0,0,54
11060 DATA 0,0,54,0,0
11070 DATA 54,0,0,54,0
11080 DATA 1,247,128

18

DESIONINO AND DEFININO YOUR SPRITES

Woman wearing Swim Suit
Her hairdo is a bit outdated, but you can definitely tell she's

female. She and her male friend were designed to be about
the same size. When you move them towards each other hori
zontally, their hands are the first points to touch.

11085 REM WCI'1AN IN SWIM SUIT
11090 DATA 0,62
11100 DATA 0,0,170,128,0
11110 DATA 255,128,0,28,0
11120 DATA 0,127,0,1,193
11130 DATA 192,3,54,96,6
11140 DATA 62,48,28,62,56
11150 DATA 8,62,16,0,127
11160 DATA 0,0,255,128,0
11170 DATA 0,0,0,54,0
11180 DATA 0,54,0,0,54
11190 DATA 0,0,54,0,0
11200 DATA 54,0,0,54,0
11210 DATA 0,54,0,1,247
11220 DATA 128

Inverse Letter "0"
The actual letter in the Sprite is formed by the transparent

area which lets the background show through. The surround
ing color fills the Sprite to all four edges.

9999 REM LETTER G
10000 DATA 255
10010 DATA 255,255,255,255,255
10020 DATA 224,0,7,224,0
10030 DATA 7,231,255,231,231
10040 DATA 255,231,231,255,255
10050 DATA 231,255,255,231,255
10060 DATA 255,231,255,255,231
10070 DATA 255,255,231,240,7
10080 DATA 231,240,7,231,255
10090 DATA 231,231,255,231,231
10100 DATA 255,231,231,255,231
10110 DATA 224,0,7,224,0

19

SPRITE CRAPHICS FOR THE COMMODORE 64

10120 DATA 7,255,255,255,255
10130 DATA 255,255

Inverse Letter "0"
The actual letter in this Sprite is formed by the transparent

area which lets the background show through. It could also be
used for the number zero.

10135 REM LETTER 0
10140 DATA 255,255,255
10150 DATA 255,255,255,224,0
10160 DATA 7,224,0,7,224
10170 DATA 0,7,227,255,199
10180 DATA 227,255,199,227,255
10190 DATA 199,227,255,199,227
10200 DATA 255,199,227,255,199
10210 DATA 227,255,199,227,255
10220 DATA 199,227,255,199,227
10230 DATA 255,199,227,255,199
10240 DATA 224,0,7,224,0
10250 DATA 7,224,0,7,255
10260 DATA 255,255,255,255,255

Inverse Letter "0"
The actual letter in this Sprite is formed by the transparent

area which lets the background show through. It is very strik
ing when used against a dark background instead of a light
one.

10270 REM LETTER D
10280 DATA 255,255,255,255,255
10290 DATA 255,224,0,7,224
10300 DATA 0,7,249,255,231
10310 DATA 249,255,231,249,255
10320 DATA 231,249,255,231,249
10330 DATA 255,231,249,255,231
10340 DATA 249,255,231,249,255
10350 DATA 231,249,255,231,249
10360 DATA 255,231,249,255,231

20

DESIGNING AND DEFINING YOUR SPRITES

10370 DATA 249,255,231,249,255
10380 DATA 231,224,0,7,224
10390 DATA 0,7,255,255,255
10400 DATA 255,255,255

Inverse Letter "J"
The actual letter in this Sprite is formed by the transparent

area which lets the background show through. Check the in
verse Sprite programs in Chapter 12 if you would like to ma
nipulate this Sprite's data to produce a normal letter.

10405 REM LETTER J
10410 DATA 255,255
10420 DATA 255,255,255,255,224
10430 DATA 0,7,224,0,7
10440 DATA 255,227,255,255,227
10450 DATA 255,255,227,255,255
10460 DATA 227,255,255,227,255
10470 DATA 255,227,255,255,227
10480 DATA 255,255,227,255,231
10490 DATA 227,255,231,227,255
10500 DATA 231,227,255,231,227
10510 DATA 255,231,227,255,224
10520 DATA 3,255,224,3,255
10530 DATA 255,255,255,255,255
10540 DATA 255

Inverse Letter "B"
The actual letter in this Sprite is formed by the transparent

area which lets the background show through. Having the en
tire alphabet of Sprite letters saved for later use will come in
very handy if you are designing letter-recognition games for
your preschoolers.

10545 REM LETTER B
10550 DATA 255,255,255,255
10560 DATA 255,255,192,0,3
10570 DATA 192,0,3,243,255
10580 DATA 243,243,255,243,243

21

SPRITE CRAPHICS FOR THE COMMODORE 64

10590 DATA 255,243,243,255,243
10600 DATA 243,255,243,240,0
10610 DATA 3,240,0,31,240
10620 DATA 0,3,243,255,243
10630 DATA 243,255,243,243,255
10640 DATA 243,243,255,243,243
10650 DATA 255,243,192,0,3
10660 DATA 192,0,3,255,255
10670 DATA 255,255,255,255

Inverse Exclamation Point
This inverse Sprite is particularly colorful, since the transpar

ent area is so small compared to the colored background
which fills the rest of the Sprite grid.

10675 REM EXCLAMATION POINT
10680 DATA 255
10690 DATA 255,255,255,255,255
10700 DATA 255,231,255,255,231
10710 DATA 255,255,231,255,255
10720 DATA 231,255,255,231,255
10730 DATA 255,231,255,255,231
10740 DATA 255,255,231,255,255
10750 DATA 231,255,255,231,255
10760 DATA 255,231,255,255,231
10770 DATA 255,255,231,255,255
10780 DATA 231,255,255,255,255
10790 DATA 255,231,255,255,231
10800 DATA 255,255,255,255,255
10810 DATA 255,255

Letter liE"
This is a normal Sprite, with the colored portion of the Sprite

making up the actual letter.

10815 REM LETTER E
10820 DATA 255,255,255
10830 DATA 255,255,255,192,0
10840 DATA 3,192,0,3,192

22

DESIONINO AND DEFININO YOUR SPRITES

10850 DATA 0,3,192,0,0
10860 DATA 192,48,0,192,48
10870 DATA 0,192,48,0,255
10880 DATA 240,0,255,240,0
10890 DATA 192,48,0,192,48
10900 DATA 0,192,48,0,192
10910 DATA 0,0,192,0,3
10920 DATA 192,0,3,192,0
10930 DATA 3,192,0,3,255
10940 DATA 255,255,255,255,255

Letter "F"
If you have a Sprite software package or program to help

you design Sprites quickly and easily, try doing the entire
alphabet and storing it on a disk or tape. This set of Sprites can
be used over and over for a variety of educational programs.

10950 REM LETTER F
10960 DATA 255,255,224,255,255
10970 DATA 224,192,0,0,192
10980 DATA 0,0,192,0,0
10990 DATA 192,0,0,192,0
11000 DATA 0,192,48,0,192
11010 DATA 48,0,255,240,0
11020 DATA 255,240,0,192,48
11030 DATA 0,192,48,0,192
11040 DATA 0,0,192,0,0
11050 DATA 192,0,0,192,0
11060 DATA 0,192,0,0,192
11070 DATA 0,0,192,0,0
11080 DATA 192,0,0

Letter "0"
You can make an "inverse" Sprite out of this normal letter by

using a simple technique found in Chapter 12.

11085 REM LETTER G
11090 DATA 63,255
11100 DATA 252,63,255,252,63

23

SPRITE GRAPHICS FOR THE COMMODORE 64

11110 DATA 255,252,56,0,28
11120 DATA 56,0,28,56,0
11130 DATA 0,56,0,0,56
11140 DATA 0,0,56,0,0
11150 DATA 56,0,0,56,15
11160 DATA 252,56,15,252,56
11170 DATA 15,252,56,0,28
11180 DATA 56,0,28,56,0
11190 DATA 28,56,0,28,56
11200 DATA 0,28,63,255,252
11210 DATA 63,255,252,63,255
11220 DATA 252

Letter "H"
You will quickly discover that the easiest letters to design are

those which have all straight lines.

11225 REM LETTER H
11230 DATA 56,0,112,56
11240 DATA 0,112,56,0,112
11250 DATA 56,0,112,56,0
11260 DATA 112,56,0,112,56
11270 DATA 0,112,56,0,112
11280 DATA 56,0,112,63,255
11290 DATA 240,63,255,240,56
11300 DATA 0,112,56,0,112
11310 DATA 56,0,112,56,0
11320 DATA 112,56,0,112,56
11330 DATA 0,112,56,0,112
11340 DATA 56,0,112,56,0
11350 DATA 112,56,0,112

Letter "I"
This letter is so easy to design that you hardly need to draw it

on graph paper, if you stop and think about it for a minute.

11355 REM LETTER I
11360 DATA 255
11370 DATA 255,255,255,255,255

24

DESIGNING AND DEFINING YOUR SPRITES

11380 DATA 255,255,255,0,24
11390 DATA 0,0,24,0,0
11400 DATA 24,0,0,24,0
11410 DATA 0,24,0,0,24
11420 DATA 0,0,24,0,0
11430 DATA 24,0,0,24,0
11440 DATA 0,24,0,0,24
11450 DATA 0,0,24,0,0
11460 DATA 24,0,0,24,0
11470 DATA 0,24,0,255,255
11480 DATA 255,255,255,255,255
11490 DATA 255,255

Letter "J"
Save yourself some work by adapting existing Sprites to

make new ones. For instance, my letter OJ" is nothing more
than the letter "I" with a tail added to it. This saves me having
to code about three-fourths of the data values again.

11495 REM LETTER J
11500 DATA 255,255,255
11510 DATA 255,255,255,255,255
11520 DATA 255,0,30,0,0
11530 DATA 30,0,0,30,0
11540 DATA 0,30,0,0,30
11550 DATA 0,0,30,0,0
11560 DATA 30,0,0,30,0
11570 DATA 0,30,0,224,30
11580 DATA 0,224,30,0,224
11590 DATA 30,0,224,30,0
11600 DATA 224,30,0,224,30
11610 DATA 0,255,254,0,255
11620 DATA 254,0,255,254,0

Letter II K"
Of all the alphabet letters, this has to be one of the worst to

code as a Sprite. Be sure to make it occupy as much of the
Sprite grid as you can, so you have more room to spread the
diagonal lines.

25

SPRITE CRAPHICS FOR THE COMMODORE 64

11630 REM LETTER K
11640 DATA 224,7,0,224,14
11650 DATA 0,224,28,0,224
11660 DATA 56,0,224,112,0
11670 DATA 224,224,0,225,192
11680 DATA 0,227,128,0,231
11690 DATA 0,0,254,0,0
11700 DATA 252,0,0,254,0
11710 DATA 0,231,0,0,227
11720 DATA 128,0,225,192,0
11730 DATA 224,224,0,224,112
11740 DATA 0,224,56,0,224
11750 DATA 28,0,224,14,0
11760 DATA 224,7,0

Inverse Ouestion Mark
This transparent question mark against a colored back

ground is handy for lots of programming applications. It shows
up well in normal size or when expanded in either or both
directions.

11765 REM QUESTION MARK
11770 DATA 255,255
11780 DATA 255,252,0,15,248
11790 DATA 255,143,241,255,143
11800 DATA 227,255,143,231,255
11810 DATA 15,227,254,31,225
11820 DATA 252,63,240,248,127
11830 DATA 252,240,255,255,225
11840 DATA 255,255,195,255,255
11850 DATA 195,255,255,195,255
11860 DATA 255,195,255,255,195
11870 DATA 255,255,195,255,255
11880 DATA 255,255,255,195,255
11890 DATA 255,195,255,255,255
11900 DATA 255

Starfighter with Straight Wings
This Sprite is simple, but very effective. I've used it in several

action games.

26

DESICNINC AND DEFININC YOUR SPRITES

9999 REM STARFIGHTER
10000 DATA °
10010 DATA 0,0,0,0,0
10020 DATA o,o,o,n,o
10030 DATA 0,0,0,0,0
10040 DATA 0,0,129,255,129
10050 DATA 131,255,193,135,255
10060 DATA 225,135,255,225,255
10070 DATA 255,255,131,255,193
10080 DATA 129,255,129,128,0
10090 DATA 1,128,0,1,0
10100 DATA 0,0,0,0,0
10110 DATA 0,0,0,0,0
10120 DATA 0,0,0,0,0
10130 DATA 0,0

Starflghter with Folded Wings
A variation on the first starfighter, this Sprite shows new ac

tion in my "Conquer the Universe" games. It is essentially the
same size as the original starfighter.

10135 REM STARFIGHTER WITH FOLDED WINGS
10140 DATA 0,0,0
10150 DATA 0,0,0,0,0
10160 DATA 0,0,0,0,0
10170 DATA 0,0,0,0,0
10180 DATA 17,255,136,35,255
10190 DATA 196,71,255,226,135
10200 DATA 255,225,255,255,255
10210 DATA 131,255,193,65,255
10220 DATA 130,32,0,4,16
10230 DATA 0,8,0,0,0
10240 DATA 0,0,0,0,0
10250 DATA 0,0,0,0,0
10260 DATA 0,0,0,0,0

Rocket pointing Upwards
This Sprite has a striped body (alternating columns of color

and background). It looks very different depending on what
type of monitor or television set you are using. It also changes

27

SPRITE GRAPHICS FOR THE COMMODORE 64

in appearance depending on what Sprite and screen color
combination you choose.

10405 REM SHAPELY ROCKET
10410 DATA 0,16
10420 DATA 0,0,84,0,1
10430 DATA 85,0,5,85,64
10440 DATA 21,85,80,21,85
10450 DATA 80,21,85,80,21
10460 DATA 85,80,21,85,80
10470 DATA 21,85,80,21,85
10480 DATA 80,21,85,80,21
10490 DATA 85,80,16,16,16
10500 DATA 16,16,16,16,0
10510 DATA 16,16,0,16,16
10520 DATA 0,16,16,0,16
10530 DATA 16,0,16,16,0
10540 DATA 16

Rocket Blasting Off In upward Direction
This is the same rocket, but with exhaust fumes coming out of

the tail. However, if you choose color combinations which
"fight" on the screen, the exhaust pixels won't be visible at all!

10545 REM SHAPELY ROCKET PLUS EXHAUST
10550 DATA 0,16,0,0
10560 DATA 84,0,1,85,0
10570 DATA 5,85,64,21,85
10580 DATA 80,21,85,80,21
10590 DATA 85,80,21,85,80
10600 DATA 21,85,80,21,85
10610 DATA 80,21,85,80,21
10620 DATA 85,80,21,85,80
10630 DATA 16,16,16,16,16
10640 DATA 16,16,0,16,18
10650 DATA 68,144,16,0,16
10660 DATA 18,68,144,16,0
10670 DATA 16,18,68,144

28

DESICNINC AND DEFININC YOUR SPRITES

Coffee Cup
This deceptively simple Sprite is one of my favorites. De

pending on where you place it on the screen and what colors
you choose, the stearn rising from the cup will appear at times
to be multi-colored, even though this is a single color Sprite.

10675 REM COFFEE CUP
10680 DATA 8
10690 DATA 66,0,4,33,0
10700 DATA 2,16,128,4,33
10710 DATA 0,8,66,0,0
10720 DATA 0,0,255,255,192
10730 DATA 255,255,192,245,85
10740 DATA 252,245,85,254,245
10750 DATA 85,199,245,85,195
10760 DATA 245,85,195,245,85
10770 DATA 195,245,85,199,245
10780 DATA 85,206,245,85,252
10790 DATA 245,85,248,245,85
10800 DATA 240,245,85,192,255
10810 DATA 255,192

Empty zoo cage/Jail
This Sprite is best defined as #0, since you will usually want

to put it on top of other Sprites, so it will look like the back
ground Sprite is in jail or in a cage at the zoo. In Chapter 4 you
will learn that Sprites with the lowest numbers have the high
est priority, when Sprites meet each other on the screen.

10815 REM ZOO CAGE
10820 DATA 255,255,255
10830 DATA 255,255,255,132,16
10840 DATA 65,132,16,65,132
10850 DATA 16,65,132,16,65
10860 DATA 132,16,65,132,16
10870 DATA 65,132,16,65,132
10880 DATA 16,65,132,16,65
10890 DATA 132,16,65,132,16
10900 DATA 65,132,16,65,132
10910 DATA 16,65,132,16,65

29

SPRITE CRAPHICS FOR THE COMMODORE 64

10920 DATA 132,16,65,132,16
10930 DATA 65,132,16,65,255
10940 DATA 255,255,255,255,255

Happy Rabbit
This cartoon-type rabbit is useful for chase scenes and perk

ing up instructional programs. However, if you define him in a
color that is not compatible with the background colors, you
may see "sparkles" of light in his eyes as you move him around
the screen.

9999 REM SPRITE DATA FOR HAPPY RABBIT
10000 DATA °
10010 DATA 0,0,255,0,255
10020 DATA 255,129,255,15,199
10030 DATA 224,3,199,128,0
10040 DATA 238,0,0,238,0
10050 DATA 0,238,0,0,255
10060 DATA 0,1,255,128,3
10070 DATA 147,192,7,147,224
10080 DATA 15,147,240,31,239
10090 DATA 248,31,125,248,15
10100 DATA 131,240,7,131,224
10110 DATA 3,131,192,1,255
10120 DATA 128,0,127,0,0
10130 DATA 0,0

Surprised Rabbit
This alternate version of the rabbit is used in the Spritesam

pIer program found in Chapter 12. These two views are rapidly
alternated as the wolf chases the rabbit across the screen.

10135 REM SPRITE DATA FOR SURPRISED RABBIT
10140 DATA 0,0,0
10150 DATA 0,0,0,0,0
10160 DATA 0,31,199,240,27
10170 DATA 199,176,24,238,48
10180 DATA 24,238,48,24,238
10190 DATA 48,24,255,48,25

30

DESIONINO AND DEFININO YOUR SPRITES

10200 DATA 255,176,3,147,192
10210 DATA 7,147,224,15,147
10220 DATA 240,31,239,248,31
10230 DATA 255,248,15,255,240
10240 DATA 7,199,224,3,199
10250 DATA 192,1,199,128,0
10260 DATA 127,0,0,0,0

Wolf
Defining this Sprite in a color that "fights" with the back

ground is particularly amusing. As the wolf moves across the
screen, his teeth look as if they are sparkling! (This may not
happen with your television or monitor, but it does every time
with mine.)

10270 REM SPRITE DATA FOR WOLF
10280 DATA 0,0,0,0,0
10290 DATA 0,0,0,48,1
10300 DATA 192,112,0,240,240
10310 DATA 0,121,224,0,61
10320 DATA 192,0,31,192,0
10330 DATA 15,224,0,63,224
10340 DATA 0,255,240,127,199
10350 DATA 248,255,255,2~2,255
10360 DATA 255,254,255,255,254
10370 DATA 128,255,254,42,255
10380 DATA 254,127,255,252,1
10390 DATA 255,248,1,255,240
10400 DATA 1,255,240

Mean Wolf
This is the alternative version of the wolf who chases the rab

bit in the Spritesampler program in Chapter 12. If you need a
wolf who is facing right instead of left (as this one is), try the
Sprite reversal routines found in Chapter 14. You'll get two
Sprites for the price of one, without having to design and code
the second Sprite.

31

SPRITE CRAPHICS FOR THE COMMODORE 64

10405 REM SPRITE DATA FOR MEAN WOLF
10410 DATA 0,0
10420 DATA 0,0,0,0,0
10430 DATA 0,48,1,192,112
10440 DATA 0,240,240,0,121
10450 DATA 224,0,61,192,0
10460 DATA 31,192,0,15,224
10470 DATA 0,63,224,255,255
10480 DATA 240,255,193,248,255
10490 DATA 255,252,170,255,254
10500 DATA 0,255,254,0,255
10510 DATA 254,0,255,254,170
10520 DATA 255,252,255,255,248
10530 DATA 1,255,240,1,255
10540 DATA 240

Anchor
The Navy would laugh if they saw this anchor, but it looks

fine next to my crazy octopus and fish in the underwater lake
scene in the color illustrations.

11225 REM ANCHOR
11230 DATA 0,30,0,0
11240 DATA 18,0,0,30,0
11250 DATA 0,12,0,0,12
11260 DATA 0,0,12,0,0
11270 DATA 12,0,12,12,24
11280 DATA 30,12,60,45,12
11290 DATA 90,12,12,24,12
11300 DATA 12,24,12,12,24
11310 DATA 12,12,24,12,12
11320 DATA 24,15,255,248,7
11330 DATA 255,240,0,12,0
11340 DATA 0,12,0,0,0
11350 DATA 0,0,0,0

space Cruiser
You always need different shapes of spaceships to be the

"good guys" and the "bad guys" in a game program, and this
one can fit either bill.

32

DESIGNING AND DEFINING YOUR SPRITES

10399 REM SPACE CRUISER
10400 DATA 64,146,44
10410 DATA 0,16
10420 DATA 0,0,84,0,1
10430 DATA 85,0,5,85,64
10440 DATA 21,85,80,21,85
10450 DATA 80,21,85,80,21
10460 DATA 85,80,21,85,80
10470 DATA 21,85,80,21,85
10480 DATA 80,21,85,80,21
10490 DATA 85,80,16,16,16
10500 DATA 16,16,16,16,0
10510 DATA 16,16,0,16,16
10520 DATA 0,16,16,0,16
10530 DATA 16,0,16,16,0

MAGAZINE ARTICLES OF INTEREST
"A Shape Generator for the Commodore 64", Donald A. Pitts,

COMPUTE!, November, 1982, pp. 160-163.
"Commodore 64 Sprite Editor," Stephen Meirosky, COM

PUTE!, December, 1982, pp. 212 +.
"A Sprite Editor for the Commodore 64," John Michael Lane,

Creative Computing, September, 1983, pp. 290-293.
"How to Create Your Own Sprite Creator," Tim Villaneuva,

COMMODORE POWER/PLAY, Summer 1983, pp. 67-68.

33

CHOOSING COLORS
FOR YOUR SPRITES

Each Sprite has its own register in the video chip to denote
the color that Sprite will be. The colors are coded by number.
These are the 16 color codes available:

SPRITE COLOR CODES

0- black 8 - orange
1 - white 9 - brown
2- red 10- light red
3 - cyan (light blue) 11 - dark gray
4 - purple 12 - medium gray
5 - green 13 - light green
6 - blue 14 - light blue
7 - yellow 15 - light gray

PEEKING AT POKES
A color code is assigned to a Sprite by poking a value into a

register. If you have been following this book sequentially, this
is the first time we have used the POKE statement. For those of

34

CHOOSING COLORS FOR YOUR SPRITES

you not familiar with it, let's digress a moment and discuss how
it works.

In BASIC, there are two ways to store data in memory. One
way is to set up a variable name for a memory location, and
assign a data value to that location:

10 LET X=89

In this case, we only refer to the memory location containing
the value 89 as "X." The computer keeps track of the actual
memory location where this value is stored, by means of an
internal table. But you as the programmer do not know where
the data in X is actually stored in the memory.

ASSIGNING SPRITE COLORS
When we use the POKE statement, we give the actual mem

ory address where the data should be stored. For instance, to
assign the color orange to the screen border, we use the follow
ing POKE statement:

10 POKE 53280,8

This puts the code for the color orange into the register located
at 53280.

To change the color of the screen background, we use:

10 POKE 53281,9

This pokes the color code for the color brown into the register at
5328l.

Each Sprite (numbered from #0 thru 7) has its own register
for a color code. Since these registers are all in the video chip,

35

SPRITE GRAPHICS FOR THE COMMODORE 64

we can simplify things by expressing the register number as an
offset from the beginning address of the Video Chip, 53248.
Thus, instead of having to memorize long numbers for each
register's location, we just have to remember the offset number
from the beginning address of the video chip.

OFFSET NUMBERS FOR REGISTER LOCATIONS

Sprite Number C%r Register

0 v + 39
1 v + 40
2 v + 41
3 v + 42
4 v + 43
5 v + 44
6 v + 45
7 v + 46

The color for each Sprite can be assigned individually:

5 V=53248
10 POKE V+24,4
20 POKE V+43,6
30 POKE V+39,2
40 POKE V+40,4

or if several Sprites will be the same color, we can take advan
tage of the fact that the color registers are in numeric se
quence, and assign the color with a loop:

5 V=53248
10 FOR R=O TO 7
20 POKE V+39+R,4
30 NEXT R

36

STORING SPRITES IN MEMORY

MEMORY LOCATION

2040
MEANS THE 63 NUMBERS WHICH
DEFINE SPRITE #0 WILL BE V FOUND IN MEMORY AREA 192. FOR ..
SPRITE PURPOSES, MEMORY AREA

192/ 192 RUNS FROM
(192"'64)+0 THROUGH
(192 "64) +62

Figure 4·1

However, if you refer to the memory maps in your Commo
dore 64 reference manuals, you will see that you cannot poke
DATA values into just any old place in the memory. Some of
that memory is reserved for other special purposes, such as
BASIC, or the operating system, or even the program you your
self are writing. Therefore, the chart below contains suggested
memory areas for storing Sprite data. Using these areas, you
will probably not get yourself into trouble for quite awhile,
since by starting with memory area 192, you are leaving room
for quite a sizeable BASIC program, yet you will have space
for defining 64 different Sprites.

41

SPRITE GRAPHICS FOR THE COMMODORE 64

a: UJ (/)
o(/)z <X
u..UJo~UJ<x

:I:--a:
z UJ

(f)~~CD<X(f)
UJ <X <X

0 ::::> ::::>O(J!:~ _
a: i= ..J ~~3v~~ci UJ <X <X
CD (J > >- w~~UJ
:IE 0 ~IUJa.O
::::> ..J 0 <xUJa:a:~:IE..J
z UJ ~t:oUJ UJ~

a: ~ <xa:~CD:I:~
UJ UJ (f) Oa.UJ~(Ju..

UJ (f) UJ<x UJ
~ ~ UJ ~~UJUJ(J

Z (!)
~UJ UJ ..J<x a: - (!)

a. 0 ::::> O:I:~a:u..(f)..J
(f) a. (f) a.~W O_a.

0 2040 192 (192*'64)+0 THRU (192"64)+62
1 2041 193 (1931164) +0 THRU (193*64) +62
2 2042 194 (194" 64) + 0 THRU (194.64) + 62
3 2043 195 (195"64) +0 THRU (195*64) +62
4 2044 196 (196*64) +0 THRU (196)t64) +62

5 2045 197 (197*64) + 0 THRU (197"64) + 62
6 2046 198 (198*64) +0 THRU (198*64) +62
7 2047 199 (199 --64) + 0 THRU (199 .64) + 62

SPRITE POINTER SUMMARY

Figure 4-2

By setting the Sprite pointer for Sprite #0 to location 92, the
data values for Sprite #0 must be read into memory at loca
tions (192*64) + 0 through (192*64) + 62. This can most easily be
accomplished with a FOR-NEXT loop:

10 V=5324B
20 FOR T=O TO 62
30 READ A
40 POKE 192*64+T,A
50 NEXT T

42

STORINC SPRITES IN MEMORY

If you have enough data values in your program to define
eight different Sprites, you must set the pointers for all eight
Sprites, then read in all the data values into the proper loca
tions. Let's follow this process in detail.

Assigning Individual POinters
Because all eight Sprites will be different, and will have their

own unique DATA values, each will need to be assigned a
Sprite pointer.

20 POKE 2040,192
30 POKE 2041,193
40 POKE 2042,194
50 POKE 2043,195
60 POKE 2044,196
70 POKE 2045,197
80 POKE 2046,198
90 POKE 2047,199

Of course, this could also be accomplished with a simpler loop:

20 FOR T=O TO 7
30 POKE 2040+T,192+T
40 NEXT T

Entering Data Values
Now that we have indicated the area in memory where each

of the DATA values will be found, we must read the DATA
values into the correct areas.

10 FOR T=O TO 62
20 READ A
40 POKE 192*64+T,A
50 NEXT T

43

SPRITE CRAPHICS FOR THE COMMODORE 64

This will place the 63 data values for Sprite #0 into memory
locations (192*64) + 0 through (192*64) + 62.

We do the same for the other seven Sprites, but change the
area number.

10 FOR T=O TO 62:READ A:POKE 193*64+T,A:NEXT T
20 FOR T=O TO 62:READ A:POKE 194*64+T,A:NEXT T
30 FOR T=O TO 62:READ A:POKE 195*64+T,A:NEXT T
40 FOR T=O TO 62:READ A:POKE 196*64+T,A:NEXT T
50 FOR T=O TO 62:READ A:POKE 197*64+T,A:NEXT T
60 FOR T=O TO 62:READ A:POKE 198*64+T,A:NEXT T
70 FOR T=O TO 62:READ A:POKE 199*64+T,A:NEXT T

By now, you can see the pattern forming. If we are going to
read each of the eight Sprites into sequential memory areas,
we can accomplish this in a simpler way:

10 FOR 8=0 TO 7
20 FOR T=O TO 62
30 READ A
40 POKE (192+B)*64+T,A
50 NEXT T
60 NEXT B

Defining Sprites From The Same Locations
But you won't always need eight different Sprites in your

programs. Suppose you want eight Sprites, all with the same
shape, and therefore all with the same 63 DATA values. All
you have to do is give the same memory area values in each of
the eight Sprite pointer registers:

44

STORING SPRITES IN MEMORY

10 POKE 2040,192
20 POKE 2041,192
30 POKE 2042,192
40 POKE 2043,192
50 POKE 2044,192
60 POKE 2045,192
70 POKE 2046,192
80 POKE 2047,192

This example will have all eight Sprites defined with the DATA
values stored in memory bank 192.

Sequence Counts
Remember that the order of the DATA statements in your

program determines how they will be read - you can't instruct
the program to start reading DATA from the middle of the
DATA statements. This means that if you have placed the
DATA statements for Sprite #3 first in the program, you have to
be sure that when you read in those first 63 values, you are
reading them into the memory area locations you have desig
nated for Sprite #3.

To put this another way, you must be able to read the Sprite
DATA statements in the order your program is expecting them.
If your program needs to read the DATA statements for Sprites
#1, #2, #3, and #4 in that order, the DATA statements better
be in that same order - first the 63 values for Sprite # 1, then
the 63 values for Sprite #2, then the values for #3, and lastly
the values for #4.

To make a mistake of this type will not cause any errors
when you run the program. After alL the computer doesn't
care which Sprite ends up in which memory area. But you will
end up greatly confused when you try to change the color or
screen coordinates for your Sprites, and things don't turn out
the way you are expecting them to.

45

TURNING SPRITES
ON AND OFF

To see Sprites on the screen, they must first be enabled. This
means a value must be poked into a register to turn on each
Sprite you wish to have displayed on the screen.

Unlike the color registers, where each Sprite had a separate
register, all eight Sprites are enabled and disabled from a
single register. This is possible because every register contains
eight bits of information within one byte. Therefore, to turn on
all eight Sprites, we must poke a value of ''1'' or "on" into each
of the eight bits in this register.

ENABLING YOUR SPRITES
The enable register is at location V + 21 . The Sprite Enable

Register's eight bits can be represented like this:

46

TURNINC SPRITES ON AND OFF

~ w It') v rt) N .-I 0

LaJ LaJ W LaJ W LaJ LaJ LaJ
~ ~ ~ ~ ~ ~ ~ ~

a::: a::: a::: a::: a::: a::: a::: a:::
a. a. a. a. a. a. a. a.
en en en en en en en en

1 1 1 1 I I

SPRITE ENABLE REG ISTER (V+21)

Figure 5·1

If all eight bits contain a ''1'' then all eight Sprites are enabled.
If we want to enable selected Sprites, we translate the binary
number shown in the register into a decimal number. This is
the value we then poke into the register.

To enable Sprites #2, 4, and 7:

#7#6#5#4 #3#2#1 #0

11101011101110101
Figure 5·2

This is how we want the contents of the register to look. The
decimal equivalent of this number is 148, so our POKE state
ment would be:

10 POKE V+21,148

47

SPRITE CRAPHICS FOR THE COMMODORE 64

To turn off all the Sprites, we simply poke all zeroes into the
register at V + 21.

POKE V+21,0

When To Enable Sprites Within A Program
When beginning to write Sprite programs, you must remem

ber that as soon as you poke values into the Sprite Enable Reg
ister, those Sprites will appear on the screen, if they have valid
screen coordinates within the visible screen area. (Assigning
screen coordinates will be covered in the next chapter.) The
program will not check to see if you have already poked valid
values into the Sprite memory areas indicated. It will happily
use as Sprite data any garbage which may be in those loca
tions at the moment. What you will see on the screen will most
likely be a tremendous mess.

How TO Enable/Disable Selected Sprites
It is very easy to turn on or turn off a few Sprites, provided

you always know what should be done with each of the eight
Sprites every time.

But in many applications you want to control each Sprite in
dependently. You might want to enable Sprite #4, for instance,
but you won't necessarily know what will be going on with the
other seven Sprites. So you can't just use

190 POKE V+21,16

because that will enable Sprite #4, all right, but it will also turn
off all the other Sprites.

48

TURNINC SPRITES ON AND OFF

#7 #6 #5 #4 #3 #2 #1 #0

10101011101010101
~

SPRITE #4 IS ON, BUT ALL OTHERS ARE OFF.

Figure 5-3

This is not what we want. We want to leave the seven other
bits unaffected and only change the bit for Sprite #4.

To place a ''1'' in the bit for Sprite #4 and leave the other bits
as they are, use the statement:

10 POKE V+21,PEEK(V+21) OR (274)

If you aren't sure what this statement is doing, read about Boo
lean functions in Chapter 13.

The general form of this statement, to ENABLE any selected
Sprite:

10 POKE V+21,PEEK(V+21) OR (2tSN)

where SN stands for the Sprite number (#0 thru 7).
The general statement to DISABLE any selected Sprite would

be:

10 POKE V+21,PEEK(V+21) AND (255-27SN)

where SN stands for the Sprite number (#0 thru 7).
A Sprite will stay enabled in the memory until you POKE it

off, redefine it, turn off your computer, or hit RUN/STOP and
RESTORE.

49

POSITIONING YOUR
SPRITES ON THE SCREEN

Each Sprite must have two coordinates for positioning on the
television screen or monitor. You must specify the vertical posi
tioning (Y -coordinate) and the horizontal positioning (X
coordinate). Each Sprite has two unique registers for storing
these values. The POKE statement is used to place values in
these registers.

POSITIONING REGISTERS

Sprite # X Register Y Register

0 v+O v+1
1 v+2 v+3
2 v+4 v+5
3 v+6 v+7
4 V+8 V+9
5 V+ 10 V+ 11
6 V+12 V+13
7 V+14 V+ 15

50

POSITIONINC YOUR SPRITES ON THE SCREEN

To place Sprite #0 at 50 dots over and 75 dots down on the
screen, you poke these values into the registers for Sprite #0:

110 POKE V+0,50
120 POKE V+l,75

SCREEN DIMENSIONS AND
POSITIONINC SPRITES

For screens with 40 columns and 25 rows, this illustration
shows valid values for X and Y coordinates. When you look at
the picture, however, notice that there is a difference between
valid values and the values for the visible viewing area.

SPRITE SCREEN COORDINATES
(SHADED PORTION IS VISIBLE SCREEN AREA I

y= 230 ... 255

THE X-COORDINATE REGISTER CAN HOLD VALUES UP TO 225.

X=89--
255
WITH
"59

HOWEVER, THERE ARE MORE THAN 225 POSITIONS ACROSS THE SCREEN.
TO USE THE X POSITIONS PAST 255, TURN ON THE BIT FOR THAT
SPRITE ,IN THE MOST SIGNIFICANT BIT (MS8) REGISTER . AND START
NUMBERING THE x COORDINATES AGAIN FROM O.

Figure 6-1

51

SPRITE CRAPHICS FOR THE COMMODORE 64

It is easiest to explain this with an example.

Positioning Example
If we have defined a Sprite and we want to position it in the

upper left hand corner of the screen, we can't simply set an
X-coordinate of zero and a Y-coordinate of zero. Even though
those are valid values, they will position the Sprite in an area
of the screen that is beyond the visible viewing area. To place
the Sprite in the upper left corner, the values needed are X
coordinate of 24 and Y -coordinate of 50. By looking at the chart.
you see this same idea holds for all sides of the screen.

X~24 ~
Y=229

\

x = 24
Y = 50

POSITIONING UNEXPANDED SPRITES

I
I x ~ 64

I "S.E!. "s,~ FOR

I

(SHADED PORTION I S VISIBLE SCREEN AREA I

Figure 6·2

Consider The Whole Sprite!

x:: 64

X vALUE

An important thing to realize here is that when we position a
Sprite, we are referencing the upper left corner of the Sprite.

52

POSITIONING YOUR SPRITES ON THE SCREEN

Remember, a "regular" Sprite is 24 dots wide by 21 dots long.
When you set the X and Y coordinates, those coordinates are
really designating where the upperleft corner dot in that Sprite
will be positioned.

You are always working with a 24 by 21 dot Sprite size, when
you set screen positioning for normal sized Sprites. It does not
matter to the computer whether you filled in every dot in the
entire Sprite, or left 95% of it empty. You are still positioning the
entire Sprite - all 24 columns by 21 rows. When you want to
place Sprites at exact locations, or in the exact center of a
screen area, this takes a bit of arithmetic. It also means that
you must know exactly how your Sprite figure is placed within
the 24 by 21 Sprite grid.

If your screen or monitor is of a different size than 40 wide by
25 long, consult your Commodore manual for valid X and Y
coordinate changes.

MOVING A SPRITE OFF
THE VISIBLE SCREEN

There will be applications where it will be very handy to be
able to move a Sprite off the visible portion of the screen with
out disabling that Sprite. You can set the coordinates for a
Sprite to any valid numeric value, even though the Sprite may
not be visible when positioned at certain coordinates.

Overlapping And Expanding
As you will see in Chapter 7 about Sprite priorities, you do

not have to guard against overlapping Sprites on the screen, or
against assigning them the same coordinates. Neither of those
conditions will cause an error. In fact, being able to overlap
Sprites is a very handy feature of Sprite graphics, and one that
will allow you to produce very professional-looking graphics.

In Chapter 8 you will learn how to expand Sprites along the
X and Y axes. This will mean some refiguring for positioning
Sprites on the screen, since they could now be twice the size of
the originals. However, no matter what size the Sprite, the
positioning coordinates always reference the upper left corner.

53

SPRITE GRAPHICS FOR THE COMMODORE 64

A Sprite positioning chart for expanded Sprites is included in
Chapter 8.

MOST SIGNIFICANT BIT
When looking at the X-coordinate position values in the pre

vious chart, you may have spotted a problem.
Remember that an X-coordinate register such as V + 39 has

only eight bits. If each of the eight bits is turned on, the result
ing binary number is 11111111, or decimal 255. Therefore, the
largest number value we could poke into register V + 39 is 255.
So - what are we going to do with X-coordinate values rang
ing from 256 thru 343, which is the rightmost edge of our
screen?

You'll be happy to know that you do not have to leave the
right third of your screen Sprite-less. There is a way to use the
X-coordinate positions greater than 255. This is where the Most
Significant Bit comes in.

Most Significant Bit Register
The Most Significant Bit register is located at V + 16. It con

tains a bit for each of the eight Sprites. If the bit for a particular
Sprite is turned "on," that indicates that the X-coordinate given
is past the first 255 positions, and numbering has started over
again at O. Here is an example.

Most Significant Bit Example
We wish to position Sprite #2 at 100 dots down and the

equivalent of 300 dots across. Setting the Y-coordinate is easy:

10 POKE V+5,100

To set the X-coordinate, we can't just say POKE V +4,300 be
cause that will cause an "Illegal Quantity" error when you try
to execute the program.

54

POSITIONING YOUR SPRITES ON THE SCREEN

The X-coordinate for Sprite #2 will have to make use of the
Most Significant Bit. We will enable the Most Significant Bit for
Sprite #2, then set the X-coordinate value at (300-256), or 44.

10 POKE V+5,100
20 POKE V+16,4
30 POKE V+4,45

Line 20 has turned on the bit in the Most Significant Bit register
for Sprite #2.

#7 #6 #5 #4 #3 #2 #1 #0

10101010101110101
MOST SIGNIFICANT BIT REGISTER (V+16)

Figure 6-3

The decimal equivalent of this binary number is 4. That is the
value we poked into register V + 16, to show that the value
given in the X-coordinate register for Sprite #2 (V + 4) is beyond
the first 255 dots. In the Commodore manuals, this value is re
ferred to as the Right X Position.

(In case you are wondering why we arrived at the Right X
position by subtracting 256 from 300, instead of subtracting 255
from 300, remember that the first coordinate value past 255 is
zero, not 1. To make the Right X value come out correctly, we
must subtract 256, not 255. If you're still not convinced, try it
both ways to see for yourself.)

55

SPRITE CRAPHICS FOR THE COMMODORE 64

To set the Most Significant Bit register for each Sprite, these
values are used:

SETTING THE MOST SIGNIFICANT BIT REGISTER

Sprite # Most Significant Bit Value

0 POKE V+16,1
1 POKE V+ 16,2
2 POKEV+16,4
3 POKE V+ 16,8
4 POKE V + 16,16
5 POKE V + 16,32
6 POKE V + 16,64
7 POKE V + 16,128

That sounds easy enough, right? WelL think about it for a
minute.

If you are working with more than one Sprite on the screen,
you may have the Most Significant Bit for several of them
turned "on." Then you need to turn on the Most Significant Bit
for Sprite #7, for example. You can't use the POKE v+ 16,128
statement for this purpose, because along with turning on the
bit for Sprite #7, it will turn off the other seven bits.

#7 #6 #5 #4 #3 #2 #1 #0

11101010101010101
MOST SIGNIFICANT BIT REGISTER (V+16)

Figure 6-4

This is the end result in register V + 16 if you poke it with the
value 128.

56

POSITIONINO YOUR SPRITES ON THE SCREEN

Boolean AndlOr statements
So, how do you overcome this problem? You use the Boolean

OR and Boolean AND to selectively turn on and off certain bits
in the register without affecting the other bits. (The use of these
Boolean operations is covered in Chapter 13, if you need an
explanation.)

To selectively turn ON the Most Significant Bit for a Sprite,
use this statement:

10 POKE V+16,PEEK(V+16) OR (2tSN)

where SN is the Sprite number (from #0 through #7).
To selectively turn OFF the Most Significant Bit for a Sprite,

use this statement:

10 POKE V+16,PEEK(V+16) AND (255-2tSN)

where SN is the Sprite number (from #0 through 7).

57

SPRITE PRIORITIES

Each Sprite has a number, ranging from zero through 7.
Quite simply, Sprite priorities are set by their numbers. The
lower the number, the higher the priority.

Sprite #0 will have priority over any other Sprite, because it
has the lowest number. This means that if Sprites #0 and #5
pass through the same location on the screen, Sprite #0 will
pass "in front of" Sprite #5. If several Sprites are overlapping,
even slightly, in the same portion of the screen, each Sprite will
be in front of or behind the other Sprites, based on the Sprite
numbers.

If a Sprite in front has any "holes" or un shaded areas in it
where the background would normally show through, another
Sprite passing behind it will show through these holes. This
gives a three-dimensional effect.

The background on the screen has the lowest priority of all.
Sprites will usually pass in front of the background. This back
ground can include the usual solid color, or text, or character
graphics, or any other graphics modes.

No matter what other graphics modes you use in your pro
grams, your Sprites will keep their shape and operate indepen
dently. This is a very handy feature for many applications.

58

SPRITE PRIORITIES

SPRITE TO BACKGROUND
PRIORITY REGISTER

There is a way to change the priority of the Sprites to the
background, so that Sprites can actually pass BEHIND back
ground figures. This is done by turning on a Sprite's bit in the
Sprite Background Priority Register, located at register V + 27.

Each Sprite has a bit in this register. If a Sprite's bit is turned
"on," then the background has a higher priority than the
Sprite, and that Sprite will pass BEHIND any background figure
it crosses.

If a Sprite's bit is turned "off' in register V + 27, then that
Sprite has a higher priority than the background. When the
Sprite and a background figure cross paths, the Sprite will pass
in front of the background figure. .

You can POKE a value into this register to turn on the Sprites
you wish to have lower priority than the background figures.

If you want Sprite #4 and #6 to have lower priority than the
background figures (to do this, their bits must be set to 1), this
can be accomplished with a POKE statement for register V + 27:

20 POKE V+27,80

Or, if you don't feel up to any arithmetic at the moment, you
can let the computer do the addition, also:

20 POKE V+27,16+64

What we have done in this POKE statement is to add the dec
imal equivalents of the Sprites we wish to have a lower priority
than the background figures.

If you have a hard time remembering whether setting a bit to
1 in this register makes the background or the Sprite have
higher priority, think of it in the same way as you do the Sprite
priorities to each other. The lower the number, the higher the

59

SPRITE CRAPHICS FOR THE COMMODORE 64

priority. Therefore, if a Sprite has the lowest number possible
in this register, (namely zero) it will have the highest priority,
and will pass in front of the background figures.

You can also use a selective POKE statement to change a
Sprite/s priority in relation to the background during the course
of a program, if you wish to leave the Sprite-to-background
priority of all the other Sprites unchanged.

To set a Sprite/ s bit to 1, therefore making the background
figures have a higher priority:

10 POKE V+27,PEEK(V+27) OR (2tSN)

where SN is the Sprite number from #0 through #7.
To set a Sprite/s bit to 0/ therefore making the Sprite have

higher priority over the background figures:

10 POKE V+27,PEEK(V+27) AND (255-2tSN)

where SN is the Sprite number from #0 through #7.

PLANNINC SPRITE PRIORITIES
IN PROCRAMS

When designing screen layouts and program logic, it is easy
to forget that you cannot change Sprite to Sprite priority in the
middle of a program.

By this I mean that Sprite #0 is always going to have priority
over (pass in front of) Sprite #5/ for instance. 1£ you don/t think
about this fact as you are planning what Sprites #0 and #5
have to do on the screen, it can be very time-consuming trying
to juggle the Sprite memory assignments after the fact/ trying to
make things work out right.

As an example, look at the color illustration with the block
letters spelling out the words "GOOD JOB!" When I laid out this
screen, I knew I wanted the letters to appear in a certain pat-

60

SPRITE PRIORITIES

tern. I wanted the "I" in "JOB" to overlap the "0" slightly, and I
wanted the corner of the "0" to overlap the "B," and I wanted
the corner of the "B" to overlap the exclamation point block.

To do this, I had to be sure that I had defined the Sprite num
bers so this would be possible. Of all the letters in the word
"JOB," the letter ''J'' had to be the lowest numbered Sprite, so it
would appear in front of the other Sprites. This diagram will
show you how I planned the screen. Numbering the Sprites like
this is very helpful in keeping track of priorities, especially if
you are using many Sprites on one screen. Along with the
Sprite numbers on this diagram, you can see that I also
planned the mathematical relationships between the X and Y
coordinates I would use. This helped me code the program
faster and with fewer errors.

SPRITE NUMBER X-COORDINATE Y-COORDINATE

0 XI Y

I X ITA YTA

" ." J Z XI TZA YTZA
XZ-135 3 XI+3A Y+3A
Y'50 4 XZ Y
A -35 5 XZ+A YTA

6 XZ+ZA Y~ZA

7 XZ+3A Y+3A

Figure 7·1

61

SPRITE CRAPHICS FOR THE COMMODORE 64

STRANCE AND UNEXPECTED
COLOR EFFECTS

You may find, with your particular television set or monitor,
that some overlapping Sprites will produce color phenomenon
that you had not anticipated. Especially with small areas of
color surrounded by large blank areas within a Sprite, when a
background color shows through, or that Sprite overlaps
another, the colors shown may change. An example of this can
be seen if you look closely at the "steam" rising from the coffee
cups in one of the color illustrations in this book. In each case,
the steam was defined to be the same color as the cup itself
these are all single-color Sprites. Yet, in some places the dots
making up the steam show up as several colors! This is just a
function of how my particular monitor works. Experimentation
with your TV or monitor may produce equally interesting and
useful quirks.

62

EXPANDING
YOUR SPRITES

One register in the Video Chip gives you the ability to ex
pand your Sprites along the X-axis, and another will do the
same along the Y-axis. Each Sprite has its own bit within each
of the two registers. If that bit is set to I, that Sprite will be
expanded. If the bit is zero, the Sprite will be normal size.

VERTICAL EXPANSION

#7 #6 #5 #4 #3 #2 #1 #0

0111011111010101
VERTICAL EXPANSION REGISTER

Figure 8-1

63

SPRITE CRAPHICS FOR THE COMMODORE 64

If the vertical expansion register, located at V + 23, contained
the above binary value, Sprites #3, #4, and #6 would be ex
panded to twice their normal size in the vertical direction. The
other five Sprites would be normal. To place this value in regis
ter V + 23, use a POKE statement:

10 POKE V+23,88

or do it the easy way . . .

10 POKE V+23,8+16+64

HORIZONTAL EXPANSION
The horizontal expansion register is located at V + 29. It works

the same way. To expand Sprites #5 and #6 along the X-axis,
for example, we would need to set the binary values of register
V + 29 to look like this:

#7 #6 #5 #4 #3 #2 #1 #0

10111110101010101
HORIZONTAL EXPANSION REGISTER

Figure 8-2

The decimal equivalent of this binary number is 96, so the
POKE statement would be:

130 POKE V+29,96

64

EXPANDING YOUR SPRITES

Anyone Sprite or a combination of Sprites can be expanded
using this method. You can expand a Sprite vertically, horizon
tally, or both:

130 POKE V+ 23, 15 (vertical expansion)
140 POKE V+29, 15 (horizontal expansion)

This example would expand Sprites #0, I, 2, and 3 along both
axes. They would appear on the screen twice their normal size.
Keep in mind that the resolution of the expanded Sprites does
not change - they are just made up of more pixels on the
screen.

In one of the color illustrations in this book, examples are
shown of Sprites expanded vertically only, horizontally only, in
normal size, and expanded in both directions. Sprite expansion
is useful when you need larger versions of a Sprite, or want to
show action by expanding a Sprite, or wish to call attention to
a particular Sprite on the screen.

HOW SPRITES EXPAND
An expanded Sprite ends up with twice the length and width

it had in normal size. A normal Sprite is 24 dots wide. There
fore, expanding a Sprite horizontally results in a Sprite that is
48 dots wide.

Expanding a Sprite vertically changes the size of the Sprite
from 21 dots long to 42 dots long. The number of DATA state
ments needed to define that Sprite does not change - the
Sprite is simply displayed larger on the screen. Setting the col
or of the Sprite is done the same, and enabling the Sprite is
handled exactly as if the Sprite were normal size.

Positioning Expanded Sprites
You must allow for the expansion when you choose the X

and Y coordinates to position an expanded Sprite on the
screen. If the Sprite has been expanded in both directions, you
are now dealing with a 48 by 42 dot Sprite, instead of a 24 by

65

SPRITE CRAPHICS FOR THE COMMODORE 64

21 size. The screen coordinates you give will still reference the
top left corner dot in the Sprite. But since the Sprite is bigger, it
will take up more room on the screen.

Having the expansion feature available is very useful when
you wish to make fairly detailed Sprites. Small details will
show up better when the Sprite is a larger size, of course.
However, for arcade-style games where you are trying to pack
a lot of action onto a small screen, the expanded Sprite may be
more of a hindrance. It all depends on your application.

This chart will help you see how much more room you must
allow for your expanded Sprites.

f~= 50 ~'X ~V:g~!~ FOR

:::::::::::::: :::::::::::::: ::}::::::: ::}::::::
::::::::::::: :::::: :::::: ::::::: :::::: :::::: ::}::}:

::::::::::::: :::::: :}: ::::::: :::::: :::::: ::::::::::::
:} ::::: i::: ::::: :::::
:::::: :::::: ::::::

::: ::::: ::::: ::::::::::: ::::::: ::: : :::;:: :: : ::::::: ::::: :::::::::

I~ ii UtI I U mI I: t: I:I I~i ~ :: ••••• mm I
:::::: ::::::: : :::: : t: t: t:: :::: :;::: :;:: t :::: k: :::: t: :~t::
:;:;:: ::::::::::::: :::::: co:: :} :}: :i: ::::::::. ::::: >,::, ::::::: ::::::::

:t: :;:: :}::::::: :::::: ::::: :::::{: :::: :::::: ::::: ::::: :;::: l": ::::: ::::: }::

? :::: :::::::? :} ::::, ::::: :;::::::: ::;: t: :}: ::::: ::::: ::::: F ::::: : ::::::
:t: ,;::: ::;::::::: ::::: ::::: :{ :::: : t t :::: :::::::::: ::::: f: ::::: ';:: ::::::::
:::::: :::::: :;:;::;:;:;:;: ::: :::: :::::: :::::: ::i:: :}: :::::: :::::: :': ::{ :;::: ::;:: :::::: ::::::::::::

1~~~~8"::
::::: :::::: ::::::} ::: : ::: :;:: : :::: :::: :::: :::: :;:: :t L : ::: ~s
:::::: ::::: :::::::} :}:: :> ::::: } :::::: :::::: :::::: ::::: :{ :::::: }I: :j! C::::: ::::: ::::::

: : > ::::: :::::: :::::: :::::::::::: :: »
:;::: ::> ::} ::::::: :::: ::::::: :: :::::: :::::: ::::::;:;::: :::: <> :::} :::::: ::::::

::: t > ::::::: ::::::: ::::::: :::::: :::::: i::: :::::: :::::: ::::::: ::::::::: :::::::: :::::::}::

t:> : ::::::: :::::;:::::::: :;:;:: }:: :::::: ::: :::::: ::::::: ::::::::: :::::::: ::::::: :}::,:

I

i
POSITIONING EXPANDED SPRITES
(SHADED PORTION IS VISIBLE SCREEN AREA)

Figure 8-3

66

X=40
Y=208
SET MSB FOR
X VALUE

EXPANDING YOUR SPRITES

Expanding Selected Sprites
As with setting our other registers, sometimes you will want

to be able to expand or "unexpand" selected Sprites without
affecting the bit settings in the Sprite expansion registers for the
remainder of the Sprites.

If you have expanded all eight Sprites in the horizontal direc
tion, and you wish to return Sprite #0 back to normal size, you
can't use POKE V + 29,0 because while that will return Sprite
#0 to normal size, it will also return all the other Sprites to nor
mal size as well.

#7 #6 #5 #4 #3 #2 #1 #0

10 1 0 I 0 I 0 I 0 I 0 I 0 11 I
POKE V+29,0 SETS ALL BITS INCLUDING
S PR ITE #0 TO ZERO VALUE.

Figure 8-4

To selectively turn on or off bits in the Sprite expansion regis
ters, use these statements:

To expand selected Sprites in the horizontal direction:

10 POKE V+23,PEEK(V+23) OR 2tSN

where SN is the Sprite number (from #0 through #7).
To expand selected Sprites in the vertical direction, use the

same statement format as above, but change the register loca
tion to V + 29:

10 POKE V+29,PEEK(V+29) OR 2tSN

67

SPRITE GRAPHICS FOR THE COMMODORE 64

To UNEXP AND selected Sprites in the horizontal direction:

10 POKE V+23,PEEK(V+23) AND (255-21SN)

where SN is the Sprite number (from #0 through #7).
To UNEXP AND selected Sprites in the vertical direction, use

the same statement format as above, but change the register
location to V + 29:

10 POKE V+29,PEEK(V+29) AND (255-21SN)

A SAD LAST NOTE
Unfortunately, if you design an ugly Sprite in normal size

mode, it doesn't get any better looking when you expand it to
twice its size. For those of us with no artistic talent, this is one of
those cruel facts of life.

68

MOVINO AND ANIMATINO
SPRITES ON THE SCREEN

Movement and animation is one of the capabilities of your
Commodore 64 graphics that can make your displays most ex
citing. Luckily, moving Sprites on the screen is as simple as
changing the X or Y coordinates.

MOVING SPRITES VERTICALLY
Let's define Sprite #0 on the screen, then move it straight

downward. This Sprite is normal sized, so at least some of it
will be visible on the screen if we keep the Y -coordinates within
the range of 30 and 249. We'll set the X-coordinate at 100.

10 POKE V+0,100
20 FOR Y=30 TO 249
30 POKE V+ 1 , Y
40 NEXT Y

In using a FOR-NEXT loop, the default value for the increment
amount is + 1. A movement of one dot down the screen at a

69

SPRITE GRAPHICS FOR THE COMMODORE 64

time will produce very smooth motion. But if we wanted some
thing else, we could code it this way:

10 POKE V+0,100
20 FOR Y=30 TO 249 STEP 3
30 POKE V+ 1 , Y
40 NEXT Y

Adding the STEP 3 to statement 20 increases the increment
amount to 3 instead of 1. Now the Y-coordinate value will jump
by threes instead of one dot at a time. The result will be a fast
er, less smooth movement down the screen.

MOVING SPRITES HORIZONTALLY
Horizontal movement is just as easy, until you reach the right

hand portion of the screen, where the X value has reached 255
and you can't go any farther until you set the proper bit in the
Most Significant Bit register. (Consult Chapter 6 if you need
help on what the Most Significant Bit register does.)

As you recall, the X values can run from 1 through 343 and
still have some portion of an unexpanded Sprite visible on the
screen. However, 343 is not a valid value for the X coordinate.
(Numbers greater than 255 will not fit in the 8-bit X-coordinate
register.) Therefore, we need to set up a simple routine that will
turn on the proper bit in the Most Significant Bit register when
the X value exceeds 255.

For this example we will use a Y value of 100. We want the X
values to range from 1 through 255, then set the Most Signifi
cant Bit for Sprite #0 and continue across the screen with X
values 0 through 87 (87 = 343 - 256).

10 POKE V+l,100
20 FOR X=1 TO 343
30 IF X>255 THEN POKE V+16,1:

POKE V+0,X-256:GOTO 50
40 POKE V+O,X
50 NEXT X

70

MOVINC AND ANIMATINC SPRITES ON THE SCREEN

The above example will work, but it can be expressed in a
more useful way.

10 POKE V+1,100
20 FOR X=l TO 343
30 RX=INT(X/256)
40 LX=X - (256*RX)
50 POKE V+16,RX
60 POKE V+O,X
70 NEXT X

Program Highlights Here is how this program facilitates hori
zontal movement.

Line 10 sets the vertical coordinate to 100.
Lines 20 and 70 show we will step the X values through the

range of 1 to 343, using the default increment of 1.
Line 30 divides the X value by 256, and then takes the integer

value of the quotient. This results in either a zero, if the X value
is less than 255, or "1" if the value is between 256 and 343.

Line 40 computes the X value to be used. The expression
(256*RX) will be a zero if the X value was less than 256. There
fore, the X value will not be changed.

Line 50 sets the Most Significant Bit register to one or zero.
This will turn on or off the bit for Sprite # 1.
Line 60 pokes the X value for Sprite #0.
To see more examples of moving Sprites, look carefully at the

sample programs in Chapter 12.

DIACONAL MOVEMENT
Sprites can be moved diagonally by changing both the X

and Y coordinates at the same time. The angle of the diagonal
will depend on how fast the two coordinates change in relation
to one another.

The easiest way to figure how many dots in the X direction
you want to move for so many dots in the Y direction is to count
the total X dots from the starting point to the ending point, then

71

SPRITE CRAPHICS FOR THE COMMODORE 64

how many Y dots from starting to ending points, and divide to
get a ratio:

8

..
>-

• • • • • • • • • • • •
A-. X=12 •

X = 1£ = ~
Y 18 3

MOVE 2 DOTS IN THE X DIRECTION FOR
EVERY 3 DOTS MOVED IN THE Y DIRECTION

Figure 9-1

72

MOVING AND ANIMATING SPRITES ON THE SCREEN

If we want to move from point A to point B on this diagram,
we want to go a total of 12 dots in the horizontal direction for
every 18 dots we move in the vertical direction. Dividing this
out to the lowest fraction, we want to move 2 dots in the X
direction every time we move 3 dots in the Y direction. Now,
you're probably thinking that not every ratio will divide out that
evenly. You're right. BUT, you cannot move a Sprite a fraction
of a dot in either direction.,. sc> you're going to have to come out
with numbers you can readily reduce, no 'matter how you look
at it.

Plus, if you have come up with some weird ratio such as
moving 17 X dots for every 11 Y dots, your movement on the
screen is going to be pretty jerky! So the moral of this lecture is
to simplify your diagonal movement so you can move a
reasonably small number of dots at a time in either direction, if
you want to achieve smooth diagonal movement.

ANIMATING SPRITE FIGURES
When animators create cartoons, they draw many versions

of the same figure going through the stages of a motion. Then
these slightly different images are projected one after another
in the same spot, and the speedy changing of one drawing for
another tricks our eyes into thinking we are seeing smooth
motion.

Sprite graphics works in the same fashion. Our task is to
rapidly display different versions of the same Sprite. As an ex
ample, we'll use a Sprite shaped like a bird in flight. We will
need five different views of this bird, each with the wings in a
slightly different position. Let's logically consider the different
ways this could be accomplished.

As you have found out when you executed your first Sprite
programs, it takes time for the computer to read all 63 DATA
values for each Sprite into memory. This is by far the most
time-consuming portion of your program's execution.

73

SPRITE GRAPHICS FOR THE COMMODORE 64

A Fast-Flying Fowl
If we need to have our bird shape change rapidly through

the five versions of wing positions, we can't afford the time
needed to define Sprite #0 as bird picture A. then read in all
new data statements to change that Sprite's DATA values so it
will look like bird B. This method would work, but it takes far
too long.

Instead, we can store all five versions of the bird in the mem
ory at the beginning of the program. Then, when we want to
animate the bird picture, we will define a single Sprite to point
to the memory area where we have stored bird picture A.
When we want to display bird picture B, we will just switch the
pointer value for that same Sprite to point to the memory area
where we have bird B stored. Using this method, we can
switch rapidly through all versions of the bird, yet still keep the
same Sprite enabled.

Using this method, we are able to animate all eight Sprites, if
we wish. Our only limitation is how much room we can
squeeze out of the available memory, to contain different ver
sions of all eight Sprites. Using the suggested memory areas in
Chapter 4, we can easily have 64 different Sprite versions
available. If you need more than this, you will have to find
more room in memory.

Effective Memory Use
But remember, the same memory area in storage can be

pointed to by as many Sprite pointers as you wish. In other
words, if your entire program consists of spaceship Sprites
zooming around on the screen, perhaps you will only need
four different versions of that spaceship to fill all your needs. At
anyone time, any number of Sprites could be pointing to a
single version of that spaceship in memory. In this way, you
can get maximum mileage out of only four sets of Sprite DATA
statements.

74

MOVING AND ANIMATING SPRITES ON THE SCREEN

Another Animation Technique
An alternative animation technique is to define each of the

eight Sprites as a version of the same animated figure. Then all
eight Sprites should have their X and Y coordinates set at the
same screen positions. To accomplish the animation, enable
and disable each Sprite in the desired sequence. Don't forget to
turn on and off the multi-color bits if one of the Sprites in the
sequence is multi-colored (more about this in Chapter 11).

Extremely Fast Animation
If you need extremely fast animation, you will need to go to

machine language. Using BASIC, it is not possible to move and
animate Sprites at the same time and achieve any great speed.
However, for most applications, BASIC and Sprite graphics will
be more than adequate for your needs.

Chapter 12 contains some excellent examples of different
ways to animate Sprites. It will be worth your while to study the
listings carefully.

75

COLLISION DETECTION

Two types of collisions can be automatically detected when
you program with Sprites. The first type is a collision between
two Sprites and the second is a collision between a Sprite and
the background. Sprite collision detection is important because
it is often the most important element in computer game
designs.

SPRITE-TO-SPRITE COLLISIONS
How can you tell if two Sprites have collided? Register V + 30

contains a bit for each of the eight Sprites. If a Sprite's bit is a l.
then that Sprite is touching some other Sprite.

In the following example of the contents of register V + 30,
bits for Sprites #7 and #5 are turned on. This shows that some
non-zero part of Sprite #5 is touching some non-zero part of
Sprite #7.

76

COLLISION DETECTION

REG ISTER V+30

#7 #6 #5 #4 #3 #2 #1 #0

1 0 1 0 0 0 0 0

~
THESE TWO SPRITES HAVE OVERLAPPED
IN NON- ZERO AREAS

Figure 10-1

peeking At Sprites
Now the question is, how do you get "inside" the register to

see which bits have been turned on?
To do this, we use a PEEK statement as part of an IF-THEN.

210 IF PEEK(V+30) AI\IO 160 = 160 THEN {take
some action}

This statement accomplishes two things. First, it PEEKs at the
value in register V + 30. Then it uses that value in a Boolean
AND operation with the value 160. If the results of the Boolean
AND equal the value 160, then the statement is true, and the
action following the THEN part of the statement is carried out.

If you are not sure how this Boolean AND operates, it is dis
cussed in detail in Chapter 13.

It is important to realize that due to the way the PEEK state
ment works, once you have PEEKed into a register, all those

77

SPRITE GRAPHICS FOR THE COMMODORE 64

bits will be reset to "off" or zero. Therefore, if you need to keep
track of which bits were on, you must save this information in
memory somewhere so you can access it later.

Detecting Collisions
This same statement format can be used to detect collision

involvement for any Sprite(s) you like. The general format of
the statement is:

210 IF PEEK(V+30) AND X = X THEN {take some
action}

where X is the total decimal value of the Sprite bit(s) you want
examined for collision. So, to look for a collision involving
Sprite #4, you know that the bit for Sprite #4 in the register
would have to be turned on. The decimal equivalent of this
value is 16. That is the value you use for X in the PEEK state
ment looking at the contents of register V + 30.

If Sprite #4 is involved in a collision, you know its bit must be
a "1", like this:

REG ISTER V+30

#7 #6 #5 #4 #3 #2 #1 -#0

10101011101010101
DECIMAL VALUE = 16

Figure 10-2

(Actually, another Sprite's bit would have to be on as well -
Sprite #4 can't collide with itself! But for our discussion, we are

78

COLLISION DETECTION

only interested in determining if Sprite #4 is involved. We don't
care at this point which other Sprite it collided with.)

Therefore, your PEEK statement is looking to see if this bit is
"on." The decimal equivalent of this value is 16, so the PEEK
statement would be:

210 IF PEEK(V+30) AND 16 = 16 THEN PRINT
-COLLISION--SPRITE #4-

You can check any combination of bits you wish by adding
up their decimal equivalents and using that number in the
above PEEK statement.

COLLISIONS WITH THE BACKGROUND
Checking for Sprite collisions with the background works the

same way, except we look at register V + 3l.
For collision purposes, the background can consist of charac

ter graphics, text, hi-resolution graphics, or anything else ex
cept the basic background color and the background border. If
any part of a Sprite is touching any part of the background on
the screen, that Sprite's bit will be turned on in the V + 31 regis
ter. The only exception is multi-color 1 background graphics.
For purposes of collision detection, they are all zeros, and will
not trigger a collison. This is handy to know if you wish to have
some background elements not cause collisions if they are
crossed by a Sprite.

COLLISIONS OFF THE VISIBLE
SCREEN AREA

It is important to realize that Sprites can be defined in areas
of the screen that are not visible to the user. However, colli
sions occurring in these "nonvisible" areas are still valid colli
sions, and they will affect the bit settings in the collision
registers.

79

MULTI-COLOR MODE

Up until now, all our Sprites have been defined in single
color mode. But Sprites can also be done in up to four colors,
using multi-color mode. In addition to the Sprite color and the
transparent "background color" you can choose from when
coding a single-color Sprite, multi-color mode has two more
choices: multi-color 1 and multi-color 2. Multi-color 1 is set by
poking a color code into register V + 37. Notice that the multi
color 1 applies to all eight Sprites. If you have more than one
multi-color Sprite on the screen at a time, they will all have the
same multi-color 1 value. Multi-color 2 is set by poking a color
code into register V + 38. It has the same limitation as multi
color 1 does - the multi-color 2 color is the same for all Sprites
on the screen.

DESICNATINC COLORS IN
MULTI-COLOR

Since we must have some way to indicate which of these
four color choices we will be using for each dot in a multi-color
Sprite, we must sacrifice horizontal resolution to accomplish
this task.

80

MULTI-COLOR MODE

In a single color Sprite, we can individually shade any of the
24 dots on each row of the Sprite grid. But in multi-color
Sprites, we will be using PAIRS of dots in each row to desig
nate whether these pairs should be colored, and which of the
four color choices they should be.

In this example, we are looking at the top three rows of a
multi-color Sprite. The diagram key shows how we want to
have each pair of dots colored.

2

3

I 2 3 4 5 6 7 8 9 10 "
: ~ :::::: ,~ ~ .. :::::::: ::::t ::-...; . .

:. :} .c-~ s:::

III MULTI-COLOR 1 (01)

~ • SPRITE COLOR (10)

[ill MULTI-COLOR 2 (11)

12 13 14

~ t':: " ~ ~
~ ~ :s:

o (UNSHADED)= BACKGROUND (00)

15 16 17

::-...; ~
..

s::::::

Figure 11-1

81

18 19 20 21 22 2324

:

SPRITE CRAPHICS FOR THE COMMODORE 64

Now, each PAIR of colored dots must be coded like this:

I 234 5 6 7 8 9 10 II 12 1314 1516 17 18 192021 222324

I

2
3

I I o 0 0 I o I I

I I o I o 0 00 I

I I o 0 o I o I I

MULTI - COLOR 1 = (01)
SPRITE COLOR = (10)
MULTI-COLOR 2 = (11)

BACKGROUND = (00)

0 I 0 I 0 I o 0 I o I o I I I

I I 0 I o I I o I o 0 o 0 I I

0 I 0 I 0 I 0 o I o I o I I I

Figure 11-2

Converting the binary numbers to decimal equivalents, our
DATA statements for the first three rows of this multi-colored
Sprite would be:

1000 DATA 197,170,87
1010 DATA 208,235,67
1020 DATA 197,170,87

DISPLAYINC MULTI-COLOR SPRITES
Now that we have the coded values for this portion of a

Sprite, how do we get these four different colors (actually, three
colors and a background color) to show up on the screen?

The background color is set when you poke the color code
into location 53281. Multi-color 1 is set by poking a color code
into register V + 37. The Sprite color is set by using the color
register for each individual Sprite, as is done with single color
Sprites. The multi-color 2 register is V + 38. It is set the same
way as multi-color register 1.

82

MULTI-COLOR MODE

ENABLING MULTI-COLOR SPRITES
Before a Sprite will appear on the screen in all its multi

colored glory, you must poke a value into one more register.
Register V + 28 is for turning on and off multi-color mode. It

has eight bits, one for each of the eight Sprites. If you want a
Sprite to be multi-colored, you must poke a value into register
V + 28 so the bit for that Sprite will be a 1.

For example, to make Sprites # L 2, and 3 multi-colored, the
contents of register V + 28 must look like this:

#7 #6 #5 #4 #3 #2 #1 #0

10101010111111101
MULTI-COLOR MODE REGISTER (V+37)

Figure 11-3

The decimal equivalent of this value is 14, so the POKE state
ment would be:

140 POKE V+28,14

Realize that if you design a Sprite as multi-colored, you can
not simply turn off the bit for that Sprite in the V + 28 register,
and expect to see the Sprite intact, but in single color mode.
You'll see a Sprite, all right, but it won't be what you expected.
Most likely, it will be a royal mess.

This only makes sense. The very way we encode a Sprite as
single or· multi-colored makes a big difference in how the
values in the DATA statements will turn out. Just turning on or
off a bit in the multi-color mode register will not make any

83

SPRITE GRAPHICS FOR THE COMMODORE 64

changes to the number values stored in memory to define that
Sprite.

Otherwise, multi-colored Sprites can be positioned, ex
panded, and generally manipulated the same as single color
Sprites.

MULTI-COLOR CONSIDERATIONS
It is fairly obvious that multi-color Sprite mode makes it quite

difficult to design a very complex Sprite on the grid. It is tough
enough squeezing a complex shape into a 24 by 21 grid for a
normal sized Sprite. Multi-color mode cuts your horizontal res
olution in half, so you are essentially working with a 12 by 21
dot grid, even though each horizontal dot is twice as wide. But
if your Sprite shape will lend itself readily to these constraints,
multi-color Sprites can produce very striking results in your
graphics programs.

SAMPLE MULTI-COLORED SPRITES
Here are the number values for three multi-color Sprites, to

get you started.

Multi-color Butterfly
This butterfly uses three colors: the Sprite color, multi-color 1.

and multi-color 2. It does not make use of the background color
because there are no "holes" within the Sprite grid that have
not been colored in. Looking at the color illustration featuring
butterflies, you can see that this multi-color butterfly is not as
detailed as his single-colored neighbors. Half the horizontal
resolution has been sacrificed for the sake of extra colors.

9999 REM MULTICOLORED BUTTERFLY
10000 DATA 8
10010 DATA 0,128,10,2,128
10020 DATA 2,138,0,64,136
10030 DATA 5,80,168,21,84
10040 DATA 32,93,117,33,125
10050 DATA 125,101,253,127,103

84

MULTI-COLOR MODE

10060 DATA 253,123,103,173,123
10070 DATA 103,173,123,103,173
10080 DATA 123,103,173,123,103
10090 DATA 173,123,103,173,123
10100 DATA 103,173,123,103,173
10110 DATA 127,103,253,95,101
10120 DATA 253,21,97,117,5
10130 DATA 32,84

Multi-color Sailboat
This sailboat Sprite makes effective use of all four colors

available, including the background color, which is allowed to
show through to form part of the boat's hull.

10815 REM MULTI-COLOR BOAT
10820 DATA 0,8,0
10830 DATA 0,56,0,0,248
10840 DATA 0,3,248,0,15
10850 DATA 248,0,63,248,0
10860 DATA 255,248,0,0,8
10870 DATA 0,0,8,0,0
10880 DATA 8,0,0,8,0
10890 DATA 85,89,84,85,85
10900 DATA 85,255,255,255,255
10910 DATA 255,252,255,255,240
10920 DATA 252,0,0,252,0
10930 DATA 0,240,0,0,192
10940 DATA 0,0,0,0,0

85

SPRITE GRAPHICS FOR THE COMMODORE 64

Multi-color Target Sprite
This simple multi-color Sprite resembles a bull's-eye target. It

uses only three colors, since no background color has been
allowed to peep through the body of the Sprite.

30950 REM MULTI-COLOR TARGET SPRITE
30960 DATA 170,170
30970 DATA 170,170,170,170,149
30980 DATA 85,86,149,85,86
30990 DATA 159,225,246,159,255
31000 DATA 246,158,179,182,158
31010 DATA 170,182,158,150,182
31020 DATA 158,150,182,158,150
31030 DATA 182,158,150,182,158
31040 DATA 150,182,158,170,182
31050 DATA 158,170,182,159,255
31060 DATA 246,159,255,246,149
31070 DATA 85,86,149,85,86
31080 DATA 170,170,170,170,170
31090 DATA 170

86

INCORPORATING SPRITES
INTO YOUR PROGRAMS

At this point. examples of Sprites used in actual programs
will be more helpful than more explanations.

Each program in this chapter is written in "uncrunched"
style, so they are easily read and understood. When you adapt
them for your own, they will run more efficiently if you remove
all the "extras" that are not needed. Program "crunching" is
explained in your Commodore 64 Programmer's Reference
Guide, if you need help.

Moving Sprites vertically
on the Screen

We'll begin with a simple program to move a single Sprite
from the top of the screen to the bottom.

10 REM **VERT I CAL MOVEMENT
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,7 :POKE 53280, 5
90 POKE 2040,192
110 FOR M=O TO 62
120 READ A

87

SPRITE CRAPHICS FOR THE COMMODORE 64

130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,6
165 POKE V+0,100
170 FOR Y = 1 TO 255
1 80 POKE V+ 1 , Y
1 85 POKE V+ 21 , 1
190 NEXT Y
195 GOTO 170
9999 REM **SOLID BUTTERFLY
10000 DATA 3,0,192,57,129
10010 DATA 156,124,195,62,254
10020 DATA 102,127,255,36,255
10030 DATA 255,153,255,255,219
10040 DATA 255,255,255,255,255
10050 DATA 255,255,255,255,255
10060 DATA 255,255,255,255,255
10070 DATA 255,255,255,255,255
10080 DATA 255,255,255,255,255
10090 DATA 255,255,255,255,255
10100 DATA 255,127,219,254,63
10110 DATA 153,252,31,24,248
10120 DATA 14,24,112

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
90

110-140

160
165
170-190

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Sets the Sprite pointer for Sprite #0 to memory area
192
Reads the data values and pokes them into mem
ory
Sets the color for Sprite #0
Sets the X-coordinate for Sprite #0 at 100
Steps the Y-coordinate for Sprite #0 through the
values 1 to 255

88

INCORPORATINC SPRITES INTO YOUR PROCRAMS

Moving Sprites Horizontally
Across the Screen

This program makes it easy to see how the Right X and Left X
values are used, along with the Most Significant Bit Register for
switching between them.

10 REM **HORI ZONTAL MOVEMENT
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281, l:POKE 53280, 2
90 POKE 2040,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,5
1 70 POKE V+ 1 , 150
175 POKE V+16,0
180 FOR X=l TO 344
190 IF X) 255 THEN GOSUB 500:GOTO 300
200 POKE V+O,X
210 POKE V+21,1
300 NEXT X
310 END
499 REM SUBROUTINE FOLLOWS***********
500 POKE V+16,1
510 POKE V+0,(X-256)
520 RETURN
9999 REM **SPRITE DATA VALUES START HERE
10000 REM COFFEE CUP ****************
10020 DATA 8,66,0,4,33,0
10030 DATA 2,16,128,4,33
10040 DATA 0,8,66,0,0
10050 DATA 0,0,255,255,192
10060 DATA 255,255,192,245,85
10070 DATA 252,245,85,254,245
10080 DATA 85,199,245,85,195
10090 DATA 245,85,195,245,85
10100 DATA 195,245,85,199,245
10110 DATA 85,206,245,85,252
10120 DATA 245,85,248,245,85
10130 DATA 240,245,85,192,255,255,192

89

SPRITE CRAPHICS FOR THE COMMODORE 64

Line
Number
15

Descri ption
Initializes the beginning address of the video chip
Clears the screen, and disables any stray Sprites
left on the screen

30

40
90
110-140

Sets the screen background and border colors
Points Sprite #0 to memory area 192
Reads the data values and pokes them into mem
ory

160 Sets the color for Sprite #0
170 Sets the Y-value for Sprite #0 to 150
175
180-300

Turns off all bits in the Most Significant Bit Register
Steps the X-values for Sprite #0 through values 1 to
344

190 Directs the program to a subroutine if the X-value is
larger than 255

500-520 This subroutine sets the Most Significant Bit for
Sprite #0, and starts the X-value over again with
zero (X-256)

Diagonal Movement
Across the Screen

This program shows diagonal movement in all possible
directions across the screen. It also includes an example of di
agonal movement where the X distance traveled is not the
same as the Y distance traveled.

10 REM **D I AG~L MOVEMENT
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,7 :POKE 53280, 5
90 POKE 2040,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,6
170 FOR T = 1 TO 255
175 POKE V+O,T

90

Line

INCORPORATINC SPRITES INTO YOUR PROCRAMS

180 POKE V+ 1 , T
185 POKE V+21,1
190 NEXT T
195 FOR T = 255 TO 1 STEP -1
200 POKE V+O,T
210 POKE V+l,T
230 NEXT T
240 FOR T = 1 TO 255
250 POKE V+O,T
260 POKE V+l,(255-T)
280 NEXT T
290 FOR T = 255 TO 1 STEP -1
300 POKE V+O,T
310 POKE V+l,(255-T)
320 NEXT T
330 Tl=l
340 T2=1
350 POKE V+O,Tl
360 POKE V+ 1 , T2
370 Tl=Tl+l:IF Tl)255 THEN Tl=l
380 T2=T2+2:IF T2)255 THEN T2=1
390 GOTO 350
9999 REM *~ IN SWIM SUIT
10000 DATA 0,62,0,0,42
10010 DATA 0,0,62,0,0
10020 DATA 28,0,0,127,0
10030 DATA 1,255,192,3,62
10040 DATA 96,6,62,48,28
10050 DATA 54,56,8,62,16
10060 DATA 0,0,0,0,62
10070 DATA 0,0,62,0,0
10080 DATA 54,0,0,0,0
10090 DATA 0,54,0,0,54
10100 DATA 0,0,54,0,0
10110 DATA 54,0,0,54,0
10120 DATA 1,247,128

Number Description
15 Initializes the address of the video chip, for later

reference

91

30

40
90

SPRITE CRAPHICS FOR THE COMMODORE 64

Clears the screen, and disables any stray Sprites
left on the screen
Sets the screen background and border colors
Sets the Sprite pointer for Sprite #0 to memory area
192

110-140 Reads the data values and pokes them into the
memory locations

160
170-190

195-230

240-280
290-320
330-390

Sets the color for Sprite #0
Increments the X and Y values to move the Sprite
from the top left corner of the screen to lower right
corner of the screen
Changes the X and Y values by a negative incre
ment, to move the Sprite from lower right to upper
left
Moves the Sprite from lower left to upper right
Moves the Sprite from upper right to lower left
This group of statements moves the Sprite 1 dot in
the X direction for every 2 dots it moves in the Y
direction

Random Positioning of Sprites
The Commodore 64's random number generator can be used

to choose random X and Y coordinates for Sprites.

10 REM **RANDOM POSITIONING OF SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,15:POKE 53280,11
90 POKE 2040,192
92 POKE 2041,192
94 POKE 2042,192
96 POKE 2043,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,6
165 POKE V+40,5
170 POKE V+41,4
180 POKE V+42,8

92

INCORPORATINC SPRITES INTO YOUR PROCRAMS

182 POKE V+21,15
185 GOSUB 1000
190 POKE V+O,X
195 POKE V+l,Y
200 GOSUB 1000
210 POKE V+2,X
220 POKE V+3,Y
230 GOSUB 1000
240 POKE V+4,X
250 POKE V+5,Y
260 GOSUB 1000
270 POKE V+6,X
280 POKE V+7,Y
290 GOTO 185
999 REM SUBROUTINE FOLLOWS *********
1000 X=INT(RND(1)*255)+1
1010 Y=INT(RND(1)*255)+1
1015 FOR 0=1 TO 50:NEXT D
1020 RETURN
9999 REM *~OTCHED WING BUTTERFLY
10000 DATA 3,0,192,57,129
10010 DATA 156,124,195,62,254
10020 DATA 102,127,255,36,255
10030 DATA 255,153,255,127,219
10040 DATA 254, 63,219,252, 31
10050 DATA 219,248, 15,219,240
10060 DATA 15,219,240, 31,219
10070 DATA 248, 63,219,252,127
10080 DATA 219,254,255,219,255
10090 DATA 255,219,255,255,219
10100 DATA 255,127,219,254,63
10110 DATA 153,252,31,24,248
10120 DATA 14,24,112

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors

93

SPRITE GRAPHICS FOR THE COMMODORE 64

90-96 Sets the Sprite pointer for Sprites 0, 1, 2 and 3 to
memory area 192

110-140 Reads the data values and pokes them into mem
ory

160-1S0
lS2
lS5-2S0

Sets Sprite colors
Enables the Sprites
Goes to a subroutine to get random values for X
and y, then pokes those values for each Sprite
Assigns random values to X and Y in the range of 1
to 255

1000-1010

1015 A delay loop, which leaves the enabled Sprites on
the screen long enough for you to see them

Experimentation with
X and v Coordinates

This program allows you to enter your own X and Y values,
and see where the expanded Sprite ends up on the screen. If
you wish to play with an unexpanded Sprite, change line 70 to
poke zeroes into both registers.

10 REM ** EXPERIMENT WITH X AND Y VALUES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,1 :POKE 53280,1
90 POKE 2040,192
100 POKE V+28,1
110 POKE V+37,2:POKE V+38,5
120 FOR M = 0 TO 62
125 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,0
170 POKE V+23,I:POKE V+29,1
180 POKE V+0,150:POKE V+l,150
190 POKE V+21, 1
195 PRINT CHR$(147)
200 INPUT -X COORDINATE FROM 0 TO 343 n ;X
210 IF X>343 THEN PRINT HINVALID VALUE-:

GOTO 200
220 I=INT(X/256)

94

INCORPORATINC SPRITES INTO YOUR PROCRAMS

230 IF 1=0 THEN POKE V+16,0:POKE V+O,X
240 IF 1=1 THEN POKE V+16,I:POKE V+O,

(X-256)
250 INPUT ay COORDINATE FROM ° TO 255 a ;y
260 IF Y>255 THEN PRINT aINVALID VALUEa:

GOTO 250
270 POKE V+ 1 , Y
280 GOTO 195
10545 REM SQUARE MAN WITH FEET
10550 DATA 255,255,255,192
10560 DATA 0,3,192,0,3
10570 DATA 192,0,3,202,138
10580 DATA 131,192,0,3,192
10590 DATA 32,3,192,168,3
10600 DATA 192,0,3,192,0
10610 DATA 3,196,0,19,197
10620 DATA 85,83,196,0,19
10630 DATA 197,85,83,192,0
10640 DATA 3,255,255,255,0
10650 DATA 195,0,0,195,0
10660 DATA 84,195,21,255,195
10670 DATA 255,85,65,85

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
90

100
110

120-140

160
170
180
190

Clears the screen, and disables any stray Sprites
on the screen
Sets the background and border screen colors
Sets the Sprite pointer for Sprite #0 to memory area
192
Defines Sprite #0 as multi-colored
Sets the color codes for multi-color 1 and multi-color
2
Reads the data values and pokes them into mem
ory
Sets the color for Sprite #0
Expands Sprite #0 in both directions
Gives the initial X and Y coordinates for Sprite #0
Enables Sprite #0

95

SPRITE GRAPHICS FOR THE COMMODORE 64

200-240 Asks for your input for a valid X coordinate value,
and pokes that value into the X coordinate register
for Sprite #0

220

250

Determines if this X value will be a Right X value
by dividing the X value by 256. If the 'integer value
of the quotient is zero, the number must be 255 or
less, so it will be an X position on the left portion of
the screen.

250-270

If the integer value of the quotient is a 1, then the
number you entered must be larger than 255, and
we will need to set the Most Significant Bit for Sprite
#0, and start our X coordinate values over at zero.
The Y coordinate value is entered in the same
fashion. This time, however, we do not have to
worry about values larger than 255, so the process
is simpler.

Changing Sprite Colors
This program uses random numbers to choose the color

codes for the Sprites.

10 REM **CHANGING SPRITE COLORS
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281, 3:POKE 53280,6
90 POKE 2040,192
92 POKE 2041,192
94 POKE 2042,192
96 POKE 2043,192
97 POKE 2044,192
98 POKE 2045,192
99 POKE 2046,192
100 POKE 2047,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
150 FOR YC=1 TO 15 STEP 2
160 Y=INT(RND(I)*175)+50
162 POKE V+YC,Y

96

INCORPORATING SPRITES INTO YOUR PROGRAMS

165 NEXT YC
170 FOR XC=O TO 14 STEP 2
172 X=INT(RND(1)*231)+24
174 POKE V+XC,X
176 NEXT XC
182 POKE V+21,255
185 FOR CR=O TO 7
190 C=INT(RND(1)*16)+1
195 POKE V+(39+CR),C
200 NEXT CR
210 GOTO 185
999 REM SUBROUTINE FOLLOWS *********
1000 X=INT(RND(I)*255)+1
1010 Y=INT(RND(1)*255)+1
1015 FOR 0=1 TO 50:NEXT D
1020 RETURN
9999 REM **NOTCHED WING BUTTERFLY
10000 DATA 3,0,192,57,129
10010 DATA 156,124,195,62,254
10020 DATA 102,127,255,36,255
10030 DATA 255,153,255,127,219
10040 DATA 254, 63,219,252, 31
10050 DATA 219,248, 15,219,240
10060 DATA 15,219,240, 31,219
10070 DATA 248, 63,219,252,127
10080 DATA 219,254,255,219,255
10090 DATA 255,219,255,255,219
10100 DATA 255,127,219,254,63
10110 DATA 153,252,31,24,248
10120 DATA 14,24,112

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
90-99

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Sets the Sprite pointers for all eight Sprites to mem
oryarea 192

97

SPRITE GRAPHICS FOR THE COMMODORE 64

150-165 Steps through all the Y-coordinate registers and
pokes each with a random Y value

170-176
182
185-200

Does the same for the X coordinate registers
Enables all eight Sprites
Generates a random color code for each of the
eight Sprites and pokes these values into the color
registers

210 This process is then repeated. The Sprites will con
tinue to change colors until the program is stopped.

HorlzontallVertical ExpansiOn
Each Sprite can be expanded along the horizontal axis,

along the vertical axis, or along both axes at once. This pro
gram shows all the possible combinations. If an expansion
register contains zero, then neither Sprite is expanded. If it
contains a I, then Sprite #0 is expanded. A 2 means that Sprite
1 is expanded. A 3 (1 + 2) means both are expanded.

10 REM **HORIZONTAL/vERTICAL EXPANSION
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,0 :POKE 53280, 2
50 V=53248
90 POKE 2040,192
92 POKE 2041,193
100 FOR S = 0 TO 1
110 FOR M=O TO 62
120 READ A
130 POKE (192+S)*64+M,A
140 NEXT M
150 NEXT S
160 POKE V+39,6
170 POKE V+40,7
180 POKE V+0,100:POKE V+l,100
190 POKE V+2,160:POKE V+3,160
200 POKE V+21,3
205 FOR 0=1 TO 500:NEXT D
210 FOR VE = 0 TO 3
220 FOR HE = 0 TO 3
230 POKE V+23,VE

98

INCORPORATING SPRITES INTO YOUR PROGRAMS

235 FOR 0=1 TO 500:NEXT D
240 POKE V+29,HE
245 FOR 0=1 TO 500:NEXT D
250 NEXT HE
260 NEXT VE
9999 REM **MEAN WOLF SPRITE
10000 DATA 0,0,0,0,0,0,0
10010 DATA 0,48,1,192,112
10020 DATA 0,240,240,0,121
10030 DATA 224,0,61,192,0
10040 DATA 31,192,0,15,224
10050 DATA 0,63,224,255,255
10060 DATA 240,255,193,248,255
10070 DATA 255,252,170,255,254
10080 DATA 0,255,254,0,255
10090 DATA 254,0,255,254,170
10100 DATA 255,252,255,255,248
10110 DATA 1,255,240,1,255,240
10120 REM BLOCK SPRITE
10130 DATA 255,255,255
10140 DATA 255,255,255,255,255
10150 DATA 247,239,255,231,231
10160 DATA 255,199,227,255,135
10170 DATA 225,255,7,224,254
10180 DATA 7,224,124,7,255
10200 DATA 199,255,255,199,255
10210 DATA 255,199,255,224,124
10220 DATA 7,224,254,7,225
10230 DATA 255,7,227,255,135
10240 DATA 231,255,199,239,255
10250 DATA 231,255,255,247,255
10260 DATA 255,255,255,255,255

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors

99

50

90

92

SPRITE GRAPHICS FOR THE COMMODORE 64

It won't cause a problem, but this line was not
needed
Sets the Sprite pointer for Sprite #0 to memory area
192
Sets the Sprite pointer for Sprite # 1 to memory area
193

100-150 This nested do-loop reads the values for the two
Sprites and pokes these values into the proper
memory locations

160-170
180-190
205

210-260

Sets the color codes
Assigns the X and Y coordinates for the two Sprites
A delay loop which leaves the image on the screen
long enough for you to see it
This nested do-loop steps the vertical and horizon
tal expansion registers through all the possible
values from 0 to 3

Multi-Color Sprites
Multi-color Sprites can use up to four colors per figure, count

ing the background color which shows through the transparent
portion of the shape. In this example, two of the Sprites use four
colors, and one uses only three.

Once you have run the program, try poking the value zero
into register V + 28. The resultant mess is what your multi-color
Sprites will look like if you forget to define them as being multi
color.

10 REM **MULTI-COLOR SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,13:POKE 53280,5
90 POKE 2040,192
95 POKE 2041,193
100 POKE 2042,194
105 FOR S = 0 TO 2
110 FOR MFO TO 62
120 READ A
130 POKE (192+S)*64+M,A
140 NEXT M

100

INCORPORATINC SPRITES INTO YOUR PROCRAMS

145 NEXT S
160 POKE V+39,6
170 POKE V+40,8
180 POKE V+41,2
190 POKE V+37,1
200 POKE V+38,0
210 POKE V+28,7
220 POKE V+O,150:POKE V+l,75
230 POKE V+2,150:POKE V+3,150
240 POKE V+4,150:POKE V+5,200
245 POKE V+23,7:POKE V+29,7
250 POKE V+21,7
9999 REM **MULTICOLOR BUTTERFLY
10000 DATA 8,0,128,10,2,128
10010 DATA 2,138,0,64,136
10020 DATA 5,80,168,21,84
10030 DATA 32,93,117,33,125
10040 DATA 125,101,253,127,103
10050 DATA 253,123,103,173,123
10060 DATA 103,173,123,103,173
10070 DATA 123,103,173,123,103
10080 DATA 173,123,103,173,123
10090 DATA 103,173,123,103,173
10100 DATA 127,103,253,95,101
10 11 0 DATA 253,,21,97,117,5
10120 DATA 32,84
10130 REM ** MULTICOLOR SAILBOAT
10140 DATA 0,8,0
10150 DATA 0,56,0,0,248
10160 DATA 0,3,248,0,15
10170 DATA 248,0,63,248,0
10180 DATA 255,248,0,0,8
10190 DATA 0,0,8,0,0
10200 DATA 8,0,0,8,0
10210 DATA 85,89,84,85,85
10220 DATA 85,255,255,255,255
10230 DATA 255,252,255,255,240
10240 DATA 252,0,0,252,0
10250 DATA 0,240,0,0,192
10260 DATA 0,0,0,0,0
10270 REM ** MULTI COLOR TARGET
10280 DATA 170,170

101

SPRITE GRAPHICS FOR THE COMMODORE 64

10290 DATA 170,170,170,170,149
10300 DATA 85,86,149,85,86
10310 DATA 159,255,246,159,255
10320 DATA 246,158,170,182,158
10330 DATA 170,182,158,150,182
10340 DATA 158,150,182,158,150
10350 DATA 182,158,150,182,158
10360 DATA 150,182,158,170,182
10370 DATA 158,170,182,159,255
10380 DATA 246,159,255,246,149
10390 DATA 85,86,149,85,86
10400 DATA 170,170,170,170,170,170

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
90-100

105-145

160-180

190

200

210

220-240
245
250

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Sets the Sprite pointers for the three memory areas
which will be used
Reads the data values for Sprites #0, 1, and 2 and
pokes them into memory
Sets the Sprite colors for the three multi-color
Sprites
Sets multi-color 1 which will be used by all three
Sprites
Sets multi-color 2 which will be used by all three
Sprites
Defines the three Sprites as being multi-colored.
This is the sum of the place values of the Sprites
(l + 2+4)
Sets the X and Y coordinates for each Sprite
Expands the Sprites in both directions
Enables the three Sprites, so they will appear on
the screen

102

INCORPORATING SPRITES INTO YOUR PROGRAMS

Inverse Multi-Color Sprites
This useful program shows what happens when you poke

the inverse of each of your data values into memory. This
means that instead of poking the data value itself, you poke in
255 minus the data value.

On the Sprite grid, you can visualize the inverse of a Sprite
as having a colored dot where every blank dot would be, and
a blank dot where every colored dot would be. In binary num
bers, this would mean a 1 in place of every zero, and a zero in
place of every 1. To arrive at the decimal value of this number,
just subtract the original value from 255. (If you are still not
convinced, try an example yourself.)

In this program, the normal Sprites appear on the left, and
their "inverse" forms appear on the right. Changing the colors
will change both forms at the same time, so you can compare
the results.

10 REM ** INVERSE MULTI-COLOR SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,13:POKE 53280,5
90 POKE 2040,192
95 POKE 2041,193
96 POKE 2042,194
97 POKE 2043,195
98 POKE 2044,196
100 POKE 2045,197
105 FOR S = 0 TO 2
110 FOR M=O TO 62
120 READ A
130 POKE (192+S)*64+M,A
132 POKE (195+S)*64+M,(255-A)
140 NEXT M
145 NEXT S
160 POKE V+39,6
170 POKE V+40,8
180 POKE V+41,2
190 POKE V+37,1
200 POKE V+38,0
210 POKE V+28,63

103

SPRITE GRAPHICS FOR THE COMMODORE 64

220 POKE V+0,150:POKE V+l,75
230 POKE V+2,150:POKE V+3,150
240 POKE V+4,150:POKE V+5,200
241 POKE V+6,250:POKE V+7,75
242 POKE V+8,250:POKE V+9,150
243 POKE V+I0,250:POKE V+ll,200
245 POKE V+23,63:POKE V+29,63
250 POKE V+21,63
260 PRINT CHR$(147)
300 INPUT HBUTTERFLY SPRITE COLORH;BT
305 IF BT > 16 THEN GOTO 300
310 POKE V+39,BT:POKE V+42,BT
315 PRINT CHR$(147)
320 INPUT HSAILBOAT SPRITE COLORH;BT
330 IF BT > 16 THEN GOTO 320
340 POKE V+40,BT:POKE V+43,BT
345 PRINT CHR$(147)
350 INPUT -TARGET SPRITE COLOR-;BT
360 IF BT > 16 THEN GOTO 350
370 POKE V+41,BT:POKE V+44,BT
375 PRINT CHR$(147)
380 INPUT -MULTI-COLOR IH;BT
390 IF BT > 16 THEN GOTO 380
400 POKE V+37,BT
405 PRINT CHR$(147)
410 INPUT -MULTI-COLOR 2H;BT
420 IF BT > 16 THEN GOTO 410
430 POKE V+38,BT
435 PRINT CHR$(147)
440 INPUT -BACKGROUND COLOR-;BT
445 IF BT = 14 THEN POKE 53281,3:GOTO 465
450 IF BT > 16 THEN GOTO 440
460 POKE 53281,BT
465 PRINT CHR$(147)
470 INPUT HBORDER COLORH;BT
480 IF BT > 16 THEN GOTO 470
490 POKE 53280,BT
9999 REM **MULTICOLOR BUTTERFLY
10000 DATA 8,0,128,10,2,128
10010 DATA 2,138,0,64,136
10020 DATA 5,80,168,21,84
10030 DATA 32,93,117,33,125

104

INCORPORATINC SPRITES INTO YOUR PROCRAMS

10040 DATA 125,101,253,127,103
10050 DATA 253,123,103,173,123
10060 DATA 103,173,123,103,173
10070 DATA 123,103,173,123,103
10080 DATA 173,123,103,173,123
10090 DATA 103,173,123,103,173
10100 DATA 127,103,253,95,101
10110 DATA 253,21,97,117,5
10120 DATA 32,84
10130 REM ** MULTI COLOR SAILBOAT
10140 DATA 0,8,0
10150 DATA 0,56,0,0,248
10160 DATA 0,3,248,0,15
10170 DATA 248,0,63,248,0
10180 DATA 255,248,0,0,8
10190 DATA 0,0,8,0,0
10200 DATA 8,0,0,8,0
10210 DATA 85,89,84,85,85
10220 DATA 85,255,255,255,255
10230 DATA 255,252,255,255,240
10240 DATA 252,0,0,252,0
10250 DATA 0,240,0,0,192
10260 DATA 0,0,0,0,0
10270 REM ** MULTI COLOR TARGET
10280 DATA 170,170
10290 DATA 170,170,170,170,149
10300 DATA 85,86,149,85,86
10310 DATA 159,255,246,159,255
10320 DATA 246,158,170,182,158
10330 DATA 170,182,158,150,182
10340 DATA 158,150,182,158,150
10350 DATA 182,158,150,182,158
10360 DATA 150,182,158,170,182
10370 DATA 158,170,182,159,255
10380 DATA 246,159,255,246,149
10390 DATA 85,86,149,85,86
10400 DATA 170,170,170,170,170,170

Line
Number
15

DeSCription
Initializes the address of the video chip, for future
reference

105

30

SPRITE GRAPHICS FOR THE COMMODORE 64

Clears the screen, and disables any stray Sprites
left on the screen

40
90-100

Sets the background and border screen colors
Sets the Sprite pointers for the six Sprites we will be
using

105-145 Notice the sly trick we've pulled here. Although we
have only enough data values for three different
Sprites, we are filling TWO memory areas with
each set of data values. For one memory area, we
poke in the original value. In the other, we poke in
(255-A) to achieve the "inverse" Sprite.

160-200
210
220-243
245

Sets the colors
Defines all six Sprites as multi-colored
Sets the screen coordinates for all six Sprites
Expands all six Sprites in both directions
Enables all six Sprites 250

260-490 Asks for your input in choosing the colors for
Sprites, multi-color 1, multi-color 2, screen back
ground and borders.

445 Note that I did not permit you to choose a back
ground color identical to the one in which the
questions are printed, or you couldn't read the last
question.

Sprite to Sprite Priorities
Overlapping Sprites on the screen gives a feeling of depth to

your graphics programs. In this example, note how the
numbering of the Sprites was crucial, since they had to overlap
in a certain pattern of dominance.

10 REM *** SPRITE TO SPRITE PRIORITIES
20 V=53248
25 PRINT CHR$(147):POKE V+21,0
40 POKE 2040,192
42 POKE 2041,193
44 POKE 2042,193
46 POKE 2043,194
48 POKE 2044,195
50 POKE 2045,193

106

INCORPORATING SPRITES INTO YOUR PROGRAMS

52 POKE 2046,196
60 POKE 2047,197
62 FOR P = 0 TO 5
64 FOR Y=O TO 62:READ A:POKE(192+P)*64+Y,

A:NEXT Y
66 NEXT P
70 POKE 53280,0 :POKE 53281,0
80 POKE V+39,2
90 POKE V+40,8
100 POKE V+41,7
110 POKE V+42,6
120 POKE V+43,6
130 POKE V+44,7
140 POKE V+45,8
150 POKE V+46,2
155 Xl=24:X2=135:Y=50 :A=30
160 POKE V+O,Xl :POKE V+l,Y
170 POKE V+2,Xl+A :POKE V+3,Y+A
180 POKE V+4,Xl+(2*A):POKE V+5,Y+(2*A)
190 POKE V+6,Xl+(3*A):POKE V+7,Y+(3*A)
200 POKE V+8,X2 :POKE V+9,Y
210 POKE V+I0,X2+(I*A) :POKE V+l1,Y+A
220 POKE V+12,X2+(2*A):POKE V+13,Y+(2*A)
230 POKE V+14,X2+(3*A):POKE V+15,Y+(3*A)
240 POKE V+23,255:POKE V+29,255
250 POKE V+21,255
9999 REM LETTER 6
10000 DATA 255
10010 DATA 255,255,255,255,255
10020 DATA 224,0,7,224,0
10030 DATA 7,231,255,231,231
10040 DATA 255,231,231,255,255
10050 DATA 231,255,255,231,255
10060 DATA 255,231,255,255,231
10070 DATA 255,255,231,240,7
10080 DATA 231,240,7,231,255
10090 DATA 231,231,255,231,231
10100 DATA 255,231,231,255,231
10110 DATA 224,0,7,224,0
10120 DATA 7,255,255,255,255
10130 DATA 255,255

107

SPRITE CRAPHICS FOR THE COMMODORE 64

10135 REM LETTER 0
10140 DATA 255,255,255
10150 DATA 255,255,255,224,0
10160 DATA 7,224,0,7,224
10170 DATA 0,7,227,255,199
10180 DATA 227,255,199,227,255
10190 DATA 199,227,255,199,227
10200 DATA 255,199,227,255,199
10210 DATA 227,255,199,227,255
10220 DATA 199,227,255,199,227
10230 DATA 255,199,227,255,199
10240 DATA 224,0,7,224,0
10250 DATA 7,224,0,7,255
10260 DATA 255,255,255,255,255
10270 REM LETTER D
10280 DATA 255,255,255,255,255
10290 DATA 255,224,0,7,224
10300 DATA 0,7,249,255,231
10310 DATA 249,255,231,249,255
10320 DATA 231,249,255,231,249
10330 DATA 255,231,249,255,231
10340 DATA 249,255,231,249,255
10350 DATA 231,249,255,231,249
10360 DATA 255,231,249,255,231
10370 DATA 249,255,231,249,255
10380 DATA 231,224,0,7,224
10390 DATA 0,7,255,255,255
10400 DATA 255,255,255
10405 REM LETTER J
10410 DATA 255,255
10420 DATA 255,255,255,255,224
10430 DATA 0,7,224,0,7
10440 DATA 255,227,255,255,227
10450 DATA 255,255,227,255,255
10460 DATA 227,255,255,227,255
10470 DATA 255,227,255,255,227
10480 DATA 255,255,227,255,231
10490 DATA 227,255,231,227,255
10500 DATA 231,227,255,231,227
10510 DATA 255,231,227,255,224
10520 DATA 3,255,224,3,255
10530 DATA 255,255,255,255,255

108

INCORPORATING SPRITES INTO YOUR PROGRAMS

10540
10545
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10675
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810

Line
Number
20

25

40-60

DATA 255
REM LETTER B
DATA 255,255,255,255
DATA 255,255,192,0,3
DATA 192,0,3,243,255
DATA 243,243,255,243,243
DATA 255,243,243,255,243
DATA 243,255,243,240,0
DATA 3,240,0,31,240
DATA 0,3,243,255,243
DATA 243,255,243,243,255
DATA 243,243,255,243,243
DATA 255,243,192,0,3
DATA 192,0,3,255,255
DATA 255,255,255,255
REM EXCLAMATION POINT
DATA 255
DATA 255,255,255,255,255
DATA 255,231,255,255,231
DATA 255,255,231,255,255
DATA 231,255,255,231,255
DATA 255,231,255,255,231
DATA 255,255,231,255,255
DATA 231,255,255,231,255
DATA 255,231,255,255,231
DATA 255,255,231,255,255
DATA 231,255,255,255,255
DATA 255,231,255,255,231
DATA 255,255,255,255,255
DATA 255,255

Description
Initializes the address of the video chip, for future
reference
Clears the screen, and disables any stray Sprites
left on the screen
Sets each of the Sprite pointers to its own memory
area (notice that Sprites # 1, 2, and 5 will be the
same)

109

SPRITE CRAPHICS FOR THE COMMODORE 64

62-66

70
80-150
155-230

240
250

Reads the data values and pokes them into mem
ory
Sets the screen background and border colors
Sets the color for each Sprite
The X and Y coordinates for this program were set
up so the spaces between the Sprites on the screen
could be changed with one variable. A sketch of
this screen layout and how it was planned can be
found elsewhere in this book, if you are having
trouble visualizing the results
All eight Sprites are expanded in both directions
All eight Sprites are enabled.

Sprite Priorities in Motion
Watching Sprites move in relation to one another gives an

even better feeling for how Sprite to Sprite priorities work. As
these Sprites pass through the same screen area, observe the
dominance hierarchy in action as they pass in front of or be
hind each other.

10 REM ** MOVING SPRITE TO SPRITE PRIORITIES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,0 :POKE 53280, 2
50 V=53248
60 FOR SN=O TO 5
80 POKE 2040+SN,192
9G NEXT SN
110 FOR MFO TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
150 X=225:Y=220
155 POKE V+23,63:POKE V+29,63
160 POKE V+39,2
170 POKE V+40,7
171 POKE V+41,8
172 POKE V+42,4
173 POKE V+43;5
174 POKE V+44,6

110

INCORPORATINC SPRITES INTO YOUR PROCRAMS

180 POKE V+O,50 :POKE V+l,Y
190 POKE V+2,75 :POKE V+3,Y+20
191 POKE V+4,150:POKE V+5,Y+30
192 POKE V+6,X :POKE V+7,50
193 POKE V+8,X+15:POKE V+9,100
194 POKE V+I0,X+30:POKE V+l1,80
200 POKE V+21,63
205 X=X-2:Y=Y-3
210 IF X<31 OR Y<31 THEN GOTO 230
220 GOTO 180
230 END
9999 REM **MEAN WOLF SPRITE
10000 DATA 0,0,0,0,0,0,0
10010 DATA 0,48,1,192,112
10020 DATA 0,240,240,0,121
10030 DATA 224,0,61,192,0
10040 DATA 31,192,0,15,224
10050 DATA 0,63,224,255,255
10060 DATA 240,255,193,248,255
10070 DATA 255,252,170,255,254
10080 DATA 0,255,254,0,255
10090 DATA 254,0,255,254,170
10100 DATA 255,252,255,255,248
10110 DATA 1,255,240,1,255,240

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
50

60-90

110-140

150
155
160-174

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
This line is superfluous. (That's a polite way of
saying I goofed.)
Sets the Sprite pointer for all six Sprites to the same
memory area
Reads the data values and pokes them into mem
ory
Initializes the values for the X and Y coordinates
Expands all six Sprites along both axes
Sets the Sprite colors

111

SPRITE CRAPHICS FOR THE COMMODORE 64

180-220 Plots the Sprites on the screen, and increments the
X and Y values to produce movement

Sprite to Background Priorities
Changing the values in the Sprite Background Priority regis

ter will enable Sprites to pass behind background figures. This
program shows a simple example.

Notice how slowly the eight Sprites move when all must be
moved, one after another. This points out that for complicated
action games involving Sprites, you will need to use machine
language routines to achieve truly fast and furious action.

10 REM ** SPRITE TO BACKGROUND PRIORITIES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281, 3:POKE 53280,6
90 POKE 2040,192
92 POKE 2041,192
94 POKE 2042,192
96 POKE 2043,192
97 POKE 2044,192
98 POKE 2045,192
99 POKE 2046,192
100 POKE 2047,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+H,A
140 NEXT H
142 FOR 2=1 TO 15:PRINT:NEXT 2
144 FOR 2=1 TO 200
146 PRINT ;
148 NEXT 2
149 POKE V+27,31
150 FOR YC=1 TO 15 STEP 2
160 Y=INT(RND(I)*175)+50
162 POKE V+YC,Y
165 NEXT YC
170 FOR XC=O TO 14 STEP 2
172 X=INT(RND(I)*231)+24
174 POKE V+XC,X
176 NEXT XC

112

INCORPORATINC SPRITES INTO YOUR PROCRAMS

182 POKE V+21,255
185 FOR CR=O TO 7
190 C=INT(RND(I)*16)+1
195 POKE V+(39+CR),C
200 NEXT CR
210 FOR YC=1 TO 15 STEP 2
220 POKE V+YC,PEEK(V+YC) +1
225 IF PEEK(V+YC) > 254 THEN POKE V+YC,1
230 NEXT YC
240 GOTO 210
900 END
999 REM SUBROUTINE FOLLOWS *********
1000 X=INT(RND(I)*255)+1
1010 Y=INT(RND(I)*255)+1
1015 FOR 0=1 TO 50:NEXT D
1020 RETURN
9999 REM **NOTCHED WING BUTTERFLY
1~000 DATA 3,0,192,57,129
10010 DATA 156,124,195,62,254
10020 DATA 102,127,255,36,255
10030 DATA 255,153,255,127,219
10040 DATA 254, 63,219,252, 31
10050 DATA 219,248, 15,219,240
10060 DATA 15,219,240, 31,219
10070 DATA 248, 63,219,252,127
10080 DATA 219,254,255,219,255
10090 DATA 255,219,255,255,219
10100 DATA 255,127,219,254,63
10110 DATA 153,252,31,24,248
10120 DATA 14,24,112

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
90-100

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Sets the Sprite pointer for each of the eight Sprites
to memory area 192

113

SPRITE CRAPHICS FOR THE COMMODORE 64

110-140

142-148
149

150-165

170-176

182
185-200

210-230

Reads the data values and pokes them into mem
ory
Prints a background figure on the screen
Turns" on" the bits in the Sprite Background Priority
register for Sprites #0 through 4
Sets the X coordinates for each Sprite to random
values
Sets the Y coordinates for each Sprite to random
values
Enables all eight Sprites
Sets random color codes for each of the eight
Sprites
Moves each Sprite downward in the Y direction by
looking at the existing Y value and adding 1 to it

Sprite to Sprite Collisions
Sprite collisions with other Sprites are detected by looking at

the contents of a register. This program does the looking for
you, then prints a message to show when a collision is taking
place.

10 REM ** SPRITE TO SPRITE COLLISIONS
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281, l:POKE 53280, 2
50 V=53248
90 POKE 2040,192
100 POKE 2041,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,0
162 POKE V+40,9
163 POKE V+23,3:POKE V+29,3
165 FOR A = 50 TO 255
168 IF PEEK(V+30) AND 1 = 1 THEN GOTO 170
170 POKE V+O,A:POKE V+l,A
180 POKE V+2,(255-A):POKE V+3,A
185 POKE V+21,3

114

INCORPORATINC SPRITES INTO YOUR PROCRAMS

190 IF PEEK(V+30) AND 1 = 1 THEN GOSUB 500
290 NEXT A
300 END
500 POKE V+39,4:PRINT ·COLLISION! B;
505 POKE V+40,7
510 RETURN
9999 REM ** HAPPY RABBIT SPRITE
10000 DATA 0,0,0
10010 DATA 0,0,0,0,0
10020 DATA 0,31,199,240,27
10030 DATA 199,176,24,238,48
10040 DATA 24,238,48,24,238
10050 DATA 48,24,255,48,25
10060 DATA 255,176,3,147,192
10070 DATA 7,147,224,15,147
10080 DATA 240,31,239,248,31
10090 DATA 255,248,15,255,240
10100 DATA 7,199,224,3,199
10110 DATA 192,1,199,128,0
10120 DATA 127,0,0,0,0

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
50
90-100
110-140

160-162
163
165-290

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Oops! Goofed again.
Sets the Sprite pointers for Sprites #0 and # 1
Reads the data values and pokes them into mem
ory
Sets the colors
Expands both Sprites along both axes
This loop moves the Sprites toward each other.
Each time they move closer, the Sprite Collision
Register is examined. If the PEEK shows that the bit
for Sprite #0 (place value 1) has been turned on,
then the program branches to the subroutine

115

168

SPRITE CRAPHICS FOR THE COMMODORE 64

This is a dummy statement to PEEK into register
V + 30 and thus reset the value of that register to
zero. (It may not have been zero when the program
started.)

500-510 This subroutine changes the color of Sprite #0 and
prints the "collision" message on the screen

Sprite to Background Collisions
Detecting collisions between Sprites and background figures

is done in much the same way we detect collisions between
Sprites. This program keeps you posted on the contents of the
register involved, so you can see how it changes as the two
Sprites come in contact with a vertical "wall" on the screen.

Notice how the values in the register reflect that just Sprite
#0 is in contact with the wall (V + 31 = 1), or just Sprite # 1 is in
contact (V + 31 = 2), or they are both in contact with the wall
(V+31=1+2=3).

10 REM ** SPRITE TO BACKGROUND COLLISIONS
15 V=53248
30 PRINT CHRS(147):POKE V+21,0
40 POKE 53281, l:POKE 53280, 2
41 FOR T = 1 TO 23
42 PRINT H ••••• ft
43 NEXT T
45 PRINT ftGREEN RABBIT IS SPRITE #0-
46 PRINT -RED RABBIT IS SPRITE #1-
50 V=53248
90 POKE 2040,192
100 POKE 2041,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,5
162 POKE V+40,2
163 POKE V+23,3:POKE V+29,3
165 FOR A = 255 TO 1 STEP -1
168 PRINT -sr-
169 PRINT -V+31= -; PEEK(V+31)

116

INCORPORATINC SPRITES INTO YOUR PROCRAMS

170 POKE V+O,A:POKE V+l,130
180 POKE V+2,(255~):POKE V+3,78
185 POKE V+21,3
190 REM IF PEEK(V+31) AND 2 = 2 THEN

GOSUB 500
290 NEXT A
300 GOTO 165
500 POKE V+40,O
510 RETURN
9999 REM ** HAPPY RABBIT SPRITE
10000 DATA 0,0,0
10010 DATA 0,0,0,0,0
10020 DATA 0,31,199,240,27
10030 DATA 199,176,24,238,48
10040 DATA 24,238,48,24,238
10050 DATA 48,24,255,48,25
10060 DATA 255,176,3,147,192
10070 DATA 7,147,224,15,147
10080 DATA 240,31,239,248,31
10090 DATA 255,248,15,255,240
10100 DATA 7,199,224,3,199
10110 DATA 192,1,199,128,0
10120 DATA 127,0,0,0,0

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40
41-46
50
90-100

110-140

160-162
163

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Prints the "wall" and a message on the screen
Oops again!
Sets the Sprite pointers for the two Sprites we will
be using. Both point to the same memory area.
Reads the data values and pokes them into the
memory locations
Sets the color codes
Expands both Sprites in both directions

117

SPRITE GRAPHICS FOR THE COMMODORE 64

165-290 Moves the two Sprites toward the "wall" from oppo
site sides of the screen. The contents of register
V + 31 are printed on the screen, and if the bit for
Sprite # 1 (place value 2) is turned on, the program
branches to the subroutine.

500-510 This subroutine changes the color of Sprite # 1.

All Sorts of Collisions
In this program, you can watch both kinds of collisions hap

pen. The contents of register V + 30 will be printed, so you can
observe the changes as the Sprites collide. The contents of reg
ister V + 31 will also be shown, so you can watch the Sprites hit
the background figure. To make things a bit more interesting,
one of the Sprites has been defined as having a lower priority
than the background, and will pass behind the background
figure.

10 REM ** SPRITE TO BACKGROUND COLLISIONS
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281, l:POKE 53280, 2
41 FOR T = 1 TO 23
42 PRINT II ••••••

43 NEXT T
45 PRINT ·GREEN RABBIT IS SPRITE *0·
46 PRINT ·RED RABBIT IS SPRITE *1-
50 V=53248
90 POKE 2040,192
100 POKE 2041,192
110 FOR M=O TO 62
120 READ A
130 POKE 192*64+M,A
140 NEXT M
160 POKE V+39,5
162 POKE V+40,2
163 POKE V+23,3:POKE V+29,3
164 POKE V+27,1
165 FOR A = 255 TO 1 STEP -1
168 PRINT ·~·:PRINT ·V+30= ";PEEK(V+30)
169 PRINT "V+31= "; PEEK(V+31)

118

INCORPORATING SPRITES INTO YOUR PROGRAMS

170 POKE V+O,A:POKE V+l,100
180 POKE V+2,(255~):POKE V+3,78
185 POKE V+21,3
190 REM IF PEEK(V+31) AND 2 = 2 THEN

GOSUB 500
290 NEXT A
300 GOTO 165
500 POKE V+40,0
510 RETURN
9999 REM ** HAPPY RABBIT SPRITE
10000 DATA 0,0,0
10010 DATA 0,0,0,0,0
10020 DATA 0,31,199,240,27
10030 DATA 199,176,24,238,48
10040 DATA 24,238,48,24,238
10050 DATA 48,24,255,48,25
10060 DATA 255,176,3,147,192
10070 DATA 7,147,224,15,147
10080 DATA 240,31,239,248,31
10090 DATA 255,248,15,255,240
10100 DATA 7,199,224,3,199
10110 DATA 192,1,199,128,0
10120 DATA 127,0,0,0,0

Line
Number
15

Description
Initializes the address of the video chip, for future
reference

30

40-46

50

90-100
110-140

160-162
163

Clears the screen, and disables any stray Sprites
left on the screen
Prints the background figure and messages on the
screen
This must be my favorite line. I seem to use it every
where.
Sets the Sprite pointers
Reads the data values and pokes them into mem
ory
Sets the colors
Expands both Sprites along both axes

119

164

SPRITE CRAPHICS FOR THE COMMODORE 64

Sets the bit for Sprite #0 in the Background Priority
register, so Sprite #0 will pass behind any back
ground figures

165-290 Prints the values of both collision registers as the
Sprites move across the screen

500-510 This subroutine changes the color of Sprite # 1 if it
has been involved in a Sprite-to-background colli
sion

Animation by Switching
Sprite POinters

This animation process defines the Sprite on the screen, then
switches the Sprite pointer to different memory areas contain
ing different versions of the Sprite shape.

10 REM ANIMATION BY SWITCHING POINTERS
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,13:POKE 53280,6
50 FOR SN = 0 TO 7
60 POKE 2040+SN,192
70 FOR M=O TO 62
80 READ A
90 POKE (192+SN)*64+M,A
100 NEXT M
110 NEXT SN
120 FOR YC=1 TO 15 STEP 2
130 POKE V+YC,200
140 NEXT YC
145 X=24
150 FOR XC=O TO 14 STEP 2
160 POKE V+XC,X
170 X=X+30
180 NEXT XC
182 POKE V+39,2
183 POKE V+40,8
184 POKE V+41,7
185 POKE V+42,5
186 POKE V+43,6
187 POKE V+44,4

120

INCORPORATING SPRITES INTO YOUR PROGRAMS

188 POKE V+45,0
189 POKE V+46,1
190 POKE V+23,255:POKE V+29,255
200 POKE V+21,255
210 FOR SP=7 TO 0 STEP -1
215 FOR SN=O TO 7
220 POKE 2040+SP,192+SN
225 FOR 0=1 TO 200:NEXT D
230 NEXT SN
240 NEXT SP
9999 REM FLOWER *1
10000 DATA 0,0,0,0,0,0
10010 DATA 0,0,0,0,0
10020 DATA 0,0,0,0,0
10030 DATA 0,0,0,0,0
10040 DATA 0,0,0,0,0
10050 DATA 0,0,0,0,0
10060 DATA 0,0,0,0,0
10070 DATA 0,0,0,0,0
10080 DATA 0,0,124,0,0
10090 DATA 124,0,0,124,0
10100 DATA 0,56,0,0,16
10110 DATA 0,0,16,0,0
10120 DATA 16,0
10130 REM FLOWER *2
10140 DATA 0,0,0
10150 DATA 0,0,0,0,0
10160 DATA 0,0,0,0,0
10170 DATA 0,0,0,0,0
10180 DATA 0,0,0,0,0
10190 DATA 0,0,0,0,0
10200 DATA 0,0,0,0,0
10210 DATA 0,124,0,0,124
10220 DATA 0,0,124,0,0
10230 DATA 56,0,0,16,0
10240 DATA 0,16,0,0,16
10250 DATA 0,0,16,0,0
10260 DATA 16,0,0,16,0
10270 REM FLOWER *3
10280 DATA 0,0,0,0,0
10290 DATA 0,0,0,0,0
10300 DATA 0,0,0,0,0

121

SPRITE CRAPHICS FOR THE COMMODORE 64

10310 DATA 0,0,0,0,0
10320 DATA ° , ° , 1 24 , ° , °
10330 DATA 124 , ° , ° , 1 24 , °
10340 DATA 0,124,0,0,56
10350 DATA 0,0,16,0,0
10360 DATA 16,0,0,16,0
10370 DATA 0,16,0,0,16
10380 DATA 0,0,16,0,0
10390 DATA 16,0,0,16,0
10400 DATA 0,16,0
10405 REM FLOWER #3
10410 DATA 0,0
10420 DATA 0,0,0,0,0
10430 DATA 0,0,0,0,0
10440 DATA ° , 1 24 , ° , ° , 124
10450 DATA 0,0,124,0,0
10460 DATA 124,0,0,56,0
10470 DATA 7, 17, 192,3,147
10480 DATA 128,3,215,128,1
10490 DATA 255,0,0,254,0
10500 DATA ° , 124 , ° , ° , 16
10510 DATA 0,0,16,0,0
10520 DATA 16,0,0,16,0
10530 DATA 0,16,0,0,16
10540 DATA °
10545 REM FLOWER #4
10550 DATA 0,0,0,0
10560 DATA ° , ° , ° , 1 24 , °
10570 DATA 0,254,0,1,255
10580 DATA 0,1,255,0,1
10590 DATA 255,0,1,255,0
10600 DATA 0,56,0,7,17
10610 DATA 192,3,147,128,3
10620 DATA 215,128,1,255,0
10630 DATA ° , 254 , ° , ° , 124
10640 DATA 0,0,16,0,0
10650 DATA 16,0,0,16,0
10660 DATA 0,16,0,0,16
10670 DATA 0,0,16,0
10680 REM FLOWER #5
10690 DATA 0,0,0,0,0,0
10700 DATA 4,84,64,2,84

122

INCORPORATINC SPRITES INTO YOUR PROCRAMS

10710 DATA 128,1,85,0,1
10720 DATA 255,0,1,255,0
10730 DATA 1,255,0,0,56
10740 DATA 0,7,17,192,3
10750 DATA 147,128,3,215,128
10760 DATA 1,255,0,0,254
10770 DATA 0,0,124,0,0
10780 DATA 16,0,0,16,0
10790 DATA 0,16,0,0,16
10800 DATA 0,0,16,0,0
10810 DATA 16,0
10815 REM FLOWER 16
10820 DATA 23,57,208
10830 DATA 11,187,160,53,255
10840 DATA 88,26,254,176,13
10850 DATA 125,96,7,255,192
10860 DATA 3,255,128,1,255
10870 DATA 0,0,56,0,7
10880 DATA 17,192,3,147,128
10890 DATA 3,215,128,1,255
10900 DATA 0,0,254,0,0
10910 DATA 124,0,0,16,0
10920 DATA 0,16,0,0,16
10930 DATA 0,0,16,0,0
10940 DATA 16,0,0,16,0
10950 REM FLOWER 17
10960 DATA 255,255,255,202,170
10970 DATA 166,117,125,92,58
10980 DATA 186,184,29,85,112
10990 DATA 15,255,224,7,255
11000 DATA 192,3,255,128,0
11010 DATA 56,0,15,17,240
11020 DATA 15,147,224,7,215
11030 DATA 192,3,255,128,1
11040 DATA 255,0,0,124,0
11050 DATA 0,16,0,0,16
11060 DATA 0,0,16,0,0
11070 DATA 16,0,0,16,0
11080 DATA 0,16,0
11085 REM FLOWER 18
11090 DATA 255,255
11100 DATA 255,128,0,1,128

123

SPRITE CRAPHICS FOR THE COMMODORE 64

11110 DATA 0,1,128,0,1
11120 DATA 130,0,33,135,0
11130 DATA 113,141,128,217,152
11140 DATA 193,141,176,65,5
11150 DATA 128,0,1,135,195
11160 DATA 225,132,66,33,135
11170 DATA 219,225,128,24,1
11180 DATA 128,0,1,131,255
11190 DATA 193,132,0,33,136
11200 DATA 0,17,144,0,9
11210 DATA 128,0,1,255,255
11220 DATA 255

Line
Number
20

Description
Initializes the address of the video chip, for future
reference

30

40
50-110

120-140

145-180

182-189
190
200
210-240

225

Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
This nested loop points each Sprite to memory area
192, and reads the data values into the eight mem
oryareas
This loop sets the Y coordinates for all eight Sprites
to 200
The X coordinates for the eight Sprites are spaced
at intervals 30 dots apart, beginning with value 24
Sets the Sprite colors
Expands all eight Sprites along both axes
Enables all the Sprites
This set of nested do-loops is the heart of the pro
gram. Each Sprite in turn is animated by rotating
its Sprite Pointer through the eight versions of the
Sprite shape stored in the different memory areas
numbered 192 through 199.
This delay loop is necessary so that each different
image will stay on the screen long enough for your
eyes to see it.

124

INCORPORATINC SPRITES INTO YOUR PROCRAMS

More Animation by
Switching POinters

This example animates just one Sprite, but the motion is run
both forwards and "backwards."

1 ° REM ANIMATION BY SWITCHING POINTERS
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,I:POKE 53280,2
60 FOR SN=O TO 6
70 FOR M = ° TO 62
80 READ A
90 POKE (192+SN)*64+M,A
100 NEXT M
110 NEXT SN
120 POKE V+23,1:POKE V+29,1
125 POKE V+39,0
130 POKE V+O,135:POKE V+l,150
140 POKE V+21,1
150 FOR SN = 192 TO 198
160 POKE 2040,SN
165 FOR D = 1 TO 500 :NEXT D
170 NEXT SN
180 FOR SN = 198 TO 192 STEP -1
190 POKE 2040,SN
200 FOR D = 1 TO 500 :NEXT D
210 NEXT SN
10000 REM FACE ~1
11230 DATA 255,255,255,128
11240 DATA 0,1,128,0,1
11250 DATA 128,0,1,130,0
11260 DATA 33,135,0,113,141
11270 DATA 128,217,152,193,141
11280 DATA 128,0,1,128,0
11290 DATA 1,135,195,225,132
11300 DATA 66,33,135,219,225
11310 DATA 128,24,1,128,0
11320 DATA 1,135,255,225,140
11330 DATA 0,49,152,0,25
11340 DATA 128,0,1,128,0
11350 DATA 1,255,255,255

125

SPRITE CRAPHICS FOR THE COMMODORE 64

11355 REM FACE #2
11360 DATA 255
11370 DATA 255,255,128,0,1
11380 DATA 128,0,1,128,0
11390 DATA 1,128,0,1,135
11400 DATA 0,113,141,128,217
11410 DATA 152,193,141,128,0
11420 DATA 1,135,195,225,135
11430 DATA 195,225,132,66,33
11440 DATA 135,219,225,128,24
11450 DATA 1,128,0,1,135
11460 DATA 255,225,140,0,49
11470 DATA 128,0,1,128,0
11480 DATA 1,128,0,1,255
11490 DATA 255,255
11495 REM FACE #3
11500 DATA 255,255,255
11510 DATA 128,0,1,128,0
11520 DATA 1,128,0,1,128
11530 DATA 0,1,135,0,113
11540 DATA 141,128,217,152,193
11550 DATA 141,128,0,1,135
11560 DATA 195,225,132,66,33
11570 DATA 132,66,33,135,219
11580 DATA 225,128,24,1,128
11590 DATA 0,1,135,255,225
11600 DATA 128,0,1,128,0
11610 DATA 1,128,0,1,128
11620 DATA 0,1,255,255,255
11630 REM FACE #4
11640 DATA 255,255,255,128,0
11650 DATA 1,128,0,1,128
11660 DATA 0,1,128,0,1
11670 DATA 128,0,1,128,0
11680 DATA 1,159,193,253,128
11690 DATA 0,1,135,195,225
11700 DATA 132,66,33,132,66
11710 DATA 33,135,219,225,128
11720 DATA 24,1,128,0,1
11730 DATA 128,0,1,128,0
11740 DATA 1,135,255,225,128
11750 DATA 0,1,128,0,1

126

INCORPORATING SPRITES INTO YOUR PROGRAMS

11760 DATA 255,255,255
11765 REM FACE 15
11770 DATA 255,255
11780 DATA 255,128,0,1,128
11790 DATA 0,1,128,0,1
11800 DATA 128,0,1,128,0
11810 DATA 1,159,128,253,159
11820 DATA 193,253,128,0,1
11830 DATA 135,195,225,132,66
11840 DATA 33,132,66,33,135
11850 DATA 219,225,128,24,1
11860 DATA 128,0,1,152,0
11870 DATA 25,140,0,49,132
11880 DATA 0,33,135,255,225
11890 DATA 128,0,1,255,255
11900 DATA 255
11905 REM FACE 16
11910 DATA 255,255,255,128
11920 DATA 0,1,128,0,1
11930 DATA 128,0,1,131,195
11940 DATA 225,132,0,17,136
11950 DATA 0,9,144,0,5
11960 DATA 128,0,1,135,195
11970 DATA 225,135,195,225,132
11980 DATA 66,33,135,219,225
11990 DATA 128,24,1,128,0
12000 DATA 1,152,0,25,140
12010 DATA 0,49,132,0~33
12020 DATA 135,255,225,128,0
12030 DATA 1,255,255,255
12035 REM FACE 17
12040 DATA 255
12050 DATA 255,255,128,0,1
12060 DATA 128,0,1,128,0
12070 DATA 1,128,0,1,135
12080 DATA 195,241,140,0,25
12090 DATA 152,0,13,128,0
12100 DATA 1,135,195,225,132
12110 DATA 66,33,132,66,33
12120 DATA 135,219,225,128,24
12130 DATA 1,184,0,29,156
12140 DATA 0,57,142,0,113

127

SPRITE CRAPHICS FOR THE COMMODORE 64

12150 DATA 135,255,225,131,255
12160 DATA 193,128,0,1,255
12170 DATA 255,255

Line
Number
20

30

40
60-1ID

120
125
130
140
150-170

180-2ID

Description
Initializes the address of the video chip, for future
reference
Clears the screen, and disables any stray Sprites
left on the screen
Sets the background and border screen colors
Reads the data values and pokes them into the
memory locations
Expands Sprite #0 in both directions
Sets the color for Sprite #0
Sets the X and Y values for Sprite #0
Enables Sprite #0
Steps the pointer values from memory locations 192
through 199
Steps the pointer values backwards through mem
ory locations 199 to 192

Animation by Enabling
Sprites In Turn

Sprites can also be animated by defining all eight Sprites to
the same screen location, then enabling them one at a time. If
each Sprite is a slightly different shape, you will see "motion"
as the result.

10 REM ANI MAT I CN BY ENABLING SPRITES IN TURN
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,1 :POKE 53280,5
50 FOR SN = 0 TO 7
60 POKE 2040+SN,192+SN
70 FOR M=O TO 62
80 READ A
90 POKE (192+SN)*64+M,A
100 NEXT M
110 NEXT SN

128

INCORPORATINC SPRITES INTO YOUR PROCRAMS

120 FOR YC=1 TO 15 STEP 2
130 POKE V+YC,200
140 NEXT YC
145 X=24
150 FOR XC=O TO 14 STEP 2
160 POKE V+XC,150
180 NEXT XC
182 FOR CR = ° TO 7
183 POKE V+(39+CR),2
184 NEXT CR
185 POKE V+23,255:POKE V+29,255
186 POKE V+21,1
187 FOR SP=O TO 7
188 POKE V+21,21SP
189 FOR 0=1 TO 200:NEXT 0
190 NEXT SP
9999 REM FLOWER *1
10000 DATA 0,0,0,0,0,0
10010 DATA 0,0,0,0,0
10020 DATA 0,0,0,0,0
10030 DATA 0,0,0,0,0
10040 DATA 0,0,0,0,0
10050 DATA 0,0,0,0,0
10060 DATA 0,0,0,0,0
10070 DATA 0,0,0,0,0
10080 DATA 0,0,124,0,0
10090 DATA 124,0,0,124,0
10100 DATA 0,56,0,0,16
10110 DATA 0,0,16,0,0
10120 DATA 16,0
10130 REM FLOWER *2
10140 DATA 0,0,0
10150 DATA 0,0,0,0,0
10160 DATA 0,0,0,0,0
10170 DATA 0,0,0,0,0
10180 DATA 0,0,0,0,0
10190 DATA 0,0,0,0,0
10200 DATA 0,0,0,0,0
10210 DATA 0,124,0,0,124
10220 DATA 0,0,124,0,0
10230 DATA 56,0,0,16,0
10240 DATA 0,16,0,0,16

129

SPRITE GRAPHICS FOR THE COMMODORE 64

10250 DATA 0,0,16,0,0
10260 DATA 16,0,0,16,0
10270 REM FLOWER 83
10280 DATA 0,0,0,0,0
10290 DATA 0,0,0,0,0
10300 DATA 0,0,0,0,0
10310 DATA 0,0,0,0,0
10320 DATA 0,0,124,0,0
10330 DATA 124,0,0,124,0
10340 DATA 0,124,0,0,56
10350 DATA 0,0,16,0,0
10360 DATA 16,0,0,16,0
10370 DATA 0,16,0,0,16
10380 DATA 0,0,16,0,0
10390 DATA 16,0,0,16,0
10400 DATA 0,16,0
10405 REM FLOWER 83
10410 DATA 0,0
10420 DATA 0,0,0,0,0
10430 DATA 0,0,0,0,0
10440 DATA 0,124,0,0,124
10450 DATA 0,0,124,0,0
10460 DATA 124,0,0,56,0
10470 DATA 7,17,192,3,147
10480 DATA 128,3,215,128,1
10490 DATA 255,0,0,254,0
10500 DATA 0,124,0,0,16
10510 DATA 0,0,16,0,0
10520 DATA 16,0,0,16,0
10530 DATA 0,16,0,0,16
10540 DATA °
10545 REM FLOWER 84
10550 DATA 0,0,0,0
10560 DATA 0,0,0,124,0
10570 DATA 0,254,0,1,255
10580 DATA 0,1,255,0,1
10590 DATA 255,0,1,255,0
10600 DATA 0,56,0,7,17
10610 DATA 192,3,147,128,3
10620 DATA 215,128,1,255,0
10630 DATA 0,254,0,0,124
10640 DATA 0,0,16,0,0

130

INCORPORATINC SPRITES INTO YOUR PROCRAMS

10650 DATA 16,0,0,16,0
10660 DATA 0,16,0,0,16
10670 DATA 0,0,16,0
10680 REM FLOWER *5
10690 DATA 0,0,0,0,0,0
10700 DATA 4,84,64,2,84
10710 DATA 128,1,85,0,1
10720 DATA 255,0,1,255,0
10730 DATA 1,255,0,0,56
10740 DATA 0,7,17,192,3
10750 DATA 147,128,3,215,128
10760 DATA 1,255,0,0,254
10770 DATA 0,0,124,0,0
10780 DATA 16,0,0,16,0
10790 DATA 0,16,0,0,16
10800 DATA 0,0,16,0,0
10810 DATA 16,0
10815 REM FLOWER *6
10820 DATA 23,57,208
10830 DATA 11,187,160,53,255
10840 DATA 88,26,254,176,13
10850 DATA 125,96,7,255,192
10860 DATA 3,255,128,1,255
10870 DATA 0,0,56,0,7
10880 DATA 17,192,3,147,128
10890 DATA 3,215,128,1,255
10900 DATA 0,0,254,0,0
10910 DATA 124,0,0,16,0
10920 DATA 0,16,0,0,16
10930 DATA 0,0,16,0,0
10940 DATA 16,0,0,16,0
10950 REM FLOWER *7
10960 DATA 255,255,255,202,170
10970 DATA 166,117,125,92,58
10980 DATA 186,184,29,85,112
10990 DATA 15,255,224,7,255
11000 DATA 192,3,255,128,0
11010 DATA 56,0,15,17,240
11020 DATA 15,147,224,7,215
11030 DATA 192,3,255,128,1
11040 DATA 255,0,0,124,0
11050 DATA 0,16,0,0,16

131

SPRITE CRAPHICS FOR THE COMMODORE 64

11060
11070
11080
11085
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220

Line
Number
20
30

40
50-110

120-140

145
150-180

182-184
185
186
187-190

DATA 0,0,16,0,0
DATA 16,0,0,16,0
DATA 0,16,0
REM FLOWER #8
DATA 255,255
DATA 255,128,0,1,128
DATA 0,1,128,0,1
DATA 130,0,33,135,0
DATA 113,141,128,217,152
DATA 193,141,176,65,5
DATA 128,0,1,135,195
DATA 225,132,66,33,135
DATA 219,225,128,24,1
DATA 128,0,1,131,255
DATA 193,132,0,33,136
DATA 0,17,144,0,9
DATA 128,0,1,255,255
DATA 255

Description
Initializes the address of the video chip
Clears the screen and disables any stray Sprites on
the screen
Sets the screen and border colors
Sets the Sprite pointer. reads in the data values.
and pokes them into memory for each of the eight
Sprites
Steps through the Y coordinate registers for each
Sprite and assigns them all to Y value 200
This line is left over from another program (oops!)
Assigns the same X coordinate value to each of the
eight Sprites
Assigns the same color code to all the Sprites
Expands all the Sprites in both directions
Enables Sprite #0
This loop enables each of the Sprites in turn (only
one Sprite is enabled at anyone time). then delays
long enough for you to see the newly enabled
Sprite on the screen

132

INCORPORATING SPRITES INTO YOUR PROGRAMS

producing Inverse Single Color sprites
I call a Sprite "inverse" if the picture portion of the Sprite is

made up of the "holes" instead of the colored dots. If you have
data values for a normal Sprite, it is easy to create an inverse
Sprite without having to redo the data values. You simply poke
255 minus the data value into the memory locations. (How this
trick works is explained in the program about producing in
verse multi-color Sprites, found earlier in this chapter.)

This is a rather interesting example, since the Sprites used
here were actually designed to look inverse when the data
values were determined. Therefore when you use this "in
verse" process, they become "inverse inverse" or normal! (You
can see the original version of these Sprites in the program on
Sprite to Sprite priorities found in this chapter.)

10 REM *** PRODUCING INVERSE SPRITES
20 V=53248
25 PRINT CHR$(147):POKE V+21,0
40 POKE 2040,192
42 POKE 2041,193
44 POKE 2042,193
46 POKE 2043,194
48 POKE 2044,195
50 POKE 2045,193
52 POKE 2046,196
60 POKE 2047,197
62 FOR P = 0 TO 5
64 FOR Y=O TO 62:READ A:POKE(192+P)*64+Y,

(255-A) : NEXT Y
66 NEXT P
70 POKE 53280,0 :POKE 53281,0
80 POKE V+39,2
90 POKE V+40,8
100 POKE V+41,7
110 POKE V+42,6
120 POKE V+43,6
130 POKE V+44,7
140 POKE V+45,8
150 POKE V+46,2
155 Xl=24:X2=135:Y=50 :A=30

133

SPRITE CRAPHICS FOR THE COMMODORE 64

160 POKE V+O,Xl :POKE V+l,Y
170 POKE V+2,Xl+A :POKE V+3,Y+A
180 POKE V+4,Xl+(2*A):POKE V+5,Y+(2*A)
190 POKE V+6,Xl+(3*A):POKE V+7,Y+(3*A)
200 POKE V+8,X2 :POKE V+9,Y
210 POKE V+I0,X2+(1*A) :POKE V+ll,Y+A
220 POKE V+12,X2+(2*A):POKE V+13,Y+(2*A)
230 POKE V+14,X2+(3*A):POKE V+15,Y+(3*A)
240 POKE V+23,255:POKE V+29,255
250 POKE V+21,255
9999 REM LETTER G
10000 DATA 255
10010 DATA 255,255,255,255,255
10020 DATA 224,0,7,224,0
10030 DATA 7,231,255,231,231
10040 DATA 255,231,231,255,255
10050 DATA 231,255,255,231,255
10060 DATA 255,231,255,255,231
10070 DATA 255,255,231,240,7
10080 DATA 231,240,7,231,255
10090 DATA 231,231,255,231,231
10100 DATA 255,231,231,255,231
10110 DATA 224,0,7,224,0
10120 DATA 7,255,255,255,255
10130 DATA 255,255
10135 REM LETTER 0
10140 DATA 255,255,255
10150 DATA 255,255,255,224,0
10160 DATA 7,224,0,7,224
10170 DATA 0,7,227,255,199
10180 DATA 227,255,199,227,255
10190 DATA 199,227,255,199,227
10200 DATA 255,199,227,255,199
10210 DATA 227,255,199,227,255
10220 DATA 199,227,255,199,227
10230 DATA 255,199,227,255,199
10240 DATA 224,0,7,224,0
10250 DATA 7,224,0,7,255
10260 DATA 255,255,255,255,255
10270 REM LETTER 0
10280 DATA 255,255,255,255,255
10290 DATA 255,224,0,7,224

134

INCORPORATING SPRITES INTO YOUR PROGRAMS

10300 DATA 0,7,249,255,231
10310 DATA 249,255,231,249,255
10320 DATA 231,249,255,231,249
10330 DATA 255,231,249,255,231
10340 DATA 249,255,231,249,255
10350 DATA 231,249,255,231,249
10360 DATA 255,231,249,255,231
10370 DATA 249,255,231,249,255
10380 DATA 231,224,0,7,224
10390 DATA 0,7,255,255,255
10400 DATA 255,255,255
10405 REM LETTER J
10410 DATA 255,255
10420 DATA 255,255,255,255,224
10430 DATA 0,7,224,0,7
10440 DATA 255,227,255,255,227
10450 DATA 255,255,227,255,255
10460 DATA 227,255,255,227,255
10470 DATA 255,227,255,255,227
10480 DATA 255,255,227,255,231
10490 DATA 227,255,231,227,255
10500 DATA 231,227,255,231,227
10510 DATA 255,231,227,255,224
10520 DATA 3,255,224,3,255
10530 DATA 255,255,255,255,255
10540 DATA 255
10545 REM LETTER B
10550 DATA 255,255,255,255
10560 DATA 255,255,192,0,3
10570 DATA 192,0,3,243,255
10580 DATA 243,243,255,243,243
10590 DATA 255,243,243,255,243
10600 DATA 243,255,243,240,0
10610 DATA 3,240,0,31,240
10620 DATA 0,3,243,255,243
10630 DATA 243,255,243,243,255
10640 DATA 243,243,255,243,243
10650 DATA 255,243,192,0,3
10660 DATA 192,0,3,255,255
10670 DATA 255,255,255,255
10675 REM EXCLAMATION POINT
10680 DATA 255

135

SPRITE GRAPHICS FOR THE COMMODORE 64

10690 DATA 255,255,255,255,255
10700 DATA 255,231,255,255,231
10710 DATA 255,255,231,255,255
10720 DATA 231,255,255,231,255
10730 DATA 255,231,255,255,231
10740 DATA 255,255,231,255,255
10750 DATA 231,255,255,231,255
10760 DATA 255,231,255,255,231
10770 DATA 255,255,231,255,255
10780 DATA 231,255,255,255,255
10790 DATA 255,231,255,255,231
10800 DATA 255,255,255,255,255
10810 DATA 255,255

Line
Number
20

Description
Initializes the address of the video chip, for future
reference

25

40-60

62-66

70
80-150
155-230

240
250

Clears the screen, and disables any stray Sprites
left on the screen
Sets the Sprite pointers for all eight Sprites. Notice
that three of the eight point to the same area.
Reads the data values and pokes them into mem
ory. Note that the value being poked is (255-A) in
stead of A. This gives the inverse image results.
Sets the screen background and border colors
Sets the Sprite colors
This group of statements sets the X and Y coordi
nates for the Sprites in terms of a variable amount
of space between them on the screen. This allows
you to change that spacing easily by just changing
the value of A.
Expands all Sprites in both directions
Enables all Sprites

producing "Double" Sprites
Sometime you may have a Sprite shape in mind that is just

too large to squeeze into a 24 by 21 dot grid. Then you might
consider defining two Sprites that you will move around the

136

INCORPORATING SPRITES INTO YOUR PROGRAMS

screen as a unit. However, as you run this program, you will
see that it is impossible to move both Sprites at the exact same
moment. This leaves you with a sort of "see-saw" effect, where
one Sprite always moves first, then the other catches up.

10 REM ** DOUBLE SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,3:POKE 53280,6
90 POKE 2040,192
92 POKE 2041,193
110 FOR SN=O TO 1
115 FOR MFO TO 62
120 READ A
130 POKE (192+SN)*64+M,A
135 NEXT M
140 NEXT SN
160 POKE V+39,6
170 POKE V+40,6
180 POKE V+0,100
190 POKE V+2,148
195 POKE V+23,3:POKE V+29,3
210 FOR Y = ° TO 255
220 POKE V+l,Y:POKE V+3,Y
230 POKE V+21,3
240 NEXT Y
9999 REM HOUSE--LEFT SIDE
10000 DATA 0
10010 DATA 31,255,0,60,0
10020 DATA 0,126,0,0,255
10030 DATA 0,1,255,128,3
10040 DATA 255,192,7,255,224
10050 DATA 15,255,240,31,255
10060 DATA 248,63,255,252,127
10070 DATA 255,254,255,255,255
10080 DATA 128,0,1,128,0
10090 DATA 1,128,0,1,129
10100 DATA 255,1,129,255,1
10110 DATA 129,255,1,129,253
10120 DATA 1,129,255,1,255
10130 DATA 255,255

137

SPRITE GRAPHICS FOR THE COMMODORE 64

10135
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260

Line
Number
15
30

40
90-92
110-140

160-170
180-190

195
210-240

REM HOUSE--RIGHT SIDE
DATA 255,248,0
DATA 0,12,0,0,6
DATA 0,0,3,0,0
DATA 1,128,0,0,192
DATA 0,0,96,0,0
DATA 48,0,0,24,0
DATA 0,12, ° , ° ,6
DATA 255,255,255,0,0
DATA 1,0,0,1,0
DATA 0,1,62,124,249
DATA 34,68,137,34,68
DATA 137,62,124,249,0
DATA 0,1,255,255,255

Description
Initializes the address of the video chip
Clears the screen and disables any stray Sprites on
the screen
Sets the screen and border colors
Sets the Sprite pointers for Sprites #0 and # 1
Reads the data values and pokes them into mem
ory
Sets the Sprite colors
The heart of this program is positioning the two
Sprites correctly in relation to each other. Since
these Sprites are both expanded, they are 48 dots
wide. Therefore, the difference in their X coordi
nates must always be 48 if you want to move them
around the screen and have them remain side by
side.
Expand both Sprites in both directions
Increments the Y coordinates to move both Sprites
down the screen

Reach Out and
Touch a sprite

This little program uses the collision register to figure out
when the boy and girl Sprites have joined hands.

138

INCORPORATING SPRITES INTO YOUR PROGRAMS

10 REM ** POSITIONING SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,1 :POKE 53280, 3
90 POKE 2040,192
100 POKE 2041,193
105 FOR SN = ° TO 1
110 FOR MFO TO 62
120 READ A
130 POKE (192+SN)*64+M,A
140 NEXT M
145 NEXT SN
160 POKE V+39,9
165 POKE V+40,9
168 POKE V+23,3:POKE V+29,3
170 POKE V+l,150
175 POKE V+3,150
178 IF PEEK(V+30) AND 3 = 3 THEN GOTO 180
180 FOR X = 1 TO 200
185 POKE V+O,X
190 POKE V+2,(200-X)
191 POKE V+21,3
192 IF PEEK(V+30) AND 3 = 3 THEN END
195 NEXT X
210 END
9999 REM **MAN IN SWIM SUIT
10000 DATA 0,62,0,0,42
10010 DATA 0,0,62,0,0
10020 DATA 28,0,0,127,0
10030 DATA 1,255,192,3,62
10040 DATA 96,6,62,48,28
10050 DATA 54,56,8,62,16
10060 DATA 0,0,0,0,62
10070 DATA 0,0,62,0,0
10080 DATA 54,0,0,0,0
10090 DATA 0,54,0,0,54
10100 DATA 0,0,54,0,0
10110 DATA 54,0,0,54,0
10120 DATA 1,247,128
10130 REM Wct1AN IN SWIM SUIT
10140 DATA 0,62
10150 DATA 0,0,170,128,0

139

SPRITE GRAPHICS FOR THE COMMODORE 64

10160 DATA 255,128,0,28,0
10170 DATA 0,127,0,1,193
10180 DATA 192,3,54,96,6
10190 DATA 62,48,28,62,56
10200 DATA 8,62,16,0,127
10210 DATA 0,0,255,128,0
10220 DATA 0,0,0,54,0
10230 DATA 0,54,0,0,54
10240 DATA 0,0,54,0,0
10250 DATA 54,0,0,54,0
10260 DATA 0,54,0,1,247
10270 DATA 128

Line
Number
15

Description
Initializes the beginning address of the video chip
Clears the screen and disables any stray Sprites on
the screen

30

40
90-100
105-145

160-165
168
170-175

178

180-195

192

Sets the screen background and border colors
Sets the Sprite pointers for Sprites #0 and 1
Reads in the data values and pokes them into
memory
Sets the colors for both Sprites
Expands both Sprites in both directions
Sets the Y coordinate values for each of the two
Sprites
This statement resets the values in the Sprite colli
sion register, just in case the register was non-zero
when the program began executing.
This loop changes the X value to move the Sprites
closer together on the screen
Checks the contents of the Sprite collision register to
see if Sprites #0 and #1 have overlapped (place
values 1 and 2 would be "on")

Puzzling with Sprites
Combining a Sprite with its inverse image can make interest

ing visual effects. Here we have the original Sprite meeting its
inverse Sprite.

140

INCORPORATINC SPRITES INTO YOUR PROCRAMS

10 REM ** -PUZZLE- SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,1 :POKE 53280, 3
90 POKE 2040,192
100 POKE 2041,193
110 FOR MFO TO 62
120 READ A
130 POKE 192*64+M,255-A
135 POKE 193*64+M,A
140 NEXT M
160 POKE V+39,5
165 POKE V+40,6
168 POKE V+23,3:POKE V+29,3
1 70 POKE V+ 1 , 1 50
175 POKE V+3,150
178 IF PEEK(V+30) AND 3 = 3 THEN GOTO 180
180 FOR X = 1 TO 100
185 POKE V+O,X
190 POKE V+2,(200-X)
191 POKE V+21,3
195 NEXT X
210 END
9999 REM **MAN IN SWIM SUIT
10000 DATA 0,62,0,0,42
10010 DATA 0,0,62,0,0
10020 DATA 28,0,0,127,0
10030 DATA 1,255,192,3,62
10040 DATA 96,6,62,48,28
10050 DATA 54,56,8,62,16
10060 DATA 0,0,0,0,62
10070 DATA 0,0,62,0,0
10080 DATA 54,0,0,0,0
10090 DATA 0,54,0,0,54
10100 DATA 0,0,54,0,0
10110 DATA 54,0,0,54,0
10120 DATA 1,247,128

Line
Number
15

Description
Initializes the beginning address of the video chip

141

30

SPRITE CRAPHICS FOR THE COMMODORE 64

Clears the screen and disables any stray Sprites on
the screen

40
90-100
110-140

Sets the screen border and background colors
Sets the Sprite pointers
We are poking the values for the original Sprite
and inverse Sprite at the same time, while reading
only one set of data values.

160-165
168
170-175
178
180

Sets the Sprite colors
Expands both Sprites in both direction9
Sets the Y coordinates for both Sprites
This line is not needed
I cheated and stopped the action while X was 100,
instead of having the program detect the relative
position of the two Sprites.

Puzzle Pieces from Two Sprites
This interesting example shows two Sprites designed to fit

together as puzzle pieces do.

10 REM ** PUZZLE PIECES FROM TWO SPRITES
15 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,13:POKE 53280,5
90 POKE 2040,193
100 POKE 2041,192
105 FOR SN=O TO 1
110 FOR M=O TO 62
120 READ A
130 POKE (192+SN)*64+M,A
140 NEXT M
145 NEXT SN
160 POKE V+39,7
165 POKE V+40,5
168 POKE V+23,3:POKE V+29,3
1 70 POKE V+ 1 , 150
175 POKE V+3,150
178 IF PEEK(V+30) AND 3 = 3 THEN GOTO 180
180 FOR X=1 TO 200
185 POKE V+O,X
190 POKE V+2,(200-X)

142

INCORPORATINC SPRITES INTO YOUR PROCRAMS

191 POKE V+21,3
192 IF PEEK(V+30) AND 3 = 3 THEN END
195 NEXT X
10270 REM PUZZLE--RIGHT SIDE
10280 DATA 255,255,255,255,255
10290 DATA 255,1,255,255,127
10300 DATA 255,255,127,255,255
10310 DATA 127,255,255,7,255
10320 DATA 255,63,255,255,63
10330 DATA 255,255,63,255,255
10340 DATA 63,255,255,0,127
10350 DATA 255,0,127,255,15
10360 DATA 255,255,15,255,255
10370 DATA 15,255,255,255,255
10380 DATA 255,255,255,255,255
10390 DATA 255,255,255,255,255
10400 DATA 255,255,255
10405 REM PUZZLE--LEFT SIDE
10410 DATA 255,254
10420 DATA 0,255,254,0,255
10430 DATA 255,252,255,255,0
10440 DATA 255,255,0,255,255
10450 DATA 0,255,255,240,255
10460 DATA 255,128,255,255,128
10470 DATA 255,255,128,255,255
10480 DATA 128,255,255,255,255
10490 DATA 255,255,255,255,224
10500 DATA 255,255,224,255,255
10510 DATA 224,255,254,0,255
10520 DATA 254,0,255,254,0
10530 DATA 255,254,0,255,254
10540 DATA 0

Line
Number
15

Description
Initializes the beginning address of the video chip
Clears the screen and disables any stray Sprites on
the screen

30

40
90-100

Sets the screen border and background colors
Sets the Sprite pointers

143

SPRITE GRAPHICS FOR THE COMMODORE 64

105-145 Reads in the data values and pokes them into
memory
Sets the colors 160-165

168
l70-l75
178

Expands both Sprites in both directions
Sets the Y coordinates
This statement takes care of the collision register
being non-zero when the program starts

180-195 This loop moves the "puzzle pieces" closer together
and checks to see if they are touching.

The Sprite Sampler
This is a very handy program to have available when your

neighbor asks you what Sprites can really do. My favorite part
is when the wolf chases the rabbit in the animation sequence.

10 REM (C) 1983 BY SALLY GREENWOOD LARSEN
20 REM SPRITE GRAPHICS SAMPLER
31 PRINT CHR$(31)
32 V=53248
33 GOSUB 20000
34 POKE V+23,0:POKE V+29,0
40 GOSUB 20000
41 POKE 53280,2
42 PRINTTAB(200)- THIS IS THE SPRITE GRAPHICS

s.e.MPLER-
43 PRINT:PRINT:PRINT D PLEASE STAND

BY·
44 PRINT:PRINT - WHILE I LOAD THE DATA

VALUES·
46 POKE 2040,192
47 POKE 2041,193
48 POKE 2042,194
49 POKE 2043,195
50 POKE 2044,196
51 POKE 2045,197
52 POKE 2046,198
53 POKE 2047,199
58 FOR y=o TO 62:READ A:POKE 192*64+Y,A:NEXT Y
60 FOR Y=O TO 62:READ A:POKE 193*64+Y,A:NEXT Y
70 FOR Y=O TO 62:READ A:POKE 194*64+Y,A:NEXT Y

144

INCORPORATING SPRITES INTO YOUR PROGRAMS

80 FOR Y=O TO 62:READ A:POKE 195*64+Y,A:NEXT Y
82 FOR Y=O TO 62:READ A:POKE 196*64+Y,A:NEXT Y
84 FOR Y=O TO 62:READ A:POKE 197*64+Y,A:NEXT Y
86 FOR y=o TO 62:READ A:POKE 198*64+Y,A:NEXT Y
88 FOR Y=O TO 62:READ A:POKE 199*64+Y,A:NEXT Y
910 GOSUB 20000
920 POKE 53280,4
930 PRINT:PRINT • USING SPRITE GRAPHICS, I

CAN DEFINE·
935 PRINT • ONE SPRITE ••• •
940 POKE V+39,05
950 POKE V+0,100:POKE V+Ol,100
960 POKE V+21,1
980 GOSUB 15000
1000 GOSUB 20000
1010 POKE 53280,7
1020 PRINT CHRS(147):PRINT • OR MANY SPRITES ••• •
1030 POKE V+39,5
1031 POKE V+40,5
1032 POKE V+41,5
1033 POKE V+42,5
1034 POKE V+43,5
1035 POKE V+44,5
1036 POKE V+45,5
1037 POKE V+46,5
1040 POKE V+00,50:POKE V+Ol,100
1050 POKE V+I0,100:POKE V+ll,100
1060 POKE V+04,150:POKE V+05,100
1070 POKE V+14,200:POKE V+15,100
1080 POKE V+08,50:POKE V+09,200
1090 POKE V+02,100:POKE V+03,200
1100 POKE V+12,150:POKE V+13,200
1110 POKE V+06,200:POKE V+07,200
1115 POKE V+23,85:POKE V+29,85
1120 POKE V+21,255
1125 GOSUB 15000
1130 PRINT CHRS(147):PRINT ·1 CAN CHANGE THE

COLOR OF THE SPRITES ••. •
1135 FOR C = 1 TO 8
1140 POKE V+39, C
1145 GOSUB 25000
1150 POKE V+40,C+l

145

SPRITE CRAPHICS FOR THE COMMODORE 64

1155 GOSUB 25000
1160 POKE V+41,C+2
1165 GOSUB 25000
1170 POKE V+42,C+3
1175 GOSUB 25000
1180 POKE V+43,C+4
1185 GOSUB 25000
1190 POKE V+44,C+5
1195 GOSUB 25000
1200 POKE V+45,C+6
1205 GOSUB 25000
1210 POKE V+46,C+7
1215 GOSUB 25000
1218 NEXT C
1220 PRINT CHR$(147):PRINT:PRINT -THE

BACKGROUND COLOR ••. •
1250 FOR BA = 0 TO 15
1260 POKE 53281,BA
1265 FOR 0=1 TO 300:NEXT D
1270 NEXT BA
1272 POKE 53281,1
1275 PRINT CHR$(147):PRINT:PRINT - OR

THE BORDER COLOR.·
1276 FOR BO = 0 TO 15
1278 POKE 53280,BO
1279 FOR 0=1 TO 300:NEXT D
1280 NEXT BO
1290 GOSUB 15000
1400 GOSUB 20000
1420 PRINT CHR$(147):PRINT:PRINT -I CAN MOVE

THE SPRITES·
1422 PRINT - HORIZONTALLY ACROSS THE SCREEN ••• •
1425 POKE V+41,5
1428 POKE V+43,2
1452 FOR X=l TO 255 STEP 2
1454 POKE V+4,X:POKE V+5,100
1456 POKE V+8,X:POKE V+9,200
1457 POKE V+21,20
1458 NEXT X
1459 GOSUB 15000
1460 GOSUB 20000
1480 PRINT:PRINT - OR MOVE THEM VERTICALLY.H

146

INCORPORATINC SPRITES INTO YOUR PROCRAMS

1490 FOR Y=1 TO 200 STEP 2
1500 POKE V+4,100:POKE V+5,Y
1510 POKE V+8,200:POKE V+9,Y
1515 POKE V+21,20
1520 NEXT Y
1530 GOSUB 15000
1600 GOSUB 20000
1601 POKE 53280, 14:POKE V+39,8:POKE V+46,4
1602 PRINT ·1 CAN EXPAND THE SPRITES·
1603 PRINT· ALONG THE YIAXIS ••• •
1611 POKE V+0,100:POKE V+1,150
1612 POKE V+14,200:POKE V+15,150
1620 POKE V+29,00:POKE V+23,00
1622 POKE V+21,129
1625 GOSUB 15000
1626 POKE V+29,00:POKE V+23,129
1627 GOSUB 15000
1628 PRINT:PRINT • ALONG THE XIAXIS ••• •
1630 POKE V+23,OO:POKE V+29,00
1635 GOSUB 15000
1636 POKE V+23,00:POKE V+29,129
1637 GOSUB 15000
1638 PRINT:PRINT • OR ALONG

BOTH AXES ••• •
1640 POKE V+23,00:POKE V+29,00
1645 GOSUB 15000
1648 POKE V+23,129:POKE V+29,129
1649 GOSUB 15000
1700 GOSUB 20000
1705 FOR M = 1 TO 18:PRINT:NEXT M
1710 PRINT • I CAN PASS SPRITES·
1715 PRINT· IN FRONT OF EACH OTHER·
1718 GOSUB 15000
1720 X=225:Y=220
1730 POKE V+23,255:POKE V+29,255
1731 POKE V+39,2
1732 POKE V+40,7
1733 POKE V+41,8
1734 POKE V+42,4
1735 POKE V+43,5
1736 POKE V+44,6
1740 POKE V+O,50 :POKE V+l,Y

147

SPRITE CRAPHICS FOR THE COMMODORE 64

1742 POKE V+2,75 :POKE V+3,Y+20
1744 POKE V+4,150 :POKE V+5,Y+30
1746 POKE V+6,X :POKE V+7,50
1748 POKE V+8,X+15:POKE V+9,100
1750 POKE V+I0,X+30:POKE V+l1,80
1755 POKE V+21,63
1760 X=X-2:Y=Y-3:IF X<31 OR Y<31 THEN GOTO

1780
1770 GOTO 1740
1780 GOSUB 15000
1800 GOSUB 20000
1900 PRINT • I CAN AUTCl"lATI CALLY DETECT·
1905 PRINT • WHEN TWO SPRITES COLLIDE ••• R
1910 POKE V+30,0
1925 POKE V+23,3:POKE V+29,3
1935 POKE V+39,2:POKE V+40,5
1940 X=1
1950 POKE V+O,X:POKE V+l,200
1960 POKE V+2,250-X:POKE V+3,200
1961 POKE V+21,3
1962 IF PEEK(V+30)AND3=3 THEN GOSUB 26000:GOTO

1995
1990 X = X+l:GOTO 1950
1995 GOSUB 15000
2000 GOSUB 20000
2010 POKE V+21,0
2999 FOR D= 1 TO 20:PRINT:NEXT D
3000 PRINT ·1 CAN ALSO DETECT R
3001 PRINT -A COLLISION WITH-
3002 PRINT RTHE BACKGROUND .•• R
3003 PRINT
3004 PRINT CHR$(18)
3005 FOR D = 1 TO 40:PRINT CHR$(113);:NEXT D
3010 PRINT CHR$(146)
3020 POKE V+39,6
3030 Y=1
3035 POKE V+31,0
3040 POKE V+0,210:POKE V+l,Y
3045 POKE V+21,1
3050 IF PEEK(V+31) AND 1=1 THEN GOSUB 27000:

GOTO 3070
3060 Y=Y+l:GOTO 3040

148

INCORPORATINC SPRITES INTO YOUR PROCRAMS

3070 GOSUB 15000
5000 GOSUB 20000
5010 PRINT • AND I CAN ANIMATE A SPRITE·
5020 PRINT:PRINT· BY RAPIDLY SWITCHING

DIFFERENT"
5030 PRINT:PRINT· VERSIONS OF THE SAME

SPRITE.u
5038 POKE V+23,5:POKE V+29,5
5040 POKE V+41,11
5045 POKE V+39,4
5050 POKE V+5,150
5052 POKE V+l,150
5055 FOR X = 200 TO 95 STEP -6
5056 POKE V+21,5
5058 POKE V+4,X
5059 POKE V+0,X-50
5060 POKE 2042,194
5065 POKE 2040,192
5070 FOR D = 1 TO 100:NEXT D
5075 POKE 2042,195
5078 POKE 2040,193
5079 FOR D = 1 TO 200:NEXT D
5080 NEXT X
5090 GOSUB 15000
6000 GOSUB 20000
6010 PRINT CHR$(147)
6020 PRINT:PRINT:PRINT • THIS IS BUT A SAMPLE OF·
6030 PRINT:PRINT· WHAT CAN BE DONE WITH

SPRITES. •
6040 PRINT:PRINT· LEARN ALL THESE SKILLS·
6050 PRINT:PRINT· AND MUCH MORE ••. BY READING U

6060 PRINT
6070 PRINT CHR$(156):PRINT" SPRITE GRAPHICS

FOR THE COMMODORE 64·
6080 PRINT • BY SALLY GREENWOOD LARSEN·
6090 POKE V+23,0:POKE V+29,0
6500 POKE 2042,194
6510 POKE 2040,192
7000 POKE V+O,24 :POKE V+l,225
7010 POKE V+2,61 :POKE V+3,175
7020 POKE V+4,98 :POKE V+5,225
7030 POKE V+6,135:POKE V+7,175

149

SPRITE GRAPHICS FOR THE COMMODORE 64

7040 POKE V+8,172:POKE V+9,225
7050 POKE V+I0,209:POKE V+ll,175
7060 POKE V+12,246:POKE V+13,225
7065 POKE V+16,128
7070 POKE V+14,28 :POKE V+15,175
7071 POKE V+39,2
7072 POKE V+40,8
7073 POKE V+41,7
7074 POKE V+42,5
7075 POKE V+43,6
7076 POKE V+44,4
7078 POKE V+45,12
7079 POKE V+46,0
8000 POKE V+21,255
8050 SOSUB 15000
8060 GOSUB 15000
8065 GOSUB 15000
8070 PRINT CHR$(147)
9000 END
9999 REM SPRITE DATA FOR HAPPY RABBIT
10000 DATA °
10010 DATA 0,0,255,0,255
10020 DATA 255,129,255,15,199
10030 DATA 224,3,199,128,0
10040 DATA 238,0,0,238,0
10050 DATA 0,238,0,0,255
10060 DATA 0,1,255,128,3
10070 DATA 147,192,7,147,224
10080 DATA 15,147,240,31,239
10090 DATA 248,31,125,248,15
10100 DATA 131,240,7,131,224
10110 DATA 3,131,192,1,255
10120 DATA 128,0,127,0,0
10130 DATA 0,0
10135 REM SPRITE DATA FOR SURPRISED RABBIT
10140 DATA 0,0,0
10150 DATA 0,0,0,0,0
10160 DATA 0,31,199,240,27
10170 DATA 199,176,24,238,48
10180 DATA 24,238,48,24,238
10190 DATA 48,24,255,48,25
10200 DATA 255,176,3,147,192

150

INCORPORATINC SPRITES INTO YOUR PROCRAMS

10210 DATA 7,147,224,15,147
10220 DATA 240,31,239,248,31
10230 DATA 255,248,15,255,240
10240 DATA 7,199,224,3,199
10250 DATA 192,1,199,128,0
10260 DATA 127,0,0,0,0
10270 REM SPRITE DATA FOR WOLF
10280 DATA 0,0,0,0,0
10290 DATA 0,0,0,48,1
10300 DATA 192,112,0,240,240
10310 DATA 0,121,224,0,61
10320 DATA 192,0,31,192,0
10330 DATA 15,224,0,63,224
10340 DATA 0,255,240,127,199
10350 DATA 248,255,255,252,255
10360 DATA 255,254,255,255,254
10370 DATA 128,255,254,42,255
10380 DATA 254,127,255,252,1
10390 DATA 255,248,1,255,240
10400 DATA 1,255,240
10405 REM SPRITE DATA FOR MEAN WOLF
10410 DATA 0',0
10420 DATA 0,0,0,0,0
10430 DATA 0,48,1,192,112
10440 DATA 0,240,240,0,121
10450 DATA 224,0,61,192,0
10460 DATA 31,192,0,15,224
10470 DATA 0,63,224,255,255
10480 DATA 240,255,193,248,255
10490 DATA 255,252,170,255,254
10500 DATA 0,255,254,0,255
10510 DATA 254,0,255,254,170
10520 DATA 255,252,255,255,248
10530 DATA 1,255,240,1,255
10540 DATA 240

151

SPRITE GRAPHICS FOR THE COMMODORE 64

14500 REM SUBROUTINES BEGIN HERE
15000 FOR 0=1 TO 2000:NEXT D
1 50 1 0 RETURN
20000 PRINT CHR$(147)
20005 POKE 53281,1
20008 POKE 53280,6
20010 POKE V+21,0
25000 FOR D = 1 TO 20:NEXT D
25010 RETURN
26000 PRINTTAB(160) H K ABO 0 M ."
26010 FOR Q = 1 TO 5
26020 POKE 53280,0
26025 FOR 0=1 TO 100:NEXT D
26030 POKE 53280,7
26040 FOR D=1 TO 100:NEXT D
26050 NEXT Q
26060 RETURN
27000 FOR Z = 1 TO 5
27020 POKE 53281,5
27030 FOR D = 1 TO 100:NEXT D
27040 POKE 53281,07
27050 FOR 0=1 TO 100:NEXT D
27060 NEXT Z
27070 RETURN
27075 REM SUBROUTINES END HERE
29990 REM SPRITE DATA FOR LETTER A
30000 DATA 31
30010 DATA 255,240,31,255,240
30020 DATA 31,255,240,31,255
30030 DATA 240,30,0,240,30
30040 DATA 0,240,30,0,240
30050 DATA 30,0,240,31,255
30060 DATA 240,31,255,240,31
30070 DATA 255,240,30,0,240
30080 DATA 30,0,240,30,0

152

INCORPORATINC SPRITES INTO YOUR PROCRAMS

30090 DATA 240,30,0,240,30
30100 DATA 0,240,30,0,240
30110 DATA 30,0,240,30,0
30120 DATA 240,30,0,240,30
30130 DATA 0,240
30135 REM SPRITE DATA FOR LETTER B
30140 DATA 255,255,192
30150 DATA 255,255,224,255,255
30160 DATA 240,224,0,56,224
30170 DATA 0,24,224,0,24
30180 DATA 224,0,24,224,0
30190 DATA 48,224,0,96,255
30200 DATA 255,192,255,255,128
30210 DATA 255,255,192,224,0
30220 DATA 224,224,0,112,224
30230 DATA 0,48,224,0,48
30240 DATA 224,0,48,224,0
30250 DATA 112,255,255,224,255
30260 DATA 255,192,255,255,128
30270 REM SPRITE DATA FOR LETTER C
30280 DATA 255,255,255,255,255
30290 DATA 255,255,255,255,240
30300 DATA 0,3,240,0,3
30310 DATA 240,0,0,240,0
30320 DATA 0,240,0,0,240
30330 DATA 0,0,240,0,0
30340 DATA 240,0,0,240,0
30350 DATA 0,240,0,0,240
30360 DATA 0,0,240,0,0
30370 DATA 240,0,3,240,0
30380 DATA 3,240,0,3,255
30390 DATA 255,255,255,255,255
30400 DATA 255,255,255
30815 REM SPRITE DATA FOR BLOCK SPRITE
30820 DATA 255,255,255

153

SPRITE CRAPHICS FOR THE COMMODORE 64

30830 DATA 255,255,255,255,,255
30840 DATA 247,239,255,231,231
30850 DATA 255,199,227,255,135
30860 DATA 225,255,7,224,254
30870 DATA 7,224,124,7,255
30880 DATA 199,255,255,199,255
30890 DATA 255,199,255,224,124
30900 DATA 7,224,254,7,225
30910 DATA 255,7,227,255,135
30920 DATA 231,255,199,239,255
30930 DATA 231,255,255,247,255
30940 DATA 255,255,255,255,255

154

BINARY NOTATION
AND BOOLEAN OPERATIONS

To reassure those of you who have never seen a binary num
ber before, the binary number system follows all the same
rules and patterns our familiar decimal numbering system
does. You will find that you catch on quickly to how it works.
The only difference is that while the decimal numbering system
is based on TEN, the binary numbering system is based on
TWO. Otherwise, they operate just alike.

Now, since computers are supposed to be so powerful and
such excellent number-crunchers, you may wonder why we
even bother to go to the trouble of using a special numbering
system with them. Why not just work with decimal numbers,
the ones we are used to using?

From a computer's point of view, the decimal system is a
nightmare for data-handling purposes. It is very difficult for a
machine which codes all its information in terms of electricity
being "on" or "off" to find a way to uniquely represent all ten
digits of the decimal system in a reliable and efficient fashion.
What the computer needs is a numbering system that has only
two digits - one of which can be represented by the electrical
current in a given memory location being "off" and the other
represented by the current being "on."

155

SPRITE CRAPHICS FOR THE COMMODORE 64

Before we go into a discussion of how binary numbers can
be actually coded in the computer's memory, we need to ex
amine the binary numbering system in more detail.

FAMILIAR CROUND -
THE DECIMAL SYSTEM

First we'll put into words what we intuitively understand
about how the decimal system works.

The decimal system (also called Base 10) is based on the
number 10. It has ten different digits - 0 through 9. Each of the
place values in a decimal number is worth ten times the value
of the place before it:

8 4 5 2 , ,
Figure 13-1

156

BINARY NOTATION AND BOOLEAN OPERATIONS

Each place value can also be expressed by taking ten to the
power of that place number:

00
~ 0

~ 0" 0 00 o 0" 0
0° o 00 0" 0

~ .s>" , .. ~ 0" 0 .s> ,
'" '" '"

" II
Co II ~ II ~ II A:> II tV II , II 0"

.s> ~ ~ ~ ~ ~ ~ .s>

IS I 7 I 3 14 I 6 I 8 5 2
, ,

Figure 13-2

Notice that the low place values start on the right, and get
larger as we move to the left.

Now let's do something you don't think about much. Let's
take a decimal number and expand it according to the place
values for each digit.

157

SPRITE CRAPHICS FOR THE COMMODORE 64

8 7 346 852
L. 2 X 10°

..... 5X 10 I

L.......e.8 X 10 2

~ 6 X 10 3
---+4X104 L ---+ 3 X 105

---+ 7 X 10 6

8 X 107

Figure 13-3

You probably looked at this exercise and thought "But that's
so obvious!"

Yes, it does seem pretty silly. But only because we deal with
decimal numbers day in and day out. The values of the various
places in a decimal number are second nature to us.

Now let's switch to binary numbers and do the same thing.

CONSTRUCTINC BINARY NUMBERS
The binary number system is based on the number 2. (That's

why you will also hear it referred to as Base 2.) There are only
two digits to use in binary numbers - zero and one. The place
values for binary numbers are structured exactly the same as
they are for decimal numbers, except the values are built
around powers of 2 instead of powers of 10:

158

BINARY NOTATION AND BOOLEAN OPERATIONS

1

Figure 13-4

Binary place values can also be expressed as powers of 2:

~ ~ ~ ~ Q) ~ tV ,
'" Co

I\. " ft/' lr)" ~" "?', tV" ," 0"
tV tV tV tV tV tV tV tV

1 10 11 1111 10 111 1

Figure 13-5

When we expand a binary number to find out what its
equivalent is in decimal numbers, the chart of place values
that we constructed comes in very handy. Now don't misunder-

159

SPRITE CRAPHICS FOR THE COMMODORE 64

stand - it's not that we need to convert these numbers from
binary to decimal to have them MEAN something. The binary
number 1101101 does have a definite meaning, and the com
puter can use it in that form. It's just that since we are so used
to working with decimal numbers, we have trouble deciding if
a binary value such as 1011 would be a better IQ or a shoe
size. (By the way, the decimal equivalent of 1011 is 1 L which
would definitely be better as a shoe size.)

These examples of expanding binary numbers to find their
decimal equivalents are illustrating the process we follow to
convert Sprite Is and zeroes from the Sprite grid into three 8-
digit binary numbers, and then into their decimal equivalents.
(As you may have noticed in Chapter 2, I recommend that you
use the short Binary Conversion program included in your
Commodore 64 User's Guide at the end of Chapter 6. You will
want to do a few of these by hand, so you understand how
they work, but converting all the binary numbers for 30 or 40
Sprites will kill an entire afternoon, if you don't let the computer
do some of the work for you.)

I X 20 = I
I X 21 = 2

o X 22 = 0

I X 2 3 = 8

I X 24= 16
I X 25= 32

ox 26 = 0
I X 21= 128

128+0+32+16+8+0+2+1 =187

CONVERTING BINARY NUMBERS TO
DECIMAL VALUES

Figure 13·6

160

BINARY NOTATION AND BOOLEAN OPERATIONS

UNDERSTANDING BITS,
BYTES, AND REGISTERS

Most of the time, when we want to place a value into the
computer's memory, we can specify the decimal value:

10 LET X=45
20 POKE V+39,3

In both of these cases, we don't have to worry about the binary
value of the numbers. The computer will do all the converting
for us.

But working with Sprite registers is a slightly different matter.
In this case, we are also specifying a decimal value to the com
puter, but we are also very concerned with how the binary
equivalent of that decimal value will look. Before we do an
example, let's look at how a register is constructed.

A register is a location in memory that has a special function.
Depending on what values you store in that register, the com
puter will do different things. All the registers used with Sprite
graphics are one byte long. The easiest way to envision a byte
is that it is made up of eight bits, or tiny memory areas which
can hold a binary 1 or a binary zero.

BYTE

I
1\

\

I
'-y-J

BIT
ONE BYTE MADE OF 8 BITS

Figure 13-'

161

SPRITE CRAPHICS FOR THE COMMODORE 64

Normally, it takes one byte of memory to encode a single letter
or character, such as the letter "T" or the character "&." Each
letter and character has its own unique binary code in the
memory. It takes a unique combination of eight binary Is or
zeroes to encode each letter of the alphabet or each character
on the keyboard.

A byte in memory can also hold a number, instead of a letter
of the alphabet. Understanding how binary numbers are
coded in a register is the key to understanding Sprites.

A number stored in a register is nothing more than an 8-digit
binary number. The place values are identical to those we saw
earlier for binary numbers.

27 2 6 2 5 24 2 3 22 21 2°

I I I I I I I
128's 64's 32's 16's 8's 4's 2's I's

Figure 13-8

In addition to representing a place value, each bit in the reg
ister also represents one Sprite. Now you can see why only
eight Sprites can be maintained by the video chip. Sprite
graphics were designed to work with the fact that each register
contains eight bits - one for each Sprite.

In addition, you can now understand why the Sprites are
numbered from 0 through 7, not 1 through 8. Each Sprite is
numbered after the exponential value for its bit in the register.
Thus, the place value for the bit representing Sprite #0 is 2 to
the zero power, or 1. The place value for Sprite #3 is 2 to the
third power, or 8.

162

BINARY NOTATION AND BOOLEAN OPERATIONS

#7 #6 #5 #4 #3 #2 #1 #0

I I I I I I I I
27 2 6 2 5 24 2 3 22 21 2°

Figure 13-9

~ POKING VALUES INTO REGISTERS ~
Much of programming with Sprite graphics involves poking

values into registers. For example, if you wish to enable Sprite
#0 through #5, you must poke a value into the Sprite Enable
Register, V + 16. Your goal is to place a 1 in the bits for Sprites
#0 through 5, within the register located at location V + 16 with
in the video chip. You want the register to look like this:

#7 #6 #5 #4 #3 #2 #1 #0

10101111111111111
REGISTER V+16

Figure 13-10

This job would be pretty simple if you had at your disposal a
BASIC statement such as:

10 POKE V+16,BINARY 00111111

163

SPRITE CRAPHICS FOR THE COMMODORE 64

Unfortunately, there is no such animal. You are limited to pok
ing a decimal number value into the register. So you must con
vert the binary number 00111111 to its decimal equivalent, and
poke that decimal equivalent into the register. There are two
ways to do this.

You can convert the binary number you need into a decimal
value:

#7 #6 #5 #4 #3 #2 #1 #0

0 0 I I I I I I

• , I

0 0 2
, 4

8
16

32

32 + 16 + 8 + 4 + 2 + I = 63

Figure 13-11

Then your POKE statement should read:

10 POKE V+16,63

Or, you can be lazy and let the computer do more of the work
for you. Instead of adding all the binary place values yourself,

164

BINARY NOTATION AND BOOLEAN OPERATIONS

let the computer do it:

10 POKE V+16,1+2+4+8+16+32

(However, I must point out that this option executes less effi
ciently than doing the addition yourself.)

This same process works no matter which Sprites you wish to
include, or which register you are working with. If you want to
"turn on" a Sprite's bit in a register, that Sprite's place value
must be added into the value you poke into the register.

#7 #6 #5 #4 #3 #2 #1 #0

0 I I 0 I I 0 0

128 64 32 16 8 4 2

REGISTER V+ 16

TO ENABLE SPRITES :#7 , :#5, #3, #1:

POKE V+16, (128+32+8+2)

POKE V+16, 170

Figure 13-12

E:3 TURNING ON SELECTED ~ BITS IN A REGISTER
As discussed in several of the earlier chapters, sometimes

you need to be able to turn on or off just one bit within a regis
ter without affecting the other bits. To accomplish this, you will

165

SPRITE CRAPHICS FOR THE COMMODORE 64

need to use a Boolean operation involving the AND and OR
functions.

This is the general format of the statement for turning ON a
selected bit within a register:

10 POKE (V+?),PEEK(V+?) OR (2tSN)

In this general statement, (V + 7) is the register location. It will
be the same in both cases. SN stands for the Sprite number
from #0 through 7.

The value to the right of the comma will be poked into the
register. We'll follow in detail how that value is figured.

PEEK(V +?) means to "look" into register V + 7 to see the value
stored there. Then an OR operation is performed on that value,
using a second value of (2!SN). As you recall, (2!SN) is the
place value for a Sprite.

This is probably still pretty confusing, so let's choose a more
concrete example.

Let's assume that the Sprite Enable Register (V + 21) original
ly looked like this:

#7 #6 #5 #4 #3 #2 #1 #0

111 011101 01111101
REG ISlER V+2 J

Figure 13-13

We are interested in turning on only the bit in the Sprite Enable
Register (V + 21) for Sprite #4. The place value of the bit for
Sprite #4 is 2 to the fourth power, or 16. This is the statement
we will need to use:

166

BINARY NOTATION AND BOOLEAN OPERATIONS

10 POKE (V+21),PEEK(V+21) OR (214)

By using the OR. we are instructing the computer to perform a
Boolean OR on the binary value found in the register, and the
binary value of 214, or 16. A Boolean OR compares the corre
sponding bits in the two values and changes them according to
this table of rules:

OorO=O
o or 1 = 1
1 or 0 = 1
lorl=l

In our case, here are the results:

1 0 1 0 0 1
OR 0 0 0 1 0 0

1 0 1 1 0 1
!

ONLY THIS BIT CHANGED

1
0

1

Figure 13-14

o - REGISTER 21

o - BINARY NUMBER
FOR 16

0

The resulting value in the register is different only in the bit for
Sprite #4. It used to be a zero, and now it is a one. No other bit
was changed.

But what would have happened if the bit for Sprite #4 had
already been turned on?

167

SPRITE GRAPHICS FOR THE COMMODORE 64

1 0 1 1 0 1 1 o -REGISTER 21
OR o BINARY NUMBER 0 0 0 1 0 0 0 - FOR 16

1 0 1 1 0 1 1 0
!

THIS BIT STAYED ON

Figure 13-15

As you can see, the bit for Sprite #4 was left on, which is what
we wanted. The other bits were not changed.

TURNING OFF SELECTED
BITS IN A REGISTER

Turning OFF selected bits within a register, without chang
ing any of the other bits, is accomplished in a similar fashion.

The general format of the statement to turn off a selected bit
is:

10 POKE (V+?),PEEK(V+?) AND (255-2tSN)

where (V + 7) is the register location, which will be the same in
both cases, and SN is the Sprite number from #0 through 7.

Again, the computer PEEKs at the binary value stored within
the register, then performs a Boolean AND operation on that
value and (255-2!SN).

A Boolean AND compares the corresponding bits in the bi
nary values and changes them according to the rules in this
table:

168

BINARY NOTATION AND BOOLEAN OPERATIONS

o AND 0 = 0
o AND I = 0
1 AND 0 = 0
I AND 1 = 1

If we wish to turn OFF the bit for Sprite #4 in the Sprite En
able Register (V + 21), we would use this statement:

10 POKE (V+21), PEEK(V+21) AND (255-21'4)

The value of the arithmetic expression (255-2!4) is 239. The bi
nary equivalent of this number is 1110111l.

This diagram shows the original contents of the Sprite Enable
Register, and the results when the AND operation is per
formed. Notice that the bit for Sprite #4 was "on" when we
started.

0 0 0- REGISTER 2 I

AND I BINARY NUMBER I 0 I - FOR (255 - 16)

0 I 0 0 0

I
ONLY THIS BIT WAS CHANGED

Figure 13-16

169

SPRITE GRAPHICS FOR THE COMMODORE 64

Even if the bit for Sprite #4 was already "off" before using the
Boolean AND operation, the results are the same:

0 0 0 o - REGISTER 21
AND
- I 0 I I BINARY NUMBER

-FOR (255-16)

0 I 0 0 0

/
THIS BIT STAYED OFF

Figure 13-17

As you may have guessed, these statements to selectively turn
on and off bits within a register can also be used to change
more than one bit at a time. All that is involved is changing the
(2!SN) value to the sum of the place values of the Sprites in
volved. For example, to turn ON Sprites # 1 and #2:

10 POKE (V+21),PEEK(V+21) OR 6

The place values for Sprites # 1 and #2 are 2 and 4, respective
ly. The sum of 2 and 4 is 6, so that is the value used.

To turn OFF the bits for Sprites #5 and #7, the statement
would look like this:

10 POKE (V+21),PEEK(V+21) AND (255-160)

The place values for Sprites #5 and #7 are 32 and 128. Their
sum is 160, which then must be subtracted from 255.

170

OUESTIONS AND ANSWERS
ABOUT PROGRAMMING

WITH SPRITES

A Sprltely Mess?
Q. The DATA statements for my Sprite look correct, meaning

that I have 63 data values, and they're in the correct order.
Yet, when I execute my program, the Sprite looks like a
terrible mess on the screen. I've looked for typos in my
DATA values, but nothing is wrong. What could be my
problem?

A. Several things come to mind. First, are you certain you are
poking the data values into the correct memory locations? If
you designate in the Sprite Pointer address 2040 that Sprite
#0 will have its data values in memory area 192, then
they'd better be in (192*64) + 0 through (192*64) + 62 plus
one empty byte at (192*64) +63 as a place holder. A typo in
your program statements to read these data values and
POKE them into memory could cause the problem.

Is the Sprite multi-colored and you have neglected to des
ignate it as such? If a Sprite is multi-colored, you must turn
on its bit in the Sprite Multicolor Register (V + 28). Some
times this error will result in a Sprite that looks faintly recog
nizable (if you used mostly background color and multi-

171

SPRITE GRAPHICS FOR THE COMMODORE 64

color 2 in designing the Sprite) and sometimes will just be a
random mess (if you used mostly multi-color 1 and the
Sprite color for designing the Sprite).

If you have more than one Sprite in your program, and
it's the second Sprite that looks funny, maybe you were
short a data value or two for the first Sprite. Let me give you
an example. If Sprite #0 had only 61 data values (let's say
you forgot to type in the final 255,255), then when the pro
gram reads in the 63 data values for Sprite #0, it will read
the 61 values given for Sprite #0, then go on to read in the
first two numbers for Sprite # 1, to make a total of 63. Now, if
the first two values for Sprite # 1 happen to be the same as
the two values missing from the end of Sprite #0 (and this
happens more often than you would imagine), then Sprite
#0 will look normal on the screen. However, Sprite # 1 will
be two values off. This mistake could easily escape your
attention if you had more DATA values in your program
than you were planning to use. Otherwise, of course you
would get an "OUT OF DATA" error as the program tried to
read in the final two data values for Sprite # 1 and found
none.

A third possibility could be that you have a stray comma
at the end of a DATA statement. The Commodore 64
assumes that data elements are separated by commas. If
you have a DATA line which ends with a comma, the pro
gram will try to read an additional blank data value after
that comma, throwing all your Sprite values off by one
place. If this occurred halfway through your Sprite data
values, the top part of the Sprite would look normal and the
bottom would look funny. If the extra comma occurred in
the first few data statements, the whole Sprite would prob
ably look goofy.

Handy Tricks with Binary Numbers
Q. I'm not very proficient with binary numbers yet. Could you

give me a few "slick tricks" to make my life easier? For inst
ance, if I want to figure out the total decimal place value for
Sprites #0 through 6, is there an easier way to do it than
just adding all the individual place values?

172

QUESTIONS AND ANSWERS

A. A useful rule to remember is that the total of a series of
place values is always one less than the next place value.
For example, to figure the decimal equivalent of the binary
number 111111: the highest place value in this number is 25

or 32. The next higher place value would be 26 or 64. So the
decimal equivalent of 111111 is (26 - 1) or 63. To prove to
yourself that this works, add up the place values.
1 +2+4+8+ 16+32=63. Remember, though, that this rule
only works if the binary number consists of all ones.

101 Sprites?
Q. How do I get more than eight Sprites on the screen at once?
A. Use Raster Interrupt techniques. Unfortunately, you're on

your own here, because those techniques are beyond the
scope of this book.

Safe Memory
Q. Are there any other "safe" memory areas for storing Sprite

data, besides the 64 areas beginning with area 192?
A. Commodore suggests areas 13, 14, and 15 (the cassette buf

fer) if you will be defining three Sprites or less.

The Phantom Sprite Strikes Again
Q. I've enabled a Sprite, but I can't see it on the screen. I know

it isn't the same color as the background, because I
checked. What's wrong?

A. You've probably assigned it X and Y coordinates that are
off the visible part of the screen. Try changing the X and Y
values for the Sprite in direct mode, to see if you can make
it appear. Then don't forget to change the values in your
program, too.

Detecting Fake Collisions
Q. Occasionally my program will detect a collision when I

know there hasn't been one. What could be causing this?
A. At least three things could be happening here. All of these

are equally likely to happen whether you are looking at the
Sprite to Sprite collision register (V + 30) or the Sprite to

173

SPRITE GRAPHICS FOR THE COMMODORE 64

background collision register (V + 31).
I) Bits in the collision register may have been turned" on"

when your program started executing. Therefore, the first
time you PEEKed at the register contents, it indicated a col
lision had taken place. The solution to this is to have a
"dummy" PEEK statement early in the program, solely for
the purpose of clearing the register. Remember that the
register is automatically set to zero when you PEEK at the
contents.

2) The collisions may actually be occurring, but are hap
pening off the visible portion of the screen, so you are not
aware of them.

3) Your Sprites are colliding with "sparkles" (little blips of
light) on the screen, giving a false collision. This is the hard
est situation to deal with, since it's so unpredictable. My
own equipment does this so seldom that I have very little
experience in dealing with it. However, I've been told that
one remedy is to PEEK at the register twice in a row, and to
only believe the results of the second PEEK. This way,
you're betting that a sparkle won't cause you trouble twice
in a row. (It's sort of like depending on lightning never strik
ing twice in the same place. Nobody gets any guarantees.)

Flies of Just Sprite Data Values
Q. I made up a large set of Sprite data values for the letters of

the alphabet and all the numerals. I want to use these
Sprites for several programs. It seems rather absurd to save
all these DATA values over and over, but with different
program statements in front of them. Isn't there a better way
to do this?

A. Yes, there is. You can take your cue from the techniques
used by several of the software packages you can buy for
creating Sprite data values. They create a file of Sprite
values, separate from any program statements, and instruct
you to save this file on a disk or tape. Then when you want
to use these Sprite data values in a program, you load the
file into memory using the special parameters of the LOAD
statement which tell the computer to load the file back into
the same memory locations from which it was saved. (This

174

QUESTIONS AND ANSWERS

statement is LOAD "file name," device number, 1 where ''1''
tells the computer to load the values back into the same
memory locations they were saved from. This accomplishes
the same thing as reading in all the DATA statement values
and poking them into memory. The only thing you must re
member is which Sprite data you put where in memory. If
you have a large number of Sprites, this is much more effi
cient than coding that huge collection of DATA values in
each program.

Alternate Bank Deposit
Q. I've noticed that all your examples place the Sprite DATA

values in memory locations within memory bank zero. Can
I use the other banks? How would I do this?

A. I'll refer you to an expert for this answer. Tim Villanueva
has an excellent article in the Summer 1983 Commodore
Power/Play magazine on just this subject. It appears on
pages 64-66.

Backward or upside Down Sprites
Q. I designed several Sprites for a game program, and now I

find I could really use another version of one of the Sprites,
except I'd like it to face the opposite direction, or be upside
down. Is there any way to do this without having to start
over again with the Sprite grid and code the new views
from scratch?

A. The three following sample routines will solve all your prob
lems. First, here is the usual way we would read and poke
the DATA values for a Sprite. The Sprite I have chosen is
facing left after we run this program.

10 REM NORMAL SPRITE PROGRAM
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,I:POKE 53280,2
50 POKE 2040,192
60 FOR M=O TO 62
80 READ A
90 POKE 192*64+M,A

175

SPRITE CRAPHICS FOR THE COMMODORE 64

110 NEXT M
115 POKE V+39,0
118 POKE V+23,I:POKE V+29,1
120 POKE V+O,150 :POKE V+l,150
130 POKE V+21 ,1
140 END
10000 REM MEAN WOLF SPRITE
10010 DATA 0,0,0,0,0,0,0
10020 DATA 0,48,1,192,112
10030 DATA 0,240,240,0,121
10040 DATA 224,0,61,192,0
10050 DATA 31,192,0,15,224
10060 DATA 0,63,224,255,255
10070 DATA 240,255,193,248,255
10080 DATA 255,252,170,255,254
10090 DATA 0,255,254,0,255
10100 DATA 254,0,255,254,170
10110 DATA 255,252,255,255,248
10120 DATA 1,255,240,1,255,240

Now, if we want to take these same 63 data values and
make an upside down wolf Sprite, we make a few changes
in the order in which we read in the data values. Instead of
reading in the values from top to bottom, we need to read
them in from bottom to top. But we also need to reverse the
order of the three Sprite values in each row. Let me show
you how statements 60-110 work.

10 REM UPSIDE DOWN SPRITE ROUTINE
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,I:POKE 53280,2
50 POKE 2040,192
60 FOR M=62 TO ° STEP -3
70 FOR N=2 TO ° STEP -1
80 READ A
90 POKE 192*64+(M-N),A
100 NEXT N
110 NEXT M
115 POKE V+39,O
118 POKE V+23,I:POKE V+29,1

176

QUESTIONS AND ANSWERS

120 POKE V+O,150 :POKE V+l,150
130 POKE V+21, 1
10000 REM MEAN WOLF SPRITE
10010 DATA 0,0,0,0,0,0,0
10020 DATA 0,48,1,192,112
10030 DATA 0,240,240,0,121
10040 DATA 224,0,61,192,0
10050 DATA 31,192,0,15,224
10060 DATA 0,63,224,255,255
10070 DATA 240,255,193,248,255
10080 DATA 255,252,170,255,254
10090 DATA 0,255,254,0,255
10100 DATA 254,0,255,254,170
10110 DATA 255,252,255,255,248
10120 DATA 1,255,240,1,255,240

For a normal Sprite, we poke the values into memory
areas in the order they are read. The memory addresses
range from the memory area plus 0 to the memory area
plus 62.

Line 60 says we will start at + 62 and work our way back to
+ 0 by threes. In other words, we need to do something
special with each group of three values. In statement 70,
what we are doing with each group of three values (repre
senting one row of the Sprite grid) is to place the data
values in normal order within each group of three, instead
of going backwards as we are doing with all the data
values as a whole. This probably seems very confusing to
you, but trust me, it works. The only way you will really
understand it is to get out a pencil and a sheet of paper and
try it for yourself.

Now suppose your want a Sprite that is backward, mean
ing that instead of my wolf Sprite facing left, I want one that
looks just the same, but is facing right. This is a bit more
complicated, but bear with me and I'll try to explain how it
works.

10 REM BACKWARD SPRITE ROUTINE
20 V=53248
30 PRINT CHR$(147):POKE V+21,0

177

SPRITE GRAPHICS FOR THE COMMODORE 64

40 POKE 53281,1:POKE 53280,2
50 POKE 2040,192
60 FOR MFO TO 62 STEP 3
70 FOR N=2 TO ° STEP -1
80 READ A
85 GOSUB 500
90 POKE 192*64+(M+N),A2
100 NEXT N
110 NEXT M
115 POKE V+39,0
118 POKE V+23,1:POKE V+29,1
120 POKE V+O,150 :POKE V+l,150
130 POKE V+21,1
140 END
500 REM SUBROUTINE TO REVERSE BINARY NO.
505 IF A=255 OR A=O THEN A2=A:GOTO 610
510 A2=0
520 FOR P=7 TO ° STEP -1
530 D=INT(A/2tP)
540 IF 0=0 THEN GOTO 600
550 A2=A2+2t(7-P)
560 A=A-(D*2tP)
600 NEXT P
610 RETURN
10000 REM MEAN WOLF SPRITE
10010 DATA 0,0,0,0,0,0,0
10020 DATA 0,48,1,192,112
10030 DATA 0,240,240,0,121
10040 DATA 224,0,61,192,0
10050 DATA 31,192,0,15,224
10060 DATA 0,63,224,255,255
10070 DATA 240,255,193,248,255
10080 DATA 255,252,170,255,254
10090 DATA 0,255,254,0,255
10100 DATA 254,0,255,254,170
10110 DATA 255,252,255,255,248
10120 DATA 1,255,240,1,255,240

This time we are going to read the Sprite data into mem
ory in top to bottom order, as we normally would, but we
will change the order for each set of three data values (rep
resenting one row in the Sprite grid). The data value that

178

QUESTIONS AND ANSWERS

would have described the far right side of the Sprite needs
to be on the far left side now, and vice versa for the data
value that normally would have been describing the left
side of the Sprite shape. The middle number will stay
where it has always been. Now comes the tricky part. It isn't
enough to reverse the numbers alone, but the actual bits for
each number must also be reversed. If the original binary
number was 1011100, the reversed number must look like
0011101 (just like holding the number up to a mirror). The
subroutine that starts at line 500 does this. It figures out the
binary place digit (either zero or one), beginning at the far
left side, then uses that digit to build a new reversed binary
number, starting with the binary places on the far right
side. In this routine, A is the original decimal DATA num
ber, A2 is the decimal value of the final reversed number, P
stands for the power of two being used, and D is the binary
digit. I will forewarn you that this routine takes time to ex
ecute for every one of the 63 data values in your Sprite.
However, I did speed it up quite a bit by realizing that two
commonly found data values, 255 and zero, will not change
at all when put through this algorithm. So I added line 505
to bypass all the seven "loops" in the subroutine if A is
either 255 or zero.

The backward and upside down Sprite routine is relative
ly easy to understand, once you have mastered the first
two. It reads the data values and pokes them into memory
in exactly reverse order. The data value it pokes is the "re
verse" value, the same as we needed for the backward
Sprite routine.

10 REM BACKWARD AND UPSI DE D~ SPRITE
20 V=53248
30 PRINT CHR$(147):POKE V+21,0
40 POKE 53281,1:POKE 53280,2
50 POKE 2040,192
60 FOR M=62 TO 0 STEP -1
80 READ A
85 GOSUB 500
90 POKE 192*64+M,A2
110 NEXT M

179

SPRITE CRAPHICS FOR THE COMMODORE 64

11 5 POKE V+ 39 , °
118 POKE V+23,1:POKE V+29,1
120 POKE V+O,150 :POKE V+1,150
130 POKE V+21, 1
140 END
500 REM SUBROUTINE TO REVERSE BINARY NO.
505 IF A=255 OR A=O THEN A2=A:GOTO 610
510 A2=0
520 FOR P=7 TO ° STEP -1
530 D=INT(A/2tP)
540 IF 0=0 THEN GOTO 600
550 A2=A2+2t(7-P)
560 A=A-(D*2tP)
600 NEXT P
610 RETURN
10000 REM MEAN WOLF SPRITE
10010 DATA 0,0,0,0,0,0,0
10020 DATA 0,48,1,192,112
10030 DATA 0,240,240,0,121
10040 DATA 224,0,61,192,0
10050 DATA 31,192,0,15,224
10060 DATA 0,63,224,255,255
10070 DATA 240,255,193,248,255
10080 DATA 255,252,170,255,254
10090 DATA 0,255,254,0,255
10100 DATA 254,0,255,254,170
10110 DATA 255,252,255,255,248
10120 DATA 1,255,240,1,255,240

If you need backward or upside down Sprites for use
within a program, be sure to use these techniques while
you read and poke the DATA values into memory. It is
much too time-consuming to use these routines during the
course of moving your Sprites within the program's action.

If you use these routines with multi-colored Sprites, they
will work, but the colors for multi-color 2 and the back
ground will be switched, due to the way they are normally
coded in the Sprite grid.

Even though these routines are coded in "uncrunched"
form for readability, be sure to crunch them in your pro
grams. The efficiency will be greatly improved.

180

SPRITE REGISTER SUMMARY

SPRITE REGISTERS
V =53248 SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE

#7 #6 #5 2 0 # # # # #

DECIMAL PLACE
128 64 32 V AWE EQUN ALENTS 16 8 4 2 1

SPRITE ENABLE
V +21,128 V +21,64 V+21,32 V+21,16 V +21,8 V+21,4 V+21,2 V +21,1

REGISTER

SPRITE POINTER 2047 2046 2045 2044 2043 2042 2041 2040

SUGGESTED
199 198 197 196 195 194 193 192 MEMORY AREA-

SPRITE COLOR V+46,C V+45,C V+44,C V+43,C V +42,C V+4I,C V+40,C V+39,C

x-PosmON V+I4,X V+12,X V+ 1O,X V+8,X V+6,X V+4,X V+ 2,X V;+-O,X

Y-POSmON V+ 15,Y V+13,Y V+ll ,Y V+9,Y V+7,Y V+5,Y V+3,Y V+I,Y

MOST SIGNIFICANT
V+16,128 V + 16,64 V + 16,32 V + 16, 16 V+16,8 V + 16,4 V+ 16,2 V+ 16,1 BIT (fOR RIGHT X)

HORIZONTAL
V+29,128 V +29,64 V +29,32 V+29.16 V+29,8 V +29,4 V +29,2 V +29,1

EXPANSION

VERTICAL
V+23, 128 V + 23,64 V +23 ,32 V +23,16 V+23,8 V + 23,4 V +23,2 V +23, 1

EXPANSION

MULTI-COLOR
V+28,128 V +28,64 V +28,32 V +28, 16 V +28,8 V +28,4 V +28,2 V +28,1

MODE

SPRITE/BACKGROUND
PRIORITY (SPRITE V+27, 128 V +27 ,64 V +27,32 V+27 ,16 V +27,8 V +27,4 V +27,2 V+27,1
PASS BEHIND)

- MEMORY AREA 192 means (192-64) + 0 through (192-64) + 62

MULTI-COLOR I POKEV+37,C

MULTI-COLOR 2 POKE V+38,C

These two colors

will apply to
all Sprites
designated as
multi-colored.

181

SCREEN BACKGROUND POKE 53281,C

SCREEN BORDER POKE 53280,C

Reprinted courtesy of Commodore Business
Machines, Inc.

"

SPRITE GRAPHICS FOR THE COMMODORE 64

SPRITE PRIORITIES
Lower numbered Sprites have priority over higher numbered
Sprites. If Sprites #2 and #6 cross paths, Sprite #2 will appear
to pass in front of Sprite #6.

SPRITE TO SPRITE COLLISION

10 PEEK(V+30) AND X =X THEN [TAKE SOME ACTION]

I I
total of decimal place value equivalents

for Sprites you wish to check

~ SPRITE TO BACKGROUND FIGURE COLLISION ~

20 PEEK(V+31) AND X =X THEN [TAKE SOME ACTION]

I I
total of decimal place value equivalents

for Sprites you wish to check

TO TURN ON SELECTED
BITS IN A REGISTER

30 POKE V+?,PEEK(V+?) OR (2tSN)

I I' ,
register number Sprite number (0 through 7)

TO TURN OFF SELECTED
BITS IN A REGISTER

40 POKE V+?,PEEK(V+?) AND (255-2tSN)

register number I / Sprite number (0 ~rough 7)

SPRITE SIZE
Normal: 24 dots wide by 21 dots high
Fully Expanded: 48 dots wide by 42 dots high

182

SPRITE RECISTER SUMMARY

E3 CODINC MULTI-COLOR SPRITES
00 Background Color
01 Multi-color 1
10 Sprite Color
11 Multi-color 2

E3 CODINC SINCLE-COLOR SPRITES
o Background Color
1 Sprite Color

o Black
1 White
2 Red

COLOR CODES
8 Orange
9 Brown

3 Cyan (Light Blue)
4 Purple

10 Light Red
11 Dark Gray
12 Medium Gray
13 Light Green
14 Light Blue

5 Green
6 Blue
7 Yellow

#7 #6

15 Light Gray

A SPRITE RECISTER
And its Decimal Place

value Equivalents
#5 #4 #3 #2

VALID X AND Y
CORRDINATE VALUES·

Y can be 0 through 255

#1 #0

X can be 0 through 255, but if values are needed past 255, turn
on the MSB (Most Significant Bit) for that Sprite, then start
over with your X -coordinate at 0

*Some of these X and Y values will be outside the visible
screen area

183

SPRITE CRAPHICS FOR THE COMMODORE 64

INDEX
animating sprites, 73-75, 120,

125, 128

Basic, 1, 41
binary notation, 2, 155
binary number, 47, 155, 159,

167
binary value, 64
bits, 2, 46, 161, 162, 165
Boolean functions, 49, 57, 77,

155, 166, 167
byte, 2, 40, 46, 161, 162

changing colors, 9
collisions, 2
color assignments, 37
color effects, 62
crunched programs, 3, 87

data statements, 8, 9, 45
data values, 43-45
decimal system, 156
disabling sprites, 49
dominance, 2
double sprites, 136
drawing shapes, 15

enabling sprites, 46-48
expanding sprites, 63, 65, 67
expansion, 98
experimentation, 24

individual pointer, 43
inverse exclamation point, 22
inverse letters, 19-21
inverse multi-color sprites, 103
inverse question mark, 26

inverse single color sprites, 133

lighted dots, 7

most significant bit, 54-56, 70
moving sprites, 69-72, 87-91
multi-color sprites, 100

peeking, 77-79, 166, 168
pixels, 6
poke, 34-36, 50, 59, 60, 163, 166
positioning sprites, 51, 52, 65
priorities, 58-60, 106, 110, 112
programming with sprites, 171
puzzle, 140, 142

random positioning, 92
registers, 2, 3, 35, 36, 50, 59,

161
remark statements, 10
right of way, 2

sampler, 144
screen coordinates, 47, 48, 50,

51, 53
Siamese sprite, 12
sprite color codes, 34-36
sprite pointer, 39
sprite registers, 181
sprite-to-sprite collisions, 76,

114, 118
stepping, 1
storing sprites, 39
switching sprite pointers, 120,

125

video chip, 2, 3, 63

184

