
220 FDR N1 '1 TO NU-N

A$=US*(N1

240 B$=USS(N1-1)

90 REM US«(N): ARRAY Wi FH I

100 REM

UO REM -

!00 NEXT ITEM

!10 FOR N-1 TO NU

D. BUSCH
60 REM 5UBR0UTIN

G0TD~2

0 REM

>O REM

30 REM

10 REM

;o rem

50 REM

'0 REM

30 REM

30 REM

100 REM

I tO REM

120 REM

130 NU'10

MO DIM USS

150 GOTO

160 REM

STRING SORT

♦• VARIABLES ••

NU: NUMBER OF I
USS(N>: ARRAY WITH

70

180

190

200

210

220

230

240

250

SORTED 260
MS 270

2B0

290

300

*' 310
32 0

330

FDR 1TEM=1 TO NU

PR1NT"ENTER *'

INPUT USS(ITEM)

NEXT ITEM

FOR N-1 TO NU

FOR N1=1 TO NU-N

AJ=USS(N1)

BS=USS(N1

IF AS- B*

USS (N1)

US* (N1-1)

NEXT N1

NEXT N

FOR N-1 TO NU

PRINT USS(N)

RETURN

230 A$=USS(N1)

240 BS=USS(N1

250 IF AS- BS THEN GOTO 280

260 USS (NU = B*
270 US* C Nl +1)-A$

2B0 NEXT Nl

290 NEXT N

300 FDR N"1 TD NU

310 PRINT USS(N)

320 NEXT N

330 RETURN

340 REM ■•• PROGRAM STARTS HERE ■

350 GOSUB 170

340 REM ••• PROGRAM STARTS HERE

350 GDSUB 170

US*

*'■ ; ITEM

TEM)

170 FOR IT

160 PRINT

190 INPUT

200 NEXT ITEM

210 FOR N=1 TO NU

220 FDR Nl =1 TO NU-N

230 AS=USS(N1)

240 BS = USS(N1»1)

250 IF At- BS THEN GOTO 280

260 U5$ (N1)-9S

270 USS (Nl *1 > = AS

280 NEXT Nl

290 NEXT N

300 FDR N = 1 TO NU

310 PRINT US$(N)

320 NEXT N

330 RETURN

10 REM

20 REM

30 REM

10 REM

50 REM

REM

:m

:m

IG SORT

ITEMS SORTED^

' WITH ITEMS J

•• VARIABLES —

NU: NUMBER GF ITEMS SORTED

USJ(N>: ARRAY WITH ITEMS

INITIALIZE

U-1Q

DIM USS(NU)

GOTO 350

:. ; REM

130 NU=10

140 DIM USS(NU)

150 GOTO 350

;ze

160 REM SUBROUTINE

170 FOR ITEM-1 TO NU

180 PRINT' 'ENTER /"; ITEM

190 INPUT USS(ITEM)

200 NEXT ITEM

-1 TD NU

1-1 TQ NU-N

(N1)

• 1)

THEN GOTO 280

340 REM

350 GOSUB

130 NU

140 DIM U

150 GOTO 3

160 REM

PROGRAM STARTS HERE 160 REM SUBROUTINE

ROUTINE

OR [1

180 PRINT*

190 INPUT

200 NEXT I ft
210 FOR N=1

220 FOR N

230 A$=U

240 BS=U

250 IF AS

260 USS (N1)=B*

270 USB (N1+1)«A*

280 NEXT N1

290 NE<~ N - '

ITEM

HEN GOTO 280

170 FDR ITEM=1 TO NU

180 PRINT''ENTER »'

190 INPUT USS(ITEM)

?00 NEXT HEM

210 FDR N»1 TD NU

220 FOR Nl -1 TD NU-N
230 AS*US$(N1)

240 B$=USS(N1-1)

250 IF AS- BS THEN GOTO 280

260 USS (Nl)'B$

270 USS <N1•!)-A*

260 NEXT N1

290 NEXT N

300 FDR N-1 TD NU

310 PRINT USS(N)

320 NEXT N

330 RET

INO SGRT

M

VARIABLES •-

; NUMBER DF ITEMS SORTED

U5S(N): ARRAY WITH ITEMS

110 REM

120 REM INITIAL

130 NU-10

140 DIM USStNU)

150 GOTO 350

A Bantam Computer Book
BA NTA M
COMPUTER

BOOKS

340 REM

350 GQSUB-170

170 FDR ITEM-1 TO NU

180 PRINT''ENTER *' ITEM
.

THE

COMMODORE
128

SUBROUTINE
LIBRARY

Bantam Computer Books
Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE //c BOOK
by Bill O'Brien

THE ART OF DESKTOP PUBLISHING
by Tony Bove, Cheryl Rhodes, and Wes Thomas

ARTIFICIAL INTELLIGENCE ENTERS THE MARKETPLACE
by Larry R. Harris and Dwight B. Davis

THE BIG TIP BOOK FOR THE APPLE II SERIES
by Bert Kersey and Bill Sanders

THE COMMODORE 64 SURVIVAL MANUAL
by Winn L. Rosch

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE
by Commodore Business Machines, Inc.

THE COMMODORE 128 SUBROUTINE LIBRARY
by David D. Busch

THE COMPUTER AND THE BRAIN
by Scott Ladd / The Red Feather Press

EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR APPLE II
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR COMMODORE 64
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR IBM PC
by Tim Hartnell

EXPLORING THE UNIX ENVIRONMENT
by The Waite Group / Irene Pasternack

FRAMEWORK FROM THE GROUND UP
by The Waite Group / Cynthia Spoor and Robert Warren

HOW TO GET THE MOST OUT OF COMPUSERVE, 2d EDITION
by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE SOURCE
by Charles Bowen and David Peyton

THE IDEA BOOK FOR YOUR APPLE II
How to Put Your Apple II to Work at Home
by Danny Goodman

THE MACINTOSH
by Bill O'Brien

MACINTOSH C PRIMER PLUS
by The Waite Group / Stephen W. Prata

THE NEWin A GUIDE TO IBM'S PCjr
by Winn L. Rosch

ORCHESTRATING SYMPHONY
by The Waite Group / Dan Shafer with Mary Johnson

PC-DOS/ MS-DOS
User's Guide to the Most Popular Operating System for Personal Computers
by Alan M. Boyd

'OWEIPOWER PAINTING: COMPUTER GRAPHICS ON THE MACINTOSH
by Verne Bauman and Ronald Kidd / illustrated by Gasper Vaccaro

SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider

SWING WITH JAZZ: LOTUS JAZZ ON THE MACINTOSH
by Datatech Publications Corp. / Michael McCarty

UNDERSTANDING EXPERT SYSTEMS
by The Waite Group / Mike Van Horn

USER'S GUIDE TO THE AT&T PC 6300 PERSONAL COMPUTER
by David B. Peatroy, Ricardo A. Anzaldua, H. A. Wohlwend, and Datatech
Publications Corp.

THE

COMMODORE
128

SUBROUTINE
LIBRARY

David D. Busch

BANTAM BOOKS

TORONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

As always, for Cathy.

THE COMMODORE 128 SUBROUTINE LIBRARY

A Bantam Book I August 1986

All rights reserved.

Copyright © 1986 by David D. Busch.

Commodore 128 is a trademark ofCommodore Electronics, Ltd.

Cover design by J. CaroffAssociates, Inc.

Book design by Nicola Mazzella

This book may not be reproduced in whole or in part, by

mimeograph or any other means, without permission.

For information address: Bantam Books, Inc.

ISBN 0-553-34308-4

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trade

mark, consisting of the words ' 'Bantam Books'' and the por

trayal ofa rooster, is Registered in U.S. Patent and Trademark

Office and in other countries. Marca Registrada. Bantam

Books, Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

B 0987654321

CONTENTS

PREFACE ix

INTRODUCTION xi

1 SUBROUTINE MAGIC 1

2 BUSINESS AND FINANCIAL 11

Loan Amount 13

Payment Amount 16

Number of Payments 18

Remaining Balance 20

Years to Reach Desired Value 23

Future Value 25

Regular Deposits 27

Deposit Amount 29

Annuity Withdraw 31

Rate of Return 33

Depreciation Rate 35

Depreciation Amount 38

Temperature 41

Date Formatter 43

Number of Days 45

Day Converter 48

Menu 50

Time Adder 53

MPG 55

Abbreviations 57

Sequential File—Write to Disk 65

Sequential File—Read from Disk 67

3 BOMBPROOF DATA INPUT 71

Line Input 72

Number Input 74

Letter Input 77

Case Converter 80

4 STRING HANDLING 83

Replace String 85

Insert String 87

CHR$ Value 89

Exchange 92

String$ 94

String Sort 96

Shell-Metzner Sort 99

Array Loader 101

Despacer 104

Center String 106

Flush Right String 108

Encode String 110

Decode String 112

Word Counter 114

Global Search 117

5 GAME ROUTINES 121

Using Joysticks 122

80-Column Joystick—Horizontal Movement 123

80-Column Joystick—Vertical Movement 128

80-Column Joystick—All Directions 130

80-Column Joystick—Color Drawing 132

40-Column Joystick—Horizontal Movement 135

40-Column Joystick—Vertical Movement 139

40-Column Joystick—Move All Directions 140

40-Column Joystick—Color Drawing 142

40-Column Joysticks—for Two Joysticks

Keyboard Joystick

Keyboard Drawing

Paddles

Random Integer

Random Sets

Animated Coin Flip

N-Sided Dice

Deal Cards

Delay Loop

6 INTRODUCTION TO GRAPHICS

Bit-Map Drawing

Graphics Plotting

Programming Characters

Shape Mover

7 USING SOUND

Commodore 128 Organ

Siren

Flying Saucer

Burglar Alarm

Alarm Sound

Plane Engine

Bomb Dropping

Helicopter

Computer Sound

Disaster Sound

Roulette Wheel

Clock Ticking

8 SOFTWARE TRICKS

Clock Setter

Elapsed Time

Timer

Color Checker

Program Keys

Function Keys

Utility Keys

Cursor Mover

Program Transfer

Terminal

145

147

149

152

155

157

159

162

164

167

171

175

178

182

187

191

193

198

199

200

201

202

204

205

206

208

209

211

213

215

217

219

221

223

225

227

229

231

233

9 BITS AND BYTES 235

Peek Bit 238

Bit Displayer 239

Bit to One 241

Bit to Zero 243

Reverse Bit 244

Binary to Decimal 246

Rounder 248

Prime Numbers 250

Number Sort 251

GLOSSARY 255

INDEX 261

PREFACE

Someone once said, "Time is a great teacher, but, unfortunately,

it kills all its pupils."

Although it is possible to learn on our own, letting others

invent the wheel and then pass their experience on can be a

better use of our most precious commodity.

This collection of subroutines for the popular Commodore 128

personal computer has two purposes. You'll find nearly 100 useful,

ready-to-transplant subroutines and programming tips that will

enable your own programs to solve tough business problems,

resound with music, or sizzle with joystick action. Although this

collection is not intended as a "how-to" programming guide, we

IX

x THE COMMODORE 128 SUBROUTINE LIBRARY

think you'll pick up a wealth of useful guidelines and tricks along

the way.

The Commodore 128 Subroutine Library is intended as a

companion to the Commodore 128 System Guide provided with

your computer, and more advanced texts like Commodore 128

Programmer's Reference Guide. Many of the concepts you learn

in those manuals are applied here in simply constructed sub

routines, with only one or two statements per line for easy

comprehension. Grouped by function, carefully annotated, and

arranged to be readily dropped into your own BASIC software,

these subroutines should save you time while sharpening your

programming skills.

Time may be an excellent teacher, but the course work is

more easily absorbed when you have study aids like this one.

INTRODUCTION

BASIC subroutine books have been around as long as personal

computers have. However, this one is unlike any collection of

subroutines that you might have seen before. You'll find eight

dozen program modules you can really use, formatted for maxi

mum clarity, explained completely, and rigorously tested. Most

important, these subroutines were designed for optimal flexibil

ity, so that you can easily adapt them to your own programs.

These routines supply the most-needed business formulas, common

software tricks for the Commodore 128, and graphics and sound

routines that can serve as a springboard to more advanced

programming.

xi

xii THE COMMODORE 128 SUBROUTINE LIBRARY

You'll learn how to figure how much money can be drawn out

of an annuity each month, how to program your own custom

character sets, how to really use the Commodore 128's function

keys.

What you won't find are chapters top-heavy with exotic math

functions and rarely used statistical programs. Those were fine

back in the days when microcomputers were used primarily by

scientists, computer nuts, and other high-tech types who doted on

newer and better ways of doing Fast Fourier transforms.

However, the Commodore 128, while it is a powerful, capable

microcomputer, is being sold to a broad range of users, including

many nontechnical owners. Some want to use the broad range of

software available for the Commodore 128 and Commodore 64 to

do word processing or database management or to mull over

electronic spreadsheets. Others want only to play games, since

the Commodore 128, with its three synthesizer-quality voices,

sprites, and bit-map graphics, is a games machine nonpareil.

Many more owners are interested in learning programming but

may have a skimpy technical background. Then there are those of

you who really do understand computers but would like to avoid

reinventing the wheel.

The Commodore 128 Subroutine Library is meant for all

of you. There are some general, useful routines included here,

but the book also bristles with modules designed specifically

to perform some sorely needed task for the Commodore 128

alone.

While BASIC 7.0 has added dozens of new commands to those

available with the BASIC 2.0 offered with the Commodore 64,

some important statements and functions common to other BA-

SICs have been left out. This book shows you how to add to your

computer the STRING$, MID$ = , LINE INPUT, and SWAP (we

call it EXCHANGE) commands available on the IBM PC. Bet

ter yet, you can add some new functions, like REPLACE and

INSERT STRING, not available on any other machine!

Are you confused by even the most lucid explanations of

using the joysticks to manipulate objects on the screen? Just

transplant one of ten joystick routines included in this book.

Introduction xiii

If you find that even the Commodore 128's several hundred

alphanumeric, graphics, and special characters aren't enough for

you and you'd like to design your own special characters, take

heart. You don't need to comprehend all the gory details. A

module is included which you can use to redefine up to five

characters with no problems. Using the Commodore 128's real

time clock to measure elapsed time or to control outside events is

also provided for. Generate musical notes within your own

programs—or add sound effects. Ready-made subroutines are pro

vided for your use.

Intermediate and advanced programmers will find tips on

routines that spice up their own arcade-quality games, while

those interested in programming for business will revel in the

user-friendly input routines, menus, and sort routines.

More advanced programmers can use several routines as

utilities to make their work easier while doing sophisticated

"soft" POKing of individual bits within a multipurpose Commo

dore 128 register.

We've gone light on the "basic" subroutines, although plenty

of the more important conversion and financial routines are pro

vided. The emphasis here is on modules you can't find anywhere

else, and those tailored specifically for the Commodore 128, that

will help you improve your programming immediately.

SOME GROUND RULES

• First, this is a BASIC subroutine guide. You don't have to

know the first thing about machine or assembly language to use

any of the modules in this book. We won't ask you to call up the

MONITOR, and you needn't type in interminable DATA lines

that will be POKEd into memory as machine-language code.

Some functions, particularly sorting, are fastest when handled by

machine language calls. However, if you choose to stick with

BASIC, you'll find three sorting routines in this book that are

perfectly usable for small lists.

xiv THE COMMODORE 128 SUBROUTINE LIBRARY

• This book is intended for owners of the Commodore 128

only. In computer terms, the functionality (power) of the Commo

dore 128 is a superset (enhancement) of that of the Commodore

64. In other words, just about everything the Commodore 64 will

do, the C128 will do as well. Most C64 software will run as is.

However, the Commodore 128 has many new features (such as

built-in 80-column screen output) and a raft of more powerful

BASIC commands. So, while the C128 can run C64 programs,

many intended for the Commodore 128 cannot be used on the

Commodore 64.

Many of the subroutines in this book will work on the Com

modore 64, but many more will not. No special effort was made to

write the code to retain compatibility with the earlier computer. If

BEGIN/BEND was a more efficient use of the IF/THEN condi

tional statement, we didn't avoid it. Sometimes a few changes

will convert a subroutine for proper operation on the Commodore

64, but readers who want to try are on their own. In a couple of

specific cases, routines were written to be compatible with the

earlier computer, and they are so noted in the text.

• "Sample runs" are used only in selected cases. For many of

the subroutines, such as the sound and graphics routines, pre

senting an image of what the screen looks like is difficult

and not very useful. In other cases, sample output is down

right dumb, because any intelligent user will know at a glance

whether or not a sorted list is sorted properly, or whether or not

an array is properly loaded.

Sample results are useful for those who want to double-check

to see if they have typed in a subroutine properly, and they are

provided in those cases, particularly in the business routines. If

you use the variable values we provide in this book, you should

achieve the same results we did.

• Again, we emphasize that this book is not intended as a

how-to-program tutorial. Many of the techniques are explained in

detail, but you should already have some experience in program

ming to get the most from them. Much of the time you will be

able to substitute your own variable values for those provided

Introduction xv

and to use the subroutines without fully understanding the nuts

and bolts of what is going on. However, some understanding of

programming is a prerequisite for this book.

Certain capabilities of the Commodore 128 are beyond the

scope of this book, even though they are readily accessible from

BASIC. Advanced music and sound techniques could easily en

compass a book of their own. This book provides an introduction;

learning to shape your own ENVELOPE can be picked up from

Commodore 128 Programmer's Reference Guide, also available

from Bantam Books.

Sprite and multicolor bit-map graphics also are worth more

pages than are allotted here. Fortunately, the Commodore 128

has built-in sprite definition and manipulation commands that

make these tools easier to use than ever. This book's graphics

chapter has a routine, Shape Mover, that demonstrates how ob

jects (not just sprites) can be drawn on the screen and stored in a

string variable. If this introduction to sprite concepts piques your

interest, Commodore 128 Programmer's Reference Guide has a lot

more excellent information.

1

SUBROUTINE
MAGIC

While many of the subroutines in this book are ready-to-run

programs in their own right, they will be most useful to you when

you transplant them into your own programs. We've made doing

that as simple as possible.

The subroutines have been divided into sections, set off with

REMark statements. The basic routine itself is clearly labeled

and has a unique set of line numbers not duplicated by any other

subroutine in this book. The line numbers are all high, beginning

with 10000 and proceeding to nearly 30000. Therefore, you can

use as many of these subroutines as you wish in a program

without having to renumber them.

2 THE COMMODORE 128 SUBROUTINE LIBRARY

As a matter of fact, you may find it most convenient not to

renumber the subroutines at all during program development.

With their original line numbers intact, you can refer to a list

you have compiled of routines being used (or check this book) to

see whether you should type GOSUB 20100, or GOSUB 21000 to

access a given routine.

You might need to renumber your program during develop

ment for some reason. Perhaps you ran out of line numbers in the

main body of the program and need more room. You can still

renumber without "losing" the location of your routines. Type a

few lines at the beginning of the program like these:

1 GOTO 10

2 GOSUB 27100:REM TIMER SUBROUTINE

3 GOSUB 28200:REM CURSOR MOVER

4 GOSUB 20200:REM RANDOM RANGE

5 GOSUB 17000:REM JOYSTICK ROUTINE

10 *** START OF PROGRAM ***

When you are ready to renumber, you type:

RENUMBER 10,10,10

Your program is numbered in increments of 10, beginning

with Line 10. Anytime you want to find your subroutines, just

type:

LIST 1-10

You'll see something like this:

1 GOTO 10

2 GOSUB 1010:REM TIMER SUBROUTINE

3 GOSUB 850:REM CURSOR MOVER

4 GOSUB 700:REM RANDOM RANGE

5 GOSUB 620:REM JOYSTICK ROUTINE

10 *** START OF PROGRAM ***

The program lines 2-5 are never called, since Line 1 jumps

control over them. However, the Commodore 128 will obediently

renumber them to account for the new line numbers of your

Subroutine Magic

subroutines. If you want to get really fancy, try programming a

function key to display those lines whenever you want. In com

mand mode type:

KEY 8,CHR$(147)+"LIST l-4"+CHR$(13)

and press RETURN. Thereafter, pressing the F8 function key will

show you the current addresses. This particular line will clear the

screen first (with CHR$(147)), so you don't even have to move the

cursor down to an empty line to use it.

PARTS OF THE SUBROUTINE

In addition to the subroutine itself, each module will have a

REMark section that lists the major variables that you supply to

the subroutine and the major variables that are returned from

the subroutine. Modules that don't have variables of use to the

programmer are instead described in terms of action needed and

result.

SUPPLIED BY USER lists variables that you must define

before calling the subroutine. You may need to store in the

variable the amount of loan, or the interest rate. You may do this

anywhere in your program prior to calling the subroutine.

RESULT lists the variables returned from the subroutine.

These will generally be calculated and may then be used in your

own program. In some cases, there are other variables used within

the subroutine temporarily that are of no particular use to the

programmer. These are not described in the text.

IMPORTANT NOTE: Variable names were chosen, where

possible, to provide some clue as to the use of the variable. In

addition, we tried to choose names different from those used in

similar routines where the functions were different. However, it

was impossible to cross-reference every variable name used in

every subroutine to make sure there was no duplication.

In constructing programs, you should check to make sure

that the same variable name is not being used by two different

4 THE COMMODORE 128 SUBROUTINE LIBRARY

subroutines in a way that will cause incorrect results. Keep in

mind that only the first two characters of a Commodore 128

variable name are significant. Variables PAYMENT, PAID, PA

TIO, and PAYCHECK are all the same variable name to BASIC

7.0. Further, you should keep a list of the variables you use in

your own code, to make sure you are not duplicating names. This

is probably one of the most common errors programmers make.

Cross-reference utilities that list all variables and their line num

bers are handy tools to have.

In the "Initialization" section of the module, certain condi

tions that must be set up once are established. For example,

DATA used by the subroutine may be read into an array. Initial

ization will also include defining variables supplied to the subrou

tine. You must take care of inserting these somewhere in your

program so the subroutine will operate properly. What you must

do is described in the text accompanying each routine.

In some cases there are several related routines. For exam

ple, there are ten joystick routines. Some of the concepts are

explained only once. You may be directed to look at previous

subroutines for longer explanations. In this way you can access

the routines in any order, without reading the entire book.

Previous Commodore books you may have seen have had

program listings that were often somewhat difficult to read. The

reason for this is that Commodore uses a variety of special sym

bols to indicate various screen color and cursor movement op

tions. A heart symbol is used for "clear screen" (we C128 users

now have the SCNCLR option, instead), the reversed "Q" repre

sents "Cursor Down," and so forth. Listings with these symbols

must be output with a dot-matrix printer, which is often near

letter quality but not close enough to stand up under the printing

reproduction process.

All the odd special Commodore 128 characters have been left

out of this book. Instead, we use their CHR$ equivalents, often by

defining a variable with that value. PRINT DN$ (where DN$ =

CHR$(17)) is preferable to hard-to-read reversed Q's, or strange

word-equivalents such as {3 CRSR DWNS} used in some of the

magazines. We like the variables method so much that we de-

Subroutine Magic 5

signed a special cursor movement subroutine (found in Chapter 8)

that makes moving around the screen as simple as a single line:

100 PRINT HM$;LEFT?(R$,COL);LEFT$(D$,ROW)

Screen-clearing, cursor movement, and colors have been added

only where necessary in these subroutines, to keep the length

down and to allow the user to tailor modules to suit his or her

own taste. If you want prompts to feature reversed printing or

attention-grabbing color, feel free to make any changes you wish.

You might also want to follow our example of using variables

(RED$, etc.) rather than odd symbols to make your program

listings more readable. This is a subroutine cookbook; the finish

ing touches of the meal are up to you.

THE ACCOMPANYING TEXT

Each subroutine is preceded by descriptive text that provides

more information on the module and how to use it. At the top of

the description is the subroutine name. Next is a short WHAT IT

DOES summary of the routine's function. LEVEL tells you the

approximate programming prowess needed to understand and,

presumably, use the routine effectively.

Most of the subroutines fall into the intermediate category. It

is assumed that users have a basic understanding of the most-

often-used BASIC 7.0 statements and functions. Some of the sub

routines have been deemed novice level. Readers who have been

programming awhile will probably find such routines as MPG

calculators, Menu formatters, and Exchange functions a bit ele

mentary. However, beginning programmers find these simple rou

tines as valuable as the more advanced folks hate them. Therefore,

you BASIC veterans should be patient and remember there was

once a time when you found things as simple as a FOR-NEXT

loop a bit puzzling.

Because most of this book is written for the intermediate

programmer, there are only a few routines that are labeled for

6 THE COMMODORE 128 SUBROUTINE LIBRARY

advanced programmers. This is something of a catch-22. Those

who are really advanced have little need for prepackaged routines

that PEEK bits and so forth. Those who need those functions can

probably write their own, or can access the Commodore 128 Kernal

routines from BASIC as quickly as they can look up something in

this book.

Nevertheless some more advanced modules are provided, and

these can serve as a bridge for the intermediate programmer who

is on the threshold of true computer expertise and needs some

additional help. When you reach this advanced stage, you'll want

to move on to more sophisticated sprite and sound techniques

such as those found in Commodore 128 Programmer's Reference

Guide.

After LEVEL you'll find a HOW TO USE IT discussion of the

subroutine. This section may be very brief or more lengthy, de

pending on the complexity of the concepts being introduced. While

this book doesn't have the space for truly comprehensive coverage

of all the BASIC techniques used, you'll find this section a good

introduction in many cases.

LINE-BY-LINE DESCRIPTION is a brief description of the

function of major subroutine lines. Not every line is discussed

(the function of 300 END being obvious to every reader, we hope),

but the key points are covered.

SUGGESTED ENHANCEMENTS points out improvements

or modifications the reader can add when including the routine in

his or her own program. Some of the subroutines, particularly the

graphics and joystick modules, have rather lavish enhancements

built in, at least relative to subroutines. Others are more bare-

bones in scope. Users can expand these with their own changes,

incorporating other subroutines in the book, or doing additional

work.

Readers of these subroutine books enjoy making such modifi

cations, especially when suggested enhancements are pointed out.

You may view these recommendations as programming challenges

that will help you sharpen your BASIC skills. For example,

the Number of Days subroutine, as written, will calculate the

number of days within a single year. The accompanying text

Subroutine Magic

provides step-by-step hints on changing the routine to work when

the dates span any number of years.

The suggested changes in the early part of the book are

relatively similar, since the financial routines perform variations

on only a few different functions. However, the modification ideas

get livelier as the book progresses.

Note that not every subroutine takes care of every possible

eventuality through error traps. We've tried to take care of the

most obvious user errors. However, checking for every nonsensi

cal input (such as the user's supplying negative values for inter

est rates, principal amounts, or loan payments in the financial

subroutines) would have two negative impacts. First, the subrou

tines would be so long and unwieldy that the reader would hesitate

to type them in. Also, the extraneous error traps would make the

routines more difficult to understand.

Therefore, bear in mind that pounding randomly on the key

board and attempting to "trick" the subroutine may work. You

can use the "bombproof" data entry routines in the book, or

devise your own to filter out foolish entries.

RESULT is a short summary outlining what happens after

the routine has run.

SAMPLE VALUES, the results obtained when you use the

variables as shown in the subroutine, are supplied for users who

wish to make sure they have typed in the subroutine properly.

While not sure-fire, comparing results will show if you are on the

right track.

About all that repetition . . .

Some readers may feel that the accompanying text for the

modules sometimes gets repetitious. The intent of this book is to

allow the various subroutines to stand alone as much as possible,

so basic information relevant to successive similar subroutines is

sometimes repeated. The reader does not have to flip back and

forth between subroutines to learn how a particular one operates.

On the other hand, more in-depth explanations of concepts are

usually not repeated, and the reader is directed to a previous

routine for a more thorough discussion. We hope a workable

8 THE COMMODORE 128 SUBROUTINE LIBRARY

compromise has been reached between avoiding repetition and

forcing excessive page flipping.

Along the same lines, for consistency's sake, each subroutine

is presented in more or less the same format. Some subroutines

and their descriptions lend themselves to the format more than

others. Therefore, you may find some SUGGESTED ENHANCE

MENTS that are brief, and SAMPLE VALUES listed as not

applicable. In a few cases the modules themselves are standalone

programs rather than subroutines and are not arranged in the

traditional GOSUB/RETURN fashion.

ACCESSING THE SUBROUTINE LIBRARY

The only remaining point to cover is how to access your

subroutine library. One of the best things about subroutines is

that they can be reused many times within an existing program,

and put to work in many different pieces of software as well. Once

you have typed in, say, a joystick routine from this book, you will

not need to retype it every time you write a new program requir

ing joystick handling. Because the subroutines in this book have

been designed as standalone modules, with both the input and

output clearly defined, they can be recycled quite easily. You will

want to store your subroutine "library" on disk or tape and use

them in your programs as needed.

Incorporating existing code into a program is called merging

and can be accomplished in many different ways. The best way,

which we highly recommend, is to keep all these subroutines as a

single program file on your disk. Since they all have unique line

numbers, there will be no conflict.

Note that you don't have to type them all in. Type only those

you need. Reload your subroutine file each time you add a new

one. That way you will maintain a growing subroutine library in

one place.

When you start to write a program, load your library first

and then write all the program lines using line numbers lower

than 10000. Look up a subroutine's starting line number and

Subroutine Magic

other requirements in this book, and access them as you wish.

When a program is completely finished, you may delete those line

numbers containing subroutines you don't want. Generally, this

will not be a chore, as large groups of routines not used can be

deleted with a few commands.

You could also keep subroutines as separate files or groups

and merge them using one of the commercially available merging

routines. Another technique, useful for short routines, is to load

the module and LIST it to the screen, then load the main pro

gram. You can move the cursor up to the listing and hit RETURN

while the cursor is on each line. The subroutine, while gone from

program memory, is still in screen memory and can be merged

back into your BASIC program in this way. This technique works

only for subroutines that can be listed with a single screenful, but

that requirement happens to encompass most of the routines in

this book.

Good luck. You should find this book a shortcut to program

ming proficiency. To paraphrase a common saying, if you use a

subroutine correctly three times, it will be a permanent part of

your vocabulary. Given a bit of practice, you can soon have all

your friends drooling over your programs and asking you for your

favorite subroutine recipes.

BUSINESS
AND FINANCIAL

Business and personal financial problem solving has become the

most prevalent application for personal computers among adults.

As recently as five or six years ago this was not the case. The

earliest personal computers were owned by hobbyists, frequently

those who migrated from ham radio or electronics and who were

pleased to get their computers to do anything. Even then, a few

hardy souls attempted to channel their new-found computer power

into business applications, such as primitive word processing.

The introduction of VisiCalc, the first of a new generation of

microcomputer-oriented management decision-support tools, nudged

the business community toward the acceptance of these small,

11

12 THE COMMODORE 128 SUBROUTINE LIBRARY

desktop computing machines. In 1981 the advent of the IBM PC

helped legitimize personal computers among major corporations.

Today very low-cost machines like the Commodore 128 bring

this tool within the reach of any business or individual. For less

than $900 for a computer/1571 disk drive/1792 monitor package,

users have available an excellent, business-quality keyboard, highly

legible 80-column viewing, and floppy disk storage equal to a

single-drive IBM PC costing twice as much. As more business

software becomes available for the Commodore 128, we'll see

these computers put to wider use by budget-conscious individuals.

Some users will also be writing their own programs and rou

tines in BASIC 7.0. Business programs have some things in

common with games and utilities in BASIC; they also have their

own special requirements. A business application will rarely deal

with RND but will often have to handle dollars-and-cents. Money

matters—figuring loan amounts, monthly payments, interest—

and formatting of the output are all important considerations.

Business applications also involve keeping track of the date or

time in order to pinpoint when a transaction took place.

The business subroutines in this book are not limited to those

in this chapter. When writing your own programs, you might

want to take advantage of special user input routines found in

Chapter 3, or sorts, like those in Chapter 4. The Function Key

routines in Chapter 8 can make your programs friendlier, and the

Cursor Mover will help you design your screen displays.

This chapter concentrates on financial algorithms useful for

figuring mortgage or automobile payments, the number of pay

ments, or the interest accrued. You'll find a routine that tells you

how much money can be withdrawn to deplete an annuity fund in

a given span of years. Depreciation, using simple straight-line

calculation, is also covered.

Typical formulas that might be needed, such as converting

Fahrenheit to Celsius or calculating an automobile's MPG, are

included. One subroutine shows a sample menu that you can

adapt to your own programs by substituting options of your own

devising. State abbreviations, and routines to calculate the num-

Business and Financial 13

ber of days between dates and to convert dates from one format to

another, round out this chapter.

Of course, data files are a key to storing and retrieving

business information. The last two routines in this chapter are

disk write/disk read subroutines that you can adapt to your own

programs to save and access your files.

IMPORTANT NOTE:

The caret symbol C) in the program listings represents the up

arrow key on the Commodore 128, which is located between the

asterisk (*) and the RESTORE key. Enter the symbol by typing

the up arrow.

LOAN AMOUNT

WHAT IT DOES; Calculates size of loan, given monthly payment,

interest rate, and length of loan.

LEVEL: Intermediate

100

110

120

130

140

160

170

180

190

200

210

220

230

240

250

260

270

280

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

•**•••*******•*

*

* LOAN AMOUNT
•

*

*

++ VARIABLES ++

SUPPLIED BY

RATE:

* NUMBER:

PAYMENT:

RESULT —

LOAN:

USER —

INTEREST RATE

MONTHS OF LOAN

MONTHLY PAYMENT

LOAN AMOUNT

*** INITIALIZE ***

RATE=10

PAYMENT=10

NUMBER=36

14 THE COMMODORE 128 SUBROUTINE LIBRARY

290 GOSUB 10010

300 PRINT "LOAN AMOUNT : ";LOAN

310 END

10000 REM *** SUBROUTINE ***

10010 RATE=RATE/12OO

10020 LOAN=PAYMENT*(1-(1+RATE)"-NUMBER)/RATE

10030 LOAN=INT(LOAN*100)/100

10040 RETURN

HOW TO USE SUBROUTINE

This routine will calculate the maximum amount of money

that can be borrowed, given a fixed interest rate, the desired

monthly payment, and the months the loan will run.

You might use this subroutine to calculate how expensive an

automobile you can buy given, say, a 36-month repayment period,

a 15 percent interest rate, and the top monthly payment you can

afford, say, $200. In this case, the subroutine would deliver the

answer: $5769. Since very few cars can be purchased for that

little, you might want to play with the figures a bit. What if a

48-month loan is taken out instead? In that case a more reason

able $7186 can be borrowed.

Having these figures available allows you to make some

intelligent decisions. For example, extending the loan by 12 months

provides $1417 more principal to borrow, but at the cost of $2400

in additional payments ($200 x 12). Is the purchase worth an

additional $1000 in interest? Or can you finance the auto by

finding the extra $1400 from some other source, such as by

trading in a third car that you had planned on keeping an extra

year? Or should you shop a bit more extensively for a better

interest rate? If your credit union offers a bargain-basement 12

percent interest rate, you can borrow $7594 at the same interest

rate, more than $400 more without increasing the monthly

payment.

Or, if you already have the car picked out, this routine will

tell you how much down payment you will have to come up with

to make up the difference between the loan amount and the price

of the car.

Business and Financial 15

LINE-BY-LINE DESCRIPTION

Lines 260-280: Define the interest RATE, monthly PAY

MENT you can afford, and the NUMBER of payments to be

made. Your program can substitute INPUT lines to receive these

figures from the user.

Lines 290-310: Access subroutine and display the result.

Line 10010: Change yearly interest rate in whole percent to

decimal figure per month, e.g., 12 percent equals 12/1200 or .01

per month.

Line 10020: Calculate loan AMOUNT.

Line 10030: Round off AMOUNT. With the Commodore 128

you may also use PRINT USING for formatting numbers, such as

dollars-and-cents. However, this rounding method is used to show

you how the rounding can be done. Note that in this case the odd

cents are merely cut off (truncated) at the decimal point. In the

next subroutine PAYMENT AMOUNT, the method for correctly

rounding up or down is shown. Either of these techniques can be

used with the Commodore 64, which did not have PRINT USING

available in its BASIC.

YOU SUPPLY

You must define these variables: PAYMENT (the monthly

payment desired), RATE (interest rate in percent, i.e., 10.5 equals

10.5 percent), and NUMBER (number of months loan will run).

The subroutine will return LOAN, or the maximum loan amount,

given those parameters.

SUGGESTED ENHANCEMENTS: Add your own bombproof input

routines, based on those in Chapter 3.

RESULT

Loan amount calculated.

SAMPLE VALUE: $309.91

16 THE COMMODORE 128 SUBROUTINE LIBRARY

PAYMENT AMOUNT

WHAT IT DOES: Calculates monthly payment, given interest rate,

number of payments, and loan amount.

LEVEL: Intermediate

100 REM

110 REM

120 REM

PAYMENT AMOUNT *

130 REM

140 REM

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM RATE: INTEREST RATE

190 REM LOAN: AMOUNT OF LOAN

200 REM NUMBER: MONTHS OF LOAN

210 REM RESULT —

220 REM PAYMENT: MONTHLY PAYMENT

230 REM

240 REM

250 REM *** INITIALIZE ***

260 LOAN=100

270 RATE=10

280 NUMBER=36

290 GOSUB 10110

300 PRINT "AMOUNT OF PAYMENT : ";PAYMENT

310 END

10100 REM *** SUBROUTINE ***

10110 RATE=RATE/1OO

10120 PAYMENT=LOAN*(RATE/12)/(1-(1+(RATE/12))"-NUMBER)
10130 PAYMENT=INT((PAYMENT+.005)*100)/100
10140 RETURN

HOW TO USE SUBROUTINE

This routine will calculate the monthly payment, given a

fixed interest rate, the loan amount, and the months the loan will

run.

You might use this subroutine to calculate your monthly

auto payment given, say, a 36-month repayment period, a 15

percent interest rate, and an amount to be financed of, say,

Business and Financial 17

$8000. It will produce the answer, $277. By shopping around for

different interest rates, or by varying the number of payments,

you can calculate the effect on your monthly payment until a

satisfactory amount has been worked out.

The subroutine would also be valuable for those considering

consolidating a number of debts. Add up the current payoffs of

the loans you wish to combine and then use this subroutine to

calculate how much your new monthly payment will be.

LINE-BY-LINE DESCRIPTION

Lines 260-280: Define the amount of the LOAN, the interest

RATE in whole percent per year, and the NUMBER of monthly

payments. Your program can substitute INPUT lines to have this

information entered by the user.

Lines 290-310: Access subroutine and display result.

Line 10110: Change RATE to percentage.

Line 10120: Change months to YEARS.

Line 10130: Calculate PAYMENT.

Line 10140: Round off PAYMENT to two decimal places.

Note how this routine differs from that in LOAN amount. The

decimal fraction .005 is first added to the PAYMENT before the

integer portion is taken, rounding up numbers .006 or higher.

That is, .00612 would become .01012 and would be rounded off to

.01. The figure .00412 would be increased to .00912, and would be

rounded off to .00.

YOU SUPPLY

You must define these variables: LOAN (the original amount

to be financed), RATE (interest rate in percent, i.e.,10.5 equals

10.5 percent), and NUMBER (number of months loan will run).

The subroutine will return PAYMENT, which is the monthly

payment, against principal and interest.

SUGGESTED ENHANCEMENTS: Add your own bombproof input

routines, based on those in Chapter 3.

18 THE COMMODORE 128 SUBROUTINE LIBRARY

RESULT

Loan payment calculated.

SAMPLE VALUE: $3.23

NUMBER OF PAYMENTS

WHAT IT DOES: Calculates number of payments given interest

rate, monthly payment, and loan amount.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * NUMBER PAYMENTS *

130 REM * *

140 REM *******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER ~

180 REM RATE: INTEREST RATE

190 REM LOAN: AMOUNT OF LOAN

200 REM PAYMENT: MONTHLY PAYMENT

210 REM RESULT —

220 REM NUMBER: TOTAL NUMBER OF PAYMENTS

230 REM EXTRA: FINAL PAYMENT

240 REM

250 REM

260 REM *** INITIALIZE ***

270 LOAN=1500

280 RATE=12

290 PAYMENT=100

300 GOSUB 10210

310 PRINT NUMBER-1;" WHOLE PAYMENTS OF ";:PRINT USING

CASH$;PAYMENT

320 PRINT "AND ONE PAYMENT OF ":PRINT USING CASH$,-EXTRA

330 END

10200 REM *** SUBROUTINE ***

10210 CASH$="$####.##"

10220 RATE=RATE/12OO

10230 NUMBER=LOG(PAYMENT/(PAYMENT-LOAN*RATE))/LOG(1+RATE)

10240 EXTRA=PAYMENT*(NUMBER-INT(NUMBER))

10250 NUMBER=INT(NUMBER)+1

10260 RETURN

Business and Financial 19

HOW TO USE SUBROUTINE

This routine will calculate the number of payments, given a

fixed interest rate, the loan amount, and the monthly payment

required.

You might use this subroutine to calculate how long your

auto loan will run, given an interest rate of, say, 15 percent, a

loan amount of $8000, and a monthly payment of $250. Since

most automobile loans are for fixed periods of 18, 24, 36, or 48

months, the figures will be approximate. That is, an answer of 41

months will be produced using the 15 percent/$250/$8000 exam

ple. So, you will know that you can borrow somewhat more than

$8000 for 48 months, or somewhat less for 36 months.

More commonly, you will use this subroutine to figure out

how long it will take to pay off a debt, such as a credit card

account/ with an open-ended number of payments. If your charge

card balance is $3000 and you plan on making $150 monthly

payments until it is paid off, given an 18 percent monthly inter

est rate, the program will inform you that it will take 24 months

to dispose of the balance.

LINE-BY-LINE DESCRIPTION

Lines 270-290: Define the amount of LOAN, the interest

RATE in whole percent, and the monthly PAYMENT desired.

Your subroutine can substitute INPUT statements to have this

information supplied by the user.

Lines 300-330: Access subroutine and print result in whole

and partial payments.

Line 10210: Set up CASH$ as a PRINT USING format. This

is used as a faster way of formatting dollars-and-cents output. You

should set up your PRINT USING format to take into account the

largest amount of money you expect to handle in your routine.

PRINT USING is discussed more completely on page 78 of your

System Guide.

Line 10220: Change RATE to monthly decimal value, that is,

12 percent per year equals 12/1200 or .01 per month.

20 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 10230: Calculate number of payments.

Line 10240: Calculate final, partial payment.

Line 10250: Figure number of whole payments.

YOU SUPPLY

You must define these variables: LOAN (the original amount

to be financed), RATE (interest rate in percent, i.e., 10.5 equals

10.5 percent), and PAYMENT (the amount of the monthly pay

ment). The subroutine will return NUMBER, which is the number

of monthly payments that will be required.

SUGGESTED ENHANCEMENTS: Your input routines.

RESULT

Number of loan payments calculated.

SAMPLE VALUE: 16 whole payments of $100.00 and one payment

of $33.30

REMAINING BALANCE

WHAT IT DOES: Calculates the balance remaining on a loan after

a specified number of payments.

LEVEL: Intermediate

100 REM *********************

110 REM * *
120 REM * REMAINING BALANCE *

130 REM * *
140 REM *********************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM RATE: INTEREST RATE

190 REM LOAN: AMOUNT OF LOAN

200 REM NUMBER: LAST PAYMENT MADE

210 REM PERIODS: PAYMENTS PER YEAR

Business and Financial 21

220 REM PAYMENT: MONTHLY PAYMENT

230 REM RESULT —

240 REM BALANCE: CURRENT BALANCE OWED

250 REM

260 REM

270 REM *** INITIALIZE ***

280 LOAN=5000

290 RATE=12.5

300 NUMBER=46

310 PERIODS=12

320 BALANCE=LOAN

330 PAYMENT=112.49

340 GOSUB 10310

350 PRINT "BALANCE ON LOAN AFTER ";NUMBER;" PAYMENTS:1

360 PRINT USING CASH$;BALANCE

370 END

10300 REM *** SUBROUTINE ***

10310 RATE=RATE/l00

10320 CASH$=n$####.##"

10330 FOR N=l TO NUMBER

10340 S1=INT((BALANCE*RATE/PERIODS)*100+.5)/l00

10350 S2=PAYMENT-S1

10360 BALANCE=BALANCE-S2

10370 NEXT N

10380 RETURN

HOW TO USE SUBROUTINE

Many loans are paid off before the end of the calculated

amortization period. That is, you may trade in your car after

three years even though the automobile loan was for 48 months.

As a nation, we change residences approximately once each seven

years per family; mortgage loans commonly extend from 15 to 30

years. When a loan is paid off early, we don't simply multiply the

number of payments remaining—such a figure would include

unearned interest that is not owed. Instead, we need to figure the

remaining balance. When some interest is paid in advance, finan

cial institutions use a special rule to determine how much is to be

refunded. This subroutine assumes you pay interest and a portion

of the principal as it is due.

22 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Lines 280-330: Define LOAN value, interest RATE in whole

percent (i.e., 12.5 equals 12.5 percent per annum), PERIODS as

the number of payments made each year, and monthly PAY

MENT. NUMBER is the payment number of the last payment to

be made. If you do not know the PAYMENT amount but do know

all the other factors (plus the original term of the loan), you can

figure PAYMENT, using the PAYMENT AMOUNT subroutine,

and plug the value in here.

Lines 340-370: Access the subroutine and print results.

Line 10310: Change interest RATE to decimal fraction.

Line 10320: Set up CASH$ as PRINT USING format.

Line 10330: Start FOR-NEXT loop from 1 to number of pay

ments already made.

Line 10340: Calculate interest due each individual payment

period.

Line 10350: Subtract interest due from payment to determine

amount applied to principal.

Line 10360: Reduce balance by amount applied to principal,

resulting in new remaining balance.

Line 10370: Repeat until last payment reached.

YOU SUPPLY

You must define variables LOAN, RATE, NUMBER, and

PERIODS.

SUGGESTED ENHANCEMENTS: Input routines.

RESULT

BALANCE, the amount owed after the payments specified, is

calculated.

SAMPLE VALUE: $1458.36

Business and Financial 23

YEARS TO REACH DESIRED VALUE

WHAT IT DOES; Calculates number of years required to reach

desired amount, given interest rate and original amount.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * YEARS TO REACH *

130 REM * A DESIRED VALUE *

140 REM * *

150 REM *******************

160 REM

170 REM ++ VARIABLES ++

180 REM SUPPLIED BY USER —

190 REM RATE: INTEREST RATE

200 REM AMOUNT: AMOUNT TO BE COMPOUNDED

210 REM FUTURE: FUTURE VALUE DESIRED

220 REM PERIODS: NUMBER OF COMPOUNDING PERIODS

230 REM RESULT —

240 REM YEARS: WHOLE YEARS NEEDED TO REACH VALUE

250 REM MNTHS: ADDITIONAL MONTHS NEEDED

260 REM

270 REM

280 REM *** INITIALIZE ***

290 AMOUNT=1000

300 RATE=10

310 PERIODS=365

320 FUTURE=2000

330 GOSUB 10410

340 PRINT USING CASH$; AMOUNT;: PRINT " WILL COMPOUND TO11

350 PRINT USING CASH?;FUTURE;:PRINT " IN ";YEARS;" YEARS
AND";MNTHS;" MONTHS"

360 PRINT "AT ";RATE*100;" PERCENT COMPOUNDED ";PERIODS;" TIMES"
370 PRINT "A YEAR."

380 END

10400 REM *** SUBROUTINE ***

10410 CASH$="$###,###.##"

10420 RATE=RATE/l00

10430 YEARS=LOG(FUTURE/AMOUNT)/((LOG(1+RATE/PERIODS))*PERIODS)
10440 MNTHS=INT((YEARS-INT(YEARS))*12)
10450 YEARS=INT(YEARS)

10460 RETURN

24 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

This routine will calculate the number of years required to

reach a desired money value, given a fixed interest rate and the

original investment value. The routine assumes that no addi

tional amounts are added to the principal. That is, an original

amount is deposited in a bank and left there to accumulate for a

number of years. An inheritance might be placed in the bank and

allowed to build until retirement, college, or some other need for

the money arises.

LINE-BY-LINE DESCRIPTION

Lines 290-320: Define FUTURE, desired future value, the

interest RATE in whole percent per year, and the PERIODS, the

number of compounding periods per year. Your subroutine can

substitute INPUT statements to allow the user to enter these

figures.

Lines 330-380: Access the subroutine and print the results.

Line 10410: Set up CASH$ as PRINT USING format.

Line 10420: Change RATE to decimal figure.

Line 10430: Calculate number of years needed to produce the

goal value.

Lines 10440-10450: Figure number of whole months and

years.

YOU SUPPLY

You must define these variables: FUTURE (desired future

value), RATE (interest rate in percent, i.e., 10.5 equals 10.5

percent), and PERIODS (number of compounding periods per year).

The subroutine will return YEARS and MNTHS, or the number

of years and months that will be required to reach the desired

value.

SUGGESTED ENHANCEMENTS: Write a program that will test

various values for AMOUNT and/or FUTURE value and will

Business and Financial 25

provide a printout comparing how increasing the initial amount

can reduce the time needed to achieve the desired value, or how

changing the required FUTURE amount alters the figure re

quired as the initial AMOUNT.

RESULT

YEARS and MNTHS are calculated.

SAMPLE VALUE: 6 years, 11 months

FUTURE VALUE

WHAT IT DOES: Calculates compounded amount of investment,

given original value, interest rate, and time period

LEVEL: Intermediate

100 REM ********************

110 REM * *

120 REM * FUTURE VALUE OF *

130 REM * A SINGLE DEPOSIT *

140 REM * *

150 REM ********************

160 REM

170 REM ++ VARIABLES ++

180 REM SUPPLIED BY USER —

190 REM RATE: INTEREST RATE

200 REM AMOUNT: AMOUNT TO BE COMPOUNDED

210 REM PERIODS: NUMBER OF COMPOUNDING PERIODS

220 REM YEARS: YEARS COMPOUNDED

230 REM RESULT —

240 REM FUTURE: FUTURE VALUE OF THE DEPOSIT

250 REM

260 REM

270 REM *** INITIALIZE ***

280 AMOUNT=1000

290 RATE=10

300 PERIODS=365

310 YEARS=10

320 MNTHS=6

330 GOSUB 10510

340 PRINT USING CASH?;AMOUNT;:PRINT " WILL COMPOUND TO"

26 THE COMMODORE 128 SUBROUTINE LIBRARY

350 PRINT USING CASH$?FUTURE;:PRINT " IN ";YEARS;" YEARS

AND";MNTHS;" MONTHS"

360 PRINT "Q ";RATE*1200;" PERCENT COMPOUNDED ";PERIODS;H TIMES"

370 PRINT "A YEAR."

380 END

10500 REM *** SUBROUTINE ***

10510 CASH$="$###,###•##"

10520 RATE=RATE/12OO
10530 TT=YEARS*12+MNTHS

10540 FUTURE=AMOUNT*(1+RATE/PERIODS)"(PERIODS*TT)

10550 RETURN

HOW TO USE SUBROUTINE

This routine will calculate the compounded future value of

an investment, given the interest rate, present value, and origi

nal amount.

You might use this subroutine to calculate how much your

savings account will be worth if allowed to compound for a given

period of time.

LINE-BY-LINE DESCRIPTION

Lines 280-320: Define original principal AMOUNT, the in

terest RATE in whole percent, and the number of YEARS to be

compounded.

Lines 330-380: Access the subroutine and print results.

Line 10510: Set up CASH$ as PRINT USING format.

Line 10520: Change RATE to decimal value.

Line 10530: Figure total number of months

Line 10540: Calculate future value.

YOU SUPPLY

You must define these variables: AMOUNT (the original

amount), RATE (interest rate in percent, i.e., 10.5 equals 10.5

percent), and YEARS (number of years to be compounded). The

subroutine will return FUTURE, or value of the compounded

investment.

Business and Financial 27

SUGGESTED ENHANCEMENTS: Write a program that will print

out a chart showing how single deposits of differing sizes will grow

at various interest rates, or for different periods of time.

RESULT

Compound interest calculated.

SAMPLE VALUE; $2857.70

REGULAR DEPOSITS

WHAT IT DOES: Calculates the value of an account to which

regular deposits are made of specified amounts at a given interest

rate.

LEVEL: Intermediate

100 REM ********************

110 REM * *

120 REM * REGULAR DEPOSITS *

130 REM * *

140 REM ********************

150 REM

160 REM ++ VARIABLES ++

170 REM

180 REM SUPPLIED BY USER —

190 REM PAYMENT: REGULAR DEPOSIT AMOUNT

200 REM RATE: INTEREST RATE

210 REM PERIODS: NUMBER OF DEPOSITS MADE

220 REM EACH YEAR

230 REM YEARS: NUMBER OF WHOLE YEARS

240 REM MNTHS: NUMBER OF WHOLE MONTHS

250 REM RESULT —

260 REM AMOUNT: AMOUNT PRODUCED

270 REM

280 REM

290 REM *** INITIALIZE ***

300 PAYMENT=10

310 RATE=10

320 NUMBER=12

330 YEARS=3

340 MNTHS=6

28 THE COMMODORE 128 SUBROUTINE LIBRARY

350 GOSUB 10610

360 PRINT "DEPOSITING ";:PRINT USING CASH$?PAYMENT;

370 PRINT NUMBER;" TIMES PER YEAR"

380 PRINT "FOR ";YEARS;" YEARS WILL YIELD ";

390 PRINT USING CASH$;AMOUNT

400 END

10600 REM *** SUBROUTINE ***

10610 CASH$="$####.##"

10620 YEARS=(MNTHS/12)+YEARS

10630 RATE=(RATE/NUMBER)/1OO

10640 AMOUNT=PAYMENT*((1+RATE)*(NUMBER*YEARS)-1)/RATE

10650 RETURN

HOW TO USE SUBROUTINE

Christmas Clubs may well be a thing of the past in many

parts of the country, but some of us still manage to make regular

bank deposits of a fixed amount. The goal may be to build up an

annuity for college or retirement (specifically an IRA, perhaps).

While few may have the discipline to keep up the regular pay

ments unless we are forced to do so by a fixed insurance annuity

plan, it is useful to calculate the results of such a program. You

furnish the amount deposited, interest rate, number of deposits

per year, and time period. This subroutine does the rest.

LINE-BY-LINE DESCRIPTION

Lines 300-340: Define PAYMENT, RATE, NUMBER, YEARS,

and MNTHS.

Lines 350-400: Access the subroutine and display results.

Line 10610: Set up CASH$ as PRINT USING format.

Line 10620: Combine YEARS and MNTHS to figure total

number of YEARS of the fund.

Line 10630: Change RATE to decimal value.

Line 10640: Calculate the amount produced.

YOU SUPPLY

You must define variables PAYMENT, RATE, PERIODS,

YEARS, and MNTHS.

Business and Financial 29

SUGGESTED ENHANCEMENTS: Write a program to show results of

increasing the amount of deposits, or of varying the interest rate.

RESULT

AMOUNT produced from the deposits is calculated.

SAMPLE VALUE: $500.41

DEPOSIT AMOUNT

WHAT IT DOES: Calculates the amount that must be deposited

each period to produce a desired amount.

LEVEL: Intermediate

100 REM ******************

110 REM * *

120 REM * DEPOSIT AMOUNT *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM

180 REM SUPPLIED BY USER —

190 REM AMOUNT : AMOUNT DESIRED

200 REM RATE: INTEREST RATE

210 REM PERIODS: NUMBER OF DEPOSITS MADE

220 REM EACH YEAR

230 REM YEARS: NUMBER OF WHOLE YEARS

240 REM MNTHS: NUMBER OF WHOLE MONTHS

250 REM RESULT —

260 REM PAYMENT: AMOUNT TO BE DEPOSITED

270 REM

280 REM

290 REM *** INITIALIZE ***

300 AMOUNT=400

310 RATE=10

320 NUMBER=12

330 YEARS=3

340 MNTHS=6

350 GOSUB 10710

360 PRINT "DEPOSITING n;:PRINT USING CASH?;PAYMENT;

370 PRINT NUMBER;11 TIMES PER YEAR"

380 PRINT "FOR" ;YEARS;" YEARS WILL YIELD ";

30 THE COMMODORE 128 SUBROUTINE LIBRARY

390 PRINT USING CASH$;AMOUNT

400 END

10700 REM *** SUBROUTINE ***

10710 CASH$="$####.##"

10720 YEARS=(MNTHS/12)+YEARS

10730 RATE=(RATE/NUMBER)/1OO

10740 PAYMENT=AMOUNT*RATE/((RATE+1)*(NUMBER*YEARS)-1)
10750 RETURN

HOW TO USE SUBROUTINE

This one is a variation on the last. Here you supply the

amount desired at the end of the number of years and months

specified. The subroutine will tell you how much the regular

monthly deposits must be in order to reach the goal.

LINE-BY-LINE DESCRIPTION

Lines 300-340: Define AMOUNT, RATE, NUMBER, YEARS,

and MNTHS.

Lines 350-400: Access the subroutine and print the results.

Line 10710: Define CASH$ as PRINT USING format.

Line 10720: Combine YEARS and MNTHS to produce total

YEARS.

Line 10730: Change RATE to decimal fraction.

Line 10740: Calculate the regular payment.

YOU SUPPLY

Your program should define AMOUNT, RATE, NUMBER,

YEARS, and MNTHS before calling this subroutine.

SUGGESTED ENHANCEMENTS: Write a program to show the result

of increasing or decreasing the amount desired.

Business and Financial 31

RESULT

Regular payment needed to reach a given amount is calculated.

SAMPLE VALUE: $7.99

ANNUITY WITHDRAW

WHAT IT DOES: Calculates amount of money that can be with

drawn each period from a fund deposited at a given interest rate.

LEVEL: Intermediate

100 REM ********************

110 REM * *

120 REM * ANNUITY WITHDRAW *

130 REM * *

140 REM ********************

150 REM

160 REM ++ VARIABLES ++

170 REM

180 REM SUPPLIED BY USER —

190 REM AMOUNT: ORIGINAL INVESTMENT

200 REM RATE: INTEREST RATE

210 REM PERIODS: NUMBER OF WITHDRAWALS

220 REM MADE EACH YEAR

230 REM YEARS: NUMBER OF WHOLE YEARS

240 REM MNTHS: NUMBER OF WHOLE MONTHS

250 REM RESULT —

260 REM PAYMENT: AMOUNT TO BE WITHDRAWN

270 REM

280 REM

290 REM *** INITIALIZE ***

300 AMOUNT=1000

310 RATE=10

320 NUMBER=12

330 YEARS=3

340 MNTHS=6

350 GOSUB 10810

360 PRINT "WITHDRAWING ";:PRINT USING CASH?;PAYMENT;
370 PRINT NUMBER;" TIMES PER YEAR"

380 PRINT "FOR ";YEARS WILL DEPLETE ";

390 PRINT USING CASH$;AMOUNT

400 END

10800 REM *** SUBROUTINE ***

32 THE COMMODORE 128 SUBROUTINE LIBRARY

10810 CASH$="$####.##"

10820 YEARS=(MNTHS/12)+YEARS

10830 RATE=(RATE/NUMBER)/100

10840 PAYMENT=AMOUNT*(RATE/((1+RATE)*(NUMBER*YEARS)-1)+RATE)

10850 RETURN

HOW TO USE SUBROUTINE

Under current law, when a retiree reaches age 70V2, he or she

must begin making withdrawals from an IRA. Most people choose

to begin drawing on their retirement nest eggs sooner than that.

Or perhaps a rich uncle has died and left you a small fortune.

Maybe you received your lottery winnings in a lump sum. In any

of these cases, while the money may still be earning interest in

the bank, making regular withdrawals of amounts larger than

that being earned in interest will eventually deplete the fund.

This subroutine calculates how much money can be taken out

each period if you expect the fund, or annuity, to last for a given

amount of time. Say you expect to need income from the fund for

20 years following retirement. Plugging in the proper figures in

this module will show how much monthly income you can rely on.

Or, suppose the account is a college fund that must last four

years. The subroutine will show the prospective student how

much can be withdrawn for tuition, room and board, books, and

spending money.

LINE-BY-LINE DESCRIPTION

Lines 300-340: Define the initial AMOUNT of the deposit,

the interest RATE being paid during the withdrawal period, the

NUMBER of withdrawals per year, as well as the YEARS and

MNTHS the fund is expected to last.

Lines 350-400: Access the subroutine and show results.

Line 10810: Define CASH$ as PRINT USING format.

Line 10820: Combine YEARS and MNTHS to one value,

YEARS.

Line 10830: Change RATE to decimal fraction, or percentage.

Line 10840: Calculate amount withdrawn each period.

Business and Financial 33

YOU SUPPLY

You must define variables AMOUNT, RATE, PERIODS,

YEARS, and MNTHS.

SUGGESTED ENHANCEMENTS: Again, write a program that will

demonstrate various "what-if" possibilities. All the recommenda

tions for enhancements so far demonstrate the power of another

decision-support tool—the electronic spreadsheet. Advanced users

can experiment with writing their own BASIC programs that

produce data files that can be imported into spreadsheets. It's not

easy—you must thoroughly understand the file structure of the

spreadsheet you are using—but it can be done.

RESULT

Amount that can be withdrawn over a given period to deplete

a fund is calculated.

SAMPLE VALUE: $28.32

RATE OF RETURN

WHAT IT DOES: Calculates interest rate, given present and future

value and the number of compounding periods.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * RATE OF RETURN *

130 REM * *
140 REM *******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM AMOUNT: AMOUNT TO BE COMPOUNDED

190 REM PERIODS: NUMBER OF COMPOUNDING PERIODS

200 REM YEARS: YEARS COMPOUNDED

210 REM FUTURE: FUTURE VALUE OF INVESTMENT

34 THE COMMODORE 128 SUBROUTINE LIBRARY

220 REM RESULT —

230 REM RATE: RATE OF RETURN

240 REM

250 REM

260 REM *** INITIALIZE ***

270 AMOUNT=1000

280 YEARS=10

290 MNTHS=6

300 PERIODS=365

310 FUTURE=2000

320 GOSUB 10910

330 PRINT USING CASH$;AMOUNT;:PRINT " WILL COMPOUND TO"

340 PRINT USING CASH?;FUTURE;:PRINT " IN ";YEARS;" YEARS

AND";MNTHS;" MONTHS"

350 PRINT "AT ;RATE;" PERCENT COMPOUNDED ";PERIODS;" TIMES"

360 PRINT "A YEAR."

370 END

10900 REM *** SUBROUTINE ***

10910 CASH$="$###,###.##"

10920 RATE=((FUTURE/AMOUNT)"(1/(PERIODS*((YEARS*12)
+MTHS)))-1)*PERIODS

10930 RATE=INT(RATE*12OOOO)/1OO
10940 RETURN

HOW TO USE SUBROUTINE

This routine will calculate the interest rate on an invest

ment, given the present value, future value, years compounded,

and number of compounding periods. You could use this to figure

what sort of a return your investments are providing you,

as a means of deciding whether to continue or look for new

investments.

LINE-BY LINE DESCRIPTION

Lines 270-310: Define the present (or original) value of the

investment, the number of YEARS it has or will be compounded,

and the FUTURE (or current, if the investment is an old one)

value. Your subroutine can substitute INPUT lines to have the

user enter these values.

Lines 320-370: Access the subroutine and print results.

Line 10910: Define CASH$ as PRINT USING format.

Business and Financial 35

Line 10920: Figure interest RATE.

Line 10930: Change RATE to whole percent.

YOU SUPPLY

You must define these variables: AMOUNT (present value),

FUTURE (future value), YEARS (number of years to be com

pounded), and PERIODS (number of compounding periods).

SUGGESTED ENHANCEMENTS: Write a program to let you com

pare the rate of return on several different investments.

RESULT

Interest rate is calculated.

SAMPLE VALUE: 6.93 percent

DEPRECIATION RATE

WHAT IT DOES: Calculates simple straight-line depreciation.

LEVEL: Intermediate

100 REM *********************

110 REM * *

120 REM * DEPRECIATION RATE *

130 REM * *

140 REM *********************

150 REM

160

170

180

190

200

210

220

REM

REM

REM

REM

REM

REM

REM

++

SUPPLIED

PAID:

RESALE:

YEARS:

MNTHS:

VARIABLES ++

BY USER -—

ORIGINAL PRICE

RESALE

NUMBER

NUMBER

VALUE

OF WHOLE

OF WHOLE

PAID

YEARS

MONTHS

230 REM RESULT —

240 REM DEPRECIATE: RATE OF DEPRECIATION

250 REM

260 REM

36 THE COMMODORE 128 SUBROUTINE LIBRARY

270 REM *** INITIALIZE ***

280 PAID=1000

290 RESALE=500

300 YEARS=3

310 MNTHS=0

320 GOSUB 11010

330 PRINT "DEPRECIATION RATE IS

340 PRINT USING ROUND$;DEPRECIATE;:PRINT" PER CENT PER YEAR"

350 PRINT "OVER "?YEARS;" YEARS."

360 END

11000 REM *** SUBROUTINE ***

11010 ROUND$="##.##"

11020 YEARS=(MNTHS*12)+YEARS

11030 DEPRECIATE=100*(l-(RESALE/PAID)*(l/YEARS))

11040 RETURN

HOW TO USE SUBROUTINE

As a practical matter, there are two kinds of depreciation,

neither of which usually reflects what happens in real life. The

first kind is the simple, straight-line depreciation calculated by

this routine. You buy a car for $10,000. Three years later it is

worth $7000. You figure that it has depreciated 30 percent, or 10

percent per year.

Actually, the car may have depreciated 15 percent of its

value the first five minutes after you drove out of the showroom

and it became a "used" car. The second year it might have depre

ciated an additional 7 to 10 percent of its original value, and only

5 percent the third year. However, real-world depreciation is

difficult to calculate. And, after the fact, it makes little difference

exactly how the depreciation took place. The car is still worth only

$7000.

However, in business it does make a difference just what the

depreciation schedule is. If you can depreciate an asset more in

the early years of its use, you usually gain, because the value of

money decreases over time, and a $1000 deduction this year is

more valuable than a $1000 deduction next year, after inflation

has taken its toll.

Accordingly, there are many rules set up to allow accelerated

depreciation for businesses. These often have as little relation-

Business and Financial 37

ship to the real world as straight-line depreciation, and the rules

change often. Real estate, which usually increases in value, can

nevertheless be depreciated. The allowable time span has changed

from 30 or 40 years to 15 and back to 18 or 19 in recent years.

Therefore, this subroutine is intended for personal or casual

business use only, not for tax purposes. It will tell you the approx

imate annual rate of depreciation (calculated on a straight-line

basis) if it is supplied with the original purchase price of an asset,

the current value, and the number of years and months that have

elapsed.

You might use this subroutine to compare the relative advan

tages of different models of automobile. Scan the used-car ads in

your newspaper for asking prices of late-model automobiles. Then

figure the approximate depreciation amount by estimating the

original price of these cars (you needn't be exact, nor could you be,

because of the various options). Since different cars will cost more

or less than others, checking the depreciation percentages is the only

way to check how much value is lost by each car over a given period.

For example, you may discover that a certain luxury car

depreciates only 2 percent per year, compared with 10 percent for

another car, even though the amount of depreciation in dollars is

exactly the same. In such a case the "cost" to own the luxury car

is the same as that of the less expensive car, in terms of what you

lose at trade-in time.

LINE-BY-LINE DESCRIPTION

Lines 280-310: Define PAID, RESALE, YEARS, and MNTHS.

Lines 320-360: Access the subroutine and print results.

Line 11010: Define ROUND$ as a PRINT USING format.

Note that here PRINT USING is used to round off a number to a

desired number of decimal places and not to format dollars-and-

cents. The dollar sign has been left out of the ROUND$ definition

for that reason, and no dollar sign will appear in the formatted

output.

Line 11020: Change depreciation rate to percentage.

Line 11030: Calculate depreciation rate.

38 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

Your program should define the amount PAID, the RESALE

price, and YEARS and MNTHS over which the decline in value

occurred.

SUGGESTED ENHANCEMENTS: Your program can include error-

trapping routines to make sure that the RESALE value is not

higher than the amount PAID. In such cases, no depreciation but,

rather, appreciation has occurred.

RESULT

Depreciation rate as a percentage is calculated.

SAMPLE VALUE: 20.63 percent

DEPRECIATION AMOUNT

WHAT IT DOES: Calculates the amount of depreciation each year

over a designated period, with a given depreciation rate.

LEVEL: Intermediate

100 REM ***********************

110 REM * *

120 REM * DEPRECIATION AMOUNT *

130 REM * *

140 REM ***********************

150 REM

160 REM ++ VARIABLES ++

170 REM

180 REM SUPPLIED BY USER —

190 REM PAID: ORIGINAL PRICE PAID

200 REM DEPRECIATE: DEPRECIATION RATE

210 REM YEARS: NUMBER OF WHOLE YEARS

220 REM MNTHS: NUMBER OF WHOLE MONTHS

230 REM RESULT —

240 REM AMOUNT: YEARLY AMOUNT DEPRECIATED

250 REM

260 REM

270 REM *** INITIALIZE ***

Business and Financial 39

280 PAID=1000

290 DEPRECIATE=9

300 YEARS=28

310 GOSUB 11110

320 END

11100 REM *** SUBROUTINE ***

11110 CASH$="$##,###.##"

11120 DEPRECIATE=DEPRECIATE/1OO
11130 FOR N=l TO YEARS

11140 AMOUNT=PAID*DEPRECIATE*(1-DEPRECIATE)A(N-1)

11150 PRINT "DEPRECIATION IN YEAR # H;N;" : " ;

11160 PRINT USING CASH?;AMOUNT

11170 IF N/20OINT(N/20) GOTO 11200
11180 PRINT "— HIT ANY KEY — ":GETKEY A$

11190 SCNCLR

11200 NEXT N

11210 RETURN

HOW TO USE SUBROUTINE

This subroutine will show you, year by year, how much an

asset loses in value if you know the average annual depreciation

rate. Again, the figures will not be exact, because few assets

depreciate at an exact rate per year.

However, if you know that your $2 million yacht will be

worthless in eight years, this subroutine will show you just how

much is lost each year at that 12.5 percent annual depreciation

rate.

LINE-BY-LINE DESCRIPTION

Lines 280-300: Define amount PAID, the depreciation rate,

and number of YEARS and MNTHS to be calculated. If you try to

figure depreciation over longer than the depreciable life of an

asset, negative values will be produced.

Lines 310-320: Access the subroutine.

Line 11110: Define CASH$ as PRINT USING format. Notice

the inclusion of commas to format the dollars-and-cents, since we

expect to be working with larger amounts of money in this

subroutine.

Line 11120: Change depreciation rate to percentage.

40 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 11130: Start FOR-NEXT loop from 1 to number of

YEARS.

Line 11140: Calculate amount of depreciation for year N.

Lines 11150-11160: Print result for year N.

Line 11170: Check loop counter to see if it is evenly divisible

by 20. This is done by comparing the value of the loop counter

divided by 20 (N/20) with the integer value of the same (INT(N/20).

Only when there is no remainder will they be the same, that is,

when N = 20 or 40 or 60 or 80. At this point, the routine drops

down to the following lines. Otherwise, it loops back for the next

year.

Lines 11180-11190: When 20 screen lines have been filled up,

the routine waits for the user to press a key and then clears the

screen and prints the next set. This procedure keeps information

from scrolling off the screen faster than the user can read it.

Line 11200: Loop.

YOU SUPPLY

You must define variables PAID, DEPRECIATION, YEARS,

and MNTHS.

SUGGESTED ENHANCEMENTS: Write a routine that will direct

the output of this module to your printer, or adapt the Write to

Disk routine at the end of this chapter to save your results for

later study.

RESULT

Depreciation schedule is printed out on screen.

SAMPLE VALUES: Year one: $90.00; year five: $61.72; year ten:

$38.57

Business and Financial 41

TEMPERATURE

WHAT IT DOES: Calculates Celsius and Fahrenheit.

LEVEL: Novice

100 REM

110 REM

120 REM

130 REM

140 REM

150 REM

160 REM

170 REM

180 REM

190 REM

200 REM

210 REM

220 REM

230 REM

240 REM

250 REM

260 REM

* *

* TEMPERATURE *

++ VARIABLES ++

SUPPLIED BY USER —

F: FAHRENHEIT

OR

C: CELSIUS

RESULT —

F: FAHRENHEIT

OR

C: CELSIUS

270 REM *** INITIALIZE ***

280 GOSUB 11310

290 PRINT P;"F. = ";C;"C."

300 END

11300 REM *** SUBROUTINE ***

11310 PRINT

11320 PRINT" CONVERT :"

11330 PRINT TAB(4)"1.) FAHRENHEIT TO CELSIUS"

11340 PRINT TAB(4)"2.) CELSIUS TO FAHRENHEIT"

11350 PRINT "ENTER CHOICE :"

11360 GETKEY A$

11370 A=VAL(A$):IF A<1 OR A>2 GOTO 11360

11380 ON A GOTO 11420,11390

11390 INPUT"ENTER TEMPERATURE IN CELSIUS :";C

11400 F=INT((9/5)*C+32)

11410 RETURN

11420 INPUT"ENTER TEMPERATURE IN FAHRENHEIT :";F

11430 C=INT((F-32)*(5/9))

11440 RETURN

42 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

This subroutine will convert Celsius temperatures to Fahren

heit and vice versa. The sample routine has a short INPUT

section that asks for the temperatures to be entered from the

keyboard.

LINE-BY-LINE DESCRIPTION

Lines 280-300: Access the subroutine and print result.

Lines 11310-11350: Present menu of options.

Lines 11360-11370: Accept valid choice only.

Line 11380: Access appropriate input/calculation routine.

Line 11390: Enter temperature in Celsius.

Line 11400: Convert to Fahrenheit.

Line 11410: Return.

Line 11420: Enter temperature in Fahrenheit.

Line 11430: Convert to Celsius.

Line 11440: Return.

YOU SUPPLY

You should respond to the prompts with keyboard entry.

Your program can also bypass the input routine and use the

subroutines directly.

SUGGESTED ENHANCEMENTS: Your routine could check input for

"C" or "F" and automatically determine the conversion needed.

RESULT

Temperature converted to alternate value.

SAMPLE VALUES: 212F = 100C; 32F = 0C; -40F = -40C

Business and Financial 43

DATE FORMATTER

WHAT IT DOES: Formats dates to MM/DD/YY style.

LEVEL: Intermediate

100 REM

110 REM * *

120 REM * DATE FORMATTER *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM MNTH$: MONTHS

190 REM DAY?: DAY

200 REM YEAR$: YEAR

210 REM RESULT —

220 REM DATE? FORMATTED DATE

230 REM

240 REM

250 REM *** INITIALIZE ***

260 GOSUB 11510

270 PRINT DTE?

280 END

11500 REM *** SUBROUTINE ***

11510 INPUT"ENTER MONTH11 ;MNTH$

11520 MNTH=VAL(MNTH?)

11530 IF MNTH<1 OR MNTH>12 GOTO 11510

11540 IF MNTH<10 THEN MNTH?="0"+RIGHT?(MNTH?,l)

11550 INPUT"ENTER DAY : ";DAY?

11560 DAY=VAL(DAY?)

11570 IF DAY<1 OR DAY>31 GOTO 11550

11580 IF MNTH=4 OR MNTH=6 OR MNTH=9 OR MNTH=11 AND DAY>30 THEN

GOTO 11550

11590 INPUT"ENTER YEAR : ";YEAR$

11600 YEAR=VAL(YEAR?)

11610 IF YEAR/4OINT(YEAR/4)GOTO 11640

11620 IF MNTH=2 AND DAY>29 GOTO 11550

11630 GOTO 11650

11640 IF MNTH=2 AND DAY>28 GOTO 11550

11650 IF DAY<10 THEN DAY? = "0ll+RIGHT? (DAY? , I)

11660 DTE$=MNTH$+"/ll+DAY$+l7ll+YEAR$

11670 RETURN

44 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

This subroutine will accept input of month, day, and year

and format it into MM/DD/YY style. That is, December 3, 1947,

will be displayed as 03/12/47 or 03/12/1947. As written, the mod

ule prompts the operator to enter the values. It disallows illegal

months (smaller than one or larger than 12). Other checks are

made to make sure the day of the month is acceptable.

For example, June 31 and February 30 are not allowed.

February 29 is permitted only during leap years.

Where needed, a leading 0 is added, along with backslashes

to produce the desired format. This subroutine can be used in any

business program where the operator is asked the date and it is

important to have a uniform format.

LINE-BY-LINE DESCRIPTION

Lines 260-280: Access the subroutine and print results.

Line 11510: Enter month to be formatted.

Lines 11520-11530: Check to see that MNTH is at least 1 but

no more than 12.

Line 11540: If MNTH is less than 10 then MNTH$ = "0" plus

the string representation of MNTH. That is, "9" becomes "09".

We take RIGHT$(MNTH$,1) in case the user has already added

the 0 for us. We don't want two of them.

Lines 11550-11570: Enter day of month, which must be at

least 1 and less than 31.

Line 11580: Check to see if month should have only 30 days,

and force user to reenter if an illegal date has been supplied.

Line 11590-11600: Enter year.

Lines 11610-11640: If leap year, then February may have 29

days; otherwise, only 28 allowed.

Line 11650: If DAY is less than 10, then add leading "0".

Line 11660: Construct MM/DD/YY string.

YOU SUPPLY

The date to be formatted must be supplied from the keyboard.

Business and Financial 45

SUGGESTED ENHANCEMENTS: As written, subroutine will not

work for all days of all years. Change the leap year section so it

will work for more years, at least using our current calendar.

Hint: You must change the divisor to some other value. Find a

way to determine whether year entered has two digits or four,

and truncate to two so that 12/03/47 will not appear as 12/03/1947.

RESULT

Properly formatted date.

SAMPLE VALUE: 12, 3, 1947 changed to 12/03/1947

NUMBER OF DAYS

WHAT IT DOES: Calculates number of days between two dates in a

single year.

LEVEL: Intermediate

100 REM ******************

110 REM * *

120 REM * NUMBER OF DAYS *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DA$: DATE TO BE COMPARED

190 REM RESULT —

200 REM DF: NUMBER OF DAYS DIFFERENCE

210 REM

220 REM

230 REM *** INITIALIZE ***

240 DATA 3,0,3,2,3,2,3,3,2,3,2,3

250 DIM M(12)

260 FOR N=l TO 12:READ M(N):NEXT N

270 GOSUB 11710

280 END

11700 REM *** SUBROUTINE ***

46 THE COMMODORE 128 SUBROUTINE LIBRARY

11710 DA=0

11720 GOSUB 11780

11730 D1=DA

11740 GOSUB 11780

11750 DF=DA-D1

11760 PRINT "DAYS DIFFERENCE: ";DF

11770 RETURN

11780 INPUT "ENTER DATE (MM/DD)";DA$

11790 IF MID$(DA$,3,1)<>"/" THEN PRINT
"USE MM/DD FORMAT1":GOTO 11780

11800 M=VAL(LEFT$(DA$,2)):D=VAL(RIGHT?(DA$,2))

11810 IF M=4 OR M=6 OR M=9 OR M=ll AND D> 30 THEN GOTO 11850

11820 IF M=2 AND D>29 THEN GOTO 11850

11830 GOSUB 11860

11840 RETURN

11850 PRINT "IMPROPER DATEI":PRINT:GOTO 11780

11860 FA=0

11870 FOR N=0 TO M-l

11880 FA=FA+M(N)

11890 NEXT N

11900 DA=28*(M-1)+FA+D

11910 RETURN

HOW TO USE SUBROUTINE

Sometimes in figuring penalty charges, or in prorating

rents or other amounts, we need to know the number of days

between two dates. This subroutine asks for input for the start

ing and end dates and supplies the number of days between

them. It will not span years, but you can calculate the number

of days from the start date to December 31, and then from

January 1 to the end date, and add them together. If more

than one year intervenes, add 365 (366 for leap years) for each

year.

LINE-BY-LINE DESCRIPTION

Line 240: DATA line, with number of days' difference be

tween those in each month and the minimum, 28. That is, for

January, which has 31 days, the value is 3; for September, the

value is 2.

Lines 250-260: Read this DATA into array M(12).

Lines 270-280: Access the subroutine.

Line 11710: Return value of DA to 0.

Business and Financial 47

Line 11720: Access the routine which asks for a date and

converts it into a day number.

Line 11730: Take the day number produced and store it in

Dl.

Line 11740: Access the routine again for the second date to be

compared.

Line 11750: Calculate the difference between the two day

numbers.

Line 11760: Print the results.

Line 11770: Exit the subroutine.

Line 11780: Ask user to enter date.

Line 11790: Check to see if in MM/DD format.

Line 11800: Extract value for month and day.

Line 11810: If user enters more than 30 days in illegal month,

ask for reentry.

Line 11820: If user attempts to enter more than 29 days in

February, refuse input.

Line 11830: Access routine to add up days.

Line 11840: Exit "day number subroutine" back to main

subroutine.

Line 11850: Print IMPROPER DATE notice.

Line 11860: Initialize FA back to 0.

Line 11870: Start loop from 0 to number of month, less 1.

Line 11880: Add "extra" days to factor. These are the days

more than 28 for the given month.

Line 11890: Loop.

Line 11900: Take number of months times 28 and add the

extra days calculated above, producing day number.

Line 11910: Go back to previous subroutine.

YOU SUPPLY

Dates supplied from keyboard in response to prompts.

SUGGESTED ENHANCEMENTS: See HOW TO USE SUBROUTINE

above for hints on changing routine to allow dates in different

years. You'll need to add a year input routine as well. This

48 THE COMMODORE 128 SUBROUTINE LIBRARY

routine does not figure for leap years; you'll need to change it

during leap years, or provide a year input routine to check and

add an extra day for dates after February 28 during those years.

RESULT

Number of days between two dates calculated.

SAMPLE VALUE: Between January 1 and December 31: 365

DAY CONVERTER

WHAT IT DOES: Changes day number into month/day format.

LEVEL: Intermediate

100 REM ******************

110 REM * *
120 REM * DAY CONVERTER *

130 REM * *
140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DA: DAY NUMBER TO BE CONVERTED

190 REM RESULT —

200 REM M$(M): MONTH NAME

210 REM D: DAY OF THE MONTH

220 REM

230 REM

240 REM *** INITIALIZE ***

250 DIM M$(12)

260 FOR N=l TO 12

270 READ M$(N)

280 NEXT N

290 DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY

300 DATA JUNE,JULY,AUGUST,SEPTEMBER

310 DATA OCTOBER,NOVEMBER,DECEMBER

320 GOSUB 12010

330 D=DA-F1

340 PRINT "DATE IS ";M$(M)?" ";D

350 END

12000 REM *** SUBROUTINE ***

Business and Financial 49

12010 INPUT "ENTER DAY NUMBER :";DA$

12020 DA=VAL(DA$):IF DA<1 OR DA>366 GOTO 12010

12030 GOSUB 12040:RETURN

12040 IF DA>334 THEN M=12:Fl=334:RETURN

12050 IF DA>304 THEN M=ll:F1=3O4:RETURN

12060 IF DA>273 THEN M=10:F1=273:RETURN

12070 IF DA>243 THEN M=9:Fl=243:RETURN

12080 IF DA>212 THEN M=8:Fl=243:RETURN

12090 IF DA>181 THEN M=7:F1=131:RETURN

12100 IF DA>151 THEN M=6:Fl=151:RETURN

12110 IF DA>120 THEN M=5:F1=12O:RETURN

12120 IF DA>90 THEN M=4:Fl=90:RETURN

12130 IF DA>59 THEN M=3:Fl=59:RETURN

12140 IF DA>31 THEN M=2:Fl=31:RETURN

12150 M=1:F1=O

12160 RETURN

HOW TO USE SUBROUTINE

Computer programs work best with dates that are in an

absolute day-of-the-year number format. However, humans relate

better to month/day format. This subroutine will take any day

number and convert it to a string, such as January 2 or December 3.

LINE-BY-LINE DESCRIPTION

Line 250: DIMension array to store the names of the months.

Lines 260-280: Read the names of the months into the array,

M$(n).

Lines 290-310: DATA lines with month names.

Lines 320: Access the subroutine.

Line 330: Calculate day-of-month.

Line 340: Print name of month, and day-of-month.

Line 12010: Ask for day number. If your program is already

working with day numbers, you can simply supply the number to

the routine instead of including this line.

Line 12020: Check day number for validity.

Line 12030: Access day-number routine. This is treated as a

separate subroutine so that an exit by RETURN can be effected

when the desired value is determined.

Lines 12040-12140: Compare DA with various values. As

soon as a value that DA is greater than is found, then the routine

50 THE COMMODORE 128 SUBROUTINE LIBRARY

"knows" that the day number falls within the corresponding month.

Variable M is assigned that month number, and the day number

of the end of the previous month is assigned to variable Fl. In line

330, Fl is subtracted from DA, with the remainder equaling the

day-of-the-month.

Line 12150: If DA is less than 31, then control passes to this

line, and the month is therefore January.

YOU SUPPLY

You must enter, or your program must supply, the day-of-

the-year number to this subroutine.

SUGGESTED ENHANCEMENTS: Provide a way of accounting for

leap years, since all day numbers after February 29 are one

higher than in non-leap years.

RESULT

Day number converted to month/day format.

SAMPLE VALUE: Day number 33 converted to February 2

MENU

WHAT IT DOES: Serves as menu template for user programs.

LEVEL: Novice

100 REM ********

110 REM * *

120 REM * MENU *

130 REM * *

140 REM ********

150 REM

160 REM ++ VARIABLES ++
170 REM SUPPLIED BY USER —

180 REM NC: NUMBER OF MENU CHOICES
190 REM RESULT —

200 REM MENU CHOICES

Business and Financial 51

210 REM

220 REM

230 REM *** INITIALIZE ***

240 NC=4

250 GOSUB 12210

260 END

270 REM — INSERT FIRST ROUTINE" HERE

280 RETURN

290 REM — INSERT SECOND ROUTINE HERE

300 RETURN

310 REM — INSERT THIRD ROUTINE HERE

320 RETURN

330 REM — INSERT FOURTH ROUTINE HERE

340 RETURN

12200 REM *** SUBROUTINE ***

12210 SCNCLR

12220 PRINT TAB(6)"** MENU **"

12230 PRINT CHR$(17);CHR$(17)

12240 PRINT TAB(3)"1. FIRST CHOICE"

12250 PRINT TAB(3)"2. SECOND CHOICE"

12260 PRINT TAB(3)"3. THIRD CHOICE"

12270 PRINT TAB(3)"4. FOURTH CHOICE"

12280 PRINT CHR$(17)

12290 PRINT TAB(6)"ENTER CHOICE :"

12300 GETKEY A$

12310 A=VAL(A$)

12320 IF A<1 OR A>NC GOTO 12300

12330 ON A GOSUB 270,290,310,330

12340 RETURN

HOW TO USE SUBROUTINE

Most programs with more than one function feature a menu

of choices for the user to select from. This subroutine is a menu

"template" that can be fleshed out with choices of your own

selection and routines that fulfill each menu item.

If you define the number of selections on the menu at the

beginning of your program, the menu will automatically reject

illegal choices, that is, those that are out of the allowed range. User

input for up to nine selections is accomplished by pressing a

single key.

Once the operator has selected a menu item, the routine

branches to modules written by the user to carry out the menu

functions. To expand the number of menu items, redefine NC. If

52 THE COMMODORE 128 SUBROUTINE LIBRARY

more than nine choices are listed, you will have to sacrifice

single-key entry. Replace line 240 with INPUT A$. Then any

number can be entered.

Note that no menu functions are provided at lines 270, 290,

310, or 330; you must write those routines yourself.

LINE-BY-LINE DESCRIPTION

Line 240: Define number of menu choices available.

Lines 12210-12220: Clear screen and present menu title.

Line 12220 may be changed by user to label-specific menu.

Line 12230: Move cursor down two lines.

Lines 12240-12270: Labels for the menu choices.

Line 12280: Move cursor down one more line.

Line 12290: Prompt user choice.

Line 12300: Wait for user input.

Lines 12310-12320: If entry is less than 1 or larger than the

number of choices available, go back and continue waiting.

Line 12330: Access subroutine specified by user, at Lines

270, 290, 310, or 330.

YOU SUPPLY

You should define NC to equal the number of menu choices.

You will need to write subroutines to accomplish your various

tasks, using line 12330 as a model to direct control.

SUGGESTED ENHANCEMENTS: Fancier input routine; sound.

RESULT

Operator can select from list of menu choices.

SAMPLE VALUE: None

Business and Financial 53

TIME ADDER

WHAT IT DOES: Totals seconds, minutes, and hours.

LEVEL: Intermediate

100 REM **************

110 REM * *

120 REM * TIME ADDER *

130 REM * *

140 REM **************

150 REM —

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM TM: TOTAL MINUTES SO FAR

190 REM TS: TOTAL SECONDS SO FAR

200 REM TH: TOTAL HOURS SO FAR

210 REM MIN: MINUTES TO BE ADDED

220 REM HOUR: HOURS TO BE ADDED

230 REM SECS: SECONDS TO BE ADDED

240 REM RESULTS —

250 REM TM: NEW TOTAL MINUTES

260 REM TS: NEW TOTAL SECONDS

270 REM TH: NEW TOTAL HOURS

280 REM

290 REM

300 REM *** INITIALIZE ***

310 TM=54

320 TH=40

330 TS=30

340 MIN=30

350 HOUR=2

360 SECS=30

370 GOSUB 12410

380 PRINT "SECONDS :";TS

390 PRINT "MINUTES :";TM

400 PRINT "HOURS :";TH

410 END

12400 REM *** SUBROUTINE ***

12410 TM=(TM+MIN)*60

12420 TS=TS+SECS

12430 TH=(TH+HOUR)*3600

12440 TS=TM+TS+TH

12450 TH=INT(TS/3600)

12460 TS=TS-TH*3600

12470 TM=INT(TS/60)

12480 TS=TS-TM*60

12490 RETURN

54 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

Various programs, such as timers, must add minutes, sec

onds, and hours and come up with a total, despite the clumsy

base-60/base-24 numbering system combination.

This subroutine takes the total seconds, minutes, and hours

at any time and adds in user-supplied figures, producing a new

set of totals.

LINE-BY-LINE DESCRIPTION

Lines 310-330: Define the current total minutes, hours, and

seconds.

Lines 340-360: Define the number of hours, minutes, and

seconds to be added to the above variables.

Lines 370-410: Access the subroutine and print the results.

Line 12410: Add current total minutes to the minutes to be

added, then multiply by 60 to produce the total number of seconds

in those minutes.

Line 12420: Add the current total seconds to the seconds to

be added.

Line 12430: Add the current total hours to the hours to be

added, and then multiply by 3600 to determine the number of

seconds in those hours.

Line 12440: Calculate the overall total number of seconds by

adding subtotals of seconds, minutes, and hours.

Line 12450: Take the integer portion of this total divided by

3600 to determine the number of whole hours.

Line 12460: Subtract the hours' worth of seconds from the

subtotal.

Line 12470; Take the integer portion of the new subtotal

divided by 60 to determine the number of whole minutes.

Line 12480: Subtract the minutes' worth of seconds from the

subtotal; the remainder is the seconds.

Business and Financial 55

YOU SUPPLY

You must supply start-up values for TS, TM, and TH, or else

they will default to those shown in lines 310 to 330. You may

change these defaults to zeros if you wish. Your program should

furnish MIN, HOUR, and SECS values.

SUGGESTED ENHANCEMENTS: None.

RESULT

New total time calculated.

SAMPLE VALUE: 43 hours, 25 minutes, 0 seconds

MPG

WHAT IT DOES: Calculates auto miles per gallon.

LEVEL: Novice

100 REM *******

110 REM * *

120 REM * MPG *

130 REM * *

140 REM *******

150 REM

160 REM

170 REM

180 REM

190 REM

200 REM

210 REM

220 REM

230 REM

240 REM

250 REM *** INITIALIZE ***

260 ODOM=36420

270 BEGN=36001

280 GALLNS=13.8

290 GOSUB 12510

300 PRINT

++ VARIABLES ++

SUPPLIED BY

BEGN:

ODOM:

GALLNS:

RESULT —

MPG:

USER —

STARTING ODOMETER

CURRENT ODOMETER

GALLONS GAS USED

MILES PER GALLON

56 THE COMMODORE 128 SUBROUTINE LIBRARY

310 PRINT nMPG=u;MPG

320 END

12500 REM *** SUBROUTINE ***

12510 MPG=(ODOM-BEGN)/GALLNS

12520 MPG=INT(MPG*10)/10

12530 RETURN

HOW TO USE SUBROUTINE

This routine will figure your gas consumption, given the

starting and ending odometer readings and number of gallons of

gas consumed. To be accurate, you should top off your gas tank

before writing down BEGN value, and top it off again when

recording ODOM. Any gas put in between those two should be

added to the final fillup. In other words, the MPG can be figured

for the aggregate of a number of tankfuls of gas.

LINE-BY-LINE DESCRIPTION

Lines 260-280: Define current ODOMeter reading, the BEGN,

or initial odometer reading, and the number of gallons, GALLNS

of gas used. Your subroutine can use INPUT statements to allow

the user to enter these values.

Lines 290-320: Access subroutine and print results.

Line 12510: Calculate MPG.

Line 12520: Round off MPG.

YOU SUPPLY

You need to enter values for BEGN, ODOM, and GALLNS,

as outlined above. Variable MPG will store final miles per gallon

figure.

SUGGESTED ENHANCEMENTS: Write routines that will store each

odometer reading and gallons used and will keep a running log of

MPG's for one or a group of automobiles used for business or
personal use.

Business and Financial 57

RESULT

MPG calculated.

SAMPLE VALUE: 30.3

ABBREVIATIONS

WHAT IT DOES: Takes user input of state name, and returns

two-character post office abbreviation.

LEVEL: Novice

100 REM *****************

110 REM * *

120 REM * ABBREVIATIONS *

130 REM * *
140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM STATE$: STATE NAME TO ABBREVIATE

190 REM RESULT —

200 REM STATE$(N,1): ABBREVIATION OF STATE

210 REM

220 REM

230 REM *** DATA ***

240 DATA AL,ALABAMA,AK,ALASKA,AZ,ARIZONA,AR,ARKANSAS

250 DATA CA,CALIFORNIA,CO,COLORADO,CT,CONNECTICUT

260 DATA DE,DELAWARE,DC,DISTRICT OF COLUMBIA,,FL,FLORIDA

270 DATA GA,GEORGIA,HI,HAWAII,ID,IDAHO,IL,ILLINOIS

280 DATA IN,INDIANA,IA,IOWA,KS,KANSAS,KY,KENTUCKY

290 DATA LA,LOUISIANA,ME,MAINE,MD,MARYLAND,MA,MASSACHUSETTS

300.DATA MI,MICHIGAN,MN,MINNESOTA,MS,MISSISSIPPI

310 DATA MO,MISSOURI,MT,MONTANA,NE,NEBRASKA,NV,NEVADA

320 DATA NH,NEW HAMPSHIRE,NJ,NEW JERSEY,NM,NEW MEXICO

330 DATA NY,NEW YORK,NC,NORTH CAROLINA,ND,NORTH DAKOTA

340 DATA OH,OHIO,OK,OKLAHOMA,OR,OREGON,PA,PENNSYLVANIA

350 DATA RI,RHODE ISLAND,SC,SOUTH CAROLINA,SD,SOUTH DAKOTA

360 DATA TN,TENNESSEE,TX,TEXAS,UT,UTAH,VT,VERMONT,VA,VIRGINIA
370 DATA WA,WASHINGTON,WV,WEST VIRGINIA,WI,WISCONSIN,WY,WYOMING

380 REM *** INITIALIZE ***

390 DIM STATE?(51,2)

400 FOR N=l TO 51

410 FOR Nl=l TO 2

58 THE COMMODORE 128 SUBROUTINE LIBRARY

420 READ STATE$(N,N1)

430 NEXT Nl

440 NEXT N

450 INPUT"ENTER STATE NAME :";STATE?
460 GOSUB 12610

470 IF N=51 AND STATE$<>"WYOMING" GOTO 490

480 PRINT "ABBREVIATION FOR ";STATE$;" IS ";STATE?(N,1)
490 END

12600 REM *** SUBROUTINE ***

12610 TEMP$=""

12620 FOR N=l TO LEN(STATE$)

12630 B$=MID$(STATE$,N,1)

12640 B=ASC(B$)

12650 IF B>192 AND B<219 THEN B=B-128

12660 TEMP$=TEMP$+CHR$(B)

12670 NEXT N

12680 STATE$=TEMP$

12690 IF LEFT$(STATE$,2)="S." THEN STATE$="SOUTH"+MID$(STATE?,3)
12700 IF LEFT$(STATE$/2)="N." THEN STATE?="NORTH"+MID$(STATE?,3)
12710 IF LEFT?(STATE?,2)="W." THEN STATE?="WEST VIRGINIA"
12720 FOR N=l TO 51

12730 IF STATE$(N,2)=STATE$ THEN RETURN

12740 NEXT N

12750 PRINT "YOU SPELLED THE STATE WRONG!"

12760 RETURN

HOW TO USE SUBROUTINE

Many times business programs have features that make them

easier to use. These features include allowing a variety of user

inputs to specific questions. Instead of requiring a user to memo

rize the correct abbreviations for the states, a program could allow

entering the state name and supply the abbreviations automatically.

With this subroutine, users can enter the whole state name,

and the routine will supply proper postal abbreviations for any of

the 50 states and the District of Columbia. It will also accept N.

Dakota as well as North Dakota.

LINE-BY-LINE DESCRIPTION

Lines 240-370: DATA lines with the names and abbrevia

tions for the states and Washington, D.C.

Line 390: DIMension an array to store the state names in one

column and the corresponding abbreviation in the second column.

Business and Financial 59

Lines 400-440: Read the state names into the two-dimensional

array.

Line 450: Request state name.

Line 460: Access the subroutine.

Line 470: If no match was found, skip next line.

Line 480: Display result.

Line 12610: Null the temporary string, TEMP$.

Line 12620: Begin loop from 1 to the length of the name of

the state typed in.

Line 12630: Store in variable B$ the single character string

taken from the middle of STATE$ at position N.

Line 12640: Find ASCII value of that string.

Line 12650: If that value is higher than 192 and less than

219, then the character is lowercase. Change to uppercase by

subtracting 128. All other characters left unchanged.

Line 12660: Add CHR$(B) to TEMP$.

Line 12670: Loop through all characters in STATE$, chang

ing any lowercase to uppercase.

Line 12680: Change STATE$ to equal TEMP$.

Line 12690-12710: Look for abbreviations of North, South,

and West. Change to full word if found.

Lines 12720-12740: Check STATE$ against list of state names

in array. If match found, exit subroutine. N will mark place in

array where both state name and abbreviation are stored.

Line 12750: If no match found, inform user that state is

spelled wrong, and return.

YOU SUPPLY

Your program should call this routine whenever a state name

is entered and the abbreviation is needed.

SUGGESTED ENHANCEMENTS: Build a more sophisticated error

trap for when the state name is spelled wrong. Subroutine could

look at only the first four or five characters of the state name, to

allow for misspellings. You would have to allow for states that

start with the same characters, such as North Dakota and North

60 THE COMMODORE 128 SUBROUTINE LIBRARY

Carolina. As it is written, when no match is found, routine re

turns to main program with a value for N equal to 51. In other

words, a mismatch provides an abbreviation of WY (Wyoming).

RESULT

State name changed to abbreviation.

SAMPLE VALUES: Ohio, OH; N. Carolina, NC; South Dakota, SD

SEQUENTIAL DATA FILES

A file is any collection of information that is stored on disk or

tape. Computer software is a type of file called a program file. On

your disk, these files are marked with the PRG designation in the

directory. Such files can be loaded by the Commodore 128 and can

provide the BASIC interpreter with instructions that can be used

to perform a task.

Raw information can also be stored as a file, even though the

computer cannot load it and act on it directly. These data files

must usually be loaded into memory through another program or

subroutine which contains the actual instructions for accessing

the information. These files are in either serial, or sequential,

form (and marked SEQ in the disk directory) or in random access

format (marked REL). The latter, relative files, are beyond the

scope of this book. For simple BASIC programs, sequential data

files are adequate.

The Commodore 128 cassette recorder is a good analog to

sequential files. A program is a sequential file, stored one byte at

a time, on your program tape or disk in the same order in which it

is LISTed. In the case of cassette tapes, the program is continu

ous on one long piece of tape. On disks, programs are also written

or read serially, but the actual sectors in which the information is

stored are not always consecutive. If there is not enough room on

a single track, the disk drive will often continue on a different

Business and Financial 61

track, called an extent, leaving behind a pointer to tell itself

where to pick up the next piece of the program.

In either case, however, program files are written or read

only from the very first byte to the last, in sequential order,

regardless of the physical order of the media. Sequential data

files operate exactly the same way.

The disadvantage of sequential files is that, since they must

always be read from beginning to end, there is no way to access

the information in the middle without reading everything that

has come first. Although you may APPEND new information to

the end of a sequential file, to make a change in the middle it is

necessary to read in the entire file, make the change in the

middle, and then write the whole file back out to disk.

Data files are one of the basic tools of business and personal

programming, as they let you keep permanent records that can be

accessed, printed out, manipulated, and otherwise used in a prac

tical manner. Data files are akin to programs in that, lacking

some mass storage for the data (or program), you would have to

type the information in every time you turned on the computer.

In many ways, however, a computer program is a more compli

cated file. Programs have line numbers and links that tell the

computer where the next line number is. Data files consist ofjust

an ASCII representation of the information as it was written to

the disk or tape; they are words, numbers, and punctuation, and

almost nothing more.

To read a given data file, you first OPEN a channel for that

information to be sent. Then, you INPUT# (with the # being

followed by the number you have assigned to the input channel,

e.g., INPUT#1) data to a variable of your choice. Writing to a

disk or tape file is done by OPENing a channel for output and

using the PRINT# statement to print information from a vari

able to the file.

To help your Commodore 128 keep its files and the devices it

uses straight, each of the devices has been assigned a device

number. The keyboard is device number 0, the cassette tape

recorder device number 1, the screen device number 3, and so

62 THE COMMODORE 128 SUBROUTINE LIBRARY

forth. A serial printer is assigned device number 4, and the first

disk drive in a system is usually assigned device number 8.

So, by simply substituting one device number for another,

you can direct files to where you desire, within limits. For exam

ple, to SAVE a program to cassette, you can type:

SAVE"filename",1

If no device number is indicated, the computer assumes you

mean device number 1, the default value. That is why your

cassette SAVEs do not include the numeral one. To SAVE the

same program to disk, device number 8, you would type:

SAVE"filename",8

Using a numeral 4 instead would send the file to the printer.

Logically, you could even list a program to the screen by

SAVE"filename",3, except that the Commodore 128 defines the

screen, as well as certain other devices, as "illogical" when used

with certain commands, such as SAVE. However, another com

mand is available in BASIC, that of "CMD", which redirects

output intended for the screen to another device. Typing CMD4:

LIST will cause a program to be listed on the printer instead of

the screen, assuming you have OPENed that device first. As was

mentioned, it is usually necessary to open a data "channel" to

send information from one device to another. This is done with

the OPEN command.

If some of this information seems unfamiliar to you, the

reason is that Commodore added a number of new commands to

BASIC 7.0 that take care of much of this channel-handling auto

matically. While you may type SAVE "filename",8, just using the

DSAVE command instead accomplishes the same thing. Under

standing how the Commodore 128 sees these channels, devices,

and what are called secondary addresses can be useful for ad

vanced programming.

The particular channel you use is given a number of its own.

Which number is assigned to the data channel is not particularly

Business and Financial 63

important. However, a given channel can be used only to send

information to one device at a time. To make the data channels

easy to keep track of, it is often convenient to give them the same

number as the device you are using. So, to open a cassette data

file, you might type:

OPEN 1,1,1,"filename"

The first 1 is the number of the data channel or, as it is also

called, the logical file number. The second 1 is the device number

or the cassette tape. The third 1 is referred to as the secondary

address, an instruction to the computer on what to do with the

data. In this case, "1" means to write the data.

You could just as easily have used:

OPEN 2,1,1,"filename"

This would mean that logical file or data channel number 2

was being used with device number 1, to perform task number 1

(write), with the file name within quotes. However, here we will

follow the convention of using the same logical file number as the

device number. In Commodore 128 mode (but not Commodore 64

mode) you may use the DOPEN command, with its slightly differ

ent syntax, as outlined in the System Guide.

What about the secondary address number? What other op

tions are available? For tape usage, there are two more. You may

specify "0", which signifies reading a file from the tape, or "2",

which will open the channel for writing to the tape but places a

special "end-of-tape" marker at the end of the file. In reading that

file, the Commodore 128 will progress no further until the EOT

marker is removed.

OPEN just prepares the data channel for you, however. To

actually read or write data, you must use PRINT# or INPUT#,

with each followed by the logical file number you are using.

You may have guessed that SAVE and LOAD are modified

forms of the OPEN command, which combine OPEN with PRINT

or INPUT in one statement. Since that is true, the secondary

64 THE COMMODORE 128 SUBROUTINE LIBRARY

address numbers may be used with them as well. Therefore, it is

possible to enter:

SAVE"filename",1,2

This writes the program to device number 1 (the cassette

recorder) and places an end-of-tape marker after it. The numbers

have a slightly different meaning when loading a program from

the tape.

To load the file back into the memory location from which it

was SAVEd, enter:

LOAD"filename"l,ll

Disk files use the same format, with device number 8, the

disk drive, substituting for the 1, the cassette drive. Disk drive

users can also follow the file name with a file type specifier,

generally "S" (for sequential) or "P" (for program). You also need

to tell the disk drive in which direction the information will flow,

using "W" for write and "R" for read.

Thus, a sequential disk writing OPEN statement might be:

OPEN 8,8,8,"O:filename,S,W"

The equivalent read statement would be:

OPEN 8,8,8,"0:filename,S,R "

The following sequential disk write and read programs pro

vide both the older style OPEN statements described above, and

the DOPEN equivalents. You will need to understand both if you

want to master BASIC 7.0.

NOTE: The Commodore 128 also can use random access files,

when updates to a file are frequent, and relative files, which are

not yet widely used. Both types of files allow accessing any given

record within a file, for either reading or writing, while ignoring

Business and Financial 65

the rest of the file. Random files are much faster than sequential

files, because only a small bit of information needs to be read into

memory at a time. However, their use is much more complex, and

too ambitious for this collection of subroutines.

SEQUENTIAL FILE—WRITE TO DISK

WHAT IT DOES: Writes a sequential data file to disk.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * SEQUENTIAL FILE *

130 REM * WRITE TO DISK *

140 REM * *

150 REM *******************

160 REM

170 REM ++ VARIABLES ++

180 REM SUPPLIED BY USER —

190 REM DATA IN ARRAY DTA$(NI)

200 REM A FILENAME IN LINE 12810

210 REM NI: NUMBER OF ITEMS IN FILE

220 REM RESULT —

230 REM ARRAY DTA$(NI) WRITTEN TO DISK

240 REM

250 REM NOTE: EITHER LINE 12810 OR 12820

260 REM MAY BE USED

270 REM

280 REM *** INITIALIZE ***

290 NI=10

300 DIM DTA$(NI)

310 GOSUB 12810

320 END

12800 REM *** SUBROUTINE ***

12810 REM OPEN 8,8,8,"0:FILENAME,S,W"

12820 DOPEN #8,"FILENAME,S",DO,W

12830 PRINT#8,NI

12840 FOR N=l TO NI

12850 PRINT#8,DTA$(N)

12860 NEXT N

12870 DCLOSE #8

66 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

Disk users can access sequential, random access, and relative

files. Sequential files are the most popular because they are

easiest to understand. With disk, such files are even respectably

fast. Explaining random access and relative files is a task requir

ing many changes and is beyond the scope of this book.

However, this subroutine provides a sample sequential file-

writing routine that will take data that have been loaded into a

string array, DTA$(n), and write them to disk. The same routine

can be used with numeric arrays, simply by your removing the

variable type specifier, "$", from DTA$(n).

Your program should also update NI each time more items

are added to the array.

LINE-BY-LINE DESCRIPTION

Line 290: Set number of items in file to 10.

Line 300: DIMension DTA$ to NI elements.

Line 310: Access the subroutine.

Lines 12810-12820: OPEN the data file, given the file name

in quotes. You can substitute your own file name, or a variable,

like F$, and then define F$ through user INPUT.

Line 12830: Print, as the first item in the data file, the

number of items in the file, NI.

Lines 12840-12860: PRINT each of the items in the array to

the data file.

Line 12870: CLOSE the file.

YOU SUPPLY

Your program must furnish data for DTA$(n), either from

keyboard entry or loaded from some tape or disk file. The counter

NI should be redefined to reflect the number of items in the file

each time an update is made. You should substitute your file

name for "filename" in line 12810 or 12820.

Business and Financial 67

SUGGESTED ENHANCEMENTS: You can write a program that does

not need to print the number of items to the disk. Work in

conjunction with the next subroutine, Read from Disk.

RESULT

Data file written to disk.

SAMPLE VALUE: None

SEQUENTIAL FILE—READ FROM DISK

WHAT IT DOES: Reads a sequential data file from disk.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * SEQUENTIAL FILE *

130 REM * READ FROM DISK *

140 REM * *

150 REM *******************

160 REM

170 REM ++ VARIABLES ++

180 REM SUPPLIED BY USER —

190 REM DATA FILE

200 REM FILENAME IN LINE 12910

210 REM AD: NUMBER OF EMPTY SPACES TO ADD

220 REM NI: NUMBER OF ITEMS IN FILE

230 REM RESULT —

240 REM DTA$(N): ARRAY STORING FILE

250 REM NI: NUMBER OF ITEMS IN THE FILE

260 REM

270 REM NOTE: EITHER LINE 12910 OR 12920

280 REM MAY BE USED

290 REM

300 REM *** INITIALIZE ***

310 AD=10

320 GOSUB 12910

330 FOR N=l TO NI

340 PRINT DTA$(N)

350 NEXT N

360 END

68 THE COMMODORE 128 SUBROUTINE LIBRARY

12900 REM *** SUBROUTINE ***

12910 REM OPEN 8,8,8,"0:FILENAME,S,R"

12920 DOPEN #8,"FILENAME,S",DO,R

12930 INPUT#8,NI

12940 DIM DTA$(NI+AD)

12950 FOR N=l TO NI

12960 INPUT#8,DTA$(N)

12970 NEXT N

12980 DCLOSE #8

12990 RETURN

HOW TO USE SUBROUTINE

This subroutine provides a sample file reading routine that

will take data that has been written to disk and load it into a

string array, DTA$(n). The same routine can be used with nu

meric arrays, simply by your removing the variable type speci

fier, "$", from DTA$(n).

The routine will first read NI, the number of items in the file,

from the disk. Then, the array is DIMensioned to NI + AD. This

will allow AD more elements in the array for expansion during

the session.

NOTE: You cannot reDIMension the array without generating

an error. AD should be defined large enough to allow plenty of

space for additions during any one session. Your program should

also update NI to equal NI +AD before writing back to disk, if

you use the Write Routine supplied with this book.

This routine willl not work unless you have previously writ

ten a file for it to read to disk, as with the previous subroutine.

LINE-BY-LINE DESCRIPTION

Line 310: Define the maximum number of items to be added

in any session. If you wish, you can make this number very large

to allow for lengthy input sections. Keeping it small, and then

having your program prompt the user to close the file once the

limit has been reached, is a way of automatically protecting your

data from losses due to power outages. With sequential files,

updates are stored in memory until written to disk, so a lengthy

Business and Financial 69

session could be lost if the program is exited ungracefully (the

comptuer crashes, or the power is lost).

Line 320: Access the subroutine.

Lines 330-360: Print the information read from disk to the

screen.

Lines 12910-12920: Open the sequential file. Substitute your

file name in these lines, as described in the last subroutine.

Line 12930: Read from disk the current number of items in

the file. You may also simply read from the disk until the ST

(status) variable indicates that the end of file marker has been

reached.

As is, the program will read the number of items and then

begin the following FOR-NEXT loop.

Line 12940: DIMension an array large enough for NI items,

plus AD to be added.

Lines 12950-12980: Read all items in the file into the array.

SUGGESTED ENHANCEMENTS: Eliminate the need for reading NI

but reduce the chance of losing data through error or power loss.

Consider writing file to disk during an input session.

RESULT

Data file read from disk.

SAMPLE VALUE. None

3
BOMBPROOF
DATA INPUT

Data entry may sound like a forbidding computer term, but it

refers only to the process of getting new information into the

computer. Your programs may ask users questions like, "WHAT

IS YOUR NAME?" or "WHAT IS THE LOAN INTEREST RATE?"

This information will be required by the program in order to

complete its functions successfully, so naturally you will want the

information to be as accurate as possible.

Here are some BASIC routines that will streamline the step

of entering data and make your programming a bit easier. These

are general subroutines that can be applied to many different

programs. The modules are "user-interface" routines that trap

71

72 THE COMMODORE 128 SUBROUTINE LIBRARY

errors by permitting the operator to enter ONLY the type of

input that is required by the program. If only numbers or only

alpha characters are desired, that is what the routines will ac

cept. Another routine accepts either lowercase or uppercase en

tries and converts the lowercase characters to upper. With

Commodore computers uppercase/lowercase is an interesting con

cern, because the entire keyboard can be toggled between

uppercase-only/graphics and uppercase/lowercase by the user's

pressing the Shift key and Commodore key simultaneously. Your

routines may have to take this dual mode into account in accept

ing data from the keyboard.

Another data entry routine is the Line Input module. This

routine, simulating a function found in some other BASICs, al

lows the user to enter anything into a string, including commas

and other so-called string "delimiters." Normally, INPUT will

permit the user to enter alpha characters and numbers but will

"choke" on commas, quotation marks, and other characters that

BASIC normally uses to mark the end of a string. The Line Input

routine here accepts a character at a time using GETKEY, and

builds a string until RETURN is pressed.

Using these subroutines, you can explore the concept of error

traps and see how avoiding improper entries can reduce the

frustration of first-time users of your programs.

LINE INPUT

WHAT IT DOES: Simulates LINE INPUT function found in other

BASICs. Allows entering string delimiters into strings.

LEVEL: Novice

100 REM **************

110 REM * *

120 REM * LINE INPUT *

130 REM * *

140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

Bombproof Data Input 73

180 REM KEYBOARD INPUT

190 REM PROMPT?: PROMPT CHARACTER

200 REM RESULT —

210 REM AN$: INPUT RETURNED

220 REM

230 REM *** INITIALIZE ***

240 PROMPT$=M?M

250 GOSUB 13010

260 PRINT

270 PRINT AN$

280 END

1.3000 REM *** SUBROUTINE ***

13010 AN$ = IIM: PRINT PROMPT?;

13020 DO WHILE A$OCHR$(13)

13030 GETKEY A?

13040 AN$=AN$+A$

13050 PRINT A$;

13060 LOOP

13070 RETURN

HOW TO USE SUBROUTINE

If you ask the user of a program to enter a string and if a

comma or other character such as a quotation mark is entered in

the body of the string, the extra character is ignored. These

characters that are ignored during string INPUT are known as

string delimiters. However, sometimes it is desirable to allow

such input, as when an entire phrase or sentence is entered. Such

a routine will also avoid an error by naive users who don't know

enough to avoid pressing string delimiter keys during their input.

This subroutine will repeatedly poll the keyboard using

GETKEY and add any characters to AN$. Commas may be en

tered and input can be ended only by pressing RETURN. The

keys pressed are printed to the screen, just as with normal IN

PUT, and a question mark prompt is displayed. To the user, the

change is invisible, except that string delimiters are accepted. If

you wish, your program can look for string delimiters that are not

wanted in the input and eliminate them.

In addition, the prompt character can be changed or elimi

nated, an especially useful feature for entries for which a ques

tion mark is inappropriate.

74 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Line 240: Define the prompt character.

Line 250: Access the subroutine.

Line 270: Print the resulting AN$.

Line 13010: Print the prompt string.

Line 13020: Start loop while A$ does not equal CHR$(13)

(RETURN).

Line 13030: Get character from keyboard.

Line 13040: Add it to AN$.

Line 13050: Print the character.

Line 13060: Loop and repeat.

YOU SUPPLY

Prompt asking for input, a definition for PROMPT$, and

keyboard input.

SUGGESTED ENHANCEMENTS: Filter out characters that you do

not want. See following routines for examples.

RESULT

String delimiters may be entered into string.

SAMPLE VALUE: None

NUMBER INPUT

WHAT IT DOES: Allows user to input only numbers.

LEVEL: Novice

Bombproof Data Input 75

100 REM ****************

110 REM * *

120 REM * NUMBER INPUT *

130 REM * *

140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM KEYBOARD INPUT

190 REM RESULT —

200 REM I: NUMBER ENTERED

210 REM

220 REM

230 REM *** INITIALIZE ***

240 GOSUB 13110

250 PRINT "NUMBER ENTERED :";I

260 END

13100 REM *** SUBROUTINE ***

13120 1$=""

13120 GETKEY A$:IF A$=CHR$(13) GOTO 13220

13130 IF MINUSFLAG=1 GOTO 13150

13140 IF A$="-" THEN MINUSFLAG=1:GOTO 13180

13150 IF MANTISSAFLAG=1 GOTO 13170

13160 IF A$="." THEN MANTISSAFLAG=1:GOTO 13180

13170 IF A$<"0" OR A$>"9" GOTO 13120

13180 PRINT A$;

13190 I$=I$+A$:MINUSFLAG=1

13200 GOTO 13120

13210 I=VAL(I$)

13220 PRINT:MANTISSAFLAG=O:MINUSFLAG=O:I$=""

13230 RETURN

HOW TO USE SUBROUTINE

Well-written programs include features that trap possible er

rors by the user—or avoid them entirely. When numbers only are

expected for INPUT, an elegantly constructed program will ac

cept only numeric entries and reject everything else.

The most common procedures all have drawbacks. A line like

"10 INPUT A" willl indeed accept only numbers. However, if a

user happens to enter a string instead, only a cryptic "RE-DO

FROM START" message will be displayed. That's not much help

for a naive operator.

Another less-than-perfect solution is to use a line like "10

INPUT A$:A = VAL(A$):IF A<1 GOTO 10". If the user enters alpha

characters, the program loops back and the input must be repeated.

76 THE COMMODORE 128 SUBROUTINE LIBRARY

This subroutine takes a different approach. It totally ignores

nonnumbers; if the operator presses an illegal key, it isn't even

echoed to the screen. The keyboard responds only when numeric

keys are pressed.

The secret is a GETKEY loop. If the user presses a number

key, that letter is added to 1$. When A$ equals CHR$(13), a

carriage return, then input is over. Otherwise, the loop repeats,

allowing additional numeric entries.

When the subroutine ends, variable I will have the value of

the user's entry. Negative numbers are accommodated by this

module, but you cannot enter equations or number series such

as4 + 3-4.

LINE-BY-LINE DESCRIPTION

Lines 240-260: Access the subroutine and display result.

Line 13110: Wait for key to be pressed.

Line 13120: If key was RETURN, then go to end of this

subroutine.

Line 13130: If MINUSFLAG=1, meaning that a minus sign

has already been pressed once, jump to portion that checks for a

decimal point.

Line 13140: Otherwise, if A$ is a minus sign, then set

MINUSFLAG to 1, and jump to where minus will be added to the

string.

Line 13150: If MANTISSAFLAG= 1, meaning that a decimal

point has already been pressed once, jump to portion that checks

for nonnumeric entries. As in 13130, this ensures that the deci

mal point can be entered only once for each number input.

Line 13160: If decimal point entered, set MANTISSAFLAG

to 1. One decimal point, and only one, may be entered anywhere

within the number.

Line 13170: If character is not a numerical, ignore it and

return for more input.

Line 13180: Print the character, which either will be a num

ber or, if both flags had been zero, may be either a minus sign or

decimal point.

Bombproof Data Input 77

Line 13190: Add the character to the string. Change MINUS-

FLAG to 1, so that after the first character has been added to the

string, a minus sign may not erroneously be placed in the middle

of the string.

Line 13200: Return for more input.

Line 13210: Determine value of I, null variables, and return

to the main program.

YOU SUPPLY

Keyboard input.

SUGGESTED ENHANCEMENTS: User may change the upper and

lower limits in line 160 to restrict the range of numbers to be

entered. This might be useful when getting input for, say, a menu

with only five choices. All numbers over five and all alpha char

acters would be ignored. Filter out all numbers too large for the

Commodore 128 (approximately 1.9E + 19).

RESULT

Only user numeric input, in the form of positive numbers or

negative numbers, is allowed. Large numbers entered as numer

als will be displayed in scientific notation.

SAMPLE VALUES: -1222.54; 234; 129755.171711

LETTER INPUT

WHAT IT DOES: Allows user to input only alpha characters.

LEVEL: Novice

78 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ****************

110 REM * *

120 REM * LETTER INPUT *

130 REM * *
140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM KEYBOARD INPUT

190 REM RESULT —

200 REM 1$: STRING ENTERED

210 REM ONLY UPPER AND LOWER CASE

220 REM CHARACTERS ACCEPTED

230 REM

240 REM NOTE: TO EXCLUDE SPACES, TOO

250 REM DELETE LINE 13660

260 REM

270 REM

280 REM *** INITIALIZE ***

290 GOSUB 13310

300 PRINT

310 PRINT 1$

320 END

13300 REM *** SUBROUTINE ***

13310 I$ = IMI

13320 GETKEY A$

13330 A=ASC(A$):IF A=13 THEN RETURN

13340 IF A>64 AND A<91 GOTO 13380

13350 IF A>192 AND A<219 GOTO 13380

13360 IF A=32 OR A=160 GOTO 13380

13370 GOTO 13320

13380 PRINT A$;

13390 I$=I$+A$

13400 GOTO 13320

HOW TO USE SUBROUTINE

At times you will want only alpha characters to be input in a

program, with all other entries, such as numbers or graphics

characters, to be ignored. For example, word games might allow

only the 26 letters A-Z while rejecting other keys entirely.

This subroutine does exactly that. The user may enter any

alpha character. Others are ignored. If the operator presses an

illegal key, it isn't even echoed to the screen. The keyboard

responds only when alpha keys are pressed.

The secret is a GETKEY loop. If the user presses a letter key,

Bombproof Data Input 79

that letter is added to 1$. When A$ equals CHR$(13), a carriage

return, then input is over. Otherwise, the loop repeats, allowing

additional alphabetic entries.

When the subroutine ends, variable 1$ will have the value of

the user's entry.

LINE-BY-LINE DESCRIPTION

Lines 290-320; Access the subroutine and print result.

Line 13310: Null any previous value of 1$, in case subroutine

has been called before during this program run.

Line 13320: Wait for user entry.

Line 13330: If key pressed was RETURN, then input is fin

ished. It also determines ASCII value of key pressed.

Lines 13340-13390: If key was uppercase or lowercase char

acter or a space, add to 1$. Otherwise go back for more entries.

YOU SUPPLY

Keyboard input.

SUGGESTED ENHANCEMENTS: User may change the upper and

lower limits to restrict the range of alpha characters that can be

entered. This might be useful when getting input for, say, a game

like Mastermind, where only the letters A-E are wanted. All

numbers, graphics, and alpha characters larger than E can be

ignored. You can also expand the allowable characters to permit

entry of commas, periods, or other characters.

RESULT

Only user alpha input is allowed.

SAMPLE VALUES: This is allowed; SO IS THIS

80 THE COMMODORE 128 SUBROUTINE LIBRARY

CASE CONVERTER

WHAT IT DOES: Changes lowercase input to uppercase, and up

percase to lower.

LEVEL: Intermediate

100 REM ****************

110 REM * *

120 REM * CASE CONVERT *

130 REM * *
140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER ~

180 REM A$: STRING TO CONVERT

190 REM RESULT —

200 REM 1$: CONVERTED STRING

210 REM

220 REM NOTE: PRESS SHIFT AND C=

230 REM (COMMODORE) KEY FOR

240 REM UPPER AND LOWERCASE

250 REM

260 REM

270 REM *** INITIALIZE ***

280 A$="NOW IS THE TIME FOR ALL GOOD MEN"

290 GOSUB 13510

300 PRINT

310 PRINT 1$

320 END

13500 REM *** SUBROUTINE ***

13510 1$=""

13520 FOR N=l TO LEN(A$)

13530 A=ASC(MID$(A$,N,1))

13540 IF A>192 AND A<219 THEN A=A-128:GOTO 13560

13550 IF A>64 AND A<91 THEN A=A+128

13560 I$=I$+CHR$(A)

13570 NEXT N

13580 RETURN

HOW TO USE SUBROUTINE

Because the Commodore 128 does not see "YES" as equal to

"yes", it is often convenient to filter user input to change all

uppercase entries to lowercase, or vice versa. A word processing

Bombproof Data Input 81

program, for example, will want to allow a mixture of uppercase and

lowercase text but may be confused if commands are typed that way.

Many times our error traps in programs check to see if an

acceptable key has been pressed. We may want the user to enter

"Y" or "N" answers only. Or our program will check a name or other

entry against a list, as was done with Abbreviations in the last

chapter. The Commodore 128 powers up in the uppercase/graphics

mode but can be toggled to the uppercase/lowercase mode by the

user's pressing the Commodore and Shift keys at the same time.

As written, this program will change uppercase entries to

lowercase, and lowercase to upper. You can delete either line 13530

or line 13540 to force the routine to do one but not the other.

LINE-BY-LINE DESCRIPTION

Line 280: Define a string to be converted.

Lines 290-320: Access the subroutine and print result.

Line 13510: Start loop from 1 to the length of the string

being converted.

Line 13520: Find ASCII value of a single character in the

middle of the string, at position N.

Lines 13530-13540: If character is uppercase or lowercase,

either add or subtract 128 to reverse it.

Line 13350: Add CHR$(A) to the string.

Line 13360: Loop until entire string is examined.

YOU SUPPLY

A string to be converted.

SUGGESTED ENHANCEMENTS: None.

RESULT

Lowercase and uppercase are reversed.

SAMPLE VALUE: now is the time for all good men

4
SIRING

HANDLING

When compared with the BASICs supplied with other personal

computers, the BASIC 7.0 included in the Commodore 128 stacks

up very well indeed. It has a powerful screen editor that allows

changing program lines just by typing over them, and it has most

of the features of standard Microsoft BASIC. Music and graphics

capabilities, in particular, have been made much easier by the

addition of special commands that carry out functions that de

manded complex POKEs with the Commodore 64.

However, a few statements found in most BASICs have been

omitted. Some of these are handy to have, others almost crucial

for serious programming. The subroutines in this section show

83

84 THE COMMODORE 128 SUBROUTINE LIBRARY

you how to simulate some of these important features with your

Commodore computer. Then we take you a few steps beyond basic

BASIC with some new commands not available in any interpreter.

If your only familiarity with BASIC is through use of your

Commodore 128, some of these statements and functions may

appear strange to you. You may even wonder what they can be

used for. A few are not commonly found in the majority of BA-

SICs. This section will show you how to use the new functions, as

well as provide tips on why you might want to put them in

your own programs.

One of the key functions found in BASIC 7.0 that you'll want

to familiarize yourself with is INSTR. It is used to find out

whether a given string you are looking for is located within a

second string of characters that is the same size or longer. INSTR

returns the starting position of that target string. You might

have a program that looks like this:

100 A$="COMMODORE 128"

110 B$="VIC-20"

120 C$="MY COMMODORE 128 IS A POWERFUL COMPUTER"

130 A=INSTR(C$,A$)

140 B=INSTR(C$,B$)

150 C=INSTR(C$, "COMMODORE11,8)

160 PRINT A,B,C

When this program is run, the screen will display:

4,0,0

In the first instance, the value 4 is produced because INSTR

has found A$, "COMMODORE" within the string C$ starting at

the fourth character in C$. In the second case, a zero is returned

because B$, "VIC-20", is not found within C$.

Line 150 shows another format for INSTR. Instead of using a

variable for the string to be searched for, we've inserted a string

constant, "COMMODORE", instead. We could have also used a

string constant in place of C$. Neither option is usually taken

because using variables is more flexible. Note the ",8" in line 150.

This parameter tells INSTR to start its search at the eighth

String Handling 85

position in the string, ignoring everything up to that point. Even

though "COMMODORE" does appear in C$, line 150 returns a

zero because the complete string is not found from position 8

onward. You would use this format when you want to search only

part of a string. For example, you might have already found the

target string, left it as is, and desired to look for the next occurrence.

The first two subroutines in this chapter, Replace String and

Insert String, will take a string of your choice and either replace

the equivalent number of characters in the target string with the

second, shorter string, or insert them into the middle of the target

string. You need to have an understanding of INSTR to use them

most effectively, since INSTR will let you examine the target

string and decide exactly where to insert or replace the shorter

string.

STRING$ adds a feature to BASIC 7.0 that allows you easily

to build a string of any size, using a character of your choice. Say

you need a string, SPACE$, composed of 20 spaces (CHR$(32)).

This subroutine will build it for you automatically.

Exchange is a handy way to exchange the values of two

variables and is available in some BASICs under the name SWAP.

Commodore 128 BASIC has a different SWAP command, so we

call this one EXCHANGE. It is a rudimentary function included

to get novice programmers thinking about the processes needed

for sorts. Two sorts are included in this chapter, along with some

routines to encode and decode strings and format them on the

screen.

REPLACE STRING

WHAT IT DOES: Simulates MID$= function found in other BA

SICS. Replaces middle portion of a string with another string.

LEVEL: Novice

86 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ******************

110 REM * *

120 REM * REPLACE STRING *

130 REM * *
140 REM ******************

150 REM —--r

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM TARGT$: MAIN STRING

190 REM SUB$: STRING TO BE REPLACED

200 REM PLACE: POSITION TO PUT SUB$

210 REM RESULT —

220 REM FINISH?: COMPLETED STRING

230 REM

240 REM

250 REM *** INITIALIZE ***

260 SUB$="TESTn

270 TARGT$="REPLACEMENT MADE"

280 PLACE=7

290 GOSUB 13610

300 PRINT FINISH?

310 END

13600 REM *** SUBROUTINE ***

13610 L$=LEFT$(TARGT$,PLACE)

13620 R$=MID$(TARGT$,PLACE+LEN(SUB$)+1)

13630 FINISH$=L$+SUB$+R$

13640 RETURN

HOW TO USE SUBROUTINE

Replacing the middle portion of a string with another string

can be useful, especially in word processing programs. This sub

routine will allow replacing any number of characters in a main

string, TARGT$, with an equal number of characters, SUB$. If

you want to insert a string that is larger or smaller than the one

replaced, you should use the next subroutine.

This routine will replace only an equal number of characters.

For example, you may take a string such as RETAIN and change

it to REPAIR by making TARGT$ = "RETAIN", SUB$ = «PAIR",

and PLACE = 3. The subroutine will start at position 3 in the

target string and substitute the SUB$.

String Handling 87

LINE-BY-LINE DESCRIPTION

Lines 260-280: Define the SUB$, TARGT$, and PLACE.

Lines 290-310: Access the subroutine and print results.

Line 13610: Define L$ as left portion of string up to and

including the character at position PLACE.

Line 13620: Define R$ as the remaining characters in the

target string, from position following PLACE, plus the length of

the string to be substituted, to the end. R$ will not include any of

the characters that will be replaced by those in SUB$.

Line 13630: Define FINISH$ as L$, plus the string to be

substituted, plus R$.

YOU SUPPLY

You should define TARGT$, SUB$, and PLACE just before

the subroutine is called.

SUGGESTED ENHANCEMENTS: Use INSTR to determine where

PLACE should be.

RESULT

TARGT$ will be changed to include SUB$.

SAMPLE VALUE: REPLACETEST MADE

INSERT STRING

WHAT IT DOES: Inserts a string into another.

LEVEL: Novice

88 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM *****************

110 REM * *

120 REM * INSERT STRING *

130 REM * *
140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM TARGT$: MAIN STRING

190 REM SUB$: STRING TO BE INSERTED

200 REM PLACE: POSITION TO PUT SUB$

210 REM RESULT —

220 REM FINISH$: COMPLETED STRING

230 REM

240 REM ■

250 REM *** INITIALIZE ***

260 SUB$ = IITEST"

270 TARGT$ = "TARGET STRING LETTERS11

280 PLACE=7

290 GOSUB 13710

300 PRINT FINISH$

310 END

13700 REM *** SUBROUTINE ***

13710 L$=LEFT$(TARGT$,PLACE)

13720 R$=MID$(TARGT$,PLACE+1)

13730 FINISH$=L$+SUB$+R$

13740 RETURN

HOW TO USE SUBROUTINE

Sometimes a string to be inserted may need to be longer or

shorter than the string replaced. This subroutine takes care of

doing that with a few limitations.

Like all Commodore 128 strings, neither TARGT$ nor SUB$

can be longer than 255 characters (and keep in mind that you

can enter a string only up to 160 characters at the keyboard). The

resulting string with SUB$ inserted must be shorter than 255

characters as well.

In the subroutine as written, the target string is "TARGET

STRING LETTERS", while the SUB$ is defined as "TEST". Since

the PLACE where we want to insert it is position 7, the new

string will read: "TARGET TESTSTRING LETTERS".

String Handling 89

LINE-BY-LINE DESCRIPTION

Lines 260-280: Define the SUB$, the TARGT$, and PLACE

where the SUB$ will be inserted.

Lines 290-310: Access the subroutine and display results.

Line 13710: Define L$ as left portion of string up to and

including the character at position PLACE.

Line 13720: Define R$ as the remaining characters in the

target string, from position following PLACE to the end.

Line 13730: Define FINISH$ as L$, plus the string to be

inserted, plus R$.

YOU SUPPLY

Values for the main string, TARGT$, the string to be in

serted, SUB$, and the position where it will be put, PLACE.

SUGGESTED ENHANCEMENTS: In your program have INSTR de

termine exactly where the insertion will take place.

RESULT

TARGT$ will have SUB$ inserted in it, at position PLACE.

SAMPLE VALUE: TARGET TESTSTRING LETTERS

CHR$ VALUE

WHAT IT DOES: Returns Commodore CHR$ code for any key.

LEVEL: Novice

90 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM **************

110 REM * *
120 REM * CHR$ VALUE *

130 REM * *
140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM KEYBOARD INPUT

190 REM RESULT —

200 REM A: CHR$ VALUE OF KEY

210 REM A$: KEY PRESSED

220 REM

230 REM *** INITIALIZE ***

240 GOSUB 13810

250 PRINT "CONTINUE ? (Y/N)u

260 GETKEY AN$

270 IF AN$="Y" GOTO 240

280 END

13800 REM *** SUBROUTINE ***

13810 GETKEY A$

13820 A=ASC(A$)
13830 PRINT"CHR$ VALUE OF KEY ";A$;" IS ";A

13840 RETURN

HOW TO USE SUBROUTINE

It is often necessary to know the special Commodore CHR$

code for a given key. If many keys are used, looking them all up

on a table in your System Guide can be time-consuming. Instead,

add this subroutine to the end of your program and call it as

needed.

Just why would you want this capability? The answer lies in

the differences in the ways computers and human beings like to

process information. People are comfortable handling mixtures of

alpha and numeric characters; computers recognize just binary

numbers—ones and zeros. When string data are fed to a Commo

dore 128, they must be converted to a series of numbers that the

processor can handle.

ASCII, or American Standard Code for Information Inter

change, is one standard of communication that has been agreed

upon so that computers can exchange alphanumeric information

in a form that is common to processors with different operating

String Handling 91

systems and languages. Commodore departs somewhat from this

code for the Commodore 128, especially when using the graphics

characters. PEEKing and POKing characters are done using the

Commodore character set listing, not the standard ASCII table.

However, the standard alphanumeric symbols can be represented

by use of the correct CHR$(n) statement. In some cases, only a

few characters need to be converted, so a table of codes and their

string values will do the job. Other times, longer messages must

be deciphered.

One good application for ASCII characters in programs is in

game writing. Writers of BASIC Adventure-style programs may

wish to "hide" messages from those casually LISTing the pro

gram. The CHR$(n) function can be used to assign the desired

string values to string variables that are called at appropriate

points in the program. CHR$(n) returns a one-character string

that corresponds to the ASCII code of n. For example, PRINT

CHR$(65) will produce an "A" on the screen.

A BASIC Adventure might have use for a message such as:

"LOOK IN THE HOLLOW STUMP."

This hint could be labeled Hl$, and concatenated with CHR$(n)

and the ASCII codes:

100 DATA 76,79,79,75,32,73,78,32,84,72,69,32

72,79,76,76,79,87,32,83,84,85,77,80

110 FOR N=l to 25:READ A

120 H1$=H1$+CHR$(A)

130 NEXT A

Additional DATA lines and FOR-NEXT loops could be used

to put any number of messages into string variables that are

difficult to read accidentally. Of course, any knowledgeable pro

grammer could pick the BASIC game apart, or enter PRINT Hl$

from command mode once the program has been run past the

initialization point. However, this technique assumes that the ob

ject is to protect the game player who innocently LISTS the

program and doesn't want to spoil the fun. The same method can

be used to hide program credits within BASIC code.

92 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Line 240: Access the subroutine.

Lines 250-280: See if user wants to access again.

Line 13810: Wait for user to press a key.

Line 13820: Find ASCII value of that key.

Line 13830: Print result.

YOU SUPPLY

Just press the key that you want to check.

SUGGESTED ENHANCEMENTS: Write a routine to store the results

in a data file, and call them into your program as needed

for display on the screen. Separating the program that writes

the CHR$ codes from the program that uses them provides

extra security. You can change the messages accessed by your

second program simply by changing the DATA lines in the

first.

RESULT

Variable A will equal CHR$ value of that key.

SAMPLE VALUE: A = CHR$(65)

EXCHANGE

WHAT IT DOES: Simulates SWAP function found in some other

BASICs.

LEVEL: Novice

String Handling 93

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* EXCHANGE *
* *

++ VARIABLES ++

SUPPLIED BY USER —

A$: FIRST VARIABLE

B$: SECOND VARIABLE

RESULT —

A$: SECOND VARIABLE

B$: FIRST VARIABLE

250 REM *** INITIALIZE ***

260 A$="FIRST"

270 B$="SECOND"

280 PRINT "VALUE OF A$=";A$

290 PRINT "VALUE OF B$=";B$

300 GOSUB 13910

310 PRINT "VALUE OF A$=";A$

320 PRINT "VALUE OF B$=";B$

330 END

13900 REM *** SUBROUTINE ***

13910 DUMMY?=A$

13920 A$=B$

13930 B$=DUMMY$

13940 RETURN

HOW TO USE SUBROUTINE

Exchanging the value of one variable for that of another

cannot be done in one step in Commodore 7.0 BASIC found in the

Commodore 128. This feature is useful in sorts and in some other

types of programming where the value of one variable needs to be

traded with the value of another.

This subroutine will do that for you for any two string vari

ables. To use it with numeric variables, you can use a second

identical subroutine, with the string identifiers removed (i.e.,

DUMMY= A, A = B, B = DUMMY). A second, less elegant way is

to change the numeric variables to strings before calling the

routine. This can be done as follows: A$ = STR$(A): B$ = STR$(B):

GOSUB xxx: A = VAL(A$):B = VAL(B$)

94 THE COMMODORE 128 SUBROUTINE LIBRARY

Not exactly efficient, right? Use two subroutines instead, one

for strings and one for numbers.

LINE-BY-LINE DESCRIPTION

Lines 260-270: Define initial value of A$ and B$.

Lines 280-290: Show their values prior to the exchange.

Line 300: Access the subroutine.

Lines 310-320: Show values after the exchange.

Line 13910: Temporarily assign A$ to a dummy variable,

DUMMY$.

Line 13920: make A$ equal to B$.

Line 13930: Make B$ equal to DUMMY$, which stores the

original value of A$.

YOU SUPPLY

Values for A$ and B$, or A and B, the two variables that

must be swapped.

SUGGESTED ENHANCEMENTS; It is usually simpler to perform

this function in place without calling a subroutine.

RESULT

Values exchanged.

SAMPLE VALUES: A$ = FIRST; B$ = SECOND to A$ = SECOND;

B$ = FIRST

STRINGS

WHAT IT DOES: Simulates STRING$ function found in other

BASICs.

LEVEL: Novice

String Handling 95

100

110

120

130

140

150

160

170

180

190

200

210

220

240

250

260

270

280

290

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

••••****•

* *

* STRING$ *
* *

++ VARIABLES ++

SUPPLIED BY USER —

LTH: DESIRED LENGTH

COMP$: COMPONENT STRING

RESULT —

STRNG$: FINISHED STRING

*** INITIALIZE ***

COMP$="A"

LTH=10

GOSUB 14010

PRINT STRNG$

END

14000 REM *** SUBROUTINE ***

14010 STRNG$=""

14020 DO WHILE LTH>0

14030 STRNG$=STRING$+COMP$:LTH=LTH-1

14040 LOOP

14050 RETURN

HOW TO USE SUBROUTINE

You may wish to define a string as being composed of 40 or

80 spaces, to clear a line. Or you may want to build a string made

up of the word "HI" repeated 12 times. Both can be accomplished

with this subroutine. The main limitation is that the resulting

string must be 255 characters or shorter.

LINE-BYLINE DESCRIPTION

Lines 250-260: Define the character to be used as the compo

nent string and the length of the desired string.

Lines 270-290: Access subroutine and print result.

Line 14010: Null any previous value of STRNG$.

Line 14020: Start procedure to continue while the length of

STRNG$ is less than LTH, the desired length.

96 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 14030: Add COMP$ to STRNG$.

Line 14040: Loop to repeat.

Line 250: Assign value of STRNG$ to chosen variable.

YOU SUPPLY

You need to define LTH with the desired number of times the

component string will be repeated. If the component string has

more than one character, this length will not be the same as the

length of the finished string.

You also must supply a definition for COMP$, which may be

either the actual characters or their CHR$ codes.

SUGGESTED ENHANCEMENTS: Add a routine to check to see if

LTH*LEN(COMP$)>255, and, if so, require that LTH be re

duced, or post a notice to that effect to the operator.

RESULT

Variable STRNG$ will be assembled using LTH copies of

COMP$.

SAMPLE VALUE: AAAAAAAAAA

STRING SORT

WHAT IT DOES: Alphabetizes a list.

LEVEL: Intermediate

100 REM ***************

110 REM * *
120 REM * STRING SORT *

130 REM * *
140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NUMBER : NUMBER OF ITEMS SORTED

String Handling 97

190 REM D$(N): ARRAY WITH ITEMS

200 REM RESULT —

210 REM D$(N) SORTED

220 REM

230 REM

240 REM *** INITIALIZE ***

250 NUMBER=10

260 DIM D$(NUMBER)

270 GOSUB 14110

280 FOR N=l TO NUMBER

290 PRINT D$(N)

300 NEXT N

310 END

14100 REM *** SUBROUTINE ***

14110 FOR ITEM=1 TO NUMBER

14120 PRINT"ENTER #";ITEM

14130 INPUT D$(ITEM)

14140 NEXT ITEM

14150 FOR N=l TO NUMBER

14160 FOR Nl=l TO NUMBER-N

14170 A$=D$(N1)

14180 B$=D$(N1+1)

14190 IF A$<B$ THEN GOTO 14220

14200 D$(N1)=B$

14210 D$(N1+1)=A$

14220 NEXT Nl

14230 NEXT N

14240 RETURN

HOW TO USE SUBROUTINE

Sorting a list is a common need for many programs. Data

files, mailing lists, and other collections of information may be

more easily handled when sorted. This routine is a simple bubble

sort which will alphabetize any list that has been loaded into an

array, D$(n).

Although as written the subroutine asks the user to enter the

list from the keyboard, any means can be used to load the array.

The file may also be read from disk, for example, via one of the

routines presented in Chapter 2.

The bubble sort is so-called because each entry in the array is

examined and then allowed to rise up past the one below until it

encounters a "smaller" item. When one is comparing strings,

smaller is defined as an entry that, when alphabetized, comes

98 THE COMMODORE 128 SUBROUTINE LIBRARY

before the larger entry. That is, "computerization" is smaller than

"contain" even though it has more letters, because it would be

placed on an alphabetized list first. In computer terminology we

would say that: "computerization"<"contain" is a true statement.

In making the comparison between strings, the Commodore 128

will look at as many characters in the string as necessary to

differentiate. For example, "contain"<"contains."

In the bubble sort, each element of the array will gradually

rise until it encounters a smaller item. Eventually, each member

of the list "floats" up to its proper place in the array. While such

sorts are not very fast, for small lists of, say, 30 or 40 items the

speed is satisfactory.

LINE-BY-LINE DESCRIPTION

Line 250: Define NU, the number of units in the array to be

sorted.

Line 260: DIMension the array to proper size.

Lines 270-310: Access the subroutine and print results.

Line 14100: Begin loop from 1 to number of items to be sorted.

Lines 14110-14140: Get the items from user keyboard input.

A disk or tape file read routine could be substituted for these

lines to sort an existing string file.

Line 14150: Start loop from 1 to the number of items to be

sorted.

Line 14160: Start a nested loop from 1 to 1 less than the

number of items to be sorted.

Line 14170: Make A$ equal to the Nlth item of the array.

Line 14180: Make B$ equal to the item following A$ in the
array.

Line 14190: If the "higher" element, A$, is already smaller

than B$, then B$ remains where it is and the inner loop steps off
the next value of Nl.

Lines 14200-14210: If B$ is smaller than A$, then the two

strings are swapped, with B$ moving ahead one element and A$
being pushed down one.

Lines 14220-14230: The inner and outer loops are incremented.

String Handling 99

YOU SUPPLY

You should define NUMBER, the number of items to be

sorted, and also supply the data for the array, D$(n).

SUGGESTED ENHANCEMENTS: Interface this routine with data

files produced by your program.

RESULT

List is sorted alphabetically.

SAMPLE VALUES: APPLE,ORANGE,PEAR,WATERMELON

SHELL/METZNER SORT

WHAT IT DOES: Sorts a list.

LEVEL: Intermediate

100 REM

110 REM * *

120 REM * SHELL-METZNER SORT *
130 REM * *

140 REM **********************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NUMBER: NUMBER OF ITEMS OF DATA

190 REM FIRST: START POSITION OF SORT

200 REM LAST: END POSITION OF SORT

210 REM D$(N): DATA ARRAY TO BE SORTED
220 REM RESULT —

230 REM D$(N) SORTED

240 REM

250 REM

260 REM *** DATA ***

270 DATA COMMODORE,VIC,APPLE,ORANGE

280 DATA MONITOR,KEYBOARD,PRINTER

290 DATA LISTING,PROGRAM,INSERT

300 REM *** INITIALIZE ***

100 THE COMMODORE 128 SUBROUTINE LIBRARY

310 NUMBER=10

320 FIRST=1

330 LAST=10

340 DIM D$(NUMBER)

350 FOR 1=1 TO NUMBER

360 READ D$(I)

370 NEXT I

380 GOSUB 14310

390 FOR N=FIRST TO LAST

400 PRINT D$(N)

410 NEXT N

420 END

14300 REM *** SUBROUTINE ***

14310 T1=NUMBER

14320 Tl=INT(Tl/2)
14330 IF Tl=0 THEN RETURN

14340 T2=l

14350 T3=NUMBER-T1

14360 T5=T2

14370 T4=T5+T1

14380 S1$=(MID$(D$(T5),FIRST,(LAST-FIRST)+1))

14390 S2$=(MID$(D$(T4),FIRST,(LAST-FIRST)+1))

14400 IF S1$<S2$ GOTO 14470

14410 T6$=D$(T5)

14420 D$(T5)=D$(T4)

14430 D$(T4)=T6$

14440 T5=T5-T1

14450 IF T5<1 THEN GOTO 14470

14460 GOTO 14370

14470 T2=T2+1

14480 IF T2>T3 THEN GOTO 14320

14490 GOTO 14360

14500 RETURN

HOW TO USE SUBROUTINE

The Shell-Metzner Sort is considered more efficient for slightly

longer lists than the bubble sort. There are many other sorts,

such as Quicksort and Heapsort, but this sort is easy to under

stand without a lengthy explanation and is entirely adequate for

most BASIC programs.

LINE-BY-LINE DESCRIPTION

Lines 270-290: Data to be sorted.

Lines 310-330: Define the NUMBER of items to be sorted,

the position of the FIRST item to be sorted, and the LAST item

String Handling 101

to be sorted. With this routine you may sort only part of a list if

you wish.

Line 340: DIMension an array to hold the data items.

Lines 350-370: Read data to the array.

Lines 380-420: Access the subroutine and print the sorted

list to the screen.

Lines 14310-14330: Divide the list in half.

Lines 14340-14390: Extract two elements from each half.

Line 14400: Compare, and if first is "smaller," bypass the

swap routine.

Lines 14410-14460: Exchange the elements.

Lines 14470-14490: Increment the pointers and repeat.

YOU SUPPLY

Either data in DATA lines, or data file to be sorted.

SUGGESTED ENHANCEMENTS: Interface with your own data

files.

RESULT

List sorted alphabetically.

SAMPLE VALUES: APPLE.COMMODORE.INSERT.KEVBOARn

LISTING,MONITOR,ORANGE,PRINTER,PROGRAM,VIC

ARRAY LOADER

WHAT IT DOES: Loads array with data.

LEVEL: Novice

102 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM **************

110 REM * *

120 REM * LOAD ARRAY *

130 REM * *

140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NROWS: NUMBER OF ROWS

190 REM NCOLUMNS: NUMBER OF COLUMNS

200 REM RESULT —

210 REM DTA$(NR,NC) LOADED WITH DATA

220 REM

230 REM

240 REM *** DATA ***

250 DATA DAVE,1 PINE ST.,445-1881

260 DATA FRED,3 HIGH ST.,232-4444

270 REM *** INITIALIZE ***

280 NROWS=2

290 NCOLUMNS=3

300 DIM DTA$(NR,NC)

310 GOSUB 14610

320 FOR ROW=1 TO NROWS

330 FOR COLUMN=1 TO NCOLUMNS

340 PRINT DTA${ROW,COLUMN)

350 NEXT COLUMN

360 NEXT ROW

370 END

14600 REM *** SUBROUTINE ***

14610 FOR ROW=1 TO NROWS

14620 FOR COLUMN=1 TO NCOLUMNS

14630 READ A$

14640 DTA$(ROW,COLUMN)=A$

14650 NEXT COLUMN

14660 NEXT ROW

14670 RETURN

HOW TO USE SUBROUTINE

An array is a table with rows and columns storing lists of

data. In a checkbook register each row might contain information

about a single check/deposit transaction. The columns would

contain specific entries, such as check number, payee, data, and

amount.

Once a data file has been assembled with such information, a

routine is needed to load it into an array where it can be manipu-

String Handling 103

lated, sorted, added to, or have entries deleted. This subroutine

does exactly that. Although written for a string array, it can be

converted to a numeric array simply by the user's deleting the

variable type specifier, "$". That is, DTA$(row,column) should

become DTA(row,column), and A$ should be changed to A.

Study this example to learn more of how arrays work, as they

are one of the most important concepts in BASIC programming.

LINE-BY-LINE DESCRIPTION

Lines 250-260: Data to be loaded.

Line 280: Define number of rows in the array.

Line 290: Define number of columns in the array.

Line 300: DIMension an array to hold the data.

Lines 310-370: Access the subroutine and then print the re

sults, using nested FOR-NEXT loops. (See below.)

Line 14610: Begin a FOR-NEXT loop from 1 to the number of

rows.

Line 14620: Begin a second FOR-NEXT loop nested inside

the first one, from 1 to the number of columns.

Line 14630: READ a data item from the DATA lines.

Line 14640: Store that value in DTA$(row,col), in the posi

tions marked by the value of ROW,COLUMN. The first time

through the loop, ROW will equal 1 and COLUMN will equal 1.

Then control will drop to Line 14650 below, where COLUMN will

be incremented to 2. So, the next DATA item will be stored in

DTA$(1,2). When all the columns for a given row have been

filled, ROW will be incremented and the next data item will be

stored in DTA$(2,1).

Line 14650: Next COLUMN.

Line 14660: Next ROW.

YOU SUPPLY

The number of rows, NROWS, and number of columns,

NCOLUMNS, should be specified. Data can be supplied from

DATA lines, or, better, read in from disk or tape.

104 THE COMMODORE 128 SUBROUTINE LIBRARY

SUGGESTED ENHANCEMENTS: Adapt this subroutine for your own

programs.

RESULT

Data list is loaded into array.

SAMPLE VALUE: The DATA will be printed in order shown in

listing

DESPACER

WHAT IT DOES: Removes spaces from a string.

LEVEL: Intermediate

100 REM *************

110 REM * *

120 REM * DESPACER *

130 REM * *

140 REM *************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM S$: STRING TO DESPACE

190 REM RESULT —

200 REM RESULT?: DESPACED STRING

210 REM

220 REM

230 REM *** INITIALIZE ***

240 INPUT "ENTER STRING TO DESPACE :";S$

250 GOSUB 14710

260 PRINT "NEW STRING :";RESULT?

270 END

14700 REM *** SUBROUTINE ***

14710 RESULT?=S?

14720 P=l

14730 B=INSTR(RESULT?,CHR?(32),P)

14740 IF B=0 THEN RETURN

14750 RESULT?=LEFT?(RESULT?,B-l)+MID$(RESULT?,B+l)

14760 P=B

14770 GOTO 14730

String Handling 105

HOW TO USE SUBROUTINE

This subroutine demonstrates how to manipulate strings to

add or subtract from them what we want. Earlier in this chapter

you saw how to insert a new string in the middle of a string or to

replace a portion of a string with another. To continue in that

vein, you can simply remove all the spaces from a string using

this subroutine. Your programming may have the need for this

technique, as when compacting a data file in which spaces are not

desired or needed to delimit characters.

The subroutine looks at each character in the string in turn,

using a FOR-NEXT loop from 1 to the length of the string. If

a space is found, the routine skips over it. All other characters

are added to a temporary string, T$, which is finally used to

redefine the original string when all the spaces have been

removed.

LINE-BYLINE DESCRIPTION

Line 240: Ask user for string to despace. Strings entered from

the keyboard can be only 160 characters long. Strings you define

in a program can be combined up to 255 characters.

Line 250: Access the subroutine.

Line 260: Print result.

Line 14710: Store value of string input in RESULTS.

Line 14720: Define search position as 1.

Line 14730: Store in variable B the position of the first space

in the string following position P.

Line 14740: If B is 0, then no more spaces remain: RETURN

to main program.

Line 14750: Take the left and right portions of the string,

excluding the space found, and combine them. Doing this removes

the space from the string.

Line 14760: Redefine P as the place where the space was

found, so that the next search will start there, looking for addi

tional spaces.

Line 14770: Repeat.

106 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

String to despace.

SUGGESTED ENHANCEMENTS: Interface with your program.

RESULT

String has spaces removed.

SAMPLE VALUE: THISSTRINGHASBEENDESPACED

CENTER STRING

WHAT IT DOES: Centers string on the screen.

LEVEL: Novice

100 REM *****************

110 REM * *

120 REM * CENTER STRING *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM A$: STRING TO BE CENTERED

190 REM WIDE: SCREEN WIDTH

200 REM RESULT —

210 REM L: AMOUNT TO TAB THE STRING

220 REM

230 REM

240 REM *** INITIALIZE ***

250 WIDE=80

260 INPUT "ENTER STRING TO BE CENTERED :";A$

270 GOSUB 14810

280 IF L=0 THEN GOTO 260

290 PRINT TAB(L)A$

300 END

14800 REM *** SUBROUTINE ***

14810 L=0

14820 IF LEN(A$)>WIDE-2 THEN PRINT "STRING TOO LONG1":RETURN

14830 L=INT((WIDE-LEN(A$)))/2

14840 RETURN

String Handling 107

HOW TO USE SUBROUTINE

You may want your program to center prompts or other

material on the screen for a neat appearance. This subroutine

works with either 80- or 40-column screens. It calculates the

length of the string and subtracts that amount from the number

of spaces available to determine the amount left over. This figure

is divided by two so this extra space is arranged as equally as

possible before and after the string. If an uneven number of

spaces remains, the string will be "centered" one character to the

left, which should be almost an unnoticeable difference.

Call the subroutine each time you want to center a string on

the screen. The module is handy because it can be used for

prompts that you don't know the length of ahead of time. For

example:

1000 INPUT "ENTER YOUR NAME :";NME$

1010 S$="HELLO THERE, "+NME$

1020 WIDE=80

1030 GOSUB 14810

1040 PRINT TAB(L)S$

1050 END

LINE-BYLINE DESCRIPTION

Line 250: Define whether program is using the 40-column or

80-column screen.

Line 260: User inputs line to be centered.

Line 270: Access the subroutine.

Line 280: If string was too long (equal to or greater than

WIDE-1) then go back and ask for new input.

Line 290: Otherwise tab and print the string.

Line 14810: Set tab value to 0, in case this subroutine has

been called previously by the program.

Line 14820: See if string is too long.

Line 14830: Calculate value for L, as half of the extra spaces

left on the line.

Line 14840: Return.

108 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

String to be centered.

SUGGESTED ENHANCEMENTS: None.

RESULT

String is centered on the screen.

SAMPLE VALUE: Not applicable

FLUSH RIGHT STRING

WHAT IT DOES: Prints string flush right on the screen.

LEVEL: Novice

100 REM ***************

110 REM * *

120 REM * FLUSH RIGHT *

130 REM * *
140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM A$: STRING TO BE FLUSH RIGHT

190 REM WIDE: SCREEN WIDTH

200 REM RESULT —

210 REM R: AMOUNT TO TAB THE STRING

220 REM

230 REM

240 REM *** INITIALIZE ***

250 WIDE=80

260 INPUT "ENTER STRING :";A$

270 GOSUB 14910

280 IF R=0 THEN GOTO 260

290 PRINT TAB(R)A$;

300 END

14900 REM *** SUBROUTINE ***

14910 R=0

14920 IF LEN(A$)>WIDE THEN PRINT "STRING TOO LONG1":RETURN

14930 R=WIDE-LEN(A$)

14940 RETURN

String Handling 109

HOW TO USE SUBROUTINE

Use when you wish to print a string flush right on the screen.

This may be the case with columns of numbers or other material.

The routine works with either 40- or 80-column screens.

LINE-BY-LINE DESCRIPTION

Line 250: Define WIDE as width of screen being used with

the subroutine.

Line 260: Enter string to be printed flush right.

Line 270: Access the subroutine.

Line 280: If string was too long, go back and ask for new

string.

Line 290: TAB to print string at right side of screen.

Line 14910: Return R to 0, in case routine has been called

before during this program run.

Line 14920: Check to see if string is too long to display on a

single line.

Line 14930: Calculate amount to TAB.

Line 14940: Return.

YOU SUPPLY

String to print flush right.

SUGGESTED ENHANCEMENTS: Modify the routine so the string

can be printed flush right in a column other than the far right of

the screen. HINT: Change the value of WIDE.

RESULT

String is printed at the right side of the screen.

SAMPLE VALUE: Not applicable

110 THE COMMODORE 128 SUBROUTINE LIBRARY

ENCODE STRING

WHAT IT DOES: Encodes strings to prevent reading.

LEVEL: Intermediate

100 REM *****************

110 REM * *

120 REM * ENCODE STRING *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM S$: STRING TO BE ENCODED

190 REM RESULT —

200 REM RESULT?: ENCODED STRING

210 REM

220 REM

230 REM *** INITIALIZE ***

240 INPUT "ENTER STRING TO BE ENCODED :";S$

250 INPUT "ENTER CODE NUMBER (1 TO 25)";CODE

260 GOSUB 15010

270 PRINT "ENCODED STRING :";RESULT$

280 END

15000 REM *** SUBROUTINE ***

15010 TEMP$=""

15020 FOR N=l TO LEN(S$)

15030 B$=MID$(S$,N,1)

15040 B=ASC(B$)

15050 IF B>192 AND B<219 THEN B=B-128

15060 IF B>64 AND B<91 THEN BEGIN

15070 C=B+CODE

15080 IF C>90 THEN C=C-26

15090 BEND

15100 IF B<65 OR B>92 THEN C=B

15110 TEMP$=TEMP$+CHR$(C)

15120 NEXT N

15130 RESULT$=TEMP$

15140 RETURN

HOW TO USE SUBROUTINE

This subroutine introduces the concept of encrypting data to

prevent unauthorized access by individuals. You could encode

each string of a data file prior to writing it to disk. No one else

String Handling 111

could LIST that file and read it without having your decoding

subroutine (which follows). You might keep the decoding program

on a separate disk for added security.

There are many different methods of encrypting information.

A substitution cipher, like the one in this subroutine, is the

easiest to break, since the frequency of words and letters in

English is well-known. In fact, this particular scheme is easier

than most, because it merely moves the entire alphabet one or

more characters to the right, using a code number from 1 to 25

entered by the user. It would be necessary only to figure out the

number and then subtract that from each letter to decode the

data.

However, the object of this subroutine is to provide a simple

encoding procedure that can be slipped into any program and

used to make it more difficult for the casual intruder to read the

data. If you are serious about security, investigate special

encrypting programs, which will doubtless be adapted to the

Commodore 128 by the time this book is published.

LINE-BY-LINE DESCRIPTION

Lines 240-250: Ask for string to encode, and a code number.

Lines 260-280: Access the subroutine and print results.

Line 15010: Null the temporary string, TEMP$.

Line 15020: Begin loop from 1 to length of S$, the string to be

encoded.

Line 15030: Extract middle character from string, at posi

tion N.

Line 15040: Calculate ASCII value of that character.

Lines 15050-15060: Change lowercase to upper, then test to

see if it is an alpha character (other characters are left unchanged).

Line 15070: Add the code to the ASCII value of the character.

Lines 15080-15090: If new value is higher than Z, then wrap

around to beginning of alphabet.

Line 15100: If nonalpha character found, simply pass it

through.

Line 15110: Add character to TEMP$.

112 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 15120: Loop to next character.

Lines 15130-15140: After all characters are examined, store

result in RESULT$, and return.

YOU SUPPLY

String to encode.

SUGGESTED ENHANCEMENTS: Add lines to encode all characters,

in addition to A-Z. Make the encoding algorithm more complex,

so that a different number may represent the same character. For

example, you might make all two-digit numbers higher than 26

that are multiples of 11 represent spaces: 33, 44, 55, 66, etc. Read

up on data encryption to see how truly sophisticated methods can

be.

RESULT

String encoded.

SAMPLE VALUE: THIS IS A SAMPLE = YMNX NX F XFRUQZ

(Code 5)

DECODE STRING

WHAT IT DOES: Decodes strings encoded with previous subroutine.

LEVEL: Intermediate

100

110

120

130

140

150

160

170

180

190

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* DECODE STRING *

++ VARIABLES ++

SUPPLIED BY USER —

S$: STRING TO BE DECODED

RESULT —

String Handling 113

200 REM RESULTS: DECODED STRING

210 REM

220 REM

230 REM *** INITIALIZE ***

240 INPUT "ENTER STRING TO BE DECODED :";S$

250 INPUT "ENTER CODE NUMBER (1 TO 25)";CODE

260 GOSUB 15210

270 PRINT "DECODED STRING :";RESULT?

280 END

15200 REM *** SUBROUTINE ***

15210 TEMP$=""

15220 FOR N=l TO LEN(S$)

15230 B$=MID$(S$,N,1)
15240 B=ASC(B$)

15250 IF B>192 AND B<219 THEN B=B-128

15260 IF B>64 AND B<91 THEN BEGIN

15270 C=B-CODE

15280 IF C<65 THEN C=C+26

15290 BEND

15300 IF B<65 OR B>92 THEN C=B

15310 TEMP$=TEMP$+CHR$(C)

15320 NEXT N

15330 RESULT$=TEMP$

15340 RETURN

HOW TO USE SUBROUTINE

This is the reverse of the previous subroutine. It takes the

code number you enter and decodes the strings you provide using

the same formula. If you forget your code number, you can try all

25 until your encrypted text makes sense.

LINE-BY-LINE DESCRIPTION

Lines 240-250: Ask for string to decode, and a code number.

Lines 260-280: Access the subroutine and print results.

Line 15210: Null the temporary string, TEMP$.

Line 15220: Begin loop from 1 to length of S$, the string to be

decoded.

Line 15230: Extract middle character from string, at posi

tion N.

Line 15240: Calculate ASCII value of that character.

114 THE COMMODORE 128 SUBROUTINE LIBRARY

Lines 15250-15260: Change lowercase to upper, then test to

see if it is an alpha character (other characters are left unchanged).

Line 15270: Subtract the code from the ASCII value of the

character.

Lines 15280-15290: If new value is less than "A", then wrap

around to end of alphabet.

Line 15300: If nonalpha character found, simply pass it

through.

Line 15310: Add character to TEMP$.

Line 15320: Loop to next character.

Lines 15330-15340: After all characters are examined, store

result in RESULT$, and return.

YOU SUPPLY

String to decode.

SUGGESTED ENHANCEMENTS: Write routine so program will

attempt to decode using several different code numbers automat

ically, to help user decode strings where code number is not known.

RESULT

String decoded.

SAMPLE VALUE: YMNX NX F XFRUQZ = THIS IS A SAMPLE

(Code 5)

WORD COUNTER

WHAT IT DOES: Counts the words in a sequential file.

LEVEL: Intermediate

String Handling 115

100 REM ****************

110 REM * *

120 REM * WORD COUNTER *

130 REM * *

140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DATA FILE

190 REM FILENAME IN LINE 15410 OR 15420

200 REM RESULT —

210 REM CU: NUMBER WORDS IN FILE

220 REM CH: NUMBER CHARACTERS IN FILE

230 REM AV: AVERAGE WORD LENGTH

240 REM SW: NUMBER STANDARD WORDS

250 REM

260 REM NOTE: EITHER LINE 15410

270 REM NOTE: OR 15420 MAY BE USED

280 REM

290 REM *** INITIALIZE ***

300 GOSUB 15410

310 PRINT "WORDS :";

320 PRINT USING PLACE??CU

330 PRINT "AVERAGE WORD LENGTH :";

340 PRINT USING PLACE?;AV

350 PRINT "NUMBER OF FIVE-CHARACTER WORDS :";

360 PRINT USING PLACE?;SW

370 END

15400 REM *** SUBROUTINE ***

15410 REM OPEN 1,8,8,"0:FILENAME,S,R"

15420 DOPEN #1,"FILENAME,S",DO,R

15430 DO

15440 GET#1,A?

15450 CH=CH+LEN(A?)

15460 FOR N=l TO LEN(A?)

15470 C?=MID?(A?,N,1)

15480 IF C?=CHR?(32) AND L$OCHR$(32) THEN CU=CU+1

15490 L?=C?

15500 NEXT N

15510 LOOP UNTIL ST

15520 DCLOSE #1

15530 AV=CHAR/CU

15540 SW=CHAR/5

15550 PLACE$="##.#"

15560 RETURN

HOW TO USE SUBROUTINE

Some word processing programs produce simple sequential

text files that can be read into BASIC and manipulated easily.

116 THE COMMODORE 128 SUBROUTINE LIBRARY

This subroutine demonstrates what can be done, using word count

ing as an example. It will read in the file, count the number of

words, and display the words counted, the average word length,

and the number of "average" five-character words in the file. The

latter measure, when compared with average word length, helps

show just how difficult the text is. The shorter the average word

length, presumably the easier the text is to read. This subroutine

considers any space that is preceded by a character that is not a

space to mark the end of a word. This system works pretty well;

double spaces are not counted as word markers, but spaces at the

ends of sentences or at the ends of words do count.

LINE-BY-LINE DESCRIPTION

Line 310: Access the subroutine.

Line 320: Print number of words counted.

Lines 330-340: Print average word length.

Lines 350-360: Print number of five-character words.

Lines 15410-15420: Open the sequential file.

Line 15430: While STATUS variable indicates there is still

information in the file, DO the following loop.

Line 15440: GET a string from the file.

Line 15450: Assign length of the new string to CH, which

keeps track of the total number of characters in the file.

Line 15460: Start FOR-NEXT loop to look at each character

in the string.

Line 15470: Extract single character from middle of the string

at position N.

Line 15480: If the character is a space and the last character

looked at, L$, was not a space, then increment the word counter,

CU.

Line 15490: Assign value of C$ to L$, making it the new last

character read prior to looping again.

Line 15500: Next N.

Line 15510: Loop while ST remains true.

Line 15520: After all information in file has been processed,

close the file.

String Handling 117

Line 15530: Divide the number of characters in the file by

the number of words found to figure average word length.

Line 15540: Calculate standard words by dividing character

total by 5.

Line 15550: Define PLACE$ as PRINT USING format.

YOU SUPPLY

Data file to count.

RESULT

Words in the file counted.

SAMPLE VALUE: Does not apply

GLOBAL SEARCH

WHAT IT DOES: Searches a file for a string and replaces each

occurrence with a new string.

LEVEL: Intermediate

100 REM *****************

110 REM * *

120 REM * GLOBAL SEARCH *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DATA FILE

190 REM FILENAMES IN LINE 15610 AND 15620

200 REM RESULT —

210 REM S$: STRING TO SEARCH FOR

220 REM RE$: STRING TO REPLACE WITH

230 REM

240 REM

250 REM *** INITIALIZE ***

260 GOSUB 15610

270 PRINT "SEARCH/REPLACE COMPLETED"

280 END

118 THE COMMODORE 128 SUBROUTINE LIBRARY

15600 REM *** SUBROUTINE ***

15610 DOPEN #1,"FILENAME"

15620 DOPEN #2,"FILE2NAME,S",W

15630 INPUT "ENTER STRING TO SEARCH FOR :";S$

15640 INPUT "ENTER STRING TO REPLACE WITH :";RE$

15650 DO

15660 INPUT#1,A$

15670 P=1:R=INSTR(A$,S$,P)

15690 IF R=0 GOTO 15750

15700 L$=LEFT$(A$,R-1)

15710 E=LEN(S$)

15720 R$=MID$(A$,R+E)

15730 A$=L$+RE$+R$

15740 P=INSTR(A$,RE$,P)+LEN(RE$)-1

15750 PRINT #2,A$;

15760 LOOP UNTIL ST

15770 DCLOSE #2

15780 DCLOSE #1

15790 RETURN

HOW TO USE SUBROUTINE

This subroutine will search through a file, changing all

occurrences of the string you specify with the one you wish to

replace it with. Useful for word processing and other applications.

LINE-BY-LINE DESCRIPTION

Line 260: Access the subroutine.

Line 270: Notify operator of completion of task.

Line 15610: Open file name to read.

Line 15620: Open file name for new file with changes.

Line 15630: Ask for string to search for.

Line 15640: Ask for replacement string.

Line 15650: Start DO loop.

Line 15660: GET string from the file.

Line 15670: Define position to begin search, P, as 1 for start

of search of this string.

Line 15690: If it is not present in string, go to the file write

routine.

Line 15700: Take left portion of the string, up to position

where the search string was found (this is the same as the Re

place String subroutine).

String Handling 119

Line 15710: Define the position of the search string as E.

Line 15720: Take the right portion of the string.

Line 15730: Assemble new string.

Line 15740: Redefine P to position following where search

string was found.

Line 15750: Print new string to new file.

Line 15760: Loop until STATUS indicator shows that no

more information is in the file.

Lines 15770-15780: Close both files.

YOU SUPPLY

Sequential file to process.

SUGGESTED ENHANCEMENTS: You may write the new string

segment to the file immediately and thus avoid the problem of

having A$ possibly longer than 255 characters. Use of a semicolon

at the end of the PRINT # statement will allow you to put each

successive part of the current string being processed back as a

continuous stream of characters. Only the CHR$(13) (carriage

returns) that marked the original file will be transported over to

the new one. Study sequential files in the Commodore 128 Pro

grammer's Reference Guide for more information on this.

RESULT

File searched and replacement made.

SAMPLE VALUE: Does not apply

5
GAME

ROUTINES

Games are probably among the most popular programming exer

cises for beginners and advanced users alike. On your first day

with a computer you can easily learn to write a "craps"-playing

computer program. Those Commodore 128 users who are not all

business will probably at some time write an arcade-quality joystick-

activated, shoot-em up. What they learn in writing games may

have broad applications in other areas of programming as well.

In any case you can use some of the routines in this book to

avoid reinventing the wheel. Actually, the subroutines useful for

games programming are not confined to this section. Many of the

modules presented in other chapters can be transplanted to games

121

122 THE COMMODORE 128 SUBROUTINE LIBRARY

programs. Those here are labeled "games routines" because they

are particularly apt.

Three routines deal with universal tools of games: decks of

cards, rolling dice, and flipping coins. We've tried to take even

these basic routines beyond the basic. The dice module allows you

to specify more than two dice; you can roll five or six or more

during one roll. The dice can be rc-sided as well; they are not

limited to the standard six sides. Dungeon and Dragons players

take note.

The coin-flip (coins are actually just two-sided dice, if you

think about it) has been spiced up by an animation routine that

makes it seem as if the coin is actually being thrown up in the air

prior to landing heads or tails. While a simple subroutine isn't

sufficient to provide full-fledged graphics images of real playing

cards, our subroutine shows how to deal a deck efficiently and

uses the Commodore 128's graphics characters to portray suits.

Randomness is briefly explored in a pair of routines, and the

chapter starts off with a comprehensive look at accessing the

joysticks to manipulate objects on the screen. Subroutines are

provided to move objects on both the 40-column and 80-column

screens, as is a keyboard-joystick simulation module for those who

want to use the cursor keys instead of hunting up a joystick to

plug in. Several of the routines allow you to draw on the screen in

colors, an introduction to the more sophisticated graphics work

that follows in Chapter 6.

USING JOYSTICKS

Let's start off with one of the most mystifying capabilities of

the Commodore 128: joystick manipulation of screen objects. All

of us have marveled at arcade-quality games for the Commodore

128 that let the player use a joystick to move a space ship, racing

car, or other token around on the screen while firing "missiles" at

oncoming attackers.

Unfortunately, getting objects, sprites, or other things to move

is not just a matter of joystick action directly causing movement

Game Routines 123

in a desired direction. The process is a bit more complex than

that, and this chapter includes no less than ten joystick subrou

tines to explore different aspects of it.

From a programmer's standpoint, the use of the joysticks

breaks down into several neat modules. When dealing with

nonsprite objects, we need to know where on the Commodore

128's screen the object to be moved is. We also must check, as

often as possible, the status of the player's joystick to see if it is

pressed in any direction, or if the FIRE button has been de

pressed. If so, the programmer must update the location of the

object on the screen. This is usually done by changing the value

of the location where the object is printed, by adding or subtract

ing. We need to put the object in the new position and, if we do

not want to leave a "trail" behind the object, we need to erase its

image from the old location.

The joystick routines have been included in this section to

allow several different types of object movement in your pro

grams. Some allow moving an object only in north/south, east/

west directions. Others allow diagonal movement as well and tell

you when the fire button has been pressed.

One subroutine demonstrates how to move an object by eras

ing its old position after the move has been made. The others

illustrate leaving a trail behind the moving object. Both types of

movement will be useful for game programs.

A final type of subroutine brings all the elements together in

a short program that will allow you to draw on the screen using a

joystick.

80-COLUMN JOYSTICK—HORIZONTAL MOVEMENT

WHAT IT DOES: Moves object left and right only.

LEVEL: Advanced

124 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ************************

110 REM * *

120 REM * 80 COLUMN JOYSTICK *

130 REM * HORIZONTAL MOVEMENT *

140 REM * *

150 REM ************************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR?: CURSOR CHARACTER

210 REM ROW: ROW DESIRED

220 REM JOYSTICK MOVEMENT

230 REM RESULT —

240 REM CURSOR MOVES ACROSS SCREEN

250 REM IN DESIRED ROW. FLASHES RED

260 REM WHEN FIRE BUTTON IS PRESSED.

270 REM

280 REM

290 REM *** INITIALIZE ***

300 ROW=20

310 CURSR$=CHR$(209)

320 GOTO 17010

17000 REM *** SUBROUTINE ***

17010 PRINT CHR$(154)

17020 P=l

17030 DATA -0,-0,+l,0,0,0,-1,0

17040 FOR N=l TO 8

17050 READ P(N)

17060 NEXT N

17070 SCNCLR

17080 P$(3)=CHR$(29)

17090 P$(7)=CHR$(157)

17100 FOR N=l TO ROW:PRINT CHR$(17):NEXT N

17110 GOTO 17130

17120 PRINT CHR$(157);

17130 A=JOY(1)

17140 PRINT CHR$(154);

17150 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

17160 IF FLAG=1 THEN PRINT CHR$(42);CHR$(157);CHR$(150);

17170 P=P+P(A)

17180 PRINT CHR$(32);CHR$(157);

17190 IF P<1 OR P>79 THEN P=P-P(A):GOTO 17130

17200 B$=P$(A)

17210 PRINT B$;CURSR$;

17220 GOTO 17120

HOW TO USE THE SUBROUTINE

While the Commodore 128's ports can be used with joysticks,

paddles, light pens, and other accessories, the joysticks are proba-

Game Routines 125

bly the most flexible controllers for games. They can be used to

control movement in all directions as well as just from left to

right, like a paddle.

A paddle is like a potentiometer or volume control that re

turns an analog value, i.e., some number you supply between 0

and 255, depending on how far the paddle has been turned. It

provides an absolute indication of where the object should be on

the screen, the horizontal or vertical coordinate, so to speak,

relative to the paddle's position. Unfortunately, a small move

ment of the paddle can result in a large movement of the object

on the screen. The use of paddles from BASIC is not recom

mended by Commodore, because they can be unreliable.

Some games work better when the joystick control is used for

movement left and right. The joystick is not an absolute equiva

lent of a paddle. The nonanalog joysticks used with the Commo

dore 128 have no way of indicating exactly where on the screen

an object should be. Instead, the joystick will indicate a zero when

not pressed in a direction and a number when that switch is closed.

This approach makes game programming simpler. When the

joystick is pressed to the right, move the object one position to the

right. Keep doing that as long as the joystick remains pressed

rightward.

This subroutine will tell you whether or not the joystick is

pressed to the right or left, plus report on the status of the FIRE

button. Your program should repeatedly check to see which direc

tion (if any) is indicated and take action accordingly. Sample

movement is provided and explained below under Line-by-Line

Description.

Because of the complexity of this topic, some of the descrip

tions in this chapter will be a bit more verbose than those in

earlier parts of the book.

LINE-BY-LINE DESCRIPTION

Line 300: You'll be moving the object only in a single row on

the screen, simulating a paddle such as used in games like Break

out. Here the row is defined as row 20.

126 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 310: The object being moved, which we'll call CURSR$,

is defined as CHR$(209), a solid ball.

Line 320: The subroutine is accessed from here. In this case

the routine is a standalone program and not a subroutine, so

calling it is not really necessary.

Line 17010: Change character color to light gray.

Line 17020: Define initial position of cursor as 1.

Line 17030: DATA lines showing direction cursor should

move when a given value of JOY(n) is returned.

Lines 17040-17060: Read those values to the array P(n).

Line 17070: Clear the screen.

Lines 17080-17090: Define P$(3) as CHR$(29), the CURSOR

RIGHT character, and P$(7) as the CURSOR LEFT character.

Line 17100: Move cursor down ROW rows, by printing

CHR$(17), which is the cursor down character.

Line 17110: Skip to the "read joystick" line.

Line 17120: Move the cursor to the left, using CHR$(157), the

CURSOR LEFT character. This is done at the start of each loop

through the joystick routine. The reason will become apparent

shortly.

Line 17130: Store in variable A the value returned by read

ing Joystick 1. This value will vary depending on how the joystick

is pressed. If it is set to neutral position, a 0 will be returned. If it

is pressed up, a value of 1 will be returned. As it proceeds

around the "compass" to northeast, east, southeast, south, etc.,

the value will range from 2 to 3 to 4 to 5, and so forth. If the

FIRE button is also pressed, these numbers are increased by 128.

Line 17140: Change character color back to light gray.

Line 17150: If A is greater than 127, then the joystick button

is pressed too. In that case, set FLAG to equal 1 to show that the

joystick button is pressed. Then subtract 128 from A to reveal the

actual direction, 0-8, that the stick is oriented toward. If A is not

more than 127, then set FLAG to 0 to show that the joystick

button is not pressed.

Line 17160: If FLAG equals 1, we want to show the user that

the FIRE button has been pressed. In your programs you may have

some action take place. A sound will make noise. Perhaps a

Game Routines 127

missile will be released. For this subroutine's demonstration,

you'll only make the cursor flash red. So, print CHR$(42), an

asterisk, to make the cursor "glimmer" a little. Then, because the

cursor has moved one space to the right after printing the aster

isk, move it back to its original position by printing CHR$(157),

the CURSOR LEFT symbol. Next, print CHR$(150) to change the

cursor to red. Notice that semicolons separate each character

printed to make sure they are printed one after another on the

same line. Of course, only the asterisk is an actual printable

character, so the CURSOR LEFT character is required only after it.

Line 17170: P represents the horizontal position on the row

where the cursor resides. If the joystick is oriented left or right,

you need to change the value of P. You do this by taking P and

adding to it the value stored in P(A). Notice from the data lines

that P(A) has 0s, except in positions 3 and 7, which correspond to

right and left. If JOY(l) returns a 3, then the joystick is pressed

right and the value of P(3), which is +1, will be added to P. If

JOY(l) returns a 7, then the joystick is pressed left and a -1 will

be added to P. Any other orientation adds a 0 to P and leaves it in

the same place.

Line 17180: Since you don't want to leave a trail behind the

moving object, before printing an image of the cursor in the new

location, you first need to erase it from its old location. That

is done here, by printing a space, CHR$(32), followed by the

CHR$(157) that moves it back to the now-empty old location.

Line 17190: You don't want the cursor to move beyond the

limits of the screen. Here you check to see that P is not less than

1 or more than 79, which would take it to the limits of the

80-column screen. If it is, then reverse the move (which hasn't

been implemented yet) by subtracting from P the value you have

just added.

Line 17200: Variable B$ takes on the value stored in P$(A),

which, like P(A) will have either a left- or right-moving value.

You PRINT B$, which moves the cursor left or right (or leaves it

in place, if A = 0), followed by the CURSR$.

Line 17210: The whole process repeats to account for the next

move.

128 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

Just move joystick. ROW can be defined as the screen row on

which the object moves. CURSR$ can be defined as any character

you wish.

SUGGESTED ENHANCEMENTS: None.

RESULT

Object will move on screen under joystick control, left or right

only.

80-COLUMN JOYSTICK—VERTICAL MOVEMENT

WHAT IT DOES: Moves object in north and south directions only.

LEVEL: Intermediate

100 REM **********************

110 REM * *

120 REM * 80 COLUMN JOYSTICK *

130 REM * VERTICAL MOVEMENT *

140 REM * *

150 REM **********************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR$: CURSOR CHARACTER

210 REM COL: COLUMN DESIRED

220 REM JOYSTICK MOVEMENT

230 REM RESULT —

240 REM CURSOR MOVES UP AND DOWN

250 REM IN DESIRED COLUMN. FLASHES RED

260 REM WHEN FIRE BUTTON IS PRESSED.
270 REM

280 REM

290 REM *** INITIALIZE ***

300 COLUMN=5

310 CURSR$=CHR$(209)

320 GOTO 17310

17300 REM *** SUBROUTINE ***

Game Routines 129

17310 PRINT CHR$(154)

17320 P=l

17330 DATA -1,0,0,0,+1,0,0,0

17340 FOR N=l TO 8

17350 READ P(N)

17360 NEXT N

17370 SCNCLR

17380 P$(1)=CHR$(145)

17390 P$(5)=CHR$(17)

17400 FOR N=l TO COL:PRINT CHR$(29);:NEXT N

17410 GOTO 17430

17420 PRINT CHR$(157);

17430 A=JOY(1)

17440 PRINT CHR$(154);

17450 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

17460 IF FLAG=1 THEN PRINT CHR$(42);CHR$(157);CHR$(150);
17470 P=P+P(A)

17480 PRINT CHR$(32);CHR$(157);

17490 IF P<1 OR P>24 THEN P=P-P(A):GOTO 17430

17500 B$=P$(A)

17510 PRINT B$;CURSR$;

17520 GOTO 17420

HOW TO USE SUBROUTINE

This is the same as the last routine, but with up/down

movement only. You may define the column you want the object

to move in.

LINE-BY-LINE DESCRIPTION

This routine is basically identical to the last, with the follow

ing exceptions:

Line 300: COLUMN is defined, rather than ROW.

Line 17330: DATA elements are arranged to reflect up and

down motion instead of side to side.

Lines 17380-17390: The up/down cursor movement charac

ters are defined instead of the side-to-side characters.

Line 17490: The limits of movement are from 1 to 24, the

height of the screen.

130 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

Joystick movement.

SUGGESTED ENHANCEMENTS: None.

RESULT

Object moves up and down only, under joystick control.

80-COLUMN JOYSTICK—ALL DIRECTIONS

WHAT IT DOES: Moves object diagonally, north, south, east, and

west.

LEVEL: Advanced

100 REM ***********************

110 REM * *

120 REM * 80 COLUMN JOYSTICK *

130 REM * — ALL DIRECTIONS *

140 REM * *

150 REM ***********************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR$: CURSOR CHARACTER

210 REM JOYSTICK MOVEMENT

220 REM RESULT —

230 REM CURSOR MOVES AROUND SCREEN

240 REM FLASHES RED WHEN FIRE BUTTON'

250 REM IS PRESSED.

260 REM

270 REM

17600 REM *** SUBROUTINE ***

17610 PRINT CHR$(154)

17620 CURSR$=CHR$(209)

17630 DATA -80,-79,+1,+81,+80,+79,-1,-81

17640 FOR N=l TO 8

17650 READ P(N)

17660 NEXT N

17670 P=l

17680 SCNCLR

Game Routines 131

17690 P$(1)=CHR$(145)

17700 P$(2)=CHR$(145)+CHR$(29)
17710 P$(3)=CHR$(29)

17720 P$(4)=CHR$(17)+CHR$(29)
17730 P$(5)=CHR$(17)

17740 P$(6)=CHR$(17)+CHR$(157)
17750 P$(7)=CHR$(157)

17760 P$(8)=CHR$(157)+CHR$(145)
17770 GOTO 17790

17780 PRINT CHR$(157);

17790 A=JOY(1)

17800 PRINT CHR$(154);

17810 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

17820 IF FLAG=1 THEN PRINT CHR$(42);CHR$(157);CHR$(150);
17830 P=P+P(A)

17840 PRINT CHR$(32);CHR$(157);

17850 IF P<1 OR P>1920 THEN P=P-P(A):GOTO 17790
17860 B$=P$(A)

17870 PRINT B$;CURSR$;

17880 GOTO 17780

HOW TO USE SUBROUTINE

Games like PacMan (TM) and maze chases work best if the

object can be moved only in a north, south, east, and west direc

tion. Some programs need diagonal movement as well.

This subroutine will allow moving an object in any direction

with a joystick. The movement can be adapted to many types of

games as well as to other programs where input with a joystick is

desirable. Call the subroutine every time you wish to check on

the status of the joysticks.

LINE-BY-LINE DESCRIPTION

Key differences between the previous two routines will be

pointed out. A main difference here is that P, instead of repre

senting a position within a row or column, will represent an abso

lute screen location from 1 (the upper-left-hand corner of the

screen) to 1920 (in the lower right of the next-to-last row).

Line 17630: Here in the DATA lines, values are stored for all

eight possible nonzero numbers returned from JOY(l). For example,

if the joystick is pressed up, then JOY(l) will equal 1, and P(l)

equals -80. Since you are using an 80-column screen, subtracting

80 from P will move the object upward one whole row. Adding 80

132 THE COMMODORE 128 SUBROUTINE LIBRARY

to P will move it one whole row downward. Adding 81 would

move it one row down and one place to the right, while 79

would move it down one row but one to the left (+ 80 plus -1

equals 79).

Lines 17690-17760: Here values are produced for P$(n) using

CHR$ codes that correspond to the cursor movement you want to

achieve. That is, CHR$(145) + CHR$(29) moves the cursor in a

northeast direction. Note that P$(n) actually does the movement

of the cursor; P only keeps track of where the cursor is on

the screen for you so you can keep it from moving off the screen

area.

Line 17850: Here is where you check on the position of the

cursor to make sure it isn't outside the screen limits. Actually,

the cursor would not move from the screen; however you would

lose track of where it really was if you didn't impose this

limit.

YOU SUPPLY

Simply move joysticks.

SUGGESTED ENCHANCEMENTS: None.

RESULT

Object will move on screen.

80-COLUMN JOYSTICK—COLOR DRAWING

WHAT IT DOES: Draws on screen in color.

LEVEL: Intermediate

Game Routines 133

100 REM ***********************

110 REM * *

120 REM * 80 COLUMN JOYSTICK *

130 REM * COLOR DRAWING *

140 REM * *

150 REM ***********************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR$: CURSOR CHARACTER

210 REM JOYSTICK MOVEMENT

220 REM RESULT —

230 REM CURSOR MOVES AROUND SCREEN

240 REM FIRE BUTTON CHANGES COLORS

250 REM

260 REM

17900 REM *** SUBROUTINE ***

17910 DIM C(16)

17920 PRINT CHR$(154)

17930 CURSR$=CHR$(209)

17940 DATA -80,-79,+1,+81,+80,+79,-1,-81

17950 DATA 149,150,151,152,153,154,155,156,158,

159,144,5,28,30,31

17960 FOR N=l TO 8

17970 READ P(N)

17980 NEXT N

17990 FOR N=l TO 15

18000 READ C(N*

18010 NEXT N

18020 COLR=1

18030 PRINT CHR$(COLR);

18040 P=l

18050 SCNCLR

18060 P$(1)=CHR$(145)

18070 P$(2)=CHR$(145)+CHR$(29)

18080 P$(3)=CHR$(29)

18090 P$(4)=CHR$(17)+CHR$(29)

18100 P$(5)=CHR$(17)

18110 P$(6)=CHR$(17)+CHR$(157)

18120 P$(7)=CHR$(157)

18130 P$(8)=CHR$(157)+CHR$(145)

18140 GOTO 18160

18150 PRINT CHR$(157);

18160 A=JOY(1)

18170 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

18180 IF FLAG=1 THEN BEGIN

18190 COLR=COLR+1

18200 IF COLR=16 THEN COLR=1

18210 PRINT CHR$(C(COLR));

18220 FLAG=0

18230 BEND

18240 P=P+P(A)

18250 REM PRINT CHR$(32);CHR$(157);
18260 IF P<1 OR P>1920 THEN P=P-P(A):GOTO 18160

134 THE COMMODORE 128 SUBROUTINE LIBRARY

18270 IF P/80=INT(P/80) THEN P=P-P(A):GOTO 18160

18280 B$=P$(A)

18290 PRINT B$;CURSR$;

18300 GOTO 18150

HOW TO USE SUBROUTINE

Use the joystick to move the object around on the screen.

Pressing the FIRE button changes the cursor color. You may

cycle through all the colors available and return to the original.

LINE-BY-LINE DESCRIPTION

This routine is similar to the previous one, with the following

additions:

Line 17910: This array stores the CHR$ codes for the individ

ual colors available.

Line 17950: The CHR$ codes are listed here and read into the

array by lines 17990-18010.

Line 18020: The initial color used is defined here.

Lines 18180-18230: When the FIRE button is pressed, COLR

is incremented by 1. IF COLR reaches a value of 16, it is returned

to 1, thus wrapping around through all available colors.

Line 18250: Note that the line that printed CHR$(32) to

erase the character left behind has been deactivated with a REM

statement. You may delete it entirely. Instead of moving the

object on the screen, you also leave a trail of that object behind,

thus drawing on the screen.

Line 18270: This is a new feature. In this line, the program

checks to see if the cursor happens to be at the extreme edge of

the screen. If so, the move is disallowed. This keeps the cursor

from moving off the edge and wrapping around to the next line,

which was allowed with the previous subroutines. You may or

may not want this feature in your own program.

YOU SUPPLY

Move object under joystick control, changing colors and draw
ing on screen.

Game Routines 135

SUGGESTED ENHANCEMENTS: You can adapt this or any of the

80-column joystick routines to the 40-column screen by adjusting

a few values. For example, the 80's in line 18270 should be

changed to 40. The 1920 screen positions in line 18260 should be

reduced to account for the fewer (40 x 24 or 40 x 25, depending on

whether you want to leave the last line of the screen clear for

text) printing positions on the 40-column screen.

RESULT

Images drawn on screen.

40-COLUMN JOYSTICK—HORIZONTAL MOVEMENT

(Commodore 64 Compatible)

WHAT IT DOES: Moves object left or right on 40-column screen.

LEVEL: Advanced

100 REM ****************************

110 REM *

120 REM * 40 COLUMN JOYSTICK

130 REM * MOVE LEFT OR RIGHT

140 REM * (COMMODORE 64 COMPATIBLE)

150 REM *

160 REM ****************************

170 REM

180 REM

190 REM

200 REM

210 REM

220 REM

230 REM

240 REM

250 REM

260 REM

270 REM

280 REM

290 REM

300 REM

310 REM *** INITIALIZE ***

320 DIM D(10)
330 DATA 0,0,0,-1,0,0,0,1,0,0

++ VARIABLES ++

ROW:

B:

E:

Bl:

CURSR:

CO:

MOVE:

CH:

DF:

ROW TO MOVE IN

BEGINNING OF THAT ROW

END OF THAT ROW

POSITION OF CURSOR

CURSOR CHARACTER

CURSOR COLOR

DIRECTION OF MOVE

CHARACTER MEMORY

CSCREEN-CH

CSCREEN: COLOR MEMORY

136 THE COMMODORE 128 SUBROUTINE LIBRARY

340 FOR X=l TO 10

350 READ D(X)

360 NEXT X

370 PRINT CHR$(147)

380 CSCREEN=55296

390 CH=1024

400 ROW=5

410 B1=CH+ROW*40

420 E=Bl+39

430 B=B1

440 DF=CSCREEN-CH

450 POKE 53281,1

460 CURSR=43:CO=2

470 GOTO 18470

18400 REM *** SUBROUTINE ***

18410 JV=PEEK(56320)

18420 J1=JVAND16

18430 F1=15-(JVAND15)

18440 MOVE=D(F1)

18450 RETURN

18460 REM *** MOVE CURSOR ***

18470 GOSUB 18410

18480 IF MOVEOO THEN POKE Bl,32

18490 B1=B1+MOVE

18500 IF BKB OR B1>E THEN B1=B1-MOVE

18510 POKE B1,CURSR

18520 POKE B1+DF,CO

18530 GOTO 18470

HOW TO USE SUBROUTINE

Previous subroutines have dealt with the 80-column Commo

dore 128 text screen. Many times your programs will be written

only for the 40-column screen. If you want the program to be

compatible with the broadest range of users, the 40-column screen

is your best bet, since not all Commodore 128 owners will have

the Commodore dual-mode monitor or another RGB monitor nec

essary for 80-column display. In addition, your program may

want to manipulate objects on the 40-column bit-mapped screen

for high-resolution graphics.

This subroutine was written for the 40-column text screen (a

bit-map joystick routine is provided in the next chapter). It is not

based on the techniques used for the previous subroutines; hints

Game Routines 137

have already been provided to let you convert those routines to

40-column use.

Instead, this subroutine was written without using the Com

modore 128's JOY(n) commands. We've used only the PEEKing

and POKing techniques that were previously necessary with the

Commodore 64. As a result, the subroutines that follow are com

patible with the Commodore 128 (which accepts most Commodore

64 commands) in either 128 mode or 64 mode. It is useful for

those who are writing programs to be run on both machines with

the 40-column screen. If you avoid using other BASIC 7.0 com

mands, your software can be used by either machine interchange

ably.

LINE BYLINE DESCRIPTION

Lines 320-360: DIMension an array for the movement infor

mation, and load it into array D(n).

Line 370: Clear the screen (SCNCLR is not available in

Commodore 64 mode).

Line 380: Define the position of color memory. This routine

does not use cursor movement commands to position the object on

the screen. Instead, you will POKE characters directly to charac

ter memory and screen memory. CSCREEN is the start of a

1000-position memory map that keeps track of the color of the

character printed at that position.

Line 390: Define the position of the character memory. This

is another 1000-position memory map. Each memory location

stores what character is printed there.

Line 400: Define the row for movement.

Line 410: Bl will keep track of the position in character

memory of the object. Here its initial value is calculated as the

start of character memory, plus the row number times 40.

Line 420: E is the farthest right the object will be allowed to

move, to the end of ROW.

Line 430: B is the farthest left the object will be allowed to

move, defined as Bl here, since the value of Bl will change.

Line 440: DF is the difference between the two memory

138 THE COMMODORE 128 SUBROUTINE LIBRARY

addresses. You need then only keep track of one of them, POKE

to that location, and then POKE to that value plus the difference

between them to take care of the second map.

Line 450: This POKE changes the screen color.

Line 460: Define the cursor character as a cross-hair, and the

initial color as red.

Line 18410: This short routine takes the place of the JOY(n)

function in BASIC 7.0. JV captures the information found in the

joystick register.

Line 18420: The Commodore computer uses several different

bits within that byte to mean different things, so you must use

Boolean logic (discussed more completely in Chapter 9) to extract

the value of the relevant bit. Jl stores the value that indicates

whether the FIRE button has been pressed.

Line 18430: Fl tells you the direction the joystick has been

pressed.

Line 18440: MOVE will equal one of the values in the array

D(n). Since you want only horizontal movement, all but two of

the values will be 0, so you can have only +1 and -1 movement.

Line 18470: Here the joystick-reading subroutine is called

each time through the loop.

Line 18480: If a new MOVE is indicated, POKE the old

location of the cursor with a space to erase it.

Line 18490: Add MOVE to Bl.

Line 18500: If this would take the cursor beyond the limits set

up, nullify the move.

Line 18510: POKE Bl (character memory) with the cursor

character.

Line 18520: POKE Bl + DF (color memory) with the color, CO.

Line 18530: Repeat.

YOU SUPPLY

Joystick movement and a definition for CURSR and CO if

you wish.

RESULT

Object moves left/right on screen.

Game Routines 139

40-COLUMN JOYSTICK—VERTICAL MOVEMENT

WHAT IT DOES: Moves object up and down on screen.

LEVEL; Intermediate

100 REM **********************

110 REM * *

120 REM * 40 COLUMN JOYSTICK *

130 REM * VERTICAL MOVEMENT *

140 REM * *
150 REM **********************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR$: CURSOR CHARACTER

210 REM COL: COLUMN DESIRED

220 REM JOYSTICK MOVEMENT

230 REM RESULT —

240 REM CURSOR MOVES UP AND DOWN

250 REM IN DESIRED COLUMN. FLASHES RED

260 REM AND BEEPS WHEN FIRE PRESSED.

280 REM

290 REM *** INITIALIZE ***

300 COLUMN=2

310 CURSR$=CHR$(161)

320 GOTO 18610

18600 REM *** SUBROUTINE ***

18610 PRINT CHR$(154)

18620 P=l

18630 DATA -1,0,0,0,+l,0,0,0

18640 FOR N=l TO 8

18650 READ P(N)

18660 NEXT N

18670 SCNCLR

18680 P$(1)=CHR$(145)+CHR$(145)

18690 P$(5)=CHR$(17)+CHR$(17)

18700 FOR N=l TO COL:PRINT CHR$(29);:NEXT N

18710 GOTO 18730

18720 PRINT CHR$(157);

18730 A=JOY(1)

18740 PRINT CHR$(154);

18750 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

18760 IF FLAG=1 THEN BEGIN

18770 PRINT CHR$(42);CHR$(157);CHR$(150);

18780 VOL 5

18790 SOUND 1,4096,10

18800 BEND

140 THE COMMODORE 128 SUBROUTINE LIBRARY

18810 P=P+P(A)

18820 PRINT CHR$(32);CHR$(157);

18830 IF P<1 OR P>24 THEN P=P-P(A):GOTO 18730

18840 B$=P$(A)

18850 PRINT B$;CURSR$;

18860 GOTO 18720

HOW TO USE SUBROUTINE

The Commodore 64-compatible routine just presented can be

adapted for vertical movement if you change the data lines and

make a few other modifications.

So, return to Commodore 128 mode with this routine for

vertical movement on the 40-column screen. It is based on the

80-column vertical subroutine, with the addition of sound. A beep

is heard when the joystick button is pressed.

LINE-BY-LINE DESCRIPTION

There are the following differences:

Line 18780: Turn volume to level 5.

Line 18790: Use voice 1 to make a sound at frequency 4096

for 10 "jiffies," or about one-sixth second.

YOU SUPPLY

Column to move in, cursor character, joystick movement.

RESULT

Object moves up and down on screen in designated column.

40-COLUMN JOYSTICK—MOVE ALL DIRECTIONS

(Commodore 64 Compatible)

WHAT IT DOES: Moves object all directions.

LEVEL: Advanced

Game Routines 141

100 REM *****************************

110 REM * *
120 REM * 40 COLUMN JOYSTICK *
130 REM * MOVE ALL DIRECTIONS *

140 REM * (COMMODORE 64 COMPATIBLE) *

150 REM * *
160 REM *****************************

170 REM

180 REM ++ VARIABLES ++

190 REM CSCREEN: COLOR MEMORY

200 REM CH: CHARACTER MEMORY

210 REM DF: CSCREEN-CH

220 REM Bl: POSITION OF CURSOR

230 REM MOVE: DIRECTION OF MOVE

240 REM CURSR: CURSOR CHARACTER

250 REM CO: CURSOR COLOR

260 REM

270 REM

280 REM *** INITIALIZE ***

290 DIM D(10)

300 DATA -40,40,0,-1,-41,39,0,1,-39,41

310 FOR X=l TO 10

320 READ D(X)

330 NEXT X

340 PRINT CHR$(147)

350 CSCREEN=55296

360 CH=1024

370 E=CH+1000

380 B1=CH

390 DF=CSCREEN-CH

400 POKE 53281,1

410 CURSR=43:CO=2

420 GOTO 18870

18800 REM *** SUBROUTINE ***

18810 JV=PEEK(56320)

18820 J1=JVAND16

18830 F1=15-(JVAND15)

18840 MOVE=D(F1)

18850 RETURN

18860 REM *** MOVE CURSOR ***

18870 GOSUB 18810

18880 B1=B1+MOVE

18890 IF BKB OR B1>E THEN B1=B1-MOVE

18900 POKE Bl,CURSR

18910 POKE B1+DF,CO

18920 GOTO 18870

142 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

This is an enhancement of the 40-column Commodore 64-

mode-compatible routine presented earlier. This one allows moving

the object in vertical, horizontal, and diagonal directions.

LINE-BY-LINE DESCRIPTION

The changes are as follows:

Line 300: DATA is provided for other directions as well as

horizontal.

Lines 370-380: The beginning and end of allowable move

ment are defined as the beginning and ending positions of the

screen.

YOU SUPPLY

Joystick movement.

SUGGESTED ENHANCEMENTS: None.

RESULT

Object moves all directions under joystick control.

40-COLUMN JOYSTICK—COLOR DRAWING

WHAT IT DOES: Allows drawing on the screen in color, changing

the cursor color and character.

LEVEL: Intermediate

Game Routines 143

100 REM ***********************

110 REM * *

120 REM * 40 COLUMN JOYSTICK *

130 REM * COLOR DRAWING *

140 REM * *

150 REM ***********************

160 REM

170 REM ++ VARIABLES ++

180 REM

190 REM USER SUPPLIES —

200 REM CURSR?: CURSOR CHARACTER

210 REM JOYSTICK MOVEMENT

220 REM RESULT —

230 REM CURSOR MOVES AROUND SCREEN

240 REM FIRE BUTTON CHANGES COLORS

250 REM AND CURSOR CHARACTER

260 REM

270 REM

280 REM *** INITIALIZE ***

290 DIM C(16)

300 PRINT CHR$(154)

310 CURSR=209

320 CURSR$=CHR$(CURSR)

330 DATA -40,-39,+1,+41,+40,+39,-1,-41

340 DATA 149,150,151,152,153,154,155,156,158,159,144,5,28,30,31

350 FOR N=l TO 8

360 READ P(N)

370 NEXT N

380 FOR N=l TO 15

390 READ C(N)

400 NEXT N

410 COLR=1

420 PRINT CHR$(COLR);

430 P=l

440 SCNCLR

450 P$(1)=CHR$(145)

460 P$(2)=CHR$(145)+CHR$(29)

470 P$(3)=CHR$(29)

480 P$(4)=CHR$(17)+CHR$(29)

490 P$(5)=CHR$(17)

500 P$(6)=CHR$(17)+CHR$(157)

510 P$(7)=CHR$(157)

520 P$(8)=CHR$(157)+CHR$(145)

530 GOTO 19310

19290 REM *** SUBROUTINE ***

19300 PRINT CHR$(157);

19310 A=JOY(1)

19320 IF A=129 THEN BEGIN

19330 CURSR=CURSR+1

19340 IF CURSR>255 THEN CURSR=255

19350 CURSR$=CHR$(CURSR)

19360 BEND:GOTO 19310

19370 IF A=133 THEN BEGIN

144 THE COMMODORE 128 SUBROUTINE LIBRARY

19380 CURSR=CURSR-1

19390 IF CURSRO2 THEN CURSR=32

19400 CURSR$=CHR$(CURSR)

19410 BEND:GOTO 19310

19420 IF A>127 THEN FLAG=1:A=A-128:ELSE FLAG=0

19430 IF FLAG=1 THEN BEGIN

19440 COLR=COLR+1

19450 IF COLR=16 THEN COLR=1

19460 PRINT CHR$(C(COLR));

19470 FLAG=0

19480 BEND

19490 P=P+P(A)

19500 REM PRINT CHR$(32);CHR$(157);

19510 IF P<1 OR P>1000 THEN P=P-P(A):GOTO 19310

19520 IF P/40=INT(P/40) THEN P=P-P(A):GOTO 19310

19530 B$=P$(A)

19540 PRINT B$;CURSR$;

19550 SOUND 1,3000,2

19560 GOTO 19300

HOW TO USE SUBROUTINE

This routine lets you draw on the screen in color, with the

added enhancement of letting you change the cursor color and the

cursor character with the FIRE button.

To cycle through the available colors, press the joystick but

ton while the stick itself is centered in the neutral position. When

the joystick is pressed upward while the FIRE button is pressed,

the cursor character will be changed to the next higher ASCII

value instead.

LINE-BY LINE DESCRIPTION

The operation of this drawing subroutine is similar to

previous examples. However, the following additions have been

made:

Line 19370: If A equals 133, then the FIRE button was

pressed while the joystick was oriented upward. So, begin the

following loop:

Line 19380: Reduce CURSR character to 1 less than the

current value.

Line 19390: However, don't let it become less than CHR$(32),

a space. A space will cause the cursor to print blanks along the

Game Routines 145

screen. Instead change to 127. Note that with this routine, as

written, only characters from 32 to 127 may be used.

Line 19400: Change cursor character to CHR$(CURSR).

Line 19410: Loop.

YOU SUPPLY

Joystick movement, and changes of color and cursor.

SUGGESTED ENHANCEMENTS: Change routine to allow for all

character graphics, but still bypass values that change colors and

do other tests.

RESULT

Color drawing on the screen.

40-COLUMN JOYSTICKS—FOR TWO JOYSTICKS
(Commodore 64 Compatible)

WHAT IT DOES: Allows moving two objects on the screen at once,

with two joysticks.

LEVEL: Intermediate

100 REM *****************************

110 REM * *

120 REM * 40 COLUMN JOYSTICKS *
130 REM * FOR TWO JOYSTICKS *

140 REM * (COMMODORE 64 COMPATIBLE) *
150 REM * *

160 REM *****************************

170 REM ++ VARIABLES ++

180 REM Fl: STATUS OF FIRE BUTTON 1
190 REM F2: STATUS OF FIRE BUTTON 2
200 REM Ml: MOVE FOR JOY 1
210 REM M2: MOVE FOR JOY 2

220 REM Bl: POSITION FOR OBJECT 1
230 REM B2 POSITION FOR OBJECT 2
240 REM CH: START OF CHARACTER MEMORY
250 REM E: END OF CHARACTER MEMORY

146 THE COMMODORE 128 SUBROUTINE LIBRARY

260 REM CSCREEN: START OF COLOR MEMORY

270 REM

280 REM '■

290 REM *** INITIALIZE ***

300 CSCREEN=55296

310 CHAR=1024

320 B1=CH

330 B2=CH

340 B=CH

350 E=CH+1000

360 DF=CSCREEN-CH

370 GOTO 19170

19000 REM *** SUBROUTINE ***

19010 Jl=PEEK(56320)

19020 J2=PEEK(56321)

19030 F1=J1 AND 16

19040 F2=J2 AND 16

19050 J1=15-(J1 AND 15)

19060 J2=15-(J2 AND 15)

19070 IF Jl=l THEN M1=-40:GOTO 19110

19080 IF Jl=2 THEN M1=40:GOTO 19110

19090 IF Jl=4 THEN M1=-1:GOTO 19110

19100 IF Jl=8 THEN M1=1:GOTO 19110

19110 IF J2=l THEN M2=-40:RETURN

19120 IF J2=2 THEN M2=40:RETURN

19130 IF J2=4 THEN M2=-l:RETURN

19140 IF J2=8 THEN M2=l:RETURN

19150 RETURN

19160 REM *** MOVE CURSOR ***

19170 PRINT CHR$(147)

19180 GOSUB 19010

19190 IF Fl=0 THEN PRINT CHR$(147)

19200 IF F2=0 THEN PRINT CHR$(147)

19210 B1=B1+M1:IF BKB OR B1>E THEN B1=B1-M1

19220 B2=B2+M2:IF B2<B OR B2>E THEN B2=B2-M2

19230 POKE Bl,81

19240 POKE B1+DF,3

19250 POKE B2,81

19260 POKE B2+DF,5

19270 GOTO 19180

HOW TO USE SUBROUTINE

Many programs with two players will use both joysticks at

once. This routine, an adaptation of the previous Commodore

64-mode-compatible module, allows moving two objects under in

dependent control.

Game Routines 147

LINE-BY-LINE DESCRIPTION

The following changes have been made:

Line 19020: Instead of just PEEKing the status of Jl, also

PEEK a value for J2, and calculate the orientation of the second

joystick in the same manner.

Lines 19110-19140: The direction of the move is calculated

for J2 as well as Jl. Note that this variation allows only move

ment in north/south/east/west directions, which may be useful for

maze-type games where diagonal movement is undesirable.

Lines 19190-19220: In this variation, pressing either FIRE

button causes the screen to be cleared.

YOU SUPPLY

Movement from two joysticks.

SUGGESTED ENHANCEMENTS; Change to allow movement in any

direction, if desired.

RESULT

Objects move on screen.

KEYBOARD JOYSTICK

WHAT IT DOES; Allows moving object on screen using keyboard

cursor keys, without a joystick.

LEVEL; Intermediate

148 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM

110 REM

120 REM

130 REM

*

40 COLUMN *

KEYBOARD JOYSTICK *

140 REM

150 REM

160 REM

170 REM ++ VARIABLES ++

180 REM SUPPLIED BY USER —

190 REM CURSR$: CURSOR CHARACTER

200 REM RESULT —

210 REM CURSOR MOVES AROUND SCREEN

220 REM UNDER CURSOR KEY CONTROL

230 REM

240 REM

250 REM *** INITIALIZE ***

260 CURS$=CHR$(209)

270 SCNCLR

19600 REM *** SUBROUTINE ***

19610 GETKEY A$

19620 IF A$=CHR$(29) OR A$=CHR$(17) OR A$=CHR$(157) OR

A$=CHR$(145) GOTO 19630:ELSE GOTO 19610

19630 PRINT CHR$(32);CHR$(157);

19640 PRINT A$;CURSR$;CHR$(157);

19650 GOTO 19610

HOW TO USE SUBROUTINE

Programs can be written to allow moving objects on the

screen using only the cursor keys. This is especially practical for

the Commodore 128, since four separate cursor keys are provided,

one for each major compass direction. This subroutine simulates a

joystick using those keys.

LINE-BY-LINE DESCRIPTION

Line 260: Define cursor character as CHR$(209).

Line 270: Clear screen.

Line 19610: Get a key from keyboard.

Line 19620: If key pressed was a cursor key, proceed to next

line, otherwise ignore and go back for more keyboard input. You

could also include here another value, such as the space bar, which

you would designate as the representation of the FIRE button.

Game Routines 149

Line 19630: Erase old character and backspace.

Line 19640: Print the cursor-movement key pressed, followed

by the cursor character, and then backspace.

Line 19650: Loop and repeat.

YOU SUPPLY

Cursor character definition.

SUGGESTED ENHANCEMENTS: Incorporate some action to be fol

lowed when the "fire" button (space bar or whatever you desig

nate) is pressed.

RESULT

Object will move on screen under cursor key control, in north,

south, east, or west directions.

KEYBOARD DRAWING

WHAT IT DOES: Draws on screen, changing cursor character and

color as desired, using cursor keys for control.

LEVEL: Intermediate

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

*

* 40 (:olumn *

* KEYBOARD DRAWING *
*

++

SUPPLIED

CURSR?

BORDER

VARIABLES ++

BY USER —

CURSOR CHARACTER

COLOR

CHARACTER COLOR

SCREEN

RESULT —

CURSOR

CURSOR

COLOR

DRAWS ON SCREEN.

AND COLOR CAN BE

CHANGED FROM KEYBOARD

150 THE COMMODORE 128 SUBROUTINE LIBRARY

290 REM *** INITIALIZE ***

300 DARK=O:WHITE=1

310 RED=2:CYAN=3

320 PURPLE=4:GREEN=5

330 BLUE=6:YELLOW=7

340 PUMPKIN=8:BROWN=9

350 LRED=10:DGRAY=ll

360 MGRAY=12:LGREEN=13

370 LBLUE=14:LIGHT=15

380 BACKGROUND=53281

390 SURROUND=53280

400 POKE BACKGROUND,PUMPKIN

410 POKE SURROUND,MGRAY

420 TRAIL$=CHR$(209)

430 SCNCLR

19700 REM *** SUBROUTINE ***

19710 GETKEY A$

19720 A=ASC(A$)

19730 IF A=29 THEN CURSR$=CHR§(171):GOTO 19850

19740 IF A=157 THEN CURSR$=CHR$(179):GOTO 19850

19750 IF A=17 THEN CURSR$=CHR$(178):GOTO 19850

19760 IF A=145 THEN CURSR$=CHR$(177):GOTO 19850

19770 IF A>154 AND A<160 GOTO 19840

19780 IF A>148 AND A<156 GOTO 19840

19790 IF A>27 AND A<32 GOTO 19840

19800 IF A=144 OR A=5 OR A=129 GOTO 19840

19810 IF A=142 OR A=141 OR A=146 OR A=13 OR A=18 OR A=19 OR A=20

GOTO 19710

19820 TRAIL$=A$

19830 GOTO 19710

19840 PRINT A$;

19850 PRINT TRAIL$;CHR$(157);

19860 PRINT A$;CURSR$;CHR$(157);

19870 GOTO 19710

HOW TO USE SUBROUTINE

This routine carries the last module one step farther, provid

ing drawing on the screen. The cursor character and color can be

changed from the keyboard.

As you know, the number keys at the top of the keyboard can

be used in combination with the control key and the Commodore

key to change the colors of the characters being printed. There

are also CHR$ equivalents of those key combinations that can be

used. In this book we haven't yet explained the use of available

POKEs to specific memory registers to change the color of screen

background and border.

Game Routines 151

The memory location for the background screen color is 53281,

while the location for the border is 53280. You can POKE the

color number 0-15 to these registers to make the color changes

you want.

However, it can be difficult to remember that 0 equals black

and 6 equals blue. One easy way to determine the first half of the

color spectrum is to subtract 1 from the key number where that

color resides. However, for the upper eight colors you must add 7

instead. Why not simply define the color values as variables that

have some relation to the color name?

That's what is done in this program.

LINE-BY-LINE DESCRIPTION

Lines 300-370: Define numbers 0 through 15 to equal color

names of the available hues. Note that BLACK and BLUE would

be the same color name to the Commodore 128, since only BL

would be significant. Therefore, use DARK for black, instead.

Along the same lines, GRAY and GREEN would be the same, so

LIGHT is used for the former. ORANGE causes a problem, since

ORANGE contains the reserved word OR. Use PUMPKIN in

stead, following the precedent of naming the color after an edible.

Lines 380-390: Define BACKGROUND and SURROUND as

the memory locations for the screen and border colors.

Lines 400-410: POKE the background orange, and the bor

der medium gray.

Line 420: As a change of pace, make the trail left by the

cursor be different from the cursor character itself. Define TRAIL$

as CHR$(209).

Line 430: Clear the screen.

Line 19710: Get a key from keyboard.

Line 19720: Find its ASCII value.

Lines 19730-19760: Depending on the direction of move

ment, the cursor character is changed to a little graphics symbol

pointing in the direction of movement.

Lines 19770-19810: Check to see if key pressed was an allow

able one. If so, go print it.

152 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 19820: If key was not a color key, change TRAIL$ to

that key.

Line 19830: Return for more keyboard input.

Lines 19840-19870: Print the TRAIL$ character, backspace,

and return.

YOU SUPPLY

Keyboard input to draw, change color, and cursor character.

You may also redefine screen and border color.

SUGGESTED ENHANCEMENTS: None.

RESULT

Drawing on screen under keyboard control.

PADDLES

WHAT IT DOES: Reads four paddles to move objects on screen.

LEVEL: Intermediate

100 REM ************

110 REM * *

120 REM * PADDLES *

130 REM * *

140 REM ************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM PADDLE MOTION

190 REM RESULT —

200 REM LETTERS A,B,C,D

210 REM MOVE ACROSS SCREEN

220 REM IN RESPONSE TO PADDLES

230 REM

240 REM

19900 REM *** SUBROUTINE ***

19910 SCNCLR

19920 A=POT(1)

19930 B=POT(2)

19940 C=POT(3)

19950 D=POT(4)

Game Routines 153

19960 IF A>255 THEN AFLAG=1:A=((A/255)-INT(A/255))*255

:ELSE AFLAG=0

19970 IF B>255 THEN BFLAG=1:B=((B/255)-INT(B/255))*255

:ELSE BFLAG=0

19980 IF O255 THEN CFLAG=1:C=((C/255)-INT(C/255))*255
:ELSE CFLAG=0

19990 IF D>255 THEN DFLAG=1:D=((D/255)-INT(D/255))*255
-.ELSE DFLAG=0

20000 Al=((l+INT(A/6.4))-40)*-l

20010 Bl=((l+INT(B/6.4))-40)*-l

20020 Cl=((l+INT(C/6.4))-40)*-l

20030 Dl=((l+INT(D/6.4))-40)*-l

20040 PRINT TAB(LD);CHR$(32);CHR$(19);

20050 PRINT TAB(D1)UD";CHR$(19);

20060 LD=D1

20070 PRINT TAB(LA);CHR$(32);CHR$(19);

20080 PRINT TAB(A1)"A";CHR$(19);

20090 LA=A1

20100 PRINT TAB(LB)?CHR$(32);CHR$(19);

20110 PRINT TAB(B1)UB";CHR$(19);

20120 LB=B1

20130 PRINT TAB(LC);CHR$(32);CHR$(19);

20140 PRINT TAB(C1)"C";CHR$(19);

20150 LC=C1

20160 GOTO 19920

HOW TO USE SUBROUTINE

Paddle reading from BASIC is less than satisfactory for a

number of reasons. Commodore recommends against it, claiming

that the technique is unreliable. In any case, the usefulness of the

value returned by POT(n) is reduced by the fact that the full

"travel" of the paddle is not used. Depending on what paddle you

use, you may find that a half or quarter turn will be sufficient

to cover the full range from 0 to 255. Therefore, precise move

ments may be difficult. This subroutine is included to show that

paddle reading can be done.

Paddles are unlike joysticks in that they return a continuous

value that corresponds to how far the paddle has been returned.

The nonanalog joysticks used by the Commodore 128, on the

other hand, merely tell us which way the joystick is oriented.

Paddles contain a potentiometer, similar to the volume control on

your stereo, that provides a reading of the variable resistance

produced by your turning the paddle. While this reading is contin

uous, the Commodore 128 translates it into a series of whole

numbers from 0 to 255.

154 THE COMMODORE 128 SUBROUTINE LIBRARY

To use paddles effectively in this program, you need to trans

late that value into a position on the screen. For horizontal

movement on a 40-column screen, you would want 0 to equal

column 1, and a value of 255 to equal column 40. That is

approximately what is done with this subroutine. Values for all

four paddles are produced, so you can move four objects. Note that

movement is possible only in an east/west or north/south direc

tion, although a clever programmer could write a routine to move

the object back and forth diagonally as well.

LINE-BY-LINE DESCRIPTION

Line 19910: Clear screen.

Lines 19920-19950: Obtain orientation of paddles A-D.

Lines 19960-19990: If a paddle value is greater than 255,

then the FIRE button has been pressed. These lines set the fire

flag for each paddle and then return the value of A to an equiva

lent value less than 255.

Lines 20000-20030: Calculate position on screen.

Lines 20040-20150: TAB to position indicated by paddle,

print space to erase old character, then print letter corresponding

to the paddle in the new position. Lx (LA, LB, LC, or LD) equals

the last position of the character, while xl (Al, Bl, Cl, or Dl)

equals the current position.

YOU SUPPLY

Paddle movement.

SUGGESTED ENHANCEMENTS: Create some action to result when

the FIRE button is pressed.

RESULT

Four objects move on screen under paddle control.

Game Routines 155

RANDOM INTEGER

WHAT IT DOES; Provides a random integer within a number range

specified.

LEVEL: Novice

100 REM ******************

110 REM * *

120 REM * RANDOM INTEGER *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM HIGH: TOP OF RANGE

190 REM MINIMUM: BOTTOM OF RANGE

200 REM RESULT —

210 REM NU: NUMBER CHOSEN

220 REM

230 REM

240 REM *** INITIALIZE ***

250 HIGH=100

260 MINIMUM=15

270 GOSUB 20210

280 PRINT "RANDOM INTEGER :";NU

290 END

20200 REM *** SUBROUTINE ***

20210 DF=HIGH-MINIMUM+1

20220 NU=INT(RND(0)*DF)+MINIMUM
20230 RETURN

HOW TO USE SUBROUTINE

What makes a game a game and not a test? Randomness is

one element found in many, but not all, games. Random numbers

selected by the computer determine the changes in some games

that the player must contend with. Lacking randomness, a game

is either a test of memory or a contest of strategy. A little of all

three elements makes for a good game, and this subroutine lets

you get greater control over randomness than with unadorned

BASIC 7.0.

156 THE COMMODORE 128 SUBROUTINE LIBRARY

The Commodore 128 can choose pseudorandom numbers. That

is, although they appear to be random, the numbers are actually

drawn from a long list. Even though the sequence is the same

each time, the list of numbers is very long and the starting

position is usually different, so the numbers appear to be random

to the player.

Some BASICs allow choosing a random number larger than

one but smaller than another integer with the simple command

RND(N) where N is the upper limit. RND(7) would produce num

bers from 1 to 7, for example. The Commodore 128, on the other

hand, generates random numbers larger than 0 and smaller than

1, so we might get .74329 or .15832 or some other value. To get

the numbers in a given range 1 to N, we must multiply the random

number by N and add 1. That is, INT(RND(0)*7) +1 will produce

numbers larger than 1 and no larger than 7.

But what if some other range is desired, such as the numbers

between 43 and 198. This subroutine will pluck them out of

randomland for you. From the user-supplied minimum and maxi

mum numbers, it will select random integers only in the desired

range.

LINE-BYLINE DESCRIPTION

Line 250: Define upper limit as 100.

Line 260: Define lower limit as 15.

Lines 270-290: Access the subroutine and print results.

Line 20210: Calculate the difference between the upper and

lower limits.

Line 20220: Generate a random number in the range 0 to the

difference between the limits, and then add the MINIMUM value

to that to ensure that the number is at least the minimum but no

more than the maximum.

YOU SUPPLY

Upper and lower limits.

Game Routines 157

SUGGESTED ENHANCEMENTS; Figure a way to allow generating

real numbers—numbers with both an integer and fractional part.

RESULT

Random integer generated in the desired range.

SAMPLE VALUES: 65, 33, 98, 16

RANDOM SETS

WHAT IT DOES: Chooses a set of random numbers.

LEVEL: Novice

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

*••••**•*••*•*

* *

* RANDOM SET *
* *

++ VARIABLES ++

SUPPLIED BY USER —

HIGH: TOP OF RANGE

MINIMUM: BOTTOM OF RANGE

NUMBER: SIZE OF SET

RESULT —

SET(NUMBER): RANDOM INTEGERS

250 REM *** INITIALIZE ***

260 NUMBER=10

270 DIM SET(NUMBER)

280 HIGH=100

290 MINIMUM=15

300 GOSUB 20310

310 FOR N=l TO NUMBER

320 PRINT "RANDOM INTEGER #";N;" : M;SET(N)

330 NEXT N

340 END

20300 REM *** SUBROUTINE ***

20310 DF=HIGH-MINIMUM+1

158 THE COMMODORE 128 SUBROUTINE LIBRARY

20320 FOR N=l TO NUMBER

20330 RN=INT(RND(O)*DF)+MINIMUM

20340 FOR Nl=l TO N

20350 IF RN=SET(N1) GOTO 20330

20360 NEXT Nl

20370 SET(N)=RN

20380 NEXT N

20390 RETURN

HOW TO USE SUBROUTINE

Intended for the beginning programmer, this routine merely

demonstrates how a group of random numbers can be generated

quickly with one call to a subroutine. Each number generated is

different from all others in the set.

LINE-BY-LINE DESCRIPTION

Line 260: Define number of random integers wanted.

Line 270: DIMension an array to store those integers.

Lines 280-290: Define upper and lower limits.

Lines 300-340: Access subroutine and print results.

Line 20310: Determine the difference between the limits.

Line 20320: Start loop from 1 to NUMBER to produce desired

quantity of random integers.

Line 20330: Generate random number in the desired range.

Lines 20340-20360: Check previous random numbers gener

ated to see if latest one is a duplicate. If so, return to Line 20330

and try again.

Line 20370: Otherwise, store the number in SET(n).

YOU SUPPLY

Upper and lower limit, and number of random integers wanted.

SUGGESTED ENHANCEMENTS: Install an error trap to make sure

the user does not request more unique random numbers than are

available in the range specified. For example, if NUMBER = 20,

and HIGH = 30 while MINIMUM = 15, then the subroutine
will hang.

Game Routines 159

RESULT

Set of random integers generated, each unique.

SAMPLE VALUES: 45, 98, 32, 16, 84, 21, 99, 33, 46, 75

ANIMATED COIN FLIP

WHAT IT DOES: Produces image of coin flipping, plus heads or

tails value.

LEVEL: Novice/Intermediate

100 REM *************

110 REM * *

120 REM * COIN FLIP *

130 REM * *

140 REM *************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM GRAPHIC COIN FLIP

210 REM FLIP$: HEADS OR TAILS

220 REM

230 REM

240 REM *** INITIALIZE ***

250 GOSUB 20410

260 END

20400 REM *** SUBROUTINE ***

20410 SCNCLR

20420 DATA 119,113,99

20430 FOR N=l TO 3

20440 READ CN(N)

20450 NEXT N

20460 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT

20470 FOR N2=l TO 7

20480 PRINT CHR$(32)?CHR$(157);

20490 PRINT CHR$(145);

20500 PRINT TAB(IO);"";

20510 FOR N=l TO 3

20520 PRINT CHR$(CN(N));

20530 PRINT CHR$(157);

20540 FOR Nl=l TO 3:NEXT Nl

160 THE COMMODORE 128 SUBROUTINE LIBRARY

20550 NEXT N

20560 NEXT N2

20570 FOR N3=l TO 2

20580 FOR N=l TO 3

20590 PRINT CHR$(CN(N));

20600 PRINT CHR$(157);

20610 FOR Nl=l TO 3:NEXT Nl

20620 NEXT N

20630 NEXT N3

20640 FOR N2=l TO 7

20650 PRINT CHR$(32);CHR$(157);

20660 PRINT CHR$(17);

20670 FOR Nl=l TO 3:NEXT Nl

20680 FOR N=l TO 3

20690 PRINT CHR$(CN(N));

20700 PRINT CHR$(157);

20710 FOR Nl=l TO 3:NEXT Nl

20720 NEXT N

20730 NEXT N2

20740 FLIP=INT(RND(0)*2)+l

20750 PRINT CHR$(17);CHR$(157);

20760 IF FLIP=1 THEN FLIP$="HEADS":ELSE FLIP$="TAILS"

20770 PRINT FLIP$

20780 RETURN

HOW TO USE SUBROUTINE

This subroutine will produce a simulation of a coin being

tossed in the air, followed by a notice of whether it fell heads or

tails. More advanced programmers can change the location of the

coin flip to suit their own software.

This subroutine is useful for some beginner-level statistical

experiments, and a few games. You might want to construct a

loop that flips the coin 1000 times and adds up the number of

heads and tails to check the randomness of your computer.

LINE-BY-LINE DESCRIPTION

Line 250: Access the subroutine.

Line 20410: Clear screen.

Line 20420: DATA for graphics characters representing coin

image. These are an open circle, a filled-in circle, and a straight

line to indicate the heads, tails, and edge of a spinning coin.

Lines 20430-20450: Read the data into array CN(N).

Line 20460: Move the cursor down seven lines. You can

Game Routines 161

substitute one of the cursor movement techniques used in this

book, such as Cursor Mover (Chapter 8).

Line 20470: Start loop from 1 to 7. Each increment of the loop

will move the coin up the screen one position.

Line 20480: Print a space and backspace to erase old image of

coin.

Line 20490: Move cursor up one line.

Line 20500: Start loop from 1 to 3. Each of the three coin

images, heads, tails, and edge, will be displayed at each position

the coin takes on its flip upwards.

Line 20510: TAB out to coin position.

Line 20520: Print coin image N.

Line 20530: Backspace.

Line 20540: Delay slightly.

Line 20550: Next coin image.

Line 20560: Next position of the coin.

Lines 20570-20630: Spin the coin in the air at the top of its

arc.

Lines 20640-20730: Show the coin falling, basically the re

verse of the routine used to show it rising.

Line 20740: Produce a random value for coin flip.

Line 20750: Half the time will be heads, the other half tails.

Line 20760: Print heads or tails.

YOU SUPPLY

No user input needed.

SUGGESTED ENHANCEMENTS: None.

RESULT

Coin flipped.

SAMPLE VALUES: HEADS, TAILS

162 THE COMMODORE 128 SUBROUTINE LIBRARY

N-SIDED DICE

WHAT IT DOES: Rolls variable number of dice, with variable num

ber of sides.

LEVEL: Intermediate

100 REM ****************

110 REM * *

120 REM * N-SIDED DICE *

130 REM * *

140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM SIDES: NUMBER OF SIDES

190 REM DICE: NUMBER OF DICE

200 REM RESULT —

210 REM GRAPHIC DICE ROLL

220 REM TT: TOTAL OF ROLL

230 REM D(N): INDIVIDUAL DICE

240 REM

250 REM

260 REM *** INITIALIZE ***

270 SIDES=6

280 DICE=2

290 SCNCLR

300 DATA 108,111,112,186

310 PRINT:PRINT:PRINT

320 FOR N=l TO 4

330 READ DICE(N)

340 NEXT N

350 GOSUB 20810

360 END

20800 REM *** SUBROUTINE ***

20810 FOR N3=l TO DICE

20820 FOR N2=l TO 3

20830 FOR N=l TO 4

20840 PRINT CHR$(32);CHR$(29);CHR$(DICE(N));CHR$(157)-
20850 FOR Nl=l TO 3:NEXT Nl
20860 NEXT N

20870 NEXT N2

20880 PRINT CHR$(166);"

20890 D(N3)=INT(RND(0)*SIDES)+l
20900 PRINT D(N3)

20910 PRINT:PRINT:PRINT
20920 NEXT N3

20930 FOR N4=l TO DICE

20940 TT=TT+D(N4)

Game Routines 163

20950 NEXT N4

20960 PRINT "TOTAL :";TT

20970 RETURN

HOW TO USE SUBROUTINE

This subroutine will roll as many dice as you specify, with

the number of sides you request. Dungeons and Dragons players

in particular can specify how many sides each die will have. You

might want to add an input routine that will request the number

of sides prior to a roll, as well as the number of dice to be rolled.

All the dice in the set must have the same number of sides.

LINE-BY-LINE DESCRIPTION

Line 270: Define number of sides.

Line 280: Define number of dice.

Line 290: Clear screen.

Lines 300-340: Read into data CHR$ codes for character

graphics that will be used to represent rolling and resting

dice.

Line 350: Access the subroutine.

Line 20810: Begin loop from 1 to number of dice to be rolled.

Lines 20820-20870: Print image of dice rolling across screen.

Final resting image of die is of generic die only and does not have

the same number of spots as the actual die rolled. That number is

printed to the screen.

Line 20890: Select the value rolled.

Line 20900: Print the value to the screen.

Line 20910: Move down three lines to allow for next die to be

rolled.

Line 20920: Repeat the next die.

Lines 20930-20960: Add up the total of the dice thrown.

Line 20970: Return.

YOU SUPPLY

Number of sides and dice wanted.

164 THE COMMODORE 128 SUBROUTINE LIBRARY

SUGGESTED ENHANCEMENTS: Produce a graphic image of each

die rolled that will have the correct number of spots. Allow users

to enter how many dice and how many sides prior to each roll.

Allow having each die include a different number of sides, so a

mixed set of dice can be rolled.

RESULT

N-sided dice rolled.

DEAL CARDS

WHAT IT DOES: Deals a deck of cards.

LEVEL: Intermediate

100 REM **************

110 REM * *

120 REM * DEAL CARDS *

130 REM * *

140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NC: NUMBER CARDS

190 REM RESULT —

200 REM DECK$(N): DECK

210 REM CARD?: CARD DRAWN

220 REM DRAW: RANDOM CARD

230 REM

240 REM

250 REM *** INITIALIZE ***

260 DIM DECK?(52)

270 DATA 193", 211, 218, 216

280 REM *** READ SUITS ***

290 FOR N=l TO 4

300 READ A

310 SUIT$(N)=CHR$(A)
320 NEXT N

330 REM *** ASSEMBLE DECK ***

340 FOR SUIT=1 TO 4

350 CU=CU+1

Game Routines 165

360 DECK?(CU)="ACE OF U+SUIT$(SUIT)

370 CU=CU+1

380 DECK$(CU)="KING OF "+SUIT$(SUIT)

390 CU=CU+1

400 DECK$(CU)="QUEEN OF "+SUIT$(SUIT)

410 CU=CU+1

420 DECK$(CU)="JACK OF "+SUIT$(SUIT)

430 FOR N=2 TO 10

440 CU=CU+1

450 DECK$(CU)=STR$(N)+" OF "+SUIT$(SUIT)

460 NEXT N

470 NEXT SUIT

480 NC=52

490 GOSUB 21010

500 PRINT CARD$

510 END

21000 REM *** SUBROUTINE ***

21010 IF NCOO GOTO 21050

21020 CARD$=""

21030 PRINT"DECK GONE1 I"

21040 RETURN

21050 DRAW=INT(RND(1)*NC)+1

21060 CARD$=DECK$(DRAW)

21070 DECK$(DRAW)=DECK$(NC)

21080 NC=NC-1

21090 RETURN

HOW TO USE SUBROUTINE

Many game programs require dealing a deck of cards. Your

own programs may simulate drawing from a randomly shuffled

deck simply by calling this subroutine. The deck has already been

assembled (Lines 210-360) using the Commodore 128 graphics

characters for suits, and the numbers of words for the value of the

cards.

If you need to determine the rank of the card for your pro

gram, all cards through the 10 may be ascertained by a line such

as:"V = VAL(CARD$)".

IF V = 0 then four more lines are needed, such as, "IF

LEFT$(CARD$,1) = "J" THEN V = ll" or "IF LEFT$(CARD$,1) =

"Q"THENV=12".

This is a very fast shuffling routine, which requires only 52

tries to deal 52 cards. Some slower algorithms (a formula for

performing a task or computing a result) may repeatedly access

"empty" deck positions when looking for the remaining cards.

166 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Lines 260-270: DIMension a deck, with room for 52 cards,

and the DATA lines for the character graphics representing the

suits.

Lines 290-320: The suit characters are read into the array

SUIT$(n).

Line 340: Start assembling an unshuffled deck of cards, re

peating four times, once for each suit.

Line 350: Counter CU keeps track of which card has been

assembled so far.

Lines 360-420: Add the face cards and ace to the deck.

Lines 430-470: Assemble the other cards, deuce through 10,

and repeat.

Line 480: Set initial number of cards remaining in the deck

at 52.

Line 490: Access the subroutine.

Line 500: Print the card selected.

Line 21010: Check to see if any cards are left in the deck; if

not, go to card-drawing routine.

Line 21020: Otherwise, print DECK GONE.

Lines 21050-21060: The computer selects a number between

1 and NC (52 this time), and that element of DECK$(n) becomes

the card drawn.

Line 21070: This leaves a "hole" in the deck at position

DRAW. You fill it up by taking the last card in the deck, which is

DECK$(NC), and placing it in DECK$(DRAW).

Line 21080: This leaves the "hole" at the end, but you then

change NC to equal NC-1, so the computer will draw only from

the elements 1 through 51 on the next time through. Third time,

it will choose 1 through 50, and so forth. It does not matter that

you have mixed up the order of the deck, since you want the cards

shuffled in the first place.

Each element of DECK$(n) consists of a number, or face

card name, plus the Commodore 128 CHR$ value for the suit

(either 193, 211, 218, or 216). This produces a full deck of 52
cards.

Game Routines 167

YOU SUPPLY

Draw cards as needed.

SUGGESTED ENHANCEMENTS; Draw actual images of the cards as

each is drawn.

RESULT

Shuffled deck of cards is dealt.

DELAY LOOP

WHAT IT DOES; Provides a delay loop that changes in length.

LEVEL; Novice

100 REM *********

110 REM * *

120 REM * DELAY *

130 REM * *

140 REM *********

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DELAY: INITIAL DELAY

190 REM REPEATS: TIMES TO REPEAT

200 REM CHANGE: AMOUNT OF CHANGE

210 REM PLUS OR MINUS

220 REM RESULT —

230 REM LOOP CHANGES IN

240 REM DELAY EACH TIME

250 REM

260 REM

270 REM *** INITIALIZE ***

280 DELAY=1000

290 CHANGE=.9O

300 REPEATS=4

310 GOSUB 21210

320 PRINTnFINISHEDM

330 END

21200 REM *** SUBROUTINE **

168 THE COMMODORE 128 SUBROUTINE LIBRARY

21210 FOR N=l TO REPEATS

21220 FOR Nl=l TO DELAY

21230 NEXT Nl

21240 DELAY=DELAY*CHANGE

21250 PRINT "THROUGH LOOP ";N

21260 NEXT N

21270 RETURN

HOW TO USE SUBROUTINE

In games, delay loops are frequently used to display mes

sages on the screen for a given length of time. The Commodore

128 has the SLEEP command to help to make this easier. How

ever, another important use is to control the speed of movement

or some other play action not easily controlled through SLEEP.

By having a FOR-NEXT loop count off between each move,

you can build in a short delay. A loop from 1 to 100 might slow

things down appreciably, whereas setting the upper limit to 10

would produce only a negligible impact.

This subroutine allows the user to vary the length of the

delay loop so that action will get faster and faster, until the

FOR-NEXT loop is performed only once each time and therefore

has almost no effect on the program.

Alternatively, the loop can get longer and longer, so the

program will slow down. You might want to place some upper

limit so that the action doesn't stop completely after a few minutes.

LINE-BY-LINE DESCRIPTION

Line 280: Set initial delay to 1000.

Line 290: Set change factor to .9.

Line 300: Set number of repeats to 4.

Lines 310-330: Acccess the subroutine and print FINISHED
when done.

Line 21210: Start loop from 1 to number of repeats.
Line 21220: Start delay.

Line 21230: End delay.

Line 21240: Change value of delay.

Game Routines 169

Line 21250: Show iteration through loop, that is, how many

times the loop has been run.

Line 21260: Do the loop again with the new delay factor.

YOU SUPPLY

An initial value is needed for DELAY. A high number will

start the program off very slowly. A lower number will produce a

more moderate beginning speed. You also must define the amount

of CHANGE. Fractional numbers will cause DELAY to get smaller

each time. That is, if DELAY is 1000 at first, and CHANGE is

.90, then DELAY will be set to 900 on the second time through

the loop, 810 the third time, and 729 the third time.

As decimal fractions approach 1.0, the amount of speedup

each time will be smaller, producing a slower acceleration. Smaller

fractions, such as .75 or even .50, will rev up the speed quite

quickly.

CHANGE can also be defined as a number larger than 1.

Setting it to 1.1 will slowly increase the delay each time. Any

number larger than 1.5 (such as 2 or 3) will probably slow down

the program more than you desire.

SUGGESTED ENHANCEMENTS: Use sound to show how the delay

loop is being counted off.

RESULT

Program speeds up or slows down gradually, at a rate se

lected by user.

6
INTRODUCTION

TO GRAPHICS

Graphics have broad applications in programming, and some users

choose their hardware at least partly on the basis of the graphics

capabilities of the machine. Complex arrays of numbers and fig

ures can be more easily understood if they are portrayed in chart

or graph form. Design work that was done manually can be

performed more rapidly with computer graphics. Games, of course,

depend heavily on graphic images for their space ships, race cars,

and other screen objects.

The Commodore 128 has all the impressive graphics abilities

of the Commodore 64, plus a host of new features. Leading the

way are 13 new specialized graphics commands that allow the

171

172 THE COMMODORE 128 SUBROUTINE LIBRARY

programmer to draw, capture, fill with color, and move objects on

the screen in true high-resolution bit-mapped mode. Eight pro

grammable movable objects called sprites, similar to those avail

able with the Commodore 64, are even easier to design and use

with the Commodore 128, because of a handy sprite-definition

mode and special sprite saving and moving commands.

Many computers, including the Commodore 64, let you use

bit-mapped graphics or text, but not both. The Commodore 128

has special commands that allow printing text on a graphics

screen. In addition, you may split the screen to use bit-map

graphics on one part and ordinary text on the other. Multicolor

mode allows drawing of objects and sprites in different colors

from a palette of 16.

This introduction to Commodore 128 graphics will be brief.

The subject deserves a book of its own and is covered somewhat

comprehensively in the Commodore 128 Programmers' Reference

Guide. Fortunately, with so many graphics commands already in

place, there is less need for subroutines, such as those required to

effectively use graphics with the Commodore 64.

What you might find beneficial are some simple programs

that demonstrate the use of some of the Commodore 128's graph

ics jfeatures. That's what are provided in this chapter. These

programs let you use the joystick to draw on the screen in high

resolution. Another demonstrates using commands like CIRCLE

or BOX to plot on the screen. A third provides a shortcut in

generating your own character sets for more sophisticated text

graphics. The final program in this chapter shows how the Com

modore can capture and move any bit-map image drawn on the

screen (not just sprites), within a certain size limitation.

COMMODORE 128 GRAPHICS

Throughout this book we've sometimes treated the Commo

dore 128 as if it were two computers in one. As you probably

know, it is actually three computers in one package: the Commo

dore 128, the Commodore 64, and a CP/M machine. With its 40-

Introduction to Graphics 173

and 80-column modes, the computer could be treated as five

different PCs.

When it comes to graphics, even in Commodore 128 mode you

must treat the computer as if it were two different machines.

Each screen format is controlled by a separate specialized micro

processor chip. The 80-column chip, the 8563, offers 16 colors and,

at least for the purposes of this book, can be used only for text

and character graphics. In 80-column mode the Commodore 128

treats the screen as 2000 separate locations (80 columns x 25

lines) and can place any of the characters in its character set

within each of those 2000 locations.

In one sense, bit-mapped mode is less flexible. Instead of

printing characters in its screen locations, bit-map mode can only

switch each of them on or off. However, you have a great many

more locations to work with—64,000 instead of 2000. So, in prac

tice, bit-mapped graphics is more flexible because you can print

a great deal more detail on the screen. Bit-map mode is also

slightly more complex because of the amount of information you

are working with.

The 40-column Commodore 128 is controlled by the Video

Interface Controller, or VIC chip. The same 16 colors available

from 80-column mode are possible, plus bit-mapped graphics, sprites,

and a host of new graphics commands.

The key to using graphics is to select the proper graphics

mode. Six are available:

Graphics 0: This is standard 40-column text. Only alpha-

numerics and special symbols in the Commodore 128 character set

are allowed. This is the mode the computer boots up in when you

have selected the 40-column display.

Graphics 1: This is the full-screen bit-mapped display allow

ing you to draw on a screen that is 320 dots or picture elements

wide by 200 dots tall. These picture elements are usually called

pixels for short.

Graphics 2: This is a bit-map screen that can be split to

allow ordinary text on the lower portion. You control how many

lines are set aside for text when the mode is invoked. A single line

174 THE COMMODORE 128 SUBROUTINE LIBRARY

can be set aside, or most of the screen. The default value is five

lines. Of course, the area used for bit-map graphics is reduced in

split-screen mode.

Graphics 3: This is the multicolor bit map. Each pixel dou

bles in width, but you may mix colors. Resolution is half as good,

but the flexibility in using color increases.

Graphics 4: This is the split-screen version of multicolor

bit-mapped graphics.

Graphics 5: This is the 80-column text and character-graphics

mode—the default mode when the Commodore 128 is booted up

with the 80-column RGB display.

Graphics modes are entered through the GRAPHIC command:

GRAPHIC <mode number>,<0 to leave the existing graph

ics screen or 1 to clear it>, <0-25, to indicate the line on which

you want the text to start. This option is valid only for split-

screen modes 2 and 4.>

The other basic graphics command is COLOR, which allows

you to set various color combinations on the screen. This com

mand has two arguments, the source or section of the screen to be

colored, and the color code. The sources available are:

Source 0: This controls the 40-column background color.

Source 1: This controls the foreground color for the graphics

screen. This is the color of the objects you might be drawing with

other graphics commands.

Source 2: In multicolor mode, each of the two foreground

colors can be specified independently. Source 2 controls one of them.

Source 3: This controls the second foreground color in multi

color mode.

Source 4: This controls the border surrounding the 40-column

screen, whether in text or graphics mode. Previous subroutines in

this book have used POKEs to make this change. The POKEs

will work in either Commodore 128 or Commodore 64 mode.
COLOR 4,x, where x is a color number 1-16, will work only in
Commodore 128 mode.

Introduction to Graphics 175

Source 5: This changes the character color for either the 40-

or 80-column text screen. Again, a POKE or printing the color's

CHR$ value was used previously, where COLOR 5,x may be

used instead.

Source 6: This is used to change the 80-column background

color.

Note that the colors produced by the 16 color numbers differ

slightly between 40- and 80-column mode. Pages 97 and 98 of

your Commodore 128 System Guide provide lists of the two color

sets.

There are six other nonsprite graphics commands. BOX al

lows drawing rectangles, including squares, with a single state

ment at the location of your choice. CIRCLE permits quick drawing

of ovals, including circles, and other polygons at the coordinates

you select. Figures drawn with either can be filled in with PAINT.

DRAW is used to plot from a specific point (or the last location of

the pixel cursor) to the points you designate. All these commands

have a number of options; consult your System Guide or the

Programmer's Reference Guide for a more complete discussion of

these, as well as SCALE, which sets the relative size of the bits

while maintaining their proportions to one another.

BIT-MAP DRAWING

WHAT IT DOES: Draws on bit-mapped screen in high resolution.

LEVEL: Intermediate

100 REM *******************

110 REM * *

120 REM * BIT MAP DRAWING *

130 REM * *

140 REM *******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM SCREEN AND LINE COLOR CAN

190 REM BE CHOSEN BY USER FROM

200 REM COLOR LIST

210 REM RESULT —

176 THE COMMODORE 128 SUBROUTINE LIBRARY

220 REM DRAWING ON BIT MAPPED

230 REM SCREEN USING JOYSTICK

240 REM

250 REM

260 REM *** INITIALIZE ***

270 DARK=1:WHITE=2

280 RED=3:CYAN=4

290 PURPLE=5:GREEN=6

300 BLUE=7:YELLOW=8

310 PUMPKIN=9:BROWN=10

320 LRED=11:DGRAY=12

330 MGRAY=13:LGREEN=14

340 LBLUE=15:GRAY=16

350 COLOR 0,WHITE

360 COLOR 1,RED

370 GRAPHIC 1,1

380 SOURCE=1

390 X1=1:Y1=1

22000 REM *** SUBROUTINE ***

22010 A=JOY(1)

22020 ON A GOSUB 22050,22070,22120,22150,22200,22230,22280,22310

22030 DRAW SOURCE,XI,Yl

22040 GOTO 22010

22050 Y1=Y1-1:IF YK0 THEN Y1=O

22060 RETURN

22070 Y1=Y1-1

22080 X1=X1+1

22090 IF Xl>319 THEN Xl=319

22100 IF YK0 THEN Yl=O

22110 RETURN

22120 X1=X1+1

22130 IF Xl>319 THEN Xl=319

22140 RETURN

22150 Y1=Y1+1

22160 X1=X1+1

22170 IF Yl>199 THEN Yl=199

22180 IF Xl>319 THEN Xl=319

22190 RETURN

22200 Y1=Y1+1

22210 IF Yl>199 THEN Yl=199

22220 RETURN

22230 Y1=Y1+1

22240 X1=X1-1

22250 IF Yl>199 THEN Yl=199

22260 IF XK0 THEN Xl=O

22270 RETURN

22280 X1=X1-1

22290 IF XK0 THEN Xl=O

22300 RETURN

22310 X1=X1-1

22320 Y1=Y1-1

22330 IF XK0 THEN Xl=O

22340 IF YK0 THEN Yl=O

22350 RETURN

Introduction to Graphics 177

HOW TO USE SUBROUTINE

This very simple routine allows using the joystick to draw

objects on the bit-mapped screen. You may substitute one of the

colors from the color list provided to change the color of the

foreground and background.

LINE-BY-LINE DESCRIPTION

Lines 270-340: Define a set of variable names with the 16

color numbers.

Line 350: Set the background color to white.

Line 360: Set the foreground color to red.

Line 380: Define the source to be drawn on as the foreground.

You may also draw on the background by changing SOURCE to

equal 0.

Line 390: Define the initial coordinates of the pixel cursor,

XI and Yl as 1,1—the upper left-hand corner of the screen. If you

wish the drawing to begin somewhere else on the screen, you may

redefine these values.

Line 22010: Read Joystick 1.

Line 22020: Depending on the value returned by Joystick 1,

access one of eight movement routines.

Line 22030: Draw a single pixel at the current values of XI

and Yl.

Line 22040: Return for more joystick input.

Lines 22050-22350: All these lines are basically the same

routine, modified to account for the direction the joystick was

pressed. If the joystick was pressed in a north, northeast, or

northwest direction, then Yl is decremented by one. If Yl would

then become less than 0, then it is returned to a 0 value, to

keep the pixel cursor from attempting to move off the top of

the screen.

If the joystick was pressed in a south, southeast, or southwest

direction, then Yl is incremented and kept from becoming more

than 199, which would take it off the bottom of the screen.

A similar routine takes place for northeast, east, and south-

178 THE COMMODORE 128 SUBROUTINE LIBRARY

east directions (XI is incremented), as well as northwest, west,

and southwest indications (XI is decremented). In no case is XI

permitted to decrease to less than 0, or to more than 319.

YOU SUPPLY

Color choices and joystick movement.

SUGGESTED ENHANCEMENTS: Add a way to erase the screen or to

change colors during drawing. Hints may be found in drawing

routines in Chapter 5.

RESULT

Drawing on high-resolution bit-mapped screen.

GRAPHICS PLOTTING

WHAT IT DOES: Draws figures on screen from user input.

LEVEL: Intermediate

100 REM *********************

110 REM * *

120 REM * GRAPHICS PLOTTING *

130 REM * *

140 REM *********************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM SCREEN AND LINE COLOR CAN

190 REM BE CHOSEN BY USER FROM

200 REM COLOR LIST

210 REM RESULT —

220 REM PLOTTING ON BIT MAPPED

230 REM SCREEN USING COORDINATES

240 REM

250 REM

260 REM *** INITIALIZE ***

270 DARK=1:WHITE=2

280 RED=3:CYAN=4

290 PURPLE=5:GREEN=6

Introduction to Graphics 179

300 BLUE=7:YELLOW=8

310 PUMPKIN=9:BROWN=10

320 LRED=11:DGRAY=12

330 MGRAY=13:LGREEN=14

340 LBLUE=15:GRAY=16

350 COLOR 0,WHITE

360 COLOR 1,RED

370 GRAPHIC 2,1

22400 REM *** SUBROUTINE ***

22410 SCNCLR

22420 PRINT:PRINT:PRINT:PRINT

22430 PRINT" 1. DRAW CIRCLE OR POLYGON"

22440 PRINT" 2. DRAW BOX 3. CHANGE COLOR"

22450 PRINT TAB(4)"ENTER CHOICE :"

22460 GETKEY A$

22470 A=VAL(A$)

22480 IF A<1 OR A>3 GOTO 22460

22490 ON A GOTO 22500,22850,23030

22500 PRINT "CENTER COORDINATES OF SHAPE (X,Y)'

22510 INPUT X$,Y$

22520 X=VAL(X$):Y=VAL(Y$)

22530 PRINT "X RADIUS?"

22540 INPUT XR$

22550 XR=VAL(XR$)

22560 PRINT "Y RADIUS :"

22570 INPUT YR$

22580 YR=VAL(YR$)

22590 IF YR=0 THEN YR=XR

22600 PRINT "STARTING ARC ANGLE?"

22610 PRINT "(DEFAULT IS 0)"

22620 INPUT SA$

22630 SA=VAL(SA$)

22640 PRINT "ENDING ARC ANGLE?"

22650 PRINT "DEFAULT IS 360"

22660 INPUT EA$

22670 EA=VAL(EA$)

22680 IF EA=0 THEN EA=360

22690 PRINT "ROTATION (DEFAULT 0)"

22700 INPUT AN$

22710 AN=VAL(AN$)

22720 PRINT "DEGREES BETWEEN SEGMENTS"

22730 PRINT "(DEFAULT IS 2 DEGREES)"

22740 INPUT IC$

22750 IC=VAL(IC$)

22760 IF IC=0 THEN IC=2

22770 PRINT "PAINT IT? (Y/N)"

22780 GETKEY A$

22790 IF A$="Y" THEN PN=1:GOTO 22820

22800 IF A$="N" THEN PN=0:GOTO 22820

22810 GOTO 22780

22820 CIRCLE 1,X,Y,XR,YR,SA,EA,AN,IC

22830 IF PN=1 THEN PAINT l,X,Y,0

22840 GOTO 22420

22850 PRINT "ENTER TOP LEFT CORNER"

22860 PRINT "COORDINATES (X,Y) :"

22870 INPUT X1$,Y1$

180 THE COMMODORE 128 SUBROUTINE LIBRARY

22880 X1=VAL(X1$):Y1=VAL(Y1$)

22890 PRINT "ENTER BOTTOM RIGHT CORNER"

22900 PRINT "COORDINATES (X,Y) :"

22910 INPUT X2$,Y2$

22920 X2=VAL(X2$):Y2=VAL(Y2$)

22930 PRINT "ENTER ANGLE OF ROTATION :"

22940 INPUT AN$

22950 AN=VAL(AN$)

22960 PRINT "PAINT THE BOX? (Y/N)"

22970 GETKEY A$

22980 IF A$="Y" THEN PN=1:GOTO 23010

22990 IF A$="N" THEN PN=0:GOTO 23010

23000 GOTO 22970

23010 BOX 1,X1,Y1,X2,Y2,AN,PN

23020 GOTO 22420

23030 PRINT: PRINT-.PRINT

23040 PRINT "CHANGE :"

23050 PRINT "1. FOREGROUND COLOR"

23060 PRINT "2. BACKGROUND COLOR"

23070 GETKEY A$

23080 A=VAL(A$)

23090 IF A<1 OR A>2 GOTO 23070

23100 ON A GOTO 23110,23160

23110 PRINT:PRINT:PRINT

23120 PRINT "ENTER FOREGROUND COLOR NUMBER:";

23130 INPUT FG

23140 COLOR 1,FG

23150 GOTO 22420

23160 PRINT:PRINT:PRINT

23170 PRINT "ENTER BACKGROUND COLOR NUMBER :"

23180 INPUT BG

23190 COLOR 0,BG

23200 GOTO 22420

HOW TO USE SUBROUTINE

This routine is a miniprogram in its own right that allows

using the CIRCLE and BOX commands to plot various-sized ob

jects on the screen. You can fill them with color. The routine

demonstrates the split-screen bit-map mode and allows experi

menting to see what different radii, arc angles, and so forth do to

change the shape of a figure on the screen.

As the program is written, you may specify coordinates that

would draw a figure on the text portion of the screen. If you do so,

the figure is obscured by the text. The routine was written this

way to allow drawing figures up to the very edge of the text screen.

Review your System Guide for a more complete discussion of

what each of the parameters of the CIRCLE and BOX command does.

Introduction to Graphics 181

LINE-BY-LINE DESCRIPTION

Lines 270-340: Define a set of variable names as the 16 color

numbers.

Lines 350-360: Set foreground and background colors.

Line 370: Enter split screen bit-map mode and clear the

screen.

Lines 22410-22420: Clear the text screen and scroll down

four lines.

Lines 22430-22480: Present menu of choices, get user choice.

Line 22490: Branch to choice selected by user.

Lines 22500-22520: Ask for coordinates of the center of the

oval or polygon.

Lines 22530-22590: Ask for x and y radii of the shape. If both

are the same, the figure will be a circle or a perfectly symmetrical

polygon. Otherwise, it will be an oval or a figure that is longer in

one direction than another.

Lines 22600-22680: Ask for beginning and ending arc angles.

Lines 22690-22710: Ask for rotation of the figure. This will

be meaningful only when the radii are different. A rotated cir

cle or perfectly symmetrical polygon looks exactly the same.

Lines 22720-22760: Ask for degrees between segments. Spec

ifying larger increments turns the object from a circle or oval into

a polygon, since a circle is a polygon with an infinite number of

sides. (Actually, with the Commodore 128 or any personal com

puter, the number of "sides" in an arc on the screen is finite. The

higher the resolution, the smaller they are and the more arclike

the curve looks.)

Lines 22770-22810: Ask if figure should be painted with

color. If so, set the paint flag, PN, to 1.

Line 22820: Draw the figure using the parameters entered.

Line 22830: If PN set to 1, then also paint the figure.

Line 22840: Return to the menu.

Lines 22850-22920: Enter top left corner of the box to be

drawn, and the bottom left corner.

Lines 22930-22950: Get the angle of rotation desired.

Lines 22960-23000: Ask if box should be painted.

182 THE COMMODORE 128 SUBROUTINE LIBRARY

Line 23010: Draw the box using the parameters specified.

Line 23020: Return to the menu.

Lines 23030-23190: Ask if foreground or background color is

to be changed, and get the color number. Then, change the color

and return.

YOU SUPPLY

Initial screen color, drawing color during program run.

SUGGESTED ENHANCEMENTS: Change to provide better error traps

for illegal values during the input. Warn the user when a figure

will be obscured by the text lines. Let the user enter color names

as defined earlier in the program instead of color numbers.

RESULT

Color plotting on screen.

PROGRAMMING CHARACTERS

WHAT IT DOES: Redefines five characters to user-specified set.

LEVEL: Intermediate

100 REM **********************

110 REM * *

120 REM * PROGRAM CHARACTERS *

130 REM * *

140 REM **********************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM DATA LINES FOR DESIRED

190 REM CHARACTER SET

200 REM RESULT —

210 REM CHARACTERS REDEFINED
220 REM

230 REM ■

240 REM *** DATA ***

Introduction to Graphics 183

250 DATA 226,164,27,40,108,176,175,132
260 DATA 195,195,68,60,24,24,60,24
270 DATA 255,129,189,165,165,189,129,255
280 DATA 195,195,68,60,24,24,60,24
290 DATA 255,129,189,165,165,189,129,255
300 REM *** INITIALIZE ***
310 PRINT CHR$(142)
320 GOSUB 23310

330 SCNCLR

340 PRINT "l=><@"

350 END

23300 REM *** SUBROUTINE ***

23310 POKE 54,48

23320 POKE 58,48

23330 CLR

23340 BANK 14

23350 FOR N=l TO 511

23360 POKE N+12288,PEEK(N+53248)
23370 NEXT N

23380 BANK 15

23390 POKE 2604,(PEEK(2604)AND240)+12
23400 FOR N=12288 TO 12295
23410 READ H

23420 POKE N,H

23430 NEXT N

23440 FOR N=12552 TO 12559
23450 READ H

23460 POKE N,H

23470 NEXT N

23480 FOR N=12784 TO 12791
23490 READ H

23500 POKE N,H

23510 NEXT N

23520 FOR N=12768 TO 12775

23530 READ H

23540 POKE N,H

23550 NEXT N

23560 FOR N=12776 TO 12783

23570 READ H

23580 POKE N,H

23590 NEXT N

23600 RETURN

HOW TO USE SUBROUTINE

The Commodore 128 allows redefining its character set. The

existing characters are constructed on an 8 by 8 dot matrix, with

the first and last columns usually empty and the bottom row

empty. That arrangement leaves space between each character

184 THE COMMODORE 128 SUBROUTINE LIBRARY

and the next. Look at how a letter "A" is put together. Each "0" is

considered a blank space, and each "1" a dot that is filled in:

00011000

00100100

01000010

01111110

01000010

01000010

01000010

00000000

See the letter "A" in that pattern? Since each row is eight

characters across, and each character is either a 0 or a 1, it is

convenient to think of each row as a byte and to store it that way

in memory. Eight consecutive bytes will store the eight rows

needed to describe a given character.

This is exactly what the Commodore 128 does. The informa

tion on the letter "A" begins at memory location 53256 and

continues for eight bytes. The first line above, 00011000, in bi

nary, is 24 in decimal. Similar eight-byte groups are found in

memory to tell the computer how to form all the alpha and graphics

characters, including reversed characters.

Unfortunately, characters are actually stored in ROM. We

can READ the information but not change it. However, when the

Commodore 128 wants to find out how to build a given character,

it does not go directly to the proper ROM location. Instead, it

checks a RAM location, which tells it where to find the begin

ning of the character memory.

If you change this, you must arrange to have all the charac

ters you want to use moved to the new location. The Commodore

128 will not go back and forth, looking in ROM for some characters

and RAM for others. Normally, this is accomplished by copying

from ROM the information about all the characters you want to

use and then modifying only those you want changed.

That is what is done in this subroutine. The first step is to tell

the Commodore 128 not to look at the normal location for its

character information but to start at 12288 decimal instead. Be

cause this location is BASIC RAM, you have to protect it by

Introduction to Graphics 185

lowering the top of RAM memory. You accomplish that by POK-

ing 48 into 54 and 58 decimal, which are the registers that keep

track of how much RAM is available for programs. Once those

pointers have been changed, your program will not use any of

the memory set aside for characters. The new character set will

be safe.

Next, you will copy 64 characters from ROM into the pro

tected RAM locations. This is done with a FOR-NEXT loop, which

PEEKs in the ROM, extracts a byte, and POKEs it in the next

location of the protected area.

If the program did nothing more than that, then the charac

ter set would look exactly the same, except that the Commodore

128 would be obtaining the information from a different place.

Instead, you will POKE some new data into the locations for

some selected characters that are not needed by your program.

These characters are the "at" sign (@), the exclamation point (!),

the greater than symbol (>), the less than symbol (<), and the

equals sign (=). The characters chosen now are defined beginning

at 12288, 12552, 12784, 12768, and 12776, respectively.

You POKE those new values, determined by laying out an 8

by 8 dot grid. Some sample characters are supplied as DATA

lines. To form your own, change the binary values obtained to the

decimal equivalent, and substitute in the DATA lines.

LINE-BY-LINE DESCRIPTION

Lines 250-290: DATA to form new characters.

Lines 310-350: Access subroutine and print new characters.

Lines 23310-23320: Protect memory, and redefine where com

puter collects its character set from.

Line 23330: Clear the memory

Line 23340: Select Bank 14 to read ROM.

Lines 23350-23370: Copy old characters from ROM, arrange

for new set.

Line 23380: Select Bank 15 to POKE new charaters.

Lines 23390-23600: POKE data for new characters, !, = ,>,<,

and @.

186 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

Your own DATA lines for characters of your choice. Con

struct these new DATA lines corresponding to your redesigned

characters as follows: Lay out your characters in an 8 x 8 grid,

as shown above, and convert each byte to binary. This can be

done by taking each of the eight bits, from right to left, and

multiplying by 2 to the P power, where P is the position, from the

right, of that bit.

For example, 10010111 would be:

1 times 2 to the zeroth power (1)

1 times 2 to the first power (2)

1 times 2 to the second power (4)

0 times 2 to the third power (0)

1 times 2 to the fourth power (16)

0 times 2 to the fifth power (0)

0 times 2 to the sixth power (0)

1 times 2 to the seventh power (128)

Total: 151 decimal

Repeat for each byte, to the total of eight in the matrix. You

may also use the Binary to Decimal subroutine in Chapter 9.

SUGGESTED ENHANCEMENTS: Write a program to let you draw

on the screen in an 8 x 8 matrix, and then translate the binary

values to decimal automatically.

RESULT

Pressing "@", «!", «<", « = ", and ">" keys or using them in a

program will produce new, redefined characters.

Introduction to Graphics 187

SHAPE MOVER

WHAT IT DOES: Allows capturing a shape you draw on the screen

in a string variable.

LEVEL: Intermediate

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* SHAPE MOVER *
* *

++ VARIABLES ++

USER SUPPLIED —

DRAW SHAPE WITH CURSOR KEYS

PRESS ESCAPE WHEN DONE

XI: X COORDINATE TO APPEAR

Yl: Y COORDINATE TO APPEAR

RESULT —

SHAPE APPEARS AT SPECIFIED

LOCATION ON BIT-MAP SCREEN

270 REM *** INITIALIZE ***

280 COLOR 0,1

290 GRAPHIC 1,1

300 Xl=10:Yl=10

310 X=110:Y=100

320 COLOR 1,2

330 BOX 1,108,98,157,142

23700 REM *** SUBROUTINE ***

23710 GETKEY A$

23720 IF A$=CHR$(27) GOTO 23960

23730 IF A$=CHR$(29) THEN BEGIN

23740 X=X+1

23750 IF X>155 THEN X=155

23760 GOTO 23940

23770 BEND

23780 IF A$=CHR$(157) THEN BEGIN

23790 X=X-1

23800 IF X<110 THEN X=110

23810 GOTO 23940

23820 BEND

23830 IF A$=CHR$(145) THEN BEGIN

23840 Y=Y-1

23850 IF Y<100 THEN Y=100

23860 GOTO 23940

23870 BEND

188 THE COMMODORE 128 SUBROUTINE LIBRARY

23880 IF A$=CHR$(17) THEN BEGIN

23890 Y=Y+1

23900 IF Y>140 THEN Y=140

23910 GOTO 23940

23920 BEND

23930 GOTO 23710

23940 DRAW 1,X,Y

23950 GOTO 23710

23960 SSHAPE C$,110,100,155,140

23970 GRAPHIC 1,1

23980 GETKEY B$

23990 GSHAPE C$,X1,Y1,O

HOW TO USE SUBROUTINE

Sprites are objects drawn on the screen within a matrix 24

pixels wide and 21 pixels tall. Once they are defined, you can

move sprites with powerful Commodore 128 sprite commands as if

they were discrete objects. BASIC 7.0 has a sprite definition mode

(SPRDEF) that lets you define sprites, store that shape in a

string variable, and then define the shape in that variable as one

of eight sprites.

This routine serves as an introduction to how sprite shapes

are captured and moved. However, to show that the techniques

used are not limited to sprites, we'll let you define and move a

shape larger than that permitted for sprites. You may use the

cursor keys to draw on the screen. Press ESCAPE when done.

The shape will be stored in string variable C$ and moved to the

coordinates specified.

LINE-BY-LINE DESCRIPTION

Lines 280-290: Set graphic mode and colors.

Lines 300-310: Define the limits of the area to be drawn.

Line 330: Draw box to show drawing area.

Line 23710: Get a key.

Line 23720: If ESCAPE is pressed, go to capture routine.

Lines 23730-23930: If key is cursor movement key, move

cursor, keeping within limits of drawing box.

Line 23940: Plot a point at current pixel cursor location.

Line 23950: Return for more input.

Introduction to Graphics 189

Line 23960: Store the shape within the coordinates in C$.

Line 23970: Clear the graphics screen.

Line 23980: Wait for user to press a key.

Line 23990: Print the shape stored at the specified coordinates.

YOU SUPPLY

You can change the values for where the shape is printed.

SUGGESTED ENHANCEMENTS: This is a demonstration program.

Your program would supply coordinates to print the shape. Or

you might ask the user where to put it. Such a program would

allow drawing shapes in one location, assigning them to a series

of variables (C$(l), C$(2), etc.), and moving them around the

screen at will. Note that these shapes are larger than sprites but

must be moved by your program lines, rather than automati

cally as are sprites. In addition, sprites allow assigning priorities

so that one sprite will appear to move in front of or behind other

objects on the screen.

RESULT

Image drawn on screen captured in string variable and moved.

7
USING
SOUND

The Commodore 128 has some of the best sound capabilities of

any personal computer. When the machine is connected to a

good-quality stereo system, the sounds duplicate that of music

synthesizers costing many times what the entire computer sells

for.

The secret, of course, is the music synthesizer chip built into

the Commodore 128. Earlier computers without the chip had

much more primitive sound-generation capabilities. Some could

produce sounds through only a single voice. The VTC-20 had

three musical voices and one "noise" generator with overlapping

octaves. By comparison, the VIC-20's musical capabilities don't

191

192 THE COMMODORE 128 SUBROUTINE LIBRARY

hold a candle to the many areas of control that the Commodore

128's synthesizer chip provides.

The Commodore 128 also has three voices, but in addition to

pitch and duration, the user can specify the waveform of each

voice, varying it from "sawtooth" to "pulse" to "triangle" to "noise."

These terms may not mean much to you. However, it is the

waveform of each musical note that helps give various musical

instruments their distinctive "timbre," or sound quality. Your

Commodore 128 can play a note with four different waveforms and

can also "filter" the waveform through a selection of "modulators."

Also important is the sound envelope. This is controlled by

the attack/decay and sustain/release parameters. When a note is

first played, it rises from zero volume to its peak volume, then

falls back to some middle range. The rate of rise is called attack,

and the speed of decline to the middle range is called decay. That

middle volume, called sustain, can also be controlled by the Com

modore 128. When the note finally stops playing, its rate of

decline to zero volume is called release. The attack/decay and

sustain/release properties of a trumpet note differ from those

produced by a piano. If we know each, we can duplicate the sound

fairly closely with the Commodore 128.

Unlike the Commodore 64, which required complex POKEs

to a multitude of registers to produce sounds, the Commodore 128

has new sound and music commands that take care of most of the

work for you. These include SOUND, ENVELOPE, VOL, TEMPO,

PLAY, and FILTER. Consult your System Guide or the Program

mer's Reference Guide for an in-depth discussion of each. In this

chapter we have some plug-in programs and demonstrations that
use three of these six commands:

SOUND: Allows you to produce a sound using one of three
voices, at a frequency you specify, for a duration you request, and

using the waveform and pulse width you enter. The sound can

also be swept through a range of frequencies with other parameters.
VOL: Sets the volume level from 0 to 15.

PLAY: Will allow you to enter actual note names, such as A
or C#, and will play them.

Using Sound 193

The intent is to provide you with "plug-in" subroutines that

you can use in your own programs immediately, even if you can't

tell a synthesizer from photosynthesis. This section contains rou

tines that have broad application in many games programs; they

can also be used to spice up your general programming efforts.

The first routine generates musical notes when the keys of

the home row and the row above are pressed. Others produce a

grating siren sound, a madcap computer gone berserk, eerie

flying saucer noises, and other effects.

You may want to experiment with each of these, using some

of the suggestions provided or ideas of your own. Change the

values of FOR-NEXT loops. Use different voices, as suggested. You

should be able to develop new sounds on your own, until a whole

library of sound effects is available.

COMMODORE 128 ORGAN

WHAT IT DOES: Uses keyboard to generate various musical notes.

LEVEL: Intermediate

100 REM ************************

110 REM * *

120 REM * COMMODORE 128 ORGAN *

130 REM * *

140 REM ************************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM VOICE: VOICE USED

190 REM LE$: LENGTH OF NOTE

200 REM L: VOLUME

210 REM OTHER PARAMETERS CHANGED

220 REM FROM KEYBOARD

230 REM RESULT —

240 REM

250 REM MUSIC PLAYED

260 REM

270 GOTO 24060

24000 REM *** POSITION CURSOR ***

24010 PRINT HME$;

24020 PRINT LEFT$(R$,COL);

194 THE COMMODORE 128 SUBROUTINE LIBRARY

24030 PRINT LEFT$(D$,ROW);

24040 RETURN

24050 REM *** INITIALIZE ***

24060 POKE 53281,1

24070 KEY 1,CHR$(133)

24080 KEY 3,CHR$(134)
24090 KEY 5,CHR$(135)

24100 KEY 7,CHR$(136)

24110 DWN$=CHR$(17)

24120 UP$=CHR$(145)

24130 RV$=CHR$(18)

24140 FF$=CHR$(146)

24150 RED$=CHR$(28)

24160 GREEN$=CHR$(30)

24170 YELLOW$=CHR$(158)

24180 BLUE$=CHR$(31)

24190 HME$=CHR$(19)

24200 VOICE=1

24210 0=1

24220 T=6

24230 L=15

24240 REM *** READ DATA ***

24250 LE$="Q"

24260 DIM NME$(20),NT$(20),P(20)

24270 FOR N=l TO 20

24280 READ NME$(N)

24290 NEXT N

24300 FOR N=l TO 20

24310 READ NT$(N)

24320 NEXT N

24330 FOR N=0 TO 9

24340 READ TUNE$(N)

24350 NEXT N

24360 REM *** BUILD CURSOR STRING ***

24370 FOR N=l TO 40

24380 R$=R$+CHR$(29)

24390 D$=D$+CHR$(17)

24400 SPACE$=SPACE$+CHR$(32)

24410 NEXT N

24420 REM *** SET UP SCREEN ***

24430 SCNCLR

24440 COL=1:ROW=20:GOSUB 24010

24450 PRINT TAB(2);RV$;BLUE$;"Fl ";FF$;" OCTAVE UP";

24460 PRINT TAB(20);RV$;YELLOW$;"F3";FF$" OCTAVE DOWN"

24470 PRINT TAB(2) ;RV$;RED$; "F5 ";FF$;" INSTRUMENT UP";
24480 PRINT TAB(20);RV$;GREEN$;"F7";FF$" INSTRUMENT DOWN"
24490 ROW=4:COL=10

24500 GOSUB 24010

24510 PRINT RV$;RED$;"COMMODORE 128 ORGAN";FF$

Using Sound 195

24520 REM *** DATA ***

24530 DATA C,#C,D,#D,E,F,#F,G,#G,A,#A,B,C,#C,D,#D,E,F,#F,G

24540 DATA A,W,S,E,D,F,T,G,Y,H,U,J,K,O,L,P,":",";","*••,"="

24550 DATA PIANO,ACCORDION,CALLIOPE,DRUM
24560 DATA FLUTE,GUITAR,HARPSICHORD,ORGAN
24570 DATA TRUMPET,XYLOPHONE

24580 REM *** SUBROUTINE ***

24590 COL=13:ROW=10:GOSUB 24010

24600 PRINT SPACE?;

24610 COL=13:ROW=10:GOSUB 24010

24620 F=INT((ll-LEN(TUNE$(T)))/2)
24630 PRINT LEFT$(R$,F);

24640 PRINT TUNE$(T);

24650 GETKEY A$

24660 IF A$=CHR$(13) THEN END

24670 IF A$=CHR$(133) THEN 0=0+1:IF O>6 THEN 0=6:GOTO 24590

24680 IF A$=CHR$(134) THEN 0=0-1: IF O<0 THEN 0=0-.GOTO 24590
24690 IF A$=CHR$(135) THEN T=T+1:IF T>9 THEN T=9:GOTO 24590

24700 IF A$=CHR$(136) THEN T=T-1:IF T<0 THEN T=0:GOTO 24590
24710 FOR N=l TO 20

24720 IF A$=NT$(N) GOTO 24750

24730 NEXT N

24740 GOTO 24590

24750 ROW=15:COL=18:GOSUB 24010

24760 N$=NME$(N)

24770 IF LEFT$(N$,1) = "#11 THEN N$=RIGHT$(N$,1)+LEFT$(N$,1)

24780 PRINT N$;CHR$(32);

24790 IF N>12 THEN BEGIN

24800 0=0+1

24810 IF O>6 THEN 0=6:GOTO 24840

24820 FLAG=1

24830 BEND

24840 P$="V"+MID$(STR$(VOICE),2)+"O"+MID$(STR$(O),2)

+HTlt+MID$(STR$(T),2)+"U"+MID$(STR$(L),2)+LE$+NME$(N)

24850 PLAY P$

24860 IF FLAG=1 THEN 0=0-1:IF O<0 THEN 0=0

24870 FLAG=0

24880 GOTO 24590

HOW TO USE SUBROUTINE

This is another subroutine that got out of hand and ended up

as a 100-line program in its own right. Although packed with

features, this program only begins to tap the power of the Com

modore 128's music synthesizer capabilities.

You may define the voice used and length of the note, as well

as the volume. The octave and instrument can be changed from

the keyboard. You could add routines to allow using more than

one voice and varying the tempo.

196 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY LINE DESCRIPTION

Lines 24010-24040: This is a cursor-positioning routine used

here for the first time in the book. It is described completely in

Chapter 8 under Cursor Mover.

Line 24060: Change color of the screen; COLOR could also be

used here.

Lines 24070-24100: Change the definitions of the Function

Keys 1, 3, 5, and 7 (the unshifted keys) so they return the CHR$

values assigned to them in Commodore 64 mode.

Lines 24110-24140: Define string variables with the charac

ters that print cursor down, cursor up, reverse on, and reverse off

characters.

Lines 24150-24180: Assign other variable names with color

characters.

Line 24190: Define HME$ as HOME.

Line 24200: Set VOICE to 1.

Line 24210: Set initial octave to 1.

Line 24220: Set initial instrument to 6.

Line 24230: Set loudness to 15.

Line 24250: Define the length of the notes played to quarter

note.

Line 24260: DIMension two arrays, NME$(n) for the names

of the notes, NT$(n) for the corresponding keyboard keys.

Lines 24270-24320: Read those values into the arrays.

Lines 24330-24350: Read the names of the instruments into

TUNE$(n).

Lines 24370-24410: Build the cursor movement strings, as

discussed in Cursor Mover in Chapter 8.

Lines 24430-24510: Print screen instructions.

Lines 24530-24570: The DATA.

Lines 24590-24640: Erase old instrument printed to the

screen and print the new data currently in effect.

Lines 24650: Get a key from the keyboard.

Line 24660: If RETURN was pressed, END. You may delete

this if you would rather exit the program by hitting RUN/STOP

and RESTORE.

Using Sound 197

Lines 24670-24680: If Fl is pressed, raise octave by one. If

F3 is pressed, decrease by one. In no case allow octave to be less

than 0 or higher than 6.

Lines 24690-24700: If F5 is pressed, raise instrument value

to next higher instrument. If F7 is pressed, lower. In no case

allow instrument to be less than 0 or higher than 9.

Lines 24710-24730: Compare key pressed with allowable keys

to see if a legal note has been pressed.

Line 24740: If not, go back for more input.

Lines 24750-24780: Print the name of the note pressed to the

screen.

Lines 24790-24830: If note is in the next highest octave,

increase octave. However, if the highest octave is already being

accessed, do not increase. This allows playing more than one

octave on the keyboard, except when we have already changed

the lower end of the keyboard to play the highest available

octave.

Line 24840: Assemble a PLAY string from the current

parameters.

Line 24850: Play the string.

Lines 24860-24870: If note was at upper end of keyboard,

reduce octave to next lowest to return to normal.

Line 24880: Return for more input.

YOU SUPPLY

Definitions for voice and note length, plus keyboard input.

SUGGESTED ENHANCEMENTS: Write a routine that will display a

keyboard on the screen, and indicate which key is being pressed.

Allow changing voices. Store the notes pressed for playback. This

is relatively simple, since the PLAY strings may be stored in a

string array. Allow changing the length of notes.

RESULT

Music played from Commodore 128 synthesizer.

198 THE COMMODORE 128 SUBROUTINE LIBRARY

SIREN

WHAT IT DOES: Produces siren sound.

LEVEL: Novice

100

110

120

130

140

150

160

170

180

190

200

210

220

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* SIREN *
* *

++ VARIABLES ++

SUPPLIED BY USER —

REPEATS: REPETITIONS

RESULT —

SIREN SOUND

24990 *** SUBROUTINE ***

25000 REPEATS=4

25010 FOR N=l TO REPEATS

25020 FOR 1=100 TO 20000 STEP 100

25030 SOUND 1,1,1,1,1,1,1,0

25040 NEXT I

25050 FOR 1=20000 TO 100 STEP -100

25060 SOUND 1,1,1,0,0,0,1,0

25070 NEXT I

25080 NEXT N

25090 END

HOW TO USE SUBROUTINE

Call the routine when a siren sound is desired for games or other

applications. The remaining routines in this chapter are written as

programs stopping with END rather than RETURN, since there is

no initialization required. You will want to add RETURN state

ments if you use them as subroutines in your own programs. They

are short enough to be used as standalone lines within programs.

LINE-BY-LINE DESCRIPTION

Line 25000: Define number of REPEATS.

Line 25010: Start loop to repeat the sound.

Using Sound 199

Lines 25020-25040: Produce rising sound.

Lines 25050-25070: Produce falling sound.

Line 25080: Repeat.

YOU SUPPLY

Number of repeats.

SUGGESTED ENHANCEMENTS: Experiment to change the sound.

RESULT

Siren sound for games or other programs.

FLYING SAUCER

WHAT IT DOES: Produces eerie flying saucer sound.

LEVEL: Novice

100 REM *****************

110 REM * *

120 REM * FLYING SAUCER *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM FLYING SAUCER SOUND

210 REM

220 REM

25100 REM *** SUBROUTINE ***

25110 FOR 1=1 TO 65000 STEP 100

25120 SOUND 1,1,1,0,0,3,0

25130 NEXT-I

HOW TO USE SUBROUTINE

Plug into your program where you want flying saucer sound,

or add RETURN to use as subroutine.

200 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Lines 25110-25130: Produce saucer sound.

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS: Experiment to produce different

saucer effects. Change the step value and other parameters.

RESULT

Flying saucer sound for games or other applications.

BURGLAR ALARM

WHAT IT DOES: Produces burglar alarm sound.

LEVEL: Novice

100 REM *****************

110 REM * *

120 REM * BURGLAR ALARM *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM BURGLAR ALARM SOUND

210 REM

220 REM

25200 REM *** SUBROUTINE ***

25210 FOR 1=1 TO 10

25220 SOUND 1,49000,300,2,32000,3000,1

25230 NEXT I

Using Sound 201

HOW TO USE SUBROUTINE

Insert in your program where you want burglar alarm sound.

LINE-BY-LINE DESCRIPTION

Lines 25210-25230: Produce burglar alarm sound.

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS: Play with it!

RESULT

Burglar alarm sound produced for games, or possibly home

control applications with a real world interface.

ALARM SOUND

WHAT IT DOES: Produces different alarm sound.

LEVEL: Novice

100 REM ***************

110 REM * *

120 REM * ALARM SOUND *

130 REM * *

140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM REPEATS: NUMBER O REPEATS

190 REM RESULT —

200 REM ALARM SOUND

210 REM

220 REM

230 REPEATS=5

240 GOSUB 25300

250 END

202 THE COMMODORE 128 SUBROUTINE LIBRARY

25300 REM *** SUBROUTINE ***

25310 FOR 1=1 TO REPEATS

25320 SOUND 1,65000,300,0,32000,3000,2,2600

25330 NEXT I

25340 RETURN

HOW TO USE SUBROUTINE

Insert in your program where you want an alarm sound

different from the last. You may differentiate between two ac

tions with the distinctly different alarms.

LINE-BY-LINE DESCRIPTION

Line 230: Number of REPEATS defined.

Lines 25310-25330: Produce alarm sound.

YOU SUPPLY

Number of REPEATS.

SUGGESTED ENHANCEMENTS: None.

RESULT

Different alarm sound produced.

PLANE ENGINE

WHAT IT DOES: Produces sound of plane engine starting and lev

eling off.

LEVEL: Novice

Using Sound 203

100 REM ****************

110 REM * *

120 REM * PLANE ENGINE *

130 REM * *

140 REM ****************

150 REM

++ VARIABLES ++

SUPPLIED BY USER —

V: VOICE USED

RESULT —

SOUND OF PLANE ENGINE

160 REM

170 REM

180 REM

190 REM

200 REM

210 REM

220 REM

230 V=l

240 GOSUB 25410

250 END

25400 REM *** SUBROUTINE ***

25410 D=1200

25420 F=12000

25430 DIR=0

25440 S=l

25450 W=l

25460 P=1000

25470 SOUND V,F,D,DIR,M,S,W,P

25480 RETURN

HOW TO USE SUBROUTINE

You might want to use this subroutine at the beginning of

programs dealing with airplane flight or travel. This program

demonstrates the use of the sweep effect with the Commodore 128.

LINE-BY-LINE DESCRIPTION

Line 230: Define voice as 1.

Lines 25410-25460: Define other SOUND parameters.

Line 25470: Produce the sound, sweeping through a range of

frequencies.

YOU SUPPLY

Definition for voice to be used.

SUGGESTED ENHANCEMENTS: Try different sweep effects.

204 THE COMMODORE 128 SUBROUTINE LIBRARY

RESULT

Sound of airplane engine starting up and leveling off.

BOMB DROPPING

WHAT IT DOES: Produces sound of bomb dropping.

LEVEL: Novice

100 REM *************

110 REM * *

120 REM * BOMB DROP *

130 REM * *

140 REM *************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM SOUND OF BOMB DROPPING

210 REM

220 REM

230 GOSUB 25510

240 END

25500 REM *** BOMB DROPPING ***

25510 VOL 15

25520 SOUND 1,49000,480,1,0,100,1,0

25530 RETURN

HOW TO USE SUBROUTINE

Call during bombs dropping in your games program.

LINE-BY-LINE DESCRIPTION

Line 25510: Set volume to maximum.

Line 25520: Sweep through range of frequencies to produce

effect of bomb dropping.

Using Sound 205

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS; Change the speed of the bomb drop

ping. Add an explosion at the end.

RESULT

Sound of bomb dropping produced.

HELICOPTER

WHAT IT DOES; Produces sound of helicopter.

LEVEL; Novice

100 REM **************

110 REM * *

120 REM * HELICOPTER *

130 REM * *

140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM HELICOPTER SOUND

210 REM

220 REM

25600 REM *** SUBROUTINE ***

25610 VOL 15

25620 CU=1000

25630 FOR N=100 TO 1000

25640 SOUND 1,N,1

25650 S=N-CU:IF S<38 THEN S=CU-N

25660 SOUND 1,S,1

25670 CU=CU-1

25680 NEXT N

206 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

Plug into your programs where you want the sound of a

helicopter rotor.

LINE-BY-LINE DESCRIPTION

Line 25610: Set volume to maximum.

Line 25620: Set counter to initial value of 1000.

Line 25630: Loop from 100 to 1000.

Line 25640: Produce sound using frequency N.

Line 25650: Change value of S.

Line 25660: Produce sound using frequency S.

Line 25670: Change value of counter.

Line 25680: Loop and repeat.

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS: None.

RESULT

Sound of helicopter rotor produced.

COMPUTER SOUND

WHAT IT DOES: Produces random, computerlike sound.

LEVEL: Novice

Using Sound 207

100 REM ******************

110 REM * *

120 REM * COMPUTER SOUND *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM COMPUTER SOUND

210 REM

220 REM

25700 REM ** SUBROUTINE ***

25710 FOR N=l TO 10

25720 R=RND(0)*60000

25730 L=RND(0)*10

25740 SOUND 1,R,L,0,0,0,2

25750 R=RND(0)*60000

25760 L=RND(0)*20

25770 SOUND 2,R,L,0,0,0,1

25780 R=RND(0)*10000

25790 L=RND(0)*10

25800 SOUND 3,R,L,0,0,0,0

25810 NEXT N

HOW TO USE SUBROUTINE

Computers don't really sound like this, of course, but we have

come to connect the random production of beeping sounds with

computers. You can probably blame this on bad science fiction

movies, but the sound effect may come in useful nevertheless. Let

this sound emit continuously from your Commodore 128 when

friends visit, and see if they are impressed.

LINE-BY-LINE DESCRIPTION

Line 25710: Repeat 10 times.

Lines 25720-25800: Choose random frequency and lengths,

and make that sound. Do it for all three voices.

YOU SUPPLY

No user input required.

208 THE COMMODORE 128 SUBROUTINE LIBRARY

SUGGESTED ENHANCEMENTS: None.

RESULT

Random computer sound produced.

DISASTER SOUND

WHAT IT DOES: Produces vague, threatening disaster sound.

LEVEL: Novice

100 REM ************

110 REM * *

120 REM * DISASTER *

130 REM * *

140 REM ************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM ELABORATE EXPLOSION

210 REM

220 REM

25900 REM *** SUBROUTINE ***

25910 VOL 1

25920 SOUND 1,100,10,0,0,0,3

25930 SOUND 1,40,1,0,0,0,3

25940 FOR N=65000 TO 1000 STEP -5000

25950 V=V+1:VOL V

25960 SOUND 1,N,60,0,0,0,3

25970 NEXT N

25980 V=15:VOL V

25990 SOUND 1,8000,1500,1,0,10,3

26000 SOUND 2,2000,750,1,0,10,3

26010 SOUND 3,200,375,1,0,10,3

26020 END

HOW TO USE SUBROUTINE

We're not sure what this sound is—maybe an explosion, maybe

a volcano erupting. It certainly sounds frightening.

Using Sound 209

LINE-BY-LINE DESCRIPTION

Line 25910: Set volume low, to 1.

Lines 25920-25930: Play sounds.

Line 25940: Start decreasing FOR-NEXT loop.

Line 25950: First 15 times through the loop, increase volume.

Line 25960: Produce sound, based on frequency N.

Lines 25970-26010: Produce "explosion."

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS; Fix the explosion to sound better

and more explosive.

RESULT

Disaster sound produced.

ROULETTE WHEEL

WHAT IT DOES; Produces roulette wheel sound that gradually

slows down.

LEVEL; Novice

100 REM ******************

110 REM * *

120 REM * ROULETTE WHEEL *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM ROULETTE WHEEL SOUND
210 REM

220 REM

210 THE COMMODORE 128 SUBROUTINE LIBRARY

26100 REM *** ROULETTE WHEEL ***

26110 DELAY»20

26120 F=1.001

26130 Fl=.0005

26140 FOR N=l TO 100

26150 DELAY=DELAY*F

26160 FOR D=l TO DELAY:NEXT D

26170 SOUND 1,1000,1

26180 F=F+F1

26190 NEXT N

26200 SOUND 1,1000,1

HOW TO USE SUBROUTINE

Insert in games where roulette wheel or wheel of fortune

type of sound is needed.

LINE-BY-LINE DESCRIPTION

Line 26110: Set initial delay to 20.

Line 26120: Set factor to 1.001.

Line 26130: Set second factor to .0005.

Line 26140: Start loop from 1 to 100.

Line 26150: Increase delay slightly.

Line 26160: Count off the delay.

Line 26170: Make a click sound.

Line 26180: Increase the factor.

Line 26190: Repeat.

Line 26200: Make final click.

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS: None.

RESULT

Roulette wheel slows down and stops.

Using Sound 211

CLOCK TICKING

WHAT IT DOES: Produces clock ticking sound.

LEVEL: Novice

100

110

120

130

140

150

160

170

180

190

200

210

220

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* CLOCK TICK *
* *

++ VARIABLES ++

SUPPLIED BY USER —

NONE

RESULT —

CLOCK TICKING SOUND

26300 REM *** CLOCK TICK ***

26310 VOL 15

26320 FOR Nl=l TO 100

26330 SOUND 1,20000,1

26340 FOR N=l TO 300:NEXT N

26350 SOUND 1,40000,1

26360 FOR N=l TO 300-.NEXT N

26370 NEXT Nl

HOW TO USE SUBROUTINE

Insert in your programs where clock ticking needed. You might

use this subroutine to represent the passage of time, or during

"thinking" periods in games.

LINE-BY-LINE DESCRIPTION

Line 26310: Set volume to maximum.

Line 26320: Repeat 100 times.

Line 26330: Make tick sound.

Line 26340: Delay slightly.

Line 26350: Make tock sound.

Line 26360: Delay again between ticks.

Line 26370: Repeat.

212 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS: Modify to allow user to vary num

ber of ticks.

RESULT

Clock ticking produced.

8
SOFTWARE

THICKS

Here is a group of routines that will let you perform some tasks

specific to the Commodore 128 computer. Included is a simple

routine to display color bars on the screen, in case you want to

adjust the color balance of your monitor or television set. Another

is provided to help you set the Commodore 128's built-in real

time clock. The next measures elapsed time using that clock, and

a third lets you set the Commodore 128 as a timer.

Three other subroutines make using the special function keys

much easier. These keys can have a variety of tasks assigned to

them in your programs. Games, for example, commonly perform

some chore when a certain function key is pressed. You might

213

214 THE COMMODORE 128 SUBROUTINE LIBRARY

have Fl pause the game, whereas F3 quits the game entirely. F5

could clear the screen, and F7 would exchange sides. Function

keys were used to change the octave and instrument voice in

Commodore 128 Organ in Chapter 7. In other applications, function

keys could display the score or do some other function. The Func

tion Keys routine in this chapter shows you how to have your

own programs branch to specific subroutines when a function key

is pressed. Program Keys automates assigning a string of charac

ters to a function key. Utility Keys demonstrates one set of uses

for the keys.

The Cursor Mover routine used several times in this book is

explained in this chapter. We wind up with a pair of routines

that use the Commodore 128's RS-232 port. Program Transfer is a

simple one-line transfer program that will send a program listing

out the serial port to another computer. Terminal is a dumb

terminal program that lets you communicate two ways.

THE REAL-TIME CLOCK

The Commodore 128 has a built-in timing mechanism that

allows it to measure seconds, minutes, and hours. This feature is

known as the real-time clock, and it can be used by the program

mer to keep track of events, such as the length of time needed to

complete games. The three subroutines that follow are your key

to using the real-time clock of your Commodore computer.

The clock measures time in l/60th-second intervals. Each of

these tiny time increments is popularly called aijiffie. Two count

ers, TI and TI$, keep track of elasped time since the computer

was turned on or since the clock was last reset by the user. That

is, when the computer is first turned on, TI and TI$ equal 000000

and start counting from that point. You may access both TI and

TI$ as you do any other variable. TI numbers the jiffies, while

TI$ keeps the actual seconds.

To find out how many jiffies have elapsed since the jiffie

counter was last reset, assign the value of TI to some other

variable, as: "CU = TI." Similarly, you can take the present time

Software Tricks 215

and use it for programming purposes by assigning its value to a

variable, as: "CU$ = TI$." You can also set the proper time (the

Commodore 128 uses 24-hour, military-style time) by the reverse

method: "TI$ = "120000."

Because the Commodore 128 real-time clock is accurate un

der most circumstances, TI can be used to time events fairly

precisely (one exception is noted below) with approximately l/60th-

second accuracy. This feature might be useful in competitive

games, typing tutors, and other programs that measure elapsed

time accurately. TI$, which can be set to the current time, keeps

track of hours, minutes, and seconds.

Neither TI nor TI$ allows for time lost during input-output

functions, such as loading programs from tape or disk, or writing

data to tape or disk. Therefore, if your program writes data files,

it should not depend on TI or TI$ to be 100 percent accurate. Also,

don't expect either to be correct after you have loaded or saved

several programs.

The first subroutine of this group sets the real-time clock to

the current time, given in 24-hour military style. You can embed

this routine in your programs when you need to access the time

for your program. The next routine measures actual elapsed time.

This is accurate to the second (with the exceptions noted above)

and can be used to measure time to that degree of precision.

The final routine uses the computer as a timer. You may set

the current time and the time you want to be alerted. The routine

will measure that interval and alert you. It uses the SLEEP

command to put the Commodore 128 on standby during the re

quired interval. Hints are provided for writing your own subrou

tine that can be called from time to time while your programs do

other tasks.

CLOCK SETTER

WHAT IT DOES; Sets Commodore 128 real-time clock.

LEVEL; Novice

216 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ****************

110 REM * *
120 REM * CLOCK SETTER *

130 REM * *
140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

200 REM INTERNAL CLOCK SET

210 REM

220 REM

230 GOSUB 27210

240 END

27200 REM *** SUBROUTINE ***

27210 PRINT"ENTER HOUR :"

27220 INPUT HR$

27230 HR=VAL(HR$)
27240 IF HR>23 THEN PRINT "LESS THAN 24 HOURS, PLEASEl":GOTO 230

27250 IF HR>12 GOTO 27310

27260 PRINT "A.M. OR P.M. ?"

27270 GETKEY A$
27280 IF A$="P" THEN HR=HR+12:HR$=MID$(STR$(HR),2):GOTO 27310

27290 IF A$="A" GOTO 27310

27300 GOTO 27270

27310 PRINT "ENTER MINUTES :"

27320 INPUT MINUTE$

27330 MINUTE=VAL(MINUTE$)

27340 IF MINUTE>59 THEN PRINT "LESS THAN 60 MINUTES,

PLEASE I":GOTO 27310

27350 IF HR<10 THEN HR$="0"+HR$:IF HR<1 THEN HR$="00"

27360 IF MINUTE<10 THEN MINUTE$="O"+MINUTE$:IF MINUTE<1 THEN

MINUTE$="00"

27370 TI$=HR$+MINUTE$+"00"

27380 RETURN

HOW TO USE SUBROUTINE

Many programs can use the built-in real-time clock of the

Commodore 128 to measure elapsed time, control events, or sim

ply keep the operator informed as to what time it is.

The Commodore 128 clock keeps 24-hour military time and

stores it in a variable, TI$, which can be called from a program at

any time. One-thirty P.M. would be stored as "133000." This sub

routine prompts the user for the current hours and minutes. If

fewer than 12 hours are entered, the routine asks if the time is

A.M. or P.M. Illegal time entries, such as 256300, are not allowed.

Software Tricks 217

Minutes and hours less than 10 must be entered with a single

digit; the added 0 is appended automatically to produce, say,
090900.

LINE-BY-LINE DESCRIPTION

Lines 27210-27230: User enters hour.

Line 27240: Check to see if less than 24 hours.

Line 27250: If hour is later than 12, skip check to see if it is
A.M. or P.M.

Lines 27260-27300: Ask if A.M. or P.M. and change hour to

military time if answer is P.M.

Lines 27310-27330: Get current minutes.

Line 27340: Make sure less than 60 minutes entered.

Line 27350: If hour less than 10, add leading 0.

Line 27360: If minutes less than 10, add leading 0.

Line 27370: Define TI$ as hours, plus minutes, plus 0 seconds.

YOU SUPPLY

Subroutine asks for hours and minutes.

SUGGESTED ENHANCEMENTS; None.

RESULT

Internal clock set to correct time.

ELAPSED TIME

WHAT IT DOES: Measures difference between two times.

LEVEL: Novice

218 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ****************

110 REM * *

120 REM * ELAPSED TIME *

130 REM * *
140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

200 REM ELAPSED TIME MEASURED

210 REM

220 REM

230 REM *** INITIALIZE ***

240 GOSUB 27410

250 END

27400 REM *** SUBROUTINE ***

2*7410 TS$=TI$
27420 GETKEY A$

27430 TF$=TI$

27440 TS=VAL(TS$)

27450 TF=VAL(TF$)

27460 ET=TF-TS

27470 EM=INT(ET/60)

27480 ES=ET-(EM*60)

27490 PRINT "ELAPSED TIME :"

27500 PRINT " MINUTES :";EM

27510 PRINT " SECONDS :M;ES

HOW TO USE SUBROUTINE

This subroutine takes the number of seconds at the start of

an operation and compares that with the number at the finish, in

order to determine the elapsed minutes and seconds. It is not

necessary to set the real-time clock to the correct time to run this

routine. If you want to measure an event that lasts less than a

second, you could modify this subroutine to use jiffies instead for

l/60th-second accuracy.

LINE-BY-LINE DESCRIPTION

Line 27410: Get time at start of operation.

Line 27420: Wait for user to press key. This line simulates

the operation that you want to time. In your own program, you

Software Tricks 219

should have line 27410 located at the start of your operation and

then proceed to the following line, 27430, at the point where you

wish to measure the time that has elapsed.

Line 27430: Take the current time.

Line 27440: Get value of the time at start.

Line 27450: Get value of the time at finish.

Line 27460: Figure elapsed seconds by subtracting time at

start from time at finish.

Line 27470: Figure elapsed minutes by dividing the elapsed

seconds by 60.

Line 27480: Figure elapsed seconds by taking the seconds

that remain after the elapsed minutes are subtracted from the

total seconds elapsed.

Lines 27490-27510: Print results.

YOU SUPPLY

Your program should set TS$ to equal TI$ when you wish to

start timing, and then call the subroutine when the end of the

timing cycle is over.

SUGGESTED ENHANCEMENTS: Notice that the subroutine will re

port only elapsed minutes and seconds. Using the routines from

Chapter 2, you should be able to modify this one to measure

hours as well. Build in a way to handle time that spans a day.

RESULT

Elapsed time is measured.

TIMER

WHAT IT DOES: Sets computer as a timer.

LEVEL: Intermediate

220 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM *********

110 REM * *

120 REM * TIMER *

130 REM * *

140 REM *********

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

200 REM TIMER SET

210 REM

220 REM

230 GOSUB 27610

240 END

27600 REM *** SUBROUTINE ***

27610 PRINT "TOTAL TIME TO BE COUNTED :"

27620 PRINT "ENTER HOURS :";

27630 INPUT HR$

27640 H1=VAL(HR$)

27650 PRINT "ENTER MINUTES :";

27660 INPUT MN$

27670 M1=VAL(MN$)

27680 PRINT "ENTER SECONDS :";

27690 INPUT SI

27700 T=(H1*36OO)+(M1*6O)+S1

27710 IF T>65535 THEN PRINT"SORRY, MUST BE LESS THAN 18

HOURS 1":RETURN

27720 SCNCLR

27730 SLEEP T

27740 SOUND 1,1000,10

27750 PRINT "TIME IS UP1"

27760 RETURN

HOW TO USE SUBROUTINE

Having the computer signal you at some future time can be a

useful function. This subroutine sets the real-time clock to the

correct time, then asks what time you want to be alerted. It will

then constantly compare the updated current time with the calcu

lated finish time, and when that time is reached, signal.

You are prompted for all the information needed.

LINE-BY-LINE DESCRIPTION

Lines 27610-27690: Get hours, minutes, and seconds to be

timed.

Line 27700: Calculate total seconds that will be timed.

Software Tricks 221

Line 27710: If out of SLEEP range, end routine.

Line 27720: Clear screen.

Line 27730: SLEEP for T seconds.

Line 27740: Beep when time is up.

Line 27750: Print message.

YOU SUPPLY

Answer the requests from the prompts. You also might want

to call a more "alarming" sound subroutine of your choice at Line

27740 to provide an audible alarm. Several such sound routines

are provided in Chapter 7.

SUGGESTED ENHANCEMENTS: Note that the computer can't do

any other functions while this subroutine is running, since SLEEP

is used. You might want to change it so that a finish hour (say,

FH$) is constructed and then constantly compared against the

current time. Your line might be something like, IF VAL(TI$)

>VAL(FT$) GOTO. .. in your main program. Make this compari

son before branching to each new function. Or, you could write a

GOSUB line that goes to that line repeatedly during FOR-NEXT

or GET loops (use GET A$ instead of GETKEY A$).

RESULT

Commodore 128 signals at end of requested time interval.

COLOR CHECKER

WHAT IT DOES: Displays color bars, to check out video display.

LEVEL: Novice

222 THE COMMODORE 128 SUBROUTINE LIBRARY

COLOR CHECKER
*

100 REM

110 REM

120 REM

130 REM

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

200 REM COLOR BARS DISPLAYED

210 REM

220 REM

230 REM *** INITIALIZE ***

240 GOSUB 27110

250 END

27100 REM *** SUBROUTINE ***

27110 SCNCLR

27120 FOR Nl=l TO 16

27130 COLOR 5,N1

27140 PRINT CHR$(18);

27150 FOR N=l TO 40

27160 PRINT CHR$(32);

27170 NEXT N

27180 PRINT

27190 NEXT Nl

27200 RETURN

HOW TO USE SUBROUTINE

This subroutine will provide a quick check of the Commodore

128 video monitor or your color television. Some misadjustments

may produce bending horizontal or vertical lines or poor color

reproduction.

Running the subroutine will produce parallel, horizontal color

bars to check your entire screen. You can then adjust your set or

monitor for best color and contrast.

This subroutine demonstrates the use of the COLOR com

mand to change colors on the screen. We have used the CHR$

color codes in some previous subroutines. CHR$ is convenient

where you want to use keys that the operator presses to control

color, since you can ask the user to press the key he or she wants.

For other applications using COLOR may be a better choice, since

it is not necessary to build data lines with the CHR$ color codes.

The numbers 1-16 can be used instead.

Software Tricks 223

LINE BY-LINE DESCRIPTION

Line 27110: Clear screen.

Line 27120: Start loop from 1 to 16 colors.

Line 27130: Change character color to the value of Nl.

Line 27140: Print the REVERSE ON symbol.

Line 27150: Start loop from 1 to 40 characters, the width of

the 40-column screen.

Line 27160: Print a space. Since reverse is on, this will

appear as a solid block of the current color.

Line 27170: Repeat for next column.

Line 27180: Move cursor down to next line.

Line 27190: Next color.

YOU SUPPLY

Set adjustments.

SUGGESTED ENHANCEMENTS: Change to provide vertical color

bars as well.

RESULT

Better display quality, or rough diagnosis of a problem.

PROGRAM KEYS

WHAT IT DOES: Redefines function keys.

LEVEL; Novice

100 REM ****************

110 REM * *
120 REM * PROGRAM KEYS *

130 REM * *
140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

224 THE COMMODORE 128 SUBROUTINE LIBRARY

200 REM FUNCTION KEYS PROGRAMMED

210 REM

220 REM

230 REM *** INITIALIZE ***

240 GOSUB 27810

250 END

27800 REM *** SUBROUTINE ***

27810 PRINT "ENTER KEY TO DEFINE (1-8) :"

27820 GETKEY K$

27830 K=VAL(K$):IF K<1 OR K>8 GOTO 27820

27840 PRINT "ENTER STRING FOR THE KEY :"

27850 GETKEY A$

27860 IF A$=CHR$(13)THEN GOTO 27900

27870 I$=I$+A$

27880 PRINT A$;

27890 GOTO 27850

27900 PRINT

27910 PRINT "END WITH C/R? (Y/N)u

27920 GETKEY AN$

27930 IF AN$ = "Y" THEN I$ = I$+CHR$ (13) .-GOTO 27950

27940 IF AN^VN" GOTO 27920
27950 KEY K,I$

27960 1$=""

27970 RETURN

HOW TO USE SUBROUTINE

The Commodore 128 has a much more powerful function key

capability than the Commodore 64. With the 64 it was not possi

ble for BASIC 2.0 to assign a string of characters to a key.

Instead, the function keys served as any other key: when pressed,

they returned a CHR$ code (133-140). Your program could check

for any of those keys (as with a GET loop) and branch to a

subroutine of your choice that would carry out the actual "func
tion" of the function key.

BASIC 7.0 allows you to assign actual strings to the keys

and, in fact, provides a selection of default strings, such as DLOAD"
and LIST.

While you may type "KEY,string" from BASIC command

mode and assign key definitions, this subroutine may be easier
for novices. If you are writing a program with your subroutine

library loaded into memory, you need only type GOSUB 27810 to

access this module for instant key redefinition. The routine might

Software Tricks 225

also supply you with ideas for redefining keys from within your

own program. See the Utility Keys subroutine for an example of

a key redefinition program.

NOTE: The total length of all the key definitions in force at

one time cannot be more than 246 characters.

LINE-BY-LINE DESCRIPTION

Line 27810: Ask for key to be redefined.

Lines 27820-27830: Get response, and check to make sure it

is a legal key.

Lines 27840-27860: Get string for the key, stopping when

RETURN (CHR$(13)) is pressed.

Lines 27870-27890: Print characters as they are entered,

and add them to 1$, which stores the key definition.

Lines 27900-27920: Ask if the function key definition should

be ended with a CHR$(13) (RETURN) when it is sent.

Line 27930: If yes, add RETURN to the string.

Line 27950: Redefine the key.

Line 27960: Null 1$, in case routine is called again later.

YOU SUPPLY

Key definition.

SUGGESTED ENHANCEMENTS; Incorporate subroutine in your own

programs so the key definitions you want will be made when the

program is run.

RESULT

Keys redefined.

FUNCTION KEYS

WHAT IT DOES: Changes function keys to Commodore 64 mode.

LEVEL: Novice

226 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM *****************

110 REM * *

120 REM * FUNCTION KEYS *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM NONE

190 REM RESULT —

200 REM FUNCTION KEYS BEHAVE LIKE

210 REM COMMODORE 64'S

220 REM

230 REM

240 REM *** INITIALIZE ***

250 GOSUB 28010

280 END

28000 REM *** SUBROUTINE ***

28010 CU=0

28020 FOR N=l TO 8 STEP 2

28030 CU=CU+1

28040 KEY N,CHR$(132+CU)

28050 KEY N+1,CHR$(136+CU)

28060 NEXT N

28070 RETURN

HOW TO USE SUBROUTINE

When you want more complex functions than can be stored in

the function keys as strings, it is convenient to use a key-press to

trigger a subroutine. As was described in the previous subroutine,

with the Commodore 64, when any of the eight function keys are

pressed, a single-character string ranging from CHR$(133) to

CHR$(140) is returned. Your programs can check for these keys

and then branch to subroutines of your choice:

100 GETKEY A$

110 A=ASC(A$)

120 IF A<133 or A>140 GOTO 100

130 ON A-132 GOTO 500,600,700,800,900,1000,1100,1200

This subroutine returns the Commodore 128 function keys to

the single-character strings of the Commodore 64. Note that the

eight CHR$ codes chosen were selected because they are other

wise unassigned. If you wanted to assign the characters A-H to the

Software Tricks 227

keys, you could have; however, pressing the main keyboard keys

A-H would produce exactly the same effect.

LINE-BY-LINE DESCRIPTION

Line 28010: Initialize count to 0.

Line 28020: Start loop from 1 to 8, stepping by twos.

Line 28030: Increment counter.

Line 28040: Redefine Key N as CHR$(132 + CU).

Line 28050: Redefine Key N + l as CHR$(136 + CU).

Line 28060: Repeat.

YOU SUPPLY

No user input required.

SUGGESTED ENHANCEMENTS; Add programs to perform functions

when keys are pressed.

RESULT

Commodore 128 function keys redefined to Commodore 64

mode.

UTILITY KEYS

WHAT IT DOES: Examples of key redefinition files.

LEVEL: Novice

100 REM ****************

110 REM * *

120 REM * UTILITY KEYS *

130 REM * *

140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

228 THE COMMODORE 128 SUBROUTINE LIBRARY

190 REM RESULT —

200 REM EXAMPLE PROGRAMMING AID

210 REM

220 REM

28100 REM *** SUBROUTINE ***

28110 KEY 1,"RENUMBER 100,10,1"+CHR$(13)

28120 KEY 6,CHR$(145)+CHR$(145)+CHR$(145)+CHR$(145)+CHR$(13)
28130 KEY 7,CHR$(147)+nLIST"+CHR$(13)

HOW TO USE SUBROUTINE

If you use given sets of function key definitions frequently,

you can write them as a program and store the program for use as

you wish. For example, in the writing of this book several key

definitions were used repeatedly. Examples of several of them are

described below.

LINE-BY-LINE DESCRIPTION

Line 28110: As subroutines were written, it was sometimes

necessary to make some additional space between line numbers.

This definition caused the Commodore 128 to renumber all the

program lines, with a starting line number of 100 and an increment

of 10, starting with the first program line. The CHR$(13) tacked on

the end invoked the renumbering as soon as the Fl key was pressed.

Line 28120: As each finished subroutine was saved to disk,

the DSAVE step was repeated two times to provide backup copies

of the routines. Instead of the author's retyping the DSAVE

command and the file name, this key was pressed. It moves the

cursor up four lines (back to where the original DSAVE command

was) and adds a CHR$(13) to reinvoke the command on the line

to where the cursor has been moved. This works only if you have

not moved the cursor since the last SAVE and if no error was

generated by the SAVE.

Line 28130: To view each subroutine, it was often necessary

to move the cursor down to a clear area of the screen and then

press the F7, LIST function key. Instead, this key was defined.

It clears the screen first (so the cursor does not have to be moved)

and then LISTS the entire program.

Software Tricks 229

YOU SUPPLY

Substitute your own key definitions.

SUGGESTED ENHANCEMENTS; Come up with programming short

cuts of your own.

RESULT

Keys redefined to a set of utility functions.

CURSOR MOVER

WHAT IT DOES; Duplicates the LOCATE function of IBM BASIC.

LEVEL; Intermediate

100 REM ****************

110 REM * *

120 REM * CURSOR MOVER *

130 REM * *

140 REM ****************

150 REM

160 REM ++ VARIABLES ++

170 REM USER SUPPLIED —

180 REM ROW: ROW FOR CURSOR

190 REM COL: COL FOR CURSOR

200 REM RESULT —

210 REM CURSOR MOVED TO ROW, COL

220 REM

230 REM

240 REM *** INITIALIZE ***

250 FOR N=l TO 80

260 R$=R$+CHR$(29)

270 IF N<26 THEN D$=D$+CHR$(17)

280 NEXT N

290 WIDE=40

300 COL=3:ROW=10

310 SCNCLR

320 GOSUB 28210

330 PRINT "HERE I AM IN ROW ";ROW?" COLUMN ".-COL;"!11

340 END

28200 REM *** SUBROUTINE ***

230 THE COMMODORE 128 SUBROUTINE LIBRARY

28210 PRINT CHR$(19);

28220 PRINT LEFT?(R$,COL);

28230 PRINT LEFT$(D$,ROW);

28240 RETURN

HOW TO USE SUBROUTINE

Some BASICs, such as that used in the IBM Personal Com

puter, allow moving the cursor to any location on the screen with

a LOCATE (row,col) command.

This subroutine duplicates that function for the 40- or

80-column screen. Prior to calling it, you should define ROW and

COL. Your program should define WIDE as the width of your

screen, either 40 or 80 columns. If you exceed allowable values on

the 80-column screen, the cursor moves to its limits and no far

ther. With a 40-column screen the cursor will wrap around to the

next line, up to the last column in that second row. ROW and

COL can be computed values, if you wish, but see that they don't

fall outside the limits.

LINE-BY-LINE DESCRIPTION

Lines 250-280: Define R$ as 80 CURSOR RIGHT characters.

Define D$ as 25 CURSOR DOWN characters.

Lines 290-300: Define ROW, COL, and screen width, WIDE.

Your program will define WIDE once but redefine ROW and COL

as you move the cursor around on the screen.

Line 310: Clear screen.

Line 320: Access the subroutine.

Line 330: Show result.

Line 28210: Move cursor to HOME position.

Line 28220: Move cursor right the number of columns in

COL by taking the LEFT$ portion of R$ up to COL.

Line 28230: Move cursor down the number of lines in ROW

by taking the LEFT$ portion of D$ up to ROW.

Line 28240: Return.

Software Tricks 231

YOU SUPPLY

Definition for screen width, ROW and COL.

SUGGESTED ENHANCEMENTS; Add lines to keep cursor from mov

ing beyond the 40-column point with a 40-column screen. Example:

28215 IF COL>40 AND WIDE=40 THEN COL=40

RESULT

Cursor moved to ROW and COL specified by user.

PROGRAM TRANSFER

WHAT IT DOES; Allows sending a program listing out the RS-232

interface, if one is installed.

LEVEL; Intermediate

100 REM ********************

110 REM * *

120 REM * PROGRAM TRANSFER *

130 REM * *

140 REM ********************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NONE

190 REM RESULT —

200 REM LISTING DIRECTED TO

210 REM RS-232 PORT

220 REM

230 REM

28300 REM *** SUBROUTINE ***

28310 OPEN 2,2,3,CHR$(38)+CHR$(160)
28320 CMD2

28330 LIST

28340 PRINT#2

28350 CLOSE 2

28360 PRINT"TRANSFER COMPLETE"

232 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

Because the Commodore 128's BASIC is fairly compatible with

that of other computers, it may be desirable to send a program

listing to another machine, even though the two have incompatible

disk formats. If the Commodore 128 is equipped with an inexpensive

RS-232 interface and the other computer has the same, then a

cable, a null modem adapter, and this subroutine are nearly all that

are needed. The other computer should have a terminal program

that will allow dumping the transmitted file to disk or tape.

Be certain to include the null modem adapter, available from

most computer stores, when communication is directly between

two computers with no modem in between. Otherwise, each will

be sending to the other's SEND line and trying to receive from

the connected computer's RECEIVE line.

Simply load the program you want to transmit, and type in

the lines in this subroutine as one long line before hitting return.

Your baud rate will be set for 300, even parity, and a 7-bit word.

This routine was actually used in the preparation of this book.

The program listings were sent from the author's Commodore 128

to another computer used for word processing. However, a key

was redefined to provide the program lines listed here. After a

given routine was loaded, pressing the function key initiated the

transmission.

LINE-BY-LINE DESCRIPTION

Line 28310: OPEN the RS-232 line and set for 300 baud,

even parity, 7-bit word.

Line 28320: Redirect screen output to the RS-232 line.

Line 28330: LIST the program. The listing goes out the RS-232

instead of to the screen.

Lines 28340-28350: Return status to normal.

Line 28360: Notify that transmission is complete.

YOU SUPPLY

Program to transmit.

Software Tricks 233

SUGGESTED ENHANCEMENTS; Incorporate features from the next

subroutine, Terminal, to allow for two-way transmissions.

RESULT

Program listing sent out RS-232 port.

TERMINAL

WHAT IT DOES; BASIC dumb terminal program.

LEVEL; Intermediate

100 REM ************

110

120

130

140

l ^nXD\J

160

170

180

190

200

210

220

230

240

REM

REM

REM

REM

RF*MXvCiirl

REM

REM

REM

REM

REM

REM

REM

REM

REM

* *

* TERMINAL *
* *

++ VARIABLES ++

SUPPLIED BY USER —

KEYBOARD INPUT

RESULT —

COMMUNICATE WITH OTHER

COMPUTER AT 300 BAUD,

EVEN PARITY, 7-BIT WORD

28500 REM *** SUBROUTINE ***

28510 OPEN 2,2,3,CHR$(38)+CHR$(160)

28520 GET #2,A$

28530 GET B$

28540 IF B$<>"" THEN PRINT#2,B$;

28550 IF B$=CHR$(95) THEN GOTO 28610

28560 GET #2,C$

28570 A=ASC(C$)

28580 IF A>90 THEN C$=CHR$(A-32)

28590 PRINT B$;C$;

28600 GOTO 28530

28610 CLOSE 2

HOW TO USE SUBROUTINE

BASIC is just about fast enough for the Commodore 128 to

communicate at 300 baud if nothing fancy is attempted. This

234 THE COMMODORE 128 SUBROUTINE LIBRARY

subroutine will fetch characters from the RS-232 line and send

keyboard characters out that interface. Anything sent or received

is echoed to the screen. Lowercase from the other computer is

translated to uppercase.

LINE-BY-LINE DESCRIPTION

Line 28510: OPEN RS-232 channel for 300 baud communica

tions.

Line 28520: Get from channel number 2, a character, if

available.

Line 28530: GET a character from the keyboard, if a key is

depressed.

Line 28540: If a key was depressed, print that character to

the screen.

Line 28550: If user enters CHR$(95) (back arrow), cease

communications.

Line 28560: Get character from RS-232, if available.

Line 28570: Determine ASCII value of key received.

Line 28580: If key was lowercase, reduce to uppercase.

Line 28590: Print keyboard or character from RS-232 to screen.

Line 28600: Go back and get more characters.

Line 28610: CLOSE the RS-232 channel.

YOU SUPPLY

No user changes needed.

SUGGESTED ENHANCEMENTS; Add routine to upload a file.

RESULT

Dumb terminal communications in BASIC.

9
BITS AND

BYTES

This section is for those at the threshold of advanced program

ming. All but one of the routines in this chapter deal with view

ing and manipulating the individual bits within single bytes in

your computer's memory.

As you know, each memory location stores a single, 8-bit

byte. The binary numbers look like this:

10110111

In many cases the value of this whole byte is of use to you.

For example, in character memory, when you find a "1010001"

235

236 THE COMMODORE 128 SUBROUTINE LIBRARY

(81 decimal), you know that an uppercase "Q" has been printed

there. Using a full byte allows you to have a total of 256 combina

tions in that location and therefore 256 different characters.

However, some functions do not have that many possibilities.

A feature may be on or off, for example. You could store a "1" in

that location (00000001 in binary) if the feature is on, and a "0"

(00000000 in binary) if it is off. You can see, though, that the

other seven bits will never be used.

The Commodore computer makes multiple use of many mem

ory locations by using individual bits to represent different

conditions. It is necessary, then, to look at one bit within a byte to

see whether a feature is on or off. Similarly, when you want to

change that condition, you may need to POKE ONLY that bit

and leave the others, which pertain to other features, unchanged.

The Peek Bit subroutine filters out the undesired bits by

using a technique known as Boolean logic. Boolean math com

pares each bit of one byte with the corresponding bit of another

byte. The result depends on what type of operator is used, the

most common being AND, OR, and NOT. With the AND opera

tion, if both bits are 1, the result is 1; all other comparisons

produce a value of 0. The OR operation produces a 1 if either bit

is 1. NOT complements each bit.

Boolean math is discussed in more detail shortly. First you

need to know more of how AND works. The particular bit or bits

looked at depends on the number you choose to AND with. You

will remember in the Commodore 64-compatible joystick routines

in Chapter 5 various numbers were ANDed with a PEEK to deter

mine the status of a given joystick switch bit. In some cases, you

may want to know about all of the first four bits (reading from

right to left, as is the convention with numbers) of a byte, so you

AND with 15, which is 00001111 in binary, to "mask" the last

four bits. Here are a few examples:

MEMORY BYTE: 11010001

AND with 15: 00001111

RESULT 00000001

MEMORY BYTE: 01100001

AND with 15: 00001111

RESULT 00000001

Bits and Bytes 237

You'll see by following along the columns that the result

equals 1 only when the corresponding bit in both the color mem

ory byte and 15 equal 1. Since the second (left-hand) four bits of

the binary equivalent of 15 decimal are always 0, the result will

always be 0. Since the first (right-hand) four bits of 15 are all l's,

the result will be 1 only if there is also a 1 in the memory byte.

The OR and NOT operators are two of the other more fre

quently used Boolean tools. Whereas AND produces a 1 after

each bit-to-bit comparison only when both bits are 1, OR produces

a 1 if either bit is 1. For example:

Original byte: 10110110 OR

Comparison byte: 01100011

Result: 11110111

NOT produces the opposite of the value used: IF NOT A= 1

will produce a 0 (false) value if A does equal 1.

There are a number of other Boolean operators, including

exclusive OR (XOR), but none of these is used in this book. What

these subroutines let you do is manipulate individual bits in

order to set certain registers that may not require an entire byte.

Rather than POKing a number into a memory location and chang

ing the contents of bits that do not concern you, use the "soft"

POKing routines presented here to alter only the desired bit.

One of the subroutines in this section will allow PEEKing at

any given bit within a byte. Another will set any chosen bit to 1,

turning a feature "on." A third will set any bit to 0, turning that

feature "off." What if you don't care whether the bit is on or off but

would like to set it to the reverse condition? In computer pro

gramming this is known as a toggle. Hitting the switch one time

turns the feature on or off, depending on its previous condition.

Hitting it again does the reverse. The Reverse Bit subroutine will

toggle any bit you like. Another routine, Bit Displayer, will show

the status of all the bits in a byte. In effect, it translates the byte

into binary.

Another subroutine rounds off numbers to any specified de

gree of precision. While not dealing with bits, it is included in

this section as a general number crunching utility.

238 THE COMMODORE 128 SUBROUTINE LIBRARY

PEEK BIT

WHAT IT DOES: Looks at status, 0 or 1, of any selected bit in a

given byte.

LEVEL: Advanced

100

110

120

130

140

150

160

170

180

190

200

210

220

230

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

*

* PEEK BIT
*

*

*

*

++ VARIABLES ++

SUPPLIED

ADDRESS:

BIT:

RESULT —

V:

BY USER —

LOCATION TO PEEK

BIT TO EXAMINE

VALUE OF BIT

240 REM *** INITIALIZE ***

250 ADDRESS=36879

260 BIT=5

270 GOSUB 29010

280 PRINT "VALUE IN BIT ";BIT;"=";V

290 END

29000 REM *** SUBROUTINE ***

29010 BIT=8-BIT

29020 P=BIT-1

2,9030 V=(PEEK(ADDRESS)AND(2~P))/(2~P)

29040 BIT=8-BIT

29050 RETURN

HOW TO USE SUBROUTINE

The Commodore 128 gets maximum mileage out of its RAM

locations by using many for multiple purposes. A given register

has eight bits, making up its byte. The status of one bit might be

used to indicate whether a certain feature is on or off. Another bit

in the same byte might be used to toggle some entirely different

function.

Accordingly, it is useful to look at just one bit in a byte, to

Bits and Bytes 239

see its status. Your program may take some action based on what

is found, that is, "IF V = O THEN PRINT "THE FEATURE IS

OFF."

NOTE: The caret symbol C) indicates the up-arrow key, located

between RESTORE and "*" on your Commodore 128 keyboard.

LINE-BY-LINE DESCRIPTION

Line 250: Define ADDRESS to PEEK.

Line 260: Define BIT to look at.

Lines 270-290: Access the subroutine and print out results.

Line 29010: Change BIT number. Although we count bits

from right to left, this routine processes them from left to right.

Line 29020: Determine number to AND with byte.

Line 29030: AND byte with P to determine status of the bit.

Line 29040: Change BIT value back.

YOU SUPPLY

Define BIT as the bit, 1-8 counting from the right, that you

want to examine, and ADDRESS as the memory location to be

PEEKed. V will indicate whether the bit is on or off, by equaling

either 1 or 0.

SUGGESTED ENHANCEMENTS: None.

RESULT

Status of bit displayed.

BIT DISPLAYER

WHAT IT DOES: Shows pattern of all eight bits within a byte.

Converts the decimal value to binary.

LEVEL: Advanced

240 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM *****************

110 REM * *

120 REM * BIT DISPLAYER *

130 REM * *

140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM ADDRESS: MEMORY BYTE

190 REM TO DISPLAY

200 REM RESULT —

210 REM BYTE$: BIT PATTERN
220 REM

230 REM

240 REM *** INITIALIZE ***

250 ADDRESS=36879

260 PRINT

270 GOSUB 29110

280 PRINT"ADDRESS: ";ADDRESS

290 PRINT TAB(4)BYTE$

300 END

29100 REM *** SUBROUTINE ***

29110 BYTE$»IMI

29120 PRINT TAB(4)IIM;

29130 FOR N=7 TO 0 STEP-1

29140 V=(PEEK(ADDRESS)AND(2AN))/(2"N)
29150 G$=MID$(STR$(V),2)

29160 BYTE$=BYTE$+G$

29170 NEXT N

29180 RETURN

HOW TO USE SUBROUTINE

This subroutine will display all of the bits within a byte.

Each position will be indicated by a 1 or a 0.

You could also use this subroutine to provide a quick

way of converting a number from decimal (in the range 0

to 255 only) to binary. Simply POKE the number to an unused

memory location and then immediately call this subroutine to

PEEK that address. Quite a roundabout way of performing the

task, but useful if you are writing software that you deliber

ately want to be difficult to change, such as for protection

purposes.

This subroutine will also serve as a means of converting

decimal number smaller than 255 to binary. Simply substitute

Bits and Bytes 241

your variable for PEEK(ADDRESS) and define the variable as the

decimal number you want to convert.

NOTE: The caret symbol C) indicates the up-arrow key, located

between RESTORE and "*" on your Commodore 128 keyboard.

LINE-BY LINE DESCRIPTION

Line 250: Define address to be PEEKed.

Lines 260-300: Access the subroutine and print result.

Line 29110: Null any previous value of BYTE$.

Line 29120: Provide TAB to print result.

Lines 29140-29150: Repeat through each bit of byte, AND

each bit with the next highest power of 2, and store the result in

G$, which will store the on/off status of each bit. Then add G$ to

BYTE$.

YOU SUPPLY

You must define ADDRESS as the memory location, in deci

mal, that you want to PEEK. The subroutine returns BIT$, which

is a representation of all the bits within that byte.

SUGGESTED ENHANCEMENTS: None.

RESULT

All bits within a byte are displayed.

BIT TO ONE

WHAT IT DOES: Soft POKEs any desired bit within a byte so that

it now has the value of 1, without changing any other bits.

LEVEL: Advanced

242 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM **************

110 REM * *

120 REM * BIT TO ONE *

130 REM * *
140 REM **************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM ADDRESS: LOCATION TO POKE

190 REM BIT: BIT TO CHANGE TO ONE

200 REM RESULT —

210 REM BIT CHANGED TO 1

230 REM

240 REM

250 REM *** INITIALIZE ***

260 ADDRESS=36878

270 BIT=3

280 GOSUB 29210

290 END

29200 REM *** SUBROUTINE ***

29210 BIT=8-BIT

29220 POKE ADDRESS,PEEK(ADDRESS)OR(2"BIT)

29230 BIT=8-BIT

29240 RETURN

HOW TO USE SUBROUTINE

This subroutine will take any bit within a byte and change

its value to 1, regardless of what it was before. None of the

other bits within the byte will be altered. This ability is useful

for toggling certain features within a multipurpose byte that may

also be used to control other parameters of the Commodore 128.

NOTE: The caret symbol (A) indicates the up-arrow key,

located between RESTORE and "*" on your Commodore 128

keyboard.

LINE-BY-LINE DESCRIPTION

Line 260: Define ADDRESS to PEEK and POKE.

Line 270: Define BIT to change to a value of 1.

Line 29220: POKE BIT to 1.

Bits and Bytes 243

YOU SUPPLY

You must define ADDRESS as the memory location, in deci

mal, that you want to POKE. BIT should be given the value of

the bit, 1-8, that you want changed to a value of 1.

SUGGESTED ENHANCEMENTS: None.

RESULT

Bit within a byte is changed to 1.

BIT TO ZERO

WHAT IT DOES: Soft POKEs any desired bit within a byte so that

it now has the value of 0, without changing any other bits.

LEVEL: Advanced

100 REM ***************

110 REM * *

120 REM * BIT TO ZERO *

130 REM * *

140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM ADtoRESS: LOCATION TO POKE

190 REM BIT: BIT TO CHANGE TO ZERO

200 REM RESULT —

210 REM BIT CHANGED TO ZERO

220 REM

230 REM

240 REM *** INITIALIZE ***

250 ADDRESS=36879

260 BIT=3

270 GOSUB 29310

280 END

29300 REM *** SUBROUTINE ***

29310 BIT=8-BIT

29320 POKE ADDRESS,PEEK(ADDRESS)AND(255-(2"BIT))

29330 BIT=8-BIT

29340 RETURN

244 THE COMMODORE 128 SUBROUTINE LIBRARY

HOW TO USE SUBROUTINE

This subroutine will take any bit within a byte and change

its value to 0, regardless of what it was before. None of the other

bits within the byte will be altered. This ability is useful for

toggling certain features within a multipurpose byte that may

also be used to control other parameters of the Commodore 128.

NOTE: The caret symbol C) indicates the up-arrow key, located

between RESTORE and "*" on your Commodore 128 keyboard.

LINE-BY-LINE DESCRIPTION

Line 250: Define ADDRESS to PEEK and POKE.

Line 260: Define BIT to change to a value of 0.

Line 29320: POKE BIT to 1.

YOU SUPPLY

You must define ADDRESS as the memory location, in deci

mal, that you want to POKE. BIT should be given the value of

the bit, 1-8, that you want changed to a value of 0.

SUGGESTED ENHANCEMENTS: None.

RESULT

Bit within a byte is changed to 0.

REVERSE BIT

WHAT IT DOES: Soft POKEs any desired bit within a byte so that

it now has the opposite value without changing any other bits.

LEVEL: Advanced

Bits and Bytes 245

100 REM ***************

110 REM * *

120 REM * REVERSE BIT *

130 REM * *
140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM ADDRESS: LOCATION TO POKE

190 REM BIT: BIT TO REVERSE

200 REM RESULT —

210 REM BIT CHANGED TO OPPOSITE

220 REM

230 REM

240 REM *** INITIALIZE ***

250 ADDRESS=36878

260 BIT=3

270 GOSUB 29410

280 END

29400 REM *** SUBROUTINE ***

29410 BIT=8-BIT

29420 M=1-(PEEK(ADDRESS)AND(2*BIT))/(2"BIT)

29430 POKE ADDRESS,PEEK(ADDRESS)AND(255-(2"BIT))OR(M*(2~BIT))

29440 BIT=8-BIT

29450 RETURN

HOW TO USE SUBROUTINE

This subroutine will take any bit within a byte and change

that value to the opposite of what it was before. If the bit was 1, it

will be changed to 0. A 0 bit will be given a value of 1. None of

the other bits within the byte will be altered. This ability is

useful for toggling certain features within a multipurpose byte

that may also be used to control other parameters of the Commo

dore 128. Using this subroutine, it is not necessary to know

whether the feature is on or off. The routine will change it to the

other status automatically.

NOTE: The caret symbol C) indicates the up-arrow key, located

between RESTORE and "*" on your Commodore 128 keyboard.

246 THE COMMODORE 128 SUBROUTINE LIBRARY

LINE-BY-LINE DESCRIPTION

Line 250: Define ADDRESS to PEEK and POKE.

Line 260: Define BIT to reverse.

Lines 29420-29430: Find out value of the bit, then reverse

that, using OR.

YOU SUPPLY

You must define ADDRESS as the memory location, in deci

mal, that you want to POKE. BIT should be given the value of

the bit, 1-8, that you want changed to reverse in value.

SUGGESTED ENHANCEMENTS: None.

RESULT

Bit within a byte is reversed.

BINARY TO DECIMAL

WHAT IT DOES: Changes binary number to decimal equivalent.

LEVEL: Advanced

100 REM ******************

110 REM * *

120 REM * BINARY/DECIMAL *

130 REM * *

140 REM ******************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM A$: BINARY NUMBER AS STRING

190 REM RESULT —

200 REM A: DECIMAL EQUIVALENT

210 REM

220 REM

230 SCNCLR

240 PRINT "ENTER BINARY NUMBER TO CONVERT":INPUT A$

250 FOR N=l TO LEN(A$)

260 T$=MID$(A$,N,1)

Bits and Bytes 247

270 IF T$="0" OR T$="l" GOTO 310

280 PRINT " NOT A BINARY NUMBER1"

290 PRINT

300 GOTO 240

310 GOSUB 29510

320 PRINT A$;"=";A

330 END

340 A=0

29500 REM *** SUBROUTINE ***

29510 FOR N=l TO LEN(A$)

29520 P=LEN<A$)-N

29530 A=A+2"P*VAL(MID$(A$,N,1))

29540 NEXT N

29550 RETURN

HOW TO USE SUBROUTINE

Several of the subroutines in this book, and many more that

you will prepare, require supplying decimal equivalents of binary

numbers. For example, producing programmed character sets in

volves setting each bit of a byte either on or off depending on

the desired status of the equivalent picture element. Once the

binary number has been "designed," the user needs the decimal

equivalent for the appropriate POKE statement.

This routine will calculate the decimal numbers for you. Just

enter the binary number when asked. The routine will check to

see that ONLY l's and O's have been entered, then figure the

result.

NOTE: The caret symbol C) indicates the up-arrow key, located

between RESTORE and **" on your Commodore 128 keyboard.

LINE-BY-LINE DESCRIPTION

Lines 230-240: Ask user for binary number to convert.

Lines 250-300: Check for presence of illegal characters.

Line 310: Access subroutine.

Line 320: Print result.

Lines 29510-29540: Look at each binary character, and raise

any l's to the power of 2 indicated by its position within the

byte.

248 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

You must enter the binary number to be converted.

SUGGESTED ENHANCEMENTS: None.

RESULT

Binary number converted to decimal.

ROUNDER

WHAT IT DOES: Rounds positive number, and cuts off after desired

number of decimal places.

LEVEL: Intermediate

100 REM ***********

110 REM * *

120 REM * ROUNDER *

130 REM * *
140 REM ***********

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM A: NUMBER TO BE ROUNDED

190 REM P: DIGITS DESIRED TO

200 REM RIGHT OF DECIMAL POINT

210 REM RESULT —

220 REM B: ROUNDED VALUE

230 REM

240 REM

250 REM *** INITIALIZE ***

260 A=55.534

270 P=2

280 GOSUB 29620

290 PRINT B

300 END

29610 REM *** SUBROUTINE ***

29620 C=A+5.5*10"-(P+l)

29630 B=INT(C*10AP)/l0"P

29640 RETURN

Bits and Bytes 249

HOW TO USE SUBROUTINE

The Commodore 128 is sometimes a great deal more accurate

than you need. For example, your car may get 24.3459121 miles

per gallon, but you would be happy to know that it is close to

24.3. This subroutine can be used to produce the desired degree of

precision while still rounding the numbers so that the figure is as

accurate as the significant digits reflect.

NOTE: The caret symbol C) in the program listing stands for

the up-arrow key, located between RESTORE and "*" on your

Commodore 128 keyboard.

LINE-BY-LINE DESCRIPTION

Line 260: Define number to be rounded.

Line 270: Define number of digits to right of decimal desired.

Line 280: Access the subroutine.

Line 290: Print results.

Line 29620: Add rounding factor.

Line 29630: Take integer portion of number multiplied by 10

raised to P power, and divide that by 10 raised to P power.

YOU SUPPLY

You should define A to be the number to be rounded. P will

equal the number of digits to the right of the decimal point that

you want. The subroutine will return B, the rounded value. If B

has a fractional decimal part that ends in 0, the 0 will not be

printed, even though that many decimal places have been re

quested. For example, if two decimal places are desired, 55.344

and 55.399 will be returned as 55.34 and 55.4 respectively.

SUGGESTED ENHANCEMENTS: None.

RESULT

Number rounded as specified.

250 THE COMMODORE 128 SUBROUTINE LIBRARY

PRIME NUMBERS

WHAT IT DOES; Finds prime numbers.

LEVEL: Intermediate

100 REM *****************

110 REM * *

120 REM * PRIME NUMBERS *

130 REM * *
140 REM *****************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM U: MAX TO SEARCH

190 REM RESULT —

200 REM LAST: LAST PRIME FOUND

210 REM P: NEXT TO CHECK

220 REM

230 REM *** INITIALIZE ***

240 INPUT "HOW HIGH TO SEARCH";U

250 GOSUB 29710

260 END

29700 REM *** SUBROUTINE ***

29710 DIM PR(5000)

29720 PR(1)=3

29730 PR(2)=5

29740 LAST=2

29750 P=7

29760 NU=0

29770 IF PR(T)<SQR(P) THEN T=T+1:GOTO 29770

29780 FOR N=l TO T

29790 G=P/PR(N)-INT(P/PR(N)):IF G=0 THEN NU=1

29800 NEXT N

29810 IF NU=1 THEN GOTO 29850

29820 LAST=LAST+1

29830 PR(LAST)=P

29840 PRINT P

29850 P=P+2

29860 IF P=>U THEN RETURN

29870 GOTO 29760

HOW TO USE SUBROUTINE

This subroutine is just for fun but may also be of some use to

those who need to locate a list of prime numbers. It will generate

Bits and Bytes 251

a list of prime numbers smaller than the number you specify. If

you have the patience to wait for more than 500, enlarge the

array to make room.

LINE-BY-LINE DESCRIPTION

Line 240: Ask how high to search.

Line 250: Access the subroutine.

Line 29710: DIMension an array to hold the first 5000 prime

numbers.

Lines 29720-29730: Tell the subroutine the first two prime

numbers.

Line 29740: Define last number checked as 2.

Line 29770: See if the last prime found is less than the

square of the current number being checked. Only numbers less

than the square root of P will be checked.

Lines 29780-29800: See if number is evenly divisible.

Line 29810: If even divisor was found, try next number.

Line 29820: If no even divisor is found, then number is

prime.

Lines 29830-29840: Store new prime in array and print re

sults to screen.

Line 29850: Increment P to look for next prime.

Line 29860: Check to see if upper desired limit reached.

Line 29870: Otherwise, repeat.

NUMBER SORT

WHAT IT DOES: Sorts group of numbers by size.

LEVEL: Intermediate

252 THE COMMODORE 128 SUBROUTINE LIBRARY

100 REM ***************

110 REM * *

120 REM * NUMBER SORT *

130 REM * *

140 REM ***************

150 REM

160 REM ++ VARIABLES ++

170 REM SUPPLIED BY USER —

180 REM NU: NUMBER OF ITEMS SORTED

190 REM US(N): ARRAY WITH ITEMS

200 REM RESULT —

210 REM SORTED ARRAY

220 REM

230 REM

240 REM *** INITIALIZE ***

250 NU=10

260 DIM US(NU):GOSUB 29610

270 FOR N=l TO NU

280 PRINT US(N)

290 NEXT N

300 END

29600 REM *** SUBROUTINE ***

29610 FOR ITEM=1 TO NU

29620 PRINT"ENTER #";ITEM

29630 INPUT US(ITEM)

29640 NEXT ITEM

29650 FOR N=l TO NU

29660 FOR Nl=l TO NU-N

29670 A=US(N1)

29680 B=US(N1+1)

29690 IF A<B THEN GOTO 29720

29700 US(N1)=B

29710 US(N1+1)=A

29720 NEXT Nl

29730 NEXT N

29740 RETURN

HOW TO USE SUBROUTINE

Sorting a list of numbers is a common need for many pro

grams. Checking account files and other groups of numbers often

have to be sorted to be most useful. This routine is a simple

bubble sort, which will sort any group of numbers that have been

loaded into an array, US(n).

Although as written the subroutine asks the user to enter the

number list from the keyboard, any means can be used to load the

array. The file may also be read from disk or tape, for example,

Bits and Bytes 253

using the bubble sort routines presented in this book. The bubble

sort is so called because each entry in the array is examined and

then allowed to rise up past the one below until it encounters a

"smaller" item. Numeric sorts are easier to understand than

string sorts, because simple number comparisons are used. That

is, 1237 is always larger than 32.6 and smaller than 7844. Grad

ually, each member of the list "floats" up to its proper place in the

array.

While such sorts are not very fast, with small lists of, say, 30

or 40 items, the speed is satisfactory. This routine is basically the

same as the String Sort presented in Chapter 4.

LINE-BYLINE DESCRIPTION

Line 250: Define NU, the number of units in the array to be

sorted.

Line 260: DIMension the array to proper size.

Lines 270-290: Print results.

Lines 29610-29640: User enters each array item in random

order. A disk or tape file read routine could be substituted for

these lines to sort an existing string file.

Line 29650: Start loop from 1 to the number of items to be

sorted.

Line 29660: Start a nested loop from 1 to 1 less than the

number of items to be sorted.

Line 29670: Make A equal to the Nlth item of the array.

Line 29680: Make B equal to the item following A in the

array.

Line 29690: If the "higher" element, A, is already smaller

than B, then B remains where it is, and the inner loop steps off

the next value of Nl.

Lines 29700-29710: If B is smaller than A, then the two

numbers are swapped, with B moving ahead one element and A$

being pushed down one.

Lines 29720-29730: The inner and outer loops are incremented.

254 THE COMMODORE 128 SUBROUTINE LIBRARY

YOU SUPPLY

You should define NU, the number of items to be sorted, as

well as supply the data for the array, US(n).

SUGGESTED ENHANCEMENTS: None

RESULT

List of numbers is sorted by size.

GLOSSARY

Algorithm: A formula or method for performing a given

task, such as MPG= MILES/GALLNS.

Alphanumeric: Characters that are letters, numbers, punc

tuation marks, or other symbols, as opposed to graphics or control

characters. Alphanumerics include the upper- and lowercase alpha

bet, as well as the digits 0 to 9 and common punctuation symbols.

AND: Boolean operator that compares each bit of a byte with

the corresponding bit in another byte and produces a 1 if both are

equal to 1.

Append: To add to the end of, as to append one file onto

another.

255

258 THE COMMODORE 128 SUBROUTINE LIBRARY

ory location contains something. If it is not meaningful informa

tion placed there by the computer or user, it is termed garbage.

Increment: To increase the value of a variable by 1. This is

also commonly used as a verb to denote increasing a variable by

any amount, such as "to increment by 4."

Initialize: To set variables to a desired beginning value at

the start of a program or at the beginning of a subroutine. For

example:

10 B=0

20 INPUT A

30 B=B+A

40 PRINT B

50 GOTO 20

You would want to initialize B, as in line 10, each time the

subtotal should be eliminated and the addition started from 0

again.

Jiffie: A l/60th-second interval used by the Commodore 128

to keep track of elapsed time.

Modem: Modulator-demodulator. A device that converts the

Commodore 128's signals to sounds that can be transmitted over

telephone lines. The modem also receives sounds and converts

them back for the Commodore 128 to use.

Monitor: The television-like device used to display video

information.

Null modem: An adapter plug or cable that reverses the

SEND and RECEIVE lines of two RS-232 serial interface devices.

It enables two computers to be wired directly together to commu

nicate without one computer's SEND signals being sent to the

SEND lines of the other and RECEIVE trying to RECEIVE from

the other.

Nybble: Four bits; half a byte. Often used when a feature

has only 16 possible conditions and therefore can be expressed in

four bits instead of the full eight in a byte. The rest of the byte

(the other nybble) can be used by the computer for other data

registers or left as random garbage.

Offset: A way of addressing memory through the use of a

relative address rather than an absolute address. If a certain

Glossary 259

memory block is located between 30000 and 31000, we can POKE

the first location in that block by either of the two methods

following:

10 POKE 30001,X

10 OFFSET=30000

20 POKE OFFSET+1,X

The second method is often clearer and can also be used when the

memory location defined by OFFSET can vary.

OR: A Boolean operator that is used to compare one byte

with another on a bit-for-bit level. If either a bit or the corres

ponding bit in the other byte is 1, OR will produce a 1 as the result.

Oscillator: An electronic device that, in the Commodore 128,

produces a sound when the proper POKEs are performed to the

volume and sound registers.

Parallel: A method of transferring data an entire bit at a

time by sending each of the eight bits along a separate parallel

address line simultaneously. Serial transfer, on the other hand,

transmits each of the eight bits one at a time.

Port: One of the "windows" used by the Commodore 128 to

talk to the outside world. The joysticks send information to the

computer through a port.

Prompt: A message to the computer user asking for informa

tion. The following INPUT statement includes a prompt.

10 INPUT "ENTER YOUR NAME"?A$

Pseudo-random: Numbers that appear to be random but

that are actually taken from a very long list of numbers. The list

is so long that it takes a great deal of time before it repeats, and

since the computer usually starts at a different position in the

list each time, the series seems to be different.

Random access: A method of getting data, either from mem

ory or from disk, that allows going directly to the information

required and using it, without accessing any of the other informa

tion in the file or memory.

260 THE COMMODORE 128 SUBROUTINE LIBRARY

Real-time clock: The built-in clock in the Commodore 128

that keeps track of elapsed time since the computer was turned

on or since the clock was last reset by the user.

Register: A location storing a status of some type. Some

types of registers are located in the Commodore 128's micropro

cessor and can be accessed only through machine language. Some

memory locations in the Commodore 128 perform a registerlike

function, telling the computer whether a certain feature is on or

off, or telling the volume of a sound oscillator, or some other

status.

RS-232: A serial interface device that allows the Commodore

128 to communicate with devices like printers or modems one bit

at a time.

Sequential: A serial file access method in which each piece

of information is stored after another and must be written or

accessed in that fashion.

Serial: Sequential data storage or transfer.

String delimiter: A character that the computer recognizes

as the "end" of a given string input. The most common are

commas and quotation marks.

String variable: A variable that can store alpha information

only. Strings can include numbers, punctuation marks, and graph

ics, but the computer recognizes them only as characters, not as

values.

Subroutine: A program module that performs a specific task,

called through the GOSUB statement and ending with RETURN,

which directs program control back to the instruction following

the GOSUB.

Toggle: A feature that can be either on or off is some

times "toggled" between the two, like a light switch.

Upload: To store a file from disk or tape in the Commodore

128's memory buffer and then send it through telecommunica

tions to another computer, which can then write it to tape or disk

for permanent storage (downloading).

Voice: One of three oscillators in the Commodore 128 that

produce sounds.

INDEX

Abbreviations, 57-60 files, 61

Accelerated depreciation, 36-37 game writing, 91

Accessing the library, 8-9 PEEKing/POKing Commodore

Alarms replacements, 91

sound of, 201-202 Automobiles, MPG calculation,

burglar alarm, 200-201 55-57

All directions joystick routines

40-column, 140-142

80-column, 130-132

Alphabetizing o

shell-Metzner sort, 99-101 _

string sort, 96-99

AND, Boolean operators, 236-237 BASIC, 7.0, 12

Annuity withdraw, 31-33 advantages of, 83

Array loader, 101-104 EXCHANGE, 85

ASCII, 90-91 INSTR, 84-85

261

262 INDEX

BASIC (continued)

SPACE$, 85

STRING$, 85

Binary to decimal, 246-248

Bit displayer, 239-241

Bit-map drawing, 175-178

Bit-mapped mode, 173

Bit to one, 241-244

Bits/bytes, 235-254

binary to decimal 246-248

bit displayer, 239-241

bit to one, 241-244

bit to zero, 243-244

Boolean operators, 236-237

number sort, 251-254

peek bit, 238-239

prime numbers, 250-251

reverse bit, 244-246

rounder, 248-249

Bomb dropping, sound of, 204-205

Boolean operators, 236-237

AND, 236-237

NQT, 236-237

OR, 236, 237

OR (XOR), 237

BOX, graphics, 175, 180

Bubble sort, 97-98, 253

Business/financial subroutines, 11-69

abbreviations, 57-60
annuity withdraw, 31-33

dates

date formatter, 43-45

day coverter, 48-50

number of days, 45-48

deposits

deposit amount, 29-31

future value of single deposit,
25-27

regular, 27-29

years to reach desired value,

23-25

depreciation

amount of, 38-40

rate of, 35-38

loan amount, 13-15

menu template, 50-52

MPG (miles per gallon), 55-57

number of payments, 18-20

payment amount, 16-18

rate of return, 33-35

remaining balance, 20-22

sequential files, 60-69

read from disk, 67-69

write to disk, 65-67

temperature calculation, 41-42

time adder, 53-55

Bytes. See Bits/bytes.

Cards, deal cards, 164-167

Caret symbol D, 13, 244, 245

Case converter, 80-81

Celsius, temperature calculation,

41-42

Center string, 106-108

Characters

programming characters, 182-186

ROM storage, 184-185

CHR$ value, 89-92

CIRCLE, graphics, 175, 180

Clock ticking, sound of, 211-212

CMD, data files, 62 \

Coin flipping, animated,1159-161
Color checker, 221-223(

Color drawing joystick routines

40-column, 142-145 y v

80-column, 132-135 V
COLOR sources, graphics, 174-175

Commodore 128 organ, 193-198

"COMMODORE" strings, 84-85

Computer sound, 206-208

Cursor mover, 229-231

D

Data files, CMD, 62

device numbers, 61-64

disk files, 65

DOPEN, 63, 64

DSAVE, 62

LOAD, 63-64

Index 263

logical file number, 63

OPEN, 61, 63, 64

random access files, 60, 64-65
SAVE, 62

secondary addresses, 62, 63

sequential files, 60-69

See also Sequential files.
Data input, 71-81

case converter, 80-81

letter input, 77-79

line input, 72-74

number input, 74^77

string delimiters, 72, 73

Dates

data formatter, 43-45

day converter, 48-50

number of days, 45-48

Deal cards, 164-167
Decode string, 112-114

Delay loop, 167-169
Deposits

deposit amount, 29-31

future value of single deposit,
25-27

regular, 27-29

years to reach desired value,

23-25

Depreciation

amount of, 38-40

rate of, 35-38

straight line, 35-38

Despacer, 104-106

Device numbers, data files,

61-64

Dice rolling, n-sided dice,

162-164

Disaster sound, 208-209

DOPEN, data files, 63, 64

DRAW, graphics, 175

Drawing

color drawing

40-column joystick, 142-145

80-column joystick, 132-135

keyboard drawing, 149-152

See also Graphics.

DSAVE, data files, 62

E

Encode, string, 110-112

Encrypting data

decode string, 112-114

encode string, 110-112

substitution cipher, 111

EXCHANGE, 85

strings, 85, 92-94

Extent, 61

Fahrenheit, temperature calculation,

41-42

Flush right string, 108-109

Flying saucer, sound of, 199-200

Function keys

change to Commodore 64 mode,

225—227

redefining, 223-225

utility keys, 227-229

Future value, of single deposit,

25-27

G

Game routines

coin flipping, animated, 159-161

deal cards, 164-167

delay loop, 167-169

dice rolling, n-sided, dice,

162-164

joystick routines, 123-147

keyboard drawing subroutine,

149-152

keyboard joystick, 147-149

paddles, 152-154

random integer, 155-157

random sets, 157-159

See also Joystick routines.

Game writing, ASCII, 91

Global search, 117-119

264 INDEX

GRAPHIC command, graphics, 174

Graphics, 171-189

bit-map drawing, 175-178

bit-mapped mode, 173

BOX, 175, 180

COLOR sources, 174-175

DRAW, 175

GRAPHIC command, 174

graphics modes, 173-174

graphics plotting, 178-182

CIRCLE, 175, 180

PAINT, 175

programming characters, 182-186

SCALE, 175

shape mover, 178-189

vertical movement, 139-140

80-column, 123-125

all directions, 130-132

color drawing, 132-135

horizontal movement, 123-128

vertical movement, 128-130

K

Keyboard drawing subroutines,

149-152

Keyboard joystick, 147-149

H

Helicopter, sound of, 205-206

Horizontal movement joystick

routines

40-column, 135-138

80-column, 123-128

HOW TO USE IT, subroutine text,

6

I

Initialization section, 4

Input. See Data input.

Insert string, 87-89

INSTR, 84-85

Jiffie, 214

Joystick routines

40-column, 135-147

all directions, 140-142

color drawing, 142-145

horizontal movement, 135-138
two joysticks, 145-147

Letters

case converter, 80-81

letter input, 77-79

LEVEL, subroutine text, 5

LINE-BY-LINE DESCRIPTION,

subroutine text, 6

Line input, 72-74

LOAD, data files, 63-64

Loans

loan amount, 13-15

number of payments, 18-20

payment amount 16-18

remaining balance, 20-22

Logical file number, data files, 63

M

Menu template, 50-52

Merging, 8

Movement

joystick routines, 123-132,

135-142, 145-147

keyboard joystick, 147-149

paddles, 152-154

MPG (miles per gallon), 55-57

Music, 191-192

Commodore 128 organ, 193-198

Index 265

Music synthesizer chip, 191-192

PLAY, 192

SOUND, 192

sound envelope, 192

VOL, 192

waveform specifications for

voices, 192

See also Sounds.

Program keys, redefining function

keys, 223-225

Program transfer, 231-233

Programming characters, 182-

186

R

N

NOT, Boolean operators, 236, 237

N-sided dice, 162-164

Number input, 74-77

Number of payments, 18-20

Numbers

binary to decimal, 246-248

prime numbers, 250-251

random integer, 155-157

random sets, 157-159

rounder, 248-249

O

OPEN, data files, 61, 63, 64

OR, Boolean operators, 236, 237

OR (XOR), Boolean operators,

237

Random access files, 60,

64-65

Random integer, 155-157

Random sets, 157-159

Rate of return, 33-35

Real-time clock, 214^221

clock setter, 215-217

elapsed time, 217-219

timer, 219-221

Regular deposits, 27-29

Remaining balance, 20-22

REMark section, 3

Replace string, 85-87

RESULT, 3

subroutine text, 7

Return, rate of, 33-35

Reverse bit, 244-246

ROM storage, characters, 184-185

Roulette wheel, sound of, 209-

210

Rounder, 248-249

RS-232 port, program transfer,

231-233

Paddles, 152-154

PAINT, graphics, 175

Payment amount, 16-18

Peek bit, 238-239

PEEKing, 91, 137-138

Pixels, 173

Plane engines, sound of, 202-204

PLAY, music, 192

POKing, 91, 137-138

Prime numbers, 250-251

Program file, definition of, 60

SAMPLE VALUES, subroutine

text, 7

SAVE, data files, 62

SCALE, graphics, 175

Secondary addresses, data files, 62,

63

Sequential files, 60-69

disadvantage of, 61
read from disk, 67-69

write to disk, 65-67

266 INDEX

Shape mover, 187-189

Shell-Metzner sort, 99-101

Siren, sound of, 198-199

Sort

bubble sort, 97-98

number sort, 251-254

shell sort, 99-101

string sort, 96-99

SOUND, music, 192

Sounds

alarms, burglar alarm, 200-

201

bomb dropping, 204-205

clock ticking, 211-212

Commodore 128 organ, 193-

198

computer sound, 206-208

disaster sound, 208-209

flying saucer, 199-200

helicopter, 205-206

plane engines, 202-204

PLAY, 192

roulette wheel, 209-210

siren, 198-199

SOUND, 192

VOL, 192

SPACE$, 85

Spaces, despacer, 104-106

Sprites, 188

Straight-line depreciation, 35-
38

STRING$, 85

Strings, 83-119
array loader, 101-104

center string, 106-108

CHR$ value, 89-92

"COMMODORE," 84-85
decode string, 112-114

delimiters, 72, 73
despacer, 104-106

encode string, 110-112

exchange, 85, 92-94
flush right string, 108-

109

global search, 117-119
insert string, 87-89

INSTR, 84-85

replace string, 85-87

sort

shell-Metzner sort, 99-101

string sort, 96-99

STRING$, 85, 95-96

word counter, 114-117

Subroutine text

HOW TO USE IT, 6

LEVEL, 5

LINE-BY-LINE DESCRIPTION,

6

RESULT, 7

SAMPLE VALUES, 7

SUGGESTED ENHANCEMENTS,

6

use of, 5-8

WHAT IT DOES, 5

Subroutines

accessing the library, 8-9

initialization section, 4

merging, 8

REMark section, 3

RESULT, 3

SUPPLIED BY USER, 3

variable names, 4

Substitution cipher, encrypting

data, 111

SUGGESTED ENHANCEMENTS,

subroutine text, 6

SUPPLIED BY USER, 3

SWAP, EXCHANGE replacements,

85, 92-94

Temperature calculation, 41-42

Terminal, BASIC dumb terminal
program, 233-234

Time

jiffie, 214

real-time clock, 214-221

Time adder, 53-55

Toggle, 237

Two joysticks, joystick routines,
40-column, 145-147

Index 267

V Video Interface Controller (VIC

chip), 173

,7 . ul A VOL, music, 192
Variable names, 4

Vertical movement

joystick routines W
40-column, 139-140

80-column, 128-130 WHAT IT DOES, subroutine text, 5
Withdrawal, annuity, 31-33

ABOUT THE AUTHOR

A former associate editor of RUN, a leading publication for

Commodore 128 users, David D. Busch has written seven books

about the Commodore line of computers. He has also published

more than 300 articles on computer-oriented topics for Personal

Computing, Creative Computing, Interface Age, and a dozen other

publications. Busch is also a contributing editor and monthly

columnist for five of those magazines, and The Commodore 128

Subroutine Library is his eighteenth book. Sorry About the Explo

sion: A Humorous Guide to Computers, a book of computer humor

by Busch, was a nominee for best computer-oriented fiction of

1985 in the Computer Press Association competition.

A full-time writer since 1965, Busch's career has included work

as a newspaper reporter-photographer, a college sports informa

tion director, a photo-posing instructor for a Barbizon-affiliated

modeling agency, and an account executive for a New York-based

public relations firm. His articles have appeared in publications

as diverse as Adam, Petersen's PhotoGraphic, Income Opportunities,

and Writer's Yearbook.

AVAILABLE NOW
FOR YOUR COMMODORE 128

Award-Winning Software from

Bantam Electronic Publishing

Bantam's sophisticated,

state-of-the-art interactive

fiction will intrigue and

challenge you. Try:

THE FOURTH

PROTOCOL

and

SHERLOCK

HOLMES

IN

"ANOTHER BOW"

You can explore the

uncharted territories of

your own mind with this

fascinating, innovative

pair of programs (on one

disk):

KNOW YOUR

OWN I.Q./

KNOW YOUR

OWN

PERSONALITY

Younger computer enthu

siasts will spend hours

with Bantam's absorbing

MicroWorkshop Series

and Choose Your Own

Adventure® Series-

programs that make

learning fun:

ROAD RALLY

U.S.A
(Ages 10 and up)

CREATIVE

CONTRAPTIONS
(Ages 7 and up)

FANTASTIC

ANIMALS
(Ages 4 to 9)

ESCAPE (CYOA)
(Ages 10 and up)

and

THE CAVE OF TIME

(CYOA)
(Ages 10 and up)

Bantam software is available at computer stores,

book stores, and anywhere that
Commodore software is sold, or call Bantam

direct at 800-223-6834 ext. 479 and order them.
(N.Y. & NJ. residents call 212-765-6500 ext. 479.)

Commodore Software from Bantam.

BA NTAM
SOFTWARE

The Commodore 128 Subroutine Library

Subroutine books for BASIC have been around as long as

personal computers. Subroutines are helpful because each

one saves a programmer's precious time—time often spent

reinventing the wheel! In The Commodore 128 Subroutine

Library you'll find nearly 100 useful, ready-to-transplant

BASIC subroutines and programming tips. Use them to

improve your overall programming skills, customize your

business programs, and make your games resound with music

or sizzle with joystick action.

Grouped by function, annotated carefully, and arranged

to be readily dropped into your own BASIC software, these

subroutines are ready to use. Beginning programmers will

find these subroutines helpful in refining their skills, while

intermediate and advanced programmers will appreciate

having all these efficient subroutines in a single book.

Find out how you can make your BASIC programs fly by

including:

■ A Day Converter—Calculating elapsed time for more precise

interest calculations.

■ Guaranteed Data Input—Eliminating data entry problems by

streamlining your input responses.

■ Case Converter—Making upper- and lowercase characters

respond to your commands.

■ Joystick Programs—Speeding up cursor movement.

■ Sound Programs—Creating realistic aural environments.

■ Software Tricks—Customizing programs through function

keys.

■ Find out about all this and more!

0 76783 01695

N 0

34308

34308-4 ■ IN U.S. $16.95 (IN CANADA $18.95) ■ BANTAM COMPUTER BOOKS

