
Super C
the 4part C compiler

comprising:

• Easy to use Editor.
• 6502 Machine language compiler

producing maximum 53k of object code.
• Linker allowing seven separately compiled

modules into one executable program.
• Disk manager.

• Plus comprehensive manual with a
SYSTEM Guide for your day-to-day
reference giving an exact
description of the C language.

FIRST SOFTW ARE LTD
A Data Bockor Product from First Software Limited

SUPER C LANGUAGE COMPILER
f o r t h e C - 6 4 & C - 1 2 8

By Thomas Eirich & Franz Hauck

A Data Becker Product

Published by

FIRST SQETWARE LID

Unit 20B, Horseshoe Road
Horseshoe Park
Pangboume, Berks

COPYRIGHT NOTICE

F i r s t Softw are makes t h i s package a v a i l a b l e f o r use on a s in g le
com puter o n ly . I t i s u n la w f u l t o co p y any p o r t io n o f t h i s
so f tw a re package o n to any medium f o r any p u rp o se o th e r th a n
backup. I t i s u n law fu l to g iv e away o r r e s e l l c o p ie s o f t h is
package. Any u n au th o rised d i s t r i b u t i o n o f t h i s p roduct d ep riv es
th e a u th o r s o f t h e i r d e se rv e d r o y a l t i e s . For u se on m u ltip le
c o m p u te r s , p l e a s e c o n t a c t F i r s t S o f t w a r e t o make su c h
arrangem ents.

WARRAT7TY
F i r s t Softw are makes no w a rra n tie s , expressed o r im plied a s to th e
f i tn e s s o f t h i s package f o r any p a r t i c u l a r purpose. In no event
w i l l F i r s t Softw are be l i a b l e f o r c o n s e q u e n t ia l damages. F i r s t
S o ftw a re w i l l r e p l a c e an y co p y o f t h i s s o f t w a r e w h ich i s
unreadable i f r e tu rn e d w ith in 30 days o f p u rc h a s e . T h e re a fte r
th e re w il l be a nominal charge fo r replacem ent.

C opyright § 1985

C opyright @ 1985

Copyright @ 1986

Data Becker GhibH
M ercw ingerstr. 30
4000 D usse ldo rf, West Germany
ABACUS Softw are, Inc .
P .0 . Box 7211
Grand R apids, MI
USA 49510
F i r s t Softw are Ltd
Unit 20B, Horseshoe Road
Horseshoe Park
Pangboume, Berks

ISBN 0 948015 11 x

FIRST SOFTWARE LTD SUPER C Compiler

INTRODUCTION

The programming language C has been in use since about 1972. It was
developed by Dennis Ritchie for the Unix (*) operating system. With the spread
of Unix, C also enjoys a great popularity. The Super C language compiler
now makes it possible to program in C on the Commodore 64 and 128.

Like Pascal, C is a structured programming language. You can program
small problems as functions (comparable to subroutines in BASIC) and then
call functions using specific data. This programming technique results in
readable and maintainable programs. By building libraries of functions, new
programs can incorporate them to create easier solutions to a wide assortment of
problems.

C is characterized by its many different data types. There are a total of
twelve basic types, which can be combined into vectors (ARRAYs), structures
(similar to the RECORD in Pascal), and variants (UNIONs). We should not
forget the pointer which is of great importance in C. C supports pointers
through clever pointer arithmetic. This moves C into the area of assembly
languages. Like assembly languages, certain problems can be solved with the
use of some tricks involving pointer arithmetic, without assuming any
characteristics of the computer being used. This means that these programs will
run on any C machine without significant changes.

The Super C compiler is a four-part system. An editor makes it easy to
enter programs. The programs are translated into machine language by the
compiler. The compiler is a complete version of the C language except for bit
fields. The linker binds separately compiled programs together. The fourth
component of the system is a disk manager which can be used to copy files.

This user's manual is divided into two major sections, a User's Guide and a
System Guide. The User's Guide is designed to introduce you to the system. If
you do not know how to program in C, you will find an introduction to the
basics of the language in this section. The System Guide serves as a reference
work for your day-to-day work with the SUPER C System. Here you will
also find an exact description of the C language.

Even if you already know C, you should start with the User's Guide. At
the appropriate points we will let you know which parts you can skip.

Franz J. Hauck
Thomas Eirich

i

(*) UNIX is a Trademark of Bell Laboratories.

Table of Contents

I. User’s Guide

1.0 Introduction...1

2.0 C-LOADER...3

3.0 C-COPY.. 5
3.1. Error messages..5
3.2. Directory.. 5
3.3. Send commands to the disk drive..5
3.4. Copying.. 6
3.5. Copying the standard files...7

4.0 The C-EDITOR... 9
4.1. New - create new file.. 9
4.2. Inserting and deleting lines..10
4.3. Saving text.. 12
4.4. Loading text..12
4.5. Block commands.. 13

4.5.1. Delete block... 13
4.5.2. Move block... 14
4.5.3. Copy block...15

4.6. Search and replace..17
4.6.1. Searching...17
4.6.2. Replacing..17

4.7. Returning to the menu...19

5.0 The first C program..21
5.1. Editing... 21
5.2. Compiling..22
5.3. Linking (Binding)...24
5.4. Executing... 26

6.0 Introduction to C.. 29
6.1 Overview...29

6.1.1. The first program..29
6.1.2. Objects.. 30
6.1.3. Loops.. 33
6.1.4. Symbolic constants... 35

6.1.5. Arrays..36
6.1.6. Character arrays...38

6.2. Expressions and declarations.. 39
6.2.1. Names..39
6.2.2. Types...39
6.2.3. Constants..40
6.2.4. Storage classes.. 41
6.2.5. Arithmetic operators... 42
6.2.6. Comparisons, logical operators...................................43
6.2.7. Type conversions.. 43
6.2.8. Increment and decrement.............................. 44
6.2.9. Bit operations.. 45
6.2.10. Assignments... 46
6.2.11. Conditional evaluation.. 47
6.2.12. Precedence and order of operators..............................47
6.2.13. Additional operators..48
6.2.14. Program text.. 49

6.3 Control structures.. 49
6.3.1. Block... 50
6.3.2. if statement.. 50
6.3.3. switch statement..51
6.3.4. while statement..52
6.3.5. for statement..53
6.3.6. do statement...54
6.3.7. break statement..55
6.3.8. continue statement...55
6.3.9. goto statement and labels..56

6.4. Program structures..57
6.4.1. Functions..57
6.4.2. Argument..60
6.4.3. Global definitions..60
6.4.4. Declarations..61
6.4.5. Local definitions... 63
6.4.6. Initialization... 64
6.4.7. Macros...66
6.4.8. Chaining files.. 68

6.5. Pointers, addresses, and arrays...68
6.5.1 Pointers.. 68
6.5.2. Address arithmetic...69
6.5.3. Pointers and arrays as arguments................................ 71
6.5.4. Declarations, more complex....................................... 73
6.5.5. Pointer arrays.. 74

6.5.6. Pointers and multi-dimension arrays........................... 75
6.6. Structures and unions (struct/union)......................................76

6.6.1. Declaring structures.. 76
6.6.2. Access of components.. 77
6.6.3. Functions and structures... 78
6.6.4. Recursive structures.. 79
6.6.5. Unions... 80
6.6.6. Type definitions...81

6.7. Programming environment.. 81
6.7.1. Files... 81
6.7.2. EOI.. 82
6.7.3. STDIO... 83
6.7.4. Additional functions.. 83
6.7.5. Error handling..84
6.7.6. Interruption... 85

U. System Guide

1.0 C-LOADER...87

2.0 C-COPY...89
2.1. Command characters...89
2.2. Messages..90

3.0 C-EDITOR... 91
3.1. Control keys..92
3.2. Parameter input...94

3.2.1. Key input...94
3.2.2. Input a number..95
3.2.3. Inputa string...95
3.2.4. Block input.. 95
3.2.5. Destination input...96

3.3. Commands... 96
3.4. Error messages..102

4.0 C-COMPILER...103
4.1. Operation..103
4.2. Compiler error messages..104
4.3. Looking for errors...110

5.0 C-LINKER... 113
5.1. Operation... 113
5.2. Error messages..116

6.0 C programs..117
6.1. Run-time errors.. 118
6.2. Memory layout..120

7.0 The standard library.. 123
7.1. ’stdio.c’... 123
7.2. 's td io l.l'.. 123
7.3. 'stdio2.1'.. 131

7.3.1. Formatted output..131
7.3.2. Formatted input... 134

7.3.2.1 Reading strings.. 137
7.3.2.2 Error messages...137
7.3.2.2 sscanf and fscanf...138

8.0 C language description..139
8.1. Introduction... 139
8.2. Text conventions.. 139

8.2.1. Comments.. 139
8.2.2. Names..139
8.2.3. Keywords.. 140
8.2.4. Constants...140

8.2.4.1 Integer constants... 140
8.2.4.2 Char constants..140
8.2.4.3 Floating-point constants...................................141

8.2.5. Strings...141
8.2.6. Example.. 142

8.3. Object names.. 142
8.3.1. Storage classes... 142
8.3.2. Types... 143
8.3.3. Hardware-dependent data types.................................. 144

8.4. Objects and L-values..144
8.5. Converting types.. 145

8.5.1. Integer values between each other.............................. 145
8.5.2. Floating-point between each other..............................145
8.5.3. Floating-point and integer values.............................. 145
8.5.4. Addresses and integer values...................................... 145
8.5.5. The standard conversions...146

8.6. Syntax notation...146

8.7. Expressions... 146
8.7.1. Simple expressions.. 147
8.7.2. Unary operators..149
8.7.3. Multiplication, division... 150
8.7.4. Addition, subtraction... 150
8.7.5. Shift operators... 151
8.7.6. Comparisons...152
8.7.7. Equivalence comparisons...152
8.7.8. Bit operations...152
8.7.9. Logical operations... 152
8.7.10. Conditional evaluation... 154
8.7.11. Assignments..154
8.7.12. Lists... 155

8.8. Declarations..155
8.8.1. Storage classes... 156
8.8.2. Types... 156
8.8.3. Data definitions.. 157
8.8.4. Type declarations... 157
8.8.5. Functions...158
8.8.6. Declarators........................... 158
8.8.7. Function declarator...159
8.8.8. Parameter declaration...160
8.8.9. Structures and unions..160
8.8.10. Enumeration type...161
8.8.11. Initialization... 162
8.8.12. Abstract declarators..162

8.9. Statements.. 163
8.9.1. Block... 164
8.9.2. while statement.. 164
8.9.3. do statement... 164
8.9.4. for statement...165
8.9.5. if statement.. 165
8.9.6. switch statement...166
8.9.7. break statement.. 166
8.9.8. continue statement... 166
8.9.9. return statement..166
8.9.10. Labels.. 167
8.9.11. goto statement.. 167
8.9.12. Empty statement.. 167

8.10. Scope...168
8.10.1. Scope of a name..168
8.10.2. Scope of an object...169

8.11. Preprocessor... 169
8.11.1. Macros... 169
8.11.2. Chaining files.. 170
8.11.3. Conditional compilation.. 171
8.11.4. Line numbering..172

8.12. Implicit declarations... 172
8.13. Operations on different data types......................................172

8.13.1. Structures and unions.. 172
8.13.2. Functions...173
8.13.3. Arrays, pointers..173
8.13.4. Conversion of pointer values...................................174

8.14. Constant expressions..174
8.15. Portability..175
8.16. Differences from standard compilers...................................175

III. Appendix

1. Keyboard layout.. 177
2. Keyboard chart.. 178
3. Listing ’stdio.c’................................ 179
4. Listing 'sample.c'..181
5. Listing 'text.c'...183
6. Listing 'char-set.c'... 187
7. Index 190

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

PART I. Users’s Guide

1.0 Introduction

In this User’s Guide we'll introduce you to the SUPER C Compiler
System. The initial topics to be covered are the C-LOADER and the disk
manager. In a way, the C-LOADER forms the basis of the entire system. The
disk drive can be easily controlled with the disk manager, C-COPY. In addition,
C-COPY is required to make the C system ready to use.

The functions of the editor, with which programs are entered, are explained
in Section 4. There the sequence of operations required for program creation are
discussed. At the close of the User's Guide you’ll find an introduction to C.
With the knowledge from the previous sections you can then use the sample
programs.

Text which is entered into the computer or which is printed by the
computer will be printed in a b o ld ty p e s t y l e . Control characters will
be enclosed in brackets, such as [RETURN] for example.

1

2.0 C-LOADER

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

To start the SUPER C System, you must insert the distribution diskette
into your disk drive. We'll call this diskette the master disk. It is write and
copy-protected and cannot accept any additional programs.

Once you have inserted the master disk, load the C-LOADER and start it.
To do this, enter:

LOAD"C*”,8 [RETURN]
[RETURN] indicates that you are to press the RETURN key. The computer
loads the C-LOADER and responds with the following:

SEARCHING FOR C*LOADING READY.
Start the program by entering the following:

RUN [RETURN]
The C system responds with a menu that looks like this:

(C) Copyright 1985 by DATA BECKER written byThomas Eirich and Franz HauckSUPER-C for the C-64/C-128
X: to basic
a: c-copy c: c-compilerb: c-edltor d: c-linker
u: user file

This menu is the starting point for working with C. All parts of the
SUPER C System are started from here. When parts such as the editor are
exited, the user is returned to this menu. Compiled C programs can also be
loaded and executed from this menu with the user selection.

By pressing the X key (shift + x) you are returned to BASIC. This erases
the C-LOADER and it must be reloaded if it is to be used again.

3

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The current menu selection is displayed in reverse. You can change a
selection by using the cursor-up key or cursor-down key. The current menu
item is activated by pressing the [RETURN] key. The menu selections can also
be made by pressing the corresponding letter u, a, b,c, or d.

The selection u (user) loads a user program, programs written and
compiled in C.

The other selections load and execute the corresponding parts of the
SUPER C System. It is assumed that the master disk is in the disk drive in
order to load that portion of the SUPER C System.

Select a: c-copy using the cursor-up and cursor-down keys and press
RETURN. The drive will start to load C-COPY, the disk manager. After a
short time you will see a list of commands. Now press:

x [RETURN]
This is the command to exit the C-COPY program. You'll find yourself back at
the menu and can select another program. You can see how easy it is to select a
part of the SUPER C System and get back to the menu without having to leave
the C system.

4

FIRST SOFTWARE LTD
SUPER C Compiler User's Guide

3.0 C-COPY

Load the disk manager again by pressing the a key. C-COPY responds
with a list of possible commands:

@ gets error message from floppy < loads a file into memory > saves a loaded file on disk # fixes unit / displays directory x return to loadersends a command to floppy

3.1 Error messages

You can display the current error message from the drive with the
command The commands in C-COPY must always be followed by the
RETURN key. Enter:

@ [RETURN]
The floppy disk error message now appears, hopefully 00, OK, 00, 00.

3.2 Directory

You can display the directory by entering:

/ [RETURN]
The directory of the master disk is now displayed. A specifier can be given
behind the / character. You then get only a part of the disk directory. For
example, to see only the programs beginning with 'c', the command would be:

/c* [RETURN]

3.3 Send commands to the disk drive

All commands which you ordinarily send to the drive with PRINT#
statements can be sent with the . (period) character in C-COPY. For this
example, replace the master diskette with a diskette which can be erased. You'll
need such a diskette later, so let's prepare it for later use.

5

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

We want to format this diskette with C-COPY. To do this, insert the disk
into the disk drive. Now enter the following command:

.n :pgmdisk,cc [RETURN]
The disk will be erased and is given the name "pgmdisk" and the ID "cc”. If you
are not familiar with the command n for NEW, you should refer to the
appropriate section in your VIC-1541 User’s Guide.

When you are familiar with the disk commands, you can access these with
the . to do such things as rename or erase files. The corresponding commands
are used exactly as in BASIC. The command text need only be given without
quotation marks behind the . character.

3.4 Copying

To copy files you must first load them into the computer’s memory and
then save them again. C-COPY has a load and a save command to do this.

Insert the master disk again and give the following command:

<stdiol.1 [RETURN]
C-COPY loads the file stdiol.l from the master disk and responds with:

f i l e lo a d e d

Insert the newly formatted diskette named ’’pgmdisk" and enter the save
command:

>stdiol.1 [RETURN]
C-COPY responds with:

f i l e s a v e d

Now the file named stdiol.l has been copied from the master disk to your
program diskette. If the name of the copy is to be the same as the original, the
filename can be omitted from the save command. You then need only enter the
command >. File types PRG, SEQ, and USR are automatically recognized by
C-COPY.

6

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

If you have two drives, you can also change the preset device number 8 for
the drive. If you want to copy from drive #8 to drive #9, enter the following
command before saving:

#9 [RETURN]
The save command now works on device number 9. You can switch it back
with #8.

3.5 Copying the standard files

To be able to work with the C compiler, some files must be copied from
the master disk to the program disk. These include two sample programs and
the standard library which must be bound to your C programs with the linker.
This contains functions for input and output such as open, close, and others.
In C, these functions do not automatically belong to the language. They must
always be bound to your programs.

Copy these files:

stdiol. 1 (if you did the previous example, this file is already copied)
stdio2.1
stdio.ctext.csample.c

Once you have this procedure behind you, your C system is ready to use. Exit
C-COPY with the command

x [RETURN]
and you’ll find yourself back in the menu.

7

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

4.0 C-EDITOR

From the menu press the letter b to load the C-EDITOR after inserting the
master diskette.

4.1 New - create new file

For practice, enter a small document. You begin a new document with the
editor command new. To do this, press the command key F5. This message
appears in the first line of the screen:

enter command
This means that the editor is waiting for you to press a key which determines
the command. Press the n key for new. To confirm the command choice, the
name of the command always appear in the first line on the screen. For the
command new, you are asked to enter the length of the lines.

new: length of line A
You can enter any number between 40 and 80 for the length of the line. This
allows you to set the maximum line length of your document. This length
cannot be changed later. When entering the length you can enter only the digits
0 to 9 and the [DEL] key and [RETURN] keys. [DEL] erases the last character
entered and [RETURN] ends the input. Try the [DEL] key with this input once
and enter the number 63. Now erase 63 by pressing the [DEL] key twice and
enter 80. Finally, end the input by pressing [RETURN].

new: length of line 80 file: A
The cursor is now located behind the word f i l e : on the second screen line.
Here the editor expects a character string, the filename of the document. Enter:

new: length of line 80
file: textfileA

Again, [DEL] erases the last character entered. The other control keys have no
effect. Let’s assume that you want to enter testfile instead of
textf ile. You must delete all of the characters up to and including the x
and then re-enter the rest of the name.

9

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Press [RETURN] to end the input.

new : l e n g t h o f l i n e 80
f i l e : t e s t f i l e
------------* ----- * — — ★------★ — — * ------------★ — — * — — ★--------------★-------------★
A

Now you have a document with a line length of 80 and the filename
t e s t f i l e .

4.2 Inserting and deleting lines

After the new command, the cursor is positioned in the text field. The
text field is lines 4 through 25 of the screen.

When you now press letter or number keys, you see that the message
l a s t l i n e is displayed in the first line of the screen. The characters entered
do not appear on the screen, but the cursor moves forward.

l a s t l i n e
f i l e t e s t f i l e
— — * — — — ★ — — ★ — — ★ — — ★ — — — — * — — — * — — — * — — — *
A

When a document is started it has only one line - the last line. You cannot
write on this line, nor can you position the cursor beyond it. In both cases the
editor responds with l a s t l i n e .

To enter text, insert a few blank lines. To do this, press the F7 key several
(six) times. The F7 key is used to insert blank lines.

The text field now has the dimensions of 6 lines by 80 characters. In this
text field you can position the cursor at any point using the cursor control keys.
Each key that you enter is immediately echoed on the screen. You don't have to
press [RETURN] to record the entered text.

The [RETURN] key positions the cursor to the start of the next line.
[SHIFT]+[RETURN] positions the cursor to the end of the previous line.

Use the cursor keys and the [SHIFT]+[RETURN] key to move around
within the text field. You'll notice that the screen shifts to the left when you
move the cursor beyond column 20. When you move the cursor to the left, the
screen moves to the right. Since the screen can display only 40 characters per

10

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

line, the characters outside the screen display area are brought into view by
shifting the screen left or right.

Move the cursor to line one, column one. You can also use the control
key [SHIFT]+[HOME] to position to line one, column one.

Now enter the following text. You can also use the control keys [DEL]
and [INS], [SHIFT]+[DEL], when entering the text. These keys have the same
function here as they do in BASIC.

This is the first line of my file.Here is the second, three4
Position your cursor somewhere in the second line and press the F7 key to

insert a blank line. All lines from the cursor line forward are moved down one
line and the cursor is positioned in the blank line. Now you can insert more
text. If one line is not enough, press the F7 key several times.

c-editor 1.0 file: testfile— — — * — — * — — — * — — — * — _ — * — — — * — — — * — — — * — *
This is the first line of my file.

AHere is the second.three4
Use the F8, [SHIFT]+F7, key to delete lines. The cursor line disappears

and all of the following lines are moved up one line. Press F8 again and the
second line of the document disappears. It has been erased and all of the
following lines are moved up.

c-editor 1.0 file: testfile — — — ★ — — — — * — *
This is the first line of my file,three4
The editor permits each line to have its own color. Set the colors with the

color control keys ([CBM]+[1] through [CBM]+[8] and [CTRL]+[1] through
[CTRL]+[8]). The cursor line is changed to another color.

11

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Position the cursor to line one and press [CTRL]-i-[6]. The cursor line
becomes green. Move the cursor to line two and press the keys [CBM]+[4]. The
line is dark grey. The color of the last line cannot be changed-it is always red.

For line insertions (F7), the color of the line moved down is kept. If you
press F7 in line two, the blank line has the color dark grey.

Assuming you want to insert seven red lines between line one and line
two, you do not have to insert seven lines and then color these seven red. You
need only insert one line, set its color to red and then insert the other six. These
then all have the color red.

You can now experiment with the colors and inserting and deleting lines
before moving on to the next section.

4.3 Saving text

Now the text should be saved. Be sure to insert a (formatted) work diskette
into the drive. You must first name your text before you can save it. Select the
command file by pressing the command key F5 and the the f key. The
command f i l e : appears in the second line followed by the cursor. Type in a
name for your document and then press [RETURN]. Now you may select the
command save by pressing the command key F5 and then the s key. The
command s a v e : appears in the first line and the editor saves the text After
the document is saved the cursor appears at its former position in the text field.

Repeat the save (F5 s). After the drive runs for a short time, the
following question appears behind the command name:

s a v e : r e p l a c e y /n ?

The file which you want to save already exists on the diskette. The editor is
now asking you if the file should be replaced. If so, press the y key. With n for
no, the command is cancelled and you are returned to the input mode.

4.4 Loading text

A document should now be loaded. Insert the master diskette from which
we’ll load a sample program.

12

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

Press the command key F5 followed by the 1 key for load. The command
is displayed in the first line and the cursor is positioned behind f ile: in line
two of the screen. You can now enter a filename. Enter the filename text. c:

loadfile text.c [RETURN]
After pressing the [RETURN] key, the file is loaded. Any existing document in
memory is replaced by the new file (text.c).

After loading, the first page of the document is displayed and the cursor is
positioned to line one, column one.

Move the cursor using the cursor keys to examine the document, but do
not change it. Try out the horizontal scrolling. Since this document contains
enough lines, we can also use the vertical scrolling by moving the cursor
beyond the top or bottom lines of the screen.

You can also use [RETURN] to move to the start of the next line, or
[SHIFT]-i-[RETURN] to jump to the end of the previous line. In addition you
can use two additional control keys to move the cursor through the text quickly.
The F I key is the page down key. The screen displays the document from the
22nd line following the cursor line. The F2 key, [SHIFT]+F1, is the page
up key. Here the 22 lines preceding the cursor line are displayed on the screen.

4.5 Block commands

The block commands act on multiple lines of text. A block is a group of
lines which are manipulated together. When delimiting a block of text, the
message marking out range always appears in the first line. This
message indicates the block input mode. During the block input, only a few of
the control keys are active (cursor left, right, up, down, [RETURN], [STOP]).

4.5.1 Delete block

Erase lines 64 through 95 from the example document text.c. Do this by
using the block-delete command. (You can also delete lines individually with
the control key F8).

13

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Move the cursor to line 64. The status (first) line of the display indicates
the cursor's location within the document. The first number indicates the
column, the second the line. Call the erase command with the key sequence
F5, followed by the e key. The editor indicates the command name and the
block-input mode in the first line.

e r a s e : m a rk in g o u t r a n g e

In block-input mode the lines which mark the block are displayed in reverse.
You can increase or decrease the size of the block by using the cursor up/down
keys.

Increase the size of the block with the cursor down key until the reverse
line field reaches line 99. But since we want to erase only up to line 95,
decrease the block size with cursor up until the reverse block includes only up
to line 95. The status line will help you determine the line numbers.

End the block input with the [RETURN] key. A confirmation now
appears:

e r a s e : a r e you s u r e y /n ?

The key n cancels the command and you are returned to the input without
deleting the block. The key y erases the block. After deletion, the text behind
the erased range is displayed. You can convince yourself that the block was
erased by moving the cursor up a few lines.

You can also cancel the block input by pressing the [STOP] key.

4.5,2 Move block

With the command for the block move you can move blocks from one
position in the document to another. Reload the document text.c by pressing
the f5 followed by 1 and then the filename text.c. In the sample document,
move the line range 101 to 113 inclusive to 58.

Move the cursor to line 101. Call the move command (F5+ [m]). As
you can see from the first line (m a rk in g o u t ra n g e) , you are in the
block-input mode. You must now mark the range which you want to move.
This marking is done in the same way as described under "4.5.1 Delete block"
by using the cursor keys.

14

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Once you have ended the input with [RETURN], the message f i x i n g
t a r g e t appears. The editor is asking for the destination (target) for the block
move. This target line is displayed in reverse. In a block which is already
displayed in reverse, the target line is displayed normally.

You must set the destination line at the line before that which the block is
to be inserted. You can use the following control keys to do this:

It II cursor up/down moves the destination line up and down.

The keys F I and F2 page the destination line down and up,
respectively.

The g key calls the command goto. You enter a line number to
which the destination line jumps.

[RETURN] ends the destination input. The destination line may not
lie within the previously marked block. In this case, the editor will
display the message, no t a r g e t l i n e , and will await a new
target.

Move the destination line with the above control keys to line 58 and exit
the input with [RETURN].

The marked block is moved and the document is displayed beginning with
the text inserted. If you move the cursor one line up you will see the line that
precedes the destination line.

You can also use the command goto after the command key F5. Press
F5 followed by g. The command name g o to l i n e : appears in the status
line. You can enter a number with a maximum of three digits following the
prompt. The cursor then jumps to the start of this specified line, but will not
go past the last line of the document.

4.5.3 Copy block

Copying a block is very similar to moving a block. When copying, the
marked block is duplicated before the destination line. It allows you to duplicate
the block within the text. The command for copying a block is called
transfer. The procedure for using it is the same as the move command,

15

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

except for one addition. When setting the target line one additional control key
is active, the [HOME] key.

The editor has two text areas, the file area in which we have been working
and the extra text area. The two text areas are indicated by the second status
line. The file area is displayed as f i l e : filename. The extra text area
contains additional text that is stored temporarily.

The [HOME] key switches the display between the file area and the extra
text area. You can edit the extra text exactly as you would the file text, except
for a few commands which are not allowed in extra text. Among these
commands are load and save. Exchange the text and try to call the command
load ([HOME] F5 1). The editor responds with the error message i l l e g a l
t e x t .

i l l e g a l t e x t
e x t r a t e x t
— — — ★ — — — * — — — ★-----* — — — * ------------------* — — — * — — — * — — — ★

You can move text from one area to the other with the tra n s fe r
command. Do this by pressing the [HOME] key when the editor is asking for
the target.

For practice, move an arbitrary piece of text to the extra text area. After the
command key F5 select the t key for the command transfer. Now mark a
block of text. When the editor asks for the target, switch the display to the extra
text area by pressing the [HOME] key. You cannot move the target line within
the extra text since the extra has only one line at the moment, the last line.

As soon as you have entered the target with [RETURN], the text block
will be duplicated in the extra text area.

Using the extra text area you can insert text in other files, for example. If
you copy a block of text into the extra text area and then switch back to file
text area and load a different file, you can then insert the extra text in the file
text with the transfer command.

Another very useful application of the extra text will be presented in
Chapter 5.

16

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

4.6 Search and replace

You can search for text within the document and optionally replace the text
with new text. Before searching and replacing text you must set a search string
and an optional replacement string.

4.6.1 Searching

The search string is entered with the command hunt. Press the command
key F5 followed by the h key. The screen displays h u n t : . Enter the search
string followed by [RETURN]. If you make a mistake when entering the
string, you can erase the last character entered with the [DEL] key. As soon as
you press [RETURN] the search string is terminated and you find yourself back
in the normal text input mode. Enter the search string violet.

hunt: violet [RETURN]
Now you have set the search string. You can begin searching starting at

the current cursor position by pressing the F3 key. The cursor is placed at the
first character of the string if it is found in the text.

You can go to the start of the document with [CLR] and search with F3.
After this, the cursor is positioned to line 14 at the start of the string. Press F3
again. The editor looks for the next occurence of the search string. Since this
string does not occur in the document again, the last line of the document is
displayed.

You should become aquainted with the search function by using strings
which occur more often (such as "the").

4.6.2 Replacing

To replace text, the search and replace strings are entered with the
command replace. Press the command key F5 followed by r. The screen
displays hunt: . Enter the search string followed by [RETURN]. Then the
screen displays rplc:. Enter the replacement string followed by [RETURN].
Enter the following:

hunt: violet [RETURN] and rplc: purple [RETURN]

17

FIRST SOFTWARE LTD
SUPER C Compiler User’s Guide

The text violet will be replaced by purple when you press the corresponding
control key in the text input.

You can preform the replacement in two different ways. In the first, the
text from the cursor position forward is completely searched and every possible
replacement is made. In the second, the editor displays the position of the search
string and asks if it should be replaced or not. The control key for the complete
replacement is F6 (SHIFT+F5), the key for the ask-before-replace is F4
(SHIFT+F3).

First perform a replace with query. Go to the start of the document by
pressing the [CLR] key and initiate the replace with query by pressing the F4
key. The editor starts to search for string violet at the current cursor position.
If it finds an occurence, the text is displayed in reverse. The question
r e p l a c e y /n ? appears in the status line.

Press y to replace the string. Press n to bypass this text. In both cases
the editor resumes its search once the question has been answered.

To replace without query, enter the command replace and enter the new
search and replacement strings. For example, the as the search string and
TH E as the replacement string. Then go to the start of the document by
pressing the [CLR] key and start the replace without query by pressing the F6
key.

The editor replaces the string throughout the entire document without
query. After all replacements the cursor is positioned to the last line.

The replacement process can be stopped with the [STOP] key. The cursor
will then appear at the point in the document that the editor had reached in the
process.

The following applies for replacing with or without query: If the
replacement causes the maximum line length to be exceeded, the editor stops
the operation without having made the replacement. The cursor is positioned at
the start of the string and the error message o v e r f lo w i n l i n e appears
in the first screen line. You must then decide what to do with the text

For practice try to create an o v e r f lo w i n l i n e error. You must
select a replacement string which is longer than the search string.

18

FIRST SOFTWARE LTD

4.7 Return to the menu

SUPER C Compiler User’s Guide

You can stop all operations (search, all inputs and queries, loading,
printing, etc.) by pressing the [STOP] key. A complete description of all
functions can be found in the System Guide, section 3.

You can exit the editor with the command exit. Press the command key
F5 followed by the x key. The status line displays EXIT: are you
sure y/ri?. Press n to return to text input mode. Press y to return to the
menu. In this pase, the contents of the document are lost Don’t forget to save
your text before exiting from the editor.

19

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

5.0 The first C program

In this section we’ll create a simple C program. Starting with the editor
and proceeding to the compler, linking and starting the program you’ll see how
to work with the Super C language compiler using the sample program.

Three files are create by the SUPER C System: the source file, the link
file, and the program file. The source file is created with the C-EDITOR and
contains the program text. The C-COMPILER converts this source file into a
link file. The link file is then bound with other link files to create the program
file by the C-LINKER. The program file then contains the executable C
program.

To distinguish these three files from each other, we recommend that you
denote source files with a .c at the end of the filename and link files with .1.
The filename without a suffix is then the program file. Let’s assume that you
want to write a C program named test. The source file would then have the
name test.c and the link file would be called test.l. This rule is only a
suggestion; you can of course use any system you like to keep the file types
organized.

If you are not now in the menu of the LOADER, load the C-LOADER
from the master disk and RUN it. Then load the EDITOR.

5.1 Editing

You create the program text with the C-EDITOR. You already know how
to use the editor fromSection 4. We will not go into that here. Since you must
first learn how to use C, you do not need to edit a source file here. For this
purpose we have already prepared a source file on the master disk. Load the
source file called sample.c with the editor (F5 1 s a m p le . c [RETURN]).

You can look at the program text, but don’t change it. Save the file on a
work disk (F5 s) if you have not done this already.

Imagine that you created this source file with the C-EDITOR and want to
compile it. All source files which are to be compiled must be on one disk. In
this case, these are the source files sample.c and stdio.c. The file stdio.c
is chained with the file sample.c. In the first line of sa m p le . c you see the
line:

21

FIRST SOFTWARE LTD
SUPER C Compiler User’s Guide

#include "stdio.c"

This line means that the text of the file stdio.c will be inserted at this point.
The purpose of stdio.c is explained later.

Before you run the compiler, you must be sure that all source files which
the compiler requires are stored on one diskette. If a file is missing, the
compilation process will be stopped with the message file not found.

Check to see that stdio.c and sample.c are on your work disk. To do
this, switch to the extra text area [HOME] and load the directory of your work
disk (F5 d [RETURN]).

The directory is inserted into the extra text area. Normally these two files
are on your work disk since you copied them from the master disk in section 3
in the description of C-COPY.

Exit the EDITOR ([F5 x [RETURN]) and load the C-COMPILER from
the LOADER (first insert the master disk).

5.2 Compiling

The C-COMPILER responds with the compiler message screen and asks
for the name of the source file. First insert your work disk. Enter sample . c
[RETURN].

When entering the filename the only control keys active are [DEL]
,[CLR] (SHIFT + HOME) and [RETURN.] [DEL] deletes the last character
entered, [CLR] erases the entire input field. [RETURN] terminates the input.

source file name:sample.c [RETURN]
After a short time, a second question appears, this time for the name of the link
file. The link file is the file in which the converted program will be saved. If
your source file ends with .c , the compiler supplies the filename extended with
. 1. It is recommended that you give your link files a common name to limit
the number of file names on your disk.

Erase the input field with [CLR] (SHIFT + HOME) and enter the
collective name (for example, 1.1):

2 2

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

link file name: 1.1 [RETURN]

After this input the compiler has all the information it needs to begin the
compilation.

The compiler outputs s t d i o . c in grey characters. This means that
s t d i o . c has been read from the source file. The yellow message 'i n k e y '
tells you that the compiler is compiling the function inkey. After this comes
a grey # character. This indicates that the source file s t d i o . c has been
completely read and the COMPILER is reading the remainder of s a m p le . c .
After the compiler responds with 'm a in 1 in yellow, some error messages will
appear in red. These errors are not your fault, they are intentional.

The compiler ends the compilation and prints the concluding message:

compiling finished
linkfile not availablepress x to quit, r to restart

Press the x key to return to the LOADER. With r you could restart the
compiler to compile another source file. This saves having to reload the
compiler.

If you see that the compilation is senseless or if you have entered incorrect
parameters (source file or link file), you can interrupt the compiler at any time
by pressing [STOP+RESTORE].

Since errors were present in the compilation, you must return to the editor
and correct them. Load the C-EDITOR (insert the master disk).

Once you are in the EDITOR, insert your work disk and load the file
error-c. The compiler places all of the error messages in this file. Copy
this file into the extra text area. To do this use the transfer command (F5 t)
and mark the entire file text as a block. After you have ended the block input
with [RETURN], set the target. Place the target line to the extra text area with
the [HOME] key and press [RETURN]. The file error-c wil be in the
extra text area. Load the source file sample. c in the file text area.

Now you can correct the source file with the help of the error messages in
the extra text area. Each error has a line number associated with it, indicating
the line in which the error occurred. The extra text contains the following
errors:

23

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

?expression syntax error in 0013
?statement syntax error in 0022 ?declaration syntax error in 0036
We intentionally inserted lines 13 and 22 into the program text. They are

highlighted in red and contain errors. Delete these lines to eliminate these
errors. The error in line 36 is a error resulting from the errors in lines 13 and 22
and will be eliminated once these are removed.

Once you have deleted lines 13 and 22, save the source file (F5 s). After a
short time the message replace y/n? appears on the status line. Since
the file already exists on the disk, the editor asks if it should be replaced. Press
y for yes so that the old file is replaced by the corrected document.

You now have a corrected source file and can compile it again. Exit the
EDITOR and call the compiler. The inputs are the same as described above.

source file name:sample.c [RETURN] link file name: 1.1 [RETURN]
If a link file with the same name exists on the disk, it will be overwritten. This
time the COMPILER runs through the source text without error. The
concluding message this time is:

compiling finished
linkfile available press x to quit, r to restart

The link file is now complete. You can proceed to the linking. To do this, exit
the COMPILER with the x key and return to the LOADER menu.

5.3 Linking (Binding)

Since formatted input and output are used in the C program, you must
bind the linkfile stdio2.1 with the linkfile 1.1. The functions for
formatted input and output are defined in stdio2.1.

Before you start the binding, check to see that all of the files you want to
bind are on the diskette. If the link file stdio2.1 is not on the work
diskette on which the file 1 .1 is stored, load C-COPY and copy stdio2.1
to the diskette in question.

24

Once the two link files 1. 1 and stdio2.1 are on one disk, load the
C-LINKER (insert master disk). The linker responds with the title line and the
link file input. Insert your work diskette and then enter the two link files 1 .1
and stdio2.1. The input of stdio2.1 is a default entry, so you need
only press [RETURN].

If you want to bind stdiol. 1, delete the last three characters of
stdio2.1 with [DEL] and enter 1 . 1. As in the compiler, only three
control keys are active for the filename input: [DEL] (delete), [CLR]
(SHIFT+HOME), and [RETURN]. [DEL] deletes the character last entered,
[CLR] erases the entire input field, and [RETURN] ends the input.

The order of the link files is not important. You can change the order as
you like, the same C program always results.

link file stdio2.1 [RETURN]link file 1.1 [RETURN]link file [RETURN]
After the two link files, just press [RETURN]. This ends the link file

input. The C-LINKER then requires the name of the program file in which the
executable C program will be saved. Enter the name sample:

program file sample [RETURN]
Following this set the upper boundary of the C program storage. If you do

not need any memory for your own applications, you can use the default
boundary. Then the maximum C program memory (50K) is available.

memory top page $d0 [RETURN]
The next input concerns the linker option. Here you can accept the default

letter 1. This means that the C program can be started only from the LOADER
(as a user program). The linker option b means that a C program will be created
which can only be executed like a BASIC program. We will designate a C
program as L-version when it is to be executed from the LOADER and
B-version when it is to be started like a BASIC program. The L-version has the
advantage that one need not leave the C system to run the C program. The
B-version has the advantage that one need not load the C-LOADER in order to
execute the program.

SUPER C Compiler User’s Guide
FIRST SOFTWARE LTD

25

SUPER C Compiler User’s Guide
FIRST SOFTWARE LTD

linker option
(l=loader/b=basic) 1 [RETURN]
After this input the linkler starts to bind the link files. Status messages are

printed in grey, errors in red. The linker requires two passes through the link
files. The start and end of each pass is displayed by the linker. In addition, the
current link file is displayed in yellow type.

pass 1link file stdio2.1 link file 1.1 end of pass 1

?ass 2ink file stdio2.1 link file 1.1 end of pass 2
After an error-free binding, the concluding message is:

linking finished
press r to restart, x to quit
Exit the C-LINKER with the x key. With r you can restart the linker

without having to load it again.

5.4 Executing

You find yourself back in the C-LOADER menu and the file s a m p le
contains the finished C program. Select the menu option u and entered the
desired C program:

filename: sample [RETURN]
The LOADER loads the C program sam p le and starts it automatically.

As soon as the program is started it clears the screen and waits for you to
press keys. It then displays the text C h a r a c t e r : and behind this the
c h a r constant of the key pressed as they are noted in C. In the line below, the
ASC value of the key is printed in decimal, hexadecimal, and octal. These
numbers are represented in their C notation.

26

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The hexadecimal numbers have a leading Ox (or OX) and the octal numbers
have a leading zero. The decimal numbers are written as usual, but may not
have a leading zero or they will be interpreted as octal numbers.

Since the program is in an infinite loop, you can stop it only by creating
an NMI [STOP+RESTORE]. NMI stans for non-maskable interrupt. The
following message then appears:

?nmi interruptpress x to quit, c to continue,r to restart
You can end the program with x, let it continue running with c, or restart

it with r. You can try out these three choices.

Note that the two options r and c have some peculiarities which are
explained in the System Guide, Section 6 and 7.2. You can use them without
concern here, however.

You will find a listing of this C program in the appendix.

27

FIRST SOFTWARE LTD
SUPER C Compiler User's Guide

6.0 Introduction to C

In the last chapter you were introduced to program development with the
Super C language compiler. In this chapter you’ll become better acquainted with
the C language. We’ll do this by means of sample programs which you can
type in. All examples have been tested and will run without error.

As the title says, this is only intended to be an introduction. More
technical and specific information can be found in the System Guide Section 8.
This language description is intended as a reference guide.

Experience C programmers can skip this introduction and continue with
the Systems Guide Section 1.

6.1 Overview

6.1.1 The first program

The first program which you should enter looks like this:

#include "stdio.c"
main()

printf("\nYour first\nprogram\n"); getchar();

Compile this program and bind it to the link file stdio2.1. Execute
the finished program and you should see:

Your first program
This text remains on the screen until you press a key. Now you have seen

what the program does.

The first line of the file contains an include command which allows the
standard functions from the file stdio2.1 to be used. If this line is in the
program, you must always bind stdio2.1 to the program.

29

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The rest of the program is a function definition. As mentioned in the
preface, a C program consists of functions. The function m ain represents the
primary function. This function is called when starting a C program. The
program comes to an end at the end of this function.

m a in () is a function header. It tells the compiler that a function with
the name m ain is being defined. The instructions which are to be executed in
the function are enclosed in braces {}. Such a construction is called a block. The
braces are similar to BEGIN and END in Pascal.

Within the function block are the statements which are executed when the
function is called. In our case there are two statements in the block. In the first
is a function named p r i n t f and in the second a function named g e tc h a r .
Both functions are defined in s t d i o 2 .1 .

You can pass data to a function for it to process. These data are called
arguments, p r i n t f requires such an argument. The argument for p r i n t f is
a character string, p r i n t f outputs this string to the screen.

You have probably noticed the peculiar characters \ n within the string.
This (\) is an escape character. Following the escape character (\) is a letter
which together with the escape-code symbol represents one character. \ n
represents the carriage return character and causes printing to resume on the next
line down.

Calling the function g e t c h a r does not require any arguments and causes
the computer to wait for a keypress, meaning that the program does not return
from g e t c h a r to the function m ain until a key is pressed. There, the end of
the block is reached and the program is over.

Most statements are concluded with a semicolon. This also applies to the
last instruction in a block (in contrast to Pascal).

6.1.2 Objects

An object is a storage area used by a program. Data can be stored in this
area. Such objects must first be created before they can be used. To do this you
use declarations. A declaration which creates objects is called a definition. A
type and storage class are assigned to the object through the definition. The
most important thing is that the object receives a name through the definition.
It can be referred to within the program with this name.

30

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

The type of object determines the length and the interpretation of its
contents. The storage class determines the life time of an object. We will go
into the various possibilities later.

i n c l u d e " s t d i o . c "

m a in ()
{ d o u b le e , p i ;

i n t a , b ;
e = 2 .7 1 8 2 8 1 8 ;
p i = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 3 ;
a=2 ;
b = 4 ;
p r i n t f (" e = % g , \ n p i = % g \ n ” , e , p i) ;
p r i n t f ("a= % d, \n b = % d \n " , a , b) ;
g e t c h a r () ;

This is a very simple C program which produces the following output:

e= 2 .7 1 8 2 8 1 8 ,
p i = 3 .1 4 1 5 9 2 6 5 3 5 8 9 7 3
a= 2 ,
b= 4

The first lines of the program are familiar to you. m a in () { . . }
defines the primary function m ain. Within a block you can make declarations.
These must always be at the start of the block:

d o u b le e , p i ;

declares two objects of type d o u b le . The two objects have the names e and
p i . The type d o u b l e means that floating-point numbers with double
precision can be stored in this object, in this case with up to 16 digits of
precision.

To define several objects of the same type, you can separate these with
commas. A declaration is, like most instructions, concluded with a semicolon.

i n t a , b ;

is a similar definition. Here two objects a ar.d b are defined which have the type
i n t . Only whole numbers can be stored in objects of this type.

The next four program lines are statements in which values are assigned to
the defined objects. The identifier of an object must always be on the left side of

31

FIRST SOFTWARE LTO SUPER C Compiler User's Guide

the = character. Such an identifier is called as L-value (left value). On the right
of the = character is the value which is to be stored in the object. All objects
are assigned the right number value in the four program lines.

The last lines of the program contain statements which make calls to the
functions prin tf and getchar.

p rin tf has more than one argument, however. The first argument is
always a character string.

" e = % g ,\n p i= % g \n "

The characters up to the %g are printed. These are format instructions. They
cause an additional argument of p r i n t f to be printed. %g requires an
argument of type double . The value of this argument is printed as text. The
\ n character causes the printing to move down to the next line.

The second prin tf instruction is similarly constructed. Here stands the
format character %d which requires an argument of type I n t and prints it in
decimal.

getchar waits for a key before the program is ended.

You have become acquainted with objects. The objects in this example
were all assigned a storage class. You will see later what kind of effect this has.
We will only say that these objects exist only within the block in which they
are defined.

The number values which appear are constants. The floating-point
constants are always of type d o u b l e . Integer constants are of type i n t , as
long as they are not too large.

You do not need to have constants on the right in an assignment. A name
or a complex expression may be on the right side.

p i= e ;

assigns p i the contents of e.

32

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.1.3 Loops

Up to now our example programs have been processed sequentially,
meaning that the statements were always executed in order and the program is
ended when the last statement is reached. This is not sufficient for solving all
problems, so there are loop constructs which make it possible to repeat
statements.

We will write a program which prints a table of Celsius and the equivalent
Fahrenheit degrees.

i n c l u d e " s t d i o . c "
/* T a b le fro m C e l s i u s t o F a h r e n h e i t

f o r c = - 5 0 , - 4 0 , . . ,5 0 * /

m a i n ()
{ i n t s t a r t , e n d , s t e p ;

d o u b le f a h r , C e l s i u s ;
s t a r t = - 5 0 ;
e n d = 5 0 ;
s t e p = 1 0 ;

c e l s i u s = s t a r t ;
w h i l e (c e l s iu s < = e n d){ fahr=(9.0/5.0)*celsius+32.0; printf("%4.Of%7.If\n",Celsius,fahr); celsius=celsius+step;
>
g e t c h a r () ;

First, the compiler skips everything between / * and * / . This allows
comments to be inserted in the program.

A set of objects are defined, start and end represent the first and last table
numbers, step is the step size with which the Fahrenheit degrees are to be
calculated. Celsius represented the current Celsius value, fahr the current
Fahrenheit value.

start, end, and step are assigned the requires values. Celsius must be
assigned the value of start. This gives Celsius the value for the first
conversion.

Now we encounter a w h i l e statement. After w h i l e must come a
condition enclosed in parentheses. In this case we compare to see if Celsius is
less than or equal to end. If this condition is true, the loop body is executed. In
this case the loop body is a block. Within the block are the statements which

33

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

are to be executed as long as the condition is true. In this case the loop is
executed until Celsius is larger than end. Then the end of the table is reached.

At the start of the loop the Fahrenheit value is calculated from the Celsius
value. On the right side of the assignment is a complex expression which
performs a calculation. The Celsius and Fahrenheit values are printed next to
each other with the p r i n t f function.

The Celsius value is incremented by the step size at the end of the loop. In
the program it is then tested to see if the loop condition is still true. If so, the
loop is repeated. If the condition is no longer true, program execution continues
beyond the loop block.

Now to some of the program details.

c e l s i u s = l o w e r ;

Here the value of lo w e r, an i n t value is assigned to the object C e l s iu s .
Here the value of lower is converted to type d o u b l e . For each assignment
the right side is adapted to the type on the left side. If possible, the numerical
value remains the same.

The division 9.0/5.0 strikes your eye in the conversion formula. Here
double constants are used. If one were to use i n t constants and write: 9/5,
the result would be 1 because an integer division would be performed. If one
wants the result of a division to be a d o u b l e value, at least one of the
operators must be of this type.

The format statement of p r i n t f is altered somewhat. %f means that
the double number will be printed without exponent. Number inputs can be
given between the % and the f . %4 . Of means that the double number is
printed with a string of at least four characters and zero places after the decimal.
The decimal point and sign must be figured into the string width. Numbers
with up to two digits can be printed with this format instruction. If the
numbers are larger, the field will become larger than 4 characters and the
formatting is destroyed. If the number is smaller, the string is padded with
blanks until it is 4 characters wide. The instruction %7 . I f means that a
double number without exponent with an output width of at least seven
characters and one place after the decimal will be printed.

34

6.1.4 Symbolic constants

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The previous conversion program can easily be altered for different table
values. Imagine a considerably more complex program. Changing all of the
constants would be a lot of work and would be highly susceptible to error in
case a constant were missed. To avoid this, modem programming languages
have symbolic constants. A name is defined as a constant. Wherever this name
occurs in the program it is replaced with the constant.

#include "stdio.c"#define START (-50)#define END 50 #define STEP 10
main(){ double Celsius, fahr;

for(celsius=START;celsius<=END; celsius+=STEP){ fahr=(9.0/5.0)*celsius+32.0;print f (11 % 4 . Of %7 . If\n" , Celsius,fahr);
}getchar();

The program yields the same results but it looks quite different. The
variables start, end, and step are gone. Constants have been defined for these.
This is done with the #def ine directive. This directive must appear at the
start of a line. After such a definition the given name can be used in place of the
constant value.

The while statement is replaced by the for statement. After for are
three expressions enclosed in parentheses. The first expression is the
initialization of the loop, the second represents the loop condition, and the third
the continuation of the loop. This continuation is always executed when the
loop body is ended and before the condition is tested.

The only unknown element for you yet may be the += operator.

celsius+=STEP is similiar to celsius=celsius+STEP

This way Celsius need be evaluated only once, meaning that the assignment is
executed faster.

35

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.1.5 Arrays

In this section you’ll become acquainted with arrays. Let's take a look at
the following program:

i n c l u d e " s t d i o . c "

m a in ()
{ s t a t i c i n t n u m b e r s [1 0] ;

i n t i ;
c h a r c ;

f o r (i = 0 ; i < 5 0 ; i++) ;
{ c = g e t c h a r () ;

i f (c < = 19 ' && c > = ' 0 ')
n u m b e r s [c - 10 1]+ + ;

}
f o r (i = 0 ; i< 1 0 ; i++) ;printf("Digit%d:%dtimes\n",i,numbers[i]); getchar();

This program defines numbers as an array with ten elements. The
elements have the type i n t . The number of times a certain key is pressed will
be counted in these elements. In front of the declaration is the word s t a t i c .
It represents a storage class. Here s t a t i c is used because objects of this
storage class are automatically set to zero, meaning that the vector contains
only the values zero at the start of the program.

In C, array elements are counted from zero on, meaning that a ten-element
array has elements 0 through 9. We'll store the number of times the digit keys
0 to 9 are pressed.

An i n t object i and a char object c are also defined. The type char
creates objects which can assume a character value from the character set.

The first statement is a f o r loop. In it the variable i ranges from 0 to
49. i++ is the continuation of the loop. This expression is the equivalent of
i+=l, incrementing i by one (i=i+l, in familiar BASIC).

In the loop body is a block with two statements. First the function
g e t c h a r is called which waits for a key to be pressed. It not only waits, it
returns the code of the key pressed as the result. This value is represented by
calling the function. Here the value is assigned to the object c.

36

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

Next is the if instruction. Its body is only executed if the condition after
if is true.

0 and *9* are character constants whose value is the same as the code of
the enclosed character. This code can vary from computer to computer. The
C-64 has a modified ASCII character set, a table of which can be found in the
appendix. The digits are always coded in ascending order in every character set,
however.

The i f condition checks to see if the character read in is less than or equal
to the character '9' and if the code is greater than or equal to the character 'O'.
The two conditions are combined with a && operator which makes the entire
condition true only when the two individual conditions are satisfied.

Since the codes for the digits are in ascending order, the condition is
satisfied only for characters which are digits. In this case,

n u m b e r s [c - ' 0 1]++

is executed. c-'O' yields the digit as a value, for ’O’ the value 0 and for ’9’ the
value 9. The array numbers is indexed with this value, meaning that the
element is selected by the number c-'O'. This element is incremented by ++.
The corresponding array element value is incremented each time a digit key is
pressed.

The f o r loop is executed 50 times, meaning that you must press 50 keys
before the loop is terminated.

The next statement is again a f o r loop which prints a list, i ranges in
value from 0 to 9 and the elements of the array are printed, for example:

Digit 0: 2 times
Digit 1: 15 times

etc.

The last g e t c h a r waits for a key to be pressed and displays the table on
the screen until one is pressed. After you start the program, you must press
keys, 0 - 9. After 50 keys the table appears, indicating how often you pressed
each digit key.

37

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.1.6 Character arrays

You have already become acquainted with character strings. Up to now you
have been working only with string constants, strings with a set sequence of
characters. Variable strings do not exist as a type in C. Strings are set up as
arrays of type char. This means that the length of the string is limited by the
length of the array, but not only by this. The end of the string is denoted by a
zero in the array. This end of string indicator (null character) is created by the
compiler for string constants.

i n c l u d e " s t d i o . c ”

m a i n ()
{ c h a r n a m e [4 1] ;

g e t s (n a m e , 4 0 , STD IO) ;
p r i n t f (" \ n % s \ n " , n a m e) ;
g e t c h a r () ;

}

In this program a character array with 41 elements is defined. Since a
character is required for the end of the string, you can use a maximum of 40
characters for storage, g e t s is a standard function for reading strings. The first
argument is an array name in which the string is to be stored. The second
argument gives the maximum number of characters to be read in. The third
argument tells the function where to read the string from. STDIO is a value
from the standard module which indicates that the standard input or output
should be used, the keyboard or screen. The function causes a cursor to appear
on the screen and allows you to enter a string. The input is done as in BASIC,
that is, you must end it with [RETURN].

In the function p r i n t f is the control character %s which expects an
array name as an argument. The string (char array) is printed as text.

g e t c h a r again waits for a key so that you can view the output.

38

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.2 Expressions and declarations

6.2.1 Names

The names which are tied to objects through declarations may not be the
same as any of the C keywords. These are reserved names which have a
predetermined meaning in the program text, such as i n t or char .

A name must begin with a letter. After the initial letter may come digits.
The underscore character _ counts as a letter.

One should chose variable names which suggest the purpose and contents
of the variable and sufficiently unique so that a small typing error does not
result in another, valid, variable name.

6.2.2 Types

There are a number of so-called simple data types in C. The simple types
differ from the more complex data types such as arrays.

You have already become acquainted with the data types char, in t , and
d o u b le . In addition there are the following:

f l o a t is a floating-point type like dou b le but with lower accuracy. On the
C-64 this type has an accuracy of about 6 digits.

s h o r t i n t , also abbreviated to s h o r t can store only integers like i n t .

l o n g i n t , also abbreviated l o n g , can also store only integers. The three
integer types are differentiated only by their value ranges, the size of
the largest integer which can be represented. The value range of
s h o r t is guaranteed to be less than or equal to that of i n t and the
range of the l on g is guaranteed to be greater than or equal to that of
i n t . In the Super C language compiler, s h o r t and i n t have the
same size while lo n g requires twice as much memory.

The memory required is also called SIZE.

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

All integral types (including char) can be represented without sign by
placing u n signed in front of the type name. The contents of such an object
is always interpreted as positive. You can also write just u n s i g n e d for
u n s ig n e d i n t .

6.2.3 Constants

You have already used i n t and d o u b l e constants. The compiler
interprets a numerical constant as d o u b le if it finds a decimal point or an
exponent in the number. An exponent is denoted by the letter e or E and the
corresponding exponent.

Ie5 = 100000.0 = 100E3 = 1E+5 = 0.1e6
All of these constants have the same value.

i n t constants are integers. If you exceed the value 32767, the number
can no longer be stored in an object of type i n t (this can be different with
other compilers). In this case the constant becomes type l o n g . If one wants
to make an integer constant always lo n g , one can place an 1 or L after it.

15L 21 0 40000
Integer constants which have a leading zero are evaluated as octal.

077 = 63 (decimal)

Write all of your decimal numbers without leading zeros or they will be
regarded as octal numbers by the compiler.

Integer constants can also be read as hexadecimal numbers by placing a Ox
or 0x in front of the number. The digits 10 through 15 are represented by the
letters a to f or A to F.

0x3f
(hex)

077 = 63
(octal) (decimal)

We have also already used the character constants. They contain a character
enclosed in single quotes:

'a' 'X1 1 \n1 '\0'
The value of such a constant is the code of the character in the character set.

40

FIRST SOFTWARE LTD
SUPER C Compiler User’s Guide

This value is converted to type i n t so that calculations can be performed
on it. Combinations with the escape sequence can also be used as characters, of
course. For example, 1 \ n 1 represents the code for [RETURN].

' \n1 = 13 = OxOd
' \0 1 is the escape sequence which is used as the end character for strings.

Up to three digits may follow the \ which are then interpreted as an octal
number. The value of this octal number is then the code of the character:

'\101' = 'A' = 65
Another constant is the string. The character string is placed in memory.

At the end stands the end character:

"string\n" -> 's', 't', 'r', 'i', 'n ' , ' g ' , '\n',\0'
A string constant can be used like an array name. Two string constants

which look alike are in reality two different constants.

Strings and characters are also different:

" a " 1 a 1

The first is a string which contains a \0 (null character) at the end while
1 a 1 is the value of the code of the letter a.

6.2.4 Storage classes

Up to now objects have been defined only within function blocks. If no
storage class is given, the storage class a u t o is assumed. This storage class
has the effect that the objects are available only within the block and are
discarded when the block is left.

Objects defined within a block are called local. Local objects with the
storage class s t a t i c are also available only within that block. But they
retain their value throughout the entire program and remain intact when the
block is accessed again. An advantage of these objects is that they automatically
contain the value zero at the start of the program.

41

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Global objects may also be defined. These are defined outside of a
function. If no storage class is given, the object is defined throughout the entire
program.

The storage class s t a t i c can also be used in global definitions.
Regarding the program in which such objects are defined, this has no other
effect than if the storage class were omitted. But when several separately
compiled C programs are bound together, static global variables from one file
cannot be accessed from another.

As a general rule, all objects in C must be declared before they can be
used. Names which the compiler does not recognize from declarations are
assumed to be global and of type i n t or as a function with result type i n t .
As a result, such variables do not have to be declared explicitly.

6.2*5 Arithmetic Operators

Arithmetic operators are the basic types of calculations + * / .
The meaning of the operators should be clear in that they cause two numbers to
be added, subtracted, multiplied, or divided, respectively. The type of the result
is important in C. Standard type conversions are used when different types of
operands are combined with these operators.

1. ch ar or s h o r t operands are converted to i n t , f l o a t , or
double operands.

2. If one of the two operands is d o u b le , the other is converted to
d o u b le and the result is d o u b l e .

3. If one of the operands is lon g , the other operand and the result
become long.

4. If one of the operands is u nsigned , the other operand and the
result are made unsigned.

5. If both operators are of type i n t , the result is also i n t .

% also belongs to the arithmetic operators. The result of this is
the remainder after the division. The standard conversions are also
applied to this operator. Only integral types are allowed as operands.

42

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.2.6 Comparisons, logical operators

Some comparison operators have already been used. They return an i n t
value as the result, 0 for false and 1 for true.

< < = > > = ! = ==

These operators mean: less than, less than or equal, greater than, greater than or
equal, not equal, and equal.

All simple types may be compared to each other. Type conversions are
made according to the usual rules.

A logical value can be negated with the ! operator (NOT).

! (a<b) corresponds to a>=b
The ! operator can be used on all types. The operand is checked to see if it is
zero. Then the result is 1 (true) else 0 (false).

Two conditions can be combined with && or | | . The operands may not
be conditions, however. They are only compared with zero and then result in a
value-true or false.

&& returns 1 (true) if both operators are non-zero (AND),
else 0 (false).

| | returns 1 (true) if one of the two operators is non-zero
(OR), else 0 (false).

These two operators are evaluated from left to right. The second operand is
not evaluated if the result can be determined from the first operand. If the first
operand of && is 0, or if the first operand of | | is not zero, then the result of
the operator is already known.

6.2.7 Type conversions

Type conversions are automatically performed in some cases, such as the
standard type conversions. The arguments of a function call also result in type
conversions, c h a r and s h o r t are converted to i n t and f l o a t to
d o u b l e .

43

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Type conversions can also be forced, however. This is done through a
CAST. In parentheses is the type name of the result. This cast is placed before
the value to be converted.

(char) pi

The value of the object pi is converted to type ch ar . The conversion is
usually done such that the values with ’’smaller" types are converted to "larger"
types without changing the value. A conversion in the other direction can
change the value if it does not fit into the value range of the destination type.

6.2.8 Increment and decrement

C has increment and decrement commands ++ and — to increment and
decrement a value by one.

i++ ++i
increments the object i. Both expressions have the same effect. In C however
every expression has a value, including assignments and increment or decrement
operations. In the first case the expression has the value of i before it is
incremented, and in the second case the value after the increment. The - -
(subtract 1) operator can be used like the ++ operator.

i— — i
For both of these operators you must remember that they may have a side

effect if they are in the same expression twice.

numbers[i++]+i
The above statement indexes the array numbers with the value i. But i is

also incremented. The result is dependent on whether i++ or +i is evaluated
first. The order of the operations is not defined by the C language. It's possible
that the compiler will reverse the order of the evaluation.

i+numbers[i++]
The side effect now yields a different result because the first i is not

incremented first. So watch for the side effects! In general aviod them. Objects
which are altered by side effects should be used only once in an expression.

44

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The increment and decrement operators are faster than a corresponding
assignment for integral types.

6.2.9 Bit operations

In C there are some more operators which change the bit pattern of a
value. Such operators may only be used on integer types.

First are the operators which combine two values bit by bit. The usual
type converions apply.

& bit-wise AND operation:
result bit 1 if both operator bits are 1, else 0

I bit-wise OR operation:
result bit 0 if both operand bits are 0, else 1

A bit-wise exclusive OR operation:
result bit 1 if both operand bits equal, else 0

The second group of bit operations are the shift operators. They move the
bit pattern of a value.

1 « 2

With the « operator the bit pattern of the left operand is shifted as many
bits to the left as the right operand indicates. The above expression has the
result 4. Zero-bits are inserted from the right. A shift left corresponds to a
multiplication by 2.

4»2
The » operator shifts the bit pattern right. The result here is 1. The

operation corresponds to an integer division by 2. If the left operand is
unsigned, zero-bits are shifted in on the left side. If the operand is not unsigned,
however, the sign bit is shifted in so that - 4 » 2 yields -1. This is the case in
this compiler, but not necessarily in others which always shift in zero-bits.
This means that the result can vary from machine to machine.

45

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.2.10 Assignments

The assignment with the = has already been used often and is a
fundemental part of every program. The assignment causes the right operand to
be assigned to the object denoted by the left operand. The left operand must
denote an object-it must be an L-value. 1+2 not an L-value according to this.

The type of the right operand is converted to the type of the left operand
before the value is assigned. An assignment in C has a value. This value can be
used. The value of an assignment is the converted value of the right operand.

i n c l u d e " s t d i o . c "

m a i n ()
{

>

c h a r c ;
w h i le ((c = g e t c h a r ()) != ' \ n f)

p u t c h a r (c) ;

In this program, c is assigned the value of the key just pressed in the loop
condition. The value of the assignment, the pressed key, is compared to the
[RETURN] character. If the pressed key was [RETURN], the loop is ended.
Otherwise the pressed key is printed to the screen using the function
p u t c h a r .

Note that the assignment must be enclosed in parentheses or the compiler
with first carry out the comparison and then assign its result to the variable c.

There are abbreviated forms for assignments in the event that the L-value
is to combined with the value being assigned, a = a op b can be written
as a op= b. Operators permitted are:

*= /= %= += -= A= &= |= «= »=
x*=y+l will be converted to x=x*(y+l), meaning that precendence of

operators does not apply. The entire right operand will be combined. The
L-value is evaluated only once in these short forms.

n u m b e r s [i + +] + = 1

result in i being incremented only once.

If the value of an assignment is used, the side effects of increment and
decrement must be noted.

46

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.2.11 Conditional evaluation

An interesting feature of C is conditional evaluation. It consists of three
parts and two operators:

a ? b : c
The value of the expression a determines whether b will be evaluated or c will
be evaluated, b is evaluated if a is not zero, else c. The value of the entire
expression is the value of the expression thus evaluated.

1 ? 2 : 0

always yields the value 2.

i ? 2 : 0

returns the value 0 if i is zero, else 2.

x ? i++ j++
If x is equal to zero, j is incremented. The value of j before the incrementation
is the value of the expression. Otherwise i is incremented and the value of the
expression is the value of i before the increment. Only one of the two objects
is incremented.

If the result types of the two possible result expressions are different, the
usual type conversions are made in order to get the same result type in both
possible cases.

6.2.12 Precedence and order of operators

You know that multiplication and division operations are performed before
addition and subtraction. But all of the other operators also have a set precedence
which determines which operator is executed first. If several operators of the
same precedence are in a row, the order of the operator determines whether they
are evaluated from left to right or right to left.

In the following table, all of the operators on a row have the same
precedence. The first row has the highest precendence. The last row has the
lowest precedence.

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

Operators Order

0 D • -> from left
++ — * & - ! - (CAST) size of from right
* /% from left
+ - from left
« » from left
< < = > > = from left
== != from left
& from left
A from left
1 from left
&& from left
II from left
? : from right
= *= /= %/ += -= » = « = &= /L ! = from right
> from left

The associative and commutative operators + * A | & are determined
by the compiler. You cannot prevent this even by using parentheses. For the
operators, the order is not set (whether left-most or right-most operand is
evaluated first). The && and | | operators are exceptions. Their operands are
guaranteed to be evaluated from left to right.

6,2.13 Additional operators

Operators in the above list which you do not yet recognize will be
discussed later in the User’s Guide. You’ll find an exact description in the
Systems Guide.

One operator should be mentioned here. An expression can be divided into
two parts which are both executed with the , operator. The value of the
expression is the value of the right part. This is very useful when you have
only one expression available:

if(t=0, s+1)___
The condition of the if statement is only s+1. t is first set to zero.

48

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.2.14 Program text

In principle a program can be entered format-free. The compiler reads the
text line-by-line from left to right Whether you write

main() {int i; for(1*0;i<l0;i + +)printf("%d\n") ,i);}
or

main()
{ int i;for(i=0; i<10; i++) ̂ printf("%d\n"),i);

makes no difference as far as the machine language program which results.
However you can get a clean, easy-to-read program by following certain rules.

- indent sub-statements and dependent program sections
- write brackets which belong together in the same column
- insert blank lines to make things easier to read
- don’t overload one line
- use color

In the C-EDITOR you have the ability to change the color of program
sections. Use this, but don’t overuse it because a rainbow-colored program is
also hard to read. Use the supplied programs as examples.

6.3 Control structures

A C program is composed of one or more functions. Statements which the
program executes are written in the function blocks. Such statements are
executed sequentially, one after the other. A programming language offers
control structures to alter the order of execution. Control structures are
themselves statements. They contain more statements whose execution is not
necessarily sequential. They may be repeated or skipped altogether (loops,
branches).

This alteration is conditional, meaning that the order of execution is made
based on the value of certain data.

49

FIRST SOFTWARE LTD

6.3.1 Block

SUPER C Compiler User’s Guide

A block is a group of statements within braces {}. Local variables can be
defined at the start of the block and can be used only in this block. A block is
itself an statement, so that blocks can be nested.

A block serves to group statements together. In a loop, for instance, only
one statement can be repeated. If a loop is to contain more than one statement,
you can place them together in a block and execute them as the object of the
loop.

The block is an exception to the other statements because it is not
concluded with a semicolon but with a brace }.

6.3.2 The if statement

An if statement is executed only if a certain condition is satisfied.

if (c=='a’)
printf (’’Letter: a”) ;

Only when the condition c==*af is true, will the statements following it be
executed. This statement may also be a block.

The expression in the parentheses that follow i f need not be a condition.
The expression is evaluated to see if its value is zero (false) or non-zero (true).

The if statement can also be extended with an else section.

if (c== ’ a ')
printf (’’Letter: a”) ;else printf (’’another character”) ;

The statement behind else is always executed if the condition is false. Either
the statement following the if ql the statement following the else is
executed.

You can program a branch to one of two different statements with
if . . .else . You can also nest the if-else 1 s by placing an if
statement in the else portion of the previous if.

50

FIRST SOFTWARE LTD
SUPER C Compiler User’s Guide

printf("Letter: a") ;elseif(c=='b ’)printf("Letter: b") ;else printf("another character");
Note that this is considered one statement, although it consists of several

nested sub-statement. In order to increase the readability, you can eliminate the
usual indentation:

if(c==1 a 1)
printf("Letter: a") ;else if (c — 'b')printf("Letter: b") ;elseprintf("another character");

if-else nesting has the disadvantage of requiring a good deal of writing.
The conditions must be somewhat different in each if statement but must be
reprogrammed. Furthermore all compilers place a limit on the number of nested
statements. For this reason, most higher-level programming languages have
other ways of handling multiple branches.

6.3.3 switch statement

A switch statement can branch to one of up to 43 other statement. The
branch is made based on an expression:

switch(c)
{ case ' a ' : printf("Letter: break; a") ;

case 'b1 : printf("Letter: break; b") ;
case 1 c 1 :case 'd' : printf("Letter: break; c or d");
default: printf("another character

The expression after switch is the object c. Its value is the basis for
the branch. After switch(..) is a block with various statements.

If a jump is to be made to a specific statement based on a specific result, a

51

If a jump is to be made to a specific statement based on a specific result, a
c a s e label must be placed in front of the statement:

c a s e ' a 1

Behind c a s e is a constant. If the result of the expression agrees with the
constant, the statement is executed. Not only the following statement, but all
following statements. In some cases this can be quite useful. To prevent it,
however, you can place a b r e a k statement following. This causes a jump to
the end of the block.

Note that you can place several c a s e labels in a row. One peculiarity is
the d e f a u l t label. If this is placed before a statement in the block, this
statement is executed if there is no c a s e label which matches the result of the
expression. The d e f a u l t label need not be at the end of the s w i t c h
block. If there is no d e f a u l t label, no statements are executed if a matching
c a s e label is found.

The result of the expression must have an integral type. Floating-point
values are not allowed. The same applies for the c a s e constants.

You are probably wondering about the last b r e a k statement in the
block. This is in fact superfluous since the block is ended even without this
statement But we've placed this b r e a k statement here because the danger
exists that it will be forgotten if a new case statement is inserted after it. The
statements of this new c a s e would then be executed along with those for
label which is currently last.

SUPER C Compiler User’s Guide
FIRST SOFTWARE LTD

6.3.4 while statement

The w h i le statement is a loop. It repeats the following statement as
long as the condition is true.

w h i l e (i < 1 0)
i + + ;

The condition is enclosed in parentheses as for the i f statement. Then
comes the statement which is repeated as long as. the condition is true (the
expression in the parentheses is not zero).

52

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

With loops make sure that the loop condition will become false, otherwise
it will never end.

Inifinitely repeating loops, called infinite loops, can be programmed by
omitting the condition.

w h i l e ()
s t a t e m e n t

There is generally little application for such infinite loops.

6.3.5 for statement

The f o r statement is a special w h i le statement. Not only is there a
loop condition, but an intialization expression and a continuation expression are
also specified.

f o r (i= 0 ; i< 1 0 ; i+ +)
p u t c h a r (s t r i n g [i]) ;

This is also used as in BASIC or Pascal, meaning that a variable is set to a
starting value, (initialization: i=0). The statements are preformed with the
control variable ranging to the loop condition: i<10. The variable is
incremented at the end (continuation: i++). But a f o r statement is not tied to
one variable. You can use three expressions for the initialization, condition, and
continuation in many more ways.

f o r (c = g e t c h a r () , i= 0 ; i< 1 0 ; p u t c h a r (c) , i+ +) ;

The initialization of the loop is:

c = g e t c h a r () , i= 0

This is expression. The , operator divides the expression. It waits for a
key and stores the key's code, i will be set to 0. The condition checks to see if i
is less then 10. The continuation again consists of two parts. The key pressed
is printed and i is incremented. The statement of the loop is only a semicolon.
This is the em pty statement.

The entire statement waits for a key and prints the key code ten times.

53

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

You can see that much more complex f o r loops can be programmed in
C than in other lanuages.

If the condition is omitted, you get an infinite loop. The initialization and
continuation can in any event be omitted.

f o r (; ;) ;

is the shortest f o r loop (an infinite loop).

6.3.6 do statement

The do statement forms a new type of loop. The condition in the w h i le
and f o r loops is always checked at the start of each pass through the loop,
including the first time. It may occur that the loop is not executed at all.

The do statement does not cause the condition to be checked at the start
of the loop. Such loops are used when the loop body is to be executed at least
once.

do
{ printf("Input: ");

g e t s (s t r i n g , 2 0 , STD IO);
)
w h i l e (s t r i n g [1] = = '\ 0 1) ;

The loop begins with the key word d o . Next comes the loop statement,
here a block with two statements. At the end of the loop is the loop condition
following w h i l e . The statement prints " I n p u t and then reads a string
with a maximum of 20 characters into the array string, which naturally must
have been previously declared with 21 elements. The loop condition checks to
see if the second element of the array (element 1) is equal to the end character of
the string. If this is the case, the first element (element 0) is a [RETURN]
character and no other characters were read. Then the loop and with it the input
is repeated. Otherwise the loop is ended.

d o ; w h i l e () ;

If the loop condition is omitted, you get an infinite loop.

5 4

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.3.7 break statement

This statement has already been discussed in context with s w i t c h . It
causes a loop or a s w i t c h statement to be interrupted. The b r e a k
statement functions only inside of loops or s w i tc h blocks. It always affects
the last loop or s w i tc h statement if several are nested.

b r e a k ;

The b r e a k statement causes the loop to be interrupted immediately and
execution to continue after the entire loop. In a s w i tc h statement, the block
is left.

f o r (i = 0 ; i< 2 0 ; i+ +)
{ string[i]=getchar (); if(string[I] = = 1 \n'); break;
>
s t r i n g [i] = 1\0 *

In this program fragment, the variable i runs from 0 to 19. It waits for a
keypress and assigns the key to the ith element of the character array string.
When the element read in is a [RETURN] character, a b r e a k statement is
executed. This exits the loop.

A maximum of 20 character are read in, but no more that the first
[RETURN] character. In the last statement, a '\0' is appended to the string.

You could combine the test for the [RETURN] key in the loop condition.
This would tend to make the program harder to read, however.

6.3.8 continue statement

The c o n t i n u e statement is seldom used. It applys only to loops.
Execution is directed to the end of the loop statement when c o n t i n u e is
executed.

With a w h i l e or do loop, execution immediately continues with the
loop condition and eventually the loop statement is repeated. In a f o r loop
the continuation is executed and the loop condition is then checked.

55

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The c o n t i n u e statement is mostly used to skip complex instructions
within the loop.

f o r (i = 0 ; i< 2 0 , i+ +)
{ c = g e t c h a r () ;

i f (c = = 1\ n *)
c o n t i n u e ;

/* co m p le x c a l c u l a t i o n * /

The complex calculation indicated with a comment will be skipped if the
key read was [RETURN].

6.3.9 goto statement and labels

Labels may be placed in front of any statement. They consist of a name
and a colon:

name : s t a t e m e n t

The name is defined through the label. You can jump to such a label with
a g o to statement, meaning that the execution of the program will continue
behind the label.

g o to nam e;

Such jump statements should be used sparingly, however. There are no
cases in which a jump cannot be replaced by one of the available control
structures. Jumps are strictly to be avoided in so-called structured programming
in order to preserve the readability of the program. Only in rare cases can a
jump be useful, such as when an error occurs within several nested loops. Only
the innermost loop can be exited with b re a k , g o to can be used to exit all of
them.

A jump cannot be made into another function. You can jump out of
blocks. You should avoid jumping into blocks, however. If objects are defined
in such a block, these will not be defined and will not be available.

5 6

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.4 Program structures

6.4.1 Functions

Up to now we have defined only one function, m ain. But programs
usually consist of more than one function. As you already know, arguments can
be passed to functions which can then process them. A function can also return
a resulting value. If a function does not return a result, it is called it a
procedure. You can define procedures with the type v o id .

v o id n e x t l in e ()
{ p u tc h a r (' \ n ') ;
}

The function nextline prints a [RETURN] character. It does not return a
result. It can be called in any other function.

m ain ()
{ p r in t f (" D e m o n s tr a t io n ") ;

n e x t l i n e () ;
p r in t f (" o f th e fu n c t io n ") ;
n e x t l i n e () ;
p r i n t f (" n e x t l i n e ") ;

For functions for which no type is given in the definition, as here for
main, the compiler adds the type in t and assumes that the end result has this
type, main does not return a result because the end of main also means the
end of the program. The type v o id is often left off of main because of sheer
laziness.

Functions can return any simple type. Take a look at the following
function power which requires two arguments. The first argument should be a
double value x and the second an int value y. The function power
calculates the value of x to the power y for its result.

d o u b le p o w e r(x ,y)
double x;
in t y;

(/ * . . . * /
>

The function is assigned the type double, the result type. In the
function parentheses is a list of names. These are the names of the parameters.

57

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

The parameter names must be declared next. This is done in the usual manner,
but without storage class. Note that no ; is allowed between the first and
second lines while a semicolon must follow each parameter declaration.

The parameter declarations must be made in the order in which they occur
in the parameter list.

What significance do these parameters have? The parameters are local
variables exactly as those which are defined within the block. They receive the
values of the arguments when the function is called. The complete function
power looks like this:

d o u b le p o w e r(x ,y)
d o u b le x ;
i n t y :

{ i f (y = - 0)
r e t u r n 1;

i f (y < 0)
r e t u r n 1 / p o w e r (x , - y)

e l s e
r e t u r n x * p o w e r (x ,y - l) ;

>

Let's go through the statements of power step by step. When the function
is called, the value of the arguments are placed in the parameters. If we want to
calculate 5 to the power 2, we call the function power.

power(5.0, 2);

Here we see a peculiarity of C. The types of the arguments must agree
with the types of the parameters. You must write 5.0 so that the first argument
has type d o u b le .

What happens in power? x has the value 5.0, y the value 2. If y were
zero, the result of power would be 1. This is established through a r e t u r n
statement. It can be anywhere in the function. If it is executed, the function
execution is stopped. An expression may appear behind r e t u r n which
calculates the result of the function. Here the result is 1. This time we do not
have to write 1.0 because the result type is converted automatically.

In this case y was not equal to zero. A check is now made to see if y is
negative, that is, if the exponent is negative. In this case the function is broken
off. l/power(x,-y) calculates the same thing as the expression power(x,y),
but now the exponent is positive. The function power calls itself. This is called

58

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

recursion, x and -y are here arguments whose values wil be assigned to x and y
in the new call. Like auto objects, the parameters are recreated each time the
function is called so they cannot disturb each other.

If y is positive, the function is exited with the result x*power(x,y-l).
In our case:

5.0*pow er(5.0,l)

• This is a correct result. The function power is recursive and is called with
a lower but certainly positve result. In this call x has the value 5.0 and y the
value 1. Note the result of the new call. It is:

5.0"'power(5.0,0)

power is called one more time. In this call however, power returns the value 1
so that the value fo the second call is:

5.0*1.0 -> 5.0

The recursion ends. The result of the second call is incoiporated into the first

5.0*5.0 ■> 25.0

25.0 is now the end result of the call power(5.0,2).

It is often difficult for the beginner to understand the structure of a
recursive function. Remember that the parameters of a new function call are
different from those of the old call. They have the same names, but are different
objects. The result of a function is represented by the call. power(5.0,l)
represents the result 5.0.

Recursion is often easier to read than linear programs. This allows the
function power to implement with few statements.

An expression need not always follow return . If there is no expression
following it then the result is not defined. A procedure with type v o id should
also be exited with an expressionless r e tu r n . A function is also ended after
the last statement in the function block is ended. You know this from main.
You can also end a C program with a re tu rn statement in main.

59

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.4.2 Argument

There are some characteristics of pasing parameters in C which you should
be aware of. The argument is always evaluated. If the type is c h a r or
s h o r t , it is converted to i n t , and f l o a t is converted to d o u b le .

The types of the arguments must agree with the types of the parameters.
This is nol checked by the compiler. It is the responsibility of the programmer.
If the types do not agree, you can force agreement with CAST. If you fail to
check types, the function is almost certain to yield erroneous results.

Parameters which are declared with the type chary s h o r t , f l o a t are
converted to i n t or d o u b le .

Passing arguments is done only by value in C, which means that the value
of the argument is assigned to the parameter. This parameter can then be used
like a local variable.

main ()
{ double a; int b;

power(a,b);
>

In this example the value of the objects a and b are passed to power. The
contents of these objects cannot be changed by the function even though the
corresponding parameters may be changed.

If you want to change objects outside fo the call you must use pointers.
This will be discussed in the following sections.

Structures and unions, as well as arrays cannot be passed as arguments.

6.4.3 Global definitions

It was mentioned briefly that you can define global objects. The definitions
are programmed outside of function blocks.

6 0

FIRST SOFTWARE LTD
SUPER C Compiler User’s Guide

{ . . .
i= m a x im a l+ l ;

}

maximal is a global object with the type i n t . A storage class may not
be given. A global object retains its value throughout the whole program and is
not discarded. The name of such an object can be used throughout the program.
If a local object is defined with the same name, the global object is "covered
up" by the local object, meaning that the local object will always be accessed.

Global objects are used for storing data which multiple functions are to
have access to. They can be used to reduce the number of parameters passed or
to allow multiple results from a function. Data can be exchanged between
functions with global objects.

Global objects, defined without storage class, can be used from other
separately compiled programs when both link files are bound together. If you
wish to prevent this use from outside, the storage class static can be placed in
front of the definition. The object still remains valid throughout the entire
program, but it can be used only in the file in which it was defined.

A function definition is also a global definition since functions can also
be thought of as objects. Functions can also be defined as s t a t i c , meaning
they are usuable only within the file. To do this, s t a t i c is placed in from of
the function header, m ain may not be defined as s t a t i c .

6.4.4 Declarations

If you want to use global objects from another separately compiled
program segment, the objects must be declared so that the compiler knows what
type they are. No memory space is reserved by a declaration, however. The
compiler codes the declaration in the compiled program so that the declared
object is bound with its definition when the binding takes place.

Declarations can be made global or local, where the declaration applies to
the whole program in both cases. They are designated with the storage class
e x t e r n .

The module with the standard functions represents nothing more than a
separately compiled program. These functions must be declared before they can
be used. This is done by the program line:

61

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

in c lu d e " s t d io . c"

The file stdio.c is a source file in which these declarations are made. The
in c lu d e directive inserts this source file into the program.

e x te r n v o id p r i n t f () ;
e x te r n in t g e t s () ;

The functions p r i n t f and g e t s have been declared in this manner.
You can see that no parameter list and no function block is given. Such
declarations must always come before their first use.

e x te r n v o id p r i n t f () ;
m a i n ()
{ e x te r n v o id p r i n t f () ;

p r i n t f

>

Local declarations are used in order to make clear which functions are used
within the block. An object can be declared more than once. The declarations
must agree, however.

Objects other than functions can be declared. With functions, declarations
inside a source file are also important. If you have two functions which call
each other, one function must logically come first. When the first function is
compiled, the compiler does not yet know the type of the second. This must
then be declared:

double alpha()
{ extern long beta();

beta () ;
}
long beta()
{ . . .alpha();
}

6 2

FIRST SOFTWARE LTD SUPER C Gompiler User’s Guide

It would be better programming techniques to, in both functions, declare
the other. In conclusion: If an object is accessed via its name, it must be known
to the compiler through either a declaration or a definition.

If the compiler encounters an undeclared name, it assumes an object of
type i n t and global storage class (not s t a t i c) .

If the name is used as a function, meaning that a function with an
unknown name is called, the compiler assumes that the result type is i n t .
The compiler would also assume this in the previous example if beta had not
been declared. An error message would not appear.

Global, non-static i n t objects or functions of type i n t also need not be
declared. It is recommended that you do so to preserve the readability of your
programs.

6.4.5 Local definitions

The local definitions are found within a block. If no storage class is given,
the compiler defaults to a u t o . Objects of this storage class are generated at
the start of the block and are deleted again at the end. If the block is called
recursively, new objects are generated which have only the name in common
with the old.

The static local objects are handled differently. These are defined with the
storage class s t a t i c . The object remains intact throughout the entire
program but is accessible only within the block in which it was defined.
Logically, recursive calls also refer to the same object.

There is a third storage class which can be used for local definitions:
r e g i s t e r . Such definitions work like a u to definitions. The compiler tries
to place these objects in special processor registers so that they can be accessed
faster. Unfortunately, the CBM-64 has no such registers. If such definitions can
no longer be placed in registers, because they are all used, or there are none,
these definitions are handled like a u to .

63

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.4.6 Initializations

In contrast to many other languages, in C you can initialize objects at
their definition, meaning that these objects are pre-assigned a certain value.
Such initializations save execution time over assignments and are easier to
follow.

Initializations are made by placing an ~ character behind the declarator (the
name being declared) followed by the appropriate value.

main ()
{ static int maximimai = 50;auto double minimal = power(5.0,2);
}

Static and global objects can only be initialized with constant values,
maximal contains the value 50 after the initialization. If static and global
objects are not initialized, the compiler automatically sets their value to zero.

Local auto objects are not automatically set to zero, auto objects can
be initialized with entire expressions so that the above initialization is possible,
minimal contains the value of the function call power(5.0,2).

There is another important difference between auto objects and others.
au to objects are initialized at each new call of the block. Global and all static
objects are initialized all together at the start of the program. Their value is
therefore initialized only once.

Declarations of the storage class e x te rn cannot be initialized.

Arrays can be initialized element by element, a u to arrays cannot be
initialized.

char name[2 0] = { ’ a 1, ’n ’, ’n ’, 1 a ■ , 1\0’} ;
main()

A list of constants is enclosed in braces and placed after the = character.
The array has 20 elements. Here only the first five are initialized. If fewer
elements than necessary are found in such a list, the missing values are filled in
with zero. There is a shorter form of the above intialization. Character arrays

6 4

FIRST SOFTWARE LTO SUPER C Compiler User’s Guide

can be initialized with strings, meaning that the elements of the string are
placed in the character array in order.

c h a r name [20] = " a n n a " ;

performs the same initialization.

The specification of the dimension can also be omitted from the definition
of an initialized array. The dimension is then automatically the number of
intialized elements.

i n t m o n th [] = { 0 ,3 1 ,2 8 ,3 1 ,3 0 ,3 1 ,
3 0 ,3 1 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 } ;

The array month is declared with 13 elements. The elements 1 through 12
contain the number days in the months 1 through 12. Element 0 is not used but
must appear in the list.

c h a r name [] = " a n n a ,f ;

The array name is here dimensioned with five elements. Remember the \0
character at the end of the string.

Arrays can also have multiple dimensions and can be initialized as such.

i n t m o n th [] [1 3]= { { 0 ,3 1 ,2 8 ,3 1 ,3 0 ,3 1 ,
3 0 , 3 1 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 } ,

{ 0 , 3 1 , 2 9 , 3 1 , 3 0 , 3 1 ,
3 0 ,3 1 ,3 1 ,3 0 ,3 1 ,3 0 ,3 1 } };

This is a two-dimensional array meaning that the elements of the array are
arrays, whose elements are of type i n t . The initialization is done
recursively-with a list of two elements. These are again lists, whose elements
are initialized.

For multi-dimension arrays, the specification of the first dimension can be
omitted, as in the example. Here m onth[2][13] is declared based on the
initialization given. The sense of the above definition is the following. By the
first dimension we decide if the year is a leap year or not, and with the second
dimension we select the month. The result of an access to the array returns the
number of days of the month:

m o n th [1] [2] ;

65

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

accesses February in a leap year and returns the value 29.

If fewer elements than necessary are given in a sublist, the rest are again
filled with zero. If you want to initialize all of the elements of the list, you can
make the initialization in a list:

int month[][13] = { 0,31,28,31,30,31,30,
31,31,30,31,30,31, 0,31,29,31,30,31,30, 31,31,30,31,30,31 };

The compiler automatically recognizes the structure and assigns the first
thirteen elements to the array month[0] and the next thirteen to m onth[l].

6.4.7 Macros

You have already become acquainted with macros under the name symbolic
constants. You have assigned constants a name which can then be used in the
whole source text as the constant. This concept is not limited to just constants.
You can assign a name to any desired piece of text Overall, wherever this name
occurs in the source text, the text string is inserted instead. The replacement
string must by separated from the the name by a space.

d e f i n e NL p u t c h a r (1\ n 1)

In the following program you can use the following expression:

NL;
It causes a [RETURN] character to be printed. NL will be replaced by

p u t c h a r (' \ n 1) .

Note that the # character must be at the beginning of the line. Directives
that begin with # belong to the preprocessor. It does not belong directly to C
but operates only on the source text. A preprocessor directive can occur in the
middle of the program text, but requires its own line.

A name which you can define with # d e f i n e is called a macro. Such
macros can be used similarly to functions, meaning that they can be passed
arguments.

66

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

#define PRINT(x) printf("%d",x)#define PRINT2(x, y) PRINT(x),PRINT(y)
The macro PRINT can now be called with an argument like a function. In

the argument, the value of the argument is not used, rather the argument text.
This is inserted in the replacement string wherever the parameter name is. If the
macro is called in the following ways:

main()
PRiNT(2*3);
PRINT(3*i-j) ;PRINT2(5*4-a,b);

}

then the calls will be replaced by:

main()
{ . . .printf("%d",2*3);printf(* %d",3*i-j) ;printf("%d",5*4-a), printf("%d",b);

The following must be noted when making such a definition. The
parenthesis (must be typed directly behind the macro name or it will be
recognized as a normal replacement string. The parameter names must be
chosen so that the same name never occurs as an argument.

Macro names are often written in upper case so that they can be easily
recognized as such. This is a matter of choice and can be done differently from
programmer to programmer.

A defined macro name remains valid up to the end of the source text. The
name can no longer be declared because it will also be replaced in the
declaration. If a name is already declared before a macro definition with the same
name, the name will always be interpreted as a macro.

#undef PRINT
This is a preprocessor directive which erases a defined macro again. From

this line up to the end of the file, the macro defined with PRINT is no longer
available.

67

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.4.8 File chaining

Multiple source files can be chained together. A special preprocessor line
takes care of this.

#include "prg part 2.c"
The contents of the file prg part 2.c will be inserted in place of this

preprocessor directive. This directive has already been used to insert the file
stdio.c. All of the functions in the standard module are declared in this file and
various macros are defined.

Additional #include directives may appear with the first #include file.
Such chained files generate only one file for the compiler because the
preprocessor affects only the source text. Chained files are not to be confused
with separately compiled files.

6.5 Pointers, addresses, and arrays

One of the more powerful advantages of C is the pointer. It is an object
like any of the others. The special part is the value range of a pointer. The
content of a pointer object is an address. This address, as a rule, points to
another object. You can access such an object via this address without using the
name of the object

The difference between pointer and address is something like the difference
between an i n t object and an i n t constant.

6.5.1 Pointers

You declare a pointer by placing an asterisk (*) before the name,

i n t * p ;

defines p as a pointer whose address points to an i n t object. Take a look at
the following example program:

68

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

main ()
{ int a, *p;

An i n t object and a pointer to i n t are defined. The & operator is placed
before an L-value and returns the address of the object in question as its result.
&a is the constant address of the object a. This address is assigned to the
pointer.

The * operator precedes an address or a pointer and makes its operand an
L-value of the object in question. *p has the same effect as the name of the
object whose address is stored in p. This object is here assigned the value 2.
Instead of *p we could have written a.

Additional consequences:

*&a corresponds to a
(the * and & operators are evaluated from right to left, *(& a))

&*p corresponds to p
(&*p is not an L-value but only and address)

Summary:

A pointer is declared by placing an * in front of the name. The pointer can
contain only addresses which point to an object of the declared type.

The * operator requires an address or a pointer. The entire expression
represents the object to which the address points. This construction is an
L-value.

The & operator requires an L-value and returns the constant address of the
object.

6.5.2 Address arithmetic

Computations can be performed with address or pointers in C as well. This
is made possible by pointer arithmetic:

69

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

i n t a r r a y [6] ;
i n t *p ;

p = & a r r a y [4] ;
p = p + l;
* p = 5 ;

First p is assigned the address of array element 4. The pointer is then
incremented by one. This does not increment the address by 1 but by 2. The
pointer arithmetic operates such that the summand 1 is multiplied by the SIZE
of the object concerned, in this case two, before the addition is performed. This
addition has the result that p+1 yields an address which points to exactly one
object beyond the current position, or to array[5] in this case. *p=5 has the
same effect as array[5]=5. The addition of 1 is independent of the type of the
pointer. If the elements were of type do u b le , 8 would have been added to the
address because the SIZE of the type double is 8. This addition makes sense
only when the new address still points within the same array since it is only
guaranteed that the objects follow each other precisely.

Instead of p=p+l we could also have written p+ = l or even p++ or
++p. Furthermore, the last two lines could be rewritten as follows:

*++p=5;

The effect would be the same. The operators * and ++ have the same
precedence are are processed from right to left meaning that first ++p and then
* is executed.

You can use subtraction exactly as the addition. The new address points to
an object a corresponding number previous.

p = & a r r a y [5] — 4 ;

p points to the object array[l].

Two addresses or pointers can be subtracted one from the other. A
precondition for a correct result is that the two address point within the same
array.

&array[5]-&array[1]

7 0

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

The result will be divided by the SIZE of the type, that is, the result of
such an operation is independent of the type of the array. It returns the number
of objects between the two addresses.

The indexing of array elements is derived from this pointer arithmetic. The
access of an array element a[b] is internally converted to *(a+(b)).

The name of an array alone represents the address of the first element in the
array. The name itself is not an L-value. You can add the number of the desired
element to it, however, and receive its address based on the pointer arithmetic.
The expression becomes an expression as a result of the * operator so that
*(a+(b)) has exactly the expected effect of a[b].

The following consequences result from this:

&array[0] corresponds to array&array[l] corresponds to (array+1)array[2] corresponds to *(array+2)
Additional consequences result from the indexing through []. Since these
brackets are converted to addition according to the above scheme, their use is
not limited to arrays.

int array[6]; int *p ; p=array+3; p[2]=5;
p is assigned the address of the array element 3. p[2] is converted to *(p+2)
and represents the object array[5]. You can see that pointers can be used like
arrays and vice versa.

6,5.3 Pointer and arrays as arguments

It has already been mentioned that arrays cannot be passed as arguments.
Pointers or addresses of all objects can be passed as arguments. If you want to
pass an array to a function, you pass only its address.

int name [41];
gets(name,40, STD10);

71

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

This fact has already been used in a previous example program. The
function gets receives as argument the address of the array name, name alone
represents this address. The corresponding parameter declaration of gets would
have to look like this:

int gets(string, length, filenr) char string!];

The specification of the dimension is unimportant and can be omitted here.
In actuality string does not represent an array because the object to which the
address of the array will be assigned is a pointer which can be used like an array
within the function block. The parameter declaration could just as easily be:

char *string;
The transmission of arrays is therefore done via the address (call by reference).
This procedure has the result that the array can be altered within the function
being called. This stands in contrast to the transmission of other types where
only the value is passed.

If you want to be able to change other objects through the call, you
simply pass an address:

main()
{ double a,b;

swap(&a, &b) ;

swap(x,y)double x,y; { double z; z=*x;*x=*y; *y=z;

The call of the function swap passes the address of a and b so that swap
can exchange the contents of the the objects.

72

FIRST SOFTWARE LTD SUPER C Compiler User's Guide

6.5.4 Declarations, more complex

Up to now you have seen only declarations with simple declarators.
Declarators are the part after the type and storage class which contains the name.
Such a declarator could up to now look like:

name
name [. . .]
name (. . .)
*name

In the first case the declared object is of the given type, in the second type
an array whose elements are of this type. In the third case it is a function which
returns a result of the given type, and in the fourth case it is a pointer which
can point to objects of this type.

At first the declarators appear to be chosen somewhat randomly. But it
applies for all declarators that when you use them as in the declaration, a result
is returned, the type of which is the type of the declaration. Proceeding from
this rule, complex declarations can be constructed:

i n t (* a l p h a) [5] , * b e t a [5] , (*gamma) () ;

Parentheses can also be inserted to alter the precedence of the operators
used. From Section 6.2.12 you know that all parentheses are evaluated before
the * operator.

Note the three declarators. First the * operator is applied to alpha which
has the result that alpha is a pointer. Then the index parentheses are evaluated,
meaning that *alpha is an array or alpha is a pointer to an array with 5 in t
elements.

For the second declarator the index parentheses are evaluated first beta is
an array whose five elements are all pointers to int objects.

gamma is then a pointer to a function which yields an int value as its
result.

You see that arbitarily complex declarators can be declared. These are,
however, rarely needed.

73

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.5,5 Pointer arrays

The above declaration of beta was such a pointer array, that is, the
elements of the array are pointers. Such pointers must first be selected from the
array with an index and then they can be used as pointers.

It is interesting to note the use of pointer arrays of type char . It has been
mentioned that string constants can be used like array names. Now you can say
that a string constant is a constant address to the given character string and can
therefore be used like an address. You can, for example, initialize a pointer array
of type ch ar with strings.

#include "stdio.c"
main(){ static ^strings[13]= { NIL,"January\n", "February\n",

f,December\n,f} ;int i ;
for(i=l; i<13; i++)puts(strings[i], STDIO);getchar ();

In this program, the array strings is initialized with the names of the
months. In reality the compiler places the character strings somewhere in the
program and initializes the address to the given string. The element 0 is
assigned NIL. This is the address to "nothing.” You must be careful with NIL.
In no case may an object by accessed via NIL. NIL serves only to indicate that
such an access is not allowed.

The program passes the address of the ith character string to the function
p u t s (put string) which then prints this on the screen (STDIO). getchar
waits for a key so that the output is not immediately cleared again.

Keep this initialization separate from the initialization of character arrays
through string constants. Here only the address is initialized. With character
arrays the content of the character string is placed in the array.

74

FIRST SOFTWARE LTD SUPER C Compiler User’s Guide

6.5.6 Pointers and multi-dimension arrays

Take a look at the following definitions:

int alpha [5] [5];
int *beta[5];
In the first case we have a two-dimension array and in the second a pointer

array. The beginner will probably find it difficult to keep both constructions
apart. They can be used in the same manner:

a l p h a [2][2];
beta[2] [2];

or
* a l p h a [1];
*beta[1];
You must differentiate between them, however, alpha is an array which

actually consists of 25 i n t elements, beta on the other hand consists of 5
objects. These are all pointers, however, beta generates no individual i n t
objects. An element of beta can only point to an i n t object.

The advantage of pointer arrays is that a pointer can point to a limitlessly
long sub-vector and this can be accessed like a two-dimensional array. The
various pointers can point to arrays or various lengths while the number of
elements in a two-dimensional array is set. The disadvantage is that the
sub-vectors must be declared in addition and the whole construction requires
more memory space because the pointer objects must be included.

We have seen that pointer arrays can access arrays of varying lengths in
section 6.5.5. The list of month names which was assigned to the array
strings can be interpreted as subvectors.

string[12][0];
accesses the letter D of the month Decem ber. The second dimension is
variable and depends on the initialization.

75

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

6.6 Structures and unions (struct/union)

Structures are found in every high-level programming language. In Pascal
and related languages they are called records. A structure is a type. Objects of
this type consist of several subobjects. You can select among these subobjects
as you can select an array element. The difference from an array is that an array
contains subobjects of the same type.

6.6.1 Declarations of structures

Let's assume that you want to create a type in which to store the date. To
do this you would use a structure:

s t r u c t d a t e { i n t d a y ;
i n t m on th ;
i n t y e a r ;
c h a r m on thnam e[4] ; } ;

This whole structure can be used like a type name, s t r u c t is a keyword
for the type structure, date is a s t r u c t name. The declarations enclosed in
braces represent the subobjects of the structure. Such subobjects are called
components. The component declarations are called the s t r u c t specifier.

You have several several in order to declare such an object. In the previous
example no object was declared. A s t r u c t name was defined. This name is
assigned the specifier so that the specifier can be omitted in further declarations:

s t r u c t d a t e b i r t h d a y

birthday is an object that consists of the above components.

You could have defined this object along with the definition of date:

s t r u c t d a t e { . . .
. . . } b i r t h d a y ;

If you need a specifier only once, you don't need to define a s t r u c t name:

y ;
. . . } b i r t h d a y ;

is quiz type name and so must stay together.

76

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r 's G u id e

Complex declarators can also be used in declarations of the type structure,
and these can be declared in a list without having to repeat the type name:

struct date, birthday, *p, personal[50];
An object birthday, a pointer p to objects of type date, and an array

consisting of 50 structures of type date are defined.

The declarators can also be initialized in the definition. This does not work
with the storage class a u to . The initialization of the individual components
is done with a list, similar to arrays.

struct date birthday= { 10,8,1965, ”Aug"};

If fewer elements are given, the structure is padded with zeros.

struct date personal[50]={ {26,5,1939,"May”),{ 10,9,1935,"Sep"},
> ;

This list can be nested again. The sublists can always be omitted when all
of the subobjects are initialized. The compiler then assigns the elements of the
list to the array elements and components in order.

6.6.2 Access to components

Components are accessed in C with the . operator,

b i r t h d a y . d a y

The first operand is the name of the structure, the second is the component
selected. The entire expression is an L-value and can be used like any other
L-value. The type is the type of the component.

b i r t h d a y . m on thnam e

is naturally not a L-value but an address to a character array with a maximum of
4 characters.

If you have a pointer to a structure, access is possible as usual:

77

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

(* p) . y e a r

*p must be parenthesized because the . operator has precedence. There is a
separate operator for this construction , ->, since it occurs quite frequently.

p - > y e a r

has the same effect.

If you have an array of structures, the element is selected and then the
component:

p e r s o n a l [5] . m o n th n a m e [3]
or:

(p e r s o n a l+ 5) - > m o n th n a m e [3]

6.6.3 Functions and structures

Structures cannot be passed to functions as arguments, but the addresses of
structures can. The & operator can be used on structures for this purpose. A
function cannot return a structure as a result, but by the same token it can
return an address:

i n t m o n th d a y s (p)
s t r u c t d a t e *p;

{ s t a t i c m o n th [1 3]= { 0 , 3 1 , 2 8 , 3 1 , . . . };

i f (p - > m o n th = = 2)
r e t u r n (2 8 + l e a p y e a r (p - > y e a r)) ;

e l s e
r e t u r n (m o n th [p -> m o n th]) ;

i n t l e a p y e a r (y e a r)
i n t y e a r ;

{ r e tu rn (y e a r% 4 = = 0

}

&& year% 100!= 0
| | year% 400==0) ;

The function monthdays returns the maximum number of days in the
month of the date to which p points. The list of months is used to determine
this. In the case of February the result is 28 + leapyear. leapyear is a
function which returns 1 if the year passed to it is a leap year, else 0.

7 8

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

The complex condition of the return instruction in leapyear can best be
read as:

If the year is either divisible by 4 and not divisible by 100 qt it is
divisible by 400, then the year is a leap year

This makes the condition correct according to the Gregorian calendar in
which a leap year occurs every four years, but not on whole centuries. Centuries
which are divisible by 400 are leap years, however.

When the above condition is true it returns 1, otherwise 0. It returns as
the result exactly what is needed in the calculation.

The function monthdays can be called as follows:

±=monthdays(&b±rthday) ;

6.6.4 Recursive structures

Structures can have other structures as components. The component
structure may not have a specifier, however. It must be defined beforehand with
a s t r u c t name.

You cannot use the same structure currently being defined as a
substructure. It is permissable to declare pointers to this structure as
components.

We can define a tree structure with structures:

struct node { struct node *left;
struct node *right; char nodename[20];};

Each node has pointers to two other nodes. The "tree" branches off to the
right and left. Such trees are used to keep names in alphabetical order, for
instance.

79

FIRST SOFTWARE LTD
S U P E R C C o m p ile r U se r ’s G u id e

6.6.5 Unions

Unions are declared exactly as structures, but with u n io n instead of
s t r u c t . A union is a special type. It can contain only one of the declared
components, meaning that the entire object can be used like one of its
components. The storage space required is a large as the largest component.

Unions are used where you want to store objects of varying types and you
require an object which is always the same size. If we want to define an object
which can store a C constant, for example:

u n io n c c o n s t { i n t i v a l u e ;
lo n g l v a l u e ;
d o u b le d v a lu e ;
c h a r * p v a lu e ; };

we define a union. It can store either an i n t , a lon g , a d o u b le constant
or an address to c h a r .

The union is accessed just like a structure. The component intended must
be specified.

u n io n c c o n s t k , *p;

k . i v a l u e = 5 ;
* p -> p v a l u e = 1 a 1;

The object k is large enough to store the largest component. This is
independent of the system and therefore easily portable. You must ensure that
the union is read as it was stored. If the components are changed at the access,
the result is no longer defined.

Unions can also be declared in structures and vice versa. On the C-64,
however, the declaration of a specifier within a specifier is not possible.
Specifiers of substructures or subvariants must be defined outside with their
own names.

A union can also be denoted as a structure whose components are all stored
at the start of the object or posses the relative address 0. Unions, like structures,
cannot be passed to functions as arguments, and cannot be the result of a
function. Unions cannot be initialized.

80

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r 's G u id e

6.6.6 Type definitions

You can also define new types in C. These are not entirely new, but are
combinations of the available types.

One gives the "storage class" t y p e d e f for such a definition. This tells
the compiler that an object is not being declared, but a type. A name is declared
which can be then be used as a type name. It represents the type with which it
was defined.

typedef int length;
length can now be used a synonym for i n t :

length len ;
static length 1[20];

Another example:

typedef char *string; string lines[5];
lines is an array with 5 pointers to ch a r .

typedef struct { double re, im; > complex;
Here the type complex is declared, which is in reality a structure and must

be used as such.

complex x;
x .r e = 5 .5;
x . i m = - 0 .5;

6.7 Programming environment

6.7.1 Files

You know how files are opened from BASIC. The functions open and
close are used for this in C:

open(8,15,"-);

81

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

opens the error channel (15) of the disk drive (device 8). The filename must
always be included, but here it is an empty string. You no doubt noticed that
the logical file number is missing. This is not necessary in C. A similar
instrument is the file descriptor. The file descriptor is used exactly like the file
number in order to access the file. A file descriptor is an object that should be
defined with the type file.

file fchannel; fchannel=open(8,15,””);
The result of the function is the file descriptor for the opened file. The

result of open must be stored or else the file can neither be used not closed
again.

The file is closed with:

close (fchannel) ;
The type file is defined with typedef in the file stdio.c and is not otherwise
usuable in C.

You have already become acquainted with the functions puts and gets:

puts("nO:program disk,cc\n",fchannel);
sends a format command to the drive which then formats the disk.

gets(string,40,fchannel);
reads the first 40 characters of the error message and stores them in the array
string .

6.7.2 EOI

The EOI flag, End Of Information, is used to recognize the end of the file.
This flag is realized through a macro which has the value 64 if EOI is
encountered, else 0 if not In order to get the error message from the disk drive,
for instance, one reads characters until an EOI occurs.

82

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

i n c l u d e ,f s t d i o . c "

m a i n ()
{ f i l e f c h a n n e l= o p e n (8 , 1 5 ,) ;

c h a r c , s t a t u s =0;

w h i l e (! s t a t u s)
{ c = g e t c (f c h a n n e l) ;

s t a t u s = E O I ;
p u t c h a r () ;

>
c l o s e (f c h a n n e l) ;
g e t i c h a r () ;

The EOI value must be stored in a temporary value because it can be
changed by other input and output functions such as p u tc h a r .

6.7.3 STDIO

STDIO is a special file descriptor. It can be used wherever a file descriptor
is required as an argument. No open call is necessary for STDIO. Output is
directed to the screen with STDIO, inputs are read from the keyboard:

i n c l u d e " s t d i o . c "

m a i n ()
{ s t a t i c c h a r com m and[40] ;

f i l e f c h a n n e l= o p e n (8 ,1 5 , " ") ;

gets(command,38,STDIO); puts(command,fchannel); close(fchannel);
};

A character string is read from the standard input and printed to the error
channel as a command.

6.7.4 Additional functions

The standard module contains a number of other functions whose complete
descriptions can be found in the system section.

Important and useful are the functions p r i n t f and s c a n f with which
formatted output and input are possible. These two functions are relatively

83

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

large. They are therefore contained only in the module stdio2.1. Otherwise the
modules stdiol.l and stdio2.1 contain the same functions.

The declaration file stdio.c can be used for both modules. The declaration
of p r i n t f or s c a n f when using stdiol.l does not create an error, as long
as the functions are not actually called.

6.7.5 Error handling

The error handling is dependent on the system in C and is therefore not
necessarily transportable. In this system you can turn the error messages on and
off so that errors can also be processed by the program. If error messages are
enabled, the following would appear, for instance:

?division by zero
press x to quit, c to continue,r to restart
You can interrupt the program with the x key, restart it with r, and

continute execution wth c.

Caution is advised in the last two cases. No static or global objects are
initialized or set to zero when the program is restarted.

If the program execution is continued, other errors may occur because the
value of a division by zero is set to zero.

The error messages can be turned off and on as desired with the procedures
erroff() and erron(). erronQ is the initial condition.

6.7.6 Interruption

In BASIC you can interrupt the program with the keys [STOP] and
[RESTORE]. This is also possible in C and is often useful to exit an infinite
loop. The message:

?nmi interruptpress x to quit, c to continue r to restart

84

FIRST SOFTWARE LTD S U P E R C C o m p ile r U se r ’s G u id e

appears. You have the same options here as for error messages. The same
caution is recommended. The NMI interrupt can also occur during an input or
output operation. It can also be that undesired side effects may occur later in the
program if the execution is continued with the c key.

This interruption can be turned on and off independent of the error
messages. The procedures nm ion() and nmioff() are available for this
purpose. nmionQ is the initial condition.

8 5

FIRST SOFTWARE LTD SUPER C Compiler System Guide

PART II. SYSTEM GUIDE

1.0 C-LOADER

You can load the C-LOADER in BASIC and start it with RUN.

LOAD"C-LOADER", 8
RUN*

The LOADER menu will then appear:

X: to basic
a: c-copy c: c-compilerb: c-editor d: c-linker
u: user file:
The individual functions of the LOADER are designated by letters. The

menu item just selected is displayed in reverse text.

You can move the menu selection forwards and backwards with the cursor
up and down keys. The menu item X : back to basic cannot be selected
with these keys. It can be chosen only by pressing [SHIFT]+x. A selected
menu item is executed by pressing the [RETURN] key.

You can also select and directly execute the menu functions by pressing
the letter key corresponding to the individual item.

The meaning of the individual menu options:

X : ([SHIFT]+x) You exit the editor and return to BASIC

u: Execute a compiled and bound C program. Enter the filename of the
user file at the cursor.

u: user file:__.
During this input you can use the following control keys: [DEL]
(delete), erases the last character entered, [CLR]
([SHIFT+HOME]),erases the entire input field, and [RETURN], ends
the input.

87

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

With this command you can enter files which the LOADER then
loads and starts. You must enter the filename without quotation
marks and without spaces in front of the name. If you do not enter a
file, you will be returned to the menu selection.

The files which you can enter are compiled C programs, note that you
can start only those programs which were put together by the linker
as Loader-versions. Loader-version means that this C program is
intended to be started from this menu. If you load a C program
which was compiled as a B-version, intended to be started from
BASIC, you will see the message B-version! on the screen
when you try to load it. Press a key after this message and you find
yourself back in the menu selection of the LOADER.

a : c-copy is loaded

b : c-editor is loaded

c : c-compiler is loaded

d : c-linker is loaded

The loading can be interrupted with the [STOP] key. You are then
returned to the menu and can select another function.

Before a given program is to be loaded, you should naturally insert
the proper diskette. If the LOADER does not find the program or
encounters an error while loading it, the loading is stopped and you
can again choose a function from the menu. Don't worry if the disk
error light continues to blink.

8 8

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

2.0 C-COPY

The commands of C-COPY consist of command characters and parameters.
A command character need not stand at the start of a line. The parameters of the
individual commands must follow the command character immediately. If you
have entered a command which consists of command characters and parameters,
press the [RETURN] key and the command will be executed.

2.1 Command characters

@ displays the error message from the disk drive. This command
needs no additional parameters. The characters behind the @
character are arbitrary.

. text send the text immediately following the period to the disk drive
(for example, .nc prog=test).

1 text displays the directory of the diskette. You can enter a specifier
directly after the / character (such as /0, /0:test*,
/*=seq,test*=usr). More about the syntax of the specifier can be
found in the disk drive manual. You can slow down the screen
scrolling with the [CTRL] key. You can halt the display with
[STOP].

< filename copy the file filename from diskette into working memory. The
file can be of type SEQ, USR, or PRG, but not REL. You can
interrupt the loading process with [STOP].

> filename save the file with the name filename to diskette. You can
interrupt the saving with [STOP], but NOTE: The file will then
be closed correctly, but will contain only part of the original
file.

devnum set the current disk drive device number devnum. You can then
copy files from one device to another, for instance, by changing
the device number between loading and saving. The device
number 8 is the default

X This permits you to exit C-COPY and you returns to the
LOADER.

89

FIRST SOFTWARE LTD SUPER C Compiler System Guide

2.2 Messages

i/o error an input/output error was encountered. The
operation is halted.

break loading or saving was interrupted with [STOP].

missing command no characters were found behind the . command.

no device number the digit 8 or 9 was not found behind the #
character.

no filename the filename was not found after < (load).

no file previously loaded attempt to save a file without first loading one.

file loaded the file was loaded correctly.

file saved the file was saved correcdy.

File too large the file is larger than the working memory (48K).

90

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

3.0 C-EDITOR

The editor has two text areas, a file area in which you edit the C source
text, and an extra text area in which text is stored temporarily. 43K of text
storage is available for both text areas.

In contrast to BASIC, the cursor in the C-EDITOR does not blink and the
repeat function works with all keys. The key assignment has been slightly
changed from that of BASIC so that C-specific characters can be entered. The
editor can represent, in addition to the C character set, the CBM lower case
character set. The character sets can be switched with [SHIFT+CBM].

The key layout below applies for the whole C system, even when a C
program is running.

K e y s C BASIC ASC code old ASC code

[SHIFT]+[0] 0 95 48
[SHIFT]+[+] { + 219 219
[SHIFT]+[-] } 1 221 221
[SHIFT]+[=] 1 = 220 61
[SHIFTM t] ~ K 222 222
[t] A T 94 94
[£] \ £ 92 92
[<-] TAB <— S 95
[SHIFT]+[<—] SET <— 9 95

The C-EDITOR displays the cursor position on the first line (status line)
on the right side of the screen. The first number is the column, the second the
line number at which the cursor is found. Messages and errors are displayed in
the status line. In addition, command inputs are confirmed on the status line.

The second screen line contains either the filename in file area or the
message extra text when using the extra text area. The third line
displays the tabs, * indicates that a tab is set.

The remaining lines, 4 through 25, contain the current text area. A file
consists of individual lines which have a set maximum length (40-80
characters). If the line length is greater than 40 characters, the rest of the
characters outside the screen are displayed by shifting the screen left or right.
Each line may have its own color which you can set with the color keys

9 1

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

([CBM+1] to [CBM+8] and [CTRL+1] to [CTRL+8]). The last line of a file
cannot be written on. If you try to move the cursor beyond this line or write
on it, the editor displays the message l a s t l i n e .

The text which you enter is stored in memory immediately. You do not
have to press the [RETURN] key.

If the text becomes too long as the result of an operation, it no longer fits
in the available memory, the operation will not be executed and the editor
issues an overflow message.

Control characters and commands are available to you for editing the text.
Control characters are available with only a keypress during the text input.
Commands are more complex editor functions, and require additional
parameters. Commands are signaled with the command key F5. After this key,
you select a command by pressing the key corresponding to the command
desired. Various parameter inputs can follow the command. There are five types
of inputs of parameters. These five input types are described in the following
sections.

3.1 Control keys

<=> The cursor is moved with the cursor left/right keys, moving the
screen left or right. The cursor stops at the end of a line.

ft U The cursor moves up or down and the screen scrolls as required.

[RETURN] The cursor jumps to the start of the next line.

[SHIFT+RETU RN]
The cursor jumps to the end of the previous line.

[TAB] <= (left-arrow) The cursor jumps to the next tab position (*).

[SHIFT+TAB]
([SHIFT] and the left-arrow key) The tab marker in the column
in which the cursor is currendy found changes (set or cleared).

F I Page down. The text at the 22nd line after the cursor line is

92

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

F2 Page up. The text at the 22nd line before the cursor line is
displayed.

F3 Search for text beginning at the current cursor position.

A search is made for the previously-defined search string (see
command r=replace for the input of the search text). The editor
looks for the search string after the F3 key is pressed. This can
take up to two seconds for long strings. If the editor finds an
occurrence, the string is displayed with the cursor at the first
character of the string.

The editor jumps from one occurence to the next with each
subsequent press of the F3 key. If no more occurrences are
found, the editor displays the l a s t l i n e of the document.

The search process can be stopped with the [STOP] key. The
cursor is positioned to the line and column at which the search
had advanced to.

F4 Replace with query. The next occurrence of the search string is
searched for and displayed in reverse. The question replace y/n?
appears in the command line. If you press y (yes), the text is
replaced by the previously defined replace string (see the
command r=replace). Press n if you do not want to replace the
string.

After you answer the question the editor continues with the
search. You can halt the search and query with [STOP] and the
editor returns to the text input.

If a line becomes longer than the set maximum length as the
result of a replacement, the editor halts the replacement and
displays the message e r r o r o v e r f lo w i n l i n e . The
cursor stands at the occurrence whose replacement would
have made the line too long. The same applies for replace
without query with F6.

F 5 Command key. All commands start with this key. The message
enter command appears in the first screen line. The
corresponding command is called by pressing a certain key.

9 3

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

F 6 Replace without query. All occurrences of the search string, from
the cursor position on, are replaced with the replace string
automatically and without query. Replace can be halted with
the [STOP] key.

If an overflow in line occurs, the same procedure is followed as
for F4 (replace with query).

F7 Insert lines. A blank line is inserted before the cursor line. The
color of the line is copied from the preceeding line.

F8 Delete lines. The cursor line is deleted and the remaining text
moves up.

[HOME] Switch text areas. The display is toggled between the file area
and the extra text area.

[CLR] Start of text. The text is displayed starting at the beginning of
the document.

[STOP] Interrupts all command inputs, halts the printing, loading,
reading the directory, searching (F3), and replacing (F4, F6).
Basically, everything but saving can be halted with [STOP].

3.2 Parameter inputs

If you have selected a command, you must usually enter parameters. The
inputs the various commands require will be described in Section 3.3. The five
different types of parameter inputs are explained in the following sections. All
five can be interrupted with the [STOP] key which returns you to text input.

3.2.1 Key input

No cursor appears for this type of input. The editor waits for certain keys.
The message in the first line of the screen indicates which keys you may select
from. The keys at the end of the message are separated by a / character (for
example: replace y/n?). Except for the given keys and the [STOP] key, no other
keys have any effect.

9 4

FIRST SOFTWARE LTD SUPER C Compiler System Guide

3.2.2 Input a number

Only the digit keys 0-9 and the control keys [DEL], [RETURN], and
naturally [STOP] are accepted during a number input. The input range is limited
to a certain number of digits. At the end of the field the cursor stops and no
more digits are accepted.

[RETURN] ends the input. If no digits are entered, the input is not ended.
[DEL] deletes the last character entered. [STOP] halts the input.

3.2.3 Input a string

The input is limited to a certain number of characters. No more characters
are accepted at the end of the field except for [DEL]. All printable characters
from the keyboard are allowed as input.

[DEL] erases the last character entered, [STOP] interrupts the input.
[RETURN] ends the input. All characters from the start of the input field to the
character before the cursor belong to the entered string.

3.2.4 Block input

For this input the first screen line contains the message m a rk in g o u t
r a n g e . In this input type you can detemine a block which is displayed in
reverse type.Various operations can then be performed on this block. A block
is a contigious section of lines. The block can be edited with the following
keys:

<=> The cursor is moved to the right or left. The cursor itself cannot be seen,
but its position is indicated on the position display. These keys have only
the function of shifting the screen right or left during the block input.

U The size of the block is increased.

It The size of the block is decreased.

[RETURN] ends the input. The limits of the block are now set.

[STOP] interrupts the input The editor returns to the text input.

95

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

3.2,5 Destination input

For this input the first line of the screen contains the message f i x i n g
t a r g e t . The target line is displayed in reverse text. The destination line
appears in normal text in a line which appears in the middle of a marked block
of text. After the block input, the target line is the line directly after the reverse
block and cannot immediately be recognized. You will see the target line if you
move it.

You can move the target line with the following control keys:

» Changes the cursor column. Scroll the screen left or right during the
destination line input.

1Ui Moves the target line up or down.

FI (page down) The destination line is moved 22 lines down.

F2 (page up) The destination line is moved 22 lines up.

[HOME] Switch text areas. This control key is possible only with the
transfer command.

g The g key calls the command goto. You can enter the number of a
line as the target line.

[RETURN] ends the input if the target line does not lie within the previously
marked block. Otherwise the editor displays no t a r g e t l i n e
and the target must be reentered.

[STOP] interrupts the input.

3.3 Commands

The message e n t e r command appears in the first screen line when the
F5 key is pressed. The editor expects the user to press a key which selects a
command. All keys except for the possible command keys and [STOP] are
ignored. [STOP] interrupts the input.

96

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

In the description of the commands the input types for the parameters are
indicated as follows:

key input
number input
character string
block input
destination input

<key>
<number>
<string>
<block>
<dest>

The input type is not indicated on the screen, it is only used to inform you
what kind of input you should make. In most cases this will be clear anyway.

The key which calls the given command is set apart from the paragraph.
Indented and printed in different type are the messages which appear during the
command.

b bytes free
A message appears in the status line of the screen that displays the
amount of memory space remaining to the editor.

h hunt
Enter the search string for the search function (F3).

h u n t : C s e a r c h s t r i n g >

r replace
Enter the search string for the replace function (F4 or F6). The first
character string which you enter is the search string and the second is
the replace string.

h u n t : C s e a r c h s t r i n g >
r p l c : < r e p l a c e s t r i n g >

e erase
Delete blocks of text You must first mark the block.

e r a s e :m a rk in g o u t b lo c k < b lo c k >
e r a s e : a r e you s u r e y /n ? Ckey y ,n >

After marking a confirmation question appears. The key n for no
prevents the deletion. The key y for yes deletes the block. The text is
displayed at the deleted block following the deletion.

97

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

t transfer
Copy a block from one point to another. You must first mark the
block and then set the target (destination) line. The target of this
command can also lie in the other text

t ' f e r : m a r k i n g o u t r a n g e < b lo c k >
t ' f e r : f i x i n g t a r g e t < d e s t>

After the input of the target line, a copy of the block is inserted
in front of the target line. The screen then displays the document
after the copied text. If the document becomes too long, the transfer
command will not be executed. The editor responds o v e r f lo w and
the screen shows the text at the select target line.

m move
Move a block from one location to another. You must first mark the
block and then set the target. The block is inserted before the target
line.

m ove-.m ark ing o u t r a n g e < b lo c k >
m o v e : f ix i n g t a r g e t < d e s t>

c color
Enter the number of a color (0-15) and mark a block. The block
is then colored in the selected color. The screen then displays the
document starting with the colored text block.

c o lo r :< n u m b e r 0 -1 5 >
c o lo r r m a r k in g o u t r a n g e < b lo c k >

1 load
Enter the name of a text file to be loaded into working memory. Any
text in memory will be erased. The extra text area remains unchanged.

l o a d
f i l e : < s t r i n g >

If the message f i l e fo rm a t e r r o r appears when loading, the
format is incorrect for the CREDITOR. The editor changes the text so
that it is readable. Information may be lost through this process,
however. The message o v e r f lo w indicates that the text no longer
fits in memory. This command can be used from the file area.

98

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

s save
Save the document with the name displayed in line two of the screen.
If a file with this name already exists on the diskette, the following
question appears:

s a v e r e p l a c e y /n ? < key y ,n >

If you answer with y, the existing file will be replaced by the new
one. An n halts the saving process and you are back in text input.
This command can be used in the file area.

f filenam e
Change the name of the document in the file area. This command can
be used in in text file area.

f i l e : < s t r i n g >

k k ill
Erases the document in the file area. The extra text remains
unchanged. This command can be given only in the text file area.

k i l l : a r e you s u r e y /n ? < key y /n >

The confirmation question protects the memory from unintentional
erasure. The n key stops the command.

i input disk erro r
Reads the disk drive error channel and displays the contents on the
status line.

d directory
Displays the directory of the diskette and inserts it in the text at the
current cursor line. You can give a specifier with the directory
command (such as *=prg, test*, test*=usr). More about the function
and syntax of these specifiers can be found in the disk drive manual. If
you enter nothing and just press [RETURN], the entire directory is
displayed.

d i r e c t o r y : < s t r i n g >

It is best to read the directory into the extra text because it will not
disturb anything there.

99

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y stem G u id e

x ex it
Exit from the editor and return to the LOADER.

e x i t : a r e you s u r e y /n ? < key y /n >

The n key interrupts this command,

n new text
Erase and set new parameters for a new document. The line length for
the new document is set here. It cannot be changed later.

new : l e n g t h o f l i n e <nuxnber 4 0 - 8 0>

The line length of the file text also applies to the extra text. If lines
in the extra text are longer than the new line length, the remainder of
the line is no longer accessible.

f i l e : < s t r i n g >

Next, the filename is entered. The file text is erased and now has the
new line length. With a line lengh of 40 the screen is no longer
shifted horizontally. If you don’t want the screen to scroll, you can
prevent it from doing so by specifying a line length of 40.

g goto
Goto (jump) a given line number,

g o t o : < nu m b er>

p p rin t
Print the document on the printer (device no. 4).

p r i n t : i n p u t d e f a u l t s y /n ? < key y ,n >

With the n key the parameters last specified are used. After the editor
is started the following parameters are in effect:

secondary address 0, cbm, ex tra, lines per page 72,
offset 0

You can change these parameters with y . If you press y, the
following inputs appear:

100

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

p r i n t : s e c . a d d r e s s <nuxnber 0 -1 5 >

You can set the secondary address with which the text will be sent to
the printer here.

p r i n t : cbm o r a s c i i c / a ? < key c ,a >

If you select c for cbm, the text is output in the CBM character set.
With a, the text is output in the ASCII character set.

If you have selected cbm:

p r i n t : n o r m a l s u b s t e x t r a n / s / e ? < key n , s , e >

e: The characters of the ASCII character set are represented using
programmable characters on the Commodore printer. This print
mode requires more time.

s: (subst=substitute) The ASCII characters are replaced with
suitable graphics characters from the Commodore character set.

n: The text is output to the printer without conversion.

If you selected ascii:

p r i n t : l i n e f e e d on y /n ? < key y ,n >

y causes the editor to send carriage retum/line feed combinations
instead of just carriage return which n produces.

p r i n t : e p s o n p r i n t e r y /n ? < key y ,n >

With y the editor sends the code sequence for the American character
for Epson printers before printing ($lb,$52,$00). With n, the
sequence is not set.

The following inputs are common to both types.

p r i n t : l i n e s p e r p a g e <num ber>

With this input you set the page length. For the American standard of
11 inch paper, this would be 66 lines per page.

101

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

print:offset <number>
This number specifies the number of spaces that the printing will be
indented from the edge of the paper.

The input of the date is again common, independent from whether
you changed the parameters or not.

print: date <string>
Here you can enter the date which will be printed beneath the text
name. If you entered the date before, the editor skips this question.

You can stop the printing with [STOP]. It may be that you have to
hold the [STOP] key down longer than usual before the editor reacts.

3.4 Error messages

illegal text: The command selected may not be used in extra text
(new, save, load, kill, filename).

overflow : The text storage is full. The function will not be
executed.

overflow in line: The line became longer than the maximum line length
when replacing. The replacement is halted.

no target line: The target line lies within a marked text block. This is
not allowed and the input of a target is not ended.

file form at error: The loaded file does not have the necessary text format.
The file is probably not a text file at all. The editor
forces the text to the required format, but information
can be lost in the process.

last line: You tried to write on the last line or you tried to move
the cursor past it.

i/o error: A input/output error occurred or the device being
accessed is not turned on.

102

RUST SOFTWARE LTD S U P E R C C o m p ile r S y s te m G u id e

4.0 C-COMPILER

4.1 Operation

After the compiler is loaded, the title is displayed and this message appears:

s o u r c e f i l e nam e:A

Enter the filename of the source file to be compiled. Do not use quotation
marks or leading spaces. End the filename with [RETURN]. Next the
following appears:

l i n k f i l e nam e:A

Enter the name of the link file that is to be created followed by
[RETURN]. A link file already on the disk having the same name is
overwritten. Then the compiler begins the compilation.

Only three control keys are valid here. The last character entered may be
erased with [DEL]. The entire input field is erased with [CLR]. [RETURN] ends
the input.

It is recommended that you name your source files with a suffix of .c. In
this case the compiler will supply the same name with a suffix of .1 at the end
of the link file name, so that you only need press [RETURN].

To stop the compilation for some reason, press [STOP+RESTORE]. The
compiler then responds ?NMI INTERRUPT. This interruption is handled by the
compiler like an error.

The files are erased and the message below is displayed.

?nm i i n t e r r u p t i n xxx
c o m p i l in g f i n i s h e d
l i n k f i l e n o t a v a i l a b l e
p r e s s x t o q u i t , r t o r e s t a r t

The compiler can be restarted with r.

The compiler prints the names of any function definitions in yellow. The
names of the included files appear in grey. A grey # character indicates that a
file has been read.

103

FIRST SOFTWARE LTD

Errors encountered during the compilation are printed in red. The error
messages are also written to an error file with the name e r r o r - c . This file
can be read by the C-EDITOR and contains other status text in addition to the
error messages. It should not be difficult to assign the errors to the various
files.

The compiler prints a version of the following message at the conclusion
of the compilation:

c o m p i l in g f i n i s h e d
l i n k f i l e (n o t) a v a i l a b l e
p r e s s x t o q u i t , r t o r e s t a r t

Whether the link file is available or not depends on whether any errors
were encountered during compilation. Pressing x returns you to the menu of
C-LOADER. With r you can restart the compiler and it is ready to compile
another source file.

S U P E R C C o m p ile r S y ste m G u id e

4.2 Compiler error messages

The compiler outputs error messages to both the screen and the error file
e r r o r - c . This file can be read by the editor to help you find the causes of the
errors.

The error file is opened with the first error encountered and also contains
all of the status messages which otherwise appear only on the screen.

Following the error message is the number of the line in the source file in
which the error occurred. Often on error causes subsequent compilation errors.
These will disappears once the original error is corrected.

Some errors cause the compilation to stop. These are called "fatal" errors.
Such errors are not written to the error file because writing to the error file
could lead to more errors (such as with bus errors).

7FLOPPY ERROR (FATAL ERROR)
FLOPPY ERROR stands for an error message of the disk. In any case
the compilation will be stopped. The cause of the error is
determinable from the error text.

104

FIRST SOFTWARE LTD SUPER C Compiler System Guide

7DEVICE NOT PRESENT (FATAL ERROR)
Output device is not accessable.

7ILLEGAL COMMAND
- no preprocessor recognized
- no string follows #in c lu d e

7RUN END OF LINE
Terminating " character is missing from a string.

7STRING TOO LONG
- string constant contains more than 254 characters
- macro definition longer than 254 characters
- argument of a macro call longer than 254 characters

7TOO MANY CONCATS
More than six file chainings with # in c lu d e

7EXPECTING IDENTIFIER
- no name follows # i f d e f , t i f n d e f , t d e f i n e
- parameter of a macro definition is not a name
- a s t r u c t , u n io n , enum name is expected for a struct/union
component whose type is s t r u c t , u n io n , or enum

- Names expected in enum specifier
- a struct/union name expected in a parameter declaration with type

struct/union

7COND. COMPILE ERROR
- more than 8 nested conditions
- more than one # e ls e in the # i f - # e n d i f
-#else without # i f , # i f d e f , # ifn d e f
- #endif without #if. . .
- expression after #if contains error
- the expression evaluation is interrupted through # i f . # i f is

possible only outside of an expression or a constant

7RUN END OF FILE
- end of program although pre-processor command # i f not closed
with # e n d if yet

- end of program but the arguments of a macro call are still expected
- declaration not closed
- block structure still open

105

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y stem G u id e

7MACRO EXISTS
The macro to be defined already exists

7STACK OVERFLOW (FATAL ERROR)
- no space for a new macro with # d e f in e
- no space for the entry of a new declaration
- recursion by intialization too large (about 40)
- Too many string constants within an initializer
- Constant buffer exceeded, cannot be emptied

7MACRO NOT DEFINED
#undef was used on a non-existent macro

7ILLEGAL NOTATION
-improper c h a r constant (not exactly one character)
- more than one decimal point or exponent in a d o u b le number
- exponent is incomplete

7ILLEGAL MACRO CALL
- the call needs parameters
- the call has too many or too few arguments

7ILLEGAL OPERATOR
A character was recognized which cannot be evaluated as an operator

70VERFL0W ERROR
- an oversized d o u b le constant was read
- an enum constant is too large
- constant evaluation caused overflow

7DIVISION BY ZERO
Division by zero in a constant division

7DECLARATION OVERFLOW
- more than 60 nested arrays or pointers
- more than 60 parameters in a function definition

7EXPECTING SUBSCRIPT
- more than one dimension contains no subscript
- the first dimension contains no subscript

106

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

?SIZE OVERFLOW
object is longer than 32767 characters

7DECLARATION SYNTAX ERROR
If the compiler encounters a block structure after a global
declaration, it cannot evaluate this as a declaration. Since the block
structure was recognized as a declaration only because of the previous
error, it is skipped. The compiler reponds with this error to indicate
this. If the block structure were not skipped, a host of secondary
errors would occur.
- improper declarator
- no name in declarator
- no , or ; as the end of the declarator
- no type given for a struct/union component
- no } as the end of a enum specifier
- neither type nor storage class of a parameter definition or local
declaration

7DECLARATION SEMANTIC ERROR
- a u to or r e g i s t e r as the storage class of a global declaration
- ty p e d e f cannot define functions
- components or parameters declared as function
- an attempt was made to define arrays of functions, or to define

functions which return arrays, functions, structures, or unions
- an attempt was made to define a component as a structure or union

whose type agrees with the type of the structure or union being
defined (recursion)

- declaration of a local function

7INDENTIFIER ALREADY DEFINED
- the name is already defined as e x te r n , local name or as type name,
s t r u c t , u n io n , enum name, component name, or as enum
constant

- the name to be defined exists already, but with a different declaration
- the name to be defined is already know but different declared

7EXCEPTION ERROR

107

7IDENTIFIER NOT DEFINED
- given s t r u c t , u n io n , enum name is not defined, although no

specifier is given
- the s t r u c t , u n io n name in a component (in struct/union sub
declaration) is not defined

7DECLARATION INCOMPATIBLE
name is defined, but is not a s t r u c t , u n io n name

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

7EXPECTING SPECIFIER
neither a specifier nor a specifier class was given

7TYPE CONFLICT
- no i n t convertible type or address in enum
- c h a r cannot be initialized with addresses
- a u to addresses are not allowed as constants
- s w itc h expression is not of integral type
- general illegal type with operator: for instance d o u b le with %

7INITIALIZER TOO LONG
- more elements or components than possible were intialized in an
array or structure initialization

- a string is longer than the c h a r array

7PARAMETER MISMATCH
- the declarations of the parameters not do agree with the order in the
parameter list

- occurs as a secondary error if a parameter declaration is erroneous

7TOO MANY STATEMENTS NESTED
more than 16 instructions (blocks are also instructions) were nested

7TOO MANY BLOCKS NESTED
More than 8 blocks were nested (functions blocks count)

7STATEMENT SYNTAX ERROR
- occurs as a secondary error when errors are found in instructions
concluding blocks

- no name is found behind goto
- no ; behind break or continue
- conditions are not parenthesized (for if, for, while, switch)
- expressions in for are not separated by ; (two ; needed)

108

FIRST SOFTWARE LTD SUPER C Compiler System Guide

- a block must follow switch
- no w hile(...); follows do

7LABEL NOT DEFINED
the name behind goto is not defined as a label

7EXPRESSION SYNTAX ERROR
- general syntax error: improper parenthesization, multiple constants

or names in a row (when ; is forgotten)
- use of a keyword in an expression (only SIZEOF allowed)
-CAST not parenthesized
- improper parenthesization withina CAST declarator
- a name was used which denoted no object
- operator stands alone in front
- a : must follow every 7

7ILLEGAL STATEMENT
break or continue not allowed here

7TOO MANY CASES
more than 42 case labels were given inside a switch block

7CASE WITHOUT SWITCH
a c a s e or default label was defined outside of a s w itc h block

7EXPRESSION SEMANTIC ERROR
- only one CAST is allowed per simple expression
- unary operator * may not be applied to functions

7EXPRESSION OVERFLOW
- expression consists of more than 63 elements
- expression consists of more than 28 names or constants
- CAST storage exceeded

7NO CONSTANT ERROR
the expression does not return a constant although this is required

7EXPECTING L-VALUE
- the first operand of an assignment is not an L-value
- the first operand in front o f . is not an L-value
- an L-value is expected for the unary operator &
- ++, - may only be used on L-values

109

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

7EXPECTING ADDRESS
an address is expected for the unary operator *

?NMI INTERRUPT
creates an interruption; all files are closed

4.3 Looking for errors

When errors occur during compilation, the error file generated can be loaded
and examined to aid in finding the causes. Load the file error-c like a source
text file from the C-EDITOR and copy it to the extra text with the transfer (t)
command. By using the status messages between the error messages, you can
find the text file in which the errors occur when several files are nested with
#include.

Load the appropriate file into the main text area of the editor. Following
the error message is the line number in the source file ih which the error
occurred. You can jump directly to this line with the goto (g) command.

In most cases it is possible to localize the error with the help of the error
list. The most command error is the omission of semicolons. This error is
usualy indicated by an EXPRESSION or DECLARATION SYNTAX ERROR.
Sometimes, however, other error messages can appear if the compiler
recognizes another structure as a result of the missing semicolon.

If an error message is absolutely incomprehensible to you, the error may
be a secondary error as the result of some previous error. Errors in declarations
and complex instructions like w h i l e , f o r , etc., result in a number of
secondary errors. In all of these cases you should correct all of the obvious
errors and recompile the text.

Once the source is compiled without error, it must be bound. Additional
errors can occur in the C-LINKER. One common error is:

?no reference to NAME
NAME is an identifier to which no object is assigned. This error can have
several causes:

110

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

1. The name is declared e x te r n , but never defined
2. The name is not declared at all and is declared by the compiler as i n t

object or as a function of i n t . The name is not defined, however.

The second case occurs whenever you misspell a name. The compiler does
not recognize the name (because of misspelling) and declares it as an i n t
object or as a function of i n t . It is the linker that first discovers that this
object is never defined. In this case you must start from the beginning. You
can search for the incorrect name with the editor (this is given in the linker error
message) and change it.

If your program is bound but it does not yield the expected results, there is
a logical error in it somewhere. Note that almost no checks of the program
being compiled are built into the C compiler. C is very different from Pascal in
this regard.

The following are not checked:

1. the agreement of the types of arguments and parameters
2. the boundaries of arrays (including strings)
3. if a structure or variant stands to the left of a . operator. Any L-value is

accepted and handled like a structure or variant.
4. the component names behind . and -> are not bound to the structures or

variants in which they were defined.

You must check each of these cases yourself. Above all, improper types in
the current parameters lead to strange results.

Checking the boundaries of arrays is very important. This can lead to a
program crash if not checked. Note that when an array is defined with i n t
a r r a y [1 0], for example, element 10 is already outside of the array. This array
is comprised of the elements 0 through 9. With arrays of char (strings), the
array must be large enough to include the terminating zero. A string variable
which is to accept strings of up to 10 characters must be dimensioned with 11
elements.

Pointers which point to ’'nothing,” which have the value NIL, point to
memory location 0. Be careful not to make any write accesses via pointers with
this value. This will cause memory locations 0 and 1, the processor port, to be
overwritten. In most cases this causes the computer to crash.

I l l

FIRST SOFTWARE LTO S U P E R C C o m p ile r S y s te m G u id e

5.0 C-LINKER

The C-LINKER converts compiled source files, link files, into an
executable machine language program. You can bind together up to seven
separately compiled source files into one program file which then contains the
executable C program.

The order of the link files is irrelevant. As long as you enter the
appropriate link files, the same C program results.

Note, however that the C-LINKER makes no declaration checks. You can,
for example, define something as a structure in one file and declare it as a
function in another. If both objects have the same name and are available
externally, the LINKER binds references to both objects without recognizing
their different declarations.

All link files which you wish to bind must be on the same disk. You can
use C-COPY to copy files.

5.1 Operation

All inputs to the LINKER are limited to a certain number of characters.
Input is ended with [RETURN]. You can erase the last character entered with
[DEL]. The key [CLR] ([SHIFT+HOME]) erases the entire input field.

link-file »tdio2.1_
First enter the individual link files. The name of the standard library

stdio2.1 is already printed as a default since this file is usually bound.

You can enter a maximum of seven files. The LINKER automatically ends
this after the seventh file is entered. If you want to bind fewer than seven files,
you can end this by entering nothing following the link-file by simply pressing
[RETURN]. You must have at least one link file, however, or the LINKER
will ignore the ending of the link file input.

program file _
The program file input designates the file name of your executable C

program will be stored. An already-existing file with this name will be
overwritten.

113

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

memory top page $d0__
The default value is given for the input of the top memory page. You will

use this value in most of your C programs. This input is done in hexadecimal
and requires exactly two digits. Numbers from $20 to $d0 are the legal input
values. The question is repeated if you make an incorrect response.

The top memory page indicates the first page (one page = 256 bytes)
which is no longer available for C program storage. With the default value of
$d0 the upper boundry of the C program storage is $d000. This means that your
C program storage extends from $0801 to $cfff (50K bytes).

By specifying a top memory page, you have the option of protecting
memory from other programs. You can then use the memory from the top
page to $cfff for your own applications, such as graphics storage.

linker option:
(l=loader/b=basic) 1__
A default value is also given for the linker option which you can accept by

pressing [RETURN]. The option I means that your C program cab be started
only from the C-LOADER. The C program is then designated as an
user-version. With option b your C program can be started like a BASIC a
program nd is designated as a B-version.

Now the LINKER starts to bind the link files. The LINKER can be
stopped at any time by pressing [STOP+RESTORE] (=NMI). You then see the
message:

? nmi interrupt in xxxx
linkfile not available press x to quit, r to restart
With the x key you exit the LINKER and return to the LOADER. With r

you restart the LINKER. If you have entered an incorrect parameter, you can
issue an NMI [STOP+RESTORE] and chose r for restart. You can then repeat
the parameter inputs.

114

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

5.2 Error messages

The following errors and messages can occur during the binding:

pass 1/2
The linker is starting the first/second pass through the link file.

end of pass 1/2
The first/second pass is done.

link file ..j..
The LINKER is currently reading out of the given link file.

linking finished
The binding ended without error.

linking aborted
The binding cannot be continued because of an error.

incorrect linking
Errors occurred during the linking.

program not available
The program file is not available because of errors. It is erased.

no reference to
The given name is not defined in any link file.

no clear reference to
The given name is defined in at least two link files.

no extern declaration of
The given name is not declared as extern. The error does not prevent
the correct creation of a C program.

no linkfile form at
The format of the file read is not correct. The file in question is
probably not a link file.

i/o erro r
Error on the bus (time out, device not present, etc.).

115

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

overflow in symbol table
The desired link file combination cannot be bound because the
capacity of the available memory for the e x te r n names is too small.

statics out of range
The C program does not fit in the available C program memory
because the static variable area exceeds the top of memory (the static
variable area includes all static and external variables which are not
initialized).

program out of range
The C program does not fit in the available C program memory,

exception error ?
This error does not occur in normal circumstances.

116

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

6.0 C programs

C programs can be started from the menu with the USER command or
like a BASIC program (the B-version). You choose between the two versions
when you use the LINKER. C programs run in the same environment whether
they are started from BASIC or from the USER command. The memory layout
and usage of this environment is described in Section 6.2. The memory layout
is of importance to you as the programmer only if you want to access the
memory directly. Direct access means that you explicitly assign a pointer a
value and then access the memory via this pointer. If you do not assign pointers
you don't need to have knowledge of the environment in which the C programs
run.

If a C program ends normally, the main block is ended and you go back
to the LOADER in the USER version or back to BASIC in the B-version. The
C program can be restarted only by loading again.

Run-time errors can occur in a C program. A run-time error consists of an
error message and an error number. The C program reacts differently to the
run-time error depending on the operating mode and the error number.

The operating modes are ERRON, ERROFF, NMION, NMIOFF which
can all be set with the standard I/O commands with the same names. The table
below clarifies the relationship between error number and operating mode. The
reactions to the error, halt and (no) interruption are shown in the table. NMIxxx
stands for NMION or NMIOFF, and ERRxxx stands for ERRON or ERROFF.

Error no. Operating m o d e R e a c t i o n

0 ERRxxx,NMIxxx no reaction / no error

1 - 63 ERRON, NMIxxx
ERROFF,NMIxxx

interruption
no interruption

64 - 127 ERRxxx,NMION
ERRxxx,NMIOF

interruption
no interruption

126 - 255 ERRxxx,NMIxxx halt

no interruption means that the C program continues although a run-time
error was encountered. The error number is entered in an error register. This

117

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

register can later be read with the standard I/O command q e r r o r () . This
allows you to implement your own error handling routines in a C program.

If a halt occurs, the error message of the run-time error is printed on the
standard output (screen) and a key is expected. As soon as a key is pressed, the
C program is ended and you are returned to the LOADER or to BASIC.

interruption means that the C program is stopped and the error message
and the interruption message are printed on the standard output device (screen).

? (e r r o r m e ssa g e)

p r e s s x t o q u i t , c t o c o n t in u e
r t o r e s t a r t

The program is ended with the x key. You are returned to BASIC or to the
LOADER. The program is continued with c. The error register is loaded with
the error number and can be read as if no interruption had taken place. The C
program is restarted with r. Note however that the values of all variables are not
changed and initializations are not made. Static variables also do not have their
defined initial value of zero.

The use of [STOP+RESTORE] (NMI) key combination is handled like a
run-time error, the error message reads nmi interrupt and the error number is
127. [STOP+RESTORE] leads to an interruption of the running C proram
when the operating mode NMION is enabled. If the mode NMIOFF is active,
the error register is not loaded with 127, in contrast to a normal run-time error.
You should never stop a C program with [STOP+RESTORE] during an I/O
operation.

6.1 Run-time errors

Run-time errors and error numbers (in parentheses) of the run-time system:

?division by zero (33)
An attempt was made to divide by zero. After c (continue) the expression
has the value zero.

?overflow (34)
A double operation exceeded the value range. After c (continue) the
expression has the value zero.

1 1 8

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

?stack overflow (129)
The run-time stack exceeded the available C program memory.
Run-time errors and error numbers of the standard library:

?too many files (1)
No more than 10 file descriptors may be allocated at the same time. This
run-time error occurs on the 11th open.

?illegal file descriptor (3)
The file descriptor used has never been allocated.

?device not present (5)
A device is no longer accessible on the bus (as in BASIC).

?illegal device number (7)
The device number used is not valid (as in BASIC).

?illegal dev. nr. (RS-232) (9)
The device number used is not valid (as in BASIC).

?i/o#2 (2)
Corresponds to the BASIC error file open. Normally cannot occur in C.

?i/o#4 (4)
Corresponds to the BASIC error file not found and cannot normally
occur in C.

?i/o#6 (6)
Corresponds to the BASIC error not input file and cannot normally
occur in C.

?i/o#8 (8)
Corresponds to the BASIC error missing filename and cannot normally
occur in C.

?run eoi (10)
The input through a scanf function is <mded through an EOI signal, but
more data is expected.

?illegal format (11)
The data being read with a scanf function does not agree with the
expected format.

119

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

6.2 Memory layout

The numbers with the $ characters are hexadecimal numbers. In the
parentheses are the corresponding numbers in decimal.

$0000-$00ff (0-255)
Zero page; used by the run-time system and the operating
system. These registers may not be changed.

$0200-$0258 (512-600)
Buffer for C program.

$0400-$07ff (1024-2047)
Reserved for C system.

$0800-$xx00 (2048-x)
This is the C work storage. $xx represents the variable top of
memory which is set in the C-LINKER. The work storage for
a C program includes the machine code, the memory for the
variables, and the run-time stack. $xx can vary from $20 to
$d0 (decimal: 8192<= x <=53248 and x is variable in steps of
256).

$xx00-$cfff (x-53247)
This is the user area. You can modify it using direct access via
pointers. You could set a graphics storage area here, for
instance. The control of this memory is your responsibility
alone. If $xx has the value $d0, no user memory is available.

$d000-$d7ff (53248-55297)
I/O range

$d800-$dfff (55298-57343)
Color RAM

$d000-$dfff (53248-58367)
The character set for C, namely the C set at $d000 and the
BASIC lower-case set at $d800, is located here in RAM under
$dxxx. You cannot access this memory in the usual ways. It
is covered by the I/O pages and the color RAM. It is possible
to access it with the standard I/O function move, (seetion 8).

1 2 0

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

$e000-$e3ff (57344-58367)
Video RAM

$e400-$ffff (58368-65535)
Operating system

The exact register layout and terms, such as operating system, color RAM,
video RAM, etc., cannot be fully explained here. Explanations of the terms can
be found in books about the C-64 such as The Anatomy of the Commodore 64.
from Abacus Software.

121

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

7.0 The standard library

The standard library contains pre-programmed functions which can perform
certain tasks for you. All of the input and output functions belong to this
library.

Two standard libraries belong to this program package. The first, stdiol.l
contains only simple input/output functions and string operations. It requires
little memory. The second library, stdio2.l contains all the functions in the first
plus two more for formatted input and output.

Each library consists of two files. The first is the compiled code of the
library which is bound with the LINKER (stdiol.l and stdio2.l). The second
file is chained to the source file with # in c lu d e " (s t d i o . c) " .

All external declarations for the standard functions are made in this file
(,stdiox). In addition, this file contains the definitions of important constants.
These files must be copied from the master disk to your work disk which
contains the link files or source files which are to be linked or compiled with
the standard library. Use the C-COPY program to copy these files. After you
have copied the file stdio.c from the master disk to a work disk, you are
naturally free to change it. You can write all of the constants, currently in upper
case, in lower case, or insert new constants.

7.1 "stdio.c"

You will find a listing of this file in the appendix, stdiox is the standard
file inserted into the source file and it contains the declarations for both link
files stdiol.l and stdio2.l. In addition to the declarations of the functions
contained in these link files, stdiox also contains the following contants defined
with # d e £ i n e .

STDIO as file descriptor for the standard input/output
NULL as 0
CR as carriage return $0d
CRSUP as code for cursor up
CRSDOWN as code for cursor down
CRSRIGHT as code for cursor right
CRSLEFT as code for cursor left
HOME as code for cursor home
CLR as code for clear home

123

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

REVERSON
REVERSOFF
NIL
EMPTY

as code for RVS
as code for RVS off
as 0, pointer to nothing
as an empty string

The above constants are all of type i n t and can be printed with p u tc () , for
example.

file
screen
color
charraml
charram2
EOI
MAxnsnr
MAXLONG

is the type of the file descriptor (see 7.2)
as address of the screen
as address of the color RAM
as address of character set 1 (C character set)
as address of character set 2 (CBM set)
as End Of Information character
as the largest number storable in int
as the largest number storable in long

The function i n k e y (f d) is also defined in stdio.c. This function
returns a character read from the file with the file descriptor fd. Characters are
read until a non-zero character is encountered.

7.2 "stdiol.l"

This is the simple library. It is bound to C programs with the LINKER.

The functions are annotated as they are defined in C. But since they were
actually created with an assembler which creates linkable code, the function
block is not formulated in C, but does contain a comment which clarifies the
function.

void erron()
{ /* The operating mode ERRON is enabled with e rro n ,

which has the effect that run-time errors with
numbers 1-63 create an interruption (see Sec. 6 - C programs).
The operating mode ERRON is the initial mode.

*/ }

void erroffO
{ /* Enables the operating mode ERROFF. This has the

effect that run-time errors with numbers 1-63 are
masked, that it, no interruption is made. The only

124

result is that the number of the error is placed in the
run-time error register.

*/ >

void nmion()
{ /* The operating mode NMION is enabled. All run-time errors

with numbers from 64 to 127 and the NMI itself
[STOP+RESTORE] lead to interruptions. This is the initial
mode (see also Sec. 6 C programs).

*i >

void nmioffO
{ /* The operating mode NMIOFF is enabled. All

run-time errors with numbers from 64 to 127 and
the NMI itself are masked, meaning that no
interruption occurs. The run-time errors 64-127
are only placed in the error register of the
run-tim e system . An attem pt to issue an
NMI [STOP+RESTORE] during NMIOFF does not change
the error register.

*/)

int qerror()
{ /* Returns the value of the error register of the run-time

system. This contains the number of the last
run-time error encountered, even if this error caused
an interruption and the program was continued
with c. After calling the q e rror funtion the
error register is zero. You can also use this function
to set the error register to zero.

*/)

void error(string, fnr) char ^string; int fnr;
{ /* s tr in g is the pointer to some error text, f n r is the

associated error number.
The error function creates a run-time error whereby
the given error number and enabled operating mode
determine whether an interruption will be created or
only the error register will be loaded, (see Section 6)

*/)

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

125

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

void exit()
{ /* exit() ends the C program and closes all of the open

files. As soon as the user presses a key, exit ()
returns to the LOADER or to BASIC.

*/ }

/* The follow ing input/output functions make errors
known in the ERROFF mode with certain results. In
the ERRON mode an interruption is created as a
result of the error. If the exeution is continued with
c, the function has the same result as in the ERROFF mode.

*/

file open(prim, sec, name) int prim, sec; char *name;
{ /* p r im is the primary address (device number), sec is

the secondary address (an operating mode of the
corresponding device), n a m e is a pointer to the
filename. Only the first 256 characters of the
filename are valid. If you do not want to send a
filename, give an empty string as the argument.
The function opens a file with the given parameters.
open() returns a file descriptor as the result. This
corresponds to the logical file number in BASIC.
The file descriptor has the type file in s tdio.c .
Since the file descriptor of an opened file is required
for all further operations, it must be stored in a
variable of type file.

*/)

file close(fd) file fd;
{ /* fd is the file descriptor of the file to be closed.

c l o s e () returns the file descriptor fd as the result. If
an error occurs, the value zero is returned in the
operating mode ERROFF.

*/ }

126

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

int putc(c, fd) char c; file fd;
{ /* p u t c () outputs the character variable c to the file fd.

The result will be 1 unless an error occurs in the
ERROFF mode, in which case the result will be 0.

*/ }

getc(fd) file fd;
{ /* g e t c () returns a character from the file fd. In case

of an error and ERROFF mode the g e t c function
returns -1. The bus signal EOI can be read with the
macro EOI. The macro EOI returns 0 as long as no
EOI (End Of Information) is encountered, otherwise
64. The EOI macro is used like the variable st in
BASIC.

/* }

int puts(line, fd) char *line; file fd;
The string to which l ine points is printed with the
the terminating 0 in the file fd. p u t s () returns the
number of characters printed as the result

jwsfĉ gets (line, max, fd)
char *line; int max; file fd;

{ /* Reads all of the characters to 0 or $0d (=carriage
return CR) from the file fd. At most m ax characters
will be read. A 0 character will then be placed at the
(m a x + l)s t character in l ine. The CR character is
saved, in contrast to standard C, and a 0 is
appended.
The result of the g e t s function is the number of
characters actually read.

*/ }

iUi

{ /*

* /}
rlWcxY'

127

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

int/putf(obj, n, fd)
char *obj; int n; file fd;

{ /* Writes the first n characters of the object to which
o b j points in the file with the file descriptor fd .
p u t f () always returns the number of the characters
actually written as an integer value.

*/ >

intfgetf (obj, n, fd)
char *obj; int n; file fd;

{ /* g e t f () reads the next n character from the file fd
and writes them at obj . g e t f () always returns the
number of characters actually read as an int value.
This value is smaller than n if the reading process
was interrupted by an error or an EOI.

For p u t c () , g e t c () , p u t s () , g e t s () , p u t f () , and
g e t f () , fd can equal STDIO=0. Here the input is taken from the keyboard
or output is directed to the screen. The UNIX functions p u t c h a r () and
g e t c h a r () can be defined as follows:

#define putchar(xx) putc(xx,STDIO)#define getchar() getc(STDIO)
These two macro definitions are contained in stdio.c. This concludes the

I/O functions. The following functions are contained in stdiol.l:

void mo—c (pos, n, field, char *pos; int n;char *field; int mem;
{ /* The first n characters at the memory location field

are copied to p o s . p o s can also lie within the
memory range to be copied, m em gives the memory
configuration of the CBM 64. The processor register
(address 1) is loaded the contents of m em during the
copying. After m o v e d the processor register
contains its original value again. The meaning of the
individual bits of this register can be found in the
appropriate manuals. mem=52, for example, means that the

1 2 8

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

memory configuration 64K RAM is enabled
during the copy. This way you can also change the character
sets in RAM at $dxxx (see example program char-set.c in the
appendix). mem=53 is the memory configuration during a C
program (see also 2.6 C programs). Note: if the move routine
is located in a section of memory which can be covered
with BASIC ($8000-$9fff or $a000-$bfff), it can
occur that it will be overlaid with an appropriate
choice of mem. The causes the computer to crash.

*/)

void cursor(line, pos) int line, pos;
{ /* Sets the cursor to the given position, line is the line

(0-24), p o s is the column (0-39). The standard
input/output continues printing at this position or
starts an input position.

*/ }

int strlen(line) char *line;
{ /* Returns the length of the string to which line points.

The length is the number of characters up to the end
of the character 0.

*/ }

noctel strcpy (s, t) char *s, *t;
{ /* The string to which s points is transferred to t

(string assignment).
*/ }

int strcmp(s, t.) char *s, *t;
{ /* Lexical comparison of the two strings. strcmpO returns:

-1 for set, 0 for s=t or +1 for s>t
, * '>

vedsl strcat(s, t) char *s, *t;
{ I* The string t is appended to the string s.
*/)

129

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y stem G u id e

char *alloc(size) int size;
{ /* a l l o c () allocates memory space for objects. These

objects possess no names an can be only accessed
via pointer values. They can serve for list
management or for temporary storage, for instance.
The length of the object required is passed as the
argument, a l l o c () returns the pointer value to this
object. This pointer value is defined as a pointer to
char, if other types are required, the address must be
converted to another type with CAST.
The argument s ize may only be a positive value
from 0 to 32767 or an overflow error will result. If
larger objects are required, two a l l o c () calls are
required whereby the second call returns the basis
address of the whole object.
If there is not enough space for an object, a stack
overflow error is generated. Note that the a l l o c
function reduces the space available for the C stack
This stack contains local variables and the data for
function calls.

*/ >

free (size) int size;
{/* free () represents the opposite function of a l l o c () .

It frees objects defined with a l l o c () . The objects
must be freed in the opposite order in which they
were generated. The argument s ize may not be
larger than 32767 or the run-time error overflow
error will be created.

*/ }

130

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

7.3 "stdio2.r

The functions in the link file stdiol.l are also contained in stdio2.l. In
addition, stdio2.l contains the following functions:

7.3.1 Formatted output

void printf(control, argl, . . argn) char *pontrol;
” 7 /* * /)

void fprintf(fd, control, argl, ..., argn) file fd; char ^control;
/* * /)

void sprintf(string, control, argl, ..., argn) char *string,. *control;
/* * / }

These three functions can be used for formatted output. The function
p r i n t f () prints to the standard output (screen), f p r i n t f () to the file
fd, and s p r i n t f prints to the string str ing. If you select fd=0 with
f p r i n t f () , you have the same function as p r i n t f () .

The formatted output is controlled by the character string control,
control consists of normal characters which are printed without change, and
format instructions which control the conversion of the arguments arg l,
argn. The p r i n t f function uses the string control in order to interpret the
arguments following it. If fewer arguments are provided than format
instructions in control, or the data types of the format instructions do not
agree with those of the parameters passed, the p r i n t f function outputs
nonsence.

Each format instruction starts with the % character and ends with a
character which designates the conversion. The following may be used:

131

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

A minus sign, which directs the converted argument to be left justified.

A decimal digit string, which indicates the minimum field width. If this is
absent, the default value 0 is used. If the converted argument is shorter
than the minimum field width, it is padded with blanks. If this string of
digits starts with a 0, the remaining positions up to the minimum field
width are filled with zeros (0) instead of spaces. This padding is performed
such that the output is right or left justified as specified.

A period, which precedes another string of digits.

A string of digits, which indicates the maximum number of digits which
will be output, or which sets the number of places after the decimal for the
conversions e and f. If ths number and the period are missing, the default
value 6 will be used and the length of the argument to be converted for all
other conversions will be supplemented by the this amount (conversions
d, o, x, u, c, s). A digit string is expected if the period is entered. 0 will
be assumed if this is missing.

The letter 1, which designates the corresponding argument as long
(concerns the conversions d, o, x, and u).

Each of the above specifications is optional. The number inputs are
converted modulo 256. At most the first 254 characters of a string can be
printed with the p r i n t f function. The output of a format instruction
may not comprise more than 255 characters or incorrect results will be
obtained

The following characters control the conversion:

d The argument is represented as a signed decimal number.
The argument must be of type i n t , or of type l o n g if an 1
is contained in the format instruction.

u The argument is represented in decimal without a sign.
The type of the argument must be unsigned i n t or unsigned long
if an 1 appears in the format instruction.

o The argument is represented as an octal number without
sign or leading zero. The type of the argument is the
same as that for u.

132

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

x The argument is represented in hexadecimal without sign
and without leading Ox. The type of the argument is the
same as that for u.

c The argument is represented as a single character. The
type of the argument must be ch a r .

s The argument is represented as a character string. The
type of the argument must be char * (pointer to char).

e The argument must be of type f l o a t or d o u b le and is
output in decimal in the following format:

[-]m.nnnnnnE[+-]xx

With this conversion the second string of digits in the
format instruction represent the number of places after
the decimal. The default is 6 places.

f The argument must be of type f l o a t or d o u b le and is
output in decimal in the following format:

[-Jmmm.nnnnnn

The second string of digits determines the number of
places after the decimal. The default here is six. If more
places after the decimal are specified than the number of
significant digits present, the following digits become
zero (this also applies to the conversion with e).

g The argument must be f l o a t or d o u b le . The conversion is
made as per f or e, whichever of the two is shorter. The
representation is selected so that only the significant
digits are shown. If both conversions are the same
length, e is chosen.

If the conversion character is not one of those found above, the character
itself is output. The % character can be printed with % %.

1 3 3

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

Example 1: double dbl=3.456E+1;
printf <"%0f\n%e\n%12g\n%12.If\n%-012.2e\n", dbl,dbl,dbl,-dbl,dbl

);
The following output appears on the screen:

34.560000
3.456E+0134.56-34.63.46000E+01

Example 2: static char s [9] ̂ 'Example”;
printf (,f: %s : \n: %9s : \n: % . 5s: \n:%9.5s : \n:-9 .5s\n",

S , S , S , S , S) /

The following output appears on the screen:

: Example:
: Example::Examp:: Examp::Example :

7.3.2 Formatted input

int scanf(control, argl, arg2...) char ^control;
/* . . . * /

int sscanf(string, control, argl, arg2...) char *string; char ^control;
{ /* ... */
}

int fscanf(fd, control, argl, arg2...) file fd; char ^control;
” ’{ /* . . . * /

}
These three functions make formatted input of data possible. The function

s c a n f () reads from the keyboard (standard input), s s c a n f () from a
charater string, and f s c a n f () from a file.

134

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

A control string is passed as an argument to all three functions. The input
is interpreted by means of this control string.

The scanf function requires additional arguments in order to store the
data read in. These arguments are all pointer values which must point to objects
in which the data read can be stored.

The following characters may be in a control string:

Spaces and line separators, which will be skipped

Other characters (except for %) which are then expected in the
input (after an arbitrary number of spaces or line separators)

Format elements which begin with the % character. A *
character and/or a string of digits and the format character
which indicates the type of the data read in eventually
follows them.

A format element determines the interpretation of the input and the type of
the object to which the input is to be assigned. A pointer to the object must
follow control as an argument. If the format element contains a * character,
the assignment is supressed and no pointer argument is required.

An field is defined as a sequence of characters which contains no blanks.
An input field extends to the next blank or to the optional field width given by
the digit string, or to the character which no longer fits the given format.

The following format characters are possible:

d An integer decimal number is expected as input. A pointer to
i n t should be given as an argument.

h like d

o An octal integer is expected as input. The argument should
be an i n t pointer. The digits 8 and 9 are interpreted as
octal 10 and 11. The octal number is read with or
without leading zero.

x A hexadecimal number is expected as input (with or without
leading Ox). An i n t pointer should be passed as an argument.

135

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

c A single character is read as input and a pointer to ch ar is
expected as argument. In this case the next input character
is assigned, even blanks. If a digit string comes
before the c, the next spaces are read as with the other format elements.

s A string of characters is read in. More information can be
found in the next section, 7.3.2.1.

e A decimal floating-point number is read as input. The
argument should be pointer to float. A decimal point as
well as an exponent may be present in the input. The
exponent consists of the character E or e, an option sign,
and a string of digits.

f like e

The letter 1 may stand before the conversion characters d, o, or x, in order
to show that the corresponding pointer argument points to a lo n g object.
Before e and f the letter 1 indicates that the pointer type is d o u b le .

If a conversion is interrupted by a character which can not be interpreted, it
is applied to the next field. Such a character is lost if no further input field is
required in one. call of scanf or f scanf . This is because the input and
output in operating system of the C-64 are not buffered.

Example: i n t x;
f l o a t d;
d ouble e ;
scanf("%o%e%le",&x,&d, &e);

The cursor appeals and you enter:

44.123 2.5
The following data is assigned:

36 is placed in x,
0.123 is placed in d,
2.5 is placed in e

If you enter the same input with only the following evaluation:

scanf("% d",& x);

136

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

the decimal point is lost as a separator, (s c a n f differs from the normal
standard functions in this regard).

If an input from the keyboard is not completely evaluated, the remainder of
the input is lost and printing is done to the screen. Because the standard input
does not send an EOI signal, the input is repeated until all arguments are served.
The s s c a n f funtion creates an EOI signal if it encounters the end of the
input string.

The s c a n f functions return the number of correctly-read data as the
result.

7.3.2.1 Reading strings

The reading of a string is done at the start of the next input field. The
reading is not interrupted by blanks. The number of characters read in is
determined by the field width given, but does not go beyond an EOI signal. In
addition, the reading can be interrupted by a boundary character. This boundary
character is normally assigned the code for RETURN. As a general rule, the
string is read only up to a RETURN character. The boundary character always
belongs to the string read.

The boundary character can be determined by the user. A . (period)
character must appear in front of the s and then the boundary character.

Caution is recommended when reading strings from the standard input
without specifying a field limit. Since the standard input does not send an EOI
signal, the input is stopped only by the boundary character.

7.3.2.2 Error messages

If the input is ended by an EOI signal although the s c a n f function
expects more data, the error ?RUN EOI (10) is given. The error message
?ILLEGAL FORMAT (11) is generated if a certain character was expected
in the input but a different character was read instead. This also applies for the
input of numbers. At least one digit must be present for these.

137

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

7.3.2.3 sscanf and fscanf

The function s s c a n f reads the input from a string. Another argument is
passed before the control string, namely the input string.

The function f s c a n f reads from a file. A file descriptor originating
from the opening of the appropriate file must be additionally passed as an
argument.

A good example is reading the error message from the disk:

int fl,f2,f3;
char ft [30];file floppy=open(8,15,EMPTY);fscanf(floppy,"%d,%.,s%d,%d",&f1,ft,&f2, &f3) ;
f s c a n f reads from the error channel. First, a decimal number is stored

in fl. Then a comma must follow in the input, or an illegal format error will
result. A string is then read and stored in ft. The string is interrupted at the first
comma. Then two i n t numbers are read.

If the error messages reads, for example,

65, NO BLOCK, 10, 14
the following assignments will be made:

f1=65;
ft="NO BLOCK,";
f2=10;
f3=14;

138

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.0 C language description

8.1 Introduction

In this chapter we will discuss the entire range of the C language and the
Super C language compiler. Differences between this compiler and the language
as described by Kemighan and Ritchie will be pointed out In general however,
most compilers are quite compatible, including this one. C programs can be

’ directly tarsnported except for a few details which usually result from the
different hardware configurations.

8.2 Text conventions

The source text of a C program consists of six classes: names (identifiers),
keywords, constants, strings, operators, and separators. Spaces, line separators,
and comments belong to the separators. This are skipped during the
compilation. They serves only to separate neighboring words, constants, etc.,
where the compiler cannot recognize the relationship without a separation. In
each case the compiler tries to interpret the longest string of characters possible
as a word, constant, etc.

8.2.1. Comments

Comments begin with /* and end with *1. They cannot be nested.

8.2.2 Names

An identifier, or name, begins, as in almost every language, with a letter
and can then consists of an arbitrarily long sequence of letters or digits. The _
(underscore) character also counts as a letter. Upper and lower case are
distinguished and may be mixed in a name. The Super C compiler use only the
first eight letters to differentiate between names, however. For external names,
which must be processed by the LINKER, the same conventions apply. In other
compilers this can be different

139

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

8.2.3 Keywords

These are names which have a prefined significance. They may not be used
as identifiers:

auto break case char continue
default do double else entryenum extern float for gotoif int long register returnshort sizeof static struct switchtypedef union unsigned void while
No distinction between upper and lower case is made for keywords. AUTO

is accepted as auto just as is aUtO. The keywords entry, fortran, asm have no
meaning in Super C, as in most compilers.

8.2.4 Constants

8.2.4.1 Integer constants

Integer constants are whole-number constants. They consist of a sequence
of digits. It is interpreted as a decimal number and has the type i n t . If a digit
string starts with 0, the digits following it are interpreted as an octal number.
The digits 8 and 9 are interpreted as octal 10 and 11 and are thus allowed.

If a digit string begins with Ox or OX, the following digits are treated as
hexadecimal number. Here the letters a-f or A-F apply as the values 10-15. In
Super C, all integer constants are automatically converted to the type lo n g if
their decimal value is greater than 32767. If an 1 or L stands behind the integer
constant, the constant is always converted to type long .

8.2.4.2 Char constants

A char constant consists of a character enclosed in single quotes, such as
'a'. The value of the constant is the value from the character set of the C-64,
here 65. The following symbols also count as single characters:

in Super C:
in Super C:
in Super C:

\b
\t
\n

backspace
tab
line separator

140

DELETE $14
SPACE $20
CARRIAGE RETURN $0d

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y s te m G u id e

\ r carriage return in Super C: SHIFT RETURN $8d
\ \ \
V ’
\»> >•
\0 $00
\ddd d are octal digits, returns the value of the constant

Oddd, for example \2 4 corresponds to \b in Super C
(see character set table)

All characters in the character set can be accessed with \ddd. If a character
other than the ones given here is placed after the escape code character, the
escape code symbol is ignored.

8.2.4.3 Floating-point constants

A floating-point constant consists of a sequence of digits which represent
the integer portion of the constant, followed by a decimal point and a sequence
of digits for the fractional portion. Finally comes the exponent, given with e or
E and a sequence of digits with an optional sign. Either a decimal point or an
exponent must be present for the compiler to recognize the number as
floating-point. Floating-point constants have the type double.

8.2.5 Strings

As already mentioned, a string is a string of characters. It consists of a
sequence of characters enclosed in double quotes. The number of characters in a
string constant can vary between 0 and 254 in Super C. A string is viewed as
an array of characters with storage class s t a t i c and intialized with the given
characters. The compiler automatically appends a \0 character at the end of the
string in order to recognize this.

All of the escape code symbol combinations in section 8.2.4.2 can also be
used within a string. If an escape code symbol stands at the end of the line in
the source text, it is ignored and the compiler skips the end of the line, meaning
that the string can be continued on the next line.

141

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.2.6 Example

Here are some examples and their interpretations:

2 -> 2 int2L -> 2 long010 -> 8 intOxffff -> 65535 long1.5 -> 1.5 double1.5E2 -> 1500.0 double1.5e-2 ~> 0.015 double.5 -> 0.5 doublele5 -> 100000 double»»̂ »»»i -> string "\0"abc\n" -> string abc\n\0

8.3 Object names

To clarify this term, we must first clarify the term "object." By object we
mean a certain contiguous area of memory with a specific length within a C
program. In BASIC an object is comparable to a variable.

As a rule each object has a name. With this name you can access that
object, by writing something to it or reading something from it. An object in
C has two attributes: the storage class and the type. The location and lifetime of
an object are determined by its storage class. The type of the object determines
the interpretation of the value from the memory area of the object.

In order to inform the compiler what storage class and what type the object
has, the name of the object must be declared. If an object is created at a
declaration , then it is called a definiton.

8.3.1 Storage classses

There are four storage classes in C: a u to , s t a t i c , e x t e r n , and
r e g i s t e r . Objects with the storage class a u t o or r e g i s t e r are local.
The exist only as long as execution in the block in which they were defined
continues. When the block is exited, the objects are erased. The compiler tries
to place r e g i s t e r objects in hardware registers in order to make faster
access possible. If all hardware registers are used, register variables are
automatically converted to a u to . In Super C, register variables are always
converted to auto variables because the processor has no registers free.

142

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

Variables defined as s t a t i c are accessible only in the block in which
they were defined. These objects remain, however, and retain their old values
when execution returns to the same block.

Objects declared as e x te r n remain available throughout the program.
External variables can also be used by separatelty compiled program fragments.
S t a t i c objects which are defined outside of a block are also available
throughout the entire program, but are available only in the program in which
they were defined.

8.3.2 Types

The following types are available in C:

char objects can accept a character from the character set. The value of a
character is always positive after its definition, char objects can also be
assigned integer numbers.

Other integral types are s h o r t in t , i n t and lo n g i n t . s h o r t
i n t can be abbreviated s h o r t and lo n g i n t to long. Longer types
may not have a smaller value range than shorter. For this reason all types
can be implemented with the same size on a compiler. In Super C, s h o r t
and i n t are the same and lo n g is twice as large. All integer types can
also be defined as unsigned, meaning that their value will be always be
interpreted as positive, u n sig n ed char can be defined, but is not
different from char in Super C because the definition of all characters of
the character set is positive and the set fills the entire value range of a
c h a r variable.

f l o a t and d o u b le are floating-point types. In Super C d o u b le is
twice as large as f l o a t .

The type v o i d can only be declared for the result of functions. This
means that the function returns no type, meaning that it is a procedure in
the Pascal sense.

The type enum indicates an enumeration type (see Section 8.8.10).

A rra y s can be created of all types. An a r r a y contains several objects
of the same type (array elements).

143

FIRST SOFTWARE LTD

S U P E R C C o m p ile r S y ste m G u id e

One can define a pointer to a certain object.

Functions can be programmed which return simple types as results.

One can declare structures (s t r u c t) which contain a group of objects
of various types, or variants (u n io n) which contain one object of a
group of various types. These constructions can also be nested.

8.3.3 Hardware-specific type data

The special type properties of Super C are listed in the following table.
This can naturally be different in other compilers. The only guarantee is that the
value range of sh ort <= in t <= long and that of f l o a t <= double .

Type (written out)___Abbrev. Value rangeSI

s h o r t i n t s h o r t -32768 to +32767 2
i n t - -32768 to +32767 2
lo n g i n t lo n g -2147483648 to 2147483647 4

u n s i g n e d s h o r t i n t u n s i g n e d s h o r t 0 tO 65535 2
u n s ig n e d i n t u n s ig n ed 0 to 65535 2
u n s ig n e d lo n g i n t u n s ig n ed long 0 to 4294967295 4

c h a r - a character from the 1
u n s ig n e d c h a r - character set or 0 to 255 1

f l o a t - +/-9.09E-77 to +/-6.78e+74
accurate to 6 or 7 places

4

l o n g f l o a t d o u b le +/-9.09E-77 to +/-6.78e+74 8
accurate to 16 places

8.4 Objects and L-values

An object is, as mentioned, a memory area. An L-value is an expression
which denotes an object. The simplest L-value is a name which is defined. In C
however an expression can also yield an L-value. This is done with pointers. If
E, for example, contains a pointer to the type int, *E is an L-value and refers
to the i n t object to which E points.

144

A FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.5 Conversion of a type

Various type conversions are performed depending on the operators.

8.5.1 Integer values between each other

The conversion of integer values between each other is done so that the
sign is retained when converting to a longer integer value. The most-significant
bits are cut off when converting to a smaller type.

Converting a signed integer value to an unsigned value succeeds only
through different interpretation. Negative values are represented in two’s
complement in Super C.

8.5.2 Floating-point values between each other

Floating-point calculations occur only in the type d o u b l e in C.
f l o a t values are automatically converted to d o u b le . If a floating-point
value is assigned to a f l o a t variable, it is first converted to f l o a t . This
is done by rounding the mantissa.

Converting from f l o a t to do u b le is done by appending zero-bits.

8.5.3 Floating-point and integer values

The manner in which floating-point and integer values are converted
among each other depends on the compiler. The only guarantee is that if the
floating-point number has a reasonable number, it can be converted. If the
floating-point number cannot fit in the integer number, however, the result is
not guaranteed.

8.5.4 Addresses and integer values

The conversion of an integer value to an address and back is performed
without change. Only the type of the value changes. This conversion is not
performed automatically.

145

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.5.5 The standard conversions

The "standard conversions" are performed by most of the operators:

1. c h a r or s h o r t operands are converted to i n t f f l o a t to
dou b le operands.

2. if one of the two operands is d o u b le , the other is converted to
d o u b le and the result is d o u b le .

3. if one of the operands is lo n g , the other operand is converted to
lo n g and the result is l o n g .

4. if one of the operands is unsigned , the other operand is converted
and the result is u n s ig n e d .

5. if both operators are of type i n t , the result is also i n t .

8.6 Syntax notation

For a better understanding of the next section, we offer a C grammar. At
the start of each grammar definition stands a name which is defined. Usually,
several alternatives follow with which the name can be replaced. Letters and
characters in bold face must not be changed. Names in normal type can be
replaced by the corresponding definition of a name. An alternative stands in each
line within a definition.

Sections which are enclosed in square brackets [] can be omitted. Sections
in braces { } can be repeated.

8.7 Expressions

An expression consists of operands and operators, a+b is an expression, a
and b are the operands of the operator +.

A distinction is made between unary and binary operators. Unary operators
operate on only one operands, binary on two. A binary operator stands between
the two operands.

Each operator has a set precedence to determine the order in which the
operators are executed. If operators having the same precedence stand are on the

146

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

same line, the processing direction determines the order of evaluation (left to
right or right to left).

Apart from the precedence, the order of processing is not defined, meaning
that it is up to the compiler to determine how expression fragments will be
nested in order to make optimizations, even if the expression fragments create
side effects through assignments, etc. Associative and commutative operators
can be switched arbitarily, even when explicit parentheses are present. A
specific order of evaluation can be guaranteed only by assigning (temporary)
variables.

The handling of errors during the evaluation of an expression depends on
the compiler in question. In general, an overflow in an integer operation is
ignored. The rules for Super C are found in Section 6.

8.7.1 Simple expressions

A simple expression (operand) is, for example, a name or constant
(including string constant). First the syntactic definition:

operand:
name
constant
string
(expression)
operand ([argument list])
operand [expression]
operand. name
operand -> name

argument list
assignment { , assignment }

A name is usually an L-value. If it refers to a function or array, however,
it is to be treated as a constant which represents the address of the function of
the array. A name from an enum specifier is only a constant. The name of a
structure of variant, on the other hand, is an L-value.

An expression enclosed in parentheses is a simple expression. Because the
parentheses have highest precedence, the expression within the parentheses is
evaluated first. The compiler can remove the parentheses in associative

147

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

expressions such as a+(b+c), however.

If a parenthesized argument list follows a simple expression, the whole
thing is handled as a simple expression, a function call. The left part then
represent the address of the function. In the simplest case this is the name of the
function. The list in the parentheses contains the arguments which are to be
passed to the function. The arguments can themselves be expressions. The use
of a free comma (not parenthesized) is not allowed because it is found in the
above definition assignment. If the type of such an expression is c h a r or
s h o r t it is converted to i n t . The type f l o a t is converted to d o u b le .
The argument list can also be empty. A function call is not an L-value.

If an expression in square brackets follows a simple expression, this is
again a simple expression. The left part then represents the address of an array.
In the simplest case this can be the name of the array. The whole thing is the
selection of an array element. The expression must have an integer value. The
whole expression is an L-value. Internally, the simple expression a[b] is
converted to (*(a+(b))). To understand this you must first understand the
operators * and +.

The arguments are passed to the function exclusively by copying the value
(call by value). The parameters of the function are simply assigned the
values of the arguments. The function parameters can be changed as desired
without changing the original arguments. This also applies to pointer values
(addresses). The object can be changed from the function via the address,
however.

The order in which the arguments are evaluated is not defined. Watch out
for side effects, such as with assignments in arguments.

Functions can also be called recursively, meaning that a funtion calls
itself. An argument of a function can be a call to the same function.

If a simple expression is followed by a . (period) character or by an arrow
(-> from a minus sign and the greater-than character), it is treated as a reference
to a structure or variant. This is a simple expression. If a . (period) is present,
the expression on the left should refer to a structure or union. If an arrow is
present, an address of a structure or union should be on the left. The right
portion must always be the name of a structure or union component. The whole
expression represents the selected component as object and is therefore an
L-value. A->B is internally replaced by (*A).B.

148

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.7.2 Unary Operators

Unary operators are evaluated from left to right. None of the operators
yield an L-value except for *.

unary:
operand
operand ++
operand —
* unary
& unary
- unary
! unary

unary
++ unary
— unary
(type spec) unary
sizeof unary
sizeof (type spec)

The operand of the unary operator * must be an address or a pointer. The
result is an L-value which refers to the object to which the address points.

The unary operator & requires an L-value as operand. The result is the
address of the object referred to. This operator is to a degree the opposite of the
* operator.

The unary operator - returns the negative value of its operand. With integer
values the negative is computed using two’s complement. This also applies for
unsigned values. There is no unary + operator in C.

The ! operator returns the logical negation. The logical value zero is false,
the logical value of all other values is true. If the operand is zero,! returns the
value 1; if the operand is not zero,! returns zero.

The operator inverts the individual bits of an integer value and thereby
computes its one’s complement. The operand must have an integral type.

The operators ++ and — add or subtract 1 from their operand (increment,
decrement). The operands must be L-values. The result of the expression
depends on whether the operator is placed before or after the operand. If the

149

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

operator is in front, the result is the value of the object after the increment or
decrement, while if the operator is behind, the object is incremented or
decremented after the evaluation.

Converting a value from one type to another is done with the c a s t . A
type specifier in parentheses stands in front of the operand. The operand is then
converted to the given type. An example of the type specifiers is found in
Section 8.8.12.

The s i z e o f operator returns the size of the operand. Applied to an
L-value, one receives the length of the designated object. If the operator is
applied to other values, one receives the length of the type of the value. A type
can be directly given by placing a type specifier in parentheses. The length is
measured in bytes. The operation represents an i n t constant with the length as
the value.

8.7.3 Multiplication, Division

The operators * / % fall into this category. The are processed from left to
right and the standard conversions are performed.

multiplication:
unary
multiplication * unary
multiplication / unary
multiplication % unary

The binary * operator denotes multiplication. It is commutative and
associative.

The / operator denotes division, the % operator the remainder of the
corresponding division. On most compilers the remainder has the same sign as
the dividend. If the divisor is not zero, (A/B)*B+A%B-A is equal to zero.

The % operator may be used only on integer values.

8.7.4 Addition, subtraction

The operators + and - are evaluated from left to right. The standard
conversions are performed. Addresses and pointers can also be combined.

150

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y s te m G u id e

addition:
multiplication
addition + multiplication
addition - multiplication

+ denotes addition, - subtraction. The + operator is commutative and
associative so that rearrangement by the compiler are possible.

A pointer value and an integer value can be added. It is then assumed that
the pointer points to an array. The result is an address which points as many
elements farther as the integer value is large. If A is an array, A +l is the
address to element 1 (second element) of the array.

An integer value can also be subtracted from a pointer value. As a result
one receives an address which points the appropriate number of elements
previous. The pointer value must always be on the left.

Two pointer values can be subtracted from each other. The result is the
number of array elements between the addresses. A necessary condition for a
reasonable result is that both pointers point in the same array. This is not
checked by the compiler.

8.7.5 Shift operations

The shift operators « and » are evaluated from left to right. The two
operands must be of integral type. The result has the type of the left operand.

shift:
addition
shift« addition
shift» addition

The value of A<<B is the bit pattern of A shifted B bits to the left.
Zero-bits are shifted in on the right. A » B is, correspondingly, the bit pattern
of A shifted right If A is an unsigned value, zero-bits are shifted in from the
left. It is dependent on the system whether zero-bits or the sign bit will be
shifted in from left if the value is signed. Sign bits are shifted in on the Super
C compiler.

151

FIRST SOFTWARE LTD

S U P E R C C o m p ile r S y ste m G u id

8.7.6 Comparisons

Comparisons are evaluated from left to right. This property is mentione
as a warning before use. A<B<C does not yield the expected result. Th
comparison A<B returns the result 0 for false, 1 for true. Than a comparison
made to see if C is greater than 0 or 1.

comparison:
shift
comparison < shift
comparison <= shift
comparison > shift
comparison >= shift

The operators < (less than), <= (less than or equal), > (greater than), and
>= (greater than or equal) return 0 for false and 1 for true. The result type is
always int. The standard conversions are performed before the comparison.
Pointer values may also be compared whereby there machine addresses are used.
Such comparisons are only portable to other systems when both pointers point
in the same array.

8.7.7 Equivalence comparisons

The compare operators == (equal) and != (not equal) behave like the
compare operators above. They have a lower precedence, however, so that the
following expression makes sense: A<B == C>D returns the value 1 if A<B
and C>D are both false or both true.

equivalence:
comparison
equivalence == comparison
equivalence != comparison

Pointer values may also be compared with integer values. This is not
portable, however. The only guarantee is that the pointer value will never be
equal to the integer value 0 if the pointer actually points to an object. Pointers
which are not supposed to point to any object can be assigned the value 0. The
constant NIL is defined as an address to no object in the standard declarations of
Super C. You are warned against an access to such an address since this
processor register can be changed, leading to a system crash. Before each address
it should be ascertained that the pointer value does not equal NIL.

152

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.7.8 Bit operations

The operators & (and operation), ~ (exclusive or), and | (or) combine their
operands bit by bit. The operands must be integer values. The standard
conversions are performed.

bitwise-and:
equivalence { & equivalence }

bitwise-xor:
bitwise-and { ~ bitwise-and }

bitwise-or:
bitwise-xor { | bitwise-xor }

The bit operators are commutative and associative and can be rearranged by
the compiler.

If a and b are corresponding bits of the left and right operands, then:

a AND b is 1 if both bits a and b are 1
a OR b is 1 is at least one of the two bits is 1
a XOR b is 1 if a and b are different (not both 1 or both 0)

8.7.9 Logical operations

There are two logical operations in C, && (AND) and 11 (OR). The
operands are guaranteed to be evaluated from left to right. The result of the &&
operator is 1 if both operands are non-zero, else the result is 0.

log-and:
bitwise-or { && bitwise-or }

The second operand is evaluated only if the left operand is not zero.

The result of the 11 operator is zero if both operands are zero, else it is
one. The second operand is evaluated only if the first is zero.

log-on
log-and { || log-and }

The operands can be completely different types, but they must permit a
comparison to zero. The result type is i n t .

153

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y stem G u id e

8.7.10 Condition evaluation

selection:
log-or
log-or ? selection : selection

The first expression is evaluated. If its value is not zero, the second
expression is evaluated, otherwise the third. Only one of the last two operands
is evaluated. The result is the value of the evaluated expression. The standard
conversions are performed on the last two expressions if possible, in order to
get the same result type in both cases. Otherwise the result types must be two
addresses which point to objects of the same type.

8.7.11 Assignments

All assignment operations are evaluated from right to left The left operand
of an assignment must be an L-value. The type of the result is always that of
the left operand. The result is the value assigned.

assignment:
selection
unary = assignment
unary *= assignment
unary /= assignment
unary %= assignment
unary += assignment
unary -= assignment
unary » = assignment
unary « = assignment
unary &= assignment
unary assignment
unary |= assignment

With the simple assignment = the value of the right operand is converted
to the type of the left and then assigned to the object to which the L-value
refers.

The result of a complex assignment of the form A op= B is the same as
that of the assignment A = A op (B). A is evaluated only once however. The
left operand may be a pointer with += and -=.

154

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

A C compiler allows assignments of pointer values to integer objects and
vice versa, as well as assignments of pointer values which point to objects of
different types. This assignment is done purely by copying the value and may
not be portable to other machines. The only guarantee is the portability of
assigning the constant zero (NIL) to a pointer value.

8.7.12 Lists

Two expressions separated by a comma are evaluated from left to right
The result is the value of the right expression.

expression:
assignment { , assignment }

In a situation in which the comma has another meaning, such as in an
argument list or in initializations, the comma operator can be used only in
paretheses. Thus the folllowing function call

f (4 , (a=3,a*2),6)

has the arguments 4, 6, and 6.

8.8 Declarations

A declaration determines how names will be processed by the compiler.
The name is connected to a type and a storage class in a declaration. The
compiler can then recognize what type the object is and to which the name
refers. If an object is created in a declaration it is called a definition.

Declarations with the storage class e x te r n do not reserve any memory
space. The serve only to make objects known prior to their definition or to refer
to an object which is defined in another separately compiled file.

A C program consists of a sequence of global declarations. The definition
of the function main must be found in one of several separately compiled
program segments. The execution of the C program begins and ends with this
function.

Names can also be declared locally, meaning that they are declared within a
block in a function definition.

155

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y stem G u id e

c-program:
{ global } global:function-definition global-definition ; declaration ; type declaration ; local:local-definition ; declaration ; type-declaration ;

8.8.1 Storage classes

There are three storage classes for definitions in C: a u to t s t a t i c , and
r e g i s t e r , which were already described in section 8.3.1.

storage-class:

au to
r e g i s t e r
s t a t i c

The & operator cannot be used on objects of storage class r e g i s t e r .
As a rule, the r e g i s t e r storage class is used to make programs faster and
shorter. The microprocessor on the C-64 does not allow us to make use of this
storage class, however. If no storage class is given, a u to is assumed inside a
block. Outside a block the declaration is assumed to be a global definition.

8.8.2 Types

The following may be used as type names:

type-name:
[u n signed] [s h o r t] i n t

[unsigned] [long] i n t
[unsigned] s h o r t
[unsigned] lon g
[unsigned] char
[long] f l o a t
double
v o id

s tru c t-u n io n - type -name
en um-type-name
typdef-name

156

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

A declaration may contain only one type name. If the type name is
missing, i n t is assumed.

8.8.3 Data definitions

Data definitions serve to create data objects. The definitions contain storage
class and type specifiers and a sequence of declarators. Each declarator contains a
name which is to be declared. The defined objects can be initialized to a certain
value in the definition. Local objects can initialized only with simple types.

global-definition:
s t a t i c [type-name] i-declarators
type-name [s t a t i c] i-declarators

local-definition:
storage-class [type-name] i-declarators
type-name [storage-class] i-declarators

declaration:
e x te rn [type-name] declarators
type-name e x te rn declarators

Declarations declare a sequence of names in declarators. They cannot be
initialized. A corresponding data definition must be located in some part of the
C program.

8.8.4 Type declarations

type-declaration:
t y p e d e f [type-name] declarators
type-name t y p e d e f declarators
struct-union-type-name

The names contained in the declarators are declared as type names
(typedef-nam e). The type represented is that with which it was declared.

A s t r u c t - u n io n - t y p e - n a m e also applies as a type declaration in
case a s t r u c t - n a m e or union-nam e is defined in it. This definition
assigns a specific configuration of components to the name.

157

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

8.8.5 Functions

function-definition:
s t a t i c [type-name] f-declarator par-declaration block

type-name [s t a t i c] f-declarator par-declaration block

Functions can have the storage class s t a t i c or they may be global. A
function definition consists of Qn& function declarator, the parameter declaration,
and the function block.

8.8.6 Declarators

Declarators serve to declare a name. The name is used in declarator as it
could be used in an expression. If the name is used in an expression exactly as
in the declarator, the expression has the same type as the type name given in
the declaration. This may seem peculiar, but is absolutely unambiguous.

declarator
{ * } declarator
(declarator)
declarator ()
declarator [[constant]]
name

It is easy to see that the simplest declarator is a name:

type name;

defines name as an object of type type. If name is supposed to be a pointer
to an object of type type, a * character must be added in front of name:

type * name;

One can see that if the expression *name is used in an expression, its type is
type because the expression refers to the object to which name points.

If an array is to be declared, it looks like:

t y p e name[constant]

name is then a vector with as many elements as the constant indicates, name
alone is the constant address to the start of this array and not an L-value.

158

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

Functions are declared by placing parentheses after the name:

t y p e name ()

name is now a function which returns a value of type ty p e . The definition of
a function is discussed in the next section. A name which is defined as a
function represents the constant address of the function.

These various declarators can be nested in order to declare more complex
types. Paretheses have a higher precedence than the * character. The declarator
can also be parenthesized to change the precedence.

Let us take a look at the following declarations:

i n t (* f) () , * g () , *h [5] ;

f is defined as a pointer to a function which returns a value of type i n t . g is
a function which returns a pointer value to an i n t object, h is an array with
five elements which are all pointers to objects of type i n t . Experience has
shown that it can be very difficult to determine the type from a declaration at
the start

The following syntax definitions finish up the normal declarations:

i-declarators:
declarator [=initializer] {,declarator [=initializer]}

declarators:
declarator {, declarator)

8.8.7 Function declarator

A function declarator is only slightly different from a normal declarator.
Instead of a name, a name with a parameter list must be given.

f-declaraton
{ * } f-declarator
(f-declarator)
f-declarator ()
f-declarator [[constant] J

159

FIRST SOFTWARE LTD

S U P E R C C o m p ile r S y ste m G u id e

name (name-list)
name-list:

[name]
name { , name}

The parenthesization of the name list identifies the name as a function.
The name list can also be empty. It specifies the parameters.

8.8.8 Parameter declaration

par-declaration:
{ r e g i s t e r [type-name] declarators ; }
{ type-name [r e g i s t e r] declarators ; }

The parameter declaration declares the types of the parameters in the order
in which they occur in the name list of the function declarator. The objects
generated can be used like a u to or r e g i s t e r o b j e c t s . They are
initialized with the values of the arguments when the function is called.

Parameters of type c h a r are converted to i n t , type f l o a t becomes
double automatically. Parameters of type array become type pointer because
the array can be used like a pointer as a parameter; it's an L-value.

8.8.9 Structures and unions

Structures and unions are declared like other objects. A special type-name
is used for them:

struct-union-type-name:
s t r u c t [struct-name] {{ c-declaration }}
s t r u c t struct-name
union [union-name] {{ c-declaration }}
union union-name

c-declaration:
type-name c-declarator {, c-declarator) ;

c-declarator:
declarator
[d e c l a r a t o r] : constant

160

, FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

The component declarations in braces are call s t r u c t or u n i on
specifiers. A s t r u c t or union name can always be given. If a specifier
follows it, the name is defined by the specifier. Only the name need by given
for a new declaration.

A component is declared like a normal declaration. The option in italics to
delare bit fields as components is not possible in Super C.

A structure or variant may be declared as a component. If the structure or
variant is of the same type as that being declared, only pointer may be defined.

A specifier is not allowed within a component declaration. The specifier
must be defined outside the structure with its own s t r u c t name.

8.8.10 Enumeration type

The enumeration type enum has its own type name,

enum-type-name:
enum [enum-name] { enumerator {, enumerator } }

enum enum-name
enumerator

name [= constant]

The specifier can be defined via a name as with structures. The constants of
the enumeration type are enumerated in the specifier. The constants are
numbered from 1 on. If a constant is given explicitly in an enum , it is
accepted. The next enum constants will be defined beginning with the next
highest value.

Objects of the enumeration type behave like i n t objects. They serve only
to make a program more readable and understandable. The programmer must
ensure that an object of the enumeration type is assigned a value- from the
specifier. The compiler does not check this.

The defined constants can be used in the program text like i n t constants.

161

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.8.11 Initializations

initializer:
assignment
constant
{ initializer {, initializer} }

Simple types are initialized by appending an equals sign and a constant to
their declarator. Complex types like arrays and components are initialized by a
list of constants enclosed in braces. This procedure can be nested as desired.

int x [3] [3]= { {0,1,2} ,
{3,4,5} ,{6,7,8}};

This definition initializes a two-dimensional array with three elements in each
dimension. The values 0,1, and 2 are assigned to the elements x[0][01,
x[0][l], and x[0][2], and so on.

The list for arrays and structures need not be complete. If fewer elements
than necessary are given, the rest are automatically initialized with zero.

If all elements or components are initialized, one can eliminate the nested
listing. The above definition can also look like:

int x [3] [3]= { 0,1,2,3,4,5,6,7,8};
The compiler assigns the values to the elements or components in order.

Functions and variants cannot be initialized. Only simple types of auto
objects can be initialized. In contrast to other initializations, however, entire
expressions can be initialized (assignment in the syntax definition).

Static and global objects are automatically initialized to zero if no other
initializer is given, a u t o objects without initializer have an undefined value.

8.8.12 Abstract declarators

Abstract declarators serve to specify a type in a CAST.

162

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

type-spec:
type-name [a-declarator]

a-declaraton
{ * } a-declarator
(a-declarator)
a-declarator ()
a-declarator [[constant]]

An abstract declarator does not contain a name. The compiler can always
determine where the name would have stood, so this construction is
unambiguous.

i n t * ()

is, according to this, a function which returns a pointer to i n t .

8.9 Statements

Statements are normally executed in sequence; the execution path is
indicated if this is not the case.

statement:
label statement;
block
expression ;
w h i le ([expression]) statement

do statement w h i le ([expression]) ;
f o r ([expression];[expression];[expression]) statement
s w i tc h (expression) block
i f (expression) statement [e l s e statement]
b r e a k ;

c o n t i n u e ;
r e t u r n [expression] ;

g o to nam e;

label:
name : [label]

c a s e constant: [label]
d e f a u l t : [label]

block:
{ { local } { statement} }

163

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

The most common form of a statement is the expression. It normally
consists of assignments or function calls.

8.9.1 Blocks

A entire block can also be a statement. Local definitions can again be used
in a block. This then applys only within the block. A block is usually used to
gather several instructions together, such as behind a loop.

8.9.2 while statement

The while statement has the form:

w h ile (expression)
statement

The statement is repeated until the value of the expression is zero. The
expression is always evaluated before the statement. If the expression is
omitted, the loop is infinite.

8.9.3 do statement

The do statement has the form:

do
statement

w h ile (expression);

The statement is repeated until the expression is zero. The expression is always
evaluated after the statement. Here the statement is executed at leat once,
whereas it may never be executed with w h i l e .

164

8.9.4 for statement

The for statement has the following form:

f o r (expression 1; expression2; expression3)
statement

It can be directly converted to a while statement:

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

expression 1;
w h ile (expression2)
{ statement

expression;
}

All three expressions can be omitted. The semicolons must remain in the
parentheses. If the second expression is ommitted, the loop is infinite.

8.9.5 if statement

An if statement can have an option else section:

i f (expression)
statement

or:
i f (expression)

statement
else

statement

The expression is evaluated in both cases. If the value of the expression is
not zero, then the statement behind the if (...) is executed. If the value is zero,
the first statement is skipped and the statement behind else (if present) is
executed. If several if instructionas are nested, an else is always paired with
the last if.

165

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.9.6 switch statement

sw itc h (expression)
block

The s w i tc h statement causes the execution of the program to branch to
one of several instructions. First, the expression is evaluated. It must return an
integer value. In Super C, addresses can also be given, c a s e labels can stand
in the block. Behind each of these labels is a constant. If the constant agrees
with the value of the expression, execution continues behind that label. A
constant should be found only once behind a c a s e label. The constants can
also be constant expressions. If no constant matches the value of the
expression, execution continues behind the d e f a u l t label. If this is not
present, the whole block is skipped.

In contrast to other languages, execution starts after the matching label and
continues to the end of the block. A b r e a k statement can be used to prevent
this. The d e f a u l t label need not come at the end of the block.

The block can contain variables. These will not be initialized, however.

8.9.7 break statement

The last do, w h i le , f o r , or s w i t c h statement can be exited with a
b r e a k statement. The execution of the program continued after the interrupted
statement.

8.9.8 continue statement

The c o n t i n u e statement refers to the last do , f o r , or w h i l e
statement. In these loops, c o n t i n u e causes a jump the location which
determines whether the loop will be repeated or not.

8.9.9 return statement

The r e t u r n statement causes execution to return from a function call.
Execution continues after the function call. An expression may stand behind

1 6 6

r e t u r n . The expression is converted to the type given in the definition of the
function.

If the program execution reaches the end of function block, the compiler
supplies a r e t u r n statement without expression.

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

8.9.10 Labels

A label may be placed in front of any statement. This label consists of a
name and a colon. The names is thereby defined as a label and can be jumped to
with goto.

8.9.11 goto statement

With the goto statement one can jump to label. The execution of the
program then continues behind this label. Such an statement requires that the
name be defined within the same block.

The use of labels as well as goto1 s is not recommended. They tend to
destroy the advantages of structured programming. Also, one should avoid
jumping into a block because local definitions will not be performed. No
variables are present and therefore also not initialized.

8.9.12 Empty statement

An e m p ty statement consists of only a semicolon They are mostly
used to place a label at the end of block. For example:

label: ;
}

The empty statement is also used to create loops which are not supposed to
repeat any statement.

167

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

8.10 Scope

By the scope of an object we mean the range of its validity. A distinctior
is made between two scopes: the scope on which a name is bound, and the
scope on which an object is bound.

8.10.1 Scope of a name

By this term we mean the range of the program in which a declared name
is tied to it declaration. Static global names apply over the entire source file.
Global names declared without storage class apply also to other source files
bound to the one in which they are declared and in which a corresponding
declaration is made. Externally declared names refer to a global definition and
make this name known globally.

Local predeclarations can be made within a block. Local predeclarations
work like global predeclarations in Super C. They serve only to designate once
more which global objects will be used in the block. Several declarations of the
same name with the same type do not hurt.

All other local names apply only within the defined block. Note that
global and also local names can be covered up by declarations in a ’’deeper"
block. The most recent valid declaration always applies within a block.

Another characteristic applies in Super C. All names must normally be
declared in C. If one wants to use objects before their definition, they must be
predeclared. This is normally only done with global objects. In Super C, static
objects can also be predeclared with the storage class extern. If you want to
prevent objects from applying outisde their source files, you may not predeclare
these objects.

Note that the compiler can look for global definitions and predeclarations
only within one source file. If a name is used in a global definition in one file
and a declaration with the same name but different type in another file, the
compiler will never discover this. The linker binds these files together without
an error message , but the program will probably not work correctly.

There are normally two classes of names in C: first, all s t r u c t ,
union , enum, and component names, and second, all other names. This rule
is not implemented inm Super C, however. This is not a problem, since it is
not a good idea to use the same name for more than one thing in a program.

168

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

8.10.2 Scope of an object

By the scope of an object we mean the range in which memory space
exsists for the object in the program.

For global definitions, the memory space applies over the whole program.
If a static object is defined in each of two files which are bound together into
one program, they are treated as two separate objects whose memory space
exists over the whole program. The memory space only addressible in the file
in which it is defined because of the scope of a static name.

Local static objects are retained over the entire program. Only a u t o and
r e g i s t e r objects are created at their declaration and then erased again as
soon as the block in which they were defined is left

8.11 Preprocessor

A C compiler is equipped with something call a preprocessor. The
preprocessor alters the source text according to specific rules before it is sent to
the actual compiler. This does not change the source text on the diskette. The
preprocessor is built into the compiler in Super C and it operates on the text as
soon as it is read by the compiler.

All preprocessor commands occupy a separate line in the source text. The
first character of a preprocessor line must be a # character. The effect of a
preprocessor command applies until the end of the source file and is not
dependent on the scopes of C declarations.

8.11.1 Macros

Names can be defined as macros with the preprocessor. If these names
appear in the program text following, they will be replaced with a replacement
string.

#define name replacement_string

The defined macro name has precedence above all scopes, meaning that it
is first checked whether a name is defined as a macro. This also applies for
keywords.

169

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

A macro definition can also be made with parameters.

d e f in e name (namely 1131062, . . .) r e p la c e m e n t_ s tr in g

The macro replacement is similar to a function call. An argument list as
with a function must follow the defined macro name in the program text. The
parenthesis (of the argument list must come directly after the macro name or
the preprocessor will recognize it as a macro without parameters. The name and
the list are replaced by the replacement string. First, however, all of the names
in the replacement string which match the parameter names are replaced with
corresponding argument strings from the call. Note that no names may occur in
the argument strings which match those in the parameters.

The C preprocessor does not have command of the C language, however. It
replaces the text without recognizing its relationship and its meaning. C macros
must be used carefully and with consideration.

The macros serve to define program constants and small "functions.” A
macro call is the concern of the compiler and does not take up any time at the
program run time. Complex macro definitions are better realized with functions
because these require less space in the C program. The replacement text is
recompiled at each macro call.

u n d e f name

causes a defined macro to be erased.

8.11,2 Chaining files

Multiple source files can be combined with a preprocessor command.

in c lu d e " f i l e n a m e "

This preprocessor line will be replaced by the entire source text filed under the
name filename when the program is compiled.

Additional # in c lu d e calls may be found in this file. The files may be
nested up to six deep in Super C. As many files as desired can be combined by
placing such instructions one after the other in the same file, however.

170

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

Chained text files count as one source text. The chaining is not to be
confused with the binding of several separately compiled files.

In other C systems the filename can also be enclosed in < and >, which
causes a different search procedure to take place. This command is not necessary
because of the size of the floppy.

8.11.3 Conditional compilation

In C, program sections can be selected for compilation. This allows the
same source text to be used for various program versions. The selection of the
text range to be compiled is done with an i f statement

#if constant #ifdef name #ifndef name
are the selection instructions. The text following these instructions is selected if
the constant after #if has a value other than zero, if the name after #ifdef
i s defined as a macro, of if the name after #ifndef is not defined as a
macro.

In this case the text behind the selection instructions is compiled up to a
command:

#endif
on

#else
The last command indicates that there is an else portion which is skipped.
The else portion must be concluded with #endif at some point.

If the logical value in a selection statement is false (if the number is zero,
etc.), the program section behind the selection statement is skipped. If an else
portion is present, this is compiled.

The constant after i f can be a constant expression. The conditional
compilation instructions can be nested, up to eight levels in Super C.

171

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y stem G u id e

8.11.4 Line numbering

In more complex systems the line numbering and source file name can be
influenced through the command:

#line constant name
This is not necessary in Super C and is not implemented.

8.12 Implicit declarations

Certain specifications within a declaration can be omitted. These are then
supplemented by default values.

If the storage class is not given in a global definition, it means that the
definition applies over the whole program. If no type is given, i n t is
assumed.

If no storage class is given in a local declaration, au to is assumed. One
exception is the declaration of a function which is assigned the storage class
e x t e r n in local declarations and is thereby only predeclared. If only the
storage class is given in a local declaration, i n t is assumed as the type. Both
specifications, storage class and type, can not be omitted in a local declaration
because the declarator will otherwise be recognized as an expression.

If the compiler does not recognize a name, if the name is not declared, it is
automatically predeclared as a global name with the type i n t or as a function
which returns type i n t . This should not be overused in larger programs for
reasons of style.

8.13 Operations on different data types

8.13.1 Structures and unions

A structure or union cannot be used for all operations. One can select a
component with the operators. and ->. The address of a structure or union can
be determined with the & operator.

172

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

In many implementations, structures can be assigned to structures of the
same type or passed to functions as arguments. A function may also be able to
return a structure as a result. This is not possible in Super C.

In all compilers, pointer to structures and unions can be passed to
functions as arguments, of course.

With structures it is possible to avoid the usual type checking. The right
operand of the operators . and -> need not refer to the declaration of the left
operand; any component declaration is valid. The left operand need only be an
L-value and it will be used as a structure or union. With the -> operator the left
operand can be an pointer value. Caution is urged with these constructions.
They are not portable.

8.13.2 Functions

Only two things can be done with functions: they can be called or their
address can be determined.

The name of a function standing alone in the program represents the
address of the function. One can pass functions as arguments, for instance.

int a ()
{. . .)main()
i . . . b(a);

. . .}int b (fp) int (*fp) () ;
(V f p) (. . .) ;

• • • }

The address of the function a is passed to function b. Function a can be
called in b.

8.13.3 Arrays, pointers

The identifer of the array alone is always converted to a pointer value to
the first element in the array. The name is thereby a constant and not an
L-value. The index operator [] is converted to addition. a[b] is converted to

173

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

(*(a+(b))). a is a pointer value and b an integer value. The addition works in
the conversion such that (a+(b)) points to an array element which is b
elements removed from the first. The * operator generates an L-value from the
address. The whole expression correponds to that which is expected when one
uses a[b]. This operation is commutative, although it does not look it.

This applies correspondingly for multi-dimensioned arrays. If one has an
array

i n t a [5] [4] ;
for example, a is first an array. The elements of this array are again arrays. a[3]
is an array and is treated as such. The elements of this array are i n t elements.
The index 3 in this expression means that element three of the array a is being
handled. The elements are stored line by line in the memory of the object a,
meaning that the last index varies the fastest. The first element is the array
a[0], then the array a[l], and so on.

If the * operator is applied to an array, the expression refers to the first
element (element 0) of the array. Note that when the number of array elements
is given in the declaration of an array, the elements are counted starting at zero.

8.13.4 Conversion of pointer values

A pointer value can be converted to an integer value. In Super C the type
u nsigned i n t is used. The conversion returns the memory address in Super
C.

An integer value can be converted to a pointer value. This is different from
machine to machine since larger computers require that the address of an object
be divisible by the SIZE. This problem does not exist in Super C. In any case
it is guaranteed that a conversion from a pointer value to an integer value and
back again results in the original value.

8.14 Constant expressions

Constant expressions can be used, for example, after case, after #if, in
an en tun specifier, and in initialization.

Constant expressions consist of constants and character strings which can
be combined with the operators

174

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y s te m G u id e

sizeof - ~

and all of the binary operators except for assignment and logical operations

+ - * / % & | A « » == ! = < = > = ? :

Parentheses can also be inserted. Calling of functions is not allowed.

The addresses of already declared global or static objects can be used as
constants with the & operator. Array and function names with indices and
argument lists are also handled as constant addresses.

8.15 Portability

Not only the value range of the various types need be noted when
transporting progams from one machine to another. The following processing
methods are open to the C compilers and, in order to promote portability,
should not be used excessively.

In Super C the order of the bytes within an object is always stored from
low to high, the least-significant byte first. The actual processing of
r e g i s t e r objects are handled as a u t o in Super C. The order of the
evaluation of arguments need not proceed strictly left to right.

8.16 Differences from standard compilers

Although the Super C compiler understands almost all elements of C,
there are a few differences between it and some other compilers which must be
mentioned here.

Some compilers understand certain original language elements such as
=op instead of op=. This was changed in later versions. The Super C compiler
does not recongnize these earlier constructions. If a corresponding program is to
be compiled, it must fit or be made to fit the modem standard.

No lists of a u t o can be initialized in Super C. Each initialized a u t o
variable must be concluded with

auto int x=5;auto int y=4;

175

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

The two name classes for structure names and other names are not realized
in Super C. This is not really a problem though, since one should not use the
same name for two different things.

Super C also offers possibilities which other systems do not offer. Do not
use these in programs which are to transported to other machines.

Addresses can be given as c a s e constants. The specification of a
boundary character is possible when reading strings with s c a n f , s s c a n f ,
and f s c a n f .

176

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

PART III. Appendix

1. Keyboard layout

Keys Name Number Kevs Name Number
CTRL+1 black 0 CBM+1 orange 8
CTRL+2 white 1 CBM+2 brown 9
CTRL+3 red 2 CBM+3 light red 10
CTRL+4 cyan 3 CBM+4 dark grey 11
CTRL+5 purple 4 CBM+5 grey 12
CTRL+6 green 5 CBM+6 light green 13
CTRL+7 blue 6 CBM+7 light blue 14
CTRL+8 yellow 7 CBM+8 light grey 15

177

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y stem G u id e

2. Keyboard chart

o
c

i 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

X
01
E 0 1 2 3 4 5 6 7 8 9 A B C D E F

d
e

c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
4

0

F0

3
6

0

L H h T ____- 1 1 1 \ *

2
2

4

E
0

3
4

0

f t - I I

2
0

8 D
O

3
2

0

19
2

CO

3
0

0

sp
c

A B C D E F G H 1 J K L n N 0

17
6

B
0

2
6

0

*■ H ► T _ - - 1 1 1 \

16
0

A
0

2
4

0 a
« . 1 1

OZZ
0

6

k
M

b
la

c
k

c
rs

r^

r v
s

o
f

f

c
lr in

s
e

rt

b
ro

w
n

p
in

k

d

g
re

y

g
re

y

1
g

rn

1
b

lu
e

1
g

re
y

p
u

rp
1e

c
rs

r+

y
e

 1
lo

w

cy
a

n

12
8

8
0

2
0

0

o
ra

n
g

e

F
I

F3 F5 F7 F2 F4 F6 F8 sh

re
t

C
s

e
t

11
2

7
0

16
0

a » a r o c c n » - 3 3 3 x > N ~ ' — ^ ®

96 6
0

14
0

sp
c

A B C D E F G H 1 J K L M N 0

80 5
0

12
0

Q. CT L W-*-* 3 3 3 X IT* N ~ « 1

6
4

4
0

10
0

8 a b c d e f 9 h i j k 1 m n o

48 3
0

6
0 c<>t68L99kez\0

32 2
0

4
0 a

8* — * • %<► « < * * ^ ^ + ' 1 ■ ^

16 10 2
0

* c w ▲
L W W L W W
M M 6 - T3 W 01 3
L 3 0 W W L L —
U L E T) L U E

000

n
u

l

whi
 te

TA
B

S
ET

re
tu

rn

C
B

M
se

t

d
e

c
h

e
x

o
c

t 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- +
i i

at <v
\A W I I

O E
CD O

U +*o w+* L W 0) o
W jC L O 01

L L ♦»
O 0 7 u

^ w L O
O O O L-----D O
3 3 C £ £ £ OO
O Oh h W U

Of ^
\A Of

_ I— E W
<C LU CQ ■ W O O

178

FIRST SOFTWARE LTD SUPER C Compiler System Guide

3. listing "stdio.c"

PAGE: 1
DATEi 6-11-85

stdio.c

1
2
3

typede-f int filej
4 extern void

o-P-f;
5 extern void

<>J
6 extern void
7 extern int

) yput-f ();
8 extern int
9. extern char
10 extern •file
11
12 extern void

1
13. extern int
14

srr or () , ex i t <), move () , cursor

qerror(>yputc() fputs()ygets(

getf<)ystrlen()ystrcmp();
getc <)y*al1oc <))
o p e n O yclose() $

scant()fsscanf()yfscant <) j

21

30
31

STDIO 0
NULL *\0*
CR ' \ n '
CR8UP ' \221
CRSDOWN ' \2 1 '
CRSRIGHT ' \33'
CRSLEFT *\235
HOME *\23'
CLR ' \223
REVERSON * \22'
REVERSOFF ' \222
NIL 0
EMPTY SI IS
MAXINT 32767
MAXLONG 214741
E01 <* (chi Sc 0x40)

179

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

PAGE: 2 stdio.c
DATE: 6-11-85

32
33 «define putchar(XO) putc(XO,STDIO)
34 #define gatchar() inkey(STDIO)
35 «define CMOVE(XI,X2,X3) mov»(XI,X2,X3,0x

35)
36
37
38
39 char (*screen)C40D ■ OxeOOO;
40 char <*color)C403 ■ OxdSOO;
41 char <*charraml) C8D=» OxdOOO;
42 char (*charram2)C83* OxdSOO)
43
44 char inkey(fd)
45 file fd;
46 f char c;
47 while((c*getc(fd))»*0);
48 return c;49 >
50
51

1 8 0

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

4. Listing "sample.c"

PAGE: 1 sample.cDATE: 6-11-85
1 #include "stdio.c"
2 *define CASE(Z) case '\Z*» printf<"*\\Z H)|break
3
4 mainO
5 { char cy
6
7 putc(CLRySTDIO)|
8 puts("Display the values for Key pres

sed\n",STDIO);
9
10 whi le<)
11 i
12 c*getchar();
13 print*("Characters ">;
14
15 if((c & 0x7f) >* 0x20)
16 » \ if<c=«'* :: c*=*\" i: c«
/
17 printf <"'\\y.c' ",c>;
18 else19 printf<"'Xc' %c>;
20 else
21 switch(c)
22 <.
23 CASE <n);24 CASE < t);25 CASE(f);26 CASE<r);
27 CASE(b);
28 default* printf ("'\\7.o'

Tc);break;
29 >
30
31

181

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

PABEi 2 sample.c
DATE: 6-11-85

32 print* ("\nASC-Code: 7.3d
O5i-3o\n\n” ,c,c,c);
33 >
34 >
35
36

0X7.02x

1 8 2

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

5. Listing "text.c"

PAGEi 1 text.c
DATE* 6-11-83

1
234
3
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2829
30
31

We can display 16 colors
on the screen. The source text doesnot produce them. The colorsare used to high-light the most importan
lines o-f the source text.

Col or 1 i st i
CBM+1 black
CBH+2 white A~blackM
CBM+3 red
CBM+4 cyan
CBM+5 violet
CBM-t-6 green
CBM+7 blue
CBM+8 yellow
CTRL+l orange
CTRL+2 brown
CTRL+3 light red
CTRL+4 dark gray
CTRL+5 gray
CTRL+6 light green
CTRL+7 light blue
CTRL+8 light gray

The Editor can display two character set

the BASIC—character set and a

183

FIRST SOFTWARE LTD
S U P E R C C o m p ile r S y ste m G u id e

PAGE: 2 text.c
DATE: 6-11-85
32 special C-character sat
33
34 <)*+,-./0123456789:j <*>?
35 fcabcdefghi jklmnopqrstuvwxyz C\
36 *ABCDEFGHIJKLMNOPQRSTUVWXYZ<I >'v3
37 -- and 2 x 32 Graphic characters----
38
39 With CSHIFT3+CCBM3 it is possible to swi

tch
40 between the two character sets.
41
42 The character set includes the -following
43 special C-characters: \ * _ < I >
44
45 When in the CBM-character mode, it will
46 be di-f-ficult to find the special C
47 characters, please use the C- character

mode.
48
49 The Characters: _ is done with CSH1FT3+C

03 (zero)
50 and the Left-arrow key is the
51 Editor TAB key. TAB SET and release is
52 done by using CSHIFT3+CLeft-arrow3.
53 To obtain the character I use the
54 CSHIFT3+C=3.5556
57 These lines stand at the start of our go

al.
58 Our goal is to mark a block once.
59 Set the goal line of the previous 1

i ne.
60
61
62

1 8 4

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

PAGEi 3 text.c
DATEi 6—11—85
63 This line is ths snd o-f the Block ****** *******************************
64 This is the beginning o-f the text block

that we will erase
65
66
67 GREEN
68
69 Block to be erased only
70
71 has
72
73 one
74
75 Number
76 1
77 2
78 3
79 4
80 581 6
82 7
83 8
84 9
85 Block to be 10
86 erased 11
87 12
88 13
89 14
90 1591 16
92 1793 18

185

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y stem G u id e

PAGEi 4 text.c
DATE: 6-11-85

94 These ere the lest lines o-F the block
95 that we will erase with the erase comman

d » > line 95 « <
96 This Text is after the block we ******* **
97 wish to erase.98
99
100 This line is before the blue text block
101 Here begins the Block for moving.
1 0 2
103 t-i 1 r~i r-i -r r
104 | III M-n
105 J__■ i u u x L.
106
107
108 This is the last line of the blue block.
109 This line is not in the blue text block
110
111 This is the next line to the 'last line'
112
113
114
115
116

186

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

6. Listing "char-set.c"

The source file of this example program char-set.c, as well as the
compiled C program char-set, is found on your master disk.

The function BASICset() transfers a character set from the character
ROM to the underlying RAM. The argument loc designates the character set.
You can pass the constants char ram i and charram2, defined in stdiox, to
BASICset() as the address of the character sets.

First temporary space is prepared for the character set with the function
alloc(). move() moves the character set from the ROM to the temporary
storage. The character ROM is brought in at Sdxxx with the memory
configuration 0x31 and can then be read.

The second call to move() moves the character set from the temporary
storage to the RAM under $dxxx. The value 0x34 switched the memory
configuration to 64K RAM. The RAM under $dxxx can then be written.

The temporary space reserved for the character set is freed again with
free().

readsetO reads a character set from the disk. The filename is passed in the
variable nam e, loc again denotes the address of the character set as with
BA SICsetO .

The character set is expected in program file format This means that first
two bytes of the file will be skipped because they represent the program start
address. The following 0x800 bytes are read into a temporary storage area. From
there the character set is stored in the character generator.

The primary function main() serves only to test the other two functions.
Input from the screen is called with gets(). In this input you can enter
characters and examine them. As soon as you enter read[RETURN] at the start
of a line, main() prints name: and requests the filename of the character set to
be read. The quadrato on the master disk is such a character set file.

187

FIRST SOFTWARE LTD S U P E R C C o m p ile r S y ste m G u id e

PAGE: 1 char— set.cDATES 6-12-85
1 #include "stdio.c"
2
3 char bufferC413;
45 main()
6 <
7 putc (CLR,STDIO)f8 BASICset (charraml >$
9 while!)

1 0 t
11 dot
12 gats (buffer,40,STDIO);
13 putc(CR,STDIO) »
14
15 >while(strcmp(buffer,"read\n">

! = 0) |
16
17 puts<"\nnamas",STDIO);
18 gata(buffar,40,STDIO)|
19 putc(CR,STDIO);
20 raadset(buffar,charraml))
21 >
22 >
23
24 void raadset(name ,1oc)
25 char *name$
26 unsigned int 1oc $
27
28 C file satf;
29 char *help;
30
31 if(setf*open(8,2,name) != 0)

188

FIRST SOFTWARE LTD
SUPER C Compiler System Guide

PAGEI 2 char-set.c
DATES 6—12—85

32 { halpKalloc(0x800);
3334
35
36
37

gate (aat-f); gate(aetf)$
gatf(halp, Ox800, aat-f);
mova(loc,0x800,halp,0x34)}
fraa(0x800);

38 y
39 cloaa(aatf);
40 >
41
42 void BASICset (loc)
43 unaignad int loc;
44
45 <
46 char *help;
47
48 halpsalloc(0x800);49 move(halp,0x800,loc,0x31);
50 mova(loc,0x800,helpf0x34)|
51 free(0x800);
52 >
53

189

FIRST SOFTWARE LTD SUPER C Compiler

7. In d ex

-A -

address
alloc()
argument
array

I. 6.5, II.8.5.4
II. 7.2
I.6.4.1,1.6.4.2,1.6.4.7,1.6.5.3, II.8.7.1
I. 6.1.5,1.6.1.6,1.6.5,1.6.5.3,1.6.5.5,1.6.5.6,
II. 8.13.3

assignment 1.6.2.10,11.8.7.11

-B -

B-version
block

1.5.3, II.6, II.5.1
1.6.1.1,1.6.2.4,1.6.3.1,1.6.3.3,1.6.2.6,1.6.3.9,
I.6.4.5,1.6.4.6, n.8.3.1, II.8.9.1

block input
break

1.4.5, II.3.2.4
I.6.3.3,1.6.3.7, n.8.9.7

- C -

C program
CAST
chaining
character set
closeO
color (command)
color control keys
command
comment
comparison
compiling
component

1.2,1.6.2.4,1.6.3,11.1,11.6
1.6.2.7.1.6.4.2, U.8.7.2
I. 6.4.8, II.8.11.2
II. 3, III.l
I. 6.7.1, II.7.2
II. 3.3
1.4.2, II.3
II.3.3
1.6.1.3,11.8.2.1
I.6.2.6, II.8.7.6, II.8.7.7
1.5.2, II.4.1
I.6.6.2,1.6.6.5, n.8.8.9

condition I.6.2.6,1.6.3.2,1.6.3.4,1.6.3.5,1.6.3.6
conditional compilation II.8.11.3
conditional evaluation 1.6.2.11, II.8.7.10
constant 1.6.1.2,1.6.1.5,1.6.1.6,1.6.3.3,1.6.4.6,1.6.4.7,

I.6.5.5, II.8.2.4, II.8.11.1, II.8.14
continuation
continue
control characters

1.6.1.4,1.6.3.5, II.8.9.4
I.6.3.8, II.8.9.8
1.6.1.6

190

FIRST SOFTWARE LTD SUPER C Compiler

control keys
cursorQ

declaration
declaration, implicit
declarator
decrement
definition

definition, global
definition, local
destination input
directory
do

editing
EOI
erase (command)
erroff()
erron()
error()
escape character
expression
exit (command)
exit()
extra text

filename (command)
file text
files
for
format statement
fprintfO
free()
fscanf()
function

11.2.3.1
II.7.2

-D -

1.6.1.2.1.6.1.5.1.6.5.4.1.6.6.1, II.8.8
II.8.12
11.8.8.6, II.8.8.7, II.8.8.12
1.6.2.8, II.8.7.2
1.6.1.2.1.6.2.4.1.6.4.1.1.6.4.5.1.6.4.6.1.6.4.7.1
1.8.8.3
1.6.4.3
I.6.4.5
1.4.5, II.3.2.5
11.2.1, II.3.3,1.3,1.5.1
1.6.3.6.1.6.3.8, n.8.9.3

- E -

1.5.1
1.6.7.2, II.7.1
11.3.3
1.6.7.5, II.6, II.7.2
1.6.7.5, II.6, II.7.2
11.6, II.7.2
1.6.1.1.11.8.2.5, II.8.2.4.2
II.8.7
II.3.3
11.7.2
1.4.5.3, II.3

- F -

11.3.3
H. 3
1.6.7.1
1.6.1.4.1.6.1.5.1, u.3.5,1.6.3.8, II.8.9.4
I. 6.1.2,1.6.1.3,11.7.3.1,11.7.3.2
11.7.3.1
11.7.2
11.7.3.2
1.6.1.1,1.6.4.1,1.6.4.2,1.6.6.3,1.6.7.4, II.8.8.5

191

FIRST SOFTWARE LTD
SUPER C Compiler

function block
function call

getc()
getf()
gets()
goto (command)
goto (statement)

hunt (command)

if
increment
initialization
interruption

keyboard layout
keyword
kill (command)

L-version
L-value
label
linker option
link file
load (command)
loop
loop block
loop body
loop condition
loop statement

I.6.2.4,1.6.3,1.6.4.1,1.6.4.3
1.6.2.7

- G -

II.7.2
II.7.2
11.7.2
11.3.3
1.6.3.9, II.8.9.4

- H -

II.3.3

- I -

I.6.3.2, II.8.9.5
I.6.2.8,1.6.2.11,11.8.7.2
1.6.4.6.1.6.5.5.1.6.6.1.1.6.6.5, II.8.8.11
I. 6.7.6, II.6

- K -

II. 3, III.l
I. 6.2.1, II.8.2.3
II. 3.3

- L -

1.5.3, II.5.1, II.6
1.6.1.2,1.6.2.10,1.6.2.5,11.8.4
1.6.3.9, II.8.9.10
1.5.3, II.5.1
1.5, II.4.1, II.5
11.3.3
1.6.1.3,1.6.3.4,1.6.3.6,1.6.3.7,1.6.3.8,1.6.3.9
1.6.1.3
1.6.1.3,1.6.1.4,1.6.1.5
1.6.1.3.1.6.2.10.1.6.3.4.1.6.3.5.1.6.3.6.1.6.3.7
1.6.1.3,1.6.3.6

192

FIRST SOFTWARE LTD S U P E R C C o m p ile r

- M-

macro
master disk
memory configuration
memory upper bound
menu
module
move (command)
move()

I . 6.1.4,1.6.4.7, n.8.11.1,
1.1,1.2
II. 6.2
1.5.3, II.5.1
1.2, n .i
I. 6.4.4
II. 3.3
II.7.2

-N -

name
new (command)
NMI
nmioff()
nmion()

I . 6.2.1, II.8.2.2, II.8.3, n.8.10.1
II. 3.3
1.5.4.1.5.2.1.6.7.6, n.4.1, n.5.1, II.6
1.6.7.6, II.6, II.7.2
1.6.7.6, II.6, II.7.2

-O -

object 1.6.1.2.1.6.1.5.1.6.24.1.6.2.8.1.6.4.2.1.6.4.5,
1.6.4.6.1.6.5.1.6.5.1.1.6.6.1.1.6.6.5, II.8.3.1, II.8.4,
II.8.10.2

object, global
object, local
object, static
openO
operand
operating system
operator

1.6.2.4.1.6.4.3.1.6.4.4.1.6.4.6
I.6.2.4
1.6.2.4.1.6.4.6
1.6.7.1, II.7.2
I.6.2.5,1.6.2.9
H. 6
I. 6.1.4,1.6.1.5,1.6.2.5,1.6.2.6,1.6.2.8,1.6.2.9,
1.6.2.11.1.6.2.12.1.6.5.1, II.8.7.2, II.8.7.3, II.8.7.4,
II.8.7.5

operator, arithmetic
operator, logical
operator, shift

I.6.2.5
I.6.2.6, II.8.7.9
I.6.2.9, II.8.7.5

193

FIRST SOFTWARE LTD

parameter
pointer
precedence
pre-declaration
preprocessor
print (command)
printf()
processing direction
program file
putc()
putf()
puts()

qerror()

replace
replace (command)
return
run-time error

save
scanfO
scope
search
source file
sprintf()
sscanf()
standard output
standard input
standard functions
standard module
statement
statement, empty
STDIO

S U P E R C C o m p ile r

-P-
1.6.4.1.1.6.4.2, n.8.8.8
1.6.5, II.8.13.3, II.8.13.4
1.6.2.12
1.6.4.1.1.6.4.4.11.8.8.3
II.8.11
11.3.3
II.7.3.1
I.6.2.6,1.6.2.12
1.5, H.5, II.6
II.7.2
II.7.2
If.7.2

-Q-

11.6.2, II.7.2

-R-
1.4.6.2, II.3.1
II.3.3
1.6.4.1, II.8.9.9
II.6, II.6.1

- S -

II.3.3
II.7.3.2
11.8.10
1.4.6.1, II.2.3.1
1.5.1.6.4.4, II.4.1
11.7.3.1
11.7.3.2
1.6.7.3, II.7.2
1.6.6.1.6.7.3, II.7.2
II.7.2, II.7.3
1.6.1.6.1.6.4.4, II.7.1
1.6.3,1.6.3.1,11.8.9
11.8.9.10
1.6.7.3, II.7.2

194

FIRST SOFTWARE LTD SUPER C Compiler

storage class I. 6.1.2,1.6.1.5,1.6.2.4,1.6.4.5,1.6.6.6, II.8.3.1,
II. 8.8.1

strcat()
strcmpO
strcpyO
string
strlen()
structure
symbolic constant

II.7.2
II.7.2
II.7.2
I. 6.1.1,1.6.1.6,1.6.3.6,1.6.3.7,1.6.5.5, II.8.2.5
II. 7.2
1.6.6,1.6.6.1,1.6.6.3,1.6.6.4, II.8.8.9, H.8.13.1
1.6.1.4

- T -

text field
transfer
type

I. 4.2
II. 3.3
1.6.1.2,1.6.1.5,1.6.2.6,1.6.2.12,1.6.4.1,1.6.4.2,
I.6.6.6, II.8.3.2, II.8.3.3, II.8.8.2, II.8.8.10

type conversion
type definition
type, integral

I.6.2.5,1.6.2.7,1.6.2.9, II.8.5, II.8.13.4
I.6.6.6, II.8.8.4
I.6.2.8,1.6.2.9

-U -

union I. 6.6,1.6.6.1,1.6.6.3,1.6.6.4,1.6.6.5, II.8.8.9,
II. 8.13.1

-W -

while 1.6.1.3,1.6.3.4,1.6.3.8,11.8.9.2

195

FIRST SO
FTW

AR
E LIM

ITED

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

