Pan

PERSONA AL

COMPUTER

COMPUTER

CLIVE EMBEREY & BOB TURNER

LIBRARY

- INVALUABLE
UTILITIES

? for the

COMMODORE
64

‘The complete
programmer’s toolkit —
essential programming
aids for your micro’

Pan/Personal Computer News
Computer Library

Clive Emberey and Bob Turner

Invaluable
Utilities for
the Commodore 64

Pan Books London and Sydney

First published 1984 by Pan Books Ltd,

Cavaye Place, London SW10 9PG

in association with Personal Computer News
987654321

© Clive Emberey and Bob Turner 1984

ISBN 0 330 28671 4

Photoset by Parker Typesetting Service, Leicester
Printed and bound in Great Britain by

Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition that it shall not,

by way of trade or otherwise, be lent, re-sold,

hired out or otherwise circulated without the publisher’s prior consent
inany form of binding or cover other than that

in which itis published and without a similar condition including

this condition being imposed on the subsequent purchaser

We wish to thank the following people, to whom we dedicate this
book:

Our nearest and dearest who remained (fairly) tolerant throughout.

Keith Bowden and members of the 64 IUC who continued to run the
club in our leave of absence.

Dave Proctor for patiently testing much of the work.
And PAN/PCN for publishing the book.

Contents

Introduction
Chapter 1: BASIC on the 64 11

Chapter 2: Peripherals 26
Tape directories
Printer dump 1
Printer dump 2
Disk utility

Screensave
Screensave?2
Screensave3
Backingupfiles

Chapter 3: A token approach to BASIC 67

Chapter 4: The keyboard revisited 83

Chapter 5: Utilities in BASIC 98

Append 1: programs in memory Merge1: Screen

Append 2: programs on disk
Append 3: data files on disk
Auto number

Auto number with delete
Datalines for machine code
Delete 1

Delete 2

Dump: simple variables
Lister: formatted listings

Merge2: Tapeand disk
Merge3: Tapeonly

Old: recoverNEWedprograms
Plot1and2: cursorpositioning
Printusing: numberformatter
Renumber: linenumberonly
Squash: compactBASICcode

Chapter 6: Routines old and new 120

Chapter 7: Programming aid routines

RENUMBER
AUTO
MERGE
APPEND
DELETE
MEM
CODER

144
DUMP
TRACE
TROFF
TEN
HEX
WO
BIN

Chapter 8: Enhancing the resident BASIC 212

CGOTO WRITE
CGOSuB ENTER
PROC COLOUR
DPROC oLD
EPROC CHAIN
POP INKEY$
RESET LOMEM
DEEK HIMEM
DOKE QUIT
PLOT

Chapter 9: The complete UTILITY 238
Chapter 10: Bits 'n pieces 266

Appendices 273
: Storage of BASIC text
: Hex to decimal and decimal to hex converter
: Machine code mnemonics and hex values
: BASIC loader for SUPERMON
Instructions for the use of SUPERMON
Extended BASIC memory map
: Reading an assembler listing
: Mnemonics generated by CODER
Key codes
Summary of the UTILITY commands
64 low memory map

ATTIOTTON®>

Introduction

This book as the title suggests, is a book of utilities for the Commodore
64. It has been written not only to provide a set of useful routines, but
also to help you to begin to understand some of the more detailed
workings cf your 64.

We have tried to cover a reasonable spectrum and hope that through
our examples you will attack areas other than those covered here with
increased confidence. Towards this end we have covered in depth the
development, background and implementation of each utility.

We have made no attempt to cover programming, in either BASIC or
machine code, in this book because many other texts cover this in
detail. We have also assumed that most serious 64 users will be in
possession of a copy of the Programmer’s Reference Guide and have
adopted its nomenclature throughout, particularly with reference to
memory locations and KERNAL routines.

Wherever possible a utility has been implemented in both BASIC
and machine code. We felt that the BASIC versions, though sometimes
crude, are easier to experiment with and should also help those
readers unfamiliar with machine code to appreciate the workings of
the equivalent routines. They also go to prove that it is not what you
know, but how you use it. In some cases it might prove beneficial to
use the BASIC rather than the machine code versions. Typical circum-
stances might be where only one or two features are required, or when
you need the full 38K of RAM available to BASIC, or if you wish to
switch to bank 2 when using graphics.

To facilitate entering the machine code it has been given in two
forms: as BASIC loaders and assembler listings. The assembler listings
are suitable for use with an extended monitor. For anyone not owning
a monitor program, we have included Jim Butterfield’s Supermon and
instructions for its use in Appendices D and E. (Supermon for the 64
was first published in the January 1983 issue of Compute). However,
before attempting the considerable task of typing it in and then getting
it to work, ask around your friends and user groups as they may have a
copy. If you do find one, you will save yourself a lot of time, effort and
frustration. Jim Butterfield has also published a very complete Memory
Map for the 64 in the October 1982 issue of Torpet which has since
appeared in many other journals. This complements the one in the
Programmer’s Reference Guide as it gives the nominal entry points to

8 Introduction

most ROM routines. A copy of this map could save you a great deal of
time when disassembling ROM routines to find out how they work.

To assist in entering the BASIC code all listings have been provided
in an annotated form. This, we hope, will avoid the all-too-common
problems associated with deciphering the symbols for cursor keys,
function keys, colours, and so on when in quotes mode. A detailed list
of all mnemonics used is given in Appendix H, but you should find that
most are self-explanatory. The program we wrote to generate them is
included in this book in the UTILITY as the CODER command. The
listings as given in the text always have a maximum line length of 40
characters in their annotated form. Where a line exceeds forty charac-
ters it is continued on the next and subsequent lines always commen-
cing in column 1. When looking at the listings you may find it helpful to
compare the rightmost characters of continued lines. When the code is
typed in, replacing the mnemonics with the correct key(s), no line will
exceed 80 characters on the display.

Any of the BASIC utilities intended for use from within another
program have been numbered in the 60000's to allow you to merge
them with your own programs (using the simple technique described
in Chapter 5 or the MERGE command of the UTILITY itself).

We have chosen to put our code at 32768 ($8000), leaving the BASIC
programmer with 30K free. There is no reason why the code could not
be modified and relocated elsewhere in memory (the 4K block from
$C000 is not a bad idea) and the initialization routine adjusted to take
advantage of the increased memory available. In fact, nearly all the
routines were developed and tested in isolation, being enabled by a
simple SYS call. They were then incorporated into the UTILITY by
simply relocating and including a keyword and token to activate them.
To conserve memory, common subroutines have not been duplicated.
Often a pick ‘n” mix approach was found useful to check out a range of
extensions which relied heavily on common routines.

We have used ‘hidden’ RAM beneath BASIC to store data to con-
serve valuable user RAM and implemented a simple switching routine
to access this data when necessary. Applications like setting up the
function keys require access to this RAM, as does CODER. We have
made extensive use of the ROM routines and RAM vectors available,
but on some occasions found it more economic and faster to write our
own code. The UTILITY, in the form given, occupies the same area as
cartridge ROM and cannot therefore co-exist with cartridges. It was
not written to run in conjunction with them and is intended as a
standalone, extendable facility. As the owners of a disk unit will have
received DOS 5.1. on the demo disk, the UTILITY has been written to
co-exist with DOS 5.1. Some of the isolated routines will temporarily
disable DOS as they make use of the same operating routine - CHRGET
— but more about that later. However, a simple SYS call will restore
DOS 5.1 commands.

Introduction 9

There are many commercial utilities and BASIC extensions. These
may be purchased at reasonable prices and for many applications there
will be no better solution. However, if you are interested in the Com-
modore 64 and wish to get the most from it, you may appreciate having
a range of routines which you can modify, extend and, indeed,
improve upon. After all, you can pay upwards of the cost of this book
for a fairly simple renumber routine.

Before we finish, we would like to leave you with two suggestions
and an option:

1) Always save a program before running it

2) Always make backup copies

This is good advice for BASIC and essential where machine code is

concerned.

3) It is very easy to wire a reset switch to your 64 and the necessary
reset line is available at both the Serial I/O and User /O (see the
Programmer’s Reference Guide, Appendix I). This is almost essential
if you use machine code, but don’t attempt this if you are not sure
what you are doing.

Have fun (if that's the right word)!

1 BASIC onthe 64

Introducing BAsic

On powering up your 64 you will find it ready and waiting to go in
BASIC, as part of the power reset sequence is to initialize BAsiC and leave
the user in direct mode.

The implementation of Basic that Commodore has chosen to use for
the 64 is identical to that on the VIC20 and PET microcomputers prior to
the 4000 series. BASIC2, as it is often called, differs from the later version
only in its disk operating commands, the latter having a greatly
improved and simplified instruction set for disk control. In producing
BAsIC 4 Commodore did maintain 99.99% downward compatibility and
in doing so allowed users to run any program on a higher series PET. It
was, therefore, a little surprising to find the Basic on the 64 to be only
V2. This may have been done to avoid a conflict of interests in so much
as the new CBM micro, though in many respects far more powerful,
was not quite the same.

BASIC, or to give its full title Beginners’ All-purpose Symbolic Instruc-
tion Code, runs on the 64 as a high-level interpreted language. It is a
subset of Microsoft’s BasiC (who wrote the first implementation for the
early PETs and now produce MBASIC and the MSDOS operating sys-
tem for all major microcomputers). The history of Basic is nothing to do
with this book, but it is interesting to note that regardless of environ-
ment, or cost of system BasiC will usually be in there somewhere. It may
only run in compiled form, or it may be syntactically different, but it is
reassuring to know that a knowledge of 64 Basic should allow you to
grasp quickly other BasiCs on other machines.

BASIC has its critics, particularly of CBM Basic, who would advocate
the use of Pascal, or Pilot, or Forth, or . .. Each of these languages is
particularly suited to a range of tasks, but perhaps none lends itself as
well as 5asicC to the task of rapid development of ‘untidy’ and ‘unstruc-
tured’ programs which, most importantly, work. Arguments for and
against will no doubt long continue, but as we are supplied with Basic,
let us make the most of it.

As its name imples, BasiC was developed to allow beginners to
acquire programming skills rapidly. It adopted a system of naming its
commands and functions to indicate the action produced. For
example, if we wish to halt the execution of a program we issue the

12 BAsIC on the 64

all-too-clear command : stop. For non English-speaking countries even
the use of English is no problem on the 64 as not only is it a simple
matter to redefine the character set, but it is also easy to redefine the
keyword table itself.

On the 64 we have 75 (76 if you include GO) BASIC commands,
functions and operators as standard. For many applications this is
perfectly adequate. Life would be simpler if more commands were
available. Increasing the number of commands has the benefit of
providing a more versatile programming language, but the dis-
advantage of slowing down the execution of the existing commands.
This is true of any interpreted programming language. However, the
way in which the interpreter has been implemented does allow you to
add to the keywords to your heart’s content, providing you understand
how it works and are capable of writing the necessary machine code.
For the moment the interpreter will be considered simply as a means of
translating our ‘meaningless entries’ into something which is execut-
able by the 6510 microprocessor at the machine code level. This it does
by taking an instruction, finding the appropriate machine code
routine, carrying it out and then returning to implement the next. The
process is slow but very flexible and even allows us to interrupt the
execution and take control should we wish to do so.

One of the best features of the 64 must be the screen editor. It allows
changes to be made directly to anything appearing on the screen and,
more importantly, allows you to implement these changes. The dis-
advantage is that the maximum length of program line or direct state-
ment is limited to 80 characters (or two screen lines). Use of the
standard abbreviations of first character and second (or third) charac-
ter shifted, instead of typing the full keyword, does allow program
lines, on listing, to exceed this limit. They cannot, however, be easily
edited. On pressing RETURN to acknowledge the end of the edit only
two screen lines are accepted. Anything beyond this point is not
included in the revised line. Still, this limitation is far outweighed by
the speed at which it allows existing code to be edited and repetitive
code to be entered by simply using the cursor keys, altering the line
number, modifying the necessary part of the line and pressing RETURN
to enter the new line. It even allows us to write programs which can
generate their own program lines, as we will see in Chapter 5.

BASIC may be used in two modes. These are direct (when a command
is typed in without a line number and executed immediately) and
program (a command preceded by a line number which is not execu-
ted until the program is RUN).

Storage of BAsIC code

If we wish to examine a program, we may do so with the L1sT command.
What we see has undergone many processes from the form in which it

Basiconthe64 13

was stored in RAM. To view the code in situ we first of all need to know
where to look. In the default mode on powering-up a BAsIC program
will be sorted from memory location 2049 ($0801) upwards. We can
examine a program by simply peeking out each of the locations used by

FOR I=START TO START+200:PRINT PEEK (I); : NEXT |

We would see a series of decimal numbers with only the fact in
common that none was less than zero or greater than 255. We might
also notice some sort of related pattern occurring, but not a great deal
more. We could adopt another approach by moving an area of ram
used for program storage to the screen. This is easily accomplished,
but in doing so we must also remember to set a colour at the screen
location we are putting the data into for it to be visible. The resulting
display is easier to decipher if the 64 is put in lower case mode by
pressing the shift and logo keys together. The following line should be
typed in direct mode:

S=0:FOR [I=START TO START+800:POKE 1024+S,PEEK(l):POKE
55296+5,14:S=S+1:NEXT |

If you wish to start at the beginning of a program then 2049 must be
used and it assumes, as does the first example, a program to be present
which occupies memory at least to START+800 (or +200). This time we
see a series of characters and where our program has text within
quotes it appears almost unchanged as do variable names, punctuation
and constants. If we combine the processes, and to produce a more
consistent format express the numbers in hexadecimal format, we
begin to see some sort of relationship. (You had better get used to
using hexadecimal notation as we use it extensively, but to help you on
your way there is a table of decimal to hex conversions in Appendix B).
The following program does just this and may be used to examine
itself. If you wish to experiment, simply enter new lines with numbers
less than 60000. Those of you with extended monitors or who jumped
straight in and typed in Supermon can use the ‘memory display’
option.

The program displays on each line the start address and the values
held in this and the next seven locations. At the right of the line the
characters with ASCII (CHR$()) codes corresponding to the byte values
are printed. To avoid confusion, only those characters which are easily
discernible are printed; all others are expressed by a “.””. Appendix C
of the PRG gives the full range of ASCIl and CHR$() codes. If you want
to display all the characters then some of the codes will have effects
which will destroy the display, for example, cursor moves, clear
screen, colours, and so on; so you will have to trap these. They do,
however, occur in blocks and are therefore not too difficult to isolate.

As will be standard practice throughout this book, a description
precedes most program listings.

14 BAsiC on the 64

LINE ACTION

130
140

150
to
170
190
to
220
230
1000
2000

1086
118
128
IILE
1380
148
156
168
178
188
176
2ee
+ll.ll
218
228
230
10086
1810
1626
1836
20686
Z2e1e

Examine selected range in groups of eight.

Convert current start address to low/high byte format, that is,
units (0-255) and lots of 256s.

Then convert to hex notation in two stages.

Get eight successive bytes from start and print two digit hex
values each time.

Convert eight bytes to ASCII characters if printable.

Else replace with a’.” and build eight character string.
Print string. Recycle if not end else start again.
Convert start address to hex in two steps.

Convert byte to two digit hex.

PRINT"MEMORY DISPLAY"

INPUT"DISPLAY FROM";F
INPUT"L[1@SPCITO";T:IF T<F THEN PRINT
SS THAN FROM" :GOTO 128

FOR I=F TO T STEP 8

X=1:605UB 1660

FOR J=1 TO I+7

X=PEEK(J) : GOSUB 2888 :PRINT X%;" ";

NEXT J

PRINT " ";

A$="":FOR J=1 TO I+7

X=PEEK(J):IF X<32 OR X>%5 THEN A$=A%$
:GOTO 228

A$=A%+CHR$ (XD

NEXT J

PRINT A%$:NEXT 1:G0TO0 18@
MSB=INT(X/256) : LSB=1-MSB*235é
X=MSB:G0SUB 2880 :PRINT X$;
X=LSB:G0SUB 2888:PRINT X#&;" ";
RETURN

XI=INT(X/16) : X2=X-X1%16
X$=CHR$(X1+48-7%(X1>?))+CHR$(X2+48~-

7¥(X2>9))

28286

RETURN

If the program is used to examine itself by entering a start of 2048 and
an end of 2504 for the program as listed the following display is given:

16 BASIC on the 64

89768 26 32 36 386 38 3A 99 28 20006:.
86978 58 24 3B 22 20 22 3B 88 X%;" ";.
8988 846 89 856 84 BE 68 A0 BY
8988 DB 87 58 31 B2 BS 28 58 ..X1..(X
8928 AD 31 386 29 3A 58 32 B2 .14):X2.
8998 58 AB 58 31 AC 31 36 88 X.X1.148.
6%A8 CB 89 DA 87 58 24 B2 C7X$..
69A8 28 58 31 AA 34 3B AB 37 (X1.48.7
89B8 AC 28 58 31 Bl 3% 29 29 .(X1.9))
8988 AA C7 28 58 32 AA 34 38 ..(X2.48
a9Ce AB 37 AC 28 58 32 Bl 39 .7.(X2.9
89C8 29 29 66 D! 89 E4 87 8E)»)......
eYD6 60 00 ee P

Its exact format will vary depending on how you typed the program in.
A number of things are immediately apparent. All text inside quotes, all
variable names, all destinations, all constants and punctuation appear
unchanged. From just this information we can work out the general
area of each line. Taking line 100 as an example, “MEMORY. .." is
clearly visible from $0806 to $0815. Immediately preceding it is the
value $99 which, not surprisingly, is the tokenized value for PRINT. The
two bytes before this are $64 and $00. $64 is the hex for 100 which is the
line number. Line numbers may range from 0 up to 63999 and, like
many values on the 64, are stored in low/high byte format. The actual
line number is $64+3$00+$0100 (100+0%256). If we look along the hex
values for line 100, we see that the byte immediately following the
closing quote is a zero. This is how Basic marks the end of a program
line. The two bytes preceding the line number are $17/$08 which is the
address (low/high) of the byte immediately following this end of line
zero. These two bytes are known as the link address and point to the
link address (and start) of the next line. If we follow the link address
through the program, the sequence runs $0817/082D/0864....09D1 and
finally 0000. A link address of zero marks the end of the program,
which in this case is $09D1. A pointer to this address+2 is held in zero
page (locations $00=$FF) at VARTAB ($2D/2E) and marks the start of the
BASIC variables. A second pointer on zero page, TXTTAB ($2B/2C),
points to the start of the program. This is the location of the first link
address and in the default setting this will always be $0801. Location
$0800 holds a zero; the byte before the start of a program must always
be zero for RUN to work. This becomes of more significance when the
start location of BAsIC is changed.

A program can therefore be thought of as a ‘linked list’ of individual
program lines. Itis of the form:

START LINK LINE END ... END PROG
00 low high low high Basicline 00 low high.... 0000 00

agee
8868
a810
8818
8828
6828
6830
8838
8840
8848
8850
8858
e840
8848
6870
8878
8886
8888
egve
8898
a8Aa
88A8
a8Bo
88B8
agce
88C8
as8De
e8D8
68ESB
@8ES8
68F8
868F8
800
eves8
ev10
6918
89206
8928
8930
8938
8940
8248
a95e
8958
894608
8968

68
45
53
88
1%
4D
ee
20
3B
20
53
44
31
81

8c
31
21}
20
ee
8D
20
6o
ea
ze
41
A
37
c2
B3
39
41
26
e
28
82
99

a9
28
4c
42
F2
8D
2e
83

17
4D
Se
6E
4C
22
85
20
54
A7
53
52
32
20

ae
36
81
49
o8
20
58
B?
c4
22
24
B2
ee
28
33
35
24
32
41
58
20
20
8¢
E8
58
53
AC
a3
20
o8
oS8

88
aF
ac
Y
a1
3B
22
20

20
20
aF
30
49
A9
58
3@
20

B2
32
24
a8
88
3B
B2
49
a5

32
20

32
24
29
40
41
26
e3
AD
42
32
58
32
24
B2

64
52
41
85
59
46
20
2e
8B
?9
54
4D
6e
B2
20
B2
36
4h
37
c2
36
3B

B4
a8
22
20
89
29
208
A7
22
38
B2
ae
e
24
31
4D
32
B2
35
B2
30
3B
4c

e
59
S5?
22
20
1%}
2e
20
20
20
48
22
76
46
38
49
1%}
B2
ee
28
3ae
22
ee
oe

22
A4
c8

B6
20
2E
ae
41
1C
2F

30
53
35
49
36
4D
3a
ae
53

99
28
22
a4
a4
64
20
54
54
22
41

a8
20
e

?5
49
B1
4A
3a
20
82
??
68

20
ee
8B
20
41
22
14
24
a9
89
82
30
42
36
AB
e
53
36
8e
42

22
44
88
49
52
88
28
aF
B3
ac
4E
89
82
A4
85
8D
es
20
88
29
3A
22
20
28

81
49
58
20
58
24

a9

pcC
Eé
20
ae
B2
29
4D
65
42

a9

4D
49
2D
53
aF
78
20
22
a6
45
20
20
ee
20
88
20
96
A4
AB
34
99
3B
aA
22
o
20

B2
58
B1
B2
89
b2
c?7
o6
0o
49
4E
BS

53
8?

99
FC
8D

BASIC on the 64

oo "M
EMORY DI
SPLAY" .-
...."DIS
PLAY FRO
M"3;F....
TO"
3T:. T.F
. . "LE
SS THAN
FROM" : .

T . 8...
XTI,
16066....
ee Ju1 .

I1.7....
Kea(J):

2600:.

AFLAS L.
(X).....
. JoS
. A, 1
:. 1806.N
...MSB..
(X.258):
LsSB.I.MS
B.254...
. .X.MSB:
. 2080:.
X$3....
.X.LSB:.

15

Basiconthe 64 17

The link addresses are not used when a program is run, but are
important during listing and editing. We can alter their values without
affecting the way a program runs, but on listing some strange effects
are produced.

We can now look through the display and find the start and end of a
line and the associated line number. Knowing these, we can start to
deduce the tokenized values for the Basic keywords used. By adding
lines to the program we could find out all keyword values, but to save
you the effort we have produced a complete list in Appendix A. This
table has been extended to include the new token values used by the
uTitty. These values should be ignored for the moment. With a little
practice, reading displays of this type becomes very easy.

From the table in Appendix A we see that all Basic keywords have
token values in excess of 127 ($7F). The highest token used for stand-
ard BAsIC is 203 ($CB) for the GO command. (GO simply searches for a
corresponding TO to ensure GOTO is equivalent to GO TO). When a
line is entered from the keyboard it is transferred to the input buffer
(BUF $0200-0258) on pressing RETURN. The line is then tokenized in
accordance with this table with keywords being processed first. If no
line number is present, the BAsIC interpreter immediately executes the
statement(s). If one is present then the line is put in its numerically
correct position and the link addresses for the whole program are
recalculated and VARTAB updated. A similar process is carried out
when a line is deleted. These operations are discussed in greater detail
in Chapter 3.

Variables

General
BAsIC allows three types of variable. These are real, integer and string.
String and integer are distinguished from real by trailing ‘$" and ‘%’
characters respectively. The default is therefore to real. Variable names
may be of any length, but only the first two characters and the last
character are of significance. This means ABXXXX% will be considered
equal to ABYYY% and to AB%, but different from ABXXXX or
ABXXXX$. The last character is used to distinguish the variable’s type,
and if it is not one of the special characters above then the variable is
treated as real. The only limitation on naming variables is that the first
character must be alphabetic and the subsequent character,
alphanumeric, providing that they do not form reserved keywords. For
example, PEND would be treated as ‘P’ plus the keyword eND and on
running would produce a syntax error. Reserved words are any of
those occurring in Appendix A with a token value exceeding 127
(bearing in mind that with the utiuity in place the number of reserved
words will be increased).

To allow each of the three types of variable (four, really, when we

18 BAsic on the 64

include function names) to be stored in two bytes, the high bit is set or
unset on each of the name bytes to give the necessary four combi-
nations. These are:

Name
Type 1st char 2nd char
REAL ASClI ASCII
INTEGER ASCI1+128 ASCI1+128
STRING ASCII ASCIlI+128

FUNCTION ASCI1+128 ASCII

Where the name is only a single character, the second byte is zero or
128 as appropriate.

Each of the three types of variable may be used in multi-dimensional
arrays. These subscripted variables follow the same rules as for simple
variables with the addition of a ‘(" following the name and type. This
tells the interpreter it is dealing with an array and is handled
accordingly.

Storage of variables

Any variable created in either direct or program mode is stored after
the program currently in memory. Variables are stored in the order in
which they are created. Strings are stored slightly differently from
numeric values mainly due to their dynamic nature and are held in two
parts. The first is a pointer to the string’s location and the second is the
length of the string itself. Strings are stored at the top of BAsiIc memory
($9FFF/40959) and grow downwards. The current lower limit of string
storage is stored in FReTOP ($33-$34/51-52).

When searching for a variable the interpreter starts at the end of the
program and searches upwards in memory for the named value
according to the rules given above. If the variable does not exist, the
next available space is allocated to it. Thus, if we define the more
important values early on they can be accessed quicker and the time
spentin ‘garbage collection’ reduced.

Variables are either simple or subscripted.

Simple variables

All non-subscripted variables use seven bytes of Ram. The first two hold
the name in its adjusted form. For each real variable the remaining five
bytes are used in the following way: one for its exponent and the
remaining four for its sign and mantissa. Integers are stored in only two
bytes with the remaining three unused. Strings use one byte to
indicate the length and two bytes to point to the location of the
characters, which is usually at the top of memory (though not always).
A function also uses seven bytes, of which the third and fourth point to

Basicon the64 19

its definition (DEF FN), the next two point to the variable it uses and the
last points to an initial value of the variable (zero).

The following table summarizes the storage of simple variables:

Byte

Tand2: name 3 4 5 6 7

REAL exp sign+M1 M2 M3 M4
INTEGER sign+high low unused unused unused
STRING length ptrlow ptrhigh unused unused
FUNCTION pointer to DEF FN pointer to variable initial value

low high low high

If we add the following lines of code to our memory display program,
all variable types are generated (including arrays):

1 DIMA(5),B%(5),C$(5),D$%(1,5)

2 FOR 1=0 TO 5:A()=1:B()=1:C$(1)=CHR$(64+1):D$%(2,1)=C$(Cl):
NEXT

3 M$=M$+"STRING1"”:Z$=7Z$+"STRING2"

We can now dump the memory associated with simple variables. The
area to be displayed can be worked out from VARTAB, ARYTAB and
FRETOP. To do this the program is RUN twice, the first time from
2641($0A61) to 2732($0AAC) to display the variables and the second
time from 40900($9FC4) to 40960($A000 — the start of BASIC ROM) to
display the strings in situ:

Simple variables and string pointers

8AS1 49 86 8C 25 106 66 88 4D 1..%...M
BAS? 88 87 ED 9F 08 60 54 88Z.
8A6l 68 ES 9F 66 88 46 B8 8CF..
BASY? 25 10 BB 88 54 86 8C 2A XL...T..*
86A71 C8 68 66 S8 66 66 68 B8 ...X....
BA79 68 BB 4D 53 84 20 66 88 ..MS. ..
8A81 B8 4C 53 88 61 60 66 68 .LS.....
8A8% 58 31 82 66 BB 088 66 58 X1. ...X
8A91 32 82 60 06 06 BB S8 86 2.....X.
BA?? 82 19 9D 66 88 4A 86 8CJ..
8ARl 2A 26 66 06 41 88 68 DB * ..A...
8AAT 9C 80 88 41 88 25 60 B1 ...A.%..

20 BASIC on the 64

Strings in situ

PFC4 380 380 386 30 30 31 39 306 BO06L160
FFCC 31 32 35 35 32 38 43 43 125528CC
FD4 38 38 30 38 38 34 39 3% 88088499
FDC 34 35 31 31 35 28 41 41 451158AA
PFE4 38 53 54 52 49 4E 47 32 BSTRING2
PFEC 29 53 54 52 49 4E 47 31)STRINGI
PFF4 45 45 44 44 43 43 42 42 EEDDCCBB
PFFC 41 41 48 48 94 E3 7B E3 AA....

Real variables

Looking through the display above, it is quite easy to spot the real
variables as their names are stored in unmodified ASCII. At $0A51 we
see ‘l', the first non-subscripted variable to be used, with a zero
second byte in its name. We can also spot F, T, X and all the others
(noting that msg and LsB are stored as Ms and Ls).

Real numbers are stored in binary floating point format, always to an
accuracy of 31 bits. Due to the way in which they are stored in single
precision form, rounding errors are introduced though these are
usually not significant enough to affect the final results. Examples of
this type of error are encountered all the time as in the ‘X.000001 -type
value. We can convert ‘I’ back to a decimal number quite easily.

The exponent is stored in byte 3 and is the power of two. A unit
change in this doubles or halves the resulting value. Positive
exponents are expressed as 129+EXP and negative, as 129—EXP.
Therefore, the full range is from 27 (—129) to 2°(127) or in decimal, from
about 107(—38) to 10"37. The high bit of byte 4 indicates the sign and is
set for negative numbers. To calculate the decimal value, we have to
successively divide the mantissa starting at the right by 256, add the
result to the next on the right and so on until we reach M1, when we
only divide by 128 and finally add 1. The resulting number will lie
between 1 and 1.999999. This must finally be adjusted for its exponent
and sign. The values for ‘I’ used below are in decimal.

M4 0/256=0

M3 (0+0)/256=0

M2 (0+16)/256=.0625

M1 (.0625+37)/128=0.28955

+1.00000=1.28955

If this is then multiplied by the exponent of 27 (140—129)=2048, the
value is 2048+1.28955=2640.999 (almost 2641). This is the upper limit for
the first memory display. A general formula may be written to convert
any real variable from its floating point to decimal form:

(=) (M1 AND 128)*2"(EXP—129)x(1+((M1 AND 127)+ (M2+ (M3+
(M4/256)/256))/256). . ./128)

BasiCon the 64 21

Integer variables

These are stored in a signed high/low byte format and can range from
—32768 to 32767. The high bit of byte 3 is again used to indicate the
sign. The value is easily determined from the following:

(BYTE3 AND 127)x256+BYTE4+(BYTE3>127)%32768

String variables

These are the easiest of all to pick out. At $0A59 in the display above is
the variable M$(its second byte is not used so is set to $80). Byte 3 tells
us it is seven characters long, and bytes 4 and 5 that it is located at
$9FED. The seven bytes from $9FED are “STRING1” as would be expec-
ted. Strings therefore use seven plus the number of characters bytes of
RAM. There is one important point to make before leaving strings. If line
3 had simply been M$="STRING1", its pointer would have pointed to
the byte at which it occurred within the program itself, that is, the byte
immediately following the quote. Only computed strings are stored at
the top of memory which is why the line was written
M$=M$+"STRING1"”. This economizes on memory usage by only
storing the string once. It does have the drawback that if another
program is loaded in program mode all non-computed strings are lost.

Subscripted variables

Arrays may be of any type, but unlike their ‘simple’ counterparts, only
the required number of bytes are used to store the associated values.
Real are stored in five bytes, integer in two and strings in three plus
their length. In addition to the savings in storing the values, the array
name is only stored once. Arrays are also created in the order in which
they are encountered.

The area of memory used for arrays immediately follows that for
simple variables. As for the latter, it, too, is recorded at two zero page
locations. The start, ARYTAB, has already been mentioned when
dealing with simple variables. The end, STREND, is held in
$31-$32/49-50. For each new simple variable this whole block must be
moved up seven bytes in memory. There will, of course, come a time
when array storage builds up to meet that of the descending strings
with the resulting ‘OUT OF MEMORY’ error.

Each array is preceded by a detailed header of the form shown
below:

Byte

Tand2 3 4 5 6 7 N-1N

NAME OFFSETTO NO. LAST....FIRST
1ST VALUE DIMS DIM+1..... DIM+1

Adj. form low high <256 low high..low high

Bytes 1 and 2 hold the name in its adjusted form. Bytes 3 and 4 record

22 BAsiC on the 64

the overall memory requirement for the array (this does not include
string data at the top of memory) and is the offset from its start to the
next array. Byte 5 records the level of dimensioning and may not
exceed 255 (a little difficult to visualize at anything more than two or
three). If an undimensioned array is used, this value will default to
the number of subscripts at the first occurrence. Successive pairs of
bytes then hold the number of elements in each dimension (plus one
for the zero subscript) in the reverse order of dimensioning. If no
dimensioning has been used, these each default to 11 (10+1). The
following bytes are then used to store the data.

If the program is again run and memory between ARYTAB and
STREND displayed, the following results:

B6AAC 41 88 25 06 81 66 84 886 A.Z.....

86AB4 60 60 606 00 81 60 00 68
6ABC 86 82 66 66 08 66 82 46
B6AC4 906 9P 00 83 00 BB 06 80
86ACC 83 20 66 606 66 C2 86 13
86AD4 60 61 68 65 00 66 68 B1
86ADC 66 062 06 83 66 64 66 65
8AE4 43 80 19 0606 61 68 B6s 81 C.......

BAEC FF 9F 81 FD 9F 81 FB 9F
BAF4 81 F? 9F 81 F7 9F 81 FS
6AFC 9F 44 88 3F 686 82 886 86 .D.7?....
6Bé4 06 03 60 66 08 81 FE 9F
éBeC 60 006 00 606 66 686 61 FC
6B14 9F 66 00 00 60 06 V6 61
8BIC FA 9F 00 0606 060 66 06 86
8eB24 61 F8 9F 60 00 00 86 68
8B2C 60 61 F4 9F 00 06 66 806
B34 66 06 61 F4 9F 606 80 66
6B3C 66 81 FF FF 88 81 FF FF

The first array is ‘A(" at $0AAC. It occupies 37 bytes ($0025), and has
one dimension ($01) of five elements ($06-1). The six values are then
held in 5 byte real format. The next array starts at
$0AAC+$25=$0AD1. This is ‘B%(" which occupies only 19 ($13) for its
six values. The values are easily read out as 0, 1, 2, 3, 4 and 5. The
next is ‘C$(’, and looking at the previous display we can read out its
values as @, A, B, C, D and E. A little care has to be exercised here as
in the loop which generated them ‘D$(’ was also defined each time.
This last array is the most complex of all. In its dimension statement it
was defined as D$(2,5). However, in its header these are reversed
(last....first). The values set were assigned to D$(1,l) and from the
display we can see these occur at the second and subsequently at
every third byte. This shows us that multi-dimensional arrays are

BAsicon the64 23

stored in the form X(0,0) X(1,0) ... X(N,0) X(0,1) X(1,1) X(N,N).

This just about concludes our section on variables, except to say that
the default values are zero for numeric and null for strings.

Link addresses and line numbers

General

Knowing where and in what form these are stored, there is no reason
why we cannot modify them from Basic itself. This we can do using
simple POKEs to produce some interesting results.

Links

If we modify a link address, the program will continue to run. It will,
however, list in an unusual fashion and be difficult to edit. We can use
this fact to make our programs difficult to read and modify. This we can
do by hiding lines (the whole program if we wish). Hiding line 110 of
the display program, as its listing was originally given, can be done by

POKE 2049,45

This simply skips the link at $0817. We could very easily write a short
routine to eliminate whole blocks of line numbers. This we leave up to
you.

Line numbers
We can change line numbers as we did link addresses. We could
change the line number of 100 to any value we choose.

POKE 2051,110

will, on listing the program, give two line 110s. A little care should be
taken here, because if the line number changed is the destination for a
GOTO or a GOSUB, some confusion may result.

Saving modified code

BASIC'S SAVE command transfers to tape or disk a copy of the ram
between TXTTAB and VARTAB. This means any modifications are also
saved. The modified code returns on loading.

Modifying BASIC

Changing the load address
We can change the point at which Basic programs load simply by
setting the value in TXTTAB. Wherever the new start is to be, a zero
must be set in the byte immediately before it. Once the new start has
been set, a NEW will tidy up all other pointers.

Changing the start of BAsIC is useful if using sprites or programmable
characters within bank @ (the default). The Programmer’s Reference
Guide recommends lowering the top of memory to make room for the

24 BASIC on the 64

necessary data. Instead, why not move up the start of sasic and leave
yourself with far more memory to use?

Chaining programs
Chaining in this context refers to loading one program from within
another.

The question arises as to whether there is a bug in the chaining
process. The answer is a qualified ‘no’ as there can be problems. The
effect of a program LoAD is roughly equivalent to executing a GOTO
the first statement of the chained program. Thus, the new program can
use only real, integer and computed string variables from the first. The
problem occurs when the incoming program is larger than the original.
If this is the case, it will overwrite the start of the variables, causing
utter confusion. Once this has happened you really need to issue a Ctr
at the start of the new program to tidy things up. You have apparently
lost all the variables anyway so there is nothing to lose.

On some micros a CHAIN command exists in addition to the normal
LOAD. The action of this command is to move all or only the specified
variables out of the way during the loading process and then move
them back and update the necessary pointers. On the 64 no such
command is available. There are two solutions. The first is to ensure a
larger program is never loaded from a smaller one. The second is to
make the first program the largest. To do this we do not need to
generate a ‘large program’. All that is needed is a simple poke and cLr
sequence at the start of the first program to reserve the necessary
memory. BASIC can be fooled by:

POKE 46, (SIZE OF BIGGEST PROG)/256+8+1:CLR

In this example we have not bothered to be exact and have simply
reserved to the nearest page.

Speeding up program execution

There are many ways in which to increase the speed of a program. The
speed of peripheral devices plays a major part when inputting or out-
putting, but the topics covered here are mainly concerned with the 64
itself.

There are commercial ‘CRUNCH’ or ‘compactor’ programs available.
These traditionally remove all unnecessary spaces, REMs, combine
lines not the destination of a GOTO or GOSUB and that is about all.
Even these few changes can produce significant increases in execution
speed. Some of this we can do from BasiC itself. A short routine at the
start of a program can combine lines by eliminating link addresses and
line numbers, and remove all Rems and all spaces not inside quotations.
After each deletion, the remaining code is moved down in memory
and VARTAB is updated. The end of line marker must be replaced by a
‘' to separate the last statement from the leading statement on the
crunched line. There are a number of problems here. If a line number

BasiICon the 64 25

is eliminated which is referenced by a THEN, GOTO or GOSUB, the
run will fail. The second problem stems from all statements following
an IF being ignored if the condition is false. The resulting compacted
lines are so long that they cannot be edited. As such, a universal
compactor program in BASIC is fraught with danger.

It is far more sensible to consider these points at the time of writing
the program. A well-known technique is to ensure that all GOTOs have
destinations as near the start of the program as possible as the inter-
preter starts its search there. If this cannot be done, then the desti-
nation should have its high byte greater than that of the GOTO line
due to the search technique used which compares this byte first.

There are three other common methods used to optimize the code:

(i) the use of variables rather than constants;
(i) the setting up of variables in the order of frequency of use;
(iii) and, specific to the 64, turning off the video display when not in
use (see Programmer’s Reference Guide, Appendix N, ‘Screen
Blanking').

Using these techniques, the second program below runs almost 25%
faster than the first:

18 PRINTTI

28 POKE 49152,@

38 FOR I=8 TO Seen
48 J=J+1

58 NEXT 1

468 POKE 49152,16
78 PRINTTI

18 PRINTTI :POKES32485,8:P=1:FORI=8T05080:
J=J+P :NEXT : POKES32485,1&8:PRINTTI

The second program does leave you in x and y scroll mode if you are
wondering just what has happened.

Conclusion

This chapter should have given you one or two ideas to play around
with. Before reading Chapter 5, you might like to think about how to
write simple renumber, delete, dump, and recover Newed program
routines. You might also like to think about how to overcome the
chaining problem by, as the last action on leaving a program, moving
all variables as high as they can go in memory. The first action of the
chained program should be to move them back down to the end of this
program and reset the necessary zero page pointers.

2 Peripherals

Introduction

This chapter deals with some of the more common peripherals for the
64. Also included here are the keyboard and screen even though they
are not quite peripherals in the same sense as a disk drive, cassette or
printer.

It is not our intention to go into any of these in great detail as the
subject could fill a book of its own. We have tried to look at features of
more immediate use.

Keyboard

Use of the keyboard, its ROm drive routines and rRAM vectors is covered
in Chapter 4. Programming of the keyboard is used extensively in
Chapter 5. The following are a few useful points not directly covered
elsewhere,

Keyboard as a device

The keyboard is viewed as device 0 by the 64’s operating system and is
the default for input. As such it may be used like any other device and a
file opeNed to it. This file may only be for input and any attempt to
output to it will result in an error. Once opened for input the
‘annoying’ question mark prompt is removed from the INPUT command
display. When information is being obtained from it using iNnpUT# all
warning messages, such as the double question mark for insufficient
data, also disappear. The open format is the same as for any other
device:

OPEN 1,0 or OPEN 1,0,129,”QWERTY”

In the second example everything following the @ will be ignored. Use
of the keyboard in this way is highlighted in the pisk utility facility in
this chapter (see below).

Auto-repeat
See Chapter 10.

Key detection
See Chapter 4 and Appendix I.

Peripherals 27

Keyboard Buffer — KEYD ($0277-$0280/631-640)

The 64 provides type-ahead of up to ten characters. The buffer
operates on the principle of first in/first out. However, once full no
new characters will be accepted until it has been partially emptied.
Characters are taken singly by a GeT, up to the first RETURN on an INPUT
and the buffer is emptied on an enD.

The length of the buffer is determined by XMAX ($0289/649) and as
this is in RAM it may be changed. Theoretically, the buffer could be
lengthened, but in practice this cannot be done as the RaM immediately
following it is used for other purposes. The size, however, may be
decreased and is perhaps most useful when the length is set to 1 where
a program requires careful, restricted input or type-ahead is to be
discouraged. Setting XMAX to 0 is quite a good way to prevent
unwanted user input (the sTop key is still active as it is scanned by a
different routine — see Chapter 10 to disable).

As the buffer is in RAM we can put data directly into it by simply
pokeing the ASCII codes of the characters required. To complete the
process NDX ($C6/198) must be set to tell the system how many
characters are in the buffer. This type of approach is used extensively
in the BAsic utilities in Chapter 5 and we refer you there for examples of
using the keyboard in this way.

One final point before leaving the keyboard which many of you may
have already discovered. Pressing the ‘Control’ key with any other
simply sets bit 6 of the ASCII code of the character low. For example,
CNRUT is the same as the DEL key ($14/20).

Cassette

The 64 does not have to use a CBM Datassette. There are, to our
knowledge, two manufacturers of interfaces which allow standard
cassette recorders to be used. These interfaces duplicate the part of
the interface normally resident within the Datassette. It is even pos-
sible to use a standard cassette through a suitable edge connector, but
do not expect a high success rate in loading back saved programs or to
get anything from recordings produced on a CBM recorder (see Pro-
grammer’s Reference Guide, Appendix | for connection details).

Many consider the cost of the dedicated cassette high. However, it
avoids the need to adjust the volume and tone controls to ensure an
accurate save (a problem on many other micros where even saving
twice is not guaranteed to work). It also seems slow, but perhaps is not
as slow as it at first appears. Data is transferred between the 64 and the
cassette at about 300 baud (some micros offer an optional fast 1200
baud rate). When a program is saved two copies are made. On
reloading the first copy is put into memory and this is then compared
with the second to check for and possibly recover load errors. In our
experience it has proved worth the additional expense to buy the

28 Peripherals

Datassette for peace of mind and to avoid the loss of many hours of
hard work.

The speed of operation of the cassette has been chosen for
reliability, but like most things on the 64 we can even change that. For
many years superfast, jet, turbo, fast or whatever you care to call them,
operating systems have been available for the reT, more recently for the
VIC20 (ARROW) and now for the 64. The machine code listing of the
original PeT version has even been published. Many games now come
with a high-speed load (some without the option for a normal load
which has proved annoying when your cassette cannot cope with fast
loads). These fast operating systems can be made to run the cassette at
a higher speed than the standard operating speed of the disk drive
(even this can be increased). There is no secret as to how it is done, but
as many software houses pay a royalty for its use, or even sell their own
versions of a high-speed loader, we have decided not to include a
version of our own.

LOAD and SAVE with cassette (see Programmer’s Reference Guide,
Chapter2)

These are dealt with in detail in the Programmer’s Reference Guide, so
we will deal with them briefly here. The general syntax for save is
(where square brackets denote optional parameters):

SAVE[""program”’ or string variable] [,device]
[, secondary address]

If no parameters are specified, the Basic program currently in memory
will be copied to the default of cassette without a name.

The secondary address is the more interesting. A secondary address
of 2 will write an end of tape marker and one of 3 appears at first sight
to do exactly the same. Using either of these will prevent the tape
being read beyond this point without being physically wound on.
There is, however, a world of difference on loading (see below). With
an address of 3 not only is the end of tape set, but an end of tape
header is written which is a duplicate of the program header with a
type of 5.

The area of RAM saved is that between the values held in TXTTAB and
VARTAB. These pointers are automatically kept up to date by the
operating system whilst a program is being edited. Should we wish to
save an area of memory other than the Basic program, we can set these
up by poOkEing in the appropriate values (remember low/high format).
This allows us to save machine code from BASIC or even the screen
itself. Data stored in memory is more economically saved this way as
only single bytes are saved and not the ASCII characters which make
up each number (saves at least two bytes per number between 0 and
255). The problem is that on returning from the save, the current BAsIC
program and variables are lost until these pointers are restored. If you

Peripherals 29

are going to play with TXTTAB and VARTAB from Basic, put the original
values out of harm’s way, say below $0800 or above $C000, to allow
them to be recovered.

The syntax for LOAD is identical to that for save:

LOAD [“program” or string variable] [,device]
[,secondary address]

LOAD reads the next program from tape. If a program name is specified,
then the named program will be searched for and if found loaded or if
an end of tape marker is found first the cassette will stop. Again it is the
secondary address which is of major importance. A 1 requests the
operating system to put the program at the same location from which it
was saved. If no secondary address is specified, then providing the
program came from an address above the current start of Basic it will
return to its original location, but after the load TXTTAB will still hold
the start of BAsic whereas VARTAB will hold the end address. The same
is true when 1 is used, but in this case a load may be carried out below
the start of Basic. Typically, when loading machine code from BAsic an
‘OUT OF MEMORY” error results if the code locates above $9FFF due to
the setting of VARTAB. A save with a secondary address of 3 ensures
the code is reloaded to its original address, regardless of the syntax of
the LOAD command (extended monitors use 3).

Tape Buffer

The tape uses a 192 byte I/O buffer, TBUFFR, which in its default setting
extends from $033C-03FB/828-1019. TBUFFR need not reside here and
may be relocated, as a pointer to its start is held in RAM at saL
($AC-AD/172-173). To move it, simply POkE in the new location in the
usual low/high byte format (STOP/RESTORE will reset it). We have
found this of use when storing sprite data blocks in bank @ when
memory is tight ($C000 is yet again a good place to put it). Usage of the
buffer is very different between program and data files. Programs only
use the buffer to store their header information (see below) and the
transfer of memory is direct from the I/O port without passing through
the buffer. Data files, on the other hand, use the buffer initially for the
header then subsequently to hold 191 byte blocks (the first byte is used
as a marker). This avoids continual starting and stopping of the tape
motor and by using this block system the tape is more reliable as it is
allowed to pick up speed between each read/write operation. Another
zero page location, BUFPNT ($A6/166), holds the current position
within the buffer.

Tape Headers

All files are stored on tape with an initial header which is the length of
the buffer. The exact format depends on the syntax of the SAVE or OPEN
command (secondary address of 2 on an OPeN also writes an end of tape

30 Peripherals

marker). Each is made up of an identifier, two addresses and a file
name, the format of which is given below:

Program headers
ID START END FILE NAME (spaces to pad)

1 18 2516 6566673232 32

Data headers

ID START END FILENAME
4 603 2523 6865663232

The ID identifies the file type and for a program may also take a value
of 3. The two bytes immediately following it are the start load address
in low/high format and the next two the end address. The file name is
not limited to 16 characters and in fact can be up to 187 characters. This
allows machine code to be embedded in a header to add additional
security to a program. When the name is printed out by LOADING
only the first 16 characters are displayed. The header to a data file also
contains the start/end bytes but these hold the start and end of TBUFFR
itself.

The last operation on completion of a save or write is to store a
duplicate header. If the command had a secondary address indicating
an end of tape marker, then the ID would be changed to a 5 before
writing. On loading or reading to the end of a file the last operation is
to get back this trailing header (which remains until the next tape
operation).

Tape directories

Tape directories as such do not exist unless you are using an improved
cassette operating system such as ACOS+. There are times when it is
necessary to catalogue a tape. The process is time-consuming as it is,
not surprisingly, directly proportional to the length of the tape. The
following program may be used to do the job. It is best left running
whilst you go away to do something else.

Any header will be read with an opeN statement. cLosting it immedi-
ately ceases tape operation and program execution continues. The
parameters are then pulled from the buffer and stored for later use.
The process is repeated for the next header. When the end of tape is
reached or you stop the program, a simple GOTO 260 will display the
file information. This is the file type, up to 16 characters of its name
with non-alphanumeric characters replaced by a ““.”’, and if a program
its start and end addresses (in hex).

Peripherals 31

18686 DIM F$(58),FT$(50) ,5A%(50) ,EA%$(S0) :C
B=828

1186 PRINT"[CLSIPRESS FPLAY ON TAPE"

120 IF PEEK(1)><>7 GOTO 128

136 I=I+1:0PEN 1:CLOSE 1:PRINTF$(I-1)
148 FT$(I)=RIGHT$("[S5SPC1"+STR$(PEEK(CB)
),4)

1580 IF PEEK(CB)=4 THEN SA$(I1)="[2SPCl*%**
" sEAS(I)="[2SPCl»x%xx" :GOTO 2080

14680 X=PEEK(830) :G0SUB 3808:5A%(1)=X$

178 X=PEEK(82%9) :6G0SUB 340:5A%(I)=" $"+5A
$(I)+X%$

188 X=PEEK(832):G05UB 360:EA$(I)=X%$

198 X=PEEK(831):60SUB 3688:EA®(I)=" $"+EA
$(I)+X$

288 A$="":FOR J=833 TO 848

218 X=PEEK(J):IF X<32 OR X>95 THEN A$=A%
+".":6G0T0 230

228 AF=A%+CHRE (X)

238 NEXT J

248 F#(I)=LEFT#$(" "+A$+"[18SPCI",17)

258 GOTO 130

268 H$="[CLSITYPE FILENAMEIL[9SPC1STARTIL[3S
PCIEND" : PRINTH®$

278 FOR J=1 TO I:PRINTFT$(J);F$(J) ;5A%(J
Y3EASCI)

2806 IF INT(J/208)<>J-/286 GOTO 320

298 PRINT"PRESS RETURN FOR NEXT PAGE"
368 GET A%$:IF A$<{>CHR$(13) GOTO 300

318 PRINTHS$

328 NEXT J

336 INPUT "REVIEW AGAIN";;Y$:IF Y$="Y" GO
TO 240

346 IF Y${(>"N" GOTO 330

3568 CLOSE 1:END

368 XI=INT(X/16) :X2=X-X1%16&

370 X$=CHR$(X1+48-7%(X1>9))+CHR$(X2+48-7
*#(X2>9))

380 RETURN

Unfortunately, during tape I/O the internal clock variable (TI$) is not
updated as the interrupt is used exclusively for tape timing. Had this
not been the case, a read of this variable could have been used to
calculate the value of the tape counter. The best suggestion we can
come up with is if the file is a program then the difference in its start
and end addresses could be used to determine the loading time. For a

32 Peripherals

data file bytes could be taken until the status is set to the end of file,
the number of bytes read being an indication of the time. We might as
well do this as the tape is running anyway. The time taken may be used
to work out an approximate counter reading.

Auto-running

Generating programs which auto-run is also discussed in Chapter 10.
There are many ways to accomplish this, most of which involve fairly
detailed knowledge of the operating system. The following are sug-
gestions only for you to pursue. All but one are suitable for disk or
tape.

The stack

During LOAD the return address is placed on the stack. As this is an area
of RAM, there is no reason why we cannot load through this area and
put our own address on instead. This could then go to our own
machine code routine. The file type should be 3 to ensure a load to its
original position. The same would apply to disk or tape if loaded with a
secondary address of 1.

BASIC warm start — $0302

After a load in direct mode BAsIC is warm-started. Again as this vector is
held in RaM we can load through it. The new value it then contained
could jump to our machine code or straight to RUN (for BASIC programs).

IRQTMP — $029F

This stores the current IRQ vector during tape I/O which is restored
after the tape operation. Again we can do the same to this as in the
above. On the first normal interrupt the action will be taken. This, of
course, can only be used with tape.

CHAIN command of the UTILITY
See Chapter 8.

Screen

The utilities in this section are confined to the text screen.

The screen on the 64 is a 40 column by 25 line memory-mapped
display. Chapter 3 and Appendices B to D of the Programmer’s Refer-
ence Guide cover in great detail all aspects of the screen and it is to
there that we refer you. All the following utilities assume that you are
familiar with or know the following.

i) The screen may be moved from its default position.

ii) There are two character sets.

iii) The screen has an associated colour map at $D800 on.

iv) The display codes differ from the ASCII codes.

v) Commodore ‘ASCII" is not true ASCII which only ranges from 0 to
127. (Consult your printer manual.)

Peripherals 33

Printer dump
There are two routines, both of which output the current display in
standard ASCII to a printer. One is a BASIC subroutine and the other is
machine code. The second is noticeably faster than the first, as would
be expected.

Both routines take account of whether the 64 is in upper or lower
case mode as well as checking for the location of the screen.

64 owners with Commodore printers need not concern themselves
with the conversions to standard ASCII.

BASIC printer dump subroutine

The version given here is for an RS232 printer running at 300 baud
without auto-line feed. For this reason the output logical file is
assigned at the start of the program. The out put file is designated ‘P’ to
avoid specific reference to allow for easier change to other printers.
The display is centred on an 80 column display by printing 20 spaces at
the start of each line.

The program first examines the lower/upper case register at 53272 by
calling the subroutine at 60090. If in lower case, LC is assigned a value
of 32 (note lower case ‘a’ in character set 2 has a PEEK value of 1 which
is standard ASCII is 97 — that is, bit 5 set). This adjustment will be
applied to all letters between ‘a’ and ‘z’. The whole dump is enclosed
within two loops: | for the rows and J for the columns. All screen codes
are aANDed with 127 to reduce them to values in the range 0 to 127 to
eliminate reversed characters. If the screen code is <32, we have to
add 64 and the LC adjustment. If it lies between 32 and 65, we can print
it unchanged. Only if in lower case mode do we need to check for
upper case letters. If we were in upper case, these would be non-
printed graphic characters. If in LC then the Anped code is already in
standard ASCII. If all the tests have failed, we have a graphic character
so we replace it by a space to maintain the layout of printable text.
Once a screen line has been processed we print it preceded by 20
spaces and recycle for all remaining 24 lines.

18 OPEN 129,2,8,CHR$(&)

40880 GOSUB 48090

60818 FOR I=8 TO 24:A%$="":FOR J=0 TO 39:
CH=PEEK(S+1%48+J)

68820 CH=CH AND 127

468830 IF CH<(32 THEN CH=CH+&4+LC:GOTO 468
70

46840 IF CH<45 GOTO &48@7a

48850 IF CH<?1 AND LC GOTO 48078

68848 CH=G

68878 A$=A%+CHR$(CH) :NEXT J

468088 PRINT#P,SPC(SP);A$:NEXT I1:CLOSE P:
RETURN

34 Peripherals

460890 P=129:5P=20:6=32
60108 LC=0:1F PEEK(53272)=23 THEN LC=32
668118 S=PEEK(&848) %2546 :RETURN

Whenever a dump is required, simply GOSUB 60000. This could be
actioned by, say, a GeT statement, but should not add to the display, or
if it does then only 24 lines should be printed. To improve the present-
ation, blank lines or a form feed should be issued at the end of the
dump.

Machine code printer dump

The logic of this routine is identical to that above and is therefore not
described in detail. The differences are that it is much faster and it does
not pad a line with 20 leading spaces.

The routine as written assumes logical file 2 is open to the printer at
the time of calling. To change this, simply alter the byte at $C001 with a
POKE. It works by changing the output device through the cHKOUT KERNAL
call to that associated with file #2 (the equivalent of a cMD from BAsIC).
This then allows us to use the KERNAL routine CHROUT to output the data.
There is a routine in ROM which could be used to do most of the
conversion, but for this exercise the technique used here is adequate
and easier to follow. The device need not be the printer and could be
the disk or tape depending on the OPeN statement. We do not recom-
mend you use this routine with anything other than a printer as far
better screen saves follow. Once the dump is complete, the default
device for output is restored to the screen before returning to Basic.

The routine is used by at some point including an oPeN 2,4 or OPEN
2,2,CHRS$() if using RS232. A simple sys 49152 will perform the dump. If
your printer requires a forced line feed, make the necessary adjust-
ment to $C001 for a value greater than 127.

BASIC loader for the machine code

The following must be loaded and run. Once this has been done the
code remains present until overwritten by something else. Once run
the machine code may be saved using an extended monitor for ease of
loading later.

1 pATA 182, 2, 32, 281, 255, 173, 136, 2

133, 88, 149

DATA @, 133, 87, 173, 24, 208, 281, 21

, 288, &

3 DATA 149, 8, 133, 89, 248, 4, 149, 32,
133, 89

4 DATA 149, 32, 133, 98, 24, 145, 88, 1@

5, 3, 133

5 paTa 91, 1462, 4, 148, 8, 177, 87, 41,

127, 24

INE

& DATA 201,

31,

Peripherals 35

176, 7, 24, 185, &4, 181
64, 176, 2, 144, 17,
177, 87, 24, 281, 91

149, 32, 32, 218, 255

192, 232, 248, 23, 230,

13, 32, 218, 255, 1

187, 238, 88, 202,

255, 142, @, 32, 20

@, @, 255, 255, @,

FOR I=4%9152 TO 49292:READ A:POKE I,A:

Here is the assembly listing which is fully annotated to allow you to

, 89, 144

7 DATA 24, 24, 281,
24, 165

8 DATA 89, 248, 1@,

, 176, 3

? DATA 24, 144, 2,

s 224, 1

18 DATA 288, 4,

P46, 281, 48

11 DATA 288, %2, 169,

89, 8, 133

12 DATA 96, 2686, 2688,
288, 182, 149

13 DATA 13, 32, 218,
1, 235, 96

14 DATA B8, 255, 255,

8, 255

15

NEXT 1

follow it:

ceegs Az2e2 LDX #$82

Ceee 26C9FF JSR $FFC?

cess AD8Be2 LDA 48288

Cesg 8558 STA $58

Cesa AY60 LDA #3860

ceaC 8557 STA 457

CeeeE ADISBDSO LDA <¢Do18

Ce11 C915 CMP #%15

Ce13 Dees BNE #C81B

Ce15S Avee LDA #4680

Ce17 8559 STA 459

Cei1e Fee4q BEG 9$Ce1F

CeiB A28 LDA #4286

Ceip 8559 STA 459

CeiF A%20 LDA #3208

ca21 855A 5TA 454

cez23 18 CLC

C824 ASSS8 LDA 458

C82é6 6963 ADC #3863

Ce28 855B STA $5B

C82A AZ84 LDX #%64

Ce2C Aaoe LDY #¢60

log file to printer
perform CMD2 via CHKOUT
screen start from HIBASE
set start registers

check upper/lower case
is it upper

no

set adjustment value
for ASCII

skip lower case

lower case set adj flag
as ASCII a=97 etc.

set non-printable flag
to a space

set MSB end of screen

almost 4 pages/screen
counter within page

36 Peripherals

C82E B1S57 LDA
Ce3e 297F AND
Remember difference
Ce32 18 CLC
C833 C9IF CMP
Ce35 Beaz BCS
ce3?7 18 CLC
€838 &940 ADC
CB3A 6559 ADC
Ce3C 9818 BCC
Ce3e 18 CLC
Ce3F C94a CHP
Ce41 Bae2 BCS
ceq43 9811 BCC
Ce4s 18 CLC
CB4é6 AS39? LDA
Ce48 Faoa BEQ
CedAa B157 LDA
ce4Cc 18 CLC
CedD C95B CMP
C84F Be83 BCS
cest 18 CLC
Ces2 9802 BCC
Ces54 A28 LDA
C858 28D2FF JSR
CesY Eaei CPX
CesSB Des4 BNE
CesD C8EB CPY
CasF Fe17 BEQ
Ces1 Eé&s8 INC
Ceé3 C928 CMP
Ceés Daes9 BNE
C8&7 A98D LDA
Ceé9 28D2FF JSR
CB4C Av60 LDA
CB4E 8548 STA
Ceze Cs8 INY
Ce71 DeBB BNE
C873 E6&5S8 INC
ce7s Ca DEX
C878 D8Bé BNE
ce78 A98D LDA
C87A 20D2FF JSR
Ce7D Azoee LDX
Ce7F 28C9FF JSR
ceg2 448 RTS

($57),Y
#$7F

get byte
eliminate high bit 7

be tween screen and ASCII codes

#B1F
$CO3E

#$40
$59
$C8546

#$40
$C845
$C854

$5¢9
$C054
($57),Y

#$5B
$CB54

$C0856
#4208
$FFD2
#4601
$C0s1
H$ES
$C878
$48
#$28
$Ca878e
#+8D
$FFD2
#300
$468

$Ce2E
$58

$CB2ZE
#$aD
$FFD2
#$00
$FFC9

start checks
less than a space
no go to next check

makKe ASCII] by adding 64
add lower case adj.
always taken

check for upper case in
1/c mode & branch > 45
'-? same in both sets
check upper case

it zero

branch to avoid graphic
get 1/c byte again
check not gt Z

it so avoid graphic
valid A-Z so skip space

print char

on last page

no - so branch

ves so check end $%*E8
branch all done

end of screen line reg
is it 48 dec

no so sKip next bit
output next bit

print it

rezero end of line reg
continue current page
branch if not finished
inc next page register

always taken
RETURN for last line

restore screen output

Peripherals 37

To improve this, why not patch into the interrupt routine to, for
example, dump the screen whenever a designated key is pressed
rather than using the sys command? Chapter 4 explains the interrupt in
detail and Chapter 10 gives an example of its use. If you decide to do
this, remember to include a routine to disable the patch. The necessary
enable and disable routines can be added at the end of the code as
given. The logical file will still have to be openeD unless the appropriate
KERNAL routines are called.

Screen dumps

Three ways are given to save the screen and its associated colour map
in this section. Two are in BAsIC and the third is in machine code. Both
BASIC programs use a sequential file to store the data, but differ in the
length of file produced. The machine code saves the screen as a
program file and is the most economical and by far the quickest.

A few points should be made before discussing the routines in
detail. Any area of memory may be saved from Basic by setting TXTTAB
and VARTAB to its start and end addresses. The problem is that once
we have changed these pointers we have temporarily lost our program.
Another problem is that a LOAD will cause BASIC to warm-start, which is
this case will be at the newly set TXTTAB address. The screen is an area
of memory and may be loaded and saved in this way. Unfortunately, its
default position is below the normal start of Basic so a ‘crash’ or
‘hang-up’ is usually the result. Try it and see. So from a practical
viewpoint we must resort to other means.

All the following routines check HIBASE for the current screen loca-
tion. The resulting screens will always reload to the current screen
position regardless of its location at the time of saving. The reloaded
screen will be identical to that saved in both characters and colours.

Screen save using numbers

This routine firstly peeks out the border and background colours and
writes them, as numbers, to a disk file (change the oren command for
tape). It then proceeds, writing alternate screen and colour values until
finished.

To save a screen: GOSUB 60000
To load a screen: GOSUB 60050

68000 OPEN 2,8,2,"@8:TEST,S,W"
468818 S=PEEK(448)*256:C=55294

680820 PRINTH2,PEEK(53280);"," ; PEEK(53281
) ;CHR$(13);

68838 FOR I=S TO S+999:PRINT#2,PEEK(I);"
. " ;PEEK(C+I-S) ;CHR$(13) ; :NEXT I:CLOSE 2

38 Peripherals

48848 RETURN
48858 OPEN 3,8,3,"TEST,S,R"

460040
1,B

INPUTH#3,A,B:POKE 53286 ,A:POKE 5328

48878 S=PEEK(&48)#%256:C=5529s
68888 FOR I=S TO S5+9%9%:INPUT#3,A,B:POKE
I,A:POKE C+I-S,B:NEXT I1:CLOSE 3:RETURN

Because numbers are written as their ASCII codes three to five bytes
are used for each value (spaceXXXreturn). Therefore, using this
method we will generate a sequential file of between 6 and 10K, which
seems rather excessive. The second method reduces the size of this

file.

Screen save using characters

This time a single byte is used to store each value in the screen and
colour maps. This is done by simply peeking the value and generating
the corresponding cHrs character with the asco function. Zero values
must be trapped as Asc® will give a syntax error. The resulting file uses
only one byte for most values and the file size is therefore about 2K.

This is obviously far faster to generate and restore.

4600600
s&0010
600208

To save a screen: GOSUB 60000
To load a screen: GOSUB 60050

OPEN 2,8,2,"28:TEST,S,W"
S=PEEK(448) ¥256:C=55294
PRINT#2,CHR$ (PEEK(5328@)) ; CHR$ ¢ PEE

K(53281));

666830

FOR I=S TO S+99?:PRINT#2,CHR$(PEEK

(I>);CHR$(PEEK(C+I-S));:NEXT 1:CLOSE 2

460840
468850
6004680
468870
600860
680980
6100
66118

THEN
601280

RETURN
OPEN 3,8,3,"TEST,S,R"

GETH3,A$:1F A$="" THEN A$=CHR$(8)
POKE 53288 ,ASC(A$)

GETH3,A$:IF A$="" THEN A$=CHR$(@)
POKE 53281 ,ASC(A$)
S=PEEK(448) 256 : C=55294

FOR I=S TO S+999:GET#3,At:IF As=""
A$=CHR$(8)

POKE 1,ASC(A$):GETH#3,A$:IF as="" T

HEN A$=CHR%$(8)

681386

POKE C+I1-S,ASC(A%$) :NEXT I:CLOSE 3:

RETURN

Peripherals 39

Machine code screen save

This is by far the best method. It is very simple to use the KERNAL LOAD
and save for both the screen and colour maps. Using these as they
stand, two files would be generated - one for the colour map and one
for the screen. This is no hardship, but a relocated load would be
required if a screen is being restored to a different location from
whence it came. This is not difficult, but perhaps is not the best way.

We have approached the problem slightly differently. Before per-
forming the save, the screen and colour maps are combined into a 2K
block at a convenient address. This has to be out of the way of Basic to
avoid corrupting program or data areas. This could be a reserved area
at the end of BAsiC or even under Basic RoM if a switch like that used in
the uTiuTY is implemented to throw out and restore ROM. This is pos-
sible as no BAsIC ROM calls are made. For this example we have chosen
to move the screen from its current position to $C400 and the colour
map to $C800. The routine also saves the sprite pointers and if you do
not wish it to do so then you will have to modify the code to move 1000
rather than its current 1024 bytes from or to each area.

All the routine does to save is to move both screen and colour maps
then use the KERNAL SAVE from $C400 to $CC00. To restore the screen it
is reloaded to $C400 and moved back to the colour map and the
current screen position.

BASIC loader for screen save

The following must be loaded and run before it can be called. Once
run it may be saved using an extended monitor for ease of loading
later.

1 DATA 32, 253, 174, 281, 7&, 208, &, 16
9, @, 133, 87

2 DATA 248, 11, 201, 83, 248, 3, 32, 8,
175, 169

3 pATA 255, 133, 87, 32, 115, @, 32, 253
, 174, 281

4 DATA 34, 24@, 3, 32, 8, 175, 32, 115,
8, 165

S DATA 122, 133, 187, 165, 123, 133, 188
, 168, 8, 177

&6 DATA 122, 201, 34, 248, 8, 206, 192, 1
9, 288, 245

7 DATA 32, 8, 175, 132, 183, 152, 24, 16
1, 122, 133

8 DATA 122, 144, 2, 238, 123, 32, 115, @
, 32, 253

? DATA 174, 144, 3, 32, 8, 175, 54, 233,
48, 133

40 Peripherals

18 DATA 186, 169, 1, 133, 184, 133, 185,
169, @8, 133

11 DATA 88, 133, 98, 133, 92, 133, 94, 1

73, 136, 2

12 DATA 133, 8%, 149, 194, 133, 21, 169,
216, 133, 93

13 DATA 189, 268, 133, 95, 185, 87, 248,
43, 168, 8

14 DATA 162, 4, 177, 88, 145, %8, 177, ¢
2, 145, 94

15 DATA 266, 288, 245, 238, 89, 238, 91,
238, 93, 238

16 DATA 95, 282, 288, 234, 186, 74, 144,
?5, 169, 196

17 DATA 133, ?1, 1469, 98, 32, 214, 255,
32, 115, @

18 DATA 74, 165, 87, 32, 213, 255, 148,

8, 182, 4

19 DATA 177, 98, 145, 88, 177, 94, 145,
?2, 286, 288

286 DATA 245, 238, 8%, 238, 91, 238, 93,
238, 95, 282

21 DATA 288, 234, 32, 115, 8, 94, 8, 255
, 255, 8

22 FOR [I=49152 TO 493&42:READ A:POKE 1,A:

NEXT 1

nb"basic2"

To save a screen: SYS 49152,S, ““filename’’,DEVICE
SYS 49152,S, “@0:filename’ ,DEVICE to
replace on disk

To load a screen: SYS 49152,L, " filename’’, DEVICE

All parameters are required and an illegal or missing parameter will
produce a SYNTAX ERROR. A file name or a minimum of """’ is required,
even with cassette. Remember all bytes following a sys command are

ignored.

The following is the assembly listing, which should be self-
explanatory. The first part of the routine is our own version of ‘GET
PARAMETERS' and is a useful technique when passing parameters to a
routine enabled with a svs. CHRGET (see Chapter 3) is used to gather the

necessary bytes.

Peripherals 41

ASSEMBLY LISTING

Set up the parameters - common to both LOAD and SAVE
Cese 26FDAE JSR $AEFD check for comma

ces3 Ce4C CMP #%$4C is next char L for LOAD
cees Dess BNE $C88D no then test for SAVE
ces7 Avea LDA #$80 set flag at 57

ces? 8557 STA %357 to zero for later use
CeeB FeeB BEG $Ce18 always taken if LOAD
ceep C®53 CMP #$33 is it 5 for SAVE ?

C8BF Fee3 BEQ <#C@814 if so continue

Ca11 2888AF JSR $AF08 not L or S=SYNTAX ERROR
C814 AFFF LDA H$FF set flag to FF for save
Ceils 8557 STA %57

ce18 287368 JSR 48873 inc CHRGET (see ch.4)
Ce1B 28FDAE JSR $AEFD next comma

Cele C922 CMP #4$22 opening quote of name
Caze Fee3 BE@ %C825 0K so continue

Cez22 28884F JSR $AFB8 no quote so SYNTAX ERROR
Ce25 287368 JSR %8873 inc CHRGET to name

C828 AS7A LDA $7A set FNADR low byte

CezA 85BB STa $BB

Ce82C AS7B LDA $7B do same for high

Ce2E 85BC STA $BC

Ce36 Aeoee LDY #¢68 find length of name

Ce32 Bl17A LDA ($74),Y by searching for closing
ce34 Cy22 CHMP #$22 quote

Ce3s Foes BE@ 4Cede found it so exit

ce3s cCs8 INY

Ce3? Cei3 CPY #$13 limit of 1é chars +3 for
Ce3B DBFS BNE #C832 *38:" toreplace on disk
C83D 2888AF JSR $AFEB8 >1imit so SYNTAX ERROR
Ced4e B84B7 STY $B7 store length in FNLEN
ce42 98 TYA

Ced43 18 CLC

Ced44 457A ADC $7A set CHRGET to end quote
Ceds 8974 STA %74 low byte

Ced48 90862 BCC #Ce84C

Ceda E&7B INC $7B inc high if page crossed

Ce4C 287360 JSR 48873 get next byrte

CB4F 26FDAE JSR $AEFD comma ?

Cesz2 9083 BCC $C@57 oK

CB54 2808AF JSR $AF68 no then SYNTAX ERROR
ces7 38 SEC

ced8 E®38 SBC #$38 make byte a number 8-9
Ce5A 85BA STA $BA store current device-FA
C85C AYel LDA #3081 set secondary add to |

42 Peripherals

C85E B85B8 STA 4B8 and store at SA

Ces8 B85B9? STA B¢ same for logical file-LA
Set up pointers to be used in the move

Cesz Ayee LDA #H$00

Ceé4 8558 STA 458

C846 B85S5A STA $5A

€848 855C 5TA 45C

C84A B8S5SE STA $5E

C84C ADBBBZ LDA 48288 find the current screen
CB84F 8559 STA $59 start from HIBASE

C871 A%C4 LDA #3C4

Ce73 855B STA $5B

Ce75 A%DS LDA #$D8

Ce77 855D STA $5D

Ce79 APC8 LDA #3C8

Ce7B 855F STA $5F

Ce7D AS57 LDA $57 8 for LOAD

Ce7F FazB BEG@ $CBAC do LOAD

Move screen and colour to one block and perform SAVE
Ces81 Aeee LDY #¢60 SAVE use Y within page
Ce83 Az284 LDX #$04 and X for page counter
C885 BIS8 LDA ($58),Y read byte from screen
Ceg87 915A4 STA ($5A),Y store at combined area
Ces? BI5C LDA ($5C),Y get char colour

CcesB 915E STA ($5E>,Y store in comb area+$0400
cesD cCs8 INY

CB8E DBFS BNE $C885 crcle for one page

ce?8 E459 INC $59 inc all high bytes

Ces2 E&5SB INC $5B

C8¥4 E&SD INC $5D

CB?é E&SF INC $5F

Cev8 CaA DEX dec X and

Co9? DBEA BNE $CB85 repeat till 4 pages done
C89B A4SE LDX $5E X holds low end of save
Ce?D A4SF LDY $5F Y the high byte

Ca9F A?C4Y LDA #$C4 use BSA/5B on zero page
Ce8Al 855B STA 5B for start of SAVE

CaA3 A?5A LDA #$5A A must hold offset SA

CBAS 28D8FF JSR $FFD8B do SAVE
CeAa8 287366 JSR %6873 must inc CHRGET before

CeAB 48 RTS returning to BASIC
Perform LOAD and split block into char and colour maps
C8AC AS557 LDA 457 read flag - A=8 for LOAD
C8AE 28DSFF JSR $FFDS do LOAD

CéeBl1 Aeee LDY #+068

CeB3 Az264 LDX #%84

Peripherals 43

CeBS B15A LDA ($54),Y reverse of SAVE

ceB7? %158 STA ($58),Y even if the screen
CeB? BISE LDA ($5E),Y was at a different
ceBB ¢%15C STA ($5C),Y location at the time of
ceBD (8 INY SAVE it will go to the
C8BE D@F35 BNE $C8BS current position

CeCe® E&59 INC %59

CeC2 E&SB INC $5B

CeC4 E&SD INC $5D

C8Cé E&SF INC $5F

cecs CA DEX

C8C? DBEA BNE $C@BS

cecB 287388 JSR 48873 must inc CHRGET before
CaCeE 48 RTS returning to BASIC
Disk

This section deals with the 1541 disk drive though much is directly
applicable to the 3040 and 4040 units.

The manual supplied with the 1541 contains all the information that
most users will require. Perhaps the most difficult to master are the
direct access programming commands such as BLOCK-READ, and so on.
There is only one way to become proficient in their use and that is to
experiment. When experimenting we suggest you use a disk con-
taining unwanted information as disasters can happen.

We supply only one utility in this section which we like to think of as
an expandable disk utility. Once direct access programming is
mastered, there are all sorts of fun things you can do. To use it to its
best advantage you have to know something of how the disk operates
and how information is stored. To this end we give below a very short
introduction and would refer you to the 1541 manual itself.

Introduction
The 1541 is a self-contained, intelligent device. It has two processors
and its disk operating system (DOS) in ROM along with an area of RAM
used for input/output (buffering) operations. This differs from, say, the
BBC Micro where the interface is within the micro itself and, depend-
ing on the type of interface, removes RAM from the user area. The
disadvantage to this self-contained arrangement is that you cannot use
non-Commodore units (there are one or two now available) as most
disk manufacturers do not supply a suitable controller and DOS.
Almost the whole of the disk’s capacity can be used to store data
except for one or two reserved areas. The disk is divided into tracks
which are further subdivided into a varying number of sectors. Tracks
are numbered from 1 through to 35 whereas sectors start at zero. The
following is the arrangement for both the 1541 and 4040 units (see
Table 6.1, 1541 manual):

44 Peripherals

TRACK SECTOR TRACK SECTOR

1-17 0-20 25-30 0-17
18-24 0-18 31-35 0-16

In order to know where to find information, the disk uses an index or
directory track. This is track 18 and it has two special areas. The first is
track 18 sector @ and is the Block Availability Map (BAM). This keeps a
record of all sectors in use unless direct access programming opera-
tions have been used without a BLOCK-ALLOCATE command. If this is the
case then the information is there, but can be overwritten as it is empty
as far as DOS is concerned. The entries in BAM are made up as follows
(see Table 5.1 of manual):

BYTES CONTENTS

000-001 Pointer to start of directory 18/01
002 Holds an ‘A’ for 4040 format
004-143 Four bytes for each of the 35 tracks

indicating whether in use 1=free @=allocated
144-161 Disk name plus shifted spaces to make 16 in total
162-163 Disk ID
165-166 Disk version of 2A

Each track uses four bytes in BAM. The first stores the number of free
sectors on a track and is used in computing BLOCKS FREE. The remaining
three are used to indicate whether a particular sector is allocated (bit
set low and one bit per sector). As the maximum number of sectors is
21, not all bits are used. The following is a dump of BAM from which
you can pick out the information given above. All values are given in
hex with the byte position within the sector given first followed by this
byte’s value and the next seven and at the end of the line the equiva-
lent ASCII characters (if printable):

START BYTES ASCII

00 12 .01 41 00 15 ff ff 1f ..a....
08 15 ff ff 1f 15 ff ff 1f ...
10 15 ff ff 1f 15 ff ff 1f ...
18 15 ff ff 1f 15 ff ff 1f ...
20 15 ff ff 1f 15 ff ff If

28 15 ff ff 1f 00 00 00 00
30 00 00 00 00 00 00 00 00

90 42 4f 4f 4b 20 50 52 4f book pro
98 47 52 41 4d 53 a0 a0 a@ grams
af ad a@ 31 31 a@ 32 41 a@ 11 2a

Peripherals 45

The file information starts on track 18 sector 1 and can continue
throughout the remainder of the track. Each file uses 32 bytes.
Therefore, one sector can hold information for eight entries. With a
possible 20 sectors available, information could be held for 160 files.
This is unlikely to happen as each file would have to be less then 1K.
The directory format is such that bytes 0-31 hold file 1, 32-63 hold file
2, and so on. Each entry is divided up as follows (see Table 5.3 of the
1541 manual):

BYTE CONTENTS

000-001 Next directory track and sector. A track of 0
indicates last sector in use. These bytes only used for the
first entry.

002 The type of file $00=scratched or not in use.
$80=ntLeted (scratched unclosed) $81=sequential
$82=program $83=user $84=reLative $1-4=unclosed

003-004 Starting track and sector of file

005-020 Name padded with shifted spaces

023 Record size of relative file

028-029 New track and sector for disk ops with replacement — @

030-031 Number of blocks file uses in low/high byte format

Below is a typical dump of the first directory sector, track 18 sector 1,
for two file entries:

START CONTENTS ASClHI

00 12 04 82 11 00 44 55 4d dum
08 50 2e 4d 49 4b a0 a@ ad p.mik
10 a0 a0 a® a@ ad® 00 00 00
18 00 00 00 00 00 00 Od 00
20 00 00 82 11 03 44 55 4d ... dum
28 50 2e 4d a0 a0 a0® a@ a®@ p.m
30 ad a0 a0 a0 a0 00 00 00
38 00 00 00 00 00 00 01 00

It is worth noting that directory sectors do not follow sequentially. The
same is true for file storage, as can be seen when using the disk utility.

Just to round things off, here is a dump of a Basic program which
occupies less than one block. Itis in fact the loader for the uTiLiTy at the
end of Chapter 9.

46 Peripherals
START CONTENTS ASCII

00 00 4B 01 08 24 08 0A 00 .K..$...
08 41 B2 41 AA 31 3A 8B 41 AA1:A
10 B2 31 A7 93 22 55 54 49 .1..”UT1
18 4C 49 54 59 20 44 41 54 LITYDAT
20 41 22 2C 38 2C 31 00 3C A”,8,1.<
28 08 14 00 8B 41 B2 32 A7 ...A.2.
30 93 22 55 54 49 4C 49 54 “UTILIT
38 59 22 2C 38 2C 31 00 47 Y”,8,1.G
40 08 1E 00 9t 33 32 37 363276
48 38 00 00 00 A2 00 00 00 8.......

As it is less than one block, the linking track is zero, denoting the end.
Itis a straight copy of the RAm and like the memory dump in Chapter 1,
we can pick out the link addresses, end of program, and so on.

Disk utility

This utility offers many of the housekeeping commands and provides a
number of more interesting options. It is rather long as most of the
subroutines are complete in themselves (to allow you to extract only
those you want for your own programs). The listing has been left in
lower case and when you are typing itin, it is easiest to put the 64 into
that mode with the shift and logo keys. [t makes extensive use of direct
access programming so we suggest you use the information given
above and the relevant sections of the 1541 manual to follow it. It has
been run through the utiLTY’s cOpeR command to produce the
mnemonics. Most annotated characters are cursor moves, colours or
simply capital letters.

The usual options of NEW, VALIDATE, SCRATCH, INITIALIZE, RENAME, COPY
(within a drive) and READ DISK ERROR are all present. The directory option
is unusual in that everything is input or displayed in hex notation. A
much shorter way to get a directory is given in the Backup utility at the
end of this chapter. The option also displays the first track and sector
of a file, and if it is a program, also its load address. The listing is
further split up into directory sectors and will display even scratcHed
or peLeTed files if the disk has not been vauipaTed. Two values are given
for the BLOCKs Free — the usual value exclusive of erased files and
another inclusive of erased files. An erased file simply has its associ-
ated BAM set to 1 (not allocated).

The TrRACE option follows a file through displaying its associated
tracks and sectors. It will also check to see if the file it is following is
scratched. If this is the case, it will ask whether you wish to recover it.
If your answer is ‘yes’, then as it traces it will also allocate each block.
Providing that all the blocks found were free it has recovered the file. If
an allocated block is found then the original area of the file has been

Peripherals 47

overwritten and recovery is not possible and you will be told. If the
scratched file has been successfully traced, all that remains to be done
is to use the MOD/DISP BLOCKS option to change its ‘file type’ byte (third
byte in its entry) from @ back to $81 or $82. The revised directory block
must be rewritten to complete the process.

The MoD/DISP BLOCKS option is similar to the demonstration disk’s
program ‘DISPLAY TRACK AND SECTOR’. The main difference is that it also
allows the block to be modified and rewritten to disk. When the block
is written it is also allocated. The usual options to review again and get
the next track and sector are available. The subroutine called at 1680 is
a little unusual and merits some explanation. Earlier in the chapter
under the heading ‘Keyboard’ it was mentioned that a file could be
opened to it. This eliminates the ‘?’ prompt and also releases the
cursor. The cursor may then be moved to the appropriate line, hex
values changed and on pressing RETURN the revised values are pro-
cessed and written to the disk buffer. The same 128 bytes are then
redisplayed by reading from the buffer. At the end of a block the
option to write the changes must be taken to change it on disk. It is
also possible to recover files using this option by following a file
through taking the next track and sector option (first two bytes) and
always writing the changes. Unlike TRACE, it does not check to see if a
file can be recovered. Files in which a READ ERROR occurs may also be
reconstructed. This we discovered when the eAsy scripT appendices file
of this book was corrupted. All we did was modify the next track and
sector bytes of the preceding block to skip the corrupt block. The
resulting file could be read with the loss of only 256 bytes (and was
immediately saved on another disk).

The AppPeND for program files is the same as that in Chapter 5 (where it
is fully explained). The ApPeND for sequential files (and scRATCH) builds
the command string (separated by commas) before actioning on RETURN
with no input.

The final option is to modify the disk’s header. This is done by simply
reading BAM, moving the buffer pointer and writing in the new values.
It is worth noting that whenever a byte is read, the buffer pointer is
moved forward one position. So in order to write to the same position
at which the read started, the pointer must be set using a ‘B¢’
command.

The utility is not foolproof, but with a little attention to detail, may be
used to advantage. Our last comment before the listing is to point out
that when you try to allocate an already allocated block error 65 NO
BLOCK occurs. This must be checked for and trapped as in MoD/DISP
BLOCKS. The locations of all the subroutines may be read from the IF
statements in lines 210-340.

48 Peripherals

188 poke 53272,23:poke 532806,&6:dim a%(1@
8),t%(3)

118 for i=86 to S:read t$(i):next i

128 data del,seq,prg,usr,rel ,???

136 print"[clsllg>dllg>illg>sllg>k] [g>u
Jlg>tllg>illg>11lg>illg>tllg>y1":print"L
cdllrevlig>nlloff] new disk"tab(28);"[re
vil[g>hlloffl change header"

148 print"lcdllrevlig>viloff] validate d
isk";tab(28);"[rev]lig>dlloff] directory"
158 print "[cdllrev]ig>tlloff] trace fil
e"j;tab(28);"[revlig>slloff] scratch file
(s)"

168 print"[cdlirevlig>rlloff] rename fil
e";tab(28);"[revligrelloff] read disk er
ror"

178 print"lcdllrevlig>clloff] copy file"
;tab(28);"[rev]ilg>alloff] append files"
186 print"lcdllrev]lig*blloff] backup fil
e";tab(28);"Ilrevlig>mlIloff]l] mod/disp blo
cks”

198 print"lcdllrevlig?>illoff] initialize
disk";tab(28);"[rev]lig>x]loff]l exit"
288 gosub 2348

2180 if y$="n" then gosub 53B:goto 138
2280 if y$="v" then gosub S88:goto 1386
238 if »$="r" then gosub é28:goto 138
2486 if y$="s" then gosub &78:gcto 138
258 if y$="e" then gosub 748:goto 138
268 if y$="a" then gosub 3éB:goto 13@
278 it y$="c" then gosub 848:goto 1386
288 if y$="d" then gosub 8%98:goto 138
298 if y$="h" then gosub 1248:goto 138
368 if y¥="x" then end

318 if y$="m" then gosub 1488:goto 138
328 if y$="i" then gosub 1748:goto 138
3386 if y$="t" then gosub 17éB8:goto 138
348 if »¥="b" then gosub 2138:goto 138
358 goto 138

368 rem append

378 print"[clsllg>all2g>pllg>ellg>nllg>d
Jlcdl":print"Ilrevlilig>plloff] prg fileslc
dl":print"lcdllrevlig>slloff] seq files"
388 gosub 236B:if y$<>"p" and y¥<{>"s" go
to 526

398 if ¥$="s" then gosub 778:return

Peripherals

480 rem prg files

418 print"[cdlappend prg files — sure":g
osub 2368:if y$<{>"y" goto 5286

420 input”"[cdlcombined prg";f$:input”"[3s
pclfirst prg";x1%:input"[2spclsecond prg
"sx2%

438 open 3,8,3,"@8:"+f$+" ,p,w":0pen 2,8,2
y"B:"+x1$+" ,p,r"

448 get#H2,ry%

450 x$=yt:getH2,y$:if st(>8 goto 478

468 gosub 233@:print#3,x$;:gotc 450

470 close 2:open 2,8,2,"8:"+x2%+" ,p,r"
486 getH2,y$:getH2,ys

498 getH2,x$:if st(>8 goto 518

088 gosub 233@:print#3,x$;:goto 496

518 close 2:print#3,chr$(8);:close 3

528 return

538 rem new disk

5948 print"[cdlnew disk - sure®":gosub 236
B:if ¥$<{>"y" goto 570

556 input"[cdlname”;f$:input”i.d.";y$:f$
=leftd(fE,18>+" ,"+lefts(y$,2)

568 open 15,8,15,"n@8:"+f$:close 15

578 return

588 rem validate

598 print"[cdlvalidate - sure®:gosub 2364
B:if ¥»$<{>"y" goto 618

688 open 15,8,15,"v":close 15

618 return

4628 rem rename

630 print"lcdlrename - sure":gosub 2348:
if »${>"y" goto 448

640 input"[cdlold file";f$:input”new fil
e";yd:fE="r@:"+y$+"="+§%

658 open 15,8,15,f¢:close 15

46468 return

678 rem scratch file

4688 print"l[cdlscratch - sure®:gosub 2340
rif yE<{>"y" goto 738

678 f¥="":print"lcdluse ¥ or ? for patte
rn matching"

788 print"hit return to deletelcdl®

718 input "delete";y$:if y$<{>"" then f$=
f$+" ,"+yb:y$="":1g90to 718

720 f$="s@:"+mide(f$,2):0pen 15,8,15,F%:
close 15

49

50 Peripherals

738 return

748 rem error

7508 open 15,8,15:inputd#iS,x$,f$,x1%,x2%:

close 1S:print®lcdllgrell2g>rlig>ollgir]
t"ix$,fE,x1$,x2%

768 gosub 2348:return

7786 rem append seq files

788 print"[cdlappend seq files — sure®:g
osub 2360:if y¥<{>"y" goto 838

798 print"lcdlhit return to appendlcdl”
8008 f¥="":input"[3spclnew";x$

818 input"append";y$:if ¥${(>"" then fe=f

$+","+"0:"+y$:y$="":q90t0 8180

820 f$="cB:"+xF+"="+mid$(f$,2):0pen 15,8
s 1S5:printd#1S, ¢

838 close 15:return

848 rem copy same disk

858 print"lcdlcopy — sure":gosub 2368:if
»${(>"y" goto 8886

860 input"lcdlnew";;f$:input"old";ryd:fe="
CO:"+f$+"="+"B:"+y$

878 open 15,8,15,+%

8808 close 15:return

828 rem directory

2808 print"lcdldirectory - sure®:gosub 23

s8:if yE{>"y" goto 12306

218 open 15,8,15:0pen 1,8,2,"#":t=18:5=6
:f$="":bf=08:bu=0

228 print#1S,"ul";2;08;t;s;:print#1S,"b-p
"323144:print"[clisl”";tab(l1@B);"[revl";

938 for i=1 to 1é:get#Hl, x$:gosub 2296:pr
intx$;:next i:print",";

248 print#1S,"b-p";2;162

258 for i=1 to 2:get#l,x$:gosub 22%98:pri

ntx$;:next i:print"loffllblkl":t=18:5=1

2?48 print"sblk filel13spcltype $tk $st %

addll blul"

P78 print#1S5,"ul";2;08;t;s:i=68:x=s:gosub

2280:print"I[blkltrk 12";" sct ";x$;3"[1 b
Tul"

288 get#!,x$:gosub 2338:t=asc(x$):getHl,

x$:g90sub 2338:s=asc(x%)

?98 i=i+l:print#lS,"b-p";2;Ci-1)%32+2:ge
t#1,x$:gosub 2338:x=asc(x$):ye=""

1668 for j=8 to S:if x=j then y$=t$(j)

18618 if j=8 then x=x-128

Peripherals

1626 next j:if y$="" then y$=t$(5)

18306 get#l ,xb:gosub 2338:x=asc(x$):gosub
2200 : t$=x%

1848 get#! ,x$:gosub 2338:x=asc(x$):gosub
2208 :s$=x%

1858 for j=1 to 1é:get#l,x$:gosub 2290:f

$=f$+x$b:next

1668 if y$<{>"prg" goto 18%0

1678 open 3,8,3,f%+",s,p":get#3,x$:gosub
2336 :x=asc(x%):gosub 2280:1%=x$

1888 get#3,x$:gosub 2338:x=asc{x%$):gosub
2200 :1%=x$+1%:close3

1890 print#15,"b-p";2;(i—-1)%32+30

1188 get#H!l ,x$:gosub 2330:j=asc(x$)

1118 get#l ,x$:gosub 2330:K=asc(x$)

1128 x=K:gosub 2206:bf$=x$:x=j:gosub 228

8:bfé=bfE+x$

1138 bu=bu+256%kK+j:if y$<{>"del" then bf=

bf+256%K+

1148 printbf$é;" ";f$;"[2spcl”";»$;"[25pc]
"st$;"[2spcl”isE;" " 1$:bfE=""1fE="" 1=

nn

11586 get y#:if y$<{(>"" then gosub 2340
1168 if i<{8 goto 990

1178 if t<>8 goto 978

1188 bf=644-bf:x=bf/256:90sub 2280:y$=x$
1x=bf-256:g90sub 2200:y$=y$+x$

1190 print"[yell";»$;* blocks freell blu
]ll

1200 bu=&644-bu:x=bu/256:gosub 2280:y$=x$
:x=bu-256:gosub 2200:y$=y$+x$

1216 print"[yell";¥$;" blocks free inc d
el files[l blul"

1228 gosub 234@:close 15:close |

1238 return

1248 rem change header

1258 print"[cdlchange header - sure":gos
ub 2348:if y$<>"y" goto 1398

12686 open 15,8,15:0pen 1,8,2,"#":t=18:s=
@:bf=@:f¢=""

1270 print#15,"ul";2;0;5t;s;:print#iS,"b-
P"32;144:print"[cdlcurrent:[2spcl”;

1286 for i=1 to 1é:get#l,x$:gosub 22%98:p
rintx$;:next i:print",”;

1298 print#15,"b-p";2;162

51

52 Peripherals

1380 for i=1 to 2:get#l,x$:gosub 2296:pr
intx$;:next i:print

1310 input"[dspclname” ;jfd:fé=leftS(fH+"I
16grspcl”,18)

1320 input"[dspcli.d."jyd:yé=leftdlyd+"x

X", 22

1330 print#15,"b-p";2;144

1348 for i=1 to 1é:print#l ,mide(f%,i,1);
tnext |

1358 print#15,"b-p";2;162

1368 print#1S,"b-p";2;162

1378 for i=1 to Z:printd#l mide(y$,i,12;5:
next i

1386 print#15,"u2";2;08;t;s:close 15:clos

e 1

1398 return

1408 rem modify and display blocks

1418 print"lcdImodify and display blocks
- sure":gosub 234B8:if y$<{>"y" goto 1678
14208 open 15,8,15:cpen 1,8,2,"#":f$=""
1438 input"l[cd] tracklcrl$[2cl]";ts:xs=t

$:gosub 225@:t=x:if %<8 or x>48 goto 143

a

1440 input"sectorlcrl®l2cll”;sk:x$=sb:go
sub 225B8:s=x:if x<{8 or x>28 goto 1438
1456 print#15,"ul";2;0;5t5s;:print#l3," "b-

p“;2;8

1450 get#l ,x$:gosub 2338:x=asc(x$d:tn=x:

gosub 2280:tn%$=x%

1470 get#! ,x$:gosub 2330:x=ascix$)isn=x:

gosub 2280:sn$=x%

1480 nt$="[3spcllg>nllgrellg>xllgrtl:lg>

tilg>rllg>allg>cllig>k]l "+tn$+" [g>sllare
lJlg>cllg>tlilglollg>r]l "+sn#

1490 ct$="[g>cllg>ull2g>rlligrellg>nlig>t
J:[g>tllg>rllg>allg>cliligrk] "+t$+" [gi>s]
[g>ellg>cllg>tllgrolligir] "+s%

1508 print"[clsl”;cté:printnts

1518 print#15,"b-p";2;0

1520 for i=8 to 1S5:f$="":x=i*8:gosub 22@
B:printx$;" "j;:for j=8 to 7

1538 get#l ,x$:¥y$=x$:gosub 233B:x=asc(x$)
:gosub 2288:printxs;" "

1548 x$=y$:gosub 2298:f$=f$+x$:next J:pr
intf$:next i

1558 gosub 1488:if y$="y" goto 15600

Peripherals

1548 print"[clsl";cté:printnts

1576 print#135,"b-p";2;128

1588 for i=16 to 31:¥$="":x=i*8:g90sub 22
@0:printx$e;" ";:for j=0 to 7

1598 get#Hl ,x$:y$=x$:gosub 2338:x=asc{x%>
tgosub 2200 printx$;" ";:

14688 x$¥=y$:gosub 2298:f$=Ff$+x$:next j:pr
intfé:next i

1618 gosub 1488:if y$="y" goto 1548

1628 print"review again":gosub 2388:if »

$="y" goto 1580

1638 print"write changes":gosub 23&48:i+f

y&="y" then print#15,"u2";2;0;5t,s

1648 if y$="y" then print#i1S,"b-a";8;t;s
:gosub 23%8

1658 print"next t/s":gosubZ23é8:if »$="y
thent=tn:s=sn:t$é=tnk:s¥=sn$:goto 14586
1668 close l:close 15

1678 return

14688 rem any changes

1698 print"any changes":gosub 2368:if »%
{>"y" goto 1738

1788 open 9,8:inputd#?,ad:close 9

1718 x$¢=left$(a$,2):gosub 2258:print#15,
"b-p";2,x

1728 for i=8 to 7:x$=mid$(a$,4+i%3,2):g90

sub 225@:print#l,chr$i(x);:next i

1738 return

1748 rem intialize disk

1758 open 15,8,15,"i8":close 1S:return
1768 rem trace file

1776 print"[cdltrace file - sure":gosub

2368:iF y$<{(>"¥" goto 2128

1788 input"[cdlfile";bf$

1798 open 15,8,15:0pen 1,8,2,"#":t=18:s=
1:fg=""

1866 print#15,"ul";2;8;t;s:i=0:f%=""
1816 get#l ,x$:gosub 2338:t=asc(x$):getHl
s Xx$:gosub 2336:s=asc(x$)

1828 i=i+l:print#l15,"b-p";2;(i—-1)%32+2:9

et#l ,x$:gosub 2338:x=asc(x$):y=""

1838 for =8 to S5:if x=j then y$=t$(j)
1848 if j=8 then x=x-128

1858 next j:if y$="" then y$=t$(5)

1848 get#l ,x$:gosub 23308:x=asc(x$):gosub
2280 : t$=x%

53

54 Peripherals

1876 get#l,x$:gosub 2338:x=asc(x$):gosub
2280 :s$=x%$

1888 f#="":for j=1 to 1é:get#l,x$:g90sub

2290 : fd=f$+x$:next j

1898 if lefts(f¢,len(bf$))=bf$ goto 1930
198686 if i=8 and t>8 goto 1868

1918 goto 1828

1928 if t=8 goto 2128

19386 print"[clslirevltrace ofloff]l ";bfs¢
;" file type ";yd:print:fte=y$:no=0

1948 i ft¥="del" then print"recover fil
e" :gosub 2348

1956 print#15,"b-p";2;(i-1)%32+3

19468 get#l x$:g9osub 2330:t=asc(x$):get#Hl
yXx$:gosub 2330@:s=asc(x$)

1978 x=t:gosub 2208:t$=x$:x=s:gosub 2260
ts$=x¢$

1988 print"track ";t$;" sector ";s$

1998 if »y$<{(>"y" goto 2830

2688 print#15,"b-a";8;t;s:inputé#iS,e:if

e{>é5 goto 2836

2818 print"recovering not on as a suppos
edly"

2828 print"free block is allocated.":no=
1

2636 print#15,"ul";2;08;t;s

2840 get#l ,x¥:gosub 2338:t=asc(x$):get#l
yx$:gosub 2338@:s=asc(x$)

2858 if t=8 goto 2870

2848 goto 1970

2878 if fté="del" and y$="y" and no=8 go
to 2896

2888 goto 2110

2890 print"recovery ok remember to chang
elﬂ

21886 print"directory track and file type

2118 gosub 2348

2128 close l:close 1S:return

2138 rem backup

2148 print:print"backup file"

2156 print:print“lg>tlo allow larger fil
es to be backed up"

2168 print"on both disk and cassette a s
eparate”

Peripherals 55

2176 print"utility has been provided.[3s
pcllg>flor "

21806 print“smaller files code could be i
ncluded here."

2198 gosub 23é8:return

2288 rem dec-hex

2218 x=x and 255:x1=int(x/18):x2=x and 1
S

2220 x1$=chr$(48+x1):if x1>9 then x1%$=ch
ré(S55+x1)

22308 x2%=chr$(48+x2):if x2>9 then x2%=ch
r$(55+x2)

2246 x$=x1%+x2¢%:return

2250 rem hex-dec

2268 x$=right$("66"+x$,2)

2278 xl1=asc(x$)-48:x2=asc(midd(x$,2))>-48
2280 x=16%(x1+7%(x1>9))+x2+7%(x2>9):retu
rn

2296 rem convert to ascii

2388 if x$=chr$(168)> goto 2326

23108 if x¥<{" " or x$%>"z" then x%="."
2328 return

2338 rem eliminate null string

2348 if x¥="" then x$=chr$(8)

2350 return

23408 rem wait

2378 get y$:if y$="" goto 2376

2388 return

2398 rem error on b—a check

240808 input#iS,ent,em$,etd,esk:if ent{"20
" or en$="65" then return

2418 close 15:print:printen$,em$,et$,ess
tgosub 2366:run

Many more options could be provided and some of the existing
options could be made fully automatic. These are exercises for you to
carry out.

BACKUP

We have produced this utility to allow selective backing-up of files
between disk and tape, from disk to disk and from tape to tape.
Commodore provide an excellent 1541 BACKUP program on the
demonstration disk, but it only backs up whole disks. The following
allows selective backing-up of single files, whether they be program or
sequential. It could be modified to do more than one file when going

56 Peripherals

between disk and tape, providing that the details of each file were
known in advance. We wrote the program to avoid the need to pro-
duce a special program for sequential files and the use of an extended
monitor to copy machine code. BASIC programs can, of course, be
duplicated by a simple load and save sequence.

The program is in two parts: the machine code and the Basic driver
which uses the machine code for program files. The following des-
cribes the driver:

LINE ACTION

100 Set top of memory to $1800/6144
110 Setsource device and check whether valid
120 Do same for destination device
130 Contents of disk or tape
150 Set prog or seq file, if not known use 130
170- Go to appropriate subroutine for source, destination and file
type
Subroutines

250- Seq file from disk to tape so read byte/write byte until status
says end of file.
Requires a file name.

290 Seqtape to disk

290 Read header and display info with sub 700 and if non-ASCIlI in
name then offer chance to change name.

310 Final check on name.

330- Read and write bytes until status says end of file

370- Seq tape to tape. Has a limited capacity.

370 Check for non-ASCll and option to change name.

410- Read in bytes until end of file or until rRam filled eliminating
ASC(0) on the way to avoid errors.

450 Warning - only part of file read.

480 Write to destination tape

490 Pause for destination tape

510- Seq disk to disk. Same principle as for tape above

610 Pause for destination disk

630 Simple wait for any key

650 Print TAPE Or DISK in set up

696 Contents of next file on tape and prompt to rewind
700 Display tape buffer in full - highlighting any non-ASClI
750 Getfile name

Peripherals

760 Eliminate trailing spaces in file name
800 Display directory of disk

940- Prog file disk to disk.
940 Get file name and set it up in cassette buffer
950 Fill up rest of buffer with spaces

960 Set length of name register — FNLEN and enter m/c to do a

relocated load
980 Delete file from destination disk
990 Do relocated save

1010- Prog disk to tape. Initial part as for disk to disk
1040 Write header created
1045 Write RAM

1060 Prog tape to tape
1100 Prog tape to disk checking as before

BASIC PROGRAM

166 POKE 52,24:POKE 56,24:CLR

118 PRINT*I[CLSIBACKUP UTILITY" :PRINT"IL[CD
JFROM T/D";:GOSUB &58:F$=Y%

1286 PRINT"ICDIL2SPCITO T./D";:G05UB &56:T
=YY%

138 PRINT"[CDICONTENTS T/D":60SUB &38:1F
Y$="D" THEN GOSUB 8686:G0T0 136

148 IF Y#="T" THEN GOSUB &4%9@8:GOTO 136
158 PRINT"I[CDITYPE P/S";:G0SUB &38:1F Y%
O"PY AND Y$<>"S" GOTO 158

168 FT$=Y$:PRINT " ";FT%$

1786 IF F$="D" AND T$="T" AND FT$="5" THE

N GOSUB 258:RUN

188 IF F$="T" AND T#="D" AND FT$="S" THE

N GOSUB 298 :RUN

198 IF F$="D" AND T#$="D" AND FT$="S" THE

N GOSUB 3518:RUN

175 IF F$="T" AND T$="T" AND FT$="S" THE

N GOSUB 378 :RUN

20808 IF F$="D" AND T$="D" AND FT$="P" THE

N GOSUB 948 :RUN

218 IF F$="D" AND T$="T" AND FT$="P" THE

N GOSUB 1818 :RUN

2208 IF F$="T" AND T$="T" AND FT$="P" THE

N GOSUB 1848 :RUN

238 IF F#="T" AND T$="D" AND FT#$="P" THE

N GOSUB 1188:RUN

58 Peripherals

248
250

1,1,

268
278
280
290

RUN

GOSUB 756:0PEN 2,8,2,N$+",S,R" :OPEN
1,N$

GET#2,Y$:1F ST GOTO 280

PRINT#1,Y$; :G0TO 260

CLOSE 2:CLOSE 1:RETURN

OPEN 1,1,8:GOSUB 788:IF E=1 THEN GOS

UB 7586:G0T0 318

360
31e

GOSuB 740
PRINT"[CDIFILE NAME " ;CHR$(34) ;N$;CH

R$(34);" OK Y/N":60SUB 436

328
3360
346
3586
360
378
HEN
386
398

IF Y$="N" THEN GOSUB 75@
OPEN 3,8,3,"98:"+N$+",5,W"
GET#1,Y$:1F ST GOTO 3480
PRINT#3,Y$;:G0TO 340

CLOSE 1:CLOSE 3:RETURN

Y=6144:0PEN 1,1,8:G0SUB 788:1F E=1 T
GOSUB 75@::G0TO 390

GOSUB 740

PRINT"[CDIFILE NAME " ;CHR$(34) ;N$;CH

R$(34);" OK Y/N":G0SUB 438

400
418
4206
436
440
4580
ED"
4450
4708
4880

IF Y$="N" THEN GOSUB 756
GET#1,Y$:IF ST GOTO 448

IF Y$="" THEN Y$=CHR$(8)

POKE Y ,ASC(Y$)

IF Y<48959 THEN Y=Y+1:G0TO 418
PRINT"ICDIFILE TOO BIG ONLY 34K COPI

CLOSE1
GOSuUB 4%@
OPEN 1,1,1,N$:FOR I=46144 TO Y:PRINT#

1,CHR$(PEEKC(I>); :NEXT 1:CLOSE 1:RETURN

498

&30 :

See
Sie
4

526
538
546
5586
560
ED"
5768
o868

PRINT"[CDIDESTINATION TAPE Y" :GOSUB
IF Y$<{>"Y" GOTO 4986

RETURN

GO5SUB 758:0PEN 2,8,2,N$+" ,S5,R":Y=614

GET#2,Y$:1F ST GOTO 578

IF Y$="" THEN Y$=CHR$(@)

POKE Y,ASC(Y$)

IF Y<4895%9 THEN Y=Y+1:GOTO 520
PRINT"[CDIFILE TOO BIG ONLY 34K COPI

CLOSEZ2
GOSUB 418

Peripherals

598 OPEN 3,8,3,"20:"+N$+",S,W" :FOR I=614
4 TO Y:PRINT#3,CHR$ (PEEK(I)) ; :NEXT I

608 CLOSE 3:RETURN

618 PRINT"[CDIDESTINATION DISK Y":GOSUB
638:1F Y$<>"Y" GOTO 418

428 RETURN

638 GET Y$:IF Y¢="" GOTO é3@

648 RETURN

658 GOSUB &3@:1IF Y$="T" THEN PRINT" TAPE
*:GOTO 4886

668 IF Y$#="D" THEN PRINT" DISK":GOTO &80

878 GOTO &56

688 RETURN

698 PRINT"ICDI":0PEN 1:CLOSE 1:G05UB 788
:PRINT"I[CDIIREVIREWIND TAPE[OFF1" :RETURN

788 PRINT"TYPE FILENAME" ;SPC(18) ;"BUFFER
START" : I=PEEK(828) :E=8

718 Y$=" PRG ":IF Y=4 THEN Y$=" SEQ *

720 PRINTY$;"[REV]";:FOR I=833 TO 1819:X

=PEEK(I):IF X<{32 OR X>95 THEN X=63:E=1

738 PRINT CHR#$(X);:IF I=84%9 THEN PRINT"*I[

OFF1<";

748 NEXT I1:PRINT">IREVIENDIOFF]" :RETURN

758 INPUT "[CDIFILENAME" ;N$:N$=LEFT$(N$,

16) :RETURN

768 N$="":FOR 1=848 TO 833 STEP -1 :X=PEE

K{(I)

778 1F X=32 AND N$="" GOTO 7908

788 N$=CHR$(X)+Ns$

798 NEXT I:RETURN

868 PRINT"[CLS1";:0PEN 1,8,08,"$0" :GET#1,

Y$,Y$

816 I=0:GETH#1,Y$,Y$,Y$,X$:IF Y${>"" THEN
I=ASC(Y$)

820 IF X$<{>"" THEN I=1+ASC(X$)*254

838 PRINTRIGHT®("[2SPC]1"+STR$(I1)>,3);" ";
:1=8

848 GET#1,Y$:IF ST GOTO 936

856 IF Y$=CHR%(34) THEN I=I1+1:PRINT CHR%
(34)>;:6G0T0 848

848 IF I=8 GOTO 8489

878 IF I=1 THEN PRINT Y$;:6G0T0 84a

888 IF I=2 THEN PRINT TAB(22);:I=I+1

898 IF I=3 AND Y$=" " GOTO 8486

P88 IF Y$<>"" THEN PRINT Y$;:G0TO 849

59

60 Peripherals

918 PRINT:GET Y$:IF Y$<>"" THEN GOSUB 63
)

928 IF ST=8 GOTO 8186

938 PRINT "BLOCKS FREE":CLOSE 1:GOSUB 63
@ : RETURN

948 GOSUB 75@8:FOR I=1 TO LEN(N$):POKE 83
2+1,ASC(MID$(N$,1,1)) :NEXT I

958 FOR I=833+LEN(N$)> TO 1019:POKE 1,32:
NEXT I

948 POKE 183,LEN(N$):SYS 49244

978 PRINT"I[CDILIREVIFILE WILL BE DELETEDI
OFF1* :GOSUB 418

988 OPEN 15,8,15,"S8:"+N$:CLOSE 15

998 POKE 133,LEN{(N$):SYS 49343

1088 RETURN

1818 GOSUB 758:FOR I=1 TO LEN(N$):POKE 8
32+1,ASC(MID$(N$,I,1)) :NEXT I

18280 FOR I=833+LEN(N$) TO 1819:POKE 1,32
:NEXT 1

1838 POKE 183,LEN(N$):SYS 49244

1848 SYS 49283

1845 SYS 49206

18580 RETURN

1648 SYS 49152

1878 GOSUB 4%@

18086 SYS 49283

1885 SYS 49286

1698 RETURN

1188 SYS 49152

1118 GOSUB 788:IF E=1 THEN GOSUB 758 :GOT
0 1138

1120 GOSUB 748

1138 PRINT*ICDIFILE NAME " ;CHR$(34);N$;C
HR$(34) ;" OK Y/N":GOSUB &3

1148 IF Y$="N" THEN GOSUB 758

1158 PRINT"[CDIIREVIFILE WILL BE DELETED
[OFF1":GOSUB 418

1148 OPEN 15,8,15,"508:"+N$

1178 POKE 183,LEN(N$):SYS 49343

1186 RETURN

The following is the Basic loader for the machine code and must be
loaded and run before using the above program.

Peripherals

1 DATA 32, 44, 247, 173, 40, 3, 133, 255
, 169, 8, 133

2 DATA 193, 149, 24, 133, 194, S&, 173,

63, 3, 237

3 DATA 61, 3, 170, 173, 44, 3, 237, &2,

3, 168

4 DATA 24, 138, 1@1, 193, 133, 174, 152,
181, 194, 133

S DATA 175, 32, 162, 245, 165, 255, 141,
68, 3, 96

& DATA 32, 183, 247, 149, 8, 133, 193, 1

69, 24, 133

7 DATA 194, 56, 173, &3, 3, 237, &1, 3,
178, 173

8 DATA &4, 3, 237, 62, 3, 148, 24, 138,
181, 193

¢ DATA 133, 174, 152, 1e1, 194, 133, 175
, 32, 124, 244

186 DATA 94, 169, 96, 133, 185, 149, 1, 1

41, 48, 3

11 DATA 133, 184, 149, 8, 133, 184, 149,
@, 133, 195

12 DATA 133, 147, 149, 45, 133, 187, 149
, 3, 133, 188

13 DATA 149, 24, 133, 196, 144, 183, 32,
175, 245, 32

14 DATA 213, 243, 145, 1864, 32, ?, 237,
165, 185, 32

15 DATA 199, 237, 32, 19, 238, 141, &1,

3, 32, 19

16 DATA 238, 141, 62, 3, 32, 232, 244, 1

45, 174, 141

17 DATA 43, 3, 56, 165, 175, 233, 24, 14
1, 44, 3

18 DATA 24, 173, 61, 3, 1@%, &3, 3, 141,
63, 3

19 DATA 173, 42, 3, 189, 44, 3, 141, 644,
3, 96

20 DATA 149, 97, 133, 185, 169, 1, 133,
184, 149, 8

21 DATA 133, 186, 169, 65, 133, 187, 149
, 3, 133, 188

22 DATA 165, 185, 144, 183, 32, 213, 243
, 32, 143, 244

23 DATA 145, 184, 32, 12, 237, 165, 185,
32, 185, 237

61

62 Peripherals

24 DATA 149, @, 133, 172, 149, 24, 133,
173, 56, 173

25 DATA 63, 3, 237, &1, 3, 133, 174, 173
, 64, 3

26 DATA 237, &2, 3, 133, 175, 24, 169, 2

4, 181, 175

27 DATA 133, 175, 173, &1, 3, 32, 221, 2
37, 173, 42

28 DATA 3, 148, @, 32, 33, 246, 94, 255,
255, @

29 FOR 1=49152 TO 49432:READ A:POKE I,A:

NEXT I

Once this has been run it could be saved as its machine code for later
ease of loading. A detailed description of the machine code follows.

MACHINE CODE

The machine code is called by the driver as required. It consists of four
parts:

i) Read any header and do relocated load

i) Write to tape current header and write relocated code
iii) Load from disk retaining original details but relocate
iv) Save to disk relocated code with original details

Chapter 5 of the Programmer’s Reference Guide, ‘The KERNAL’, dis-
cusses the use of LOAD and sAve in detail. The entry points given are for
complete loads and saves (it is possible to do a relocated load, but not
a relocated save using these). Unfortunately, as we are using an all-
purpose BAsIC driver, these entry points may overwrite it. To overcome
this problem, every operation is carried out in two stages. The first is to
read or write the file’s details which are always stored in or taken from
the cassette buffer. This avoids having to do too much moving of
information. The second is to perform a relocated load or save with the
correct amount of code going to or being taken from $1800 on.

To do this we must enter the load and save routines at much later
points with the parameters already set. It would consume too much
space to describe these in detail, so we leave it up to you to follow
them through. The only tricks are to prevent a forced load to its
original address with a tape marker of 3 and to prevent a header being
written with a marker of 5 (when an end of tape has been written — see
Tape Headers).

TAPE

Peripherals 63

Read any tape header without loading

ceoe
cee3
ceess
cees
ceeA
ceec
CeeE
ceie
cet1
cei4
ce17
ceis
ceiB

CelE
CeiF
ceze
Ccez21
ce23
825
Ce2s
cez8

Load from %1860

CezA
ce20
CezF
ce32

282CF7
AD3C83
85FF
A780
85C1
A?18
85C2
38
AD3FB3
ED3D83
AR
AD4883
ED3EB3

A8
18
8A
é5C1
85AE
98
é65C2
85AF

2BA2ZFS
ASFF
8Dp3Ce3
68

JSR
LDA
STA
LDA
STA
LDA
S5TA
SEC
LDA
SBC
TAX
LDA
SBC

TAY
CLC
TXA
ADC
STA
TYA
ADC
STA
on

JSR
LDA
STA
RTS

$F72C
$833C
$FF
#s00
$C1
#e18
$C2

$633F
$633D

$0348
$833E

$C1
$AE

$C2
$AF

$F5A2
$FF
$833C

Write to tape in two parts
the code from $18680

Cce33
Ce3¢s
ce3s
Ce3A
Cce3C
Ce3E
Ce3F
ceq42
ce45
Ce4é
Ceq9
ce4c
ce4p
Ce4E
Ce4r

28B7F7
A780
85C1
A?18
85C2
38
AD3FB3
ED3D83
AA
AD4683
ED3EB3
A8

18

8A
65C1

JSR
LDA
STA
LDA
STA
SEC
LDA
SBC
TAX
LDA
SBC
TAY
CLC
TXA
ADC

on
$F7B7
#¢00
4$C1
#$18
$C2

$833F
$833D

$8340
$833E

$C1

read any header

get sec add

and store for later
set start of load
to $1868 by setting
STAL

subtract MSBs

of start and end

of original load
put result in X

do same for LSBs
putting answer in Y

find overall length

and add to STAL
to give the new
end i.e. $18060
plus result

do the relocated load
restore the sec add

in case end of tape 5

load complete
the correct header and then

write header in orig form
reset STAL as it

has been changed by
writing the header

recalc the relocated end
MSB

LSB

set up EAL

64 Peripherals

CesS1 85AE STA $AE
ces3 98 TYA

C854 &5C2 ADC $C2
CB54 B85AF STA $AF
Save RAM for reloading
Ces58 287CFs JSR $F&7C
Ces5B &8 RTS

DISK

Load from disk relocated to
CB5C A9s0 LDA #3%48
CeSE 85B9 STA $B?
Ceé8 A%81 LDA #s$081
Ceé2 8D3CB3 STA $833C
Ceé5 85B8 STA B8
Caé7 AYE8 LDA #¢%88
C849 85BA STA 4BA
CeéB AYe0 LDA #$80
CcesD 85C3 STA $C3
CasF 8593 STA 493
Ce71 A%41 LDA #3$41
to file name

Ca73 85BB STA 4BB
Ce75 A3 LDA #$83
Ca?7 85BC STa $BC
ce7? A?18 LDA #%$18
ce7B 85C4 STA 4C4
Ce7D A4B7 LDY $B7
C87F 28AFFS JSR $F5AF
cesz2 28D5F3 JSR $F3D5
€a85 ASBA LDA 4BA
Ceg87 2809ED JSR $EDB¢?
Ces8A ASB? LDA $B¢
Ceg8C 2eC7ED JSR $EDC?7
Ca8F 2813EE JSR $EE13
Ce?2 8D3D83 STA $833D
C89S 2813EE JSR $EE13
Ces8 8D3ER3 STA $B833E
Ce?B 28EBF4 JSR $F4ES8
CB?E ASAE LDA $AE
Cend B8D3FE3 STA $B33F
CBA3 38 SEC

CBA4 ASAF LDA $AF
CBAé EP18 SBC #$18
C8A8 8D4663 STA 48348

save RAM
complete

+18660

set sec add
put type 1 in tape buffer
make log file 1

make device 8

and put in FA

A=8 for load
set pointer to file name

in FNADR to TBUFFR + S

MEMUSS set to $18886
for relocated load
read len name set
print SEARCHING
print LOADING
get current device
send talk

get sec add

send talk sec add
receive from serial

and store LSB in TBUFFR
do same for MSB of start

in BASIC

do relocated load

get end LSB

put in TBUFFR

subtract relocated start
and end

and put in appropriate
locations of TBUFFR

Peripherals 65

CeAB 18 CLC

C8AC AD3D83 LDA 48330 leaving a header
CeAF 4D3F83 ADC $833F suitable for
CeB2 B8D3Fa3 STA $833F a tape write
CeBS AD3EB3 LDA $833E

CeB8 é&D4pa3 ADC 48340

CeBB 8D4883 STA $8348

CeBE 48 RTS back to BASIC
Save relocated code to reload at correct address
CeBF A%41 LDA #$41 set parameters
CaCl1 85B9 STA 4B¢?

CeC3 AY81 LDA #4061

CeCs 85B8 STA $BS

Cac? aAves LDA #4888

cec? 85BA STA $BA

CeCB Av41 LDA #$41

CeCD 85BB STA BB

C8CF A%83 LDA #4863

Ccebt 85BC STA $BC

CeD3 ASB? LDA $BY

CeDS AA4B7 LDY 4B7

CeD7 28DSF3 JSR $F3D5 send sec add
CeDA 208FF¢& JSR $F&8F print SAVING

CeDD AS LDA $BA send listen
CeDF 288CED JSR $EDBC device 8
CBEZ2 ASB? LDA $B? send licten
CBE4 26B9ED JSR $EDB? sec add
CeE7 A%08 LDA #¢80 set up SAL
C8E? 85aC STA 3$AC with $1800
CeEB A?18 LDA #$18

CBED 85AD STA $AD

CBEF 38 SEC

CeFe AD3Fe3 LDA $B33F calculate prog length
CeF3 ED3D83 SBC 48330 and put

CBFé B85AE STA S$AE in EAL

CéFg8 AD4083 LDA 48348

CeFB ED3EB3 SBC $833E

CeFE B85AF STA $AF

c1es 18 CLC

Cigt A?18 LDA #¢128 add $1868 to
C183 &5AF ADC 3$AF give relocated
Ci85 85AF STA $AF end

Ci87 AD3DB3 LDA 4833D
Ciea 28DDED JSR $EDDD send serial deferred
Ci8D AD3EB3 LDA $833E send actual start in A and Y

66 Peripherals

Cile Aeoee LDY #<¢00
Ci112 2821Fé JSR #Fé21 save RAM to reload
Ci115 ¢ée RTS back to BASIC

The utility is only intended for your own files. It will not as it stands

backup relative files.

As a point of interest, Supersoft’s zoom monitor offers not only the
option to perform relocated loads and saves, but to save in a form
suitable for reloading on a per, which eliminates an ID of 3 not used on

the PeT.

3 A token approach
to BASIC

Introduction

In this chapter we deal with the five main routines BAsIiC uses in
interpreting your programs or commands. One of these, CHRGET, picks
up single bytes from the program and is called by the majority of
routines in your 64. The other four routines covered are concerned
with keywords — converting from ASCII to tokens, the reverse process
(uisTing), and directing them to their respective routines.

Other than using sys commands a knowledge of these routines is
essential if you wish to extend existing commands or add further ones.
Those of you owning a disk drive will be familiar with the program DOS
5.1 and may know that this modifies CHRGET to trigger its commands.

CHARGET

BASIC gets its information from the input or program lines through a
routine called cHrRGET (CHaracterR GET). A copy of this routine is held
in the KERNAL operating system and is copied into zero page on power-
up. Each time BAsiC wants a character it calls this routine.

The routine is held at locations $0073-$008A (kerNAL is $E3A2-$E3B9)
and is as follows:

$8873 ES 7A INC $7A

$6675 D@ 82 BNE $6879
$6877 ES 7B INC $7B

$0879 AD 00 82 LDA #2000
$887C C9? 3A CMP #33A
$087E B8 8A BCS $6068A
+6088 C7 20 CMP #3260
$00682 F@ EF BEQ %6873

$8984 38 SEC
8885 E% 30 SBC #$30
+8887 238 SEC
$0088 E% D@ SBC #s$D@
$008A 4@ RTS

Bytes 0073-0077
Every time the CHRGET routine is called it increases, by one, the location

68 A token approach to Basic

from where it gets its information. After it increments the LsB, in
location 007A, it checks whether the page has been crossed, that is,
from $FF to $00. Only if it has will the msB be increased.

Bytes 0079—007B

Here it takes the information from store and puts it into the accumula-
tor. The store location is present before the initial entry to the routine.
It is always set one byte less due to initial increment. If you were going
to use the routine yourself, it would be these bytes you would change,
as we shall see later.

Bytes 007C—-007F

Here it checks to see if the character is a numeral. It is testing to see if it
is greater than ASCII numeral 9 ($39). If so then the routine is left via
$008A with the carry set.

Bytes 0080-0083

Here is a straightforward test to see if a space was picked up; if so the
routine is carried out again. CHRGET cannot be left on encountering a
space.

Bytes 0084-0089

These successively subtract two numbers from the original byte and
end up with the same number. You may say that is senseless but it will
set two flags in the status register that help us later. These are the carry
flag and the zero flag.

The carry flag. If this is clear on exit the byte will be a numeral in
ASCII form. Ifitis set we have something else.

When subtracting two numbers in machine code the carry flag must
always be set first. If the number we are subtracting from is the larger
then the carry will remain set. On the other hand, if the number we are
subtracting is the larger the carry will clear.

In this case we have already eliminated any byte that has a higher
ASClIl value than the numeral 9, in bytes 007E and 007F. It now subtracts
$30 (ASCII for digit zero) from the accumulator in preparation for
setting the final flags which can be used for testing for numbers. The
carry flag at this point does not matter as it is set again anyway. Bytes
with ASCII values lower than numerals now range between $D0 and
$FF.

With the next subtraction the original value is restored. The carry
flag will now be set or unset as BAsIC requires. As numerals are the only
ones less than $D0 (the last figure subtracted) they will be the only
ones to clear the carry flag.

The zero flag. This could be set in two instances. First, in bytes 007E
and 007F where we tested our byte against $3A, the ASCII value for a
colon. If it was a colon then the zero flag would have been set as it was
equal (the carry would also have been set). Secondly, the flag would be
set after the second subtraction if, and only if, the original byte was

Atoken approach to sasic 69

zero (not ASCII digit zero). In that instance after the first subtraction
the accumulator would hold $D0 and subtracting the same value would
set our zero flag.

A colon in a BasiC line signifies an end of statement and a zero, the
end of a line, and hence an end of statement. Therefore, by testing the
zero flag, we can quickly tell if we have reached the end of that
particular instruction.

CHRGOT

Keyword routines are entered immediately after a call to cHrGeT. Before
using that byte it may require the accumulator for something else. To
recover the CHRGET byte we can use the CHRGOT routine. This is a
shortened version of CHRGET. If, instead of entering the routine at s0073,
we enter at $0079, we miss out the instructions which update the pointer
and get the original byte again.

Wedges

If we want to patch in our own machine code routines to work along-
side BASIC, one way to do this is to insert a wedge. Simply, this is a
routine which diverts cHRGET to check whether it is one of our addi-
tions. From this a decision can be made whether to revert to the
normal CHRGET flow or to a routine of our own.

Let us say that we put in some routines all to be actioned on the
character ‘@’. For instance, we could have a renumber routine and a
delete routine. The command for renumber might be ‘@r and delete,
‘@D’ and could place a wedge at scoeo.

The first thing we have to do is alter the CHRGET routine. We want to
change it after it has collected a byte but before it starts checking and
manipulating it. The alteration would therefore be at se07C with a jmp to
our coding. The routine starts with six bytes of data with our changes
and the original bytes. (The latter is for restoring CHRGET if you require
so to do later). We can load them by using the load with the x register.
Our first instructions will look like this:

Cees 4C 11 Ce JMP $Ce@11
Ces3 C? 3A CMP #$3A
ceeS Be BCS

Cesé Az 82 LDX #$02
Ceeg BD @@ C8 LD& $Co88,X
CeseB 95 7C STA $7C,X
ceeDb CA DEX

CeseE 18 F8 BPL $Ce@88
Ceie 4@ RTS

C811 Our coding will start here

This is the routine to initialize our wedge and is called immediately
after loading the program by using svs 49158 ($Cavs). This loads a byte x

70 Atoken approach to BAsIC

places from sceee and stores it x places from $7c. We decrease the
counter x and the branch to collect the next byte will work until we
decrement it below zero, that is, no longer a positive number. If the
branch fails, we go back to Basic through the rts.

The beginning of the CHRGET now looks like this:

8873 INC %74

8875 BNE %6879

v877 INC %7B

8679 LDA 46288 (thics number varies)
aa7C JMP $Ceit

Now each time CHRGET is used it will go to our routine. As all our
commands would be triggered with ‘@, the first thing we would do is
to check to see if it is present:

co1 C9 40 CMP #$40
Co13 Fo 03 BEQ $C018

If itis, we can branch to do further checks, and if not, we continue with
the next code. Here we will have to revert to the normal course of
events. We have two options which we can take. First, we include the
bytes of CHRGET we changed into our program — we do not want to
change CHRGET itself as we want it to use again — and jump back to
CHRGET at se082. Secondly, we can use the CHRGET routine in the KERNAL
ROM, jumping in at $e3aB, and BAsIC will continue as if nothing has

happened.
The first method would be like this:
C0o15 4C AB E3 JMP $E3AB

And the second like this (of course, the routine address will change
from $C018 to $Co1D):

Ce13 Fe 87 BEG $C@1D
COo15 C? 3A CMP #3$34
Ce17 pe 83 BCS $C81C
Ce19 4C 8e 68 JMP $80680
ceic «eo RTS

We now want to find out if it is one of our routines. This we do by
checking the next character without updating the cHRrGET pointer (in
case itisn’t). The code would look like this:

ceis 88 PHP
cet1y 48 PHA
CelAa 98 TYA

Ceie 48 PHA

A token approach toBasic 71

Cei1C 8A TXA

ceiD 48 PHA

Co1E Aé 7A LDX $7A

Cez2e8 ES8 INX

Ce21 BD @@ 92 LDA $8280,X

Cez24 C9% 52 CMP #$52

Ce2s Fe ?? BE@ - TO RENUMBER ROUTINE
cez2e C9 44 CMP #$44

Cez2Aa Fa 27 BE@ - TO DELETE ROUTINE
cez2c &8 PLA

Ce2D AA TAX

C82E 48 PLA

CB2F A8 TAY

Ce38 &8 PLA

ce3r 28 PLP

C832 4C AB E3 JMP $E3AB

Bytes C018-CO1D

Here we are preserving our registers, including the status register, on
the stack in case it is not destined for our own routines.

Bytes CO1E-C023

Location $7A has the 1sB of the pointer used by cHrGET and this is one
less than the next character we want. So if we load it into the x register
and increase it by one, we will have the position of the next byte. We
can now load the byte using x as a pointer.

Bytes $C024-$C2B
A check is made to see if it is the letter r, signifying the renumber
routine. If not we then check for the letter b and if so go to delete.

Bytes $C2C-$C034
It not, we restore our registers from the stack (in the reverse order we
put them on). Then we continue the KERNAL routine as before.

One last point is that in the routines, such as renumber or whatever, it
would be advisable to call a subroutine to remove the bytes from the
stack (placed there in sce18 to $ce1D). We do not require them, but as
your routines are called the stack will become fuller and fuller, result-
ing in an ‘OUT OF MEMORY’ error.

Keywords

A more professional approach to adding routines than altering CHRGET
is the use of Keywords. This approach holds with the idea behind the
BASIC language that actions can be performed by using words which are
indicative of the desired action.

Keywords can be divided into two types: commands and functions.

72 Atoken approach to Basic

Functions get information, for example, peek returns the contents of a
location, and will always supplement a command keyword. For
example, we use PRINT PEEK(xx) but never PEEK(xx)PRINT.

On the 64 it is possible to incorporate new routines actioned by
keywords as they go to the relative routines through vectors held in
RAM. As the vectors are in RAM we can change them to go to routines of
our own.

The other items we will have to add are three tables of data. One will
have the new keywords in ASCII code. This will be used when Listing
and tokenizing. The end of a word is indicated by adding $80 (128) to its
last letter. To signify the end of the table, a zero is used. If we had a
table of two keywords, say eND and NOT, it would look like this:

45 48 C4 4E 4F D4 00

The other two tables will have the addresses of our routines, one for
command keywords and one for functions. These will hold the address
of each routine less 1. The reason for this is that we will put them on
the stack for an rTs instruction. The program counter will add 1 when it
takes them from the stack, thus getting the correct address for the
routine. The table will have two bytes for each routine, the 1ss and then
the mss. For example, if we had a routine at $c4DF, on the table it will
look like this: pe C4.

There are four vectors we will have to change (three if not adding
functions).

ADD OF VECTOR ADD OF ROM DESCRIPTION

$0304/5 $A57C Tokenize BASIC

$0306/7 $A71A Print Tokens(uisT

$0308/9 $A7E4 Token Dispatch — Command words
$030A/B $AE86 Token Dispatch — Function words

Tokenize sasic Text

The object of this subroutine is to take an input line, check it for
keywords, tokenize them and condense the line. It does this by taking
every byte from the input buffer, not using CHrRGET, and then checking
through the keyword table for a match. If the letters do not make a
keyword, it stores them as variables, meaning that variables cannot
have keywords in them.

There are two ways we could approach the problem of incorporating
our own keywords and tokens. First, we could copy the Basic from rROM
into RAM, and alter the tokenize routine within BAsIC so that if it cannot
find a match it jumps to a routine to check through our table of
keywords. This would mean we would not have to change the vector
but would lose the rRam area under the Basic Rom which is useful for
storing hires screens, data tables, and so on. The second way would be
to change the vector to a routine of our own. Here we have a copy of

Atoken approach tosasic 73

the ROMm routine altered slightly to be able to search our table as well.
We would only use the ROM routine when we finished tokenizing a
whole line

We shall describe the second method, which we think is the better
in the long run. A description follows the code.

18 LDX $7A

20 LDY #484

36 STY $8F

48 ANOTHER LDA $8200,X

50 BPL SPACE

68 CMP #$FF

78 BEQ STORE
88 INX

70 BNE ANOTHER
188 SPACE CMP #3280
118 BNE STORE
128 STA $88

130 CMP #4322
148 BE@ QUOTE
158 BIT 4$6F
148 BVUS STORE
170 CMP #$3F
180 BNE NUMBER
198 LDA #4997
280 BNE STORE
218 NUMBER CHP #3360
220 BCC CONT
230 CMP #$3C
248 BCC STORE
258 CONT STY $71
268 LDY #3880
270 STy %8B
280 DEY
298 STX 74
380 DEX
318 NEXT LETTER INY
328 INX
338 CONT | LDA $8260,X
3480 SEC
358 SBC $ABYE,Y
348 BEQ@ NEXT LETTER
378 CMP #4880
396 BNE NEXT WORD
488 STORE A ORA ¢06B

418 FOUND LDY %71

74

420
430
440
450
448
470
480
490
560
516
528
536
546
358
568
578
586
576
668
618
626
630
646
656
648
870
686
696
768
718
720
738
740
758
768
778
786
798
8ae
810
828
838
84e
856
848
878

STORE

COLON
DATA

LINE

QUOTE

NEXT WORD

FIND

NEXT

NEXT B

NEXT NEW

NEXT A

A token approach to BasiC

INX
INY
STA
LDA
BEQ
SEC
SBC
BEQ
CMP
BNE
STA
SEC
SBC
BNE
STA
LDA
BEQ
CMP
BEQ
INY
STA
INX
BNE
LDX
INC
INY
LDA
BPL
LDA
BNE
LDY
DEX
INY
INX
LDA
SEC
SBC
BEQ
tMP
BNE
BEG
LDX
INC
INY
LDA
BPL

$81FB,Y
$01FB,Y
END

#3$3A
COLON
#349
DATA
$8F

#3$55
ANOTHER
$08
$08200 ,X
STORE
$08
STORE

$01FB,Y

LINE
$7A
$6B

$AB9D,Y
FIND
$ABYE,Y
CONT 1
HSFF

$0208 ,X

$START OF OUR WORD TABLE,X
NEXT

#3860

NEXT NEW

STORE A

$74

$0B

$START OF OUR WORD TABLE -1,X
NEXT A

A token approach to Basic 75

88e LDA $START OF OUR WORD TABLE,X
870 BNE NEXT B

88 LDA 02008 ,X

210 BPL FOUND

928 END JMP $A489

LINES 10-30: Initialization. Location $7a will have a value the same as
the position within the input buffer. In immediate mode this will be 0,
the start of the buffer. If inputting a program line, it would be after the
line number, which has already been taken care of. Now x will be our
pointer to the original contents of the buffer and v will be the pointer
to our new buffer set up. v is stored in $oF just to initialize that location.
The value does not matter as long as it was not over $3F, as we shall see.

LINES 40-50: We load in a byte and check to see if it is under sso (128). If
itis, we branch off to line 100.

LINES 60-90: Values of $8e and over arrive here and we check to see if it
is ‘PI 5FF). If it is, we branch further into the routine to store it. If not,
we branch back to get another byte. This means we cannot use the first
character of a keyword as a shifted letter because it would be greater
than sso.

LINES 100-140: If a space is found we branch off to store it, otherwise
we store the accumulator in a register, in case the following check
succeeds, for comparison later. Now we check to see if the byte is a
quote. Items between quotes do not require tokenizing and therefore
we branch and continually store them until we come across another
quote or the end of the line.

LINES 150—-160: Here we are checking to see if location $eF has bit 6 set
or not. Amongst other things, the 8T instruction takes bit 6 of sor and
places it in bit 6 of the status register, the overflow register. This bit in
soF will only be set in this routine if we tokenize DATA later in the
routine. It means that after bata all characters will be stored and do not
go through the keyword table. Bit 6 can be unset by a colon if outside
quotes and for this reason colons have to be in quotes within DATA
statements. A colon outside quotes will mean that information after is
tokenized. BasIC instructions can be placed at the end of a data line and
will be actioned as the line is encountered. Basic differentiates
between DATA and Rem. On Rem it will go to the next line whereas with
data it will search through it for another BAsiC instruction.

LINES 170-200: The ‘2 is the shortened version of the keyword PRINT. It
is the only keyword which can be shortened to a single character.
These lines check for the question mark and if found place the token
for PRINT, $99, in the accumulator and go to store it.

LINES 210-240: Here we find out if the byte is a numeral, colon or

76 Atoken approach to Basic

semicolon. If it is off we go to store it, if not then we continue the
routine.

LINES 250-300: We now set up for the search through the table of
keywords. We store our v register, which, if you remember, is the
pointer to the ‘new look’ buffer. Location so8 will be our counter to
the number of keywords we encounter; it will not hold the token value
but helps determine it. We store x in $7a. This is part of CHRGET, but we
are only using it as a store. We decrease both x and v as the first part of
the next section will increment them.

LINES 310-390: This section of the routine explains why on the Com-
modore 64 we can use shortened keywords using shifted letters. There
are two things to remember here. First, the last letter of the keyword in
the table is the value of the letter plus s80 (128) which when loaded will
set the negative flag. Secondly, the value of a shifted letter (not logo
shift) is also the value of the letter plus sse.

Back in the routine we increase the registers and load in our byte
again; it will later load the next byte. We set the carry for subtraction
and subtract the value of a letter, from the keyword table, from our
byte. If we are left with zero then we have a match and we go back to
get the next letter from the buffer. If it fails, we check to see if we have
the value s80 left. This would indicate we have a match by either the
input letter being the shifted letter or we have reached the end of the
keyword in the table and have also matched. Failing this second check,
it branches off to find the end of that word so we can check the next for
a match.

As the second letter can be shifted to give our match this explains
not only shortened keywords, but also why some require at least three.
As an example, take the keywords ctr and CLOSE. CLR comes before
cLost in the table so that ¢ and shift L will match with the former before
it gets to cLose, which will therefore need two standard letters before a
shifted letter. We can also explain why there is no shortened version
for INPUT. INPUT# comes before INpUT and so any shortened version will
always match with INPUT#.

LINES 400-460: Back to the routine now. We have in the accumulator
the value ss0 and have found a match in the table. Here we perform the
logical or of the accumulator and location ses. Later on we will find out
that every time we pass through a keyword that does not match, we
increase the value of $eB. As we started at 0, se8 will have the number of
the match word, the first word in the table being 0. The instruction Or
forces bits into the accumulator if they are not set. In this case it has the
same effect as adding but saves bytes doing it this way. The accumula-
tor always has $80 and if you OR it with a value of one you get $81. This is
how we arrive at the token value. The keyword Go is the last word in
the table and that is the 76th, giving a value in s08 of 548 (75), and Oring it

Atoken approach toBasic 77

with $80 gives a value of scs which is the token value of co.

Having got our token value, we load back into the v register from s71
- the pointer to the new buffer layout. We have now reached the point
where we store a lot of the characters into the new buffer layout. This
is the point where many of the earlier branches arrive. First, we
increase both buffer pointers. The base location to store is so1fB
indexed with v. As we started with v equal to s and increase it
immediately, our first location will be se1r8 + 5, giving s0200. We will not
overwrite anything in the original line we have not checked for two
reasons. First, if there was a line number at the beginning it has been
dealt with and is no longer needed. Secondly, the routine only
shortens and never lengthens.

Once the byte has been stored, it is loaded back in and checked for
zero which signifies the end of the line.

LINES 470-550: This section is going to test if the byte we have stored is
either a colon or one of the keywords paTA or rem. If it is a colon, it
unsets bit 6 of location sor which we discussed earlier, then goes to get
more bytes. DATA will set the 6th bit of that location before getting more
bytes.

REMm is slightly different in that nothing after it requires tokenizing.
We set the location of o8 to zero, as that is the result of the subtrac-
tions, which we will not actually need for checking but which stops us
from branching out of the next section for any reason other than the
end of line.

LINES 560-640: These lines are used only in two instances: on encoun-
tering a quote or encountering Rem. All this does is to move bytes from
their original to their new position in the input buffer, until we reach
the end of the line or, in the case of a quote, we find a closing quote.
Finding either of these, we branch back to the normal store lines of
420-460. The branch in line 640 is enforced as x can never be zero as
before we get here we have looked at a minimum of two bytes so the
least x can be is 1 and the maximum $58 (the maximum input line
length).

LINES 650-710: This is the section we come to if we did not find a
keyword match. All this does is to search for the next character in the
table that has a value greater than sse, and return with its position. The
pointer will be increased before we start another match. It also checks
for a0, signifying the end of the table.

So far the routine is the same as in ROM but now we change the
course of events. In the ROM routine, when it finds the end of the table
it assumes the characters are variables and stores them as such. We, on
the other hand, want to see if it is one of our keywords, so on getting
zero we have to search our table. The v register is loaded at the
beginning of the section because either way we want to get back the

78 Atoken approach to BASIC

first character of this particular check from the original input buffer
line up.

LINES 720-910: This is a repeat of the checking of the standard
keywords except it will have the address of our keyword table. We will
now be checking for our keywords.

LINE 920: When we have found and stored the end of line zero, we get
here. The routine now jumps off to end or to the original ROM routine.
There it will reset the CHRGET pointers to their initial setting of se1rF and
continue the normal flow of BASIC to either store the line or carry out its
instructions if in direct mode.

Print tokens

This routine is part of the LIST routine in BASIC. It takes the token value,
finds the keyword and prints it to the screen, or other device. The ROM
print token routine is not a subroutine by itself but an integral part of
ust, but thankfully it is vector-started. The vector points to the next
instruction in the ROM routine. What we would have to do is to change
the vector to a routine of our own, PRINT keywords of either the
standard ones or our own, and then jump back to the LisT routine at an
appropriate point. The coding for such a routine is as follows:

10 BPL ROM 1

20 CHMP #3FF

30 BEG ROM 1

46 BIT %8F

5@ BM1 ROM 1

48 CHMP #3$CC

78 BCC CBM TOKEN
8a SEC

78 SBC $CB

100 TAX

118 LDA # LSB START OF OUR KEYWORD TABLE
128 S5Ta $22

138 LDA #3MSB START OF OUR KEYWORD TABLE
140 5TA $23

150 BNE START

166 CBM TOKENS SEC

176 SBC #37F

188 TAX

170 LDA #%E

200 STA $22

218 LDA #3A0

228 STA $23

238 START STY 449

240 LDY HW$FF

2568 NEXT WORD DEX

Atoken approach to Basic 79

248 BEG WORD FOUND
278 NEXT CHAR INY

280 LDA ($22),Y
298 BPL NEXT CHAR
300 BMI NEXT WORD
318 WORD FOUND INY

320 LDA ($22),Y
338 BM1 ROM 2

349 JSR $AB47

358 BNE WORD FOUND
360 ROM 1 JSR $A4F3

378 ROM 2 JSR $A6EF

LINE 10: This tests the negative flag. A value of sss (128) or over is
signalled as negative. As all tokens are $80 or over, this branch will
succeed; values under $80 go back to LIsT unchanged.

LINES 20: sfF is the value of ‘pr’. If it is that value we again return to LisT.

LINES 40-50: What we are doing here is putting bit 7 of location soF into
the negative flag, although it does other things which are of no con-
cern to us. Location seF is the flag used by the LisT routine to signal if it
is listing in quotes or not. If bit 7 of so is 1, then it is listing in quotes
and we do not want to print tokens but the ASCII of the bytes.
Therefore, if the negative flag is set, we branch to go back to Rom.

LINES 60-70: Here we find out whether it is one of the standard tokens
or one of ours. It will branch off if it is standard.

LINES 80—-150 OUR TOKENS

80-100: Here we subtract a number that is one less than our first
token value. The result is then transferred to the x register to act as a
counter. The value of x is one greater than the position in the table
(starting at 0) but x will be decreased before we start the search.

110-140: We store the start address of our table in what will be our
search registers.

150: This is enforced as the last figure in the accumulator, the MsB of
our table, will not be zero. We are hardly likely to have a keyword table
in the zero page which has many important Basic locations.

LINES 160-220 CBM TOKENS: This is a duplicate of lines 80-140 except
itis for the standard tokens and keyword table.

LINES 230-240: So far we have not used or altered the v register but we
store it here in location $49 for the LIST routine as that is where it will
expect to find it later. We initialise v with sfF but will increase it before
our search so it will start a zero.

It may be worth a note here that we will not alter the values of the
search registers, 522 and $23, as the 64’s keyword table is not longer than

80 Atoken approach to BAsic

256 bytes and itis unlikely that ours would be. Therefore, incrementing
vy through its 256 range (o-f) will serve our purpose. It also saves bytes
and time.

LINES 250-260: Every time we read a word from the table we will come
here and decrease the x register. If x is zero, then we have found the
position one byte before the keyword we want. In that case we branch
off to PRINT the keyword.

LINES 270-300: Here we increase our table pointer, the v register, and
then load in the next character from the table. Remember that the last
character of a keyword is its ASCII form plus $8e (128) and this is what we
look for. This will set the negative flag in the status register.

The first check is to see if the negative flag is unset signifying a
branch back to get the next character. If the negative is set, then the
end of the word is found and we branch back to test x to see if we have
come far enough. One of these two branches must work as a byte is
determined as either negative or positive.

LINES 310-350: We have found our word and now have to print it out.
First we increase our pointer to pick up the first character. We load it
and test to see if it is the last character. If it is we go to the BASIC ROM to
have it printed through the uisT routine. Failing this, we go to another
ROM routine to have the character printed. We will return with the
same character in the accumulator. As a keyword will not have a byte of
zero value, the branch in line 350 is enforced, to get another character
to print.

LINE 360—roMm 1: The character was not a token at the beginning so we
go back to the uisT routine to have it printed and continue with the
listing.

LINE 370-roM 2: We have here the last character of the keyword in the
accumulator. Now we go back to the uisT routine where it will be
turned into the proper ASCll value, printed and the listing continued.

BASIC token dispatch

This is the routine that BasIiC uses on finding a token to get the address
for the routine. It deals only with command keywords, such as PRINT. It
is a subroutine in itself. What we need to do is put in a routine that it
goes to first, through the vector.

18 JSR 38873

28 CMP #3CC

38 BCC ROM

40 CMP HHIGHEST COMMAND TOKEN VALUE
50 BCS ROM

40 JSR DISPATCH

78 JMP $A7EA

Atoken approach to Basic 81

88 DISPATCH SEC

78 SBC ##CC

la0 ASL

118 TAY

120 LDA START OF OUR VECTOR TABLE+1,Y
136 PHA

148 LDA START OF OUR VECTOR TABLE,Y
156 PHA

148 JMP 460873

178 ROM JSR 46879

180 JMP $A7E7

LINE 10: Get the token from the input buffer or program line through
the CHRGET routine.

LINES 20-30: We check to see if it is one of our tokens. If it is not, we
branch off to the normal routine in ROM.

LINES 40-50: Now we find out if it is a command or a function token of
ours. If itis a function vector, then it is a ‘SYNTAX ERROR’ sO we branch to
ROM to print it.

LINES 60-70: Here we go to our subroutine for dispatch. When the
keyword routine has been completed, the program flow will come
back here where we shall jump back to Basic for continuation.

LINES 80-150: We subtract our lowest token value from the value we
have. This will give us values of @ upwards. Now as each routine has a
two byte address, we must double our ‘new’ token value to get its
proper place in the vector table. The instruction Ast does just this by
shifting all bits one place left and putting a zero in bit 0. This new value
is transferred to the v register as a pointer in the table. What we are
going to do is to put a new return address on top of the stack (the
program counter expects the LsB on top with the mss underneath).
Therefore, we take the second byte of the table first, put it on the
stack, and then the first. Remember our vector table is made up of LsB
then the mss.

We now JMp to the CHRGET routine to pick up the next byte. The rts at
the end of cHRGET will now be to our keyword routine as we have just
put its address on the stack. We came to these lines (80-150) by a sk
command so its return address was originally on the top of the stack.
We then put another address on top of that which was pulled off in
CHRGET leaving our original return address once more at the top. At the
end of the keyword routine this address will be pulled off and we will
return to line 70 of this routine.

LINES 170-180: Here we go to the normal dispatch routine. This is not
the address normally found in the Token Dispatch Vector because we

82

A token approach to BASIC

will miss out the first instruction which is to get the next byte. We go to
CHRGOT first not to get the byte we have already got but to set the flags
that the ROM routine wants to test.

BAsIC function dispatch
This is the routine that will find the routine addresses of function

keywords.

10
2
36
48
50
68
78
8e
98

188 DISPATCH

110
120
136
140
150
140
170
180
198
268

ROM

LDA
5TA
JSR
CMP
BCC
CMP
BCS
JSR
RTS
SEC
SBC
ASL
TAY
LDA
PHA
LDA
PHA
JMP
JSR
JMP

L1

$6D

40073

#3LOWEST FUNCTION TOKEN VALUE
ROM

#3HIGHEST TOKEN VALUE

ROM

DISPATCH

#$LOWEST FUNCTION TOKEN VALUE

#3START OUR FUNCT VECT TABLE+!1,Y
#3$START OUR FUNCT VECT TABLE,Y
$68873

$0079
$AEED

This is basically the same as the previous routine. The return addresses
to rRoMm are different, as will be the table address. The first two lines
load a location which BasiC uses to decide whether to accept numeric
or string data, the latter value would be sso.

The other difference is that on return from the function routine we
will arrive back at line 90. The previous routine went back to Basic for
another command, but here we Rrts as functions will be performed as
part of a command routine and therefore we go back to it.

4 Keyboard revisited —
making use of the
wasted keys

On the far right of your keyboard there are four keys that do not really
do much, atleast at the moment. They are, of course, the function keys.
In this chapter we are going to show you how to make use of them. First
we thought it a good idea to describe the ROM routine in the 64 which
services the keyboard. In doing so we will also come across the locations
that appertain to the keys.

The hardware interrupt vector

Every 1/60th second the computer hands control to an interrupt system.
When the microprocessor receives an interrupt signal it will not do
anything until the present instruction has been completed. The proces-
sor will then save the program counter and the status register. The
program counter is then loaded with the contents of locations $fFrre and
$FFFF. This will start a routine at $rr48 which saves the register contents on
the stack before doing an indirect jump to the vector at 30314 and $0315.

The interrupt routine found at this vector points to address seas3t. This
KERNAL routine performs several housekeeping operations such as the
update of the system clock, but it also scans the keyboard. The key that
you press is picked up by the Complex Interface Adapter #1, and in
particular the Data Port 8 within that chip. From this the value of the key
pressed, and shift keys if used, is calculated and stored.

There seems to be some doubt from what we have read about which
location the current key value is stored in. The current value is stored in
$CB (203) and the last in $C5 (197). This to the BasiC programmer does not
make a lot of difference unless the key bufferis full when the key value is
not logged except in scB. The shift, logo and cTrL keys have the same
system, with the current location being $028D (653) and the last press in
$028E (654).

Having stored your currentinputit will check to see if it is the same as
the last key press. Its next action will depend on whether it is the same,
or not. If the same, it will see if it is a repeat function such as the cursor
keys or if location $028A (650) has been set for all keys to repeat. Failing
this, the value will not be placed into the keyboard buffer. Where the
key values are processed it does so by looking up a table to obtain the
ASCII code for your key press. This value is placed in the keyboard
buffer and its counter updated.

84 Keyboard revisited — making use of the wasted keys

The keyboard buffer is situated at sv277-$0280, a size of ten characters.
It operates on the system that the first character in will also be the first
out. The pointer for the number of characters in the buffer at a
particular time is sCo (198). The size of the buffer can be reduced from its
initial value of ten by setting register $0289 (649).

Earlier we said that every key has a value. These are from 0 to 64, the
latter being no key press. A table of these, and the shift key values are
given in the appendices.

Here is a summary of keyboard locations:

$CB 203 Current key press.

$C5 197 Last key pressed.

$028D 653 Current shift etc.

$028E 654 Last shift etc.

$028A 650 Repeat flag: $80 all, $00 normal.
$0277-$0280 631-640 Keyboard buffer.

$0289 649 Size of keyboard buffer.

$Cob 198 No of chars in buffer.

The Function Keys

These keys have values and ASCII codes like any other key. They are:

Value
Function key ($CB and $C5) ASCII
F1 4 133
F2 4 137
F3 5 134
F4 5 138
F5 6 135
F6 6 139
F7 3 136
F8 3 140

Knowing these values and the locations mentioned earlier, we can
make use of the function keys.

Function keys within a BASIC program

One of the most used BasIC statements for evaluating a key press is the
GeT function. This function returns the ASCII code for the first key in
the keyboard buffer, or the latest key if the buffer is empty. It will not
wait for a key press. A BAsiC routine could look like this:

100 GET A$
110 IF A$=""[F1]"”" THEN 1000:REM ACTION ON F1 PRESS
120 REM ACTION IF ANY OTHER KEY PRESSED

Keyboard revisited - making use of the wasted keys 85

This routine will not stop and wait for a key press. It will only branch off
to line 1000 if key F1 is pressed at the same time as the GeT statement is
actioned or the next character in the keyboard buffer is the ASCII for
F1.

We could adapt this so that it will wait until a key is pressed — any
key.

100 GET A$:IF A$=""THEN 100

Here line 100 will be repeated until one key is pressed or there is a
value in the key buffer that has not been read.

The next thing we could add is a line to clear the input buffer before
we GET a character. The easiest way is to set the register for the number
of buffer characters to zero.

90 POKE 198,0

Atthe moment the routine actions on any key. If we wanted it to action
on only two keys, say f1 and 7, we would have to alter line 120 to:

120 IF A$ <> “'[F7]” THEN 90
130 REM ACTION ON F7 PRESSED

Now the routine will wait until a key is pressed. Once a key is pressed it
goes to 110 to see if it was r1 and branches if so. Failing that it goes to
line 120 where we look to see if it was not £7. On f7 the program will
continue its flow. Now lines 90-120 will keep repeating until either 1 or
F7 is pressed.

The only other alteration we could do is to rid ourselves of the
graphic characters in the quotes that represent the function keys. This
would make it easier for someone else to read and on a non-
Commodore printer the graphic character would not print. This we can
do by using the cHrs(function when checking As. Line 110 would now
look like:

110 IF A$ = CHR$(133) THEN 1000: REM
ACTION ON F1 PRESSED

In the GeT statement all eight function keys can be tested in the same
way, either by changing the character in the quotes or changing the
CHRS value.

Another way of testing for the keys is by examining the key press
registers set in the interrupt routines. From a BAsIC programmer’s
viewpoint it does not really matter whether you test the current or the
last key register. The snag with this method is that without checking
the shift register only four of the function keys can be detected. On the
other hand, by checking the shift register with all its combinations you
can have up to 32 function key combinations. Here is a routine that
tests for function key Fi:

86 Keyboard revisited — making use of the wasted keys

90 POKE 198,0:REM CLEAR KEY BUFFER
100 1F PEEK(203)=4 THEN 1000 : REM F1 VALUE.
110 REM PROG CONTINUES IFNOT F1.

This will not wait for F1. To wait, line 110 will have to be changed to:
110 GOTO 90

We have now set up a loop and the only exit is 1 being pressed. Now if
we wanted to test for r2, the shift flag would have to be introduced.
Line 100 could look like this:

100 IF PEEK(203)=4 AND PEEK(648)=1 THEN
1000 : REM ACTION ON F2 PRESSED

If you wanted to go to line 1000 on any key, or no key, apart from f2,
then the equals sign should be replaced by greater than and less than
signs.

Programming the keys in immediate mode

Our interrupt routine

The routines that follow will allow you to program the function keys
with commands or phrases to be actioned as if you typed them in full,
but using only one keystroke.

Most of the routines we have seen to do this operation change the
vector address of the Hardware Interrupt Routine in $314 and $0315.
They alter it to point to their routine, which when finished will return
direct to the normal interrupt routine. This course of action has draw-
backs. First, it adds to the length of the interrupt, especially if the
user’s routine has to be completely followed through. Secondly, it
means that you have to set up your own registers for checking to see if
it was the same action as the last time or not, to avoid auto-repeat. A
further drawback is that if you want to use the data assigned to func-
tion keys within quotes, it is more difficult to suppress the graphic
character that is generated in the quotes mode along with your phrase.

So how are we going to achieve this desirable routine of making the
function keys really useful? Earlier we described the interrupt routine
and how your key presses are interpreted. What we did not say was
that there is a vectored jump within it. This occurs after the value from
the Data Port is put into the current key registers but before it is
actioned. The vector is held in addresses $028F and $0290 (655 and 656) and is
known as the ‘Keyboard Table Setup Vector'. If we change the address
in this vector to point to a routine of our own we can process the data
first. If the data concerns us we can process it jumping back to the
normal interrupt routine at a point which misses out the normal key
press routine. When the data does not concern us, control will be
handed back to the normal flow of things.

Keyboard revisited — making use of the wasted keys 87

The use of the vectors by Commodore has allowed us an easy way to
program the keys. This cannot be said of the values that have been
assigned to the function keys. It would have been easier if F1 had a
value of 1and r3, of 3, but this is not the case.

We are going to have 16 programmed function keys. To get this
number, you have to use the keys in conjunction with the shift and
logo keys as follows:

KEYS F1, F3, F5, F7 —THEKEY ONLY
KEYS F2, F4, F6, F8 - THEKEY + SHIFT
KEYS F9, F11, F13, F15 - THEKEY + LOGO

KEYS F10, F12, F14, F16 -~ THEKEY + SHIFT + LOGO

This gives us keys in the range of 1 to 16, but for the routine it is easier
to use 0 to 15. We shall load the data into the keyboard buffer so we are
limited to ten characters. We also require a marker for the end of data
for each key, which will be a zero, meaning a maximum 11 bytes
storage for each. It is easier, and quicker, to use 16 bytes per key. This
wastes five bytes but as we are going to store the data in the Ram under
the BASIC ROM this is unimportant. This will mean the value of the key
needs to be multiplied by 16 to get the start of its data. Multiplying by
16 for the low numbers we are using, 0 to 15, simply involves moving
the four lower bits to the four higher bits and filling the lower ones
with zeros, four Ast instructions will achieve this. Sixteen bytes of data
for the 16 keys will take one page, 256 bytes, exactly.
To summarise:

i) Find out if the key is a function key, yes — continue, no - go to
interrupt.

ii) Calculate key number less 1.

iii) Multiply key number by 16 for table position.

iv) Get data off the data table and store in the key buffer.

ASSEMBLY LISTING

? %¥=$8722

18 LDY ¢CB ! CURRENT KEY PRESS
20 CPY #$83 ! IS IT A FUNCTION KEY
36 BCC NORMAL ! NO

48 CPY #3087 ' IS IT A FUNCTION KEY
Se BCC CONT ! YES

48 NORMAL JMP $EB48 ! NORMAL INTERRUPT

KEY ROUTINE

78 CONT LDA $828D ! CURRENT SHIFT PRESS
86 CPY $C5 ! 1S CURRENT KEY=LAST
98 BNE CONT2 ! NO
168 CMP $828E ! IS CURRENT SHIFT=LAST

110 BEQ@ NORMAL ' KEY AND SHIFT AS LAST

88

128

136

148
158
148
178
188
196
208
21a
22a
238
240
258

258
278
288
298
300
318
326
336
348
358
368
378
380
390
400
418

420
430
449

458
440
478
480
498
508
516
528

Keyboard revisited - making use of the wasted keys

CONTZ2

Fi
F3
F3

CBM
NOCHANGE

NEXT

STY

STA

CPY
BEG
CPY
BEG
CPY
BEG
LDY
BIT
BIT
BIT
CMF
BCcC

BEQ
LDA
BIT
STY
DEC
CLC
ADC
ASL
ASL
ASL
ASL
LDY
STY
LDY
STY
TAY

LDX
JSR
LDA

PHA
JSKR
PLA
BEQ
CMP
BNE
LDA
STA

$C5 ! STORE CURRENT KEY
IN LAST REGISTER
$028E ! STORE CURRENT
SHIFT IN LAST REG
#$04 ! 1S IT FI
Fi+1 ' YES
#$05 ! 1S IT F3
F3+1 ' YES
#$04 ! 15 IT F5S
F5+1 ' YES
#$07 ! IT IS F7
$01A8 ' VALUE FOR F1
$8348 ' UALUE FOR F3
$85A8 ! UALUE FOR F5
H$82 ! WHAT SHIFT
NOCHANGE! NONE OR SHIFT -
UALUES CORRECT
CBM+1 ! LOGO KEY
#$069 ' VALUE FOR SHIFT+LOGO
$884% ' UALUE FOR LOGO
$BB
$BB ' ONLY WANT NO’S 0-15
$BB ' GET FINAL VALUES
A ' MULTIPLY YALUE BY 16
A
A
A
H#3A1 ' HIGH ADDR KEY TABLE
$15
#300
$14 ' LOW ADDRESS
' TRANSFER TO Y AS
POINTER
#3808 ' COUNTER KEY BUFFER
$81FB ! SWITCH OFF BASIC
($14),Y ! GET BYTE OF DATA
! STORE TEMP
$8282 ! SWITCH ON BASIC
' GET BACK DATA
$EXIT ! END OF DATA
H$5F ' ARROW FOR RETURN
$STORE ! NO
#$6D ' LOAD CODE FOR RETURN
$8277,X ! STORE IN KEYBOARD

BUFFER

Keyboard revisited — making use of the wasted keys 89

53a INX ! INCREASE COUNTER

548 INY ' INCREASE POINTER

558 BNE NEXT ! FORCED-GET NEXT DATA

568 EXIT 5TX $Cé ! NO OF CHARS IN KEY
BUFFER

578 LDA #$7F ! RESET CIA DATA PORT

588 STA sDCoa

596 RTS

875F CgM 872F CONT

873B CONTZ 8791 EXIT

874E Fi 8731 F3

8754 FS 8778 NEXT

8762 NOCHANGE 872C NORMAL

878A STORE

LINES 10-60: What we do here is to get into the v register the value of
the current key press and see if it is a function key or not. Function
keys have values from 3 to 6 inclusive. Line 60 has the normal address
of the Keyboard Table Setup Vector and if we do not find a function
key this is where we direct the flow.

LINES 70-110: This part of the routine checks to see if the last kev is the
same as the current key. If itis, then off to the standard routine to avoid
auto-repeat. At this point we have the current key value in the v regis-
ter and the current shift value in the accumulator.

LINES 120-130: This is part of the housekeeping. We copy the current
values we have obtained into the last key registers. This is not only for
our routine but also for the normal key interpreting routine.

LINES 140-230: We now take our key value, find which key it is and
give a number corresponding to the number on the key itself. The BiT
commands will not alter any data at all except for the status flags (which
we are not testing here). They allow us to ‘hide’ an instruction within
the address, in these cases loading the v register, saving bytes and
branch instructions. For instance, the BiT address in line 210 is so1A0
which is stored in memory as Ae 01, which is the code for LDY #$01.

LINES 240-280: We now do the same for the shift value. If there is no
shift or just the standard shift, there will be no need for any alterations
so they would branch off in line 250. The logo key requires the value of
8 (1+8 giving key 9 and so on) and both shifts 9. We again do this using
the BIT function.

LINES 290-360: Here we subtract one from the key value and then add
the result to the shift value, ending up with a value between 0 and 15.

90 Keyboard revisited — making use of the wasted keys

This total will be in the accumulator which is then increased 16 times by
the four AsL instructions. We now end up with a value between 0 and 15
which will be the pointer to the data for that particular key.

LINES 370—420: The start position of the data table is put in registers s14
and $15. We also transfer the pointer in the accumulator to the v regis-
ter. Lastly, we initialize the x register to zero to use as a counter to the
number of characters we put in the keyboard buffer.

LINES 430-550: At last we can get our data and use it. Earlier we said
that we were going to put our data in the RAM under the BASIC ROM. To
read it back, we have to ‘remove’ the ROM to access it. This we do by a
call to an earlier routine in the uTiLTY which you will come to later. Now
we pick up a byte of data and put it on the stack for temporary safe
keeping, as we require the accumulator for re-enabling the BAsIC ROM.
With the ROM back, and having recovered the byte, we have two checks
before storing it. The first in line 480 is to see if the byte is zero,
signifying that all the relevant data has been collected and we can
finish up. The second is a check for the ‘left arrow’, which signifies the
user wants a return to be included (more of this in programming the
keys). If this succeeds, we will change the byte to the ASCII code for
return.

The data is stored in the keyboard buffer starting at the beginning
and working upwards - it will be removed in the same order. We do
not need to check for overflow as we are only allowed ten characters to
be programmed (see next section). Therefore, the zero, which is not
stored, cannot be later than the eleventh byte.

Having stored our byte, the two registers are increased by one and
we branch back to get a further byte. The branch is enforced as we will
not increase Y enough to return it to a zero. The highest value v will
achieve is $rB (251 dec).

LINES 550-590: The end is near. Having stored all our data, the x
register will hold a number equal to the total number of characters we
put into the buffer. This is put into the register denoting how many
characters are in the buffer and the operating system will only take that
many off. The following two instructions are again housekeeping in
that we reset the data port for collection of the next press. A return
follows, but didn’t we come by a jmp? This is true, but the whole key
routine is entered by a Jsk where the vectored jump is found. We do
not now need the use of the normal key interpreting routine so we can
go straight back to the main interrupt.

Keyboard revisited — making use of the wasted keys 91

Key

COMMAND SNYTAX
KEY

Displays the current data assigned to the keys in a form which can be
amended.

KEY[number between 1 and 15], “[data]”’

Assign data to a particular key. If a return is required, type a '« to
signify this. Quotes cannot be used as data. A typical command could
look like this:

KEY 7, “LIST<"
Here is a full list of the key numbers and how to achieve them:
KEY 1 —-F1ONLY

KEY 2 —F1+ SHIFT
KEY 3 -F3ONLY
KEY 4 -F3+ SHIFT
KEY 5 —F5ONLY
KEY 6 —F5+ SHIFT

KEY 7 —F7ONLY

KEY 8 —F8+ SHIFT

KEY 9 -F1+ LOGO KEY

KEY 10 —F1 + SHIFT + LOGO KEY
KEY 11 -F3 + LOGO KEY

KEY 12 —F3 + SHIFT + LOGO KEY
KEY 13 -F5+4 LOGO KEY

KEY 14 —F5 + SHIFT + LOGO KEY
KEY 15 -F7 4+ LOGO KEY

KEY 16 —F7 + SHIFT + LOGO KEY

Kev 0... will generate a SYNTAX ERROR. We had thought about using this as
a way of turning off the key routines, but decided on a separate
command. This makes it more of a conscious decision rather than a
typing error. The command will be off, which is discussed later.

We have seen that we can make use of the four ‘mystery’ keys by
getting data output on their use and in fact having 16 keys when used
with the shift and logo keys. Now we have a routine to program the
data, in which the user can decide what data to apply. This operation is
acted upon through the keyword kev.

Key will perform three functions. It will ‘switch’ on the keys if they are
off. This is performed in both of the following options. The choices are
to program a key or to display the data applied to all the keys, which
can then be amended on the display.

As we have said, there are two routines included in this. There is one
routine to program individual keys and one routine to display the data

92

Keyboard revisited - making use of the wasted keys

assigned to all keys. The latter is very similar to the interrupt routine
discussed earlier except that the data goes to the screen rather than a
buffer. The former in many ways is the reverse: we take data from a
buffer — the input buffer —and put itin a tabie.

ASSEMBLY LISTING

¢ ¥=$844D

1@

20
38
48
5@
&8
’a
80
78
180
118
120
138
148
150
148
170
18@

190
208
218
228
23a
248
258
268
278
288

298
368
318
328
338
340
356

START

SYNTAX
CONT?2

LDA

CMP
BEG
LDA
5TA
LDA
STA
JSR
JSK
BEQ
JSR
JSR
LDA
BEQ
CMP
BCS
DEC
LDA

ASL
ASL
ASL
ASL
TAY
LDA
STA
LDA
STA
LDX

JSK
CMP
BEQ
JMP
JSR
BEQ
CMP

$865B

#$87
START
#$87
$885B
#$22
+8856
$8854
$86879
DISPLAY
$81FS
$AEFD
$14
SYNTAX
H$11
SYNTAX
$14
$14

>2> >

CHECK IF INTERRUFT
SET FOR KEYS

YES

SET INTERRUPT
GET LAST BYTE AGAIN

' GET PARAMETER
' CHECK FOR COMMA

' NO KEY®

HIGHEST KEY 1§ 1é

SET TO CALCULATE
PQINTER
CALCULATING POINTER

HI ADD FOR KEY TABLE

SET LO ADD FOR KEYS

COUNTER MAX NO OF
CHARS

GET LAST BYTE AGAIN
15 IT A QUOTE

YES

PRINT SYNTAX ERROR
GET NEXT BYTE

END OF DATA INPUT
1S IT A QUOTE

368
378

386
398
486

418
426
438
44@
456
448
478
4860

498
See
518
528
338
548
356
368
570
588
590
460
418
628
430
448
458
468
é7a
488
498
768
718
728
738
7490
758
768
778

ZERO

DISPLAY

PD1

PD2

PRINT
NEXTA

BEQG
5TA

INY
DEX
BNE

LDA
STA
JSR
RTS
LDX
STX
INX
LDA

STA
LDA
5TA
LDA
STA
LbA
5TA
JSR
INC
INC
INX
CPX
BCC
LDA
STA
LDA
5TA
JSKR
INC
INC
INX
CPX
BCC
RTS
LDY
LDA
J5R
DEY
BNE

Keyboard revisited — making use of the wasted keys

ZERO
($14) Y

CONTZ

#4008
($14),Y
$6873

#3080
$5F

H$20

$22
#$31
$23
#3060
$14
H3A1
$15
PRINT
$23
$5F

#$0A
PD1
#$31
$22
#3360
$23
PRINT
$23
$5F

END OF DATA INPUT

STORE DATA IN
TABLE

INC TABLE POINTER

DEX CHAR COUNT

IF ZERO MAX NO

CHARS REMAINDER

1GNORED

END OF WORD MARKER

GET NEXT BYTE

FINISHED
SET COUNTER

SPACE AS NO TEN-‘S
DIGIT

ASCII FOR ONE

LO BYTE OF DATA TABLE

HI BYTE OF DATA TABLE

INCREASE NUMERAL
INCREASE KEY COUNT

HAVE WE DONE KEYS!-¢
NO
NOW HAVE A TEN DIGIT

HAVE WE DONE 14
NO

YES

COUNTER

PRINT * KEY *

93

94 Keyboard revisited - making use of the wasted keys

780 LDA $22
798 JSR $FFD2 ! PRINT TEN‘S
NUMERAL OR SPACE
300 LDA $23 ' PRINT LOW NUMERAL
818 JSR $FFD2
820 LDA #$2C
830 JSR $FFD2 ! PRINT COMMA
840 LDA #$22
850 JSR $FFD2 ! PRINT QUOTE
848 LDA $5F ! CALC TABLE POINTER
878 ASL A
gge ASL A
890 ASL A
980 ASL A
918 CONT TAY ' PUT POINTER IN Y
928 NEXT JSR $81FB ! SWITCH OFF BASIC
938 LDA ($14),Y ! GET CHAR OFF TABLE
948 PHA ' TEMP STORE
958 JSR $8282 ! SWITCH ON BASIC
248 PLA ' RETRIEVE CHAR
978 BEG EXIT ! FOUND END OF WORD
980 JSR $FFD2 ! PRINT CHAR
998 INY
1886 BNE NEXT ! ENFORCED
1818 EXIT LDA H$22
1820 JSR $FFD2 ' PRINT & QUOTE
1838 RTS
1848 PDATA BYT $20,°Y,’E,’K,$20,$8D
2491 CONTZ 86A8 DISPLAY
8716 EXIT 8784 NEXT
84E8 NEXTA 84BD PDI
84D1 PD2 871C PDATA
84DE PRINT 8641 START
848E SYNTAX 84A0 ZERD

LINES 10-80: Earlier in the uTiLITY, a routine will exist that is used when
the extension is initialized or when STOPRESTORE is used. This sets the
Keyboard Table Setup Vector to where we want it to point to. These
addresses can be changed by the off command. Here we look to see if
the high byte of the address is pointing to our interrupt routine. If not,
we change the address in the setting routine to point to our interrupt
routine and then call the setting routine to initialize.

LINES 90-270: A call first to the CHRGOT routine to get the byte after the

Keyboard revisited — making use of the wasted keys 95

KEy token. This is necessary as we have used the accumulator and so
overwritten the byte. If the byte has set the zero flag, then there are no
further parameters and a display of the key data is required. The
program in that case branches to the display which starts at line 450.

Knowing we have got some parameters, off we go to our ‘GET PARA-
METER” routine (Chapter 6) and to a ROM coding to see if the byte after
the key number is a comma. This coding will not only update the
CHRGET address but will generate a SYNTAX ERROR if a comma is not found.

The parameter we want is now held in location $14 — the key number.
This value is put in the accumulator and checked for two things. If it is
zero or greater than sixteen, it is out of bounds, so an error message is
required, and therefore we branch off to get this printed. As in the
interrupt routine it is easier to work in numbers 0 to 15 rather than 1 to
16 so we decrease the value in $14 by one and then reload back into the
accumulator.

To get the pointer to the required position in the data table, the
number is multiplied by 16 with the ast instructions. The v register will
be the pointer so the value is transferred to it. Next we load two
registers with the address of the data table start. Now we are in a
position to get, and store, the data.

LINES 280-440: The data generated by using the function keys will be
placed in the keyboard buffer. This buffer is only ten characters in
length so we have to limit the input to that number. This is achieved by
setting the x register to ten (sea). We said earlier that the comma check
updates the CHRGET address so a call to the CHRGOT routine will get the
next byte we want. This should be a quote; if not a SYNTAX ERROR is
generated (remember that CHRGET skips spaces).

Now to get the data and store it. To get the data we make use of
CHRGET. If the zero flag is set, the end of the command has been
reached with either a colon or a zero placed by the BAsic input routine.
The second quote is checked which also signifies the end of data input.
If any of these are found, we branch off to end the routine at line 410.
We can now store our data in the table under the Basic Rom. We do not
have to disable the ROM as you cannot store data in ROM so it is
automatically stored in the RAM underneath. We increase the v register
which points to the table position. We decrease x which checks for
overflow of data. If x reaches zero, the maximum number of characters
has been stored. The flow only branches back to get the next byte if x is
greater than zero.

To finish off, we store a zero after the last byte of data. This will help
when retrieving the data to signify all data has been gathered.

We do another visit to CHRGET to get the next byte as BASIC expects
this. This will cause a SYNTAX ERROR if you have input more than ten
characters of data though the first ten bytes will have been logged.

The rTs returns us to BAasic for further operations.

96 Keyboard revisited - making use of the wasted keys

DISPLAYING THE KEY DATA

LINES 450-550: These instructions set up the registers used in the
display itself. The x register is again used as a counter. Location ssF will
have the value of the key number less one and will be used to calculate
the pointer for data collection. Locations $22 and s23 hold the ASCII
values of the key number. As keys up to and including 9 have only one
digit location s22 is loaded with the ASCII for a space character. $23
starts with the ASCII for 1 and will be incremented. Finally, we load up
the address of the start of the data table into registers $14 and $15.

LINES 560-610: Call the coding to print key data for keys 1 to 9. After
calling, the ASCII value in $23 is increased along with the key number
register ssf. Register x is also increased and checked to see if it has
reached soa (ten). If so, we would have to reset the ASCIl numbers
before printing further data. If x has not reached this value, we branch
back to call the print coding for the next key.

LINES 620-720: First we reset locations 522 and 523. Key numbers from
10 to 16 have to be displayed so we have two digit numbers, the first
always being one. Therefore, s22 is loaded with $31, the ASCII for one.
The other is initialized to zero in ASCIl format. We now continue to
print out the key data, incrementing $5F, and x each time, until X rea-
ches the value of 17 just after being incremented. This value of x
signifies we have finished the display so we exit from the routine and
hand control back to Basic.

The Print Routine to Display the Key Data

This part of the command is entered 16 times in total to print the data
to the screen. The value for calculating the pointer, held in ssF, is set
before these lines are implemented, as are the ASCII values of the key
number. We use the KerRNAL routine at $FFD2 to print a character to the
screen. The data is printed out in the same format as it was entered.
This is done so that it can be changed, just like normal screen editing,
if required.

LINES 730-770: The start of every key display line will be the same.
These lines will print this from the area of data at the end of the routine
(Line 140). We start with a return so it starts on a new line, then a space
to give better clarity if the border and screen are different colours,
especially if the border and text colours are the same. key is printed
next, followed by a space for presentation.

LINES 780-850: The key number is printed, followed by a comma and
the first set of quotes.

LINES 860-910: The key number, less one, is taken from s$s5F and

Keyboard revisited — making use of the wasted keys 97

increased 16 times with the now familiar four Ast instructions. The
result is transferred to the v register for the data pointer.

LINES 920-1030: Get the key data. First we switch off Basic to get the
data underneath. After returning the Basic, we print the data as long as
it is not the ‘end of data’ zero. Printing finished, we update the pointer
and go back to get the next byte. When the zero is found we exit and
print the closing quote. Then it's back to the main key display routine.

OFF - Turn off the keys

COMMAND SYNTAX
OFF
There are no parameters with this command.

If you want to use the function keys within a program simply as keys,
you will want to be able to disable the programming they have been
given. The command that enables you to do this is off. All we do is to
alter the addresses in the routine that sets the Keyboard Table Setup
Vector back to its normal address. Once changed, we call the routine
to change them in the Basic work area. Do not forget that they can be
re-enabled with any key command.

ASSEMBLY LISTING

9 *=38797%

18 LDA #$48

20 5TA $86856 ! CHANGE LOW ADD IN
SETTING ROUTINE

30 LDA #$EB

48 STA $885E ! CHANGE HIGH ADD IN
SETTING ROUTINE

58 JSR $8854 ' CALL SETTING ROUTINE

40 RTS

Stand alone programmable function keys

Perhaps this chapter would have been better located between Chap-
ters 6 and 7. It was difficult to decide on its position as it also uses
information from both Chapters 2 and 3, but will not work as it stands.

To provide programmable function keys without using the keyword
enable routine, the ‘get parameter’ and ‘switch off BAsIC’ routines have
to be copied from Chapter 6. The whole routine may then be relocated
and the actions of key and OFf performed using svs commands.

5 Utilities in BASIC

General

This chapter includes many of the utilities in the form of Basic sub-
routines and programs. You do not really need any of that which
follows if you load-up the utiLiTy each time. In time we suspect that the
simple routines contained here will not only prove useful, but will also
give you plenty of ideas of your own.

A number of the utilities require that you generate an ASCII file of a
program on tape or disk. This produces a file in the same format as
would be received at a printer or the screen itself. The resulting
sequential file contains the program in ‘un-tokenized’ form. To do this,
output must be directed to the desired device with an oren and cmbd
sequence. For a tape this is:

OPEN1,1,1, “PROGRAM"": CMD1: LIST[from — to]
PRINT#1:CLOSE 1

and for a disk:

OPEN2,8,2,"PROGRAM,S, W' :CMD2:LIST[from - to]
PRINT#2:CLOSE 2

Most of the utilities given here are in the form of subroutines and have
been numbered in the 600005 to allow them to be easily added on to
your own programs as and when appropriate. They may be included in
whole, or in part, by a suitable merge or append technique. You may
wish to combine a number of them together to form useful modules
which in the future may save many hours of repetitive work. This you
can easily do by using the mini-renumber and merge programs given.
Many of the routines can be extended, but they have deliberately been
kept as short as possible. Always try to adopt a ‘house’ format to
simplify the creation of future programs. This may only be a simple line
numbering sequence where: the working part of your program lies
between lines 100 and 9999; the specific subroutines lie between 10000
and 50000; and your library routines are from 50000 on.

The information upon which much of the following is based is
contained in Chapter 1 and we refer you to that chapter. The utilities
that follow are arranged in alphabetical order.

Utilities in BAsIC 99

Keyword — APPEND

Append 1
Function: To append two BASIC programs in memory (nose-to-tail)

In the past, whenever you have loaded a program, it has erased the
one currently in memory. This need not be the case. BAsIC can start at
any address in memory and need not always be the default of 2049
s0801). The pointer (1x114B) to tell the 64 where BasiC begins is held in
RAM and can therefore be changed. It is even possible to have two
BASIC programs resident in memory concurrently by changing the
necessary zero page pointers, though only ane could be running at
any time. We can manipulate these pointers to allow us to append
one program to another.

With a program in memory change TXTTAB to point to its end (VAR-
TAB-2) by:

A=PEEK (45) :POKE 43 ,A—2:POKE 44,PEEK(46) +A<2

The program to be appended will now be loaded at the end of the
existing one. Resetting the start of sasic will make the 64 see both
programs as one by:

POKE 43,1:POKE 44,8 (assumes original start was 2049/$0801)

The resulting program may then be edited or saved in the usual way.
Many texts say the appended program should have line numbers
higher than the original. This is not essential, but some confusion can
result if this is not so. Try appending when the second program does
not have higher line numbers and see.

The combined program will run correctly until a GoTo or cosus ref-
erences a line which occurs twice. By virtue of the way these com-
mands work, the branch will always be taken to the first occurrence
of a line.

Append 2
Function: To append two programs on disk (Basic or machine code)

Program files on disk store an image of the memory which the pro-
gram occupied. The first two bytes record the load address and the
last byte is a zero to mark the end of file. They can, however, be read
and written in a sequential manner. This allows us to append files in
much the same way as we did above, but this time performing the
operation solely on disk. The following program will append two
programs which will load at the address of the first:

100 Utilities in BASIC

LINEACTION

130 Open up ‘Program’ files for read and write.

140 Read first program and make a byte by byte copy

TO inthe combined file. Skip the terminating zero byte

180 and jump to read the second program.

200 Read the load address and discard it.

210- Copy the remainder through to produce the combined file.

188 INPUT"FRONT PROGRAM" ;F$
118 INPUT"[2SPCIEND PROGRAM" ;;E$

128 INPUT"FINAL PROGRAM" ;R%

138 OPEN 2,8,2,F$+" ,P,R":0PEN 3,8,3,R$+"
P LW

140 GETH#2,A%

158 B$=A3%:GETH#2,A$:IF ST AND 44 GOTO 18@
168 IF A$="" THEN A$=CHR$(8)

176 PRINT#3,B%$;:G0TO 158

188 CLOSE 2

198 OPEN 2,8,2,E$+",P,R"

2088 GETH#2,A%:GETH2,A%

218 GET#2,A%$:1F ST AND &4 GOTO 248

228 IF A$="" THEN A$=CHR$(@)

230 PRINT#3,A%;:G0TO 218

240 PRINT#3,CHR$(8) ;

258 CLOSE 3:CLOSE 2

Append 3
Function: To reopen an existing closed sequential file on disk and
continue writing data from the previous end of file.

This is a standard disk command which is not made clear in the disk
manual. Its format is:

OPEN2,8,2,"TEST,A"”

Subroutine keyword - AUTO NUMBER

Function: To automatically generate line numbers as code is entered.
Initiation: RUN 60000

This allows the start line and increment to be set. The line number is
printed, followed by any characters typed. When ReTURN is pressed the
program enters the line, resets the line number variables (as an edit
destroys all variables) and reruns itself by forcing two RETURNS into the
keyboard buffer. As written, the program will not accept any line not
followed by BAsiC code (equivalent of delete line).

LINE

60010
60020
60040
60060

60070

Utilities in Basic 101

ACTION

Position cursor to 3rd line down and print line number in black.
Generate a flashing cursor — not normally present on a Get
Watch out for null lines

Print line to — GOTO 010, reset variables, restart program and
move to HOME.

Set NDx for two characters in keyboard buffer. Put two returns in
k/b buffer «evp). On enp kevD will be emptied and the returns will
enter the line and execute line from 60060

4688688 INPUT "STARTIL4SPC1";LN: INPUT "INC
REMENT" ; 14

68018 B$="":PRINT CHR$(147);CHR%(17);CHR

$(17);CHR$(17);CHR$(144) ;LN;CHR$(154);
66828 POKE 284,0:POKE 287,80

68838 GET A$:IF As="" GOTO 4606208

680848 PRINT A$;:1F B$="" AND ASC{A%)=13

GOTO sBB18

4680858 B¥=A%$:IF ASC(A$)>{(>13 GOTO &BB28

68058 PRINT "LN=";LN+IX;":I1%=";1X;":60T0
660818" ;CHR$(19)

48878 POKE 198,2:POKE &31,13:POKE 632,13

:END

The version below is a little more flexible. It will not only delete an
existing line if RETURN is pressed after its number, but also allows you to
change the printed line number to any value. Subsequent line
numbers will increment from the new value until it is again changed.
The main difference is the addition of the code to evaluate the current
line number (60060 and 60070). This is done by reading from the start of
the fourth screen line until a non-numeric code is encountered and
reassigning the line number variable ‘LN

48688 INPUT "STARTI[4SPCI1";LN: INPUT "INC
REMENT " ; 1%

46018 PRINT "[CLSJII[3CDI[BLKI]" ;MID$(STR$(
LNY,2>;"[L BLU1";

48828 POKE 284,8:POKE 2087,0

508308 GET A%$:1F A$="" GOTO 40820

48840 IF ASC(A$)<¢>13 THEN PRINT A%;:GOTO
4500820

400568 PRINT:B$="":1=1143

60068 I=I1+1:IF PEEK(I)>>47 AND PEEK(I)<58
THEN B$=B%$+CHR$(PEEK(I1)):G0TO 406840

102 Utilities in BASIC

48078 LN=UAL(B$) :PRINT "LN=";LN+I¥;":1%=
";1%;":G0TO 48818[HOMI";

48088 POKE 198,3:POKE 631,13:POKE 632,13
:POKE&33,13:END

Program keyword — BASES

Function: To convert hex to decimal, binary to decimal and vice versa

This program contains four useful inter-base conversion subroutines.
The hex to decimal is most useful if you wish to use hex rather than
decimal values in the DATA statements for a machine code Basic loader.
The Programmer’s Reference Guide, Chapter 3 uses binary patterns for
the sprite data in the ‘BALLOON’ program but pictorial data is also
enlightening when setting up user-defined characters and makes for
easier editing.
No explanation is given as the program is easy to follow.

168 PRINT"1 HEX/DEC" :PRINT"2 DEC/HEX" :PR
INT"3 BIM/DEC" :PRINT"4 DEC/BIN"

11@ PRINT:INPUT"SELECT ";N

120 ON N GOSUB 158,246 ,338,400

138 GOTO1886

1480 ON N GOSUB 15@,24@

158 PRINT:INPUT"HEX[4SPC1" ;A%

168 IF LEN(A$)<4 THEN A$=LEFT$("0088" +A%$
,4-LEN(A$)) +A%

178 A=ASC(A$)-48

188 B=ASC(MID$(A$,2,1))-48

198 C=ASC(MID$(A%$,3,1))-48

208 D=ASC(MID%(A%,4,1))-48

210 E=256%(16%(A+7*¥(A>9) I +B+7%(B>P)) +16%
(C+7%(C>9)I+D+7%(D>9)

228 PRINT:PRINT"$ ";A$;" = D";E:PRINT
238 RETURN

248 PRINT:INPUT"DECI[4SPC1" ;G:A=INT(G/254
) :B=G-A%254:1F G<B OR G>&5535 GOTO 248
250 C=INT(A/164) :D=A—-14x%C

268 C$=CHR$(48+C):IF C>% THEN C$=CHR$(C+
55

278 D$=CHR$(48+D):IF D> THEN D$=CHR$(D+
55)

286 E=INT(B/1&):F=B-16&%E

290 E3=CHR$(48+E):IF E>9 THEN E$=CHR$(E+
55)

Utilities in BASIC

300 F$=CHR$(48+F):I1F F>% THEN F#%=CHR®(F+
55)

3168 PRINT:A$=C3%+D$+E$+F$:PRINT "D";G;" =
$ ";A$:PRINT

3286 RETURN

338 PRINT:INPUT"BINL4SPCI1" ;A%

348 A=0:A%$=RIGHT$("0000000000080BB880" +A%,
182

358 FOR I=16 TO 1 STEP -1

348 B$=MID$(A$,1,1):IF B$="1" THEN A=A+2
~(1&6-1)

378 NEXT 1

388 PRINT:PRINT"B ";LEFT$(A%,8);" ";RIGH
T$(A$,8);" = D" ;A:PRINT

398 RETURN

488 PRINT:INPUT"DECL4SPC1";A:I1F A>45535
OR A<B GOTD 408

418 B$="":D=A:FOR I=15 TO @ STEP -1

4280 B=INT(A/2°1):1F B=1 THEN B$=B$+"1":6
0TO 448

436 B$=B%+"8"

448 A=A-B*2~1:NEXT I

458 PRINT:PRINT"D";D;"= B ";LEFT$(B%,8);
" " RIGHT$(B%,8) :PRINT

440 RETURN

Program keyword — DATALINES

103

Function: To generate Basic data statements for machine code

programs.

Once again the keyboard buffer is used to generate program lines. This
time there are more variables in use than would conveniently fit on a
single assign line so they have been put ‘out of the way’ in the cassette
buffer. Only variables in the normal Basic variable storage area are lost
by an edit. The resulting data values are generated to the nearest ten

bytes.

LINE ACTION

60000- Data input.

60060— POKE values to TBUFFR.

60090 Recycle from here. Re-read next line number,
60100 step,

60110 startaddress,

60120 end address for current line,

104 Utilities in BASIC

60130 and end address of program. If finished stop program.
60140- Print line number, DATA, the values and GOTO 60090.
60210- Increment line number, address, and set up k/b ready for enp.

48888 INPUT"START ADDRESS";B

66818 INPUT"END ADDRESSI2SPCI";E
468828 F=B:L=F+18

68838 INPUT"START LINEL3SPC1";$S

68848 INPUT"LINE INCISSPC1";T

468858 PRINT"[4CD1"

460848 POKES831,INT(E/254)

68870 POKEB32,E-INT(E/254) %2564

468888 POKE828,T:G0T0401408

68898 S=PEEK(8268)*25&4+PEEK(827)

58188 T=PEEK(828)

66118 L=PEEK(829)*254+PEEK(838)

681208 E=PEEK(831)*256+PEEK(832)

668138 IFL>=EGOT0&4B270

468148 F=L+1:L=L+18

4681568 PRINT"[CUJI[14SPC1"

68188 PRINTS;

48178 PRINT"DATA";

66180 FORP=FTOL:PRINTPEEK(P);"[CL1,";:NE
XTP '
466198 PRINT"[CLIL3SPCI1"

48288 PRINT"GOTOs809B[4CUI";

66218 POKE198,2:POKE&31,13:POKES32,13
88228 S=S+T

48238 POKEB824,INT(S/254)

68248 POKEB27,S-INT(S/254) %256

468258 POKEB29,INT(L/256&)

68268 POKE838 ,L-INT(L/256)%*25&:END
48278 STOP

Subroutine keyword — DELETE
Function: To remove unwanted program lines en masse

Two delete routines follow. Both use the link address and line number
storage at the start of a Basic line during execution to perform the
deletion. The first deletes line numbers as they are encountered
whereas the second only deletes one line as the final step in the
process. The first line of each routine reads TxTTAB to find out the
current start of BASIC.

Delete 1
This routine deletes lines using the all-too-familiar keyboard sequence
and as such requires no explanation.

Utilities in BAsIC

608608 TX=PEEK(43)+PEEK(44) %254

66018 INPUT"DELETE FROM";LL:M=256&:INPUT"
[7SPCITOL2SPC1" ;UL

60828 IF PEEK(TX+2)+PEEK(TX+3)®*MILLTHENT
X=PEEK(TX)+PEEK(TX+1)*M:G0OTO 46820

68030 POKE 828,UL-INT(UL-M)*2546:POKE 829
,UL/M:GOTO 468858

680408 M=256:TX=PEEK(838)+PEEK(831)*M:UL=
PEEK(828)+PEEK(829) *M

68858 IF PEEK(TX+2)+PEEK(TX+3)>*M>UL OR P
EEK{(TX>+PEEK(TX+1)*M=8 THEN END

60848 PRINT "[CLSI[3CD1";PEEK(TX+2)+PEEK
(TX+3)*M:PRINT"GOTO &40640[HOM]"

408760 POKE838,TX-INT{(TXsM)*M:POKE831,TX/
M:POKE198,2:POKE&31,13:POKE&32,13:END

Delete 2

105

This is, perhaps, a more refined way to carry out the task. It takes
fullest advantage of the way programs are stored in rRAM and in par-
ticular the function of link addresses. The routine scans the line
numbers until the start of the block to be removed is found. It records
the address of this link address and then continues to scan for the end
line number for the delete. Once a line number equal or greater is
found, this link address is substituted at the start of the block link. One
very large line has thus been created in memory. A simple keyboard
program is then used to remove the start line and all others go with it.
This is without doubt a lot faster than the first method, but has the

disadvantage that you cannot see the lines as they go.

468088 TX=PEEK(43)+PEEK(44) %256

48018 INPUT"DELETE FROM";LL:INPUT"[7SPC]
TOL2SPCI" ;UL

46808208 L=PEEK(TX+2)+PEEK(TX+3) %256

680830 IF L<LL THEN TX=PEEK(TX)+PEEK(TX+1
) %256:GOTO 48020

468048 IF L=8 THEN PRINT"LOWER LIMIT";LL;
"NOT FOUND" :END

6808508 LL=L:D=TX

68848 L=PEEK(TX+2)+PEEK(TX+3) %256

60076 IF L=@ THEN PRINT"UPPER LIMIT";UL;
“NOT FOUND" : END

68088 IF L<UL THEN TX=PEEK(TX)+PEEK(TX+1
) %256 : GOTD 48840

60098 POKE D,PEEK(TX) :POKE D+1,PEEK(TX+1
>

68188 PRINT"[CLSI[3CDI";LL;"[HOMI":POKE
198,1:POKE 631,13:END

106 Utilities in BASIC

Subroutine keyword - DUMP

Function: To display the current values of all simple numeric, string and
function variables

Initiation: Type GOTO 60000

This routine will display the values of all simple variables in use at the
time of calling. The variables will be displayed in the order in which
they were created by the program. The routine will not handle arrays
nor will it work if editing has been carried out prior to its being called
(simply because all variable pointers will be reset to the end of pro-
gram). It also displays the values of the variables it uses - sv, v$, and so
on. As these are the last variables to be created they will be the final
ones to be displayed. Output may be directed to a printer by a simple:

OPEN 4,4:CMD 4:GOTO 60000

The display may be stopped by holding down any key and will resume
on the release of that key. Pressing the stop key will ‘break’ into the
program and allow you to use the cursor keys to move up and change
values. If you resume program execution with a Goto, then the
amended values will be used. A simple conT would re-enter the dump
subroutine at the break and dump any remaining variables.

The routine makes extensive use of the information contained in
Chapter 1 on the storage of BasiC variables. Remember the first two
bytes are the variable name adjusted for its type. The following is a
description of the routine:

LINE ACTION

60030 Read the current value of VARTAB.

60040 Do the same for ARYTAB.

60050 Default values.

60055 If equal then no simple variables, edit used, or finished. If not
equal more variables exist so continue.

60060 Read the seven bytes used for variable.

60070 Determine the type from the two name bytes and GoTO the

to appropriate subroutine, these being real, integer, string or func-

60100 tion. The name bytes must be changed back to their unmodified
ASCII values by the subtraction of 128, as necessary, and "%’ or
'$’ suffixes printed where required.

60105 Pause if key held down (64=no key at srbx. Note this is the
current key not Lstx as in the Programmer’s Reference Guide).

60110 Increment 7 bytes to next variable and recycle.

61000 Subroutine to convert5 floating point binary bytes to decimal.

61500 Subroutine to convert the 2 of the 5 bytes used to a signed
integer.

Utilities in Basic 107

62000 Subroutine to read string length and location then find and
build string.

62005 Avoids the single pass through ForRNExT if null string.

62020 Surround a string with quotes - required for changing its value
on a break.

62500 Subroutine to detect a function and simply acknowledge the fact
as its current value will be picked up by one of the other
routines.

60888
66818 :REM DUMP UARIABLES

ép828

68830 SU=PEEK(45)+PEEK(44)*%25& :REM STAR
T OF VARIABLES

£6048 SA=PEEK(47)+PEEK(48) %2546 :REM STAR
T OF ARRAYS

686858 Us="":UUs="":=0:UY=08:REM DEFAULTS
68855 IF SA=SV THEN END: :REM NO SIMPLE
VARIABLES OR EDIT USED

68848 FOR U=8 TO &:V(U)D=PEEK(SU+U) :NEXT
V:REM READ VARIABLE NAME AND VALUE

68878 IF VU(B)<128 AND VU(1)<128 THEN GOSU
B 6180806 :REM REAL

68888 IF U(B)>>128 AND V(1)>127 THEN GOSU
B 461566 :REM INTEGER

68898 IF U(B)<128 AND V{(1)>>127 THEN GOSU
B 6286068 :REM STRING

48188 IF U(B)>128 AND V(1)<128 THEN GOSU
B 62568 :REM FUNCTION

48181 IF PEEK(283)><>é4 GOTO 40181

68118 SU=SU+7:G0TO0 400846:REM INCREMENT C
OUNTER AND DO NEXT

618068 VU$=CHR$(V(8))+CHR${V(1)):REM REAL
NAME

61818 U=(-1)"(V(3)AND128) %2~ (Y(2)-129)
618280 W=(1+((V(3)ANDI27)+{(U(4)+(V(5)+U(
8)7°236)/256)/256)/128)

618308 U=sUxUU:PRINT V$;"=";U:RETURN

61588 U$=CHR$(V(B)-128)+CHR$(VU(1)>-128)+"
Z" :REM INTEGER NAME

613518 U=(U(2)AND127) %¥256+U(3)+(W(2)>127)
*32748

61528 PRINTU$;"=";U:RETURN

462000 U$=CHRE(V(B))+CHRE(V(1)-128)+"$":R
EM STRING NAME

628835 IF V(2)=8 GOTO &2820

108 Utilities in BASIC

62018 FOR V=1 TO U{2) :W$=UUs+CHRS (PEEKS
V(3)+U(4) %¥256+U-1)) :NEXT V

42828 PRINT U$;"=";CHR$(34) ;VW$;CHR$(34)
:RETURN

425088 RETURN:REM FUNCTION PICKED UP BY O
THER ROUTINES

An alternative approach might be to use the technique in RENUMBER (see
below). Namely, print a line which reads: priNT the variable name and
GoTo the point at which program execution should be resumed. If we
get the cursor movements right and POKE a RETURN into the keyboard
buffer, a dump could be performed. To tidy up, we should really clear
the line which says ‘PRINT and GOTO” with more cursor movements and
spaces, and so on.

An obvious extension would be to include arrays. The logic involved
in determining and printing the values of subscripted variables is
identical to the above and, with care, the same subroutines could be
used. The tricky bit is deciphering the array header to determine the
number of dimensions and the size of each dimension. If you do decide
to try this, do remember integer array values are stored in only two bytes
and string pointers in three bytes, unlike their simple variable counter-
parts. You must also check that arrays do exist by examining sTreND and
comparing it with ARYTAB+1. Array headers have also been covered in
Chapter 1. Including arrays will greatly increase the size of bump and in
applications where memory is tight, prove impracticable. It is also
difficult, so do not worry if your efforts are not rewarded immediately
as a simple error in the logic can cause some very unexpected results.

Program keyword — LISTER

Function: To produce dated, paged and neatly formatted listings

The version given below has been written for an rs232 printer operating
at 300 baud, 1 stop bit and no parity (see Programmer’s Reference
Guide, Chapter 6: ‘Input/Output Guide’). The printer used also
required a carriage return/line feed sequence to be generated at the
end of each line. Therefore, the logical file number used has to be
greater than 127, in this case #129. When using any Rrs232 device, it is
advisable to open-up the file at the start of the program to allocate the
input and output buffers. For other printers, the OPiN and PRINT#
statements below will have to be amended to suit.

If your printer does not support the cBm special characters, the
program to be listed should first be run through coper before gen-
erating the ASCII file. With a cassette, the open command to read
sequential data on line 210 should read OPEN 2,1,0,A5().

The listing produced is ideal for permanent record, though as the

Utilities in Basic 109

process takes a little time it is not recommended for intermediate
listings. The final listing will have all text inset to column 7 and any
wrap-around lines will also be inset. Specifying a line width less than
the maximum available has the benefit of allowing space for comments
(can save a lot of time in the future). A brief description follows:

LINE

100
110-
160-
210
220

230
250
260

270
290
300-

340

188
118
128
1386
HEN
148
156
158
178
188
198
208
218
220
230

ACTION

See above.

Set parameters.

Allocate files to be listed to array As(.

See above.

This line is included to get any leading returns. The number of
these will depend on exactly how the ASCII file was generated.
Once a cMD has been issued all returns normally sent to the
screen will go to the file. Typically this will be two for the uisT. If
zeros appear on your output then you will have to adjust the
program or the way you generate the file.

Create bottom margin.

Build one line into string As.

Same problem as 220 at end of file. Assume a line number of zero
is the end.

Reset line for text to startin col 7.

If length<max then print it.

Else splititand print first part. Recycle each time adding 6 leading
spaces to continuations.

Print blank lines to next top of form before next program.

OPEN 129,2,8,CHR$(&)
PRINT"LISTER UTILITY":PRINT
INPUT"DATEL185PC1" ;D%
INPUT"LINES/PAGE[4SPC1";LP:IF LP=8 T
LP=56&

INPUT"MAX CHARS/LINE" ;CP

INPUT"NO.OF PROGSL3SPCI1";N:DIM As(N)
PRINT:FOR I=1 TO N

INPUT " PROGRAMI 7SPC1" ;A% (1)

NEXT 1

1=8

I=I+1:LC=0:1F I>N THEN END

Z=1:0PEN 2,8,2,A$(I)+",5,R"
Z=1:GET#2,A%$:GETH#2,A%:GOSUB 320

IF LC>=LP-8 THEN FOR J=1 TO LP-LC:PR

INT#129,"" :NEXT J:G0OSUB 328

240
258

J=0:B$=""
J=J+1:GET#2,A%:IF A$<OCHR$(13> THEN

B$=B$+A%:60T0 250

110 Utilities in BASIC

248 IF VAL(B$)=8 THEN GOSUB 348:G0T0208
278 L$=STR$(VAL(B$)) :B$=MID$(L$+" [4SPCI"
,2,6)+MID$(BS ,LENC(LS))

280 L=LEN(B$)

298 IFL<{=CPTHEN PRINT#129,B$:LC=LC+1:GOT
0 238

308 L$=LEFT$(B$,CP):PRINTH129,L$:LC=LC+1
3190 B$="[7SPC1"+MID$(B$,CP+1):G0TO 288
320 PRINT#129,"PROGRAM ";A$(I1);" LISTED
ON ";D$;" LISTING PAGE" ;Z:LC=2:2=2+1

330 PRINT#129,"" :RETURN

348 FOR J=1 TO LP-LC:PRINT#129,"" :NEXTJ:
CLOSEZ2:RETURN

Subroutine keyword - MERGE

Function: To merge two BASIC programs

In all the following where line numbers are common to both the
program in memory and the merging program those of the latter will
take precedence.

Merge 1
Where a program is less than 22 screen lines when listed, it may be
merged very easily indeed. Simply load the short program and list it.
Type new and move the cursor to the line below the last line of the list.
LOAD the main program and then move up and simply press RETURN on
all lines to be included in the final program.

This is the reason for having short keyword routines, to allow the
above technique to be used on many of them.

Merge 2

The following subroutine will merge programs of any length. The
program (or part of) to be merged must be stored as an ASCII file on
disk or tape. The program resident in memory must, of course, include
the merge subroutine.

Initiation: RUN 60000

The resulting program will be an amalgamation of the two programs and
unlike AppenD the lines will be in the correct numerical sequence. At
the completion of the merge an ‘OuT OF DATA” or ‘SYNTAX ERROR” Will be
displayed depending on how the ASCII file was generated and which
program had the highest line number, but who cares, as the result is
exactly what we wanted. The program may then be saved in the normal
way (after deleting lines 60000 if they are no longer needed). The
version given is for disk and the necessary changes for cassette have

Utilities in BAsic 111

been included in the description below, but should be only too
familiar by now.

The program uses the keyboard programming technique for the
most part. There is one problem and that is that whenever an edit is
performed all open files are cLosed. So in theory only one line may be
read from the file. Any further attempts to obtain input will result in a
"FILE NOT OPEN” error. The solution is simple. BasiC is made to believe a
file is open even though an edit has been carried out by POKEiNg the
necessary values into the zero page file registers for current logical file
(LA), secondary address (sA) and device number (FA).

LINE ACTION

60010 For tape OPEN1,1,0,F$

60020 Get bytes until numeric code. This overcomes the problem in
LisTeR and perhaps should also be used in that program.

60030 Set file parameters by poking into (A, sa and fa. For tape use 2, 0
and 1 (0=read 1=cassette).

60050 As the first numeric character has been found, mustn’t forget
to print it. — B$

60060 As all other programs using keyboard.

60080 Set up k/b buffer on eND to enter printed line and GoT0 60030, the
cycle repeating until all done.

48000 INPUT"PROGRAM " ;F$
48818 OPEN2,8,2,F$+",S,R"

48020 GETH2,B$:IF UAL(B$)><1 GOTO 40820
48038 POKE 184,2:POKE 185,2:POKE 186,8:P
OKE152,1

68848 PRINT"[CLSI[3CD]1";

460856 PRINTB$; :Bs=""

680608 GETHZ,A$:PRINTAS;:IF A$<O>CHR$(13)
GOTO 4BG40

468878 PRINT"GOTO 46838[HOMI"

40080 POKE 198,2:POKE 431,13:POKE&32,13:
END

Merge 3 (tape only)

This is the cleverest tape merge we have seen. It was originally worked
out by J. Butterfield and B. Templeton for the per and all we have done
is to modify it for the 64.

Again, the program to be merged must be on tape in ASCII format.
The statements may be typed in direct mode or, as in this case, be a
subroutine. In direct mode the contents of the quotes should be typed
after performing the necessary cursor moves and RETURN pressed at the
end. Line 60030 is needed only in program mode.

112 Utilities in BASIC
Initiation: RUN 60000

The key to this is the POKE 153,1 (DFLTN) which changes the default input
device after each line has been merged from the usual default of 0 (the
keyboard) back to the cassette (1).

40008 INPUT "PROGRAM ";F$

468018 POKE 19,1:0PEN 1,1,0,F$

48828 PRINT"[CLSI[3CDIPOKE 153,1:POKE 19
8,1:POKE 631,13:PRINT CHR$(19)"

480838 POKE 198,1:POKE 631,13:PRINT "[HOM
1" :END

The most common problem with merge is if a program line is in excess
of 80 characters when listed (possible if abbreviations have been used).
The merge will be unsuccessful as the cursor movements will be
incorrect and also Basic’s input buffer will overflow.

Program keyword — OLD

Function: To recover Newed programs

The command New does not actually erase the program in memory, it
simply changes the first line’s link address to 00 00 (2049 and 2050) and
therefore fools BAsIC into thinking that there isn’t a program present. In
addition, all variable pointers are reset to the end of the program,
which in this case is the start of Basic itself (action of ctr). The following
uses these facts to recover the program by resetting the necessary
pointers.

To use OLD, the start of BASIC (TXTTAB) must be set above the end of the
NEwed program and TXTTAB-1 set to zero by:

POKE 43,01:POKE 44, no. of pages:POKE (no. of pages) *256,0: NEW

otp may then be loaded and run. The erased program will be
recovered and you are back in business. As a point of interest OLD is
still present higher in memory and will remain so until overwritten by
variable data or a larger program.

The program works by hunting from the input value of TXTTAB+4
(ignore first three zeros) for three consecutive zero bytes which mark
the end of the erased program. En route the first link is changed to
point to the second line. Once found, TxT1TAB is changed to point to the
specified start and VARTAB, to the end address. A ctr then tidies up and
the original program is tisted.

Utilities in asic 113

40008 INPUT"TXTTAB(2849) " ;TX:MX=256
48018 POKE 828,TX-INT(TX/MX)*MX:POKE 829
, TX/MX

408828 X=TX+4+J:IF PEEK(X)><>@ THEN J=J+1:
GOTO 48828

480838 POKE TX,X+1-INT((X+1)/MX)*MX:POKE
TX+1 ,(X+1)/256: TX=X+1

468848 X=PEEK(TX)+PEEK(TX+1)*MX:IF X<>8 T
HEN TX=X:GOTO 480848

468858 TX=TX+1:POKE 838,TX-INT(TX/MX)*MX:
POKE 831 ,TX/MX

408048 POKE 43,PEEK(828):POKE 44,PEEK(829
) :POKE 45,PEEK(838) :POKE 46,PEEK(831)
468878 CLR:LIST

Subroutine keyword — PLOT

Function: To position the cursor to a specified screen location

There are many ways of positioning the cursor. The most common way
is to include the necessary control characters inside quotation marks.
This can be expensive on memory if a lot of cursor movement is used.
The movement is also relative to the current location and not
absolutely fixed to some reference point unless a clear screen or home
cursor is first issued. Many micros have TAB(x,y), POS(x,y) Or HTAB x and
viABy functions within their BAsiCs to position the cursor. The following
are just two ways of doing this on the 64 with its unmodified asic.

Plot 1

This uses a simple subroutine into which are passed the line and
column position. First, two strings are defined — preferably at the start
of the program as they remain unchanged throughout the run for

speed of access. They are:
1Y$="[24CD]"":X$="[40CR]"

and have been allocated line number 1. To position to any location, the
x and v coordinates are passed to the subroutine which simply homes
the cursor then prints the appropriate number of cursor downs and

rights.
In the example below, lines 100 to 130 have been included for

demonstration purposes.

114 Utilities in BASIC

1 Y$="[23CD1" :X$="[48CR]"

188 INPUT"COLUMN" ;X

118 INPUT*[3SPCIROW" ;v

120 GOSUB 1888 :PRINTX;",";Y

138 GOTO 100

1888 PRINT"[HOMI" ;RIGHT$(Y$,Y) ; RIGHT® (X%
,X) ; :RETURN

The top left of the screen is considered as ‘0,0’. The semicolon at the
end of the print in 60000 is included to hold the cursor at the set
location.

The idea of holding frequently used character patterns, control
characters, and so on as string variables can reduce memory usage and
also makes for easier-to-read code.

Plot2
This second plot routine uses the same zero page locations as the
KERNAL function pLOT see Programmer’s Reference Guide. These are PNT
(209/210), PNTR 211) and TBLX 214). If you look at the memory map in Chapter
5 of the PrG or Appendix K of this book, you'll notice locations from 200
to 245 all relate to the screen in some way or other. We are not going to
run through them all, but try experimenting with them and see what
happens. If in trouble, turn off the 64.

Let us look at the three locations we are going to use to accomplish
PLOT in a little more detail.

PNT: contains the address of the start of the current line in low/high
format. With the screen at its default start (1024-2023), this will hold a
value 1024+40+row where row is in the range 0-24. Unusual results are
produced if this does not correspond to the start of a physical screen
line.

PNTR: holds the offset from the address held in PNT. It is the absolute
screen column (0-39) when pNT holds the start of line address.

T8LX: holds the current physical screen row.

Using only PNT and PNTR, we can position the cursor to any x,v location.
The next print would occur at the specified point. However, when the
cursor returns after the print, it reappears at or below the line it was on
before pNT and PNTR were set. This is difficult to put into words and
much easier to see. For example, if an input took place on line 23 and
the cursor was then moved to line 10, column 10 and a PrRINT took place
without a semicolon, the cursor would reappear at the start of line 24
and not 11 as might be expected. To avoid this, we simply also set TBLx
and all will be well. The routine below has the same effect as the first
PLOT routine given. Again, lines 100 to 130 are included for demonstra-
tion only.

Utilities in Basic 115

1868 INPUT"COLUMN" ;X

118 INPUT"[3SPCIROW" ;Y

126 GOSUB 188@:PRINTX;",";Y

136 GOTO 166

18668 POKE 214,Y:Y=10824+Y*448

18186 POKE 289,Y-INT(Y/258)*%256:POKE 218,
INTC(Y /256D

18286 POKE 211 ,X

1838 RETURN

Subroutine keyword — PRINT USING

PRINT USING is a very powerful output formatting command available in

some BASIC languages. It allows numbers to be right or left aligned to a

specified number of decimal places, or to be expressed in exponential

format and much more. There are equally as many possibilities for

strings. A routine to duplicate all the facilities would be very long, so

here we have only considered the problem of formatting numbers.
Very quickly everybody picks up on the idea of:

X=INT(X*10"W+.5)/10"W

to get numbers to a set number of decimal places, where W is the
number of places. Unfortunately, due to the way numbers are stored,
this is not guaranteed to produce the expected result. By way of a
trivial example, try printing .01+649 and 649+.01 and see the difference.
The result of any calculation is very much dependent on the order in
which it was evaluated. To overcome the problem we have to resort to
strings as these are the only type of variable we can fully format.

The following routine will format numbers not in scientific notation
and will avoid the xx.xe0001 type occurrence by not using any division.
The value returned is right aligned to w decimal places and padded
with leading spaces to a set width of L. The variable transferred is in x
and the string xs is returned.

1 INPUT "X";X :INPUT"W";W:INPUT"L";L: GO
SUB 48888 :PRINTX$

2 GOTO 1

460008 X$=STRE(INT(X*18"W+.5)) :LE=LEN(X$)
48018 SZ$=".000000000000000" :S2%="[315PC
]ll

60020 IF LE<W+2 THEN X$=LEFT$(X%,1)+MID%
(52%,1,W+2-LE)+RIGHT$(X$,LE-1)

60838 IF LE>=W+2 THEN X$=LEFT$(X$,LE-W)+
"LU"+RIGHTS(X$, W)

460648 X$=RIGHT$(S52¢+X$,L) :RETURN

116 Utilities in BASIC

To illustrate its use, the following display

CcoL COL2 COL3 COoL4
99.000 100.00 .999 9.51456
100.091 98.22 .010 11.00000

would be produced by the program lines; where Ci14 represent the
values to be pPriNTed in cols 1-4 (set elsewhere within your own pro-
gram).

1 C1=99.86001:C2=180.68123:C3=.%9888:C4=
?2.514546%9:REM EXAMPLES

18 L=18:W=3:X=C1:6G05UB 48808 :PRINT X%;
20 W=2:X=C2:G05UB 48088 :PRINT X%;

38 L=5:W=3:X=C3:6505UB 48000 :PRINT X%;

48 L=14:W=5:X=C4:605UB 48880 :PRINT X%

Where numbers are very large or very small, simply raise them to an
appropriate power of ten prior to calling the routine and head the
output ‘»10°N".

Subroutine keyword - RENUMBER

Function: To renumber a specified section of a program

It is not possible to write a full renumber program in Basic which does
not use ASCII disk files (somebody will no doubt wish to disprove this
statement). There are many problems, the biggest of which is in
renumbering GOTOs, GOsuBs and THENS line destinations. It is relatively
easy, albeit slow, to hunt these out by their token values. The problem
arises in correcting destinations which are held in ASCIl form. For
example, GOTO100 is held as 13749 48 48 (89 $31 $30 330 in hex). If during the
renumbering process the destination changes by a magnitude of ten or
more (the overall length changes), we have to move all code from the
byte following the reference up or down in memory, recalculating link
addresses as we go. If all references are entered as five figures as
standard, this problem is eliminated, for example, GoToe0100. Entering
line numbers in this way is rather tedious and is considered imprac-
tical. Machine code renumber programs use the ‘crunch tokens’
routine and the necessary memory moves are performed as part of this
routine when aline is added or removed. See ReNum in Chapter 7.

The program below only renumbers the lines. It will renumber all or
only a set block. The new line numbers need not even be in sequence
with the rest of the program, though problems will arise if they are
referenced. The user will have to manually change all coTos, etc. This
subroutine is really intended to allow you to put together a number of
the shorter routines in this chapter.

Utilities in Basic 117

460808 TX=PEEK(43)+PEEK(44) %256 :MX=254
468818 INPUT"RENUMBER FROM";LL:INPUT"[%SP
CITOL25PCI1" ;UL

468828 INPUT"[SSPCINEW LINE";S:INPUT"[?SP
CI1STEP" ;1

468838 IF PEEK(TX+2)+PEEK(TX+3)*MX{LL THE
N TX=PEEK(TX)+PEEK(TX+1)*MX:G0TO 486380
460848 S=S+J*1:IF TX=8 OR PEEK(TX+2)+PEEK
(TX+3)*MX>UL THEN END

468858 POKE TX+2,S-INT(S/MX)>*MX:POKE TX+3
s S/MX : TX=PEEK(TX) +PEEK{(TX+1) *MX

688466 J=J+1:6G0T0 &s86830

Subroutine keyword — SQUASH

Function: To increase the speed of execution of BasIC programs

Many ‘crunch’ or ‘compactor’ programs are available, both commer-
cially and in various journals. Their function is to increase the speed of
execution of a BASIC program by the removal of redundant code.

There are many reasons why code is slower than it need be. Much of
this code is useful at the time of developing the program, but is not
required at run-time. Some examples have been given at the end of
Chapter 1, but there are many more. Listing the more obvious:

Line numbers: When they are the reference for a GOTO, GOSUB Or THEN
they are held in ASCII form. The shorter they are (that is, the lower the
number), the quicker they are converted to numeric form. Therefore, a
renumbering with an increment of 1 is advantageous.

REM: These are ignored at run-time and need only be retained if they
are a destination. rRems also use valuable memory.

Spaces: Including spaces in a program makes for easier reading, but is
unnecessary and wasteful (this is true only outside quotes).

Variable names: One-character names use less space and are found
quicker.

Destinations: See Chapter 1 (page 23)

Screen: See Chapter 2 (page 32)

Print: Semicolons separating print lists are sometimes superfluous.
They must be retained after a numeric variable and at the end of a PrINT
listif a carriage return is to be inhibited.

Line length: Short lines use an extra five bytes each time (link=2
line=2 end=1) and also take time in working out the next line’s details.
Lines which are not destinations can be strung together, taking due
care of the logic of any If statements. Lines may be of any length, but
are difficult to edit or generate once they exceed 80 characters (even if
all the possible abbreviations are used, there is a limit to BASIC's input
buffer).

118 Utilities in BASIC

FOR/NEXT loops: A surprising increase in speed is gained by omitting
the variable on the NexT statement. This eliminates the look-up opera-
tion for the variable name. Try timing:

FORI=1TO255:FOR J=1TO255:NEXTJ:NEXTI

and FOR...... NEXT:NEXT
Operating system: Once spaces have been eliminated, CHRGET itself
may be modified to get rid of the test for spaces. (See Chapter 3).

The subroutine below will remove all unnecessary spaces, semicolons
and Rrems. Renumbering is left up to you. Once again, an ASCII file
must first be generated of the program. The program is based on
Merge 2 (see page 110) and only the differences from that program are
described below:

LINE ACTION

60030 Lis setto1toaccount forssin first line.

60090 As Merge 2 line 60060, returning to k/b bit once a return found.

60100 Once a rRem found, ignore all chars except return.

60110 Flag to indicate in or out of quote mode.

60120 Ignore spaces out of quotes.

60130 Keep spaces in quotes.

60140 Semicolons out of quotes require careful checking and this is
carried out at 60210 on.

60150 Semicolons in quotes — keep.

60160 If notan ‘M’, don’t look for Rem.

60170 Else see if preceding two chars were ‘Rt’.

60180 If they were, replace by a ;" and set re to ignore everything
following (see 60100).

60190 Build line to be printed.

60210 Handle the semicolon when out of quotes and eliminate if
possible. Do this by getting next byte and if the list continues
check for a preceding string or opening quote. Finally, re-enter
the main body of the program where appropriate.

Initiation: RUN 60000

48608 INPUT"PROGRAM " ;F$

48818 OPEN2,8,2,F$+",S,R"

4808208 GETH2,B$:I1F VAL(B$)><1 GOTO 48020
480308 L=1

40048 POKE 184,2:POKE 185,2:POKE 186,8:P
OKE152,1

48858 PRINT"[CLSI[3CD1";

4608468 GOSUB 400898

48878 PRINT"GOTO 4@864@[HOM]"

Utilities in BASIC

40080 POKE 198,2:POKE &31,13:POKES32,13:
END

40098 GETH2,A$:1F A$=CHR$(13) GOTO 4082088
40188 IF RE=1 GOTO 48890

40185 IF A$="T" AND G=8 AND RIGHT$(B$,4)
="PRIN" THEN P=-1

481846 IF A$s=":" AND @G=8 THEN P=8
48118 IF A$=CHR$%(34) THEN G=NOT{Q>
68128 IF A$=" " AND (=8 GOTO &068%86
48138 IF A$=" " AND Q=-1 GOTO 481970

68148 IF A$=";" AND (G=6 AND P=-1 GOTO 46
218

48158 IF A$=";" AND G=-1 GOTO 481986
60188 IF A$<> "M" GOTO 48190

606178 IF MID$(B%,L-1,2)<>"RE" GOTO 481786
48180 B$=LEFT$(B%,L-2>+":":RE=1:G0TO0 468
b’

48178 B$=B%+A%:L=L+1:60T0 46870

468208 PRINTB%:RETURN

60210 GETH2,C$:1IF C$=":" THEN A®=A%+CH:L
=L+1:P=0:60T0 50178

68228 IF C$=CHR$(13) THEN B$=B$+A%:G0TO0
682080

460238 IFRIGHT$(B%,1)="%"0ORRIGHT$(B%,1)>=C
HR$ (34) ORC$=CHR$ (34) THENA$=C% : GOT048180
50248 A$=A$+CE:L=L+1:60T0 481906

Conclusion

119

We hope that this chapter has given you food for thought. By way of a
project, why not write a routine to recover as much of the data as

possible after an edit or New has been performed?

6 Routines old and new

Introduction

In Chapter 4 we gave listings in machine code to make use of the
function keys. These are actioned by keywords. At the present time,
BAsIC will not understand these. All the functions of the uTiLiTy, the
remainder of which are in the following two chapters, require some sort
of ‘driving mechanism’. That is, routines which will not only recognize
the keywords, but will action them. Those routines are the PrINT tokens,
DISPATCH BASIC CHARS and BASIC EVALUATION. In Chapter 3 these were fully
discussed, so we are only supplying in this chapter the coding that is
particular to the utiLITy.

To initialize the uTiLITY we need to change the addresses in certain
locations. These fall into three categories. First, we have to change the
vector addresses so that Basic will go to our token routines; secondly,
we need to protect the uTiLITY from being overwritten by programs and
strings; and lastly we need to retain its operation during a Non-
Maskable-Interrupt, that is when RUN/STOP RESTORE is pressed.

There are certain subroutines which will be used by more than one
command, so we include them in this chapter. These deal with getting
parameters, the switching in and out of the Basic Rom and memory
moving.

That has dealt with the new, and now for the old. A few of the resident
ROM routines are useful. Many of them will be covered when describing
our new commands. The later part of this chapter describes some more.

Initialization

When you start up the uTiLITY with sys 32768 these instructions will be the
first to be actioned. They will set up and protect the uTitLiTy. At the end of
the four subroutines we return control back to you, with a screen
message, and the UTILITY in operation.

ASSEMBLY LISTING

? »=$8000
l1e JSR VECTOR ! CHANGE BASIC VECTORS
20 JSR KEYS ! SET KEYBOARD VECTOR

30 JSR NMI ! SET NMI AND BRK VECTORS

48

58

-1

78

8e

98
100
118
128
138
148
150
140
178
186
190
208
218
228
238
248
258
240
270
286
298
360
318
326
338
348
358
348
378
386
398
460
418
420
425
436
448
458
440
478
488

JSR
JMP
LDA
STA
LDA
STA
LDA
5TA
LDA
STA
LDA
STA
STA
LDA
STA
STA
RTS
LDA
STA
STA
LDA
STA
5TA
RTS
LDA
STA
LDA
STA
LDA
STA
STA
RTS
SEI
LDA
STA
LDA
STA
CLI
RTS
! NMI ROUTINE
PHA
TXA
PHA
TYA
PHA
LDA

VECTOR

MEM

NMI

KEYS

MEM
$7200
#s09
$08304
#$BC
$08364
#$02
$0308
H#$29
$836A
#$82
$8365
$6387
#4383
$8389
$836B

H$FF
$37
$33
#E7F
$38
$34

H$7E
$8314
#4641
$68318
#$80
$8317
$8319

#$22
$828F
#$87
$8298

H$7F

t

Routines old and new

SET TOP OF MEMORY
CLR AND MESSAGE

ICRNCH LOW
1GPLOP LOW
IGONE LOW
TIEVAL LOW

ICRNCH HIGH
1GPLOP HIGH

IGONE HIGH
TEVAL LOW
MEMSIZ LOW
FRETOP LOW
MEMSIZ HIGH
FRETOP HIGH
BRK LOW

NMI LOW

BRK HIGH
NMI HIGH

KEYLOG LOW

KEYLOG HIGH

121

122 Routines old and new

49a STA $DDBD ! CIA INTERRUPT
CONTROL REG
o580 LDY $DDBD
510 BPL PLUS
520 JMP $FE72 ! RESET RS232
536 PLUS JSR $F4BC ! SETS STOP AND RVUS FLAG
5480 JSR $FFE1 ! CHECK STOP KEY
556 BEQ@ BREAK
5680 JMP $FE72 ! RESET RS232
565 ! BRK ROUTINE
578 BREAK JSR $FD15 ! KERNAL RESET
588 JSR $FDA3 ! INITIALIZE 1/0
CIA CHIPS
590 JSR $E518 ! INITIALIZE 1/@
488 JSR KEYS
618 JSR NMI
620 JMP ($A002)
887E BREAK 8854 KEYS
8634 MEM 8841 NMI
8873 PLUS 8a8F VECTOR

We feel that this listing up to 430 is fairly self-explanatory, especially
with a memory map. The remaining lines are dealt with in the next
section.

BRK and NMI routines

These are included in the listing of the previous section, lines 430 to
620. When either of these are initiated, it will be to these lines they will
come. The majority of these routines are copies of the equivalent ROm
routines, plus a couple of directions to our set up routines to keep the
UTILITY in service.

NMI

The Nmi is initiated by the use of the restORre key (although there are
means to initiate it through the cartridge slot). Not only does it tell the
microprocessor it has been actioned, but it also sets a flag in the CIA #2
The processor will not action it immediately, but will wait until the
present instruction is complete. The processor then saves the program
counter and the status register on the stack. It will load the address
stored at sFFFa and $FFFB into the program counter. This is normally sFr43.
At this address it sets the interrupt flag, so that the other interrupt does
not interfere, and then jumps to the vector address that we have
changed. Note that the routine has so far not stored the A, x and v
registers.

Routines old and new 123

The nmiin the uitty will end up at our routine, which is a series of
subroutines. After saving the processor registers on the stack, it clears
the Nmi flag in the Interrupt Control Register of the cia#2 chip, which
deals with inputs and outputs of the computer. It then loads that
location back into v and if the nmi flag is still clear then it jumps ahead,
missing out for the time being an rs232 reset. The following routine
checks the stop and rvs flags at location $91. A call to the KERNAL routine
to check for stop follows. If on exit the accumulator is zero, then the
STOP was initiated and we go to the Brk routine. Finally, we jump to the
routine to reset the rs232 locations.

BRK

The first subroutine resets the KERNAL set up vector from se314 to $0333 to
their default values from a list held in the KerNAL ROM itself. This will
reset two we have changed, the Brk and Nmi vectors. The following
routine will service the two cia interface chips, by restoring them to
their setup levels.

The routine at ses18 performs the remaining functions of a Brk. It
restores the output device to the screen and the input device to the
keyboard. The video chip is next for the restoration treatment. The
screen and character set are returned to their default positions, and
sprite graphics turned off. After this it is the keyboard’s turn, with the
buffer, delays and set-up vector all returned to default values. The
routine finishes off by resetting the input/output flags, clearing the
screen, setting the colours and putting the cursor in the home
position.

We now put in two calls ourselves so we can reset the Nmi, BRK and
keyboard vectors to those we require. Finally, there is the indirect
jump of Aee2 which sets the stack pointer to its start, prints ‘ReapY’ and
gives control back to the user.

Routine vectors and keywords

There is sufficient space, using the existing token system, for 51 further
keywords. These will be split up into an area for command keywords
and an area for function keywords. In the utiLiTY we are supplying 34
commands and 1 function. Between the last command keyword vector
and that of the function keyword there is space for a further nine
commands (token values 238 to 246 (see-$F6)). Seven extra functions
could be added within the space available. The vector table is posi-
tioned at $8090 to $80F5.

The keyword table is exactly 255 bytes long. Out of that our
keywords use up 155 plus a zero byte to mark the end of the table. The
amount of space available to you if wish to extend it is 58 bytes for
command keywords and 41 bytes for functions. Remember that the last
letter of each word has sse (128) added to it. In our table, the space

124 Routines old and new

between our last command, TROFF, and the only function, DEek, has
been filled with bytes $5a and stA to make up the nine unused token
values.

MEMORY DUMP

.:88%98 98 87 4C 856 B2 83 9F 84"
.:8698 EB 84 346 85 BE 85 14 84°........
.:88A68 51 83 A6 B3 AE B8F B4 B8F“........
.:88A8 88 83 AC 83 51 BE C4 89"
.:88B8 43 BF A6 87 92 8B 2D 847
.:86B8 D! B8F 3A A? D1 AB 38 88
.:88C86 Bs 91 39 8D 18 86 BS 927
.:86C8 8C 91 88 91 4D %8 FB 85"
.:88DB oE 88 88 8D FF FF FF FF
.:868D8 880 FF FF FF Fé6 FF Bé F7
.:B8EB 88 48 88 66 DS 83 DS 837
.:86EB 00 06 66 &8 06 66 686 407
.:806F0 00 98 B8 48 B 48 4F 467 OF
.:88F8 C6 4B 45 D? 44 4F 4B CS‘ fKEyDOKe
.:8188 54 45 CE 54 57 CF 48 45°TEnTWoHE
.:8188 D8 42 49 CE 4F 4C C4 43“xBIn0OLdC
.:8118 4F 4C 4F 55 D2 57 52 49 0LOUrWRI
.:8118 54 CS 43 47 4F 54 CF 43"TeCGOToC
-:8128 47 4F 53 55 C2 58 4C 4F‘ GOSUbPLO
.:8128 D4 45 4E 54 45 D2 44 557 tENTErDU
.:8138 4D DB 52 45 4E 35 CD 44/MpRENUmD
.:18138 45 4C 45 54 CS 4D 45 S2°ELETeMER
.:8148 47 C5 43 4F 44 45 D2 41°GeCODErA
.:8148 55 54 CF 58 52 4F C3 44’UToFPROcD
.:8158 58 52 4F C3 45 58 52 4F‘PROcCEPRO
.:8158 C3 58 4F DB 51 55 49 D4 cPOpQUIt
.:8168 54 52 41 43 CS 52 45 53°“TRACeRES
.:8168 45 D4 43 48 41 49 CE 4C EtCHAInL
.:8178 4F 4D 45 CD 48 4% 4D 45°0OMEmHIME
.:8178 CD 49 4E 4B 45 S9 A4 4D'mINKEY M
.:8188 45 CD 41 58 58 45 4E C4°EmAPPENd
.:8188 54 52 4F 46 Cé SA S5A SATROFf222
.:8198 5A 5A EA 5A SA S5A S5A SA‘ZZ.22222
.:8198 5A EA 5A 5A 5A S5A S5A SAZ2.222222
-:81AB DA EA 5A 5A 5A 5A EA BSA“Z2.2222.2
.:81A8 5A 5A 5A EA S5A S5A S5A SA’Z222.2222
.:81B8 EA 5A 54 5A S5A SA SA EBAY.Z2Z22222.
.:81B8 5A 5A S5A 5A 9A EA SA S5A“22222.22
.3:81C8 5A 5A 5A 5A S5A SA EA 44°22222Z2.D
.:81C8 45 45 CB 88 FF FF FF FF'EEK.....

Routines old and new 125

-:81D8 FF FF FF FF FF FF FD FF'
-:81D8 FF FF FF FF FF 7F FF FF’
.:81E@ @0 80 80 00 00 60 00 60'........
.:81E8 @0 00 00 88 01 66 @8 00’
.:81F8 80 00 90 80 8@ 20 SA AD’..... ..

This has been produced in upper case mode and as such the end
shifted letter of each command is printed in lower case. If putting it
into your computer in a way other than the dump, remember that they
are shifted. The last letter in location ssi7t is a shifted s, giving the
keyword INKEYS.

Getting parameters and controlling BASIC
ASSEMBLY LISTING

9 ¥=%$81F5

10 JSR $ADBA ! GET INPUT

29 JMP $B7F7 ! CHECK AND TRANSFER
36 LDA %81 ! 4518 1/0 PORT
48 AND #$FE ! TURN OFF BIT 8
56 STA 061 ! BASIC OFF

48 RTS

78 LDA 481

86 ORA #3081 ! SET BIT @

b STA $61 ! BASIC ON
1606 RTS
Parameters

Lines 10 and 20 hold the only two instructions that we need to incor-
porate, but they do a lot of work in getting our numeric parameters.
Let us look at the instructions one at a time.

JSR $ADSA

The first action of this is to call the evaluate expression routine at $AD.

This is a complex routine which deals not only with numeric data,
but also with strings. After setting the CHRGET pointer back one place, it
proceeds to start picking up data after the command keyword. It will
then go through checking to see whether a mathematical operator or a
function keyword (such as peek), a variable or simply a number has
been obtained. From the information obtained it will (after calculating
if necessary) store the result or findings in the Fac#1. For numbers up to
$FFFF, the relevant numbers will be in locations $e4 and $65 of this
accumulator.

We now return to our original subroutine at sapsa, where we check
to see if the data received was numeric or not. The evaluate expression

126 Routines old and new

will set a flag in the zero page location sep. The value of $FF indicates
string data, whilst zero designates numeric data. If this subroutine
finds the former, a ‘TYPE MISMATCH' error is generated and the com-
mand, and program, is terminated.

JMP $B7F7

We have our numeric parameter. This routine will do two checks and
then transfer our data. The checks are to make sure that neither a
negative number nor one over 65535 (SFFFF) was given. In either case,
failure will result in the ‘ILLEGAL QUANTITY” error. The data is now transfer-
red from se4 and s65 to locations $14 and $15. The reason for this is that
the rFac#1 is used for many applications. The RrTs at the end of this
routine will return us to the place that called our complete GET PARA-
METERS routine, that will most likely be a command routine.

The BAsIC switch

As we said, when dealing with the function keys, the area of Ram under
the BAsiC ROM is a useful place for hiding data, or indeed routines which
do not use the BasiC interpreter. To use this area, BASIC must be
‘removed’. We have no trouble writing to the rAm as the computer,
through its decoding logic, will select it when the processor sends a
write signal. When reading, the Rom has priority unless we tell the
electronics that it is not there. The main difference between the 6510
processor in the 64 and the normal 6502 is that the former has input/
output ports. The user can control these using locations se000 and $0001.
The first deals with the direction of the data, that is, whether the ports,
of which there are six, are going to be input or output. The second
location deals with the data itself, one bit for each port, either a one or
a zero which gives a switching mode. Three of the ports are connected
to the cassette port. The other three control three ROMs: BASIC, KERNAL
and the Character Rom. A zero will switch all of these off. The one we
are concerned with, Basic, uses bit @ of the data register and so by
changing this bit, making sure not to disturb the others, we can
remove or replace as required.

Lines 30 to 60 perform the switching-out of Basic. We load the
register and set bit 0 to zero. The AND instruction will do this without
changing any other bit. After placing the result back, the ROM is no
longer present as far as the computer is concerned.

Lines 70 to 100 reverse the process by using the orA code which will
only affect the bits according to the data with the instruction.

To switch off BASIC - JSR $81FB
To switch in BASIC - JSR $8202

Dealing with the keywords

In Chapter 3 the routines that asic uses to deal with keywords and

Routines old and new 127

tokens were fully described. Below are the listings to use with the
uTiLITY, which require no further explanation

ASSEMBLY LISTING —~ CRUNCH TOKENS

7 *=$8289
18
2e
3a
4@ ANOTHER
30
68
78
8a
90
188 SPACE
110
128
130
148
156
148
178
188
198
2ea
218 NUMBER
226
236
248
2358 CONT
268
278
288
27a
360

318 NEXTLETTER

320

338 CONTI

346

350

368

378

388

398 STOREA
408 FOUND

LDX
LDY
5TY
LDA
BPL
CMP
BEQ
INX
BNE
CHF
BNE
S5TA
CMP
BEQ
BIT
BVS
CMP
BNE
LDA
BNE
CMP
BCC
CMP
BCC
STY
LDY
5TY
DEY
STX
DEX
INY
INX
LDA
SEC
SBC
BEQ®
CMP
BNE
ORA
LDY

$74
#3804
$8F
$6206,X
SPACE
HSFF
STORE

ANOTHER
#3286
STORE
$688
#$22
QuUATE
$6F
STORE
HE3F
NUMBER
He79
STORE
#4306
CONT
H#$3C
STORE
$71
#3060
$8B

$74

$6280,X

$AB9E,Y
NEXTLETTER
H$80
NEXTWORD
$0B

$71

418 STORE
428

438

440

458

448

478@

480

490

Sea

518 COLON
528 DATA

538

548

3586

568

378 LINE

588

398

408 QUOTE
418

420

438

648 NEXTWORD

458
468 FIND
478
486
498
7’68
718
728
738 NEXT
748
738 NEXTB
768
778
/786
796
gae
g81ae

INX
INY
STA
LDA
BEQ@
SEC
SBC
BEG
CMP
BNE
S5TA
SEC
SBC
BNE
STA
LDA
BEQ
CHMP
BEQ
INY
STA
INX
BNE
LDX
INC
INY
LDA
BPL
LDA
BNE
LDY
DEX
INY
INX
LDA
SEC
SBC
BEG
CMP
BNE
BEQ

$01FB,Y
$81FR,Y
EXIT

#$3A
COLON
#$49
DATA
$8F

#$55
ANDTHER
$08
$6208 X
STORE
$08
STORE

$01FB,Y

LINE
$7A
$68B

$A89D,Y
FIND
$ABE,Y
CONT 1
H$FF

$0200,X

$80F4,Y
NEXT
#4320
NEXTNEW
STOREA

128 Routines old and new

g7e LDA $8@F&,Y | 828 NEXTNEW LDX $7A
884 BNE NEXTE g3e INC 4$8B
890 LDA $8288,X | 848 NEXTA INY

768 BPL FQUND 858 LDA $88FS5,Y
718 EXIT JMP $A6B9 848 BPL NEXTA
328F ANOTHER 8249 COLON

8239 CONT 8245 CONTI

8246B DATA 82B9 EXIT

8286 FIND 8254 FOUND

8275 LINE 8294 NEXT

82A% NEXTA 8294 NEXTB

8243 NEXTLETTER 8245 NEXTNEW

8282 NEXTWORD 8231 NUMBER

8278 QUOTE 821B SPACE

8256 STORE 8252 STOREA

ASSEMBLY LISTING - PRINT TOKENS

9 *=%$82BC

18 BPL ROMI
28 CMP H$FF
38 BEG ROM1
40 BIT $6F
50 BM1 ROMI
48 CMP #$CC
78 BCC CBMTOKEN
8e SEC

98 SBC #3$CB
1088 TAX

11@ LDA H3F&
126 STA $22
138 LDA #3886
14@ STA 423
158 BNE START
168 CBMTOKEN SEC

176 SBC #$7F
188 TAX

198 LDA H$9E
208 STA $22
218 LDA #H3AA
226 STA $23
238 START STY %49
240 LDY #$FF

258 NEXTWORD DEX

Routines old and new 129

240 BEQ WORDFOUND
278 NEXTCHAR INY

288 LDA ($22),Y
290 BPL NEXTCHAR
360 BMI NEXTWORD
318 WORDFOUND INY

320 LDA ($22),Y
330 BM] ROM2

340 JSR $AB47

356 BNE WORDFOUND
368 ROM1 JMP $A4F3

378 ROM2 JMP $ASEF
82D8 CBMTOKEN 82EB NEXTCHAR
82E8 NEXTWORD 82FC ROM!
82FF ROM2 82E4 START

82F2 WORDFOUND

ASSEMBLY LISTING - DISPATCH AND EVALUATION

9 %=$8302
18 JSR $8073
20 CMF #$CC
30 BCC ROM3
49 CMP HS$EE
50 BCS ROM3
40 JSR DISPATCH
70 JMP $A7EA
88 DISPATCH SEC
98 SBC #$CC

100 ASL A

110 TAY

120 LDA 8891,Y

130 PHA

140 LDA $8898,Y

158 PHA

160 JMP $8073

178 ROM3 JSR $8679

180 JMP $A7E7

198 LDA #$00

2688 STA $6D

218 JSR $8873

220 CMP #$F7

230 BCC ROM4

248 CMP H#3F8

130 Routines old and new

250 BCS ROM4

268 JSK DISPATCHI
278 RTS

288 DISPATCHI SEC

290 SBC #$F&

300 ASL A

310 TAY

328 LDA $8BES,Y
336 PHA

348 LDA $86E4,Y
3560 PHA

368 JMP $6873
376 ROM4 JSR 8879

388 JMP $AEBD
8313 DISPATCH 833C DISPATCHI
8323 ROM3 834C ROM4

The start up message

This is the final subroutine called during the initialization of the uTitiTy.
It performs a CLR, to set all the variable addresses, changes the screen
and text colours, and finally puts a message on the screen indicating
that the uTiLITY is in operation.

ASSEMBLY LISTING

¢ *=$9208

10 JSR $A6463 ' CLR

20 LDA #4273 ' CLEAR SCREEN
30 JSR $FFD2

40 LDA #3080 ' SET COLOURS TO BLACK
50 STA $D828 ' BORDER

68 STA $D0B21 ! BACKGROUND
78 LDA #3085

88 STA 8286 ! GREEN TEXT
98 LDX #$8A
laa LDY #s69
110 JSR STARS
120 LDX #¢6C
130 LDY #4089

14a CLC

Routines old and new 131

150 J5R $FFFa ! SET CURSOR

168 LDX #3$15 ! CHARS TO PRINT
178 CONT LDA DATA,X

188 JSR $FFDZ2 ! PRINT

198 DEX

208 BPL CONT ' NOT FINISHED
Z21e LDX #$8E

228 LDY #389

238 JSR STARS

249 STA $85C! " FILL IN MISSING CHARS
258 STA 48411

268 STA $85Dé

278 STA $84248

288 LDA #385 ! COLOUR MAP UALUE
298 STA $D9?CI

368 5TA $DALI

318 STA 3D9Dé

326 STA $DAZ4

338 LDA #$6D ! PRINT RETURN
340 JSR $FFDZz

350 JMP 24474 ' READY FOR BASIC
3468 STARS CLC

378 JSR $FFF@ ! SET CURSOR

380 LDA #$2A ! ASCII FOR #*

378 LDX ##14 ! NUMBER TO PRINT
488 NEXT JSR $FFD2

410 DEX

428 BNE NEXT

430 RTS

448 DATA TXT "% YTILITU CISAB NAP x*"
9226 CONT 9267 DATA
7268 NEXT 9258 STARS

Memory moving

RENUMber and coper, described in Chapter 7, both require some
manipulation of memory in the form of either gaining space or
removing unnecessary bytes. This section deals with the two sub-
routines, cLost and OPeN, which perform these operations. cLost is
self-contained whilst OPeN uses a Rom routine for the actual moving of
memory. In the BASIC interpreter there are routines to both open and
close up a Basic program, used when you insert or delete lines, but we
can only really use the opening routine. It is a subroutine on its own
vvhereasthe(ﬂosing-upisintegralmﬂﬂwtheinputﬁng<)faBAmCIine.VVe

132 Routines old and new

have written coding that is virtually identical to the one in ROM as it is
efficient enough.

Having moved the program about, all the link addresses, from the
line the move started, will now be wrong by the amount of the move.
There is a subroutine in the interpreter which changes the link
addresses but we have not used it. The reason for this is one of speed
as during the course of using CODER or RENUM, these subroutines may
be called several times and would prove to be very slow.

The rROM routine for rechaining the lines goes through the whole
program, byte by byte, to calculate the link addresses and store them.
It has been done this way as it is a multi-purpose routine, catering for
the lengthening and shortening of code. What we have done is to write
separate routines for each direction of movement and place them
immediately after the moving instructions. These will only rechain
from the program line in which the alteration occurred. In addition, we
only need to look at the link addressess as we know by how much they
have changed so we can subtract or add as required.

To set the scene, as they say, here are the locations that need to be
set before calling these subroutines:

$FB and $FC- The address of the start of the current BasiC line.

$49- The number of the current position on that line. This will
be where the replacement code will start.

$FD and $FE- The address of the next Basic line, that is, the link
address of the line in $FB and $FC.

$3E- The number of bytes in the original code to changed.

register— The number of bytes in the replacement code.

ASSEMBLY LISTING

¢ *=$888B

10 STX $C2

20 LDA $3E ! FIND HOW MANY
BYTES TO REMOVE

36 SEC

40 SBC $C2

50 STA 3BB

68 CLC

78 LDA $FB

8@ ADC $49 ! FIND START OF
BLOCK TO MOVE

20 STA $5F

106 LDA $FC

110 ADC #sea

120 STA $40

136 LDA $5F

148
158

168
178
180
198
280
218

228
238

240
258
2680

270
2860
298
368

318
320
330
346
358
3646
378
380
390
4080
418
426
430
448
450
440
470
4860
498
500
518
520
530
540

NOINC

NOINCA

PAGE

ADC
STA

LDA
ADC
STA
LDA
SEC
SBC

STA
TAY

LDA
SBC
TAX

INX
TYA
BEQ
LDA

CLC
ADC
STA
BCC
INC
CLC
LDA
ADC
STA
BCC
INC
TYA
EOR
TAY
INY
DEC
DEC
LDA
STA
INY
BNE
INC
INC
DEX

Routines old and new

$BB

354 ! START + AMOUNT OF
REDUCTION

360

H3ae

$5B

$2D ! END OF PROG

$5A ! CALCULATE TOTAL
AMOUNT TO MOVE
$58
! NO OF BYTES OF
INCOMPLETE PAGE
$2E
$5B
! NO OF PAGES TO
MOVE
! FOR EASIER CHECKING

PAGE ! NO SEPARATE BYTES
$5A ! MOVE SEPARATE
BYTES FIRST

$58
$54
NOINC
$5B

$5F
$58
$5F
NOINCA
340

HSFF

$58
$40
($50) ,Y
($5F) ,Y

PAGE
$5B
$40
! POINTER - COMPLETION

133

134

558
568
578@
588
398
508
418
428
438
448
456
468
478
488
490
780
718
728
738
748
7580
768
778
788
790
g8ee
81e
328
336
846
858
8s4@
878
88a
898
700
716
728
236
748
756
268
2?70
788
798

Routines old and new

RECHAIN

NEXTI

EXIT

BNE
SEC
LDA
SBC
STA
BCS
DEC
SEC
LDY
LDA
58C
5TA
STA
STA
LDA
SBC
INY
STA
STA
STA
DEY
LDA
STA
INY
LDA
5TA
BEQ
DEY
SEC
LDA
SBC
TAX
STA
LDA
121
INY
5TA
5TA
TXA
5TA
JMP
RTS
TXA
SEC
sBC

PAGE

$2D
$BB
$2D
RECHAIN
$2E

H$00
$FD
$BB

$FD
($FBY,Y
$57

$FE
#3080

$FE
$58
($FB) ,Y

($57),Y
$89

($57),Y
$RA
EXIT

$B9
$BB
($57),Y
$BA
#$00

($57),Y
$58

$57
NEXT1

$3E

! SET END OF PROG

GET LINK
CALC NEW ADDRESS

STORE IN LINE

GET LINKS
STORE THEM

COMPLETED RECHAINING

CALC NEW LINK ADDS
TEMP STORE

GET NEXT LINE

CALCULATE NO OF
SPACES REQUIRED

1606
1618
1628
1838
1040
1858
10840

1878 ERROR
1080

1896 CONT
1160

f11e

1126

1130

1148

1150

1148

1178

1186

1198 CONT2
1268

1218

1228

1238

1248

1256

1248

1278

1280

1298

1360

1318

1320

1330

1348

1358
1348
1378
1388
1398
14080
1418
1420
1438 CONT3

5TA
CLC
LDA
ADC
BCS
CHP
BCC

LDX
JMP
LDA
ADC
TAX
LDA
ADC
CHP
BNE
CPX
BCC
JMP
CLC
LDA
STA
ADC
STA
LDA
STA
ADC
STA
LDA
ADC
S5TA
LDA
ADC
STA
JSR

CLC
LDY
LDA
ADC
STA
BCC
INC
CLC
LDA

Routines old and new 135

+BB

$49

$BB

ERROR ' >255 CHARS IN LINE

$FE

CONT ! ONLY 254 ALLOWED
-NEED END MARKER

#$17

$A437 ' ERROR STRING TOO LONG

32D

$BB ! ENOUGH MEMORY?

$2E

Hs00

$38

CONT2 ! ENOUGH MEMORY

$37

CONT2

$A4435 ! ERROR OUT OF MEMORY

$2D ' SET ADDS FOR MOVE

54

$BB

$58

$2E

358

#3080

$59

$FB

$49

$5F

$FC

#3060

360

$A3BF ! ROM ROUTINE TO
OPEN UP MEMORY

#4006

$2D ' SET NEW END OF PROG
+BB

$2D

CONT3

$2E

$FD

136 Routines old and new

1448 ADC $BB

1450 STA $FD

1448 STA $57

1470 STA ($FB),Y

1489 LDA $FE

1490 ADC #$80

1508 INY

15180 STA $FE

1520 STA $58

1530 STA ($FB),Y

1548 NEXT3 DEY

1550 LDA ($57),Y

1560 STA $B9

1570 INY

1580 LDA ($57),Y

1590 STA $BA

1400 BEQ EXIT2

14180 DEY

1628 cLC

1438 LDA $B9

1448 ADC $BB

1450 Tax

1448 STA ($57),Y

1478 LDA $BA

1480 ADC #3906

1498 INY

1700 STA ($57),Y

1710 STA $58

1720 TXA

1730 STA $57

1749 JMP NEXT3

1758 EXIT2 RTS

CONT 8949 CONT2 895D
CONT3 898B ERROR 8944
EXIT 892F EXIT2 89C4
NEXT! 898E NEXT3 8940
NOINC 88CA NOINCA 88D4
PAGE 88DD RECHAIN 88F7

CLOSE ROUTINE

LINES 10-270: Before we can move a block of memory, we have to
determine three values: the start address of the block to move, the
new start address and the amount of code to move. The first thing we

Routines old and new 137

work out is the number of redundant bytes. This is done, obviously, by
subtracting from the original amount of data to be changed the
number of bytes of the replacement code. The resultant value is stored
in location sss. We shall need this number later for rechaining the
lines. The new start of the block will be obtained by adding the line
pointer, $49, to the address of the current Basic line. To this value is
added the contents of s88 which will give us the location of the first
byte in the block to be moved.

To get the amount of data to be moved, the result of the last
calculation is taken away from the end of program address, held in s20
and s2t. The answer will be held in the processor registers, the high
byte in the x and the low in the v. A page of memory is 256 bytes so the
x register is therefore the number of pages to be moved, increased by
one for easier checking on completion. We move a complete page and
then decrease x. x will be zero when all done, checking immediately
after decreasing. To summarize, we have found the amount to move,
its current start and its destination.

LINES 280-470: This is the hardest part of the routine to follow, and we
hope that we succeed in explaining it clearly.

We transfer the v register to the accumulator. To recap briefly, this
will be the number of bytes, other than complete pages, of memory to
move. If the value now in the accumulator is zero, only complete pages
require moving, so we skip this section completely. In closing up
memory we start from the low addresses, move them, and work to the
higher end addresses. We do this by setting the address of the page
and moving it up, using the v register as a pointer. If we have an odd
number of bytes to start with, this causes a slight problem. For
example, if we have $10 bytes and the v is set thus we would move 246
bytes by increasing v. To compensate for this, what we do is to pro-
duce the 2’s complement of the value. This is done in lines 430 to 450.
The eor #$FF will change all the bits set to one to zero and vice versa.
One is then added. So instead of $10, we should now have s$ro. This
means that if we now increase Y from sfo until it becomes zero it will
have been incremented $10 times.

For the same reasons we have to alter the address of the start of the
block and its new start address. We add to these the original number of
odd bytes, held in sss. Finally, we decrease the high byte of the address
by one. The next effect of these changes is a stalemate as the locations
along with the v pointer value are equivalent to the original values but
now allow us to increase v the required amount.

LINES 480-550: Having set all the values we move the data, byte by
byte, until both x and v registers are zero. We simply load a byte from
its position and store its new lower location.

LINES 560-620: The end of the Basic program will now be shorter by

138 Routines old and new

the value of location s8s. The original end address is adjusted and
reset.

LINES 630-960: All that remains is to change the values of the link
addresses from the current Basic line onwards. First, we change the
links in the current line and as these are also held in $fb and sFe, used
by the calling routine, we change these also.

We proceed through the lines gathering the addresses, subtracting
the value in s88, and then we restore them. The end of the program is
indicated when the msg of a link address is zero. Finally, we return to
the calling program, such as CODER.

OPEN ROUTINE

LINES 970-1080: We calculate the space required by subtracting the
value in $3¢, the length of the old code, from the value in the x register,
the length of the new code, and store the result in ss.

As a BASIC line may not exceed 255 bytes (to allow for a zero at the
end making a maximum of 256), we check this by adding the line
marker to the BB value. A set carry flag will mean the maximum has
been exceeded. We then check that there will be room for the end of
line zero. Failure of either of these will generate the syntax error ‘STRING
TOO LONG'.

LINES 1090—-1180: As we are creating space we must check that there is
sufficient room available in the Basic program area. These lines do just
that by checking that we will not exceed the values in $37 and $38, which
indicate its limit. If we do go over, we call a BASIC routine to generate
the ‘OUT OF MEMORY’ error message.

LINES 1190-1340: Next on the agenda is to set the registers for the
interpreter’s OPEN-up memory routine at sa3sr. On leaving this routine:
$5a and $58 — This will hold the address of the end of the block to move.
It will be the same as the end of program address before the move.

$58 and $59 — These registers will hold the address of the end of the new
block. It will also be the end of the Basic program after the move. It is
arrived at by adding the amount of move to the address in $5A and $58.
$5F and $60 — The start of the block to move. These hold the location of
the first byte of the code to be changed. It is calculated by adding the
line marker to the address of the current BasiC line to be processed.

LINES 1360—-1420: Now that the data has been moved, we reset the end
of program address to its new value.

LINES 1430-1750: A replica of the rechaining in lines 630 to 960, except
that here we increase the addresses instead of reducing them.

This concludes the new routines that we planned to introduce in this

Routines old and new 139

chapter. The remainder are descriptions of some of the Rom routines
we use (and hope that you will come to use).

RECHAINING THE LINES

During our memory move routine, we did not use the ROM routine to
rechain the link addresses because for our purposes it was inefficient
due to the number of calls required. However, we do use the sub-
routine, in DELETE for instance, where only one call is required. It serves
another purpose in that from the addresses it exits with, one can
calculate and set the end of program/start of variable registers.

ROM LISTING

AS33 AS ZB LDA $2B
AS35 A4 2C LDY ¢$2C
A337 85 22 STA $22
AS3% 84 23 STY 423
AS3B 18 CLC

AS3C AB 81 LDY #¢a1
AS3E Bl 22 LDA ($22),Y
AS48 FB 1D BEQ $ASSF
AS42 AB 04 LDY #3084
A344 C8 INY

A345 Bl 22 LDA ($22),Y
AS47 D8 FB BNE $AS44
AS49 C8 INY

AS4A 98 TYA

AS4B 45 22 ADC +22
AS4D AA TAX

AS4E AB 60 LDY #s00
AS5e 71 22 STA ($22),Y
A352 AS 23 LDA 323
AS3534 49 8e ADC #so0
A554 C8 INY

AS57 21 22 STA ($22),Y
A359 84 22 STX $22
ASS5B 85 23 STA $22
ASSD ¢8 DD BCC $AS53C
ASSF 4@ RTS

The routine commences by getting the program start address and
placing it in registers for its own use. The carry flag is cleared for
addition. The first byte of a line that it picks up is the high byte of the
link address and it tests for the end of the program (a zero). The v
register is loaded again so as to skip the addresses and line number. It

140 Routines old and new

now proceeds through the line, searching for the end of line zero
marker. When this is discovered, the v register will contain one less
than the number of bytes in the complete line. This is immediately
rectified by incrementing v by one. This value is added to the line start
address and placed as the link address of the line. As this is also the
address of the next line, it is loaded into the locations used by the
routine. The flow now branches back, (the carry flag will be clear), to
process the next line. Every Basic line will be processed until the end of
the program.

On exiting, the program locations s22 and s23 will hold the address of
the two end zero bytes. If this address is increased by two then the end
of program address can be derived, and hence the start of variables, as
they are one and the same thing VARTAB.

Opening up memory

In our memory move routine we made use of a ROM routine when we
required more space in a BAsIC program. It will move a block up in
memory even if its new start is within the original block. Six locations
have to be set before entering the routine, which are, in low/high byte
order:

$5A and $5B- End address of present block
$5F and $60— Start address of present block
$58 and $59- End address of the new block

ROM LISTING

A3BF 38 SEC

A3CB AS 5A LDA +5A
A3C2 ES 5F SBC $5F
A3C4 85 22 STA $22
A3Cé AB TAY

A3C7 A3 OB LDA 45B
A3C? ES 46 SBC 468
A3CB AA TAX

A3CC ES8 INX

A3CD 98 TYA

A3CE FB 23 BEQ@ $A3F3
A3DB AS 5A LDA $5A
A3D2 38 SEC

A3D3 ES 22 SBC $22
A3D5 85 5A 5TA $54
A3D7 BB B3 BCS $A3DC
A3D? Cé 5B DEC 5B

A3DB 38 SEC

Routines old and new 141

A3DC AS 38 LDA 58
A3DE ES 22 S5BC $22
A3EB 85 58 5TA 458
A3E2 BB 88 BCS $A3EC
A3E4 Cé 5% DEC $5%
A3ES 90 04 BCC $A3EC
A3EB Bl 5A LDA ($5A),Y
A3EA 71 58 STA ($58),Y
A3EC 88 DEY

A3ED DB F9? BNE $A3ES
A3EF B1 5A LDA ($5A),Y
A3F1 9?1 58 STA ($58),Y
A3F3 Cé 5B DEC $5B
A3FS Cé 59 DEC $59
A3F7 CA DEX

A3F8 DB F2 BNE $A3EC
A3FA 46 RTS

The immediate action is to calculate the number of bytes to move. The
number of low bytes is placed in the v register and location s22. The
number of pages to move, the difference of the high bytes, is placed in
the x register and immediately increased by one. This will be the
counter where the zero state is checked to determine completion. As it
is decreased before being checked, increasing by one will ensure that
all pages will be done. If x was zero and was not incremented, then you
would end up going around the circuit 256 times before a zero was
discovered in the x register.

The low byte result is checked again; if there is no value, then a large
chunk of instructions can be skipped. The bytes between addresses
$A3D0 and $A3t7 deal with cases where there is an element of an incom-
plete page of data to move. These lines reduce the two end addresses
by the number of low bytes to move. This will not effect the move as
the data is loaded and stored with respect to v and this has the number
that was the reduction. The incomplete page is moved first.

Except when v is zero, all the bytes are transferred within addresses
sa3es and sasee. The v register will start at a high value and be decre-
mented to zero. When that is reached, the next bytes are moved
separately, before the high addresses are decreased. After this has
been achieved, the x counter is reduced and checked, and if it is not
zero, it's back to move the next page of data.

From this it can be seen that the transfer is done by taking the high
addresses and moving them first. This means that the program will not
overwrite itself.

142 Routines old and new

Find a line

This routine finds the start address of a Basic line, given the line
number. We shall use it in our ReNumber and DELETE. It uses all three
processor registers and locations $s5r and $60. On top of that the entry
requirement is the line number in low/high byte form in locations $14
and $15.

ROM LISTING

Aé13 AS 2B LDA $2E
A615 Aé 2C LDX $2C
Aé17 AB 81 LDY #$81
A619 83 SF STA $5F
AS1B 86 48 STX 4648
A61D Bl 5F LDA ($5F),Y
A41F Fa 1F BEQ sAsd@
A621 C8 INY

Aé22 C8 INY

A623 A5 15 LDA 15
Aé25 D1 SF CMP <$5F),Y
AS27 78 18 BCC $A641
A2 Fa 83 BEQ $A42ZE
A62B 88 DEY

Aé&2C Do 8% BNE $A437
AG2E AS 14 LDA 314
Aé36 38 DEY

A&31 D1 SF CMP ($5F),Y
A433 78 BC BCC $Aé41
A433 FB BA BEQ $Aé41
A4637 88 DEY

As38 B1 5F LDA ($5F),Y
ASL3A AR TAX

A43B 88 DEY

Aé3C Bl 5F LDA ($5F),Y
ASG3E BB D7 BCS 3A617
As48 18 CLC

A64l 48 RTS

Locations ss5F and $60 are loaded with the start of Basic. The high link
address is again picked up first to see if the end of program has been
reached. The high byte of the line number is checked first. If the value
is greater than the required value, the carry will clear and the sub-
routine is left. If the two values are the same, we go forward to test the
low byte values. Failure of either of these checks means that we have
not reached the required line and have to go ahead and get the address

Routines old and new 143

of the next line. When the low bytes are checked if they are equal, or
the carry flag clear, the routine is terminated. On failing to find the
desired line, or on finding a higher one, the link addresses are gath-
ered in and we branch back to check the next line.

Due to the way the checks are made, the routine can be left in one of
two states. In the first, the exact line number has been found, in which
case the address in $5F and se0 will be what you require. The second
state will be that there is no such line number and the routine returns
the address of the next highest line. These conditions can be tested in
the calling routine by examining the carry flag on return. If the carry is
set then the actual line number was found, and if clear it was not.

7 Programming
aid routines

Introduction

In Chapter 5 we gave routines to help in the preparation and editing of
BASIC programs. These routines were themselves in BAsIC, so were slow
and had to be tagged onto the end of the resident program. This
chapter not only puts these routines into 6502 machine code, but also
extends their capabilities. In addition the following are included: otp,
RENUM, DELETE, MERGE, APPEND, DUMP, TRACE, CODER, HEX, BIN, TEN, TWO, AUTO,
and MEMm.

Our object has been to show you that with a little thought and
perseverance, adding new BAsiC commands is well within your grasp.
Most of the routines start with an explanation of what we wish to
achieve and how it is possible to do it. This is followed by the assembly
listing and the label addresses used. These are provided for assemblers
which do not allow the use of labels (Supermon) and with relocation in
mind. Finally, a byte-by-byte explanation of the routine is given.

At the beginning of each routine, the command name and para-
meters are given for use in the uTiLITY.

Renumber

COMMAND SYNTAX
RENUM start line number or 0, increment, new start line value

Using 0 as the first parameter will indicate that the whole program
requires renumbering. If a start line is set, it will renumber from that
line to the end of the program:

for example, RENUM 0,110,100
RENUM 100,10,200

Later in the chapter we will discuss an Auto routine. This is of use when
typing in programs where the line numbers are sequential and of a
fixed step. Renumbering a program makes it easier to read and opens
up space to incorporate new lines.

The system we are going to use is known as a two pass system. The
first pass will renumber commands that have line numbers associated
with them. This is not as straight-forward as it might at first appear as
the commands THEN and RUN have optional line numbers.

Programming aid routines 145

There are cases where we do not need to look for a ‘renumbering
command’. These will be after a DATA or Rem token is encountered, or
when inside quotes. In the latter case, we just loop until the next quote
or the end of the line is found, whichever is soonest. The procedure on
finding the tokens is simply to go to the next statement.

On finding a line number after a command, we convert it from its
stored ASCII form to a two byte number. If it is less than the ‘start line
number’, renumbering is not required. When it is not, we calculate its
new value, convert it to ASCII, and overwrite the original.

Once all the directive line numbers have been dealt with, the simple
task of actually changing the line numbers themselves is carried out.

We will be using many zero page locations in the routine and so to
help you to follow the routine, a list of the main ones and what they
control is given below:

$FBand $FC Address of the current sasic line being worked on

$FD and $FD- Address of the next line — the links of the current line

$49- Stores the position in the current line, the line marker or
Y register

$C9and $CA Line number of first line to be renumbered

$41and $42— Address of the first line to be renumbered

$BC- Value of increment between new line numbers

$BD and $BE- Value of the new start line number

$B9 and $BA- Starts with the same values as $BD and $BE and is
changed whilst calculating the new line number for
directives after keywords.

$58 and $59- Starts with the same values as $41 and $42 and is incre-
mented to give the actual new number of a directive
command

ASSEMBLY LISTING

7 OPEN = $8933

8 CLOSE = $8888B

? *=389CS

18 JSR $81F5 ! GET PARAMETER
28 JSR $AEFD ! CHECK COMMA
360 LDA ¢14

40 STA #C?

58 LDA 15

48 STA $CA

78 JSR $81F5 ! GET PARAMETER - INC
8@ JSR $AEFD ! CHECK COMMA
98 LDA ¢14
108 STA $BC
110 JSR $81F3 ! GET PARAMETER

- NEW START LINE #

146 Programming aid routines

120 LDA $14

130 STA $BD

148 LDA $15

150 STA $BE

140 LDA $2B

170 STA $FB

180 LDA $2C

198 STA $FC

208 LDA $CA

218 BNE FINDS

228 LDA $C9

230 BNE FINDS ! IS START LINE INPUT @
248 LDY #$82

258 LDA ($FB),Y

248 5TA $C9 ' GET FIRST PROG LINE #
278 INY

288 LDA ($FB),Y

298 STA $CA

388 FINDS LDA $C9

318 STA $14

328 LDA $CA

338 STA $15

348 JSR $A413 ' FIND START LINE ADD
358 BCS STORE ! LINE FOUND

348 LDX #4115

378 JMP $A437 ! ERROR - ILLEGAL DIRECT
388 STORE LDA $5F ' STORE START LINE ADD
398 STA $41

408 LDA $40

418 STA $42

428 START LDY #$08

438 LDA ($FB),Y

449 STA $FD ' GET LINKS TO NEXT LINE
458 INY

448 LDA ($FB),Y

470 STA $FE

480 BNE CONT ' NOT END OF BASIC PROG
490 JMP RENUM ! CHANGE LINE NUMBERS
508 CONT INY ! SKIP LINE NUMBERS

518 INY

528 NEXT INY

530 LDA (3FB),Y ! GET CHAR OF LINE

540 BNE CONT! ! NOT END OF LINE

558 LINE LDA $FD ' PUT NEXT LINE IN

LINE REGISTERS
548 STA $FB

Programming aid routines 147

578 LDA $FE

588 STA $FC

590 BNE START ' ENFORCED - NEXT LINE

668 CONTI1 CMP #$22 "' IS IT A QUOTE

618 BNE CONT2 ' NO

628 QUOTE INY

4630 LDA (#FB),Y ! LOOK FOR NEXT
QUOTE OR LINE END

448 BE@ LINE ! END OF PROG LINE

458 CMP #$22 ! QUOTE?

460 BNE QUOTE ! NO

476 BEQ@ NEXT ! YES - NEXT CHAR

686 CONTZ2 CMP #+8F ! REM TOKEN?

34 BEQ@ LINE ! YES - NEXT LINE

708 CMP #$83 ' DATA TOKEN?

718 BEQ@ LINE ' YES - NEXT LINE

728 CMP #3A7 ! THEN TOKEN?

738 BEQ@ THEN ! YES

748 CMP #$8A ! RUN TOKEN?

758 BEQ@ THEN ' YES

768 CMP #489 ! GOTO TOKEN?

778 BEG CONT3

788 CMP #3CB ! GO TOKEN?

790 BNE NOGO ' NO

868 SPACE INY

gle LDA ($FB),Y

820 CMP #4260

830 BER SPACE

846 CMP #3A4 ! TO TOKEN AFTER GO?

85e BE® CONT3

868 NOGO CMP #3$8D ! GOSUB TOKEN

870 BEQ CONT3 ' YES

880 CMP H3ES ' RESET TOKEN

896 BEQ CONT3

700 BNE NEXT ' NO RELEVENT TOKEN

718 THEN INY

928 LDA ($#FB),Y ! GET NEXT BYTE

236 CMP #%20 ' IS IT A SPACE

948 BEG THEN ' YES - SKIP IT

758 CMP #4380 ! LOOK FOR A NUMBER
IN ASCII

940 BCS NUMBER ' FOUND A NUMBER?

978 DEY

780 BNE NEXT ! NOT LINE # AFTER THEN

998 NUMBER DEY

{eee CMP #$3A ' IS IT A NUMBER

148

1618
1628
1830
18486
1858
1840
1878
1686

1898
11006
1118
1128
1138
1148
11586
1168
1178
1188

11986
1268
1210

1220
1238
1248
1250
1240
1270
1286
1298
13680
1318
1326
1330
1340
13586
1340
1378
1380
1396
14080
1418

CONT3

DIGITS

CONT4

NORE

CHECK2

CONTS

Programming aid routines

BCS
INY
LDA
CcMP
BEQ
STY
DEY
LDX

INY
LDA
CMP
BCC
CMP
BCS
STA
INX
BNE
LDA

STA
STX
LDA

5TA
LDA
STA
JSR
LDA
STA
LDA
S5TA
CMP
BEQ
BCS
LDA
ADC
TAY
JMP
LDA
CMP
BCC
LDA
STA

NEXT

($FB) Y
#$20
CONT3
$49

#s00

($FB) ,Y
#$30
CONT4
#$3A
CONT4
$0208 ,X

DIGITS
H#$3A

$8208,X
$BF
H$02

$7B
#3680
$7A
$81FS
$14
$C3
$15
$C4
$CA
CHECK?Z2
CONTS
$49
$BF

CoMMA
$C3
$C?
NORE
$BD
$B?

1

' NO LINE #

GET NEXT BYTE

A SPACE?

YES

STORE LINE MARKER

! COUNTER FOR NO OF

CHARS IN NUMBER

NUMBER IN ASCII ?

NO END OF LINE#
NUMBER IN ASCII ?

NO END OF LINE#

STORE IN INPUT BUFFER

ENFORCED GET NEXT BYTE
STORE COLON AS

END MARKER

NO OF CHARS IN LINE

SET CHRGET TO
START OF BUFFER

CHANGE INTO REAL NOS

> START LINE
NO RENUM OF DIRECTIVE

CHECK FOR ON COMMAND

TRANS START ADD TO
WORKING REGISTER

1428

1430
1446
1458
1448
1478
1488
1490
1568
15180
1528
1530
1548
1358
1548

1378
1588
1590
1408
14180
1628

1438
1448
14586
1668
1478
1488
1498
1760
1710
1720
1730
1748

1756
1768
1770
1788
1798
1868

1818
1826

FINDL

CONTé

NEXTLINE

NOINC

LDA

STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
LDA
STA
BNE
LDY
LDA

STA
INY
LDA
STA
LDX
JMP

INY
LDA
5TA
INY
LDA
CHMF
BNE
LDA
tMP
BEQ
LDA
CLC

ADC
STA
BCC
INC
LDA
STA

LDA
STA

$41

$58

$BE
$BA
$42
$59
H$00
($58),Y
$54

(358) ,Y
$5B
CONT4
#$02
(3FB),Y

$39

($FB) Y
$3A
#11
$A437

(358) ,Y
$B7

($58),Y
$C4

NEXTLINE!

$B7
$C3
FOUNDL
$B?

$BC
$B?
NOINC
+BA
$54
$358

$5B
$59

Programming aid routines 149

TRANS START ADD TO
WORKING REGISTERS

SEARCH FOR LINE NO
SAVE LINKS

NOT END OF PROG

GET LINE# FOR
ERROR MES5AGE

ERROR - UNDEF‘D
STATEMENT

GET AND STORE LINE NO

COMPARE FOR SAME LINE
NOT SAME

INC REGS TO CALC
NEW LINE NO

PUT NEXT LINE ADD
IN CURRENT REG

150 Programming aid routines

1836 BNE FINDL ! ENFORCED - CHECK
NEXT LINE
1848 FOUNDL LDX $B?
1858 LDA $BA ' MSB OF NEW LINE
DIRECTIVE
18646 JSR $847F ' CONVERT TO ASCII
- INPUT BUFFER
1870 LDA $BF
18886 STA $3E
1898 CPX $3E ' DOES MEM HAVE TO MOVE
1908 BE@ NOMOVE
1718 BCS OPENUP
1920 JSR CLOSE ' REQUIRES LESS
SPACE
1930 JMP NOMOVE
1948 OPENUP JSR OPEN ' REQUIRES MORE
SPACE
19568 NOMOVE LDY %49
1940 LDX #4086
1976 NEXTF LDA $82080,X ! GET NEW NO IN ASCII
1988 BEG COMMA ' END OF NUMBER
19980 STA ($FB),Y ! STORE IN PROG
2868 INY
20180 INX
2820 BNE NEXTF ! EWNFORCED
2038 COMMA LDA ($FB),Y ' COMMA MEANS ON USED
2848 CHMP #32C
28580 BE®@ ANOTHER
2848 DEY
2878 JMP NEXT ! GET NEXT TOKEN
2886 ANOTHER JMP CONT3 ' NEXT LINE - ON COMMAND
2898 RENUM LDY #%60
z1ee LDA ($41),Y ! GET AND. STORE LINKS
21180 STA $54
2128 INY
21380 LDA ($41),Y
2148 STA $5B
21560 BNE CONTS8 ' NOT END OF PROGRAM
21648 PLA ' REMOVE RETURN
ADDRESS
2170 PLA
21886 JMP $A474 ! GOTO READY FOR BASIC
2198 CONTS INY
22080 LDA $BD ' NEW LSB LINE NO
2218 STA ($41),Y ! CHANGE PROG

2228 INY

2238
2249
2258
2268
2278

2280
2290
2368
z2318
2328
2338
2348
2358

8BSF
8888
8A2D
8A4D
8AAA
8BBS
8B8?
8AES
8B2C
8AZF
8B17
8B22
8ACA
8933
8A4Z
BALS
BA15

CONT®

ANOTHER
CLOSE
CONT
CONT2
CONT4
CONT S
CONT?
FINDL
FOUNDL
NEXT
NEXTLINE
NOINC
NORE
OPEN
QUOTE
SFACE
STORE

LDA
5TA
CLC
LDA
ADC

STA
BCC
INC
LDA
STA
LDA
STA
BNE

Programming aid routines

$BE " NEW MSB LINE NO

($41),Y

$BD
$BC !

$BD
CONTY
$BE

$3A

341

$5B

$42
RENLM !

8AD2 CHECK2
8B35 COMMA
8A3E CONTI
8ABD CONT3
8AD8 CONTS
8B74 CONTS
8A%9? DIGITS
8AB3 FINDS
8A34 LINE
8B4A NEXTF
8A78 NOGO
8B44 NOMOVE
8A88 NUMBER
8B43 OPENUP
8B42 RENUM
8AID START
8A74 THEN

INC NEW LINE# BY
INCREMENT

ENFORCED NEXT LINE

151

LINES 10-150: The parameters are gathered here and put into their
registers. Commas separating the inputs are also checked, giving ‘syNn-
TAX ERRORS' if not present.

LINES 160-190: The start of the BAsIC program is now put into the
current line registers, as it is also the address of the first line.

LINES 200-290: If the first parameter input was zero, indicating a full
program ReNUMber, then the first line number is found and stored in its

appropriate register.

LINES 300—410: Although we do not need this at the moment - here we
find the address of the start line. We use the ROM routine FIND BASIC LINE

152 Programming aid routines

(see Chapter 6, page 142). If the carry flag is set, it will mean that the
start line requested was not found and an ‘iLLeGAL DIRECT” error will be
printed. The address, if found, will be stored in s41and s42.

LINES 420-1020: The byte-by-byte search for the appropriate keywords
starts here. We start at the beginning of the BAsIC program, no matter
what the start line requested. As soon as the link addresses are collec-
ted and stored, the end of the program is checked for. Passing this
means that enly the actual line numbers require changing, so it is off to
the final section of the whole routine, which is described later.

To continue finding the tokens, we skip the line numbers as they are
not required here. Lines 540 to 590 set the values for the next line, after
the end of line zero is discovered, and branches back to process the
next line.

There is nothing of interest to us in quotes so on finding one we go
into a loop to find a second quote or the end of the line. This is carried
outin lines 620 to 670.

The next two tokens checked for are pDATA and rRem. Encountering
these indicates that we can proceed to the next line as there will be
nothing further to renumber in these lines.

There are two keywords — RUN and THEN — that may, or may not, have
line numbers. These will therefore branch to check this possibility
before proceeding. The standard Commodore directive commands are
next in line: GoTo, GO TO and Gosus. The centre keyword is checked in
two stages, first for the co. A loop is then set up to skip over spaces
and then the 70 token is looked for. All three keywords on being found
will cause the routine flow to branch further ahead than RUN or THEN, as
it assumes they will have line numbers. If not, then unless you have a
line number of 0, an error will be detected later.

The last keyword to be checked for is one of our new ones: ReSET.

If line 900 is reached then we have not found a relevant keyword and
therefore branch back to get the next program byte.

The last part in this section is to check if the next significant byte
after RUN or THEN is a number, in ASCII. Spaces are skipped over and
checks are made for values between $30 and $39 inclusive to continue.

LINES 1030-1390: The line numbers after the keywords will be in ASCII
form and the line itself in two byte form. To do our calculations, we
want both in the same two byte format. ASCII numerals therefore have
to be changed.

After skipping spaces, we store our Y register (so we know where to
write our new line number from), which is the line marker. Pro-
ceeding, we pick up bytes until a non-numeral is found, and store
them in the input buffer. The x register is used to count the number of
digits and is stored for later use. To convert the ASCII into the form we
require, we use the GET PARAMETER routine. For this to work, we perform
two operations. First, we make sure that after the last line number digit

Programming aid routines 153

there is a non-numeric character by storing a colon there. Secondly,
we set CHRGET to point to the first numeral — se200.

The converted result is taken from registers $14 and $15 and stored in
the two we have designated.

We only wish to renumber from the start line in the command.
Lines 1290 to 1390 check this by comparing the two values. If no
renumber of that particular line is required, we retrieve our line mar-
ker and increase it by the number of digits in the directive number, as
we do not require to check them again. This is then transferred to the
v register. It will actually point to the byte following the last digit but
this is taken into account in what follows. We jump further ahead to a
position noted as COMMA (described later) starting at line 2030.

LINES 1400-1830: Having got this far, we have found a number which
requires a different value. To find the new value, we have to go
through the program from the designated start line and find the line
that it points to (remember we have not changed the actual line
numbers yet). At the same time, we calculate the new value.

To start with, we take the address of the start line and store it in $58
and $59. We then take the new value for the start line, the third
parameter in the command, and place it in $89 and $BA. The line
number we are checking for is held in sc3 and sc4.

As before, we get and store the link addresses, but here if we
discover the end of the program has been reached (high link address
of zero), an error is present as the line number of the directive was
not found. The error produced is the same as when RuNing a program
— 'UNDEF'D STATEMENT'. To make it easier for you, we also print out the
line number with the error.

As long as this is not encountered, collecting a line number and
comparing it for a match comes next. If it is not the one we want, the
new start line number is increased by the increment value. This will
calculate the value for the following line. The value is only increased
on not finding a match, which conversely means that when the line
searched for is located, the value is ready and waiting. After incre-
menting, we transfer the links to the line registers and branch back to
check further lines.

LINES 1840-1940: We now have our new line number and need only
to insert it into the line after the token, overwriting the original
directive.

The new value is in two byte form and so requires converting to
ASCII form. We do this by using a routine earlier in the utiuTy. This
requires the accumulator to be loaded with the high byte and the x
register with the low byte. We then call our ‘convert to ASCII" at $847F.
This will do the conversion and store the answer in the input buffer,
with a zero signifying the end. Also returned is the number of charac-
ters in the x register. If this value is the same as the original number,

154 Programming aid routines

the value stored in location $8F, we can just overwrite with no problems
and proceed to line 1950.

The number of characters is transferred to location $3t, via the
accumulator. This location is for the memory move routine described
in Chapter 6. By comparing the value in the x register (the new number
of digits) with the accumulator figure (the old number of digits), we
determine if a move is required. If the x value is less, the CLOSE routine
is called; if it is greater, the oreN routine is called; if it is the same, no
move is required.

LINES 1950-2020: This leaves us one thing to do which is to write in the
new number. First, we reload the v register with the line marker. This
points to the position of the first digit in the number. By increasing x,
starting at zero, and v, we take the digits from the input buffer and
store them into the program line. This is repeated until we collect a
zero from the buffer, when the branch in line 2020 will fail.

LINES 2030-2080: When we went through the lines checking for
tokens, we did not look for the oN statement. The reason for this is that
the only time a comma should be used after a line directive following a
GOSUB or GOTO is when the on keyword has been used.

On entering these lines the v register will point to the byte following
the last one checked or stored. We load the accumulator with that byte
to see if a comma is present. Finding it means that we branch back to
the position just after the token search where it will commence with
gathering in the line number directive for processing.

If the comma is not present, the v register is decreased and we go
back to start the search for the next appropriate token. The v has to be
decreased in case it was the end of the line, otherwise it would not
have mattered.

LINES 2090-2350: RENUMBERING THE LINE NUMBERS

All the directive line numbers have now been checked and processed
where required. The only thing which remains is to renumber the
program lines themselves.

This is started from the line number requested in the first parameter
of the command and whose address is held in $41 and $42. Its new
starting value is held in $8D and $8t, and these will be incremented by
the value in ssc for each line. We progressively go through the pro-
gram inserting the new numbers, in two byte form, until the end of the
program is reached. After each line the number value is incremented
ready for the next line.

When the renumbering is completed, we take the return address
from the stack and jump to the start of BAsIC to await further instruc-
tions. We do this to break out of the program in the unlikely event of
RENUM being initiated within it.

Programming aid routines 155

A WORD OF WARNING

We cannot stress strongly enough that a copy of the original program
should be saved to tape, or disk, prior to renumbering. We all make
mistakes and if the rRenum finds a non-existent line number after, say, a
GOTO, then an error is produced. This leaves the program only partially
renumbered.

Auto

COMMAND SYNTAX
AUTO first line number, increment

To escape from AuTO simply press RETURN immediately after the line
number, as if deleting a single line.

This command removes the need to type in line numbers. The user just
decides the start line number and the increment between consecutive
lines. To achieve this we want a place to break into the normal flow of
BasiC. This is made possible as every time an input line is processed it
goes to a vectored jump before it is ready to receive the next. This is
called the Basic Warm Start Vector which is at s0302 and $0303. By chang-
ing the address in this vector to a routine of our own we can calculate
the line number, put it into ASCII form and then insert it into the
keyboard buffer just as if you typed it yourself. Having completed this,
we then return to the input routine for you to make up the program
line.

ASSEMBLY LISTING

9 ¥=$842E
18 JSR $81FS ! GET PARAMETER
28 JSR $AEFD ' CHECK COMMA
3@ LDA $14 ' 1ST LINE# - LOW
40 STA $FB ! SPARE ZERO PAGE
LOCATION
1 LDA 15 ! 1ST LINE# - HIGH
60 5TA $FC ' SPARE ZERO PAGE
LOCATION
78 JSR $81FS ! GET PARAMETER
8e LDA %14 ! INCREMENT
76 5TA $FD ! SPARE Z2ERO PAGE
LOCATION
180 LDA #<AUTO
118 STA $6302 ' START BASIC VECT LOW
128 LDA #>AUTO
138 STA $8383 ! START BASIC VECT HIGH

148 AUTO LDA 36200 ' 15T CHAR IN BUFFER

156

150
148
176
188
190

208
218
228
23a
248
258
248
278
288
290
368
318
328
33a
346
358
360
37a
388
390
488
410
428
430
448
458
4648

476
480
498
568

8494
844D
849F
845F

Programming aid routines

NEXT

NOINC
EXIT

ASCI 1

AGAIN

FINISH

AGAIN
AUTO
FINISH
NOINC

BEQ
LDX
LDA
JSR
STX

LDA
STA
DEX
BPL
CLC
LDA
ADC
STA
BCC
INC
JMP
LDA
5TA
LDA
STA
JMP
STX
STA
LDX
SEC
JSR
JSR
JSR
JSR
LDX
LDA
5TA

BEG
INX
BNE
RTS

EXIT
$FB
$FC
ASCII
$Cé

$8208 ,X
$0277,X

NEXT

$FB
$FD
$FB
NOINC
$FC
$A483
#$83
$8362
#$A4d
$6303
($8362)
$463
$62
#4980

$BC4Y
$BDDF
$B487
$B6As
Heo@
$0180,X
$0200 ,X

FINISH

AGAIN

847F ASCII
8472 EXIT
845B NEXT

1
1

TURN OFF AUTO

NEXT LINE NUMBER
PUT LINE # IN ASCII

! NO OF CHARS IN

KEYBOARD BUFFER
PICK UP ASCII
PUT IN KEY BUFFER

INCREMENT LINE NUMBER

READY FOR BASIC

! LOW BYTE

HIGH BYTE

' PUT ASCII CHARS IN

INPUT BUFFER
ZERO CHAR WAS FOUND

Programming aid routines 157

LINES 10-130: These lines are only used when the auto command is
active. We take the parameters of the command and place the start line
number in $r8 and $rC and the increment in sFD. As we only take the low
byte of the increment, the multiples over 256 are ignored. The only
syntax check is made in line 20, where we check for a comma between
the two parameters. Lastly in this section we change the vector address
to point to the AuTo numbering which starts in line 140.

LINES 140-300: The first thing is to see if the first character in the input
buffer is zero. This will signify no Basic coding was inserted in the line
and that you want to cancel the AuTo routine. When a Basic line is
typed, the line number is put into the input buffer. During the process-
ing stage of inserting the line into the program Basic takes out the line
number and moves the rest of the line back up the buffer to overwrite
it. This means that if the first input after a line number was a RETURN
(BASIC inserts a zero for that as an end of line marker) then the first
character in the buffer will be a zero after the line number has been
removed. Therefore, on finding a zero we will branch off to exit the
AUTO mode.

Assuming that we are still auto-numbering, we take the values in sr8
and sfc and go off to convert them to ASCIl form. This we will come
across shortly. On returning from that subroutine the x register will
have the number of ASCII characters in the line number and they will
be in the input buffer. The x value is stored in the register which tells
the operating system how many characters will be in the keyboard
buffer. Having done that, we transfer the characters from the input
buffer to the keyboard buffer.

We now set the line number for next time by adding the increment
in $FD to the values in $rB and $FC.

That is all there is to do, so we return you to the normal Basic flow
where the input routine will take the line number from the keyboard
buffer, place itin the input buffer and print it on the screen.

LINES 310-350: These lines will be operated when you want to exit
from auto. All we do is restore the Basic Warm Start Vector to its initial
value and then return you to BASIC to wait for your next instruction.

LINES 360-500: CONVERT TO ASCII: This subroutine will also be used
by other commands when they require a one or two byte number
converted into ASCII form. The subroutine is entered with the low byte
of the number in the x register and the high byte in the accumulator.
The conversion is carried out by four ROM routines, but before we
can call them we have four items to set. First, the number to be
converted is transferred to locations $63 (the low byte) and se2. These
are part of the floating point accumulator #1 (FaC#1) which is the main
number manipulation area for Basic. The other two prevent certain
actions in the conversion process. Setting the carry flag will bypass a

158 Programming aid routines

routine that will perform the complement of the number and loading x
with s90 will set the Exponent byte of FaC#1 to avoid getting an answer in
exponent form.

The first ROM routine visited clears all the bytes in the Fac#1 (or sets
them to default values) which we have not dealt with. The next routine
does the actual conversion. The remaining routine puts the result into
a string and places it at the bottom of the stack area. The last byte
placed there will be zero to mark the end.

We cannot leave it there as BAsIC often uses this area. We therefore
transfer it to the input buffer where it can be taken and used by the
coding calling this routine. On exit the value in the x register will be
the number of ASCII characters in the conversion.

Merge and append —
combining BASIC programs together

COMMAND SYNTAX
MERGE “program title”’,device
APPEND “‘program title”’,device

The default device is tape and if there is no program title, the first
program found on the tape will be used.

Merging programs together means that they are weaved together in
program line order. The result is as if you typed in the lines of the
merging program at the keyboard. This also means that if the programs
both have lines with the same number, the ones in the merging
program will overwrite the original.

Appending a program to another is simply a process of tagging it
onto the end of the one in memory, irrespective of line numbers.

Merging is the more complicated of the two programs, but is not
really complicated in itself. Both programs are initially loaded at the
end of the current memory program, ApPEND overwriting the last two
bytes whilst MerRGE comes just after them. The last two bytes of the
program are the unique link address of zero, signifying the end of a
BASIC program. By overwriting them on ApreND, we achieve our aim
immediately and all that remains is to amend the link addresses to
continue the program flow and to reset the end of program pointer.

In merging we take each new line in turn and insert it in the main
program - if we had overwritten the original end links we would both
merge and append which we do not want. To incorporate the new
lines we make use of the normal Basic input routine. After you input a
program line and press RETURN, BASIC takes off the line number and then
tokenizes all the Basic keywords. At this point the line number is in two
registers, in a two byte form rather in than the ASCII form typed in, and
the line’s content has been moved to the beginning of the input buffer.
There is a counter of the number of bytes in the line which is four

Programming aid routines 159

greater to incorporate the line number and link address. Basic
therefore knows the total space required for the line. We will enter the
ROM routine at this point with the appropriate data set. Unfortunately,
itis not a subroutine but finishes up waiting for an input. We therefore
have to change the same vectors as in the AUTO routine (the Basic Warm
Start) to point us back to continued merging until we reach the end.

ASSEMBLY LISTING

? *=3%87A7
1@ JSR SETADD ' SET ADDRESSES
FOR MERGE PROG
28 STX $2B ' SET MERGE PROG START
38 STY $2C
46 LDY #s84a ! PUT ZERO AT (ST
LOCATION
50 TYA
68 STA ($2B),Y
78 JSR LOAD
80 S5TX 42D ! END OF MERGE PROG
98 STY $2E
168 JSR $A4533 ! RECHAIN MERGE PROG
118 JSR RESET! ! RESTORE POINTERS TO
ORIG PROG
128 LDA #<MERGE
136 LDX #>MERGE
148 STA $8382 ! CHANGE WARM START
VECTOR TO MERGE
158 S5TX $8383
168 JOIN LDA #381
176 5TA $7B
188 LDA H3FF
198 STA 74 ! BET UP CHRGET
288 LDY #4880
218 LDA <$FB),Y ! GET AND STORE LINKS
228 STA $FD
238 INY
249 LD& (3FB),Y
2356 STA $FE
268 BEG EXIT ! END OF MERGE PRG
278 INY
288 LDA (3FB),Y ! GET AND STORE LINE NO
290 STA %14 ! BASIC EXPECTS THEM
IN THESE LOCATIONS
360 INY

318 LDA ($FB),Y

160

320
338

348
358
348
378
3860
398
4680
418

420

436

440
450
440

470
480
4980
See
518
520
538
540

556
368
578
586
590
408
616
628

430
é4a
458
668
470
488
696

Programming aid routines

NEXT

MERGE

EXIT

LOAD

EXIT!
ERROR

STA
LDX

INX
INY
LDA
STA
BNE
TXA
TAY
JSK

LDA

LDX

5TA
STX
BNE

LDA
LDX
STA
STX
JSR
JSR
LDA
STA

LDX
LDY
JSR
BCS
JSR
AND
BEQ
JSR

LDX
JMP
RTS
PHA
JSR
PLA
JMP

$15
#3684

($FB),Y
$81FB,X
NEXT

$A4AZ
$FD
$FE

$FB
$FC
JOIN

#$83
#4A4
$0302
$6363
$A474
$E1D4
#4060
$R9

$2B
$2C
$FFDS
ERROR
$FFBY
#3BF
EXIT1
RESET

#$1D
$4437
RESET

$EBF9

'
1

SET COUNTER TO
INCLUDE LINKS AND
LINE#

GET LINE DATA
STORE IN INPUT BUFFER
NOT END OF LINE 8

PUT COUNTER IN Y
BASIC AFTER CRUNCH
ROUTINE
BASIC WARM START
POINTS HERE
PUT LINKS IN LINE
REGISTERS

ENFORCED AS $FE
CHECKED FOR @8 EARLIER

RESTORE WARM START

READY FOR BASIC

GET LOAD PARAMETERS
FOR RELOCATED LOAD
IN CASE A SEC ADD
IN COMMAND

SET LOAD START
KERNAL LOAD

BAD LOAD

READ 170 STATUS WORD
GOOD LOAD

RESET FOINTERS TO
ORIGINAL PROG

LOAD ERROR

SAVE FOR ERROK

ERROR DEPENDING ON A

708
718
728
738
748
750
7648
778
788
79@

868
8ia
a2e
838
840
858
840
a37e
88a
878
788
218
926
238
240
258
g48
978
7860
998
1688
1618
1628
183@
1648
1854
18480
1876
168a
1898
1168
1110
1128
1138
1148

RESET LDA
SEC
SBC
STA
LDA
SBC
STA
LDA
TAY
STA

INY
STA
RESET! LDA
LDX
STA
STX
LDA
LDX
STA
STX
RTS
SETADD LDA
STA
LDA
STA
LDX
LDY
STX
STY
RTS

Programming aid routines

$FB

#4082
$14
$FC
#e00
$FC
Hs00

($14>,Y ! RESTORE TWC ZEROS
AT END OF PROG

($14),Y
$FD
$FE
$28
$2C
$FB
$FC
$2D
$2E

$2B
$FD
$2C
$FE
$2D
$2E

‘$FB

$FC

! APPEND ROUTINE

JSR
TXA
SEC
SBC
5TA
YA
SBC
STA
JSR
STX
STY
JSR
JSR
RTS

SETADD

#$02
$ZB

#3080
$2C
LOAD
$FB
$FC
RESET!
4533

161

162 Programming aid routines

3838 ERROK 8803 EXIT
832F EXITI 87CA JOIN
g81@ LOAD 87F% MERGE
87EB NEXT 8838 RESET
884D RESET! 885E SETADD

This time we are not going to describe the program in line number
order. There are three subroutines in the body of the program used
both by merGe and appenD and we will deal with these first.

LINES 910-990: SETADD: This simply takes the start and end addresses
of the original program and temporarily stores them. On coming out of
the subroutine, the v register will contain the high byte of the end
address and the x register, the low value.

LINES 700-900: RESET: The first 12 lines will only be encountered when
there is an error in loading the secondary program. These simply
ensure that the end of program zeros are at the end of the original
program. This will mean that when exiting from either command your
original program is intact before starting.

The remaining lines are the reverse of seTADD, that is, they take the
values in the temporary registers and place them in the program end
and start registers. These last lines are called in the assembly listing as
RESETT.

LINES 520-690: LOAD: The first thing this subroutine does is to call
one resident in the BasiC ROM used by the standard LOAD and sAve com-
mands. It gathers up the parameters and sets various registers accord-
ing to that information, and as it is there we also make use of it. We are
going to do a relocated load and if a secondary address is present this
will override our objective. To correct this we load location $89 with
zero to bring back the state for a relocated load.

The KERNAL LOAD routine expects the start address of the load in the
two processor registers, x and v, with the former holding the low byte
of that address. The accumulator is the flag for either a load or a verify
operation. The value for load is zero, the other being one, which was
set whilst confirming the secondary address. The KERNAL LOAD routine is
situated at $FrDs. Error checking comes now in the order of operations
— you may have put in the wrong tape or disk. The first indicator to a
bad load is the carry flag being set; if this is so, then we branch off to
deal with it. We have to check the 110 status word if the carry is clear.
This is achieved by calling another KerNAL routine, at $FrB7. The result
coming out of this call is ANDed with the value $8F and everything is fine
if the zero flag is set. The error given for any other outcome is ‘LOAD
ERROR'.

On the first check we go to line 660 if the carry was set. The value in
the accumulator will be used for the error so we temporarily store this

Programming aid routines 163

on the stack. The reason for this is to reset all the pointers we altered to
give you back your original program. This is done by a call to reser,
described above. Once done we retrieve the accumulator value and
jump to part of the Basic loading routine for an error to be generated,
based on the accumulator value.

MERGE

LINES 10-150: First of all we call the seTADD routine. From this we can
set the start address of the merging program to immediately after the
memory program. BAsIC expects the first byte to be zero and therefore
we oblige it. Having done that, we load the program we want to merge.
The address that is returned from loading is placed in the end of
program address. At this point as far as Basic knows the only program
in memory is your merge program. The link addresses have to be set
up so we know where the lines start. This is done by a call to the Rom
routine at $A533 which will do this for us. From now on we want BasiC to
respond to the original program and therefore we reset all the registers
back to their original values through reseT.

To merge the lines into the master program we use the program line
input routine in the Basic ROM. This is not a stand alone routine but
ends up at the BAsic Warm Start after each line has been processed. It
follows that, as in the AuTO routine, we will have to alter the vector
pointing to that position to divert to this routine until all lines are
merged. This is done in the lines 120 to 150. The addresses will be in
the location of line 420.

LINES 160-460: These are the instructions which actually combine your
two programs. First, CHRGET is set to a position one place before the
start of the input buffer. We now turn our attention to the merging
program lines. The address of the first line will still be in locations $f8
and src following the SeTADD routine called at the beginning. Using this
information, we get the link addresses and store them for later. We use
this system a lot in our routines but in this case it is vital. We have left
no room between the programs so that when the line is transferred the
master program will be longer, overwriting the needed link addresses.
The check is also made for the end of the merge program, the usual
high byte zero link address.

Next we take the two byte line number and place it in registers so
that Basic will know where to find them, $14 and $15. The contents of the
line, including the zero byte end marker, are now transferred to the
input buffer starting at se2e0. The listing shows soir8 but there is a
reason for this. The x register will come out with a value of the number
of bytes in the line, but to account for the four bytes holding the link
addresses and the line number, it starts with a value of 4. This is one
more than required but the Rom routine will compensate. This means
that with the initial value of 504 in x the first location written to will be

164 Programming aid routines

50200. The ROM routine we are using wants the number of bytes in the v
register rather than the x, so we oblige by transferring them via the
accumulator.

We are now ready to use the ROM to merge our line into the main
BASIC program. We join the Rom just after the coding that turns the
keywords into tokens — ours are in that state already. As far as the ROM
is concerned you have typed in the line and will putitin the program as
such.

The Basic Warm Start Vector will bring us back after inserting the line
to LINE 420 in the above listing. We now put the address of the next
line into the working registers and branch back to deal with it. The
branch instruction will always succeed as we have checked previously
for a zero value in $Ft.

These lines will be repeated until all the merge program lines have
been assigned to the master program.

LINES 470-510: The merge is complete so we restore the Basic Warm
Start Vector to its normal setting and return to BasiC where it will await
further commands.

APPEND

LINES 1010-1140: The first thing, as in MERGE, is to call the seTADD
routine. On coming out though, it is slightly different. The new BAsIiC
program start has to be reduced by two so will overwrite the end of
memory program links. The appending program will load directly after
the final line of the master program. On completion of the load, we
store the loading end addresses (not in the end of program registers),
but overwrite the original stored values, set by seTADD. This means that
on resetting the values, by RreseT1, we end up with the original start and
the end marker corresponding to end of the appended lines. The final
thing to do is to set the link addresses to follow as one program. This is
carried out by the ROM routine at $As33. The two programs have been
joined together with our own form of ‘superglue’.

Delete

COMMAND SYNTAX
DELETE first line number,[second line number]

The first line number to be deleted and the comma are essential and if
missing will give errors. The second line number is optional in that if
you want to delete to the end of the program you omit it; otherwise
inserta number.

Deleting a line of Basic program is easy, you just type in the line
number followed by a return. There is no real hardship in deleting one
or two lines but longer blocks become tedious and time-consuming.

Programming aid routines 165

DeLeTe will rid you of a block of lines with one command. To do this we
use the same ROM routine as if deleting one line. What the BAsIC ROM
does is to take the address of the line to be deleted and the link
address within that line. It then takes the program starting at that link
address to the end of the program and moves it to the address of the
line to be deleted. For example, if we have a line whose address is $e901,
its link address is $0925 (the start of the next line), and the end of the
program is $0A45, the block to move is $0925 to sea4s with its new starting
address of $0901. Hence, the line at se901 is overwritten or deleted. By
the way, the variables and the arrays are also moved along with the
block.

It therefore goes to show that if we get the address of the next line
after the ‘second line number’ and place it in the link address of the
‘first line number’, a whole block of lines will be overwritten at once.
Where there is no ‘second line number’ we take the end of program
address and deduct two from it. This will give us the address of the two
zero bytes at the end of a program. The first line number is placed in
the input buffer, with a zero at the end of it signifying no further data,
and goes to ROM as if you typed itin.

Two listings follow for this command. The reason for this is
explained later.

ASSEMBLY LISTINGT1

? ¥=%8F44
1o BCC DEL ' PARAMETER A NUMBER
28 SYNTAX JMP $AFB8 ' GENERATE SYNTAX ERROR
38 DEL JSR $&1F5 ' GET 15T LINE NUMBER
48 JSR 3A613 ' FIND LINE LOCATION
58 BCS FOUND ' LINE NUMBER FOUND
48 LDX #$15 ' ILLEGAL DIRECT ERROR
78 JMP $A437 ! ERROR ROUTINE
86 FOUND LDA $5F ' PUT LINE ADDRESSES
78 STA $FB ! IN STORAGE
108 LDA 448
118 STA $FC
126 JSR 48879 ! CHECK FOR COMMA
130 CMP #32C
140 BNE SYNTAX ' NOT FOUND
150 JSR 48873 ! GET NEXT BYTE
140 BNE NUMERAL ! A SECOND LINE NUMBER
170 SEC ! PREPARE FOR SUBTRACT
180 LDA $2D ! END OF PROGRAM
198 SBC #4082 ! DEDUCT BY TWO
200 STA #5F ! READY FOR DELETION
]

218 LDA $2E END OF PROGRAM

166

228

230
248

250
268
278

280
298

368
318
328
336
348
356
348
378
386
378
4880
418
420
436
448
450
448
478
480

490
568
510

528
538

8F71

Programming aid routines

NUMERAL

CONT

CONT

8F5& FOUND
BF46 SYNTAX

SBC

5TA
BNE

BCS
JSR
INC

JSR
LDA

CMP
BCC
BNE
LDA
cHMP
BCS
LDY
LDA
STA
INY
LDA
STA
INY
LDA
TAX
INY
LDA
JSR

PLA
PLA
LDX

LDA
JMF

H$00 ' IN CASE OF PAGE
CROSSING
$40 ' READY FOR DELETION
CONT ' ENFORCED $2E CAN‘T
BE ZERD OR 1
SYNTAX ' NO NUMBER
$81F5 ! GET 2ND LINE NUMBER
$14 ' S0 WE GET
FOLLOWING LINE
$A413 ! FIND LINE
$FC ! CHECK IF 1ST NO IS
SMALLER THAN 2ND
$48
CONT
SYNTAX
$FB
$5F
SYNTAX
#400
$5F
¢$FB),Y ! STORE ADRESS
$40
($FB) ,Y
(3FB),Y ' GET 2 BYTE LINE NO
($FB),Y
$847F ' CONVERT TO ASCII
' AND PUT INTO
START OF INPUT BUFFER
! REMOVME RETURN ADDRESS
#$FF ' TO INITAILIZE
INPUT BUFFER
#$01
$927D ' WILL DELETE LINE
AND RETURN TO BASIC
8F49 DEL
8F79 NUMERAL

Programming aid routines 167

ASSEMBLY LISTING2

7 *¥=$927D
18 LDv $8382 ! SAVE WARM START
20 STA ADD+1
3@ LDA 48363
48 STA HADD+!
58 LDA #<ADD ! CHANGE WARM START
48 STA %8362
78 LDA #XADD
8o 5TA 48383
78 JMP $A484 ! DELETE BLOCK
188 ADD LDA #$83 ' RESTORE WARM START
110 STA %6382
128 HADD LDA #$A4
138 5TA $8363
148 JS5R 3A533 ! RECHAIN LINES
150 CLC ! PREPARE FOR ADD
148 LDA #22
178 ADC #382 ! INCREASE FOR
VARIABLE START
180 5TA $2D ' START OF VARIABLES
198 LDA 23
200 ADC #+86 ' IN CASE OF CARRY
210 5TA $2E
228 JSR #4648 ' CLR
230 JMP $A474 ' READY FOR BASIC
7294 ADD 929B HADD
LISTING1

LINES 10-110: These instructions deal with the ‘first line number’. The
routine first checks the carry flag, set or unset by CHRGET on entering,
and if set a SYNTAX ERROR is generated as the first byte after the delete
token was not a numeral. A call to our GET PARAMETERS routine is next,
immediately followed by a visit to the ROM routine FIND BASIC LINE. The
result from GET PARAMETERS is in the registers used to call FIND BASIC LINE.
On returning from the latter, if the carry is not set, then the line was
not found and we therefore generate a further error. The address of
the first line is placed in locations $F8 and sFc.

LINES 120-280: The remaining parameter is now dealt with. CHRGET is
positioned to where the comma should be, so we call cCHRGOT to see if it
is there. A call to cHRGET now will get the first byte of the second line
number. If no line number is present, the zero flag will be set. In that

168 Programming aid routines

case we gather in the address of the end of the program, deduct two
fromit, and store the resultin registers ssF and $60.

If the zero flag was not set, we make a further check as earlier to see
if the byte picked up by CHRGET was a numeral. GET PARAMETER is called to
get the second line number and the low byte result in $14 is increased
by one. This is done as we do not require the address of that line but
rather the one following it. After the visit to FIND BASIC LINE the address in
ssF and $60 will be the next line, whether its line number is one or ten
greater than the ‘second line number’.

LINES 290-350: These instructions check to see that the address of the
‘second line number’ is higher than that of the first, otherwise a syNTAX
ERROR is given.

LINES 360—480: Here we insert the second address we found into the
link address position of the first line. We then get the line number, in
its two byte format, putting the low byte in the x register and the high
into the accumulator. We now call another routine which we coded at
$847F in the uTILITY where the number will be converted to ASCII and
placed in the input buffer, starting at $0200, with a zero at the end.

LINES 490-530: From the stack we remove the return addresses which
were placed there on entering DELETE. The x register and the accumula-
tor are given the address of the input buffer less one which will be the
CHRGET address. The final thing is to jump to the second listing.

LISTING2

LINES 10-230: The rROM routine that we will use is not a subroutine but
ends up at the BAsiIC Warm Start Vector. We want to return here so we
first store its present values and replace them to point back to these
lines. We now go to ROm where it will treat the number in the input
buffer as if you were deleting a single line from the keyboard, but as
we have changed the link address it will delete more than one.

On returning, we restore the Basic Warm Start Vector. We now
subject the program to the rechain routine — not that it requires it, but
from this routine we can calculate the end address. From the address
the rechain routine ends with, we add two and set the end of program
registers. A call to the cir routine will set the remaining variable
addresses. Finally, we jump to BAsiC, printing ‘ReaDY’ and give you back
control.

The reason for two listings is due to the way in which the Rom memory
moving routine sets the end of program address. We came across this
when testing the uTiLITy. The BAsiC normally expects lines of around 80
characters and definitely no more than 255. Mainly for the latter reason
the ROM routine only decreases the end address by the maximum of a
page. It does not affect the deletion, but it did not make the required

Programming aid routines 169

reduction in memory used. The second listing was added to overcome
the times when the number of lines took more than 256 bytes. Thus in
the second listing we were able to set the addresses ourselves.

Memory — Display number of bytes free

COMMAND SYNTAX
MEM

There are no parameters in this command. The command is available
only in direct mode. If found in a program the routine is not carried
out.

BASIC has a command that prints out the amount of space available to it.
It is FRE(x) where x is a dummy argument. Unfortunately it returns, when
used with PRINT, an integer value which means any value over 32767 ($7FFF)
will be a negative number. For example, if the number of bytes free is
36500, the result printed would be —29035. If you add that, with the sign,
to 65535 ($FFF), you will arrive at the true figure of 36500. We produce
here a short routine to print out the correct value straight away. Having
said that, with the uTiLTy in place, the maximum space available is less
than 32768 and so Fre(x) will always print out the correct value.

The first thing to do is call a Rom routine to do a ‘garbage collection’.
It is at $B526 and tidies up the variable and string area. It will reset the
necessary registers after the compaction. The area of memory that is
unused will be from the end of arrays to the beginning of the area used
by strings. If we take the higher address from the lower, we will have
the number of free bytes available.

The routine that we have used to print the result to the screen is a
subroutine of the HEx command, which is described later. Suffice to say
that on calling this subroutine with the low byte in the v register and
the high in the accumulator, it will convert it to ASCII and print the
result to the screen.

To check whether you are in direct mode, we look at location $9D(157).
This will hold sse (128) for direct or see for program mode.

ASSEMBLY LISTING

7 *=$85FC

18 LDA $9D ! DIRECT OR PROGRAM

28 BNE MEM ! DIRECT ONLY

36 RTS ! PROGRAM NOT EXECUTED
46 MEM JSR $B526 ! ROM COLLECT GARBAGE
50 SEC ! PREPARE FOR SUBTRACT
éa LDA $33 ! POINTER START OF

STRING STORAGE
78 SBC 431 ! POINTER END OF ARRAYS

170 Programming aid routines

86 TAY ' TEMP STORE

98 LDA 34 ' POINTER START OF
STRING STORAGE

168 SBC 432 ' POINTER END OF ARRAYS

118 JMP $85AD ! CONVERT TO ASCII

AND PRINT TO SCREEN

8461 MEM

Coder

COMMAND SYNTAX
CODER
There are no parameters to this command.

How many times have you picked up a listing from a magazine and
wondered what graphic symbol is in that PRINT statement? Is it a shifted
N graphic or shifted 12 How many have been used together, is it 2 or 3?
You then come across a colour code and have to look it up in the
manual to remember which colour to program. Owners of non-
Commodore printers also have a problem as these symbols and gra-
phics do not print.

We would like to introduce a routine that replaces these graphics
with mnemonics. For example, the symbol for clear screen would be
replaced by [cLs).

Except for one, all the codes we want to change appear within
quotes. That means we have to look through the program for a quote
and when found look for ASClI values that we want to change until the
end of the line or the second quote appears. Having found one, we
also have to look to see if it has been repeated. This done, we will
either calculate the new code or find one in a data table. The codes
produced will be of a different length from the original, but if it
repeats, may be of shorter overall length. To accommodate this, we
will use the memory move routines described in Chapter 6.

The one exception we mentioned earlier is the mathematical ‘P’
(3.14159, etc). This we also found does not appear on some listings and
is essential if in a mathematical equation. This is therefore coded
whether in or out of quotes.

Most of the program operation is described after the assembly listing
(see below), but before the listing we would like to say a word or two
about the data make-up. This can be split into two sections. Graphics
that are obtained by using the shift with most of the ‘letter’ keys can be
calculated directly to the ASCIl code of that particular letter. The
remaining graphics and codes require the use of data tables.

We have employed two tables and stored them out of the way under
the Basic koM. The first table, the data address table, has the three bytes

Programming aid routines 171

for each character we are going to encode. The first byte is the ASCII
value of the character and is followed by the address within the second
table where the data is stored. The second table, the data table, holds
all the data for those characters. The data will be the characters printed
between the [] brackets, and may be of differing length. Because of
this the first byte is the number of bytes of data.

What are we going to produce instead of all these graphics and
codes? These are listed in Appendix | and are mainly self-explanatory.
However, an explanation of two of them is required. If you look at the
Programmer’s Reference Guide, page 74, under ‘Other Special Charac-
ters’, you will see five functions available. Three of these can be
achieved more easily than described in the PRG. These are SWITCH TO
LOWER CASE, DISABLE CASE-SWITCHING KEYS and ENABLE CASE-
SWITCHING KEYS. They can be obtained by simply holding down the
cTrL key and appropriate letter. In quotes they will print the appropri-
ate symbol. Out of quotes the action will be carried out. The remaining
two ‘special characters’ are implemented in the way the PRG describes.
We have given them codes of [CRG>M] and [CRG>N]. These stand for CTRL
REVS GRAPHIC SHIFT RIGHT and the appropriate letter.

ASSEMBLY LISTING

7 OPEN = %8933
2 CLOSE = $888E
? *=$3B93
18 LDX #%04@ ' INITIALIZE QUOTE
COUNTER
2a LD $2B ' GET AND STORE
START OF BASIC PROG
38 STA $FB
48 LD& $2C
S5a STA $FC
68 LINKS LDY #3860 ' SET Y TO BEGINNING
OF LINE
78 LDA (3FB),Y ! GET ADD OF NEXT LINE
ge STA $FD ! STORE FOR LATER
78 INY
i6a LDA ($FB),Y
11e STa $FE
126 BNE CONT ' NOT END OF BASIC PROG
138 PLA ' REMOVE RETURN ADDRESS
140 PLA
158 JMFP $A474 ! GOTO "READY FOR
BASIC"-END OF CODER
168 CONT INY ! SKIFP LINE NUMBER

178 INY

172

168
198
208

218
228

238
248
258
268

278
288
290
368
31a
320

330

346
356

348
370
388
3v0
400
418
420
430
440
458
448
476

480

498
568
518
526
538
548
558

Programming aid routines

NEXT

CONTH

NOPI

CHECK

INQUOTES

COMPARE

CONT2

NEXT1

INY
LDA
BNE

LDA
STA

LDA
STA
LDX
BEQ

CMP
BNE
STA
BEGQ
CMP
BNE

INX

CPX
BNE

LDX
BEG
CPX
BNE
STA
CMP
BCC
SBC
CMP
BCS
cMP
BCS

STA

STY
STX
LDX
INY
LDA
CMP
BNE

($FB),Y
CONT

$FD
3FB

$FE
$FC
#s60
LINKS

HEFF
NOPI
$3E
CONT 2
#$22
CHECK

382
INQUOTES

#+00
NEXT
#+81
NEXT
$3E
HiCo
COMPARE
H3ds0
#e40
CONTZ
#$21
NEXT

$3D

$49
$3C
#3681

($FB) ,Y
$3E
NEXT2

GET BYTE OF PROG LINE
ZERO SIGNIFIES END

OF LINE

GET NEXT LINE ADDRESS
PUT IN CURRENT

LINE REGISTERS

RESET QUOTE COUNTER
X SETS ZERO FLAG -
BRANCH ENFORCED

IS IT pi

NO

STORE VALUE
ENFORCED

1S BYTE A GUOTE

NO GO TO SEE IF IN
QUOTES

ITS A QUOTE SO INC
COUNTER

IS 1T SECOND QUOTE
IN QUOTES CODER IN
ACTION

RESET COUNTER
ENFORCED

NOT IN QUOTES

STORE BYTE

1S IT LESS THAN 192
YES

NO SUBTRACT 94

IS IT > OR =T0 96

IS IT LESS THAN 21
CHARS 21 - 95

DON’T REQUIRE CODING
STORE REVISED CHAR
VALUE

STORE LINE MARKER
STORE QUOTE COUNTER

! GET NEXT CHAR

IS A REPEAT CHAR
NO

548
578
586
598
408
618
420

430
444

458
668

478
488
490

7680

718

720
730
748
756
760
778
788
798
80e
81e
820
838
848
858
840

870
886
896
200
716
920
9236
940

NEXT2

SPACE

CONT3

CONT4

CONVERTA

CONTS

INX
BNE
STX
CPX
BCS
DEX
LDA

CMP
BEG

LDA
STA

STA
BEQ
JMP

LDA

JSR

LDX
LDA
STA
INX
LDA
STA
LDA
CMP
BCC
CcHP
BCS
SEC
SBC

STA
LDX

LDA
BNE
DEX
LDA
BNE
DEX
CPX
BEQ

NEXT1
$3E
#4062
CONT3

$3D

#s20
SPACE

#s08
$48

$3F
CONT4
RELOAD

#s60
$847F

#$80
$8208 ,X
$3F

$8208,X
$40

$3D

H$41
CONVERTB
H#$7B
CONVERTB

#$20

$3D
Heo7

340
CONTS

$3F
CONTS

$3E
NOMOVE

Programming aid routines 173

ENFORCED
REG - NO OF REPEATS

MORE THAN ONE CHAR

GET CHAR BACK
AGAIN

IS IT A SPACE

DON‘T CODE SINGLE

SPACE

RESET REG WITH ASCII
FOR NO OF REPEATS

ENFORCED
RELOAD REGISTERS
FOR GET NEXT BYTE

' X HAS LOW VALUE -

NO HIGH VALUE
NGO OF REPEATS INTO
ASCII FORM

! GET ASCII INTO REGS

REDUCE VALUE

TOTAL NO OF SPACES
REQUIRED

MORE THAN 9 REPEATS

SOME REPEATS

FIND HOW MUCH ROOM
RIGHT AMOUNT OF SPACE

174 Programming aid routines

258 BCS OPENUP ! NEEDS SPACE IN LINE

946 JSR CLOSE ! GET RID OF
UNWANTED CHARS

976 JMFP NOMOVE ! CONT WITH PROG

9868 OPENUP JSR OPEN ! NOT ENOUGH ROOM IN
LINE

?98 NOMOVE LDY %49 ! GET LINE POINTER

1660 LDA #45B " ASCII FOR [

1610 STA ($FB),Y ! PUT IN LINE

162a LDA $48

1638 BEQ CONTé ! NO TENS DIGIT

1840 INY

1650 STA ($FB),Y

1868 CONTS LDA $3F

1678 BE@ CONT?7 ' NO REPEATS

iaga INY

1690 STA (#FB),Y

1188 CONT? LDA #H$47 ' ASCII FOR G

1110 INY

1128 5Ta (3FB),Y

1138 LDA #$3E ' ASCII FOR >

1148 INY

11580 STA ($FB),Y

1148 LDA $3D ! CHAR

1178 INY

1180 STA (3FB),Y

1170 LDA #$3D ! ASCII FOR 1

1260 INY

1218 STA ($FB),Y

1228 LDX $3C ' RESET QUOTE COUNTER

1230 JMP NEXT ! NEXT BYTE

1248 CONVERTB STA $3D

1250 LDA #4550 ' LSB OF DATA
ADDRESS TABLE

1248 S5TA 62

1278 LDA #3A3 ! MSB OF D.A.T.

1288 STA $63

1298 LDX #3$51 ! COUNTER MAX NO OF
CHARS IN DATA

TABLE

1360 LDY #4060

1318 NEXT3 JSR $81FB ' SWITCH OF BASIC

1320 LDA ($62),Y ! GET ASCI1 CHAR NO

1330 PHA ! TEMP STORE

1348@ JSR 48282 ' SWITCH IN BASIC

1358 PLA ! RETRIEVE

1348
1378
1388
1378
1408
1418
1426

1438
1448

1450
1468
1478
1488

1478
1560

1518
1528

1538
1548
1558
1560
1576

1588
1598
14080

1418
1628
1438
1448
1458
1468
1478
1488
1696
1708
{710
1728

1736

CTRL

FOUND

CONTS8

CMP
BE@
INY
INY
INY
DEX
BPL

LDA
CHP

BCC
LDX
JMP
ADC

5TA
LDA

5TA
LDA

STA
BNE
INY
JSR
LDA

PHA
INY
LDA

S5TA
JSR
PLA
5TA
LDY
JSR
LDA
STA
JSR
LDA
CLC
ADC

TAX

33D
FOUND

NEXT3

$3D
#$1B

CTRL
#3080
$A437
#4808

$A448
#$43

$62
#4A4

$63
CONTS&

$81FB
($62),Y

($42),Y

$63
$8267

$42
#4008
$81FB
($62),Y
$C1
$8202
$C1

384

Programming aid routines 175

' IS IT THE SAME
' YES
! SKIP UNWANTED ADDRESS

! DECREASE COUNTER
' GET NEXT ASCII HNO
UNTIL X<@

! SEE IF IT USED

WITH CTRL KEY

YES

NO

ERROR OUT OF DATA

ADD $48 TO GIVE

ASCIT LETTER

' STORE IN DATA TABLE

' L5B OF DATA FOR
[CTRL?]

! MSB OF DATA FOR
[CRTL?]

! SWITCH OUT BASIC

' GET LSB OF DATA
POSITION

! TEMP STORE

! GET MSB OF DATA
POSITION

! SWITCH IN BASIC

! GET NO OF DATA CHARS

! FOR BRACKETS AND
REPEATS

176 Programming aid routines

1748 LDA $48

1758 BNE CONT9

1768 DEX ' NO TENS IN REPEATS

1770 LDA $3F

1780 BNE CONT9

1798 DEX ' NO REPEATS AT ALL

1888 CONT? CPX $3E ' DO WE REQUIRE A
MEMORY MOVE

1818 BE@ NOMOVE! ' NO

1828 BCS OPEN1 ! MORE SPACE

1838 JSR CLOSE ' LESS SPACE

1848 JMP NOMOVE

1858 OPEN1 JSR OPEN

1868 NOMOVE! LDY $49 ' GET LINE MARKER

1878 LDA #$5B ' ASCII FOR [

1888 STA ($FB),Y

1890 LDA $3F

1908 BEG CONTA ! NO TENS DIGIT IN
REPEATS

1910 INY

1928 STA ($FB),Y ' STORE IN PROG

1938 CONTA LDA $48

1948 BEG CONTB ' NO REPEATS AT ALL

1950 INY

1968 STA (3FB),Y ' STORE IN PROG

1978 CONTB STY $49 ! STORE LINE MARKER

1980 LDY #3686

1998 JSR $81FB ' SWITCH OUT BASIC

2080 DATA INY

2010 LDA ¢$62),Y ' GET DATA FROM

TABLE

2020 STY $C2 ! STORE DATA MARKER

2030 LDY $49 ' GET LINE MARKER

2040 INY

2850 STA ($FB),Y ' STORE DATA IN PROG
LINE

2860 STY $49 ! STORE LINE MARKER

2870 LDY $C2 ' GET DATA MARKER

2080 CPY $Ci ' HAVE WE GOT ALL DATA

2690 BNE DATA ' NO

2160 JSR $8202 ! SWITCH IN BASIC

2110 LDY $49

2128 LDA #$5D ' ASCII FOR]

2130 INY

2148 STA ($FB),Y

Programming aid routines 177

2158 LDX 83C ! GET QUOTE COUNTER
2168 JMP NEXT ! NEXT BYTE TO PROCESS
2178 RELOAD LDY 449 ' GET LINE MARKER
2180 LDX $3C ! GET QUOTE COUNTER
2190 JMP NEXT ' NEXT BYTE TO PROCESS
8BD7 CHECK 88289 CLOSE

8BE3 COMPARE 8BAF CONT

8BCZ CONTI 8BEB CONT2

8C15 CONT3 8C27 CONT4

8C42 CONTS 8CSE CONTé

8C45 CONT? 8CCC CONTS

8CDF CONT? 8Da4 CONTA

8D8B CONTB 8C7E CONVERTB

8CAB CTRL 8D12 DATA

8CBA FOUND 8BDB INQUOTES

&B9D LINKS 8BB1 NEXT

8BF3 NEXTI 8BFD NEXT2

8C8C NEXT3 8C51 NOMOVE

8CF7 NOMOVET 8BCA NOPI

8931 OPEN 8CF4 OPEN1

8C4E OPENUP 3D33 RELOAD

8C1Z SPACE

LINES 10-150: These set up the routine and if necessary return control
back to you through Basic. There are no parameters included in the
command to pick up as it codes the whole program. The address of the
first line is taken from the start of BASIC program variables at $28 and $2C.
The x register is initialized to zero and is used as a quote counter. We
get the link address to the next line and if it is the end of the program
we remove the return address from the stack, placed there on
entering, and go back to Basic with the program in memory coded for
listing or saving.

LINES 160-390: We are going to start to look for our trigger codes —
quotes or pi. We skip the line number and start to scan. If the end of
the line is encountered we transfer the links to the line register and
start the next line.

We check for pi (ASCII value is $rF). On finding it, we store it in a
register for later use and branch further into the program. The check
for the quote takes two forms. When one is found, we increase and
check the x register. A two here will indicate that it is the second quote
and therefore going out of the area we are interested in. It also means
we go back to look for another quote.

If X is one, then the first quote has been found and we go forward to

178 Programming aid routines

check for codes. It will fail there the result is that we return to get the
next byte.

On encountering a byte other than a quote or pi, we check to see if
the x register is one, indicating that we are in quotes and it will require
processing.

LINES 400-470: We first store the byte. This is done as we are going to
manipulate this data and possibly alter it. The original value is needed
later when checking for repeat characters.

Values over $co (192) are reduced by $60 (9) and we are in a position to
weed out characters that do not require any action. These will be
values of $21 to $5F inclusive. This is the position that the first quote will
end up in. These characters cause the flow to go back and get the next
byte.

LINES 480-690: Our character value is stored again, as it may be
different, in another register. We also store the line pointer (the v
register) and the x quote counter. The latter is stored because if pi is
being changed, the x register could be zero; at other times it will
always be one.

The next procedure is to see if there is more than one character of
the same type consecutively in the program. The x register will be used
as a counter and as it is one already, it is already initialized. The
following bytes are gathered in and checked against the original value.
The x register is increased until a byte of a different value is found.

The routine now splits up. Where there are two or more repeat
characters, we jump ahead to CONT3 to put that number into ASCII.

Continuing along, the x value will be one but we will not print out
the number one as it implied. Registers $3f and $40 are set to zero,
which as we shall see shortly will hold the ASCII value for repeats.

The action taken is to check to see if the character we are coding is a
space or not. We do not want to code single spaces as it would clutter
the listing unnecessarily. On finding a space the flow jumps further
ahead to reload the registers and go back to get the next byte. For
characters not spaces, and all single characters, the routine branches
forward to skip the next section.

LINES 700-770: On finding more than one of the same character we
want to convert the number into ASCII format. We already have the
number in the X register. To use our own conversion routine at $847F we
need to set the accumulator to zero, as the high byte value. The result
will be in the input buffer with a zero after the last digit. As a line of
BASIC program when typed into the 64 cannot be more than 80 charac-
ters, it therefore means that the number of repeats cannot be any
greater. This means that the number of ASCII digits will be two at a
maximum.

We therefore pick up the first two digits from the buffer and store

Programming aid routines 179

them in $3F and s40. If there was a single digit, that is 2 to 9 repeats, 40
will be zero.

LINES 780-820: We said at the beginning that some characters would
require the use of the data tables whilst some can be coded by calcula-
tion. These few lines divide up the flow into these two areas.

We load back the value achieved in earlier calculations (lines
410-440) to the accumulator. Values of se0 and under, or 578 and over,
will branch off to Conversion B, which uses data tables.

CONVERSION A

LINES 830-1230: The first task to undertake is to subtract $20 (32) from
our value and store it. This is now the same value as the ASCII code of
the letter of the key it shares. They will all be achieved using the shift
with the key rather than the logo key.

The maximum number of characters we could insert is seven, two for
the brackets, two for the number of repeats and three for the code.
This number is placed into x. We check the ‘repeat’ digits storage for
the number of numerals. A zero will indicate that there is no digit in
that column. The x register will be decreased accordingly. Location $3¢
has the number of graphic characters to be coded and this is compared
with x. From this we either open-up the program, close-up the pro-
gram or leave it unchanged. The memory move routines are described
in Chapter 6.

Now we are ready to insert the code in the order of:

i) The[bracket.

ii) The number of repeats if applicable.

iii) The letter G.

iv) The symbol >.

v) The letter of the key, held in location $3D.
vi) The] bracket.

Once completed, we load the quote counter back into x and jump
back to get the next character to code.

CONVERSION B

LINES 1240-1640: This is where we have to use data tables to find the
relevant code. This part is entered with the character value in the
accumulator and is put into $3D for later use. The first table we look up
is the data address table. The start address of the table is placed in
locations $62 and $63. The x register has the total number of characters
catered for and the v register is used as a general pointer.

As the table is in the rRaM under the BAsic RoM we have to disable
that ROM, get the byte we want and then switch back the Rom. The byte
is placed temporarily on the stack during the enabling of the Rom. The
byte we have collected is compared for equality with our character

180 Programming aid routines

value. Succeeding forces a branch forward. Failure means we continue
the search. The first thing is to increase the v register three times. This
will skip the address of the rejected character in the data table. The v
value will be in line with the next character value. If the x register has
been decreased to a value below zero, that is, sfF, then all the data
address table has been checked and a match not found. There is one
further chance. It could be a character which uses the cirL key along
with a letter key. These will have values no greater than $1A 26). This is
checked and if it does not fall in, then an ‘OuT OF DATA" error is
generated and coder is exited. We think that this should never come
about as we believe we have catered for all eventualities.

Supposing a cTrL value is the one found, then we add s40 (64). This
simply gives the value of the letter on the key. This is stored immedi-
ately in the data table. The start address of the start of cTrL data is
placed into $62 and $63.

Now back to the other characters. A match has been found in the
data address table and we have arrived at line 1550. The two bytes next
in line in the address table are the data address in the second table.
These are placed into registers s62 and $63.

LINES 1650-2160: We have now finished with the data address table
and concentrate on the data table itself. This time we only require one
byte, the first byte, which will give us the number of bytes of code. To
this value we add four, the brackets and the ‘repeat’ digits, transfer it to
x and decrease it if one or both repeat digits are redundant. This final
value is compared with the number of characters to be replaced to
determine whether more or less space is required. This and the moves,
if needed, are achieved in lines 1800 to 1850.

The insertion of data is the only thing left to do. We reload the line
marker and start. The left square bracket and, if required, the repeat
digits are stored first. The data insertion is slightly complicated. The
line marker is stored and the v register is re-initialized. The BASIC ROM is
switched off and a byte is taken from the table. The v register is stored
in $c2 and the line marker is restored and incremented. The byte is now
inserted in the program. Now the line marker is stored and the data
marker placed back in v. This is compared with the number of bytes of
data in the code $c2. If it has not reached this number, we branch back
to get further bytes to insert. Once all the data has been collected and
stored, the BasICROM is switched back in.

Finally, the right hand square bracket is inserted and we jump to get
the next character to be coded, after restoring the quote counter.

LINES 2170-2190: This simply restores the line marker and quote
counter, after which the routine goes back to get the next character.
Single space characters, which are not coded, are sent here.

Programming aid routines 181

The data table — a program
After much thought, we have decided to supply the data tables for
CODER in the form of a BasiC loader. This is mainly due to the fact that it
is stored under the Basic Rom which makes it hard to check and correct
using a monitor. With the loader program we can put in a checksum
which helps to see if you typed in the correct values.

A further item that the loader program does is to clear the area used
by the kry command (see Chapter 4) for its data. So type in the
program, check it and save it.

16 L=41472:T=8

208 READD:IFD=-1THEN4®@

38 T=T+D:POKEL,D:L=L+1:60T028
48 IFT<>S1131THENPRINT"[REV] DATA INCORR
ECT" :END

S8 FORL=41214T041471 :POKEL , @8 :NEXT
40 PRINT"[REV] DATA LOADED" :END
7@ DATA3,87,72,84,2,67,68

g8 DATA3,82,69,86,3,72,79

98 DATA?7,3,82,69,68,2,567

188 DATAS82,3,71,82,78,3,66
118 DATA74,85,3,83,806,47,3
128 DATA71,62,42,3,71,62,43
138 DATA3,71,40,45,3,71,62
148 DATA45,1,126,3,71,408,42
158 DATA3,79,82,71,2,76,49
148 DATAZ2,78,51,2,78,53,2

178 DATA7@,55,2,768,58,2,70
180 DATAS2,2,78,54,2,78,54
198 DATA3,66,76,75,2,67,85
200 DATA3,79,70,70,3,47,76
218 DATA83,3,73,78,83,3,46
228 DATAS2,78,5,76,32,82,69
238 DATA&S8,3,71,82,49,3,71
240 DATA8S2,50,5,76,32,71,82
256 DATA73,5,76,32,66,76,85
248 DATA3,71,82,51,3,80,85
278 DATAS2,2,67,76,3,89,49
288 DATA76,3,67,89,78,5,71
298 DATA42,83,808,47,3,71,60
388 DATA7S5,3,71,40,73,3,71
310 DATA&B,84,3,71,68,64,3
320 DATA71,48,71,3,71,60,43
330 DATA3,71,40,77,3,71,48
348 DATA®2,3,71,62,92,3,71
358 DATAL@,78,3,71,408,81,3

182

368
378
388
396
468
418
428
4360
440
458
4468
478
488
498
568
S1e
528
536
548
558
566
578
586
596
éee
618
428
4638
448
450
660
678
4688
698
‘68
‘18
728
738
740
750
768
7’78
788
a4’
gae
g81e

Programming aid routines

DATAZ1,68,68,3,71,40,90
DATA3,71,40,83,3,71,40
DATASS8,3,71,408,45,3,71

DATAGB ,69,3,71,48,82,3
DATA71,60,87,3,71,48,72
DATA3,71,60,74,3,71,40
DATA76,3,71,48,89,3,71

DATASB ,85,3,71,40,79,3
DATAZ1,62,44,3,71,48,70
DATA3,71,46,467,3,71,40
DATAS8,3,71,40,86,3,71

DATASB ,66,5,467,84,82,76
DATASS5,5,47,84,82,76,66
DATAS,57,84,82,74,72,5
DATAS7,84,82,76,73,5,467
DATAS4,82,74,78,5,467,82
DATA71,62,78,5,47,82,71
DATAG2,77,3,68,89,76,2
DATASE,73,255,0,0,0,0
DATAS,8,162,17,4,162,18
DATA7,162,19,11,162,28,15
DATA162,29,19,1462,38,22,162
DATA31,246,162,32,38,162,94
DATA34,162,123,38,162,124,42
DATA162,125,46,162,126,50,162
DATA127,52,162,129,56,162,133
DATASR ,162,134,463,162,135,486
DATA162,136,69,162,137,72,162
DATAL138,75,162,139,78,162,140
DATAB1,162,144,84,142,145,88
DATA162,146,91,162,147,95,142
DATA148,99,162,149,1083,162,158
DATA187,162,151,113,162,152,117
DATA162,153,121,162,154,127,162
DATA155,133,162,156,137,162,157
DATA141,162,158,144,162,159,148
DATA162,1408,152,162,161,158,182
DATA142,162,162,163,166,162,144
DATA1708,162,165,174,162,166,178
DATA162,167,182,162,148,186,142
DATAL69,190,162,178,194,162,171
DATA198,162,172,202,162,173,286
DATA162,174,218,162,175,214,142
DATA176,218,162,177,222,142,178
DATAZ226,162,179,2368,162,1808,234
DATA162,181,238,162,182,242,162

82e
83a
848
85e
848
876
888
898
Y60

Programming aid routines 183

DATA183,246,162,184,250,182,185
DATA254,162,186,2,163,187,6
DATA163,188,10,143,189,14,163
DATA196,18,163,191,22,143, 1
DATAR4,163,2,32,163,8,38
DATA143,9,44,163,14,50,143
DATA142,56,163,141,62,163,20
DATAS8,163,255,72,1463,5,67
DATAB4,82,76,67, -1

SAVING THE DATA AREA

The following listing will save the area we have used for both key and
CODER routines. The saving of data through machine code is described
in the Programmer’s Reference Guide. The only extra coding is to
switch the BASIC ROM out, so that we will save our data and not the Basic
interpreter. You could use this after setting up the function keys (see
Chapter 4) so on reloading, the data is there and ready.

10
28
36
4@
50
&0
78
=1
20
1ea
f1e
126
130
14a
158
1é@
178
18@
176
z00
218
226

238

LDX #+88 ' DEVICE NO (TAPE=1)
LDA ##81 ! LOGICAL FILE NO

LDY #3$FF ' NO SEC ADDRESS

JSR $FFBA ! SETLFS

LDA #$8C ! CHARS IN FILENAME
LDX #H{NAME ! LOW ADDRESS OF NAME
LDY #>NAME ! HIGH ADDRESS

JSR $FFBD ' SETNAM

LDA 481 ! SWITCH OFF BASIC
AND H$FE

STh $81

LDA #t00 ! STGRE START ADDRESS
5TA $FB

STA #$A1

STh $FC

LDX ##49 ' LOW END OF S5AVE

LDY #%A4 ! HIGH END OF SAVE
LDA HEFB ! LOCATION OF START ADD
JSR $FFD8 ! 5AVE

LDA 3a1 ' SWITCH IN BASIC

ORA #4801

SThA 61

RTS

248 NAME TXT "UTILITY DATA"

184 Programming aid routines
RELOCATING THE DATA TABLES

If you relocate CODER may also want to relocate the data. Here is one
suggested way. Using the Basic loader program for the data, change the
value of L in line 10 to the new data start address. The data normally
starts at $A200 41472) but the data address table starts at $A350 41808). From
this calculate the data address table new address and put its value in
lines 10 and 30 of the routine below. The end of the data address table
is normally sA442 (42050), so work out its new end, subtract one, and this
is put in lines 210 and 240. The difference between the old address and
the new address should be put in lines 80 and 120. The routine below is
for a new table at a higher address; for one lower, change the addition
to subtraction and set the carry instead of clearing it.

18 LDA #$50 ' START OF DATA
ADDRESS TABLE

20 STA $14

38 LDA #3$A3

40 STA $15

56 NEXT LDY #3801 ' POINTER

40 LD& ($14),7 ! LOW ADD IN TABLE
78 CLC

38 ADC #3480 t ADD LOW DIFFERENCE
90 STA ($14),Y

100 INY

110 LDA ($14),7 ! HIGH ADD IN TABLE
120 ADC #$25 ' ADD HIGH DIFFERENCE
138 5Ta ($14) 7

140 CLC

158 LDA $14 ' UPDATE TABLE ADDRESS
148 ADC #3083

170 STA $14

180 LDA $15

196 ADC #$00

200 STA $15

218 CMP #$A4 ' END OF DATA

ADDRESS TABLE

228 BNE NEXT ' NO

236 LDA $14

248 CMP #$43

258 BNE NEXT ' NO

248 RTS

Programming aid routines 185

Old

COMMAND SYNTAX
OLD

There are no parameters with this command.

There are four ways to ‘lose’ a BAsiIC program. The first way is by
switching off and then there is absolutely no way of recovering it.
Another two ways are by doing a system cold start or a reset. This is as
if you have just switched on but retaining data held by the rams. This
can be achieved by typing svse4738 or by a reset button, if you have
fitted one. The final way to lose a program is by issuing the Basic com-
mand NEw.

To lose a program the operating system of the 64 sets the first two
bytes of the BAsIC program area to zero. This would normally be seso
and $0802 (2049 and 2050) and would be the link address in the first line of a
BASIC program. This means that as far as BasiC is concerned no program
is present as it would encounter the zeros straight away.

Now as long as no further lines of Basic are typed in, we can reverse
the process, but will lose all the variables. The way it is done is made
clear in the description of the coding.

ASSEMBLY LISTING

9 ¥=%$8415

18 LDA HEFF

20 LDY #%01

38 5TA ($2B),Y ! PUT ANY LINK IN
1ST LINE

4@ JSR $A533 ' RECHAIN LINES

58 LDA +22

4@ CLC

78 ADC #s82

86 STha $2D ! SET END OF PROG
ADDRESS -LOW

70 LDA %23

166 ADC #Heoe ! IN CASE CARRY WAS
SET IN 78

118 STA $2E ! SET END OF PROG
ADDRESS -HIGH

128 JMP $AL40 ! PERFORM CLR

LINES 10—40: If we change the first two bytes from zero, Basic will no
longer think itis at the end of the program. We put sf in those, and get
the address from the start of BasiC variables in $28 and s2c. Now a call to
the ROM routine RECHAIN LINES will achieve two things. First, it will

186 Programming aid routines

correctly set the link address in the first line, and secondly, we will be
able to set the end of program variables.

LINES 50-120: Locations $22 and s23 are set to the beginning of the two
zero bytes, which mark the end of the program, when the rRecHAIN
routine is finished. By adding two to those, we have the end of
program and can set the respective registers, $20 and $2t.

The final thing is a jump to the ctr routine. This will set all the
variable addresses to coincide with the recovered program. The Basic
program is now restored to its original state.

Dump

COMMAND SYNTAX

DUMP

There are no parameters with this command. It will also only operate in
direct mode. If used within a program it will just skip out of the
command. Hitting stop will break out of bump and allows direct edit-
ing; typing cONT will resume at the break point in the BAsiC program.
Holding down any other key, apart from shift, will halt the routine until
itis released.

The action of bump is identical to the Basic subroutine in Chapter 5
except that as the routine is in machine code it does not add to the
simple BasIC variables. The logic closely follows the BAsiC routine.
Output may again be directed to a printer by an opeN and cmD
sequence. The major departure is in the use of one or two ROM
routines to carry out the mathematical conversions and convert the
number to an ASCII string to be printed.

ASSEMBLY LISTING

? *=$8E352

18 'NOTE REAL ASC / ASC OR @

28 ! STRING ASC 4 ASC+128 OR 128
38 ! INTEGER ASC+128 / ASC+128 OR 128
48 ! FUNCTION ASC+128 / ASC OR @

58 !

4@ !

76 !TEST FOR DIRECT MODE

ge !

Sa LDA $9D 'MSGFLG
166 CMP #%86 'DIRECT ?2?
11a BEG DIRECT
120 RTS 'PROGRAM MODE SO ABANDON
138 !

140 .!NOTE CURRENT VARIABLE IN FILE NAME POINTER

Programming aid routines 187

150 !

148 DIRECT LDA $2D 'VARTAE

170 STA $BB

{ga LDA $ZE '"UARTAB+1

178 STA $BC

200 !

218 'RETURN TO HERE TO SEP IF ALL DONE

228 START LDA $BC

238 CMP $36

240 BNE CONT 'MORE VARIABLES

250 LDA $BE

248 CMP $2F

278 BNE CONT

280 RTS 'DONE ALL OR WERE
NONE TQ START

270 !

28@ 'FIND VARIABLE TYPE

318 !

328 CONT LDY #s08

338 LDA ($BB),Y 'FIRST CHAR OF NAME

34a CMF #$80

358 BCS INTFN 'INTEGER OR FUNCTION

348 !

378 !STRINGS AND REAL

375 !

aga JSR $FFDZ '"QUTPUT ASCII CHAR

378 INY

460 LDA ($BB»,Y 'GET SECOND CHAR

410 CMP #37F

42@ BCS STRING

438 !

448 'REAL VARIABLE

4568 !

440 JSR 3$FFD2 "OUTPUT SECOND ASCII
CHAR

476 JSR UPDATE 'FPRINT ‘=7 AND
UPDATE POINTER

430 LDA ¢BB 'POINT T0 VARIABLE
FOR MEMORY MOVE

490 LDY $BC 'TO FPACCH!

560 JSR $BBA2 'GO DO IT

518 JSR ¢BDDD 'FPACCH#1 TO STRING
AT $06108

520 JSR $ABIE 'PRINT IT

536 LDA #HEFF

548 BNE NEXT ISKIP TO NEXT VARIABLE

188

358
540
578
58a
578
4080
610
620
638
4@
658
848
670
488
698
/86
7’18
728
738
748
758
740
778
78a
798
gee
816
82e
836
g4da
858
2840
878
88ae
3
2068
718
20
736
?48

245

Programming aid routines

'STRING VARIABLE

STRING

CHAR

QUOTE

HALFSTART

AND
JSR
LDA
J5R
JSK
LDA
JSR
LDY
LDA
TAX
BEQ@
INY
LDA
5TA
INY
LDA
5TA
LDY
LDA
JSR
INY
DEX
BNE
LDA
JSR
BEG
BNE
BCS

H$7F
$FFD2
H$24
$FFD2
UPDATE
#$22
$FFD2
#$00
($BB) Y

QUOTE

($BB) Y
$22

($BB),Y
$23
#3500
($22),Y
$FFD2

CHAR
#4222
$FFD2
NEXT
NEXT
START

"INTEGER AND FUNCTIONS

INTFN

AND
JSR
INY
LDA
CMP
BCS

HE7F
$FFD2

($BB),Y
#$7F
INT

958 'FUNCTION DEFINITION

948
778
86

JSK
JSR

$FFD2
UPDATE

'"MAKE ASCI]

g

'"LENGTH OF STRING IN X
'NULL STRING

'LSB LOCATION

'MSB LOCATION

'CONVERT TO ASCII

"INTEGER IF SECOND
CHAR>128

Programming aid routines 189

790 LDA #H%$44 'F/ PRINT FN

1006 JSR $FFD2

1e1a LDA #$4E i

1828 JSR $FFD2

1830 BNE NEXT

1a4e !

18568 !INTEGER VARIABLE

1848 !

1878 INT AND H$7F 'CONVERT TO ASCII

18880 JSR #FFD2

1898 LDA #$25 A

1188 JSR $FFD2

1118 JSR UPDATE

1128 LDY #+080

1136 LDA (%$BB),Y 'MSB

1148 SThA %62 'FPACCH!

11580 INY

1148 LDA ($BB),Y 'LSB

1176 STA 363

1180 LDX #%90

119a JSR $BC44 'CONVERT TWO BYTE
INT TO REAL

1z08 JSR $BODD 'FPACCH#1 TO STRING
AT $0100

1218 JSR $ABIE 'PRINT IT

1228 !

1238 iSEE IF KEY HIT AND UPDATE POINTERS
1248 !
12568 NEXT LDA #46D 'CARRIAGE RETURN

1248 JSR $FFD2

1278 CLC

1280 LDA 4BB

1298 ADC #$85

13680 STA $BB

1318 BCC WAIT

1320 INC $BC

1338 WAIT JSR $FFE4 'STOP

1348 JSR $FFEI

1354 BNE NOT

1340 RTS

1278 NOT LDA $CB 'CURRENT KEY

1386 CMP #3480 'NO KEY=44

1370 BNE WAIT 'CYCLE WHILE KEY
HELD DOWN

1400 SEC

141a BCS HALFSTART

190 Programming aid routines

1428 !
1438 !PRINT ‘=’ AND SET POINTER IN $BB/BC
TO START OF VARIABLE

1448 !

1458 UPDATE LDA #43D tr=2
1448 JSR $FFD2

1478 CLC

14886 LDA $BB

1494 ADC H$B2

1508 STA 4BB

1516 BCC RETURN
1526 INC $BC

1538 RETURN RTS

8EBC CHAR BESE CONT
8ES? DIRECT SECE HALF
8EEE INT 8ED@ INTFN
8F11 NEXT &F2Aa NOT
BECS QUOTE 8F43 RETURN
8ES! START 8E?7 STRING
8F33 UPDATE 8F21 WAIT

The routine has been written to be easily relocatable. The only
change necessary is to alter all jsR UPDATES to JsR (start address + se1).
The ROM routines used are as follows:

CHROUT ($FFD2)

A full description of this function is given in the Programmer’s Refer-
ence Guide, ‘The KERNAL B-5'. It outputs the contents of A as an ASCII
character to the screen.

STOP ($FFET)
See ‘The KERNAL B-33". Test for the stop key. upTiM must be called
before using this routine.

UDTIM ($FFEA)
See the Programmer’s Reference Guide, ‘The KERNAL B=36". This updates
the system clock.

MEMORY TO FAC#1 ($BBA2)

This routine takes a five byte real number and moves it to the floating
point accumulator #1. En route the sign bit of the mantissa is stripped
off and the sign register FACSGN (s66) set, the exponent put at FACEXP ($61)
and the mantissa of FACHO (s62-65). On entry A must hold the low and v
the high byte of the address of the bytes to be moved.

Programming aid routines 191

FAC#1TO STRING ($BDDD)
Converts FAC#1 to an ASCII string stored at the bottom of the stack
($0100). On exit A holds #$e0 and v holds #s01.

PRINT STRING FROM MEMORY ($AB1E)

This routine prints successive characters starting at the memory loca-
tion whose address is held in A (low) and v (high). The routine con-
tinues until a zero terminator is found (as will be the case at the bottom
stack in this application). Note A and v already hold the start address on
exiting the previous routine and need not be changed.

EVALUATE TWO BYTE SIGNED INTEGER ($BC44)

Evaluates a two byte signed integer held in fac#1 and deposits the
result in floating point form back in rac#1. Before calling x must be set
to #59, FACHO must hold the high and racHO+1 the low byte of the
integer (remember integers are held in high/low format unlike
addresses). Once in this form the same routines as for real may be
used to convert to ASCll and print.

LINES 1450-1530: JSR UPDATE

This will be used by all types of variables. It will be used directly after
the variable name has been printed. All this does is to print out the
equals sign and increase the address registers by two, so that they will
point directly to the next byte to be collected - the first of the actual
variable.

LINES 90-120: These check for direct mode. If program mode is dis-
covered, then the routine is exited.

LINES 160-190: The locations we are going to use to step through the
variable area are initialized with the start of variable address, which
also happens to be the end of Basic program address. We are now
ready to start.

LINES 220-280: Locations $2fF and $30 are the address of the end of the
variable block that we are going to pump. By checking the values in
those with our registers, we can find out if we have completed all.

LINES 320-350: The routine is divided up here and will be further
divided later. When the first byte is picked up, we check if it is an
integer or a function by seeing if the value is $80 (128) or over. These are
dealt with further into the routine.

LINES 380-420: The first byte we have already is printed - the first letter
of the variable name. The next byte is collected and this will distinguish
between real and string variables.

LINES 460-540: REAL VARIABLES: Again we print what we have in A,
making the whole variable name output. A call is now made to JsR
UPDATE. With the address of the present position placed in the A and v

192 Programming aid routines

registers, we call three ROM routines, described at the start, to print out
the variable to the screen or output device. The accumulator is loaded
with sFF just so the branch following will succeed.

LINES 580-840: STRING VARIABLES: Before we print out the accumula-
tor, we remove the negative bit, bit 7, so that it is the pure ASCII code
of the variable letter. The dollar sign is printed and UPDATE is called. As
there are no separaters between stored strings, we cannot use a similar
approach to the one used in real variables. The first thing printed is the
start quotes. The length of the string is the byte after the name and this
is placed in the x register. Now we gather in the address of where the
string is stored. From this we can print out the characters directly,
decreasing x each time, until the counter is zero. Finally, the closing
quotes are output. One of the following two branches must succeed so
we can continue.

LINES 890-940: Integers and functions start here. In these lines we
distinguish between them and act accordingly. By stripping off the
negative bit we can print out the first character of the name, and do so.
The second byte is loaded and this will tell us what type to deal with. A
value of $80 (128) or over will signify integer.

LINES 970-1030: FUNCTION VARIABLE: We cannot print any value for
the function, so after the second name character is printed, UPDATE is
called, and then we just print the letters ‘'F and ‘N’ and branch off.

LINES 1070—1210: INTEGER VARIABLES: After printing the second
character of the name the integer sign of ‘%’ is output. Once more
UPDATE is visited. The next two bytes in the variable area are the integer
value and these are transferred to Fac #1. With the x register set to
normalize the result, we call a ROM routine at $8c44. This will convert the
integer value to a real number. We then convert to ASCIl and print the
result with the routine described at the beginning.

LINES 1250-1410: After dealing with any of the four types of variables,
the flow is directed to this part of the routine. The return character is
printed so that the next variable is printed on a new line. Each variable
takes seven bytes of memory and as we added two bytes to our address
registers in UPDATE, we only need to add five more to get to the start of
the next variable in line.

The stop key is now tested for and if the negative flag is set then bump
is ended, as sTop was pressed. By examining $CB we can see if any key is
being pressed. As long as a key is held down we loop around here and
then check for stor.

To continue with bump we set the carry flag and we use a Branch with
Carry Set to line 850 where the same happens, going further back to
proceed dumping variables.

Programming aid routines 193
IMPROVEMENTS?

Obvious improvements are as for the BasiC subroutine. If you had
trouble extending the Basic subroutine to handle arrays, you haven't
tried anything yet! Most dump routines (wisely) do not handle subs-
cripted variables (probably because it is considered too difficult).

Trace and Troff

COMMAND SYNTAX

TRACE and TROFF

Speed Control

‘0’ reset single-step 1" arelative delay of 270
‘2" arelative delay of 2°1 ‘3" arelative delay of 272
‘4" arelative delay of 2°3 ‘5" arelative delay of 274
‘6’ arelative delay of 275 ‘7" arelative delay of 276
‘8" arelative delay of 2°7 ‘9" arelative delay of 278

The space bar operates the single-stepping.

The delay is in addition to the normal time taken by BAsic to move to a
new line and execute the common trace code. The delay may be
changed at any time by hitting the appropriate key. It is, however, not
possible to break into program execution in single step. If you wish to
do this, hit a number other than 0 first.

TRACE is a diagnostic aid which provides useful information on the
path taken through a Basic program. In this particular version the
previous and the current line numbers are displayed in reverse video at
the top right of the screen.

We considered it far more important to allow the user to be able to
vary the speed of the trace and have single-stepping capability. When
called for the first time the default will be to single stepping and
thereafter at each run it will continue at the last set speed. After being
disabled with TROFF it will, on being enabled, revert back to single
stepping. In single step mode program execution halts until the space
bar or a speed change key is pressed. The keys for speed change are
given above.

ASSEMBLY LISTING

9 *=8D3A
188 'TRACE ENABLE
116 !
128 !

138 ENABLE LDA 9D 'MSGFLG CHECK FOR DIRECT

194

14a
15a

148

178
188
17a
280

218

228
238
2480
256
240
z27a
288
298
388
31a
328
336
340
35@
348
378
386
378
400
418
420
43@

440
456
448
476
480
49a
560

510
528
530

Programming aid routines

BEQ
SEI

LDA

5TA
LDA
5TA
LDX

5TX

LDA
5TA
LDX
5TX
LDA
STA
PMODE CLI
RTS

PMODE '$@8=PROG $8@8=DIRECT
'OK-NOT IN PROG MODE
S0 DISABLE
H#$FF ! INTERRUPT AND SET
SINGLE STEP
SSTEP !'TO $FF FOR SINGLE STEF
#$FF 'DO SAME FOR TRACE FLAG
TRFLAG!
483688 !'IGONE GET LOW BYTE
OF TOKEN
IGONE 'DISPATCH AND STORE AT
TEMP REG
NLVL 'WEW LINE VECTOR LOW WHICH
$0308 'POINTS TO TRACE
$8387 !'SAME FOR HIGH
IGONE+1
NLVH
$638%
'RESET INTERRUPT
'AND RETURN TO BASIC

'TROFF = TRACE DISABLE

i

DISABLE SEI
LDA
BEQ
LDA
5TA
LDA
STA
LDA
5TA
CLI
RTS

'PERFORM TRACE

!

TRACE 5TA
PHP
5TX
STY

'"REVERSE ENABLE PROCESS
$2D 'CHECKING IN DIRECT MODE
PMODE !

#4680 'DISABLE TRACE FLAG
TRFLAG 'RESET TOKEN DISPATCH
IGONE 'TO VALUES AT THE TIME
$8308 !'0OF CALLING

IGONE+1

$6369

'BACK TO BASIC WITH
TRACE OFF

IGONE POINTS HERE

AREG '1F BASIC IS TO RESUME
'THEN WE MUST SAVE A,X,Y
XREG 'AND STATUS FLAGS
YREG 'TO RESTORE THEM
ON CONTINUING

;UVLY PROCEED WITH TRACE IF A PROGRAM RUNNING

340
558
568
578
588
a9e
608

618
428
638

640
5@
640
&78
686
498

768
71@
728
73@
748
758
748
778
780
798
868
8la
820
a3a
846
g5a
848
g7va
8ce
goa
700
718
728
738
240
750
248

!

LDA $9D

BEQ RUNNING

Programming aid routines 195

'RESTORE ENTRY WVALUES BEFORE CONTINUING

BASIC

LDA AREG
LDY YREG

LDX XREG
PLP

'"REVERSE ENTRY PROCESS
'TO ALLOW PROG

TO CONTINUE
"UNCORRUFPTED

'DON’T FORGET FLAGS!'!'!

JMP {IGONE) 'CONTINUE AT

TOKEN DISPATCH

'PROGRAM RUNNING SO CHECK IF TRACE ENABLED
'FROM TRACE FLAG =$FF??7?

i

RUNNING

LDA TRFLAG
BEQ BASIC

iTRACE IS ON SO UPDATE

SPACE

SEC

JSR *FFF8
STX ROW
STy COL
CLC

LDX #3060
LDY #%18
JSR $FFF@
LDX ##8F
LDA #$28
JSR $FFD2
DEX

BNE SPACE
CLC

LDX #3860
LDY #$18
JSR $FFF8
LDA #$12
JSR $FFDZ
LDA OLHIGH
LDX OLLOW
JSR $BDCD
LDA #$92
JSR $FFD2

'TRACE OFF S0 RESTORE
AND CONT

DISPLAY

'READ CURSOR POSITION
'AND SAVE BY CALLING PLOT
'WITH CARRY SET

'SET CURSOR POSITION
'TO ROW 8 COLUMN 24

'CLEAR PREVIOUS NUMBERS

'SET BACK TO ROW B8 COL 24

'TURN ON REVERSE VIDEOD

'LOW BYTE PREVIOUS LINE
'HIGH

'"PRINT LINE NUMBER
'REVERSE OFF

196 Programming aid routines

77@

7?80

798
1660
1818
10620
1638
1840
185a
1a48
1878
1e8@
1885
1898
1895
1168
1118
1126
1136
114@
1150
1148
1178
1188
1158
1208
1218
1228
1230
1248
1258
1248
1278
12880
1298
1308
1318
1326
1336
134a
1358
1348
1370
1388
13%0
14080

I

LDA H$20
J5R #FFD2
LDA #$12
J5R $FFD2
LDA $3A
STA OLHIGH
LDX 439
STX OLLOW
JSR $BDCD
LDA #+92
JSR 3FFD2
CLC

'BIT OF SPACE

'REPEAT FOR CURRENT LINE
'GETTING 1T7S VALUES FROM
'CURLIN LOW BYTE

'NOW BECOMES OLD LINE
'CURLIN+1

'PREPARE TO RESET CURSOR

'IGNORE THIS BIT AS ONLY TO ALLOW BRANCH TO WORK

BASICI

BCS BASIC
LDX ROW
LDY COL
JSR #FFF@

"HALFWAY BRANCH TO BASIC
'CONTINUE RESET CURSOR

'RESTORE CURSOR POSITION

'CHECK FOR ANY KEYS PRESSED

CHCHAR

i

JSFE $FFE4
BEQ SINGLE
CHMP H$2F
BCC SINGLE
CMP #$3A
BCS SINGLE
SBC #+$36

'GETIN

'NOTHING IN K/B BUFFER
TKEY (8?27

'YES THEN OF NO INTEREST
'KEY>97?77

'YES - NO INTEREST
'BETWEEN 8 AND 9 SO -$3@

BNE CHDELAY!'1-%

iB PRESSED SO RESET SINGLE STEF

LDA #HEFF
STA SSTEP
BNE SINGLE

'NO NEED TO CALC DELAY

;CALCULATE DELAT AS POWERS OF 2

CHDELAY

ROLL

TAX

SEC

LDA #08
ROL A

DEX

BNE ROLL
STA COUNT

'PUT 1-% IN X
'1 IN CARRY

'MOVE CARRY BIT X TIMES
'TO SET KEY-2 BIT

'TO GIVE DOUBLING DELAY
'STORE IT TO USE A5 TIMER

141@
1428
1436
144a
1456
1448
1478
1480
1494
15080
1518
1526
1538
1548
1556

1540
1578
1538
1578
1408
1é18@
1628
1438
1648
1458
1468

147@
1486
14670
1768
171a@

1728
1738
1748
1758
1748
1778
1738
1778

1888
18la
1826

Programming aid routines 197

LDA #$8@ 'DISABLE SINGLE STEP
STA SSTEP
BEQ DELAY 'ALWAYS TAKEN
1
'SINGLE STEP PAUSE
i
SINGLE LDX SSTEP 'IS IT ON
BEQ DELAY 'IF NOT GO TO DELAY
CMP #$28 'SPACE HIT ORIGINALLY???
BE@ BASIC2 'YES THEN PERFORM LINE
5SLOOP JSR $FFE4 !GETIN WAIT FOR A CHAR

BEQ SSLOOP !'AND KEEF WAITING
CMP #$28 'SPACE???
BEQ BASICZ !'YES THEN SKIP DELAY
BNE CHCHAR 'NO - WAS IT A
SPEED CHANGE
i
'TIMER COUNTDOWN FOR DELAY
!
DELAY LDX COUNT 'DO COUNT LOTS
DLOOP! LDY #$FF '0F 254°S
DLOCFZ DEY
BNE DLOOP2
DEX
BNE DLOOP!
i
' GUARANTEED BRANCH TO HALFWAY BACK TO
DISPATCHING LINE 1180
!
BASICZ SEC 'ENSURES BRANCH BASICI
BEQ BASIC! 'Z FLAG SET ALWAYS SET HERE
1
'RESERVE TEMPORARY STORES AND FLAGS SET
TO DEFAULTS
1
TRFLAG BYT $88 'TRACE FLAG OFF
SSTEP BYT $FF !SINGLE STEP ON
COUNT BYT $88 'NO DELAY
AREG BYT 388 'A ON ENTERING FROM BASIC
XREG BYT sga !X *
YREG BYT 88 'Y *
coL BYT $80 !CURSOR WHILE
LINES PRINTED
ROW BYT $88
OLLOW BYT $68 !'PREVIOUS LINE LOW
OLHIGH BYT %88 ! HIGH

198 Programming aid routines

12308 IGONE BYT ¢6@,%608'!STORE FOR ORIG VECTOR
1848 END 'A JMP TO HERE
3E49 AREG 8D87 BASIC

8DEF BASIC! B8E43 BASICZ

8DFD CHCHAR 3E!12 CHDELAY

8E4C COL 8E48 COUNT

8E38 DELAY 3Dé1 DISABLE

8E3B DLOOP! 8E3D DLOOPZ

8D3A ENABLE 8ES@ IGONE

8E4F OLHIGH 8E4E OLLOW

8D5F PMODE 8E14 ROLL

8E4D ROW 8074 RUNNING

8E24 SINGLE 3D8F SPACE

8E2D S5SLOOP BE47 SSTEP

8097 TRACE 8E44 TRFLAG

8E4A XREG 8E4E YREG

The ROM routines used are as follows:

CHROUT ($FFD2)
As DUMP (see page 190).

GETIN ($FFE4)
See Programmer’s Reference Guide, ‘The kerNAL function B-11". This
removes one character from the current input device (usually the
keyboard buffer) and returns its ASCII value in A. Zero is returned if
none waiting.

PLOT ($FFF0)

See Programmer’s Reference Guide, ‘The kerNAL function B-19". Reads
the cursor position with the carry set and positions the cursor when
the carry is clear. Misleadingly, x is used for the row and v for the
column.

PRINT LINE NUMBER ($BDCD)

Useful little routine, this one, and well worth noting. Not only can it be
used for line numbers, but also for a two byte unsigned integer ($0000
to $FFFF). Before calling it, x must hold the low and A the high byte. It
also strips off the traditional leading and trailing spaces before
printing.

HANDLE NEW LINE ($A734)

This routine is vectored by the page 3 vector IGONE (50308) and $A7€4 is the
64's default setting. This is BASIC's token DISPATCH routine and is covered
in great detail in Chapter 3. When used with the uTiLTY, IGONE has been
modified and hence the reason why IGONE has been first read and

Programming aid routines 199

stored. Doing it this way means the routine will work with or without
the uTiLITY. IGONE is called to tokenize each new line and is thus the
ideal point at which to patch our trace.

LINE 130-290: TRACE ENABLE: These set up TRACE ready for when you
RUN a BASIC program. A scan is made for direct operation only, and only
if it is direct do we continue. During this initialization the interrupt will
be disabled. The default speed is single step and its value is stored in
the appropriate location at the end of the routine. The original value of
IGONE, BASIC Character Dispatch Vector (see Chapter 6), are stored for
safe-keeping and the start of TRACE replaces them. After clearing the
interrupt, we return you to BAsiC until the Run command is issued.

LINES 330-290: TROFF — Trace Disabled: The reverse of the TRACE set up
procedure.

LINES 470-690: The BasiC dispatch is used each time a BAsic command
is issued whether in direct or program mode. This means that the
routine can be called when not required. To avoid this, we check for
program mode, after preserving the processing registers, as in the set
up. If still in direct mode, we restore the registers and jump to the
normal DISPATCH routine. A final check is made before operating TRACE
to ensure it is enabled by looking at the TRFLAG at the end of the
routine.

LINES 730-1130: Display and updating are the purpose of these lines.
We print at the top of the screen so as not to disrupt your display. We
locate and save the current cursor position before setting it to the start
of our print, top row and column 24, and clear the area we use by
printing 15 spaces to the end of the line. After turning on reverse
video, we gather in the values of the previous line number and visit the
ROM routine to print it. To distinguish between the line numbers, we
put a space between them, after turning off the reverse video. We now
repeat the operation for the current line number. At the same time as
getting the current line number, we store its value in our previous line
store. As TRACE is called before every Basic command is initiated, then
when more than one command is on a line the previous and the
present line numbers will be identical.

The instructions in line 1080 and 1100 are little tricks. Clearing the
carry will ensure that the branch will fail. The branch is there for a later
instruction when it will save a jJuMp command.

Finally, we restore the original cursor position.

LINES 1170-1430: s a speed change required? To find out, we use the
KERNAL routine GETIN. If there is no character or it is not between the
ASCIl values of $30 and $3A, we branch out of this section. On
remaining here, we subtract $30 from the character value to convert
from ASCII to a real value between 0 and 9.

200 Programming aid routines

The zero value signifies single-step mode is required again, so its flag
is set to SFF.

The remainder have to be acted upon in order to gain our power of
two figures for delay purposes. The value we have is to be used as a
counter and so is transferred to the x register. To start with, we set the
carry and initialize the accumulator to zero. The accumulator is rotated
right x times. The first time, the bit set in the carry is transferred to bit
zero of the accumulator. The carry from this time on will be unset,
except for the last time when nine is the value of x and that will not
worry us. Every consecutive rotate will shift the set bit further to the
right and so increase the power of two of the value. When nine is
raised to a power the accumulator will end up with a value of zero, but
when the delay is explained, lines 1590-1090, you will see that this is in
effect 256, that is, 2°8. Finally, we disable the single-step mode, if set,
by storing zero in its flag.

LINES 1470-1530: SINGLE-STEP MODE: To check if it is in operation,
we test its flag. We not only look for the space character, which
operates single-stepping, but also for others by branching back to lines
1170 to 1430. This means to continue in single-step the space bar or a
numeral key will in fact cause the program to continue, the latter ones
ending single-step at the same time.

LINES 1590-1620: DELAY: This consists of a loop within a loop. The
inner loop is completed the number of times calculated earlier,
thereby giving variable time delays. When speed nine has been selec-
ted COUNT is zero, the inner loop is carried out, and the COUNT is
decreased before checking for zero. When zero is decreased it
becomes srr 255) so the check will fail until it is decreased to zero once
more. This therefore operates the inner loop 256 times.

Finally, we set the carry and branch back, as the accumulator will be
zero, to line 1100 where the Branch with Carry Set will send it further
back to jump in to the normal IGONE routine to carry out the BAsIC
command.

IMPROVEMENTS?

It is possible to modify the trace to list not only the previous and
current line, but also to highlight the current statement being
executed.

To list a line we can use the LIST routine in ROM which starts at $A69C.
There are two major problems if we try to use it. The first is that LIST
uses a number of zero page locations also used during a run. The
second is that on completion of LIST a warm boot of BasIC is carried out.
(Try putting usT in a program and running it.) We can overcome the
first by copying zero page to elsewhere in RAM before calling LisT. The
second requires that on return from ST, we must re-enter our TRACE

Programming aid routines 201

routine at the next instruction after performing tistT which must restore
zero page. To do this we must read and store the warm start vector
IMAIN (50302) and set it to the next instruction after ust is called. TROFF
must, of course, reset this vector to its original value.

To highlight the statement within a listed line places even greater
demands on our ingenuity and would require the TRACE routine to be
rewritten to use CHRGET which has purposely been avoided (because of
DOs 5.1). If it were to use CHRGET, the line could be re-listed each time
with a marker character printed at the current byte held in TxTPTR
($7A/$78) through the use of the pPrRINT tokens link.

Both additions seem of little point as we can use the stop key
followed by List line number(s). We have not even attempted to incor-
porate either possibility.

Numeric conversions

In the world of the Commodore 64 we come across three main
numbering systems: that of decimal, to the base of 10, hexadecimal, to
the base of 16, and binary which is to the base of 2 (octal, to the base
eightis less common).

The binary number system is used because there are only two
numerals used: 0 and 1. This matches the type of electronics used in
the computer world, digital electronics, which has only two states,
either on or off. These two positions are known as logical states. Logic
1is on and obviously logic 0 is off. These, as you can see, fit well with
the binary system.

The hexadecimal system was introduced because although binary
matches the electronics, it is unwieldly and is not so easy to recognize
in everyday form. Hexadecimal is easier to remember, using only two
digits to the binary eight, and therefore faster to type in. Hexadecimal
is nearly always entered in groups of two for example, $FF.

Decimal is used in our everyday life and is therefore used in BasiC.
One of its disadvantages is that numbers have varying amounts of
digits. For instance, in numbers up to 255 there are one, two or three
digits whereas with hex there is always two.

Some BASICS give you the option to enter numbers in forms other
than decimal. The Commodore 64 BAsiC does not. We are not going to
rectify this but are giving you four conversion routines. These are
converting decimal and binary, and decimal and hex.

TEN — Decimal to hexadecimal conversion
COMMAND SYNTAX
TEN decimal number [,decimal number,....]

The maximum decimal number that can be converted is 65535 and then
only positive numbers can be converted. Multiple conversions can be

202 Programming aid routines

done if they are separated by commas.

hex number.

ASSEMBLY LISTING

? *¥=%$84A0

18 START BE@ SYNTAX

28 BCS SYNTAX

3a JSR $81F3 !
40 LDA #$28

50 JSR $FFDZ !
48 LDY #+82

78 NEXT JSR HEX !
8o DEY

78 BNE NEXT !
108 LDY 14
i1e S5TY 415 !
120 LDY #s82
138 NEXT! JSR HEX
148 DEY
158 BNE NEXTI
148 JSR 86879 !
178 CMP #$2C !
180 BNE EXIT !
198 JSR $FFD2 !
2060 J5R 48673
210 JMP START
228 EXIT RTS
238 HEX LDX #$84 !
2448 LDA #e68 !
258 AGAIN ASL $15
246 ROL A
278 DEX
2860 BNE AGAIN
298 CMP #$0A !
3ea BCC DIGIT+1 !
216 CLC
326 ADC #$37 !
338 DIGIT BIT #3849
340 JSR $FFD2 !

35e RTS

The result will be a four digit

GET PARAMETER

PRINT A SPACE
ON SCREEN

CONVERT A BYTE TO HEX

TWQ CONVERTS FOR
EACH BYTE

PLACE LOW BYTE
FOR CONVERSION

GET LAST BYTE

OF BUFFER AGAIN

COMMA FOR MORE NUMBERS
NO MORE TO CONVERT
PRINT COMMA AS SPACER

SET COUNTER
INITIALISE ACC

IS IT 18 OR MORE
ASCII ADDITION
FOR NUMBER

FOR LETTER

PRINT RESULT

Programming aid routines 203

348 SYNTAX JMP $AFB8
84D5 AGAIN 84E2 DIGIT
8406 EXIT 8401 HEX
84AE NEXT 84BA NEXTI
84AB START 84EY SYNTAX

LINES 30-50: Here we pick up the first decimal number to convert. The
high byte will be in $15 and the low, in s14. We then print a space on the
screen so the first digit is a character away from the border or the last
PRINTed statement.

LINES 60-90: Each part of the hexadecimal number will have two
characters. As we will convert our decimal in two stages, the high byte
first then the low, each will require two entries to the conversion
routine. We therefore set a counter to two, in this case the v register.
After going to the conversion routine we decrease the counter. If it is
zero then we have done it twice, if not we go back again.

LINES 100-110: We have now converted the high byte. As the conver-
sion subroutine uses the high byte register in the transposition, we
transfer the low byte of the decimal to that register.

LINES 120-150: This is the same as lines 40-70 but for the low byte.

LINES 160-220: The GET PARAMETERS has already picked up the byte after
the last decimal digit. Here we get that byte again by a call to cHrRGOT.
We want to find out if more than one conversion is required. The
syntax of the command is for a comma as a separator, so we check for
that. If the check succeeds, we print the comma to the screen and go
back to convert the number. On failing the check, it is back to BasiC via
the rrs.

THE CONVERSION ROUTINE
We use this routine four times for every decimal number in the com-
mand, twice for both the high and low bytes. We enter with the byte in
location s15. The hexadecimal number for a byte consists of two digits,
one for the upper four bits and the other for the lower four. As we
print on the screen from left to right, we print from the most significant
hex digit and therefore want the high bits of the decimal number first.
Hex uses numerals 0 to 9 and letters A to F. Unfortunately, these do
not follow in sequence in the ASCII table, as other characters lie
between 9 and A. We therefore have to test for this when converting to
ASCII for printing to the screen.

LINES 230-240: The x register is initialized to 4 as a counter for taking
off the required bits for each hex digit. The accumulator is used to
gather in the bits so is initialized to zero before we start.

204 Programming aid routines

LINES 250-280: This is the main part of the conversion. We use the
instruction Ast to move all the bits of the decimal byte one place to the
left. The most significant bit (bit 7) is moved to the carry flag. The least
significant bit (bit 0) is filled with zero (although that does not worry
us). We need the bit we put into the carry back in the accumulator.
This is achieved by the command rot. This moves the accumulator bit
one place to the left, filling bit @ with the carry value, which we have
just set (or unset). Bit 7 of the accumulator goes to the carry and again
itis of no use to us here.

Now the counter is decreased and checked to see if we have done
the bit shifting four times. We have now taken the four high bits of $15
(the decimal byte) and put them in the same order in the accumulator
butin the low bit positions.

LINES 290-350: The answer in the accumulator is now converted to
ASCIlI form and printed to the screen. If itis less than seA, it is a number
so we add s30 to it. Greater than 10 means it is a letter, so we have to
add s37, giving letters from A to F.

HEX - Converting a hexadecimal number to decimal
COMMAND SYNTAX
HEX hex number [,hex number,....]

The hex number can be of two or four digits. More conversions can be
added if separated by commas. The normal '$’ sign which preceeds hex
numbers must not be used.

A four digit hex number can be split very conveniently into two
parts. The two left digits are the high byte whilst the right are the low
byte. Where a two digit conversion is required, we treat it as a low byte
number. The two digits can be further split in that one represents the
high nybble and the other the low nybble (a nibble is half a byte or four
bits).

To do the conversion we collect two hex digits at a time and convert
them to a one byte answer.

ASSEMBLY LISTING

? *=3$83537
18 START STA $463
20 JSR 36873 ' GET NEXT BYTE
38 STA %42
40 JSR DECIMAL
58 PHA ' PUT HIGH ANS ON STACK
40 JSR 480873
78 BEG LOWPRINT! ONLY TWO BYTE HEX NO
8a CMP #$2C IS IT A COMMA
0 BEG COMMA ' YES & ONLY 2 BYTE HEX

168 STA $63

118

126

130

14@

158

168

178

186

198

208

218 LOWPRINT
z22a

230

248

256

248 COMMA
278

234

298

3868 COMMAIL
318

32e

338

348 DECIMAL
358 AGAIN
368

376

380
390
400
410
420
430
448

458
448 DIGIT
476

438 NEXT
494
588
Sia
328 NEXT!

JSR
5TA
JSR
TAY
PLA
JSR
JSR
CMP
BEG
RTS
PLA
TAY
LDA
JSR
RTS
FLA
TAY
LDA
JSR
LDA
JSR
JSR
JMP
LDY
LDA
CMP
BCC

CMP
BCS
CMP
BCC
cMP
BCC
SBC

BNE
SEC
SBC

5TA
DEY
BPL
LDY
ASL

+8873
$62
DECIMAL

PRINT
306073
#$2C
coMMAl

#$00
PRINT

500
PRINT
H$2C
$FFD2
$8073
START
H$01
$8062,Y
#6230
SYNTAX

#$47
SYNTAX
#$34
DIGIT
#$41
SYNTAX
#$37

NEXT
#$30
$8014,Y
AGAIN

#4064
$15

1

!

Programming aid routines 205

PUT LOW ANS IN Y
GET HIGH ANS IN ACC
PRINT ANSWER

GET NEXT BYTE

IS IT A COMMA?

YES

GET HIGH ANS

PUT 1T IN LOW ANS REG
SET HIGH ANS TO ZERO
PRINT ANSUWER

GET HIGH ANS

PUT IT IN LOW ANS REG
SET HIGH ANS TO ZERO
PRNT ANSWER

ASCII FOR COMMA

PRINT IT A5 SPACER
GET NEXT BYTE

COUNTER

GET LOW CHAR

15 IT A NUMBER

NOT NUMBER OR
LETTER

1S IT LETTER > F?

IS IT A NUMBER?

YES

1S IT A LETTER?

NO

CONVERT ASCII LETTER
INTO REAL NUMBER
ENFORCED

CONVERT ASCII NUMBER
INTO REAL NUMBER

NEXT CHARACTER
COUNTER

PUT HIGH ANS IN
HIGH BITS

206 Programming aid routines

538 DEY
548 BNE NEXTI
558 LDA $14
566 ORA 15 ' JOIN BOTH TOGETHER
570 RTS
388 SYNTAX JMP $AFB8
378 PRINT JSR $B371
488 JSR #8481 ! CONVERT TO
FOSITIVE REAL NUMBER
18 J5R $ADSD
428 JSR $BDDD
638 JSR $B487
444 JMP $AB21
857E AGAIN 256A COMMA
8571 COMMAL 857C DECIMAL
8595 DIGIT 8562 LOWPRINT
8598 NEXT 85A8 NEXT!
834D PRINT 83537 START
85RA SYNTAX

LINES 10-50: The routine is entered with the first digit and is stored.
Calling cHRGET, we get the next byte and again store it. The decimal
conversion routine is visited (this is described later), and the result
comes back into the accumulator which we place on the stack.

LINES 60-90: The next byte of the command is now collected and two
checks made, firstto see ifitis the end of the command and secondly for
acomma. If the first succeeds we go off and print what we have already
collected, but as a low byte answer. If it is a comma, we again print but
will return to do further conversions.

LINES 100-130: This is a repeat of lines 10-50 except the result in the
accumulator is put in the v register instead of the stack.

LINES 140-200: The result of the four digit conversion is printed to the
screen here. The v register has the low byte and the high byte is pulled
off the stack into A. The print routine described at the end is now called.
The conversion is complete and we now check to see if further conver-
sions are required by getting the next byte. If a comma is not present,
the routine is ended.

LINES 210-250: The low byte answer is printed here. The byte is pulled
off the stack and placed in the v register and the accumulator set to zero.
After printing, the Hex routine is left.

LINES 260-290: This is the same as lines 210-250 but instead of leaving,

Programming aid routines 207

we continue as we know there was a comma present when we arrived
here.

LINES 300-330: A comma is printed on the screen to separate the
answers. The first byte of the next conversion is gathered and we go
back to the beginning to start converting again.

LINES 340-570: THE DECIMAL CONVERSION: The two bytes will be in
locations s62 and $63. They will hold the ASCII values of either a
numeral or a letter between A and F. SYNTAX ERRORs are given if they
fall outside these limits.

Taking each location in turn, we determine what it is and deduct
from it 37 for a letter of $30 for a numeral, the value ending up
between s00 and ser (0 to 15). These are placed in registers s14 and s15.
We now have to combine these into one number. Address si5 will
have the high nybble but in the wrong bit positions. To get them into
the upper four bits we shift the bits left four times. To join the two
together, the byte in $14 is copied to the accumulator and is ored with
location $15. With the final result in the accumulator, we exit the
subroutine.

LINES 590-640: PRINT RESULT TO SCREEN: Six subroutines are called
here where the result of numeric calculations are converted to a
string of ASCII characters and printed to the screen which except for
one are all Rom routines. The one exception is a subroutine in the
DEEk routine (see Chapter 8). For convenience, we reproduce it
below. We enter this PRINT routine with numeric data, the v register
holding the low and the accumulator the high byte.

ROUTINE $B391 - FIX TO FLOAT

This sets the data flag in oD to zero signifying numeric data. The
number we wish to convert is placed in FaC#1 registers s62, meaning
that numbers over 32768 ($80) will be output as negative numbers.

ROUTINE $8401 — CONVERT TO POSITIVE

1@ LDA $66
20 BPL EXIT

30 LDY #>DATA

40 LDA #<DATA

56 JSR $BASC

40 JSR $BB84A

70 EXIT RTS

88 DATA BYT $91,$60,$60,$00,$80

We check register s66 of the Fac#1 to see if it is negative. If so we load
FAC#2 with zero and set for no exponent. This is done through the
ROM routine $BASC, entering with the data start address in A and Y.

208 Programming aid routines

Now by adding the two facs together we will end up with a result in
FAC#1 which is a real whole number; $B8ea will achieve this.

ROUTINE $AD8A — CHECK

This just checks that the data is numeric, otherwise a ‘TYPE MISMATCH’
error is given.

ROUTINE $BDDD - FAC#1 TO STRING

This converts the contents of Fac#1 to an ASCII string and places it at
the bottom of the stack. The Y and A registers will hold this address
when the routine is finished.

ROUTINE $B487 — SET UP STRING

This sets various registers so that the PRINT routine knows where to
print from and how long the string is.

ROUTINE $AB21 — PRINT

This takes the data from the bottom of the stack and prints it to the
screen. We jumped to this routine, so when it is ended, the processor
will be directed back to the position calling this whole subroutine.

This routine, being a separate routine, is therefore capable of being
used by other commands as in the Mem command.

TWO - Decimal to binary conversion
COMMAND SYNTAX
TWO decimal number [,decimal number,....]

The maximum decimal number which can be converted is 65535 and
must be positive. Multiple conversions can be done if they are separ-
ated by commas. The result will be two eight digit binary numbers
separated by a space, unless the number is 255 or less, when only one
binary result will be shown.

All we need to do is to test each bit and print a zero or a one
according to its state.

ASSEMBLY LISTING

? *=$84EC
18 START BEQ@ SYNTAX
20 BCS SYNTAX
3a JSR $81FS ' GET PARAMETER
40 LDA #4208
50 JSR $FFD2 ' PRINT SPACE
48 LDA %15
’a BEG LSB
38 LDX #+88 ! COUNTER

98 NEXT ASL 315

Programming aid routines 209

108 BCS SET+1 ! TO PRINT A 1

118 LDA He30 "' TO PRINT & @

128 SET BIT $31A% ! SET+1 15 LDA #%31
138 JSR $FFD2

148 DEX

156 BNE HNEXT

148 LDA #+528

176 JSR $FFD2 ' PRINT & SPACE

igé LSB LDX #s$88

196 NEXT1 ASL 14

208 BCS SETA+1

218@ LDA #$30

228 SETA BIT 331A% ! S5ETA+1 IS LDA H$31
238 JSR $FFD2

248 DEX

258 BNE NEXT1

248 J5SR 8879 ! GET LAST BYTE OFF

BUFFER AGAIN

278 CHP #$2C ' 18 IT & COMMA?
288 BMNE EXIT ! NO COMMA

298 JSR #$FFD2 ! PRINT COMMA A5 SPACER
3aa JSR $8873 ! GET NEXT BYTE
318 JMP START

328 EXIT RTS

338 SYNTAX JMP $AF88

85333 EXIT 831z LSB

84FE NEXT 8314 NEXTI

8584 SET 8514 SETA

84EC START 8334 SYNTAX

LINES 10-20: On entering the first byte after the keyword is in the A
register and by testing the carry and zero flags, we can check if a
numeral is first.

LINES 30-150: We gather in the decimal number to convert and also
print a space for presentation to move it away from the last item
printed or from the border. Taking the high byte first, we check it for
zero, if it is a zero we branch and just do the low byte. The x register is
set to eight as there are eight bits to a byte, and we shall use it as a
counter. We shift the bits of the high byte one place to the left. The
leftmost bit comes off and goes to the carry flag. If the carry flag is
zero, we therefore print ASCII $3¢ which is zero and $31 when the carry
is set. This is repeated a further seven times for all the remaining bits.

LINES 160-250: This is a repeat of the above except for the low byte.

210 Programming aid routines

LINES 270-320: By calling cHRGOT, we test for a comma or if the end of
the command has been reached. When the former is found, it is
printed to the screen and we gather in the next byte before going to
carry out the next conversion.

BIN - Binary to decimal conversion
COMMAND SYNTAX
BIN 8 bit binary number [,8 bit binary number,....]

Here we will convert an eight bit binary number to decimal. We supply
a value that would be a high byte and one that is the low byte. For
example, if you demanded 11111111 was converted, the answer would
come out as 255. Only eight bit numbers are accepted but more
conversions can be done by separating the items with commas.

This is essentially the reverse of the previous command. The 1s and
0s you type in will be picked up in their ASCIl form. These have their
rightmost bits corresponding to their numeric value, so by taking those
we can build up a single byte number.

ASSEMBLY LISTING

9 *=$85BF
1@ LDA $7A
28 BNE LOW
3a DEC ¢7B ! DECREASE CHARGET
POINTER BY ONE
48 LOW DEC %74
58 ANOTHER LDX ##@8 ! COUNTER
48 NEXT JSR 48673 ! GET BYTE
78 BCC NUMBER ! IF NUMBER BRANCH
88 SYNTAX JMP $AF88
98 NUMBER CMF #$32 ! 15 > ASCII FOR 2
160 BCS SYNTAX ! YES
11@ ROR A ! GET BIT 8
120 ROL 414 ' PUT IN $14 MOVING
1 LEFT EVERY TIME
136 DEX
140 BNE NEXT ! DONE IT 8 TIMES?
156 LDY %14 ' PUT ANS IN Y REG
148 LDA #H¢00 ! NO HIGH ANS
170 JSR $85AD ! PRINT ANS-HEX ROUTINE
186 LDA #$2F
198 JSR $FFD2 ! PRINT SLASH TO DIVIDE
LOW ANS & HIGH ANS
200 LDA %14 ! NOW PUT ANS IN

HIGH ANS REG
z21e LDY #3680 ! SET LOW ANS REG TO 8

Programming aid routines 211

220 JSR $83AD ! PRINT ANS-HEX ROUTINE

238 JSR %8873 ! GET NEXT BYTE OF
INPUT BUFFER

248 CMP #s$2C YIS IT A COMMA?

258 BNE EXIT ! NO

248 JSR $FFD2 ! PRINT COMMA AS SPACER

27a JMP ANOTHER

288 EXIT RTS

a85C7 ANOTHER 83FB EXIT

85C5 LOW 85C% NEXT

83D1 NUMBER 85CE SYNTAX

LINES 10—40: This decreases CHRGET address by one.

LINES 50-140: We want to pick up eight binary digits so the x register is
used as a counter. After we pick up a digit, via CHRGET, we check for a
number and also if it is two or greater, in ASCII. By rotating the
accumulator right, we take off bit 0 and it ends up in the carry flag.
Then if we rotate location $14 left, we move all its bits one to the left and
put the carry flag state into the lowest bit. If we do this eight times,
address $14 will have a number equivalent to the 1s and 0s you typed in.

LINES 150-220: The PRINT routine in the HEX command is used twice. For
this the low byte needs to be in v and the high in A. The value we want
to print is in $14 and by changing the register we load it into we can
print out the states we want. A slash is printed as a separator by a visit
to the KERNAL routine at $FFD2.

LINES 230-280: Having done one conversion, we take a look to see if
more are required. A comma is printed if so and then we go back to do
it all again.

8 Enhancing the
resident BasiC

Introduction

In the previous chapter the commands were of a toolkit nature. In this
chapter they are mainly improvements to the standard 64 commands,
GOTO, GOSUB, RESTORE, PRINT, INPUT, GET, PEEK, POKE and LOAD. To that end, we
are supplying CGOTO, CGOSUB, PROC, DPROC, EPROC, RESET, WRITE, ENTER, INKEYS,
DEEK, DOKE and CHAIN. There are five commands which have no 64 BAsIC
equivalent, but which we hope will enhance your BAsiC programming.
They are POP, PLOT, COLOUR, LOMEM and HIMEM. The final command given
is that of QuIT and exists the uTILITY.

In comparison with the toolkit commands these are shorter, but no
less useful to you. No doubt you can think of existing commands
which could be enhanced and even more to add. This chapter should
help you on your way.

CGOTO and CGOSUB
COMMAND SYNTAX

ccoTo variable or line number
cGosus variable or line number

A limitation of Commodore BAsIC is that it does not permit the use of
calculated destinations with coTo and Gosus. We thought it would be
nice to be able to use variables and mathematical expressions, for
example A«20. To allow this, we have come up with two commands
cGoTo and cGosus, the ¢ standing for calculated or computed — which-
ever you prefer.

CGOTO is the easiest of the two, not that either is complicated. The
routine requires only two instructions. In the BAsIC ROM routine of GoTO
the first instruction gets the line number and is therefore the only thing
we have missed out. So after getting the variable we only have to jump
to that part of GoTo.

CGOSUB is a bit longer in that we have to copy the ROm routine for
GcosuB and change the address for calling the GoTo routine as we want
to use our ‘computed’ routine.

Enhancing the resident Basic 213

ASSEMBLY LISTING

2 ¥=%8FAF

1@ CGOTO JSR $8IFG ' GET PARAMETER

28 JHP $A8A3 ' GO TG ROM GOTO

38 ! CGOSUB ROUTINE ,

48 LDA #3083

1] JSR $AZFE ! CHECK FOR ROOM ON

5TACK

48 LDA %7B ! SAVE CHRGET
ADDRESS ON STACK

78 PH&

8a LDA %74

78 FHA

la@ LDA 4324 ! SAVE CURRENT LINE
NUMBER ON STACK

fia PHA

128 LDA $3E

138 PHA

4@ LD& #$8D ! MARKER FOR GOSUB
O STACK

156 PHA ’

-1 JSE 3887¢% ! GET LAST BYTE AGAIN

178 J5R CGOTO

1a@ JMP $47AE ! BASIC TO EXECUTE

PROGRAM FURTHER

8FAF CGOTO

LINES 10-20: ccoto: We use GET PARAMETERS simply to find the desti-
nation line number. It will evaluate any expression, and jump to the
normal coTo routine, one instruction in.

LINES 40-60: ccosus: These lines check if there is enough room on the
stack to store the routine’s information and a buffer amount for other
routines. To do this the value in the accumulator.is doubled and added
to $3€ (62 dec). This is then compared with the stack pointer. If the stack
pointer is the lesser value, then an ‘OuT OF MEMORY’ error is generated.
In our case, the stack pointer would have to be less than $44 (it starts at
$FF).

LINES 78-130: There are two markers we will require when the sub-
routine is finished. These are the present byte’s address from the
CHRGET routine and the line number we must return to later. The stack
is used to store this information.

214 Enhancing the resident Basic

LINES 140-150: Another value is put on the stack. This is used by the
RETURN routine to check a Gosus has been implemented.

LINES 160-170: Now we can go to our destination. To do this, we get
the last byte collected by CcHRGET again and go to our new computed
GOTO routine.

LINE 180: Once the GoTo routine has been completed, in which the
CHRGET has been given new values, we return to the normal flow of
BASIC and the program is continued at its new address.

Procedures
COMMAND SYNTAX

PROC title — call a procedure
pPROC title — define a procedure
EPROC — the end of a procedure

The title is not required within quotes. If it is then the quotes will be
considered as part of the name. Spaces also cannot be used as CHRGET
ignores them (a space in the pproc title will not be matched in the proc
title). On the other hand, a space in the proc title will have no bearing
on the matching. A colon is the only other character which cannot be
used in a title.

You can have as many PROCs on a line as you want, but the bPROC must
be on a line of its own. Everything following the bPrOC to the end of the
line is included as the title. EPrOC follows exactly as RETURN.

64 BAsIC cannot be described as a structured language. Gotos and
Gosuss do not form the basis of a structured language.

To start you on the road to ‘structured programming’, we are
introducing PROCEDURES. We have nothing profound to offer but by
giving you an introduction we hope you will be able to take it further
(IF .. THEN . . ELSEWHILE . . . WEND DO ... UNTIL etC . .)

The form of procedures we have written are really no more than
GcosuBs with names or variables (cGosus). In fact, they will be slower,
but not that you would notice, than Gosuss because of the extra code
required. So what advantage will they have? Well,-they can be
relocated anywhere in the program without changing any directive line
numbers; adding procedures from one program to another, especially
if they include procedures within them, is a simple matter. If GoTO was
also given the same treatment, all directive line numbers could vanish.
Renumbering a program would be a simple matter of changing the line
numbers rather than going through the whole program and correcting
destinations. A further function they perform, and one that should not
be overlooked, is that they make a program easier to follow. For
instance, to see PROC PERFORM-WAIT is clearer than Gosus 2000.

Enhancing the resident sasic 215

Quite simply, all we do when finding a PROC is to search through for
the token pprOC and then compare the named titles. On finding it, we
perform a cosus. The umiLTy interpreter will action the command
DPROC as a ReM if it encounters one. The third command of the trio is
EPROC and is just a RETURN by a different name. We actually go to the
RETURN routine. After the listing and description we suggest some
improvements.

ASSEMBLY LISTING

9 *=%$8FD2

i@ LDX #%$806

28 DEC $7A ! DECREASE CHRGET ADD
3a BCS COLLECT

40 DEC $7B

56 COLLECT JSR 48673 ! GET PROC NAME

48 BEQG NAMEEND ! FOUND 8 OR :

78 STA $628@8,X ! STORE IN INPUT BUFFER
8e INX

ca BME COLLECT ! ENFORCED
186 NAMEEND LDA #s00 ! 8 AT END
11a STA $02086,X
128 LDA #$863
136 JSR $A3FB ! CHECK STACK DEPTH
140 LDA ¢7B ! SAVE CHRGET ADDRESS
154 FHA
140 LDA $7A
178 PHA
=1 LDA $3A ! SAVE CURRENT LINE NO
178 PHA
200 LDA 239
218 FHA
228 LDA #$8D ! STACKMARKER FOR GOSUB
238 FHA
248 LDA $2B ! GET AND STORE
250 5TA $FB ! ADDRESS OF 18T
248 LDA $2C ! PROGRAM LINE
278 STA $FC
2868 NEXT LDY #+66
294 LDA (#FB),Y¥ ! GET AND STORE LINKS
388 5TA $FD
3ia INY
328 LDA ($FB),Y
338 STA $FE
348 BNE CONT ! NOT END OF PROGRAM

356 : LDX #%11 ! DPROC NOT FOUND

216 Enhancing the resident Basic

340 JMP $A437 ! UNDEF’D STATEMENT
ERROR
378 CONT LDY #304 ! SKIP LINKS AND
LINE NUMBERS
338 LDA ($FB),Y
290 CMP H$E1 ' TOKEN OF DPROC
408 BEQ PROC ! FOUND A DPROC
418 LINE LDA $FD ' PUT LINKS TO
420 5TA $FB ! LINE REGISTERS
430 LDA $FE
440 STa $FC
450 BNE NEXT ! ENFORCED $FE
CHECKED EARLIER
448 PROC LDX #$FF
478 CHECK INX
430 INY
496 LDA {($FB),Y ! GET PROC TITLE
588 BE@ ZERO { END OF LINE
510 CMP $828@,X ' COMPARE FOR MATCH
520 BE@ CHECK ' MATCH FOUND
536 BNE LINE ! NO MATCH FIND NEXT
DPROC
548 ZERO CMP $0280 ! COMPARE LAST BYTE
558 BNE LINE ' NO MATCH
548 SEC ! PREPARE FOR SUBTRACT
578 LDA $FB ! ADDRESS OF PROCEDURE
586 SBC #$81 ! DECREASE TO END OF
LAST LINE
598 STA $74 ! PUT AS CHRGET ADD
400 LDA $FC
418 SBC #3066 ! IN CASE PAGE CROSSED
428 STh $7B
430 JMP $A7AE ! BASIC TO CONT PROG
982C CHECK 8FDA COLLECT
2618 CONT 9828 LINE
8FES NAMEEND 9084 NEXT
9824 PROC 9839 ZEROD

LINES 10-110: Using CHRGET, after decreasing it by one, we take the
PROC title and store it at the start of the input buffer and tag a zero byte
on the end for checking purposes.

LINES 120-230: Same as in CGOSUB, saving relevant details for RETURN, or
in this case ePrOC.

Enhancing the resident sasic 217

LINES 240-360: After collecting the start address of the program, we
search through the program. This part gets the links and checks for the
end of the program. The UNDEFD STATEMENT error is given if the latter
occurs without finding the procedure.

LINES 370-450: When inputting a BAsIC line, any spaces between a line
number and the first character are removed during tokenizing, (LisT
inserts a space for clarity). This means that the first token in a line is the
fourth byte (starting at zero, remember), so we check only this byte for
the prroc token of se1. If not found, the link address is placed into the
line registers and the hunt continues.

LINES 460-550: Having found a bprOC token, we have to compare each
character separately and as long as they match we continue checking.
When we reach the end of the bprocC program line, we check the input
buffer for a matching zero. When all checks succeed, we have found
the required procedure.

LINES 560-630: Knowing our destination, we take the start address of
the prroc line and reduce it by one, the end of the preceding line, and
store it as the cHRGET address. Finally, we jump to BASIC to evaluate.

IMPROVEMENTS?

One of the first questions that came to mind was: how could we speed
up the search for the procedures? One solution to the problem is to
form a table in RAM holding the start address where you first check to
see if the PROC name is in it. This would involve setting aside an area of
RAM: under RoM would be an ideal place, for such a table. Two charac-
ters would then have to be chosen: one to mark the end of an entry
and the other, the end of the table. The make-up of the table could
consist of the PROC name and its start address. How could the table be
filled? When the interpreter finds the keyword proc, the table would
be searched for a match. If no match is found, then a program search,
like our routine, could be instigated. On finding the prrOC with the
correct name, it would be added to the table in case of another call.

There are, however, problems. Let us assume that a program con-
taining PROCs has been RUN. This would mean the table has names and
addresses within it. Before running it again, you add an extra line
before the procedure. The line with the ppProc now has a different
address from that in the table. Another action giving rise to the same
problem is when you load another program. It may have a PrROC with
the same name as the previous program. Again the table may have
another address. A further problem may arise in that more procCs will
be added making the table longer and longer.

Two solutions to this problem spring to mind; there are probably
others. The first is to write a new RUN command, for example, PRUN,

218 Enhancing the resident sasic

where one of its actions would be to place the end of table marker
back to the beginning — thereby effectively clearing the table. The
other is to have a command that can be actioned to do just this and
only this. It could be initiated in direct mode or from within a program.

A further improvement would be to allow parameters to be passed
using variables which are local to the procedure. These variables could
be used elsewhere in the program without losing their original values.
We would envisage the Proc command to include, in say, brackets, the
values or other variables to be used, for example, PROC INPUT(2,4,6) OF
PROC INPUT(2,A,6). The DPROC, on the other hand, will define the variables
to be used. For example, DPROC INPUT(X,Y,2). These variables may be
used elsewhere but in the procedure they will start with values given in
the PROC command.

What would have to be done is that when arriving at the procedure a
search is carried out for the variables x,v,z in the normal variable area. If
they are found, their current values would have to be transferred to a
keeping area, and the new values set up. If the variable is not present,
then it will have to be created. The default value of a numeric variable
is zero and this will also have to be stored in the keeping area. For
strings, the addresses will have to be stored. The erroc would have to
reverse the situation and restore the original values.

The process would be the same if you wanted to incorporate GLOBAL
and LOCAL commands to a BASIC extension.

Our last improvement, although we are sure you could think of
more, is to allow the names of procedures to include keywords. This
would be relatively simple in that all you have to do is to slightly alter
the CRUNCH token routine (see Chapter 3). In that routine when it
comes across a Rem, for instance, it skips further crunching. All you
have to do is to insert further coding to check for proc and prroc and
follow the same path as Rem.

POP — RETURN without returning
COMMAND SYNTAX

POP

There are no parameters to this command. If it is activated without a
GOSUB, CGOSUB or a PROC being used, a ‘RETURN WITHOUT GOSUB’ error will
be generated.

There are many occasions when one requires to leave a subroutine but
not go back to the calling position. This is, of course, possible but
leaves values on the stack; do it too often and the stack will become
full and an ‘out oF MEMORY’ error will occur

PopP will remove from the stack the data placed there by the last

Enhancing the resident Basic 219

cosus, or equivalent. This will mean, for example, if you called a
subroutine which in turn called another and whilst in the second you
called pop, then you will go back to main program when the RETURN is
met, not the first subroutine. A Goto after a pop will mean you can go
anywhere from a subroutine without any worries about the stack. pop
will also discharge any FORNEXT loops. If you happen to be in one at the
time, watch out.

ASSEMBLY LISTING

9 x=$8631

1@ LDA HEFF ! RESET FOR/NEXT PTR

26 STA %44

3a JSR $A38A ! SEARCH STACK FOR
GOSUB & FOR ACTIVITY

4@ TXS ! X REGISTER TO
STACK POINTER

se CHMP #$8D ! GOSUB MARKER ON STACK

48 BEQ@ CONT

78 LDX #$1é ! ERROR-RETURN
WITHOUT GOSUB

88 JMP $A437

@@ CONT INX ! REMOVE GOSUB ACTIVITY

168 INX ! INCREASE X A5 IT WILL
BE STACK POINTER

11e INX

126 INX

138 INX

148 TXS ! REPLACE STACK POINTER

156 RTS

8442 CONT

LINES 10-20: By loading $4A with $FF, we effectively cancel any FORNEXT
loop.

LINES 30-80: This is the Rom routine used by RETURN to look for the
Gosus marker on the stack. On return the stack pointer is in the X
register and the accumulator has a value from the stack. If this is $8D,
the ReTURN marker was present. An error will be produced if anything
else is found.

LINES 90-150: To remove the Gosus activity, we take the stack pointer,
which is still in the X register, and increase it by five and then use it as
the new stack pointer.

220 Enhancing the resident Basic

RESET — Selective data restorer
COMMAND SYNTAX

RESET [line number]

When no line number is present it behaves as the standard command
RESTORE. With the parameter it will set the DATA pointer to the specified
line.

DATA statements are extremely useful commands, and with sprites on
the 64 you no doubt use them frequently. The snag comes when you
want to use the same DATA statements again. ResTORE only allows you to
set the pointer back to the first DATA statement, actually the start of the
program, which has the same effect. To use statements again that are
not at the beginning, dummy ReADs have to be employed to get to the
desired position. To allow you greater flexibility, rReseT will allow you to
specify the line the next reap will start at, whether before or ahead of
the present position. The ResTORE command takes the start of program
address, subtracts one from it, and places it in the DATA pointer regis-
ters. ReseT will take the line number, find its address, decrease it and set
the pointers. Although the routine will give an error if the prescribed
line number is not present, we do not check to see if it is a DATA line.
This does not matter to BAsIC as it will find the next DATA line when ReAD
is sanctioned.

ASSEMBLY LISTING

9 *=%$8411

1@ BNE RESET ! CHECK FOR PARAMETER
28 JMP $A81D ! NO - RESTORE IN

BASIC ROM

38 RESET JSR $81F5 ' GET LINE NUMBER

48 JSE 3A413 ' FIND BASIC LINE

58 BCS CONT ! FOUND LINE

éa LDX #$15 ! ILLEGAL DIRECT ERROR
78 JMP 2A437 ! ROM ERROR ROUTINE

g8 CONT SEC ! PREPARE FOR SUBTRACT
98 LDA $5F ! LOW ADD OF LINE
10a SBC #$01 ! DECREASE BY ONE
118 STA $41 ! DATA REG IN PAGE &
126 LDA %40 ! HIGH ADD OF LINE
138 SBC #$60 ! IF PAGE 15 CROSSED
146 S5TA $42 ! DATA REGISTER
158 RTS

8623 CONT 86146 RESET

Enhancing the resident Basic 221

LINES 10-20: If no line number, we go straight to RESTORE in the ROM.

LINES 30-70: When the line number is picked up it will be in the right
location for a line search, which is immediately carried out. The carry
flag set will indicate the line was found. The error given for not finding
itis ILLEGAL DIRECT'.

LINES 80-150: Locations $5F and $6¢ will have the address of the line,
and from these we subtract one and store them in the DATA pointers.

DEEK and DOKE — BASIC Addressing

It should be clear by now that addresses are stored in two locations as a
low and a high byte. In the resident Basic the only way to find the
address, held in locations, is to do two peeks, one for each location,
then multiply the high byte by 256 and add in the low byte, giving the
address in decimal. To set up an address, the reverse process is used,
but using POKE in place of PEEk.

The uTiLITY commands are therefore obvious. We wish to read or set
an address, or pair of locations, with one command. These are Deek and
DOKE.

DEEK — seeing double
COMMAND SYNTAX

DEEK (low byte location)

This returns the 16 bit value held in the given address and the following
one. The rules for peek apply in that it must be an argument to a
command (that is, a function).

ASSEMBLY LISTING

¢ *=$83D7
1@ LDA %15
2@ PHA
38 LDA %14
4@ FHA
58 JSR $AEFA ! CHECK FOR ¢
48 JER $E81FS ! GET PARAMETER
78 J5R $AEF7 ! CHECK FOR 3
ga LDY #sal
78 LA ($14),Y
iae TAX
118 DEY

128 LDA (%14),Y

222 Enhancing the resident BAsIC

138 TAY

148 PLA

158 5TA #14

1é@ FLA

178 5TA %15

188 TXA

198 JSR $B3%1 '"A &Y IN FAC#1
zZeea JSR CONVERT

218 PLA

224 FLA

238 JMP 3AD8D ! EXIT

248 CONVERT LDA $64 ! CHECK FOR SIGN
258 BPL EXIT

260 LDY #>DATA

278 LDa #<{DATA

28@ JSR $BA8BC ! CONSTANT TO FACHZ
278 JSR $BB4A ! ADD FACH#Z TO FACH!
388 EXIT RTS

318 DATA BYT 4%1,%$0606,%00,%00,%060
8481 CONVERT 2418 DATA
848F EXIT

LINES 10-40: peek, being a BAsiC function rather than a command, is
used in conjunction with other keywords. You have no doubt gathered
that keywords use a fair number of zero page locations, notably $14, $15
and the FAcs. We cannot take DEek in isolation and also have to get its
parameters. The latter means that we will use $14 and $15. We do not
require to use these on exit, so we take the precaution of saving the
current contents on the stack for the time being.

LINES 50-70: These not only get the parameters, but also check for the
convention of them being in brackets. The Rom routines used will give
the error if they are not present.

LINES 80-180: Using the address, now in $14 and $15, we read the
contents and store them into the registers A and Y. We can restore the
original values to $14 and $15, and do so.

LINES 190-230: The calling routine will expect the result in the FaC#1
and this is all the routine at $8391 does. Unfortunately it also stores it as
a signed integer. To correct this, CONVERT is called. Having done so, we
pull off the return address, but we do not require to go back to the
evaluation routine, and jump back to Rom. In ROM it will check that it is
numeric data and will return to the calling routine, say PRINT or DOKE.

LINES 240-300: converT: If the number requires converting it will have

Enhancing the resident Basic 223

a negative sign. With no sign we exit the routine. Failing that we load a
constant into FAc#2 which when added to the contents of Fac#1, will

change it to an unsigned number. For a more detailed explanation, see
MEM in Chapter 7.

DOKE — complete addressing
COMMAND SYNTAX

DOKE low byte address, value

This turns the value to a two byte number and stores it in the given
address and the following one. The value has a maximum of 65535
($FFFF).

ASSEMBLY LISTING

9 *=$83E63
10 JSR $81FS ! GET PARAMETER
20 JSR $AEFD ! CHECK FOR COMMA
30 JSR $ADBA ! GET NEXT PARAMETER
40 LDA $46
58 BMI ERROR
48 CMP #$91
76 BCS ERROR
50 JSR $BCYB ! PUT PARAMS IN A & Y
ou LDA $65
108 LDX $64
118 LDY H$68@
128 STA ($14),Y
138 INY
148 A
150 STA ($14),Y
148 RTS
176 ERROR JMP $B248 ! ILLEGAL QUANTITY
ERROR
8304 ERROR

LINES 10-30: The first routine called is the familiar one. The address
will be in $14 and $15 after this call. The next routine checks for a
comma. The last one collects the data for storing and puts it in the
FAC#1.

LINES 40-80: These check for the legality of the data and set up the
FAC#1 so we can take our values off.

224 Enhancing the resident Basic

LINES 80-160: After getting the data from FaC#1, we store them in the
addresses specified.

OUTPUT - Setting the cursor

In the standard BAsic, the normal way to set the print position is to use
the cursor control codes. Although they do the job, they are not ideal.
You have to remember where the current position is, they take up
bytes in the program, and 7AB and spc are not much better.

A far better way would be to specify the X and Y coordinates directly.
To do this, three commands are included here, PLOT, WRITE and ENTER.
The first will only set the cursor, the second will set the cursor and
print what you want, whilst the last is iINpUT with cursor positioning. The
major command as far as routines go is pLOT. It really is a subroutine for
the other two.

PLOT — cursor setting
COMMAND SYNTAX

PLOT (X,Y)

The maximum value of X is 39 and of Y is 24. The top left hand corner of
the screen, cursor home position, has the coordinates of 0,0.

ASSEMBLY LISTING

2 ¥=%$8381
1@ JSR $AEFA ' CHECK FOR ¢
28 JSR #81F3 ! GET PARAMETER
3a LDA $14
40 CMP #$28 VIS X > 48
50 ECC COMMA
48 ILLEGAL JSR $B248 ! TLLEGAL QUANTITY
ERROR
78 COMMA PHA
ga JSR $AEFD ! CHECK FOR COMMA
76 JSR $8B1F5 ! GET PARAMETER
1688 LDX $14
118 CPX #$19 YIS Y > 25
12@ BCS ILLEGAL
138 PLA ! RETRIEVE 15T PARAM
14@ TAY
156 CLC ! SET NOT READ CO-OR

148 JSR $FFF@

Enhancing the residentBasic 225

178 JSR 28873 ! GET NEXT BYTE
1g8@ RTE
8378 COMMA 38D ILLEGAL

LINES 10-70: The left hand bracket is checked for and the X coordinate
of the command is picked up. It is then checked that it does not exceed
the limit. On an occasion that it does, we go to a ROM routine whose
sole purpose is to generate the ‘ILLEGAL QUANTITY ERROR". We require to
use location $14 again so the X coordinate is put on the stack for a
while.

LINES 80-120: After checking for the separating comma, we get the Y
coordinate. This, too, is checked for legality.

LINES 130-180: the Y coordinate was picked up in the X register and
now we retrieve the X coordinate and place it in the Y register. This is
the opposite to what is logical but the kerNAL routine calls for them in
that order. Before calling the routine, we clear the carry flag. (If we set
the carry we would read the cursor position.)

After setting the cursor we get the next byte. This is for wriTe and
ENTER so that they are set up for their respective ROM routines.

WRITE and ENTER
COMMAND SYNTAX

WRITE (X,Y)[string or variable]
ENTER (X,Y)[string],variable

The coordinates take the syntax of pLOT. The remainder of the com-
mands have the same syntax as their respective standard commands,
WRITE as PRINT and ENTER as INPUT.

ASSEMBLY LISTING

? ¥=%83A7

18 ! WRITE COMMAND -FRINT

28 JSR $8381 ! PLOT ROUTINE

3a JMP $AAAE ! PRINT ROUTINE IN ROM
48 ! ENTER COMMAND -INPUT

=1 JSR $8381 ! PLOT ROUTINE

48 JMP $ABBF ' INPUT ROUTINE IN ROM

These simply call the previous pLOT routine and then go to their normal
ROM routines.

226 Enhancing the resident Basic

Colour
COMMAND SYNTAX

COLOUR background|,border][,text]

The latter two parameters are optional. If they are omitted it will not
affect their present values. There is no error checking on values in the
command. However, only the low byte of a number is used, that is,
numbers up to 255, and of that only the lower four bits have effect (15
uses four bits whilst 16 uses five). The values to be used are the same as
in the Programmer’s Reference Guide or if you prefer the key number
less one, with the logo key the number plus seven. Variables can be
used as parameters. If no parameters are used, the background only
will be changed, and that will be to black.

ASSEMBLY LISTING

? *¥=%8352

1@ JSR $81F5 ! GET PARAMETER
20 LDA %14

3a AND #H$8F

48 STA $D821 ! BACKGROUND

=14 JSR $0879 ! GET LAST BYTE AGAIN
40 BEQ EXIT

78 JSR $AEFD ! CHECK COMMA
86 JSR $81F5 ! GET PARAMETER
7@ LDA %14
188 AND #3$8F

11@ STA $D62@6 ! BORDER

120 JSR #6879 ! GET LAST BYTE AGAIN
13@ BEG EXIT
146 JSR $AEFD | CHECK COMMA
158 JSR $81FS ! GET PARAMETER
146 LDA $14

176 AND He6F

186 STA 482846 ! TEXT

198 EXIT RTS

8338 EXIT

LINES 10-60: This handles the background colour. We get the first
parameter of the command, and load in the low byte only. This is
ANDed with soF which will set the top four bits to zero no matter what
state they were in. The result is used to set the colour. Finally, we

Enhancing the resident Basic 227

check, by getting the last byte again, if the end of the command has
been reached. If it has not, we continue.

LINES 70-130: This first checks for the comma. Then we can get the
parameter and proceed as for the background, except to store the
value in the border register.

LINES 140-190: This is the same as above except, of course, we set the
text colour.

CHAIN — Passing variables
COMMAND SYNTAX

CHAIN [“filename’’],[device]

The syntax for cHAIN follows that for LOAD except for the secondary
address. No errors will be given for the inclusion of the secondary
address, as the routine will overwrite it.

One of the problems of LOAD is that if you load a larger progrram, after
running a smaller program, you overwrite any variables. Also LoAD, if
initiated by a direct command, will perform a ctr so you will lose the
variables anyway. Sometimes we wish to transfer as many of the vari-
ables as possible from one program to another, hence cHAIN.

cHAIN differs from the normal LOAD in two respects. First, it saves the
data held in the variable and string areas before the load and restores it
afterwards. Secondly, it automatically RuNs the program — obviously it
has to be in BAsIC.

CHAIN transfers the area of memory holding the variables and arrays
to below the string storage. The desired program is loaded and then
the data moved back down to the end of the new program. Finally all
we have to do is to RUN the program.

Although a fuller, and better, explanation of the way variables are
stored is given in Chapter 1, here is a reminder of areas that cHAIN
cannot deal with. Defined functions are held in the program, only the
pointer is in the variable area, and therefore cannot be transferred. The
same applies to strings unless they are concatenated or held in arrays.

There are two listings for this command. The first is entered on the
command and it will call the main cHAIN routine. Although the cHAIN
routine works as designed we found that, due to the memory move
routines, if there were no variables to move you ended up with a page
which could contain anything. The first routine will rectify that after the
main routine. This also means that CHAIN could be used as a direct
command to load and run disk or tape programs.

228 Enhancing the resident Basic

ASSEMBLY LISTING 1

9 *=%92B3
1@
26

30
44
58
1]
78
88 ZERO
78

168
11@
128
138
146
158
148 RUN

22D3 RN

LDA
CMP

BNE
LDA
P
BNE
LDA
BIT
5TA

JSR
JMP
LDA
BPL
DEC
DEC
JMP

ASSEMBLY LISTING 2

7 *=390880
1@

28
3a
40
Sa
48
78
88
e
168
118
120
138
148
156
148
178

J5R

LDA
574
JSR
LDA
5TA
LDA
STA
SEC
LDA
5TA
SBC
5TA
LDA
5TA
sBC
STA

$32
$2E

ZERO+1
$31
32D
ZERO+1
#$88
+0E8AT
$6C

30877
$7086
$6C
RUN
$30
$32
$A7AE

72C1 ZERO

$E1D4

#3608
$BY?
$B524
$2D
$3F
$ZE
$40

$31
$3A
$2F
$FD
$3Z
$5B
$38
$FE

i

i

i

i

END OF ARRAYS
CHECK WITH START
OF VARIABLES

NOT THE SAME ADDRESSES

! $808 FOR VARIABLES

$88 FOR WONE

GET LAST CHRGET BYTE
FERFORM CHAIN

GET FLAG

UARIABLES

DEC ARRAY ADDS BY PAGE

GET LOAD
PARAMETERS

' ENSURE RELOCATING LOAD

GARBAGE COLLECTION
START OF BLOCK TG MOVE

END OF RESIDENT PROG

END OF BLOCK
CALC AREA OF ARR&YS

ALSO END OF ARRAYS

186
178
268
218
228
238
248
258
248
z78
2388
294
368

318
326
336
346
358
348
378
38a
378
486
418
42@

438
448
458
448
478
438
498
500
ale
528
534
548
358
548
S578
586
578
68
éle

STATUS

CONT

LDA
SEC
SBC
5TA
LDA
5SBC
STA
JSR
LDA
STA
Lba
5TA
LDA

STA
5TA
INC
LDA
&TA
STA
LDX
LDY
LbA
JSR
BCC
JMP

JSR
AND
BEG
LDX
JMP
STX
5Ty
STX
5TY
LDA
5TA
LDA
5TA
SEC
LbA
SBC
TAY
LDA
58C

$33

#$61
$58
$34
#+008
359
$A3BF
$37
$41
$38
$42
$38

$FB
$37
%59
+59
$FC
$38
$2B
$2C
#5600
$FFDS
STATUS
$EBF?

$FFB?
#$BF
CONT
#$1D
$4437
$2D
$2E
$5F
$48
$FB
54
$FC
$5B

$33
#$01

$34
Heoo

Enhancing the resident Basic 229

NEW END OF BLOCK

PERFORM MOVE
SAVE END OF BASIC AREA

SAVE BEGINNING OF
NEW BLOCK

SET TOP OF BASIC AREA
RECTIFY PAGE

SET LOAD ADDRESS

SET FOR LOAD
KERNAL LOAD
MAYBE GOOD LOAD
LOAD ERROR
DEPENDING ON A

! READ 1/0 STATUS WORD

LOAD OK

LOAD ERROR
SET END OF PROGRAM

SET FOR VARIABLE MOVE

START OF BLOCK TO MOVE

END OF BLOCK

230

626
é3@
648
456
648
é78

688
496
768
718
728
738
748

758
748
778
780
790
g86e
gie
g2@
838
g4a
856
géa
878
88a
898
780
718
728
736
740
58
740
976
7886

796
ig6a

1818
1626
1636
1e4a
1656

Enhancing the resident Basic

NOINC

NOINCA

PAGE

TAX
TYA
SEC
SBC
STA
TAY

TXA
SBC
TAX
INX
TYA
BEQ
LDA

cLC
ADC
STA
BCC
INC
CcLC
LDA
ADC
STA
BCC
INC
TYA
EOR
TAY
INY
DEC
DEC
LDA
8TA
INY
BNE
INC
INC
DEX
BNE
SEC
LDA
STa
SBC
5TA
LDA

$54
$58

$5B

PAGE
$5A

358
$5A
NOINC
%58

$5F
$58
$3F
NOINCA
 2-17

#SFF

$58
$48
($5A),Y
($5F) ,Y

PAGE
$5B
$48

PAGE

$5F
$31
$FD
$2F
340

CALC AMOUNT TO MOVE

NO OF BYTES OF
INCOMPLETE PAGE

NO OF PAGES TO MOVE
FOR EASIER CHECKING

NO SEPARATE BYTES

! MOVE SEPARATE

BYTES FIRST

1S COMPLEMENT

2’5 COMPLEMENT

POINTER FOR COMPLETION

NEW ARRAY END
CALC ARRAY START

Enhancing the resident Basic 231

1848 5TA $32

1670 SBC #FE

1688 STA $36

1878 LDA %41 ! RESET END OF BASIC
11e@ S5TA $37

1118 LDA $42

112a 5TA ¢3&

1138 PLA

114a FLA ! REMOVE RETURN ADDRESS
1156 JSR $A533 ! RECHAIN LINES

1148 LDA #H$0680

1178 JSR $FF¥8 ! TURN OF KERNAL MESSAGES
118a JSR $FFE? ! CLALL

1198 JSR $A677 ! END OF CLR

1268 JSR $A4BE ! BACK UP TEXT POINTER
1218 JMP $22CC ! BACK TO FIRST ROUTINE
PBE3 CONT 9119 NOINC

2123 NOINCA ?12C PAGE

?8D7 STATUS

As CHAIN is just moving memory and loading, it is an amalgamation of
routines previously described. Where we come across lines used else-
where, the description will direct you there. By copying lines rather
than using subroutines, we make the routine more transportable.

LISTING 1

LINES 10-110: Here we find out if there are variables to move by taking
the address of the end of program away from the end of arrays address.
On the result we set a flag in location $oc to $s0-or see denoting
variables. We then jump to the main cHAIN routine, LISTING 2.

LINES 120-160: Having returned from the routine, we check our flag
by loading and testing the sign flag. A positive result tells us that
variables were transferred and no further adjustments are required. If
the result was minus, then the addresses denoting the start and end of
arrays are reduced by one page, the high byte of the address less one.
The final action of CHAIN is to go to ROM, where the next BasiC line is
executed. The main routine does the setting up for this just before it
comes back to here.

LISTING 2

LINES 10-40: We use the ROM routine to get and set up the loading
parameters. To ensure that the load has no secondary address, we

232 Enhancing the resident Basic

unset that location. The garbage collection routine at sBs26 will tidy up
the variable area so that it uses the least space possible.

LINES 50-250: Although the locations from which the addresses are
gathered are different, these lines are discussed in Chapter 6, Memory.
Moving, lines 1190 —1340 (see pages 131-136). There is, however, one
extra item involved. To be able to set the start of array address, after
loading, we calculate its number of bytes and store it in locations $fD
and $FE.

LINES 260-360: The data has been moved and now we protect it by
changing the pointer to the limit of Basic. This value will be obtained
from the move routine, locations $58 and $59, after increasing the latter
by one. This is because in the move routine the high byte is decreased
before checking for completion. Increasing rectifies this. The original
end of BAsIC pointer is stored for later use.

LINES 370-470: The loading sequence is covered in the MERGE and
APPEND routine in Chapter 7, lines 550-640 (see pages 158-163).

LINES 480-990: Moving the block down is virtually identical to lines
90-550 of Memory Moving in Chapter 6.

LINES 1000-1210: With the major work done, just the clearing up
remains. First we calculate the new start of arrays and set its registers.
Then we restore the pointer to the end of BAsiC. Six ROM routines are
visited to finish off the routine. The first two rechain the lines of the
BASIC program, so that the interpreter can follow them, and turn off the
KERNAL messages. The call to srre7 closes all open files and sets the
input/output channels to their default values. The following subroutine
is made halfway into ctr. This will do a RESTORE, reset CONT locations,
and amend the stack point. The last two routines will do the auto-run.
The former sets the CHRGET address to one byte before the program
starts. The last one returns us to the calling routine to finish off.

INKEY$ — A waiting GET
COMMAND SYNTAX

i INKEY$

i INKEY$ """

iii INKEY$ A$ —where As is predefined
iv INKEY$ “characters”

All commands will stop and wait for a key press. The first two will wait
until any key is pressed. The latter two will wait for a key press
corresponding to a character within the defined string. The ASClII value
of the key press will be placed in the variable s1, and will remain there
until an input-output is performed on cassette, serial or R$232.

Enhancing the resident Basic 233

In 64 BASIC there are two commands for receiving a user input from
the keyboard: INpuT and GeT. The last accepts a key press without a
RETURN but will not wait for one. This entails checking the input and
coTos until the key press you want is received (see Chapter 4 on
checking for function keys in BAsIC). INPUT waits for a key but you also
have to press RETURN, and the cursor is also in operation.

INKEY$ will sit and wait for a key press, after emptying the keyboard
buffer, and, if required will check for a particular key or keys. To allow
for further checks we use the reserved variable ‘st to store the input.
Using sTis easy in that it has a predefined location in zero page.

ASSEMBLY LISTING

Z
18
28
3@
46
58
48
e
g8
7@

16@
11a
128
138
146
158
148
178
188
198
288
z21a
228
23a
248
258

9858
784C
2874

*=3964E
BNE
ANYKEY LDA
5TA
BYTE JSR
BEQ
5TA
RTS
STRING J5R
JSR
CHP
BEG
STA
LDA
STA
BYTE! JSR
BEG
LDY
DEY
NEXT CMP
BEQ
DEY
BPL
BMI
MATCH 5TA
RTS

ANYKEY
BYTE!
NEXT

STRING ! FARAMETERS PRESENT
#s00 ! CLEAR KEY BUFFER
+CB

$FFE4 ! GET CHARACTER

BYTE ' NO KEY

$96 ' 5T LOCATION

$ADYE ! GET STRING

$B4A3 ! DISCARD UNWANTED STRING
#$60 ! NULL STRING?
ANTYKEY ! NULL STRING

$FB ! NO OF CHARS IN STRING
#s08 ' EMPTY KEY BUFFER
3Co

$FFE4 ! GET CHARACTER
BYTE1 ! NO KEY

$FB ! GET NO. OF CHARS
($22),Y! CHECK STRING
MATCH ! FOUND SAME CHAR
NEXT ! CONTINUE SEARCH
BYTE! ! ANOTHER KEY PRESS
370 ! ST LOCATION
?8534 BYTE
787D MATCH

?85C STRING

234 Enhancing the resident sasic

syntax), the zero flag will not be set and these lines are skipped over, at
least for the time being. Proceeding on we set the flag for the number
of characters in the keyboard buffer to zero. The KerNAL routine at $Fre4
will return the ASCI! value of key presses in the order they were placed
in the buffer. If none, then the accumulator will hold zero, so we
continue to call the routine until a value is returned. That value is
placed in the location which the reserved variable sT uses, and we
return to continue the BAsIC program.

LINES 80-240: The call to the ROM routine does our string work. It finds
the string, especially if it is a variable, determining its length and giving
syntax errors if a non-string parameter was supplied. On returning
from the routine, the number of characters will be in A and the start
address in locations $22 and $23. If there were no characters in the
string, we branch back to the previous section and wait for any key.

After clearing the buffer and getting a key press value we can check it
against the string. The v register will be loaded with the number of
characters and decreased as we check the whole string. If the complete
string is checked and no match is found, then the next key press is
evaluated. Once a match is found, it is stored in sT and we return to
carry on with your program.

LOMEM and HIMEM - Setting the area of work
COMMAND SYNTAX

LOMEM address
HIMEM address

The address range that is permissible with these commands is between
1024 and 32767. ‘ILLEGAL QUANTITY’ errors are given outside this range.
The actual start of a program will be one greater than the address given
in LoMeM. Commands can be used in direct or program mode.

Changing the memory configuration is a useful, and indeed neces-
sary, task. By raising the base of a program, you can store items such as
sprite data, hires screens or even two normal screens and it will not be
affected by a program.

At the other end you may wish to put a machine code routine and so
to protect it at the top of memory from being overwritten by the
variables, so you can set the limit of Basic to below your routine.

LoMem will set the lower and HiMem the upper limit of BAsiC. So that
they could be used in a loader program the routine does not clear that
program. Subsequent programs will be loaded to the new LOMEM
address. The ideal place for these commands is at the beginning of a
program before any variables are defined. Variables defined after these

Enhancing the resident Basic 235

commands will be placed in the new area. You can use cHAIN to load
the next program if there are variables you wish to transfer.

ASSEMBLY LISTING

9 *x=%$7149%

16 INPUT BNE GATHER
28 JMP $AFG8
36 GATHER JSR $81F5
48 LDA $15
58 CMP #$84
@ BCS TOP
78 ERROR LDX #$8E
8e JMP $A437
@ TOP CMP #%80
1gg BCS ERROR
118 RTS

128 ! START OF HIMEM

138 JSR INPUT
148 STh $38
15@ LDA %14
148 S5TA $37
178 JMP $A4SE
188 ! START OF LOMEM

196 JSR INPUT
280 LDY #s006
21e TYA
220 STA ($14),Y!
23e INY
248 STA ($14),Y
258 INY
240 STA ($14),Y
278 LDA %14
288 CLC

298 ADC Heoi
368 5TA $2B
318 TAX

326 LDA %15
336 ADC #e00
348 STA $2C
356 TAY

348 TXA

378 ADC #%02
386 STA 42D
376 TYA

400 ADC #s00

PARAMETERS

! SYNTAX ERROR
! GET PARAMETERS

CHECK LOW LIMIT
0.K.

ILLEGAL QUANTITY
ERROR ROUTINE
UPPER LIMIT
FAILED

SET TOP POINTER

CLR AND RETURN

CLEAR FIRST 3 BYTES

! SET START OF BASIC

SET START OF VARIABLES

236 Enhancing the resident Basic

416 5TA $2E

426 JMP $A643 ! CLR AND RETURN
9177 ERROR 716E GATHER

2149 INPUT ?17C TOP

LINES 10-110: iNpuT: This subroutine is used by both commands. It
deals with the gathering and checking of addresses. First we check that
there is an address. No address, then no command, and a SYNTAX ERROR
is given. When the address is picked up, itis first checked for the lower
limit and then for the higher.

LINES 130-170: HIMEM: After visiting the input routine, we place the
address in the pointers to the limit of Basic. We then jump to the CLR
routine to finish off: this will set all the remaining relevant pointers
(such as the string pointer).

LINES 190-420: Lomem: BASIC requires that the first byte of the BAsiC
program area is zero (normally 2048, $0800) and that two zeros signify
the end of the program. In the new area these will be together, as there
is no program, so we set those first from the address given. To set the
start of the program we increase it by one, and from that we add a
further two for the address to the start of the variables, or end of
program if you prefer. Calling the cLrR routine will set the end of
variables and array pointers.

QUIT
COMMAND SYNTAX

QUIT

There are no arguments with this particular command.

QuIT disables the uTiLITY and its commands, leaving you with the
standard BasicC. It does not, however, reset the top of memory back to
its original (sAe00). This will leave the uTiLITY intact which can be reiniti-
ated by svs 32768.

QuIT simply restores all the vectors and pointers we changed on start
up to their standard values.

ASSEMBLY LISTING

? *=%$¢1B7

i@ LDA #$74

28 STA $8384 ! TOKENISE BASIC TEXT
3a LDA H$AS

48 5TA $8385

5@

48

e

g6

78
106
11e
120
136
148
158
148
178@
186
198
268
2@
228
238
248
25a
248
278
288
yad:]
308
3ia

LDA
5TA
LDA
STA
LDA
5TA
STA
LDA
5TA
LDA
5TA
LDA
5TA
STA
LDA
5TA
LDA
STA
SEI
LbA
STé
LDA
STA
CLI
PLA
PLA
JHMP

HE1A
$68384
HeE4d
36368
HEAT7
$8367
$6387
#$84
$838A
#3AE
$E36E
#$FE
$6317
$8319
H$ 44
$8316
#$47
$68318

#$48
SEZ8F
#$EB
$82%@

$A474

Enhancing the resident Basic 237

BASIC TEXT LIST

BASIC CHAR DISPATCH

BASIC TOKEN EVALUATION

' BRK INTERRUPT
' NMI INTERRUFT

! KEYBODARD TABLE SETUP

READY FOR BASIC

9 The complete utility

Introduction

We are going to supply the complete uTiLiTY in the form of a Supermon
listing. If you do not possess a monitor, you can find Supermon in the
appendices. For the area $80DE to $81F4, keywords and vectors, use the M
function of the monitor. You may also find it easier to use the memory
dump in Chapter 6 for that area. Save to tape or disk regularly as you
go.
We had thought of also giving the uTILITY in DATA statement form. This
would have come to about 690 lines, of seven items of data on each,
which would have been a mammoth task of programming for anyone
and very prone to error.

8668 20 8F 89 JSR $866F 863C 85 38 STA $38
8663 26 54 86 JSR $8654 863E 85 34 STA $34
8664 28 41 86 JSR $8641 88468 &8 RTS

8689 26 34 8@ JSR $8834 8641 A9 7E LDA #$7E
866C 4C 66 92 JMP $92606 8643 8D 16 83 STA $8314
866F AY 89 LDA #3069 80844 A9 61 LDA #8461
8611 8D 84 83 ‘STA $6384 8648 8D 18 63 STA $6318
8614 A9 BC LDA #$BC 864B A? 88 LDA #3868
8816 8D 84 63 STA $6384 884D 8D 17 83 STA $6317
8819 A% 82 LDA #$62 80656 8D 19 @3 STA $6319
8818 8D @8 83 STA $6368 8653 406 RTS

881E A? 29 LDA #$29 8654 78 SEl

8628 8D 64 63 STA $830A 8855 A9 22 LDA #$22
8623 A? 82 LDA #$82 8657 8D 8F 82 STA $628F
8625 8D 85 @3 STA $8365 8654 A9 87 LDA #$87
8628 8D 87 83 STAa $68387 865SC 8D 98 82 STA $8296
862B A9 83 LDA #$83 865F 58 CL1

862D 8D 89 83 STA $06389 8668 40 RTS

8638 8D 6B 83 STA $838B 8641 48 PHA

8833 48 RTS 8662 8A TXA

8834 A9 FF LDA #$FF 8043 48 PHA

8634 85 37 STA $37 8844 98 TYA

8638 85 33 STA $33 8865 48 PHA

883a AY 7F LDA #$7F 8044 A9 7F LDA #$7F

86468
8eéB
8B6E
86876
8873
8874
8879
8678
867E
8a81

8084
8887
868A
gasp
geve
8891

8892
8895
8094
8897
8899
86898
889D
869F
86aA1

88A2
88A4d
88A7
86A8
88A%
88AA
86AD
gebe
8881

8ee2
86B4
88BS
88Bs
86B9?
8aBa
86BB
868D
86BE
gace
g8ecz
88CS

8D
AC
10
4c
20
28
Fe
4c
28
28
28
26
z8
6C
78
87
4C
83
9F
84
&4
85
85
84
83
Ad
AE
8F
ge
83
AC
8E
43
8F
Ad
92
gB
2D
8F
3A
A
A8
36
Bé
39
86

eD
D)
83
72
BC
El
83
72
15
A3
18
54
41
82

86

EB
36
BE
14
51

83
8F

83
C4

87

84

Di

8é
21
8D
BS

DD
DD

FE
Fé
FF

FE
FD
FD
ES
88
86
AB

B2

B4

51
89

D1

16

STA
LDY
BPL
JMP
JSR
JSR
BEG
JMP
JSR
JSR
JSR
JSR
JSR
JMP
TYA
?e?
JMP
??7?
?2?
STY

STA
STA
STY
27?2
LbX
LDX
???
???
7?7
LDY
STX
??7?
?2??
LDX
2?7
???
AND
?7?
???
LbA
TAY
BMI
LDX
AND
STX

$DD@D
$DDBD
$8673
$FE72
$F6BC
$FFE1
$867E
$FE72
$FDIS
$FDA3
$ES18
$8854
$8641
($AB82)

$B284

$EB
$36
$BE
$14
%51

$83
+B48F

$5183
$89C4

$87

$D184

#3201

$8044
$91,Y
$188D,Y
$B5

8ec7z
saecs
gecB
88cD
868CF
86D1
8ebp2
86D3
88Dé
88D7
8eps
88D9
88DA
eebB
8eDC
86DE
88EB
88E1

88E2
88E3
8BE4
86ES
8BES
868EY
88EA
86EB
8@EC
86ED
8BEE
86EF
86F8
86F1

88F2
86F3
86F4
8BFS
86Fé
88F7
86F9
88FA
88FC
88FD
8@FE
88FF
8161

8183

92
ac
91
99
8s
88
48
8D
FF
FF
88
FF
FF
FF
Fé
Bé
a8
68
2@
28
Dé
Dé
8@
88
8@
68
88

80
48
00
80
88
49
88
48
4F
44
4B
45
44
4F
48
CS
45
54

The complete utility 239

21
4D
FB
6E

FF

FF
F7

83
83

Cé

D¢

54
CE

8a

FF

77?7
STY
5TA
BCC
STA
DEY
RTS
STA
??7
???
BRK
???
???
??2?
INC
LDX
BRK
RTS
BRK
BRK
DEC
DEC
BRK
BRK
BRK
PLA
BRK
BRK
BRK
RT1

BRK
BRK
BRK
RTI

BRK
RTI

7?2
LSR
?7?
EOR
???
?2?2?
???
CMP

EOR
???

$8091
($4D) ,Y
$86CA
$4E

$FFFF

$FF X
$F7,Y

$83,X
$83,X

$Cé

$D9

$54
$CE

240

8le4
8185
8184
g187
8169
gien
g1ec
giep
giie
8111
g114
8115
8114
8117
8119
811B
81icC
811D
811E
811F
8128
8121
8122
8123
8125
8127
8128
8129
812B
812C
812E
812F
8131
8133
8135
8137
8138
813A
813C
813E
8140
8141
8143
8144
8145
8147

The complete utility

57
CF
48
45
42
49
4F
4c
4F
4c
D2
57
52
49
€5
47
4F
54
CF
43
47
4F
53
55
50
4F
D4
45
54
45
44
55
D@
45
55
44
45
45
cs
45
47
cs
4F
44
45
41

D8

CE

C4

4F

54
43

cz
4c

4E

174

4D
o2
4E
cb

4Cc
54
4D
32

43

b2
35

43

39

7?7
2?27
PHA
EOR
777
EOR
?7?
JMP
?2?
JHP
???
2?7
7?7
EOR
P
27
7?7
7Y
7?7
e
7?7
7?7
?272?
EOR
BVC
s
??77?
EOR
2?7
EOR
277
EOR
BNE
EOR
EOR
7?7
EGR
EOR
cHMP
EOR
?7?
CHP
???
2?7
EOR
EOR

$D8
#3CE
$43C4

$354F

#$54
$43

$C2,X
$8173

$4E
D2

$4D X
$8185
$4E

$CD,X

$4C
$54
$4D
$52

$43

$D2
($55,%)

8149
814a
814B
814p
814E
814F
8158
8152
8153
8154
8134
8157
8138
8159
815B
813D
815F
8148
8161
8162
8144
8164
8168
81éa
816B
814C
814E
8171
8174
8175
8177
8179
8178
817C
817E
g186
8182
8184
8184
8189
8iga
8188
818D
818E
818F
8176

CTMNM® = NHUNDVAROVOUOMe-=NWUAUNN-NDPLUOSRDWTINATI®E HWTTETA

52

58

4F
51
49

43
52
33
D4

49
4C
435

4D
CD
4E

59

cb
58
45
C4

Cé

4F
co

34

7?7
77
BuC
?27?
?7?
??7?
BVC
?2?27?
777
EOR
?7?
e
?7?
BUC
BNE
EOR
???
?27?
???
EOR
CMP
EOR
EOR
P27
PHA
EOR
DEC
EOR
PHA
EOR
EOR
EOR
777
EOR
LDY
EOR
EOR
BVC
LSR
2?7
?7?
LSR
27?7
2?7
???
i

$819F

$81A4

$350

$8184
$81AE
$49 X

($43,%)
$52
$53
$D4

($49,%)
$4F4C
$CD45

#$4D
3CD
#$4E

$59
$4D
$CD
($56 ,X)
$81CB
$54C4

$Cé

8191
8192
8193
8194
8195
8194
8197
8198
8199
819A
8198
819C
819D
819E
819F
81A8
81A1
81A2
81A3
81A4
81AS
81Aé
81A7
81A8
81A9
81AA
81AB
81AC
81AD
81AE
81AF
81B8
8181
81B2
81B3
81B4
81BS
81Bs
81B7
81B8
8189
81BA
81BB
81iBC
81BD

81BE

RS S S S S S S EEEEESSELEE SRS SR LE LR RS EEFUE EEEEEEE

272
NOP
272
277
272
222
227
297
NOP
227
27?2
277
277
277
272
27?
NOP
272
277
227
277
NOP
277
27?
277
27?
NOP
277
272
227
277
NOP
272
292
277
227
277
272
NOP
22?
277
27?
277
227
NOP
227

81BF
81Ce
81C1
81C2
81C3
81Cc4
81C5
81Cé
81C?7
81c8
81CA
8icB
81cC
81CD
81CE
81CF
81De
81D1
81D2
81D3
81D4
81D3
81Dé
81D%
81DA
81DB
81DC
81DD
81DE
81DF
81E@
81E1
81E2
B1E3
81E4
81ES
81Eé
81E7
81E8
81E9
81EA
81EB
81EC
81EE
81EF
81Fe@

TLLLYLLLY

The complete utility 241

H
(5]

FF FF

ae

277
27?
277
227
277
272
272
NOP
277
EOR $45
277
BRK
2772
227
277
227
272
27?
277
272
27?
27?
SBC $FFFF,X
27?
272
272
277
272
272
22?
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
PHP
ORA ($88,X)
BRK
BRK
BRK

242

81F1
81F2
81F3
81F4
81F5
81F8
81FB
81FD
81FF
8281
8202
8284
8284
8268
8289
8288
828D
8206F
8212
8214
8214
8218
8219
8218
821D
821F
8221
8223
8225
8227
8229
8228
822D
822F
8231
8233
8235
8237
8239
823B
823D
823F
8240
8242
8243
8244

The complete utility

88
8e
ee
80
28
4C
AS
29
85
68
AS
134
85
68
Ad
Al
84
BD
18
ce
Fe
E8
De
ce
Fe
85
ce?
Fe
24
78
ce
De
A9
De
c9
?8
ce
78
84
A8
84
88
84
CA
cs
ES

8a AD
F7 B7
81
FE
81

81
81
81

7A
84
oF
T
87
FF
3E

B2

F4
28
37
88
22
56
oF
2D
3F
84
99
25
30
04
3c
1D
71
88
8B

7A

BRK
BRK
BRK
BRK
JSR
JMP
LDA
AND
STA
RTS
LDA
ORA
STA
RTS
LDX
LDY
STY
LDA
BPL
CcMP
BEQ
INX
BNE
CMP
BEG
STA
CMP
BEQ
BIT
BVS
cHMP
BNE
LDA
BNE
CMP
BCC
CMP
BCC
STY
LDY
STY
DEY
STX
DEX
INY
INX

$ADBA
$B7F7
$681
#$FE
381

$061
#$01
381

$74A
H$04
$0F
$8200 ,X
$821B
WSFF
$8256

$820F
#4260
$8254
$68
#3422
$827B
$0F
$8256
#43F
$8231
#$99
$8256
#4$ 30
$8239
#$3C
$8256
$71
#3080
$6B

$74

8245
8248
8249
824C
824E
8258
8252
8254
8256
8257
8258
8258
825E
8260
8261
8263
8245
8267
8249
824B
824C
826E
8276
8272
8275
8277
8279
827B
827C
827F
82880
8282
8284
8284
8287
8284
828C
828F
8291
8293
8294
8295
8294
8299
82%9A
829D

BD
38
Fe
Fe
ce
D@
85
A4
E8
cs
?9
B?
Fa
38
E?
Fe
c9e
D8
85
38
E?
D8
85
BD
Fa
CS
Fe
c8
2?9
ES
De
Ad
Eé
cs
BY
18
B?
D@
A8

c8
ES
BD
38
F9
Fe

88

9E
FS5
8e
38
eB
71

FB
FB
59

84
49
82
8F

a5
9F
88
88
DF
88
DB

FB

F8
7A
8B

9D
FA
9E
B4
FF

L1

Fé
FS

82

Al

81
8l

8z

81

Al

Al

82

8e

LDA
SEC
SBC
BEQ
CMP
BNE
ORA
LDY
INX
INY
STA
LDA
BEQ
SEC
SBC
BEQ
tMP
BNE
STA
SEC
SBC
BNE
STA
LDA
BEG
CMP
BEGQ
INY
STA
INX
BNE
LDX
INC
INY
LDA
BPL
LDA
BNE
Loy
DEX
INY
INX
LDA
SEC
SBC
BEG

$6288,X

$AB9E,Y
$8243
#$80
$8282
408

$71

$81FB,Y
$81FB,Y
$82B9

#334
$8246%
#349
$824B
$68F

#$55
$820F
$08
$8288 ,X
$8254
$08
$8254

$81FB,Y

$8272
$7A
$688B

$A89D,Y
$8286
$ABYE,Y
$8245
WSFF

$08200 ,X

$80F4,Y
$8294

829F
82a1
8243
82A5
8247
8249
8244
82AD
82AF
82B2
82B4
8287
82B9
82BC
82BE
82c0
822
82C4
82C4
82c8
82cA
82CB
82CD
82CE
8200
82D2
82D4
82D4
8208
82D9
82DB
82DC
82DE
82E0
82E2
82E4
82E4
82E8
82E9
82EB
82EC
82EE
82F@
82F2
82F3
82F5

ce
De
Fe
Ab
Eé
C8
B9
18
B?
De
BD
18
4C
10
c9
Fe
24
360
ce
90
38
E?

A9
85
A?
85
De
38
E?

A?
85
A?
85
84
Al

Fe
c8
B1
10
36
c8
B1
30

8e
82
AD
7A
éB

FS 88
FA
Fé 80
E2
86 82
98
89 Aé
3E
FF

8F
36
cC
BE

cB

Fé
22
8e
23
8c

7F

9E
22
AB
23
49
FF

az
22
FB
Fé

22
88

cMP
BNE
BEQ
LDX
INC
INY
LDA
BPL
LDA
BNE
LDA
BPL
JMP
BPL
P
BEQ
BIT
BMI
CMP
BCC
SEC
SBC
TAX
LDA
STA
LDA
STA
BNE
SEC
SBC
TAX
LDA
STA
LDA
STA
STY
LDY
DEX
BEQ
INY
LDA
BPL
BMI
INY
LDA
BMI

#3860
$82A5
$8252
$7A
$6B

$80FS,Y
$82A9
$80F4,Y
$8294
$0200 ,X
$8254
$A689
$82FC
#SFF
$82FC
$0F
$82FC
#$CC
$8208

#$CB

HF6
$22
#+80
$23
$82E4

H$7F

H$9E
$22
H$AD
$23
$49
#SFF

$82F2
($22),Y
$82EB
$82E8

($22),Y
$82FF

82F7
82FA
82FC
82FF
8382
8385
8367
83689
83eB
836D
8310
8313
8314
8314
8317
8318
831B
831cC
831F
8326
8323
8324
8329
832B
832D
8330
8332
8334
8334
8338
833B
833C
833D
833F
8348
8341
8344
8345
8348
8349
834C
834F
8352
8355
8357
8359

20
De
4C
4C
20
ce
90
ce
BO
20
4C
38
E?
8A
A8
B?
48
B?
48
4Cc
28
4C
A9
85
28
c?
?8
ce
B@

48
38
E?
8A
A8
B?
48
B?
48
4C
20
4c
20
AS
29
8D

47
Fé
F3
EF
73
cc
1A
EE
16
13

cC

21

98

73
79
E7
ee
8D
73
F7
18
F8
14
3C

Fé

ES

E4

73
79
8D
F5
14
oF
21

The complete utility 243

AB
Aé

Aé
68

83
A7

86
80
ee

66
A7

6o

83

86
80
ee
0o

AE
81

D@

JSR
BNE
JMP
JMP
JSR
CHP
BCC
CMP
BCS
JSR
JMP
SEC
SBC
ASL
TAY
LDA
PHA
LDA
PHA
JMP
JSR
JMP
LDA
STA
JSR
CMP
BCC
CMP
BCS
JSR
RTS
SEC
SBC
ASL
TAY
LDA
PHA
LDA
PHA
JMP
JSR
JMP
JSR
LDA
AND
STA

$AB47
$82F2
$ASF3
$ASEF
40073
#$CC

$8323
#3EE

$8323
$8313
$A7EA

#3CC

$8091,Y
$8098,Y

$80673
38879
$AZE7
#3680
$68D
$6873
H#$F7
$834C
#$F8
$834C
$833C

#$F6

$80ES, Y
$80E4,Y

$007/3
38879
$AEBD
$81FS
$14
#306F
D821

244

835C
835F
8361
8364
8367
8369
8346B
836E
8371
8373
8374
8379
8378
837D
8386
8381
8384
8387
8389
8388
838D
8370
83?1
8394
8397
8379
8398
839D
83%E
839F
8348
83A3
8344
83A7
83AA
83AD
83B@
83B3
83B4
8389
83BC

83BE
83Ce

83C2
83C4
83C7

The complete utility

20
Fe
20
20
AS
29
8D
20
Fe
28
20
AS
29
8D
40
20
20
AS
co
?0
20
48
28
20
Ad
E@
B@
68
A8
18
20
20
48
20
4C
20
4C
20
20
20
AS

38
c9

B@
20
AS

79
1F
FD
FS
14
8F
20
79
eD
FD
FS
14
oF
86

FA
FS
14
28
83
48

FD
F3
14
19
Fe

Fe
73

81
Al
81
BF
FS
FD

66

14
?1

10
78
65

00
AE
81
De
88
AE
81
82

AE
81

B2

AE
81

FF
88

83

83
AB
81
AE
AD

BC

JSR
BEQ
JSR
JSR
LDA
AND
STA
JSR
BEQ
JSR
JSR
LDA
AND
STA
RTS
JSR
JSR
LDA
CMP
BCC
JSR
PHA
JSR
JSR
LDX
CPX
BCS
PLA
TAY
CLC
JSR
JSR
RTS
JSR
JMP
JSR
JMP
JSR
JSR
JSR
LDA

BMI
CMP

BCS
JSR
LDA

$0079
$8380
$AEFD
$81F5
%14
#s0F
$D020
$6079
$8386
$AEFD
$81F5
%14
#30F
$08286

$AEFA
$81FS
$14
#$28
$8390
$B248

$AEFD
$81FS
$14
H$19
$838D

$FFF@
$0073

$8381
$AAAD
$8381
$ABBF
$81FS
$AEFD
$AD8BA
$46

+8304
#3721

$83D4
$BCYB
$65

83C9
83CB
83CD
83CF
83Da
83D1
8303
83D4
8307
83D¢9
83DA
830C
830D
83E0
83E3
83Es
83E8
83EA
83EB
83EC
83EE
83EF
83F0
83F2
83F3
83F5
83F4
83F9
83FC
83FD
83FE
8481
8483
8465
8487
8489
84eC
846F
8410
8412
8413
8414
8415
8417
8419
841B

Ad
AB
1
c8
8A
?1
68
4C
AS
48
AS
48
20
20
28
Al
B1
AA
g8
B1
A8
68
85
68
85
8A
20
20
68
68
4c
AS
10
A
A9
20
20
68
?1
8e

ae
A9
Al
?1
20

64
ee
14

14

48
15

14

FA
FS
F7
81
14

14

14
15

?1
81

8D
66
8A
84
18
8C

FF
81
7.
33

B2

AE
81
AE

B3
84

AD

AS

LDX
LDY
STA
INY

STA
RTS
JMP
LDA
PHA
LDA
PHA
JSR
JSR
JSR
LDY
LDA
TAX
DEY
LDA
TAY
PLA
STA
PLA
STA
TXA
JSR
JSR
PLA
PLA
JMP
LDA
BPL
LDY
LDA
JSR
JSR
RTS
STA
BRK
BRK
BRK
LDA
LDY
STA
JSR

$44
#$00
($14) Y

($14),Y

$B248
$15

$14

$AEFA
$81F5
$AEF7
H$01
($14),Y

($14) ,Y

$14
$15

$B3%1
+8481

$AD8BD
$66
$846F
#$84
#1806
$BABC
$BB8&A

($88) ,Y

#$FF
#s01
($2B),Y
$A533

841E
8420
8421
8423
8425
8427
8429
842B
842E
8431
8434
8434
8438
843A
843C
843F
8441
8443
8445
8448
844A
844D
8450
8452
8454
8454
8459
845B
845E
8441
8442
8444
8445
8447
8449
8448
844D
846F
8472
8474
8477
8479
847C
847F
8481
8483

AD
18
69
85
AS
69
85
4C
20
20
AS
85
AS
85
20
AS
85
A
8D
A?
8D
AD
Fe
Ab
AS
20
8é
BD
D
cA
16
18
AS
65
85
90
ES
4C
A9
8D

22

82
2D
23
ee
2E
40
FS
FD
14
FB
15
FC
FS
14
FD
4D
82
84
83
ee
20
FB
FC
7F
Cé
ee
7?7

F7

FB
FD
FB
82
FC
83
83
82

A% A4

8D
éC
86
85
A2

83
82
63
62
96

Ab
81
AE

81

83

e3
82

84

82
82

A4

83

83
83

BPL
CLC
LDA
ADC
5TA
BCC
INC
JMP
LDA
STA
LDA
STA
JMP
STX
STA
LDX

¥$82
$2D
$23
#$00
$2E
$A468
$81F5
$AEFD
$14
$FB
$15
$FC
$81F5
$14
$FD
#$4D
$6382
#$84
$0303
$8200
$8472
$FB
$FC
$847F
$Cé
$8200 ,X
$8277,X

$8458B

$FB
$FD
$FB
$8446F
$FC
$A483
#383
$68302
#344
$0363
($8382)
$63
$62
#3980

8485
8484
8489
848C
848F
8492
8494
8497
8494
849C
849D
849F
8440

84A2
8444

84A7
84A9
84AC
84AE
8481
84B2

84B4

84B4S
84B8
84BA
84BD
84BE
84ce
84C3
84CS
84C7
84CA
84CD
84De@
84D1
8403
84D5
8407
84D8
84D9
84DB
84DD
84DF
84E6
84E2
84ES

38
20
20
20
20
A2
BD
?D
Fe
E8
Do
68
Fe

Be
20

A?
20
A
28
88
De
A4
84
A8
20
88
Do
20
ce
De
20
20
4C
60
A2
A?
8é

De
ce
96
18
69
2C
20

49
DF
87
Ad
ae
6o
oe
83

FS

47

45
FS

20
D2
82
D1

FA
14
15
82
D1

FA
ta4
2C
8%
D2
73
Al

04
T
15

FA
0A
84

37
69
D2

The complete utility 245

BC
BD
B4
Bé

a1
8z

81
FF

84

84

FF
88
84

30
FF

SEC
JSR
JSR
JSR
JSR
LDX
LDA
STA
BEQ
INX
BNE
RTS
BEQ

BCS
JSR

LDA
JSR
LDY
JSR
DEY
BNE
LDY
STY
LDY
JSR
DEY
BNE
JSR
CMP
BNE
JSR
JSR
JMP
RTS
LDX
LDA
ASL
ROL
DEX
BNE
CMP
BCC
CLC
ADC
BIT
JSR

$BC49
$BDDF
$B487
$B4AS
#s00
$0180,X
$8208 ,X
$849F

48494

$84E9
$84E?
$81FS
#3280

$FFD2
#302

$84D1

$84AE
$14
$15
#302
$84D1

$+84BA
$06079
#32C

$84D6
$FFD2
$0073
$84A8

#3084
#3008
$15

$84D5
#36A
$84E3

#$37
$308469
$FFD2

246

84E8
84E?
84EC
84EE
84F@
84F3
84F5
84F8
84FA
84FC
84FE
8568
8562
8564
8567
850A
85eB
856D
858F
8512
8514
8516
8518
851A
851D
8526a
8521
8523
8524
8528
852A
852D
8530
8533
8534
8537
8539
853C
853E
8541
8542
8545
8547
8549
854B
854D

The complete utility

48
4C
Fe
B8
28
A?
20
AS
Fe
A2
8é
Be
A9
2C
20
cA
De
A?
28

88
44
44
F5
28
D2
15
14
88
15
83
30
A9
D2

Fi
20
D2
88
14
83
30
A9
D2

F1
79
2C
8?
D2
73
EC

88
63
73
62
7C

73
1B
2C
IF
63
73

AF

81

FF

31
FF

FF

31
FF

ee

FF
88
84
AF
08
85

ee

ee

RTS
JMP
BEQ
BCS
JSR
LDA
JSR
LDA
BEQ
LDX
ASL
BCS
LDA
BIT
JSR
DEX
BNE
LDA
JSR
LDX
ASL
BCS
LDA
BIT
JSR
DEX
BNE
JSR
CMP
BNE
JSR
JSR
JMP
RTS
JMP
STA
JSR
STA
JSR
PHA
JSR
BEQ
CMP
BEQ
STA
JSR

$AFB8
$8534
$8534
$81F5
#$20
$FFD2
$15
$8512
#s68
$15
$8585
#330
$31A9
$FFD2

$84FE
20
$FFD2
#s08
$14
$851B
#330
$31A9
$FFD2

$8514
48879
#32C

$8533
$FFD2
$86873
$84EC

$AFE8
$463
$0873
342
$857C

$80873
$8562
#32C
$854A
$43
$8673

8550
8552
8555
8554
8557
855A
855D
855F
8561

8562
8543
8544
8564
8549
856A
854B
856C
854E
8571

8573
8574
8579
857C
857E
8581

8583
8585
8587
8589
8588
858D

858F
8591

8593
8595
8594
8598
8598
85¢%C
85%E
8540
85A2
8543
8545
8547
85A9%

85
28
A8
68
20
28
ce
Fe
50
é8
A8
A9
20
48
68
A8
A9
28
A9
28
28
4C
A8
B9
c?
g8
ce
B@
c?
98
ce

70
E?

De
38
E?
99
88
10
Al
8é
88
De
AS
85
60

62
7C

AD
73
2C
10

1]
AD

ee
AD
2C
D2
73
37
81
62
38
25
47
21

88
41

19
37

83

30
14

E@
84
15

FB
14
15

85

85
88

85

85
FF
08
85

1

88

S5TA
JSR
TAY
PLA
JSR
JSR
CMP
BEQ
RTS
PLA
TAY
LDA
JSR
RTS
PLA
TAY
LDA
JSR
LDA
JSR
JSR
JMP
LDY
LDA
CMP
BCC
CMP
BCS
CMP
BCC
CMP
BCC
SBC
BNE
SEC
SBC
STA
DEY
BPL
LDY
ASL
DEY
BNE
LDA
ORA
RTS

$62
$857C

$85AD
46873
#$2C

$8571

#3080
$854D

#3080
$854D
#$2C
$FFD2
$0073
$8537
¥s01
$8062,Y
#s30
$85404
#$47
$8544
#$3A
$8595
#$41

$+854A
#337

$8598

#$30
$8814,Y

$857E
#s04
$15

$85A0
%14
315

8544
85AD
85B6
85B3
8584
85B%
858C
85BF
85C1
85C3
85C5
85C7
85C9
85CcC
85CE
85D1
8503
85D5
8504
8508
8509
85DB
85DD
85DF
85E2
85E4
85E7
85E?
85EB
85EE
85F1
85F3
85F5
85F8
85FB
85FC
85FE
84680
8681
8404
8685

8487
8689

8408A
8éecC
848E

4C
20
28
28
20
20
4C
AS
Da
Cé
Cé
A2
28
?8
4C
ce
B@

26

D8
A4
A%
20
A?
20
AS
Al
28
28
ce
Dé
28
4C
48
AS
De
68
28
38
AS

ES
A8

AS
ES
4C

88
?1
81
8D
DD
87
21
7A
82
’B
74
88
73
83
88
32
Fe

14

EE
14
88
AD
2F
D2
14
88
AD
73
2C
8é
D2
c7

9D
81

26

33
34

32
AD

AF
B3
84
AD
BD
B4
AB

ae

AF

85

FF

85
86

FF
85

BS

85

JMP
JSR
JSR
JSR
JSR
JSR
JMP
LDA
BNE
DEC
DEC
LDX
JSR
BCC
JMP
CMP
BCS
ROR
ROL
DEX
BNE
LDY
LDA
JSR
LDA
JSR
LDA
LDY
JSR
JSR
CMP
BNE
JSR
JMP
RTS
LDA
BNE
RTS
JSR
SEC
LDA

SBC
TAY

LDA
SBC
JMP

$AFE8
$B3%1
48461
$ADBD
$BDDD
+B487
$AB21
$74
$85C5
$7B
$7A
#+08
480873
$85D1
$AF88
#$32
$85CE

$14

$85C9
$14
#3600
$85AD
#32F
$FFD2
$14
#i00
$854D
$0073
#32C
$85FB
$FFD2
$85C7

$9D
48401

$B526

$33
$31

$34
$32
+85AD

8611
8613
86146
8619
861C
861E
8620
8623
8624
86264
8628
842A
862C
842E
8638
8631
8633
8635
8638
8639
863B
843D
863F
8642
8643
8644
8645
8444
8447
8648
8649
864A
864D
8656
8652
8654
8654
84659
865B
845E
8661
8664
B666
8669
866C
846E

Da
4C
28
20
B8
A2
4C
38
AS
E?
85
AS
E?
85
48
AP
85
28
A
ce
Fe
A2
4C
ES
E8
E8
E8
ES
24
68
48
4C
AD
ce
Fe
A9
8D
A?
8D
20
20
Fe
20
20
AS
Fe

83
1D
FS
13
85
15
37

SF
81
41
68
1)
42

FF
4A
8A

8D
85
16
37

88
SB
87
8D
87
SB
22
56
54
79
42
F5
FD
14
1E

The complete utility 247

A8
81
Ab

A4

A3

A4

AF
8e

86
86
ae

81
AE

BNE
JMP
JSR
JSR
BCS
LDX
JMP
SEC
LDA
sSBC
5TA
LDA
SBC
STA
RTS
LDA
STA
JSR
TXS
CMP
BEQ
LDX
JMP
INX
INX
INX
INX
INX
TXS
RTS
RTS
JMP
LDA
CMP
BEG
LDA
5TA
LDA
STA
JSR
JSR
BEQ
JSR
JSR
LDA
BEQ

$8614
$ABID
$81F5S
$A613
$8623
#$15

$A437

$5F
#3061
$41
$40
#3080
$42

HSFF
$4A
$A384A

#$8D
$8642
#e16
$A437

$AFB8
$885B
#$87
$86461
#$87
48658
#3$22
48854
$8654
480879
$84A8
$81F5
$AEFD
$14
$848E

248

8678
8472
8674
86746
8678
8679
867A
867B
867C
867D
867F
8481

8683
8485
8687
8684
868C
848E
8691

8494
8694
8498
8674
849C
869D
849E
8440
86A2
8644
84A7
86A8
860A
8éaC
86AD
86AF
84B1

86B3
84B5
86B7
84689
84BB
84BD
84Co
86C2
86C4
86CS

The complete utility

ce
Bo
Cé
AS
8A
8A
8A
8A
A8
A?
85
A?
85
Ab
28
c?
Fo
4C
28
Fe
ce
Fe
?1
c8
cA
De
A9
?1
28
68
A2
86
E8
A?
85
A?
85
A?
85
A?
85
20
Eé
ES
E8
E@

11
1A
14
14

Al
15
86
14
8A
79
22
83
88
73
8A
22
8sé
14

F1
ae
14
73

ae
SF

20
22
31
23
ae
14
Al
15
DE
23
SF

8A

AF
ee

1

86

cMP
BCS
DEC
LDA
ASL
ASL
ASL
ASL
TAY
LDA
5TA
LDA
STA
LDX
JSR
CMP
BEQ
JMP
JSR
BEQ
CMP
BEG
sTA
INY
DEX
BNE
LDA
STA
JSR
RTS
LDX
STX
INX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
INC
INC
INX
CPX

#11
$848E
$14
$14

Hsal
$15
#500
$14

$0A
$0879
#$22
$8491
$AFB8
$0873
$84A8
#$22
$84A8
($14),Y

$8491
#3080
($14) Y
40073

#3080
$5F

H$20
$22
#3$31
$23
#3080
$14
H3Al
$15
$84DE
$23
$5F

#$0A

86C7 90
86C? AY
84CB 85
84CD AY?
86CF 85
86D1 20
86D4 Eé
84Dé Eé
86D8 E8
84D9 E®@
84DB 7@
84DD &8
86DE A8

86E6 BY?
86E3 206

84ES4 88
86E7 D@
86E? AS
86EB 20
84EE AS
86F6 20
86F3 A?
B6FS 26
84F8 A?
86FA 20
84FD AS
86FF 8A
8760 BA
8761 8A
8762 BA
8783 A8
8764 20
8787 Bi
87689 48
876A 20
878D 48
8768E Fo
8718 20
8713 C8
8714 D@
8716 A9
8718 20
871B 48
871C 20
871F 4B
8720 20

F4
31
22
30
23
DE
23
SF

11
Fa

85
1C
D2

F?
22
D2
23
D2
2C
D2
22
D2
S5F

FB
14

82

8é
D2

EE
22
D2

59

86

87
FF

FF

FF

FF

FF

81

82

FF

FF

45

8D A4

BCC
LDA
STA
LDA
STA
JSR
INC
INC
INX
CPX
BCC
RTS
LDY

LDA
JSR

DEY
BNE

JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
ASL
ASL
ASL
ASL
TAY
JSR
LDA
PHA
JSR
PLA
BEQ
JSR
INY
BNE
LDA
JSR
RTS
JSR
272
JSR

$84BD
#$31
$22
#$30
$23
$84DE
$23
$5F

#s11
$86D1

#$85
$871C,Y
$FFD2

$84E8
$22
$FFD2
$23
$FFD2
#$2C
$FFD2
#$22
$FFD2
$5F

$81FB
($14),Y

48202

48714
$FFD2

$8764
#322

$FFD2
$4559

$A46D

8723
8724
8724
8728
872A
872C
872F
8732
8734
8736
8739
8738
873D
8740
8742
8744
8744
8748
874A
874C
874E
8751
8754
8757
8759
8758
875D
875F
8762
8764
8744
87467
8749
876A
874B
8746C
874D
876F
8771
8773
8775
8776
8778
877B
877D
877E

Al
15
6o
14

T
FB
14

82

EB
82

82

82

81
83
85

88

81

82

???
CPY
BCC
CPY
BCC

LDA
CPY
BNE
CMP
BEQ
STY
STA
CPY
BEQ
CPY
BEQ
CPY
BEQ
LDY
BIT
BIT
BIT
CMP
BCC
BEQ
LDA
BIT

DEC
CLC
ADC
ASL
ASL
ASL
ASL
LDY
STY
LDY
STY
TAY
LDX
JSR
LDA
PHA
JSR

#303
$872C
07
$872F
$EB48
$628D
$C5
$873B
$628E
$872C
$C5
$028E
#304
$874F
#3085
$8752
#3046
$8735
#s07
301A8
$63A0
$85A0
#$02
$8762
$8740
#3609
$68A7
$BB
+BB

+BB

#3A1
$15
#3860
$14

#$00
$81FB
($14) Y

$8202

8781
8782
8784
8786
8788
8784
878D
878E
878F
8791
8793
8795
8798
8799
8798
879t
8746
87A3
8744
8747
8744
87AC
87AE
8786
8781
8783
87Bé
8788
87BA
878D
87ce

87C2
87C4

87c7
87CA
87cc
87CE
8708
87D2
87D4
8704
8708
8709
87DB
870D
87DF

é8
Fe
co
Do
A9
?D
E8
c8
De
84
A%
8D
48
A?
8D
A?
8D
20
48
20
86
84
Al
98
21
28
86
84
28
20
A9

A2
aD

8E
A9
85
A9
85
A8
B1
85
c8
B1
85
Fo
c8

eD
SF
8z
ep
77

E?7
Cé
7F
ee

48
1)
EB
SB
54

SE
2B
2C
ee

2B
10
2D
2E
33
4D
F9

87
82

83
81
78
FF
74
Y
FB
FD

FB
FE
24

The complete utility

8z

DC

8e

8e
8@

88

88

AS
88

83
83

PLA
BEQ
tMP
BNE
LDA
STA
INX
INY
BNE
STX
LDA
STA
RTS
LDA
§TA
LDA
STA
JSR
RTS
JSR
STX
STY
LDY
TYA
STA
JSR
STX
STY
JSR
JSR
LDA

LDX
STA

STX
LDA
STA
LDA
STA
LDY
LDA
STA
INY
LDA
STA
BEQ
INY

249

'$8791

#35F
$878A
#3860
$0277,X

48778
$Cé
#$7F
$DCo8

#$48
$8854
#$EB
$8858B
$80854

$885E
$2B
$2C
#3060

($2B),Y
$8810
$2D
$2E
$A533
$884D
#$F9

#$87
308362

$08383
#$81
$78
¥SFF
$74
#$80
($FB) ,Y
$FD

($FB),Y
$FE
48863

250

87E8
87E2
87E4
87ES
87E7
87E9
87EB
87EC
87ED
87EF
87F2
87F4
87FS
87F4
87F9
87FB
87FD
87FF
8881
8863
8885
8887
886A
8860
881ea
8813
8815
8817
8819
88iB
881E
8820
8823
8825
8827
8824
882C
882F
8830

8831
8834

8835
8838
8834
883B
883D

The complete utility

B1
85
c8
B1
85
A2
E8
c8
B1
?D
De
8A
A8
20
AD
Ad
85
86
D8
A?
A2
8D
8E
20
26
AP
85
Ab
A4
28
B8
28
29
Fe
28
A2
4c
60
48
20
68
4C
AS
38
E?
85

FB
14

FB
15
84

FB
FB
F7

AZ
FD
FE
FB
FC
c7
83
A4
82
83
74
D4
8e
B?
2B
2C
DS
18
B7
BF
88
38
1D
37

38

F?
FB

82
14

81

A4

83
83
A4
El

FF

FF

88

A4

88
E@

LDA
STA
INY
LDA
STA
LDX
INX
INY
LDA
STA
BNE
TXA
TAY
JSR
LDA
LDX
STA
STX
BNE
LDA
LDX
STA
sTX
JSR
JSR
LDA
STA
LDX
Loy
JSR
BCS
JSR
AND
BEQ
JSR
LDX
JMP
RTS
PHA
JSR
PLA
JMP
LDA
SEC
SBC
STA

($FB) ,Y
$14

($FB) ,Y
$15
H$04

($FB) ,Y
$81FB,X
$87EB

$A4A2
$FD
$FE
$FB
$FC
$87CA
#$83
#$A4
$8362
483063
$A474
$E1D4
#s080
$B9
$2B
$2C
$FFDS
48836
$FFB7
#3BF
$882F
$8838
#31D
$A437

$8838

$EBF?
$FB

#3062
$14

883F
8841
8843
8845
8847
8848
884A
884B
884D
884F
8851
8853
8855
8857
8859
885B
885D
885E
8840
8862
8844
8864
8848
886A
884C
886E
884F
8872
8873
8874
8874
8878
8879
8878
887D
8889
8882
8884
8887
888A
888B
888D
8B8F
88%0
8892
8894

AS
E?
85
AT
A8
21
c8
?1
AS
Ad
85
86
AS
Ad
85
86
é8
AS
85
AS
85
Ab
A4
86
84
68
20

38
E?
85
98
E?
85
28
86
84
20
20
68
86
AS
38
ES
85
18

FC
(1)
FC
8@

14

14
FD
FE
2B
2C
FB
FC
2D
2E

2B
FD
2C
FE
2D
2E
FB
FC

SE

82
2B

ee
2C
18
FB
FC
410
33

c2
3E

C2
BB

88

88

88
AS

LDA
SBC
5TA
LDA
TAY
STA
INY
S5TA
LDA
LDX
STA
STX
LDA
LDX
STA
STX
RTS
LDA
5TA
LDA
STA
LDX
LDY
5TX
STY
RTS
JSR

SEC
SBC
STA
TYA
SBC
STA
JSR
STX

JSR
JSR
RTS
STX
LDA
SEC
SBC
STA
CLC

$FC
#+00
$FC
#se0

($14),Y

($14) Y
$FD
$FE
$2B
$2C
$FB
$FC
$2D
$2E

$2B
$FD
$2C
$FE
$2D
$2E
$FB
$FC

$885E

02
$2B

#3600
$2C
+8810
$FB
$FC
$884D
$A533

$C2
$3E

$C2
$BB

8895
8897
8899

8898
889D

88%F
88al
88A3
88A5
88A7
88A9%
88AB
88AD
88AF
8eBe
88B2
8884
8885
88B7
8889
88BA
88BB
88BC
88BE
88ce
88Cl1

88C3
88C5
88C7
88C9
88cA
a88cc
88CE
8806
88D2
88D4
88D5
88D7
88D8
88D¢%
88DB
88DD
88DF
88E1

88E2
88E4

AS
65
83
AS
69
85
AS
65
85
AS
69
85
AS
38
ES
85
AB
AS
ES

E8
?8
Fe
AS
18
65
85
70
Eé
18
AS
65
85
78
Eé
78
49
A8
c8
Cé
Cé
B
?1
c8
De
Eé

FB
49
SF

86
60
SF
BB

68
1)
5B
2D
58

2E
B

IF

58

83
5B

SF
58
SF
82
48

FF

3B

4@

SF

F?
5B

LDA
ADC
STA

LDA
ADC

STA
LDA
ADC
STA
LDA
ADC
STA
LDA
SEC
SBC
STA
TAY
LDA
SBC
TAX
INX
TYA
BEQ
LDA
CLC
ADC
STA
BCC
INC
CLC
LDA
ADC
5TA
BCC
INC
TYA
EOR
TAY
INY
DEC
DEC
LDA
5TA
INY
BNE
INC

$FB
$49
$5F
$FC
#3680

$60
$5F
$BB
$3A
$60
#3600
$5B
$2D0

$5A
$58

$2E
$5B

$88DD
54

$358
54
+88CA
$5B

$5F
$58
$5F
$88D4
$40

#SFF

$58
$48
($5A) ,Y
($5F),Y

$88DD
%58

88ES
88E8
88E9
88EB
88EC
88EE
88F@
88F2
88F4
88Fé
88F7

88F9
88FB

88FD
88FF
8901

8963
8965
8967
888
898A
89ecC
896E
896F
8911

8913
8914
8916
8918
8%21a
8%1B
821cC
891E
8928
8921
8923
8925
8927
8928
8924
892C
892D
892F
8932
8933
8934

ES
CA
D@
38
AS
ES
85
Be
cé
38
A8

AS
ES

85
?1

85
AS
E?
c8
85
85
?1

88
B1

85
c8
B1

85
Fe
88
38
AS
ES
AA
?1
AS
E?
c8
?1
85
8A
85
4C
60
8A
38

The complete utility 251

40

F2

2D
BB
2D
83
2E

1)

FD
BB

FD
FB
57
FE
ee

FE
58
FB

57
B?

57
BA
18

B?
BB

57
BA
ae

57
58

57
8E 89

INC
DEX
BNE
SEC
LDA
SBC
STA
BCS
DEC
SEC
LDY

LDA
SBC

STA
STA
STA
LDA
SBC
INY
STA
STA
5TA
DEY
LDA
STA
INY
LDA
STA
BEQ
DEY
SEC
LDA
SBC
TAX
STA
LDA
sSBC
INY
STA
STA
™A
STA
JMP
RTS
TXA
SEC

340
$88DD

$20
$BB
$2D
$88F7
$2E

#s00

$FD
$BB

$FD
($FB),Y
$57

$FE
#$00

$FE
$58
($FB) ,Y

($57),Y
$B9

($57),Y
$BA
$8932

$B?
$BB

($57),Y
$BA
#3080

($57),Y
$58

$57
$896E

252

8935
8937
8939
893A
893C
893E
8940
8942
8944
8944
8949
894B
894D
894E
8958
8952
8954
8956
8958
8954
893D
895E
8966
8962
8944
8964
8948
8944
894C
896E
897e
8972
8974
8976
8978
897A
897D
897E
8986
8982
8984
8986
8988
8984
898B
898D

The complete utility

ES
85
18
AS
65
B@
c9
96
A2
4C
AS
65
AA
AS
49
CS
De
E4
70
4C
18
AS
85
65
85
AS
85
69
85
AS
65
85
AS
69
85
20
18
Al
AS
65
85
90
Eé
18
AS
65

3E
BB

49
BB
84
FE
85
17
37
2D
BB

2E
6o
38
87
37
83
35

2D
A
BB
58
2E
5B
ae
59
FB
49
SF
FC
ae
48
BF

ee
2D
BB
2D
83
2E

FD
BB

A4

A4

A3

SBC
STA
CLC
LDA
ADC
BCS
CMP
BCC
LDX
JMP
LDA
ADC
TAX
LDA
ADC
CMP
BNE
CPX
BCC
JMP
cLc
LDA
STA
ADC
STA
LDA
STA
ADC
STA
LDA
ADC
STA
LDA
ADC
5TA
JSR
CLC
LDY
LDA
ADC
STA
BCC
INC
CLC
LDA
ADC

$3E
$BB

$49
4BB
$8944
#3FE
$8949
#$17
$A437
$2D
+BB

$2E
#3060
$38
$895D
$37
$895D
$A435

$2D
$5A
+BB
$58
$2E
$5B
#300
$59
$FB
349
$5F
$FC
#s00
$40
$A3BF

#+00
$2D
$BB
$2D
$898B
$2E

$FD
$BB

898F
8991

8993
8995
8997
8999
89%A
899C
899E
89A0
8941

89A3
89A5
8%A6
89A8
89Mh
89AC
89AD
89AE
8986
8982
89B3
89B5
8987
8989
89BA
89BC
89BE
89BF

89C1
89C4

89C5
89C8
89CB
89CD
89CF
89D1
89D3
89046
8909
89DB
89DD
89E8
89E2
89E4
89E6

85
85
21
AS
69
cs
85
85
?1
88
B1
85
cs
B1
85
Fe
88
18
AS
65

21
AS
69
c8
21
85

85
4C
48
20
28
AS
85
AS
85
20
28
AS
85
20
AS
85
AS
85

FD
57
FB
FE
80

FE
58
FB

57
B?

57

18

B?
BB

57

57
58

57
A8

FS
FD
14
ce
15

FS
FD
14
BC
F5
14
BD
15
BE

89

81
AE

81
AE

81

STA
STA
sTA
LDA
ADC
INY
STA
5TA
STA
DEY
LDA
5TA
INY
LDA
STA
BEQ
DEY
CLC
LDA
ADC
TAX
STA
LDA
ADC
INY
STA
STA

STA
JMP
RTS
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR
LDA
STA
JSR
LDA
5TA
LDA
STA

$FD
$57
($FB),Y
$FE
#5008

$FE
$58
($FB) ,Y

($57) ,Y
$B9

($57) ,Y
$BA
$89C4

$B9
$BB

($57),Y
$BA
00

($57),Y
$58

$57
$89A0

$81F5
$AEFD
$14
$C?
$15
$CA
$81F5
$AEFD
$14
$BC
$81F5
$14
$BD
$15
$BE

8%E8
8%2EA
89EC
89EE
89F8
89F2
89F4
89F 4
89F8
89FA
89FC
89FE
89FF
8AB1
8AB3
8ABS
8AB7
8ABY
8A8B
8ABE
8A18
8A12
8A15
8A17
8A19
8A1B
8A1D
8ALF
8A21
8A23
8A24
8A24
8A28
8A2A
8AZD
8AZE
8AZF
8A30
8A32

8A34
8A38
8A3A
8A3C
8A3E
8A40

AS
85
AS
85
AS
D8
AS
De
Al
B1
85
cse
B1
85
AS
85
AS
85
28
BO
A2
4C
AS
85
AS
85
Al
Bi
85
cs
B1
85
D8
4C
cs
cs
c8
B1
De

85
AS
85
De
ce
De

2B
FB
2C
FC

8F
ce
8B
82
FB
ce

FB

co
14

15
13
85
15
37
SF
41
68
42
80
FB
FD

FB
FE
83
62

FB
8A

FB
FE
FC
DF
22
eB

Ad

A4

8B

LDA
STA
LDA
STA
LDA
BNE
LDA
BNE
Loy
LDA
5TA
INY
LDA
STA
LDA
STA
LDA
STA
JSR
BCS
LDX
JMP
LDA
STA
LDA
STA
LDY
LDA
§TA
INY
LDA
STA
BNE
JMP
INY
INY
INY
LDA
BNE

5TA
LDA
STA
BNE
CMP
BNE

$2B
$FB
$2C
$FC
$CA
$8A83
$C9
$8A83
#4682
($FB) ,Y
$C9

($FB),Y
$CA

$C9

$14

$CA

$15
$A613
$8A15
¥$15
$A437
$5F

$41

$40

$42
#3008
($FB) ,Y
$FD

($FB),Y
$FE
$8A2D
$8B42

($FB) ,Y

$BA3E
$FD
$FB

$FE
$FC
$8A1D
#$22
$8A4D

8A42
8A43
BA4S
8A47
8A49
8A4B
8A4D
8A4F
8AS51
8AS53
8AS55
8A57
8ASY?
8A5B
8ASD
8ASF
8R4I
8A63
BALS
BALS
8A48
8AsA
8A4C
8AGE
8A78
8A72
8A74
8A74
8A78
8A7A
8A7B
8A7D
8A7F
8A81
B8AB3
8ABS
8AB4
8A8BS
8A8Y
8ABB
8A8D
8ABE
8AY0
8AP2
8A74
8A%S

c8
B1
Fe
c?
De
Fe
c?
F@
ce
F@
c?
Fe
ce
Fe
ce
Fe
ce?
De
c8
Bi
ce
F@
c9
Fe
ce
Fe
c9
Fe
De
c8
Bi
ce
Fe
ce
B@
88
De
88
ce
Bé
c8
B1
ce
Fe
84
88

FB
ED
22
F7
EZ
8F
E3
83
DF
A7
21

1D
89
2C
cB
1]

FB
28
F?
A4
1D
8D
19
Eé
15
BS

FB
28
F9
36
83

A7

A2

FB
20
F?
49

The complete utility 253

INY
LDA
BEQ
CMP
BNE
BEG
CMP
BEQ
cHMP
BEG
CMP
BEQ
CtMP
BEG
tMP
BEG
CMP
BNE
INY
LDA
cMP
BEG
CMP
BEQ
CMP
BEQ
CtMP
BEQ
BNE
INY
LDA
CMP
BEQG
CcMP
BCS
DEY
BNE
DEY
CMP
BCS
INY
LDA
P
BEQ
STY
DEY

($FB) ,Y
$8A34
H$22
$8A42
$8A2F
#$8F
$8A34
#$83
$8A34
#A7
$8A7A
#$84
$8A7A
#$89
$8A8D
#$CB
$8470

($FB),Y
#4280
$BA6S
#$A4
$8A8BD
#$8D
$8A8D
#$ES
$8A8BD
$8AZF

($FB) ,Y
#$20
$8A7A
#$36
$8AB8

$8AZF

#$3A
$8A2F

($FB) ,Y
#$20
$8A8D
$49

254

The complete utility

8AT7 A2

8A?9
8A%A
8APC
8AYE
8AAL
8AA2
8AR4
8AA7
8AAS
8AMA
8AAC
BAAF
8AB1
8AB3
8ABS
8AB7
8AB?
8ABC
8ABE
8ACa
8AC2
8AC4
8ACS
8ACS
8ACA
8ACC
8ACE
8ACF
8ADZ
8AD4
8ADS
8AD8
8ADA
8ADC
8ADE
8AES
8AE2Z
8AE4
8AEéS
8AES
8AEA
8AEC
8AEE
BAEF
8AF1

cs
B1
ce
78
c?
Be
2D
E8
D8
A9
2D
84
AP
85
A?
85
28
AS
85
AS
85
cS
Fe
B@
AS
é5
A8
4C
AS
CS
98
AS
85
AS
85
AS
85
AS
85
Al
B1
85
c8
B1
85

6o

FB
30
8A
3A
84
88

EF
3A
8e
BF
82
7B
8o
7A
FS
14
C3
15
c4
cA
BA
8E
49
BF

55
C3
ce
F2
BD
B?
41
58
BE
BA
42
59
ee
58
54

58
5B

82

82

81

8B

LDX
INY
LDA
CMP
BCC
CMP
BCS
STA
INX
BNE
LDA
STA
STX
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
CMP
BEQ
BCS
LDA
ADC
TAY
JMP
LDA
CMP
BCC
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
LDA
STA

#3660

($FB),Y
H$30
$8AMA
#$3A
$8AMA
$02008 ,X

$8499
#$34
$82080 ,X
$BF
#3502
$78
#$00
$7A
$81F5
$14
$C3
$15
$C4
$CA
$8AD2
$8AD8
$49
$BF

$8B55
$C3
$C9
$8ACA
$BD
$B9

$41

$58
$BE
$BA
$42
$59
#3680
($58) ,Y
$54

($58) ,Y
$58

8AF3
8AFS
BAF7
8AF9
8AFB
8AFC
8AFE
8Beo
8B02
8B85
8B84
8Besg
8BBA
8BeB
8BeD
8B6F
8B11
8B13
8B15
8B17
8B19
8B1A
8BiC
8BIE
8820
8822
8B24
8B24
8B28
8B2A
8B2C
8BZE
8838
8B33
8B35
8837
8B39
8B3B
8B3D
8B40
8B43
8B44
8B48
8B4A
8B4D
8B4F

De
Al
B1
85
c8
B1
85
A2
4C
cs
B
85

Bl
Cc5
De
AS
CS
F@
AS
18
65
85
76
Eé
AS
85
AS
85
D@
Ad
AS
20
AS
85
E4
Fe
Be
28
4C
20
A4
A2
BD
Fe
?1

18
82
FB
39

FB

11

37 A4

58
B7

58
c4
8é
B7
C3
15
B?

BC
B?
ez

58
5B
59
BC
BY

7F
BF
3E
3E
éB
8é
8B
44
33
49
ae
8e
86
FB

84

88
8B
89

82

BNE
LDY
LDA
STA
INY
LDA
5TA
LDX
JMP
INY
LDA
S5TA
INY
LDA
CtHMP
BNE
LDA
cHP
BEG
LDA
CLC
ADC
STA
BCC
INC
LDA
STA
LDA
STA
BNE
LDX
LDA
JSR
LDA
STA
CPX
BEQ
BCS
JSR
JMP
JSR
LDY
LDX
LDA
BEQ
STA

$8B85
W02
($FB),Y
$39

($FB) ,Y
$3A
Hs11
$A437

($58),Y
$B7

($58) ,Y
$C4
$8B17
$B7
$C3
$8B2C
$B9

$BC
$89
$8B22
$BA
$5A
$58
$58
$59
$8AES
$89
$BA
$847F
$BF
$3E
$3E
$8B44
$8B43
$8888B
$8B46
$8933
$49
#3500
$02088 ,X
$8B55
($FB) Y

8B51
8B52
8853
8B53
8BS?7
8B59?
8BSB
8B5C
8BSF
8B62
8Bé4
8B646
8Bé8
8869
8B4B
8B6&D
8B46F
8B70
8871
8874
8B75
8B77
8B79
8874
8B7C
8B7E
8B7F
8881
8B&3
8B85
8B87
8B8Y
8B8B
8B8D
8B8F
88?1
8893
8B?5
8B?7
8B?9
8ByB
8B9D
8B9F
8BAl
8BA3
8BA4

cs
E8
D8
B1
co
Fe
88
4C
4C
A
B1
85
c8
B1
85
D8
68
68
4C
c8
AS
?1
c8
AS
71
18
AS
65
85

ES
AS
85
AS
85
Do
A2
AD
85
AS
85
A8
B1
85
c8
B1

FS
FB
2C
04

2F
8D
ae
41

41
oB
85

74

BD
41

BE
41

BD
BC
BD

BE

41
5B
42
CF
80
2B
FB
2C
FC
8e
FB
FD

FB

£8

A4

INY
INX
BNE
LDA
CMP
BEQ
DEY
JMP
JMP
LDY
LDA
STA
INY
LDA
STA
BNE
PLA
PLA
JMP
INY
LDA
STA
INY
LDA
STA
CLC
LDA
ADC
STA
BCC
INC
LDA
STA
LDA
STA
BNE
LDX
LDA
STA
LDA
STA
LDY
LDA
STA
INY
LDA

$8B4A
($FB) ,Y
#$2C
$8B5F

$8A2F
$8A8D
#$08
($41),Y
$5A

($41) Y
$58
$8B74

$A474

$BD
($41),Y

$BE
($41),Y

$BD
$BC
$BD
$8B8?
$BE
$54
$41
$5B
$42
$8Bs2
#300
$2B
$FB
$2C
$FC
#$00
($FB) ,Y
$FD

($FB) ,Y

8BAs
8BA8
8BAA
8BAB
8BAC
8BAF
8BBo
8BB1

8BB2
8BB4
8BBé
8BB8
8BBA
8BBC
8BBE
8BCe

8BC2
8BC4
8BCS
8BC8
8BCA
8BCC
8BCE
8BCF
88D1

8BD3
8BDS
8BD7
8BD?
8BDB
8BDD
8BDF
8BE1
8BE3
8BES
8BE7
8BE?
8BEB
8BED
8BEF
8BF1
8BF3
8BF4
8BFé
8BF8
8BFA

85
D@
68
68
4C
c8
c8
C8
B1
De
AS
85
AD
85
A2
F@
ce
D@
85
Fo
ce
Do
E8
E@
Do
A2
Fe
E@
D@
85
c9
98
E?
ce
B@
c?
B@
85
84
86
A2
c8
B1
CS
De
E8

The complete utility 255

FE
85

74 A4

FB
ec
FD
FB
FE
FC
08
DB
FF
84
3E
21

22
89y

82
e8
ee

8t

Dé
3E
ce
82
68
68
84
21
Cé
30
49
3C
a1

FB
3E
83

STA
BNE
PLA
PLA
JMP
INY
INY
INY
LDA
BNE
LDA
STA
LDA
STA
LDX
BEQ
CMP
BNE
5TA
BEQ
CMP
BNE
INX
CPX
BNE
LDX
BEQ
CPX
BNE
STA
CMP
BCC
SBC
CcMP
BCS
CMP
BCS
STA
STY
STX
LDX
INY
LDA
CMP
BNE
INX

$FE
$8BAF

$A474

($FB),Y
$8BC2
$FD
$FB
$FE
$FC
#$00
$8B9D
¥SFF
$8BCA
$3E
$8BEB
#$22
$8BD7

#$02
$8BDB
#4060
$8BB1
#4081
$8BB1
$3E
#3Ce
$8BE3
#3640
#$40
$8BEB
#$21
$8BB1
$3D
$49
$3C
#3061

($FB) ,Y
$3E
$8BFD

256

8BFB
8BFD
8BFF
8cei

8ce3
8ce4d
8C84
8ces
8C8A
gcec
8C8E
8Cie
8C12
8C15
8C17
8Cl1A
8cicC
8CIF
8C21
8c22
8C25
8c27
8C29
8czB
8C2D
8C2F
8C31

8C32
8C34
8C36
8C38
8C3A
8C3C
8Cc3D
8C3F
8C41

8C42
8C44
8C44
8C48
8C4B
8C4E
8CS1

8C53
8Ca35
8C57

The complete utility

Do
86
X
Be
CA
AS
c9
Fe
A9
85
85
Fe
4C
A?
20
AZ
BD
85
E8
BD
85
AS
c9
90
ce
Be
38
E?
85
A2
AS
De
CA
AS
Do
CA
E4
Fe
B@
20
4C
20

A4
A?
?1

AS

Fé
3E
82
12

3D
20
88
1
48
3F
15
33
ee
7F
ee
ee
3F

ee
40
3D
61
31
7B
40

28
3D
a7
48
86

3F
a1

3E
6B
84
8B
51
33
49
5B
FB
40

8D

84

62

82

88
8C
8¢9

BNE
STX
CPX
BCS
DEX
LDA
tMP
BEQ
LDA
STA
STA
BEQ
JMP
LDA
JSR
LDX
LDA
STA
INX
LDA
STA
LDA
tMP
BCC
tMP
BCS
SEC
SBC
STA
LDX
LDA
BNE
DEX
LDA
BNE
DEX
CPX
BEQ
BCS
JSR
JMP
JSR
LDY
LDA
STA
LDA

$8BF3
$3E
#3062
$8C15

$3D
#3260
$8C12
#3060
$40

$3F
$8C27
$8D33
#$00
$847F
#s00
$0200 ,X
$3F

$0280 ,X
$40
$3D
#3461
$8C7E
#$7B
$8C7E

#$20
$3D
#3087
+48
$8C42

$3F
$8C42

$3E
$8C51
$8C4E
$888B
$8C51
$8933
$49
#$5B
($FB),Y
$40

8C59
8CSB
8C5C
8CSE
8C40
8Cé2
8C43
8C65
8C&67
8Cé8
8CéA
8CsC
8C4D
8C6F
8c71
8C72
8C74
8C74
8C77
8C7¢9
8C7B
8C7E
8Csee
8C82
8C84
8C8é
8cCs8
8C8A
8cscC
8C8F
8C%1
8C92
8C95
8C%?s6
8C98
8CY%
8CyB
8c9eC
8C9D
8C?E
8CA0
8CAZ
8CA4
8CAS
8CA8
8CAB

Fe
cs
21

AS
Fe
cs
?1

A?
cs
?1

A9
cs
?1

AS
c8
?1

A9
c8
?1

Ab
4C
85
A9
85
A9
85
A2
Al
20
B

48
28
é8
cS
Fe
c8
cs
c8

18
AS
ce
78
A2
4c
69

83

FB
3F
83

FB
47

FB
3E

FB
3D

FB
SD

FB
3C
B1
30
50
62
A3
63
51
ee
FB
62

82

3D
20

EC
3D
1B
85
8D
37
48

8B

81

82

Ad

BEQ
INY
STA
LDA
BEQ
INY
§TA
LDA
INY
STA
LDA
INY
STA
LDA
INY
STA
LDA
INY
SThA
LDX
JMP
STA
LDA
5TA
LDA
STA
LDX
LDY
JSR
LDA
PHA
JSR
PLA
CMP
BEQ
INY
INY
INY
DEX
BPL
LDA
CMP
BCC
LDX
JMP
ADC

$8CSE

($FB) ,Y
$3F
$8C45

($FB),Y
H$47

($FB) ,Y
#33E

($FB),Y
$3D

($FB) ,Y
#$5D

($FB) ,Y
$3C
$8BB1
$3D
#$58
$42
#3A3
$63
#3$51
#4500
$81FB
($42) ,Y

$8202

$3D
$8CBA

$8C8C
$3D
#$1B
$8CAB
#$8D
$A437
#$40

8CAD
8CBe
8CB2
8CB4
8CBé
8CB8
8CBA
8cBB
8CBE
8CCe
8CC1

8ccz2
8cc4
8CCs
8CC?
8CCA
8CcC
8CCE
8CD1

8CD3
8CD5
8CD8
8CDA
8cDB
8CDD
8CDE
8CE®
8CE2
8CE3
8CES
8CE?7
8CES
8CEA
8CEC
8CEE
8CF1

8CF4
8CF7
8CF9
8CFB
8CFD
8CFF
8D81

8Dez
8be4
8Dbes

8D
A?
85
A?
85
De
cs
20
B1

48
c8
Bi

85
20
é8
85
Al
20
B1

85
20
AS
18
69

AS
De

AS
D@

E4
Fe
B@
28
4C
28
Ad
A%
21
AS
Fe
c8
?1
AS
Fe

48
43
62
A4
63
12

FB
62

62
63
82

62
66
FB
62
C1
82
C1

84

40
8é

3F
81

3E
8B
84
eB
F7
33
49
5B
FB
3F
83

FB
48
83

A4

81

82

81

82

88
8cC
89

STA
LDA
STA
LDA
5TA
BNE
INY
JSR
LDA
PHA
INY
LDA
STA
JSR
PLA
STA
LDY
JSR
LDA
STA
JSR
LDA
CLC
ADC
TAX
LDA
BNE
DEX
LDA
BNE
DEX
CPX
BEQ
BCS
JSR
JMP
JSR
LDY
LDA
STA
LDA
BEQ
INY
5TA
LDA
BEQ

$A448
#$43
$42
#$A4
$463
$8CCC

$81FB
($62),Y

($62),Y
$43
$8202

$42
#$00
$81FB
($62),Y
$C1
$8202
$C1

#4084

$40
$8CE8

$3F
$8CEB

$3E
$8CF7
$8CF4
$888B
$8CF7
$8933
$49
#$58
($FB) ,Y
$3F
$8D842

($FB),Y
+40
$+8D6B

8Dpes8
8De?
8DeB
8beD
8D8F
8D12
8D13
8D15
8017
8D1¢
8D1A
8picC
8DIE
8D2e

8D22
8D24
8D27
8D2¢
8bzB
8bz2Cc
8D2E
8D36
8D33
8D35
8D37
8D3A
8D3C
8D3E
8D3F
8D41

8D44
8D4é
8049
8D4cC
8D4F
8051

8D54
8D57
8D5A
8D5C
8DSF
8Dé48
8Dé1
8Dé2
8Dé4
8Dé4

cs8
?1
84
A8
20
cs
B1
84
A4
c8

84
Ad
C4
D@
20

A4
A?
c8
21

Ad
4C
A4
Ad
4c
AS
Fe
78
A9
8D
A9
8D
AE
8E
A9
8D
AE
8E
A9
8D
58
68
78
AS
Fe
AP

FB
49
a8
FB

62
C2
49

FB
49
c2
Ct
EE
B2
49
3D

FB
3C
B!
49
3C
B1
2D
21

FF
47
FF
46
88
5@
79
88
89
51
8D
8%

9D
F?
a8

The complete utility 257

81

82

8B

8B

8E

8E
83
8E

83
83
8E

83

INY
STA
STY
LDY
JSR
INY
LDA
STY
LDY
INY
STA
STY
LDY
CPY
BNE
JSR
LDY
LDA
INY
STA
LDX
JMP
LDY
LDX
JMP
LDA
BEQ
SEI
LDA
S5TA
LDA
STA
LDX
STX
LDA
STA
LDX
STX
LDA
STA
CLI
RTS
SEI
LDA
BEG
LDA

($FB) ,Y
$49
H$00
$81FB

($62),Y
$C2
$49

($FB),Y
$49

$C2

$C1
$8D12
$8202
$49
H$5D

($FB) ,Y
$3C
$8BB1
$49
$3C
$8BB1
$9D
$8D5SF

#SFF
$8E47
#SFF

$8E46
$08308
$8E50
#$79

$8308
$0309
$8E51
#$8D

$6309

$9D
$8DSF
#3008

258

8Dé8
8DéB
8D4E
8D71

8D74
8D77
8D78
8079
8D7C
8D7D
8Dg8
8D83
8D85
8D87
8D8A
8bsD
8b¢a
80?1

8Dv4
8D%4
8D99
8DoB
8b¢C
8DPF
8DA2
8DAS
8DAS
8DAS8
8DAA
8DAD
8DAF
8DB1

8DB4
8DBS
8DB7
8DB8
8DBA
8DBC
8DBF
8DCH

8DC4
8DC7
8DCA
8DCD
8DCF
8bD2

The complete utility

8D
AD
ab
AD
8D
58
48
8D
88
8E
8C
AS
Fa
AD
AC
AE
28
6C
AS
AD
F@
38
20
8E
8C
18
A2
Al
20
AZ
A9
28
cA
De
18
A2
Al
20
A9
28
AD
AE
28
A?
20
A?

44
58
88
51
(34

49

4A
4B
9D
eD
49
4B
4A

50
39
446
EC

Fo
4D
ac

(1)
18
Fe
aF
20
Dz

F8

88
18
Fe
12
D2
4F
4E
cD
92
D2
20

8E
8E
83
8E
83

8E

8E

8E

8E
8E
8E
8E
8E
FF

8E
8E

FF

FF

FF

FF
8E
8E
BD

FF

STA
LDA
5TA
LDA
STA
CL1
RTS
STA
PHP
STX
STY
LDA
BEQ
LDA
LDY
LDX
PLP
JMpP
LDA
LDA
BEQ
SEC
JSR
STX
STY
CLC
LDX
LDY
J5R
LDX
LDA
JSR
DEX
BNE
CLC
LDX
LDy
JSR
LDA
JSR
LDA
LDX
JSR
LDA
JSR
LDA

$8E4S
$B8ESE
$8368
$8ES1
48369

$8E4?

$8E4A
$8E4B
$9D

$8D%4
$8E49
$8E4B
$8E4A

($8E58)
$39
+8E46
$8D87

$FFFO
$8E4D
$8E4C

#3500
#$18
$FFFB
HSOF
#3520
$FFD2

$8DAF

#0600
#$18
$FFF@
#$12
$FFD2
$8E4F
$8E4E
$BDCD
#$92
$FFD2
H$20

8bD4
8DD7
8DD?
8bDC
8DDE
8DE1

8DE3
8DEéS
8DE?
8DEB
8DEE
8DEF
8DF1

8DF4
8DF7
8DFA
8DFD
8DFF
8E@1
8EB3
8EBS
8EB7
8EB?
8EBB
8EBD
8E10
8E12

8E13
8E14

8E14
8E17
8E18
8E1A
8E1ID
8EIF
8E22
8E24
8E27
8EZ29
8EZB
8EZD
8E30
8E32
8E34
8E3é
8E38

20
A?
28
AS
8D
Ad
8E
28
A9
20
18
B@
AE
AC
28
20
F@
ce
98
ce
B6
E?
D@
A?
8D
D@

38
A9

De
8D
A?
8D
F@
AE
F@
c9
Fe
28
Fe
ce
Fe
D@
AE

D2
12
D2

aF
39
4E
cD
92
D2

26
4D
4C
F8
E4
25
2F
21

1D
38
07
FF
47
12

80

FC
48
88
47
14
47
8F
28
16
E4
FB
28
8D
€S
48

FF

FF

8E

8E
BD

FF

8E
8E
FF
FF

8E

8E

8E

8E

FF

8E

JSR
LDA
JSR
LDA
5TA
LDX
5TX
JSR
LDA
JSR
CLC
BCS
LDX
LDY
JSR
JSR
BEQ
CMP
BCC
CcMP
BCS
sBC
BNE
LDA
5TA
BNE
TAX
SEC

ROL
DEX
BNE
5TA
LDA
STA
BEQ
LDX
BEQ
tMP
BEQ
JSR
BEQ
CMP
BEQ
BNE
LDX

$FFD2
#$12
$FFD2
$3A
$8E4F
+39
$8E4E
$BDCD
#92
$FFD2

$8D87
$8E4D
$8E4C
$FFFO
$FFE4
$8E24
H$2F

$8E24
#$3A

$8E24
#$30

$8E12
HSFF

$8E47
$8E24

#3060

%BE16
$8E48
300

$B8E47
$BE38
$B8E47
$B8E38
#3280

$8E43
$FFE4
$8E2D
#$20

$8E43
$8DFD
$8E48

BE3B
8E3D
8E3E
8E48
8E41
8E43
8E44
8E44
8E47
8E48
BE49
8E4A
8E4C
8E4D
8E4E
8E4F
8ESE
8ES!
8ES2
8ES4
8ESé
BES8
8ES9?
8ESB
8ESD
8ESF
8E41
8E63
8E4S
8E&7
BE49
8E4B
BE4D
8E4E
8E78
8E72
8E74
8E74
8E79
8E7A
8E7C
8E7E
8ESH
8EB3
BEBS
8E8S

AB
88
Do

D8
38
F8
FF
FF
08
FF
89
08
08
00
06
a2
83
AS
co
Fe
68
AS
85
AS
85
AS
c5
D@
AS
cS
D8
é8
AB
B1

c?
B@
28
c8
B1

co
B@
28
20
AS
Ad

FF

FD

F8

A?

8B

gD
88
a1

2D
BB
2E
BC
BC
38
87
BB
2F
81

8o
BB
86

D2

BB
7F
17
D2
33
BB
BC

FF

FF
8F

LDY
DEY
BNE
DEX
BNE
SEC
BEQ
2?27
?27?
BRK
?7?
ORA
BRK
BRK
BRK
BRK
???
2?27
LDA
CMP
BEQ
RTS
LDA
5TA
LDA
5TA
LDA
CMP
BNE
LDA
CMP
BNE
RTS
LDY
LDA
CMP
BCS
JSR
INY
LDA
CtMP
BCS
JSR
JSR
LDA
LDY

#SFF
$8E3D
$8E3R

$8DEF

#4068

39D
#$80
$8ES59

$2D
$BB
$2E
$BC
$BC
$30
$8E4E
+BB
$2F
$BESE

#$00
($BB) ,Y
#$30
$B8EDS
$FFD2

($BB) ,Y
¥$7F
$8E97
$FFD2
$8F33
$BB
$BC

8E8A
8ES8D
8E?8
8E?3
8E®S
8E?7
8EY?
8EPC
8EYE
8EAI

8EA4
8EAS
8EAY
8EAB
8EAD
8EAE
8EBG
8EBI

8EB3
8EBS
8EBéS
8EBS
8EBA
8EBC
8ERE
8EC1

8EC2
8EC3
8ECS
8EC7
8ECA
8ECC
8ECE
8ED@
8ED2
8EDS
8EDéS
8ED8
8EDA
8EDC
8EDF
8EE2
8EE4
8EE7
8EE?
BEEC

28
20
20
A?
D8
29
20
A?
28
280
A?
28
Al
B1

Fe
c8
B1
85
C8
B1
85
Al
B1
20
c8

De
A9
20
Fe
Dé
B8
29
28
c8
B1
ce
Be
28
20
A?
28
A?
28
De

A2
DD
1E
FF
7A
7F
D2
24
D2
33
22
D2
00
BB

15

BB
22

BB
23
68
22
D2

F7
22
D2
45
43
71
7F
D2

BB
’F
12
D2
33
46
D2
4E
D2
23

The complete utility 259

BB
BD
AB

FF

FF
8F

FF

FF

FF

FF

FF
8F

FF

FF

JSR
JSR
JSR
LDA
BNE
AND
JSR
LDA
JSR
JSR
LDA
JSR
LDY
LDA
TAX
BEQ
INY
LDA
5TA
INY
LDA
STA
LDY
LDA
JSR
INY
DEX
BNE
LDA
JSR
BEQ
BNE
BCS
AND
JSR
INY
LDA
CMP
BCS
JSR
JSR
LDA
JSR
LDA
JSR
BNE

$BBA2
$BDDD
$ABIE
HSFF
$8F11
H$7F
$FFD2
#$24
$FFD2
$8F33
#$22
$FFD2
#$00
($BB) ,Y

$8ECS

($BB),Y
$22

($BB) ,Y
$23
#4600
($22),Y
$FFD2

$8EBC
#$22

$FFD2
$8F11
$8F11
$8E41
He7F

$FFD2

($BB) ,Y
H$7F
$8EEE
$FFD2
$8F33
#3464
$FFD2
H$4E
$FFD2
$8F11

260

8EEE
8EF@
8EF3
8EFS
8EF8
8EFB
8EFD
8EFF
8Fa1
8F82
8Fe4
8Feé
8Fes8
§FeB
8FEE
8F11
8F13
8F16
8F17
8F1¢
8F1B
8FiID
8FIF
8F21
8F24
8F27
8F29
8F2A
8F2C
8F2E
8F38
8F 31
8F33
8F35
8F38
8F39
8F3B
8F 3D
8F3F
8F41
8F43
8F44
8F46
8F49
8F4C
8F4F

The complete utility

29
20
A9
20
28
Al
B1
85
cs8
B1
85
A2
28
20
28
A?
28
18
AS
69
85
70
Eé
20
20
De
48
AS
ce
De
38
B@
A9
20
18
AS
69
85
98
Eé
40
90
4C
20
20
B

7F
D2
25
D2
33
80
BB
62

BB
63
90
44
DD
1E
8D
D2

BB
85
BB
82
BC
E4
El
a1

cB
40
Fi

9B
30
D2

BB
82
BB
82
BC

83
68
FS
13
85

FF

FF
8F

BC
BD
AB

FF

FF
FF

FF

AF
81
Aé

AND
JSR
LDA
JSR
JSR
LDY
LDA
STA
INY
LDA
5TA
LDX
JSR
JSR
JSR
LDA
JSR
CLC
LDA
ADC
STA
BCC
INC
JSR
JSR
BNE
RTS
LDA
CMP
BNE
SEC
BCS
LDA
JSR
CcLC
LDA
ADC
STA
BCC
INC
RTS
BCC
JMP
JSR
JSR
BCS

#$7F
$FFD2
#$25
$FFD2
$8F33
H$00
($BB) ,Y
$62

($BB) ,Y
$43
#$98
$BC44
$BDDD
$ABIE
#$8D
$FFD2

$BB
#$05
$BB
$8F21
$BC
$FFE4
$FFE1
$8F 24

$CB
#4480
$8F21

$8ECE
#33D
$FFD2

$BB
#3062
$BB
4$8F43
$BC

$8F49
$AFE8
$81F5
$A613
$8F56

8F51
8F353
8F5é
8F58
8F5A
8F5C
8FSE
8F61

8Fé3
8F 65

8F 48
8FéA
8Fé4B
8F 6D
8F4F
8F71
8F73
8F75
8F77
8F79
8F7B
8F7E
8Fge
8F83
8F85
8F87
8F89
8F8B
8F8D
8F8F
8F?1
8F?3
8F93
8F97
8F¢8
8F%A
8F9C
8F9D
8F9F
8FAB
8FAl
8FA3
8FAé
8FA7
8FAB
8FAA

A2
4C
AS
85
AS
85
28
ce

D8
20

D@
38
AS
E?
85
AS
E?
85
De
Be
28
Eé
28
AS
CS
98
D8
AS
€5

Al
AS
71
c8
AS
?1
c8
B1

c8
B1
20
68
68
A2
A?

15
37
SF
FB
40
FC
79
2C

El
73
eF

2D
82
SF
2E
8o
68
18
CcB
FS
14
13
FC
68
88
BB
FB
SF
BS
ae
SF
FB

68
FB

FB

FB
’F

FF
81

A4

8e

81

Ab

84

LDX
JMP
LDA
STA
LDA
STA
JSR
CHP

BNE
JSR

BNE
SEC
LDA
SBC
STA
LDA
SBC
STA
BNE
BCS
JSR
INC
JSR
LDA
tMP
BCC
BNE
LDA
cMP
BCS
Loy
LDA
STA
INY
LDA
5TA
INY
LDA
TAX
INY
LDA
JSR
PLA
PLA
LDX
LDA

#$15
$A437
$5F
$FB
$40
$FC
46879
#$2C

$8F446
$68873

$8F79

$2D
H$02
$5F
$2E
#$00
$40
$8F 91
$8F46
$81F5
$14
$A613
$FC
$40
$8F91
$8F44
$FB
$5F
$8F46
#4080
$5F
($FB) ,Y

$48
($FB) ,Y

($FB) ,Y

($FB) ,Y
$847F

BSFF
#$01

8FAC
8FAF
8FB2
8FBS
8FB?7
8FBA
8FBC
8FBD
8FBF
8FCe
8FC2
8FC3
8FCS
8FCé
8FC8
8FC?
8FCC
8FCF
8FD2
8FD4
8FDé
8FD8
8FDA
8FDD
8FDF
8FE2
8FE3
8FES
8FE?7
8FEA
8FEC
8FEF
8FF1
8FF2
8FF4
8FFS
8FF7
8FF8
8FFA
8FFB
8FFD
8FFE
060
7682
9684
9684

4C
20
4C
AY
20
AS
48
AS
48
AS
48
AS
48
AP
48
20
28

4C
A2

Cé
Be
Cé
20
Fe
gD
E8
De
A9
gD
A?
20
AS
48
AS
48
AS
48
AS
48
A?
48
AS
85
AD
85
Al

70 92
F5 81
A3 A8
83
FB A3
7B

7A

3B

8D

79 6@
AF 8F
AE A7
1)
74
6z
/B
73 60
86
66 82

FS
ee
88 02
83
FB A3
/B

7A

39

8D

2B
FB
2C
FC
ae

JMP
JSR
JMP
LDA
JSR
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JSR
JSR

JMP
LDX

DEC
BCS
DEC
JSR
BEQ
STA
INX
BNE
LDA
STA
LDA
JSR
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
5TA
LDA
STA
LDY

$927D
$81F5
$ABA3
#$03
$A3FB
%7B

$74
$3A
$3B
#$8D

$0679
$8FAF
$A7AE
#$00
$7A
$8FDA
$78B
$08873
$8FES
$82008 ,X

$8FDA
#$00
$8208 ,X
#$03
$A3FB
$78

$74
$3A
$39
#$80D
$2B
$FB
$2C

$FC
#+00

9688
?06A
86C
66D
966F
96811
9613
9815
ve18
981A
981C
981E
9820
9822
9624
9826
9628
9824
962C
982D
982E
9030
9832
9835
9637
2839
983C
?83E
983F
26841
9843
9845
9847
2049
9848B
?84E
9650
9852
9654
9857
9859
985B
9285C
9?85F
9862
9864

B1
85
c8
B1
85
De
A2
4C
Al
B1
c9
Fe
AS
85
AS
85
De
A2
E8
c8
B1
Fe
DD
Fe
De
DD
Do
38
AS
E?
85
AS
E9
85
4Cc
De
A9
85
20
Fe
85
68
20
20
co
Fe

FB
FD

FB
FE
85
1
37
84
FB
E1
0A
FD
FB
FE
FC
DC
FF

FB
ez
6o
FS
E7
1
E2

FB
81
7A
FC
1)
7B
AE
ec
86
cB
E4
FB
96

?E
A3
ae

The complete utility 261

A4

82

82

A7

FF

AD
Bé

LDA
STA
INY
LDA
STA
BNE
LDX
JMP
LDY
LDA
CMP
BEQ
LDA
STA
LDA
STA
BNE
LDX
INX
INY
LDA
BEQ
CtMP
BEQ
BNE
CMP
BNE
SEC
LDA
SBC
sSTA
LDA
SBC
STA
JMP
BNE
LDA
STA
JSR
BEQ
STA
RTS
JSR
JSR
tMP
BEQ

($FB),Y
$FD

($FB),Y
$FE
$9818
#3511
$A437
#4604
($FB) ,Y
#$E1
$902A
$FD
$FB
$FE
$FC
$9004
HSFF

($FB) ,Y
$9039
$0260 ,X
$902C
$9820
$02088 ,X
$9620

$FB
#$01
$7A
$FC
#s00
$7B
$A7AE
$985C
#4300
$CB
$FFE4
$9854
$98

$ADYPE
$B4A3
#3060

$9050

262

9846
868
984A
786C
9B4F
9871
9873
9874
2874
7878
9879
9878
987D
987F
9080
7883
9885
9887
708A
fe8C
968E
9896
9892
9893
9895
9897
9699
9898
989D
989F
98A1
?B6A3
9BAS
928Aé
90A8

708AA
98AC

96AE
7088
76B3
98B3
98B7
98B9
?6BB
?8BD
?8BF

The complete utility

85
A?
85
28
Fe
A4
g8
D1
F@
88
16
38
85
68
20
A?
85
28
AS
85
AS
85
38
AS
85
ES
85
AS
85
ES
85
AS
38
E?
85

AS
E?

85
28
AS
85
AS
85
AS
85
85

FB
ee
Cé
E4
FB
FB

22
85

F9
EF
76

D4
8e
B9
26
2D
S5F
2E
68

31
A
2F
FD
32
SB
36
FE
33

81
58
34
88
59
BF
37
41
38
42
58
FB
37

FF

El

BS

A3

8TA
LDA
STA
JSR
BEQ
LDY
DEY
cMP
BEQ
DEY
BPL
BMI
5TA
RTS
JSR
LDA
5TA
JSR
LDA
STA
LDA
STA
SEC
LDA
STA
SBC
sTA
LDA
STA
SBC
sTA
LDA
SEC
5BC
5TA
LDA
SBC
STA
JSR
LDA
5TA
LDA
STA
LDA
STA
STA

$FB
#s00
3$Cé
$FFE4
$90864C
$FB

($22),Y
$987D

$9674
$964C
$98

$E1D4
#4080
$B?
$B526
$2D
$5F
$2E
+468

$31
$5A
$2F
$FD
$32
45B
$30
$FE
$33

#3061
$58
$34
#$00
$39
$A3BF
$37
$41
$38
$42
$58
$FB
$37

78C1
98C3
98CS
98C7
?8C9
78CB
9eCD
98CF
9802
?8D4
98D7
28DA
98DC
?8DE
9BESB
98E3
98ES
P8E7
90E?
98EB
98ED
98EF
98F1
98F3
96F4
98F 4
98F8
98F9
90FB
?8FD
98FE
98FF
1680
2182
9184
7185
9104
188
2189
?18A
7168
718D
918F
118
2112
2114

Eé
AS
85
85
Ad
A4
A9
20
76
4C
28
29
Fe
A2
4C
86
84
846
84
AS
a5
AS
85
38
AS
E?
A8
AS
E?

7?8
38
ES
85
A8

ES

E8
2?8
F@
AS
18
65
85
98

59
59
FC
38
2B
2C
ee
D5
83
Fe
B7
BF
85
1D
37
2D
2E
SF
é8
FB

FC
B

33
el

34
ae

5B

IF

58

83

FF

E®
FF

A4

INC
LDA
STA
STA
LDX
LDY
LDA
JSR
BCC
JMP
JSR
AND
BEQ
LDX
JMP
STX
STY
STX
STY
LDA
STA
LDA
STA
SEC
LDA
SBC
TAY
LDA
SBC
TAX
TYA
SEC
SBC
STA
TAY
TXA
SeC
TAX
INX
TYA
BEQ
LDA
CLC
ADC
STA
BCC

$59
$59
$FC
$38
$2B
$2C
#4080
$FFDS
$968D7
$EOF¢
$FFB?7
H$BF
$9BE3
#$1D
$A437
$2D
32E
$5F
$48
$FB
$5A4
$FC
$5B

$33
#$01

$34
#3080

$5A
$58

$5B

$912C
$5A

$58
$5A4
$2119

9116
?118
9119
?11B
211D
?11F
9121
?123
9124
2126
9127
2128
?12A
?12C
912E
7138
9131
2133
2135
9137
9138
?13A
?13B
213D
913F
?141
9143
2145
9147
?149
914B
214D
914F
2151
2153
2154
2155
2158
2154
215D
91480
7163
9164
2169
914B
?16E

Eé
18
AS
65
85
96
Eé
?8
49
AB
c8
Cé
Cé
B1

?1

cs
De
Eé
Eé

De
38
AS
85
ES
85
AS
85
ES
85
AS
85
AS
85
48
68
28
A?
20
20
20
20
4C
D8
4C
28

SF
58
SF
82
-

FF

5B
68

SF

F9
5B
é8

F2

SF
31
FD
2F
48
32
FE
36
41
37
42
38

33
8e
76
E?7
77
8E
CF
83
68
FS

AS

FF
FF
Aé
Aé
92

AF
81

INC
CLC
LDA
ADC
STA
BCC
INC
TYA
EOR
TAY
INY
DEC
DEC
LDA
STA
INY
BNE
INC
INC
DEX
BNE
SEC
LDA
5TA
SBC
STA
LDA
STA
SBC
STA
LDA
STA
LDA
STA
PLA
PLA
JSR
LDA
JSR
JSR
JSR
JSR
JMP
BNE
JMP
JSR

$58

$5F
$58
$5F
$9123
340

#SFF

$58
$40

($5A) ,Y
($5F) ,Y

$912C
%58
3480

$912C

$5F
$31
$FD
$2F
3480
$32
$FE
$30
441
$37
$42
$38

$A533
#s00

$FF90
$FFE7
$A677
$ASBE
$92CF
$716E
$AFE8
$81F5

2171
?173
9175
9177
9179
?17C
917E
7186
9181
7184
9186
7188
9184
218D
2198
2192
2193
?195
2194
7198
9199
2198
219D
?19E
91A6
?1A2
?1A3
?1AS
9147
1A
91AA
?1AB
21AD
F1AF
71p6
?1B2
?1B4
?1B7
91B9
?1BC
91BE
?1C1
91C3
?1Cs
71C8
?1CB

AS
C?
Be@
A2
4C
ce
B@
60
28
85
AS
85
4C
28
A8
98
?1
c8
?1
c8
71
AS
18
69
85

AS
69
85
A8

69
85
?8
69
85
4c
A7
8D
A?
8D
A?
8D
A?
aDb
A?

The complete utility 263

15
84
85
8E
37 A4
8e
F7

69 91
38
14
37
63 Ab
69 91
a6

14

14

14
14

81
2B

15
ee
2C

82
2D

86
2E
63 Ab
7’C
84 83
AS
85 63
1A
84 83
E4
68 @3
A7

LDA
CMP
BCS
LDX
JMP
CMP
BCS
RTS
JSR
STA
LDA
STA
JMP
JSR
LDY
TYA
STA
INY
STA
INY
STA
LDA
CcLC
ADC
STA
TAX
LDA
ADC
STA
TAY
TXA
ADC
STA
TYA
ADC
STA
JMP
LDA
STA
LDA
STA
LDA
5TA
LDA
STA
LDA

$15
#e04
$917C
H#$0E
$A437
#$80
$9177

$91469
$38
$14
$37
$A663
$9169
#4080

($14),Y
($14),Y

($14),Y
$14

H$01
$2B

$15
#3060
$2C

#3062
$2D

#s00
$2E
$A663
#$7C
$8364
#$AS
408365
#1A
$8386
H$E4Q
48368
#A7

264 The complete utility

iCD
?1D0
21D3
?1D5
9108
2104
210D
?1DF
91E2
?1ES
91E7
F1EA
?1EC
P1EF
91F0
?1F2
21FS
P1F7
91FA
?1FB
21FC
?1FD
9268
92683
9285
9208
928A
2280
2218
9212
9215
9217
9219
921C
921E
9220
9221
92224
9224
9229
922C
222D
922F
2231
9233
9236

8D
8D
A9
8D
A%
8D
A9
8D
8D
AP
&b
A?
8D
78
A9
8D
A9
8D
58
68
68
4Cc
28
A?
28
A
8D
8D
A9
8D
A2
Al
z28
A2
Al
18
20
AZ
BD
28
cA
10
A2
A8
20
8D

87
89
86
8A
AE
eB
FE
17
19
66
16
47
18

48
8F

EB
90

74
63
93
D2
ee
28
21
85
86
8A
89
58
ac
89

Fe
15
67
D2

F7
8E
89
58
C1

63
83

83

83

83
83

83

83

82
ez

A4
Ad

FF

Do
De

82

92

FF

9z
FF

92
85

STA
STA
LDA
5TA
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
SEI
LDA
STA

LDA
STA
CLI

PLA
PLA
JMP
JSR
LDA
JSR
LDA
STA
STA
LDA
STA
LDX
LDY
JSR
LDX
LDy
CLC
JSR
LDX
LDA
JSR
DEX
BPL
LDX
LDY
JSR
STA

38367
$8389
#4846
$830A
#3AE
$836B
#3FE
$8317
48319
#3466
$8316
347
46318

#348
+828F

#3EB
$0290

$Ad474
$A663
#$93
$FFD2
#+00
4D 28
$D8 21
#3065
$8286
#30A
#309
$9258
#$6C
#3069

$FFFO
#$15
$9247,X
$FFD2

$9226
#36E
H$09
$9258
$85C1

9239
923C
923F
9242
9244
9247
9244
924D
9250
9252
9255
9258
9259
925C
925E
9260
9263
9264
9244
9267
9248
?26B
926D
926F
9271

9272
9274

9276
9279
274
927C
227D
9280
9283
9284
9289
9288
928E
9299
9293
9296
2298
9298
229D
92A8
92A3

8D
8D
8D
A?
8D
8D
8Db
8D
A9
20
4C
18
20
AY
A2
20

D@
40

28
49
49
55
43

49
41

20
43
50

AD
8D
AD
8b
A?
8D
A?
8D
4C
A9
8D
A9
8D
28
18

11
D6
24
85
C1
11
Dé
26
8D
D2
74

Fe

16
D2

FA

59
4Cc
54
20

93
42

28
20

8z
97
83
eC
26
82
92
83
86
83
82
A4
83
33

84
85
84
D9
D¥
FF
Ad

FF

FF

54

4E

83
92
83
92

83

a3
A4

83

83
AS

STA
STA
STA
LDA
STA
STA
STA
STA
LDA
JSR
JMP
cLe
JSR
LDA
LDX
JSR
DEX
BNE
RTS
ROL
JSR
EOR
EOR
EOR
277
EOR
EOR
JSR
297
BVC
ROL
LDA
STA
LDA
STA
LDA
STA
LDA
5TA
JMP
LDA
STA
LDA
5TA
JSR
cLe

$8611
$85D6
308626
#$05

$D?C1
$DAll
$D?Dé
$DA26
#seD

$FFD2
$A474

$FFFO
#$2A
#$16
$FFD2

$9260

$5459
#$4C
¥3$54
$20 ,X

#$53
($42,X)

$4E20
$929C

$83082
$9297
46383
$929C
#$96

48302
#4692

46363
$A486
#383

48362
#3A4

$6303
$A533

The complete utility 265

9244 AS 22 LDA $22 92BE CS 2D tMP 42D
92A4 69 82 ADC #3062 92Ce D8 83 BNE $92C5
92A8 85 2D STA $2D 92C2 A9 86 LDA #3880
9244 AS 23 LDA $23 92C4 2C A? 068 BIT $80A?
924C 49 60 ADC #4060 92C7 85 8C STA $6C
92AE 85 2E STA $2E 92C9 20 79 06 JSR 48879
92B8 28 48 Ad JSR $A640 92CC 4C 88 %0 JMP $9680
92B3 4C 74 A4 JMP $A474 | 92CF AS 6C LDA s6cC
92Bé AS 32 LDA $32 9201 16 64 BPL $92D7
92B8 CS 2E CMP $2E 92D3 Cé 38 DEC $30
92BA DO 69 BNE $92C5 |92D5 Cé 32 DEC %32
?2BC AS 3! LDA $31 92D7 4C AE A7 JMP $A7AE

Loading the utility

Once the umiuTy and the data for cober have been set up, a loader
program something like the following should be used.

10 A=A+1:1F A=1THEN LOADUTILITY DATA",8,1
20 IFA=2THEN LOAD”"UTILITY" 8,1
30 SYS32768

10 Bits 'n’ pieces

General

This chapter is a collection of snippets of information we have found
out since acquiring our 64s about 18 months ago. No detailed code
here, just the bare facts and a few ideas.

AUTO-REPEATS and INTERRUPTS

We have seen two articles on the subject of providing a repeat on all
keys. Both articles were based upon the same idea used on the
pre-8000 series PETs. In essence the normal IRQ service routine is
patched to include additional code by changing the vector at cinv from
its default of sea31. The additional routine simple scans skpx — if a key is
being pressed then it is reset to no key ($40) — and ends with a jump to
$EA31 to process the normal interrupt. This will then detect a key as
being pressed and enter the appropriate character in the keyboard
buffer. Alternatively, for a repeat on all keys, simply POKE 650,128. To
disable the repeat, POKE 650,1. (For a full description of the IRQ service
routine, see Chapter 4.)

The second method is obviously far easier, but the first does allow a
selective auto-repeat to be implemented.

Whilst on the subject of the hardware interrupt (see Chapter 4 for its
implementation in the kv commands), here is a short example to
demonstrate what can be done. The following program patches rRQ to
scan for function keys 1 and 3. These keys are used to increment the
border and background colours respectively. The routine only takes
the appropriate action once every 60 interrupts (about a second). If you
remove the interrupt counter from sceif to scep, the effects produced
are quite unusual, but the routine becomes of little practical use as it is
too fast to exercise selective control.

To enable: SYS 49152
Todisable: SYS 49170

Cees 7ve SEI ENABLE ENTRY

cear ARIF LDA #$1F SET CINV TO POINT TO $C81F
Cae3 801483 STA 38314

ceesd n%Ce LDA #3Co

Ccess
ceaB
caeD
cete
cet1
cetz
Ce13
caets
ca18
celAa
caiD
CelE
CalF
cez2
Cazs
cezz
Ca29
cezs
CezE
ce38
ce31
a3z
Ca33
Ca3s
ca3?
Ce3e
cesD
ceds
cad2
ce44
Ca4dé
ce4s
Ce49
ceac
Ce4t
cese
ces3

The BAsIC loader:

1 DATA 128,
2, 141,
2 DATA 169, 8,

8h15e3
A%00
gbeacCl
58

40

’8
A731
8D1483
AZEA
8015083
58

48
EEBBCI
ADBBC!
C?acC
Do2A
A%80
3DeaC!
ASCB
18
cve4
DeeF
18
ADZaDe
298F
49681
8bzeDe
A7086
FeeF
C?05
DesB
18
ADz21D8
298F
69681
8D21D@
4C31EA

169, 49

3 DATA 141,
88,

?6

21,

5TA
LDA
5TA
CLI

RTS
SEI

LDA
STA
LDA
STA
CLI

RTS
INC
LDA
CHMP
BNE
LDéA
5TA
LDA
CLC
CMP
BNE
CLC
LDA
AND
ADC
5TA
LDA
BEG
CMP
BNE
CLC
LDA
AND
ADC
STA
JMP

169, 31,

3

20, 3,

$8315
#3060
$Cle0

#$31
+6314
#$EA
$6215

3C106
$C1e0
#$3C
+C853
#4060
+C100
$CB

#4064
$C844

€006 20
#$0F
#3081
406828
#3080
$C653
#3685
$C853

$D021
H308F
#s01
+D821
$EA3L

141, @,

169,

Bits 'n’ pieces 267

SET IRG COUNTER TO ZERO

DISABLE ENTRY
RESTORE CINV TO $EA3L

NEW IRQ ENRTY

48 INTERRUPTS 2?77

NO - SKIP KEY SCAN

YES - S0 RESET COUNTER

SFDX - CURRENT KEY PRESS

F1 222

BDR COLOUR
BITS 8-3 ONLY (8-15 DED)
INCREMENT 1IT

ENSURE S5KIP TAKEN

SKIP BKD COLOUR
BKD COLOUR

CONTINUE NORMAL IRQG

141, 28, 3, 169, 19

193, 88, 94, 128,

234, 141, 21, 3,

268 Bits 'n’ pieces

4 DATA 238, @, 193, 173, 8, 193, 201, 40
, 208, 42

S DATA 149, 6, 141, 8, 193, 145, 283, 24
, 201, 4

6 DATA 208, 1S5, 24, 173, 32, 288, 41, 15
, 185, 1

7 DATA 141, 32, 268, 169, 8, 248, 15, 28

1, 5, 208

8 DATA 11, 24, 173, 33, 268, 41, 15, 185
, 1, 141

9 DATA 33, 268, 76, 49, 234, 237, &1, 3,
178, 173

18 FOR I=49152 TO 49238:READ A:POKE I,A:
NEXT 1

The IrQ vector can be used to great advantage. One common use is to
provide interrupt driven music (see The Companion to the Com-
modore 64 pub. by Pan/PCN) and as in the uTiLITY to make the function
keys programmable (Chapter 4).

Simple program protection

Some BasICs include commands to ‘unlist’ or generate protected files;
the 64’s, however, does not. In order to protect our software we have
to resort to programming tricks.

There are many ways to afford a program some degree of protection
from unauthorized change. Most of these are well known and do little
to prevent the experienced user from gaining access. Chapter 1
showed how the link addresses could be modified to make program
lines invisible and list out of sequence. Another way to hide areas of
code is to end lines with a REM"[DELIIDEL] “ sequence. On listing, the
‘deletes’” will erase characters to their left. Most other techniques
require a program to be RUN.

Once a program has been run we can destroy some of the vectors
from $0300 to $0333. These include the PRINT TOKENS LINK, 1QPLOP, which
could be directed to, say, print ‘SYNTAX ERROR’ at $AFe8, the SAVE vector at
ISAVE to prevent saving and also disable the rRun/sTOP at 1STOP. We could
also put a specified value somewhere in memory which, if not found,
will cause the program to crash, erase itself or even perform a cold
boot of the system. Unfortunately (or perhaps fortunately) any Basic
program can be loaded without being run. To produce programs
which auto-run on loading requires knowledge of both machine code
and the operating system of the 64 (see cHAIN in Chapter 8). Nearly all
commercial software uses a number of levels of protection, one of
which is usually auto-running. We have covered a number of ways to
accomplish this for your own software in Chapter 2, but purposely

Bits 'n” pieces 269

leave out many of the techniques used by commercial software
houses. (Remember it is illegal to reproduce commercial software.)

Commodore Computing International Volume 2 No.ll has an article
on program protection. It contains the usual:

DISABLE RUN/STOP POKE 808,251
DISABLE LIST POKE 774,131:POKE 775,164
DISABLE SAVE POKE 818,131:POKE 819,164

The first simply bypasses the test by jumping to the end of the routine
(RTS). The latter two jump to ‘ready for Basic’. Similar changes may be
made to RUNRESTORE at NMINV (see Chapter 6). The article does give a
program to generate auto-run programs from your own code. If you
are interested then, as the program is copyrighted, we suggest you get
hold of a copy of the magazine. A further tape protection idea was
given in Commodore User Volume 1 No.10.

Specified input

One of the most difficult and time-consuming tasks in producing
software for use by others is in making it ‘crash-proof’. Basic does not
allow the programmer to specify which keys are valid during input. The
results of incorrect entries in type, size or number can spoil a well-
thought-out, pleasing display or even crash the program. The way
round this problem is to write your own input routine.

Commodore Horizons magazine of February 1984 published a very
good machine code ‘Keyscan’ input program written by Adrian War-
man which does just about everything you could ask for. We see little
point in re-inventing the wheel, so we suggest that you read that
article. However, we have approached the problem from a different
angle and produced a simple routine entirely in Basic. This is intended
to be called when input is required. The type of input expected is set
using the variable ‘F" which is set to 0 for a real number, 1 for an integer
and 2 for a string. Strings may contain commas and quotes. Editing an
input may only be carried by using the DeLeTe key. The returned value
may, if required, be converted to a number by a simple vaLy. If the
routine is to be used more than once, As must be emptied by: As=""
before each use.

60000 Generate a flashing cursor.

60030 Ifitis a delete check chars are there to be removed.

60040 ‘Return’ marks end of input and the resulting string As is passed
back to the main program.

60050 Real numbers.

60060 Integeronly.

60070 String.

60090 Update the display and wait for next char.

270 Bits 'n’ pieces

60110- Real numbers may begin with + or — and may contain only
numerals and a decimal point.

60170- As for real but may not have a decimal point and must lie in the
range given.

60230- Allows any of the standard alphanumerics. To provide for lower
case mode where uppercase characters have their high bit set
some graphics are permitted (128+32 to 128+64).

66808 POKE 284,08:POKE 287,8

68818 GET Y#:IF Y$="" GOTO 466060

68828 A=LENC(A%$)

66038 IF Y$=CHR#%(28> AND A>8 THEN A$=LEF

T$(A%,A-1):60TO 56896

680648 IF Y$=CHR#$(13) GOTO 48168

66658 IF F=8 THEN GOSUB 48118:G0T0 &s88%8
680468 IF F=1 THEN GOSUB 46176:G0T0O 46096
46808786 IF F=2 THEN GOSUB &48238:G0T0O 4808%8
4688686 GOTO 46068

460698 PRINT Y%;:60T0O s6886

661086 RETURN

48118 REM REAL

68126 IF Y$="+" OR Y$="-" AND A=8 THEN

AE=Y$:6G0T0 s8140

68138 IF Y$>"/" AND Y$<":" THEN A$=A%+Y$
:GOTO 481480

681408 IF Y$="." THEN A$=A%$+Y$:60T0 &6140
68158 Y$=""

681468 RETURN

68178 REM INTEGER

48188 IF Y$="+" OR Y#$="-" AND A=0 THEN

AE=Y$:60TO0 482286

68198 IF Y$>"/" AND Y#<":" THEN A$=A%+Y$
:GOTO 406220

60208 IF VAL(A$) >32747 OR VAL(A$)-32748
THEN A$=LEFT$(A%,A) :GOTO 48220

68218 Y$=""

68228 RETURN

68238 REM STRING

682408 IF (ASC(Y$) AND 127)<(32 OR (ASC(Y$%$
> AND 127)>95 THEN Y$="":G0TO 408240
468250 AE=A%+YS

68266 RETURN

The above is intended only as a starting point. Obvious improvements
would be to allow the use of the cursor keys by manipulating the string
with LEFTS, MID$S and RIGHTS. The maximum length of the string field
could also be set to prevent overwriting an existing display.

Bits 'n’" pieces 271

Invisible characters

Most readers will no doubt be aware that character data may be
directly poked to the screen. They will also have discovered that on
occasions no effect is apparent. A screen character (normal mode)
takes on the colour set in the corresponding location of the colour
map (sD8eo on). If no character has been printed at this location nor a
colour set since the last clear screen the adopted colour is that of the
background. To see if the character is there, simply move the cursor to
the location.

We can use this to good effect by making displays change quite
quickly from Basic with just pokes to the colour map. It is important to
remember that on an INPUT even though the character cannot be seen it
is still there and active.

PET-64/64—PET

Commodore has maintained almost complete compatibility in the
storage of programs on tape and to a lesser degree on disk. A tape
prepared on any machine may be read by another. The 1541 disk drive
uses an identical format to the 4040 unit. It can also read 2040 and 3040
formatted disks, but will corrupt these disks if it writes to them. You
may also find that you get write problems on 4040 formatted disks. This
compatibility does not mean to say that a program written for one
machine will work directly on another.

A BASIC program saved on a Pt can be loaded and run directly on the
64, whereas the reverse is not true. A word of warning to cassette
users that the secondary address of 3 available on the 64 is not recog-
nised by the per. This is due to the different start address of BAsiC on
the two machines (se401 on peT). Loading a program with a secondary
address of zero will not allow it to load below the current start of BasiC.
This means that on the 64 the load will be forced to $801. A 64 program
will normally have a start greater than se401 and will go in above the start
of Basic and is not directly usable.

There are two ways to overcome the problem. The first is raise the
start of BASIC on the PET to $0801 by (BASIC 2 & 4)

POKE 41,08:POKE 2048,0: NEW

before loading. All pokes to the screen will have to be adjusted for the
PET screen which starts at $ee0 (32768) and all pokes to the colour map
removed. Defining the start of the screen with a variable and using
offsets from this simplifies the conversion. The easiest way is to avoid
using anything other than pPrRINT for output.

The second technique involves configuring the 64 to look like a PeT —
BASIC at so401 and the screen in bank 2 at sse0. The Programmer’s
Reference Guide (Chapter 3, ‘Screen Memory’) tells us how to relocate

272 Bits 'n’ pieces

the screen by setting bits 7 to 4 of spe1s (53272), remembering to tell the
screen editor where it has gone by setting HIBASE ($0288/648). The start of
BASIC is lowered by setting 7xTTAB and the top of memory set using
MEMTOP and string storage with rreTop. The following program if run will
carry out the necessary changes. SYNTAX ERRORs may result until the
screen is cleared due to invisible characters.

16 POKE S1,686:POKE 55,600

28 POKE 52,128:POKE 56,128

38 POKE 56578,PEEK(58578) OR 3:POKES4574
s (PEEK(S48578)AND252) OR 1

46 POKE 53272,(PEEK(53272>AND15)0R8 :POKE
448,128:POKE 1824,0:POKE 44,4:NEW

There are some very sophisticated peT emulators on the market and
even cross-assemblers for machine code and cross-compilers for BASIC.
If a lot of your work is in an area where portability is important, it might
well be worthwhile pursuing the matter.

Load and run

Pressing sHIFT and RuN/sTOP will load and run the first program on tape
providing it is in BAsiC. This may also be performed by:

POKE 631,131:POKE 198,1

The advantage of the second is that it can be used from within a
program to avoid the problems associated with chaining if variables are
not to be retained. Less well known is its use with disk. The format is:

LOAD"PROG",8:[Press SHIFT & RUN/STOP]

Disk bugs

When using sequential data files problems may be encountered if the
same logical file number is used for both read and write operations.
Typically, error 63 FiLE ExiSTS is reported. The only way to be sure is to
use different numbers for input and output.

A less annoying feature is that null strings written to a data file are
ignored on reading back. One way to overcome the problem is to
always default null strings to a set value which is recognized on reading
back. Alternatively, GET# may be used to pick up returns and commas (a
bit laborious).

Appendices

APPENDIX A: Storage of BAsIC text

Standard CBM 64 tokens
hex dec hex dec hex dec hex dec
$20 32 sp $40 64 @ $80 128 END $A6 166 SPC(
$21 33 ! $41 65 A $81 129 FOR $A7 167 THEN
$22 34 7 $42 66 B $82 130 NEXT $A8 168 NOT
$23 35 # $43 67 C $83 131 DATA $A9 169 STEP
$24 36 $ $44 68 D $84 132 INPUT# $AA 170 + add
$25 37 % $45 69 E $85 133 INPUT $AB 171 — minus
$26 38 & $46 70 F $86 134 DIM $AC 172 * multi
$27 39 $47 71 G $87 135 READ $AD 173 /div
$28 40 ($48 72 H $88 136 LET $AE 174 1 power
$29 41) %49 73 | $89 137 GOTO $AF 175 AND
$2A 42 » $4A 74 | $8A 138 RUN $B0 176 OR
$2B 43 + $4B 75 K $8B 139 IF $B1 177 > gt
$2C 44, $4C 76 L $8C 140 RESTORE $B2 178 =eq
$2D 45 - $4D 77 M $8D 141 GOSUB $B3 179 <t
$2E 46 . $4E 78 N $8FE 142 RETURN $B4 180 SGN
$2F 47 / $4F 79 O $8F 143 REM $B5 181 INT
$30 48 0 $50 80 P $90 144 STOP $B6 182 ABS
$31 49 1 $51 81 Q $91 145 ON $B7 183 USR
$32 50 2 $52 82 R $92 146 WAIT $B8 184 FRE
$33 51 3 $53 83 S $93 147 LOAD $B9 185 POS
$34 52 4 %54 84 T $94 148 SAVE $BA 186 SQR
$35 53 5 $55 85 U $95 149 VERIFY $BB 187 RND
$36 54 6 $56 8 V $96 150 DEF $BC 188 LOG
$37 55 7 $57 87 W $97 151 POKE $BD 189 EXP
$38 56 8 $58 88 X $98 152 PRINT# $BE 190 COS
$39 57 9 $59 89 Y $99 153 PRINT $BF 191 SIN
$3A 58 : $5A 90 Z $9A 154 CONT $CO 192 TAN
$3B 59 ; $5B 91 [$9B 155 LIST $C1 193 ATN
$3C 60 < $5C 92 £ $9C 156 CLR $C2 194 PEEK
$3D 61 = $D 93] $9D 157 CMD $C3 195 LEN
$3E 62 > $5E 94 1 $9E 158 SYS $C4 196 STR$
$3F 63 2 $5F 95 <« $9F 159 OPEN $C5 197 VAL
$A0 160 CLOSE $C6 198 ASC
$A1 161 GET $C7 199 CHR$
$A2 162 NEW $C8 200 LEFT$
$A3 163 TAB($C9 201 RIGHT$
$A4 164 TO $CA 202 MID$
$A5 165 FN $CB 203 GO

274 Appendices

Extended basic tokens

hex dec hex dec

$CC 204 OFF $E6 230 RESET
$CD 205 KEY $E7 231 CHAIN
$CE 206 DOKE $E8 232 LOMEM
$CF 207 TEN $E9 233 HIMEM
$D0 208 TWO $EA 234 INKEY$
$D1 209 HEX $EB 235 MEM
$D2 210 BIN $EC 236 APPEND
$D3 211 OLD $ED 237 TROFF
$D4 212 COLOUR $EE 238 unused
$D5 213 WRITE $EF 239 unused
$D6 214 CGOTO $FO 240 unused
$D7 215 CGOSUB $F1 241 unused
$D8 216 PLOT $F2 242 unused
$D9 217 ENTER $F3 243 unused
$DA 218 DUMP $F4 244 unused
$DB 219 RENUM $F5 245 unused
$DC 220 DELETE $F6 246 unused
$DD 221 MERGE $F7 247 DEEK
$DE 222 CODER $F8 248 unused
$DF 223 AUTO $F9 249 unused
$E0 224 PROC $FA 250 unused
$E1 225 DPROC $FB 251 unused
$E2 256 EPROC $FC 252 unused
$E3 227 POP $FD 253 unused
$E4 228 QUIT $FE 254 unused
$E5 229 TRACE

Appendices 275
APPENDIX B: Hex to decimal and decimal to hex converter
hex decimal hex decimal hex decimal hex decimal

low high low high low high low high

$00 0 0 $29 41 10496 $52 82 20992 $7B 123 31488
$01 1 256 $2A 42 10752 $53 83 21248 $7C 124 31744
$02 2 512 $2B 43 11008 $54 84 21504 $7D 125 32000
$03 3 768 $2C 44 11264 $55 85 21760 $7E 126 32256
$04 4 1024 $2D 45 11520 %56 86 22016 $7F 127 32512
$05 5 1280 $2E 46 11776 $57 87 22272 $80 128 32768
$06 6 1536 $2F 47 12032 $58 88 22528 $81 129 33024
$07 7 1792 $30 48 12288 $59 89 22784 $82 130 33280
$08 8 2048 $31 49 12544 $5A 90 23040 $83 131 33536
$09 9 2304 $32 50 12800 $5B 91 23296 $84 132 33792
$0A 10 2560 $33 51 13056 $5C 92 23552 $85 133 34048
$oB 11 2816 $34 52 13312 $5D 93 23808 $86 134 34304
$oC 12 3072 $35 53 13568 $5E 94 24064 $87 135 34560
$oD 13 3328 $36 54 13824 $5F 95 24320 $88 136 34816
$0E 14 3584 $37 55 14080 $60 96 24576 $89 137 35072
$oF 15 3840 $38 56 14336 $61 97 24832 $8A 138 35328
$10 16 409 $39 57 14592 $62 98 25088 $8B 139 35584
$11 17 4352 $3A 58 14848 $63 99 25344 $8C 140 35840
$12 18 4608 $3B 59 15104 $64 100 25600 $8D 141 36096
$13 19 4864 $3C 60 15360 $65 101 25856 $8F 142 36352
$14 20 5120 $3D 61 15616 $66 102 26112 $8F 143 36608
$15 21 5376 $3E 62 15872 $67 103 26368 $90 144 36864
$16 22 5632 $3F 63 16128 $68 104 26624 $91 145 37120
$17 23 5888 $40 64 16384 - $69 105 26880 $92 146 37376
$18 24 6144 $41 65 16640 $6A 106 27136 $93 147 37632
$19 25 6400 $42 66 16896 $6B 107 27392 $94 148 37888
$1A 26 6656 $43 67 17152 $6C 108 27648 $95 149 38144
$1B 27 6912 $44 68 17408 $6D 109 27904 $96 150 38400
$1C 28 7168 $45 69 17664 $6E 110 28160 $97 151 38656
$1D 29 7424 $46 70 17920 $6F 111 28416 $98 152 38912
$1E 30 7680 $47 7 18176 $70 112 28672 $99 153 391 68
$1F 31 7936 $48 72 18432 $71 113 28928 $9A 154 39424
$20 32 8192 $49 73 18688 $72 114 29184 $9B 155 39680
$21 33 8448 $4A 74 18944 $73 115 29440 $9C 156 39936
$22 34 8704 $4B 75 19200 $74 116 29696 $9D 157 40192
$23 35 8960 $4C 76 19456 $75 117 29952 $9FE 158 40448
$24 36 9216 $4D 77 19712 $76 118 30208 $9F 159 40704
$25 37 9472 $4E 78 19968 $77 119 30464 $AD 160 40960
$26 38 9728 $4F 79 20224 $78 120 30720 $A1 161 41216
$27 39 9984 $50 80 20480 $79 121 30976 $A2 162 41472
$28 40 10240 $51 81 20736 $7A 122 31232 $A3 163 41728

276 Appendices

hex decimal hex decimal hex decimal hex decimal
low high low high low high low high

$A4 164 41984 $BB 187 47872 $D2 210 53760 $E9 233 59648
$A5 165 42240 $BC 188 48128 $D3 211 54016 $EA 234 59904
$A6 166 42496 $BD 189 48384 $D4 212 54272 $EB 235 60160
$A7 167 42752 $BE 190 48640 $D5 213 54528 $EC 236 60416
$A8 168 43008 $BF 191 48896 $D6 214 54784 $ED 237 60672
$A9 169 43264 $CO 192 49152 $D7 215 55040 $EE 238 60928
$AA 170 43520 $C1 193 49408 $D8 216 55296 $EF 239 61184
$AB 171 43776 $C2 194 49664 S$D9 217 55552 $FO 240 61440
$AC 172 44032 $C3 195 49920 S$DA 218 55808 $F1 241 61696
$AD 173 44288 $C4 196 50176 $DB 219 56064 $F2 242 61952
$AE 174 44544 $C5 197 50432 $DC 220 56320 $F3 243 62208
$AF 175 44800 $C6 198 50688 S$DD 221 56576 $FA 244 62464
$BO 176 45056 $C7 199 50944 $DE 222 56832 $F5 245 62720
$B1 177 45312 $C8 200 51200 $DF 223 57088 $F6 246 62976
$B2 178 45568 $C9 201 51456 $E@ 224 57344 $F7 247 63232
$B3 179 45824 $CA 202 51712 $E1 225 57600 $F8 248 63488
$B4 180 46080 $CB 203 51968 $E2 226 57856 $F9 249 63744
$B5 181 46336 $CC 204 52224 $E3 227 58112 $FA 250 64000
$B6 182 46592 $CD 205 52480 $E4 228 58368 S$FB 251 64256
$B7 183 46848 $CE 206 52736 $E5 229 58624 SFC 252 64512
$B8 184 47104 $CF 207 52992 $E6 230 58880 S$FD 253 64768
$B9 185 47360 $DO 208 53248 $E7 231 59136 $FE 254 65024
$BA 186 47616 $D1 209 53504 $E8 232 59392 $FF 255 65280

APPENDIX C: Machine code mnemonics and hex values
6510 OP-CODES

The tables below are a quick reference guide only and for more
detailed information a 6502 assembler book should be consulted.

The tables should be read row then column. If in doubt, remember
LDA immediate mode is $A9. The following abbreviations have been
used:

—immediate mode A=accumulator
$ - absolute address X=X index register
Z -zero page Y=Y index register

| —indirect address

Appendices 277

0 1 2 4 5 6

0 BRK ORA (1,X) ORAZ ASLZ

1 BPL ORA(1),Y ORA Z X ASLZ,X
2 JSR AND (1,X) BITZ AND Z ROLZ
3 BMI AND (1),Y AND Z X ROLZ,X
4 RTI EOR (1,X) EORZ LSRZ

5 BVC EOR(1),Y EOR Z,X LSRZ,X
6 RTS ADC (1,X) ADCZ RORZ
7 BVS ADC(I),Y ADCZ,X RORZ,X
8 STA (1,X) STYZ STAZ STXZ

9 BCC STA)Y STYZ X STAZX STXZ)Y
A LDY# LDA (1,X) LDX # LDY Z LDA Z LDX Z

B BCS LDA(D),Y LDYZ X LDAZX LDXZY
C CPY# CMP(,X) CpPYZz CMPZ DECZ
D BNE CMP(I),Y CMP Z X DEC Z, X
E CPX# SBC(,X) CPXZ SBCZzZ INCZ

F BEQ SBC ()Y SBCZ,X INCZ,X
8 9 A C D E

0 PHP ORA # ASLA ORAS$ ASL$
1CLC ORAS$Y ORA$ X ASL $,X
2PLP AND # ROLA BIT$ AND $ ROL $

3 SEC ANDS$,Y AND $,X ROL$,X
4 PHA EOR # LSR A JMP $ EOR$ LSR'$

5 CLI EORS$Y EOR $,X LSR $,X
6 PLA ADC # RORA JMPI ADC$ ROR $

7 SEl ADCS$,Y ADC $,X ROR §,X
8 DEY TXA STY$ STAS STX $
9TYA STAS,Y TXS STA $,X

ATAY LDA # TAX LDY $ LDA $ LDX $

B CLV LDA$,Y TSX LDY$,X LDAS$ X LDX $,Y
CINY CMP # DEX CPY$ CMP $ DEC$
DCLD CMPS$Y CMP $,X DEC $,X
E INX SBC # NOP CPX'$ SBC$ INC$

F SED SBCS$,Y SBC $,X INC$,X

APPENDIX D: Basic loader for Supermon

This is the BAsic program to produce Jim Butterfield’s Supermon moni-
tor. Type it in and sAve it before running. There are lots of numbers so
itis easy to make a mistake.

278 Appendices

We have put in some checksums to help isolate errors. Once loaded
correctly you will be able to save the machine code version from the
monitor itself. Instructions for using Supermon are given in Appendix E.

Supermon normally loads to the top of Basic memory. We have
modified it to sit at sceee on to allow you to enter the code for the
uTitity. Once you have it up and running, you can use Supermon to
modify itself to sit anywhere. There are addresses which require
changing so we have included a relocater program after the loader.

The Loader

18 A=49152:C=0

20 READB:1FB=-1THEN486

30 POKEA,B:A=A+1:C=C+B:G0T020

48 1FC=27914THENsO

S8 PRINT"DATA ERROR IN 1660 - 1388" :END
46 C=0

786 READB:1FB=-1THENY80

88 POKEA,B:A=A+1:C=C+B:G0OTO0786

90 IFC=26078THEN110

108 PRINT"DATA ERROR IN 13186 - 14860" :END
1186 C=0

126 READB:I1FB=-1THEN140

1380 POKEA,B:A=A+1:C=C+B:G0TO01206

148 IFC=26897THENI140

158 PRINT"DATA ERROR IN 14818 - 1968" :END
166 C=0

178 READB:I1FB=-1THEN19%8

188 POKEA,B:A=A+1:C=C+B:G0TO176

196 IFC=28855THEN2186

208 PRINT"DATA ERROR IN 1916 - 2288" :END
21e Cc=0

220 READB:IFB=-1THEN2486

238 POKEA,B:A=A+1:C=C+B:G0T02286

248 IFC=25343THEN2486

250 PRINT"DATA ERROR IN 2216 - 25060" :END
2468 C=8

278 READB:I1FB=-1THEN2%0

280 POKEA,B:A=A+1:C=C+B:60T0270

298 IFC=25432THEN316

388 PRINT"DATA ERROR IN 2516 - 28868" :END
318 C=8

328 READB:IFB=-1THEN348

330 POKEA,B:A=A+1:C=C+B:60T0320

346 IFC=27324THEN346

358 PRINT"DATA ERROR IN 2818 - 3180" :END

3408
378
386
398
400
410
428
430
440
4580
440
470
486
498
oee
S18
028
536
546
ST
o480
o578
o8e
1600
16180
1828
10630
1840
1850
1es0
1870
1680
18690
11080
1118
11260
11306
1148
1150
1146
1178
1186
11906
12080
1218
1226

Appendices

C=6
READB: I FB=-1THEN358
POKEA,B:A=A+1:C=C+B:G0T0370
IFC=25335THEN410@
PRINT"DATA ERROR IN 3118 - 3488" :END
C=0
READB: I FB=-1THEN448
POKEA,B:A=A+1:C=C+B:G0T0420
IFC=28657THEN440
PRINT*DATA ERROR IN 3418 - 37@8@" : END
c=60
READB: I FB=-1THEN4%8
POKEA,B:A=A+1:C=C+B:G0OT0478
IFC=208514THENS10

PRINT"DATA ERROR IN 3718 - 4888" : END
C=0

READB: I FB=-1THENS48
POKEA,B:A=A+1:C=C+B:G0T0520
IFC=22841THENSS@

PRINT"DATA ERROR IN 481@ - 4298" :END
PRINT"DATA CORRECT" : PRINT
PRINT"SYS49152 TO USE"

END

DATA74,233,192,255,0,0,255
DATA255,8,8,255,255,0,0
DATAZSS5,255,0,8,255,255,0

DATAB ,255,255,8,8,255, 255
DATA®,08,255,255,08,0,255
DATA2S5,8,8,255,255,0,0
DATA255,255,8,08 ,255, 255, 0

DATA® ,255,255,08,08,255, 255

DATA® ,@,255,255,0,08,255
DATA255,0,8,255,255,0,0
DATA2S55,255,8,8,255,255,0

DATA® , 255,255,8,8 , 255, 255
DATA@,8,255,255,0,0,255
DATA255,0,8,255,255,8,0
DATA255,255,8,8,255,255,0

DATA® , 255,255,8,8 , 255,255
DATA®,8,255,255,0,0,255
DATA255,0,8,255,255,0,0
DATA2S5,255,128,8,255,255,0

DATA® ,255,255,8,8,255, 255
DATA®,8,255,255,0,08, 255
DATA255,8,8,255,255,0,0
DATA255,255,8,8,255,255,0

279

280 Appendices

1236
1240
1250
1260
1276
1286
12980
1360
1310
1328
1338
1348
1356
13680
1370
1386
13%8
1480
1418
1426
1436
1448
1458
1466
1476
1488
1498
15686
1518
1528
1538
15486
1550
13480
1578
15860
1598
16686
1618
14626
16380
1648
1456
1668
1678
1686

DATAB ,255,255,8,0,255,255
DATAB ,8 ,255,255,8,8,255
DATA255,8,8 ,255,255,0,0
DATA2S5,255,0,8 ,255,255,0
DATA® ,255,255,8,8,255,255
DATA® ,8,255,255,08,8,255
DATA255,0,8,255,255,0,0
DATAZSS,255,8,8,255,255,0,-1
DATAB ,255,255,0,8,255,255
DATA® ,8,255,255,8,08,255
DATAR255,8,169,1608,133,56,173
DATA230,200,141,22,3,173,231
DATAZ208,141,23,3,169,128,32
DATA144,255,0,216,184,141,62
DATAZ,104,141,61,2,104,141
DATASLS , 2,104,141 ,59,2,104
DATA1708,104,168,56,138,233,2
DATA141,58,2,152,233,0,141
DATAS7,2,186,142,63,2,32
DATAS7,198,162,66,169,42,32
DATAB7,195,169,82,208,52,2386
DATA193,208,6,2308,194,208,2
DATA236,38,96,32,287,255,261
DATA13,2088,248,104,184,169,154
DATA32,2108,255,1469,8,133,38
DATA162,13,169,46,32,87,195
DATA169,159,32,218,255,32,62
DATA193,261,46,240,249,201 ,32
DATAZ408,245,162,14,221,183,208
DATAZ88,12,138,10,170,189,199
DATAZ80,72,189,198,2088,72,96
DATAZ82,16,236,76,237,195,165
DATA193,141,58,2,145,194,141
DATAS?7,2,96,169,8,133,29
DATA148,8,32,84,198,177,193
DATA32,72,195,32,51,193,198
DATA29,288,241,96,32,136,195
DATA144,11,162,0,129,193,193,-1
DATA193,240,3,76,237,195,32
DATAS1,193,198,29,96,149,59
DATA133,193,169,2,133,194,146%
DATAS,96,152,72,32,87,198
DATA184,162,46,756,87,195,169
DATA154,32,218,255,1462,0,18%
DATA234,208,32,210,255,232,224
DATA22,2088,245,140,59,32,194

1565786
1768
1718
1726
1730
1746
1758
1748
1778
1788
1798
1806
1818
1826
1836
1848
1858
1848
1878
1886
18%8
1508
1?10
1928
1936
19486
1956
19686
1978
1988
1998
26080
2618
2828
2838
2848
20850
28480
2878
2688
28980
2100
2118
2126
2138
2140

Appendices

DATA193,173,57,2,32,72,195
DATA173,58,2,32,72,195,32
DATA183,193,32,141,193,248,92
DATA32,62,193,32,121,195,144
DATAS1,32,105,195,32,462,193
DATA3Z,121,195,144,40,32,105
DATA195,1469,154,32,218,255,32
DATAZ25,255,240 ,40,166,38,208
DATASS,165,195,197,193,165,194
DATAZ29,194,144,44,140,58,32
DATA194,193,32,45,195,32,139
DATA193,240,224,76,237,195,32
DATA121,195,144,3,32,128,193
DATAZ2,183,193,208,7,32,121
DATAL195,144,235,169,8,133,29
DATA32,62,193,32,161,193,208
DATAZ48,76,71,193,32,287,255
DATAZG1,13,246,12,201,32,208
DATAZ8%,32,121,195,144,3,32
DATA128,193,169,154,32,218,255
DATA174,63,2,154,128,173,57
DATAZ,72,173,58,2,72,173,-1
DATAS9,2,72,173,60,2,174
DATASL ,2,172,62,2,64,16%
DATA154,32,218,255,174,63,2
DATA154,108,2,168,160,1,132
DATA186,132,185,136,132,183,132
DATA144,132,147,169,64,133,187
DATA14%,2,133,188,32,287,255
DATAZG1 ,32,246,249,261,13,240
DATASS, 201 ,34,2088,20,32,2087
DATAZ55,281,34,240,16,201,13
DATA248,41,145,187,238,183,208
DATA192,14,2088,236,76,237,195
DATA32,207,255,201,13,240,22
DATAZG1,44,208,228,32,136,195
DATA41,15,2408 ,233,201,3,248
DATAZ229,133,186,32,287,255,201
DATA13,94,188,48,3,188,50
DATA3,32,150,194,288,212,1&9
DATA154,32,210,255,16%,8,32
DATAZ39,194,165,144,41,16,288
DATA196,76,71,193,32,158,194
DATAZ@1,44,208,186,32,121,195
DATA32,105,195,32,287,255,201
DATA44,288,173,32,121,195,165

281

282 Appendices

2156
2140
2178
2186
21980
2200
2218
2228
2230
2246
2258
2268
2270
2280
2298
2300
2318
2328
2330
2348
2358
2348
2378
23880
23%8
24908
2418
2420
2438
2440
2456
2448
2478
2480
2498
2500
2518
2520
2530
2548
25560
2548
2578
2586
25%0
24600

DATA193,133,174,165,194,133,175
DATA32,185,195,32,207,255,281
DATA13,208,152,169,154,32,2180
DATA255,32,242,194,76,71,193
DATA165,194,32,72,195,165,193
DATA72,74,74,74,74,32,96,-1
DATA195,178,184,41,15,32,96
DATA195,72,138,32,218,255,104
DATA76,218,255,9,48,201,58
DATA144,2,185,6,96,162,2
DATA181,192,72,181,194,149,192
DATA104,149,194,202,208,243,96
DATA32,136,195,144,2,133,194
DATA32,136,195,144,2,133,193
DATA®6,169,8,133,42,32,62
DATA193,201,32,208,9,32,62
DATA193,201,32,2088,14,24,96
DATA32,175,195,18,10,10,10
DATA133,42,32,62,193,32,175
DATA195,5,42,56,96,2681,58
DATA144,2,185,8,41,15,96
DATA162,2,44,162,0,180,193
DATAZ208,8,188,194,208,2,230
DATA38,214,194,214,193,96,32
DATAG2,193,281,32,240,249,94
DATA169,8,141,08,1,32,2084
DATA195,32,143,195,32,124,195
DATA144,9,96,32,62,193,32
DATA121,195,176,222,174,63,2
DATA154,169,154,32,218,255,169
DATA&3,32,218,255,76,71,193
DATA32,84,198,282,208,250 , 96
DATA230,195,208,2,230,196,96
DATA162,2,181,192,72,181,39
DATA149,192,1084,149,39,282,208
DATA243,94,165,195,164,196,5&, -1
DATA233,2,176,14,136,144,11
DATA1685,408,164,41,76,51,196
DATA145,195,144,196,56,229,193
DATA133,30,152,229,194,148,5
DATA30,96,32,212,195,32,185
DATA195,32,229,195,32,12,196
DATA32,229,195,32,47,196,32
DATA185,195,144,21,146,38,268
DATA108,32,48,196,144,95,161
DATA193,129,195,32,5,194,32

2610
2620
2638
2648
2650
2668
2678
25688
2698
2708
2718
2720
2736
2746
2750
2748
27780
2780
2798
2860
2818
2820
2830
2848
2858
28486
2878
28860
2898
29080
29160
2920
2930
2940
2950
2960
2978
2980
2998
3000
3018
3628
36386
3848
3856
3840

Appendices

DATAS1,193,2088,235,32,40,194
DATA24,165,30,181,195,133,195
DATA152,181,196,133,196,32,12
DATA196,166,38,2088,61,161,193
DATA129,195,32,408,196,176,52
DATA32,184,195,32,187,195,76
DATA125,196,32,212,195,32,185
DATA195,32,229,195,32,185,195
DATA32,62,193,32,136,195,144
DATA28,133,29,166,38,208,17
DATA32,47,196,144,12,145,29
DATA129,193,32,51,193,208, 238
DATA76,237,195,76,71,193,32
DATA212,195,32,185,195,32,229
DATA195,32,185,195,32,42,193
DATA162,08,32,62,193,261,39
DATAZ288,28,32,62,193,157,16
DATAZ,232,32,287,255,281,13
DATA248 ,34,224,32,2088,241,240
DATA28,142,8,1,32,143,195,-1
DATA144,198,157,16,2,232,32
DATAZ87,255,281,13,248,9,32
DATA136,195,144,182,224,32,208
DATAZ236,134,28,1469,154,32,210
DATA255,32,87,198,162,8,148
DATAB,177,193,221,16,2,208
DATA12,208,232,228,28,208,243
DATA32,645,195,32,84,198,32
DATAS1,193,164,38,2688,141,32
DATA47,196,176,221,76,71,193
DATA32,212,195,133,32,165,194
DATA133,33,162,08,134,408,16%
DATA147,32,218,255,q69,154,32
DATAZ218,255,169,22,133,29,32
DATA186,197,32,282,197,133,193
DATA132,194,198,29,288,242,1469
DATA145,32,218,255,76,71,193
DATA148,44,32,194,193,32,84
DATA198,32,65,195,32,84,198
DATA162,0,161,193,32,217,197
DATA72,32,31,198,184,32,53
DATA198,162,6,224,3,2088,18
DATA164,31,248,14,165,42,281
DATA232,177,193,176,28,32,194
DATA197,136,2088,242,6,42,144
DATA14,189,42,200,32,165,198

283

284 Appendices

3878 DATA189,48,288,248,3,32,165
3888 DATA198,202,208,213,94,32,205
3098 DATA197,170,232,288,1,288,152
3180 DATA32,194,197,138,134,28,32,-1
3118 DATA72,195,166,28,96,165,31
3128 DATASS,164,194,176,16,1,136
3138 DATA181,193,144,1,2808,96,168
3148 DATA74,144,11,74,1746,23,261
3158 DATA34,248,19,41,7,9,128

3148 DATA74,176,189,217,199,174,4
3178 DATA74,74,74,74,41,15,2088

3188 DATA4,148,128,149,0,178,189
3198 DATAZ29,280,133,42,41,3,133
3288 DATA31,152,41,143,178,152,146
3218 DATA3,224,138,248,11,74,144
3228 DATAS,74,74,9,32,136,208

3238 DATA258,260,134,208,242,96,177
3248 DATA193,32,194,197,162,1,32
3258 DATA254,195,1946,31,280,144,241
3248 DATA162,3,192,4,144,242,96
3278 DATA148,185,55,200,133,48,185
3288 DATA119,200,133,41,169,0,140
3298 DATAS,4,41,38,48,42,136

3360 DATAZ268,248,185,463,32,218,255
3319 DATAZ82,288,234,14%,32,44,149
33208 DATA13,76,210,255,32,212,195
3338 DATA32,185,195,32,229,195,32
3348 DATA185,195,162,8,134,48,1&9
3358 DATA154,32,218,255,32,87,198
3348 DATA32,114,197,32,282,197,133
3378 DATA193,132,194,32,225,255,240
3388 DATAS,32,47,194,176,233,76
3398 DATA71,193,32,212,195,149,3
3408 DATA133,29,32,42,193,32,141,-1
3418 DATA193,2088,248,165,32,133,193
3428 DATA165,33,133,194,74,78,197
3438 DATA197,40,248,3,32,218,255
3448 DATA96,32,212,195,32,185,195
3458 DATA142,17,2,1462,3,32,204

34680 DATA195,72,282,2088,249,152,3
3478 DATA184,56,233,63,160,5,74
3480 DATA118,17,2,118,16,2,136

3490 DATAZ88,244,282,2088,237,162,2
35800 DATA32,287,255,201,13,246,30
3518 DATAZ281,32,248,245,32,288,199
3528 DATA176,15,32,156,195,144,193

3538
3546
3558
3548
3578
3586
3598
3680
3618
3626
34638
3448
3656
36686
34678
3480
3696
3760
3718
3728
3738
37480
3758
3768
3778
3788
3796
38660
3818
3820
38360
3846
3856
3846
3878
3888
3898
3786
3718
3920
3938
3948
3958
3966
39768
39886

Appendices

DATA132,194,133,193,149,48,157
DATA16,2,232,157,16,2,232
DATAZ288,219,134,40,142,8,134
DATA38,240,4,230,38,2468,117
DATA142,08,134,29,145,38,32
DATAZ17,197,166,42,134,41,1780
DATA188,55,208,189,119,280,32
DATA185,199,2088,227,162,4,224
DATA3,288,25,144,31,240,21
DATA145,42,2081,232,1469,48,174
DATA33,32,191,199,288,284,32
DATA193,199,208,199,1346,288, 235
DATAS,42,144,11,188,48,200
DATA189,42,280,32,185,199,288
DATA181,282,208,289,240,18,32
DATA184,199,288,171,32,184,199
DATAZ288,154,145,48,197,29,288
DATA1408,32,185,195,164,31,246, -1
DATA48,145,41,2081,157,2088,24
DATA32,28,194,144,10,152,208
DATA4,165,30,14,18,76,237
DATA195,208,208,258,1465,30,14
DATA246,164,31,288,3,185,194
DATAB,145,193,134,208,248,165
DATA38,145,193,32,282,197,133
DATA193,132,194,169,154,32,218
DATA255,148,65,32,194,193,32
DATAB4,198,32,45,195,32,84
DATA198,14%,159,32,218,255,74
DATA176,198,148,32,191,199,288
DATA17,152,248,14,134,28,144
DATA29,221,16,2,8,232,134
DATAZ29,164,28,48,94,281,48
DATA144,3,201,71,94,56,96
DATA44,2,49,3,2088,8,44
DATA9,48,34,469,51,268,8
DATAS4,9,44,2,469,51,288
DATAS,44,9,64,2,469,177
DATA2688,8,44,9,0,34,48
DATAS1,268,148,48,0,17,34
DATA48,51,2088,148,48,154,14
DATA34,68,51,288,8,44,9
DATA14,34,48,51,288,8,44
DATA9,98,19,128,169,0,33
DATA129,1308,8,08,89,77,145
DATA146,134,74,133,157,44,41

285

286 Appendices

3998 DATA44,35,48,34,89,0,88
4888 DATA34,34,6,28,138,28,35,-1
4818 DATA®3,139,27,161,157,138,29
4820 DATA3S5,157,139,29,161,8,41
4830 DATA25,174,185,168,25,35,36
4848 DATAS3,27,35,36,83,25,161

4850 DATAB,26,91,91,165,185,36

4040 DATA36,174,174,168,173,41,8
48708 DATA124,08,21,156,189,156,1485
4888 DATA185,41,83,132,19,52,17
4898 DATA165,105,35,148,216,98,98
4188 DATA72,38,98,148,136,84,48
4118 DATA208,84,184,68,232,148,0
4120 DATA186,8,132,114,180,48,118
4138 DATA116,244,284,74,114,242,164
4148 DATA138,08,178,162,162,116,116
4150 DATA116,114,48,184,178,58,178
41468 DATA®,34,8,26,26,38,38

4178 DATA114,114,136,200,196,282,38
4188 DATA72,48,48,142,208,58,59
4198 DATA8S2,77,71,88,76,83,84

4288 DATA78,72,468,808,44,65,66

4210 DATA194,53,194,284,193,247,193
4220 DATAS6,194,137,194,244,194,12
4230 DATA195,62,196,146,196,192,1946
4248 DATASS,197,91,198,138,198,172
4250 DATA198,70,193,255,192,237,192
4248 DATA13,32,32,32,80,47,32

4278 DATA32,83,82,32,65,47,32

4280 DATASS,82,32,89,82,32,83

4298 DATAS8,188,239,255,254,221,222,-1

Relocation

If you need to relocate Supermon to another area of memory, the
following program will assist. First load in suPERMON and use the TRANS-
FER option to copy it to the desired location. Now run the program
below and it changes the appropriate locations so that it will run at its
new address.

18 PRINT"[CLS]II[REVISUPERMON RELOCATION":
PRINT:PRINT

28 INPUT"NEW START ADDRESS - DECIMAL" ;AD

38 IFAD>48988THENPOKEAD+234,148:G0T0%08

48 PRINT"DO YOU WANT IT PROTECTED FROM BASIC"
S8 PRINT"Y OR N*®

Appendices

68 GETA$:IFA$<(>"Y"ANDA$<> "N"THENS®B

78 IF A$="N"THEN POKE AD,148:G0T0%0

860 POKEAD+234,INT((AD/256+.5))

98 READ OF:1F OF=-1 THEN1306

186 READ DA:DA=DA+AD:D2=INT(DA/25&) :D1=D
A-(D2%2564)

116 POKE OF+AD,D1:POKE OF+AD+1,D2

126 GOTO?8

138 END

1486 CO=0

156 READ A:IF A=-1 THEN170

168 CO=CO+A:G60T0158

178 IF CO0=451387THENPRINT “[REVIDATA OK"
:END

188 PRINT"[REVIDATA INCORRECT"

190 REM *%x%x%x% START OF DATA **x%x%

200 DATAL,233,238,2278,244,2279,294,1623
;381,855,341 ,855,349,318,378,2247

210 DATA374,2246,382,10085,482,1526,407,8
46,410,307,418,904,431,10805,434,3087

226 DATA453,1623,459,855,449,2282,482,45
6,488,848,494,840,497,43%,5008,3%97

238 DATASES,318,568,889,513,873,514,318,
519,889,524,873,553,4508,556,833,559,395

240 DATA564 1085 56? 889 5?2 384 575 439
y 086,889, 589 318,592,417,597,327,4611,889
256 DATAélé 384 ?19 1995 733,984,758,862
2,778,751, ?79 32? 782 662,789,889

260 DATA792 873 802 889 813 873 828,754,

831,327,836,848,846,844,853,844

278 DATAS?G,984,89?,904,909,318,925,943,
934,318,937,943,973,318,986,972

280 DATA989,911,992,892,998,318,1001,889
,1020,327,1023,1420,108469,1875

2906 DATA1088,980,10891,873,1094,997,1897,
1636,1100,997,1103,1671,1184,873

3886 DATA1115,1064,1124,1829,1127,367,113
2,10864,1147,1836,1158,1844

318 DATA11483,952,1166,955,1169,1149,1172
»986,1175, 8?3 11?8 99? 1181 8?3

326 DATA1184 318 118? 994 1198 18671,1207
+y3867,1212, 1905 1215 327 1218 980

330 DATA1221,873,1224,997,1227,873,1230,
318,1235,318,1242,318,1265,911

340 DATA!ZSI 264, 1297 1623,1317,833,1320
y1620,1323, 307 1335 32? 1338 980

287

288 Appendices

358 DATA1345,1386,1368,1482,1384,327,138
9,450,1392,1428,1395,833,1398,1628

348 DATA1485,1497,14089,1567,1413,1589,14
34,1474,1444,2098,1447,1781

370 DATA1458,2894,1455,17681,1462,1485,14
71,1474,1477,848,1515,2009,1533,2077

388 DATA1578,1474,1575,1022,15%1,2183,15
94,2167,1629,980,1632,873,1635,997

396 DATA1438,873,1450,1623,1453,1394,165
6,1482,1668,1871,1673,327,1676,980

4008 DATA1483,318,1486,417,1699,1350,17186
,988,1713,873,1721,972,1742,20080

418 DATA1747,924,1864,985,1814,2183,1817
,2167,1828,1977,1843,1983,1848,1985

428 DATA1840,2094,1843,2090,18686,1977,18
76,1974,1881,1976,1892,873,1985,1852

430 DATA1917,10805,1943,1482,1957,450,194
8,14628,1943,833,1944,1420

448 DATA1974,1712,1978,1983,13308,1671
458 DATA362,2231,916,318,18086,1497

468 DATA2246,578,2248,565,2256,440

478 DATA2252,583,2254,598,2256,549

480 DATAZ2258,756,2260,780,2262,1886

498 DATA2244,1178,2266,1216,2248,1336
586 DATAZ2278,1427,2272,1674,2274,1788
518 DATA2274,326,2278,255,2288,237,-1

APPENDIX E: Instructions for the use of Supermon
TO USE SUPERMON (relocated version)

LOAD “SUPERMON"",DEVICE,1
NEW
SYS49152

GENERAL NOTE

On entering Supermon it will save the stack which is restored on exit.
It further changes the BREAK vector so when a BRK is met in a program
Supermonis called.

All values are entered in hex. Only in AssemBLER mode do they have to
be prefixed with ‘$" and then only for the operand.

Once Supermon has been loaded, it is resident until the 64 is either
turned off or a program loaded which uses memory from $coeo.

Appendices 289

INSTRUCTIONS

A — ASSEMBLER — Allows simple assembly of machine code.
A $START OPCODE OPERAND.
For example, A 8000 LDA #$0A
Supermon will prompt with the next address.
Entering <RETURN> after address will exit assembler mode.
Branches are written with the destination address and not its dis-
placement, that is, BEQ $C456.

D - DIsAsSEMBLER — Disassembles 22 instructions from the address
specified.

D $START

for example, D 8000
Hex values may be changed by overtyping and on <ReTURN> the same
locations will again be disassembled.
Typing D on the bottom line will disassemble the next 22 instructions.
Typing <sPACE> <RETURN> will exit disassembler mode.

F - FiLL MEMORY — Fill an area of memory with a specified value.

F $FROM $TO BYTE

for example, F 5000 6000 Fr
Useful to set up defaults prior to assembly, in particular to fill with NOPs
(SEA).

G - GORUN — execute machine code.

G - Starts execution at address currently in the Program Counter
Register (PC).

G $START — Starts execution at specified address.

H — HUNT — search memory for specified bytes.
H $START $TO DATA
for example, H 5000 6000 'READ — Hunts for ASCII string “READ”
H 5000 6000 A9 0A — Hunts for LDA #350A
A maximum of 32 bytes may be set.

L - LOAD - Loads a program at its secondary address, leaving Basic poin-
ters unchanged.

L ““filename” ,Device — Device in hex.

08 disk 01 tape

M — MEMORY DISPLAY — Displays hex values.
M sFrROM $TO
for example, M o801, 0891

11 Bytes may be overtyped to change.

P — PRINT DISASSEMBLY — Output hard copy of disassembled listing.

If in Supermon then exit (see below) and set up printer as for normal
listing. Re-enter Supermon with subsequent output being directed to
the specified device.

290 Appendices

For example OPEN4,4:CMD4:5YS49152
P $FROM $TO
When complete, exit Supermon and close printer channel.

R — REGISTER DISPLAY — Displays current register values. This displays the
PC, IRQ, Status Register (SR), A, X, Y and Stack Pointer (SP).

R
Values can be overtyped to change. This is of particular use in debug-
ging operations where any of the registers may be altered and program
execution continued with a Go command.

S — sAve — Saves an area of memory to tape or disk.
S ““filename”’,DEVICE,$START,$END
Saves from the start up to, but not including the end address.
For example, S “NAME",08,5000,6001 — Saves from $5000 to $6000, but not
the byte at se001.

T — TRANSFER — Transfers an area of memory to another leaving the
original intact.

T $FROM $TO $START

for example, 75000 6000 1000
You can also use MEMORY DISPLAY this way.
This option may be used in conjunction with the relocator to generate
versions of Supermon for use at other locations.

X — EXIT SUPERMON

X
The stack saved when Supermon was entered will be restored. A CLr
from BAsiC should tidy up any stack problems.

COPYING SUPERMON

Use the save command as normal with the following addresses:
SUPERMON $C000 $C900

APPENDIX F: Extended BAsiIC memory map

The following gives the main entry points for the uTiLITy:

Address Description

$8000 Initialize Extended BASIC

$800F Set up Keyword Vectors

$8034 Set Top of Memory

$8041 Set NMI and BRK Vectors

$8054 Set Keyboard Table Set-up Vector
$8061 NMI Routine

$807E BRK Routine

Appendices

291

Address Description

$8090 Keyword Vector Table

$80F6 Keyword Table - Command Keywords
$81C7 Keyword Table - Function Keywords
$81F5 Routine — GET PARAMETER

$81FB Switch off Basic

$8202 Switch on Basic

$8209
$82BC
$8302
$8329
$8352
$8381
$83A7
$83AD
$83B3
$83D7
$8401
$8415
$842F
$847F
$84A0
$84EC
$8537
$85BF
$85FC
$8611
$8631
$864D
$8722
$8799
$87A7
$886F
$888B
$8933
$89C5
$8B93
$8D3A
$8D61
$8E52
$8F44
$8FAF
$8FB5
$8FD2
$904E

CRUNCH Tokens

PRINT Tokens

Token DISPATCH - Command Keywords
Token DISPATCH - Function Keywords
Perform COLOUR

Perform PLOT

Perform WRITE

Perform ENTER

Perform DOKE

Perform DEEK

Routine — Convert to Positive

Perform OLD

Perform AUTO

Routine — Convert to ASCII

Perform TEN

Perform TWO

Perform HEX

Perform BIN

Perform MEM

Perform RESET

Perform POP

Perform KEY

KEY Interrupt Routine

Perform OFF

Perform MERGE

Perform APPEND

Routine to close up memory and rechain
Routine to open up memory and rechain
Perform RENUM

Perform CODER

Perform TRACE

Perform TROFF

Perform DUMP

Perform DELETE

Perform CGOTO

Perform CGOSUB

Perform PROC

Perform INKEY$

292 Appendices

Address Description

$9080 CHAIN routine

$9169 HIMEM/LOMEM routine

$9181 Perform HIMEM

$918D Perform LOMEM

$91B7 Perform QUIT

$9200 Start up message

$927D Completion of DELETE

$92B6 Perform CHAIN

$92DA-

$9FFF unused (expansion for sound/graphic/disk)

Appendix G: Reading an assembler listing

The machine code routines in this book have been presented in two
formats. The first was generated using Supermon which is given in
Appendix D and instructions for its use in Appendix E. The second was
produced using Supersoft’s MIKRO assembler cartridge. This appendix
deals with listings generated using MIKRO as we feel they require some
explanation.

PSEUDO-OPS
These are instructions to the assembler and are not directly executable
op-codes.
*»=5$C000
This tells the assembler to start its assembly at address $caeoo.
WOR, BYT, and TXT

These instructions reserve bytes in memory. Both wor and Byt may be
followed by any number of arguments separated by commas up to the
limit of two screen lines. wWOR reserves two bytes and is used to store
absolute addresses in low/high format.

WOR $C000,50100

Puts the four bytes s$00,5C0,500,301 in four consecutive addresses. BYT
reserves single bytes.

BYT $A9,$FF

X7 is followed by a quoted string and places the hex values of the
ASCIl codes sequentially in memory.

TXT “ABCD”

Puts $41,$42,343 and $44 into memory.

Appendices 293

Each of these directives allocates bytes from the address at which it
appears.

LABELS

Labels are used to identify an absolute address in memory. They are
normally used as the destination for branches and jumps. They may
also be used as operands.

LDA #%$00 BYTE=#S$FF
BEQ ZERO or LDX BYTE

ZERO RTS

The absolute value of an address may be divided into low/high format
by the use of ‘#<'and '#>' operators.

*»=$C000
START LDA #<START
LDX #>START

This loads A with se0 and X with sca.
Simple numerical calculations may be performed.

STORE BYT $00,$FF
LDA STORE
LDX STORE+1

This loads A with the value held in STORE which has been set to $00 and
X with the byte from the next location, that is, sFF.

ADDRESS TABLES

Where labels have been used their values, starting at an arbitrary
address, have been given. This is useful to determine the hex values
forall branches and jumps.

LINE NUMBERS

The assembler code is entered exactly as one would type in a BASIC
program. The same editing rules apply to a MIKRO program as to a BASIC
program. Generally, we have retained these line numbers in the lis-
tings given for clarity and to aid description.

COMMENTS

An exclamation mark is used in the same way as a Rem from BAsiC and

294 Appendices

prefixs comment statements. It tells MIKRO to ignore anything which
follows it.

This is by no means the definitive MikRO manual. We have limited
ourselves to using only a few of the options available to allow easier
conversion to other assemblers.

Appendix H: Mnemonics generated by CODER

The codes generated are:

[BLK] - BLACK [GR1] - GRAY1 [DEL] — DELETE

[WHT] -WHITE [GR2] - GRAYS2 [INS] — INSERT

[RED] -RED [LT GRN] - LIGHT GREEN [REV] - REVERSE
ON

[CYN] -CYAN [LTBLU] -LIGHT BLUE [OFF] — REVERSE
OFF

[PUR] -PURPLE [GR3] - GRAY3 [SPC] -SPACE

[GRN] - GREEN [CLS] — CLEARSCREEN [G>SPC] -SHIFTED
SPACE

[BLU] -BLUE [HOM] —-HOMECURSOR [G>7?] -~ GRAPHIC
WITH
SHIFT

[YEL] - YELLOW [CU] - CURSOR UP [G<?] - GRAPHIC
WITH LOGO

[ORG] - ORANGE [CD] ~CURSORDOWN [CTRL?] - CONTROL
WITH
LETTER

[BRN] -BROWN [CR] — CURSORRIGHT [F?] - FUNCTION
KEYS

[LT RED] — LIGHT RED [CL] — CURSOR LEFT [P1] - Pl
3.1416

MULTIPLE CHARACTERS are coded as [10CD]

SPACES
Single, unshifted spaces are not coded. We thought it unnecessary as it
detracted from the legibility of the listing.

SPECIAL CODES

The following is an extract from the Programmer’s Reference Guide,
page 74:

There are some other characters that can be PRINTed for special functions,
although they are not easily available from the keyboard. In order to get
these into quotes, you must leave empty spaces for them in the line, hit
<RETURN> or <SHIFT><RETURN>, and go back to the spaces with the
cursor controls. Now you must hit <CTRL> <RVS/ON>, to start typing
reversed characters, and type the keys shown below:

Appendices 295

Function Type Appears As
SHIFT RETURN SHIFTM
switch to lower case N N
switch to upper case SHIFTN W
disable case switching keys H H
enable case switching keys I I

Functions 1 and 3 of the above are achieved as stated. CODER replaces
them with:

[CRG>M] - SHIFT RETURN
[CRG>N] - SWITCH TO UPPER CASE

The other three can be achieved far more easily. Whilst PRINTINg in
quotes mode, press <CTRL> and the appropriate letter.

Appendix I: Key codes

The following are the values assigned to keys in locations sfox and tsTx
($CB/203 & $C5/197):

dec key dec key dec key

0 INST/DEL 2T 44

1 RETURN 23 X 45

2 CRSRR/L 24 7 46 @

3 F7 25 Y 47

4 F 26 G 48

5 F3 27 8 49 »

6 F5 28 B 50 ;

7 CRSRU/D 29 H 51 CLR'HOME
8 3 30 U 52 None

9 W 31 V 53 =

10 A 32 9 54 °

1 4 33 1 55 /

12 Z 34) 56 1

13 S 35 0 57 «

14 E 36 M 58 None

15 None 37 K 59 2

16 5 38 O 60 SPACE

177 R 39 N 61 None

18 D 40 + 62 Q

19 6 41 P 63 RUN/STOP
20 C 4 L 64 No key press
21 F 43 -

296 Appendices

The following are the values of the shift registers SHFLAG and LSTSHF
($028D/653 and $028E/654):

dec key pattern

0 NO SHIFTS

1 SHIFT

2 LOGO

3 SHIFT AND LOGO

4 CTRL

5 CTRLAND SHIFT

6 CTRLAND LOGO

7 CTRL, SHIFT AND LOGO

Appendix }: Summary of UTILITY commands

APPEND “‘program name”’, device

As for merge except that the appended program is tagged on the end
of the memory program. Line numbers are not altered. Peculiar listings
can be the result. Use RENUM after an append.

AUTO first line number,increment
Automatic line numbering when entering code.

BIN 8 bit binary numberf,....

Prints out decimal conversion of binary number in two forms. The first
as a low byte conversion and then, separated by an oblique, the high
byte conversion (low x 256). The binary number must be of eight bits.

CGOTO variable, calculation or line number
Line numbers can be mathematical equations.

CGOSUB variable, calculation or line number
Line numbers can be mathematical equations.

CHAIN [“filename”’][,device]
Will load and run a BAsiC program. It also transfers most variables from
one program to another.

CODER
Will replace non-standard ASCII and graphic codes with mnemonics.
See Appendix H for full list.

COLOUR screen[,border][,text]
Values over 15 can be input, but only the lower four bits will be
considered. Border and text parameters are optional.

Appendices 297

DEEK(address)
Two byte PEEK. Returns memory location held in address and
address+1.

DELETE first line to be deleted, [last line to be deleted]
Deletes lines in the range specified. No last line parameter, it will
delete to the end of program.

DPROC name
Start of procedure called ‘'name’.

DOKE address, value
Two byte POKE. Stores value (0-65535) in address and address+1.

DUMP

Displays the values of all simple variables currently in use.
ENTER (x,y)

Same as INPUT, but first sets cursor position as in PLOT.
EPROC

End of a procedure.

HEX hexadecimal number[,hex number][,...
Prints decimal conversion of hex input. The hex input can be of either
two or four characters, but does not require a prefix of ‘$’.

HIMEM address
Will set the top of memory to the given address, within the range of
1024 to 32767.

INKEY$ [string or string variable]

Will wait for a key press. With no parameter, it will wait for any key.
With a parameter, it will wait for a key to correspond to any character
in the string. The ASCII value of the key press is placed in reserved
variable ‘ST'.

KEY 1to 16, ’data”’
Loads function keys with data. Maximum of ten characters per key is
permissible. Inputs over ten characters will generate a SYNTAX ERROR, but
the first ten characters of data will be assigned to the particular key. To
generate a return in the data, use ""«"".

for example, KEY 7,LIST"

KEY

Will display the data assigned to all 16 keys in the format they were first
entered. This will allow you to overtype the displayed data to amend
the key assignations.

To obtain keys: KEY 1-8 as marked on keys
KEYS 9,11,13,15 key with logo
KEYS 10,12,14,16, key with shift and logo

298 Appendices

Note: any key command will enable the keys if they have previously
been disabled.

LOMEM address
Will set the start of BASIC to the given address, within the range of 1024
to 32767.

MEM
Display amount of memory free as an unsigned number.

MERGE [program name’’],[device]

Merges a stored program with that currently in memory according to
their line numbers. Lines numbers of the merging program take pre-
cedence. If no program name and/or device then the command will
default to tape. With no name then first program on tape will be
merged.

OFF
Disable the function keys.

oLD

Restores a BASIC program after a NEw or system reset have been
actioned. This will not work if an edit has been carried out before oLp
is actioned.

PLOT (x,y)
Sets the cursor column and row position. x—0 to 39 and y—0 to 24. 0,0
is the top left hand corner of the screen (cursor home).

POP
Rectifies stack on leaving a subroutine before a RETURN has been called.

PROC name
Calls a procedure called ‘name’.

QUIT
Disables the utility and its commands, but protects the area that it uses.
The uTiLITY can be initialized again by svs 32768.

RENUM first line number to be changed or 0, increment, new start line
number

If first parameter is @, the whole program will be renumbered,
otherwise, from designated line to the end of program. Renumbers the
following tokens:GOTO,GO TO, GOSUB, IF THEN, RUN, ON GOTO, ON GOSUB and
RESET. It will not renumber cGOTO or cGOsus.

RESET [line number]
Restore DATA pointer to specific line or start of program.

TEN decimal numberf,......
Prints hex conversion of a decimal number.

Appendices 299

TRACE
A diagnostic to follow the execution of a BAsIC program as it runs.

TROFF
Disables TRACE function.

TWO decimal numberl,....
Prints binary conversion of decimal number.

WRITE (x,y)
Same as PRINT, but sets cursor position first as in pLOT.

Note: All commands performing number conversions will do more
than one conversion if the values are separated by commas.

ERRORS
These are particular to the uTiLITy.

CODER

STRING TOO LONG — more than 254 bytes have been generated by the
mnemonics for one program line.

OUT OF DATA — found a character not handled by CORDER.

RENUM
ILLEGAL DIRECT — line at which to start renumbering does not exist.
UNDEF'D STATEMENT — no destination found for a GOTo or Gosus directive.

APPENDIX K: 64 low memory map

The following is the first few pages of the memory map in the Pro-
grammer’s Reference Guide (PRG), Chapter 5. It is included to avoid
continual reference to the PRG to look up label addresses. Some of the
descriptions have been changed through personal experience or pref-
erence to those in J. Butterfield’s map.

LABEL hex decimal Description

D6510 0000 0 6510 direction register
R6510 0001 1 6510 1/0, memory and tape
ADRAY1 0003-0004 34 Float to fixed vector
ADRAY2 00050006 56 Fixed to float vector
CHARAC 0007 7 Search character

ENDCHR 0008 8 End of quote flag

TRMPOS 0009 9 Save screen last TAB

VERCK 000A 10 Flag: LOAD=0 VERIFY=1
COUNT 000B 1 Ptrinput buffer/#subscripts
DIMFLG 000C 12 Default DIM to 10 flag
VALTYP 000D 13 DATA type:string=255 numeric=0

INTFLG 000E 14 :integer=128 float=0

300 Appendices

LABEL hex decimal Description
 GARBFL 000F 15 DATA scan/LIST quote/garbage
collection flag

SUBFLG 0010 16 subscript/user fn call

INPFLG 0011 17 $00=INPUT $40=GET $80=READ

TANFLG 0012 18 TAN sign/comparison
0013 19 current I/O prompt

LINNUM 0014-0015 20-21 integer value

TEMPPT 0016 22 pointer:temp string stack

LASTPT 0017-0018 23-24 last temp string address

TEMPST 0019-0021 25-33 stack for temp strings

INDEX 0022-0025 34-37 utility pointer area

RESHO 0026-002A 38-42 product area for multiply

TXTTAB 002B—002C 4344 pointer start of BAsiC

VARTAB 002D-002E 45-46 pointer start of variables

ARYTAB 002F-0030 47-48 pointer start of arrays

STREND 0031-0032 49-50 pointer end of arrays

FRETOP 0033-0034 51-52 pointer bottom of strings

FRESPC 0035-0036 53-54 utility string pointer

MEMSIZ 0037-0038 55-56 pointer highest address used by Basic

CURLIN 0039-003A 57-58 current Basic line number

OLDLIN 003B-003C 59-60 previous BasiC line number

OLDTXT 003D-003E 61-62 BAsIC statement for CONT

DATLIN 003F-0040 63-64 current DATA line

DATPTR 0041-0042 65-66 current DATA address

INPPTR 00430044 67-68 INPUT vector

VARNAM 0045-0046 69-70 pointer current variable name

VARPNT 0047-0048 71-72 pointer current variable data

FORPNT 0049-004A 73-74 pointer variable for FOR/NEXT
004B-004C 75-76 Y-save/op-save/BAsiC pointer save
004D 77 comparison symbol accumulator
004E-0050 78-83 misc work area
0054-0056 84-86 jump vectors for functions
00570060 87-96 misc numeric work area

FACEXP 0061 97 FPACC#1:exponent

FACHO 0062-0065 98-101 FPACC#1:mantissa

FACSGN 0066 102 FPACC#1:sign

SGNFLG 0067 103 pointer series evaluation constant

BITS 0068 104 FPACC#1:overflow digit

ARGEXP 0069 105 FPACC#2:exponent

ARGHO 006A-006D 106-109 FPACC#2:mantissa

ARGSGN 006E 110 FPACC#2:sign

ARISGN 006F 111 sign comparison result

FACOV 0070 112 FPACC#1:low order rounding

FBUFPT 00720072 113-114 pointer cassette buffer

Appendices

301

LABEL hex decimal Description
CHRGET 0073-008A 115-138 subroutine:get next byte of sasic
CHRGOT 0079 121 entry point to get same byte
TXTPTR 007A-007B 122-123 pointer current byte of Basic
RNDX 008B-008F 139-143 RND seed value
STATUS 0090 144 KERNAL /O status ST
STKEY 0091 145 switch:STOP and RVS keys
SVXT 0092 146 timing constant for tape
VERCK 0093 147 LOAD=0 VERIFY=1
C3PO 0094 148 serial output: deferred char flag
BSOUR 0095 149 serial output deferred char
SYNO 0096 150 tape EOT received
0097 151 register save
LDTND 0098 152 how many open files#
DFLTN 0099 153 input device (default=0)
DFLTO 009A 154 output device (default=3)
PRTY 009B 155 tape char parity
DPSW 009C 156 tape byte received flag
MSGFLG 009D 157 Basic mode flag $00=program
$80=direct
PTR1 009E 158 tape pass 1 error log
PTR2 009F 159 pass 2 error log
TIME 00A0-00A2 160-162 real-time jiffy clock
00A3 163 serial bit count/EOI flag
00A4 164 cycle count
CNTDN 00AS5 165 tape sync countdown/bit count
BUFPNT 00A6 166 pointer tape /O buffer
INBIT 00A7 167 RS232 input bits
tape wrt ldr/rd count
BITCI 00A8 168 RS232 input bit count
tape wrt new byte/rd error
RINONE 00A9 169 RS232 start bit flag
RIDATA 00AA 170 RS232 input byte buffer
tape scan/counter/ldr
RIPRTY 00AB 171 RS232 input parity
tape wrt Ildr length’rd checksum
SAL 00AC-00AD 172-173 pointer tape buffer/scrn scroll
EAL 0OAE-Q0AF 174-175 tape end address/end program
CMPO 00B0O-00B1 176-177 tape timing constants
TAPE1 00B2-00B3 178-179 pointer start of tape buffer
BITTS 00B4 180 RS232 out bit count/tape enabled=1
NXTBIT 00B5 181 RS232 next bit to send/tape EOT
RODATA 00B6 182 RS232 out byte buffer/rd char error
FNLEN 00B7 183 Length current file name
LA 00B8 184 Current logical file number

302 Appendices

LABEL hex decimal Description
SA 00B9 185 Current secondary address
FA 00BA 186 Current device number
FNADR 00BB-00BC 186-187 Ptr current file name address
ROPRTY 00BD 189 RS232 out parity/tape rd input char
FSBLK 00BE 190 tape #blocks left to wrt/rd
MYCH 00BF 191 Serial word buffer
CAS1 00Co 192 Tape motor control
STAL 00C1-00C2 193-194 1/0 start address
MEMUSS 00C3-00C4 195-196 KERNAL setup ptr/tape temp address
LSTX 00C5 197 Last key pressed
NDX 00Co 198 #characters in k/b queue
RVS 00C7 199 RVS char print flag 1=yes 0=no
INDX 00C8 200 Ptr end of line for INPUT
LXSP 00C9-00CA 201-202 Cursor row,col at start of INPUT
SFDX 00CB 203 Current key pressed 64=no key
BLNSW 00CC 204 0=blink cursor
BLNCT 00CD 205 Cursor countdown timer
GDBLN 00CE 206 Character at cursor pos
BLNON 00CF 207 Cursor blink flag on/off
CRSW 00D0 208 Flag: INPUT from screen or
GET from keyboard
PNT 00D1-00D2 209-210 Ptr current start of screen line add
PNTR 00D3 211 Cursor col on above line
QTSW 00D4 212 Flag: @=cursor in edit mode else in
quote mode
LNMX 00D5 213 Physical screen line length
TBLX 00D6 214 Current row where cursor lives
00D7 215 Last inkey/checksum/buffer temp data
INSRT 00D8 216 #inserts outstanding
LDTB1 00D9-00F2 217-242 Screen line link table
USER 00F3-00F4 243-244 Ptr screen colour
KEYTAB 00F5-00F6 245-246 K/b decode table vector
RIBUF 00F7-00F8 247-248 RS232 input buffer ptr
ROBUF 00F9-00FA 249-250 RS232 output buffer ptr
FREKZP 00FB-00Fe 251-254 Free zero page area
BASZPT 0OFF 255 BASIC temp data area
0100-010A 256-266 Float to ASCIl work area
0100-013E 256-318 Tape error log
0100-01FF 256-511 Processor stack
BUF 02000258 512-600 System input buffer
LAT 0259-0262 601-610 Logical file table
FAT 0263-026C 611-620 Device number table
SAT 026D-0276 621-630 Secondary address table
KEYD 0277-0280 631-640 Keyboard buffer

Appendices 303

LABEL hex decimal Description
MEMSTR 0281-0282 641-642 Start of BAsic memory
MEMSIZ 0282-0283 643-644 Top of Basic memory
TIMOUT 0285 645 Serial bus time out flag
COLOR 0286 646 Current character colour
GDCOL 0287 647 Background colour under cursor
HIBASE 0288 648 Start of screen memory:page number
XMAX 0289 649 Size of k/b buffer
RPTFLG 028A 650 Flag: 128=repeat all keys
KOUNT 028B 651 Repeat speed counter
DELAY 028D 653 Flag: shift/ctrl/logo key
LSTSHF 028E 654 Last shift pattern
KEYLOG 028F-0290 655-656 K/b table setup ptr
MODE 0291 657 Flag: 0=disable shift keys 128=enable
AUTODN 0292 658 0=scroll down enable
M51CTR 0293 659 RS232 control register
M51CDR 0294 660 RS$232 command register
M51A)B 0295-0296 661-662 RS232 non-standard baud rate
RSSTAT 0297 663 RS232 status register
BITNUM 0298 664 RS232 bits left to send
BAUDOF 0299-029A 665-666 RS232 Baud rate
RIDBE 0298 667 RS232 index to end of input buffer
RIDBS 029C 668 RS232 page number of start
of input buffer
RODBS 029D 669 RS232 page number of start
of output buffer
RODBE 029E 670 RS$232 index to end of output buffer
IRQTMP 029F-02A0 671672 IRQ save during tape I/0
ENABL 02A1 673 RS232 enable/CIA 2 (NMI) interrupt
control
02A2 674 CIA 1 timer A control log during
tape 1/0O
02A3 675 CIA Tinterrupt log tape read
02A4 676 CIA1Timer A enable log tape read
02A5 677 Screen line marker
02A6 678 PAL/NTSC flag 0=NTSC 1=PAL
02A7-02FF 679-767 Unused
02C0-02FE 704-766 Block 11 for sprites
IERROR 0300-0301 768-769 Vector:Basic error message ($E3B8)
IMAIN 0302-0303 770-771 Vector:Basic warm start($A483)
ICRNCH 0304-0305 772-773 Vector: Crunch asic tokens($A57C)
IQPLOP 03060307 774-775 Vector:Print Basic tokens($A71A)
IGONE 0308-0309 776-777 Vector: Start new Basic line($A7E4)
IEVAL 030A-030B 778-779 Vector:Basic token evaluate($AE86)
SAREG 030C 780 Save A register

304 Appendices

LABEL hex decimal Description
SXREG 030D 781 Save X register
SYREG 030E 782 Save Y register
SPREG 030F 783 Save status register
USRPOK 0310 784 USR function jump instrn ($4C)
USRADD ©311-0312 785-786 USR address low/high form($B248)
0313 787 Unused
CINV 0314-0315 788-789 Vector:Hardware IRQ($EA31)
CBINV 0316-0317 790-791 Vector:BRK interrupt($FE66)
NMINV 0318-0319 792-793 Vector:NMI($FE47)
IOPEN 031A-031B 794-795 Vector: KERNAL OPEN($F34A)
ICLOSE 031C-031D 796-797 Vector:KERNAL CLOSE($F291)
ICHKIN 031E-031F 798-799 Vector: KERNAL CHKIN($F20E)
ICKOUT 0320-0321 800-801 Vector: KERNAL CHKOUT($F250)
ICLRCH 0322-0323 802-803 Vector: KERNAL CLRCHN($F333)
IBASIN 0324-0325 804-805 Vector:KERNAL CHRIN($F157)
IBSOUT 0326-0327 806807 Vector:KERNAL CHROUT($F1CA)
ISTOP 0328-0329 808-809 Vector:KERNAL STOP($F6ED)
IGETIN 032A-032B 810-811 Vector: KERNAL GETIN$F13E)
ICLALL 032C-032D 812-813 Vector:KERNAL CLALL($F32F)
USRCMD 032E-032F 814-815 Vector:Warm start($FE66)
ILOAD 0330-0331 816-817 Vector: KERNAL LOAD($F4A5)
ISAVE 0332-0333 818-819 Vector: KERNAL SAVE($F5ED)
0334-033B 820-827 Unused
TBUFFR 033C-03FB 828-1019 Tape I/O buffer
03FC-03FF 1020-1023 Unused
0340-037E 832-894 Block 13 sprite data
0380-03BE 896-958 Block 14 sprite data
03C0-03FE 960-1022 Block 15 sprite data
VICSGN 0400-07FF 1024-2047 Screen memory
0400-07E7 1024-2023 Visible memory
07F8-07FF 2040-2047 Sprite block data pointers 0-7
0800 2048 Start of sasic (TXTTAB-1)

THE ULTIMATE PROGRAMMER’S TOOLKIT
— INVALUABLE PROGRAMMING AIDS FOR
YOUR COMPUTER!

Utilities to take the pain out of programming. .. Utilities to
customise your 64 and explore its hidden potential...

All Commodore 64 programmers will find this software
toolkit of programming aids, BASIC enhancements and
- other utilities truly invaluable.

As well as revealing the inner workings of the 64, BASIC
versions of programming utilities such as the auto line
number, block delete, renumber and program merge
routines are presented and explained, programmable

function keys covered, and the 64’s peripheral potential
investigated. '

The BASIC utilities, plus trace, variable dump,
procedure, graphics routines and many more are then
implemented in machine code. BASICloaders are
provided as well as a complete monitor listing for entering
the routines. The separate modules build into a total utility
package which overcomes the limitations of the 64’s
BASIC to give you a powerful programming aid.

Delving deep into the workings of the 64, this book
compliments The Companion to the Commodore 64 to
provide the user with the tools and information needed to
unleash the full power of this great machine.

ISBN D-330=2aki¢l=H
UK. £6.95 || 90000

80330"286 |‘ I’

