
CLIVE EMBEREY & BOB TURNER

INVALUABLE
UTILITIES

Pan/Personal Computer News
Computer Library

Clive Emberey and Bob Turner

Invaluable
Utilities for
the Commodore 64

Pan Books London and Sydney

Fir;t publbhed 1984 by Pan Book, Ltd,
Cavaye Place, london S\V10 9PG

In a~so(iJtion wIth p('r~onal Computer New~
987654~2!

cD Clive Emberey and Bob 1 urnef 1<}84

ISBN 0 33028671 4
Photo~et by ParkerType'ieltlng ~ervi(e, leke~ter
Printed and bound In Great Britain by
Richard Clay (The Chauu'r Pre,,) Ltd, Bungay, Suffolk

This book. i~ ')old 'iub,cc-t 10 Iht~ condition thai it ~hal! not,

by way of trade or otherwi~e, be It'nt. fP·,,"old,

hired oul or otherwise circulated without th(' publisher's prior (on sent
in any form ot binding or cover other than that
in whIch it 1<:' publi"hed and without a sImilar condition includIng
th,., condition being impo.,ed on the ~ub .. equent purchaser

We wish to thank the following people, to whom we dedicate this
book:

Our nearest and dearest who remained (fairly) tolerant throughout.

Keith Bowden and members of the 64 IUC who continued to run the
club in our leave of absence.

Dave Proctor for patiently testing much of the work.

And PAN/PCN for publishing the book.

Contents

Introduction

Chapter 1: B.4SIC on the 64 11

Chapter 2: Peripherals 26
Tape directories
Printer dump 1
Printer dump 2
Disk utility

Screen save 1
Screen save 2
Screen save 3
Backing upfiles

Chapter 3: A token approach to BASIC 67

Chapter 4: The keyboard revisited 83

Chapter 5: Utilities in BASIC 98
Append 1 : programs in memory
Append 2: programs on disk
Append 3: data files on disk
Auto number
Auto number with delete
Datalines for machine code
Delete 1
Delete 2
Dump: simple variables
Lister: formatted listings

Merge 1 : Screen
Merge2: Tapeanddisk
Merge3: Tapeonly
Old: recover NEWed programs
Plot1 and2: cursor positioning
Print using: numberformatter
Renumber: linenumberonly
Squash: compactBASICcode

Chapter 6: Routines old and new 120

Chapter 7: Programming aid routines 144
RENUMBER DUMP
AUTO TRACE
MERGE TROFF
APPEND TEN
DELETE HEX
MEM TWO
CODER BIN

Chapter 8: Enhancing the resident BASIC 212
CGOTO WRITE
CGOSUB ENTER
PROC COLOUR
DPROC OLD
EPROC CHAIN
POP INKEY$
RESET LOMEM
DEEK HIMEM
DOKE QUIT
PLOT

Chapter 9: The complete UTILITY 238

Chapter 10: Bits 'n pieces 266

Appendices 273
A: Storage of BASIC text
B: Hex to decimal and decimal to hex converter
C: Machine code mnemonics and hex values
D: BASIC loader for SUPERMON
E: Instructions for the use of SUPERMON
F: Extended BASIC memory map
G: Reading an assembler listing
H: Mnemonics generated by CODER
I: Key codes
J: Summary of the UTILITY commands
K: 64 low memory map

Introduction

This book as the title suggests, is a book of utilities for the Commodore
64. It has been written not only to provide a set of useful routines, but
also to help you to begin to understand some of the more detailed
workings of your 64.

We have tried to cover a reasonable spectrum and hope that through
our examples you will attack areas other than those covered here with
increased confidence. Towards this end we have covered in depth the
development, background and implementation of each utility.

We have made no attempt to cover programming, in either BASIC or
machine code, in this book because many other texts cover this in
detail. We have also assumed that most serious 64 users will be in
possession of a copy of the Programmer's Reference Guide and have
adopted its nomenclature throughout, particularly with reference to
memory locations and KERNAl routines.

Wherever possible a utility has been implemented in both BASIC
and machine code. We felt that the BASIC versions, though sometimes
crude, are easier to experiment with and should also help those
readers unfamiliar with machine code to appreciate the workings of
the equivalent routines. They also go to prove that it is not what you
know, but how you use it. In some cases it might prove beneficial to
use the BASIC rather than the machine code versions. Typical circum
stances might be where only one or two features are required, or when
you need the full 38K of RAM available to BASIC, or if you wish to
switch to bank 2 when using graphics.

To facilitate entering the machine code it has been given in two
forms: as BASIC loaders and assembler listings. The assembler listings
are suitable for use with an extended monitor. For anyone not owning
a monitor program, we have included Jim Butterfield's Supermon and
instructions for its use in Appendices D and E. (Supermon for the 64
was first published in the January 1983 issue of Compute). However,
before attempting the considerable task of typing it in and then getting
it to work, ask around your friends and user groups as they may have a
copy. If you do find one, you will save yourself a lot of time, effort and
frustration. Jim Butterfield has also published a very complete Memory
Map for the 64 in the October 1982 issue of Torpet which has since
appeared in many other journals. This complements the one in the
Programmer's Reference Guide as it gives the nominal entry points to

8 Introduction

most ROM routines. A copy of this map could save you a great deal of
time when disassembling ROM routines to find out how they work.

To assist in entering the BASIC code all listings have been provided
in an annotated form. This, we hope, will avoid the all-too-common
problems associated with deciphering the symbols for cursor keys,
function keys, colours, and so on when in quotes mode. A detailed list
of all mnemonics used is given in Appendix H, but you should find that
most are self-explanatory. The program we wrote to generate them is
included in this book in the UTILITY as the CODER command. The
listings as given in the text always have a maximum line length of 40
characters in their annotated form. Where a line exceeds forty charac
ters it is continued on the next and subsequent lines always commen
cing in column 1. When looking at the listings you may find it helpful to
compare the rightmost characters of continued lines. When the code is
typed in, replacing the mnemonics with the correct key(s), no line will
exceed 80 characters on the display.

Any of the BASIC utilities intended for use from within another
program have been numbered in the 60000's to allow you to merge
them with your own programs (using the simple technique described
in Chapter 5 or the MERGE command ofthe UTILITY itself).

We have chosen to put our code at 32768 ($8000), leaving the BASIC
programmer with 30K free. There is no reason why the code could not
be modified and relocated elsewhere in memory (the 4K block from
$C000 is not a bad idea) and the initialization routine adjusted to take
advantage of the increased memory available. In fact, nearly all the
routines were developed and tested in isolation, being enabled by a
simple SYS call. They were then incorporated into the UTILITY by
simply relocating and including a keyword and token to activate them.
To conserve memory, common subroutines have not been duplicated.
Often a pick In' mix approach was found useful to check out a range of
extensions which relied heavily on common routines.

We have used 'hidden' RAM beneath BASIC to store data to con
serve valuable user RAM and implemented a simple switching routine
to access this data when necessary. Applications like setting up the
function keys require access to this RAM, as does CODER. We have
made extensive use of the ROM routines and RAM vectors available,
but on some occasions found it more economic and faster to write our
own code. The UTILITY, in the form given, occupies the same area as
cartridge ROM and cannot therefore co-exist with cartridges. It was
not written to run in conjunction with them and is intended as a
standalone, extendable facility. As the owners of a disk unit will have
received DOS 5.1. on the demo disk, the UTILITY has been written to
co-exist with DOS 5.1. Some of the isolated routines will temporarily
disable DOS as they make use of the same operating routine - CHRGET
- but more about that later. However, a simple SYS call will restore
DOS 5.1 commands.

Introduction 9

There are many commercial utilities and BASIC extensions. These
may be purchased at reasonable prices and for many applications there
will be no better solution. However, if you are interested in the Com
modore 64 and wish to get the most from it, you may appreciate having
a range of routines which you can modify, extend and, indeed,
improve upon. After all, you can pay upwards of the cost of this book
for a fairly simple renumber routine.

Before we finish, we would like to leave you with two suggestions
and an option:

1) Always save a program before running it
2) Always make backup copies
This is good advice for BASIC and essential where machine code is
concerned.
3) It is very easy to wire a reset switch to your 64 and the necessary

reset line is available at both the Serial I/O and User I/O (see the
Programmer's Reference Guide, Appendix I). This is almost essential
if you use machine code, but don't attempt this if you are not sure
what you are doing.

Have fun (if that's the right word)!

1 BASIC on the 64

Introducing BASIC

On powering up your 64 you will find it ready and waiting to go in
BASIC, as part of the power reset sequence is to initialize BASIC and leave
the user in direct mode.

The implementation of BASIC that Commodore has chosen to use for
the 64 is identical to that on the VIC20 and PET microcomputers prior to
the 4000 series. BASIC 2, as it is often called, differs from the later version
only in its disk operating commands, the latter having a greatly
improved and simplified instruction set for disk control. In producing
BASIC 4 Commodore did maintain 99.99% downward compatibility and
in doing so allowed users to run any program on a higher series PET. It
was, therefore, a little surprising to find the BASIC on the 64 to be only
V2. This may have been done to avoid a conflict of interests in so much
as the new CBM micro, though in many respects far more powerful,
was not quite the same.

BASIC, or to give its full title Beginners' All-purpose Symbolic Instruc
tion Code, runs on the 64 as a high-level interpreted language. It is a
subset of Microsoft's BASIC (who wrote the first implementation for the
early PETs and now produce MBASIC and the MSDOS operating sys
tem for all major microcomputers). The history of BASIC is nothing to do
with this book, but it is interesting to note that regardless of environ
ment, or cost of system BASIC will usually be in there somewhere. It may
only run in compiled form, or it may be syntactically different, but it is
reassuring to know that a knowledge of 64 BASIC should allow you to
grasp quickly other BASICS on other machines.

BASIC has its critics, particularly of CBM BASIC, who would advocate
the use of Pascal, or Pilot, or Forth, or ... Each of these languages is
particularly suited to a range of tasks, but perhaps none lends itself as
well as uASIC to the task of rapid development of 'untidy' and 'unstruc
tured' programs which, most importantly, work. Arguments for and
against will no doubt long continue, but as we are supplied with BASIC,

let us make the most of it.
As its name imples, BASIC was developed to allow beginners to

acquire programming skills rapidly. It adopted a system of naming its
commands and functions to indicate the action produced. For
example, if we wish to halt the execution of a program we issue the

12 BASIC on the 64

all-too-clear command: STOP. For non English-speaking countries even
the use of English is no problem on the 64 as not only is it a simple
matter to redefine the character set, but it is also easy to redefine the
keyword table itself.

On the 64 we have 75 (76 if you include GO) BASIC commands,
functions and operators as standard. For many applications this is
perfectly adequate. Life would be simpler if more commands were
available. Increasing the number of commands has the benefit of
providing a more versatile programming language, but the dis
advantage of slowing down the execution of the existing commands.
This is true of any interpreted programming language. However, the
way in which the interpreter has been implemented does allow you to
add to the keywords to your heart's content, providing you understand
how it works and are capable of writing the necessary machine code.
For the moment the interpreter will be considered simply as a means of
translating our 'meaningless entries' into something which is execut
able by the 6510 microprocessor at the machine code level. This it does
by taking an instruction, finding the appropriate machine code
routine, carrying it out and then returning to implement the next. The
process is slow but very flexible and even allows us to interrupt the
execution and take control should we wish to do so.

One of the best features of the 64 must be the screen editor. It allows
changes to be made directly to anything appearing on the screen and,
more importantly, allows you to implement these changes. The dis
advantage is that the maximum length of program line or direct state
ment is limited to 80 characters (or two screen lines). Use of the
standard abbreviations of first character and second (or third) charac
ter shifted, instead of typing the full keyword, does allow program
lines, on listing, to exceed this limit. They cannot, however, be easily
edited. On pressing RETURN to acknowledge the end of the edit only
two screen lines are accepted. Anything beyond this point is not
included in the revised line. Still, this limitation is far outweighed by
the speed at which it allows existing code to be edited and repetitive
code to be entered by simply using the cursor keys, altering the line
number, modifying the necessary part of the line and pressing RETURN

to enter the new line. It even allows us to write programs which can
generate their own program lines, as we will see in Chapter 5.

BASIC may be used in two modes. These are direct (when a command
is typed in without a line number and executed immediately) and
program (a command preceded by a line number which is not execu
ted until the program is RUN).

Storage of BASIC code

If we wish to examine a program, we may do so with the LIST command.
What we see has undergone many processes from the form in which it

BASIC on the 64 13

was stored in RAM. To view the code in situ we first of all need to know
where to look. In the default mode on powering-up a BASIC program
will be sorted from memory location 2049 ($0801) upwards. We can
examine a program by simply PEEKing out each of the locations used by

FOR I = START TO START +200:PRINT PEEK (I); :NEXT I

We would see a series of decimal numbers with only the fact in
common that none was less than zero or greater than 255. We might
also notice some sort of related pattern occurring, but not a great deal
more. We could adopt another approach by moving an area of RAM

used for program storage to the screen. This is easily accomplished,
but in doing so we must also remember to set a colour at the screen
location we are putting the data into for it to be visible. The resulting
display is easier to decipher if the 64 is put in lower case mode by
pressing the shift and logo keys together. The following line should be
typed in direct mode:

S=0: FOR I=START TO START +800: POKE 1024+S,PEEK(I) :POKE
55296+S,14:S=S+1 :NEXT I

If you wish to start at the beginning of a program then 2049 must be
used and it assumes, as does the first example, a program to be present
which occupies memory at least to START +800 (or +2(0). This time we
see a series of characters and where our program has text within
quotes it appears almost unchanged as do variable names, punctuation
and constants. If we combine the processes, and to produce a more
consistent format express the numbers in hexadecimal format, we
begin to see some sort of relationship. (You had better get used to
using hexadecimal notation as we use it extensively, but to help you on
your way there is a table of decimal to hex conversions in Appendix B).
The following program does just this and may be used to examine
itself. If you wish to experiment, simply enter new lines with numbers
less than 60000. Those of you with extended monitors or who jumped
straight in and typed in Supermon can use the 'memory display'
option.

The program displays on each line the start address and the values
held in this and the next seven locations. At the right of the line the
characters with ASCII (CHR$()) codes corresponding to the byte values
are printed. To avoid confusion, only those characters which are easily
discernible are printed; all others are expressed by a ".". Appendix C
of the PRG gives the full range of ASCII and CHR$() codes. If you want
to display all the characters then some of the codes will have effects
which will destroy the display, for example, cursor moves, clear
screen, colours, and so on; so you will have to trap these. They do,
however, occur in blocks and are therefore not too difficult to isolate.

As will be standard practice throughout this book, a description
precedes most program listings.

14 BASIC on the 64

LINE ACTION

130 Examine selected range in groups of eight.
140 Convert current start address to low/high byte format, that is,

units (0-255) and lots of256s.
Then convert to hex notation in two stages.

150 Get eight successive bytes from start and print two digit hex
to values each time.

170
190 Convert eight bytes to ASCII characters if printable.

to
220 Else replace with a '.' and build eight character string.
230 Print string. Recycle if not end else start again.

1000 Convert start address to hex in two steps.
2000 Convert byte to two digit hex.

100 PRINT-MEMORY DISPLAY"
110 INPUTnDISPLAY FROMH;F
120 INPUTH[10SPC1TO-;T:IF T(F THEN PRINT

"LESS THAN FROMH:GOTO 120
130 FOR I=F TO T STEP 8
140 X=I:GOSUB 1000
150 FOR J=I TO 1+7
160 X=PEEK(J):GOSUB 2000:PRINT X$;H n;
170 NEXT J
180 PRINT" ";
190 A$=BB:FOR J=I TO 1+7
200 X=PEEK(J):IF X<32 OR X)95 THEN A$=A$
+B.B:GOTO 220
210 A$=A$+CHR$(X)
220 NEXT J
230 PRINT A$:NEXT I:GOTO 100
1000 MSB=INT(X/256):LSB=I-MSB*256
1010 X=MSB:GOSUB 2000:PRINT X$;
1020 X=LSB:GOSUB 2000:PRINT X$;H ";
1030 RETURN
2000 Xl=INT(X/16):X2=X-Xl*16
2010 X$=CHR$(Xl+48-7*(Xl)9»+CHR$(X2+48-
7*(X2)9»
2020 RETURN

If the program is used to examine itself by entering a start of 2048 and
an end of 2504 for the program as listed the following display is given:

16 BASIC on the 64

0970 20 32 30 30 30 3A 99 20 2000: .
0978 58 24 38 22 20 22 38 00 X$; " " . , .
0989 86 09 06 04 8E 99 A0 99 ·
0988 00 07 58 31 82 85 28 58 · .Xl .. (X
0999 AO 31 36 29 3A 58 32 82 .16):X2.
0998 58 A8 58 31 AC 31 36 09 X.Xl.16.
09A,0 C8 09 OA 07 58 24 82 C7 · .. . X$ ••
09A8 28 58 31 AA 34 38 A8 37 (Xl.48.7
0989 AC 28 58 31 81 39 29 29 .(X1.9»
9988 AA C7 28 58 32 AA 34 38 .. (X2.48
09C9 A8 37 AC 28 58 32 81 39 .7. (X2. 9
09C8 29 29 90 01 09 E4 97 8E))
0900 00 09 99

Its exact format will vary depending on how you typed the program in,
A number of things are immediately apparent. All text inside quotes, all
variable names, all destinations, all constants and punctuation appear
unchanged. From just this information we can work out the general
area of each line. Taking line 100 as an example, "MEMORY ... " is
clearly visible from $0806 to $0815. Immediately preceding it is the
value $99 which, not surprisingly, is the tokenized value for PRINT. The
two bytes before this are $64 and $00. $64 is the hex for 100 which is the
line number. Line numbers may range from 0 up to 63999 and, like
many values on the 64, are stored in low/high byte format. The actual
line number is $64+$00*$0100 (100+0*256). If we look along the hex
values for line 100, we see that the byte immediately following the
closing quote is a zero. This is how BASIC marks the end of a program
line. The two bytes preceding the line number are $17/$08 which is the
address (low/high) of the byte immediately following this end of line
zero. These two bytes are known as the link address and point to the
link address (and start) of the next line. If we follow the link address
through the program, the sequence runs $0817/082D/0864 09D1 and
finally 0000. A link address of zero marks the end of the program,
which in this case is $0901. A pointer to this address+ 2 is held in zero
page (locations $00=$FF) at VARTAB ($20/2E) and marks the start of the
BASIC variables. A second pointer on zero page, TXTTAB ($2B/2C),
points to the start of the program. This is the location of the first link
address and in the default setting this will always be $0801. Location
$0800 holds a zero; the byte before the start of a program must always
be zero for RUN to work. This becomes of more significance when the
start location of BASIC is changed.

A program can therefore be thought of as a 'linked list' of individual
program lines. It is of the form:

START
00

LINK LINE END
low high low high BASIC line 00

................ END PROG
low high.... 000000

BASIC on the 64 15

0800 00 17 08 64 00 99 22 40 • •••• • II M
0808 45 40 4F 52 59 20 44 49 EMORY OI
0810 53 50 4C 41 59 22 00 20 SPLAy n .-
0818 08 6E 00 85 22 44 49 53 • ••• II 01 S
0820 50 4C 41 59 20 46 52 4F PLAY FRO
0828 40 22 3B 46 00 64 08 78 Mil ; F
0830 00 85 22 20 20 20 20 20 ..
0838 20 20 20 20 20 54 4F 22 Ton
0840 3B 54 3A 8B 20 54 B3 46 ;T:. T.F
0848 20 A7 20 99 20 22 4C 45 . . "LE
9850 53 53 20 54 48 41 4E 20 SS THAN
0858 46 52 4F 40 22 3A 89 20 FROM" : .
0860 31 32 30 00 76 08 82 00 120 ...•.
0868 81 20 49 B2 46 20 A4 20 · 1 . F .
0870 54 20 A9 20 38 00 85 08 T . 8 ...
0878 8C 00 58 B2 49 3A 80 20 · .X. I:.
0880 31 30 30 30 00 95 08 96 1000
0888 00 81 20 4A B2 49 20 A4 · . J.I .
0890 20 49 AA 37 00 Bl 08 A0 I .7 •..•
0898 00 58 B2 C2 28 4A 29 3A .X .. (J):
0BA0 80 20 32 30 30 30 3A 99 · 2000: .
08A8 20 58 24 3B 22 20 22 3B X$; n H • ,
08B0 00 B9 08 AA 00 82 20 4A · J
08B8 00 C4 08 B4 00 99 20 22 H ·
08C0 20 22 3B 00 DA 08 BE 00 n • ,
08C8 41 24 B2 22 22 3A 81 20 A$.HI':.
0800 4A B2 49 20 A4 20 49 AA J. I . I .
0808 37 00 05 09 C8 00 58 B2 7 .•• •. x.
08E0 C2 28 4A 29 3A 8B 20 58 .(J):. X
08E8 B3 33 32 20 B0 20 58 Bl .32 . X.
08F0 39 35 20 A7 20 41 24 B2 95 . A$.
08F8 41 24 AA 22 2E 22 3A 89 A'S.".":.
0900 20 32 32 30 00 14 09 02 220 .•..
0908 00 41 24 B2 41 24 AA C7 .A$.A$..
0910 28 58 29 00 lC 09 DC 00 (X)
0918 82 20 4A 00 2F 09 E6 00 · J ./ .•.
0920 99 20 41 24 3A 82 20 49 · A$:. I
0928 3A 89 20 31 30 30 00 4E · 100.N · .
0930 09 E8 03 40 53 42 B2 B5 • .. MSB ..
0938 28 58 AD 32 35 36 29 3A (X.256):
0940 4C 53 42 B2 49 AB 40 53 LSB.I.MS
0948 42 AC 32 35 36 00 65 09 B. 256 ...
0950 F2 03 58 B2 4D 53 42 3A • .X.MSB:
0958 8D 20 32 30 30 30 3A 99 · 2000: .
0960 20 58 24 3B 00 80 09 FC X$;
0968 03 58 B2 4C 53 42 3A 8D .X. LSB: .

BASIC on the 64 17

The link addresses are not used when a program is run, but are
important during listing and editing. We can alter their values without
affecting the way a program runs, but on listing some strange effects
are produced.

We can now look through the display and find the start and end of a
line and the associated line number. Knowing these, we can start to
deduce the tokenized values for the BASIC keywords used. By adding
lines to the program we could find out all keyword values, but to save
you the effort we have produced a complete list in Appendix A. This
table has been extended to include the new token values used by the
UTIlITY. These values should be ignored for the moment. With a little
practice, reading displays of this type becomes very easy.

From the table in Appendix A we see that all BASIC keywords have
token values in excess of 127 ($7F). The highest token used for stand
ard BASIC is 203 ($CB) for the GO command. (GO simply searches for a
corresponding TO to ensure GOTO is equivalent to GO TO). When a
line is entered from the keyboard it is transferred to the input buffer
(BUF $0200--0258) on pressing RETURN. The line is then tokenized in
accordance with this table with keywords being processed first. If no
line number is present, the BASIC interpreter immediately executes the
statement(s). If one is present then the line is put in its numerically
correct position and the link addresses for the whole program are
recalculated and VARTAB updated. A similar process is carried out
when a line is deleted. These operations are discussed in greater detail
in Chapter 3.

Variables

General
BASIC allows three types of variable. These are real, integer and string.
String and integer are distinguished from real by trailing '$' and '%'
characters respectively. The default is therefore to real. Variable names
may be of any length, but only the first two characters and the last
character are of significance. This means ABXXXX% will be considered
equal to ABYYY% and to AB%, but different from ABXXXX or
ABXXXX$. The last character is used to distinguish the variable's type,
and if it is not one of the special characters above then the variable is
treated as real. The only limitation on naming variables is that the first
character must be alphabetic and the subsequent character,
alphanumeric, providing that they do not form reserved keywords. For
example, PEND would be treated as 'P' plus the keyword END and on
running would produce a syntax error. Reserved words are any of
those occurring in Appendix A with a token value exceeding 127
(bearing in mind that with the UTILITY in place the number of reserved
words will be increased).

To allow each of the three types of variable (four, really, when we

18 BASIC on the 64

include function names) to be stored in two bytes, the high bit is set or
unset on each of the name bytes to give the necessary four combi
nations. These are:

Name

Type 1st char 2nd char

REAL ASCII ASCII
INTEGER ASCII +128 ASCII+128
STRING ASCII ASCII +128
FUNCTION ASCII+128 ASCII

Where the name is only a single character, the second byte is zero or
128 as appropriate.

Each of the three types of variable may be used in multi-dimensional
arrays. These subscripted variables follow the same rules as for simple
variables with the addition of a '(' following the name and type. This
tells the interpreter it is dealing with an array and is handled
accordingly.

Storage of variables
Any variable created in either direct or program mode is stored after
the program currently in memory. Variables are stored in the order in
which they are created. Strings are stored slightly differently from
numeric values mainly due to their dynamic nature and are held in two
parts. The first is a pointer to the string's location and the second is the
length of the string itself. Strings are stored at the top of BASIC memory
($9FFF/40959) and grow downwards. The current lower limit of string
storage is stored in FRETOP ($33-$34/51-52).

When searching for a variable the interpreter starts at the end of the
program and searches upwards in memory for the named value
according to the rules given above. If the variable does not exist, the
next available space is allocated to it. Thus, if we define the more
important values early on they can be accessed quicker and the time
spent in 'garbage collection' reduced.

Variables are either simple or subscripted.

Simple variables
All non-subscripted variables use seven bytes of RAM. The first two hold
the name in its adjusted form. For each real variable the remaining five
bytes are used in the following way: one for its exponent and the
remaining four for its sign and mantissa. Integers are stored in only two
bytes with the remaining three unused. Strings use one byte to
indicate the length and two bytes to point to the location of the
characters, which is usually at the top of memory (though not always).
A function also uses seven bytes, of which the third and fourth point to

BASIC on the 64 19

its definition (DEF FN), the next two point to the variable it uses and the
last points to an initial value of the variable (zero).

The following table summarizes the storage of simple variables:

Byte

1 and 2: name 3 4

REAL
INTEGER
STRING
FUNCTION

exp sign+M1
sign+high low
length ptr low
pointer to OEF FN
low high

5 6

M2 M3
unused unused
ptr high unused
pointer to variable
low high

7

M4
unused
unused
initial value

If we add the following lines of code to our memory display program,
all variable types are generated (including arrays):

101M A(5) ,B%(5) ,C$(5) ,0$(1 ,5)
2 FOR 1=0 TO 5:A(I)=I:B(I)=I:C$(I)=CHR$(64+1):0$(2,I)=C$(CI):
NEXT
3 M$=M$+"STRING1":Z$=Z$+"STRING2"

We can now dump the memory associated with simple variables. The
area to be displayed can be worked out from VARTAB, ARYTAB and
FRETOP. To do this the program is RUN twice, the first time from
2641($0A61) to 2732($0AAC) to display the variables and the second
time from 40900($9FC4) to 40960($A000 - the start of BASIC ROM) to
display the strings in situ:

Simple variables and string pointers

0A51 49 00 8C 25 10 00 00 40 I .. X ••• M
0A59 80 07 EO 9F 99 90 SA 89 • ••••• Z •
0A61 08 E5 9F 99 99 46 99 8C • •••• F ••
9A69 25 19 99 90 54 99 8C 2A y. ••• T •• *
0A71 C9 99 99 58 99 09 99 99 · .. x
9A79 99 99 40 53 84 29 99 99 • .MS. ..
9A81 99 4C 53 88 91 90 99 99 • LS •••••
9A89 58 31 82 99 99 99 99 58 Xl. . .. x
9A91 32 82 99 99 99 99 58 89 2 ••• •• x.
9A99 92 19 90 99 99 4A 99 8C • •••• J ••
0AAl 2A 29 99 99 41 89 98 08 * •• A •••
9AA9 9C 99 99 41 99 25 99 91 · .• A. y. ••

20 il.ASIC on the 64

Strings in situ

9FC4 30 30 30 30 30 31 30 30 e0000100
9FCC 31 32 35 35 32 38 43 43 125528CC
9FD4 38 30 30 30 30 34 39 39 8e0e0499
9FDC 34 35 31 31 35 3e 41 41 451150AA
9FE4 30 53 54 52 49 4E 47 32 eSTRING2
9FEC 29 53 54 52 49 4E 47 31)STRINGI
9FF4 45 45 44 44 43 43 42 42 EEDDCCBB
9FFC 41 41 40 40 94 E3 7B E3 AA ••••

Real variables
Looking through the display above, it is quite easy to spot the real
variables as their names are stored in unmodified ASCII. At $0A51 we
see 'I', the first non-subscripted variable to be used, with a zero
second byte in its name. We can also spot F, T, X and all the others
(noting that MSB and LSB are stored as MS and LS).

Real numbers are stored in binary floating point format, always to an
accuracy of 31 bits. Due to the way in which they are stored in single
precision form, rounding errors are introduced though these are
usually not significant enough to affect the final results. Examples of
this type of error are encountered all the time as in the 'X.000001 '-type
value. We can convert 'I' back to a decimal number quite easily.

The exponent is stored in byte 3 and is the power of two. A unit
change in this doubles or halves the resulting value. Positive
exponents are expressed as 129+EXP and negative, as 129-EXP.
Therefore, the full range is from 2'(-129) to 2'(127) or in decimal, from
about 10'(-38) to 10'37. The high bit of byte 4 indicates the sign and is
set for negative numbers. To calculate the decimal value, we have to
successively divide the mantissa starting at the right by 256, add the
result to the next on the right and so on until we reach M1, when we
only divide by 128 and finally add 1. The resulting number will lie
between 1 and 1.999999. This must finally be adjusted for its exponent
and sign. The values for 'I' used below are in decimal.

M4 0/256=0
M3 (0+0)/256=0
M2 (0+ 16)/256= .0625
M1 (.0625+37)1128=0.28955

+1.00000=1.28955

If this is then multiplied by the exponent of 2'(140-129)=2048, the
value is 2048*1.28955=2640.999 (almost 2641). This is the upper limit for
the first memory display. A general formula may be written to convert
any real variable from its floating point to decimal form:

(-),(M1 AND 128)*2'(EXP-129)*(1 +((M1 AND 127)+ (M2+ (M3+
(M4/256)/256))/256) . . .1128)

BASIC on the 64 21

Integer variables
These are stored in a signed high/low byte format and can range from
- 32768 to 32767. The high bit of byte 3 is again used to indicate the
sign. The value is easily determined from the following:

(BYTE3 AND 127)*256+BYTE4+(BYTE3>127)*32768

String variables
These are the easiest of all to pick out. At $0A59 in the display above is
the variable M$(its second byte is not used so is set to $80). Byte 3 tells
us it is seven characters long, and bytes 4 and 5 that it is located at
$9FED. The seven bytes from $9FED are "STRING1" as would be expec
ted. Strings therefore use seven plus the number of characters bytes of
RAM. There is one important point to make before leaving strings. If line
3 had simply been M$="STRING1", its pointer would have pointed to
the byte at which it occurred within the program itself, that is, the byte
immediately following the quote. Only computed strings are stored at
the top of memory which is why the line was written
M$=M$+"STRING1". This economizes on memory usage by only
storing the string once. It does have the drawback that if another
program is loaded in program mode all non-computed strings are lost.

Subscripted variables
Arrays may be of any type, but unlike their 'simple' counterparts, only
the required number of bytes are used to store the associated values.
Real are stored in five bytes, integer in two and strings in three plus
their length. In addition to the savings in storing the values, the array
name is only stored once. Arrays are also created in the order in which
they are encountered.

The area of memory used for arrays immediately follows that for
simple variables. As for the latter, it, too, is recorded at two zero page
locations. The start, ARYTAB, has already been mentioned when
dealing with simple variables. The end, STREND, is held in
$31-$32/49-50. For each new simple variable this whole block must be
moved up seven bytes in memory. There will, of course, come a time
when array storage builds up to meet that of the descending strings
with the resulting 'OUT OF MEMORY' error.

Each array is preceded by a detailed header of the form shown
below:

Byte
1 and 2 3 4 5 6 7 N-1 N
NAME OFFSETTO NO. LAST FIRST

1ST VALUE DIMS DIM+1DIM+1
Adj. form low high <256 low high .. low high

Bytes 1 and 2 hold the name in its adjusted form. Bytes 3 and 4 record

22 BASIC on the 64

the overall memory requirement for the array (this does not include
string data at the top of memory) and is the offset from its start to the
next array. Byte 5 records the level of dimensioning and may not
exceed 255 (a little difficult to visualize at anything more than two or
three). If an undimensioned array is used, this value will default to
the number of subscripts at the first occurrence. Successive pairs of
bytes then hold the number of elements in each dimension (plus one
for the zero subscript) in the reverse order of dimensioning. If no
dimensioning has been used, these each default to 11 (10+1). The
following bytes are then used to store the data.

If the program is again run and memory between ARYTAB and
STRENO displayed, the following results:

9AAC 41 99 25 99 91 99 96 99
9AB4 99 99 99 99 81 99 99 99
9ABC 99 82 99 99 99 99 82 49
9AC4 99 99 99 83 99 99 99 99
9ACC 83 29 99 99 99 C2 89 13
9AD4 99 91 99 96 99 99 99 91
9ADC 99 92 99 93 99 94 99 95
9AE4 43 89 19 99 91 99 96 91
9AEC FF 9F 91 FD 9F 91 FB 9F
9AF4 91 F9 9F 91 F7 9F 91 F5
9AFC 9F 44 89 3F 99 92 99 96
9B94 98 83 88 88 88 81 FE 9F
9B9C 99 99 99 98 89 98 91 FC
9B14 9F 99 99 99 99 99 88 81
9BIC FA 9F 99 99 99 99 99 89
9B24 91 F8 9F 99 99 99 99 99
9B2C 99 91 F6 9F 99 99 89 98
9B34 99 99 91 F4 9F 99 99 99
9B3C 99 91 FF FF 99 91 FF FF

A. /. •••••

........
c

.0. ? ...

The first array is 'A(' at $0AAC. It occupies 37 bytes ($0025), and has
one dimension ($01) of five elements ($06-1). The six values are then
held in 5 byte real format. The next array starts at
$0AAC+$25=$0A01. This is 'B%(' which occupies only 19 ($13) for its
six values. The values are easily read out as 0, 1, 2, 3, 4 and 5. The
next is 'C$(', and looking at the previous display we can read out its
values as @, A, B, C, 0 and E. A little care has to be exercised here as
in the loop which generated them '0$(' was also defined each time.
This last array is the most complex of all. In its dimension statement it
was defined as 0$(2,5). However, in its header these are reversed
(last.. .. first). The values set were assigned to 0$(1,1) and from the
display we can see these occur at the second and subsequently at
every third byte. This shows us that multi-dimensional arrays are

BASIC on the 64 23

stored in the form X(0,0) X(1 ,O) ... X(N,0) X(0,1) X(1 ,1) X(N,N).

This just about concludes our section on variables, except to say that
the default values are zero for numeric and null for strings.

Link addresses and line numbers

General
Knowing where and in what form these are stored, there is no reason
why we cannot modify them from BASIC itself. This we can do using
simple POKES to produce some interesting results.

Links
If we modify a link address, the program will continue to run. It will,
however, list in an unusual fashion and be difficult to edit. We can use
this fact to make our programs difficult to read and modify. This we can
do by hiding lines (the whole program if we wish). Hiding line 110 of
the display program, as its listing was originally given, can be done by

POKE 2049,45

This simply skips the link at $0817. We could very easily write a short
routine to eliminate whole blocks of line numbers. This we leave up to
you.

Line numbers
We can change line numbers as we did link addresses. We could
change the line number of 100 to any value we choose.

POKE 2051,110

will, on listing the program, give two line 110s. A little care should be
taken here, because if the line number changed is the destination for a
GOTO or a GOSUB, some confusion may result.

Saving modified code
BASIC'S SAVE command transfers to tape or disk a copy of the RAM

between TXTIAB and VARTAB. This means any modifications are also
saved. The modified code returns on loading.

Modifying BASIC

Changing the load address
We can change the point at which BASIC programs load simply by
setting the value in TXTIAB. Wherever the new start is to be, a zero
must be set in the byte immediately before it. Once the new start has
been set, a NEW will tidy up all other pointers.

Changing the start of BASIC is useful if using sprites or programmable
characters within bank ° (the default). The Programmer's Reference
Guide recommends lowering the top of memory to make room for the

24 BA~IC: on the 64

necessary data. Instead, why not move up the start of BASIC and leave
yourself with far more memory to use?

Chaining programs
Chaining in this context refers to loading one program from within
another.

The question arises as to whether there is a bug in the chaining
process. The answer is a qualified 'no' as there can be problems. The
effect of a program LOAD is roughly equivalent to executing a GOTO
the first statement of the chained program. Thus, the new program can
use only real, integer and computed string variables from the first. The
problem occurs when the incoming program is larger than the original.
If this is the case, it will overwrite the start of the variables, causing
utter confusion. Once this has happened you really need to issue a CLR

at the start of the new program to tidy things up. You have apparently
lost all the variables anyway so there is nothing to lose.

On some micros a CHAIN command exists in addition to the normal
LOAD. The action of this command is to move all or only the specified
variables out of the way during the loading process and then move
them back and update the necessary pointers. On the 64 no such
command is available. There are two solutions. The first is to ensure a
larger program is never loaded from a smaller one. The second is to
make the first program the largest. To do this we do not need to
generate a 'large program'. All that is needed is a simple POK~ and CLR

sequence at the start of the first program to reserve the necessary
memory. BASIC can be fooled by:

POKE 46, (SIZE OF BIGGEST PROG)/256+8+1 :CLR

In this example we have not bothered to be exact and have simply
reserved to the nearest page.

Speeding up program execution
There are many ways in which to increase the speed of a program. The
speed of peripheral devices plays a major part when inputting or out
putting, but the topics covered here are mainly concerned with the 64
itself.

There are commercial 'CRUNCH' or 'compactor' programs available.
These traditionally remove all unnecessary spaces, REMs, combine
lines not the destination of a GOTO or GOSUB and that is about all.
Even these few changes can produce significant increases in execution
speed. Some of this we can do from BASIC itself. A short routine at the
start of a program can combine lines by eliminating link addresses and
line numbers, and remove all REMS and all spaces not inside quotations.
After each deletion, the remaining code is moved down in memory
and VARTAB is updated. The end of line marker must be replaced by a
':' to separate the last statement from the leading statement on the
crunched line. There are a number of problems here. If a line number

BASIC on the 64 25

is eliminated which is referenced by a THEN, GOTO or GOSUB, the
run will fail. The second problem stems from all statements following
an IF being ignored if the condition is false. The resulting compacted
lines are so long that they cannot be edited. As such, a universal
compactor program in BASIC is fraught with danger.

It is far more sensible to consider these points at the time of writing
the program. A well-known technique is to ensure that all GOTOs have
destinations as near the start of the program as possible as the inter
preter starts its search there. If this cannot be done, then the desti
nation should have its high byte greater than that of the GOTO line
due to the search technique used which compares this byte first.

There are three other common methods used to optimize the code:

(i) the use of variables rather than constants;
(ii) the setting up of variables in the order of frequency of use;

(iii) and, specific to the 64, turning off the video display when not in
use (see Programmer's Reference Guide, Appendix N, 'Screen
Blanking').

Using these techniques, the second program below runs almost 25%
faster than the fi rst:

10 PRINTTI
20 POKE 49152,0
39 FOR 1=0 TO 5999
49 J=J+1
50 NEXT I
69 POKE 49152,16
70 PRINTTI

19 PRINTTI:POKE53265,0:P=I:FORI=0T05000:
J=J+P:NEXT:POKE53265,16:PRINTTI

The second program does leave you in x and y scroll mode if you are
wondering just what has happened.

Conclusion

This chapter should have given you one or two ideas to play around
with. Before reading Chapter 5, you might like to think about how to
write simple renumber, delete, dump, and recover NEwed program
routines. You might also like to think about how to overcome the
chaining problem by, as the last action on leaving a program, moving
all variables as high as they can go in memory. The first action of the
chained program should be to move them back down to the end of this
program and reset the necessary zero page pointers.

2 Peripherals

Introduction

This chapter deals with some of the more common peripherals for the
64. Also included here are the keyboard and screen even though they
are not quite peripherals in the same sense as a disk drive, cassette or
printer.

It is not our intention to go into any of these in great detail as the
subject could fill a book of its own. We have tried to look at features of
more immediate use.

Keyboard

Use of the keyboard, its ROM drive routines and RAM vectors is covered
in Chapter 4. Programming of the keyboard is used extensively in
Chapter 5. The following are a few useful points not directly covered
elsewhere.

Keyboard as a device
The keyboard is viewed as device 0 by the 64's operating system and is
the default for input. As such it may be used like any other device and a
file oPENed to it. This file may only be for input and any attempt to
output to it wi" result in an error. Once opened for input the
'annoying' question mark prompt is removed from the INPUT command
display. When information is being obtained from it using INPUT# a"
warning messages, such as the double question mark for insufficient
data, also disappear. The open format is the same as for any other
device:

OPEN 1,0 or OPEN 1,0,129,"QWERTY"

In the second example everything following the 0 wi" be ignored. Use
of the keyboard in this way is highlighted in the DISK utility facility in
this chapter (see below).

Auto-repeat
See ·Chapter 10.

Key detection
See Chapter 4 and Appendix I.

Peripherals 27

Keyboard Buffer - KEYD ($0277-$0280/631-640)
The 64 provides type-ahead of up to ten characters. The buffer
operates on the principle of first inlfirst out. However, once full no
new characters will be accepted until it has been partially emptied.
Characters are taken singly by a GET, up to the first RETURN on an INPUT
and the buffer is emptied on an END.

The length of the buffer is determined by XMAX ($0289/649) and as
this is in RAM it may be changed. Theoretically, the buffer could be
lengthened, but in practice this cannot be done as the RAM immediately
following it is used for other purposes. The size, however, may be
decreased and is perhaps most useful when the length is set to 1 where
a program requires careful, restricted input or type-ahead is to be
discouraged. Setting XMAX to 0 is quite a good way to prevent
unwanted user input (the STOP key is still active as it is scanned by a
different routine - see Chapter 10 to disable).

As the buffer is in RAM we can put data directly into it by simply
pOKEing the ASCII codes of the characters required. To complete the
process NDX ($C6/198) must be set to tell the system how many
characters are in the buffer. This type of approach is used extensively
in the BASIC utilities in Chapter 5 and we refer you there for examples of
using the keyboard in this way.

One final point before leaving the keyboard which many of you may
have already discovered. Pressing the 'Control' key with any other
simply sets bit 6 of the ASCII code of the character low. For example,
CNRLrr is the same as the DEL key ($14/20).

Cassette

The 64 does not have to use a CBM Datassette. There are, to our
knowledge, two manufacturers of interfaces which allow standard
cassette recorders to be used. These interfaces duplicate the part of
the interface normally resident within the Datassette. It is even pos
sible to use a standard cassette through a suitable edge connector, but
do not expect a high success rate in loading back saved programs or to
get anything from recordings produced on a CBM recorder (see Pro
grammer's Reference Guide, Appendix I for connection details).

Many consider the cost of the dedicated cassette high. However, it
avoids the need to adjust the volume and tone controls to ensure an
accurate save (a problem on many other micros where even saving
twice is not guaranteed to work). It also seems slow, but perhaps is not
as slow as it at first appears. Data is transferred between the 64 and the
cassette at about 300 baud (some micros offer an optional fast 1200
baud rate). When a program is saved two copies are made. On
reloading the first copy is put into memory and this is then compared
with the second to check for and possibly recover load errors. In our
experience it has proved worth the additional expense to buy the

28 Peripherals

Datassette for peace of mind and to avoid the loss of many hours of
hard work.

The speed of operation of the cassette has been chosen for
reliability, but like most things on the 64 we can even change that. For
many years superfast, jet, turbo, fast or whatever you care to call them,
operating systems have been available for the PET, more recently for the
VIC20 (ARROW) and now for the 64. The machine code listing of the
original PET version has even been published. Many games now come
with a high-speed load (some without the option for a normal load
which has proved annoying when your cassette cannot cope with fast
loads). These fast operating systems can be made to run the cassette at
a higher speed than the standard operating speed of the disk drive
(even this can be increased). There is no secret as to how it is done, but
as many software houses pay a royalty for its use, or even sell their own
versions of a high-speed loader, we have decided not to include a
version of our own.

LOAD and SAVE with cassette (see Programmer's Reference Guide,
Chapter 2)
These are dealt with in detail in the Programmer's Reference Guide, so
we will deal with them briefly here. The general syntax for SAVE is
(where square brackets denote optional parameters):

SAVE["program" or string variable] [,device]
[, secondary address]

If no parameters are specified, the BASIC program currently in memory
will be copied to the default of cassette without a name.

The secondary address is the more interesting. A secondary address
of 2 will write an end of tape marker and one of 3 appears at first sight
to do exactly the same. Using either of these will prevent the tape
being read beyond this point without being physically wound on.
There is, however, a world of difference on loading (see below). With
an address of 3 not only is the end of tape set, but an end of tape
header is written which is a duplicate of the program header with a
type of 5.

The area of RAM saved is that between the values held in TXTIAB and
VARTAB. These pointers are automatically kept up to date by the
operating system whilst a program is being edited. Should we wish to
save an area of memory other than the BASIC program, we can set these
up by pOKEing in the appropriate values (remember low/high format).
This allows us to save machine code from BASIC or even the screen
itself. Data stored in memory is more economically saved this way as
only single bytes are saved and not the ASCII characters which make
up each number (saves at least two bytes per number between 0 and
255). The problem is that on returning from the save, the current BASIC
program and variables are lost until these pointers are restored. If you

Peripherals 29

are going to play with TxnAB and VARTAB from BASIC, put the original
values out of harm's way, say below $0800 or above $C000, to allow
them to be recovered.

The syntax for LOAD is identical to that for SAVE:

LOAD ["program" or string variable] [,device]
[,secondaryaddress]

LOAD reads the next program from tape. If a program name is specified,
then the named program will be searched for and if found loaded or if
an end of tape marker is found first the cassette will stop. Again it is the
secondary address which is of major importance. A 1 requests the
operating system to put the program at the same location from which it
was saved. If no secondary address is specified, then providing the
program came from an address above the current start of BASIC it will
return to its original location, but after the load TxnAB will still hold
the start of BASIC whereas VARTAB will hold the end address. The same
is true when 1 is used, but in this case a load may be carried out below
the start of BASIC. Typically, when loading machine code from BASIC an
'OUT OF MEMORY' error results if the code locates above $9FFF due to
the setting of VARTAB. A save with a secondary address of 3 ensures
the code is reloaded to its original address, regardless of the syntax of
the LOAD command (extended monitors use 3).

Tape Buffer
The tape uses a 192 byte I/O buffer, TBUFFR, which in its default setting
extends from $033C-03FB/828--1019. TBUFFR need not reside here and
may be relocated, as a pointer to its start is held in RAM at SAL

($AC-ADI172-173). To move it, simply POKE in the new location in the
usual low/high byte format (STOP/RESTORE will reset it). We have
found this of use when storing sprite data blocks in bank 0 when
memory is tight ($C000 is yet again a good place to put it). Usage of the
buffer is very different between program and data files. Programs only
use the buffer to store their header information (see below) and the
transfer of memory is direct from the I/O port without passing through
the buffer. Data files, on the other hand, use the buffer initially for the
header then subsequently to hold 191 byte blocks (the first byte is used
as a marker). This avoids continual starting and stopping of the tape
motor and by using this block system the tape is more reliable as it is
allowed to pick up speed between each read/write operation. Another
zero page location, BUFPNT ($A61166), holds the current position
within the buffer.

Tape Headers
All files are stored on tape with an initial header which is the length of
the buffer. The exact format depends on the syntax of the SAVE or OPEN

command (secondary address of 2 on an OPEN also writes an end of tape

30 Peripherals

marker). Each is made up of an identifier, two addresses and a file
name, the format of which is given below:

Program headers

ID START END FILE NAME (spaces to pad)

1 18 2516 65 66 67 32 32 32

Data headers

ID START END FILE NAME
4 603 2523 6865663232

The ID identifies the file type and for a program may also take a value
of 3. The two bytes immediately following it are the start load address
in low/high format and the next two the end address. The file name is
not limited to 16 characters and in fact can be up to 187 characters. This
allows machine code to be embedded in a header to add additional
security to a program. When the name is printed out by LOADING
only the first 16 characters are displayed. The header to a data file also
contains the start/end bytes but these hold the start and end ofTBUFFR
itself.

The last operation on completion of a save or write is to store a
duplicate header. If the command had a secondary address indicating
an end of tape marker, then the ID would be changed to a 5 before
writing. On loading or reading to the end of a file the last operation is
to get back this trailing header (which remains until the next tape
operation).

Tape directories
Tape directories as such do not exist unless you are using an improved
cassette operating system such as ACOS+. There are times when it is
necessary to catalogue a tape. The process is time-consuming as it is,
not surprisingly, directly proportional to the length of the tape. The
following program may be used to do the job. It is best left running
whilst you go away to do something else.

Any header will be read with an OPEN statement. CLosEing it immedi
ately ceases tape operation and program execution continues. The
parameters are then pulled from the buffer and stored for later use.
The process is repeated for the next header. When the end of tape is
reached or you stop the program, a simple GOTO 260 will display the
file information. This is the file type, up to 16 characters of its name
with non-alphanumeric characters replaced by a ".", and if a program
its start and end addresses (in hex).

Peripherals 31

199 DIM FS(59),FTS(59),SAS(59),EAS(59):C
8=828
119 PRINT"[CLSJPRESS PLAY ON TAPE"
129 IF PEEK(1)<>7 GOTO 129
139 I=I+l:0PEN l:CLOSE l:PRINTFS(I-l)
149 FTS(I)=RIGHTs(n[5SPCJ"+STRS(PEEK(CB)
) ,4)
159 IF PEEK(CB)=4 THEN SAS(I)="[ZSPCJ***
*n:EAS(I)="[2SPCJ****":GOTO 299
169 X=PEEK(839):GOSUB 369:SAS(I)=XS
179 X=PEEK(829):GOSUB 369:SAS(I)=" S"+SA
S(I)+XS
189 X=PEEK(832):GOSUB 369:EAS(I)=XS
199 X=PEEK(831):GOSUB 369:EAS(I)=" S"+EA
S(I)+XS
299 AS=·":FOR J=833 TO 848
219 X=PEEK(J):IF X<32 OR X>95 THEN AS=AS
+ n . " : GOTO 239
229 AS=AS+CHRS(X)
239 NEXT J
249 FS(I)=LEFTS(" "+AS+"[18SPCJ",17)
259 GOTO 139
269 HS="[CLSJTYPE FILENAME[9SPCJSTART[3S
PCJENDu:PRINTHS
279 FOR J=l TO I:PRINTFTS(J);FS(J);SAS(J
) ;EAS(J)
289 IF INT(J/29)<>J/20 GOTO 320
298 PRINT"PRESS RETURN FOR NEXT PAGE"
399 GET AS:IF AS<>CHRS(13) GOTO 399
319 PRINTHS
320 NEXT J
338 INPUT "REVIEW AGAIN";YS:IF YS=HY" GO
TO 269
349 IF YS<>uN" GOTO 330
359 CLOSE l:END
369 Xl=INT(X/16):X2=X-Xl*16
379 XS=CHRS(Xl+48-7*(Xl>9»+CHRS(X2+48-7
*(X2>9»
389 RETURN

Unfortunately, during tape 1/0 the internal clock variable (TI$) is not
updated as the interrupt is used exclusively for tape timing. Had this
not been the case, a read of this variable could have been used to
calculate the value of the tape counter. The best suggestion we can
come up with is if the file is a program then the difference in its start
and end addresses could be used to determine the loading time. For a

32 Peripherals

data file bytes could be taken until the status is set to the end of file,
the number of bytes read being an indication of the time. We might as
well do this as the tape is running anyway. The time taken may be used
to work out an approximate counter reading.

Auto-running
Generating programs which auto-run is also discussed in Chapter 10.
There are many ways to accomplish this, most of which involve fairly
detailed knowledge of the operating system. The following are sug
gestions only for you to pursue. All but one are suitable for disk or
tape.

The stack
During LOAD the return address is placed on the stack. As this is an area
of RAM, there is no reason why we cannot load through this area and
put our own address on instead. This could then go to our own
machine code routine. The file type should be 3 to ensure a load to its
original position. The same would apply to disk or tape if loaded with a
secondary address of 1.

BASIC warm start - $0302
After a load in direct mode BASIC is warm-started. Again as this vector is
held in RAM we can load through it. The new value it then contained
could jump to our machine code or straight to RUN (for BASIC programs).

IRQTMP- $029F
This stores the current IRQ vector during tape 1/0 which is restored
after the tape operation. Again we can do the same to this as in the
above. On the first normal interrupt the action will be taken. This, of
course, can only be used with tape.

CHAIN command of the UTILITY
See Chapter 8.

Screen

The utilities in this section are confined to the text screen.
The screen on the 64 is a 40 column by 25 line memory-mapped

display. Chapter 3 and Appendices B to D of the Programmer's Refer
ence Guide cover in great detail all aspects of the screen and it is to
there that we refer you. All the following utilities assume that you are
familiar with or know the following.

i) The screen may be moved from its default position.
ii) There are two character sets.
iii) The screen has an associated colour map at $D800 on.
iv) The display codes differ from the ASCII codes.
v) Commodore 'ASCII' is not true ASCII which only ranges from 0 to

127. (Consult your printer manual.)

Peripherals 33

Printer dump
There are two routines, both of which output the current display in
standard ASCII to a printer. One is a BASIC subroutine and the other is
machine code. The second is noticeably faster than the first, as would
be expected.

Both routines take account of whether the 64 is in upper or lower
case mode as well as checking for the location of the screen.

64 owners with Commodore printers need not concern themselves
with the conversions to standard ASCII.

BASIC printer dump subroutine
The version given here is for an RS232 printer running at 300 baud
without auto-line feed. For this reason the output logical file is
assigned at the start of the program. The out put file is designated 'P' to
avoid specific reference to allow for easier change to other printers.
The display is centred on an 80 column display by printing 20 spaces at
the start of each line.

The program first examines the lower/upper case register at 53272 by
calling the subroutine at 60090. If in lower case, LC is assigned a value
of 32 (note lower case 'a' in character set 2 has a PEEK value of 1 which
is standard ASCII is 97 - that is, bit 5 set). This adjustment will be
applied to all letters between 'a' and 'z'. The whole dump is enclosed
within two loops: I for the rows and J for the columns. All screen codes
are ANDed with 127 to reduce them to values in the range 0 to 127 to
eliminate reversed characters. If the screen code is <32, we have to
add 64 and the LC adjustment. If it lies between 32 and 65, we can print
it unchanged. Only if in lower case mode do we need to check for
upper case letters. If we were in upper case, these would be non
printed graphic characters. If in LC then the ANDed code is already in
standard ASCII. If all the tests have failed, we have a graphic character
so we replace it by a space to maintain the layout of printable text.
Once a screen line has been processed we print it preceded by 20
spaces and recycle for all remaining 24 lines.

19 OPEN 129,2,9,CHR$(6)
69909 GOSUB 69999
69919 FOR 1=9 TO 24:A$=uu:FOR J=0 TO 39:
CH=PEEK(S+I*49+J)
60929 CH=CH AND 127
69939 IF CH(32 THEN CH=CH+64+LC:GOTO 600
70
69049 IF CH(65 GOTO 69970
69959 IF CH(91 AND LC GOTO 60070
69069 CH=G
69979 A$=A$+CHR$(CH):NEXT J
69989 PRINT#P,SPC(SP);A$:NEXT I:CLOSE P:
RETURN

34 Peripherals

69999 P=129:SP=29:G=32
69100 LC=0:IF PEEK(53272)=23 THEN LC=32
60110 S=PEEK(648)*256:RETURN

Whenever a dump is required, simply GOSUB 60000. This could be
actioned by, say, a GET statement, but should not add to the display, or
if it does then only 24 lines should be printed. To improve the present
ation, blank lines or a form feed should be issued at the end of the
dump.

Machine code printer dump
The logic of this routine is identical to that above and is therefore not
described in detail. The differences are that it is much faster and it does
not pad a line with 20 leading spaces.

The routine as written assumes logical file 2 is open to the printer at
the time of calling. To change this, simply alter the byte at $C001 with a
POKE. It works by changing the output device through the CHKOUT KERNAL

call to that associated with file #2 (the equivalent of a CMD from BASIC).

This then allows us to use the KERNAL routine CHROUT to output the data.
There is a routine in ROM which could be used to do most of the
conversion, but for this exercise the technique used here is adequate
and easier to follow. The device need not be the printer and could be
the disk or tape depending on the OPEN statement. We do not recom
mend you use this routine with anything other than a printer as far
better screen saves follow. Once the dump is complete, the default
device for output is restored to the screen before returning to BASIC.

The routine is used by at some point including an OPEN 2,4 or OPEN

2,2,CHR$O if using RS232. A simple SYS 49152 will perform the dump. If
your printer requires a forced line feed, make the necessary adjust
ment to $C001 for a value greater than 127.

BASIC loader for the machine code
The following must be loaded and run. Once this has been done the
code remains present until overwritten by something else. Once run
the machine code may be saved using an extended monitor for ease of
loading later.

1 DATA 162, 2, 32, 291, 255, 173, 136, 2
, 133, 88, 169
2 DATA 9, 133, 87, 173, 24, 298, 201, 21
, 208, 6
3 DATA 169, 9, 133, 89, 249, 4, 169, 32,

133, 89
4 DATA 169, 32, 133, 99, 24, 165, 88, 19
5, 3, 133
5 DATA 91, 162, 4, 169, 9, 177, 87, 41 ,
127, 24

Peripherals 35

6 DATA 291, 31, 176, 7, 24, 195, 64, 191
, 89, 144
7 DATA 24, 24, 291, 64, 176, 2, 144, 17,
24, 165

8 DATA 89, 249, 10, 177, 87, 24, 291, 91
, 176, 3
9 DATA 24, 144, 2, 169, 32, 32, 219, 255
, 224, 1
10 DATA 208, 4, 192, 232, 249, 23, 230,
96, 291, 49
11 DATA 298, 9, 169, 13, 32, 210, 255, 1
69, 9, 133
12 DATA 96, 209, 208, 187, 239, 88, 292,
298, 182, 169

13 DATA 13, 32, 210, 255, 162, 9, 32, 20
1, 255, 96
14 DATA 0, 255, 255, 0, 9, 255, 255, 9,
9, 255
15 FOR 1=49152 TO 49292:READ A:POKE I,A:
NEXT I

Here is the assembly listing which is fully annotated to allow you to
follow it:

Ce90 A292 LOX #$82 log file to p~inte~
C8ge 2eC9FF JSR $FFC9 pe~fo~m DM02 via CHKOUT
Ce95 AOBSe2 LOA $92B8 screen start f~om HlBASE
C898 8558 STA $58 set start ~egisters
ce9A A990 LOA #$88
C80C 8557 STA $57
C88E A01800 LOA $0818 check uppe~/lower case
C911 C915 DMP #$15 is it upper
Ce13 0886 BNE $C81B no
C915 A999 LOA #$99 set adjustment value
C917 8559 STA $59 for ASCII
C919 F994 BEQ $C9lF sk i p 1 owe~ case
C9lB A929 LOA #$29 lowe~ case set adj flag
C9lD 8559 STA $59 as ASCII a=97 etc.
C8lF A929 LOA #$29 set non-printable flag
C82l 855A STA $5A to a space
C823 18 CLC
C924 A558 LOA $58 set HSB end of sc~een
C826 6983 AOC #$83
C928 855B STA $5B
C82A A294 LOX #$94 almost 4 pages/sc~een
C92C A990 LOY #$99 counte~ within page

36 Peripherals

C02E B157 LOA ($57),Y get byte
C030 297F AND #$7F el iminate high bit 7
Remember difference between screen and ASCII codes
C032 IB CLC start checks
C033 C91F CMP #$IF less than a space
C035 B097 BCS $C03E no go to next check
C03? IB CLC
C03B 6940 ADC
C03A 6559 AOC
C03C 901B BCC
C03E IB CLC
C03F C940 CMP
C041 B092 BCS
C943 9911 BCC
C045 IB CLC

#$49
$59
$C056

#$49
$C045
$C956

C946 A559 LOA $59
C04B F09A BEQ $C054
C04A B157 LOA ($57),Y
C04C IB CLC
C040 C95B CMP #$5B
C04F B003 BCS $C054
C051 IB CLC
C052 9092 BCC
C054 A920 LOA
C056 20D2FF JSR
C059 E001 CPX
C05B D094 BNE
C95D C0EB CPY
C95F F017 BEQ
C061 E660 INC
C063
C065
C067
C069
C06C
C06E
C070
C071
C073
C075
C076
C07B
C07A
C07D
C97F
C9B2

C92B
D009
A990
2002FF
A999
B560
CB
09BB
E65B
CA
DOB6
A990
2002FF
A290
29C9FF
69

CMP
BNE
LOA
JSR
LOA
STA
INY
BNE
INC
DEX
BNE
LOA
JSR
LOX
JSR
RTS

$C056
#$29
$FF02
#$01
$C061
#$EB
$C07B
$60
#$2B
$C079
#$0D
$FFD2
#$09
$60

$C92E
$5B

$C02E
#$90
$FFD2
#$99
$FFC9

make ASCII by adding 64
add lower case adj.
always taken

check for upper case in
l/c mode & branch) 65
~-? same in both sets
check upper case
if zero
branch to avoid graphic
get l/c byte again
check not gt Z

if so avoid graphic

val id A-Z so skip space

print char
on last page
no - so branch
yes so check end $**EB
branch all done
end of screen 1 ine reg
is it 49 dec
no so sKip next bit
ou t put n ext bit
pr i n tit
rezero end of 1 ine reg

continue current page
branch if not finished
inc next page register

always taken
RETURN for last 1 ine

restore screen output

Peripherals 37

To improve this, why not patch into the interrupt routine to, for
example, dump the screen whenever a designated key is pressed
rather than using the SYS command? Chapter 4 explains the interrupt in
detail and Chapter 10 gives an example of its use. If you decide to do
this, remember to include a routine to disable the patch. The necessary
enable and disable routines can be added at the end of the code as
given. The logical file will still have to be OPENED unless the appropriate
KERNAL routines are called.

Screen dumps

Three ways are given to save the screen and its associated colour map
in this section. Two are in BASIC and the third is in machine code. Both
BASIC programs use a sequential file to store the data, but differ in the
length of file produced. The machine code saves the screen as a
program file and is the most economical and by far the quickest.

A few points should be made before discussing the routines in
detail. Any area of memory may be saved from BASIC by setting TXTIAB
and VARTAB to its start and end addresses. The problem is that once
we have changed these pointers we have temporarily lost our program.
Another problem is that a LOAD will cause BASIC to warm-start, which is
this case will be at the newly set TXTIAB address. The screen is an area
of memory and may be loaded and saved in this way. Unfortunately, its
default position is below the normal start of BASIC so a 'crash' or
'hang-up' is usually the result. Try it and see. So from a practical
viewpoint we must resort to other means.

All the following routines check HIBASE for the current screen loca
tion. The resulting screens will always reload to the current screen
position regardless of its location at the time of saving. The reloaded
screen will be identical to that saved in both characters and colours.

Screen save using numbers
This routine firstly PEEKS out the border and background colours and
writes them, as numbers, to a disk file (change the OPEN command for
tape). It then proceeds, writing alternate screen and colour values until
finished.

To save a screen: CaSUB 60000
To load a screen: CaSUB 60050

68888 OPEN 2,S,2,Hi8:TEST,S,W"
68818 S=PEEK(64S)*256:C=55296
68828 PRINT#2,PEEK(53288);H,R;PEEK(53281
) ; CHR$(13) ;
68838 FOR I=S TO S+999:PRINT#2,PEEK(I);"
,H;PEEK(C+I-S);CHR$(13);:NEXT I:CLOSE 2

38 Peripherals

60040 RETURN
60050 OPEN 3,8,3,RTEST,S,RH
60060 INPUT#3,A,B:POKE 53280,A:POKE 5328
1 , B
60070 S=PEEK(648)*256:C=55296
60080 FOR I=S TO S+999:INPUT#3,A,B:POKE
I,A:POKE C+I-S,B:NEXT I:CLOSE 3:RETURN

Because numbers are written as their ASCII codes three to five bytes
are used for each value (spaceXXXreturn). Therefore, using this
method we will generate a sequential file of between 6 and 10K, which
seems rather excessive. The second method reduces the size of this
file.

Screen save using characters
This time a single byte is used to store each value in the screen and
colour maps. This is done by simply PEEKing the value and generating
the corresponding CHR$O character with the ASCO function. Zero values
must be trapped as ASC(0) will give a syntax error. The resulting file uses
only one byte for most values and the file size is therefore about 2K.
This is obviously far faster to generate and restore.

To save a screen: COSUB 60000
To load a screen: COSUB 60050

60000 OPEN 2,8,2,u.0:TEST,S,W·
60010 S=PEEK(648)*256:C=55296
60020 PRINT#2,CHRS(PEEK(53280»;CHR$(PEE
K(53281»;
60030 FOR I=S TO S+999:PRINT#2,CHR$(PEEK
(I»;CHRS(PEEK(C+I-S»;:NEXT I:CLOSE 2
60040 RETURN
60050 OPEN 3,8,3,HTEST,S,R H
60060 GET#3,AS:IF A$=HU THEN AS=CHRS(0)
60070 POKE 53280,ASC(AS)
60080 GET#3,AS:IF AS=H. THEN AS=CHRS(0)
60090 POKE 53281,ASC(AS)
60100 S=PEEK(648)*256:C=55296
60110 FOR I=S TO S+999:GET#3,AS:IF AS=uH

THEN AS=CHR$(0)
60120 POKE I,ASC(AS):GET#3,AS:IF AS=HII T
HEN AS=CHRS(0)
60130 POKE C+I-S,ASC(AS):NEXT I:CLOSE 3:
RETURN

Peripherals 39

Machine code screen save
This is by far the best method. It is very simple to use the KERNAL LOAD

and SAVE for both the screen and colour maps. Using these as they
stand, two files would be generated - one for the colour map and one
for the screen. This is no hardship, but a relocated load would be
required if a screen is being restored to a different location from
whence it came. This is not difficult, but perhaps is not the best way.

We have approached the problem slightly differently. Before per
forming the save, the screen and colour maps are combined into a 2K
block at a convenient address. This has to be out of the way of BASIC to
avoid corrupting program or data areas. This could be a reserved area
at the end of BASIC or even under BASIC ROM if a switch like that used in
the UTIlITY is implemented to throw out and restore ROM. This is pos
sible as no BASIC ROM calls are made. For this example we have chosen
to move the screen from its current position to $C400 and the colour
map to $C800. The routine also saves the sprite pointers and if you do
not wish it to do so then you will have to modify the code to move 1000
rather than its current 1024 bytes from or to each area.

All the routine does to save is to move both screen and colour maps
then use the KERNAL SAVE from $C400 to $CC00. To restore the screen it
is reloaded to $C400 and moved back to the colour map and the
current screen position.

BASIC loader for screen save
The following must be loaded and run before it can be called. Once
run it may be saved using an extended monitor for ease of loading
later.

1 DATA 32, 253, 174, 201, 76, 208, 6, 16
9, ° , 133, 87
2 DATA 24O, 11, 201, 83, 24O, 3, 32, 8,
175, 169
3 DATA 255, 133, 87, 32, 115, ° , 32, 253
, 174, 201
4 DATA 34, 24O, 3, 32, 8, 175, 32, 115,
0, 165
5 DATA 122, 133, 187, 165, 123, 133, 188
, 160, 9, 177
6 DATA 122, 201, 34, 240, 8, 200, 192, 1
9, 208, 245
7 DATA 32, 8, 1 75, 132, 183, 152, 24, 10
1, 122, 133
8 DATA 122, 144, 2, 230, 123, 32, 115, °
, 32, 253
9 DATA 174, 144, 3, 32, 8, 175, 56, 233,

48, 133

40 Peripherals

19 DATA 186, 169, 1, 133, 184, 133, 185,
169, 9, 133

11 DATA 88, 133, 99, 133, 92, 133, 94, 1
73, 136, 2
12 DATA 133, 89, 169, 196, 133, 91, 169,
216, 133, 93

13 DATA 169, 299, 133, 95, 165, 87, 249,
43, 169, 9

14 DATA 162, 4, 1 77, 88, 145, 99, 1 77, 9
2, 145, 94
15 DATA 299, 298, 245, 239, 89, 239, 91,
239, 93, 239

16 DATA 95, 292, 298, 234, 166, 94, 164,
95, 169, 196

17 DATA 133, 91, 169, 99, 32, 216, 255,
32, 115, °
18 DATA 96, 165, 87, 32, 213, 255, 160,
9, 162, 4
19 DATA 177, 99, 145, 88, 177, 94, 145,
92, 290, 298
29 DATA 245,239, 89, 239, 91, 239, 93,
239, 95, 292
21 DATA 298, 234, 32, 115, 9, 96, 9, 255
, 255, 9
22 FOR 1=49152 TO 49362:READ A:POKE I,A:
NEXT I
nb"basic2 H

To save a screen: 5Y5 49152,5, "filename",DEVICE
5Y5 49152,5, 1@0:filename",DEVICE to
replace on disk

To load a screen: 5Y5 49152,L,"filename", DEVICE

All parameters are required and an illegal or missing parameter will
produce a SYNTAX ERROR. A file name or a minimum of 1111 is required,
even with cassette. Remember all bytes following a SYS command are
ignored.

The following is the assembly listing, which should be self
explanatory. The first part of the routine is our own version of 'GET

PARAMETERS' and is a useful technique when passing parameters to a
routine enabled with a SYS. CHRGET (see Chapter 3) is used to gather the
necessary bytes.

Peripherals 41

ASSEMBLY LISTING

Set up the parameters - common to both LOAD and SAVE
C888 20FDAE JSR $AEFD check for comma
C093 C94C CMP 1$4C is next char L for LOAD
C095 D086 BNE $C08D no then test for SAVE
C097 A999 LOA 1$99 set flag at 57
C089 8557 STA $57 to zero for later use
C09B F99B BEQ $C018 always taken if LOAD
C09D C953 CMP 1$53 is it S for SAVE ?
C99F F893 BEQ $C014 if so continue
COlI 2098AF JSR $AF98 not L or S=SYNTAX ERROR
C014 A9FF LOA I$FF set flag to FF for save
C016 8557 STA $57
C918 287399 JSR $9873
COIB 20FOAE JSR $AEFD
C91E C922 CMP 1$22
C029 F083 BEQ $C925
C922 2998AF JSR $AF98
C025 207398 JSR $9073
C828 A57A LDA $7A
C82A 85BB STA $BB
C82C A57B LOA $7B
C02E 85BC STA $BC
C830 A898 LDY 1$09
C832 B17A LOA ($7A),Y
C834 C922 CMP 1$22
C836 'F098 BEQ $C940
C038 C8 INY
C839 C813 CPY
C83B D0F5 BNE
C83D 2898AF JSR
C948 8487 STY
C842 98 TYA
C943 18 CLC
C844 657A ADC
C946 857A STA
C848 9802 BCC
C94A E67B INC
C84C 287389 JSR
C94F 28FOAE JSR
C052 9883 BCC
C954 2998AF JSR
C957 38 SEC

1$13
$C832
$AF98
$87

$7A
$7A
$C84C
$7B
$9873
$AEFD
$C857
SAF98

C858 E938 SBC 1$39
C9SA 85BA STA $BA
C95C A991 LOA 1$01

inc CHRGET (see ch.4)
next comma
opening quote of n~e
OK so continue
no quote so SYNTAX ERROR
inc CHRGET to name
set FNADR low byte

do same for high

find length of name
by searching for closing
quote
found it so exit

1 i mit of 16 char s + 3 for
-.8:" toreplace on disK
)1 imit so SYNTAX ERROR
store length in FNLEN

set CHRGET to end quote
low byte

inc high if page crossed
ge t nex t byte
comma ?
OK
no then SYNTAX ERROR

make byte a number 9-9
store current device-FA
set secondary add to 1

42 Peripherals

C05E B5BB STA $BB and store at SA
C060 B5B9 STA $B9 same for log i ca 1 f i 1 e-LA
Set up pointers to be used in the move
C062 A990 LOA #$90
C064 B55B STA $5B
C066 B55A STA $5A
C06B B55C STA $5C
C06A B55E STA $5E
C06C ADBB02 LOA $92BB find the current screen
C06F B559 STA $59 start from HIBASE
C071 A9C4 LOA #$C4
C073 B55B STA $5B
C075 A9DB LOA #$DB
C077 B55D STA $5D
C079 A9CB LOA #$CB
C07B B55F STA $5F
C07D A557 LOA $57 o for LOAD
C07F F92B BEQ $C9AC do LOAD
Hove screen and colour to one blocl< and perform SAVE
C9Bl A990 LDY #$99 SAVE use Ywithin page
C0B3 A294 LOX #$04 and X for page counter
C9B5 B15B LOA ($58) I Y read byte from screen
C0B7 915A STA ($5A) ,Y store at comb i ned area
C0B9 Bl5C LOA ($50 I Y ge t char colour
C0BB 91SE STA ($SD ,Y store in comb area+$9400
C0BD CB INY
C0BE D0FS BNE $C0BS cycle for one page
C090 E6S9 INC $S9 inc all high bytes
C092 E6SB INC $SB
C094 E6SD INC $SD
C096 E6SF INC $SF
C09B CA DEX dec X and
C099 D0EA BNE $C08S repeat till 4 pages done
C09B A6SE LOX $SE X holds low end of save
C09D A4SF LOY $SF Y the high byte
C09F A9C4 LOA #$C4 use SAlSB on zero page
C0Al BSSB STA $SB for start of SAVE
C9A3 A9SA LOA #$5A A must hold offset SA
C0AS 20DBFF JSR $FFDB do SAVE
C0AB 207389 JSR $8873 must inc CHRGET before
C0AB 60 RTS returning to BASIC
Perform LOAD an d sp lit bloc I< into char and colour maps
C8AC ASS7 LOA $S7 read flag - A=9 for LOAD
C9AE 28DSFF JSR $FFDS do LOAD
C0Bl A999 LOY #$99
C8B3 A294 LOX #$94

C9B5 Bl5A LDA
caB7 9158 STA
C9B9 B15E LDA
C9BB 915C STA
C9BD C8 INY
C9BE D9F5 BNE
C9ce E659 INC
ceC2 E65B INC
C9C4 E65D INC
C9C6 E65F INC
C9ca CA DEX
C9C9 D9EA BNE
C9CB 297399 JSR
C9CE 69 RTS
Disk

($5A) ,Y
($58) ,Y
($5D ,Y
($50, Y

$C9B5
$59
$5B
$5D
$5F

$C9B5
$0973

Peripherals 43

reverst> of SAVE
t>vt>n if the scrt>t>n
was at a difft>rent
location at tht> timt> of
SAVE it will go to the
current position

must inc CHRGET before
returning to BASIC

This section deals with the 1541 disk drive though much is directly
applicable to the 3040 and 4040 units.

The manual supplied with the 1541 contains all the information that
most users will require. Perhaps the most difficult to master are the
direct access programming commands such as BLOCK-READ, and so on.
There is only one way to become proficient in their use and that is to
experiment. When experimenting we suggest you use a disk con
taining unwanted information as disasters can happen.

We supply only one utility in this section which we like to think of as
an expandable disk utility. Once direct access programming is
mastered, there are all sorts of fun things you can do. To use it to its
best advantage you have to know something of how the disk operates
and how information is stored. To this end we give below a very short
introduction and would refer you to the 1541 manual itself.

Introduction
The 1541 is a self-contained, intelligent device. It has two processors
and its disk operating system (DOS) in ROM along with an area of RAM

used for input/output (buffering) operations. This differs from, say, the
BBC Micro where the interface is within the micro itself and, depend
ing on the type of interface, removes RAM from the user area. The
disadvantage to this self-contained arrangement is that you cannot use
non-Commodore units (there are one or two now available) as most
disk manufacturers do not supply a suitable controller and DOS.

Almost the whole of the disk's capacity can be used to store data
except for one or two reserved areas. The disk is divided into tracks
which are further subdivided into a varying number of sectors. Tracks
are numbered from 1 through to 35 whereas sectors start at zero. The
following is the arrangement for both the 1541 and 4040 units (see
Table6.1, 1541 manual):

44 Peripherals

TRACK

1-17
18-24

SECTOR TRACK

0-20 25-30
0-18 31-35

SECTOR

0-17
0-16

In order to know where to find information, the disk uses an index or
directory track. This is track 18 and it has two special areas. The first is
track 18 sector 0 and is the Block Availability Map (BAM). This keeps a
record of all sectors in use unless direct access programming opera
tions have been used without a BLOCK-ALLOCA1E command. If this is the
case then the information is there, but can be overwritten as it is empty
as far as DOS is concerned. The entries in BAM are made up as follows
(see Table 5.1 of manual):

BYTES CONTENTS

000-001 Pointer to start of directory 18/01
002 Holds an I A' for 4040 format
004-143 Fou r bytes for each of the 35 tracks

indicating whether in use 1 =free 0=alllocated
144-161 Disk name plus shifted spaces to make 16 in total
162-163 Disk ID
165-166 Disk version of2A

Each track uses four bytes in BAM. The first stores the number of free
sectors on a track and is used in computing BLOCKS FREE. The remaining
three are used to indicate whether a particular sector is allocated (bit
set low and one bit per sector). As the maximum number of sectors is
21, not all bits are used. The following is a dump of BAM from which
you can pick out the information given above. All values are given in
hex with the byte position within the sector given first followed by this
byte's value and the next seven and at the end of the line the equiva
lent ASCII characters (if printable):

START BYTES ASCII

00 12 01 41 00 15 ff ff 'If .. a
08 15 ff ff 1f 15 ff ff 'If
10 15 ff ff 1f 15 ff ff 'If
18 15 ff ff 1f 15 ff fflf
20 15 ff ff 1f 15 ff ff 1f
28 15 ff ff 1 f 00 00 00 00
30 00 00 00 00 00 00 00 (~0

90 42 4f 4f 4b 20 50 52 4f book pro
98 47 52 41 4d 53 a0 a0 a0 grams
a0 a0 a0 31 31 a0 32 41 a0 11 2a

Peripherals 45

The file information starts on track 18 sector 1 and can continue
throughout the remainder of the track. Each file uses 32 bytes.
Therefore, one sector can hold information for eight entries. With a
possible 20 sectors available, information could be held for 160 files.
This is unlikely to happen as each file would have to be less then 1 K.
The directory format is such that bytes 0--31 hold file 1, 32-63 hold file
2, and so on. Each entry is divided up as follows (see Table 5.3 of the
1541 manual):

BYTE CONTENTS

000--001 Next directory track and sector. A track of 0
indicates last sector in use. These bytes only used for the
first entry.

002 The type of file $00=scratched or not in use.
$80=DELeted (scratched unclosed) $81 =sEQuential
$82=PRograM $83=useR $84= RELative $1-4=unclosed

003-004 Starting track and sector of file
005-020 Name padded with shifted spaces
023 Record size of relative file
028-029 New track and sector for disk ops with replacement - @
030-031 Number of blocks file uses in low/high byte format

Below is a typical dump of the first directory sector, track 18 sector 1,
for two file entries:

START CONTENTS ASCII

00 12 04 82 11 00 44 55 4d dum
08 50 2e 4d 49 4b a0 a0 a0 p.mik
10 a0 a0 a0 a0 a0 00 00 00
18 00 00 00 00 00 00 0d 00
20 00 00 82 11 03 44 55 4d dum
28 50 2e 4d a0 a0 a0 a0 a0 p.m
30 a0 a0 a0 a0 a0 00 00 00
38 00 00 00 00 00 00 01 00

It is worth noting that directory sectors do not follow sequentially. The
same is true for file storage, as can be seen when using the disk utility.

Just to round things off, here is a dump of a BASIC program which
occupies less than one block. It is in fact the loader for the UTILITY at the
end of Chapter 9.

4h Peripherals

START CONTENTS ASCII

00 00 4B 01 08 24 08 0A 00 .K .. $...
08 41 B2 41 AA 31 3A 8B 41 A.A.1:.A
10 B2 31 A7 93 22 55 54 49 .1 .. "UT1
18 4C 49 54 59 20 44 41 54 LlTY OAT
20 41 22 2C 38 2C 31 00 3C A",8,1.<
28 08 14 00 8B 41 B2 n A7 A.2.
30 93 22 55 54 49 4C 49 54 ."UTILIT
38 59 22 2C 38 2C 31 00 47 Y",8,1.G
40 08 1E 00 9E 33 32 37 36 3276
48 38 00 00 00 A2 00 00 00 8

As it is less than one block, the linking track is zero, denoting the end.
It is a straight copy of the RAM and like the memory dump in Chapter 1,
we can pick out the link addresses, end of program, and so on.

Disk utility
This utility offers many of the housekeeping commands and provides a
number of more interesting options. It is rather long as most of the
subroutines are complete in themselves (to allow you to extract only
those you want for your own programs). The listing has been left in
lower case and when you are typing it in, it is easiest to put the 64 into
that mode with the shift and logo keys. It makes extensive use of direct
access programming so we suggest you use the information given
above and the relevant sections of the 1541 manual to follow it. It has
been run through the UTILITY'S comR command to produce the
mnemonics. Most annotated characters arc cursor moves, colours or
simply capital letters.

The usual options of I'-:EW, VALIDATF, SCRATCH, INITIALIZE, RENAME, COPY
(within a drive) and READ DISK ERROR are all present. The directory option
is unusual in that everything is input or displayed in hex notation. A
much shorter way to get a directory is given in the BACKUP utility at the
end of this chapter. The option also displays the first track and sector
of a file, and if it is a program, also its load address. The listing is
further split up into directory sectors and will display even SCRA1CHed
or DlLETEd files if the disk has not been VALlDA1fd. Two values are given
for the BLOCKS FREE - the usual value exclusive of erased files and
another inclusive of erased files. An erased file simply has its associ
ated BAM set to 1 (not allocated).

The TRACE option follows a file through displaying its associated
tracks and sectors. It will also check to see if the file it is following is
scratched. If this is the case, it will ask whether you wish to recover it.
If your answer is 'yes', then as it traces it will also allocate each block.
Providing that all the blocks found were free it has recovered the file. If
an allocated block is found then the original area of the file has been

Peripherals 47

overwritten and recovery is not possible and you will be told. If the
scratched file has been successfully traced, all that remains to be done
is to use the MOD/DISP BLOCKS option to change its 'file type' byte (third
byte in its entry) from 0 back to $81 or $82. The revised directory block
must be rewritten to complete the process.

The MODIDISP BLOCKS option is similar to the demonstration disk's
program 'DISPLAY TRACK AND SECTOR'. The main difference is that it also
allows the block to be modified and rewritten to disk. When the block
is written it is also allocated. The usual options to review again and get
the next track and sector are available. The subroutine called at 1680 is
a little unusual and merits some explanation. Earlier in the chapter
under the heading 'Keyboard' it was mentioned that a file could be
opened to it. This eliminates the '?' prompt and also releases the
cursor. The cursor may then be moved to the appropriate line, hex
values changed and on pressing RETURN the revised values are pro
cessed and written to the disk buffer. The same 128 bytes are then
redisplayed by reading from the buffer. At the end of a block the
option to write the changes must be taken to change it on disk. It is
also possible to recover files using this option by following a file
through taking the next track and sector option (first two bytes) and
always writing the changes. Unlike TRACE, it does not check to see if a
file can be recovered. Files in which a READ ERROR occurs may also be
reconstructed. This we discovered when the EASY SCRIPT appendices file
of this book was corrupted. All we did was modify the next track and
sector bytes of the preceding block to skip the corrupt block. The
resulting file could be read with the loss of only 256 bytes (and was
immediately saved on another disk).

The APPEND for program files is the same as that in Chapter 5 (where it
is fully explained). The APPEND for sequential files (and SCRATCH) builds
the command string (separated by commas) before actioning on RETURN

with no input.
The final option is to modify the disk's header. This is done by simply

reading BAM, moving the buffer pointer and writing in the new values.
It is worth noting that whenever a byte is read, the buffer pointer is
moved forward one position. So in order to write to the same position
at which the read started, the pointer must be set using a 'B-P'

command.
The utility is not foolproof, but with a little attention to detail, may be

used to advantage. Our last comment before the listing is to point out
that when you try to allocate an already allocated block error 65 NO

BLOCK occurs. This must be checked for and trapped as in MODIDISP

BLOCKS. The locations of all the subroutines may be read from the IF
statements in lines 210-340.

48 Peripherals

100 poke 53272,23:poKe 53280,6:dim a$(10
0) , t$ (5)
110 for- i=0 to 5:r-ead t$(i) :next i
120 data del ,seq,pr-g,usr-,r-el ,???
130 pr-int"[cls][g>d][g)i][g)s][g)k] [g>u
][g>t][g)i][g)1][g)i Hg>t][g>y]" :pr-int"[
cd][r-ev][g)n][off] new disk"tab(20);"[r-e
v][g)h][offJ change header-"
140 pr-int"[cd][r-evHg)v][offJ val idate d
isK";tab(20);H[r-ev][g>d][off] dir-ector-y"
150 pr-int "[cd][r-evJ[g>t][off] tr-ace fil
e" ; tab(20) ;" [r-ev][g>s][off] scr-a tch f i Ie
(s) "

160 pr-int"[cd][r-ev][g)r-][off] r-ename fil
e";tab(20);"[r-ev][g)e][off] r-ead disk er
r-or-"
170 pr-int"[cdHr-ev][g)c][off] coPY file"
;tab(20);"[r-ev][g)a][off] append files"
180 pr-int"[cd][r-ev][g)b][off] backup fil
e";tab(20);H[r-ev][g)m][offJ mod/disp bID
cKs"
190 pr-int"[cdHr-ev][g)i][off] initial ize
disK";tab(20);"[r-ev][g)x][off] exit"

200 gosub 2360
21 €I i f y$= " n " the n
220 if y$=n v" then
230 - f y$=H r-" then
240 f y$="s" then
250 then
260 then
270 then
280 then
290 then
300 then
310 then
320 if y$="i" then
330 if y$=" t n then
340 if y$="b H then
350 goto 130
360 r-em append

gosub
gosub
gosub
gosub
gosub
gosub
gosub
gosub
gosub
end
gosub
gosub
gosub
gosub

53e:goto
58e:goto
620:goto
670:goto
740:goto
360:goto
840:goto
890:goto
1240:goto

14e0:goto
1740:goto
1760:goto
2130:goto

13e
130
130
130
130
130
130
130

130

130
130
130
130

370 pr-int"[cls][g)a][2g)p][g)e][g)n][g)d
][cd] " : p r- i ntH [r- e v][g) p][of f] p r- 9 f i 1 e s [c
d]n:pr-intn[cd][r-ev][g)s][off] seq files H
380 gosub 2360:if y$<)H p " and y$<)"s" go
to 520
390 if y$="s" then gosub 770:r-etur-n

Peripherals 49

400 rem prg files
410 printD[cdJappend prg files - sureD:g
osub 2360:if y$<>B y " goto 520
420 input"[cdJcombined prg";f$:inputD(3s
pcJfirst prg";x1$:input"[2spcJsecond prg
"; x2$
430 open 3,8,3,"0:"+f$+D,p,w H :open 2,8,2
, n 0 : H + x 1 $+ " , P , r "
440 gettt2,y$
450 x$=y$:gettt2,y$:if st<>0 goto 470
460 gosub 2330:printtt3,x$;:goto 450
470 close 2:open 2,8,2,R0: H +x2$+R,p,r"
480 gettt2,y$:gettt2,y$
490 gettt2,x$:if st<>0 goto 510
500 gosub 2330:printtt3,x$;:goto 490
510 close 2:printtt3,chr$(0);:close 3
520 re turon
530 rem new disK
540 printH[cdJnew disK - sure":gosub 236
0:if y$<>H y " goto 570
550 input" [cdJname" ;f$: input" i .d. H ;y$:f$
=left$(f$,16)+-,"+left$(y$,2)
560 open 15,8,15,Dn0:"+f$:close 15
570 return
580 rem val idate
590 print"[cdJval idate - sureH:gosub 236
0:if y$<>H y " goto 610
600 open 15,8,15,"v":close 15
610 return
620 rem rename
630 print"[cdJrename - sureB:gosub 2360:
jf y$<>"y" goto 660
640 input"[cdJold file";f$:input"new fil
e H ; y$: f$=" r0:· +y$+ D=H +f$
650 open 15,8,15,f$:close 15
660 return
670 rem scratch file
680 print"[cdJscratch - sureH:gosub 2360
:if y$<>H y " goto 730
690 f$="H:printH[cdJuse * or ? for patte
rn matching"
700 print"hit return to delete[cdJ"
710 input "deleteH;y$:if y$<>"" then f$=
f$+H,"+y$:y$=DH:goto 710
720 f$=H s 0:"+mid$(f$,2):open 15,8,15,f$:
close 15

50 Peripherals

730 r-etur-n
740 r-em er-r-or-
750 open 15,8,15:input#15,x$,f$,xl$,x2$:
close 15:pr-int"[cdJ[g>eJ[2g>rJ[g>oJ[g>rJ
:";x$,f$,xl$,x2$
760 gosub 2360:return
770 rem append seq files
780 printR[cdJappend seq files - sure":g
osub 2360:if y$<>"y" goto 830
790 print"[cdJhit return to append[cdJ"
800 f$="":input"[3spcJnew";x$
810 input"append" ;y$: if y$<>D" then f$=f
$+" , " + "0 : " + y$: y$=" " : go t 0 810
8213 f$="c0:"+x$+"="+mid$(f$,2):open 15,8
,15:print#15,f$
830 close 15:return
840 r-em coPY same disk
850 print"[cdJcopy - sure":gosub 2360:if

y$<>"y" goto 880
860 inputl[cdJnew";f$:input"old";y$:f$="
c0:"+f$+"="+"0:"+y$
870 open 15,8,15,f$
880 close 15:return
890 rem directory
900 print"[cd]directory - sure":gosub 23
60:if y$<>" y " goto 1230
910 open 15,8,15:open 1,8,2,"#":t=18:s=0
: f$=" II : bf=9: bu=0
920 p r i n t # 15, " u 1 II ; 2 ; 0 ; t ; s; : p r- i n t # 15, "b-p
";2;144:printl[cls]";tab(10);I[reuJ";
930 for i=l to 16:get#1 ,x$:gosub 2299:pr
i n t x$; : n ext i: p r i n t" , " ;
940 pr-int#15,"b-p";2;162
950 for i=l to 2:get#1,x$:gosub 2290:pri
n t x$; : n ext i: p r i n t " [of f][b 1 k J " : t= 1 8 : s= 1
960 print"$blk file[13spcJtype $tk $st $
add[l bluJ"
970 pr-int#15,"ul";2;0;t;s:i=0:x=s:gosub
2200 : p r- i n t " [b 1 k J t r-I< 12";" sc t H; x$; " [1 b
1 u J II

980 get#l ,x$:gosub 2330:t=asc(x$):get#1,
x$:gosub 2330:s=asc(x$)
990 i=i+l:print#15,"b-p";2;(i-l)*32+2:ge
t#l,x$:gosub 2339:x=asc(x$):y$=""
1000 for j=9 to 5:if x=j then y$=t$(j)
1010 if j=0 then x=x-128

Peripherals 51

1020 nex t .j: if y$=" " then y$=t$(5)
1030 get#l,x$:gosub 2330:x=asc(x$):gosub

2200: t$=x$
1040 get#l,x$:gosub 2330:x=asc(x$) :gosub
2200:s$=x$

1050 for .j=l to 16:get#l,x$:gosub 2290:f
$=f$+x$:next .j
1060 if y$<>"prg" goto 1090
1070 open 3,8,3,f$+",s,p":get#3,x$:gosub
2330:x=asc(x$):gosub 2200:l$=x$

1080 get#3,x$:gosub 2330:x=asc(x$):gosub
2200:1$=x$+1$:close3

1090 print#15,"b-p H;2;(i-l)*32+30
1100 get#l ,x$:gosub 2330:j=asc(x$)
1110 get#l,x$:gosub 2339:k=asc(x$)
1120 x=k:gosub 2299:bf$=x$:x=j:gosub 229
9:bf$=bf$+x$
1139 bu=bu+256*k+j:if y$<>"del" then bf=
bf+256*k+j
1140 printbf$;" ";f$;"[2spcJ";y$;R[2spcJ
" ; t$; " [2sp c J " ; s$; H "; 1 $: bf$=" " : f$= n u : 1 $=
II II

1150 get y$:if y$<>"" then gosub 2369
1160 if i<8 goto 990
1 1 70 i f t < > 0 go t 0 979
1189 bf=664-bf:x=bf/256:gosub 2299:y$=x$
:x=bf-256:gosub 2290:y$=y$+x$
1190 print"[yelJ";y$;" blocks free[l blu
] "
1209 bu=664-bu:x=bu/256:gosub 2299:y$=x$
:x=bu-256:gosub 2290:y$=y$+x$
1210 print"[yelJ";y$;" blocks fr-ee inc d
el files[l bluJ"
1220 gosub 2369:~)ose 15:close 1
1230 return
1240 rem change header
1250 print"[cdJchange header - sure":gos
ub 2360:if y$<>"y" goto 1390
1260 open 15,8,15:open 1,8,2,"#n:t=18:s=
€I : bf=0 : f$=" "
1270 print#15,"ul";2;0;t;s;:print#15,Rb
p";2;144:print"rcdJcurrent:r2spcJ";
1280 for i=1 to 16:get#l,x$:gosub 2299:p
r-intx$;:next i :print",";
1299 print#15,"b-p";2;162

52 Peripherals

1300 for i=1 to 2:getijl ,xS:gosub 2290:pr
intxS;:next i:print
1310 input"[4spc]name" ;fS:fS=leftS(fS+"[
16g}spc]",16)
1320 inputH[4spc]i .d.";y$:yS=leftS(yS+"x
x" , 2)
1330 printij15,"b-p U;2;144
1340 for i=1 to 16:printijl,midS(fS,i,i);
:next i
1350 printijI5,"b-p U;2;162
1360 printijI5,Hb-p";2;162
1370 for i=1 to 2:printijl ,mid$(y$, i,1);:
next
1380 printijI5,"u2";2;0;t;s:close 15:clos
e 1
1390 roe turon
1400 rem modify and display blocks
1410 print"[cd]modify and display blocks

- sure":gosub 2360:if yS()"y" goto 1670
1420 open 15,8,15:open 1,8,2,"ij":fS=""
1430 input"[cd] tr-ack(cr]S(2cl]";tS:xS=t
S:gosub 2250:t=x:if x(0 or x)40 goto 143
o
1440 input"sector(cr]$(2cl]";sS:xS=s$:go
sub 2250:s=x:if x(0 or x)20 goto 1430
1450 printijI5,"u1";2;0;t;s;:printijI5,"b
p" ;2;0
1460 getijl,xS:gosub 2330:x=asc(xS):tn=x:
gosub 2290:tn$=x$
1470 getijl,xS:gosub 2339:x=asc(xS):sn=x:
gosub 2290:sn$=x$
1480 ntS=U(3spc][g)n][g)e)[g)x][g)t]:[g)
t][g)r][g>a][g)c][g)k] "+tnS+" [g)s][g>e
][g)c](g)t][g)o][g)r] "+snS
1490 c tS=" [g) c] [g) u] [2g) r] [g) e] [g) n) [g> t
):[g>t)[g)r][g)a][g)c][g>K) "+tS+" [g)s)
[g) e] [g) c] [g> t] [g) 0] [9 > r-] "+ sS
1500 print"[cls)B;ctS:printnt$
1510 printij15,Hb-pH;2;0
1520 for i=9 to 15:fS=H":x=i*8:gosub 220
0:printx$;" H;:for j=0 to 7
1530 getijl,xS:yS=xS:gosub 2330:x=asc(xS)
:gosub 2209:printx$;" ";:
1540 xS=y$:gosub 2299:fS=f$+x$:next j:pr
intf$:next i
1550 gosub 1689: if y$=" y" goto 1500

1569 printR(clsl";ct$:printnt$
1579 printHI5,"b-p";2;128

Peripherals S3

1589 for i=16 to 31:f$="R:x=i*8:gosub 22
90:printx$;" ";:for j=9 to 7
1590 getHl,x$:y$=x$:gosub 2339:x=asc(x$)
:gosub 2290:printx$;" ";:
1699 x$=y$:gosub 2290:f$=f$+x$:next j:pr
intf$:next i
1610 gosub 1680:if y$="y- goto 1560
1620 print-review againH:gosub 2369:if y
$=HyH goto 1590
1630 printRwrite changes":gosub 2360:if
y$="y" then printHI5,"u2";2;0;t,s
1640 if y$="y" then printHI5,"b-a";0;t;s
:gosub 2390
1650 print"next t/su:gosub2360:if)/$="y"
thent=tn:s=sn:t$=tn$:s$=sn$:goto 1450
1660 close l:close 15
1670 return
1680 rem any changes
1699 printHany changes":gosub 2360:if y$
()HyH goto 1730
1700 open 9,0:inputH9,a$:close 9
1710 x$=left$(a$,2):gosub 2250:printHI5,
R b-p H ; 2, x
1720 for i=0 to 7:x$=mid$(a$,4+i*3,2):go
sub 2250:printHl,chr$(x);:next
1730 return
1740 rem intial ize disk
1750 open 15,8,15,Hi0u:close 15:return
1769 rem trace file
1779 printH[cdJtrace file - sure":gosub
2369 : i f y$ (> " y" go t 0 21 20
1780 inputH[cdJfileR;bf$
1799 op e n 15,8, 15: op e n 1,8,2," H" : t= 18: s=
l:f$=""
1899 printH15,DulD;2;0;t;s:i=9:f$="n
1819 getHl,x$:gosub 2339:t=asc(x$):getHl
,x$:gosub 2339:s=asc(x$)
1829 i=i+l:printHI5,Hb-p R;2;(i-l)*32+2:g
etHl,x$:gosub 2339:x=asc(x$):y$=HH
1839 for j=0 to 5:if x=j then y$=t$(j)
1840 if j=0 then x=x-128
1859 next j:if y$=HH then y$=t$(5)
1869 getHl,x$:gosub 2330:x=asc(x$):gosub
2299: t$=x$

54 Peripherals

1879 get*l,x$:gosub 2339:x=asc(x$):gosub
2299:s$=x$

1889 f$="":for j=l to 16:getHl,x$:gosub
2299:f$=f$+x$:next j
1899 if left$(f$,len(bf$»=bf$ goto 1939
1999 if i=8 and t>9 goto 1899
1919 goto 1829
1929 if t=9 goto 2129
1939 printH[clsJ[revJtrace of[offJ n;bf$
;n file type ·;y$:print:ft$=y$:no=9
1949 if ft$=ndel" then print"recover fil
en:gosub 2369
1959 print*15,"b-p";2;(i-1)*32+3
1969 get*1,x$:gosub 2339:t=asc(x$):get*1
,x$:gosub 2339:s=asc(x$)
1979 x=t:gosub 2299:t$=x$:x=s:gosub 2299
:s$=x$
1989 print"track ";t$;" sector ";s$
1999 if y$<>"y" goto 2939
2999 print*15,nb-a";9;t;s:inputH15,e:if
e<>65 goto 2939
2919 print"recovering not on as a suppos
edly"
2929 print"free block is allocated.":no=
1
2939 printHI5,lul";2;9;t;s
2949 getHl,x$:gosub 2339:t=asc(x$):getHI
,x$:gosub 2339:s=asc(x$)
2959 if t=9 goto 2979
2969 goto 1979
2979 if ft$=·del· and y$=.y. and no=9 go
to 2999
2989 goto 2119
2999 printnrecovery ok remember to chang

2199 print·directory track and file type
"
2119 gosub 2369
2129 close l:close 15:return
2139 rem backup
2149 print:printnbackup filen
2159 print:print-[g>tJo allow larger fil
es to be backed up-
2169 printnon both disk and cassette a s
eparate·

Peripherals 55

2170 print-uti1 ity has b~~n provid~d.[3s
pc][g>flor II
2180 print·sma11~r fil~s cod~ could b~ i
nclud~d h~r~."

2190 gosub 2360:r~turn
2200 r~m d~c-h~x
2210 x=x and 255:x1=int(x/16):x2=x and 1
5
2220 x1$=chr$(48+x1):if x1>9 th~n x1$=ch
r$(55+x1)
2230 x2$=chr$(48+x2):if x2>9 th~n x2$=ch
r$(55+x2)
2240 x$=x1$+x2$:r~turn
2250 r~m h~x-d~c
2260 x$=right$("00"+x$,2)
2270 x1=asc(x$)-48:x2=asc(mid$(x$,2»-48
2280 x=16*(x1+7*(x1>9»+x2+7*(x2)9):r~tu
rn
2290 r~m conv~rt to asci i
2300 if x$=chr$(160) goto 2320
2310 if X$(II H or x$)"z" th~n x$="."
2320 r~turn
2330 r~m ~l iminat~ null string
2340 if x$="" th~n x$=chr$(0)
2350 r~turn
2360 r~m wait
2370 g~ t y$: if y$="" goto 2370
2380 r~turn
2390 r~m ~rror on b-a ch~ck
2400 input#15,~n$,em$,et$,es$:if en$<"20
H or en$="65- then return
2410 close 15:print:printen$,em$,et$,es$
:gosub 2360:run

Many more options could be provided and some of the eXisting
options could be made fully automatic. These are exercises for you to
carry out.

BACKUP

We have produced this utility to allow selective backing-up of files
between disk and tape, from disk to disk and from tape to tape.
Commodore provide an excellent 1541 BACKUP program on the
demonstration disk, but it only backs up whole disks. The following
allows selective backing-up of single files, whether they be program or
sequential. It could be modified to do more than one file when going

56 Peripherals

between disk and tape, providing that the details of each file were
known in advance. We wrote the program to avoid the need to pro
duce a special program for sequential files and the use of an extended
monitor to copy machine code. BASIC programs can, of course, be
duplicated by a simple load and save sequence.

The program is in two parts: the machine code and the BASIC driver
which uses the machine code for program files. The following des
cribes the driver:

LINE ACTION

100 Set top of memory to $1800/6144
110 Set source device and check whether valid
120 Do same for destination device
130 Contents of disk or tape
150 Set prog or seq file, if not known use 130
170- Go to appropriate subroutine for source, destination and file

type

Subroutines

250- Seq file from disk to tape so read byte/write byte until status
says end of file.
Requires a file name.

290- Seq tape to disk
290 Read header and display info with sub 700 and if non-ASCII in

name then offer chance to change name.
310 Final check on name.
330- Read and write bytes until status says end offile
370- Seq tape to tape. Has a limited capacity.
370 Check for non-ASCII and option to change name.
410- Read in bytes until end of file or until RAM filled eliminating

ASC(0) on the way to avoid errors.
450 Warning - only part of file read.
480 Write to destination tape

490 Pause for destination tape

510- Seq disk to disk. Same principle as for tape above

610 Pause for desti nation disk

630 Simple wait for any key

650 Print TAPE or DISK in set up

690 Contents of next file on tape and prompt to rewind

700 Display tape buffer in full- highlighting any non-ASCII

750 Get file name

760 Eliminate trailing spaces in file name

800 Display directory of disk

940- Prog file disk to disk.
940 Get file name and set it up in cassette buffer
950 Fill up rest of buffer with spaces

Peripherals 57

960 Set length of name register - FNLEN and enter m/c to do a
relocated load

980 Delete file from destination disk
990 Do relocated save

1010- Prog disk to tape. Initial part as for disk to disk
1040 Write header created
1045 Write RAM

1060 Prog tape to tape

1100 Prog tape to disk checking as before

BASIC PROGRAM

100 POKE 52,24:POKE 56,24:CLR
110 PRINTU[CLS1BACKUP UTILITY":PRINT-[CD
lFROM T/Du;:GOSUB 650:F$=Y$
120 PRINT"[CD1[2SPCJTO T/D";:GOSUB 650:T
$=Y$
138 PRINT-[CD1CONTENTS T/Du:GOSUB 638:IF

Y$=RDR THEN GOSUB 800:GOTO 130
140 IF Y$=RT" THEN GOSUB 698:GOTO 130
150 PRINT"[CD]TYPE P/SH;:GOSUB 638:IF Y$
<>upu AND Y$<>BS" GOTO 158
168 FT$=Y$:PRINT " R ;FT$
170 IF F$=RDH AND T$=DT H AND FT$=RSR THE
N GOSUB 250:RUN
180 IF F$=HTH AND T$="D H AND FT$=DS· THE
N GOSUB 290:RUN
198 IF F$=BD" AND T$=HD H AND FT$=HSH THE
N GOSUB 518:RUN
195 IF F$=HT D AND T$=DT H AND FT$=HS" THE
N GOSUB 378:RUN
288 IF F$=BD H AND T$="D H AND FT$=Hp H THE
N GOSUB 948:RUN
210 IF F$=HD B AND T$="T" AND FT$=HP" THE
N GOSUB 1010:RUN
220 IF F$=HTH AND T$=uTH AND FT$="P" THE
N GOSUB 1868:RUN
230 IF F$=HT B AND T$="D H AND FT$=Hp lI THE
N GOSUB 1188:RUN

58 Peripherals

240 RUN
250 GOSUB 750:0PEN 2,8,2,N$+I,S,R":OPEN
1,1,I,N$
260 GET#2,Y$:IF ST GOTO 280
270 PRINT#I,Y$;:GOTO 260
280 CLOSE 2:CLOSE I:RETURN
290 OPEN 1,1,0:GOSUB 700:IF E=1 THEN GOS
UB 750:GOTO 310
300 GOSUB 760
310 PRINT"[CDlFILE NAME ";CHR$(34);N$;CH
R$(34) ;" OK Y /N" : GOSUB 630
320 IF Y$="N" THEN GOSUB 750
330 OPEN 3,8,3,nGl0:"+N$+",S,W"
340 GET#1,Y$:IF ST GOTO 360
350 PRINT#3, Y$; : GOTO 340
360 CLOSE 1:CLOSE 3:RETURN
370 Y=6144:0PEN 1,1,0:GOSUB 700:IF E=1 T
HEN GOSUB 750::GOTO 390
380 GOSUB 760
390 PRINT"[CDlFILE NAME ";CHR$(34);N$;CH
R$(34);" OK Y/N":GOSUB 630
400 IF Y$="N" THEN GOSUB 750
410 GET#I,Y$:IF ST GOTO 460
420 IF Y$="II THEN Y$=CHR$(0)
430 POKE Y,ASC(Y$)
440 IF Y<40959 THEN Y=Y+l:GOTO 410
450 PRINT"[CDlFILE TOO BIG ONLY 34K COP!
ED"
460 CLOSEI
470 GOSUB 490
480 OPEN 1,1,1,N$:FOR 1=6144 TO Y:PRINT#
1,CHR$(PEEK(I»;:NEXT I:CLOSE I:RETURN
490 PRINT"[CDlDESTINATION TAPE Y":GOSUB
630:IF Y$<>uyu GOTO 490
500 RETURN
510 GOSUB 750:0PEN 2,8,2,N$+",S,R":Y=614
4
520 GET#2,Y$:IF ST GOTO 570
530 IF Y$=UD THEN Y$=CHR$(0)
540 POKE Y,ASC(Y$)
550 IF Y<40959 THEN Y=Y+l:GOTO 520
560 PRINTU[CDlFILE TOO BIG ONLY 34K COPI
ED"
570 CLOSE2
580 GOSUB 610

Peripherals 59

590 OPEN 3,8,3,"jl0: H +N$+",S,W":FOR 1=614
4 TO Y:PRINT#3,CHR$(PEEK(I»;:NEXT I
600 CLOSE 3:RETURN
610 PRINT"[CDJDESTINATION DISK Y":GOSUB
630:IF Y$<>"Y" GOTO 610
620 RETURN
630 GET Y$: IF Y$=" U GOTO 630
640 RETURN
650 GOSUB 630:IF Y$="T" THEN PRINT" TAPE
" : GOTO 680
660 IF Y$="D" THEN PRINT" DISKH:GOTO 680
670 GOTO 650
680 RETURN
690 PRINT" [CDP : OPEN 1: CLOSE 1: GOSUB 700
:PRINT"[CDJ[REVJREWIND TAPE[OFF1D:RETURN
700 PRINT"TYPE FILENAME U ;SPC(10);DBUFFER

START u :I=PEEK(828):E=0
710 Y$=D PRG ":IF Y=4 THEN Y$=" SEQ"
720 PRINTY$;"[REVJu;:FOR 1=833 TO 1019:X
=PEEK(I):IF X<32 OR X>95 THEN X=63:E=1
730 PRINT CHR$(X);:IF 1=849 THEN PRINT U [

OFF1<";
740 NEXT I:PRINT">[REV1END[OFF1":RETURN
750 INPUT "[CDJFILENAMER;N$:N$=LEFT$(N$,
16) : RETURN
760 N$=D":FOR 1=848 TO 833 STEP -1 :X=PEE
K(J)

770 IF X=32 AND N$=U. GOTO 790
780 N$=CHR$(X)+N$
790 NEXT I:RETURN
800 PRINTn[CLS1B;:OPEN 1,8,0,"$0":GET#1,
Y$,Y$
810 1=0:GETtll,Y$,Y$,Y$,X$:IF Y$<>R" THEN

I=ASC(Y$)
820 IF X$<>"" THEN 1=I+ASC(X$)*256
830 PRINTRI GHT$(" [2SPCJ" + STR$ (I) ,3) ; R H;
: 1=0
840 GET#l,Y$:IF ST GOTO 930
850 IF Y$=CHR$(34) THEN 1=I+l:PRINT CHR$
(34) ; : GOTO 840
860 IF 1=0 GOTO 840
870 IF 1=1 THEN PRINT Y$;:GOTO 840
880 IF 1=2 THEN PRINT TAB(22);:I=I+l
890 IF 1=3 AND Y$=u " GOTO 840
900 IF Y$<>HH THEN PRINT Y$;:GOTO 840

60 Peripherals

910 PRINT:GET YS:IF YS<>"" THEN GOSUB 63
o
920 IF ST=0 GOTO 810
930 PRINT "BLOCKS FREE-:CLOSE I:GOSUB 63
0:RETURN
940 GOSUB 750:FOR 1=1 TO LEN(NS):POKE 83
2+I,ASC(MIDS(NS,I,I»:NEXT I
950 FOR I=833+LEN(NS) TO 1019:POKE 1,32:
NEXT I
960 POKE 183,LEN(NS):SYS 49244
970 PRINT"(CDJ[REVJFILE WILL BE DELETED[
OFFJ":GOSUB 610
980 OPEN 15,8,15,"S0:"+NS:CLOSE 15
990 POKE 183,LEN(NS):SYS 49343
1000 RETURN
1010 GOSUB 750:FOR 1=1 TO LEN(NS):POKE 8
32+I,ASC(MIDS(NS,I,1»:NEXT I
1020 FOR I=833+LEN(NS) TO 1019:POKE 1,32
:NEXT I
1030 POKE 183,LENCNS):SYS 49244
10413 SYS 49203
1045 SYS 49206
1050 RETURN
1060 SYS 49152
10713 GOSUB 490
1080 SYS 49203
1085 SYS 49206
1090 RETURN
1100 SYS 49152
1110 GOSUB 700:IF E=l THEN GOSUB 750:GOT
o 1130
1120 GOSUB 760
1130 PRINTH[CDJFILE NAME ";CHRS(34);NS;C
HRS(34);H OK Y/N":GOSUB 630
1140 IF YS="N" THEN GOSUB 750
1150 PRINT"[CDJ[REVJFILE WILL BE DELETED
[OFFJ":GOSUB 610
11 60 OPEN 1 5 , 8 , 1 5 , " S0 : " +NS
1170 POKE 183,LEN(NS):SYS 49343
1180 RETURN

The following is the BASIC loader for the machine code and must be
loaded and run before using the above program.

Peripherals 61

1 DATA 32, 44, 247, 173, 60, 3, 133, 255
, 169, 0, 133
2 DATA 193, 169, 24, 133, 194, 56, 173,
63, 3, 237
3 DATA 61, 3, 170, 173, 64, 3, 237, 62,
3, 168
4 DATA 24, 138, 101, 193, 133, 1 74, 152,

10 1, 194, 1 33
5 DATA 175, 32, 162, 245, 165, 255, 141,
60, 3, 96

6 DATA 32, 183, 247, 169, 0, 133, 193, 1
69, 24, 133
7 DATA 194, 56, 173, 63, 3, 237, 61, 3,
170, 173
8 DATA 64, 3, 237, 62, 3, 168, 24, 138,
101, 193
9 DATA 133, 1 74, 152, 101, 194, 133, 175
, 32 , 1 24, 246
10 DATA 96, 169, 96, 133, 185, 169, 1, 1
41, 60, 3
11 DATA 133, 184, 169, 8, 133, 186, 169,
0, 133, 195

12 DATA 133, 147, 169, 65, 133, 187, 169
, 3, 133, 188
13 DATA 169, 24, 133, 196, 164, 183, 32,

175, 245, 32
14 DATA 213, 243, 165, 186, 32, 9, 237,
165, 185, 32
15 DATA 199, 237, 32, 19, 238, 141, 61,
3, 32, 19
16 DATA 238, 141, 62, 3, 32, 232, 244, 1
65, 174, 141
17 DATA 63, 3, 56, 165, 175, 233, 24, 14
1, 64, 3
18 DATA 24, 173, 61, 3, 109, 63, 3, 141,
63, 3

19 DATA 173, 62, 3, 109, 64, 3, 141, 64,
3, 96

20 DATA 169, 97, 133, 185, 169, 1, 133,
184, 169, 8
21 DATA 133, 186, 169, 65, 133, 187, 169
, 3, 133, 188
22 DATA 165, 185, 164, 183, 32, 213, 243
, 32, 1 43, 246
23 DATA 165, 186, 32, 12, 237, 165, 185,
32, 185, 237

62 Peripherals

24 DATA 169, 0, 133, 172, 169, 24, 133,
173, 56, 173
25 DATA 63, 3, 237, 61, 3, 133, 174, 173
, 64, 3
26 DATA 237, 62, 3, 133, 175, 24, 169, 2
4, 101, 175
27 DATA 133, 175, 173, 61, 3, 32, 221, 2
37, 173, 62
28 DATA 3, 160, 0, 32, 33, 246, 96, 255,

255, °
29 FOR 1=49152 TO 49432:READ A:POKE I,A:
NEXT 1

Once this has been run it could be saved as its machine code for later
ease of loading. A detailed description of the machine code follows.

MACHINE CODE

The machine code is called by the driver as required. It consists of four
parts:

i) Read any header and do relocated load
ii) Write to tape current header and write relocated code
iii) Load from disk retaining original details but relocate
iv) Save to disk relocated code with original details

Chapter 5 of the Programmer's Reference Guide, 'The KERNAL', dis
cusses the use of LOAD and SAVE in detail. The entry points given are for
complete loads and saves (it is possible to do a relocated load, but not
a relocated save using these). Unfortunately, as we are using an all
purpose BASIC driver, these entry points may overwrite it. To overcome
this problem, every operation is carried out in two stages. The first is to
read or write the file's details which are always stored in or taken from
the cassette buffer. This avoids having to do too much moving of
information. The second is to perform a relocated load or save with the
correct amount of code going to or being taken from $1800 on.

To do this we must enter the load and save routines at much later
points with the parameters already set. It would consume too much
space to describe these in detail, so we leave it up to you to follow
them through. The only tricks are to prevent a forced load to its
original address with a tape marker of 3 and to prevent a header being
written with a marker of 5 (when an end of tape has been written - see
Tape Headers).

TAPE
header without loading

JSR $F72C read any header
LOA $933C get sec add

Peripherals 63

Read any tape
CIHH3 282CF7
C893 AD3C83
C886 85FF
C898 A999
C89A 85C1
C99C A918
C09E 85C2
C919 38

STA $FF and store for later
LOA #$99 se t s hr' t of load
STA $C1 to $1899 by setting
LOA #$18 STAL

C811 AD3F83
C914 ED3D93
C817 AA

STA $C2
SEC
LOA $933F
S8C $933D
TAX

subtract MSBs
of start and end
of or' i gin a 1 load
put r e su I tin X

C918 AD4993
C918 ED3E83

LOA
SBC

$9349 do same for LSBs
$933E putting answer in Y

C91E
C91F
C929
C021
C923
C825
C926
C928

A8
18
BA
65C1
8SAE
98
65C2
8SAF

TAY
CLC
TXA
ADC $C1
STA $AE
TYA
ADC $C2
STA $AF

Load from $1899 on

find overall 1 ength

and add to STAL
to give the new
end i.e. $1899
plus result

C92A 29A2F5 JSR $FSA2 do the relocated load
C92D A5FF LOA $FF restore the sec add
C82F 8D3C83 STA $933C in case end of tape 5
C932 69 RTS load complete
Write to tape in two parts the correct header and then
the code from $1899 on
C933 29B7F7 JSR $F7B7 write header in orig form
C936 A999 LOA #$99 reset STAL as it
C938 85C1 STA $C1 has been changed by
C93A A918 LDA #$18 writing the header-
C93C 85C2 STA $C2
C93E 38 SEC
C93F AD3F03 LOA
C942 ED3D93 SBC
C945 AA TAX

recalc the relocated end
$933F MSB
$933D

C946 AD4993 LDA $9340 LSB
C049 ED3E93 SBC $933E
C04C A8 TAY
C04D 18 CLC
C94E BA TXA
C94F 65C1 ADC $C1 set up EAL

64 Peripherals

C951
C953
C954
C956

8SAE
98
65C2
8SAF

STA $AE
TYA
ADC $C2
STA $AF

Save RAM for reloading
C958 2e7CF6 JSR $F67C
C95B 69 RTS

DISK

save RAM
comp 1 e te

Load
C95C
C95E
C969
C962
C965
C967
C969
C96B
C96D
C06F
C971

fr-om disl<
A96B
85B9
A991
8D3C93
85B8
A998
85BA
A909
85C3
8593
A941

relocated to $1800
LDA #$69

to f i I e name
C973 85BB
C975 A993
C977 85BC
ce79 A918
C07B 85C4
C07D A4B7
C97F 20AFF5
C982 2eD5F3
C985 A5BA
C987 2099ED
C0BA A5B9
C98C 2eC7ED
C98F 2913EE
C092 8D3D03
C095 2913EE
C098 8D3E03
C09B 20EBF4
C99E ASAE
C0AB 8D3F93
CBA3 38
C9A4 ASAF
C9A6 E918
C9A8 8D4993

STA $B9
LDA #$01
STA $B33C
STA $B8
LDA #$98
STA $BA
LDA #$99
STA $C3
STA $93
LDA #$41

STA $BB
LDA #$03
STA $BC
LDA #$18
STA $C4
LDY $B7
JSR $FSAF
JSR $F3D5
LDA $BA
JSR $ED99
LDA $B9
JSR $EDC7
JSR $EEI3
STA $933D
JSR $EE13
STA $933E
JSR $F4E8
LDA $AE
STA $033F
SEC
LOA $AF
SBC #$18
STA $9349

set sec add
put t yp eli n tap e bu ff er

mal< e I og f i I e 1
make device 8
and pu tin FA

A=9 for load
set pointer to file name

in FNADR to TBUFFR + 5

MEMUSS set to $1899
for relocated load
read len name set in BASIC
pr- in t SEARCHING
print LOADING .•..
get current device
send tall<
get sec add
send talk sec add
receive from serial
and store LSB in TBUFFR
do same for MSB of start

do relocated load
get end LSB
pu tin TBUFFR
subtract relocated start
and end
and put in appropriate
locations of TBUFFR

Peripherals 65

C9AB IB CLC
C9AC AD3D93 LOA $933D leaving a header-
C9AF 6D3F93 ADC $933F su i tabl e for-
C9B2 BD3F93 STA $933F a tape wr-ite
C9B5 AD3E93 LOA $933E
C9BB 6D4993 ADC $9349
C9BB BD4993 STA $9349
C9BE 69 RTS back to BASIC
Save relocated code to reload at correct address
C9BF A961 LOA #$61 set parameters
C9Cl B5B9 STA $B9
C9C3 A991 LOA #$91
COC5 B5BB STA $BB
COC7 A99B LOA #$OB
C0C9 B5BA STA $BA
C9CB A941 LOA #$41
COCD B5BB STA $BB
COCF A993 LOA #$03
CODI B5BC STA $BC
COD3 A5B9 LOA $B9
C9D5 A4B7 LDY $B7
COD7 20D5F3 JSR $F3D5 send sec add
COOA 20BFF6 JSR $F6BF print SAVING
C9DD ASBA LOA $BA send listen
C0DF 200CED JSR $EDOC device B
COE2 A5B9 LOA $B9 send listen
C9E4 20B9ED JSR $EDB9 sec add
COE7 A909 LOA #$99 set up SAL
C0E9 BSAC STA $AC wi th $1BOO
COEB A91B LOA #$18
COED BSAD STA $AD
COEF 3B SEC
C9F9 AD3F03 LOA $933F calculate prog Jength
C9F3 ED3D03 SBC $033D and pu t
C9F6 BSAE STA $AE in EAL
C9FB AD4993 LOA $9340
C9FB ED3E93 SBC $933E
C9FE BSAF STA $AF
C199 IB CLC
C191 A91B LOA #$18 add $1809 to
C193 6SAF ADC $AF give re 1 oca ted
C195 BSAF STA $AF end
C197 AD3D03 LOA $933D
C19A 20DDED JSR $EDDD send ser-ial defer-red
ClOD AD3E93 LOA $933E send ac tua I star- tin A and Y

66 Peripherals

C119
C112
C115

AU9
2921F6
69

LOY 1$89
JSR $F621
RTS

save ~ to reload
back to BASIC

The utility is only intended for your own files. It will not as it stands
backup relative files.

As a point of interest, Supersoft's ZOOM monitor offers not only the
option to perform relocated loads and saves, but to save in a form
suitable for reloading on a PET, which eliminates an 10 of 3 not used on
the PET.

3 A token approach
to BASIC

Introduction

In this chapter we deal with the five main routines BASIC uses in
interpreting your programs or commands. One of these, CHRGET, picks
up single bytes from the program and is called by the majority of
routines in your 64. The other four routines covered are concerned
with keywords - converting from ASCII to tokens, the reverse process
(lisTing), and directing them to their respective routines.

Other than using SYS commands a knowledge of these routines is
essential if you wish to extend existing commands or add further ones.
Those of you owning a disk drive will be familiar with the program DOS
5.1 and may know that this modifies CHRGET to trigger its commands.

CHARGET

BASIC gets its information from the input or program lines through a
routine called CHRGET (CHaracterR GET). A copy of this routine is held
in the KERNAl operating system and is copied into zero page on power
up. Each time BASIC wants a character it calls this routine.

The routine is held at locations $0073-$008A (KERNAl is $E3A2-$E3B9)
and is as follows:

$8973
$8975
$8977
$8979
$897C
$897E
$8989
$8982
$9984
$8985
$8987
$8988
$898A

E6 7A INC $7A
08 92 BNE $8979
E6 78 INC $78
AD 90 92 LDA $2988
C9 3A CMP "3A
89 9A 8CS $998A
C9 29 CMP "29
F9 EF BEQ $9973
38 SEC
E9 30 SBC 1$30
38 SEC
E9 08 SBC 1$09
69 RTS

Bytes 0073-0077
Every time the CHRGET routine is called it increases, by one, the location

68 A token approach to BASIC

from where it gets its information. After it increments the LSB, in
location 007A, it checks whether the page has been crossed, that is,
from $FF to $00. Only if it has will the MSB be increased.

Bytes 0079-007B
Here it takes the information from store and puts it into the accumula
tor. The store location is present before the initial entry to the routine.
It is always set one byte less due to initial increment. If you were going
to use the routine yourself, it would be these bytes you would change,
as we shall see later.

Bytes 007C-007F
Here it checks to see if the character is a numeral. It is testing to see if it
is greater than ASCII numeral 9 ($39). If so then the routine is left via
$008A with the carry set.

Bytes 0080-0083
Here is a straightforward test to see if a space was picked up; if so the
routine is carried out again. CHRGET cannot be left on encountering a
space.

Bytes 0084-0089
These successively subtract two numbers from the original byte and
end up with the same number. You may say that is senseless but it will
set two flags in the status register that help us later. These are the carry
flag and the zero flag.

The carry flag. If this is clear on exit the byte will be a numeral in
ASCII form. If it is set we have something else.

When subtracting two numbers in machine code the carry flag must
always be set first. If the number we are subtracting from is the larger
then the carry will remain set. On the other hand, if the number we are
subtracting is the larger the carry will clear.

In this case we have already eliminated any byte that has a higher
ASCII value than the numeral 9, in bytes 007E and 007F. It now subtracts
$30 (ASCII for digit zero) from the accumulator in preparation for
setting the final flags which can be used for testing for numbers. The
carry flag at this point does not matter as it is set again anyway. Bytes
with ASCII values lower than numerals now range between $00 and
$FF.

With the next subtraction the original value is restored. The carry
flag will now be set or unset as BASIC requires. As numerals are the only
ones less than $00 (the last figure subtracted) they will be the only
ones to clear the carry flag.

The zero flag. This could be set in two instances. First, in bytes 007E
and 007F where we tested our byte against $3A, the ASCII value for a
colon. If it was a colon then the zero flag would have been set as it was
equal (the carry would also have been set). Secondly, the flag would be
set after the second subtraction if, and only if, the original byte was

A token approach to BASIC 69

zero (not ASCII digit zero). In that instance after the first subtraction
the accumulator would hold $D0 and subtracting the same value would
set ou r zero flag.

A colon in a BASIC line signifies an end of statement and a zero, the
end of a line, and hence an end of statement. Therefore, by testing the
zero flag, we can quickly tell if we have reached the end of that
particular instruction.

CHRGOT
Keyword routines are entered immediately after a call to CHRGET. Before
using that byte it may require the accumulator for something else. To
recover the CHRGET byte we can use the CHRGOT routine. This is a
shortened version of CHRGET. If, instead of entering the routine at $0073,

we enter at $0079, we miss out the instructions which update the pointer
and get the original byte again.

Wedges
If we want to patch in our own machine code routines to work along
side BASIC, one way to do this is to insert a wedge. Simply, this is a
routine which diverts CHRGET to check whether it is one of our addi
tions. From this a decision can be made whether to revert to the
normal CHRGET flow or to a routine of our own.

Let us say that we put in some routines all to be actioned on the
character '@Y. For instance, we could have a renumber routine and a
delete routine. The command for renumber might be '(ciJR' and delete,
'(ci;D' and could place a wedge at $C000.

The first thing we have to do is alter the CHRGET routine. We want to
change it after it has collected a byte but before it starts checking and
manipulating it. The alteration would therefore be at $007C with a]MP to
our coding. The routine starts with six bytes of data with our changes
and the original bytes. (The latter is for restoring CHRGET if you require
so to do later). We can load them by using the load with the x register.
Our first instructions will look like this:

C909 4C 11 C9 JMP $C911
C993 C9 3A CMPI$3A
C995 B9 BCS
C996 A2 92 LOX *$02
C99B BO 09 CO LOA $C090,X
C99B 95 7C STA $7C,X
C990 CA OEX
C09E 19 FB BPL $C90B
CO 19 69 RTS
COll Our codi ng will star the r e

This is the routine to initialize our wedge and is called immediately
after loading the program by using SYS 49158 ($C006). This loads a byte x

70 A token approach to BASIC

places from $C000 and stores it x places from $7C. We decrease the
counter X and the branch to collect the next byte will work until we
decrement it below zero, that is, no longer a positive number. If the
branch fails, we go back to BASIC through the RTS.

The beginning of the CHRGET now looks like this:

13973
01375
~977

91379
B97C

INC $7A
BNE $9979
INC $7B
LOA $132913
JMP $Ce 11

(this numb~r vari~s)

Now each time CHRGET is used it will go to our routine. As all our
commands would be triggered with '(ii;', the first thing we would do is
to check to see if it is present:

C011
C013

C940
F0 03

CMP
BEQ

#$40
$C018

If it is, we can branch to do further checks, and if not, we continue with
the next code. Here we will have to revert to the normal course of
events. We have two options which we can take. First, we include the
bytes of CHRGET we changed into our program - we do not want to
change CHRGET itself as we want it to use again - and jump back to
CHRGET at $0082. Secondly, we can use the CHRGET routine in the KERNAL

ROM, jumping in at $E3AB, and BASIC will continue as if nothing has
happened.

The first method would be like this:

C015 4C AB E3 JMP $E3AB

And the second like this (of course, the routine address will change
from $C018 to $C01D):

C913
C015
e917
C919
C91 C

F9 07
C9 3A
B9 03
4C B9 90
69

BEQ $C01D
CMPI$3A
BCS $C91C
JMP $90B9
RTS

We now want to find out if it is one of our routines. This we do by
checking the next character without updating the CHRGET pointer (in
case it isn't). The code would look like this:

C9lB BB
C919 48
C9lA 9B
C91B 48

PHP
P~

TYA
P~

C9l C
C9l D
C9lE
C92e
C921
C924
C926
C928
C92A
C92C
C92D
C92E
C92F
C939
C931
C932

SA
48
A6 7A
E8
BD 99 92
C9 52
F9 ??
C9 44
F9 ??

68
AA
68
A8
68
28
4C AB E3

Bytes COl8-COl D

TXA
PHA
LDX $7A
INX
LDA $0290,X
CHP 8$52

A token approach to BASIC 71

BEQ - TO RENUMBER ROUTINE
CHP tt$44
BEQ - TO DELETE ROUTINE
PLA
TAX
PLA
TAY
PLA
PLP
JHP $E3AB

Here we are preserving our registers, including the status register, on
the stack in case it is not destined for our own routines.

Bytes COl E-C023
Location $7A has the LSB of the pointer used by CHRGET and this is one
less than the next character we want. So if we load it into the x register
and increase it by one, we will have the position of the next byte. We
can now load the byte using x as a pointer.

Bytes $C024-$C2B
A check is made to see if it is the letter R, signifying the renumber
routine. If not we then check for the letter 0 and if so go to delete.

Bytes $C2C-$C034
It not, we restore our registers from the stack (in the reverse order we
put them on). Then we continue the KERNAL routine as before.

One last point is that in the routines, such as renumber or whatever, it
would be advisable to call a subroutine to remove the bytes from the
stack (placed there in $C018 to $C01D). We do not require them, but as
your routines are called the stack will become fuller and fuller, result
ing in an 'OUT OF MEMORY' error.

Keywords

A more professional approach to adding routines than altering CHRGET

is the use of Keywords. This approach holds with the idea behind the
BASIC language that actions can be performed by using words which are
indicative of the desired action.

Keywords can be divided into two types: commands and functions.

72 A token approach to BASI(

Functions get information, for example, PEfK returns the contents of a
location, and will always supplement a command keyword. For
example, we use PRNT PEEK(xx) but never PEEK(xx)PRINT.

On the 64 it is possible to incorporate new routines actioned by
keywords as they go to the relative routines through vectors held in
RiV,\. As the vectors are in RAM we can change them to go to routines of
our own.

The other items we will have to add are three tables of data. One will
have the new keywords in ASCII code. This will be used when LisTing
and tokenizing. The end of a word is indicated by adding $80 (128) to its
last letter. To signify the end of the table, a zero is used. If we had a
table of two keywords, say END and NOT, it would look like this:

45 4E C4 4E 4F D4 00

The other two tables will have the addresses of our routines, one for
command keywords and one for functions. These will hold the address
of each routine less 1. The reason for this is that we will put them on
the stack for an RTS instruction. The program counter will add 1 when it
takes them from the stack, thus getting the correct address for the
routine. The table will have two bytes for each routine, the LSI) and then
the MSB. For example, if we had a routine at $C4DF, on the table it will
look like this: DE: C4.

There are four vectors we will have to change (three if not adding
functions).

ADD OF VECTOR ADD OF ROM DESCRIPTION

$0304/5
$0306/7
$0308/9
$030A/B
Tokenize IiAS!C Text

$A57C
$A71A
$A7E4
$AE86

Tokenize BASIC
Pri nt Tokens(L1sT)
Token Dispatch - Command words
Token Dispatch - Function words

The object of this subroutine is to take an input line, check it for
keywords, tokenize them and condense the line. It does this by taking
every byte from the input buffer, not using CHReET, and then checking
through the keyword table for a match. If the letters do not make a
keyword, it stores them as variables, meaning that variables cannot
have keywords in them.

There are two ways we could approach the problem of incorporating
our own keywords and tokens. First, we could copy the BASIC from ROM
into RAM, and alter the tokenize routine within BASIC so that if it cannot
find a match it jumps to a routine to check through our table of
keywords. This would mean we would not have to change the vector
but would lose the RAM area under the BASIC ROM which is useful for
storing hires screens, data tables, and so on. The second way would be
to change the vector to a routine of our own. Here we have a copy of

A token approach to RAOIe 73

the ROM routine altered slightly to be able to search our table as well.
We would only use the ROM routine when we finished tokenizing a
whole line.

We shall describe the second method, which we think is the better
in the long run. A description follows the code.

19
29
39
49 ANOTHER
59
69
70
80
99

199 SPACE
119
129
130
149
150
169
179
1 B9
199
209
219 NUMBER
229
239
249
259
269
279
2B9
299
399

CONT

LDX $7A
LDY tt$04
STY $0F
LOA $9209,X
BPL SPACE
CMP tt$FF
BEQ STORE
INX
BNE ~OTHER
CMP tt$20
BNE STORE
STA $98
CMP tt$22
BEQ QUOTE
BIT $9F
BVS STORE
CMP tt$3F
BNE NLtlBER
LDA tt$99
BNE STORE
CMP tt$39
BCC CONT
CMP tt$3C
BCC STORE
STY $71
LDY tt$00
STY '$9B
DEY
STX $7A
DEX

319 NEXT
329

LETTER INY
INX

339 CONT
349
359
369
379
399
499 STORE A
419 FOUND

LOA '$0290,X
SEC
SBC $A99E,Y
BEQ NEXT LETTER
CMP tt$89
BNE NEXT WORD
ORA $9B
LDY $71

74 A token approach to BASIC

429 STORE
439
449
459
469
479
489
499
599
519
529 COL~
539 DATA
549
559
569
579 LINE
589
599
699
619 QUOTE
629
639
649
659 NEXT WORD
669
679 FIND
689
699
799
719
729
739
749 NEXT
759
769 NEXT 8
779
789
799
899
819
829
839 NEXT NEW
849
859 NEXT A
869
879

INX
INY
STA '$91 FB, Y
LDA '$91 FB , Y
BEQ END
SEC
SBC "3A
BEQ COLON
CHP "49
BNE DATA
STA '$9F
SEC
SBC "55
BNE ANOTHER
STA '$98
LDA '$9299,X
BEQ STORE
CHP '$98
BEQ STORE
INY
STA '$91FB,Y
INX
BNE LINE
LOX '$7A
INC '$9B
INY
LDA '$A89D, Y
BPL FIND
LDA '$A09E, Y
BNE CONT 1
LOY "FF
DEX
INY
INX
LOA '$9299,X
SEC
SBC '$START OF OUR WORD TABLE,X
BEQ NEXT
CHP "89
BNE NEXT NEW
BEQ STORE A
LOX '$7A
INC '$9B
INY
LOA '$START OF OUR WORD TABLE -l,X
BPL NEXT A

BB9
B99
999
919
929 END

A token approach to BASIC 75

LDA $START OF OUR WORD TABLE,X
BNE NEXT B
LDA $9289 ,X
BPL FOUND
JMP $A699

LINES 10-30: Initialization. Location $7A will have a value the same as
the posi'tion within the input buffer. In immediate mode this will be 0,
the start of the buffer. If inputting a program line, it would be after the
line number, which has already been taken care of. Now x will be our
pointer to the original contents of the buffer and y will be the pointer
to our new buffer set up. y is stored in $0F just to initialize that location.
The value does not matter as long as it was not over $3F, as we shall see.

LINES 40-50: We load in a byte and check to see if it is under $80 (128). If
it is, we branch off to line 100.

LINES 60-90: Values of $80 and over arrive here and we check to see if it
is 'PI' ($FF). If it is, we branch further into the routine to store it. If not,
we branch back to get another byte. This means we cannot use the first
character of a keyword as a shifted letter because it would be greater
than $80.

LINES 100-140: If a space is found we branch off to store it, otherwise
we store the accumulator in a register, in case the following check
succeeds, for comparison later. Now we check to see if the byte is a
quote. Items between quotes do not require tokenizing and therefore
we branch and continually store them until we come across another
quote or the end of the line.

LINES 150-160: Here we are checking to see if location $0F has bit 6 set
or not. Amongst other things, the BIT instruction takes bit 6 of $0F and
places it in bit 6 of the status register, the overflow register. This bit in
$0F will only be set in this routine if we tokenize DATA later in the
routine. It means that after DATA all characters will be stored and do not
go through the keyword table. Bit 6 can be unset by a colon if outside
quotes and for this reason colons have to be in quotes within DATA

statements. A colon outside quotes will mean that information after is
tokenized. BASIC instructions can be placed at the end of a data line and
will be actioned as the line is encountered. BASIC differentiates
between DATA and REM. On REM it will go to the next line whereas with
data it will search through it for another BASIC instruction.

LINES 170-200: The '?' is the shortened version of the keyword PRINT. It
is the only keyword which can be shortened to a single character.
These lines check for the question mark and if found place the token
for PRINT, $99, in the accumulator and go to store it.

LINES 210-240: Here we find out if the byte is a numeral, colon or

76 A token approach to BASIC

semicolon. If it is off we go to store it, if not then we continue the
routine.

LINES 250-300: We now set up for the search through the table of
keywords. We store our Y register, which, if you remember, is the
pointer to the 'new look' buffer. Location $08 will be our counter to
the number of keywords we encounter; it will not hold the token value
but helps determine it. We store x in $7A. This is part of CHRGET, but we
are only using it as a store. We decrease both x and Y as the first part of
the next section will increment them.

LINES 310-390: This section of the routine explains why on the Com
modore 64 we can use shortened keywords using shifted letters. There
are two things to remember here. First, the last letter of the keyword in
the table is the value of the letter plus $80 (128) which when loaded will
set the negative flag. Secondly, the value of a shifted letter (not logo
shift) is also the value of the letter plus 580.

Back in the routine we increase the registers and load in our byte
again; it will later load the next byte. We set the carry for subtraction
and subtract the value of a letter, from the keyword table, from our
byte. If we are left with zero then we have a match and we go back to
get the next letter from the buffer. If it fails, we check to see if we have
the value $80 left. This would indicate we have a match by either the
input letter being the shifted letter or we have reached the end of the
keyword in the table and have also matched. Failing this second check,
it branches off to find the end of that word so we can check the next for
a match.

As the second letter can be shifted to give our match this explains
not only shortened keywords, but also why some require at least three.
As an example, take the keywords CLR and CLOSE. CLR comes before
CLOSE in the table so that C and shift L will match with the former before
it gets to CLOSE, which will therefore need two standard letters before a
shifted letter. We can also explain why there is no shortened version
for INPUT. INPUT# comes before INPUT and so any shortened version will
always match with INPUT#.

LINES 400-460: Back to the routine now. We have in the accumulator
the value $80 and have found a match in the table. Here we perform the
logical OR of the accumulator and location $0B. Later on we will find out
that every time we pass through a keyword that does not match, we
increase the value of $08. As we started at 0, $08 will have the number of
the match word, the first word in the table being 0. The instruction OR

forces bits into the accumulator if they are not set. In this case it has the
same effect as adding but saves bytes doing it this way. The accumula
tor always h'l.s $80 and if you OR it with a val ue of one you get $81. This is
how we arrive at the token value. The keyword GO is the last word in
the table and that is the 76th, giving a value in $08 of $48 (75), and oRing it

A token approach to GA'>IC 77

with S80 gives a value of $CB which is the token value of co.
Having got our token value, we load back into the y register from $71

- the pointer to the new buffer layout. We have now reached the point
where we store a lot of the characters into the new buffer layout. This
is the point where many of the earlier branches arrive. First, we
increase both buffer pointers. The base location to store is $01FB

indexed with Y. As we started with Y equal to SM and increase it
immediately, our first location will be S01FB i'i, giving 50200. We will not
overwrite anything in the original line we have not checked for two
reasons. First, if there was a line number at the beginning it has been
dealt with and is no longer needed. Secondly, the routine only
shortens and never lengthens.

Once the byte has been stored, it is loaded back in and checked for
zero which signifies the end of the line.

LINES 470-550: This section is going to test if the byte we have stored is
either a colon or one of the keywords DATA or KFM. If it is a colon, it
unsets bit 6 of location S0F which we discussed earlier, then goes to get
more bytes. DATA will set the 6th bit of that location before getting more
bytes.

REM is slightly different in that nothing after it requires tokenizing.
We set the location of $0B to zero, as that is the result of the subtrac
tions, which we will not actually need for checking but which stops us
from branching out of the next section for any reason other than the
end of line.

LINES 560-640: These lines are uscd only in two instances: on encoun
tering a quote or encountering REI,\. All this does is to move bytes from
their original to their new position in the input buffer, until we reach
the end of thc line or, in the case of a quote, we find a closing quote.
Finding either of these, we branch back to the normal store lines of
420-460. The branch in line 640 is enforced as x can never be zero as
before we get here we have looked at a minimum of two bytes so the
least x can be is 1 and the maximum $0)8 (the maximum input line
length).

LINES 650-710: This is the section we come to if we did not find a
keyword match. All this does is to search for the next character in the
table that has a value greater than 580, and return with its position. The
pointer will be increased before we start another match. It also checks
for a 0, signifying the end of the table.

So far the routine is the same as in ROM but now we change the
course of events. In the ROM routine, when it finds the end of the table
it assumes the characters are variables and stores them as such. We, on
the other hand, want to see if it is one of our keywords, so on getting
zero we have to search our table. The Y register is loaded at the
beginning of the section because either way we want to get back the

78 A token approach to BASIC

first character of this particular check from the original input buffer
line up.

LINES 720-910: This is a repeat of the checking of the standard
keywords except it will have the address of our keyword table. We will
now be checking for our keywords.

LINE 920: When we have found and stored the end of line zero, we get
here. The routine now jumps off to end or to the original ROM routine.
There it will reset the CHRGET pointers to their initial setting of $01FF and
continue the normal flow of BASIC to either store the line or carry out its
instructions if in direct mode.

Print tokens
This routine is part of the LIST routine in BASIC. It takes the token value,
finds the keyword and prints it to the screen, or other device. The ROM

print token routine is not a subroutine by itself but an integral part of
LIST, but thankfully it is vector-started. The vector points to the next
instruction in the ROM routine. What we would have to do is to change
the vector to a routine of our own, PRINT keywords of either the
standard ones or our own, and then jump back to the LIST routine at an
appropriate point. The coding for such a routine is as follows:

19
28
39
40
59
60
79
89
99
189
119
120
139
149
159
169 CBM TOKENS
179
189
199
289
219
229
239 START
249
259 NEXT WORD

BPL ROM 1
CMP It$FF
BEQ ROM 1
BIT $9F
8MI ROM 1
CMP It$CC
BCC CBM TOKEN
SEC
SBC $CB
TAX
LOA I LSB START OF OUR KEYWORD TABLE
STA $22
LOA #$HSB START OF OUR KEYWORD TABLE
STA $23
BNE START
SEC
SBC 1t$7F
TAX
LOA $9E
STA $22
LOA HAS
STA $23
STY $49
LDY It$FF
DEX

269
279 NEXT C~R
289
299
388
319 WORD FOUND
328
339
349
358
369 ROM 1
379 ROM 2

8EQ WORD FOlJllD
INY
LDA ($22),Y
BPL NEXT C~R
8MI NEXT WORD
INY
LDA ($22), Y
8M1 ROM 2
JSR $A847
BNE WORD FOUND
JSR $A6F3
JSR $A6EF

A token approach to BASIC 79

LINE 10: This tests the negative flag. A value of $80 (128) or over is
signalled as negative. As all tokens are $80 or over, this branch will
succeed; values under $80 go back to LIST unchanged.

LINES 20: $FF is the value of 'PI'. If it is that value we again retu rn to LIST.

LINES 40-50: What we are doing here is putting bit 7 of location $0F into
the negative flag, although it does other things which are of no con
cern to us. Location $0F is the flag used by the LIST routine to signal if it
is listing in quotes or not. If bit 7 of $0F is 1, then it is listing in quotes
and we do not want to print tokens but the ASCII of the bytes.
Therefore, if the negative flag is set, we branch to go back to ROM.

LINES 60-70: Here we find out whether it is one of the standard tokens
or one of ours. It will branch off if it is standard.

LINES 80-150 OUR TOKENS
80-100: Here we subtract a number that is one less than our first

token value. The result is then transferred to the x register to act as a
counter. The value of x is one greater than the position in the table
(starting at 0) but x will be decreased before we start the search.

110-140: We store the start address of our table in what will be our
search registers.

150: This is enforced as the last figure in the accumulator, the MSB of
our table, will not be zero. We are hardly likely to have a keyword table
in the zero page which has many important BASIC locations.

LINES 160-220 CBM TOKENS: This is a duplicate of lines 80-140 except
it is for the standard tokens and keyword table.

LINES 230-240: So far we have not used or altered the y register but we
store it here in location $49 for the LIST routine as that is where it will
expect to find it later. We initialise y with $FF but will increase it before
our search so it will start a zero.
It may be worth a note here that we will not alter the values of the
search registers, $22 and $23, as the 64's keyword table is not longer than

80 A token approach to BASIC

256 bytes and it is unlikely that ours would be. Therefore, incrementing
y through its 256 range (0-FF) will serve our purpose. It also saves bytes
and time.

LINES 250-260: Every time we read a word from the table we will come
here and decrease the x register. If x is zero, then we have found the
position one byte before the keyword we want. In that case we branch
off to PRINTthe keyword.

LINES 270-300: Here we increase our table pointer, the Y register, and
then load in the next character from the table. Remember that the last
character of a keyword is its ASCII form plus $1>0 (128) and this is what we
look for. This will set the negative flag in the status register.

The first check is to see if the negative flag is unset signifying a
branch back to get the next character. If the negative is set, then the
end of the word is found and we branch back to test x to see if we have
come far enough. One of these two branches must work as a byte is
determined as either negative or positive.

LINES 310-350: We have found our word and now have to print it out.
First we increase our pointer to pick up the first character. We load it
and test to see if it is the last character. If it is we go to the BASIC ROM to
have it printed through the LIST routine. Failing this, we go to another
ROM routine to have the character printed. We will return with the
same character in the accumulator. As a keyword will not have a byte of
zero value, the branch in line 350 is enforced, to get another character
to pri nt.

LINE 360-ROM 1: The character was not a token at the beginning so we
go back to the LIST routine to have it printed and continue with the
listing.

LINE 370-ROM 2: We have here the last character of the keyword in the
accumulator. Now we go back to the LIST routine where it will be
turned into the proper ASCII value, printed and the listing continued.

BASIC token dispatch
This is the routine that BASIC uses on finding a token to get the address
for the routine. It deals only with command keywords, such as PRINT. It
is a subroutine in itself. What we need to do is put in a routine that it
goes to first, through the vector.

113
28
38
40
59
60
78

JSR ·te873
CMP tt$CC
BCC ROM
CMP ttHI GHEST C!J1MAI'ID TOKEN VALUE
BCS ROM
JSR DISPATCH
JMP $A7EA

80 DISPATCH
99
109
119
129
139
149
159
169
179 ROM
189

SEC
SBC HCC
ASL
TAY

A token approach to BASIC 81

LDA START OF OUR VECTOR TABLE+l,Y
PHA
LDA START OF OUR VECTOR TABLE,Y
PHA
JHP $9973
JSR $9079
JMP $A7E7

LINE 10: Get the token from the input buffer or program line through
the CHRGET routine.

LINES 20-30: We check to see if it is one of our tokens. If it is not, we
branch off to the normal routine in ROl\~.

LINES 40-50: Now we find out if it is a command or a function token of
ours. If it is a function vector, then it is a 'SYNTAX ERROR' so we branch to
ROM to print it.

LINES 60-70: Here we go to our subroutine for dispatch. When the
keyword routine has been completed, the program flow will come
back here where we shall jump back to BASIC for continuation.

LINES 80-150: We subtract our lowest token value from the value we
have. This will give us values of 0 upwards. Now as each routine has a
two byte address, we must double our 'new' token value to get its
proper place in the vector table. The instruction ASL does just this by
shifting all bits one place left and putting a zero in bit 0. This new value
is transferred to the Y register as a pointer in the table. What we are
going to do is to put a new return address on top of the stack (the
program counter expects the LSB on top with the MSB underneath).
Therefore, we take the second byte of the table first, put it on the
stack, and then the first. Remember our vector table is made up of LSB

then the MSB.

We now IMP to the CHRGET routine to pick up the next byte. The RTS at
the end of CHRGET will now be to our keyword routine as we have just
put its address on the stack. We came to these lines (80--150) by a ISR

command so its return address was originally on the top of the stack.
We then put another address on top of that which was pulled off in
CHRGET leaving our original return address once more at the top. At the
end of the keyword routine this address will be pulled off and we will
return to line 70 of this routine.

LINES 170-180: Here we go to the normal dispatch routine. This is not
the address normally found in the Token Dispatch Vector because we

82 A token approach to BASIC

will miss out the first instruction which is to get the next byte. We go to
CHRGOT first not to get the byte we have already got but to set the flags
that the ROM routine wants to test.

BASIC function dispatch
This is the routine that will find the routine addresses of function
keywords.

18
29
38
49
50
68
70
89
90
199 DISPATCH
119
129
139
149
159
169
179
189
199 ROM
299

LOA tt99
STA $9D
JSR $9973
O1P "LCtoIEST FLt-lCTI ~ TOKEN VALUE
BCC R!l1
O1P I$HIGHEST TOKEN VALUE
BCS ROt1
JSR DISPATCH
RTS
SEC
SBC It$LOWEST FLt-lCTION TOKEN VALUE
ASL
TAY
LDA "START OUR FLt-lCT VECT TABLE+1,Y
PHA
LDA "START OUR FltoICT VECT TABLE, Y
PHA
JMP $9873
JSR $9979
JMP $AE8D

This is basically the same as the previous routine. The return addresses
to ROM are different, as will be the table address. The first two lines
load a location which BASIC uses to decide whether to accept numeric
or string data, the latter value would be $80.

The other difference is that on return from the function routine we
will arrive back at line 90. The previous routine went back to BASIC for
another command, but here we RTS as functions will be performed as
part of a command routine and therefore we go back to it.

4 Keyboard revisited
making use of the
wasted keys

On the far right of your keyboard there are four keys that do not really
do much, at least at the moment. They are, of course, the function keys.
In this chapter we are going to show you how to make use of them. First
we thought it a good idea to describe the ROM routine in the 64 which
services the keyboard. In doing so wewill also come across the locations
that appertain to the keys.

The hardware interrupt vector

Every 1/60th second the computer hands control to an interrupt system.
When the microprocessor receives an interrupt signal it will not do
anything until the present instruction has been completed. The proces
sor will then save the program counter and the status register. The
program counter is then loaded with the contents of locations $FFFE and
$FFFF. This will start a routi ne at $FF48 which saves the register contents on
the stack before doing an indirect jump to the vector at $0314 and $0315.

The interrupt routine found at this vector points to address $EA31. This
KERNAL routine performs several housekeeping operations such as the
update of the system clock, but it also scans the keyboard. The key that
you press is picked up by the Complex Interface Adapter #1, and in
particular the Data Port B within that chip. From this the value of the key
pressed, and shift keys if used, is calculated and stored.

There seems to be some doubt from what we have read about which
location the current key value is stored in. The current value is stored in
$CB (203) and the last in $C5 ('197). This to the BASIC programmer does not
make a lotof difference unless the key buffer is full when the key value is
not logged except in $CB. The shift, logo and CTRL keys have the same
system, with the current location being $028D (653) and the last press in
$028E (654).

Having stored your current input it will check to see if it is the same as
the last key press. Its next action will depend on whether it is the same,
or not. If the same, it will see if it is a repeat function such as the cursor
keys or if location $02BA (650) has been set for all keys to repeat. Failing
this, the value will not be placed into the keyboard buffer. Where the
key values are processed it does so by looking up a table to obtain the
ASCII code for your key press. This value is placed in the keyboard
buffer and its counter updated.

1)4 Keyboard revi,ited - making use of the wasted keys

The keyboard buffer is situated at S0277-502(\0, a size of ten characters.
It operates on the system that the first character in will also be the first
out. The pointer for the number of characters in the buffer at a
particular time is :be6 11931. The size of the buffer can be reduced from its
initial value of ten by setting register $021l'J 16491.

Earlier we said that every key has a value. These are from 0 to 64, the
latter being no key press. A table of these, and the shift key values are
given in the appendices.

Here is a summary of keyboard locations:

$CB
$C5
$0280
$028E
$028A
$0277-$0280
$0289
$C6

203
197
653
654
650
631-640
649
198

The Function Keys

Cu rrent key press.
Last key pressed.
Current shift etc.
Last shift etc.
Repeat flag: $80 all, $00 normal.
Keyboard buffer.
Size of keyboard buffer.
No of chars in buffer.

These keys have values and ASCII codes like any other key. They are:

Value
Function key ($CB and $C5) ASCII

F1 4 133
F2 4 137
F3 5 134
F4 5 138
F5 6 135
F6 6 139
F7 3 136
F8 3 140

Knowing these values and the locations mentioned earlier, we can
make use of the function keys.

Function keys within a BASIC program

One of the most used BASIC statements for evaluating a key press is the
eET function. This function returns the ASCII code for the first key in
the keyboard buffer, or the latest key if the buffer is empty. It will not
wait for a key press. A BASIC routine could look like this:

100 GET A$
1101F A$="[F1J" THEN 1000: REM ACTION ON F1 PRESS
120 REM ACTION IF ANY OTHER KEY PRESSED

Keyboard revisited - making use of the wasted keys 85

This routine will not stop and wait for a key press. It will only branch off
to line 1000 if key F1 is pressed at the same time as the Gn statement is
actioned or the next character in the keyboard buffer is the ASCII for
F1.

We could adapt this so that it will wait until a key is pressed - any
key.

100 GET A$: IF A$=""THEN 100

Here line 100 will be repeated until one key is pressed or there is a
value in the key buffer that has not been read.

The next thing we could add is a line to clear the input buffer before
we GET a character. The easiest way is to set the register for the number
of buffer characters to zero.

90 POKE 198,0

At the moment the routine actions on any key. If we wanted it to action
on only two keys, say f I and F7, we would have to alter line 120 to:

1201F A$ <> O[F7]" THEN 90
130 REM ACTION ON F7 PRESSED

Now the routine will wait until a key is pressed. Once a key is pressed it
goes to 110 to see if it was F1 and branches if so. Failing that it goes to
line 120 where we look to see if it was not F7. On F7 the program will
continue its flow. Now lines 90-120 will keep repeating until either Fl or
F7 is pressed.

The only other alteration we could do is to rid ourselves of the
graphic characters in the quotes that represent the function keys. This
would make it easier for someone else to read and on a non
Commodore printer the graphic character would not print. This we can
do by using the CHR$(function when checking A$. Line 110 would now
look like:

110 IF A$ = CHR$(133) THEN 1000: REM
ACTION ON F1 PRESSED

In the GET statement all eight function keys can be tested in the same
way, either by changing the character in the quotes or changing the
CHR$ value.

Another way of testing for the keys is by examining the key press
registers set in the interrupt routines. From a BASIC programmer's
viewpoint it does not really matter whether you test the current or the
last key register. The snag with this method is that without checking
the shift register only four of the function keys can be detected. On the
other hand, by checking the shift register with all its combinations you
can have up to 32 function key combinations. Here is a routine that
tests for function key F1:

86 Keyboard revisited - making use of the wasted keys

90 POKE 198,0: REM CLEAR KEY BUFFER
100 IF PEEK(203)=4 THEN 1000: REM F1 VALUE.
110 REM PROG CONTINUES IF NOT F1.

This will not wait for F1. To wait, line 110 will have to be changed to:

110 GOTO 90

We have now set up a loop and the only exit is F1 being pressed. Now if
we wanted to test for F2, the shift flag would have to be introduced.
Line 100 could look like this:

100 IF PEEK(203)=4 AND PEEK(648)=1 THEN
1000 : REM ACTION ON F2 PRESSED

If you wanted to go to line 1000 on any key, or no key, apart from F2,

then the equals sign should be replaced by greater than and less than
signs.

Programming the keys in immediate mode

Our interrupt routine
The routines that follow will allow you to program the function keys
with commands or phrases to be actioned as if you typed them in full,
but using only one keystroke.

Most of the routines we have seen to do this operation change the
vector address of the Hardware Interrupt Routine in $0314 and $0315.

They alter it to point to their routine, which when finished will return
direct to the normal interrupt routine. This course of action has draw
backs. First, it adds to the length of the interrupt, especially if the
user's routine has to be completely followed through. Secondly, it
means that you have to set up your own registers for checking to see if
it was the same action as the last time or not, to avoid auto-repeat. A
further drawback is that if you want to use the data assigned to func
tion keys within quotes, it is more difficult to suppress the graphic
character that is generated in the quotes mode along with your phrase.

So how are we going to achieve this desirable routine of making the
function keys really useful? Earlier we described the interrupt routine
and how your key presses are interpreted. What we did not say was
that there is a vectored jump within it. This occurs after the value from
the Data Port is put into the current key registers but before it is
actioned. The vector is held in addresses $028F and $0290 (655 and 656) and is
known as the 'Keyboard Table Setup Vector'. If we change the address
in this vector to point to a routine of our own we can process the data
first. If the data concerns us we can process it jumping back to the
normal interrupt routine at a point which misses out the normal key
press routine. When the data does not concern us, control will be
handed back to the normal flow of things.

Keyboard revisited - making use of the wasted keys 87

The use of the vectors by Commodore has allowed us an easy way to
program the keys. This cannot be said of the values that have been
assigned to the function keys. It would have been easier if F1 had a
value of 1 and F3, of 3, but this is not the case.

We are going to have 16 programmed function keys. To get this
number, you have to use the keys in conjunction with the shift and
logo keys as follows:
KEYS F1, F3, F5, F7
KEYS F2, F4, F6, F8
KEYS F9, F11, F13, F15
KEYS F10, F12, F14, F16

- THE KEY ONLY
- THE KEY + SHIFT
- THE KEY + LOGO
- THE KEY + SHIFT + LOGO

This gives us keys in the range of 1 to 16, but for the routine it is easier
to use 0 to 15. We shall load the data into the keyboard buffer so we are
limited to ten characters. We also require a marker for the end of data
for each key, which will be a zero, meaning a maximum 11 bytes
storage for each. It is easier, and quicker, to use 16 bytes per key. This
wastes five bytes but as we are going to store the data in the RAM under
the BASIC ROM this is unimportant. This will mean the value of the key
needs to be multiplied by 16 to get the start of its data. Multiplying by
16 for the low numbers we are using, 0 to 15, simply involves moving
the four lower bits to the four higher bits and filling the lower ones
with zeros, four ASL instructions will achieve this. Sixteen bytes of data
for the 16 keys will take one page, 256 bytes, exactly.

To summarise:

i) Find out if the key is a function key, yes - continue, no - go to
interrupt.

ii) Calculate key number less 1.
iii) Multiply key number by 16 for table position.
iv) Get data off the data table and store in the key buffer.

ASSEMBLY LISTING

9 *=$8722
18
28
38
48
58
68 NORMAL

78 CONT
88
98

198
118

LOY $C8
CPY 1$83
8CC NORMAL
Cpy 1$87
8CC CeNT
JHP $ES48

LDA $8280
CPY $C5
BNE CONT2
CHP $828E
SEQ NORMAL

CURRENT KEY PRESS
IS IT A FUNCTION KEY
NO
IS IT A FUNCTION KEY
YES
NORMAL INTERRUPT
KEY ROUTINE
CURRENT SHIFT PRESS
IS CURRENT KEY=LAST
NO
IS CURRENT SHIFT=LAST
KEY AND SHI FT AS LAST

88 Keyboard revisited - making u"e of the wasted keY5

128 C(f'IIT2

138

140
158
160
178
180
198
280
219 F1
228 F3
238 F5
240
258

260
278
280 CBM
298 NOCJ.W.lGE
398
318
320
338
348
358
360
378
380
398
480
410

428
438 NEXT
449

450
468
470
488
490
509
510
528

STY $(:5

STA $828E

I STORE CURRENT KEY
IN LAST REGISTER
STORE CURRENT
SHIFT IN LAST REG

CPY #$84 IS IT Fl
8EQ FH 1 YES
CPY #$85 I S IT F3
BEQ F3fl YES
CPY #$86 IS IT F5
BEQ F5f1 YES
LDY #$87 IT IS F7
BIT $91A8 VALUE FOR F1
BIT $03A0 VALUE FOR F3
BIT $85A8 I VALUE FOR F5
CMP #$92 I WI¥tT SHI FT
BCC NOCHANGE I NONE OR SHI FT -

VALUES CORRECT
BEQ CBMfl
LDA #$99
BIT $08A9
STY $BB
DEC $BB
CLC
ADC $BB
ASL A
ASL A
ASL A
ASL A
LDY #$A 1
STY $15
LDY #$90
STY $14
TAY

LOX #$90
JSR $BIFB
LDA ($14) ,Y
PHA
JSR '~8202
PLA
BEQ $EXIT
CMP #$5F
BNE $STORE
LDA #$8D

LOGO KEY
~~LUE FOR SHIFTfLOGO

I VALUE FOR LOGO

I ONLY WANT NO'S 9-15

GET FINAL VALUES
MULTIPLY VALUE BY 16

HIGH ADDR KEY TABLE

U)"J ADDRESS
I TRANSFER TO Y AS

POINTER
COUNTER KEY BUFFER
SWITCH OFF BASIC
GET BYTE OF DATA
STORE TEMP
SI.")ITCH ON BASI C

I GET BACK DATA
END OF DATA

I ARROW FOR RETURN
NO

STA $8277 ,X I

LOAD CODE FOR RETURN
STORE IN KEYBOARD
BUFFER

530
549
559
560 EXIT

570
5B9
599

B75F CBH
B73B CONT2
B74E F1
B754 F5
B762 NOCI-W-IGE
B7BA STORE

Keyboard revisited - making use of the wasted keys 89

INX
INY
BNE NEXT
STX $Ct.

LDA 1t$7F
STA $DC00
RTS

INCREASE COUNTER
INCREASE POINTER
FORCED-GET NEXT DATA
NO OF CHARS IN KEY
BUFFER
RESET CIA DATA PORT

B72F CONT
B791 EXIT
B751 F3
B77B NEXT
B72C NORr1AL

LINES 10-60: What we do here is to get into the Y register the value of
the current key press and see if it is a function key or not. Function
keys have values from 3 to 6 inclusive. Line 60 has the normal address
of the Keyboard Table Setup Vector and if we do not find a function
key this is where we direct the flow.

LINES 70-110: This part of the routine checks to see if the last KEY is the
same as the current KEY. If it is, then off to the standard routine to avoid
auto-repeat. At this point we have the current key value in the Y regis
ter and the current shift value in the accumulator.

LINES 120-130: This is part of the housekeeping. We copy the current
values we have obtained into the last key registers. This is not only for
our routine but also for the normal key interpreting routine.

LINES 140-230: We now take our key value, find which key it is and
give a number corresponding to the number on the key itself. The BIT

commands will not alter any data at all except for the status flags (which
we are not testing here). They allow us to 'hide' an instruction within
the address, in these cases loading the Y register, saving bytes and
branch instructions. For instance, the BIT address in line 210 is $01A0

which is stored in memory as A001, which is the code for LDY #$01.

LINES 240-280: We now do the same for the shift value. If there is no
shift or just the standard shift, there will be no need for any alterations
so they would branch off in line 250. The logo key requires the value of
8 (1 +8 giving key 9 and so on) and both shifts 9. We again do this using
the BIT function.

LINES 290-360: Here we subtract one from the key value and then add
the result to the shift value, ending up with a value between 0 and 15.

90 Keyboard revisited - making use of the wasted keys

This total will be in the accumulator which is then increased 16 times by
the four ASl instructions. We now end up with a value between 0 and 15
which will be the pointer to the data for that particular key.

LINES 370-420: The start position of the data table is put in registers $14

and $1S. We also transfer the pointer in the accumulator to the Y regis
ter. Lastly, we initialize the x register to zero to use as a counter to the
number of characters we put in the keyboard buffer.

LINES 430-550: At last we can get our data and use it. Earlier we said
that we were going to put our data in the RAM under the BASIC ROM. To
read it back, we have to 'remove' the ROM to access it. This we do by a
call to an earlier routine in the UTILITY which you will come to later. Now
we pick up a byte of data and put it on the stack for temporary safe
keeping, as we require the accumulator for re-enabling the BASIC ROM.

With the ROM back, and having recovered the byte, we have two checks
before storing it. The first in line 480 is to see if the byte is zero,
signifying that all the relevant data has been collected and we can
finish up. The second is a check for the 'left arrow', which signifies the
user wants a return to be included (more of this in programming the
keys). If this succeeds, we will change the byte to the ASCII code for
return.

The data is stored in the keyboard buffer starting at the beginning
and working upwards - it will be removed in the same order. We do
not need to check for overflow as we are only allowed ten characters to
be programmed (see next section). Therefore, the zero, which is not
stored, cannot be later than the eleventh byte.

Having stored our byte, the two registers are increased by one and
we branch back to get a further byte. The branch is enforced as we will
not increase y enough to return it to a zero. The highest value y will
achieve is $FB (251 dec).

LINES 550-590: The end is near. Having stored all our data, the x
register will hold a number equal to the total number of characters we
put into the buffer. This is put into the register denoting how many
characters are in the buffer and the operating system will only take that
many off. The following two instructions are again housekeeping in
that we reset the data port for collection of the next press. A return
follows, but didn't we come by a)MP? This is true, but the whole key
routine is entered by a)SR where the vectored jump is found. We do
not now need the use of the normal key interpreting routine so we can
go straight back to the main interrupt.

Key

COMMAND SNYTAX
KEY

Keyboard revisited - making use of the wasted keys 91

Displays the current data assigned to the keys in a form which can be
amended.

KEY[number between 1 and 15], "[data]"

Assign data to a particular key. If a return is required, type a "<c-' to
signify this. Quotes cannot be used as data. A typical command could
look like this:

KEY7, "LlST<c-"

Here is a full list of the key numbers and how to achieve them:

KEY 1 -F10NLY
KEY 2 - F1 + SHIFT
KEY 3 - F3 ONLY
KEY 4 - F3 + SHIFT
KEY 5 - F5 ONLY
KEY 6 - F5 + SHIFT
KEY 7 -F70NLY
KEY 8 - F8 + SHIFT
KEY 9 - F1 + LOGO KEY
KEY 10 - F1 + SHIFT + LOGO KEY
KEY 11 - F3 + LOGO KEY
KEY 12 - F3 + SHIFT + LOGO KEY
KEY 13 - F5 + LOGO KEY
KEY 14 - F5 + SHIFT + LOGO KEY
KEY 15 - F7 + LOGO KEY
KEY 16 - F7 + SHIFT + LOGO KEY

KEY 0 ... will generate a SYNTAX ERROR. We had thought about using this as
a way of turning off the key routines, but decided on a separate
command. This makes it more of a conscious decision rather than a
typing error. The command will be OFF, which is discussed later.

We have seen that we can make use of the four 'mystery' keys by
getting data output on their use and in fact having 16 keys when used
with the shift and logo keys. Now we have a routine to program the
data, in which the user can decide what data to apply. This operation is
acted upon through the keyword KEY.

KEY will perform three functions. It will 'switch' on the keys if they are
off. This is performed in both of the following options. The choices are
to program a key or to display the data applied to all the keys, which
can then be amended on the display.

As we have said, there are two routines included in this. There is one
routine to program individual keys and one routine to display the data

92 Keyboard revisited - making use of the wasted keys

assigned to all keys. The latter is very similar to the interrupt routine
discussed earlier except that the data goes to the screen rather than a
buffer. The {orrner in many ways is the reverse: we take data from a
buffer - the input buffer - and put it in a tabie.

ASSEMBLY LISTING

9 *=$864D
19

20
313
40
513
60
?e
88
99 START

190
119
120
139
140
159
160
179
180

19a
2a9
210
229
2313
249
2513
269
270
2B9

299
399
319
329 SYNTAX
339 C~T2
349
359

LOA $8135B

Ct1P #$87
BEQ START
LDA #$B7
STA $8135B
LOA #$22
STA $8356
JSR $B954
JSR $91379
BEQ DISPLAY
JSR $81F5
JSR $AEFD
LOA $14
BEQ SYNTAX
CMP #$11
BCS SYNTAX
DEC $14
LDA $14

ASL A
ASL A
ASL A
ASL A
TA'(
LDA #$A 1
STA $15
LDA #$313
STA $14
LDX $eA

JSR $91379
CMP #$22
BEQ CCt~T2

JMP $AF0B
JSR $91373
BEQ ZERO
CMP #$22

CHECK IF INTERRUPT
SET FOR KEYS

I YES

I SET INTERRUPT
I GET LAST BYTE AGAIN

GET PARAMETER
CHECK FOR CCM1A

NO KEY13
HIGHEST KEY IS 16

SET TO CALCULATE
POINTER
CALCULATING POINTER

I HI ADD FOR KEY TABLE

SET LO ADD FOR KEYS

COUNTER MAX NO OF
CHARS

I GET LAST BYTE AGAIN
I S IT A QUOTE
YES
PRINT ST~AX ERROR

I GET NEXT BYTE
END OF DATA INPUT

I IS IT A QUOTE

Keyboard revisited - making use oi the wasted keys 93

369 BEQ ZERO END OF DATA INPUT
379 STA ($14) ,Y STORE DATA IN

TABLE
380 INY INC TABLE POINTER
399 DEX DEX CHAR COUNT
4B9 BNE CCNf2 IF ZERO MAX NO

CHARS REMAINDER
IGNORED

419 ZERO LDA M99 END OF WORD MARKER
420 STA ($14),Y
439 JSR $9973 GET NEXT BYTE
440 RTS I FINISHED
459 DISPLAY LOX MB9 I SET COLNTER
469 STX $5F
479 IN)(
480 LOA #$2B I SPACE AS NO TEN-' S

DIGIT
4913 STA $22
5139 LDA M31 I ASCI I FOR ONE
5113 STA $23
529 LDA M09 LO BYTE OF DATA TABLE
530 STA $14
549 LDA #$AI HI BYTE OF DATA TABLE
5513 STA $15
569 PD1 JSR PRINT
570 INC $23 INCREASE NUHERAL
589 INC $5F INCREASE KEY CO~IT
590 INX
609 CPX M9A HAVE WE DONE KEYSl-9
610 BCC PDI NO
629 LDA **"*-31 I NOW HAVE A TEN DIGIT
630 STA $22
649 LDA M39
650 STA $23
669 PD2 JSR PRINT
670 INC $23
689 INC $5F
690 INX
799 CPX Ml1 HAVE WE DONE 16
710 BCC PD2 NO
729 RTS YES
730 PRINT LDY #$95 COLf-.lTER
749 NEXTA LDA PDATA, Y I PRINT • KEY H

759 JSR $FFD2
769 DEY
779 BNE NEXTA

94 Keyboard revisited - making use of the wasted keys

789 LOA $22
798 JSR $FFD2 PRINT TEN/ S

NUMERAL OR SPACE
898 LOA $23 PRINT UJ,,J NUHERAL
819 JSR $FFD2
828 LOA tt$2C
839 JSR $FFD2 PRINT COtflA
848 LOA tt$22
858 JSR $FFD2 PRINT QUOTE
860 LOA $5F CALC TABLE POINTER
879 ASL A
888 ASL A
898 ASL A
990 ASL A
918 Cll'IT TAY PUT POINTER IN Y
920 NEXT JSR $8IFB SWITCH OFF BASIC
939 LOA ($14) ,Y GET CHAR OFF TABLE
940 PHA TEMP STORE
958 JSR $8202 SWITCH ON BASI C
960 PLA RETR I EVE CHAR
979 BEQ EXIT FOUND END OF WORD
980 JSR $FFD2 PRINT CHAR
998 INY

UH38 BNE NEXT ENFORCED
1919 ExIT LOA "'22
1928 JSR $FFD2 PRINT A QUOTE
1938 RTS
1948 POATA BYT $28,/Y,/E,-'K,$29,$9D

8691 CCtH2 86A8 DISPLAY
8716 EXIT 8784 NEXT
86E9 NEXTA 86BO POI
86D1 PD2 871C PDATA
86DE PRINT 8661 START
868E SYNTAX 86A9 ZERO

LINES 10-80: Earlier in the UTILITY, a routine will exist that is used when
the extension is initialized or when STOP/RESTORE is used. This sets the
Keyboard Table Setup Vector to where we want it to point to. These
addresses can be changed by the OFF command. Here we look to see if
the high byte of the address is pointing to our interrupt routine. If not,
we change the address in the setting routine to point to our interrupt
routine and then call the setting routine to initialize.

LINES 90-270: A call first to the CHRGOT routine to get the byte after the

Keyboard revisited - making use of the wasted keys 95

KEY token. This is necessary as we have used the accumulator and so
overwritten the byte. If the byte has set the zero flag, then there are no
further parameters and a display of the key data is required. The
program in that case branches to the display which starts at line 450.

Knowing we have got some parameters, off we go to our 'GET PARA

METER' routine (Chapter 6) and to a ROM coding to see if the byte after
the key number is a comma. This coding will not only update the
CHRGET address but will generate a SYNTAX ERROR if a comma is not found.

The parameter we want is now held in location $14 - the key number.
This value is put in the accumulator and checked for two things. If it is
zero or greater than sixteen, it is out of bounds, so an error message is
required, and therefore we branch off to get this printed. As in the
interrupt routine it is easier to work in numbers 0 to 15 rather than 1 to
16 so we decrease the value in $14 by one and then reload back into the
accumulator.

To get the pointer to the required position in the data table, the
number is multiplied by 16 with the ASL instructions. The Y register will
be the pointer so the value is transferred to it. Next we load two
registers with the address of the data table start. Now we are in a
position to get, and store, the data.

LINES 280-440: The data generated by using the function keys will be
placed in the keyboard buffer. This buffer is only ten characters in
length so we have to limit the input to that number. This is achieved by
setting the X register to ten ($0A). We said earlier that the comma check
updates the CHRGET address so a call to the CHRGOT routine will get the
next byte we want. This should be a quote; if not a SYNTAX ERROR is
generated (remember that CHRGET skips spaces).

Now to get the data and store it. To get the data we make use of
CHRGET. If the zero flag is set, the end of the command has been
reached with either a colon or a zero placed by the BASIC input routine.
The second quote is checked which also signifies the end of data input.
If any of these are found, we branch off to end the routine at line 410.
We can now store our data in the table under the BASIC ROM. We do not
have to disable the ROM as you cannot store data in ROM so it is
automatically stored in the RAM underneath. We increase the Y register
which points to the table position. We decrease X which checks for
overflow of data. If x reaches zero, the maximum number of characters
has been stored. The flow only branches back to get the next byte if x is
greater than zero.

To finish off, we store a zero after the last byte of data. This will help
when retrieving the data to signify all data has been gathered.

We do another visit to CHRGET to get the next byte as BASIC expects
this. This will cause a SYNTAX ERROR if you have input more than ten
characters of data though the first ten bytes will have been logged.

The RTS returns us to BASIC for further operations.

96 Keyboard revisited - making use of the wasted keys

DISPLAYING THE KEY DATA

LINES 450-550: These instructions set up the registers used in the
display itself. The x register is again used as a counter. Location $5F will
have the value of the key number less one and will be used to calculate
the pointer for data collection. Locations $22 and $23 hold the ASCII
values of the key number. As keys up to and including 9 have only one
digit location $22 is loaded with the ASCII for a space character. $23

starts with the ASCII for 1 and will be incremented. Finally, we load up
the address of the start of the data table into registers $14 and $15.

LINES 560-610: Call the coding to print key data for keys 1 to 9. After
calling, the ASCII value in $23 is increased along with the key number
register $SF. Register x is also increased and checked to see if it has
reached $0A (ten). If so, we would have to reset the ASCII numbers
before printing further data. If x has not reached this value, we branch
back to call the print coding for the next key.

LINES 620-720: First we reset locations $22 and $23. Key numbers from
10 to 16 have to be displayed so we have two digit numbers, the first
always being one. Therefore, $22 is loaded with $31, the ASCII for one.
The other is initialized to zero in ASCII format. We now continue to
print out the key data, incrementing $5F, and x each time, until x rea
ches the value of 17 just after being incremented. This value of x
signifies we have finished the display so we exit from the routine and
hand control back to BASIC.

The Print Routine to Display the Key Data

This part of the command is entered 16 times in total to print the data
to the screen. The value for calculating the pointer, held in $5F, is set
before these lines are implemented, as are the ASCII values of the key
number. We use the KERNAL routine at $FFD2 to print a character to the
screen. The data is printed out in the same format as it was entered.
This is done so that it can be changed, just like normal screen editing,
if required.

LINES 730-770: The start of every key display line will be the same.
These lines will print this from the area of data at the end of the routine
(Line 140). We start with a return so it starts on a new line, then a space
to give better clarity if the border and screen are different colours,
especially if the border and text colours are the same. KEY is printed
next, followed by a space for presentation.

LINES 780-850: The key number is printed, followed by a comma and
the first set of quotes.

LINES 860-910: The key number, less one, is taken from $5F and

Keyboard revisited - making use of the wasted keys 97

increased 16 times with the now familiar four ASL instructions. The
result is transferred to the Y register for the data pointer.

LINES 920-1030: Get the key data. First we switch off BASIC to get the
data underneath. After returning the BASIC, we print the data as long as
it is not the 'end of data' zero. Printing finished, we update the pointer
and go back to get the next byte. When the zero is found we exit and
print the closing quote. Then it's back to the main key display routine.

OFF - Turn off the keys

COMMAND SYNTAX
OFF
There are no parameters with this command.

If you want to use the function keys within a program simply as keys,
you will want to be able to disable the programming they have been
given. The command that enables you to do this is OFF. All we do is to
alter the addresses in the routine that sets the Keyboard Table Setup
Vector back to its normal address. Once changed, we call the routine
to change them in the BASIC work area. Do not forget that they can be
re-enabled with any KEY command.

ASSEMBLY LISTING
9 *=$8799

19
28

30
49

59
68

LOA Jt$.48
STA $8956

LDA #$E8
STA $895B

JSR $8954
RTS

Stand alone programmable function keys

CHANGE LOW ADD IN
SETTING ROllTINE

CHANGE HIGH ADD IN
SETTING ROUTINE
CALL SETTING ROUTINE

Perhaps this chapter would have been better located between Chap
ters 6 and 7. It was difficult to decide on its position as it also uses
information from both Chapters 2 and 3, but will not work as it stands.

To provide programmable function keys without using the keyword
enable routine, the 'get parameter' and 'switch off BASIC' routines have
to be copied from Chapter 6. The whole routine may then be relocated
and the actions of KEY and OFF performed using SYS commands.

5 Utilities in BASIC

General

This chapter includes many of the utilities in the form of BASIC sub
routines and programs. You do not really need any of that which
follows if you load-up the UTILITY each time. In time we suspect that the
simple routines contained here will not only prove useful, but will also
give you plenty of ideas of you r own.

A number of the utilities require that you generate an ASCII file of a
program on tape or disk. This produces a file in the same format as
would be received at a printer or the screen itself. The resulting
sequential file contains the program in 'un-tokenized' form. To do this,
output must be directed to the desired device with an OPEN and CMD

sequence. For a tape this is:

OPEN 1,1,1, "PROGRAM": CMD1 : LlST[from - to]
PRINT#1 :CLOSE 1

and for a disk:

OPEN 2,B,2,"PROGRAM,S,W":CMD2: LlST[from - to]
PRINT#2:CLOSE 2

Most of the utilities given here are in the form of subroutines and have
been numbered in the 60000s to allow them to be easily added on to
your own programs as and when appropriate. They may be included in
whole, or in part, by a suitable merge or append technique. You may
wish to combine a number of them together to form useful modules
which in the future may save many hours of repetitive work. This you
can easily do by using the mini-renumber and merge programs given.
Many of the routines can be extended, but they have deliberately been
kept as short as possible. Always try to adopt a 'house' format to
simplify the creation of future programs. This may only be a simple line
numbering sequence where: the working part of your program lies
between lines 100 and 9999; the specific subroutines lie between 10000
and 50000; and your library routines are from 50000 on.

The information upon which much of the following is based is
contained in Chapter 1 and we refer you to that chapter. The utilities
that follow are arranged in alphabetical order.

Keyword - APPEND

Append 1

Utilities in BASIC 99

Function: To append two BASIC programs in memory (nose-to-tail)

In the past, whenever you have loaded a program, it has erased the
one currently in memory. This need not be the case. BASIC can start at
any address in memory and need not always be the default of 2049

($0801). The pointer (TXTTAB) to tell the 64 where BASIC begins is held in
RAM and can therefore be changed. It is even possible to have two
BASIC programs resident in memory concurrently by changing the
necessary zero page pointers, though only one could be running at
any time. We can manipulate these pointers to allow us to append
one program to another.

With a program in memory change TXTTAB to point to its end (VAR

TAB-2) by:

A=PEEK (45) :POKE 43,A-2:POKE 44,PEEK(46)+A<2

The program to be appended will now be loaded at the end of the
existing one. Resetting the start of BASIC will make the 64 see both
programs as one by:

POKE 43,1: POKE 44,8 (assumes original start was 2049/$0801)

The resulting program may then be edited or saved in the usual way.
Many texts say the appended program should have line numbers
higher than the original. This is not essential, but some confusion can
result if this is not so. Try appending when the second program does
not have higher line numbers and see.

The combined program will run correctly until a COTO or COSUB ref
erences a line which occurs twice. By virtue of the way these com
mands work, the branch will always be taken to the first occurrence
of a line.

Append 2
Function: To append two programs on disk (BASIC or machine code)

Program files on disk store an image of the memory which the pro
gram occupied. The first two bytes record the load address and the
last byte is a zero to mark the end of file. They can, however, be read
and written in a sequential manner. This allows us to append files in
much the same way as we did above, but this time performing the
operation solely on disk. The following program will append two
programs which will load at the address of the first:

100 Utilities in BASIC

LINE ACTION

130 Open up 'Program' files for read and write.
140 Read first program and make a byte by byte copy
TO in the combined file. Skip the terminating zero byte
180 and jump to read the second program.
200 Read the load address and discard it.
210- Copy the remainder through to produce the combined file.

1 00 INPUT" FRONT PROGRAM"; F$
110 INPUT" (2SPC] END PROGRAM"; E$
120 INPUT" FINAL PROGRAM II ; R$
130 OPEN 2,8,2,F$+",P,RH:OPEN 3,8,3,R$+"
,P,W"
140 GET#2,A$
150 B$=A$:GET#2,A$:IF ST AND 64 GOTO 180
160 IF A$="u THEN A$=CHR$(0)
170 PRINT#3,B$;:GOTO 150
180 CLOSE 2
190 OPEN 2,8,2,E$+",P,R"
200 GET#2,A$:GET#2,A$
210 GET#2,A$:IF ST AND 64 GOTO 240
220 IF A$="" THEN A$=CHR$(0)
230 PRINT#3,A$;:GOTO 210
240 PRINT#3,CHR$(0);
250 CLOSE 3:CLOSE 2

Append3
Function: To reopen an existing closed sequential file on disk and
continue writing data from the previous end of file.

This is a standard disk command which is not made clear in the disk
manual. Its format is:

OPEN 2,8,2,"TEST,A"

Subroutine keyword - AUTO NUMBER

Function: To automatically generate line numbers as code is entered.

Initiation: RUN 60000

This allows the start line and increment to be set. The line number is
printed, followed by any characters typed. When RETURN is pressed the
program enters the line, resets the line number variables (as an edit
destroys all variables) and reruns itself by forcing two RETURNS into the
keyboard buffer. As written, the program will not accept any line not
followed by BASIC code (equivalent of delete line).

Utilities in BASIC 101

LINE ACTION

60010 Position cursor to 3rd line down and print line number in black.
60020 Generate a flashing cursor - not normally present on a ell

60040 Watch out for null lines
60060 Print line to - COTO 60010, reset variables, restart program and

move to HOMf.

60070 Set NDX for two characters in keyboard buffer. Put two returns in
k/b buffer (KEYD). On END KEYD will be emptied and the returns will
enter the line and execute line from 60060

60000 INPUT "START[4SPC]";LN: INPUT "INC
REMENT" ; 1%
60010 B$=" II : PRINT CHR$(147) ; CHR$(17) ; CHR
$(17);CHR$(17);CHR$(144);LN;CHR$(154);
60020 POKE 204,0:POKE 207,0
60030 GET A$:IF A$=" 0 GOTO 60020
60040 PRINT A$; :IF B$="" AND ASC(A$)=13
GOTO 60010
60050 B$=A$:IF ASC(A$)<>13 GOTO 60020
60060 PRINT "LN=" ;LN+I%; n: 1%="; 1%;" :GOTO

60010";CHR$(19)
60070 POKE 198,2:POKE 631,13:POKE 632,13
:END

The version below is a little more flexible. It will not only delete an
existing line if RETURN is pressed after its number, but also allows you to
change the printed line number to any value. Subsequent line
numbers will increment from the new value until it is again changed.
The main difference is the addition of the code to evaluate the current
line number ((60060 and 6(070). This is done by reading from the start of
the fourth screen line until a non-numeric code is encountered and
reassigning the line number variable ·'LN'.

60000 INPUT " START [4SPC]" ; LN: INPUT II INC
REMENT" ; 1%
60010 PRINT "[CLS][3CD](BLK]" ;MI D$(STR$(
LN),2);"[L BLU]II;
60020 POKE 204,0:POKE 207,0
60030 GET A$:IF A$="H GOTO 60020
60040 IF ASC(A$)<>13 THEN PRINT A$;:GOTO

60020
60050 PRINT:B$=HII:I=1143
60060 I=I+l:IF PEEK(I)}47 AND PEEK(I)(58

THEN B$=B$+CHR$(PEEK(I»:GOTO 60060

102 Utilities in RAW

60070 LN=VAL(B$) : PRINT n LN=" ; LN+ 1%;" : I~/;=
"; 1%;" : GOTO 60010[HOM]";
60080 POKE 198,3:POKE 631,13:POKE 632,13
:POKE633,13:END

Program keyword - BASES

function: To convert hex to decimal, binary to decimal and vice versa

This program contains four useful inter-base conversion subroutines.
The hex to decimal is most useful if you wish to use hex rather than
decimal values in the DATA statements for a machine code BASIC loader.
The Programmer's Reference Guide, Chapter 3 uses binary patterns for
the sprite data in the '8ALLOON' program but pictorial data is also
enlightening when setting up user-defined characters and makes for
easier editing.

No explanation is given as the program is easy to follow.

100 PRINT"1 HEX/DEC":PRINT"2 DEC/HEX":PR
INT"3 BIM/DEC":PRINT"4 DEC/BIN"
110 PRINT:INPUT"SELECT ";N
120 ON N GOSUB 150,240,330,400
130 GOT0100
140 ON N GOSUB 150,240
150 PRINT:INPUT"HEX[4SPC)";A$
160 IF LENCA$)(4 THEN A$=LEFT$("0000"+A$
,4-LENCA$»+A$
170 A=ASC(A$)-48
180 B=ASCCMIDCA,2,1»-48
190 C=ASC(MIDCA,3,1»-48
200 D=ASCCMID$(A$,4,1»-48
210 E=256*C16*CA+7*CA)9»+B+7*CB)9»+16*
(C+7*(C)9»+D+7*CD)9)
220 PRINT:PRINT"$ ";A$;" = D";E:PRINT
230 RETURN
240 PRINT:INPUT"DEC[4SPC]";G:A=INT(G/256
):B=G-A*256:IF G(0 OR G)65535 GOTO 240
250 C=INT(A/16):D=A-16*C
260 C$=CHR$(48+C):IF C)9 THEN C$=CHR$(C+
55)
270 D$=CHR$(48+D):IF D)9 THEN D$=CHR$CD+
55)
280 E=INTCB/16):F=B-16*E
290 E$=CHR$(48+E):IF E)9 THEN E$=CHR$(E+
55)

Utilities in HA'>I(103

300 FS=CHRS(48+F):IF F)9 THEN FS=CHRS(F+
55)
310 PRINT:AS=CS+DS+ES+FS:PRINT "D";G;" =

S ";AS: PRINT
320 RETURN
330 PRINT:INPUT"BIN[4SPC]";AS
340 A=0:AS=RIGHTS("0000000000000000"+AS'
16)
350 FOR 1=16 TO 1 STEP -1
360 BS=MIDS(AS,I,1):IF BS="I" THEN A=A+2
A(16-1)
370 NEXT I
380 PRINT:PRINT"B ";LEFTS(AS,8);" ";RIGH
TS(AS,8);" = D";A:PRINT
390 RETURN
400 PRINT: INPUT"DEC[4SPC]" ;A: IF A)65535
OR A<0 GOTO 400
410 BS="":D=A:FOR 1=15 TO 0 STEP -1
420 B=INTCA/2 A I) : IF B=1 THEN BS=B$+" 1" : G
OTO 440
430 BS=BS+"0"
440 A=A-B*2 A I:NEXT I
450 PRINT:PRINT"D";D;"= B ";LEFTS(BS,8);
" ";RIGHTS(BS,8):PRINT
460 RETURN

Program keyword - DA T ALI N ES

Function: To generate 8ASIC data statements for machine code
programs.

Once again the keyboard buffer is used to generate program lines. This
time there are more variables in use than would conveniently fit on a
single assign line so they have been put 'out of the way' in the cassette
buffer. Only variables in the normal BASIC variable storage area are lost
by an edit. The resulting data values are generated to the nearest ten
bytes.

LINE ACTION

60000- Data input.
60060- POKE values to TBUFFR.

60090 Recycle from here. Re-read next line number,
60100 step,
60110 start address,
60120 end address for current line,

104 Utilities in BA'll

60130 and end address of program. If finished STOP program.
60140- Print line number, DATA, the values and GOTO 60090.

60210- Increment line number, address, and set up k/b ready for END.

60000 INPUT"START ADDRESS";B
60010 INPUT"END ADDRESS[2SPCJ";E
60020 F=B:L=F+10
60030 INPUT"START LINE[3SPC]";S
60040 INPUT"LINE INC[5SPC]";T
60050 PRINT" [4CDJ"
60060 POKE831,INT(E/256)
60070 POKE832,E-INT(E/256)*256
60080 POKE828,T:GOT060160
60090 S=PEEK(826)*256+PEEK(827)
60100 T=PEEK(828)
60110 L=PEEK(829)*256+PEEK(830)
60120 E=PEEK(831)*256+PEEK(832)
60130 IFL)=EGOT060270
60140 F=L+l:L=L+10
60150 PRINT"[CU][14SPC]H
60160 PRINTS;
60170 PRINT"DATA";
60180 FORP=FTOL:PRINTPEEK(P);"[CLJ,";:NE
XTP
60190 PRINT"[CL][3SPC]"
60200 PRINT"GOT060090[4CU]";
60210 POKEI98,2:POKE631,13:POKE632,13
60220 S=S+T
60230 POKE826,INT(S/256)
60240 POKE827,S-INT(S/256)*256
60250 POKE829,INT(L/256)
60260 POKE830,L-INT(L/256)*256:END
60270 STOP

Subroutine keyword - DELETE

Function: To remove unwanted program lines en masse

Two delete routines follow. Both use the link address and line number
storage at the start of a BASIC line during execution to perform the
deletion. The first deletes line numbers as they are encountered
whereas the second only deletes one line as the final step in the
process. The first line of each routine reads TXTIAB to find out the
cu rrent start of BASIC.

Delete 1
This routine deletes lines using the all-tao-familiar keyboard sequence
and as such requires no explanation.

Utilities in BASIC 105

60000 TX=PEEK(43)+PEEK(44)*256
60010 INPUT" DELETE FROM"; LL :M=256: INPUT"
[7SPC]TO[2SPC]";UL
60020 IF PEEK(TX+2)+PEEK(TX+3)*M(LLTHENT
X=PEEK(TX)+PEEK(TX+l)*M:GOTO 60020
60030 POKE 828,UL-INT(UL/M)*256:POKE 829
,UL/t1:GOTO 60050
60040 M=256:TX=PEEK(830)+PEEK(831)*M:UL=
PEEK(828)+PEEK(829)*M
60050 IF PEEK(TX+2)+PEEK(TX+3)*M>UL OR P
EEK(TX)+PEEK(TX+l)*M=0 THEN END
60060 PRINT "[CLS][3CD]U;PEEK(TX+2)+PEEK
(TX+3)*M:PRINT"GOTO 60040[HOM]"
60070 POKE830,TX-INT(TX/M)*M:POKE831,TX/
M:POKEI98,2:POKE631,13:POKE632,13:END

Delete 2
This is, perhaps, a more refined way to carry out the task. It takes
fullest advantage of the way programs are stored in RAM and in par
ticular the function of link addresses. The routine scans the line
numbers until the start of the block to be removed is found. It records
the address of this link address and then continues to scan for the end
line number for the delete. Once a line number equal or greater is
found, this link address is substituted at the start of the block link. One
very large line has thus been created in memory. A simple keyboard
program is then used to remove the start line and all others go with it.
This is without doubt a lot faster than the first method, but has the
disadvantage that you cannot see the lines as they go.

60000 TX=PEEK(43)+PEEK(44)*256
60010 INPUT"DELETE FROM" ;LL: INPUT" [7SPC]
TO[2SPC]";UL
60020 L=PEEK(TX+2)+PEEK(TX+3)*256
60030 IF L(LL THEN TX=PEEK(TX)+PEEK(TX+l
)*256:GOTO 60020
60040 IF L=0 THEN PRINT"LOWER LIMIT";LL;
"NOT FOUND n : END
60050 LL=L:D=TX
60060 L=PEEK(TX+2)+PEEK(TX+3)*256
60070 IF L=0 THEN PRINT"UPPER LIMIT";UL;
"NOT FOUNDu:END
60080 IF L(UL THEN TX=PEEK(TX)+PEEK(TX+l
)*256:GOTO 60060
60090 POKE D,PEEK(TX):POKE D+l,PEEK(TX+l
)

60100 PRINTI[CLS][3CD]I;LL;I[HOM]":POKE
198,I:POKE 631,13:END

106 Utilities in BASIC

Subroutine keyword - DUMP

Function: To display the current values of all simple numeric, string and
function variables

Initiation: Type GOTO 60000

This routine will display the values of all simple variables in use at the
time of calling. The variables will be displayed in the order in which
they were created by the program. The routine will not handle arrays
nor will it work if editing has been carried out prior to its being called
(simply because all variable pointers will be reset to the end of pro
gram). It also displays the values of the variables it uses - SV, V$, and so
on. As these are the last variables to be created they will be the final
ones to be displayed. Output may be directed to a printer by a simple:

OPEN 4,4:CMD 4:GOTO 60000

The display may be stopped by holding down any key and will resume
on the release of that key. Pressing the STOP key will 'break' into the
program and allow you to use the cursor keys to move up and change
values. If you resume program execution with a GOTO, then the
amended values will be used. A simple CO NT would re-enter the dump
subroutine at the break and dump any remaining variables.

The routine makes extensive use of the information contained in
Chapter 1 on the storage of BASIC variables. Remember the first two
bytes are the variable name adjusted for its type. The following is a
description of the routine:

LINE ACTION

60030 Read the current value of VARTAB.

60040 Do the same for ARYTAB.

60050 Default values.
60055 If equal then no simple variables, edit used, or finished. If not

equal more variables exist so continue.
60060 Read the seven bytes used for variable.
60070 Determine the type from the two name bytes and GOTO the
to appropriate subroutine, these being real, integer, string or func-
60100 tion. The name bytes must be changed back to their unmodified

ASCII values by the subtraction of 128, as necessary, and '%' or
'$' suffixes printed where required.

60105 Pause if key held down (64=no key at SFDX. Note this is the
current key not LSTX as in the Programmer's Reference Guide).

60110 Increment 7 bytes to next variable and recycle.
61000 Subroutine to convert 5 floating point binary bytes to decimal.
61500 Subroutine to convert the 2 of the 5 bytes used to a signed

integer.

Utilities in BASIC 107

62000 Subroutine to read string length and location then find and
build string.

62005 Avoids the single pass through FOR/NEXT if null string.
62020 Surround a string with quotes - required for changing its value

on a break.
62500 Subroutine to detect a function and simply acknowledge the fact

as its current value will be picked up by one of the other
routines.

60000
60010 :REM DUMP VARIABLES
60020
60030 SV=PEEK(45)+PEEK(46)*256 :REM STAR
T OF VARIABLES
60040 SA=PEEK(47)+PEEK(48)*256 :REM STAR
T OF ARRAYS
60050 V$="" :VV$="" :V=0 :l)V=0: REM DEFAULTS
60055 IF SA=SV THEN END: :REM NO SIMPLE
VARIABLES OR EDIT USED
69969 FOR V=0 TO 6:V(V)=PEEK(SV+V):NEXT
V:REM READ VARIABLE NAME AND VALUE
60070 IF V(0)(128 AND V(I)(128 THEN GOSU
B 61000:REM REAL
60989 IF V(0»128 AND V(1»127 THEN GOSU
B 61500:REM INTEGER
60090 I F lJ (0) (1 28 AND V (1)) 1 27 THEN GOSU
B 62000:REM STRING
60100 IF V(0»128 AND V(1)(128 THEN GOSU
B 62500:REM FUNCTION
60101 IF PEEK(203)<)64 GOTO 60101
60110 SV=SV+7:GOTO 60040:REM INCREMENT C
OUNTER AND DO NEXT
61000 V$=CHR$(l.)(0» +CHR$(V(1» : REM REAL
NAME
61010 V=(-I)A(V(3)ANDI28)*2A(V(2)-129)
61920 lvIV=(1+((V(3)AND127)+(V(4)+(V(5)+V(
6)/256)/256)/256)/128)
61030 V=V*VV: PRINT V$; "=" ;V: RETURN
61590 V$=CHR$(V(0)-128)+CHR$(V(1)-128)+"
%n:REM INTEGER NAME
61510 V=(V(2)AND127) *256+V(3) + (lJ(2» 127)
*32768
61520 PRINTV$; "=" ;V: RETURN
62000 V$=CHR$(V(0»+CHR$(V(1)-128)+"$":R
EM STRING NAME
62005 IF V(2)=0 GOTO 62020

108 Utilities in BASIC

62010 FOR V=1 TO V(2):VV$=VV$+CHR$(PEEK(
V(3)+V(4)*256+V-l»:NEXT V
62020 PRINT V$; "=" ;CHR$(34) ;VV$;CHR$(34)
: RETURN
62500 RETURN:REM FUNCTION PICKED UP BY 0
THER ROUTINES

An alternative approach might be to use the technique in RENUMBER (see
below). Namely, print a line which reads: PRINT the variable name and
GOTO the point at which program execution should be resumed. If we
get the cursor movements right and POKE a RETURN into the keyboard
buffer, a dump could be performed. To tidy up, we should really clear
the line which says 'PRINT and GOTO' with more cursor movements and
spaces, and so on.

An obvious extension would be to include arrays. The logic involved
in determining and printing the values of subscripted variables is
identical to the above and, with care, the same subroutines could be
used. The tricky bit is deciphering the array header to determine the
number of dimensions and the size of each dimension. If you do decide
to try this, do remember integer array values are stored in only two bytes
and string pointers in three bytes, unlike their simple variable counter
parts. You must also check that arrays do exist by examining STREND and
comparing it with ARYTAB+1. Array headers have also been covered in
Chapter 1. Including arrays will greatly increase the size of DUMP and in
applications where memory is tight, prove impracticable. It is also
difficult, so do not worry if your efforts are not rewarded immediately
as a simple error in the logic can cause some very unexpected results.

Program keyword - LISTER

Function: To produce dated, paged and neatly formatted listings

The version given below has been written for an RS232 printer operating
at 300 baud, 1 stop bit and no parity (see Programmer's Reference
Guide, Chapter 6: 'Input/Output Guide'). The printer used also
required a carriage return/line feed sequence to be generated at the
end of each line. Therefore, the logical file number used has to be
greater than 127, in this case #129. When using any RS232 device, it is
advisable to OPEN-UP the file at the start of the program to allocate the
input and output buffers. For other printers, the OPEN and PRINT#

statements below will hav~ to be amended to suit.
If your printer does not support the CBM special characters, the

program to be listed should first be run through CODER before gen
erating the ASCII file. With a cassette, the OPEN command to read
sequential data on line 210 should read OPEN 2,1 ,0,A$(I).

The listing produced is ideal for permanent record, though as the

Utilities in BASIC 109

process takes a little time it is not recommended for intermediate
listings. The final listing will have all text inset to column 7 and any
wrap-around lines will also be inset. Specifying a line width less than
the maximum available has the benefit of allowing space for comments
(can save a lot of time in the future). A brief description follows:

LINE ACTION

100 See above.
110-- Set parameters.
160-- Allocate files to be listed to array A$().

210 See above.
220 This line is included to get any leading returns. The number of

these will depend on exactly how the ASCII file was generated.
Once a CMD has been issued all returns normally sent to the
screen will go to the file. Typically this will be two for the LIST. If
zeros appear on your output then you will have to adjust the
program or the way you generate the file.

230 Create bottom margin.
250 Build one line into string A$.

260 Same problem as 220 at end of file. Assume a line number of zero
is the end.

270 Reset line for text to start in col7.
290 If length<max then print it.
300- Else split it and print first part. Recycle each time adding 6 leading

spaces to continuations.
340 Print blank lines to next top of form before next program.

188 OPEN 129,2,8,CHR$(6)
110 PRINTHLISTER UTILITYH:PRINT
120 INPUT-DATE[10SPC]H;D$
130 INPUT"LINES/PAGE[4SPC]";LP:IF LP=0 T
HEN LP=66
140 INPUT"MAX CHARS/LINE";CP
150 INPUT-NO.OF PROGS[3SPC]";N:DIM A$(N)
160 PRINT:FOR 1=1 TO N
170 INPUT" PROGRAM [7SPC] II ;A$(I)
180 NEXT 1
190 1=0
200 I=I+l:LC=0:IF I>N THEN END
210 Z=I:0PEN 2,8,2,A$(I)+H,S,R"
220 Z=I:GET#2,A$:GET#2,A$:GOSUB 320
230 IF LC>=LP-8 THEN FOR J=1 TO LP-LC:PR
INT#129,"":NEXT J:GOSUB 320
240 J=0: B$=""
250 J=J+l:GET#2,A$:IF A$<>CHR$(13) THEN
B$=B$+A$:GOTO 250

110 Utilities in BASIC

260 IF VAL(B$)=0 THEN GOSUB 340:GOT0200
270 L$=STR$(VAL(B$»:B$=MID$(L$+"[6SPC]H
,2,6)+MID$(B$,LEN(L$»
280 L=LEN(B$)
290 IFL<=CPTHEN PRINT#129,B$:LC=LC+1 :GOT
o 230
300 L$=LEFT$(B$,CP):PRINT#129,L$:LC=LC+1
310 B$=H[7SPC]"+MID$(B$,CP+1):GOTO 280
320 PRINT#129,"PROGRAM ";A$(I);" LISTED
ON ";D$;II LISTING PAGE";Z:LC=2:Z=Z+1
330 PRINT#129,"":RETURN
340 FOR J=1 TO LP-LC:PRINT#129,"":NEXTJ:
CLOSE2:RETURN

Subroutine keyword - MERGE

Function: To merge two BASIC programs

In all the following where line numbers are common to both the
program in memory and the merging program those of the latter will
take precedence.

Merge 1
Where a program is less than 22 screen lines when listed, it may be
merged very easily indeed. Simply load the short program and list it.
Type NEW and move the cursor to the line below the last line of the list.
LOAD the main program and then move up and simply press RETURN on
all lines to be included in the final program.

This is the reason for having short keyword routines, to allow the
above technique to be used on many of them.

Merge 2
The following subroutine will merge programs of any length. The
program (or part of) to be merged must be stored as an ASCII file on
disk or tape. The program resident in memory must, of course, include
the merge subroutine.

Initiation: RUN 60000

The resulting program will be an amalgamation of the two programs and
unlike APPEND the lines will be in the correct numerical sequence. At
the completion of the merge an 'OUT OF DATA' or 'SYNTAX ERROR' will be
displayed depending on how the ASCII file was generated and which
program had the highest line number, but who cares, as the result is
exactly what we wanted. The program may then be saved in the normal
way (after deleting lines 60000- if they are no longer needed). The
version given is for disk and the necessary changes for cassette have

Utilities in BASIC 111

been included in the description below, but should be only too
familiar by now.

The program uses the keyboard programming technique for the
most part. There is one problem and that is that whenever an edit is
performed all OPEN files are CLOSEd. So in theory only one line may be
read from the file. Any further attempts to obtain input will result in a
'FILE NOT OPEN' error. The solution is simple. BASIC is made to believe a
file is open even though an edit has been carried out by pOKEing the
necessary values into the zero page file registers for current logical file
(LA), secondary address (SA) and device number (FA).

LINE ACTION

6@@1@ FortapeoPEN1,l,0,FS
6@@2@ Get bytes until numeric code. This overcomes the problem in

LISTER and perhaps should also be used in that program.
6@@3@ Set file parameters by poking into LA, SA and FA. For tape use 2, @

and 1 (@=read 1 =cassette).
6@@5@ As the first numeric character has been found, mustn't forget

to print it. - B$
6@@60- As all other programs using keyboard.
6@@8@ Set up k/b buffer on END to enter printed line and GOTO 60030, thE

cycle repeating until all done.

60000 INPUT"PROGRAM ";F$
600100PEN2,8,2,F$+",S,R"
60020 GET#2,B$:IF VAL(B$)(l GOTO 60020
60030 POKE 184,2:POKE 185,2:POKE 186,8:P
OKE152,1
60040 PRINT"[CLS][3CD]";
60050 PRINTB$;: B$=""
60060 GET#2,A$:PRINTA$;:IF A$(>CHR$(13)
GOTO 60060
60070 PRINT" GOTO 60030 [HOM]"
60080 POKE 198,2:POKE 631,13:POKE632,13:
END

Merge 3 (tape only)
This is the cleverest tape merge we have seen. It was originally worked
out by J. Butterfield and B. Templeton for the PET and all we have done
is to modify it for the 64.

Again, the program to be merged must be on tape in ASCII format.
The statements may be typed in direct mode or, as in this case, be a
subroutine. In direct mode the contents ofthe quotes should be typed
after performing the necessary cursor moves and RETURN pressed at the
end. Line 60030 is needed only in program mode.

112 Utilities in IlA'>IC

Initiation: RUN 60000

The key to this is the POKE1.S.1,1 (DFLTN) which changes the default input
device after each line has been merged from the usual default of 0 (the
keyboard) back to the cassette (1).

60000 INPUT "PROGRAM H;F$
60010 POKE 19,1 :OPEN 1,1,0,F$
60020 PRINT"[CLS][3CD]POKE 153,1:POKE 19
8,1:POKE 631,13:PRINT CHR$(19)"
60030 POKE 198,1:POKE 631,13:PRINT "[HOM
]":END

The most common problem with merge is if a program line is in excess
of 80 characters when listed (possible if abbreviations have been used).
The merge will be unsuccessful as the cursor movements will be
incorrect and also BASIC'S input buffer will overflow.

Program keyword - OLD

Function: To recover NEwed programs

The command NEW does not actually erase the program in memory, it
simply changes the first line's link address to 00 00 (2049 and 2(50) and
therefore fools BASIC into thinking that there isn't a program present. In
addition, all variable pointers are reset to the end of the program,
which in this case is the start of BASIC itself (action of CLR). The following
uses these facts to recover the program by resetting the necessary
pointers.

To use OLD, the start of BASIC (TXTIAB) must be set above the end of the
NEwed program and TXTIAB-1 set to zero by:

POKE 43,01: POKE 44, no. of pages: POKE (no. of pages) *256,0: NEW

OLD may then be loaded and run. The erased program will be
recovered and you are back in business. As a point of interest OLD is
still present higher in memory and will remain so until overwritten by
variable data or a larger program.

The program works by hunting from the input value of TXTIAB+4
(ignore first three zeros) for three consecutive zero bytes which mark
the end of the erased program. En route the first link is changed to
point to the second line. Once found, TXTIAB is changed to point to the
specified start and VARTAB, to the end address. A CLR then tidies up and
the original program is LISTed.

Utilities in BASIC 113

60000 INPUTUTXTTAB(2049)";TX:MX=256
60010 POKE 828,TX-INT(TX/MX)*MX:POKE 829
, TX/MX
60020 X=TX+4+J:IF PEEK(X)<>0 THEN J=J+l:
GOTO 60020
60030 POKE TX,X+1-INT«X+l)/MX)*MX:POKE
TX+1,(X+l)/256:TX=X+1
60040 X=PEEK(TX)+PEEK(TX+l)*MX:IF X<>0 T
HEN TX=X:GOTO 60040
60050 TX=TX+1:POKE 830,TX-INT(TX/MX)*MX:
POKE 831, TX/MX
60060 POKE 43,PEEK(828):POKE 44,PEEK(829
):POKE 45,PEEK(830):POKE 46,PEEK(831)
60070 CLR:LIST

Subroutine keyword - PLOT

Function: To position the cursor to a specified screen location

There are many ways of positioning the cursor. The most common way
is to include the necessary control characters inside quotation marks.
This can be expensive on memory if a lot of cursor movement is used.
The movement is also relative to the current location and not
absolutely fixed to some reference point unless a clear screen or home
cursor is first issued. Many micros have TAB(x,y), POS(x,y) or HTAB x and
VTAB y functions within their BASICS to position the cursor. The following
are just two ways of doing this on the 64 with its unmodified BASIC.

Plot 1
This uses a simple subroutine into which are passed the line and
column position. First, two strings are defined - preferably at the start
of the program as they remain unchanged throughout the run for
speed of access. They are:

1 Y$=1[24CD)":X$="[40CR)"

and have been allocated line number 1. To position to any location, the
x and y coordinates are passed to the subroutine which simply homes
the cursor then prints the appropriate number of cursor downs and
rights.

In the example below, lines 100 to 130 have been included for
demonstration purposes.

114 Utilities in BA'IC

1 YS="[23CDJ":XS="[40CRJ"
100 INPUT" COLUMN" ;X
110 INPUT" [3SPC] ROW" ;Y
120 GOSUB 1000:PRINTX;",";Y
130 GOTO 100
1000 PRINT"[HOMJR;RIGHTS(YS,Y),RIGHT$(X$
,X); : RETURN

The top left of the screen is considered as '0,0'. The semicolon at the
end of the print in 60000 is included to hold the cursor at the set
location.

The idea of holding frequently used character patterns, control
characters, and so on as string variables can reduce memory usage and
also makes for easier-to-read code.

Plot 2
This second plot routine uses the same zero page locations as the
KERNAL function PLOT see Programmer's Reference Guide. These are PNT

(209/210), PNTR (211) and TBLX (2141. If you look at the memory map in Chapter
5 of the PRG or Appendix K of this book, you'll notice locations from 200
to 245 all relate to the screen in some way or other. We are not going to
run through them all, but try experimenting with them and see what
happens. If in trouble, turn off the 64.

Let us look at the three locations we are going to use to accomplish
PLOT in a little more detail.

PNT: contains the address of the start of the current line in low/high
format. With the screen at its default start (1024-2023), this will hold a
value 1024t40*row where row is in the range 0-24. Unusual results are
produced if this does not correspond to the start of a physical screen
line.

PNTR: holds the offset from the address held in PNT. It is the absolute
screen column (0-39) when PNT holds the start of line address.

TBLX: holds the current physical screen row.

Using only PNT and PNTR, we can position the cursor to any X,Y location.
The next print would occur at the specified point. However, when the
cursor returns after the print, it reappears at or below the line it was on
before PNT and PNTR were set. This is difficult to put into words and
much easier to see. For example, if an input took place on line 23 and
the cursor was then moved to line 10, column 10 and a PRINT took place
without a semicolon, the cursor would reappear at the start of line 24
and not 11 as might be expected. To avoid this, we simply also set TBLX

and all will be well. The routine below has the same effect as the first
PLOT routine given. Again, lines 100 to 130 are included for demonstra
tion only.

100 INPUT" COLUMN" ;X
110 INPUT" [3SPC] ROW" ;Y
120 GOSUB 1000:PRINTX;",";Y
130 GOTO 100
1000 POKE 214,Y:Y=1024+Y*40

Utilities in BA~IC 115

1010 POKE 209,Y-INT(Y/256)*256:POKE 210,
INT(Y/256)
1020 POKE 211,X
1030 RETURN

Subroutine keyword - PRINT USING

PRINT USING is a very powerful output formatting command available in
some BASIC languages. It allows numbers to be right or left aligned to a
specified number of decimal places, or to be expressed in exponential
format and much more. There are equally as many possibilities for
strings. A routine to duplicate all the facilities would be very long, so
here we have only considered the problem of formatting numbers.

Very quickly everybody picks up on the idea of:

X= INT(X*10'W+ .5)/10'W

to get numbers to a set number of decimal places, where W is the
number of places. Unfortunately, due to the way numbers are stored,
this is not guaranteed to produce the expected result. By way of a
trivial example, try printing .0h649 and 64k01 and see the difference.
The result of any calculation is very much dependent on the order in
which it was evaluated. To overcome the problem we have to resort to
strings as these are the only type of variable we can fully format.

The following routine will format numbers not in scientific notation
and will avoid the XX.X00001 type occurrence by not using any division.
The value returned is right aligned to w decimal places and padded
with leading spaces to a set width of L. The variable transferred is in x
and the string X$ is returned.

1 INPUT "X";X :INPUT"W";W:INPUT"L";L: GO
SUB 60000:PRINTX$
2 GOTO 1
60000 X$=STR$(INT(X*10 A W+.5»:LE=LEN(X$)
60010 SZ$=".000000000000000":S2$="[31SPC
] "
60020 IF LE<W+2 THEN X$=LEFT$(X$,1)+MID$
(SZ$,1,W+2-LE)+RIGHT$(X$,LE-1)
60030 IF LE)=W+2 THEN X$=LEFT$(X$,LE-W)+
"."+RIGHT$(X$,W)
60040 X$=RIGHT$(S2$+X$,L):RETURN

116 Utilities in BAW

To illustrate its use, the following display

COL1
99.000

100.091

COl2 COL3
100.00 .999
98.22 .010

COl4
9.51456

11.00000

would be produced by the program lines; where Cl-4 represent the
values to be PRL'-ITed in cols 1--4 (set elsewhere within your own pro
gram).

1 C1=99.00001:C2=100.00123:C3=.99888:C4=
9.514569:REM EXAMPLES
10 L=10:W=3:X=C1:GOSUB 60000:PRINT X$;
20 W=2:X=C2:GOSUB 60000:PRINT X$;
30 L=5:W=3:X=C3:GOSUB 60000:PRINT X$;
40 L=14:W=5:X=C4:GOSUB 60000:PRINT X$

Where numbers are very large or very small, simply raise them to an
appropriate power of ten prior to calling the routine and head the
output '.lWN'.

Subroutine keyword - RENUMBER

Function: To renumber a specified section of a program

It is not possible to write a full renumber program in BASIC which does
not use ASCII disk files (somebody will no doubt wish to disprove this
statement). There are many problems, the biggest of which is in
renumbering GOTOS, GOSUBS and THENS line destinations. It is relatively
easy, albeit slow, to hunt these out by their token values. The problem
arises in correcting destinations which are held in ASCII form. For
example, GOTOl00 is held as 137494848 ($89S31 $30$30 in hex). If during the
renumbering process the destination changes by a magnitude of ten or
more (the overall length changes), we have to move all code from the
byte following the reference up or down in memory, recalculating link
addresses as we go. If all references are entered as five figures as
standard, this problem is eliminated, for example, GOT000100. Entering
line numbers in this way is rather tedious and is considered imprac
tical. Machine code renumber programs use the 'crunch tokens'
routine and the necessary memory moves are performed as part of this
routine when a line is added or removed. See RENUM in Chapter 7.
The program below only renumbers the lines. It will renumber all or
only a set block. The new line numbers need not even be in sequence
with the rest of the program, though problems will arise if they are
referenced. The user will have to manually change all GOTOS, etc. This
subroutine is really intended to allow you to put together a number of
the shorter routines in this chapter.

Uti I ities in BASIC 117

69909 TX=PEEK(43)+PEEK(44)*256:MX=256
69910 INPUT" RENUMBER FROM"; LL: INPUT" [9SP
C1TO[2SPC]H;UL
69929 INPUT" [5SPC]NEW LINE" ;S: INPUT" [9SP
C1STEpR;I
69030 IF PEEK(TX+2)+PEEK(TX+3)*MX(LL THE
N TX=PEEK(TX)+PEEK(TX+1)*MX:GOTO 60030
60940 S=S+J*I:IF TX=0 OR PEEK(TX+2)+PEEK
(TX+3)*MX>UL THEN END
60050 POKE TX+2,S-INT(S/MX)*MX:POKE TX+3
,S/MX:TX=PEEK(TX)+PEEK(TX+l)*MX
60069 J=J+l:GOTO 60930

Subroutine keyword - SQUASH

Function: To increase the speed of execution of BASIC programs

Many 'crunch' or 'compactor' programs are available, both commer
cially and in various journals. Their function is to increase the speed of
execution of a BASIC program by the removal of redundant code.

There are many reasons why code is slower than it need be. Much of
this code is useful at the time of developing the program, but is not
required at run-time. Some examples have been given at the end of
Chapter 1, but there are many more. Listing the more obvious:

Line numbers: When they are the reference for a GOTO, GOSUB or THEN

they are held in ASCII form. The shorter they are (that is, the lower the
number), the quicker they are converted to numeric form. Therefore, a
renumbering with an increment of 1 is advantageous.
REM: These are ignored at run-time and need only be retained if they
are a destination. REMS also use valuable memory.
Spaces: Including spaces in a program makes for easier reading, but is
unnecessary and wasteful (this is true only outside quotes).
Variable names: One-character names use less space and are found
quicker.
Destinations: See Chapter 1 (page 23)
Screen: See Chapter 2 (page 32)
Print: Semicolons separating print lists are sometimes superfluous.
They must be retained after a numeric variable and at the end of a PRINT

list if a carriage return is to be inhibited.
Line length: Short lines use an extra five bytes each time (Iink=2
line=2 end=1) and also take time in working out the next line's details.
Lines which are not destinations can be strung together, taking due
care of the logic of any IF statements. Lines may be of any length, but
are difficult to edit or generate once they exceed 80 characters (even if
all the possible abbreviations are used, there is a limit to BASIC'S input
buffer).

118 Utilities in BASIC

FOR/NEXT loops: A surprising increase in speed is gained by omitting
the variable on the NEXT statement. This eliminates the look-up opera
tion for the variable name. Try timing:

FORI=1T0255: FOR)=1T0255: NEXT): NEXTI

and FOR NEXT:NEXT
Operating system: Once spaces have been eliminated, CHRGET itself
may be modified to get rid of the test for spaces. (See Chapter 3).

The subroutine below will remove all unnecessary spaces, semicolons
and REMS. Renumbering is left up to you. Once again, an ASCII file
must first be generated of the program. The program is based on
Merge 2 (see page 110) and only the differences from that program are
described below:

LINE ACTION

60030 L is set to 1 to account for B$ in first line.
60090 As Merge 2 line 60060, returning to k/b bit once a return found.
60100 Once a REM found, ignore all chars except return.
60110 Flag to indicate in or out of quote mode.
60120 Ignore spaces out of quotes.
60130 Keep spaces in quotes.
60140 Semicolons out of quotes require careful checking and this is

carried out at 60210 on.
60150 Semicolons in quotes - keep.
60160 If not an 'M', don't look for REM.

60170 Else see if preceding two chars were 'RE'.

60180 If they were, replace by a ':' and set RE to ignore everything
following (see 601(0).

60190 Build line to be printed.
60210 Handle the semicolon when out of quotes and eliminate if

possible. Do this by getting next byte and if the list continues
check for a preceding string or opening quote. Finally, re-enter
the main body of the program where appropriate.

Initiation: RUN 60000

613131313 INPUT" PROGRAM "; F"*
6eeI00PEN2,8,2,FS+",S,R"
60020 GET#2,BS:IF VAL(BS)<l GOTO 6013213
601330 L=1
6130413 POKE 184,2:POKE 185,2:POKE 186,8:P
OKE152,1
60050 PRINT"[CLSJ[3CDJ";
60060 GOSUB 60090
6130713 PRINT"GOTO 6e040[HOMJ"

Utilities in KA,IC 119

60080 POKE 198,2:POKE 631,13:POKE632,13:
END
60090 GET#2,A$:IF A$=CHR$(13) GOTO 60200
60100 IF RE=1 GOTO 60090
60105 IF A$="r' AND Q=0 AND RI GHT$(B$, 4)
=H PRIN" THEN P=-1
60106 IF A$=":" AND Q=0 THEN P=0
60110 IF A$=CHR$(34) THEN Q=NOT(Q)
60120 IF A$=" " AND Q=0 GOTO 60090
60130 IF A$=" II AND Q=-1 GOTO 60190
60140 IF A$="; II AND Q=0 AND P=-1 GOTO 60
210
60150 IF A$="; II AND Q=-1 GOTO 60190
60160 IF A$<> "M" GOTO 60190
60170 IF t1 I D$ (B$, L -1 ,2) < > II RE II GOTO 60190
60180 B$=LEFT$(B$,L-2)+I:":RE=I:GOTO 600
90
60190 B$=B$+A$:L=L+l:GOTO 60090
60200 PRINTB$:RETURN
60210 GET#2, C$: IF C$=H: II THEN A$=A$+C$: L
=L+l:P=0:GOTO 60190
60220 IF C$=CHR$(13) THEN B$=B$+A$:GOTO
60200
60230 IFRIGHT$(B$,I)=I$"ORRIGHT$(B$,l)=C
HR$(34)ORC$=CHR$(34)THENA$=C$:GOT060100
60240 A$=A$+C$:L=L+l :GOTO 60190

Conclusion

We hope that this chapter has given you food for thought. By way of a
project, why not write a routine to recover as much of the data as
possible after an edit or NEW has been performed?

6 Routines old and new

Introduction

In Chapter 4 we gave listings in machine code to make use of the
function keys. These are actioned by keywords. At the present time,
BASIC will not understand these. All the functions of the UTILITY, the
remainder of which are in the following two chapters, require some sort
of 'driving mechanism'. That is, routines which will not only recognize
the keywords, but will action them. Those routines are the PRINT tokens,
DISPATCH BASIC CHARS and BASIC EVALUATION. In Chapter 3 these were fully
discussed, so we are only supplying in this chapter the coding that is
particular to the UTILITY.

To initialize the UTILITY we need to change the addresses in certain
locations. These fall into three categories. First, we have to change the
vector addresses so that BASIC will go to our token routines; secondly,
we need to protect the UTILITY from being overwritten by programs and
strings; and lastly we need to retain its operation during a Non
Maskable-Interrupt, that is when RUN/STOPRESTORE is pressed.

There are certain subroutines which will be used by more than one
command, so we include them in this chapter. These deal with getting
parameters, the switching in and out of the BASIC ROM and memory
moving.

That has dealt with the new, and now for the old. A few of the resident
ROM routines are useful. Many of them will be covered when describing
our new commands. The later part of this chapter describes some more.

Initialization

When you start up the UTILITY with SYS32768 these instructions will be the
first to be actioned. They will set up and protect the UTILITY. At the end of
the four subroutines we return control back to you, with a screen
message, and the UTILITY in operation.

ASSEMBLY LISTING

9 *=$8990
19
20
39

JSR VECTOR
JSR KEYS
JSR ""'1

CHANGE BASIC VECTORS
SET KEYBOARD VECTOR
SET ""'I AND BRK VECTORS

Routines old and new 121

48 JSR HEM SET TOP OF HEMORY
59 JHP $9299 CLR AND MESSAGE
60 VECTOR LOA 1$99
70 STA $9394 lCRNCH LOW
B8 LOA tt$BC
99 STA $8396 lQPLOP LOW

190 LOA 1$92
119 STA $939B IGONE LOW
129 LOA tt$29
139 STA $939A 1 EVAL LClJ
149 LOA tt$82
159 STA $9395 lCRNCH HIGH
168 STA $9397 lQPLOP HIGH
179 LOA KB3
1 B8 STA $8399 IGONE HIGH
199 STA $938B 1 EVAL LClJ
290 RTS
210 HEM LOA KFF
229 STA $37 HEMSIZ L(l.J
239 STA $33 FRETOP LOW
248 LDA tt$7F
259 STA $38 MEMSIZ HIGH
268 STA $34 FRETOP HIGH
279 RTS
2B8 NHI LOA tt$7E
299 STA $9316 BRK LOW
398 LOA 1$61
319 STA $9318 NMI LOW
329 LDA 1$89
339 STA $9317 BRK HIGH
348 STA $9319 1'1'11 HIGH
359 RTS
368 KEYS SEI
379 LOA K22
3B8 STA $928F KEYLOG LClJ
399 LOA KB7
499 STA $8299 KEYLOG HIGH
410 CLI
428 RTS
425 NHI ROUTINE
438 PHA
449 TXA
459 PHA
469 TYA
478 PHA
4B9 LOA K7F

122 Routines old and new

490

500
510
520
530 PLUS
540
559
560

STA $DD0D

LDY $DD0D
BPL PLUS
JHP $FE72
JSR $F6BC
JSR $FFEI
BEQ BREAK
JHP $FE72

CIA INTERRUPT
CONTROL REG

RESET RS232
SETS STOP AND RVS FLAG

I CHECK STOP KEY

RESET RS232
565 ~ BRK
570 BREAK
589

ROUTINE

599
608
618
620

B07E BREAK
8034 HEM
8073 PLUS

JSR $FD15
JSR $FDA3

JSR $E518
JSR KEYS
JSR t-I"II
JHP ($A002)

KERNAL RESET
INITIALI ZE 1/0
CIA CHIPS
INITIALIZE 1/0

B054 KEYS
8041 tf1I
800F VECTOR

We feel that this listing up to 430 is fairly self-explanatory, especially
with a memory map. The remaining lines are dealt with in the next
section.

BRK and NMI routines

These are included in the listing of the previous section, lines 430 to
620. When either of these are initiated, it will be to these lines they will
come. The majority of these routines are copies of the equivalent ROM

routines, plus a couple of directions to our set up routines to keep the
UTILITY in service.

NMI
The NMI is initiated by the use of the RESTORE: key (although there are
means to initiate it through the cartridge slot). Not only does it tell the
microprocessor it has been actioned, but it also sets a flag in the CIA #2.

The processor will not action it immediately, but will wait until the
present instruction is complete. The processor then saves the program
counter and the status register on the stack. It will load the address
stored at $FFFA and $FFFB into the program counter. This is normally $FF43.

At this address it sets the interrupt flag, so that the other interrupt does
not interfere, and then jumps to the vector address that we have
changed. Note that the routine has so far not stored the A, x and Y

registers.

Routines old and new 123

The NMI in the UTILITY will end up at our routine, which is a series of
subroutines. After saving the processor registers on the stack, it clears
the NMI flag in the Interrupt Control Register of the CIA#2 chip, which
deals with inputs and outputs of the computer. It then loads that
location back into Y and if the NMI flag is still clear then it jumps ahead,
missing out for the time being an RS232 reset. The following routine
checks the STOP and RVS flags at location $91. A call to the KERNAL routi ne
to check for STOP follows. If on exit the accumulator is zero, then the
STOP was initiated and we go to the BRK routine. Finally, we jump to the
routine to reset the RS232 locations.

BRK
The first subroutine resets the KERNAL set up vector from $0314 to $0333 to
their default values from a list held in the KERNAL ROM itself. This will
reset two we have changed, the BRK and NMI vectors. The following
routine will service the two CIA interface chips, by restoring them to
their setup levels.

The routine at $ES18 performs the remaining functions of a BRK. It
restores the output device to the screen and the input device to the
keyboard. The video chip is next for the restoration treatment. The
screen and character set are returned to their default positions, and
sprite graphics turned off. After this it is the keyboard's turn, with the
buffer, delays and set-up vector all returned to default values. The
routine finishes off by resetting the input/output flags, clearing the
screen, setting the colours and putting the cursor in the home
position.

We now put in two calls ourselves so we can reset the NMI, BRK and
keyboard vectors to those we require. Finally, there is the indirect
jump of A002 which sets the stack pointer to its start, prints 'READY' and
gives control back to the user.

Routine vectors and keywords

There is sufficient space, using the existing token system, for 51 further
keywords. These will be split up into an area for command keywords
and an area for function keywords. In the UTIlITY we are supplying 34
commands and 1 function. Between the last command keyword vector
and that of the function keyword there is space for a further nine
commands (token values 238 to 246 ($EE-$F6)). Seven extra functions
could be added within the space available. The vector table is posi
tioned at $8090 to $80FS.

The keyword table is exactly 255 bytes long. Out of that our
keywords use up 155 plus a zero byte to mark the end of the table. The
amount of space available to you if wish to extend it is 58 bytes for
command keywords and 41 bytes for functions. Remember that the last
letter of each word has $80 (128) added to it. In our table, the space

124 Routines old and new

between our last command, IROfF, and the only function, DEEeK, has
been filled with bytes $SA and ~lA to make up the nine unused token
values.

MEMORY DUMP

· : 8090 98 87 4C 86 B2 83 9F 84/
· : 8098 EB 84 36 85 BE 85 14 84'
· : 80A0 51 83 A6 83 AE 8F B4 8F'
· : 80A8 89 83 AC 83 51 8E C4 89'
· : 80B0 43 8F A6 87 92 8B 2D 84'
· : 80B8 Dl 8F 3A A9 Dl A8 30 86'
· : 80C0 B6 91 39 8D 10 86 B5 92'
· : 80C8 8C 91 80 91 4D 90 FB 85'
· : 80D0 6E 88 60 8D FF FF FF FF J' ••••••••

· : 80D8 09 FF FF FF F6 FF B6 F7'
· : 80E0 00 60 00 00 D6 83 D6 83'" .•••.••.
· : 80E8 90 90 90 68 90 99 90 49'
· : 89F9 00 00 00 40 09 40 4F 46' OF
· : 80F8 C6 4B 45 D9 44 4F 4B C5/fKEyDOKe
· :8199 54 45 CE 54 57 CF 48 45/TEnTWoHE
· :8198 D8 42 49 CE 4F 4C C4 43'xBlnOLdC
.:8119 4F 4C 4F 55 D2 57 52 49" OLOUrWRI
· : 8118 54 C5 43 47 4F 54 CF 43/TeCGOToC
· : 8120 47 4F 53 55 C2 59 4C 4F/GOSUbPLO
· : 8128 D4 45 4E 54 45 D2 44 55'tENTErDU
· : 8139 4D D9 52 45 4E 55 CD 44'MpRENUmD
· : 8138 45 4C 45 54 C5 4D 45 52" ELETet1ER
· : 81 49 47 C5 43 4F 44 45 D2 41 "GeCODErA
· : 8148 55 54 CF 59 52 4F C3 44/UToPROcD
· : 8150 50 52 4F C3 45 50 52 4F.lpROcEPRO
· : 8158 C3 50 4F D0 51 55 49 D4'cPOpQUlt
· : 8169 54 52 41 43 C5 52 45 53'TRACeRES
· : 8168 45 D4 43 48 41 49 CE 4C/EtCHAlnL
· : 81 79 4F 4D 45 CD 48 49 4D 45.10MEmHIME
· : 8178 CD 49 4E 4B 45 59 A4 4D.l mINKEY M
· : 8189 45 CD 41 50 50 45 4E C4.1EmAPPENd
· : 8188 54 52 4F 46 C6 5A 5A 5A/TROFfZZZ
· : 8199 5A 5A EA 5A 5A 5A 5A 5A" ZZ. ZZZZZ
· : 8198 5A EA 5A 5A 5A 5A 5A SA.lZ.ZZZZZZ
· : 81A9 5A EA 5A 5A 5A 5A EA 5A.lZ.ZZZZ.Z
· : 81A8 5A 5A 5A EA 5A 5A 5A 5A.lZZZ.ZZZZ
· : 81 B9 EA 5A 5A 5A 5A 5A 5A EA/.ZZZZZZ.
· : 81 B8 5A 5A 5A 5A 5A EA 5A 5A.lZZZZZ.ZZ
· : 81 C0 5A 5A 5A 5A 5A 5A EA 44.1ZZZZZZ.D
· : 81 C8 45 45 CB 99 FF FF FF FF'EEK

Routines old and new 125

· : 81 D9 FF FF FF FF FF FF FD FF.r ••..•.•.
· : 81 D8 FF FF FF FF FF 7F FF FF /
• : 81 E9 90 00 90 09 00 90 09 98'
• : 81 E8 09 00 00 98 01 00 09 00"" ••••••••
• : 81 F9 00 00 90 00 99 20 8A AD"' •••••

This has been produced in upper case mode and as such the end
shifted letter of each command is printed in lower case. If putting it
into your computer in a way other than the dump, remember that they
are shifted. The last letter in location $1l17E is a shifted $, giving the
keyword INKEY$.

Getting parameters and controlling BASIC

ASSEMBLY LISTING

9 *=$81F5
10
20
30
40
50
60
78
80
98

180

Parameters

JSR $ADBA
JMP $B7F7
LDA $01
AND #$FE
STA $01
RTS
LDA $81
ORA #$01
STA $01
RTS

GET INPUT
CHECK AND TRANSFER
651 9 I/O PORT
TURN OFF BIT e
BASIC OFF

SET BIT 9
BASI C ("t4

Lines 10 and 20 hold the only two instructions that we need to incor
porate, but they do a lot of work in getting our numeric parameters.
Let us look at the instructions one at a time.

JSR $AD8A

The fi rst action of th is is to call the eval uate expression routine at $AD9E.

This is a complex routine which deals not only with numeric data,
but also with strings. After setting the CHRGET pointer back one place, it
proceeds to start picking up data after the command keyword. It will
then go through checking to see whether a mathematical operator or a
function keyword (such as PErK), a variable or simply a number has
been obtained. From the information obtained it will (after calculating
if necessary) store the result or findings in the FAC#1. For numbers up to
$FFFF, the relevant numbers will be in locations $64 and $65 of this
accumulator.

We now return to our original subroutine at $ADIlA, where we check
to see if the data received was numeric or not. The evaluate expression

126 Routines old and new

will set a flag in the zero page location $00. The value of $FF indicates
string data, whilst zero designates numeric data. If this subroutine
finds the former, a 'TYPE MISMATCH' error is generated and the com
mand, and program, is terminated.

jMP$B7F7

We have our numeric parameter. This routine will do two checks and
then transfer our data. The checks are to make sure that neither a
negative number nor one over 65')35 ($FFFF) was given. In either case,
failure will result in the 'ILLEGAL QUANTITY' error. The data is now transfer
red from $64 and $65 to locations $14 and $15. The reason for this is that
the FAC#1 is used for many applications. The RTS at the end of this
routine will return us to the place that called our complete GET PARA·

METERS routine, that will most likely be a command routine.

The BASIC switch
As we said, when dealing with the function keys, the area of RAM under
the BASIC ROM is a useful place for hiding data, or indeed routines which
do not use the BASIC interpreter. To use this area, BASIC must be
'removed'. We have no trouble writing to the RAM as the computer,
through its decoding logic, will select it when the processor sends a
write signal. When reading, the ROM has priority unless we tell the
electronics that it is not there. The main difference between the 6510
processor in the 64 and the normal 6502 is that the former has input!
output ports. The user can control these using locations $0000 and $0001.

The first deals with the direction of the data, that is, whether the ports,
of which there are six, are going to be input or output. The second
location deals with the data itself, one bit for each port, either a one or
a zero which gives a switching mode. Three of the ports are connected
to the cassette port. The other three control three ROMS: BASIC, KERNAL

and the Character ROM. A zero will switch all of these off. The one we
are concerned with, BASIC, uses bit 0 of the data register and so by
changing this bit, making sure not to disturb the others, we can
remove or replace as required.

Lines 30 to 60 perform the switching-out of BASIC. We load the
register and set bit 0 to zero. The AND instruction will do this without
changing any other bit. After placing the result back, the ROM is no
longer present as far as the computer is concerned.

Lines 70 to 100 reverse the process by using the ORA code which will
only affect the bits according to the data with the instruction.

To switch off BASIC - jSR $81 FB
To switch in BASIC-jSR$8202

Dealing with the keywords

In Chapter 3 the routines that BASIC uses to deal with keywords and

Routines old and new 127

tokens were fully described. Below are the listings to use with the
UTILITY, which require no further explanation.

ASSEMBL Y LISTING - CRUNCH TOKENS

9 *=$8209 410 STORE INX
10 LDX $7A 429 INY
29 LDY 1t$04 439 STA $01FB,Y
30 STY $f.lF 449 LDA $91FB,Y
40 ANOTHER LDA $9290,X 459 BEQ EXIT
50 BPL SPACE 469 SEC
69 CMP It$FF 470 SBC #$3A
7f.l BEQ STORE 489 BEQ COL()\J
80 INX 490 CMP #$49
90 BNE ANOTHER Sf.le BNE DATA

If.l9 SPACE CMP 1t$29 SHl COLON STA $f.lF
11 f.l BNE STORE 529 DATA SEC
129 STA $98 53f.l SBC #$55
139 CNP #$22 549 BNE ANOTHER
149 BEQ QUOTE 559 STA $98
150 BIT $f.lF 569 LDA $0299,X
169 BVS STORE 579 LINE BEQ STORE
170 CMP #$3F 589 CMP $98
189 BNE Nut1BER 599 BEQ STORE
199 LDA #$99 699 QUOTE INY
209 BNE STORE 610 STA $91 FB,Y
210 Nl.J1BER CMP #$313 629 INX
229 Bce C(t.lT 639 BNE LINE
230 CMP #$3C 649 NEXTWORD LDX $7A
249 BCC STORE 659 INC $0B
259 C()\JT STY $71 669 FIND IN'i
260 LDY tt$00 670 LDA $A99D,Y
270 STY $0B 689 BPL FIND
289 DEY 699 LOA $A99E,Y
290 STX $7A 799 BNE CONT1
300 DEX 719 LDY #$FF
319 NEXTLETTER INY 729 DEX
320 INX 739 NEXT INY
330 C()\JT1 LDA $f.l200,X 749 INX
340 SEC 759 NEXTB LOA $9200,X
359 SBC $A09E,Y 769 SEC
360 BEQ NEXTLETTER 779 SBC $89F6,Y
379 CMP #$813 789 BEQ NEXT
389 BNE NEXTWORD 799 CMP #$813
399 STOREA ORA $0B 899 BNE NEXTNEW
4f.l9 FOUND LDY $71 810 BEQ STOREA

128 Routines old and new

870
880
890
900
910 EXIT

820F ~OTHER
8239 CeNT
826B DATA
8286 FIND
8275 LINE
82A9 NEXTA
8243 NEXTLETTER
8282 NEX"TWORD
827B QUOTE
8256 STORE

LOA $80F6,Y
BNE NEXTB
LOA $0290,X
BPL FOUND
JMP $A699

820 NEXTNEW
830
840 NEXTA
850
860

8269 COL(t.I
8245 C(t.ITl
82B9 EXIT
8254 FOUND
8294 NEXT
8296 NEXTB
82A5 NEXTNEW
8231 NLt1BER
821B SPACE
8252 STOREA

ASSEMBLY LISTING - PRINT TOKENS

9 *=$82BC
10 BPL RCt11
20 CHP It$FF
30 BEQ RCt11
40 BIT $0F
50 8MI RCt11
60 CHP It$CC
79 BCC CBt1TOKEN
80 SEC
90 SBC MCB

190 TAX
110 LDA MF 6
120 STA $22
130 LDA M88
140 STA $23
158 BNE START
160 CBMTOKEN SEC
170 SBC M7F
180 TAX
190 LDA M9E
290 STA $22
219 LDA MA0
220 STA $23
239 START STY $49
240 LOY It$FF
250 NEXTWORD DEX

LDX $7A
INC $0B
INY
LDA $80F5,Y
BPL NEXTA

260
279 NEXT CHAR
289
299
390
319 WORDFOt.J.ID
320
339
340
359
368 RIJ11
370 RIJ12

82D8 CEI'1TOKEN
B2EB NEXTWORD
82FF RIJ12
82F2 WORDFOt.J.ID

BEQ WORDFOUND
1NY
LDA ($22), Y
BPL NEXT CHAR
8M I NEXTWORD
1NY
LDA ($22), Y
8Ml RCtl2
JSR $AB47
BNE WORDFOt.J.ID
JHP $A6F3
JMP $A6EF

B2EB NEXTCHAR
82FC ROM 1
82E4 START

Routines old and new 129

ASSEMBLY LISTING - DISPATCH AND EVALUATION

9 *=$B392
18 JSR $8973
29 CMP MCC
30 BCC RIJ13
49 CMP MEE
50 BCS RIJ13
69 JSR DISPATCH
78 JHP $A7EA
B0 DISPATCH SEC
98 SBC I$CC

109 ASL A
110 TAY
128 LOA 8891 ,Y
138 PHA
148 LOA $B998,Y
158 PHA
168 JMP $9973
178 RIJ13 JSR $8879
189 JMP $A7E?
198 LDA 1$99
289 STA $9D
218 JSR $8973
229 CMP MF7
238 BCC RIJ14
249 CMP MFB

no Routines old and new

258
260
278
289 Dl SPATCH1
298
300
318
329
339
340
350
360
370 RIJ14
389

8313 DISPATCH
8323 Rct13

The start up message

BCS Rct14
JSR Dl SPATCH1
RTS
SEC
SBC tt$F6
ASL A
TAY
LOA $80E5,Y
PHA
LOA $80E4,Y
PHA
JMP $0073
JSR $0079
JMP $AE8D

833C DISPATCH1
834C ROH4

This is the final subroutine called during the initialization of the UTILITY.

It performs a CLR, to set all the variable addresses, changes the screen
and text colours, and finally puts a message on the screen indicating
that the UTILITY is in operation.

ASSEMBLY LISTING

9 *=$9299
18
29
30
49
50
69
70
80
90

100
110
120
138
140

JSR $A663
LOA tti-93
JSR $FFD2
LOA tti-00
STA $D020
STA $D921
LDA tt$95
STA 0286
LDX tt$9A
LDY tti-09
JSR STARS
LDX tti-0C
LDY tt$99
CLC

CLR
CLEAR SCREEN

SET COLOURS TO BLACK
I BORDER

BACKGROUND

GREEN TEXT

150
169
170 CCNT
189
190
209
210
229
230
249
250
269
270
289
290
389
310
329
330
349
350
369 STARS
370
389
390
409 NEXT
410
429
438
448 DATA

9226 CeM"
9269 NEXT

Memory moving

JSR $FFF0
LOX H15
LOA OATA,X
JSR $FFD2
OEX
BPL CCtH
LOX #$9E
LOY #$99
JSR STARS
STA $95Cl
STA $0611
STA $9506
STA $0626
LDA #$95
STA $09C1
STA $DA11
STA $0906
STA $DA26
LOA #$90
JSR $FF02
JHP $A474
CLC
JSR $FFF0
LDA #$2A
LOX #$16
JSR $FFD2
DEX
BNE NEXT
RTS

Routines old and new 131

SET CURSOR
I CHARS TO PRINT

PRINT

NOT FINISHED

FILL IN MISSING CHARS

COLOUR MAP !JALUE

PRINT RETURN

READY FOR MS I C

SET CURSOR
I ASCII FOR *

NLt1BER TO PRINT

TXT "* YTILITU CISAB NAP *"

9267 DATA
9258 STARS

RENUMber and CODER, described in Chapter 7, both require some
manipulation of memory in the form of either gaining space or
removing unnecessary bytes. This section deals with the two sub
routines, CLOSE and OPEN, which perform these operations. CLOSE is
self-contained whilst OPEN uses a ROM routine for the actual moving of
memory. In the BASIC interpreter there are routines to both open and
close up a BASIC program, used when you insert or delete lines, but we
can only really use the opening routine. It is a subroutine on its own
whereas the closing-up is integral with the inputting of a BASIC line. We

132 Routines old and new

have written coding that is virtually identical to the one in ROM as it is
efficient enough.

Having moved the program about, all the link addresses, from the
line the move started, will now be wrong by the amount of the move.
There is a subroutine in the interpreter which changes the link
addresses but we have not used it. The reason for this is one of speed
as during the course of using CODER or RENUM, these subroutines may
be called several times and would prove to be very slow.

The ROM routine for rechaining the lines goes through the whole
program, byte by byte, to calculate the link addresses and store them.
It has been done this way as it is a mUlti-purpose routine, catering for
the lengthening and shortening of code. What we have done is to write
separate routines for each direction of movement and place them
immediately after the moving instructions. These will only rechain
from the program line in which the alteration occurred. In addition, we
only need to look at the link addressess as we know by how much they
have changed so we can subtract or add as required.

To set the scene, as they say, here are the locations that need to be
set before calling these subroutines:

$FB and $FC- The address of the start of the current BASIC line.
$49- The number of the current position on that line. This will

be where the replacement code will start.
$FD and $FE- The address of the next BASIC line, that is, the link

address of the line in $FB and $FC.
$3E- The number of bytes in the original code to changed.
register- The number of bytes in the replacement code.

ASSEMBLY LISTING

9 *=$BBBB
10 STX $C2
29 LOA $3E FIND HOW MANY

BYTES TO R810VE
39 SEC
49 SBC $C2
50 STA $BB
69 CLC
70 LOA $FB
B9 ADC $49 FIND START OF

BLOCK TO HOVE
90 STA $5F

109 LOA $FC
110 ADC 1$99
129 STA $69
139 LOA $5F

Routines old and new 133

149 ADC $BB
159 STA $5A START + AMOUNT OF

REDUCTION
168 LOA $68
179 ADC Ke8
188 STA $5B
199 LOA $2D END OF PROG
299 SEC
219 SBC $SA CALCULATE TOTAL

AMOUNT TO MOVE
228 STA $58
238 TAY NO OF BYTES OF

INCCJ1PLETE PAGE
248 LDA $2E
258 SBC $5B
268 TAX NO OF PAGES TO

H~E
278 INX FOR EASIER CHECKING
289 TYA
298 BEQ PAGE NO SEPARATE BYTES
389 LOA $SA M~E SEPARATE

BYTES FIRST
318 CLC
329 ADC $58
338 STA SSA
348 BCC NOINC
358 INC $5B
369 CLC
378 NOINC LDA $5F
389 ADC $58
398 STA $5F
489 BCC NOINCA
418 INC $69
429 NOINCA TYA
438 EOR ItSFF
449 TAY
459 INY
469 DEC $5B
479 DEC $69
489 PAGE LOA ($5A) , Y
498 STA ($5F) , Y
589 INY
519 BNE PAGE
529 INC $5B
539 INC $69
549 DEX POINTER - CCJ1PLETION

134 Routines old and new

550 BNE PAGE
560 SEC
570 LDA $2D SET END OF PROG
580 SBC $BB
590 STA $2D
600 BCS RECI-~IN

610 DEC $2E
620 SEC
630 RECHAIN LDY D$00
640 LOA $FD I GET LINK
650 SBC $BB I CALC NEW ADDRESS
660 STA $FD
670 STA ($FB) , Y STORE IN LINE
680 STA $57
690 LDA $FE
700 SBC tt$00
710 INY
720 STA $FE
730 STA $58
740 STA ($FB), Y
750 NEXil DEY
760 LOA ($57), Y GET LINKS
770 STA $B9 STORE THEM
780 INY
790 LDA ($57), Y
800 STA $BA
810 BEQ EXIT COMPLETED RECHAINING
820 DEY
830 SEC
840 LOA $B9
850 SBC $BB CALC NEW LINK ADDS
860 TAX TEMP STORE
870 STA ($57) ,Y
880 LOA $BA
890 SBC D$00
900 INY
910 STA ($57) ,Y
920 STA $58
930 TXA
940 STA $57
950 JHP NEXT! GET NEXT LINE
960 EXIT RTS
970 TXA
980 SEC
990 SBC $3E CALCULATE NO OF

SPACES REQUIRED

Routines old and new 135

1990 STA $BB
1919 CLC
1920 LDA $49
1939 ADC $BB
1940 BCS ERROR >255 CHARS IN LINE
1959 CMP $FE
1960 BCC CCJIIT ONLY 254 ALLOWED

-NEED END MARKER
1970 ERROR LDX #$17
1989 JMP '$A437 ERROR STRING TOO LONG
1990 CCJIIT LDA $2D
1109 ADC $BB ENOUGH MEMORY?
1110 TAX
1129 LOA $2E
1130 ADC #$99
1149 CMP $38
1150 BNE CCJlIT2 8'!OUGH MEMORY
1169 CPX $37
1179 BCC CCJlIT2
1189 JMP '$A435 ERROR OUT OF MEMORY
1199 CCJlIT2 CLC
1209 LOA $2D SET ADDS FOR MOVE
1210 STA $5A
1229 ADC $BB
1230 STA $58
1249 LOA $2E
1250 STA $5B
1269 ADC #$90
1270 STA $59
1289 LOA $FB
1290 ADC $49
1309 STA $5F
1310 LDA $FC
1329 ADC #$90
1330 STA $69
1349 JSR '$A3BF ROM ROUTINE TO

OPEN UP MEMORY
1350 CLC
1369 LDY #$90
1370 LDA $20 SET NEW END OF PROG
1389 ADC $BB
1390 STA $20
1409 BCC CONT3
1410 INC $2E
1429 CLC
1439 CCJlIT3 LOA $FO

136 Routines old and new

1449 ADC $BB
1459 STA $FD
1469 STA $57
1478 STA ($FB) , Y
14B9 LOA $FE
1499 ADC M$99
1599 INY
151 a STA $FE
1529 STA $58
1539 STA ($FB) , Y
1549 NEXT 3 DEY
1558 LDA ($57), Y
1569 STA $B9
1579 INY
1589 LOA ($57), Y
1598 STA $BA
1699 BEQ EX1T2
1619 DEY
1629 CLC
1638 LDA $B9
1649 ADC $BB
1659 TAX
1669 STA ($57), Y
1679 LDA $BA
1689 ADC H99
1699 INY
1799 STA ($57),Y
1719 STA $58
1728 TXA
1738 STA $57
1748 JMP NEXT3
1758 EXIT2 RTS

CCNT 8949 CCNT2 895D
CDNT3 898B ERROR 8944
EXIT 892F EXIT2 89C4
NEXT 1 899E NEX'T3 89A9
NOINC 88CA NOINCA 88D4
PAGE 88DD RECHAIN 88F7

CLOSE ROUTINE

LINES 10-270: Before we can move a block of memory, we have to
determine three values: the start address of the block to move, the
new start address and the amount of code to move. The first thing we

Routines old and new 1:)7

work out is the number of redundant bytes. This is done, obviously, by
subtracting from the original amount of data to be changed the
number of bytes of the replacement code. The resultant value is stored
in location $BB. We shall need this number later for rechaining the
lines. The new start of the block will be obtained by adding the line
pointer, $49, to the address of the current BASIC line. To this value is
added the contents of $BB which will give us the location of the first
byte in the block to be moved.

To get the amount of data to be moved, the result of the last
calculation is taken away from the end of program address, held in $2D

and $2E. The answer will be held in the processor registers, the high
byte in the x and the low in the Y. A page of memory is 256 bytes so the
x register is therefore the number of pages to be moved, increased by
one for easier checking on completion. We move a complete page and
then decrease x. x will be zero when all done, checking immediately
after decreasing. To summarize, we have found the amount to move,
its current start and its destination.

LINES 280-470: This is the hardest part of the routine to follow, and we
hope that we succeed in explaining it clearly.

We transfer the Y register to the accumulator. To recap briefly, this
will be the number of bytes, other than complete pages, of memory to
move. If the value now in the accumulator is zero, only complete pages
require moving, so we skip this section completely. In closing up
memory we start from the low addresses, move them, and work to the
higher end addresses. We do this by setting the address of the page
and moving it up, using the y register as a pointer. If we have an odd
number of bytes to start with, this causes a slight problem. For
example, if we have $10 bytes and the y is set thus we would move 246
bytes by increasing Y. To compensate for this, what we do is to pro
duce the 2's complement of the value. This is done in lines 430 to 450.
The EOR #$FF will change all the bits set to one to zero and vice versa.
One is then added. So instead of $10, we should now have $F0. This
means that if we now increase y from $F0 until it becomes zero it will
have been incremented $10 times.

For the same reasons we have to alter the address of the start of the
block and its new start address. We add to these the original number of
odd bytes, held in $58. Finally, we decrease the high byte of the address
by one. The next effect of these changes is a stalemate as the locations
along with the y pointer value are equivalent to the original values but
now allow us to increase y the required amount.

LINES 480-550: Having set all the values we move the data, byte by
byte, until both x and y registers are zero. We simply load a byte from
its position and store its new lower location.

LINES 560-620: The end of the BASIC program will now be shorter by

Illl Routines old and new

the value of location $BB. The original end address is adjusted and
reset.

LINES 630-960: All that remains is to change the values of the link
addresses from the current BASIC line onwards. First, we change the
links in the current line and as these are also held in 5FD and ~FE, used
by the calling routine, we change these also.

We proceed through the lines gathering tf-"Je addresses, subtracting
the value in $BB, and then we restore them. The end of the program is
indicated when the MSB of a link address is zero. Finally, we return to
the calling program, such as CODER.

OPEN ROUTINE

LINES 970-1080: We calculate the space required by subtracting the
value in $H, the length of the old code, from the value in the x register,
the length of the new code, and store the re'>u It in $BB.

As a BASIC line may not exceed 255 bytes (to allow for a zero at the
end making a maximum of 256), we check this by adding the line
marker to the SBB value. A set carry flag will mean the maximum has
been exceeded. We then check that there will be room for the end of
line zero. Failure of either of these will generate the syntax error 'STRING

TOO LONG'.

LINES 1090-1180: As we are creating space we must check that there is
sufficient room available in the BASIC program area. These lines do just
that by checking that we will not exceed the values in $37 and $18, which
indicate its limit. If we do go over, we call a BASIC routine to generate
the 'OUT OF MtMORY' error message.

LINES 1190-1340: Next on the agenda is to set the registers for the
interpreter's OPEN-UP memory routine at SAJBF. On leaving this routine:
$SA and SoB - This will hold the address of the end of the block to move.
It will be the same as the end of program address before the move.
$S3 and 55'! - These registers will hold the address of the end of the new
block. It will also be the end of the BASIC program after the move. It is
arrived at by adding the amount of move to the address in $5A and 55B.

$5F and $60 - The start of the block to move. These hold the location of
the first byte of the code to be changed. It is calculated by adding the
line marker to the address of the current BASIC line to be processed.

LINES 1360-1420: Now that the data has been moved, we reset the end
of program address to its new value.

LINES 1430-1750: A replica of the rechaining in lines 630 to 960, except
that here we increase the addresses instead of reducing them.

This concludes the new routines that we planned to introduce in this

Routines old and new 139

chapter. The remainder are descriptions of some of the ROM routines
we use (and hope that you will come to use).

RECHAINING THE LINES

During our memory move routine, we did not use the ROM routine to
rechain the link addresses because for our purposes it was inefficient
due to the number of calls required. However, we do use the sub
routine, in DELETE for instance, where only one call is required. It serves
another purpose in that from the addresses it exits with, one can
calculate and set the end of program/start of variable registers.

ROM LISTING

A533 A5 2B
A535 A4 2C
A537 85 22
A539 84 23
A53B 18
A53C A0 91
A53E B1 22
A540 F0 1D
A542 A9 94
A544 C8
A545 B1 22
A547 D0 FB
A549 C8
A54A 98
A54B 65 22
A54D AA
A54E A9 99
A550 91 22
A552 A5 23
A554 69 90
A556 C8
A557 91 22
A559 86 22
A55B 85 23
A550 99 DO
A55F 60

LDA $2B
LOY $2C
STA $22
STY $23
CLC
LOY #$91
LDA ($22) ,Y
BEQ $A55F
LOY #$04
INY
LDA ($22) ,T'
BNE $A544
INY
TYA
AOC $22
TAX
LOY #$00
STA ($22), Y
LDA ·$23
AOC #$99
INY
STA ($22), Y
STX $22
STA $23
BCC $A53C
RTS

The routine commences by getting the program start address and
placing it in registers for its own use. The carry flag is cleared for
addition. The first byte of a line that it picks up is the high byte of the
link address and it tests for the end of the program (a zero). The y

register is loaded again so as to skip the addresses and line number. It

140 Routines old and new

now proceeds through the linc, searching for the end of line zero
marker. When this is discovered, the y register will contain one less
than the number of bytes in the complete line. This is immediately
rectified by incrementing y by one. This value is added to the line start
address and placed as the link address of the line. As this is also the
address of the next line, it is loaded into the locations used by the
routine. The flow now branches back, (the carry flag will be clear), to
process the next line. Every BASIC line will be processed until the end of
the program.

On exiting, the program locations $22 and $21 will hold the address of
the two end zero bytes. If this address is increased by two then the end
of program address can be derived, and hence the start of variables, as
they are one and the same thing VARTAB.

Opening up memory

In our memory move routine we made use of a ROM routine when we
required more space in a BASIC program. It will move a block up in
memory even if its new start is within the original block. Six locations
have to be set before entering the routine, which are, in low/high byte
order:

$5A and $5B- End address of present block
$5F and $60-- Start address of present block
$58 and $59- End address of the new block

ROM LISTING

A3BF 3B
A3CB A5 SA
A3C2 E5 5F
A3C4 B5 22
A3C6 AB
A3C7 A5 5B
A3C9 E5 60
A3CB AA
A3CC E8
A3CD 9B
A3CE F0 23
A3DB A5 5A
A3D2 38
A3D3 E5 22
A3D5 B5 5A
A3D7 BB 93
A3D9 C6 5B
A3DB 38

SEC
LDA $5A
SBC $5F
STA $22
TAY
LDA $5B
SBC $69
TAX
INX
TYA
BEQ $A3F3
LDA $5A
SEC
SBC $22
STA $5A
BCS $A3DC
DEC $5B
SEC

A3DC AS S8
A3DE ES 22
A3E8 8S 58
A3E2 B9 08
A3E4 C6 S9
A3E6 99 04
A3E8 B1 SA
A3EA 91 58
A3EC 88
A3ED 09 F9
A3EF B1 5A
A3F1 91 58
A3F3 C6 5B
A3F5 C6 59
A3F7 CA
A3F8 09 F2
A3FA 68

LOA $S8
SBC $22
STA $S8
BCS $A3EC
DEC $S9
BCC $A3EC
LOA ($5A) , Y
STA ($58), Y
DEY
E'JIIE $A3E8
LDA ($5A) , Y
STA ($58) ,Y
DEC $5B
DEC $59
DEX
E'JIIE $A3EC
RTS

Routines old and new 141

The immediate action is to calculate the number of bytes to move. The
number of low bytes is placed in the y register and location $22. The
number of pages to move, the difference of the high bytes, is placed in
the x register and immediately increased by one. This will be the
counter where the zero state is checked to determine completion. As it
is decreased before being checked, increasing by one will ensure that
all pages will be done. If x was zero and was not incremented, then you
would end up going around the circuit 256 times before a zero was
discovered in the x register.

The low byte result is checked again; if there is no value, then a large
chunk of instructions can be skipped. The bytes between addresses
$A3D0 and $A3E7 deal with cases where there is an element of an incom
plete page of data to move. These lines reduce the two end addresses
by the number of low bytes to move. This will not effect the move as
the data is loaded and stored with respect to y and this has the number
that was the reduction. The incomplete page is moved first.

Except when y is zero, all the bytes are transferred within addresses
$A3E8 and $A3EE. The y register will start at a high value and be decre
mented to zero. When that is reached, the next bytes are moved
separately, before the high addresses are decreased. After this has
been achieved, the x counter is reduced and checked, and if it is not
zero, it's back to move the next page of data.

From this it can be seen that the transfer is done by taking the high
addresses and moving them first. This means that the program will not
overwrite itself.

142 Routines old and new

Find a line

This routine finds the start address of a BASIC line, given the line
number. We shall use it in our RENuMber and DELETE. It uses all three
processor registers and locations $5F and $60. On top of that the entry
requirement is the line number in low/high byte form in locations $14

and $15.

ROM LISTING

A613 AS 2B
A61S A6 2C
A617 A0 01
A619 85 SF
A61B 86 60
A610 B1 SF
A61F F0 1F
A621 C8
A622 C8
A623 AS 15
A62S 01 SF
A627 90 18
A629 F0 93
A62B 88
A62C 00 e9
A62E AS 14
A630 88
A631 01 SF
A633 90 9C
A635 Fe 9A
A637 88
A638 B1 SF
A63A AA
A63B 88
A63C Bl SF
A63E B9 D7
A640 18
A641 69

LDA $28
LOX $2C
LOY 11$91
STA $5F
STX $69
LOA ($SF) ,Y
BEQ $A640
INY
INY
LOA $15
CHP ($SF) , Y
BCC $A641
BEQ $A62E
DEY
BNE $A637
LOA $14
DEY
CMP ($5F) , Y
BCC $A641
BEG $A641
DEY
LOA ($SF) , Y
TAX
DEY
LDA ($SF> ,Y
BCS $A617
CLC
RTS

Locations $SF and $60 are loaded with the start of BASIC. The high link
address is again picked up first to see if the end of program has been
reached. The high byte of the line number is checked first. If the value
is greater than the required value, the carry will clear and the sub
routine is left. If the two values are the same, we go forward to test the
low byte values. Failure of either of these checks means that we have
not reached the required line and have to go ahead and get the address

Routines old and new 143

of the next line. When the low bytes are checked if they are equal, or
the carry flag clear, the routine is terminated. On failing to find the
desired line, or on finding a higher one, the link addresses are gath
ered in and we branch back to check the next line.

Due to the way the checks are made, the routine can be left in one of
two states. In the first, the exact line number has been found, in which
case the address in $5F and $60 will be what you require. The second
state will be that there is no such line number and the routine returns
the address of the next highest line. These conditions can be tested in
the calling routine by examining the carry flag on return. If the carry is
set then the actual line number was found, and if clear it was not.

7 Programming
aid routines

Introduction

In Chapter 5 we gave routines to help in the preparation and editing of
BASIC programs. These routines were themselves in BASIC, so were slow
and had to be tagged onto the end of the resident program. This
chapter not only puts these routines into 6502 machine code, but also
extends their capabilities. In addition the following are included: OLD,

RENUM, DELETE, MERGE, APPEND, DUMP, TRACE, CODER, HEX, BIN, TEN, TWO, AUTO,

and MEM.

Our object has been to show you that with a little thought and
perseverance, adding new BASIC commands is well within your grasp.
Most of the routines start with an explanation of what we wish to
achieve and how it is possible to do it. This is followed by the assembly
listing and the label addresses used. These are provided for assemblers
which do not allow the use of labels (Supermon) and with relocation in
mind. Finally, a byte-by-byte explanation of the routine is given.

At the beginning of each routine, the command name and para
meters are given for use in the UTILITY.

Renumber

COMMAND SYNTAX
RENUM start line number or 0, increment, new start line value

Using 0 as the first parameter will indicate that the whole program
requires renumbering. If a start line is set, it will renumber from that
line to the end of the program:

for example, RENUM 0,10,100
RENUM 100,10,200

Later in the chapter we will discuss an AUTO routine. This is of use when
typing in programs where the line numbers are sequential and of a
fixed step. Renumbering a program makes it easier to read and opens
up space to incorporate new lines.

The system we are going to use is known as a two pass system. The
first pass will renumber commands that have line numbers associated
with them. This is not as straight-forward as it might at first appear as
the commands THEN and RUN have optional line numbers.

Programming aid routines 145

There are cases where we do not need to look for a 'renumbering
command'. These will be after a DATA or REM token is encountered, or
when inside quotes. In the latter case, we just loop until the next quote
or the end of the line is found, whichever is soonest. The procedure on
finding the tokens is simply to go to the next statement.

On finding a line number after a command, we convert it from its
stored ASCII form to a two byte number. If it is less than the 'start line
number', renumbering is not required. When it is not, we calculate its
new val ue, convert it to ASCII, and overwrite the origi nal.

Once all the directive line numbers have been dealt with, the simple
task of actually changing the line numbers themselves is carried out.

We will be using many zero page locations in the routine and so to
help you to follow the routine, a list of the main ones and what they
control is given below:

$FB and $FC Address of the current BASIC line being worked on
$FD and $FD- Address of the next line - the links of the current line
$49- Stores the position in the current line, the line marker or

y register
$C9 and $CA Line number of first line to be renumbered
$41 and $42- Address of the first line to be renumbered
$BC- Value of increment between new line numbers
$BD and $BE- Value of the new start line number
$B9 and $BA- Starts with the same values as $BD and $BE and is

changed whilst calculating the new line number for
directives after keywords.

$58 and $59- Starts with the same values as $41 and $42 and is incre
mented to give the actual new number of a directive
command

ASSEMBLY LISTING

7 OPEN
B CLOSE
9 *=$B9C5

19
28
39
48
59
68
79
B8
99

1138
119

= $B933
= $BBBB

JSR $BIF5
JSR $AEFD
LDA $14
STA $C9
LDA $15
STA $CA
JSR $BIF5
JSR $AEFD
LDA $14
STA $BC
JSR $BIF5

GET PARAMETER
CHECK CCH1A

GET PARAMETER - INC
CHECK CCH1A

GET PARAMETER
- NEW START LINE *

146 Programming aid routines

128 LDA $14
139 STA $BD
148 LDA $15
159 STA $BE
168 LDA $2B
179 STA $FB
188 LDA $2C
199 STA $FC
2e8 LDA $CA
219 BNE FINDS
228 LDA $C9
239 BNE FINDS IS START LINE INPUT 9
248 LDY #$92
259 LOA ($FB) , Y
269 STA $C9 I GET FIRST PROG LINE It
279 INY
289 LDA ($FB) ,Y
299 STA $CA
399 FINDS LDA $C9
319 STA $14
329 LDA $CA
339 STA $15
349 JSR $A613 I FIND START LINE ADD
359 BCS STORE LINE FOUND
360 LDX #$15
379 JMP $A437 ERROR - ILLEGAL DIRECT
389 STORE LDA $5F STORE START LINE ADD
399 STA $41
4e9 LDA $69
419 STA $42
429 START LDY #$99
439 LOA ($FB) , Y
449 STA $FD I GET LINKS TO NEXT LINE
459 INY
469 LDA ($FB) ,Y
479 STA $FE
489 BNE CCNT NOT END OF BAS I C PROG
499 JMP RENl.t1 CHANGE LINE NUMBERS
5ea CCNT INY SKIP LINE Nl.t1BERS
519 INY
529 NEXT INY
539 LOA ($FB) , Y GET CHAR OF LINE
549 BNE CCNT! NOT END OF LINE
559 LINE LOA $FD PUT NEXT LI NE IN

LINE REGI STERS
568 STA $FB

Prograrnrning aid routint,,, 147

579 LDA $FE
589 STA $FC
599 BNE START I ENFORCED - NEXT LINE
690 CCNfl CHP #$22 I IS IT A QUOTE
619 BNE CCt~T2 NO
629 QUOTE INY
639 LDA ($FB) ,Y LOOK FOR NEXT

QUOTE OR LINE END
649 BEQ LINE END OF PROG LINE
650 CHP #$22 QUOTE?
669 BNE QUOTE NO
679 BEQ NEXT YES - NEXT CHAR
6B9 CCtH2 CMP tt$BF REM TOKEN?
699 BEQ LINE YES - NEXT LI NE
799 CMP tt$83 I DATA TOKEN?
710 BEQ LINE YES - NEXT LI NE
729 CMP #$A7 THEN TOKEN?
739 BEQ THEN YES
749 CMPtt$BA RUN TOKEN?
758 BEQ THEN YES
769 CMP tt$B9 GOTO TOKEN?
779 BEQ CCNf3
7B9 CMP tt$CB GO TOKEN?
799 BNE NOGO I NO
B99 SPACE INY
819 LDA ($FB) , Y
829 CMP tt$28
B30 BEQ SPACE
849 CMP #$A4 TO TOKEN AFTER GO?
858 BEQ CCNf3
B69 NOGO CMP tt$BD GOSUB TOKEN
870 BEQ CCNf3 YES
BB9 CNP tt$E6 RESET TOKEN
890 BEQ CCNf3
999 BNE NE"AT NO RELEVENT TOKEN
910 THEN INY
929 LDA ($FB) , Y GET NEXT BYTE
939 CMP #$29 IS IT A SPACE
949 BEQ THEN YES - SKIP IT
959 CHP #$39 LOOK FOR A NUMBER

IN ASCII
969 BCS NLJ1BER FOLtm A NlJ1BER?
979 DEY
980 BNE NEXT NOT LINE # AFTER THEN
999 NUHBER DEY

1099 CHP #$3A IS IT A NUMBER

148 Programming aid routines

1918 BCS NEXT NO LINE H
1928 CCNT3 INY
1939 LOA (SFB), Y GET NEXT BYTE
1948 CHP HS29 A SPACE?
1959 BEQ CONT3 YES
1969 STY S49 STORE LINE MARKER
1979 DEY
1988 LOX HS99 COUNTER FOR NO OF

CHARS I N NUMBER
1998 DIGITS INY
1189 LOA (SFB), Y
1118 CHP H$39 NUMBER IN ASCII?
1128 BCC CONT4 NO END OF LINEH
1138 CHP H$3A NUMBER IN ASCII?
1149 BCS CCNT4 NO END OF LINEH
1158 STA S8298,X STORE IN INPUT BUFFER
1169 INX
1178 BNE DIGITS ENFORCED GET NEXT BYTE
1189 CONT4 LOA H3A STORE COLON AS

END MARKER
1198 STA S8298,X
1288 STX $BF NO OF CHARS IN LINE
1218 LOA H$92 SET CHRGET TO

START OF BUFFER
1220 STA S7B
1238 LOA H98
1248 STA S7A
1259 JSR $BIFS CHANGE I NTO REAL NOS
1268 LOA $14
1279 STA $C3
1288 LOA SIS
1299 STA $C4
1390 CHP SCA
1318 BEQ CHECK2
1328 BCS CCNT5) START LINE
1338 NORE LOA $49 NO RENUM OF DIRECTIVE
1340 ADC SBF
1359 TAY
1368 JHP CCH'1A CHECK FOR ON COMMAND
1379 CHECK2 LOA $C3
1388 CHP SC9
1398 BCC NORE
1490 CCNT5 LOA SBD
1419 STA $B9 TRANS START ADO TO

WORKING REGISTER

1429

143lf
1449
1458
1469
1478
1489 FWDL
1490
15139
1510
1529
15313
1549
15513
1569

15713
1589
15913
16139
16113
1629

1630 CIJ'.JT 6
1649
1650
1669
1679
1689
1690
1709
1710
1729
1738 NEXTL INE
1749

1758
1769
1778
1789
1798 NOINC
1889

1810
1829

LOA $41

STA $58
LOA $BE
STA $BA
LOA $42
STA $59
LDY #$98

Programming aid routines 149

TRANS START ADD TO
WORKING REGISTERS

LOA ($58),Y I SEARCH FOR LINE NO
STA $5A I SAVE LINKS
INY
LOA <-*58), Y
STA $5B
BNE CCt-IT 6 I NOT END OF PROG
LOY #$92
LOA (l"FB) , Y I GET LINEtt FOR

STA $39
Jt.f(
LOA ($FB) ,"Y
STA $3A
LOX #$11

ERROR MESSAGE

JMP $A437 I ERROR - UNDEF/D
STATEMENT

INY
LOA <-*58), Y I GET AND STORE LINE NO
STA $B7
INY
LOA ($58), Y

CMP $C4 COMPARE FOR SAME LINE
BNE NEXTLINE I NOT SANE
LOA $B7
CMP $C3
BEQ FOUNDL
LOA $B9
CLC INC REGS TO CALC

NEW LINE NO
AOC $BC
STA $B9
BCC NOINC
INC $BA
LOA $5A
STA $58

LOA $5B
STA $59

PUT NE)''T LINE ADD
IN CURRENT REG

150 Programming aid routines

1830

1840 FoLt-lDL
1859

1869

1870
1889
1890
1909
1910
1929

1930
1949 oPENUP

1 950 N(J'1o~)E

1969
1970 NEXTF
1989
1990
2ge9
2910
2929
2930 CCM1A
2949
2950
2969
2970
2980 ~oTHER
2990 RENUM
2100
2110
2120
2130
2149
2150
2169

2170
2189
2190 CCNTS
2209
2210
2220

BNE FINDL ENFORCED - CHECK
NEXT LINE

LDX $B9
LOA $BA MSB OF NEW LINE

DIRECTIVE
JSR $847F I CONVERT TO ASCII

- INPUT BUFFER
LDA $BF
STA $3E
CPX $3E DOES HEM HAVE TO MOVE
BEQ NOMWE
BCS oPENUP
JSR CLOSE I REQUIRES LESS

SPACE
JHP N!J1OVE
JSR OPEN I REQUIRES MORE

LOY $49
LDX #$90
LDA $0290,X I

BEQ COMMA
STA ($FB),Y I

INY
INX
BNE NEXTF
LDA ($FB) , Y I

CNP #$2C
BEQ ANOTHER
DEY

SPACE

GET NEW NO IN ASCII
END OF NUMBER
STORE IN PROG

ENFORCED
COMMA MOANS ON USED

JHP NEXT
JNP CONT3
LDY #$99

I GET NEXT TOKEN

LOA ($41), Y
STA $5A

INY
LDA ($41),Y
STA $5B
BNE CCNT8
PLA

PLA

NEXT LINE - ON COMMAND

GET AND, STORE LINKS

I NOT END OF PROGRAM
REMWE RETURN

ADDRESS

JNP $A474 GOTO READY FOR BASIC
INY
LOA $BD NEW LSB LINE NO
STA ($41),Y CHANGE PRoG
INY

2230
2249
2250
2260
2270

2280
2299
2390
2319 CCtH9
2320
2339
2340
2359

8B5F ANOTHER
888B CLOSE
8A2D CCNr
BA4D CctH2
BAAA CCNr4
8B05 CctH6
8B89 CCNr9
BAE8 FINDL
BB2C FO~DL
BA2F NEXT
8B17 NEXTLINE
8B22 NOINC
SACA NORE
8933 OPEN
BA42 QUOTE
M65 SPACE
BAtS STORE

Programming aid routines 1'>1

LOA $BE I NEW MSB LINE NO
STA ($41) ,Y
CLC
LOA $BD
AOC $BC

STA $BD
8CC CONT9
INC $8E
LOA $5A
STA $41
LOA $58
STA $42
BNE RENLN

BAD2 CHECK2
8855 COt1HA
BA3E CCNr!
8ABD CONT3
BAD8 C(fIIT5
8B74 CONT8
BA99 DI GITS
BA93 FINDS
BA34 LINE
8B4A NEXTF
BA79 NOGO
8846 NOHWE
BABB NL.t1BER
8843 OPENUP
B862 RENUf"l
8AlD START
BA7A THEN

INC NEW LINE# 8Y
INCREMENT

ENFORCED NEXT LINE

LINES 10-150: The parameters are gathered here and put into their
registers. Commas separating the inputs are also checked, giving 'SYN

TAX ERRORS' if not present.

LINES 160-190: The start of the BASIC program is now put into the
current line registers, as it is also the address of the first line.

LINES 200-290: If the first parameter input was zero, indicating a full
program RENUMber, then the first line number is found and stored in its
appropriate register.

LINES 300-410: Although we do not need this at the moment - here we
find the address of the start line. We use the ROM routine FIND BASIC LINE

152 Programming aid routines

(see Chapter 6, page 142). If the carry flag is set, it will mean that the
start line requested was not found and an 'ILLEGAL DIRECT' error will be
printed. The address, if found, will be stored in $41 and $42.

LINES 420-1020: The byte-by-byte search for the appropriate keywords
starts here. We start at the beginning of the BASIC program, no matter
what the start line requested. As soon as the link addresses are collec
ted and stored, the end of the program is checked for. Passing this
means that only the actual line numbers require changing, so it is off to
the final section of the whole routine, which is described later.

To continue finding the tokens, we skip the line numbers as they are
not required here. Lines 540 to 590 set the values for the next line, after
the end of line zero is discovered, and branches back to process the
next line.

There is nothing of interest to us in quotes so on finding one we go
into a loop to find a second quote or the end of the line. This is carried
out in lines 620 to 670.

The next two tokens checked for are DATA and REM. Encountering
these indicates that we can proceed to the next line as there will be
nothing further to renumber in these lines.

There are two keywords - RUN and THEN - that may, or may not, have
line numbers. These will therefore branch to check this possibility
before proceeding. The standard Commodore directive commands are
next in line: GOTO, GOTO and GOSUB. The centre keyword is checked in
two stages, first for the GO. A loop is then set up to skip over spaces
and then the TO token is looked for. All three keywords on being found
will cause the routine flow to branch further ahead than RUN or THEN, as
it assumes they will have line numbers. If not, then unless you have a
line number of 0, an error will be detected later.

The last keyword to be checked for is one of our new ones: RESET.

If line 900 is reached then we have not found a relevant keyword and
therefore branch back to get the next program byte.

The last part in this section is to check if the next significant byte
after RUN or THEN is a number, in ASCII. Spaces are skipped over and
checks are made for values between $30 and $39 inclusive to continue.

LINES 1030-1390: The line numbers after the keywords will be in ASCII
form and the line itself in two byte form. To do our calculations, we
want both in the same two byte format. ASCII numerals therefore have
to be changed.

After skipping spaces, we store our Y register (so we know where to
write our new line number from), which is the line marker. Pro
ceeding, we pick up bytes until a non-numeral is found, and store
them in the input buffer. The x register is used to count the number of
digits and is stored for later use. To convert the ASCII into the form we
require, we use the GET PARAMETER routine. For this to work, we perform
two operations. First, we make sure that after the last line number digit

Programming aid routines 153

there is a non-numeric character by storing a colon there. Secondly,
we set CHRGET to point to the first numeral- $0200.

The converted result is taken from registers $14 and $15 and stored in
the two we have designated.

We only wish to renumber from the start line in the command.
Lines 1290 to 1390 check this by comparing the two values. If no
renumber of that particular line is required, we retrieve our line mar
ker and increase it by the number of digits in the directive number, as
we do not require to check them again. This is then transferred to the
Y register. It will actually point to the byte following the last digit but
this is taken into account in what follows. We jump further ahead to a
position noted as COMMA (described later) starting at line 2030.

LINES 1400-1830: Having got this far, we have found a number which
requires a different value. To find the new value, we have to go
through the program from the designated start line and find the line
that it points to (remember we have not changed the actual line
numbers yet). At the same time, we calculate the new value.

To start with, we take the address of the start line and store it in $58
and $59. We then take the new value for the start line, the third
parameter in the command, and place it in $B9 and $BA. The line
number we are checking for is held in $C3 and $C4.

As before, we get and store the link addresses, but here if we
discover the end of the program has been reached (high link address
of zero), an error is present as the line number of the directive was
not found. The error produced is the same as when RUNing a program
- 'UNDEF'D STATEMENT'. To make it easier for you, we also print out the
line number with the error.

As long as this is not encountered, collecting a line number and
comparing it for a match comes next. If it is not the one we want, the
new start line number is increased by the increment value. This will
calculate the value for the following line. The value is only increased
on not finding a match, which conversely means that when the line
searched for is located, the value is ready and waiting. After incre
menting, we transfer the links to the line registers and branch back to
check further lines.

LINES 1840-1940: We now have our new line number and need only
to insert it into the line after the token, overwriting the original
directive.

The new value is in two byte form and so requires converting to
ASCII form. We do this by using a routine earlier in the UTILITY. This
requires the accumulator to be loaded with the high byte and the x
register with the low byte. We then call our 'convert to ASCII' at $847F.
This will do the conversion and store the answer in the input buffer,
with a zero signifying the end. Also returned is the number of charac
ters in the x register. If this value is the same as the original number,

154 Programming aid routines

the value stored in location SBF, we can just overwrite with no problems
and proceed to line 1950.

The number of characters is transferred to location S3~, via the
accumulator. This location is for the memory move routine described
in Chapter 6. By comparing the value in the x register (the new number
of digits) with the accumulator figure (the old number of digits), we
determine if a move is required. If the x value is less, the CLOSE routine
is called; if it is greater, the OPEN routine is called; if it is the same, no
move is required.

LINES 1950-2020: This leaves us one thing to do which is to write in the
new number. First, we reload the y register with the line marker. This
points to the position of the first digit in the number. By increasing x,
starting at zero, and Y, we take the digits from the input buffer and
store them into the program line. This is repeated until we collect a
zero from the buffer, when the branch in line 2020 will fail.

LINES 2030-2080: When we went through the lines checking for
tokens, we did not look for the ON statement. The reason for this is that
the only time a comma should be used after a line directive following a
GOSUB or GOlO is when the ON keyword has been used.

On entering these lines the y register will point to the byte following
the last one checked or stored. We load the accumulator with that byte
to see if a comma is present. Finding it means that we branch back to
the position just after the token search where it will commence with
gathering in the line number directive for processing.

If the comma is not present, the Y register is decreased and we go
back to start the search for the next appropriate token. The Y has to be
decreased in case it was the end of the line, otherwise it would not
have mattered.

LINES 2090-2350: RENUMBERING THE LINE NUMBERS

All the directive line numbers have now been checked and processed
where required. The only thing which remains is to renumber the
program lines themselves.

This is started from the line number requested in the first parameter
of the command and whose address is held in $41 and 542. Its new
starting value is held in $BD and $BE, and these will be incremented by
the value in $BC for each line. We progressively go through the pro
gram inserting the new numbers, in two byte form, until the end of the
program is reached. After each line the number value is incremented
ready for the next line.

When the renumbering is completed, we take the return address
from the stack and jump to the start of BASIC to await further instruc
tions. We do this to break out of the program in the unlikely event of
RENUM being initiated within it.

-------------------~~-------~~

Programming aid routines 155

A WORD OFWARNING

We cannot stress strongly enough that a copy of the original program
should be saved to tape, or disk, prior to renumbering. We all make
mistakes and if the RENUM finds a non-existent line number after, say, a
COTO, then an error is produced. This leaves the program only partially
renumbered.

Auto

COMMAND SYNTAX
AUTO first line number, increment

To escape from AUTO simply press RETURN immediately after the line
number, as if deleting a single line.

This command removes the need to type in line numbers. The user just
decides the start line number and the increment between consecutive
lines. To achieve this we want a place to break into the normal flow of
BASIC. This is made possible as every time an input line is processed it
goes to a vectored jump before it is ready to receive the next. This is
called the BASIC Warm Start Vector which is at $0302 and $030.1. By chang
ing the address in this vector to a routine of our own we can calculate
the line number, put it into ASCII form and then insert it into the
keyboard buffer just as if you typed it yourself. Having completed this,
we then return to the input routine for you to make up the program
line.

ASSEMBLY LISTING

9 *=$842E
10
20
30
40

50
60

79
S0
99

190
119
120
139
140 AUTO

JSR $81F5
JSR $AEFO
LDA $14
STA $FB

LOA $15
STA $FC

JSR $81F5
LOA $14
STA $FO

LOA tt<AUTO
STA $9302
LOA tt>AUTO
STA $9303
LOA $0290

GET PARAMETER
CHECK CCt1MA
1 ST LINE# - LOW
SPARE ZERO PAGE

LOCATION
15T LINE# - HI GH

I SPARE ZERO PAGE
LOCATIIl\I
GET PARAMETER
INCREMENT

I SPARE ZERO PAGE
LOCATIIl\I

START BASI C IJECT LClrJ

START BASIC IJECT HIGH
1ST CHAR IN BUFFER

156 Programming aid routines

159 BEQ EXIT TURN OFF AUTO
168 LOX $FB
179 LOA $FC NEXT LINE Nlt1BER
188 JSR ASCII PUT LINE M IN ASCII
199 STX $C6 NO OF CHARS IN

KEYBOARD BUFFER
289 NEXT LOA $9289,X PI CK UP ASCII
218 STA $8277,X PUT IN KEY BUFFER
229 OEX
238 BPL NEXT
248 CLC
258 LOA $FB
269 ADC $FO INCREMENT LINE NUMBER
278 STA $FB
289 BCC NOINC
298 INC $FC
388 NOINC JMP $A483 READY FOR BASIC
318 EXIT LOA M$83
328 STA $9382
338 LDA M$A4
349 STA $8383
358 JMP ($9392)
368 ASCI I STX $63 LOW BYTE
378 STA $62 HIGH BYTE
389 LDX 1$98
398 SEC
489 JSR $BC49
418 JSR $BDOF
429 JSR $B487
438 JSR $B6A6
449 LDX 1$98
458 AGAIN LOA $8198,X
468 STA $9289,X PUT ASCII CHARS IN

INPUT BUFFER
479 BEQ FINI SH ZERO CHAR WAS FOUND
488 INX
499 BNE AGAIN
598 FINISH RTS

8494 AGAIN 847F ASCII
844D AUTO 8472 EXIT
849F FINISH 845B NEXT
846F NOINC

Programming aid routines 157

LINES 10-130: These lines are only used when the AUTO command is
active. We take the parameters of the command and place the start line
number in $FB and $FC and the increment in $FD. As we only take the low
byte of the increment, the multiples over 256 are ignored. The only
syntax check is made in line 20, where we check for a comma between
the two parameters. Lastly in this section we change the vector address
to point to the AUTO numbering which starts in line 140.

LINES 140-300: The first thing is to see if the first character in the input
buffer is zero. This will signify no BASIC coding was inserted in the line
and that you want to cancel the AUTO routine. When a BASIC line is
typed, the line number is put into the input buffer. During the process
ing stage of inserting the line into the program BASIC takes out the line
number and moves the rest of the line back up the buffer to overwrite
it. This means that if the first input after a line number was a RETURN

(BASIC inserts a zero for that as an end of line marker) then the first
character in the buffer will be a zero after the line number has been
removed. Therefore, on finding a zero we will branch off to exit the
AUTO mode.

Assuming that we are still auto-numbering, we take the values in $FB

and $FC and go off to convert them to ASCII form. This we will come
across shortly. On returning from that subroutine the x register will
have the number of ASCII characters in the line number and they will
be in the input buffer. The x value is stored in the register which tells
the operating system how many characters will be in the keyboard
buffer. Having done that, we transfer the characters from the input
buffer to the keyboard buffer.

We now set the line number for next time by adding the increment
in $FD to the values in $FB and $FC.

That is all there is to do, so we return you to the normal BASIC flow
where the input routine will take the line number from the keyboard
buffer, place it in the input buffer and print it on the screen.

LINES 310-350: These lines will be operated when you want to exit
from AUTO. All we do is restore the BASIC Warm Start Vector to its initial
value and then return you to BASIC to wait for your next instruction.

LINES 360-500: CONVERT TO ASCII: This subroutine will also be used
by other commands when they require a one or two byte number
converted into ASCII form. The subroutine is entered with the low byte
of the number in the x register and the high byte in the accumulator.

The conversion is carried out by four ROM routines, but before we
can call them we have four items to set. First, the number to be
converted is transferred to locations $63 (the low byte) and $62. These
are part of the floating point accumulator #1 (FAC#1) which is the main
number manipulation area for BASIC. The other two prevent certain
actions in the conversion process. Setting the carry flag will bypass a

158 Programming aid routines

routine that will perform the complement of the number and loading x
with 590 will set the Exponent byte of FAC#l to avoid getting an answer in
exponent form.

The first RmA routine visited clears all the bytes in the FAC#l (or sets
them to default values) which we have not dealt with. The next routine
does the actual conversion. The remaining routine puts the result into
a string and places it at the bottom of the stack area. The last byte
placed there will be zero to mark the end.

We cannot leave it there as BASIC often use'> this area. We therefore
transfer it to the input buffer where it can be taken and used by the
coding calling this routine. On exit the value in the x register will be
the number of ASCII characters in the conversion.

Merge and append -
combining BASIC programs together

COMMAND SYNTAX
MERCE "program title" ,device
APPEND "program title",device

The default device is tape and if there is no program title, the first
program found on the tape will be used.

Merging programs together means that they are weaved together in
program line order. The result is as if you typed in the lines of the
merging program at the keyboard. This also means that if the programs
both have lines with the same number, the ones in the merging
program will overwrite the original.

Appending a program to another is simply a process of tagging it
onto the end of the one in memory, irrespective of line numbers.

Merging is the more complicated of the two programs, but is not
really complicated in itself. Both programs are initially loaded at the
end of the current memory program, APPeND overwriting the last two
bytes whilst MfRet comes just after them. The last two bytes of the
program are the unique link address of zero, signifying the end of a
Br\SIC program. By overwriting them on APf'eND, we achieve our aim
immediately and all that remains is to amend the link addresses to
continue the program flow and to reset the end of program pointer.

In merging we take each new line in turn and insert it in the main
program - if we had overwritten the original end links we would both
merge and append which we do not want. To incorporate the new
lines we make use of the normal BASIC input routine. After you input a
program line and press RETURN, BASIC takes off the line number and then
tokenizes all the BASIC keywords. At this point the line number is in two
registers, in a two byte form rather in than the ASCII form typed in, and
the line's content has been moved to the beginning of the input buffer.
There is a counter of the number of bytes in the line which is four

Programming aid routines 1.59

greater to incorporate the line number and link address. BASIC

therefore knows the total space required for the line. We will enter the
ROM routine at this point with the appropriate data set. Unfortunately,
it is not a subroutine but finishes up waiting for an input. We therefore
have to change the same vectors as in the AUTO routine (the BASIC Warm
Start) to point us back to continued merging until we reach the end.

ASSEMBLY LISTING

9 *=·*87A7
19 JSR SETADD SET ADDRESSES

FOR MERGE PROG
29 STX $28 SET MERGE PROG START
3£1 STY $2C
49 LDY #$!HI PUT ZERO AT 1 ST

LOCATION
5£1 TYA
69 STA ($2B) , Y
7e JSR LOAD
89 STX $2D I END OF MERGE PROG
9£1 STY $2E

109 JSR $A533 I RECHAIN MERGE PROG
110 JSR RESET1 I RESTORE POINTERS TO

DRIG PROG
12£1 LDA #<MERGE
139 LDX #>t1ERGE
14£1 STA $03132 I CHANGE WARM START

VECTOR TO MERGE
150 STX $0303
169 JOIN LDA #$131
17£1 STA $7B
189 LDA #$FF
19£1 STA $7A SET UP CHRGET
209 LDY #$13£1
21£1 LDA ($FB) I Y GET AND STORE LINKS
229 STA $FD
23£1 INY
249 LDA (":f,FB) I Y
25£1 STA $FE
269 BEQ EXIT END OF MERGE PRG
27£1 INY
289 LOA (":f,FB) I Y I GET AND STORE LINE NO
29£1 STA $14 I BAS I C EXPECTS THEM

IN THESE LOCATI ct-IS
3aB INY
319 LDA ($FB) ,Y

160 Programming aid routines

320 STA $15
339 LDX "94 SET COUNTER TO

INCLUDE LINKS AND
LINE*

34B NEXT INX
359 IN'(
360 LOA ($FB),Y GET LINE OATA
379 STA $91FB,X STORE IN INPUT BUFFER
3BB BNE NEXT NOT END OF LINE 0
399 TXA
490 TAY PUT COl.NrER IN Y
419 JSR $A4A2 BASIC AFTER CRUNCH

ROUTINE
429 MERGE LOA $FD BASI C WARM START

POINTS HERE
430 LOX $FE PUT LINKS IN LINE

REGISTERS
440 STA $FB
459 STX $FC
460 BNE JOIN ENFORCED AS $FE

CHECKED FOR 9 EARLIER
470 EXIT LOA *$83
489 LDX tnA4
490 STA $0392 RESTORE WARM START
509 STX $9303
519 JSR $A474 READY FOR BASIC
529 LOAD JSR $E1D4 GET LOAD PA~ETERS
530 LOA 1$99 FOR RELOCATED LOAD
549 STA $89 IN CASE A SEC ADD

IN CIl'1MAND
550 LOX $28
569 LDY $2C SET LOAD START
579 JSR $FFD5 KERNAL LOAD
589 BCS ERROR BAD LOAD
590 JSR $FFB7 READ I/O STATUS WORD
609 AND "BF
610 SEQ EXIT1 GOOD LOAD
629 JSR RESET RESET POINTERS TO

ORIGINAL PROG
630 LOX 1$10
649 JMP $A437 LOAD ERROR
650 EXIT1 RTS
669 ERROR P~ SAVE FOR ERROR
670 JSR RESET
689 PLA
690 JHP $E9F9 ERROR DEPENDING ON A

Programming aid routines 161

7£19 RESET LOA $FB
710 SEC
729 SBC #$92
738 STA $14
749 LDA $FC
758 SBC 1t$99
769 STA $FC
778 LDA 1t$00
780 TAY
790 STA ($14),Y RESTORE TWO ZEROS

AT END OF PROG
S90 INY
S10 STA ($14), Y
828 RESETl LDA $FD
S39 LDX $FE
848 STA $2B
S50 STX $2C
860 LDA $FB
S70 LDX $FC
8B0 STA $20
S99 STX $2E
998 RTS
910 SETADO LOA $2B
928 STA $FD
930 LDA $2C
948 STA $FE
950 LDX $2D
960 LDY $2E
970 STX$FB
988 STY $FC
990 RTS

10ge APPEND ROUTINE
1919 JSR SETAOD
1028 TXA
1939 SEC
1048 SBC 1t$92
1959 STA $2B
1968 TYA
11379 SBC #$98
19B8 STA $2C
1990 JSR LOAD
1198 STX $FB
1119 Sri $FC
1128 JSR RESETl
1139 JSR $A533
1148 RTS

162 Programming aid routines

B839 ERROR
882F EXITl
B819 LOAD
87EB NEXT
884D RESETl

8893 EXIT
87CA JOIN
87F9 MERGE
8838 RESET
88SE SETADD

This time we are not going to describe the program in line number
order. There are three subroutines in the body of the program used
both by MERGE and APPEND and we will deal with these first.

LINES 910-990: SETADD: This simply takes the start and end addresses
of the original program and temporarily stores them. On coming out of
the subroutine, the Y register will contain the high byte of the end
address and the x register, the low value.

LINES 700-900: RESET: The first 12 lines will only be encountered when
there is an error in loading the secondary program. These simply
ensure that the end of program zeros are at the end of the original
program. This will mean that when exiting from either command your
original program is intact before starting.

The remaining lines are the reverse of SETADD, that is, they take the
values in the temporary registers and place them in the program end
and start registers. These last lines are called in the assembly listing as
RESET1.

LINES 520-690: LOAD: The first thing this subroutine does is to call
one resident in the BASIC ROM used by the standard LOAD and SAVE com
mands. It gathers up the parameters and sets various registers accord
ing to that information, and as it is there we also make use of it. We are
going to do a relocated load and if a secondary address is present this
will override our objective. To correct this we load location $B9 with
zero to bring back the state for a relocated load.

The KERNAL LOAD routine expects the start address of the load in the
two processor registers, x and y, with the former holding the low byte
of that address. The accumulator is the flag for either a load or a verify
operation. The value for load is zero, the other being one, which was
set whilst confirming the secondary address. The KERNAL LOAD routine is
situated at $FFD5. Error checking comes now in the order of operations
- you may have put in the wrong tape or disk. The first indicator to a
bad load is the carry flag being set; if this is so, then we branch off to
deal with it. We have to check the 1/0 status word if the carry is clear.
This is achieved by calling another KERNAL routine, at $FFB7. The result
coming out of this call is ANDed with the value $BF and everything is fine
if the zero flag is set. The error given for any other outcome is 'LOAD
ERROR'.

On the first check we go to line 660 if the carry was set. The value in
the accumulator will be used for the error so we temporarily store this

Programming aid routines 163

on the stack. The reason for this is to reset all the pointers we altered to
give you back your original program. This is done by a call to RESET,

described above. Once done we retrieve the accumulator value and
jump to part of the BASIC loading routine for an error to be generated,
based on the accumulator value.

MERGE

LINES 10-150: First of all we call the SETADD routine. From this we can
set the start address of the merging program to immediately after the
memory program. BASIC expects the first byte to be zero and therefore
we oblige it. Having done that, we load the program we want to merge.
The address that is returned from loading is placed in the end of
program address. At this point as far as BASIC knows the only program
in memory is your merge program. The link addresses have to be set
up so we know where the lines start. This is done by a call to the ROM

routine at $A531 which will do this for us. From now on we want BASIC to
respond to the original program and therefore we reset all the registers
back to their original values through RESET1.

To merge the lines into the master program we use the program line
input routine in the BASIC ROM. This is not a stand alone routine but
ends up at the BASIC Warm Start after each line has been processed. It
follows that, as in the AUTO routine, we will have to alter the vector
pointing to that position to divert to this routine until all lines are
merged. This is done in the lines 120 to 150. The addresses will be in
the location of line 420.

LINES 160-460: These are the instructions which actually combine your
two programs. First, CHRGET is set to a position one place before the
start of the input buffer. We now turn our attention to the merging
program lines. The address of the first line will still be in locations $FB

and $FC following the SETADD routine called at the beginning. Using this
information, we get the link addresses and store them for later. We use
this system a lot in our routines but in this case it is vital. We have left
no room between the programs so that when the line is transferred the
master program will be longer, overwriting the needed link addresses.
The check is also made for the end of the merge program, the usual
high byte zero link address.

Next we take the two byte line number and place it in registers so
that BASIC will know where to find them, $14 and $15. The contents of the
line, including the zero byte end marker, are now transferred to the
input buffer starting at $0200. The listing shows $01FB but there is a
reason for this. The x register will come out with a value of the number
of bytes in the line, but to account for the four bytes holding the link
addresses and the line number, it starts with a value of 4. This is one
more than required but the ROM routine will compensate. This means
that with the initial value of $04 in x the first location written to will be

164 Programming aid routines

$0200. The ROM routine we are using wants the number of bytes in the y

register rather than the x, so we oblige by transferring them via the
accumulator.

We are now ready to use the ROM to merge our line into the main
BASIC program. We join the ROM just after the coding that turns the
keywords into tokens - ours are in that state already. As far as the ROM

is concerned you have typed in the line and will put it in the program as
such.

The BASIC Warm Start Vector will bring us back after inserting the line
to LINE 420 in the above listing. We now put the address of the next
line into the working registers and branch back to deal with it. The
branch instruction will always succeed as we have checked previously
for a zero value in $FE.

These lines will be repeated until all the merge program lines have
been assigned to the master program.

LINES 470-510: The merge is complete so we restore the BASIC Warm
Start Vector to its normal setting and return to BASIC where it will await
further commands.

APPEND

LINES 1010-1140: The first thing, as in MERGE, is to call the SETADD

routine. On coming out though, it is slightly different. The new BASIC

program start has to be reduced by two so will overwrite the end of
memory program links. The appending program will load directly after
the final line of the master program. On completion of the load, we
store the loading end addresses (not in the end of program registers),
but overwrite the original stored values, set by SETADD. This means that
on resetting the values, by RESET1, we end up with the original start and
the end marker corresponding to end of the appended lines. The final
thing to do is to set the link addresses to follow as one program. This is
carried out by the ROM routine at $A533. The two programs have been
joined together with our own form of 'superglue'.

Delete

COMMAND SYNTAX
DELETE first line number,[second line number]

The first line number to be deleted and the comma are essential and if
missing will give errors. The second line number is optional in that if
you want to delete to the end of the program you omit it; otherwise
insert a number.

Deleting a line of BASIC program is easy, you just type in the line
number followed by a return. There is no real hardship in deleting one
or two lines but longer blocks become tedious and time-consuming.

Programming aid routines 165

DELETE will rid you of a block of lines with one command. To do this we
use the same ROM routine as if deleting one line. What the BASIC ROM

does is to take the address of the line to be deleted and the link
address within that line. It then takes the program starting at that link
address to the end of the program and moves it to the address of the
line to be deleted. For example, if we have a line whose address is $0901,

its link address is $0925 (the start of the next line), and the end of the
program is $0A4S, the block to move is $0925 to $0A4S with its new starting
address of $0901. Hence, the line at $0901 is overwritten or deleted. By
the way, the variables and the arrays are also moved along with the
block.

It therefore goes to show that if we get the address of the next line
after the 'second line number' and place it in the link address of the
'first line number', a whole block of lines will be overwritten at once.
Where there is no 'second line number' we take the end of program
address and deduct two from it. This will give us the address of the two
zero bytes at the end of a program. The first line number is placed in
the input buffer, with a zero at the end of it signifying no further data,
and goes to ROM as if you typed it in.

Two listings follow for this command. The reason for this is
explained later.

ASSEMBLY LlSTING1

9 *=i-8F44
19
20 SYNTAX
39 DEL
48
59
68
79
88 FOLJ.ID
99

H!0
119
128
139
140
159
160
179
180
199
290
219

Bee DEL
JMP $AF98
JSR $BIF5
JSR $A613
BeS FOUND
LOX #$15
JMP $A437
LOA $5F
STA $FB
LOA $69
STA $FC
JSR $0979
CMP #$2C
BNE SYNTAX
JSR $9973
BNE NI..J1ERAL
SEC
LOA $2D
SBC #$92
STA $5F
LOA $2E

PARAt1ETER A NUMBER
I GENERATE SYNTAX ERROR

GET 1ST LINE NUMBER
FIND LINE LOCATION

I LINE NUMBER FOLJ.ID
I ILLEGAL DIRECT ERROR

ERROR ROUTINE
PUT LINE ADDRESSES
IN STORAGE

CHECK FOR COMt'"lA

I NOT FOLJ.ID
GET NEXT BYTE
A SECOND LINE NUMBER
PREPARE FOR SUBTRACT
END OF PROGRAt'"l
DEDUCT BY TWO
READY FOR DELETION
END OF PROGRAM

166 Programming aid routines

228

238
240

258 NLt1ERAL
269
278

288
299

398
319
328
339
348
359
368 CCNr
379
388
399
498
419
420
439
448
459
460
479
488

498
589
518

528
539

BF91 CCNr
SF56 FOUND
BF46 SYNTAX

SBC #$99

STA $69
BNE CCtH

BCS SYNTAX
JSR $SlF5
INC $14

JSR $A613
LDA $FC

CHP $69
BCC CONT
BNE SYNTAX
LDA $FB
CMP $5F
BCS SYNTAX
LDY #$99
LDA $5F
STA ($FB),Y
INY
LDA $69
STA ($FB) , Y
INY
LDA ($FB), Y
TAX
INY
LDA ($FB),Y
JSR $S47F

PLA
PLA
LDX #$FF

LDA #$91
JMP $927D

I IN CASE OF PAGE
CROSSING
READY FOR DELETI~~

I ENFORCED $2E CAN'T
BE ZERO OR 1
NO Nlt1BER
GET 2ND LINE NUMBER

I SO WE GET
FOLLOWING LINE
FIND LINE
CHECK IF 1ST NO IS
SMALLER THAN 2ND

STORE ADRESS

GET 2 BYTE LINE NO

CONJERT TO ASCI I
AND PUT INTO
START OF INPUT BUFFER
REt1(J...,'E RETURN ADDRESS

I TO INITAI LI ZE
INPUT BUFFER

WILL DELETE LINE
AND RETURN TO BASIC

BF49 DEL
8F79 NUMERAL

ASSEMBLY L1STING2

9 *=$927D
19
28
30
48
59
68
70
88
99

198 ADD
110
129 HADD
139
140
159
160
179

188
190
299
218
228
230

9296 ADD

LlSTlNG1

LDA $9382
STA ADD+l
LDA $8383
STA HADD+l
LDA #(ADD
STA $8392
LDA .DADD
STA $9393
JMP $A486
LDA #$83
STA $9382
LDA #$A4
STA $9383
JSR $A533
CLC
LDA $22
ADC #$92

STA $2D
LDA $23
ADC #$98
STA $2E
JSR $A669
JMP $A474

9298 HADD

Programming aid routines 167

SAVE ~RM START

CHANGE WARM START

DELETE BLOCK
RESTORE WARM START

RECHAIN LINES
PREPARE FOR ADD

INCREASE FOR
VARIABLE START
START OF VARIABLES

IN CASE OF CARRY

CLR
READY FOR BASIC

LINES 10-110: These instructions deal with the 'first line number'. The
routine first checks the carry flag, set or unset by CHRGET on entering,
and if set a SYNTAX ERROR is generated as the first byte after the delete
token was not a numeral. A call to our GET PARAMETERS routine is next,
immediately followed by a visit to the ROM routine FIND BASIC LINE. The
result from GET PARAMETERS is in the registers used to call FIND BASIC LINE.

On returning from the latter, if the carry is not set, then the line was
not found and we therefore generate a further error. The address of
the first line is placed in locations $FB and $FC.

LINES 120-280: The remaining parameter is now dealt with. CHRGET is
positioned to where the comma should be, so we call CHRGOT to see if it
is there. A call to CHRGET now will get the first byte of the second line
number. If no line number is present, the zero flag will be set. In that

168 Programming aid routines

case we gather in the address of the end of the program, deduct two
from it, and store the result in registers $5F and $60.

If the zero flag was not set, we make a further check as earlier to see
if the byte picked up by CHRGET was a numeral. GET PARAMETER is called to
get the second line number and the low byte result in $14 is increased
by one. This is done as we do not require the address of that line but
rather the one following it. After the visit to FIND BASIC LINE the address in
$5F and $60 will be the next line, whether its line number is one or ten
greater than the 'second line number'.

LINES 290-350: These instructions check to see that the address of the
'second line number' is higher than that of the first, otherwise a SYNTAX

ERROR is given.

LINES 360-480: Here we insert the second address we found into the
link address position of the first line. We then get the line number, in
its two byte format, putting the low byte in the X register and the high
into the accumulator. We now call another routine which we coded at
$847F in the UTILITY where the number will be converted to ASCII and
placed in the input buffer, starting at $0200, with a zero at the end.

LINES 490-530: From the stack we remove the return addresses which
were placed there on entering DELETE. The x register and the accumula
tor are given the address of the input buffer less one which will be the
CHRGET address. The final thing is to jump to the second listing.

LlSTING2

LINES 10-230: The ROM routine that we will use is not a subroutine but
ends up at the BASIC Warm Start Vector. We want to return here so we
first store its present values and replace them to point back to these
lines. We now go to ROM where it will treat the number in the input
buffer as if you were deleting a single line from the keyboard, but as
we have changed the link address it will delete more than one.

On returning, we restore the BASIC Warm Start Vector. We now
subject the program to the rechain routine - not that it requires it, but
from this routine we can calculate the end address. From the address
the rechain routine ends with, we add two and set the end of program
registers. A call to the CLR routine will set the remaining variable
addresses. Finally, we jump to BASIC, printing 'READY' and give you back
control.

The reason for two listings is due to the way in which the ROM memory
moving routine sets the end of program address. We came across this
when testing the UTILITY. The BASIC normally expects lines of around 80
characters and definitely no more than 255. Mainly for the latter reason
the ROM routine only decreases the end address by the maximum of a
page. It does not affect the deletion, but it did not make the required

Programming aid routines 169

reduction in memory used. The second listing was added to overcome
the times when the number of lines took more than 256 bytes. Thus in
the second listing we were able to set the addresses ourselves.

Memory - Display number of bytes free

COMMAND SYNTAX
MEM

There are no parameters in this command. The command is available
only in direct mode. If found in a program the routine is not carried
out.

BASIC has a command that prints out the amount of space available to it.
It is FRE(x) where x is a dummy argument. Unfortunately it returns, when
used with PRINT, an integer value which means any value over 32767 ($7FFF)

will be a negative number. For example, if the number of bytes free is
36500, the result printed would be -29035. If you add that, with the sign,
to 65535 ($FFF), you will arrive at the true figure of 36500. We produce
here a short routine to print out the correct value straight away. Having
said that, with the UTILITY in place, the maximum space available is less
than 32768 and so FRE(x) will always print out the correct value.

The first thing to do is call a ROM routine to do a 'garbage collection'.
It is at $B526 and tidies up the variable and string area. It will reset the
necessary registers after the compaction. The area of memory that is
unused will be from the end of arrays to the beginning of the area used
by strings. If we take the higher address from the lower, we will have
the number of free bytes available.

The routine that we have used to print the result to the screen is a
subroutine of the HEX command, which is described later. Suffice to say
that on calling this subroutine with the low byte in the Y register and
the high in the accumulator, it will convert it to ASCII and print the
result to the screen.

To check whether you are in direct mode, we look at location $90(157).

This will hold $80 (128) for direct or $00 for program mode.

ASSEMBLY LISTING

9 *=$B5FC
18
28
38
48 HEN
58
68

78

LOA $90
BNE MEN
RTS
JSR $B526
SEC
LOA $33

SBC $31

DIRECT OR PROG~
DIRECT ~LY
PROGRAM NOT EXECUTED
ROM COLLECT GARBAGE
PREPARE FOR SUBTRACT
POINTER START OF
STRING STORAGE
POINTER END OF ARRAYS

170 Programming aid routines

83
913

lee
113

86131 HEM

Coder

COMMAND SYNTAX
CODER

TAY
LDA $34

SBe $32
JMP $BSAD

TE,.,P STORE
I POINTER START OF

STRING STORAGE
POINTER END OF ARRAYS
CQN.JERT TO ASCI I
AND PRINT TO SCREEN

There are no parameters to this command.

How many times have you picked up a listing from a magazine and
wondered what graphic symbol is in that PRINT statement? Is it a shifted
N graphic or shifted L? How many have been used together, is it 2 or 3?
You then come across a colour code and have to look it up in the
manual to remember which colour to program. Owners of non
Commodore printers also have a problem as these symbols and gra
phics do not print.

We would like to introduce a routine that replaces these graphics
with mnemonics. For example, the symbol for clear screen would be
replaced by ICLSI.

Except for one, all the codes we want to change appear within
quotes. That means we have to look through the program for a quote
and when found look for ASCII values that we want to change until the
end of the line or the second quote appears. Having found one, we
also have to look to see if it has been repeated. This done, we will
either calculate the new code or find one in a data table. The codes
produced will be of a different length from the original, but if it
repeats, may be of shorter overall length. To accommodate this, we
will use the memory move routines described in Chapter 6.

The one exception we mentioned earlier is the mathematical 'PI'

(3.14159, etc). This we also found does not appear on some listings and
is essential if in a mathematical equation. This is therefore coded
whether in or out of quotes.

Most of the program operation is described after the assembly listing
(see below), but before the listing we would like to say a word or two
about the data make-up. This can be split into two sections. Graphics
that are obtained by using the shift with most of the 'letter' keys can be
calculated directly to the ASCII code of that particular letter. The
remaining graphics and codes require the use of data tables.

We have employed two tables and stored them out of the way under
the BASIC ROM. The first table, the data address table, has the three bytes

Programming aid routines 171

for each character we are going to encode. The first byte is the ASCII
value of the character and is followed by the address within the second
table where the data is stored. The second table, the data table, holds
all the data for those characters. The data will be the characters printed
between the [1 brackets, and may be of differing length. Because of
this the first byte is the number of bytes of data.

What are we going to produce instead of all these graphics and
codes? These are listed in Appendix I and are mainly self-explanatory.
However, an explanation of two of them is required. If you look at the
Programmer's Reference Guide, page 74, under 'Other Special Charac
ters', you will see five functions available. Three of these can be
achieved more easily than described in the PRG. These are SWITCH TO
LOWER CASE, DISABLE CASE-SWITCHING KEYS and ENABLE CASE
SWITCHING KEYS. They can be obtained by simply holding down the
CTRL key and appropriate letter. In quotes they will print the appropri
ate symbol. Out of quotes the action will be carried out. The remaining
two 'special characters' are implemented in the way the PRG describes.
We have given them codes of ICRG>MJ and ICRG>NJ. These stand for CTRL

REVS GRAPHIC SHIFT RIGHT and the appropriate letter.

ASSEMBLY LISTING

7 OPEN = $8933
8 CLOSE = $oB8BB
9 *=$8B93

19 LDX tf1.99

29 LDA $28

30 STA $FB
49 LDA $o2C
50 STA $FC
69 LINKS LDY tf1.9 £I

79 LDA ($FB) , Y
80 STA $FD
99 IN'Y

19£1 LDA ($FB), Y
119 STA $oFE
12£1 BNE CCNr
139 PLA
14£1 PLA
159 JMP $A474

169 CONT IN'"f
17£1 INY

INITIALI ZE QUOTE
COUNTER
GET AND STORE
START OF BASIC PROG

SET Y TO BEGINNING
OF LINE
GET ADD OF NEXT LINE
STORE FOR LATER

NOT END OF BASIC PROG
REMOVE RETU~j ADDRESS

GOTO "READY FOR
BASIC"-END OF CODER
SKIP LINE NUMBER

172 Programming aid routines

1 B9 NEXT INY
198 LOA ($FB),Y GET BYTE OF PROG LINE
299 BNE CCt-lT1 ZERO SIGNIFIES END

OF LINE
219 LOA $FD GET NEXT LINE ADDRESS
228 STA SFB PUT I N CURRENT

LINE REGI STERS
239 LOA SFE
249 STA $FC
258 LOX 1$99 RESET QUOTE COUNTER
269 BEQ LINKS X SETS ZERO FLAG -

BRANCH ENFORCED
270 CCNT1 CHP I$FF IS IT pi
2B9 BNE NOPI NO
290 STA S3E STORE VALUE
389 BEQ CCt-lT2 ENFORCED
310 NOPI CMP 1$22 I S BYTE A QUOTE
329 BNE CHECK NO GO TO SEE IF IN

QUOTES
339 INX IT'S A QUOTE SO INC

COUNTER
349 CPX 1$92 IS IT SECCt-lD QUOTE
358 BNE INQUOTES IN QUOTES CODER IN

ACTI Ct-I
368 LOX 1$99 RESET CO'-"ITER
379 BEQ NEXT ENFORCED
388 CHECK CPX 1$91
399 BNE NEXT NOT IN QUOTES
498 INQUOTES STA S3E STORE BYTE
419 CMP I$C0 IS IT LESS THAN 192
428 BCC CCI1PARE YES
439 SBC 1$60 NO SUBTRACT 96
440 CCJ1PARE CHP 1$69 IS IT > OR = TO 96
459 BCS CCNT2
468 CHP 1$21 IS IT LESS THAN 21
479 BCS NEXT CHARS 21 - 95

DCt-I'T REQUIRE CODING
489 CCt-lT2 STA $30 STORE REVISED CHAR

VALUE
499 STY $49 STORE LINE HARKER
598 STX S3C STORE QUOTE COUNTER
519 LDX 1$91
528 NEXTl INY
539 LOA (SFB) , Y GET NEXT CHAR
548 CHP S3E I S A REPEAT CHAR
559 BNE NEXT2 NO

Programming aid routines 173

568 INX
579 BNE NEXTl I ENFORCED
588 NEXT2 STX $3E REG - NO OF REPEATS
599 CPX tt$92
698 BCS CCNf3 MORE THAN CJ'.IE CHAR
619 DEX
628 LDA $3D GET CHAR BACK

AGAIN
638 CHP 1$29 IS IT A SPACE
649 BEQ SPACE DON'T CODE SINGLE

SPACE
658 LOA #$99
669 STA $49 I RESET REG WITH ASCII

FOR NO OF REP6ATS
678 STA $3F
689 BEQ CCtIT4 ENFORCED
698 SPACE JHP RELOAD RELOAD REGISTERS

FOR GET NEXT BYTE
798 CCNf3 LDA 1$99 X HAS LW VALUE -

NO HIGH VALUE
718 JSR $847F NO OF REPEATS INTO

ASCII FORM
728 LDX 1$99
739 LOA $9289,X GET ASCI I INTO REGS
748 STA $3F
759 INX
768 LOA $8298,X
779 STA $49
788 CIl'IT4 LOA $3D
799 CMP tt$61
898 BCC CCNJERTB
819 CMP tt$7B
B28 BCS CCNVERTB
839 C(tIIVERTA SEC
848 SBC 1$29 REDUCE VALUE
859 STA $3D
868 LDX "$97 TOTAL NO OF SPACES

REQUIRED
878 LDA $48
889 BNE C(tIITS MORE THAN 9 REP6ATS
898 DEX
999 LOA $3F
919 BNE CCNf5 SOME REPEATS
929 DEX
939 CCNf5 CPX $3E FIND HW MUCH RO(J1
949 BEQ NOM(J)E RIGHT AMOUNT OF SPACE

174 Programming aid routines

950
969

979
980 OPENUP

990 NCJ10VE
1909
1910
1929
1930
1949
1950
1969 C(t.IT 6
1970
19B9
1990
1109 C(t.IT7
1110
1129
1130
1149
1150
1169
1170
1189
1190
1209
1210
1229
1230
1249 C(t.IVERT8
1250

1260
1279
1280
1299

1390
1319 NEXT3
1320
1339
1340
1359

BCS OPENUP
JSR CLOSE

JMP NCt1Ov'E
JSR OPEN

LOY $49
LOA tt$5B
STA ($FB) , Y
LOA $49
BEQ CIl\IT6
INY
STA ($FB) , Y
LOA $3F
BEQ CIl\IT7
INY
STA ($FB), Y
LOA tt$47
INY
STA (-$FB) I Y
LOA tt$3E
INY
STA ($FB) , Y
LOA $30
INY
STA ($FB) I Y
LOA tt$50
INY
STA ($FB) , Y
LDX $3C
JHP NEXT
STA $30
LOA tt$S9

STA $62
LOA #$A3

STA $63
LDX tt$51

LOY tt$99
JSR $BIFB
LOA ($62), Y
PHA
JSR $8292
PLA

NEEDS SPACE IN LINE
GET RID OF
lnJANTED CHARS
CONT WITH PROG
NOT ENOUGH ROCJ1 IN
LINE
GET LINE POINTER
ASCII FOR [
PUT IN LINE

NO TENS 01 GIT

I NO REPEATS

ASCII FOR G

I ASCII FOR>

CHAR

ASCII FOR]

RESET QUOTE COUNTER
NEXT BYTE

LSB OF OATA
AODRESS TABLE

MSB OF D.A.T.

COLNTER MAX NO OF
CHARS IN DATA

TABLE

SWITCH OF BASI C
GET ASCII CHAR NO
TEMP STORE

I Sl.,..IITCH IN BASI C
I RETRIEVE

1360
1379
138£1
1399
1490
1419
1420

1430
1449

1450
1469
1470
1489 CTRL

1499
1590

1510
1529

1530
1549
1550 FOUND
1569
1570

1580
1599
169£1

1610
1629
1630
1649
1650 CeNT8
1669
1670
1689
1690
1709
1710
1729

1730

eNP $30
BEQ FOUND
INY
INY
INY
DEX
BPL NEXT3

LDA $30
CMP #$1 B

BCC CTRL
LDX #$9D
JHP $A437
AD(: #$40

STA $A448
LDA ti$43

STA $62
LDA tnA4

STA $63
BNE CONT8
INY
JSR $81FB
LDA ($62), Y

PHA
INY
LDA ($62),Y

STA $63
JSR $8282
PLA
STA $62
LDY ti$99
JSR $81FB
LDA ($62),Y
STA $Cl
JSR $8292
LDA $(:1
CLC
ADC #$94

TAX

Programming aid routines 175

I S IT THE SAME
I YES
I SKIP UNWANTED ADDRESS

DECREASE COUNTER
I GET NEXT ASCII NO

UNTIL X<0

SEE I F IT USED
WITH CTRL KEY
YES
NO
ERROR OUT OF DATA

f ADD $49 TO GIVE
ASCII LETTER

f STORE IN DATA TABLE
I LSB OF DATA FOR

[CTRL ?]

MSB OF DATA FOR
[CRTL ?]

f S~ITCH OUT BASIC
GET LSB OF DATA
POSITION

I TEMP STORE

GET MSB OF DATA
POSITION

SvJITCH IN BASI C

GET NO OF DATA CHARS

FOR BRACKETS AND
REPEATS

176 Programming aid routines

1749 LDA $49
1758 BNE C(t.IT9
1769 OEX NO TENS IN REPEATS
1778 LOA $3F
1789 BNE C~T9
1798 DEX NO REPEATS AT ALL
1889 C~9 CPX $3E DO WE REQUIRE A

MEMORY MOVE
1818 8EQ NCJ10VEI NO
1828 BCS OPENI MORE SPACE
1838 JSR CLOSE LESS SPACE
1848 JMP NettOJE 1
1858 OPENI JSR OPEN
1868 NettOJE 1 LOY $49 GET LINE MARKER
1878 LOA 1$5B ASCII FOR [
1888 STA ($FB) , Y
1898 LOA $3F
1988 8EQ C~A NO TENS 01 GIT IN

REPEATS
1918 INY
1928 STA ($FB),Y STORE IN PROG
1938 CCNTA LOA $48
1948 BEQ C~TB NO REPEATS AT ALL
1958 INY
1968 STA ($FB) , Y STORE IN PROG
1978 CCNTB STY $49 STORE LINE MARKER
1989 LOY 1$98
1998 JSR $81FB SWITCH OUT BASI C
2988 DATA INY
2818 LOA ($62),Y GET DATA FRett

TABLE
2928 STY $C2 STORE DATA MARKER
2939 LOY $49 GET LINE MARKER
2948 INY
2959 STA ($FB) , Y STORE DATA IN PROG

LINE
2968 STY $49 STORE LINE MARKER
2978 LOY $C2 GET DATA HARKER
2989 CPY $Cl HAVE WE GOT ALL DATA
2998 BNE DATA NO
2189 JSR $8282 SWITCH IN BASI C
2118 LOY $49
2129 LDA 1$50 ASCII FOR]
2138 INY
2149 STA ($FB),Y

2150
2169
2170 RELOAD
21B9
2190

BBD7 CHECK
BBE3 CCttPARE
SBC2 CONTl
BCl5 CCNT3
BC42 CONTS
BC65 CCNT7
BCDF CONT9
BDBB CCNTB
SCAB CTRL
BCBA FOUND
SB9D LINKS
BBF3 NEXT!
SCBC NEXT3
BCF7 NCttOVEl
8931 OPEN
BC4E OPENUP
SC12 SPACE

Programming aid routines 177

LOX $3C
JMP NEXT
LOY $49
LDX $3C
JHP NEXT

GET QUOTE COUNTER
NEXT BYTE TO PROCESS
GET LINE HARKER
GET QUOTE COUNTER
NEXT BYTE TO PROCESS

BB89 CLOSE
SBAF CONT
BBEB CONT2
BC27 C(t.JT4
BCSE CONT6
8CCC CCNTB
BD94 CONTA
8C7E CCNJERTB
BD12 DATA
BBDB INQUOTES
BBBl NEXT
BBFD NEXT2
BCSl NOMOVE
BBCA NOPI
BCF4 OPEN1
8D33 RELOAD

LINES 10-150: These set up the routine and if necessary return control
back to you through BASIC. There are no parameters included in the
command to pick up as it codes the whole program. The address of the
first line is taken from the start of BASIC program variables at $2B and $2C.

The x register is initialized to zero and is used as a quote counter. We
get the link address to the next line and if it is the end of the program
we remove the return address from the stack, placed there on
entering, and go back to BASIC with the program in memory coded for
listing or saving.

LINES 160-390: We are going to start to look for our trigger codes -
quotes or pi. We skip the line number and start to scan. If the end of
the line is encountered we transfer the links to the line register and
start the next line.

We check for PI (ASCII value is $FF). On finding it, we store it in a
register for later use and branch further into the program. The check
for the quote takes two forms. When one is found, we increase and
check the x register. A two here will indicate that it is the second quote
and therefore going out of the area we are interested in. It also means
we go back to look for another quote.

If x is one, then the first quote has been found and we go forward to

178 Programming aid routines

check for codes. It will fail there the result is that we return to get the
next byte.

On encountering a byte other than a quote or pi, we check to see if
the x register is one, indicating that we are in quotes and it will require
processing.

LINES 400-470: We first store the byte. This is done as we are going to
manipulate this data and possibly alter it. The original value is needed
later when checking for repeat characters.

Values over $C0 (192) are reduced by $60 (96) and we are in a position to
weed out characters that do not require any action. These will be
values of $21 to $5F inclusive. This is the position that the first quote will
end up in. These characters cause the flow to go back and get the next
byte.

LINES 480-690: Our character value is stored again, as it may be
different, in another register. We also store the line pointer (the Y

register) and the x quote counter. The latter is stored because if pi is
being changed, the x register could be zero; at other times it will
always be one.

The next procedure is to see if there is more than one character of
the same type consecutively in the program. The x register will be used
as a counter and as it is one already, it is already initialized. The
following bytes are gathered in and checked against the original value.
The x register is increased until a byte of a different value is found.

The routine now splits up. Where there are two or more repeat
characters, we jump ahead to CONn to put that number into ASCII.

Continuing along, the x value will be one but we will not print out
the number one as it implied. Registers $3F and $40 are set to zero,
which as we shall see shortly will hold the ASCII value for repeats.

The action taken is to check to see if the character we are coding is a
space or not. We do not want to code single spaces as it would clutter
the listing unnecessarily. On finding a space the flow jumps further
ahead to reload the registers and go back to get the next byte. For
characters not spaces, and all single characters, the routine branches
forward to skip the next section.

LINES 700-770: On finding more than one of the same character we
want to convert the number into ASCII format. We already have the
number in the x register. To use our own conversion routine at $847F we
need to set the accumulator to zero, as the high byte value. The result
will be in the input buffer with a zero after the last digit. As a line of
BASIC program when typed into the 64 cannot be more than 80 charac
ters, it therefore means that the number of repeats cannot be any
greater. This means that the number of ASCII digits will be two at a
maximum.

We therefore pick up the first two digits from the buffer and store

Programming aid routines 179

them in $3F and $40. If there was a single digit, that is 2 to 9 repeats, $40

will be zero.

LINES 780-820: We said at the beginning that some characters would
require the use of the data tables whilst some can be coded by calcula
tion. These few lines divide up the flow into these two areas.

We load back the value achieved in earlier calculations (lines
410-440) to the accumulator. Values of $60 and under, or $7B and over,
will branch off to Conversion B, which uses data tables.

CONVERSION A

LINES 830-1230: The first task to undertake is to subtract $20 (32) from
our value and store it. This is now the same value as the ASCII code of
the letter of the key it shares. They will all be achieved using the shift
with the key rather than the logo key.

The maximum number of characters we could insert is seven, two for
the brackets, two for the number of repeats and three for the code.
This number is placed into x. We check the 'repeat' digits storage for
the number of numerals. A zero will indicate that there is no digit in
that column. The x register will be decreased accordingly. Location $3E

has the number of graphic characters to be coded and this is compared
with x. From this we either open-up the program, close-up the pro
gram or leave it unchanged. The memory move routines are described
in Chapter 6.

Now we are ready to insert the code in the order of:

i) The [bracket.
ii) The number of repeats if applicable.
iii) The letter G.
iv) The symbol >.
v) The letter of the key, held in location $30.
vi) The 1 bracket.

Once completed, we load the quote counter back into x and jump
back to get the next character to code.

CONVERSION B

LINES 1240-1640: This is where we have to use data tables to find the
relevant code. This part is entered with the character value in the
accumulator and is put into $30 for later use. The first table we look up
is the data address table. The start address of the table is placed in
locations $62 and $63. The x register has the total number of characters
catered for and the y register is used as a general pointer.

As the table is in the RAM under the BASIC ROM we have to disable
that ROM, get the byte we want and then switch back the ROM. The byte
is placed temporarily on the stack during the enabling of the ROM. The
byte we have collected is compared for equality with our character

180 Programming aid routines

value. Succeeding forces a branch forward. Failure means we continue
the search. The first thing is to increase the y register three times. This
will skip the address of the rejected character in the data table. The y

value will be in line with the next character value. If the x register has
been decreased to a value below zero, that is, $FF, then all the data
address table has been checked and a match not found. There is one
further chance. It could be a character which uses the CTRL key along
with a letter key. These will have values no greater than $IA (26). This is
checked and if it does not fall in, then an 'OUT OF DATA' error is
generated and coder is exited. We think that this should never come
about as we believe we have catered for all eventualities.

Supposing a CTRL value is the one found, then we add $40 (64). This
simply gives the value of the letter on the key. This is stored immedi
ately in the data table. The start address of the start of CTRL data is
placed into $62 and $61.

Now back to the other characters. A match has been found in the
data address table and we have arrived at line 1550. The two bytes next
in line in the address table are the data address in the second table.
These are placed into registers $62 and $63.

LINES 1650-2160: We have now finished with the data address table
and concentrate on the data table itself. This time we only require one
byte, the first byte, which will give us the number of bytes of code. To
this value we add four, the brackets and the 'repeat' digits, transfer it to
x and decrease it if one or both repeat digits are redundant. This final
value is compared with the number of characters to be replaced to
determine whether more or less space is required. This and the moves,
if needed, are achieved in lines 1800 to 1850.

The insertion of data is the only thing left to do. We reload the line
marker and start. The left square bracket and, if required, the repeat
digits are stored first. The data insertion is slightly complicated. The
line marker is stored and the y register is re-initialized. The BASIC ROM is
switched off and a byte is taken from the table. The y register is stored
in $C2 and the line marker is restored and incremented. The byte is now
inserted in the program. Now the line marker is stored and the data
marker placed back in y. This is compared with the number of bytes of
data in the code ($C2). If it has not reached this number, we branch back
to get further bytes to insert. Once all the data has been collected and
stored, the BASIC ROM is switched back in.

Finally, the right hand square bracket is inserted and we jump to get
the next character to be coded, after restoring the quote counter.

LINES 2170-2190: This simply restores the line marker and quote
counter, after which the routine goes back to get the next character.
Single space characters, which are not coded, are sent here.

Programming aid routines 181

The data table- a program
After much thought. we have decided to supply the data tables for
CODER in the form of a B,\SIC loader. This is mainly due to the fact that it
is stored under the BASIC RO,'v! which makes it hard to check and correct
using a monitor. With the loader program we can put in a checksum
which helps to see if you typed in the correct values.

A further item that the loader program does is to clear the area used
by the KEY command (see Chapter 4) for its data. So type in the
program, check it and save it.

10 L=41472:T=0
20 READD:IFD=-ITHEN40
30 T=T+D:POKEL,D:L=L+l : GOT020
49 IFT<>51131THENPRINT"[REV] DATA INCORR
ECT" : END
50 FORL=41216T041471:POKEL,0:NEXT
60 PRINT"[REVJ DATA LOADED":END
70 DATA3,87,72,84,2,67,68
80 DATA3,82,69,86,3,72,79
90 DATA77,3,82,69,68,2,67
100 DATA82,3,71,82,78,3,66
110 DATA76,85,3,83,80,67,3
120 DATA71,62,42,3,71,62,43
130 DATA3,71,60,45,3,71,62
140 DATA45,1 ,126,3,71,60,42
150 DATA3,79,82,71,2,70,49
160 DATA2,70,51,2,70,53,2
170 DATA70,55,2,70,50,2,70
180 DATA52,2,70,54,2,70,56
190 DATA3,66,76,75,2,67,85
290 DATA3,79,70,70,3,67,76
210 DATA83,3,73,78,83,3,66
220 DATA82,78,5,76,32,82,69
230 DATA68,3,71,82,49,3,71
240 DATA82,50,5,76,32,71,82
250 DATA78,5,76,32,66,76,85
260 DATA3,71,82,51,3,89,85
270 DATA82,2,67,76,3,89,69
280 DATA76,3,67,89,78,5,71
290 DATA62,83,80,67,3,71 ,60
300 DATA75,3,71,60,73,3,71
310 DATA60,84,3,71,60,64,3
320 DATA71,60,71,3,71,60,43
330 DATA3,71,60,77,3,71,60
340 DATA92,3,71,62,92,3,71
350 DATA60,78,3,71,60,81,3

182 Programming aid routines

360 DATA71,60,68,3,71,60,90
370 DATA3,71 ,60,83,3,71 ,60
380 DATA80,3,71,60,65,3,71
390 DATA60,69,3,71,60,82,3
400 DATA71,60,87,3,71,60,72
410 DATA3,71,60,74,3,71,60
420 DATA76,3,71,60,89,3,71
430 DATA60,85,3,71,60,79,3
440 DATA71,62,64,3,71,68,70
450 DATA3,71,60,67,3,71,60
460 DATA88,3,71,60,86,3,71
470 DATA60,66,5,67,84,82,76
480 DATA65,5,67,84,82,76,66
490 DATA5,67,84,82,76,72,5
500 DATA67,84,82,76,73,5,67
510 DATA84,82,76,78,5,67,82
520 DATA71,62,78,5,67,82,71
530 DATA62,77,3,68,69,76,2
540 DATA80,73,255,0,0,0,0
550 DATA5,0,162,17,4,162,18
560 DATA7,162,19,11,162,28,15
570 DATAI62,29,19,162,30,22,162
580 DATA31,26,162,32,30,162,96
590 DATA34,162,123,38,162,124,42
600 DATA162,125,46,162,126,50,162
610 DATAI27,52,162,129,56,162,133
620 DATA60,162,134,63,162,135,66
630 DATAI62,136,69,162,137,72,162
640 DATA138,75,162,139,78,162,140
650 DATA81,162,144,84,162,145,88
660 DATAI62,146,91,162,147,95,162
670 DATAI48,99,162,149,103,162,150
680 DATA107,162,151,113,162,152,117
690 DATAI62,153,121,162,154,127,162
700 DATAI55,133,162,156,137,162,157
710 DATA141,162,158,144,162,159,148
720 DATAI62,160,152,162,161,158,162
730 DATAI62,162,162,163,166,162,164
740 DATAI70,162,165,174,162,166,178
750 DATAI62,167,182,162,168,186,162
760 DATAI69,190,162,170,194,162,171
770 DATAI98,162,172,202,162,173,206
780 DATAI62,174,210,162,175,214,162
790 DATAI76,218,162,177,222,162,178
800 DATA226,162,179,230,162,180,234
810 DATA162,181,238,162,182,242,162

Programming aid routines 183

820 DATA183,246,162,184,250,162,185
830 DATA254,162,186,2,163,187,6
840 DATA163,188,10,163,189,14,163
850 DATA190,18,163,191 ,22,163,1
860 DATA26,163,2,32,163,8,38
870 DATA163,9,44,163,14,50,163
880 DATA142,56,163,141 ,62,163,20
890 DATA68,163,255,72,163,5,67
900 DATA84,82,76,67,-1

SAVING THE DATA AREA

The following listing will save the area we have used for both KEY and
CODER routines. The saving of data through machine code is described
in the Programmer's Reference Guide. The only extra coding is to
switch the BASIC ROM out, so that we will save our data and not the BASIC

interpreter. You could use this after setting up the function keys (see
Chapter4) so on reloading, the data is there and ready.

Ie LDX #$138 I DEVI CE NO nAPE=1)
213 LDA #$91 LOGI CAL FI LE NO
:30 LDY #$FF NO SEC ADDRESS
413 JSR $FFBA SETLFS
513 LDA #$9C I CHARS IN FILENAME
613 LDX #(NAME I L{)..J ADDRESS OF NAf'lE
713 LDY #>NAME I HIGH ADDRESS
813 JSR $FFBD I SETt-.IAN
913 LDA $131 SWITCH OFF BASI C

11313 AND #$FE
1113 STA 'lei
1213 LDA #$90 STORE START AD[)RESS
1313 STA $FB
1413 :3TA #$AI
1513 STA $FC
1613 LDX #$49 I Lo.4 END OF SAVE
1713 LOY #$A4 HI GH END OF SAVE
1813 LDA #$FB LOCATION OF START ADD
1913 JSR $FFD8 I SAVE
20B LOA $131 SWITCH IN BASI C
2113 ORA #$131
2213 STA $131
2313 RTS
24£1 NAME T><T "UTILITY DATA"

184 Programming aid routines

RELOCATING THE DATA TABLES

If you relocate CODER may also want to relocate the data. Here is one
suggested way. Using the BASIC loader program for the data, change the
value of L in line 10 to the new data start address. The data normally
starts at $A200 (414721 but the data address table starts at $A350 (418081. From
this calculate the data address table new address and put its value in
lines 10 and 30 of the routine below. The end of the data address table
is normally $A442 (420')0), so work out its new end, subtract one, and this
is put in lines 210 and 240. The difference between the old address and
the new address should be put in lines 80 and 120. The routine below is
for a new table at a higher address; for one lower, change the addition
to subtraction and set the carry instead of clearing it.

Ie LDA #$59 I START OF DATA
ADDRESS TABLE

29 STA $14
39 LDA #$A3
413 STA $15
59 NEXT LDY #$91 I POINTER
69 LDA ($14),Y LOW ADD IN TABLE
713 CLC
89 ADC #$69 I ADD L().,J DIFFERENCE
913 STA ($14),Y

1913 INY
11 a LDA ($14) ,Y HIGH ADD IN TABLE
129 ADC #$25 ADD HIGH DIFFERENCE
139 STA ($14),Y
149 CLC
1513 LDA $14 UPDATE TABLE ADDRESS
169 ADC #$03
179 STA $14
1 B9 LDA $15
199 ADC #$99
298 STA $15
2113 CHP HA4 END OF DATA

ADDRESS TABLE
220 BNE NEXT NO
239 LDA $14
249 CMP #$43
258 BNE NEXT NO
269 RTS

Old

COMMAND SYNTAX
OLD

Programming aid routines 185

There are no parameters with this command.

There are four ways to 'lose' a BASIC program. The first way is by
switching off and then there is absolutely no way of recovering it.
Another two ways are by doing a system cold start or a reset. This is as
if you have just switched on but retaining data held by the RAMS. This
can be achieved by typing SYS64738 or by a reset button, if you have
fitted one. The final way to lose a program is by issuing the BASIC com
mand NEW.

To lose a program the operating system of the 64 sets the first two
bytes of the BASIC program area to zero. This would normally be $0801

and $0802 (2049 and 2050) and would be the link address in the first line of a
BASIC program. This means that as far as BASIC is concerned no program
is present as it would encounter the zeros straight away.

Now as long as no further lines of BASIC are typed in, we can reverse
the process, but will lose all the variables. The way it is done is made
clear in the description of the coding.

ASSEMBLY LISTING

9 *=$B415
HI
29
39

40
59
60
713
B0

99
198

1113

129

LDA #$FF
LDY #$91
STA ($28),'Y I PUT .ct.IY LINK IN

1 ST LINE
JSR $A533 I RECHAW LINES
LDA $22
CLC
ADC #$92
STA $2D

LDA $23
ADC #$!H3

STA $2E

Jt1P $A660

I SET END OF PROG
ADDRESS -LOW

IN CASE CARRY WAS
SET IN 79
SET END OF PROG
ADDRESS -HIGH
PERFORM CLR

LINES 10-40: If we change the first two bytes from zero, BASIC will no
longer think it is at the end of the program. We put $FF in those, and get
the address from the start of BASIC variables in $2B and $2C. Now a call to
the ROM routine RECHAIN LINES will achieve two things. First, it will

186 Programming aid routines

correctly set the link address in the first line, and secondly, we will be
able to set the end of program variables.

LINES 50-120: Locations $22 and $23 are set to the beginning of the two
zero bytes, which mark the end of the program, when the RECHAIN

routine is finished. By adding two to those, we have the end of
program and can set the respective registers, $20 and $2E.

The final thing is a jump to the ClR routine. This will set all the
variable addresses to coincide with the recovered program. The BASIC

program is now restored to its original state.

Dump

COMMAND SYNTAX
DUMP
There are no parameters with this command. It will also only operate in
direct mode. If used within a program it will just skip out of the
command. Hitting STOP will break out of DUMP and allows direct edit
ing; typing CaNT will resume at the break point in the BASIC program.
Holding down any other key, apart from shift, will halt the routine until
it is released.

The action of DUMP is identical to the BASIC subroutine in Chapter 5
except that as the routine is in machine code it does not add to the
simple BASIC variables. The logic closely follows the BASIC routine.
Output may again be directed to a printer by an OPEN and CMD

sequence. The major departure is in the use of one or two ROM

routines to carry out the mathematical conversions and convert the
number to an ASCII string to be printed.

ASSEMBLY LISTING

9 *=S8E52
10 'NOTE REAL ASC / ASC OR 9
20 STRING ASC / ASC+128 OR 128
30 INTEGER ASC+128 / ASC+128 OR 128
49 I FUNCTION ASC+128 / ASC OR 0
50
69
70 ~TEST FOR DIRECT MODE
B0

LDA $9D
CHP #$89
BEQ DIRECT
RTS

~MSGFLG

~DIRECT ???

~PROGRAM MODE SO ABANDON

90
le0
118
120
130
149 ~NOTE CURRENT VARIABLE IN FILE NAME POINTER

Programming aid routines 187

159
1613 DIRECT LOA $2D ~VARTAB

179 STA $BB
1813 LDA $2E ~VARTABf 1
1 :~a STA $BC
2013
219 ~ RETURN TO HERE TO SE~ IF ALL DONE
229 START LDA $BC
2313 CliP $38.
249 BNE CONT 'MORE VARIABLES
2513 LDA $BB
269 CMP $2F
279 BNE CONT
289 RTS ~DONE ALL OR WERE

NONE TO START
299
3913 'FIND VARIABLE TYPE
319
3213 CONT LDY #$90
339 LOA ($BB) ,Y ~FIRST CHAR OF NAME
349 CHP #$89
359 BCS INTFN ~INTEGER OR FUNCTION
3613
379 ~ STRINGS j~D REAL
375
389 JSR $FFD2 'OUTPUT ASCII CHAR
399 INY
499 LOA ($BB) ,Y ~GET SECOND CHAR
410 CMP 1$7F
4213 BCS STRING
439
4413 ~REAL VARIABLE
459 I

469 JSR $FFD2 ~OUTPUT SECOND ASCII
CHAR

4713 JSR UPDATE ~ PRINT .'=' AND
UPDATE POINTER

4813 LOA $BB ~POINT TO VARIABLE
FOR MEMORY MOVE

4913 LOY $BC ~TO FPACC#l
500 JSR $BBA2 ~ GO DO IT
5113 JSR $BOOO ~FPACC#l TO STRING

AT $OHHl

529 JSR $ABIE ~ PRINT IT
530 LOA #$FF
549 BNE NEXT !SKIP TO NEXT VARIABLE

188 Programming aid routine,

55e
560 'STRING VARIABLE
570 '
5B0 STRING AND tt$7F 'MAKE ASCII
590 JSR $FFD2
6130 LDA #$24 ' !$!
610 JSR $FFD2
620 JSR UPDATE
630 LDA #$22
640 JSR $FFD2
650 LDY #$09
660 LDA ($BB) , Y
679 TAX 'LENGTH OF STRING IN X
6Be BEQ QUOTE 'NULL STRING
690 INY

LDA ($BB) , Y 7ee
7113
72e
73e
740
750

STA $22 'LSB LOCATI~~
INY
LDA ($BB), Y
STA $23 'MSB LOCATION
LDY #$013

760 CHAR LDA ($22), Y
770 JSR $FFD2
IB0 INY
79B DEX
BBe BNE CHAR
B1B QUOTE LDA #$22
82B JSR $FFD2
B30 BEQ NEXT
840 BNE NEXT
B5B HALFSTART BCS START
860
BIB 'I NTEGER AND Ft.J-JCT IONS
BBB '
B90 INTFN AND #$IF 'CONVERT TO ASCII
990 JSR $FFD2
910 INY
920 LDA ($BB),'(
930 Ct1P #$7F
940 BCS INT 'INTEGER IF SECOND

945
950 !FL~CTION DEFINITION
969
970
9B9

JSR $FFD2
JSR UPDATE

CHAR)12B

Programming aid routines 189

990 LDA tt$46 ! 'F' PRINT FN
1000 JSR $FFD2
1010 LDA tt$4E "'W
1920 JSR $FFD2
1030 BNE NEXT
1940
1058 ! INTEGER ()ARIABLE
1860
1078 INT AND tt$7F !CONVERT TO ASCII
1088 JSR $FFD2
1098 LDA *$25 ~ J /."

1100 JSR $FFD2
1118 JSR UPDATE
1120 LDY *$80
1130 LDA ($BB) , Y !MSB
1140 STA $62 !FPACCttl
1158 INY
1160 LDA ($BB) , '(!LSB
1178 STA $63
1180 LDX *$90
1198 JSR $BC44 !CONVERT TWO BYTE

INT TO REAL
1298 JSR $BDDD !FPACCttl TO STRING

AT $0100
1210 JSR $ABIE ! PRINT IT
1220
1238 !SEE IF KEY HIT AND UPDATE POINTERS
1240
1250 NEXT LOA "$90 ! CARRIAGE RETURN
1268 JSR $FF02
1278 CLC
1280 LOA $BB
1298 AOC tt$85
1309 STA $BB
1318 BCC WAIT
1329 INC $BC
1338 WAIT JSR $FFE4 !STOP
1348 JSR $FFEl
1350 BNE NOT
1360 RTS
1370 NOT LOA $CB !CURRENT KEY
1380 CMP *$40 !NO KEY=64
1390 BNEWAIT !CYCLE WHILE KEY

HELD D(l.JN
1400 SEC
1410 BCS HALF START

190 Programming aid routines

1420 I

1430 !PRINT '=' AND SET POINTER IN $BB/BC
TO START OF VARIABLE

1440
1450 UPDATE
1460
1478
1480
1490
1598
1510
1520
1530 RETURN

8EBC CHAR
8E59 DIRECT
8EEE INT
8F11 NUl
8EC5 QUOTE
8E61 START
8F33 UPDATE

LDA *I$3D 1'='
JSR $FFD2
CLC
LDA $BB
ADC *1$82
STA $BB
BCC RETURN
INC $BC
RTS

8E6E CONT
8ECE HALF
8EDS INTFN
8F2A NOT
8F43 RETURN
8E?? STRING
8F21 WAlT

The routine has been written to be easily relocatable. The only
change necessary is to alter all jSR UPDATES to jSR (start address + $E1).

The ROM routines used are as follows:

CHROUT ($FFD2)
A full description of this function is given in the Programmer's Refer
ence Guide, 'The KERNAl B-5'. It outputs the contents of A as an ASCII
character to the screen.

STOP ($FFE1)
See 'The KERNAl B-33'. Test for the stop key. UDTIM must be called
before using this routine.

UDTIM ($FFEA)
See the Programmer's Reference Guide, 'The KERNAl B-36'. This updates
the system clock.

MEMORY TO FAC#1 ($BBA2)
This routine takes a five byte real number and moves it to the floating
point accumulator #1. En route the sign bit of the mantissa is stripped
off and the sign register FACSGN ($66) set, the exponent put at FACEXP ($61)

and the mantissa of FACHO ($62-65). On entry A must hold the low and y

the high byte of the address of the bytes to be moved.

Programming aid routines 191

FAC#1 TO STRING ($BDDD)
Converts FAC#1 to an ASCII string stored at the bottom of the stack
($0100). On exit A holds #$00 and Y holds #$01.

PRINT STRING FROM MEMORY ($AB1E)
This routine prints successive characters starting at the memory loca
tion whose address is held in A (low) and Y (high). The routine con
tinues until a zero terminator is found (as will be the case at the bottom
stack in this application). Note A and Y already hold the start address on
exiting the previous routine and need not be changed.

EVALUATE TWO BYTE SIGNED INTEGER ($BC44)
Evaluates a two byte signed integer held in FAC#1 and deposits the
result in floating point form back in FAC#1. Before calling x must be set
to #$90, FACHO must hold the high and FACHO+1 the low byte of the
integer (remember integers are held in high/low format unlike
addresses). Once in this form the same routines as for real may be
used to convert to ASCII and print.

LINES 1450-1530: JSR UPDATE
This will be used by all types of variables. It will be used directly after
the variable name has been printed. All this does is to print out the
equals sign and increase the address registers by two, so that they will
point directly to the next byte to be collected - the first of the actual
variable.

LINES 90-120: These check for direct mode. If program mode is dis
covered, then the routine is exited.

LINES 160-190: The locations we are going to use to step through the
variable area are initialized with the start of variable address, which
also happens to be the end of BASIC program address. We are now
ready to start.

LINES 220-280: Locations $2F and $30 are the address of the end of the
variable block that we are going to DUMP. By checking the values in
those with our registers, we can find out if we have completed all.

LINES 320-350: The routine is divided up here and will be further
divided later. When the first byte is picked up, we check if it is an
integer or a function by seeing if the value is $80 (128) or over. These are
dealt with further into the routine.

LINES 380-420: The first byte we have already is printed - the first letter
of the variable name. The next byte is collected and this will distinguish
between real and string variables.

LINES 460-540: REAL VARIABLES: Again we print what we have in A,

making the whole variable name output. A call is now made to J5R

UPDATE. With the address of the present position placed in the A and Y

192 Programming aid routines

registers, we call three ROM routines, described at the start, to print out
the variable to the screen or output device. The accumulator is loaded
with $FF just so the branch following will succeed.

LINES 580-840: STRING VARIABLES: Before we print out the accumula
tor, we remove the negative bit, bit 7, so that it is the pure ASCII code
of the variable letter. The dollar sign is printed and UPDATE is called. As
there are no separaters between stored strings, we cannot use a similar
approach to the one used in real variables. The first thing printed is the
start quotes. The length of the string is the byte after the name and this
is placed in the x register. Now we gather in the address of where the
string is stored. From this we can print out the characters directly,
decreasing x each time, until the counter is zero. Finally, the closing
quotes are output. One of the following two branches must succeed so
we can continue.

LINES 890-940: Integers and functions start here. In these lines we
distinguish between them and act accordingly. By stripping off the
negative bit we can print out the first character of the name, and do so.
The second byte is loaded and this will tell us what type to deal with. A
value of $80 (128) or over will signify integer.

LINES 970-1030: FUNCTION VARIABLE: We cannot print any value for
the function, so after the second name character is printed, UPDATE is
called, and then we just print the letters 'F' and 'N' and branch off.

LINES 1070-1210: INTEGER VARIABLES: After printing the second
character of the name the integer sign of '%' is output. Once more
UPDATE is visited. The next two bytes in the variable area are the integer
value and these are transferred to FAC #1. With the x register set to
normalize the result, we call a ROM routine at $BC44. This will convert the
integer value to a real number. We then convert to ASCII and print the
result with the routine described at the beginning.

LINES 1250-1410: After dealing with any of the four types of variables,
the flow is directed to this part of the routine. The return character is
printed so that the next variable is printed on a new line. Each variable
takes seven bytes of memory and as we added two bytes to our address
registers in UPDATE, we only need to add five more to get to the start of
the next variable in line.

The STOP key is now tested for and if the negative flag is set then DUMP

is ended, as STOP was pressed. By examining $CB we can see if any key is
being pressed. As long as a key is held down we loop around here and
then check for STOP.

To continue with DUMP we set the carry flag and we use a Branch with
Carry Set to line 850 where the same happens, going further back to
proceed dumping variables.

Programming aid routines 193

IMPROVEMENTS?

Obvious improvements are as for the BASIC subroutine. If you had
trouble extending the BASIC subroutine to handle arrays, you haven't
tried anything yet! Most dump routines (wisely) do not handle subs
cripted variables (probably because it is considered too difficult).

Trace and Troff

COMMAND SYNTAX
TRACE and TROFF

Speed Control
'(j)' reset si ngle-step
'2' a relative delay of 2' 1
'4' a relative delay of l' 3
'6' a relative delay of l' 5
'8' a relative delay of2'7

'1' a relative delay of 1'0
'3' a relative delay of 1'2
'5' a relative delay of 2' 4
'7' a relative delay of 1'6
'9' a relative delay of 1'8

The space bar operates the single-stepping.

The delay is in addition to the normal time taken by BASIC to move to a
new line and execute the common trace code. The delay may be
changed at any time by hitting the appropriate key. It is, however, not
possible to break into program execution in single step. If you wish to
do this, hit a number other than 0 first.

TRACE is a diagnostic aid which provides useful information on the
path taken through a BASIC program. In this particular version the
previous and the current line numbers are displayed in reverse video at
the top right of the screen.

We considered it far more important to allow the user to be able to
vary the speed of the trace and have single-stepping capability. When
called for the first time the default will be to single stepping and
thereafter at each run it will continue at the last set speed. After being
disabled with TROFF it will, on being enabled, revert back to single
stepping. In single step mode program execution halts until the space
bar or a speed change key is pressed. The keys for speed change are
given above.

ASSEMBLY LISTING

9 *=8D3A
lee 'TRACE ENABLE
110
120 I

130 ENABLE LDA $9D 'MSGFLG CHECK FOR DIRECT

194 Programming aid routines

148
158

169

17£1
189
199
299

2Hl

220
239
249
259
269
279
289
29£1
390
310
320
339
348
350
369
370
380
390
499
418
420
439

449
459
463
478
488
498
599

519

PMODE

BEQ PMODE 1$80=PROG $80=DIRECT
SEI ~OK-NOT IN PROG MODE

SO DISABLE
LDA #$FF ~INTERRUPT AND SET

SINGLE STEP
STA SSTEP ~TO $FF FOR SINGLE STEP
LDA #$FF IDO SAME FOR TRACE FLAG
STA TRFLAG ~

LDX $9398 I I GONE GET LOW BYIE
OF TOKEN

STX IGONE ~DISPATCH AND STORE AT
TEMP REG

LDA NLVL INEW LINE VECTOR LQl....1 WHICH
STA $9398 ~POINTS TO TRACE
LDX $9399 ~SAME FOR HIGH
STX IGONE+1
LDA NLVH
STA $9339
CLI ~RESET INTERRUPT
RTS lAND RETURN TO BASIC

~TROFF = TRACE DISABLE

DISABLE SEI ~REVERSE ENABLE PROCESS
LDA $9D ~CHECKING IN DIRECT MODE
BEQ PMODE
LDA #$99 I DISABLE TRACE FLAG
STA TRFLAG ~RESET TOKEN DISPATCH
LDA IGONE ~TO VALUES AT THE TIME
STA $8398 ~OF CALLING
LDA IGONE+1
STA $9399
CLI
RTS ~BACK TO BASIC WITH

TRACE OFF

~PERFORH TRACE IGONE POINTS HERE

TRACE STA AREG
PHP
STX XREG
STY YREG

~IF BASIC IS TO RESUME
~THEN WE MUST ~E A,X,Y
~AND STATUS FLAGS
I TO RESTORE THEM

ON CONTINUING

529 ~ONLY PROCEED WITH TRACE IF A PROGRAM RUNNING
538

Programming aid routines 195

5413 LDA $9D
553 BEQ RUNNING
5613
570 'RESTORE ENTRY IjALUES BEFORE CCtHINUING
583
5913 BASIC
6B3

618
620
6313

6413

LDA AREG 'REVERSE ENTRY PROCESS
LDY YREG 'TO ALLOW PROG

TO COtHINUE
LDX XREG 'UNCORRUPTED
PLP 'DON'T FORGET FLAGS~' ~
JMP (IGONE) 'CONTINUE AT

TOK8--l DI SPATCH

650 'PROGRAM R~~ING SO CHECK IF TRACE ENABLED
663 'FROM TRACE FLAG =$FF???
670 '
6813 RLnJING
690

7tH3

LDA TRFLAG
BEQ BASIC ~TRACE OFF SO RESTORE

AND CONT

710 ~TRACE IS ON SO UPDATE DISPLAY
723
730
743
7513
7613
770
7813
790
BB0
8113
B28 SPACE
830
8413
8513
B60
870
B83
B90
903
9113
9213
930
943
9513
9613

SEC
JSR $FFFB
STX RCtrJ
STY COL
CLC
LDX #$90
LDY #$18
JSR $FFFB
LDX #"$BF
LDA #$213
JSR $FFD2
DEX
BNE SPACE
CLC
LDX #$99
LDY #$18
,JSR $FFFB
LDA #$12
JSR $FFD2
LDA OLHIGH
LDX OLLOW
JSR $BDCD
LDA #"$92
JSR $FFD2

'READ CURSOR POSITI~~
'AND SAVE BY CALLING PLOT
~WITH CARRY SET

~SET CURSOR POSITION
'TO ROW 13 COLU~~ 24

~CLEAR PREVIOUS NUMBERS

~SET BACK TO ROW 13 COL 24

~TURN ON REVERSE VIDEO

'LOW BYTE PREVIOUS LINE
'HIGH
~ PRINT LINE NUMBER
~REVERSE OFF

196 Programming aid routines

970
989
998

1999
1918
1020
1930
1949
1958
1069
1970
1989
1985

LDA tt$29
JSR $FFD2
LDA tt$12
JSR $FFD2
LDA $3A
STA OLHIGH
LDX $39
STX OLLOW
JSR $BDCD
LDA #$92
JSR '~FFD2
CLC

~ BIT OF SPACE

~REPEAT FOR CURRENT LINE
~GETTING ITS VALUES FROM
~CURLIN LOW BYTE
~NOW BECOMES OLD LINE
~ CURLIN+ 1

'PREPARE TO RESET CURSOR

1099 ~IGNORE THIS BIT AS ONLY TO ALLOW BRANCH TO WORK
1995
1198 BASICI
1110
1120
1139
1140

BCS BASIC
LDX ROW
LDY COL
JSR $FFF9

~ HALFI...,IAY BRANCH TO BASI C
~CONTINUE RESET CURSOR

~RESTORE CURSOR POSITION

1159 ~CHECK FOR PNi KEYS PRESSED
1160 '
1170
1189 CHCHAR
1190
1299
1210
1220
1230
1249
1250

JSR $FFE4 ~GETIN

BEQ SINGLE ~NOTHING IN KIB BUFFER
CMP #$2F ~KEY<9???

BCC SINGLE ~YES THEN OF NO INTEREST
CMP tt$3A ~KEY}9???

BCS SINGLE ~YES - NO INTEREST
SBC #$30 ~BETWEEN 9 AND 9 SO -$30
BNE CHDELAY ~ 1-9

1260 ~0 PRESSED SO RESET SINGLE STEP
1270
1280
1299
1390
13113

LDA #$FF
STA SSTEP
BNE SINGLE 'NO NEED TO CALC DELAY

1320 ~CALCULATE DELAY AS POWERS OF 2
1339
1340 CHDELAY
1359
1360
1379 ROLL
1380
1390
1490

TAX
SEC
LDA #$99
ROL A
DEX
BNE ROLL
STA COUNT

~PUT 1-9 IN X
~ 1 IN CARRY

'HOVE CARRY BIT X TIHES
~TO SET KEY-2 BIT
~TO GIVE DOUBLING DELAY
~STORE IT TO USE AS TIHER

LOA #$09
STA SSTEP
BEll DELAY

Programming aid routines 197

!DISABLE SINGLE STEP

I ALWAYS TAKEN

1419
1420
1439
1440
1459
1460
1470
1489
1490
1599
1510
1529
1530
1549
1550

!SINGLE STEP PAUSE

SINGLE

SSLOOP

1560

LOX SSTEP
BEll DELAY
CHP #$29
BEll BASIC2
JSR $FFE4
BEll SSLOOP
CHP #$29
BEll BASIC2
BNE CHCHAR

!ISITCN
I I F NOT GO TO DELAY
!SPACE HIT ORIGINALLY???
!YES THEN PERFORM LINE
!GETIN WAIT FOR A CHAR
!AND KEEP WAITING
!SPACE???
!YES THEN SKIP DELAY
!NO - WAS IT A
SPEED C~GE

1570 !TIHER CO~~TDOWN FOR DELAY
1589

DELAY
DLOOPI
DLOOP2

LDX COUNT !DO COUNT LOTS
LOY #$FF !OF 256~S
DEY
BNE DLOOP2
DEX
BNE DLOOPI

1590
1699
1610
1629
1630
1649
1650
1660 ! GUARplNTEED BRANCH TO HALFWAY BACK TO

DI SPATCHING LINE 1199

BASIC2 SEC ! ENSURES BRANCH BASI Cl
BEQ BASICI !Z FLAG SET ALWAYS SET HERE

1670
1680
1699
1790
1710 I RESER'-.}E TEMPORARY STORES AND FLAGS SET

TO DEFAULTS
1720
1730 TRFLAG BYT $09 ! TRACE FLAG OFF
1749 SSTEP BYT $FF ! SINGLE STEP ON
1750 COUNT BYT $00 !NO DELAY
1769 AREG BYT $90 !A ON ENTERING FROM BASIC
1770 XREG BYT $09 !X II

1780 YREG BYT $00 !Y •
1790 COL BYT $00 !CURSOR WHILE

LINES PRINTED
1800 ROW BYT $00
1810 OLLOW BYT $00 !PREVIOUS LINE LOW
1820 OLHIGH BYT $00 HIGH

198 Programming aid routines

1830 1 GCt~E
1840

8E49 AREG
8DEF BASI C1
8DFD CHCHAR
BE4C COL
BE3B DELAY
BE3B DLOOP1
BDJA E~BLE
BE4F OLHIGH
BD5F PMODE
BE4D ROW
BE24 SINGLE
BE2D SSLOOP
BD97 TRACE
BE4A XREG

BYT $09,$90~STORE FOR ORIG VECTOR
END ~A JMP TO HERE

SDB7 BASIC
BE43 BASIC2
8E12 CHDELAY
BE4B COLNT
8D61 DISABLE
BE3D DLOOP2
8E59 I GONE
BE4E OLLOW
BE16 ROLL
BD94 RIffiING
BDBF SPACE
BE47 SSTEP
BE46 TRFLAG
BE4B YREG

The ROM routines used are as follows:

CHROUT ($FFD2)
As DUMP (see page 190).

GETIN ($FFE4)
See Programmer's Reference Guide, The KERNAl function B-11'. This
removes one character from the current input device (usually the
keyboard buffer) and returns its ASCII value in A. Zero is returned if
none waiting.

PLOT ($FFF0)
See Programmer's Reference Guide, 'The KERNAl function B-19'. Reads
the cursor position with the carry set and positions the cursor when
the carry is clear. Misleadingly, x is used for the row and Y for the
column.

PRINT LINE NUMBER ($BDCD)
Useful little routine, this one, and well worth noting. Not only can it be
used for line numbers, but also for a two byte unsigned integer ($0000
to $FFFF). Before calling it, x must hold the low and A the high byte. It
also strips off the traditional leading and trailing spaces before
printing.

HANDLE NEW LINE ($A734)
This routine is vectored by the page 3 vector IGONE ($0308) and $A7E4 is the
64's default setting. This is BASIC'S token DISPATCH routine and is covered
in great detail in Chapter 3. When used with the UTILITY, IGONE has been
modified and hence the reason why IGONE has been first read and

Programming aid routines 199

stored. Doing it this way means the routine will work with or without
the UTILITY. IGONE is called to tokenize each new line and is thus the
ideal point at which to patch our trace.

LINE 130-290: TRACE ENABLE: These set up TRACE ready for when you
RUN a BASIC program. A scan is made for direct operation only, and only
if it is direct do we continue. During this initialization the interrupt will
be disabled. The default speed is single step and its value is stored in
the appropriate location at the end of the routine. The original value of
IGONE, BASIC Character Dispatch Vector (see Chapter 6), are stored for
safe-keeping and the start of TRACE replaces them. After clearing the
interrupt, we return you to BASIC until the RUN command is issued.

LINES 330-290: TROFF - Trace Disabled: The reverse of the TRACE set up
procedure.

LINES 470-690: The BASIC dispatch is used each time a BASIC command
is issued whether in direct or program mode. This means that the
routine can be called when not required. To avoid this, we check for
program mode, after preserving the processing registers, as in the set
up. If still in direct mode, we restore the registers and jump to the
normal DISPATCH routine. A final check is made before operating TRACE

to ensure it is enabled by looking at the TRFlAG at the end of the
routine.

LINES 730-1130: Display and updating are the purpose of these lines.
We print at the top of the screen so as not to disrupt your display. We
locate and save the current cursor position before setting it to the start
of our print, top row and column 24, and clear the area we use by
printing 15 spaces to the end of the line. After turning on reverse
video, we gather in the values of the previous line number and visit the
ROM routine to print it. To distinguish between the line numbers, we
put a space between them, after turning off the reverse video. We now
repeat the operation for the current line number. At the same time as
getting the current line number, we store its value in our previous line
store. As TRACE is called before every BASIC command is initiated, then
when more than one command is on a line the previous and the
present line numbers will be identical.

The instructions in line 1080 and 1100 are little tricks. Clearing the
carry will ensure that the branch will fail. The branch is there for a later
instruction when it will save a JUMP command.

Finally, we restore the original cursor position.

LINES 1170-1430: Is a speed change required? To find out, we use the
KERNAl routine GETIN. If there is no character or it is not between the
ASCII values of $30 and $3A, we branch out of this section. On
remaining here, we subtract $30 from the character value to convert
from ASCII to a real value between 0 and 9.

200 Programming aid routines

The zero value signifies single-step mode is required again, so its flag
is set to SFr.

The remainder have to be acted upon in order to gain our power of
two figures for delay purposes. The value we have is to be used as a
counter and so is transferred to the x register. To start with, we set the
carry and initialize the accumulator to zero. The accumulator is rotated
right x times. The first time, the bit set in the carry is transferred to bit
zero of the accumulator. The carry from this time on will be unset,
except for the last time when nine is the value of x and that will not
worry us. Every consecutive rotate will shift the set bit further to the
right and so increase the power of two of the value. When nine is
raised to a power the accumulator will end up with a value of zero, but
when the delay is explained, lines 1590---1090, you will see that this is in
effect 256, that is, 2'8. Finally, we disable the single-step mode, if set,
by storing zero in its flag.

LINES 1470-1530: SINGLE-STEP MODE: To check if it is in operation,
we test its flag. We not only look for the space character, which
operates single-stepping, but also for others by branching back to lines
1170 to 1430. This means to continue in single-step the space bar or a
numeral key will in fact cause the program to continue, the latter ones
ending single-step at the same time.

LINES 1590-1620: DELAY: This consists of a loop within a loop. The
inner loop is completed the number of times calculated earlier,
thereby giving variable time delays. When speed nine has been selec
ted COUNT is zero, the inner loop is carried out, and the COUNT is
decreased before checking for zero. When zero is decreased it
becomes $FF (255) so the check will fail until it is decreased to zero once
more. This therefore operates the inner loop 256 times.

Finally, we set the carry and branch back, as the accumulator will be
zero, to line 1100 where the Branch with Carry Set will send it further
back to jump in to the normal IGONE routine to carry out the BASIC

command.

IMPROVEMENTS?

It is possible to modify the trace to list not only the previous and
current line, but also to highlight the current statement being
executed.

To list a line we can use the LIST routine in ROM which starts at $A69C.

There are two major problems if we try to use it. The first is that LIST

uses a number of zero page locations also used during a run. The
second is that on completion of LIST a warm boot of BASIC is carried out.
(Try putting LIST in a program and running it.) We can overcome the
first by copying zero page to elsewhere in RAM before calling LIST. The
second requires that on return from LIST, we must re-enter our TRACE

Programming aid routines 201

routine at the next instruction after performing LIST which must restore
zero page. To do this we must read and store the warm start vector
IMAIN ($0302) and set it to the next instruction after LIST is called. TROFF

must, of course, reset this vector to its original value.
To highlight the statement within a listed line places even greater

demands on our ingenuity and would require the TRACE routine to be
rewritten to use CHRGET which has purposely been avoided (because of
DOS 5.1). If it were to use CHRGET, the line could be re-listed each time
with a marker character printed at the current byte held in TXTPTR

($7N$7B) through the use of the PRINT tokens link.
Both additions seem of little point as we can use the STOP key

followed by LIST line number(s). We have not even attempted to incor
porate either possibility.

Numeric conversions

In the world of the Commodore 64 we come across three main
numbering systems: that of decimal, to the base of 10, hexadecimal, to
the base of 16, and binary which is to the base of 2 (octal, to the base
eight is less common).

The binary number system is used because there are only two
numerals used: 0 and 1. This matches the type of electronics used in
the computer world, digital electronics, which has only two states,
either on or off. These two positions are known as logical states. Logic
1 is on and obviously logic 0 is off. These, as you can see, fit well with
the binary system.

The hexadecimal system was introduced because although binary
matches the electronics, it is unwieldly and is not so easy to recognize
in everyday form. Hexadecimal is easier to remember, using only two
digits to the binary eight, and therefore faster to type in. Hexadecimal
is nearly always entered in groups of two for example, $FF.

Decimal is used in our everyday life and is therefore used in BASIC.

One of its disadvantages is that numbers have varying amounts of
digits. For instance, in numbers up to 255 there are one, two or three
digits whereas with hex there is always two.

Some BASICS give you the option to enter numbers in forms other
than decimal. The Commodore 64 BASIC does not. We are not going to
rectify this but are giving you four conversion routines. These are
converting decimal and binary, and decimal and hex.

TEN - Decimal to hexadecimal conversion
COMMAND SYNTAX
TEN decimal number [,decimal number,]

The maximum decimal number that can be converted is 65535 and then
only positive numbers can be converted. Multiple conversions can be

202 Programming aid routines

done if they are separated by commas. The result will be a four digit
hex number.

ASSEMBLY LISTING

9 *=$84A9
18 START
29
38
49
58

69
78 NEXT
89
98

199
118

129
138 NEXT 1
149
158
168

178
188
199
298
219
228 EXIT
239 HEX
240
259 AGAIN
268
279
288
299
390

319
328
339 DIGIT
340
350

BEQ SYNTA.X
BCS SYNTAX
JSR $BIF5
LDA #$29
JSR $FFD2

LDY #$82
JSR HEX
DEY
BNE NEXT

LDY $14
STY $15

LDY #$82
JSR HEX
DEY
BNE NEXTI
JSR $8979

O1P #$2C
BNE EXIT
JSR $FFD2
JSR $0973
JMP START
RTS
LDX #$84
LDA #$89
ASL $15
ROL A
DEX
BNE AGAIN
O1P #$8A
BCC DIGIT+l

CLC
ADC #$37
BIT $3869
JSR $FFD2
RTS

GET PARAMETER

PRINT A SPACE
ON SCREEN

CONVERT A BYTE TO HEX

TWO CONVERTS FOR
EACH BYTE

PLACE LCU BYTE
FOR C~VERSI~

GET LAST BYTE
OF BUFFER AGAIN
COMMA FOR MORE NUMBERS
NO MORE TO CONVERT
PRINT COMMA AS SPACER

SET COUNTER
INITIALI SE ACC

I S IT 1 9 OR MORE
ASCI I ADDITION
FOR NUMBER

FOR LETTER

PRINT RESULT

369 SYNTAX

B405 AGAIN
B409 EXIT
B4AE NEXT
B4A9 START

JHP $AF9B

B4E2 OIGIT
B4D1 HEX
B4BA NEXTl
B4E9 SYNTAX

Programming aid routines 203

LINES 30-50: Here we pick up the first decimal number to convert. The
high byte wi" be in $15 and the low, in $14. We then print a space on the
screen so the first digit is a character away from the border or the last
PRINTed statement.

LINES 60-90: Each part of the hexadecimal number wi" have two
characters. As we wi" convert our decimal in two stages, the high byte
first then the low, each wi" require two entries to the conversion
routine. We therefore set a counter to two, in this case the y register.
After going to the conversion routine we decrease the counter. If it is
zero then we have done it twice, if not we go back again.

LINES 100-110: We have now converted the high byte. As the conver
sion subroutine uses the high byte register in the transposition, we
transfer the low byte of the decimal to that register.

LINES 120-150: This is the same as lines 40-70 but for the low byte.

LINES 160-220: The GET PARAMETERS has already picked up the byte after
the last decimal digit. Here we get that byte again by a call to CHRGOT.
We want to find out if more than one conversion is required. The
syntax of the command is for a comma as a separator, so we check for
that. If the check succeeds, we print the comma to the screen and go
back to convert the number. On failing the check, it is back to BASIC via
the RTS.

THE CONVERSION ROUTINE
We use this routine four times for every decimal number in the com
mand, twice for both the high and low bytes. We enter with the byte in
location $15. The hexadecimal number for a byte consists of two digits,
one for the upper four bits and the other for the lower four. As we
print on the screen from left to right, we print from the most significant
hex digit and therefore want the high bits of the decimal number first.

Hex uses numerals 0 to 9 and letters A to F. Unfortunately, these do
not follow in sequence in the ASCII table, as other characters lie
between 9 and A. We therefore have to test for this when converting to
ASCII for printing to the screen.

LINES 230-240: The x register is initialized to 4 as a counter for taking
off the required bits for each hex digit. The accumulator is used to
gather in the bits so is initialized to zero before we start.

204 Programming aid routines

LINES 250-28.0: This is the main part of the conversion. We use the
instruction ASl to move all the bits of the decimal byte one place to the
left. The most significant bit (bit 7) is moved to the carry flag. The least
significant bit (bit 0) is filled with zero (although that does not worry
us). We need the bit we put into the carry back in the accumulator.
This is achieved by the command ROl. This moves the accumulator bit
one place to the left, filling bit 0 with the carry value, which we have
just set (or unset). Bit 7 of the accumulator goes to the carry and again
it is of no use to us here.

Now the counter is decreased and checked to see if we have done
the bit shifting four times. We have now taken the four high bits of $15

(the decimal byte) and put them in the same order in the accumulator
but in the low bit positions.

LINES 290-350: The answer in the accumulator is now converted to
ASCII form and printed to the screen. If it is less than S0A, it is a number
so we add $30 to it. Greater than 10 means it is a letter, so we have to
add $37, giving letters from A to F.

HEX - Converting a hexadecimal number to decimal
COMMAND SYNTAX
HEX hex number [,hex number,]

The hex number can be of two or four digits. More conversions can be
added if separated by commas. The normal '$' sign which preceeds hex
numbers must not be used.

A four digit hex number can be split very conveniently into two
parts. The two left digits are the high byte whilst the right are the low
byte. Where a two digit conversion is required, we treat it as a low byte
number. The two digits can be further split in that one represents the
high nybble and the other the low nybble (a nibble is half a byte or four
bits) .

To do the conversion we collect two hex digits at a time and convert
them to a one byte answer.

ASSEMBLY LISTING

9 *=1-8537
10 START
20
30
40
50
60
70
80
90

100

STA $63
JSR $0973
STA $62
JSR DECIMAL
PHA
JSR $0073

GET NEXT BYTE

PUT HIGH ANS ON STACK

BEQ LOWPRINT ~ ONLY TWO BYTE HEX NO
Ct1P tt$2C I I S IT A CCH1A
BEQ COt1'1A YES & ONLY 2 BYTE HEX
STA $63

119
120
139
148
150
160
179
188
190
200
210 UJ,,JPRINT
220
239
240
259
260 CMiA
270
280
299
390 CCtt1Al
3Hl
320
339
348 DECIMAL
359 AGAIN
360
370

3BB
390
490
418
429
430
449

459
460 DIGIT
479

489 NEXT
490
599
510
529 NEXT1

JSR $9073
STA $62
JSR DECIMAL
TAY
PLA
JSR PRINT
JSR $9973
CMP #$2C
BEll COH'1Al
RTS
PLA
TAY
LDA #$89
JSR PRINT
RTS
PLA
TAY
LDA #$99
JSR PRINT
LDA #$2C
JSR $FFD2
JSR $0973
JMP START
LDY tt$91
LDA $9962,Y
CMP 1t$39
BCC SYNTAX

CMP 1$47
BCS SYNTAX
O1PIt$3A
BCC 01 GIT
CMP "41
BCC SYNTAX
SBC #$37

BNE NEXT
SEC
SBC #$39

STA $9014,Y
DEY
BPL AGAIN
LDY tt$94
ASL $15

Programming aid routines 205

PUT LOW ANS IN Y
GET HIGH ANS IN ACC
PRINT ANSWER
GET NEXT BYTE
I S IT A CCH1A?
YES

GET HIGH ANS
PUT IT IN LIl4 ANS REG
SET HIGH ANS TO ZERO
PRINT ANSWER

GET HIGH ANS
PUT IT IN UJ,,J ANS REG
SET HIGH ANS TO ZERO
PRNT ANSWER
ASCII FOR CCH1A
PRINT IT AS SPACER
GET NEXT BYTE

COUNTER
GET LW CHAR
I S IT A NlJ1BER
NOT NlJ1BER OR

LETTER
IS IT LETTER) F?

IS IT A NLt1BER?
YES
IS IT A LETTER?
NO
CONVERT ASCII LETTER
INTO REAL NlJ1BER
ENFORCED

CONVERT ASCII NlJ1BER
INTO REAL NlJ1BER

NEXT CHARACTER
COUNTER
PUT HIGH ANS IN
HIGH BITS

206 Programming aid routines

5313
549
5513
560
5713
589 SYNT~X

590 PRINT
609

6113
629
6313
640

857E AGAIN
8571 Cct1HA1
8595 DIGIT
8598 NEXT
85AD PRINT
85AA SYNTAX

DEY
BNE NEXT1
LDA $14
ORA $15
RTS
JHP $AF138
JSR $B391
JSR $84131

JSR $AD8D
JSR $BDDD
JSR $B487
JHP $AB21

JOIN BOTH TOGETHER

CCN~)ERT TO
POSITIVE REAL NUMBER

856A CCH1A
857C DECIMAL
8562 L(l.JPRINT
85A9 NEXT 1
8537 START

LINES 10-50: The routine is entered with the first digit and is stored.
Calling eHRGET, we get the next byte and again store it. The decimal
conversion routine is visited (this is described later), and the result
comes back into the accumulator which we place on the stack.

LINES 60-90: The next byte of the command is now collected and two
checks made, fi rst to see if it is the end of the command and secondly for
a comma. If the first succeeds we go off and print what we have already
collected, but as a low byte answer. If it is a comma, we again print but
will return to do further conversions.

LINES 100-130: This is a repeat of lines 10-50 except the result in the
accumulator is put in the y register instead of the stack.

LINES 140-200: The result of the four digit conversion is printed to the
screen here. The y register has the low byte and the high byte is pulled
off the stack into A. The print routine described at the end is now called.
The conversion is complete and we now check to see if further conver
sions are required by getting the next byte. If a comma is not present,
the routine is ended.

LINES 210-250: The low byte answer is printed here. The byte is pulled
off the stack and placed in the y register and the accumulator set to zero.
After printing, the HEX routine is left.

LINES 260-290: This is the same as lines 210-250 but instead of leaving,

Programming aid routines 207

we continue as we know there was a comma present when we arrived
here.

LINES 300-330: A comma is printed on the screen to separate the
answers. The first byte of the next conversion is gathered and we go
back to the beginning to start converting again.

LINES 340-570: THE DECIMAL CONVERSION: The two bytes will be in
locations $62 and $63. They will hold the ASCII values of either a
numeral or a letter between A and F. SYNTAX ERRORS are given if they
fall outside these limits.

Taking each location in turn, we determine what it is and deduct
from it $37 for a letter of $30 for a numeral, the value ending up
between $00 and $0F (0 to 15). These are placed in registers $14 and $15.
We now have to combine these into one number. Address $15 will
have the high nybble but in the wrong bit positions. To get them into
the upper four bits we shift the bits left four times. To join the two
together, the byte in $14 is copied to the accumulator and is oRed with
location $15. With the final result in the accumulator, we exit the
subroutine.

LINES 590-640: PRINT RESULT TO SCREEN: Six subroutines are called
here where the result of numeric calculations are converted to a
string of ASCII characters and printed to the screen which except for
one are all ROM routines. The one exception is a subroutine in the
DEEK routine (see Chapter 8). For convenience, we reproduce it
below. We enter this PRINT routine with numeric data, the Y register
holding the low and the accumulator the high byte.

ROUTINE $B391 - FIX TO FLOAT

This sets the data flag in $00 to zero signifying numeric data. The
number we wish to convert is placed in FAC#1 registers $62, meaning
that numbers over 32768 ($80) will be output as negative numbers.

ROUTINE $8401 - CONVERT TO POSITIVE

10
29
39
49
50
69
79 EXIT
B9 DATA

LDA $66
BPL EXIT
LDY tt)DATA
LDA #<DATA
JSR $BABC
JSR $BB6A
RTS
BYT $91,$90,$99,$09,$09

We check register $66 of the FAC#1 to see if it is negative. If so we load
FAC#2 with zero and set for no exponent. This is done through the
ROM routine $BA8C, entering with the data start address in A and Y.

208 Programming aid routines

Now by adding the two FACS together we will end up with a result in
FAC#1 which is a real whole number; $B86A will achieve this.

ROUTINE $AD8A-CHECK

This just checks that the data is numeric, otherwise a 'TYPE MISMATCH'

error is given.

ROUTINE $BDDD - FAC#1 TO STRING

This converts the contents of FAC#1 to an ASCII string and places it at
the bottom of the stack. The Y and A registers will hold this address
when the routine is finished.

ROUTINE $B487 - SET UP STRING

This sets various registers so that the PRINT routine knows where to
print from and how long the string is.

ROUTINE $AB21- PRINT

This takes the data from the bottom of the stack and prints it to the
screen. We jumped to this routine, so when it is ended, the processor
will be directed back to the position calling this whole subroutine.

This routine, being a separate routine, is therefore capable of being
used by other commands as in the MEM command.

TWO - Decimal to binary conversion
COMMAND SYNTAX
TWO decimal number [,decimal number,]

The maximum decimal number which can be converted is 65535 and
must be positive. Multiple conversions can be done if they are separ
ated by commas. The result will be two eight digit binary numbers
separated by a space, unless the number is 255 or less, when only one
binary result will be shown.

All we need to do is to test each bit and print a zero or a one
according to its state.

ASSEMBLY LISTING

9 *=$84EC
18 START BEQ SYNTAX
28 BCS SYNTAX
38 JSR $81F5 GET PARAMETER
413 LOA #$29
50 JSR $FF02 PRINT SPACE
68 LOA $15
78 BEQ LSB
88 LOX #$08 CO lJ.IT ER
913 NEXT ASL $15

109
118
120 SET
138
149
150
169
170
189 LSB
190 NEXT1
200
210
229 SETA
238
249
250
269

2713
288
299
390
319
328 EXIT
339 SYNTAX

8533 EXIT
84FE NEXT
8594 SET
84EC START

BCS SET+1
LDA #$39
BIT $31A9
JSR $FF02
OEX
BNE NEXT
LOA #$20
JSR $FF02
LOX #$08
ASL $14
BCS SETA+l
LDA #$30
BIT $31A9
JSR $FF02
OEX
BNE NE:<Tl
JSR $9079

ct1P #$2C
BNE EXIT
JSR $FF02
JSR $0073
JHP START
RTS
JHP $AF08

Programming aid routines 209

TO PRINT A 1
TO PRINT A a
SET+l IS LOA #$31

PR lNT A SPACE

SETA+ 1 IS LDA #$31

GET LAST BYTE OFF
BUFFER AGAIN
I S IT A Cct1MA?
NO CCM1A
PRINT COMMA AS SPACER
GET NEXT BYTE

8512 LSB
8514 NEXT1
85IA SETA
8534 SYNTAX

tiNES 10-20: On entering the first byte after the keyword is in the A
register and by testing the carry and zero flags, we can check if a
numeral is first.

LINES 30-150: We gather in the decimal number to convert and also
print a space for presentation to move it away from the last item
printed or from the border. Taking the high byte first, we check it for
zero, if it is a zero we branch and just dothe low byte. The x register is
set to eight as there are eight bits to a byte, and we shall use it as a
counter. We shift the bits of the high byte one place to the left. The
leftmost bit comes off and goes to the carry flag. If the carry flag is
zero, we therefore print ASCII $30 which is zero and $31 when the carry
is set. This is repeated a further seven times for all the remaining bits.

LINES 160-250: This is a repeat of the above except for the low byte.

210 Programming aid routines

LINES 270-320: By calling CHRGOT, we test for a comma or if the end of
the command has been reached. When the former is found, it is
printed to the screen and we gather in the next byte before going to
carry out the next conversion.

BIN - Binary to decimal conversion
COMMAND SYNTAX
BIN 8 bit binary number [,8 bit binary number,)

Here we will convert an eight bit binary number to decimal. We supply
a value that would be a high byte and one that is the low byte. For
example, if you demanded 11111111 was converted, the answer would
come out as 255. Only eight bit numbers are accepted but more
conversions can be done by separating the items with commas.

This is essentially the reverse of the previous command. The 1s and
0s you type in will be picked up in their ASCII form. These have their
rightmost bits corresponding to their numeric value, so by taking those
we can build up a single byte number.

ASSEMBLY LISTING

9 *=$85BF
10
20
30

40 LOW
50 ANOTHER
60 NEXT
79
89 SYNTAX
99 Nlf'1BER

199
110
120

139
140
150
160
170
180
190

200

219

LDA $7A
BNE LOW
DEC $7B

DEC $7A
LDX tt$98
JSR $9073
BCC NLNBER
JMP $AF98
Ct1P tt$32
BCS SYNTAX
ROR A
ROL $14

DEX
BNE NEXT
LDY $14
LOA tt$99
JSR $85AD
LDA tt$2F
JSR $FFD2

LDA $14

LDY #$09

DECREASE CHARGET
POINTER BY ONE

COUNTER
GET BYTE
IF NLNBER BRANCH

IS :> ASCII FOR 2
YES
GET BIT 9
PUT IN $14 HQI.,'ING
1 LEFT EVERY TIME

DONE IT 8 TIMES?
PUT ANS IN Y REG
NO HIGH ANS
PRINT ANS-HEX ROUTINE

PRINT SLASH TO DIVIDE
U)4 ANS & HI GH ANS
NOW PUT ANS IN
HIGH ANS REG
SET UXd ANS REG TO 9

220
238

248
250
260
270
280 EXIT

8SC? ANOTHER
85C5 LOW
85D1 NlJ1BER

JSR $85AD
JSR $0073

CMP #$2C
BNE EXIT
JSR $FFD2
JMP ANOTHER
RTS

85FB EXIT
85C9 NEA'T
B5CE SYNTAX

Programming aid routines 211

PRINT ANS-HE'I ROUTINE
GET NEXT BYTE OF
INPUT BUFFER
I S IT A CDr1t-1A?
NO
PRINT COMMA AS SPACER

LINES 10-40: This decreases CHRGET address by one.

LINES 50-140: We want to pick up eight binary digits so the x register is
used as a counter. After we pick up a digit, via CHRGET, we check for a
number and also if it is two or greater, in ASCII. By rotating the
accumulator right, we take off bit 0 and it ends up in the carry flag .
Then if we rotate location $14 left, we move all its bits one to the left and
put the carry flag state into the lowest bit. If we do this eight times ,
address $14 will have a number equivalent to the 1s and 0s you typed in.

LINES 150-220: The PRINT routine in the HEX command is used twice. For
this the low byte needs to be in y and the high in A. The value we want
to print is in $14 and by changing the register we load it into we can
print out the states we want. A slash is printed as a separator by a visit
to the KERNAL routine at $FFD2.

LINES 230-280: Having done one conversion, we take a look to see if
more are required. A comma is printed if so and then we go back to do
it all again.

8 Enhancing the
resident BASIC

Introduction

In the previous chapter the commands were of a toolkit nature. In this
chapter they are mainly improvements to the standard 64 commands,
COTO, COSUB, RESTORE, PRINT, INPUT, CET, PEEK, POKE and LOAD. To that end , we
are supplying CCOTO, CCOSUB, PROC, DPROC, EPROC, RESET, WRITE, ENTER, INKEY$,

DEEK, DOKE and CHAIN. There are five commands which have no 64 BASIC

equivalent, but which we hope will enhance your BASIC programming.
They are POP, PLOT, COLOUR, LOMEM and HIMEM. The final command given
is that of QU IT and exists the UTILITY.

In comparison with the toolkit commands these are shorter, but no
less useful to you. No doubt you can think of existing commands
which could be enhanced and even more to add. This chapter should
help you on your way.

CGOTO and CGOSUB

COMMAND SYNTAX

CCOTO variable or line number
CCOSUB variable or line number

A limitation of Commodore BASIC is that it does not permit the use of
calculated destinations with COTO and COSUB . We thought it would be
nice to be able to use variables and mathematical expressions, for
example M20. To allow this, we have come up with two commands
CCOTO and CCOSUB, the C standing for calculated or computed - which
ever you prefer.

CCOTO is the easiest of the two, not that either is complicated. The
routine requires only two instructions . In the BASIC ROM routine of COTO

the first instruction gets the line number and is therefore the only thing
we have missed out. So after getting the variable we only have to jump
to that part of COTO.

CCOSUB is a bit longer in that we have to copy the ROM routine for
COSUB and change the address for calling the COTO routine as we wd'nt
to use our 'computed' routine.

ASSEMBLY LISTING

9 *=$SFAF
10 CGOTO
213
313 ~ C1305U8
40
50

60

70
S0
913

lae

11 a
120
1313
140

150
160
170
180

8FAF CGOTO

JSR $SlF5
JMP ·t>A8A3

ROLITINE
LDA #$03
JSR $A~:FB

LDA $78

PHA
LDA $7A
PHA
LDA $3A

PHA
LDA $38
PHA
LDA #$SD

PHA
JSR $0979
JSR CGOTO
Jt1P $A7AE

Enhancing the resident BASIC 213

GET PARAt1ETER
GO TO ROM GOTO

CHECK FOR ROOM ON
STACK

SAVE CHRGET
ADDRESS ON STACK

SAVE CliRRENT LINE
NlJ1BER ~ STACK

MARKER FOR GOSU8
ON STACK

GET LAST BYTE AGAIN

BASI C TO EXECUTE
PROGRAt1 FURTHER

LINES 10-20: CGOTO: We use GET PARAMETERS simply to find the desti
nation line number. It will evaluate any expression, and jump to the
normal GOTO routine, one instruction in.

LINES 40-60: CGOSUB: These lines check if there is enough room on the
stack to store the routine's information and a buffer amount for other
routines. To do this the value in the accumulator is doubled and added
to $3E (62 dec). This is then compared with the stack pointer. If the stack
pointer is the lesser value, then an 'OUT OF MEMORY' error is generated.
In our case, the stack pointer would have to be less than $44 (it starts at
$FF).

LINES 70-130: There are two markers we will require when the sub
routine is finished. These are the present byte's address from the
CHRGET routine and the line number we must return to later. The stack
is used to store this information.

214 Enhancing the resident BASIC

LINES 140-150: Another value is put on the stack. This is used by the
RETURN routine to check a GOSUB has been implemented.

LINES 160- 170: Now we can go to our destination. To do this, we get
the last byte collected by CHRGET again and go to our new computed
GOTO routine.

LINE 180: Once the GOTO routine has been completed, in which the
CHRGET has been given new values, we return to the normal flow of
BASIC and the program is continued at its new address.

Procedures

COMMAND SYNTAX

PROC title - call a procedure
DPROC title - define a procedure
EPROC - the end of a procedu re

The title is not required within quotes. If it is then the quotes will be
considered as part of the name. Spaces also cannot be used as CHRGET

ignores them (a space in the DPROC title will not be matched in the PROC

title). On the other hand, a space in the PROC title will have no bearing
on the matching. A colon is the only other character which cannot be
used in a title.
You can have as many PROCS on a line as you want, but the DPROC must
be on a line of its own. Everything following the DPROC to the end of the
line is included as the title. EPROC follows exactly as RETURN.

64 BASIC cannot be described as a structured language. GOTOS and
GOSUBS do not form the basis of a structured language.

To start you on the road to 'structured programming', we are
in t roducing PROCEDURES. We have nothing profound to offer but by
giving you an introduction we hope you will be able to take it further
(IF .. THEN . . ELSE WHILE ... WEND DO .. . UNTIL etc ..)

The form of procedures we have written are really no more than
GOSUBS with names or variables (CGOSUB). In fact, they will be slower,
but not that you would notice, than GOSUBS because of the extra code
required. So what advantage will they have? Well,' they can be
relocated anywhere in the program without changing any directive line
numbers; adding procedures from one program to another, especially
if they include procedures within them, is asimple matter. If GOTO was
also given the same treatment, all directive line numbers could vanish.
Renumbering a program would be a simple matter of changing the line
numbers rather than going through the whole program and correcting
destinations. A further function they perform, and one that should not
be overlooked, is that they make a program easier to follow. For
instance, to see PROC PERFORM-WAIT is clearer than GOSUB 2000.

Enhancing the resident BASIC 215

Quite simply, all we do when finding a PROC is to search through for
the token DPROC and then compare the named titles. On finding it, we
perform a cosus. The UTILITY interpreter will action the command
DPROC as a REM if it encounters one. The third command of the trio is
EPROC and is just a RETURN by a different name. We actually go to the
RETURN routine. After the listing and description we suggest some
improvements.

ASSEMBLY LISTING

9 *=$8FD2
10
29
39
413
50 COLLECT
69
70
89
99

199 NAMEEND
119
1213
138
1413
158
1613
179
1813
199
299
2113
2213
238
2413
259
269
278
2813 NEXT
299
3913
319
329
338
3413
358

LDX *$913
[IEC $7A
BCS COLLECT
DEC $78
JSR $9973
BEQ NAME END
STA $92139,X
INX
BNE COLLECT
LDA "99
STA $82138,X
LDA #$93
JSR $A3FB
LDA $7B
PHA
LDA $7A
PHA
LDA $3A
PHA
LDA $39
PHA
LDA 1$8D
PHA
LDA $2B
STA $FB
LDA $2C
STA $FC
LOY "89
LDA ($FB), Y
STA $FD
INY
LDA ($FB) , Y
STA $FE
BNE CONT
LDX "$11

DECREASE CHRGET ADD

GET PROC NAME
FOUND 13 OR :
STORE IN INPUT BUFFER

ENFORCED
13 AT END

CHECK STACK DEPTH
SAVE CHRGET ADDRESS

SAVE CURRENT LINE NO

STACNMARKER FOR GOSUB

GET AND STORE
ADDRESS OF 1ST
PROGRAM LINE

GET AND STORE LINKS

NOT END OF PROGRAM
DPROC NOT FO~D

216 Enhancing the resident BAS IC

368 JMP $A437 UNDEFJD STATEMENT
ERROR

3713 CaNT LDY #$04 SKI P LINKS ~D
LINE NLt1BERS

380 LDA ($FB), Y
39£1 CHP #$E1 TOKEN OF DPROC
4013 BEQ PROC FOUND A DPROC
41£1 LINE LDA $FD PUT LINKS TO
4213 STA $FB LINE REGI STERS
430 LDA $FE
449 STA $FC
45£1 BNE NEXT ENFORCED $FE

CHECKED EARLI ER
469 PROC LDX #$FF
47£1 CHECK INX
4813 INY
490 LDA (i·FB), Y GET PROC TITLE
590 BEQ ZERO END OF LINE
510 CMP $£120£1 ,X I COt1PARE FOR HATCH
520 BEQ CHECK I HATCH FOLND
53£1 BNE LINE NO WtTCH FIND NEAl

DPROC
54£1 ZERO Ct1P $£1213£1 I COt1PARE LAST BYTE
sse R-IE LINE NO HATCH
569 SEC PREPARE FOR SUBTRACT
570 LDA $FB ADDRESS OF PROCEDURE
58£1 SBC #$01 DECREASE TO END OF

LAST LINE
59£1 STA $7A PUT AS CHRGET ADD
690 LDA $FC
61£1 SBC #$00 IN CASE PAGE CROSSED
629 STA $7B
63£1 Jt1P $A7AE BAS I C TO CONT PROG

902C CHECK BFDA COLLECT
9018 CeNT 91320 LINE
8FE5 NAME END 9906 NEXT
992A PROC 9939 ZERO

LINES 10-110: Using CHRGET, after decreasing it by one, we take the
PROC title and store it at the start of the input buffer and tag a zero byte
on the end for checking purposes.

LINES 120-230: Same as in CGOSUB, saving relevant details for RETURN, or
in this case EPROC.

Enhancing the resident BAS IC 217

LINES 240-360: After collecting the start address of the program, we
search through the program. This part gets the links and checks for the
end of the program . The UNDEF'D STATEMENT error is given if the latter
occurs without finding the procedure.

LINES 370-450: When inputting a BASIC line, any spaces between a line
number and the first character are removed during tokenizing, (LIST

inserts a space for clarity). This means that the first token in a line is the
fourth byte (starting at zero, remember), so we check only this byte for
the DPROC token of $E1. If not found, the link address is placed into the
line registers and the hunt continues.

LINES 460-550: Having found a DPROC token, we have to compare each
character separately and as long as they match we continue checking.
When we reach the end of the DPROC program line, we check the input
buffer for a matching zero. When all checks succeed, we have found
the required procedure.

LINES 560-630: Knowing our destination, we take the start address of
the DPROC line and reduce it by one, the end of the preceding line, and
store it as the CHRGET address. Finally, we jump to BASIC to evaluate.

IMPROVEMENTS?

One of the first questions that came to mind was: how could we speed
up the search for the procedures? One solution to the problem is to
form a table in RAM holding the start address where you first check to
see if the PROC name is in it. This would involve setting aside an area of
RAM: under ROM would be an ideal place, for such a table. Two charac
ters wou Id then have to be chosen: one to mark the end of an entry
and the other, the end of the table. The make-up of the table could
consist of the PROC name and its start address. How could the table be
filled? When the interpreter finds the keyword PROC, the table would
be searched for a match. If no match is found, then a program search,
like our routine, could be instigated. On finding the DPROC with the
correct name, it would be added to the table in case of another call .

There are, however, problems. Let us assume that a program con
taining PROCS has been RUN. This would mean the table has names and
addresses within it. Before running it again, you add an extra line
before the procedure. The line with the DPROC now has a different
address from that in the table. Another action giving rise to the same
problem is when you load another program. It may have a PROC with
the same name as the previous program. Again the table may have
another address. A further problem may arise in that more PROCS will
be added making the table longer and longer.

Two solutions to this problem spring to mind; there are probably
others. The first is to write a new RUN command, for example, PRUN,

218 Enhancing the resident BASIC

where one of its actions would be to place the end of table marker
back to the beginning - thereby effectively clearing the table. The
other is to have a command that can be actioned to do just this and
only this. It could be initiated in direct mode or from within a program.

A further improvement would be to allow parameters to be passed
using variables which are local to the procedure. These variables could
be used elsewhere in the program without losing their original values.
We would envisage the PROC command to include, in say, brackets, the
values or other variables to be used, for example, PROC INPUT(2,4,6) or
PROC INPUT(2,A,6). The DPROC, on the other hand, will define the variables
to be used. For example, DPROC INPUT(X,Y,Z). These variables may be
used elsewhere but in the procedure they will start with values given in
the PROC command.

What would have to be done is that when arriving at the procedure a
search is carried out for the variables X,Y,Z in the normal variable area. If
they are found, their current values would have to be transferred to a
keeping area, and the new values set up. If the variable is not present,
then it will have to be created. The default value of a numeric variable
is zero and this will also have to be stored in the keeping area. For
strings, the addresses will have to be stored. The EPROC would have to
reverse the situation and restore the original values.

The process would be the same if you wanted to incorporate GLOBAL

and LOCAL commands to a BASIC extension.
Our last improvement, although we are sure you could think of

more, is to allow the names of procedures to include keywords. This
would be relatively simple in that all you have to do is to slightly alter
the CRUNCH token routine (see Chapter 3). In that routine when it
comes across a REM, for instance, it skips further crunching. All you
have to do is to insert further coding to check for PROC and DPROC and
follow the same path as REM.

POP - RETURN without returning

COMMAND SYNTAX

POP

There are no parameters to this command. If it is activated without a
GOSUB, CGOSUB or a PROC being used, a 'RETURN WITHOUT GOSUB' error will
be generated.

There are many occasions when one requires to leave a subroutine but
not go back to the calling position. This is, of course, possible but
leaves values on the stack; do it too often and the stack will become
full and an 'OUT OF MEMORY' error will occur

pop will remove from the stack the data placed there by the last

Enhancing the resident BASIC 219

COSUB, or equivalent. This will mean, for example, if you called a
subroutine which in turn called another and whilst in the secon'd you
called POP, then you will go back to main program when the RETURN is
met, not the first subroutine. A COTO after a pOP will mean you can go
anywhere from a subroutine without any worries about the stack. pop

will also discharge any FOR/NEXT loops. If you happen to be in one at the
time, watch out.

ASSEMBLY LISTING

9 *=$8631
19
20
39

49

59
60
79

80
99 CCtff

1013

110
129
130
149
150

8642 CCtff

LOA tt$FF
STA $4A
JSR $A38A

TXS

CtiP tt$80
BEG CONT
LOX tt$16

JMP $A437
INX
INX

INX
INX
INX
TXS
RTS

RESET FOR/NEXT PTR

SEARCH STACK FOR
GOSUB & FOR ACTIVITY
X REGISTER TO
STACK POINTER
GOSUB MARKER ON STACK

ERROR-RETURN
WITHOUT GOSUB

REM~E GOSUB ACTIVITY
INCREASE X AS IT WILL
BE STACK POINTER

REPLACE STACK POINTER

LINES 10-20: By loading $4A with $FF, we effectively cancel any FOR/NEXT

loop.

LINES 30-80: This is the ROM routine used by RETURN to look for the
COSUB marker on the stack. On return the stack pointer is in the X
register and the accumulator has a value from the stack. If this is $80,

the RETURN marker was present. An error will be produced if anything
else is found.

LINES 90-150: To remove the COSUB activity, we take the stack pointer,
which is still in the X register, and increase it by five and then use it as
the new stack pointer.

220 Enhancing the resident BASIC

RESET - Selective data restorer

COMMAND SYNTAX

RESET [line number]

When no line number is present it behaves as the standard command
RESTORE. With the parameter it will set the DATA pointer to the specified
line.

DATA statements are extremely useful commands, and with sprites on
the 64 you no doubt use them frequently. The snag comes when you
want to use the same DATA statements again. RESTORE only allows you to
set the pointer back to the first DATA statement, actually the start of the
program , which has the same effect. To use statements again that are
not at the beginning, dummy READS have to be employed to get to the
desired position. To allow you greater flexibility, RESET will allow you to
specify the line the next READ will start at, whether before or ahead of
the present position. The RESTORE command takes the start of program
address, subtracts one from it, and places it in the DATA pointer regis
ters. RESET will take the line number, find its address, decrease it and set
the pointers. Although the routine will give an error if the prescribed
line number is not present, we do not check to see if it is a DATA line.
This does not matter to BASIC as it will find the next DATA line when READ

is sanctioned.

ASSEMBLY LISTING

9 *=$B611
10
28

30 RESET
40
58
60
70
B0 CCNT
99

100
119
120
139
140
159

B623 CCNT

BNE RESET
JMP $ABID

JSR $B1F5
JSR $A613
BCS CONT
LOX *1$15
JMP $A437
SEC
LOA $5F
SBC *'$91
STA $41
LDA $69
SBC #$99
STA $42
RTS

8616 RESET

CHECK FOR PARAMETER
NO - RESTORE IN
BASI C ROM

I GET LINE NUMBER
FIND BASI CLINE
FOUND LINE
ILLEGAL DIRECT ERROR
ROM ERROR ROUTINE
PREPARE FOR SUBTRACT
LCU ADD OF LINE
DECREASE BY ONE
DATA REG IN PAGE a
HIGH ADD OF LINE
IF PAGE IS CROSSED
DATA REGI STER

Enhancing the resident BASIC 221

LINES 10-20: If no line number, we go straight to RESTORE in the ROM.

LINES 30-70: When the line number is picked up it will be in the right
location for a line search, which is immediately carried out. The carry
flag set will indicate the line was found. The error given for not finding
it is 'ILLEGAL DIRECT'.

LINES 80-150: Locations $5F and $60 will have the address of the line,
and from these we subtract one and store them in the DATA pointers.

DEEK and DOKE - BASIC Addressing

It should be clear by now that addresses are stored in two locations as a
low and a high" byte. In the resident BASIC the only way to find the
address, held in locations, is to do two PEEKS, one for each location,
then multiply the high byte by 256 and add in the low byte, giving the
address in decimal. To set up an address, the reverse process is used,
but using POKE in place of PEEK.

The UTILITY commands are therefore obvious. We wish to read or set
an address, or pair of locations, with one command. These are DEEK and
DOKE.

DEEK - seeing double

COMMAND SYNTAX

DEEK (low byte location)

Th is returns the 16 bit value held in the given address and the following
one. The rules for PEEK apply in that it must be an argument to a
command (that is, a function).

ASSEMBLY LISTING

9 *=$83D7
113
20
30
40
513
60
713
80
90

1130
1113
120

LDA $15
PHA
LDA $14
PHA
JSR $AEFA
JSR $81F5
JSR $AEF7
LDY #$91
LDA ($14),Y
TA.X
DEY
LDA ($14) ,Y

CHECK FOR (
GET PAPAMETER
CHECK FOR)

222 Enhancing the resident BASIC

130 TAY
140 PLA
150 STA $14
160 PLA
170 STA $15
180 TXA
190 JSR $B391 A & Y IN FAC#l
200 JSR CCt"'-JERT
210 PLA
220 PLA
230 JHP $AD8D EXIT
240 CCNVERT LOA $66 CHECK FOR SIGN
250 BPL EXIT
260 LDY tt>DATA
270 LDA #<DATA
280 JSR $BA8C CONSTANT TO FACtt2
290 JSR $B86A ADD FAC#2 TO FAC#l
300 EXIT RTS
310 DATA BYT $91,$0O,$09,$00,$00

8491 CCNVERT 8419 DATA
840F EXIT

LINES 10-40: DEEK, being a BASIC function rather than a command, is
used in conjunction with other keywords. You have no doubt gathered
that keywords use a fair number of zero page locations, notably $14, $15

and the FACS . We cannot take DEEK in isolation and also have to get its
parameters. The latter means that we will use $14 and $15. We do not
require to use these on exit, so we take the precaution of saving the
current contents on the stack for the time being.

LINES 50-70: These not only get the parameters, but also check for the
convention of them being in brackets. The ROM routines used will give
the error if they are not present.

LINES 80-180: Using the address, now in $14 and $15, we read the
contents and store them into the registers A and Y. We can restore the
original values to $14 and $15, and do so.

LINES 190-230: The calling routine will expect the result in the FAC#1

and this is all the routine at $B391 does. Unfortunately it also stores it as
a signed integer. To correct this, CONVERT is called. Having done so, we
pull off the return address, but we do not require to go back to the
evaluation routine, and jump back to ROM. In ROM it will check that it is
numeric data and will return to the calling routine, say PRINT or DOKE.

LINES 240-300: CONVERT: If the number requires converting it will have

Enhancing the resident BASIC 223

a negative sign. With no sign we exit the routine. Failing that we load a
constant into FAC#2 which when added to the contents of FAC#1, will
change it to an unsigned number. For a more detailed explanation, see
MEM in Chapter 7.

DOKE - complete addressing

COMMAND SYNTAX

DOKE low byte address, value

This turns the value to a two byte number and stores it in the given
address and the following one. The value has a maximum of 65535
($FFFF) .

ASSEMBLY LISTING

9 *=$83B3
18
28
38
48
58
69
78
89
98

1913
119
129
130
1413
158
169
178 ERROR

8304 ERROR

JSR $81 F5
JSR SAEFD
JSR SA08A
LDA $66
8MI ERROR
CMP 1$91
BCS ERROR
JSR $BC9B
LDA $65
LOX $64
LOY tt$99
STA ($14),Y
IN'(
TXA
STA ($14) ,Y
RTS
JHP $B248

GET PARAt1ETER
CHECK FOR CCJ1t'1A
GET NEXT PARAMETER

PUT PARAMS IN A & Y

ILLEGAL QUANTITY
ERROR

LINES 10-30: The first routine called is the familiar one. The address
will be in $14 and $15 after this call. The next routine checks for a
comma. The last one collects the data for storing and puts it in the
FAC#1.

LINES 40-80: These check for the legality of the data and set up the
FAC#1 so we can take our values off.

224 Enhancing the resident BASIC

LINES 80-160: After getting the data from FAC# l , we store them in the
addresses specified.

OUTPUT - Setting the cursor

In the standard BASIC, the normal way to set the print position is to use
the cursor control codes. Although they do the job, they are not ideal.
You have to remember where the current position is , they take up
bytes in the program, and TAB and SPC are not much better.

A far better way would be to specify the X and Y coordinates directly.
To do this , three commands are included here, PLOT, WRITE and ENTER.

The first will only set the cursor , the second will set the cursor and
print what you want, whilst the last is IN PUT with cursor positioning. The
major command as far as routines go is PLOT. It really is a subroutine for
the other two.

PLOT - cursor setting

COMMAND SYNTAX

PLOT (X,Y)

The maximum value of X is 39 and of Y is 24. The top left hand corner of
the screen , cursor home position, has the coordinates of O,O.

ASSEMBL Y LISTING

9 *=$8381
10 JSR $AEFA CHECK FOR (
20 JSR $81F5 GET PARAMETER
30 LDA $14
49 CMP #$28 I S X) 40
50 BCC CCt1HA
60 ILLEGAL JSR $8248 ILLEGAL QUANTITY

ERROR
79 COt1'1A PHA
80 JSR $AEFD CHECK FOR COH'IA
90 JSR $81F5 GET PARAMETER

100 LOX $14
11 a CPX #$19 IS Y) 25
120 BCS ILLEGAL
139 PLA RETRIEVE 1ST PARAM
140 TAY
159 CLC SET NOT READ CO-OR
160 JSR $FFF0

1713
180

JSR $0073
RTS

Enhancing the resident BASIC 225

GET NEXT BYTE

83913 COt-1'1A 838D ILLEGAL

LINES 10-70: The left hand bracket is checked for and the X coordinate
of the command is picked up. It is then checked that it does not exceed
the limit. On an occasion that it does, we go to a ROM routine whose
sole purpose is to generate the ' ILLEGAL QUANTITY ERROR'. We require to
use location $14 again so the X coordinate is put on the stack for a
while.

LINES 80-120: After checking for the separating comma, we get the Y
coordinate. This, too, is checked for legality.

LINES 130-180: the Y coordinate was picked up in the X register and
now we retrieve the X coordinate and place it in the Y register. This is
the opposite to what is logical but the KERNAL routine calls for them in
that order. Before calling the routine, we clear the carry flag. (If we set
the carry we wou Id read the cu rsor position.)

After setting the cursor we get the next byte. This is for WRITE and
ENTER so that they are set up for their respective ROM routines.

WRITE and ENTER

COMMAND SYNTAX

WRITE (X,Y)[string or variablel
ENTER (X, Y) [stri ngl, variable

The coordinates take the syntax of PLOT. The remainder of the com
mands have the same syntax as their respective standard commands,
WRITE as PRINT and ENTER as INPUT.

ASSEMBLY LISTING

9 *=$83A7
10 I WRITE
213
30
413 ENTER
50
60

COHt¥tND -PRINT
JSR $8381
Jt1P $AAA0

CCt1tw-JD -INPUT
JSR $8381
JHP $ABBF

PLOT ROUTINE
I PRINT ROUTINE IN ROf"l

PLOT ROUTINE
INPUT ROUTINE IN ROM

These simply call the previous PLOT routine and then go to their normal
ROM routines.

226 Enhancing the resident BASIC

Colour

COMMAND SYNTAX

COLOUR backgroundLborder]Ltext]

The latter two parameters are optional. If they are omitted it will not
affect their present values. There is no error checking on values in the
command. However, only the low byte of a number is used, that is,
numbers up to 255, and of that only the lower four bits have effect (15
uses four bits whilst 16 uses five). The values to be used are the same as
in the Programmer's Reference Guide or if you prefer the key number
less one, with the logo key the number plus seven. Variables can be
used as parameters. If no parameters are used, the background only
will be changed, and that will be to black.

ASSEMBLY LISTING

9 *=$8352
19 JSR $81F5 GET PARAMETER
29 LDA $14
39 AND tt$9F
49 STA $D921 BACKGROUND
se JSR $9979 GET LAST BYTE AGAIN
69 BEQ EXIT
7£1 JSR $AEFD I CHECK CCH1A
89 JSR $81F5 GET PARAMETER
99 LDA $14

1013 ~D "BF
11 B STA $D929 BORDER
129 JSR $9979 GET LAST BYTE AGAIN
130 BEQ EXIT
149 JSR $AEFD CHECK CotflCt
159 JSR $81F5 GET PARAMETER
169 LDA $14
170 AND tt$9F
189 STA $9286 I TEXT
19£1 EXIT RTS

8389 EXIT

LINES 10-60: This handles the background colour. We get the first
parameter of the command, and load in the low byte only. This is
ANDed with $0F which will set the top four bits to zero no matter what
state they were in. The result is used to set the colour. Finally, we

Enhancing the resident BASIC 227

check, by getting the last byte again, if the end of the command has
been reached. If it has not, we continue.

LINES 70-130: This first checks for the comma. Then we can get the
parameter and proceed as for the background, except to store the
value in the border register.

LINES 140-190: This is the same as above except, of course, we set the
text colour.

CHAIN - Passing variables

COMMAND SYNTAX

CHAIN ["filename"],[devicel

The syntax for CHAIN follows that for LOAD except for the secondary
address. No errors will be given (or the inclusion of the secondary
address, as the routine will overwrite it.

One of the problems of LOAD is that if you load a larger progrram, after
running a smaller program, you overwrite any variables. Also LOAD, if
initiated by a direct command, will perform a CLR so you will lose the
variables anyway. Sometimes we wish to transfer as many of the vari
ables as possible from one program to another, hence CHAIN.

CHAIN differs from the normal LOAD in two respects. First, it saves the
data held in the variable and string areas before the load and restores it
afterwards. Secondly, it automatically RUNS the program - obviously it
has to be in BASIC.

CHAIN transfers the area of memory holding the variables and arrays
to below the string storage. The desired program is loaded and then
the data moved back down to the end of the new program. Finally all
we have to do is to RUN the program.

Although a fuller, and better, explanation of the way variables are
stored is given in Chapter 1, here is a reminder of areas that CHAIN

cannot deal with. Defined functions are held in the program, only the
pointer is in the variable area, and therefore cannot be transferred. The
same applies to strings unless they are concatenated or held in arrays.

There are two listings for this command. The first is entered on the
command and it will call the main CHAIN routine. Although the CHAIN

routine works as designed we found that, due to the memory move
routines, if there were no variables to move you ended up with a page
which could contain anything. The first routine will rectify that after the
main routine. This also means that CHAIN could be used as a direct
command to load and run disk or tape programs.

228 Enhancing the res ident BASIC

ASSEMBLY LISTING 1

9 *=$92B3
10 LDA $32 EN(> OF ARRAYS
20 CMP $2E CHECK I"'ITH START

OF VARIABLES
39 BNE ZERO+l
40 LDA $31
59 CMP $2D
60 BNE ZERO+l NOT THE SAME ADDRESSES
79 LDA #$80
80 ZERO BIT $00A9
99 STA $6C $013 FOR IJARIABLES

$89 FOR NONE
1013 JSR $13979 GET LAST CHRGET BYTE
110 JMP $9080 PERFORM CHAIN
129 LDA $0C GET FLAG
130 BPL RLN tJARIABLES
1413 DEC $30 DEC ARRAY ADDS BY· PAGE
150 DEC $32
1613 RUN JNP $A7AE

92D3 RLN 92Cl ZERO

ASSEMBLY LISTING 2

9 *=$9080
10 JSR $EID4 GET LOAD

PARAI'lETERS
20 LDA #$39 ENSURE RELOCATING LOAD
30 STA $B9
413 JSR $B526 GARBAGE COLLECTI Cl-J
50 LDA $2D START OF BLOCK TO MOVE
60 STA $5F
79 LDA $2E END OF RESIDENT PROG
80 STA $60
90 SEC

1013 LDA $31 END OF BLOCK
110 STA $5A
123 SBe $2F CALC AREA OF ARRAYS
130 STA $FD
1413 LDA $32 ALSO END OF ARRAYS
150 STA $5B
1613 SBC $30
170 STA $FE

Enhancing the resident BASIC 229

189 LOA $33
190 SEC NEW END OF BLOCK
2913 SBC #$131
210 STA $58
2213 LDA $34
230 SBC #$913
249 STA $59
250 JSR $A3BF PERFORM MOVE
269 LOA $37 SAVE END OF BASI C AREA
279 STA $41
2813 LOA $38
290 STA $42
399 LDA $58 SAVE BEGI~ING OF

NEW BLOCK
319 STA $FB
320 STA $37 SET TOP OF BASIC AREA
339 INC $59 RECTIFY PAGE
340 LOA $59
359 STA $FC
369 STA $38
379 LDX $2B SET LOAD ADDRESS
380 LDY $2C
3913 LDA #$90 SET FOR LOAD
490 JSR $FFD5 KERNAL LOAD
419 BCC STATUS !'¥tYBE GOOD LOAD
420 Jt1P $E0F9 LOAD ERROR

DEP8"DING (t.l A
430 STATUS JSR $FFB7 READ I/O STATUS WOF:D
449 MID #$BF
450 BEQ CCf'.lT LOAD OK
4613 LDX #$1 D
470 Jt1P $A437 LOAD ERROR
4813 CONT ST'-< $2D SET END OF PROGRAM
490 STY $2E
5913 STX $5F SET FOR VARIABLE NOVE
510 STY $69
529 LOA $FB START OF BLOCK TO HOVE
530 STA $5A
5413 LDA $FC
550 STA $5B
5613 SEC
570 LDA $33 ENO OF BLOCK
5813 SBC #$01
590 TAY
60e LDA $34
610 SBC #$013

230 Enhancing the resident BASIC

629 TAX
630 TYA
649 SEC CALC AMOUNT TO H(P..JE
650 SBC $:A
660 STA $58
670 TAY NO OF BYTES OF

INCCliPLETE PAGE
689 TXA
690 SBC $5B
790 TAX NO OF PAGES TO H(P..JE
710 IN>:: FOR EASIER CHECKING
729 TYA
730 BEQ PAGE NO SEPARATE BYTES
749 LOA $SA MOVE SEPARATE

BYTES FIRST
759 CLC
760 ADC $58
770 STA $5A
788 BCC NOINC
799 INC $58
B90 CLC
819 NOINC LOA $5F
820 ADC $58
830 STA $SF
840 BCC NOINCA
S50 INC $60
860 NOINCA TYA
870 EOR #$FF 1 J S COMPLEMENT
880 TAY
890 INY 2' S COMPLEMENT
900 DEC $5B
910 DEC $60
920 PAGE LDA ($5A) , Y
930 STA ($5F) , Y
940 }NY
950 BNE PAGE
960 INC $5B
970 INC $60
988 DEX POINTER FOR COMPLETION
990 BNE PAGE

1900 SEC
1010 LOA $SF
1920 STA $31 NEW ARRAY END
1030 SBC $FD CALC ARRAY START
1940 STA $2F
1050 LOA $60

1968
1079
1988
1099
1198
1119
1128
11313
1148
1159
1168
1179
1180
1190
1290
1219

99E3 Cctfr
9123 NOINCA
99D7 STATUS

STA $32
SBC $FE
STA $39
LDA $41
STA $37
LDA $42
STA $3B
PLA
PLA

Enhancing the resident BASIC 231

RESET END OF BAS I C

REMOVE RETURN ADDRESS
RECHAIN LINES JSR $A533

LDA #$99
JSR $FF99
JSR $FFE7
JSR $A677
JSR $A68E
JHP $92CC

TURN OF KERNAL MESSAGES
CLALL

9119 NOINC
912C PAGE

END OF CLR
BACK UP TEXT POINTER
BACK TO FIRST ROUTINE

As CHAIN is just moving memory and loading, it is an amalgamation of
routines previously described . Where we come across lines used else
where, the description will direct you there. By copying lines rather
than using subroutines, we make the routine more transportable.

LISTING 1

LINES 10-110: Here we find out if there are variables to move by taking
the address of the end of program away from the end of arrays address.
On the result we set a flag in location $0C to $80 ' or $00 denoting
variables. We then jump to the main CHAIN routine, LISTING 2.

LINES 120-160: Having returned from the routine, we check our flag
by loading and testing the sign flag. A positive result tells us that
variables were transferred and no further adjustments are required. If
the result was minus, then the addresses denoting the start and end of
arrays are reduced by one page, the high byte of the address less one.
The final action of CHAIN is to go to ROM, where the next BASIC line is
executed. The main routine does the setting up for this just before it
comes back to here.

LISTING 2

LINES 10-40: We use the ROM routine to get and set up the loading
parameters. To ensure that the load has no secondary address, we

232 Enhancing the resident BASIC

unset that location. The garbage collection routine at $B526 will tidy up
the variable area so that it uses the least space possible.

LINES 50- 250: Although the locations from which the addresses are
gathered are different, these lines are discussed in Chapter 6, Memory.
Moving, lines 1190 - 1340 (see pages 131-136) . There is, however, one
extra item involved. To be able to set the start of array address, after
loading, we calculate its number of bytes and store it in locations $FD

and $FE .

LINES 260-360: The data has been moved and now we protect it by
changing the pointer to the limit of BASIC. This value will be obtained
from the move routine, locations $58 and $59, after increasing the latter
by one . This is because in the move routine the high byte is decreased
before checking for comp letion . Increasing rectifies this. The original
end of BASIC pointer is stored for later use.

LINES 370-470: The loading sequence is covered in the MERGE and
APPEND routine in Chapter 7, lines 550-640 (see pages 158-163).

LINES 480-990: Moving the block down is virtually identical to lines
90-550 of Memory Moving in Chapter 6.

LINES 1000- 1210: With the major work done, just the clearing up
remains. First we calculate the new start of arrays and set its registers.
Then we restore the pointer to the end of BASIC. Six ROM routines are
visited to finish off the routine . The first two rechain the lines of the
BASI C program, so that the interpreter can follow them , and turn off the
KERNAL messages. The call to $FFE7 closes all open fi les and sets the
input/output channels to their default values. The following subroutine
is made halfway into CLR. This will do a RESTORE, reset CONT locations,
and amend the stack point. The last two routines will do the auto-run.
The former sets the CHRGET address to one byte before the program
starts. The last one returns us to the calling routine to finish off.

INKEY$ - A waiting GET

COMMAND SYNTAX

INKEY$
ii INKEY$ 1 11 1

ii i INKEY$ A$ - where A$ is predefined
IV INKEY$ "characters"

All commands will stop and wait for a key press. The first two will wait
until any key is pressed. The latter two will wait for a key press
corresponding to a character within the defined string. The ASCII value
of the key press will be placed in the variable ST, and will remain there
until an input-output is performed on cassette, serial or RS232 .

Enhancing the resident BASIC 233

In 64 BASIC there are two commands for receiving a user input from
the keyboard: INPUT and GET. The last accepts a key press without a
RETURN but will not wait for one. This entails checking the input and
GOTOS until the key press you want is received (see Chapter 4 on
checking for function keys in BASIC) . INPUT waits for a key but you also
have to press RETURN, and the cursor is also in operation.

INKEY$ will sit and wait for a key press, after emptying the keyboard
buffer, and , if required will check for a particular key or keys. To allow
for further checks we use the reserved variable 'S1' to store the input.
Using ST is easy in that it has a predefined location in zero page.

ASSEMBLY LISTING

9 *=$904E
10
213 ANYKEY
30
413 BYTE
50
613
70
813 STRING
90

UHl
110
1213
130
1413
150 BYTE 1
1613
170
1813
190 NEXT
290
210
2213
230
2413 HATCH
250

9050 ANYKEY
996C BYTE 1
9074 NEXT

BNE STRING
LDA #$09
STA $CB
JSR $FFE4
BEQ BYTE
STA $90
RTS
JSR $AD9E
JSR $B6A3
CHP #$00

PARAMETERS PRESENT
CLEAR KEY BUFFER

GET CHARACTER
NO KEY
8T LOCATION

GET STRING
DI SCARD Lt.fWANTED STRING
NULL STRING?
NULL STRING BEQ ANYKEY

STA $FB
LDA #$013

I NO OF CHARS IN STRING
EMPTY KEY BUFFER

STA $C6
JSR $FFE4
BEQ BYTEI
LDY $FB
DEY
Ct1P ($22), Y ~
BEQ HATCH
DEY
BPL NEXT
8MI BYTE!
STA $90
RTS

GET C~RACTER
NO KEY
GET NO. OF CHARS

CHECK STRING
FOUND SAME CHAR

CONTINUE SEARCH
ANOTHER KEY PRESS
ST LOCATION

9054 BYTE
9B7D MATCH
995C STRING

234 Enhancing the resident BASIC

LINES 10-70: If there are parameters (cases ii, iii and iv of the command
syntax) , the zero flag will not be set and these lines are skipped over, at
least for the time being. Proceeding on we set the flag for the number
of characters in the keyboard buffer to zero . The KERNAL routine at $FFE4

will return the ASCII value of key presses in the order they were placed
in the buffer. If none, then the accumulator will hold zero, so we
continue to call the routine until a value is returned . That value is
placed in the location which the reserved variable ST uses, and we
return to continue the BASIC program.

LINES 80-240: The call to the ROM routine does our string work. It finds
the string, especially if it is a variable, determining its length and giving
syntax errors if a non-string parameter was supplied. On returning
from the routine, the number of characters will be in A and the start
address in locations $22 and $23. If there were no characters in the
string, we branch back to the previous section and wait for any key.

After clearing the buffer and getting a key press value we can check it
against the string. The Y register will be loaded with the number of
characters and decreased as we check the whole string. If the complete
string is checked and no match is found , then the next key press is
evaluated. Once a match is found, it is stored in ST and we return to
carryon with your program.

LOMEM and HIMEM - Setting the area of work

COMMAND SYNTAX

LOMEM address
HIMEM address

The address range that is permissible with these commands is between
1024 and 32767. 'ILLEGAL QUANTITY' errors are given outside this range .
The actual start of a program will be one greater than the address given
in LOMEM. Commands can be used in direct or program mode.

Changing the memory configuration is a useful , and indeed neces
sary, task . By raising the base of a program, you can store items such as
sprite data, hires screens or even two normal screens and it will not be
affected by a program.

At the other end you may wish to put a machine code routine and so
to protect it at the top of memory from being overwritten by the
variables , so you can set the limit of BASIC to below your routine .

LOMEM will set the lower and HIMEM the upper limit of BASIC. SO that
they could be used in a loader program the routine does not clear that
program. Subsequent programs will be loaded to the new LOMEM

address. The ideal place for these commands is at the beginning of a
program before any variables are defined. Variables defined after these

Enhancing the resident BASIC 235

commands will be placed in the new area. You can use CHAIN to load
the next program if there are variables you wish to transfer.

ASSEMBLY LISTING

9 *=$9169
10 INPUT BNE GATHER PARAMETERS
29 JMP $AF98 SYNTAX ERROR
30 GATHER JSR $B1F5 GET PARAMETERS
49 LOA $15
50 CHP M$94 CHECK LfJJJ LIMIT
69 BCS TOP O.K.
70 ERROR LOX tt$9E ILLEGAL QUANTITY
B9 JMP $A437 I ERROR ROUTINE
99 TOP CHP M$80 UPPER LIMIT

199 BCS ERROR FAILED
110 RTS
129 START OF HIMEM
130 JSR INPUT
149 STA $38 SET TOP POINTER
150 LOA $14
169 STA $37
178 JMP $A65E CLR AND RETURN
189 START OF LCt1EM
198 JSR INPUT
299 LOY "89
210 TYA
229 STA ($14) ,Y~ CLEAR FIRST 3 BYTES
230 INY
249 STA ($14),Y
258 INY
269 STA ($14),Y
270 LOA $14
289 CLC
290 ADC M$91
399 STA $2B SET START OF BASIC
318 TAX
329 LOA $15
339 AOC M$99
349 STA $2C
358 TAY
369 TXA
370 ADC M$92
389 STA $20 SET START OF VARIABLES
398 TYA
499 ADC "89

236 Enhancing the resident BASIC

410
429

9177 ERROR
9169 INPUT

STA $ZE
JMP $A663 CLR AND RETURN

916E GATHER
917C TOP

LINES 10-110: INPUT: This subroutine is used by both commands. It
deals with the gathering and checking of addresses. First we check that
there is an address . No address, then no command, and a SYNTAX ERROR

is given. When the add ress is picked up, it is fi rst checked for the lower
limit and then for the higher.

LINES 130-170: HIMEM: After visiting the input routine, we place the
address in the pointers to the limit of BASIC. We then jump to the CLR

routine to finish off : this will set all the remaining relevant pointers
(such as the string pointer).

LINES 190-420: LOMEM: BASIC requires that the first byte of the BASIC

program area is zero (normally 2048, $0800) and that two zeros signify
the end of the program. In the new area these will be together, as there
is no program, so we set those first from the address given. To set the
start of the program we increase it by one, and from that we add a
further two for the address to the start of the variables , or end of
program if you prefer. Calling the CLR routine will set the end of
variables and array pointers.

QUIT

COMMAND SYNTAX

QUIT

There are no arguments with this particular command.
QUIT disables the UTILITY and its commands , leaving you with the

standard BASIC. It does not, however, reset the top of memory back to
its original ($A000). This will leave the UTILITY intact which can be reiniti
ated by SYS 32768 .

QUIT simply restores all the vectors and pointers we changed on start
up to their standard values.

ASSEMBLY LISTING

9 *=$9187
10
20
30
40

LDA #$76
STA $0394
LDA UA5
STA $8395

TOK~ISE BASIC TEXT

Enhancing the resident BASIC 237

sa LOA tt$lA
60 STA $9396 BASIC TEXT LIST
70 LOA tt$E4
80 STA $0398 BASIC CHAR DISPATCH
9a LOA tt$A7

190 STA $9397
11 a STA $0399
129 LDA #$86
130 STA $039A BASIC TOKEN EVALUATION
149 LDA #$AE
15£1 STA $a30B
160 LDA #$FE
17£1 STA $£1317 BRK INTERRUPT
189 STA $9319 N'1I INTERRUPT
190 LOA "66
21H1 STA $9316
210 LOA tt$47
229 STA $9318
230 SEI
2413 LDA #$48
250 STA $028F KEYBOARD TABLE SETUP
269 LDA #$EB
270 STA $029a
289 CLI
29£1 PLA
399 PLA
31a Jt1P $A474 READY FOR BASIC

9 The complete utility

Introduction

We are going to supply the complete UTILITY in the form of a Supermon
listing. If you do not possess a monitor, you can find Supermon in the
appendices. For the area $80DE to $81F4, keywords and vectors, use the M

function of the monitor. You may also find it easier to use the memory
dump in Chapter 6 for that area. Save to tape or disk regularly as you
go .

We had thought of also giving the UTILITY in DATA statement form. This
would have come to about 690 lines, of seven items of data on each,
which would have been a mammoth task of programming for anyone
and very prone to error.

8888 28 8F 88 JSR 4$888F 883C 85 38 STA 4$38
8883 28 54 88 JSR 4$8854 883E 85 34 STA 4$34
8886 28 41 88 JSR 4$8841 8848 68 RTS
8889 28 34 88 JSR 4$8834 8841 A9 7E LOA "7E
888C 4C 88 92 JHP 4$9288 8843 80 16 83 STA 4$8316
888F A9 89 LOA "89 8846 A9 61 LOA "61
8811 80 84 83 STA 4$8384 8848 80 18 83 STA 4$8318
8814 A9 8C LOA "9C 8849 A9 88 LOA "88
8816 80 86 83 STA 4$8386 8840 80 17 83 STA 4$8317
8819 A9 82 , : , ."" LOA "82 8858 80 19 83 STA 4$8319
8819 80 88 83 STA 4$8388 8853 68 RTS
BalE A9 29 " LOA "29 8854 78 SEI
8828 80 8A ,3 m 4$~38A 8855 A9 22 LOA "22
8823 A9 82 l :.' "82 8857 80 8F 82 STA 4$828F
8825 80 85 83 STA 4$8385 88SA A9 87 LOA "87 >~ -.

8828 80 87 83 STA S8387 885C 80 98 82 STA 4$8298
8829 A9 83 LoA "83 885F 58 CLI
8820 80 89 83 SlA 4$8389 8868 68 RTS
8838 80 89 83 stA 4$8389 8861 48 PHA
8833 68 RTS 8862 SA TXA
8834 A9 FF LOA "FF 8863 48 PHA
8836 85 37 STA 4$37 8864 98 TYA
8838 85 33 STA 4$33 8865 48 PHA
883A A9 7F LOA "7F 8866 A97F LOA "7F

The complete utility 239

8868 80 80 DO STA _0080 BOC7 92 ???
886B AC 80 DO LOY _0080 B9CB BC 91 BO STY $B991
886E 18 83 BPL _8873 B8C8 91 40 STA ($40), Y
8878 4C 72 FE JHP _FE72 B9CO 99 FB BCC $B9CA
8873 28 BC F6 JSR _F6BC B9CF B5 6E STA $6E
8876 28 El FF JSR $FFEI 8801 B8 DEY
8879 F8 83 SEQ _887E 8002 69 RTS
B978 4C 72 FE JMP $FE72 8903 80 FF FF STA $FFFF
S97E 29 15 FO JSR $Fo15 B906 FF ???
B9Bl 29 A3 FO JSR $FDA3 B907 FF ???
B8B4 20 18 E5 JSR $E51B BOOB 99 BRK
89B7 29 54 B8 JSR $8954 8909 FF ???
BOBA 29 41 BO JSR $8041 BODA FF ???
B9Bo 6C 92 AO JMP ($A982) B90B FF ???
B090 9B TYA B80C F6 FF INC $FF,X
8991 B7 ??? B80E B6 F7 LOX $F7,Y
B892 4C B6 B2 JMP $B2B6 BOE9 98 BRK
B995 B3 ??? B8El 60 RTS
8996 9F ??? BOE2 00 BRK
B997 B4 EB STY $EB B9E3 08 BRK
B899 B4 36 STY $36 B8E4 06 B3 OEC $B3,X
B99B 85 BE STA $BE 89E6 06 B3 DEC $83,X
B890 B5 14 STA $14 BOEB 80 BRK
B99F B4 51 STY $51 B9E9 88 BRK
BOAI B3 ??? BOEA 09 BRK
B9A2 A6 B3 LOX $B3 BOEB 6B PLA
B8A4 AE BF B4 LOX $B4BF B8EC 00 BRK
89A7 BF ??? B9Eo 99 BRK
B9AB B9 ??? B9EE 99 BRK
B9A9 B3 ??? B9EF 49 RTI
B8M AC B3 51 LOY $51B3 BOF9 99 BRK
B9Ao BE C4 B9 STX $B9C4 B9F1 99 BRK
B8B9 43 ??? B8F2 99 BRK
B9Bl BF ??? 89F3 49 RTI
88B2 A6 87 LOX $B7 B8F4 99 BRK
89B4 92 ??? B8F5 49 RTI
B8B5 BB ??? BOF6 4F ???
B9B6 20 B4 01 AND $01B4 89F7 46 C6 LSR $C6
B8B9 BF ??? B8F9 4B ???
B9BA 3A ??? 89FA 45 09 EOR $09
B9BB A9 01 LDA HOI B9FC 44 ???
89Bo AB TAY 89Fo 4F ???
B9BE 39 B6 EI'1I $8946 B8FE 4B ???
89C9 B6 91 LOX $91,Y B9FF C5 54 CHP $54
B8C2 39 BO 19 AND $19BO,Y B191 45 CE EOR $CE
89C5 B6 B5 STX $B5 B193 54 ???

240 The complete ut ility

9194 57
9195 CF
9196 49
9197 45 D9
9199 42
919A 49 CE
919C 4F
919D 4C C4 43
9119 4F
9111 4C 4F 55
9114 D2
9115 57
9116 52
9117 49 54
9119 C5 43
911 B 47
911 C 4F
911 D 54
911 E CF
911F 43
9129 47
9121 4F
9122 53
9123 55 C2
9125 59 4C
9127 4F
9129 D4
9129 45 4E
912B 54
912C 45 D2
912E 44
912F 55 4D
9131 D9 52
9133 45 4E
9135 55 CD
9137 44
9139 45 4C
913A 45 54
913C C5 4D
913E 45 52
9149 47
9141 C5 43
9143 4F
9144 44
9145 45 D2
B147 41 55

???
???
PHA
EOR $D9
???
EOR #$CE
???
JMP $43C4
???
JMP $554F
???
???
???
EOR #$54
CMP $43
???
???
???
???
???
???
???
???
EOR $C2,X
B\r'C $9173
???
???
EOR $4E
???
EOR $D2
???
EOR $4D,X
EJIIE $9195
EOR $4E
EOR $CD,X
???
EOR $4C
EOR $54
CMP $4D
EOR $52
???
CMP $43
???
???
EOR $D2
EOR ($55,X)

9149 54
914A CF
914B 59 52
914D 4F
914E C3
914F 44
9159 59 52
9152 4F
9153 C3
9154 45 59
9156 52
9157 4F
9159 C3
9159 59 4F
915B D9 51
915D 55 49
915F D4
9169 54
9161 52
9162 41 43
9164 C5 52
9166 45 53
9169 45 D4
916A 43
916B 49
916C 41 49
916E CE 4C 4F
9171 4D 45 CD
9174 49
9175 49 4D
9177 45 CD
9179 49 4E
917B 4B
917C 45 59
917E A4 4D
9199 45 CD
9192 41 59
9194 59 45
9196 4E C4 54
9199 52
91BA 4F
919B 46 C6
919D SA
919E SA
919F SA
9199 SA

???
???
B\r'C $919F
???
???
???
B\r'C $91A4
???
???
EOR $59
???
???
???
B\r'C $91AA
EJIIE $91AE
EOR $49,X
???
???
???
EOR ($43,X)
CMP $52
EOR $53
EOR $D4
???
PHA
EOR ($49,X)
DEC $4F4C
EOR $CD45
PHA
EOR #$4D
EOR $CD
EOR #$4E
???
EOR $59
LDY $4D
EOR $CD
EOR ($59,X)
B\r'C $91 CB
LSR $54C4
???
???
LSR $C6
???
???
???
???

The complete utility 241

8191 SA ??? 81BF SA ???
8192 EA NOP 81C9 SA ???
8193 SA ??? 81Cl SA ???
8194 SA ??? 81C2 SA ???
8195 SA ??? 81C3 SA ???
8196 SA ??? 81C4 SA ???
8197 SA ??? 81C5 SA ???
8198 SA ??? 81C6 EA NOP
8199 EA NOP 81C7 44 ???
819A SA ??? 81C8 45 45 EOR $45
819B SA ??? 81CA CB ???
819C SA ??? 81CB 99 BRK
8190 SA ??? 81CC FF ???
819E SA ??? 81CO FF ???
819F SA ??? 81CE FF ???
81A9 SA ??? 81CF FF ???
81Al EA NOP 8109 FF ???
81A2 SA ??? 8101 FF ???
81A3 SA ??? 8102 FF ???
81A4 SA ??? 8103 FF ???
81A5 SA ??? 8104 FF ???
81A6 EA NOP 8105 FF ???
81A7 SA ??? 8106 FO FF FF SBC $FFFF,X
81A8 SA ??? 8109 FF ???
81A9 SA ??? 81DA FF ???
81M SA ??? 810B FF ???
81AB EA NOP 810C FF ???
81AC SA ??? 8100 7F ???
BIAD SA ??? BIDE FF ???
81AE SA ??? B10F FF ???
81AF SA ??? BIE9 ee BRK
81B9 EA NOP 81El 99 BRK
81Bl SA ??? 81E2 e9 BRK
81B2 SA ??? BIE3 99 BRK
81B3 SA ??? 81E4 99 BRK
81B4 SA ??? 81E5 99 BRK
81B5 SA ??? 81E6 99 BRK
81B6 SA ??? 81E7 99 BRK
81 B7 EA NOP 81E8 99 BRK
81B8 SA ??? 81E9 99 BRK
81B9 SA ??? 81EA 99 BRK
81BA SA ??? 81EB 98 PHP
81BB SA ??? 81EC 81 99 ORA ($98,X)
81BC SA ??? 81EE 99 BRK
81BO EA NOP 81 EF 99 BRK
81BE SA ??? 81F8 99 BRK

242 The complete utility

81Fl 99
81F2 99
81 F3 99
81F4 89
81F5 29 BA AD
81F8 4C F7 B7
81FB A5 91
81FD 29 FE
81FF 85 91
8291 69
8292 A5 91
8294 89 81
8296 85 91
8298 69
8299 A6 7A
828B A9 84
829D 84 8F
828F BD 89 92
8212 19 97
8214 C9 FF
8216 F9 3E
8218 E8
8219 D9 F4
821B C9 29
821D F9 37
821F 85 98
8221 C9 22
8223 F9 56
8225 24 9F
8227 79 2D
8229 C9 3F
822B D9 84
822D A9 99
822F D9 25
8231 C9 39
8233 98 84
8235 C9 3C
8237 98 1 D
8239 84 71
823B A8 88
823D 84 8B
823F 88
8249 86 7A
8242 CA
8243 C8
8244 E8

BRK
BRK
BRK
BRK
JSR $ADBA
JMP $B7F7
LDA $91
AND tt$FE
STA $91
RTS
LDA $91
ORA 1$91
STA $91
RTS
LDX $7A
LDY 1$94
STY $9F
LDA $9289,X
BPL $821B
CMP tt$FF
BEG $8256
INX
EI'-IE $828 F
CMP 1$29
BEG $8256
STA $98
CMP 1$22
BEG $827B
BIT $9F
BVS $8256
O1P tt$3F
BNE $8231
LDA "99
BNE $8256
CMP 1$38
BCC $8239
CMP tt$3C
BCC $8256
STY $71
LDY 1$98
STY $9B
DEY
STX $7A
OEX
INY
INX

8245 BO 99 82
8248 38
8249 F9 9E A9
824C F9 F5
824E C9 89
8259 08 39
8252 95 8B
8254 A4 71
8256 E8
8257 C8
8258 99 FB 81
825B B9 FB 81
825E F9 59
8269 38
8261 E9 3A
8263 F8 94
8265 C9 49
8267 09 92
8269 85 8F
826B 38
826C E9 55
826E 09 9F
82713 85 98
8272 BD 89 92
8275 F9 OF
8277 C5 98
8279 F9 DB
827B C8
827C 99 FB 81
827F E8
8289 DB F9
8282 A6 7A
8284 E6 9B
8286 C8
8287 B9 9D A8
82BA 18 FA
828C B9 9E A9
828F D9 B4
8291 A9 FF
8293 CA
8294 C8
8295 E8
8296 BO 99 82
8299 38
829A F9 F6 89
829D F9 F5

LDA $9289,X
SEC
SBC $A99E,Y
BEG $8243
CMP 1$89
BNE $8282
ORA $9B
LDY $71
INX
INY
STA $91FB,Y
LDA $81FB,Y
BEG $82B9
SEC
SBC 1t$3A
BEG $8269
CMP 1$49
BNE $826B
STA $9F
SEC
SBC 1$55
BNE $829F
STA $98
LDA $8298,X
BEG -$8256
CMP $88
BEG $8256
INY
STA $91FB,Y
INX
EI'-IE $8272
LOX $7A
INC $9B
INY
LDA $A8 90, Y
BPL $8286
LDA $A99E, Y
BNE $8245
LDY It$FF
DEX
INY
INX
LDA $9289,X
SEC
SBC $88F6,Y
BEG $8294

829F C9 89
82Al 09 92
82A3 F9 AO
82A5 A6 7A
82A7 E6 9B
82A9 C8
82M B9 F5 89
82AO 19 FA
82AF B9 F6 89
82B2 09 E2
82B4 BO 99 92
82B7 19 9B
82B9 4C 99 A6
82BC 19 3E
82BE C9 FF
82C9 F9 3A
82C2 24 9F
82C4 39 36
82C6 C9 CC
82C8 99 9E
82r.A 38
82CB E9 CB
82CO AA
82CE A9 F6
8209 85 22
8202 A9 89
8204 B5 23
8206 09 9C
8208 3B
8209 E9 7F
B20B AA
820C A9 9E
820E B5 22
82E9 A9 A9
B2E2 B5 23
82E4 84 49
82E6 A9 FF
82E8 CA
82E9 F9 97
82EB C8
82EC Bl 22
82EE 19 FB
82F9 39 F6
82F2 CB
82F3 B1 22
82F5 39 9B

The complete utility 243

CHP I$B9 82F7 29 47 AB
BNE $82A5 82FA 09 F6
BEQ $B252 82FC 4C F3 A6
LOX $7A 82FF 4C EF A6
INC $9B B392 29 73 99
INY 8395 C9 CC
LOA $89F5,Y B397 99 lA
BPL $82A9 8389 C9 EE
LOA $89F6,Y 838B B9 16
BNE $B296 B390 29 13 83
LOA $9299,X B319 4C EA A7
BPL $8254 B313 38
JMP $A699 8314 E9 CC
BPL $82FC 8316 8A
CHP I$FF B317 A8
BEQ $82FC B318 B9 91 89
BIT $9F B31B 4B
BMI $B2FC B31C B9 99 89
CHP I$CC B31F 48
BCC $B208 B329 4C 73 99
SEC B323 29 79 99
SBC I$CB B326 4C E7 A7
TAX 8329 A9 99
LOA I$F 6 832B 85 80
STA $22 8320 29 73 99
LOA 1$89 8339 C9 F7
STA $23 8332 99 IB
BNE $82E4 8334 C9 F8
SEC B336 B9 14
SBC 1$7F 8338 29 3C 83
TAX 833B 69
LOA 1$9E B33C 38
STA $22 B330 E9 F6
LOA HA9 833F SA
STA $23 8349 AB
STY $49 B341 B9 E5 89
LOY I$FF B344 4B
OEX 8345 B9 E4 89
BEQ $82F2 8348 4B
INY 8349 4C 73 99
LOA ($22),Y 834C 29 79 89
BPL $B2EB 834F 4C 80 AE
8MI $82EB B352 29 F5 Bl
INY 8355 A5 14
LOA ($22),Y 8357 29 8F
8MI $82FF 8359 80 21 09

JSR $AB47
BNE $B2F2
JMP $A6F3
JMP $A6EF
JSR $9973
CHP I$CC
BCC $8323
CHP I$EE
BCS $B323
JSR $8313
JMP $A7EA
SEC
SBC I$CC
ASL
TAY
LOA $8991, Y
PHA
LOA $8999,Y
PHA
JMP $8973
JSR $9979
JMP $A7E7
LOA 1$99
STA $90
JSR $9873
CHP I$F7
BCC $834C
CHP I$F8
BCS $834C
JSR $833C
RTS
SEC
SBC I$F6
ASL
TAY
LOA $89E5,Y
PHA
LOA $89E4,Y
PHA
JMP $9973
JSR $9979
JMP $AE80
JSR $81F5
LOA $14
ANO 1$9F
STA $0921

244 The complete utility

835C 29 79 09
835F F0 IF
8361 29 FD AE
8364 29 F5 81
8367 AS 14
8369 29 8F
836B 8D 29 D8
836E 28 79 80
8371 F9 8D
8373 29 FD AE
8376 29 F5 81
8379 A5 14
837B 29 8F
837D 8D 86 82
8389 69
8381 20 FA AE
8384 29 F5 81
8387 A5 14
8389 C9 28
838B 99 83
838D 29 48 B2
8399 48
8391 29 FD AE
8394 29 F5 81
8397 A6 14
8399 E9 19
839B Be F9
839D 68
839E A8
839F 18
83A9 29 F9 FF
83A3 29 73 90
83A6 69
83A7 28 81 83
83AA 4C A9 M
83AD 29 81 83
83B9 4C BF AB
83B3 29 F5 81
83B6 29 FD AE
83B9 29 SA AD
83BC AS 66
83BE 39 14
83C9 C9 91
83C2 B9 19
83C4 29 9B BC
83C7 A5 65

JSR $9979
BEQ $8389
JSR $AEFD
JSR $81F5
LDA $14
AND 1t$9F
STA $D929
JSR $9979
BEQ $8389
JSR $AEFD
JSR $81F5
LDA $14
AND 1t$9F
STA $9286
RTS
JSR $AEFA
JSR $81F5
LDA $14
O1P 1t$28
BCC $8398
JSR $B248
P~

JSR $AEFD
JSR $81F5
LDX $14
CPX 1t$19
BCS $838D
PLA
TAY
CLC
JSR $FFF9
JSR $8873
RTS
JSR $8381
JMP $AAA9
JSR $8381
JMP $ABBF
JSR $81F5
JSR $AEFD
JSR $ADSA
LDA $66
8MI $83D4
O1P 1t$91
BCS $83D4
JSR $BC9B
LDA $65

83C9 A6 64
83CB A8 89
83CD 91 14
83CF C8
83D9 SA
83Dl 91 14
83D3 69
83D4 4C 48 B2
83D7 A5 15
83D9 48
83DA AS 14
83DC 48
83DD 29 FA AE
83E9 29 F5 81
83E3 29 F7 AE
83E6 A9 91
83E8 Bl 14
83EA M
83EB 88
83EC Bl 14
83EE A8
83EF 68
83F9 85 14
83F2 68
83F3 85 15
83F5 SA
83F6 29 91 B3
83F9 29 81 84
83FC 68
83FD 68
83FE 4C 8D AD
8481 AS 66
8483 19 8A
8485 A9 84
8497 A9 19
8489 29 8C BA
849C 29 6A B8
848F 69
8419 91 89
8412 88
8413 89.
8414 88
8415 A9 FF
8417 A9 81
8419 91 2B
841B 29 33 A5

LDX $64
LDY 1t$98
STA ($14) ,Y
INY
TXA
STA ($14) ,Y
RTS
JMP $B248
LDA $15
P~

LDA $14
P~

JSR $AEFA
JSR $81F5
JSR $AEF7
LDY 1t$91
LDA ($14) ,Y
TAX
DEY
LDA ($14) ,Y
TAY
PLA
STA $14
PLA
STA $15
TXA
JSR $B391
JSR $8481
PLA
PLA
JMP $AD8D
LDA S66
BPL $849F
LDY 1t$84
LDA #$19
JSR SBA8C
JSR $B86A
RTS
STA ($99),Y
BRK
BRK
BRK
LDA #$FF
LDY #$91
STA ($2B) , Y
JSR $A533

841E A5 22
8429 18
8421 69 92
8423 85 20
8425 A5 23
8427 69 99
8429 85 2E
842B 4C 69 A6
842E 29 F5 81
8431 29 FO AE
8434 A5 14
8436 85 FB
8438 A5 15
843A 85 FC
843C 29 F5 81
843F A5 14
8441 85 FO
8443 A9 40
8445 80 92 93
8448 A9 84
844A 80 93 93
8440 AO 88 82
8459 F8 28
8452 A6 FB
8454 A5 FC
8456 29 7F 84
8459 86 C6
845B BO 99 82
845E 90 77 82
8461 CA
8462 19 F7
8464 18
8465 A5 FB
8467 65 FO
8469 85 FB
846B 99 92
8460 E6 FC
846F 4C 83 A4
8472 A9 83
8474 80 92 83
8477 A9 A4
8479 80 83 93
847C 6C 82 93
847F 86 63
8481 85 62
8483 A2 99

The complete utility 245

LOA $22 8485 38
CLC 8486 29 49 BC
AOC 1$92 8489 29 OF BO
STA $20 848C 2e 87 B4
LOA $23 848F 29 A6 B6
AOC 1$99 8492 A2 99
STA $2E 8494 BO 99 81
JMP $A669 8497 90 89 82
JSR $81F5 849A F9 83
JSR $AEFO 849C E8
LOA $14 8490 09 F5
STA $FB 849F 69
LOA $15 84A9 F9 47
STA $FC 84A2 Be 45
JSR $81F5 84A4 29 F5 81
LOA $14 84A7 A9 29
STA $FO 84A9 29 02 FF
LOA 1$40 84AC A9 82
STA $9392 84AE 29 01 84
LOA 1$84 84B1 88
STA $8393 84B2 09 FA
LOA $8289 84B4 A4 14
BEQ $8472 84B6 84 15
LOX $FB 84B8 A9 92
LOA $FC 84BA 29 01 84
JSR $847F 84BO 88
STX $C6 84BE 09 FA
LOA $9299,X 84C9 29 79 99
STA $9277,X 84C3 C9 2C
oEX 84C5 09 99
BPL $845B 84C7 29 02 FF
CLC 84CA 29 73 99
LOA $FB 84CO 4C A9 84
AOC $FO 8409 69
STA $FB 8401 A2 94
BCC $846F 8403 A9 99
INC $FC 8405 96 15
JMP $A483 8407 2A
LOA 1$83 8408 CA
STA $9392 8409 09 FA
LOA 1$A4 840B C9 9A
STA $8393 8400 99 94
JMP ($9392) 840F 18
STX $63 84E9 69 37
STA $62 84E2 2C 69 39
LOX 1$98 84E5 29 02 FF

SEC
JSR$BC49
JSR $BOOF
JSR $B487
JSR $B6A6
LOX 1$99
LOA $9198,X
STA $8288,X
BEQ $849F
INX
ENE $8494
RTS
BEQ $84E9
BCS $84E9
JSR $81F5
LOA 1$29
JSR $FF02
LOY 1$92
JSR $8401
OEY
ENE $84AE
LOY $14
STY $15
LOY 1$92
JSR $8401
OEY
ENE $84BA
JSR $9979
CHP 1$2C
BNE $8409
JSR $FF02
JSR $9973
..lMP $84A9
RTS
LOX 1$94
LOA 1$98
ASL $15
ROL
OEX
BNE $8405
CHP #$8A
Bce $84E3
CLC
AOC 1$37
BIT $3969
JSR $FF02

246 The complete utility

84E8 69
84E9 4C 98 AF
84EC F9 46
84EE B9 44
84F9 29 F5 81
84F3 A9 29
84F5 29 D2 FF
84F8 A5 15
84FA F9 16
84FC A2 98
84FE 96 15
8599 B9 93
8582 A9 39
8584 2C A9 31
8587 29 D2 FF
858A CA
858B D9 Fl
858D A9 28
858F 29 D2 FF
8512 A2 88
8514 96 14
8516 B8 83
8518 A9 39
851A 2C A9 31
851D 29 D2 FF
8529 CA
8521 D9 Fl
8523 29 79 99
8526 C9 2C
8528 D9 99
852A 29 D2 FF
852D 29 73 99
B539 4C EC B4
8533 69
B534 4C 9B AF
8537 85 63
8539 29 73 ge
B53C 85 62
B53E 29 7C B5
B541 48
8542 29 73 99
8545 F9 IB
8547 C9 2C
B549 F9 IF
854B B5 63
854D 29 73 99

RTS
JMP SAF9B
BEQ $B534
BCS $8534
JSR $81F5
LOA 1$29
JSR $FFD2
LOA $15
BEQ $8512
LDX 1t$9B
ASL $15
BCS $8585
LOA 1$38
BIT $31A9
JSR $FFD2
DEX
EI-IE $84FE
LOA 1$29
JSR $FFD2
LDX 1t$9B
ASL $14
BCS $B51B
LOA 1$39
BIT $31A9
JSR $FFD2
DEX
BNE $8514
JSR $9879
CMP 1t$2C
BNE $8533
JSR $FFD2
JSR $9973
JHP $84EC
RTS
JMP SAF98
STA $63
JSR $9973
STA $62
JSR $857C
PHA
JSR $9973
BEQ $8562
CMP 1t$2C
BEQ $856A
STA $63
JSR $9973

8559 B5 62
8552 29 7C 85
8555 A8
8556 68
B557 29 AD 85
855A 29 73 99
855D C9 2C
855F F9 19
B561 69
8562 68
8563 A8
8564 A9 99
8566 29 AD B5
B569 69
856A 68
856B A8
B56C A9 89
856E 29 AD 85
B571 A9 2C
8573 29 D2 FF
B576 29 73 99
8579 4C 37 B5
857C A9 91
857E B9 62 99
8581 C9 39
8583 99 25
8585 C9 47
8587 B9 21
B589 C9 3A
858B 99 98
B58D C9 41
858F 99 19
B591 E9 37
8593 D8 83
8595 3B
8596 E9 38
8598 99 14 89
859B B8
859C 19 E9
859E A8 94
8SA9 86 15
8SA2 88
BSA3 D9 FB
8SA5 AS 14
8SA7 85 15
8SA9 68

STA $62
JSR $857C
TAY
PLA
JSR $B5AD
JSR $0973
CMP 1t$2C
BEQ $8571
RTS
PLA
TAY
LDA 1$99
JSR $85AD
RTS
PLA
TAY
LOA 1$98
JSR $85AD
LOA 1t$2C
JSR $FFD2
JSR $9973
JMP $8537
LDY 1$91
LDA $9962,Y
CMP 1$39
BCC $85t'ltA
CMP 1$47
BCS $8~
CMP 1t$3A
BCC $8595
CMP 1$41
BCC $85t'ltA
SBC 1$37
BNE $8598
SEC
SBC 1$38
STA $9914,Y
DEY
BPL $857E
LDY 1$94
ASL $15
DEY
EI-IE $8SA9
LOA $14
ORA $15
RTS

85AA 4C 88 AF
8SAO 28 91 B3
85B9 29 81 84
85B3 29 80 AO
85B6 29 00 BO
85B9 29 87 B4
85BC 4C 21 AB
85BF AS 7A
85Cl 09 82
85C3 C6 7B
85C5 C6 7A
85C7 A2 98
85C9 29 73 89
85CC 99 83
85CE 4C 88 AF
8501 C9 32
8503 B9 F9
8505 6A
8506 26 14
8508 CA
8509 09 EE
850B A4 14
8500 A9 89
850F 29 AO 85
85E2 A9 2F
85E4 29 02 FF
85E7 AS 14
85E9 A9 98
85EB 28 AO 85
85EE 29 73 88
85Fl C9 2C
85F3 09 86
85F5 29 02 FF
85F8 4C C7 B5
85FB 69
B5FC AS 90
85FE 09 81
8689 69
8691 29 26 B5
B684 38
8695 AS 33
8687 E5 31
8699 A8
868A AS 34
869C E5 32
B68E 4C AO B5

..1MP $AF88
JSR $B391
JSR $8481
JSR $A080
~TSR $BOOO
JSR $B487
..1MP $AB21
LOA $7A
EJ-IE $85C5
OEC $7B
OEC $7A
LOX tt$98
JSR $9973
BCC $8501
..1MP $AF88
CMP tt$32
BCS $85CE
ROR
ROL $14
OEX
EJ-IE $85C9
LOY $14
LOA "89
JSR $85A0
LOA 1$2F
JSR $FF02
LOA $14
LOY tt$98
JSR $BSAO
JSR $9973
CMP 1$2C
BNE $85FB
JSR $FF02
JMP $85C7
RTS
LOA $90
EJ-IE $8691
RTS
JSR $B526
SEC
LOA $33
SBC $31
TAY
LOA $34
SBC $32
JMP $85A0

The complete utility 247

8611 09 83
8613 4C 10 A8
8616 29 F5 81
8619 29 13 A6
861C B9 85
861E A2 15
8629 4C 37 A4
B623 38
8624 AS SF
8626 E9 81
8628 B5 41
862A AS 69
B62C E9 89
862E B5 42
8639 69
8631 A9 FF
8633 85 4A
8635 29 SA A3
8638 9A
8639 C9 80
863B F9 95
8630 A2 16
863F 4C 37 A4
8642 E8
8643 E8
8644 E8
8645 E8
8646 E8
B647 9A
8648 68
B649 69
864A 4C 88 AF
8640 AO 5B 89
8659 C9 B7
8652 F9 90
8654 A9 87
8656 80 5B B9
8659 A9 22
865B 80 56 89
865E 29 54 88
8661 29 79 99
8664 F9 42
8666 29 F5 81
8669 29 FO AE
866C AS 14
866E F9 IE

EJ-IE $8616
JMP $A810
JSR $81F5
JSR $A613
BCS $8623
LOX tt$15
..1MP $A437
SEC
LOA $5F
SBC tt$91
STA $41
LOA $69
SBC "89
STA $42
RTS
LOA tt$FF
STA $4A
JSR $A3SA
TXS
CMP tt$80
BEQ $B642
LOX tt$16
..1MP $A437
INX
INX
INX
INX
INX
TXS
RTS
RTS
JMP $AF9B
LOA $885B
CMP tt$87
BEQ $8661
LOA tt$B7
STA $885B
LOA tt$22
STA $8856
JSR $8954
JSR $8979
BEQ $86A8
JSR $81F5
JSR $AEFO
LOA $14
BEQ $868E

248 The complete utility

8679 C9 11 O1P "11 86C7 99 F4 BCC $86BO
8672 B9 lA BCS $868E 86C9 A9 31 LOA 1t$31
8674 C6 14 DEC $14 86CB 85 22 STA $22
8676 A5 14 LOA $14 86CO A9 38 LOA 1t$39
8678 8A ASL 86CF 85 23 STA $23
8679 8A ASL 8601 28 DE 86 JSR $860E
867A 8A ASL 8604 E6 23 INC $23
867B 8A ASL 8606 E6 5F INC $5F
867C A8 TAY 8608 E8 IN><
8670 A9 A1 LOA tt$Al 8609 E8 11 CPX 1t$11
867F 85 15 STA $15 860B 99 F4 BCC $8601
8681 A9 89 LOA 1t$99 8600 68 RTS
8683 85 14 STA $14 860E A9 85 LOY "95
8685 A6 9A LOX $9A 86E9 B9 lC 87 LOA $871C,Y
8687 29 79 89 JSR $9879 86E3 29 02 FF JSR $FF02
868A C9 22 CMP 1$22 86E6 88 DEY
868C F9 93 BEQ $8691 86E7 09 F7 BNE $86E9
868E 4C 98 AF Jt1P $AF98 86E9 A5 22 LOA $22
8691 29 73 89 JSR $9873 86EB 29 02 FF JSR $FF02
8694 F8 9A BEQ $86A8 86EE A5 23 LOA $23
8696 C9 22 O1P 1$22 86F9 29 02 FF JSR $FF02
8698 Fe 96 BEQ $86A8 86F3 A9 2C LOA 1t$2C
869A 91 14 STA ($14) ,Y 86F5 29 02 FF JSR $FF02
869C C8 INY 86F8 A9 22 LOA 1t$22
8690 CA OEX 86FA 29 02 FF JSR $FF02
869E 08 F1 BNE $8691 86FO A5 5F LOA $5F
86A9 A9 89 LDA 1$88 86FF 8A ASL
86A2 91 14 STA ($14) ,Y 8789 8A ASL
86A4 29 73 89 JSR $9873 8781 8A ASL
86A7 69 RTS 8782 8A ASL
86A8 A2 89 LOX "98 8783 A8 TAY
86M 86 5F STX $5F 8784 28 FB 81 JSR $81FB
86AC E8 IN>< 8787 B1 14 LOA ($14), Y
86A0 A9 28 LOA 1$29 8789 48 PHA
86AF 85 22 STA $22 878A 29 82 82 JSR $8282
86Bl A9 31 LOA 1t$31 8780 68 PLA
86B3 85 23 STA $23 878E F9 86 BEQ $8716
86B5 A9 98 LOA "99 8718 29 02 FF JSR $FF02
86B7 85 14 STA $14 8713 C8 INY
86B9 A9 A1 LOA tt$Al 8714 08 EE BNE $8794
86BB 85 15 STA $15 8716 A9 22 LDA "22
86BO 28 DE 86 JSR $860E 8718 28 02 FF JSR $FF02
86C9 E6 23 INC $23 871B 69 RTS
86C2 E6 5F INC $5F 871C 28 59 45 JSR $4559
86C4 E8 IN>< 871F 4B ???
86C5 E8 8A CPX 1$9A 8728 28 80 A4 JSR $A480

The complete utility 249

8723 CB ??? 8781 68 PLA
8724 C8 83 CPY "83 8782 F8 80 BEQ'$8791
8726 98 84 BCC $872C 8784 C9 5F CMP "5F
8728 C8 87 CPY "97 8786 09 92 BNE $87BA
872A 99 83 BCC $872F 8788 A9 80 LOA "80
872C 4C 48 EB JHP $EB48 87BA 90 77 82 STA $8277,X
872F AD 80 82 LOA $8280 8780 E8 INX
8732 C4 C5 CPY $C5 878E C8 INY
8734 09 85 BNE $873B 878F 08 E7 BNE $8778
8736 CO 8E 02 CHP $828E 8791 86 C6 STX $C6
8739 F8 Fl BEQ $872C 8793 A9 7F LOA "7F
873B 84 C5 STY $C5 8795 80 98 DC STA $OC88
8730 80 8E 82 STA $828E 8798 68 RTS
8749 C9 04 CPY "84 8799 A9 48 LOA "48
8742 F8 8B BEQ $874F 879B 80 56 88 STA $8856
8744 C8 85 CPY "95 879E A9 EB LOA "EB
8746 F8 8A BEQ $8752 87A8 80 5B 88 STA $885B
8748 C8 86 CPY "86 87A3 28 54 88 JSR $8854
874A F8 89 BEQ $8755 87A6 68 RTS
874C A8 87 LOY "87 87A7 28 5E 88 JSR $885E
874E 2C A8 81 BIT $81A8 87M 86 2B STX $2B
8751 2C A8 83 BIT $83A8 87AC 84 2C STY $2C
8754 2C A8 85 BIT $85A8 87AE A8 88 LOY "88
8757 C9 82 CHP "82 87B8 98 TYA
8759 98 87 BCC $8762 87Bl 91 2B STA ($2B),Y
875B F8 93 BEQ $8768 87B3 28 18 88 JSR $8819
8750 A9 89 LOA "89 87B6 86 20 STX $20
875F 2C A9 08 BIT $8BA9 87B8 84 2E STY $2E
8762 84 BB STY $BB 87BA 28 33 A5 JSR $A533
8764 C6 BB DEC $BB 87BO 28 40 88 JSR $8840
8766 18 CLC 87C9 A9 F9 LOA "F9
8767 65 BB AOC $BB 87C2 A2 87 LOX "87
8769 8A ASL 87C4 80 82 83 STA $9382
876A 8A ASL 87C7 8E 83 93 STX $8393
876B 8A ASL 87CA A9 81 LOA "81
876C 8A ASL 87CC 85 7B STA $7B
8760 A8 Al LOY HAl 87CE A9 FF LOA "FF
876F 84 15 STY $15 8708 85 7A STA $7A
8771 A8 88 LOY "98 8702 A9 88 LOY "88
8773 84 14 STY $14 8704 Bl FB LOA ($FB),Y
8775 A8 TAY 8706 85 FO STA $FO
8776 A2 88 LOX "99 8708 C8 INY
8778 29 FB 81 JSR $81FB 8709 Bl FB LOA ($FB),Y
877B Bl 14 LOA ($14),Y 870B 85 FE STA $FE
8770 48 PHA 8700 F9 24 BEQ $8883
877E 28 92 82 JSR $8292 870F C8 INY

250 The complete utility

B7E9 B1 FB LOA ($FB) , Y BB3F AS FC LOA $FC
B7E2 BS 14 STA $14 BB41 E9 99 SBC 1$99
B7E4 CB INY BB43 BS FC STA $FC
B7ES Bl FB LOA ($FB) , Y BB4S A9 99 LOA 1$99
B7E7 BS IS STA $1S BB47 AB TAY
B7E9 A2 94 LDX 1$94 BB4B 91 14 STA ($14) ,Y
B7EB EB INX BB4A CB INY
B7EC CB INY BB4B 91 14 STA ($14) ,Y
B7ED B1 FB LOA ($FB) , Y BB4D AS FD LOA $FD
B7EF 9D FB 91 STA $91FB,X BB4F A6 FE LDX $FE
B7F2 D9 F7 Et-IE $B7EB BBSI BS 2B STA $2B
B7F4 BA TXA BBS3 B6 2C STX $2C
B7FS AB TAY BBSS AS FB LOA $FB
B7F6 29 A2 A4 JSR $A4A2 BBS7 A6 FC LDX $FC
B7F9 AS FD LOA $FD BBS9 BS 2D STA $2D
B7FB A6 FE LDX $FE BBSB B6 2E STX $2E
B7FD BS FB STA $FB BBSD 69 RTS
B7FF B6 FC STX $FC BBSE AS 2B LOA $2B
BB91 D9 C7 Et-IE $B7CA BB69 BS FD STA $FD
BB93 A9 B3 LOA I$B3 BB62 AS 2C LOA $2C
BB9S A2 A4 LDX ttSA4 BB64 BS FE STA $FE
BB97 BD 92 93 STA $9392 BB66 A6 20 LDX $20
BB9A BE 93 93 STX $9393 BB6B A4 2E LOY $2E
BB9D 29 74 A4 JSR $A474 BB6A B6 FB STX $FB
BB19 29 D4 El JSR $EID4 BB6C B4 FC STY $FC
8813 A9 88 LOA 1$98 8B6E 69 RTS
BBlS 8S B9 STA $B9 BB6F 29 SE 8B JSR $B8SE
BB17 A6 2B LDX $2B 8872 BA TXA
B819 A4 2C LDY $2C 8B73 3B SEC
BBIB 29 DS FF JSR $FFOS BB74 E9 92 SBC 1$92
8BIE B9 19 BCS $BB39 BB76 BS 2B STA $2B
BB29 29 B7 FF JSR $FFB7 BB7B 9B TYA
BB23 29 BF AND I$BF BB79 E9 99 SBC 1$99
BB2S F9 9B BEQ $BB2F BB7B BS 2C STA $2C
BB27 29 3B BB JSR $BB3B BB7D 29 19 BB JSR $BBI9
BB2A A2 ID LOX 1$10 BBB9 B6 FB STX $FB
BB2C 4C 37 A4 JMP $A437 BBB2 B4 FC STY $FC
BB2F 69 RTS BBB4 29 40 BB JSR $BB4D
BB39 4B PHA BBB7 29 33 AS JSR $AS33
BB31 29 3B BB JSR $BB3B BBBA 69 RTS
BB34 6B PLA BBBB B6 C2 STX $C2
BB3S 4C F9 E9 JHP $E9F9 BBBD AS 3E LOA $3E
BB3B AS FB LOA $FB BBBF 3B SEC
BBJA 3B SEC BB99 ES C2 SBC $C2
BB3B E9 92 SBC #$92 BB92 BS BB STA $BB
BB30 BS 14 STA $14 BB94 IB CLC

8895 A5 FB
8897 65 49
8899 85 5F
889B A5 FC
8B90 69 99
B89F B5 68
BBAI A5 SF
88A3 65 BB
BBA5 85 SA
88A7 AS 68
8BA9 69 98
B8AB B5 5B
88A0 AS 20
88AF 3B
88B9 E5 SA
88B2 B5 58
88B4 A8
88B5 AS 2E
8BB7 E5 5B
88B9 M
8BBA E8
B8BB 98
B8BC F8 IF
88BE A5 SA
88C9 1 B
88Cl 65 58
B8C3 85 SA
88C5 98 93
8BC7 E6 5B
BBC9 18
BBCA AS SF
BBCC 65 58
8BCE B5 SF
B809 99 92
8B02 E6 69
B804 98
BBD5 49 FF
8807 AB
B8D8 C8
8809 C6 5B
880B C6 69
88DO Bl SA
BBDF 91 SF
B8El C8
88E2 09 F9
B8E4 E6 5B

LOA $FB
ADC $49
STA $5F
LOA $FC
AOC 1$99
STA $69
LOA $5F
AOC $BB
STA $5A
LOA $69
AOC 1$89
STA $5B
LOA $20
SEC
SBC $SA
STA $58
TAY
LOA $2E
SBC $5B
TAX
INX
TYA
BEQ $88DD
LOA $SA
CLC
AOC $58
STA $SA
BCC $88CA
INC $5B
CLC
LOA $5F
AOC $58
STA $5F
BCC $8804
INC $69
TYA
EOR I$FF
TAY
INY
DEC $5B
DEC $69
LOA ($5A) , Y
STA ($5F) , Y
INY
BNE $880D
INC $5B

The complete utility 251

88E6 E6 69
88E8 CA
88E9 D9 F2
88EB 38
88EC A5 2D
88EE E5 BB
8BF9 85 20
88F2 B9 93
8BF4 C6 2E
88F6 38
88F7 A9 99
88F9 AS FO
BBFB E5 BB
88FO 85 FO
8BFF 91 FB
8991 B5 57
8993 AS FE
8995 E9 99
8997 C8
8998 85 FE
899A B5 58
899C 91 FB
899E BB
899F Bl 57
8911 B5 B9
8913 C8
8914 Bl 57
8916 85 BA
8918 F9 18
891A 88
B91B 38
891C AS B9
891E E5 BB
8929 M
8921 91 57
8923 AS BA
8925 E9 99
8927 C8
8928 91 57
892A 85 58
892C SA
892D 85 57
892F 4C 9E 89
8932 69
8933 SA
8934 38

INC $69
OEX
BNE $88DD
SEC
LOA $20
SBC $BB
STA $20
BCS $88F7
DEC $2E
SEC
LDY 1$89
LOA $FD
SBC $BB
STA $FD
STA ($FB) ,Y
STA $57
LOA $FE
SBC 1$99
INY
STA $FE
STA $58
STA ($FB) , Y
DEY
LOA ($57), Y
STA $B9
IN'(
LOA ($57), Y
STA $BA
BEa $8932
DEY
SEC
LOA $B9
SBC $BB
TAX
STA ($57), Y
LOA $BA
SBC 1$99
IN'(
STA ($57) ,Y
STA $58
TXA
STA $57
JMP $B99E
RTS
TXA
SEC

252 The complete utility

8935 E5 3E
8937 85 BB
8939 18
893A AS 49
893C 65 BB
893E B9 134
8949 C9 FE
8942 99 135
8944 A2 17
8946 4C 37 A4
8949 AS 2D
894B 65 BB
894D AA
894E AS 2E
8959 69 99
8952 C5 38
8954 D9 137
8956 E4 37
8958 99 93
89SA 4C 35 A4
895D 18
895E AS 2D
8969 85 SA
8962 65 BB
8964 85 58
8966 AS 2E
8968 85 5B
896A 69 138
896C 85 59
896E AS FB
8979 65 49
8972 85 SF
8974 AS FC
8976 69 88
8978 85 69
897A 29 BF A3
897D 18
897E A9 98
8989 AS 2D
8982 65 BB
8984 85 2D
8986 99 83
8988 E6 2E
89BA 18
898B AS FD
898D 65 BB

SBC $3E
STA $BB
CLC
LOA $49
ADC $BB
BCS $8944
CMP #$FE
BCC $8949
LDX #$17
JMP $A437
LOA $2D
ADC $BB
TAX
LOA $2E
ADC #$8B
CMP $38
BNE $895D
CPX $37
BCC $895D
JMP $A435
CLC
LOA $2D
STA$5A
ADC $BB
STA $58
LOA $2E
STA $5B
ADC #$99
STA $59
LOA $FB
ADC $49
STA $5F
LOA $FC
ADC #$99
STA $69
JSR $A3BF
CLC
LDY 1$99
LOA $2D
ADC $BB
STA $2D
BCC $898B
INC $2E
CLC
LOA $FD
ADC $BB

898F 85 FD
8991 85 57
8993 91 FB
8995 AS FE
8997 69 89
8999 C8
899A 85 FE
899C 85 58
899E 91 FB
89A9 88
89A1 B1 57
89A3 85 B9
89A5 C8
89A6 Bl 57
89A8 85 BA
89AA F9 18
89AC 88
89AD 18
89AE AS B9
89B9 65 BB
89B2 AA
89B3 91 57
89B5 AS BA
89B7 69 99
89B9 C8
89BA 91 57
89BC 85 58
89BE BA
89BF 85 57
89Cl 4C A8 89
89C4 69
89C5 28 F5 81
89C8 29 FD AE
89CB AS 14
89CD 85 C9
89CF AS 15
89D1 85 CA
89D3 29 F5 81
89D6 29 FD AE
89D9 AS 14
89DB 85 BC
89DD 28 F5 81
89E9 AS 14
89E2 85 BD
89E4 AS 15
89E6 85 BE

STA $FD
STA $57
STA ($FB) , Y
LOA $FE
ADC #$99
1NY
STA $FE
STA $58
STA ($FB) ,Y
DEY
LOA ($57), Y
STA $B9
INY
LOA ($57) ,Y
STA$BA
BEQ $89C4
DEY
CLC
LOA $B9
ADC $BB
TAX
STA ($57) ,Y
LOA $BA
ADC 1$99
INY
STA ($57) ,Y
STA $58
TXA
STA $57
JMP $89AB
RTS
JSR $81F5
JSR $AEFD
LOA $14
STA $C9
LOA $15
STA$CA
JSR $81F5
JSR $AEFD
LOA $14
STA $BC
JSR $81F5
LOA $14
STA $BD
LOA $15
STA $BE

89E8 A5 2B
89EA 85 FB
89EC A5 2C
89EE 85 FC
89F9 A5 CA
89F2 D8 9F
89F4 A5 C9
89F6 D8 8B
89F8 A9 92
89FA Bl FB
89FC 85 C9
89FE C8
89FF Bl FB
SA81 85 CA
SA83 A5 C9
SA85 85 14
SA97 A5 CA
SA89 85 15
SA8B 29 13 A6
SA8E B8 85
SA19 A2 15
SA12 4C 37 A4
SA15 A5 5F
SAI7 85 41
SA19 A5 69
SAIB 85 42
8AID A9 89
SAIF Bl FB
SA21 85 FD
SA23 C8
SA24 Bl FB
SA26 85 FE
BA28 D9 83
SA2A 4C 62 8B
SA2D C8
SA2E C8
SA2F C8
SA39 Bl FB
SA32 D9 8A
8A34 A5 FD
8A36 85 FB
SA38 A5 FE
8A3A 85 FC
8A3C D8 DF
SA3E C9 22
SA48 D8 8B

LOA $2B 8A42 C8
STA $FB SA43 Bl FB
LOA $2C 8A45 F9 ED
STA $FC SA47 C9 22
LOA $CA SA49 D9 F7
BNE $SA83 SA4B F8 E2
LOA $C9 8A4D C9 8F
BNE $SA93 SA4F F8 E3
LDY 1$82 BA51 C9 83
LOA ($FB),Y SA53 F9 DF
STA $C9 SA55 C9 A7
INY SA57 F8 21
LOA ($FB) I Y SA59 C9 SA
STA $CA SA5B F9 I D
LOA $C9 SA5D C9 89
STA $14 SA5F F9 2C
LOA $CA 8A61 C9 CB
STA $15 8A63 D9 8B
JSR $A613 SA65 C8
BCS $8A15 SA66 Bl FB
LDX 1$15 SA68 C9 29
JMP $A437 SA6A F8 F9
LOA $5F SA6C C9 A4
STA $41 SA6E F9 ID
LOA $68 8A79 C9 8D
STA $42 SA72 F8 19
LDY 1$88 SA74 C9 E6
LOA ($FB),Y SA76 F8 15
STA $FD 8A78 D9 B5
INY SA7A C8
LOA ($FB),Y SA7B Bl FB
STA $FE SA7D C9 28
EI-IE $8A2D BA7F F9 F9
JMP $8B62 BA81 C9 38
INY SA83 B9 93
INY SA85 88
INY 8A86 D9 A7
LOA ($FB),Y SA88 88
EI-IE $SA3E 8A89 C9 3A
LOA $FD SA8B B9 A2
STA $FB BA8D C8
LOA $FE SA8E Bl FB
STA $FC SA99 C9 29
BNE $SAlD SA92 F9 F9
O1P 1$22 SA94 84 49
BNE $8A4D SA96 88

The complete utility 253

INY
LOA ($FB) I Y
BEQ $SA34
CHP 1$22
EI-IE $SA42
BEQ $SA2F
O1P 1$8F
BEQ $8A34
O1P 1$83
BEQ $8A34
O1P #$A7
BEQ $8A7A
O1P 1$8A
BEQ $8A7A
O1P 1$89
BEQ $8A8D
O1P I$CB
BNE $8A79
INY
LOA ($FB) I Y
O1P 1$29
BEQ $SA65
O1P #$A4
BEQ $8A8D
O1P 1$8D
BEQ $8A8D
O1P I$E6
BEQ $8A8D
EI-IE $8A2F
INY
LOA ($FB) ,Y
CHP 1$28
BEQ $8A7A
CHP 1$38
BCS $8A88
DEY
EI-IE $8A2F
DEY
O1PI$3A
BCS $8A2F
INY
LOA ($FB) I Y
O1P 1$28
BEQ $8A8D
STY $49
DEY

254 The complete utility

BA97 A2 89
BA99 C8
BA9A Bl FB
BA9C C9 39
BA9E 99 9A
BAA9 C9 3A
8M2 B9 96
BAA4 9D 89 92
BAA7 E8
BAA8 D9 EF
8AAA A9 3A
BAAC 9D 99 92
BAAF 86 BF
BABI A9 92
BAB3 85 7B
BAB5 A9 99
BAB7 85 7A
BAB9 29 F5 81
BABC A5 14
BABE 85 C3
BAC9 A5 15
BAC2 85 C4
BAC4 C5 CA
BAC6 F9 8A
BAC8 B9 9E
BACA A5 49
BACC 65 BF
BACE A8
BACF 4C 55 8B
BAD2 A5 C3
BAD4 C5 C9
BAD6 99 F2
BAD8 A5 BD
BAOA 85 B9
BADC A5 41
BADE 85 58
BAE8 A5 BE
BAE2 85 BA
BAE4 A5 42
BAE6 85 59
BAE8 A8 89
BAEA Bl 58
BAEC 85 5A
SAEE C8
SAEF Bl 58
BAFI 85 5B

LDX 1$88 8AF3 D9 18
1NY SAF5 A8 92
LOA ($FB),Y SAF7 Bl FB
CMP 1$38 SAF9 85 39
BCC $8AAA SAFB C8
CMP 1$3A BAFC Bl FB
BCS $8AAA BAFE 85 3A
STA $8289,X 8B89 A2 11
INX 8B82 4C 37 A4
BNE $BA99 8B95 C8
LOA 1$3A 8B96 Bl 58
STA $9288,X 8B98 85 B7
STX $BF 8B8A C8
LOA 1$92 8B9B Bl 58
STA $7B 8B9D C5 C4
LOA 1$99 8B8F D9 96
STA $7A 8Bll A5 B7
JSR $81F5 8B13 C5 C3
LOA $14 8B15 F9 15
STA $C3 8B17 A5 B9
LOA $15 8B19 18
STA $C4 8BIA 65 BC
CMP $CA 8Bl C 85 B9
BEQ $BAD2 8BIE 99 92
BCS $BAD8 8B29 E6 BA
LOA $49 8B22 A5 5A
ADC $BF 8B24 85 58
TAY 8B26 A5 5B
JMP $8B55 8B28 85 59
LOA $C3 8B2A D8 BC
CMP $C9 8B2C A6 B9
BCC $BACA 8B2E A5 BA
LOA $BD 8B39 29 7F 84
STA $B9 8B33 A5 BF
LOA $41 8B35 85 3E
STA $58 8B37 E4 3E
LOA $BE 8B39 F9 9B
STA $BA 8B3B B9 96
LOA $42 8B3D 29 8B 88
STA $59 8B49 4C 46 8B
LDY 1$99 8B43 29 33 89
LOA ($58),Y 8B46 A4 49
STA $5A 8B48 A2 89
1NY 8B4A BD 88 82
LOA ($58),Y 8B4D F8 86
STA $5B 8B4F 91 FB

ENE $8B85
LDY 1$92
LOA ($FB),Y
STA $39
INY
LOA ($FB) , Y
STA$3A
LDX 1$11
JMP $A437
1NY
LOA ($58), Y
STA $B7
INY
LOA ($58), Y
CMP $C4
BNE $8B17
LOA $B7
CMP $C3
BEQ $8B2C
LOA $B9
CLC
ADC $BC
STA $B9
BCC $8B22
INC $BA
LOA $5A
STA $58
LOA $5B
STA $59
BNE $8AE8
LDX $B9
LOA $BA
JSR $847F
LOA $BF
STA $3E
CPX $3E
BEQ $8B46
BCS $8B43
JSR $888B
JMP $8B46
JSR $8933
LDY $49
LDX 1$99
LOA $9288 ,X
BEQ $8B55
STA ($FB),Y

8B51 C8
8B52 E8
8B53 09 F5
8B55 Bl FB
8B57 C9 2C
8B59 F9 94
8B5B S8
8B5C 4C 2F SA
8B5F 4C SO 8A
8B62 A9 98
8B64 Bl 41
8B66 85 5A
8B68 C8
8B69 Bl 41
8B6B S5 5B
8B60 08 95
8B6F 68
8B79 68
8B71 4C 74 A4
8B74 C8
8B75 A5 BO
8B77 91 41
8B79 C8
8B7A A5 BE
SB7C 91 41
8B7E 18
8B7F A5 BO
8B81 65 BC
8B83 85 BO
8B85 98 92
8BS7 E6 BE
8B89 A5 5A
8BSB S5 41
8B80 A5 5B
8BSF S5 42
8B91 08 CF
8B93 A2 99
8B95 A5 2B
8B97 S5 FB
8B99 A5 2C
8B9B S5 FC
SB90 A9 98
8B9F Bl FB
8BAI 85 FO
8BA3 C8
8BA4 Bl FB

INY 8BA6 S5 FE
INX 8BA8 08 95
ENE $SB4A 88M 68
LOA ($FB),Y 8BAB 68

The complete utility 255

STA $FE
BNE $8BAF
PLA
PLA

O1P "2C 8BAC 4C 74 A4 JMP $A474
INY BEQ $8B5F SBAF C8

DEY 8BB9 C8
JMP $8A2F 8BBI CS
JMP $SASO SBB2 Bl FB
LOY "99 SBB4 08 8C
LOA ($41),Y SBB6 A5 FO
STA $5A SBBS S5 FB
INY SBBA A5 FE
LOA ($41),Y SBBC S5 FC
STA $5B 8BBE A2 89
ENE $SB74 SBC8 F8 DB
PLA SBC2 C9 FF
PLA SBC4 09 94
JMP $A474 SBC6 S5 3E
INY SBCS F9 21
LDA $BO SBCA C9 22
STA ($41),Y SBCC 08 89
INY SBCE E8
LOA $BE SBCF E8 82
STA ($41),Y SBOI 09 8S
CLC 8B03 A2 88
LOA $BO SB05 F9 OA
AOC $BC 8B07 E9 91
STA $BO BB09 09 06
BCC $8B89 8BOB B5 3E
INC $BE BBDO C9 C9
LOA $5A 8BDF 98 82
STA $41 8BEI E9 69
LOA $5B BBE3 C9 69
STA $42 BBE5 B9 84
ENE $8B62 8BE7 C9 21
LOX "88 8BE9 B9 C6
LOA $2B 8BEB 85 3D
STA $FB 8BEO 84 49
LOA $2C 8BEF 86 3C
STA $FC 8BFl A2 81
LOY "9B 8BF3 C8
LOA ($FB),Y 8BF4 Bl FB
STA $FO 8BF6 C5 3E
INY 8BF8 09 83
LOA ($FB),Y 8BFA E8

INY
INY
LDA ($FB) , Y
BNE $8BC2
LOA $FD
STA $FB
LDA $FE
STA $FC
LOX "B9
BEQ $8B90
O1P "FF
BNE $BBCA
STA $3E
BEQ $8BEB
O1P "22
BNE $8B07
INX
CPX 1$92
EJIIE $SBOB
LOX 1$99
BEQ $SBBI
CPX 1$91
EJIIE $8BBI
STA $3E
O1P "C8
BCC $8BE3
SBC "69
CMP 1$69
BCS $BBEB
CMP 1$21
BCS $8BBI
STA $30
STY $49
STX $3C
LOX "91
INY
LOA ($FB),Y
CMP $3E
EJIIE $8BFO
INX

256 The complete utility

BBFB 09 F6
BBFO B6 3E
BBFF E9 82
BC81 B8 12
BC83 CA
BC84 AS 30
BC86 C9 29
BC8B F8 8B
BC8A A9 89
BC8C BS 48
BC8E BS 3F
BCU F8 IS
BC12 4C 33 BO
BCIS A9 ee
BC17 28 7F B4
BCIA A2 ee
BCIC BO ee 82
BCIF BS 3F
BC21 EB
BC22 BO 88 82
BC2S BS 48
BC27 AS 30
BC29 C9 61
BC2B 98 Sl
BC20 C9 7B
BC2F B8 40
BC31 3B
BC32 E9 28
BC34 BS 30
BC36 A2 87
BC3B AS 48
8C3A 08 86
8C3C CA
BC30 AS 3F
8C3F 09 81
8C41 CA
8C42 E4 3E
BC44 F8 8B
BC46 B8 86
8C48 28 BB BB
BC4B 4C Sl BC
8C4E 28 33 B9
BCSI A4 49
8CS3 A9 SB
BCSS 91 FB
8CS7 AS 48

BNE $BBF3 BCS9 F8 83
STX $3E 8CSB CB
CPX 1$82 8CSC 91 FB
BCS $8CIS 8CSE AS 3F
OEX BC69 F8 83
LOA $30 8C62 CB
OMP 1$28 BC63 91 FB
BEQ $8C12 BC6S A9 47
LOA 1$88 BC67 C8
STA $48 8C6B 91 FB
STA $3F 8C6A A9 3E
BEQ $8C27 BC6C C8
JMP $B033 BC60 91 FB
LOA 1$88 8C6F AS 30
JSR $847F 8C71 CB
LOX 1$88 8C72 91 FB
LOA $8288,X 8C74 A9 SO
STA $3F BC76 C8
INX BC77 91 FB
LOA $9288,X 8C79 A6 3C
STA $48 BC7B 4C Bl 8B
LOA $30 8C7E BS 30
OMP 1$61 BCB9 A9 S9
BCC $BC7E BC82 BS 62
OMP K7B BCB4 A9 A3
BCS $BC7E BCB6 8S 63
SEC BC88 A2 Sl
SBC 1$28 8CBA A8 88
STA $30 BC8C 29 FB Bl
LOX 1$87 8C8F Bl 62
LOA $48 BC91 48
BNE $8C42 BC92 28 82 B2
OEX BC9S 68
LOA $3F 8C96 CS 30
BNE $BC42 8C98 F8 29
OEX 8C9A CB
CPX $3E BC9B CB
BEQ $8CSl BC9C CB
BCS $8C4E BC9D CA
JSR $8B8B 8C9E 18 EC
JMP $BCSI BCA9 AS 30
JSR $8933 8CA2 C9 IB
LOY $49 BCA4 99 8S
LOA KSB 8CA6 A2 90
STA ($FB),Y 8CAB 4C 37 A4
LOA $49 8CAB 69 48

BEQ $8CSE
INY
STA ($FB),Y
LOA $3F
BEQ $8C6S
INY
STA ($FB), Y
LOA 1$47
INY
STA ($FB) ,Y
LOA K3E
INY
STA ($FB),Y
LOA $30
INY
STA ($FB),Y
LOA KSO
INY
STA ($FB),Y
LOX $3C
JMP $BBBI
STA $30
LDA KS8
STA $62
LDA KA3
STA $63
LOX KSI
LOY 1$98
JSR $BIFB
LOA ($62), Y
PHA
JSR $8282
PLA
CHP $30
BEQ $BCBA
INY
INY
INY
OEX
BPL $8C8C
LOA $30
CHP KIB
BCC $BCAB
LOX 1$90
JMP $A437
AOC 1$48

BCAO BO 4B A4
BCB9 A9 43
BC82 B5 62
BCB4 A9 A4
BCB6 B5 63
BCBB 09 12
BCM CB
BCBB 29 F8 Bl
BC8E 81 62
BCC9 4B
BCCI CB
BCC2 Bl 62
BCC4 B5 63
BCC6 29 92 B2
BCC9 6B
BCCA B5 62
BCCC A9 99
BCCE 29 FB Bl
BC01 81 62
BC03 B5 Cl
BC05 29 92 B2
BCOB AS Cl
BCOA IB
BCOB 69 94
BCOO AA
BCOE AS 49
BCEO 00 06
BCE2 CA
BCE3 AS 3F
BCES DO 91
BCE7 CA
BCEB E4 3E
BCEA FO 9B
8CEC BO 96
8CEE 20 8B BB
8CFl 4C F7 BC
BCF4 20 33 B9
BCF7 A4 49
8CF9 A9 5B
8CFB 91 FB
BCFO AS 3F
BCFF FO 93
B091 CB
8092 91 FB
B094 AS 40
B086 FO 93

The complete utility 257

STA $A44B BOOB CB
LOA H$43 B089 91 FB
STA $62 BD9B B4 49
LOA H$A4 B090 AO 99
STA $63 BOOF 20 FB Bl
BNE $BCCC B012 CB
INY B013 81 62
JSR $81FB 8015 84 C2
LOA ($62),Y 8017 A4 49
PHA 8019 C8
INY 801A 91 FB
LOA ($62),Y 801C 84 49
STA $63 BDIE A4 C2
JSR $8292 8020 C4 Cl
PLA BD22 DO EE
STA $62 8024 29 92 82
LOY #$09 8D27 A4 49
JSR $81FB 8029 A9 5D
LOA ($62),Y BD2B CB
STA $Cl B02C 91 FB
JSR $B202 8D2E A6 3C
LOA $Cl 8030 4C Bl BB
CLC BD33 A4 49
ADC H$04 8035 A6 3C
TAX BD37 4C 81 B8
LOA $40 BOJA AS 9D
BNE $BCEB BD3C FO 21
OEX B03E 78
LOA $3F BD3F A9 FF
BNE $8CE8 8041 8D 47 8E
DEX 8D44 A9 FF
CPX $3E 8046 BO 46 8E
8EQ $BCF7 BD49 AE 98 03
BCS $8CF4 804C 8E 58 8E
JSR $88B8 BD4F A9 79
JMP $BCF7 8051 BO 98 03
JSR $B933 BD54 AE 09 03
LDY $49 8057 BE 51 BE
LOA #$58 BDSA A9 BO
STA ($FB),Y B05C BO 89 03
LOA $3F BD5F 58
BEQ $B0842 B060 60
INY BD61 7B
STA ($FB),Y 8062 AS 9D
LOA $48 B064 FO F9
BEQ $800B B066 A9 90

INY
STA ($FB) ,Y
STY $49
LOY H$09
JSR $BIF8
INY
LOA ($62), Y
STY $C2
LDY $49
INY
STA ($F8) ,Y
STY $49
LOY $C2
CPY $C1
BNE $BD12
JSR $8202
LDY $49
LOA H$50
INY
STA ($FB) , Y
LDX $3C
JMP $BBBI
LDY $49
LDX $3C
JMP $8BBl
LOA $90
BEQ $BD5F
SEI
LOA #$FF
STA $8E47
LOA #$FF
STA $8E46
LDX $0308
STX $8E58
LOA #$79
STA $0308
LOX $0309
STX $BE51
LOA H$BD
STA $0309
CLI
RTS
SEl
LOA $90
BEQ $BD5F
LOA H$00

258 The complete utility

S06S SO 46 SE STA $SE46 S004 29 02 FF JSR $FF02
S06B AD 58 SE LOA $SE58 S007 A9 12 LOA 1$12
B06E BO 8B 83 STA $938B BOD9 29 02 FF ~TSR $FF02
S071 AD 51 BE LOA $BE51 BOOC AS 3A LOA $3A
S074 BO 89 83 STA $9389 BOOE BO 4F BE STA $BE4F
S077 5S CLI SOEl A6 39 LOX $39
B07B 69 RTS BOE3 BE 4E BE STX $BE4E
B079 BO 49 BE STA $BE49 SOE6 28 CO BO JSR $BOCO
B07C 8B PHP BOE9 A9 92 LOA 1$92
B070 BE 4A BE STX $BE4A SOEB 28 02 FF JSR $FF02
BOB9 BC 4B BE STY $SE4B BOEE lS CLC
SOS3 AS 90 LOA $90 SOEF B8 96 BCS $BOB7
SOBS F9 80 BEG $S094 SOFl AE 40 BE LOX $BE40
SOB7 AD 49 BE LOA $SE49 SOF4 AC 4C SE LOY $SE4C
SOBA AC 4B BE LOY $BE4B SOF7 29 F9 FF JSR $FFF9
SOSO AE 4A BE LOX $BE4A SOFA 29 E4 FF JSR $FFE4
B099 2S PLP SOFO F9 25 BEG $SE24
S091 6C 58 BE JMP ($SE59) SOFF C9 2F CNP 1t$2F
S094 AS 39 LOA $39 SE81 99 21 BCC $SE24
S096 AO 46 BE LOA $SE46 SE83 C9 3A CNP 1t$3A
S099 F9 EC BEG $BOB7 BE95 B9 10 BCS $SE24
S09B 3S SEC SE8? E9 38 SBC 1$39
B09C 29 F9 FF JSR $FFF9 SE99 09 87 ~E $SE12
S09F BE 40 BE STX $SE40 SE8B A9 FF LOA It$FF
B0A2 BC 4C BE STY $SE4C BE90 BO 47 BE STA $SE4?
80A5 18 CLC 8E19 09 12 BNE $8E24
80A6 A2 89 LOX 1$89 SE12 APt TAX
SOAB A8 1B LOY 1$1 B 8E13 3S SEC
BDAA 29 F9 FF ~TSR $FFF9 BE14 A9 89 LOA #$08
SOAO A2 8F LOX 1t$9F 8E16 2A ROL
SOAF A9 29 LOA #$28 BE17 CA OEX
SOBl 28 02 FF JSR $FF02 8E18 08 FC BNE $8E16
BOB4 CA OEX BElA BO 4B BE STA $SE4B
BOBS 09 FS BNE $SOAF SEI0 A9 08 LOA 1$99
SOB7 lS CLC BEIF BO 47 BE STA $SE4?
SOBS A2 88 LOX 1$99 SE22 F9 14 BEG $SE3S
BOBA A9 IB LOY #$IS BE24 AE 47 BE LOX $BE47
BOBC 29 F8 FF JSR $FFF8 BE27 F8 OF BEG $BE3S
SOBF A9 12 LOA #$12 SE29 C9 29 CMP #$29
SOCl 29 02 FF JSR $FF02 BE2B F9 16 BEQ $SE43
80C4 AD 4F BE LOA $SE4F SE20 29 E4 FF JSR $FFE4
SOC7 AE 4E BE LOX $BE4E SE39 F9 FB BEG $SE20
SOCA 29 CD BO JSR $BOCO BE32 C9 29 CMP #$29
SOCO A9 92 LOA 1$92 BE34 F9 90 BEQ $SE43
SOCF 29 02 FF JSR $FF02 BE36 09 C5 ~E $SOFO
S002 A9 28 LOA 1$29 SE3S AE 4S BE LOX $BE4S

----- --- ---------------------

BE3B A9 FF
BE3D BB
BE3E D9 FD
BE49 CA
BE41 D9 FB
BE43 3B
BE44 F9 A9
BE46 FF
BE47 FF
BE4B 99
BE49 FF
BE4A 99 0B
BE4C 99
BE4D 99
BE4E 99
BE4F 99
BE59 92
BE51 B3
BE52 A5 9D
BE 54 C9 B9
BE56 F9 91
BE5B 69
BE59 A5 2D
BE5B B5 BB
BE5D A5 2E
BE5F B5 BC
BE61 A5 BC
BE63 C5 39
BE65 D9 97
8E67 A5 BB
BE69 C5 2F
BE6B D9 91
BE6D 69
BE6E A9 99
BE79 Bl BB
BE72 C9 B9
BE74 B9 SA
BE76 29 D2 FF
8E79 CB
BE7A Bt BB
BE7C C9 7F
BE7E B9 17
BE89 29 D2 FF
8EB3 29 33 BF
BEB6 A5 BB
BEBB A4 BC

LDY #$FF
DEY
ENE $BE3D
DEX
ENE $BE3B
SEC
BEQ $BDEF
???
???

BRK
???
ORA #$9B
BRK
BRK
BRK
BRK
???
???

LOA $9D
CNP #$B9
BEQ $BE59
RTS
LOA $2D
STA $BB
LOA $2E
STA $BC
LOA $BC
CNP $39
BNE $BE6E
LOA $BB
O1P $2F
BNE $BE6E
RTS
LDY #$99
LOA ($BB),Y
CMP #$B9
BCS $BED9
JSR $FFD2
INY
LOA ($BB) I Y
O1P #$7F
BCS $BE97
JSR $FFD2
JSR $BF33
LOA $BB
LDY $BC

The complete utility 259

BEBA 29 A2 BB
BEBD 29 DD BD
BE99 29 lE AB
BE93 A9 FF
BE95 D9 7A
BE97 29 7F
BE99 29 D2 FF
BE9C A9 24
BE9E 29 D2 FF
BEAl 29 33 BF
BEA4 A9 22
BEA6 29 D2 FF
BEA9 A9 99
BEAB Bt BB
BEAD AA
BEAE F9 15
BEB9 CB
BEBt Bt BB
BEB3 B5 22
BEB5 CB
BEB6 Bl BB
BEBB B5 23
BEBA A9 99
BEBC Bl 22
BEBE 29 D2 FF
BECt CB
BEC2 CA
BEC3 D9 F7
BEC5 A9 22
BEC7 29 D2 FF
BECA F9 45
BECC D9 43
BECE B9 91
BED9 29 7F
BED2 29 D2 FF
BED5 CB
BED6 Bl BB
BEDB C9 7F
BEOA B9 t2
BEDC 29 D2 FF
BEDF 29 33 BF
BEE2 A9 46
BEE4 29 D2 FF
BEE7 A9 4E
BEE9 29 D2 FF
BEEC D9 23

JSR $BBA2
JSR $BDDD
JSR $ABlE
LOA #$FF
Ef'.IE $BF It
AND #$7F
JSR $FFD2
LOA #$24
JSR $FFD2
JSR $BF33
LOA #$22
JSR $FFD2
LDY #$09
LOA ($BB) I Y
TAX
BEQ $BEC5
INY
LOA ($BB) I Y
STA $22
1NY
LOA ($BB) ,Y
STA $23
LDY #$99
LOA ($22) I Y
JSR $FFD2
1NY
DEX
BNE $BEBC
LOA #$22
JSR $FFD2
BEQ $BFll
BNE $BFll
BCS $BE61
AND #$7F
JSR $FFD2
1NY
LOA ($BB) ,Y
CMP #$7F
Bes $BEEE
JSR $FFD2
JSR $BF33
LOA #$46
JSR $FFD2
LOA #$4E
JSR $FFD2
BNE $BFll

260 The complete utility

BEEE 29 7F
BEFO 20 D2 FF
BEF3 A9 2S
BEFS 20 D2 FF
BEFB 29 33 BF
BEFB AO 00
BEFD B1 BB
BEFF BS 62
BF91 CB
BFB2 Bl BB
BF94 BS 63
BFB6 A2 99
BFOB 29 44 BC
BFBB 29 DD BD
BFOE 29 IE AB
BFll A99D
BF13 29 D2 FF
BF16 1B
BF17 AS BB
BF19 69 0S
BF1B BS BB
BF1D 99 02
BFIF E6 BC
BF21 29 E4 FF
BF24 20 El FF
BF27 DO 01
BF29 69
BF2A AS CB
BF2C C9 49
BF2E D0 Fl
BF39 3B
BF31 BB 9B
BF33 A9 3D
BF3S 2B D2 FF
BF3B lB
BF39 AS BB
BF3B 69 B2
BF3D BS BB
BF3F 99 92
BF41 E6 BC
BF43 69
BF44 99 93
BF46 4C 0B AF
BF49 29 FS Bl
BF4C 29 13 A6
BF4F B9 9S

AND 1$7F BFSI A2 IS
JSR SFFD2 BFS3 4C 37 A4
LOA *S2S BFS6 AS SF
JSR SFFD2 BFSB BS FB
JSR SBF33 BFSA AS 69
LDY 1$00 BFSC BS FC
LOA (SBB),Y BFSE 20 79 90
STA S62 BF61 C9 2C
INY BF63 D9 El
LOA (SBB),Y BF6S 29 73 0B
STA S63 BF6B D9 9F
LDX 1$99 BF6A 3B
JSR SBC44 BF6B AS 2D
JSR SBDDD BF6D E9 02
JSR $ABlE BF6F BS SF
LOA 1$9D BF71 AS 2E
JSR SFFD2 BF73 E9 99
CLC BF7S BS 69
LOA SBB BF77 D9 IB
ADC 1$9S BF79 BO CB
STA SBB BF7B 29 FS Bl
BCC SBF21 BF7E E6 14
INC SBC BFB9 29 13 A6
JSR SFFE4 BFB3 AS FC
JSR SFFEI BFBS CS 69
BNE SBF2A BFB7 99 9B
RTS BFB9 D9 BB
LOA SCB BFBB AS FB
OMP *S49 BFBD CS SF
BNE SBF21 BFBF B9 BS
SEC BF91 A9 99
BCS SBECE BF93 AS SF
LOA 1$3D BF9S 91 FB
JSR SFFD2 BF97 CB
CLC BF9B AS 69
LOA $BB BF9A 91 FB
ADC 1$92 BF9C CB
STA $BB BF9D Bl FB
BCC SBF 43 BF9F AA
INC $BC BFAO CB
RTS BFAI B1 FB
BCC $BF49 BFA3 29 7F B4
JMP $AF9B BFA6 6B
JSR $BIFS BFA? 6B
JSR $A613 BFAB A2 FF
BCS SBFS6 BFAA A9 9 1

LDX I$IS
JMP $A437
LOA SSF
STA $FB
LOA S6B
STA $FC
JSR S9079
CMP 1$2C
Et4E SBF46
JSR $B973
Et4E $BF79
SEC
LOA S2D
SBC 1$92
STA SSF
LOA $2E
SBC 1$99
STA $69
Et4E SBF91
BCS $BF46
JSR $BIFS
INC $14
JSR $A613
LOA SFC
OMP S69
BCC SBF91
Et4E SBF46
LOA SFB
OMP SSF
BCS $BF46
LDY 1$99
LOA $SF
STA (SFB) , Y
INY
LOA $69
STA (SFB) , Y
INY
LOA (SFB) , Y
TAX
INY
LOA (SFB) ,Y
JSR $B47F
PLA
PLA
LDX *SFF
LOA 1$91

The complete utility 261

BFAC 4C 70 92 JMP $9270 988B Bl FB LOA ($FB), Y
BFAF 28 F5 81 JSR $81F5 998A 85 FO STA $FO
8FB2 4C A3 AB JMP $A8A3 988C C8 INY
8FB5 A9 83 LOA "83 9980 BI FB LOA ($FB),Y
8FB7 29 FB A3 JSR $A3FB 989F B5 FE STA $FE
8FBA AS 7B LOA $7B 9911 08 85 BNE $9918
8FBC 48 PHA 9813 A2 II LOX "II
8FBO AS 7A LOA $7A 9915 4C 37 A4 JMP $A437
8FBF 48 PHA 9818 A9 84 LOY "84
8FC9 AS 3A LOA $3A 991A BI FB LOA ($FB),Y
8FC2 48 PHA 981C C9 El O1P "EI
8FC3 AS 3B LOA $3B 991E F8 9A BEQ $982A
8FC5 48 PHA 9829 AS FO LOA $FO
8FC6 A9 80 LOA "80 9922 85 FB STA $FB
8FC8 48 PHA 9824 AS FE LOA $FE
BFC9 29 79 98 JSR $9979 9926 85 FC STA $FC
BFCC 29 AF 8F JSR $8FAF 9828 09 DC ~E $9886
8FCF 4C AE A7 JMP $A7AE 992A A2 FF LOX "FF
8F02 A2 89 LOX "98 982C E8 INX
8F04 C6 7A DEC $7A 9920 C8 INY
8F06 B9 82 BCS $8FOA 982E Bl FB LOA ($FB),Y
8F08 C6 7B DEC $7B 9938 F8 87 BEQ $9939
8FOA 29 73 89 JSR $9873 9832 DO 89 82 O1P $8289,X
8FOO F8 86 BEQ $8FE5 9935 F8 F5 BEQ $982C
8FOF 90 89 82 STA $9289 ,X 9837 09 E7 ~E $9828
8FE2 E8 INX 9939 DO 98 82 CHP $8288,X
8FE3 09 F5 ~E $8FOA 983C 09 E2 ~E $9829
8FE5 A9 98 LOA "99 993E 38 SEC
8FE7 90 89 82 STA $9289,X 983F AS FB LOA $FB
8FEA A9 83 LOA "93 9841 E9 81 SBC "91
8FEC 28 FB A3 JSR $A3FB 9843 85 7A STA $7A
8FEF AS 7B LOA $7B 9945 A5 FC LOA $FC
8FFl 48 PHA 9847 E9 89 SBC "88
8FF2 A5 7A LOA $7A 9949 85 7B STA $7B
8FF4 48 PHA 984B 4C AE A7 JMP $A7AE
8FF5 AS 3A LOA $3A 994E 08 8C BNE $985C
8FF7 48 PHA 9859 A9 89 LOA "88
8FF8 AS 39 LOA $39 9952 85 CB STA $CB
8FFA 48 PHA 9854 29 E4 FF JSR $FFE4
8FFB A9 80 LOA "80 9957 F8 FB BEQ $9954
8FFO 48 PHA 9859 85 99 STA $98
8FFE AS 2B LOA $2B 995B 68 RTS
9889 85 FB STA $FB 985C 29 9E AD JSR $A09E
9982 AS 2C LOA $2C 995F 28 A3 B6 JSR $B6A3
9884 85 FC STA $FC 9862 C9 89 O1P "88
9986 A8 88 LOY "98 9964 F8 EA BEQ $9858

262 The complete utility

9066 85 FB STA $FB 90C1 E6 59 INC $59
9968 A9 08 LDA K00 90C3 A5 59 LDA $59
906A 85 C6 STA $C6 90C5 85 FC STA $FC
996C 28 E4 FF JSR $FFE4 99C7 85 38 STA $38
906F F9 FB BEll $996C 90C9 A6 2B LOX $2B
9971 A4 FB LOY $FB 99CB A4 2C LOY $2C
9873 88 OEY 90CO A9 89 LDA K99
9974 01 22 CMP ($22), Y 99CF 29 05 FF JSR $FF05
9076 F9 95 BEll $9070 9002 99 93 BCC $9007
9978 88 OEY 9904 4C F9 E0 JMP $E9F9
9079 19 F9 BPL $9074 9007 29 B7 FF JSR $FFB7
997B 39 EF BMI $996C 99DA 29 BF ANO KBF
9070 85 99 STA $99 900C F9 95 BEll $90E3
997F 69 RTS 990E A2 10 LOX KI0
9089 29 04 El JSR $EI04 90E9 4C 37 A4 ..1MP $A437
9983 A9 99 LDA K99 99E3 86 20 STX $20
9085 85 B9 STA $B9 90E5 84 2E STY $2E
9987 29 26 85 JSR $8526 99E7 86 5F STX $5F
90SA A5 20 LDA $20 90E9 84 69 STY $60
998C 85 5F STA $5F 99EB A5 FB LDA $FB
908E A5 2E LDA $2E 90ED 85 SA STA $SA
9999 85 68 STA $69 99EF A5 FC LDA $FC
9892 38 SEC 90Fl 85 5B STA $5B
9993 A5 31 LDA $31 99F3 38 SEC
9095 85 SA STA$5A 90F4 A5 33 LDA $33
9997 E5 2F S8C $2F 99F6 E9 01 SBC 1t$91
9099 85 FD STA $FO 90F8 A8 TAY
999B A5 32 LDA $32 99F9 A5 34 LDA $34
909D 85 58 STA $58 90FB E9 89 SBe #$08
999F E5 39 S8C $39 99FO AA TAX
90Al 85 FE STA $FE 90FE 98 TYA
99A3 A5 33 LDA $33 99FF 38 SEC
90A5 38 SEC 9199 E5 SA SBC $5A
99A6 E9 01 SBC K91 9182 85 58 STA $58
90A8 85 58 STA $58 9194 A8 TAY
90AA A5 34 LDA $34 9105 SA TXA
90AC E9 99 SBe K99 9196 E5 5B SBC $5B
99AE 85 59 STA $59 9108 AA TAX
90B9 29 BF A3 JSR $A3BF 9199 E8 INX
99B3 A5 37 LDA $37 910A 98 TYA
90B5 85 41 STA $41 9198 F9 IF BEll $912C
9987 A5 38 LDA $38 9180 A5 SA LDA $SA
90B9 85 42 STA $42 919F 18 CLC
99BB A5 58 LDA $58 9119 65 58 ADC $58
90BO 85 FB S"TA $FB 9112 85 SA STA$SA
99BF 85 37 STA $37 9114 99 93 8CC $9119

9116 E6 58
9118 18
9119 AS SF
911B 6S S8
911 0 8S SF
911F 99 92
9121 E6 69
9123 98
9124 49 FF
9126 A8
9127 C8
9128 C6 SB
912A C6 69
912C Bl SA
912E 91 SF
9139 C8
9131 09 F9
9133 E6 SB
913S E6 69
9137 CA
9138 D9 F2
913A 38
913B AS SF
913D 8S 31
913F ES FO
9141 8S 2F
9143 AS 69
914S 8S 32
9147 ES FE
9149 85 38
914B AS 41
914D 8S 37
914F AS 42
91S1 8S 38
91S3 68
91S4 68
91SS 29 33 AS
91S8 A9 98
915A 29 99 FF
91S0 29 E7 FF
9169 29 77 A6
9163 29 8E A6
9166 4C CF 92
9169 09 93
9168 4C 88 AF
916E 29 FS 81

The complete utility 263

INC $S8 9171 AS IS
CLC 9173 C9 94
LOA $SF 917S 89 8S
ADC $58 9177 A2 BE
STA $SF 9179 4C 37 A4
8CC $9123 917C C9 89
INC $68 917E 89 F7
TYA 9189 69
EOR #$FF 9181 29 69 91
TAY 9184 8S 38
INY 91B6 AS 14
DEC $SB 918B 8S 37
DEC $68 91SA 4C 63 A6
LOA ($5A),Y 9180 29 69 91
STA ($SF),Y 9199 A9 89
INY 9192 9B
BNE $912C 9193 91 14
INC $S8 919S CB
INC $68 9196 91 14
OEX 919B CB
BNE $912C 9199 91 14
SEC 9198 AS 14
LOA $SF 9190 18
STA $31 919E 69 81
S8C $FD 91A9 BS 28
STA $2F 91A2 AA
LOA $68 91A3 AS IS
STA $32 91AS 69 88
SBC $FE 91A7 B5 2C
STA $39 91A9 AB
LOA $41 91AA SA
STA $37 91AB 69 82
LOA $42 91AO B5 20
STA $38 91AF 9B
PLA 91B9 69 89
PLA 9182 85 2E
JSR $AS33 91B4 4C 63 A6
LOA #$99 9187 A9 7C
JSR $FF99 91B9 BO 84 83
JSR $FFE7 918C A9 AS
JSR $A677 91BE 80 95 83
JSR $A68E 91Cl A9 lA
JMP $92CF 91C3 BO 96 83
BNE $916E 91C6 A9 E4
JMP $AF98 91C8 80 88 83
JSR $BIFS 91CB A9 A7

LOA $IS
CMP 1t$94
8CS $917C
LOX 1t$9E
JMP $A437
CMP 1t$89
8CS $9177
RTS
JSR $9169
STA $38
LOA $14
STA $37
JMP $A663
JSR $9169
LOY #$89
TYA
STA ($14) ,Y
INY
STA ($14) ,Y
INY
STA ($14) ,Y
LOA $14
CLC
AOC 1t$91
STA $28
TAX
LOA $15
ADC 1t$99
STA $2C
TAY
TXA
AOC 1t$92
STA $2D
TYA
ADC #$89
STA $2E
JMP $A663
LOA 1t$7C
STA $9394
LOA HAS
STA $939S
LOA It$IA
STA $9396
LOA It$E4
STA $9398
LOA HA7

264 The complete utility

91CO SO 97 93 STA $9397 9239 SO 11 96 STA $9611
9109 BO 99 93 STA $8399 923C BO 06 95 STA $8506
91D3 A9 B6 LDA "B6 923F BO 26 06 STA $9626
91D5 BD 9A 93 STA $839A 9242 A9 95 LOA 1$95
91DB A9 AE LDA HAE 9244 SO Cl 09 STA $09Cl
910A BO 9B 93 STA $939B 9247 BO 11 OA STA $OAll
9100 A9 FE LDA "FE 924A SO 06 09 STA $0906
910F BO 17 93 STA $9317 9240 BO 26 OA STA $DA26
91E2 BO 19 93 STA $9319 9259 A9 90 LDA 1$90
91E5 A9 66 LOA 1$66 9252 29 02 FF JSR $FF02
91E7 BO 16 93 STA $9316 9255 4C 74 A4 JHP $A474
91EA A9 47 LOA 1$47 925B IB CLC
91EC BO 1B 93 STA $931S 9259 29 F9 FF JSR $FFF9
91EF 7B SEI 925C A9 2A LOA tt$2A
91F9 A9 4B LDA tt$4S 925E A2 16 LOX 1$16
91F2 BO BF 92 STA $92BF 9269 29 02 FF JSR $FF02
91F5 A9 EB LDA "EB 9263 CA OEX
91F7 BO 99 92 STA $9299 9264 09 FA BNE $9260
91FA 5S CLI 9266 69 RTS
91FB 6B PLA 9267 2A ROL 91FC 6B PLA 926B 29 59 54 JSR $5459 91FO 4C 74 A4 JMP $A474 926B 49 4C EOR 1t$4C
9209 29 63 A6 JSR $A663 9260 49 54 EOR "54 9293 A9 93 LOA "93 926F 55 20 EOR $29,X
9295 29 02 FF JSR $FF02 9271 43 ??? 928B A9 88 LOA "99 9272 49 53 EOR "53 929A BO 29 D9 STA $0029 9274 41 42 EOR ($42,X)
9200 BO 21 08 STA $0921 9276 29 20 4E JSR $4E20
9219 A9 95 LDA "05 9279 43 ???
9212 BO B6 92 STA $92B6 927A 59 20 BVC $929C
9215 A2 9A LOX "8A 927C 2A ROL
9217 A8 89 LOY "99 9270 AO 82 93 LOA $9392
9219 29 5B 92 JSR $925S 92B9 BO 97 92 STA $9297
921C A2 9C LOX It$BC 92B3 AO 93 93 LOA $8393
921E A9 89 LOY "09 92S6 SO 9C 92 STA $929C
9229 1 B CLC 92B9 A9 96 LOA 1$96
9221 29 F9 FF JSR $FFF9 92BB SO 92 93 STA $9392
9224 A2 15 LOX "15 92BE A9 92 LOA "92
9226 BO 67 92 LDA $9267,X 9299 SO 83 83 STA $9393
9229 29 02 FF JSR $FF02 9293 4C B6 A4 JMP $A4S6
922C CA OEX 9296 A9 B3 LDA #$B3
9220 19 F7 BPL $9226 929S BO 92 93 STA $9392
922F A2 9E LOX tt$9E 929B A9 A4 LOA HA4
9231 A9 99 LDY 1$99 9290 BO 93 93 STA $8393
9233 29 5B 92 JSR $925B 92A9 29 33 AS JSR $A533
9236 BO Cl 95 STA $85Cl 92A3 IS CLC

The complete utility 265

92A4 A5 22
92A6 69 92
92A8 85 20
92M A5 23
92AC 69 89
92AE 85 2E
9289 29 69 A6
9283 4C 74 A4
9286 A5 32
9288 C5 2E
92BA 09 99
928C A5 31

Loading the utility

LOA $22
AOC "92
STA $20
LOA $23
AOC "89
STA $2E
JSR $A669
JHP $A474
LOA $32
CMP $2E
ENE $92C5
LOA $31

928E C5 20
92C9 09 93
92C2 A9 89
92C4 2C A9 98
92C7 95 9C
92C9 29 79 99
92CC 4C 99 99
92CF A5 9C
9201 19 84
9203 C6 38
9205 C6 32
9207 4C AE A7

CMP $20
BNE $92C5
LOA "89
BIT $99A9
STA $9C
JSR $8979
..1MP $9999
LOA $9C
BPL $9207
DEC $39
DEC $32
JHP $A7AE

Once the UTILITY and the data for CODER have been set up, a loader
program something like the following should be used.

10 A=A+1: IF A=1 THEN LOAD"UTILITY DATA",8,1
20 IF A=2 THEN LOAD"UTILlTY",8,1
30 SYS32768

10 Bits 'n' pieces

General

This chapter is a collection of snippets of information we have found
out since acquiring our 64s about 18 months ago. No detailed code
here, just the bare facts and a few ideas.

AUTO-REPEATS and INTERRUPTS

We have seen two articles on the subject of providing a repeat on all
keys. Both articles were based upon the same idea used on the
pre-8000 series PETS. In essence the normal IRQ service routine is
patched to include additional code by changing the vector at CINV from
its default of $EA31. The additional routine simple scans SFDX - if a key is
being pressed then it is reset to no key ($40) - and ends with a JUMP to
$EA31 to process the normal interrupt. This will then detect a key as
being pressed and enter the appropriate character in the keyboard
buffer. Alternatively, for a repeat on all keys, simply POKE 650,128. To
disable the repeat, POKE 6'>0,1. (For a full description of the IRQ service
routine, see Chapter 4.)

The second method is obviously far easier, but the first does allow a
selective auto-repeat to be implemented.

Whilst on the subject of the hardware interrupt (see Chapter 4 for its
implementation in the KEY commands), here is a short example to
demonstrate what can be done. The following program patches IRQ to
scan for function keys 1 and 3. These keys are used to increment the
border and background colours respectively. The routine only takes
the appropriate action once every 60 interrupts (about a second). If you
remove the interrupt counter from $C01F to $C02D, the effects produced
are quite unusual, but the routine becomes of little practical use as it is
too fast to exercise selective control.

To enable:
To disable:

SYS 49152
SYS 49170

ceBe
Ceel
C0B3
C006

78
A91F
8D1403
A9CB

SEI
LDA
STA
LDA

#$lF
$13314
#$Ce

ENABLE ENTRY'
SET CINV TO POINT TO $CI31F

C098
ceBB
C090
ce19
C011
ce12
C013
C015
C018
calA
C010
celE
celF
ce22
C025
ca27
C029
ce2B
C02E
C039
C031
ce33
C035
ce36
C039
ce3B
C030
ce49
C042
C1344
C046
C1348
C049
C134C
C04E
ce59
C053

801503
A909
8De9Cl
58
6£1
78
A931
801493
A9EA
801593
58
613
EE99Cl
A009Cl
C93C
0132A
A9913
8009Cl
A5CB
18
C994
090F
18
A02900
290F
6901
802909
A900
F09F
C905
009B
18
AD21D9
290F
6901
802100
4C31 EA

The BASIC loader:

STA
LOA
STA
CLI
RTS
SEI
LOA
STA
LOA
STA
CLI
RTS
INC
LDA
CMP
BNE
LOA
STA
LOA
CLC
CMP
BNE
CLC
LDA
ANO
AOC
STA
LDA
BEQ
CMP
BNE
CLC
LOA
AND
AOC
STA
JMP

Bits 'n' pieces 267

$9315
~130 SET IRQ COUNTER TO ZERO
$C1ge

01 SABLE ENTRY
#$31 RESTORE CIt.JV TO $EA31
$9314
#$EA
$9315

'$C1913 NEW IRQ ENRTY
$C109
#$3C
$C953
#$£10
$C109
$CB

#$£14
$C944

$De20
#$0F
~91

$0£129
~ge

$CB53
~95

$CB53

$0021
~eF

#$01
$De21
$EA31

6£1 INTERRUPTS ???
NO - SKIP KEY S~~
YES - SO RESET COUNTER

SFOX - CURRENT KEY PRESS

Fl ???

BOR COLOUR
BITS 9-3 ONLY (9-15 DEC)
INCREMENT IT

ENSURE SKI P TAKEN
SKIP BKD COLOUR
BKO COLOUR

CONTINUE NO~L IRQ

1 DATA 120, 169,31, 141,20,3, 169, 19
2, 141,21,3
2 DATA 169, 0, 141, 0, 193, 88, 96, 120,

169, 49
3 DATA 141, 20, 3, 169, 234, 141, 21, 3,
88, 96

268 Bits 'n' pieces

4 DATA 238, 9, 193, 173, 9, 193, 291 , 60
, 208, 42
5 DATA 169, 0, 141 , 0, 193, 165, 203, 24
, 201, 4
6 DATA 208, 15, 24, 173, 32, 208, 41 , 15
, 105, 1
7 DATA 141 , 32, 208, 169, 0, 240, 15, 29
1 , 5, 208
8 DATA 11 , 24, 173, 33, 208, 41 , 15, 105
, 1 , 141
9 DATA 33, 208, 76, 49, 234, 237, 61 , 3,

179, 173
10 FOR 1=49152 TO 49238:READ A:POKE 1 ,A:
NEXT 1

The IRQ vector can be used to great advantage. One common use is to
provide interrupt driven music (see The Companion to the Com
modore 64 pub. by Pan/PCN) and as in the UTILITY to make the function
keys programmable (Chapter 4).

Simple program protection

Some BASICS include commands to 'unlist' or generate protected files;
the 64's, however, does not. In order to protect our software we have
to resort to programming tricks.

There are many ways to afford a program some degree of protection
from unauthorized change. Most of these are well known and do little
to prevent the experienced user from gaining access. Chapter 1
showed how the link addresses could be modified to make program
lines invisible and list out of sequence. Another way to hide areas of
code is to end lines with a REM"[DEL][DELI " sequence. On listing, the
'deletes' will erase characters to their left. Most other techniques
require a program to be RUN.

Once a program has been run we can destroy some of the vectors
from $0300 to $0333. These include the PRINT TOKENS LINK, IQPLOP, which
could be directed to, say, print 'SYNTAX ERROR' at $AF08, the SAVE vector at
ISAVE to prevent saving and also disable the RUN/STOP at ISTOP. We could
also put a specified value somewhere in memory which, if not found,
will cause the program to crash, erase itself or even perform a cold
boot of the system. Unfortunately (or perhaps fortunately) any BASIC

program can be loaded without being run. To produce programs
which auto-run on loading requires knowledge of both machine code
and the operating system of the 64 (see CHAIN in Chapter 8). Nearly all
commercial software uses a number of levels of protection, one of
which is usually auto-running. We have covered a number of ways to
accomplish this for your own software in Chapter 2, but purposely

Bits 'n' pieces 269

leave out many of the techniques used by commercial software
houses. (Remember it is illegal to reproduce commercial software.)

Commodore Computing International Volume 2 No.11 has an article
on program protection. It contains the usual:

DISABLE RUN/STOP
DISABLE LIST
DISABLE SAVE

POKE 808,251
POKE 774,131 :POKE 775,164
POKE 818,131: POKE 819,164

The first simply bypasses the test by jumping to the end of the routine
(RTS). The latter two jump to 'ready for BASIC'. Similar changes may be
made to RUN/RESTORE at NMINV (see Chapter 6). The article does give a
program to generate auto-run programs from your own code. If you
are interested then, as the program is copyrighted, we suggest you get
hold of a copy of the magazine. A further tape protection idea was
given in Commodore User Volume 1 No.10.

Specified input

One of the most difficult and time-consuming tasks in producing
software for use by others is in making it 'crash-proof'. BASIC does not
allow the programmer to specify which keys are valid during input. The
results of incorrect entries in type, size or number can spoil a well
thought-out, pleasing display or even crash the program. The way
round this problem is to write your own input routine.

Commodore Horizons magazine of February 1984 published a very
good machine code 'Keyscan' input program written by Adrian War
man which does just about everything you could ask for. We see little
point in re-inventing the wheel, so we suggest that you read that
article. However, we have approached the problem from a different
angle and produced a simple routine entirely in BASIC. This is intended
to be called when input is required. The type of input expected is set
using the variable 'F' which is set to 0 for a real number, 1 for an integer
and 2 for a string. Strings may contain commas and quotes. Editing an
input may only be carried by using the DELETE key. The returned value
may, if required, be converted to a number by a simple VALO. If the
routine is to be used more than once, A$ must be emptied by: A$=''''

before each use.

60000- Generate a flashing cursor.
60030 If it is a delete check chars are there to be removed.
60040 'Return' marks end of input and the resulting string A$ is passed

back to the main program.
60050 Real numbers.
60060 Integer only.
60070 String.
60090 Update the display and wait for next char.

270 Bits 'n' pieces

60110- Real numbers may begin with + or - and may contain only
numerals and a decimal point.

60170- As for real but may not have a decimal point and must lie in the
range given.

60230- Allows any of the standard alphanumerics. To provide for lower
case mode where uppercase characters have their high bit set
some graphics are permitted (128+32 to 128+64).

68888 POKE 284,8:POKE 287,8
68819 GET Y$:IF Y$="" GOTO 69888
68828 A=LEN(A$)
68838 IF Y$=CHR$(28) AND A>e THEN A$=LEF
T$(A$,A-1):GOTO 68898
681348 IF Y$=CHR$(13) GOTO 681138
68858 IF F=8 THEN GOSUB 68118:GOTO 68098
68860 IF F=1 THEN GOSUB 60170:GOTO 613890
68878 IF F=2 THEN GOSUB 68238:GOTO 68898
6813813 GOTO 68131313
613898 PRINT Y$;:GOTO 60000
60100 RETURN
60110 REM REAL
68120 IF Y$="+H OR Y$="_" AND A=0 THEN
A$=Y$:GOTO 60160
60130 IF Y$)u/" AND Y$<":H THEN A$=A$+Y$
:GOTO 60160
60140 IF Y$="." THEN A$=A$+Y$:GOTO 60160
68150 Y$=" II

60160 RETURN
60170 REM INTEGER
60180 IF Y$="+" OR Y$="_H AND A=0 THEN
A$=Y$:GOTO 60220
60190 IF Y$) H /" AND Y$< II : H THEN A$=A$+Y$
:GOTO 60228
60200 IF VAL(A$»32767 OR VAL(A$) <-32768

THEN A$=LEFT$(A$,A):GOTO 60220
60218 Y$=""
60228 RETURN
60230 REM STRING
68240 IF (ASC(Y$) AND 127)<32 OR (ASC(Y$
) AND 127»95 THEN Y$="":GOTO 60260
68250 A$=A$+Y$
60260 RETURN

The above is intended only as a starting point. Obvious improvements
would be to allow the use of the cursor keys by manipulating the string
with LEFU, MID$ and RIGHU. The maximum length of the string field
could also be set to prevent overwriting an existing display.

Bits 'n' pieces 271

Invisible characters

Most readers will no doubt be aware that character data may be
directly POKEd to the screen. They will also have discovered that on
occasions no effect is apparent. A screen character (normal mode)
takes on the colour set in the corresponding location of the colour
map ($D800 on). If no character has been printed at this location nor a
colour set since the last clear screen the adopted colour is that of the
background. To see if the character is there, simply move the cursor to
the location.

We can use this to good effect by making displays change quite
quickly from BASIC with just pokes to the colour map. It is important to
remember that on an INPUT even though the character cannot be seen it
is still there and active.

PET -64/64-PET

Commodore has maintained almost complete compatibility in the
storage of programs on tape and to a lesser degree on disk. A tape
prepared on any machine may be read by another. The 1541 disk drive
uses an identical format to the 4040 unit. It can also read 2040 and 3040
formatted disks, but will corrupt these disks if it writes to them. You
may also find that you get write problems on 4040 formatted disks. This
compatibility does not mean to say that a program written for one
machine will work directly on another.

A BASIC program saved on a PET can be loaded and run directly on the
64, whereas the reverse is not true. A word of warning to cassette
users that the secondary address of 3 available on the 64 is not recog
nised by the PET. This is due to the different start address of BASIC on
the two machines ($0401 on PET). Loading a program with a secondary
address of zero will not allow it to load below the current start of BASIC.
This means that on the 64 the load will be forced to $0801. A 64 program
will normally have a start greater than $0401 and will go in above the start
of BASIC and is not directly usable.

There are two ways to overcome the problem. The first is raise the
start of BASIC on the PET to $0801 by (BASIC 2 & 4)

POKE 41,08: POKE 2048,0: NEW

before loading. All pokes to the screen will have to be adjusted for the
PET screen which starts at $8000 (32768) and all pokes to the colour map
removed. Defining the start of the screen with a variable and using
offsets from this simplifies the conversion. The easiest way is to avoid
using anything other than PRINT for output.

The second technique involves configuring the 64 to look like a PET
BASIC at $0401 and the screen in bank 2 at $8000. The Programmer's
Reference Guide (Chapter 3, 'Screen Memory') tells us how to relocate

272 Bits 'n' pieces

the screen by setting bits 7 to 4 of $0018 (53272), remembering to tell the
screen editor where it has gone by setting HIBASE ($0288/648). The start of
BASIC is lowered by setting TXTIAB and the top of memory set using
MEMTOP and string storage with FRETOP. The following program if run will
carry out the necessary changes. SYNTAX ERRORS may result until the
screen is cleared due to invisible characters.

10 POKE 51,000:POKE 55,000
20 POKE 52,128:POKE 56,128
30 POKE 56578,PEEK(56578) OR 3:POKE56576
, (PEEK(56576)AND252) OR 1
40 POKE 53272,(PEEK(53272)AND15)OR0:POKE

648,128:POKE 1024,0:POKE 44,4:NEW

There are some very sophisticated PET emulators on the market and
even cross-assemblers for machine code and cross-compilers for BASIC.

If a lot of your work is in an area where portability is important, it might
well be worthwhile pursuing the matter.

load and run

Pressing SHIFT and RUN/STOP will load and run the first program on tape
providing it is in BASIC. This may also be performed by:

POKE 631,131 : POKE 198,1

The advantage of the second is that it can be used from within a
program to avoid the problems associated with chaining if variables are
not to be retained. Less well known is its use with disk. The format is:

LOAD"PROG",8: [Press SHIFT & RUN/STOP]

Disk bugs

When using sequential data files problems may be encountered if the
same logical file number is used for both read and write operations.
Typically, error 63 FILE EXISTS is reported. The only way to be sure is to
use different numbers for input and output.

A less annoying feature is that null strings written to a data file are
ignored on reading back. One way to overcome the problem is to
always default null strings to a set value which is recognized on reading
back. Alternatively, GET# may be used to pick up returns and commas (a
bit laborious).

Appendices
APPENDIX A: Storage of BASIC text

Standard CBM 64 tokens

hex dec hex dec hex dec hex dec

$20 32 sp $40 64 @ $80 128 END $A6 166 SPC(
$21 33 ! $41 65 A $81 129 FOR $A7 167 THEN
$22 34 " $42 66 B $82 130 NEXT $A8 168 NOT
$23 35 # $43 67 C $83 131 DATA $A9 169 STEP
$24 36 $ $44 68 D $84 132 INPUT# $AA 170 + add
$25 37 % $45 69 E $85 133 INPUT $AB 171 - minus
$26 38 & $46 70 F $86 134 DIM $AC 172 * multi
$27 39

,
$47 71 G $87 135 READ $AD 173 / div

$28 40 $48 72 H $88 136 LET $AE 174 i power
$29 41 $49 73 I $89 137 GOTO $AF 175 AND
$2A 42 * $4A 74 J $8A 138 RUN $B0 176 OR
$2B 43 + $4B 75 K $8B 139 IF $B1 177 > gt
$2C 44 , $4C 76 L $8C 140 RESTORE $B2 178 = eq
$2D 45 - $4D 77 M $8D 141 GOSUB $B3 179 < It
$2E 46 $4E 78 N $8E 142 RETURN $B4 180 SGN
$2F 47 / $4F 79 0 $8F 143 REM $B5 181 INT
$30 48 0 $50 80 P $90 144 STOP $B6 182 ABS
$31 49 1 $51 81 Q $91 145 ON $B7 183 USR
$32 50 2 $52 82 R $92 146 WAIT $B8 184 FRE
$33 51 3 $53 83 S $93 147 LOAD $B9 185 POS
$34 52 4 $54 84 T $94 148 SAVE $BA 186 SQR
$35 53 5 $55 85 U $95 149 VERIFY $BB 187 RND
$36 54 6 $56 86 V $96 150 DEF $BC 188 LOG
$37 55 7 $57 87 W $97 151 POKE $BD 189 EXP
$38 56 8 $58 88 X $98 152 PRINT# $BE 190 COS
$39 57 9 $59 89 Y $99 153 PRINT $BF 191 SIN
$3A 58 $5A 90 Z $9A 154 CaNT $C0 192 TAN
$3B 59 $5B 91 [$9B 155 LIST $C1 193 ATN
$3C 60 < $5C 92 £ $9C 156 CLR $C2 194 PEEK
$3D 61 $5D 93 1 $9D 157 CMD $C3 195 LEN
$3E 62 > $5E 94 i $9E 158 SYS $C4 196 STR$
$3F 63 ? $5F 95 ~ $9F 159 OPEN $C5 197 VAL

$A0 160 CLOSE $C6 198 ASC
$A1 161 GET $C7 199 CHR$
$A2 162 NEW $C8 200 LEFT$
$A3 163 TAB($C9 201 RIGHT$
$A4 164 TO $CA 202 MID$
$A5 165 FN $CB 203 GO

274 Appendices

Extended basic tokens

hex dec hex dec

$CC 204 OFF $E6 230 RESET
$CD 205 KEY $E7 231 CHAIN
$CE 206 DOKE $E8 232 LOMEM
$CF 207 TEN $E9 233 HIMEM
$D0 208 TWO $EA 234 INKEY$
$D1 209 HEX $EB 235 MEM
$D2 210 BIN $EC 236 APPEND
$D3 211 OLD $ED 237 TROFF
$D4 212 COLOUR $EE 238 unused
$D5 213 WRITE $EF 239 unused
$D6 214 CGOTO $F0 240 unused
$D7 215 CGOSUB $F1 241 unused
$D8 216 PLOT $F2 242 unused
$D9 217 ENTER $F3 243 unused
$DA 218 DUMP $F4 244 unused
$DB 219 RENUM $F5 245 unused
$DC 220 DELETE $F6 246 unused
$DD 221 MERGE $F7 247 DEEK
$DE 222 CODER $F8 248 unused
$DF 223 AUTO $F9 249 unused
$E0 224 PROC $FA 250 unused
$E1 225 DPROC $FB 251 unused
$E2 256 EPROC $FC 252 unused
$E3 227 POP $FD 253 unused
$E4 228 QUIT $FE 254 unused
$E5 229 TRACE

Appendices 275

APPENDIX B: Hex to decimal and decimal to hex converter

hex decimal
low high

$00 0
$01 1
$02 2
$03 3
$04 4
$05 5
$06 6
$07 7
$08 8
$09 9
$0A 10
$08 11
$0C 12
$00 13
$0E 14
$0F 15
$10 16
$11 17
$12 18
$13 19
$14 20
$15 21
$16 22
$17 23
$18 24
$19 25
$lA 26
$18 27
$lC 28
$10 29
$lE 30
$lF 31
$20 32
$21 33
$22 34
$23 35
$24 36
$25 37
$26 38
$27 39
$28 40

o
256
512
768

1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840
4096
4352
4608
4864
5120
5376
5632
5888
6144
6400
6656
6912
7168
7424
7680
7936
8192
8448
8704
8960
9216
9472
9728
9984
10240

hex decimal
low high

$29 41
$2A 42
$28 43
$2C 44
$20 45
$2E 46
$2F 47
$30 48
$31 49
$32 50
$33 51
$34 52
$35 53
$36 54
$37 55
$38 56
$39 57
$3A 58
$38 59
$3C 60
$30 61
$3E 62
$3F 63
$40 64
$41 65
$42 66
$43 67
$44 68

$45 69
$46 70
$47 71
$48 72
$49 73
$4A 74
$48 75
$4C 76
$40 77
$4E 78
$4F 79
$50 80
$51 81

10496
10752
11008
11264
11520
11776
12032
12288
12544
12800
13056
13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
16128
16384
16640
16896
17152
17408
17664
17920
18176
18432
18688
18944
19200
19456
19712
19968
20224
20480
20736

hex decimal
low high

$52 82 20992
$53 83 21248
$54 84 21504
$55 85 21760
$56 86 22016
$57 87 22272
$58 88 22528
$59 89 22784
$5A 90 23040
$58 91 23296
$5C 92 23552
$50 93 23808
$5E 94 24064
$5F 95 24320
$60 96 24576
$61 97 24832
$62 98 25088
$63 99 25344
$64 100 25600
$65 101 25856
$66 102 26112
$67 103 26368
$68 104 26624
$69 105 26880
$6A 106 27136
$68 107 27392
$6C 108 27648
$60 109 27904
$6E 110 28160
$6F 111 28416
$70 112 28672
$71 113 28928
$72 114 29184
$73 115 29440
$74 116 29696
$75 117 29952
$76 118 30208
$77 119 30464
$78 120 30720
$79 121 30976
$7A 122 31232

hex decimal
low high

$78 123 31488
$7C 124 31744
$70 125 32000
$7E 126 32256
$7F 127 32512
$80 128 32768
$81 129 33024
$82 130 33280
$83 131 33536
$84 132 33792
$85 133 34048
$86 134 34304
$87 135 34560
$88 136 34816
$89 137 35072
$8A 138 35328
$88 139 35584
$8C 140 35840
$80 141 36096
$8E 142 36352
$8F 143 36608
$90 144 36864
$91 145 37120
$92 146 37376
$93 147 37632
$94 148 37888
$95 149 38144
$96 150 38400
$97 151 38656
$98 152 38912
$99 153 39168
$9A 154 39424
$98 155 39680
$9C 156 39936
$90 157 40192
$9E 158 40448
$9F 159 40704
$A0 160 40960
$A1 161 41216
$A2 162 41472
$A3 163 41728

276 Appendices

hex decimal hex decimal hex decimal hex decimal
low high low high low high low high

$A4 164 41984 $BB 187 47872 $02 210 53760 $E9 233 59648
$A5 165 42240 $BC 188 48128 $03 211 54016 $EA 234 59904
$A6 166 42496 $BO 189 48384 $04 212 54272 $EB 235 60160
$A7 167 42752 $BE 190 48640 $05 213 54528 $EC 236 60416
$A8 168 43008 $BF 191 48896 $06 214 54784 $ED 237 60672
$A9 169 43264 $C0 192 49152 $07 215 55040 $EE 238 60928
$AA 170 43520 $C1 193 49408 $08 216 55296 $EF 239 61184
$AB 171 43776 $C2 194 49664 S09 217 55552 $F0 240 61440
$AC 172 44032 $C3 195 49920 $OA 218 55808 $F1 241 61696
$AO 173 44288 $C4 196 50176 $OB 219 56064 $F2 242 61952
$AE 174 44544 $C5 197 50432 SOC 220 56320 $F3 243 62208
$AF 175 44800 $C6 198 50688 $00 221 56576 $FA 244 62464
$B0 176 45056 $C7 199 50944 $DE 222 56832 $F5 245 62720
$B1 177 45312 $C8 200 51200 $OF 223 57088 $F6 246 62976
$B2 178 45568 $C9 201 51456 $E0 224 57344 $F7 247 63232
$B3 179 45824 $CA 202 51712 $E1 225 57600 $F8 248 63488
$B4 180 46080 $CB 203 51968 $E2 226 57856 $F9 249 63744
$B5 181 46336 $CC 204 52224 $E3 227 58112 $FA 250 64000
$B6 182 46592 $CO 205 52480 $E4 228 58368 $FB 251 64256
$B7 183 46848 $CE 206 52736 $E5 229 58624 $FC 252 64512
$B8 184 47104 $CF 207 52992 $E6 230 58880 $FD 253 64768
$89 185 47360 $00 208 53248 $E7 231 59136 $FE 254 65024
$BA 186 47616 $01 209 53504 $E8 232 59392 $FF 255 65280

APPENDIX C: Machine code mnemonics and hex values

65100P-CODES

The tables below are a quick reference guide only and for more
detailed information a 6502 assembler book should be consulted.

The tables should be read row then column. If in doubt, remember
LDA immediate mode is $A9. The following abbreviations have been
used:

- immediate mode A=accumulator
$ - absolute address X=X index register
Z-zero page y=y index register
1- indirect address

Appendices 277

0 1 2 4 5 6

o BRK ORA (I,X) ORAZ ASLZ
1 BPL ORA (I),Y ORAZ,X ASL Z,X
2 JSR AND (I,X) BITZ ANDZ ROLZ
3 BMI AND (I)'Y ANDZ,X ROLZ,X
4 RTI EOR (I,X) EORZ LSR Z
5 BVC EOR (I),Y EORZ,X LSR Z,X
6 RTS ADC (I'X) ADCZ RORZ
7 BVS ADC (I),Y ADCZ,X RORZ,X
8 STA (I,X) STYZ STAZ STXZ
9 BCC STA (I),Y STYZ,X STAZ,X STXZ,Y
A LDY# LDA (I,X) LDX# LDYZ LDAZ LDXZ
B BCS LDA (I),Y LDY Z,X LDAZ,X LDXZ,Y
C CPY# CMP (I,X) CPYZ CMPZ DECZ
o BNE CMP (I),Y CMPZ,X DECZ,X
E CPX# SBC (I,X) CPXZ SBCZ INCZ
F BEQ SBC (I),Y SBCZ,X INCZ,X

8 9 A C D E

o PHP ORA# ASLA ORA$ ASL$
1 CLC ORA$,Y ORA$,X ASL $,X
2 PLP AND# ROLA BIT$ AND$ ROL$
3 SEC AND$,Y AND$,X ROL $,X
4PHA EOR# LSRA JMP$ EOR$ LSR $
5 CLI EOR$,Y EOR $,X LSR $,X
6 PLA ADC# RORA JMP I ADC$ ROR$
7 SEI ADC$,Y ADC$,X ROR$,X
8DEY TXA STY $ STA$ STX $
9TYA STA $,Y TXS STA $,X
ATAY LDA# TAX LDY$ LDA$ LDX $
B CLV LDA$,Y TSX LDY $,X LDA$,X LDX $,Y
CINY CMP# DEX CPY$ CMP$ DEC$
DCLD CMP$,Y CMP$,X DEC $,X
E INX SBC# NOP CPX$ SBC$ INC$
F SED SBC$,Y SBC $,X INC$,X

APPENDIX D: BASIC loader for Supermon

This is the BASIC program to produce Jim Butterfield's Superman moni-
tor. Type it in and SAVE it before running. There are lots of numbers so
it is easy to make a mistake.

278 Appendices

We have put in some checksums to help isolate errors. Once loaded
correctly you will be able to save the machine code version from the
monitor itself. Instructions for using Supermon are given in Appendix E.

Supermon normally loads to the top of BASIC memory. We have
modified it to sit at $C000 on to allow you to enter the code for the
UTILITY. Once you have it up and running, you can use Supermon to
modify itself to sit anywhere. There are addresses which require
changing so we have included a relocater program after the loader.

The Loader

19 A=49152:C=9
29 READB:IFB=-lTHEN49
39 POKEA,B:A=A+l:C=C+B:GOT029
49 IFC=27914THEN69
59 PRINT·DATA ERROR IN 1999 - 1399·:END
69 C=9
79 READB:IFB=-lTHEN99
89 POKEA,B:A=A+l:C=C+B:GOT079
99 IFC=26978THEN119
199 PRINT·DATA ERROR IN 1319 - 1699·:END
119 C=9
129 READB:IFB=-lTHEN149
139 POKEA,B:A=A+l:C=C+B:GOT0129
149 IFC=26897THEN169
159 PRINT·DATA ERROR IN 1619 - 1999·:END
169 C=9
179 READB:IFB=-lTHEN199
189 POKEA,B:A=A+l :C=C+B:GOT0179
199 IFC=28955THEN219
299 PRINT"DATA ERROR IN 1919 - 2299":END
219 C=9
229 READB:IFB=-lTHEN249
239 POKEA,B:A=A+l:C=C+B:GOT0229
249 IFC=25343THEN269
259 PRINT·DATA ERROR IN 2219 - 2599·:END
269 C=9
279 READB:IFB=-ITHEN299
289 POKEA,B:A=A+l:C=C+B:GOT0279
299 IFC=25432THEN319
399 PRINT·DATA ERROR IN 2519 - 2899·:END
319 C=9
329 READB:IFB=-ITHEN349
339 POKEA,B:A=A+l:C=C+B:GOT0329
349 IFC=27324THEN369
359 PRINT·DATA ERROR IN 2819 - 3199·:END

-------~~~~~----------------

369 C=9
379 READB:IFB=-lTHEN399
389 POKEA,B:A=A+l:C=C+B:GOT0379
399 IFC=25335THEN419

Appendices 279

499 PRINT"DATA ERROR IN 3119 - 3499 H:END
419 C=9
429 READB:IFB=-lTHEN449
439 POKEA,B:A=A+l:C=C+B:GOT0429
449 IFC=28957THEN469
459 PRINT-DATA ERROR IN 3419 - 3799-:END
469 C=9
479 READB:IFB=-ITHEN499
489 POKEA,B:A=A+l:C=C+B:GOT0479
499 IFC=29514THEN519
599 PRINTHDATA ERROR IN 3719 - 4999-:END
519 C=9
529 READB:IFB=-ITHEN549
539 POKEA,B:A=A+l:C=C+B:GOT0529
549 IFC=22961THEN569
559 PRINT-DATA ERROR IN 4919 - 4299":END
569 PRINT-DATA CORRECTH:PRINT
579 PRINT"SYS49152 TO USE"
589 END
1999 DATA76,233,192,255,9,9,255
1910 DATA255,9,9,255,255,0,9
1929 DATA255,255,9,9,255,255,9
1939 DATA9,255,255,9,9,255,255
1949 DATA9,9,255,255,9,9,255
1959 DATA255,9,8,255,255,8,9
1969 DATA255,255,9,9,255,255,9
1979 DATA9,255,255,9,9,255,25S
19S9 DATA9,9,255,25S,9,9,255
1999 DATA2S5,9,9,2S5,255,9,9
1199 DATA25S,25S,9,9,2S5,255,9
1119 DATA9,255,255,9,9,2S5,255
1129 DATA9,9,255,255,9,9,255
1139 DATA255,9,9,255,255,9,9
1149 DATA255,255,9,9,25S,255,9
1159 DATA9,255,2SS,9,9,255,255
1169 DATA9,9,255,255,9,9,255
1179 DATA2S5,9,9,25S,255,9,9
1189 DATA255,25S,128,9,2SS,255,9
1199 DATA9,2S5,255,9,9,255,2SS
1299 DATA9,9,255,255,9,9,255
1219 DATA255,9,9,2SS,255,9,9
1229 DATA255,255,9,9,255,25S,9

280 Appendices

1230 DATA0,255,255,0,0,255,255
1240 DATA0,0,255,255,0,0,255
1250 DATA255,0,0,255,255,0,0
1260 DATA255,255,0,0,255,255,0
1270 DATA0,255,255,0,0,255,255
1280 DATA0,0,255,255,0,0,255
1290 DATA255,0,0,255,255,0,0
1300 DATA255,255,0,0,255,255,0,-1
1310 DATA0,255,255,0,0,255,255
1320 DATA0,0,255,255,0,0,255
1330 DATA255,0,169,160,133,56,173
1340 DATA230,200,141 ,22,3,173,231
1350 DATA200,141,23,3,169,128,32
1360 DATA144,255,0,216,104,141,62
1370 DATA2,104,141,61,2,104,141
1380 DATA60,2,104,141,59,2,104
1390 DATAI70,104,168,56,138,233,2
1400 DATA141,58,2,152,233,0,141
1410 DATA57,2,186,142,63,2,32
1420 DATA87,198,162,66,169,42,32
1430 DATA87,195,169,82,208,52,230
1440 DATA193,208,6,230,194,208,2
1450 DATA230,38,96,32,207,255,201
1460 DATAI3,208,248,104,104,169,154
1470 DATA32,210,255,169,0,133,38
1480 DATAI62,13,169,46,32,87,195
1490 DATA169,159,32,210,255,32,62
1500 DATA193,201,46,240,249,201,32
1510 DATA240,245,162,14,221,183,200
1520 DATA208,12,138,10,170,189,199
1530 DATA200,72,189,198,200,72,96
1540 DATA202,16,236,76,237,195,165
1550 DATAI93,141,58,2,165,194,141
1560 DATA57,2,96,169,8,133,29
1570 DATA160,0,32,84,198,177,193
1580 DATA32,72,195,32,51,193,198
1590 DATA29,208,241,96,32,136,195
1600 DATA144,11 ,162,O,129,193,193,-1
1610 DATA193,240,3,76,237,195,32
1620 DATA51,193,198,29,96,169,59
1630 DATA133,193,169,2,133,194,169
1640 DATA5,96,152,72,32,87,198
1650 DATAI04,162,46,76,87,195,169
1660 DATA154,32,210,255,162,0,189
1670 DATA234,200,32,210,255,232,224
1680 DATA22,208,245,160,59,32,194

1690 DATAI93,173,57,2,32,72,195
1700 DATAI73,58,2,32,72,195,32
1710 DATAI83,193,32,141,193,240,92
1720 DATA32,62,193,32,121,195,144
1730 DATA51,32,105,195,32,62,193
1740 DATA32,121,195,144,40,32,105
1750 DATA195,169,154,32,210,255,32
1760 DATA225,255,240,60,166,38,208
1770 DATA56,165,195,197,193,165,196
1780 DATA229,194,144,46,160,58,32
1790 DATAI94,193,32,65,195,32,139
1800 DATAI93,240,224,76,237,195,32
1810 DATAI21,195,144,3,32,128,193
1820 DATA32,183,193,208,7,32,121
1830 DATAI95,144,235,169,8,133,29
1840 DATA32,62,193,32,161,193,208
1850 DATA248,76,71,193,32,207,255
1860 DATA201,13,240,12,201,32,208
1870 DATA209,32,121,195,144,3,32
1880 DATA128,193,169,154,32,210,255
1890 DATA174,63,2,154,120,173,57
1900 DATA2,72,173,58,2,72,173,-1
1910 DATA59,2,72,173,60,2,174
1920 DATA61,2,172,62,2,64,169

Appendices 281

1930 DATA154,32,210,255,174,63,2
1940 DATAI54,108,2,160,160,1,132
1950 DATA186,132,185,136,132,183,132
1960 DATAI44,132,147,169,64,133,187
1970 DATAI69,2,133,188,32,207,255
1980 DATA201,32,240,249,201,13,240
1990 DATA56,201,34,208,20,32,207
2000 DATA255,201,34,240,16,201,13
2010 DATA240,41,145,187,230,183,200
2020 DATA192,16,208,236,76,237,195
2030 DATA32,207,255,201,13,240,22
2040 DATA201,44,208,220,32,136,195
2050 DATA41,15,240,233,201,3,240
2060 DATA229,133,186,32,207,255,201
2070 DATA13,96,108,48,3,108,50
2080 DATA3,32,150,194,208,212,169
2090 DATA154,32,210,255,169,0,32
2100 DATA239,194,165,144,41,16,208
2110 DATA196,76,71,193,32,150,194
2120 DATA201,44,208,186,32,121,195
2130 DATA32,105,195,32,297,255,201
2149 DATA44,208,173,32,121,195,165

282 Appendices

2158 DATA193,133,174,165,194,133,175
2160 DATA32,105,195,32,207,255,201
2178 DATAI3,208,152,169,154,32,210
2180 DATA255,32,242,194,76,71 ,193
2190 DATA165,194,32,72,195,165,193
2200 DATA72,74,74,74,74,32,96,-1
2210 DATA195,170,104,41,15,32,96
2220 DATAI95,72,138,32,218,255,104
2238 DATA76,210,255,9,48,281,58
2248 DATA144,2,185,6,96,162,2
2250 DATA181,192,72,181,194,149,192
2260 DATAI04,149,194,202,208,243,96
2270 DATA32,136,195,144,2,133,194
2280 DATA32,136,195,144,2,133,193
2298 DATA96,169,8,133,42,32,62
2300 DATA193,201,32,288,9,32,62
2310 DATAI93,281,32,208,14,24,96
2320 DATA32,175,195,18,18,18,10
2338 DATAI33,42,32,62,193,32,175
2340 DATA195,5,42,56,96,281,58
2350 DATAI44,2,185,8,41,15,96
2368 DATAI62,2,44,162,0,180,193
2370 DATA208,8,188,194,288,2,238
2388 DATA38,214,194,214,193,96,32
2390 DATA62,193,201,32,240,249,96
2400 DATAI69,0,141,0,1,32,204
2410 DATAI95,32,143,195,32,124,195
2420 DATAI44,9,96,32,62,193,32
2430 DATA121,195,176,222,174,63,2
2440 DATAI54,169,154,32,210,255,169
2450 DATA63,32,210,255,76,71,193
2460 DATA32,84,198,202,208,250,96
2478 DATA230,195,208,2,230,196,96
2480 DATAI62,2,181,192,72,181,39
2498 DATAI49,192,184,149,39,202,288
2500 DATA243,96,165,195,164,196,56,-1
2510 DATA233,2,176,14,136,144,11
2520 DATAI65,40,164,41,76,51,196
2538 DATAI65,195,164,196,56,229,193
2540 DATAI33,38,152,229,194,168,5
2550 DATA38,96,32,212,195,32,185
2560 DATA195,32,229,195,32,12,196
2578 DATA32,229,195,32,47,196,32
2580 DATAI05,195,144,21,166,38,288
2590 DATAI00,32,48,196,144,95,161
2688 DATAI93,129,195,32,5,196,32

2619 DATA51,193,298,235,32,49,196
2629 DATA24,165,39,191,195,133,195
2639 DATAI52,191,196,133,196,32,12
2649 DATA196,166,38,298,61,161,193
2659 DATA129,195,32,49,196,176,52
2669 DATA32,184,195,32,187,195,76
2679 DATA125,196,32,212,195,32,195
2689 DATA195,32,229,195,32,195,195
2699 DATA32,62,193,32,136,195,144
2799 DATA29,133,29,166,38,298,17
2719 DATA32,47,196,144,12,165,29
2729 DATA129,193,32,51,193,298,238
2739 DATA76,237,195,76,71,193,32
2749 DATA212,195,32,195,195,32,229
2759 DATA195,32,195,195,32,62,193
2769 DATAI62,9,32,62,193,291,39
2770 DATA298,29,32,62,193,157,16
2789 DATA2,232,32,297,255,291,13
2790 DATA249,34,224,32,298,241,249
2890 DATA28,142,9,1,32,143,195,-1
2819 DATAI44,198,157,16,2,232,32
2829 DATA297,255,291,13,249,9,32
2839 DATA136,195,144,182,224,32,298
2849 DATA236,134,28,169,154,32,219
2859 DATA255,32,87,198,162,9,169
2869 DATA9,177,193,221,16,2,298
2879 DATAI2,299,232,228,28,298,243
2889 DATA32,65,195,32,84,198,32
2890 DATA51,193,166,38,288,141,32
2999 DATA47,196,176,221,76,71,193
2919 DATA32,212,195,133,32,165,194
2929 DATA133,33,162,9,134,49,169
2939 DATA147,32,219,255,q69,154,32
2948 DATA218,255,169,22,133,29,32
2958 DATA186,197,32,282,197,133,193
2968 DATA132,194,198,29,288,242,169
2978 DATA145,32,218,255,76,71,193
2988 DATA168,44,32,194,193,32,84
2998 DATAI98,32,65,195,32,84,198
3988 DATA162,8,161,193,32,217,197
3810 DATA72,32,31,198,194,32,53
3929 DATA198,162,6,224,3,298,18
3939DATA164,31,249,14,165,42,291
3949 DATA232,177,193,176,28,32,194
3959 DATA197,136,298,242,6,42,144
3969 DATA14,189,42,299,32,165,198

Appendices 283

284 Appendices

3878 DATA189,48,288,248,3,32,165
3888 DATA198,282,288,213,96,32,205
3898DATA197,178,232,288,1,288,152
3188 DATA32,194,197,138,134,28,32,-1
3110 DATA72,195,166,28,96,165,31
3120DATA56,164,194,170,16,1,136
3138 DATA181,193,144,1,288,96,168
3148DATA74,144,11,74,176,23,201
3158DATA34,248,19,41,7,9,128
3160 DATA74,170,189,217,199,176,4
3178 DATA74,74,74,74,41,15,208
3180 DATA4,168,128,169,8,170,189
3190 DATA29,280,133,42,41,3,133
3200 DATA31,152,41,143,178,152,160
3210 DATA3,224,138,248,11,74,144
3220 DATA8,74,74,9,32,136,208
3230 DATA258,200,136,288,242,96,177
3240 DATAI93,32,194,197,162,1,32
3258DATA254,195,196,31,280,144,241
3260 DATAI62,3,192,4,144,242,96
3278 DATA168,185,55,288,133,48,185
3288 DATAl19,200,133,41,169,0,160
3290 DATA5,6,41,38,48,42,136
3300 DATA208,248,105,63,32,210,255
3319 DATA292,298,236,169,32,44,169
3320 DATA13,76,219,255,32,212,195
3330 DATA32,195,195,32,229,195,32
3340 DATA105,195,162,0,134,49,169
3350 DATA154,32,219,255,32,87,198
3360 DATA32,114,197,32,202,197,133
3379 DATA193,132,194,32,225,255,240
3380 DATA5,32,47,196,176,233,76
3390 DATA71,193,32,212,195,169,3
3400 DATA133,29,32,62,193,32,161,-1
3418 DATA193,208,248,165,32,133,193
3420 DATAI65,33,133,194,76,79,197
3438 DATA197,48,248,3,32,218,255
3440 DATA96,32,212,195,32,105,195
3458 DATAI42,17,2,162,3,32,294
3460 DATAI95,72,282,208,249,162,3
3479 DATAI84,56,233,63,160,5,74
3480 DATA110,17,2,110,16,2,136
3490 DATA288,246,282,288,237,162,2
3500 DATA32,287,255,201,13,240,30
3518 DATA281,32,248,245,32,288,199
3520 DATA176,15,32,156,195,164,193

3530 DATAI32,194,133,193,169,48,157
3540 DATAI6,2,232,157,16,2,232
3550 DATA288,219,134,40,162,8,134
3568 DATA38,240,4,238,38,248,117
3578 DATAI62,8,134,29,165,38,32
3588 DATA217,197,166,42,134,41,170
3590 DATAI88,55,288,189,119,280,32
3680 DATAI85,199,208,227,162,6,224
3610 DATA3,288,25,164,31,248,21

Appendices 285

3620 DATAI65,42,281,232,169,48,176
3638 DATA33,32,191,199,288,284,32
3640 DATAI93,199,208,199,136,208,235
3650 DATA6,42,144,11,188,48,200
3660 DATAI89,42,200,32,185,199,208
3670 DATAI81,202,208,209,240,10,32
3680 DATAI84,199,208,171,32,184,199
3690 DATA288,166,165,48,197,29,288
3708 DATAI68,32,105,195,164,31,248,-1
3710 DATA40,165,41,281,157,288,26
3720 DATA32,28,196,144,10,152,208
3739 DATA4,165,30,16,10,76,237
3740 DATAI95,209,208,250,165,39,16
3750 DATA246,164,31,208,3,185,194
3760 DATA0,145,193,136,208,248,165
3778 DATA38,145,193,32,202,197,133
3780 DATAI93,132,194,169,154,32,219
3790 DATA255,160,65,32,194,193,32
3890 DATA84,198,32,65,195,32,84
3819 DATAI98,169,159,32,219,255,76
3828 DATAI76,198,168,32,191,199,208
3838 DATAI7,152,248,14,134,28,166
3840 DATA29,221,16,2,8,232,134
3850 DATA29,166,28,40,96,281,48
3860 DATAI44,3,201,71,96,56,96
3879 DATA64,2,69,3,208,8,64
3880 DATA9,48,34,69,51,298,8
3899 DATA64,9,64,2,69,51,208
3900 DATA8,64,9,64,2,69,179
3919 DATA298,8,64,9,0,34,68
3929 DATA51,208,140,68,0,17,34
3930 DATA68,51,208,148,68,154,16
3940 DATA34,68,51,208,8,64,9
3950 DATAI6,34,68,51,208,8,64
3960 DATA9,98,19,120,169,0,33
3979 DATAI29,130,0,0,89,77,145
3989 DATAI46,134,74,133,157,44,41

286 Appendices

3999 DATA44,35,49,36,89,9,88
4999 DATA36,36,9,28,138,28,35,-1
4919 DATA93,139,27,161,157,138,29
4929 DATA35,157,139,29,161,9,41
4939 DATA25,174,195,168,25,35,36
4949 DATA83,27,35,36,83,25,161
4959 DATA9,26,91,91,165,195,36
4969 DATA36,174,174,168,173,41,9
4979 DATAI24,9,21,156,199,156,165
4989 DATAI95,41,83,132,19,52,17
4999 DATAI65,195,35,169,216,98,99
4199 DATA72,38,98,148,136,84,68
4119 DATA299,84,194,68,232,148,9
4129 DATAI89,8,132,116,189,49,119
4139 DATAI16,244,294,74,114,242,164
4149 DATAI38,9,179,162,162,116,116
4159 DATAI16,114,68,194,178,59,178
4169 DATA9,34,9,26,26,38,38
4179 DATAI14,114,136,299,196,292,38
4189 DATA72,68,68,162,299,58,59
4199 DATA82,77,71,88,76,83,84
4299 DATA79,72,68,89,44,65,66
4219 DATAI94,53,194,294,193,247,193
4229 DATA86,194,137,194,244,194,12
4238 DATA195,62,196,146,196,192,196
4249 DATA56,197,91,198,138,198,172
4259 DATAI98,79,193,255,192,237,192
4269 DATAI3,32,32,32,89,67,32
4279 DATA32,83,82,32,65,67,32
4289 DATA88,82,32,89,82,32,83
4299 DATA89,198,239,255,254,221,222,-1

Relocation

If you need to relocate Supermon to another area of memory, the
following program will assist. First load in SUPERMON and use the TRANS

FER option to copy it to the desired location_ Now run the program
below and it changes the appropriate locations so that it will run at its
new address.

19 PRINT-[CLS][REV]SUPERMON RELOCATION H:
PRINT:PRINT
29 INPUT-NEW START ADDRESS - DECIMALH;AD
39 IFAD)49969THENPOKEAD+234,169:GOT099
49 PRINT-DO YOU WANT IT PROTECTED FROM BASIC"
59 PRINT-Y OR N-

60 GETA$:IFA$<>"Y HANDA$<>"NHTHEN60
70 IF A$=MN"THEN POKE AD, 160:GOT090
80 POKEAD+234,INT«AD/256+.5»
90 READ OF:IF OF=-1 THEN130

Appendices 287

100 READ DA:DA=DA+AD:D2=INT(DA/256):Dl=D
A-(D2*256)
110 POKE OF+AD,Dl:POKE OF+AD+l,D2
120 GOT090
130 END
140 C0=0
150 READ A:IF A=-l THEN170
160 CO=CO+A:GOTOI50
170 IF CO=451387THENPRINT U[REVJDATA OK"
:END
180 PRINT"[REVJDATA INCORRECT H
190 REM ***** START OF DATA *****
200 DATA1,233,238,2278,244,2279,294,1623
,301,855,341,855,349,318,370,2247
210 DATA374,2246,382,1005,402,1620,407,8
40,410,307,418,904,431,1005,434,307
220 DATA453,1623,459,855,469,2282,482,45
0,488,840,494,840,497,439,500,397
230 DATA505,318,508,889,513,873,516,318,
519,889,524,873,553,450,556,833,559,395
240 DATA564,1005,567,889,572,384,575,439
,580,889,589,318,592,417,597,327,611,889
250 DATA616,384,719,1005,733,904,758,662
,770,751,779,327,782,662,789,889
260 DATA792,873,802,889,813,873,828,754,
831,327,836,840,846,864,853,864
270 DATA899,994,897,994,999,318,925,943,
934,318,937,943,973,318,986,972
280 DATA989,911 ,992,892,998,318,1001,889
,1020,327,1023,1620,1069,1075
299 DATAI988,980,1991,873,1094,997,1097,
1036,1100,997,1193,1071,1106,873
309 DATAI115,1964,1124,1029,1127,397,113
2,1964,1147,1036,1158,1064
310 DATAI163,952,1166,955,1169,1149,1172
,980,1175,873,1178,997,1181,873
320 DATAI184,318,1187,904,1198,1071,1297
,307,1212,1005,1215,327,1218,980
330 DATAI221,873,1224,997,1227,873,1230,
318,1235,318,1242,318,1265,911
349 DATAI281,904,1297,1623,1317,833,1320
,1629,1323,307,1335,327,1338,989

288 Appendices

350 DATA1365,1386,1368,1482,1384,327,138
9,450,1392,1620,1395,833,1398,1620
360 DATAI405,1497,1409,1567,1413,1589,14
34,1474,1444,2090,1447,1701
370 DATAI450,2096,1455,1701,1462,1485,14
71,1474,1477,840,1515,2009,1533,2077
380 DATAI570,1474,1575,1022,1591 ,2103,15
96,2167,1629,980,1632,873,1635,997
390 DATAI638,873,1650,1623,1653,1394,165
6,1482,1668,1071,1673,327,1676,980
400 DATA1683,318,1686,417,1699,1350,1710
,980,1713,873,1721,972,1762,2000
410 DATA1767,924,1866,985,1814,2103,1817
,2167,1820,1977,1843,1983,1848,1985
420 DATAI860,2096,1863,2090,1866,1977,18
76,1976,1881,1976,1892,873,1905,1052
430 DATAI917,1005,1943,1482,1957,450,196
O,1620,1963,833,1966,1620
440 DATA1974,1712,1978,1983,1330,1071
450 DATA362,2231,916,318,1806,1497
460 DATA2246,578,2248,565,2250,460
470 DATA2252,503,2254,598,2256,649
480 DATA2258,756,2260,780,2262,1086
490 DATA2264,1170,2266,1216,2268,1336
500 DATA2270,1627,2272,1674,2274,1708
510 DATA2276,326,2278,255,2280,237,-1

APPENDIX E: Instructions for the use of Supermon

TO USE SUPERMaN (relocated version)

LOAD "SUPERMON",DEVICE,1

NEW

SYS49152

GENERAL NOTE

On entering Supermon it will save the stack which is restored on exit.
It further changes the BREAK vector so when a BRK is met in a program
Supermon is called.

All values are entered in hex. Only in ASSEMBLER mode do they have to
be prefixed with '$' and then only for the operand.

Once Supermon has been loaded, it is resident until the 64 is either
turned off or a program loaded which uses memory from $C000.

INSTRUCTIONS

A-ASSEMBLER-Allows simple assembly of machine code.
A $START OPCODE OPERAND.
For example, A 8000 lDA #$0A

Superman will prompt with the next address.

Appendices 289

Entering <RETURN> after address will exit assembler mode.
Branches are written with the destination address and not its dis
placement, that is, BEQ $C456.

D - DISASSEMBLER - Disassembles 22 instructions from the address
specified.

D $START
for example, D8000

Hex values may be changed by overtyping and on <RETURN> the same
locations will again be disassembled.
Typing D on the bottom line will disassemble the next 22 instructions.
Typing <SPACE> <RETURN> will exit disassembler mode.

F - Fill MEMORY - Fill an area of memory with a specified value.
F $FROM $TO BYTE
for example, F 5000 6000 FF

Useful to set up defaults prior to assembly, in particular to fill with NOPs
($EA).

G - GO RUN - execute machine code.
G - Starts execution at address currently in the Program Counter

Register (PC).
G $START - Starts execution at specified address.

H - HUNT - search memory for specified bytes.
H $START $TO DATA
for example, H S000 6000 'READ - Hunts for ASCII string "READ"

H 5000 6000 A9 0A - Hunts for lDA #$0A
A maximum of 32 bytes may be set.

L - lOAD - Loads a program at its secondary address, leaving BASIC poin
ters unchanged.

L "filename" ,DEVICE - Device in hex.
08 disk 01 tape

M - MEMORY DISPLAY - Displays hex values.
M $FROM$TO
for example, M 0801, 0891

11 Bytes may be overtyped to change.

P - PRINT DISASSEMBLY - Output hard copy of disassembled listing.
If in Superman then exit (see below) and set up printer as for normal
listing. Re-enter Superman with subsequent output being directed to
the specified device.

290 Appendices

For example OPEN4,4:CMD4:SYS49152
P$FROM $TO
When complete, exit Supermon and close printer channel.

R - REGISTER DISPLAY - Displays current register values. This displays the
PC, IRQ, Status Register (SR), A, X, Y and Stack Pointer (SP).

R
Values can be overtyped to change. This is of particular use in debug
ging operations where any of the registers may be altered and program
execution continued with a GO command.

S - SAVE - Saves an area of memory to tape or disk.
S "filename" ,DEVICE,$START,$END

Saves from the start up to, but not including the end address.
For example, S "NAME",08,5000,6001 - Saves from $5000 to $6000, but not
the byte at $6001.

T - TRANSFER - Transfers an area of memory to another leaving the
original intact.

T $FROM $TO $START
for example, T500060001000

You can also use MEMORY DISPLAY this way.
This option may be used in conjunction with the relocator to generate
versions of Supermon for use at other locations.

X - EXIT SUPERMON
X

The stack saved when Supermon was entered will be restored. A CLR
from BASIC should tidy up any stack problems.

COPYING SUPERMON

Use the save command as normal with the following addresses:
SUPERMON $C000 $C900

APPENDIX F: Extended BASIC memory map

The following gives the main entry points for the UTILITY:

Address

$8000
$800F
$8034
$8041
$8054
$8061
$807E

Description

Initialize Extended BASIC
Set up Keyword Vectors
Set Top of Memory
Set NMI and BRK Vectors
Set Keyboard Table Set-up Vector
NMI Routine
BRK Routine

Appendices 291

Address Description

$8090 Keyword Vector Table
$80F6 Keyword Table - Command Keywords
$81C7 Keyword Table - Function Keywords
$81F5 Routine - GET PARAMETER
$81FB Switch off BASIC

$8202 Switch on BASIC

$8209 CRUNCH Tokens
$82BC PRI NT Tokens
$8302 Token DISPATCH - Command Keywords
$8329 Token DISPATCH - Function Keywords
$8352 Perform COLOUR
$8381 Perform PLOT
$83A7 Perform WRITE
$83AD Perform ENTER
$83B3 Perform DOKE
$83D7 Perform DEEK
$8401 Routine - Convert to Positive
$8415 Perform OLD
$842E Perform AUTO
$847F Routine - Convert to ASCII
$84A0 Perform TEN
$84EC Perform TWO
$8537 Perform HEX
$85BF Perform BIN
$85FC Perform MEM
$8611 Perform RESET
$8631 Perform POP
$864D Perform KEY
$8722 KEY Interrupt Routine
$8799 Perform OFF
$87A7 Perform MERGE
$886F Perform APPEND
$88BB Routine to close up memory and rechain
$8933 Routine to open up memory and rechain
$89C5 Perform RENUM
$8B93 Perform CODER
$8D3A Perform TRACE
$8D61 Perform TROFF
$8E52 Perform DUMP
$8F44 Perform DELETE
$8FAF Perform CGOTO
$8FB5 Perform CGOSUB
$8FD2 Perform PROC
$904E Perform INKEY$

292 Appendices

Address

$9080
$9169
$9181
$918D
$91 B7
$9200
$927D
$92B6
$92DA
$9FFF

Description

CHAIN routine
HIMEM/LOMEM routine
Perform HIMEM
Perform LOMEM
Perform QUIT
Start up message
Completion of DELETE
Perform CHAI N

unused (expansion for sound/graphic/disk)

Appendix G: Reading an assembler listing

The machine code routines in this book have been presented in two
formats. The first was generated using Supermon which is given in
Appendix D and instructions for its use in Appendix E. The second was
produced using Supersoft's MIKRO assembler cartridge. This appendix
deals with listings generated using MIKRO as we feel they require some
explanation.

PSEUDO-OPS

These are instructions to the assembler and are not directly executable
op-codes.

This tells the assembler to start its assembly at address $C000.

WOR, BYT, and TXT

These instructions reserve bytes in memory. Both WOR and BYT may be
followed by any number of arguments separated by commas up to the
limit of two screen lines. WOR reserves two bytes and is used to store
absolute addresses in low/high format.

WOR $C000,$0100

Puts the four bytes $00,$C0,$00,$01 in four consecutive addresses. BYT

reserves single bytes.

BYT $A9,$FF

TXT is followed by a quoted string and places the hex values of the
ASCII codes sequentially in memory.

TXT" ABCD"

Puts $41,$42,$43 and $44 into memory.

Appendices 293

Each of these directives allocates bytes from the address at which it
appears.

LABELS

Labels are used to identify an absolute address in memory. They are
normally used as the destination for branches and jumps. They may
also be used as operands.

LDA #$00 BYTE=#$FF
BEQ ZERO or LDX BYTE

ZERO RTS

The absolute value of an address may be divided into low/high format
by the use of '#<' and '#>' operators.

*=$C000
START LDA #<START

LDX #>START

This loads A with $00 and X with $C0.

Simple numerical calculations may be performed.

STORE BYT $00,$FF
LDA STORE
LDX STORE+1

This loads A with the value held in STORE which has been set to $00 and
X with the byte from the next location, that is, $FF.

ADDRESS TABLES

Where labels have been used their values, starting at an arbitrary
address, have been given. This is useful to determine the hex values
for all branches and jumps.

LINE NUMBERS

The assembler code is entered exactly as one would type in a BASIC

program. The same editing rules apply to a MIKRO program as to a BASIC

program. Generally, we have retained these line numbers in the lis
tings given for clarity and to aid description.

COMMENTS

An exclamation mark is used in the same way as a REM from BASIC and

294 Appendices

prefixs comment statements. It tells MIKRO to ignore anything which
follows it.

This is by no means the definitive MIKRO manual. We have limited
ourselves to using only a few of the options available to allow easier
conversion to other assemblers.

Appendix H: Mnemonics generated by CODER

The codes generated are:
[BLK) -BLACK [GR1) -GRAY1 [DEL) - DELETE

[WHT) -WHITE [GR2) -GRAYS2 [INS) -INSERT

[RED) -RED [L T GRN) - LIGHT GREEN [REV) - REVERSE
ON

[CYN) -CYAN [LTBLU) - LIGHT BLUE [OFF) - REVERSE
OFF

[PUR) - PURPLE [GR3) -GRAY3 [SPC) -SPACE

[GRN) -GREEN [CLS) - CLEAR SCREEN [G>SPC) -SHIFTED
SPACE

[BLU) -BLUE [HOM) - HOME CURSOR [G>?) -GRAPHIC
WITH
SHIFT

[YEL) -YELLOW [CU) -CURSORUP [G<?) -GRAPHIC
WITH LOGO

[ORG) -ORANGE [CD) - CURSOR DOWN [CTRL?) -CONTROL
WITH
LETIER

[BRN) -BROWN [CR) - CURSOR RIGHT [F?] -FUNCTION
KEYS

[L T RED) - LIGHT RED [CL) - CURSOR LEFT [PI) -PI
3.1416

MULTIPLE CHARACTERS are coded as [10CD]

SPACES
Single, unshifted spaces are not coded. We thought it unnecessary as it
detracted from the legibility of the listing.

SPECIAL CODES
The following is an extract from the Programmer's Reference Guide,
page 74:

There are some other characters that can be PRINTed for special functions,
although they are not easily available from the keyboard. In order to get
these into quotes, you must leave empty spaces for them in the line, hit
<RETURN> or <SHIFT><RETURN>, and go back to the spaces with the
cursor controls. Now you must hit <CTRL> <RVS/ON>, to start typing
reversed characters, and type the keys shown below:

Function
SHIFT RETURN
switch to lower case
switch to upper case
disable case switching keys
enable case switching keys

Type
SHIFTM
N
SHIFTN
H
I

Appendices 295

IPearSAS

Functions 1 and 3 of the above are achieved as stated. CODER replaces
them with:

[CRG>M] - SHIFT RETURN
[CRG>N] - SWITCH TO UPPER CASE

The other three can be achieved far more easily. Whilst PRINTing in
quotes mode, press <CTRl> and the appropriate letter.

Appendix I: Key codes

The following are the values assigned to keys in locations SFDX and lSTX
($CB/203 & $C51197):

dec key dec key dec key

0 INST/DEl 22 T 44
1 RETURN 23 X 45
2 CRSR Rll 24 7 46 @
3 F7 25 Y 47
4 F1 26 G 48 £
5 F3 27 8 49 *
6 F5 28 B 50
7 CRSR U/D 29 H 51 ClRlHOME
8 3 30 U 52 None
9 W 31 V 53 =

10 A 32 9 54
A

11 4 33 I 55 /
12 Z 34 J 56 1
13 5 35 0 57 ~
14 E 36 M 58 None
15 None 37 K 59 2
16 5 38 0 60 SPACE
17' R 39 N 61 None
18 D 40 + 62 Q
19 6 41 P 63 RUN/STOP
20 C 42 l 64 No key press
21 F 43 -

296 Appendices

The following are the values of the shift registers SHFLAG and LSTSHF

($028D/653 and $028E/654):

dec key pattern

o NO SHIFTS
1 SHIFT

2 LOGO

3 SHIFT AND LOGO
4 CTRL
5 CTRL AND SHIFT
6 CTRL AND LOGO
7 CTRL, SHIFT AND LOGO

Appendix J: Summary of UTILITY commands

APPEND "program name", device
As for merge except that the appended program is tagged on the end
of the memory program. Line numbers are not altered. Peculiar listings
can be the result. Use RENUM after an append.

AUTO first line number,increment
Automatic line numbering when entering code.

BIN 8 bit binary numberL
Prints out decimal conversion of binary number in two forms. The first
as a low byte conversion and then, separated by an oblique, the high
byte conversion (low * 256). The binary number must be of eight bits.

CGOTO variable, calculation or line number
Line numbers can be mathematical equations.

CGOSUB variable, calculation or line number
Line numbers can be mathematical equations.

CHAI N ["fi lename" Jl ,device 1
Will load and run a BASIC program. It also transfers most variables from
one program to another.

CODER
Will replace non-standard ASCII and graphic codes with mnemonics.
See Appendix H for full list.

COLOUR screenf,border][,text]
Values over 15 can be input, but only the lower four bits will be
considered. Border and text parameters are optional.

Appendices 297

DEEK(address)
Two byte PEEK. Returns memory location held in address and
address+1.

DELETE first line to be deleted, [last line to be deleted]
Deletes lines in the range specified. No last line parameter, it will
delete to the end of program.

DPROC name
Start of procedure called 'name'.

DOKE address, value
Two byte POKE. Stores value (0-65535) in address and address+1.

DUMP
Displays the values of all simple variables currently in use.

ENTER (x,y)
Same as INPUT, but first sets cursor position as in PLOT.

EPROC
End of a procedure.

HEX hexadecimal number[,hex number][, ...
Prints decimal conversion of hex input. The hex input can be of either
two or four characters, but does not require a prefix of '$'.

HIMEM address
Will set the top of memory to the given address, within the range of
1024 to 32767.

INKEY$ [string or string variable]
Will wait for a key press. With no parameter, it will wait for any key.
With a parameter, it will wait for a key to correspond to any character
in the string. The ASCII value of the key press is placed in reserved
variable 'ST'.

KEY 1 to 16,"data"
Loads function keys with data. Maximum of ten characters per key is
permissible. Inputs over ten characters will generate a SYNTAX ERROR, but
the first ten characters of data will be assigned to the particular key. To
generate a return in the data, use" (-".

for example, KEY7,"L!ST<-"

KEY
Will display the data assigned to all 16 keys in the format they were first
entered. This will allow you to overtype the displayed data to amend
the key assignations.

To obtain keys: KEY 1-8 as marked on keys
KEYS 9,11,13,15 key with logo
KEYS 10,12,14,16, key with shift and logo

298 Appendices

Note: any KEY command will enable the keys if they have previously
been disabled.

LOMEM address
Will set the start of BASIC to the given address, within the range of 1024
to 32767.

MEM
Display amount of memory free as an unsigned number.

MERGE ["program name"],[device]
Merges a stored program with that currently in memory according to
their line numbers. Lines numbers of the merging program take pre
cedence. If no program name and/or device then the command will
default to tape. With no name then first program on tape will be
merged.

OFF
Disable the function keys.

OLD
Restores a BASIC program after a NEW or system reset have been
actioned. This will not work if an edit has been carried out before OLD
is actioned.

PLOT (x,y)
Sets the cursor column and row position. x-0 to 39 and y-0 to 24.0,0
is the top left hand corner of the screen (cursor home).

POP
Rectifies stack on leaving a subroutine before a RETURN has been called.

PROC name
Calls a procedure called 'name'.

QUIT
Disables the utility and its commands, but protects the area that it uses.
The UTILITY can be initialized again by SYS 32768.

RENUM first line number to be changed or 0, increment, new start line
number
If first parameter is 0, the whole program will be renumbered,
otherwise, from designated line to the end of program. Renumbers the
following tokens:GOTO,GO TO, GOSUB, IF THEN, RUN, ON GOTO, ON GOSUB and
RESET. It will not renumber CGOTO or CGOSUB.

RESET [line number]
Restore DATA pointer to specific line or start of program.

TEN decimal numberL
Prints hex conversion of a decimal number.

Appendices 299

TRACE
A diagnostic to follow the execution of a BASIC program as it runs.

TROFF
Disables TRACE function.

TWO decimal numberL
Prints binary conversion of decimal number.

WRITE (x,y)
Same as PRINT, but sets cursor position first as in PLOT.

Note: All commands performing number conversions will do more
than one conversion if the values are separated by commas.

ERRORS

These are particular to the UTILITY.

CODER
STRING TOO LONG - more than 254 bytes have been generated by the
mnemonics for one program line.
OUT OF DATA - found a character not handled by CORDER.

RENUM
ILLEGAL DIRECT -line at which to start renumbering does not exist.
UNDEF'D STATEMENT - no destination found for a GOTO or GOSUB directive.

APPENDIX K: 64 low memory map

The following is the first few pages of the memory map in the Pro
grammer's Reference Guide (PRG), Chapter 5. It is included to avoid
continual reference to the PRG to look up label addresses. Some of the
descriptions have been changed through personal experience or pref
erence to those in J. Butterfield's map.

LABEL hex decimal Description

D6510 0000 0 6510 direction register
R6510 0001 1 65101/0, memory and tape
ADRAY1 0003-0004 3-4 Float to fixed vector
ADRAY2 0005-0006 5-6 Fixed to float vector
CHARAC 0007 7 Search character
ENDCHR 0008 8 End of quote flag
TRMPOS 0009 9 Save screen last TAB
VERCK 000A 10 Flag: lOAD=0 VERIFY=1
COUNT 000B 11 Ptr input buffer/#subscripts
DIMFlG 000C 12 Default DIM to 10 flag
VAlTYP 000D 13 DATA type:string=255 numeric=0
INTFlG 000E 14 : integer=128 float=0

300 Appendices

LABEL hex decimal Description

GARBFl 000F 15 DATA scan/liST quote/garbage
collection flag

SUBFLG 0010 16 subscript/user fn call
INPFLG 0011 17 $00=INPUT $40=GET $80= READ
TANFLG 0012 18 TAN sign/comparison

0013 19 current I/O prompt
lINNUM 0014-0015 20-21 integer value
TEMPPT 0016 22 pointer:temp string stack
LASTPT 0017-0018 23-24 last temp string address
TEMPST 0019-0021 25-33 stack for temp strings
INDEX 0022-0025 34-37 utility pointer area
RESHO 0026-002A 38-42 product area for multiply
TXTIAB 002 B-002 C 43-44 pointer start of BASIC
VARTAB 002 D-002 E 45-46 pointer start of variables
ARYTAB 002F-0030 47-48 pointer start of arrays
STREND 0031-0032 49-50 pointer end of arrays
FRETOP 0033-0034 51-52 pointer bottom of strings
FRESPC 0035-0036 53-54 utility string pointer
MEMSIZ 0037-0038 55-56 pointer highest address used by BASIC
CURLIN 0039-003A 57-58 current BASIC line number
OLDLIN 003 B-003C 59-60 previous BASIC line number
OLDTXT 003 D-003 E 61-62 BASIC statement for CONT
DATLIN 003F-0040 63-64 current DATA line
DATPTR 0041-0042 65-66 current DATA address
INPPTR 0043-0044 67-68 INPUT vector
VARNAM 0045-0046 69-70 pointer current variable name
VARPNT 0047-0048 71-72 pointer current variable data
FORPNT 0049-004A 73-74 pointer variable for FOR/NEXT

004B-004C 75-76 Y-save/op-save/BAslc pointer save
004D 77 comparison symbol accumulator
004E-0050 78-83 misc work area
0054-0056 84--86 jump vectors for functions
0057-0060 87-96 misc numeric work area

FACEXP 0061 97 FPACC#1 :exponent
FACHO 0062-0065 98-101 FPACC#1 :mantissa
FACSGN 0066 102 FPACC#1 : sign
SGNFLG 0067 103 pointer series evaluation constant
BITS 0068 104 FPACC#1 : overflow digit
ARGEXP 0069 105 FPACC#2: exponent
ARGHO 006A-006D 106-109 FPACC#2: mantissa
ARGSGN 006E 110 FPACC#2:sign
ARISGN 006F 111 sign comparison result
FACOV 0070 112 FPACC#1: low order rounding
FBUFPT 0072-0072 113-114 pointer cassette buffer

Appendices 301

LABEL hex decimal Description

CHRGET 0073-008A 115-138 subroutine: get next byte of BASIC

CHRGOT 0079 121 entry point to get same byte
TXTPTR 007A-007B 122-123 pointer current byte of BASIC

RNDX 008 B-008F 139-143 RND seed value
STATUS 0090 144 KERNAL 1/0 status ST
STKEY 0091 145 switch: STOP and RVS keys
SVXT 0092 146 timing constant for tape

VERCK 0093 147 LOAD=0 VERIFY=1

C3PO 0094 148 serial output: deferred char flag

BSOUR 0095 149 serial output deferred char

SYNO 0096 150 tape EOT received
0097 151 register save

LDTND 0098 152 how many open files#
DFLTN 0099 153 input device (default=0)

DFLTO 009A 154 output device (default=3)

PRTY 009B 155 tape char parity

DPSW 009C 156 tape byte received flag

MSGFLG 009D 157 BASIC mode flag $00=program
$80=direct

PTR1 009E 158 tape pass 1 error log

PTR2 009F 159 pass 2 error log

TIME 00A0-00A2 160--162 real-time jiffy clock
00A3 163 serial bit count/EOI flag

00A4 164 cycle count

CNTDN 00A5 165 tape sync countdown/bit count

BUFPNT 00A6 166 pointer tape I/O buffer
INBIT 00A7 167 RS232 input bits

tape wrt Idr/rd count
BITCI 00A8 168 RS232 input bit count

tape wrt new byte/rd error
RINONE 00A9 169 RS232 start bit flag
RIDATA 00AA 170 RS232 input byte buffer

tape scan/counter/ldr

RIPRTY 00AB 171 RS232 input parity
tape wrt Idr length'rd checksum

SAL 00AC-00AD 172-173 pointer tape buffer/scrn scroll

EAL 00AE-00AF 174-175 tape end address/end program

CMPO 00B0-00B1 176-177 tape timing constants

TAPE1 00B2-00B3 178-179 pointer start of tape buffer

BITTS 00B4 180 RS232 out bit count/tape enabled=1

NXTBIT 00B5 181 RS232 next bit to send/tape EOT

RODATA 00B6 182 RS232 out byte buffer/rd char error

FNLEN 00B7 183 Length current file name

LA 00B8 184 Current logical file number

302 Appendices

LABEL hex decimal Description

SA 00B9 185 Current secondary address
FA 00BA 186 Current device number
FNADR 00BB-00BC 186-187 Ptr current file name address
ROPRTY 00BD 189 RS232 out parity/tape rd input char
FSBLK 00BE 190 tape #blocks left to wrt/rd
MYCH 00BF 191 Serial word buffer
CAS1 00C0 192 Tape motor control
STAL 00C1-00C2 193-194 I/O start address
MEMUSS 00C3-00C4 195-196 KERNAL setup ptr/tape temp address
LSTX 00C5 197 Last key pressed
NDX 00C6 198 #characters in k/b queue
RVS 00C7 199 RVS char print flag 1 =yes 0= no
INDX 00C8 200 Ptr end of line for INPUT
LXSP 00C9-00CA 201-202 Cursor row,col at start of INPUT
SFDX 00CB 203 Current key pressed 64=no key
BLNSW 00CC 204 0=blink cursor
BLNCT 00CD 205 Cursor countdown timer
GDBLN 00CE 206 Character at cursor pos
BLNON 00CF 207 Cursor blink flag on/off
CRSW 00D0 208 Flag: INPUT from screen or

GET from keyboard
PNT 00D1-00D2 209-210 Ptr current start of screen line add
PNTR 0003 211 Cursor colon above line
QTSW 00D4 212 Flag: 0=cursor in edit mode else in

quote mode
LNMX 00D5 213 Physical screen line length
TBLX 00D6 214 Current row where cursor lives

00D7 215 Last in key/checksum/buffer temp data
INSRT 00D8 216 #inserts outstanding
lOTB1 00D9-00F2 217-242 Screen line link table
USER 00 F3-00 F4 243-244 Ptr screen colour
KEYTAB 00FS-00F6 245-246 Klb decode table vector
RIBUF 00F7-00F8 247-248 RS232 input buffer ptr
ROBUF 00F9-00FA 249-250 RS232 output buffer ptr
FREKZP 00FB-00Fe 251-254 Free zero page area
BASZPT 00FF 255 BASIC temp data area

0100-010A 256-266 Float to ASCII work area
0100-013E 256-318 Tape error log
0100-01FF 256-511 Processor stack

BUF 0200-0258 512-600 System input buffer
LAT 0259-0262 601-610 Logical file table
FAT 0263-026C 611-620 Device number table
SAT 0260-0276 621-630 Secondary address table
KEYD 0277-0280 631-640 Keyboard buffer

Appendices 303

LABEL hex decimal Description

MEMSTR 0281-0282 641-642 Start of BASIC memory
MEMSIZ 0282-0283 643-644 Top of BASIC memory
TlMOUT 0285 645 Serial bus time out flag
COLOR 0286 646 Current character colour
GDCOL 0287 647 Background colour under cursor
HIBASE 0288 648 Start of screen memory: page number
XMAX 0289 649 Size of k/b buffer
RPTFLG 028A 650 Flag: 128=repeat all keys
KOUNT 028B 651 Repeat speed counter
DELAY 028D 653 Flag: shifUctri/logo key
LSTSHF 028E 654 Last shift pattern
KEY LOG 028F--0290 655-656 Klb table setup ptr
MODE 0291 657 Flag: 0=disable shift keys 128=enable
AUTODN 0292 658 0=scroll down enable
M51CTR 0293 659 RS232 control register
M51CDR 0294 660 RS232 command register
M51AJB 0295-0296 661-662 RS232 non-standard baud rate
RSSTAT 0297 663 RS232 status register
BITNUM 0298 664 RS232 bits left to send
BAUDOF 0299-029A 665-666 RS232 Baud rate
RIDBE 029B 667 RS232 index to end of input buffer
RIDBS 029C 668 RS232 page number of start

of input buffer
RODBS 029D 669 RS232 page number of start

of output buffer
RODBE 029E 670 RS232 index to end of output buffer
IRQTMP 029F-02A0 671-672 IRQ save during tape 1/0
ENABL 02A1 673 RS232 enable/CiA 2 (NMI) interrupt

control
02A2 674 CIA 1 timer A control log during

tape 1/0
02A3 675 CIA 1 interrupt log tape read
02A4 676 CIA 1 Timer A enable log tape read
02A5 677 Screen line marker

02A6 678 PALINTSC flag 0= NTSC 1 = PAL
02A7--02FF 679-767 Unused
02C0--02FE 704-766 Block 11 for sprites

IERROR 0300--0301 768-769 Vector: BASIC error message ($E3B8)

IMAIN 0302--0303 770-771 Vector: BASIC warm start($A483)

ICRNCH 0304--0305 772-773 Vector:Crunch BASIC tokens($A57C)

IQPLOP 0306-0307 774-775 Vector: Print BASIC tokens($A71 A)

IGONE 0308--0309 776-777 Vector: Start new BASIC line($A7E4)

IEVAL 030A-030B 778-779 Vector: BASIC token evaluate($AE86)

SAREG 030C 780 Save A register

304 Appendices

LABEL hex decimal Description

SXREG 0300 781 Save X register

SYREG 030E 782 Save Y register

SPREG 030F 783 Save status register

USRPOK 0310 784 USR function jump instrn ($4C)

USRADD 0311-0312 785-786 USR address low/high form($B248)

0313 787 Unused

CINV 0314--0315 788--789 Vector: Hardware IRQ($EA31)

CBINV 0316--0317 790-791 Vector: BRK interrupt($FE66)

NMINV 0318--0319 792-793 Vector: NMI($FE47)

10PEN 031A--031B 794--795 Vector: KERNAL OPEN($F34A)

ICLOSE 031C-031D 796--797 Vector: KERNAL CLOSE($F291)

ICHKIN 031 E-031 F 798--799 Vector: KERNAL CHKIN($F20E)

ICKOUT 0320-0321 800-801 Vector:KERNAL CHKOUT($F250)

ICLRCH 0322--0323 802-803 Vector: KERNAL CLRCHN($F333)

IBASIN 0324--0325 804-805 Vector: KERNAL CHRIN($F157)

IBSOUT 0326--0327 806-807 Vector: KERNAL CHROUT($F1CA)

ISTOP 0328--0329 808-809 Vector: KERNAL STOP($F6ED)

IGETIN 032A--032B 810-811 Vector: KERNAL GETIN$F13E)

ICLALL 032C-032D 812-813 Vector: KERNAL CLALL($F32F)

USRCMD 032E--032F 814-815 Vector: Warm start($FE66)

ILOAD 0330-0331 816-817 Vector:KERNAL LOAD($F4A5)

ISAVE 0332--0333 818-819 Vector: KERNAL SAVE($F5ED)

0334--033B 820-827 Unused
TBUFFR 033C--03FB 828--1019 Tape I/O buffer

03FC-03FF 1020-1023 Unused
0340-037E 832-894 Block 13 sprite data
0380-03BE 896--958 Block 14 sprite data
03C0-03FE 960-1022 Block 15 sprite data

VICSGN 0400-07FF 1024--2047 Screen memory
0400-07E7 1024--2023 Visible memory

07F8--07FF 2040-2047 Sprite block data pointers 0-7

0800 2048 Start of BASIC (TXn AB-1)

· T,HE U~TIMATE PROGRAMMER'S TOOLKIT
~ INVALUABLE PROGRAMMING AIDS FOR

YOUR COMPUTER!

Utilities to take the pain out of programming .. . Utilities to
customise your 64 and explore its hidden potential .. .

All Commodore 64 programmers will find this software
toolkit of programming aids, BASIC enhancements and

, other utilities truly invaluable.

As well as revealing the inner workings of the 64, BASIC
versions of programming utilities such as the auto line
number, block delete, renumber and program merge
routines are presented and explained, programmable

function keys covered, and the 64's peripheral potential
investigated. '

The BASIC utilities, plus trace, variable dump,
procedure, graphics routines and many more are then

implemented in machine code. BASIC loaders are
provided as well as a complete monitor listing for entering
the routines. The separate modules build into a total utility

package which overcomes the limitations of the 64's
BASIC to give you a powerful programming aid.

Delving deep into the workings ofthe 64, this book
compliments The Companion to the Commodore 64 to

provide the user with the tools and information needed to
unleash the full power of this great machine.

U.K. £6.95

ISBN 0-330-28h71-4

9 780to 286718 9r

oo

