

Introducing Commodore 64
Machine Code

~.

Introducing
Commodore 64
Machine Code

Ian Sinclair

A SPECTRUM BOOK

PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey 07632

Lilm'f)' "I CCIIIXTrS.\' CaluloKiu#: ill P"blh'uliml Dmcr

Sinclair. Ian Robenson.
Inlrtlducing Commodore 64 machine code.

"A Speclrum Book:'
Includes index.
I. Commodore 64 (Compulcr)-Prugramming. 2. Ba:rr.ic

(Compuler program languagel I. Tille. II. Tille:
Inlnxlucing Commodore sixty-four machine ('(xle.
ISBN 0-13-477316-0

This book is available at a special discount when ordered in
bulk quantities. Contact Prentice-Hall, Inc., General
Publishing Division, Special Sales, Englewood Cliffs, N.J. 07632

U.S. edition © 1984 by Prentice-Hall, Inc., Granada Publishing Limited, and Ian Sinclair.
All rights reserved. No part of this book may be reproduced in any form
or by an means without permission in writing from the publisher.
A SPECTRUM BOOK. Printed in the United States of America.

10 9 8 7 6 5 4 3 2

ISBN 0-13-477316-0

Prentice-Hall International, Inc .. London
Prentice-Hall of Australia Ply. Limited. Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc .. Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro

Contents

Preface

ROM, RAM, Bytes and Bits

2 Digging Inside the Commodore 64

3 The Microprocessor

4 6502 Details

5 Register Actions

6 Taking a Bigger Byte

7 Ins and Outs and Roundabouts

8 Debugging, Checking and MIKRO

9 Last Round-up

Vll

14

28

40

52

65

82

98

115

Appendix A: How Numbers are Stored 128

Appendix B: Hex and Denary Conversions 130

Appendix C: The Instruction Set 132

Appendix D: Addressing Methods of the 6502 138

Appendix E: A Few ROM and RAM Addresses 140

Appendix F: Magazines and Books: Where to get the
MIKRO 64 Assembler 142

~~x 1M

..

Preface

Many computer users are content to program in BASIC for all of
their computing lives. A large number of others are eager to find out
more about computing and their computer than the use of BASIC
can lead to. Few, however, make much progress to the use of
machine code, which allows so much more control over the
computer. The reason for this, to my mind, is that so many books
which deal with machine code programming seem to start with the
assumption that the reader is already familiar with the ideas and the
words of this type of programming. In addition, many of these
books treat machine code programming as a study in itself, leaving
the reader with little clue as to how to apply machine code to his or
her computer.

This book has two main aims. One is to introduce the
Commodore 64 owner to some of the details of how the Commodore
64 works, so allowing for more effective programming even without
delving into machine code. The second aim is to introduce the
methods of machine code programming in a simple way. I must
emphasise the word 'introduce'. No single book can tell you all
about machine code, even the machine code for one computer. All I
can claim is that I can get you started. Getting started means that
you will be able to write short machine code routines, understand
machine code routines that you see printed in magazines, and
generally make more effective use of your Commodore 64. It also
means that you will be able to make use ofthe many more advanced
books on the subject, and progress to greater mastery of this
fascinating topic.

Understanding the operating system of your Commodore 64, and
having the ability to work in machine code can open up an entirely
new world of computing to you. This is why you find that most of the
really spectacular games are written in machine code. You will also
find that many programs which are written mainly in BASIC will

viii Preface

incorporate pieces of machine code in order to make use of its
greater speed and better control of the computer.

I am most grateful to several people who made the production of
this book possible. Of these, Richard Miles of Granada Publishing
commissioned the book and produced a Commodore 64 and
matching printer. He and Sue Moore, also of Granada, then did
their usual miracles of meticulous effort on my manuscript. I am
also most grateful to someone I have never met - Milton Bathurst,
whose book Inside The Commodore 64 has been a most valuable
reference work.

Ian Sinclair

Chapter One

ROM,RAM, Bytes and
Bits

One of the things that discourage computer users from attempts to
go beyond BASIC is the number of new words that spring up. The
writers of many books on computing, especially on machine code
computing, seem to assume that the reader has an electronics
background and will understand all of the terms. I shall assume that
you have no such background. All that I shall assume is that you
possess a Commodore 64, and that you have some experience in
programming your Commodore 64 in BASIC. This means that we
start at the correct place, which is the beginning. I don't want in this
book to have to interrupt important explanations with technical or
mathematical details, and these will be found in the Appendices.
This way, you can read the full explanation of some points if you feel
inclined, or skip them if you are not.

To start with, we have to think about memory. A unit of memory
for a computer is, as far as we are concerned, just an electrical circuit
that acts like a switch. You walk into a room, switch a light on, and
you never think that it's remarkable in any way that the light stays on
until you switch it off. You don't go about telling your friends that
the light circuit contains a memory - and yet each memory unit of a
computer is just a kind of miniature switch that can be turned on or
off. What makes it a memory is that it will stay the way it has been
turned, on or off, until it is changed. One unit of computer memory
like this is called a bit - the name is short for binary digit, meaning a
unit that can be switched one of two possible ways.

We'll stick with the idea of a switch, because it's very useful.
Suppose that we wanted to signal with electrical circuits and
switches. We could use a circuit like the one in Fig. 1.1. When the
switch is on, the light is on, and we might take this as meaning YES.
When the switch is turned off, the light goes out, and we might take
this as meaning NO. You could attach any two meanings that you
liked to these two conditions (called 'states') of the light, so long as

2 Introducing Commodore 64 Machine Code

+ -----=-4=-"'bie-~
switch light

(transmitter) (receiver)

current
return
(earth)

Fig. 1.1.A single-line switch and bulb signalling system.

A
..c:::L

+-L~~~~~
A B

off off
off on
on off
on on

A

Fig. 1.2. Two-line signalling. Four possible signals can be sent.

there are only two. Things improve if you can use two switches and
two lights, as in Fig. 1.2. Now four different combinations are
possible: (a) both off; (b) A on, B off; (c) A off, B on; (d) both on.
This set of four possibilities means that we could signal four
different meanings. Using one line allows two possible codes, using
two lines allows four codes. If you feel inclined to work them all out,
you'll find that using three lines will allow eight different codes. A
moment's thought suggests that since 4 is 2X2, and eight is 2X2X2,
then four lines might allow 2X2X2X2, which is 16, codes. It's true,
and since we usually write 2X2X2X2 as 24 (two to the power 4), we
can find out how many codes could be transmitted by any number of
lines. We would expect eight lines, for example, to be able to carry 28

codes, which is 256. A set of eight switches, then, could be arranged
so as to convey 256 different meanings. I t's up to us to decide how we
might want to use these signals.

ROM, RAM, Bytes and Bits 3

One particularly useful way is called binary code. Binary code is a
way of writing numbers using only two digits, ~ and 1. We can think
of ~ as meaning 'switch off' and I as meaning 'switch on', so that 256
different numbers could be signalled, using eight switches, by
thinking of ~ as meaning off and 1 as meaning on. This group of
eight is called a byte, and it's the quantity that we use to specify the
memory size of our computers. This is why the numbers 8 and 256
occur so much in machine code computing.

The way that the individual bits in a byte are arranged so as to
indicate a number follows the same way as we use to indicate a
number normally. When you write a number such as 256, the 6
means six units, the 5 is written to the immediate left of the 6 and
means five tens, and the 2 is written one more place to the left and
means two hundreds. These positions indicate the importance or
significance of a digit, as Fig. 1.3 shows. The 6 in 256 is called the
'least significant digit', and the 2 is the 'most significant digit'.
Change the 6 to 7 or 5, and the change isjust one part in 256. Change
the 2 to I or 3 and the change is one hundred parts in 256 - much
more important.

2 5 3 a denary (decimal) number

/ " most significant least significant
digit digit

~ /
I 0 I a binary number

Fig. 1.3. The significance of digits. Our numbering system uses the position of
a digit in a number to indicate its significance or importance.

Having looked at bits and bytes, it's time to go back to the idea of
memory as a set of switches. As it happens, we need two types of
memory in a computer. One type must be permanent, like
mechanical switches or fixed connections, because it has to be used
for retaining the number-coded instructions that operate the
computer. This is the type of memory that is called ROM, meaning
read-only memory. This implies that you can find out and copy what
is in the memory, but not delete it or change it. The ROM is the most
important part of your computer, because it contains all the
instructions that make the computer carry out the actions of BASIC.

4 Introducing Commodore 64 Machine Code

When you write a program for yourself, the computer stores it in the
form of another set of number-coded instructions in a part of
memory that can be used over and over again. This is a different type
of memory that can be 'written' as well as 'read', and if we were
logical about it we would refer to it as R WM, meaning read-write
memory. Unfortunately, we're not very logical, and we call it RAM
(meaning random-access memory). This was a name that was used
in the very early days of computing to distinguish this type of
memory from one which operated in a different way. We're stuck
with the name of RAM now and probably forever!

The number-code caper

Now we can get back to the bytes. We saw earlier that a byte, which
is a group of eight bits, can consist of anyone of 256 different
arrangements of these bits. The most useful arrangement, however,
is one that we call binary code. These different arrangements of bits in
binary code represent numbers which we write in ordinary form as ~
to 255 (not I to 256. because we need a code for zero). Each byte of
the 38929 bytes of RAM that are available in the Commodore 64 can
store a number which is in this range of ~ to 255.

Numbers by themselves are not of much use, and we wouldn't find
a computer particularly useful if it could deal only with numbers
between ~ and 255. so we make use of these numbers as codes. Each
number code can, in fact. be used to mean several different things. If
you have worked with ASCII codes in BASIC, you will know that
each letter of the alphabet. each of the digits ~ to 9. and each
punctuation mark. is coded in ASCII as a number between 32 (the
space) and 127 (the left-arrow). That selection leaves you with a
large number of ASCII code numbers which can be used for other
purposes such as graphics characters. The ASCII code is not the
only one. however. The Commodore 64 uses its own coded
meanings for numbers in this range of~ to 255. For example, when
you type the word PRINT in a program line. what is placed in the
memory of the Commodore 64 (when you press ENTER) is not the
sequence of ASCII codes for PRINT. This would be 8~.82,73,78,84,
one byte for each letter. What is put into memory, in fact, is one byte
- the binary form of the number 153. This single byte is called a
token and it can be used by the computer in two ways. One way is to
locate the ASCII codes for the characters that make up the word
PRINT. These are stored in the ROM, so that when you LIST a

ROM, RAM, Bytes and Bits 5

program, you will see the word PRINT appear, not a character
whose code is 153. The other, even more important, use of the
'token' is to locate a set of instructions which are also held in the
ROM in the form of number codes. These instructions will cause
characters to be printed on the screen, and the numbers that make
up these codes are what we call machine code. They control directly
what the 'machine' does. That direct control is our reason for
wanting to use machine code. When we use BASIC, the only
commands we can use are the ones for which 'tokens' are provided.
By using machine code, we can make up our own commands and do
what we please.

Incidentally, the fact that PRINT generates one 'token' is the
reason why it is possible to use ? in place of PRINT. The
Commodore 64 has been designed so that a ? which is not placed
between quotes will also cause 153 to be put into memory.

Do-it-yourself spot

As an aid to digesting all that information, try a short program. This
one, in Fig. 1.4, is designed to reveal the keywords that are stored in
the ROM, and it makes use ofthe BASIC instruction word PEEK.

10 PRINT41118; II ";: FOR N-41118 TO 41373
20 K-PEEK(N)
30 IF k(128THENPRINTCHR$(K)i
40 IFK)-128THEHPRINTCHRS(K-128):PRIHTN+l;" ":
~0 NEXT

Fig. 1.4. A program that reveals the keywords of Commodore 64 BASIC.

PEEK has to be followed by a number or number variable within
brackets, and it means 'find what byte is stored at this address
num ber'. All of the bytes of memory within your Commodore 64 are
numbered from zero upwards, one number for each byte. Because
this is so much like the numbering of houses in a road, we refer to
these numbers as addresses. The action of PEEK is to find what
number, which must be between ~ and 255, is stored at each address.
The Commodore 64 automatically converts these numbers from the
binary form in which they are stored into the ordinary decimal
(more correctly, denar.v) numbers that we normally use. By using
CHR$ in our program, we can print the character whose ASCII
code is the number we have PEEKed at. The program uses the

6 Introducing Commodore 64 Machine Code

variable N as an address number, and then checks that PEEK(N)
gives a number less than 128 - in other words a number which is an
ASCII code. If it is, then the character is printed.

Now the reason that we have to check is that the last character in
each set of words, or word, is coded in a different way. The number
that we find for the last character has had 128 added to the ASCII
code. For example, the first three address locations that the program
PEEKs at contain the num bers 69, 78 and 196. The number 69 is the
ASCII code for E, 78 is the code for N, and then 196-128=68, which
is the ASCII code for D. This is where the word END is stored, then.
The reason for treating the last letter so differently is to save
memory! If a gap were left between words, this would be a byte of
memory wasted. As it is, there is no waste, because the last letter of a
group always has a code number that is greater than 128, so the
computer can recognise it easily. We have followed the same scheme
in the BASIC program of Fig. 1.4 by using line 4~ to print the
correct letter and to take a new line and print the address number.
There is another set of numbers stored earlier on, which consists of
more addresses. These are the addresses of subroutines which carry
out the actions of BASIC, and they are stored in the same order as
these words.

C 64 cutaway

Now take a look at a diagram of the Commodore 64 in Fig. 1.5. It's
quite a simple diagram because I've omitted all of the detail, but it's
enough to give us a clue about what's going on inside. This is the type
of diagram that we call a block diagram, because each unit is drawn
as a block with no details about what may be inside. Block diagrams
are like large-scale maps which show us the main routes between
towns but don't show side-roads or town streets. A block diagram is
enough to show us the main paths for electrical signals in the
computer.

The names of two of the blocks should be familiar already, ROM
and RAM, but the other two are not. The block that is marked MPU
is a particularly important one. M PU means Microprocessor Unit­
but some block diagrams use the letters CPU (Central Processing
U nit). The M PU is the main 'doing' unit in the system, and it is, in
fact, one single unit. The M PU is a single plug-in chunk, one ofthese
silicon chips that you read about, encased in a slab of black plastic
and provided with forty connecting pins that are arranged in two

ROM RAM Bytes and Bits 7

ROM

Serial

= Keyboard
-

Buses Port
TV

MPU
Cassette = - Printer

RAM Disk drive

Fig. 1.5. A block diagram of C 64. The connections marked 'Buses' consist of a
large number of connecting links which join all of the units of the system.

rows of twenty (Fig. 1.6). There are several different types of MPU
made by different manufacturers, and the one in your Commodore
64 is called 6502 (or 6502A).

marking for
pin number 1

plastic block
"nr,ln~inn circuit

Fig. 1.6. The 6502 MPU. The actual working part is smaller than a fingernail,
and the larger plastic case (52 mm by 14 mm wide) makes it easier to work
with.

8 Introducing Commodore 64 Machine Code

What does the MPU do? The answer is practically everything, and
yet the actions that the MPU can carry out are remarkably few and
simple. The MPU can load a byte, meaning that a byte which is
stored in the memory can be copied into another store in the MPU.
The MPU can also store a byte, meaning that a copy of a byte that is
stored in the MPU can be placed in any address in the memory.

MPU LOAD

ROM or RAM

MPU STORE

ROM or RAM

Fig. 1.7. Loading and storing. 'Loading' means signalling to the MPU from the
memory, so that the digits of a byte are copied into the MPU. 'Storing' is the
opposite process.

These two actions (see Fig. 1.7) are the ones that the MPU spends
most of its working life in carrying out. By combining them, we can
copy a byte from any address in memory to any other. You don't
think that's very useful? That copying action is just what goes on
when you press the letter H on the keyboard and see the H appear on
the screen. The MPU treats the keyboard as one piece of memory
and the screen as another, and copies bytes from one to the other as
you type. That's a considerable simplification, but it will do for now
- just to show how important the action is.

Loading and storing are two very important actions of the MPU,
but there are several others. One set of actions is the arithmetic set.
For most types of MPU, these consist of addition and subtraction
only, using only single-byte numbers. Since a single-byte number

ROM, RAM, Bytes and Bits 9

means a number between ~ and 255, how does the computer manage
to carry out actions like multiplication of large numbers, division,
raising to powers, logarithms, sines, and all the rest? The answer is
by machine code programs that are stored in the ROM. If these
programs were not there you would have to write your own. There
aren't many computer users who would like to set about that task.

There's also the logic set. MPU logic is, like all MPU actions,
simple and subject to rigorous rules. Logic actions compare the bits
of two bytes and produce an 'answer' which depends on the bit
values that are being compared and on the logic rule that is being
followed. The three main logic rules are called AND, OR and XOR,
and Fig. 1.8 shows how they are applied.

Another set of actions is called the jump set. A jump means a
change of address, rather like the action of GOTO in BASIC. A
combination of a test and ajump is the way that the MPU carries out
its decision steps. Just as you can program in BASIC:

IF A = 36 THEN GOTO 1~5~

so the MPU can be made to carry out an instruction which is at an
entirely different address from the normal next address. The MPU is
a programmed device, meaning that it carries out each of its actions
as· a result of being fed with an instruction byte which has been
stored in the memory. Normally when the MPU is fed with an
instruction from an address somewhere (usually in ROM), it carries
out the instruction and then reads the instruction byte that is stored
in the next address up. A jump instruction would prevent this from
happening, and would instead cause the MPU to read from another
address, the one that was specified in the jump instruction. This
jump action can be made to depend on the result of a test. The test
will usually be carried out on the result of the previous action,
whether it gave a zero, positive or negative result, for example.

That isn't a very long or exciting list, but the actions that I've
omitted are either unimportant at this stage, or not particularly
different from the ones in the list. What I want to emphasise is that
the magical microprocessor isn't such a very smart device. What
makes it so vital to the computer is that it can be programmed and
that it can carry out its actions very quickly. Equally important is the
fact that the microprocessor can be programmed by sending it
electrical signals.

These signals are sent to eight pins, called the data pins, of the
MPU. It doesn't take much of a guess to realise that these eight pins
correspond to the eight bits of a byte. Each byte of the memory can

10 Introducing Commodore 64 Machine Code

AND

The result of ANDing two bits will be 1 if both
bits are 1, 0 otherwise:

AND 1 = 1 ~ 1 AND 0 = 0 L 0 AND 0
10AND1=0f

For two bytes, corresponding bits are ANDed

OR

10110111
AND 00001111

00000111

only
these bits

exist in both
bytes.

The result of ORing two bits will be 1 if either
or both bits is 1, 0 otherwise:

1 OR 1 = 1 ~ 1 OR 0 = 1 L 0 OR 0 = 0
1 0 OR 1 = 1 r

For two bytes, corresponding bits are ORed

10110111
OR 00001111

XOR (Exclusive-OR)

10111111

t
only

bit which
is 0 in
both.

Like OR, but result is zero if the bits are identical

1 XOR 1 = 0 ~ 1 XOR 0
1 0 XOR 1

10110111
XOR 00001111

10111000

if two bits
are identical

the result
is zero.

o XOR 0 = 0

FlY. 1.B. The rules for the three logic actions. AND. OR and XOR.

ROM, RAM, Bytes and Bits 11

therefore affect the MPU by sharing its electrical signals with the
MPU. Since this is a long-winded description of the process, we call
it 'reading'. Reading means that a byte of memory is connected
along eight lines to the MPU, so that each 1 bit will cause a 1 signal
on a data pin, and each ~ bit will cause a ~ signal on a data pin. Just
as reading a paper or listening to a recording does not destroy what
is written or recorded, reading a memory does not change the
memory in any way, and nothing is taken out. The opposite process
of writing does, however, change the memory. Like recording a tape,
writing wipes out whatever existed there before. When the MPU
writes a byte to an address in the memory, whatever was formerly
stored at that address is no longer there; it has been replaced by the
new byte. This is why it is so easy to write new BASIC lines replacing
old ones at the same line number.

Table d'H6te?

Do you really write programs in BASIC? It might sound like a silly
question, but it's a serious one. The actual work of a program is done
by coded instructions to the MPU, and if you write only in BASIC,
you don't write these. All that you do is to select from a menu of
choices that we call the BASIC keywords, and arrange them in the
order that you hope will produce the correct results. Your choice is
limited to the keywords that are designed into the ROM. We can't
alter the ROM, and if we want to carry out an action that is not
provided for by a keyword, we must either combine a number of
keywords (a BASIC program) or operate directly on the MPU with
number codes (machine code). When you have to carry out actions
by combining a number of BASIC commands, the result is clumsy,
especially if each command is a collection of other commands.
Direct action is quick, but it can be difficult. The direct action that I
am talking about is machine code, and a lot of this book will be
devoted to understanding this 'language' which is difficult just
because it's simple!

Take a situation which will illustrate this paradox. Suppose you
want a wall built. You could ask a builder. Just tell him that you
want a wall built across the back garden, and then sit back and wait.
This is like using BASIC with a command-word for 'build a wall'.
There's a lot of work to be done, but you don't have to bother about
the details.

Now think of another possibility. Suppose you had a robot which

12 Introducing Commodore 64 Machine Code

could carry out Instructions mindlessly but incredibly quickly. You
couldn't tell it to 'build a wall' because these instructions are beyond
its understanding. You have to tell it in detail, such as: 'Stretch a line
from a point 85 feet from the kitchen edge of the house, measured
along the fence southwards, to a point 87 feet from the lounge end of
the house measured along that fence southwards. Dig a trench
eighteen inches deep and one foot wide along the path of your line.
Mix three bags of sand and two of cement with four barrow-loads of
pebbles for three minutes. Mix water into this until a pail filled with
the mixture will take ten seconds to empty when held upside down.
Fill the trench with the mixture ... ' The instructions are very
detailed - they have to be for a brainless robot - but they will be
carried out flawlessly and quickly. If you've forgotten anything, no
matter how obvious, it won't be done. Forget to specify how much
mortar, what mixture and where to place it, and your bricks will be
put up without mortar. Forget to specify the height of the wall, and
the robot will keep piling one layer on top of another, like the
Sorcerer's Apprentice, until someone sneezes and the whole wall
falls down.

The parallel with programming is remarkably close. One keyword
in BASIC is like the 'build a wall' instruction to the builder. It will
ca use a lot of work to be done, drawing on a lot of instructions that
are not yours - but it may not be done as fast as you like. If you can
be bothered with specifying the detail, machine code is a lot faster
because you are giving your instructions direct to an incredibly fast
but mindless machine, the microprocessor. We can stretch the
similarity further. If you said to your builder 'mend the car', he
might be unwilling or unable to do so. The correct set of detailed
instructions to the robot would, however, get thisjob done. Machine
code can be used to make your computer carry out actions that are
simply not provided for in BASIC, though it's fair to say that many
modern computers allow a much greater range of commands than
early models, and this aspect of machine code is not quite so
important as it used to be.

One last look at the block diagram is needed before we start on the
inner workings of the Commodore 64. The block which is marked
'Port' includes more than one chip. A port in computing language
means something that is used to pass information, one byte at a time,
into or out from the rest of the system- the MPU, ROM and RAM.
The reason for having a separate section to handle this is that inputs
and outputs are important but slow actions. By using a port we can
let the microprocessor choose when it wants to read an input or write

ROM RAM Bytes and Bits 13

an output. In addition, we can isolate inputs and outputs from the
normal action of the MPU. This is why nothing appears on the
screen in a BASIC program except where we have a PRINT
command in the program. It's also why pressing the PLAY key of
the cassette recorder has no effect until you type LOAD (with a
filename) and press ENTER. The port keeps the action of the
computer hidden from you until you actually need to have an input
or an output.

We have now looked at all of the important sections of your
Commodore 64. I've used some terms loosely - purists will 0 bject to
the way I've used the word 'port', for example - but no-one can
quarrel with the actions that are carried out. What we have to do
now is to look at how the computer is organised to make use of the
MPU, ROM, RAM and ports so that it can be programmed in
BASIC and can run a BASIC program. It looks like a good place to
start another chapter!

Chapter Two

Digging Inside the
Commodore 64

I don't mean 'digging inside' literally- you don't have to open up the
case! What I do mean is that we are going to look at how the
Commodore 64 is designed to load and run BASIC programs. We'll
start with a simplified version of the action of the whole system,
omitting details for the moment.

The ROM of your Commodore 64, which starts at address4~96~,
consists of a large number of short programs - subroutines - which
are written in machine code, along with sets of values (tables) like the
table of keywords. There will be at least one machine code
subroutine for each keyword in BASIC, and some of the keywords
may require the use of many subroutines. When you switch on your
Commodore 64, the piece of machine code that is carried out is
called the 'initialisation routine'. This is a long piece of program but,
because machine code is fast, carrying out instructions at the rate of
many thousands per second, you see very little evidence of all this
activity. All that you notice is a delay between switching on and
seeing the MICROSOFT copyright notice. In this brieftime, though,
the action of the RAM part of the memory has been checked, some
of the RAM has been 'written' with bytes that will be used later, and
most of the RAM has been cleared for use. Cleared for use does not
mean that nothing is stored in the RAM. When you switch off the
computer, the RAM loses all trace of stored signals, but when you
switch on again the memory cells don't remain storing zeros. In each
byte, some of the bits will switch to I and some will switch to ~ when
power is applied. This happens quite at random, so that if you could
examine what was stored in each byte just after switching on, you
would find a set of meaningless numbers. These would consist of
numbers in the range ~ to 255, the normal range of numbers for a
byte of memory. These numbers are 'garbage' - they weren't put into
memory deliberately, nor do they form useful instructions or data.
The first job of the computer, then, is to clean up. In place of the

Digging Inside the Commodore 64 15

random numbers, the computer substitutes a very much more
ordered pattern of thirty-two bytes of 255 followed by thirty-two
bytes of ~. Try this - switch on, and type (no line number):

FOR N =2~49 TO 2249:?PEEK(N);" ";:NEXT

and then press RETU RN. The range of memory addresses we have
used is the 'start of BASIC' range, where the first bytes of a BASIC
program are normally stored. If we have just switched on, and
haven't used a line number for the command, there will be nothing
stored here except for the pattern that was left after the initialisation
and as a result of the command. As you'll see on the screen, the
pattern consists mainly of the chain of 255's and ~'s. At the start,
though, and scattered through the memory, you will find other
numbers. The numbers at the start are placed there by the FOR
N=2~49 ... command that you used to discover the pattern, and the
other numbers are put there by the action of this command as it is
executed.

The initialising program has a lot more to do. The first section of
RAM, from address ~ to 818, is for 'system use'. This is because the
machine code subroutines which carry out the actions of BASIC need
to store quantities in memory as they are working. Address numbers ~ Sc z:.
43 and 44, for example, hold the address of the first byte of a BASI C 5 p. 2 t
program. A much larger section of the memory is used for storing
numbers that make text and graphics appear on the screen. In
addition, some RAM has also to be used to hold quantities that are
created when a program runs. That's what we are going to look at
now.

Variables on the table

BASIC programs make a lot of use of variables, meaning the use of
letters to represent numbers and words. Each time you 'declare a
variable' by using a line like:

N=2~ or A$="S MITH"

the computer has to take up memory space with the name (N or A$
or whatever you have used) and the value (like 2~ or SMITH) that
you have assigned to it. The piece of memory that is used to keep
track of variables is called the variable list table (VL T). It doesn't
occupy any fixed place in the memory, but is stored in the free space
just above your program. If you add one more line to your program,

16 Introducing Commodore 64 Machine Code

the VL T address has to be moved to a set of higher address numbers.
If you delete a line from your program, the VL T will be moved down
in the same way so that it is always kept just following the last line of
BASIC.

N ow because the variable list table address can and does move
around as the program is altered, the computer must at all times
keep a note of where the table starts. This is done by using two bytes
of a piece of memory that is reserved for system use, the addresses 45
and 46. You may wonder why two addresses are used. The reason is
that one byte can hold a number only up to 255 in value. If we use
two bytes, however, we can hold the number of256's in one byte and
the remainder in the other. A number like 257, for example, is one
256 and one remaining. We could code this as 1,1. This means that a
I is stored in the byte that is reserved for 256's, and I in the byte

~
,.. reserved for units. The order of storing the numbers is low-byte then

high-byte. To find the number that is stored, we multiply the second
byte by 256 and add the first byte. For example, if you found 3,8
stored in two consecutive addresses that were used in this way, this
would mean the number:

8*256+ 3 = 2~51

The biggest number that we can store using two bytes like this is
255,255, which means 255*256+255=65535. This is the reason that
you can't use very large numbers like 7~~~~ as line numbers in the
Commodore 64 - the operating system uses only two bytes to store
its line numbers. In fact, for other reasons, the maximum number
that you can use is 63999.

All of this means that we can find the address that is stored in
addresses 45 and 46 by using the formula:

?PEEK(46)*256+ PEEK(45)

If you use this just after you have switched on your Commodore 64,
then the result on the C 64 is the address number 2~51. This is just
above the address at which the first byte of a BASIC program would
be stored. To see this in action, type the line:

l~ N=2~

and try ?PEEK(46)*256+PEEK(45) again. If you typed this line as
I did, with a space between the line number and the 'N', then the
address that you get is 2~6~. The variable list table has moved
upwards in the memory, by 9 bytes. That's more than the number of
bytes that you typed, you'll notice - the reasons for this will come
later.

VLT-.:: W\-t£~£. VA~I/'I"'Lf. A~f. K.z..P"t

Digging Inside the Commodore 64 17

Quite a lot of important addresses that the computer uses are
dynamically allocated like this. 'Dynamically allocated' means that
the computer will change the place where groups of bytes are to be
kept. It will then keep track of where they have been stored by
altering an address that is held in a pair of bytes such as this example.
This has important implications for how you use your computer.
For example, if you shift the VLT by poking new numbers into
addresses 45 and 46, the computer can't find its variable values. Try
this - after finding the VL T address, but without running the one­
line program, l~ N=2~, type ?N. The answer will be zero. Why?
Because the program has not been run. The address 2~6~ is where
the VLT will start, but there's no VLT created until the program
runs. This makes it easy for you to add or delete lines at this stage.
All that will have to be altered is the pair of numbers in addresses 45
and 46. The VLT values are put in place only when the program
runs, and a new table is created all over again each time you type
RUN and press RETURN. Each time a new table is created, a new
pair of bytes will be put into 45 and 46. That's why you can't resume
a program after editing - you have to RUN again to create a new
VLT at a new address. If you RUN the one-line program now, and
then type ?N you will get the expected answer of 2~. Now type (no
line number) POKE 46,9, and press RETURN. This has changed the
address of the VL T to an address where there is no VL T. Try?N and
see what you get. On my C 64, it was a very large number, because
the correct value of variable N can be found no longer. If your
Commodore 64 locks up during this exercise, then you may have to
switch off to regain control. This seldom happens but if you do have
to switch off, the program will be lost. Note, incidentally, the use of
PO KE to place a new value into a memory address. The correct form
of the command is POKE A,D. A is an address, and will be in the
range ~ to 4~959 (the range of values of RAM memory) for the C64.
D is the data that you place into this memory address, and it must be
a value between ~ and 255. If you try to poke a number greater than
255, you will get an 'FC ERROR' message instead.

A look at the table

It's time now to do something more constructive, and take a look at
what is stored in the VL T. When we do these investigations, it's
important to ensure that the computer is clear of the results of
previous work. Therefore, it's advisable to switch off and then on

18 Introducing Commodore 64 Machine Code

again, before each effort. Simply pressing the RESTORE key does
not alter values that you may have poked into the memory. It's
tedious, I know, but that's machine code for you!

To work, then. After switching off and on again, type the line:

l~ N=2~

again, and find the VL T address by using

?PEEK(46)*256+ PEEK(45)

This gave me the address 2~6~ again. Now type RUN, so that values
are put into the VL T, and take a look at what has been stored there.
This is done by using the command:

FORX=2~6~ TO 2~7~:?X;" ";PEEK(X):NEXT

and pressing RETURN. This gives the listing that is illustrated in
Fig. 2.1. Now can we recognise anything here? We ought to
recognise the first byte of 78, because that's the ASCII code for N!

;2060 78
2061 0
2062 133
2063 32
2064 0
2065 0
2066 0
2067 8S
2068 0
2069 140
2070 1

Fig. 2.1. The variable list table entry for a simple number variable.

The next byte is zero because our variable is called N. not N I or N G
or any other two-letter name. If we used a two-letter name. then both
addresses 2~6~ and 2~61 would have been occupied. The next five
bytes. then. must be the way that the number 2~ has been coded. At
this point. don't worry about how these numbers are used to
represent 2~ just accept that they do! How do I know that it's the
next five bytes that represent the number 2~? Easy. the byte in
address 2~67 is 88. which is the ASCII for X, and that's the variable
that we used to print the table values! The C 64 always usedjust five
bytes for any value of number variable. no matter whether it's a small
num ber like 2~, or a very much larger one like 1427~68315. or a

Digging Inside the Commodore 64 19

fraction, or negative. This makes the storage of number variables
simple, and it also makes it easy for the computer to find variables.
If, for example, it is looking for the value of a variable called Y, then
when it finds 'N' (coded as ASCII 78) it need not waste time with the
next six bytes (one for a second letter, five for the value), but can move
to the next place where a variable name will be stored. If you are
curious, and have a head for mathematics, Appendix A shows what
method of coding is used to convert numbers into five bytes. For the
purposes of this book you don't, however, need to understand how
the coding is done as long as you know how the code is stored and
how many bytes are needed.

Tying up a string

N ow we need to take a look at how a string variable is stored. Switch
off and on again, and then type the line:

l~ AB$="THIS IS A STRING"

RUN this one-liner, and then find the VLT address by using
addresses 45 and 46 as before. I obtained 2~78 for this address. Now
use:

FOR X=2~78 TO 2~88:?X;" ";PEEK(X):NEXT

to find what is in the VLT. This time, it's as Fig. 2.2 shows. The first
value in this table is 65, which is the ASCII code for A. The second,

2078 65
2079 194
2080 16
2081 10
2082 S
2083 0
2084 0
2085 88
2086 0
2087 140
20ElS 2

Fig. 2.2. The VL T entry for a string variable.

however, is 194. Now this is the ASCII code for B with 128 added to
it, and it's the way that the C 64 recognises that this is a string
variable. If you had used the variable name A$ rather than AB$,

20 Introducing Commodore 64 Machine Code

'2.o7CC
then the second number (at address 2679) would have been 128, not
~. When you use a number variable, the second ASCII code of the
name will be ~, or one of the ASCII code numbers, never greater
than 127. Good thinking, designers!

N ow take a look at the rest of the entry for this string. It doesn't
look much like the ASCII codes for the letters, does it? In fact, the
entry consists of seven bytes only, just the same total length as a
num ber variable. The clue to what is being done emerges when we
take a look at the numbers. The number that follows the code for B
(l94, because 128 has been added to the ASCII code) is 16. Now 16 is
the number of characters in the string. If you count the number of
letters and spaces you'll see that this is what it comes to. The next
two bytes are l~ and 8. Now two bytes together are always likely to
be an address, and if we combine them in the usual way, using
8*256+ l~, we get 2~58. The next step in the trail is PEEK(2~58).
Sure enough, it's 84, which is the ASCII code for 'T. 2~58, then, is
the address of the first byte of the string.

Let'~ gather all this up. The C 64 stores an entry of seven bytes in
its VL T for each string. Of these seven bytes, the first two are for the
string name, and the second will be 128 or more. When a two­
character name is used, 128 is added to the ASCII code for the
second letter. This allows the computer to distinguish a string
variable from a number variable. The next five bytes then contain
the length of the string and the address in memory of its first byte. As
it happens, only three bytes are needed to keep track of a string. One
byte is needed for the length - no string will exceed 255 characters (in
fact, you are not allowed to enter more than 24~). Two bytes are
needed for the address, so that two ofthe seven bytes that are used in
the string VL T entry are not needed except as separators. The
convenience of having the same total length ofVL T entry for a string
as for a number outweighs the slight waste of the last two bytes in
each string entry.

In this example, the string is stored at an address lower than
the VLT, in the 'BASIC text' part of the memory. This is the
part of the memory which contains the program, and since the
ASCII codes for the string are placed here when you type the
program, it's as good a resting place as any. Numbers must be
transferred to the VLT because they are not stored as ASCII codes.
The question now is, what happens when a string is created
which does not exist in the program? Switch off, then on again, and
type:

I~ A$="AB":B$="CD":C$=A$+B$

Digging Inside the Commodore 64 21

Now RUN this, and you will find that your VLT is longer, as you
might expect. You will have to look at memory addresses from 2~8~
to 21~~ this time. You will find the entries for A$ and B$,justas you
would expect, giving addresses inside the program memory region,
as shown in Fig. 2.3. The variable C$, however, gives the bytes

2080 65 ')
2081 128) A r
2082 2 c. C \.J r'! r
2083 9 ~ q) ~
2084 8 /
2085 0

__ 2~S~ __ 0 ___ _
2087 66 ~ Q, ~
2088 128 /
2089 2
2090 17 I
2091 S _: \~! ~
2092 0
2093.----0----

2094 67 ,(, ,"
2095 128;
2096 4
2097 252
2098 159
2099 0
2199 0

Fig. 2.3. The VLT entry for a string which is not stored in the program part of
memory.

252,159 for its address. This corresponds to an address of 4~956 (it's
159*256 + 151, remember) for this string. We can take a look at
these ~sses. If you type:

C; 1- ~ORX=4~956T04~959:?X;" ";PEEK(X);" ";CHR$
1) (PEEK(X»:NEXT

then all will be revealed. The ASCII codes for letters ABCD are now
stored here, and the use of CHR$ in the program reveals them.

Into integers

We've looked at the storage of numbers and of strings, but we should
not forget that the C 64 allows two types of numbers to be stored.

22 Introducing Commodore 64 Machine Code

One of these number types is called 'real', the other is called 'integer'.
A variable for a real number uses a letter, or pair of letters, or letter
and digit like A, AB or A2 to represent it. A real number is coded in
the way that we have already seen, using a total of seven bytes. Of
these, two are for the name, a'1d five for the value. A real number can
be positive, negative, or fractional, and its range of size can be from
about 101x to 10-19 . The integer numbers are whole numbers, no
fractions allowed, and can rangefrom -32768 to +32767.!t's time to
take a look at these numbers in the VLT.

Start, as usual, by switching off and then on again to clear the
memory. Now type the one-liner:

l~ Ao/o=I5:Bo/o=3~~

and RUN this. Find the position of the VLT as usual by peeking
addresses 45 and 46. My C 64 came up with 2~68. Now type:

FOR X=2~68T02~85:PRINTX;" ";PEEK(X):NEXT

and press RETURN. This will give you the sequence which is shown
in Fig. 2.4.

2068 193
2069 128
2070 0
2071 15
2072 e
2073 a
21374 0
21375 194
2076 128
2077 1
2078 44
2079 0
2080 0
2081 0
2082 88
2083 0
2084 140

Fig. 2.4. The VL T entry for two integer numbers.

It's not the same as the real number sequence that we saw in Fig.
2. I. To start with, something has been done to the first byte, the one
that should represent the variable name of A%. The byte is 193,
which isjust 65+ 128. It's the code for A with 128 added. The second

Digging Inside the Commodore 64 23

byte is 128. This suggests that when we create an integer variable
name, the machine adds 128 to both of the letters of the name. Can
you see the pattern in all this? For a real number, the letters of the
name use ASCII codes. For a string, the second code for the name is
128, or an ASCII code with 128 added. For an integer, 128 has been
added to the first code as well. This is how the machine can
distinguish between different letter variables. The signs % and $ are
not stored in the memory!

We need now to look at how the numbers are stored, though. The
bytes that follow the two 'variable name' bytes are ~, 15,~,~,~, and
this seems to indicate that the number 15 has been stored unaltered.
This is quite unlike the transformation that we saw carried out for
the storage of a real number. The number 3~~, however, is stored as
1.44. Now could this be a two-byte storage system? We can try it-
256* 1+44=3~~. The number has been stored as two bytes, with the I 5££
high byte first, unlike the order that is used for line numbers or P.10
memory address numbers. The VLT entry is still of seven bytes, with
three of them unused this time.

How does this explain the use of integers? Well, for one thing, we
can explain the range of integer numbers. If we use only two bytes
for storage, we can't store a number greater than the one which uses
255 stored in each byte. This number would be 255*256+255, which
is 65536. Now we know that the range of integers is from - 32768 to
+32767 and these numbers add up to 65535! Instead of making
integer numbers cover just ~ to 65535, then, the C 64 covers the more
useful range of -32768 to +32767. The reasons for this range are
illustrated in more detail in Appendix A. Using integers has several
other side-effects. One is that integers are stored with perfect
precision. When you declare A o/r= 17412, then that's the number in
the store, not 17411.9999999. A 'real' number is almost always an
approximation, and when we use 'real' numbers, we have to be
prepared for some 'rounding'. You've probably met calculators that
told you that the answer to a problem was 3.9999999 rather than 4.~.
This is caused by these approximations in storing real numbers, and
some calculators would round the figure to 4, others would not. If
you work on the C 64 using integers, these problems do not bother
you. The other advantage of using integers is speed. Because an
integer number is stored in two bytes, the computer can deal with it
much more quickly than with a 'real' number which requires five
bytes, and which needs more elaborate decoding. If you want speed,
then, use integers but you probably knew that already!

SSt:(.
P. IS"

24 Introducing Commodore 64 Machine Code

Program time

It's time now to look at how a program is stored in the memory of
your C 64. As before, we shall rely on PEEKs at parts ofthe memory
to find out what is happening. The first thing we need to know,

(however, is where the bytes that form the address of the start of a
C program are stored. As it happens, they are stored at 43 and 44.

We can therefore start looking at a program as it exists in the
memory. Type the program as shown in Fig. 2.5, but don't run it.
Now type:

?PEEK(44)* 256+ PEEK(43)

and you will find the address at which the first byte of this program
starts. In this example, my C 64 gave the address 2~49. Now when
you use the usual loop to print values of the PEEK numbers from
this address onwards, you get the list as shown in Fig. 2.6. At first

,-"--\ 1?- - J ~ '.
I ~ 8 I ~ ~ 65 178 49 48 Jj [ill.- 8

2~ ~ 153 32 65 ~ DI 8 3~ ~ 67 ,_. ~ ~
36178 34 67 77 66 32 54 52 34 ~ '20b:_

Fig. 2.6. The bytes that represent the program in memory.

sight it looks like a stream of meaningless numbers, but when you
look more carefully, you can see some pattern in it. As usual, the
ASCII codes act as useful signposts. At 2~53, for example, you can
see the number 65, which is the ASCII code for 'A'. Since we know
that the line is 'A= l~', we can look for the rest of this line. The 1 ~ is
recognisable as 49 (ASCII 'I ') and 48 (ASCII '~'), so that the number
178 must represent the' =' sign. Now this is not the ASCII code for
'=', but one of these 'tokens' that I mentioned in Chapter I. It's a
token because the computer is required to carry out an action, not
just store an ASCII code here. The ~ at address 2~57 marks the end
of this line.

N ow we have to grapple with the first four bytes. The first two are,
as you might suspect from looking at them, an address. The 1~,8

,/

(

Digging Inside the Commodore 64 25

makes up the address 8*256+ I~, which is 2~58. What is this
address? Why, it's the address of the first byte of the next line! This is
how the operating system of the C 64 can pick out lines, and put
them into the correct sequence, no matter what order you use to
enter them. The final mystery is easily solved. Looking at the third
and fourth bytes of each of the lines shows the sequence 1~, 2~, 3~­
the line numbers. There are two bytes reserved for the line numbers
because we want to have line numbers higher than 255. For line
numbers smaller than 256, the second of these bytes - the more
significant byte - is not used.

N ow take a look at the other lines, as they appear stored in the
memory. We have met the PRINT token of 153 before, and all the
rest should be familiar by now. The only novelty is the end of the
program. The last line ends with a ~ as usual, but following it, in the
place where the address bytes for the next line would be, is another
pair of zeros. This is the marker that the computer uses for END.

We can carry out some interesting changes on a program like this.
Suppose, for example, that we poke the addresses that are used to
carry the line numbers. If you type:

POKE2~6~, 1~:POKE2~68, I~

and press RETURN, you will have placed the number I~ in each line
number address for the lines 2~ and 3~. Now LIST and look at the
result! It's a program of line l~'s. Contrary to what you might
expect, this will RUN perfectly normally. The action of running, you
see, depends on the 'next line' addresses being correct, not on how
the lines are numbered. A program that has been altered in this way,
however, is certainly not normal. Try, for example, using the screen
editing system to change the second line A to B, so that the line reads
PRINT B. Now RUN and then LIST. You will find that the previous
first line has disappeared, and the new first line is PRINT A, with
PRINT B as the second line! You can, however, record a program
which has been altered in this way, and replay it normally. This is the
germ of a method by which you can make a program difficult to
alter.

Running the program

N ow that we have looked at the way in which a program is coded and
stored in the memory of the C 64, we can give a bit of thought as to
how it runs. This action is carried out by the most complicated part

26 Introducing Commodore 64 Machine Code

of the operating system, and it has to be given a starting address.
This address comes, as you might expect, from the locations 43 and
44 which we have used. Suppose we go through the actions, omitting
detail, of the three line program of Fig. 2.5. At the first address in
BASIC, the RUN subroutine will read the first two bytes, and store
them temporarily. These bytes will be used in place of the 'start of
BASIC' address when the next line is carried out. The line number
bytes are then read and stored. Why? So that if there is a syntax error
in the line, the computer will be able to print out the message: 'SN
ERROR IN l~' rather than 'SN ERROR SOMEWHERE'! The
next byte is an ASCII code, and the computer will take this as being
a variable name. In the old days, the word LET had to be used to
'declare a variable'. There was a token for LET and, in modern
machines, this token is still used. The difference is that the token is
now put in automatically when a letter immediately follows a line
num ber or a colon. If you do type LET, then the same token is used.

Following the assignment token, the special token for the'=' sign
then causes a subroutine to swing into action. This one creates an
entry in the variable list table, at the first available address, and puts
the ASCII code for A in that place. The next address in the VLT is
left blank - there's no second letter for this variable name. The
number l~ is then read and converted to the special binary form, as
noted in Appendix A. This set of bytes is also placed in the VL T as
the entry for A. The next byte ofthe program is then read - it's~, so
that the address for the next line, which was read as the first action, is
now placed into the microprocessor. The type of action that we have
considered in detail for line l~ then repeats with line 2~. This time,
more has to be done when the action token is read. Since this is the
token for PRINT, the subroutine for PRINT must be called up. It
will locate the address of the next vacant place on the screen. This is
done by keeping a note of the address in a couple of bytes of RAM -
read these bytes, and you have the address. The value of A is then
found in the VLT, and the bytes converted back to ASCII code
form. The codes are then placed, one by one, in the screen memory.
Doing this causes the characters to become visible on the screen,
beca use of another subroutine. Once again, the zero at the end of the
line causes the next line number to be used. At the end of the third
line, however, the 'next line' number is zero, and the program ends.
The computer goes back to its waiting state, ready for another
command.

It's not quite so simple as that description makes it sound, but the
essentials are there. The important thing to realise is that there is a

Digging Inside the Commodore 64 27

lot of action to be done, and it has to be done one step at a time.
What makes BASIC slow is that each token calls up a subroutine,
which has to be found. For example, if you have a program that
consists of a loop like:

l~ FOR N=IT05~
2~ PRINT N
3~ NEXT

then the action of reading the PRINT token of 153, and finding
where the correct subroutine is stored, will be carried out fifty times.
There is no simple way of ensuring that the subroutine is located
once and thenjust used fifty times. The kind of BASIC that you have
on your C 64 is interpreted BASIC. This means that each instruction
is worked out as the computer comes to it. If that means finding the
address of the PRINT subroutine fifty times, so be it. The alternative
is a scheme called compiling, in which the whole program is
converted to efficient machine code before it is run. Compiling is
done using another program, called a compiler. The use of a ':; c s
compiler for a BASIC program very greatly speeds up the running of 1"_ z'i
the program, but it makes the program less easy to edit, because it
converts the program into a different form. You can't win them all!

Chapter Three

The Microprocessor

In this chapter, we'll start to get to grips with the 6502 micro­
processor of the C 64. The microprocessor or MPU is, you
remember, the 'doing' part of the computer as distinct from the
storing part (memory) or the input/ output part (ports), so that what
the microprocessor does will control what the rest of the computer
does.

The MPU itself consists of a set of memory stores for numbers,
but with a lot of organisation added. By means of circuits that are
very aptly called gates, the way in which bytes are transferred
between different parts of the MPU's own memory can be
controlled, and it is these actions that constitute the addition,
subtraction, logic and other actions ofthe MPU. Each of the actions
is programmed. Nothing will happen unless an instruction byte is
present in the form of a I or a ~ signal at each of the 8 data terminals,
and these bytes are used to control the gates inside the MPU. What
makes the whole system so useful is that because the program
instructions are in the form of electrical signals on eight lines, these
signals can be changed very rapidly. The speed is decided by another
electrical circuit called a 'clock-pulse generator', or 'clock' for short.
The speed that has been chosen as standard for the clock of the C 64
is very fast, so that something like a million operations can be
carried out per second.

Machine code

The program for the MPU, as we have seen, consists of number
codes, each being a number between ~ and 255 (a single byte
number). Some of these numbers may be instruction bytes which
cause the MPU to do something. Others may be data bytes, which
are numbers to add, or store or shift, or which may be ASCII codes

The Microprocessor 29

for letters. The MPU can't tell which is which - it simply does as it is
instructed. It's up to the programmer to sort out the numbers and
put them into the correct order.

The correct order, as far as the MPU is concerned, is quite simple.
The first byte that is fed to the MPU after switching on or after
completing an instruction, is taken as being an instruction byte.
N ow many of the 6502 instructions consist of just one byte, and need
no data. Others may be followed by one or two bytes of data, and
some instructions need two bytes. When the MPU reads an
instruction byte, then it analyses the instruction to find if the
instruction is one that has to be followed by one or more other bytes.
If, for example, the instruction byte is one that has to be followed by
two data bytes, then when the MPU analyses the first byte, it will
treat the next two bytes that are fed to it as being the data bytes for
that instruction. This action of the MPU is completely automatic,
and is built into the MPU. The snag is that the machine code
programmer must work to the same rules, and get the program
right. 100% correct is just about good enough! If you feed a
microprocessor with an instruction byte when it expects a data byte,
or with a data byte when it expects an instruction byte, then you'll
have trouble. Trouble nearly always means an endless loop, which
causes the screen to go blank and the keys to have no effect. Even the
combination of STOP and RESTORE keys can sometimes fail to
break the C 64 out of such a loop, and the only remedy is to switch
off. You will generally lose whatever program you had in store, so
that it's vitally important to save any machine code program, or a
BASIC program that causes machine code actions (by using PO KE)
on tape before you use it.

What I want to stress at this point is that machine code
programming is tedious. It isn't necessarily difficult - you are
drawing up a set of simple instructions for a simple machine - but it's
often difficult for you to remember how much detail is needed.
When you program in BASIC, the machine's error messages will keep
you right, and help to detect mistakes. When you use machine code,
you're on your own, and you have to sort out your own mistakes. In S£<;:'

this respect, a type of program called an assembler helps F.2. 7
considerably. We'll look at that point again later. In the meantime,
the best way to learn about machine code is to write it, use it, and
make your own mistakes. We'll start looking at how this is done, and
we'll begin with the ways of writing the numbers that constitute the
bytes of a machine code program.

30 Introducing Commodore 64 Machine Code

Binary, denary and hex

A machine code program consists of a set of number codes. Since
each number-code is a way of representing the 1 's and ~'s in a byte, it
will consist of numbers between ~ and 255 when we write it in our
normal scale of ten (denary scale). The program is useless until it is
fed into the memory of the C 64, because the MPU is a fast device,
and the only way offeeding it with bytes as fast as it can use them is
by storing the bytes in the memory, and letting the MPU help itself
to them in order. You can't possibly type numbers fast enough to
satisfy the MPU, and even methods like tape or disk are just not fast
enough.

Getting bytes into the memory, then, is an essential part of making
a machine code program work, and we shall look at methods in
more detail later on. At one time, simple and very short programs
would be put into a memory by the most primitive possible method,
using eight switches. Each switch could be set to give a I or ~
electrical output, and a button could be pressed to cause the memory
to store the number that the switches represented, and then select the
next memory address. Programming like this is just too tedious,
though, and working with binary numbers of 1 's and ~'s soon makes
you cross-eyed. Now that we have computers, it makes sense to use
the computer itself to put numbers into memory, and an equally
obvious step is to use a more convenient number scale.

Just what is a convenient number scale is a matter that depends on
how you enter the numbers and how much machine code
programming you do. The C 64 contains subroutines which convert
the binary numbers in its memory to the form of denary numbers to
print on the screen, and will also carry out the reverse action. When
you use PEEK, the address that you want can be written in denary,
and the result of the PEEK will be a number in denary, between ~
and 255. When you use POKE, similarly, you can type both the
address number and the byte to be poked in denary.

Serious machine code programmers, however, find the use of
denary anything but convenient. A denary number for a byte may
be one figure (like 4) or two (like 17) or three (like 143). A
much more convenient code is the one called hex (short for
hexadecimal) code. All one-byte numbers can be represented by just
two hex digits. In conjunction with this, serious machine code
programmers write their programs in what is called assembly
language. This uses command words which are shortened versions
of the names of commands to the MPU. Programs that are called

The Microprocessor 31

assemblers then convert these command words into the correct
binary codes. Practically all assemblers show these codes on the
screen in hex form rather than in denary. In addition, when you type
data numbers, you will have to make use of hex code. 'Hexadecimal'
means scale of sixteen, and the reason that it is used so extensively is
that it is naturally suited to representing binary bytes. Four bits, half
of a byte, will represent numbers which lie in the range ~ to 15 in our
ordinary number scale. This is the range of one hex digit (see Fig.
3.1). Since we don't have symbols for digits higher than 9, we have to

Hex Denary Hex Denary

0 0 C 12
1 1 D 13
2 2 E 14
3 3 F lS
4 4 then
5 5 UI 16
6 6 11 17
7 7 to
8 8 20 32
9 9 21 33
A 10 22 34
B 11 etc.

Fig. 3.1. Hex and denary digits.

use the letters A,S,C,D,E, and F to supplement the digits ~ to 9 in
the hex scale. The advantage is that a byte can be represented by a
two-digit number, and a complete address by a four-digit number.
The num ber codes that are used as instructions have been designed
in hex code, so that we can see much better how commands are
related. For example, we may find that a set of related commands all
start with the same digit when they are written in hex. In denary, this
relationship would not appear. In addition, it's much easier to write
down the binary number which the computer actually uses when you
see the hex version. The use of the C 64 assembler and monitor
programs, such as the excellent MIKRO assembler, demand
familiarity with hex, and books of information on the 6502 MPU
will all be written assuming that you know hex. It sounds as if we
ought to make a start on it!

32 Introducing Commodore 64 Machine Code

The hex scale

The hexadecimal scale consists of sixteen digits, starting as usual
with ~ and going up in the usual way to 9. The next figure is not I~,
however, because this would mean one sixteen and no units. Since
we aren't provided with symbols for digits beyond 9, we use the
letters A to F. The number that we write as l~ (ten) in denary is
written as ~A in hex, eleven as ~B, twelve as ~C and so on up to
fifteen, which is ~F. The zero doesn't have to be written, but
programmers get into the habit of writing a data byte with two digits
and an address with four even iffewer digits are needed. The number
that follows ~ F is l~, sixteen in denary, and the scale then repeats to
I F, thirty-one, which is followed by 2~. The maximum size of byte,
255 in denary, is FF in hex. When we write hex numbers, it's usual to
mark them in some way so that you don't confuse them with denary
numbers. There's not much chance of confusing a number like 3E
with a denary number, but a number like 26 might be hex or denary.
The convention that is followed by 6502 programmers is to use the
dollar sign ($) to mark a hex number, with the sign placed before the
number. For example, the number $47 means hex 47, but plain 47
would mean denary forty-seven. When you write hex numbers for a
6502 program, it's advisable to follow this convention.

Hex Binary Hex Binary

0 0000 8 10fJfJ
1 00fJ1 9 1 fJfJ 1
2 0fJ1fJ A 1fJIfJ
3 0fJ11 B 1fJll
4 01fJ0 c 1100
5 01fJ1 D 11fJ1
6 fJ11fJ E 111fJ
7 0111 F 1111

Fig. 3.2. Hex and binary digits.

Now the great value of hex code is how closely it corresponds to
binary code. If you look at the hex-binary table of Fig. 3.2, you can
see that $9 is I~~ I in binary and $F is 111l. The hex number $9F is
therefore just I~~ 11111 in binary - you simply write down the
binary digits that correspond to the hex digits. The conversion in the
opposite direction is just as easy - group the binary digits in fours,
starting at the least significant (right-hand side of the number) and
then convert each group into its corresponding hex digit. Figure 3.3

The Microprocessor 33

Conversion: Hex to Binary

Example: 2CH ••••••••••••• 2H is 00l~ binary
CH is 11~0 binary

So 2CH is 00l~11~0 binary (data byte)

Example: 4A7FH ••••••••••• 4H is 0l~0 binary
AH is l~l~ binary
7H is 0111 binary
FH is 1111 binary

So 4A7FH is 0l~0l~1~~1111111 binary (an address)

Conversion: Binary to Hex

Example: 0ll~1~11 ••••••••••••• 0ll~ is 6H
l~ll is BH

So 0ll~1~11 is 6BH

Example: 1~11~1~0l~0l~ ••• note that this is
not a complete number of bytes.

Group into fours, starting with lsb:
~0l~ is 2H
1~0l is 9H
ll~l is DH and

the remaining l~ is 2, making 2D92H

Fig. 3.3. Converting between hex and binary.

shows examples of the conversion in each direction so that you can
see how easy it is.

The C 64 has no built-in programs for converting between denary
and hex, and the most convenient method of converting is a
BASIC program. Figure 3.4 shows a denary-to-hex conversion
program which builds up a string called H$ as a hex number. The
conversion is started by dividing the number by 4~96 and taking the
integer (whole number) part of the result. If the denary number was
smaller than 4~96, then the result of this is ~, and this will also be the

34 Introducing Commodore 64 Machine Code

first hex digit. The conversion of hex codes is done by making use of
the ASCII code values, because there is a simple relationship
between the ASCII codes for digits ~ to 9 and the digits themselves.

10 PRINT":,]":PRINT"PLEASE T'YPE DENARY NUMBER-II
:INPUT D

20 IF D)65535THENPRI NT II TOO LAROE-LIMIT IS 65535"
:GOSUB300:00T010

30 IF D(lTHENPRINT"NO NUMBERS LESS THAN lJ PLEASE"
:OOSUB300:GOT010

40 IF D()INT(DHHENPRINT"NO FRACTIOt~S, PLEASE"
:OOSUB300:00T010

50 F=4096:H$·1I11
60 'r'·INT(D/F)
70 GOSUB200
80 D=D-'r'*F:F=INT(F/16)
S0 IF F(lTHENl10
100 GOT060
110 IF LEFT$(H$,2),,1I00"THEN H$aRIOHT$(HS,2)
120 H$III"$"+H$
130 PRIHT"HEX NUMBER IS U;H$
140 END
200 IF Y(=9THEN HaH+CHR$(Y+48)
210 IFY)STHEN HfaH'+CHR'(Y+55)
220 RETURN
300 FORN=lT01000:NEXT:RETURN

Fig. 3.4. A program for converting denary numbers to hex.

If you add 48 to the digit, then you have its ASCII code, so that
48+ 1=49 is the code for 'I'. This ASCII code can then be
incorporated into a string. A slight complication arises when we get
to ten, because in hex this is A, and the ASCII code for A is 65, which
is 55 greater than I~. The conversion program must therefore add 48
to a digit of 9 or less, and add 55 to a digit in the range I ~ to 15 so as
to make the correct conversion. This isn't difficult to do in a BASIC
program. The next step is to take the remainder after dividing by
4~96, and divide this by 256, which is 4~96/ 16. The integer part of
this is then put into hex string form, and the process repeats until
there is nothing left. If you want to make this routine super-efficient,
then use integer variables for all of the whole numbers.

Hex-to-denary can be done in much the same way, and a suitable
program is shown in Fig. 3.5. This relies on converting the ASCII
code for each digit of the hex number into its number digit, and then
mUltiplying by the correct place factor (numbers 1,16,256 and 4~96

The Microprocessor 35

10 PR I NT ":']" : Y= 1 : D=0 : PR H~T II PLEASE TYPE HEX' HUMBER"
:INPUTH$

30 L=LEN(H$):FORN=0TOL-l
40 GOSUB200:NEXT
50 PRINT"DENARY NUNBER IS lIiD
100 END
200 P$=MID$(H$,L-N,l):A=ASC(P$)
210 IFA(48 OR A)102 THEN GOSUB300:GOT0280
220 IF A(65 AND A)57THEN GOSUB300:GOT0280
230 IF A(=97 AND A)70 THEN GOSUB300:GOT0280
240 IF A(=57 THEN Q-A-48
250 IF A)=65THEN Q~A-55
260 I F A)=97THEt~ QmA-87
270 D=D+Q*'t': I,.'=Y* 16
280 RETURN
300 PRINTIIBAD HEX •.. PLEASE TRY AGAIN":END
500 FORX=lT01000:NEXT:RETURN

Fig. 3.5. A program for converting hex numbers to denary.

for up to 4 digits) The numbers obtained in this way are then added
into a total, D. Once again, the BASIC program is fairly simple,
which is why the 'we pay for each program published' page of every
magazine gets choked with denary-hex conversion programs for
each new computer! Just in case you want to do these conversions
when you are not near a friendly C 64, though, the methods are
shown in Appendix B.

Assuming, which is reasonable, that you don't want to commit
yourself to the cost of a full-scale assembler at this point, what do
you do to create machine code programs? The answer is that you
design your program in assembly language, which is by far the easiest
way to design machine code programs, and then you convert into
hex code. Converting means looking up in a set of tables (called the
instruction set) the hex number that represents each instruction.
Instruction sets are provided by the manufacturers of all micro­
processors, and Mostek, who designed the 6502, provide one
for this chip. Just to assist you, a quick-reference guide has been
included in this book, in Appendix C. Don't refer to it at the moment
- it'll put you off!

Negative numbers

Useful as these denary-hex conversion programs for the C 64 are,

36 Introducing Commodore 64 Machine Code

they are deficient in one respect - they don't handle negative
numbers. This is unfortunate, though understandable. Negative
numbers are very important in machine code programs, particularly
if you are working without an assembler. The reason is that you
sometimes want the MPU to do the equivalent of a GOTO, perhaps
jumping to a step which is 3~ steps ahead of its present address. This
sort of thing is usually programmed by supplying a data number
which is the number of steps that you want to skip. If you want to
jump back to a previous step, however, you will need to use a
{legative numberfor this data byte. This is very common, because it's
the way that a loop is programmed in machine code. We need,

Binary: Number (8 bits) 0011~1~1 (denary 53)

Step 1: change each 0 to
1, each 1 to 0 11~01~1~

Step 2: add 1 +l

Result is negative
form of number 11~01~11 (denary 2~3)

Denary: Number 53

Step 1: subtract from 256 203

This is negative form (in denary)

Hex: Number

Step 1: subtract from $FF

Step 2: add 1

$35

FF
35

$CA

+l

:ill

Remember that F
represents 15
denary, and
15 - 5 = 10
denary, which
is A in hex.
This is easier
than a subtraction
from $1~0, which
involves the use
of carries in hex.

Result is hex form of negative number

An alternative is to do the denary conversion, then
convert back to hex.

Fig. 3.6. The two's complement, or negative form, of a binary number.

The Microprocessor 37

therefore, to know how to write a negative number in hex.
What makes it awkward is that there is no negative sign in hex

arithmetic. There isn't one in binary either. The conversion of a
number to its negative form is done by a method called com­
plementing, and Fig. 3.6 shows how this is done. At first sight,
and very often at second, third, and fourth, it looks entirely crazy.
When you are dealing with a single byte number, for example, the
denary form of the number-l is 255! You are using a large positive
number to represent a small negative one! It begins to make more
sense when you look at the numbers written in binary. The numbers
that can be regarded as negative all start with a I and the positive
numbers all start with a ~. The MPU can find out which is which
just by testing the left-hand bit, the most significant bit.

It's a simple me,thod, which the machine can use efficiently, but it
does have disadvantages for humans. One of these disadvantages is
that the digits of a negative number are not the same as those of a
positive number. For example, in denary-4~ uses the same digits as
+4~. In hex, -4~ becomes $08 and +4~ becomes $28. The denary
number -85 becomes $AB and +85 becomes $55. The second
disadvantage is that humans cannot distinguish between a single
byte number which is negative and one which is greater than 127.
For example, does $9F mean 159 or does it mean -97? The short
answer is that the human operator doesn't have to worry. The
microprocessor will use the number correctly no matter how we
happen to think of it. The snag is that we have to know what this
correct use is in each case. Throughout this book, and in others that
deal with machine code programming, you will see the words
'signed' and 'unsigned' used. A signed number is one that may be
negative or positive. For a single byte number, values of~ to $7F are
positive, and values of $8~ to $FF are negative. This corresponds to
denary numbers ~ to 127 for positive values and 128 to 255 for
negative. Unsigned numbers are always taken as positive. If you find
the number $9C described as signed, then you know it's treated as a
negative number (it's more than $8~). If it's described as unsigned,
then it's positive, and its value is obtained simply by converting.
How do we convert a signed single-byte hex number into denary,
using our programs? It's simple - if the number is greater than $7F,
then subtract 256 from its denary value. If you get 240 as a result. for
example, then 24~-256 =-16, and that's the signed value in denary.

38 Introducing Commodore 64 Machine Code

Light relief

Just to take a break from all this arithmetic, let's look at screen
displays on the C 64. Each part of the screen can be controlled by
whatever is stored in part of the memory, but there are two varieties
of this memory. The simplest one to work with is the part which is
called text screen memory. It takes up memory addresses $4~~ to
$7E7, which is 1~24 to 2~23 in denary. What we mean by 'text screen
memory' is that this piece of memory is treated in a special way.
Anything that is stored here will be used to display text on the
screen. That means that any code number that you store at an
address in this range will produce the corresponding letter or
graphics shape on the screen. It's not quite so simple as this with the
C 64, though. When a number is placed in any part of this memory,
its effect is not visible unless one of two conditions is met. Condition
one is that there should be a character at that screen position
already. Condition two is that a new background colour must be
used. Readers of my basic guide to the C 64, Commodore 64
Computing, will already be aware of these restrictions. Try this -
press the CLEAR key to clear the screen, and then type:

POKE53281,3:POKEI524,1

and press RETURN. The result is the letter A appearing in the
middle of the screen. The computer has converted its 'internal' code
of 1 that was stored at position 1524 into a set of numbers that will
produce the letter 'A' on the screen at this position. You can
program this sort of thing in a loop, as Fig. 3.7 shows. You should
restore normal screen conditions by using STOP/RESTORE first.

10 POKE532S1,3
20 FORN=1024T02023
30 POKENj1:NE)(T

Fig. 3.7. A program which fills the screen with the letter A.

The effect of this loop is to fill the screen with A's. The filling is not
particularly fast, because we're using BASIC in the loop. Later, we'll
look at the same sort of thing in machine code, which is stunningly
fast! For the moment, though, look at the effect on this program of
replacing 1 by another number which is the code for one of the
graphics blocks, like 65. It's quite useful, and if you want to avoid the
'hole' in the pattern caused by the OK message and the cursor, then
add an endless loop to the program, like:

The Microprocessor 39

4~ GOTO 4~

The odd thing here is the use of 'internal' codes. The C 64 uses the
standard set of ASCII code numbers in its BASIC. When you use
BASIC instruction words like ASC and CHR$, you are making use
of ASCII code numbers. For its own purposes, however, the C 64
converts these ASCII codes to other numbers. These are the
'internal' code numbers, and they are listed in Appendix E of the C
64 manual. When we poke a number into the part of memory that is
used for the screen, the character that will appear will be one selected
from this 'internal' list, rather than what you might expect from the
ASCII codes.

Chapter Four

6502 Details

Registers - PC and accumulator

A microprocessor consists of sets of memories, which are called
registers. These memories are of a rather different type compared to
ROM or RA M. The registers are connected to each other and to the
pins on the body of the MPU by the circuits that are called gates. In
this chapter, we shall look at some of the most important registers of
the 6502 and how they are used. A good starting point is the register
which is called the PC ~ short for Program Counter.

No, it doesn't count programs - what it does is to count the steps
in a program. The PC is a sixteen-bit (two byte) register which can
store a full-sized address number, up to $FFFF (65535 denary). Its
purpose is to count the address number, and the number that is
stored in the PC will be incremented (increased by 1) each time an
instruction is completed, or when another byte is needed. For
example, if the PC holds the address $1 F3A (denary 7994), and this
address contains an instruction byte, then the PC will increment to
$1 F3 B (denary 7995) whenever the M PU is ready for another byte.
The next byte will then be read from this new address.

What makes the PC so important is that it's the automatic way by
which the memory is used. When the PC contains an address
number. the electrical signals that correspond to the ~'s and l's of
that address appear on a set of connections, collectively called the
uddress hus, which link the MPU to all of the memory, RAM and
ROM. The number that is stored in the PC will select one byte from
the memory, the byte which is stored at that address number. At the
start of a read operation, the MPU will send out a signal called the
read signal on another line, and this will cause the memory to
connect up the selected parts to another set of lines, the data bus.
The signals on the data bus then correspond to the pattern of~'s and
I's that is stored in the byte of memory that has been selected by the J

6502 Details 41

address in the Pc. Each time the number in the PC changes, another
byte of memory is selected, so that this is the way by which the MPU
can keep itself fed with bytes. When the MPU is ready for another
byte, the PC increments, and another read signal is sent out.

There are other ways in which the PC number can be changed, but
for the moment we'll pass over that and look at another register, the
accumulator. The accumulator of a microprocessor is the main
'doing' register of the MPU. This means that you would normally
use it to store any number that you wanted to transfer somewhere
else, or add to or carry out any other operation upon. The name
'accumulator' comes from the way in which this register operates. If
you have a number stored in the accumulator, and you add another
number to it, then the result is also stored in the accumulator. The
nearest equivalent in BASIC is using a variable A, and writing the
line:

A=A+N

where N is a number variable. The result ofthis BASIC line is to add
N to the old value of A, and make A equal this new value. The old
value of A is then lost. The accumulator acts in the same way, with
the difference that an accumulator can't store a number greater than
255 (denary).

The 6502 has one accumulator register, often labelled as the' A
register'. The importance of this is that it is used much more than the
other registers, because so many actions can be carried out more
quickly, more conveniently, or perhaps only, in the accumulator.
When we read a byte from the memory, we usually place it in the
accumulator. When we carry out any arithmetic or logic action, it
will normally be done in the accumulator and the result will also be
stored in the accumulator.

Addressing methods

When we program in BASIC, we don't have to worry about memory
addresses at all unless we are using PEEK or POKE. The task of
finding where bytes are stored is dealt with by the operating system
of the machine. When a variable is allocated a value in a BASIC
program as, for example, by a line like:

I~ N = 12

42 Introducing Commodore 64 Machine Code

we never have to worry about where the number 12 is stored, or in
what form. Similarly, when we add the line:

2~ K=N

we don't have to worry about where the value of N was stored or
where we will store the value of K. Remembering our comparison
with wall-building, we can expect that when we carry out machine
code programming, we shall have to specify each number that we
use, or alternatively the address at which the number is stored. This
way in which we obtain a number, or find a place to store it, is called
the addressing method. What makes the choice of addressing
method particularly important is that a different code number is
needed for each different addressing method for each command.
This means that each command exists in several different versions,
with a different code for each addressing method. A list of all the
6502 addressing methods at this stage would be rather baffling, and
for that reason has been consigned to Appendix D. What we shall do
here is to look at some examples of selected addressing methods and
the way that we write them in assembly language.

Assembly language

Trying to write down machine code directly as a set of numbers is a
very difficult process which is liable to errors from beginning to end.
The most useful way of starting to write a program is to write it in a
set of steps in what is called assembly language (or assembler
language). This is a set of abbreviated command words, called
'mnemonics', and numbers which are the data or address numbers.
The numbers can be in hex or in denary, provided they are supplied
to the computer in the correct form. Each line of an assembly
language program indicates one microprocessor action, and this set
of instructions is later 'assembled' into machine code, hence the
name.

The aim of each line of an assembly language program is to show
the action and the data or address that is needed to carry out that
action. Just as when we make use of TAB in BASIC we need to
complete the command with a number. The part of the assembly
language that specifies what is to be done is called the operator, and
the part which specifies what the action is done to or on is called the
operand. A few instructions need no operand, and we'll look at some
later.

6502 Details 43

An example makes this easier. Suppose we look at the assembly
language line:

LOA #$12

The operator is LOA, a shortened version of LOAO A, meaning
that the accumulator register A is to be loaded with a byte. The
operand is #$12, of which the $12 means that this is 12 hexadecimal,
rather than twelve denary. The other mark, the hashmark, #, is used
to show the addressing method that is to be used, a method called
'immediate addressing'.

The whole line, then, should have the effect of placing the number
$12 into the accumulator register A. It is the equivalent in machine
code terms of the BASIC instruction:

A=18 (remember that $12 is denary 18)

You could imagine that the memory which held the number was
inside the microprocessor rather than part of the RAM memory,
and was labelled with the name of 'A'.

A command such as LOA #$12 is said to use immediate
addressing, because the byte which is loaded into the accumulator
must be placed in the memory byte whose address immediately
follows that of the instruction byte. It's like leaving a note for your
milkman that says 'money in envelope next door'. There is one code
number for the LOA # part of the whole instruction, and this byte is
$A9, so that the hex sequence in memory of A9 12 will represent the
entire command LOA #$12. It's a lot easier to remember what LOA
#$12 means than to interpret A9 12, however, which is why we use
assembly language as much as possible.

Immediate addressing like this can be convenient, but it ties you
down to the use of one definite number and one fixed memory
address. It's rather like programming in BASIC:

N = 4* 12 + 3

rather than

N= A*B+C

In the first example, N can never be anything else but 51, and we
might just as well have written: N = 51. The second example is very
much more flexible, and the value of N depends on what values we
choose for the variables A, Band C. When a machine code program
is held in RAM, then the numbers which are loaded by this
immediate addressing method can be changed if we must change

44 Introducing Commodore 64 Machine Code

them. However, when the program is held in ROM no change is
possible - and that's just one reason for needing other addressing
methods. One of these other methods is 'absolute addressing'.

Absolute addressing uses a complete two-byte address as its
operand. This creates a lot of work for the 6502. This is because,
when it has read the code for the operator, it will then have to read
two more bytes to find the memory address at which the data is
stored. It will then have to place this address in the PC, read in the
data byte, carry out the operation, and then restore the next correct
address into the PC. Figure 4.1 shows in diagram form what has to
be done. An absolute-addressed operation is therefore a lot slower
to carry out than an immediate one, but since any byte may be stored
at the address which is specified, it's easy to alter the data.

Addresses
in hex

D_start of instruction

7F00 G
7F01 G
7F02 o

code for load accumulator,
extended addressing

first byte of address }
forms address of $7F1'1:.

second byte of address

~-- --end of instruction

I
I
I I
7FFE

D
I I
I I
I I
I

I
I

I I o

next code

byte which is loaded into accumulator
after address $7F'02 has been read

Fig. 4.1. How the absolute addressing method works.

Suppose, for example, that we have the instruction:

LDA $7FFE

In this slice of assembly language, the operator is LDA (load the
accumulator A), and the operand is the address $7FFE. What you
have to remember is that what is put into the register A is not 7FFE,
which is a two-byte address, but the data byte which is stored in

6502 Details 45

memory at this address. The effect of the complete instruction, then,
is to place a copy of the byte which is stored at $7FFE into the
accumulator A of the 6502. When the instruction has been
completed, the address $7FFE will still hold its own copy of the byte,
because reading a memory does not change the content of the
memory in any way.

We can also use the absolute addressing method in a command
which will store a byte into the memory. The command:

STA $7FFF

means that the byte that is stored in the accumulator A is to be
copied to memory at address $7FFF. This action does change the
content ofthis memory address, but the accumulator A will still hold
the same byte after the instruction has been carried out.

Zero page addressing

Zero page addressing is a method that allows you to specify a full
address by using only one byte! The secret is that the upper byte of
the address is taken to be zero. This is how we get the name of 'zero
page' for this type of addressing. Suppose, for example, that we used
the command:

LDA $3F

There's no # sign here, so it does not mean that we load the number
$3F into the accumulator. What it does mean is that we load the
accumulator with the byte that has been stored in the address
$~~3F. The ~~ part is the zero page, and the 3F part is the part that
we have specified in the instruction. The range of addresses that we
can use with this method is from $~~~~ to $~~FF only. This is only
256 (denary) bytes, but it's a very important 256 bytes. In the 6502,
zero page addressing allows us to get access to any of these addresses
very rapidly, and with only one byte of address (the lower byte). This
makes these addresses the favoured ones for any programmer who
wants to carry out rapid loading and storing. For this reason, the
'zero page' addresses of the RAM in any 6502 machine are favourites
for storing important quantities. We have already seen them being
used for storing quantities like the address of the start of BASIC and
the address of the Variable List Table. The same addresses are used
for all sorts of important quantities, and as we go on in this book, we
shall look at several of them in more detail. Because the C 64 makes a

46 Introducing Commodore 64 Machine Code

lot of use of zero page addresses for its own purposes, we have to be
careful how we make use of them in our own programs. If we try to
use an address that the computer needs, we may lock up the whole
system. That's just one reason why it's so important to record a
machine code program before you try it out.

Indexed addressing

Indexed addressing is a method which is particularly useful on the
6502. The principle is that an eight-bit register is used to hold a byte.
This byte is then added to a base address when the indexed
addressing is used. A base address means an address to which we can
add a number before using it. For example, suppose that we had the
number $4C stored in an index register. If we then specify that we
want to load from an address $7~~~ with indexing, then what
happens is that the number in the index register is added to the
address $7~~~. This makes the address number $7~4C, and this is
the number that will be used as the address number. The effect is that
the byte in address $7~4C will be loaded into the accumulator.

There are two registers in the 6502 that can be used in this way, the
X and Y registers. They are both eight-bit registers, and they are
almost identical, but there are some differences that will be more
important to you later on. One of the differences that we can look at
immediately is zero page indexed addressing. When we load the X
register with a byte such as $4A, and then issue the command (in
assembly language):

LOA $7~~~,X

this means that the address that is to be used is $7~~~ plus the
contents of the X register. The result is that the address $7~4A is
used. This is 'a bsolute indexed addressing'. 'Absolute' means that we
a rc using absolute addressing for the 'base address' of$7~~~, and we
are then adding the 'index' number of 4A from the X index register.
We can use the Y index register of the 6502 in exactly the same way,
with instructions such as:

LOA $7~~~,Y

in assembly language. The use of the X index register, however,
allows us to use zero page addressing. We can, for example, use
assembly language commands such as:

LDA ~C,X

6502 Details 47

This means that the base address is $~~~C, and that the number
stored in the X register will be added to $~~~C before use. If the
number stored in the X register is $23, then $~~~C + $23 gives
$~~2F, and this is the address number that will be used. The
accumulator will therefore be loaded from address $~~2F. Zero
page indexed addressing cannot be used with the Y index register, so
that a command such as:

LOA $lF,Y

is impossible - there is no instruction code for it.
Now the use of indexed addressing might not seem particularly

useful at first sight. All you are doing, after all, is to add a number to
an address. What makes the method so very useful is that you can
alter the number that is stored in the X or Y registers. More
particularly, you can increment or decrement the number in either of
these index registers. The command INX means 'increment X'. Its
effect is to add one to the number that is stored in the X register.
Now since the number in the X register is added to a 'base address'
when we use indexed addressing, incrementing X means that we
shall increment the address that we get from an X indexed load or
store operation.

Suppose, for example, that you wanted to store ten bytes at ten
consecutive addresses. It's a very common problem, because it's just
what you need to do to print ten characters on the screen, for
example. The use of indexing means that you can set up a loop which
will store, using indexing, then increment the index and repeat the
store operation. Carry this out for a total often times, and the action
is complete. Perhaps it's a bit early to mention the use of a loop, but
we'll soon come to it. The example is a useful one, because it
illustrates one of the most common uses for indexed addressing.

In addition to incrementing the X and Y registers (mnemonics
INX, INY), we can decrement these registers. The assembly
language command OEX means decrement X (subtract 1 from the
number stored in X), and DEY means decrement Y. Since we have
two index registers it's even possible to load from one base address,
X-indexed, and then increment X. The byte that has been loaded can
then be stored, indexed to the Y register this time and using another
base address. The Y register can then be decremented. If all this is
done in a loop, the effect will be to place bytes from a set of
addresses, moving up from a starting address, into another set of
addresses, moving down from another starting address. Complicated,
you think? It might sound so in words, but in fact it's a very simple

48 Introducing Commodore 64 Machine Code

and neat method of shifting bytes from one part of memory to
another, and that's an operation which is very often essential in
computing.

Indirect addressing

'Indirect addressing' means going to an address to pick up another
address at which a byte is located. It's like going to the address of a
tourist office to find the address of a hotel (for a quick byte?). The
6502 allows two main forms of indirect addressing to be used. These
are relatively complicated, and we won't make much use of them in
this book, because this is an introduction, not an encyclopaedia. We
can, however, look at the principles that are involved, because the
two indirect methods are similar in many respects.

The main principle is to make use of the zero page addresses in
pairs. In any of these pairs, we can store an address in two bytes. The
order of the bytes is the one that should be familiar to you by now,
low-byte and then high-byte. An indirect addressing method makes
use of the first of a pair of these zero page addresses. The effect of a
command which makes use of indirect addressing is therefore to
read the byte in the first of the page zero addresses, and place this
into the lower half of the Program Counter register. The next zero
page address is then read, and the byte in it is put into the higher half
of the Program Counter. The Program Counter now contains a full
address, and this is used for loading or storing, depending on which
operation has been specified. For example, if address $l~ contained
$30 and address $11 contained $7F, the effect of an indirect load
from $l~ would be to place the address $7F3D into the Program
Counter, and so load the accumulator with the byte that is stored at
$7F3D. Once again, it seems very complicated and unnecessary until
you realise the special advantages of such a method. The special
advantage is that you can alter the address that is used by altering
numbers stored in the zero page memory. The operating system of
the C 64 makes extensive use of indirect addressing along with the
addresses that are stored in its page zero part of RAM. The indirect
addressing methods of the 6502 are, in fact, rather more complicated
than I have indicated here, because the index registers are also used.
One of the indirect addressing methods is illustrated in examples in
Chapter 7 and in Chapter 9.

6502 Details 49

Relative addressing

Relative addressing is one of the first addressing methods that was
ever used, and it is not used for many commands nowadays. Relative
addressing means that the operand of an instruction can be one or
two bytes, and the address that is going to be used is found by adding
this number (called the 'offset') to the 'current address', which is the
number in the Program Counter. It's rather like the old-style
Treasure Island maps which specify 'one step left, two forward, three
right ... ' and so on. You don't know where this will get you until you
know where to start, but when relative addressing is used in a
microprocessor, the starting place is usually the address in the PC.
The 6502 uses relative addressing only for its BRANCH commands,
and the offset is a single byte which is treated as a signed number.
The use of a single byte signed number means that we can jump to a
new address which is up to 127 steps forward or 128 steps back from
the present one. These branches are the machine code equivalents of
GOTO, but with the difference that they can be made to depend on a
condition, like the accumulator containing zero. It's as if there were
one single BASIC instruction which carried out the effect of:

IF A=~ THEN GOTO ...

We'll look at branch instructions in a lot more detail later.

The other registers

Of the other registers, the S register is an eight-bit register that we
shall leave strictly alone for the moment. It is the type of register that
is called a 'stack pointer', and is used to locate bytes which the MPU
has stored temporarily. If you interfere with what is stored in the S
register, you may upset the operating system of the computer. The
other register that is important to us is the Processor Status (P)
register and we'll deal with it in more detail now.

The P register

The Processor Status register, sometimes called the Flag register,
isn't really a register like the others. You can't do anything with the
bits in this register, and they don't even fit together as a number.
What the Status register is used for is as a sort of electronic notepad.

50 Introducing Commodore 64 Machine Code

Seven of the bits in the register (there are eight of them altogether)
are used to record what happened at the previous step of the
program. If the previous step was a subtraction that left the A
register storing zero, then one of the bits in the Status register will go
from value ~ to value I to bring this to the attention of the MPU. If
you add a number to the number in an accumulator, and the result
consists of nine bits instead of eight (Fig. 4.2) then another of the bits
in the Status register is 'set', meaning that it goes from ~ to 1. If the
most significant bit in a register goes from ~ to 1 (which might mean
a negative number), then another of the Status bits is set. Each bit,
then, is used to keep a track of what has just happened. What makes
this register important is that you can make branch commands
depend on whether a Status bit is set (to 1) or reset (to ~).

Number in accumulator
Number added

Result

This consists of nine
can hold only eight.
is transferred to the
register.

UH!tJllf)
IIf)f)f)If)1

1Inl11 f) 11

bits, and the accumulator
The most significant bit
carry flag of the status

Accumulator now holds 01111f)11
Carry bit is set (equal to 1)

Fig. 4.2. Why the carry bit is needed.

Figure 4.3 shows how the bits ofthe Status register of the 6502 are
arranged. Of these bits, ~,1 and 7 are the ones that we are most likely
to use at the start of a machine code career. The use of the others is
rather more specialised than we need at the moment. Bit ~ is the

Bit No . .. 7 6 5 4 3 2 0

N V I-I B D Z C

I I
Negative Not Decimal Zero

result used mode
Overflow Break Interrupt Carry

Fig. 4.3. The bits of the Processor Status register. Only three of these, N,Z, and
C, are extensively used in most programs.

6502 Details 51

Carry Bit (or Carry Flag). This is set (to I) if a piece of addition has
resulted in a carry from the most significant bit of a register. If there
is no carry, the bit remains reset. When a subtraction is being carried
out (or a similar operation like comparison), then this bit will be
used to indicate if a 'borrow' has been needed. It can for some
purposes be used as a ninth bit for the accumulator, particularly
for shift and rotate operations in which the bits in a byte are all
shifted by one place (Fig. 4.4).

Carry
bit

[I]

Carry

msb Accumulator Isb

111010111011111~1

After a left shift. the bits
willbfl:

bit msb Accumulator Isb

QJ 10101 110111110101

Fig. 4.4. Using the Carry Bit (or Carry Flag) in a shift operation, in which all the
bits of a byte are shifted one place to the left.

The Zero Flag is bit 1. It is set if the result of the previous
operation was exactly zero, but will be reset (~) otherwise. It's a
useful way of detecting equality of two bytes - subtract one from the
other, and if the zero flag is set, then the two were equal. The
Negative Flag is set if the number resulting in a register after an
operation has its most significant bit equal to I. This is the type of
number that might be a negative number if we are working with
signed numbers. This bit is therefore used extensively when we are
working with signed numbers.

You can alter some of the bits of the Status register selectively -
but that's not beginner's work! For the most part, we don't load
anything into this register, or store its content. It is used almost
exclusively as a way of keeping track of what hasjust been done, and
that's how we shall illustrate its use in this book. Other dodges can
wait until you're an expe~t.

Chapter Five

Register Actions

Accumulator actions

Since the accumulator is the main single-byte register, we must now
list its actions and describe them in detail. Of all the accumulator
actions, simple transfer of a byte is by far the most important. We
don't, for example, carry out any form of arithmetic on ASCII code
num bers, so that the main actions that we perform on these bytes are
loading and storing. We load the accumulator with a byte copied
from one memory address, and store it at another. Very few
computer systems allow a byte to be moved directly from one
address to another, so that the rather clumsy-looking method of
loading from one address and storing to another is used almost
exclusively.

The next most important group of actions is the arithmetic and
logic group, which contains addition, subtraction, AND, and OR.
We can add to this group the SHIFT and ROTATE actions which
we looked at briefly in the previous chapter. The effects of the 6502's
shift and rotate commands, with their assembly language mnemonics,
is shown in Fig. 5.1. A shift always results in a register losing one of
its stored bits, the one at the end which is shifted out. Both types of
shifts cause the register to gain a zero at the opposite end. The carry
bit is used as a ninth bit of the accumulator in both of these shifts.
The shift action can be carried out on either the' A' register (the
accumulator) or on a byte that is stored in the memory. The effect of
a shift on a binary number stored in the register is to multiply the
num ber by two if the shift is left, or to divide it by two if the shift is
right (Fig. 5.2). A rotation, by contrast, always keeps the same bits
stored in the register, but the positions of the bits are changed. The
6502 has two rotate commands, one for rotate left and the other for
rotate right. Once again, they use the carry bit as the ninth bit of the
register. Either the accumulator, A, can be used, or the action can be
carried out on a byte stored in the memory.

Register Actions 53

ASL Accumulator or memory address

@].-17161514131211101~0
A C/J is shifted into the Isb, and the msb is shifted into the carry bit

LSR
Accumulator or memory address

0~17161514131211 101 ~@]
A C/J is shifted into the msb and the Isb is shifted into the carry bit

ROL

Left rotation, using the carry bit

ROR Accumulator or memory address

E--17161514I312111~1
Right rotation, using the carry bit

Fig. 5.1. The 6502 shift and rotate instructions: ASL (Arithmetic Shift Left),
LSR (Logic Shift Right), ROL (Rotate Left) and ROR (Rotate Right).

1 0 I I'll 1 11 I 0 11 1 0 11 I Hex 35 Denary 53 ..
left shift

1 (l) 11 11 I 011 Ii'll 1 1 I'll Hex 6A Denary 106

I I'll 1 I 9) 11 11 I 0 11 10 I Hex 5A Denary 9¢

right shift

1 0 I 0 11 10 11 11 1 0 11 I Hex 2D Denary 45

. Fig. 5.2. The effect of a shift on a number.

54 Introducing Commodore 64 Machine Code

The 6502, unlike most other microprocessor types, does not allow
the accumulator to be used for increment or decrement actions.
Increment means adding I and decrement means subtracting I.
These actions can be carried out only on bytes stored in the memory,
so that the 6502 programmer must increment or decrement bytes
before or after use. This may mean that a byte has to be returned to
memory to be incremented or decremented. It's just as easy,
however, to use ADD immediate to perform an increment. An
immediate subtract is not quite so simple, because the carry flag in
the P register (the processor status register) must be cleared to zero
before a subtraction is carried out. If the carry flag is not cleared, the
result of subtracting I will be to subtract 2! The accumulator,
however, can be used for the important comparison commands.

The CMP (Compare) instruction is a particularly useful one.
CM P is the mnemonic and it must use one of the standard memory
addressing methods. The effect of CMP is to compare the byte that
was copied from the memory with the byte that is already present
and stored in accumulator A. 'Compare' in this respect means that
the byte copied from memory is subtracted from the byte in the
accumulator. The difference between this instruction and a true
subtraction is that the result is not stored anywhere! The result of the
subtraction is used to set flags in the P register, but nothing else, and
the byte in the accumulator is unchanged. For example, suppose
that the accumulator contained the byte $4F, and we happen to have
the same size of byte stored at address $327F. If we use the
command:

CMP $327F

then the zero flag in the CC register will be set (to I), but the byte in
the accumulator will still be $4F, and the byte in the memory will still
be $4F. A subtraction would have left the content of the
accumulator equal to zero.

Why should this be important? Well, suppose you want a program
to do one thing if the 'Y' key is pressed, and something different if the
'N' key is pressed. If you arrange for the machine code program to
store into the accumulator the ASCII code for the key that was
pressed, you can compare it. By comparing it with $4E (the ASCII
code for 'N'), we can find if the 'N' key was pressed. Ifit was, the zero
flag will be set. If not, we can test again. By comparing with $59, we
can find if the 'Y' key was pressed - once again, this would cause the
zero flag to be set. If neither of these comparisons caused the zero
flag to be set, we know that neither the 'Y' nor the 'N' key was

Register Actions 55

pressed, and we can go back and try again. If it looks very much like
the action that you can program using the GET$ loop in BASIC,
you're right - it is.

Finally, we have the test-and-branch actions. These, as the name
suggests, allow the flags in the P register to be tested, and will make
the program branch to a new address if a flag was set. Which flag?
That depends on which branch-and-test instruction you use,
because there's a different one for each main flag, and for each state
of a flag. For example, consider the two tests whose mnemonics are
BEQ and BNE. BEQ means 'branch if equal to zero'. As this
suggests, it will cause a branch if the result of a subtraction or
comparison is zero. In other words, it ca uses a branch to take place if
the zero flag is set. Its 'opposite number', BNE, means 'branch ifnot
equal to zero'. It will cause a branch to take place if the zero flag is
not set. There are, therefore, two branch instructions which test the
zero flag, but in opposite ways. The same sort of thing goes for
several of the other flags. There's also a different type of branch

Bee Branch on carry clear: Jump to a new address if the carry flag is reset
(at ~).
BeS Branch on carry set: Jump to a new address if the carry flag is set (at
I).
BEQ Branch tf equal to zero: Jump to a new address ifthe zero flag is set (at
I).
BN E Branch if not equal to zero: Jump to a new address if the zero flag is
not set (zero flag at ~).
BM! Branch on result minus: Jump to a new address if the result of the
previous operation was a negative number (N flag set).
BPL Branch on result positive: Jump to a new address if the result of the
previous operation was a positive number, or zero (N flag reset).
B ve Branch on overflow clear: Jump to a new address if the overflow flag
is ~.
B VS Branch if overflow set: Jump to a new address if the overflow flag i5
set. This will happen if the action of adding or subtracting causes the sign
bit (the most significant bit) to change incorrectly.

Note: All of the above instructions use PC-relative addressing. The
command byte has to be followed by a single byte, called the displacement,
which is added to the address in the Program Counter register to obtain the
new address.

JM P Jump to new address: Jump to the new address given by the two bytes
that follow the JM P code.

Fig. 5.3. The complete list of 6502 BRANCH instructions.

56 Introducing Commodore 64 Machine Code

instruction, mnemonic JMP, which doesn't carry out any tests, like
a GOTO with no IF preceding it.

The complete list of all the available branch instructions is shown
in Fig. 5.3. Many of these are instructions that you'll probably never
use, and the really important ones are the ones that use the zero,
carry and negative flags. All of them, with the exception of JMP, use
relative addressing. This means that one single byte must follow the
code for the branch. This number is treated as a signed number (in
other words, if it's more than $7F, denary 127, it's treated as
negative) and is added to the address which is in the PC at the instant
when the branch is carried out. The result of this addition is the
address to which the branch goes, so the next instruction that is
carried out will be the one at this new address. This type of branch,
which uses a single byte 'displacement' number, permits a shift of up
to 127 (denary) places forward, or 128 backward. That's because a
single signed byte can't exceed these values.

Interacting with C 64

The time has come now to start some practical machine code
programming of your C 64. This is not simply a matter of typing the
assembly language lines as if they were lines of BASIC. Unless you
happen to have an assembler program cartridge fitted, the C 64 will
simply give you an 'SN ERROR' message when you try to run these
programs. Since we want to start on a small scale, we'll forget about
assemblers at the moment, and assemble 'by hand'. This means that
we find the machine code bytes that correspond to the assembly
language instructions by looking them up in a table. We then have to
convert the hex codes and data numbers into denary numbers. We
then poke these numbers into the memory of the C 64, place the
address of the first byte into the PC of the 6502, and watch it all
happen. It sounds simple, but there is quite a lot to think about, and
a number of precautions to take. To start with, the C 64 uses quite a
lot of its RAM, as we have seen, for its own purposes. If we simply
POKE a number of bytes into the memory without heeding which
part of memory we use, the chances are that we shall either replace
bytes that the C 64 needs to use, or our program bytes will be
replaced by the action of the C 64. What we need is a piece of
memory that is safely roped off for our use only.

This can be done by making use of the fact that the C 64 can shift
its BASIC programs about in the same way as it can shift the

Register Actions 57

Variable List Table. The easiest shift to carry out is the end of
memory. The last byte of RAM that a program of your own can
normally make use of is 4~96~ (denary number). Addresses right at
the end of memory like this are normally used for storing strings that
are not already present lower in memory. We have already looked at
this principle in Chapter 2. Now the C 64 is not programmed to stop
at this number automatically. What is done is to store this 'end-of­
RAM' number, as two bytes, in memory locations 55 (low byte) and
56 (high byte). These are page zero addresses, and in the course of
operating a BASIC program, the computer will be continually
testing that it does not try to use locations higher than the number
stored in these addresses.

Suppose, then, that we alter this number. We don't have to alter
both bytes, because if we reduce the high byte by one, we will have
reserved 256 bytes for our own uses. This is because a number stored
as two bytes is 256 times the high byte plus the low byte. When we
switch the C 64 on, the number that is stored in location 56 is 16~. If
we use POKE56,159, then, we will have reserved 256 bytes, starting
at address 4~7~5 and going up to 4~96~. Remember that we count
both the first byte and the last byte. Once we have done this, we can
be sure that any BASIC program that we run will not use addresses
above 4~7~4, and therefore cannot interfere with our machine code
programs.

The other problem, then, is how to place the starting address for
your program into the program counter of the 6502. Fortunately,
the designers of the C 64 have been kind to you. There is a BASIC
command SYS which will do this for you. SYS has to be followed by
a numbe~, and this number will be placed into the Pc. It will
therefore be used as the address of the first byte of your program.
Incidentally, I've taken this as meaning 'starting byte'. It's possible
to write programs in which the first few bytes are data, so that the
program starts at, say, the tenth byte. This creates no problems; you
simply use the address of the starting byte as the number for SYS.

Lastly, for the moment at least, you have to ensure that your
machine code program will stop in an orderly way. Nothing that we
have done so far will indicate to the 6502 of the C 64 where your
program ends. As a result, the 6502 could continue to read bytes
after the end of your program, until it encounters some byte which
causes a 'crash'. This might, for example, be a byte which causes an
endless loop. Some programmers doubt if there are any bytes which
do not cause an endless loop in these circumstances! To return
correctly to the operating system of the C 64, you need to end each

58 Introducing Commodore 64 Machine Code

machine code program with a 'return from subroutine' instruction,
whose mnemonic is RTS and whose code is $6~.

There's another headache that we don't have to worry about at the
moment. When you run a machine code program along with a
BASIC program in your C 64, you are using the same 6502
microprocessor for both jobs. It can't cope with both at the same
time, so it runs one, then the other. If you make use of the 6502
registers in your machine code program, as you are bound to do,
then you have to be quite certain that you are not destroying
information that the BASIC program needs. For example, if at the
instant when your machine code program started, the registers of the
6502 contained the address of a reserved word in the ROM, then it
will need this address in these registers when your machine code
program ends. When a machine code program is called into action
by using the SYS command, this is taken care of automatically. The
contents of the registers of the 6502 are placed into a part of the
RAM memory which is called the 'stack'. This, incidentally, is
another good reason for being careful as to where you place your
machine code in the memory. If you wipe out the stack, the C 64 will
quite certainly not like it! The stack is located in the range of
memory between addresses 256 and 511. When the R TS instruction
is encountered at the end of your machine code, the bytes that have
been stored in the 'stack' are replaced into their registers, and normal
action resumes. If you call a machine code program into action by
any other method, not using SYS, you may have to attend to this
salvage operation for yourself as part of your machine code
program. This involves using the PUSH and PULL commands - but
more of that later.

Practical programs at last

With all of these preliminaries out of the way, we can at last start on
some programs which are very simple, but which are intended to get
you familiar with the way in which programs are placed into the
memory of the C 64. You will also get some experience in the use of
assembly language and machine code, and with how a machine code
program can be run.

We'll start with the simplest possible example - a program which
just places a byte into the memory. In assembly language, it reads:

Register Actions 59

ORG 4~7~5; start placing bytes here
LDA #$55; place hex 55 in accumulator
ST A $9FC4; store them at 9FC4
RTS; go back to BASIC

The first line contains a mnemonic, ORG, which you haven't seen
before. It isn't part of the instructions of the 6502, but it is an
instruction to the assembler, which in this case is you! ORG is short
for origin, and it's a reminder that this is the first address that will be
used for your program. We've chosen to use an address which leaves
space for longer programs than we shall be writing in the course of
this book, and we could have chosen a higher number. It will do as
well as any other, however, and it leaves plenty of room for longer
programs. When you program using an assembler, this line can be
typed and the assembler will then automatically place the bytes of
the program in the memory starting at this address. As it is, with
assembly being done 'by hand' it simply acts as a reminder of what
addresses to use. Note the comments which follow the semicolons.
The semicolon in assembly language is used in the same way as a
REM in BASIC. Whatever follows the semicolon is just a comment
which the assembler ignores, but which the programmer may find
useful.

Now we need to look at what the program is doing. The first real
instruction is to load the number $55 into the 'A' accumulator. This
uses immediate addressing, so the number $55 will have to be placed
immediately following the instruction. The hashmark, '#', is used in
assembly language to indicate that immediate loading is to be used.
The next line commands the byte in the accumulator (now $55) to be
stored at address $9FC4. In denary, this is 4~9~~. It's an address
well above the ones that we shall use for the program. Obviously, we
wouldn't want to use an address which was also going to be used by
the program. This instruction uses absolute addressing. Finally, the
program ends with the R TS instruction, essential for ensuring that
C 64 life continues normally after our program ends.

The next step in programming is to write down the codes in hex.
Each code has to be looked up, taking care to select the correct code
for the addressing method. The code for LDA immediate is $A9, so
this is the first byte of the program which will be stored at address
(denary) 4~7~5. We can start a table of address and data numbers
with this entry:

60 Introducing Commodote 64 Machine Code

and then move on. The byte that we want to load is $55, and this has
to be put into the next memory address, because this is how
immediate addressing works. The table now looks like this:

4~7~5 $A9
4~7~6 $55

The next byte we need is the instruction byte for ST A, with absolute
addressing. This byte is $80, and it has to be followed by the two
bytes of the address at which we want the bytes stored. The address
4~9~~ translates into hex as $9FC4, so we can use the bytes $C4 and
$9F following the ST A instruction. Remember that these bytes have
to be in low-high order. The last code has to be the RTS code of$6~,
so that the table now looks as in Fig. 5.4. It uses addresses 4~7~5 to
4~71~, six bytes in all, and will place a byte into 4~9~~, using denary
numbers. Now we have to put it into memory and make it work!

4~7~5 A9
4~7~6 55
4~7~7 8D
4~7~8 C4
4~7~9 9F
4~71~ 6~

Fig. 5.4. The coded program, using denary addresses and hex bytes of data.

This requires a BASIC program which will clear the memory, and
poke the bytes in one by one. Before we can write this program, we
have to convert each hex byte into denary, because the POKE
instruction o.f the C 64 uses only denary numbers. You can convert
by using a calculator or by means of the program which was
illustrated in Chapter 3. The BASIC poke program is shown in Fig.
5.5. By using POKES6,159 we ensure that all memory addresses
above 4~7~4 are left unused by the C 64. We declare the variable A

10 POKE56,159:R=40704
20 FORH=lT06:RERD D~
30 POKER+H,D~:HEXT
40 SYS40703
100 DATR169/851 141, 196, 159,96

Fig. 5.5. The BASIC program which pokes the bytes into place. Note how the
integer D% has been used for the data, and how the program is made to run by
SYS407¢5.

Register Actions 61

as 4~7~4, so that we can make use of this in the POKE commands.
Lines 2~ to 4~ then poke data numbers into addresses that start at
4~7~5. Why 4~7~5? Well, we have used POKEA+ N, and with
A=4~7~4 and N=l, the first address just has to be 4~7~5. All ofthe
codes have to be put into denary form for use with the BASIC poke
program, and the only problems arise when you have an address
number in denary, and you have to convert it into two denary byte
numbers. The method of doing this is shown in Appendix B,
following the denary-hex conversions. It's better in many ways,
however, to work in hex as much as possible, and convert to denary
only when you must. Since you have to make use of hex when you
graduate to the MIKRO assembler, or any other assembler, it's as
well to start getting familiar with the principles of working in hex
now.

The last program line, line 4~, contains SYS4~7~5. This is the
BASIC instruction which will cause your machine code program to
run, with the start address specified. Line IP~ then contains the six
bytes of data that we have worked out. When you RUN this, there's
no obvious effect. That's because you can't see what's in address
4~9~~. If you use:

?PEEK(4~9~~)

then you should find the value of 85, which is the denary version of
$55, the number that the program put there. Now try this: type
POKE4~9~~,255, press RETURN, and then delete line 5~ of your
program. This is the SYS line. RUN the program again, and use
?PEEK(4~9~~) to find what's there. It should be 255. Now type
SYS4~7~5 and press RETURN. Using ?PEEK(4~9~~) should now
give you 85 again. This is because poking the bytes of the program
into memory won't make the program run, only SYS does this. You
can, therefore, poke values into memory early in a BASIC program,
and then make use of them later with an SYS wherever you like.

N ow this program isn't an ambitious piece of work, ,it does no
more than POKE4~9~~,85 would do in BASIC, but it's a start. The
main thing at this point is to get used to the way in which machine
code operates, and how you place it into memory and run it.
Another point, incidentally, is that the machine code is safe in
memory. If you type NEW (RETURN), the BASIC program will be
cleared out, but your machine code remains. If you POKE~9~~,255
now, and test with ?PEEK(4~9~~), you will find that this address
can still be changed by using SYS4~7~5. These bytes will remain
there until you make an effort to change them, or you switch off.

62 Introducing Commodore 64 Machine Code

You can preserve the machine code program on tape if you like, and
this is a technique that we'll look at later. One step at a time, if you
please! Another thing we'll leave for later is the alternative method
of calling up a program, using the USR command.

N ow let's try something a lot more ambitious in terms of our use
of machine code - though the example is simple enough. Figure 5.6
shows the assembly language version of the program. What we are
going to do is to load a byte into the accumulator, shift it one place
left, and then put it into memory at an address one step higher than
the address from which we took it. This looks like an open-and-shut

LOX #$~
LOA $9FC$,X
ASLA
INX
STA $9FC4,X
RTS

A2 ~~
BO C49F
~A
E8
90 C4 9F
6~

Fig. 5.6. The assembly language program for 'multiply by two'. The listing
shows the assembly language on the left, and the hex codes on the right.

case for indexed addressing, so we shall start by placing a zero into
the X register. This is the LOX #$~~ step. As before, the '#' means
immediate addressing. The next line, LOA $9FC4,X means that the
accumulator is to be loaded from the address $9FC4, plus the
number in the X register. This makes the load come from $9FC4
(4~9~~ denary). The third step is ASL A, arithmetic left shift of the
byte in the accumulator, so that the bits of the byte are shifted left.
Fourthly, we increment the number in the X register, using INX.
This makes the ~ into I, and we now store the byte in the
accumulator at address $9FC5 by using ST A 9FC4,X. This time,
beca use 1 has been added to the number in the X register, the byte is
stored at address $9FC5. We end, as always, with the RTS
instruction.

Now we can put this into code form. It's just as easy as before,
despite the use of indexing. The LOX instruction needs the
immediate loading code of $A2, and this has to be followed by the
byte of the data, $~~. The LOA with indexed addressing is coded as
$BO, and it has to be followed by the two bytes of the address $9FC4,
in their usual low-high order. The ASL byte is ~A, and then we
perform the incrementing of X with INX, code $E8. We then store
the byte that is in the accumulator back into memory, using STA

Register Actions 63

$9FC4,X. The STA X indexed code is $9D, and this is followed by
the now-familiar address bytes. Finally, $6~ is the RTS command.

N ow we have to code this in BASIC. If we choose a small number
to place into $9FC4, the effect of the left shift will be to double the
number, so we can use this to obtain a bit of arithmetic wizardry.

10 POKE 56,1~9:A=40704
20 FOR N=1 TO 11:READ D~
30 POKEA+N,D~:NEXT
40 POKE40900,7:SYS40705
50 PRINT"TWICE ";PEEK(40900) i II IS "; PEEK(4090D
100 DATA162,0, 189,196,159,10/232, 157, 196,159,96

Fig. 5.7. The BASIC program which pokes the bytes into place and then makes
use of the machine code p·rogram.

The BASIC program IS shown in Fig. 5.7. We start, as usual, by
clearing memory space. You needn't worry if you have had another
program in this part of the memory before. The new program will
replace it completely, and provided that your program ends
correctly with the RTS instruction byte, the old program bytes
cannot interfere with the new ones. The values are poked into places
in the usual way in lines 2~ to 3~. In line 4~, however, we place a
number, 7 denary, into the address $9FC4 (4~9~~ denary). Now this
is the address which will be used by the program, and the byte which
is 7 in binary form, ~~~~~ 111, will be placed in this address. In the
second part of line 4~, SYS4~7~5 will carry out the machine code
program, which should left-shift this byte, making it ~~~~ 111 ~. In
denary, this is 14, twice 7. Line 5~ prints this result, and line 1~~
contains the data bytes.

It's simple enough, but if you knew nothing about machine code,
you would wonder how on earth the number became mUltiplied by
two. Once again, the program does nothing that could not be done
more easily and as quickly by using BASIC. The important thing,
from our point of view, is that you have now used indexed
addressing, and a shift instruction, as well as getting more
experience in putting a machine code program into your C 64 by the
hardest method of all. If, incidentally, you have made any mistakes,
particularly with D AT A, then it's likely that the C 64 will go into a
trance and refuse to do anything. When you have typed in a BASIC
program like this which pokes bytes into the memory, always record
the BASIC program before you RUN it. This way, if the effect of an
incorrect byte is to zonk out half the RAM, you can switch off, then
on again, and reload your program. If you didn't record it, then

64 Introducing Commodore 64 Machine Code

you'll have to type it all over again. That's hard work, and life is hard
enough as it is. Another final point concerns the number that you
poke into 4~9~~.lfthis is a small number, then the program works.
You can't, however, poke a number greater than 255 into any single
memory position. In addition, if the number that you place there
amounts to more than 127 when it is multiplied by two, then the
results of this program will appear very strange! That's because a
number greater than 127 is treated as being negative. The routines
that mUltiply numbers in your C 64 are a lot more sophisticated than
this simple example!

Chapter Six

Taking a Bigger Byte

The simple programs that we looked at in Chapter 5 don't do much,
though they are useful as practice in the way that machine code
programs are written. Practising assembly language writing and its
conversion into machine code is essential at this stage, because you
can more easily find if you are making a mistake when the programs
are so simple. It's not so easy to pick up a mistake in a long machine
code program, particularly when you are still struggling to learn the
language!

Most beginners' difficulties arise, oddly enough, because machine
code is so simple, rather than because it is difficult. Because machine
code is so simple, you need a large number of instruction steps to
achieve anything useful, and when a program contains a large
number of instruction steps, it's more difficult to plan. The most
difficult part of that planning is breaking down what you want to do
into a set of steps that can be tackled by assembly language
instructions. For this part of the planning, flowcharts are by far the
most useful method of finding your way around. I never think that
flowcharts are ideally suited for planning BASIC programs, but
they really come into their own for planning machine code.

Flowcharts

Flowcharts are to programs as block diagrams are to hardware -
they show what is to be done (or attempted) without going into any
more detail than is needed. A flowchart consists of a set of shapes,
with each shape being the symbol for some type of action. Figure 6.1
shows some of the most important flowchart shapes for our
purposes (taken from the standard set of flowchart shapes). These
are the terminator (start or end), the process (or action), the
input/ output and the decision steps. Inside the shapes, we can write

66 Introducing Commodore 64 Machine Code

CJ START or END t PATH

D PROCESS ~ PATHS JOIN

0 DECISION 0 INPUT or OUTPUT

Fig. 6.1. The main flowchart shapes.

brief notes of the ·action that we want, but once again without
details.

An example is always the best way of showing how a flowchart is
used. Suppose that you want a machine code program that takes the
ASCII code for a key that has been pressed, and prints the character
corresponding to that key. A flowchart for this action is shown in
Fig. 6.2. The first terminator is 'START, because every program or
piece of program has to start somewhere. The arrowed line shows
that this leads to the first 'action' block, which is labelled 'get
character in A'. This describes what we want to do - get the code

GET CHARACTER
INA

STORE IT IN
SCREEN MEMORY

Fig. 6.2. A flowchart for a 'print-a-character' program.

Taking a Bigger Byte 67

number for a character in the accumulator. We don't know how
we're going to do this at present - that comes later. After getting the
character, the arrow points to the next action, storing the byte in
screen memory. That's how we carry out the 'print' part of the
action, and it's something that we've looked at earlier. The END
terminator then reminds us that this is the end of this piece of
program, it's not an endless loop.

This is a very simple flowchart, but it is enough to illustrate what I
mean. Note that the descriptions are fairly general ones - you don't
ever put assembly language instructions inside the boxes of your
flowchart. Strictly speaking, I should not have referred to the
accumulator A in the 'get character' box, but my excuse is that I need
to be reminded of where the code is to be stored. A flowchart should
be written so that it will show anyone who looks at it what is going
on. It should never be something that only the designer of the
program can understand and use, and which just confuses anyone
else. A good flowchart, in fact, is one that could be used by any
programmer to write a program in any variety of machine code - or
in any other computer 'language', such as BASIC, FORTH,
PASCAL and so on. A lot of flowcharts, alas, are constructed after
the program has been written (usually by lots of trial and error) in
the hope that they will make the action clearer. They don't, and you
wouldn't do that, would you?

Once you have a flowchart, you can check that it will do what you
want by going over it very carefully. In the example, the actions of
'get character' and 'store in screen memory' are going to be done
using machine code, so we'll concentrate on them. Getting the
ASCII code for a character looks tricky at first. A lot of computers,
however, put the ASCII code for the last character that was used
into an address in memory. This is where a good knowledge ofthe
way that the C 64 uses its memory comes in handy! Appendix E
shows some of these important addresses. One is of particular
interest, the address 512 denary ($2~~). This is the address of the
start of the 'keyboard buffer'. A buffer is a section of RAM memory
which the computer uses to store data temporarily. As the name
suggests, the keyboard buffer is used to store the code numbers for
keys that you have pressed. These codes then remain in the buffer
until the RETURN key is pressed. Pressing the RETURN key then
shifts everything that has been in the keyboard buffer into another
part of memory. The importance of this address is that we can use it
to look for a code number for the last key that was pressed. If we
load the accumulator from this address we may, as the advertise-

68 Introducing Commodore 64 Machine Code

ments say, learn something to our advantage. The first step, then,
looks like loading the accumulator, using extended addressing, so
that we can make use of address 512.

The second step, of storing the byte in the screen memory, is
straightforward. The memory that we shall use is the 'text memory'
which is in the range of 1~24 to 2~23 denary. How about a spot right
in the centre of the screen, at 1 524? You want to know how I got to
that number? Well, if we take the range 1~24 to 2~23, that's I~M
addresses, including the first and the last. Half of that is 5~~, so if we
add 5~~ to 1~24, we get 1524, which must be the address for the
centre of the middle line on the screen. A 'store accumulator to 1524'
should therefore get us where we want.

Now we can design the assembly language part of the code. We
can follow the path we have trod before, and start the !ode at
address 4~7~5 (denary). This makes our assembly language code
look like this:

ORG 4~7~5
LDA $~2~~
STA $~5F4
RTS

We can now assemble this by hand, finding the codes that are needed
to make this run. The codes - all in hex - are:

AD ~~ ~2
8D F4 ~5
96

If we now convert these into denary, we have the codes that we can
use in a 'screen-poke' program. We can then put this into the form of
a BASIC program which pokes the codes into memory, and then
calls the machine code program. It will look as Fig. 6.3, so we can
enter it and run it. Another small step for a C 64 user!

10 POKE55,159:A=40704
20 FORN=lT07:READ D~
30 POKEA+N,Dr;:NEXT
40 GET A$: IF A$=II"THEN 40
50 SYS40705
50 POKE53281,243
100 DATA173,0,2,141,244,5,96

Fig. 6.3. The BASIC poke program for printing a character.

Taking a Bigger Byte 69

Well, it works, but not as we might expect, and the program shows
what has had to be added. To start with, we need some way of getting
a code into the first buffer address of 512 ($~2~~). The program
achieves this by using a GET A$ loop in line 4~. The second point is
that nothing appears on the screen until the colours have been
adjusted, and this is done in line 6~. If you type this program in and
run it, it will work. To make it work again, you will have to restore
the colour registers by using the STOP / RESTORE keys together. If
you don't, the program still works, but you can't see any results on
the screen.

N ow in our present state of knowledge, we are doing the looping
in BASIC, and then calling the machine code program as soon as the
BASIC has detected a key being pressed. Rather than waste any
more time over this rather half-hearted method, though, let's try the
complete machine code approach, even at the risk of making some
mistakes on the way.

Loop back in hope

Since this is a simple program, it looks like a good opportunity to get
an introduction to looping. If you have done anything more than the
most elementary BASIC programming, you will know what a loop
involves. A loop exists when a piece of program can be repeated over
and over again until some test succeeds. In BASIC, you can cause a
loop to happen by using a line which might read, for example:

2~~ IF A=~ THEN GOTO I~~

This contains a test (is A=~?), and if the test succeeds (yes, A is ~),
then the program goes back to line 1 ~~ and repeats all the steps from
there to line 2~~ again. That sort of loop in BASIC corresponds very
closely to how we create a loop in machine code. Instead of using line
numbers, however, we are using address numbers. Instead of testing
a variable called' A', we shall test the contents of a register, which in
this case can be the 'A' register.

Let's start the proper way with a flowchart. Figure 6.4 shows how
this might look. The first step is the same - get the character code in
the accumulator A. The next step, however, is a 'decision' step. The
decision is 'is it ~?'. All decision steps in flowcharts must be worded
so that there can only be two possible answers, yes or no. This is
indicated by having two arrowed paths from the decision step. One
of these is labelled 'YES'. It leads back to the first step of the

70 Introducing Commodore 64 Machine Code

STORE IT AT
$05F4

Fig. 6.4. Another flowchart - this one has a loop which rejects the zero
character.

program, the step that requires the memory to be loaded to the
accumulator. Why? Because if we find that we have a zero in the
accumulator it means that there's no key pressed, and we have to go
back and try again. The other path, the one that is labelled 'NO',
leads to the next action step, storing the accumulator byte in the
screen memory.

The action, then, will be that the accumulator is loaded from
address 512, and the byte in the accumulator is tested to see if it is
zero. If it is, we repeat the loading. If it isn't (which means that a key
was pressed), then we store the byte in the screen memory. Now we
have to put this into assembly language form - and that's going to
introduce some new items and problems to you.

Figure 6.5 shows an assembly language program which should
carry out the effect of the flowchart. There's one more step in this
flowchart, and one alteration to an existing step. The new step is the
'BEQ LOOP', and the change is to the first step, which now has
LOOP: stuck in front of it. This word LOOP is a 'label'. It's being
used here in place of an address, and it means the address at which
the instruction starts. With LOOP: placed in front of the LOA 512
instruction, the word LOOP means the address at which the LOA

LOOP: LDA $~2~~
BEQ LOOP
STA $~5F4
RTS

Taking a Bigger Byte 71

Fig. 6.5. The assembly language program corresponding to the flowchart.

instruction byte is stored. By using words in this way, we avoid
having to think about address numbers until we actually write the
machine code. If we use an assembler, we usually don't have to
worry about address numbers at all- the assembler automatically
puts in address numbers in place of label words. The same label
word is also used in the next step. BEQ means 'branch ifthe register
is equal to zero', so the effect of BEQ LOOP is that the program
should go back to the address of the LDA instruction if the
accumulator contains zero. It's rather like using a version of BASIC
which allowed variables to be used in place ofline numbers (as some
do).

In assembly language, this all looks quite neat and straightforward.
If we were using an assembler it would be straightforward, but when
we assemble by hand, it's not so simple. The reason is that we have to
follow the BEQ instruction by a single byte which will give the
address of the LDA instruction. This is PC-relative addressing, so
that we have to use a signed byte that can be added to the address in
the program counter to give the address of the LDA step. The
formula is shown in Fig. 6.6. What you have to do is to find the
address that you want to jump to, and the address of the branch
command. Subtract these, then subtract 2 from the result. What you
have now is the size of the 'displacement byte' that you need to
follow the branch instruction. Since this number is negative, we have
to convert it to the form of a signed byte, using the procedure that we
looked at earlier.

Destination: address you want to jump to (which has label in front of
assembly instruction).

Source: address you want to jump from (address of branch code - in
assembly language; it is the instruction with the label name after it).

Displacement: Destination minus Source minus 2 put into hex form.

Fig. 6.6. The formula for finding the size of a displacement byte.

72 Introducing Commodore 64 Machine Code

4~7~5 173
4~7~6 ~
4~7~7 2
4~7~8 24~
4~7~9 displacement byte

The 'source' address is 4~7~8, where the BEQ byte is placed.
The 'destination' address is 4~7~5, the LDA command. The procedure is:

Destination address - source address = 4~ 7~ 5 - 4~ 7~ 8 = -3
Now subtract another 2, so that -3-2=-5.

In denary, the equivalent byte [or-5 is 256-5 =251. This must be the by teat
address 4~7~9.

Fig. 6.7. An example of finding a displacement byte.

If all that sounds complicated, take a look at it in practice, in Fig.
6.7. Assuming that we are going to place the first byte of the program
at address 4~7~5 then the address ofthe BEQ instruction is at 4~7~8.
The number 4~7~8 is the source address, where we're coming from,
and 4~7~5 is the destination address, where we're going to. Subtract
source from destination numbers, and we get - 3. Subtract another 2
from this, and we get -5. -5 in hex is FB, so that's the displacement
byte that is placed following the BEQ instruction code.

10 POKE~6,159:A=40704
20 FORN=lT09:READ Dr.
30 POKEA+N,D~:NE~T
40 GET A$:IF A$=""THEN 40
50 SYS40705
60 POKE53281,243
100 DAT~173,0,2J240/2~1/141/244)5)96

Fig. 6.8. The BASIC program of the assembly language of Fig. 6.5.

Now when you try this program, listed in Fig. 6.8, you will find
that it works, and the fact that it does gives us a clue about the C 64.
A lot of computers won't run a program like this. If you have, in fact,
figured out why not, award yourself a gold star. What is happening
is that our program loops until a number code is put into address
5 12, and a code should be put into that address by the act of pressing
a key. Now on a lot of computers, if the microprocessor is spending
all its time looping round your program, it can't be scanning
the keyboard looking for a key to be pressed! There's only one

Taking a Bigger Byte 73

microprocessor in the C 64, and it has to do everything. As it
happens, it doesn't run your program continually. At intervals, it
interrupts what it is doing to test the keyboard. If a key is pressed,
then the code number for that key is put into the buffer. This type of
action is called, appropriately enough, an interrupt, and the action is
a very useful one. The use ofthis action makes it much more difficult
for the C 64 to be upset by looping programs which loop incorrectly.
In addition, the microprocessor does not have to keep the screen
display going - if it did, you would see the screen picture disappear
when you ran this program.

Is there another way? What we have to do is to write a piece of
program that will attend to reading the keyboard, and place that
piece of program in our loop. That's possible, but it takes a lot of
time, and needs a lot of knowledge of the C 64. It also seems a trifle
unnecessary, because there must be a routine in the ROM of the C 64
which will do all this for us. There is - and Appendix E lists the
address for this and other useful routines. The routine which starts
at address $E112 will scan the keyboard looking for a key being
pressed. If no key is pressed, the number in the accumulator will be
zero. If a key is pressed, the number in the accumulator will be the
number code for that key. Using this routine, we don't have to make
use of any memory address like 512.

The next step, then, is to see how this routine at $E112 can be
used. The instruction that we need is called 'jump to subroutine', and
it's abbreviated to JSR. Each subroutine in the ROM ends with the
RTS code, which returns it to whatever program called it, so if we
use JSR followed by the address $E 112, then the subroutine will run
and then return to our own program. Figure 6.9 shows a flowchart
for what we are going to attempt now. We shall call up the
subroutine to get the byte into the accumulator, then test it. If the
byte is zero, we shall return to the 'scan keyboard' step. If not, we
shall make use of another subroutine, the one which prints the code
on the screen. So far, so good. Figure 6.10 shows the assembly
language version of this flowchart, with the label word LOOP once
more used to indicate the address to which the program is to return if
the byte in the accumulator is zero. Figure 6.11 shows the program
put into the form of a set of BASIC poke instructions. When this
runs, pressing a key will cause a letter or other character to appear at
the cursor position. This doesn't look any different from what
happens when you press a key at any other time, so how do we know
that this program works? Easy - just run it, and press a key. Now
press the RETURN key. You will see the letter printed again, and

74 Introducing Commodore 64 Machine Code

YES

SCAN
KEYBOARD

PRINTON
SCREEN

Fig. 6.9. A flowchart for a character printing program.

LOOP: JSR $E112 ;keyboard
BEQLOOP
JSR $EI~C ;screen

Fig. 6.10. The assembly language version of the program.

10 POKE56 I 159:A=40704
20 FORN=1T09:READ D~
30 FOKE A+NID~:NEXT
40 SYS40705
100 DATA32/1812251240/251132/12/225/96

Fig. 6.11. The BASIC poke program.

the READY on the next line. There's no ?SYNTAX ERROR
message, as you would get if you simply typed a letter and then
pressed RETURN. Why is the letter duplicated? Because the input
routine also places the letter code in the keyboard buffer, and
pressing RETURN deals with this. The ?SYNTAX ERROR is
missing because we have short-circuited the routine. We've broken a
lot of new ground in this short piece of program, so perhaps this is a

Taking a Bigger Byte 75

good time to go over it all carefully and make sure that you know
what it has all been about before we plunge deeper into the business.

More loops

The loop that we have tried out was a simple loop that is classified as
a 'holding loop'. Its job was to keep a piece of program repeating
until something happened. It's time now to take a look at another
type of loop, called a counting loop. The importance of this one is
twofold - it's the way that we program a time-delay in machine code,
and it also gives me an excellent opportunity to demonstrate just
how fast machine code can be.

The type of loop that you use most in BASIC is the FOR ... NEXT
loop. This uses a 'counter' variable to keep a score of how many
times you have used the loop, and compares the value ofthe counter
with the limit number that you have set each time the loop returns.
Now the action of a FOR ... NEXT loop can be simulated in BASIC
without using FOR or NEXT, and the method is shown in Fig. 6.12.

10 C=0:ND=10
20 PRINT"ACTION ";C
30 C=C+l
40 IF C<=ND THEN 20
50 PRINT "FINISHE:D"

Fig. 6.12. A simple loop in BASIC which gives the action of FOR ... NEXT.

The count number is C, and its limit is NO. At the end of the
program, the value of C will be 11, just like the value of the counter
in a FOR N= I TO l~ type of loop. The next thing, then, is to take a
look at the flowchart for this type of program, and that's shown in
Fig. 6.13.

This method of forming a counting loop is the one that we use in
machine code. We can write some assembly language that will do the
same job - but, as usual, we have to give a lot more thought to how
the task will be done. For one thing, we don't have variable names in
machine code. We have to decide where we shall store a number, and
in what register we shall carry out the task of decrementing it. The
decision step is easier - we can use a BNE test this time to keep the
program looping back until the content of the register that we have
tested is zero. In case you're wondering how we specify which

76 Introducing Commodore 64 Machine Code

(a)

SET
COUNT
START

SET
END

INCREASE
COUNT BY

1

(b)

SET
COUNT
START

DECREASE
COUNT

BY 1

Fig. 6.13. Flowcharts for loops. (a) Incrementing the count number.
(b) Decrementing the count number, which is simpler.

register we're testing, the answer is that it's always the one that we
used just before the BNE (or any other) test.

Figure 6.14(a) shows what we end up with as an assembly
language program. The register that we use is the X register, rather
than the accumulator. This is because the X register (along with the
Y one) is better adapted for counting operations. What makes it
better adapted is the presence of increment and decrement
commands. INX and DEX will, respectively, increment or
decrement the X register. The commands INY and DEY will
perform the same operations on the Y register. There is no
corresponding pair of commands for the accumulator, and if we
want to carry out counting operations using the accumulator, we
have to go about them in a slightly different way. In this example,
then, the X register is loaded with $FF, which is 255 in denary. This
is the largest number that we can load into an eight-bit register.
Ha ving loaded the accumulator, we then decrement it, and mark this
address as 'LOOP', the place we want to return to if the register

(b)

Taking a Bigger Byte 77

(a)

LOX #$FF A2 FF
LOOP OEX CA

BNE LOOP O~ FO
RTS

10 POKE56/l59:A=40704
20 FORN=lT06:RERD D?
30 POKE A~N/D?:NEXT
40 PRINT"8TART"
50 8.,..S40705
60 PRINTIISTOP"
100 DATA1621 2551 2021 20S1 2531 96

Fig. 6.14. (a) A counting loop in assembly language. (b) BASIC poke program.

content is not zero. The test is carried out by BNE (branch if not
equal to zero) because we want the program to repeat the
decrementing action until the contents of the X register reach zero.
The BASIC program which pokes the bytes into memory and then
carries out the program is shown in Fig. 6.14(b). Now when you run
this one, you will not see much of a time delay between the printing
of 'ST ART' and the printing of 'STOP'. This isn't because nothing
has happened, it is because the machine code countdown is so fast! If
you try a BASIC version of this:

I~ A=255:?"ST ART"
2~ A=A-I
3~ IF A<>~THEN 2~
4~ ?"STOP"

you will see that there is a noticeable pause. The difference does not
reflect the comparative speeds, however, because quite a lot of time
is spent in the printing actions ofthe BASIC part of each program.
To see just how great the advantage of machine code can be in terms
of speed, we need to work with much larger numbers. N ow there are
several ways of doing this, but one which we can look at right now
involves two loops. You have probably met nested loops in BASIC.
The principle is that there is an inner loop and an outer loop. On
each pass of the outer loop, the whole of the inner loop is carried out.

78 Introducing Commodore 64 Machine Code

This allows us to create much longer time delays, by doing one count
inside another. Suppose we had, in BASIC, the lines:

l~ X=I~~:?"START'
2~ X=X-l
3~ Y=255
4~ Y=Y-l
5~ IF Y<>~ THEN 4~
6~ IF X<>~ THEN 2~
7~ ?"STOP"

then these would carry out a countdown of Y from 255 to ~ each
time the value of X was decremented. Try this one - and time it. You
won't need a stop-watch - anything with a minute hand will do!

(a)

LOOP2:
LOOPI:

(b)

LOX #$FF A2 FF
LOY #$64 A~ 64
DEY 88
BNE LOOPI O~ FO
OEX CA
BNE LOOP2 O~ F8
RTS

10 POKE561159:A=40704
20 FORN=lT011:READ D~
30 POKE A+NID~:NEXT
40 PRINT"START"
50 SYS40705
60 PRINT"STOP"
100 DATA16212551 1601 1001 1361208J2531202J208/248196

Fig. 6.15. (a) Assembly language for a two-loop counter. (b) The BASIC poke
program.

For a contrast, let's see how the same numbers could be dealt with
in a machine code countdown. Figure 6.15(a) shows the assembly
language version. The X register is loaded with $FF, and the Y
register with $64 (I~~ denary). This second instruction is labelled
'LOOP2'. Then comes DEY, so that the Y register is decremented,
and this is labelled 'LOOPI'. The BNE test then returns to this
LOOPI point until the Y register has reached ~. After that, the X
register is decremented, and then tested. Note that the order is not

Taking a Bigger Byte 79

quite the same as in the BASIC version. In a machine code
decrement and test action, you must have the decrement done just
before the test, otherwise the register that is tested may not be the
correct one. If the X register has not reached zero, the program loops
back, this time to LOOP2, to fill up the Y register again and perform
the 'inner loop' yet again.

When you try this - it's still almost too fast to follow! It's a good
illustration of the speed advantage of machine code as compared to
BASIC. If you are not quite convinced that the count has been
carried out, then alter the number in the outer count from $64 to
$FF (replace l~~ by 255 in the data line 1M of the BASIC program).
This makes the delay slightly more noticeable.

Accumulator INC and DEC

I pointed out earlier that there are no INC and DEC commands for
the accumulator. This does not, however, mean that we can't use the
accumulator for counting operations, just that it's not so well
equipped as the X and Y registers. Supposing we have to carry out a
count in the accumulator, however, we could make use ofSBC#I,
meaning subtract 1 from the content of the accumulator. This would
lead us to a countdown program of the sort that is shown in Fig.
6. 16(a). We start by using CLC, the command which clears the carry

(b)

(a)

CLC 18
LOA #$FF A9 FF

LOOP: SBC #1 E9 ~I
BNE FC O~ FC
RTS 6~

10 POKE56~159:A·40704
20 FORN=lT08:READ D%
~0 POKE R+NJD%
40 PRINT"STRRT"
50 SYS40705
60 PRUn"STOP"
100 DATA24~169J255~233/1/208J252J96

Fig. 6.16. How to carry out a countdown using a byte in the accumulator.
la) Assembly lanQuaQe. (b) BASIC poke program.

80 Introducing Commodore 64 Machine Code

bit. This is needed, because if the carry bit happens to be set, then the
first SBC action will subtract 2 rather than 1. All the remaining SBC
actions will be normal, and it would not make much difference to a
time delay like this to have an extra decrement. In some kinds of
decrement action, however, like counting bytes, the subtraction of2
instead of 1 could be a disaster. For this .reason, it's a good habit to
clear the carry bit before you carry out a subtraction of this sort. The
SBC #1 is the decrementing step, and the loop runs pretty much like
the X register loop that we looked at earlier. The BASIC poke
version is shown in Fig. 6.16(b).

The 6502 does not confine you to decrementing numbers that are
stored in the registers, however. The DEC action can be applied to
any address in memory, so you can write countdown programs that
use as many bytes as you like. The most convenient addresses to use
for storing counting bytes are the page zero addresses (from ~ to
255) but, when your 6502 is installed in a Commodore 64, you have
to be careful! This is because the C 64 uses a lot of page ~ addresses

(a)

LDA
STA

LOOPI: STA
LOOP2: STA
LOOP3: DEC

BNE
DEC
BNE
DEC
BNE
RTS

(b)

10 POKE56/159:A=40704
20 FORH=lT021:READ D~
30 POKE A+N/D~:NEXT
40 PRIHT"STARTtI
50 SYS40705
60 PRIHT"STOP"

#$FF
$6A
$6B
$6C
$6C
LOOP3
$6B
LOOP2
$6A
LOOPI

100 DATA169/2SS, 133/150/133, 151, 133, 152, 19S, 152/208
110 DATA252 1 198, 151/20S/246, 198, 150/2es, 240, 96

Fig. 6.17. A much longer count, using page zero addresses for storage.
(a) Assembly language. (b) BASIC poke program.

Taking a Bigger Byte 81

for its own purposes, and placing bytes in some of these addresses
will cause havoc to the operation of the machine. A quick peek at the
page ~ numbers shows that addresses 15~ to 177 appear to be
comparatively unused during simple programs, so perhaps we could
make use of these for a really large count. Figure 6.17(a) shows the
assembly language version. The three addresses which I have used
are $96, $97, and $98 (denary 15~, 151 and 152). The program starts
by loading $FF into the accumulator, and then storing this number
in all three page ~ addresses. Because these are page ~ addresses, we
can make use of page ~ addressing. The program makes no other use
of the accumulator, so that the number $FF will remain in the
accumulator throughout. This allows us to store the accumulator in
each memory address without reloading the accumulator.

The technique for the countdown is very much the same as before,
except that there are three loops. You might try drawing a flowchart
for yourself to see how these are arranged. The effect is that we are
counting down the number 16,777,215 (denary) to zero. As you
might expect, this takes a lot longer than a two-register countdown­
several minutes. The BASIC version is in Fig. 6.17(b). If you use a
stopwatch to measure the time between the START and STOP
messages, and divide this by the number shown above, you'll get
some idea of how long (on average) each loop takes. Don't try to
count down this number in a BASIC program - life's too short!

Chapter Seven

Ins and Outs and
Roundabouts

Video loops

Of all the loop programs that we can make use of in machine code,
loops that involve the video display addresses are among the most
useful. We have seen earlier that we can make things happen on the
video display by making use of POKE commands from BASIC. The
techniques that you used for POKE displays on the screen can also
be used for machine code, and the main differences are that machine
code is faster and involves more work on your part!

LOAD IN
CHARACTER

PUT INTO
SCREEN

ADDRESS

INCREMENT
SCREEN

ADDRESS

Fig. 7.1. A flowchart for filling the screen with a character.

Ins and Outs and Roundabouts 83

Take a look, for starters, at Fig. 7.1. This shows the flowchart for
a program that will fill part of the text screen with one character. The
idea is that we load a register (the accumulator is usually the best bet)
with a code number for a character, and we store this at the first
screen address, which is $4~~. We must then increment this address,
store the accumulator again, and repeat this process for as long as we
need to, until we reach the last address. The flowchart shows what
we have to do, but you need to know how to carry it out with the
6502. This is the kind of program which can make use of indexed
addressing, so we'll start by recalling what this involves.

There are two index registers, X and Y, each of which can store a
single byte number. When we carry out an indexed load or store (or
any other operation that copies a byte from memory), the number
that is held in the index register is added to the address that we have
specified. This forms a new address, and it's this address that is used
for the load or store. If, for example, we have 2 stored in the X
register, and we specify a store as:

STA 1~24,X

(denary numbers), then this means that the address which will be
used is 1~24 + 2=1~26, and the byte in the accumulator will be
stored to address 1~26. One of the features that makes this so useful
is that we have INX and DEX commands which will, respectively,
increment or decrement the number that is held in the X index
register. There are corresponding INY and DEY commands for the
Y index register.

Let's get down to the assembly language version, which is shown,
along with the BASIC program, in Fig. 7.2. The first step is
straightforward - load the accumulator with 124. This is the ASCII
code number that will produce a half-chequer pattern - obviously,
you could try any other code number that you liked to use. We then
load the X register with zero. The next item is the loop. We start the
loop by storing the byte in the accumulator to the address given by
1~24 (denary) plus the byte in the X register, and then incrementing
the X register. In assembly language, these steps are written as:

STA 1~24,X
INX

The next step is to compare the content of the X register with zero,
using BNE. Since the X register started at zero, and has just been
incremented to I, the comparison will not give zero, and so BNE will
cause a loop back to store the character at another address. When

84 Introducing Commodore 64 Machine Code

(a)

LOOP:

LDA #124
LDX#~
STA 1~24,X
INX

(b)

BNE LOOP
RTS

10 POKE56/139:A=40704
20 FOR N=lT011:READ D~
30 POKE R+N/D~:NEXT
35 POKE53281,3
40 S"1840705

;124 denary
;X starts at zero
;put into 1~24+X
;increment X
;until end of count
;back to BASIC

lee DATAl69, 124, 162,0, 157,0/4,232,20S/250,96

Fig. 7.2. (a) The assembly language program. (b) The BASIC poke program.
This version, however, fills only the top quarter of the screen.

the number in the X register is equal to 255 (denary), then the next
increment action will make the content of the X register equal to
zero again. This is because the register can hold only one byte. At
this point, the BNE test fails, and the program breaks out of the
loop, and returns to BASIC.

N ow this does some of what we want, but not quite all. It will place
a character in 256 screen addresses, but the screen consists of a
thousand addresses. What has limited us in this case is the size of the
X register, one byte. This makes certain that an indexed load or
store, carried out in a loop, cannot deal with more than 256 bytes.
Working on the basis that half a loaf(or quarter of a screen) is better
than nothing, we'll try it out. Later on, we'll see how we can get
round this limitation.

Transforming this assembly language by hand into machine code
is reasonably straightforward. Once the machine code bytes have
been written down (check the displacement byte that follows the
BNE), then the BASIC program that pokes the bytes into memory
can be written down (Fig. 7 .2(b ». It shouldn't take long - apart from
the value of N and the DATA line, it's almost the same as any of the
other programs so far. We must, however, include the POKE5328I ,3
step to ensure that the effect of the program will be visible. At the
end of the run, we must use the STOP and RESTORE keys to return

Ins and Outs and Roundabouts 85

the screen conditions to normal. When this runs, there is a short
delay while the slow BASIC pokes the numbers into the memory,
and then the machine code does its stuff in its usual lightning way.

The rest of the way

Writing a program that will fill all of the screen is not quite so easy,
because of the limitation of the size of the index register. There are
several ways of carrying out the action that we need, but the most
straightforward method makes use of what is called indirect
addressing. This was briefly mentioned in Chapter 4, and now that
we're up against it, we'll have to take a closer look at one of the two
methods that the 6502 can use. The two indirect addressing methods
of the 6502 are often known as 'indexed indirect' and 'indirect
indexed'. Titles like these are rather confusing so, in this book, I'll
stick to the simpler descriptions of X-indirect and Y -indirect. This is
because one method makes use of the X index register, and the other
method makes use of the Y index register. The one we need for the
loop program is the Y -indirect method.

The way that Y -indirect addressing operates is as follows. The
first address that we want to use, such as $~4~~ in our example, is
stored as two bytes in two consecutive addresses in memory. As
always, the bytes are stored in the low-then-high order, and they
must be in page zero memory. A number is also placed in the Y index
register. Now when we carry out a memory operation such as a load
or a store, we use the Y -indirect form. In assembly language, a Y­
indirect store would be written in the form:

ST A address, Y

Its effect is fairly complicated at first sight. The low byte of the
address is copied from the memory, and the content of the Y register
is added to it. If there is any carry from this addition, it is added to
the high byte. The two new bytes of address are then used for the
store (in this example) operation. Suppose, for example, that we
stored the first screen address of $~4~~ in zero page memory, using
(denary) addresses 15~ and 151. Using the low-high order of storing
means that address 15~ will store $~~ and 151 will store $~4. Now if
we have the number $26 (hex) stored in the Y register, then the effect
of:

STA (15~),Y

86 Introducing Commodore 64 Machine Code

will be to add $26 to the number stored in 15~ (which was zero), and
so form the address $~426. This is the address to which the byte in
the accumulator will be copied.

(a)

LOA
LOX
STX
LOX
STX
LOY

LOOP: STA
INY
BNE
INC
LOX
CPX
BNE
RTS

(b)

113 POKE56J159:A=407e4
213 FOR N=lT026:READ D~
313 POKE A+N/DX:HEXT
35 POKE53281/3
40 SYS40705
50 GOTOS0

#124
#~
15~
#4
151
#~
(l5~),y

LOOP
151
151
#8
LOOP

lee DATA169J124/162/e/134/150J162J4J134J151J160,
eJ 145J 150

110 DATA200J208J251J230/151/166J151J224J8/208J
243/96

Fig. 7.3. Filling the entire screen. There's a flaw in this one too, but it does not
cause any trouble in this case. (a) Assembly language; (b) BASIC poke version.

Figure 7.3(a) shows the complete assembly language version of
the program. The first six steps place the correct values into the
registers and into memory. This has not been done in the most
efficient way, but at least it's easy to follow. Where things start to get
more difficult is step 7, at the start of the loop. What causes the
problem is the need to carry out the incrementing of the screen
address for a thousand times. We'll take a look at this part of the
program in close detail.

Ins and Outs and Roundabouts 87

At the start of the loop, the number in the Y register is~, and the
'base address' for the ST A operation is stored in zero page addresses
15~ and 151 (denary). The address 15~ stores ~ and address 151
stores $~4, so that the two bytes make up the first screen address of
$~4~~, denary I ~24. When the ST A (15~), Y step is used for the first
time, then, the byte in the accumulator will be put into address
$~4~~. The INY step then increments the number in the Y register
from ~ to I. When the BNE LOOP step is used, the fact that the Y
register contains I (not equal to zero) will cause the program to loop
back. This looping will cause consecutive addresses of the screen
memory to be used. Once again, this continues until the Y register
increments from 255 (denary) to zero.

This breaks out of the loop. Since we started address 15~ with
zero, there has been no automatic addition to the number in address
151, and we have to attend to this for ourselves. Now I have taken a
short-cut here, and you need to know what it is and why we can get
away with it. At the end ofthefirstloop, we incrementthe number in
address 151. This automatically selects the next quarter of the screen
if we repeat the first loop. We need to be able to stop the program,
however, because we don't want the byte 124 placed in every part of
the memory - it would soon zonk out our program and a lot more
besides. To stop the action, then, the number in address 151 is copied
into the X register, and compared with the number 8. If it's not equal
to 8, then the second BNE will return to the first loop to fill up
another piece of memory. When the number in 151 reaches 8, the
program stops. Figure 7 .3(b) shows the BASIC poke program which
places the bytes in memory, and runs the machine code.

Now this fills up the screen all right, but you can't always use it.
The reason is that the screen addresses actually go from $~4~~ (l~ 24
denary) to $~7E7 (2~23 denary). We have used $~4~~ to $~7FF,
rather more. What we have filled between $~7E7 and $~7FF is the
piece of memory that is reserved for 'sprite pointers'. If your
program does not use sprites, all is well. If you are going to use
sprites, and you need this piece of memory later, you can poke into it
later. If, however, you want to store sprite information in this piece
of memory, and then run the machine code program, you will need
to stop filling the screen after address $~ 7E8. This needs rather more
than just the CPX 8 step that we used in this example. You would
need a CPX 7 in place of the CPX 8. Following the BNE loop, you
would then need LOX 15~ and CPX $E8 to test the lower byte. This
would be followed by another BNE LOOP step. The result of these
steps would be to halt the program when the address $~7E8 was

88 Introducing Commodore 64 Machine Code

reached, saving your sprites from a fate worse than death.

Take a bigger cast-list . ..

We can modify the program of Fig. 7.3 in an interesting way.
Suppose we started with the accumulator containing zero, and we
incremented the accumulator on each pass through the loop. This
would mean that we would produce on the screen each character for
the numbers ~ to 255 (denary). What would happen then? Well,
since the accumulator can hold only eight bits, and 255 (denary) is
the largest number it can hold, is simply goes back to ~ again next
time it is incremented. Figure 7.4 shows the flowchart for this action,

SET FIRST
SCREEN

ADDRESS

STORE=~
1 sl CHARACTER

STORE TO
SCREEN

INCREMENT
BOTH STORE
AND SCREEN

Fig. 7.4. A flowchart for printing the entire character set.

Ins and Outs and Roundabouts

(a)

CLC
LOA
TAX
STX
LOX
STX
TAY

LOOP: STA
AOC
INY
BNE
INC
LOX
CPX
BNE
RTS

(b)

10 POKE561159:A=40704
20 FOR N=lT027:READ DX
30 POKE A+N/DX:NEXT
35 POKE5328113
40 SYS40705
50 GOTOS0

#~

15~
#4
151

(15~),Y
#1

LOOP
151
151
#8
LOOP

89

100 DATR241 169101 1701 1341 150, 16214, 134/151/168,
145/150

110 DATA105/11200/208/249/230/151/166/151/224,
8/209/241,96

Fiq. 7.5. (a) The assembly language version and (b) the BASIC listing for the
flowchart of Fig. 7.4.

and Fig. 7.5 shows the assembly language and the BASIC poke
program. There's nothing here that should cause you any great
amount of head-scratching, because the only difference between this
and the program of Fig. 7.3 involves incrementing the accumulator.
As before, we have to clear the carry bit at the start of the program.
The step ADC # 1 in the loop will then add 1 to the accumulator on
each pass through the loop. Try it, and you'll see the full set of text­
mode characters appear. This is a good example of how a simple
program can be extended so as to do much more than the original
version. It's an important point, because a lot of machine code

90 Introducing Commodore 64 Machine Code

programming is of this type. If you keep a note of all the assembly
language programs that you have ever used, along with what they
did, then you'll find that this 'library' is a very precious asset. Very
often, you'll find that any new program that you want to write can be
done by modifying or combining (or both) old routines that you are
familiar with. Another big advantage of this is that an old routine is
a trustworthy routine - a split-new one needs a lot of testing before
you can rely on it.

Oh yes, before I forget. Have you thought what happens when the
accumulator contains 255 (denary) and then has 1 added to it? What
will this do to the carry bit? Might we need a CLC somewhere in the
loop to counteract the effect? See if you can spot what the effect is,
and how to get round it.

Save it!

At this point, when our programs are getting slightly longer, and
doing more interesting things, it's time to look at the topic of saving
machine code program on tape. Now you aren't in any way obliged
to do this. Our machine code programs have all been, so far, in the
form of a BASIC program that poked numbers into the memory.
You can, obviously, just save this BASIC program, and it will create
the machine code for you whenever you want. When you are using a
mixture of BASIC and machine code, this is the ideal way of saving
and loading the machine code bytes. There are times, however, when
you need as much of the memory as possible, and another piece of
BASIC program is as welcome as an elephant in a space capsule.
You may also want to put on cassette a program that is a mixture of
BASIC and machine code, and to make it difficult for anyone to
copy it. Either way, you'll want to make a direct recording of the
bytes that are stored in the memory. The ordinary BASIC
commands of the C 64 can cope with this but, as we'll see, in a rather
roundabout way.

Unlike most other machines, the C 64 has no special BASIC
commands for saving or reloading a machine code program. When
you use a machine code monitor program written for the C 64, you
will usually find that it includes routines for saving and loading
machine code. This is fine if you are using the monitor continually,
but another method of saving and loading would be useful.

Fortunately, the ordinary BASIC commands of SAVE and
LOAD can be pressed into service. When the SAVE command is

Ins and Outs and Roundabouts 91

used, the C 64 saves a BASIC program. This means that all the bytes,
starting from address 2~49 and going up to the last byte of BASIC
will be saved. The first two bytes that are saved, in fact, are always
the two which give the end of the BASIC program. Where does the
machine obtain these addresses? From its zero page memory. The
start of BASI C, as you know by now, is held in addresses 43 and 44.
The end of BASI C, which is the same as the start of the variable list
table, is held in addresses 45 and 46. If we change the numbers in
these addresses, we should be able to control the saving or loading
for any other part of the memory.

10 POKE56,159:A=40704
20 FOR H=lT0100
30 POKEA+HJH:HEXT
40 POKE43, 255: POKE44, 158
50 POKE45, 101:POKE46, 159
60 SAVEItMC"
70 POKE43,l:POKE44,8
80 POKE45,3:POKE46,8

Fig. 7.6. A program which pokes numbers into memory and then saves them
on tape. This illustrates how machine code programs can be saved and
reloaded.

Let's try it out. Figure 7.6 shows a BASIC program which pokes
numbers into memory, and then saves them. We could, of course,
have used genuine machine code, but the sequence of numbers is
easier to recognise. As usual, memory is reserved, so that the
hundred numbers are not in danger of being changed by the action
of the machine. Lines 4~ and 5~ then carry out the pokes that are
needed to reset the page ~ numbers. In place of the normal start-of­
BASIC number that we place in 43 and 44, we put an address which
is two bytes below the start of our set of numb~rs. The subtraction of
2 is important, because if we use the true starting address, the
operating system will replace the first two num bers by two bytes of
an address, the end-of-program address. We then poke the last
address of our program into addresses 45 and 46. Following that, we
can use an ordinary SAVE command. This gives the usual tape
message, and lines 7~ and 8~ then restore the normal numbers into
the page ~ locations.

Now we have to prove that it works. RUN the program, with a
spare blank cassette in the recorder. Carry out the usual PRESS
RECORD AND PLAY action when requested, and let the
program finish. Now rewind the tape, which should contain all the

92 Introducing Commodore 64 Machine Code

numbers that were poked into memory. Now switch off the C 64.
When you switch on again, all the addresses will be reset, and the
num bers will be lost. To replay the tape, you need to reset the page
zero numbers again, LOAD, and then restore the page ~ numbers.
You can't carry out all this in a program, because the normal LOAD
action does not operate if there are program lines following a
LOAD.

To recover the program, then, first reserve the memory by typing
POKE56, 159 (RETURN). Then change the numbers in addresses
43 and 44, using:

POKE43,255:POKE44,158

as before. Now LOAD"MC" to get the bytes in place. After loading
is complete, type:

POKE43, 1 :POKE44,8:POKE45,3:PO KE46,8

This will restore the normal numbers in the zero page addresses. You
can then check that the numbers have been replayed. To do so, type:

FORN=ITOl~~:?PEEK (4~7~4+N);" ";:NEXT

and press RETURN. You should see the numbers listing on the
screen. This proves that a machine code program can be saved and
loaded by using only the ordinary BASIC commands.

Don't imagine, by the way, that this applies only to machine code
programs. Any section of the memory can be saved and reloaded by
using this method. Since the screen is controlled by the bytes in
memory from 1~24 to 2~23 (denary), you can SAVE and LOAD
screen patterns in this way. The patterns are rather spoiled by the
messages that appear during loading, though, so for best results, you
should disconnect the screen display from the keyboard output. You
can do this with POKEI54,4. The screen can be reconnected with
POKEI54,3. While the screen is disconnected, you will see nothing
appearing when you type POKEI54,3. The effect will be obvious,
however, when you press RETURN and then make any other use of
the keyboard, such as listing a program.

Take a message ...

After that brief interlude on the subject of saving and reloading
machine code, let's get back to the programs. We left Fig. 7.5, you
remember, writing characters on the screen. It's time now that we

Ins and Outs and Roundabouts 93

looked at ways of putting something more interesting on the screen,
and letters look like a reasonably simple start to this type of
programming. What do we have to do? Well, to start with, we need
to store some ASCII codes for letters somewhere in the memory; we
can't just use a string variable as we would in BASIC. We will have
to know the address at which the first ofthe letters is stored, and how
ma11¥ letters are stored starting at this address. After that, we should
be able to work a loop which takes a byte from the 'text space' (where
the letter codes are stored) and put it into the screen space (the screen
addresses). We've already used the main type of instruction that we
need for this sort of thing - the auto-incremented load or save. To
work, then.

We start, as always, with a flowchart. It's not so easy this time,
because we need a different way of ending the loop. We could count
the number of letters that we want to place on the screen, but I want
to look at a different technique this time - using a terminator. You
are probably familiar with this idea used in BASIC programs. A
'terminator' is a byte which the program can recognise as a special
character - one which is not, for example, part of a message. A
convenient terminator for a lot of purposes is ~, so we'll try that. The
difficulty arises because we don't want this terminator printed on the
screen. Because of the way that the C 64 uses its code numbers, the
number ~ actually would give us a printed character - the @. We
don't want this to appear, so we must test the accumulator between
loading the byte from memory and placing it into the screen
memory. That, as you'll see, makes the loops more complicated.

The flowchart that we need is shown in Fig. 7.7. What we have to
do is to store two addresses. One of these will be familiar, it will be
part of the screen memory. This has to be the address of the first byte
that we will want to put on the screen. The other address has to be a
store address, the start of a string of bytes that will be used to store
ASCII codes, and which will not be used for anything else. We can
clear things up for ourselves by giving these two addresses label
names. I've chosen SCRN for the screen memory, and TXT for
where we're storing the codes. What we do, then, having allocated
these addresses, is to load a code from TXT, and increment the TXT
address. We then test the character, to see if it's our terminator of ~.
If it is, we want to leave the program at once. If it's not, then we store
this byte at SCRN, increment the SCRN address, and go back for
another character. Now this gives us a flowchart which has two
jumps. One of these is the 'go back' part, the other is the part that
goes to the end. What is this going to look like in assembly
language?

94 Introducing Commodore 64 Machine Code

SET 1st
SCREEN

SET 1st
TEXT

TAKE BYTE
FROM TEXT

INCREMENT
TEXT

ADDRESS

STORE AT
SCREEN

ADDRESS

INCREMENT
SCREEN

ADDRESS

YES

Fig. 7.7. A flowchart for printing a message on the screen.

The answer appears in Fig.7.8. It follows the flowchart pretty
exactly, and the parts we particularly need to look at are the BEQ
and the BNE steps. At the BEQ step, the accumulator has been
loaded from the TXT piece of memory, whose starting address is

Ins and Outs and Roundabouts 95

(a)

LDX #~
LOOP: LDA TXT,X ;get character

CMP #~ ;is it ~?
BEQ OUT ;end if so
ST A SCRN,X;put on screen
INX ;increment index
BNE LOOP ;round again

OUT: RTS ;back to BASIC

(b)

113 POKE56 I 159:A=4e704:B=4e863
20 FOR N=l TO 16:READ DX
30 POKE A+NIDX:NEXT
40 REr1 POKE LETTER CODES
S0 FORJ=1T013:READ D%:POKE B+JID%:NEXT
613 PRINT"~"
70 POKE5328 L 3
80 SYS40705
100 DATA162101 1891 1601159120110124016
110 DATA157122415123212081243196
120 DATA311S11311311S141151181513215415210

Fig. 7.B. (a) The assembly language for the message routine. and (b)the BASIC
listing.

$9FA~. This translates into denary as the two bytes 16~,159; this is
the denary address 4~864. I have picked an address which is well
clear of the addresses that we are using for the program. The
accumulator is loaded using X indexed addressing, and the X
register has been loaded with zero. As a result, the first load of the
accumulator will come from the address 4~864. This will be the byte
3, which is the C 64 internal code number for the letter 'C' when we
are using this method of placing text on the screen. The CMP ~ step
is put following the load so that the ~ byte can be detected at the end
of the message. BEQ means 'branch if equal to zero', and the
displacement that follows this instruction byte will take the program
to the R TS instruction, skipping over the steps between the BEQ
and the R TS. If the byte is not zero, however, it is stored at the
SCRN address, using the X register once again for indexing. We
then have to get back for another character. Since this needs ajump,
and one that must always be made at this point, we could use the

96 Introducing Commodore 64 Machine Code

JMP instruction. JMP, however, has to be followed by a full two­
byte address, and it's a lot easier to use BNE. At this point in the
program, the byte in the X register can never be zero (unless you're
trying to place too many letters on the screen). As a result, BNE will
always return the program to the LOOP position. This will continue
until a zero is loaded into the accumulator, and the BEQ OUT step
forces the program to return to BASIC.

That explained, we can convert into the form of a BASIC
program, and try it out. We'll place the bytes into memory in a fairly
simple way, by poking them into memory from a DATA line. This is
done in line 5~. Lines 2~ to 3~ have previously put the machine code
into place, and line 8~ runs it. When it runs, you see the message
appeanng.

Perhaps we can deal now with one annoying point about placing
text on the screen. In all of the preceding programs that use text on
the screen, we have had to poke the colour background to make the
characters visible. In a looping program of this sort, we can do a lot
better. What we shall do is to place the number 1 into each letter
position in the colour addresses. If you remember your C 64 BASIC,
you will recall that adding 54272 denary (which is $D4~~) to a text
memory address gives the corresponding colour address. By poking
a number between 1 and 15 into this address, we can get different
'foreground' colours of characters.

This sort of thing needs only a comparatively small change to a
machine code program. Figure 7.9 shows the assembly language
version. Following the STA SCRN,X step, which places the
character code into text memory, we have a LDA #1 and STA

LOOP:

OUT:

LOX
LOA
CMP
BEQ
STA
LOA
STA
INX
BNE
RTS

#~
TXT,X
#~
OUT
SCRN,X
#1
COLR,X

LOOP

Fig. 7.9. Modifying the routine so that the colour memory is poked. This
ensures that the text can be seen without having to change the background
colour.

Ins and Outs and Roundabouts 97

COLR,X pair of steps. These place the number I into the correct
colour memory addresses, provided we get the base address correct.
The base address for text is $~5E~, and adding $D4~~ to this gives
$D9E~. In denary, it's 55776. By using this method of placing
characters on the screen we avoid having to poke the address 53281,
and we also avoid having to press the STOP and RESTORE keys at
the end of the program. Another small step forward!

Sailing out of the port

When I described the action of the computer system in Chapter I,
the idea of a 'port' was raised. As far as a computer is concerned, a
port is any chip or collection of chips that carries out the actions of
sending bytes out or taking bytes in. As it happens, the port
arrangements of the C 64 are rather complicated, and they are
organised in a rather complicated way. Fortunately, until we start to
make use of really advanced graphics, or unless we want to make
non-standard cassette recordings, we don't have to take control of
the ports. The sound system and the special video effects, such as
sprites, are dealt with by special chips.

As it happens, carrying out these types of action in machine code
is particularly simple, because to do so we don't have to understand
the port system. The C 64 uses POKE commands in BASIC for its
sound instructions. That means that we can use identical methods in
machine code, but using LDA (immediate) to get a byte and ST A to
place it into memory. Wherever anything can be done in BASIC by
using POKE, we can use this LDA ST A combination in machine
code. We very seldom have to bother, though. That's because we can
do all that's needed from BASIC. There's no point in using machine
code for sound, because the speed of machine code is no advantage­
you will have to use a delay loop in any case to get the correct
duration of sound. It's only where you have to achieve video results
that are impossible with normal sprite graphics that you really need
to get to grips with the video interface chip of the C 64. That's
definitely not a job for the beginner to machine code, and we'll leave
it strictly alone!

Chapter Eight

Debugging, Checking
and MIKRO

Debugging delights

Now that you have experienced some of the delights of machine
code programming, it seems fair to mention some of the drawbacks.
One of these is debugging. A 'bug' is a fault in a program, and
debugging is the process of finding it and eliminating it. It all sounds
rather insecticidal, but it's nothing like as easy as that!

I t's easy to say, I know, but the first part is prevention. Check your
flowchart carefully to make sure that it really describes what you
want to do. When you are satisfied with the flowchart, turn to the
assembly language to make sure that it will carry out the instructions
of the flowchart. When you are happy with this, then check that the
bytes you intend to poke into memory are the bytes which
correspond to the assembly language instructions. One thing to
watch very carefully is that you have the correct code for the
addressing method that you are using. If you check each stage in the
development of a program in this way, you will eliminate a lot of
bugs before they are up and flying. Don't feel that you are a failure if
the program still doesn't run - unless a machine code program is
very simple, there's a very good chance that there will be a bug in it
somewhere. It happens to all of us - and it's only by experience that
you can get to the stage where the bugs will be few in number and
easy to find.

If you use an assembler, one source of bugs completely dis­
appears. Human frailty means that the process of converting
assembly language instructions into machine code bytes is error­
prone. That's because it means looking up tables, and anything
which involves looking from one piece of paper to another is highly
likely to introduce mistakes. I shall briefly describe the action of the
MIKRO assembler later in this chapter. At the time of writing, there
were several assemblers available for the C 64, but MIKRO has

Debugging, Checking and MIKRO 99

several advantages, one of which is that it can be obtained in one
cartridge along with a monitor program called TIM. There's more
on monitors later in this chapter as well! If machine code has really
caught your imagination, and you feel that you want to branch out
into more advanced work than we have space for in this book, then a
good assembler and monitor program are essential. You will have to
be prepared to pay quite a lot for such a program. If, however, you
intend to be just a dabbler, spawning the odd drop of machine code
now and again, then the poke-to-memory methods that we have
used so far will be perfectly adequate.

Using these methods, however, means that there will be bugs
lurking in each corner of the code. The main cause of these bugs is
weariness. Converting an assembly language program into hex
bytes, and writing them in the form of DATA lines for a BASIC
poke program is a tedious job, and all tediousjobs result in mistakes
(ever driven a 'Friday car'?). Faulty address methods are one
common result of tedium, and simply writing down the wrong code
is another. One very potent source of trouble is with branch
displacements. You may get the number wrong somewhere between
subtracting addresses and converting a number (particularly a
negative number) to hex. Another problem arises when you modify a
program, and add code between a jump instruction and its
destination. Having done that, you then forget to alter the size of the
displacement byte! This is a problem which simply doesn't arise
when an assembler is used. An incorrect jump will nearly always
cause the computer to lock up. You can often restore control with
the use of the STOP and RESTORE keys, but not always, and you
will sometimes lose your program (you did record it, didn't you?).
Another form of incorrect branch is doing the opposite of what you
intended, like using BEQ in place of BNE or the other way round.
Careful thought about what the jump will do for different sizes of
bytes should eliminate this one.

A lot of problems, as I have already said, can be eliminated by
meticulous checking, and it pays to be extra careful about branch
displacements, and about the initial contents of registers. A very
common fault is to make use of registers as if they contained zero at
the start of the program. You can never be certain of this. It's safer,
in fact, to assume that each register will contain a value that will
drive the computer bananas if it is used. With all that said, and with
all the effort and goodwill in the world, though, what do you do if
the program still won't run?

There's no single, simple, answer. It may be that your flowchart

100 Introducing Commodore 64 Machine Code

doesn't do what you expect it to do, and if you didn't draw a
flowchart, then you have got what you deserve. It may be that you
are trying to make use of a C 64 ROM routine and it doesn't operate
in the way that you expect. When you have enough experience in
machine code to follow more elaborate programs, you can make use
of a disassembly of the ROM. At the time of writing, there is a very
useful book called Inside the Commodore 64 by Milton Bathurst,
published by DataCap in Belgium. It's available from major
booksellers. This book is a complete listing, with comments, on the
ROM of the Commodore 64. There is also much on the use of the
RAM, in particular the page zero addresses. Once again, this is for
the really serious C 64 machine code programmer. All I can do here
is to give you general guidance on removing the bugs from a
program that seems to be well-constructed but which simply doesn't
work according to plan.

The first golden rule is never to tryout anything new in the middle
of a large program. Ideally, your machine code program will be
made up from subroutines on tape, each of which you have
thoroughly tested before you assem bled them into a long program.
In real life, this is not so easy, particularly when the subroutines exist
only as DATA lines for BASIC poke programs. As usual, users of an
assembler have the best of it, because they can keep assembly
language instructions stored like BASIC programs, and merge and
edit them as they choose.

The next best thing to keeping a subroutine library on tape is to
have extensive notes about subroutines. In addition to routines of
your own, you can keep notes on routines which you have seen in
magazines. Personal Computer World runs a series called SUBSET
(and I wish they would reprint it as a book!). This consists of several
general-purpose machine code routines each month. Most of these
are for the two most-used microprocessors, the Z80 and the 6502.
Even if you don't use the routines, the way in which they are
documented should give you some ideas about how you should keep
a record of your own routines - I personally would buy the magazine
for this feature alone! If you are going to use a new routine in a
program, it makes sense to try it on its own first so that you can be
sure of what has to be placed in each register before the routine is
called, and what will be in the registers after. Look at the examples in
SUBS ET, and see how well this information is presented.

Planning of this type should eliminate a lot of bugs, but if you are
still faced with a program that doesn't work, and which you don't
want to have to pull apart, then you will have to use breakpoints. A

Debugging, Checking and MIKRO 101

breakpoint, as far as the C 64 operating system is concerned, is the
byte $60. This is the RTS byte, and its effect is to return to BASIC.
When you are back in BASIC, you can examine the contents of
memory by using PEEK instructions. The principle is to pick a point
in the program at which something is put into memory. If you place
a $60 byte following this, then when the program runs, it will return
to BASIC immediately after the memory is used. By using a PEEK,
you can then check that what has been loaded into the memory is
what you expect. If it isn't, you should know where to look for the
fault. If all is well at this point, then substitute the original byte that
belongs in place of the $60, and place the $60 at the next address
following a memory store command. This type of action, however, is
much more easily carried out with the help of a good monitor
program, of which more later.

The most awkward fault to find by this or any other method is a
faulty loop. A faulty loop always causes the computer to lock up.
Though the STOP and RESTORE keys will usually get you out of
trouble, this will not always be the case. For example, it's possible
for a program that runs wild to alter one of the bytes that controls
the use of the keyboard, so that you find you can't use the keys even
if you regain control! The action of the STOP and RESTORE keys,
for example, can be disabled by poking to address 808 (denary). The
main cause of this sort of thing is a loop back to the wrong position.
For example, if we had a program, part of which read:

LDX,#$FF
LOOP: DEX

BNE LOOP

we could encounter problems. Suppose that this was assembled by
hand, and we made the branch back to the LDX instruction rather
than to the DEX instruction. This would result in the X register
being kept 'topped up', and never decremented to zero, so that the
loop would be endless. A mistake like this is easily spotted in
assembly language, because the position of the label name is easy to
check. It is very much more difficult to find when you have only the
machine code bytes to look at. As always, taking care over loops is
the only answer, and the method that has been shown in this book,
of calculating and checking displacements, is a good precaution.

102 Introducing Commodore 64 Machine Code

The TI M monitor

I mentioned monitors briefly earlier on in this chapter. This has
nothing to do with a TV monitor, which is a sort of superior quality
TV display for signals. A monitor in the software sense is a program,
one which checks (or monitors) each action of a machine code program.
A monitor is (or should be!) a machine code pro gram which can be put
into the memory at a set of addresses that you aren't likely to use for
anything else. Once there, a monitor allows you to display the
contents of any section of memory (in hex), alter the contents of any
part of RA M, and inspect or alter the register contents of the 6502.
These are the most elementary monitor actions, and it's useful if a
section of program can be run, breakpoints inserted, and registers
inspected on a working program. The ideal monitor would be one
which could carry out the steps of a machine code program one at a
time, displaying the register and memory contents at each step. Such
a monitor was available for the old TRS-80 Mk.l, and would be a
very welcome item for serious machine code programmers on other
machines.

MIKRO monitor

The MIKRO assembler/monitor cartridge contains, among its
many facilities, an excellent monitor which is modelled on the TI M
monitor which was available for the older 'PET computers. The
C 64 has to be switched off while the cartridge is inserted but, once in
place, the cartridge can be left in until you need to use another type
of cartridge. Simply placing the cartridge in position does not cause
the monitor to run - you have to call it up by typing TIM (then
RETU RN). This causes the TI M display to appear on the screen
(Fig. 8.1). This shows the TIM starting address, and underneath it
the contents of the main registers of the 6502 along with important

CALL @ 814B
AOOR IRQ SR AC XR YR SP

.;814B EA31 40 ~~ ~~ ~~ FB

Fig. B.l. The TIM monitor message on the screen. This will appear each time
you start the monitor by typing TIM and pressing RETURN.

Debugging, Checking and MIKRO 103

addresses. If we ignore the addresses for the moment (at this stage in
l~arning to use machine code they are not important), we can look at
the register bytes. These are the five main register contents of Status
Register (shown as SR), Accumulator, X index, Y index, and Stack
Pointer. If you have just switched on the C 64, the accumulator and
the index register will contain zero. The status register normally has
the value of 4D (several flags including the carry flag are set), and
the SP register is not at its starting value of $FF.

All this may not be of much use to you right now, but as we move
into more advanced machine code work, you'll see that a register
display like this can be very useful indeed. You can call up this
register display whenever you want by typing the letter R (then
RETU R N). All the actions of the monitor can be called up using the
combination of a full-stop and a letter, such as .R. While the
monitor is waiting for another command, however, it places a full­
stop on the screen so that you only have to press the letter of your
choice, and then press the RETURN key. Figure 8.2 shows what
options are available from these single-letter commands.

Now you won't necessarily want to use all of these options - some
of them might never be of particular interest to you. Instead of
dealing with them in order, then, we'll pick a few that are the most

M - Display contents of memory in hex. M has to be followed by a start
address and an end address, in four-digit hex.

S - Save a machine code program on tape or disk.

L - Load a machine code program from tape or disk.

G - Execute a program. G has to be followed by the starting address of the
program, in four-digit hex.

H - Hunt through memory for a group of bytes. H has to be followed by a
start address, an end address, and the bytes that are to be found, all in hex.

T - Transfer a block. T must be followed by the start address of the block,
the end address, and the new starting address.

D - Disassemble code. The starting address and the end address for
disassembly must follow. The display fills the screen and remains until a
key is pressed to display the next piece of the disassembly.

X - Return to BASIC.

Fig. B.2. The TIM menu for the MIKRO package - typical functions of a
monitor.

104 Introducing Commodore 64 Machine Code

useful to the beginner in machine code. Of these the'. M' command
(Memory inspection) is the most important. When you press. M
(usually just M for the reason above), you should then type a space.
This has to be followed by the starting memory address that you are
interested in. This must be typed as a four-digit hex number. For
example, the address 2B must be typed as ~~2B. You then have to
type another space, and then the ending address of the section of
memory you want to investigate. Again, this must be in the form of a
four-digit hex number. Nothing happens until you press RETURN,
so that you have time to change your mind. When you press
RETURN, you will see the screen display the section of memory
which you have requested. The column at the left-hand side contains
a full stop, a colon, and then the starting address for each row of
numbers, and there are eight numbers in each row. The numbers
that are stored in the addresses are then shown in these rows.
Suppose, for example, that we look at the row whose starting
number (on the left-hand side) is ~~4~. The first byte in this row is
the byte which is stored at $~~4~, the next byte is the one stored at
$~~41, and so on.

While TIM is displaying contents of memory in this way, you can
alter any of the bytes in any of the displayed addresses. This is done
in exactly the same way as you edit a BASI C program. You place the
cursor over the first digit of the byte, using the arrowed cursor
control keys. You then type the digit that you want, and follow up by
typing the second digit of the byte. Of course, if you want only to
alter one digit, you can place the cursor over it and type one digit.
This must be a valid hex digit. When you press RETURN, the value
will be placed in the memory. If you typed a letter which does not
make sense, no change is made. One particularly useful feature of
this ability to alter code is that you can make any byte in your code
equal to $~~. This is the BRK (Break) command, and its effect will be
to return you to the TIM monitor. This is not the same as RTS,
which normally returns you to BASIC. When you use BRK to
return to the monitor, you can then make use of the.R command to
inspect the registers of the 6502, and the .M command to see what
has happened in the memory. Placing the $~~ code in a machine
code program is called 'setting a breakpoint', and it's a particularly
useful way of finding out what a program is doing at some particular
point in its path.

The next most important instruction, then, as far as we are
concerned at the moment, is '.R', as we mentioned earlier. Pressing
the R key causes the register contents of the 6502 to be displayed

Debugging, Checking and MIKRO 105

when you press RETURN. Unless the machine has been interrupted
in the middle of a program, there won't be much to look at here, but
when you come to make use ofthe more advanced features of TIM,
like the use of breakpoints, it will be very useful. The contents of all
the registers are shown, and normally we'll be looking at the
contents of the A,B,X and Y registers in particular. What this means
is that when you run your machine code program with the
breakpoint inserted, the program will stop at the breakpoint, and
the screen will show the contents of the registers, when you use the
'.R' command. This is very often all that you need to spot where a
program has gone wrong. TIM allows you to set up as many
breakpoints as you like, though you can only have a breakpoint in
place of an operating code. If, for example, you have a piece of
machine code for the instruction LDA $4~5~, then this consists of
the opcode $AD followed by the address bytes $5~ and $4~. If you
want to break here, you can only replace the opcode $AD by $~~,
not the address bytes. Only an opcode represents an instruction to
the 6502. When the program stops at a breakpoint, you can inspect
the contents of registers, use. M to examine memory, and then allow
the program to continue by pressing '.G'. You can even alter the
contents of the registers before you start the program again, but this
is not the sort of thing you want to try until you have rather more
experience with machine code. It's useful, though, if you are
checking the action of a loop, and you want to see what happens
when the content of a register reaches some value like $FF or $~~.
Instead of going round the loop dozens of times, you can go round
once to check that the loop is working, and then alter the register
contents so as to make the loop stop - and then check that it does.
Altering the 6502 registers is done after you have used .R to display
the register contents. All you need to do is to place the cursor over a
digit, and then type the value that you want, and press RETURN.
This value will then be placed into the register when the program is
resumed. The .G has to be followed by a space, then a four-digit
address for the next instruction that you want to carry out.
Wherever you have used breakpoints, you should clear them after
you have finished investigating, by using. M, followed by editing.

These are very powerful methods of debugging and sorting out a
program, and yet they form only part of the facilities that this very
useful monitor offers. The lack of SA VE and LOAD facilities for
machine code programs, for example, is remedied in TIM. The .S
command will save a machine code program, for which you have to
specify a filename, cassette or disk storage, the starting address for

106 Introducing Commodore 64 Machine Code

the code, and the end address plus 1. All numbers must be in hex,
using four digits for addresses and two for single bytes. For example,
suppose you want to save on cassette a program which started at
$9F6~ and ended at $9FE2. The SA VE command would be typed
as:

.S"MCPROG",p I ,9F6~,9FE3

Of this lot, the.S is the save command, and MCPROG is a filename.
The ~ I specifies that we are using cassette - ~8 would mean that you
wanted to save on disk. You must use P I or ~8, not I or 8. The start
address then follows, and the end address has I added to it. Commas
are used to separate the numbers. Reloading a program from
cassette is much easier - all you need to type is:

.L"MCPROG"

or even. L if you are content to load the first program on the tape.
Last, but quite certainly not least, the TIM monitor allows you to

search for bytes, transfer bytes, and disassemble memory. Suppose
you want to see if the byte 20 occurs between 9FP~ and 9FFF. If
you type .H 9FM 9FFF 20, and then press RETURN, the screen
will display each address in the range where this byte occurs. You
can look for groups of bytes also, which is often more useful. For
example, if you are looking in the ROM for a load from the address
7 A (code 85 7 A), and you think that this might be in the region
between $A~~P and $AFFF, then.H AMP AFFF 85 7A will find
the ten addresss at which this combination of codes appears. If you
want to place a piece of ROM code into your own program without
having to copy it byte by byte, you can use the.T command. The.T
has to be followed by the starting address of the bytes you want to
copy. then the finishing address, then the new starting address. If,
for example, you want to place the code that lies between $AB7B
and $ABA4 into memory at $9F~~, then the command you need is:

.T AB7B ABA4 9F~~

Finally, the .0 command allows you to disassemble the memory.
This is particularly useful for ROM, if you have no printed
disassembly. The .D command has to be followed by a starting and a
finishing address, both in four-digit hex. The result of pressing
RETU R N is a disassembly display. This consists of 25 lines of print
on the screen (unless you have requested only a small amount of
code). Each line contains a reference number, an address (of the
opcode byte), the code in hex, and its assembly language version.

Debugging, Checking and MIKRO 107

Some parts of the ROM contain nothing but data bytes, with no
opcodes, and if these are not numbers which could be taken as
opcodes, they appear as BYT instructions. If the disassembly
extends to more than 25 lines, pressing any key will display another
25 lines, until all of the requested memory has been disassembled.
The use ofthe disassembler is particularly useful if you want to make
use of ROM routines.

When you have made use of the TIM monitor to your satisfaction,
you can then press the X key to return to BASIC. All in all, it's a
most satisfactory piece of software, and all the more remarkable
because it's only part of a complete package which features the
MIKRO assembler - and that's what we are goingto deal with next.

Using the MIKRO assembler

At the time when this book was being written, there were several
assembler programs for the C 64, but the MIKRO assembler was by
a long way the most useful product in my estimation. Even though
this is an introductory book for readers who may never go as far in
machine code as to use an assembler, a description is necessary.
Dispensing with a description of this assem bIer would be like writing
a history of aviation and omitting the names of Alcock and Brown -
even though not many readers would have direct experience of their
flight.

Any assembler worthy of the name will be written in machine
code. M I KRO goes one step further by being in cartridge form. This
is a great advantage, because an assembler that has to be loaded
from tape can be a nuisance. The reason is that inevitably when you
are developing a machine code program with an assembler, the
program will run away from you at some stage in testing. When it
does so, it usually manages to corrupt memory (change stored
values), and it will be as likely to corrupt the assembler as anything
else if the assembler is in RAM. With the assembler in cartridge
ROM, its code is safe, and you can return to it at any time.

All assemblers are different, and it's likely that my description of
how to proceed with MIKRO will not exactly match the action of
any other assembler. The principles, however, are the same, and it's
a matter of learning a different sequence of commands. The
differences between assemblers are rather like the differences
between computers - but if you know the language, the differences
become less important. The language in this case is 6502 assembly

108 Introducing Commodore 64 Machine Code

language. What you have to learn is how you type a program in such
a form that the MIKRO assembler will deal with it, process it into
machine code, and store the code so that you can run the program.

Driving the MIKRO

Before you can get to grips with MIKRO, you need to know how it
copes with the problem of assembling your instructions. The
principle is that you type your assembly language program in
numbered lines, just as you would write a BASIC program. This is
not coincidental, because your program can be written even if the
MIK RO cartridge is not installed! You are simply using the facilities
of the C 64 to write lines of instructions. Provided you don't call on
the C 64 to run them, you don't need the MIKRO present - not until
you assemble the program, that is. Your lines of assembly language
can be saved on tape in exactly the same way as you save any BASI C
program. What distinguishes this program from BASIC is that it
uses assembly language, and that it contain~ directions to the
assembler program. It is, however, an advantage to have the
MIKRO assembler cartridge present when you type the program.
One good reason is that you can type AUTO (then RETURN), to get
auto line numbering. When you type AUTO and press RETURN,
the number I~~ appears on the screen. This is the starting line
number. Each time you press RETURN after having typed a line of
BASIC or of assembly language, a new line number will appear. The
numbers rise in tens in the conventional way, so that you will see the
sequence I ~~, II~, 12~ ... and so on. This is such a useful facility
that I always have the MIKRO cartridge installed when I use
BASIC.

The A UTO command can be modified to change the start num ber
and the increment number. For example, typing AUTO 1~,5 will
give a starting number of I~, going up by 5 each line. You can break
out of the automatic sequence of line numbers by pressing the
RETURN key.

Another very useful editing command that MIKRO offers is the
DELETE command, sadly omitted from the C 64. DELETE can be
followed by two line numbers, separated by a dash. Its effect will be
to delete these line numbers and all the line numbers between them.
For example, DELETE 1~~-2~~ will delete I~~, II~, 12~ '" all the
way up to 2~~. You can also omit one of the numbers in the
command, so that D ELETE 2~~ - will delete line 2~~ and all the line

Debugging, Checking and MIKRO 109

numbers higher than 2~~, and DELETE -3~~ will delete all line
numbers up to and including 3~~.

In addition to these editing commands which are equally useful
when you are writing BASIC programs, MIKRO has two
commands which are specifically intended for assembly language
programming. FORMAT will cause any listing to be organised into
neat columns, showing the address, label, opcode, operand and
remarks separated, no matter how you typed them in the first place.
This is particularly useful for assembly language programs, which
can be hard to check unless they are neatly set out. The other very
useful command is FIND. FIND has to be followed by a name, such
as a label name, and it will list on the screen (or printer) each line in
which this label name occurs. FIND will also work with a BASIC
program, and it's very useful for tracing where you have used
variable names. For example, FIND X will list each line in which X
has been used. The line is not printed in the usual BASIC way, but
rather in the style of an assembly language program. You can
restrict the action of FIND to a set of lines by adding line numbers,
separated by a dash, following a comma. For example, FIND
LOOP, 15~-3M would list each line between l5~ and 3~~ which
contained the word LOOP. You can use the same variations as
DELETE and LIST, so that FIND LOOP, 4~~- and FIND
LOOP,-2~~~ can be used.

Two other commands are also useful. The NUMBER command
will carry out number conversions for you. For any number (in the
normal range) following NUMBER, you will get a listing of the
same number in hex, denary, octal (scale of eight, not used much
nowadays) and binary. The different number types are identified by
using the $ prefix for hex, @ for octal, and % for binary. If, for
example, you type NUMBER123, you will see the display:

HEX= $ ~~7B
DECIMAL= 123

OCTAL= @~Ml~5
BINARY = %~~~~~~~~~ l~~~ l~ I

You can type your number in any of these scales, so that
NUMBER$45 or NUMBER@215312 or NUMBER%ll~ lll~lli
would all result in a display of the number in all its forms. The
command DISASSEMBLE is also available, giving the same
action as we noted for the .0 command in the TIM monitor.

Now the assembly language that is used by MIKRO is fairly close
to the standard that Mostek, the manufacturers of the 6502, have

110 Introducing Commodore 64 Machine Code

laid down. It isn't exactly identical, but the differences are very
small. One that you'll notice is that remarks are separated by an
exclamation mark rather than a semicolon. We'll look at some of the
differences here, but others are of interest only when you have had
much more experience with machine code. The other way in which
this program will differ from BASIC will be in the instructions to the
assembler. It isn't enough to provide a set of assembly language
instructions. You must, for example, specify in what addresses in
memory you want the code to be assembled. As so often happens,
though, you'll find that a standard set of these instructions will
suffice for practically all of your uses. The MIKRO assembler will
not place code in the addresses that we have been using for examples
up till now. This is because it uses these addresses for its own
purposes. 4K of memory, starting at address SC~~~, can be used for
your own routines. Alternatively, you can assemble your code at the
address which is specified by poking 127 into address 56. This is the
address $7FM, and to start assembly of code at the next address of
$7F~ I, you would start your assembly language lines with:

I~P *:=$7F~1

We would normally start in this way by allocating memory. You
still have to be sure that you have reserved this memory. This can be
done either by using POKE56, 127 in BASIC, or by a corresponding
LDA # 127 and STA 56 at the start of the machine code. If you are
writing a program that is purely machine code, with no BASIC
present, then all of the RAM is yours. In such a case, it makes sense
to start placing code at the normal start-of-BASIC address. In this
way, you can use the ordinary LOAD and SAVE commands if you
want to. If you don't use the *=$7F~ I or similar starting command,
then your code will always be assembled starting at address $~33C.
This is a piece of the RAM which is called the 'cassette buffer'. It is
used only during LOAD and STORE operations, and it extends to
$P3FC. It's not exactly an ideal place to put code, however, if you
are going to use LOAD and STORE!

Following the starting address allocation, you can then allocate
label names. These can be of addresses or of bytes. For example, you
might have:

II~ SCRNST=$~4~P
12~ CARRET=$PD

as the next two lines. These do not cause any code to be generated
when you assemble. What they do is to ensure that wherever these

Debugging. Checking and MIKRO 111

label words appear, the numbers are put into their place. Wherever
the word SCRNST (Screenstart) appears, the number $~4~~ will be
placed. Wherever the word CARRET (Carriage Return) appears, the
code $~ D will be placed. U sing labels in this way makes the program
much easier to follow and defining these words early in the program
ensures that you know what they mean without having to search
through the program. The label names should be of six letters or less.
If you omit to define any label name, the assembly cannot proceed,
and you will get an error message when you try to assemble the
program. A label does not necessarily have to be defined in this way;
it can be defined in the program as, for example, by:

22~ LOOP:LDA #124

We write our assembly language in lines, then, as we might write
BASIC, but with only one instruction in each line. Ending with the
RTS instruction ensures that the program will return to BASIC, and
the lines of the assembly language program can even be followed by
lines of ordinary BASIC. You must, however, place an END line at
the end of the assembly language section. It's not such a simple
matter to assemble and then automatically go on to a BASIC
program. lfthe END statement is not present, then MIKRO will try
to read the lines of BASIC, and this will result in an error report. The
main difference, in fact, is that the MIKRO assembler is rather more
fussy about how you type assembly language. You must, for
example, leave at least one space between each 'field' of assembly
language. 'Field' in this sense means section, and the sections are
label, opcode, operand and comments. You can't, for example, type:

LOOPLDA#$45!START IT

and hope that the assembler can cope in the same way as the BASIC
of the C 64 can usually cope with commands run together in this
way. What you normally find when you assemble is the error
message: NO OPCODE, meaning that the assembler is unable to
separate the parts of the command. If you type it as:

LOOP LDA #$45 !START IT

separating the fields, the assembler will be able to convert this
perfectly into code for you.

N ow as we go along, we'll look at refinements and useful additions
to the stock of commands, but these are the fundamentals that you
need to have firmly in your grasp in order to start making intelligent
use of MIKRO. If each program you write starts with a *= to

112 Introducing Commodore 64 Machine Code

allocate memory, and then defines as many labels as possible, then
you are off to a flying start. Following these preliminaries, you can
type your lines of assembly language. If you use a number with none
of the distinguishing symbols in front of it (such as $), it will be taken
as a denary number. Using $ means a hex number, and we have met
the prefixes @ and % earlier in connection with NUMBER. The
asterisk, *, is always taken to mean the 'current address'. This is the
address of the start of the instruction in which the asterisk appears,
so the asterisk is a useful way of indicating an address without
actually having to know what it is! The exclamation mark is used to
indicate a line which is a comment, like the use of REM in BASIC.

Any assembler also permits what are called 'assembler directives',
or 'pseudo-ops', which are instructions to the assembler program
itself. MIKRO is no exception, and some of these directives are
worth looking at here because they (or versions of them) are used
widely on assemblers for other microprocessors. We've already
looked at *. which indicates the current address. Three more such
pseudo-ops are WOR, BYT and TXT, all of which are used to place
data, as distinct from instructions, into the memory. WOR will place
a two-byte 'word' in the memory. It will separate the number into
high and low bytes, and store the bytes in the correct low-then-high
order. WOR$7FI2, for example, would place into the memory the
bytes $12 and $7F, in that order. These would be stored starting at
the 'current address'. Suppose. for example, that you wanted a
program to make use of a table of values which started at $9FF~.
You could include in your assembler program the lines:

2~~ *=$7FFI
21~ WOR $2EI4,$1 15B,$513A

and this would store, starting at address $7FFI, the sequence
I 4,2E.5B. I I ,3A,5 I. Note that we can use several addresses following
WOR, provided that they are separated by commas.

The BYT pseudo-op does the same for single bytes, so that BYT
$~D will place the carriage-return code at the current address. BYT
can also place the ASCII code for letters, using the' sign. If, for
example, you use BYT' A in the program, then the ASCII code for
the letter A will be stored at the current address. TXT is a more
convenient method of storing several letters. Following TXT, you
can place a string of letters. using quotes at the start and end. The
ASCII codes for all the letters. including spaces and punctuation
marks, will be placed in memory starting at the current address. For
example, using TXT "PRESS ANY KE\'" will place the ASCII

Debugging, Checking and MIKRO 113

codes for all the letters and spaces that are enclosed in the quotes.

Making it work!

When an assembly language has been typed, it can be recorded just
as if it were a BASIC program. This step is important, because this is
your 'source code'. 'Source code' means that this is the set of
instructions which will assemble up into machine code and, if you
have a recording of it, you can reload it, edit it, and re-assemble it as
much as you want. Because the source code can be recorded like
BASI C, you have to be careful about labelling your cassettes or disks
so as not to confuse the two. Source code will not run when you type
RUN! To assemble your source code you must type ASSEMBLE,
and then press RETURN. The assembler will then go over the
source code three times. This has to be done because some of the
label names may not be defined at the start of the program. Any
errors which are found will usually be detected in either the first or
second 'pass' through the source code, and assembly will then stop,
with an error message. The error message will, as you might expect,
point out what the error is, and in which line it occurs. If there are no
errors, then you can expect to see on your screen a display somet hing
like this:

ASSEMBLE
* PASS (I) *
* PASS (2) *
* PASS (3) *

**** ASSEMBLY COMPLETE ****
START ADDRESS - $9F~ I
END ADDRESS - $9F43

The addresses are useful if you are going to make use of the SA VE
command of the TIM monitor to record the machine code on tape or
on disk. The start address is also the one that you will need to use
when you call the machine code into action by using S YS. Note that
the MIKRO assembler does not, by itself, start the program
running, unless the last line of the source code is SYS, followed by
the correct start address.

This chapter, however, is not intended to give you a full
description of the MIKRO assembler. My intent is to give you a
taste of what the use of an assembler can be like. If and when you are
ready to use MIKRO, you will now be able to make sense of the

114 Introducing Commodore 64 Machine Code

rather brief instruction manual that comes with it. Even more
important, you will be able to cope with other assemblers, and even
with assemblers for other microprocessors, if you should ever
change your machine.

Chapter Nine

Last Round-up

One of the main problems in writing a book about machine code for
beginners is knowing where to stop. Volumes could be written about
the machine code programming of the C 64 and still leave room for
more, so that any finishing point has to be an arbitrary one. My aim
has been to introduce the subject and take you to a level at which
you can start to make progress on your own. Once you have reached
this stage, you can make use of the other books that are available,
which treat machine code at a more advanced level. This chapter is
concerned with tying up loose ends, mentioning a few more
instructions, and illustrating how to make use of some features of
the C 64.

The stack

You can't get much further in machine code programming without
coming across the word stack. A 'stack' is a section of memory, and
its special use is to preserve bytes that have been kept in registers.
There's no special set of memory chips that we use as a stack - but we
do set aside part of the RAM for this purpose. For a 6502
microprocessor, we have to use memory in the address range $1 ~~ to
$1 FF. What you probably find difficult to understand at the present
time is why we should ever need to use memory in this way.

Let's take a simple example. Suppose you have a program in
which the A register is being used to hold an ASCII code for a
character. Suppose, now, in the middle of this program, that we
want to create a time delay by making use of a countdown in the A
register. Whenever we load the count value into the A register, we
shall have replaced the ASCII code number that was stored there,
and if we try to use the A register again in the rest of the program, we
shall have to reload the address into it. This is what the stack is for.

116 Introducing Commodore 64 Machine Code

By means of a single byte instruction, we can store the contents of
the accumulator or the status register in the stack memory. Also, by
using another similar instruction, we can get the values back into the
correct registers again. The act of storing the register(s) on the stack
is called 'pushing', and recovering the values is called 'pulling'.

We'll look in a moment at an example program which makes use
of the stack but, for now, we're going to return to simpler matters.
The rest of this chapter, in fact, will be devoted to examples of
programs which will form a basis for developing into really useful
routines for your C 64. I must emphasise at this stage that you have
now got to the launch-pad as far as machine code is concerned.
From now on, what you need is practice, and all the information
that you can lay your hands on. Look closely at every program for
the C 64 that contains machine code, for example. Even if the
machine code is in the form of bytes that are poked into memory,
you can disassemble these and find out what they do. By doing this,
you can often discover addresses which will be very useful to you in
your own programs. From now on, everything is potentially useful
to you!

The KEYBEEP routine

Now we'll look at a routine which illustrates a lot of the points that I
have made earlier. It also serves to introduce you to rather more
advanced programming. The intention this time is to come up with a
program that will cause a short beep to sound each time you press a
key. This should happen when you are working normally in BASIC,
so what we need is a way of inserting a piece of extra machine code
into BASI C. This is quite a different matter from creating a machine
code program that runs and then returns to BASIC, and we have to
know rather more about the C 64 to be able to carry this out.

To start with, we have the problem of , breaking in' to the routines
that BASIC uses. Fortunately, the C 64 uses one particularly handy
'junction box'. What I mean by a junction box is a piece of code that
is placed in the RAM rather than in the ROM. Any code that is
placed in the RAM can be changed, unlike code in the ROM. The
purpose of this, in fact, is to allow changes to be made by 'patching'.
Patching in this sense means inserting a piece of your own program
into a routine which is used by the operating system of the C 64.

Looking for a place to patch is the most difficult part of any
operation of this sort. There is one routine, located at $~B24 and

Last Round-up 117

$~325, which can be used in this way, but it is executed only when
RETURN is pressed. This doesn't quite suit our needs because, for a
KEY BEEP program, we want to break into a piece of program that
is executed each time a key is pressed. It's almost impossible,
working by yourself, to discover suitable addresses in a reasonable
time, so we need to make use of the disassembled listing for this. A
careful look at the listing reveals an interesting pair of addresses at
$~28F and $~29~. These two contain another address, $EB48. This
is the address of the keyboard decode routine, and that makes it
interesting. What happens, you see, is that when a key is pressed on
the keyboard, it causes electrical signals to arrive at a port. The 6502
then has to read these signals and convert them into a single-byte
code, using a different code for each key. Obviously, the C 64 does
this action in parts, checking first to find if a key is pressed, and then
decoding it. A look at a disassembly of the keyboard routine (which
starts at $EA87) shows that this address of $~28F is used indirectly.
That means that the C 64 reads the bytes in $~28F and $~29~ each
time a key is pressed, and jumps to the address that is given by these
two bytes. This looks like the sort of thing that we're looking for.
This is where we can do our patching.

What we shall do is this. At the address $~28F, we shall replace
the original byte of $48 with the low byte of a new address. At
address $~29~, we shall place the high byte of this same new address.
We can write a routine of our own which starts at this new address.
At the end of this routine, we shall have a JMP instruction. The
address following the JMP will be the correct keyboard decoding
routine, $EB48. In this way, each time a key is pressed, our routine
will be run before the machine gets to work on decoding the key. The
routine that we're going to patch in is a simple one. It will poke the
correct values for a sound into the sound chip addresses, just as a
BASIC program would. It will have to include a delay routine in
machine code, so that the sound lasts long enough to be heard, and it
will end by returning to address $EB48. It all looks quite easy (when
you read it), but it's going to introduce us to quite a lot of new ideas.
Some of these are new coding instructions, others are the result of new
information about the C 64 itself. At this stage, everything is useful!

Yes, we'll start with a flowchart. Figure 9.1 shows what we are
after and, like any good flowchart, it does not specify very closely
what we are going to do. Immediately after the start, the decision
step 'is a key pressed?' is used. This has actually been taken care of by
the operating system, so we don't have to worry any further about it.
If a key is pressed, then we load the sound addresses. This is tedious

118 Introducing Commodore 64 Machine Code

MAKEA
SOUND

Fig. 9.1. The flowchart for a 'keybeep' program that sounds a note whenever a
key is pressed.

rather than difficult - it's something that you should keep on tape
ready for use after you have typed it once. This loading is followed
by a delay, then the 'clear sound' action pokes zeros into some ofthe
sound addresses. If we don't do this, then the sound will continue
after the key has been pressed - which is not what we want. Finally,
we jump back to BASIC, ready for the next key.

Figure 9.2 shows the assembly language version of what we have
come up with. This has been printed out as a set of line numbers in
the form that the M IKRO assembler uses. You can assemble this for
yourself if you feel that you need the practice, but Fig. 9.3 shows the
printout from a M IK RO assembly. This shows the addresses and
the code bytes as well as the assembly language. Remember that the
starting address has to be $7FM when the MIKRO cartridge is
installed. You can, if you want, rewrite this to fit into higher address
numbers if you are not using MIKRO. If you want to use another
starting address, part of the code must be altered. The critical part IS

the address $7F3C for the delay subroutine. If you change the
address at which this program starts, then the address of the delay
subroutine must also be changed.

Details, details

Looking at the assembly language in detail, now, we start in the

100 *=$7F00
120 LDA I(POINT
130 STA $28F
140 LDA I)POnn
150 STA $290
160 RTS
170 POINT PHA
175 LDA 115
180 STA 54296
190 LDA 1190
200 STA 54273
205 LDA 1248
210 STA 54278
220 LDA 117
230 STA 54273
240 LDA 137
250 STA 54272
260 LDA 117
270 STA 54276
280 JSR DELA't'
290 LDA 10
300 STA 54276
310 STA 54277
320 STA 54278
330 PLA
340 JMP $EB48
350 DELA't' LDA 4t 1 00
360 STA 251
370 LOOP1 STA 252
380 LOOP2 DEC 252
390 BNE LOOP2
400 DEC 251
410 BNE LOOP1
420 RTS
430 END

Last Round-up 119

Fig. 9.2. The assembly language for a keybeep routine. This has been written
in the form of numbered lines for the MIKRO assembler.

usual way by setting the address of $7FM. The next part of the
program places a new address into $~28F and $~29~. This new
address will be the address of the start of the sound routine. At the
time when we write these first lines, we don't know what this address
will be, so we use the label word POINT. The use of the symbols <
and> is not confined to MIKRO; you will find these symbols used

120 Introducing Commodore 64 Machine Code

100 7F00 *=$7F00
120 7F00 A90B
130 7F02 8D8F02
140 7F05 A97F
150 7F07 8D90e2
1613 7F0A 60
170 7F0B 48 PO UH
175 7F0C A90F
1813 7F0E 8D18D4
1913 7F11 A9EE
200 7F13 8D01D4
205 7F16 A9F8
210 7F18 8D06D4
220 7F1B A911
230 7F1D 8D01D4
240 7F20 A925
250 7F22 8D00D4
260 7F25 A911
2713 7F27 8D04D4
280 7F2A 203C7F
290 7F2D A900
300 7F2F 8D04D4
310 7F:32 8D05D4
320 7F35 8D06D4
330 7F38 68
340 7F39 4C48EB
350 7F3C A964 DELAY
360 7F3E 85FB
370 7F40 85FC LOOPl
380 7F42 C6FC LOOP2
390 7F44 D0FC
400 7F46 C6FB
410 7F4S D0F6
420 7F4A 60

LDA #(POINT
STA $28F
LDA #)POINT
STA $290
RTS
PHA
LDA #15
STA 54296
LDA #1913
STA 54273
LDA #248
STA 54278
LDA #17
STA 54273
LIlA #37
STA 54272
LDA #17
STA 54276
.JSR DELAIr
LDA #13
STA 54276
STA 54277
STA 54278
PLA
JMP $EB48
LDA *1130
STA 251
STA 252
DEC 252
BNE LOOP2
DEC 251
BNE LOOPl
RTS

Fig. 9.3. The printout from the MIKRO assembler, showing the hex codes as
well as the assembly language.

in many 6502 programs in assembly language. The < sign means
'lower byte of' and the> sign means 'higher byte of', so that what we
are doing in lines I 2~ to I 5~ is to load the two bytes ofthe address of
POINT into the 'junction box' addresses of$~28F and $~29~. When
this has been run, each press of a key will cause the machine to go to
the address of POINT.

N ow we want to run this 'set-up' part once only. Once we have set
up these addresses, we want to return to BASIC, running the rest of

Last Round-up 121

the program only when a key has been pressed. The next instruction
in line 16~, then, is RTS, returning control to BASIC. The rest of the
program is the bit which is used each time a key is pressed.

The beep part of the program starts in line 17~ with the label word
POINT. This ensures that when we assemble, the address ofthe first
instruction will be placed in the junction box'. The first instruction
is PHA. That's important. PHA means 'push the accumulator on to
the stack'. When the machine wants the result of a key-press to be
decoded, it will have the result in the accumulator. Ifwe destroy that
byte, then we can't expect the machine to operate normally. By using
PHA, we preserve the content ofthe accumulator on the stack. We
can then recover it at the end of our routine so that it is in the
accumulator all ready when we jump to the decoding routine,just as
if our program had not existed. Lines 175 to 27~ then poke the bytes
into the sound addresses to produce a low-pitched beep. Obviously,
you can experiment with these values. The addresses are the same as
those shown in the C 64 BASIC manual.

The next step is a delay. A subroutine has been used here, though
the code could just as easily have been placed in the main part of the
program. The subroutine is a familiar delay routine, using page ~
addresses. I avoided using the X or Y registers in case they were also
used for the key-decoding routine. The reason for being careful is
that there are no instructions for saving the X or Y registers on the
stack. The only way this can be done is by transferring the bytes, in
turn, to the accumulator, and then pushing the accumulator. When
bytes are taken offthe stack, they return to the accumulator (ifPLA
is used) and can then be transferred to other registers. This is so
tedious that it is worthwhile trying to avoid having to do it. I've done
it by using the page ~ addresses to store the count numbers. A value
of I~~ (denary) in the stores produces a reasonably short beep.

Finally, the program ends by poking zero into three ofthe sound
addresses to stop the sound. The value that was originally in the
accumulator is now restored by the PLA command, and the routine
ends with a jump to address $EB48 to decode the key.

When this program is assembled, and SYS32512 used to start it,
you will find that you get a beep (and a delay) when each key is
pressed. If you don't, perhaps you forgot that the sound comes from
the loudspeaker of the TV, and so the volume control of the TV has
to be turned up! This routine could set you off on several new tracks.
To start with, could you make a program which would assist a blind
user, by giving a different note for each key pressed? It would mean
using the code that is in the A register at the time when the registers

122 Introducing Commodore 64 Machine Code

are pushed to modify the 'pitch' byte that we put into the B register.

Renumbering - an example of program design

As a grand finale, I'll go over the design of a more elaborate program
from start to finish. Finish? No program is ever truly finished until
you can hold your hand on your heart and swear that it couldn't
possibly be improved. I'm not getting to that stage by any means. I
hope, in fact, that you'll find much you can improve on, so that this
program will serve as a guide to better things rather than something
you just want to assemble and use. The program is a utility which
the C 64 sadly lacks, a renumber routine. The idea is that you can
poke into memory a starting number and an increment number, and
have the lines ofa BASIC program renumbered foryoujust by using
a SYS address.

As usual, we had better start with some planning. The basis ofthe
idea is that we can always get the address ofthe first byte of a BASIC
program from addresses $2B and $2C. The next line starts at an
address which is stored in the first two bytes of this line, and the line
number is stored in the next two bytes. We should, therefore, be able
to design a looping program which goes from one line to the next,
changing the numbers, until it finds that the next address is ~~~~.
That's the end of the program, and time to stop. Sounds reasonable
enough, and Fig. 9.4 summarises it.

The next step, as you should know, is to draw a flowchart, and this
is shown in Fig. 9.5. The flowchart shows rather more of what we
want to do, and I have added some extra information this time. We

I. Get address of first byte of BASIC program.
2. Save the first byte LB. This is the low byte of the address of the start of

the next line.
3. Save the second byte HB. This is the high byte ofthe address of the start

of the next line.
4. Put the line number low byte into the third address in the line.
5. Put the line number high byte into the fourth address in the line.
6. Add the line increment number to the (stored) line starting number.
7. Test the (stored) next line address. If this is ~~~~, then stop.
8. Repeat, using the new line address taken from HB and LB.

Fig. 9.4. A summary in words of what the simple renumber program should
do.

Last Round-up 123

need to keep the 'current line address' in store, preferably at two zero
page numbers. I have labelled these AD and AD+ I. We should also
keep the 'current new line number' at a couple of addresses, and
these are labelled LIN and LIN+ I. Finally, we need an increment.
There's only one byte left, at 255, for this, so we'll specify that you
can't renumber in increments of more than 255. That doesn't seem to
be much of a hardship.

Now I want to emphasise that this is a simple program. It will only
renumber the lines themselves, and it won't alter GOTO numbers or
GOSUBs. As an exercise in designing machine language utilities,
however, it's quite useful. It's also quite useful as an everyday
program, provided you remember its limitations. It's ideal for
renumbering the sort of programs that you need to write for the
MIKRO assembler. In any case, let's give it a whirl.

GET START
OF LINE

SAVE NEXT
START ADDRESS

CHANGE LINE
NUMBER BYTES

INCREMENT LINE
NUMBER BYTES

Fig. 9.5. A flowchart for the renumber program.

124 Introducing Commodore 64 Machine Code

The big renumber

The program is shown, in the form for MIKRO, in Fig. 9.6. Now this
is considerably longer and more elaborate than anything we have
done so far. I want, therefore, to go over it in detail, pointing out
why each step has been taken. You very seldom get a detailed
explanation of how a machine code program works, so take a good
look. You'll soon find yourself trying to follow programs in the
magazines, and these explanations will stand you in good stead for
such work.

The program starts in the usual way by defining a starting address
and values for some labels. The starting address has been chosen as
$7F~~ because I was using MIKRO to develop this program (when
they get to this size. I prefer an assembler). Whatever starting value
you use, you have to make sure that the memory is protected. When
the program is loaded into protected memory, loading in a BASIC
program will not disturb the machine code bytes. If you forget to set
the top of memory by a poke to address 56, there will be trouble at
some stage. The label AD is the zero page address which is used for
the low byte of the address of the line that the program is currently
working on. This address will change from line to line, so we will
make a lot of use of AD. INC is the increment byte, the amount by
which the line numbers will increase. This will usually be I~, but it
makes the program more flexible if we can change this quantity.
Anything from 1 to 255 can be used. LIN holds the low byte of the
line number for each renumbered line.

Following this setting up part, we start on the program itself. The
carry bit is cleared. just in case, and the accumulator is loaded from
address 43. This is the low byte of the address of the first byte of
BASIC, and we put it into the 'current line' address at AD. We then
load the accumulator from 44, which contains the high byte of the
start of BASIC address. and we put this into AD+ 1. In this way. AD
and A D+ 1 carry a copy of 43 and 44. the bytes of the address of the
first byte of your BASIC program.

Now the loop starts. The Y register is zeroed. The LDA (AD), Y
will load the accumulator from the address that is held in AD and
AD+ I. This is the first byte of the BASIC program, and it's the low
byte of the next line address. We store it on the stack by using PHA,
and then increment the Y register. Because the Y register has been
incremented, the next LDA (AD), Y will load from the address of
the second byte in the BASIC line. This is the high byte of the
address of the next line. This also is pushed on to the stack, next to

10e !II=$7F00
110 AD=251
120 INC-255
130 LIN=253
140 CLC
150 LDA 43
160 STA RD
170 LDR 44
le0 STA AD+l
190 LOOP LDY Ie
200 LDA (AD),Y
210 PHA
220 INY
230 LDA (AD),Y
240 PHA
250 INY
260 LDA LIN
270 "'STA (AD), Y
280 INY
290 LDA LIN+ 1
300 STA (AD),Y
310 LDA LIN
320 ADC INC
330 STA LIN
340 BCC NXT
350 INC LIN+l
360 CLC
370 NXT PLA
3S0 STA AD+l
390 PLR
400 STA AD
410 BNE LOOP
420 LDA AD+l
43" BNE LOOP
440 RTS
450 END

Last Round-up 125

Fig. 9.6. The assembly language listing for the renumber program. This is in
the form that the MIKRO assembler uses.

the low byte. The Y register is then incremented again. The next step
is to get our own first line number low byte from LIN. This is stored
in the next byte of the line, again using the indirect Y addressing
method. The Y register is incremented again, the high byte of the
starting line number is loaded into the accumulator, and stored into

126 Introducing Commodore 64 Machine Code

the line using indirect addressing. That completes the renumbering
of the first line with the first of the line numbers that we want.

The next step is to add the increment to the line number. We load
the accumulator from LIN, and add the increment from INC. The
number in the accumulator (the low byte) is placed back in LIN, and
if there is a carry, the high byte at LIN + 1 is incremented. The carry is
cleared - just to be sure! Now we have to put the next line number
address into the AD and AD+ 1 addresses, so that we can repeat the
processes. The high byte of the next line number was pushed last on
the stack, so it comes offfirst, with the PLA command. It is stored in
AD+ I. The low byte is then pulled off and stored at AD. We can test
at this point to see if the low byte of the next address is ~. If it's not,
then we haven't reached the end of the program yet, and we loop
back. If this byte is zero, we have to test the high byte, by taking it
from AD+ I. If this byte is not zero, then we haven't reached the end
and we loop back. If both bytes are zero, however, we have quite
certainly reached the end ofthe program, and the RTS returns us to
BASIC.

How do we use it? Reserve memory, and put the machine code in
place. Load in your BASIC program and decide on a starting line
number and an increment. Poke the start into 253 and 254, with the
high byte in 254. For a starting number less than 255, like I~ or I~~,
you will only have to poke a number into 253, but it's safer to poke ~
into 254. If you want to start with line 1 ~M, you will have to express
this as two bytes - Fig. 9.7 shows how. Then poke the increment
(usually ~) into address 255. If you have assem bled at $7FM, then

I~~~ as a starting line number consists of two bytes. Divide j~~~ by 256,
and the result is 3.9~625. The whole number part is 3. Now take l~~~ -
3*256, which is 232. 232 is the low byte of the line number.

Fig. 9.7. Splitting a line number like 1 ¢¢9' into two bytes.

active the program by using SYS32512. In a flicker of an eyelid, your
BASIC program is renumbered. If you assembled at any other
address, of course, that's the address that you will have to use with
SYS. Figure 9.8 shows the MIKRO assembly printout so that you
can read the codes. The code can be assem bled at any address, so you
can transform this into a BASIC poke program if you want.

That's the end of this particular road, then. There's very little
that's new to learn, except about the hidden surprises that the C 64

100 7F00
110 7F00
120 7F00
130 7F00
140 7F00 18
150 7F01 A52B
160 7F03 85FB
170 7F05 A52C
180 7F07 85FC
190 7F09 A000
200 7F0B B1FB
210 7F0D 48
220 7F0E CS
230 7F0F B1FB
240 7F11 48
250 7F12 C8
260 7F13 A5FD
270 7F15 91FB
280 7F17 C8
290 7F18 A5FE
300 7F1A 91FB
310 7F1C A5FD
320 7F1E 65FF
330 7F20 85FD
340 7F22 9003
350 7F24 E6FE
360 7F26 18
370 7F27 68
380 7F28 85FC
390 7F2A 68
400 7F2B 85FB
410 7F2D D0DA
420 7F2F A5FC
430 7F31 D0D6
440 7F33 60

*=$7F00
AD
INC
LIN

LOOP

NXT

Last Round-up 127

= 251
= 255
= 253

CLC
LDA 43
STA AD
LDA 44
STA AD+1
LDY #0
LDA (AD) /'1"
PHA
IH'T'
LDA (AD) J 'r
PHA
IHY
LDA LW
STA (AD) J 'i
IN'T'
LDfl LIN+l
STA (ADL'T'
LDA LIN
ADC INC
STR LIN
BCC NXT
INC UN+1
CLC
PLA
STA AD+1
PLA
STA AD
BNE LOOP
LDA AD+1
BNE LOOP
RTS

Fig. 9.8, The MIKRO assembler printout for the renumber program. This has
been renumbered by the program!

keeps tor you. As you go on, though, you will accumulate experi­
ence, until you find that the surprises are fewer, and you can
find ways round them more easily. When that time arrives, you're
entitled to call yourself an expert, a real machine code programmer.

Appendix A

How Numbers are
Stored

The C 64 uses five bytes of memory to store any number. This
Appendix describes how numbers are stored, but if you have no
head for mathematics, you may not be any the wiser!

To start with, floating point (not integer) numbers are stored in
mantissa-exponent form. This is a form that is also used for denary
numbers. For example, we can write the number 216~~~ as 2.16 X
105, or the number .~~~12 as 1.2 X 10-4. When this form of writing
numbers is used, the power (of ten in this case) is called the
exponent, and the multiplier (a number greater than 0 and less than
1) is called the mantissa. Binary numbers can also be written in this
way, but with some differences. To start with, the mantissa of a
binary number that is written in this form is always fractional, but
no point is written. Secondly, the exponent is a power of two rather
than a power of ten. We could therefore write the binary number
1~ ll~~~~ as 1~ llEl~~~. This means a mantissa of 1~ II (imagine it
as .1~ II) and exponent of 1~~~ (2 to the power 8 in denary). There's
no advantage in writing small numbers in this way, but for large
numbers, it's a considerable advantage. The number:

11~1~1~~~~~~~~~~~~~~~~~~
for example can be written as ll~ 1~ lEll~~~ (think of it as .ll~ 1~ 1
X 224).

This scheme is adapted for the C 64, and other machines which use
Microsoft BASIC. Since the most significant digit of the mantissa
(the fractional part of the number) is always 1 when a number is
converted to this form, it is converted to a ~ for storage purposes.
The exponent then has (denary) 128 added to it before being stored.
This allows numbers with negative exponents up to -128 to be stored
without complications, since a negative exponent is then stored as a
number whose value is less than 128 denary. The C 64 uses four bytes

Appendix A 129

to store the mantissa of a number, and one byte to store the
exponent.

To take a simple example, consider how the number 2~ (denary)
would be coded. This converts to binary as 1~ 1~~, which is
.l~ l~~~~~ X 25, writing it with the binary point shown, using eight
bits, and with the exponent in denary form. The msb of the fraction
is then changed to ~, so that the number stored is ~~1~~~~~.
Peeking this memory will therefore produce the number (denary) 32
in the mantissa lowest byte. Meantime, the exponent of 5 is in binary
1 ~ 1. Denary 128 is added to this, to make 1 ~~~~ 1 ~ I. Peeking this
memory will give you 133 (which is 128+5).

Integers need only two bytes for storage. The integer must have a
value between -32768 and +32767. To convert an integer to the
form in which the C 64 stores it, proceed as follows:

I. If the number is negative, subtract it from 65536 and use the
result.

2. Divide the number by 256 and take the whole part. This is the
most significant byte.

3. Subtract from the number 256 X (most significant byte). This
gives the least significant byte.

Example: Convert 9438 into integer storage form.
The number is positive, so it can be used directly.
9438/256=36.867187.
The msb is therefore 36.
36*256=9216, and 9438-9216=222.
The low byte is 222.

Appendix B

Hex and Denary
Conversions

(a) Hex to Denary

For single bytes (two hex digits) -
Multiply the most significant digit by 16, and add the other digit.
For example:

$3D is 3* 16 + 13 =61 denary.

For double bytes (address numbers) -
Write down the least significant digit. Now write under it the value
of the next digit, multiplied by 16. Under that, write the next digit,
multiplied by 256. Under that, write the next digit, multiplied by
4~96.
For example:

$F3DB converts as follows:
Write Is digit
Next digit*16 is 13*16
Next digit*256 is 3*256
Next digit*4~96 is 15*4~96
N ow take the total, which is

Denary to hex

I I
2~8
768
6144~
62427

For single bytes (less than 256 denary) -
Divide by 16. The whole part of the number is the most significant
digit. The least significant digit is the fractional part of the result
multiplied by 16.

Appendix 8 131

For example:
To convert 155 to hex:
153/16 = 9.6875, so 9 is the most significant digit.
The least significant digit is .6875* 16, which is II. This converts
to hex B, so that the number is $9B.

For double-byte numbers (numbers between 256 and 65535 denary)
Divide by 16 as before. Note the whole number part of the result,
and write down the fractional part, times 16, as a hex digit. Repeat
the action with the whole number part, until only a single hex digit
remains.
For example:

To convert 23815 to hex:
23815/16=1488.4375. The fraction .4375*16 gives 7, and this is
the least significant digit.
Taking the whole number part, 1488/ 16=93.~~. Since there is
no fraction, the next hex digit is ~.
93/16=5.8125. The fraction .8125, multiplied by 16 gives 13,
which is hex D. This is the third hex figure. Since the whole
number part is less than 16 (it's 5), then this is the most
significant digit, and the whole number is $5D~7.

Appendix C

The Instruction Set

The instruction set of the 6502 is a relatively small one, but there will
be some instructions in this list which you may never need to use
unless you go in for very advanced programming indeed. A full
description of the action of each instruction would take too much
space, and so the action has been indicated by abbreviations. For a .
full description, see one of the books devoted to 6502 programming.
In general, M means a byte at an address in memory, and the
registers are referred to under their usual letter references. An arrow
indicates where the result of an action is stored. For example,
A+M+C-A+C means that the byte in the memory (addressed by
the instruction) is added to the byte in the accumulator A, plus the
carry C, and the result is placed in the accumulator A, with another
possible carry in C.

The instruction codes are shown in columns graded by the
addressing method. These methods are Immediate, Zero Page, Zero
Page X Indexed, Absolute, Absolute X Indexed, Absolute Y
Indexed, Indirect X, Indirect Y, and PC Relative. A few instructions
use Implied Addressing. The implied addressing method means that
no special addressing is needed. In the assembly language forms,
ADDR means a full two-byte address and addr means a single
(lower) byte address for zero page addressing. Disp is used to mean
displacement in PC Relative addressing. Byte means the byte
following an immediate addresses code. S has been used to mean the
Processor Status register. Flags are referred to as C,N and V. All
op codes are shown in hex.

Appendix C 133

Assembly languageform Addressing method Opcode Action

ADC # Byte Immediate 69 A+M+C-A+C
ADC addr Zero page 65
ADC addr, X Zero page, X 75
ADC ADDR Absolute 60
ADC ADDR,X Absolute, X 70
ADC ADDR, Y Absolute, Y 79
ADC (addr, X) Indirect, X 61
ADC (addr), Y Indirect, Y 71

AND # Byte Immediate 29 A AND M-A
AND addr Zero page 25
AND addr, X Zero page, X 35
AND ADDR Absolute 20
AND ADDR,X Absolute, X 3D
AND ADDR, Y Absolute, Y 39
AND (addr, X) Indirect, X 21
AND (addr), Y Indirect, Y 31

ASL A Implied ~A Shift left
ASL addr Zero page ~6
ASL addr. X Zero page, X 16
ASL ADDR Absolute ~E
ASL ADDR, X Absolute, X IE

BCC Disp Relative 9~ Branch if C=~

BCS Disp Relative B~ Branch if C= I

BEQ Disp Relative F~ Branch if Z= I

BIT addr Zero page 24 OR with M,
BIT ADDR Absolute 2C Test N & V

BMIDisp Relative 3~ Branch if N= 1

BNE Disp Relative D~ Branch if Z=~

BPL Disp Relative l~ Branch if N=0

BRK Implied ~~ Interrupt program

BVC Disp Relative 5~ Branch if V=~

BVS Disp Relative 7~ Branch if V= I

CLC Implied 18 Clear carry

CLO Implied 08 Clear decimal mode

134 Introducing Commodore 64 Machine Code

Assembly languageform Addressing method Opcode Action

CLI Implied 58 Oear intenupt disable

CLY Implied B8 Clear Y flag

CMP #Byte Immediate C9 A-M, set flags
CMP addr Zero page C5
CMP addr, X Zero page, X D5
CMPADDR Absolute CD
CMPADDR, X Absolute, X DD
CMPADDR, Y Absolute, Y D9
CMP (addr, X) Indirect, X Cl
CMP (addr), Y Indirect, Y Dl

CPX # Byte Immediate E~ X-M set flags
CPX addr Zero page E4
CPX ADDR Absolute EC

CPY # Byte Immediate C9 Y - M set flags
CPYaddr Zero page C4
CPY ADDR Absolute CC

DEC addr Zero page C6 M-l-M
DEC addr, X Zero page, X D6
DEC ADDR Absolute CE
DEC ADDR, X Absolute, X DE

DEX Implied CA X-l-X

DEY Implied 88 Y-l-Y

EOR # Byte Immediate 49 A EOR M>A
EOR addr Zero page 45
EOR addr, X Zero page, X 55
EOR ADDR Absolute 4D
EOR ADOR, X Absolute, X 50
EOR ADDR, Y Absolute, Y 59
EOR (addr, X) Indirect, X 41
EOR (addr), Y Indirect, Y 51

INC addr Zero page E6 M+l-M
INC addr, X Zero page, X F6
INC ADDR Absolute EE
INC ADDR, X Absolute, X FE

INX Implied E8 X+l-X

INY Implied C8 Y+I-Y

Appendix C 135

Assembly languageform Addressing method Opcode Action

JMP ADDR Absolute 4C Jump to ADDR
JMP (ADDR) Indirect 6C Jump to stored

address

JSR ADDR Absolute 20 Jump to subroutine

LDA# Byte Immediate A9 M-A
LDAaddr Zero page A5
LDAaddr, X Zero page, X B5
LDAADDR Absolute AD
LDAADDR,X Absolute, X BD
LDAADDR, Y Absolute, Y B9
LDA (ADDR, X) Indirect, X Al
LDA (ADDR), Y Indirect, Y BI

LDX# Byte Immediate A2 M-X
LDXaddr Zero page A6
LDXaddr, Y Zero page, Y B6
LDXADDR Absolute AE
LDXADDR, Y Absolute, Y BE

LDY # Byte Immediate A~ M-Y
LDYaddr Zero page A4
LDYaddr, X Zero page, X B4
LDY ADDR Absolute AC
LDY ADDR,X Absolute, X BC

LSRA Implied 4A Shift right
LSRaddr Zero page 46
LSRaddr, X Zero page, X 56
LSRADDR Absolute 4E
LSRADDR,X Absolute, X 5E

NOP Implied EA No operation

ORA# Byte Immediate 09 AORM-A
ORAaddr Zero page 05
ORAaddr,X Zero page, X 15
ORAADDR Absolute ~D
ORA AD DR, X Absolute, X ID
ORAADDR, Y Absolute, Y 19
ORA (addr, X) Indirect, X ~I
ORA (addr), Y Indirect, Y I I

PHA Implied 48 Push A on stack

136 Introducing Commodore 64 Machine Code

Assembly language/orm Addressing method Opcode Action

PHP Implied ~8 Push S on stack

PLA Implied 68 Pull A from stack

PLP Implied 28 Pull S from stack

ROLA Implied 2A Rotate left
ROL addr Zero page 26
ROLaddr, X Zero page, X 36
ROLADDR Absolute 2E
ROLADDR,X Absolute, X 3E

RORA Implied 6A Rotate right
ROR addr Zero page 66
ROR addr, X Zero page, X 76
RORADDR Absolute 6E
RORADDR,X Absolute, X 7E

RTI Implied 4~ Return from interrupt

RTS Implied 6~ Return from sub-
Routine

SBC # Byte Immediate E9 A-M-C*-M
SBC addr Zero page E5 C* is a borrow
SBC addr, X Zero page, X F5
SBCADDR Absolute ED
SBCADDR,X Absolute, X FD
SBCADDR, Y Absolute, Y F9
SBC (addr, X) Indirect, X EI
SBC (addr), Y Indirect, Y FI

SEC Implied 38 Set carry flag

SED Implied F8 Set decimal mode

SEI Implied 78 Set interrupt disable

STA addr Zero page 85 A-M
STAaddr, X Zero page, X 95
STA ADDR Absolute 8D
STA ADDR, X Absolute, X 9D
STAADDR, Y Absolute, Y 99
ST A (addr, X) Indirect, X 81
ST A (addr), Y Indirect, Y 91

STX addr Zero page 86 X-M
STX addr, Y Zero page, Y 96
STX ADDR Absolute 8E

Appendix C 137

Assembly language/orm Addressing method Opcode Action

STYaddr Zero page 84 Y-M
STY addr, X Zero page, X 94
STY ADDR Absolute 8C

TAX Implied AA A-X

TAY Implied A8 A-Y

TYA Implied 98 V-A

TSX Implied BA S-X

TXA Implied 8A X-A

TXS Implied 9A X-S

Appendix D

Addressing Methods of
the 6502

Each addressing method has the effect of using a byte in the
memory. The address at which this byte is stored is called the
Effective Address (EA). The purpose of any addressing method is to
make use of an effective address.

Immediate Addressing: The EA is the address that immediately
follows the instruction byte.

Zero Page Addressing: Only the lower byte of the EA is given in the
instruction. The upper byte is always ~~, hence the name of zero
page. For example, using zero page addressing with a byte of FB
would make use of the address $~~ FB.

Absolute Addressing: The instruction is followed by two bytes,
which form a complete address. For example, LDA $563F means
that the accumulator is to be loaded from the address $563F.

Indexed Addressing: A number is stored in one of the index
registers (X or V). The effective address is this number plus any
address that is specified in the instruction. For example, LDA 25, X
means load the accumulator from the address which consists of the
number stored in the X register, plus 25.

Implied Addressing: The address is implied by the instruction, and
no special address reference is needed. For example, INX means
increment the X register, and no EA is needed.

Indirect Addressing: There are two forms, both of which use zero
page addresses. The X-indexed indirect adds the contents of the X
register to the zero page address number, and fetches the byte at
this address. This forms the low byte of the effective address. The
high byte is then fetched from the next higher page zero address. The
Y -indexed indirect fetches the byte from the page zero address, and

Appendix D 139

then adds the contents of the Y register to this byte. This is the lower
byte of the effective address, and the higher byte is fetched from the
next zero page address as before.

Appendix E

A Few ROM and RAM
Addresses

Now that a full disassembly of the C 64 ROM is available, all of the
ROM addresses will be widely known. A selection ofthe most useful
addresses is shown below. Along with this, I have included some
u~eful RAM locations, with brief notes on what is stored there.

ROM addresses

INPUT routine $F157
OUTPUT routine $FICA
Read keyboard $E112
Print to screen $EI~C
Begin BASIC $A~~~
READY message $A376
NEW $A644
Execute statement $A 7E4
Video control chip $D~~~ to $D~21
Port 1 $DC~~ to $DC~ F
Port 2 $DD~~ to DD~F

RAM addresses

$2B,$2C Start of BASIC
$2D,$2E Start of VLT
$2F,$3~ Start of arrays
$31,$32 End of arrays
$33,$34 Start of string storage
$37,$38 Limit of memory
$9A Code for output device
$C5 Last key pressed
$CC Cursor enable (~=flash)

$01, $02 Screen line in use
$03 Position of cursor
$06 Cursor line number
$F3,$F4 Colour memory pointer

$~2~~ BASIC input buffer
$~ 277 Keyboard buffer

Appendix E 141

$~28A Keyboard repeat ($8~ makes all keys repeat)
$~28F,$~29~ Address of keyboard decoding routine

Appendix F

Magazines and Books:
Where to get the MIKRO
64 Assembler

The problem of where you go from here is solved by looking at the
magazines and books that are available. The groundwork that this
book has supplied should allow you to go on to any of the books that
deal with 6502 programming, but which are not very useful to the
complete beginner. A look at the books available in your local
computer store, or from specialist mail order suppliers will show you
what is available. I have already mentioned the very useful book by
Milton Bathurst: Inside the Commodore 64.

Monthly magazines are also a fruitful source of ideas. Personal
Computer World's series. SUBSET, is a very valuable source of
ideas in machine code programming. Alan Tootill and David
Barrow of SUBSET are writing a book: 6502 Machine Code for
Humans which should be published early in 1984, and this could be
useful. Your Computer frequently prints articles on machine code
topics for the C 64, and you should watch out for listings which may
reveal the use of ROM routines that you haven't met before.
Remember, too, that a lot of published information regarding the
old PET models will be useful for the C 64.

The MIKRO 64 Assembler

The MIKRO 64 Assembler is distributed in Europe and the rest of
the world except USA and Canada by:

SUPERSOFT
Winchester House
Canning Road
Wealdstone
Harrow HA3 7SJ
UK

In the USA and Canada it is distributed by:

Skyles Electric Works
231 E S Whisman Road
Mountain View
CA 94041
USA

Appendix F 143

Index

65502, 7

A register, 41
absolute addressing, 44
absolute indexed, 46
accumulator, 41
accumulator actions, 52
accumulator counting, 79
address bus, 40
addresses, 5
addressing method, 41, 132, 138
arithmetic set, 8
assembler, 29, 31, 98
assembler directives, 112
assembly by hand, 56
assembly language, 30, 42
auto line numbering, 108

base address, 46
binary code, 3, 4
binary digit, I
binary numbers, 128
bit, I
bits of status register, 50
block diagram, 6
books, 142
borrow, 51
breakpoints, 100
bug, 98
byte, 3

carry bit, 51
carry flag, 51
CHR$,5
clear sound action, 118
clock, 28
clock-pulse generator, 28
CMP, 54
colour address, 96

comments, 59
compare, 54
compiler, 27
compiling, 27
complementing, 37
counter variable, 75
counting loop, 75
CPU, 6
crash, 57
current address, 49, 112

data bus, 40
data pins, 9
debugging, 98
decision, 65
decision step, 69
declare a variable, 15
decrement, 54
decrement index, 47
delete command, 108
denary byte numbers, 61
denary to hex, 34
denary-to-hex, 130
disassemble memory, 106
disassembled listing, 117
displacement, 56
displacement byte, 71
dollar sign, 32
dynamic allocation, 17

END,25
END line, III
end of RAM number, 57
endless loop, 29, 57
error messages, 29
exponent, 128

faulty loop, 101
field, III
filling entire screen, 86

filling the screen, 82
FIND command, 109
finding displacement byte, 71
flag register, 49
floating point number, 128
flowchart shapes, 65
flowcharts, 65

garbage, 14
gates, 28, 40

hashmark, 43
hex code, 30
hex scale, 32
hex to denary, 35
hex-binary table, 32
hex-to-denary, 130
hexadecimal, 30
holding loop, 75

immediate addressing, 43
incorrect jump, 99
increment, 54
increment action, 40
increment index, 47
indexed add ressing, 46
indexed addressing use, 62
indirect addressing, 48
indirect addressing example, 85
initialisation routine, 14
input/output, 65
instruction byte, 29
instruction set, 35, 132
integer form, 129
integer VL T, 22
integers, 21
internal code, 38
interpreted BASIC, 27
interrupt, 73

JSR,73
jump action, 9
jump set, 9
jump to subroutine, 73
junction box, 116

key beep routine, 116
keyboard buffer, 67
keyboard decode routine, 117
keyword, 12

label,70
label name, III
least significant digit, 3

Index 145

LET, 26
line number, 25
list of BRANCH instructions, 5~
load, 8
logic set, 9
long count, 80
loop, 47

machine code, 5, 28
magazines, 142
mantissa, 128
mantissa-exponent form, 128
memory, I
message routine, 95
microprocessor 28
MIKRO,98
MIKRO assembler, 31, 142
mnemonics, 42
monitor, 101
most significant digit, 3
MPU, 6, 28
multiply by two, 62

negative flag, 51
negative numbers, 35
negative sign, 37
nested loops, 77
next-line address, 25
ninth bit, 51
NUMBER command, 109
number scale, 30
number variable VL T, 18

offset, 49
operand, 42
operator, 42
origin, 59

pass of assembler, 113
patching, 116
PC register, 40
PC-relative addressing, 71
PEEK, 5
PHA,121
PLA,121
planning program, 65
port, 12,97
practical programs, 58
precision of number, 23
printing a character, 68
printing character set, 88
process, 65
processor status register, 49
program counter, 40

146 Index

program storage, 24
programmed device, 9
pseudo-ops, 112
pull accumulator, 121
push accumulator, 121

RAM, 4
RAM addresses, 140
read operation, 40
read signal, 40
reading, II
real number, 22
registers, 40
relative addressing, 49
renumbering routine, 122
reset, 50
return from subroutine, 58
ROM, 3
ROM addresses, 140
ROM listing, 100
rotation, 52
RTS,58
RUN action, 25

S register, 49
saving on tape, 90
scan keyboard, 73
screen displays, 38
set, 50
setting a breakpoint, 104
shift, 52
shift and rotate effects, 53
signed number, 37
significance, 3
silicon chip, 6
sound chip addresses, 117
source code, 113
sprite pointers, 87
stack, 58, 115
stack pointer, 49

states, I
status, 49
store, 8
string variable VL T, 19
subroutines, 14
SUBSET series, 100
syntax error, 26
SYS,57
system use, 15

terminator, 65, 93
test and branch, 55
text screen memory, 38
TIM menu, 103
TIM monitor, 102
time delay, 75
token, 4
two's complement, 36

unit of memory, I
unsigned number, 37
use of asterisk, 112
using MIKRO, 107

variable list table, 15
variables, 15
video loops, 82
VLT, 15

word, 112
writing, II

X-indirect, 85

Y -indirect, 85

zero flag, 51
zero page, 45
zero page addressing, 45
zero page indexed, 46

NOW . .. Announcing these other fine books from Prentice-Hall-

GRAPHICS FOR THE COMMODORE 64 COMPUTER by Jeff
Knapp. This collection of programs and programming tips will allow
beginning and advanced programmers to unlock the amazing graphics
capabilities of one of the hottest new computers. It's a hands-on guide
to the inner workings of the machine, providing BASIC programs for
use in games, business, and education. It also includes many charts to
help users understand what the Commodore 64 can do, plus end-result
programs and subroutines.

$14.95 paperback, $29.95 book/disk

MUSIC AND SOUND FOR THE COMMODORE 64@ by Bill L.
Behrendt. Now all owners of Commodore 64s can experiment with
one of the most interesting forms of art today-computer music,
sound, and speech synthesis! You'll learn how to use the machine's
Sound Interface Device, and how to write programs that emulate the
sounds of musical instruments. Includes complete documented mini­
music editor, plus programs that allow you to set up a desired sound
setting, enter note information, play the music, and more.

$14.95 paperback

To order these books, just complete the convenient order form below and mail to
Prentice-Hall, Inc., General Publishing Division, Attn. Addison Tredd, Englewood
Cliffs, N.J. 07632

Title Author Price~

Subtotal ____ _

Sales Tax (where applicable) ____ _

Postage & Handling (75¢/book) ____ _

Total $ ____ _

Please send me the books listed above. Enclosed is my check 0 Money
order 0 or, charge my VISA 0 MasterCard 0 Account /I _____ _

Credit card expiration date ______________ _
Name _____________________ ___

Address _____________________ _

City ______ _ State Zip _____ _

·Prices subject to change without notice. Please allow 4 weeks for delivery.

