SYMBOL MASTER™

Multi-Pass Symbolic Disassembler

for

Commodore 64
and

Commodore 128
(128 mode)

Serial No. 6 .27/

Schnedler Systems
1501 N. Ivanhoe St.
Arlington, VA 22205

(703) 237-4796

COPYRIGHT

The Symbol Master program and this maneel are baith
copyrighted under United States and International e byht
laws. All rights are reserved.

COPY PROTECTION

Despite dire warnings from others, Sywbaol Muntor In
not, and has never been, copy protected. Therc ate twee min
reasons: (1) I doubt there is a copy protection tichieme which
cannot be broken in any event, especially with a tool an
powerful as Symbol Master. (2) Particularly with a progammer'a
utility, copy protection often gets in the way of easc ol une.

I have assigned a higher priority to making Symbol Master oany
to use.

Since the disk is not copy protected, you are
encouraged to back it up for your own protection in the event
the disk becomes damaged. This does not authorize you to make
copies for any other purpose, as such action would clearly be
contrary to the copyright.

Finally, I like to believe that purchasers of this
product will respect the effort which went into it, and not
cheapen it by giving or trading it away. The original version
1.0 took five months to write, and the upgrade to version 2.0
took another five months. This involved extremely long periods
of intense effort. Would-be pirates should be aware, however,
that I am a full time practicing attorney specializing in
Patent, Trademark, Copyright, Trade Secret, and Unfair
Competition law, and related matters. I am a partner in the law
firm of Kerkam, Stowell, Kondracki & Clarke, 1235 Jefferson
Davis Highway, Suite 411, Arlington, Virginia 22202.

DISCLAIMER

Steven C. Schnedler and Schnedler Systems make no
warranties, express or implied, as to the quality, performance,
merchantability or fitness for any particular purpose of the
Symbol Master software and this manual. All risk relating to
its performance, reliability, and suitability for a given
purpose is with the buyer. We will not be held liable or
responsible for direct, indirect, incidental, or consecquential
damages resulting from any defect in the software or manual
under any condition.

SUPPORT
The above, of course, is for our own protection.
Nevertheless, we believe Symbol Master is a superior product,
and one you will find a valuable tool. We have fully supported
this program since its inception, and in the past we have
provided "bug fixes" to every customer at no charge. Please let
us know if you do have problems. We will do everything we can.
TRANSFER

Your name is on the disk. If we spelled your name
wrong, or if you wish to transfer ownership to another person,
send us back your original disk, with instructions, and we will
re-groove it at no charge.

Schnedler Systems
1501 N. Ivanhoe St.
Arlington, Virginia 22205
(703) 237-4796

Copyright (C) 1985 and 1986 Steven C. Schnedler

SYMBOL MASTER
Multi-Pass Symbolic Disassembler
for
Commodore 64
and

Commodore 128
("Native" 128/85@2 mode)

This edition of the Manual
Revised February 2, 1986
for
Symbol Master Version 2.0

Dedications:
To My Wife,

Without whose urgings Version 2.0
might never have been completed
and
To the PTD-651@ Symbolic Debugger,
The most amazing tool I have ever
used and without the power of which
neither Symbol Master 1.0 nor 2.0 might
not have been possible
Program and Manual by:

Steven C. Schnedler

SCHNEDLER SYSTEMS
1501 N. Ivanhoe St.
Arlington, Virginia 22205

(703) 237-4796

Copyright (C) 1985 and 1986 Steven C. Schnedler

All Rights Reserved

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

Chapter 12:
Chapter 13:

Chapter 14:

TABLE OF CONTENTS

QUICK START PROCEDUREc.i.conn. . 4-6
1.0 Preliminariescoiuiiniirinnnnnn .. 4
1.1 C64 Quick Startviiiiiiiinnnennnn 4
1.2 Cl128 Quick Startcoiiiiinan. .. 6

SYMBOL MASTER OVERVIEWcacnonnnn . 7-10
2.0 Description of a Symbolic Disasmembler .. 7
2.1 Symbol Master Disk Output7
2.2 Summary Of USe ..eevvernnnnnnnnennnnnnnn. 8
2.3 Other FeatUresceeeeeeeenennenneennans 19

ASSEMBLERS SUPPORTED ¢ cceetoeneosnananansnnnn 11-12
3.0 Introductory Commentseeeeueeenen. .11
3.1 The Assemblers More Specifically11
3.2 Relevant Consumer Information 12

EQUIPMENT CONFIGURATIONcvtveceeccceseenas 13
SYMBOL MASTER MEMORY USAGE -~ C64 Version ... 14-16

5.0 In generalceeceecercnticncnscccaneas 14
5.1 Zero-page Memory Usageceeecseeesas 15
5.2 Other Memory Areas Usedc.coceveeeess 15
5.3 Symbol Master Environmenteccoee0e0 15
5.4 Co-residency with other programs 16

SYMBOL MASTER MEMORY USAGE -- C128 Version 17
6.0 In Generalcieeeseeeersosccnsccccasas 17
6.1 RAM Bank @ Version ...ceceeveceecceooesss 17
6.2 RAM Bank 1 Version ...ceeeveescescesaesss 17

INTRODUCTION TO THE SYMBOL MASTER

COMMAND SCREEN EDITOR teeeeeceess 18-19
7.1 Overall Guidelinesicieeeeeeaes.. 18
7.2 Editor Screen Line Summaryc..... 19
7.3 Scope of Command Filec.cieeeeeeass 19

SCREEN EDITOR LINE 1 -- COMMAND INPUT LINE ...20-25
(Seventeen commands listed and described)

SCREEN EDITOR LINE 3

MISCELLANEOUS PARAMETER LINEc00000... 26
SCREEN EDITOR LINE 4

CONTROL AND EQUATE FILENAMES LINE 27
SCREEN EDITOR LINES 6-25

MEMORY BLOCK DEFINITION LINES pages 28-31
11.80 Formal Syntax Definition c.... 28
11.1 Effect of block filenames e... 29
11.2 Relationship of Block Memory Ranges 30
11.3 The "Fix" Commands ceieeieceaass 30
11.4 Tip on entering lines ceee.. 30
11.5 Inserting and deleting 31
11.6 ASCII Interpretation ee.... 31

DOS COMMANDS ¢ttt tenoneennnnecnnnnnanns ceeeae. 32

SYMBOL MASTER FILENAMEScc0cveeeeaseess. 33

ARBITRARILY GENERATED LABELSc.c.00.... 34=-35

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

15:

16:

17:

18:

19:

20:

21:

22

THE LABEL NAME EDITOR .¢¢veveeeessn et
15.080 General Concepts and Purpose
15.1 Single- and Two-Byte Named Labels
15.2 Brief Introduction to the Editor
15.3 Syntax of Label Name Entries
15.4 Entering, Deleting, Viewing
15.5 Label Editor Commands .«...e.eeeoveeeeaas
15.6 Provided Label Name Files
15.7 Miscellaneous NOtesSceeeececcanas

"BIT-SKIP" HANDLING ¢ttt veveeeosasecnnns ceeee

UNDOCUMENTED AND 65C@2 OP-CODES .«.etvvevcnnnn

17.1 The 65802 Undocumented Op-Codes
17.2 Modifying the Disassembler

17.3 The 65CO2 Documented Op-Codesc.....

PRELIMINARY INVESTIGATION
THE MODIFIED MACHINE-LANGUAGE MONITOR

18.1 The Machine-Language Monitor

18.2 The Added Commands ...eceeececsccnnssoses 47
18.3 Other Relevant CommandsSeceeeecacenn 48
18.4 Preliminary Investigation 48
18.5 Remaining Monitor Commandsc.oeeeeee. 49
AUTOBOOT PROGRAMS AND COPY PROTECTION 50-53
19.0 C-64 Autoboot Programseceeeeess ee.. 50
19.1 Caution on Load Addresses ce.. 51
19.2 Copy Protected Programse.ceceeveeess 51
19.3 Mangled Disk File Namesceeeveeneans 52
19.4 File Reading Programeoeeeeeveas eess 52
19.5 C-128 BoOt Programseeeeeeeeos veeees 53
SPECIFIC ASSEMBLER NOTESceeeeeevnn eeees 54=57
20.1 MAE Assembler ceetesevesnene «... 54
2@0.2 PAL64 Assemblereeeetenccccnns «ees 55
2@0.3 Develop=64 ..cecoeeennn cheertersec et tennan 55
20.4 Commodore AssSemblerc.teeeeeressesas 56
20.5 LADS ASSEMDler ..cieviverencnecncaasnnans 56
20.6 Merlin Assembler Ceeter et et ann 57
20.7 Panther Assemblercocuveaen ceeeeee. 57
PREPARED EXAMPLES ...cicceeeeeenn ceseeeetannne 58-69
MISCELLANEOUS NOTES ..t cvettrrecnnnneens vee.. 61-63
22.0 Further notes on disk I 2
22.1 Cl28 Capabilities cecsseessessunoann 61
22.2 C128 80-Column "Fast" Modeveeeueenn 61
22.3 Error conditionsc000000. P 3 §
22.4 Defining Blocks ettt . 62
22.5 Printing of Messageseeveevenenns . 62
22.6 Halting and Pausing Execution «e.. 63
22.7 Random TipsS «...e... seesacesanens veeeeees 63
22.8 Disassembling C64 Cardridge ROMs 63

CHAPTER 1: OQUICK START PROCEDURE

1.0 Preliminaries

This chapter is for anyone who want:s to start and do
something first, and read the explanation and documentation
later. However, even before doing the following procedures, we
suggest that you immediately make a working copy ol your Symbol
Master disk, and put the original safely away. Most everyone
has a disk back-up program by now. In case you don't, you will

find a slow, but reliable, public domain program entit led
"BACKUP 1541.BAS" on your Symbol Master disk.

The examples below take you through a disassembly of

Commodore's "DOS 5.1", which comes on the "Test/Demo" disk
packed with 1541 disk drives. If you have a disk drive, you
undoubtably already have "DOS 5.1". To be sure, a copy is

included on the Symbol Master disk. Even if you have onec, we
suggest that you use the one on the Symbol Master disk, in case
there are different versions. The first example is for the C-64
(or a C-128 in C-64 mode). The second example is for the C-128
in 128 mode.

There are several other more advanced examples later
in this documentation booklet, including disassembly of the
Basic ROM, the Kernal ROM, the 1541 disk drive ROM, and
disassembly of Symbol Master itself!

Two purposes are served by these and the later
examples. First, they do serve the "quick start" purpose
mentioned above. Second, the examples are selected with a view
towards illustrating various techniques. Symbol Master is a
powerful tool. A corollary to that power is that it accepts
many commands in support of the various options. Initially it
can seem quite complex, but you will quickly become comfortable
with it. You are urged to consider the purpose and effect of
every single line which appears on your editor screen relating
to these examples.

1.1 Commodore 64 Quick Start -- Example 1

(1) LOAD and RUN the Basic boot program
"BOOTSM64.BAS" :

LOAD "@:BOOTSM64.BAS",8

then
RUN

(2) Select menu option #3, Symbol Master at $O004.
The Boot program will then load "SM64EDITS$9.EXE", and then SYS

to its cold start address $99000 (9*4096 = 36814 decimal).
"SM64EDIT$9.EXE" will in turn automatically load two main
disassembler modules, "SM64S$D.EXE" and "SM64SA.EXE" under the
I/0 area and under Kernal and Basic ROMs.

Note: 1If in step (1) above you modify the Boot
program to load "SM64EDITS$x.EXE" from a disk device number other
than 8, specifically 9, 10 or 11, then the "SM64EDITS$n.EXE"
module will automatically use that device number to load the two
main modules.

(3) When loading is completed and you are presented
with the "Cold Start" message, press any key for the command
editor screen.

(4) With the cursor anywhere on the top screen line,
preferably the upper left corner, type the following and enter
using the RETURN key:

L "@:DOS 5.1"

This will do a normal Kernal LOAD of the DOS 5.1 program file
(the target code) from disk to memory starting at its normal
load address $CC@0 determined by the header consisting of the
first two bytes of the file. The ending address (plus one) will
be reported to you at the conclusion of the load, and the cursor
will be left on the following blank line. Any load error will
be reported as a Kernal I/O error number.

(5) With the cursor still on a blank line press the
RETURN key to re-initialize the screen editor, and clear the top
line for another command.

(6) Again on the top line, enter the following; note
quotes are not used this time:

G @:D0S5.1.CMD

This will Get an appropriate prepared "command" file from disk
with the same effect on the editor screen as though you had
typed it in. The screen will now have the precise instructions
needed to properly disassemble "DOS 5.1". (A "command" file
contains the parameters passed from the editor to the
disassembler itself telling the disassembler, among other
things, where in memory to find the code to be disassembled.)

(7) Clear the top line using either of these methods:
(a) Spacebar over all text and then run the cursor back; or (b)
SHIFT/CLR to clear the entire screen, and then RETURN to
re-initialize the Symbol Master editor.

(8) On the top line enter the following:
U @:DEFAULT64.LBL

This will load a prepared label name file into the disassembler
including label names to be used during the dissassembly.
(Using the separate Label Name Editor, described in a later
chapter, you can create and modify label name files appropriate
to particular disassemblies which you are doing.)

(9) The default assembler is MAE. If you use a
different assembler, change to that one now so that the
pseudo-ops generated on the listing will be ones familiar to
you: Run the cursor to the third screen line, the one which
presently reads "nn S A MAE", over the "M" in "MAE" and type the
three letters which name your assembler. With Symbol Master
Version 2.0, your other choices are PAL for PAL, D64 for
Develop-64, CBM for the Commodore Macro Assembler, LAD for LADS,
MER for Merlin, or PAN for Panther. Enter the assembler name
using the RETURN key.

(18) Run the cursor back to the top screen line,
clear the line using one of the methods in paragraph (7) above,
and then Run the disassembler by entering:

R

This command means Run, with default options. You will see the
disassembly output to the screen, followed by a cross referenced
label table.

(11) For a printer output of the same thing, enter on
the top screen line:

R PCX

The options following the Run command respectively mean output
to Printer, output disassembly of Code (including data tables),
and generate a cross-referenced (Xr) symbol table.

(12) If you prefer the printer outpul to skip over
perforations, position your printer page at. the top of a sheet,
and enter the following:

R PCXF

The additional option means to Format by inserting six blank
lines after every sixty printed lines.

(13) If you would like to generate a source code file
to disk, insert a formatted disk into your drive, and enter the
following command on the top line:

R D
The "D" option means output to disk. Your assembler will be

able to later read in and assemble the generated file, assuming
you selected the appropriate assembler option in step (7) above.

1.2 Commodore 128 Quick Start -- Example 2

The same example in C-128 mode is very similar. The
instructions here are briefer, and assume you have read the
above.)

(1) For this example, put the C-128 in the 40-column
mode. (80-column "fast" mode procedures are described in
Chapter 22.

(2) LOAD then RUN the program file "SM128/BANK@",
which for convenience is set up like a basic program file:

DLOAD "SM128/BANK@"

(3) After you enter RUN you will be presented with
the "Cold Start" message. Press any key for the command editor
screen.

(4) With the cursor anywhere on the top screen line,
preferably the upper left corner, enter:

L1 "@:DOS 5.1"

The only difference between this and the corresponding step (4)
of the C-64 example is the "1" after the "L". The effect of the
"1l" is to do a Load into C-128 RAM Bank 1, necessary to avoid
conflict since Symbol Master is in RAM Bank 0.

(5) Refer to the C-64 example above, and do steps
(5), (6), (7), (8) and (9) exactly the same way. The particular
RAM bank makes no difference.

(6) This should already be set for you, but refer
again to the third screen line. The second field of the
prepared example command file should be "1", which tells Symbol
Master which of the sixteen logical bank configurations to
disassemble from. "@" through "F" are acceptable entries. (The
usual default is "F".) The entry "1" is consistent with the
target code loaded into RAM bank 1.

(7) Referring again to the C-64 example, Run the

disassembler using steps (19), (11), (12), (13) and (14) in
exactly the same way.

-6 -

CHAPTER 2: SYMBOL MASTER OVERVIEW

2.0 Description of a Symbolic Disassembler

Nearly every programmer has a machine-language monitor
with simple disassembly capability, such as the modified version
of MICROMON included on the Symbol Master disk. Such programs
allow you to scroll forward and backward through memory while
viewing the op-codes and operands in hex, the 6502 instruction
set mnemonic, and the operand in hex. Lacking, however, are
labels on those program lines which are referenced by other
lines in the program. Machine-language monitors also
correspondingly include a simple assembler. A simple assembler
is satisfactory for very short programs and for program patches
during debugging, but for any significant programming work a
symbolic assembler is greatly preferred.

In general, a symbolic disassembler compares to a
simple disassembler in the same way that a symbolic assembler
compares to a simple assembler in a machine-language monitor.

A symbolic disassembler assigns lables to those lines

which are referenced by other lines, and uses those same lables
in the referencing lines.

2.1 Symbol Master Disk Output

A significant feature of Symbol Master is its ability
to rapidly generate source code files to disk which can in turn
then be read by your assembler. Using your assembler's editor,
generated labels can be changed to more meaningful names as you
begin to understand the code. (You can also use the label name
editor to minimize this step.) Most assembler editors have
search and replace capability which allows you to automatically
go through a source code file and reliably change all
occurrances of a given label to a name of your choice. Comments
can be added. Instructions can be inserted and deleted, and the
program generally modified. Programs can be re-assembled to a
different origin address. Portions can be incorporated into
your own programs.

Symbol Master optionally generates source code files
directly compatible with each of the assemblers supported. This
means that the files are of the right type, and the appropriate
pseudo-ops are used. The result is indistinguishable from a
source code file generated by the assembler's own editor itself.
Except in rare cases, Symbol Master source code file output can
be immediately re-assembled using your assembler to exactly
recreate the object code Symbol Master started with.

Another disk output option, available with each
assembler option, is to generate a single file (S option) or
multiple files (M option). The Single file option is used for
relatively shorter programs, and results in a single source code
file which includes the equates, the code, and any data tables.
The Multiple file option is used for relatively longer programs,
and avoids generating source code files which are too long for
your assembler to handle in memory all at once. Even if your
assembler can handle long files, for editing purposes it is
usually less cumbersome to break a the source code of a program
into smaller file modules.

-7 -

With the Multiple file option, a Control file and an
Equate file are generated, and at least one Module file. You
select where one module is to end, and the next to begin. There
are really no constraints in this regard insofar as Symbol
Master is concerned. Significantly, you can switch between
blocks of code and blocks of data tables without causing a new
file to be generated, unless you wish. You indicate the
beginning of a new file by assigning a file name on the block
line.

We recommend that you limit each of your files to 1K
of object code, or less. Counting in hex, it is often difficult
to keep track of how much 1K is. For example, from $1800 to
S1FFF is 4K. Presented below are the boundaries of the four 1K
portions of this 4K:

$10@@ through $13FF
$1400 through $17FF
$1800 through $1BFF
$1C@93 through $1FFF

2.2 Summary of Use

To use Symbol Master in the C-64, the editor version
you select is loaded into a 4K block of memory and cold started.
For convenience, four versions are included, identical except
for where they load: $109@ through $1FFF, $8000 through $8FFF,
$90@@ through $9FFF, and $C@PJ through $CFFF. The editor in
turn loads the main disassembler portions to RAM under the Basic
and Kernal ROMs, and under the I/O area.

There are two versions for the C-128. The RAM Bank @
version loads beginning at §$1CP1, the start of the text area for
Basic programs. The cold start address is $1Cl12 (decimal 7186).
The RAM Bank 1 version loads beginning at $0400, and the cold
start address is also $0400 (decimal 1024). Either C-128
version uses all of the RAM in the particular bank in which it
is loaded (although the higher RAM will remain untouched unless
you are doing an extremely long disassembly which generates a
large label table), and can disassemble from any of the 16
logical bank configurations, including its own.

From the Symbol Master command screen, the target
program is loaded into RAM for study. The target program can be
loaded either to where it normally loads as determined by its
own two-byte header, or it can be loaded to any specified
starting address. Symbol Master can correctly disassemble
programs, even if they are loaded other than where they are
intended to run, by automatically applying an offset correction.
This is a particularly useful capability when studying automatic
"Boot" programs which in the C-64 are normally loaded from Basic
via

LOAD "<filename>",8,1

and which then proceed to literally take over control of your
computer.

Thus Symbol Master and the target program for study
are co-resident in memory. In addition, it is useful to also
have a machine-language monitor program in memory, such as the
included specially-modified version of MICROMON (C-64 only).

Symbol Master does not disassemble directly from disk
files, and there are good reasons for this. A significant
reason is speed. In order to do everything it does, Symbol
Master always makes at least four passes through the code being
disassembled, five passes for MAE. To read through a disk file
this many times could be quite time consuming. Moreover, when
generating the optional cross-referenced label listing, Symbol

Master passes through the entire target code once for each
label. Another reason is that the "header" written as the first
two bytes of a program file is usually, but not always, the load
address. Program files can be loaded via the Kernal LOAD
routine to any address when a relocated load is selected. Copy
protection schemes often do this. Yet another reason is that
Symbol Master's approach allows you to correctly disassemble
programs which have data tables embedded between blocks of code.
A further reason is that Symbol Master can disassemble together
blocks of code which run together, but which are not contiguous
in memory.

If you load the Symbol Master editor in the C-64 at
$CPPP through $CFFF, this leaves $0800 through $9FFF free for
your target programs for study. This is 38K. In most cases you
will also want to load MICROMON at either $10@@ through $1FFF or
$9000 through $9FFF, which will still leave at least 32K for
your target programs under study. In the C-128, Symbol Master
will reside in either RAM bank, leaving the entire other RAM
bank for target code. Again, it is not necessary for a target
program to be loaded where it normally runs. Symbol Master has
the capability of automatically applying an offset to make the
necessary adjustment as it examines each instruction.

At some point, the simple disassembler in MICROMON (or
the C-128 MONITOR) is used to locate those parts of the program
which do not disassemble correctly, i.e., are data tables. The
starting and ending address of each block of code and data
tables are noted. Care should be taken at transistion points,
particularly when switching from data tables to code, to
determine the precise address where code begins. The particular
starting address selected can make the difference between a
correct disassembly from the beginning, and junk bytes to start.

Symbol Master does not mind going through data tables
after being told they are code. However, the results will not
be meaningful to you, and the generated list of equates to
external label references will be cluttered with spurious
labels.

When looking at the data tables with MICROMON, try to
determine whether they are ASCII data or not, and whether they
are two-byte Word data or three-byte Table data. Each of these
is an option to specify to Symbol Master. Also, Symbol Master
should definitely be sent through data tables, because Symbol
Master will assign labels to those bytes which are referenced by
instructions in the blocks of code. The bytes themselves will
be left in hex byte form, with ASCII interpretation in the
comment field if this option is selected. Moreover .WORD tables
(two-byte address constants) will cause Symbol Master to
generate a proper label applicable to each byte referenced by a
.WORD entry, often a routine entry.

When this is completed, the starting and ending
addresses of each block are given to Symbol Master using the
screen editor portion below the dash line. Each line is for one
block. Twenty lines fit on the screen at once. If more than
twenty are used, the window will scroll up and down via the
cursor up/down key, up to the maximum of 99 blocks.

All of this information entered to the screen editor
can be saved to disk via the "P" command, for Put. It can be
retrieved for later modification via the "G" command, for Get.
Thus, if you are working out a complex disassembly, your efforts
can be saved between sessions. Also, you can dump the entire
editor screen to your printer via the "H" command, for Hardcopy.

There are several other optional choices to make,
discussed below in the Screen Editor Section, and you are then
ready for disassembly to the output device of your choice:
Screen, printer or disk. The cross-referenced label table can
be output to the Screen or Printer.

It is always best to direct the output first to the
screen, to see if any commands need to be changed. The display
can be slowed down with the CTRL key, or paused with the STOP
key and restarted with RETURN. In the C-128, the "NO SCROLL"
key also works. Or the screen output display can be paused with
the STOP key, and then aborted with the DEL key, which returns
via warm start to the editor. You will find Symbol Master to be
quite fast, and this facilitates iteration to find the best
instructions to issue to the disassembler for the most
meaningful disassembly.

CAUTION. With prirter and disk output there is no
pause and restart option. The STOP key causes an abort. You
may have to press the STOP key several times because it is not
scanned very often while the serial bus is active, particularly
to the printer.

2.3 Other Features

Symbol Master has many convenience features which you
will grow to appreciate. Some of these are briefly mentioned
below, and described in detail later:

(1) A scrolling, full-screen editor for entering your
instructions.

(2) A built-in wedge-like DOS manager invoked using
either "@" or ">". This allows reading the disk directory at
any time, reading the error channel at any time, and sending
commands via the command channel #15 at any time.

(3) Meaningful error messages during execution. For
example, if DOS reports a "FILE EXISTS" error, the message will
be printed to the screen.

(4) As already mentioned, the ability to save your
editor command files to disk (Put), and to retrieve them later
(Get). The included examples take advantage of the Get command
so you can load editor screens which we have prepared.

(5) The ability to load target routines to either
their header address, or to a relocated address you specify. 1In
either case, the ending address (plus one) is reported to you.

(6) The ablilty to generate a cross referenced symbol
table, which is a list of all addresses referenced by the
program, the assigned labels, and the addresses of all
instructions which reference that particular address. It is an
extremely powerful tool when you need it, as it allows you to
instantly locate every call to any particular subroutine, and
every reference to any particular variable, without having to
search the code by hand. It is even quite useful in analyzing
your own programs.

(7) The ability to import your own label names to be
used in the disassembly.

- 19 -

CHAPTER 3: ASSEMBLERS SUPPORTED

3.0 Introductory Comments

Symbol Master supports seven assemblers by generating
compatible source code files and writing to disk:

1. MAE

2. PAL 64

3. Develop 64 (Machine Shop?)
4. CBM

5. LADS

6. Merlin 64

7. Panther

These are all C-64 assemblers, but presumably some
will be converted to the C-128, and likely will have upwardly
compatible source files. Since disk files are compatible
between the C-64 and C-128, these assemblers can all be used to
write programs for the C-128. The Symbol Master C-128 version
was in fact written on a C-64 using MAE64 Version 5.0, and the
resultant file then loaded into the C-128.

As assemblers specifically for the C-128 become
available, we will likely add them to the C-128 version of
Symbol Master, where available memory is not of particular
concern.

Even if your assembler is not listed here, it is
highly likely Symbol Master can be used with it. We suggest
trying either the CBM-format file, which is a straightforward
sequential file, or the PAL-format file, which is set up to load
as a Basic program file (although it is not tokenized). Likely
only slight editing, and perhaps changing some pseudo-ops, will
be all that is required. Moreover, many assembler packages
include conversion programs to convert from CBM-format source
code files.

In each case below, the three letter name is the
abbreviation used to specify that particular assembler to Symbol
Master (on screen editor line 3). In most cases it is also the
name of the assembler.

3.1 The Assemblers More Specifically

(1) MAE -- The MAE Macro Assembler/Text Editor. From
Eastern House Software, 3239 Linda Drive Dr., Winston-Salem,
N.C. 27106. Telephone (919) 748-8446.

MAE is our personal favorite, despite its relative
slowness compared to some of the others. For that reason, we
have added MAE to the Schnedler Systems product line. Symbol
Master and the PTD-6510 Symbolic Debugger were both written
using the MAE assembler, Version 5.0.

MAE64 Version 5.9 is the only C64 assembler we are
aware of which recognizes the additional mnemonics and
addressing modes of the enhanced 65C@2 instruction set, which
Symbol Master Version 2.0 optionally disassembles. The MSD disk
drives, for example, use an enhanced version of the 6502 which
employs a subset of the full 65C@2 instruction set.

(2) PAL -- PAL 64. From Pro-Line Software Ltd., 755

The Queensway East, Unit 8, Mississauga, Ontaria, L4Y-4C5.
Telephone (416) 273-6350.

- 11 -

(3) D64 -- Develop-64. From French Silk, P.O. Box
7@96, Minneapolis, MN 55487. Telephone (800) 328-0145, or
(612) 871-4505 in Minnesota. This company has apparently been
re-incarnated as FS! Software. Although we do not actually have
one, we suspect this assembler is included in a product they are
calling "Machine Shop". Symbol Master defaults to Develop-64
version 4.0 and above files. As an included option, the
slightly different Develop-64 version 3.0 series source code
files can be generated. If you have a version of Develop-64
below 4.9, it would definitely be worth it to check with them
regarding an upgrade. ’

(4) CBM -- The Commodore 64 Macro Assembler
Development System. Published by Commodore Business Machines,
Inc., 1200 Wilson Drive, West Chester, PA 19380. Avaliable
through Commodore software dealers.

(5) LAD -- The Commodore LADS Assembler, from "The
Second Book of Machine Language", by Richard Mansfield,
published by COMPUTE! Publications, Inc., P.O. Box 5406,
Greensboro, NC 27483. Telephone (919) 275-9809.

(6) MER -- Merlin 64. Produced by Roger Wagner
Publishing, Inc., 10761 Woodside Avenue, Suite E, Santee, CA
92@871. Telephone (619) 562-3679.

(7) PAN -- Panther C64 Assembler. This was published
by Panther Computer Corporation Corporation, 12021 Wilshire
Boulevard, Los Angeles, CA 90025. Although we believe it is no
longer available, those who have it seem to like it, as it is
especially fast.

3.2 Relevant Consumer Information

Copy-protected assemblers: Develop 64 and Panther.

Unprotected assemblers: MAE, PAL, CBM, LADS and
Merlin.

- 12 -

CHAPTER 4: EQUIPMENT CONFIGURATION

Beginning with Version 2.4, the Symbol Master package
includes both: (1) A C-64 version which runs on the Commodore
64 computer, the "portable" version SX-64 (sometimes EX-64), and
the Commodore-128 in its C-64 mode; and (2) a C-128 version
which runs on the Commodore 128 computer in its native 128 mode.
While the 40-column screen editor was written first, it is our
intention to complete the 8@-column screen editor for the C-128
version. Check the "LIST ME" file on the disk for current
information.

A 1541, 1571 or compatible disk drive is required.
With the C-128/1571 combination, the "fast" serial bus routines
are fully operative. Since Symbol Master is not copy protected
and uses only ordinary files, compatibility is highly unlkely to
be a problem with any disk drive sold for use with Commodore
computers. Device numbers 8, 9, 1@ and 11 can be used for
loading Symbol Master. While the initial default is device 8,
for subsequent disk operations device numbers 8, 9, 10 and 11
can be used, and the current device number can be changed
changed at will.

Selection of either Drive 8 (@:<filename>) or Drive 1
(l:<filename>) is supported and, indeed, we encourage use of
this form. “"Save with replace" (@@:<filename>) is supported for
all disk file operations, if you dare use it. Recent magazine
articles have advocated consistent use of the Drive number to
avoid the "save with replace" bug in Commodore disk drives.

Dual disk drives are thus supported, and we ourselves
use an MSD SD-2 dual disk drive.

Symbol Master is written with the expectation that the
disk drive is connected in a normal manner to the serial bus.
Symbol Master makes extensive use of the direct serial bus
agcess routines, such as "LISTEN", "SECOND", "CIOUT", and the
corresponding routines for input. Nevertheless, we have used
Symbol Master on the C-64 with two different IEEE interface
cards (not at the same time) in conjunction with the MSD disk
drive, and experienced no problems. The two are the Bus Card II
from Batteries Included, and the Quicksilver from Skyles
Electric Works. (We have, however, experienced problems when
using MICROMON with the IEEE interface cards.

Once Symbol Master is loaded its disk is no longer
required, so your drive is fully available for the disk with the
target program you are studying, or the disk to which you will
be writing source code files.

A printer is optional, but highly recomended. The
printer must be assigned Device #4 and likewise be connected in
a normal manner to the serial bus. We have not tried any
printers through the IEEE card. We have tested Symbol Master
with both a Commodore 1525 printer (now MPS 801) connected
directly to the serial bus, and a Centronics parallel input
printer interfaced to the serial bus via a Cardco interface
intended for that purpose. Both the Cardco "B" and the Cardco
"G" work, and we would expect any interface which emulates a
Commodore printer to work.

" Symbol Master includes routines for reading target
program files from cassette tape (Device #1). However, those
routines have not been tested. In any event, you can read tape
files in from Basic, and then enter Symbol Master via cold or
warm start.

- 13 -

CHAPTER 5: SYMBOL MASTER MEMORY USAGE -- C64 VERSION

5.9 In General

Symbol Master in the C64 is a 24K system. However,
20K of this is under the Basic and Kernal ROMs, and under the
I/0 registers from $D@@PJ through $DFFF. Thus only 4K is taken
from normal program space. Approximately 12K is code and data
tables. The other 12K is for variable arrays, including a
7500-byte label table generated during each disassembly
(capacity 2509 labels) and a command file buffer.

The 7500-byte area for the label table is shared by
user label names imported into the disassembler, and the 7500
bytes is the combined total available. Thus as longer lists of
label names are read into the disassembler, the label capacity
decreases. Each label name requires from three to nine bytes of
memory, two bytes for the hex value, and from one to six bytes
for the ASCII name. Each entry in Symbol Master's internal
label table requires three bytes.

Symbol Master in the C64 includes two distinct
portions, the editor and the main disassembler modules.

The editor portion of Symbol Master is provided in
four separate versions, which are identical except for where
they load. The respective address ranges, cold start addresses,
and warm start addresses are as follows. The cold and warm
start addresses are given both in decimal for use with the Basic
SYS command, and in hex for use with the MICROMON .G command:

LOAD ADDRESS COLD START ADDRESS WARM START ADDRESS

$1000-$1FFF SYS 4096 or .G 1000 SYS 4099 or .G 1003
$8000-$8FFF SYS 32768 or .G 8000 SYS 32771 or .G 8003
$9000-$9FFF SYS 36864 or .G 9000 SYS 36867 or .G 9003
$CPOY~-$COBD SYS 49152 or .G CO09 SYS 49155 or .G CO@9

In each case, the editor address range is implied by
the filename. Thus "SM64EDIT$1.EXE" loads beginning at $1009,
and is the first on the above list. The warm start address is
always three more than the cold start address. Each Editor
protects itself from Basic if necessary.

Rather than memorizing the SYS addresses above if you
are entering from basic, the following equivalent can be used:

LOAD ADDRESS COLD START ADDRESS WARM START ADDRESS
$10099-$1FFF SYS 4096 SYS 4096 + 3
$8000-S$8FFF SYS 4096 * 8 SYS 4096 * 8 + 3
$9000-$9FFF SYS 4@96 * 9 SYS 4096 * 9 + 3
$COBI-$COB0D SYS 4096 * 12 SYS 4096 * 12 + 3

The selected editor can be loaded by any one of three
separate methods, at your option:

(1) The Basic direct-mode load command:
LOAD "@:<filename>",8,1. Follow this with a SYS to the
appropriate cold start address. This procedure leaves Basic's
pointers disturbed, so you will have to enter a NEW after the
load to avoid a later "out of memory" error.

(2) Via the supplied boot program "BOOTSM64.BAS". The

boot program will then automatically SYS to the appropriate cold
start address.

- 14 -

(3) From the machine-language monitor:
.L "@:<filename>". Follow this with a .G hhhh to the
appropriate cold start address.

The editor will then automatically load the main
modules. The main modules are the same regardless of the
particular editor version selected. The file "SM64$A.EXE" loads
under the Basic ROM beginning at $AG@@. Following this module,
but still under the Basic ROM, is the command file area, which
extends nearly to $BFFF. The file "SM64$D.EXE" goes under the
I/0, and extends partly under the Kernal ROM. Following that,
up to $FFFQ@, is a 7500-byte area in which Symbol Master
maintains its label table, shared by the imported label name
list.

Not only does the editor load the main modules and
provide for convenient entry of commands; it also drives the
main disassembler. The main disassembler modules require the
editor for support. They are not executable by themselves.

5.1 Zero-Page Memory Usage

Symbol Master makes extensive usage of zero page
memory locations for its own purposes. However, in order to
allow Symbol Master to be co-resident with other C64 programs,
such as the machine-language monitor, programs in Basic, or an
assembler, the entire zero page is saved to a swap area upon
entry, and then restored upon exit from Symbol Master.

5.2 Other Memory Areas Used

Symbol Master uses essentially no RAM outside the
ranges already mentioned above. In particular, the cassette
buffer is not used, and the lower addresses on the Stack page 1
are not used. Symbol Master uses the stack only in the normal
manner, for subroutine calls and as an occasional save location.
Symbol Master does reset the stack pointer following entry.

e Upon cold start entry, Symbol Master resets the Basic
pointers to protect Symbol Master from Basic should you later
exit to Basic. If you have not used the boot program
"BOOTSM64.BAS", upon exiting to Basic for the first time, in
direct mode you should enter NEW. A Basic "out of memory" error
will otherwise likely result.

5.3 Symbol Master Environment

Symbol Master exists entirely independently of the
Basic ROM, which in fact is banked out immediately when the
Symbol Master editor is entered. (A normal exit from Symbol
Master banks the Basic ROM back in.) Symbol Master does use
several Kernal ROM routines, the documented ones where possible.

While the editor is active the Basic ROM is out, the
Kernal ROM and I/O are in, and the IRQ interrupt is generally
enabled. When the main disassembler is active, the Kernal and
I/0 are also banked out with interrupts off most of the time.
When a line of output is ready to be generated, the Kernal, I/O
and IRQ interrupts are momentarily turned on again.

Symbol Master changes the IRQ vector "CINV" at
$@314,$0315, but restores this vector upon normal exit. This is
an important aspect for full co-residency with a
machine-language monitor, and other programs as well.

The NMI vector "NMINV" at $0318,$0319 is not disturbed
at all by Symbol Master. The RESTORE key (which causes an NMI)
should not be used while Symbol Master is running. An exit from
Symbol Master via RUN/STOP/RESTORE will leave zero page quite
scrambled, with little chance of recovery.

5.4 Co-residency with Other Programs

As implied above, Symbol Master can be co-resident
with any program which does not use the same memory. Moreover,
Symbol Master can be exited and re-entered via the warm start
address at will, with no loss of your command screen. This of
course is a great convenience because it avoids the need to
repeatedly Load in programs as you go from one to the other.

Most notably, Symbol Master can be co-resident with a
machine language monitor, such as the supplied MICROMON.

Symbol Master can be co-resident with either the PAL
assembler, the MAE assembler (MAE Version 3.0 easily, and MAE
Version 5.0 if you use care), or the LADS assembler. It works
best to first load and cold start Symbol Master, exit to Basic,
enter NEW, and then load the assembler. Re-enter Symbol Master
via the warm-start SYS address. To go from Symbol Master to
PAL, just exit to Basic, since PAL exists in the BASIC
environment. To go from Symbol Master to MAE, first exit to
Basic and then SYS to either the MAE cold start address $5000
(SYS 20480) or the MAE warm start address $5003 (SYS 20483).
Alternatively, you can exit to and go through the
machine-language monitor.

Symbol Master at $C@0@ can probably be co-resident
with the CBM assembler, but not the CBM editor, if you would
want to try it. Symbol Master at $900@ can probably be
co-resident with the CBM editor, and perhaps with the
ASSEMBLER64.

While file-compatible with Develop-64, Symbol Master
cannot be co-resident with Develop-64 because Develop-64 also
uses the RAM under the Basic ROM. Also, Develop-64 is too
heavily protected to be easily exited and re-entered without
reloading.

While we have not tried them, we suspect a similiar
conflict would exist with Merlin or Panther and Symbol Master in
memory at the same time.

Symbol Master in the C64 is compatible with its own
label name editor (which is a separate program) in memory at the
same time, but Symbol Master should be loaded at $8000, $9000 or
$CO0BA, since the label name editor always loads at $@801.

Symbol Master and its label name editor communicate with each
other only through disk files.

- 16 -

CHAPTER 6: SYMBOL MASTER MEMORY USAGE -- C128 VERSION

6.9 In General

The Symbol Master file structure in the C128 (128
mode) is much more straightforward because each of the two
Symbol Master versions (for RAM Bank @ or RAM Bank 1) is
self-contained as a single load file. Either of the versions
can disassemble from any of the 16 logical Bank configurations
$@ through $F which Commodore has defined.

Symbol Master in the C128 is not intended to be
co-resident with programs in Basic, although Basic direct-mode
commands can still be used. It is compatible with the built-in
Monitor in the C128, and you can freely pass between the two.

Symbol Master in the C128, unlike the C64 version,
makes no attempt to protect itself from Basic by changing
Basic's pointers. Accordingly, more care must be used to avoid
clobbering the Symbol Master code. Particularly in the Bank 1
version, avoid creating any Basic variables. Even in Basic
direct mode, a syntax error seems to cause memory in RAM Bank 1
to be altered beginning at $0409, overwriting Symbol Master
code.

6.1 RAM Bank @ Version

The file "SM128/BANK@" is LOADed and RUN like a Basic
program. If you LIST it, you will see a one-line Basic program
with a SYS to the cold-start address 7186 decimal, which is
$1C12 hex. The corresponding warm start address is 7189
decimal, which is $1Cl15 hex, and can be re-entered either by
SYS 7189 from Basic, or G @1C1l5 from the Monitor.

To Load from Basic direct mode:
DLOAD "SM128/BANK@Z", followed by RUN

Since Symbol Master in Bank @ loads to the start of
the Basic text area, be certain you do not invoke the Basic
GRAPHIC command which shifts the start of Basic.

The Bank O version loads ending at approximately $4FFF
in Bank @. Following that are program variables, followed in
turn by a vast area, in excess of 40,000 bytes, for the label
names and label table. Symbol Master will use all of RAM Bank @
up to $FEFF, if necessary. However, it always works upward, so
it is probably safe to use the higher areas of memory.

6.2 RAM Bank 1 Version

Loading of the file "SM128/BANK1" is straightforward
from Basic direct mode:

BLOAD "SM128/BANK1", Bl

The cold start address, in Bank 1 is $8400@, which is
decimal 1424. The warm start address is $0403, which is decimal
1027. The Bank 1 version is longer than the Bank 0 version, but
it starts at a lower address, and leaves even more memory free
at the end, in this case in RAM Bank 1.

To cold start from Basic direct mode:

BANK 1: SYS 1024.

To subsequently warm start from the Monitor: G 10403

- 17 -

CHAPTER 7: INTRODUCTION TO THE
SYMBOL MASTER COMMAND SCREEN EDITOR

The command screen editor is one of the things which
makes Symbol Master so easy to use. This chapter briefly
introduces the editor and the various lines on it. The
following chapters treat individual lines and areas of the
editor screen in detail.

The C64 and Cl128 versions are nearly identical. There
is one difference, and that is the C128 version requires you to
select the logical bank configuration to disassemble from.
Details of this are given in Chapter 9, which describes screen
editor line 3 in detail. The present Chapter 7 applies to both
the C64 and Cl128 versions.

There is another screen editor included as a separate
program. That is the Label Name Editor covered in Chapter 13,
and is used to generate and modify label name files to use in
the disassembly.

7.1 Overall Guidelines

Here are a few things to have in mind at the outset:

(1) The editor is a full screen editor, with full
cursor movement, and entry of .any line by pressing RETURN with
the cursor anywhere on that line.

(2) Line 5 is a divider line. The cursor will move
freely from above the divider line to below, but may appear to
be trapped below the line. The reason is that the entire screen
below the divider line becomes an up and down scrolling window
when there are more than 20 block lines below the divider line.

To get the cursor back above the line, simply use the
HOME key. An alternative is to use SHIFT/CLR, followed by
RETURN. Another alternative is to put the cursor on any blank
line and press RETURN.

(3) The editor can be re-initialized at any time with
no loss of entered information by pressing RETURN with the
cursor on any blank line. A quicker way sometimes is to clear
the screen with SHIFT/CLR, and then RETURN. Re-initializing the
editor has the effect of filling the screen with your entered
instructions as they have been interpreted and stored by the
editor. To be sure everything has been entered correctly, it is
a good idea to re-initialize the editor and review the screen
before Running the disassembler with the "R" command.

(4) As you enter each line, the following process
occurs: The screen line is scanned from left to right, while
the editor interprets and stores the information. If a syntax
error is encountered, scanning stops, and a question mark (?) is
printed on the line following the point where the syntax error
was encountered. Following a successful scan, the screen line
is cleared entirely, then rewritten from memory. You will see
the line flash. This is your assurance that your entered line
has been accepted.

(5) Lines are limited to 39 characters in length, and
all the syntaxes are defined so that this limitation need not be
exceeded. If you do, the editor may become confused, and have
to be reinitialized as described in (3) above.

(6) Sometimes, following a syntax error, the editor
will refuse to accept the line even after you retype it
correctly. The reason is that scanning is beginning at some
intermediate point on the screen line. The solution is to

- 18 -

reinitialize as described in (3) above. We believe, however,
that this has been largely corrected in Symbol Master Version
2.0.

(7) Upon warm start to Symbol Master, the editor
screen you had on last exiting will still be there.

(8) Caution: Do not use the RESTORE key. The
RUN/STOP/RESTORE combination will attempt to send you to Basic,
but the Basic ROM will not be in and zero-page will be messed
up. Recovery is unlikely. There are three proper ways to exit
the Symbol Master editor, use them: "B" -- Break to monitor; "X"
-- eXit to basic; and "K" -- Kill, cold start the computer.

7.2 Editor Screen Line Summary

The individual editor lines are described in detail in
the next four chapters of this documentation. Here is a brief
list:

Line 1 -- (Top line) Command input line. All direct
mode commands for immediate execution are entered on this line.

Line 2 -- Output line. Symbol Master output messages,
including DOS command channel messages, are output to this line.
Inputs are not accepted.

Line 3 -- Miscellaneous parameter line. Here is where
you enter several parameters relating to the program you are
disassembling.

Line 4 -- Control and Equate file name line.

Line 5 -- Divider line. Inputs are not accepted.

Lines 6-25 -- Block lines. Here is where you enter
parameters telling Symbol Master where to find the code to
disassemble, its type, and filenames to assign if writing to

disk. These lines are the scrolling window, which you will see
when there are more than twenty blocks.

7.3 Scope of Command File

All of the information on editor screen lines 3
through 25 is part of the command file which is stored in
encoded form under the Basic ROM (in the C64). This file can be
saved to disk using the "P" (Put) command on line 1, and later
retrieved using the "G" (Get) command. Command files can also
be combined using the "A" (Append) command.

The disassembly examples we have included use this
feature. You can Get them, and avoid typing.

Commands you enter on editor screen line 1 are
transient, and are not part of the command file.

We have adopted the filename extension ".CMD" to
designate command files Put to disk. This is not a requirement,
though, and a command file name can be anything, except embedded
spaces are not permitted.

Command files are written to disk as SEQuential files.

Command files are completely compatible between the
C64 and Cl28 versions of Symbol Master. Command files created
with earlier Symbol Master versions 1.8, 1.1 and 1.2 are
upwardly compatible, but not the converse: You cannot create a
command file with version 2.0 and go back to your version 1.0
Symbol Master, in case you have upgraded.

- 19 -~

CHAPTER 8: SCREEN EDITOR LINE 1 -- COMMAND INPUT LINE

Each command is started with a single letter or
character from the list below as the first character on the
line. Do not use more than one character to indicate the
command. I.e., for Get use just G, not GET.

Some of the commands have further parameters, and
these follow the command letter or character. A space between
the command letter or character and the further parameters is
optional.

They all have the same syntax and effect for both the
C64 and C128 versions, with the exception of the "L" (Load)
command. The Cl128 requires the RAM Bank to be specified, .

The commands are listed first, and then each is
described:

-- Abpend command file.

-- Do a break, usually to monitor.

~- Clear command file in memory.

-- Fix Column 2 or 3.

-- Get command file from disk.

-- Print a Hardcopy of the command file
on printer device #4.

-- Kill. Cold start the computer.

-- Load target routine.

Memory bytes left.

—-= Null label name list in memory.
-- Put command file to disk.

-- Run the disassembler.

-- Read in User label name file.

-- eXit to Basic.

-- DOS command.

-- DOS command. Same as @.

-- Change current disk device number.

#FVEOXCIHUZIZICOR Taoamoww
1
1

A -- Append Command file

Syntax:
A "@:<filename>" Note: <> enclose required
or parameters, but the
A @:<filename> <> are not themselves
or entered.

A@:<filename>

Similiar to Get, below, except retains the previous
command file on the screen, appending to the end. The header
information (everything above divider line 5) from the file
being read in is ignored, and the information originally on
Lines 3 and 4 remains, except the block count (first entry on
Line 3) is updated. If the new block count would exceed 99, the
append is not done, an overflow message is generated, and the
original information on the screen remains unharmed. The total
blocks there would have been if the overflow had not been
trapped (a number greater than 99) is reported.

- 20 -

B -- Do a Break (to monitor)

There are no parameters.

Zero page and the IRQ vector are restored to what they
were upon cold or warm start entry to Symbol Master. The Basic
and Kernal ROMs are banked in (C64), or the system configuration
is restored (C128). 1IRQ interrupts are enabled. A break
instruction is executed. In the C64, if a machine-language
monitor is in place and has been initialized, it will be
entered. Otherwise Basic will be entered via the RESTORE entry.
(Warning: Never use the RESTORE key itself when in Symbol
Master). In the C128, the Monitor will be entered.

C -- Clear Command File

There are no parameters.

Clears the command file in memory to the cold start

default.
F -- Fix Column 2 or 3
Syntax:
F2
or
F3
or
F3 hhhh

Saves a lot of entering numbers by hand by
automatically generating columns 2 and 3 of the memory block
definition lines. I can't believe I didn't think of this
earlier to include in Version 1.0.

The detailed explanation of the "Fix" command is given
in Chapter 11 concerning the memory block definition lines,
because that is is the context in which it will make sense.

G -- Get Command File
Syntax:
G "@:<filename>" Note: Again, the <> enclose the
or required parameters, but
G <filename> are not actually entered.
or
G<filename>

Gets a new command file from disk and re-initializes
the screen with the new file. Anything previously on the screen
is overwritten. See above for the append function (A).

H -- Hardcopy of Command file

There are no parameters.

Dumps the entire command file to printer device #4,
starting with screen line 3.

- 21 -

K -- Kill, Cold Start via Software Reset.

There are no parameters. However, since this is a
rather drastic action, you are prompted whether you are sure.
Key "Y" if you mean it. Any other key reinitializes the editor.

Does a jump through the hardware reset vector at
$FFFC, $FFFD to $FCE2 (C64) or $FF3D (Cl128). This cold starts
the computer, and preserves most memory contents. Primary use
in the C64 is to save wear and tear on the ON/OFF switch. In
the C128 in the C64 mode the C64 mode remains after the cold
start, so this command is quite different from the action of the
reset button.

You would not normally re-enter Symbol Master after
doing this, but a warm start will still be possible, provided
Symbol Master has not been overwritten. Although Symbol Master
changes the Basic memory pointers to protect itself (Cé64 only),
these pointers are all reset by a cold start of the computer,
leaving Symbol Master vulnerable to Basic (unless loaded at
$CP00) .

L -- Load Target Routine

This is a very important command which you will
normally use to load in your target programs to be disassembled
and studied. If you prefer, the target routine can be loaded
via the MICROMON machine-language moditor, and then Going to the
Symbol Master warm start address.

Before using this command you should know fairly well
where the target routine will load, how long it is, and where
the blocks of code and tables are. Use the specially-enhanced
MICROMON for these investigations (C64 or C64 mode only).

Syntax for C64 version:

L "@:<file name>" Note: Do not actually enter the <>.

Loads a PRG file from disk into memory doing a non-relocated
load to the starting address specified by the two-byte program
file header. The ending address (plus one) is reported to you
in hex.

L hhhh "@:<file name>" -

Loads a PRG file from disk into memory doing a relocated load to
the starting address hhhh. The program file header is ignored.
The address hhhh must be a valid hex address. A "$" prefix is
not used. All four places must be given, even if the first is
@. The ending address (plus one) is reported to you in hex.

Note: Sometimes it is necessary to press RETURN twice
before the command will enter. We don't know why.

The filename must have quotes around it. Note that
the rule is different for files you tell Symbol Master to
generate. Embedded spaces are permitted. Also, the above
assumes that the Drive number "@" is being employed as part of
the filename. You do not need to do this, but it is best to use
it. Drive "1" can of course be specified instead.

We have included the code for doing loads from tape,
but this has not been tested as this is being written. The
intended syntax for a load from tape is:

L "<file name>" 1

or
L hhhh "<file name>" 1

- 22 -

We have a particular reason for questioning whether
tape load will work. Symbol Master at present uses the regular
Kernal LOAD routine for these loads. Although it is said that
the LOAD routine will do either a header address load or a
relocated load, it seems that files saved to tape with a
secondary address of "1" will load to their header address even
if you ask for relocated.

Syntax for Cl128 version

Lr "@:<file name" (non-relocated load)
or
Lr hhhh "@:<file name>" (relocated load)

Where r is @, 1, 2 or 3 to specify the RAM bank into which the
load is -to be done. In a Cl28 only RAM Banks @ and 1 are
present, and 2 and 3 are future expansion. In a 128K C128 RAM
Bank 2 is the same as @, and 3 is the same as 1. Normally when
you have "SM128/BANK@" loaded you will load target code into RAM
Bank 1, and when you have "SM128/BANK1" loaded you will load
target code into RAM Bank #. However, no restrictions are
placed on the command, and it is up to you not to do a load
which would overwrite the Symbol Master code.

M -- Memory Bytes Remaining

There are no parameters.
Gives you the amount of memory left (in view of the

length of an imported label name file) for Symbol Master's
generated label table.

N -- Null Label Name List in Memory

There are no parameters.
Restores maximum available memory for the generated

label table. Probably will never be necessary, and certainly
not in the C128.

P -- Put Command File to Disk

Syntax:
P "@:<filename>" Note: Again, <> enclose the
or required parameters, but
P @:<filename> not actually entered.

or
P@:<filename>

This is the converse of Get. Saves the command file
to disk as a SEQuential type. What is on the screen remains.

The Command files are compatible between the C64 and
C128 versions. You can Put from one, then Get into the other.
(Also, as already noted, command files are upwardly compatible
from earlier versions of Symbol Master.)

- 23 -~

R -- Run the Disassembler

Syntax:
R [options]

This is the most important command because nothing
would happen without it. It passes parameters and control from
the editor to the main disassembler, which then executes. At
the conclusion of the disassembly, you are returned to the warm
start point, and are reminded which version of Symbol Master you
have loaded.

The options are C, X, S, D, P and F, described below.
They may be in any order, with or without spaces. If
inconsistent options are used on the same line, the last
encountered on the line will control. It is not necessary to
specify any options, as there is a default case, defined below.

¢ -- output Code and tables.

The disassembler output, wherever directed, will include a list
of equates to external label references, and a disassembly of
the blocks of code and tables defined on the block definition
lines of the command screen. This is the fundamental
disassembly.

X -- generate cross-referenced (Xr) label table.
On output to screen or printer, a cross-referenced label table
will be generated following the code and tables. The X option
may be selected without C. Unless you use the CBM assembler
(which can itself generate a cross-referenced label table), you
may want to disassemble your own programs just to get the
cross-reference generated by Symbol Master! If you direct
output to disk, the X option is ignored.

S —-- direct output to Screen.

D -- direct output to Disk as assembler
compatible source code files.

P -- direct output to Printer, device #4.

F -- if printer output selected, format¥the
output with one-inch (6 line) page breaks every 60 lines.

Here are two defaults intentionally provided:

R

Same as selecting options C X S.

R D
Same as selecting options C D.

The above two are the only defaults intentionally
provided. In general, once you start specifying options, you
must specify everything you intend. For example, "R P" will not
generate any output at all since you have not specified either
"C" or "X". Examples of correct commands are "R PC", "R PCX"
and "R PX".

- 24 -

U -- Read User Label Name File from Disk

Symbol Master Version 2.0 (unlike 1.0) does not have
in it when cold started any label names for use in the
disassembly. The "U" command is used to load them in. While
this approach requires an extra step in loading, the advantage
is much greater flexibility. The nature of a label name file is
discussed in Chapter 15. The Label Name Editor can be used to
create your own or modifiy the ones we have provided. A
provided label name file which is nearly identical to the label
names which were permanently built in to Symbol Master Version
1.0 thru 1.2 is included and named "DEFAULT64.LBL".

The syntax is:

U "@:<filename>" Note: Again, <> enclose the
or required parameters, but
U @:<filename> are not actually entered.
or

Uf:<filename>

To avoid confusion between Command files and Label
Name files, Command files are always file type SEQ and Label
Name files are always file type USR. The "G" and "U" commands
check for the proper file type, and report an error if the wrong
one is used. We use the respective file name extensions .CMD
and .LBL as a matter of convenience, but there is no
requirement. The filenames can be anything you like.

X -- eXit to Basic

There are no parameters.

Zero page and the IRQ vector are restored to what they
were upon cold or warm start entry to Symbol Master. The Basic
and Kernal ROMs are banked in (C64) or the system configuration
is restored (Cl128). A JMP through the Basic warm start vector
at $AQ02,S$AP03 to $E37B is done (C64), or the vector at
$OAQQ, SOAGD to $40@3 (Cl128). This is very similiar to the
RESTORE entry. (Warning: Never use the RESTORE key itself when
in Symbol Master).

@ and > -- DOS Commands

These work just like a DOS wedge. See Chapter 12 for
a more detailed description.

Note: If you enter >$@ to read the disk directory,
the listing can be paused and restarted using the spacebar. The
STOP key stops the directory listing. After a directory
listing, RETURN gets you back to the editor screen.

-- Change Disk Device Number

#n

Where n is 8, 9, 1@ or 11 will change the disk device number
Symbol Master uses for its disk operations, including DOS
commands. The default on cold start is 8, regardless of the
device number used to load the disassembler.

- 25 -~

CHAPTER 9: SCREEN EDITOR LINE 3
MISCELLANEOUS PARAMETER LINE

Screen line 3 is the first line which affects the
command file. Syntax for the C64 version is as follows:

<nn> <f> <p> <asm> [OPT] Note: The <> enclose the
parameters, and are not
Where -- actually entered.

<nn> is the number of blocks of code and tables, in
decimal. The allowable range is 1 through 99. On cold start
default, the number is 1. To see its effect, change it to
anything in the range 2-99. Enter the line, and then
re-initialize the editor by pressing RETURN with the cursor on a
blank line. (This number must be set and entered before you can
add blocks to screen lines 6-25.)

<f> is the single or multiple file control. It must
either be S (Single) or M (Multiple). If output is directed to
disk with the S option set, a single file will be written to
disk, and its name will be the "controlfilename" entered on
editor screen line 4, as described in the next section. If
output is directed to disk with the M option set, multiple files
will be written, including "controlfilename", "equatefilename",
and at least one "modulefilename". S and M have no effect on
output to the screen or printer, but the editor still requires
one or the other to be present.

<p> is the label processing control, and determines
which labels are converted to names. There are three
possibilities, N (None), K (Kernal), and A (All). The effect of
K and A is described in the separate section on Operating System
Name labels. If N is selected, only arbitrary labels are
generated, as described in detail in the Chapter 14.

<asm> is the name of the assembler for which disk
files will be generated, and the syntax of which will be used
for pseudo-ops. For familiar pseudo-ops, set it for your
assembler, even if you are not writing files to disk. (You may
however not want to select LADS during trial runs which are not
written to disk because LADS does not support the .WORD
pseudo~-op, and thus "WO" and "W-" blocks discussed in Chapter 11
are not analyzed when LADS is selected.) The allowed options
are MAE, PAL, D64, CBM, LAD, MER and PAN. Only enough letters
to uniquely identify the assembler need be entered. Thus "C" as
the first character will give you "CBM", while "PAL" and "PAN"
must have all three entered.

OPT, if present, indicates to invoke an OPTion
relating to the particular assembler selected. The options are
quite different depending on the assembler. There is no general
statement which can be made. 'Refer to the Chapter on Specific
Assembler Notes. If you want to clear OPT, spacebar or DELete
over it, and press RETURN to enter the line.

The syntax for the C128 version has one additional
parameter, the bank parameter "b":

<nn> <£> <p> <asm> [OPT]

b is a single hex character in the range ¢ through F,
and specifies the logical bank configuration number to
disassemble from, with definitions per the official Commodore
documentation. While all 16 are available, there are three
which are of primary interest: @ for RAM Bank @, 1 for RAM Bank
1, and F for the System Bank, which includes all the ROMs ($4000
through $FFFF), and the remainder $00@0¢ through $3FFF RAM Bank
@. Symbol Master sets this parameter to F by default.

- 26 -

CHAPTER 10: SCREEN EDITOR LINE 4
CONTROL AND EQUATE FILENAMES LINE

Screen line 4 is for the file name for the control
file to be written to disk, and for the file name for the equate
file to be written to disk. The syntax is:

[@:<controlfilename>] [@:<equatefilename>]

Each can be up to eighteen characters in length, to
allow for the disk syntax "@:filename" or "l:filename".
Quotation marks around the names are not permitted. Embedded
spaces are not permitted because the editor considers the first
space to be the end of the control file name, and the second
space to be the end of the equate file name.

Again, in the definitions above the <> merely enclose
the parameters, and the <> themselves are not entered. The []
indicate these parameters are optional, unless disk output is
selected. The [] are not actually entered either.

On disassembler output to screen and printer, these
names are entirely optional, and in fact are ignored.

On disassembler output to disk, the control filename
is always required. If the S (Single) file option is selected
on Line 3, the single file will be written with the control
filename. No other filenames are required.

If the M (Multiple) file option is selected on Line 3
with output to disk, both the control filename and the equate
filename are required. Also, at least the first memory block
line below the Line 5 divider must have a filename. When Symbol
Master is Run, a set of files will be generated appropriate for
your assembler. On MAE, D64, CBM, MERlin and PANther output,
the control file will refer to the label file and each module
file in order. The pseudo-op for MAE is .FI. For D64 it is
LIB. For CBM it is .LIB. For MERlin it is PUT. For PANther it
is LOA. On PAL and LADS output, the control file will chain to
the equate file using the .FILE pseudo-op, the equate file will
chain to the first module file, and so on. The last module file
then chains back to the control file.

In any case, start your assembler with the control
file, and it will take care of the rest.

If you happen to trust the "save-with-replace" command
on your disk drive, you can use this form with the control
filename, the equate filename, as well as the module filenames,
yet to be described. The syntax is @@:filename. It is your
decision whether to use this form. By now the magazines,
primarily Compute's Gazette and Transactor, have demonstrated
beyond all doubt that the long-reported bug in the DOS "save
with replace” command is in fact real. It has also been
suggested that consistent use of the drive parameter @:, even if
you have a single disk drive, will at least minimize problems.

I will report that I use it constantly with the MSD dual drive,
which has never given me an error.

- 27 -

CHAPTER 11: SCREEN EDITOR LINES 6-25
MEMORY BLOCK DEFINITION LINES

11.0 Formal Syntax Definition

3

These lines tell Symbol Master where to find the code
and data tables to be disassembled, and how to treat them. The
actual number of these lines is determined by the first number
on screen Line 3, which is for miscellaneous parameters. The
minimum is 1, and the maximum is 99.

Here is the syntax for each line:
<nn> <t><i> <1111> <2222> <3333> [P:<filename>]

Note: The "t" and "i" parameters are always run
together as a two-character pair, and the "i" parameter is not
present at all when the "t" parameter is "C" (for Code).
Hopefully the description below will not be too confusing. The
filename is optional, required only when writing source code
files to disk, and even then is not always required. Again, the
<> merely enclose the parameters for purposes of definition, and
are not actually entered.

Where --

<nn> is the block number in decimal. The blocks
should be numbered in sequence.

<t> is the type of the block. Primarily, whether Code
or Data tables. "C" means code, i.e., ordinary instructions.
"T" means table data which you want to be formatted three bytes
per line on the disassembly. "W" means word table data which
you want to be formatted two bytes per line on the disassembly.
A "C", "T" or "W" is always required.

Here is a confusing one to define, and one where a
significant enhancement has been added to Symbol Master Version
2.0:

<i> has two completely different uses. The "i"
parameter is not required and not allowed following a "C". It
is mandatory following "T" or "W".:

(1) Controls the interpretation of ASCII bytes.
For this, the parameter is "A" or "N". "A" means to intrepret
bytes as ASCII data in the comment field. "N" means no ASCII
intrepretation. See the note on ASCII intrepretation below.
For this purpose there are four possible combinations for the
parameter pair <t><i>: WN, WA, TN and TA.

(2) Defines a table of .WORD pairs, also known
as address constants, and indicates whether they are of the form
LABEL or LABEL-1l. For this, the parameter is "0" (as in wOrd)
or "-" (as in LABEL-1). "O" means to treat the two-byte table
entries as address constants in low-byte-first order, and to
generate a label accordingly referencing the address thus
defined. "-" is similiar, but assumes the table was generated
during assembly using entries of the form .WORD LABEL-1, as is
common in 6502 programming where a table of action addresses is
set up. These entries are usually pushed onto the stack, and
then reached via an RTS. For this second purpose there are two
possible combinations, for the parameter pair <t><i>: WO and W-.

- 28 -

(2a) Further note on .WORD pair tables: When
initially studying a target program to disassemble, a .WORD pair
table can often be recognized because it makes no sense
interpreted as ASCII, and there is a pattern to the high bytes
in that they fall in the same general range, almost always
within the range of the program. The .WORD pairs may point to
either data, or to routine entry points. By doing trial
disassemblies with both "WO" and "W-" it will readily be
apparent which form to use. The right one will point to
addresses of bytes which begin a line of source code, while the
wrong one will be referencing the second or third bytes of
instructions, and generating comments accordingly.

(2b) Still further note on .WORD pair tables:
The LADS assembler does not support the .WORD pseudo-op. When
LADS format is selected, "WO" and "W-" and both treated simply
as "WN". Otherwise the generated source code files would not
work in the assembler. Obviously this does not give you a very
good analysis, and for this reason we recommend you do not
select LADS format during your initial study when you are
outputting to screen and printer. PAL is a good alternative
format. When you are finally ready to write a file to disk,
then switch to the LADS format, and plan on commenting your
source code by hand to explain the resultant .BYTE pseudo-ops.

(2c) Final note on word pair tables: Here are
the .WORD pseudo-ops appropriate to each of the assemblers
supported (other than LADS). For MAE it is .SE (you might want
to change to .SI). For PAL and CBM it is .WORD. For MERlin it
is DA (define address). For PANther it is ADR. Develop 64 uses
BYT, and is able to recognize that low-byte-first order is what
is intended.

<1111> and <2222> are the starting and ending

addresses which define the block where it actually resides in
memory for disassembly. <1111> is not necessarily the origin
address, but it can be. If <1111> is not the origin address,
then Symbol Master automatically applies an offset for proper
disassembly. <1111> and <222>2 are both given in hex, as four
hex bytes. A "$" prefix is not used, and all four places must
be specified.

<3333> is the origin address, also in hex and also
having four places. If the code is loaded into memory where it
normally runs, <1111> and <3333> will be the same. As a
converse example, you may be disassembling code which loads and
runs at $CO@0 through $C2FF, but for purposes of example you
have loaded the symbol master editor there. The choice is
yours, but you might want to load the target program at $2000.
Under these circumstances, for <1111> <2222> <3333> you would
enter 2000 22FF C@04.

<filename> is the filename for the block. It is
entirely optional for output to screen or printer. For output
to disk, only block 1 needs a filename. If present, the
filename is included as a comment in the generated source code.

11.1 Note on Effect of Block Filenames

The block filenames have a significant effect when
writing multiple files to disk, because the presence of a
filename triggers the closing of a previous file, and the
opening of a new one. This approach offers a significant
advantage when writing module files: If you have short blocks
of code and tables in a program you can switch back and forth by
defining successive blocks, but you won't be bothered by having
a corresponding bunch of short disk files. Instead, you can
cause a new disk file to begin when a reasonable amount of
memory has been disassembled.

- 29 -

11.2 Note on Relationship of Block Memory Ranges to Each Other

There is no requirement that the memory ranges from
one block to another be contiguous, or even in any particular
order. You will probably want to keep them in order for
meaningful results, but there is no requirement.

-

Symbol Master issues an appropriate ORIGIN pseudo-op
at the beginning of disassembly of Block 1. It is commented
":; INITIAL ORIGIN". As each subsequent block is processed, it is
first checked to see whether it picks up where the previous one
left off. If so, output simply continues. If not, a new ORIGIN
pseudo-op is issued, and commented ";NEW ORIGIN".

Do not overlap the address ranges of the memory
blocks. If you do, duplicate labels will be generated, which
will cause your assembler to issue an error message later. It
is also possible that Symbol Master will report an execution
error, with abort and warm start.

11.3 The "Fix" Commands

Chapter 8 mentions the Fix commands F2 and F3, but
saved the explanation to this chapter. These two commands save
you the burden, in most cases, of typing columns 2 and 3 of the
addresses, i.e., the <2222> and <3333> parameters.

3

In most cases the blocks of memory ranges you are
disassembling are contiguous, which means that the <2222>
parameter of each block line is just one less than the <1111>
parameter of the next block line. The F2 command does this
subtraction for you, and enters the whole column, with the
exception of the very last entry, since there is no "next" block
to subtract from. Even if there are a few which are not
contiguous,. it is easier to use the F2 command to fix most of
the entries, and then edit the few remaining ones.

Caution: When using the F2 command, be certain you
enter the last <2222> parameter yourself. Otherwise it may be
left as @008, and you will be sending the disassembler on a very
long trip which will not end until it has either wrapped around
$FFFF to $00@90, the label table has overflowed, or you get an
execution error by attempting to disassemble through an area of
memory which is changing. hd

Similiarly, in most cases the <3333> parameter is
either the same as <1111>, or all the <3333> parameters have a
fixed offset from the <1111> parameters. The command F3 alone
copies all the <1111> entries to the <3333> on the same line.
The command F3 <hhhh> adds a hex offset. Since two-byte
addition is performed, you can in effect subtract by adding a
large enough hex value to wrap around $FFFF. Rather than trying
to determine the correct <hhhh> in advance, it is usually easier
to use trial and error a few times.

To conclude this subject, in most cases you can: (1)
Go down the first column entering all the block starting address
parameters <1111>. (2) Enter the last <2222> parameter. (3)
Use F2 to fix the remaining <2222> parameters. (4) Use
F3 [<hhhh>] to fix all the the <3333> parameters.

- 30 -

11.4 Tip on Entering Lines

You cannot enter a block line number greater than the
maximum defined at the beginning of editor Line 3. You can go
back and increase the number at any time. While you could type
these in yourself in order on a blank screen, it is easier to
re-initialize the screen to print “the numbers, and to then type
over the default which appears.

11.5 Inserting and Deleting

There is no insert and delete function. However, you
can move lines to prepare for an insert or delete quite easily
by typing new line numbers over existing lines, and entering
with RETURN. Lines need not be entered in order. As each line
is entered, it is scanned and the line number is picked up.

Don't forget the "A" (Append) command from Chapter 8
which does a useful and related function.

Do not leave unused block lines at the end. The list
can be easily truncated by changing the number of lines
specified as a parameter on editor line 3. This does not delete
the information from memory; it merely changes a pointer. The
information will still be there if you later increase the number
of lines parameter.

11.6 ASCII Intrepretation

When ASCII interpretation for a block is selected (WA
or TA), the results are put in the comment field, not the actual
BYTE pseudo-op field. There are several different ways ASCII
data can be placed in programs. For example, there are screen
codes in the range $@@ through $1F, regular ASCII in the range
$20 through $5F, and uppercase ASCII in the range $6@ though
$7F. In addition, bit 7 might be set, with the whole pattern
beginning over at $88. To increase your chances of being able
to recognize ASCII text data regardless of range, all bytes to
be intrepreted are mapped into the range of upper case printable
CBM ASCII values $20 thru $5F, and the result is put in the
comment field.

You may eventually want to edit the disassembled
source code to include ASCII text strings in the BYTE pseudo-op
field, using of course the appropriate pseudo-op for your
assembler. Do this with caution. Since there are at least six
ranges within which ASCII characters may be found, simply taking
the interpreted ASCII data from the comment field and moving it
to the BYTE field will not necessarily recreate the original.

- 31 -

CHAPTER 12: DOS COMMANDS

. v

This Chapter is not specific to Symbol Master, because
the commands summarized below are all interpreted and executed
by the Disk Operating System within the disk drive. All the DOS
manager included in Symbol Master does in this regard is send
and receive. This section however is written to make it clear
what can be done with the Symbol Master DOS manager, which is
included in both the C64 and C128 versions.

In general, the Symbol Master DOS manager behaves
exactly like a DOS "wedge" in the C64, except non-relevant
commmands are not provided. The not-provided non-relevant
commands are the ones which Load and Save Basic programs. Also,
machiné-language load (%¥filename in the normal wedge) is not
provided because the same command is provided in an enhanced
manner by the Symbol Master "L" (Load) command, which optionally
allows either a relocated load or a header load.

The screen editor top line is used for the DOS
manager. To invoke the DOS manager, the first non-space
character on the line should be either ">" or "@". The two
produce precisely the same results. In the examples below the
notation ">" only is used to avoid duplication. If you prefer,
read "@" wherever you see ">".

Here are the primary DOS commands:
> Read the disk error (command) channel

>$0 Read the disk directory. Note,
spacebar pauses and restarts. STOP
aborts. Return to editor command
screen with RETURN. Inclusion of the
"@" after "$" is optional, but is
recommended even on a single disk drive
to minimize the "save-with-replace" bug
Omitting the "@" on a dual drive reads
both disk directories.

>$81 Read the disk directory for drive 1.
>N@:diskname, id Format a dis¥. (Long New).
>N@:diskname Clear disk directory. (Short New).
>I0 Read BAM to initialize drive.
>vVe Validate disk. Use whenever a file

is left unclosed, as indicated by
an * next to the file type. Never
scratch such files.
>RO:newname=@:o0ldname Rename a file.
>S@:filename Scratch (delete) a file
The above is of course not a complete list, but does

include the more important ones, and will serve to illustrate
the capability.

- 32 -

CHAPTER 13: SYMBOL MASTER FILENAMES

This Chapter, for the sake of clarity, repeats and
summarizes imformation which is perhaps only implied in other
Chapters detailing the various commands.

The Symbol Master editor limits all filenames to
eighteen characters. This allows for filenames of the form
"@:filename", which is required with a dual disk drive, and a
good idea even with a single disk drive.

In general, the Symbol Master editor uses spaces as
deliminators between fields. In order to save space on the
screeh so that lines need not exceed 39 characters, quotation
marks (") are not used around the filenames which Symbol Master
is itself being instructed to write to disk. The rule is this:
embedded spaces are not permitted in the filenames which Symbol
Master is being asked to write to disk.

The above limitation applies to the Control File name,
the Equate File name, and each Module file name. In addition,
the limitation of no embedded spaces applies to Command file
names which are written via the "P" (Put) command, and retrieved
via the "G" (Get) command; as well as to Label Name filenames
which are written via the "W" command (Label Name Editor only,
see Chapter 15), and retrieved via the "U" command.

However, embedded spaces are permitted in files which
Symbol Master does not itself necessarily generate. There are
two situations in particular where this applies.

The first is the case of target program files to be
disassembled. Such files are loaded by either the command (in
C64 version syntax):

L "@:<file name>"
or
L 1111 "@:<file name>"

Here, quotation marks are required, and embedded spaces are
permitted.

The second situation is when the DOS manager is
invoked via "@" or ">". Operation is exactly like a DOS
"wedge". Quotation marks are not used around filenames, and
embedded spaces are permitted.

With the Symbol Master "G" (Get), "P" (Put) and "U"
commands, quotation marks around the file name are optional, to
avoid confusion with the "L" (Load) command which has similar
syntax. So, while not needed, there is no harm in using
quotation marks with "G", "P" and "U". (Do not, however, use
them with the Control file name, the Equate file name, or any
Module file names.) Even though you use quotation marks with a
"G", "P" or "U" file name, the rule remains that embedded spaces
are not permitted.

- 33 -

CHAPTER 14: ARBITRARILY GENERATED LABELS

One of the most significant features of Symbol Master
is that it is a symbolic disassembler and generates labels.
There are two distinct types: (1) arbitrary labels? and (2)
named labels which may, for example, be operating system name
labels such as Kernal routines and variables. Arbitrary labels
are described in this Chapter. The manner in which lists of
named labels for use in a disassembly are created and modified
is described in the next Chapter.

The arbitrary labels are based on the hex address of
an instruction operand (or .WORD pair), and include the hex
notation within the label. However, the hex notation is always
prefixed by at least one alphabetic character, so your assembler
will consider it to be a valid label. If this label refers to a
byte within the range of code and data tables being
disassembled, the label will appear in the. label field of the
referenced line. If you immediately re-assemble, without
editing, the hex value embedded within the label will match the
address assigned by your assembler. If you use your assembler's
editor to insert or delete instructions after a disassembly, or
if you reassemble at a different origin, the hex values embedded
within the labels will not match the addresses assigned by your
assembler. Significantly, however, the assembly will be correct
because the assembler will treat the label as a symbolic label,
and not as a mere numerical value.

Here is the format -of the generated arbitrary lhbels:
pchhhh

Where --

p" is the prefix which may be present.

T prefix means the label appears within a data table
defined as a block on the editor screen and through
which the disassembler has passed.

X prefix means the label is external to the program.
In other words, there was no byte corresponding to
this label in any of the blocks of code or data
tables through which the disassembler passed. This
label will also appear ingthe list of equates at the
beginning of the Symbol Master output.

(This is an appropriate point to mention a
significant enhancement of Symbol Master V 2.0 over
the V 1.4 series. V 2.0 now properly handles
self-referenced code (e.g. self-modifying code)
where the second or third byte of an instruction is
referenced. 1In this situation Symbol Master puts a
label on that line and refers to the referenced byte
with a label of the form LABEL+l or LABEL+2. In
addition, a comment is generated to alert you. The
label will not be of the external type (will not
have an "X" prefix), and thus the list of equates at
the beginning of the disassembly will not be
cluttered by what really are spurious external
references.)

Z prefix means the label refers to a location on page
zero. 7Z supercedes X and T since zero-page
locations are nearly always external, and rarely
refer to an instruction line. (The main exception
is Basic's CHARGET routine in the C64.)

if null prefix, then the label refers to a regular line of

instruction code through which the disassembler has
passed and has assigned the label to.

- 34 -

"c" is the label code based on its usage as an operand.
Label codes are assigned in a hierarchical manner. The highest
usage encountered as an operand within the program determines
the label code assigned when output occurs, in accordance with
the following hierarchy. The list below is ordered from lowest
to highest:

M is the lowest. The default if nothing higher
applies.

D means data. Is assigned when a memory location is
addressed by a non-indexed instruction which does
not change the contents. Primarily these are
non-indexed LDA, LDX and LDY instructions.

For when the undocumented opcode option is selected
(see Chapter 18), we have made some attempt to set
up the disassembler's tables so an appropriate label
code is assigned for the "extra" op-codes.

V_means variable. Is assigned when a memory location
is addressed by a non-indexed instruction which
changes it. Primarily these are the STA, STX and
STY instructions. In addition, the ASL, ROL, LSR,
ROR, INC, and DEC instructions when they directly
address memory.

Again, for when the undocumented opcode option is
selected (Chapter 18), we have attempted to set up
the disassembler's tables so appropriate label codes
are generated.

For when the 65C@2 enhanced 6502 instruction set
(also Chapter 18) is selected, these additional
instructions change the contents of the addressed
memory location, and thus result in a "V" label code
being assigned: STZ, TSB, TRB, RMB and SMB.

I means indirect. 1Is asigned when a memory location
is used as an indirect address. Examples are
instructions having operands of the form (2ZP,X) or
(ZP),Y. 1In addition, the operand of JMP (ABS) is so
coded.

A means bAse of an indexed address. Examples are
operands of the forms ZP,X ABS,X 2ZP,Y and ABS,Y.

B means target of a Branch instruction.
J means target of an absolute JMP instruction.

In addition, beginning with Symbol Master V 2.0, the
address defined by a two-byte .WORD pair (see
Chapter 11, Section 11.0) is treated for this
purpose as the operand of a JMP instruction. While
the assigned label code will not always be
appropriate, often addresses in .WORD pair tables
are routine entry points which are otherwise not
referenced.

S _means target of a JSR instruction.
"hhhh" is the included hex value of the operand, as
described in the second paragraph at the start of this Chapter.

Zero page addresses have only two places, i.e. "hh", while
absolute addresses have four places, i.e. "hhhh".

- 35 -

CHAPTER 15: THE LABEL NAME EDITOR

15.8 General Concepts and Purpose

Disassemblies are more meaningful when label names can
be used, rather than the arbitrarily-generated labels described
in the provious Chapter. This Chapter describes the means for
setting up files of label names to be used in the disassembly,
as well as several label name files we have prepared. The
prepared files can be used as is, or you can modify them using
the label name editor. Names are limited to a maximium of six
characters in length.

The Label Name Editor is a separate program which
communicates with Symbol Master itself only through files. We
took this approach so a sufficient number of functions could be
put in the Label Name Editor, without making the disassembler
code itself unduly long.

Separate versions are provided for the C64 and Cl128,
"LABELEDIT64" and "LABELEDIT128", respectively. Each is loaded
like a Basic program, and then RUN. The two versions are nearly
identical, except for their load addresses ($0801 in the C64 and
$1C@1 in the Cl128), and are .file-compatible. 1In the Cl128 there
is a Bank @ version only. At present it only runs in the C128
4@-column mode; it is uncertain whether we will convert it to-
the 80~-column mode also. Check the "LIST ME" file for this and
other supplemental details.

<

15.1 Single- and Two-Byte Named Labels

A significant feature of Symbol Master is that it
recognizes the difference between single-byte labels (e.g.
routine entry points and single-byte labels), on the one hand,
and two-byte labels (e.g. two-byte variables and vectors), on
the other hand. We term these "S" and "T" respectively,
although that is grammatically inconsistent. (Consistent
terminology would have been One and Two, or Single and Double,
but the characters "0O" and "D" would lead to a confusion which
"S" and "T" avoid.

When Symbol Master encounters the second byte of a
Two-byte label it automatically uses the notation LABEL+l. In
the generated list of equates to external label references, the
name will appear only once. <

Sometimes you will disassemble programs which address
only the second byte of a two-byte variable or vector. Symbol
Master will do the same thing as just described. If you have
the cross-referenced label listing generated at the end of the
disassembly, the label "name" will appear in the list, but there
will be no references to it. The list will also include
"name+1", and identify the address of all referencing
instructions.

Note that a related thing happens when Symbol Master
recognizes self-referenced code. A label will be assigned for
the first byte of the particular line of code, even though the
first byte itself is not necessarily referenced. This
circumstance is readily apparent from the cross-referenced label
listing. Do not overlook that important analysis tool (the
cross-referenced listing).

Getting back to the subject at hand, for each label
name you put in the list you must assign a hex value. Prefix
the hex value with an "S" if it is merely a single-byte name,
and prefix it with a "T" if it is the first byte of a two-byte
name. Using the "U" command, described below, to read in one of
the prepared label name files will give you an example to make
this clearer.

- 36 -

15.2 Brief Introduction to the Label Name Editor

When you LOAD and RUN the appropriate editor version,
you will see a screen very much like the regular Symbol Master
editor screen, but different enough so you will not forget which
one you are in. Cursor behavior is the same with reference to
the divider line 5. The top line is for inputting commands, and
lines 6 through 25 scroll for entering label types ("S" or "T"),
hex values, and names.

Some of the Line 1 commands are the same as in the
main disassembler editor, but there are some different ones.
The Line 1 commands are defined and discussed in Section 15.5
below. But first it is probably more important to describe the
syntax of the actual type, hex value, and name entries on lines
6 through 25.

15.3 Syntax of Label Name Entries

Each label entry is of the form:
<t> <hhhh> <name>
Where --

"t" is the type as discussed in section 15.1 above,
either "S" for Single byte, or "T" for Two-byte.

"hhhh" is the hex value of the label. All four
characters must be entered, even for zero-page labels. A "$"
prefix is never used.

"name" is the name you assign to the label. 1In order
to be compatible with all the assemblers, it is limited in
length to a maximum of six characters. Thus, the "name" is from
one to six characters in length.

15.4 Entering, Deleting and Viewing the Label Names

Internally, the Label Editor maintains the label
values as three-byte variables, with "S" or "T" being the most
significant byte. The list is maintained in numerical order,
regardless of the order you make entries. 1In this regard, the
expression "t hhhh" is handled much like the Basic editor
handles line numbers. All the the "S" entries come before any
of the "T" entries. Thus "S @@01" comes before "T FFFC".

There is no List function per se to the screen (as
there is to the printer as described below), since scrolling
accomplishes the same purpose. Moreover, you can cause the
scrolling to begin at an intermediate point of a long list by
typing on the screen (but not entering with the RETURN key) a
type and value just prior to where you wish to start, and then
using the CRSR down key to scroll.

To start the entering process, type the first entry in
the above symtax, and enter with RETURN. The spaces are
optional on when you type (you can run it all together for
speed), but the entry will automatically format itself when you
hit RETURN.

To avoid typing this every time, you are prompted on
the next line with "S" or "T" to match the one you have just
done. If you want to change it for the next entry, just do it.
Normally you will enter all of your "S"s, then the "T"s, but the
order is not important.

- 37 -

To delete an entry, enter its type "t" and hex value
"hhhh", but leave the "name" blank. When you hit RETURN, it
will be deleted. If an entry is listed on the screen, an easy
way to delete is to spacebar over the name, or use the DEL key,
and then hit RETURN.

P

To change an entry, enter the type "t" and hex value
"hhhh", as well as the new name. The new name will replace the
old.

All the while you are making and possibly deleting
entries you will see a status report of the total number of
names, and the total bytes. The total number of bytes is
important if the Label Name file you are creating is to be
loaded into the C64 version of Symbol Master, because there are
only about 7500 bytes available for label names and the label
table combined. The length of each label name is two bytes,
plus the number of ASCII characters in the name. Thus the
length is from three to eight bytes. Each entry in the label
table which is generated during disassembly is three bytes.
Thus, for example, if you type in a label name file which is
4500 bytes long, then 3000 bytes are left for the label table,
and the capacity for disassembly will be 1800 labels, which
actually would be a rather long disassembly.

15.5 Label Editor Commands

Here are the commands accepted on Label Editor line
one. In general these are entered just like those forethe main
disassembler editor. Several of these are identical to the main
disassembler editor commands. Those are indicated by the
notation "same" in the list below, and you are referred to
Chapter 8 for their description. The remaining ones are
described in detail immediately following the list.

~- Check for Address conflicts

-- Do a Break, usually to monitor. (Same)
-- Clear name list

-- Check for Duplicate names

-- Hardcopy of List

-- Cold start the computer (Same)
Merge (and overwrite)

-- read in User label name file

-~ Write user label name file

-- eXit to Basic (same)
~~ DOS Command (Same)
-- DOS Command {Same)
-- Change curren® disk device number. (Same)

#=HVEXICOCIRNITOQW M
1
]

A -- Check for Address Conflicts

There are no parameters.

This command checks for situations where you have
attempted to assign two names to the same hex value. This would
confuse the disassembler, and so the Label Editor checks for
this situation.

There are two distinct types of conflicts which are
checked for.

First, an "S and T Conflict" occurs when you have the
same hex value assigned to a name in the "S" list as you do to a
name in the "T" list. Since "T" list entries actually refer to
two bytes, both bytes of each "T" entry are checked against each
"S" entry.

- 38 -

Second, a "T List Conflict" occurs when you have two
"T" list entries separated by only one hex value. Thus, the
second byte of one is the same as the first byte of the other.

When one of these occurs, you should edit the list
accordingly, changing and possibly deleting entries.

The conflict is reported to you on the second screen
line, with the hex values involved. They are reported only one
at a time, so you will have to repeat the command after you have
fixed each problem.

The "A" command is automatically done as a preliminary

by the "W" (Write) command. Thus the Label Name Editor will not
allow you to write a file defective in this manner.

C -- Clear Name List

There are no parameters.

Clears the name list in memory. Asks if you are sure.

D -- Check for Duplicate Names

Goes through your entire list to see if you have
duplicated any names. This is a voluntary command (i.e., the
"W" command does not automatically do this), since a duplicate
name will not trouble the disassembler. However, it will
trouble your assembler when you attempt to reassemble a source
file generated by Symbol Master, so use of this command is
highly recommended. Again, it is not forced on you.

H -- Hardcopy of List

Syntax:
H [<option>]

This dumps the entire label name file in memory to the
printer.

One optional parameter is accepted, the letter "F".
If the "F" parameter is used, printer output is formatted with
one-inch (six-line) page breaks every 60 lines.

M -- Merge (and Overwrite)
Syntax:
M "@:<filename>" Note: Again, <> enclose the
or required parameters, but are
M g:<filename> not actually entered. The
or drive parameter "@:" is
M@:<filename> optional, but suggested.

Merges a label name file from disk with a list already
in memory. This is an important facility which allows you to
maintain a library of short label name files on disk, and
combine them into a larger file for a particular disassembly.

In case of duplication, the incoming hex values have
priority over those in memory, thus the description "overwrite".
Refer to the description of changing an entry in section 15.4,
above for an analogy. The "M" command works very much as though
you are entering on the screen each of the incoming entries. No
checking is done. 1I.e., neither the "A" function nor the "D"
function is automatically done.

- 39 -

U -- Read User Label Name File from Disk

Actually, this command could have been identified as
"same" in the list above, because it is also one of the commands
in the regular editor, and works the same way. It is repeated
here because it so closely relates to the label editor.

Syntax:
U "@:<filename>" Note: Again, <> enclose the
or required parameters, but are
U @:<filename> not actually entered. The
or drive parameter "@:" is
U@:<filename> optional, but suggested.

The primary use of this command in the Label Name
Editor is to read in a previously created label name file for
editing, or as the first step in a series of merges.

Unlike "Merge", the "U" command completely replaces
the list previously on the screen.

W -- Write User Label Name file to disk
Syntax:
W "O@:<filename>" Note: Again, <> enclose the
or required parameters, but are
W B@:<filename> not actually entered. The
or drive parameter "@:" is
W@:<filename> optional, but suggested.

This command is the complement to the "U" command, and
saves the label name file to disk. The file type is USR to
ensure it is not confused with a command file.

The "save-with-replace" form of filename is accepted,
if you trust it. As an example:

W @@ :MYLABELS.LBL

15.6 Provided Label Name Files

We have put on the disk a number of label name files
to save you the trouble. You can use these as is, or edit them
using the procedures described above. The descriptions here are
brief, since you can read in (U command) and list them to your
printer (H command) to see what thqy actually contain.

"KERNAL64.LBL" are most of the C64 operating system
names, including zero page, but exclusive of Basic variables.

"BASICZP64.LBL" are Basic zero-page labels for the
c64.

"DEFAULT64.LBL" is a combination of the above two.

"BASICROM64.LBL" are the names of selected routines in
the C64 Basic interpreter from $A@9@ through $BFFF and $EQ0Q
through $E422. (Note that the C64 Basic interpreter actually
spills over from the so-called Basic ROM into the first part of
the so-called Kernal ROM).

"KERNALROM64.LBL" are the names of selected routines
in the C64 Kernal ROM from $E453 through $FF48.

"KERNED128.LBL" are entry points and variable names
associated with the operating system and editor in the C128.

- 40 -

"RAM1541.LBL", "ROM1541.LBL", and "ALL1541.LBL" are
for the 1541 disk drive ROM. See the example in a later
Chapter.

15.7 Miscellaneous Label Editor Notes

Here is a bit of miscellaneous information concerning
the label editor.

If you exit the Label Name Editor, you can usually
re-enter via warm or cold start. To cold start, just enter
"RUN". Or from the Monitor, G 980D in the C64, or G @1Cl1l2 in
the C128. The warm start addresses are $@810 in the C64
(decimal 2064 for SYS), and $1Cl1l5 in the C128 (decimal 7189 for
sYs).

The C64 version loads from $08J1 to approximately
$19FF. A few program variables are at the end, and then the
array begins in memory at approximately $1B@@. As label names
are entered, the array grows upward in memory. Nothing is
touched higher than necessary. In the label editor only, each
entry has a fixed length of ten bytes. However, the file is
written to disk and storred in the disassembler itself in a more
compact form, and the "total bytes" reported to you on the
screen reflects the actual number of bytes used when the file is
read into the disassembler.

You would have to enter over 2400 label names to even
reach $80@0 in memory, a number unreasonably large, and the
Label Name Editor accordingly does not even bother to check for
a memory overflow. In the C64, Symbol Master at $8009 and
Micromon at $900@ will peacefully coexist with the Label name
editor.

The Cl128 version loads from §$1C@1, and the array
begins at approximately $30@00 in RAM Bank @. In the memory
configuration used, RAM @ is available up to $BFFF. This is
enough for approximately 360@ label names.

Here is a brief description of the file structure in
case you want to generate a compatible label name file from
another source you may have. Each entry starts with a two bytes
which are the value of the label name, in conventional
low-byte-first order. Following these two bytes are one to six
bytes of the name in Commodore ASCII. The last byte of each
ASCII name has bit 7 set as a flag. Thus each entry has from
three to nine bytes in total. They are all run together, and
the ASCII bytes with bit 7 set are the only means of separating.
The "S" list comes first, then the "T" list, with no separator.
All entries are maintained in sequential order by value, within
each list. The first four bytes of the file are a header. The
first two header bytes are the length, in bytes, of the "S"
list, and the second two header bytes are the length in bytes of
the "T" list. This is the only means of separating the two
lists.

The "U" command adds the two length values from the
header and compares the result to the actual number of bytes in
the file read from the disk. If there is a mismatch, a "header
length error” or a "usr file too short error" is reported.
Other checks are done on the file at various times, for example
to be sure that six ASCII bytes do not go by without one being
flagged, in order to ensure the integrity of the data. An
editor error will be reported if something is not right. All of
this is to protect the disassembler from a bad label name file.
If you generate your own, it is strongly suggested that you run
it through the label name editor first, before loading it into
the disassembler.

- 41 -

CHAPTER 16: "BIT-SKIP" HANDLING

A common 6502 programining technique is to use "BIT"
instruction to skip the next one or two bytes. If the next one
or two bytes actually contain an instruction which is intended
to be executed, this instruction will be "hidden" from a simple
disassembler. For example, the C64 Kernal has a routine at
$F6FB to handle I/O errors. There are nine different entry
points, but the only real difference is that the accumulator is
to be loaded with a different value (depending on the particular
entry point) before the common portion of the routine is
entered. Here is that example:

F6FB- A9 01 JF6FB LDA #$01 ; TOO MANY FILES

F6FD- 2C .BY $§$2C ;Skip next two bytes
F6FE- A9 02 JF6FE LDA #$02 sFILE OPEN

F7900- 2C .BY $2C ;Skip next two bytes
F701- A9 03 JF701 LDA #$03 ;FILE NOT OPEN

F703- 2C .BY §$2C ;Skip next two bytes
F704- A9 04 JF704 LDA #$04 ;FILE NOT FOUND

F706- 2C .BY $2C ;Skip next two bytes
F7@7- A9 @5 JF707 LDA #$05 sDEVICE NOT PRESENT

F709- 2C .BY $2C ;Skip next two bytes
F70A- A9 06 JF70A LDA #$06 ;sNOT INPUT FILE

F7@0C- 2C .BY $2C ;Skip next two bytes
F7@0D- A9 @7 JF70D LDA #$97 ;NOT OUTPUT FILE

F7@0F- 2C .BY $2C ;Skip next two bytes
F710- A9 08 JF719 LDA #$08 ;FILE NAME MISSING

F712- 2C .BY $2C° ;Skip next two bytes
F713- A9 09 JF713 LDA #$09 ; ILLEGAL DEVICE #

F715- 48 PHA ;s SAVE ERROR # < .
F716- 20 CC FF JSR CLRCHN ;CLOSE CHANNELS & SET DEFAULTS

(Common code continues)

In this example, assuming the routine is entered at
$F6FB, the accumulator will be loaded with a value of 1. The
processor will consider the next instruction to be BIT $@2A9.
The BIT instruction does not affect the accumulator, so the next
instruction executed will be at $F700, with the accumulator
still 1. Execution will drop right through to $F715, with the
accumuator unchanged. The same occurs for each of the other
entry points.

A simple disassembler will disassemble the block from
$F6FB through $F714 as a sequence of eight consecutive BIT
instructions.

A symbolic disassembler not equipped to handle this
situation would likely do the same, except that its label table
would be filled with spurious opera®id labels, such as one
corresponding to $02A9. So not only would the meaning be
obscured, but the list of equates to external label references
would have spurious labels in it.

Symbol Master effectively handles the above in most
situations. The appropriate .BYTE $24 or .BYTE $2C pseudo-op is
generated, and the line commented. The next line is
disassembled as a one- or two-byte insctuction, depending upon
whether the byte value was $24 or $2C. The instruction on the
disassembled next line, if a two-byte instruction, can have
either an immediate operand or a zero page operand.

Here, in general, are the approach and criteria which
Symbol Master uses:

(1) Whenever a $24 or $2C "BIT" opcode is encountered,

the next address is checked to see whether it needs a label,
i.e., is referenced by another instruction in the program.

- 42 -

(2) If the answer is "no", then the $24 or $2C is
considered to be a normal "BIT" instruction, and its operand
processed normally.

(3) If the answer in (1) is "yes", then two additional
tests are done before concluding a "BIT skip" is intended:

(a) The referencing instruction must be a program
flow instruction, i.e., a Branch, JMP or JSR; and

(b) The length of the instruction of the
disassembled next line must be correct. Following a $24 byte
there must be a one-byte instruction. Following a $2C byte,
there must be a two-byte instruction.

If either of these further tests is not satisfied, then the $24
or $2C is considered to be a normal "BIT" instruction, and its
operand is processed normally. Likely, though, it is something
else, and your analysis by hand will be required.

You will often be alerted to this situation by a
"self-referenced" comment in the disassembled code.

You will find a "BIT skip" which Symbol Master does
not recognize if you disassemble the included MICROMON. Near
the beginning of that code are several BIT instructions used to
hold data values (which are actually constants used by the
program) in a manner such that the MICROMON "New Locator"
instruction can relocate the program. There are program
references to the bytes following the BIT instructions, but
these references are of the LDA variety, not program flow. The
referenced addresses will appear in the list of equates to
external label references.

This is simply too complex and rare a situation to
have Symbol Master analyze. Any attempt would probably cause
more confusion than assistance.

There is one case where Symbol Master's "BIT skip"
handling fails entirely, and that is where the "hidden"
instruction is reached by some sort of vectored jump. In this
situation the address of the "hidden" instruction will not be an
operand of another instruction in the program.

- 43 -

CHAPTER 17: UNDOCUMENTED AND 65C@2 OP-CODES

Symbol Master V 2.0 optionally handles the
undocumented 6502 opcodes, as well as the documented 65C@2
enhanced instruction set. (Note these alternatives are quite
distinct from each other.) To do this, you must load
alternative tables into the disassembler (which are provided on
the disk). This must be done with care, as you are deliberately
overwriting a part of the Symbol Master code.

17.1 The 6502 Undocumented Op-Codes

We are not here trying to explain this subject in
detail, so this will be real brief: There are 256 possible op
codes, but only 146 are officially defined as part of the 6502
instruction set. This leaves 110 possible opcodes which are
undocumented. Many of these simply cause the computer to crash,
but there are others which are useful. Typically they perform
two instructions at once. These are not at all guaranteed by
the manufacturers of the microprocessors, but others have
reported a remarkable consistency from one to the next, and even
between the 6502 and the 6510, used in the C64. I have not seen
any report on the 8582 used in the C128. Supposedly there are
commercial programs which use these which you may wish to
disassemble. Also, you could use them in your own programs,
although finding an assembler will be a problem.

We have done no investigation whatsoever, and have
relied on published investigations of others. The various
sources are sometimes inconsistent. We have dong our best to
resolve the inconsistencies. You are on your own with the
results.

Here are our sources: "Transactor", November 1985,
Volume 6, Issue 03, pages 58-52, by Jim McLaughlin;
"Transactor”, March 1986, Volume 6, Issue @5, pages 56-60,
separate articles by Raymond Quirling and Noel Nyman; "The
Complete Commodore Inner Space Anthology", by Karl J.H. Hildon,
published March 1985 by Transactor Publishing, page 22, which in
turn refers to "B. Grainger's article in IPUG (Jan. 1981) and
‘Programming the PET/CBM' by Raeto Collin West"; and "Program
Protection Manual for the C-64 -- Volume II", from CSM Software,
pages 71-77B. The address of Transactor is 500 Steeles Avenue,
Milton, Ontario L9T 3P7, telephone (416) 876-4741. For CSM
Software the address is P.0O. Box 563, Crown Point, Indiana
46307, telephone (219) 663-4335.

For mnemonics we used the ones from McLaughlin and
Hildon. Where there were slight gisagreements, we relied on
McLaughlin. They both left out opcode $BB, and for that one we
went to Quirling, who assigned a mnemonic LSA

As a very rough quide, here are the "extra" mnemonics
we put in, and what they may do. Do not rely on this list; go
to the sources above:

ASO - ASL then ORA result with .A. Result left in .A.

RLA - ROL then AND result with .A. Result left in .A.

LSE - LSR then EOR result with .A. Result left in .A.

RRA - ROR then ADC result with .A. Result left in .A
and C.

AXS - .A AND .X then store result.

LAX - Do both LDA and LDX.

- 44 -

DCM - DEC memory then SBC result from .A. Final
result left in .A.

INS - INC memory then SBC result from .A. Final
result left in .A.

ALR - AND .A with immediate, then LSR result. Final
result left in .A.

ARR - AND .A with immediate, then ROR result. Final
result left in .A.

XAA - AND .X with immediate or memory, result in .A.

OAL - ORA .A with #$EE, AND the result with data, then
put result in .A and .X.

SAX - AND .A with .X, then SBC data, result in .X
MKA - AND .A with #$04, result to memory.
MKX - AND .X with #$04, result to memory.

LSA - AND memory with Stack Pointer, result in Stack
Pointer, .A and .X.

NOP - Six more NOPs are reported.
SKB - Skip next byte.
SKW - Skip next word (two bytes).

CIM - Crash Immediately.

17.2 Modifying the Disassembler for Undocumented Op-Codes

To cause the disassembler to interpret the
undocumented op-codes as instructions you must use the "L"
command to load in a table, which will overwrite the regular
table. Do a Header (non-relocating) load of the appropriate
file (i.e., do not specify a load address); it will load to the
right place.

Here are the filenames: For C64 version, use
"UNDOC64.EXE". For Cl128 Bank @ version, use "UNDOC128/@.EXE".
For Cl28 Bank 1 version, use "UNDOC128/1.EXE". Load the C128
tables in the same bank as the disasembler.

17.3 The 65C@2 Documented Op-codes

There exists a completely different set of documented
instructions used in the 65C@2 processor, a CMOS enhancement of
the 6502. Although Commodore computers released to date have
not used this processor, you nevertheless may encounter code for
it. Since this enhanced instruction is officially documented
and guaranteed by the manufacturers, it is not repeated here.
One source is the Rockwell "R650@ Microcomputer System
Programming Manual", January 1983 revision. Also,
assembly-language programming books for the Apple IIC will have
these instructions.

Here are the filenames for the tables to load in, in
the same way as described above in Section 17.2: For C64
version, use "CMOS64.EXE". For Cl128 version, use
"CMOS128/0.EXE" or "CMOS128/1.EXE", depending on the bank.

- 45 -

CHAPTER 18: PRELIMINARY INVESTIGATION
The MODIFIED MACHINE-LANGUAGE MONITOR

Although not strictly necessary, you will arrive at
meaningful disassemblies much faster if you do a bit of
preliminary investigation of the program you are studying before
running Symbol Master. An exception to this is when you use the
Command files we have already prepared as examples. We have
modified a machine-language monitor for the C64 (MICROMON) to
enhance its power for this specialized purpose.

The enhancements are significant enough that even with
Cl128 program files you may wish to go briefly to C64 mode and
use the enhanced MICROMON commands.

In particular, the machine-language load command is
modified so that programs can, at your option, be loaded either
to their header address (non-relocated load) or to any address
you specify (relocated load). This is now the same as the "L"
(Load) command in Symbol Master itself. The ending address is
reported to you. A completely new "dummy load" routine is added
which acts like a load, but doesn't actually do a load. It just
counts the bytes, and reports the ending address. This is
useful when you don't know for sure how long a program is, and
you want to avoid clobbering something else. The final added
command is a "V" (View) command which does nothing except read
the file header to let you know where the file would load if you
were to do a non-relocating (i.e. header) load.

With these tools, you can easily analyze "Autoboot"
programs of the type which take over control o& your computer
immediately when they start to Load in. This even includes
copy-protection schemes since they all, no matter how weird
their disk formatting, necessarily begin with a boot program
which your computer can load in the normal manner. This subject
is discussed a bit more in the next Chapter on "Autoboot
Programs and Copy Protection".

18.1 The Machine-Language Monitor

The included monitor is one entitled "MICROMON",
originally developed by Bill Seiler for the PET computers, and
modified many times by others. We obtained the source Code
through Brent Anderson, who runs the ATUG Disk Exchange, 200 S.
Century, Rantoul, Illinois 61866. He fixed it so the Walk,
Break set and Quick trace commands all work on the Commodore 64.
This happens also to be essentially the same one which is
included on the MAE disk, if y¥u happen to have that assembler.

For convenience, you will find five different copies
of the object code on the Symbol Master disk, all identical
except for where they load. You should have no problem finding
a place to locate one of these in memory. A boot program in
Basic is included for easier loading. With each version, the
cold-start address is the first address of the program, and the
warm start address is +3 beyond that. Each one changes the
Basic memory pointers, but only if necessary, to protect itself.
I.e., the Basic pointers will never be changed to something
higher. For its own variables, the included version of MICROMON
uses some locations at the lower end of the stack page
(beginning at $014C), ane also some at the end of itself up to
the appropriate $xFFF boundary of the 4K memory block it
occupies. MICROMON does not use the zero page locations $FB,
$FC, $FD and $FE, so there should be no conflict with the many
machine language programs which use these. Only disk is
supported, not tape. If you need to do a tape load, exit
MICROMON with the E command to Basic, then use the Basic LOAD
"filename",8,1 command to load, and SYS to cold start MICROMON.
MICROMON calls routines in both the Basic and Kernal ROMs.

- 46 -

As a service, we will supply the original, commented
source code for the included version of MICROMON on disk for a
$10.00 handling charge. Prepaid mail orders only if you are
ordering nothing else at that time. Be aware that the source
code is in MAE format, so you will have to convert it if you use
a different assembler.

18.2 The Added Commands

Described here first are the new commands which are
particularly useful in preliminary investigation. Next
described is the preliminary investigation using the simple
disassembler in MICROMON. Finally, the remaining MICROMON
commands are briefly mentioned. They are all pretty much the
standard ones. Most of you will already have a machine language
monitor and will be familiar with its use.

LOAD FROM DISK
.L "@:FILENAME" -- header load, non-relocating
.L 1009 "@:FILENAME" —-- relocated load

The first example loads RAM starting at the address specified by
the file header. The ending address (plus 1) is reported to
you.

The second example loads to RAM starting at §$1000, regardless of
the file header. The load address 100@ is in hex, and all four
places must be given. The ending address (plus 1) is reported
to you.

DUMMY LOAD FROM DISK
.(see note) "@:FILENAME" -- header
.(see note) 1000 "@:FILENAME" -- relocated

The "see note" character is a Shift/L, which produces a
Commodore graphics character resembling an "L". Other than
that, the syntax is precisely the same as for "L" (Load). A
load does not actually occur, but the ending address (plus one)
is reported as though it had.

VIEW HEADER
.V "@:FILENAME"

This command reads the first two bytes of a program file, closes
the file, and reports to you in hex the load address represented
by that header. This is the address where the file would load
on its own if you were to do a non-relocating load.

The VIEW HEADER and DUMMY LOAD commands together allow you to
determine in advance where a program file will load, without the
risk of clobbering something else. Caution in your conclusions:
in many copy-protection schemes, the header address is something
totally fictitious, put there in confuse. More on this in the
section on "Autoboot Programs and Copy Protection".

- 47 -

18.3 Other Relevant Commands

SIMPLE DISASSEMBLER

.D 2000 2005

., 2000 A9 12 LDA #$12

., 2002 9D 90 80 STA $8000,X

., 2005 AA TAX

Disassembles the range specified. The bytes following the
address can be modified and entered to change the instruction.
Disassembly scrolls up and down under control of the CRSR
up/down key.

MEMORY DISPLAY

.M 3000 3008

.: 3000 30 31 32 33 34 35 36 37 01234567
.: 3008 38 41 42 43 44 45 46 47 BABCDEFG

Displays memory in the range specified in HEX and ASCII
intrepretation. Bytes can be modified and entered. Scrolls up
and down

TRANSFER MEMORY

.T 4000 4FFF 6000 “

Transfers a copy of the data from memory block $4000 to S$4FFF

inclusive to the block beginning at $60@@. In the example here,
the ending address of the copy is §$CFFF.

18.4 Preliminary Investigation

The tools described above are the main ones you will
need. What you are trying to accomplish is to determine the
extent of the program you are disassembling, where the blocks of
code are, and where the data tables and reserved variable spaces
are, if these happen to be included in the body of the program.

Using the "V", "Shift-L" and finally the "L" commands,
get the target program into memory. It eliminates the slight
amount of mental arithmitic reguired if you load it where it is
intended to execute, but this 1s not a requirement. Knowing the
starting and ending addresses, go through the program with the
MICROMON Simple Disassemble and Memory Display commands to find
the code and data tables, and jot down the starting and ending
addresses of each to enter with the Symbol Master editor for the
first trial run. Often, you will want to refine this a bit
after seeing the initial results.

It is usually quite obvious when you are viewing valid
code. There are no ???'s in the disassembly, and the sequence
of instructions will make sense. There are some programs which
frequently switch back and forth between code and data, and
these require careful attention. The Memory Display will often
show you what is clearly ASCII text.

Be alert also for .WORD tables, and enter these as
"WO" or "W-" on the Symbol Master editor.

The transistions between code and data tables require
special attention for an optimum disassembly. When going from
table to code, it is important to start the code on the correct
byte, and if you simply scroll your chances of hitting this are

- 48 -

probably about 50-50. When you have been scrolling down with
the Simple Disassembler through tables which disassemble as junk
and you suddenly find good code, back up very carefully to find
the true start. See whether the first instruction makes sense.
Instead of scrolling, start the disassembler at a specific
address to catch the correct starting byte.

When you have made the notes, enter the block
addresses on the Symbol Master editor. You can either cold or
warm start Symbol Master from the Monitor. Also the Symbol
Master editor can be loaded from MICROMON and cold started.

Use of Symbol Master is usually an iterative process.
The above procedure will get you started. After a few trial
disassemblies to screen you can get the disassembly parameters
"fine tuned" before disassembling to printer, and finally to
disk.

18.5 Remaining Monitor Commands

MICROMON has quite a few other commands. However,
they are all the standard ones, and are available from many
sources. Rather than waste pages of this booklet with a
description of commands not particularly relevant to the purpose
at hand, the complete list is merely summarized here:

Simple Assemble

Break Set

Compare Memory

Simple Disassemble

Exit to Basic with vectors restored
Fill memory

Go execute

Hunt memory

Kill. Restore vectors and break.
Load RAM from disk

Dummy Load

Memory display

New locator

Branch offset calculate

Output switcher

Quick trace

Register display

Save RAM to disk

Transfer memory

View disk file header address
Walk code

Exit to basic. Keep Micromon vectors
Hex conversion

Decimal conversion

Binary conversion

ASCII conversion

Hex addition

Hex subtraction

Checksum

SHIFT/

PHNXIIHNIOWOZIHER IO HOUOW Y

2+

CHAPTER 19: AUTOBOOT PROGRAMS AND COPY PROTECTION

19.8 C-64 Autoboot Programs

Here is how to easily deal with autoboot programs in
the C-64 so you can disassemble and study them.

If you haven't seen one, you will know it when you see
it. Such a program is loaded, in Basic direct mode, via
something like the following:

LOAD "@:BOOT",8,1

Suddenly, the program takes over your computer and loads the
remaining modules while you watch and do nothing.

There are two usual techniques such programs employ.
But first, the effect of the ",1" on the Load command: Without
this, Basic always does a relocated load, loading the program to
$0801, regardless of the program file header. With the ",1", a
non-relocated load is done to the address given by the two bytes
which constitute the program file header. Normally, you would
be returned to Basic READY mode after a load, but these programs
of course do not.

(1) The first technique uses the Basic IMAIN vector at
$0302,$0303. Here is a typical example. Using the MICROMON
added "V" (View) command, you determine that the load address is
$02A7. From the memory map on page 318 of the Programmer's
reference quide you see that this is the beginning of an
"unused" area. Using the MICROMON added SHIFTYL command, the
ending address (plus 1) is reported as @304, meaning the true
end is $@303. Assuming you have have MICROMON loaded other than
$1000 - $1FFF, leaving this area free for investigation, you now
load the boot program into this area, picking an address which
keeps the mental arithmetic simple:

.L 12A7 "@:BOOT"

Here the ending address (plus 1) of the actual load is reported
as 1304. The program is now in memory at $12A7 through $1303
for study where it will do no harm.

This boot program obviously is intended to load past
the end of the "unused" area. Investigation with the monitor
reveals code at the beginning of the block. Significantly,
however, at the end addresses $1302 and $1303 contain $A7 and
$02. These two addresses correspond to intended load addresses
$0302 and $0303, the Basig IMAIN vector! Following a Basic
Load, Basic jumps through this vector (which normally points to
$A483). Now the vector points to $02A7 where the Boot code
begins, and takes over. The boot code will include the
necessary machine language routines to load in the rest.

(2) The second technique uses the stack. Here is a
typical example. Using the MICROMON "V" command you determine
that the load address this time is $0100, the beginning of the
stack page. Using the MICROMON SHIFT/L command, the ending
address (plus 1) is reported as 0259, meaning the true end is
$0258. Now load the Boot program into a safe area of memory,
where it will be benign:

.L 1190 "@:BOOT"

The ending address (plus 1) of the actual load is reported as
1259, so the program is loaded for study at $1100 through $1258.

Investigation with the MICROMON M and D commands

reveals that almost the entire area $1100 through $11FF
(corresponding to the intended load area $0108 through $O1FF) is

- 50 -

filled with $82 bytes. Just above that is code. Here's how it
works: The Load routine is of course a subroutine. When the
RTS is encountered, it pulls the top address off the stack
(believing that's where a subroutine was called from) adds one,
and resumes execution at that address. Of course now whatever
was at the top of the stack, regardless of the stack pointer, is
gone. No matter where in the stack the RTS goes, out will come
the address $0202. So, the next instruction executed is the one
at $0203, which of course is part of the boot program.

Having recognized either of these approaches (or
perhaps another one someone has devised), you apply Symbol
Master to disassemble the Boot program. After analyzing how it
works, you modify it as necessary to load in the next module
under your control.

Often there will be a chain of such modules, where
each one loads the next. Just follow it through. WIth Symbol
Master you can save all of your work to disk every step of the
way.

19.1 Caution on Load Addresses

With the exception of the initial "Boot" program (or
any program you yourself load in direct mode), it is not
necessarily true that the program file header contains the
actual load address. The boot program, or intermediate links,
may very well use a relocated load.

From the decsription of the Kernal LOAD routine in the
Programmer's Reference Guide, you will see that setting up a
secondary address of @ prior to a Load will result in a
relocated load to the starting address specified in the .X and
.Y registers, regardless of the header. Watch for this as you
go through the file chains.

Incidentally, in the C-64 the Symbol Master "$D" main
module is loaded via a relocated losd to $AQ00, then copied to
$DPPP. The "SA" main file is then loaded to its header address
$AGPP. This time a non-zero secondary address is used for a
non-relocating load.

19.2 Copy Protected Programs

Symbol Master is not intended as a "disk duplicator"
or a piracy tool. It is for serious study and analysis. If you
want to rip off copy protected commercial programs and
contribute towards drying up the source and driving up the
price, you will save yourself a lot of trouble by buying one of
the protection-breaking disk duplicator programs.

Of course you won't have the slightest idea of what is
going on, and the contribution to your knowledge as a programmer
will be nil.

On the other hand, careful study using Symbol Master
as a tool will reward you greatly in increased programming
knowledge as you unravel the techniques used in these programs.
Within limits, the more complex the task, the more you will
learn. Symbol Master minimizes the drudgery, leaving you free
to apply the thought.

Also, if you have some favorite programs which are
protected by the bump and grind method whereby your 1541 disk
drive is destroyed, your efforts can be rewarded with an
executable version of the program which loads and executes in
the normal manner. Please, please do this for yourself, not for
your friends. .

- 51 -

Anyway, if you followed the discussion above
concerning "Boot" programs in general, you already know how to
deal with a copy protected program. There is no differencel

Here's why: Every disk, no matter how heavily
"protected", must have a boot program which loads in the normal
manner. Otherwise it could not start. Once you look at the
boot program, you might find anything. But you will be able to
see it.

Some simple protection methods (e.g. the bump and
grind method) have deliberate bad sectors on the disk so the DOS
issues a read error. The boot program (or the next link) will
look for that error, and abort if it is not found. All you have
to do is find that portion of the code and reverse the logic so
it runs if there is no error. Others, i.e. those which modify
DOS will require more study. But remember, if they can do it,
so can a modified program you write.

You may also encounter encrypted program files. With
these, even if you are able to do a load from the disk, they are
utter nonsense. However, the boot program, or intermediate
program, will necessarily have the decryption algorithm. Once
you find the decryption code, just reassemble it in a program
you control.

19.3 Mangled Disk File Names

Most copy protected disks have disk directories which
are odd, to say the least. One technique for "loing this is to
include non-ASCII characters in the filename. The simplest
example is a zero byte. The DOS has no trouble finding these
files to load; it just can't put the directory listing together.

If this technique has been employed, you will discover
the filenames to use as you go through the chain beginning with
the "Boot" program. Another way is to use a disk utility which
allows you to examine blocks on the disk. You can see how the
directory is set up. You don't need anything fancy to do this.
The "DISPLAY T & S" program on the Commodore "Test Demo" disk
will do quite nicely, provided you keep track of when you have a
decimal number and when you have a hex number. "DISPLAY T & S"
is a good program to use because it does not have modify
capability, and therefore will not let you damage a disk.

19.4 File Reading Prgogram

We have included a little utility which is a modified
version of Butterfield's "COPY FILE 64" program. The original
version prompted you to input the file name, which was then read
from one disk and written to another disk. That is fine for
ordinary files, but can't handle a scrambled file name. The
original version consisted of a short Basic program with a
machine language program appended. We pulled off the machine
language program, and reassembled it to load and run at $C@0Q.
The Basic portion can now be edited each time you use it, so
long as you don't make it much longer.

Here's how it works. First, load the machine language
portion from Basic direct mode using:

LOAD "@:CPYFL64/MOD.EXE",8,1

Next enter NEW followed by CLR to reset the Basic pointers.
Then:

LOAD "@:CPYFL64/MOD.BAS",8

- 52 -

LIST the Basic program so you can edit it. Edit line
20 so that X$ is the filename, strange bytes and all, as you
have determined it. For example, if you have determined that
the filename consists of a zero byte followed by ASCII "MD2",
here's what to do:

20 X$ = CHR$ (0)+"MD2"

With the CHR$ function and the string concatenation operator you
can achieve anything required. Keep in mind that the disk
directory or boot program will give you the strange bytes in
hex, and you must convert these to decimal for the CHR$
function.

In line 30, assign an ordinary filename to YS§.
Insert the "from" disk in your drive and run the
program. The file will be loaded. When the prompt comes, put

in another disk, and a duplicate file will be created, which you
can then thereafter load with MICROMON or Symbol Master.

19.5 (C-128 Boot Programs

It is safe to assume that most commercial programs for
the C128, whether copy-protected or not, will take advantage of
the "Boot Sector" on the disk, which is Side 1, Track @1, Sector
P@. Assuming the disk drive is present, on reset the C128
"Boot" routine reads this sector and loads it into the cassette
buffer $0BOP through $OBFF in RAM Bank @#. The first three bytes
of the block are checked to see if they contain the ASCII key
"CBM". If not present, the boot is aborted, and initialization
proceeds, leading to the Basic opening message.

What happens next if the "CBM" key is present is
described in other sources. It is dealt with in the Abacus book
"128 Internals", and the magazines are beginning to treat this
subject. You can learn more even by studying the boot sector
creator program which comes with the 1571 disk drive.

In any event, while the rules are more complex, you can

trace through what will happen, and thus begin the disassembly
process.

- 53 -

CHAPTER 2@0: SPECIFIC ASSEMBLER NOTES

In this section is information specific to each of the
assemblers supported. This section includes the description of
the specific effect of the "OPT" option which may be specified
on the miscellaneous parameter line (editor screen line 3). You
will want to read the portion pertaining to your assembler in
particular, and perhaps briefly consider the others.

20.1 MAE Assembler

Effect of "OPT" on the miscellaneous parameter line --
OPT selects the explicit zero page addressing mode. While it is
not necessary with current versions of the MAE assembler, the
assembler still supports it. If you like to see the asterisk
(*) before the operand on zero page addresses, Symbol Master
will give it to you.

Not selecting the OPTion will not cause a phasing
error on assembly because Symbol Master always outputs the
equates before any program lines. Thus all zero-page references
are defined before they are referenced, and MAE will be content.

MAE does not (to my knowledge) support explicit
absolute address addressing mode. There are times when a
programmer deliberately wants the absolute addressing mode, even
though the address involved is on zero page. Typically the
reason is to prevent indexed addressing from wrapping around to
the start of zero page, when the intent is te continue on to
page 1. A slight problem comes when re-assembling source code
generated by Symbol Master: Since the address is a zero page
address, MAE will assign the zero page addressing mode. This
will make the program a byte short, and it may not even run if
the wrap around effect referred to above is a problem.

Fortunately, Symbol Master flags this situation for
you, and you can easily fix it. The situation will be flagged
by Symbol Master commenting the line ";ABS. MODE FOR Z.P.
ADDRESS". When you see this, use the .BY pseudo-op on one line
to generate the correct absolute mode op-code in hex, and then
use the .SE pseudo-op on the next line to reference the operand
by its asigned label. After you do this, you can do an
assembly, and recreate the original exactly.

Each file generated by Symbol Master has the header
properly written to tell MAE the precise length in bytes of the
file. No manipulation on your part is required to accomplish
this. Symbol Master itself imposes no limits on the MAE file
length. However, to avoid an !OF OVERFLOW IN TEXT FILE error
message issued by MAE, take care not to disassemble too large a
chunk of code as one file. Once a program has grown to the size
where it will not all fit in the MAE text buffer at once and a
Control File with .CT and .FI pseudo-ops must be set up, there
is essentially no speed advantage in trying to make the files as
long as possible.

Symbol Master assigns MAE line numbers beginning with
line 1, and uses an increment of 1. You will probably want to
change the increment to 10 using the MAE]NUMBER command the
first time you edit the file. Symbol Master does not assign an
increment of 1@ in order to minimize the chance of overflowing
the numbers. A module length of 100@ lines is not impossible,
which is all an increment of 18 would allow.

- 54 -

20.2 PAL64 Assembler

Effect of "OPT" on the miscellaneous parameter line --
OPT controls the line numbering when writing multiple module
files to disk. In the default mode (OPT not specified), the
line numbering is restarted with number 10 with each new module
file written to disk. When OPT is specified, line numbering
continues in sequence even though a new file is opened.

In either case, the line number increment is 1@. This
allows you to conveniently insert lines using the the Basic
screen editor even if you do not have the separate "POWER 64"
utility program from Pro-Line Software Ltd., or a similiar Basic
aid program.

PAL supports explicit (forced) absolute addressing
mode using an exclamation mark (!) as a prefix to the operand.
When PAL mode is selected, Symbol Master generates the "!" where
appropriate, and also adds a comment to flag for you what is an
unusual situation.

In virtually all cases, Symbol Master disk output can
be immediately reassembled perfectly. We have encountered one
exception with PAL. That exception is where a colon (:) occurs
in the comment field when interpreting BYTE table data as ASCII.
Even though this is in what other assemblers would consider the
comment field, PAL thinks a new line is intended. It is
unlikely what follows the ":" is a valid instruction, and a
Syntax error, likely non-fatal, ordinarily results. The
solution is to edit out the ":". We weighed the pros and cons
of whether Symbol Master should consider ":" to be a prohibited
character when interperting ASCII in the syntax of the PAL
assembler. Obviously we determined to leave it in. If this
does happen to you, you will now know why.

The PAL64 assembler can be co-resident in memory with
Symbol Master. However, beware and be aware that PAL is longer
than 4K. If does not start at $9000 but, rather, a bit lower.
So do not have PAL loaded at its normal place and think you can
load the Symbol Master editor or MICROMON at $880@ through
$8FFF. If you try this, you will clobber PAL. The remedy is to
load PAL last. PAL will look at the Basic memory pointers
advusted by Symbol Master or MICROMON, and load itself below
that.

20.3 Develop-64

Effect of "OPT" on the miscellaneous parameter line --
OPT selects verson source file output compatible with earlier
versions of Develop-64, i.e., version 3.0 series. The default
of no OPTion causes source files compatible only with version
4.0 and above to be generated. The Develop-64 version 4.0
documentation explains that source files created with the
earlier versions are compatible with version 4.0, except they
are slightly longer, and except that lines with the BYT
pseudo-op must be reprocessed by the editor. The specifics are
as follows: Develop-64 version 3.0 used the Basic INPUT
instruction to read lines of source code from tape or disk. A
leading quotation mark (") was necessary to prevent INPUT from
stopping at the first comma (,). Develop-64 version 4.0 uses a
machine-language routine to read the source code lines. The
quotation mark is not necessary, and the elimination of it makes
the lines shorter. Regarding the BYT, version 4.8 encodes these
slightly differently. The reason is theirs to know.

Develop-64 version 3.0 limits the maximum number of
source code lines to about 190@. So don't try to dissassemble
too long a program if you are generating a source code file for
version 3.0. Symbol Master does not keep count for you.
Version 4.9 allows the use of the LIB pseudo-op to refer to as
many module files as desired and will fit on a single disk, so

_ 55 -

there is no problem in this regard when disassembling for
Develop-64 version 4.8. Also, do not specify the Multiple file
mode for Develop-64 version 3.0. Symbol Master will go ahead
and do it, but version 3.0 will be unable to read in the
multiple files since it doesn't support the LIB pseudo-op.

Filenames in Develop-64 -- As you know, when reading
or writing source code files Develop-64 automatically adds the
extension ".SRC" to the filename. In order to avoid the total
filename length exceeding sixteen characters, the unique portion
you specify cannot exceed twelve characters. In Develop-64
mode, Symbol Master does the same thing. Thus when creating
your filenames, limit the length to twelve. Symbol Master will
then add the ".SRC" extension. If your name is too long, Symbol
Master will truncate as necessary to fit. However, in order to
allow the filename form "@:filename" used with dual disk drives
(and advisable even with a single disk drive), Symbol Master
bases its truncation on a filename length of eighteen
characters. To conclude: Limit filenames to 12 characters. As
a matter of caution, examine the disk directory after writing
files for Develop-64. If the ".SRC" is not properly appended
(it may be cut off), use the DOS Rename command
(@RO:newfilename=@:0ldfilename) to remedy the situation. If a
control file is involved, you may also have to edit the filename
following the LIB pseudo-op.

2@0.4 Commodore Assembler (ASSEMBLER64)

Effect of "OPT" on the miscellaneous parameter line --
none. The OPT will be accepted by the editor, but at present
has no effect on the disassembly. -

The lack of an explicit zero page addressing mode can
cause the same situation as discussed above for MAE. Refer to
that discussion for the remedy which will exactly recreate the
original object code upon reassembly. The pseudo-ops are,
however, different. Use .BYTE on one line to generate the
correct absolute mode op-code in hex. and then the .WORD
pseudo-op on the next line to reference the operand by its
assigned label.

280.5 LADS Assembler

Effect of "OPT" on the miscellaneous parameter line =--
exactly the same as for PAL. Refer to the first two paragraphs
of the PAL description.

LADS is the only of the assemblers supported which does
not have a .WORD pseudo-op. Therefore "WO" and "W-" blocks (see
Chapter 11, Section 11.8) do not generate addresses, and the
analysis is not as good.

LADS does not have an explicit zero-page addressing
mode, but since it doesn't have .WORD either the fix if you get
a message "ABS MODE FOR Z.P. ADDRESS" will be more complex.
Probably careful use of the .BYTE pseudo-op can take care of it.
Refer to the MAE description, 2nd and 3rd paragraphs for more
discussion.

A standard (unmodified) LADS assembler requires the
operands of .BYTE pseudo-ops to be in decimal, so Symbol Master
gives them this way for LADS. Also, binary immediate operands
are not recognized, so Symbol Master uses hex operands for AND,
ORA and EOR immediate in LADS mode.

Since you can modify the LADS assembler, if you like
and are determined to use LADS, we suggest modifying it to
accept PAL source code so your disassemblies and reassemblies
will be more meaningful.

- 56 -

20.6 Merlin Assembler

Effect of "OPT" on the miscellaneous parameter line --
none. OPT is accepted by the editor, but has no effect on the
disassembly in Merlin (MER) mode.

The most significant thing to note is that Symbol
Master in Merlin mode writes what Merlin calls "text" files to
be read in by the Merlin "R" command, rather than "source" files
to be read in by the Merlin "L" command. Be sure to enter NEW
to clear out the Merlin editor before doing the Merlin "R".

The reason Symbol Master writes Merlin "text" files is
that the Merlin "PUT" pseudo-op for "inserting" a text file in
an assembly only works with "text" files. It seemed strange to
us to have Symbol Master write one type of file when doing an
"S" (Single) file disassembly to disk, and another type of file
when doing an "M" (Multiple) file disassembly to disk, so we
selected the form which is usable with either. Of course if you
prefer Merlin "source" files, you can read the "text" files into
the Merlin editor, and then Save them back to disk in converted
form.

Merlin supports explicit (forced) absolute addressing
mode using a colon (:) as a suffix to the mnemonic. When Merlin
mode is selected, Symbol Master generates the ":" where
appropriate, and also adds a comment to flag for you what is an
unusual situation. In virtually all cases, Symbol Master disk
output can be reassembled perfectly.

28.7 Panther Assembler

Effect of "OPT" on the miscellaneous parameter line --
none. OPT is accepted by the editor, but has no effect on the
disassembly in Panther (PAN) mode.

The most significant thing to note is that, in Panther
mode, Symbol Master writes untokenized "ASCII text files" to
disk, rather than tokenized source code files. Thus you must
use the Panther READ command to get them into the assembler's
editor. The Syntax, however, will be correct, and a single file
can be immediately reassembled.

A slightly cumbersome aspect to this is that the
Panther LOA pseudo-op for including multiple files in an
assembly requires a tokenized file saved with the SAVE command.
Thus, if you have done a multiple file disassembly to disk, you
will have to process the Equate file, as well as each Module
file through the Panther editor to convert it from "ASCII text
file" to "tokenized source code file" form.

The lack of an explicit zero page addressing mode can
cause the same situation as discussed above for MAE. Refer to
that discussion for the remedy which will exactly recreate the
original object code upon reassembly. The pseudo-ops are,
however, different. Instead of .BY (equivalent to the standard
.BYTE), use DFC on one line to generate the correct absolute
mode op-code in hex. Instead of .SE (equivalent to the standard
<WORD), use the ADR pseudo-op on the next line to reference the
operand by its assigned label.

- 57 -

CHAPTER 21: PREPARED EXAMPLES

Using command (.CMD) files, we have provided you with
a number of examples which, perhaps, will be more helpful than
this documentation. We have tried to illustrate a number of
situations.

21.1 Example 1

Example 1 is the DOS wedge disassembly using the C64
version covered in the "Quick Start" procedure at the beginning
of this manual, Section 1.1.

Here's a brief analysis of the results. At $CC@3 and
$SCCOE are two tables, which contain the high bytes and low
bytes, respectively, of the DOS command action addresses.
Actually, you need to add +1 to each address to see where they
point to because the action routines are reached via an RTS
after the address is retrieved from the table and pushed on the
stack at $CD3F - $CD47. RTS always adds +1 to the address on
the top of the stack. The ASCII table at $CCl9 contains the
commands the wedge recognizes. You may see some commands you
didn't realize the wedge has. Of course the positions in all
three tables correspond. If you reassemble, you will probably
want to assign names to the commands; put NAME-1 in the table,
and use the appropriate operator for your assembler to specify
the high byte for the first table, and repeat with low bytes for
the second. Using that technique the program can be reassembled
at another address, and instructions can be added and deleted.

*

Beginning at $CC24 has the look of a data area. Some
is probably unused. Beginning at $CC7B is an ASCII data table
with the start-up message. At $CCDE is a JMP instruction with
the asigned label "ACCDE" indicating data, not program flow!
The explanation is that this is in fact data, as the next five
instructions in the program copy this over the top of the Basic
CHRGET routine.

21.2 Example 2

Example 2 is the same example, but in the C128 mode, as
described in Section 1.2. The point here is that programs for
one computer can be loaded into another for analysis.

21.3 Example 3

Example 3 is the same DOS wedge, only loaded to a
place in memory other than where it runs. Use the C64 version
and, from the Symbol Master editor, Get the command file
"DOS5.1$3.CMD". Then do a relocated load:

L 3C@8 "DpDOS 5.1"

If you prefer, the file could be loaded from MICROMON with the
same command, except following the period (.) prompt.

21.4 Example 4

Example 4 is the 8K Commodore 64 Basic ROM. For the
ROM examples we have set up, keep memory free from $200@ through
$5FFF. Load the Symbol Master editor and MICROMON at other
locations. There are many 4K blocks available. Use "U" to load
the Label file "DEFAULT64.LBL"

First, from MICROMON, make a RAM copy of the Basic
ROM:

.T AOQO BFFF 2000

- 58 -

This will create a copy of the Basic ROM from $200@ through
§3FFF. This step is necessary because Symbol Master runs with
the Basic ROM banked out. If you tell Symbol to look in the
range $AQ0@ through $BFFF it will not find Basic there.

The prepared command file to Get then Run is
"BASIC.CMD".

It is possible you will want to generate multiple
spource files to disk for your assembler to recreate the Basic
ROM. If you are not accustomed to large assemblies, this may
take a moment to set up. With MAE you will need to lower the
bottom of the label buffer to $1000. The default will overflow.
Likewise, Develop-64 will overflow its symbol table unless you
change the configuration. We have used the two areas $4800 -
$5FFF and $6000 - $9FFF as the combined symbol table. The
maximum of 880 source statements in this configuration is not a
limitation since the assembly will proceed from the disk file.
No adjustments are needed to PAL or CBM. In all cases, start
the re-assembly with the control file.

Symbol Master's source code output is of course not
commented, except for occasional information. If you want a
commented version, we highly recommend “What's Really Inside the
Commodore 64", by Milton Bathurst, which we also sell under the
brief identification "C64 Source". Nearly every line is
commented, and every routine is introduced with a statement of
its purpose. Both the Basic and Kernal ROMs are covered.

21.5 Example 5

Example 5 is the Commodore 64 Kernal ROM. There are
actually four different versions of the Commodore 64 Kernal ROM,
counting the SX-64 as one of these. We have prepared a command
file for each. Determine which ROM is in your machine, and use
the appropriate command file.

The byte at $FF80 (decimal 65408) identifies the ROM
version. Either PRINT PEEK this location from Basic, or use
MICROMON to examine it in hex.

Hex Value Decimal Value Command file
ROM1 $SAA 179 "KROM1.CMD"
ROM2 $09] "KROM2.CMD"
ROM3 $03 3 "KROM3.CMD"
SX64 $69 26 "KROMSX.CMD"

Use MICROMON to copy your Kernal ROM to RAM:
.T E0B0 FFFF 4000

The procedure is the same as for the Basic ROM,
Example 4 above.

21.6 Example 6

This example is the C64 version of Symbol Master
itself. Load the Editor at $C@OQJ. Get the command file
"SYMBOL.CMD". Use the "U" command to load in the label name
file SYMBOL64.LBL. Then Run the disassembler, using the R
command. Symbol Master can disassemble itself from under the
Basic and Kernal ROMs because both ROMs are banked out while
Symbol Master does its work. This disassembly will well
demonstrate that different modules of a program need not be
contiguous in memory for a proper disassembly. This example is
set up for the editor loaded at $C@00.

- 50 -

21.7 Example 7

This example is the C128 operating system ROM. Load
the Bank @ version of Symbol Master. Use G to Get the command
file "KERNED128.CMD". Use U to load the label name file
"KERNED128.CMD". Run the disassembler. Have patience, this is
a long disassembly.

21.8 Example 8

This is the ROM of the 1541 disk drive. Use the C64
version of Symbol Master.

Exit to Basic and LOAD and RUN the program file
"COPY/DISKROM.BAS". This program pulls a copy of the 16K ROM
out of the drive and puts it into the C64 at $408¢ through
S7FFF. This takes about 45 seconds, since 16K must be
transfered over the serial bus. For purposes of information,
the file "COPY/DISKROM.PAL" is the PAL source code which
generated the ".BAS" file. Even if you don't have a PAL
assembler you can list it to see how it works.

Use the command file "1541.CMD", and the label name
file "RAM1541.LBL". Run the disassembler.

There have been many versions of the 1541 ROM, so you
may have to adjust the command file to match yours.

Superb comments for this disassembly can be found in
the book "Inside Commodore DOS"'by Dr, Richard Immers and Dr.
Gerald G. Neufeld, published by DATAMOST< Inc. and Reston
Publishing Company.

The program "COPY/DISKROM.BAS" will also read out the

ROM from an MSD drive. For this disassembly, load the table for
the 65C@P2 instruction set as described in Chapter 17.

- 60 -

CHAPTER 22: MISCELLANEOUS NOTES

22.0 Further Notes
Find and list the "LIST ME" file on your disk for

updates to this manual, and any other information pertaining to
the version of Symbol Master supplied on your disk.

22.1 Cl1l28 Capabilities

I am not certain whether the C128 editor will be
working fully, but it is quite useable in any event. In
particular, 80-column scrolling may not be operational. If so,
you cannot create command files longer than 2@ blocks (although
longer ones can be read in). The 40-column editor for Bank @
works as of this writing, but not the Bank 1 editor, so the same
limitation may apply. Refer to the "LIST ME" file for details.

22.2 (C128 8d-Column "Fast" Mode

This works. Turn on the computer, and get the
8@-column display going. Enter the Basic "FAST" command. Then
Load Symbol Master. (Again, you may be limited in screen
editing capabilities to 20 lines, but the disassembler will in
fact run twice as fast in this mode, which is nice for long
disassemblies, particular for printing cross-referenced label
listings.

One caution, the C128 Editor ESC/X sequence will work
to toggle output between the 40 and 80 column screens, and you
may wish to use this to get the 40-column editor. However, it
is important to always exit Symbol Master in the same screen
mode you entered. Otherwise the Kernal Editor variables get all
messed up when Symbol Master swaps out zero page.

You can easily go between the "fast" and "slow" modes
from the C128 Monitor by calling the routines in the Basic ROM.
For "fast", do J F77B6. For "slow", do J F77C7. Here is a
complete procedure to follow in case the 80-column editors are
not working: Turn on the C128 in 8@-column mode. While still
"slow", Load Symbol Master. In Symbol Master, use ESC/X to go
to the 40 column screen to edit. When done, ESC/X again back to
80 columns. Break to the monitor, and do J F77B6 for “fast".
Then "G" to warm start Symbol Master. (It's easier to do than
to describe.

22.3 Error Conditions

(1) The label table has a capacity of 2500 labels in
the C64 version. 1In the unlikely event this is exceeded, a
label table overflow message will be issued. The label value
where the overflow occured will be printed, so you can tell how
far the disassembly progressed. Execution aborts, with warm
start entry.

(2) Symbol Master creates a label table, refines it,
and refers to it often on subsequent passes. If, on a
subsequent pass, a label is missing which should logically be in
the table, an execution error is detected, a message is printed,
with abort and warm start. The error parameters printed are:
the address in Symbol Master where the execution error occurred,
the value of the missing label, the program counter with
reference to the offset origin, and the program counter with
reference to the intended origin of the program being
disassembled.

In general this error will occur anytime the contents
of memory through which Symbol Master is being sent changes from
pass to pass, particularly if-a "Code" module is involved. If
you disassemble through memory where Symbol Master keeps
variables, for example, you will get this error. Also,
disassembling through screen memory when output is occurring
will cause this. Going though the I/0O register area in the Cl128
also does this. 1In the C128 there are quite a few logical banks
where there is not memory actually installed, for example, where
"internal" or "external" "function ROM" is specified. These
areas read out random junk, and cause an execution error.

(3) Symbol Master has no numbered error codes. A text
message is always printed. However, you may get an I/O error
message generated by the Kernal. I/0 error #4 means File Not
Found. 1I.0 error #5 means Device Not Present.

22.4 Defining Blocks on the Editor Screen

The following was written before the V 1.0 manual
before the editor "Fix" commands were put in. The following is
much less of a problem now, but still deserves mention:

(1) Proofread the blocks very carefully. The Hardcopy
dump helps. You will have three columns defining the starting,
ending, and intended origin address of each block. Assuming
they are intended to be contiguous, run down the list columns
one and two to be sure you stay in sequence from one block to
the next. Compare columns one and three of each block to be
sure they always have a fixed re¥ationship.

(2) A good sign that you have made an error of the
type just described in (1) is when a ";NEW ORIGIN" comment is
issued where you didn't intend one. '

(3) If you inadvertently overlap the definitions of
memory blocks you are sending Symbol Master through, duplicate
labels will be generated, in addition to the ";NEW ORIGIN"
comment. Your assembler will choke on this.

22.5 Printing of Messages

(1) All execution messages are printed to the screen,
followed eventually by the warm start message. You are always
reminded where you have the editor loaded. When you press any
key, the screen is cleared and you are back to the editor
screen.

(2) Just prior to opening a disk file during
execution, the filename is printed to the screen. If a DOS
error occurs (e.g. "File Exists"), that will be printed next,
and you will know exactly what happened.

(3) Where possible, editor messages are printed to the
second line, which has no other function. Some (e.g. the Kernal
LOADING message) cover more. When this occurs you will need to
re-initialize the editor, for example by hitting RETURN on a
blank line.

- 62 -

22.6 Halting and Pausing Execution

(1) On output to Screen you can slow down the output
using the CNTRL key. You can pause it with the STOP key.
RETURN resumes. If you want to study the screen display a few
lines at a time during execution, you can alternate back between
8TOP (PAUSE) and RETURN as often as you like.

(2) While the Screen is Paused by action of the STOP
key, the DEL key will abort, and return to warm start. The DEL
key has this effect only during Screen pause.

(3) On output to Printer or Disk, the STOP key will
abort. There is no pause function. Particularly with the
printer, you may have to work the STOP key a few times, or hold
it, because it isn't scanned very often while the printer has
the serial bus tied up.

(4) The Disk Directory display accessed via the editor
DOS manager is a bit different. 1In that case, SPACEBAR pauses
and resumes. STOP stops entirely and closes the disk channel.
RETURN returns to the editor screen when finished.

(5) In the C128 the "NO SCROLL" toggle key operates
during output to the screen. However, to abort a disassembly
you will still have to use the STOP and DEL keys.

22.7 Random Tips

(1) In the C64, if a program file is normally loaded
from Basic with the command LOAD "filename",8 (with no ,1), then
the intended load address is $0801, regardless of the header.
Sometimes the header will be $0408, but don't be confused by
that. It just means the file was originally saved on an older
Commodore PET machine.

(2) If a byte you have preliminarily identified as
belonging to a table because it does not appear to be code ends
up geting assigned a label of the form "TJhhhh", "TShhhh" or
"TBhhhh", and it is not being referenced by a .WORD byte pair,
something is not as it seems because JMPs, JSRs and Branches
should not be going to junk tables. You should strongly suspect
that a portion of the target program has been encrypted. A less
likely possibility is use of the undocumented op-codes.

(3) If a program is loaded from Basic, and you know it
has a SYS to a machine language routine but you can't list it,
suspect a compiled program or one with shifted characters in REM
statements. Some programs also end a Basic program line with a
string of ASCII DEL characters ($14), which backspace over the
line before you have time to read it from the screen. Careful
examination with MICROMON is in order.

22.8 Disassembling Cartridge ROMS in the C64

You may wish to disassemble a cartridge ROM in the C64
at $8099 thru $9FFF. A slight complication is that Symbol
Master in the C64 runs in a configuration with all 64K RAM, I1/0
out (and IRQs off). Thus, if you tell Symbol Master to
disassemble from $800@ through $9FFF, it will find RAM, likely
filled with junk, rather than the cartridge.

The solution is the use the MICROMON Transfer (.T)
command to copy the cartridge ROM to another area of RAM. This
is the same technique described in the examples of Chapter 21
for disassembling the Basic and Kernal ROMS. You could also
write a little routine to copy the cartridge ROM to the
underlying RAM at the same address.

- 63 -

Brought to you by:

roups/commodoreinternationalhistoricalsociet

commodore international
historical society

https://www.facebook.com/groups/commodoreinternationalhistoricalsociety

