=lone Newsletter

DEDICATED TO FRUSTRATED DISK USERS

HERRERER R A XA AR XA LA XA RRENRE XS ES XX

XXXXX MUSIC FROM M|CRO-W #x*xxx
LR R R R R R R S R R T e L T S S E T T T ¥ S

Over the past year or so, the mu-
sic industry has begun To see and
teel the presence of a strange,
new entity in its midsts. This
alien infruder, nas the potential
to affect the industry in a dra-
matic, almost revolutionary way.
The invader that | speak of is,
of «course, vyour triendly home
computer. The marriage between
music and micros, like so many
other unconventional matings, was
bound to produce its share of un-
wanted offspring. However, a num-
ber 'of visionary engineers and
musicologists got fTogether and
created a standard that hopefully
will keep fhe number ot these or-
phans to a minimum. This standard
is now known by the name MIDI,
which is an acronym for Musical
Instrument DigirTal Interface.
Basically, the MIDI is a hardware
device thaft allows your computer
to !'Talk' To any MIDI equipted
instrument. In tThe same way that
a number of 1541's can be 'daisy=-
chained'! to a Commodore 64, mult-
iple keyboards and synthesizers
c€an be used simultaneously via
the MIDI. This would allow a sin=-
gle musician fo sound as though
he was a full ensemble, or even
an ‘entire orchestra. With the ap-
propriate software, tThe MID| can

Turn your computer intfe 3 multi=
Track recording studie- a sftate-
of-the-art digital one no less!
The possibilities are almost end-

less: music franscriptions print-
ed ouT while playing, composing
and orchestration Tools, educa-
tional software, efc. At Mlcro-w,
our development engineers and
progremmers are already hard at
‘work with a2 oumber of MIDI pro-
Jjects for both the Apple and Com-
modore computers. Those of you
who already enjoy music, elither
by playing an instrument or just
listening, can look forward to
some very exciting new things!

R R E E R E R E R R R R eSS SRR R R
2 b NEW HRODUCTS: MISTER LISTER and THE FONT FACTORY .
B R s T

MISTER LISTER is a powertul new focl ftrom Micro-W, that will
allow you To organize the names and addresses of friends,
acquaintances, club members, custormers, efc. This progran
2l lows fthe storaye of up To 1000 names, any one of wnizh
can be recallied within five seconds by a keyed search. tach

entry (called a record) contains a space ftor name, full ao-
dregs, and phone number af The person being lisTed, as
waell as a yeneral comments section. In addiTion, there is a
space (ftield) for a second name or title associated with

this person, such as the spouse's name, company name, title,
etc. Both the name and this extra field can be used as keys
when askiny MISTER LISTER To locate an individual record,
Further, There are four other tields which <c¢an be wused To

classitfy an individual, and all ot *this combines to produce
an extremely powerful and flexible systfem that will give you
surprising capabilirties. OTher special teatures include 2

|ibrary of 'HELP' screens that may be accessed at any tinme
by pressing a key, and a powerful error module To detecTt and
clear up any errors encountered during processing.

MISTER LISTER will be available scan from Micro-W for the
low price ot only $29.95.

Are you tired of |ocking at that same old, dull, boring, un-
attractive, low quality font That comes out of vyecur
Commodore VIC-1525/MPS-801 or compatible graphics printer?
Well Tire no more! The FONT FACTURY is here to solve your
printing problems!

The FONT FACTORY will read any standard Commodore 1541 ascili
sequential file, automatically foermat, d4nd print ocut fthe

document in any tont that is selected, With +this ability,
the FONT FACTORY will read text ftiles produced by many of
the popular Commodore 64 word processors, and produce a more
presentable and intferesting document. The user has tull

confrol over all page tormatting, such as page length, line
width, lett margin, tTop margin, line spacing, headers, toot-
ers, paye numbering, justification, etc.

The FONT FACTORY includes an easy-to-use FontT Generator, To
create and edit your own fonts. Fonts may be as large as
9x7 pixels, and may be printed in normal or double width
tormats.

The FONT FACTORY Is user-triendly and entirely menu driven,
Eight pretormatted tonts are provided, including one with
TRUE LOWER CASE DESCENDERS, when you purchase this sottware.
Additlionasl Fon# DIsks may be purchased separaftely.

The FONT FACTORY will be avallable scon retailing at $29.95.

BUGS/FIXES
EsmrEsrye et

We have recently discovered a problen that affects a significant number
SUPERCLONE diskettes, particularly ifs most recent incarnation--version
2.0 with the TOUBH-NUTS UTILITY. The problem is that when a track has

error #21 on every sector, SUPERCLONE (or FASTCLONE) will not copy
these errors onto the destination disk. Fortunately, there aren't many
popular commercial programs around foday that still use such a simple

copy-protection approach. However, this new information now sheds
light on why a number of fThe popular 'yolden oldies! (FLIGHT SIMULATOR,
CUOLUR B0, efc.) were confounding a lot of SUPERCLONE users. This siftu-
ation would have been cleared up sooner, however the buy didn't appear
on all versions of TCM and so was misleading.

The good news is that there are a number ot simple ways to handle This
problem. First of all, determine if your SUPERCLONE disk has this bug.
It you have the moest recent version including the TNU and FMB (Load the
directfory and see; there should also be a 'V2' as the disk ID) fthen it
undoubtably has the problem. Those of you with earlier versions may
not have the bug (however you should refurn them To us anyway to
receive the |atest version) and theretore, the following information
does not apply to you,.

There are three ways of handliny this. First, is to realize what an
grror #2171 means. I+ is the absence of any sync marks. This |Is exactly
how a virgin disk (unformatted) right out of iftfs box comes. Therefore,
if you use a brand new disk, you can 'copy' an error #21 on a whole
track by merely skipping that track and using SUPERCLUNE to copy every-
thing else. What if you don't have a new unformatted disk? wel |,
there's a way around that tee. Use UNGUARD to create the error (use 3
timing constant=99). |In order for UNGUARD to work, however, the frack
where the error is to go on The destination disk must be formatted and
free from any errors. So, use UNGUAKD to format the disk, then create
the error #21, and tinally yo to SUPERCLONE and copy all the other
Tracks.

A second way to deal with the buy is To eliminate it altogether. This
is not tor the syueamish (they can use the third approach), however
what needs to be done is relatively simple.

You're gyoiny to perform a |itfle surgery on your SUPERCLONE disk.
First, carefully remove the write-protect tape from the disk. Then l|oad
the CLONE MACHINE and select option #2 (the track/block editor) from
the menu. Go To track 19, block 8 and locate byte number $14 (this is
the 21st byte counting trom tThe top left of the screen., This byte
should read as an 'A3'. Change it fo 'DD' and hit the refurn key. Next
yo to frack 20, block 15. Ayain locate byte number $14. This time [t
should read as a '0C'., Change it te "72' and RitT The return Key.
That's if, so put The write-protect tape back on and fest it out -

Lf @l has gene well then yeoulve just busted a bug!
As a third alternative, if you'd |ike, you may send your SUFPERCLONE
disk back to us for @ replacement, Be sure To call first, to yget &

return authorization number. Then include that plus $5.50 for postage
and handlinyg cosfs in your package.

THESE FIRST TWO PAGES WERE ORIGINALLY RED AND IMPOSSIBLE TO READ
Archived by http://www.c64copyprotection.com/

HOW TO DESIGN AN AUTU-START PROGRAM BOOT

[SRy SR T e A e e

Over the past few months, we have received a number of questions
concerning how one may put copy-protection onto their own disks. In
the first two issues of the CLONE NEWSLETTER, the technique for doing
this was demonstrated both in BASIC and machine language. However, in
a couple of letters a very good point was raised: If someone can |ist
your program after it is loaded, then it may be quite easy to locate
the code that checks for the error and then change it so as to
eliminate the protection. For this reason alone, an auto-start boot is
the perfect addition to any program that you may write. However, even
if you're not lookiny for increased security, adding an auto-start to
your software affords it an extra measure of convenience, not to
mention an obvious air of professionalism.

In this article, we will explore in detail a number of ways to create
an auto-start boot for your own programs. However, because of the very
nature of this type of program, it can only be done in assembly code.
Therefore, at the end of this article, | have included instructions for
creating your own auto-start boot that requires no knowledge of machine
code whatsoever.

To begin with, it might be helpful to those completely in the dark
about this subject, as to what exactly is a 'boot' program. A boot or
bootstrap proyram is one whose principle job is to start the execution
of some main program. The ferm comes from the idea of 'pulling oneself
up by their own bootstraps'. An auto-start boot on the C64 is always
ioaded the same way:

LOAD 'bootname',8,1

The '"1' at the end of this statement causes the program to be loaded
into the exact same memory location as it was originally saved from.

In The case of a boot, this location is always somewhere in iow memory
beneath the normal BASIC program space(2048-). In order for an auto-
start boot to work, the normal turn of events that follows a load must
somehow be changed. But just what is the normal turn of events after a
load? Well, a load initiated at the BASIC level (as illustrated above)
causes the Kernal LOAD subroutine to be executed. After it is
completed, the BASIC operating system then calls the Kernal CLALL
subroutine to close all open files. Finally, a jump is made to the
BASIC warm-start vector at $0302,%0303.

Knowiny what actually happens after a load is completed now yives us
the power to take fine control over our machine. There are three
possible ways to do this. The first should be fairly obvious. Since
atter everthing is done the operating system blindly jumps to the
address contained in the BASIC warm-start vector, the simplest approach
would be to change these two bytes so that they point to the start of
your boot. But how do you change these two bytes? You could do it by
poking the correct values in before initiating the load. However, this
would hardly be any better than having to type 'RUN' after a normal
proyram is loaded, and certainly wouldn't be worth the effort at all.
If you look at page 318 in the Co64's kFrogrammer's Reference Guide,
you'll notice that the memory from $02A7 to $02FF is unused. Also
notice that the BASIC warm-start vector is only two bytes away at $0302
and $0303. Why not create a program that loads into memory starting at
$02A7 and ends at $0303. This way your program automatically changyes
The warm-start vector for you Just 'by being loaded in. On the

followiny page is an example illustrating exactly how this type of
auto-start boot can be implemented.

$02A7 LDA #00

$02A9 JSR $FF90 ; no printing of loading message

$02AC JSR $FFE7 ; always cliose all files before starting
$02AF LDA #%02 ; logical file number

$02B1 TAY ; secondary address

$02B2 LDX $BA ; current device number

$02B4 JSR $FFBA Kernal SETLFS routine v
$02B7 LDA #%04 ; number of characters in your program's name
$02B9 LDX #%0D5 ; low-order address of name

$028B8B LDY #%02 ; high-order address of name

$02BD JSR $FFBD ; Kernal SETNAM routine

$02C0 LDA #3%00

$02C2 JSR $FFD5 ; load main program

At this point a number of decisions have to be made. We changed the
BASIC warm-start vector to point to the start of this code. What
happens if we don't chanye it back to its normal address? Wwell, when-
ever our main program gets interrupted(either by the RUN/STOP key or a
normal END, STOP, or last line termination), the BASIC operating system

will jump to the warm-start vector which still points to our code.
Then the program will start loading in again. You probably don't want
that to happen, and so we'll change the vector.

$02C5 JSR $FF8A ; restore default vectors

Now at this point, if your main program is also in assembly code, you
should just add a jump instruction to its beginning. However, if your
program is in BASIC, we'll need a few more lines of code.

$02C8 STX $2D

$02CA STY $2E ; set start of BASIC variables

$02CC JSR $A68E ; set start of BASIC work space

$02CF JSR $A660 ; initialize BASIC parameters

$02D2 JMP $AT7AE ; go fo BASIC interpreter loop

$02D5- '"NAME' ; This is where your main proyram's name yoes

Finally, don't forgyet to change the warm-start vector...
$0302 SA7 $0303 $02

Now save this program from $02A7 to $0304, and name it anything you'd
like.

A second and less obvious way of making an auto-start boot is to changye
the vector at $032C and $032D so that it points to your program's
starting address«: This is the Kernal CLALL vector amd it's called: by
the operating system to close all files after any type of activity that
requires the opening of files. The loading of your auto-start boot is
an activity that requires the opening of files, and so you can success-
fully divert the normal turn of events by using this approach. Here's
how it's done:

First, look at pages 319 and 320 ot the Programmer's Reference Guide.
You'll notice that the CLALL vector is at $032C-%032D and tThat seven
bytes ahead is an unused area of memory stretching from $0334 to $03FF
(the tape 1/0 buffer is only used by the datacorder). This is where
our auto-start boot will go. Start by stuffing the beginning address
of the boot into the CLALL vector-

$032C $34 $0320 $03

Now begin writing the boot at $0334:

$0334 JSR $FFBA ; restore default vectors

This is extremely important to do right away. If instead you began by
first calling the Kernal CLALL routine, can you imagine what would
happen?

$0337 JSR $FFE7 ; NOW close all files
$033A LDA #%02 ; logical file number
$033C LDX $BA ; current device number

$033E TAY ; secondary address
$033F JSR $FFBA ; Kernal SETLFS routine
$0342 LDA #%04 ; number of characters in your program's name

$0344 LDX #%$5D0 ; low-order address of name
$0346 LDY #%03 ; high-order address of name
$0348 JSR S$FFBD ; Kernal SETNAM routine
$0348 LDA #3%00

$0340D JSR $FFDS ; Kernal LOAD routine

Once again, as in the previous example, we have two different routes to
take depending on whether our main program is in assembler or BASIC.
For assembly code, just jump to its starting address. For BASIC,
continue on:

$0350 STX $2D

$0352 STY $2E ; set start of BASIC variables
$0354 JSR $AB68E ; set start of BASIC workspace
$0357 JSR $A660 ; initialize BASIC parameters
$035A JMP $AT7AE ; jump to BASIC interpreter loop

Now you nmust stuff the name of your main proygyram into ifts correct ad-
dress-

$§035D- 'NAME'!

Finally, save this program from $032C to $035D plus the length of your
progyram name.

The final example to be given for writing an auto-start boot is not the
most eloquent, but it is an interesting example of how you can 'tfrick!'
a computer into doing your bidding.

Remenber that the Kernal LOAD routine that's used to load in your boot
is actually a subroutine (ift's executed with a JSR instruction). When

a subroutine is finished with the 'RTS' instruction, the return address
is popped off of the stack and put into the program address counter.
If none of this makes any sense to you, don't worry. All you really

need to understand is that you can alter the normal furn of evenTs by
putting the starting address of your boot into the stack. Now, the
stack in the C64 resides from $0100 to $01FF, so just where should the
address go? Well, we really can't be certain what value the stack
pointer might have when the load of our boot is done. So, what we have

to do is fill up the entire stack with our starting address. And since
it's a two byte address, and we won't know which byte will be popped
off first, both bytes had better be the same. This |limits us in our
choice of starting addresses for our boot. It will have to be like one
of these: $0101, %0202, %0303, %0404, %0505, $0606, $0707. Because
our boot proygram will have to start loading in at $0100 (in order to
fill the stack), the most appropriate place for our starting address to

be is at $0203, just after the stack. Notice that the actual starting
address is one byte higher than what gets popped off the stack. This is
because the program counter always ygets incremented after being loaded.

Ok, so we've determined that we need to fill the stack with $02's and
have our code start at $0203. However, unlike the two previous

examples, we'll have to write the assembler code at some location ofher
than where it will eventually load into. This is because the job of
filling the stack with all $02's is going to be difficult, if nof

impossible with most machine language monitors. Thus, for convenience,
| found it best to start by writing at $C100, an offset of exactly
$C000 from where the code will actually reside. So, first fill
locations $C100 to $CI1FF with $02's. Then proceed as follows:

$C203 JSR $FFE7 ; close all files

$C206 LDA #3%00

$C208 JSR $FF90 ; prevent printing of loading message
$C208 LDA #%02 ; logical file number

§C20D TAY ; secondary address

$C20E LDX $BA ; current device number

$C210 JSR $FFBA ; Kernal SETLFS routine

$C213 LDA #%04 ; number of characters in proygram name
§C215 LDX #%$2E ; low-order address of name

$C217 LDY #%$02 ; high-order address of name

§C219 JSR $FFBD ; Kernal SETNAM routine

$C21C LDA #3%00

$C21E JSR $FFD5 ; Kernal LOAD routine

$C221 STX $2D

$C223 STX. S2E ; set beginning of BASIC variables
$C225 JSR $A68E ; set beginning of BASIC workspace
$C228 JSR $A660 ; initialize BASIC parameters

$C228 JMP $A7AE ; go to interpreter loop

$C22E- 'NAME! ; put the name of your main program here

Now save this code from $C100 to $C22E plus the length of your pro-
gram's name., Load TCM's track/block editor and go to the directory at
track 18, block 1. Locate this program (the one that you just saved),
and note the starting track and block numbers for it (they are the two
bytes that just precede the program name. Go to this frack and block
and note that the third and fourth bytes are $00 and $C1, respectively.
This is the loading address of the program in the standard low-byte,
high-byte format. Change the $C1 fo $01 and then hit the return key.
Your auto-start boot should now load into $0100 and stuff fthe stack
with $02's, effectively creating the detour that was sought after.

Finally, as was promised earlier, here is a way to create an auto-starft
boot for those of you without any knowledye of assembly language. Use
the CLONE MACHINE'S file copy utility fto copy either the 'V2NOTES' or
'SUPERCLONE' file onto the disk that has the program you wish to autfo-
start, If you put it onto a newly formatted diskette, then your pro-
gram can be loaded by simply typing: LOAD'*',8,1 . Otherwise, you will
have to type whatever name that you specified for it when making the
copy. Before you can use it though, you will have to modify it so that
your main program will be loaded by ift. Use TCM's track/block editor
and examine track 18, block 1 of the disk that your program is on.

This is the start of the directory of the disk. Find the name of the
file that you just copied. If it's not on this page of the directory,
then hit the 'f5' key until the proygyram name does appear. Position the
cursor on the second byte BEFORE the name and press the 'f5' key. This
should bring you to the starting frack and block of the file. Press
the 'f7' key and you should see the original program name that was
loaded by this boot (either 'CPYT1' or 'NOTES') at $54. Just fype
right over this, the name of your main program. I1f it's exactly five

;eTTers long then you're done, so hit the return key. Otherwise, you'll
ave to locate byte $29, and change- it (it's & 13057) Foiiref FecT. the
number of characters that are in your main program's name. That's it!

THE DISK EXAMINER == An InvesTiﬁaTive Tool

As most of you now know, the TOUGH=-NUTS UTILITY is a new program on the
latest version of the SUPERCLONE disk. Through the proper use of this
utility, it is possible to make backups of programs employing the very
latest and most sophisticated protection schemes that exist today.
However, as most of you also know, this program requires the user to
input a unique set of parameters for a given piece of software.

Without the correct parameters, the TNU cannot be used effectively.

In the last issue of the CLONE NEWSLETTER, we were able to publish the
TNU parameters for a number of popular programs, thanks to the efforts
of some early users. We certainly want to encourage these contribu-
tions, and we will continue to offer both cash and/or merchandise
rewards for those submissions deemed helpful.

In this issue, we are going to print the listing of a software tool
that has been of immeasurable help in determining these parameters.
It's called the EXAMINER, and what it does is show you exactly what any
frack looks like in terms of ift's sector headers. Every sector on a
track has its own header which is composed of five bytes of information
- a two byte ID, a track number, a sector number, and a checksum. This
program will sequentially read every header on a track, regardless what
is on it. For example, if you were to use the EXAMINER to study track
35 of any ELECTRONIC ARTS program, you would see that the tftrack is
normal except that each header has number 34 as the frack number. The
fact that it would read as an error 21 (no sync mark) when frying to
access it through the normal DOS, reveals how misleading these errors
sometimes are.

Probably the most useful function that the EXAMINER can be used for, is
to locate tracks with exftra sectors and determine the parameters needed
for option #1 of the TNU. An extra sector can only occur between

tracks 18 and 24 inclusive, and so that |limits your search a bit. When
it does occur, it will usually be very obvious by scanning the readout
of the sector numbers. Normally the sector numbers will be in
sequential order, starting randomly with any of the legitimate values.
When an extra sector is present, you will usually see an out of place
number . For example, check out track 24 of SENTINEL, if you have it.
You will see the following order of sector numbers:

0,1,2,3,4,5,6,7,8,9,10,11,12,18,13,14,15,16,17,18

Notice that there are two sector 18's and 20 sectors in all instead of
the normal 19. MNote that the EXAMINER will only display the standard
number of sectors on a track at any one time. Therefore, to have seen
the ordering of all TWENTY sectors in this previous example would have
required displaying track 24 at least twice (the odds are good that the
starting sector will be different from one time to the next). From the
information that this example reveals, all of the required parameters

for option #1 of the TNU can be determined. Obviously, the track
number is 24 and the ranyge (number of sectors) is 20. The reference
sector can be any one other than 18, since in this case it is not
unique. Finally, tThe question of density bits. If the EXAMINER should
print out any graphics characters or other garbage for all the headers
on a track (or just plain lock up), tThen ifs likely that the density
bits HAVE been altered. However, if the readout is clean up to sone
sector, and then becomes wierd, its more likely that there are some
extra sync marks stuffed in. In this case, use the first sector where
the garbage starts as the reference. Generally you should respond 'NO!
to The density bit question unless the TNU continually locks up while
trying fo copy with the default value.

Another good example to study using the EXAMINER is the game WIZARD.

Check out elither ‘teaek 1, 2, or 3.. FTherresulr sholuld be interesting.
For those of you without this disk, this is the way the sectors read:
O,]’2!3’415,6)7’8’9’]07001’2’3’4'5’6’718’9

In this case, the TNU isn't needed to create an extra sector (you can't
have an extra sector at these tracks) or change the density bits.
However, what |S important here, is that the only unique sector is num-
ber 10. Thus we set the reference sector to 10, specify the normal
range (for these tracks) of 21, answer 'NO' to the density bit question
and we're in business. By the way, tThe checksum numbers on these
tracks are incorrect and that is indicated on the screen by asterisks.

I know That some ofthis may be a-|itfle confusing to read, “but 5 wige
you to stay with it and try the EXAMINER out. I think that you will
find it much easier to understand by actually using it than by reading
about ift.

The EXAMINER is almost one hundred lines of code, and much of it is
critical, so be careful when typing it in. To make it easier to
locate any errors in copying the large number of data statements, |
included a check of these numbers as part of the program. Any mistake
here will cause the program to abort with the offending line number
displayeds “To “berden the safe side, don't trun the program until yvou
have tirst-gsaved i1 to disk.

REM % 36 3636 3 56 36 3 36 3 3 3 3 36 36 9 9 3 396 3 ¥ % %
REM *x*%%% THE EXAMINER %%*%%¥
REM *%x%x¥ COFYRIGHT 1284 x%x%x%
REM %% MICRO-W DIST. INC. *%*
REM 393 36 3 9 9 3 3 3 3 36 5 36 3 9 9 363 3% 3% %

" GOSUE134@

TR =2:T(1)=3:T(2)=B:T(3)=15:T (4) =25

XT=49408:FX=49471

OFEN1S, 8, 15, "12" : GOSUB13&

PRINT " EEEEEEEEEEEEREEEEEEENTER TRACK (1-36) :"; :GOSUR1Z4D
FRINT#15, "M—W"CHR$ (6) CHR$ (2) CHR$ (2) CHR$ (TR) CHR%$ (2)
FRINT#15, "M~W"CHR%$ (@) CHR$ (2) CHR$ (1) CHR$ (176)

FRINT#15, "M~R"CHR$ (@) CHR$ (2) : GET#15, A%: IFASC (A$+CHR$ (2))) 127THEN1270Q
SYSFX

FOKEZS1, 0: FOKESSE, 192 :SYSXT:REM XMTRG

FRINT#15, "U3":REM EXEC $0S0@

FRINT#15, "M—R"CHR% (@) CHR$ (3) :GET#15, A%

IFASC (A$+CHR$ (2)) () @THEN1 142

FRINT" WFEFEEEEEErERERFERFEESYNC ERROR ON TRACK"; TR:GOSUE1zZ82:CLOSEL1S:GOTD123

FRINT": ID TRACK SECTOR CHECKSUM (*=ERAD) " :FRINT

FRINT"IZ ¢

SH=21+(TRY 17) #2+ (TRY 24) + (TR) 2@) : FORC=@TOSH-1 : CH=@

FRINT#15, "M-E"CHR$ (158) CHR$ (5)

FRINT#15, "M-R"CHR% (22) CHR$ (@) CHR$ () : FORI=QTO4:GET#15, A% :GOSUR13 1@
IFICSTHENFRINTTAB(T(I)) 3A%; s NEXT
FRINTTABR(T(I)) ; ASC (A$+CHRS (12)) 5 : NEXT

IFCHO GTHENFRINT " %" 5

FRINT:NEXT:GOSUEL=8Q

CLOSE1S:60TO123@

OFEN1, 2: INFUT#1, TR$:CLOSEL : TR=VAL (TR%)

IFTR(LIORTR) Z6THEN1Z42

RETURN ik -

OFEN1S, 8, 1S: INPUTH#15, A, B$:PRINTA, B4 :CLOSELS

FRINT" SEEEEEEEEEEEEEEEEEE e EEEEESEHTI T ANY KEY TO CONTINUE";
GETA%$: IFA$=""THEN1232

13
131@
132@
1332@
1342
135@
1362
137@
1382
1392
1422
i41@
14z@
1430
1442
145a
146@
147@
1482
149a
152a
151@
1520

153

1543
155@
1567
1570
1580
- 152@
leaz
161@
1627
1630
164@
1&65@
166l
1670
168z
1&69@
172@
171@
17z@
1720
1742
175@
1762
177@
178a
173@
182@
181@
18=@
1832
18412
1852
i8em
1872
1887
183a
=1Vl
1912
19&@

RETURN

A=ASC (AB+CHRS (1)) : CH= (NOT (CHANDA)) AND (CHORA) : RETURN
FRINT"EERERH < FRSUFERCLOME DISK EXAMINER #x%x"

RETURN

DIML (45) :DIMCS(435) :D=43915&

FRINT"WEEEEEEEEEEEWCHECKING DATA STATEMENTS - FLEASE WAIT. "

FORI=1TO45: READR:CS(I)=A:NEXT

FORN=1T045: X=@2:FORJ=1T0O8: REARDA: FOKED, A:D=D-+1 s X=X+A: NEXT 3

LMD =X ANDESE s NEXT

FORI=1TO043:IFCS(I))L (I)THENGOSUER1412

NEXT: IFE=1THENEND

RETURN

FRINT"ERROR IN LINE NUMBER ";14720+I%12:E=1:RETURN
DATA233, 76,137, 91,223, 95,108,207
DATA S@,=33, 192, 28,849, 169, 157,213
DATA 45,210,123, 187, 6, 4, 123, =245
DATA17S, &7,132, 105, 235, 188, 9, 108
DATA133, 49,1@8, 93, 11, 88, 76, 47
DATA179, 33,813, 91, 98

DATALZ@, 32, @,854, 38,148, 5,160
DATA 72,162, @, 44, @, =8, 16, 1@
DATAZ3EZ, 208, 248, 136, 208, 245, 140, @
DATA 3, 96,16@, @, 44, 0, =28, 16
DATAZS1, 44, @, 28, 16,244,200,228
DATAZ48, 3&, 47, 5, 76, 74, 5,is0
DATALG9, 228, 141, S, 24, 44, 5, 2
DATA 48, 6,163, 2,141, @, 3, 96
DATA 44, @, 28, 48,242,173, 1, 2
DATAR184, 96, 32, 0,254, 32,148, 5
DATALZR, 160, @, 162, @, B@,=54,184
DATALZS, 1, 28,153, ©, 3,200,232
DATAZ24, 19,208,241, 192,210,176, 18
DATA 32, 47, 5, 8@,&54,184, 32, 47
DATA S, 76, 83, 5, 32, 47, 5,16@
DATA @,185, @, 3,201, 82,249, 14
DATA1SZ, &4,1@5, 1@, 168,192,21@,208
DATAZ4R, 169, ©,141, @, 3,169, @
DATR141,157, 'S, 96,173, 12, 28, 9
DATA 14,141, 1=, =28, 96, @, 120, 32
DATA @,254, 32,148, 5,173,157, 5
DATAL7R2, 4,105, 1@,141,157, 5,16@
DATA ®@,234,189, @, 3,153, 36, @
DATAZRR, 232, 198, 10,208, 244, 32,151
DATAS44, 181, 36, 1280, 38, 54,245, 3&
DATA 86,245, BQ,2S54, 184,173, 1, &
DATA1S3, @, 5,200,208,3244, 16@, 186
DATA 8@, 254, 184,173, 1, £8,153, 0
DATA 1,200, 208,244, 169, @,133, 48
DATALED, 5,133, 49, 32,824,248, 96
DATAZ47, 247, 128, 128, 247,247, @,128
DATAZ247, 247, 136, 128, 247,247, @,136
DATALET, &,168,162, 8,834, 32,186
DATAZSS, 169, &, 162, 10@, 16@, 193, 3&
DATA189, 255, 32,192,855, 162, 15, 3&
DATAERL, 255, 162, 8, 185y 83 1393, 3&
DATAZ1®R, 255, 136, 208, 247, 32, 204,255
DATAl1EE, &, 38,801,2855,177,851, 38
DATAZ1R, 255, 2Q@, 208, 248, 3,204,855
DATAZ34, 234, 169, &, 76,195,255, 162
DATA 15, 32,201,255, 16@, 7,185, 98
DATA133, 32,210, 55, 136, 288, 247, 3&
DATAZR4, 255, 96, &, 32, 48, 3=, S
DATA 58, 8@, 45, €6, %6, 1, 1, @ Archived by http://www.c64copyprotection.com/
DATAL@4, &7, 45, 77, 35, S@,=234,834

SOLUTIONS
ERTETRSRER

TRIVIA FEVER:
1) Copy with SUPERCLONE.
2) TNU = Option #3 - Reformat track 17.
3) TNU - Option #1 - track 17, range 21.
4) TNU - Option #1 - tracks 18-22, range 20.

Submitted individually by:
Randy Goldstein, and John Cincotta

BEACH-HEAD:
1) Copy with FMB.
2) Load 'BEACH-HEAD',8 from copy.
3) In immediate mode, POKE48B47,169:POKE4848,245
POKE4851,169:POKE4852,40
4) SAVE'@O:BEACH-HEAD',S8
No more banging, and make all the backups you want.

Tom Poulin
Jacksonville, N.C.

GHOSTBUSTERS :
1) Copy with FMB.
2) Recopy tTrack 18 with SUPERCLONE.
3) Put on a write-protect tape - very important!

COLOR 80:
1) Copy fracks 17, 18, and 25 to 27 using SUPERCLONE.
2) Use TNU to format tracks 2 and 34 if disk was unformatted
3) Use UNGUARD, error #21, TC=99, on tracks 2 and 34.

John Mallory
Ed. Note: After fixing the SUPERCLONE buy as described in this issue,
you can copy tracks 2 and 34 with SUPERCLONE and skip steps 2 and 3.

NEUTRAL ZONE:
1) Copy with FMB.
2) TRACK/BLOCK EDITOR- Track 14, sector 19.
Change byte $EC from $94 to $96.

Because of SUPERCLONE, a backup of NIGHT MISSION PINBALL from Subloyic
will run., But, it will have the head chatter when looking for the
error. The following will eliminate the head chatter from the backup:

NIGHT MISSION PINBALL:
1) Copy the diskette using SUPERCLONE or TCM.
2) Tload TCM? Load?CLONE';8, 1
%3) Take menu option 2 (edit track/block)
4) Insert backup copy of NIGHT MISSIUN PINBALL.
5) Change byte $3A from $21 to $00 (Hex mode).

NIGHT MISSION PINBALL is like FLIGHT SIMULATOR Il in that a look=-up
table is used by the program to look for errors. The above changes the

look-up table.

Michael L. Brown

LEET ERS. 0 THE-CEDLTOR
e e e L T e AR AR

pear Editor,

I just received the latest issue of the CLONE NEWSLETTER. There is a
comment regarding the dongle for M'FILE., | have found a much simpler
way to defeat the required key. The results of my tests led me to tTry
a variable resistor in the required port. So, | plugged in a pair of
Commodore paddles. Sure enough, when both paddlies are set about mid-
range, the system operates. Try it; | have on several machines, with
several sets of paddles and it worked in each case. There is no need
for an IC etc., and most Commodore owners already have the paddles.

Try my method, and when | am shown correct, just send money. Thanks
for a good product, and ygood service.

Michael Sussman
Upper Black Eddy, Penn.

Ed. Mote: Sounds interesting Michael. Maybe someone out there who
owns M'F|LE can verify this for us.

Dear Editor,
Here are some cloning experiences | have had.

Commodore Business Accounting System Payroll Module:
This system consists of two double-sided disks. SUPERCLONE works just
fine on side 1 of both disks but produces faulty copies of both side
2's. Strangely enough, a FMB copy of the side 2's will work.

To summarize:
To clone Payroll

1) Disk A side 1 - Use SUPERCLONE

2) Disk A side 2 - Use FMB

35:) Disk B side 1 - Use SUPERCLONE

4) Disk B side 2 - Use FMB
MUSICALC=1

The troublesome track here is #30. There is a problem in using
SUPERCLONE to copy this program which produces a discrepency between
the origyinal and copy on track 30, block 0 (error 20), and track 30,
block 17 (error 23). | used TNU with the following parameters to
produce a working copy:

Non-Standard Sectors

Track #30

Alter Density Bits - YES, to 2.

Reference Sector - 9

Range - 9

All other MUSICALC modules and templates can be SUPERCLONED normally.

If this information merits a reward, please send me some software,
preferably FANTASTIC FILER PROFESSIONAL , in lieu of cash.

Nicholas J. Manzoli
Brookline, Mass,

Ed. Note: Great work, Nick. You've earned yourself both our respect,
and a FANTASTIC FILER PROFESSIONAL.

FA NTASTIC COP‘r'R!GH?lcgr;fFEYNME}{Jg-llEEgTﬁR?;UTING INC.

FILER L - . How would you like to have a copy of all of the text or graphics
that appear on your monitor screen? Well SCREEN DUMPER
64™ may be what you are p— —
looking for. This program will
transfer to your printer* a copy
of what you see on your monitor
screen including hi-resolution
graphics, text, and multicolor
sprite, etc. It even works with
the KOALA PAD". You can
load this program into your
computer in a hidden location
so that it shouldn't interfere
with your programs. This means
that you can use your Commo-
dore 64 normally and then call
up this routine to dump what is
on the screen. Colors are repre-
sented by 16 shades of gray for
faithful reproductions.
ALL THIS FOR ONLY

$29.95

Call: (201) 838-9027 To Order Micrn- P v
]

DISTRIBUTING, INC

i A 1342 B Route 23
“SOLVES YOUR FILING PROBLEMS"’ 1 . Butler N. 1.0575105

80 MUCH SOFMARE FOR ONLY
$2995

‘““A COMPLETE DATA BASE FOR THE COMMODORE 64"’

|]
M’:r 0-’ ’. Bulk Rate
DISTRIBUTING. INC. U-S-Pf;fnstage
P.O. Box 198 W
Butler, NJ 07405 66
Butler, NJ
07405

Archived by http://www.c64copyprotection.com/

	Clone Newsletter-06_Page_01
	Clone Newsletter-06_Page_02
	Clone Newsletter-06_Page_03
	Clone Newsletter-06_Page_04
	Clone Newsletter-06_Page_05
	Clone Newsletter-06_Page_06
	Clone Newsletter-06_Page_07
	Clone Newsletter-06_Page_08
	Clone Newsletter-06_Page_09
	Clone Newsletter-06_Page_10
	Clone Newsletter-06_Page_11
	Clone Newsletter-06_Page_12

