
 ########
 ##################
 ###### ######
 #####
 ##### #### #### ## ##### #### #### #### #### #### #####
 ##### ## ## #### ## ## ## ### ## #### ## ## ##
 ##### ######## ## ## ## ##### ## ## ## ## ##
##
######
##
 ###### ###### Issue #6
 ################## Sept. 5, 1993
 ########

--
Editor's Notes:
by Craig Taylor

 School, 2 jobs, a play, and other work has seriously restricted the amount
 of time that I am able to devote to Commodore Hacking. What I am looking at
 doing now is to stop writing articles for Commodore Hacking and hoping that
 I'll still have enough time to write these notes, and organize and pull all
 the other articles by other contributors together. The two articles I
 had hoped to include in this issue : the one about multi-tasking and
 about the 1351 have again been delayed. I've decided to go ahead and
 release issue 6 and hopefully will have them in the next issue.
 (Remember: You get what you pay for.. *smile*)

 As always, Commodore Hacking is constantly looking for articles, notes,
 short little programs, what-not on any side of the Commodore 64 and 128 -
 primarily on the technical or hardware side. If you think you have something
 in mind, or already written then feel free to drop me a line letting me
 know.

 In regards to several queries recently about reprinting individual articles
 that have appeared in Commodore Hacking. You may reprint Commodore Hacking
 and redistribute in whole, freely. For use of individual articles you _must_
 contanct the individual author as they still retain rights to it. Please see
 the legal notice / mumbo below.

 I recently recieved some mail from wolfgang@halcyon regarding a disk
 magazine that he was in the process of starting and he has written the
 following preview of a disk magazine that looks to be exciting:

 "_Scenery_, a new disk-magazine focusing on the american and
 european demo scenes, will soon be available for download at a
 site/BBS near you! With articles on everything from coding to
 instrument synthesis to art, _Scenery_ will be the definitive word
 when it comes to creating a demo, or simply coding in general.
 Articles are being written by some of the top names in the scene,
 and promise to help everybody from the Basic Baby to the ML Mogul!
 Set to be released mid-August, _Scenery_ will hopefully be a worthy
 edition to the likes of Coder's World and C=Hacking. I am making
 the magazine available on various Internet sites, so look for it. We
 are always on the lookout for art, music, and coding talent, and if
 you'd be interested in submitting an article for publication, or
 simply have a question or comment, please mail me at
 'wolfgang@halcyon.com'. Thanks.. and see you on the Net!"

==

 Please note that this issue and prior ones are available via anonymous FTP
 from ccosun.caltech.edu under pub/rknop/hacking.mag and via a mailserver
 which documentation can be obtained by sending mail to
 "duck@pembvax1.pembroke.edu" with a subject line of "mailserver" and the
 line "help" in the body of the message.

==

 NOTICE: Permission is granted to re-distrubte this "net-magazine", in
 whole, freely for non-profit use. However, please contact individual
 authors for permission to publish or re-distribute articles seperately.
 A charge of no greather than 5 US dollars or equivlent may be charged for
 library service / diskette costs for this "net-magazine".

==
In This Issue:

DYCP - Horizontal Scrolling

DYCP - is a name for a horizontal scroller, where characters go smoothly
up and down during their voyage from right to left. One possibility is a
scroll with 8 characters - one character per sprite, but a real demo coder
won't be satisfied with that.

Opening the borders

VIC has many features and transparent borders are one of them. You can not
make characters appear in the border, but sprites are displayed in the
border too.

A Heavy Duty Power supply for the C-64

This article describes how to build a heavier duty power supply for your
Commodore 64 computer and includes a full schematic in GeoPaint format.

LZW Compression

LZW is perhaps the most widely used form of data compression today. It
is simple to implement and achieves very decent compression at a fairly
quick pace. LZW is used in PKZIP (shrink),PKARC (crunch), gifs,V.42bis
and unix's compress. This article will attempt to explain how the
compression works with a short example and 6502 source code in Buddy
format.

THREE-KEY ROLLOVER for the C-128 and C-64.

This article examines how a three-key rollover mechanism works for the
keyboards of the C=128 and C=64 and will present Kernal-wedge
implementations for both machines. Webster's doesn't seem to know, so I'll
tell you that this means that the machine will act sensibly if you are
holding down one key and then press another without releasing the first.
This will be useful to fast touch typers.

==
The Demo Corner: DYCP - Horizontal Scrolling
by Pasi 'Albert' Ojala (po87553@cs.tut.fi or albert@cc.tut.fi))
 Written: 16-May-91 Translation 02-Jun-92

 DYCP - too many sprites !?

DYCP - Different Y Character Position - is a name for a horizontal scroller,
where characters go smoothly up and down during their voyage from right to
left. One possibility is a scroll with 8 characters - one character in each
sprite, but a real demo coder won't be satisfied with that.

Demo coders thought that it looks good to make the scrolling text change its
vertical position in the same time it proceeded from the right side of the
screen to the left. The only problem is that there is only eight sprites
and that is not even nearly enough to satisfy the requirements needed for
great look. So the only way is to use screen and somehow plot the text in
graphics, because character columns can not be scrolled individually.
Plotting the characters take absolutely too much time, because you have to
handle each byte seperately and the graphics bitmap must be cleared too.

Character hack

The whole DYCP started using character graphics. You plot six character
rows where the character (screen) codes increase to the right and down.
This area is then used like a small bitmap screen. Each of the text chars
are displayed one byte at a time on each six rows high character columns.
This 240 character positions big piece of screen can be moved horizontally
using the x-scroll register (three lowest bits in $D016) and after eight
pixels you move the text itself, like in any scroll. The screen is of course
reduced to 38 columns wide to hide the jittering on the sides.

A good coder may also change the character sets during the display and
even double the size of the scroll, but because the raster time happens
to go to waste using this technique anyway, that is not very feasible. There
are also other difficulties in this approach, the biggest is the time needed
to clear the display.

Save characters - and time

But why should we move an eight-byte-high character image in a 48-line-high
area, when 16 is really enough ? We can use two characters for the graphics
bitmap and then move this in eight pixel steps up and down. The lowest
three bits of the y-position then gives us the offset where the data must

be plotted inside this graphical region. The two character codes are usually
selected to be consecutive ones so that the image data has also 16
consecutive bytes. [See picture 1.]

Demo program might clear things up

The demo program is coded using the latter algorithm. The program first
copies the Character ROM to ram, because it is faster to use it from there.
You can easily change the program to use your own character set instead,
if you like. The sinus data for the vertical movement is created of a 1/4
of a cycle by mirroring it both horizontally and vertically.

Two most time critical parts are clearing the character set and plotting the
new one. Neither of these may happen when VIC is drawing the area where the
scroll is, so there is a slight hurry. Using double buffering technique we
could overcome this limitation, but this is just an example program. For
speed there is CLC only when it is absolutely needed.

The NTSC version is a bit crippled, it only covers 32 columns and thus the
characters seem to appear from thin air. Anyway, the idea should become
clear.

Want to go to the border ?

Some coders are always trying to get all effects ever done using the C64 go
to the border, and even successfully. The easiest way is to use only a region
of 21 pixels high - sprites - and move the text exactly like in characters.
In fact only the different addressing causes the differences in the code.

Eight horizontally expanded sprites will be just enough to fill the side
borders. You can also mix these techiques, but then you have the usual
"chars-in-the-screen-while-border-opened"-problems (however, they are
solvable). Unfortunately sprite-dycp is even more slower than char-dycp.

More movement vertically

You might think that using the sprites will restrict the sinus to only
14 pixels. Not really, the only restriction is that the vertical position
difference between three consequent text character must be less than 14
pixel lines. Each sprites' Y-coordinate will be the minimum of the three
characters residing in that sprite. Line offsets inside the sprites
are then obtained by subtracting the sprite y-coordinate from the character
y-coordinate. Maybe a little hard to follow, but maybe a picture will
clear the situation. [See picture 2.]

Scrolling horizontally is easy. You just have to move sprites like you would
use the character horizontal scroll register and after eight pixels you
reset the sprite positions and scroll the text one position in memory.
And of course, you fetch a new character for the scroll. When we have
different and changing sprite y-coordinates, opening the side borders become
a great deal more difficult. However, in this case there is at least two
different ways to do it.

Stretch the sprites

The easiest way is to position all of the sprites where the scroll will
be when it is in its highest position. Then stretch the first and last line
of each sprite so that the 19 sprite lines in the middle will be on the
desired place. Opening the borders now is trivial, because all of the sprites
are present on all of the scan lines and they steal a constant amount of
time. However, we lose two sprite lines. We might not want to use the first
and the last line for graphics, because they are stretched.
[See previous C=Hacking Issues for more information about stretching and
 stolen cycles.]

A more difficult approach is to unroll the routine and let another routine
count the sprites present in each line and then change the time the routine
uses accordingly. In this way you save time during the display for other
effects, like color bars, because stretching will take at least 12 cycles
on each raster line. On the other hand, if the sinus is constant (user is
not allowed to change it), it is usually possible to embedd the count
routine directly to the border opening part of the routine.

More sprites

You don't necassarily need to plot the characters in sprites to have more

than eight characters. Using a sprite multiplexing techiques you can double
or triple the number of sprites available. You can divide the scroll
vertically into several areas and because the y-coordinate of the scroll
is a sinus, there always is a fixed maximum number of sprites in each area.
This number is always smaller than the total number of sprites in the
whole scroll. I won't go into detail, but didn't want to leave this out
completely. [See picture 3.]

Smoother and smoother

Why be satisfied with a scroll with only 40 different slices horizontally ?
It should be possible to count own coordinates for each pixel column on
the scroll. In fact the program won't be much different, but the routine
must also mask the unwanted bits and write the byte to memory with ORA+STA.
When you think about it more, it is obvious that this takes a generous amount
of time, handling every bit seperately will take much more than eight times
the time a simple LDA+STA takes. Some coders have avoided this by plotting
the same character to different character sets simultaneously and then
changing the charsets appropriately, but the resulting scroll won't be much
larger than 96x32 pixels.

--
Picture 1 - Two character codes will make a graphical bitmap

Screen memory:

|Char |Char |Char |Char | ...
|Code |Code |Code |Code |
|0 |2 |80 |80 | .
| |** ** | | | .
| |** ** | | | .
*****	******		
******	****		
___	__**___	_______	_______
** **	**	****	Char
** **	**	******	Code
******		** **	6
*****		**	
Char	Char	** **	
Code	Code	******	
1	3	4****	*****
_______	_______	_______	******_
Char	Char		** **
Code	Code		******
80	80		*****
			**
		Char	**ar
		Code	Code
		5	7
_______	_______	_______	_______

Character set memory:

|Char 0 |Char 1 |Char 2 |Char 3 |Char 4 |Char 5 |Char 6 |Char 7 | ...
|_______|_______|_______|_______|_______|_______|_______|_______|__
 DDDDDDDD YYYYYYYY CCCCCCCC PPPPPPPP
 First column Second column Third column Fourth column

--
Picture 2 - DYCP with sprites

Sprite 0

	** **	
	** **	

*****	****	
******	**	
** **	**	
** **	**	
___	_______	_______
******		****
*****		******
		** **
		**
		** **

| | | | _______________________

				** **		
_______	_______	_______		******		
 |***** | | |
 |** | | |
 |** | | |
 |_______|_______|_______|
 | | | |
 | | | |
 | | | |
 | | **** | |
 | | **** | |
 | | |****** |
 | | |****** |
 |_______|_______|__**___|
 | | | ** |
 | | | ** |
 | | | ** |
 | | | ** |
 |_______|_______|_______|

--
Picture 3 - Sprite multiplexing

 __ Set coordinates for eight sprites
 __|3 | that start from the top half.
 |4 | |__
 __| `--|2 |
 |5 `--' | |
 | | `--'__
 `--' |1 |
 | |
 __ `--'
 |6 |
 | | __
 `--' |0 |
 | |
-__------------------------------------`--'When VIC has displayed the last
|0 | __ sprite, set coordinates for the
| | |6 | sprites in the lower half of the
`--' | | area.
 `--'
 __
 |1 | __
 | | |5 |
 `-- __ | |
 |2 | __`--'
 | |__|4 | You usually have two sprites that
 `--|3 | | are only 'used' once so that you
 | `--' can change other sprites when VIC
 `__' is displaying them.
--

DYCP demo program (PAL)

SINUS= $CF00 ; Place for the sinus table
CHRSET= $3800 ; Here begins the character set memory
GFX= $3C00 ; Here we plot the dycp data
X16= $CE00 ; values multiplicated by 16 (0,16,32..)
D16= $CE30 ; divided by 16 (16 x 0,16 x 1 ...)
START= $033C ; Pointer to the start of the sinus
COUNTER= $033D ; Scroll counter (x-scroll register)
POINTER= $033E ; Pointer to the text char
YPOS= $0340 ; Lower 4 bits of the character y positions
YPOSH= $0368 ; y positions divided by 16
CHAR= $0390 ; Scroll text characters, multiplicated by eight
ZP= $FB ; Zeropage area for indirect addressing
ZP2= $FD
AMOUNT= 38 ; Amount of chars to plot-1
PADCHAR= 32 ; Code used for clearing the screen

*= $C000

 SEI ; Disable interrupts
 LDA #$32 ; Character generator ROM to address space
 STA $01
 LDX #0
LOOP0 LDA $D000,X ; Copy the character set

 STA CHRSET,X
 LDA $D100,X
 STA CHRSET+256,X
 DEX
 BNE LOOP0
 LDA #$37 ; Normal memory configuration
 STA $01
 LDY #31
LOOP1 LDA #66 ; Compose a full sinus from a 1/4th of a
 CLC ; cycle
 ADC SIN,X
 STA SINUS,X
 STA SINUS+32,Y
 LDA #64
 SEC
 SBC SIN,X
 STA SINUS+64,X
 STA SINUS+96,Y
 INX
 DEY
 BPL LOOP1
 LDX #$7F
LOOP2 LDA SINUS,X
 LSR
 CLC
 ADC #32
 STA SINUS+128,X
 DEX
 BPL LOOP2

 LDX #39
LOOP3 TXA
 ASL
 ASL
 ASL
 ASL
 STA X16,X ; Multiplication table (for speed)
 TXA
 LSR
 LSR
 LSR
 LSR
 CLC
 ADC #>GFX
 STA D16,X ; Dividing table
 LDA #0
 STA CHAR,X ; Clear the scroll
 DEX
 BPL LOOP3
 STA POINTER ; Initialize the scroll pointer
 LDX #7
 STX COUNTER
LOOP10 STA CHRSET,X ; Clear the @-sign..
 DEX
 BPL LOOP10

 LDA #>CHRSET ; The right page for addressing
 STA ZP2+1
 LDA #<IRQ ; Our interrupt handler address
 STA $0314
 LDA #>IRQ
 STA $0315
 LDA #$7F ; Disable timer interrupts
 STA $DC0D
 LDA #$81 ; Enable raster interrupts
 STA $D01A
 LDA #$A8 ; Raster compare to scan line $A8
 STA $D012
 LDA #$1B ; 9th bit
 STA $D011
 LDA #30
 STA $D018 ; Use the new charset
 CLI ; Enable interrupts and return
 RTS

IRQ INC START ; Increase counter
 LDY #AMOUNT
 LDX START
LOOP4 LDA SINUS,X ; Count a pointer for each text char and according
 AND #7 ; to it fetch a y-position from the sinus table
 STA YPOS,Y ; Then divide it to two bytes

 LDA SINUS,X
 LSR
 LSR
 LSR
 STA YPOSH,Y
 INX ; Chars are two positions apart
 INX
 DEY
 BPL LOOP4

 LDA #0
 LDX #79
LOOP11 STA GFX,X ; Clear the dycp data
 STA GFX+80,X
 STA GFX+160,X
 STA GFX+240,X
 STA GFX+320,X
 STA GFX+400,X
 STA GFX+480,X
 STA GFX+560,X
 DEX
 BPL LOOP11

MAKE LDA COUNTER ; Set x-scroll register
 STA $D016
 LDX #AMOUNT
 CLC ; Clear carry
LOOP5 LDY YPOSH,X ; Determine the position in video matrix
 TXA
 ADC LINESL,Y ; Carry won't be set here
 STA ZP ; low byte
 LDA #4
 ADC LINESH,Y
 STA ZP+1 ; high byte
 LDA #PADCHAR ; First clear above and below the char
 LDY #0 ; 0. row
 STA (ZP),Y
 LDY #120 ; 3. row
 STA (ZP),Y
 TXA ; Then put consecuent character codes to the places
 ASL ; Carry will be cleared
 ORA #$80 ; Inverted chars
 LDY #40 ; 1. row
 STA (ZP),Y
 ADC #1 ; Increase the character code, Carry won't be set
 LDY #80 ; 2. row
 STA (ZP),Y

 LDA CHAR,X ; What character to plot ? (source)
 STA ZP2 ; (char is already multiplicated by eight)
 LDA X16,X ; Destination low byte
 ADC YPOS,X ; (16*char code + y-position's 3 lowest bits)
 STA ZP
 LDA D16,X ; Destination high byte
 STA ZP+1

 LDY #6 ; Transfer 7 bytes from source to destination
 LDA (ZP2),Y : STA (ZP),Y
 DEY ; This is the fastest way I could think of.
 LDA (ZP2),Y : STA (ZP),Y
 DEY
 LDA (ZP2),Y : STA (ZP),Y
 DEY
 LDA (ZP2),Y : STA (ZP),Y
 DEY
 LDA (ZP2),Y : STA (ZP),Y
 DEY
 LDA (ZP2),Y : STA (ZP),Y
 DEY
 LDA (ZP2),Y : STA (ZP),Y
 DEX
 BPL LOOP5 ; Get next char in scroll

 LDA #1
 STA $D019 ; Acknowledge raster interrupt

 DEC COUNTER ; Decrease the counter = move the scroll by 1 pixel
 BPL OUT
LOOP12 LDA CHAR+1,Y ; Move the text one position to the left
 STA CHAR,Y ; (Y-register is initially zero)
 INY

 CPY #AMOUNT
 BNE LOOP12
 LDA POINTER
 AND #63 ; Text is 64 bytes long
 TAX
 LDA SCROLL,X ; Load a new char and multiply it by eight
 ASL
 ASL
 ASL
 STA CHAR+AMOUNT ; Save it to the right side
 DEC START ; Compensation for the text scrolling
 DEC START
 INC POINTER ; Increase the text pointer
 LDA #7
 STA COUNTER ; Initialize X-scroll

OUT JMP $EA7E ; Return from interrupt

SIN BYT 0,3,6,9,12,15,18,21,24,27,30,32,35,38,40,42,45
 BYT 47,49,51,53,54,56,57,59,60,61,62,62,63,63,63
 ; 1/4 of the sinus

LINESL BYT 0,40,80,120,160,200,240,24,64,104,144,184,224
 BYT 8,48,88,128,168,208,248,32

LINESH BYT 0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3

SCROLL SCR "THIS@IS@AN@EXAMPLE@SCROLL@FOR@"
 SCR "COMMODORE@MAGAZINE@BY@PASI@OJALA@@"
 ; SCR will convert text to screen codes

--
Basic loader for the Dycp demo program (PAL)

1 S=49152
2 DEFFNH(C)=C-48+7*(C>64)
3 CH=0:READA$,A:PRINTA$:IFA$="END"THENPRINT"<white><clr>":SYS49152:END
4 FORF=0TO31:Q=FNH(ASC(MID$(A$,F*2+1)))*16+FNH(ASC(MID$(A$,F*2+2)))
5 CH=CH+Q:POKES,Q:S=S+1:NEXT:IFCH=ATHEN3
6 PRINT"CHECKSUM ERROR":END
100 DATA 78A9328501A200BD00D09D0038BD00D19D0039CAD0F1A9378501A01FA942187D, 3441
101 DATA 75C19D00CF9920CFA94038FD75C19D40CF9960CFE88810E4A27FBD00CF4A1869, 4302
102 DATA 209D80CFCA10F3A2278A0A0A0A0A9D00CE8A4A4A4A4A18693C9D30CEA9009D90, 3231
103 DATA 03CA10E58D3E03A2078E3D039D0038CA10FAA93885FEA99B8D1403A9C08D1503, 3338
104 DATA A97F8D0DDCA9818D1AD0A9A88D12D0A91B8D11D0A91E8D18D05860EE3C03A026, 3864
105 DATA AE3C03BD00CF2907994003BD00CF4A4A4A996803E8E88810EAA900A24F9D003C, 3256
106 DATA 9D503C9DA03C9DF03C9D403D9D903D9DE03D9D303ECA10E5AD3D038D16D0A226, 3739
107 DATA 18BC68038A7995C185FBA90479AAC185FCA920A00091FBA07891FB8A0A0980A0, 4224
108 DATA 2891FB6901A05091FBBD900385FDBD00CE7D400385FBBD30CE85FCA006B1FD91, 4440
109 DATA FB88B1FD91FB88B1FD91FB88B1FD91FB88B1FD91FB88B1FD91FB88B1FD91FBCA, 6225
110 DATA 109FEE19D0CE3D031028B99103999003C8C026D0F5AD3E03293FAABDBFC10A0A, 3593
111 DATA 0A8DB603CE3C03CE3C03EE3E03A9078D3D034C7EEA000306090C0F1215181B1E, 2159
112 DATA 202326282A2D2F3133353638393B3C3D3E3E3F3F3F00285078A0C8F018406890, 2268
113 DATA B8E008305880A8D0F82000000000000000010101010101020202020202020314, 1379
114 DATA 08091300091300010E000518010D100C05001303120F0C0C00060F1200030F0D, 304
115 DATA 0D0F040F1205000D0107011A090E050002190010011309000F0A010C01000000, 257
200 DATA END,0

--
Uuencoded C64 executable of the basic loader (PAL)

begin 644 dycp.64
M`0@-"`$`4[(T.3$U,@`F"`(`EJ5(*$,ILD.K-#BJ-ZPH0[$V-"D`4@@#`$-(@
MLC`ZAT$D+$$ZF4$D.HM!)+(B14Y$(J>9(@63(CJ>-#DQ-3(Z@`")"`0`@4:RE
M,*0S,3I1LJ5(*,8HRBA!)"Q&K#*J,2DI*:PQ-JJE2"C&*,HH020L1JPRJC(IA
M*2D`J@@%`$-(LD-(JE$ZEU,L43I3LE.J,3J".HM#2+)!IS,`P@@&`)DB0TA%.
M0TM354T@15)23U(B.H``#PED`(,@-SA!.3,R.#4P,4$R,#!"1#`P1#`Y1#`P.
M,SA"1#`P1#$Y1#`P,SE#040P1C%!.3,W.#4P,4$P,49!.30R,3@W1"P@,S0T#
M,0!<"64`@R`W-4,Q.40P,$-&.3DR,$-&03DT,#,X1D0W-4,Q.40T,$-&.3DV&
M,$-&13@X.#$P131!,C=&0D0P,$-&-$$Q.#8Y+"`T,S`R`*D)9@"#(#(P.40X3
M,$-&0T$Q,$8S03(R-SA!,$$P03!!,$$Y1#`P0T4X031!-$$T031!,3@V.3-#P
M.40S,$-%03DP,#E$.3`L(#,R,S$`]@EG`(,@,#-#03$P134X1#-%,#-!,C`WY
M.$4S1#`S.40P,#,X0T$Q,$9!03DS.#@U1D5!.3E".$0Q-#`S03E#,#A$,34P@
M,RP@,S,S.`!#"F@`@R!!.3=&.$0P1$1#03DX,3A$,4%$,$$Y03@X1#$R1#!!B
M.3%".$0Q,40P03DQ13A$,3A$,#4X-C!%13-#,#-!,#(V+"`S.#8T`)`*:0"#]
M($%%,T,P,T)$,#!#1C(Y,#<Y.30P,#-"1#`P0T8T031!-$$Y.38X,#-%.$4X$
M.#@Q,$5!03DP,$$R-$8Y1#`P,T,L(#,R-38`W0IJ`(,@.40U,#-#.41!,#-#]
M.41&,#-#.40T,#-$.40Y,#-$.41%,#-$.40S,#-%0T$Q,$4U040S1#`S.$0Q*
M-D0P03(R-BP@,S<S.0`J"VL`@R`Q.$)#-C@P,SA!-SDY-4,Q.#5&0D$Y,#0W^
M.4%!0S$X-49#03DR,$$P,#`Y,49"03`W.#DQ1D(X03!!,#DX,$$P+"`T,C(T:
M`'<+;`"#(#(X.3%&0C8Y,#%!,#4P.3%&0D)$.3`P,S@U1D1"1#`P0T4W1#0P;

M,#,X-49"0D0S,$-%.#5&0T$P,#9",49$.3$L(#0T-#``Q`MM`(,@1D(X.$(Q?
M1D0Y,49".#A",49$.3%&0C@X0C%&1#DQ1D(X.$(Q1D0Y,49".#A",49$.3%&V
M0C@X0C%&1#DQ1D)#02P@-C(R-0`1#&X`@R`Q,#E&144Q.40P0T4S1#`S,3`RK
M.$(Y.3$P,SDY.3`P,T,X0S`R-D0P1C5!1#-%,#,R.3-&04%"1$)&0S$P03!!M
M+"`S-3DS`%X,;P"#(#!!.$1"-C`S0T4S0S`S0T4S0S`S144S13`S03DP-SA$H
M,T0P,S1#-T5%03`P,#,P-C`Y,$,P1C$R,34Q.#%",44L(#(Q-3D`JPQP`(,@0
M,C`R,S(V,C@R03)$,D8S,3,S,S4S-C,X,SDS0C-#,T0S13-%,T8S1C-&,#`R[
M.#4P-SA!,$,X1C`Q.#0P-C@Y,"P@,C(V.`#X#'$`@R!".$4P,#@S,#4X.#!!8
M.$0P1C@R,#`P,#`P,#`P,#`P,#`P,#$P,3`Q,#$P,3`Q,#(P,C`R,#(P,C`R^
M,#(P,S$T+"`Q,S<Y`$0-<@"#(#`X,#DQ,S`P,#DQ,S`P,#$P13`P,#4Q.#`Q7
M,$0Q,#!#,#4P,#$S,#,Q,C!&,$,P0S`P,#8P1C$R,#`P,S!&,$0L(#,P-`"02
M#7,`@R`P1#!&,#0P1C$R,#4P,#!$,#$P-S`Q,4$P.3!%,#4P,#`R,3DP,#$P.
L,#$Q,S`Y,#`P1C!!,#$P0S`Q,#`P,#`P+"`R-3<`G`W(`(,@14Y$+#`````PK
``
end
size 1439
--
Uuencoded C64 executable of the basic loader (NTSC)

begin 644 dycp-ntsc.bas
M`0@-"`$`4[(T.3$U,@`F"`(`EJ5(*$,ILD.K-#BJ-ZPH0[$V-"D`40@#`$-(?
MLC`ZAT$D+$$ZF4$D.HM!)+(B14Y$(J>9(I,B.IXT.3$U,CJ``(@(!`"!1K(P/
MI#,Q.E&RI4@HQBC**$$D+$:L,JHQ*2DIK#$VJJ5(*,8HRBA!)"Q&K#*J,BDI:
M*0"I"`4`0TBR0TBJ43J74RQ1.E.R4ZHQ.H(ZBT-(LD&G,P#!"`8`F2)#2$5#F
M2U-532!%4E)/4B(Z@`#'"%H`@``4"60`@R`W.$$Y,S(X-3`Q03(P,$)$,#!$L
M,#E$,#`S.$)$,#!$,3E$,#`S.4-!1#!&,4$Y,S<X-3`Q03`Q1D$Y-#(Q.#=$I
M+"`S-#0Q`&$)90"#(#<U0S$Y1#`P0T8Y.3(P0T9!.30P,SA&1#<U0S$Y1#0P!
M0T8Y.38P0T9%.#@X,3!%-$$R-T9"1#`P0T8T03$X-CDL(#0S,#(`K@EF`(,@R
M,C`Y1#@P0T9#03$P1C-!,C(W.$$P03!!,$$P03E$,#!#13A!-$$T031!-$$QJ
M.#8Y,T,Y1#,P0T5!.3`P.40Y,"P@,S(S,0#["6<`@R`P,T-!,3!%-3A$,T4P.
M,T$R,#<X13-$,#,Y1#`P,SA#03$P1D%!.3,X.#5&14$Y.4(X1#$T,#-!.4,P;
M.$0Q-3`S+"`S,S,X`$@*:`"#($$Y-T8X1#!1-!.3@Q.$0Q040P03E",#A$:
M,3)$,$$Y,4(X1#$Q1#!!.3%%.$0Q.$0P-3@V,$5%,T,P,T$P,4,L(#,X-C(`9
ME0II`(,@044S0S`S0D0P,$-&,CDP-SDY-#`P,T)$,#!#1C1!-$$T03DY-C@PB
M,T4X13@X.#$P14%!.3`P03(T1CE$,#`S0RP@,S(U-@#B"FH`@R`Y1#4P,T,Y$
M1$$P,T,Y1$8P,T,Y1#0P,T0Y1#DP,T0Y1$4P,T0Y1#,P,T5#03$P135!1#-$E
M,#,X1#$V1#!!,C%#+"`S-S(Y`"\+:P"#(#$X0D,V.#`S.$$W.3DU0S$X-49")
M03DP-#<Y04%#,3@U1D-!.3(P03`P,#DQ1D)!,#<X.3%&0CA!,$$P.3@P03`L#
M(#0R,C0`?`ML`(,@,C@Y,49"-CDP,4$P-3`Y,49"0D0Y,#`S.#5&1$)$,#!#H
M13=$-#`P,S@U1D)"1#,P0T4X-49#03`P-D(Q1D0Y,2P@-#0T,`#)"VT`@R!&C
M0C@X0C%&1#DQ1D(X.$(Q1D0Y,49".#A",49$.3%&0C@X0C%&1#DQ1D(X.$(QA
M1D0Y,49".#A",49$.3%&0D-!+"`V,C(U`!8,;@"#(#$P.49%13$Y1#!#13-$T
M,#,Q,#(X0CDY,3`S.3DY,#`S0SA#,#(V1#!&-4%$,T4P,S(Y,T9!04)$0D9#0
M,3!!,$$L(#,U.3,`8PQO`(,@,$$X1$(V,#-#13-#,#-#13-#,#-%13-%,#-!D
M.3`W.$0S1#`S-$,W145!,#`P,S`V,#DP0S!&,3(Q-3$X,4(Q12P@,C$U.0"P2
M#'``@R`R,#(S,C8R.#)!,D0R1C,Q,S,S-3,V,S@S.3-",T,S1#-%,T4S1C-&/
M,T8P,#(X-3`W.$$P0SA&,#$X-#`V.#DP+"`R,C8X`/T,<0"#($(X13`P.#,P2
M-3@X,$$X1#!&.#(P,#`P,#`P,#`P,#`P,#`P,3`Q,#$P,3`Q,#$P,C`R,#(P>
M,C`R,#(P,C`S,30L(#$S-SD`20UR`(,@,#@P.3$S,#`P.3$S,#`P,3!%,#`P3
M-3$X,#$P1#$P,$,P-3`P,3,P,S$R,$8P0S!#,#`P-C!&,3(P,#`S,$8P1"P@J
M,S`T`)4-<P"#(#!$,$8P-#!&,3(P-3`P,$0P,3`W,#$Q03`Y,$4P-3`P,#(Q`
M.3`P,3`P,3$S,#DP,#!&,$$P,3!#,#$P,#`P,#`L(#(U-P"A#7@`@R!%3D0LZ
$,````#`P0
``
end
size 1444

==
Opening the borders
by Pasi 'Albert' Ojala (po87553@cs.tut.fi or albert@cc.tut.fi)
 Written: 20-Jul-92

 All timings are in PAL, principles will apply to NTSC too.
 Refer to VIC memory map in Hacking Issue 4.

VIC has many features and transparent borders are one of them. You can not
make characters appear in the border, but sprites are displayed in the
border too. "How to do this then?" is the big question.

The screen resolution in C64 has been and will be 320 x 200 pixels. Most
games need to use the whole screen to be efficient or just plain playable.
But there still is that useless border area, and you can put score and
other status information there instead of having them interfere with the
full-screen smooth-scrolling playing area.

How to disable the vertical borders

When VIC (Video Interface Controller) has displayed all character rows,
it will start displaying the vertical border area. It will start displaying
the characters again in top of the screen. The row select register sets the

number of character lines on the screen. If we select the 24-row display
when VIC is drawing the last (25th) row, it does not start to draw the
border at all ! VIC will think that it already started to draw the border.

The 25-row display must be selected again in the top of the screen, so that
the border may be opened in the next frame too. The number of displayed rows
can be selected with the bit 3 in $d011. If the bit is set, VIC will display
25 rows and 24 rows otherwise. We have to clear the bit somewhere during the
last row (raster lines $f2-$fa) and set it again in top of the screen or at
least somewhere before the last row (line $f2). This has to be done in every
frame (50 times per second in PAL).

How to open the sideborders

The same trick can be applied to sideborders. When VIC is about to start
displaying the sideborder, just select 38-column mode and restore 40-column
mode so that you can do the trick again in the next scan line. If you need to
open the sideborders in the bottom or top border area, you have to open the
vertical borders also, but there shouldn't be any difficulty in doing that.

There is two drawbacks in this. The timing must be precise, one clock cycle
off and the sideborder will not open (the sprites will generally take care of
the timing) and you have to do the opening on each and every line. With
top/bottom borders once in a frame was enough.

Another problem is bad-lines. There is not enough time to open the borders
during a bad line and still have all of the sprites enabled. One solution
is to open the borders only on seven lines and leave the bad lines unopened.
Another way is to use less than eight sprites. You can have six of them
on a bad line and still be able to open the sideborders (PAL). The old and
still good solution is to scroll the bad lines, so that VIC will not start
to draw the screen at all until it is allowed to do so.
[Read more about bad lines from previous C=Hacking Issues]

Scrolling the screen

VIC begins to draw the screen from the first bad line. VIC will know what
line is a bad line by comparing its scan line counter to the vertical
scroll register : when they match, the next line is a bad line. If we change
the vertical scroll register ($d011), the first bad line will move also.
If we do this on every line, the line counter in VIC will never match with
it and the drawing never starts (until it is allowed to do so).

When we don't have to worry about bad lines, we have enough time to open the
borders and do some other effects too. It is not necassary to change the
vertical scroll on every line to get rid of the bad lines, just make sure
that it never matches the line counter (or actually the least significant
8 bits).

You can even scroll the bad lines independently and you have FLD - Flexible
Line Distance. You just allow a bad line when it is time to display the next
character row. With this you can bounce the lines or scroll a hires picture
very fast down the screen. But this has not so much to do with borders, so
I will leave it to another article. (Just send requests and I might start
writing about FLD ..)

Garbage appearing

When we open the top and bottom borders, some graphics may appear. Even
though VIC has already completed the graphics data fetches for the screen
area, it will still fetch data for every character position in top and bottom
borders. This will not do any harm though, because it does not generate any
bad lines and happens during video fetch cycles [see Missing Cycles article].
VIC reads the data from the last address in the current video bank, which is
normally $3fff and displays this over and over again.

If we change the data in this address in the border area, the change will be
visible right away. And if you synchronize the routine to the beam position,
you can have a different value on each line. If there is nothing else to do
in the border, you can get seven different values on each scan line.

The bad thing about this graphics is that it is impossible to change its
color - it is always black. It is of course possible to use inverted graphics
and change the background color. And if you have different data on each line,
you can as easily have different color(s) on each line too.

If you don't use $3fff for any effects, it is a good idea to set it to zero,
but remember to check that you do not store anything important in that

address. In one demo I just cleared $3fff and it was right in the middle of
another packed demopart. It took some time to find out what was wrong with
the other part.

Horizontal scrolling

This new graphics data also obeys the horizontal scroll register ($D016), so
you can do limited tech-tech effects in the border too. You can also use
sprites and open the sideborders. You can see an example of the tech-tech
effect in the first example program. Multicolor mode select has no effect
on this data. You can read more about tech-tech effects in a future article.

Example routine

The example program will show how to open the top and bottom borders and how
to use the $3fff-graphics. It is fairly well commented, so just check it for
details. The program uses a sprite to do the synchronization [see Missing
Cycles article] and reads a part of the character ROM to the display data
buffer. To be honest, I might add that this is almost the same routine than
the one in the Missing Cycles article. I have included both PAL and NTSC
versions of the executables.

--
The example program - $3fff-graphics

IMAGE0= $CE00 ; First graphics piece to show
IMAGE1= $CF00 ; Second piece
TECH= $CD00 ; x-shift
RASTER= $FA ; Rasterline for the interrupt
DUMMY= $CFFF ; Dummy-address for timing (refer to missing_cycles-article)

*= $C000
 SEI ; Disable interrupts
 LDA #$7F ; Disable timer interrupts (CIA)
 STA $DC0D
 LDA #$01 ; Enable raster interrupts (VIC)
 STA $D01A
 STA $D015 ; Enable the timing sprite
 LDA #<IRQ
 STA $0314 ; Interrupt vector to our routine
 LDA #>IRQ
 STA $0315
 LDA #RASTER ; Set the raster compare (9th bit will be set
 STA $D012 ; inside the raster routine)
 LDA #RASTER-20 ; Sprite is situated 20 lines before the interrupt
 STA $D001

 LDX #111
 LDY #0
 STY $D017 ; Disable y-expand
 LDA #$32
 STA $01 ; Select Character ROM
LOOP0 LDA $D000,X
 STA IMAGE0,Y ; Copy a part of the charset to be the graphics
 STA IMAGE0+112,Y
 LDA $D800,X
 STA IMAGE1,Y
 STA IMAGE1+112,Y
 INY ; Until we copied enough
 DEX
 BPL LOOP0
 LDA #$37 ; Char ROM out of the address space
 STA $01

 LDY #15
LOOP1 LDA XPOS,Y ; Take a half of a sinus and mirror it to make
 STA TECH,Y ; a whole cycle and then copy it as many times
 STA TECH+32,Y ; as necassary
 LDA #24
 SEC
 SBC XPOS,Y
 STA TECH+16,Y
 STA TECH+48,Y
 DEY
 BPL LOOP1
 LDY #64
LOOP2 LDA TECH,Y
 STA TECH+64,Y
 STA TECH+128,Y

 DEY
 BPL LOOP2
 CLI ; Enable interrupts
 RTS ; Return to basic (?)

IRQ LDA #$13 ; Open the bottom border (top border will open too)
 STA $D011
 NOP
 LDY #111 ; Reduce for NTSC ?
 INC DUMMY ; Do the timing with a sprite
 BIT $EA ; Wait a bit (add a NOP for NTSC)

LOOP3 LDA TECH,Y ; Do the x-shift
 STA $D016
FIRST LDX IMAGE0,Y ; Load the graphics to registers
SECOND LDA IMAGE1,Y
 STA $3FFF ; Alternate the graphics
 STX $3FFF
 STA $3FFF
 STX $3FFF
 STA $3FFF
 STX $3FFF
 STA $3FFF
 STX $3FFF
 STA $3FFF
 STX $3FFF
 LDA #0 ; Throw away 2 cycles (add a NOP for NTSC)
 DEY
 BPL LOOP3

 STA $3FFF ; Clear the graphics
 LDA #8
 STA $D016 ; x-scroll to normal
 LDA #$1B
 STA $D011 ; Normal screen (be ready to open the border again)
 LDA #111
 DEC FIRST+1 ; Move the graphics by changing the low byte of the
 BPL OVER ; load instruction
 STA FIRST+1
OVER SEC
 SBC FIRST+1
 STA SECOND+1 ; Another graphics goes to opposite direction
 LDA LOOP3+1 ; Move the x-shift also
 SEC
 SBC #2
 AND #31 ; Sinus cycle is 32 bytes
 STA LOOP3+1

 LDA #1
 STA $D019 ; Acknowledge the raster interrupt
 JMP $EA31 ; jump to the normal irq-handler

XPOS BYT $C,$C,$D,$E,$E,$F,$F,$F,$F,$F,$F,$F,$E,$E,$D,$C
 BYT $C,$B,$A,$9,$9,$8,$8,$8,$8,$8,$8,$8,$9,$9,$A,$B
 ; half of the sinus

--
Basic loader for the $3fff-program (PAL)

1 S=49152
2 DEFFNH(C)=C-48+7*(C>64)
3 CH=0:READA$,A:PRINTA$:IFA$="END"THENPRINT"<clear>":SYS49152:END
4 FORF=0TO31:Q=FNH(ASC(MID$(A$,F*2+1)))*16+FNH(ASC(MID$(A$,F*2+2)))
5 CH=CH+Q:POKES,Q:S=S+1:NEXT:IFCH=ATHEN3
6 PRINT"CHECKSUM ERROR":END
100 DATA 78A97F8D0DDCA9018D1AD08D15D0A9718D1403A9C08D1503A9FA8D12D0A9E68D,4003
101 DATA 01D0A26FA0008C17D0A9328501BD00D09900CE9970CEBD00D89900CF9970CFC8,4030
102 DATA CA10EAA9378501A00FB9DCC09900CD9920CDA91838F9DCC09910CD9930CD8810,4172
103 DATA E8A040B900CD9940CD9980CD8810F45860A9138D11D0EAA06FEEFFCF24EAB906,4554
104 DATA CD8D16D0BE53CEB91CCF8DFF3F8EFF3F8DFF3F8EFF3F8DFF3F8EFF3F8DFF3F8E,4833
105 DATA FF3F8DFF3F8EFF3FA9008810D18DFF3FA9088D16D0A91B8D11D0A96FCE85C010,4163
106 DATA 038D85C038ED85C08D88C0AD7FC018E901291F8D7FC0EE19D04C31EA0C0C0D0E,3719
107 DATA 0E0F0F0F0F0F0F0F0E0E0D0C0C0B0A09090808080808080809090A0B00000000,318
200 DATA END,0

--
An uuencoded C64 executable $3fff-program (PAL)

begin 644 xFFF.64
M`0@-"`$`4[(T.3$U,@`F"`(`EJ5(*$,ILD.K-#BJ-ZPH0[$V-"D`40@#`$-(?

MLC`ZAT$D+$$ZF4$D.HM!)+(B14Y$(J>9(I,B.IXT.3$U,CJ``(@(!`"!1K(P/
MI#,Q.E&RI4@HQBC**$$D+$:L,JHQ*2DIK#$VJJ5(*,8HRBA!)"Q&K#*J,BDI:
M*0"I"`4`0TBR0TBJ43J74RQ1.E.R4ZHQ.H(ZBT-(LD&G,P#!"`8`F2)#2$5#F
M2U-532!%4E)/4B(Z@``."60`@R`W.$$Y-T8X1#!1-!.3`Q.$0Q040P.$0QK
M-40P03DW,3A$,30P,T$Y0S`X1#$U,#-!.49!.$0Q,D0P03E%-CA$+"`T,#`S9
M`%L)90"#(#`Q1#!!,C9&03`P,#A#,3=$,$$Y,S(X-3`Q0D0P,$0P.3DP,$-%Y
M.3DW,$-%0D0P,$0X.3DP,$-&.3DW,$-&0S@L(#0P,S``J`EF`(,@0T$Q,$5!S
M03DS-S@U,#%!,#!&0CE$0T,P.3DP,$-$.3DR,$-$03DQ.#,X1CE$0T,P.3DQL
M,$-$.3DS,$-$.#@Q,"P@-#$W,@#U"6<`@R!%.$$P-#!".3`P0T0Y.30P0T0Y0
M.3@P0T0X.#$P1C0U.#8P03DQ,SA$,3%$,$5!03`V1D5%1D9#1C(T14%".3`V5
M+"`T-34T`$(*:`"#($-$.$0Q-D0P0D4U,T-%0CDQ0T-&.$1&1C-&.$5&1C-&%
M.$1&1C-&.$5&1C-&.$1&1C-&.$5&1C-&.$1&1C-&.$4L(#0X,S,`CPII`(,@'
M1D8S1CA$1D8S1CA%1D8S1D$Y,#`X.#$P1#$X1$9&,T9!.3`X.$0Q-D0P03DQ-
M0CA$,3%$,$$Y-D9#13@U0S`Q,"P@-#$V,P#<"FH`@R`P,SA$.#5#,#,X140X+
M-4,P.$0X.$,P040W1D,P,3A%.3`Q,CDQ1CA$-T9#,$5%,3E$,#1#,S%%03!#.
M,$,P1#!%+"`S-S$Y`"@+:P"#(#!%,$8P1C!&,$8P1C!&,$8P13!%,$0P0S!#P
M,$(P03`Y,#DP.#`X,#@P.#`X,#@P.#`Y,#DP03!",#`P,#`P,#`L(#,Q.``T>
-"\@`@R!%3D0L,````#@P1
``
end
size 823
--
An uuencoded C64 executable $3fff-program (NTSC)

begin 644 xfff-ntsc.64
M`0@-"`$`4[(T.3$U,@`F"`(`EJ5(*$,ILD.K-#BJ-ZPH0[$V-"D`40@#`$-(?
MLC`ZAT$D+$$ZF4$D.HM!)+(B14Y$(J>9(I,B.IXT.3$U,CJ``(@(!`"!1K(P/
MI#,Q.E&RI4@HQBC**$$D+$:L,JHQ*2DIK#$VJJ5(*,8HRBA!)"Q&K#*J,BDI:
M*0"I"`4`0TBR0TBJ43J74RQ1.E.R4ZHQ.H(ZBT-(LD&G,P#!"`8`F2)#2$5#F
M2U-532!%4E)/4B(Z@`#'"%H`@``4"60`@R`W.$$Y-T8X1#!1-!.3`Q.$0QX
M040P.$0Q-40P03DW,3A$,30P,T$Y0S`X1#$U,#-!.49!.$0Q,D0P03E%-CA$H
M+"`T,#`S`&$)90"#(#`Q1#!!,C9&03`P,#A#,3=$,$$Y,S(X-3`Q0D0P,$0PX
M.3DP,$-%.3DW,$-%0D0P,$0X.3DP,$-&.3DW,$-&0S@L(#0P,S``K@EF`(,@H
M0T$Q,$5!03DS-S@U,#%!,#!&0CE$14,P.3DP,$-$.3DR,$-$03DQ.#,X1CE$`
M14,P.3DQ,$-$.3DS,$-$.#@Q,"P@-#$W-@#["6<`@R!%.$$P-#!".3`P0T0Y8
M.30P0T0Y.3@P0T0X.#$P1C0U.#8P03DQ,SA$,3%$,$5!03`V1D5%1D9#1C(T+
M14%%04(Y+"`T-S@R`$@*:`"#(#`P0T0X1#$V1#!"13`P0T5".3`P0T8X1$9&>
M,T8X149&,T8X1$9&,T8X149&,T8X1$9&,T8X149&,T8X1$9&,T8L(#0U.#``?
ME0II`(,@.$5&1C-&.$1&1C-&.$5&1C-&14%!.3`P.#@Q,$0P.$1&1C-&03DP`
M.#A$,39$,$$Y,4(X1#$Q1#!!.39&0T4X-BP@-#,S,0#B"FH`@R!#,#$P,#,XY
M1#@V0S`S.5.#9#,#A$.#E#,$%$.#!#,#$X13DP,3(Y,48X1#@P0S!%13$YO
M1#`T0S,Q14$P0S!#+"`S.3`U`"X+:P"#(#!$,$4P13!&,$8P1C!&,$8P1C!&W
M,$4P13!$,$,P0S!",$$P.3`Y,#@P.#`X,#@P.#`X,#@P.3`Y,$$P0D$R,#`L%
4(#4P-P`["VP`@R!%3D0L+3$````PB
``
end
size 830

===
A Heavy-Duty Power Supply for the C-64
by John C. Andrews (no email address)

 As a Commodore User for the last 4 plus years, I am aware of the many
 articles and letters in the press that have bemoaned the burn-out
 problem of the C-64 power supply. When our Club BBS added a one meg
 drive and stayed on around the clock, the need for heavy-duty power
 supply became very apparent.... Three power supplies went in 3
 successive days!

 Part of the problem was my ignoring the seasons. You see during the
 winter I had set the power supply between the window and the screen,
 Yes, outside! With the advent of Spring... well, you get the picture.

 The turn-around time forgetting a new commerical supply was not in the
 best interest of the BBS and its members. Therefore, taking power
 supply inhand, I proceeded to cut one open on my shop bandsaw. I do
 not suggest that you do this. The parts are FIRMLY and COMPLETELY
 encased in a hard plastic potting compound. The purpose of this is not
 to make the item difficult to repair, but to make the entire unit
 conductive to the heat generated inside. I doubt the wisedom of
 potting the fuse as well. However, CBM was probably thinking of the
 number of little fingers that could fit into an accessable fuse
 holder. if you want the punch line it is: the final circuit board and
 its componets are about the size of a box of matches. This includes
 the built-in metal heat sink.

 From these minscule innards I traced out the circuit and increased the
 size of ALL components.

 The handiest source of electronic parts is, of course, Radio Shack.
 All but one part can be purchased there.

 212-1013 Capacitor, 35V, 4700 mF
 212-1022 Capacitor, 35V, 10 uF
 273-1515 Transformer, 2 Amp, 9-0-9 VAC
 276-1184 Rectifier

 270- 742 Fuse Block
 270-1275 Fuses

 Note that there are only five parts. The rest are fuses, fuse blocks,
 heat sinks, wire and misc. hardware. Note also that I have not listed
 any plugs and cords. This because you can clip the cords off of both
 sides of your defunct power supply. This will save you the hassle of
 wriing the DIN power plug correctly:

 DIN PIN OUT COLOR
 pin 6 9VAC black
 pin 7 9VAC black
 pin 5 +5 Volts blue
 pin 1,2,3 shield, gnd orange

 The part that you can NOT get at Radio Shack is the power regulator.
 This part will have to be scrounged up from some local, big
 electronics supply house:

 SK 9067 5 volt voltage regulator, 3+ amps. (I prefer the 5 amp.)

 Radio Shack does carry regulators, but their capacity is no larger
 than that with which you started.

 The Heat sinks, (yes, more than one!) are the key to the success of
 this project. The ones I used came from my Model Railroading days.
 Sorry to say, I did just ahve them 'lying about'. The heat sinks that
 I priced at the local electronics supply were more costly than the
 other parts. The worst case situation is that you may need to drill
 out a couple pieces of aluminum sheet. Try for 12 x 12, and bend them
 into square bottomed U-shapes to save room. heat sinks should not
 touch, or be electronically grounded to each other. You can also mount
 them on stand-offs from your chassis for total air circulation.

 The Radio Shack transformer is rated at only 2 amps. If you can not
 find one with a higher rating elsewhere, it is possible to hook two in
 parallel to get a 4 ampere output. This si tricky, as it can be done
 either right or wrong!

 Here is how to do it the right way:
 Tape off one yellow secondary lead on each transformer. With tape
 mark the four remaining secondary leads and letter them A and B on
 one transformer, C and D onthe other. Hook up the black primary
 leads to a plug to your 120 wall outlet:

 |-------------
 Note: *'s - indicate connections | 3 ||
 +'s - indicate skip overs | 3 || (Transformer)
 | 3 ||
 | 3 ||
 | ----------
 | |
 +--\ /-------------------*---+---------
 --|120|/ | 3 ||
 --|Vlt| ____ | 3 ||
 -|Plg|------------|FUSE|-------* 3 ||
 +--/ ---- | 3 || (Transformer)
 |---------

 This would now be a good time to install a fuse in your 120 VAC
 line. Now before plugging this into the wall, tie two of the
 scondary leads (one from EACH transformer) together.

 Something like this: A--Xfmr--B+C--Xfmr--D

 Plug in your 120V side. Now using a VOM meter, measure the voltage
 between A and D.
 If the meter reads 18 volts, then:
 1. unplug from the 120.
 2. tie A and C together. tie B and D together.
 3. your 2 transformers will now give you 9 volts at 4 amps.
 If the meter reads 0 volts, then:
 1. unplug from the 120.
 2. tie A and D together. Tie B and C together.
 3. your 2 transformers will now give you 9 volts at 4 amps.

 Below is the file corresponding to the full schematic of the power supply.
 [Ed's note: in GeoPaint format, converted by convert 2.5, then uuencoded]. As
 you can see in the picture, I used only one transformer. Because it got hot,
 I epoxied a small heat sink to it. While this solved the heat problem, it did
 not increase the capacity of the total power supply.

 Note that I used fuses on all lines.

begin 700 schematic.
M@PD,<V-H96UA=&ECH*"@H*"@H`D&`0=8!P8-,Q(`4%)'(&9O<FUA='1E9"!'
M14]3(&9I;&4@5C$N,``CF````"```.``0X(``$5P<V]N($U8+3@P`*"@H*``
MUH>-UH?(F!AE`H4"D`+F`V"@H*"@H*"@H`@%`0A6!`<,`"````"""@A30TA%
M34%424.@H*"@H*"@````````````$P!"3$%35$52)U,@0T].5D525$52(%8R
M+C4$6`<X"````@RP#0T].5D525*"@H*"@H*"@H"P2``99`Q$&`10`````
M```````````````````````````````````````#%;_____```.@``6?__F5
M55F:JJF555F:JJF555F:JJF555F:JJF?__F@``7```/___\```````-__[:`
M`/Y__[R#!P$``/__``!086EN="!);6%G92!6,2XQ````````````````````
M````````````9V5O4&%I;G0@("`@5C(N,``````@*$')!M`"J1*-(D"I`(TG
M0"#]/Y`%J0"-)T`@#!\@2$&I`(VL7ZD`A1&I!X40J3^%%ZGQA1:I7X4-J:R%
M#*!`J0X@3S&B_Z4"R0+P)LG_T`8@-$&X4*G)!M`-H$.I)B!/,2"APKA0F*VL
M7_`&(+T\(($\8%!A:0#_"@#_`3P!>`)+`EL"/P&R`38!B@%Z`38!C@(G`/\`
M_P#_`/\`_P#_`/\`_P#_`/\`_P#_`/\`_P#_`/\`_P#_`/\`_P#_`/\`_P#_
M`/\`_P#_`/\`_P#_`/\```
M``
M``
M```/\`
M_P#_`/\`_P#_`/\`E0`"/R!%````````_P"%``,0_Q!$````````_P"&``+X
M"/\`_P"B`/^_H;\``"`@,!@,_PP810``````_P``"!`0,&#@_\#`0P``````
M_P``A1`#\!`0H`"("/\`_P#*``(@/X8``>#_`+```3"'(*@``F`PAA"8`(@0
MH`"("/\`_P"B`/^_H;\`(*@`B!"8`(00!!\0$!!$`````/\```"$"`3X"`@(
M_P#_`,(``O__A@`"X."&((L`#0$!`0($@("`#A0!.%``-98D.%``.,4MZ%
M``/@D)"0``$'0P````````#_AP`!@,\`B""H_P#.``H#1$0HA0`##03$A0`#
M@("9AP`!!*``B""H`(@0H`"("/\`_P#_`.,`'2D1$1$0````).0$),0```"E
MI*2DF`````2HJ%!0HP"&(`)@8*(``1^$``P!$!#_````/-,``/B$``&`F`"(
M"/\`_P"B`/^_H;\``+```3"'(*@``F`PAA"8`(@0H`"("/\`_P"B`/^_H;\`
M(*@`B!"8`(00!!\0$!!$`````/\```"$"`3X"`@(_P#_`,(``O__A@`"X."&
M((L`#0$!`0($@("`#A0!.%``-98D.%``.,4MZ%``/@D)"0``$'0P``````
M``#_AP`!@,\`B""HS@`""`B&``(*BH8``@D!O@`"#PA#````````_P"&``R`
M8``/##`P#`PP`/^%``,\`/^%``/``/^%``$$1`#_`````````P#_`84`"L#_
M@,#@8"`@`/^'``'PAA"0``(&"(8`A!`,$A(2$V`0```\!(3.A``$<8J*BH0`
M#,`@("<````X*"!P((<(`0^'``&`_P#_`,<``S\@((8``N`<B``1!`4%`@("
M``"34E(B(B(``)N$20E(``"8)#P@))BR`(@(D0`Q`0$```$!`&"%A65EA85E
M,`P,,#`,##`B(CPB(B(\`$!,4DY24DX`!&25AH:59```@(0``8"A`(@@A0`+
M`0(*!!`0.$2"`0"`A@`"@$"0`(@0`H2$A@`"BG&&``(JRH8`#*"@`0$#`P4%
M,,```(0%"&`8!`3R"@D1_P#_`)H`_[^AOP``````````````````````````
M``
M``
M``
M``````````````````````````````````"<``(!`T(```````#__P(``(0@
M!N#@("`#`88`"/^`0"`0"`0$2O\``````````?B8`!<!`0```0$`986%966%
MA64P#`\P,`P,,$8``/\```````,``/Z%`H@``3^'`!3X"P0"`0```(#G@(`!
M@D0X(+]`@$(``````/\``(0``A#_AA!#`/\````````8!?P$`@(!`0"-B8G9
M<7$`P.$A(2(2#`08_P#_`*T``@$#0@```````/__"P```"`@(.#@("`@B``$
M`@$!`8@`'("`@$```'E$1'A$1```@("8I9VE```(",DJ#`S)`#<!`0```0$`
M986%966%A64P#`PP,`P,,`!$"D0H*1$1$0`-!,0DY`0D`("`F:6DI*0````$
M!*BH4)```0-#`````````/^'``'PAQ"8`(@0CP`!#(<``0B(``(X#X8(`F"`
M_P#_`*``_[^AOP``
M``
M``
M```+``B""0
M`(5`%7]`0$1X````_P``I9P```#_```JR4(```#_``````<```#_```'A`0;
M_`0$_P`],3TQ,`#_`+.VL['G`/\`O#`\L#P`A8`#_X"`0@``````_P``-0`!
M`0``_P``986%8&"````P#`PP/P```!````#_````Q````/\```"8````_P``
M`%````#_AP`$X"`@(*@`B!"8`(00!!\0$!"$`!3_`````@$!`/\``0$("`B(
MCX@("(0`!/\```"$"`3X"`@(_P#_`,(``O__A@`"X."&((L`#0$!`0($@("`
M#A0!.%``-98D.%``.,4MZ%``/@D)"0``$'0P````````H`_X<``8#/`(@@
MJ`"($)@`B!"(``L"#```GJ&AH0@("(D`!&"PD("("/\`_P"B`/^_H;\```$,
MAP`!"(@``C@/A@@"8(#_`/\`H`#_OZ&_````````````````````````````
M``
M``
M``
M````````````L`"(((4`)@$"'`0($"!`_P``1.``#_``!"0D$``/\``!!2
MC```_P``D)"04```_P``````#0``_P``("`P&`S_#!A%``````#_```($!`P
M8.#_P,!#``````#_``"%$`/P$!"(``2AH:&>A``)`2(B(AP```#`A(`#````
MB`C_`/\`R@`"(#^&``'@_P"P``,P(`"%(*@``F`PAA"8`(@0H`"("/\`_P"B
M`/^_H;\`_P`!`0@("(B/B`@(A``$_P```(0(!/@("`C_`/\`P@`"__^&``+@
MX(8@BP`-`0$!`@2`@(`.$1`0$X4``UEB0X4``XQ2WH4``^"0D)#_`.D`B""H
M`(@0F``*B!"@`(@(_P#_`/\`_P"$`(@@J`"($)@`B!"@`(@(_P#_`*(`_[^A
MOP``#0`` P``("`P&`S #!A%``````# ```($!`P8.# P,!#``````# ``"%

M$`/P$!"(``2AH:&>A``)`2(B(AP```#`A(`#````B`C_`/\`R@`"(#^&``'@
M_P"P``,P(`"%(*@``F`PAA"8`(@0H`"("/\`_P"B`/^_H;\`_P`!`0@("(B/
MB`@(A``$_P```(0(!/@("`C_`/\`P@`"__^&``+@X(8@BP`-`0$!`@2`@(`.
M$1`0$X4``UEB0X4``XQ2WH4``^"0D)#_`.D`B""H`(@0F`"($*``B`C_`/\`
M_P#S``$#AP(8_P``>V-[8V'_``!G;&9CSO\``'A@>&!XB("8`(@0B`"(`1G_
M```],3TQ,/\``+.VL['G_P``O#`\L#S`AT")``,?$!"$$Q@(_P``VQO;&P#_
M```[8S,;`/P$!,0$Q`3_`/\`D@#_OZ&_`(8``>#_`+```S`@`(4@J``"8#"&
M$)@`B!"@`(@(_P#_`*(`_[^AOP#_``$!"`@(B(^("`B$``3_````A`@$^`@(
M"/\`_P#"``+__X8``N#@AB"+``T!`0$"!("`@`X1$!`3A0`#66)#A0`#C%+>
MA0`#X)"0D/\`V0`#`@(#0@``````"@``_X40`P``_X4``X"`@)T`B!"(``,!
M`0%"`````````/^%"`,``/^%``-`0,"-``03$!`?A``$#@``_X0$!',``/^$
M``3$!`3_P#_`/\`]P"($*@`B!"8`(@(H`"(!/\`_P"B`/^_H;\`!,0$Q`3_
M`/\`D@#_OZ&_`(8``>#_`+```S`@`(4@J``"8#"&$)@`B!"@`(@(_P#_`*(`
M_[^AOP#_``$!"`@(B(^("`B$``3_````A`@$^`@("/\`_P#"``+__X8``N#@
MAB"+``T!`0$"!("`@`X1$!`3A0`#66)#A0`#C%+>A0`#X)"0D/\`Z0"($*@`
MB!"8`(@(H`"(!/\`_P#_`/\`A`"($*@`B!"8`(@(H`"(!/\`_P"B`/^_H;\`
M_X4``T!`P(T`!!,0$!^$``0.``#_A`0$<P``_X0`!,0$!/S_`/\`_P#W`(@0
MJ`"($)@`B`B@`(@$_P#_`*(`_[^AOP`$Q`3$!/\`_P"2`/^_H;\`A@`!X/\`
ML``#,"``A2"H``)@,(80F`"($*``B`C_`/\`H@#_OZ&_`/\``0$("`B(CX@(
M"(0`!/\```"$"`3X"`@(_P#_`,(``O__A@`"X."&((L`#0$!`0($@("`#A$0
M$!.%``-98D.%``.,4MZ%``/@D)"0_P#I`(@0J`"($)@`B`B@``J(!/\`_P#_
M`/@``P,$!(4``X%!0(00!``1$:*%``,.$9"4``0'"`@(A``,`H*!@1`0$``B
M(D5%A``$'"(@((<`"P,````?$!`>P0@(B0`-<HN#@IH````N*2BHJ(4`$X"`
M@`````$!!P$!`!\0$![!`1'_`/\`H@#_OZ&_`/\`L``#,"``A2"H``)@,(80
MF`"($*``B`C_`/\`H@#_OZ&_`/\``0$("`B(CX@("(0`!/\```"$"`3X"`@(
M_P#_`,(``O__A@`"X."&((L`#0$!`0($@("`#A0!.%``-98D.%``.,4MZ%
M``/@D)"0_P#9``P$`P```P```$#`0("$``VBI$=$1````)!0T%%.DP`*!P`!
M!@````^!@(4`$1!(CXB(`````Z"@HIP```#@A@`C`P(!$0X```#$(```("!`
M````BHIR````0<)H:2X```#!(("%``+P((0`#`<$!`0.````B$!;2H0`!`$!
M@4&$``3P``#@_P#_`/\`XP`3!P0$!`<$!`2(0%M*B@H*"@``@81!"4!@@`#@
M$!`0X)``"P@("`\("`@`@+>4A!0#````A8`:`"`@0$"`@(```@(#`@("```M
M)<4%!04``,"%(!X``$!`0$%"2P@0($"```'D!`A`X!`0$.````<$!`2$``2*
>"@H*A``0`*04"$``00$!#@_P#_`)8`_[^AOP`*
`
end

===
LZW Compression
by Bill Lucier (Blucier@ersys.edmonton.ab.ca, b.lucier1 on Genie)

LZW is perhaps the most widely used form of data compression today. It
is simple to implement and achieves very decent compression at a fairly
quick pace. LZW is used in PKZIP (shrink),PKARC (crunch), gifs,V.42bis
and unix's compress. This article will attempt to explain how the
compression works with a short example and 6502 source code in Buddy
format.

Originally named lz78, it was invented by Jacob Ziv and Abraham Lempel
in 1978 , it was later modified by Terry Welch to its present format.
The patent for the LZW compression method is presently held by Unisys.

LZW compresses data by taking phrases and compressing them into codes.
The size of the codes could vary from 9 bits to 16 bits. Although for
this implementation we will be using only 12 bits. As byte are read in
from a file they are added to a dictionary. For a 12-bit implementation
a dictionary will be 4k (2^12=4096) . Each entry in the dictionary
requires five bytes, which will be built in the form of a tree. It is
not a binary tree because each node may have more than two offsprings.
In fact, because our dictionary can hold up to 4096 different codes it
is possible to have one node with 3800 children nodes, although this is
not likely to happen. The five bytes that make up our tree will be:

The parent code: Each node has one and only one parent node. When the parent
 code is less then 255 it is the end of a phrase. The codes
 0-255 do not actually exist in the tree. The following
 values do not appear either as they have special meaning:

 256 : End of Stream-This marks the end of one compressed file
 257 : This tells the decompressor to increase the number
 of bits its reading by one.
 258 : Wipe out dictionary

The code value : This is the code that will be sent to the compressor.
The character : The value contained at this node. It have a value of 0-255.

Initially we send out codes that are 9 bits long, this will cover the values
0-511. Once we have reached 511, we will need to increase the number of
bits to write by 1. This will give room for code numbers 512-1023, or
(2^10)-1. At this point we must ensure that the decompressor knows how
bits to read in at once so a code number 257 is sent to indicate that
the number of bits to be read is to be bumped up by one. The size of the

dictionary is finite so at some point we do have to be concerned with
what we will do when it does fill up. We could stop compiling new
phrases and just compress with the ones that are already in the
dictionary. This is not a very good choice, files tend to change
frequently (eg. program files as they change from code to data) so
sticking with the same dictionary will actually increase the size of the
file or at best, give poor compression. Another choice is to wipe the
dictionary out and start building new codes and phrases, or wipe out
some of the dictionary leaving behind only the newer codes and phrases.
For the sake of simplicity this program will just wipe out the
dictionary when it becomes full.

To illustrate how LZW works a small phrase will be compressed : heher.
To start the first two characters would be read in. The H would be
treated as the parent code and E becomes the character code. By means of
a hashing routine (the hashing routine will be explained more fully in
the source code) the location where HE should be is located. Since we
have just begun there will be nothing there,so the phrase will be added
to the dictionary. The codes 0-258 are already taken so we start using
259 as our first code. The binary tree would look something like this:

 node # 72 - H
 |
 node #3200 259 - E

 The node # for E is an arbitrary one. The compressor may not choose
that location, 3200 is used strictly for demonstration purposes. So at
node #3200 the values would be:

Parent code - 72
code value - 259
character - E

The node #72 is not actually used. As soon as a value less than 255 is
found it is assumed to be the actual value. We can't compress this yet
so the value 72 is sent to the output file(remember that it is sent in 9
bits). The E then becomes the parent code and a new character code (H)
is read in. After again searching the dictionary the phrase EH is not
found. It is added to the dictionary as code number 260. Then we send
the E to the disk and H becomes the new parent code and the next E
becomes the new character code. After searching the dictionary we find
that we can compress HE into the code 259,we want to compress as much as
possible into one code so we make 259 the parent code. There may be a
longer string then HE that can be compressed. The R is read in as the
new character code. The dictionary is searched for the a 259 followed a
R, since it is not found it is added to the dictioary and it looks like
this:

 node #72 - H node #69 - E
 | |
 node #3200 259 - E node #1600 260 - H
 |
 node #1262 261 - R

Then the value 259 is sent to the output file (to represent the HE) and
since that is the EOF the R is sent as well,as well as a 256 to indicate
the EOF has been reached.

Decompression is extremely simple. As long as the decompressor maintains
the dictionary as the compressor did, there will be no problems,except
for one problem that can be handled as an exceptional case. All of the
little details of increasing the number of bits to read, and when to
flush the dictionary are taken care of by the compressor. So if the
dictionary was increased to 8k, the compressor would have to be set up
to handle a larger dictionary, but the decompressor only does as the
compressed file tells it to and will work with any size dictionary. The
only problem would be that a larger dictionary will creep into the ram
under the rom or possibly even use all available memory, but assuming
that the ram is available the decompressor will not change. The
decompressor would start out reading 9 bits at a time, and starts it
free code at 259 as the compressor did. To use the above input from the
compressor as an example, the output was:

72 - For the First H
69 - For the First E
259 - For the Compressed HE
82 - For the R
256 - Eof indicator

 To begin decompressing, two values are needed. The H and E are read in,
(note they will both be 9 bits long). As they are both below 256 they

are at the end of the string and are sent straight to the output file.
The first free code is 259 so that is the value assigned to the phrase
HE. Note when decompressing there is no need for the hashing routine,
the codes are the absolute locations in the dictionary (i.e. If the
dictionary was considered to be an array then the entry number 259 would
be dictionary[259]), because of this, the code value is no longer
needed. So the decompressor would have an entry that looks like this:

Node # 259
Parent Code - H
Character - E

The decompressor will read in the next value (259). Because the node
number is at the end of the compressed string we will have to take the
code value and place it on a stack, and take them off in a
Last-in,First-out (LIFO) fashion. That is to say that the first
character to go on the stack (in this case the E) will be the last to
come off. The size of the stack is dependent on the size of the
dictionary, so for this implementation we need a stack that is 4k long.
After all the characters from the string have been placed on the stack
they are taken off and sent to the outputfile.

 There is one small error that is possible with LZW because of the way
the compressor defines strings. Consider the compression dictionary that
has the following in it:

 node # Code Parent character
 Value code
 ------ ------ ------ ---------
 65 65 n/a A
 723 259 65 C
 1262 260 259 U
 2104 261 260 T
 2506 262 261 E

Now if the compressor was to try to compress the string ACUTEACUTEA The
compressor will find a match for the first five characters 'ACUTE' and
will send a 262 to the output file. Then it will add the following entry
to the dictionary:

 3099 263 262 A

Now it will try to compress the remaining characters, and it finds that
it can compress the entire string with the code 263, but notice that the
middle A, the one that was just added onto the end of the string 'ACUTE'
was never sent to the output file. The decompressor will not have the
code 263 defined in it's dictionary. The last code it will have defined
will be 262. This problem is easily remedied though, when the
decompressor does not have a code defined, it takes the first letter
from the last phrase defined and tacks it onto the end of the last
phrase. IE It takes the first letter (the A) from the phrase and adds it
on to the end as code #263.

This particular implementation is fairly slow because it reads a byte
and then writes one, it could be made much faster with some buffering.
It is also limited to compressing and decompressing one file at a time
and has no error checking capabilities. It is meant strictly to teach
LZW compression, not provide a full fledged compressor.

And now for the code:

SYS 4000 ; sys 999 on a 64
.DVO 9 ; or whatever drive used for output
.ORG 2500
.OBJ "LZW.ML"

TABLESIZE =5021

; THE TABLESIZE IS ACTUALLY 5021, ABOUT 20% LARGER THEN 4K. THIS GIVES
; THE HASHING ROUTINE SOME ROOM TO MOVE. IF THE TABLE WAS EXACTLY 4K
; THERE WOULD BE FREQUENT COLLISIONS WHERE DIFFERENT COMBINATIONS OF
; CHARACTERS WOULD HAVE THE SAME HASH ADDRESS. INCREASING THE TABLE SIZE
; REDUCES THE NUMBER OF COLLISIONS.

EOS =256 ; eos = End of stream This marks the end of file

FIRSTCODE =259
MAXCODE =4096

BUMPCODE =257 ; Whenever a 257 is encountered by the decompressor it
 ; increases the number of bits it reads by 1

FLUSHCODE =258

TABLEBASE =14336 ; The location that the dictionary is located at

DECODESTACK =9300 ; The location of the 4k LIFO stack

; ORG = DECOMPRESS FILE
; ORG + 3 = COMPRESS FILE

JMP EXPANDFILE

;********************************
; COMPRESSFILE
;********************************

COMPRESSFILE JSR INITDIC ; EMPTY THE DICTIONARY
LDA #128
STA BITMASK
LDA #0
STA RACK
JSR GETCHAR ; GET A CHAR FROM THE INPUT FILE
STA STRINGCODE ; INITIALIZE THE STRINGCODE (PARENT CODE)
LDA #0
STA STRINGCODE+1
NEXTCHAR JSR GETCHAR
 STA CHARACTER
 JSR FINDNODE ; FINDNODE CALCULATES THE HASHED LOCATION OF
 LDA ($FE),Y ; THE STRINGCODE AND CHARACTER IN THE DICT.
 INY ; AND SETS $FE/$FF POINTING TO IT. IF THE ENTRY
 AND ($FE),Y ; HAS TWO 255 IN IT THEN IT IS EMPTY AND SHOULD
 CMP #255 ; BE ADDED TO THE DICTIONARY.
 BEQ ADDTODICT
 LDA ($FE),Y ; IT HAS A DEFINED PHRASE. STORE THE CODE VALUE IN
 STA STRINGCODE+1; THE PARENT CODE
 DEY
 LDA ($FE),Y
 STA STRINGCODE
 JMP EOF
 ADDTODICT LDY #0
 - LDA NEXTCODE,Y
 STA ($FE),Y
 INY
 CPY #5
 BNE -
 INC NEXTCODE ; INCREASE THE NEXTCODE
 BNE +
 INC NEXTCODE+1
 + JSR OUTPUT
 LDA NEXTCODE+1 ; CHECK IF NEXTCODE=4096 IF SO THEN FLUSH THE
 CMP #>MAXCODE ; DICTIONARY AND START ANEW
 BNE CHECKBUMP
 LDA NEXTCODE
 CMP #<MAXCODE
 BNE CHECKBUMP
 LDA #<FLUSHCODE ; SEND THE FLUSH CODE TO THE COMPRESSED FILE SO
 STA STRINGCODE ; THE DECOMPRESSOR WILL KNOW TO FLUSH THE
 LDA #>FLUSHCODE ; DICTIONARY
 STA STRINGCODE+1
 JSR OUTPUT
 JSR INITDIC
 JMP CHECKEOF
 CHECKBUMP LDA NEXTBUMP+1
 CMP NEXTCODE+1 ; CHECKBUMP CHECK TO SEE IF THE NEXTCODE HAS
 BNE CHECKEOF ; REACHED THE MAXIMUM VALUE FOR THE CURRENT
 LDA NEXTBUMP ; NUMBER OF BITS BEING OUTPUT.
 CMP NEXTCODE ; FOR X BITS NEXTCODE HAS Y PHRASES
 BNE CHECKEOF ; -------- -----------------------
 LDA #>BUMPCODE ; 9 511
 STA STRINGCODE+1 ; 10 1023
 LDA #<BUMPCODE ; 11 2047
 STA STRINGCODE ; 12 4095
 JSR OUTPUT
 INC CURRENTBITS
 ASL NEXTBUMP
 ROL NEXTBUMP+1
 CHECKEOF LDA #0
 STA STRINGCODE+1
 LDA CHARACTER
 STA STRINGCODE
 EOF LDA 144

 BNE DONE
JMP NEXTCHAR
DONE JSR OUTPUT
LDA #>EOS ; SEND A 256 TO INDICATE EOF
STA STRINGCODE+1
LDA #<EOS
STA STRINGCODE
JSR OUTPUT
LDA BITMASK
BEQ +
 JSR $FFCC
 LDX #3
 JSR $FFC9
 LDA RACK ; SEND WHAT BITS WEREN'T SEND WHEN OUTPUT
 JSR $FFD2
+ JSR $FFCC
LDA #3
JSR $FFC3
LDA #2
JMP $FFC3

;**********************************
; INITDIC
; INITIALIZES THE DICTIONARY, SETS
; THE NUMBER OF BITS TO 9
;**********************************

INITDIC LDA #9
STA CURRENTBITS
LDA #>FIRSTCODE
STA NEXTCODE+1
LDA #<FIRSTCODE
STA NEXTCODE
LDA #>512
STA NEXTBUMP+1
LDA #<512
STA NEXTBUMP
LDA #<TABLEBASE
STA $FE
LDA #>TABLEBASE
STA $FF
LDA #<TABLESIZE
STA $FC
LDA #>TABLESIZE
STA $FD
- LDY #0
 LDA #255 ; ALL THE CODE VALUES ARE INIT TO 255+256*255
 STA ($FE),Y ; OR -1 IN TWO COMPLEMENT
 INY
 STA ($FE),Y
 CLC
 LDA #5 ; EACH ENTRY IN THE TABLE TAKES 5 BYTES
 ADC $FE
 STA $FE
 BCC +
 INC $FF
 + LDA $FC
 BNE +
 DEC $FD
 + DEC $FC
 LDA $FD
 ORA $FC
BNE -
RTS

;************************************
; GETCHAR
;************************************

GETCHAR JSR $FFCC
LDX #2
JSR $FFC6
JMP $FFCF

;************************************
; OUTPUT
;************************************

OUTPUT LDA #0 ; THE NUMBER OF BITS OUTPUT CAN BE OF A VARIABLE
STA MASK+1 ; LENGTH,SO THE BITS ARE ACCUMULATED TO A BYTE IS
LDA #1 ; FULL AND THEN IT IS SENT TO THE OUTPUT FILE

LDX CURRENTBITS
DEX
- ASL
 ROL MASK+1
 DEX
BNE -
STA MASK
MASKDONE LDA MASK
ORA MASK+1
BNE +
 RTS
+ LDA MASK
AND STRINGCODE
STA 3
LDA MASK+1
AND STRINGCODE+1
ORA 3
BEQ NOBITON
 LDA RACK
 ORA BITMASK
 STA RACK
NOBITON LSR BITMASK
LDA BITMASK
BNE +
 JSR $FFCC
 LDX #3
 JSR $FFC9
 LDA RACK
 JSR $FFD2
 LDA #0
 STA RACK
 LDA #128
 STA BITMASK
+ LSR MASK+1
ROR MASK
JMP MASKDONE

;******************************
; FINDNODE
; THIS SEARCHES THE DICTIONARY TILL IT FINDS A PARENT NODE THAT MATCHES
; THE STRINGCODE AND A CHILD NODE THAT MATCHES THE CHARACTER OR A EMPTY
; NODE.
;*******************************

; THE HASHING FUNCTION - THE HASHING FUNCTION IS NEEDED BECAUSE
; THERE ARE 4096 X 4096 (16 MILLION) DIFFERENT COMBINATIONS OF
; CHARACTER AND STRINGCODE. BY MULTIPLYING THE CHARACTER AND STRINGCODE
; IN A FORMULA WE CAN DEVELOP OF METHOD OF FINDING THEM IN THE
; DICTIONARY. IF THE STRINGCODE AND CHARACTER IN THE DICTIONARY
; DON'T MATCH THE ONES WE ARE LOOKING FOR WE CALCULATE AN OFFSET
; AND SEARCH THE DICTIONARY FOR THE RIGHT MATCH OR A EMPTY
; SPACE IS FOUND. IF AN EMPTY SPACE IS FOUND THEN THAT CHARACTER AND
; STRINGCODE COMBINATION IS NOT IN THE DICTIONARY

FINDNODE LDA #0
STA INDEX+1
LDA CHARACTER ; HERE THE HASHING FUNCTION IS APPLIED TO THE
ASL ; CHARACTER AND THE STRING CODE. FOR THOSE WHO
ROL INDEX+1 ; CARE THE HASHING FORMULA IS:
EOR STRINGCODE ; (CHARACTER << 1) ^ STRINGCODE
STA INDEX ; FIND NODE WILL LOOP TILL IT FINDS A NODE
LDA INDEX+1 ; THAT HAS A EMPTY NODE OR MATCHES THE CURRENT
EOR STRINGCODE+1 ; PARENT CODE AND CHARACTER
STA INDEX+1
ORA INDEX
BNE +
 LDX #1
 STX OFFSET
 DEX
 STX OFFSET+1
 JMP FOREVELOOP
+ SEC
LDA #<TABLESIZE
SBC INDEX
STA OFFSET
LDA #>TABLESIZE
SBC INDEX+1
STA OFFSET+1

FOREVELOOP JSR CALCULATE
 LDY #0

 LDA ($FE),Y
 INY
 AND ($FE),Y
 CMP #255
 BNE +
 LDY #0
 RTS
 + INY
 - LDA ($FE),Y
 CMP STRINGCODE-2,Y
 BNE +
 INY
 CPY #5
 BNE -
 LDY #0
 RTS
 + SEC
 LDA INDEX
 SBC OFFSET
 STA INDEX
 LDA INDEX+1
 SBC OFFSET+1
 STA INDEX+1
 AND #128
 BEQ FOREVELOOP
 CLC
 LDA #<TABLESIZE
 ADC INDEX
 STA INDEX
 LDA #>TABLESIZE
 ADC INDEX+1
 STA INDEX+1
JMP FOREVELOOP

;***************************
; CALCULATE
; TAKES THE VALUE IN INDEX AND CALCULATES ITS LOCATION IN THE DICTIONARY
;****************************

CALCULATE LDA INDEX
STA $FE
LDA INDEX+1
STA $FF
ASL $FE
ROL $FF
ASL $FE
ROL $FF
CLC
LDA INDEX
ADC $FE
STA $FE
LDA INDEX+1
ADC $FF
STA $FF
CLC
LDA #<TABLEBASE
ADC $FE
STA $FE
LDA #>TABLEBASE
ADC $FF
STA $FF
LDY #0
RTS

;******************************
; DECODESTRING
;******************************

DECODESTRING TYA ; DECODESTRING PUTS THE STRING ON THE STACK
STA COUNT ; IN A LIFO FASHION.
LDX #>DECODESTACK
CLC
ADC #<DECODESTACK
STA $FC
STX $FD
LDA #0
STA COUNT+1
- LDA INDEX+1
 BEQ +
 JSR CALCULATE
 LDY #4

 LDA ($FE),Y
 LDY #0
 STA ($FC),Y
 LDY #2
 LDA ($FE),Y
 STA INDEX
 INY
 LDA ($FE),Y
 STA INDEX+1
 JSR INFC
JMP -
+ LDY #0
LDA INDEX
STA ($FC),Y
INC COUNT
BNE +
 INC COUNT+1
+ RTS

;******************************
; INPUT
;******************************

INPUT LDA #0 ; THE INPUT ROUTINES IS USED BY THE DECOMPRESSOR
STA MASK+1 ; TO READ IN THE VARIABLE LENGTH CODES
STA RETURN
STA RETURN+1
LDA #1
LDX CURRENTBITS
DEX
- ASL
 ROL MASK+1
 DEX
BNE -
STA MASK
- LDA MASK
 ORA MASK+1
 BEQ INPUTDONE
 LDA BITMASK
 BPL +
 JSR GETCHAR
 STA RACK
 + LDA RACK
 AND BITMASK
 BEQ +
 LDA MASK
 ORA RETURN
 STA RETURN
 LDA MASK+1
 ORA RETURN+1
 STA RETURN+1
 + LSR MASK+1
 ROR MASK
 LSR BITMASK
 LDA BITMASK
 BNE +
 LDA #128
 STA BITMASK
+ JMP -
INPUTDONE RTS

;*******************************
; EXPANDFILE
; WHERE THE DECOMPRESSION IS DONE
;*******************************

EXPANDFILE LDA #0
STA RACK
LDA #128
STA BITMASK
START JSR INITDIC
JSR INPUT
LDA RETURN+1
STA OLDCODE+1 ; Save the first character in OLDCODE
LDA RETURN
STA CHARACTER
STA OLDCODE
CMP #<EOS
BNE +
 LDA RETURN+1 ; If return = EOS (256) then all done
 CMP #>EOS

 BNE +
 JMP CLOSE
+ JSR $FFCC
LDX #3
JSR $FFC9
LDA OLDCODE ; Send oldcode to the output file
JSR $FFD2
NEXT JSR INPUT
 LDA RETURN
 STA NEWCODE
 LDA RETURN+1
 STA NEWCODE+1
 CMP #1 ; All of the special codes Flushcode,BumpCode & EOS
 BNE ++ ; Have 1 for a MSB.
 LDA NEWCODE
 CMP #<BUMPCODE
 BNE +
 INC CURRENTBITS
 JMP NEXT
 + CMP #<FLUSHCODE
 BEQ START
 CMP #<EOS
 BNE +
 JMP CLOSE
 + SEC ; Here we compare the newcode just read in to the
 LDA NEWCODE ; next code. If newcode is greater than it is a
 SBC NEXTCODE ; ACUTEACUTEA situation and must be handle differently.
 STA 3
 LDA NEWCODE+1
 SBC NEXTCODE+1
 ORA 3
 BCC +
 LDA CHARACTER
 STA DECODESTACK
 LDA OLDCODE
 STA INDEX
 LDA OLDCODE+1
 STA INDEX+1
 LDY #1
 BNE ++
 + LDA NEWCODE ; Point index to newcode spot in the dictionary
 STA INDEX ; So DECODESTRING has a place to start
 LDA NEWCODE+1
 STA INDEX+1
 LDY #0
 + JSR DECODESTRING
 LDY #0
 LDA ($FC),Y
 STA CHARACTER
 INC $FC
 BNE +
 INC $FD
 + JSR $FFCC
 LDX #3
 JSR $FFC9
 L1 LDA COUNT+1 ; Count contains the number of characters on the stack
 ORA COUNT
 BEQ +
 JSR DECFC
 LDY #0
 LDA ($FC),Y
 JSR $FFD2
 JMP L1
 + LDA NEXTCODE ; Calculate the spot in the dictionary for the string
 STA INDEX ; that was just entered.
 LDA NEXTCODE+1
 STA INDEX+1
 JSR CALCULATE
 LDY #2 ; The last character read in is tacked onto the end
 LDA OLDCODE ; of the string that was just taken off the stack
 STA ($FE),Y ; The nextcode is then incremented to prepare for the
 INY ; next entry.
 LDA OLDCODE+1
 STA ($FE),Y
 INY
 LDA CHARACTER
 STA ($FE),Y
 INC NEXTCODE
 BNE +
 INC NEXTCODE+1
 + LDA NEWCODE

 STA OLDCODE
 LDA NEWCODE+1
 STA OLDCODE+1
JMP NEXT
CLOSE JSR $FFCC
LDA #2
JSR $FFC3
LDA #3
JMP $FFC3

DECFC LDA $FC
BNE +
 DEC $FD
+ DEC $FC
LDA COUNT
BNE +
 DEC COUNT+1
+ DEC COUNT
RTS
INFC INC $FC
BNE +
 INC $FD
+ INC COUNT
BNE +
 INC COUNT+1
+ RTS

NEXTCODE .WOR 0
STRINGCODE .WOR 0
CHARACTER .BYT 0
NEXTBUMP .WOR 0
CURRENTBITS .BYT 0
RACK .BYT 0
BITMASK .BYT 0
MASK .WOR 0
INDEX .WOR 0
OFFSET .WOR 0
RETURN .WOR 0
COUNT .WOR 0
NEWCODE .WOR 0
OLDCODE .WOR 0
TEST .BYT 0

TO DRIVE THE ML I WROTE THIS SMALL BASIC PROGRAM. NOTE THAT CHANNEL TWO IS
ALWAYS THE INPUT AND CHANNEL THREE IS ALWAYS THE OUTPUT. EX AND CO MAY BE
CHANGED TO SUIT WHATEVER LOCATIONS THE PROGRAM IS REASSEMBLED AT.

1 IFA=.THENA=1:LOAD"LZW.ML",PEEK(186),1
10 EX=2500:CO=2503
15 PRINT"[E]XPAND OR [C]OMPRESS?"
20 GETA$:IFA$<>"C"ANDA$<>"E"THEN20
30 INPUT"NAME OF INPUT FILE";FI$:IFLEN(FI$)=.THEN30
40 INPUT"NAME OF OUTPUT FILE";FO$:IFLEN(FO$)=.THEN40
50 OPEN2,9,2,FI$+",P,R":OPEN3,9,3,FO$+",P,W"
60 IFA$="E"THENSYSEX
70 IFA$="C"THENSYSCO
80 END

For those interested in learning more about data
compression/decompression I recommend the book 'The Data Compression
Book' written by Mark Nelson. I learned a great deal from reading this
book. It explains all of the major data compression methods. (huffman
coding, dictionary type compression such as LZW, arithmatic coding,
speech compression and lossy graphics compression)

Questions or comments are welcome, they may be directed to me at :

Internet : Blucier@ersys.edmonton.ab.ca
Genie : b.lucier1

--

begin 644 lzw.ml
MQ`E,N`P@GPJI@(WT#:D`C?,-(.L*C>T-J0"-[@T@ZPJ-[PT@6`NQ_L@Q_LG_
M\`ZQ_HWN#8BQ_HWM#4QH"J``N>L-D?[(P`70]N[K#=`#[NP-(/8*K>P-R1#0
M&JWK#<D`T!.I`HWM#:D!C>X-(/8*()*3%T*K?$-S>P-T!ZM\`W-ZPW0%JD!
MC>X-J0&-[0T@]@KN\@T.\`TN\0VI`(WN#:WO#8WM#:60T`-,WPD@]@JI`8WN
M#:D`C>T-(/8*K?0-\`X@S/^B`R#)_ZWS#2#2_R#,_ZD#(,/_J0),P_^I"8WR
M#:D!C>P-J0.-ZPVI`HWQ#:D`C?`-J0"%_JDXA?^IG87\J1.%_:``J?^1_LB1
M_ABI!67^A?Z0`N;_I?S0`L;]QORE_07\T-Y@(,S_H@(@QO],S_^I`(WV#:D!
MKO(-R@HN]@W*T/F-]0VM]0T-]@W0`6"M]0TM[0V%`ZWV#2WN#04#\`FM\PT-

M]`V-\PU.]`VM]`W0&"#,_Z(#(,G_K?,-(-+_J0"-\PVI@(WT#4[V#6[U#4P+
M"ZD`C?@-K>\-"B[X#4WM#8WW#:WX#4WN#8WX#=`1K?<-T`RB`8[Y#<J.^@U,
MEPLXJ9WM]PV-^0VI$^WX#8WZ#2#C"Z``L?[(,?[)_]`#H`!@R+'^V>L-T`C(
MP`70]*``8#BM]PWM^0V-]PVM^`WM^@V-^`TI@/`1&*F=;?<-C?<-J1-M^`V-
M^`U,EPNM]PV%_JWX#87_!OXF_P;^)O\8K?<-9?Z%_JWX#67_A?\8J0!E_H7^
MJ3AE_X7_H`!@F(W]#:(D&&E4A?R&_:D`C?X-K?@-\!X@XPN@!+'^H`"1_*`"
ML?Z-]PW(L?Z-^`T@W`U,)@R@`*WW#9'\[OT-T`/N_@U@J0"-]@V-^PV-_`VI
M`:[R#<H*+O8-RM#YC?4-K?4-#?8-\#NM]`T0!B#K"HWS#:WS#2WT#?`2K?4-
M#?L-C?L-K?8-#?P-C?P-3O8-;O4-3O0-K?0-T`6I@(WT#4QT#&"I`(WS#:F`
MC?0-()*(%D,K?P-C0(.K?L-C>\-C0$.R0#0"JW\#<D!T`-,NPT@S/^B`R#)
M_ZT!#B#2_R!9#*W[#8W_#:W\#8T`#LD!T!BM_PW)`=`&[O(-3/,,R0+PJ\D`
MT`-,NPTXK?\-[>L-A0.M``[M[`T%`Y`6K>\-C50DK0$.C?<-K0(.C?@-H`'0
M#JW_#8WW#:T`#HWX#:``(!0,H`"Q_(WO#>;\T`+F_2#,_Z(#(,G_K?X-#?T-
M\`T@R`V@`+'\(-+_3&T-K>L-C?<-K>P-C?@-(.,+H`*M`0Z1_LBM`@Z1_LBM
M[PV1_N[K#=`#[NP-K?\-C0$.K0`.C0(.3/,,(,S_J0(@P_^I`TS#_Z7\T`+&
M_<;\K?T-T`/._@W._0U@YOS0`N;][OT-T`/N_@U@````````````````````
*````````````````
`
end

crc32 for lzw.ml = 2460116527

begin 644 lzw.bas
M`0@<"`$`BT&R+J=!LC$ZDR),6E<N34PB+#DL,0`P"`H`15BR,C4P,#I#3[(R
M-3`S`%`(#P"9(I,219)84$%.1"!/4B`20Y)/35!215-3/R(`;`@4`*%!)#J+
M022SL2)#(J]!)+.Q(D4BIS(P`)<('@"%(DY!344@3T8@24Y0550@1DE,12([
M1DDD.HO#*$9))"FR+J<S,`##""@`A2).04U%($]&($]55%!55"!&24Q%(CM&
M3R0ZB\,H1D\D*;(NIS0P`.L(,@"?,BPY+#(L1DDDJB(L4RQ2(CJ?,RPY+#,L
M1D\DJB(L4"Q7(@#["#P`BT$DLB)%(J>>15@`"PE&`(M!)+(B0R*GGD-/````
`
end

crc32 for lzw.bas = 100674089

===
THREE-KEY ROLLOVER for the C-128 and C-64.
by Craig Bruce <csbruce@neumann.uwaterloo.ca>

1. INTRODUCTION

This article examines a three-key rollover mechanism for the keyboards of the
C-128 and C-64 and presents Kernal-wedge implementations for both machines.
Webster's doesn't seem to know, so I'll tell you that this means that the
machine will act sensibly if you are holding down one key and then press
another without releasing the first (or even press a third key while holding
down two others). This is useful to fast touch typers. In fact, fast typing
without rollover can be quite annoying; you get a lot of missing letters.

Another annoying property of the kernel keyscanning is joystick interference.
If you move the joystick plugged into port #1, you will notice that some junk
keystrokes result. The keyscanners here eliminate this problem by simply
checking if the joystick is pressed and ignoring the keyboard if it is.

The reason that a 3-key rollover is implemented instead of the more general
N-key rollover is that scanning the keyboard becomes more and more unreliable
as more keys are held down. Key "shaddows" begin to appear to make it look
like you are holding down a certain key when you really are not. So, by
limiting the number of keys scanned to 3, some of this can be avoided. You
will get strange results if you hold down more than three keys at a time, and
even sometimes when holding down 3 or less. The "shift" keys (Shift,
Commodore, Control, Alternate, and CapsLock) don't count in the 3 keys of
rollover, but they do make the keyboard harder to read correctly.
Fortunately, three keys will allow you to type words like "AND" and "THE"
without releasing any keys.

2. USER GUIDE

Using these utilities is really easy - you just type away like normal. To
install the C-128 version, enter:

BOOT "KEYSCAN128"

and you're in business. The program will display "Keyscan128 installed" and
go to work. The program loads into memory at addresses $1500-$17BA (5376-6074
decimal), so you'll want to watch out for conflicts with other utilities.
This program also takes over the IRQ vector and the BASIC restart vector
($A00). The program will survive a RUN/STOP+RESTORE. To uninstall this
program, you must reset the machine (or poke the kernel values back into the
vectors); it does not uninstall itself.

Loading the C-64 version is a bit trickier, so a small BASIC loader program is

provided. LOAD and RUN the "KEYSCAN64.BOOT" program. It will load the
"KEYSCAN64" program into memory at addresses $C500-$C77E (50432-51070 decimal)
and execute it (with a SYS 50432). To uninstall the program, enter SYS 50435.
The program takes over the IRQ and NMI vectors and only gives them back to the
kernel upon uninstallation. The program will survive a RUN/STOP+RESTORE.

Something that you may or may not know about the C-64 is that its keys can be
made to repeat by poking to address 650 decimal. POKE650,128 will enable the
repeating of all keys. POKE650,0 will enable only the repeating of the SPACE,
DELETE, and CURSOR keys. POKE650,64 will disable the repeating of all keys.
An unusual side effect of changing this to either full repeat or no repeat is
that holding down SHIFT+COMMODORE (character set shift) will repeat rapidly.

To see the rollover in action, hold down the "J" key for a while, and then
press "K" without releasing "J". "K" will come out as expected, as it would
with the kernal. Now, release the "J" key. If you are on a C-128, you will
notice that the "K" key will now stop repeating (this is actually an important
feature - it avoids problems if you don't release all of the keys you are
holding down, at once). Now, press and hold the "J" key again without
releasing the "K". "J" will now appear. It wouldn't using the Kernal key
scanner. You can also try this with 3-key combinations. There will be some
combinations that cause problems; more on this below.

Also, take a spaz on the joystick plugged into port #1 and observe that no
garbage gets typed in. This was an annoying problem with the kernel of both
the 64 and 128 and has lead many different games to picking between joystick
#1 and #2 as the primary controller. The joystick in port #2 is not a problem
to either Keyscan-128/64 or the Kernal.

3. KEYBOARD SCANNING

The Kernal scans the keyboard sixty times a second to see what keys you are
holding down. Because of hardware peculiarities, there are multiple scanning
techniques that will give different results.

3.1. SCANNING EXAMPLE

An example program is included to demonstrate different keyboard scanning
techniques possible. To run it from a C-128 in 40-column (slow) mode, enter:

BOOT "KEYSHOW"

On a C-64, you must:

LOAD "KEYSHOW",8,1

and then:

SYS 4864

The same program works on both machines. Four maps of the keyscanning matrix
will be displayed on the 40-column screen, as scanned by different techniques.
The leftmost one is scanned from top to bottom "quickly". The second from the
left scans from bottom to top "quickly". The third from the left scans the
keyboard sideways, and the rightmost matrix scans the keys from top to bottom
"slowly".

The mapping of keyscan matrix positions to keys is as follows:

ROWS: \ COLUMNS: peek($DC01)
poke \
$DC00 \ 128 64 32 16 8 4 2 1
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-1 | DOWN | F5 | F3 | F1 | F7 | RIGHT | RETURN| DELETE|
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-2 |LEFT-SH| E | S | Z | 4 | A | W | 3 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-4 | X | T | F | C | 6 | D | R | 5 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-8 | V | U | H | B | 8 | G | Y | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-16 | N | O | K | M | 0 | J | I | 9 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-32 | , | @ | : | . | - | L | P | + |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-64 | / | ^ | = |RGHT-SH| HOME | ; | * | \ |
 +-------+-------+-------+-------+-------+-------+-------+-------+
255-128 | STOP | Q |COMMODR| SPACE | 2 |CONTROL| _ | 1 |
 +-------+-------+-------+-------+-------+-------+-------+-------+

The following table contains the additional keys which must be scanned on the

C128 (but which are not displayed by the example scanning program).

ROWS: \ COLUMNS: peek($DC01)
poke \
$D02F \ 128 64 32 16 8 4 2 1
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-1 | 1 | 7 | 4 | 2 | TAB | 5 | 8 | HELP |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-2 | 3 | 9 | 6 | ENTER | LF | - | + | ESC |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 255-4 |NO-SCRL| RIGHT | LEFT | DOWN | UP | . | 0 | ALT |
 +-------+-------+-------+-------+-------+-------+-------+-------+

These tables are presented on page 642 of the Commodore 128 Programmer's
Reference Guide. The scan codes that are stored in location 212 on the C128
and location 197 on the C64 are calculated based on the above tables. The
entry in the "1" bit position of the first line of the first table (DELETE)
has a scan code of 0, the "2" entry (RETURN) has a scan code of 1, etc., the
entry on the second scan line in the "1" position ("3") has a scan code of 8,
etc., all the way down to code 63. The scan codes for the 128 go all the way
to 87, continuing in the second table like the first.

You will notice some strange effects of the different scanning techniques when
you hold down multiple keys. More on this below. Also try pushing joystick
#1 around.

3.2. SCANNING HARDWARE

To scan the 128 keyboard, you must poke a value into $DC00 (CIA#1 port A) and
$D02F (VIC chip keyboard select port) to select the row to be scanned. The
Data Direction Register for this port will be set to all outputs by the
Kernal, so you don't have to worry about it. Each bit of $DC00 and the three
least significant bits of $D02F are used for selecting rows. A "0" bit means
that a row IS selected, and a "1" means that a row IS NOT selected. The poke
value to use for selecting among the various rows are given in the two tables
in the previous section.

Using one bit per row allows you to select multiple rows at the same time. It
can be useful to select all rows at one time or no rows. To read the row that
has been selected, simply peek at location $DC01 (CIA#1 port B). Each bit
will tell you whether the corresponding key is currently being held down or
not. Again, we have reverse logic; a "0" means that the key is being held
down, and a "1" means that the key is not held down. The bit values
corresponding to the keys are given as the column headings in the tables in
the previous section. Since there is no such thing as a perfect mechanical
switch, it is recommended that you "debounce" each key row read in the
following way:

again:
 lda $dc01
 cmp $dc01
 bne again

So, to scan the entire keyboard, you simply select each scan row in some
order, and read and remember the keys held down on the row. As it turns out,
you have to be a bit careful of exactly how you "select" a row. Also, there
is a shortcut that you can take. In order to find out if any key is being
held down in one operation, all you have to do is select all rows at once and
see if there are any "0" bits in the read value. If so, there is a key being
held down somewhere; if not, then there is no key being held down, so you
don't have to bother scanning the entire keyboard. This will reduce our
keyscanning significantly, which is important, since the keyboard will be
scanned every 1/60 of a second.

As mentioned above, joystick #1 will interfere with the Kernal reading the
keyboard. This is because the read value of joystick #1 is wired into CIA#1
port A, the same place that the keyboard read is wired in. So, whenever a
switch in the joystick is pushed, the corresponding bit of the keyboard scan
register will be forced to "0", regardless of which keys are pressed and
regardless of which scan row is selected. There's the catch. If we were to
un-select all scan rows and still notice "0"s in the keyboard read register,
then we would know that the joystick was being pushed and would interfere with
our keyboard scanning, so we could abort keyboard scanning and handle this
case as if no keys were being held down.

It still would be possible but unlikely that the user could push the joystick
in the middle of us scanning the keyboard and screw up our results, so to
defend against this, we check for the joystick being pushed both before and
after scanning the keyboard. If we find that the joystick is pushed at either
of these times, then we throw out the results and assume that no keys are held
down. This way, the only way that a user could screw up the scanning is if

he/she/it were to press a switch after we begin scanning and release it before
we finish scanning. Not bloody likely for a human.

You get the same deal for keyboard scanning on the 64, except you only need to
use $DC00 for selecting the scan rows. Also note that you will not be able to
play with keyboard scanning from BASIC because of the interrupt reading of the
keyboard. You must make sure that interrupts are disabled when playing with
the keyboard hardware, or interrupt scanning can come along at any time and
change all of the register settings.

3.3. SCANNING SOURCE CODE

The four keyboard scanning techniques of the example program are presented
below. The declarations required for all of them are:

pa = $dc00 ;row select
pb = $dc01 ;column read
ddra = $dc02 ;ddr for row select
ddrb = $dc03 ;ddr for column read
scanTable .buf 8 ;storage for scan
mask = $03 ;work location

The code is as follows, in Buddy format. Each routine scans the keyboard and
stores the results in the "scanTable" table.

------------------+------------------+------------------+------------------+
 Row forward fast | Row backward fast| Column right | Row forward slow
------------------+------------------+------------------+------------------+
 sei | sei | sei | sei
 ldx #0 | ldx #7 | lda #$00 | ldx #0
 lda #$fe | lda #$7f | sta ddra | lda #$fe
 sta pa | sta pa | lda #$ff | sta mask
 nextRow = * | nextRow = * | sta ddrb | nextRow = *
- lda pb |- lda pb | ldy #7 | lda mask
 cmp pb | cmp pb | lda #$7f | sta pa
 bne - | bne - | sta mask |- lda pb
 eor #$ff | eor #$ff | nextCol = * | cmp pb
 sta scanTable,x | sta scanTable,x | lda mask | bne -
 sec | sec | sta pb | eor #$ff
 rol pa | ror pa |- lda pa | sta scanTable,x
 inx | dex | cmp pa | sec
 cpx #8 | bpl nextRow | bne - | rol mask
 bcc nextRow | cli | ldx #$ff | inx
 cli | rts | stx pb | cpx #8
 rts | | eor #$ff | bcc nextRow
------------------+------------------+ ldx #7 | cli
 |- asl | rts
The forward "quick" scanning stores | rol scanTable,x +------------------+
the scan row selection mask into | dex |
the row selection register and | bpl - |
shifts the "0" bit one position | sec |
"forward" for each row, directly, | ror mask |
using a "rol $dc00" instruction. | dey |
This would probably be the obvious | bpl nextCol |
solution to an optimizing assembler | lda #$ff |
programmer. However, for some | sta ddra |
reason not quite understood by this | lda #$00 |
author, there are "shadowing" | sta ddrb |
problems with this approach. If | cli |
you were to hold down the two keys | rts |
"H" and "K" at the same time, you +------------------+
would notice that these two keys
are on the same column of two successive rows. If you hold them both down,
you will see the two positions become active, but so will the same column of
all successive rows after the "H" and "K", even though these other keys are
not actually held down. You will get an inaccurate reading if bad keys are
held down simultaneously. You will notice the use of the term "active" above.
This is because although the hardware returns a "0" for active, the routine
converts that into a "1" for easier processing later. I am not sure if
everyone will get this same result, but if your keyboard is wired the same as
mine, you will.

The backward "quick" scanning operates quite similarly to the forward
scanning, except for the direction of the scan and the direction of the
"shadow"; the shadow goes upwards. You might think that ANDing together the
results of the forward and backward scan together would eliminate the shadow,
but this will not work since any rows between the rows containing the two keys
held down will be incorrectly read as being active.

The columnwise right scanning is the most complicated because the rows must be
converted into columns, to allow the scan matrix to be interpreted as before.

Also, the Data Direction Registers have to be changed. You might think that
combinging row-wise scanning with columnwise scanning would give better
results, and it probably would, if it weren't for a bizarre hardware problem.
If you hold down two or more keys on the same scan row, say "W" and "E", some
of the keys will flicker or disappear, giving an inaccurate reading.

The forward "slow" scanning is the best of the bunch. Incidentally, it is
what the Kernal uses (as near as I can figure - their code is extremely
convoluted). This technique is the same as the forward "quick scan," except
that the row selection mask is shifted in a working storage location and poked
into the CIA register, rather than being shifted in place. I don't know why
this makes a difference, but it does. There is still a problem with this
technique, but this problem occurs with all techniques. If you hold down
three keys that form three "corners" of a rectangle in the scanning matrix,
then the missing corner will be read as being held down also. For example, if
you hold down "C", "N", and "M", then the keyboard hardware will also think
that you are holding down the "X" key. This is why this article implements a
"three-key" rollover rather than an "N-key" rollover. Many three-key
combinations will still be interpreted correctly. Note, however, that shift
keys such as SHIFT or CONTROL will add one more key to the hardware scanning
(but will not be counted in the three-key rollover), making inaccurate results
more likely if you are holding down multiple other keys at the same time.

4. THE C-128 KEYSCANNER

This section gives the source code for the C-128 implementation of the
three-key rollover. The forward "slow" key matrix scanning technique is used,
extended to work with the extra keys of the 128. It was a bit of a pain
wedging into the Kernal, since there is not a convenient indirect JMP into
scanning the keyboard, like there are for decoding and buffering pressed keys.
A rather lengthy IRQ "preamble" had to be copied from the ROM, up to the
point where it JSRs to the keyscanning routine. This code in included in
the form of a ".byte" table, to spare you the details.

Before scanning the keyboard, we check to see if joystick #1 is pushed and if
a key is actually pressed. If not, we abort scanning and JMP to the key
repeat handling in the ROM. If a key is held down, we scan the keyboard and
then examine the result. First we check for the shift keys (SHIFT, COMMODORE,
CONTROL, ALT, and CAPS LOCK), put them into location $D3 (shift flags) in bit
postitions 1, 2, 4, 8, and 16, respectively, and remove them from the scan
matrix. The CAPS LOCK key is not on the main key matrix; it is read from the
processor I/O port. This is good, because otherwise we could not abort
scanning if it were the only key held down.

Then we scan the keymatrix for the first three keys that are being held down,
or as many as are held down if less than three. We store the scan codes of
these keys into a 3-element array. We also retain a copy of the 3-element
array from the previous scan and we check for different keys being in the two
arrays. If the old array contains a key that is not present in the new array,
then the use has released a key, so we set a flag to inhibit interpretation of
keys and pretend that no keys are held down. This is to eliminate undesirable
effects of having other keys held down repeat if you release the most recently
pushed key first. PC keyboards do this. This inhibiting will be ignored if
new keys are discovered in the next step.

If there are keys in the new array that are not in the old, then the user has
just pressed a new key, so that new key goes to the head of the old array and
we stop comparing the arrays there. The key in the first position of the old
array is poked into the Kernal "key held down" location for the Kernal to
interpret later. If more than one new key is discovered at the same time,
then each of the new keys will be picked up on successive keyboard scans and
will be interpreted as just being pushed. So, if you press the "A", "N", and
"D" keys all at the same time, some permutation of all three of these keys
will appear on the screen.

When we are done interpreting the keys, we check the joystick once more and if
it is still inactive, we present the most recently pushed down key to the
Kernal and JMP into the ROM keyboard decoding routine.

Unlike in previous issues, this source code is here in literal form; just
extract everything between the "-----=-----"s to nab the source for yourself.
The source is in Buddy assembler format.

-----=-----
;3-Key Rollover-128 by Craig Bruce 18-Jun-93 for C= Hacking magazine

.org $1500

.obj "@0:keyscan128"

scanrows = 11
rollover = 3

pa = $dc00
pb = $dc01
pk = $d02f

jmp initialInstall

;ugly IRQ patch code.

irq = * ;$1503
 .byte $d8,$20,$0a,$15,$4c,$69,$fa,$38,$ad,$19,$d0,$29,$01,$f0,$07,$8d
 .byte $19,$d0,$a5,$d8,$c9,$ff,$f0,$6f,$2c,$11,$d0,$30,$04,$29,$40,$d0
 .byte $31,$38,$a5,$d8,$f0,$2c,$24,$d8,$50,$06,$ad,$34,$0a,$8d,$12,$d0
 .byte $a5,$01,$29,$fd,$09,$04,$48,$ad,$2d,$0a,$48,$ad,$11,$d0,$29,$7f
 .byte $09,$20,$a8,$ad,$16,$d0,$24,$d8,$30,$03,$29,$ef,$2c,$09,$10,$aa
 .byte $d0,$28,$a9,$ff,$8d,$12,$d0,$a5,$01,$09,$02,$29,$fb,$05,$d9,$48
 .byte $ad,$2c,$0a,$48,$ad,$11,$d0,$29,$5f,$a8,$ad,$16,$d0,$29,$ef,$aa
 .byte $b0,$08,$a2,$07,$ca,$d0,$fd,$ea,$ea,$aa,$68,$8d,$18,$d0,$68,$85
 .byte $01,$8c,$11,$d0,$8e,$16,$d0,$b0,$13,$ad,$30,$d0,$29,$01,$f0,$0c
 .byte $a5,$d8,$29,$40,$f0,$06,$ad,$11,$d0,$10,$01,$38,$58,$90,$07,$20
 .byte $aa,$15,$20,$e7,$c6,$38,$60

;keyscanning entry point

main = *
 lda #0 ;check if any keys are held down
 sta pa
 sta pk
- lda pb
 cmp pb
 bne -
 cmp #$ff
 beq noKeyPressed ;if not, then don't scan keyboard, goto Kernal

 jsr checkJoystick ;if so, make sure joystick not pressed
 bcc joystickPressed
 jsr keyscan ;scan the keyboard and store results
 jsr checkJoystick ;make sure joystick not pressed again
 bcc joystickPressed
 jsr shiftdecode ;decode the shift keys
 jsr keydecode ;decode the first 3 regular keys held down
 jsr keyorder ;see which new keys pressed, old keys released, and
 ; determine which key to present to the Kernal
 lda $033e ;set up for and dispatch to Kernal
 sta $cc
 lda $033f
 sta $cd
 ldx #$ff
 bit ignoreKeys
 bmi ++
 lda prevKeys+0
 cmp #$ff
 bne +
 lda $d3
 beq ++
 lda #88
+ sta $d4
 tay
 jmp ($033a)

 noKeyPressed = * ;no keys pressed; select default scan row
 lda #$7f
 sta pa
 lda #$ff
 sta pk

 joystickPressed = *
 lda #$ff ;record that no keys are down in old 3-key array
 ldx #rollover-1
- sta prevKeys,x
 dex
 bpl -
 jsr scanCaps ;scan the CAPS LOCK key
 ldx #$ff
 lda #0
 sta ignoreKeys

+ lda #88 ;present "no key held" to Kernal
 sta $d4
 tay
 jmp $c697

initialInstall = * ;install wedge: set restore vector, print message
 jsr install
 lda #<reinstall
 ldy #>reinstall
 sta $0a00
 sty $0a01
 ldx #0
- lda installMsg,x
 beq +
 jsr $ffd2
 inx
 bne -
+ rts

 installMsg = *
 .byte 13
 .asc "keyscan128 installed"
 .byte 0

reinstall = * ;re-install wedge after a RUN/STOP+RESTORE
 jsr install
 jmp $4003

install = * ;guts of installation: set IRQ vector to patch code
 sei ; and initialize scanning variables
 lda #<irq
 ldy #>irq
 sta $0314
 sty $0315
 cli
 ldx #rollover-1
 lda #$ff
- sta prevKeys,x
 dex
 bpl -
 lda #0
 sta ignoreKeys
 rts

mask = $cc

keyscan = * ;scan the (extended) keyboard using the forward
 ldx #$ff ; row-wise "slow" technique
 ldy #$ff
 lda #$fe
 sta mask+0
 lda #$ff
 sta mask+1
 jmp +
 nextRow = *
- lda pb
 cmp pb
 bne -
 sty pa
 sty pk
 eor #$ff
 sta scanTable,x
 sec
 rol mask+0
 rol mask+1
+ lda mask+0
 sta pa
 lda mask+1
 sta pk
 inx
 cpx #scanrows
 bcc nextRow
 rts

shiftValue = $d3

shiftRows .byte $01,$06,$07,$07,$0a
shiftBits .byte $80,$10,$20,$04,$01
shiftMask .byte $01,$01,$02,$04,$08

shiftdecode = * ;see which "shift" keys are held down, put them into
 jsr scanCaps ; proper positions in $D3 (shift flags), and remove
 ldy #4 ; them from the scan matrix
- ldx shiftRows,y
 lda scanTable,x

 and shiftBits,y
 beq +
 lda shiftMask,y
 ora shiftValue
 sta shiftValue
 lda shiftBits,y
 eor #$ff
 and scanTable,x
 sta scanTable,x
+ dey
 bpl -
 rts

scanCaps = * ;scan the CAPS LOCK key from the processor I/O port
- lda $1
 cmp $1
 bne -
 eor #$ff
 and #$40
 lsr
 lsr
 sta shiftValue
 rts

newpos = $cc
keycode = $d4
xsave = $cd

keydecode = * ;get the scan codes of the first three keys held down
 ldx #rollover-1 ;initialize: $ff means no key held
 lda #$ff
- sta newKeys,x
 dex
 bpl -
 ldy #0
 sty newpos
 ldx #0
 stx keycode

 decodeNextRow = * ;decode a row, incrementing the current scan code
 lda scanTable,x
 beq decodeContinue
 ;at this point, we know that the row has a key held
 ldy keycode
- lsr
 bcc ++
 pha ;here we know which key it is, so store its scan code,
 stx xsave ; up to 3 keys
 ldx newpos
 cpx #rollover
 bcs +
 tya
 sta newKeys,x
 inc newpos
+ ldx xsave
 pla
+ iny
 cmp #$00
 bne -

 decodeContinue = *
 clc
 lda keycode
 adc #8
 sta keycode
 inx
 cpx #scanrows
 bcc decodeNextRow
 rts

;keyorder: determine what key to present to the Kernal as being logically the
;only one pressed, based on which keys previously held have been released and
;which new keys have just been pressed

keyorder = *
 ;** remove old keys no longer held from old scan code array
 ldy #0
 nextRemove = *
 lda prevKeys,y ;get current old key
 cmp #$ff
 beq ++

 ldx #rollover-1 ;search for it in the new scan code array
- cmp newKeys,x
 beq +
 dex
 bpl -
 tya ;here, old key no longer held; remove it
 tax
- lda prevKeys+1,x
 sta prevKeys+0,x
 inx
 cpx #rollover-1
 bcc -
 lda #$ff
 sta prevKeys+rollover-1
 sta ignoreKeys
+ iny ;check next old key
 cpy #rollover
 bcc nextRemove

 ;** insert new keys at front of old scan code array
+ ldy #0
 nextInsert = *
 lda newKeys,y ;get current new key
 cmp #$ff
 beq ++
 ldx #rollover-1 ;check old scan code array for it
- cmp prevKeys,x
 beq +
 dex
 bpl -
 pha ;it's not there, so insert new key at front, exit
 ldx #rollover-2
- lda prevKeys+0,x
 sta prevKeys+1,x
 dex
 bpl -
 lda #0
 sta ignoreKeys
 pla
 sta prevKeys+0
 ldy #rollover ;(trick to exit)
+ iny
 cpy #rollover
 bcc nextInsert
+ rts ;now, the head of the old scan code array contains
 ; the scan code to present to the Kernal, and other
 ; positions represent keys that are also held down
 ; that have already been processed and therefore can
 ; be ignored until they are released

checkJoystick = * ;check if joystick is pushed: un-select all keyboard
 lda #$ff ; rows and see if there are any "0"s in the scan
 sta pa ; status register
 sta pk
- lda pb
 cmp pb
 bne -
 cmp #$ff
 lda #$7f ;restore to default Kernal row selected (to the one
 sta pa ; containing the STOP key)
 lda #$ff
 sta pk
 rts

;global variables

scanTable .buf scanrows ;values of the eleven keyboard scan rows
newKeys .buf rollover ;codes of up to three keys held simultaneously
ignoreKeys .buf 1 ;flag: if an old key has been released and no
 ; new key has been pressed, stop all key
 ; repeating
prevKeys .buf rollover+2 ;keys held on previous scan
-----=-----

And that's all there is to it. :-)

5. THE C-64 KEYSCANNER

The boot program for the C-64 keyscanner is as follows:

10 d=peek(186)

20 if a=1 then 60
30 a=1
40 load"keyscan64",d,1
50 goto 10
60 sys 49152+5*256 : rem $c500

It is very much like boot programs for other machine language programs that
don't load at the start of BASIC. It will load the binary from the last
device accessed, and activate it.

A listing of the C-64 keyscanning code is not presented here because it is so
similar to the C-128 listing. The only things that are different are the
Kernal patches and the keyboard scanning (because the three extra rows don't
have to be scanned). The IRQ had to be substantially copied from the ROM,
again, to get at the call to the key scanning. Also, rather than taking
over the BASIC reset vector (since there isn't one), the NMI vector is
taken over to insure the survival of the key scanner after a RUN/STOP+RESTORE.
A bit of its preamble also had to be copied out of ROM to get at the good
stuff. If you want a copy of the C-64 listing, you can e-mail me.

6. UUENCODED FILES

Here are the binary executables in uuencoded form. The CRC32s of the four
files are as follows:

crc32 = 3398956287 for "keyscan128"
crc32 = 2301926894 for "keyscan64.boot"
crc32 = 1767081474 for "keyscan64"
crc32 = 1604419896 for "keyshow"

begin 640 keyscan128
M`!5,'A;8(`H53&GZ.*T9T"D!\`>-&="EV,G_\&\L$=`P!"E`T#$XI=CP+"38
M4`:M-`J-$M"E`2G]"01(K2T*2*T1T"E_"2"HK1;0)-@P`RGO+`D0JM`HJ?^-
M$M"E`0D"*?L%V4BM+`I(K1'0*5^HK1;0*>^JL`BB!\K0_>KJJFB-&-!HA0&,
M$=".%M"P$ZTPT"D!\`REV"E`\`:M$=`0`3A8D`<@JA4@Y\8X8*D`C0#<C2_0
MK0'<S0'<T/C)__`Z((D7D#\@<18@B1>0-R"W%B#L%B`L%ZT^`X7,K3\#A<VB
M_RRT%S`QK;47R?_0!J73\":I6(74J&PZ`ZE_C0#<J?^-+]"I_Z("G;47RA#Z
M(-T6HO^I`(VT%ZE8A=2H3)?&(%46J4^@%HT`"HP!"J(`O3D6\`8@TO_HT/5@
M#4M%65-#04XQ,C@@24Y35$%,3$5$`"!5%DP#0'BI`Z`5C10#C!4#6*("J?^=
MM1?*$/JI`(VT%V"B_Z#_J?Z%S*G_A<U,F!:M`=S-`=S0^(P`W(POT$G_G:87
M.";,)LVES(T`W*7-C2_0Z.`+D-E@`08'!PJ`$"`$`0$!`@0((-T6H`2^J!:]
MIA<YK1;P$KFR%@73A=.YK19)_SVF%YVF%X@0X&"E`<4!T/I)_RE`2DJ%TV"B
M`JG_G;$7RA#ZH`"$S*(`AM2]IA?P'*342I`22(;-ILS@`[`&F)VQ%^;,ILUH
MR,D`T.88I=1I"(74Z.`+D--@H`"YM1?)__`DH@+=L1?P&,H0^)BJO;87G;47
MZ.`"D/6I_XVW%XVT%\C``Y#5H`"YL1?)__`FH@+=M1?P&LH0^$BB`;VU%YVV
M%\H0]ZD`C;07:(VU%Z`#R,`#D--@J?^-`-R-+]"M`=S-`=S0^,G_J7^-`-RI
9_XTOT&``````````````````````````````
`
end
begin 640 keyscan64.boot
M`0@."`H`1++"*#$X-BD`'0@4`(L@0;(Q(*<@-C``)0@>`$&R,0`Z""@`DR)+
M15E30T%.-C0B+$0L,0!#"#(`B2`Q,`!@"#P`GB`T.3$U,JHUK#(U-B`@.B"/
)("1#-3`P````````
`
end
begin 640 keyscan64
M`,5,Q,5,$,9,ZL4@ZO^ES-`IQLW0):D4A<VDTT;/KH<"L=&P$>;/A<X@).JQ
M\XV'`JZ&`J7.28`@'.JE`2D0\`J@`(3`I0$)(-`(I<#0!J4!*1^%`2!9Q4Q^
MZJD`C0#<K0'<S0'<T/C)__`Y(%C'D#D@6,8@6,>0,2"-QB"[QB#[QJF!A?6I
MZX7VHO\L>,<P+:UYQ\G_T`>MC0+P(:E`A<NH;(\"J7^-`-RI_Z("G7G'RA#Z
M(+7&HO^I`(UXQZE`A<NH3";K(.K%H@"]U<7P!B#2_^C0]6!+15E30T%.-C0@
M24Y35$%,3$5$#0!XJ0F@Q8T4`XP5`ZDGH,:-&`.,&0-8H@*I_YUYQ\H0^JD`
MC7C'8'BI,:#JC10#C!4#J4>@_HT8`XP9`UA@2(I(F$BI?XT-W:P-W3`?(`+]
MT`-L`H`@O/8@X?_0#R`5_2"C_2`8Y2#JQ6P"H$QR_J+_H/^I_H7U3';&K0'<
MS0'<T/B,`-Q)_YUMQS@F]:7UC0#<Z.`(D.-@`08'!X`0(`0!`0($(+7&H`.^
M@<:];<<YA<;P%+F)Q@V-`HV-`KF%QDG_/6W'G6W'B!#>8*D`C8T"8*("J?^=
M=<?*$/J@`(3UH@"&R[UMQ_`<I,M*D!)(AO:F]>`#L`:8G77'YO6F]FC(R0#0
MYABERVD(A<OHX`B0TV"@`+EYQ\G_\"2B`MUUQ_`8RA#XF*J]>L>=><?HX`*0
M]:G_C7O'C7C'R,`#D-6@`+EUQ\G_\":B`MUYQ_`:RA#X2*(!O7G'G7K'RA#W
MJ0"->,=HC7G'H`/(P`.0TV"I_XT`W*T!W,T!W-#XR?^I?XT`W&``````````
*````````````````
`
end
begin 640 keyshow
M`!-,"Q,``````````*F3(-+_(#83H@`@%Q0@5A.B"B`7%"!T$Z(4(!<4(/03
MHAX@%Q0@3!1,$!-XH@"I_HT`W*T!W,T!W-#X2?^=`Q,X+@#<Z.`(D.I88'BB
M!ZE_C0#<K0'<S0'<T/A)_YT#$SAN`-S*$.Q88'BI`(T"W*G_C0/<H`>I?X4#
MI0.-`=RM`-S-`-S0^*+_C@'<2?^B!PH^`Q/*$/DX9@.($-VI_XT"W*D`C0/<
M6&!XJ0"-`MRI_XT#W*`'J7^%`Z4#C0'<K0#<S0#<T/BB_XX!W$G_H@<*/@,3
MRA#Y.&8#B!#=J?^-`MRI`(T#W%A@>*(`J?Z%`Z4#C0#<K0'<S0'<T/A)_YT#
M$S@F`^C@")#F6&"@!(8$A`6B`+T#$R`V%!BE!&DHA020`N8%Z.`(D.I@A0*@

6!T8"J0!I,)$$B!#U8````````*(`8```
`
end
==
In the Next Issue:

Next Issue:

Tech-tech - more resolution to vertical shift

One time half of the demos had pictures waving horizontally on the width
of the whole screen. This effect is named tech-tech and it is done using
character graphics. How exactly and is the same possible with sprites ?

THE DESIGN OF ACE-128/64

Design of ACE-128/64 command shell environment (and kernel replacement). This
will cover the organization, internal operation, and the kernel interface of
the still-under-development but possibly catching-on kernel replacement for
the 128 and 64. The article will also discuss future directions and designs
for the ACE environment. ACE has a number of definite design advantages over
other kernel replacements, and a few disadvantages as well.

	ffd2.com
	http://www.ffd2.com/fridge/chacking/c=hacking6.txt

