

An Applesoft BASIC for the Commodore 64/128 computers

FS! Software

PO Box 7096
Minneapolis, MN 55407

Copyright 1985 by FS! Software
All rights reserved

Software written by Art Roberts
Produced by FS! Software

Manual written by Art Roberts and Don French
NOTICE OF REGISTERED TRADEMARK

Reference is made in several places in this manual to Commodore and
Commodore 64 which are trademarks of Commodore Business Machines,
Inc. References are made in other places in this manual to Apple
and Applesoft which are registered trademarks of Apple Computer
Corporation.

Dedicated to Wanda
Without whom this would not have been possible

User’s Manual

TABLE OF CONTENTS

Introduction
Using ApSoft-64
ApSoft-64 Commands

Disk Control Commands
CATALOG
LOAD
BLOAD
RUN
PR#8
PR#4

Commands for printing
PRi#4
PR#0

Graphics Programming with ApSoft-64
HIGH-RESOLUTION GRAPHICS
PROTECTING THE GRAPHICS MEMORY
HIMEM
LOMEM
LOW-RESOLUTION GRAPHICS
GR
PLOT
VLIN
HLIN
SECONDARY TEXT SCREEN
USING THE HI-RES GRAPHICS SCREENS
SPLIT-SCREEN MODE
THE SOFT-SWITCHES

SECONDARY SCREEN SWITCH
PRIMARY SCREEN SWITCH
SPLIT-SCREEN ON

ApSoft-64

AN ONON WU

~N O O

User’'s Manual

SPLIT-SCREEN OFF
HI-RES GRAPHICS ON
HI-RES GRAPHICS OFF

HGR

HGR2

TEXT

HCOLOR

SET

HPLOT

SHAPE TABLE COMMANDS
SHLOAD
DRAW
XDRAW
SCALE
ROT

SPRITE COMMANDS
SPRITE
SPRT1
MOVE
HOME
INVERSE
NORMAL
SPEED=
COLOR=,
VTAB
HTAB

GENERAL SYSTEMS COMMANDS
DEL
TRACE
NOTRACE
POP
ONERR GOTO
RESUME
CALL

ApSoft-64

14 =

14
15
15
15
15
16
16
17

17
17
18
18
18
18

18
19
19
20
20
20
20
20
21
21
21

21
21
21
22
22
22
22
23

User’'s Manual

CLEAR
N
POL
PENX
PEXY
PLAY
OFF

APPENDIX A
COLOR TABLE

APPENDIX B
ERROR TABLE

APPENDIX C
SOUND VALUES

APPENDIX D
MEMORY MAP

APPENDIX E
RESERVED WORDS

APPENDIX F

UNDERSTANDING SHAPE TABLES

APPENDIX G
JOYSTICK VALUES

APPENDIX H
FILE CABINET

APPENDIX I

PROGRAMS ON ApSoft-64 DISK

APPENDIX J

USING THE. CONVERT PROGRAM

ApSoft-64

23
23
23
24
24
24
25

26
26

27
27

29
29

30
30

32
32

33
33

36
36

37
37

40
40

44
44

COPYRIGHT AND NOTICE OF LIMITATIONS
OF WARRANTY AND LIABILITY

This Manual and the Apsoft-64 program on the accompanying floppy
disk which is described by this manual are copyrighted and contain
proprietary information belonging to FS! Software.

The manual may not be copied, translated, or reduced to machine
readable form, in whole or in part, without the prior written
consent of FS! Software.

The accompanying floppy disk may not be duplicated, in whole or in
part for any purpose. Using unauthorized copies of the ApSoft-64
program may result in damage to the disk drive and should be
avoided.

LIMITATIONS OF WARRANTY AND LIABILITY

FS! Software, or any dealer or distributor distributing this
product, makes NO WARRANTY, EXPRESS OR IMPLIED, with respect to this
manual or the related floppy disk, their quality, performance,
merchantability, or fitness for any particular use. It 1is solely
the purchaser's responsibility to determine their suitability for
any particular purpose.

FS! Software will in no event be held liable for direct, indirect
or incidental damages resulting from any defect or omission in this
manual or the accompanying floppy disk, including but not limited to
any interruption of services, loss of business or anticipatory
profit, or other consequential damages.

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ~ WARRANTIES OF
MERCHANTABILITY AND FITNESS' FOR A PARTICULAR PURPOSE. FS! Software
neither assumes not authorizes any other person to assume for it
any warranty or liability in connection with the sale of its
products.

User’s Manual ApSoft-64

INTRODUCTION

ApSoft-64 is a powerful extension to the resident Commodore 64
BASIC. It incorporates a 1541 program loader which speeds up
loading of programs by a factor of 5. It also adds 45
easy-to-use-and-understand BASIC commands. These commands are in
the same format as Applesoft BASIC for the Apple][family of
computers. ApSoft-64 therefore gives the Commodore 64 owner a
greatly expanded base of available software in addition to
increasing his or her programming power.

Besides being able to write new programs using the advanced
features of ApSoft-64, you will be able to use many hundreds of
programs already written for Apple Computers. Several such programs
have been provided free on the same disk as ApSoft-64. Included
among these is the renowned "File Cabinet", the data base
management program so popular among Apple owners.

Also, as a registered owner of ApSoft-64 you will be able to
select from among hundreds of public-domain programs originally
written for the Apple and recorded by us on Commodore disks. Priced
at under $1 per program, you have but to return your completed
warranty card to receive a catalog.

Also included on the ApSoft-64 disk is a terminal program to
facilitate downloading Applesoft (and any other) programs via modem
onto your Commodore 64's disk drive.

Note that disks designed to be used on Apple disk drives are
physically incompatible with the 1541 disk drives, so Applesoft
programs may not be loaded directly. Note also that not all
programs written for the Apple are necessarily compatible with
ApSoft-64. Only those which are written in Applesoft BASIC or
integer BASIC are candidates. And among the Applesoft programs
there are a few areas of incompatibility, detailed in the
appendicies.

User's Manual ApSoft-64

Fortunately, most programs will not require much,
modification. Those changes which do need to be made are usually
minimal and can be accomplished by anyone with a bit of BASIC
programming experience. To assist in the conversion process we have
included a program on the disk which will analyze and convert an
Applesoft text file, highlighting statements which might require
your attention.

In addition to the Applesoft capability, several other commands
have been added to give you even more programming power. Program
control commands and commands to help you take advantage of the
exciting sprite and music synthesis capability of your 64 have been
included. Finally, ApSoft-64 has a built-in speedy loader which
will load programs from the 1541 disk drive at up to five times the
normal speed.

In sum, ApSoft-é64 gives you the best of both worlds and then

some. Welcome to the world of expanded horizons!

WARNING!! THE PROGRAM DISK MAY NOT BE COPIED!! COPIES MADE WITH
COMMERCIAL DISK-COPYING SOF TWARE WILL NOT FUNCTION PROPERLY AND
MAY RESULT IN ACTUAL DAMAGE TO YOUR DISK DRIVE!! ANY ATTEMPT TO
RUN UNAUTHORIZED COPIES IS AT YOUR OWN RISK. FS! SOFTWARE ACCEPTS
NO RESPONSIBILITY FOR DAMAGE RESULTING FROM USE OF UNAUTHORIZED
COPIES. SEE YOUR REGISTRATION CARD FOR DISK BACK-UP/REPLACEMENT
OFFER.

-2-

T

if any,

_been added which make programming the 64 easier and more fun.

machine.

User's Manual ApSoft-64

USING APSOFT-64

Apsoft-64 is an extension to the the Commodore-64's BASIC
programming language. The commands it adds to the language are
mostly from the Applesoft BASIC language as written for Apple][
computers. In addition to Applesoft commands, several commands have
The
superior graphics and sound synthesis capabilities of the 64 have

also been made accessible.

When ApSoft-64 is loaded from the disk into the memory of the
64, it automatically replaces the BASIC language that comes with the
Like BASIC, it doesn't really do anything until you enter
or load a program. Because ApSoft-64 is a superset of Commodore
BASIC, you may load any existing BASIC program and expect it to run
just like it always did.

You may expect it, but in a few cases it may not. ApSoft-64
needs the memory space between $C000 (49152) and $CFFF (53247).
Although normal BASIC programs don't molest this space, any which do
will need to be either modified or only run when ApSoft-64 1is not

present. This is also true of programs which are quite long as
ApSoft-64 also uses the space from $9000 (36864) to $9FFF (40959).
This block is at the end of normal BASIC's program space. As a

result, the largest program which may be run under the ApSoft-é64
operating system is 34814 bytes as compared to 38911 for normal
BASIC. Fortunately, because of the more powerful command set,
programs writtten with ApSoft-64 are more compact and require less
memory.

Before looking at the commands of ApSoft-64 we should get it
loaded into the computer.

Turn on the computer and the disk drive. Place the ApSoft-64

program disk into the drive.

——

User’s Manual ApSoft-64

Type: LOAD "APSOFT-64",8,1 [RETURN]

note: [RETURN] always means press the RETURN key. Also
used in this manual are the <> brackets. These are used to bracket
arguments required in ApSoft-64 BASIC commands. They are not
intended to be actually typed in.

After a few seconds the copyright message will appear on the
screen and a short time later ApSoft-64 will be loaded and ready for

your command. The prompt character which is displayed is a "]".

Now on to the commands!

User’s Manual ApSoft-64

APSOFT-64 COMMANDS

The first commands to be examined are the disk control commands.

CATALOG

This command will display the directory of the disk currently
in the drive. It will not destroy the program in memory. You may
enter this command now to get a look at the contents of the
ApSoft-64 disk. CATALOG may be used inside a program or in direct
mode.

LOAD <program-name>

This LOAD command differs from the common BASIC LOAD in that it
is not necessary to surround the program name in quotes nor 1is it
necessary to add the ",8" after the name. The disk drive is assumed
to be the device from which you want to load the program. The
program name may not begin with a digit or quotes. All of the
formats of LOAD commands valid with common BASIC are also valid with
ApSoft-64. Although LOAD commands are allowed inside a
BASIC program, the LOAD command must be the last command in the
program line in which it occurs. Programs LOADed from inside a

BASIC program will attempt to run as soon as they are loaded. If the

program being loaded is longer than the program it is being loaded
from, there is a high probability that the loaded program will cause
an error which stops the execution of the program.

BLOAD <program-name>

BLOAD is functionally equivalent to LOAD"program-name",8,1. It
may be executed from within an ApSoft-64 program without any bad
effects. As always, the program name must be no more than sixteen
characters long. You may specify the program name either as a
string variable or as the explicit name. The following rules apply
to explicitly stated program names:

-5-

9

User’s Manual ApSoft-64 User’s Manual ApSoft-64

The .program name may not have a digit as its first character
nor contain question marks. Nor may it contain a dollar sign after PR#0

any character other than a space.
This command is used to reverse the effect of a PR#4. That is,

The BLOAD must be the last command on the program line in which it will have the same effect as typing in: PRINT#4:CLOSE4. This
it occurs. , command can be used from either the direct mode or from inside a
program.

RUN <program-name>

This is just like a LOAD and RUN combined. The disk drive is
assumed to be the device from which to load the program. The same
rules apply as with the LOAD command. RUN may be executed from
within a BASIC program but must be the last command of the line.
The normal formats used in common BASIC are also valid in ApSoft-64.

PR#8

This quaint little command, directly to you from Applesoft, is
exactly like a RUN HELLO. The program with the name of HELLO will
load from the disk and run for you. This command will work in
either the direct mode or from inside a program. The program called
'HELLO' does not have to be the first program on the disk.

COMMANDS FOR PRINTING

PR#4

PR#4 will have the exact same result as OPEN 4,4:CMD4. It
opens the printer as logical file 4 and causes all screen display
commands (PRINT statements) to be re-directed to the printer. This
command does not allow any secondary addresses to be sent to the
printer. It may be used in either direct or program mode. If used
in program mode, it will be automatically deactivated upon leaving
the program.

v

User’s Manual ApSoft-64

GRAPHICS PROGRAMMING WITH APSOFT-64

The real power of ApSoft-64 lies in its graphics capabilities.
The BASIC commands for graphics are in Applesoft format. Commands
exist for switching painlessly into high-resolution graphics mode,
to create split screens with both graphics and text, to draw figures
on the screens, create sprites and various other graphic
capabilities.

HIGH-RESOLUTION GRAPHICS

High-resolution screen display modes (hi-res) allow you to
control each dot of the display. There are 320 dots across and 200
dots down the screen. The image of what is displayed on the screen
is kept in the 64's memory. With ApSoft-64, you have two areas of
memory set aside for hi-res screens. Each area contains 8192 bytes
of memory. The "primary" hi-res screen area is at $4000-$5FFF
(16384-24383). The secondary screen area is at $2000-$3FFF
(8192-16191). It is important to understand that these screen areas
fall right in the middle of what is normally ApSoft-64's program
space. If proper precautions are not taken this conflict will cause
your program to be wiped out by your hi-res commands.

PROTECTING THE GRAPHICS MEMORY

Like common BASIC programs, ApSoft-64 BASIC programs are stored
in memory starting at $0800 (2048). The program itself is followed
in memory by the storage space for the variables which are defined
in the program. For example if a line of your program is

. "PI=3.14152", PI is a variable and the value 3.14152 is saved in
PI's reserved place in variable storage. Numeric variables are
stored starting at the end of the program as stated above but string
storage starts at the top of BASIC's available memory space and is
filled downward as strings are created or encountered in the
program. The top of available memory storage is $94FF (38143) when

-8-

User's Manual ApSoft-64

ApSoft-64 is started up. String variable storage can fill in all
available memory in the variable storage space (from $8FFF down to
the top of the program).

The question then is how can you prevent strings and other
variables from destroying your hi-res screens and vice-versa. The
answer is through two commands, HIMEM: and LOMEM: which define where
variable storage should be located. LOMEM: sets the low address of
variable storage and HIMEM: sets the high address. To reserve space
for the primary hi-res screen and reserve $2500 (9472) bytes for
variables, the combination of LOMEM:24576 and HIMEM:38144 could be
used. (Actually, HIMEM: is at 38144 when ApSoft-64 1is started up
and does not need to be done again.) This puts variable storage at
$6000-$9500 (above the hires screen). An interesting advantage of
this is that if you save your program after creating a hi-res screen
and giving the LOMEM: command, the hi-res screen will be saved along
with your program and will be re-loaded right along with it.

Note that having hi-res screen capability does cut down the
space available for your program. If you wuse only the primary
screen, your program may not be longer than 14335 bytes
($3FFF-$0800) with 9472 additional bytes for variable storage. If
you also use the secondary screen area, your program can extend from
$0800-$1FFF (2048-8191) which is only 6143 bytes. Again this does
not include the 9472 bytes of variable storage.

HIMEM: <address of top-of-BASIC>

This command will set the address of the top of BASIC. This is
actually the highest address at which variables will be stored by
the ApSoft-64 program. The maximum it can be is 36864, and the
lowest is limited by the length of your program. (Programs begin at
$0801 (2049) and extend upward).

LOMEM: <address of the beginning of variable storage>

This command will set the address of the top of your BASIC

~9=

By

User’s Manual ApSoft-64

program. It is the lowest address at which variables will be storea
by the ApSoft-64 program. It is also the upper address of the area
saved by a program save.

LOW-RESOLUTION GRAPHICS

There is an additional capability which accompanies the use of
the primary hi-res screen area. You may effectively superimpose the
hi-res graphics upon a low-resolution (lo-res) graphics screen.
Several lo-res graphics commands are at your disposal for drawing
and plotting on the lo-res background. The size of each lo-res
"dot" is an 8 x 8 block of hi-res dots. There are therefore 25 Tows
of 40 dots available for lo-res graphics. Several commands are
included in ApSoft-64 to assist in lo-res graphics plotting.

The background area of hi-res screens (on which the lo-res
plotting commands operate) uses the same memory as the text screens.
Lo-res plotting on the primary hi-res screen uses the secondary text
sc?een and lo-res plotting on the secondary hi-res screen uses the
p?lmary text screen. This means that after displaying a primary
hi-res screen, switching to secondary text mode will display a
screen of garbage until it is cleared. The same is true of going
from a secondary hi-res screen to a primary text screen.

The hi-res command HCOLOR= will have the effect of clearing the

lo-res screen, and setting the color of the lo-res screen to black
(default) if no color is specified.

GR
This command is functionally equivalent to the HGR command. In

Applesoft BASIC it would cause a shift to a special mid-res mode not
supported in ApSoft-64.

-10-

User's Manual ApSoft-64

PLOT <X position (0 to 39)>, <Y position (0 to 24)>

This will plot a character-sized graphic block of the current
character color on the currently displayed screen.

VLIN <starting Y position (0 to 24)>,
<ending Y position (0 to 24)> AT <X position (0 to 39)>

This command will plot a vertical line on the lo-res screen.

The first pair of numbers specify the starting and ending of the
line to be drawn and the number after the AT specifies the column in
which it will be drawn.

HLIN <starting Y position (0 to 39)>,
<ending Y position (0 to 39)> AT <X position (0 to 39)>

This command will plot a horizontal line on the lo-res screen.
The first pair of numbers specify the starting and ending
X-positions of the line to be drawn and the number after the AT
specifies the row in which it will be drawn.

SECONDARY TEXT SCREEN

There is also a second text screen area. This means that you
may at any time simply switch to the secondary text screen and
whatever screen display you have previously created for the
secondary text screen will pop onto the screen without having to
re-issue the print statements which created it in the first place.
You may just as easily switch back to the primary screen and have
its previous contents be displayed. Certain preparations must be
made before writing to the secondary screen, however.

The text screen, like hi-res screens, need to have a block of
memory reserved for storing the character information which gets
displayed on the screen. The text information which is associated
with the secondary text screen is at $6000-$63FF (24576-25576). So,
to protect it you must set LOMEM: at $6400 (25600) instead of $6000

-11-

. - il

User’s Manual ApSoft-64

as described above. You must also load a character set from disk

into the proper memory space, $6800-$6FFF (26624-28672). We have
included two character set files on the disk, C64.CHARSET and
MACH.CHARSET, for this purpose. The BLOAD command is ideally suited
for loading character sets.

Finally, you must tell ApSoft-64 that you want the secondary
text screen to be the one you will use for subsequent print
statements. This is accomplished through the use of the curious
Applesoft technique known as "soft-switches", explained more fully
further on. In short, a "POKE -16299,1" will switch the program
into secondary text screen mode and a "POKE-16300,1" will switch it
back to the primary screen. If the screen is in hi-res graphics
mode when you want to switch to the secondary text screen, be sure
to switch to text mode before switching to the secondary screen,
Split-screen mode must also be cleared before switching to the
secondary screen. Hi-res and split-screen capabilities are
described in the following paragraphs.

There is a program on the disk, PG2 CHAR DEMO, which
demonstrates using the secondary text screen.

USING THE HI-RES GRAPHICS SCREENS

The backgrounds of hi-res screens are composed of 25 rows of 4Q
8-by-8 hi-res dots. Each block of dots may have its color defined
independently of the rest of the screen. The background color
information is stored in an area of accessible memory. In fact, the
primary hi-res screen's background memory coincides with the
secondary text screen memory and the secondary hi-res screen's
background memory is coincident with the primary text screen memory.
This means that switching to primary hi-res mode when a secondary
text screen remains uncleared will result in a hi-res display with a
background of varied colors. As this is not what is generally
desired, the conclusion is that a clean primary hi-res screen may
not co-exist with a secondary text screen and a clean secondary
hi-res screen may not co-exist with a primary text screen. Of

-12-

User’s Manual ApSoft-64

course, you may clear the offending text screen before going into
hi-res mode if you wish but the text screen display will not be
resurectable without re-executing the PRINT statements which created
it in the first place.

SPLIT SCREEN MODE

Besides the text, hi-res, and combination modes, there is also a
split screen mode of display. This mode is possible with both the
primary and secondary hi-res screens. It reserves the bottom five
lines of the hi-res screen for text display only. Your program may
issue PRINT commands while the hi-res screen is displayed and the
information will be displayed in the five-line window below the
hi-res display area. Split screen mode is activated via the
soft-switches mentioned above. A more complete discussion of the
soft-switches follows.

THE SOFT-SWITCHES

Applesoft has a unigque way of controlling the selection of
display modes. ApSoft-64 has duplicated this system. It involves
PEEKiIng or POKEing an address specified in the range of -16229 to
-16304. Yes, those are negative addresses! The value POKEd is not
relevant and a PEEK works as well as a POKE. Only the addresses
referenced are significant. The erfect of using these commands is
to toggle a switch which tells ApSoft-64 what mode of display we
want to be in. It causes a switching between modes without erasing
what is currently being displayed. That is, you may return to a
mode you switched out of, and, as long as the screen memory was not
modified in the meantime, you will find the same information
displayed on the screen as when you left.

POKE/PEEK

ADDRESS EFFECT
-16299...iciuinnans Switch to secondary screen
-16300....c0vunnn. Switch to primary screen
=16502. . o oniesans Switch split-screen of f

-13-

k. 3B

User’s Manual ApSoft-64

-16301............ Switch split-screen on
-16303.. ...t Switch hi-res graphics off
3630815, 6015 5.0 5. imvis Switch hi-res graphics on

SECONDARY SCREEN SWITCH (-16299)

POKEing or PEEKing this address will switch to the secondary
display screen. It switches to the secondary hires screen when in
hires mode and to the secondary text screen when in text mode.

PRIMARY SCREEN SWITCH (-16300)

. This functions like the one above except it causes the primary
display screen to be selected.

SPLIT-SCREEN ON (-16301)

Turning this switch on puts the display in split-screen mode.
This switch will only have an effect if the screen is already in
graphics mode. Note that for the primary hi-res mode, selected by
the HGR command, split-screen is automatically active until
explicitly turned off. Turning on the secondary hi-res screen's
split-screen mode requires following a specific sequence. Before
entering secondary screen mode, split-screen must be turned off.
Next, graphics must be turned on followed by selecting secondary
screen mode followed finally by selecting split-screen mode.

SPLIT-SCREEN OFF (-16302)

Turning split-screen off only has effect when in graphics mode
and when split-screen mode is on. Its effect is to make the entire
screen a hi-res graphics display.

HI-RES GRAPHICS ON (-16304)

Turning hi-res graphics on will switch the display from text
mode into graphics mode. Whatever text information is on the screen

~14-

User’s Manual ApSoft-64

will be replaced by the graphics screen. If primary mode is active,
the primary graphics screen will be displayed. If the secondary
mode is active, the secondary graphics screen will be displayed.
Note that the soft-switch does not clear the graphics screen. An
HGR or HGR2 will be necessary to accomplish that.

HI-RES GRAPHICS OFF (-16303)

Turning hi-res off returns the display to the text mode. If in
primary mode, the primary text screen will be displayed. If in
secondary mode, the secondary text screen will be displayed. Recall
that secondary text mode requires the loading of a character set.

THE GRAPHICS COMMANDS
ARE SUMMARIZED BELOW:

HGR

HGR has no arguments. It shifts the display mode to the primary
hi-res graphics mode with split screen activated. The screen will
clear upon execution of this command. This is the only way to clear
the primary hi-res screen. It is usable in either direct or in
program mode.

HGR2

Like HGR, HGR2 shifts the program into hi-res graphics mode.
The secondary graphics display screen is selected and split-screen
is not activated. The screen will be cleared by this command. It
is not usable in the direct mode.

TEXT

Regardless of the status of any of the mode switches, TEXT will
cause the primary text screen to be selected and split screen will
be turned off. If the secondary text or graphics screen was active
at the time of execution of this command, a CLR/HOME will

-15-

—_—

User's Manual ApSoft-64

automatically be performed by TEXT. Lowercase mode will be selected
if TEXT is executed in hi-res mode and upper case when executed in
any other mode.

HCOLOR=<plot-color>, <background-color>

Both the color of dots being drawn and the background color are
selected via the HCOLOR= command. The values of the background
color may be in the range of 0-15 and the plot color in the range of
0-16, 16 having special significance. (See Appendix A for a list of
all colors and their numbers.) A plot-color value of 16 causes the
plotting command to be shifted into erase or "unplot", where dots
plotted will be made the same color as the background. The "plot"
mode may be re-established by another HCOLOR command specifying a
plot color of 1-15. The default color of the background 1is black
and the dots white wupon starting ApSoft-64. Since all the
8-by-8-dot background blocks are cleared to the same color with this
command, it has the effect of erasing any low-res designs which
might appear behind the hi-res plots. The <,background-color>
parameter is optional

An important difference between the Commodore 64 and the Apple
is the inability of the 64 to select various colors for each
discrete pixel on the screen. In hi-res mode, it is limited to one
background and one foreground color in each 8 by 8 block of pixels.
Certain compromises had to be made to accomodate these differences.
One of these involves the way the HCOLOR command functions. In
ApSoft-64, HCOLOR sets all 8 by 8 blocks to the same foreground and
background colors. In Applesoft, the HCOLOR command sets the color
of the dots about to be plotted only, leaving the previously
plotted dots in their original color configurations. The usual way
of erasing a dot in Applesoft is to HPLOT the dot with the same
color as the background color.

SET <x>, <y>, <background-color>, <dot-color>
Individual 8-by-8 blocks may have their background and dot

-16-

User’s Manual ApSoft-64

colors set with SET. The X and Y values may range from 0-39 and
0-24 respectively.

HPLOT <x1>, <y1>TO <x2>, <y2>TO <x3>,<y3>TO...

It is with this command that plotting points and lines on the
hi-res screens is accomplished. The x and y values may range from
0-319 and 0-199 respectively. The upper left corner of the screen
is 0,0 and the bottom right is 319,199. If only one set of
coordinates is specified a point will be drawn. Otherwise, lines
are drawn between the specified points. Plotting is always done on
the hi-res screen last displayed.

SHAPE TABLES

Apsoft-64 allows you to create and save line drawings (such as
character sets). You may later recall and draw the shapes on hi-
res screens. These designs are called shapes and up to 256 shapes
may be grouped into what is called a shape table. Shapes are drawn
on the screen with the DRAW command and erased with the
XDRAW command. Shape tables may be created with a special
shape-editor program, SHAPE-CREATE, provided on the ApSoft-64 disk,
or they may be created "by-hand". Appendix F provides the system
information for building your own shape tables. The tables are
loaded from disk back into the 64 with the SHLOAD command.

SHLOAD <shape-table-name>

The shape-table-name is that which you stored the shape table
under on the disk. The SHLOAD will load the shape table into the
same memory space from which it was saved. There is a two-byte
address pointer at 53016/53017 which tells ApSoft-64 where the shape
table is in memory. The SHLOAD command automatically sets this
pointer correctly upon loading the shape.

-17-

T—

User’s Manual ApSoft-64

DRAW <shape#> AT <x>, <y>

Shape# specifies which shape within the table of shapes to draw
on the screen and x and y specify at which position on the screen to
start drawing the shape. The x and y coordinates refer to the pixel
number in the horizontal and vertical directions respectively. The
x-pixels go from 0 to 319 from left to right and the y-pixels go
from O to 199 from top to bottom.

XDRAW <shape#> AT <x>, <y>

XDRAW is the command for erasing shapes from the screen and the
format is identical to the DRAW command.

SCALE= <magnification of shape (0 to 255)>

This command will cause the DRAW and XDRAW command to magnify
each subsequent shape DRAWN or XDRAWN until the next SCALE command
is issued.

ROT= <relative rotation>

This command is used to rotate the shapes drawn by increments of
45 degrees, regardless of the scale. Zero is no rotation, 8 is a 45
degree rotation, 16 is 90 degrees, 24 is 135 degrees, 32 is 180
degrees, 40 is 225 degrees, 48 is 270 degrees, and 56 is 315
degrees. ROT effects all DRAWings of shapes until another ROT is
issued.

SPRITE COMMANDS

The Cominodore-64 supports movable screen shapes called sprites.
These are different than the line-drawings called shapes in
Applesoft. They differ in that any of up to eight sprites may be
independently moved and expanded or contracted in both the

-18-

User’s Manual ApSoft-64

horizontal and vertical directions. ApSoft-64 makes it much easier
to turn sprites on and off and to move them about the screen with a
few simple commands.

SPRITE <sprite#>, <block>, <X expanded>, <Y expanded>

This command activates a sprite which has already been built.
Sprites must be created in the normal Commodore way, preferrably
with a sprite editor. A public domain sprite editor has been
included on the disk. Each sprite takes up 64 bytes of memory. The
location of this 64-byte block must be within a single 1ék block of
memory. Sprites which will appear on the primary hi-res or seconday
text screen must be defined within the 16k area which starts at
address 16384. The 16k block which starts at O must be used for the
secondary hi-res or primary text screen. The <block> parameter
which must be specified in the SPRITE command may range from 0O to
255 and identifies which é4-byte block within the 16k area has been
used to define the sprite being activated. ApSoft-64 will
automatically select the proper 16k block based on which mode is
active when the SPRITE command is issued. You must, therefore, know
the address of where your sprites are set up in order to use the
SPRITE command. Two equations are used for translating between
sprite start address and <block> number: BL=(AD-16384)/64 and
BL=AD/64. The first is for sprites in the second 16 block and the
second is for those in the first block.

<X expanded> is 0 if the sprite is not to be expanded in the
horizontal direction and 1 if it is. <Y expanded> follows the same
format for the vertical expansion choices.

SPRT1<sprite##>, <extended color mode>, <color>,
<ext. color 1>, <ext. color 2>

This command is used to set the colors of the sprite, and used
to turn on the extended color mode. <extended color mode> is O for
off and 1 for on, <color> is the color of the sprite in unextended
mode, <ext. color 1> is the extended color 1, and <ext. color 2> is

-19-

—

User’s Manual ApSoft-64

the extended color 2.

MOVE <sprite#>, <X position>, <Y position>, <O0=off/1=on>
This command is used to move the sprite around on the screen,

and to turn the sprite on or off. Turning the sprite off does not

effect the video chip registers, as the sprite is still defined and

can be again displayed by using the MOVE command and turning the
sprite on again.

HOME

This command is the same as the following command in Commodore
64 BASIC:

PRINT "<shift/clr-home>"; <return>

INVERSE

This command effectively prints a reverse-on character prior to
every print statement executed, causing all screen output to be
printed in reverse. INVERSE mode remains in effect until a NORMAL
command is issued.

NORMAL
This command will cause a reverse-off character to be printed

prior to any print statement, causing all screen output to be in
normal (non-reverse).

SPEED= (a number from 0 to 255) <return>

This will provide a delay in printing each character; where 0O is
the slowest print speed and 255 is the fastest.

-20-

b

User’s Manual ApSoft-64

COLOR=

This will set the color of the characters printed on the screen
according to the color table listed in the appendix. See also
Graphics commands.

VTAB <line number (0 to 24)>

This command will move the cursor to the first character of the

screen line specified. VTAB must be used prior to HTAB.

HTAB <character position (0 to 39)>

This command will set the cursor to the character position
specified on the line where the cursor is located. If HTAB is to be
used in conjunction with VTAB, VTAB must be used first.

GENERAL SYSTEM COMMANDS

DEL <starting line>, <ending line>

This command will either delete a single BASIC line, a range of
BASIC lines, or all BASIC lines. If starting and ending line
numbers are not specified, all lines of the program will be deleted.
If starting line number is omitted, all lines up to the ending lire
number will be deleted. If the ending line number is omitted, all
lines from the starting line number to the end of the program will
be deleted.

TRACE

This command will, wheri a program is running, list each line as
it is executed, printing:

LINE#<BASIC line # here>

-21-

—

User’s Manual ApSoft-64

NOTRACE
This command will turn off trace mode.

POP

Gosugogoizta w?{ of canceling a subroutine without returning to the
: . puts the pfogram into the subroutine level on

igher than it was at the time the POP was executed. If a POP 'e
executed in a subroutine within a subroutine, the next RE o
executed before another GOSUB will cause a retur; to th i o
rather than the second one. C e e

ONERR GOTO <line #>

‘Thls.command is very useful in error trapping, as it will specif
whlch line to goto when an error occurs when a, BASIC pro DECl’y
runnlng. If the line # specified is not in the prograﬁ g;im N
ONERR %s not followed by a GOTO, an additional error éa o
result%ng in some confusion for the program, and the resultsy ’TECUI
unpredictable. Location 53040 contains the error number the S
encou?tered. The Appendicies contain a 1list of numberprogram
associated errors. The ONERR command must be in the pro rS -
executed prior to any errors or a normal error exit frompthg Z?ogigg

l Ccur. e ONE Ci a gl ze I'TOrS 1=
w ll (0] u RR omr d Wlll 10 l: reco
y . 1 e iy g erated

RESUME

. This command will cause execution to return to the line AFTER
e line where the error occured that caused ONERR to execute

-22-

User’'s Manual ApSoft-64

CALL

This is the same command as the Commodore SYS command. It was
included to maintain compatibility with Applesoft. One area of
incompatibility, however, is the inability of ApSoft-64 to handle
CALLs to negative addresses.

' CLEAR

This is the same as the Commodore CLR command. It will clear

out all variables in the BASIC program in memory.

This command is to be used to restore the ApSoft-64 following an
interruption of the program via a press of <run-stop/restore>. It
will not erase the program in memory, but will reset pointers and
the ApSoft-64 system, and restore the correct prompt. Your program
may run following such an interruption without typing IN, but some
commands may give errors and others not be available. The IN command
is sometimes uesful when in a hi-res screen mode. Even though you
may not be able to see the letters as you type them, the command
will have the desired effect of bringing you back to text mode.

PDL <number of paddle (O to 3)>

This is a function command and will return a value ranging from
0 to 255, corresponding to the rotational position of the paddle.
paddle numbers 2 and 3 are the normal Commodore paddles plugged into
port 1. Paddle numbers O and 1 are used for joysticks plugged into
ports 1 or two, respectively. See the appendicies for the values
returned if the joysticks are used. POL commands, (and the PEN
commands) must be enclosed in parentheses when used as a term in an

expression:
X=(PDL(0))*25

—93=

T——

User’s Manual ApSoft-64

PENX

This function command returns the horizontal screen position of
a light pen that is plugged into port 1. In order to be used in an
expression, it must be enclosed in parentheses. The value returned
is from 50 to 250 and represents pixel position 0 to 199 (with g
resolution of 1 pixel). To convert PENY to the nearest vertical
pixel position, use the equation PY=(PENY)-50.

PENY

This function command returns the vertical screen position of a
light pen that is plugged into port 1. In order to be used in an
expression, it must be enclosed in parentheses. The value returned
is from 25 to 125 and represents pixel position 0 to 199 (with g
resolution of 2 pixels). To convert PENY to the nearest vertical
pixel position, use the equation: PY=(PENY)*2-50

SOUND <voice#>, <waveform> . <pulse width (if pulse
selected)>, <attack>, <decay>, <sustain>, <release>

This command is used to set up the sound registers with the
voice, waveform, pulse width, and ASDR values being the parameters
needed. It is used in conjunction with the command PLAY, which
specifies the voice and frequency and starts the sound playing, and
the command OFF, which turns the specified voice off.

Waveform is as follows: 16 = triangle, 32 = sawtooth, 64 =
pulse, 128 = noise. The pulse width, if pulse is used, is a value

from O through 4096. The attack, decay, sustain and release each
are values from O through 15.

PLAY <voice#>, <frequency>
This is the command that determines the frequency of the sound

24—

ApSoft-64
User’s Manual

i bein
laved, and turns on the gate bit that starts th? iE:ndsusiaig
piaied’ If the OFF command is not used, the value ©
Earameter sets the level the sound will stay at.

ndix
The frequency is a value from O through 65535. See the appe

. for a table of values and notes.
w

OFF <voice#>

i the
OFF 1s a command that will turn off the gate bit and start

release phase of the sound.

-25-

User’s Manual ApSoft-64
APPENDIX A
COLOR TABLE |
c64......... .. APPLE
NUMBER COLOR LO-RES HI-RES
Disssesvsnsess BLACK. .o vuu... BLACK..vvu.... BLACK
1 WHITE......... MAGENTA....... GREEN
2 omeinesnsnnss RED.eevvennn.. DARK BLUE..... VIOLET
B CYAN..vevenun.. PURPLE........ WHITE 1
Bicsaannsseses PURPLE........ DARK GREEN....BLACK 2
Dt cannes GREEN. GREY....c..... ORANGE
Bc riis v 0ro s w e BLUE.......... MEDIUM BLUE...BLUE
VA YELLOW........ LIGHT BLUE....WHITE 2
< ORANGE........ BROWN.........—===-
T SN BROWN......... ORANGE........~==—=
100....... «ees.LIGHT RED..... GREY. eevieessimmmam
0 GRAY 1........ PINK:cooonsseommmen
1200, ... GRAY 2........ GREEN.o====
) N LIGHT GREEN...YELLOW........<—==v
4. e, LIGHT BLUE....AQUA. ... v.s . mmmmem
15, ... GRAY 3........ WHITE.........—===—=

=26~

User's Manual

APPENDIX B

ERROR TABLE FOR ONERR GOTO

) TOO MANY FILES

Zia o oro oo wis s 5 ne FILE OPEN

Dlesv vesvis a5 FILE NOT OPEN
beveeaiiiii., FILE NOT FOUND

L B DEVICE NOT PRESENT
Ba s v vinin s inase NOT INPUT FILE
Tovesononannne NOT OUTPUT FILE

- MISSING FILE NAME
it ILLEGAL DEVICE NUMBER
N NEXT WITHOUT FOR
N SYNTAX
12000000l RETURN WITHOUT GOSUB
L OUT OF DATA
Iaeeesecssisne ILLEGAL QUANTITY
5. vivnseanansn OVERFLOW
16.cceueenaas.. OUT OF MEMORY
17000, UNDEF 'D STATEMENT
18 . iiiiiia... BAD SUBSCRIPT
19.0c.00aat.... REDIM'D ARRAY
200iiiiiiian... DIVISION BY ZERO
R, ILLEGAL DIRECT
224 cevsssoinsens TYPE MISMATCH
230, STRING TOO LONG
2. i, FILE DATA
25, iiiiniinen. FORMULA TOO COMPLEX
26, e covionnnnes CAN'T CONTINUE
27 i, -UNDEF 'D FUNCTION
28.iiiiiiiian.. VERIFY
29 i, LOAD
304 eevsssennnns BREAK

—27=

ApSoft-64

User’s Manual

Please refer to your User's Manual or Programers Reference Guide for

an explanation of these errors.

-28-

ApSoft-64

User’s Manual

NOTE

C#

Dit

Fi#

G#

At

These values are for the equal-tempered scale where the note A

OCTAVE

0

268

284

301

318

337

358

379

401

425

451

477

506

536

568

602

637

675

716

758

803

851

902

955

1012

octave 4 is 440 hz

1136

1204

1275

1351

1432

1517

1607

1703

1804

1911

2025

8101

(concert pitch).

-29-

APPENDIX C

SOUND VALUES
3 4 D
2145 4291 8583
2145 4547 9094
2408 4817 9634
2551 5103 10207
2703 5407 10814
2864 5728 11457
3034 6069 12139
3215 6430 12860
3406 6812 13625
3608 7217 14435
3823 7647 15294
4050 16203

6
17167

18188

19269

20415

21629

22915

24278

25721

27251

28871

30588

32407

ApSoft-64

7
34334

36376

38539

40830

43258

45830

48556

51443

54502

57743

61176

64814

in

User’s Manual

APPENDIX D

MEMORY MAP

EOO0 - FFFF COMMODORE'S OPERATING SYSTEM
(57344 - 65535)

DOO0 - DFFF INPUT OUTPUT DEVICES AND COLOR RAM
(53248 - 57343)

AOOO - BFFF COMMODORE'S BASIC OPERATING SYSTEM
(40960 - 49151)

C000 - CFFF ApSoft-64 OPERATING SYSTEM
(49152 - 53247)

9000 - 9FFF ApSoft-64 OPERATING SYSTEM
(36864 - 40959)

0800 - 8FFF BASIC PROGRAM STORAGE
(2048 - 36863)

ApSoft-64

6800 - 6FFF SECONDARY TEXT PAGE CHARACTER SET (MUST LOADED IN RAM)

(26624 - 28671)

6000 - 63FF SECONDARY TEXT PAGE / PRIMARY HIRES BACKGROUND PAGE

(24576 - 25599)

6400 - 67FF COLOR MEMORY SAVE AREA
(25600 - 25623)

4000 - SFFF PRIMARY HIRES PAGE
(16384 - 24575)

2000 - 3FFF SECONDARY HIRES PAGE
(8192 - 16383)

-30-

User’s Manual

ApSoft-64

0400 - O7FF PRIMARY TEXT PAGE / SECONDARY HIRES BACKGROUND

(1024 - 2047)

0000 - 3FFF FIRST VIC II MEMORY BLOCK

(0 - 16383)

4000 - 7FFF SECOND VIC II MEMORY BLOCK

(16384 - 32767)

8000 - BFFF THIRD VIC II MEMORY BLOCK

(32768 - 49151)

C000 - FFFF FOURTH VIC II MEMORY BLOCK

(49152 - 65535)

-3]-

User’s Manual ApSoft-64

APPENDIXE
RESERVED WORDS

The following words are 'tokenized': each word is turned into a
one byte token to be used by the operating system. If any of these
words are used as variables an error will occur.

ABS AND ASC AT ATN
CALL CHR$ CLEAR COLOR= CONT CoS
CMD CLR CATALOG
DATA DEFF DEL DIM DRAW
END EXP
FN FOR FRE
GET CET# GOSuB GOTO GR GO
HCOLOR= HGR HGR2 HIMEM: HLIN HOME
HPLOT HTAB
IF INPUT INT INVERSE INPUT# IN
LEFT$ LEN LET LIST LOAD
LOG LOMEM:
MID$ MOVE
NEW NEXT NORMAL NOT NOTRACE
ON ONERR OR OPEN
PDOL PEEK PLOT POKE POP POS
PRINT PRINT# PR PEN PLAY
READ REM RESTORE RESUME RETURN RIGHT$
RND ROT= RUN
SAVE . SCALE= SGN SHLOAD SIN SPC(
SPEED= SQR STEP STOP STR$ SPRITE
SPRT1 SOUND SYS STATUS
TAB(TAN TEXT THEN TIME
TIMES T0 TRACE TI$ TI
USR
VAL VERIFY VLIN VTAB
WAIT
XDRAW
_32-

User’s Manual ApSoft-64

APPENDIX F

UNDERSTANDING SHAPE TABLES

ApSoft-64 will allow the use of all the Applesoft commands for
the use of shape tables. This includes an enhancement that allows
the use of SHLOAD to load a shape table from the disk drive, and set
the pointers. An Applesoft shape table can be typed in from
magazine listings, for example, and be used with no changes, other
than'paying attention to the memory maps to avoid conflicts with any
memory used by the system. In general, the best location for a
shape table is at the top of memory with HIMEM: command used to
protect the shape table from Basic.

The program SHAPE CREATE on the ApSoft-64 disk will assist in
making shape tables. It will allow the creation of a shape table
with up to 255 shapes in it, each having up to 255 vectors. It has
options for both LOADing and SAVEing shape tables, and has the
ability to display a shape on the screen after editing it.

The address pointer to the location of the shape table is at
locations 53016 and 53017. It will be set automatically with the
SHLOAD command when a shape table is loaded.

The first byte of the shape table is the number of shapes 1in
the table (in hex), the next byte is a zero byte. Following the
zero byte is a series of bytes that are pointers to the actual shape
defintions. Each set of pointers is in the standard high order/lo
order format, and is the offset from the starting byte of the table
to the shape definition it refers to.

The actual shape definitions follow all the pointers and are
seperated by zero bytes. The definitions are like a series of
commands to a plotting machine. Each byte of the definition list
contains three commands. The first two can either plot and move or
Just move, and the last can only move. ;

-33-

User’s Manual ApSoft-64

3rd. s 2nd ceess Ist
BIT: 7 6 5 4 3 2 1 O
CONTENTS: M M P M M P M M

Where each vector is a two bit representation of a direction:

00 Move up;

01 Move right;
10 Move down;
11 Move left.

The P is 1 to plot and O to just move.

Also keep in mind that if the 3rd vector is all zeros then it
will be ignored; likewise, if the 2nd AND the 3rd vectors are all
zeros both will be ignored. If the 2nd vector contains zeros and
the third does not then all three will be used.

The basic procedure for the design of a shape table is to lay
out the design on graph paper one dot (or vector) at a time, and
when all the vectors are laid out, then lay the vectors out in a
straight line. The vectors are then written down two or three at a
time (the third being used when it doesn't need to plot), and the
ones and zeros are then put in order for each byte.

In designing shapes, it is helpful to use graphing paper to lay
out your designs, and to start the shape in the center of the shape
so when the ROT command is used, the shape will rotate about its
center. The next step in designing the shape is to unwrap the
vectors and lay them out left to right, then divide them into groups
of two or three (remembering how the vectors are put together).
Next, take the groups of vectors and convert the vectors to hex.

Since up to 255 shapes can be placed into a table, each shape
in the table should be designed first, then the shapes should be

placed in memory just above the number of pointers needed for the

-34-

T —

User's Manual ApSoft-64

table being designed. Each set of pointers should be calculated and
place into the table, remembering that a zero byte is placed at the
end of a particular shape to indicate the end of that shape. The
program SHAPE CREATE will be most helpful in creating shapes.

-35-

ft-64 f | A -
User‘a sl ApSo User’s Manua pSoft-64

APPENDIX G ':‘ APPENDIXH
JOYSTICK VALUES FOR PDL (0) AND PDL (1) FILE CABINET PROGRAM
This public domain Applesoft program is a database manager. It
ALUE MEANING will allow you to set up a data base, define the different fields of
Vi information with titles; enter, change, search for data; sort data
31 NOTHING and print out reports.
15 FIRE BUTTON PUSHED ' . . |
14 FIRE BUTTON & UP Prior to using FILE CABINET it is recommended that a new disk
13 FIRE BUTTON & DOWN be formated and FILE CABINET saved on it. Since this is a public
1 FIRE BUTTON & LEFT domain program, it can be placed on every data disk that is uscd,
l7 FIRE BUTTON & RIGHT and will save your ApSoft-64 disk from undue wear and accidental
6 FIRE BUTTON & UP & RIGHT erasures.
10 FIRE BUTTON & UP & LEFT ‘ .
FIRE BUTTON & DOWN & RIGHT When first run, FILE CABINET will check for database names, and
; FIRE BUTTON & DOWN & LEFT if none are found, the first menu screen will give the choices:
30 uP
29 DOWN 1 QUIT
27 LEFT 2 CREATE A NEW DATA BASE
RIGHT .
i UP & RIGHT If any databases have already been defined, they will show up
i UP & LEFT as the first choices on the screen. Selecting choice # 2 will
zf DOWN & RIGHT result in the question:
25 . DOWN & LEFT

NAME FOR NEW DATA BASE?

The name for the new database should not be over 8 characters -
or even less if reports are to be saved. One suggestion is to wuse
only 7 characters for the name of the database and a letter for any
reports that are to be saved.

Upon hitting return, the question will be:

HEADER FOR COLUMN NUMBER 17

-36- =37~

User’s Manual ApSoft-64

This question is the first of several that sets up the fields
of data that are to be used. For example: the name of the database
could be MAILIST; and the headers could be:

HEADER #1 :NAME
HEADER #2:ADDRESS
HEADER #3:CITY
HEADER #4:STATE
HEADER #5:Z1IP
HEADER #6:PHONE #

Upon hitting return, the main menu will appear. If no headers
are input, the first menu will appear.

The main menu will display the name of the current database,
the number of records currently in that database, and the total
number of records allowed in that database. In addition, the
printer status will be displayed, either ON or OFF.

The main menu will allow 9 choices:

1. This will cause the first menu to appear so that either a new
database can be created or another selected.

2. This allows the entering of the data to each of the fields.

3. This will allow you to search the database for records
containing specific data. You may search for all records containing
a desired string of characters. All records beginning with the
indicated string in the indicated field will be found. That is, if
the name ANDERSON is being searched for, the names ANDERSON BILL,
ANDERSON JOE AND ANDERSON JOHN will all be found and listed.

4. This choice will delete selected records by record number.

5. This will cause the program to search on ‘the disk for any
report formats previously saved. If none are found, the choices

-38-

User’s Manual ApSoft-64

will be either to return to the main menu or to create a report

format. To create a report format, the total number of headers to
be used must be chosen. The choices for header will be displayed on
the screen and will include the record number as a header choice

Now the header will be chosen, along with the tab position. I;
ther? are any numeric columns, they may be flagged to be summed

vertically, and additional choice of addiné up the rows
(horizontally) will be given. After completing this, the date can
be entered, and a choice of ALL files is given. Choosing none will
cause a set of choices that allows selected data to be printed based
on ?ne or more headers. When the report is finished printing

choices will allow the saving of the report format and anothe;
printing of the report.

. 6. Th%s ch?ice will allow the sorting of the records by a single
field, using either alphabetic and numeric sorting or descendin
numerical sorting. ’

7. This will cause the listing of all the data fields.

. 8. This will toggle the printer: on if it is off and off if it
is on.

9. This will exit the database.

P%ease note that the Filecabinet program is presently set up for
use with the Commodore 1525 printer. The lines to change to be able
to us? this program with another printer are the subroutines
startlvg at lines 2000 and 55000. The subroutine at 2000 turns on
the printer (it does a PR#4), and if a wider report is to be used
the proper print command for your printer to set up a wide pa e
should be placed here. The subroutine starting at line 55000 zefs
up ? tab. The variable zQ is the tab position needed, and the
string 'ZQ$' should contain the control sequence for our’ rint
tab to the correct position. ' e

-39-

User’s Manual ApSoft-64

APPENDIXI

PROGRAMS ON ApSoft-64 DISK

APSOFT-64

This is the program that loads ApSoft-64.

HELLO

Hello is a program that will act as a 'menu', and can be loaded
and run by a PR#8.

SHAPE DEMO

This loads the file SHAPES $8000 using the SHLOAD command and
demonstrates the use of shapes on the hi-res screen.

PG2 CHAR DEMO

This program loads the two files C64 CHARSET and MACH.CHARSET,
(which are character sets), and demonstrates the use of the

secondary text page.

ARTSPACE

This is an actual Apple program modified to use a shape, and
demonstrate animation using shapes.

GRAPHING DEMO

This graphs a sin wave on the hi-res screen.

—40-

T —

User’s Manual ApSoft-64

PEN DEMO

This is a simple drawing demonstration on the hi-res screen and
requires the use of a light pen.

ONERR DEMO

The use of the ONERR command is shown in this program.
HIRES DEMO

Another demonstration of hi-res graphics.
SOUND DEMO

The sound commands are used to make some sounds.
SPRITE DEMO

This program recquires the use of paddles in port 1, and will
move a sprite around on the text screen.

FILECABINET

This is a famous Apple public domain database, and should be
saved on a seperate disk, as it requires the use of data files. It
is examined in Appendix 8.

ART TRIANGLE

This is a public domain Applesoft program, that uses hi-res
graphics.

4]~

User’s Manual ApSoft-64

CONVERT

This is a boot program for the CONVERT 1.0 program. It cannot
be used in ApSoft-64, but must be loaded and run in normal Cé4 BASIC

TVPATTERN

Another public domain Applesoft program.

HIDDENLINES

This is another public domain Applesoft program.

CHECKBOOK BAL

This public domain Applesoft program will help balance a
checkbook.

SHAPES $8000

This is a binary file that loads at $8000 (decimal 32768). It is
a shape table that contains text shapes. Shapes 1 through 26 are
lower case alphabet characters, 27-32 are 'spaces', and 33 - 95 are
normal ASCII characters, the alphabetic characters being upper case.
Loaded from an Apple.

MACH.CHARSET —C64 CHARSET

These two files are character sets to be used with the secondary
text page. Loaded by 'PG2 CHAR DEMO'.

BADLINE DUMP

This program is to be used with CONVERT to read the file that is
created for bad lines when converting an Applesoft program.

42—

T —

User’s Manual ApSoft-64

ART XMAS SCENE

An APPLE public domain program, it demonstrates the use of
LO-RES graphics.

SIMPLE TERMINAL

This is a simple BASIC terminal program that will assist in
downloading APPLE programs. It will save all incoming text in a SEQ
file.

SPRITE EDITOR
A program to edit sprites
SPRITE INSTR
Instructions for the sprite editor
SINGLE FILE COPY
Copies files from one disk to another.
SHAPE CREATE
An editor to create shape tables with.
HI-RES SAVE
Program to save hi-res screens for re-loading.
SPRITE BOOT
The program which loads the sprite editor.
TINY AID
Program to search, replace, append programs in memory.

SPRITE GAME/DEMO
A simple game demonstrating the sprite commands.

43—

User’s Manual ApSoft-64

APPENDIX J
USING THE CONVERT PROGRAM

This program will read a sequential file containing an
APPLESOFT program and will convert it into a program file that can
be loaded, listed and run. In doing so it will also create a file
containing the numbers of lines containing commands that may be a

problem.

CONVERT will display a menu giving a choice to either convert a
sequential file, catalog a disk, or exit to BASIC. Prior to running
this program, the program to convert should have been downloaded
from an Apple into a sequential file using either a modem OT an
RS232 adapter connected to an APPLE, and a suitable communications
program in the Commodore 64, Or the SIMPLE TERMINAL program included

on the ApSoft-64 disk.

The proper method for downloading directly from the Apple to
the Commodore using an RS232 adapter is to load a communications
program that allows the saving of text files in a sequential file,
then set the parity to NO parity, the number of data bits to 8, and
the number of stop bits to onme. This is the standard configuration
of most Apple serial cards and the Apple IIc serial ports. At this
point the communications cable should be connected to the Apple. On
the Apple,.boot the disk that contains the program(s) that are to be
downloaded, and LOAD the file that is to be transmitted. Next, type
in POKE 33,30 <return> and PR#<slot # of the communitions> <return>.
when ready to receive the file, type in LIST, and THEN hit the
return key on the Apple ONLY as soon as the Commodore is ready to
receive the file. The POKE command will set up the Apple to list
each program line with out any returns, and the PR# will turn on the
communictions card. Keep in mind that any program line that contains
a REM can have some strange control characters, and CONVERT will
remove them, although occasionally text following the REM may be

lost.

By

TI—

User’s Manual ApSoft-64

After the files have been transmitted and received, the CONVERT
program can be RUN to convert the program. If any problems are
encountered in this process, refer to the manual received with the
RS232 adapter, or your MODEM.

Uéing a mo?em is similar, except getting access to an Apple
bulletin board is the means to download programs. In this case
follow the directions on accessing the bulleti

in board
. to download

During the actual program conversion, the lines will list as
they are crunched and converted. When each line is listed, it will
be crunched and placed in memory. When the entire p;ogram is
listed, a prompt will appear to place a disk in the drive so the
file can be saved. This disk must be formated. A file will also b
saved that contains lines that must be examined because of commande
that will cause possible problems. The program is saved prefixez
with a 'P.' and the questionable lines are saved in a sequential
file prefixed by a 'B.', and can be read and printed out by the
program called BADLINES DUMP on the program disk. If the B fi{e i
not on the disk the P. file is saved on, no bad lines weré founds
The program should still be checked for possible problems, however .

' The section in this manual on program conversion will be of
assistance when the program is listed and the problem lines examined
and changed. Keep in mind that the Apple allows lines up to 255
?haracters, and any lines found over 80 characters must be divided
into two'or more lines, making sure that the integrity of tie
program is maintained. Any lines that list over 255 characters will
h?ve'all the spaces removed to keep them under 255 characters
Listing the program on a printer will be of assistance also, ma in.
out any subroutines and other lines that may have to be altéredpp ’

The program CONVERT should be load
: ed from Commodore BA
will return to Commodore BASIC when done. e

Please note that CONVERT will check only for the following

—45-

"---'—’

User’s Manual ApSoft-64 User's Manual ApSoft-64
- INCOMPATIBILITIES BETWEEN
suspicious commands: APPLESOFT AND APSOFT-64
POKE PEEK & SHLOAD GET PR# IN#
CALL ONERR RECALL STORE WAIT USR SCRN(: Although ApSoft-64 is highly compatible with the Applesoft
format for the Apple, there are a few areas of incompatibility.
Also, the following commands are not crunched and the program Although most programs lend themselves to easy conversion, the
line will have to be retyped, deleting the command (it is not longer and more complex programs (especially poorly written or

documented ones) can present problems. Many hardware functions on
the Apple are not supported, such as the various slots open in the
IN# RECALL STORE USR SCRN(Apple for peripheral cards, or special locations used to access the
Apple's I/0. Disk and file handling can create special problems and
commodore does not support scrolling windows. Certainly, if a
program does not work correctly on the Apple, it will not be fixed
by converting it to ApSoft-é64.

supported) :

The INPUT command can cause problems in some situations.
Applesoft will zero out any variable asked for in the input command
if only a [RETURN] is entered. The Commodore, on the other hand,
leaves the variable unchanged from the value it had before the
INPUT. A problem also exists with an INPUT statement that has a
prompt that extends more than 40 characterers. If the prompt (i.e.
INPUT "prompt" ; A$) is longer than 40 characters, the operating
system will append the prompt to the input vyou enter. This is
actually a bug in Commodore's operating system.

Any program that contains any machine language may be
impossible to convert, unless the purpose of the machine language is
apparent, and it can be added without any memory conflicts. In any
case, a knowledge of both computers would be helpful.

A program called CONVERT is included on the disk to assist you
in converting Applesoft programs to ApSoft-64. It will read a
sequential file containing an Applesoft program downloaded from an
Apple and convert it into a format that ApSoft-64 can use. It will
read the file, convert it, then save it on a disk along with a file
that can be printed out with BADLINE DUMP that will list any program
lines that might need to be looked at.

A6
-47-

User’s Manual ApSoft-64

The following information is provided as a reference for those
interested in converting Apple software. If extensive information
about Applesoft and Apple DOS is needed, it may be necessary to
refer to the Apple manuals for further information. Likewise, much
more information on Commodore DOS and associated commands can be
found in the Commodore manuals.

DOS COMMANDS

Applesoft allows the use of the DOS commands only in PRINT
statements, preceded by a rcontrol D' (seen sometimes as D$ or
CHR$(4)). ApSoft-64 does mot support this format. DOS commands 1in
ApSoft-64 are used like any other BASIC commands. See the previous
chapters for the details.

Although Applesoft allows many files to be open simultaneously,
only one file can be read from or written to at one time. On the
Commodore, only 10 files may be open at one time. Also, Applesoft
DOS treats all print statements after an open-to-write as a write to
the file, not to the screen. The same thing is true with the INPUT
or GET statements following an open-to-read. This mode is ended by a
print statement containing a CLOSE command.

Apple DOS allows several other commands that may give problems.
One of these is the POSITION command, which will appear in a PRINT
CHR$(4) format also. It allows the program to read from a
sequential file starting at any point in the file. This command in
the program will occur prior to any READ or WRITE statement. Some
other programs may even contain a WRITE <name of file>, B10 command,
and this command will overwrite the named file starting at the 10th
byte of the file.

Having a good knowledge of both computers will be most
important in converting any program that uses much file handling.

POKES, PEEKS AND CALLS

48—

P——

User’s Manual ApSoft-64

Peeks and pokes have many uses on the Apple: for exampl
setting the text window, reading the keyboard, switching gra ﬁ'e’
modes, toggling the speaker, and so on. The Commodore 64 dgesp o
support some of these uses and enhances some of the oth o
Following is a list of some of these. o

TEXT WINDOWS

Text windows on the Commodore 64 are not supported, and th
following locations, if referenced in an Applesoft pro’ram 'lf
requ%re a significant 'rewrite' of the program. The rgwriée W;
require analyzing the use of the screen and the format of t?é

screen, and re-aranging print statements
so that the
the same on the Commodore screen. §Rie - EfipeaTs

: The following addresses, if accessed in an Apple program by
either a PEEK or a POKE, will mean text windows are being used and

may require some rewriting of the program: (Al ; .
decimal) program: (All locations are in

LOCATION USE COMMODORE EQUIVALENT
32 Left margin NONE
33 Right margin NONE
34 Top margin NONE
35 Bottom margin NONE

-49-

T S T e

User's Manual

PEEKS, POKES AND CALLS
LOCATION USE
CALL-936 Clear all text

CALL-958

CALL-868

CALL-922

CALL-756

in text window.

Clears all text
from cursor on.

Clears current line
from cursor on.

pPrints a line feed.

Waits for key press.

PEEK (-16384) Reads keyboard

value

PEEK (-16368) Resets keyboard

PEEK(36)

POKE (36)

strobe

Reads in position of
cursor in text
window (O - 39)

Sets position of
cursor in text
window (0 - 39)

-50-

ApSoft-64 EQUIVALENT
HOME; CALL/SYS 59592

NONE

NONE

PRINT CHR$(10);
CALL/SYS58692
OR PRINT"<CRSR DN>";

WAIT 197,190

WAIT 197,190:

GETA$:X=ASC(A$)+128
X has the same value
as the PEEK

NOT NEEDED

PEEK(211)

(0 - 79)

POKE (211)

(0 - 39)

ApSoft-64

User’s Manual ApSoft-64

PEEK(37) Reads in vert. pos. PEEK(214)
of cursor in text
window (0 - 23) (0 - 24)
POKE (37) sets vert. pos. POKE(214)
of cursor in text
window (0 - 23) (0 - 24)

CALL -912 Issues a line feed. CALL/SYS 59626
PRINT CHR$(10)
PRINT "<crsr down>"

Thi; command will scroll the screen up one line and does not affect
the cursor position.

-51-

User’s Manual

POKE (232)

POKE (233)

ApSoft-64

Sets lo order POKE 53017
address of

shape table

Sets hi order POKE 53018

address of
shape table

COMMANDS AFFECTING GRAPHICS

ADDRESS

........

........

........

ACTION

TURN ON TEXT OR GRAPHICS PAGE 2
TURN ON TEXT OR GRAPHICS PAGE 1
TURN OFF SPLIT SCREEN

TURN ON SPLIT SCREEN

TURN ON TEXT/WHOLE SCREEN

TURN ON GRAPHICS/WHOLE SCREEN

NOTE: All of the above locations can be either POKEd or PEEKed and

will have a simalar effect as with Applesoft.

Also, although the

following two locations will not yield errors, they are not acted
upon at all: -16298 and -16297

52—

T—
User’s Manua

ApSoft-64

COMMANDS DEALING WITH GAME CONTROLS

LOCATION RESULT COMMODORE
(PEEK/POKE)
-16336 Produce click on NONE- use PLAY/

speaker SOUND commands
-16287 Toggles cassette NONE

output once.

READING GAME CONTROLS

COMMAND RESULT COMMODORE

X=PEEK(-16287) Read pushbutton

game controller
X=PEEK(-16286) Read pushbutton
game controller
X=PEEK(-16285) Read pushbutton
game controller
NONE Read pushbutton
game controller

for
#0

for
#1

for
#2

for
#3

-53-

X=(PDL (0))AND8

X=(PDL (1))AND8

X=(PDL (0))ANDS8

X=(PDL(1))AND8

Soft-64
User’s Manual Ap

DOS COMMAND CONVERSIQNi

FOR THIS USE THIS

OPEN15,8,15,"SO:PRGM NAME"
:CLOSELS

PRINTCHR$(4)"DELETE PRGM NAME"

PRINTCHR$ (4)"RUN PRGM NAME" RUN PRGM NAME

PRINTCHR$(4)"BLOAD PRGM NAME" BLOAD PRGM NAME

PRINTCHR$ (4)"LOAD PRGM NAME" LOAD PRGM NAME

PRINTCHR$(4)"CATALOG" CATALOG

PRINTCHR$ (4)"OPEN FILENAME"

n
PRINTCHR$(4)"WRITE FILENAME" OPEN 2,8,2,"FILENAME, ,SEQ,W

NOTE: File output can be accomplished on the Commodore by

following the OPEN command with either CMD2 and normal PRINT
statements or PRINT#2 statements without the CMD2.

OPEN 2,8,2,"FILENAME, SEQ,R"
NOTE:Use INPUT#2 statements
or GET#2 statements to
retrieve information.

PRINTCHR$(4)"READ FILENAME"

PRINTCHR$ (4)"CLOSE FILENAME" CLOSE?Z
PRINTCHR$ (4)"APPEND FILENAME"

PRINTCHR$(4)"WRITE name OPEN 2,8,2,"name,SEQ,A" :CMD2

NOTE: The OPEN command

can be followed by either CMD2
and normal PRINT statements

or just PRINT#2 statements.

PRINTCHRS (4)"OPEN FILENAME,L200" OPEN2,8,2,"FILENAME,L"+

-54-

T—

User’s Manual ApSoft-64

CHR$(RECORD LENGTH)
PRINTCHR$ (4)"WRITE FILENAME,R2" PRINT#15, "P"CHRS (CHANNEL #);
CHR$(RECORD# LO)CHR$(RECORD# HI)

OTHER AREAS OF POSSIBLE INCOMPATIBILITY

The TAB command functions differently in some situations. In
general, the tab will work the same on both machines, except when
printing on a printer. The Apple will automatically tab from the
beginning of a printed line and the Commodore will tab from the last
printed position. If the tab position is before the last printed
position, a line feed will be generated on the Commodore and not on
the Apple. It will also be important to be on the lookout for a
poke to the location 37, because some Apple printer cards will
recognize that as a tab and act accordingly.

Logical expressions generate differing values for a true
condition on the two systems. For example, B=(A>1) will give B a
value of either -1 or 0 on the Commodore and a 1 or a Q on the
Apple. An easy fix is to use ABS of the logical expression: i.e.
S*(A>4) should become S*ABS(A>4)

An additional problem may occur with the use of ONERR GOTO
statements. This statement will not check the disk drive error
channel for a file not found if an open statement is being used.
Any error that must be read from the disk drive must happen in the
program after the open statement. Also, the ONERR statement will be
accessed if ANY error occurs, so if your program appears to be
crashing and an ONERR statement is being used, check for SYNTAX or
other errors in the program that are not expected.

The Apple's GET statement will wait until a key 1is pressed
before returning a value, while the Commodore will not. A simple
solution to this problem is to replace each Apple GET statement with
the following: WAIT 197,190:GETA$. This will wait until a key is

-55-

R T TR

——
User's Manual ApSoft-64 User’s Manual ApSoft-64

depressed before performing the GET. ' Remember that programs which don't work on the Apple will not
work on the Commodore. CONVERT will not correct logic errors!

The use of lo-Tes commands will have to be watched also. The

APPLE allows vertical positions from O through 47, and ApSoft-64

allows O through 24. An easy way of solving this problem and

maintaining a similar appearing screen is to divide all of the

vertical positions by two and drop the remainder. The statements to

watch for would be VLIN X,Y at Z (change the X and Y); HLIN X,Y at

Z (change the Z); and PLOT X,Y, (change the Y).

Remember also that APPLE programs can use variable names that
are illegal on the Commodore 64, such as TI; TI$; IN; and ST. These
variable names will have to be changed.

Some of the CALLs which have no direct equivalent in ApSoft-64
may be simulated with a short BASIC subroutine. For example, a CALL
-958, which clears the screen from the cursor position on, can be
simulated with the following:

1000 X=PEEK(211):Y=PEEK(214) :REM GET CURSOR X,Y POSITION

1010 FORX1=YT040:?" ";:NEXT :REM CLEAR TO END OF LINE CURSOR IS ON
1020 FORX1=XT024:?"<40 SPACES>";:NEXT :REM CLEAR TO END OF SCREEN
1030 VTABX:HTABY:RETURN :REM SET CURSOR POSITION

Some APPLE programs use the ESCAPE key to exit the program,
move to a different menu, etc. This key is not on the Commodore 64
keyboard, and another key should be substituted. The ASCII code for
the ESCAPE key is (decimal) 27.

Several APPLE commands are not implemented at all. These are:
FLASH STORE RECALL & SCRN(. Also, a number of APPLE DOS commands

are not supported. These are:

INIT RENAME DELETE LOCK UNLOCK MON NOMON MAXFILES.
FP INT IN# CHAIN POSITION EXEC BSAVE BRUN.

-56- -57-

W;ﬁ: TR e

