
HESMON64TM
By Terry Peterson

Instruction Manual

If You've Never Used a
'Machine Language Monitor'
Before
The following section is intended for
people who are unfamiliar with the
uses of a machine language (M.L.)
monitor program. However, it is not a
tutorial in the architecture of the C64
or the 6502. Nor is it intended to teach
6502 assembly language program­
ming. In fact, some knowledge of
assembler language will be most
helpful. It IS intended to help the
beginner get started in using
HESMON. Even those who know
nothing about the 6502 or the C64 will
find some of HESMON's commands
useful (see, for example, the Interpret
Memory command).

If you are familiar with the C64's
screen editor, you should have no
trouble entering and editing HESMON
commands. HESMON commands are
entered and edited just as are BASIC
direct mode commands. They consist
of a single character usually followed
by one or more 'parameters' and a
RETURN. The parameters consist of
hexadecimal numbers or character
strings and are separated from one
another by spaces. With one excep­
tion (the '#' command) numeric
parameters must be hexadecimal and
do not need to be prefixed with '$'.
String parameters are identified by
encloSing them in double quotes ("). If
HESMON doesn't understand a com­
mand it will print '?', usually just to
the right of the bad command. If the
command is understood, but the
result is impossible or illegal, e.g., try­
ing to save HESMON itself on tape,
HESMON prints a '?' on the following
line.

To use HESMON, turn your C64 off,
insert the HESMON cartridge into the
expansion slot in the C64 and then
turn the power on. You will see the
HESMON version number, the pro­
grammer's name, the H.E.S. copyright
message, and the 'cold start' register
display:

C·
PC IRQ SR AC XR YR SP

;0000 EA31 27 00 00 00 FA

The meaning of this rather cryptic
display is as follows: The first line 'C·'
identifies a cold start of HESMON,
that is, starting up from power-on. The
next line identifies the pseudo 6502
registers maintained by HESMON:

PC = program counter
IRQ = interrupt request vector
SR = status regist er
AC = accumulator
XR = X register
YR = Y register
SP = stack pOinter

NOTE: "6502" is used synonomously
for "6510" in this document.

The register contents are shown on
the third line. The quantities shown in
the register display (except the IRQ)
are not the actual register contents,
they are the numbers HESMON will
use to set the 6502 registers when in­
structed to begin execution of a M.L.
program. IRQ is not a 6502 register,
but a RAM 'vector' that points to an
IRQ interrupt service routine. Begin­
ners may ignore this location - but
better not change it! The ';' at the

2

beginning of the last line is really a
HESMON command. It tells HESMON
(if the RETURN key is pressed with
the cursor on this line) to put the
seven numbers that follow into the
corresponding pseudo registers. Just
before beginning execution of a M.L.
program HESMON copies the pseudo
register contents to the 6502
registers. So, for example, if we want
the C64 to print 'HI.', we could first
move the cursor up to the ';' line and
alter it to read:

1200 EA31 27 48 49 2E FA

When we press RETURN, the 6502
pseudo program counter is set to
$1200; while the accumulator, and X
and Y pseudo registers are set to $48
(ASCII H), $49 (ASCII I), and $2E
(ASCII.). Now, if we write a program at
$1200 to print the AC, XR, and YR it
will print 'HI. ' when we execute the
H ESMON Go command. Let's write
sur.h a program using the HESMON
Simple Assembler command, 'A '. Type
in the following lines:

A1200 JSR FF02
TXA
JSR FF02
TYA
JSR FFD2
BRK

The 'A' beginning the first line tells
HESMON we wish to assemble, that
is, translate assembly mnemonics in­
to machine code. As you press
RETURN after typing each of the
above lines, you will see HESMON
reprint the line, showing the machine
code generated from the assembly
language instruction. HESMON will
then prompt for the next line of pro­
gram by printing the 'A ' command and
the next available address followed by

a space. So you don't have to keep
track of what the next address is, just
type in the assembly language in­
structions. When you 've finished the
program, just press RETURN and
HESMON will exit this mode. By the
way, $FF02 is one of the 'Kernal'
routines in the C64's ROMs. It prints
the contents of the accumulator to
the current output file - the screen in
this case. For further information on­
this and other useful ROM routines,
consult the Commodore 64 Program­
mers' Reference Guide" published by
Commodore

Now type 'G' and hit RETURN. You
should see:

G
HI.
B*

PC IRQ SR AC XR YR SP
;120C EA31 30 2E 49 2E FA

Notice after the 'H I.' is another
register display, the break entry
display identified by 'B* '. This means
we've re-entered HESMON by ex­
ecuting a BRK instruction - the one
at the end of our short program. Now
examine the register contents. The PC
points one address higher than the
BRK instruction. The X and Y
registers and stack pointer are un­
changed. The accumulator now has
the $2E transferred into it by the TYA
instruction at $1207. Let's play with
this a bit. Type '01200 120B'. This
command instructs HESMON to
'disassemble' the program you just
entered.

Now, move the cursor to the last line,
at address $120B, and type the follow­
ing, with the 'A ' replacing the ',' (also

3

be sure to blank out any characters
left on the screen after the '8'):

A 120B LDA #48
JMP 1200

We now have a M.L. program that will
print 'HI.' forever - or until we stop it.
Type 'G1200'. When you tire of watch­
ing the stream of 'HLHLHL's, press ­
no, not the STOP key - the
RESTORE key by itself. The RESTORE
key is HESMON's super-STOP key. It
will halt just about any M.L. program
(except HESMON itself) when
HESMON is plugged in . (Exception: If
you attempt to use RS232 files all
bets are off. Also, correct operation of
RS232 files is not guaranteed with
HESMON installed.) To get back to
our example: after pressing RESTORE
you should see a clear screen with the
following:

S*
PC IRQ SR AC XR YR SP

;XXXX EA31 XX XX XX XX XX

This is the RESTORE entry display,
identified by the 'S*'. The X's are not
actually what you will see. The
register contents will depend upon ex­
actly when you pressed RESTORE.

If you want to enter a series of bytes
into memory, use the Memory Modify
command (:). For example, to enter
the sequence $01, $02, $03, $04, $05,
$06, $07 . .. starting at $1234, you
type:

:123401 02030405060708

H ESMON will respond by reprinting
the line and will prompt for another
line by printing the next available ad­
dress. As with the Assemble com­
mand, you may exit by typing
RETURN.

Besides entering programs and data
into memory, one of the functions of a
M.L. monitor is to examine programs
and data already in memory. HESMON
has several commands for this pur­
pose; including Disassembly (D),
Memory Display (M), and Interpret
Memory (I). These three commands
are special in that the cursor-up and
cursor-down key may be used to
'scroll' their displays forward and
backward through memory. The ac­
tion of this scrolling is easier to use
than to describe. Think of the text on
the screen as being on a drum which
may be rolled up or down using the
cursor up/down key. The scrollable
display type found closest to the edge
of the screen where new lines will ap­
pear is continued in the scroll direc­
tion. I said it was hard to describe! Try
it. Just type 'DAADT and hit RETURN.
Then press and hold the cursor-down
key. To scroll up, go to the top of the
screen and then hold down the
cursor-up key.

Other commands allow you to hunt
for a particular sequence of bytes in
memory (H), compare two blocks of
memory for differences (C), or transfer
a block of memory to a different loca­
tion (T). There are also two advanced
functions: N - relocate absolute
memory references in a program, and
E-change the external references in
a program. Finally, there are number
base conversion and hexadecimal
arithmetic functions.

4

Alphabetical List and
Description of HESMON
Commands
The following section lists the
HESMON commands in alphabetical
order describing each in detail and
giving example(s) of its usage.

A - The Simple Assembler

The HESMON simple assembler pro­
vides an easy way to enter short M.L.
programs. It does not have all the
features found in a complete
assembler such as HESBAL in HES's
6502 Professional Development
System for the VIC and Commodore
64, but it provides increased conve­
n ience compared to POKEing from
BASIC or entering hexadecimal codes
using a more primitive monitor. The
syntax of HESMON's Assembler com­
mand is as follows:

A 1111 MMM 00000

where '1111' is a four dig it hex­
adecimal address in the C64's RAM,
'M MM' is a standard three character
assembler mnemonic for a M.L. opera­
tion code (op-code), such as JSR,
LDA, etc. '00000' is the 'operand' of
the op-code. It is beyond our scope
here to discuss fully the meaning of
t hose parameters - for a complete
discussion, consult a book on 6502
assembly language programming. See
Section I for a simple example of A's
usage. Notice that since all numeric
operands MUST be in hexadecimal
notation the customary '$' preceding
these numbers is optional; as is the ','
preceding 'X' or 'Y' in indexed instruc­
tion operands. If HESMON
understands the line, it will reprint it
showing the corresponding byte(s) of

M.L. between the address and the
assembly code. HESMON will then
prompt for the next line of assembly
code by displaying the next address
followed by a space and the input cur­
sor. If HESMON cannot interpret the
line, it will print a '?' instead of
prompting for the next line. For exam­
ple, you type:

A 1200 LDA #41

H ESMON responds by overprinting
your line and then prompting for the
next line as follows:

A 1200A941 LDA#$41
A 1202

Note - HESMON ignores anything to
the right of a ':' on the line.

B - Breakpoint Set

There are three different methods to
return to HESMON from a M.L. pro­
gram. The Breakpoint Set command is
one of them. This command allows
you to designate an address in a pro­
gram as a 'breakpoint,' that is, a place
where the program is to be halted and
control is to be returned to HESMON.
Breakpoint Set also allows you to
specify the number of times the in­
struction at this address is to be ex­
ecuted before the breakpoint is ac­
tivated. The breakpoint defined with
Breakpoint Set is effective ONLY
when the C64 is executing HESMON's
Quick Trace command. For example,
to halt a program, that starts at ad­
dress $1200, on the fifth repetition of
the instruction at address $1234, you
would type:

B 1234 0005
Q 1200

5

The first line above sets the break­
point at $1234 and the repeat count to
five. The second line initiates the
Quick Trace mode of program execu­
t ion (see the Quick Trace command).
When address $1234 has been
reached for the fifth time H ESMON
will halt execution of the program,
display the current values of the 6502
registers, and enter the single-step
mode of execution (see the Walk com­
mand).

The second method to return to
HESMON from a M.L. program is to
insert a 6502 'BRK' instruction into
the program. Obviously, since this
method requires program modifica­
tion, it may be used only with pro­
grams in RAM. Finally, HESMON may
be called by simply pressing the
RESTORE key. In either of these last
two cases HESMON will be re-entered
whether or not the Quick Trace mode
was active. If a BRK instruction was
encountered, the 'break' entry register
display will be printed showing the
contents of the 6502 registers.
Similarly, if the RESTORE key is
pressed, the RESTORE entry register
display is shown. In the latter case,
the screen is cleared first. The
RESTORE key method of H ESMON re­
entry will work any time the HESMON
cartridge is plugged in - unless an
RS232 file has been accessed or the
6502 has attempted to execute an
undefined op-code (one that
disassembles as '???'). After an
RS232 file has been attempted
H ESMON may be fe-entered from
BASIC via a BRK instruction . Type
'SYSS' to cause a break entry.

C - Compare Memory Blocks

This command compares two sec­
tions of memory and reports any dif­
ferences by printing the address of
one member of the mismatched
pair(s). The syntax is as follows:

C 1111 2222 3333

where 1111 is the start address of the
first section, 2222 is the end address
of the first section, and 3333 is the
start address of the second section ­
the one to be compared with the first
section. This command may be
stopped (in case a large number of ad­
dresses are printed) with the STOP
key. For example, suppose you have
two disk files containing (you thought)
the same M.L. program residing at
locations $1400 to $147F. However,
when you used the BASIC command
VERIFY, it said 'VERIFY ERROR' .
Naturally , you wonder just where the
difference is. VERIFY can only tell you
they differ SOMEWHERE. Compare
Memory Blocks may be used to find
out: First use HESMON's Load com­
mand to load one of the files (See
Load). Then move that program to
$1500 using the HESMON Transfer
Memory Block command: T 1400
147F 1500. Next Load the other file.
Now compare the two files using
Compare Memory Block:

C 1400 147F 1500

H ESMON will print a list of all the
memory locations which differ be­
tween the two programs.

D - Disassemble Memory

This command is the inverse of the
Assemble command. It interprets
memory contents as M.L. instructions
and displays the assembly language
equivalent. Disassemble is used in

6

two distinct ways. First, it may be
used to disassemble a section of
memory by specifying an address
range, such as:

D 1111 2222

where 1111 is the start address and
2222 is the end. This type of
disassembly is convenient when used
in conjunction with HESMON's Out­
put Divert command to produce a
hardcopy listing of a M.L. program.
Second, the disassemble command
may be started by entering a single
parameter, the beginning address:

D 1111

This mode is handy for examining a
M.L. program on the screen because,
once the first line is displayed,
preceding or subsequent lines of
code may be disassembled by press­
ing the cursor-up or cursor-down key
respectively.

You may alter a program in RAM using
the Disassemble command's output.
If you move the cursor to the line you
wish to alter, change the byte display
(not the mnemonic), and press return;
HESMON will alter the memory con­
tents and retype the line showing the
altered bytes and the corresponding
disassembly. Then HESMON will
prompt for the next line by printing
the next address and leaving the input
cursor on the same line. To exit this
mode type RETURN, just as with the
Simple Assembler command.

E - External Relinker

This command is rather difficult to
understand, but the effort is worth it!
Basically , this command facilitates
the transport of M.L. programs from
one 6502-based computer to another

(PET, VIC, etc.) by translating the
system calls of one computer to
those of another. Of course the
capabilities of these computers are
different so one cannot always
achieve a perfect translation, but at
least a functioning version can be
made without completely rewriting
the program. The heart of this com­
mand is a table of corresponding ad­
dresses. This table contains four-byte
entries consisting of pairs of ad­
dresses. These address pairs are the
addresses in the respective computer
operating systems that perform a
given task. Typically these will be ad­
dresses in the ROM firmware of the
computers. The correspondence table
must be supplied by you. Lists of
common ROM routine addresses in
various 6502 computers have ap­
peared in several places, most notably
in COMPUTE! magazine (e.g., "VIC
Memory Map Above Page Zero", COM­
PUTE! Vol. 4, No.1, P. 181); "Butter­
field on Commodore", Commodore
Magazine, Oct.lNov., 1982, pp. 81 ft.;
and, for the PET, in "PET/CBM Per­
sonal Computer Guide" by Osborne
and Donahue.

For example, suppose you have load­
ed into your C64 a M.L. program in­
tended to run in a PET with BASIC 4.0
ROMs. We will assume it is in loca­
tions $1200 to $13FF. Many of its ex­
temal subroutine calls are probably of
the form JSR $FFxx. The subroutines
at these addresses are all almost iden­
tical in function to those of the same
address in the C64 because these en­
try points are in a 'jump table' set up
for the purpose of standardizing
system calls between the different
Commodore ROM sets. So what 's the

7

problem? Any subroutine call in the
address range $BOOO to $FFOO pro­
bably also has an equivalent in the
VIC, but it's at a different address!
This is where External Relinker comes
in . Extemal Relinker will find such
subroutine calls and replace them
with the corresponding C64 ROM
routine calls - if we can identify the
correct replacement (this is where the
published ROM maps come in). If we
already have a correspondence table
constructed in an earlier session with
Extemal Relinker, we simply load it
using the Load command. But, if we
don't have a table, External Relinker
will use our answers to its queries to
construct one we may save for future
use. For the present example, sup­
pose we have no table, just two ROM
maps. We want to construct a table
starting at $1000, so we start it by
entering four zeroes (four zeroes
denote the last entry in the table)
using the Fill Memory Block com­
mand.

F 1000100300

Then we start External Relinker:

E 1200 13FF 1000 BOOO FFOO

The first two parameters tell External
Relinker where the start and end of
the program we are working on are.
The third says where the cor­
respondence table starts. The last two
give the address range we're in­
terested in relinking. At this point Ex­
ternal Relinker will start disas­
sembling our program from $1200 to
$13FF, looking for references to ad­
dresses in the specified range of
$BOOO to $FFOO. When it finds such
an address it will first consult the cor­
respondence table which starts at
$1000 - if no entry for the address is

found, it will show the disassembled
line containing the unknown address
and wait for the entry of the cor­
respondence address. We will look up
the PET address in the published
table, find its equivalent in the C64
table, type the VIC address over the
one on the screen, and press
RETURN. HESMON will add the new
correspondence to its table, alter the
address reference in the program and
then continue its search. On subse­
quent occurrences of this address
H ESMON will automatically make the
specified replacement.

F - Fill Memory Block

This command is used to set a sec­
tion of memory to a particular value.
The syntax is as follows:

F 1111 2222 33

where 1111 and 2222 are the first and
last addresses (inclusive) of the sec­
tion to be filled and 33 is the hex­
adecimal quantity to be written . See,
for example, the usage in the example
of Extemal Relinker.

G - Go (execute program)

This command transfers control of
the C64 to a M.L. program; that is, it
starts execution of the M.L. program.
It may be used with or without an ad­
dress parameter. If no address
parameter is given, execution is
begun at the address shown in the
program counter (PC) of the Register
Display command. For example you
may exit HESMON and 'warm start'
BASIC by typing:

G A474

The C64 will respond, "READY." . For
another example, see Section 1.

8

H - Hunt for a Sequence

This command locates a specific se­
quence of bytes in memory. It has two
forms, as follow:

H 1111 2222 33 44 55
H 1111 2222 " ABCDE "

where 1111,2222 are the first and last
addresses of the range of memory to
be searched and 33, 44, etc., are the
hexadecimal byte(s) to be found ,
separated by spaces. The second
form allows the bytes to be specified
as characters enclosed by quotes. For
example to find all subroutine calls to
the character output routine (AB47) in
the C64 ROM's we would type:

H AOOO FFFF 20 47 AB

H ESMON responds with a list of all
such subroutine calls. Note that, as
usual , the low and then high order
bytes of the address were specified.

To find all occurrences of the string
'READY' (there is only one, at $A378),
we would type:

H AOOO FFFF "READY"

I - Interpret Memory

This command displays the contents
of memory as 'ASCII' characters. It is
similar to the Memory Display com­
mand except that it shows 32
characters per line. It may be used
with either one or two parameters and
its output may be scrolled just as with
the Disassemble command. For exam­
ple, to see the table of BASIC's
keywords and error messages, type:

I AOOO A300

L - Load 'Program'

This command 'loads' (i.e., reads) a
'program' into memory from an exter­
nal device such as tape or disk. The
loaded material need not actually be a
program. For example, it may be a
section of memory containing a data
table for External Relinker that was
saved to tape or disk using the Save
command . However, the most com­
mon use of Load is to retrieve M.L.
programs from tape or disk. Note that
HESMON's Load should NOT normal­
ly be used to load a BASIC program.
The syntax of Load is as follows:

L "programname" 11

where 'programname' is the name of
the file to be loaded (be sure to in­
clude the double quote marks) and
'11' is the device number from which
to load. If the device number is omit­
ted, the tape drive will be assumed; if
the filename is also omitted, the first
file found on the tape will be loaded.
For example:

L "YAHTZEE" 08

The above loads YAHTZEE from
device eight, the disk drive.

M - Memory Display

This command displays the contents
of memory in hexadecimal notation . It
This command displays the contents
of memory in hexadecimal notation . It
is similar to the Disassemble com­
mand in that it may take either one or
two addresses as parameters. The
two-parameter form displays from the
first address to the second; the one­
parameter form shows eight bytes
beginning with the address given.
Also like the Disassemble command ,
the output of Memory Display may be

9

scrolled up or down with the cursor­
up and cursor-down key. For example :

M AOOOA040

shows from $AOOO through $A047 in
hex and in characters, eight bytes per
line. To see more, press cursor-up or
-down.

N - New Locator

This command is a relative of the Ex­
ternal Relinker command . It has a dif­
ferent general purpose, however. New
Locator is designed to convert ab­
solute address references in a M.L.
program from one memory range to
another. It is typically used following
a Transfer Memory Block command to
relocate a program in memory. For ex­
ample, suppose you have just moved
a M.L. program from $1200-$1280 to
$1300-$1380 using T. Any address
references within the program now
pOint $0100 too low. New Locator can
fix this . Type:

N 1300 1380 0100 1200 1280

The meaning of the above line is as
follows: Disassemble from $1300 to
$1380 checking for addresses in the
range $1200 to $1280. Add $0100 to
any such addresses. If we had moved
a table of addresses, for example a
'jump table' (pairs of numbers of ad­
dresses, low byte followed high byte) ,
instead of actual machine code; we
would put a 'W' following the last
parameter to tell New Locator to treat
the memory contents as pairs of ad­
dress bytes rather than M.L. The
general Syntax for New Locator is the
following:

N 1111 2222 3333 4444 5555 [W]

where 1111 and 2222 specify the ac­

tual memory range to scan, 3333 is
the 'offset' to add to adjusted ad­
dresses, 4444 and 5555 specify the ad­
dress range of references which are
to be adjusted, and W (if present)
specifies that the scanned range is <..l

table of 'words' with no op-codes. If
not in the 'word table' mode, New
Locator will halt and display any line
of machine code it can't disassemble.

0- Output Divert

This command is HESMON's
equivalent to BASIC's CMD com­
mand. It allows HESMON 's output to
be printed on the C64 printer or stored
in a disk file instead of being
displayed on the sc reen. This is the
preferred method to get HESMON's
output on a device other than the
screen . Output Divert has a number of
options. The complete syntax of the
command is:

011 22 "filename"

where '11' is the device address where
the output is to be sent (normally 04
for the printer), '22' is the 'secondary
address ' of the device (typically 02 to
OE for the disk drive), and 'filename' is
the filename to be used for storing the
output (see your disk drive documen­
tation). All of these parameters are op­
tiona\. If you merely type '0' HESMON
wi ll open a file to device 4, the printer,
and start diverting its output. If you
type '0 ' when the output is already be­
ing diverted, the file will be closed and
the output will be directed to the
screen again. That is, typing '0' 'tog­
gles' Output Divert on and off. If you
want explicitly to revert to screen out­
put, type '03F'. The secondary ad­
dress and filename default to 'none'
since they are not needed by the
printer. For more information about

10

filenames and secondary addresses,
consult the documentation for the
device to which you wish to divert
H ESMON's output.

P - Print Screen

This command is a limited version of
Output Divert. It copies the current
screen display to printer or disk. It's
just like having a snapshot of the cur­
rent screen image. The parameters of
Print Screen are the same as for Out­
put Divert , except there is no toggling
because Print Screen automatically
reverts to screen output at the com­
plet ion of the screen copy. Note: Print
Screen will NOT copy high resolution
graphics.

a - Quick Trace

This command is used after the
Breakpoint Set command in de­
bugging M.L. programs. It takes one
or zero parameters just like the Go
command. If specified, the parameter
gives the address at which to begin
execution. If omitted, execution
begins at the PC shown in the register
display. The difference between Quick
Trace and Go is that a breakpoint,
defined with the Breakpoint Set com­
mand , is only recognized in the Quick
Trace mode of execution - the break­
point will be ignored if execution is
begun with the Go command. Pro­
gram execution is much slower with
Quick Trace than with Go because
Quick Trace is really just a fast ver­
sion of the Walk (single step) com­
mand. Using Quick Trace, instructions
are executed one at a time and
HESMON is re-entered after each.
This process continues until the
defined breakpoint is reached. For an
example of Quick Trace usage, see
the Breakpoint Set command .

R - Register Display

This command displays HESMON's
current 6502 pseudo reg ister contents
as well as the current interrupt re­
quest (IRQ) RAM vector. The IRQ vec­
tor is shown as a convenience to the
programmer who wishes to use this
vector to run interrupt-driven or
'background' routines. This vector
may be altered like any of the register
contents; however, extreme caution
must be exercised in so doing
because the replacement is made IM­
MEDIATELY, not at the time of execu­
tion of a Go command. Therefore, the
interrupt handling routine must be in­
place BEFORE the IRQ vector is
altered .

There are no parameters for the
Register Display command, Just type
'R '. To alter the register contents,
move the cursor to the line beginning
with ';' and overwrite the display. Then
hit RETURN and the contents will be
altered . Note that the display, except
as noted for the IRQ vector, shows
the contents of the 6502 registers at
the time HESMON was entered . These
registers will be set by HESMON to
the values shown in the register
display just prior to beginning execu­
tion of a program using the Go, QUick
Trace, or Walk commands. For a fuller
discussion of the meaning of this
display, see Section I.

S - Save 'Program'

This command saves the contents of
a specified range of memory to an ex­
ternal device as a non-relocating 'pro­
gram' file. The 'non-relocating ' part
means that the program may be

11

reloaded from tape using BASIC's
LOAD command. The syntax of Save
is as follows:

S " filename" 11 22223333

where ' filename' is the filename to be
used (don't forget the double quote
marks), '11' is the device number on
which to save (01.for the tape and 08
for the disk drive). '2222' is the be­
ginning address. '3333' is the last ad­
dress PLUS ONE of the memory area
to be saved. All the parameters must
be given, except that in tape saves the
' filename' may be null (""). For exam­
ple, to save a M.L. program residing
from $1500 to $1 DFF to the disk as
'APROGRAM', type:

S "A PROGRAM" 08 1500 1 EOO

Again, notice the last parameter is
one byte higher than the last program
address. Also, note that HESMON's
Save should NOT be used to save
BASIC programs because HESMON
saves programs as absolute, not
relocatable , files.

T - Transfer Memory Block

This command transfers the contents
of a block of memory to another area.
Its syntax is as follows:

T 1111 2222 3333

where 1111 , 2222 are the first and last
address (not last-plus-one) of the
block to move and 3333 is the starting
address where the block is to be
moved to.

U - (Test Color RAM)

U has no parameters. It tests the color
RAM for proper function and prints
'OK' if they are working. If there is a
bad byte, its address will be printed.

v - Verify RAM Function

This command tests a section of RAM
for proper function. Its syntax is:

V 1111 2222

where 1111,2222 are the first and last
memory locations of the block to test.
HESMON will keep cycling the test
over the address range specified until
the STOP key is pressed (it may be
necessary to hold it down for a
second or two). At the successful
completion of each test of the
memory block, HESMON will print a '.'
to show it is working . If a memory
locat ion fails the test, HESMON will
print its address followed by a binary
number showing the datt.! incorrectly
stored. The bits o f tho number are
shown most sig nif icant (bit 7) to least
significant (bit 0) left to right. The bits
of the RAM location that are different
from the test data aro printed in
reverse field . Using tho information
printed on the screon It will usually be
possible to pinpo int tho bad RAM
lC(s). Note that if you 'tos t' addresses
that contain no RAM, a seemingly ran ­
dom pattern of nu mbers will be
printed .

W - Walk Program

This command causes single-step ex­
ecution of a M. L. program under user
control. It , like Go and Quick Trace,
may be used without a parameter to
begin at the regis ter d isplay 'PC' loca­
tion ; or it can accept one parameter
that specifies the starting address. To
exit the Walk mode, press the STOP
key. To step as rapidly as the registers
can be printed, press the SPACE bar.
To step at the key repeat rate, press a
normally repeating key, e.g., the cur­

12

sor down key. To take one step only,
press a normally non-repeating key,
e.g ., the left-arrow key. The 'J' key has
a special function in Walk mode. It
causes HESMON to continue execu­
tion at full speed until a return-from­
subroutine instruction is executed.
For example, type:

WAAD7

H ESMON will begin execution at
$AA07 the carriage return , linefeed
output ROM routine. After executing
the instruction at that address
HESMON will halt, showing the
reg ister contents and a disassembly
of the next instruction the C64 will ex­
ecute if Walk is continued. The
d isp lay in the above example is as
fo llows:

5 000000 FA
,AA09 20 47 AB JSR $AB47

The first of the two lines above shows
the 6502 register contents in the same
order as the Register Display com­
mand: SR AC XR YR SP. This example
assumes HESMON has just been cold
started, otherwise the registers - ex­
cept the accumulator - may differ
from those shown here. The second
line shows that the C64 will next do a
subroutine call to $AB47, the
character output routine used by
BASIC. To continue, press any key ex­
cept STOP or 'J' (no need to hit
RETURN). Suppose we press the left­
arrow key once. HESMON will now
show two more lines:

25000000 F8
,AB47 20 OC E1 JSR $E10C

Now we see the C64 is at location
$AB47 about to execute a subroutine
call to $E10C. Notice the stack pOinter
(SP) has been decremented by two

because the return address for the
JSR instruction was 'pushed' on the
stack before the jump to $AB47 was
executed . Let's press the left-arrow
once more:

25000000 F6
,E10C 2002 FF JSR $FFD2

Here we finally get to a place where
the C64 is going to a 'Kernal' routine
we can recognize: the character out­
put routine $FF02. Since this routine
is documented in the C64 literature,
we know exactly what it will do: print
the character $00 in the accumulator.
Therefore, we needn't single step fur­
ther through that routine. So we press
the 'J' key. HESMON shows (after a
blank line - where the carriage return
was printed):

20000006 F6
,E10F BO E8 BCS $EOF9

Now the C64 is at the point just
following the JSR $FF02 instruction.
The 'carry' bit (bit 0) of the status
register (SR = $20) is clear (0), so the
branch on carry set (BCS) will not be
taken. At this pOint we may continue
to single step through this subroutine
by pressing left-arrow; return to the
next higher level of code (SP = $F8) by
pressing 'J'; or quit the Walk com­
mand by pressing STOP.

X ·Exit to BASIC

This command gives control to the
C64's BASIC interpreter. It has two
forms. The first form 'XC' has the
same effect as if the C64 were turned
off and then back on without the
HESMON cartridge plugged in except
that HESMON may be entered by
pressing RESTORE. The second form
'X' causes a 'warm start' of BASIC,

13

similar to pressing RESTORE when
H ESMON is not plugged in. Your first
exit to BASIC from H ESMON after
turning on the C64 should be an 'XC',
otherwise BASIC may misbehave.
While in BASIC, to achieve the same
effect as pressing STOP & RESTORE
without HESMON: First press
RESTORE. Then type 'X' and hit
RETURN.

It - Convert Decimal to Hexadecimal

This command prints the hexadecimal
equivalent of a decimal number. If the
decimal number is negative it shows
the two's complement 16-bit hex
equivalent and the corresponding
positive decimal number. For exam­
ple:

1234

H ESMON shows (on the same line):

1234 = $0402 1234

$ - Convert Hexadecimal to Decimal

This command prints the decimal
equivalent of a hexadecimal number.
For example:

$ ABCD

H ESMON shows (on the same line):

$ ABCD 43981

+ - Hexadecimal Addition

This command prints the sum of two
hexadecimal numbers in hex and
decimal. All four digits, including
leading zeroes if needed, must be
used. Example:

+ 12345678

H ESMON shows (beginning on the
same line):

+ 1234 5678 = $68AC 26796

- - Hexadecimal Subtraction

This command prints the difference ()f
two hexadecimal numbers in hex and
decimal:

- 12345678

H ESMON shows (beginning on the
same line):

- 12345678 = $BBBC 48060

Notice that the deCimal number in
this example is positive even though
we would expect the result of this
subtraction to be negative. This is
because the two-byte number $BBBC
doesn 't retain the information that the
result is negative. If you want to know
the true negative dec imal result,
either type in the operands in the
reverse order, or typo:

- 0000 BBBC = $444417476

So, the true decimal value o f the dif­
ference $1234 - $5678 is - 17476.

14

Things to be careful about
when using H ESMON
The BASIC interpreter has control of
the C64 at all times when BASIC is
running . This means that the worst
that's likely to happen if your BASIC
program has an error is that BASIC
will issue a 'SYNTAX ERROR'
message and stop your program. A
M.L. monitor, on the other hand, must
allow its user to take complete control
of the C64 to execute certain com­
mands. So, if your M.L. program has
an error and you attempt to execute it
using the Go command, the likely
result is that the C64 will go catatonic
- that is, even the RESTORE key may
not bring back HESMON . In this event
you will have to turn the power off and
back on to get back to HESMON. You
may avoid this catastrophe by using
the Walk command to check out your
prog ram. Nevertheless, you can still

nd the C64 to never-never land by
attempting to Walk through an in ­
struction that disassembles as '???'.
These instructions are
'unimplemented op-codes' . They do
not have a defined result. Many of
them cause the 6502 to 'crash' - that
is, enter a state from which it may be
recovered only by powering on again.

HESMON uses 33 bytes near the bot­
tom of the machine stack ($120-$141)
for its variable storage. Most M.L. pro­
grams do not use a sufficiently large
amount of the stack to interfere with
this storage - but it is a possibility to
be aware of. Large, complex BASIC
programs sometimes do use enough
of the stack to interfere with these
locations. And finally, RS 232 files will
not work correctly when H ESMON is
plugged in.

Acknowledgements
The seeds of HESMON are contained
in the public domain monitor pro­
grams for the PET/CBM computers
known as MICROMON and EX­
TRAMON . These programs, while not
directly useful in the C64 environ­
ment, provided at least the general
framework and the philosophy of
user-friendliness which distinguish
them and HESMON from other M.L.
monitors of the author's experience.

VIC, PET, C64 and CBM are
trademarks of Commodore.

15

Appendix A

The HESMON Commands
in Brief
The following is a condensed list of
HESMON's commands for quick
reference. Brackets ([]) denote optional
parameters.

A 1111 MMM 000000 - Simple Assembler
B 1111 2222 - Breakpoint Set
C 1111 22223333 - Compare Memory Block
D 1111 [2222] - Disassemble
E 1111 2222333344445555 [W] - External Relinker
F 1111 222233 - Fill Memory Block
G [1111] - Go
H 1111 2222 33 44 55 0 r

1111 2222 "XXXXX" - Hunt for sequence
I 1111 [2222] - Interpret Memory
L "name" 11 - Load Program
M 1111 [2222] - Memory Display
N 1111 2222333344445555 [W] - New Locator
0[11 [22 ["name"]]] - Output Divert
P [11 [22 ["name"]]] - Print Screen
Q [1111] - Quicktrace
R - Register Display
S "name" 11 22223333 - Save Program
T 1111 22223333 - Transfer Memory Block
U - Test Color RAM
V 1111 2222 - Verify RAM
W [1111] - Wal k
X[C] - Exit to BASIC
11111 - Decimal to Hex
$ 1111 - Hex to Decimal
+ 1111 2222 - Hex Addition
- 1111 2222 - Hex Subtraction
: 1111 223344556677 88 - Memory Modify
; 1111 22223344556677 - Register Modify
, 1111 11 [22 [33]] XXXX - Disassembly Modify

16

Copyright Notice

Copyright © 1982 by Human
ngineered Software. All rights

reserved. No part of this publication
may be reproduced in whole or in part
without the prior written permission
of HES. Unauthorized copying or
transmitting of this copyrighted soft­
ware on any media is strictly pro­
hibited.

Although we make every attempt to
veri fy the accuracy of this document,
we cannot assume any liability for er­
rors or omissions. No warranty or

ther guarantee can be given as to the
curacy or suitability of this software

ror a particular purpose, nor can we
1m liable for any loss or damage aris­
111 0 from the use of the same.

t tLSM()N 64 is a registered TM of
I II"S.

Copyright Notice

Copyright © 1982 by Human
Engineered Software. All rights
reserved. No part of this publication
may be reproduced in whole or in part
without the prior written permission
of HES. Unauthorized copying or
transmitting of this copyrighted soft­
ware on any media is strictly pro­
hibited.

Although we make every attempt to
verify the accuracy of this document,
we cannot assume any liability for er­
rors or omissions. No warranty or
other guarantee can be given as to the
accuracy or suitability of this software
for a particular purpose, nor can we
be liable for any loss or damage aris­
Ing from the use of the same.

HESMON 64 is a registered TM of
HES.

a..
CD
iii
~
'5
CI)

"0
CD
0;
CD

0c0>
c
w
c

'"E
::J
::c
C\I
<Xl
(J)

u

Human Engineered Software
71 Park Lane
Brisbane, California 94005
Telephone (415) 468-4110

