TH

PMENT

ADVAN(EDL GRAPH HICS DEV VELO
MMODORE6

E THE
EMFORT!

MACHINE LIGHTNING
by OASIS SOFTWARE

Copyright Notice

Copyright © by Oasis Software. No part of this manual may be reproduced on any
media without prior written permission fram Oasis Software.

This manual

Piracy has reached epidemic proportions and it is with regret that we are forced
to reproduce this manual in a form which cannot be photocopied. Our apologies for
the inconvenience this may cause to our genuine custamers. A reward will be paid
for information leading to the successful prosecution of parties infringing this
Copyright Notice.

NOTE

This manual is essential for the use of Machine Lightning. For this reason we
would warn custamers to look after it very carefully, as separate manuals will not
be issued under any circumstances whatsocever.

Copyright © by Oasis Software

CONTENTS
INTRODUCTION

64 - MAC

Loading fram Disk
Loading fram Tape
Notation
Directive Statements

. BYTE

. DBYTE

.WORD

.PAD

.END

. BLOCK

.ORG

. CEPMAC

. ENDMAC

. IFBQ

. IFNEQ

. IFPOS

. IFNEG

. IFEND

.ELSE

PRINT

.LIST

. NOLIST

. PAGE

. PAGEIF

.SKIP

.TITLE

.WIDTH

.HEIGHT

. INTNUM

.FILE
Camment Statements
Arithmetic Expressions in Cammand Mode
Using the Editor

Function Keys

EDITOR

RESIDENT

DISK

LIST

PRINT

DELETE

RENUMBER

MEM

NEW

AUTO

MANUAL

MOVE

QoPY

FIND

CHANGE
Editor error messages
Loading and Saving

LOAD

SAVE

Using a

FSAVE

MLOAD

MSAVE

OLOAD

OSAVE

oC+ & OC-

Printer

CENTRO

CTRL

*®

Printer pagenation
INTNUM

SETPAGE

SKIp

TITLE

Setting up the printer

DOS Support

e

Formatting a disk
Delete a file
Rename a file
Validate a disk
Duplicate disk
Copy file

Print Directory
Read errer Channel
Pattern Matching
DEVICE

Using more than one drive

The Assembler in Resident mode

ASM
OFFSET
RUN

The Assembler in Disk Mode

ASM

Assembler ERROR messages

64 - MON

Monitor Cammands

DECIMAL

MLIST

DUSR

The Symbolic Disassembler

BYTE
ASCII
WORD
DBYTE
TABLES
TABDEL
TABCLR

15
15
15
15
16
16
16
16
16
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
19
19
19
19
20
20
21
21
21
21
21

22

22
23
23
23
23
23
23
24
24
24
24
24
25
25

25
26
26
26
26
26
26

Defining Symbols
DASM
FDASM
SYS
Monitor ERROR messages
The DEBUGGER/TRACER
OPT

IRACE

6502 ARCHITECTURE
Byte - length registers
Word - length registers
Flags

6502 Instruction set

6502 Addressing Modes

NUMBER BASE TABLE/OP-COODES

THE GRAPHICS ROUTINES

Memory Organisation

Manory Locations

Passing Parameters

Accessing the Routines

Using Interrupts

Creating a stand alone program

SOUND ROUTINES

EXAMPLE SUBROUTINES

26

27
27
27
27
27
28

28
28
28
28

28
28
28

29
29
29
29
29
30
32
35

39

58

MACHINE LIGHTNING FOR THE COMMODORE 64

by David Hunter

The COMMODORE 64 is widely recognised as having the most powerful sound and
graphics hardware available on any hame camputer, and as a result of this there is
a rich selection of video games available for it, the most successful of which are
written in machine code. The author of such a game has two major problems to
overcane - he has to have same way of designing the graphics to be used in the
game, and he has to have a set of debugged machine-code routines to place the
graphics on the screen. Machine Lightning is designed to overcame these problems.
It contains all the ingredients needed to produce cammercial machine-code games,
and consists of four campatible parts:

1. TMik SPRITE GENERATOR

This is used to design and edit graphics to be used in the game. The sprites are
saved to tape or disk in a form that can be used by the graphics routines.

2. BASIC LIGHTNING

Basic Lightning is an extension to the 64's BASIC interpreter which contains
camands corresponding to the graphics routines in Machine Lightning. Thus, you
can use Hasic Lightning to test ideas easily before implamenting them using
Machine Lightning. Basic Lightning is also available separately.

3. 64-MAC/MON

This is a cambined assembler/monitor which is used to write the game itself. Of
course, you don't have to use it for writing video games; it can be used like any
other assembler. 64-MAC/MON was used to write the graphics routines which are part
of the Machine Lightning package, and it was also used to write Basic Lightning.

4. THE GRAPHICS ROUTINES

The graphics routines consist of 10K of machine code with routines to PUT and GET
software sprites to and fram the screen, scroll, enlarge or spin sprites and
exchange data between two sprites or the screen. Collision detection is supported,
as well as the 64's own hardware sprites.

Games written using the graphics routines can be marketed without restriction -
all we ask is that you put a small credit on the packaging.

The sprite generator program and Basic Lightning are described in the Basic
Lightning manual which is included along with this one. Before you can use the
graphics routines, you will have to read the section on Basic Lightning's graphics
cammands.

Most of this manual is taken up by the instructions for 64 MAC/MON; Section 19
deals with the graphics routines.

64-MAC/MON 1.

64-MAC/MON provides a camprehensive set of over 70 cammands for writing and
debugging assembly language programs on the COMMODORE 64. It includes a line
editor for the creation of source text, a full two-pass macro assembler, a
symbolic disassambler, a machine code monitor and a tracer.

The editor autamatically checks the syntax of lines as they are typed in, and
formats the source text when it is listed. It includes block delete, move and
copy as well as search and replace commands and autamatic line numbering.

The assembler can be operated in either 'resident' or 'disk' mode. Resident mode
is ideal for learning about assembly lanquage or writing small programs - assembly
is extremely fast, at over 20,000 lines per minute. Because text is tokenised
when in memory, programs of over 2,500 lines can be written without having to use
disk mode. In disk mode, linked files on floppy disk may be assambled. The size
of program that can be written in this manner is only limited by the amount of
mass storage available; about 8,500 lines of code in the case of the 1541 single
floppy disk. The assambler also includes conditional assambly, cross-referencing
and a printer pagination facility.

The machine-code monitor cammands allow direct inspection and modification of
memory - cammands to list, move, relocate, campare, modify, search and disassemble
blocks of memory are included. Up to 16 blocks which are printed as .BYTE, .WORD
or .DBYTE directives when disassembling may be defined.

The tracer can single step through a machine-code program, displaying the register
contents and the contents of up to 16 memory locations after executing each
instruction. Options exist to suppress scingle stepping and register printing or
to print only the program counter. Up to 16 locations can be defined at which the
registers are always printed, even if register printing is disabled.

Two copies of 64 MAC/MON are supplied with the disk version - one is located in
low memory and one in high memory. Only the low memory version is supplied on
tape.

The low memory version occupies memory from $0800 to $47FF. The BASIC ROM fram
$A000 to $BFFF is switched out of memory after 64 MAC/MON has loaded, of after
using RUN/STOP-RESTORE. However, 64 MAC/MON will still operate correctly if you
re-enable the ROM by setting bit 0 of location 1.

The high memory version resides fram $9000 to SCFFF. The BASIC ROM is enabled
whenever memory is accessed by one of the monitor cammands. This version 1s
incampatible with the graphics routines.

Note that in both cases, full use of the zero page by the user's.programs is
allowed.

1. LOADING

1.1 TOADING FROM DISK

After switching on the camputer system, insert the floppy disk into the drive and
type the following:

LOAD "ML",8,1

After about ten seconds you are asked to press "L" or "H" to select between the
low and high memory versions. Once you have done this it takes approximately one
minute to load.

1.2 LOADING FROM TAPL

After switching on type SHIFT RUN-STOP and start the tape recorder.

1.3 When 64-MAC/MON has loaded, the following message is printed:
64-MAC/MON V1.2L
QUPYRIGHT' 1984 DAVID HUNTER

NEW (Y/N)? Y
TEXT MEMORY?

Unless you wish to reserve memory for your own machine code routines, hit RETURN -
this reserves memory fram $4800 to SCFFF for use as text storage, giving 34816
bytes free. Otherwise, type in the lower and upper limits of memory to be used,
separated by a camma.

A 'BYTES FREE' message is then printed, follwed by the READY prawpt.

Note that the camputer's memory is campletely clearod after loading, but it
remains unaltered after subsequent NEW cammands.

The following locations in pages 2 and 3 :are altered by 64-MAC/MON:

$0200 to $0258 used for temporary string storage.

$028A repeat key flag.

$0291 disables SHIFT keys.

$0300 to S030B re-vectored to 64-MAC/MON warm start.

$0314 to $0315 IRQ re-vectored to allow us: of function keys.

2. 6502 ASSEMBLY LANGUAGE

This section is not intended to teach assembly language programming - if you are a
novice to the subject, we suggest that you read '6502 Assembly Language
Programming' by Lance A. Leventhal, which is published by McGraw-Hill. Another
worthwhile text is '6502 Assambly Language Subroutines' by Leventhal and Saville,
published by Osborne/McGraw-Hill. However, the information presented here should
suffice if you have knowledge of another microprocessor.

2.1 NOTATION

2.1.1 A <label> consists of a letter followed by up to fourteen of the following
characters:

LF LA , 9'..'9!' , PR , L , l$l

Examples: COOMPARE $NAMES OUTPUT3 T9

2.1.2 A <numerical constant> consists of one of the following:

"$" followed by a binary number

"@" followed by an octal number

a decimal number

"$" followed by a hexadecimal number

"t" followed by an ascii character (followed by an optional
second quote)

Examples: £00001101 $ACD9 '7 19 '&!
2.1.3 An <expression> consists of <numerical constant>s and/or <label>s separated
by the following operators:

"+" add

"-" subtract

"*" multiply

"/* divide

"?* exclusive-or
“&" logical and

There is no operator precedence, and brackets may not be used (this only applies
to <expression>s that are included as part of an assembly language program). If
'<' is placed before an expression, it is converted to a '&255' at the end of the
expressian when printing; similarly, '>' is converted to '/256°'.

Examples: NUMBERSBASE+3 <INTERPRETER-1 INPUI'SBUFFER/256 'Z'+l

2.1.4 A <string constant> is a number of ASCII characters enclosed in single
quotes. If one of the characters is to be a quote then two successive quotes must
be used.

Examples: ' BPLBMI BOCBCSBNEBEQBVCBVS ! reee 'S’y
2.2 ASSEMBLY LANGUAGE STATEMENTS

There are three types of assembler statements: directives, instructions and
caments.
2.2.1 Directive Statements

These may be considered as instructions which are obeyed at assembly time rather
than run time, A directive statement consists of the following:

<label> <directive> <operand> <camment>
The label and camment fields are optional, and the operand field is not required

in same cases. This assembler supports 27 directives, details of which are given
below:

2.2.1.1 .BYTE directive

This is used to define single-byte constants. It should be followed by a number
of <expression>s and/or <string constant>s separated by commas.

Bxamples:
POWERSOF'2 .BYTE 1,2,4,8,16,32,64,128
HEXCHARS .BYTE '0123456789ABCDEF* ,0

2.2.1.2 .DBYTE directive
This has the same syntax as .BYTE but it generates two-byte constants in
high-byte/low-byte order.
2.2.1.3 .WORD directive

This is the same as .DBYTE but the constants are in low-byte/high-byte order.

2.2.1.4 .PAD directive
The .PAD directive is used to pad out an area of program with NOP bytes.
Examples: .PAD *&SFF00+256-*
.PAD 6
2.2.1.5 .END directive
This is used to mark the end of an assanbly language program. It is optional if
the assembler is being used in resident mode.
2.2.1.6 .HOCK directive

This directive is used to reserve space - it is followed by an expression which is
added to the location counter.

Bxamples: INPUT$BUFFER BIOCK 72
XPOS .HDOCK 2

2.2.1.7 = (equals) directive
The '=' directive is used to equate a label to an <expression>.

Bamples: INTERRUPTPER IOD=3906/SAMPLERATE
CR =13

It is important to realise that these calculations are carried out at assambly
time, not run-time.

2.2.1.8 '*' is a reserved symbol which refers to the location counter during
assembly. The program location counter may be set like this: *=$9000, and blocks
of memory may also be reserved:

INPUT$BUFFER *=%4+72

2.2.1.9 .ORG directive
This is used to set the program location origin.
Example: .ORG $9000

Although this appears to be the same as *=$9000, there is a subtle difference
between them which is explained in section 9.3.

2.2.1.10 .DEFMAC directive

This directive should be placed at the start of a macro definition. The label
preceding the directive defines the macro name. It should be followed by a list
of formal parameter labels separated by cammas.

2.2.1.11 .ENOMAC directive

.ENDMAC is used at the end of a macro definition,

2.2.1.12 To call a macro in the program body, its name should be preceded by a
colon and followed by a list of actual parameter expressions separated by cammas.

Example... 1230 ouTPUT .DEFMAC START,MODE

1240 LDA #START&255
1250 LDY #START/256
1260 LDX #MODE

1270 JSR PRINT

1280 . ENDMAC

3450 BNE LOOP

3460 :OUTPUT ALPHA+6,3

In resident mode, macros can be defined anywhere in the text- either before or
after they are used, although it is best to keep them near the top of the program
as this speeds up assembly. When assembling programs in disk mode, all macro
definitions must be in the first file.

I1f a symbol is defined inside a macro and the macro is called more than once then
a 'label defined twice' error message will probably be printed. To circumvent
this problem, use the '*' symbol as in the following example:

100 DELAY .DEFMAC [EL
110 LDX #DEL
120 DEX

130 BNE *-1

140 ENDMAC
960 :DELAY 10
990 :DELAY 20

.

2.2.1.13 .IFEQ directive

If the expression following this directive is zero, assembly continues as normal,
otherwise code generation is suppressed until the next .FISE or .IFEND.

2.2.1.14 .IFNEQ directive

If the expression following this directive is non-zero, assembly continues as
normal, otherwise code generation is suppressed until the next .ELSE or .IFEND.

2.2.1.15 .IFPOS directive

If the expression following this directive is in the range 1 to 32767, assembly
continues as normal, otherwise code generation is suppressed until the next .ELSE
or .IFEND.

2.2.1.16 .IFNBEG directive

If the expression following this directive is in the range 32768 to 65535,
assembly continues as normal, otherwise code generation is suppressed until the
next .ELSE or .IFEND.

2.2.1.17 .IFEND directive

This is used at the end of a conditional assembly .IF construct- assembly after it
proceeds as normal.

2.2.1.18 .ELSE directive

This works like the ELSE statement in extended BASICs- if code generation is
suppressed, it is enabled, and vice-versa.

2.2.1.19 Examples of conditional assembly:

17450 oUTPUT . IFBQ CBM64

17460 JSR $F¥FD2 ;CBM64 OUTPUT ROUTINE
17470 BCS ERROR1

17480 .ELSE

17490 STX TEMP

17500 ‘TAX

17510 JSR $0238 ;ORIC AIMOS OUTPUT ROUTINE
17520 LDX TEMP

17530 PHA

17540 LDA KEYCHAR

17550 OMP #583 ;CONTROL-C?

17560 BE) ERROR2

17570 PLA

17580 . IFEND

2750 LDA #PRINTERON&255

2760 LDY #PRINTERON/256

2770 BIT PRINTERFLAG

2780 BMI PRINIMESSAGE

2790 PRHI =PRINTEROFF/256

2800 .IFNBQ PRINTERON/256-PRHI
2810 LDY #PRHI

2820 . IFEND

2830 LDA #PRINTEROFF&255

2840 PRINTMESSAGE JSR OUTPUTSMESSAGE
2.2.1.20 .PRINT directive

This directive should be followed by a <string constant> which is simply printed
when the directive is encountered during assembly.

Example: 19270 MESSAGES
19280 MSGl .BYTE '2?SYNTAX ERROR',0
19290 MSG2 .BYTE 'NUMBER TOO BIG',0
19440 MSG17 .BYTE 'FOUND ',0
19450 MSGEND)
19460 . IFNBQ MSGEND-MESSAGES/256
19470 .PRINT 'MESSAGE TABLE IS LONGER THAN 256 BYTES'
19480 .END
19490 . IFEND

2.2.1.21 .LIST directive

This directive turns on the generation of an assembler listing, except if object
code is being assembled to disk or tape.

2.2.1.22 .NOLIST directive

This turns off the generation of an assembler listing.

2.2.1.23 .PAGE directive

If an assembler listing is being output to the printer, this directive will start
a new page.

2.2.1.24 .PAGEIF directive

This should be followed by an <expression>- if this is greater than the number of
lines left on the page, a new page is taken, otherwise one line is skipped. This
only takes place if an assembler listing is being ocutput on the printer.

Example: .PAGEIF 24

2.2.1.25 .SKIP directive

This is used to print a certain number of blank lines when assembling a listing to
the printer.

Example: .SKIP 2

If the number is left out, a default value of 1 is assumed.

2.2.1.26 .TITLE directive

This should be followed by a <string constant> which will be printed at the top of
each new page on the printer.

Example: .TITLE 'C64 MACRO ASSEMHLER'

2.2.1.27 .WIDTH directive
This sets the number of characters printed per line on the printer.

Example: .WIDIH 96

2.2.1.28 .HEIGHT directive
This sets the number of lines printed per page on the printer.

Example: .HEIGHT 66

2.2.1.29 .INTNWM directive

This initialises the printer page number to zero.

2.2.1.30 .FILE directive

This directive is used to link files together in disk mode. At the end of each
file, there should be a .FILE directive followed by a <string constant> consisting
of the name of the next disk file.

Eample: .FILE 'AsSM4'’

2.2.1.31 All directives, apart fram .PAGE, .END and .ENDMAC may be abbreviated to
their first three letters.

Example: .BYT $C9,$A9,$89

2.2.2 Instruction statements

An instruction statement consists of:

<label> <opcode mnemonic> <operand> <camment>

The <label> and <camment> fields are optional. Details of the allowable <opcode

memonic>s and <operand>s are given in sections 16 and 17 of this manual
respectively.

1f during the first pass of assembly an instruction which has both zero page and
absolute addressing modes has as its operand an undefined expression, as in this
example:

10 *=12345

20 LDA FIVE
30 ABCDEF JMP ABCDEF
40 FIVE =5

and the expression is evaluated during the second pass as being less than 256, the
assembler will insert an extra NOP byte before the next label definition during
the second pass.

2.2.3 Cament statements

A cament statement consists of the following:

; <cament>

The <camment> may be any cammentary whatsoever.

3. ARITHMETIC EXPRESSIONS IN COMMAND MODE

3.1 In canmmand mode, line numbers, memory locations and so on are expressed as
<expression>s, as defined in 2.1.3, with the difference that brackets may be used
and operator precedence exists. A '#' is used to represent the logical-or
operator. A full stop may be used to represent the last result fram the CALC
cammand, and !<label> gives the line number in which a label is defined.

3.2 A <string> is defined as a series of characters bounded by one of the
following delimeters:

LS se () ¥+, -/

If the <string> is to be followed by an end-of-line, the delimeters may be
anitted.

4. USING THE EDITOR

4.1 The screen editor may be used as in BASIC. The RUN/STOP key terminates a
listing at any time. CTRL slows down printing and the SPACE bar can be used to
temporarily halt a listing- pressing it again restarts the listing.

4.2 FUNCTION KEYS

‘The function keys may be defined as follows, where n is the number of the function
key:

Fn=<string>

10

The back-arrow key at the top left of the keyboard can be used to represent
RETURN

Examples: F7=% .BYTE %
F4=AM, L

4.3 If you type in a line number followed by a line of 6502 assambly language, the
editor will put the line into memory according to its line number (these may be 1
to 65535). A line number followed by RETURN deletes that linc, and a line with
number zero will be put immediately after the last line enterad or deleted.

If the editor finds a syntax error in a line of source code, it prints an arrow
pointing to the error and an error message. This feature can hx: suppressed using
the EDIIOR cammand.

In any situation which could result in the destruction of the source text, the
editor will prampt with 'ARE YOU SURE (Y/N)? ' before proceeding.

In the following list of cammands, each ane is followed by its abbreviated version
in brackets.

4.4 EDITOR (ED.) cammand

This command puts the assembler into 'EDITOR' mode which disables the autamatic
syntax checking of lines; in this mode the text is not tokenised and therefore
cannot be assembled. Entering or leaving this mode destroys any text that is in
memory.

4.5 RESIDENT (RES.) cammand

This canmand puts the assembler into 'RESIDENT' mode in which programs may be
assambled directly fram memory. Further details are given in section 9 of this
manual.

4.6 DISK (DISC or DI.) cammand

This cammand puts the assembler into 'DISK' mode in which programs may be
assembled fram disk. Further details are given in section 10 of this manual.

4.7 LIST (L.) command

This is used to list lines of text. It may be followed by one or more line
specifications (separated by semicolons) of the following types:

<lire number>
<first line>,<last line>
,<last line>
<first line>,

Missing out the line specifications will list the whole source text.

Bxamples: LIST
LIST 23790
L. !'PRINTMNEMONIC,
LIST ,100;110;150,160
L. 23990
LIST 100,100+70

"

4.8 PRINT (P.) cammand

This is the same as LIST but no line numbers are printed.

4.9 DELETE (D.) cammand

This cammand is used to delete lines fram the source text- the syntax is the same
as for LIST. The editor will list the lines and then prampt with 'ARE YOU SURE
(Y/N)? ' before the lines are actually deleted - hit 'Y' to carry out the
deletion.

Examples: D. 23770
DEL 1440;2680;3725,3737

4.10 RENUMBER (R.) cammand
This renumbers lines in the text. It may take any of the following forms:

RENUMBER
first line no.=10, step size=10

RENUMBER X
first line no.=X, step size=10

RENUMBER X,Y
first line no.=X, step size=Y

If renumbering would cause a line number greater than 65535 to be generated, the
text is renumbered fram line 1 in steps of 1. After renumbering, the last line
number+step size is printed.

Examples: RENUMBER
R. 10000
REN. 100,25

4.11 MEM (M.) cammand

This command returns a message giving the free memory total and the current editor
mode. If the source file is very long there will be a delay of a few seconds
while symbol table garbage collection is carried out.

4.12 NEW (N.) cammand

This erases the source program in memory and then prampts for the memory to be
reserved for source text.

4.13 AUTO (AU.) cammand

This puts the camputer into AUTO mode- after a line number and text is entered,
the next line number is automatically printed. The default value of the step size
is 10. This can be changed by placing the new value after the command. If the
step size is zero, line number Os only are printed. To stop the printing of the
numbers, enter a blank line.

Bxamples: AU.
AUTO 5

12

4.14 MANUAL (MA.) cammand

This brings the computer ocut of AUTO mode.

4.15 MOVE (MD.) cammand

This cammand is used to move a block of lines fram one part of the text to
another. It takes the following form:

MOVE <new line number>=<first line>,< last line>
After the lines have been moved, the first line is renumbered to the <new line
number>, the rest being renumbered to line 0. If the <new line number> already
exists, an error message is printed.
Examples: MOVE 1475=2510,2850

MO. 23000=570,810
4.16 COPY (CO.) cammand
This is similar to MOVE, the difference being that the lines are not deleted fram
their original position once they have been moved.

4.17 FIND (FI.) camand

This cammand is used to find the location of a sequence of characters in the text.
It takes the following forms:

FIND <string>
FIND <string> <line specification>

The second form should be used if it is desired to search only a part of the text.
When the <string> is found, the line in which it appears is printed.

Examples: FIND "JSR"

FIND & HEXOUT& 1140,2930
4.18 CHANGE (CH.) cammand
This cammand is used to change all occurrences of a particular series of
characters. It should be followed by two strings and a line specification. The
delimiter at the end of the first string should not be duplicated at the start of
the second string.

Examples: CH. {HEXOUT! HEX $ BYTESOUT'!
CHANGE %JSR OUTCH®%JSR OUTCHR$ 3980,7620

5. EDITOR ERROR MESSAGES
The following error messages can be generated by the editor:

OUT OF FUNCTION KEY SPACE
All the function key definitions may not total more than 119 chracters.

13

NUMBER TOO BIG

EXPRESSION TOO OOMPLEX
An expression has too many levels of nested parenthesis.

DIVISION BY ZERO

LABEL TOO LONG

A label was found which is longer than 15 characters; the editor uses anly the
first 15.

LABEL DOES NOT BEGIN WITH A LETTER
"A" IS A RESERVED L[ABEL

6502 OP-CODES ARE RESERVED LABELS
A 6502 op—code mnemonic was used as part of an expression.

BAD INDEX

Index must be X or Y. This message is also generated if either (<expression>,Y)
or (<expression>),X are encountered.

BAD DIRECTIVE
A string was found after a full stop which is not one of the legal directives.

* FULL *
You have run out of mamory space.

FILE ERROR

STRING TOO LONG
The maximum length allowable is 64 characters.

OUT OF RANGE
An attempt was made to move a block of text to a location within itself.

SYNTAX ERROR
The error does not fall into ane of the above categories.

8. LOADING AND SAVING

6.1 LOAD (10.) cammand

This is used to load source files into memory. It should be followed by a
<string> for the filname.

To merge a file onto the program in memory, follow the filename with a camma
(optional) and the line number where the text is to be inserted. The text is
always inserted before the line specified if it exists. Using this facility,
subroutines that have been previously written, debugged and saved can be
incorporated into a program.

If a line is loaded which is not valid, it is listed on the screen to be correctec
after loading.

14

Bxamples: LOAD XBASIC

LOAD SHEXPRINT® 200

LO. !Al!

LOAD

LOAD (SOURCE(, 300
6.2 SAVE (SA.) command
This saves the source text to disk or tape. The filename may be followed by a
line specification (as defined in Section 4.7) if only part of the source file is
to be saved.
Examples: SAVE $PART6S 100,400

SAVE

SAVE @0:ASM1
Source text is saved in a campressed format: all unnecessary spaces are removed,
and any that remain are removed and bit 7 of the next character is set.
6.3 FSAVE (F.) cammand
This cammand is similar to SAVE, but the text is saved formatted as it would be
printed, without any text campression.
6.4 MLOAD (ML.) cammand
This is used to load machine-code files that have been saved in the standard
format. To load it at a different address than it was saved at, follow the
filename with the new start address; this may be preceded by a comma.
Examples: MILOAD LOADER

MLOAD

MLOAD 'SPRITES',$8000
6.5 MSAVE (MS.) camnand

This saves machine-code in the standard format. The oammand should be followed by
the filename, start address and end address, all separated by cammas.

Examples: MSAVE $TITLE SCREENS$, $A000,SC000
MSAVE SOUTPUT PATCHS$,$C000,$C180
6.6 OLOAD (OL.) ocammand

This loads object code that has been saved .in ASCII format; this is the format
used for object code files generated by the assembler.

The cammand should be followed by the filename.

Example: OLOAD 'OBJECT'

15

Each byte of data to be stored is converted into two half bytes which are
translated into their ASCII equivalents ('0' to 'F'). Each output record begins
with a ';' character. The next byte is the number of data bytes contained in the
record. The record's starting address High (1 byte, 2 characters), starting
address Low (1 byte, 2 characters) and data (maximum 24 bytes, 48 characters)
follow. Each record is terminated by the record's checksum (2 bytes, 4
characters) and a carriage return.

The last record saved has zero data bytes (indicated by ;00). The starting address
field is replaced by a four digit hexadecimal number representing the total number
of data records contained in the file, fallowed by the record's usual checksum
digits.

Bxamples:

; 180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC
;0000010001

Note: A program is supplied with Machine Lightning under the filename "LOADER"
which loads data in ASCII format and can be run fram BASIC.
6.7 OSAVE (0S.) Cammand
This saves object code in ASCII format, details of which are given above. The
command is followed by a filename, and the start and end addresses separated by
commas. More than one block of data may be saved by separating several start and
end address pairs with semicolons.
Examples: SAVE &TESITFILES, $4C00,$5000

SAVE $PART6S,$6000,$7000;$81F3,$8230

6.8 OC+ and OC- commands
After executing the OC+ cammand, all object code is saved in a campact format in

which bytes are output directly to disk rather than bring printed in hex and the
record start character is ':' rather than ';'.

The 0C- camand is used to revert to the normal format.

7. USING A PRINTER

7.1 CENIRO (C.) cammand
The assambler is set to use a serial bus printer (device number 4) upon

initialisation. To use it with a centronics interface printer connected to the
user port, type 'CENTRO+'. To revert to the serial bus printer, use 'CENTRO-'.

7.2 CIRL (CT.) ocammand

This can be used to send a series of control codes to the printer for
initialisation purposes. It should be followed by one or more <expression>s
separated by cammas.

Bample: CTRL 27,'M

16

7.3 * command
Placing an asterisk before any cammand will direct its output to the printer.
Examples: *L. 4920, 5260

*AM, L, C
7.4 Printer Pagination
At the top of each new page, a heading consisting of a title and a page number is
printed, The following cammands are available (same are also assembler
directives):
7.4.1 [INTNUM cammand

This sets the current page number to zero.

7.4.2 SETPAGE cammand

This is used to define the paper size. The command can exist in either of the
following forms:

SETPAGE X Sets the paper width to X.
SETPAGE X,Y Sets the paper width to X and page height to Y.

The minimum value for either of these parameters is 16; the maximum is 127. To
disable paging, set the page length to zero.

7.4.3 SKIP cammand.

This is used to skip a certain number of lines.

Example: SKIP 15

7.4.5 TITLE cammand
This sets the title that is printed at the top of each new page.

Example: TITLE SOURCE QODE LISTING

7.5 Setting up the Printer.

After loading the assembler, position the print head at the top of a new page.
This ensures that subsequent page headings will be properly aligned.

The paper width and neight are set to 80 and 66 respectively after 64-MAC/MON has
been loaded.

17

8. DOS SUPPORT

8.1 @ (or >) cammand

This sends a camand to the disk drive. The legal cammands are:

8.1.1 Format a Disk: @N<drive number>:<disk name>,XX

XX is a unique 2-character identifier; amitting it results in all files being
deleted rather than re-formatting the whole disk.

Example: @NO:DISK 1,99

8.1.2 Delete a File: @S<drive number>:<filename>
Pattern matching using '*' and '?' may be used to delete groups of files.
Examples: >S1: ASM*
@S0:0BJECT
8.1.3 Rename a File: @R<drive number>:<new file name>=<old file name>

Example: @RO: PROGRAM=P6

8.1.4 Validate a Disk: @v<drive number>

This reconstructs the Block Availability Map on the disk. If you suspect that a
disk is corrupted, this command will prevent further corruption of files. It
should also be used if you have any files on the disk that are not properly
closed.

8.1.5 Duplicate Disk: @D<destination drive mumber>=<source drive number>

Example: @D1=0

8.1.6 Copy File: @C<drive number>:<new filed>=<drive number>:<old file>
This command can also be used to concatenate several files:
@C«drive numberd>:<new filed>=<drive number>:<file 1>,<drive number>:<file 2>
A maximum of four files can be joined in this manner.
Examples: >0 : PROG2=0: PROG1

©8Cl:SOURCE=0:A1,0:A2
8.1.7 Print Directory: @$<drive number>:<filename>

The 'DIR' cammand can be used instead of '@S$'

18

Examples: >$

@$0: AM*

@$1:MONI'TURS?000

DIR $0:A*

DIR
8.1.8 Read Error Channel: @ or > or ERR
This will print out an error number, error name, and track and sector numbers.
Further details of these cammands can be found in your disk drive manual. For a
single disk drive, the <drive number> should always be 0.
8.2 Pattern Matching
Pattern matching can be used with IOAD and DOS cammands. The two symbols used are
'*! (signifies 'with anything following') and '2?'. '?' matches with any
character.
For example, 'OOM??2?R*' can bc used to specify 'OOMMODORE' and 'OOMPUTERS' but
not 'OOMBINATION'.
8.3 DEVICE (DEV. or #) cammand
This is used to change the divice number used in LOAD, SAVE and DOS cammands.

Example: 'DEVICE 1' will allow loading and saving of files fram tape.

8.4 Using more than one Disk Drive Unit.

Drive numbers 2 to 7 may be used to specify device numbers 9 to 11 as shown in the
table below:

USER FILENAME DEVICE DISK FILENAME
0: filename 8 0: filename
@0: filename 8 @0: filename
1:filename 8 1:filename
@l:filename 8 @l:filename
2:filename 9 0: filename
@2: filename 9 @0: filename
3:filename 9 1l:filename
@3:filename 9 @l:filename
4: filename 10 0: filename
@4: filename 10 @0: filename
5:filename 10 1:filename
@5:filename 10 @l:filename

19

6: filename 11 0:filename

@6:filename 11 @0: filename
7:filename 11 1l:filename
@7:filename 11 @l:filename

N.B. Due to the lack of bus arbitration on the serial bus, the system will hang
if you try to write to one disk drive while reading fram another.
8.5 The "t' Filename .
If you save a file under the filename '¢', the assembler will use the filename in
a comment on the first line of the source program currently in memory. For
example, if the first line is:

10 ;@0: PROG

typing 'SAVE 1" is equivalent to typing 'SAVE @0:PROG'.

9. THE ASSEMBLER IN RESIDENT MODE
In RESIDENT mode, the source file is held in memory.

9.1 ASM (A.) cammand

This cammand assembles the source file. It may be followed by letters, preceded
by cammas, which are used to select various options:

A full assembler listing is generated.
Assembles directly to memory.
Assembles object code to tape or disk.
A ooncordance listing is agenerated.

ooxt

Examples: AM,0
A.,L,C
A.

9.1.1 Each line of the assembler listing consists of the following:

line number, address (in hex), object code, source line.

9.1.2 If object code is assembled to tape or disk, you are prampted for the
object filename before assembly starts. The object code file is closed if any
errors occur. Note that the object code generated by the assembler cannot be
loaded directly into memory - it must be loaded using either the OLOAD cammand in
the 64 MAC/MON or the special object code loader program supplied.

9.1.3 Two concordance listings are actually printed: the first has the labels in
alphabetical order, and the second has them in numerical order. Each line of the
concordance listing contains the label, its value, the line that it was defined in

?pd (';he lines in which it was referred to. This is printed after the assembler
isting.

20

9.1.4 If an error is found, a pointer will be printed pointing to the error,
followed by an error message. A full list of error messages is given in Part 11
of this manual.

9.2 QFFSET (0.) cammand
This sets an offset which is added to the location counter when object code is
being output using the O or M options. This offset also applies to the OLOAD,
OSAVE and monitor-type cammands.
Examples: OFFSET $9800

0.-$E000
9.3 RUN command

This cammand assembles and executes an assembly language program, allocating
memory to place the object code in.

The start address of the program itself should be defined with a .ORG directive
(see Section 2.2.1.9), but when the location counter is set to reserve space, *=
should be used.

10. THE ASSEMBLER IN DISK MODE

10.1 In DISK mode, the source program is held on disk as a series of linked
files. The files are linked with .FILE directives (see Section 2.2.1.30). The
last file should finish with an .END directive (Section 2.2.1.5).

10.2 All macros must be defined in the first file; this is kept in memory
throughout the assembly. This file should be short, so as to leave as much space
as possible for the symbol table. If there is a symbol table overflow, a '* FULL
*' error message is printed, and assembly is aborted.

10.3 ASM (A.) cammand
In disk mode, the ASM cammand should not be followed by option letters as in
resident mode. Instead, the camputer asks if a listing, concordance listing or

object code is to be generated. When prampted for the source filname, give the
name of the first file.

If there is a source file in memory, you are given the option of saving it since
it will be destroyed by assembly in disk mode; if you do not wish to save it, hit
return when you are prampted for the filename.

m. ASSEMBLER ERROR MESSAGES

The assembler can generate the following error messages:

FWD REF OR UNDEFINED LABEL IN .BLOCK OR ORIGIN DIRECTIVE

il

.BYTE DIRECTIVE DATA TOO BIG
The .BYTE directive can only accept data less than 256.

BRANCH OUT Of RANGE
A relative branch must be to an address within the range *-126 to *-129.

BAD OP-CODE/CGPERAND OOMBINATION
LABEL ALREADY DEFINED

IMMEDIATE OPERAND TOO BIG
Immediate operands must be less than 256.

IRRESOLVABLE FWD REF QR UNDEFINED LABEL
The label has not been defined in the source file.

MACROS NESTED TOO DEEP
Macros can be nested up to a maximum of 32 deep.

TOO MANY .ENDMACS
An .ENDMAC was found without a corresponding .DEFMAC.

TOO MANY .DEFMACS
A .DEFMAC was found inside a macro definition. This message is also generated if
the assembler runs off the end of the source text in the middle of a macro.

WRONG NUMBER Of PARAMETERS
The wrong number of parameters were used in a macro call.

UNDEFINED MACRO

CONCORDANCE TABLE OVERFLOW
This message is printed at the end of assembly.

CQONTEXT ERROR IN DISK FILE
Disk mode only; a line was found in the source file which is not a valid line of
6502 assembly language. This probably means that the disk is corrupted.

ASSEMBLY TO RESERVED MEMORY

An attempt was made to assemble on top of zero page, the source text, the symbol
table or the assembler. This also happens if there is not enough roam for the
object code in the RUN cammand. This message is only given if an assembly to
memory is being carried out.

12. MACHINE CODE MONITOR COMMANDS

These cammands allow you to inspect and modify memory directly; they include a
symbolic disassembler. The offset as set by the OFFSET cammand is added to all
locations when they are referred to.

A <byte string> is defined as a series of <string constant>s (see Section 2.1.4)
and/or expressions (see Section 3.1) separated by cammas.

Example: 1,2,'ARC',9

12.1 DBCIMAL (DE.) cammand

This puts the monitor cammands into DECIMAL mode: all numerical output is in base
10.

12.2 HEX (H.) cammand

This puts the monitor cammands into HEX mode: All numerical output is in base

16.

12.3 CAIC (?) cammand

This evaluates an expression and prints the result as an ASCII character, and in
binary, octal, decimal and hex.

Examples: CALC 'A'+l
'B' 301000010 @102 066 $42
READY.
? (9+3)/4
'.' 300000011 @003 003 $03
READY.

12.4 MLIST cawnand

This prints the contents of memory in both numerical and ASCII form. It can take
two forms:

MLIST <start address>
Lists memory 8 lines at a time. Hit <return> to continue, otherwise type in the
next command.

MLIST <start address>,<end address>
Lists a block of memory continuously.

For a different output format, replace MLIST in the above with:

MLIST@ <no. bytes per line>,<no. spaces between bytes>,<no. linefeeds between
lines>,

To change a byte in memory, simply move the cursor over it, change it and hit
<return>. If you don't hit <return>, the byte in memory will not be changed in
memory even if it is changed on the screen.

12.5 MDUMP (DUMP or MD.) cammand

This is similar to MLIST, the difference being that memory is not printed as ASCII
characters.

12.6 MFIND (MF.) cammand

This prints the addresses of all occurrences of a sequence of bytes between two
addresses:

MFIND <byte string> > <start address>,<end address>

Examples: MFIND $68,$20,$15, $DF>$E061, SF83C
MFIND 'BASIC'>$SA000,$C000
12.7 COOMPARE (CO.) cammand
This compares one block of memory with another, printing any differences:
COMPARE <start address l>=<start address 2>,<end address 2>
Example: If the memory contents are:

$8000: SO1 $02 $03 $04 $05 $06 $07 SO8
$9000: $01 $03 $02 $04 $05 $66 $07 $08

then the following would be printed:
QOOMPARE $8000=$9000,$9008
$8001=$02,$9001=$03
$8002=$03,$9002=$02
$8005=506, $9005=$66
READY.
12.8 MFILL (FILL) command
This fills a block of memory with a sequence of one or more bytes:
MFILL <start address>,<end address>=<byte string>
Examples: MFILL $D800,$DC00=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
MFILL $8000,$9000=SEA
12.9 MMOVE (MM.) cammand
This moves a block of memory fram one place to another:
MMOVE <new start address>=<old start addressd>,<old ond address>

Example: MMOVE $B000=$9012,$9200

12.10 RELOC (REL.) cammand

This is similar to MMOVE, the difference heing that all .JMPs ctc. are changed so
that the program will run at the new address.

Example: RELOC $5000=$A000, $C000

It is also possible to place the relocated program in a different part of memory
fram where it will run:

RELOC <memory address>,<run address>=<old block start>,<old block end>

12.11 MCHANGE (MCH.) command

This finds all occurrences of a sequence of bytes and replaces it with anothor:

MCHANGE <old byte string> > <new byte string> > <start address>,<end
address>

Example: MCHANGE$20, $91, $19>$20, $95, $19>$C900, SCA00

12.12 USR (U.) cammand

This performs a user-defined operation on a block of memory. A subroutine must be
supplied which carries out the required operation on the accumulator:

USR <subroutine address>=<start of block>,<end of block>
Example: Add 1 to all locations between $8000 and $9000

1. Assemble into memory:

10 *=$9800

20 Cc

30 ADC #1
40 RTS

2. USR $9800=$8000,$9000

The X and Y registers may be used in the subroutine

12.13 DUSR (DU.) cammand

This carries out a user—defined operation on double-byte quantities in a block of
memory. A subroutine must be supplied which carries out the required operation on
the accumulator (LOW) and X (HIGH).

Bxample: Subtract 1 fram each entry in a table of addresses between
$CBO0 and $CB4C.

1. Assemble into memory:

10 *=$C000

20 SEC

30 SBC #1

40 BCS RETURN
50 DEX

60 RETURN RTS
2. DUSR $C000=$CB00,$CB4C

The Y register may be used in the subroutine.
12.14 The Symbolic Disassembler

12.14.1 BYTE (B.) cammand

This is used to define blocks of memory which are printed as .BYTE directives when
disassembling; the cammand should be followed by the lower and upper limits of the
block, separated by cammas. Up to 16 blocks can be held in memory at once, and
more than one can be defined at a time by separating the blocks by semicolons.

Example: BYTE $9164,$9197;$9304,$9308

12.14.2 ASCII (ASC.) command

This is similar to .BYTE, but any ASCII characters are output as <string
oconstant>s.

12.14.3 WORD (W.) cammand

This is similar to .BYTE, but it defines blocks which are printed as .WORD
directives.*

12.14.4 DBYTE (DB.) cammand

This is similar to .BYTE, but it defines blocks which are printed as .DBYTE
directives.

12.14.5 TABLES (TA.) command

This prints cut a table of the blocks of mamory defined in the above four
commands.

12.14.6 TABDEL cammand

This has the same syntax as the byte cammand, but it deletes an entry fram the
table.

12.14.7 TABCLR camnand

This removes all entries fram the table defined by the BYTE, ASCII, WORD and DBYTE
cammands.

12.14.8 Defining Symbols for use by the Disassembler

If the symbol table has been destroyed by printing out the 'BYTES FREE' message,
the disassembler output is non-symbolic, and the address and object code are also
printed. After an error-free assembly, the disassembler will search the symbol
table when printing out any constants. The address and object code is not printed
out in chis mode. Thus, an assembler source file consisting of '=' directives
should be used to define symbols for use by the disassembler; the number of
symbols is only limited by the memory size, about 1500 if the full 34k is being
used for text storage.

12.14.9 DASM (DA.) cammand

This cammand is used to disassemble machine code in memory. It can take two
forms: -

DASM <address>
This disassembles in blocks of 23 lines. Hit <return> to continue, or type in the
next command.

DASM <start address>,<end address>
This disassembles a block of memory continuously.

12.14.10 FDASM cammand
This is used to disassemble to disk or tape:

FDASM <filename> <start address>,<end address>

Example: FDASM #BASTIC# $SA000,$C000

12.15 SYS cammand
This command calls a machine code subroutine.

Example: SYS $9804

12.16 Although all of the available zero page is used by the 64-MAC/MON, this
memory can be used in your own routines as it is exchanged with a set of temporary
storage locations when fetching or storing bytes in memory. Also, in the high
memory version, the BASIC ROM is switched on when accessing memory, so that it is
possible to disassemble it or use subroutines fram it in your own programs.

13. MONITOR ERROR MESSAGES

The monitor cammands can generate the following error messages:

WRONG LENGTH

The two byte strings in a MCHANGE cammand are of different length.
NOT IN TABLE

An attempt was made to delete a non existant table entry.

TABLE FULL
The tables can each hold only 16 entries.

OUl' OF RANGE
An attempt was made to RELOCate a program to a location within itself.

14. THE DEBUGGER/TRACER
14.1 OPT cammand

This cammand is used to select the tracer's mode of operation. The cammand should
be followed by zero or more of the following letters, each preceded by a camma:

: JSR mode.

: STEP mode.

: ADDRESS mode.
: REGISTER mode.

o> nQ

14.1.1 If JSR mode is enabled, all JSR instructions are executed rather than
traced, and tracing stops when a RTS instruction is found. This mode should be

used for debuqgqing subroutines, where the lower level subroutines have already
been similarly debugged.

27

14.1.2 1In STEP mode, you must press return each time the registers are
displayed. To terminate the trace, type in the next cammand as usual.

14.1.3 In ADDRESS mode, the address of each instruction executed is printed
out.

14.1.4 In REGISTER mode, the register contents are printed at each instruction.
I1f this mode is disabled, they are only displayed upon 'display-points’ (see
section 14.2).

14.2 DISP cammand

This is used to set the 'display points' at which the register contents are always
printed out. Several display points may be specified by separating them with
camas. A maximum of 16 display points may be specified. 'Display points' are
not the same as conventional breakpoints ; they are detected by the software in
the tracer rather than using a hardware BRK instruction, and they therefore are
not detected if a machine-code program is run using the SYS cammand, but, unlike
breakpoints, they may be set in ROM routines.

Example: DISP $8000,$8120

14.3 DISTAB cammand

This prints out a table of all the current ‘'display points'.

14.4 DISDEL ocammand

This has the same syntax as DISP but it deletes items fram the table.

14.5 DISCLR cammand

This clears all entries frorm the display point table.

14.6 REGS cammand

This prints out the contents of the CPU registers as usad by TRACE. The register
contents can be modified in the same way as memory locations with MLIST (see
section 12.4). Only the contents of A, X, Y, S and P are relevant to the SYS
instruction - SYS ignores the value of BC as given by RBEGS and the value of PC
after SYS is invalid.

14.7 LOC cammand

This has the same syntax as the DISP ocammand and is used to specify memory
locations whose contents are always printed out along with the registers.

14.8 LOCDEL command

This has the same syntax as LOC but it deletes items fram the table.

14.9 LOCCLR cammand

This deletes all entries from the table of locations specified by the LOC
command.

(A LOCTAB command is not included since the REGS cammand will print out a list of
the locations in the table).

14.10 TRACE cammand

This starts tracing at the memory location given by PC's value as it is printed
out by the REGS cammand. If a BRK or an illegal instruction is found while
tracing, a message is printed containing PC's current value and tracing is halted.

15. 6502 ARCHITECTURE

15.1 Byte-length registers:

(accumulator)

(processor status flag register)
(stack pointer)

(index register X)

(index register Y)

< XW0nor

The general purpose user registers are A, X and Y. ‘Th¢ stack pointer always
contains the least significant byte of the next available stack locatior in page 1
($0100 to $O1FF). The P register consists of a set of seven status flags.

15.2 Word-length registers:
PC (camputer counter)

Note: Pairs of memory locations in page zero may be uscd as word-length registers
to hold indirect addresses. The lower address holds the least significent (or
low) byte and the higher holds the most significant (or high) byte. Since the
6502 provides automatic wraparound, addresses $00FF and $0000 provide a rarely
used pair.

15.3 Flags:
The flags are arranged in the P register as follows:

bit flag purpose

C Carry

Zero

IRQ interrupt disable
Decimal mode

BRK cammand

Unused (always set to 1)
Overflow

Negative (sign)

NooubswNnHO
Z<XWOHN

16. THE 6502 INSTRUCTION SET

ADC - Add memory to accumulator with carry.
flags affected: N,Z,C,V (Z is invalid if in decimal mode).

AND - Logical 'and' accumulator with memory.
flags affected: N,2

ASL, - Arithmetic shift left. (Bit 7 goes to C flag, a 0 is shifted into bit
zero).

flags affected: N,Z,C

BCC - Branéh to destination if C flag=0

BCS - Branch to destination if C flag=l

BEQ - Branch to destination if 2 flag=l

BIT - Bit test. Logical 'and's ACC with memory and sets 2 on the result but does
not alter the contents of ACC. Bit 7 of memory goes to the N flag, and bit 6 goes
to the V flag.

flags affected: N,Z,V

BMI - Branch to destination if N flag=l

BNE - Branch to destination if Z flag=0

BPL - Branch to destination if N flag=0

BRK - Force IRQ interrupt.

BVC - Branch to destination if V flag=0

BVS - Branch to destination if V flag=l

CLC - Clear the carry flag.
flags affected: C(=0)

CLD - Clear the decimal mode flag.
flags affected: D(=0)

CLI - Clear the interrupt disable flag.
flags affected: I1(=0)

CLV - Clear the overflow flag.
flags affected: V(=0)

CMP - Campare accumulator with memory.
flays affected: N,Z,C

CPX - Compare X index register with memory.
flags affected: N,2,C

CPY - Campare Y index register with memory.
flags affected: N,Z,C

DEC - Decrement memory.
flags affected: N,2

OEX - Decrement X index register.
flags affected: N,Z

DEY - Decreament Y index register.
flags affected: N,2

HOR - Exclusive-or memory with accumulator.
flags affected: N,2

INC - Increment memory.
flags affected: N,Z

INX - Increment X index register.
flags affected: N,2

INY - Increment Y index register.
flags affected: N,2

JMP - Jump to new location.

JSR - Jump to a subroutine. Pushes the program counter+2 onto the stack and then
jumps to the location.

LDA - Load accumulator fram memory.
flags affected: N,2

LDX - Load X index register fram memory.
flags affected: N,Z

LDY - Load Y index register fran memory.
flags affected: N,2

LSR - Logical shift right. (Bit zero goes to carry, and a zero is shifted into bit
7.)

flags affected: N(=0),2

NOP - No operation.

ORA - Logical 'or' accumulator with memory.
flags affected: N,2

PHA - Push accumulator onto the stack.
PHP - Push processor status register aonto the stack.

PLA - Pull accumulator fram the stack.
flags affected: N,2

PLP - Pull procesor status register from the stack.
flags affected: restored

ROL - Rotate left through carry. (Carry is shifted into bit 0 and bit 7 is
shifted into carry.)
flags affected: N,Z,C

ROR - Rotate right through carry. (Carry is shifted into bit 7 and bit 0 is
shifted into carry.)
flags affected: N,Z,C

RTI - Return fram interrupt. Pulls status register and program counter off the

stack.
flags affected: restored

N

RIS - Return fram subroutine. Pulls an address off the stack, adds 1 and jumps
that location.

SBC - Subtracts memory fraom accumulator with carry. (Carry acts as an inverted
borrow.)
flags affected: N,Z,C,V (Z is invalid if in decimal mode).

SEC - Set the carry flag.
flags affected: C(=1)

SED - Set the decimal mode flag.
flags affected: D(=1)

SEI - Set the interrupt disable flag.
flags affected: I(=1)

STA - Store accumulator in memory.
STX - Store the X-index register in memory.
STY - Store the Y-index register in memory.

TAX - Transfer the accumulator to the X index register.
flags affected: N,2

TAY - Transfer the accumulator to the Y index register.
flags affected: N,2

TSX - Transfer the stack pointer to the X index register.
flags affected: N,2

TXA - Transfer the X index register to the accumulator.
flags affected: N,2

TXS - Transfer the X index register to the stack pointer.

TYA - Transfer the Y index register to the accumulator.
flags affected: N,Z

17. THE 8502 ADDRESSING MODES

N.B. All 16-bit addresses are stored in memory with the least significant byte
first.

17.1 IMMEDIATE ADDRESSING
The operand is contained in the second byte of the instruction.
Length: 2 bytes

Assembler Notation: #<expression>
Example: LDA #CR

17.2 ABSOLUTE ADDRESSING

The 2nd and 3rd bytes of the instruction form the effective address.

Length: 3 bytes
Assembler Notation: <expression>
Example: INC 34975

17.3 ABSOLUTE,X ADDRESSING

The effective address is formed by adding the X-register to the address in the 2nd
and 3rd bytes of the instruction.

Length: 3 bytes
Assembler Notation: <expression>,X
Example: MP TABLE,X

17.4 ABSOLUTE,Y ADDRESSING

The effective address is formed by adding the Y-register to the address in th 2nd
and 3rd bytes of the instruction.

Length: 3 bytes
Assembler Notation: <expression>,Y
Example: INC $1000,Y

17.5 2ERO PAGE ADDRESSING

The second byte of the instruction is the low-order 8 bits of the effective
address; the high-order byte is zero.

Length: 2 bytes
Assembler Notation: <expression>
Bxample: INC 100
17.6 ZERO PAGE,X ADDRESSING

The X register is added to the 2nd byte of the instruction to give the low-order 8
bits of the effective address; the high-order byte is always zero.

Length: 2 bytes
Assembler Notation: <expression>,X
Example: STA BUFFER,X

17.7 ZERO PAGE,Y ADDRESSING

The Y register is added to the 2nd byte of the instruction to give the low-order 8
bits of the effective address; the high-order byte is always zero.

Length: 2 bytes
Assaembler Notation: <expression>,Y
Example: STX $33,Y

17.8 RELATIVE ADDRESSING

The 2nd byte of the instruction is a signed offset which is added to the program
counter to give the effective address. The assembler autamatically calculates the
offset fram the operand given.

Length: 2 bytes
Assembler Notation: <expression>
Example: BNE LOOP

17.9 ACCUMULATOR ADDRESSING

The accumulator is the operand of the instruction.

Length: 1 byte
Assembler Notation: A
Example: LSR A

17.10 IMPLIED ADDRESSING

This addressing mode is implied by the instruction; no operand exists.

Length: 1 byte

Example: DEY

17.11 INDIRECT ADDRESSING

The 2nd and 3rd bytes of the instruction contain a pointer to the 16-bit effective

address of the instruction. Due to an error in the 6502's design, this will not
work correctly if the 2nd and 3rd bytes of the instruction cross a page boundary.

Length: 3 bytes
Assembler Notation: (<expression>)
txample: JMP (VECTOR)

17.12 INDIRECT,Y ADDRESSING

The effective address is calculated by adding the Y register to a 16-bit address
contained in page zero which is pointed to by the 2nd byte of the instruction.

Length: 2 bytes
Assembler Notation: (<expression>),Y
Example: LDA (PTR),Y

17.13 INDIRECT, X ADDRESSING

The 2nd byte of the instruction and the X register are added to give the address
of two locations in page zero which hold the effective address.

Length: 2 bytes
Assembler Notation: (<expression>,X)
Example: LDA (BRKTAB,X)

The notations for zero page and absolute addressing modes are the same - the
assembler decides which mode to use.

18. NUMBER BASE CONVERSION TABLE WITH 6502 OP-CODES

$00000000 @000 000 $00 BRK IMPLIED
$00000001 @001 001 SO1 ORA INDIRECT,X
$00000010 @002 002 $02 UNUSED
$00000011 @003 003 $03 UNUSED
%00000100 @004 004 $04 UNUSED
$00000101 @005 005 $05 ORA ZERO PAGE
$00000110 Q006 006 S06 ASL ZERO PAGE
$00000111 @007 007 $07 UNUSED
$00001090 €010 008 $08 PHP IMPLIED
$00001001 @011 009 $09 ORA IMMEDIATE
$00001010 €012 010 $SOA ASL’ACCUMULATOR
$00001011 @013 011 SOB UNUSED
$00001100 @014 012 $0C UNUSED
$00001101 @015 013 $OD ORA ABSOLUTE
$00001110 @016 014 SOE ASL ABRSOLUTE
$00001111 @017 015 $OF UNUSED
$00010000 @020 016 $10 BPL RELATIVE
$00010001 @021 017 $11 ORA INDIRECT,Y
$00010010 @022 018 $12 UNUSED
$00010011 @023 019 $13 UNUSED
$00010100 @024 020 $14 UNUSED
$00010101 €025 021 $15 ORA ZERO PAGE,X
$00010110 @026 022 $16 ASL ZERO PAGE,X
$00010111 @027 023 $17 UNUSED
$00011000 @030 024 $18 CIC IMPLIED
$00011001 @031 025 $19 ORA ABSOLUTE,Y
$00011010 @032 026 $1A UNUSED
$00011011 @033 027 S1B UNUSED
$00011100 @034 028 $1C UNUSED
300011101 @035 029 $1D ORA ABSOLUTE,X
$00011110 @036 030 $1E ASL ABSOLUTE,X
$00011111 @037 031 $1F UNUSED
$00100000 @040 032 $20 JSR ABSOLUTE
$00100001 @041 033 $21 AND INDIRECT,X
$00100010 @042 034 $22 UNUSED
$00100011 @043 035 $23 UNUSED
300100100 @044 036 $24 BIT ZERO PAGE
$00100101 @045 037 $25 AND ZERO PAGE
200100110 @046 038 $26 ROL ZERO PAGE
$00100111 @047 039 $27 UNUSED
$00101000 @050 040 $28 PLP IMPLIED
300101001 @051 041 $29 AND IMMEDIATE
$00101010 @052 042 $2A ROL ACCUMULATOR
300101011 @053 043 $2B UNUSED
$00101100 @054 044 $2C BIT ABSOLUTE
$00101101 @055 045 $2D AND ABSOLUTE
$00101110 €056 046 S2E ROL ABSOLUTE
$00101111 @057 047 $2F UNUSED
$00110000 @060 048 $30 BMI RELATIVE
$00110001 @061 049 $31 AND INDIRECT,X
$00110010 @062 050 $32 UNUSED
$00110011 @063 051 $33 UNUSED
00110100 @064 052 $34 UNUSED
$00110101 @065 053 $35 AND ZERO PAGE,X
%00110110 @066 054 $36 ROL ZERO PAGE,X

35

$00110111 @067 055 $37 UNUSED
$£00111000 @070 056 $38 SEC IMPLIED
$00111001 @071 057 $39 AND ABSOLUTE,Y
$00111010 @072 058 S$3A UNUSED
00111011 @073 059 $3B UNUSED
$00111100 @074 060 $3C UNUSED
$00111101 @075 061 $3D AND ABSOLUTE, X
$00111110 @076 062 $3E ROL ABSOLUTE,X
$00111111 @077 063 $3F UNUSED
$£01000000 @100 064 $40 RTI IMPLIED
$01000001 @101 065 $41 EOR INDIRECT
$01000010 @102 066 $42 UNUSED
$01000011 @103 067 $43 UNUSED
%01000100 @104 068 $44 UNUSED
$01000101 @105 069 $45 EOR ZERO PAGE
$01000110 @106 070 $46 LSR ZERO PAGE
$01000111 @107 071 $47 UNUSED
$01001000 @110 072 $48 PHA IMPLIED
$01001001 @111 073 $49 EOR IMMEDIATE
$01001010 @112 074 $4A LSR ACCUMULATOR
$01001:011 @113 075 $4B UNUSED
$01001100 @114 076 $4C JMP ABSOLUTE
$01001101 @115 077 $4D EOR ABSOLUTE
$01001110 @116 078 $4E LSR ABSOLUTE
201001111 @117 079 $S4F UNUSED
$01010000 @120 080 $50 BVC RELATIVE
$01010001 @121 081 $51 BOR INDIRECT,Y
$01010010 @122 082 $52 UNUSED
$01010011 @123 083 $53 UNUSED
$01010100 @124 084 $54 UNUSED
$01010101 @125 085 $55 EOR ZERO PAGE,X
$01010110 @126 086 $56 LSR ZERO PAGE,X
$01010111 @127 087 $57 UNUSED
$01011000 @130 088 $58 CLI IMPLIED
$01011001 @131 089 $59 EOR ABSOLUTE,Y
$01011010 @132 090 $5A UNUSED
$01011011 @133 091 $5B UNUSED
201011100 €134 092 $5C UNUSED
301011101 @135 093 $5D BOR ABSOLUTE, X
$01011110 @136 094 $SE LSR ABSOLUTE,X
$01011111 @137 095 $5F UNUSED
301100000 @140 096 $60 RIS IMPLIED
801100001 @141 097 $61 ADC INDIRECT,X
$01100010 @142 098 $62 UNUSED
$01100011 @143 099 $63 UNUSED
$01100100 @144 100 $64 UNUSED
%01100101 @145 101 $65 ADC ZERO PAGE
$01100110 @146 102 $66 ROR ZERO PAGE
$01100111 @147 103 $67 UNUSED
$01101000 @150 104 $68 PLA IMPLIED
$01101001 €151 105 $69 ADC IMMEDIATE
$01101010 @152 106 $6A ROR ACCUMULATOR
$01101011 @153 107 $6B UNUSED
$01101100 @154 108 $6C JMP INDIRECT
$01101101 @155 109 $6D ADC ABSOLUTE
$01101110 @156 110 $6E ROR ABSOLUTE
201101111 @157 111 $6F UNUSED
$01110000 @160 112 $70 BVS RELATIVE
$01110001 @161 113 $71 ADC INDIRECT,Y

$01110010
$01110011
01110100
$01110101
$01110110
$01110111
$01111000
$01111001
$01111010
$01111011
$01111100
$01111101
$01111110
$01111111
10000000
$10000001
10000010
$10000011
$10000100
$10000101
$10000110
$10000111
210001000
$10001001
$10001010
$10001011
10001100
$10001101
$10001110
10001111
$£10010000
$10010001
£10010010
$10010011
$£10010100
$£10010101
$10010110
$10010111
10011000
$10011001
$10011010
$10011011
$£10011100
10011101
£10011110
$10011111
$10100000
$10100001
$10100010
210100011
$10100100
$10100101
$£10100110
$10100111
$10101000
$10101001
$£10101010
$10101011
10101100

37

e162
e163
e164
@165
@166
e167
@170
e171
@172
€173
@174
e175
e176
e177
@200
@201
@202
@203
@204
@205
@206
@207
@210
Q211
@212
@213
@214
@215
@216
@217
@220
@221
@222
@223
@224
@225
@226
@227
@230
@231
@232
@233
@234
@235
@236
@237
@240
@241
@242
@243
@244
@245
@246
8247
@250
@251
@252
@253
@254

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

$72
$73
$74
$75
$76
$77
$78
$79
$7a
$7B
$7C
$7D
$7E
$7F
$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8a
$8B
$8C
$8D
$BE
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
S9F
$A0
$Al
$A2
$SA3
$A4
$A5
$A6
$SA7
$SA8
$A9
$AA
$AB
SAC

UNUSED

UNUSED

UNUSED

ADC ZERO PAGE,X
ROR ZERO PAGE,X
UNUSED

SEI IMPLIED

ADC ABSOLUTE, Y
NUSED

UNUSED

UNUSED

ADC ABSOLUTE, X
ROR ABSOLUTE, X
UNUSED

UNUSED

STA INDIRECT, X
UNUSED

UNUSED

STY ZERO PAGE
STA ZERO PAGE
STX ZERO PAGE
UNUSED

DEY IMPLIED
UNUSED

TXA IMPLIED
UNUSED

STY ABSOLUTE
STA ABSOLUTE
STX ABSOLUTE
UNUSED

BCC RELATIVE
STA INDIRECT,Y
UNUSED

UNUSED

STY Z£RO PAGE,X
STA ZERO PAGE,X
STX ZERO PAGE,Y
UNUSED

TYA IMPLIED

STA ABSOLUTE, Y
TXS IMPLIED

STA ABSOLUTE, X

IDY ZERO PAGE
LDA ZERO PAGE
LDX ZERO PAGE
UNUSED

TAY IMPLIED
LDA IMMEDIATE
TAX IMPLIED
UNUSED

LDY ABSOLUTE

$10101101 €255 173

$10101110
10101111
$10110000
$10110001
$10110010
$10110011
$10110100
$10110101
10110110
$10110111
10111000
10111001
$10111010
10111011
10111100
$10111101
$10111110
$10111111
$11000000
$11000001
$£11000010
11000011
$11000100
$11000101
311000110
$11000111
11001000
$11001001
$11001010
$11001011
$11001100
$11001101
11001110
$11001111
11010000
$£11010001
$11010010
$11010011
$11010100
$11010101
$11010110
$11010111
$£11011000
$11011001
$11011010
$11011011
311011100
$11011101
11011110
$11011111
$11100000
$£11100001
$11100010
$11100011
£11100100
$11100101
$11100110

@256
@257
@260
@261
0262
263
@264
€265
@266
@267
€270
@271
272
@273
@274
@275
@276
277
@300
@301
@302
@303
@304
@305
@306
@307
@310
e3ll
e3l2
e3l3
@314
e3l1s
@3leé
e3n?
@320
@321
@322
@323
@324
@325
@326
@327
@330
e33l
@332
@333
@334
@335
@336
337
@340
@341
@342
@az43
@344
@345
@346

174
175
176
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

LDA ABSOLUTE
LDX ABSOLUTE
UNUSED

BCS RELATIVE
LDA INDIRECT,Y
UNUSED

UNUSED

LDY ZERO PAGE,X
LDA ZERO PAGE,X
LDX ZERO PAGE,Y
UNUSED

CLV IMPLIED
LDA ABSOLUTE,Y
TSX IMPLIED
UNUSED

LDY ABSOLUTE, X
LDA ABSOLUTE, X
LDX ABSOLUTE, Y
UNUSED

CPY IMMEDIATE
OMP INDIRECT, X
UNUSED

UNUSED

CPY ZERO PAGE
OMP ZERO PAGE
DEC ZERO PAGE
UNUSED

INY IMPLIED
OMP IMMEDIATE
DEX IMPLIED
UNUSED

CPY ABSOLUTE
QMP ABSOLUTE
DEC ABSOLUTE
UNUSED

BNE RELATIVE
QYP INDIRECT,Y
UNUSED

UNUSED

UNUSED

OMP ZERO PAGE,X
DEC ZERO PAGE,X
UNUSED

CLD IMPLIED
QMP ABSOLUTE, Y
UNUSED

UNUSED

UNUSED

QMP ABSOLUTE, X
DEC ABSOLUTE,X
UNUSED

CPX IMMEDIATE
SEC INDIRECT, X
UNUSED

UNUSED

CPX ZERO PAGE
- SBC ZERO PAGE
INC ZERO PAGE

$11100111 @347 231 $E7 UWNUSED
$11101000 @340 232 $E8 INX IMPLIED
$11101001 @351 233 $E9 SEC IMMEDIATE
$11101010 @352 234 $EA NOP IMPLIED
$11101011 @353 235 SEB UNUSED
211101100 @354 236 S$EC CPX ABSOLUTE
$11101101 @355 237 $ED SBC ABSOLUTE
$11101110 @356 238 $EE INC ABSOLUTE
$11101111 @357 239 SEF UNUSED
$11110000 @360 240 SFO BEQ RELATIVE
$11110001 @361 241 $F1 SBC INDIRECT,Y
$11110010 @362 242 $F2 UNUSED
211110011 @363 243 $F3 UNUSED
11110100 @364 244 $F4 UNUSED
$11110101 @365 245 SF5 SBC ZERO PAGE,X
$11110110 @366 246 $F6 INC ZERO PAGE,X
$11110111 @367 247 $F7 UNUSED
$11111000 @370 248 $F8 SED IMPLIED
$11111001 @371 249 $F9 SBC ABSOLUTE,Y
$11111010 @372 250 $FA UNUSED
11111011 @373 251 $FB UNUSED
211111100 @374 252 $FC UNUSED
$11111101 @375 253 $FD SBC ABSOLUTE,X
211111110 @376 254 $FE INC ABSOLUTE,X
$11111111 @377 255 $FF UNUSED

19. THE GRAPHICS ROUTINES

These routines are designed to facilitate the manipulation of sprites and screen
data. There are 138 different routines in 10K of code; these are the same
routines that are used in BASIC LIGHTNING and WHITE LIGHTNING. 'The sound routines
are not included since they simply store values in the SID's registers, but they
are listed as assembly language source code in section 20 for campleteness.

If you have the disk version of MACHINE LIGHTNING, you will find the graphics
routines saved under the filename "IDEAL". They can be loaded using the MLOAD
camand in 64-MAC/MON. Remember that the graphics routines cannot be used with
the high memory version of 64 MAC/MON.

At this point, we assume that you are familiar with the graphics cammands in BASIC
LIGHTNING, and that you understand programming in assembly language.

19.1 MEMORY ORGANISATION

The graphics routines use the following locations in zero page:

$02-505, $07-$08, $OA-$12, $49-S4E, $5C-$5F, $65-S66, S$69-S6E, $70-$8A.

Therefore none of these locations should be used in your own routines because the
graphics routines will corrupt them.

The memory is organised as follows:

39

$0000 to SOOFF zero page

$0100 to $O1FF 6502 stack.

$0200 to $03FF KERNAL system variables.

$0400 to SO4FF 8 sets of sprite variables.

$0500 to $OSFF reserved for interrupt scrolling buffer.

$0600 to $O6FF reserved for foreground scrolling buffer.

$0700 to SO7FF graphics routines sprite pointers.

$0800 to $97FF free for your own program and sprites.

$0800 to S47FF 64-MAC/MON, if present.

$9800 to $BFD6 IDEAL graphics routines.

SBFD7 to $BFFF IDEAL system variables.

$C000 to $C7FF Character set and/or hardware sprite data.

$C800 to S$CBFF Text screen.

$OC00 to $CFFF Hires attribute screen.

$D000 to $DFFF 1/0 devices.

$DB00 to SDBFF Colour memory for text or secondary attribute
memory for hi-res.

$E000 to SFFFF KERNAL ROM

SE000 to $FFFF Hires screen pixel data.

You may notice that the KERNAL ROM and the hi-res screen pixel data share the same
memory - the graphics routines switch out the KERNAL ROM whenever the pixel data
underneath has to be used.

19.2 MEMORY LOCATIONS

The following definitions should be put at the top of your programs:

IDEAL = $9800 ;ENTRY POINT

INT10SAVE = $BFD7 ;10 LOCATIONS WHICH MUST BE SAVED ON INTERRUPT
SETBASE = $BFEl ;OFFSET FOR ACCESSING SPRITE VARIABLES

LOMEM = SBFE2 sLOWER LIMIT (PAGE) FOR SPRITES

HIMEM = $BFE3 ;UPPER LIMIT (PAGE) FOR SPRITES

SOUNDCONTROL = SBFE4 ;3 BYTES FOR SOUND REG. VALUES
SOUNDLENGTH = $BFE7 ;LENGTH OF SOUNDS IN 60'THS OF SECONDS

INTFLAG = $BFEA ;TOP BIT SET=ENABLE USER INTERRUPT ROUTINE
BUFFBASE = $BFEC ;BASE (PAGE) ADDR. OF WRAP BUFFER
ERRORADIR = $BFF6 ;ADDRESS OF ERROR ROUTINE

INTADDR = S$BFFA ADDRESS OF USER INTERRUPT ROUTINE

~e o se

SPST = SEFFC ADDRESS OF START OF SPRITES
SPND = $EFFE ADDRESS OF END OF SPRITES
VALL = 73 ;3 LOCATIONS FOR PASSING PARAMETERS
VAL2 = 75

VAL3 = 77

SPN = $0400 ;SPRITE VARIABLES

QOL = $0402

ROW = $0404

WID = $0406

HGT = $0408

SPN2 = $040A

QOL2 = $040C

ROW2 = $040E

NUM = $0410

ICL = $0412

ATR = $0414

QoL = $0416

CROW = $0418

19.3 PASSING PARAMETERS

Values are passed to and fram the routines using the sprite variables SPN, COL,
ROW, WID, HGT, SPN2, COL2, ROW2, NUM, ICL, ATR, OOOL and CROW as well as the zero
page locations VALl, VAL2 and VAL3. ICL is equivalant to INC in BASIC LIGHTNING —
INC cannot be used because it is a 6502 op—code numemonic. There are actually 8
different sets of variables that can be used:

Set 0 is stored fram $0400 to $O041F
Set 1 is stored fram $0420 to $043F

Set 2 is stored fram $0440 to $045F
Set 3 is stored fram $0460 to $047F
Set 4 is stored fram $0480 to $049F
Set 5 is stored fram $04A0 to SO4BF
Set 6 is stored fram $04C0 to $O4DF
Set 7 is stored from $04E0 to SO4FF

To use an alternative set, the set number must be multiplied by 32 and stored in
SETBASE:

LDA #5*32
STA SETBASE ;SELECT VARIABLE SET 5

If you use different sets of variables in this way, and you want to write routines
which will work with all different variable sets, the sprite variables cannot be
accessed directly but have to be referenced using the offset in SETBASE:

LDY SETBASE

LDA #0

STA HGT+1,Y ;HGT=16
LDA #16

STA HGT,Y

19.4 ACCESSING THE ROUTINES

There is only one entry point for the graphics routines - the label IDEAL. The
number of the routine should be placed in the accumulator, the parameters having
been set up in the sprite variables or in VALl, VAL2 and VAL3 as appropriate
beforehand. For example, to call routine no. 42, use:

LDA #42
JSR IDEAL

The A, X and Y registers are preserved by the routines. When VAL2 and VAL3 are
used to pass parameters to a routine, VAL2 is the first parameter in BASIC
Lightning syntax, and VAL3 is the second.

Here is a full list:

ACC NAME PARAMETERS RETURNS VALUE
0 INIT
1 SCLR SPN,ATR
2 SPRITE SPN,WID,HGT
3 WIPE SPN
4 RESET
& A3800L

41

~No

10
11

13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37

39

40
11
42

44
45
46
47

48
49
50
51
52
53
54
55

56
57
58

LORES
HIRES

PLOT
BOX
POLY

S200L
S400L
H4000L

SCRLX
WRR1
WRL1
SCR1
SCL1
WRR2
WRL2
SCR2

WINDOW
MULTI

SPN, COL,ROW
SPN,QOL,ROW, WID, HGT

SPN, QOL, ROW, WID, GHT, NUM, ICL
SPN, QOL, ROW, COL2,ROW2

VAL2

VAL2

SPN,COL, ROW, WID, HGT
SPN,QOL, ROW, WID, HGT
SPN,COL, ROW,WID, HGT
SPN, QOL, ROW, WID, HGT
SPN, COL,ROW, WID, HGT
SPN,QOL, ROW,WID, HGT
SPN,QOL, ROW, WID,HGT

SPN, OOL, ROW, WID, HGT
SPN, OOL, ROW, WID, HGT
SPN, OOL, ROW, WID, HGT
SPN, COL, ROW, WID, HGT
SPN, COL, ROW, WID, HGT
SPN, OOL, ROW,WID, HGT
SPN, OOL, ROW, WID, HGT
SPN, OOL, ROW,WID, HGT

SPN,QOL, ROW,WID,HGT
SPN, COL, ROW, NUM
VAL2

VAL2
VAL2
VAL2

VAL2

SPN,QOL, ROW,WID, HGT, NUM
SPN, QOL, ROW, WID, HGT, NUM

VAL2

SPN, QOL,ROW, WID,HGT, ATR

SPN, OOL, ROW

SPN, QOL, ROW,WID, AGT
SPN,QOL, ROW,WID, HGT

SPN,OOL, ROW, WID, HGT, ATR

SPN, COL,ROW,WID, AGT

SPN, COL, ROW, WID, HGT, SPN2,COL2,ROW2
SPN,COL, ROW, WID, HGT, SPN2,COL2,ROW2
SPN, COL,ROW,WID, HGT, SPN2,C0L2, ROW2

SPN, COL, ROW,WID, HGT, SPN2,(00L2,ROW2
SPN, COL, ROW, WID, HGT, SPN2,COL2, ROW2
SPN, QOL, ROW,WID, HGT, SPN2,COL2, ROW2

42

59

61
62
63

64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111

XPANDX
XPANDY

CPYHLK

GETXOR
PUTXOR
CPYXOR

PUTOR
CPYOR
GETAND
PUTAND

ANDYAND

SPN, OOL, ROW, WID, HGT,; SPN2,COL2 ,ROW2
SPN,COL, ROW, WID, HGT, SPN2,C0L2 ,ROW2
SPN, QOL, ROW
SPN, COL, ROW
SPN, COL, ROW

SPN, COL, ROW
SPN,COL, ROW
SPN, SPN2

SPN, COL, ROW
SPN, COL, ROW
SPN, SPN2

SPN,COL, ROW
SPN, COL, ROW

SPN, SPN2

SPN,QOL, ROW, NUM

SPN,OOL, ROW, SPN2
VAL2

VAL2

VALZ2,VAL3

SPN,QOL, ROW,WID, HGT
VAL2

VAL2,VAL3
VAL2
VAL2

SPN,OOL, ROW,WID,HGT, SPN2,C0L2,ROW2

SPN,COL, ROW, WID,HGT, SPN2,C0L2, ROW2
SPN, COL, ROW,WID, HGT,SPN2,00L2,ROW2
SPN,COL, ROW,WID, HGT, SPN2,COL2,ROW2
SPN,COL, ROW,WID, HGT, SPN2,O0L2,ROW2
SPN,COL, ROW,WID, HGT, SPN2,COL2,ROW2

SPN,COL, ROW,WID, HGT, SPN2,COL2 ,ROW2
SPN, COL, ROW, WID, HGT, SPN2,C0L2,ROW2
SPN,CQOL, ROW, WID,HGT, SPN2,C0L2 ,ROW2
SPN, COL, ROW, WID, HGT, SPN2,00L2,ROW2
SPN, QOL, ROW, WID,HGT, SPN2,COL2 ,ROW2
SPN, COL, ROW, WID,HGT, SPN2,00L2,RON2
SPN,COL, ROW,WID,HGT, SPN2,C0L2,RON2
SPN,QOL, ROW, WID, HGT, SPN2,COL2,ROW2

112 ORSXOR SPN, COL, ROW, WID, HGT, SPN2,C0L2,ROW2
113 ANDRXOR SPN,QOL, ROW,WID, HGT, SPN2,COL2, ROW2
114 XOR®XOR SPN,QOL,ROW,WID, HGT, SPN2,00L2, ROW2

115 RESEQ

116 FLIP SPN,QOL,ROW, WID,HGT

117 .HIT VAL2 VAL2

118 SCAN SPN,QOL, ROW,WID, HGT VAL1

119 POINT SPN, QOL, ROW VAL1

120 DFA SPN VAL1,WID,HGT
121 AFA2 SPN VAL1,WID,HGT
122 AFA SPN VAL1,WID,HGT
123 KB VAL2 VAL2

124 FIRE] VAL1

125 FIRE2 VAL

126 Jsl VAL1

127 Js2 VAL1

128 SCRLY VAL2
129 RELOCATE NUM
130 SCRSET

131 ICOLD LOMEM, HIMEM, SPST

132 TRACK SPN, SPN2

133 MOVE SPN, QOL, ROW

134 PLAY SPN,COL, ROW

135 RPLAY SPN, COL, ROW

136 R.XPOS VAL2 VAL2
137 R.YPOS VAL2 VAL2

All but six of these routines are BASIC LIGHTNING cammands. The six which aren't
are explained here:

19.5 INIT, ICOLD, SCRSET and RELOCATE.
19.5.1 INIT (ACC = 0)

This is used to set up the screen display and the graphics routines, and it should
be called at the start of your program:

START LDA #0 ; INIT
JSR IDEAL

Note that after using this routine you will not be able to use the function keys
fram 64 MAC/MON.

19.5.2 100LD (ACC = 131)

This clears the sprite storage and sets up all the sprite pointers. LOMEM and
HIMEM should be set to the lower and upper memory limits (/256) over which sprites
cannot go, and SPST should be set to the start of memory to be used for sprites;
normally this is the same as LOMEM.

Example: Initialise sprite storage to go fram $5000 to $7800:

LDA #0

STA SPST
LDA #S50
STA SPST+1
STA LOMEM
LDA #$78
STA HIMEM
LDA #131
JSR IDEAL

19.5.3 SCRSET (ACC = 130)

This routine will put the camputer into LORES mode if in HIRES mode without a
window set up. It is used in BASIC LIGHTNING when printing the "READY" message:

LDA #130
JSR IDEAL

19.5.4 RELOCATE (ACC = 129)

This moves the sprites up or down in mamory by a signed offset in NUM. SPST and
SPND are altered, but LOMEM and HIMEM are not.

If you have used WHITE LIGHTNING you will notice that ISPRITE, DSPRITE and CLR are
not defined here. That is because they are written in FORTH using SPRITE, WIPE,
RELOCATE and RESET:

FORTH DEFINITIONS HEX
: DSPRITE SPND @ WIPE SPND @ - NUM ! RELOCATE ;
: ISPRITE WID C@ HGT C@ OVER OVER

-0A * * 7 - NUM ! DFA -1 =

IF SPN C@ IF RELOCATE THEN THEN

HGT ! WID ! SPRITE ;
: CLR SPND @ 1 - SPST ! RESET ;

Using RELOCATE with NUM=0 will set up all the sprite pointers and should be used
after loading sprites fram tape or disk.

To load new sprites in above what already exists:

SETLFS = $FFBA
SETNAM = $FFBD
LOAD = SFFDS

‘0P LDX #1 ;device l=tape
; (use 8 for disk)
LDY #0 ;relocated load
JSR SETLFS
LDA #NAME2-NAME
LDX #NAME&255
LDY #NAME/256
JSR SETNAM ;set filename
LDA SPND ;load sprites at SPND-1

SEC #1

LDA SPND+1
SBC #0

LDA #0

45

JSR LOAD

LDY SETBASE

LDA #0

STA NUM,Y

STA NUM+1,Y

LDA #129

JSR RELOCATE

JMP START
NAME . BYTE 'SPRITES'
NAME2

Note: sprites should not usually be loaded in by a program in this way; it is more
convenient fo link the sprites with the program before saving it. This is
described later, in section 19.8.

19.5.5 R.XPOS and R.YPOS (ACC = 136 and 137)

These are used when reading the position of a hardware sprite. .XPOS and .YPOS
should be used only to set a sprite's position. For example, to read the position
of hardware sprite no. 3 use:

LDA #3
STA VAL2
LDA #0
STA VAL2+1
LDA #136
JSR IDEAL
LDA VAL2
LDX VAL2+1

lhis would put the X-position of sprite no. 3 into the A and X registers.
19.6 ERRORS

when a graphics routine encounters nonsensical parameters it does an indirect jump
on ERRORADDR. This normally points to a BRK instruction: however it can be
altered to point to your own error routine:

LDA #ERROR& 255
STA ERRORADDR
LDA #ERROR/256
STA ERRORADDR+1

‘The error number is in the accumulator after an error:
ACC ERROR

NO ROOM

QORRUPTED SPRITE
REDEFINED SPRITE
NO SUCH SPRITE
DELETE SPRITE ZERO
OUT OF RANGE

N wN-=O

‘The stack is not reset; this has to be done by your own routine:

CHROUT =$FFD2

ERROR LDX #$FF

TXS

PHA

LDA #130 ; SCRSET

JSR IDEAL

LDX #0
ERRORLOOP LDA ERRORMSG,X

BEQ ENDERROR

JSR CHROUT

INX

JMP ERRORLOOP
ENDERROR PLA

ORA #'0'

JSR CHROUT

JMP MAIN

ERRORMSG .BYTE 13, 'ERROR#',0

19.7 USING INTERRUPTS

Mastering machine ocode gives most programmers access to the speed of commercial
games, but often the smoothness and continuity are lacking. The problem is that
same parts of the program need to execute at reqular intervals, and trying to
achieve this can involve a lot of calculation and wasted processor time. The
solution is to use interrupts to execute particular sections of code. Machine
Lightning does this for you, using the vector INTADDR and the flag INTFLAG. The
64's interrupt occurs 60 times a second, so that a background subroutine can be
executed at this frequency, or by counting interrupts, at lower freqguencies.

The top bit of INTFLAG, when set, enables keyboard scanning and the execution of
the user's background subroutine. Clearing the top bit disables execution. To use
a routine in background mode, you must point the vector at INTADDR to it:

LDA #$00000000

STA INTFLAG ;DISABLE INTERRUPTS
LDA #<BACKGROUND sCHANGE VECTOR
STA INTADDR

LDA #>BACKGROUND

STA INTADDR+1

LDA #%10000000 ;ENABLE INTERRUPTS
STA INTFLAG

Note that interrupts have to be disabled while changing the vector since an
interrupt might occur when only one byte of the vector has heen changed.

The first thing that the background routine must do is to save all temporary
locations which are used in zero page, and the ten locztions fram INT10SAVE
onwards. Also, the wrap buffer pointer at BUFFBASE and the variable pointer at
SETBASE must be altered. After execution of your routine, all the locations saved
must be restored:

47

BACKGROUND

BACK1

BACK2

BACK3A

BACK3

ZPSAVE

ENDZPSAVE
ZPSTORE

35

$EEE

2%

EEVEEEPEEEEEY

SR

STA

#%00000000 ;DISABLE INTERRUPTS

INTFLAG

#0

ZPSAVE, Y ;SAVE LOCATIONS IN ZERO PAGE.
0,X

ZPSTORE, Y

#ENDZPSAVE-ZPSAVE

BACK1

#256-10

INT10SAVE+10-256,Y ;SAVE LOCATIONS AT INT10SAVE.

BACK2

BUFFBASE

SETBASE

#7*32

SETBASE ;SET 7

#11

BUFFBASE 7SNAP TO OTHER SCROLLING BUFFER.
BUFFBASE

INTSUB ;YOUR OWN ROUTINE

SETBASE

BUFFBASE

LODY #10

INT10SAVE-1,Y ;RESTORE [OCATIONS AT INT10SAVE.

BACK3A

#ENDZPSAVE-ZPSAVE

ZPSTORE-1,Y ;RESTORE ZFRO PAGE.
ZPSAVE-1,Y

0,X

BACK3
#3$10000000 sRE-ENABLE [NTERRUPTS.
INTFLAG

-BYTE $02,$03,$04,$05,$07, 508, SOA, $0B
BYTE $0C, $0D, $OE, $OF, $10,$11,$12,$49
BYTE $4A, $4B, $4C, $4D, $4E, $5C, $5D, $SE
BYTE $5F, $65,$66,$69,$6A, $6B, $6C, $6D

BYTE $77,$78,$79,$7A,$7B,$7C, $7D, $7E
BYTE §7F, $80,$81,$82,$83,$84,$85,$86

BYTE SG6E, $70,$71,872,873,574.575.§76

BYTE $87,$88,$89,$8A

- BIOCK ENDZPSAVE-ZPSAVE

[f the execution time of the background routine exceeds one 60th of a second, it
is not possible to execute it more than 30 times a second; if it exceeds one 30th
of a second it cannot be executed more than 20 times a second, and so on.

Also, as the execution time approaches one 60th of a second, or same multiple of
it, less and less processor time will be available for execution of the foreground
program. Sametimes it will be necessary to reduce the frequency of execution of
the background routine to give more time to execute the foreground program. This
can be done by counting interrupts:

INTOOUNT .BYTE 2

INTSUB DBEC INTCOUNT
BEQ DOINT
RTS

DOINT LDA #2

STA INTCOUNT
(rest of routine..........)

Remember that when an interrupt occurs, the foreground program will stop whatever
it is doing, execute the background routine and continue with the foreground
program. Suppose that the background program is a sideways scroll of a user
defined screen window and the foreground program PUTs a character into the window.
A problem arises if an interrupt occurs halfway throught the PUT because the top
half of the character will be scrolled before the second half of the character is
PUT to the screen. To circumvent this problem, where an operation is carried out
on the same screen or sprite data by both the foreground and background programs,
the background program should be temporarily disabled by clearing the top bit of
INTFLAG, the foreground operation carried out, and the background program
re-enabled by setting the top bit of INTFLG again.

19.8 CREATING A STAND-ALONE PROGRAM

Once a program has been written using 64-MAC/MON it must be tested using the
monitor cammands. First, load in the graphics routines and the sprites created
with the Sprite Generator using MLOAD. When the sprites are loaded in, you must
specify the start address, otherwise the sprites will load in where the sprite
generator saved them- $A000. The object code created by the assembler can now be
loaded in using OLOAD if it has not been assembled directly to wmemory. The first
thing that your program must do after INITialising everything (using a call to
IDEAL with A=0) is to set up the sprite pointers using a RELOCATE of zero. For
example, if your sprites were at $6000, you would use:

LDA #0

LDY SETBASE

STA NUM,Y

STA NUMt+1,Y s NUM=0

STA SPST ;SPST=$6000
LDA #$60

STA SPST+1

STA LOMEM ; LOMEM=$60(00)
LDA #$98

STA HIMEM ;HIMEM=$98 (00)
LDA #129

JSR IDEAL sRELOCATE

You can now test your program using the monitor and tracer commands.

If you want to run a subroutine under interrupt when 64-MAC/MON is loaded, you
must be extremely careful not to corrupt the zero page. 64-MAC/MON uses all the
available zero page, although it appears to leave it free because the zero page is
exchanged with an alternate set of locations whenever memory is accessed by one of
the monitor commands or you call a machine-code routine using SYS. Thus, your
interrupt routine must not disturb the zero page if you run it while tracing a
program or using 64-MAC/MON.

49

Once you have tested your program, it must be put into a form where it can easily
be loaded and run fram BASIC. In the following example, we assume that the program
to be saved starts at $4800 (and ends at $BFFF, at the end of the graphics
routines), and that the entry point also is $4800. .

Type NEW and reserve memory fram $4800 to $5000 for text. Type in the following
program:

10 PROGSTART=$4800 ;START OF PROGRAM
20 PIR1=$FB

30 PIR2=SFD

40 *=$0801

50 .BYTE $0D,$08, SOA, $00, $9E, $28,$32,$30
60 .BYTE $36,$33,$29,$00,500,$00
70 MEM2063 LDY #0

80 STY PTR1

90 STY PIR2

100 LDA #SCO

110 STA PTR2+1

120 LDA #3$C000-PROGSTART+$0C00/256
130 STA PTR1+1

140 LDX #$C000-PROGSTART/256

150 PROGSHIFT1 DEC PTR2+1

160 DEC PIR1+1

170 PROGSHIFT2 LDA (PTR1),Y

180 STA (PTR2),Y

190 INY

200 BNE PROGSHIFT?2

210 DEX

220 BNE PROGSHIFT1

230 LDA #$36

240 STA 1

250 JMP PROGSTART

Type "OFFSET $4800" followed by ASM,M. Then save the program object code on tape
or disk using MSAVE "BOOT"$5001,$5100.

Now load in your program with the sprites and graphics routines, ready to run,
type OFFSET 0 and OSAVE it:

OFFSET 0
OSAVE "PRG"$4800,$C000

Switch off the camputer, and load the LOADER program fram BASIC. We want to load
the program at $0C00. This implies an offset of $0C00-$4800 = -$3C00 or $C400.
After the program has been loaded in using this offset, type NBWN. Load in the BOOT
program that was MSAVEd earlier:

LOAD "BOOT"

At this point, the end of the machine-code program will be at $C000-$4800+$0C00
which is $8400. To set the BASIC end-of-text pointer to this value, type:

POKE 45,0:POKE 46,132:CLR

You can now save your program off to tape or disk just like a normal BASIC
program. When it is loaded in and RUN, the camputer executes the SYS 2063 which
was created by the two .BYTE directives in BOOT, block moves your program back up
to its original location ($4800), and executes it.

SOUND ROUTINES, PAGE #1

LINE# LOC. OBJECT LABELS LINE
60 2000 s# # # SOUND ROUTINES # = #
680 onaoo ; THESE ROUTINES PROVIDE ALL OF THE
90 0000 ; SOUND COMMANDS THAT ARE AVAILABLE
100 2000 ;FROM BASIC LIGHTNING.
120 Qoee ;ALL PARAMETERS ARE PASSED IN THE 645@2°S
130 oooo sREGISTERS. WHEN A TWO-BYTE VALUE IS
140 2000 ;PASSED IN THE A,X REGISTER PAIR,
150 0000 ;A ALWAYS HOLDS THE HIGH BYTE AND
160 Qooa X HOLDS THE LOW BYTE.
180 2000 SOUNDCONTROL =¥RFE4
190 2000 SOUNDLENGTH =$BFE7
200 2000 SID =$£D400
220 6100 *=$£6100
240 6100 00 MUL7 .BYTE 2,7,14

240 6101 @7
240 6122 OE

260 5103 :FR@: Y=VOICE; A,X=FREQUENCY
280 6103 a8 FRQ FHA

290 6104 B8A TXA

300 6105 BEFF6@ LDX MUL7-1,Y

310 6108 9DAAD4 STA SID,X

328 6108R 68 FLA

330 610C 9D01D4 STA SID+1,X

34D 610F &0 RTS

360 6110 sNOISE: Y=VOICE

380 6118 BYE3BF NOISE LDA SOUNDCONTROL-1,Y
390 6113 29@6 AND #7.00000110

400 6115 9960 ORA #7.10000000

410 6117 99E3IBF STA SOUNDCONTROL-1,Y

420 611A 60 RTS

ND RQUTINES, PAGE #2

1 iME# L OC. OBJECT LABELS LINE
130 611R sPULSE: Y=VOICE; A,X=WIDTH
a40 611B 48 PULSE PHA
A7@0 &611C B9EIRF LDA SOUNDCONTROL-1,Y
160 611F 2906 AND #7.00000110
199 6121 @940 ORA #7.01000000
S0 6123 99E3IBF STA SOUNDCONTROL-1,Y
1@ 6126 BA TXA
.20 6127 BEFF&D LDX MUL7-1,Y
'@ 612A 9DB2D4 STA SID+2,X
48 612D &8 PLA
9A 612E 9DA3ID4 STA SID+3,X
00 6131 60 RTS
‘HA 6132 sSAW: Y=VOICE
"V0 6132 BE3BF SAW LDA SOUNDCONTROL-1,Y
$ 10 6135 2906 AND #7.00000110
‘0 6137 @920 ORA #%00100000
' 6139 99EIBF STA SOUNDCONTROL-1,Y
~40 613C &0 RTS
L@ 613D sTRI: Y=VOICE
‘13 613D RPE3BF TRI LDA SOUNDCONTROL-1,Y
A 6140 2906 AND #%00000110
‘) 6142 @910 ORA #7.00010000
IV 6144 99E3IBF STA SOUNDCONTROL-1,Y
W 6147 6@ RTS
M 4148 sMUSIC: Y=VOICE, A=LENGTH
4 6148 @8 MUSIC PHP
L 6149 78 SE1
U 614A 99ELBF STA SOUNDLENGTH-1,Y
"’ 614D BEFF40O LDX MUL7-1,Y
W 6150 BYE3IBF LDA SOUNDCONTROL-1,Y
13 6153 @901 ORA #7.00000001
' 6155 9DA4D4 STA SID+4,X
‘W 6158 28 PLP
v 4159 608 RTS
W 615A sADSR: Y=VOICE, A=ATTACK#1&+DECAY,
v 615A 3 X=SUSTAIN#16+RELEASE
0 615A 48 ADSR PHA
‘M 615R BA TXA
1 615C BEFF60 LDX MUL7-1,Y
' 615F 9DB&LDA STA SID+6,X
Y 6162 48 PLA
AN 4163 9DOBSD4 STA SID+5,X

Y 6166 6@ RTS

ROUTINES, PABE #3

LINE®
970

1000
1010
1020
1030
1040

10860
1080

1100
1110
1120
1130

1150

1170
11680
1190
1208
1210
1228
1230

1250
1250

1260
1260
1260

1280
1290

1310

1330
1340

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

LocC.
6167

6167
616A
616C
616E
6170
6173

6174

6174
6177
6179
617B
617D
61680

6181

6181
6184
6187
6189
618C
616F
6192

6193
6194
6195
6196
6197
6198

6199
619A

619B

619B
619C
619D
619E
619F
61A0
61A3
&61A3
61AB
61A9
61AC

61B2

OBJECT

BYE3BF
29F0
002
2904
9EIBF
68

BYE3BF
29F0
9002
2982
99EIBF
60

AD9961
399261
9003
199561
8D9961
8D17D4a
60

FE
FD
FB
o1

24

LABELS

RING

RINGEXIT

SYNC

SYNCEXIT

FILTER

FILTEXIT

FILTTAB1

FILTTAB2

FILTCONTROL
FILTCONTROL2

RESONANCE

LINE
3RINGs Y=VOICE, CARRY SET/CLEAR=0ON/OFF

LDA SOUNDCONTROL-1,Y
AND #%11110000

BCC RINGEXIT

ORA #%20000100

STA SOUNDCONTROL-1,Y
RTS

$SYNC: Y=VOICE, CARRY SET/CLEAR=0ON/OFF

LDA SOUNDCONTROL-1,Y
AND #X11110000

BCC SYNCEXIT

ORA #7.00000010

STA SOUNDCONTROL-1,Y
RTS

sFILTER: Y=VOICE, CARRY SET/CLEAR=ON/OFF

LDA FILTCONTROL
AND FILTTAB1-1,Y
BCC FILTEXIT
ORA FILTTAB2-1,Y
STA FILTCONTROL
STA SID+23

RTS

.BYTE %11111110,%411111101,%11111811

.BYTE 708000001 , 7.00000010, 00000108

.BYTE [
«BYTE [

$ RESONANCE: A=RESONANCE

ASL A

ASL A

ASL A

ASL A

PHA

LDA FILTCONTROL
AND #7.00001111
STA FILTCONTROL
PLA

ORA FILTCONTROL
STA FILTCONTROL
STA SID+23

RTS

‘MIIND ROUTINES, PAGE #4

| INE® LOC. OBJECT LABELS LINE
147@ 61B3 $MUTE: CARRY SET/CLEAR=0ON/OFF
149@ 61B3 @8 MUTE PHP
1500 61B4 AD9AL1 LDA FILTCONTROLZ2
1518 61B7 BA ASL A
17208 61B8 28 PLP
15383 41B9? 6A ROR A
148 &61BA BDIAL1 STA FILTCONTROL2
1°58 &1BD 8D18D4 STA SID+24
1968 61CO 6@ RTS
138 &1C1 ;VOLUME: A=VOLUME
1408 61C1 48 VOLUME PHA
1641@ 61C2 ADFA6LL LDA FILTCONTROL2
1620 61CS 29F@ AND #%111 10000
1630 61C7 BD9YA6L1 STA FILTCONTROL2
1040 &HI1CA 68 PLA
160 61CB BD9A61 ORA FILTCONTROL2
168 61CE BD9ALL STA FILTCONTROL2
10704 61D1 8D18D4 STA SID+24
1610 &1D4 60 RTS
1’0@ 61D5 ;PASS: X=RANGE; @,1,2 OR 3.
1774 61D5 ADFALL1 PASS LDA FILTCONTROL2
17 61D8 298F AND #X10001111
1748 61DA 1DEA4ALY ORA PASSMODES, X
1@ 61DD BD9A61 STA FILTCONTROL2
' 48 61E@ BD18D4 STA SID+24
1770 61E3 60 RTS
1’78 &1E4 10 PASSMODES .BYTE %000 10003 , 01080000
190 61ES 40
11100 61ES6 2@ .BYTE 7.00100000,%01010000
110 61E7 S8
1"a &1E8 _;CUTOFF: A, X=FREQUENCY
11140 &61EB 4B CUTOFF PHA
150 61E9 BA TXA
s 61EA BDBAG2 STA CUTOFFTEMP
111’0 61ED 2907 AND #%00000111
iy 61EF 8D15D4 6TA SID+21
A 61F2 48 PLA
10l 61F3 4A L8R A
110 &1F4 LEBLL2 ROR CUTOFFTEMP
1’0 61F7 4A LSR A
17°0 61F8 &LEBLL2 ROR CUTOFFTEMP
1740 61FB &4A LBR A
178 SH1FC 4EBLL2 ROR CUTOFFTEMP
19,8 61FF ADBAL62 LDA CUTOFFTEMP
17’0 6202 8D146D4 STA SID+22
1700 6203 60 RTS8

‘NN 6206 00 CUTOFFTEMP .BYTE e

SOUND

ROUTINES, PAGE #5

LINE#

2020

2840
2050
2060
2070
2080
2090
2100
21108
2120
2130
2140
2150

2170

2190
2200

222

2240
2250

LOC. OBJECT LABELS
6207

6207 A203 SIDCLR
6289 A900

620B B8D9961

620E BD9AL1

6211 9DETRF SIDLOOF1
6214 CA

6215 DOFA

6217 900@D4 SIDCLRLOOF
621A EB

&421F EOL9

&21D D@F8

621F 6@

6220

6220 ADICD4 ENV,
6227 40

&224

6224 AD1BD4 0OSC
6227 6@

SUCCESSFUL ASSEMBLY; NO ERRORS.

LINE
;SIDCLR

LDX #3

LDA %@

STA FILTCONTROL
STA FILTCONTROL2
STA SOUNDCONTROL-1,X
DEX

BNE SIDLOOP1

STA SID,X

INX

CPX #25

BNE SIDCLRLOOP
RTS

sENV: RESULT IN A

LDA S1D+28
RTS

s0SC: RESULT IN A

LDA SID+27
RTS

{JUND ROUTINES, PAGE #6

! INCORDANCE TABLE IN ALPHABETICAL ORDER:

t ABEL

NDSR

CUTOFF
CUTOFFTEMP
NV

t TLTCONTROL
¢ TLTCONTROL2

I TLTER
FILTEXIT
' ILTTAB1
V ILTTAB2
' 10

M7
HSIC
MITE

NI SE

(AL

I NSS

! n3SMODES
tiSE

11 SONANCE
1 ING

' INGEXIT
il

1))

W IDCLR

* 1DCLRLOOP

L 1DLO0P1

* N INDCONTROL

UNINDLENGTH
/NC
MCEXIT

[}
N UME

VALUE DEFN.

$615A
$61E8
$6286
$6220
$6199
$619A

$61681
$618C
$6193
$6196
$6103
$6100
$6148
$61B3
$6110
$6224
$61DS
$61E4
$611B
$619B
$6167
$6170
$6132
$D400

$£6207
$6217
$6211
$BFE4

$BFE7
$6174
$617D
$613D
$61C1

a89e
1840
2000
219@
1280
1290

1170
121@
1250
1260
280
24@
760
149Q
80
2240
1720
1790
4460
1320
990
1038
&00
200

2040
2110
2080

180

190
1080
1120

&80
1600

REFERENCES
1860 1910
1170 1210
1580 1540
2070
1190
11680
1200

300 520
1740

1010

J1a 332
1440 1550
2240
2140
2100

38a 410
800 990
7680

1100

1930

1380
1610

790

530
1670

470
1030

1950

1400
1630

910

55@
1760

500
1080

1940

1420 1430 20860
1650 1640 1720

820 928 940
1868 1970 2110

600 630 &80
1120 2280

1750

1220
2190

710

SOUND ROUTINES, PAGE #7

CONCORDANCE TABLE IN NUMERICAL ORDER:

LABEL VALUE DEFN. REFERENCES

MUL?7 $6100 240 300 520 790 910

FRQ $6103 280

NOISE $6110Q 380

PULSE $611B 4608

6AW $6132 600

TRI $613D &80

MUSIC $6148 760

ADSR $615A 89a

RING $6167 990

RINGEXIT $6170 1030 1010

SYNC $6174 1080

SYNCEXIT $617D 1120 1100

FILTER $6181 1170

FILTEXIT $618C 12108 1190

FILTTABI1 $6193 1250 1180

FILTYAB2 $6196 1260 1200

FILTCONTROL $6199 1280 1170 121@ 1380 1408 1420 1430 2040

FILTCONTROL2 $619A 1290 1500 1540 1610 1638 14658 1668 1720
2070

RESONANCE $619B 1330

MUTE $61B3 1490

VOLUME $61C1 1600

PASS $61DS 1720

PASSMODES $61E4 1798 1740

CUTOFF $61EB 1840

CUTOFFTEMP $6206 2000 18460 1918 1938 1950 1960

SIDCLR $6207 2040

SIDLOOP1 $6211 2080 2100

SIDCLRLOOP $6217 2110 2140

ENV $6220 2190

osc $6224 2240

SOUNDCONTROL $BFE4 180 380 410 47@ 500 600 630 680
a0e 990 1030 18680 1120 2080
SOUNDLENGTH $BFE7 190 780
SID $D400@ 200 310 330 53a 550 820 9208 940
1440 155@ 1670 1760 1880 197@ 2110
2240

1758

710

1220
2198

' xnMPLE SUBROUTINES, PAGE #1

t INC# LOC. OBJECT LABELS LINE
&0 00 H SRARRRARAFRRRARSRR R R LB RS R AR RRRRRARR RS
70 ooeo sDEFINITIONS....
B0 0000 FRARAZABFARERARRF AR RBRERR AR AL R BB RBRBRRRRR
100 4000 *=$4000
1200 6008 IDEAL =$9808 $ ENTRY POINT
138 4000 SETBASE =$BFE1 s OFFSET FOR SPRITE VARIABLES
140 6000 SPN =$0400 sSPRITE VARIABLES
158 6000 coL =$04@2
160 6000 ROW =$0404
178 4000 WwID =$0406
160 6000 HGT =$03408
170 6000 SPN2 =$B40A
‘00 6000 coL2 =$@40C
1@ 4000 ROW2 =$040E
e 6000 NUM =$8410
S0 6000 ICL =$0412
JN0 6000 ATR =$0414
198 6000 Cccou =$0416
Jo@ 6000 CROW =$0418
i 6000 s KERNAL ROUTINES....
‘A 6800 CHROUT =$FFD2 ;s OUTPUT CHARACTER
12 4000 PLOT =$FFF@ ; POSITION CURSOR

‘@ 6000 FREKZP =$FB s TEMP. LOCATION

IXAMPLE SUBROUTINES, PAGE #2

-INE# LOC. OBJECT LABELS
35e
360
370
380
39a
400
418
420
440
450
460
470
480
490
Sea
S51e
520
530
540

4000
65000
4800
4000
6000
6000
6000
6000

4000
6002
&004
6006
6008
600A
60aD
&HO0F
6011
6013
6016

B6FB
84FC
ARG
B1FB
Faac
20D2FF
E&FB
DOFS
E&6FC
4CO640
60

PRINTSTRING

PRINTSTRINGLOOP

PRINTSTRINGEXIT

LINE

R Ry ey e e e e e el
sROUTINE: PRINTSTRING

sPRINTS A STRING POINTED TO BY X(LOW),
5AND Y (HIGH) ON TEXT SCREEN,

s TERMINATED BY NULL.

;REGISTERS ALTERED: A,Y

s LOCATIONS USED: FREKZIP,FREKZP+1

R T e s e e e e e

STX FREKZP ;FREKZP IS PDINTER
STY FREKZP+1 ;TO TEXT.

LDY #0

LDA (FREKZP),Y

BE@ PRINTSTRINGEXIT ;EXIT IF DONE
JSR CHROUT ;PRINT CHAR

INC FREKZP ; INCREMENT TEXT POINTER
BNE PRINTSTRINGLOOP

INC FREKZP+1

JMP PRINTSTRINGLOOP

RTS

toonfLE SUBROUTINES, PAGE #3

I Int 8 LOC. OBJECT LABELS LINE
4H 6817 AR s i s s s d R st 2222222222222 Y2 2 %3
/@ 4817 ;ROUTINE TO DIVIDE TWO NUMBERS.
0a 6017 sENTRY: DIVIDEND IN DIVIDEND AND DIVIDEND+1
e 6017 ;DIVISOR IN DIVISOR AND DIVISOR+1
~Aa 6817 sEXIT: QUOTIENT IN DIVIDEND AND DIVIDEND+1
1l 6017 ; REMAINDER IN REMAINDER AND REMAINDER+1
Q6017 sCARRY SET IF ATTEMPT TO DIVIDE BY ZERO.
40 6017 HRARS R AL 22 22 2 SIS R 22 SRS SRR 2T T WY TR
9 6017 ADS26@ DIVIDE LDA DIVISOR
1@ 601A BDSTLO ORA DIVISOR+1 sDIVISION BY ZERO?
'R 601D =8 SEC
1 4@1E FOZD BEQ DIVIDEEXI! s YES- EXIT, CARRY SET
A 60820 A211 LDX %17 ;16 BITS+1
WA 6022 A900 LDA %0
'3 46824 AB TAY : ZERO REMAINDER. ..
" 6025 FO16 BEQ UPDATEDIVIDE ;;JMP
10 60827 2ES5060 DIVIDELOOPR ROL REMAINDER
") 6@2A 2E516@ ROL REMAINDL R+ 1
‘+ 602D 38 SEC
‘A 6B2E ADSRLO LDA REMAINDER
T 6831 EDS260 SBC DIVISOR
"0 6@34 AB TAY
W 4835 ADS160 LDA REMAINDE i+
1 6838 EDST60 SBC DIVISOR: |
1 6@3R 7006 BCC DECDIVCOUINT
‘v 4@3D BCSAL@ UPDATEDIVIDE STY REMAINDER
"3 6@40 B8DS160 STA REMAINDE R+ 1
1 6B84% 2E4E6G DECDIVCOUNT ROL DIVIDEND sGHIFT CARRY INTO DIVIDEND
e 60846 2E4F 6@ ROL DIVIDEND+1 SWHICH WILL BE QUOTIENT.
1/ 6049 CA DEX
i 604A D@DR BNE DIVIDEL OOF
R 684C 18 cLC
A 404D 40 DIVIDEEKIT RTS
v 6050 DIVIDEND .BLOCK 2
V4852 REMAINDER .BLOCK 2

0 6054 DIVISOR - BLOCK

EXAMPLE SUBROUTINES, PAGE #4

LINE®

960
970
9680
99@
1000
1010
1020
1030

1260
1270
1280
1290
1300
1310
1320

1340
13508
1360
1370
1380

1400

Loc.

60468

6&06C
606D
&@70
6872
6875
6076
6078
&507A
687D

607E
6B7E
60B7E
6087E
6Q7E
&07E
6A7E

6B7E
6881
60883
60885
6088

608E

OBJECT

BEAELO
BCAF60

285460 PRINTDECIMAL

A289
ADLD
200060
60

LABELS

NUM2STRING

NUM2STRLOOP

BUFF

LINE

FEZIT T TSR SRR TR SRR PR R R 2 2T 2 T

; CONVERT NUMBER TO STRING AT BUFF.

sENTRY: NUMBER IN X (LOW),Y(HIGH)

sEXIT: S5-CHARACTER STRING AT

s BUFF, TERMINATED WITH NULL.

3REGISTERS USED: ALL

;LOCATIONS USED: DIVIDEND,REMAINDER,DIVISOR
RIS TR RSN Y R Y IR R

STX DIVIDEND ; STORE NUMBER.
STY DIVIDEND+1

LDA #1@ ; BASE 1@

STA DIVISOR

LDA %0

STA DIVISOR+1

LDX #4 ;5 DIGITS

TXA

PHA $SAVE X

JSR DIVIDE ;DIVIDE TO GET NEXT DIGIT
PLA ;RESTORE X

TAX

LDA REMAINDER ;REMAINDER IS NEXT DIGIT
ORA #°@° ;CONVERT TO ASCII

STA BUFF,X ; STORE

DEX ;LOOP FOR S DIGITS

BPL NUM2STRLOOP

LDA #@ $STORE NULL ON END.

STA BUFF+S

RTS

H P2 T2 ISR RS SRS SRS 2222222 2 2 2. 2 2 2 2 2 2 J
sPRINT NUMBER IN X (LOW),Y(HIGH) AS
;DECIMAL ON TEXT SCREEN.

;REGISTERS USED: ALL

;LOCATIONS USED: DIVIDEND,REMAINDER,

;s DIVISOR,BUFF TO BUFF+S5,FREKZP.
FHRERERRRRRRRARRA SRR AR RS ERRSRRFRRRRE RN

JSR NUM2STRING s CONVERT TO STRING
LDX #BUFF&255 ; AND PRINT

LDY #BUFF/236

JSR PRINTSTRING

RTS

.BLOCK S

! xn\MPLE SUBROUTINES, PAGE #5

| INE#®

1420
1430
1140
1450
1460
14708
1480
149@
1°,00

1920
1~ 30
19,80
[
1968
1,70
[R1%]".}
1Q
1600
106,10
1628
14.5@
143Q
169@
1040
1670
1610
1699
| 790@
1/1Q
1770

Loc.

.6@88E

608E
688E
4608E
&0BE
60BE
6@BE
608E
4@8E

6@8E
6090
&892
6895
6898
&B9A
6@9C
&B9E
&60A1
&0A4
60A6
60A9
6BAC
&BAE
60B1
68B3
&0BS
4088
60BA
&@BC
60BF

OBJECT

B86FB
B4FC
AEE1BF
9D1104
ARAD
BIFB
F@a21
AEE1BF
9D1004
A921
280098
BD1104
Coe4
BD@204
6901
9DA204
F&FB
D@DE
F&FC
4C98460
60

LABELS

STRPLOT

STRPLOTLOOP

STRPLOTEXIT

LINE

FRHARRBERBSARBRARRRER AR AR AR AR AR RARAND
sPUT STRING POINTED TO BY X(LOW),Y(HIGH)
3 INTO A SPRITE AT COL,ROW.

;UPON ENTRY, ACC=@ FOR NORMAL CHARS,

;31 FOR REVERSE, 4 FOR DOUBLE WIDTH,

sAND 3 FOR REVERSE DOUBLE WIDTH.

sREGISTERS USED:

ALL

; LOCATIONS USED: FREKZP,FREKZP+1,COL ,NUM
FRTARRAERERARNARRARARRRERNAERHF NSRRI RNEHERHBRS

STX
STY

RTS

FREKZP
FREKZP+1
SETBASE
NUM+1, X

#0
(FREKZP) ,Y
STRPLOTEXIT
SETBASE

FREKZP, X

STRPLOTLOOP
FREKZP+1,X
STRPLOTLOOP

s FREKZP IS POINTER TO STRINS

sOFFSET IS TOP BYTE OF NUM.

s GET CHAR
sEXIT IF DONE

3STORE IT IN NUM
;PUT CHAR IN SPRITE

sSET CARRY IF
; DOUBLE—WIDTH.

3ADD 1 OR 2 TO COL.

;s INCREMENT STRING POINTER.

EXAMPLE SUBROUTINES, PAGE #&

LINE#

1740
175@
1760
1770
1788
1790
1800

1820
183@
1840
185@
1860
1870
1880
1890
1900
1910
1920
1932
1940
1950
1960
1978
1960
1950
2000
2010

2030
2040

2068
2070
2080
2090

2110
2120
2130

Loc.

6BCa
6BCo
68Ca
60CQ
60Co
609Ca
40C0

60Ce
60C2
60BCs
40C8
68CA
&60CB
60ACE
6@8D1
6@D4
60D7
60D
6@DA
6@8DD

6OF 4
6@F &6

6@F 6
60F &
6OF&
6BF &

&6@F &
bOF7
6BFA

SUCCESSFUL

OBJECT LABELS

A900 MULTIPLY
B8DF 260

8DF 360

A211

18

6EF36@ MULTLOOP
6EF260

6EF 168

GLEFR60

9013

18

ADF 460

6DF 260

BDF 2460

ADF 560

&DF360

BDF360

CA DECMULCOUNT
bapcC

60

MULTIPLIER
MULTIPL ICAND

18 CURSORPOS
20FOFF
[-1"]

ASSEMBLY; NO ERRORS.

L INE

PR e e e e e e E s
sMULTIPLY TWO NUMBERS:

sENTRY: MULTIPLIER IN MULTIPLIER, MULTIPLIER:
sMULTIPLICAND IN MULTIPLICAND, MULTIPLICAND+
sEXIT: PRODUCT IN MULTIPLIER, MULTIPLIER+1,
sMULTIPLIER+2 AND MULTIPLIER+Z.

R e e e

LDA #0

STA MULTIPLIER+2 ;ZERO HIGH WORD
STA MULTIPLIER+3 ;0F PRODUCT.
LDX #17 516 BITS+1.

cLC

ROR MULTIPLIER+3

ROR MULTIPLTER+2

ROR MULTIPLIER+1

ROR MULTIPLIER s IF NEXT BIT=1...
BCC DECMULCOUNT

CLC

LDA MULTIPLICAND ;ADD MULTIPLICAND
ADC MULTIPLIER+2 ;TO PRODUCT.

STA MULTIPLIER+2

LDA MULTIPL ICAND+1

ADC MULTIPLIER+3

STA MULTIPLIER+Z

DEX ;CONTINUE UNTIL DONE.
BNE MULTLOOP

RTS

.BLOCK 4

.BLOCK 2

P L et gl
sPOSITIONS TEX1 CURSOR AT

;COLUMN Y, ROW X.
H Prepeeeers sy Y YEITTITT ST S 2 2222 2 2 2 2 4

CLC
JSR PLOT
RTS

! x0MPLE SUBROUTINES, PAGE #7

{ UINCORDANCE TABLE IN ALPHABETICAL ORDER:

I ARCL VALUE DEFN. REFERENCES

YN $0414 242

N F $6089 1480 1198 1230 1350 1360

1L $@416 250

CHKOUT $FFD2 300 499

(1] $0402 158 1658 1670

tin.? $@40C 200

CROW $0418 260

CLUNSORPOS $6OF6 2110

Ot CDIVCOUNT $6043 850 8z2a

bl UMULCOUNT $6BEC 1990 1910

HIVIDE $6017 &30 1140

DIVIDEEXIT $604D 900 &80

nivIDELQOP $6027 740 860

11VIDEND $604E 920 850 B60 1050 10868

NIV]ISOR $6052 940 &50 &60 780 810 1080 110

Ve ZP $0OFB 330 44Q 450 470 508 520 1520 1530 1579
1680 1700

it $0408 180
[N $0412 230

i AL $9800 120 1620

Hin TIPLICAND $460FA 2040 1938 19460

mn TIPLIER $60F@ 2030 1830 1840 1870 18680 1890 1980 1948 1950
1970 1980

mn rIPLY $60C8 1820

Hn TLOOP $60CB 1870 2000

N $0410 220 1550 1600 1630

NIM2STRING $64054 1050 1340

NUM2STRLOOP $6066 1120 1210

"ot $FFFO 310 2120

1" INTDEC IMAL $6A7E 1340

'IINTSTRING $6000 44@ 1370

' HINTSTRINGEXIT $6016 540 480
T INTSTRINGLOOP $60806 470 510 33@

1t ININDER $6050 930 740 750 770 800 830 840 1170
W $0404 160

VW $040E 210

\ THASE $BFE1 130 1548 1390

LN $0400 140

NN $040A 190

niy OT $6B8E 1520

tink L OTEXIT $4@BF 1720 1560

uney OTLOOP $6898 1560 1690 1710

M ONTEDIVIDE $603D 83e 720
Wi *0406 170

EXAMPLE SUBROUTINES, PAGE @8

CONCORDANCE TABLE IN NUMERICAL ORDER:

LABEL

FREKZP

§30955289

ICL

ATR

ccou

CROW
PRINTSTRING

PRINTSTRINGLOOP
PRINTSTRINSGEXIT

DIVIDE
DIVIDELOOP
UPDATEDIVIDE
DECDIVCOUNT
DIVIDEEXIT
DIVIDEND
REMAINDER
DIVISOR
NUM2STRING
NUM2STRLOOP
PRINTDECIMAL
BUFF

STRPLOT
STRPLOTLOOP
STRPLOTEXIT
MULTIPLY
MULTLOOP
DECMURL.COUNT
MUALTIPLIER

MULTIPLICAND
CURSORPOS
IDEAL
SETBASE:
CHROUT

PLOT

VALUE DEFN.
$O0FB 330
$8490 140
$0402 158
$8404 160
$8486 178
$0428 1680
$8408A 19@
$040C 200
$B40E 210
$0410 220
$0412 230
$0414 240
$0416 250
$0418 260
$46000 440
$6086 470
$6016 340
$6817 &58
$6027 740
$603D 838
$6043 850
$604D 980
$6BAE 920
$6850 930
$6852 940
$6@854 1050
$6066 1120
$6@7E 1340
$6089 1400
$608E 1520
$6098 1560
$68BF 1720
$60C0 1820
$60CB 187@
$6BEC 1990
$60F8 2030
SLDFA 2040
$60F6 2110
$9600 120
$BFE1 130
$FFD2 300
$FFF@ 310

REFERENCES
440 450
1688 1708
1650 1670
1550 1600
137@
S10 530
480
1140
880
720
82e
460
85@ 868
740 750
650 660
1340
1210
1198 1230
1690 1710
15680
2000
1910
1830 16840
1976 1980
1930 1960
1620
1548 1590
490
2129

470

1630

1050
770
760

1350

187@

500 520 1520 1538 1570

18460
(=] a3e B840 117@
810 1060 1100

1360

1660 1898 1900 1940 1958

