Expanding the C128

Increasing System RAM to 256K and Beyond

by
Richard Cursio

This material originally appeared in issues #30 and #31 of

Twin Cities 128

© 1990-91 by Richard Cursio and Parsec Inc.
Current copyright holder unknown

This material is distributed as ‘abandonware’.
If you are the current copyright holder and wish to halt its distribution, contact
Mark R. Brown at airship@mchsi.com

The C128

Expandin :
Curcio

by Richar

Expanding the C-128 to 256K

(Part one: Banks 2 and 3)

Copyright 1990,1991 by Richard Curcio
and Parsec, Inc.

Editor’s note: Before attempting this project you
may want to wait until issue number thirty-one
for the additional articles to upgrade your C-128
to 512K !

Perhaps my disdain for *memory gluttons" is a hold-over
from my days with the Vic-20 and (gasp!) Timex-Sinclair.
However, when | saw that the designers of the C128 had
allowed for the possibility of that machine having RAM BANKs
2 and 3, even though the Memory Management Unit (MMU) and
other hardware make no such provision, | couldn't resist
thinking about ways to make that possibility a reality.

| set down certain specifications for this project:

1) No additional /O registers should be required to
salect the new banks. Since the operating system already
“thinks" it has BANKs 2 and 3, they should be accessible
through existing MMU registers using the normal Kernal
and Basic commands.

2) The circuitry should be as simple as possible. It
would not be worthwhile if a dozen or more ICs (not counting
DRAMs) were needed to merely double the amount of memory.

3) Minimal changes should be made to the existing C128
circuitry, including retaining the existing 128K of RAM.

| feel | have met all these specifications. However,
because of dimensional constraints in the low-profile 128,
item two should be amended to "...as simple as possible
ELECTRONICALLY." It is not so simple to make everything fit
into the flat case. On the other hand, the 128D has ample
room and the wiring of the extra DRAMs in that machine is
much simpler.

This article assumes you are familiar with proper
soldering techniques and have some knowledge of electronics
and expertise in the building and modification of same. I
the foregoing does not describe you, it's best to leave this
project to someone who does have those qualifications.

The heart of this modification is the installation of a
second Commodore 8722 MMU. It is suggested that before
beginning this modification, if possible, you test your extra
MMU for a few days by removing the old one and plugging the
new one into the MMU socket. Removing such large ICs often
results in many pins becoming bent. Attempting to straighten

il

damaged pins can cause them to break. | have found a
right-angle screwdriver useful in chip removal. The trick is
to pry the chip up a little at a time, first at one end then

the other. Don’t rush it. It is further suggested that you
read these instructions thoroughly before you begin. Do not
sKip information just because it does not apply to your model
of the C-128.

A list of the other parts required for this project, and
possible sources for the MMU, are given at the end of this
article. It is possible to arrange things so that this
modification can later be up-graded to 512K.

Bear in mind that presently no available software makes
use of the currently non-existant BANKs 2 and 3. Woell
written programs, such as the Power Assembler (Buddy) can
easily access the new banks as it is written. At least for
now any other software will have to be modified or written by
users who perform this modification. As it will be shown,
the new banks can even be utilized in Basic.

Disclaimer

This modification will render any warranties on your
equipment null and void. Neither Parsec, Inc. or the Author
assume any liability for any reader's or purchaser's
implementation of these instructions. All information is
believed to be accurate.

Theory
Run this short program

10 FOR I= 0 TO 3:BANK | :POKE49152,1 :NEXT
20 FOR |= 0 TO 3:BANK | :PRINTPEEK(49152), :NEXT

on a stock, un-modified C128 and you will get:

2 3 2 3

Twin Cities 128

Page 07

Issue

#30

because whan it POKEs and PEEKs Banks 2 and 3 it is really
accessing Banks 0 and 1. And, since the POKES to Banks 2 and
3 replace the values in Banks 0 and 1, the values PEEKed from
Banks 0 and 1 are the same as 2 and 3.

Once the modification described herein is completed, the
rasult of running the above lines will be:

c 1 2 3

indicating that Banks 2 and 3 are real. They can be
accessed with the approriate BANK statement and the VIC can
display them by altering bits 6 and 7 of the RAM
Configuration Register at $D5086.

Refer to figure 1. Above the dotted line is the relevant
portion of the C128 circuitry. Pin numbers in parentheses
are for the 128D. Below the dotted line is the added
circuitry. (The additional DRAMs are not shown.) The
original MMU (MMU-1,) generates one of two Column Address
Strobes, depending upon the currently selected Bank, the
range of memory being addressed, and several other factors,
determined by the contents of the MMU's internal registers.
The MMU also sends several signals to the PLA, telling it to
generate ROM selects, I/O or /CASENB, which selects RAM. The
VIC chip provides a "master® /CAS. Note that when the MMU
ragisters at $FF00-$FF04 are being addressed, both /CASs from
the MMU remain at logic 1 (inactive). That is how those
registers are made to appear across all configurations.

Once the additional circuitry is installed, the original
/CASs from MMU-1, combined with /CAS0 from the second MMU
(MMU-2)) form a 3-bit "CAS code®. This 3-bit code is applied
to the A, B, and C inputs of IC Z2, a 74LS138 1-0f-8 decoder.
Woe get four 64K RAM blocks because four of the codes are
invalid, so four of Z2's outputs are unused. ICs 23 and 24
detect and condition a number of signals, and let the two
MMUs work together without interfering with each other.
Adding a second MMU is much simpler than attempting to
reconstruct the required logic with separate ICs.

There are two limitations to this arrangement: None of
the additional memory is available in 64 mode, (For this
modification, at least) and the MMUs cannot relocate
zero-page and the stack to the new blocks. | believe that,
with more logic, this last should be possible, but | don't
think it's worth it. When common memory is at the low end,
as is usually the case, the block pointers have no effect,
and zp and stk are always in RAM 0. When common memory is
only at the high end, or switched out altogether, each bank
has its own zp and stk. Since zero page and stack relocation
is a tricky feature under normal circumstances, I've chosen
to keep the hardware simple and accept the block 0
and 1 limitations.

For the more technical: The 128's designers used a 74F32
for U9 because they were concerned about the speed with which
the various signals occur. (The "F* stands for Fast.) The
MMU takes time to determine which (if any,) /CAS to generate.
The PLA, based on the signals it receives from the MMU and
elsewhere, takes time to generate its signals. Aithough this
amounts to a few dozen nanoseconds (billionths), /RAMCASN
must occur within a rather brief "window”. In figure 1, Z2
replaces the actions of U9 and the delays through Z2 are not
much greater than those through two 74F OR gates. Adding
decoders and such before or after U8 would have increased the
delays and would not have worked. (However, a similar
strategy DOES work when expanding a RAM Expansion Unit, but
that is ancther story, and will not be covered here.)

As for expanded system RAM itself, using eight 256K x1
DRAMSs would have required the removal of the existing DRAMS,
somathing | was unwilling to do. And, since the MMU selects
RAM in 84K chunks, it also would have meant somehow
translating the /CASs from the MMUs into extra address bits
and multiplexing them into a single bit. This is not
feasible, because by the time the MMUs figure out which /CAS
to generate, /RAS has aiready occurred and by then it's too
late for the new address bit to have had a valid ROW value.
For the same reason, two 256K x4 DRAMSs could not be used,
either. The way the VIC chip refreshes memory further
preciudes the use of 256K x4s.

Disassembly

When your modification is completed, to test it, you will
need your power supply, disk drive and monitor. Remove your
printer and all accessories if they occupy too much space in
the area you will be working in. Protect any finished
surfaces with layers of old newspaper.

KEEP YOUR DISKS FAR AWAY FROM YOUR SOLDERING IRONI
Low-profile C128 disassembly is as follows. Begin by
disconnecting all peripherals and the power supply from your
computer. Remove six screws from the bottom of the case,
noting the different size (a "torx" driver may be needed for
some C-128 computers). Partially lift the top cover and
remove the three wire LED power indicator on the left side
{when you reconnect it, the polarity won't matter). At this
point, you might want to discharge any static charges from
yourself by touching a cold water or radiator pipe. Unscrew
the keyboard grounding strap on the right side of the case.
It you have enough room to work in, you may keep your
keyboard connected to the main board and attached to the top
cover. If not, carefully remove the keyboard connector. Do
this by gently rocking it from side to side while maintaining
an upward pull. This connector is "keyed® and will go back
on only one way. If any of the pins bend, you can gently
bend them back to the vertical position. If any pins break,
you will lose use of your keyboard. When the time comes to

Twin Cities 128

Page 08

Issue #3(

test your modification, | do not recommend that you
repeatedly connect and disconnect the keyboard. Therefore,
you might want to remove it from the top cover. Don’t lose
any of the little plastic "braces.” If you think it will

help during re-assembly, make a little sketch of how
everything fits together before you start removing screws.

Remove the screws holding the RF shield in place, again
noting any difference in sizes. The metal shield is soldered
to the system board at one point. This will have to be
unsoldered, using a solder vacuum and/or sclder braid.
Gently unbend the small meta! tabs holding the top and bottom
metal covers together and expose your computer's innards.
The white gooey stuff on the larger chips and the underside
of the top metal cover is heat-sink compound. Be careful not
to get any on clothing, carpets, etc. You will not have to
remove the circuit board from the bottom case.

To disassemble the 128D: Begin by disconnecting all
peripherals and the power supply cord from the outlet and
from your computer. Remove the six screws from the
cabinet top by removing two screws from the bottom front and
three from the rear. Slide the top back 1/2 inch and lift.
Label all connectors so you can put them back from where they
came. Make note of polarities! (Again, a sketch of how things
WERE before disassembly may be helpful.) To remove the disk
drive, disconnect connectors CN12, CN14, CN15 and CN17. Pull
the lever knob from the front of the drive. Remove one screw
from the left and two from the right sides of the drive.
Slide back and remove. To remove the power supply, remove
the screw holding the LED to the front panel. Disconnect
connector CN7. Remove two screws from left, two from rear
right, and one from front right. Lift. To remove the
circuit board from the case, remove the screw holding the
drive LED to the front panel. Remove one screw from right
side and one from rear bottom. Remove seight screws from
connectors CN2, 3, and 4. Unscrew the spacer the power
supply rested on. Remove seven screws from circuit board
and lift (Phew!).

Support Circuitry

C-128D owners should have no trouble finding room for a
small perforation board to hold ICs Z2, Z3, and Z4. Owners
of low-profile 128s will have to use the upside-down chip
technique: the 1Cs are stuck to the main board upside-down
and the necessary connections made by wire-wrapping directly
to the pins. C-128D owners can use this method as well.

Before sticking any chip down, place a small adhesive
label to the bottom and write its designator on it, and a dot
to indicate the location of pin 1. Use a small piece ot
double-stick foam tape to hold each chip in place. This is
considerably stickier that double-stick masking tape.
Adhesives such as epoxy or cyanoacrylate (Krazy Glue,) SHOULD
NOT be put directly in contact with the main board. Rubber

and contact cements are OK, but they require “coaxing” to
stick to the ICs. | positioned Z2 near U9 (near the memory
chips,) Z3 and Z4 near the MMU(U7). Figure 2 iliustrates my
low-profile installation. This is only a suggested layout.

See "Mechanical Alternatives” for other possibilities. The
objective is to keep the leads as short as possible.

*Ground” is available at pin 10 of U62 or the heavy trace by
pin 34 of the MMU. Z2, not shown, can get +5v and Gnd from
pins 14 and 7 respectively of U9. When completed, the
longest wire should be the one connecting pin 12 of MMU-2
to pin 3 of Z2. This wire should not pass over the top

of the MMUs.

When wire-wrapping to bare IC pins, | suggest that you
strip each wire much less than you would for a normal
wire-wrap. No more than 1/2 inch of bare wire should be
exposed. Use a hand-wrapping tool, rather than a
battery-powered gun. The wire should be slightly "backed
out" of the tool. Hold the wire firmly while rotating the
tool gently. The insulated portion should not become
wrapped. You might want to practice on a "junk® IC before
committing yourself.

Wire Z2-4 up to but NOT including the MMU connections and
the cutting of resistors R29 and R30. Refer to the Signal
Location table accompanying figure 1. Be sure to use the
correct list for your machine("Flat® or 'D). C-128D owners
should remember to use the U) pin numbers in parentheses in
the schematic.

Piggy-Backing
The additional dynamic RAMs and second MMU will have to
be "piggy-backed” to the old. Brand new ICs come with the
pins splayed out, not at right angles to the body of the
chip. This makes for a tight fit when installed by
auto-insertion manutacturing equipment, but makes
installation by hand difficult. For piggy-backing, to
ensure good electrical connections between the pins of the upper
and lower ICs, the pins of the upper chip must be straightened.

If you have a tool known as (what else?) a
pin-straightener, the process is simple: stick the chip in
the tool and squeeze. If not, straightening the pins one by
one with pliers is NOT practical, especially for the MMU,
which has 48 pins.

Begin with the DRAMs. Electrically, MOS ICs are more
rugged now than they were when the technology was first
invented. Still, it can’t hurt to ground yourself when
handling these ICs, but - DO NOT GROUND YOURSELF AROUND
“LIVE" EQUIPMENTI!! Look at each chip on-end to see how
badly splayed out the pins are. Then lay the chip on its
side, on a smooth, hard surface, and holding the chip by its
ends, with the pins firmly against that hard surface, GENTLY
*lean on it". | don't know how else to describe the process.

Twin Cities 128

Page 09

Issue #3

The goal is to bend all the pins simultaneously, by the same
degree. Again, you might want to practice on a junk IC.

When you're satisfied that both rows of pins are
reasonably perpendicular, slip the chip over a similarly
sized IC on the main board to test the fit. Oncd this is
acceptable, you can use pliers to bend outward the pins that
will not be in contact with the lower IC. Don’t try to make
them horizontal. Bend them out just enough to clear the
lower pins. C-128D owners need to bend out ONLY pin 16 of
the DRAMSs. low-profile owners, see the text below. With your
soldering iron, "tin® the skinny parts of the pins that will '
be in contact with the lower ICs. Repeat this straightening,
bending and tinning process for all the DRAMs. Don't solder
them in just now. Set the prepared DRAMSs aside and
straighten the pins of your "extra®* MMU. Before you check
its fit over the socketed MMU (U7), remove any heat-sink
compound from the original. Then clean your hands. If you
get any of that stuff on the pins, it will be impossible to
get a good, solid solder joint.

Remove the socketed MMU and dscide which MMU will be the
bottom one (MMU-1), and which will be the top (MMU-2). h
really doesn't matter which is which.

Check the fit of the two MMUs again. Now bend outward
(GENTLY1) the specified pins of what will be the upper MMU; 3
through 15, 23, and 41 through 48. Note the notch that
indicates which end is pin 1. (For 40-pin and larger ICs, |
put a drop of White Out or Liquid Paper beside each *5* pin
- 5,10, 15, etc. That way, I'm not always counting pins
from one end or the other. Remember, the MMU has 48 pins,
Solder a wire to the wide portion of pin 23 of what will be
the iower MMU. This will be the AB/7 signal to ICs Z3 and
Z4. C-128D owners can skip this step and instead obtain A8/7
at pin 8 of US4, a 74LS32. In the fiat 128, this signal is
at pin § of U54, but that IC is at the left side of the video
box, quite some distance away. Tin the slender portions of
the pins of the upper MMU that will be in contact with the
lower MMU. Place the second MMU atop the original, making
sure the notches are at the same end, and slip thin
cardboard, manila or pieces of a match-book cover, between
the two ICs, at the ends, so that there is some space between
them. Solder the skinny part of the upper pins to the wide
part of the lower. This is another point where you may want
to first experiment on junk ICs. Avoid excessive heating; do
not linger on any one pin for an extended length of time.

Once cool, all solder joints should be shiny. Dullness

indicates a "cold” and possibly intermittent solder joint.

Contirm that the connections are intact before inserting the
MMUs in their socket. Once the MMUs are socketed, soldering
to the pins risks having solder flow down into the socket,

making removal of the chips difficut. Except for R/W, all
needed MMU connections will be made to the "shoulders® of the
bent-out pins of the upper MMU.

Now you are ready for the DRAMSs.

Memory - C-128D

For the 128D. DRAM installation is straightforward. Slip
the prepared DRAMS over U38-U41 on the main board, making
sure the notches are in the same direction, and solder all
pins except the bent-out pin 16. Solder a wire from pin 16
of the chip on top of U38 to pin 16 of the chip on top of
U39. These chips are NOT naext to each other, so the wire
will "leap-frog" U40. Do the same thing for the DRAMSs atop
U40 and U41. Slip "spaghetti® on the leads of the 88 Ohm
resistors and solder one end of each to the two pairs of pin
18s. (Or, snip off the excess and use heat-shrink tubing or
electrical tape 10 insulate the wires you splice to the
resistors). The free ends of the resistors go to pins 9 and
10 of Z2. Snip the U9 ends of resistors R29 and R30 on the
main board (the ends toward the rear,) and connect these to
pins 13 and 14 of Z2. Note that the order shown in figure 1
is correct. Z2 output Y1 selects RAM 1 and Y2 selects RAM 0;
outputs Y5 and Y6 select RAM 2 and RAM 2 respectively. This
is significant only if you run into trouble, and need to
determine which block is malfunctioning.

Memory - Low protile

For the low profile 128, | found the prospect of
piggy-backing 16 64K-by-1 DRAMSs unappealing, so | used 4
64K-by-4s. In figure 3, you will see that, even though the
84K-by-4 is longer, when aligned as shown most of the signals
line up properly. It doesn't matter that the Address bits
are numbered differently. So, if we bend out pins 1-3 and
15-18, and let pins 1 and 18 over-hang the existing DRAMS,
the rest of the signals will be taken care of by
piggy-backing. (Note that +5v and ground are at positions the
reverse of ordinary logic chips. Note further that the
84K-by-1 has separate Data in and out pins, which are wired
together in the fiat 128, and the 84K-by-4 has bi-directional
Data pins - which are numbered beginning with *D1* instead
of “D0.%)

Figure 4 shows my DRAM installation and part of its
winng. The easy part. Note that, because the chips are so
close together, pins 2, 3 and 15-17 of the added DRAMSs are
clipped short. Pins 1 and 18 of the upper ICs are
daisy-chained and connect to pin 16 of U49. This takes care
of Gnd and /OE. The /CAS lines and 68 Ohm resistors are dealt
with in the same manner as described above for the 128D. All
that remain are the Data lines.

Solder wires from pins 2, 3, 15 and 17 of the chip atop
US3 to the same pins of the chip atop U52. Wire sach of these
to each pin 2 of U42 through U45. This takes care of Data
bits 4-7. Wire the same pins of the DRAMs atop US0 and U51 in
the same way, with the final connections to each pin 2 of

Twin Cities 128

Page 10

Issue #¥30

U38-U41. And that takes care of bits DO-D3.

This "daisy-chaining® of the data lines will be much
easier if the wires are prepared in advance. Cut short
lengths of wire-wrap and strip the ends to leave about 5/8
inch of insulation. Tightly *pigtail* splice a longer wire
to each short wire to provide the connection to pin 2 of each
of the front row of mother board DRAMSs. Solder the splices,
then clip off the excess and you have a pre-tinned assembly
to solder to the appropriate DRAM pins. The mother board
DRAMs in the low-profile 128 are rather close together and
numerous p.c. traces run in between the pins, providing many
opportunities for the creation of short circuits. Take your
time, and inspect your work often.

Not shown in figure 4 are the bypass capacitors on the main
board, between the two rows of DRAMs. These make for
slightly cramped quarters for the piggy-backed chips. Why
not use the front row of DRAMS, you ask, where there is more
room? Because the R.F. shield slopes in the front, to
accommodate the keyboard, and will not clear double-high
chips. Even if you dispense with the shield, the keyboard
might not clear the piggy-backed chips if they were mounted
along the front row. So sixteen 84K-by-1s would not have
fit anyway!

Compietion

insert the double MMU into its/their socket and make the
remaining connections shown in figure 1 between it'them and
Z2, Z3 and Z4. Signals D6 and D7 to Z3 could be obtained at
pins 41-42 of the lower MMU, but these will be difficult to
get at once the two MMUs are piggy-backed. See the Signal
Location table accompanying figure 1.

Testing

Check and re-check your wiring several times. Having
come this far, it would be tragic to let the simplicity of
the schematic mislead you into thinking that mistakes cannot
be made. Make sure no little bits of wire or blobs of solder
are left on the circuit board. Reassemble your machine as
much as necessary to make it operable. This is where things
can go wrong, so use caution. Turn your monitor on first so
you won't have to wait for it to warm up. A blank screen can
be very disconcerting, so make sure the monitor is in the
correct mode with respect to the 40/80 key. If, when you
turn on the computer, you fail to get the sign-on screen,
immediately power down and find your mistake. Are the right
pins of MMU-2 in contact with MMU-17? Are the right pins bent
out and NOT in contact? Check the DRAM wiring. Did you snip
the correct ends of R29 and R307? Did you use the correct
Signal Locations for your machine? (See "Troubleshooting" at
the end of this article.)

When you get a normal start-up -- complete with an
attempt to boot a disk - you'll see that the "bytes free”
message still says "122385." That’s built into ROM and
remains unchanged by the modification. Run the short program
from the Introduction. If you don't get

o 1-2 3
the modification still isn't right.

For a more convincing test, use the Machine Language
Monitor to fill the same locations, say, $n8000-n80FF (where
n = 0 to 3), in the four banks with different values, then
examine them with "M*,

Disassemble $FF05-FF44. All four banks should be
identical. The last six bytes of Ram, from $FFFA to $FFFF
should contain 05 FF 3D FF 17 FF in all four banks. if you
use the MLM "C* command for this, ignore the "?" it prints
when done. If locations $3FFF5-3FFF7 (RAM 3) contain 43 42
4D, the codes for the characters "CBM", then it isn't really
RAM 3; only RAM 1 should contain that string.

Use your 128 disassembled for a few days, to confirm that
all is well. If your 128 is low-profile, before you replace
the R.F. shield, put masking or electrical tape on the
underside, above the upside-down ICs. They should not hit,
but 'tis better safe than sorry. Flatten the heat-sink tab
for the MMU and put tape around the edges of the opening. If
you're handy with tin-snips, you can cut off the tab and
widen the opening.

You can dispense with the R.F. shield, but if any
neighbors complain of interference with TV, radio, or
telephone, you may find yourself in conflict with government
regulatory agencies, which is never pleasant. In general, if
your computer does not disrupt YOUR over-the-air (NOT cable,)
TV reception, it should not bother your neighbors. If in
doubt, ask them!

Software

Program 1 tests a few features of the modification. It
BLOADs four Doodle format pictures to each of the four banks,
demonstrating that BLOAD can access the new blocks. (Except
for the load address, Doodle pictures are completely
compatible with the 128's hi-res forman If you do not have
Doodle, substitute the names of any 40-column hi-res 128
format pictures you may have. Multi-color pictures such as
Koala CANNOT be used for this demo.) The program rapidly
displays the four pictures via a simple POKE, altering the
VIC/DMA block bits of $D506/54534. (If you see only two
pictures, you have only RAM 0 and 1.) Halt the program by
pressing any key. Adjust X in line 240 to change the speed.

Twin Cities 128

Page 11

Issue #3

Restart the program with RUN 220.

The picture in RAM 1 occupies 9K of variable space.
Since this program has few variables, there is little chance of
them bumping into the picture.

While 1t is true that the same thing could be done on a
CB4, by selecting different 18K video blocks, you'd be
hardpressed to find the room for four pictures and a program
that could do anything more than display them. (In 128 mode,
the presence of the MMU registers at $FF00-04 complicates the
use of the “last" 16K video block from $C000-SFFFF.) Note
that while it's easy to display a bit-map in any RAM bilock,
the Basic graphic commands only work in RAM 0.

Program 2 is the Basic loader for a relocatable
Bank-to-Bank memory mover. If MOVE is where the routine is
located, it can be called from Basic with

SYS MOVE, source bank, destination bank,,, source start,
source end + 1, destination start

The 128 must be in BANK 15. The three commas must be
present. Source and Destination Banks are 0-15. Source
end+ 1 must be greater than source start or you'll receive
7ILLEGAL QUANTITY. Upon return, Carry will be O if the move
was complete. This can be determined by reading the status
register into a variable with something like RREG,,,SR: IF SR
AND 1 =1 THEN the move was incomplete. The routine will not
let the destination reach page $FF, and thereby clobber the
MMU registers or the IRQ, NMI and other routines and
pointers. However, the destination can begin in page $FF, if
you're the adventurous typs. In that case, if the number of
bytes being moved causes the destination to "roll over® to
zero page, the move will be halted and Carry set to 1. There
are no restrictions on the source address, except that the
last byte of memory cannot be moved since, with regard to
addresses, 65535 +1 = ILLEGAL QUANTITY. (The same
restriction, by the way, applies to BSAVE.)

If you need a non-standard configuration (like RAM 2 with
I¥O,) POKE the source and destination CONFIGURATIONS (NOT
Bank #s,) in 206 and 207 respectively. and call the Mover
with SYS MOVE + 25,,,,, srce start, srce end + 1, dest start,
These zero page locations are used as pointers for PRIMM
which, as far as | can tell, is the only use the system makes
of them. To utilize the Mover in machine language, store the
srce and dest CONFIGs in $GE and $CF, store srce start in
low-byte high-byte form in $AC-AD, srce end + 1 in SAE-AF.
Then LDY and LDA with the low and high bytes of dest start
and JSR MOVE + 47.

The Mover doesn't disable interrupts, and will not
interfere with IRQ-driven activities, such as split-screens
and sprite motion. It owes its small size to the use of
several system routines. It owes its speed -- which isn't

exactly blazing -- to the fact that two system routines are

NOT entered via the Kernal jump-table. When cailed the
prescribed way, INDFET and INDSTA each call GETCFG to
convert the Bank number in .X 1o a configuration value, Two
conversions for each byte moved proved to be too time
consuming. The Mover performs the bank-to-config conversions
just once, at the start of the routine, and saves them in

$CE-CF. The routine later picks these up and calls INDFET
and INDSTA at their ccmmon memory resident locations.

Locations $AC-AD and $SAE-AF are used as start and end
pointers for the sourca. A Kernal routine at SEEB7 is used
to check that end is greater than start. Later on, to save
time that would otherwise be spent in JSR and RTS, the Mover
does its own comparson to determine when the end has been
reached. The Basic ROM routine at $880F examines Basic text
for a comma and evaluates the expression which follows to a
two-byte value, 0-865535, and ReTurnS with the low-byte in .Y
and the high-byte in .A.

Program 31s an adaptation of the "Globe™ animation demo
on the 1764 REU disk. You need a copy of that disk for this
program to work. Like the original. this program BLOADs more
than thirty compressed hi-res images. The original program
de-compressed the pictures and stashed them in the REU.
Since there isn't anough room for that many bit-maps in the
slightly less than 128K of RAM 2/3, this adaptation keeps
them compressed until just before they're displayed. The
previously described Mover transfers the compressed data from
RAM 2/3 to a graphic area in either RAM 0 or RAM 1. Then
they're de-compressed and bits 6/7 of the Ram Configuration
Register at $D506/54534 are changed to display the picture.
| call this sort of animation, moving a full bit-map, "brute
force.” For "Globe" (and especially "Pound”, which is
multi-color,) it works only because the colors are
static and unmoving.

Although the machine language program "compress.bin” was
intended for 84 mode. when located in the same RAM block as a
bit-map, it works fine in 128 mode. (It is BLOADed twice to
put it in both RAM 0 and 1.) It assumes the bit-map is at

$2000/8192. SYS 49155 uncompresses and SYS 49152 compresses a

bit-map. PRINT PEEK(253) + 256 * PEEK(254) then gives the end
address of the compressed bit-map data.
Colors are not affected,

The demo sets aside 36 2304-byte buffers -- 18 each in
RAM 2 and 3 - to hold the compressed data. There 1s room in
each bank for 27 such buffers. That size represents the
largest .cmp file in disk blocks. For some reason, when
Globe files are de-compressed, some debris 1$ left in the
first 768 bytes of the bit-map. Line 400 clears that by
using a short-coming of the Mover as a feature: When source
and destination over-lap in the same Bank, the move becomes a
fill. Delete ine 400 for "Pound.” (Which explains the need
for the seemingly redundant BANK 15 in line 420.)

Twin Cities 128

Page 12

Issue #30

Suggestions (software)

Program 1 and the Mover can be combined for a "brute force"
form of hi-res animation. Banks 2 and 3 can each hold
up to 6 hi-res pictures. You could move a picture into the
graphic area of RAM 0 and while it is being displayed, move
the next picture into the same area of RAM 1, then change the
VIC/DMA bits to display that RAM. Move the next picture into
RAM 0, etc. Multi-color pictures have the additional
complication of Color Memory.

The capacity of Banks 2 and 3 equals 2/3 of a
single-sided floppy. While this is not as spacious and
cannot be as fast as a 1750 REU, it's still nothing to turn
up one's nose at. Somecne out there should be able to coax
Geos 128 into utilizing the new Banks, alleviating some of
its tedious disk activity.

On the Basic side, the Mover could form the basis of a
RAM-drive. Or it could completely stash Banks 0 and 1in 2
and 3, saving your current program and ail its variables
while you load and run a second program, then return to where
you left off. The Mover would need some modification to
do this though.

To determine compatibility, the Intro program, or its
MACHINE LANGUAGE equivalent, could determine if a 128 really
has Banks 2 and 3 or is non-modified.

And what could CP/M do with 256K of memory?

Suggestions (hardware)

| do not anticipate any software incompatibility with
this modification. But should any arise, a two position
switch can be installed to cause the machine to appear to be
non-modified. When the switch connects input "C* of Z2 to
MMU-2, Banks 2 and 3 are available. When the switch is in
the Gnd position, the new Banks disappear, and accesses of
them default to RAM 0 and 1, as in a non-modified C128. Use
a double-pole switch. The other pole might come in handy.

JiffyDOS and others...

For compatibility with JiffyDOS -- and perhaps other disk
speed-ups -- combined with (some) serial printers, it may be
necessary to make a small addition to the system mother
board. Connect a 1000 Ohm 1/4 Watt resistor between +5 Volts
and "FSDIR" -- the line from MMU-1 that tells the Fast Serial
circuitry which way the data is going. This will prevent
spurious FILE NOT FOUND errors when JiffyDOS 128 and the
memory expansion modification are both enabled. This problem
occurs ONLY in 128 mode when the printer is on AND the 128 is
in SLOW mode 7?? FSDIR is available at pin 4 of U58 (74LS03)
in both the low-profile and the 'D. Note that the IC
designators on some 128s are not very readable. The slashed

zero can easily be mistaken for an "8."

How does the pull-up resistor eliminate FILE NOT FOUND?
| wish | knew. JiffyDOS does not use the Fast Serial
capability, but | can see (vagusly,) how a serial printer
might be involved in the problem. C64 mode automaticaily
disables the Fast Serial circuitry, so any glitches therein
would have nowhere to go. But why does FAST mode,
specifically, the blanking of the 40 column screen,
eliminate the problem?

One problem may remain: In 128 mode, the JiffyDos wedge
command (Load&Run) sometimes doesn’t. This might be
caused by a bug in the wedge. With JiffyDOS enabled but its
wedge disabled, and a 128 Dos wedge from Compute!'s Gazette
enabled, the (Load&Run) command works fine. Run"prog.name”
ALWAYS works, So does JiffyDos's (Load&Run) in C64 mode ?

Troubleshooting

As is usually the case in a project such as this, the
most common causes of it failing to work are wiring errors
and bad connections; intermittent or "cold" solder joints and
short circuits caused by solder bridges. The chances of
shorts causing any permanent damage to the 128 are minimal.
The difficulty is in locating them.

If the 128 powers up "dead” -- blank screen, no drive
activity - the problem could be anywhere, but you may not
have t0 ook everywhere. Look for wiring errors in the
enabling of the DRAMSs serving as RAM 0 and 1 (Z2) or shorts
on the address or data lines of those DRAMs as a result of
the piggy-backing. If the 128 powers up with a garbled
scraen, characters that don’t look right, or no disk
activity, the two MMUs are probably interfering with each
other. Check the MMU piggy-back connections and the wiring of
Z3/4. If you run the multiple DOODLE program and the
pictures in RAM 0 and 1 are fine, but those in the added
RAM(s) are complete garbage, check the wiring of Z2 and the
two MMUSs. If the pictures in additional RAM are partially
garbled, one or more address and/or data connections to those
RAMs might be missing. This could be caused by poor
piggy-back connections. (Remember, in the low-profile it
doesn't matter if the address/data bits to added RAM are
"scrambled” -- not in order -- as long as you have all of
them and the scrambling is consistent.) Examine those banks
with the MLM .m command. If bytes change every time you
display them, that's a sure sign that one or more address or
data bits are missing. Again, shorts on the address or data
lines would cause the 128 to not work at all.

Twin Cities 128

Page 13

Issue

#3

Supplement
Low-profile Mechanical Alternatives or
If | knew then what | know now...

When | expanded my low-profile 128 to 256K, the second
128K, consisting of four 64K-by-4 dynamic RAMs, was added
using piggy-backing. To increase the modification to 512K,
eight more DRAMSs were installed using more piggy-backing for
the first four and a small board for the remaining four. Now
that I've modified more than one "flat" 128, I've devised
other strategies.

1. There is room just in front of the video box for a
small perforated "daughter® board. This could hold 4 DRAMs
for the 256K modification, and could be large enough to
include the support chips — except for the second MMU which
should still be piggy-backed because of the many connections.
The daughter board could even be large enough to include the
chips needed for the 512K expansion, which could be added at
a later time. The four DRAMs mounted on the daughter board
would be wired to the appropriate points on the mother board.
When the time came to expand to 512K, the eight additional
DRAMs could be piggy-backed to the daughter board DRAMSs or to
the second row of mother board DRAMs. (Or any
combination thereof.)

2. The method I've actually been using has been to use a
small board only for the DRAMSs; 4 for the 256K modification
or, using piggy-backing, a total of 12 for the 5§12K. (The
piggy-backing is as described for the 128D in the 256K
plans.) The support chips are still mounted upside-down
using double-stick foam tape and the necessary connections
made by wire-wrapping to the pins.

Method 1 has the advantage of being more easily undone,
should the need ever arise. I've found method 2 to be the
fastest and least troublesome, since the only "hidden" wiring
is on the underside of the DRAM board. For EITHER method, if
dip sockets are used, which | STRONGLY recommend, the R.F.
shield won't fit - with or without piggy-backing! (There is
enough headroom - though just barely — for three levels of
DRAMs.) You could dispense with the shield, or make a
cut-out, using tin-snips, sufficient to clear the add-on
board components. The area of the mother board beneath the
add-on board MUST be insulated with a layer of vinyl tape.
The add-on or daughter board is held in place with small pads
of double-stick foam tape.

When positioned in the logo (C =) area of the low-profile
mother board, the daughter board is centrally located to all
the signals it needs. As illustrated, the daughter board is
tight, but workable. the dimensions given are the largest
possible for the area involved. The positions of the ICs
(particularly Z2,) were chosen to keep the signal leads as
short as possible. Z1, the second MMU, should still be
piggy-backed due to the many connections involved.

. CPRAPEVINE
GROUP .. .
Inc.&

[J\ Asuper-heavy, repairable C-64 power supply withan
" §& output of 4 3 amps (that's over 3x as powertul as the
% onginal). Featuning | year warranty, ext fuse. schemal-
ics, UL approved This supply is used for multiple drives.
additional memary and “packet * Cost & $37.85 and
includes as a bonus either the Commodore Diagnostician
1l {valued @ $6.95) or the “programmers utility” plug-m
A\ | cartndge (valved @ $9.95)

Our Biggest Seller
* 1 § amp repairable heavy duty supply for C-64.
{Ower 120,000 800}ovuns .. 32495

® 43 amp supply for C-128. Same features as
above—$39.95 (includes bonus package)
@ 1541 Commodore Power Supply.........
® 1541 1111581

Save time and
printhead refurtrshed o remanutactured at a
fraction of the cost of a new one, Features low cost, § day
& service and | year wamanty ... Call for pces/into

COMKMODORE DIAGNOSTICIAN 11
Originalty as a soltware package, then

8 1 converted to a readable format, the Diagnostician has
P become a fantastic seller. With over 32,000 sold
8% worldwice, Diagnostician || utilizes sophisticated cross-
relerence grids to locate taulty components (ICs) on all
.C-64 and C1541 computers (C-128/64 mode). Save
" money and downlime by promptty locating what chip(s)
have failed. (No equipment of any kind needed | Just
updated with 30 changes 1o take advantage of the new
L3 84C combination chp/ RAM changes found on new CBM

B, boards. Success rate Irom diagnosss-to-repar 15 98%
Inciudes basic schematic -................ ...58.8%
W, (Avail for Amiga computers with 3% disk a1 $14.95.)
PROGRAKMERS UTILITY CARTRIDGE
This Utility Cartridge by Share Data saves you time and
A energy. In just two keystrokes you can perform BASIC

tunctions that nomally take several sieps 10 compiete
You gei 30 additional machine language programming

4 commands such as: reset button, recover lost programs.
7 \a mslantly accesses disk directory, dumps screen to
) printer and renumbers program lines. Works with
Commodore C-64 and C-128 Comes with a&ag

4 EMERGENCY STARTUP KITS
. ’ "> Repaif your own Commodroe/Amiga and save lots of

W% v money Onginally blister packaged for govemment PXs
i" worlgwide, these kils are now available to you (o
A soldening) Kits for Amuga, (B4 and drves. Each kit
£ contains all chups. 4164 memories. schematic, Commo-
dore Diagnostician |1 fuse, chp puller and diagnostic
‘gt - 165t diskette with 9 programs. .. Send for tull details

M 6510CPU $11.50 C-128 Serv. Manual 44.50
VAL 4164 (C-64/RAM) ... B0 1541 Serv. Manual 34.95
A 6526 CIA12.25 1750 RAM Expander 158.95
6581 SID......... 1225 64 Keyboard {new). 19.95
\ 6567 Video 1485 64 Case (new).... 14.95
PLA 051141295 SX64 KybdiCable ... 40.95
8563 CRT19.95 154171571 Parts ... Call
Al 901/225-6-7 ... 18.95 Commodore Cables Call
¥R 1571 Upgrd ROM. 11.95 Super Graphecs ... 5150
%] C-128 ROMs ... 2495 Super Graphecs Jr ... 49.95
J¥ 128 RAM Upgro 56.95 300 Baud Modes ... 6.95
£ C-64 Serv. Manual 34.95 C-64 & 1541 Pc Brds Call
-0 CBM to IBM Printer Cable Adapter 3405

COMMDOORE REPAIRS—CALL FOR PRICES

Send For Free Catalog
36 page FREE catalog contaning paris. upgrades.
memonies, power supphes, diagnotics, and othes flems
not found arywhere else

& O cupsrauTsT SUFFERN Ny 10001
= Order Line 1-800-292-7445

2y Fax 914-357-6243 Hous G6EST M-F 914-357-2424

0. We S Worldwide Prices subyect 10 change

Twin Cities 128 Page 14

Issue #30

Flat ribbon-cable is handy for groups of conductors, but
its stitfness sometimes makes it difficult'to position. |
have found "tone-arm" cable, the thin wires used inside a
phonograph tone arm, very useful. (The smallest gauge is a
bit too fine to work with. Choose a size similar to or
slightly larger than wire-wrap, which is usually #28 or #30.)
It comes jacketed and unjacketed, shielded and unshielded.
The shield and jacket are easily removed and the four
conductors are flexible enough to make turns that ribbon
cable won’t, (For a little more work and a little less
flexibility, you could also assemble your own bundles of
twisted wire-wrap, in different colors so you can tell them
apart.) Bundles of four conductors can be assigned to lower
and upper address bits and lower and upper data bits. Once
everything is tested and functioning properly, a dab or two
of hot-melt glue will hold the cabling in place.

Materials List

8722 MMU (*CO389 $16.95)
Available from Grapevine Group

ICs Z3 and Z4 ($ 8.00 per pair)
Available from Richard Curcio
or Parsec, Inc.

The below parts are available from
B.G. Micro, the Grapevine Group
and supplies are available from
Radio Shack.

1) 74L8138 (B.G. Micro)
4) 64Kx4 dynamic RAMs
(4484, 41464, otc.)
150ns or faster (" call)
2) 68 Ohm, 1/4W resistors
1) 2K Ohm, 1/4W resistor
1) 1K Ohm, 1/4W resistor (for JiffyDos)
1) DPDT switch (disabling)
solder
30 gauge wire-wrap wire
electrical tape,
"spaghetti®, etc.

* Grapevine Group part numbers

Richard Curcio can upgrade your computer
for you. Contact Richard at the address listed
for the latest pricing and shipping information.
Be sure to use a self addressed stamped envelopel

Addresses of companies and persons mentioned in
this article:

Grapevine Group, Inc.
3 Chestnut St.
Suffern, NY 10901
(914) 357-2424

Richard Curcio
22 Seventh Ave.
Brooklyn, NY 11217

ICs Z3 and Z4 may be obtained from Richard for $8.00
the pair for the US and Canada or $10 (US) outside
North America.

B.G. Micro
P.O.Box 280298
Dallas, TX 75228
1-214-271-5546

Parsec, Inc.
PO Box 111
Salem, MA 01970-0111

Foraign orders (excluding Canada) of Z3 and Z4 MUST
include, on a separate sheet, the following:

Importer's Statement:
Wae will import these COCOM controlled goods and will

not ship them outside COCOM participating countries without
prior authorization from the appropriate national authorities.

{signed)

Twin Cities 128

Page 15

Issue #3

Program |

100 GRAPHIC1: TRAP310:GOSUB340:BANK 15

110 REM BLOAD 4 DOODLE FORMAT PICTURES INTO THE 4 BANKS
120 POKES4534 PEEK(54534)AND63:REM VIC DISPLAYS RAM 0
130 BLOAD"DDMIDDLE EARTH" ,B0,P7168

140 POKE54534, PEEK(54534)AND63QRCR(1):REM DISP. RAM 1
150 BLOAD"DDGRAPHIC BLOCKS" B1,P7168

160 POKES4534,PEEK (54534)AND630RCR(2):REM DISP. RAM 2
170 BLOAD"DDLETTERS" ,B2,P7168

180 POKES54534,PEEK(54534)AND630RCR(3):REM DISP. RAM 3
190 BLOAD"DDPLAN" B3,P7168

200 REM RE-READ ARRAY SO PROG MAY BE RESTARTED
210 REM WITHOUT RELOADING PICTURES

220 TRAP310:GOSUB340

230 BANK15:GRAPHIC1:C=0

240 X =199:REM DISPLAY SPEED

250 C=C+ 1:IFC>3THENC=0

260 GETAS:IFA$ < > **THEN310:REM EXIT IF KEY PRESSED
270 POKES54534 PEEK (54534)AND630RCR(C)

280 FORT =0TOX:NEXT

290 GOTO250

300 REM SET VIC DISPLAY FOR NORMAL

310 POKES4534,PEEK (54534)AND63: GRAPHICO: END

320

330 REM READ VALUES FOR RAM CONFIG REGISTER

340 RESTORE:FORI=0TO3:READ D:CR(I)=D:NEXT:RETURN
350 DATA 0,64,128,192

Program 2

100 REM RELOCATABLE BANK-TO-BANK MEMORY MOVER
110 REM CHANGE “SA*

120 :

130 BANK 15:5A = 4864

140 FORI=0TO107:READD:POKESA +I,D:NEXT
150 DATA 201, 16,144, 3, 76, 40,125,224

160 DATA 16,176,249,133,206, 32,107,255

170 DATA 133,207,166,206, 32,107,255,133

180 DATA 206, 32, 15,136,132,172,133,173

190 DATA 32, 15,136,132,174,133,175, 32

200 DATA 183,238,176,216, 32, 15,136,132

210 DATA 195,133,196,169,172,141,170, 2

220 DATA 169,195,141,185, 2,160, 0,166

230 DATA 206, 32,162, 2,166,207, 32,175

240 DATA 2,230,172,208, 2,230,173, 56

250 DATA 165,172,229,174,165,173,229,175

260 DATA 240, 16,230,195,208,225,230,196

270 DATA 240, 6,165,196,201,255,144,215

280 DATA 56, 96, 24, 96

Brogram 3

100 IFRGR(0)=STHEN
PRINTCHRS(15)"**= 40 COLUMNS ONLY **=*
110 TRAP440
120 COLORO, 1:COLORS, | :GRAPHICO:SCNCLR:COLORS, 15
130 POKES7,0.POKES8,28:CLR:
REM LIMIT VARIABLES TO BELOW BIT-MAP IN RAM 1
140 SLOW:INPUT"LOAD PICTURES (Y/N)*;A$
150 IFAS="Y"THEN190
160 IFAS < > *N"THEN 140
170 BANKO:IFPEEK (4864) < >2010R
PEEK(49155) < > 76 THENPRINT"NO ML!":END
180 FAST:GOSUB480:GOTO300
190 BLOAD" COMPRESS BIN",B0
200 BLOAD" COMPRESS.BIN" ,B1
210 FAST:GOSUB480:GOSUB680:SLOW
220 PRINT"*
230 P=0:B=2
240 P=P+ 1:IFP> 36 THEN300
250 IFP> I8THENB=3
260 PRINT"LOADING IMAGE"P*OF 36"
270 :
280 BLOAD" GLOBE" + STR${((P-1)*10) + " .CMP" ,B(B).P(SS(P-1))
290 GOT0240
300 COLOR!,10:GRAPHICI1,1
310 REM COPY CLR'D & COLORED GRAPHIC AREA TO RAM 1
320 BANK15:SYSMOVE.0,1,,,7168,16384,7168:SLOW
330:
340 P=136
350 P=P-1:IFP <OTHENP=35
360 REM MOVE COMPRESSED PIX TO BIT-MAP AREA
370 BANK15:SYSMOVE.SB(P), DB(P),,.SS(P),SS(P) + SZ.BM
380 BANK(DB(P)):SYS49155:REM DE-COMPRESS IT
390 REM CLEAN IT UP (USE MOVER TO FILL 1ST 3 PGS
W/ZEROES) * GLOBE ONLY *
400 POKEBM 0:BANK15:SYSMOVE,DB(P),DB(P),,,.BM,BM +767.BM + |
410 REM CHANGE MMU RCR BITS 6-7
420 BANK 15:POKES4534, PEEK(54534)AND63ORVB(P)
430 GETAS:IFAS=""THEN350
440 POKES4534 PEEK(54534)AND63: GRAPHICO
450 END
460 :
470 REM INITIALIZE VARIABLES & ARRAYS
480 SZ=2304:A= [024:REM SIZE, START
490 MOVE =4864:BM = 8192:REM MOVER, BIT-MAP
500 DIM VB(35):REM VIC BANK VALUES
510 DIM SB(35):REM SRCE BANK FOR MOVER
520 DIM DB(35):REM DEST BANK FOR MOVER
530 DIM $S(35):REM SRCE START ADDRESSES
540 :
550 REM FILL VB() & DB(
560 FORI=0TO34STEP2:VB(I) =0:DB() =0:NEXT
(continued on next page)

Twin Cities 128

Page 16

Issue #30

Program 3(continued)

570 FORI=1TO35STEP2:VB(I)=64:DB(I)= 1 :NEXT

580 :

590 REM FILL SB()

600 FORI=0TO17:SB(D) =2:NEXT
610 FORl= [8TQ35:SB(I) = 3: NEXT
620

630 REM FILL $S()

640 FORI=0TO17:S5(D=A:S85(1+ 18)=A:A=A +SZ:NEXT

650 RETURN

660 :

670 REM *** INSTALL MOVER ***
680 RESTORE:BANK15

690 FORI=0TO107:READD:POKEMOVE+1,D:NEXT

700 RETURN

710 DATA 201, 16,144, 3, 76, 40,125,224
720 DATA 16,176,249,133,206, 32,107,255
730 DATA 133,207,166,206, 32,107,255,133
740 DATA 206, 32, 15,136,132,172,133,173
750 DATA 32, 15,136,132,174,133,175, 32
760 DATA 183,238,176,216, 32, 15,136,132
770 DATA 195,133,196,169,172,141,170, 2
780 DATA 169,195,141,185, 2,160, 0,166
790 DATA 206, 32,162, 2,166,207, 32,175
800 DATA 2,230,172,208, 2,230,173, 56
810 DATA 165,172,229,174,165,173,229,175
820 DATA 240, 16,230,195,208,225,230,196
830 DATA 240, 6.165,196,201,255,144,215
840 DATA 56, 96, 24, 96

MOVE.SRCE

1000 SYS4000

1010 ;

1020 ;POWER ASSEMBLER
1030 ;

1040 *= $1300

1050 ;

1060 .MEM

1070 ;

1080 ;*** BANK-TO-BANK MEMORY MOVER

1090 ;
1100 SETUP CMP #310
1110 : BCC XCP . SRCE BANK <16

1120 ERROR JMP $7D28 ; ILLEGAL QUANTITY

1130 XCP CPX #310

1140 : BCS ERROR ; DEST BANK > 15
1150 : STA $CE

1160 : JSR $FF6B ; GET DEST CNFG
1170 : STA $CF

1180 : LDX $CE

1190 : JSR $FF6B ;, SRCE CNFG

1200 : STA SCE
1210 : JSR $880F ; SRCE START
1220: STY $AC
1230: STA SAD
1240 : JSR $880F ; SRCE END+1
1250 : STY SAE
1260 : STA SAF

1270 : JSR SEEB7 ; COMPARE START & END

1280: BCS ERROR ; START>END
1290 : JSR $880F ; DEST START

1300: STY $C3

1310 : STA $C4

1320 : LDA #3AC

1330 : STA $02AA ; INDFET POINTER
1340 : LDA #3C3

1350 : STA $02B9 ;, INDSTA POINTER
1360 ;

1370 : LDY #%00

1380 MOVIT LDX $CE : GET SRCE CNFG
1390 : JSR $02A2 ; DO INDFET

1400 : LDX $CF : GET DEST CNFG
1410 : JSR $02AF ; DO INDSTA

1420: INC $AC ; INCRMNT PNTR
1430: BNECSE

1440 : INC $AD

1450 CSE SEC

1460 : LDA SAC

1470 - SBC SAE : COMPARE TO END
1480 : LDA $AD

1490 : SBC $AF

1500 : BEQ EXIT ; DONE

1510: INC $C3

1520: BNE MOVIT

1530 : INC $C4

1540 . BEQ HALT

1550 : LDA $C4

1560 : CMP #3FF

1570 : BCC MOVIT

1580 HALT SEC ; ROLLED OVER
1590 : RTS

1600 EXIT CLC ; COMPLETE MOVE
1610: RTS

1620 ;

CHANGES FOR "POUND.DEMO"

120 COLORO,16:COLOR4,16:GRAPHIC0:SCNCLR:COLORS,7

240 P=P+1:IFP > 32THEN300
260 PRINT" LOADING IMAGE"P"OF32"

280 BLOAD"POUND" +STR$(P-1)+ *.CMP" ,B(B),P(SS(P-1))

300 COLORI1,11:COLOR2.3:COLOR3,7:GRAPHIC3,1

340 P=0
350 P=P+1:IFP>31THENP=0

Twin Cities 128

Page 17

Issue #3

2s | W,
Original MMU uin P2 GRS, 2o Tiioy to existing
RAMB RAMI
74F32
10(13 R29
3 (a2 D[-}U—ﬂ-——
) Raip | 639
202 L ¥ R30
:>s_ 13(1)) Gy A
3] 680
() denote 128D pin #s Exnisting
| z2 Addition
T4L5138
1 =
2 IE !
: |
3| Z4 Ju
s wy
4

680
0 AAA~ RAMCASS | to new

Y6 —-"g;ﬁ.:—) RAMCAS2 | DRAMs
174

i [

<
-J
I-u

+ [

= IC [+5v]Gnd

10, 21| 1 34

> 22| 6| 8
Deo—— Z3 23|16 | 8

24| 16 8
[h_I: l %5. u
Fr—12 Lift pins 3-15,
23, 41-48.
Reu 11 CIRB/ 236 Banks 2 and 3 | ©199%, 1991
by R. Curcio
: Notes:
Signal “F “.!:-'-“‘—"{',n,. Resistors are 174 Watt. Ualues non-critical.
“Flat™ 2 Use 39-82 for 680, TK-4.7K for 2K,

$D5un U3, pin 14 -same- Leave unused IC pins un-connected.
Ao uto, 30 -
a1 uio, 3 "
a2 uto, 32 -
A3 u10, 33 p
R/W MMU, 32 "
Dé ui, 16 uis, 5
D7 u3, 18 us, 9
CASo u9, 2 ue, 9 i
cAsT u9; 5 w9, 4 Figure 1
CASENSB us, 1 u9, 5
CAS us, 10 u9, 2
R6s7 see text us4, 8

Twin Cities 128 Page 18 Issue #30

64K x1 5 O1 18] cnd
ne Ot - 16[] tnd ot 2 170 04
bin (¢ 150 CAS Dz Q3 181 CAS
WRE (3 140 Dowt fAME 04 150 D3
RAS Q4 13[0 mé s Os 14[] we
e (s 120 a3 Ae 6 13% AL
a2 Qe 110 A4 Rs 7 120 a2
At v 18] RS R4 08 1w
+5u [9] A? +5v 09 18] a7
4164 4464

I Dynamic Random Access Memeory

Figure 3

=T of > J
23 g [
g to LOWER
0] pin 23.
b
| R/W 3z
L
H] g 2assss ®
=
&)
R
=
L to 22,
i pin 3.
4z
1
MMU-1 & MMU-2
piqgy-backed

and socketed

| Lowm=Prolile
2 |[Installation
R.C. ‘98

Figure 2
Notes:

Z3 and 24 upside-down. Z2 not shown,
UT3 pin #s for flat 128 ONLY.

Twin Cities 128 Page 19 Issue #30

%* FR/W @ US?, pin 1
Video Box g

s e e "

o loua

Low-profile signal locations
T See table for those not shown here.

mMA7
MAs
rAd o
mMA3
MAs [

MRAB-7, DB-7, /DIME and /RAS needed for Another place to get be-7
DRAMs on daughter board. Be sure to take on the low-profile.
DB-7 trom Character ROM U8, not from
Color RAM UT9. E E
(14) °
¥ MS3 and FR/W needed for 512K only. oay 0 % P % o nes
Dé
DS o

Twin Cities 128 Page 20 Issue #30

Gnd

RESET

*

P 8 i |
S I S - 2
e 3 —
- —
m H D
Uld 9
- Hn =) #
¥958 i 45| = m T
g |L_—3 |a010042
sl 8| T
= =l «| L9
= S0 Y PR ey
S0 m g4 | WUHI4S
f
-4 - i
[38 a| S 3
¥ “ T8 3T
33538 —_— e
[3a)
[Ta} sy
b £9¢8Jan |3 > MD _l.l.lww
g Us 2 3 5
Wy v sl
— 55 4 L
e i
e 53
- o -
= g4 3
) o bad 7] w
¢ hdwa) 43 4= g 4 [4§
= 7
" - -
- [- o0
Wy 9= 95 E[_ 3§ S
—_—— o
- . -,

placement.

ghter board

le mothes board with dau

Low—prof
{Partial v

not to scale.)

53/32in {130 mm}

8.1pF bypass caps

"
[—
=5

(
(] » »
@
-
-
«
L3
*

O
Ivv6

s
l

AR
¢+t 2 e e @

a« ¢ & 2 & ¢ 4+ O @

o
]
*

[¢+ + & &+ ¢ T e P e b b

|} ¢+ + + &+ 2 2 ¢ 2+ & 4 & &+ B

E9
"
-

76543219
posts for 22 ouputs

)

RAMCASs

(

£5HW

ired for 312K only.

iated components ond signals requ

ions of +5v and ground for DRAMs.

¥ ICs Z3, 26, 27, assoc
Note reversed locat

Issue #30

Page 21

Twin Cities 128

rs B i

“Flat™ €128 DBEAM (nstallation

Figure 4

Piggy-backing 18-pin 64K rds to 16-pin 64K xis.
{Data fines not shown. See text.)

i b

Before Rfter

tﬁov‘ﬁb%o‘o"t."t’
PO I R A I I

Ghd - s o o

MMuU-2 1 B - s e . —~— $o o
fod Bisabla | DS GTIER GEDEQ PR GEVRES

LA - ‘HQ:'W-"“‘) LR

v ¢ AL e ., w—a-MAS 2 o o ¢

o o o pQL-— pr—— P —— e Moo P 'aﬁs'

- + o & Mpg-e—e- el a2 e v e
l'_lmlfe 5 DWE — o« Di—wee"——a e Di-—a~e & '(is‘
D1 — oo CAS—o—e ___ [qla—el—e—e—e-D5 .

7 Dol plo—="pe e u-Dd sl o

Gnd _’m...i [g Y—— ; () -- f’;..__;‘ LG o

0Qv“#‘#.@v.""Q-"“.i"

‘Daughter’ board DRAM wiring, (RAMCASs)

Bottom view with pin 1 toward front of
mother board. B =top-side cabling. RC9L

Twin Cities 128 Page 22 Issue #30

EXPANDING THE COMMODORE 128 by Richard Curcio

INTRODUCTION
Several bits in the many registers of the C128’s
Memory Management Unit (MMU) are unused. The MMU
documentation describes some of these bits as
"reserved for future expansion”. Such is the case for
bits 4 and 5 of the Ram Configuration Register (RCR) at
$D506 in 1/0 space. The prevailing assumption has been
that these two bits would sclect four "SuperBanks” of
256K each. In other words, 1 Megabyte of system RAM.
The morc I pondered that possibility, the more
convinced | became that providing that much memory might
be impractical from both a software and hardware
standpoint. But the success of my implementation of the
formerly non-existent RAM 2 and 3 lead me to think that
some form of SuperBanking might be possible.
This modification is an extension or upgrade of Part
1. By adding another 256K in the form of eight 64K x4
DRAMSs, and 3 other 1Cs, a 256K-modified C128 is brought
to a total of 512K with four modes of operation.

THESE PLANS ARE OF NO USE WITHOUT THE 256K
CIRCUITRY. PLEASE SEE TWIN CITIES 128

ISSUE #30 FOR THE PLANS, DETAILS,

PARTS LIST, ETC.

DISCLAIMER

This modification will render any warrantics on your
equipment null and void. The Author and Publisher do
not assume any liability for Purchaser’s implementation
of these instructions. All information is belicved to
be accurate.

DIFFICULTIES

Attention "flat” C-128 owners, because of the low
headroom inside a flat C-128 case this project is not
for the fainthearted or inexpericnced. Though it can be
done, it is a VERY tight fit and requires a great amount
of skill to make it fit!

The MMU has the ability to keep portions of RAM 0
“common"” in all configurations. This so-called "common
memory" is used to hold routines that do the actual bank
switching and therefore must be accessible in all
configurations. Without common memory, whenever the
microprocessor attempted to change configurations, code
would be switched out from under it. There are ways
around this but common memory is still needed to put
them into memory in the first place.

To switch "SuperBanks”, then, would require "Super
Common Memory" --- a portion of memory accessible in all
SuperBanks. Just which of the remaining unused MMU bits
Commodore intended Lo specify SCM is unknown. They
can’t be at $D506; bits 4 and 5 arc the presumed

"Part 2: 4 Mode 512K"

SuperBank bits and the 256K modification uses the
formerly unused bit 7 of the RCR to select RAM 2 or 3
for VIC/DMA access, as was intended. This implies that
SuperBanking with SCM capability would have to be a
two-register operation. Clearly, too much hardware and
tricky software would be needed.

Instead of using the SuperBank bits to select four
sets of 256K, this modification uses them to give 512K
four modes.

OPERATION

The little bits/blocks table within the schematic
summarizes the four modes. When bits 5/4 of $D506 are
%00, the normal condition after power-on or reset, the
C128 behaves as if it was "only" 256K modified. When
bits 5/4 of $D506 are 901 (mode "B") RAM 4/5 can be
accessed as if they were RAM 2/3 after the appropriate
BANK statement. When bits 5/4 are %10 (mode "C") RAM
6/7 become the new RAM 2/3. In modes B and C, RAM 4-
7 might be considered "extended memory”. Note that "true”
RAM 0 is always in place in these modes, so common
memory remains so. When bits 5/4 = 911, RAM 4-7 be-
comes a second, "alternate” set of RAM (-3, complete with
its own common memory, zero page and stack. Machine
language is needed to use this mode. When bit 7 of
$D506 is %1, letting the VIC display RAM 2 (bit 6 = %0)
or RAM 3 (bit 6 = %1) then bits 4/5 determine just which
RAM 2/3 (true, extended or alternate) is displayed (see
program 4, "Super 8"). This also applies to REU
accesses of RAM 2/3 and (o the usc of the Memory Mover
supplicd with the 256K plans; a POKE to $D506 (decimal
54534 in BANK 15), will allow you to move data between
RAM (/1 and any of the three RAMs 2/3, but you can’t
move data between the three sets of RAM 2/3 -- at least,
not in one operation. A "SuperMover" is needed.

Starting in normal mode, after BANK 15: POKE 54534,
20 accesses of BANK 2/3 will really access RAM 4/5.
POKE 54534, 36 switches in RAM 6/7 as 2/3. To return to
normal mode (1K of common memory at the low end, VIC
displays RAM 0, "truc' RAM 2/3), POKE 54534, 4. In some
instances, PEEK, AND and OR should be used in the POKE
statements so that changing bits 4/5 does not
unintentionally affect the other bits of the RCR. Note
that before RAM 4-7 can be safely accessed, page $FF of
those blocks must be initialized. More on this under
"SOFTWARE".

CIRCUIT THEORY

Integrated Circuits Z1, Z3 and Z4 of the 256K
circuitry are unchanged. However, /CAS1 from MMU-1 (the
original) no longer goes directly to the B input of Z2.
The two /CASOs from the two MMUSs form a (fairly)
straightforward 2-bit "CAS code". With a third bit for

Twin Cities 128

Page 05

Issue #31

Z2's C input, all eight Z2 outputs are utilized and we

now have to detect the "no bank” condition when the MMU
registers at $FF00-04 are addressed (neither of the

original /CASs go low). NAND gate Z5-d takes care of
that via Z2’s active-high E3 Enable, which was connccted
to +5 volts in the 256K mod.

NAND gates Z5-a, -b, and -¢c combine FR /W with a
signal from ZA to provide a Clock Pulsc for latch Z7.

This captures the value written to bits 4/5 of the RCR.

(A four-bit latch was used o allow for possible “future
enhancements”. Circuitry for reading Z7 is unnecessary
since bits 4/5 of the RCR retain whatever is written to
them and we can simply read the MMU). Diode d1 pulls
Z7Ts Master Reset low during power-up and RESET. This
clears the latch contents to zeros, establishing the

default condition. Whenever the 128 goes into C64 mode,
MS3 goes low. Capacitor C1 will then generate a brief
low-going pulse which will also clear the latch, so we

start in a known state in C64 mode.

Latch outputs Q0 and Q1 go to select bits S0 and S1
of Z6, a 74F153 dual 4-to-1 mux. (An 'LS153 apparently
works -- even at 2 MHZ -- but 1 suspect that, with
respect to timing, that might be cutting things close).

The "mode” sclected, routes the appropriate signals on
Z6's Inputs to Z2’s B and C inputs. The disable switch
SW is optional, but recommended. (See footnote under
"Co4 MODE"). When the switch is open, the Ea and Eb
enables of Z6 arc held high and that chip is disabled;

its Ya and Yb outputs are held low, and Z2 can therefore
select only the original RAM 0 or 1 -- or neither, if
Z5-d’s output is low. If the switch is omitted, Ea and

Eb MUST be connected to ground.

Using FR/W (called R/WA in the SAMs schematic,) to
generate a WRite makes latch Z7 immunc to alteration by
an external DMA, such as from an REU. This duplicates
the MMU’s immunity to outside alterations. (FR/W also
occurs a little sooner than R/W and has faster edges).
The astute will recognize Z5-a, -b, -¢ as equivalent to
an OR gate, and some might be tempted to use one of the
now-unused gates from U9. I advise against that. So
far, only two mother board connections have had to have
been cut -- R29 and R30 -- and I'd like to kecp it that
way. Besides, a NAND is still nceded to detect the no
bank condition mentioned earlier.

MECHANICAL CONSIDERATIONS

As in the 256K modification, there should be ample
room for the new circuitry inside a 128D. A small
circuit board can be used to hold 1Cs Z5-7, or the

double-stick foam upside-down wire-wrapping (DSFUDWW)

method can be used. Piggy-back two more levels of four

64Kx4 DRAMs to existing memory, wiring the /CAS pins of

each level the same way you did for the first level of
piggy-backed DRAMs. For the low-profile 128, things are

a bit more involved. Low-profile owners will almost
certainly have to dispense with the R.F. shield, or cut
an opening in it.

In my low-profile 128, 1 piggy-backed four more
64Kx4 DRAMs to U46-U49, alongside the first four atop
U50-US3. The four remaining DRAMs were mounted on
a small board positioned in the logo area of the mother
board (which I insulated with a layer of vinyl tape),
and held in place with small pads of double-stick foam.
ICs Z1-Z4 of the 256K circuitry remained where they had
been and Z5-Z7 were installed using the same DSFUD-
WW technique. The illustration roughly indicates the
layout. Latch Z7, not shown, was placed near U3 and ICs
Z3 and ZA. (also see the "daughter” board suggested in
the Supplement with the 256K plans). The disable SWitch
was mounted on the left side of the bottom case, in the
vicinity of the three-pin LED connector, CN13. 1 used a
double-pole double-throw slidc-switch (even though only
one pole is nceded), with a slider that didn’t protrude
very much, to make it difficult to actuate accidentally.
The case plastic is soft, so cutting a rectangular
opening was casy. A mini toggle switch has the
advantage of using a round hole.

The way I installed the DRAMs probably was not the
best course of action. For the low-profile, I recommend
that the first four DRAMs be piggy-backed to the mother
board DRAMs, as described in the 256K plans, and the
remaining eight installed on a small board in the logo
area. If starting from scratch, another strategy is to
put all 12 DRAMSs on the memory board. Without the
metal RF shield, there is just enough headroom for three
levels of 4 DRAMSs. The piggy-backing and wiring of the
memory board DRAM /CAS lincs would be as described
for the 128D in the 256K plans; that is, only pin 16 is
lifted and each /CAS wired to that pin "leap frogs" a
chip. With or without piggy-backing, if you choose to
retain the R.F. shield you will have to cut an opening
in it to clear the memory or daughter board components.
The most ambitious solution to the dimensional
constraints of the low-profile 128 would be to repackage
it in a new case with a profile not quite so low. A
metal case would eliminate the need for an R.F. shield.

SOFTWARE CONSIDERATIONS

Program 1 performs a VERY simple test of all eight
RAM blocks. When RUN, the first two columns display
the bank numbers and the ram blocks being accessed. The
last column should display the values 0-7. Obwviously,
since only one memory location is tested in ecach block,
this is not an exhaustive performance test. Note that
system IRQs are disabled while program 1 executes.
While the operating system "knows" about RAM 2/3, and
initializes them upon start-up, it knows nothing about
the new RAM 4-7.

Twin Cities 128

Page 06

Issue #31

A very important part of initialization is the
copying of identical routines into the same locations
($FF05-$FF44) in all RAM blocks. These routines handle
IRQs, NMIs, and RESET by saving the 8502 registers, the
current configuration, switching in system ROM and
JMPing to the appropriate handler. Code is not pulled
out from under the processor when these routines change
banks because execution continues in the ROM version of
the routine. Fortunately, initializing RAM 4-7 is
simple enough to even be accomplished in Basic (program
2). The ML initialization (program 3) gets around the
problem of code being switched out from under the
microprocessor by temporarily enlarging common memory to
16K. Since the ML is relocatable, it can be BSAVEd and
BOOTed at any convenient address in BANK 15,

As mentioned earlier, in some cases it may be
necessary to use AND and OR when altering bits in the
RCR. The four-Doodle program supplied with the 256K
plans does this when changing bits 6/7 to display bit
maps in the four blocks. The RCR is first PEEKed, and
the value is then ANDed with %00111111 (63/$3F). This
clears bits 6/7 and preserves bits 0-5 and thus does not
change the amount or location of common memory or the
presumed SuperBank (now "mode”) bits. The result is
then ORed with 0, 64, 128 or 192 to allow the VIC to
display RAM 0, 1, 2 or 3. This lets the program run on
a 256K-modified 128 or in either 256K “group” of a
512K-modified 128. The "Globe" and "Pound” adaptations
also run in either 256K group. (See “TRANSFER" program.)

Program 4, "Super 8", changes bits 4/5 of $D506
before each picture is BLOADed to the "extended® RAMs
2/3. The eight pictures are rapidly displayed by
changing bits 4/5 as well as 6/7 to display the eight
bit-maps. Because this program uses all eight blocks,
it runs only in normal mode, so AND and OR are not used
in the POKEs to 54534. Programs 2 or 3 MUST be run
before running Super 8.

Like the four-Doodle program, Super 8 includes TRAP
and a target line to restore the RCR to normal when the
program ends or is halted by an error or by pressing the
STOP key. (STOP-RESTORE does not return the RCR to its
default contents!) During program development, the TRAP
target routine should include PRINTing of the error
variables EL and ERRS to display any errors. Do this
AFTER the RCR is returned to normal -- normal being 1K
of common memory at the low end, VIC displaying RAM 0,
and bits 4/5 whatever they were before the program was
run. (%007?0100)

TRANSFER ROUTINE

In its current state, program 5 provides a crude
form of "task-switching”. This ML program could
conceivably form the basis of a dual-tasking mode. It
begins by testing $D506 (in Bank 15) for #304, the RCR’s

normal contents and, therefore, normal mode. Satisfied
that the computer is in normal mode, the routine
switches to mode "B" and copics part of itself to RAM 4
impersonating RAM 2. It then performs a nearly complete
reset, with RAM 4-7 acting as RAM 0-3. (The MMU
initialization is skipped, since that would put the
machine back where it started from, normal mode). If a
bootable disk is in the drive, it will boot. However,
GEQOS128 crashes in the alternate environment,
undoubtably because it alters $D506 without preserving
the conditions of bits 4/5. The 8502/Z80 transfer code
is missing from $FFDO of the alternate RAM 0, but even
when it’s present, CP/M also crashes in the second 256K
group, probably for the same reason GEOS does. (Both
CP/M and GEOS still function in normal mode, however).
Speedscript 128 functions in the second 256K, and so
does Spectrum, which means that BASIC 8 does, too.
Anything that doesn’t mess with $D506 should work
properly. Any program that alters the RCR without
regard for bits 4/5, always making them %00, will work
only in normal mode.

The Basic loader will install the reset-and-transfer
routine at an address of your choice. When installed at
address SA, BANK15: SYS SA resets to alternate mode. In
both environments, BANK15: SYS SA + 100 will allow you to
go back and forth from one 256K group to the other.

Each time the routine at SA + 100 is called, the processor
registers and the RCR contents are saved within the

routine. (The value in the Configuration Register at

$FF00 is NOT saved, so the routine should be called only

in Bank 15). The RCR is then changed to switch in the
“other” set of 256K and new values are put in the

processor registers. This process is repeated each time

the current 256K group is exited. If you lose track of

which group you’re in, X = PEEK(54534)AND48 (in Bank 15)
will give 0 in normal and 48 in alternate.

To use the DOS Shell in the second 256K, insert the
disk in the drive AFTER the reset to alternate mode is
completed. Then BLOAD "DOS SHELL",B0. Enter the
machine language monitor and change the LDA #8304 at
$3227 to LDA #$34. Exit, type KEY1, "BANK12:SYS6656"
+CHRS$(13). Press <return>, then press <f1>. No doubt
other programs can just as easily be made to work in
alternate mode. Ideally, any program that stores values
in $D506 should do so in a way that doesn’t disturb bits
that are not to be altered. Again, this can be
accomplished through the use of AND and OR, in Basic or
machine language.

There are many complications to implementing true
dual-tasking. The transfer operation would have to
occur on each interrupt. Since this would give each
environment half as much processing time, 2 MHz (FAST)
mode would have to be used to get an effective 1 MHz,
This would confine dual-tasking to 80 columns, which is

Twin Cities 128

Page 07

Issue #31

just as well, since there is only one Color Memory for
the VIC to use. (It might be possible to use the “other”
Color Memory block normally used for multi-color
bit-maps. But the display would alternate between two
text screens, probably causing both 40 column screens to
be unreadable. Using non-overlapping windows in each
256K group would work in 80 columns, but not in 40). A
means must be found to keep disk and other 1/0
operations from "colliding”. Which program receives
keyboard input? Wnen STOP-RESTORE is pressed, which
program stops? How are "wedges" and even normal
interrupt activities affected by the IRQ-driven

transfer? These are the sort of puzzles certain
masochistic types take great delight in trying to solve.

C64 MODE

In C64 mode this modification can provide as much as
194,560 bytes of RAM but, for that much RAM to be
available, 64 mode must be entered in a non-standard
way.

Although the MMU documentation states that “there
are no preconditions ... to force a particular memory
alignment in C64 mode”, I have not found that to be
cntirely true. It appears that some portion of RAM 0
must be present. That is, you can not GO64 and have ALL
of any RAM block other than RAM 0. And, apparently,
that required portion of RAM 0 must be at the bottom of
memory. (I could be mistaken, though).

In 512K normal mode, use the machine language
monitor to enter this code at $8000 in TRUE RAM 2 (omit
comments):

28000 sei

28001 lda #38¢ ; RAM 2, 1/0 and kernal
28003 sta $ff00

28006 lda #307 ; display RAM 0, 16K of
28008 sta $d506 ; com. mem. at low end
2800b jmp $ff4d ; 64 mode

Exit to Basic, then load and run the 512K TEST
program to store the values 0-7 at location 49152 in all

cight RAM blocks. Then type BANK2:SYS32768 <return>.

When the 40 column C64 screen appears, 7PEEK(49152)
will display "2". RAM 0 is present from address 0 to
16383. Above that, RAM 2, 4 or 6 can be switched in by
POKEing 0, 16, or 32 to 54534. Although the MMUs
disappear in 64 mode, latch Z7 remains, and we can still
alter bits 4/5. The fourth value, making both bits %1

by POKEing 48 in 54534, again gives us RAM 4, but ALL of

it. The screen turns into garbage because the lowest

16K of RAM 0 was switched out. (This would be RAM 4 as
“alternate” RAM 0 in 128 mode). Without preparation,

i.e. ML routines, the only way to recover from this is

by a hardware RESET.

If we had stored #$84 in $D506 while in 128 mode, in
C64 mode VIC would display RAM 2 and RAM 0 would exist
from $0000 to $03ff (1K of common memory). Switching
Banks would switch in a new screen as well as new RAM
from $0400 to $FFFF. This could only be done from an ML
routine in the cassette buffer or some other location
below $0400. Switching Banks would also switch out any
ML in the $C000-$CFFF range. A further complication is
that, because the MMU: s disappear in 64 mode, the
contents of latch Z7 cannot be read. (In 128 mode, bits
4/5 of the RCR retain whatever is written to them, and
we can read the RCR). One solution to this difficulty
is to always return to some known "base” configuration.

Of course, ML routines that use techniques like the
TRANSFER routine (which uses techniques borrowed from
the routines in page $FF,) could be stored in RAM while
the computer is in 128 mode. These could give a means
around the "vanishing RAM" problem. But since using the
added RAM in 64 mode is going to be VERY tricky, we
might just ignore the added RAM, always GO64 the normal
ways, or disable the modification in 64 mode. If you've
installed the disable SWitch, which is recommended, just
flip it to the "un-mod" position.* The disabling could
be automated by replacing capacitor C1 with a diode to
MS3, in the same direction as d1. This would keep latch
Z7 cleared and unalterable in 64 mode. With either C1

or a second diode, GO64 DOES NOT WORK INALTERNATE

Reset while holding down the C= key ALWAYS works.

* So far, I’'ve had to do this with only one program,
an old version of Renegade, a disk backup utility, which
is now called Maverick.

Editor’s note: Richard can upgrade your "flat” C-128
or C-128D for you. The best way to contact him is to
write to him and include a SELF ADDRESSED STAMPED
ENVELOPE along with your night telephone number. The
cost for the 256K upgrade is $80 plus parts and shipping
both ways. The cost for the 512K upgrade is $95 plus
parts and shipping both ways.

Write to Richard before sending him your computer so
he can schedule your upgrade and give you the latest
pricing information for the chips and hardware needed to
do the upgrades. I am very happy with my new C-512D!

Richard Curcio
22 Seventh Ave
Brooklyn, NY 11217

Twin Cities 128

Page 08

Issue #31

512K PROGRAMS

PROGRAM 1 : 512K.PROGL PROGRAM 3 : 512K.PROG3
1k 100 rem *** test ram 0-7 *** ic 100 rem *** initialize ram 4-7 in m.1. ***
ki 110 : ki 110 :
en 120 bankl5:poke53274,0: rem disable vic irgs lo 120 sys4000
mo 130 x=0 In 130 ;
id 140 fori=0to7:ifi>3thenx=2 kd 140 ;buddy 128
mp 150 ifi=4ori=5thenbankl5:poke54534,20:rem banks 4/5 as 2/3 nb 150 ;
bb 160 ifi=6ori=7thenbank15:poke54534,36:rem banks 6/7 as 2/3 gl 160 .mem
eb 170 bankiand3orx:poked49152,1i of 170 ;
dg 180 next gd 180 *= $1300
ci 190 bank15:poke54534,4: rem normal pj 190 ;
be 200 x=0 ad 200 ; call in bank 15
mj 210 fori=0to7:ifi>3thenx=2 an 210 ;
pn 220 ifi=4ori=5thenbankl5:poke54534,20 mo 220 : php
1p 230 if1-60r1'-7thenbank15:pok954534,38 ck 230 : sei ; no interruptions
oj 240 print"bank"iand3orx; 1h 240 : 1da $d506
ni 250 bankiand3orx:print”ram"i;peek(49152) ag 250 : cmp #$04 ; normal”?
ih 260 next ej 260 : bne msg ; No...
pc 270 bankl5:poke54534,4: rem back to normal mf 270 : pha
ko 280 poke53274,241 rem enable irgs jg 280 : 1da #$27 ; 16k of common mem.
kd 290 end hf 290 model sta $d506 ; mode ‘¢’ (6/7=2/3)
op 300 : 1da #$80 ; ram 2, rom & i/o
P PR km 310 cnfl sta $ff00
ik 100 rem *** initialize ram 4-7 *** f1 320 : Tdx #$3f
ki 110 : kc 330 loopl 1da $ff05,x ; irg, nmi & reset
be 120 bankl5:ifpeek(54534)<>4thenprint wrong mode!”:end 1p 340 : sta $ff05,x ; routines
jo 130 poke53274,0 :rem disable vic irgs fa 350 : dex
dg 140 fori=65285 to 65348 :rem $ff05-ff44 aj 360 : bpl loopl
ao 150 gosub230:next pa 370 : 1dx #3$05
dm 160 fori=65530 to 65535 :rem $fffa-ffff ij 380 loop2 lda $fffa,x ; "hard” vectors
cc 170 gosub230:next kc 390 : sta $fffa,x
oo 180 : ic 400 : dex
ce 190 bank15:poke53274,24]1:rem enable irgs eb 410 : bp1 loop2
ji 200 pokedec("d506"),4 :rem normal mb 420 : 1da #$c0 ; ram 3, rom & i/o
fc 210 end ji 430 : cmp $FF00 ; is it"?
bg 220 : oa 440 : bne cnfl ; no -- make it so
ee 230 bank15:x=peek(i) :rem get data from rom jg 450 : 1da #$17 ; mode ‘b’
j1 240 pokedec("d506"),20 :rem ram 4/5 = 2/3 nj 480 : cmp $d506
ea 250 gosub310 1b 470 : bne model ; repeat for ram 4/5
go 260 bankl5 bm 480 ;
ge 270 pokedec(“d506"),36 :rem ram 6/7 = 2/3 oe 490 : 1da #$00
fp 280 gosub310 pk 500 : sta $ff00 ; bank 15
1b 290 return mb 510 : pla
gh 300 : do 520 : sta $d506 ; 'normal’ mode
fh 310 bank3:pokei,x fg 530 : plp ; status
fo 320 bank2:pokei,x ee 540 : rts
nj 330 return gd 550 ;
jg 560 msg pip
kn 570 : jsr $ff1d ; primm
ph 580 .byte $0d ; "return”
jo 590 .asc "wrong mode!”
he 600 .byte $0d,0
ik 610 : rts
jm 620 .end
Twin Cities 128 Page 09 Issue #31

512K PROGRAMS

PROGRAM 3 : 512K.INT.LDR PROGRAM 5 : 512K.TRSF,BAS
kk 100 rem *** init 4-7 in ml *** bi 100 rem *** transfer loader ***
gf 110 bankl5:sa=4864:rem relocating mm 110 bankl15:sa=5120:rem relocating
jg 120 fori=0to85:readd:pokesa+i,d:next 1g 120 fori=0tol49:readd:pokesa+i,d:next
dl 130 rem use bankl5:sys sa In 130 ad=sa+36:gosub420
oj 140 data 8,120,173, 6,213,201, 4,208 ia 140 pokesa+32,1:pokesa+34,h
mc 150 data 58, 72,169, 39,141, 6,213,169 ck 150 fori=0to5:readaa,dd:ad=sa+dd:gosub420
ki 160 data 128,141, 0,255,162, 63,189, 5 1g 160 pokesa+aa,l:pokesa+aa+l’, h:next
ek 170 data 255,157, 5,255,202, 16,247,162 fe 170 print"reset = bank15:sys"sa
pc 180 data 5,189,250,255,157,250,255,202 di 180 print"transfer = bankl5:sys"”sa+100
gl 190 data 16,247,169,192,205, 0,255,208 do 190 end
i1 200 data 224,169, 23,205, 6,213,208,212 pm 200 data 173, 6,213,201, 4,240, 18, 32
bg 210 data 169, 0,141, 0,255,104,141, 6 1d 210 data 125,255, 13, 87, 82, 79, 78, 71
mo 220 data 213, 40, 96, 40, 32,125,255, 13 jo 220 data 32, 77, 79, 68, 69, 33, 13, 0
pm 230 data 87, 82, 79, 78, 71, 32, 77, 79 ak 230 data 96,120, 9, 20,141, 6,213,169
pp 240 data 68, €9, 33, 13, 0, 96 em 240 data 96,160, 20,133,206,132,207,169
je 250 data 206,141,185, 2,160, 53,177,206
P 4 : K.SUPER 8 eb 260 data 162, 2, 32,119,255,136, 16,246
ic 100 rem ***rxsasx super 8 AL ak 270 data 160, 30,169, 41,162, 2, 32,118
bg 110 rem * press any key to stop * dj 280 data 255,200,169,207,162, 2, 32,119
fb 120 rem * re-start with "run 190" * nj 290 data 255,200,200,200,200,200,169, 52
i 130 rem ***ARAARRARARAASRERRCRARR RS KRR pn 300 data 162, 2, 32,119,255,216,162,255
mg 140 : 1j 310 data 154,169, 0,160, 52,140, 6,213
ke 150 trap270:gosub280:bankl5:graphicl co 320 data 76, 21,224,234,234, 8,120,141
hc 160 fori=0to7:poke54534,z(i) ap 330 data 147, 20,142,145, 20,140,143, 20
gd 170 bload(n$(i)).b(b(i)),p7168 kg 340 data 104,141,140, 20,186,142,137, 20
bo 180 next:poke54534,4 ee 350 data 173, 6,213,141,132, 20, 9, 48
dm 190 trap270:gosub280:rem re-read arrays for re-start bc 360 data 141, 6,213,169, 4,141, 6,213
mk 200 bankl5:graphicl:x=0 ei 370 data 162,246,154,169, 48, 72,160, 0
om 210 t=199:rem display duration ab 380 data 162, 0,169, 0, 40, 96
1h 220 ifx>7thenx=0 ga 390 rem ** adjustments **
cn 230 poke54534,z(x) ik 400 data 104,147,107,145,110,143,114,140
ih 240 fori=0Otot:next:rem time delay cf 410 data 118,137,124,132
hf 250 geta$:ifa$<>""then270 hj 420 h=ad/256:1=ad-int(ad/256)*256:return
1d 260 x=x+1:goto220
ak 270 bankl5:poke54534,4:graphic0:end PROGRAM 5 : 512K.TRSF.SRC
kf 280 restore jf 1000 rem *** transfer control from ***
od 290 fori=0to7:readn$(i),b(i),z(i):next ah 1010 rem normal to alternate mode
11 300 return dj 1020 :
hb 310 : fa 1030 sys4000
ce 320 rem name, bank, rcr value ep 1040 -;
mk 330 data "ddmiddle earth”,0,4,"ddopboxl”,1,68 df 1050 ;buddy 128
da 340 data "ddfront pic”,2,132, "ddbackcover”, 3,196 gd 1060 ;
mn 350 data “ddgraphic blocks”,2,148,"ddplan”,3,212 pn 1070 .mem
aa 360 data "ddspiral”,2,164,"ddletters”, 3,228 hh 1080 ;
kn 370 : pk 1090 *= $1400
fb 380 rem some of these pix are art studio il 1100 ;
nn 390 rem converted to doodle Jf 1110 ;
11 400 rem you can use any doodle file 1g 1120 ; reset to alternate
md 410 rem in place of the above doodles kj 1130 ;
ef 1140 areset 1da $d506 ; check mode
oa 1150 : cmp #$04
cb 1160 : beq copy
ah 1170 : jsr $ff1d ;primm

Twin Cities 128 Page 10 Issue #31

512K PROGRAMS

PR B T RC - in op 1710 ;
eo 1180 .byte $0d jo 1720 switch jmp $e015 ; later in reset
pi 1190 .asc “wrong mode!” ml 1730 : nop
mo 1200 .byte $0d.0 nf 1740 : nop
oe 1210 : rts bh 1750 ;
ad 1220 ; an 1760 ; this routine lives in true ram 0 and true
na 1230 copy sei ; no interruptions gf 1770 ; ram 4 (pseudo 2 in mode 'b" or second ram 0
11 1240 : ora #314 ; mode ‘b’ makes gn 1780 ; in alternate mode) with changes as noted.
il 1250 : sta $d506 ; ram 4 = ram 2 hl 1790 ; permits jumping from normal to alternate.
ik 1260 : lda #<switch ek 1800 ;
oi 1270 : 1dy #>switch cg 1810 xfer php ; start here
ig 1280 : sta $ce ; set-up pointer gh 1820 : sei ; no interruptions
oc 1290 : sty $cf ; for indsta ce 1830 : sta atemp+l
dp 1300 : 1da #3ce pn 1840 : stx xtemp+l
eg 1310 : sta $02b3 ba 1850 : sty ytemp+l
gi 1320 ; bm 1860 : pla ; retrieve status
jc 1330 ; copy instructions beginning at “switch” to nl 1870 : sta srtemp+l ; store it
ne 1340 ; same locations in ram 4 impersonating ram 2 kc 1880 : tsx ; stack pointer
ig 1350 ; om 1890 : stx pntemp+l
jm 1360 : 1dy #end-switch cf 1800 : 1da $d506 ; get ram config reg.
mo 1370 cloop 1da ($ce),y ab 1910 : sta crtemp+l ; save for return
dl 1380 : 1dx #302 ; bank 2 ci 1920 srcr ora #$30 . change bits 4/5
ho 1390 : jsr §fF77 . indsta ed 1930 ; (use “and #$cf’
he 1400 : dey op 1940 ; at same point
dm 1410 : bpl cloop ph 1950 : sta $d506 ; in ram 4)
mm 1420 ; ok 1960 ;
if 1430 ; make indicated changes . ii 1970 ; at this point current 256k group is switched
oca 1440 ; nm 1980 ; out. execution continues at same point in
jh 1450 : 1dy #srcr-switch np 1990 ; “other™ 256k group
dc 1480 : 1da #$29 ; "and” bc 2000 ;
ci 1470 : 1dx #$02 bb 2010 crtemp lda #304 ; first time value
mf 1480 : jsr §$FF77 og 2020 : sta $d506 : (use #$34 in ram 4)
pb 1490 : iny da 2030 ;
ap 1500 : 1da #$cf fo 2040 pntemp 1dx #3f6 ; first time
fa 1510 : Tdx #302 ea 2050 : txs
on 1520 : jsr $FF77 jj 2060 srtemp 1da #3$30 . ditto
bj 1530 : iny ne 2070 : pha
ce 1540 : iny bf 2080 ytemp 1dy #3ff
co 1550 : iny bg 2090 xtemp ldx #3$ff
di 1560 : iny fb 2100 atemp 1da #$ff
ec 1570 : iny ee 2110 : plp
ga 1580 : Ida #334 Im 2120 end rts
kb 1590 : 1dx #302 i1 2130 .end
do 1600 : jsr $fFF77
i1 1610 ;
gn 1620 : cld ; begin reset sequence
ad 1630 1dx #$ff
dc 1640 : txs ; stack pntr
hb 1650 : Tda #$00
id 1660 : 1dy #$34 ; altn mode
pb 1670 : sty $d506
nb 1680 ;
ba 1690 ; the next instruction is never
ei 1700 ; executed in "true” ram 0.
Twin Cities 128 Page 11 Issue #31

Z2
from PLA 7415138 to R29,R38 (Original
| RAMO & 1)
__bu—-— “True" 2 &3
{normal)
¢B & 3B
2C & 3C
+3v|Gnd
14 g
16 8
16 8
bits accessible
54 64K blocks
ee|e- 9,1, 23
01|1-extnd'®| 0,1,4,5
10|2-estnd'C’| 9, 1,6, 7
11|3-aternate | 4,5,6,7
27
T4L5175
e - Capacior= 12U
i tor= de
128764 [M53_D>—Her—t¥Wi-e+5v Resistors= /4 Matt
FEtD—— ™ Diode= IN914 or 1N4148
fl-moda JialX

(© 1991 by R. Curcio

ueét, 3
-same-

It is possible to build the complete 512K
circuit omitting the second 2356K. Connect
the first four 64K blocks to 22 pins R-15,

leave pins 7 and 9-11 un-connected,

and jumper pin 1 of Z7 to ground. The
switch will still enable/disable the mod.
When you add the second 236K, remove

the ground jumper from pin 1 of 27.

Twin Cities 128

Page 12

Issue #31

e rs N . e o i e ™ P R %

i

To disable
Sklitch o oLl

. e .
‘e @ *
+ o []] +
@l

e] [! g ¢
a +« ¢+ [l (] +«
< - e ¢ [] +
t w3
RAS [s o [Nl +

[o]
[] * L]] ¢
N'g +[al @ K
Y] . 1 1
+ T o s

P

I I N

-

[n]
-]
Y

R EE RN
s e 00 0 0 8 s b ¢ e

)

|
[fﬁ?» resistors
for 15t level

R_1 of 4 piggy-backed 64K xds.
{See 256K plans.)

Hemory Boaord Plocemenk

{Low-profile C128; not to scale.)

{
Gnd — L 3
5y -— ———t— BRI
DS TN (DN (PR ik e
« o of - — o—a-MAd a +
¢ o o pop-w—tes T — e o—e-MAE & +
+ o o pmag-m—0w e o u—e-MAL a o o

Gnd — e S i

b (S [o P—
P e e

H H
(C) 1991 by Richard Curcio L I SBQJ
from 2¢

Signals Low-profile locations (RERGES) _
MAO-7 U45, pins 5-7, 9-13 Memory_Board Wiring
Do-v W8, pins 9-11, 13-17 Bottom view with pin 1 toward
DWE un, 40 front of mother board. Note
RAS R +5 and Gnd reverse of logic
RAMCASs from 22 chips. @ =top-side cabling

This picture to the leftis
for the 512K upgrade and
for C-64 mode !

Twin Cities 128 Page 13

Issue #31

