
Machine Code Programming
cronodon.com/Programming/machine_code.html

Programming Machine Code on the C64

See also: programming sprites on the C64

One of the criticisms leveled against the old Commodore 64 is that its built-in BASIC programming 
language was rather minimalistic, that is it had a shortage of commands and programming many tasks 
required POKE and PEEK or even machine code. Whilst such criticisms have a certain validity, this 
'weakness' was in many ways the strength of the C64. Programming the 8-bit 6510 processor of the 
C64 encouraged the programmer to obtain an intimate knowledge of the computer's memory and also 
of its operating system kernal (i.e. kernel, once misspelled the C64 kernel is referred to as the 
kernal). Once memory management and assembly language were mastered, the power unleashed 
was considerable as the programmer obtained essentially complete control over the C64's circuitry.

For this reason, I still recommend programming the C64 with the use of an emulator, such as VICE or 
CCS64 running on a PC. I used to program the C64 when it was at its peak of popularity and recently 
returned to the C64 out of curiosity (and perhaps nostalgia). Re-learning what i had forgotten and 
taking it further I realised that such an exercise is valuable to programmers today - it gives one a 
deeper understanding of computer operation and good practice in bit/byte manipulation and 
hexadecimal-binary-decimal conversions. The old 6510 may be simpler than a modern PC, but it 
operates along very similar principles. Bit manipulation still has its place in modern high-level 
languages, but I became rusty with it, since it is used much less (most of the manipulations are 
automated and carried out underneath the covers) and returning to the C64 was good revision and 
practice in this skill. It is also interesting from a computing historical perspective, for example with the 
C64 we encounter pointers and automated garbage collection - forerunners to those used in C++ and 
C# respectively.

8-bit Multiplication

Another advantage of programming a C64 emulator, is that most of the programs written for this 
machine, and also many of the textbooks, are freely available for download online. There are a 
number of very good free books online explaining how to program the C64 in machine code using 
assembly language. Warning: many of these books were typed manuscripts, and since it is very 
easy to make careless errors in assembly code they often contain errors - to copy textbook programs 
one needs to have a thorough understanding of what the code is doing so that it may be debugged! 
Here we include a couple of debugged textbook examples. The assembly program below carries out 
8-bit multiplication, that is it can multiply to byte-values together, i.e. it can multiply together two whole 
numbers, each in the range 0 to 255. This is harder than it sounds in assembly language, since the 
result has to be stored in two bytes, since the largest value that can be stored in one byte is 255.

Recall that computers store data in binary format, since they are made up of minute switches with 
each switch having only two states: on (value 1) and off (value 0). Each switch is thus a single binary 
digit or bit. Just as in usual base ten arithmetic, a single digit can take any one of the values: 
0,1,2,3,4,5,6,7,8,9 in base two (binary) each digit (bit) can only assume one of the following values: 0, 
1. Since old computers like the C64 were 8-bit computers, a byte or 'word' was 8-bits long and we still 
define a byte as 8-bits even in modern processors with 32 and 64 bit processors. In a 32 bit 
processor, for example, the word length is 32 bits or 4 bytes. A nibble (or nybble) is half a byte or 4 

1/11

http://cronodon.com/Programming/machine_code.html
http://cronodon.com/Programming/c64_programming.html


bits.

What do we mean by an '8-bit' processor?

A computer 'brain' consists in its simplest terms as the microprocessor or CPU (central processor unit, 
the 6510 processor in the C64, 6502 processor in the earlier Vic-20) and  one or more memory 
banks, the two being connected by wires called buses. The address bus connects the CPU to the 
memory and enables the CPU to pick-out or select a memory location by its unique address. A data 
bus sends information from one part to another, such as the value retrieved from a memory location 
to the CPU. In the 8-bit architecture of the C64 each memory location stores one byte, that is it holds 
a number from 0 to 255 (negative numbers can also be represented but we will not discuss that hear - 
the interested reader should look-up 'two's-complement' and 'one's-complement'). The data bus is 
also b-bit, since it needs enough bandwidth to transfer 8-bit numbers around. The CPU also handles 
data as 8-bit bytes. The processor has its own memory locations as part of the chip, called registers. 
Registers are not referred to as 'memory' as they are separate from the RAM and ROM of the 
memory banks, but they are the equivalent in many ways to the working-memory of the human brain, 
both hold tiny amounts of data (7 chunks in the average human brain) for a short time only, storing 
data that is currently being worked upon. Each CPU register holds a single byte. One such register is 
the accumulator (A-register) which stores the result of the most recent arithmetic (which is carried 
out by part of the CPU called the arithmetic and logic unit  or ALU). Two more key registers are the 
two index registers, the X and Y registers which are useful temporary stores in many arithmetical 
operations.

The processor status register (P-register) holds important information in its bits, which act as 
switches called flags. We typically number the bits in a byte from 0 to 7. Bit 0 of the status register is 
the carry flag (C-flag) and is set (made equal to 1 or switched on) whenever the accumulator 
overflows and rolls over from its maximum value of 255 to 0, as may happen if two numbers are 
totalled and their sum is greater than 255. Bit 1 is the zero flag (Z) and is set when the result of a 
computation by the ALU is zero. Bit 2 is the interrupt mask (I) and when set the computer ignores 
interrupts, such as the pauses necessary to scan the keyboard for user input. Bit 3 is the decimal 
flag (D) and when set then arithmetic occurs in binary coded decimal (BCD). Bit 4 is the break flag 
(B) and is set when a BRK (in assembly language) is executed, breaking from the current 
machine-code subroutine. Bit 5 is not used and is always set to 1. Bit six is the overflow flag (O or 
V) and is used in two's complement arithmetic, for dealing with negative numbers. Finally, bit 7 is the 
negative flag (N) or sign flag (S) and is set whenever a computation by the ALU produces a 
negative result (again this is two's complement arithmetic, in which the high bit (the one that normally 
has a value of 128) of the result is used to indicate a negative number (when set to one) or a positive 
number (when set to 0) - the N flag matches this high or most significant bit). Usually we deal only with 
the C, Z, O and N flags. In two's complement arithmetic an 8-bit word can store values ranging from 
-128 to 127.

Another register is the stack pointer (S). Instructions being processed are stored in a region of 
memory called the stack, because the rule is the first in. Last out, rather like a stack of plates (the last 
plate on is the first plate off) and this allows the computer to easily keep track of where it has got to in 
a program being executed, especially when the program has branching points or jumps to other 
subroutines. The stack pointer points to the address of the top of the stack. The program counter 
points to the address of the next instruction to be executed.

Although one 8-bit byte can only hold a number as large as 255 (2e8 - 1), two bytes can hold a 
number as large as (256 x 255) + 255 = 65535 (or alternatively 2e16 -1, the minus one allowing us to 
represent zero as 0000 0000 0000 0000). The C64 has 64 K (64 x 1024 bytes) of memory and each 

2/11



location is numbered from 0 to 64 0000 odd. How then do we access a location higher than 255? This 
requires two bytes. Memory pointers in the C64 consisted of two bytes (they were 16 bit). The 
address bus contained two 8-bit channels, allowing 16 bits of data to be sent down it, so that all the 
available memory locations could be accessed by the CPU.

LDA IM 255
STA 900
LDA IN 200
STA 904
LDA IM 0
STA 902
STA 906
STA 907
LDY IM 8
LSR 900
BCC 19
LDA 906
CLC
ADC 904
STA 906
LDA 907
ADC 902
STA 907
ASL 904
ROL 902
DEY
BNE 223
LDA 906
STA 1025
LDX IM 1
STX 55297
LDA 907
STA 1024
STX 55296
RTS

A 2000 LDA #$FF                A9 FF
A 2002 STA $0384               8D 84 03
A 2005 LDA #$c8                 A9 C8
A 2007 STA $0388               8D 88 03
A 200A LDA #$00                A9 00
A 200C STA $0386              8D 86 03
A 200F STA $038A              8D 8A 03
A 2012 STA $038B              8D 8B 03
A 2015 LDY #$08                A0 08
A 2017 LSR $0384              4E 84 03
A 201A BCC $202D             90 11
A 201C LDA $038A              AD 8A 03
A 201F CLC                        18
A 2020 ADC $0388              6D 88 03
A 2023 STA $038A              8D 8A 03
A 2026 LDA $038B              8B 03
A 2029 ADC $0386              6D 86 03

3/11



A 202C STA $038B              8D 8B 03
A 202F ASL $0388              0E 88 03
A 2032 ROL $0386              2E 86 03
A 2035 DEY                         88
A 2036 BNE $2017              D0 DF
A 2038 LDA $038A              AD 8A 03
A 203B STA $0401              8D 01 04
A 203E LDX #$01                A2 01
A 2040 STX $D801              8E 01 D8
A 2043 LDA $038B              AD 8B 03
A 2046 STA $0400              8D 00 04
A 2049 STX $D800              8E 00 D8
A 204C RTS                        60

A9 FF 8D 84 03 A9 C8 8D
88 03 A9 00 8D 86 03 8D
8A 03 8D 8B 03 A0 08 4E
84 03 90 11 AD 8A 03 18
6D 88 03 8D 8A 03 AD 8B
03 6D 86 03 8D 8B 03 0E
88 03 2E 86 03 88 D0 DF
AD 8A 03 8D 01 04 A2 01
8E 01 D8 AD 8B 03 8D 00
04 8E 00 D8 60

169 255 141 132 3 169 200 141
136 3 169 0 141 134 3 141
138 3 141 139 3 160 8 78
132 3 144 19 173 138 3 24
109 136 3 141 138 3 173 139
3 109 134 3 141 139 3 14
136 3 46 134 3 136 208 223
173 138 3 141 1 4 162 1
142 1 216 173 139 3 141 0
4 142 0 216 96

Purely for interest, i have written out the binary below - this represents the actual machine code 
as seen by the computer hardware!

10101001  11111111  10001101  10000100  00000011  10101001  11001000  10001101
10001000  00000011  10101001  00000000  10001101  10000110  00000011  10001101
10001010  00000011  10001101  10001011  00000011  10100000  00001000  01001110
10000100  00000011  10010000  00010001  10101101  10001010  00000011  00011000
01101101  10001000  00000011  10001101  10001010  00000011  10101101  10101011
00000011  01101101  10000110  00000011  10001101  10001011  00000011  00001110
10001000  00000011  00101110  10000110  00000011  10001000  11010000  11011111
10101101  10001010  00000011  10001101  00000001  00000100  10100010  00000001
10001110  00000001  11011000  10101101  10001011  00000011  10001101  00000000
00000100  10001110  00000000  11011000  01100000

Machine Code Routine to Display a Byte Value as a Decimal

4/11



5 CLR
10 PRINT CHR$(147)
20 FOR D=0 to 73
30 READ Q: POKE 828+D,Q
40 NEXT D
50 SYS 828
100 DATA 162,1,169,###,201,200,144,15
110 DATA 233,200,72,169,50,141,0,4
120 DATA 142,0,216,104,76,100,3,24
130 DATA 201,100,144,12,233,100,72,169
140 DATA 49,141,0,4,142,0,216,104
150 DATA 24,160,0,201,10,144,5,200
160 DATA 233,10,201,10,176,249,72,152
170 DATA 105,48,141,1,4,142,1,216
180 DATA 104,105,48,141,2,4,142,2
190 DATA 216,96

(Replace ### with the value to be displayed as a decimal, with possible values ranging from 0 to 
255).

This displays any one byte value from 0 to 255 in the top-left corner of the screen in decimal 
format. All that remains is to couple this routine with the first 8-bit multiplication routine so that the 
answer is translated for us. (I will do that when i get time!).

Let us examine the first multiplication subroutine for the example 255 x 2 = 510, using @ to mean 
'memory address':

The maximum value of one byte (all 8 bits set = 1):

Recall that in a byte the least significant bit (the zero bit, usually written on the left) -

128  64  32  16  8  4  2  1
1     1    1    1   1  1  1  1

1111 1111(2) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (10).

The maximum value of two bytes or a 16-bit word:

32768  16384 8192 4096  2048  1024  512  256 |  128  64  32  16  8  4  2  1
1          1        1       1        1        1       1      1        1     1    1    1   1  1  1  1

1111 1111 1111 1111 (2) = 32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 
255 = 65535 = 2e16 -1

The code on the left is the assembly 
code for our 8-bit multiplication 
subroutine; the values are given in 
decimal.

On the right is the code entered in the 
assembler, e.g. A 2000 LDA #$FF, 
followed by the assembled machine 
code in hexadecimal: A9 FF.

5/11



In hexadecimal (hex or base 16) each digit can 
take the values: 
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 which are 
represented as:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
The $ indicates a hex number, so $FF 
is equivalent to (15 x 16) + 15 = 255.

Hexadecimal is used because each 
hex digit represents 4-bits or one 
nibble. FF is thus the max value that 
can be stored in one byte. Four hex 
digits can represent a 16-bit memory 
address.

The program written by hand is shown on the left and then assembled using the tfc3 C64 
assembler (the cartridge image can be loaded into a C64 emulator). Each assembly language 
instruction is a three letter mnemonic, e.g. LDA 255 means load the accumulator (LDA) with the 
value 255, and places the value 255 into the A-register. Different addressing modes are used in 
machine language, but we will only use two here: immediate addressing mode does not access 
a memory location but instead places a value directly into a register, as we just did with LDA 255 
which may be written LDA IM 255 (or LDAIM 255) to remind us that we are using immediate mode. 
This code also uses the absolute addressing mode, e.g. STA 1025 means store the value in 
the accumulator into address location 1025 (which is location $0401 in hex). Memory locations 
1024 and 1025 are the first two character positions on the screen, in the top left corner, and is 
where the answer of the 8-bit multiplication is printed to the screen.

The first two numbers loaded into the accumulator, 255 and 200, are the two numbers we wish to 
multiply together - change these to any value between 0 and 255 for a different multiplication. 
Notice that immediate mode is indicated to the assembler using a # symbol, as in LDA #$FF. The 
hex digits in the rightmost column is the output of the assembler, and is the final machine code 
represented in hex. Notice that address locations and pointers to these locations are stored in 
memory in the reverse order to what we normally write (least significant byte before the most 
significant byte): e.g. A 2040 STX $0401 is stored as three bytes. In memory location $2040 is 
placed the byte 8E, the machine-code for the instruction STA, which represents a machine-code 
routine in ROM given the id number $8E (8 x 16 + 14 = 142). In location $2041 is the least 
significant byte of the address where the value in A is to be stored: $01, and in location $2042 is 
placed the value $04, representing the most significant byte of the address.

The subroutine ends with RTS, the instruction to return from the subroutine. We can run the final 
machine-code subroutine in the assembler software, or we can convert into decimal numbers and 
enter it using a BASIC program. The hexadecimal and its decimal equivalent are shown below:

These decimal values can then be loaded into memory using BASIC, as shown below:

5 CLR
10 PRINT CHR$(147)
20 FOR D=0 to 73
30 READ Q: POKE 8192+D,Q
40 NEXT D
50 SYS 8192
100 DATA 169,255,141,132,3,169,200,141

6/11



110 DATA 136,3,169,0,141,134,3,141
120 DATA 138,3,141,139,3,160,8,78
130 DATA 132,3,144,19,173,138,3,24
140 DATA 109,136,3,141,138,3,173,139
150 DATA 3,109,134,3,141,139,3,14
160 DATA 136,3,46,134,3,136,208,223
170 DATA 173,138,3,141,1,4,162,1
180 DATA 142,1,216,173,139,3,141,0
190 DATA 4,142,0,216,96

The machine-code in the DATA statements is read and poked into memory, starting at location 
8192 ($2000). Once this is done, we can execute the machine code routine using the BASIC SYS 
command. Of course it takes time to load the routine into memory using BASIC, but once in 
memory we can call the subroutine as often as we like and benefit from the speed advantage of 
machine-code. PRINT CHR$(147) clears the screen, by the way.

If you run this program, then you will find that it prints two, often strange symbols in the top-left 
corner of the screen. If you use a C64 character screen code table, then you will find that the 
screen codes of these two characters give us the correct answer (most significant byte first). It is 
awkward having to do a manual translation! Another textbook assembly language program which i 
debugged as shown below:

One of the most fun features of assembly language is that it allows us to control the CPU's 
registers directly! When you enter the assembler program, also called a machine code monitor, 
you receive a display of the registers and their current values, something like this:

    PC        IRQ        BK        AC        XR        YR        SP        NV#BDIZC
  AB25     EA31       07        8D         00         0A        FP        *. **. . .*

Where: PC is the program counter, IRQ is the interrupt request, BK is the current memory bank, 
AC is the accumulator, XR the X-register, YR the Y-register, SP the stack pointer and NV#BDIZC 
the status register and its various flags (an asterisk indicates bit set = 1, a dot bit = 0). Now let's 
look at the code for the b-bit multiplication subroutine:

1.   LDA IM 2        load value 2 into accumulator              
2.   STA 900        store A at address 900                         
3.   LDA IN 255    load value 255 into accumulator          
4.   STA 904        store A at address 904                         
5.   LDA IM 0        load value 0 into accumulator            
6.   STA 902        store A at address 902                         
7.   STA 906        store A at address 906                         
8.   STA 907        store a at address 907                         
9.   LDY IM 8        load value 8 into Y-register                  
10. LSR 900        bitwise shift right value in 900                
11 .BCC 19          branch if carry (C) clear to line 19      
12. LDA 906        load value at @906 into A                     
13. CLC               clear C, C = 0
14. ADC 904        add with carry the value at @904 to A
15. STA 906        store A at @906
16. LDA 907        load value at @907 into A
17. ADC 902        add with carry value at @902 to A
18. STA 907        store A at @907

7/11



19. ASL 904        arithmetic (bitwise) shift left value at @904  
20. ROL 902        bitwise rotate left value at @902
21. DEY               decrement Y
22. BNE 223        branch not equal (if Z = 0) to line 10

This part displays the result (on the screen, in white):
  
23. LDA 906        load the value at @906 into A
24. STA 1025      store value in A at @1025 (screen)
25. LDX IM 1        load X with value 1 (= color white)
26. STX 55297    store X in @55297 (color memory)
27. LDA 907        load the value at @907 into A
28. STA 1024      store value in A at @1024 (screen)
29. STX 55296    store X in @55296 (color memory)
30. RTS               return from subroutine

Notes: Y acts as a loop counter, counting the number of bits 
remaining as we multiply by multiplying the multiplicand by 
each bit of the multiplier in turn. We do a similar thing in 
decimal, where we multiply by the first digit (the 1's) then by 
the second digit, the 10's etc. as shown below:

e.g.

   210
 x   12
   420  (x 2)
+2100  (x 10)
 2520

Our algorithm is doing the binary equivalent!

Note the bitwise operations:

ASL (line 19) - shifts all the bits one place to the left, 
removing the leftmost bit to the carry flag, and replacing the 
space in the rightmost bit position with 0.

ROL (line 20) - shifts the bits left, but in rotation with the 
carry flag, C, removing the bit in the carry flag and placing 
this in the space at the rightmost bit and removing the 
leftmost bit and placing it in the carry flag.

Note also the conditional branch operations:

BCC branches if C = 0, i.e. if C is clear
BNE branches if and only if Z (zero flag) = 0, i.e. if Z is clear

Each branches a set number of bytes if the above condition 
is met, the number of bytes being given by the number 
following the instruction. This uses 2's complement: if the 
number is 127 or less than it branches that many bytes 
forwards, if the value is 128 or more, then this represents a 

8/11



negative value and then the program branches 256-number 
bytes backwards. In practice, the 6510 processor requires 
the address of the instruction to be jumped to and this must 
be entered in assembly, e.g. BNE $2017. Another commonly 
used branch operation is JMP which jumps to a memory 
location unconditionally, e.g. JMP $2017.

Links

C64 wiki: http://www.c64-wiki.com/index.php/Main_Page

1.   A = 2
2.   @900 = 2 (10) = 00000010 (2)
3.   A = 255
4.   @904 = 255 (10) = 11111111 (2)
5.   A = 0
6.   @902 = 0
7.   @906 = 0
8.   @907 = 0
9.   Y = 8
10. 900: 00000010 -> 00000001, C = 0
11. branches in this case to line 19
19. 904: 11111111 -> 11111110, C = 1
20. 902: 00000000 -> 00000001, C = 0
21. Y = 7, Z = 0
22. branch to line 10
10. 900: 00000001 -> 00000000, C = 1
11. does not branch in this case
12. A = 0
13. C = 0
14. A = 0 + 11111110 = 11111110
15. 906: 11111110
16. A = 0
17. A = A + 00000001 = 00000001
18. 907: 00000001
19. 904: 11111110 -> 11111100, C = 1
20. 902: 00000001 -> 00000011, C = 0

21. Y = 6, Z = 0
22. branch to line 10
10. 902: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11111100 -> 11111000, C = 1
20. 902: 00000011 -> 00000111, C = 0

21. Y = 5, Z = 0
22. branch to line 10
10. 900: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11111100 -> 11111000, C = 1
20. 902: 00000011 -> 00000111, C = 0

9/11

http://www.c64-wiki.com/index.php/Main_Page


21. Y = 4, Z = 0
22. branch to line 10
10. 900: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11111000 -> 11110000, C = 1
20. 902: 00000111 -> 00001111, C = 0

21. Y = 3, Z = 0
22. branch to line 10
10. 900: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11110000 -> 11100000, C = 1
20. 902: 00001111 -> 00011111, C = 0

21. Y = 2, Z = 0
22. branch to line 10
10. 900: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11100000 -> 11000000, C = 1
20. 902: 00011111 -> 00111111, C = 0

21. Y = 1, Z = 0
22. branch to line 10
10. 900: 00000000 -> 00000000, C = 0
11. branch to line 19
19. 904: 11000000 -> 10000000, C = 1
20. 902: 00111111 -> 01111111, C = 0

21. Y = 0, Z = 1
22. do not branch

Print result:
= value at @907 and value at @906
= 00000001 + 11111110
= (1 x 256) + 254 = 510

ANSWER = 510

Assembly Language Today

Assembly language is a low level language, meaning it is close to the operations of the chipset itself. 
Indeed if we go any lower than we arrive at binary machine code itself. Assembly and machine code must 
still be used when designing the architecture of CPUs and motherboards and graphics cards. Those who 
have studied microprocessor architecture, perhaps as part of a computer studies degree, will have 
already encountered it, though perhaps in a theoretical setting. The operating system (OS) kernel of the 
C64 (the 'kernal') consisted of machine code routines, stored in ROM, that can be called directly from 
BASIC or machine code. Modern systems contain multiple layers or shells, for example, a PC calls 
machine code instructions on power-up, called the BIOS. This then loads a command interface, such as 
DOS and finally the Windows 'operating system'. Users interact only with the windows, or occasionally DOS 
shells. Most programmers also interact with Windows, calling its component functions, often indirectly. for 
example, C# code may create a new window, but under the hood this executes several core routines in the 
Windows OS. This is one of the reasons why I recommend programming a C64 emulator, to gain a 

10/11



first-hand feel for how the processor and graphics chips work. This older style programming is far more 
intimate!

Today, programmers might use low-level languages to program device drivers, which are generally written 
in C, which is quite a low level language, but not as low level as assembly. In C and also Java, for example, 
we can request that data be stored in CPU register, but this is only a request - the registers may be busy, 
since a modern CPU runs many softwares in the background which have to be protected from any 
standard program that is executing. (Registers are faster than accessing RAM, and if they can be used 
then certain operations can be sped-up). With the C64 we have considerable direct control over the CPU.

Several legacy computer systems used the 6510 processor, and machine-code written on one will run on 
others given certain modifications, e.g. accounting for different arrangements of computer memory. 
Assembly is assembled into machine code before execution. This is similar to the way compiled 
languages like C work - a compiler translates the C code into machine language, specific to the given 
machine. Compilers, however, do not simply translate code, they attempt to optimise it and so are more 
complex than assemblers. Java and C# are a bit different. Both are high-level langauges and are 
compiled into an intermediate low-level language which is then translated in sections, as needed, by 
just-in-time (JIT) compilers into machine code during program execution. Java, for example, compiles into 
byte code (virtual machine code) which is an interpreted language. An interpreter translate code, line 
by line, into machine code during execution. However, the JIT can compile sections of the code into 
machine code, so that if the code is re-used no further interpretation is needed.

On the C64, BASIC was an interpreted language, and so runs comparatively slowly as the interpreter 
slows down code execution. This was one of the main reasons why most games written for the C64 were 
written in assembly and assembled into machine code before execution - this made the machine code 
much, much faster than BASIC! (Often machine code is too fast, even on these old processors, and must 
be slowed, for example when animating graphics). Even without an assembler, it was possible to write 
assembly code and translate into machine code manually, using look-up tables to obtain the decimal 
values which could be used in a BASIC program. This approach is, of course, very error prone. Assembly 
language is relatively easy to learn but very hard to use! It took us 30 lines to multiply two 8-bit numbers 
together, and a few more to output the answer in human language! Clearly, this approach would be 
madness for writing a large windows application! That is why we use higher level languages like Java and 
C#! However, assembly still has its users to those who design system architectures and learning to use it 
on a C64 is a very rewarding experience!

Comment on this article!

11/11

http://www.cronodon.com/blog

	Machine Code Programming

