219 229 N N7
w/VVVVVV v o

T
VIRIRE

~.“Money well

operating SYS1°™

o
' POWERTOOLKIT

A poweriul BASICIoolt (Addiona

AUTO MARDCAT RENUMBER

Using POWER CARTRIDGE you can losd
“ m k.

PATRRC AL

'y POWER CARTRID

s s sae
C Countt | Tow

bow Lok
o wevon
Goo b mow

w0 oveery oi

Bsae wmci Deice
MERGE T BASIC progrs
oisk Wit DISK you can send.

Commands dvecty 1o your up possbltes. 1t can prods

FARBCOM ot screens

gk ==

E8
Bitcon Devices Ltd ENGLAND

v tertace, ha sl
fnte s onnected o the
sl Commdore characters on

o v
25
TRADE AND EXPORT ENQUIRIES WELCOME

On he back o he POWER CARTRIDGE
ere s Ret Baston.Pressig hs
uon makes SPECIAL MENG appar o
programmnes

contnue

i
"Cheques or P/ payable to BDL

ade enquiries to: Bhiab Elektronik, Box 216, Norrtalie 76123,

CONTENTS

i il

WELCOME
Instructions and Editors comment 4
KEYBOARD
Volume 4 Number 4 FEBRUARY 1991 The C64's keyboard explained 6
MULTITASKING C128
ON THE DISK The series comes to.an end 12
CRANMORE DIAMOND TEC HN_() INFO
Another Tony Rome adventure for you 5 Jason Finch answers some more letters 26
COMPACTOR ADVENTURES IN 'C'
Program compaction made easy 5 The conclusion of this great series 32
ADVISOR ROLE PLAYING GAMES
Artificial intelligance on the C64 14 Our Design your own RPG series 39
GALACTIC ENCOUNTER COMPETITION RESULTS
Battleships played out in space 15 The Trivia Challenge results at last 43
IRQ64 BACK ISSUES
Interrupts on the C64 explained 21 Look out for all those missed magazines 44
2 FOR THE C128 BASICS OF BASIC
Check your 128's RAM and Play command 30 A new series on programming in basic begins 48

KANGAROO KORNER
The final two programs from down under 36

CHEQUE BOOK ORGANISER
Organise your cheque books and statements 46

Publisher: Hasnain Walji

Group Editor: Paul Eves
Jason Finch
Paul Crowder
Cass. oy

Subscription Rates

UK £33.00
Europe £39.00
Middle East £39.30
Far East £41.60
Rest of World £39.70 or $69.00
Airmail rates on request
Contact: Select Subscriptions. Tel: (0442) 876661

: Mark Newton

Seymour Press Distribution
London Road, Norbury, London
SW16 4DH. Tel:081 679 1899. Fax: 081 679 8907
Printed By: bons Barford Print

Commodore Disk User is a monthly magazine published on the 3rd Friday of every month. Alphavite Publications Limited) 20, Potters
Lane, Kiln Farm, Milton Keynes, MK11 3HF. Telephone: (0908) 569819 FAX: (0908) 260229. For advertising ring (0908) 569819

Opinions expressed in reviews are the opinions of the reviewers and not necessarily those of the magazine. While every efiort is made
1o thoroughly check programs published we cannot be held responsible for any errors that do occur.

“The contents of this publication including all aticles, designs, drawings and programs and all copyright and other intellectual property
vghts therein beong 1o Alphavte Publications Liited. All ighs confere by he e (npyngm and other intellectual property
tights and by virue of it conventions are sp Limited and any
leploducnon e company
©1990 ISSN 0953.0614

INSTRUCTIONS

EDITORS COMMENT

As | expected, | have had one or two complaints concerning
the DECEMBER 1990 issue of CDU. In all cases the problem
was the same, why so many programs for the C128 and only
2 for the C64. What a lot of you seem to forget is that CDU is
NOT just devoted to the Co4. True, in the main most of the
content and programs are C64 orientated (This is because we
obviously get more submissions from C64 users), however,
what you MUST remember is that CDU is for both €128 and
Cb4 users. | have a responsibility to ALL readers/users be they
€128 or C64. Therefore, from time to time | have to cater for
all the C128 people (who normally don't get a look in).
Likewise, that responsibility is also concerned with GAMES
players as well as SERIOUS users. So, once again, every time
include a GAME on the disk | get phone calls and letters of
complaint. Just like the old saying goes;

YOU CAN PLEASE SOME OF THE PEOPLE ALL OF
THE TIME

YOU CAN PLEASE ALL OF THE PEOPLE SOME OF
THE TIME

BUT YOU CANNOT PLEASE ALL OF THE PEOPLE
ALL OF THE TIME

Just because you get ONE issue which doesn't happen to
appeal 1o you personally, doesn't mean you have to cancel
your subscription. At least, | don't think it does. Anyway
folks! 1 have said my peace, | will leaye it up to your own
judgement as to whether you think CDU s value for money
or not. I personally think it is. (So do some 30,000 other
people)

DISK INSTRUCTIONS

Although we do everything possible to ensure that CDU
is compatible with all C64 and C128 computers, one point
we must make clear is this. The use of ‘Fast Loaders’,
‘Cartridges’ or alternative operating systems such as
“Dolphin DOS’, may not guarantee that your disk will
function properly. If you experience problems and you
have one of the above, then we suggest you disable them
and use the computer under normal, standard conditions.
Getting the programs up and running should not present
you with any difficulties, simply put your disk in the drive
and enter the command

LOAD” MENU",8,1

Once the disk menu has loaded you will be able to start
any of the programs simply be selecting the desired one
from the list. It is possible for some programs to alter the
computers memory so that you will not be able to LOAD
programs from the menu correctly until you reset the
machine. We therefore suggest that you tum your computer
oif and then on again, before loading each program.

HOW TO COPY CDU FILES

You are welcome to make as many of your own copies of
CDU programs as you want, as long as you do not pass
them on to other people, or worse, sell them for profit. For
people who want to make legitimate copies, we have
provided a very simple machine code fle copier. To use it
simply select the item FILE COPIER from the main menu.
Instructions are presented on screen.

DISK FAILURE

If for any reason the disk with your copy of CDU will not
work on your system then please carefully re-read the
operating instructions in the magazine. If you still
experience problems then:

1. 1f you are a subscriber, return it
Select Subscriptions Ltd
5, River Park Estate
Berkhamsted
Herts
HP4 THL
Telephone; 0442 876661

2. 1f you bought it from a newsagents,

then return it to:

CDU Replacements
Interceptor Group
Mercury House

Calleva Park
Aldermaston

Berks

RG7 4QW

Telephone; 0734 817421

eight weeks of publication date disks are
replaced free.

After eight weeks a replacement disk can be supplied
from INTERCEPTOR GROUP for a service charge of
£1.00. Return the faulty disk with a cheque or postal
order made out to INTERCEPTOR GROUP and clearly
state the issue of CDU that you require. No
documentation will be supplied. Please use appropriate
packaging, cardboard stiffener at least, when returning
disk. Do not send back your magazine, only the disk
please.

NOTE: Do not send your disks back to the above
address if it
Only if the DISK i
to: BUG FINDER!
Unit 20, Potters Lane
3HF. Thank you

1 program that does not appear to work

faulty. Program faults should be sent
CDU, Alphavite Publications Ltd

Kiln Farm, Milton Keynes, MK11

ON THE DISK

THE CRANMORE DIAMOND AFFAIR

Steal the diamond in 9 hours TONY ROME

Your hotel room was ideally suited to the audacious
scheme that you had dreamed up. Across the street
stood CRANMORE building where the famous
CCRANMORE DIAMOND was being exhibited.
You reflected how your present circumstances had
forced you to consider stealing the precious gem, but
that was the reason you were here!
You were in a small town with a few shops, a hotel and
a police station. You certainly had no intention of
ending up there. You glanced at the time, it was almost
5.00 pm, and the last day of the exhibition. You had
about 9 hours to execute your daring plan. After that,
the diamond would no longer be accessible.
You stared vaguely out of the hotel window, below
stret lamps everywhere glowed brightly in the evening
One sip of Brandy you thought to calm your
]anglmg nerves, and then it was time to begin

The CRANMORE DIAMOND affair is a text and graphic
adventure that tests all your powers of nerve and
deduction. Throughout the adventure you give your
commands in the usual way. For example, Take the Paper

or Examine the Chest. Etc Etc. The adventure is set in real
time., providing you have a WATCH. Some of the
commands you already know are;

TAKE/GET - To acquire an object

DROP - To discard an object

N/STERWE TS pacyie Sroiind e advEntice

LOOK - To view your current location
TEXT/WORDS - To follow the adventure in text only
PICT - To follow the adventure wllh graphics also
LIST/INV - To display you bel

LOAD - To reload a previously saved
TIME - To retart the rea time display (hroughou(the

7595 cancel (i reul e uimpla

You may also be able to converse with certain people.
For example; “Ask waiter about the drink’ Etc. A feature
of the game is the ability to make fairly complex
Command likes Take thawatch and throw 1 A waie o
waring. Look out for the thief!! Good luck on your
quest.....

POWER COMPACTOR

A useful routine for those long programs MARTIN PIPER

One of the biggest problems many programmers face
these days, and days gone by, is that their masterpieces
are just too big for the computer’s memory. As programs
get more and more sophisticated, users are demanding
more and more options from them. This in turn provides
the programmer with the Catch-22 situation of wanting.
1o provide, but not enough memory space. This is were
POWER COMPACTOR comes to the rescue.

WHAT IT’S ALL ABOUT

This is a nice, short and sweet program that enables you
to pack files into one file that will, upon loading,
decompact it and RUN it. Once loaded you are
presented with the file entry screen. On this screen you
are asked to insert the disk with the files you want to
pack, then you press RETURN. The drive will then load
in the directory. You then SCAN the files you want with
the CURSOR UP/DOWN keys and press RETURN on the
files you require. On your last choice press RETURN on
the white QUIT bar to edit your choices (in case you
made a mistake in entering the files).

After that you enter the start address to RUN the program.
This is the SYS call for the machine code to run it. The
drive will then whirr away packing all the files into one,
after this is finished it will ask you for a file name to SAVE
and ask for the correct disk you wish to SAVE to. After the
program is saved the packer will RESET. The usual
overhead is two disk blocks but this is made up as the file
will take a shorter time to load in.

NOT FOOLPROOF

Please note that this program is not fool proof, as if the
end of one file overwrites the start of another file, the
packed file will get corrupted. For example; If a piece of
GRAPHICS load i at $0800 and lasts for 9 disk blocks
(that is, it ends at $1100) and a MUSIC file is packed and
that one starts at $1000, then problems are found as the
GRAPHICS will overwrite the MUSIC. There is also a
maximum size that can be compacted. This is 30K which
should be big enough for most needs. Also note, the
maximum size of the DIRECTORY should be 2K.

FEATURE

THE 64's KEYBOARD

Look after your keyboard BONES

We present an in depth look at the keyboard of the C64
and explore some of its possibilities, including care and
maintenance

The Commodore 64 has been equipped with a very
reliable keyboard which comprises of 66 keys. The keys
can be removed quite easily simply by inserting a flat
object, such as a small screwdriver, beneath the key and
gently easing it off. Once off you will discover a smal
Coiled spring that is located underneath which helps to
remove ‘clack’ when you are typing, The spacebar is
somewhat less easy to remove. It incorporates a metal
stabilizing rod which locates within two lugs, and should
you find the need to remove it, approach it with some
care.

Faulty or damaged keys can be replaced quite easily, and
the top of the computer housing cleaned. Whilst
cleaning the keypads themselves be careful when using
certain types of cleaning agents, they can easily remove
the white paint of the graphic symbols - | speak from
annoying experience.

INTERRUPTS AND THE KEYBOARD

During an interrupt phase (which occurs every 50th of a
second) the keyboard is scanned and any keypress which
may be occurring is updated to the keyboard buffer. The
keyboard buffer is an area of memory allocated to hold
the ASCII code of up to ten consecutive key presses.
When an interrupt occurs the 6510 processor finishes
dealing with it's current instruction, and then saves
several important values aiter which it jumps to the top of
memory at address SFFFE to test if the interrupt has been
generated by the BRK instruction. If it is not, an
therefore a normal interrupt it will then jump to the
address which is stored at memory locations $314/315
(788/789). This is normally set to $EA31 in the usual
form, High/Low byte. As it is situated within RAM this
address can be changed to point to user routines - such
as ‘split-screens’, ‘multiple sprites’, ‘special effect and
sounds’ or whatever. The user routine will usually end
with a jump to SEA31 and the processor will continue
with it's normal interrupt sequence.

The system clock is updated, the run/stop status is saved,
then screen and tape handling (i.e. Cursor flash - switch
off cassette motor unless a flag is set to say otherwise),
finally it calls the SKNKEY routine at SFF9F. This address
is within the kernal jump table, which redirects the
program to the ROM routine starting at SEAB7.

SCANNING THE KEYS

Only 64 of the 66 keys are actually scanned. The
keyboard is hard-wired to form an 8x8 matrix, or grid.
When a key is depressed this will short a coordinate
upon the grid giving it a value of zero. Two bytes are
used to hold the coordinate values. Eight columns are
held at memory location $DC00 (56320), and eight rows
use $DCOT (56321). (You may recognize these as the
two ports for Joystick/Paddles.) Hence a total of 8x8 = 64
locations for the 64 keys. The character positions within
the 8x8 matrix can be examined if you refer to TABLE 1.
The two keys which are not read in this manner are the
RESTORE key and the SHIFT/LOCK key, these are
handled separately.

PROCESSING THE SCAN

The columns $DCO0 (56320) are set for output and the
rows $DCOT (56321) are set for input. A loop of eight
iterations is initiated, and within each iteration $DCO1
(56321) (rows) is rotated through each of it’s eight ‘bits". If
the bit is set (= 1) then a key in that row has been
depressed, otherwise the bit is reset (= 0). The routine
will now check to see if the key is either SHIFT, C=, or
CTRL. If it is then the register which stores this
information (SHFLAG $28D (653)) is updated. (Note:
These can be detected and usefully exploited by using
PEEK(653). 1 = SHIFT key, 2 = C= key (COMMODORE),
3 = CTRL key. These values add together if more than
one key is simultaneously depressed, e.g. SHIFT/CTRL =
5, C=/SHIFT = 3, etc.).

If any other key is pressed the value of the counter (0 at
start and incremented upon each test) is stored into
Register SFDX SCB (203).

After each row is processed the next column iteration is
performed until all 64 keys have been examined.

KEY TABLES

‘When the keypresses are converted into ASCII, the 64
has four tables set up in ROM. These are: (A) Unshifted
characters, (B) Shifted characters, (C
(Commodore)/keys, and (B) CTRL/keys. The tables are
located, respectively, from SEB81, SEBC2, SEC03, and
SEC78. Each table is 64 bytes long and uses the value of
the counter, stored in register LSTX $C5 (197) to point to
the appropriate ASCII value contained within the current
table in use. The final, or 64th location in each table is
set to $FF (255) to denote that no key has been pressed

(remember, the counter starts a zero, so 64 iterations will
take the counter to 63, if no key has been pressed then
the final value of the counter will be 64).

PROGRAM 2 illustrates the way in which the Columns.
and the Rows interact with each other. At this stage there
is no distinction between shifted/C=/unshifted/CTRL keys.

CLOSING STAGES OF THE
INTERRUPT

A further routine is entered at SEAEO where the ASCII
value of the key is evaluated, with where repeats and
cursor control are taken care of. At this point the
program jumps o a new location to conclude the
keyscan, however, it uses a vector, KEYLOG $28F/$290
(655/656), from which to obtain the address to jump to.
Itis at this point where we are able to ‘wedge’ in a user
routine to intercept the keys to implement messages or
whatever. See PROGRAM 3 for an example of this
method.

Finally, LSTX $C5 (197) copies the value in SFDX SCB
(203), LSTSHF $28E (654) copies SHFLAG $28D (653),
and the keyboard buffer is updated. $DCO00 is set to it’s
default value of $7F (127), and the routine terminates
with the recovery of the values which it saved at the start,
then a return from the interrupt, and the continuation of
whatever it was doing before the interrupt occurred.

LOCATING KEYS

A useful method for finding a keypress as opposed to the
more usual Basic GET statement is to access the bytes
which store the counter number or the most recent
keypress. This is stored at memory locations $C5 (197),
AND SCB (203)

During ‘keyscan’ routine, and if a key has been struck,
then an identifying number s placed into location SCB
(203). The previous keypress is stored in $C5 (197).
Comparing these two locations will show if a new key
has been struck.

Using the method of accessing either $C5 (197) or $CB
(203) does not take into account shifted characters, only
the physical key. The default value is 64 which is
representative of no key being struck

If you only require the physical key and are not
concerned with shifted keys then memory location $C5
(197) can be used. PROGRAM 1 illustrates a method of
accessing $C5 (197). Remember to use the values
outline in TABLE 2 and not ASCIL. 1f you do need to
distinguish between shifted/unshited keys then check
$D7 (215) for the ASCII value of the last key pressed.
Once again SHIFT/C=/CTRL can be detected separately
from the content of $28D (653).

DISABLING RUN/STOP AND
RUN/STOP RESTORE

METHOD A
1) POKE 808,54: POKE 809,188 - Disables RUN/STOP

FEATURE

and RUN/STOP RESTORE

2) POKE 808,237: POKE 809,246 - Re-enables

(This leaves the system clock working, does not affect
tape operations, and LIST will work quite normally)

METHOD B

1) POKE 808,234 - Disables RUN/STOP and
RUN/STOP RESTORE

2) POKE 808,237 - Re-enable:

(This method will scramble the LIST and may have affects
on tape loading. Okay if you are not doing any tape
operations)

METHOD C

1) POKE 788,52 - Disables RUN/STOP

2) POKE 788,49 - Re-enables

(This i okay - it doesn't disable RESTORE but will, during
tape operations, reset everything back to normal)

METHOD D
1) POKE 792,193 - Disables RUN/STOP RESTORE only
2) POKE 792,71 - Re-enables

REPEAT KEYS

Location RPTFLG $28A (650) is the byte which controls
vhich keys will repeat if a key is held down. To modify
this function use:

POKE 650,65 - Turns off all key repeats
POKE 650,128 - Turns on all key repeats
POKE 650,0 - Turns on Spacebar and Cursor controls

PROGRAM 1

This small program uses memory location $C5 (197) to
test if either function key F1 or F3 has been struck to
execute colour changes to screen/border.

;SET A VARIABLE, KP, EQUAL TO
STHE CURRENT VALUE HELD IN
JLOCATION 197 ($C5)

NO KEY HAS BEEN PRESSED
;LOOP UNTIL PRESSED
THEN BC=BC+1 ;KEY F1 = 4 (SEE TABLE 2)

10 KP=PEEK(197)
15:

20 IF KP=64 THEN 10

70 POKE 53280,BC
80 POKE 53281,5C
90 GOTO 10

;UPDATE BORDER COLOUR

;UPDATE SCREEN COLOUR

;LOOP BACK TO DO SOME
MORE

PROGRAM 2
This program demonstrates the way in which the
columns (SDCO0) and the rows (SDCO1) interact with
each other during the Keyscan routine.

FEATURE

10 FOR X=0 TO 17: READ D ;POKE ML ROUTINE
TO SPARE

15 POKE 49152+X,D:NEXT ;RAM FROM 49152
(5€000)

20 POKE 788,52 ;DISABLE STOP KE
30 INPUT “(SDCO1) COLUMN NO:"
COLUMN (TABLE 1)

40 POKE 49153,C ;POKES IN COLUMN VALUE
50 SY5 49152 ;CALLS ML ROUTINE

60 GOTO 50 ;RUN/STOP RESTORE TO STOP
70 DATA 169,0,141,0,220,174,1,220

C;TESTA

80 DATA 169,0,32,205,189,169,13,76
90 DATA 210,255
The Basic data statements of lines 70-90 in Assembler

are:

€000 LDA #0 ;THE BASIC INPUT WILL FILL $C001
WITH COLUMN

€002 STA $DC00 ;VALUE 127,191 ETC AND STORE IT
AT $DC00

€005 LDX $DCO1 ;GET THE ROW VALUE FROM
$DCO1 - 255=NO KEY

C008 LDA #0 ;FILL ACCUMULATOR WITH NULL BYTE
AND JUMP TO

CO0A SR $BDCD ;THE ROM ROUTINE WHICH WILL
PRINT VALUE OF X

CO0D LDA #13 ;PUT VALUE FOR CARRIAGE RETURN
TO ACCUMULATOR

COOF JMP $FFD2 ;AND EXECUTE RETURN FROM
KERNAL ROUTINE CHROUT

PROGRAM 3
Basic Keyword Printer... This example program brings
together a method to output to the screen full basic

keywords, using only single key inputs. See TABLE 3 for

a list of the keywords and their Key assignments

10 —scouu

12 ;EQUA

20 R VEC szar ;$28F/290 ARE THE HI/LO BYTES
FROM WHERE

25 ;THE FINAL PART OF ‘SKNKY’ ROUTINE

GETS ITS START ADDRESS

30 KEYSCAN=SEB48 ;THE FINAL PART OF
“SKNKY’ START ADDRESS

40 BASICWRD=$A09C ;START ADDRESS OF
BASIC KEYWORD TABLES

50 CHROUT=$FFD2 ;KERNAL ROM ROUTINE

TO OUTPUT A CHARACTER

55 SIN THIS CASE, PRINT CHAR ONTO THE
SCREEN

60 SFDX=SCB;PREVIOUS KEY PRESS

80 SHFLAG-=S2BD;BYTE TO TEST FOR
SHIFT/C=/CTRL KEYS

120 SETUP

130 LDA #<GETWORD ;PUT THE HI/LO BYTES OF
GETWORD IN

140 STA VEC ;TO VECTOR TO REDIRECT
SKNKY TO

150 LDA #>GETWORD ;OUR WEDGE. SETUP
WOULD BE CALLED
160 STA VEC+1;FROM BASIC WITH <SYS 49152>

170 RTS

190 GETW

200 LDA SHHAC ;TEST THE LAST CONFIG OF
SHFLAG T¢

210 CMP #4 ETECT IF THE CTRL KEY IS PRESSED

220 BNE EXIT ;IF NOT THEN EXIT BACK TO
SKNKE
LDY SFDX SELSE LOAD THE Y INDEX WITH

SFDX TO

240 CPY #64 ;TEST FOR KEYPRESS.

250 BEQEXIT ;NO KEYPRESS SO EXIT TO SKNKY
280 ;IF A KEY HAS BEEN PRESSED, TEST IT AGAINST
THE PREVIOUS

290 ;KEYPRESS AND IF IT IS THE SAME KEY THEN EXIT
SKNKY. THIS

300 ;STOPS THE KEYWORD FROM REPETITION IF THE
KEY 1S HELD

310 ;OVERLY LONG. HOWEVER, IF IT IS A NEW KEY
THEN STORE IT

320 ;IN LSTX. SET THE X INDEX TO ZERO READY TO
TEST EACH KEY

330 ;WORD TO FIND THE LAST CHARACTER. THE Y
INDEX WILL BE

340 ;USED TO COUNT OFF EACH KEYWORD FROM
THE TABLE

360 CPY LSTX

370 BEQ EXIT

380 STY LSTX

390 INV

400

430 ; AF'IER IHE ASCII CODE FOR THE CHARACTER
HAS BEEN

440 ;TRANSFERRED FROM MEMORY TO THE A REG
THE ROUTINE TESTS

450 ;THE 8TH BIT OF THE BYTE. IF THIS IS SET (=1)
THEN THE

460 ;END OF THE KEYWORD HAS BEEN REACHED.
DECREMENT Y INDEX

470 WHEN Y REACHES ZERO THEN THE X INDEX
POINTS TO THE LAST

430 JCHARACTER OF THE BASIC WORD SELECTED.

suu LOOP|

510

520 LDA BASICWRD,X
530 BPL LOOP1

540 DEY

550 BNE LOOP1

5 INX

590 ;THIS SECTION OF THE CODE WILL TEST THE
8TH BIT OF EACH

600 ;BYTE TO FIND THE LAST CHARACTER OF THE
BASIC WORD. IF IT

610 ;1S THEN THE BIT WILL BE SET SO BRANCH TO
LASTCHAR

630 ;ELSE PRINT CHAR TO SCREEN USING ROM
ROUTINE CHROUT, THEN

640 ;LOOP TO GET NEXT CHARACTER BYTE.

660 LOOP2

670 LDA BASICWRD,X

680 BMI LASTCHAR

690 JSR CHROUT

700 INX

710 BNE LOOP2 ;X WILL NEVER REACH ZERO.

720 ;SO ALWAYS BRANCHES.

750 ;ONCE WE HAVE THE LAST CHARACTER WE
MUST AND IT WITH 127

760 ;TO TURN OFF THE 8TH BIT THEN OUTPUT THE
CHARACTER TO THE

770 ;SCREEN AND EXIT TO SKNKY ROUTINE.

790 LASTCHAR

800 AND #S$7F

810 JSR CHROUT
820 EXIT

830 JMP KEYSCAN
850 END

Here is the same program as a Basic Loader for those
who do not have an assembler.

100 DATA 169,11,141,143,2,169,192,141

110 DATA 144,2,96,173,141,2,201,2

120 DATA 208,41,164,203,192,64,240,35

130 DATA 196,197,240,31,132,197,200,162

140 DATA 0,232,189,156,160,16,250,136

150 DATA 208,247,232,189,156,160,48,6

160 DATA 32,210,255,232,208,245,41,127

170 DATA 32,210,255,76,72,235

180 FOR X=0TO61:READ D: POKE 49152+X,D: NEXT

To activate KEYPRINT use SYS 49152
To exit KEYPRINT hold down RUN/STOP and strike
RESTORE

(TABLES 1,2 and 3 are bottom right and over the page).

TABLE 4 - SCREEN LOCATIONS
STKEY $91 (145) RUN/STOP key

LSTX $C5 (197) Latest Key press *
NDX $C6 (198) Number of characters in keyboard
buffer

RVS $C7 (199) Reverse flag

SFDX SCB (203) Previous key pressed
BLNSW $CC (204) Cursor blink enabled
BLNCT $CD (205) Timer countdown to toggle cursor
(12-0)
GDBLNSCE (206) Character under cursor
BLNONSCF (207) Cursor blink flag (0or1)
CRSW $DO (208) Flag:input from screen or keyboard
(30r0)
PNTR $D3 (211) Cursor column on current line
TBLX $D6 (214) Cursor row number

$D7 (215) ASCII value of key pressed
COLOR286 (646) Current character colour code
(0to15)
HIBASE 5208 (648) Top of scn page memory (usually

oA $289 (649) Max No of chars in keyboard buffer
RPTFLAG $284 (650) Repeat Flag (0 = space/cursor: 64

keys 128 = all keys

KOUNT $368 (651) Repeat delay (4-0: 12 repeats per
second)

DELAY $28C (652) Repeat countdown :16-0 secs
before repeat

FEATURE

SHFLAG $28D (653) Shift/Commodore key/CTRL
register (1,2,4)

LSTSHF $28E (654) Previous configuration of SHFLAG
MODE $291 (657) Commodore key/Shift mode switch
on/off (128 = off)

VECTOR POINTERS

KEYTAB $F5/$F6 (245/246) Keyboard table pointer
LXSP $C9/$CA (201/202) Cursor row/column

at start of input

D “$D1/5D2 (209/210) Current screen line address

pnts
Usir $F3/$F4 (243/244) Pntr to current colour ram

address
KEYLOG $28F/$290 (655/656) Vector for implementing.
‘wedge’

KEYBOARD BUFFER
KEYD $277-$280 (631-640) Keyboard buffer
ROM ROUTINES

$E544 (58692) Clear screen

$E5AB (58792) Set VIC chip to defaults

$E632 (58930) Input arrives here

SEBEA (59626) Scroll up one character row

$E981 (59777) Scroll down one character row
SE9FF (59903) Clear entire row (e.g. POKE 781,n:5YS
59903 O2 where n is set equal to row number (0-24)
SEA31 (59953) Interrupt sequence starts here

$FFD2 (65490) Output a character to device (default

screen)
$FFE4 (65508) Get character from the keyboard queue
(buffer)

TABLE 1 - KEYBOARD DECODING GRID

Sbce1 Row
7/7:7‘ 387 ot | 422 | 67 [46¢ | 780 x/r‘
Va7 @) |cazs) | sy (a50)
2] ale o] 2 feme | [2 |
A e e
srcee el T [o [= |2 [P
N 72 IV P P P e e
v ulrle|sle Y7
il x | TF]c]e|p[r]5]
Bl E s [Z[#[AW]3]
oo 20| 55 |Fs [P [F7 [el 5aT

FEATURE

”41?'“[73'4-56/.'55@ FT =) & |kl mer =8
s7(selsa |8 v e a2y le 32|35 (40 |43]es |5 | @

4
cTRL S L T o g e o R P ¢ O R Gl
EARAREMMERHMMH P S e
EEEEELEEEsalsbk] [T
s | — |ve |13 |18 |21 [26129 {3 |37 142 45|50 |53 2 LS
— | lmzs|2e o |28 B0 | 3¢ |47 |be|ST) o0 2 =
[s o
NO KeY = 6k
TABLE 2 - KEYS AND THEIR EQUIVALENT VALUES STORED IN $CB (203) & $C5 (197).
ce QUN/STeP
Q
cos.
w
GoTo
E
RE VR
R
o
i
DEF
X1
PRANT
a
SYS
&= s
GET *
(o]
sec(USR.
= CRSR
STEP ReAd
@ Thse ++
* NexT
*
>
3
ABS
ESTIRE
b e |
TABLE 3 - KEYS TO BASIC KEYWORDS

28

- MULTITASKING

PROGRANMMING

EXPANSIONS END THE SERIES

DAVID KELSEY

Last month we gave you the file necessary to
display all the ASSEMBLER files that we have been
discusing. This month sees the series coming to and
end with the emphasis on EXPANSIONS to the
system

PRG TO PRG COMMUNICATIONS

This facility will be very useful. It allows data to be
transferred between programs. The way to transfer
information would be via operating system routines
which you could then give information and a program
name. This information would then be stored in a table.
Another routine could then be called it could interrogate
the operating system to see who called him, then pass
any messages back to the caller. A use for this would be a
DISK control system. Another program could then send
information to disk or receive information from disk via
the application program rather than to provide a full
operating system extension. The operating system
providing control purely over the CIA chips.

The way | envisage this being applied is by using a
fixed area within zero page to either place messages or
receive data. When the routines are called, because they
will use the applications zero page and page 1, there isn't
a problem. These routines will have access to a large
block of memory where the data and the application
name to whom the information is destined. This table
could be chained and whenever a new message is
created, a bit of free storage can be got to add the new
data block. There is a danger with memory being used
when a program sends data to another and either that
program isn't receiving the data because it isn't working
or the application is not loaded.

PRIORITY

For some reason or another you may want a program to
get more CPU time than another. This means the program
will execute quicker than other programs. A simple
facility to load programs with a priority is already
provided, but the facility isn't used. An algorithm is

mn

required within the routine that selected the next
program to run. It would select the most likely program
to run based on the priorities of all the programs rather
than just select next one. It isn't a viable solution to just
let programs with higher priorities run longer because
this is noticeable. An experiment that | did had 3 screen
locations maintained by different programs being
updated. Letting one program run for more time that the
others gave the picture of one program running for 3
seconds the next 2 ran for 1/2 a second each. This isn't
what is required. The aim is to have a program look as
though it is running fast while others around it run
slowly. In the above example what should be seen is one
screen location should be changing rapidly while the
others also change but at a slower rate (a similar situation
could be achieved by writing 3 programs that update the
screen, but put delays into 2 of them).

INTERRUPTS

An application cannot use interrupts as the operating
system uses the system interrupts. It would be dangerous
10 trap the system interrupts before passing control back
to the operating system routines. At present the
operating system thinks that any interrupt is intentional
and meant for him. What would be nice is if an
application can set up his own vectors for IRQ and NMI.
This could be achieved by calling an operating system
foutine to define vector addresses (obviously these
addresses will either have to be given when the program
is run and the program itself will have to work out where
his is really or at load time when the addresses used,
work out at assembly time, will have to be relocated).
The only problem will be when an interrupt occurs, who
gets the interrupt. The operating system can simulate the
execution of a vector by changing where the next
executable instruction is found by altering the PC on the
stack when the interrupt is returned. Once the interrupt
code has been completed, how do we get the operating
system to recognise this and so return to the correct point
in the application? Maybe an extension to BRK
processing could do this (see later). This still leaves the

PROGRAMMING

problem of who gets the interrupt. As there are several
different interrupts, maybe different interrupts can be
dedicated to different applications (e if a certain type of
interrupt occurs, then only one program will ever be
informed). There may be a way in queueing programs to
gel the same interrupt. Eg 2 programs want the same
interrupt, either they both receive it or the first program
gels the first interrupt and the second program gets the
second interrupt

80 COLUMN SUPPORT

As this is a screen, there are problems with several
applications using it. It may be necessary to dedicate
this device purely to one application. This could be
done by allowing the first caller to the routines to only
use the screen. If he ever stops running, it could free up
the screen for another application to use.

DOS

This would manage all transfer of data to and from the
disk drive. It would allow several applications to be able
1o have different files being accessed at the same time
on the one drive. Eg, one program writing a file while
another program accesses another file to be outputted to
the printer. This could run either as an application or be
done within the operating system using operating system
routines. You would have to use IPC (Inter Program
Communications) to talk to the application version

RESTORE KEY

At present, If you press restore to get control of the
operating system, the whole process stops. It would be
nice to communicate with the operating system without
all other applications stopping. The reason it stops at the
moment is that if the command processor was
interrupted, and another program was run, because the
command processor routines are not in the program list
the command processor is never returned to-when the
system locates the next program to run. Obviously you
need some way of making sure that the routine returns
to the command processor while running other

programs.
BANK LOCATION

The operating system code by virtue of the way it was
designed must be below $4000 as the interrupt routines
set up by the system, set the memory configuration to
$00 which means all BASIC ROMs are enabled. It would
be nice to have a system that didn't rely on this and
could be placed anywhere in RAM, even RAM block 1

TRACING AND DIAGNOSTICS

|f an application doesn't execute properly, it would be

handy to be able to trace a program to detect errors. Also
if an application causes the operating system to crash it
would be useful to have in memory a table listing exactly
what the operating system was doing before it fell over. A
program could be loaded (without the operating system)
to scan memory for this table and display the information
found there. These ideas would provide diagnostics for
both applications and the operating system. (information
such as the registers should also be in the table)

EXTENSIONS TO BRK COMMAND

At present, BRK just terminates a program however it
could be used to perform different functions depending
in the value of the Accumulator. An example has already
been given above. Another could be setting A=0 and
issuing BRK {0 terminate a program. Other ideas could be
o provide special functions controlled by the operating
system rather than going through system routine calls

IMPROVING THE RELOCATION
ROUTINE

The relocation routine is very basic and limits the
programmer to the design of programs. It could be
possible to provide extra facilities within the relocation
‘ode so as to allow programming features such as
address tables. To do this may require a special
programming technique which is defined by exta code
in the relocation routine

Z80 PROGRAMS

It may be possible to switch processors at interrupt
time also, thus allowing programs coded in Z80 to be
used as well. But this would require quite a bit of
research,

ADDING TASKS, LOADING OTHER
PROGRAMS

You may have heard the term SUBTASK. This
where a program running under a multitasking
operating system, has within it a section of code that
runs independently of the main body of the program. It
is like 2 programs within one that run together. At
present | have no way of implementing this. Another
useful feature would be an application which can load
other applications into the system

POST AND WAIT

Another concept within multitasking environments is
POST and WAIT. | shall explain this by example. There
are several programs running, and one issues a WAIT for
another program. The program then doesnt do anything
until the program he is waiting for, issues a POST for that
program. Once the POST has been detected, the original
program starts processing again. The feature is useful if
you have one program that must wait for another to
complete a function before he can process the correct
information.

PROGRAMMING

REMOVING DEPENDENCE ON
OLD OPERATING SYSTEM

The operating system still uses the original operating
system’s LOAD and KEYBOARD routines. This should
not be the case and needs to be removed by coding
own serial and keyboard routines which could be
used by application programs.

OTHER IDEAS

You could use CIA timers to control when an IRQ
interrupt occurs, thus varying the length of time a
program runs for.

APPLICATIONS
These are programs that could run under the
multitasking operating system.
ASSEMBLER

A macro assembler could be designed to allow for
coding restrictions imposed earlier by the operating
system. It could also provide easy ways to access the
operating system routines designed for use by
applications

EDITOR

An editor will be required to build files. These files
could be processed by the assembler. The beauty here
is that while the assembler is assembling one
program, you could be editing another. This is the
advantage of multitasking operating systems

PRINTER CONTROL

hated having to wait for the printer to finish
before | can do any further work on the computer. What
would be nice is to tell the print program to print
information off the disk while you can use another
application.

I have always

CONCLUSION

1 have found this a very interesting project and it has
taught me a lot about multitasking operating systems. |

hope you have found this article interesting as well.
There is much development that can be done and
more to discover about multitasking. | hope this
article will start some further development in this field.

ON THE DISK

More clues for The Astrodus Affair JASON FINCH

Welcome to the second part of the ASTRODUS
Adventure Helpline which will be running for another
few months, hopefully informing you of how the
excellent adventure, the ASTRODUS Affair, can be
successfully completed without you needing to hurl
large objects at your monitor and computer. Last month
| promised to e you the rest of the location
descriptions and a taster of the vocabulary. So below is
exactly that, starting with the location that we left off on
last month, number fifteen.

You're in a plain, compact corridor leading directly west
to east. A small silver disc is set into the floor
EXITS: EAST 16, WEST 14

This is cross-section A, with exits in all four cardinal
directions.
EXITS: NORTH 12, EAST 17, (SOUTH 19), WEST 15

17
You're at the base of a steep metal stairwell leading into
the darkness above. Another exit leads west.
EXITS: WEST 16, (UP 2) -

Banks of lights and displays illuminate the walls of this
surprisingly dark control room, with the main console
totally filling one wall. A door leads north.

EXIT: NORTH 14

19
You're at the top of a short flight of steps leading
downwards. An exit leads to the north
EXITS: NORTH 16, DOWN 20

You're in cross-section B. Corridors branch off to the
west, east and south, and a flight of stairs leads upward,
EXITS: EAST 24, SOUTH 22, WEST 21, UP 19

This is the main supplies room, although anything of
value has already been pillaged. A single door leads east.
EXIT: EAST 20

22
You find yourself in cargo bay 2. Damaged crates and
cargoes are strewn about the floor. Doors lead north and
south. A transporter is situated in one comer, but it is
damaged beyond repair.

EXITS: NORTH 20, (SOUTH 23)

This is cargo bay 1. Virtually empty compared to bay 2,
this contains a few broken crates, and a rather hefty safe.
A door leads north.

EXIT: NORTH 22

24
You're in a long grey corridor running east to west. At the
eastern end there is a door, with an alpha-numeric
keyboard beside it, and a visual display above it. The
door is open/closed
EXITS: (EAST 6), WEST 20

VOCABULARY

Now that all the location information is out of the way we
can move on o the vocabulary. It would be pointless my
simply listing every noun and every verb that the program
recognises - instead | shall cover just a few of each. Some
of the more unusual verbs are as follows: ACTIVATE,
CRAWL, DRAG, ELECTROCUTE, ENTICE, INPUT,
RECHARGE, REPLACE, ROTATE, SWING AND SWITCH.

You should find that that small list will help in a few of
the specialised situations, as will the following verbs
ANTENNA, DRYGARS, GENERATOR, KEYBOARD,
OVOID, SEALANT, SLOFT and VISIONISER. The
following may also prove useful: A51X, ZA7Q, XX2V and
53468279. But by far the largest problem with
adventures lies in how to phrase certain things to
produce the desired response. Below is another lite st
of some of the most useful phrases that can be used in
certain rooms to your advantage. The room number is
given in brackets.

PHRASES

Rotate dial (1), Give food (3), Pull cabinet (9), Change
fuses/Repair drive with fuses (10), Examine drawer (14),
Give apple to tortor (17), Type 53468279/Fire laser (23)
Naturally there are a great number of other phrases that
you must use. Next time | shall show you how to solve
a few of the easier problems in the adventure - like how
to get started without the whole place shutting down. |
know from letters that | have received that the hole in
location 15 has caused a number of problems. The
solution to that is rather complicated and will be
featured a bit later on. Until next month, have fun!

42

RN o o i R S R TR 2 SR RO T | e T T T Ve T S G e

ATTRIBUTE 3 will relate to [COVER]
ATTRIBUTE 4 will relate to [SIZE]

ATTRIBUTE 5 will relate to [JARGON]
ATTRIBUTE 6 will relate to [SUBJECT MATTER]

The ADVISOR now asks you to CREATE VALUES for each
ATTRIBUTE. At the prompt type in statements which
describe the best, middle and least best qualities of each
ATTRIBUTE. For our example file type the statements in
the square brackets.

ATTRIBUTE - COST
VALUE 1 will be [OVER £5]
VALUE 2 will be [£5]
VALUE 3 will be [UNDER £5]

ATTRIBUTE - PRINTING
VALUE 1 will be [LARGE PRINT]
VALUE 2 will be [AVERAGE PRINT]
VALUE 3 will be [SMALL PRINT]

ATTRIBUTE - COVER
VALUE 1 will be [HARDBACK]
VALUE 2 will be [PAPERBACK]
VALUE 3 will be [UNIMPORTANT]

ATTRIBUTE - SIZE
VALUE 1 will be [LARGE BOOK]
VALUE 2 will be [AVERAGE BOOK]
VALUE 3 will be [SMALL BOOK]

ATTRIBUTE - JARGON
VALUE 1 will be [SMALL AMOUNTS]
VALUE 2 will be [LARGE AMOUNTS]
VALUE 3 will be [NOT PRESENT]

ATTRIBUTE - SUBJECT MATTER
VALUE 1 will be [NOT TECHNICAL]
VALUE 2 will be [NOT TOO TECHNICAL]
VALUE 3 will be [VERY TECHNICAL]

You will see there are three grades of VALUE for every
ATTRIBUTE, each could be desirable. The most
agreeable is put as the first VALUE, the second desirable
as the second VALUE and the least agreeable as the third
VALUE. At this stage it does not matter whether you have
the VALUES for each ATTRIBUTE in the correct order -
later you will learn how to RANK them for your own use.

STATEMENTS OF DECISIONS

When this set of data inputs have been completed press
SPACE to continue. You will now have to think up some
statements of decisions. Don't worry though, THE
ADVISOR will guide you through the process with little
difficulty using the existing data.

WHAT IF YOU HAVE ALL THESE?
1. Under £5
1. Large size
1. Hardback

ON THE DISK

1. No jargon
1. Not technical

type - BUY THE BOOK - AT ALL COSTS
IF YOU HAVE THESE!

i
2. Unimportant

2. Could be some jargon
2. Not too technical

type - CONSIDER BUYING THE BOOK
IF VOU HAVE THESE!

3
3 Smal pnm
3. Paperback
3. Could be lots
3. Very

type - LOOK FOR ANOTHER BOOK

These are the PRIMARY statements ie. the first, middle
and final. Now you will require the SECONDARY
statements which fall between the others. What if
VALUES to BUY THE BOOK AT ALL COSTS and
CONSIDER BUYING THE BOOK are mixed? You would
type something like - BUY AS SECOND BEST. IF the
VALUES to CONSIDER BUYING THE BOOK and LOOK
FOR ANOTHER are mixed, you would type something
similar to - KEEP BOOK IN MIND. Having entered your
last statement you will be returned to the menu.

VIEWING YOUR DATA

Type 2 to VIEW THE DATA and you will see the first set
of ATTRIBUTES and their VALUES. Pressing SPACE lets
you see the second set, (leads on to YOUR DECISIONS
and back to the MENU)
You can correct any errors or change any data by
selecting 5 CHANGE THE DATA. Each aspect will be
presented and the program will wait for any change to be
.

RETURN keeps the data without change.
KEYBOARD INPUT changes the data.

Now make sure through VIEWing the data, that you have
the VALUES placed in the order you wish. If not, THE
ADVISOR allows you to make the necessary changes. For
good guesswork this should be;

1. FIRST PRIORITY STATEMENT
2. SECOND PRIORITY STATEMENT
3. LAST PRIORITY STATEMENT

As an example, let us look at the ATTRIBUTE - COST
Suppose you decide that a primary cost factor for book

purchase in UNDER £5 and that the last on your list
would be a book for OVER £5. Select 9, RANK data and

ON THE DISK

you can make the changes necessary. BEWARE, b
You have to go through ALL ATTRIBUTES and their
VALUES.

cause

FOR ATTRIBUTE COST
1. UNDER
2.55

OVER £5
WHICH WOULD YOU PUT FIRST?

BECAUSE:

COST IS UNDER £5

PRINTING 1S UNKNOWN
COVER IS UNKNOWN

SIZE IS UNKNOWN

JARGON 1S UNKNOWN
SUBJECT MATTER IS UNKNOWN

Atthe cursor following the question mark type 3
and press RETURN.

FOR ATTRIBUTE COST

1. UNDER £5

2.£5

3. OVER £5
WHICH WOULD YOU PUT SECOND?

DA

Atthe cursor following the question mark type 2
and press RETURN

FOR ATTRIBUTE COST
1. UNDER £5

2.5
3. OVER £5
WHICH WOULD YOU PUT THIRD?

At the cursor following the question mark type 1 and
press RETURN.

Continue through the program making changes or
pressing RETURN until a request to type SPACE returns
Vou to the main menu. As when using other software itis
best to SAVE DATA as a sequential file before trying to
perform analysis of the data. -

THE NEXT STEP

Press 8 for DISK DIRECTORY and you will see there is a
file called “BOOKS”. If you try to write (o this, corruption
of other files could occur. Type 7 and the file will be
SCRATCHed, if you are sure you want to do this.
RETURN to the MENU and select 3 to SAVE THE DATA.
You are given the current file name which can be used or
another substituted. *** ALWAYS USE THIS METHOD
WHEN YOU SAVE DATA ***

Now you can select option 6 and ANALYSE DATA. You
will be shown a screen with the first ATTRIBUTE and its
VALUES.
cosT

1. UNDER £5

2. £5

3. OVER £5
TYPE NUMBER OF YOUR CHOICE
Say 1 and you will receive the screen stating that;

BOOKS SAYS
UNKNOWN FACTOR

MHICH FILE IS TO BE RETRIEVED
2 JOURNAL CHOICE
RETRIEVING AUULLGIMESINME4S DATA FILE

TA FILE MOULCLLGISEMI0DE4Y RETRIEVED

This is because all the data is not available for full

analysis. Continue through the screens pressing “1” each
ime and the same comment will present itself. Only after
selection of SUBJECT MATTER VALUE will a decision be
offered.

BOOKS SAYS
BUY THE BOOK AT ALL COSTS
BECAUSE:

COST IS UNDER £5

PRINTING IS LARGE PRINT

COVER IS HARDBACK

SIZE IS LARGE BOOK

JARGON 1S NON-EXISTENT

SUBJECT MATTER IS NOT TECHNICAL

In the “real world” it would be difficult to find a set of
VALUES related to a purchase which meet all
requirements. Always there is a “WHAT IFZ...

For example WHAT IF:

COST IS OVER £5

PRINTING IS AVERAGE PRINT

COVER 1S UNIMPORTANT

SIZE IS AVERAGE BOOK

JARGON IS NOT PRESENT

SUBJECT MATTER 1S NOT TECHNICAL

The ADVISOR would say KEEP BOOK IN MIND.
Constantly changing your selection to ask THE ADVISOR

“What if?” will show whether the decision to buy with
various sets of VALUEs would be sensible or not. When

16

ON THE DISK

[_THE _ADUTISOR |

JOURNAL CHOICE SAYS
TO TRY ANOTHER
BECAUSE

omo<Em
ZZZZZT

you reach the desired decision or become tired of the
whole thing press 0 and the program will be erased from
the computers memory. Only by re-loading can you
continue.

HOW IT WORKS

When inputting the selected VALUE by its number a
process of totalling occurs. Obviously if all ATTRIBUTES

are not being considered then a decision cannot
be made. If all the top ranked VALUES are
selected than a maximum score of 6 will be
obtained. Equally should all low ranked attributes
be selected a maximum score of 18 will result. A
shared score between high and low rankings
gives a tally of 12. Any score falling higher than
the middle and lower than the maximum will
produce the second decision, whilst those falling
between the middle and lower produce a fourth
decision

FUTURE DEVELOPMENT

The author cannot completely envisage the full
potential of the program because of its endless
possibilities. Perhaps there could be a transfer of
information between program users so that all
could benefit from the work being done by other
interested users.

EDITORS NOTE:- Those readers that have in the past
purchased our sister magazine YOUR COMMODORE,
known now as YC, will no doubt be aware of the
excellent REASONING ON THE C128 series that we
published some time ago covering this fascinating
subject of EXPERT SYSTEMS.

Syper Comso
Super PRICE!

New Languages for your

C-64 and C-128

SuperPascal- 64 £3995 SuperPoscal-128 £3995
SuperC-64 £3995 SuperC-128 £39.95
Cobol64/128 £2995 Fortran-64 £2995
ADA-64 £1995 Forth-64 £1295
LOGO-64 £1495 Pilot-64 £1495
VideoBasic-64 £1995 Poscal-64 £1495
ZoomPascal- £995 Assembler/Monitor-64 £9.95
SPECIAL OFFER Super C + SuperPascal (C64 orC128) £59.95

Send SALE for fll detals
ADAMSOFT, 18 NORWICH AVENUE,

ROCHDALE, LANCS OL11 5JZ e R T BT
Access/Visa orders Tel: 0706 524304 BROCKLEY. LONDON SE4 28D 3246

C64 AMIGA

COMMODORE 1341 11 DISK

£ suvine case o O !
ENTERNAL POWER SU
FasT ACCESS OF soFTware, FREESGAMES
WITHOUT PROBLENS. ek
FREE GEOS. PLUSEIVE FREE T
e DISKS e
PRoc o

10 COMPATIBLE WITH T

NEW [x3iG

THE TOP

SELLING COMPUTER WITH STEREO SOUND. ARCADE GRAPHICS \ND.

STUNNING COLOUR. THE SCREEN GEMS PACK INCLUDES 4 GREAT

GAMES: DAYS OF THUNDER® NIGHT BREED® BACK TO THE FUIURE
20 SHADOW BEANT 20 DELUNE PAINT 2

SO W RKIGRS

€379.00
£5.00 PP,

A A500 SCREEN GEMS]

35" DISK DRIVE, MOUSE AND TV MODULATOR ARE ALL INCLUSIVE

[C64 PRINTERS]
COMVODORE \PSI230 1490
KOSHA PSSOV £150.00 5T
€100

NIPLUTER

DATACASSETTE 2 JOVSTICKS §

GREAT GAMES (SEE DISK DRIVE)
PLUSINTRO AUDIO TAPE

£140.00 + £5.00 P&P

ON THE DISK

Interplanetary war is the name of the game P. MAKEPEACE

The Game...

Utilities Demo...
nfo

Extra I on The Pro

The game is set in some distant galaxy where two
squadrons of ships are doing battle on a 7 by 7
grid. The battle is played by two human opponents
and the object is, not surprisingly, for each player
to completely wipe-out the opponents ships.

SCENARIO

There are two classes of ship. The less powerful fighters
and the single destroyer. The fighter ships can move and
fire only forwards and require rotating to change
direction. Each player can have any number of these
ships. The destroyer can move and fire in any direction
(not diagonally) without having to rotate. This makes the
destroyer very manoeuverable. In addition, the destroyer
can shield up to five shots whereas the fighter can only
sustain one:

Players move their ships in rounds of up to nine moves
each. These moves van be used to move, rotate, or fire
ships. After the nine moves, the round ends and the other
player has their turn. This continues until either one of
the players destroys all the other players ships. During a
round, a player moving can end their turn at any time
(see keys below)

When a ship is shot, it explodes and forms a cloud of
ship debris. This cloud gets smaller and eventually
dispersed altogether. The cloud shrinks every two rounds,
Players ships cannot move through the debris but are
able to shoot through it. Another obstacle is the
blackhole which neither ships nor bullets can penetrate.
There is no danger of being sucked into a blackhole.

CONTROLS

Either a joystick in Port 2 or the
keyboard may be used at the same
time. Keys are redefinable (see Setup)
One player might choose to use the
joystick whilst the other uses the
keyboard, this would save joystick
swapping. Players must agree not 1o
wiggle joysticks or press keys during
the others players tumn! The keys are
shown in brackets and are
redefinable.

JOYSTICK KEYS ACTION

UP Sl Move ship one square forward
DOWN [X] Fire!
EERTARRLI Rotate ship anticlockwise

RIGHT (/]
FIRE [Al
SPACE/RET

Rotate ship clockwise

Select or deselect ship under cursor
End tum or shoot with the destroyer if
selected.

(These cannot be redefined)

During the course of play, various messages will appear
in the “STATUS REPORT” at the bottom right of the
screen. To speed these up, press space or fire on the
joystick. To temporarily halt the message, press any other
key or joystick movement. The scroll speed can be
adjusted (see Setup below)

SELECTION

When a round starts, a pulsing cursor appears below the
first ship of the player moving. This can then be moved
around with joystick/keys in the desired direction. When
the cursor is positioned over a ship to be moved, press
the select button (Fire or ‘A’). The computer will issue an
appropriate ding’ sound and the cursor will change 0 a
crosshair.

MOVEMENT

Once selected, the ship can be moved around as above.

18

When the player has finished moving, press the select
button again and the cursor will revert to a square under
the ship again

FIRING

To fire, select the appropriate piece to do the firing and
position it correctly. Press DOWN (NOT fire!!) or
SPC/RETURN if the destroyer is selected. After confirming
firing orders, press 1-9 for the number of shots to be fired,
turns allowing. Following each shot, the result of the shot
(hit, miss etc) will be displayed in the STATUS REPORT.
AFter all the shots have been fired, the corresponding
number of moves (and ships) are deducted, play
continues as normal.

GAME SET-UP

This gives the players the opportunity to configure
(modify) almost every aspect of the game. To use this,
reply Yles) or Fire on the joystick, to the prompt at the
beginning of the game. A list will then appear showing
the different things that can be modified including a
LOAD/SAVE/DEFAULT option. A black bar will appear
over the selected item, this can be moved up and down.
When you wish to modify something, press Fire, the bar
will change colour. Pressing LEFT or RIGHT will cycle
through the different options. When you have finished,
press Fire again and the bar will change to black again.
To leave SET-UP press SPACE/RETURN. To change the
scroll speed, press UP (faster) or DOWN (slower) to view
the different scroll speeds.

BOARD EDITING

Editing the board is done by selecting ‘EDIT BOARD'
This then displays the number of ships for each player.
The familiar pulsing square will appear which can be
moved around as normal. To delete something, position
the cursor over the piece and press Fire. To create one,
do the same. A blackhole will then appear and you can
cycle through the different pieces by moving LEFT or
RIGHT. You cannot have more than one destroyer! (the
computer will automatically omit this option when there
is one). When you are satisfied with the board, press
SPACE/RETURN which will return to the SET-UP menu.
To LOAD or SAVE a board and the rest of the
modifications, select ‘LOAD SAVE DEF’ and press “L” or
“5" when prompted (“N” cancels this and returns to the
SET-UP menu). Then press 0-9 for the particular file. The
file will load or save over the old one. After loading, all
the modifications will appear and the board will be
drawn. To return to the original board, press *
(default) and allow a little wait as the variables are reset.

SUGGESTIONS

When editing the board try different colour schemes, the

ON THE DISK

default one looks fine on both colour and black and
white but you may prefer otherwise. To add mystery, you
might change the blackholes or players to the same
colour as the background thus rendering them invisible.
You might also try strategies with say one destroyer
versus several fighters, or two destroyers against each
other. On the disk there are several different files which
you can try as well

I cannot tell you much in the way of tactical tips but the
big rule is to plan your move ahead, rather than try
something and run out of turns half way through. If you
decide to sacrifice a destroyer with 3 hits left, make sure
you hit more than 3 ships as it is much more
manoeuverable (and useful) than a fighter. Generally less
moves requires more thought to determine what the other
player is doing and act upon it. You may however, find
one turn each a bit slow, it's up to you.

TECHNICAL DETAILS

For the more technical amongst you, we provide a
breakdown of the game concept, programming
techniques and some useful machine code information

The entire program comprises four parts, the main BASIC
program, a MACHINE CODE section, a FONT and the
three SPRITES. On the disk is a file named “EXTRA
INFO” (which can be listed to screen or printer)
containing all the information concerning the MACHINE
CODE. There is also some information about the main
variables used in the program and the main routines,
should you wish to investigate the program.

THE BASIC PROGRAM

This starts in memory at $0801 (2049) which is the
normal place for BASIC programs. It occupies 11K up to
around $3300 (13056) which gives just over 1K for
strings and variables which is not very much. My upper
limit is $3800 because of the font which occupies
$3800-$3FEO, hence | do not have that much memory
left. This forced me to transfer a lot of the BASIC routines.
1o MACHINE CODE.

Initially when 1 started writing the BASIC program, it was
almost entirely in BASIC, and it was appallingly slow,
and occupied almost all of the memory | had (this was
without the Set-up feature). Since then, | have optimised
many routines within BASIC and converted other
repetitive one into MACHINE CODE, such as the printing
ship and board routines. Speed and playability were
much improved.

THE MACHINE CODE

This starts in the usual $C000 position and extends right
up to SCSA0. In this space are all the routines which
were previously done in BASIC and are now done faster
than you can blink! The routines are accessed from
BASIC from a JUMP TABLE starting at $C000. | have
included on the disk an explanation of each of the

19

ON THE DISK

Machine Caas Houtifes routines which can be printed to
,,,,,,,, screen or printer (mentioned

previously). Also on the disk is a

selection of the routines from the

main one which are not related

specifically to the game such as

PRINT AT, MESSAGE SCROLLING,

PULSING SPRITE and some others

o which you may like to use in your

one used in the own BASIC programs. To see how to

s sec . 4

T Tecii®Routines cannot be used [EEE select “UTILITIES DEMO

from within machine code as they read from the GALACTIC ENCOUNTER
parameters from BASIC. menu

The Utilities Section

THE FONT
On the disk is a shortened version of
the machine code section which contains| RISERIUNECENEIEIEIIRTCEN
some_useful routines to $7FEO. It is a “COMPUTER” type

font but also contains the board and
border characters as well as the
various ships in their different
positions. Most characters remain as
normal or “COMPUTERISED”, the
changes start after
a short Demo to show _and $ 5) which are the ships
the different routines. blackholes and debris
The font in the main game occupies
$7800-$7FEO which is in VIC chip
bank 1 and so requires bank
switching and moving the screen and
sprite area. | was forced o have the
font in memory here because | ran
out of memory when the font was at
$38090. If you like the font, there is
an identical font file starting at
$3800. It is very easily used and
requires no bank switching. Simply
type

Utilities Demo—

Thi

s is
explain

To use the Utilities, first:
LOAD'"GE.MC UTILS",8,1

1
understand.

LOAD”GE.FONT $3800”,8,1

POKE56,56 (This moves the top of
Bas $3800 so no strings
overwrite the font).

Sound FX

POKE53272,31 (This points the YIC
S N ek chip to look in the right place for
~ & the font).

Th ew simple
sounds which can b ed
a

a €
incorporat

into
BASIC game.
Remember Tto Turn on the volume: THE SPRITES
POKE 54296,1-15
SYS FX,Sound (8-3) This is the smallest part starting at
5 e o 3 $0340 and finishing at $O3FF, just
Sounds: @ Zding® before the screen start

P
2 1aunch a bullet/missile etc.
3 explosion

(POKE 54276,128 is needed to finish 2)

these sprites. The sprites are the
blank square, bullet and crosshair in
that order and can be accessed by
POKEing 2040 with 13, 14 or 15
after turning on the sprite and
putting it on the scre

1 hope you enjoy the game!!

ON THE DISK

EXPLAINING INTERRUPT REQUESTS

Programming tips for all ALEX BLEWITT

In this article | will explain what MULTI-TASKING and
the INTERRUPT REQUESTS are on the C64. | have also
included on this disk a few example programs which use
IRQ's to create simple but useful effects. This article is
aimed at programmers who know a little machine code,
but do not give up and turn the page if you know
nothing about machine code! If you follow through the
examples given, you should be able to understand them
and adapt them to suit your own needs.

WHAT IS MULTI-TASKING?

Multi-tasking is when a computer is simultaneously
running two programs. This can be quite useful in game-
writing, as one program can be used to play the music
whilst the other can be used to display the graphics. But
where does this fit in with our trusty friend, the 642 Well,
the computer itself cannot run two programs at once, but
it can get reasonably close. The system has IRQ's
(Interrupt ReQuests) which stop all activity that is
running, and perform “Housekeeping” (e.g.read the
keyboard, update the clock etc). You haven't noticed this
before, because it does it so fast. In fat, it does an IRQ
every JIFFY’, or 1/50 th of a second to the less technical
people.

WHERE IS THIS HOUSEKEEPING
CODE?

The code itself is in ROM, at address 59953 (or SEA31)
In order to perform this code, the computer has to know
where it lies in the ROM. You may wonder why | am
telling you this, as the code is in ROM and therefore
cannot be changed, nor added to. The answer lies in the
fact that the JUMP address is stored as a VECTOR address
in RAM (where it can be changed). This address is found
in locations 788 and 789 (50314 & $0315). 788 contains
the LOW BYTE of the address and 789 contains the
HIGH BYTE. To find the actual address of the IRQ code,
use the following formula:

‘PRINT (PEEK(788)+PEEK(789)*256)"

This will give an address of 59953 ($EA31). We will need
10,80 10 this address later, to g to at the end of our
routine. If this is not done, the system will crash! So how
can you run two programs at once? The answer is: add
the second program to the "HOUSEKEEPING' code. This
program will then be executed every 1/50th of a second.

SETTING UP INTERRUPTS

To set up an interrupt program, we have to change the
housekeeping address values of 788 and 789 to point to
the new program. The following program is situated at
49152 ($C000) and sets the interrupts to 49184 (SC020)
The interrupt program ($C020) onwards doesn't do
anything, but it shows you how to set up the interrupts
using a machine code program. (See general setting up.
program)

GENERAL SETTING UP PROGRAM

10 *=$c000 ;START AT 49152

20 SEI ;DISABLES THE

30 SINTERRUPTS WHILST
40 JSETTING UP

50 LDA #$20
60 STA $0314
70 LDA #$C0
80 STA $0315

LOW BYTE ADDRESS
;STORE IN LOCATION 788
;HIGH BYTE ADDRESS
;STORE IN LOCATION 789

90 cu ;RESTORE INTERRUPTS
100 RTS JAND GO BACK TO BASIC
110 *=$C020 JINTERRUPT PROGRAM
120 ;ADD CODE HERE....

190 JLAST INSTRUCTION MUST

P SEA:
GOTO STANDARD HOUSEKEEPING CODE

Al the examples on the disk are given as three types of
files

1) Basic demonstration programs, suffix .PRG Load these
like ordinary basic programs.

2) Machine code files.

The source version that will need to be assembled
with an assembler.

To load the machine code files, type
LOAD"FILE.MAC",8,1", and start them with 'SYS 49152"
To load the source listings, type ‘LOAD”FILE.LIST”,8' or
type them in (but loading them is a ot easier!) for an
assembler (such as Dave Weaver's 6510+ ASSEMBLER-
CDU May/June 89),

To run these, t

“ASSEMBLE (return) SYS 49152 (return)’. All these demos
can be loaded from the interrupts menu, which can be
loaded from the CDU menu on the disk, or by typing
LOAD'INTERRUPTS" 8 (ret) RUN (ret)

ON THE DISK

THE TURN OFF

The interrupts must be disabled before any 10 is
attempted, or you will see a different effect than you
want! In order to turn them off, type;

POKE 671,49:POKE 672,234:5YS 64659 (ret)

The address used in the ittle set-up program is $C000,
mainly because it is the most convenient place in
memory to write code. It doesn't have to be at SC000
and the set-up code does not have to be anywhere near
the interrupt code, but the set-up code must contain the
address of the interrupt code. If you have no knowledge
of machine code, then don't bother to try to move the
code. CO00 is an easy address and is easily called from
and used with BASIC. The following examples will reside
at this memory location.

THE DEMOS ON THE DISK

<KEY BORDER>
FILE “KEYPRESS.LIST”

10 L

:KEYPRESS.LIST”
C000

30 SEI

40 LDA #$20

50 STA$0314

60 LDA #$C0

70 STA $0315
cL

80

90 RTS

100 *=$C020

110 LDASC5 ;GET KEY PRESSED

120 CMP #$40 ;1S 1T NO KEY?
130 BEQQUIT JIFIT IS, LEAVE
140 STA$D020 ;PLACE KEY VALUE IN
150 ;BORDER COL

QuIT JQUIT
170 JMPSEA31 ;HOUSEKEEPING

This first short routine (see KEYPRESS.LIST) serves no
actual purpose, but shows how a machine code routine
can run whilst a basic program is running. The
demonstration program shows this (File
“KEYPRESS.PRG").

The program: Line 10 holds the name of the program
(which is used by the 6510+) Lines 20-90 set up the
interrupts to point to the program. Line 100 tells the
compiler to start at $C020. Line 110 LoaDs the
Accumulator with the value of $C5. This is the value of
the last key pressed. Line 120 checks to see if it is no
key (value $40), and if no key has been pressed, it goes
10 “QUIT". Otherwise, it pokes the value (ie STores the
Accumulator) into $D020 or 53280 - the border colour
location. The program then returns to the
Housekeeping by having the last instruction to JMP
SEA31.

<F-KEYS UTILITY>
FILE “F-KEYS.LIST”

000
30 LDA 50314
40 CMP #$20
50 BEQ KEYPROG
SEI

70 LDA #$20
80 STA$0314
90 LDA #5CO
100 STA$0315

10 CU
120 RTS

130 *=5C020
140 LDASC5
150 CMP #504
160 BEQF1
170 CMP #505
180 BEQF3
190 CMP #506
200 BEQF5
210 CMP #503
220 BEQF7

230 JMP SEA31

1
250 LDA #500
260 JMP SHIFT
F3

280 LDA #$10
290 JMP SHIFT
300 F5
310 LDA #$20
320 JMP SHIFT
330 F7

LDA #§30
JMP SHIFT
360 SHIFT

370 LDX $028E
380 CPX #S00
390 BEQ OUTPUT
400 CPX #501

410 BNECBM
420 ADC #$07
430 JMP OUTPUT

470 ADC #$3F
480 JMP OUTPUT
490 CTRL

500 CPX #$04
510 BNEOUTPUT
520 ADC #$47
530 OUTPUT

540 STA TEMP+1
550 LDY #$00
560 TEMP

570 LDA$C100,Y
580 STA $0277,Y
590 INY

600 CPY #508
610 BNETEMP

KEYS.LIST”

JHAVE INTERRUPTS
JALREADY BEEN PUT IN?
;IF SO, GOTO KEYPROG

;GET KEYPRESS
12

HOUSEK[[PINC

st‘r BASE TO 00
STEST SHIFT

iF3
JSET BASETO 10
STEST SHIFT

5
;SET BASE TO 20
;TEST SHIFT

7

JSET BASE TO 30
STEST SHIFT

STEST SHIFT ROUTINE
SGET SHIFT PATTERN
NO SHIFT

;GOTO OUTPUT
JSHIFT KEY

/NO, GOTO CBM
JADD 7 TO BASE
;GOTO OUTPUT
;COMMODORE TEST
ST C=2

iNO, GOTO CTRL
;ADD 3F TO BASE
;GOTO OUTPUT
;CONTROL TEST

JOUTPUT KEY ROUTINE
;PUT ADDRESS IN LDA
JSET COUNTER TO 0
;POINTER

JGET CHAR

;AND PUT IN BUFFER
NEXT CHAR

JALL 8 DONE?

;NO, GOTO TEMP

620 STY SC6 ;BUFFER FULL SIGN
630 LDY #$00 JCOUNTER TO 00
640THINGY ;WEIRD NAMED FLAG?!
650 SR SEEB3 JDELAY 1MS

660 DEY ;DO IT 256 TIMES
670 BNETHINGY ;GO BACK TO THINGY
680 JMPSEA31 ;HOUSEKEEPING
690 KEYPROG JPROGRAM F-KEY
700 JSRSAEFD ;GO PAST COMMA
710 JSR$B79E ;GET NUMBER

720 CPX #500 1S IT 02

730 BEQERROR :ERROR!
740 CPX#$11 MORE THAN 172
750 BCC GETKEY ;NO, OKAY
760ER JERROR ROUTINE
770 LDX #$0F JILLEGAL QUANTITY
780 JMPS$A437 PRINT ERRROR
790 GETKEY DEX ;TAKE ONE AWAY
800 STX$FD ;BUNG IT IN $FD
810 TXA JAND IN ACC.
820 CIC SCLEAR C FLAG
830 ROLA MULT 2 (2)
840 ROLA SMULT 2 (4)

50 ROL IMULT 2 (8)

850 A
860 STA ADDRESS+1 ;POKE INTO LDA

870 JSR SAEFD ;GO PAST COMMA
880 JSR SAD9E JGET STRING

890 STASFE ;STORE LENGTH
900 JSR$B6A3 ;DISCARD STRING
910 LDY #$00 JCOUNTER TO 00
920GETMORE JGETMORE

930 LDA($22)Y ;GETSTRING

940 CPY SFE JEND OF STRING?
950 BCC ADDRESS ;NO, GOTO ADDRESS
960 LDA #500 JSET CHAR TO 00
970 ADDRESS ;POINTEI

980 STASC100,Y ;PUT IN MEMORY
990 INY JADD 1 TO COUNT

1000 CPY #508 ;8 CHAI
1010 BNE GETMORE NO COTO GETMORE
1020 RTS

The second demo, F-KEYS is a rather more complex
foutine. The program checks whether the interrupts have
already been set up, and if they have, it jumps to
"KEYPROG!, where a key is programmed. There is not
enough space to go through the entire program, so | will
just explain how the interrupts are used.

Lines 60-120 are our friendly set up routine. The interrupt
program begins at line 140 (at $C020). Here, the program
gets the value of the last key pressed, and lines 150 to
220 check to see if any of the F-keys have been pressed.
(Some of the more observant of you will have noticed
that there are no references to F2,F4,F6 or £ - this is
because the value of SC5 is not affected by the shift key;
it will be the same value whether the shift key,
commaodore key or control key is pressed.) If a match is
not found (e if no f-key has been pressed), then the
program goes to $EA31 - the Housekeeping. If a match s
found, the program sets an address base value for the
location of the f-key string. The shift key is then checked
by getting the value of SO28E. This indicates which shift
has been pressed. If it is SHIFT, the value is 1. If
COMMODORE is pressed, the value is 2. If CONTROL is

23

ON THE DISK

pressed, the value is 4. The rest of the program gets a bit
complicated, but ends up at line 860 with our
Housekeeping JuMP.

INTERESTING PROGRAMMING
POINTS

1) The value of the shift key is in memory location
S028E. (1=SHFT,2=C=,4=CTRL), thus providing
another 8 F-keys.

2) JSR SAEFD - go past comma. This is part of the
procedure to program the F-key. It must be used to go
past the comma in the SYS 49152,1,"text” line

3) JSR $B79E - get a number. This gets the number and
stores it in the X-reg. 4) JSR $A437 - print error. The value
of the X-reg produces different error messages. ($OE =
illegal quantity error)

5) JSR SADIE - get string length. Length returned in X-

reg,
6) SR $B6A3 - discard string. This also puts the string
pointer in $22, 50 the string can be read in by LDA
(§22),Y or a similar routine.

By using a call to SAEFD and then to read either a
variable or string, you can pass on variables to a machine
code program. I hope you find this useful.

OPERATION OF THE DEMO
See F-KEYS.PRG or read the next paragraph

SYS 49152 - set up interrupts.

SYS 49152 key#,"text” - program key number with text
y# can be anything from 1 to 16.

text is the string to be placed.

if you wish to have a return after

it, add +CHRS(13) to the end.

< will move the string into the bufer,

works both in direct + program mode.

Corresponding shift keys

F-keys

F1,F3,F5,F7 - no shift.
F2,F4,F6,F8 - shift.
F9,F11,F13,F15 - commodore.
F10,F12,F14,F16 - control.

As usual, to turn off the interrupts, the line
POKE 671,49:POKE 672,234:5YS 64659

<POINTER MOVER>
FILE’MOV-PTR.LIST”

10 "@:MOV-PTR.LIST”
20 *=$C000
30 SEI JSET UP INTERRUPTS.
40 LDA #$20
50 STA $0314
60 LDA #$C0
70 STA $0315
L

ON THE DISK

90 LDASCOIC ;GET FINE X-VAL 730 CMP#$01 ;ONRIGHT?

100 STASCOBD ;POKE INTO PROGRAM 740 BEQ ONRIGHT ;YES, GOTO ONRIGHT

110 STASCOCD ;IN TWO PLACES 750 INCSD000 ;MOVE RIGHT

120 LDASCOID ;GET FINE Y-VAL 760 LDASDO000 ;GET X-POS

130 STASCODA ;POKE INTO PROGRAM 770 CMP#$00 CHECK IF PASSED LINE

140 RTS JLEAVE 780 BEQMSB1 IF HAS, GOTO MSB1

150 BYTS$10 JFINE X-VAL 790 RTS JLEAVE

160 BYT$29 SFINE Y-VAL 800 MSB1 A>MSB

170 *=$C020 810 LDASDOI0 GET REG

180 LDASDCO0 ;GET JOY POS PORT 2 820 ORA#501 ;1>BITO

190 STASCO1E ;PUT IT IN MEMORY 830 STA$DO10 ;PUT IT BACK

200 LSRSCOTE ;SHIFT RIGHT 840 RTS JLEAVE

210 BCSD JIF BIT 0, NEXT BIT 850 ONRIGHT JONRIGHT

220 JSRUP JOTHERWISE UP 860 LDA$DO000 GET X-POS

230D LSRSCOTE ;SHIFT RIGHT 870 CMP#$57 ;CHECK IF NOT OFF SCRN
240 BCSL IF BIT 0, NEXT BIT 880 BEQQUITR ;IF OFF, LEAVE

250 JSRDOWN ;OTHERWISE DOWN 890 INC$D000 ;MOVERIGHT

2601 LSR$COTE ;SHIFT RIGHT 900 QUITR JLEAVE

270 BCSR SIF BIT 0, NEXT BIT 910 RTS

280 JSR LEFT JOTHERWISE LEFT 920 FIRE ;FIRE ROUTINE

290R LSRSCOTE ;SHIFT RIGHT 930 LDASDOI0 GET MSB

300 BCSF SIF BIT 0, NEXT BIT 930 AND #$01 GETBIT

310 JSRRIGHT ~ ;OTHERWISE RIGHT 950 BNEFIREMSB IF <>0, GOTO FIREMSB
320F LSR$COIE ;SHIFT RIGHT 960 LDA$DO000 ;GET X-POS

330 BCSQ SIF BIT 0, NEXT BIT 970 SBC #$10 iTAKE AWAY FINE

340 SR FIRE JOTHERWISE FIRE 980 LSRA DIV 2

350Q JMPSEA31 ;HOUSEKEEPING CODE 990 LSRA DIV 4

360 UP MOVE UP 1000 LSRA ;DI

370 LDY$D001 ;GET Y-POS 1010 STASCOIA ;STORE X-POS

380 CPY#$1F SCHECK IF NOT OFF SCRN 1020 JMP YBIT CALCULATE Y-POS

390 BEQQUITU ;IF OFF, LEAVE 1030 FIREMSB JFIREMSB

400 DEC$D001 ;MOVE UP ONE 1040 LDASD000 ;GET X-POS

410 QUITU JLEAVE 1050 ADC #§14 ;ADD 16 TO MAKE FINE
420 RTS 1060 SBC #$10 STAKE AWAY FINE

430 DOWN ;MOVE DOWN 1070 LSRA DIV 2

440 LDASDOO1 GET Y-POS 1080 LSRA DIV 4

450 CMP#$F9 ;CHECK IF NOT OFF SCRN 1090 LSRA DIV 8

460 BEQQUITD I OFF, LEAVE 1100 ADC #$1D ;ADD 29

470 INC$D001 ;MOVE DOWN ONE 1110 STASCOFO ;STORE X-POS

480 QUITD JLEAVE 1120 YBIT iY CALCULATE

490 RTS 1130 LDAS$D001 ;GET Y-POS

500 LEFT ;MOVE LEFT 1140 SBC #529 JTAKE AWAY FINE

510 LDASDO10 GET X-MSB 1150 LSRA DIV

520 AND#501 ;CHECK WHICH SIDE 1160 LSRA DIV

530 CMP#S01 CHECK MSB RIGHT 170 LSRA DIV

540 BNEONLEFT ;NO, GOTO ONLEFT 1180 STASCOF1 ;STORE Y-POS

550 DECSD000 ;MOVE LEFT 1190 RTS JLEAVE

560 BMIMSBO ;CHECK IF PASSED LINE

570 RIS JLEAVI

580 MSBO 0>MSB The last demo that | have written s quite long and there is
590 LDAS$DO10 ;GETREG not enough space to describe the whole program in this
600 AND #SFE ;0>BITO article. However, you will find it on the disk as “MOV-
610 STASDO10 ;PUT ITBACK PTR.LIST or “MOV-PTR.MAC". The comments by the side
620 RTS JLEAVE of the program should help you understand it. 1 will,

630 ONLEFT JONLEFT however go through the part of the program which utilises
640 LDXS$D000 ;GET X-POS the interrupts.

650 CPX #501 JCHECK IF NOT OFF SCRN Lines 30-80 are the normal set up routines. The next few
660 BEQQUITL ;IF OFF, LEAVE lines move the fine tuning values into the right parts of the
670 DEC$D000 ;MOVE LEFT program. The interrupt program starts at line 180. The
680 QUITL JLEAVE program monitors the joystick at $DC00, and if it finds a bit
690 RTS set it will jump to a routine, depending on which bit has
700 RIGHT ;MOVE RIGHT been set. The routines are UP, DOWN, LEFT, RIGHT and
710 LDASD010 ;GET X-MSB FIRE (not necessarily in that order!). You can go through the
720 AND #§01 ;CHECK WHICH SIDE routines in the listing. They move Sprite 0 around.

24

. o
PR
PR P R
D TR 2
1 D D
U—-PTR . PR
& D R

OPERATION OF THE PROGRAM

Once the program has loaded and started running (by
SYS 49152), then the sprite needs to be set up. The
routine is fairly simple. Sprite 0 is moved around the
screen by the joystick in port 2. When FIRE is pressed,
the current character coordinates are stored in memory
locations SCOFO and SCOF1 (or 49392 and 49393) for the
x-col and y-row values. There is a basic demo of this on
the disk called “MOV-PTR.PRG” which loads and runs
the machine code. The sprite can then b
placing *** when you press the fire button. The routine is
also used by the menu “INTERRUPTS

A feature of this pointer program is the ‘Fine tuning’. |

moved around,

reasoned; the tip of the pointer is not always at the top
leit of the sprite, s0 something must be

one to account
for it. Enter the fine tuning value. The fine tuning value
gives where the centre of the pointer is. To calculate the
X-value, the equation is
the Y-value equation is Y=40+no bits down sprite
Alternatively, use the tuning program on the disk to
calculate it for you. Set up your sprite, as you would
normally, and then load and run “TUNING.PRG”. Then
move the pointer to the centre of the red circle and press
fire. The computer will then give the X-value and Y-value
To install these fine tuning values in your own program
and to load the machine cod file, use the following
lines:

6+n0 bits across sprite, and

10 A=A+1:IF A=1 THEN LOAD “MOV-PTR.MAC”,8,1
20 POKE 49180,(X-VALUE)

30 POKE 49181,(Y-VALUE)

40 SYS 49152: REM TURN ON INTERRUPTS

This will install the interrupts and the fine tuning values

ON THE DISK

will be used. N.B. they will not be placed into the
program directly; they will only be installed when you
type ‘SYS 49152". You can do this even if it is still
running, though. If you poke these values into the
locations, and then save the program using a monitor
then these values will be preserved and used every time
you call the routine. (The fine tunin
line 150 and 160 of the assembler source code listing)
You are free to copy this routine and use it in your own

values are found in

programs

Well, that about wraps it up for my article then. | hope
that you have found it interesting, and I also hope you
have been able to understand what | have been blithering
on about. One last point; in your interrupt program, don't
10 GOTO 10%s). The
am must be called so that it will finish and then do

have an everlasting loop (ie. no
pre

he Housekeeping, otherwise the computer will crash!
To sum up, here is a list of the programs on the disk and
what they do

”INTERRUPTS” :Menu to load these programs
"KEYPRESS.LIST” :Assembler listing of Keypress.mac
"KEYPRESS.MAC” :Colour border program
"KEYPRESS.PRG” :Basic demo utilising Keypress.
7F-KEYS.LIST” :Assembler listing of F-keys.mac”
"F-KEYS.MAC” :F-keys program

"F-KEYS.PRG” :Basic demo utilising F-keys.mac
“MOV-PTR.LIST” :Assembler listing of Mov-ptr.mac
OV-PTR.MAC” :Sprite mover program
“MOV-PTR.PRG” :Basic demo utilising Mov-ptr.mac
"TUNING.PRG” find tuning values for Mov-
ptr

Have fun and enjoy!!

LETTERS

Well folks, this is just a little opening comment from
the Tech. Dept. at CDU. You may or may not realise that
TECHNO INFO is one year old today and so celebrations
are in order methinks. Twelve months and hundreds of
Jetters later | would like to thank all you readers who
have sent me those letters, without this section
would be no more. And you wouldn't want that, would
you? Well, | certainly wouldn't! Although I try to answer
every letter, please understand it is not always possible
for me to help everyone. To those few that never received
replies of any sort, and there shouldn’t be many, |
apologise here and now.

On a better note though, hopefully, | would like you to
write to me at the special TECHNO INFO address if you
have any comments to make about this section of the
best serious magazine for C64 and C128 users. What do
you think of the servicez Could it be improved in any
way, or should it be altered somehow? If so, what
changes would you like to see? | want to continue to
make TECHNO INFO as useful and helpful as possible
and | will value your comments. As an incentive and an
alternative to champagne, | vow to send three packs of
ten disks to the first three readers that tell me their
thoughts, whether favourable or otherwise. Meanwhile,
don't forget to keep sending in details of programming or
other software problems or just general queries that you
would like answered. And also keep those popular tips
flooding in.

This month we have a truly international section, with
letters from people in countries as far afield as the
NETHERLANDS and GERMANY to SAUDI ARABIA and
AUSTRALIA. So, without further ado, let’s start the
proceedings.

KEYBOARD SCANNING

Dear CDU,

I'am in the process of writing a program that requires a
method for differentiating between which SHIFT key has
been pressed. It is a sort of bat and ball game and |
wanted to make the keypresses a bit different - most
people tend 1o go for alphabetic keys when directional
control is from the keyboard. But I have come up against
a brick wall. | thought that location 653 might have been
able to help but from that I can only detect whether a

This is the FIRST
ANNIVERSARY!! of
Techno Info

JASON FINCH

SHIFT key has been pressed, not which one. I know very
fittle machine code and so would be grateful of a BASIC
routine or explanation as to how to go about the task. |
look forward to your help.

Jochen Kaufmann, Plymouth.

Dear Jochen,

The secret to what you want to do lies with the CIA
near the top of memory. The locations that are most
important are 56320 and 56321, the data ports. You
can detect which key has been pressed by POKEing
56320 with a suitable value and then by PEEKing
Jocation 56321. This value will then tell you which key
or keys has been pressed. Before you do that from
BASIC you must stop one of the internal timers to get an
accurate reading. This is done by setting all the bits in
location 56334 to zero. In simple terms, that just means
you enter POKE 56334,0. The process required to read
any key is too complex to explain fully here but it relies
on a sort of matrix layout of the keys and the clearing
and setting of various single bits controls which column
is read and then which row. Suffice it to say that to
detect the LEFT SHIFT key (also SHIFT LOCK) you
should POKE 56320,253 and then check that
PEEK(56321) = 127. If it does then LEFT SHIFT has been
pressed. For RIGHT SHIFT you POKE 56320,191 and
then check 56321 for the number 239. | hope you find
this information useful. Tune in again next month and |
shall provide for you a routine on the disk to illustrate
the point. Unfortunately this month there is not
sufficient room for the program | wanted.

PRINTING ‘OUT’

Dear CDU,

Whenever | attempt to dump the machine code from the
6510+ Assembler to my Citizen 120D printer nothing
happens - the coded bytes and the instructions are just
listed to the screen as usual. | have used the commands
OPEN 1,4: CMD 1 before assembling the code both
linked by colons and on separate lines but to no avail.

26

The list is just given from the position of the OUT
command onwards on the monitor. |- write to you in
despair as | cannot think of any other commands that
could be issued to dump it to the printer. Surely it should
be possible to print the code for future reference. Could
you tell me whether there are any alterations that | could
make to the program to enable it to work as | want, or are
there some other commands that | have overlooked?
Michael Powell, Nottingham.

Dear Michael,

Although it would seem that OPENing a channel for the
printer would do something, in this case, as you rightly
point out, it doesn’t. And that is because as soon as you
execute the ASSEMBLE command all open files and
channels are closed by a jump to the Kernal ROM. You
can prevent this from happening by diverting the start of
the routine to afer the jump has been done. This you
do by entering POKE 31335,154 before you enter the
OPEN 1,4: CMD 1 line. If you do that then it should
start printing after the third pass as you expected.

WAGE CALCULATIONS

Dear CDU,

For the past two years | have run quite a reasonably sized
business, employing around ten people depending upon
the demand of our product, snail breeding kits. However,
I have become aware that a number of the employees are
acquiring rather flippant attitudes, taking advantage of
the high wages that they are paid. Some just think that
they can swan off on holiday whenever the fancy takes
them, and they have no concern for the already damaged
snail population. One has just recently returned from a
holiday in Germany which he took during the busiest
period of the year when snail activity is high. The
accounts for the business are run on a C128 computer
with the help of the GEOS package which I use because
of its excellent spreadsheet and database - a record of all
our customers is needed so that we can send out
circulars, another costly process. | need a program that
will show me on the screen the balance between ail the
different aspects of running the business, and hopefully
this will enable me to build up a set of wage increases in
line with inflation and the higher cost of living. At the
moment the advertising manager is on a five figure wage
and | think that this needs to be revised although | would
like to see everything together so that | know precisely
what I can offer him. Could you please inform me of a
company that sells such software so that | may be able to
cut down the rate of wage increases slightly. | need to
show the employees that wage increases need to be
minimised due to output restrictions. With the saving of
money in that field we may be able to improve the
packaging and add something extra to the kits - perhaps a
third snail - to make them more attractive for the
customer, thereby allowing the reduced snail population
to increase a bit faster. | hope you can help.

Paulette “Save the Snail” Yves, Exeter.

LETTERS

Dear Paulette,

Unfortunately | am unaware of a program other than
those in the GEOS package that will help you to see all
your expenses and so on lined up together. You could
try the Graph-Ed program that appeared a little while
back to assess the costs incurred by your company but |
do not know of a program that will calculate exactly
what sort of wage increases would be required. As | am
sure you are aware they will have to be balanced with
demand of your product but your company will still
need to make a profit. As | say, try out some graph
programs like the CDU one or the GeoChart package. |
wish you luck in your search and hope that the snail
population picks up soon.

GeoPROBLEMS

Dear CDU,

Being ‘down under’ and a little ‘out back’ I find it
difficult and time consuming trying to communicate
promptly on various subjects that crop up. | am using the
GEOS system extensively in business and private and find
the packages outstanding. | recently, four months ago,
sent an order to Berkeley Software in California. | have
sent two letters to their customer service with no replies
to date. Is there anyone, CDU reader or GEOS user, with
the same or similar communication problem with the
company in the USA. You see, | do not know whether the
company are st at the same address, Shattuck Avene. |
am aware that FSSL are the agents for GEOS software in
the UK but | do not have the address. Could you tell me
what it is? | do hope you can find space to print my letter,
and if they read CDU in California, so much the better!!
George Wynne, Australia.

Dear George,

I unfortunately do not know whether or not Berkeley
Software is still at the address you state but | can give
you the address of FSSL and ask if anyone else has had
problems contacting the company by post. It may be
that they have changed their address. FSSL are an
excellent company and will probably be able to give
you the address or find out what is happening if you
supply proof that the goods are paid for. FSSL's address
is Masons Ryde, Defford Road, Pershore,
Worcestershire, WR10 1AZ. Good luck.

APPLYING CODE

Dear CDU,

I have a 64C and have been a novice for three years now
as far as machine code goes. Here in Saudi | have found
it very difficult to find any books or magazines on “how
to do” machine code or assembly language. There are
plenty of books about the instruction sets and what
assembly language is, but never the application of it.

27

LETTERS

What I would like to see in your mag is a step by step
guide on how to use assembly language. Who knows,
one day | might be able to write a game called Desert
Shield or something.

N.Sirett, Saudi Arabia.

Dear Mr.Sirett,

1 don't really think that there is a lot that can be said on
applying machine code. It all depends upon what you
want the code to do and no two situations are likely to
be tailored to the use of the same piece of code. What |
would recommend is that instead of buying books, play
about yourself with other peoples programs and see
what they do. Start out by writing your own very short
routine just to display a letter somewhere on the screen.
You do that by first loading the accumulator with a
value and then storing it at a location on the screen,
followed by an RTS instruction. Applying code relies on
your understanding of how the A X and Y registers can
be used basically, and to what uses they can be put in
accomplishing the task you want. In a game you may
want a routine to read in whether or not the fire button
is pressed on a joystick and if 5o to fire a bullet. You
need to play about with locations in memory, reading
them in with the LD? commands and comparing them
with other values and so on. | don't think that it would
be possible to write an awful lot on the application of
assembly language as it is too specialised and directed
towards certain tasks. | hope you get the hang of it
eventually - just keep playing about and experimenting
with the instructions.

SOUND EXPANDER

Dear CDU,

I am writing to you as | own Commodore’s Sound
Expander for the C64. | would like to know how I can
use it in my own programs, but unfortunately the manual
gives no hints as to how to use it without the additional
software supplied. | would be very grateful of any help.
M.Wyld, Spalding.

Dear MrWyld,

This is one of those times when | cannot offer any help
whatsoever because | am not familiar with the piece of
software that you mention. However, instead of just
ignoring your plea | am publishing your letter in the
hope that someone out there has got this package and
knows how to use it in the way that you want. If anyone
has got any info, please do send it to us.

128 ROUTINES

Dear CDU,

First of all, the program “Picture Print” in your February
1990 issue does not work with my printer. In the October
issue a gentleman wrote with a similar problem. | own

28

the Commodore version of the STAR LC10 colour printer
and it still doesn’t work. Can you tell me how the DIN
switches should be placed? In my opinion the printer gets
the command to give a ‘retum’ aiter every row. In each
row the printer should have to print each colour twice
before a ‘return’ is given instead of printing each colour
on a new line. As a user of the C128D I naturally also do
some programming in BASIC. As an amateur in
programming | have a few problems. If possible, could
you tell me how | can do the following: show the
directory of a disk on the screen in the way that | want,
check if the right disk is in the disk drive, check if the
right program is on the disk, save a program whose name
consists of two variables (eg. “Rekenigen.90” consists of
“Rekenigen” and “90”), load a program with these two
variables and how to make a hardcopy of any screen
shown using the function keys.

Ruud Duits, The Netherlands.

Dear Ruud,
With regards to “Picture Print” it works with the DIN
switches set to the positions that they were in when the
printer came from the manufacturers - in other words,
all switches in the ON position. The reason the printer
is not doing what you want with the carriage return:
likely to be the fault of the positioning of the release
lever, situated at the rear on the right. You must use
perforated paper and pull the lever forward for the
program to operate correctly. Regarding your queries,
you will find a comprehensive routine for displaying
the directory of a disk in the Database 78 program
published in CDU a short while back. This covers most
things - one can also be found in the Directories
Explained program in the February 1990 issue. You
could easily convert these to 128 format. To check that
the desired disk is in the drive, the easiest thing to do is
to give the disks a unique ID when you format them.
Then the program can use the drives direct access
commands to read in the very first sector of the
directory track. You then locate the necessary bytes
with the B-P command and read them in. Check against
what you know the ID should be and hey presto!! Have
a look in your drive’s manual to work out the exact
procedure there. To check if a program is on a disk give
the following commands: OPEN 15,8,15: OPEN
2,8,0,"programname”: INPUT#15,E: CLOSE 2: CLOSE
15. If the variable E is not zero then an error has been
generated. I this is the number for a file not found error
then the right program is not on the disk. If the file is
sequential, add “,S" after the program name and before
the quotes. To load and save files consisting of two
variables, possibly separated by a dot, simply enter
OAD A$+”.”+B$,8 or for a sequential file OPEN
2,8,0,A$+"."+B$+",S” where A$ and BS are the two
variables. To make a hardcopy in the way that you
want, have a routine that reads in a key from the
keyboard and if it is a function key (use ASCII codes to
check) jump to the routine. For the routine, it is best if
you PEEK each of the locations in turn and convert the
POKE code into an ASCII code by doing certain checks
and adding or subtracting values. After every forty
characters, give a carriage return. | hope that you will
be able to sort everything out now.

PRINTER WON'T PRINT

Dear CDU,
I have just obtained a second hand Olivetti printer model
PR15 (no manual). | connected this via the user port to
my C128D and powered up. | entered a little test
program in C64 mode (OPEN 1,4: PRINT#1,”HELLO":
CMD1,"HELLO”: PRINT#1: CLOSE 1) but when I typed
RUN there was no printer response. Is this printer
incompatible with the 128 or am | entering the data
incorrectly? The printer powers up, feeds paper and the
LEDs light up! The print head also does a little movement
from right to left as if ready for action. Please advise. One
atheruery - s t possible o obizin 0/ column mode on
my 1701 monitor? | have followed my 128 manual
instructions but | only obtain a blank screen and a frozen
keyboard. As an avid reader of CDU, I value your
column and your monthly tips ummukh regrettably | am
a very amateur computer addict and as yet have none of
my own to offer, | do hope you will be able to help
M.McGrail, Manchester.

Dear Mr.McGrail,

As this is not a standard Commodore printer | can
unfortunately give little help. It may be that the printer
actually has to be used as a different device number. Try
entering what you have already, but substitute the fours
with fives. If that does not work then | would suggest
that possibly, yes, the printer is incompatible with the
128D. | would ask though if any of our other readers
have the same type of Olivetti printer and know the
secret then could they please come forward and send
me the relevant information. To obtain an eighty
column display you need a monitor that supports an
RGB input. The 1701 does not have an RGB port and
therefore you cannot connect it directly to the RGB port
on the back of the 128D. However do not despair! A
company called FSSL stock and item called a 40/80
column adaptor which will work with all monitors that
have a composite video connection, which the 1701
does. This adaptor will allow an 80 column display
from the 128D with your monitor. Their address for the
purpose is FSSL, Masons Ryde, Defford Road, Pershore,
Worcestershire, WR10 1AZ and their telephone number
is 0386-553153. The product costs around twenty
pounds. | hope that has helped a bit

CONFIGURING A JACKET

Dear CDU,

I read with considerable interest Mike Gregory’s Full Disk
Jacket program on the Volume 4, Number 1 disk. Whilst |
understand that Mike Gregory uses a Gemini-10X printer
and he does say that the program may need to be
changed, | decided to try it out and began to use it with
great success in conjunction with my STAR LC10C
printer. Great success that was, until | tried to produce a
Jacket for a double sided disk. In this instance the reverse
side of the jacket was printed not upside down but back
to front. The output from the printer is in the correct

29

LETTERS

place on the jacket but the letters are turned vertically
sample enclosed). Could you perhaps let me know if any
changes are needed to the program for my printer and
also what these changes are. | do not have a great deal of
programming knowledge and would greatly appreciate
any help which might be forthcoming

Mike Hill, Lincolnshire.

Dear Mike,

The sample that you enclosed illustrates the point about
printing the reverse side of the jacket for double sided
disks. When your sample is folded everything is perfect
except that the letters are the normal way up and not
inverted to produce a correct printout. The secret to this
lies with the DATA statements in the program that are
used to define the upside-down character set. There are
a number of other things in the program, related to the
choosing of a new character set, that will need to be
changed to suit the STAR LC10C. It is rather difficult for
me to pinpoint these exactly although in the near future
1 hope to present you with the alterations to make the
program run correctly on an LC10C. Perhaps in the
meantime you could print two jackets for the one disk
and stick them on either side. Sorry | can't be of more
help at the moment.

TIP OF THE MONTH

First let me say that if you are waiting for a tip to be
published, please be patient - w eal number
and I can only print one or two each month. Rest
assured that unless | have already told you otherwise
your tips will be published at the first available
opportunity. This month’s tip was programmed by me
after having received the original idea from a Mr.David
Colter. It will prove very useful for machine code
novices who are finding it tiresome to constantly be
converting binary numbers to decimal and decimal
numbers to hex and 50 on and so forth. The very short
program, filed as TECHNO TIP will output a complete
list of all the numbers from 0 to 255 inclusive to your
printer in decimal, with the binary and hex equivalents
given along side. | am sure that a great number of you
will find this program useful. Thanks to David for the
original idea

have a

Well, this has been a very short Tip of the Month
because no explanation of the program is really

required. So I shall finish this month’s session off by

g that if you do have any programming problems
or you have any tips that you would like published, or
if you simply want to air your views, then please write
to the “T-Team” at CDU TECHNO INFO, 11 Cook
Close, Brownsover, Rugby, Warwickshire, CV21 ING.
Don't forget those packs of disks that are on offer. See
you again next time.

ON THE DISK

1 FOR THE

(1128

Two simple utilities for C128 users Neville Duguid

Here, for all users of the C128 are two simple u
that could prove to be very beneficial. The first is a
RAMCHECK program (sadly lacking on the C128) and
the other is a test for accurate SOUND reproduction.

RAMCHECK 128

Bad RAM can be a mental health hazard to the
Commodore 128 and its users. Normally reliable
programs can crash without warning. Nonsense error
messages sometimes appear. Files may appear to corrupt
spontaneously - even after your disk drive has come back
from the repair shop. Given enough time, a single bad
byte can demoralize a Commodore 128 user to the point
where he believes his computer is only useful when
emulating a C64. In one respect, he is right. The C64
checks its RAM. The C128 does not.

IN THE BEGINNING

On power-up, the 64 mode Kernal examines every
address from 1024 upwards until it finds a byte that will
not function correctly as RAM. As BASIC needs
contiguous workspace, the C64 treats this bad byte as the
end of usable RAM and incorporates the number of good
bytes it has found into its start-up message. Usually the
terminating “BAD BYTE” turns out to be the start of ROM
or a cartridge, but even if it is not, BASIC will never
attempt to use that byte. Unless you check the actual
“BYTES FREE” message, or later get an “OUT OF
MEMORY error, you may never even need to know it is
there.

The 128 mode Kernal performs no similar check. BASIC
is responsible for the seemingly equivalent “122365
BYTES FREE” message. This figure is copied direct to the
screen from ROM - along with the rest of the start-up
text

Commodore 128 users should therefore occasionally
CHECK YOUR COMPUTER’S RAM !

NOTHING TO IT

It is easy to check the “BUSINESS END” of Bank 0. With
the power off, remove any cartridge or other device from
the expansion port, then power up with the Commodore
key depressed. If the 64 mode start-up message contains
“38911 BYTES FREE”, 64 mode programs using only
RAM between addresses 1023 and 40960 should perform
flawlessly. (C64 BASIC programs are normally in this
category). If you can confirm that a 128 mode program

uses only Bank 0 RAM in this address range, than it too
should cause no problems. Unfortunately 128 mode
BASIC programs do not qualify. The BASIC program text
is stored in Bank 0, but the variables created when the
program is RUN make widespread use of Bank 1. (Even a
direct mode command like PRINT”HELLO”, which seems
to copy a literal string from one part of the screen to
another, makes intermediate use of Bank 1)

THERE IS AN ANSWER

All this technical information has been included solely to
make you think:

“There has to be an easier way.” There is! Turn on your
C128, insert this month’s disk into the drive then;

BOOT”RAMCHECK 128"

(If your default disk drive is not a 1570 or 1571, and your
€128 is one of the earlier models with Version 0 ROMs,
you may need to use the alternative;

BLOAD”RAMCHECK 128":5Y52816

The program will report either 'RAM OK’ or give a list of
bad RAM addresses in HEXADECIMAL. It uses a check
similar to the one performed by the C64 Kernal. Starting
at address 1024, it switches every bit in every byte both
on and off and checks the results prior to restoring the
original value. Unlike the 64 Kernal, it goes right to the
top of memory in both RAM banks, regardless of how
many bad bytes it finds on the way. The test takes just
over four seconds when the computer is in FAST mode -
nine seconds in SLOW.

The program has been made as short as possible - just 2
blocks in your disk directory. This increases its chances
of operating successfully if your computer really does
have bad RAM - and also explains the lack of any “bells
and whistles.”

NO PROBLEMS

In spite of the programming shortcuts used to achieve its
speed and brevity, “RAMCHECK 128" remains
compatible with BASIC and the rest of the C128 system.
The STOP key is available as usual, and you can even
use the Jiffy Clock to time the program if you wish;

BLOAD”RAMCHECK 128" :if not already loaded

30

ST:T1$="000000":SYS2816:PRINT
TI/60”SECONDS”:SLOW

(80-column users may want to leave out ‘SLOW' at the
end - it is there to unblank the 40-column screen if
required).

When you get a bad report in FAST mode, you should
also try SLOW - the problem may not be “BAD” RAM so
much as “SLOW” RAM. If you have a printer set up as
device 4, and the list of bad addresses is too long to fit on
your screen (or you would like to take a copy of the
report to the repair-shop);

OPEN4,4:CMD4:5Y52816

If BASIC won't work at all, RAMCHECK 128 can be
started from the MONITOR. Hold down the RUN/STOP
key as you press the Reset bution, then;

L"RAMCHECK 128”,8
) 0B0O

Should the program find bad RAM on your computer,
take note of the addresses and run it again. Check
whether the addresses reported are the same every time.
This can be helpful to a technician assessing the nature of
the fault.

In case you feel you can't place too much reliance on a
program that does nothing more than print “RAM OK”
it, here is a way to trick “RAMCHECK
it has discovered some harmless “BAD

X (if still in the MONITOR)

BLOAD”RAMCHECK 128" 4
POKE 3048,3:5Y52816

This falsely informs the program that only three
configuration registers need to be skipped. The
preconfiguration registers which are present at $FF03 and
$FF04 (in all banks) do not retain information written to
them, so RAMCHECK 128 should report them as “BAD
RAM” if it is performing its job correctly.

$FFO5 also gets reported even though it has not been
bad. (Meddling with the configuration registers causes
the program to get momentarily confused about whether
it is looking at RAM or ROM). If this is the only thing
RAMCHECK 128 ever finds wrong with your computer’s
memory, you can still appreciate the benefit to your own
peace of mind.

Output produced by “RAMCHECK 128" used on C128
with faulty RAM is as shown below;

This is the BASIC screen:

rea
boot “ramcheck 128”
searching for O:ramcheck 128
loading

testing

31

ON THE DISK

bank-0... ram ok

bank-1... 08d 118d 38d 478d 58d 678d 7f8d 8i8d 9f8d
bisd cf8d digd efgd ffad = bad ram !!
ready.

This is the MONITOR version:

monitor
pc st ac xryr sp
; 16000 00 00 00 00 8

V"ramcheck 128”,8
searching for ramcheck 128
loading

j 0b00

testing

bank-0... ram ok

bank-1... 0f8d 118d 3i8d 4f8d 5f8d 68d 7f8d 8f8d 9f8d
bf8d cf8d df8d ef8d ff8d = bad ram !!

COMMODORE 128 TUNE-UP

If you have one of the earlier models with Version 0
ROMs, your Commodore 128’s PLAY command is
probably about two-thirds of a tone out of tune - more if
it is a NORTH AMERICAN model. The problem may
already be fixed if any ROMs have been replaced since
manufacture, or if you have a C128D with Revision 1
ROMs fitted as standard.

SIMPLICITY ITSELF

An easy way to check is to RUN “C128 TUNE-UP” from
this month'’s disk. (Use the RUN “filename” syntax - do
not DLOAD separately). It will either BOOT
“PLAYPATCH.128" (which re-tunes the C128 until you
turn the power off or reset), or advise you that your
C128's PLAY command already works correctly without
intervention.

Should the message BOOTING “PLAYPATCH.128"
appear, you will likewise need to BOOT
“PLAYPATCH.128" on future occasions if you want your
C128 to PLAY at standard concert pitch. (Alternatively,
you could incorporate the relevant BASIC commands
from “C128 TUNE-UP” into programs that use the PLAY
instruction).

For example, if you write music programs intended to
RUN on C128s other than your own, you might include
this line, which loads the patch only if necessary:

10BANK15:IFPEEK(32766)=0THEN
BLOAD”PLAYPATCH.128", U(PEEK(186)):5Y54960

You should of course include a copy of
“PLAYPATCH. 128" on the same disk as any program that
might attempt to load it. Although this example may

CONTINUED ON PAGE 48

ON THE DISK

RTHER ADVENTURES IN “C"

THE CONCLUDING EPISODE OF OUR SERIES ON “C” JOHN SIMPSON

This month | am going to describe the standard
INPUT/OUTPUT library. This is a set of functions which
have been designed to provide the programmer with a
standard 1/0 system for “C” programs. Regardless of
how critical the application may or may not be, users
seldom find the need to circumvent them as the
functions are very efficient. The functions are also
meant to be portable because most “C” systems exist in
a well defined and compatible form. I will outline the
more commonly used functions here rather than
describe them all.

THE STANDARD LIBRARY

Whenever you write a source file which refers to one of
the Standard library functions then you must include the
line;

#include <stdio.h>

This should be close to the beginning, and the use of
angled brackets < and > will direct the compiler to
search for a file which contains standard header
information. The file defines various macros and
variables used by the input/output library.

GETCHAR AND PUTCHAR

To read a single character at a time from the “éfandard
input”, most often from the keyboard, we use the
statement, getchar(). This will return the next input
character each time it is called (we have used this
extensively throughout the series).

If you need to substitute a file for the keyboard then the
convention is to use the < character. For example, if a
program called myprog uses getchar(), then:

myprog < datafile

will cause myprog to read datafile instead of the
keyboard.

Whenever input is being read, and the read encounters
the end of the file, then getchar() will return an EOF. The
EOF constant is -1, but you can change this to whatever
you require.

The opposite to getchar() is putchar(). For example;

putchar(c)

will put the character ¢ onto the default device, usually
the terminal. The output can also be directed to a file by
using the > character. If myprog uses putchar() then:

myprog > datafile

will write the output into the file called datafile.

printf() also finds it's way to the standard output, and calls
to putchar() and printf(can be easily interleaved.

/ an example routine which converts input to lowercase
]

#include <stdio.h>
main()

intc;
while ((c=getchar()!=EOF)
putchar(isupper(c)Ztolower(c):

Here we see two macros at work, these are defined in
stdio.h, and test whether the argument is an upper case
letter - isupper. If it is, then it returns a non-zero (true),
and if not then a zero (false). The macro, tolower, will
conveniently convert the upper case letter to a
lowercase.

FORMATTED OUTPUT

There are two routines, printf(), which is used for output,
(we have used also used this extensively throughout the
series), and scanf) for input, which permit translation to
and from character representation of numerical
quantities. They also allow for formatted lines.

formally: PRINTFICONTROL,ARG1,ARG2, ...)

printi() will convert, format, and print its arguments using
control. The control string contains ordinary characters
which are copied to the output stream, and conversion
specifications. Each conversion specification is
introduced using the percentage character, %.

Between the % and the character of the conversion there

32

may be:
- (minus sign) = left adjustment
a digit string = the converted number wi’\l he printed

in a field at least this wide -
argument has fewer s
field, then it will be padded with
blanks.
(aperiod) = separates the field width from the
next digit string.
a digit string = the specific maximum number of

the precision) characters to be printed from a

string
or number of digits to be printed to
the right of the decimal point of a
float or double.
| (letter ell) = a length modifier to indicate the data
item is a long rather than an int.

THE CONVERSION CHARACTERS
ARE

d = decimal notation

o = unsigned octal notation (without a leading 0)

x = unsigned hexadecimal (without a leading 0x)

unsigned decimal notation

¢ = single character

s = character strin;

e = float or double and converted to decimal notation
in the form [-Jm.nnnnnnE[xx where the length of
the string of n's is specific to the precision.

1= float or double converted to decimal notation in the
form [-Jmmm.nnnnnn

g = use %e or %f, whichever is shorte
zeros are not printed.

; non-significant

If the character following the % is not a conversion
character, then the character will be printed; therefore
the % character may be printed by using %%

FORMATTED INPUT
The function scanf() is the input analog of printf() and
provides many of the same conversion facilities,
however, in the opposite direction.

Formally; SCANFICONTROL,ARG1,ARG2,

This reads characters from the standard input, interprets
format specified in control, and then stores the results in
arguments. The control string can contain conversion
specifications to interpret input sequences.

blanks, tabs, or newlines (commonly referred to as “white
space”), these are ignored.

ordinary characters (except %)

conversion specifications, %, * (an optional assignment
suppression character), a number specifying a field
width, and a conversion character

ON THE DISK

A conversion specification will direct the next input field
conversion. Usually the result is placed in a variable
pointed to by the corresponding argument. 1f a * is used
the input field is skipped with no assignment made. An
input field is defined as a string of non-white space
characters which will extend to the next white space, or
until the field width is finished. Since newlines are white
space, then scanf() will read across line boundaries to
find input.

The conversion character indicates the interpretation of
the input field, and the corresponding argument must be
a pointer

CONVERSIONS

decimal integer
octal integer

hexadecimal integer

hort integer

single character

character string - the pointer should point to a
character array large enough to accept the string
plus a terminating

= floating point number

The conversion characters d, o, and x may be preceded
by | (ell) to indicate that a pointer to long rather than int
appears in the argument list

Here’s a scanf() example:

inti;
float x;
char name([30];

scanf(%d %f %s"”,&i,&x, name);

with an input line of:
75.34E-1 George

will assign 50 1o i, 7.534 to x, and the string “George”
terminated witl

0, to name. The three fields can be separated by as many
blanks, tabs and newlines as desired.

A further example:
inti;

float x;

char namel[30];

scanf(“%2d %f %*d %2s”,&i,&x, name);

If the input line was:
98765 0123 35267
then 98 will be assigned to i, 765.0 to x, skip over 0123,

and place the string “35” in name. The next call to input
will start searching from the letter z.

33

ON THE DISK

In both these examples, name, is a pointer and therefore
must not be preceded by a &

Here is a rudimentary input conversion function to
demonstrate scanf():

#include <stdio.h>
main

{
double sum,v

sum =0
while (scanf(“%lf",&v) != EOF)
printi(*
1%.2f

n”, sum +=v);

When scanf has exhausted its control string, or when
input no longer matches the control specification then it
stops. The value it will return is the number of
successfully matched, assigned input items.

Finally, the arguments to scanf() must be pointers.
Probably the most common error is writing:

scanf(“%d”,n);
which should be

scanf(“%d”,&n);

THE SIBLINGS

Both functions, scanf() and printf() have siblings which
are sscanf() and sprintf(. They both act in the same
manner as their big brothers, i.e. both perform the
corresponding conversions, however, the siblings will
operate on a string rather than a file.

Formally SPRINTF(STRING,CONTROL,ARG1,ARG2,
SSCANF(STRING,CONTROL,ARG1,ARG2, ...)

sprintf() will format the arguments just the same as
before, however now it will place the result in a string
rather than the standard output. N.B. Make certain the
string is big enough to contain the result.

sscanf() does the reverse. It scans the string according to
the format in control and finally places the resulting
values into argl, arg2 etc. The arguments must be
pointers.

ACCESSING FILES

Before a file can be read or written it has to be opened by
the standard library function fopen(. This function opens
a disk file for reading or writing. The string filename
contains the name of the file, and the first character of
the string mode specifies a ‘' read, or a ‘w’ write. The
declaration required is:

FILE *fopen(), *fp

Here fp is a pointer to a file, and fopen returns a pointer
to afile. FILE is a type name, like int, and not a structure
tag. The actual call to fopen() a file in a program is:

fip = fopen(name, mode);

If there is any error when attempting to open a file, such
as the file does not exist, then fopen(will return a null
value. To read or write the file once opened we can use
getcl) or putc(). Here getc() will return the next character
from a file, it will require the file pointer to tell it what
file it is dealing with.

¢ = getc(fp)

This will place in c the next character from the file, and
EOF is returned when it reaches the end of the file.

The inverse of getc() is putc():
putclc, fp)
will place a character c on the file fp.

When we start a program three files are opened
automatically with file pointers provided. These are
“standard input’, ‘standard output’, and the ‘standard
error output’ files. The corresponding file pointers are,
stdin, stdout, and stderr.

getchar() and putchar() can also be defined in terms of
getc and putc, stdin and stdout.

#define getchar() getc(stdin)
#define putchar() putc(stdout)

The function fscanf() and fprintf() can be used for
formatted input/output files. The are the same as scanf()
and printf() except the first argument is a file pointer
which specifies the file to be read and the control string
is the second argument.

Now we shall look at a small program which is used to
concatenate files. Should there be any command line
arguments they will be processed in order otherwise the
standard input is processed.

#include <stdio.h> /*
Kernigman/Ritchie®/
main(argc, argy)
int argc;
char *argvl];
(
FILE *fp, *fopen();
if (arge == 1) /* number of args)
filecopy(stdin);
else
while (—arge > 0)
if (fp = fopen(*++argy, “r")) == NULL) {
fprintf(stderr”CAN'T OPEN %s
", *argv);
exit(1);

Concatenate by

34

ON THE DISK

else |
filecopy(fp);
fcloselfp;

exit(0);

filecopy(ip) /* this copies the file to standard output *
FILE *fp;
intc;
while ((c = getc(ip) 1= EOF)
putc(c, stdout);

File pointers stdin and stdout are pre- defined in the i/o
ey are constants and may be used anywhere
an object of fype FILE S can be.

ion it JEsa R Rine i re o e e bresks
all connections between the file pointer and the external
name established at fopen(), thus freeing the pointer for
another file, and clearing the buffer in which output from
putc() was placed. When a program terminates normally,
then for each open file, fclose() is called automatically
The program signals errors in two ways. The diagnostic
output of fprintil) will go to stderr which directs it to the
user terminal instead of a file. The program also uses the
standard library function, exit(.. A return value on exit of

SCREEN SAUER (OO H_MEDHURST 1950

The purpose of screen store is to store and recall up to
eight screens including colour. The screens are stored
under the Basic ROM and the colour is stored under the
KERNAL ROM. Screen store can be used in PROGRAM
mode, DIRECT mode, BASIC or MACHINE CODE. The
code sits in memory at $C000 (49152) and is accessed
with three SYS calls. Before storing any screens the
5¥549158 call must be made to set the screen counter
1o zero, the screen counter is at memory location (2).

HOW IT WORKS

To store a screen just call up SYS49152 and the screen is
stored. Each time a screen is stored the screen counter

increases by one, if more than eight screens are stored a
SCREEN MEMORY FULL error will be displayed and the
program will stop. To recall a screen the call SYS491

is

zero signifies all is well, and a non-zero value signals
errors

MACROS FOR TESTS AND
CONVERSIONS

isalpha(c) - non-zero if ¢ is alphabetic, zero if not
isupper(c) - non-zero if c is upper case, zero if not
islower(c) - non-zero if ¢ is lower case, zero if not
isdigit(c) - non-zero if is digit, zero if not
isspace(c) - non-zero if is white space, zero if not
toupper(c) - converts ¢ to upper case

tolower(c) - converts c to lower case

TO CONCLUDE

Well, this brings our little adventure to a close. | hope
that the foregoing episodes have helped you to enter the
world of computer programming using the “C” language.
There are many useful as well as excellent books on the
market which can take you much further into the
language than can our brief encounter. It does, to the
newcomer, seem a daunting language, but with effort and
practice it can, like anything else, be overcome until
proficiency is a byword, and you can call yourself a “C"
specialist. Once learned, with small, machine
dependant, differences, one can then program on almost
any machine which supports a “C” compiler, from Amiga
to IBM.

GREEN TR 4

Store and recall your screens including colour
M. MEDHURST

made and the last screen to be saved will be displayed, if
549155 call is made without any screens being
stored a NO SCREEN error will be displayed. This is
caused by the screen counter being at zero. The number
of screens stored can be checked by PEEK(2) 1-8.
aving stored a number of screens they can be called up

a random by POKEing any number from one to eight into
location (2) and calling SYS49155 .The screens are
normally stored on a last in first out basis

If a screen is to be stored in any particular slot first
POKE2,slot number 1-8 and then SYS49152 to store it.

A demo program is on disk and on running this it will
load the code

"BIN.SCREENSTORE'. This can be loaded on it's own by
load’BIN.SCREENSTORE',8,1 followed by NEW to reset
the basic pointers.

There isn't much else one can say about this easy to use
program except give it a try

35

ON THE DISK

The Third Segment

We conclude ELAINE FOSTER’S series on useful
programming routines from Down Under

In this series, we have looked at ways of improving the
usage of the ACTION REPLAY CARTRIDGE, and given
you a few routines to aid you in your program
development skills. The series concludes with two more
routines 10 add 1o the ones already provided. These are
SPACE INSERTER and LOADER ADDER. The first of these
is, LOADER ADDER, which is a continuation of the
article discussed in the DECEMBER issue of the

magazine.

LOADER ADDER

that very long freezer-copied programs
atible with fastloaders. This was

) loader to do this, and some
autobooting loader (loads
). Here, two further
g.technique will be

SYS NO MORE!

G. GORNU published a nice “Screen Saver” in YOUR
COMMODORE, Dec 1989, p.53. It blanks the monitor
screen after one minute, so saving its screen if you leave
it on (which always happens). To run it, however, it was
necessary to SY$53162 ($SCFAA), and who is going to
remember that horrid number, particularly if the
documentation is not at hand? It is possible to remember
wwthe correct number if it is made part of the file name, eg.

o r.53162”, but there is another way: Load the MC
%m Basic.
" The simplest way to do thisds:
41, hich 1ot only loads the target MC program,

plies instructions every time you use it (or do

v W& ‘original instructions at hand?):

but

A i

PRINT/[CLRI[SCREENSAVER
BLANKS AFTER 1 MINUTE. PRESS
i

The other way is to use a Machine Code Loader similar
to the “SYS10037” routine described in Part 1. This is
very fast and much more flexible. It is, in fact a hybrid,
which makes everything much easier

1) Enter the following Basic program, but type it
EXACTLY as shown. Do not add or subtract a single byte,
or it will not work:

LISTING-2

10SYS2154:PRINT”[CLRISCREENSAVER
INSTALLED”:PRINT”[DOWN]SCREENBLANKS AFTER 1
MINUTE”

20 PRINT “[DOWN]PRESS ANY KEY TO RESTORE”

Of course the items in square brackets stand for single
byte cursor control characters.

2) Activate your Monitor, and enter the following items
exactly in the Assembly mode. Do not include the
semicolon comments (unless you use a proper symbolic
assembler), which are only for interest:

LISTING-3
.> 086A LDA #508 JCHANNEL #
> 086C LDX #$08 JDEVICE #
> 086E LDY #$01 JSEC. ADDR.
> 0870 JSR $FFBA JSETLFS

-> 0873 LDA #$0C i# CHARS IN FILENAME
;LB OF NAME LOCATION
;HB OF NAME LOCATION. -
JSETNAM

;0 FOR LOAD

;LOAI

> 0879 JSR $FFBD
-> 087C LDA #$00
> 087E JSR $FFD5
> 0881 JMP SCFAA ;JUMP TO 53162
and then the following in the “M” mode:

884 53 43 52 45 45 4E 20 53 SCREEN,
88C 41 56 45 52 00 00 00 00 AVER....

Indeed, you may make the Basic introduction as long as
you like, if yuS ensure that the BA of this routine (here.
$0B6A) is higher than the Basic EA, and that the SETNAM
pointers (here $0876 & $0878) point to the beginning of
the filename to load (here at $0884). And of course in the
Basic line 10, the SYS must refer to the BA here (S086A =
#2154)

i

36

The strength of this method, aside from being rather
pretty, is that it allows each part to do what it can do
best: Basic text is easy and takes little space, and
Machine Code is fast and versatile.

3) still with the monitor, enter:
5SS BOOT”,08,0801,0890.

The result: a Basic file on disk, named “SS BOOT” which
can be loaded and saved as a Basic program (eg,
LOAD”SS BOOT”,8). When it is run it aummancally
loads and runs “SCREEN SAVER” and enters
automatically, so that you no longer have to
If it is combined with an autorunning b
to be loaded, and SCREEN SAVER (or wh
choose) is loaded and activate

<l
Create the above routi
then change it to Ig
(See Part 1 for load

Part1 nmrlbat oW,
piggyback on the Pl
game. By ledlously follo

s ADDER - 49152 0 o

use on PRELOADERSs ma

~ CARTRIDGE, but could work
location of JMP $FFD5; see the
File Being Loaded??” in Part

| ADDER 49152 rather cleg

ON THE DISK

The advantage of the ADDERLOADDER program (which

pokes the MC in from Basic) is that you can modify the
code without using an Assembler. Merely follow the
REMS. You may change the texts as you like, as long as
the new one is not fonger than the old, and if it is
terminated by a zero. In line 670 you can change the “+”
PRELOADER prefix to whatever you please as long as it is
only one character; i s there only to make it diferent
from the original. In line 590 you can change the
requvremem orai” p fix before the main target name,
eg some freezers use a *-” instead. If you know what you
are dmng you can even modify lines axo 5,40 Use your

G

1o fi
5) in !he
e right LB ai

The charm of this routine lies in

set of bytes is used o load the P
down o the end of i, as it
disk. Try (o do that with Basic! I
“C64 thinking * saves spage
When you have megal

tends 10 ger very s 'ﬁmﬁ my meg

arggaﬂ(nishe can M* (w

(INCLUDIN: ’*‘ 'Sysleui' in Rom "“"g

A5

ON THE DISK

LDX #>TEXT
STA <INDEX ;FOR ADDRESSING
STX >INDEX

PRINT LDY #0 THIS IS AN

LOOP.1 LDA (INDEX),Y ;ORDINARY PRINT
BEQ END OUTINE, TO

JSR CHROUT ;THE SCREEN

INY

CMP #1

BNE CONT.1

JSR INSERTER
CONT.1 CPY #0

SINSERT SPACE?
iN.CONTINUE
;Y=INSERT SPACE
JEND OF PAGE?

BNELOOP.1 ;N.CONTINUE
INC >INDEX ;UPDATE
BNELOOP.1 ;THE INDEX
END RTS JRETURN TO MAIN PRG
INSERTER LDX #0 ESET COUNT
LDA (INDEX),Y ;# OF REPEATS
STACOUNT ;STORE IT

DA #CHAR ;LOAD SPACE
LOOP2 JSR CHROUT ;PRINT IT
NEXT COUNT
;DONE
BEQ CONT.2 ;Y.EXIT
BNELOOP.2 ;N.PRINT ANOTHER
CONT.2 INY SNEXT BYTE

RTS RETURN FROM SUBROUTINE

INX
CPX COUNT

From the flow diagram you can see that in a normal text
print routine (see PRINT), the print is scanned bytewise.
If 0 is encountered it shows the end of text and it exits,
else it prints the character to the screen. In this routine
though, an additional jump is inserted: when 1 is
encountered it shows that spaces are to be inserted, and
it jumps to INSERTER. The number of spaces are
recorded from the byte following the 1, and a counter
prints them until they are finished. It then returns control
to the main text PRINT routine.

The Machine Code beginning address for this example
was chosen at 2061 so that it could be started from a
Basic SY52061, but of course it would be added to an
already established program at any convenient location.
Load and Run the short program, SPACE INSERTER,
which show how large blocks of spaces can be
generated easily. If you have SPEEDY ASSEMBLER or any
other compatible assembler, look at the Source Code for
details.

The possibilities are endless, for example, you could fill
the screen with reverse video spaces in different colours,
or surround titles with various patterns. For the latter,
you can see that Space is not the only character which
can be inserted. The second byte at LOOP.2 controls the
character. Using 65 in place of 32 would produce a
series of “A's”. A byte can be poked into that location
from anywhere in your program, so the character to be
repeated can be changed at will. If you want to take a
little more space, a separate INSERTER routine (only 20
bytes) could be Used for each different character. So, 1
40 could mean “insert 40 spaces”, while 2 10 could
mean “insert 10 cursor downs”. For a large program the
saving in RAM could be considerable, and it opens a
new field of generous screen formatting.

START

sco00
- THIS PROGRAME LOADS A PRELOADER WADE BY AN ACTION REPLAY(OR OTHER)
"CARTRIDGE, AND ADDS 0 IT AN ORDINARY LOADING HODULE WHICH WORKS

"WiTH OR WITHOUT ANY PAST LOADER If ASSUMES THAT IN THE ORIGINAL
‘PRt oADER, JBSTITUTES Fon THAT,
P S{ NEW BA OF THIS LOADER | NOW INSERT T DISK CONTANING THE
'PROGRAMME NEEDING THIS LOADER. WHAT 18 IS RAMET"

l BETTER BACKUPS/2

sczs2

O
sc2s5a
[aAVELRS oo

(name new preldr =
“s" &"preloader”

(Eno)

M
[sYs49152]

$C278

38

STRATEGY

DESIGNING A ROLE
PLAYING GAME

Magic in Computer RPG’s by GORDON HAMLETT.

The last part of this series dealt with COMBAT
and various waés of dealing with it. This month
we look at MAGIC.

Its a great feeling. Your warriors are tired and wounded.
The party is lost and looking for a safe place to camp.
The dreaded message appears on screen. Combat. You
ry 10 run away but a mixed party of ogres and trolls have
surprised you and there is no escape. You are outgunned
and you know it. Wearily, the fighters ready their
weapons and prepare to advance when a voice from the
back of the party says ‘stand aside

The magic user, who has so far proved to be excess
baggage on this adventure steps forward uttering strange
words. Flames begin to crackle at his fingertips. There is
a loud whooshing noise. You look towards the enemy but
there is nothing apart from a few blackened lumps and
the smell of burning flesh. Your first fireball spell. It is a
memorable experience and the fighters know
instinctively that things will never be the same again.

LAYING THE FOUNDATIONS

Last month, | looked at designing a combat system and
showed how it was the main part of a role playing
system. Magic is the exciting part of the game but if
anything, even greater care has to be taken over
integrating a magic system. It is all too easy to get the
balance wrong.

The actual mechanics of spellcasting are minor details
and can wait until later in the article. The main problem
is getting the amount of magic just right.

Traditionally, novice magicians are worse than useless.
They can't fight and they know few spells. The fighters
have a dual role to play. Not only do they have to kill the
various monsters, they also have to protect any budding
wizard who is incapable of looking after himself.

As the game enters its middle phase, so the balance is
about even. The fighters are still important and the mages
can play an important part too. For high level characters
though, the situation is reversed. Now, magic dominates.
Fighters become less effective. After all, they can only
attack one creature at a time whereas the spell caster can
target many. To go back to fireball example, the spell
might have a 6x6 area of damage giving a potential 36
opponents. Quite a difference!

BALANCE IT RIGHT

The problem then is not to arrive at this ‘final’ stage of
the game t0o quickly. It is worth mentioning here that all
this applies to magic items too. There is a great
temptation to reward players with magic rings of
protection, wands of lightning bolts and swords of
ultimate sharpness. They do make the scenario
interesting but if the player is finding these and similar
items at the start of the game, what are you going to give
him as he progresses and you have to come up with
bigger and better treasures.
A good example of a commercial game where the
balance is totally wrong is Bard’s Tale Il. When I first
reviewed it a couple of years ago, it looked great, even
after many hours of playing. It was only when | got
deeper into the game that I discovered all the above
mentioned problems. Whereas a good game should
encourage you finish, this had just the opposite effect and
in the end, | just couldn’t be bothered.

So how do you go about limiting the effects of magic?
Well, there are several possi ies. You could limit the
number of wizards in a party. Perhaps their psychic
forces interact when they are too close together and
reduce the potency of their spells.

CLASSES OF SPELLS

Another alterative would be to group spells together and
then have a different class of magic user specialise in
each type. For example, healing spells, sorcery spells,
illusionary spells and so on. Bard’s Tale uses this system
to some extent and then spoils everything by letting
characters change from one class to another.

The system used in SSI's Dungeons and Dragons series is
somewhat different. A character can discover and study
new spells by writing them in his spell book, but he or
she can only remember a certain number of spells each
day. Once these have been used up, the character has to
rest for several hours in order to memorise a new set of
spells.

Incidentally, it is worth while having a separate class that
specialises in healing such as a cleric in D and D.
Everybody is going to get wounded in battle at some
stage so_that this character really does become
indispensible. If you have 1o a separate slot for a cleric,
that is one less place in the party for a wizard. Casting

39

STRATEGY

h as healing
from evil
great a

game’s balance
ombat spells that
to cause you

ture common to all
s is that as a character
more experienced, so
vider variety of
\Hmuw the spells
wn become more
mple, say your
character knows a spell that
inficts an electrical shock onto
an enemy A first
character might cau
points of damage. You might
increase this to 4-6 for a
second level, 7-9 for a third
etc but it s probably better j
to multiply by
I '

y to adapt one of these to
your own needs. As already

B mentioned, in D and D, each

number of spell

runes ai
Mind until’ he

relearns it. He can still learn

me spell twice if he

0 but must first learn it

twice. This system works well

enough but the game

down when the party has to
rest and sleep frequently

Both Ultima and Bard’s Tale

em of magical

s then up to you to

you are going to

The more

experienced you are, the more

you have. A simple spell such
making a light mig

neophyte mage.

One addmonal touch in the later Ultima games is that
you have to buy or find reagents for the spells and mix
them in the correct quantities. Four of the six reagents are
readily available from your local herb shop but the others
are rare and you have to solve many clues and face
much danger before you find out where they are. This
has the advantage of making sure that the poweriul spells
only become available when you are sufficiently
advanced in the game to need them.

Even if you do not use this sort of system throughout, the
idea of specific reagents for the most potent spells is a
good one. You can control the game much more easily. It
might even form part of the game itself. First you have to
find and kill a black dragon to acquire one of his teeth,
then you must locate and pay for the services of a great
wizard who can mix the powdered tooth with some
snake spit ...

SPELL USING

I have said very little about the nature of the spells
themselves. This is because whatever system you use, the
spells tend 1o include the same sorts of things - a smail hit
on one enemy, a small hit on a group of enemies, a
medium strength hit on one enemy, the same on a group
of enemies and so on. Of course, you can change the
names, call them magic missiles, shocking grasps,
fireballs, lightning bolts or whatever but they come down
o the same thing in the end. Again, there is always a
spell to make light, one to cure light wounds, cure
serious wounds etc

Think back to the role playing games you have played
They all boast dozens of different spells but how many of
them do you actually use regularly? My guess is about 6-
10. When you get caum up in a battle, do you cast a
spell making the enemy’s armour class weaker or gving
one of your fighter’s ogre strength? Of course you don

You go in there and whack them. No. shﬂly-ghaHymg

about.

One notable exception here is the Ultima system where
the designer, Richard Garriott makes a point of ensuring
that every spell is genuinely different and not just a
variation or big brother of what has gone before. The
moral here is simple. Don't just include something for the
sake of improving a list. Make sure that it is an integral
part of the game.

IT’'S MAGICAL

Magic isn't just limited to spells though. One area of the
game where you can let your imagination run riot is in
the use of magical items. Weapons, rings, potiol
wands, armour, items of clothing, packs of cards, fn
fountains etc. the list is endless. All you have to do is
make sure that you don't overdo it and there are several
ways round this.

Many of the items can have a limited number of charges.
A wand of lightning bolts might only be able to, be used
three times before it crumbles and fades away. A potion

4

STRATEGY

might only have enough for one use and so on. You can
also restrict who uses the item. The aforementioned
wand can only be used by a wizard and if he is using
that, he can't be casting one of his own spells at the same
time. Similarly, if you have a magic two-handed sword, it
is worthless unless you have a fighter trained in its use.
Other penal id apply too. If someone wants to get
the benefit of a magic ring, they might have to remove
their gauntlets first, thus reducing their armour class and
so on.Never give the player too easy a time of it
Remember too, intelligent monsters will use their magical
items against you.

A FEW IDEAS

Not all magic should be good magic. Put in a few cursed
items too. The trick here is to encourage the player to use
an item straight away. Once a cursed item has been tried
on, it cannot be removed until the appropriate spell has
been cast or you have paid someone wih the appropriate
spells. Curses shouldn’t be too bad, more of an
ReGHE e Drinking a potion might induce a
temporary plague of boils on a character rendering him
s0 ugly that no-one will talk to him. So, for a few hours,
the party will be unable to trade with merchants or parlay
with monsters - a fight becomes inevitable. A sword
might give +2 bonuses but is extremely bloodthirsty and
will not allow the wielder to run away from battle whilst
an enemy is still standing.
One of the problems with magical items is discovering
exactly what they do. It is pointless having a potion of
dragon control if the player, not knowing what it does,
drinks it all when surrounded by trolls. Nor is it fair to
say ‘you have found a potion of dragon control’. Unless
the container was labelled in some way, you are giving
the player information for nothing. The solution is to
make the players consult an expert who will charge very
highly but will identify what an object does. Again, it
comes down to giving with one hand and taking away
with the other. Ok, so they now know what their potion
does, but it has cost them all their hard earmed gold to
fin

IN CONCLUSION

Another way of limiting the effects of magic is to give
everything a percentage chance of working. A weapon
might break or a spell fizzle and fail. If a character falls
down a pit, potion containers might smash and wands
snap. The original owner of an artefact might have
conned. He thought he was buying a ring of protection
whereas it was actually a ring of delusion or a brass
curtain ring or whatever. These touches can bring
humour and variety into a game and make the player
just a little bit more wary when he does find something
beneficial. Magic should be special, never
commonplace. Gandalf was revered in Lord of the
Rings and yet his magical powers were not that great. A
fireball was about the limits of his power. If no-one else
has the talents, even the smallest trick can seem
miraculous.

ON THE DISK

Intelligent decision making made for you BOB GARNER

This program is designed to help you to guess with more
accuracy but it cannot hope to be the complete answer
to all your decision making.

EXPERT SYSTEMS

Being a type of EXPERT SYSTEM. The ADVISOR requires
that you choose what information is needed and to then
set it in a logical order within the “SHELL”. The program
will give assistance but you should be aware of the
“JARGON” associated with Expert Systems.

An Expert System provides a means to analyze
information which is set against a number of norms
These could be obtained from people recognised as
“EXPERTS” in a particular field who decide on criteria to
be used in mastering a skill or technique. Alternatively
you can choose your own criteria for decision making to
meet your needs. The ADVISOR shell allows setting of
your own criteria using either of the two methods

These criteria called ATTRIBUTES, bel ng to the subject
under discussion. One example in relation to buying a
book, could be “COST”. Each attribute would then have
a VALUE. Using the example of purchasing a book the
value would mean “HOW MUCH?".
cost of purchase is desirable. Although other
ATTRIBUTES such as PRINT styles or the low measure of
JARGON contained in the book, could outweigh COST.

By creating a set of ATTRIBUTES and their VALUES rules.
can be produced from which certain DECISIONS can be
made. The complexity of decisions in purchasing is often

SOBRNNUNLWN

It may be that a low

the reason why so many turn out to be “BAD BUYS”. The
ADVISOR can over-ride the complexities to give as clear
an answer as you wish.

SETTING UP THE ADVISOR

You can load THE ADVISOR from the CDU MENU or by
typing LOADTHE ADVISOR”,8. When the program has
loaded a short message appears on the screen, telling you
that the dimensions are being set up. Electing to
CONTINUE will get you a menu with 10 choices of
action.

** THE MENU **
INPUT DATA
VIEW DATA
SAVE DATA
RETRIEVE DATA
CHANGE DATA
ANALYSE DATA
SCRATCH DATA
DISK DIRECTORY
RANK DATA
0.QUIT

ZeENpmawNo

You type the number corresponding to your choice.

Let us look at each of the choices in turn to build up our
own EXPERT SYSTEM. There are some already on the
disk s0 you can skip the difficult part and follow the
reasoning by typing 4 to RETRIEVE THE DATA, typing
“BOOKS” at the prompt then RETURN. You can then
VIEW THE DATA by selecting 2 from the MENU. If you
are a hardy type of computer user we will press on.

STEP BY STEP GUIDE

Type the number 1 and you will be asked to NAME THE
SYSTEM BEING CREATED so that it can be saved when it
is completed. Let us call the EXPERT SYSTEM - “BOOKS"
and then press RETURN.

The ADVISOR then requests you to CREATE

ATTRIBUTES. Type the ATTRIBUTES shown below in the
slare brackets, remembering to press RETURN after
eac

ATTRIBUTE 1 will relate to [COST]
ATTRIBUTE 2 will relate to [PRINTING]

TRIVIA CHALLENGE
RESULTS

We can finally reveal the winner of the TRIVIA CHALLENGE
competition

CDU in conjunction with KEITH SUDDICK, the author
of TRIVIA CHALLENGE, is pleased to announce the
winner of our competition is;

MR .N. PRICE OF TEWKESBURY,
GLOUCESTERSHIRE.

Mr Price obtained a score of 24,272 which was by far
the highest that we received in the CDU editorial
offices. Well done Mr. Price.

Because of the delay in marking this competi
consolation prizes of 25 blank CDU disks have e
sent to the following people.

G.A Cuthbertson; Glasgow
A-A.Robertson; Lancaster
YDirke; Hambur
g; Bristol

Fiprice By
W.Schmidt; Bremerhaven
D.R.Gower; Bristol
s.Parker; Buckingham
ERTLWilliamson; Lowestoit
F.Ashworth; Colwys
D.D.Baker, Belfast
P.Butterworth; Rochdale
J.K.Chamberlain; New Zealand
W.Dancer; London
St
S.Sugars; Australia
F.Hallawell; Hull
1.Klause; Amsterdam

T.E.Marshall; Hereford
SMitchell; Sheffield
P.Perkins; Welwyn Garden City
Y.Soussi; Oslo
KKeighley; Humberside
N.E.White; Swansea
M.Newing; Bognor Regis

We would like to thank everyone for taking the time and
trouble to enter this fun challenge. Look out for more
competitions in the near future.

top: A happy Mr. Price hears the news.

middle: An even happier Mr. Price receiving
his prize.

bottom: An unhappy editor saying goodbye to
the office monitor.

NOW IS THE TIME
TO CATCH UP ON ISSUES YOU HAVE MISSED

VOL 3 No.3 JAN ‘90
4 IN A ROW - Connect a row of

counter.
FROGS IN SPACE - Leap to safety
across the space lanes.
BLACKJACK - Don't loose your
shirt.

LORD OF DARKNESS - Defeat the
evil lord in true adventure style.
MARGO - Fly around and collect
jewels and fuel.

JETRACE 2000 - Have you got
what it takes to be best?
ULTIMATE FONT EDITOR -
Create your own screens, layouts
and characters.

SELECTIVE COLOUR RESTORER -
Design your own system start up
colours.

6510+ UNASSEMBLER -
Transform 6510+ M/C into source
TRIVIA CHALLENGE - The first of
3 files for this superb game.

VOL 3 No.4 FEB ‘90
COLOUR PICTURE PRI
Download your favourite colour
screens.

BASE-ED2 - An update to our
popular database system.

1ST MILLION - Play the market in
this strategy game.

FM-DOS - Enhance your drives
operating system.

GEOS FONTS - A further 4 fonts
for Geos users.

HASHING IT - Relative file
programming made easy.
MULTI-SPRITE - Make full use of
up to 24 sprites.

DIRECTORIES EXPLAINED - Find
your way round the directory
jungle.

TRIVIA CHALLENGE - The 2nd
part.

VOL 3 No.5 MAR ‘90

PLAGUE - Become your planets
Guardian and Defender.
SURROUND - Reversi on the C64
GEOS FONTS - The last of 12
new Geos fonts.

SCREEN SLIDE - Create your own
slideshows.

JOYSTICK TESTER - Put your
stick(s) through the mill.
COLOUR MATCHER -
Mastermind for the younger
players.

SCREEN MANIPULATOR - Full
use of the screen now obtainable.
VIDEO RECORD PLANNER -
Keep tab on your home
recordings.

TRIVIA CHALLENGE - The 3rd
and final part of the game.

VOL 3 No.9 JUL 90

QUICK MERGE 64/128 - Another
useful routine for your archives.
THE GAME PLAN - An aid to
knowing whats where .
CHARACTER DESIGNER -
Another designer for those
without.

HASHBASE 128 - A powerful
database for C128 users.
REVASM 64/128 - Two
unassemblers for non Speedy
Assembler owners.

SPEEDY UNASSEMBLER - An
unassembler specific to Speedy
Assembler users.

BANKS AND MEMORY - An aid
to redefining screen and graphic
memory.

GRAPHICS FACTORY - A novel
way of getting in graphic design.
POT POURRI - A selection of
useful routines for all users.

VOL 3 No.10 AUG 90

LIMBO 2 - The sequel to Limbo
SCREEN DESIGNER 128 - Screen
designing made easy.
DATABASE7S - A database full of
features.

LETTER MAKER - Text Screens
made decidedly pleasing.
FUNCTIONS - Make full use of
those function keys.

GAMES LIST CREATOR - Keep
tabs on your games disks.

DUAL DISKCOPY - At last an
intelligent disk copy program.
SEQUENCER64 - Musicians have
afield day.

SECURITY - Put all those broken
joysticks to good use.
SUPERBOOT! - Auto load your
programs.

VOL 3 No.11 SEP ‘90
BANKING 128 - A simple way of
keeping your money straight.
DISK DRIVER V4 - A simple disk
utility.

AUTOBOOT 128 - C128 users
get easy access to CDU programs.
READING BETWEEN THE LINES -
Build your own adventure parser.
1.D.OS. - A comprehensive drive
utility.

PRICE CALCULATOR - Keep tabs
on inflation.

B.O.S.S. - Yet another alternative
to the standard Basic.

SCREEN DESIGNER/COMPILER -
Impressive screen layouts for all.
LANDSCAPE ROUTINE -
Beginners guide to scrolling
backdrops.

SAMPLE KIT 64 - More sampling
for all you musicians.

¥

44

VOL 3 No.6 APR ‘90
BAR PROMPTS - M/C input

itine.
HI-LITE BARS - Input routine but
in Basic.
TEXAS DEMO - Example of using
Basic in demos.
CHARS TO SPRITES - Convert
UDG's to sprites.
FONT FACTORY -
Complimentary program to the

above.
3D-TEXT MACHINE - Impressive
3D text screens the easy way.
SCREEN ENHANCER - Makes full
use of the screen easy to achieve.
SPREADSHEET 64 - An excellent,
easy to use spreadsheet.
MINI-AID - 3 short u
the Basic programmer.
€128 COLLECTION - 3 very
useful C128 programs.

ies to aid

VOL 3 No.7 MAY ‘90

NUDGE - FLD explained in
laymans terms.

WINDOW WIPER - An alternative
screen wipe system.

CHARACTER EXTRACTOR -
Borrow those nice character sets
you see.

MAZE GENERATOR - Create your

own fun.

HIRES ANIMATOR - This difficult
subject made easier.

SPRITE DRIVER - Platform game
designing without the fuss.
ROTOTRON - Demonstration of
Sprites and Sound.

TEXT COMPRESSION - How to
squeeze a gallon into a pint.
SCREENS - Make up your own help
screens and keep them in memory.
INTERRUPT POINTERS - Geos
style windows and pointers for
you.

VOL 3 No.8 JUN ‘90

ALEATORY MUSIC - An
alternative music system.

SPRITE BASIC - Efficient sprite
handling through Basic.

SPRITE GENERATOR - Another
sprite editor for your library.
MUNCHER - Pacman returns with
a vengeance.

ASTRODUS - Escape the
spaceship Astrodus in this
adventure.

1581 DIRECT ACCESS - Find your
way around the 1581 disk drive.
PERSONAL ORGANISER - Design
your own organiser pages.

128 CONVERTOR and MATHS
AID - 2 more for C128 users.

VOL 3 No.12 OCT ‘90

ROLUEM - An example of
Graphics Factory in use.
COLOUR MATCH - A short utility
for C128 users.

SPREAD-ED - The 3rd in the ‘ED’

eries.

RASTER EDITOR - Put those
raster lessons to good use.
ADDRESS BOOK - An unusual
address base.
SUPERSORT64/128 - Sorts have
never been easier.

SPRITE EDITOR C128 - Another
utility for 128 users.

GRAPH-ED - The last in the ‘ED’

BACKGAMMON - The popular
board game gets an airing.

VOL 4 No.1 NOV ‘90

WAR AT SEA - C128 version of
battleships.

FULL DISK JACKET - Keep track
of your disks.

NEAGOX - Blast everything that

moves.
NUMDEF - A basic game to test
the reflexes.

MEMORY SCANNER - Look
through memory the easy way.
MONEY 64 - Budget planning for
the 90's.

XINOUT - An alternative input
routine.

CALENDAR C128 - No more
buying of calendars.

GOMOKU - An interesting
variation of ‘GO’.

SMOOTH SCROLL DEMO -
Create your own scrolls.

VOL 4 No.2 DEC ‘90

ILS (German Program) - A C128
language tutorial.

SCREEN DESIGN CORRECTION
An update to this excellent utility.

BETTER BACKUPS - Help for ARC
users.

MACHINE CODE GEMS - A suite
of MC routines to aid you.

COLOUR TABLE EDITOR - Get
those raster bars right.

MULTITASKING C128 - An
implementation for the C128.

Back issues of CDU are available at £3.25 per issue, which includes postage and packing.
All orders should be sent to:- Select Subscriptions Ltd, 5, River Park Estate, Berkhamsted,

Herts, HP4 1HL. Please allow 28 days for delivery.

ON THE DISK

CHEQUE BOOK ORGANISER

Take care of the pennies, the pounds take care of themselves PETER WEIGHILL

Cheque Book Organiser (CBO for short) is a program enters the backslash between day/month/year)
which will help you to check your bank statement at the CBO will show you what you have entered and will ask
end of each month. It can also help you to keep track of if correct. If NO you will have to input the information
how much money you have left in your account, and is again. When you have input all your PAY INS press
useful where you operate an interest bearing current return for amount

account with your bank. They pay you interest if you

have money in the account but charge the earth if you

are overdrawn. CBO helps you avoid these charges. 2. ENTER PAY OUTS

CBO is simple to use and easy to understand.

Same as PAY INS except also asks for a narrative to
record Cheque No and/or payee if you so

QU RG x
o it et desire. (Narrative up to 19 characters)

PAY INS
PAY OUTS

STANDING ORDERS
STATEMENT 3. ENTER STANDING

PAY INS/OUTS LEFT ORDERS

LGOS U RV LR A - DIRGL DLRS (vou must set up Standing Orders first
STANDING ORDERS using optin 7 e

Asks “ARE YOU SURE". ‘N’ returns you to
BEEEND ean the menu, 'Y" asks for date. After date
input, you are then asked if date is correct
N" will ask you to re-enter the date. 'Y’
posts ALL Standing Orders to bank
records and returns to menu

©OND AL BN

ABOUT CBO
BALANCE:+ 1587.40 C
When CBO is run for the first time, it will
search for "CHEQUE DATA” and when

not found, it will ask you to set up the
balance (as shown on your last
statement). Balance field size is upto
#99999.99. It also asks you if the balance
is CREDIT or DEBIT. To check, it asks
you if this is okay, if NO then it repeats
the two questions, if YES it goes to the
main menu and gives you 9 options:

;13 TO INCLUDE ON STATEMENT
1. ENTER PAY INS 30113 MHEN BALANCE AGREES
USE CRSR UP/DOWN TO MOVE LINE
This option allows you to record any
transaction where you have deposited BMALIMELLES KRS, AR

money. You enter the amount and press return.
You then enter the date (CBO automatically

46

4. CHECK STATEMENT

This lists last statement balance and cheques/receipts.
(All ransactions should have been entered using
options 1-3 before you use this option)

The program allows you to check off those:
payments/receipts which appear on the statement.
Remember to enter any interest as a Pay In before
using option 4.

If you check them off in the order that they appear on
the Bank Statement, they will be printed out atter you
press return (if desired) in the same order as the
statement

You use the space bar to select (or deselect) the items,
and return when all items have been checked and the
balance agrees

The screen will ask “Are you sure?”, and “Do you
require a printed statement?”. It will also tell you how
many items are left to be processed by the bank

[CQ_NO DESCRIPTION|
IN
IN
IN
H

ISH RAIL
s

4 TO PRINTOUT INFO
1 TO RETURN TO MENU

5. VIEW PAY INS/OUTS LEFT

This option allows you to view what
cheques have been entered and/or were
outstanding since your last Bank
Statement. It also shows you the amount
of money you have to cover any cheques
you wish to write. Press “P” for a print out.

6. EDIT PAY INS/OUTS
AND BALANCE

This shows the last Statement balance
and allows you to alter any entries
previously made which were incorrect.
Move the cursor to the required line and
press retumn.

You will then be given a choice of
DELETE, EDIT or QUIT (return to option
6). Edit offers you the choice of editing
DATA DESCRIPTION, AMOUNT,

1
2
3
3
S
13
7
8
9
10

ON THE DISK

CREDIT/DEBIT DESIGNATION. Once edit actioned,
press “Q” to return to option 6.

7. EDIT STANDING ORDERS

There is provision for 10 MONTHLY Standing Orders
When you action option 3, ALL the Standing Orders are
entered as due for payment
If any of them are not required, they can be either
removed prior to using option 3, or Edited using option
6. “A"allows you to enter a Standing Order. It asks for
amount and description (up to 16 characters), and
automatically adds prefix SO to the description. If you
do not use Standing Orders, but prefer Direct Debits
then alter line 2 in the program by removing the word
REM from it, leaving the remainder of the line intact,
and then resave the program using program name
‘CHEQUE BOOK 2". The program will then operate as
for Standing Orders, but all references will be to Direct
Debits (DD) and not Standing Orders (SO). Edits to
existing data follow similar routines to that
outlined in option 6. Option to print out
hardcopy of Standing Orders or Direct
Debits is available.

8. SAVE FILE AND END

This option asks for confirmation prior to
actioning the save routine. Any changes
made using the options above require you
to use option 8 to save your
ammendments.

9. END

As option 8 except that it does not
overwrite the original data disk. That is to

say, use this option if data is only to be viewed and not
modified

il TO ADD STANDING ORDER
RETURNERE DG U |3

@ TO PRINT STANDING ORDERS
USE CRSR UP/DOWN TO MOVE LINE

ON THE DISK

CCONTINUED FROM PAGE 31.

appear cryptic to the uninitiated, its function can usually
be duplicated more simply by:

BOOT”PLAYPATCH.128" :REM if required
Unfortunately this command is not adequate in
programs intended for widespread distribution, as it will
not work correctly from some disk drives when used by
some C128s. LIST “C128 TUNE-UP” for examples of
code intended to work with all drives on all Commodore
128s. (If you want to experiment with “C128 TUNE-UP”,
you will need to set DEV=8 in line 30 before it will RUN
from memory).

EARS TELL ALL

For the musicians among us who trust only their ears
when it comes to tuning, try this:

BOOT”PLAYPATCH.128"
PLAY “A”:PLAY OFF:PLAY “A”

If you hear the same note repeated, your Commodore
128 has at least the BASIC LOW Replacment ROM and
will have no further use for this program. If you hear two
different notes, you should get better acquainted with
PLAYPATCH 128 as you will probably be needing it
‘PLAY OFF’ is a special instruction to disable the patch.
Its effect is the same as SYS5251, but is more convenient
to use as you don’t have to remember an address.
Having installed PLAYPATCH.128, why would anyone
want to disable it? One reason is to relinquish the
memory it uses in order to make way for other programs.
If you (or a program) use some of the patch’s memory
when it is still active, you risk crashing the computer.

WHERE ITS AT

When active, PLAYPATCH.128 occupies $1360-$1738
and $03E4-SO3EF in Bank 15, where “$” denotes
hexadecimal. BASIC programs do not normally use this
memory, but machine language (ML) programs favour it.
The patch can be restarted by ‘SYS4960" without
reloading, provided the segment at $1360-514C4
remains undisturbed in memory. So, if you are likely to
use any of the above-quoted memory locations for other
ML programs, don't forget to ‘PLAY OFF first, or you
may later be forced to reset your computer. (RUN/STOP
Restore will not fix it). Don’t worry if ‘PLAY OFF’
sometimes causes a Syntax Error for no apparent reason
This merely indicates that PLAYPATCH.128 was not
enabled at the time. (Perhaps you previously disabled it).
“C128 TUNE-UP” contains an example of ‘PLAY OFF’
which won't break a BASIC program if the patch is not
in use. If you can’t remember - and can't tell by ear -
whether you last switched your PLAY patch ‘ON’ or
‘OFF’, there is no harm using SYS4960 more than once
to ensure your music gets played correctly.

With PLAYPATCH.128 installed, your Commodore 128
now has the ability to harmonize with other fixed-
tuned instruments of standard pitch. Althous

this is not always important, some pieces just don’t
sound right unless played in their familiar key.

PROGRANMMING

BASICS of BASIC

A series of Basic tutorials designed to make the
beginner an expert
JOHN SIMPSON

It seems, from the many letters and telephone calls we
receive at the offices of CDU, and also from an early
prognosis of our recent readers survey, that there are
many of our readers who are not initiated into the
practise and noble art of computer programming, but
who would very much like to be.
As one of the aims of this magazine is to help increase
peoples knowledge and awareness of computers from a
deeper viewpoint rather than simply playing games, or
usiness orientated applications, we have decided
initiate an in-depth series of tutorials dealing with the
sub,m the language of BASIC.

WHATS COMING UP

Within each issue we will set out lessons, both in text
and with “on the disk” examples, for the CDU Student to
peruse, study, practice and digest. The lessons will
commence from the viewpoint of the CDU Student
having no language or computing knowledge or skill
whatsoever, and will gently, yet thoroughly, progress
through to a point whereby the CDU Student will, with
conviction and certainty, be in the enviable position of
having the ability to create programs for the computer to
undertake many, many tasks.

The tutorials will cover all aspects of Basic
programming techniques from NUMBERS and
VARIABLES, LOGICAL OPERATIONS, DATA
CONVERSIONS, INPUT AND OUTPUT, BASIC
KEYWORDS, GRAPHICS - including SPRITE
MANIPULATION as well as colourful SCREEN DESIGN
and creation - SOUND EFFECTS AND MUSIC, through
1o glimpses into the hardware of the C64.

Once the CDU Student has completed the course then
the he or she will have a fine and detailed
understanding of the workings of the machine and will
be ready to move on to even more complex aspects of
computing, such as languages like C (the “in’ language
of computing), or machine code (the actual language of
all computer)

| WOULD LIKE TO REMIND OUR READERS AND
POTENTIAL CDU STUDENTS THAT THIS COURSE
WILL COMMENCE FROM THE VIEWPOINT OF “NO
KNOWLEDGE”, AND SO, THEREFORE, IN NO WAY
DO WE WISH TO OFFEND YOUR INTELLIGENCE. SO,
IF YOU HAVE A BEGINNER’S GRASP OF BASIC THEN
POSSIBLY THE EARLY STAGES OF THE COURSE MAY
APPEAR SIMPLE TO YOU, BEAR WITH ME AND THOSE

48

WITH A LESSER UNDERSTANDING THAN YOURSELF.

IT WILL SOON REACH YOUR LEVEL OF EXPERTISE!
THE ORIGINS OF BASIC

The word BASIC is an acronym for ‘beginner’s all-

purpose symbolic instruction code’. A programming

language which was developed in the mid-1960s.

Basic, as originally conceived, was a very simple

PROGRAMMING

straightforward and not too difficult to follow. The
Machine Code example is a mystery to the uninitiated,
and the C language example will certainly require a lot
more explanation

However, as | said earlier, once we have reached the
end of the course, which starts in eamest next issue,
then the magic of machine code and the completeness
of C will be a much more easily achieved goal, and we
aren't talking football!

language that could be learned very quickly. I was this

simplicity of Basic which made it a natural choice as a

programming language for the early microcomputers,
and from there it rapidly became an established
language.

Since then it has become somewhat more complex with

many more instructions, and yet it still manages to

retain the elements of simplicity. This is encouraged by
the fact that the language itself is conveniently close to

English which does help to make it reasonably easy to
understand and to follow. As an example of this here
are a few lines of coded computer instructions in three
different languages, each of which accomplishes the
same end result:

1. BASIC

10LET X =1
20 IF X = 10 THEN END
30 PRINT X
40X=X+1
50 GOTO 20

LINE 10 Here we have set X equal to 1

LINE 20 In this line we test if X equals 10. If it does
then the program terminates, otherwise it will continue
1o line 30 s

LINE 30 This line will print onto the screen the current
value of X

LINE 40 On this line the value of X is incremented by 1
LINE 50 And this line redirects the program back to
Line 20 to test if X has reached the value of 10, and so
on..

2. MACHINE CODE

10 LDA#1

20 TOP CMP #10
30 BEQSKIP
40 JSR$FFD2
50 CLC

60 ADC #1

70 JMP TOP
80 SKIP RTS

3.c
main(void)
intx;
for(x=1:x<10;)
printf(%d
" x+4);

As you can see, the basic example is fairly

PREPARING A DISK FOR THE
SERIES

The first item you will require for this course is a newly
formatted disk ready to save examples, and “test”
programs. To o this take either a new disk, or an old
one (the programs upon which you no longer require),
and place it into your disk drive. Next type the
following, exactly as is printed here

OPEN 15,8,15

Once you have typed this line, press the key to the right
of the keyboard marked RETURN. Now type:

PRINT#15,"N0:BASIC PROGRAMS,TU”

And again press RETURN. The disk drive's red light
will now come on and you will hear activity within the
drive. After about two minutes the red drive light will
blink off. Your disk is now formatted and ready for use.
However, you will now need to reset the computer back
toit's original situation, so now type:

CLOSE 15,8,15
And then press the RETURN key.

ENTERING COMMANDS

There are many keywords (71 to be precise), which the
computer will recognise as commands to instruct it to
do something. Let us examine one in particular. This is
the word PRINT. When the computer comes across this
word it knows that any statement following PRINT must
be output to the screen (it could be to a printer, but | will
be dealing with that later in the series).

If you formatted a disk, as outlined earlier, then you
would have already used three Command Words (or
keywords), namely, OPEN, PRINT#, and CLOSE.
However, the important point is that after typing in the
keyword, followed by the statement (such as 15,8,15),
you pressed the RETURN key. This key is used to tell
the computer to ENTER the statement you have just
typed into its memory (this is why sometimes you may
come across the word ENTER instead of RETURN). It
really is important, however, to remember to always
press RETURN at the end of each line.

TO BE CONTINUED NEXT MONTH.

49

Lineage: 53p per word

ovan

Fing for nformation on
Al advertisements i

(» (i ‘M«t i

rate card (available

KEYNES, MK11

(0908)

Advertisements are accs

serios bookings/dscounts.
i this section must be prepaid.

epted subject 1o the terms and conditions printed on the advertisement
on reque:

st
Make cheques payable to Alphavite Publications Lid.
Send your requiremer

CLASSIFIED DEPARTMENT

ALPHAVITE pusucmous LTD., 20 POTTERS LANE, KILN FARM, MILTON

nts o

569819

POOLS AND HORSES

Every program written by a mathematician who has spent many

years in the betting industry. Programs that utiise the tried and

trusted methods of the professional, not pie in the sky theories

that failto pass the test of time.

FOOTBALL BOXFORM _ Writen by a former pools expert for

littlewoods. The program has forecast over 50% more draws than

wmm he expected by chance.

Home ‘order of merit and

for every match. Merit tables shnw at aglance the teams cwenuy in
alean spell. Australian

included in the price.

POOLS PLANNER by the same author. Full details given of 369
easily entered block perms ranging from 9 to 73960 lines and
from 12 to 56 selections. All are accepted by the pools firms

and are checked in seconds by your computer.

RACING BOXFORM Course characterstics (bl i to the program)
‘as well as the form of the horses are considered to specialy produce an
‘order of merit for each race. Designed for flexibility allowing users to
amend the program if they wish. Price still includes the highly
acclaimed HANDI AP WINNER - more than 1000 winners every year -
over 25% of them at 5/1 or better. Prices (Tape) £15.95 each. £25.95
any two. £35.95 all three. For discs please add £2. per program. Order
two or more and recieve FREE a progran to work out almost any bet.
S0 good s used by the bookies,
Advertised for Six years in the sporitng and computing press.
BOXoft CLEVI HE BEST
BOXOFT (YC), 65 Allens Meadow,
Neston, South Wirral L64 95Q
coess/Visa Tet051-336-2668

LIMITED

PUBLICATIONS

EDITORIAL ASSISTANT

YC Macezine s oo for sNplialEin e te
anatic to become a YOP Editorial Assistant

The![dealTapblicant sholld Fevevic i king
skills, would enjoy being wacky at shows, and
must, above all else, enjoy playing computer
games

If you feel you could better the country's top
C64 title, apply in writing to Rik Henderson ~ The
Editor

gan

CLASSIFIED SALES EXECUTIVE
An excellent opportunity has arisen for a classified
sales executive with at least 6 months experience
to handle classified sales across 3 Commodore
titles and 2 health magazines.

The position, based in Milton Keynes, off

attractive lifestyle with competitive salary and
commission package

Please apply in writing to The Advertisement
Manager.

i orinet Ui szo 20m

HAVTE Py

POTTERS LANE. e

insertions, made payable to Alphavite Publications.

BECB A MASTER, D CPG & POW G
SPECTRUMS.
neoge: 53p
S sy, £11.50 (» VAT per sl ol
s discounis avalabieon recuest.
senoTo cou oA
I enclose my cheque/postal order for £ for
(Delete as necessar
PLEASE DEBIT My AcCEssMisA cARDNo: [[[| | []
EXP. DATE.
€ FoR INSERTIONS
Name
Address
Daytime Tel No Signature
Q Forsae Q speciaLoFFErs [RepaRs

Postcode
Date
0 HARDWARE

T

T T A A

ry

-

T

SUPER
SNAPSHOT v5

five powerfulversions, each one breaking new
ground, but Super Snapshot has become the best
cartridge inthe world. Th st below detals the
mainfeatures of Super SnapshotvS; i you need a
lttle more persuasionlook backto CDU ssue 19,
you'l be impr

Sotake a ook atthe red box you've got plugged
in,andifourspecfications knock it for sixor you
don'town acartidge then don'tjust st there,buy
Super Snapshot V5 todzy!

FEATURES:

D Al features available at the press of a button

> Works with all 64 (c) and 128 (D) computers

> Compatible with 1700/1764/1750 REU'S
1file

Wel, it may have takenafew years of hardworkand [

£ powerful utiity for generating all kinds of

PP FEFEEFEEFEFEEFR L
ANIMATION CARTRIDGE H
STATION PORT EXTENDER

Unleash your creativity with Animation Station, 2

graphics on your Commodore 64 or 128. Built-in,
predran picturs give you a head start on your
creations. Automatic generation of circles, ovals,
squares, boxes, straight lines, typography and

>

> Save T faster andload 1S fastrn the 1541,
1571 & 1581, Speeds of upto 25 faster when
using Turbo 25 - even faster than Replay

» Super DOS Wedge

> GAME MASTER menu with sprite killer,
infntive lives generator and joystick port
swapper

» Programmable function Keys

» Sprie Moritor

» Exclusive Character Set Monitor

» Exclusve Sound Sample Monitor

» Exclusive Boot sector support

» 300/1200/2400 Terminal program

H (40/80 column)

B> SUPER DISK SNAPSHOT - our new super
tibbler

> SCREEN-COPY now loads or saves in more
formats and dumpsin COLOUR to STARLC10C
printers and in 16 grey scales

> Improved full featured M/L monitor that DOES
NOT CORRUPT MEMORY, Interrupt, excrrine
and resume any rumning program

» Drive Mon

2 BASIC PLUS ith 15 new BASIC commands

> FILE MANAGEMENT SYSTEM - scratch,
unscratch, rename o adjst Skew.Includes
our 1 or 2 drive file copier with partition
supportfor the 158

» Fast disk copie, | or 2 rives

» OUR FILE COPIER, DISK COPIERS and
NIBBLER MAKE FULL USE OF THE REU'S

» Sequentia fil reader

P Utilty disk

B> Plus 150+ Kracker Jax parameters

ONLY £34.95

| includes design touch pad, pencil and graphics
| software. Ideal for GEOS users.

{{ONLY £59.95

sel-contained, lectronic dafting room. Combine
type and graphics on the Screen, draw in many
colours, even connect your VCR to createtitles
and graphicsfor your home movies. Screen dump
toyyour printer. Koala Compatile. Package

CABLE

Ave you cramped for space behind your computer?
Isit hardto reach your cartridge portto plug-inor
swap artridges? This andy cabl sthe Solution
The Cartridge Port Extender Cable connects to
the cartridge port i the back ofthe computer and
lets you plug in your cartridge o its other end.
Since the cable s flexible, you can locate the
cartidge upto 11" away for easier access. Not for
REUS

ONLY £19.95

SESi T TR

VIDEO BYTE 3
Digtize video images from your VCR, laser disk,
BWor colour camera, o the air orcable TV New
version 3.0 software eatures full e-dislay with
muli-capture mode, menu select prining
expanded colourizing features, save to disk and
much more. The hardware is o arger than an
average cartridge which plugs ntothe User Port, -1
The menu driven capture Software is easy to use
and pictures stored o dis can be imported into
most popular drawing packages including GEOS
Prints infllcolour o the Star LC10 when used
‘with SuperSnapshot.

ONLY £79.95 ||

T

S

T
HHHH

T

Prices include VAT & UK.
delvery, Overseas orders
send advertised price plus £2.50 for Airmail
Please send cheque, Postal Order or Credit Card
detals VISAACCESS orders accepted by ‘phore.
Masons Ryde,
Defford Road,
Pershore, Worcs.

WR10 1AZ.
Tel: (0386) 553153
Technical Support

Tel: (0386) 553222

HOME VIDEO
PRODUCER 64
Nothing can make home videos so special. Add
ttles, text, and even brilant graphics to your
favourite home videos with ease and the help of
the Home Video Producer. You have the chaice of
10 typefaces, 75 large ful-colour graphics and
ready made Segments, but the most appealing
aspect of the Home Video Producer i the ease
with which you can doal this.

ONLY £29.95

sanaizmmEm:

a8

C64 SLIMLINE
UPGRADE CASE
Make your older C64 looklike a newer model! Al
youneed isascrewdriver and about 15 minutes to
transfer your C64 insdes to tis new case
Complete nstructions included.

ONLY £12.95

F

|ONLY £6.95
GEOTRONIX

GEOS
APPLICATIONS

GEOSCAN ART

This special type of GEOS art s been created
using The HandyScamner 64.Pictures are scanned
at 400 dpi
create thefirst geoSCAN ART Collction entited
‘The British Countryside and is packed full with
Eagles, Owls and Butterflies.

ONLY £6.95

GEODIRECTORY
A comprehensive book listing al available GEOS
programs. Details for each program i given
including version numbers, The geoDirectory is
divided nto sections covering Paint, Write, Spell,
file, Calc, Chart, Terminal, Graphic, Music,
Animation, Games and many more

A professional PCB designer utlzing the GEOS
environment, Five double sided disks supply
geaPublish with pre-designed components,
sockets, edge comnectors and layout gids in
Photo Scraps. Using the Photo Manager and
‘geoPublish the circuit is designed and printed.

ONLY £39.95

GEOS 64 V2.0 £29.95
GEOCALC 64 £24.95
GEOFILE 64 £24.95
GEOPROGRAMMER £29 95
19.95

£19.95

£39.95

i from magaines, books and papersto 1T

e

, VIDEO

Actual Digitised
colour screen - shots

Vl d Iz B is an electronic filter which takes a colour video sig-

nal and separates it into the three primary colours (Red, Green and Blue) allowing
each to be digitised,

L Ideal for use with Vidi-Chrome & Frame Grabber or Digi-View Gold (By Newtek).

For use with colour Digitisers replacing conventional Filter sets

Our Vidi - Chrome switches Vidi - RGB automatically grabbing full
colour pictures in less than one second

+ Digitise full colour images direct from

Al these
pictures are Digitise- outstanding colour pictures
actual direct from Canon’s new Still Video Camera

unretouched j (an example shown on cover)
screen-shots
illustrating the
sequence of
creating a full

Manual switching
for maximum flexibility.

Fully compatible
with Digi - View Gold

home VCR (must have perfect freeze frame)

£69.95
Inc Vat

Tmited

6 Fairbaim Road,
Kirkton North,
Livingston,
Scotland,
EH54 6T5

Tel: 0506-414631
Fax: 0506-414634

