
Assembly In One Step
dwheeler.com/6502/oneelkruns/asm1step.html

RTK, last update: 23-Jul-97

A brief guide to programming the 6502 in assembly language. It will introduce the 6502 architecture, addressing
modes, and instruction set. No prior assembly language programming is assumed, however it is assumed that you
are somewhat familiar with hexadecimal numbers. Programming examples are given at the end. Much of this
material comes from 6502 Software Design by Leo Scanlon, Blacksburg, 1980.

The 6502 Architecture

 The 6502 is an 8-bit microprocessor that follows the memory oriented
 design philosophy of the Motorola 6800. Several engineers left
 Motorola and formed MOS Technology which introduced the 6502 in 1975.
 The 6502 gained in popularity because of it's low price and became the
 heart of several early personal computers including the Apple II,
 Commodore 64, and Atari 400 and 800.

 Simplicity is key

 The 6502 handles data in its registers, each of which holds one byte
 (8-bits) of data. There are a total of three general use and two special
 purpose registers:

 accumulator (A) - Handles all arithmetic and logic. The real heart
 of the system.

 X and Y - General purpose registers with limited abilities.

 S - Stack pointer.

 P - Processor status. Holds the result of tests
 and flags.

 Stack Pointer

 When the microprocessor executes a JSR (Jump to SubRoutine)
 instruction it needs to know where to return when finished. The 6502
 keeps this information in low memory from $0100 to $01FF and uses the
 stack pointer as an offset. The stack grows down from $01FF and makes
 it possible to nest subroutines up to 128 levels deep. Not a problem

1/19

http://www.dwheeler.com/6502/oneelkruns/asm1step.html

 in most cases.

 Processor Status

 The processor status register is not directly accessible by any 6502
 instruction. Instead, there exist numerous instructions that test the
 bits of the processor status register. The flags within the register
 are:

 bit -> 7 0
 +---+---+---+---+---+---+---+---+
 | N | V | | B | D | I | Z | C | <-- flag, 0/1 = reset/set
 +---+---+---+---+---+---+---+---+

 N = NEGATIVE. Set if bit 7 of the accumulator is set.

 V = OVERFLOW. Set if the addition of two like-signed numbers or the
 subtraction of two unlike-signed numbers produces a result
 greater than +127 or less than -128.

 B = BRK COMMAND. Set if an interrupt caused by a BRK, reset if
 caused by an external interrupt.

 D = DECIMAL MODE. Set if decimal mode active.

 I = IRQ DISABLE. Set if maskable interrupts are disabled.

 Z = ZERO. Set if the result of the last operation (load/inc/dec/
 add/sub) was zero.

 C = CARRY. Set if the add produced a carry, or if the subtraction
 produced a borrow. Also holds bits after a logical shift.

 Accumulator

 The majority of the 6502's business makes use of the accumulator. All
 addition and subtraction is done in the accumulator. It also handles
 the majority of the logical comparisons (is A > B ?) and logical bit
 shifts.

 X and Y

2/19

 These are index registers often used to hold offsets to memory
 locations. They can also be used for holding needed values. Much of
 their use lies in supporting some of the addressing modes.

Addressing Modes

 The 6502 has 13 addressing modes, or ways of accessing memory. The 65C02
 introduces two additional modes.

 They are:

 +---------------------+--------------------------+
 | mode | assembler format |
 +=====================+==========================+
 | Immediate | #aa |
 | Absolute | aaaa |
 | Zero Page | aa | Note:
 | Implied | |
 | Indirect Absolute | (aaaa) | aa = 2 hex digits
 | Absolute Indexed,X | aaaa,X | as $FF
 | Absolute Indexed,Y | aaaa,Y |
 | Zero Page Indexed,X | aa,X | aaaa = 4 hex
 | Zero Page Indexed,Y | aa,Y | digits as
 | Indexed Indirect | (aa,X) | $FFFF
 | Indirect Indexed | (aa),Y |
 | Relative | aaaa | Can also be
 | Accumulator | A | assembler labels
 +---------------------+--------------------------+

 (Table 2-3. _6502 Software Design_, Scanlon, 1980)

 Immediate Addressing

 The value given is a number to be used immediately by the
 instruction. For example, LDA #$99 loads the value $99 into the
 accumulator.

 Absolute Addressing

 The value given is the address (16-bits) of a memory location that
 contains the 8-bit value to be used. For example, STA $3E32 stores
 the present value of the accumulator in memory location $3E32.

3/19

 Zero Page Addressing

 The first 256 memory locations ($0000-00FF) are called "zero page". The
 next 256 instructions ($0100-01FF) are page 1, etc. Instructions
 making use of the zero page save memory by not using an extra $00 to
 indicate the high part of the address. For example,

 LDA $0023 -- works but uses an extra byte
 LDA $23 -- the zero page address

 Implied Addressing

 Many instructions are only one byte in length and do not reference
 memory. These are said to be using implied addressing. For example,

 CLC -- Clear the carry flag
 DEX -- Decrement the X register by one
 TYA -- Transfer the Y register to the accumulator

 Indirect Absolute Addressing

 Only used by JMP (JuMP). It takes the given address and uses it as a
 pointer to the low part of a 16-bit address in memory, then jumps to
 that address. For example,

 JMP ($2345) -- jump to the address in $2345 low and $2346 high

 So if $2345 contains $EA and $2346 contains $12 then the next
 instruction executed is the one stored at $12EA. Remember, the
 6502 puts its addresses in low/high format.

 Absolute Indexed Addressing

 The final address is found by taking the given address as a base and
 adding the current value of the X or Y register to it as an offset. So,

 LDA $F453,X where X contains 3

 Load the accumulator with the contents of address $F453 + 3 = $F456.

4/19

 Zero Page Indexed Addressing

 Same as Absolute Indexed but the given address is in the zero page
 thereby saving a byte of memory.

 Indexed Indirect Addressing

 Find the 16-bit address starting at the given location plus the
 current X register. The value is the contents of that address. For
 example,

 LDA ($B4,X) where X contains 6

 gives an address of $B4 + 6 = $BA. If $BA and $BB contain $12 and
 $EE respectively, then the final address is $EE12. The value at
 location $EE12 is put in the accumulator.

 Indirect Indexed Addressing

 Find the 16-bit address contained in the given location (and the one
 following). Add to that address the contents of the Y register.
 Fetch the value stored at that address. For example,

 LDA ($B4),Y where Y contains 6

 If $B4 contains $EE and $B5 contains $12 then the value at memory
 location $12EE + Y (6) = $12F4 is fetched and put in the accumulator.

 Relative Addressing

 The 6502 branch instructions use relative addressing. The next byte
 is a signed offset from the current address, and the net sum is the
 address of the next instruction executed. For example,

 BNE $7F (branch on zero flag reset)

 will add 127 to the current program counter (address to execute) and
 start executing the instruction at that address. SImilarly,

 BEQ $F9 (branch on zero flag set)

 will add a -7 to the current program counter and start execution at
 the new program counter address.

5/19

 Remember, if one treats the highest bit (bit 7) of a byte as a sign (0
 = positive, 1 = negative) then it is possible to have numbers in the
 range -128 ($80) to +127 (7F). So, if the high bit is set, i.e. the
 number is > $7F, it is a negative branch. How far is the branch? If
 the value is < $80 (positive) it is simply that many bytes. If the
 value is > $7F (negative) then it is the 2's compliment of the given
 value in the negative direction.

 2's compilment

 The 2's compilment of a number is found by switching all the bits
 from 0 -> 1 and 1 -> 0, then adding 1. So,

 $FF = 1111 1111 <-- original
 0000 0000 <-- 1's compliment
 + 1

 0000 0001 <-- 2's compliment, therefore $FF = -1

 Note that QForth uses this for numbers greater than 32768 so that
 65535 = -1 and 32768 = -32768.

 In practice, the assembly language programmer uses a label and the
 assembler takes care of the actual computation. Note that branches
 can only be to addresses within -128 to +127 bytes from the present
 address. The 6502 does not allow branches to an absolute address.

 Accumulator Addressing

 Like implied addressing, the object of the instruction is the
 accumulator and need not be specified.

The 6502 Instruction Set

 There are 56 instructions in the 6502, and more in the 65C02. Many
 instructions make use of more than one addressing mode and each
 instruction/addressing mode combination has a particular hexadecimal
 opcode that specifies it exactly. So,

 A9 = LDA #$aa Immediate addressing mode load of accumulator
 AD = LDA $aaaa Absolute addressing mode load of accumulator
 etc.

6/19

 Some 6502 instructions make use of bitwise logic. This includes AND,
 OR, and EOR (Exclusive-OR). The tables below illustrate the effects
 of these operations:

 AND 1 1 -> 1 "both"
 1 0 -> 0
 0 1 -> 0
 0 0 -> 0

 OR 1 1 -> 1 "either one or both"
 1 0 -> 1
 0 1 -> 1
 0 0 -> 0

 EOR 1 1 -> 0 "one or the other but not both"
 1 0 -> 1
 0 1 -> 1
 0 0 -> 0

 Therefore, $FF AND $0F = $0F since,

 1111 1111
 and 0000 1111

 0000 1111 = $0F

 AND is useful for masking bits. For example, to mask the high order
 bits of a value AND with $0F:

 $36 AND $0F = $06

 OR is useful for setting a particular bit:

 $80 OR $08 = $88

 since 1000 0000 ($80)
 0000 1000 ($08)
 or ---------
 1000 1000 ($88)

 EOR is useful for flipping bits:

 $AA EOR $FF = $55

 since 1010 1010 ($AA)
 1111 1111 ($FF)
 eor ---------
 0101 0101 ($55)

7/19

 Other 6502 instructions shift bits to the right or the left or rotate
 them right or left. Note that shifting to the left by one bit is the
 same as multipling by 2 and that shifting right by one bit is the same
 as dividing by 2.

 The 6502 instructions fall naturally into 10 groups with two odd-ball
 instructions NOP and BRK:

 Load and Store Instructions
 Arithmetic Instructions
 Increment and Decrement Instructions
 Logical Instructions
 Jump, Branch, Compare and Test Bits Instructions
 Shift and Rotate Instructions
 Transfer Instructions
 Stack Instructions
 Subroutine Instructions
 Set/Reset Instructions
 NOP/BRK Instructions

 Load and Store Instructions
 ===========================

 LDA - LoaD the Accumulator
 LDX - LoaD the X register
 LDY - LoaD the Y register

 STA - STore the Accumulator
 STX - STore the X register
 STY - STore the Y register

 Microprocessors spend much of their time moving stuff around in
 memory. Data from one location is loaded into a register and stored
 in another location, often with something added or subtracted in the
 process. Memory can be loaded directly into the A, X, and Y registers
 but as usual, the accumulator has more addressing modes available.

 If the high bit (left most, bit 7) is set when loaded the N flag on
 the processor status register is set. If the loaded value is zero the
 Z flag is set.

 Arithmetic Instructions
 =======================

8/19

 ADC - ADd to accumulator with Carry
 SBC - SuBtract from accumulator with Carry

 The 6502 has two arithmetic modes, binary and decimal. Both addition
 and subtraction implement the carry flag to track carries and borrows
 thereby making multibyte arithmetic simple. Note that in the case of
 subtraction it is necessary to SET the carry flag as it is the opposite
 of the carry that is subtracted.

 Addition should follow this form:

 CLC
 ADC ...
 .
 .
 ADC ...
 .
 .
 .

 Clear the carry flag, and perform all the additions. The carry
 between additions will be handled in the carry flag. Add from low
 byte to high byte. Symbolically, the net effect of an ADC instruction is:

 A + M + C --> A

 Subtraction follows the same format:

 SEC
 SBC ...
 .
 .
 SBC ...
 .
 .
 .

 In this case set the carry flag first and then do the subtractions.
 Symbolically,

 A - M - ~C --> A , where ~C is the opposite of C

 Ex.1

 A 16-bit addition routine. $20,$21 + $22,$23 = $24,$25

 CLC clear the carry
 LDA $20 get the low byte of the first number

9/19

 ADC $22 add to it the low byte of the second
 STA $24 store in the low byte of the result
 LDA $21 get the high byte of the first number
 ADC $23 add to it the high byte of the second, plus carry
 STA $25 store in high byte of the result

 ... on exit the carry will be set if the result could not be
 contained in 16-bit number.

 Ex.2

 A 16-bit subtraction routine. $20,$21 - $22,$23 = $24,$25

 SEC clear the carry
 LDA $20 get the low byte of the first number
 SBC $22 add to it the low byte of the second
 STA $24 store in the low byte of the result
 LDA $21 get the high byte of the first number
 SBC $23 add to it the high byte of the second, plus carry
 STA $25 store in high byte of the result

 ... on exit the carry will be set if the result produced a
 borrow

 Aside from the carry flag, arithmetic instructions also affect the N,
 Z, and V flags as follows:

 Z = 1 if result was zero, 0 otherwise
 N = 1 if bit 7 of the result is 1, 0 otherwise
 V = 1 if bit 7 of the accumulator was changed, a sign change

 Increment and Decrement Instructions
 ====================================

 INC - INCrement memory by one
 INX - INcrement X by one
 INY - INcrement Y by one

 DEC - DECrement memory by one
 DEX - DEcrement X by one
 DEY - DEcrement Y by one

 The 6502 has instructions for incrementing/decrementing the index
 registers and memory. Note that it does not have instructions for
 incrementing/decrementing the accumulator. This oversight was
 rectified in the 65C02 which added INA and DEA instructions. The
 index register instructions are implied mode for obvious reasons while
 the INC and DEC instructions use a number of addressing modes.

10/19

 All inc/dec instructions have alter the processor status flags in the
 following way:

 Z = 1 if the result is zero, 0 otherwise
 N = 1 if bit 7 is 1, 0 otherwise

 Logical Instructions
 ====================

 AND - AND memory with accumulator
 ORA - OR memory with Accumulator
 EOR - Exclusive-OR memory with Accumulator

 These instructions perform a bitwise binary operation according to the
 tables given above. They set the Z flag if the net result is zero and
 set the N flag if bit 7 of the result is set.

 Jump, Branch, Compare, and Test Bits
 ====================================

 JMP - JuMP to another location (GOTO)

 BCC - Branch on Carry Clear, C = 0
 BCS - Branch on Carry Set, C = 1
 BEQ - Branch on EQual to zero, Z = 1
 BNE - Branch on Not Equal to zero, Z = 0
 BMI - Branch on MInus, N = 1
 BPL - Branch on PLus, N = 0
 BVS - Branch on oVerflow Set, V = 1
 BVC - Branch on oVerflow Clear, V = 0

 CMP - CoMPare memory and accumulator
 CPX - ComPare memory and X
 CPY - ComPare memory and Y

 BIT - test BITs

 This large group includes all instructions that alter the flow of the
 program or perform a comparison of values or bits.

 JMP simply sets the program counter (PC) to the address given.
 Execution proceeds from the new address. The branch instructions are
 relative jumps. They cause a branch to a new address that is either
 127 bytes beyond the current PC or 128 bytes before the current PC.
 Code that only uses branch instructions is relocatable and can be run

11/19

 anywhere in memory.

 The three compare instructions are used to set processor status bits.
 After the comparison one frequently branches to a new place in the
 program based on the settings of the status register. The
 relationship between the compared values and the status bits is,

 +-------------------------+---------------------+
 | | N Z C |
 +-------------------------+---------------------+
 | A, X, or Y < Memory | 1 0 0 |
 | A, X, or Y = Memory | 0 1 1 |
 | A, X, or Y > Memory | 0 0 1 |
 +---+

 The BIT instruction tests bits in memory with the accumulator but
 changes neither. Only processor status flags are set. The contents
 of the specified memory location are logically ANDed with the
 accumulator, then the status bits are set such that,

 * N receives the initial, un-ANDed value of memory bit 7.
 * V receives the initial, un-ANDed value of memory bit 6.
 * Z is set if the result of the AND is zero, otherwise reset.

 So, if $23 contained $7F and the accumulator contained $80 a BIT $23
 instruction would result in the V and Z flags being set and N reset since
 bit 7 of $7F is 0, bit 6 of $7F is 1, and $7F AND $80 = 0.

 Shift and Rotate Instructions
 =============================

 ASL - Accumulator Shift Left
 LSR - Logical Shift Right
 ROL - ROtate Left
 ROR - ROtate Right

 Use these instructions to move things around in the accumulator or
 memory. The net effects are (where C is the carry flag):

 +-+-+-+-+-+-+-+-+
 C <- |7|6|5|4|3|2|1|0| <- 0 ASL
 +-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+
 0 -> |7|6|5|4|3|2|1|0| -> C LSR

12/19

 +-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+
 C <- |7|6|5|4|3|2|1|0| <- C ROL
 +-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+
 C -> |7|6|5|4|3|2|1|0| -> C ROR
 +-+-+-+-+-+-+-+-+

 Z is set if the result it zero. N is set if bit 7 is 1. It is
 always reset on LSR. Remember that ASL A is equal to multiplying by
 two and that LSR is equal to dividing by two.

 Transfer Instructions
 =====================

 TAX - Transfer Accumulator to X
 TAY - Transfer Accumulator to Y
 TXA - Transfer X to accumulator
 TYA - Transfer Y to Accumulator

 Transfer instructions move values between the 6502 registers. The N
 and Z flags are set if the value being moved warrants it, i.e.

 LDA #$80
 TAX

 causes the N flag to be set since bit 7 of the value moved is 1, while

 LDX #$00
 TXA

 causes the Z flag to be set since the value is zero.

 Stack Instructions
 ==================

 TSX - Transfer Stack pointer to X
 TXS - Transfer X to Stack pointer

 PHA - PusH Accumulator on stack
 PHP - PusH Processor status on stack
 PLA - PulL Accumulator from stack
 PLP - PulL Processor status from stack

13/19

 TSX and TXS make manipulating the stack possible. The push and pull
 instructions are useful for saving register values and status flags.
 Their operation is straightforward.

 Subroutine Instructions
 =======================

 JSR - Jump to SubRoutine
 RTS - ReTurn from Subroutine
 RTI - ReTurn from Interrupt

 Like JMP, JSR causes the program to start execution of the next
 instruction at the given address. Unlike JMP, JSR pushes the address
 of the next instruction after itself on the stack. When an RTS
 instruction is executed the address pushed on the stack is pulled off
 the stack and the program resumes at that address. For example,

 LDA #$C1 ; load the character 'A'
 JSR print ; print the character and it's hex code
 LDA #$C2 ; load 'B'
 JSR print ; and print it
 .
 .
 .
 print JSR $FDED ; print the letter
 JSR $FDDA ; and its ASCII code
 RTS ; return to the caller

 RTI is analagous to RTS and should be used to end an interrupt routine.

 Set and Reset (Clear) Instructions
 ==================================

 CLC - CLear Carry flag
 CLD - CLear Decimal mode
 CLI - CLear Interrupt disable
 CLV - CLear oVerflow flag

 SEC - SEt Carry
 SED - SEt Decimal mode
 SEI - SEt Interrupt disable

 These are one byte instructions to specify processor status flag
 settings.

14/19

 CLC and SEC are of particular use in addition and subtraction
 respectively. Before any addition (ADC) use CLC to clear the carry
 or the result may be one greater than you expect. For subtraction
 (SBC) use SEC to ensure that the carry is set as its compliment is
 subtracted from the answer. In multi-byte additions or subtractions
 only clear or set the carry flag before the initial operation. For
 example, to add one to a 16-bit number in $23 and $24 you would write:

 LDA $23 ; get the low byte
 CLC ; clear the carry
 ADC #$02 ; add a constant 2, carry will be set if result > 255
 STA $23 ; save the low byte
 LDA $24 ; get the high byte
 ADC #$00 ; add zero to add any carry that might have been set above
 STA $24 ; save the high byte
 RTS ; if carry set now the result was > 65535

 Similarly for subtraction,

 LDA $23 ; get the low byte
 SEC ; set the carry
 SBC #$02 ; subtract 2
 STA $23 ; save the low byte
 LDA $24 ; get the high byte
 SBC #$00 ; subtract 0 and any borrow generated above
 STA $24 ; save the high byte
 RTS ; if the carry is not set the result was < 0

 Other Instructions
 ==================

 NOP - No OPeration (or is it NO oPeration ? :)
 BRK - BReaK

 NOP is just that, no operation. Useful for deleting old
 instructions, reserving room for future instructions or for use in
 careful timing loops as it uses 2 microprocessor cycles.

 BRK causes a forced break to occur and the processor will immediately
 start execution of the routine whose address is in $FFFE and $FFFF.
 This address is often the start of a system monitor program.

Some simple programming examples
================================

 A few simple programming examples are given here. They serve to
15/19

 illustrate some techniques commonly used in assembly programming.
 There are doubtless dozens more and I make no claim at being a
 proficient assembly language programmer. For examples of addition
 and subtraction see above on CLC and SEC.

 A count down loop

 ;
 ; An 8-bit count down loop
 ;

 start LDX #$FF ; load X with $FF = 255
 loop DEX ; X = X - 1
 BNE loop ; if X not zero then goto loop
 RTS ; return

 How does the BNE instruction know that X is zero? It
 doesn't, all it knows is that the Z flag is set or reset.
 The DEX instruction will set the Z flag when X is zero.

 ;
 ; A 16-bit count down loop
 ;

 start LDY #$FF ; load Y with $FF
 loop1 LDX #$FF ; load X with $FF
 loop2 DEX ; X = X - 1
 BNE loop2 ; if X not zero goto loop2
 DEY ; Y = Y - 1
 BNE loop1 ; if Y not zero goto loop1
 RTS ; return

 There are two loops here, X will be set to 255 and count to
 zero for each time Y is decremented. The net result is to
 count the 16-bit number Y (high) and X (low) down from $FFFF
 = 65535 to zero.

 Other examples

 ** Note: All of the following examples are lifted nearly verbatim from
 the book "6502 Software Design", whose reference is above.

 ; Example 4-2. Deleting an entry from an unordered list
 ;

16/19

 ; Delete the contents of $2F from a list whose starting
 ; address is in $30 and $31. The first byte of the list
 ; is its length.
 ;

 deluel LDY #$00 ; fetch element count
 LDA ($30),Y
 TAX ; transfer length to X
 LDA $2F ; item to delete
 nextel INY ; index to next element
 CMP ($30),Y ; do entry and element match?
 BEQ delete ; yes. delete element
 DEX ; no. decrement element count
 BNE nextel ; any more elements to compare?
 RTS ; no. element not in list. done

 ; delete an element by moving the ones below it up one location

 delete DEX ; decrement element count
 BEQ deccnt ; end of list?
 INY ; no. move next element up
 LDA ($30),Y
 DEY
 STA ($30),Y
 INY
 JMP delete
 deccnt LDA ($30,X) ; update element count of list
 SBC #$01
 STA ($30,X)
 RTS

 ; Example 5-6. 16-bit by 16-bit unsigned multiply
 ;
 ; Multiply $22 (low) and $23 (high) by $20 (low) and
 ; $21 (high) producing a 32-bit result in $24 (low) to $27 (high)
 ;

 mlt16 LDA #$00 ; clear p2 and p3 of product
 STA $26
 STA $27
 LDX #$16 ; multiplier bit count = 16
 nxtbt LSR $21 ; shift two-byte multiplier right
 ROR $20
 BCC align ; multiplier = 1?
 LDA $26 ; yes. fetch p2
 CLC
 ADC $22 ; and add m0 to it

17/19

 STA $26 ; store new p2
 LDA $27 ; fetch p3
 ADC $23 ; and add m1 to it
 align ROR A ; rotate four-byte product right
 STA $27 ; store new p3
 ROR $26
 ROR $25
 ROR $24
 DEX ; decrement bit count
 BNE nxtbt ; loop until 16 bits are done
 RTS

 ; Example 5-14. Simple 16-bit square root.
 ;
 ; Returns the 8-bit square root in $20 of the
 ; 16-bit number in $20 (low) and $21 (high). The
 ; remainder is in location $21.

 sqrt16 LDY #$01 ; lsby of first odd number = 1
 STY $22
 DEY
 STY $23 ; msby of first odd number (sqrt = 0)
 again SEC
 LDA $20 ; save remainder in X register
 TAX ; subtract odd lo from integer lo
 SBC $22
 STA $20
 LDA $21 ; subtract odd hi from integer hi
 SBC $23
 STA $21 ; is subtract result negative?
 BCC nomore ; no. increment square root
 INY
 LDA $22 ; calculate next odd number
 ADC #$01
 STA $22
 BCC again
 INC $23
 JMP again
 nomore STY $20 ; all done, store square root
 STX $21 ; and remainder
 RTS

 This is based on the observation that the square root of an
 integer is equal to the number of times an increasing odd
 number can be subtracted from the original number and remain
 positive. For example,

18/19

 25
 - 1 1
 --
 24
 - 3 2
 --
 21
 - 5 3
 --
 16
 - 7 4
 --
 9
 - 9 5 = square root of 25
 --
 0

If you are truly interested in learning more, go to your public library
and seek out an Apple machine language programming book. If your public
library is like mine, there will still be plenty of early 80s computer
books on the shelves. :)

Last update: 30-Jan-00
Back

19/19

http://www.dwheeler.com/6502/oneelkruns/65index.html

	Assembly In One Step

