
D64 ATTACHED
TO THIS PDF

LIGHTNING SPEED RAM-DISK

HIGH POWER PROGRAM

COMPRESSOR

FULL FEATURE TOOLKIT

FIND ∙ CHANGE ∙ MERGE

DUMP ∙ INFO ∙ TYPE ∙ SIZE ..

COPYRIGHT

HACK-PACK is copyrighted and all rights to it are reserved by SYSTEMS
SOFTWARE (OXFORD) LTD. The product is intended for use by the original
purchaser only. The purchaser of HACK-PACK is hereby licensed only to read
the software from its medium into the memory of a Commodore 128 computer
solely for the purpose of executing it therein. Duplicating, copying (other
than for backup purposes), selling or otherwise distributing this product
is a violation of the law.
It is the policy of the manufacturers to vigorously pursue litigation
against all infringements of their copyright.
Having said this we hope you will enjoy using HACK-PACK and that you will
find it the useful utility that it is intended to be.

DISCLAIMER

Although HACK-PACK has been thoroughly tested, no claim is made by the
authors or manufacturers concerning the adherance of the software to any
particular specification or the suitability of HACK-PACK for any particular
purpose.

H A C K - P A C K

C O N T E N T S

1) LOADING THE SOFTWARE..................1

2) THE TOOLKIT...........................2

 Introduction..........................2

 Toolkit Commands.....................2

3) RAM-DISK..............................8

 Introduction..........................8

 Getting Started.......................8

 Extended RAM-DISK commands9

 Changing Device Number.........10
 Command Formats................11

 RAM-DISK and BASIC Programming.......11

 Memory Allocation..............11
 Pages and Blocks...............11
 Simple Memory Map...............12

 The BOUNDARY Commands...............12

 BASIC and Machine Code Programming. . 13

 Pure Machine Code Programming.......14

 The ALLOCATION Commands.............14

 Communicating from Machine Code.....14

 Getting and Putting Bytes.......15
 Memory Occupied by RAM-DISK.....15
 Cold Start and Warm Start.......15

 Command Summary......................16

 Entry points.........................17

 Error Messages and Formats..........18

4) COMPRESSOR...........................20

 What is Compressor..................20

 Using Compressor....................20

1

Loading The Software

Before using HACK-PACK it is necessary to follow a brief protection sequence
to establish you as an authorised user of the software. We hope that you
will not find the protection too tiresome; software does have to be
protected and this method at least allows you to make backup copies of
the system disk. Proceed as follows:

Mount the HACK-PACK System disk and type SHIFT RUN/STOP.

After a short pause, HACK-PACK makes the protection check. On the sheet
provided with HACK-PACK will be found a matrix of colored squares. Each
square can be identified by means of a simple grid reference. For example
to find square E-7, identify column E (marked along the bottom of the
matrix) and row 7 (marked along the left hand edge). Square E-7 is where
column E and row 7 meet. (see fig 1).

9
8 (E-7)
7
6 Fig 1.
5
4
3
2
1
 A B C D E F G H I J K L

The protection check is very simple; all you have to do is correctly
identify three squares and enter their colors. HACK-PACK will give
instructions as follows:

WHAT COLOR IS SQUARE X-XX ?

where X-XX is a grid reference. When you have found the square, enter one
of the letters W,Y,G or R depending upon whether the square is white,
yellow, green or red. When you have correctly answered three such questions
the protection check is complete and the screen will display

Type 1) To Install Toolkit
 2) To Install RAM-DISK
 3) To Install Toolkit and RAM-DISK
 4) To Install Compressor

Some versions of RAM-DISK will load into either bank 0 or bank 1. If you
have such a version, you will be asked

Install RAM-DISK in bank (0/1) ?

To which the reply should normally be 0.

When the software is installed into your 128, control of the computer will
be returned to you.

2

TOOLKIT Introduction

The Commodore 128 provides a very powerful and friendly editor for BASIC
programs. Unfortunately, certain features which are normally regarded as
essential in a programmers' editor have unaccountably been omitted by CBM.
In particular, there is no way on the 128 to find a string in a BASIC
program much less to search for and replace one string by another.

The HACK-PACK toolkit attempts to fill this need.

Once loaded, the HACK-PACK toolkit fits unobtrusively into an area at the
top of RAM in bank 0. From this elevated position it provides the programmer
with a number of totally new editing features.

The HACK-PACK toolkit does not waste memory by providing nonsense commands
that no one ever uses such as BEEP and FLASH! Instead it adds to BASIC
eight really useful commands, all designed to improve programming
efficiency and productivity.

Loading the toolkit

To load Toolkit, follow the instructions in the section loading the Software
at the beginning of this manual.

When Toolkit has loaded it will sign on with the message

HACK-PACK TOOLKIT (C) 1986 SSOL. READY.

Toolkit is now fully installed and ready for use.

Toolkit Commands

In the following, square brackets are used to denote optional parameters.

FIND syntax: FIND/search-string/[,line-range]

The FIND command can be used to search for any text string in a BASIC
program. The delimiter (/) may actually be any character not contained in
the search string. Line ranges, which specify the part of the program to
be searched, conform to the same rules as those pertaining to LIST.

3

Examples

FIND /GOTO100/

will find all occurrences of the string GOTO100 in the currently loaded
program

FIND /A=/,1000-2000

will find all occurrences of the string A= in the line range 1000-2000.

FIND !X/2!,500-

will find all occurrences of the string X/2 from line 500 to the end of
the program. Notice that because the search string contains a slash (/),
we use shriek (!) as the delimiter.

Tokens and quoted strings

All BASIC keywords such as GOTO, FOR, PRINT and REM are tokenised by the
BASIC 7.0 editor, that is, they are held in an encoded form and only
decoded into text again by the LIST command. However, if keywords appear
in a quoted string, or in a REM or DATA statement, they are left
untokenised. When you search for a keyword by typing something like
FIND/FOR/, toolkit tokenises the string and then searches for it in
tokenised form. FIND/FOR/ would therefore fail to find the FOR in a line
like

10 REM PREPARE OUTPUT FOR PRINTING

or

10 PRINT "GONE FOR LUNCH"

To find strings like this we use the special delimiter quote ("). If we
use quote as the delimiter and type FIND"FOR", toolkit will find only
those lines where the string FOR appears within quotes or in a REM or DATA
statement.

4

Quote always has the effect of switching off tokenisation, even if it
appears as part of the search string. For example suppose we wish to find
the line

10 A$=MID$(B$+"FOR",I)

We could type FIND/MID$(B$+"FOR/. Here we don't use quote as a delimiter
since if we did, we would fail to find the tokenised MID$. The quote
contained in the search string still has the effect of switching off
tokenisation for all text following it up until the next quote or delimiter.

CHANGE syntax: CHANGE/search-string/replacement-string/
 [,line-range]

CHANGE functions exactly like FIND except that wherever the search string
is found, it is replaced by the replacement string. Again, the delimiter
may be any character not appearing in the search or replacement strings.

Examples

CHANGE /A$/B$/

will change A$ to B$ wherever it occurs in the program.

CHANGE /GOTO1000/GOSUB1000/10000-11000

will change any occurrence of the statement GOTO1000 between lines 10000
and 11000 to GOSUB1000

The rules governing quotes are the same as those for FIND. For Example,
to change the line

10 PRINT "GONE FOR LUNCH"

to

10 PRINT "GONE TO LUNCH"

we would type CHANGE "GONE FOR"GONE TO"

5

DUMP syntax: DUMP [V][A]

DUMP entered without parameters causes the names and values of all variables
and the names of all functions and arrays to be displayed.

Examples

Suppose we RUN the following program

10 A=1:B=2
20 CC$="HACK "+"PACK":D%=-100
30 DEF FN T(X)=SIN(X)/COS(X)
40 DIM Al(2,3),A2%(A,B)

Then the DUMP command will produce the following

DUMP

A=1 B=2
CC$="HACK PACK" D%=-100
T() X=0

A1(2,3) A2(1,2)
READY.

The V and A parameters which may optionally follow DUMP allow output to
be restricted to variables (V) or arrays (A). For instance, using the same
example, the command

DUMP A

would invoke the following output

A1(2,3) A2(1,2)
READY.

INFO syntax: INFO

The INFO command displays sane useful information about memory usage in
the 128. The information is displayed as follows:

 TEXT VARS ARRAYS STRINGS
IN USE: TTTTT VVVVV AAAAA SSSSS
FREE : FRE0 FRE1..........

where

TTTTT is the number of bytes occupied by BASIC text
VVVVV is the number of bytes occupied by simple variables
AAAAA is the number of bytes occupied by arrays
SSSSS is the number of bytes occupied by strings
FRE0 is the number of bytes available for BASIC text
FRE1 is the number of bytes available for variables,
 arrays and strings

6

Examples

If we were to run the program illustrated above under DUMP, the INFO
command would display the following

INFO
 TEXT VARS ARRAYS STRINGS
IN USE: 88 42 90 11
FREE : 54183 64113.........

MERGE syntax: MERGE"filename"

The MERGE command is very similar to DLOAD. The only difference is that
whereas DLOAD loads a BASIC program and destroys any BASIC currently in
memory, MERGE appends the new program to the old one.

Before using MERGE you should ensure that the MERGEd program does not have
linenumbers which conflict with program in memory.

Examples

Suppose we have two programs A and B. We wish to merge these into a single
program; we proceed as follows

DLOAD"A"
LOADING 0:A
READY.
MERGE"B"
MERGING B
READY.

A quick LIST will reveal that both programs are in memory; A followed by
B. This may now be DSAVEd in the ordinary way.

7

TYPE syntax: TYPE"filename"

The TYPE command is used to display ASCII files at the terminal. Any file
containing printable characters may be TYPEd. When a complete page of the
file has been displayed, the prompt ------ MORE ------ appears at the
bottom of the screen. Type RETURN to see the next line, SPACE to see the
next page or STOP to quit.

SIZE syntax: SIZE"filename"

SIZE is used to determine the size of a file in bytes. It may be used with
any file type.

Examples

Suppose we have a sequential file F containing the string "AFFILIATED".
To count the number of bytes, we type

SIZE"F"
10 BYTES.
READY.

QUIT syntax: QUIT

QUIT de-activates the toolkit de-allocates the memory assigned to it.

Re-activating the Toolkit

The toolkit may be re-activated after a QUIT command by typing SYS 65369.

Memory usage

The toolkit loads at the top of RAM in bank 0 and occupies about 2.5K.
This area of memory is only required by BASIC for programs that exceed
about 51K in size. Should a program reach this limit, the system will
generate an OUT OF MEMORY message.

8

RAM-DISK Introduction

One of the best features of the Commodore 128 computer is the large amount
of RAM which is available to the user. Unfortunately, in many applications,
particularly programming applications, most of that memory lies idle for
most of the time.

In several modern large memory micros, notably the Amiga, Atari ST and
the Amstrad a RAM-DISK is supplied as part of the operating system so that
users can make effective use of all the memory available. Now, without
any additional hardware, this is possible on the 128.

In essence RAM-DISK behaves exactly like a much faster 1541 or 1571 floppy
disk; the only difference being that all the data on the RAM-DISK is held
in RAM and not on a physical disk. All the usual disk commands apply, you
use CATOLOG to look at the directory, DLOAD or BLOAD to load a program,
OPEN to open a file and so on.

As on the Amiga, the COPY command can be used to transfer programs and
data files from floppy disk onto the RAM-DISK and, at the end of a session
you can dump all the files from RAM-DISK back onto floppy with a single
command.

It is often important for the user to have control over which areas of
memory are available to RAM-DISK and which areas are not. RAM-DISK has
three modes of operation. In its simplest mode, for pure BASIC applications,
RAM-DISK allocates two chunks of memory at the top of banks 0 and 1, and
reduces the amount of memory available to BASIC accordingly. With a simple
command you can move the BASIC/RAM-DISK boundaries to suit your way of
working or to suit a particular application.

If you are using a combination of BASIC and machine code, you can also
alter the the upper boundaries of these chunks in order to free up areas
of high memory.

Lastly, for complex applications, you can allocate to RAM-DISK any number
of separate 256 byte pages anywhere in the machine. In this mode, as in
all modes, RAM-DISK will only use those areas of memory that you specify.

RAM-DISK is a copyrighted product and all rights to it are reserved.
However, in some cases users will wish to build RAM-DISK into commercial
software packages. If you should wish to do this, write to us at the
address on the front of this manual.

Getting started

To load RAM-DISK, follow the instructions in the section Loading the
Software at the beginning of this manual. When RAM-DISK is installed it
will sign on with the message

73,RAM-DISK (C) SSOL 1986 DC.X,00,00
XXX Blocks free.
ready.

9

From now on, until you reset the computer, RAM-DISK will respond to all
the usual disk commands.

Device numbers

As explained in the 128 System Guide, every device such as the disk drive
or printer has a device number. By default, the device number for the
floppy disk drive is 8 and all the disk commands make this assumption. If
you were to add a second disk drive to the system, you would have to give
it a different device number say 9. To look at the directory of the second
disk drive you would type CATALOG U9 and to load a program from it you
would type DLOAD"prog-name" ON U9 etc. This is exactly how you use RAM-DISK.

Type CATALOG U9. You should get the (so far empty) RAM-DISK directory.
Now type in (or load from floppy disk) a short BASIC program and type
DSAVE"prog-name" ON U9. If you look at the RAM-DISK directory now, you
should see an entry for that file. Type NEW to clear memory and then
DLOAD"prog-name" ON U9 to get the program back.

You will probably find in the course of using RAM-DISK that you frequently
need to copy files from floppy disk to RAM-DISK and vial versa. A specially
extended COPY command is provided for this purpose, details of which may
be found in the command summary at the end of this manual.

Error messages

Error messages are issued by RAM-DISK in exactly the same way as they are
by a floppy disk, that is by preparing a message for reading when you type
PRINT DS$. However, there are certain differences and you are urged to
read the summary of error messages at the end of this manual.

Extended RAM-DISK commands

Commands are issued Commodore disk drives by sending a string of text to
the drive using a special secondary address of 15, that is by executing
a statement like

OPEN 1,8,15,"command":CLOSE 1

Disk commands such as COPY, RENAME and SCRATCH generate such a string
internally and send this to the disk drive automatically. The procedure
for sending disk commands in this way is fully covered in Commodore's 1541
and 1571 user's guide, but as an example, the following command will
initalize (DCLEAR) the disk drive

OPEN 1,8,15,"I0":CLOSE 1

Commands may be sent to RAM-DISK in exactly the same way although users
will generally use the BASIC 7.0 disk commands provided for this purpose.
There are however certain extended RAM-DISK commands which can only be
sent via an open statement and these take the form

OPEN 1,9,15,"ram-disk-command":CLOSE 1

where the second parameter in the open statement is the current device
number of RAM-DISK, set by default to 9.

10

Changing the RAM-DISK device number

This is simple. Type OPEN 1,9,15,"U8":CLOSE1. The RAM-DISK device number
is now 8 and the 128 will in future send to RAM-DISK all commands directed
to device 8. Since the default device number for all the disk commands is
8, any program which accesses a floppy disk file will now access RAM-DISK,
and direct commands such as CATALOG and DLOAD will go to RAM-DISK by
default. This can be convenient but of course, if you wish to access the
floppy disk you will have to change the RAM-DISK device number to something
different, say device 9 as before with the command OPEN 1,8,15,"U9":CLOSE
1. Notice that the second parameter of the open statement is now 8,
reflecting the (current) device number of RAM-DISK.

IMPORTANT -- During the remainder of this manual, we shall assume that
the device number of RAM-DISK has been changed to 8, and that therefore
no ON U9 is required in any of the disk commands. If you decide not to
change the device number to 8 (or you decide to change it to something
else) you should of course include a Udevice-no. in all disk commands.
The same remarks of course apply to the device number in the OPEN statement.

11

RAM-DISK command formats

For the remainder of this manual (as in the above), all command examples
will be given in upper case letters. The purpose of this is to make the
text clearer. All commands should be typed in un-shifted characters
(without spaces) which will appear on the screen in upper or lower case
depending upon which character set is at that moment in force.

BASIC or machine code?

If you are writing programs in pure BASIC and do not use machine code,
read the following section but skip the sections on machine code. If you
are programing in machine code or a combination of BASIC and machine code,
read the following section and then proceed onto the next section:
Programming in BASIC and machine code.

RAM-DISK and pure BASIC programming.

The Commodore 128 contains 128Kb of RAM, some 8K of which is used by the
operating system. When RAM-DISK initializes, it allocates about half the
remaining memory to itself. If your BASIC programs are not longer than
about 32K and you are not using enormous arrays, this allocation of memory
will not affect you. If you find, either that you want more roan for BASIC
or that you would like more blocks free on RAM-DISK, then read on.

Memory allocation on the 128

To get the most out of your RAM-DISK its worth knowing a little about the
way memory is handled by the BASIC interpreter.

BASIC needs storage for programs and data (variables, arrays etc). There
are two RAM banks in the 128 each containing 64k. Bank 0 is used for BASIC
programs (mostly) and bank 1 is used for data. You can always find out
how much memory is available in either bank with the statement PRINT
FREE(b) where b is the bank number.

RAM-DISK also uses some of the memory in these banks, and there may be
times when you want to tell RAM-DISK to use more or less of it.

Pages and blocks

A page is a contiguous piece of memory 256 bytes long. Each RAM bank in
the 128 contains 256 pages numbered 0 through 255, making 128K in all.

To find out where a particular page begins, simply multiply the page number
by 256.

Page no. 0 1 2 3 4 ... r ... 253 254 255
Address 0 256 512 768 1024 ... r*256 ...64768 65024 65536

Just like the 1541 or 1571 floppy drives, RAM-DISK thinks in blocks; each
of which occupies one page. When RAM-DISK first initializes, it allocates
120 pages at the top of each of the RAM banks and reserves some of this
memory for its own code. (see fig 2).

12

Fig 2: A simple 128 memory map

BANK 0 PAGE ADDRESSES PAGE BANK 1

 255 65280 65280 255
 RAM-DISK CODE RESERVED FOR
 RESERVED FOR RAM-DISK FILES
 RAM-DISK FILES
B O U N D A R Y 135 34560 34560 135 B O U N D A R Y

 FREE FOR BASIC FREE FOR BASIC

 028 07168
 01024 004

As you can see, there is a boundary in each bank between the area reserved
for BASIC and the area reserved for RAM-DISK.

The BOUNDARY commands

The BOUNDARY commands are a set of commands which can be used to look at
and change the boundaries in banks 1 and 0.

As you can see from fig 2, to give BASIC more memory you should move a
boundary up and to allocate more memory to RAM-DISK you should move a
boundary down. To find out where a given boundary is at a particular time,
type the following command:

OPEN 1,8,15,"Bb":CLOSE 1

where b is the bank number. That is, to find where the boundary is in bank
0 type OPEN 1,8,15,"B0":CLOSE1 and to find where it is in bank 1 type OPEN
1,8,15,"Bl":CLOSE 1. When you type one of these commands RAM-DISK prepares
a message in its error buffer of the form

00,BANK N XXX..YYY,00,00

where N is the bank number and XXX is the page number of the boundary. We
will deal with the meaning of YYY later. To read this message simply PRINT
DS$.

To move the boundary up or down, decide where you want to put the new
boundary and type the following

OPEN 1,8,15,"Bb,p":CLOSE 1

where b is the bank number and p is the page number of the new boundary.

You can check that the boundary has moved by looking at the RAM-DISK
directory to see how many blocks are free or by using the BASIC FREE(b)
function.

You may move the boundary in bank 0 at any time (even from within a program)
regardless of whether or not there are files stored on RAM-DISK. Any change
to the boundary in bank 1 however should be preceeded by a CLR.

13

Errors

If you try to move the boundary in either bank to a position which would
leave insuficient memory to store the files currently on RAM-DISK, the
boundary will remain unchanged and you will get a NO BLOCKS error message.
If you try to move the boundary in bank 0 to a position which would leave
insuficient memory to accommodate the currently resident BASIC program,
the boundary will remain unaltered and you will get an OUT OF MEMORY
message.
If you move the boundary in bank 1 to a position which would not leave
suficient roan for the variables, arrays and strings created by a particular
program, you will get an OUT OF MEMORY message when that program is RUN.

You should experiment to find the best boundaries for your working
environment.

Programming in BASIC and machine code

If you are calling machine language routines from within a BASIC program
you will want to reserve some memory for the machine code and data. In
order to give you the freedom to put hunks of code wherever you wish,
RAM-DISK provides an extension of the boundary command which can raise or
lower the TOP of the area allocated to it as follows:

OPEN1,8,15,"Bb,p1,p2":CLOSE 1

where b and pl are the bank number and boundary page as before and p2 is
the page number of the highest page allocated to RAM-DISK in that bank.
This command therefore allows you to allocate in either bank, an area
anywhere in memory for exclusive use of RAM-DISK. For example, the command
OPEN 1,8,15,"B0,100,200" will allocate the area between 100*256=25600 and
200*256+255=51455. The +255 in the second expression arises because p2 is
the page number of the beginning of the last page allocated to RAM-DISK.
It is of course your responsibility to see that your code does not interfere
with this area.

If you need to change the upper boundary (p2) and leave the lower boundary
unchanged, you can if you wish use the syntax
OPEN1,8,15,"Bn„p2":CLOSE 1.

We can now explain the meaning of YYY (above) that appears in the message
produced in response to an OPEN1,8,15,"B0":CLOSE 1 or
OPEN1,8,15,"Bl":CLOSE1 command. It is the page number of the upper boundary.

If you wish to prevent RAM-DISK from using any memory in either bank 1 or
bank 0 (apart from the RAM-DISK program itself), use an extended boundary
command in which the lower boundary is greater than the upper boundary.

NOTE: The boundary commands may not be used to de-allocate the space
occupied by the RAM-DISK code itself. Any attempt to do this will result
in a PAGE IN USE error message.

14

Pure machine code programming.

If you are programming in pure machine language or if you are doing weird
things with the 128 memory map, this section is for you.

The ALLOCATION commands > and <

At the lowest level, RAM-DISK allows you to allocate pages to it which
need not be contiguous, and which may be dotted about anywhere in memory
via the allocation commands. OPEN 1,8,15,">bank,page-list":CLOSE 1 allows
you to allocate pages and OPEN 1,8,15,"<bank,page-list ":CLOSE 1 allows
you to de-allocate pages. Page-list is a comma separated list of the pages
that you wish to have allocated (or de-allocated). The list may also
contain page ranges expressed pl..p2. As an example, the following command
allocates pages 100, 130 and pages 140 through 155 in bank 1 to RAM-DISK.

OPEN 1,8,15,">1,100,130,140..155":CLOSE 1

The actual addresses of the memory allocated will be 100*256=25600 to
100*256+255=15855, 130*256=33280 to 130*256+255=33535 and 140*256=35840
to 155*256+255=39935.

When RAM-DISK first initializes it allocates about half of the 128's RAM
automatically and clears these areas. To prevent this happening use the
alternative cold start entry point at $FF53.

It is perfectly possible to combine the allocation commands with the
boundary commands. In fact the boundary commands actually work by making
calls to the lower level allocation routines. Note however that whereas
the boundary commands affect the operating system's pointers to the top
of memory in banks 0 and 1, the allocation commands leave these unaltered.

Errors

If you try to allocate a page that is already allocated you will get a
PAGE ALLOCATED message. If you try to de-allocate a page which is not
currently allocated you will get a PAGE NOT ALLOCATED message.

Communicating with RAM-DISK from machine code

RAM-DISK works by re-directing the OPEN, CLOSE, LOAD, SAVE, GET A BYTE
and PUT A BYTE vectors in high memory.

All the RAM-DISK commands discussed above can be issued from machine
language in exactly the same way as commands are issued to a physical disk
drive, details of which are to be found in Commodore's own documentation.
To send a command to RAM-DISK (or floppy disk) or to open a file proceed
as follows:

1) Set the system variables for the current logical address ($B8), the
device number ($BA), the secondary address ($B9), filename length ($B7)
filename address ($B3), filename bank ($C7) and the filename string itself
to appropriate values.

2) Call OPEN ($FFC0) and then CLOSE ($FFC3).

15

The procedure is the same for opening a file as it is for sending a command
(e.g. COPY) the only difference being that to send a command, the secondary
address should be set to 15 and the filename string to the text for the
command.

Getting and putting bytes

This is done in exactly the same way as bytes are got or put to any other
device, that is by sending a talk or listen, writing or reading the data
and sending an abort i/o.

Memory occupied by RAM-DISK.

RAM-DISK is a machine code program occupying a little less than 8K which
loads at the top of memory in bank 0 (or in some RAM-DISK issues, optionally
in bank 1). Other areas used by RAM-DISK are $03F0 to $0400 and $1300 to
$1400 in common RAM.

Cold start and Warm start

There are three initalization entry points provided by RAM-DISK which
re-start the system in different ways. These are as follows

1) Start RAM-DISK from cold
2) Start RAM-DISK from cold without allocating any pages
3) Warm start RAM-DISK.

There are circumstances, such as after a hardware reset, when RAM-DISK
will lose its links into the operating system. On these occasions you can
use the warm start entry point without loosing data. This procedure
re-establishes RAM-DISK's links with the operating system and closes any
open files. Provided the areas used by RAM-DISK have not been corrupted
no files will have been lost.

The addresses of the entry points may be found in the section BASIC and
Machine Code Entry Points

16

Command summary

The following standard disk commands have the same effect on RAM-DISK as
they do on the 1541 or 1571 floppy disk drive:

OPEN CLOSE DOPEN DCLOSE APPEND CATALOG
DIRECTORY CONCAT DCLEAR COPY SCRATCH COLLECT
LOAD SAVE DLOAD DSAVE BLOAD BSAVE
RENAME HEADER DVERIFY

pattern matching with ? and * is supported.

RAM-DISK will respond to a range of extended commands. These must be issued
by opening a file to the error channel and writing the command to it as
follows

OPEN 1,device,15,"command":CLOSE 1

where device is the current RAM-DISK device number

The following is a list of the allowable commands

CMD TYPE COMMAND MEANING

UNIT Un Change RAM-DISK device
 number to n
BOUNDARY Bb Prepare an error channel
 message giving upper &
 lower boundaries for bank b
 Bb,pl Change lower boundary
 in bank b to pl
 Bb„p2 Change upper boundary
 in bank b to p2
 Bb,pl,p2 Change lower boundary
 to pl and upper boundary
 to p2 in bank b
ALLOCATION >bank,list Allocate the pages in
 "list" to RAM-DISK
 <bank,list De-allocate the pages in
 "list" from RAM-DISK
QUIT q Quit RAM-DISK
DEBUG d Put RAM-DISK into debugging
 mode
 x Restore RAM-DISK to normal
 operation

"list" is a comma separated list of page numbers and page ranges. A page
range is a pair of page numbers separated by two dots. See the example
under The Allocation Commands.

The extended COPY command

The COPY command has been extended to allow copying between RAM-DISK and
floppy disk. Any string which begins with an ampersand (&) is taken (without
the &) as being the name of a floppy disk file on device 8 as follows:

17

COMMAND MEANING

COPY"filel" TO "file2" Copy file1 on RAM-DISK to file2
 on RAM-DISK
COPY"&filel,type" TO "file2" Copy file1 on floppy disk to file2
 on RAM-DISK (see note)
COPY"file1" TO "&file2" Copy file1 on RAM-DISK to file2
 on floppy disk
COPY"*" TO "&" Copy all files on RAM-DISK
 to floppy disk

NOTE: The command for copying a floppy disk file to RAM-DISK requires the
filetype to be appended to the disk filename as shown above. Possible
filetypes are p (prg), s (seq) and u (usr). For example, to copy the
program file "prog" to RAM-DISK we would use the command COPY "&prog,p"
TO "prog" and to copy the data file "data" to RAM-DISK we would use the
command COPY "&data,s" TO "data".

BASIC and machine code entry points

These entry points may be called from BASIC as follows

BANK b:SYS(decimal-entry-point)

where b is the bank (usually 0) where the RAM-DISK code is loaded. Entry
points should be called from machine code using a JSR.

HEX DECIMAL ROUTINE

FF50 65360 Cold start RAM-DISK. (This is where
 RAM-DISK enters when it is started
 from the HACK-PACK menu)
FF53 65363 Alternative cold start.
 Initialise RAM-DISK without
 initialising any blocks
FF56 65366 Warm start. Restarts RAM-DISK
 preserving all files

18

Summary of error messages

Error messages are generated by RAM-DISK in exactly the same way as they
are by a floppy disk drive. All the BASIC 7.0 disk commands cause the disk
(or RAM-DISK) error channe1 to be read and assigned to the reserved variable
DS$. To see the error message, PRINT DS$.

Debugging mode

A possible source of problems is that RAM-DISK does not have an error
indicator as does the 1541/1571. It is therefore not possible to see when
things are going wrong by looking at the disk drive. Of course programs
should always check DS or DS$, after disk operations, however, to aid
program development, RAM-DISK can be put into debugging mode by sending
the character d to the error channel. When RAM-DISK is in debugging mode,
BASIC programs will stop on any RAM-DISK error condition. Debugging mode
may be switched off by sending an x to the error channel.

The following is a complete list of RAM-DISK error messages. Where
appropriate the error numbers are the same as those illicited by the
1541/1571. RAM-DISK specific error messages have numbers in the range 80
to 86.

MESSAGE MEANING

00, OK. All is well
00,BANK N XXX..YYY. The response to a BOUNDARY information
 request.
00,BYE. The last message left by RAM-DISK when
 it quits.
23,FILE CORRUPT. A page allocated to RAM-DISK has been
 corrupted.
30,SYNTAX ERROR. A command is syntactically erroneous.
61,FILE NOT OPEN. An attempt has been made to access
 an un-opened file.
62,FILE NOT FOUND. RAM-DISK can find no trace of the
 file requested.
63,FILE EXISTS. An attempt has been made to write a file
 which has the same name as one already
 stored on RAM-DISK.
64,FILETYPE MISMATCH. The file type specified or implied by a
 command does not match the file of that
 name on RAM-DISK.
72,NO PAGES. A command requests more pages than are
 available.
72,DIRECTORY FULL. The directory can accommodate no further
 files.
81,OUCH. An attempt has been made to allocate a page
 occupied by the RAM-DISK code.
82,PAGE NOT ALLOCATED. An attempt has been made to de-allocate
 an already un-allocated page.
83,FILE OPEN. An attempt has been made to open an already
 open file.
84,READ FILE ONLY. An attempt has been made to write to a
 read file.
85,WRITE FILE ONLY. An attempt has been made to read from a
 write file.
86,PAGE NOT RAM. An attempt has been made to allocate
 a non RAM page (should not occur).

19

There are occations when it is usefull to be able to tell the source of
an error message, that is, whether it came from RAM-DISK or from floppy
disk. RAM-DISK error messages can easily be identified by the period (full
stop) which always terminates the text of the message.

Error messages are annunciated by RAM-DISK, just as they are by Commodore
floppy disks, with a trailing ,XX,XX. Floppy disk drives use these positions
to indicate any track and sector address associated with the error. RAM-DISK
uses them to provide certain diagnostic information for use by the
manufactures. This information need not concern the user.

The power up message

The issue number of your RAM-DISK may be found by reading the error
chchannel before any commands have been issued. The message will be as
follows

73,RAM-DISK (C) 1986 SSOL IX.X,00,00

where X.X is the issue number.

20

What is the COMPRESSOR

Compressor is a utility for squeezing BASIC programs dawn into their
smallest possible size. First, Compressor removes all "dead wood" such as
spaces and REM statements from your program. Next it reduces the number
of lines in the program by attempting to pack as many statements onto each
line as possible.

Compressor acts on a disk file and writes its output to disk (or RAM-DISK).

Using Compressor

1) Prepare a work disk and save a copy of the program you want to compress
onto it. Make sure that there are enough blocks free to accomodate the
compressed program.

2) Mount the HACK-PACK system disk and type

RUN "compressor"

After a second or two Compressor will respond with

COMPRESSOR: MOUNT WORK DISK - HIT RETURN

Obey, now you will get the message

PROGRAM NAME ?

Type it in and hit RETURN

Compressor runs through two passes. When it has finished it will display
some statistics about your program such as the number of GOTOs and GOSUBs
and the total number of lines in both versions of the program.

If you look at the disk directory you will see an extra file with the same
name as your original program, but with the characters .c appended. This
is the compressed program. DLOAD it just as you would any other BASIC
program.

