
GeoBasic
Programming

Manual

- The Official BASIC Programming Language

for GEOSC-64/128 Users

Developed by Berkeley Softworks

Distributed by RUN Magazine

o

D

a

G

d"

a

a

w/

U

U

D

D

Q.

Li.

a

geoBASIC

The BASIC programming language for GEOS C-64/128 users.

geoBASIC software (c) 1990 Berkeley Softworks.

Portions of the geoBASIC manual (c) 1990 Berkeley Softworks.

Changes and enhancements to the manual (c) 1990 RUN

Magazine.

geoBASIC and GEOS are trademarks of Berkeley Softworks.

IDG Communications/Peterborough, Inc. (Publishers ofRUN

Magazine), has licensed geoBASIC from Berkeley Softworks.

Berkeley Softworks disclaims all responsibility for warranty,

guarantee, replacement and service of geoBASIC.

Customer service and technical support questions should be

referred to RUN Magazine, 80 Elm St., Peterborough, NH 03458.

Technical support is also provided on the RUN geoBASIC area on

QuantumLink.

RUN and Berkeley Softworks disclaim any liability for incidental

or consequential damages.

geoBASIC runs in C-64 mode (40 columns) on C-64/128.

JUNE 1990

Dear geoBASIC owner,

Congratulations and thank you for purchasing geoBASIC.

You are the proud owner of a powerful version of BASIC that

gives GEOS users the flexibility to develop their own programs in

BASIC. With this product (in C-64 40-column mode) you have

everything you need to begin developing your own BASIC appli

cations in GEOS, taking advantage of the features that have made

GEOS so easy to use—pull-down menus, dialog boxes, icons and

mouse pointer for easy point-and-click operations. You'll now be

able to create programs that use icons, menus, sprites and dialog

boxes.

We're pleased to be able to present geoBASIC, and plan to

support this product both through the magazine and in the RUN

geoBASIC area on QuantumLink. We encourage users to upload

the programs they have developed to the Q-Link area and also to

submit their work to RUN for possible publication. We also

encourage users to access the Q-Link area for information on the

latest geoBASIC developments, programming information,

forums, software to download, sample applications and answers to

your questions and comments.

We were encouraged by the GEOS community to bring this

product to market. We have worked diligently to provide a top-

quality and much-needed product to the marketplace. We feel that

we have succeeded, and welcome your comments regarding our

efforts.

In putting together this manual, we made several assumptions.

One is that you are familiar with GEOS and know how to load and

open GEOS files.

Also, it is not the intent of this manual to teach you how to

ii

program. If you are interested in using geoBASIC, then you should

already be familiar with BASIC programming. If you've never

programmed before, then we strongly suggest that you develop

some BASIC programming skills either through a course or a book

before you use this program. The purpose of this manual is to

teach you how to use geoBASIC and its commands.

I would like to extend my appreciation to the following:

First, to the gang at Berkeley Softworks for developing this

program and licensing it to RUN. Through their cooperation, we

are able to bring this product to market.

Second, to project manager Lou Wallace, who was the driving

force for this product here at RUN. Without his persistence, long

hours under impossible deadlines, foresight and dedication to this

project, geoBASIC would not now be available to the GEOS

community.

Third, to the group of tireless testers and reviewers of this

product, particularly Joe Buckley and Bill Coleman. These

programming wizards were responsible for testing and developing

applications. Their keen insights and knowledge of GEOS

contributed to the success of this product.

This manual contains all the information you need to get under

way developing your own programs in GEOS. All you need

besides this manual is a little imagination. Good luck and happy

programming.

Dennis Brisson

Editor-in-Chief

RUN

in

TABLE OF CONTENTS

CHAPTER ONE-AN OVERVIEW OF geoBASIC 1

Features of geoBASIC 2

The geoBASIC Utilities 2

Using This Manual 4

CHAPTER TWO-INTRODUCTION TO geoBASIC

PROGRAMMING 5

Elements of a geoBASIC Program 5

ThegeoBasic Screens 6

Running geoBASIC 6

The Text Editor 7

Loading a Program 7

Saving a Program 8

Listing a Program 8

Editing Keystrokes 8

CHAPTER THREE-A SIMPLE geoBASIC TUTORIAL 10

Good Programming Practices 10

The Sample Application 13

CHAPTER FOUR-PROGRAMS, DATA AND VARIABLES 14

The geoBASIC Editor 14

Editing Keys 15

Clearing the Screen and Listing Your Program 16

The geoBASIC Menus 16

Elements of the geoBASIC Language 20

Constants 21

Variables 23

Arrays 25

IV

Expressions 27

Arithmetic Expressions 27

Hierarchy of Arithmetic Operators 31

String Expressions 32

CHAPTER FIVE-THE geoBASIC COMMAND

REFERENCE 33

Elements 33

geoBASIC Commands 34

CHAPTER SIX-DISK AND FILE PROGRAMMING 102

Disk and File Commands 102

VLIR File Description 107

CHAPTER SEVEN—THE geoBASIC UTILITY

PROGRAMS 109

The Menu Editor 109

The Bitmap Utility 112

Dialog Box Editor 115

Icon List Utility 120

Sprite Editor 122

The Editor Screen 127

CHAPTER EIGHT—THE geoBASIC DEBUGGER 131

Entering Expressions or Breakpoints 131

Debug Modes 134

Errors 134

CHAPTER NINE-geoBASIC ERROR MESSAGES 136

VI

Chapter One—An Overview of geoBASIC

BASIC is a language for programming your computer. It is the

most easily learned and most widely used of the computer

languages available. Thousands of ordinary people have learned

BASIC and successfully program their computers. You don't need

to have an educational background with years of college and a

penchant for all-night sessions to be a programmer in BASIC. In

fact, probably more people create programs in BASIC for the C-64

than any other computer. And this process is made even easier

by GEOS.

GEOS is the Graphics Environment Operating System from

Berkeley Softworks. It includes intuitive tools such as pull-down

menus, information boxes that provide choices right on the screen,

on-screen pictures (called icons) and the mouse pointer for easy

point-and-click operations. An example of how these elements

combine to make operations easy should illustrate what we mean.

When you insert a disk in the drive, all you need to do to find out

what files are on the disk is move the mouse pointer up to the

menu at the top of the screen labeled "DISK" and click the left

button. The submenus will become visible, and you would then

click on "OPEN". The various files on the disk become visible in a

"window" on the screen. Each file has a picture associated with it

which gives further information about the file. To print out a file,

click once on the icon of the text file you want to print. This will

cause it to become highlighted. Click it a second time and you will

have picked up an outline of the icon. As the mouse pointer

moves, an outline of the file will move with it. Move the icon to

the printer icon, and press the left button. When you release the

left button, the printer will start up and out will come the printed

copy. If the printer is not hooked up, then a box (called a dialog

box) will appear on the screen informing you of this. When you

move the mouse pointer to the button labeled "OK" and click the

left button, the box will disappear, and you will be right back

where you started.

1

FEATURES OF GEOBASIC

geoBASIC is a full-featured BASIC for the C-64. It includes a

text editor for entering and editing programs, as well as menus for

special features. With geoBASIC, you can use icons, menus,

sprites and dialog boxes in your own programs, to make them look

professional as well as easy to use. Color and sound, text windows

and drawing commands are available, as is full support for the

mouse. Structured loops, subroutines, mathematical functions and

access to machine language subroutines are all supported. You

even have special commands that provide access to disk files for

storing and recovering data.

THE GEOBASIC UTILITIES

Included with geoBASIC are five utilities that you can use to

build various items to use in your programs. Each of the utilities

works similarly. They are:

Menu Editor

The Menu Editor enables you to build menus for use in your

programs. The words which appear at the top of the screen are

submenus. Moving the mouse pointer up to a menu and clicking

the left button makes the items in that menu "drop down,"

appearing on the screen under the submenu. To select an item,

move the mouse pointer to that item and click the left button. If

you change your mind about using an item under a submenu,

simply move the mouse pointer away from the dropped-down

items without clicking the left button, and the submenu will close

up again.

The Menu Editor is an interactive utility. As you specify each

submenu, it appears at the top of the screen as part of the menu.

You can specify the number of submenus in the menu and the

exact text of each submenu, and these can be changed at any time.

You can also specify where the program will branch when the user

selects (clicks on) a particular item.

Bitmap Editor

Bitmaps are small pictures that you can place on the screen

(see Icon Editor, below) or in a dialog box (see Dialog Box Editor,

below). The Bitmap Editor lets you draw and save bitmaps for

later use. You can specify the size of the final bitmap and use the

mouse pointer to turn points off and on in an enlarged drawing

area. As you proceed the editor also shows you what the final

bitmap looks like in actual size.

Icon Editor

The Icon Editor lets you use bitmaps defined with the Bitmap

Editor in your programs. Once a bitmap has been drawn and saved

using the Bitmap Editor, the Icon Editor lets you define the

coordinates on the screen where you want the bitmap to appear

when you use the geoBASIC command ICON.

Dialog Box Editor

Dialog boxes are boxes that appear on the screen in response to

the geoBASIC DIALOG command. Their purpose is to present

information to the user and get a choice or acknowledgement from

the user. After the user has made a selection from a dialog box, the

box is automatically removed from the screen and whatever was

hidden by the box is restored on the screen.

A dialog box can contain text, expressions (which can change

depending on the value of program variables), icons you have

designed using the Icon Editor, and system icons, such as the OK,

Cancel and Disk buttons. The Dialog Box Editor lets you specify

what objects you want to appear in the dialog box, what

coordinates (location) you want for each object, and the text or

expression to use for those objects that require a text message or

expression. When you select a type of object to use, you will be

prompted on the screen for all the information required to draw

that object in the dialog box. All of the specified quantities can be

edited at any time using the mouse pointer.

Sprite Editor

Sprites (also called Movable Object Blocks) are used for

animating sections of the screen. Often used for games, they can

also be used in many other types of applications. The Sprite Editor

is a major part of the geoBASIC utility set, offering unheard of

power in the generation and use of sprites. For details, see the

Utilities chapter later in this manual.

USING THIS MANUAL

The rest of the chapters in this manual are designed to get you

comfortable with geoBASIC as well as to provide a complete

reference to geoBASIC and the included utilities.

Several chapters act as an introduction and hands-on tutorial

for geoBASIC, while others contain a complete listing of all

geoBASIC commands, often including samples using those

commands in a program segment. Also included is a description of

all the various special elements of the GEOS environment (such as

dialog boxes, sprites, bitmaps, etc.)

WHAT YOU SHOULD KNOW

Certain things are not within the scope of this manual to teach,

such as how to set up your equipment. If you are unsure how to do

this, refer to the manual that came with your Commodore. This

manual also will not teach you how to program, how to become a

programmer or how to use GEOS. It assumes that you have

already programmed with another language and are familiar with

the basic tenets and practices of programming a computer.

Some technical aspects of the Commodore 64/128 are covered

in the Commodore 64 Programmer's Reference Guide. The details

of the SID (sound) chip, and how to manipulate sprites are covered

there, and are not repeated here. The goal of this manual is to

familiarize you with geoBASIC and explain how to use the

commands present in this language.

n

n Chapter 2—Introduction to geoBASIC Programming

n

n ELEMENTS OF A GEOBASIC PROGRAM

n
A program is made up of lines of commands. All of the valid

•i commands and details of how to use each are detailed in the refer-

r—, ence section of this manual. At the beginning of each line there

must be a line number. The line number not only identifies the

f^ beginning of a line of commands, but also determines the order of

execution of the lines of commands. Consider the following:

10 ...COMMANDS...

|-] 20 ...COMMANDS...

I—j This represents two lines of a program, numbered 10 and 20.

The "...COMMANDS..." represents valid geoBASIC commands

that would normally follow the line number. If you typed in a line

beginning with the number 15 followed by commands, you would

have the following if you listed the program using the command

LIST:

10 ...COMMANDS...

15 ...COMMANDS...

20 ...COMMANDS...

Notice how the line numbered 15 ended up between lines 10

and 20. It is a good idea, when first typing lines into your program,

to number them in increments of 10, so you have plenty of room to

insert extra lines later.

Line numbers are also important because certain commands

make reference to a particular line, and one way to identify the line

in question is by using its line number (see GOSUB and GOTO in

the reference section). Another way to identify a line is by using a

label. A label must follow a line number on the line. The label

name must be preceded by an @ symbol, and can be up to six

characters long, provided the label name begins with a letter and

does not contain any valid geoBASIC commands in the label

name. The label name can also be followed by a colon (:) and

another command. Examples of a label are:

20 @LBL: ...COMMANDS...

30 @LBL

The screen on your C-64 is 40 characters wide. Each line of

commands in a geoBASIC program can be up to 240 characters,

which would occupy up to six screen lines. So, one line of the

program may take up more than one line on the screen. It is impor

tant to distinguish between these. A command can be on two lines

of the screen, but must be fully contained in one line of the

program.

Each line in the program must contain at least one command or

a space. If you type in a line number with no commands or spaces

after it, that line will not show up in your program. Each line may

have more than one command if you choose. Separate multiple

commands with colons (:)

10 @LBL: FOR N=l TO 10:PRINT NrNEXT N

THE GEOBASIC SCREENS

geoBASIC maintains two screens for you to work on. The first

is the text screen, where you type in your program and edit it. The

other screen is the graphics screen, where your program actually

runs. Because the two screens are separate, your program listing

remains intact while the program runs, and any results produced

by the program remain on the graphic screen, even after you return

to the text screen to further edit your program. If you want, during

editing you can switch back and forth between the graphics screen

and the editor screen by pressing the F7 key.

RUNNING GEOBASIC

To begin using geoBASIC from the GEOS desktop screen,

insert the disk containing geoBASIC into your disk drive. Move

the mouse pointer to the disk submenu and click on the open item

to show the contents of the disk. Move the mouse pointer to the

icon marked "GEOBASIC" and double click the left button.

geoBASIC will load and its initial screen will appear.

THE TEXT EDITOR

geoBASIC includes a powerful text editor for entering and

editing your programs. A complete listing of its capabilities is

included in the reference section.

LOADING A PROGRAM

To load a new program, you must use the dialog box that

appears when you begin using geoBASIC. Choose from the three

options: Create New Document, Open Existing Document, and

Quit To DeskTop.

If you are going to create a new document, click on the Create

button and another box will appear asking you to "Please enter a

new filename:". Type in the filename you want to use and press

[RETURN]. If you want to access a different disk drive, click on

the Drive button. If you wish to go back to the original dialog box,

click on the button marked Cancel. The filename you type in must

not exist on the disk or you will receive a message that states "File

exists, choose another". If you receive this message, click on the

OK button to return to the previous dialog box.

If you are going to open an existing document, click on the

Open button. This will bring up a dialog box that lists the names of

the first fifteen geoBASIC files on the disk. You may select a file

in the list and click on Open to begin working on it, change drives

using the Drive button, or return to the previous dialog box by

clicking on Cancel. If there are too many files on the disk for them

all to be visible in the dialog box, click on the up or down arrows

which will appear to scroll through the list of files.

Note: If you are editing a file with geoBASIC and want to

work with another file, you must close the current file using the

Close item in the File submenu. This will return you to the initial

geoBASIC dialog box so you can load another file.

SAVING A PROGRAM

When you have revised a program in memory, it is important

to save the changes to disk or they will be lost when you quit

geoBASIC. To save the changes to disk, select the Update item

from the File submenu. Saving also occurs automatically when

you use the Close item under the File submenu to stop working

with the current file.

LISTING A PROGRAM

To look at your program on the screen, you must list it. If you

want to see the whole program, you may type in the LIST

command (with no line number in front of it) or select the list item

under the Edit submenu. If the program is too long to fit on the

screen, the lines at the top of the screen will scroll off the screen as

new lines are listed at the bottom. To pause the scrolling, use [F5]

as a start/stop LIST toggle. Press it once to stop a listing, then

press it again to continue listing the program. You may also abort

the LIST command (or the menu item equivalent) by pressing the

[RUN/STOP] key. To list any line number of the program, type the

LIST command followed by the line number you wish to view.

You may also list a range of line numbers by using the LIST

command followed by the starting line number, a comma, and the

ending line number. For more information on the use of the LIST

command, see the reference section.

EDITING KEYSTROKES

To change anything in your program, simply LIST the line you

wish to modify on the screen (see above). The flashing box you

see is known as the cursor, and whatever you type will be placed

on the screen at the cursor's position. You may type in anything

you like from the keyboard. To get upper case letters, press the

[Shift] key while pressing the letter key. The [Shift] key also gives

8

you access to the characters above the number keys. Once you

have finished typing in a line of BASIC text, press the [RETURN]

key to enter it. You may move the cursor by using the mouse

pointer or the arrow keys. To use the mouse pointer, move the

pointer to the spot where you want the cursor to appear and click

the left button. The arrow key with the up and down arrows on it

will move the cursor down the screen if you press just the key, and

the cursor will move up the screen if you hold down the [Shift]

key at the same time as you press the up/down arrow key. The

arrow key with the left and right arrows on it will move the cursor

to the right if you press just the key, and it will move the cursor to

the left if you hold down the [Shift] key at the same time as you

press the left/right arrow key.

Chapter 3-A Simple geoBASIC Tutorial

Included on your geoBASIC disk is a sample application

called "Sample Appl." In this section of the manual, we will load

and look at this application. It illustrates many of the commands in

geoBASIC and uses most of the utilities as well. It also illustrates

some good programming practices. If you don't have geoBASIC

running right now, insert the disk containing geoBASIC into your

disk drive. Move the mouse pointer to the disk submenu and click

on the open item to show the contents of the disk. Move the mouse

pointer to the icon marked "GEOBASIC" and double click the left

button. geoBASIC will load and its initial screen will appear. Click

on the Open button, select "Sample Appl" and click on Open.

After a few moments, you should be looking at the "Ready"

prompt. Or, you can just click on the "Sample Appl" icon directly,

which will cause geoBASIC to load first, followed by the applica

tion. To verify that the program has actually been loaded, type

LIST and press [RETURN]. If you have a printer hooked up, you

may wish to print out a copy of this program, as it is rather

long. To do so, move the pointer up to the File submenu and press

the left button. The menu items should become visible. Move the

pointer to the print item and press the left button. The program

listing should print out on your printer.

GOOD PROGRAMMING PRACTICES

Before moving on to look at our Sample Application, we'll

take a look at some good programming practices which are illus

trated by the application. While it is not strictly necessary to

follow these practices, programming will be much easier, and it

will be easier to make changes to the program in the future if these

suggestions are followed.

1. Use indenting to make your code more readable.

FOR loops, IF clauses and subroutines are much easier to read

and understand if you indent them. This is especially true for

10

nested FOR loops and IF clauses that are on more than one screen

line. As an example, check out the Sample Application listing. The

indenting makes it much easier to read.

Example of Nested FOR loops:

10 FOR X=l TO 100

20 PRINT X

30 PRINT X+5

40 FOR Y=l TO 10

50 PRINT Y

60 PRINT Y+2

70 NEXT Y

80 NEXT X

Example of Multi-line IF statement:

10 IF RENAMED=0 THEN NEWFILE$="HELLO THERE":RENAMED=l

Example of labelled subroutine:

10 GOSUB @STARTDRAWING

20REM

30 END

40 @STARTDRAWING

50 XCLICK=MOUSEX(0)

60 YCLICK=MOUSEY(0)

70 XOLD=XCLICK

80 YOLD=YCLICK

90 RETURN

2. Use labels as much as possible.

Labels make your code more easily understood. Also, subrou

tines and lines accessed by the utilities (Dialog, Sprite, etc.) should

be labeled so that they can be accessed properly by the utilities.

You may use up to 127 labels within a single program. Keep in

mind that geoBASIC's RENUMBER command does not renumber

GOTOs or GOSUBs, so you must use labels if you expect to

renumber your program. As an example, look at the Sample

Application. Liberal use of labels with long, descriptive names

11

makes it a lot easier to figure out what is going on. For example,

GOSUB @Handleclick is much clearer than GOSUB 2680! To

further increase the clarity of the listing, try to use just a label on a

line.

10 @HandleClick

NOTE: If you need to change the line number of a label, first

delete the old line, THEN type in the new line number with the

label.

3. Put blank lines between subroutines.

This helps separate parts of the program. To have a blank line

(nothing except a line number on it), select Insert Mode and type

the line number and a space, then press [RETURN].

4. Use mixed case for variable names.

Again, this makes your code easier to read. Some examples are

nmFlags, cardFlag, Done, etc.

5. Avoid multiple statements on a line.

This cannot always be avoided, but your code will be easier to

read if you don't try to crowd too many statements on a line. With

IF statements (which must be on the same logical line), you can

take advantage of the fact that a logical line can take up to six

screen lines. Thus, you can press [RETURN] after each statement

in the IF statement, moving each part of the IF statement onto a

different screen line. Indenting will also make the IF statement

easier to read.

10 IF RENAMED THEN

NEWFILE$ = RENAMES:

RENAMED = FALSE

Notice the colon separating each command. This is required
for proper syntax.

12

THE SAMPLE APPLICATION

The sample application listing is pretty self-explanatory and

should be easy to follow, not only because it follows the sugges

tions above, but uses plenty of REM statements to explain what

each section does. This is also good programming practice, and

you should study the techniques used, especially the MAINLOOP

command, which is the heart of the application. The program stays

in this command, branching only when a menu or icon is selected,

then it branches to the appropriate subroutine. After the subroutine

is executed, execution returns to MAINLOOP, to await the next

selection.

Now we'll add a short segment to the sample application to let

you see how it works. Type in the following:

6670 DBSTRN "ARE YOU SURE?",ANS$

6672 IF ANS$o"Y" AND ANS$o"Y"

THEN RETURN

Enter these lines, and press [RETURN] at the end of each one.

To enter line 6672, type in the first part (first line), then use the

space key to move the cursor to the second line and type it in.

Entering a program is just this simple!

To save the changed version of the program, move the mouse

pointer up to the File submenu and click on the Update item.

13

Chapter 4—Programs, Data and Variables

THE GEOBASIC EDITOR

Text and Entry Modes

The first screen you see when you start geoBASIC is the editor

text screen. To enter text into the body of your geoBASIC

program, you must type that text into the geoBASIG editor. The

flashing box is known as the cursor, and whatever you type will be

placed on the screen at the cursor's position. You may type in

anything you like from the keyboard. To get upper case letters,

press the [Shift] key while pressing the letter key. The [Shift] key

also gives you access to the characters above the number keys.

Once you have finished typing in a line of BASIC text, press the

[RETURN] key to enter it.

There are two modes of text entry: overstrike and insert. To

switch back and forth between overstrike and insert mode, hold

down the [Shift] key and press the INST/DEL key on the top right

corner of your keyboard. The normal mode of text entry is

overstrike. Whatever you type will replace what is on the screen at

the cursor position. In the insert mode, whatever you type will still

appear at the cursor, but anything located to the right of the cursor

on the same line will be pushed to the right to make room for the

new text. Any text which no longer fits on the line it is on will be

pushed onto the next line to make room. The maximum size of one

line of geoBASIC commands is 240 characters (6 lines). If you

extend a line longer than 6 screen lines, part of it will be lost, most

likely resulting in a syntax error. When you are in insert mode, the

cursor will become a solid block to indicate the change in mode.

MOVING AROUND THE KEYBOARD

To move the cursor around the text on the screen, you can use

the arrow keys in the lower right corner of the keyboard or your

14

mouse pointer. The arrow key with the up and down arrows on it

will move the cursor down the screen if you press just the key, and

the cursor will move up the screen if you hold down the [Shift]

key at the same time as you press the up/down arrow key. The

arrow key with the left and right arrows on it will move the cursor

to the right if you press just the key, and it will move the cursor to

the left if you hold down the [Shift] key at the same time as you

press the left/right arrow key. You may also move the cursor

anywhere on the screen by moving the mouse pointer where you

want the cursor to appear and pressing the left mouse button.

To move the cursor to the top right corner of the screen, press

the [Home] key.

EDITING KEYS

To edit your text, you can use the [DEL] key at the top right

corner of your keyboard or the <- key at the top left corner. Their

functions are similar, but not identical. TheJpELj key erases the

character immediately to the left, of the cursor arid moves the

qharacter under the cursor anJeverything to the right of the cursor

one space to the left. The <- key erases the character directly under

the cursor and moves any characters to the right of the cursor one^

space to the left. To erase the entire line that the cursor is on, hold

down the Commodore key and press [DEL|. NOTE: Never delete

an entire program line by backspacing, deleting or overstriking the

characters in the line and pressing [RETURN].

The editor includes a tab key function. To use it, press the

[CONTROL] and [I] keys together. There are tab stops at line

positions 8, 12, 16,20, 24, 28, 32, and 36. The tab key function

can be very handy for indenting portions of your program to make

it easier to read. If you activate the tab function by pressing

[CONTROL] [I] while in overstrike mode, the cursor will move to

the new position. If you are in insert mode the cursor will move to

the new tab position and the number of spaces that the cursor

moved will be inserted in the line at the old cursor position. You

also have access to powerful editing functions from the menus —

15

see the menu section for a description of these.

CLEARING THE SCREEN AND LISTING

YOUR PROGRAM

You can clear the screen, removing everything from it, by

holding down the [Shift] key and pressing the [HOME/CLR] key.

To get a listing of your program on the screen so you can edit it,

use the LIST command (see below) or the list item under the Edit

submenu. To change any line in the program, simply move the

cursor onto that line, type in your changes, and press [RETURN]

to enter the changes .

THE GEOBASIC MENUS

The geoBASIC submenus located at the top of the screen and

the items under each submenu control many of the editing and file

handling functions. To select an item, move the mouse pointer up

to the submenu which contains the item and click the left button.

The submenu will open up, showing the items associated with it.

Then move the mouse pointer to the item you want and click the

left button again. The submenu will close up and your choice will

be acted upon. The submenu items are listed below, in the order

they appear under their respective submenus.

GEOS

geoBASIC Info

This item displays a Dialog box on the screen which shows the

version number of the geoBASIC, the author's name, and the

copyright information.

FILE

CLOSE

This item saves your program to disk and closes the file,

16

returning you to the initial dialog box which appears when you

first run geoBASIC. At that point, you may load and use another

geoBASIC file.

UPDATE

This item saves a copy of your current file to disk. Although

this is done automatically when you leave geoBASIC (see Close

above), it is a good idea to save a copy of your changes periodi

cally so that they won't be lost in the event of a power failure or if

you accidently turn off the computer without using Close.

RENAME

This item renames your file on disk and in memory. The

current file will be saved to disk using the name specified here

whenever you subsequently use update or close. Selecting this

item brings up a dialog box for you to Please enter a new

filename:. Type in the new filename you want and press

[RETURN]. To change your mind, just press [RETURN] without

entering a filename or click on the Cancel button. If the filename

you selected already exists on the disk, you will end up with two

files with the same name. The contents of the file on the disk will

replace the current file, and the current file will be lost. Exercise

caution when using this function!

PRINT

This item prints a complete listing of your program to your

printer. Make sure your printer is hooked up and turned on before

choosing this item.

QUIT

This item first saves the current file to disk, then returns to the

GEOS deskTop.

EDIT

LIST

This item lists the current program on the screen. If the

17

program is too long to appear on one screen, the lines of the

program will scroll off the top of the screen as new lines are listed

at the bottom. Use the F7 key to start and stop the listing process.

To break into the listing, press the [RUN/STOP] key.

SPRCOL

This menu item allows you to choose the two sprite colors

which remain the same for each sprite. The third sprite color

(which can be different for each sprite) is chosen using the Sprite

utility. Selecting this item brings up a dialog box for you to Click

on the boxes to choose the sprite multicolors. There are two lines,

labeled Multicolor 1 and Multicolor 2. Alongside each of these

lines is a small, colored box. Each time you click on one of the

colored boxes, it changes color, cycling through the sixteen avail

able sprite colors. When you are satisfied with the color selection,

click on the OK button.

OPTIONS

RUN

This item runs your program. It has the same effect as typing

RUN in the text window.

RENUMBER

This item will renumber your program for you. This is useful if

you need to insert new line numbers between existing line

numbers, but no intermediate line numbers are available. Selecting

this item brings up a dialog box which requests you to Enter

amount to renumber. Type in the number and press [RETURN] to

proceed with the renumbering or click on Cancel to cancel the

renumbering. The number you enter sets both the first line number

and the increment between line numbers. For example, if you enter

100, the first line will be line 100, then lines 200, 300, 400 and so

on. Remember, RENUMBER ignores the line numbers following

GOTOs and GOSUBs, so use labels for subroutines.

18

RESIZE

Resize changes the heap size for your program.

MAKE APPL

This turns a geoBASIC program into a standalone executable

file. Once created, this standalone file is not editable.

UTILITIES

MENU

This item activates the Menu Editor, which enables you to

construct your own menu for use in your programs. For a complete

description of the Menu Editor, see the chapter on Utilities.

DIALOG

This item activates the Dialog Box Editor, which enables you

to construct your own dialog boxes for use in your programs. For a

complete description of the Dialog Box Editor, see the chapter on

Utilities.

ICON

This item activates the Icon List Editor, which enables you to

construct your own icon lists for use in your programs. For a

complete description of the Icon List Editor, see the chapter on

Utilities.

BITMAP

This item activates the Bitmap Editor, which enables you to

design bitmaps for use with the Icon List Editor or the Dialog Box

Editor. For a complete description of the Bitmap Editor, see the

chapter on Utilities.

SPRITE

This item activates the Sprite Editor, which enables you to

design sprites for use in your program. For a complete description

of the Sprite Editor, see the chapter on Utilities.

19

u

ELEMENTS OF THE GEOBASIC LANGUAGE U
LJ

Line Numbers and Labels
U

Each line in a geoBASIC program must begin with a line

number. This line number not only identifies the line, but also sets [j

the order in which lines will normally be executed in the program.

For example: i—'

10 PRINT "HELLO THERE" U

20 FOR X=l TO 10

30 NEXT X LJ

Each of these lines begins with a number. The lines are listed lLj

(and executed) in the order of the line numbers. By numbering the

lines every 10, you can easily insert other lines in between the

lines you have already. For example, you could add the line: 25

PRINT X, in which case the listing above would look like:

10 PRINT "HELLO THERE"

20 FOR X=l TO 10

25 PRINT X

30 NEXT X

Notice how line 25 was inserted between lines 20 and 30. The

line numbers are also used as the target of GOSUB and GOTO

statements (see the explanation of these commands in the refer

ence section). See also the RENUMBER menu item.

Labels provide a way to give a name to a line. While the line

number is still necessary on a line with a label, that line can then

be referenced by the label when using GOSUB or GOTO.

Labels must be the first command of the line, immediately

after the line number itself. There may be spaces between the line

number and the label. The label must be preceded by the "@" sign

and only the first six letters of the label name are significant. The

label names are case-sensitive, that is, upper and lower case letters

are not the same, i.e. @START is a different label than @Start. A

label and a variable (see below) may have the same name but are

20

considered different by the program even if they do. Labels take

on the value of the line they are on, and can be used in mathemat

ical formulas just like variables, except that you may not try to set

the value of a label. The value of the label is set when the label is

declared by placing it at the beginning of a line in the program.

When using a label in a formula, make sure to use the leading "@"

to distinguish it as a label.

Labels may not be declared (placed at the beginning of a line

to establish their value) more than once. If you place the same

label at the beginning of two different lines, a LABEL

REDEFINED error will occur. It is very important that you always

delete the first occurrence of a label before changing its location.

And keep in mind that the total number of labels in a single

program cannot exceed 127.

For example:

10 @START: PRINT "HELLO"

20 FOR X=l TO 10

30 PRINT SIN(X)

40 NEXT X

50 GOTO @START

In line 10, the label START is declared. geoBASIC can tell

START is a label because of the "@" in front of the label name.

The label START actually takes on the value 10. Thus, in line 50,

the statement GOTO @START really is saying GOTO 10.

CONSTANTS

Constants are values which do not change during the execution

of your geoBASIC program. There are two types of numeric

constants, which are just numbers. Integer constants are whole

numbers (numbers with no decimal point) which can range in

value from -32768 to 32767. You may not use a comma to separate

the digits in an integer constant, and leading zeros are ignored.

Each integer constant uses two bytes of memory. Some examples

21

of integer constants are:

-10

1256

0

A Floating Point constant is a positive or negative number

which can contain decimal points and fractional portions. Once

again, commas are not allowed between the numbers. Floating

point constants can be represented two ways. The first way is as a

simple number with up to 9 digits. The number can range from

-999999999 to 999999999. If you specify more than nine digits,

the number will be rounded based on the tenth digit. If the tenth

digit is greater than or equal to 5, then the number will be rounded

upward. If the tenth digit is less than 5, the number will be

rounded down. Some examples of floating point constants repre

sented as simple numbers are:

12.45

3.1415924

66666.66

.01

If the number is less than .01 or greater than 999999999, then

the floating point constant will be printed in scientific notation. A

number printed in scientific notation looks something like:

1.23456E07.

The first part of the number is the digits to the left of the "E".

This part is called the "mantissa" and is a simple floating point

number, with the decimal point to the right of the first digit. The

letter "E" lets you know that you are viewing the number in

exponential form. The numbers following the "E" are called the

"exponent", and they are the integer power of 10 that the mantissa

should be multiplied by to get the actual number. The decimal

point in the mantissa would be moved the number of decimal

places to the right indicated by the exponent if the exponent is

positive. If the exponent is negative, then the decimal point would

be moved the number of places to the left indicated by the

exponent. Thus, 3E3 would be 3000 because it is 3 multiplied by

22

10 to the 3rd power (1000). Both the mantissa and the exponent

can be negative. If the mantissa is negative, then the whole number

is less than zero. If the exponent is negative, then the number is

between 0 and 1 if the mantissa is positive and between 0 and -1 if

the mantissa is negative. Thus, 3E-3 is .003 because 10 to the -3

power is .001. Even in scientific notation there is a limit to the

range of numbers you can handle. The largest number is

1.70141183E+38. If your expression results in an answer which is

larger, you will get an 7OVERFLOW ERROR. The smallest

number (closest to zero) is 2.93873588E-39. If a smaller number is

the result of your expression, the answer will be given as zero with

no error message. Some examples of floating point scientific

notation numbers are:

1.3456E07

3.4E-5

-7.7E-09

String constants are groups of alphanumeric text such as

letters, numbers, and symbols. When you enter a string constant

from the keyboard, it may be up to the length of one full line (240

characters less what is taken up by the line number and any other

statements on the line). A string constant can contain blanks,

letters, numbers, and punctuation in any combination. The string

constant must be enclosed in double quotes (") and thus may not

contain any double quotes in the string. You may leave off the

double quotes at the end of the string if the string is the last item

on a line or is separated from the next item by a colon (:). Some

examples of string constants are:

"HELLO"

"BERKELEY SOFTWORKS, BERKELEY"

"$56,000"

VARIABLES

Variables are data used in your geoBASIC program which can

change as the program executes. Variables are identified by then-

names. A variable name can be any length but only the first three

23

u

characters are considered significant: a variable is identified by the

first three letters of its name, which must be unique. Variable

names are case-sensitive, so AbC is a different variable than aBc.

Any alphanumerical character or number can be used in a variable

name, but the first character must be a letter. Also, you may not

use a geoBASIC keyword (command) in a variable. If you

accidently include a keyword in a variable name, you will get a

7SYNTAX ERROR.

Values can be assigned to a variable by setting it equal to a

constant, another variable, or an expression. If you assign a value

to a variable which already has a value, the former value will be

lost and the variable takes on the new value. Variables have the

same types as the constants discussed above: integers, floating

point numbers and strings. The last character in the name chosen

for the variable sets the type of variable. If the "$" is the last

character in the variable name, then it is a string variable. If the

"%" is the last character in the variable name, then it is an integer

variable. If neither of these characters is used as the last character

in the variable name, then the variable is a floating point variable.

A floating point number may be equated to an integer variable

(the fractional part will be ignored) and an integer number may be

equated to a floating point variable. However, you may not equate

a string variable to a number nor a numeric variable to a string.

Attempting to do so will cause an error.

Examples:

D$="HELLO THERE" (string variable equal to a string constant)

A$="HELLO"+" THERE" (string variable equal to a string expression)

B$=D$+" "+A$ (another string expression)

D=1.234 (floating point variable equal to a constant)

D=4.5+(6*7)/C (and equal to an expression)

D%=6 (integer variable equal to a constant)

D%=(6*7)+5 (and an expression)

24

ARRAYS

An array is a table of data items which are identified by a

single variable name. This name must follow the same rules as

other variable names. Within the array, the values (known as

elements) are identified by an element number. The variable name

identifies which table of data is being referred to, while the

element number specifies exactly which item in the table is to be

used. Take for example an array "A". To refer to the third element

in A, you would use the statement:

A(3)

To set the value of the third element in array "A" you would

use a statement like:

A(3)=10.5

Array elements can be used anywhere that normal variables

can, and the element number can even be the result of an

expression:

A(3+5)=U

or even another array element:

A(B(4))=5

Array names can be string, integer or floating point variables.

Their types are identified the same way as regular variables — with

the endings $ (string), % (integer), or no ending (floating point

array). All elements of the array must match the array name type.

Arrays may have up to 255 dimensions. In the example above,

the array "A" has only one dimension. You can visualize an array

with two dimensions as a table where the first dimension is the

rows and the second dimension is the columns:

0

1

2

0

1.1

2.6

3.5

1

1.2

7.9

6.8

2

3.4

3.6

1.9

3

5.6

7.9

0.6

3 4.6 6.8 2.4 9.7

25

u

This table is a two dimensional array. If the array name is

ARR, then the first element is ARR(0,0), and it is equal to 1.1.

Arrays are very useful. In the example above, there are 16 different

values stored in the single array name "ARR". If you couldn't use

arrays, you would have to come up with 16 different variables. An

array such as DNP(10,10,10) has over 1000 elements. You

couldn't possibly come up with that many variables, and accessing

each variable would be very difficult and require tremendous

amounts of BASIC code. However, to access any element of this

array, all you would need to do is use a statement such as:

X=5:Y=6:Z=3:DNP(X,Y,Z)=23

As you can see, the element number (also referred to as a

subscript) must be enclosed in parentheses following the array

name with the subscript for each dimension separated from the

others by commas. To use any array with more than 10 elements,

you must use the DIM statement (see the reference section) to

declare how many elements there will be in each dimension:

DIMDNP(10,10,10)

This DIMension statement actually declares 11 elements in

each dimension, 0 through 10. The total number of elements in this

array is thus 11*11*11, or 1331. If you try to use an element

number outside the range declared in the DIM statement, you will

get a ?BAD SUBSCRIPT error. Array elements are automatically

filled with zeroes (for floating point or integers) or nulls (for string

arrays) when created.

The memory usage for arrays is as follows:

5 bytes for the array name

2 bytes for each dimension of the array

2 bytes per element of the array for integers

5 bytes per element for floating points

3 bytes per element for strings

plus 1 byte per character for each element in a string array.

26

Examples:

A$(0)="HELLO WORLD" (string array)

AA%(BB%)=5 (integer array)

AA(4*X+6,5,7)=A*B (3 dimensional floating point array)

QR%(AA%(B,G))=4 (nested integer arrays)

EXPRESSIONS

Expressions are formulas and equations formed using

constants, variables, arrays, labels and operators. The operators

can be arithmetic, logical, or relational. This combination of items

is designed to produce a result which can be used in the program.

There are two types of expressions: arithmetic and string.

Arithmetic expressions will be covered first.

ARITHMETIC EXPRESSIONS

An arithmetic expression uses arithmetic operators, constants,

labels and variables to produce a result which is an integer or

floating point number. If a label is used, it takes on the numeric

value of the line which it was declared on:

10 @LBL:A=0

In this example, the label @LBL takes on the value 10, and

can be used in an expression. An arithmetic expression is normally

broken into data items called operands, separated by operators.

One or more operators, combined with one or more operands,

normally form an expression. The arithmetic operators which may

be used in an expression are:

+ Addition

- Subtraction

* Multiplication

/ Division

A Exponentiation (raising to a power)

Relational operators are normally used to compare the values

27

of two operands, but they can also produce a numeric result and so

can be used in arithmetic expressions. If the relation tested is true,

then the result is -1, and if the relation being tested is false,

then the result is 0. The relational operators are:

< Less than

= Equal to

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Examples:

2=3-1 result is true (-1)

20+4>5+9 result is false (0)

The logical operators (AND, OR, NOT) can be used to modify

the results of using relational operators or to produce an arithmetic

result. With the AND operator, each bit in the first expression is

ANDed against the corresponding bit in the second expression.

The bit in the result is equal to 1 if the bit in each expression is 1.

If the bit in either expression is 0, then the bit in the result is zero.

Thus, you get:

0AND0 = 0 1ANDO = O 0AND 1 = 0 1 AND 1 = 1

Example:

X=32007 AND 28761 (result is 28673)

With the OR operator, each bit in the first expression is ORed

against the corresponding bit in the second expression. The bit in

the result is equal to 1 if the bit in either expression is 1. If the bit

in both expressions is 0, then the bit in the result is zero . Thus,

you get:

0OR 0 = 0 1 OR0 = 1 0OR 1 = 1 1 OR 1 = 1

Example:

X=32007 OR 28761 (result is 32095)

28

The third logical operator is NOT. NOT turns a 1 into a 0 and a

0 into a 1:

NOT 0 = 1 NOT 1 = 0

For all the logical operators, the numbers operated on must

evaluate to between 32767 and -32768.

In addition to bitwise operations, the logical operators can be

combined to modify the results of comparisons. For the AND

operator, the result evaluates as true only if both of the expressions

are true, and if either expression is false, then the result is false.

The "truth table" for the AND statement looks like:

First

Expression

T

F

T

F

Second

Expression

T

T

F

F

Result

Expression

T

F

F

F

Example:

10X=7:Y=10:Z=15

20 IF X=7 AND Y=10 THEN PRINT "TRUE"

30 IF X=7 AND Y=10 AND Z=15 THEN PRINT "TRUE"

40 IF X=5 AND Y=10 THEN PRINT "TRUE"

50 IF X=7 AND Y=12 THEN PRINT "TRUE"

60 IF X=5 AND Y=12 THEN PRINT "TRUE"

The statements in lines 20 and 30 will print the word "TRUE"

when you run this short program. The statements in lines 40, 50

and 60 will not, because one or both of the expressions being

tested are false. Both statements in line 20 are true, so the result is

true and the statement to PRINT "TRUE" is executed. Note that in

line 30, the AND statement is testing the truth of three statements

(X=7 , Y=10, and Z=15). This works by evaluating the statements

29

u

two at a time. H

For the OR expression, the result evaluates as true if either of ^
the expressions are true, and if both expressions are false, then the 1 -j

result is false. The "truth table" for the OR statement looks like: i~

First Second Result

Expression Expression Expression

T T T

F T T

T F T

F F F

Example:

10X=7:Y=10:Z=15

20 IF X=7 OR Y=10 THEN PRINT "TRUE"

30 IF X=7 OR Y=10 OR Z=15 THEN PRINT "TRUE"

40 IF X=5 OR Y=10 THEN PRINT "TRUE"

50 IF X=7 OR Y=12 THEN PRINT "TRUE"

60 IF X=5 OR Y=12 THEN PRINT "TRUE"

The statements in lines 20, 30,40 and 50 will print the word

"TRUE" when you run this short program because at least one of

the statements is true. The statement in line 60 will not, because

both expressions being tested are false. Note that in line 30, the

OR statement is testing the truth of three statements (X=7, Y=10,

and Z=15). This works by evaluating the statements two at a time.

Finally, if an expression evaluates to be true, then NOT

<expression> is false. If the expression evaluates to be false, then

NOT <expression> is true.

Example:

10 AB=10:BA=20

30

!"pi 20 IF NOT(AB=BA) THEN PRINT "NOT EQUAL!

•> Since AB is not equal to BA, the expression (AB=BA) is false.

P* Thus, NOT(AB=BA) is true, and the program will print "NOT

1 EQUAL".

H
n HIERARCHY OF ARITHMETIC OPERATORS

rn Arithmetic expressions which include more than one operator

are evaluated in a strict order. Certain operations are performed

before other operations. This normal order can be modified by

enclosing a portion of the expression consisting of two or more

operands in parentheses. The portions of the expression enclosed

in parentheses are always evaluated first, before working on parts

of the expression outside the parentheses. Multiple levels of paren

theses may be used. This is called nesting, and by using it just

about any order of operator evaluation you wish can be achieved.

Up to ten levels of nesting may be used.

Example:

X+(Y+2*(4/5)-4)

(((6A3)+4)/4)

When parentheses are not used, or within a given level of

parentheses, the order of arithmetic operators is:

A

-

*/

+ -

< = >

NOT

AND

OR

Exponentiation

Negation

Multiplication and Division

Addition and Subtraction

Relational Operators

Logical NOT

Logical AND

Logical OR

As you can see, geoBASIC normally performs arithmetic

operations first, then relational, then logical. If operators have the

31

same level or precedence (like * multiplication and / division) then

the operators are evaluated from left to right. The normal order of

precedence is maintained within parentheses, although any parts of

the expression in the parentheses are evaluated before parts of the

expression outside the parentheses.

STRING EXPRESSIONS

A string expression uses string operators and strings to produce a

result which is another string. The first string operator is the

concatenation operator, "+". This operator will combine the

contents of two strings into one:

A$="HELLO" + " WORLD" (A$="HELLO WORLD")

H$=A$ + B$

Relational operators can also be used to compare strings. For

the purposes of comparison, the letters of the alphabet are arranged

in order such that A is greater than B which is greater than C, etc.

Strings are compared by evaluating the characters in the string

from left to right. If the first character in two strings are equal,

then the next two characters are checked, and the next two, until

either one string ends or a non-identical character is found. If all

the characters in the strings are identical but one string is shorter

than the other, the shorter string is considered to be "less than" the

longer string. If the string comparison is true, then the result is -1

(or True, for the purposes of an IF statement), while if the compar

ison is false, then the result is 0 (or false, for the purpose of an IF

statement).

Example:

"A" > "B" (true, result is -1)

"XY" = "YX" (false, result is 0)

A$<=B$

Note that this is the opposite of "normal" string evaluation in

CBM BASIC.

32

Chapter 5—The geoBASIC Command Reference

ELEMENTS

The elements of the GEOS environment are very important in

making geoBASIC both powerful and easy to use. The following

is a brief description of these elements:

Menus

Menus refers to the line of words located at the top of the

geoBASIC screen. Each of these words is called a submenu, and

under each submenu is one or more items. Selecting one of these

items will generally produce some result, such as saving your

program, calling up the sprite editor, etc.

To select an item in a submenu, move the mouse pointer up to

the submenu you want and press the left button. The submenu will

"open up", showing the items under the submenu. To select an

item, move the mouse pointer to it and press the left button. The

submenu will then close up, removing the items from the screen,

and act on your command.

Menus are available at the top of the text editing screen in

geoBASIC to help you enter and work with your program.

However, you can also design your own menus for use in your

programs by using the menu editor, accessed by clicking on menu

under the Utilities submenu. For more information on menus, see

the chapter on Utilities.

Bitmaps

Bitmaps are pictures. They have a limited size, but are useful

for showing pictorial representations of various items. For

example, you could construct a bitmap showing a disk drive or

printer. Bitmaps are useful with Dialog boxes and Icon Lists (see

below). You may design your own bitmaps by selecting bitmap

under the Utilities submenu. For more information about bitmaps,

33

u

see the chapter on Utilities. CJ>

Dialog Boxes LJ

Dialog boxes are boxes which appear on the screen to give r~j

information to the user or to get information from the user. A

dialog box can contain text, formulas, buttons and bitmaps. Fj

Generally, the user would click on a bitmap or button to select

what he or she wants to do, with the text providing some wJ

instructions. —
U

geoBASIC uses dialog boxes of its own, but you can also n

design your own dialog boxes for use in your programs by using

the dialog box editor, accessed by clicking dialog under the LJ

Utilities submenu. For more information on dialog boxes, see the

chapter on Utilities.

Sprites

Sprites are special graphic shapes which can move over the

screen without disturbing the background picture, if any. Sprites

can only be of a limited size, but can have up to three colors, can

move across the screen, can be animated, and can have a velocity,

initial position, and path set for them. You may design up to six

sprites of your own, and can link multiple sprites so that the

actions of several sprites are controlled by the motion of a single

sprite.

To design your own sprites using the sprite editor, select sprite

under the Utilities submenu. For more information on sprites, see

the chapter on Utilities.

GEOBASIC COMMANDS

geoBASIC contains a wealth of commands, called keywords.

Keywords are reserved, and appear in the section below in capital

letters, listed in alphabetical order. You may not use keywords as

variable names or imbed them in variable names. Study the expla

nations and example code carefully, and use this section as a refer

ence in the future.

34

n

FT Terminology:

I—T

1 ARGUMENTS, also called parameters, can be associated with
f-j many keywords. The arguments appear in lower case with each

keyword. Arguments can include filenames, variables, line

Ft numbers, expressions and math operators.

H SQUARE BRACKETS [] show arguments which are optional.
^ You may select any (or none) of the arguments shown.

H ANGLE BRACKETS <> indicate that you MUST choose one

of the arguments shown.

A VERTICAL BAR I separates items in a list of arguments. If

the list appears in square brackets, then the choices are limited to

r-7 those items listed, but the user still has the option of choosing any

or none of the arguments. If the list appears in angle brackets, you

P| MUST choose one of the items in the list.

R ELLIPSIS ... A sequence of three dots means that an argument
_ can be repeated more than once.

QUOTATION MARKS "" surround character strings,

filenames and other types of expressions and arguments. When an

argument is enclosed in quotation marks, the quotation marks must

be included in the command.

PARENTHESES () When arguments are enclosed in paren

theses, the parentheses must be included in the command.

VARIABLE refers to any valid BASIC variable name (Y, Z$,

Q%, etc.)

EXPR refers to any valid numeric BASIC expressions, such as

R*(4/T), etc.

STRING refers to a string constant, variable or expression.

35

u

COMMAND REFERENCE G

ABS ^
U

FORMAT: ABS(<expr>) „

U

This function returns the absolute value of the expression _.

enclosed in the parentheses. The absolute value of an expression is i—'
equal to the expression itself if the expression evaluates to a —

number which is greater than zero. If the expression evaluates to a u"-

number which is less than zero, then the absolute value of the r^

expression is the number without the negative sign, i.e., the

absolute value of an expression is always positive.

Example:

10 X=-2:Y=3

20 PRINT XrPRINT ABS(X):PRINT Y:PRINT ABS(Y)

This sample program would print the values -2, 2, 3, 3. As you

can see, the absolute value of the negative number X is positive.

AND

FORMAT: <expr> AND <expr>

The AND operator can be used for two purposes. As a

mathematical (boolean) operator, it is used to combine two

numbers together to produce a result. Each bit in the first expres

sion is ANDed against the corresponding bit in the second expres

sion. The bit in the result is equal to 1 if the bit in each expression

is 1. If the bit in either expression is 0, then the bit in the result is

zero. Thus, you get:

0 AND 0 = 0 1 AND 0 = 0 0 AND 1=0 1 AND 1 = 1

Each of the expressions must evaluate to a number between

-32768 and +32767. If either of the expressions evaluate to a

number outside this range, it will cause an 7ILLEGAL

36

n

H QUANTITY error.

Example:

R 10 X=32007 AND 28761: PRINT X

ft This would produce the result 28673. To see why, convert each

of the numbers to binary:

32007 is 0111110100000111 and 28761 is 0111000001011001.

n
ANDing each bit of the two numbers:

p-% 0111110100000111 AND

0111000001011001

p^

0111000000000001 (binary) or

PI 28673 (decimal).

The other way to use the AND operator is to test the truth of

two expressions. Each expression is generally an IF statement (see

IF). The result evaluates as true only if both of the expressions are

true, and if either expression is false, then the result is false. The

"truth table" for the AND statement looks like:

First

n Expression

n T

i-* F
■'.. 1 T

-1 F

Second

Expression

T

T

F

F

Result

Expression

T

F

F

F

Example:

10X=7:Y=10:Z=15

20 IF X=7 AND Y=10 THEN PRINT "TRUE"

30 IF X=7 AND Y=10 AND Z=15 THEN PRINT "TRUE"

40 IF X=5 AND Y=10 THEN PRINT "TRUE"

37

50 IF X=7 AND Y=12 THEN PRINT "TRUE"

60 IF X=5 AND Y=12 THEN PRINT "TRUE"

The statements in lines 20 and 30 will print the word "TRUE"

when you run this short program. The statements in lines 40, 50

and 60 will not, because one or both of the expressions being

tested are false. Both statements in line 20 are true, so the result is

true and the statement to PRINT "TRUE" is executed. Note that in

line 30, the AND statement is testing the truth of three statements

(X=7 , Y=10, and Z=15). This works by evaluating the statements

two at a time. First, the truth of X=7 AND Y=10 is tested. In this

example, the result is true. Then, the result of this test (TRUE) is

tested with the third statement, Z=15. Since Z is 15, this evaluates

to: TRUE AND TRUE, which is TRUE. Larger groups of state

ments can be tested for truth in this way, and statements can be

grouped together using parentheses:

10 IF (X=5 AND Y=10) AND (Z=20 AND Z*Y=200) THEN....

In this example, the truth of X=5 AND Y=10 is evaluated and

stored. Then the truth of Z=20 AND Z*Y=200 is tested and stored.

Finally, the two stored results are tested against each other for the

final result.

When a statement evaluates as FALSE, the value 0 is assigned

to the result, while if the statement evaluates as true, the value of

-1 is assigned to the result. Your program can determine the

numerical value that the expression evaluates to by equating the

expression to a variable:

Example:

10 X=10:Y=20

20 RES1=(X=2O)

30 RES2=(X=10) AND (Y=20)

The variable RES1 will be zero, since the statement (X=20) is

false. The variable RES2 will be -1, since both statements (X=10)

and (Y=20) are true. As above, you can combine more than two

expressions and evaluate the numerical result.

38

APPEND

FORMAT: APPEND <recordnum>

This command adds a new record to a VLIR file. Recordnum

is either a number or a numeric variable that points to the record

that will be appended to. For example:

before: 0 1 2 3 4 5 ...

after an APPEND 2: 0 1 2 3 4 5 6...

A

— new record

All records after the appended record are moved up one record.

If the last record would exceed 127 then an OUT_OF_RECORDS

error will occur. There is a bug in this command that prevents

APPENDing to record 126. APPEND will do an implicit PTREC

to the new record (see also INSERT).

ASC

FORMAT: ASC(<string>)

The ASC function will return the ASCII code of the first

character of the string. The expression <string> may be a string

constant or string variable. If there are no characters in the string,

then an 7ILLEGAL QUANTITY error will result. If the expression

in the parentheses is not a string (a number or letter) then a 7TYPE

MISMATCH ERROR results. The number returned for the ASCII

value will be between 0 and 255.

Example:

10 PRINT ASC("A")

20 PRINT ASC("HELLO")

30 J$="HELLO"

40 PRINT ASC(J$)

This short program will print 65 for line 10 (ASCII value of

39

u

"A"), 72 for line 20 (ASCII value of "H", the first letter in _

"HELLO") and also a 72 for the result of line 40. U

LJ

ATN • —

FORMAT: ATN(<expr>) ~j

This function returns the arctangent of the expression, which

must evaluate to a number between -PI/2 and PI/2. The arctangent *—'
is measured in radians. ~

Example: LJ

10 PRINT ATN(2) jj

returns 1.10714872 —

BITMAP U

FORMAT: BITMAP(<string>),(<expr>),(<expr>)

This command puts a bitmap on the screen. The bitmap must

have been created using the bitmap editor from the Utility

submenu or pasted in from a photoscrap beforehand. The <string>

is the filename that the bitmap was stored with. The first <expr>

specifies the X coordinate of the upper left corner of the bitmap

and must evaluate to a number between 0 and 39. The second

<expr> is the Y coordinate of the upper left corner of the bitmap

and must evaluate to a number between 0 and 199. If you place a

bitmap so that the right edge of the bitmap extends past the right

edge of the screen, the extra portion will be clipped (not be

visible). If you place a bit map so that the bottom extends past the

bottom of the screen, that portion of the bitmap won't be visible on

the screen.

Example:

10 BITMAP "pict",10,20

40

BUTTON

FORMAT: BUTTON <expr>

This command executes the subroutine which is given by the

expression every time the user clicks the left mouse button even if

the button is over a menu or icon. The expression defines the line

number to GOSUB to. The subroutine must end with a RETURN.

Example:

10 BUTTON 1000 .. 1000 PRINT "HI":RETURN

CALL

FORMAT: CALL <expr> [,<expr>, <expr>, <expr>, <expr>]

This command calls a machine language subroutine. The first

expression is the only one which is required. It gives the address of

the machine language routine. The rest of the expressions are

optional, and must evaluate to integers between 0 and 255. They

are used for (in order) passing values to the accumulator, X

register, Y register and the status flags. Using CALL makes it

possible to call GEOS routines which are not directly supported.

The memory addresses and details of GEOS routines are listed in

the GEOS Programmer's Reference Guide. As an example, the

GetScanLine routine (pg. 102 of the Programmer's Reference

Guide) can be called, where the variable "X" contains the scan line

number:

Example:

10 CALL 49468,0,X

CHR$

FORMAT: CHR$(<expr>)

41

This function converts an ASCII code (such as one returned by

the ASC function, above) to its character equivalent. The expres

sion must evaluate to an integer between 0 and 255. If it does not,

an 7ILLEGAL QUANTITY error will result. When used with the

PRINT command (see below), CHR$ allows you to PRINT using

different styles. These styles are:

CHR$(14) Turns on underlining

CHR$(15) T\irns off underlining

CHR$(18) T\irns on reverse video characters

CHR$(19) T\irns off reverse video characters

CHR$(24) Turns on bold printing

CHR$(25) Turns on italics printing

CHR$(26) Turns off all effects (returns to normal printing)

Example:

10 PRINT CHR$(65)

returns the character "A".

NOTE: Do not print the values 1 thru 7 or 29 thru 31 with the

CHR$ function. Doing so will cause a SYSTEM ERROR.

CLOSE

FORMAT: CLOSE

This statement closes the data file which was opened using the

OPEN command (see below). Only a single file can be OPEN at

once, so you must use CLOSE to close any open file before

OPENing another file.

Example:

10 CLOSE

42

CLS

FORMAT: CLS

This command clears the current window on the graphic

screen, where all output takes place during a program. If no

current window has been specified, then the entire graphic screen

will be cleared. It is useful to begin any program with CLS to give

yourself a clear screen to work on.

Example:

10 CLS

COLRECT

FORMAT: COLRECT <expr>,<expr>,<expr>,<expr>

This command draws a colored rectangle on the screen. The

actual color is set by the command SETCOL (see below). The four

expressions are the X and Y coordinates of the upper left corner of

the rectangle and the X and Y coordinates of the lower right corner

of the rectangle. The X coordinate expressions must evaluate to a

number between 0 and 39, while the Y coordinate expressions

must evaluate to a number between 0 and 24. Menus and Dialog

boxes will appear in the colors set with SETCOL. geoBASIC does

not automatically change the colors beneath menus and dialog

boxes.

Example:

10 COLRECT 10,10,20,20

COS

FORMAT: COS(<expr>)

This function calculates the cosine of the expression, which

43

must evaluate to a number. The number is the angle in radians.

Example:

10 PRINT COS(20)

20 Y=COS(Z*PI/180): REM CONVERT DEGREES TO RADIANS

CREATE

FORMAT: CREATE <filename$>[,<drivenum>]

This command creates a VLIR file on the disk. A VLIR file is

composed of a collection of records, each of which may have a

maximum size of 32K bytes. There may be up to 128 of these

records in the file (numbered 0 to 127). The filename parameter

may be a string variable or quoted string of any length but only the

first 16 characters are significant. Drivenum is an optional param

eter and specifies the device number to create the file on. This

number can range from 8 to 11. If this parameter is omitted the

current drive will be used.

Unless changed with the HEADER command, CREATE will

create only files of type 'BASIC DATA', with an empty permanent

name string. DO NOT USE CREATE IF THE THIRD PARAM

ETER OF THE HEADER COMMAND IS ZERO! CREATE will

not create sequential files properly!

Note that CREATE will leave the file in an open state so there

is no need to issue an OPEN command prior to accessing the file.

Example:

10 CREATE "TEST" : REM CREATES 'TEST' ON THE CURRENT

DRIVE

10 CREATE A$,9 : REM CREATES FILE NAMED IN A$ ON DEVICE #9

44

DATA

FORMAT: DATA <list of constants>

DATA statements are followed by a list of data items separated

by commas whose values are read into variables by the READ

statement (see READ, below). The data items can be numeric or

strings and strings do not have to be enclosed in quotes unless the

string contains a space, comma, colon, shifted letters, graphics or

cursor control characters. Two commas with nothing between them

will be entered as a zero if received by a numeric variable or as an

empty string if received by a string variable.

All the data statements in a program are treated as one contin

uous list, regardless of positioning in the program. The data in the

statements are read in sequence from left to right, starting with the

lowest numbered line and proceeding to the highest. This order of

reading can be modified using the RESTORE statement (see

below). The data in the DATA statements must match the type of

the variable it is being read in to. Numeric data is read into

numeric variables, and strings are read into string variables. If the

READ statement encounters data which doesn't match the type of

the variable, an error will result. Strings do not have to be enclosed

in quotes unless they contain special characters. To include spaces,

commas, colons and semicolons in string data, it must be enclosed

in quotes.

Example:

10 DATA 100,200,ABCDEFG

20 DATA 224.5,DAVID,"HELLO WORLD'V'YES, SIR"

DEFILE

FORMAT: DEFILE <string>

This command places a special dialog box on the screen for the

user to choose the name of a file on disk for use. The dialog box

45

has a scrolling list of files on the left side, just like the dialog box

which appears when you first start geoBASIC. If there are more

files than can be shown in the file box, a pair of arrows will appear

near the bottom of the box. To scroll through the list of available

files, move the mouse pointer to the up or down arrows and click

the left button. The user can click on a filename to select it. This

removes the dialog box from the screen, restoring whatever was

hidden by it. The name of the file chosen by the user is returned in

the <string>.

Unless changed by the HEADER command, only files with

type BASIC DATA and with permanent file name of "" (null

string) will be shown in the file box.

Once the DBFILE command has been successfully executed,

the file is opened, and so can be read from (see DREAD) or

written to (see WRITE).

Example:

10 DBFILE A$:REM RETURNS THE NAME OF THE OPENED FILE

INA$

DBSTRN

FORMAT: DBSTRN <string>,<string>

This function places a special one-line dialog box on the screen

to get input from the user. The first <string> is a prompt which is

printed in the dialog box. The second <string> must be a variable

— the user's typed input is returned in this variable when the user

presses [RETURN] after typing in the requested information. The

dialog box is then automatically removed from the screen and

whatever was obscured behind it is restored.

Example:

10 DBSTRN "Your name",A$

46

DEFFN

FORMAT: DEF FN<name> (<variable>) = <expr>

This statement sets up a user-defined function that can be used

later in the program. The function can consist of any mathematical

statement or expression, and must be limited to one line. The

<name> of the function must follow FN and can be any alphanu

meric variable name beginning with a letter. This name is used

later when the function is referenced. The <variable> must be

included for proper syntax, but does not need to be used in the

function definition. When the function is called (see FN, below)

with a variable or constant in parentheses, the value of the variable

or constant it is called with replaces the variable in the function

definition everywhere it appears. The DEF FN statement must be

executed during the course of running the program before it

becomes active.

Example:

10Q=5:R=4

20DEFFNABC(X)=X*3

30 DEF FN QQQ(Y)=Q+R/4

40 BB=FNABC(10):PRINT BB

50 CC=FNQQQ(R*R):PRINT CC

There are several things to notice in this example. First, the

DEF FN statements must be executed before the FN statements

which call them. Also, the function (as called using the FN state

ment) is treated just like any other math function such as COS (see

above). When the function is called, its value is automatically

calculated. The statement on line 40 will print 30 for the value of

BB, since 10 is substituted for the variable X in the function

definition on line 20. If a different variable or constant was used

on line 40, then you would get a different result. The statement on

line 50 will print 5 for the value of CC. This result will be the

same no matter what variable is included in the function call, since

the formula in line 30 doesn't use the variable.

47

Li

DELETE U
U

FORMAT: DELETE <expr>

This command deletes the record number given by the

expression from a file created using the CREATE command (see [j

above) or opened using DBFILE or OPEN. All records in the

file with higher numbers than the deleted record will be moved L-i

down one. - --

Example: ~

10 DELETE 3

DELPROC

FORMAT: DELPROC <expr>

The PROCESS command (see below) can set up a process

subroutine which will execute periodically. The DELPROC

command stops a process which was started by the PROCESS

command from running. The expression is the line number of the

process subroutine which you no longer want to run. Since a

maximum of eight processes can be running at any time, this

command allows you to turn off processes so that others can be

started, if you wish.

Example:

10 PROCESS @FLASH, 10

100 DELPROC @FLASH

DIALOG

FORMAT: DIALOG <string>, [<variable>]

48

Places a dialog box designed using the Dialog Box Editor on

the screen. The <string> can be a string constant or string variable,

and specifies the name of the dialog box to place on the screen.

This is the name used when you constructed the dialog box using

the Dialog Box Editor. If the second parameter is used, it must be a

numeric variable. The number corresponding to the icon or bitmap

that the user clicked on to exit the dialog box is returned in the

variable. These numbers and their corresponding icons are

explained in the Dialog Box Editor section, above. When the user

clicks on an icon to remove the dialog box from the screen,

whatever was obscured by the dialog box is restored to the screen.

Example:

10 DIALOG "TEST",A

20 DIALOG A$,B

DIM

FORMAT: DIM <variable>(<subscripts>)[,<variable>

(<subscripts>)...]

Before arrays of variables can be used, the dimensions of the

array must be established using the DIM statement. The

<variable> name can be any legal variable name. The name must

follow the rules for variable names: the array is automatically an

array of floating point numbers unless the "$" character is used at

the end of the array name to indicate a string array or the "%"

symbol is used at the end of the variable name to indicate an array

of integers.

The <subscripts> argument establishes the limits of the array

and how many dimensions it will have. One subscript is used for

each dimension, and the subscripts specifying the limits in each

dimension must be separated by commas. Up to 255 dimensions

may be used, subject only to the requirement that there be enough

memory to hold the array. An array with more than one subscript is

known as a matrix. Each subscript establishes the number of

49

elements in the array for that dimension. The lowest element Q

number is 0, and the highest allowed is 32767. Arrays are

numbered from 0 to N, where N is the maximum value specified 1—1
by the subscript in the DIM statement. Since the lowest numbered , (

subscript is 0, there is actually one more element in the array than

the value of the subscript. Further, each element of a string array fj

(variable name ends in "$") can hold a string.

U

The DIM statement for an array must be executed once and -

only once during the course of program execution. Any attempt to *—'

reexecute a DIM statement will result in a REDIMed ARRAY r^

ERROR. If an array is used in the program which was never ^
dimensioned, it automatically is dimensioned to 11 elements in

each dimension used in the first reference.

Example:

10 DIM A(100):REM 101 elements (0-100)

20DIMB(4,5),Q(3,4,5)

30 DIM B$(100)

You need to be careful not to run out of memory while

DIMensioning arrays. Arrays have the following memory

requirements:

5 bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

1 byte for each character in each string element.

DPEEK

FORMAT: DPEEK <expr>

This function returns the word (two-byte) value at the location

given by <expr>. <Expr> must evaluate to an integer between 0 and

65535. The contents will always be a number between 0 and 65535.

50

Example:

10 A=DPEEK(5055)

DPOKE

FORMAT: DPOKE <Iocation>,<expr>

Places the word (two-byte) number given by <expr> into the

memory location given by <location>. The low byte of <expr> is

placed in <location>, while the high byte is placed at <location>

+-1. Both <location> and <expr> must be between 0 and 65535.

The DPOKE command writes the <expr> directly into a

memory location. Extreme care should be exercised when using

this command, since putting the wrong value into a memory

location could cause your computer to lock-up.

Example:

10 A=2040:B=54320:DPOKE A,B

DREAD

FORMAT: DREAD <variable$>[,<variable$>,...]

This command is used to fill variables with information from a

disk file. The file being read from must have been previously

opened with the OPEN, CREATE, or DBFILE commands. While

numeric variables are permitted they are not recommended

because if the information coming in from the disk is not numeric

an error will result. Use string variables and cast them to numbers

with the VAL() command instead. Each string in the file must be

terminated with a carriage return or a comma. An error will occur

if the string is longer than 255 characters or if you try to read from

an empty record (see also RDBYTE).

51

END

FORMAT: END

This statement stops program execution, returns to the text

editor and waits for a keypress. Once a key has been pressed, it

displays the READY message on the screen. It is not necessary to

use any END statements, although it is good programming practice

to conclude the program with one. There can be any number of

END statements throughout a program to halt execution.

Example:

10 PRINT "DO YOU WANT TO QUIT?"

20 INPUT ANS$

30 IF ANS$="YES" THEN END

40 REM REST OF PROGRAM

EOF(0)

This function is used to signal the end of a disk record. The

argument may be any variable or a number. If the last DREAD or

RDBYTE returned the last character of the record, or if PTREC is

used on an empty record then a TRUE (-1) is returned. Otherwise

EOF(0) returns zero.

Remember that there is a difference between an empty record

and an unused record. An empty record is one that was created

with INSERT or APPEND but nothing was written to it. An

unused record has never been accessed at all. PTREC will generate

an error if you try to point to an unused record, preventing the use

ofEOFQ!

52

Example:

10 OPEN "MYFILE"

20 PTREC 0

30 WHILE NOT EOF(0)

40 RDBYTE A$

50 A = ASC(A$)+CHR$(0)

60 IF A > 31 OR A = 13 THEN PRINT A$;

70 LOOP

80 CLOSE

90 END

EXP

FORMAT EXP(<expr>)

This function calculates the base of the natural logarithms (e,

equal to approximately 2.71828) raised to the power given by the

argument <expr>. A value for <number> greater than 88.0296919

will cause an 7OVERFLOW ERROR.

Example:

10X=Y*EXP(10*X+.5)

FN

FORMAT: FN<name>(<expr>)

This function returns the value of the formula previously

defined using DEF FN (see above).The FN function must be

executed after the DEF FN call which defines it. The <expr> can

be a variable, constant or expression whose value is substituted

into the place of the variable in the DEF FN formula when the

formula is calculated. The FN function works just like any

ordinary function and its value is calculated automatically when it

is called, using the value of the <expr> specified.

53

Example:

10 Q=5:R=4

20DEFFNABC(X)=X*3

30 DEF FN QQQ(Y)=Q+R/4

40 BB=FNABC(10):PRINT BB

50 CC=FNQQQ(R*R):PRINT CC

The statement on line 40 will print 30 for the value of BB,

since 10 is substituted for the variable X in the function definition

on line 20. If a different variable or constant was used on line 40,

then you would get a different result. The statement on line 50 will

print 5 for the value of CC. This result will be the same no matter

what variable is included in the function call, since the formula in

line 30 doesn't use the variable.

FONT

FORMAT: FONT<string>,<expr>

This command specifies what font to use. If the font is not in

memory, then the disk will be searched for the font, and it will be

automatically loaded if it is found. If it is not found, then the

default system font will be used instead. The <string> specifies the

name of the font to use, while the <expr> specifies the size of the

font. The size is in points, with 72 points to the inch. Fonts

included with GEOS are:

Font Sizes

BSW

University

California

Roma

Dwindle

Cory

9

6,10,12,14,18,24

10,12,13,14,18

9,12,18,24

18

12,13

20 additional fonts are available on the GEOS Font Pack 1. If a

font is too large, there may not be enough memory to contain it.

54

You would then get an ?OUT OF MEMORY error.

When printing fonts on the screen, the carriage returns (used to

get to the next line) are the same size as the font. Carriage returns

are produced with a PRINT statement which is NOT followed by a

semi-colon. A large-sized font will produce a large carriage return

(large distance between the current line and the next line).

Changing font sizes just after doing a carriage return can produce

some strange results. Switching from a small font to a large one

will cause the large font to overprint the line on which the small

font is located. Switching from large font to a small one can cause

wide gaps between lines of text.

Example:

10 FONT "University",10

FOR...TO...[STEP]...NEXT

FORMAT: FOR <variable>=<start> TO <end> [STEP

<increment>]

NEXT [<variable>, <variable>...]

This series of commands establishes a loop that repeats the

statements contained in the loop for a set number of times. All

statements between the FOR and the NEXT statements are

repeated. The <variable> is used as a counter for the loop. It must

be a floating point variable (may not be an integer or string

variable). It starts out with the value specified by <start>. All the

statements up to the NEXT statement are then executed. When the

<NEXT> statement is encountered, the value of the loop variable

is changed by the amount specified by <increment> in the STEP

statement. If the STEP statement is not used, then the <increment>

is automatically set to 1. The value of the variable is compared to

<end>. If the loop variable has exceeded the value of <end> then

execution of the program continues with the next statement past

55

the NEXT statement. If the loop variable has not exceeded the

value of <end>, then the program loops back and resumes execu

tion with the statement following the FOR statement. If the <incre-

ment> value in the STEP statement is negative, then execution

continues within the loop only as long as the loop variable is

greater than the value of <end>.

The NEXT statement indicates the end of the loop. If the

optional <variable> is used with the NEXT statement, it must be

the same variable name as the loop variable established in the FOR

statement. One FOR...NEXT loop may be contained within

another. This is known as nesting. You may nest loops up to nine

deep. A single NEXT statement can terminate several nested

loops. If the <variable> is not used with the nested NEXT state

ment, then the NEXT statement will terminate the last started loop.

If the <variable> is used with the nested NEXT statement, you

must either use separate NEXT statements to terminate each

nested loop or else use multiple <variable>s with a single NEXT

statement, being careful that the variables are in the proper order:

the last loop to start (the inside loop) must be the first loop to end.

Loops may not cross one another. See the examples for

illustrations.

Example:

10 FOR X=l TO 10:REM NO STEP STATEMENT

20 PRINT X:NEXT

10 FOR X=l TO 20 STEP .5

20 FOR Y=10 TO 0 STEP -1

30 PRINT X*Y+5

40 NEXT Y:REM FINISH THE INSIDE LOOP

50 NEXT X:REM FINISH THE OUTSIDE LOOP

10 FOR X=l TO 20 STEP .5

20 FOR Y=10 TO 0 STEP -1

30 PRINT X*Y+5

40 NEXT Y,X:REM ONE NEXT WITH TWO VARIABLES

56

10 FOR X=l TO 20 STEP .5

20 FOR Y=10 TO 0 STEP -1

30 PRINT X*Y+5

40 NEXT:REM NO VARIABLE—TERMINATES INSIDE LOOP

50 NEXTrREM NO VARIABLE—TERMINATES OUTSIDE LOOP

FRE

FORMAT: FRE(<expr>)

This function tells you how much memory is left in the

computer for you to use for your program and variables. If the

program tries to use more memory than is available, an OUT OF

MEMORY error will result. The <expr> can be anything since it is

not used except for syntax purposes.

Example:

10 PRINT FRE(0):REM FREE MEMORY

FRECT

FORMAT: FRECT <expr>,<expr>,<expr>,<expr>

This command draws a framed rectangle on the screen. A

framed rectangle is a rectangle which is not filled in, that is, it

consists only of the four lines which form the frame. The four

expressions are the X and Y coordinates of the upper left corner of

the rectangle and the X and Y coordinates of the lower right corner

of the rectangle. The X coordinate expressions must evaluate to a

number between 0 and 319, while the Y coordinate expressions

must evaluate to a number between 0 and 199.

The value of SETCOL sets the line pattern of the four lines

which make up the frame of the rectangle. The 8 bits which make

up the number passed to SETCOL can be either On or Off. If the

bit is On, then it shows up in the line, and if the bit is Off, then it is

57

off in the line. For example, the number 255 (binary 11111111) has

all bits on, so the line drawn with FRECT will be solid. 85 (binary

10101010) will produce a dashed line, with every other pixel of

the line being On. Using a value of zero will cause a white line to

be drawn on any present dark background.

Example:

10 SETCOL 255

20 FRECT 10,10,20,20

GET

FORMAT: GET<variable list>

This statement reads any key you press. The variables in the

<variable list> will receive the values of the keys pressed. String

or numeric variables may be specified in the <variable list>, but if

a numeric variable is specified and you press a letter key, then an

error will result. It is better to use only string variables and convert

strings to numbers (see VAL, below) where necessary. If no key is

pressed, then the variable will be empty and the program continues

without waiting. The GET statement may be put into a loop so that

you can check for an empty result.

Example:

10 GET A$:IF A$="" THEN GOTO 10:REM WAIT FOR NONEMPTY A$

20 PRINT A$

GOSUB/RETURN

FORMAT: GOSUB <expr>

The GOSUB statement transfers control of the program to the

line specified by <expr>. The <expr> parameter may be a numeric

constant, variable, expression or label. The block of statements

beginning at <expr> is then executed. When the RETURN state-

58

ment is encountered, program control returns to the statement

following the GOSUB. The computer remembers where the new

program segment was called from and returns there when the

block of statements located between the chosen line and the

RETURN statement, known as a subroutine, is finished.

Subroutines are of primary use for blocks of the program which

are repeated many times. Instead of putting the code in the

program many times, the program can simply GOSUB to the line

where the subroutine begins each time that block of code needs to

be executed.

The contents of the subroutine block can use any valid

geoBASIC statements, including calls to other subroutines.

However, since the address that the subroutine must RETURN to

is stored in a limited section of memory, there is a definite limit to

how deep you can nest subroutine calls. If you try to nest too many

GOSUBs, you will get an OUT OF MEMORY error — even

though there may be plenty of memory left for the rest of your

program.

Example:

10 FOR N=l TO 10

20 GOSUB @DOIT:REM THE SUBROUTINE CALL

30 NEXT N

40 END

100 @DOIT:PRINT EXECUTION # ";N:REM THE SUBROUTINE

110 RETURN:REM END OF THE SUBROUTINE

Line 40 is very important. If it weren't there, then after the

subroutine was executed by the GOSUB in line 20 and the loop

finished in line 30, the program would continue to run at line 100.

However, when the RETURN in line 110 was encountered, the

error message RETURN WITHOUT GOSUB ERROR in 110

would result. That is because the computer would not know where

to RETURN to since there had been no corresponding GOSUB

call.

59

GOTO

FORMAT: GOTO <expr>

This statement allows the program to jump to the line number

specified by <expr> and continue execution there. The <expr>

parameter may be a numeric constant, variable, expression or

label.

Example:

10 PRINT "GOTO STATEMENT DEMONSTRATION"

20 GOTO @DOIT:REM COULD ALSO BE GOTO 100 OR GOTO 10*10

30 GOTO 30:REM PRESS RUN/STOP TO STOP PROGRAM

40 REM PROGRAM WILL NEVER GET HERE

100 @DOIT: PRINT "THIS IS LINE 100"

110 END

HEADER

FORMAT: HEADER <expr>,<string>[,<expr>]

The HEADER command allows you to specify the type of file

and permanent file name of the files which will appear when using

DBFILE or that will be created using CREATE. If the HEADER

command is not used, then only files matching type BASIC DATA

and with a permanent file name of "" (null string) will appear

when using DBFILE or be created when using CREATE. The first

<expr> must evaluate to a valid file type. Valid file types are:

BASIC (1), ASSEMBLY (2), DATA (3), SYSTEM (4),

DESK_ACC (5), APPLICATION (6), APPL_DATA (7), FONT

(8), PRINTER (9), INPUT.DEVICE (10), DISK_DEVICE (11),

SYSTEM_BOOT (12), TEMPORARY (13) and AUTO_EXEC

(14).

Most of these file types would never need to be used or

accessed by a user. For more information on the different file

60

types, see page 398 of the GEOS Programmers Reference Guide.

The <string> is the permanent file name to match. If used, then

only files which match this permanent file name will appear in the

dialog box. The permanent file name is used by GEOS to help

identify what application a file belongs to. For example, it is by the

permanent file name that GEOS can tell the difference between

GeoPaint and GeoWrite files. The permanent file name of any file

can be seen from the desktop. Click on the file you are interested

in to highlight it, then drop down the File submenu and click on

Info. The name which appears in the Info box next to Class is the

permanent file name.

The optional last <expr> is the file structure. It must evaluate

to either 0 (sequential) or 1 (VLIR).

Example:

10 HEADER 3,"",1

ICON

FORMAT: ICON <string>

Places a group of icons on the screen. The group of icons must

have been designed previously using the Icon List Editor. The

<string> can be a string constant or string variable, and specifies

the name of the Icon List to place on the screen. This is the name

used when you constructed the Icon List using the Icon List Editor.

See MAINLOOP for an example of how your program should

respond when the user clicks on one of the icons you have placed

on the screen. If multiple calls are made to the ICON command,

only the last set of icons loaded can be clicked on, even if earlier-

loaded icons are still visible on the screen.

Example:

10ICON"MYCON"

61

IR..THEN...

FORMAT: IF <expr> THEN <statements>

This statement gives geoBASIC the ability to make decisions

based on the outcome of the expression. <Expr> can be any

mathematical formula including variables, strings, numbers,

comparisons and logical operators. If the expression is true, then

the statements following THEN are executed. If the expression is

Example:

10 REM DEMO NUMBER CHOOSING GAME

20 PRINT "I WILL PICK A NUMBER BETWEEN 1 AND 10":CNT=0

30A=INT(RND(10))+l

40 PRINT "WHAT IS YOUR GUESS?":INPUT Q:CNT=CNT+1

50 IF Q<1 OR Q>10 THEN PRINT "NO. OUT OF RANGE":GOTO 40

60 IF Q=A THEN GOTO 90

70 IF Q<A THEN PRINT "GUESS IS TOO LOW":GOTO 40

80 PRINT "GUESS IS TOO HIGH":GOTO 40

90 PRINT "YOU GOT IT IN ";CNT; " TRIES"

100 PRINT "WANT TO PLAY AGAIN (Y/N):INPUT A$ 110 IF A$="Y"

THEN GOTO 20

120 PRINT "GOODBYE...":END

Line 20 prints out a message and zeroes out the counter. Line

30 uses the RND function to choose a number between 1 and 10

(see RND, below). Line 40 gets your guess. Line 50 uses a

compound expression to make sure that your guess is in the proper

range, and prints a message and GOTOs line 40 if it is not. Line 60

jumps to line 90 if you got the right answer. Line 70 tests to see if

your guess is less than the number, prints the message and jumps

to the right line number if it is. Notice how line 80 works. If lines

60 and 70 didn't cause a jump to another line, then your guess

MUST be higher than the right number, so line 80 prints this

message and jumps back to line 40 to get your next guess. Line 90

prints out the winning message, and line 100 checks to see if you

want to play again. If you type in "Y", then line 110 will cause a

branch back up to line 20 to start over. If you don't type a "Y",

62

then the program falls through to line 120, which prints a message

and ENDs the program.

INPUT

FORMAT: INPUT ["<prompt>";]<variable list>

This statement receives input from you, and places what you

type into the variables in the variable list. When the INPUT

statement is encountered in the program, the program stops and a

question mark is placed on the screen. Type in your data and press

[RETURN]. The INPUT command may be followed by any text

enclosed in quotes. This text will be printed on the screen,

followed by the question mark. The text is helpful in reminding

you what sort of information the program needs from you. The

semicolon following the prompt text MUST be used in the

statement if the prompt text is used.

The <variable list> may contain one or more variable. If only a

single variable is used, then you can just type in the value and

press [RETURN]. If more than one variable is used, then type in

the appropriate number of values, separated by commas. If you

type in too few values, a "??" will appear on the next screen line to

prompt you to type in additional values. If you type in too many

values, the 7EXTRA IGNORED message will appear, meaning

that the extra items you typed were not placed into any variables.

Note that, since the values you type in are separated by commas,

the values themselves may not contain any commas. Also, if the

current variable in the variable list is a numeric variable and you

type in a string, you will get the 7REDO FROM START message.

You must then type in a number for that variable. If you just press

[RETURN] at the INPUT prompt, the old value of the variable is

maintained (the variable value doesn't change).

Example:

10 INPUT VLUE,START, FINISH

20 INPUT SVL$:REM GET A STRING

30 INPUT "WHAT NUMBER"; NMBR

63

INSERT

FORMAT: INSERT <recordnum>

This command adds a new record to a VLIR file. Recordnum

is either a number or a numeric variable that points to where the

record will be inserted. For example:

before: 0 12 3 4 5 ...

after an INSERT 2: 012 3 4 5 6...

A

— new record

All records after the inserted record are moved up one record.

If the last record would exceed 127 then an OUT_OF_RECORDS

error will occur. There is a bug in this command that prevents

INSERTing to record 126. INSERT will do an implicit PTREC to

the new record (see also APPEND).

INT

FORMAT: INT(<expr>)

This function returns the integer value of the expression, which

must evaluate to a number. If the expression is a positive number,

the fractional portion of the number is left off. If the expression is

less than zero, any fractional part causes the next lower integer to

be returned.

Example:

100 PRINT INT(10.5), INT(-10.5)

These statements return the values 10 and -11, respectively.

INVRECT

FORMAT: INVRECT <expr>,<expr>,<expr>,<expr>

64

The command inverts screen pixels in the rectangle defined by

the four expressions. All pixels which are On are turned Off, and

all pixels which are Off are turned On. The four expressions are

the X and Y coordinates of the upper left corner of the rectangle to

invert and the X and Y coordinates of the lower right corner of the

rectangle. The X coordinate expressions must evaluate to a number

between 0 and 319, while the Y coordinate expressions must

evaluate to a number between 0 and 199.

Example:

10INVRECT 10,10,20,20

LEFT$

FORMAT: LEFT$(<string>,<expr>)

This function returns the left-most <expr> characters of the

string <string>. The <expr> parameter can be an expression which

evaluates to an integer between 0 and 255. If the integer is greater

than the length of the string, the entire string is returned. If the

integer is 0, then a null (empty) string is returned.

Example:

10 A$="BERKELEY SOFTWORKS"

20 B$=LEFT$(A$,8):PRINT B$

30 C$=LEFT$("HELLO WORLD",5):PRINTC$

This example program would print "BERKELEY" and

"HELLO".

LEN

FORMAT: LEN(<string>)

Returns the length of <string>. Blanks and unprintable

characters are included in this count.

65

Example:

10 A$="BERKELEY SOFTWORKS"

20 B=LEN(A$):C=LEN("HELLO WORLD")

30 PRINT B:PRINT C

This example would print the values 17 and 11.

LINE

FORMAT: LINE <expr>,<expr> TO <expr>,<expr>

This command draws a line on the screen. The first two

expressions (preceding TO) are the X and Y coordinates of the

beginning of the line, and the last two expressions (after TO) are

the X and Y coordinates of the end of the line. The X coordinate

expressions must evaluate to a number between 0 and 319, and the

Y coordinate expressions must evaluate to a number between 0

and 199. The color of the line is set by SETCOL(below).

Example:

10 LINE STX,STY,EX,EY

20 LINE 10,10,20,20

LIST

FORMAT: LIST[[<first line>],[<last lino]]

The LIST command allows you look at the geoBASIC

program currently in memory. The screen editor can be used to

edit portions of the program once these portions have been placed

on the screen.

If the program is too long to fit on the screen, the lines at the

top of the screen will scroll off the top as new lines are added at

the bottom. To suspend this scrolling, hold down the F5 key.

Releasing the F5 key will allow the LIST to resume again. To

break in to a LIST statement, press [RUN/STOP].

66

If the LIST command is used without any parameters, the

entire program in memory is listed. The <first line> and <last line>

parameters may be constants or labels. If the first line number is

given followed by a comma (,), then all lines from the specified

line to the end of the program will be listed. If only the last line is

given, preceded by a comma, then all lines from the beginning of

the program to the specified line will be listed. If both the starting

and ending line numbers are given, separated by a comma, then all

lines between and including the specified lines will be listed. If

just a single line number is specified after the LIST statement, then

just that line will be LISTed.

Example:

LIST (LISTS WHOLE PROGRAM IN MEMORY)

LIST 100 (LISTS LINE 100 ONLY)

LIST 100, (LISTS LINE 100 TO END OF PROGRAM)

LIST ,100 (LISTS FROM BEGINNING OF PROGRAM

THROUGH LINE 100)

LIST 100,500 (LISTS LINES 100 THROUGH 500)

LIST <8>START,@END (LISTS FROM LINES @START TO @END)

LOAD

FORMAT: LOAD <filename>,<expr>,[<expr>]

This statement reads the contents of a file from disk into

memory. The filename identifies the name of the file you want to

load. The filename may be contained in a string variable. If the

filename specified is not found, the ?FILE NOT FOUND error

message will result.

The first expression is the memory address to load the file into.

It must evaluate to a number between 0 and 65535. The second

expression specifies the device number that the file is to be loaded

from. It must evaluate to a number between 8 (first disk drive) and

11. If the expression is left out, the current drive will be used.

67

Example:

LOAD "PIC",40960 (load "PIC" from current drive to screen memory)

LOAD B$,32768,8 (loads the filename given by B$ from disk. The file

will be loaded to memory location 32768.)

LOG

FORMAT: LOG(<expr>)

Returns the natural logarithm (log to the base of e) of the

expression, which must evaluate to a number greater than zero. An

7ILLEGAL QUANTITY error will occur if the number is less than

or equal to zero.

Example:

10 PRINT LOGUO/7)

MAINLOOP

FORMAT: MAINLOOP

This simple command is the heart or "main loop" of

geoBASIC programs. With it, you can detect when the user clicks

on an icon or selects a menu item, and branch to the appropriate

subroutine to execute the user's choice. When the subroutine

RETURNS, MAINLOOP takes over again and waits for the next

selection. Before executing MAINLOOP, set up menus (see

MENU) and icons (see ICON). Everything after MAINLOOP in a

geoBASIC program should be subroutines which execute when a

menu item is selected or an icon is clicked on.

68

Example:

10 ICON "NEW"

20 MENU "START"

30 MAINLOOP

40 END

100 PRINT "YOU PRESSED ICON 1":RETURN

200 PRINT "YOU PRESSED ICON 2":RETURN

This short program segment sets up the MENU and ICON,

then goes into MAINLOOP and waits for the user to do

something. Suppose that when you designed the icon list, you

specified that the program should branch to line 100 if icon #1 was

clicked on and to line 200 if icon #2 was clicked on. Clicking on

icon #1 or #2 executes lines 100 or 200, printing the messages on

the screen. The program then goes back to MAINLOOP to wait for

the next time the user clicks on an icon.

MENU

FORMAT: MENU <string>

Places a menu at the top of the screen. The menu must have

been designed previously using the Menu Editor. The <string> can

be a string constant or string variable, and specifies the name of

the Menu to place on the screen. This is the name used when you

constructed the Menu using the Menu Editor. See MAINLOOP for

an example of how your program should respond when the user

selects one of the Menu items you have placed on the screen. Only

the menu subitems present in the most recent MENU call are

active.

Example:

10 MENU "MYMEN"

69

MID$

FORMAT: MID$(<string>,<expr l>,[<expr 2>])

This function returns a sub-string taken from within a larger

string given by <string>. <Expr 1> determines the starting position

of the sub-string within the larger string. If <expr 1> is larger than

the length of the <string>, then the null string is returned. < Expr

2> is optional and specifies how many characters are to be

included in the sub-string, starting from the position determined by

<expr 1>. If <expr 2> is left out, then the entire balance of the

string is included in the sub-string. If <expr 2> is zero, then the

null string is returned. If <expr 2> is larger than the length of the

<string> from the starting position to the end of the string, then the

rest of the string is returned. Both <expr 1> and <expr 2> can have

values from 0 to 255.

Example:

10 A$="HELLO"

20 B$="THERE EVERYONE YOU"

30 PRINT A$+MID$(B$,7,8)

This sample program will print "HELLO EVERYONE".

MOUSE

FORMAT: MOUSE <expr>

This command turns the mouse on or off. The <expr>

determines whether the mouse will be turned on or off. If it is

equal to 0, then the mouse pointer is turned off. If the <expr> is

any number other than 0, then the mouse pointer is turned on,

making the mouse pointer visible on the screen.

Example:

10 MOUSE 1

70

MOUSEIN

FORMAT: MOUSEIN (<expr>,<expr>,<expr>,<expr>)

This function checks to see if the mouse is within the

boundaries of the rectangle defined by the four numeric expres

sions. The first two expressions define the X and Y coordinates of

the top left corner of the rectangle and the last two expressions

define the bottom right corner of the rectangle. If the mouse is

within the rectangle, then MOUSEIN returns TRUE (-1), and if the

mouse is outside the rectangle, then MOUSEIN returns FALSE

(0). The X coordinate expressions must evaluate to numbers

between 0 and 319, while the Y coordinate expressions must

evaluate to numbers between 0 and 199.

Example:

10 MW=MOUSEIN (10,20,50,100)

MOUSEX

FORMAT: MOUSEX (<expr>)

This function returns the current X coordinate of the mouse

pointer. The <expr> can be any valid numeric expression, since it

is not used. The value returned will be between 0 and 319.

Example:

10 X=MOUSEX(1)

MOUSEY

FORMAT: MOUSEY(<expr>)

This function returns the current Y coordinate of the mouse

pointer. The <expr> can be any valid numeric expression, since it

is not used. The value returned will be between 0 and 199.

71

Example:

10Y=MOUSEY(1)

NEWPAGE

FORMAT: NEWPAGE

Advances the printer to the top of the next page.

Example:

10 NEWPAGE

NOT

FORMAT: NOT <expr>

The NOT operator can be used in two ways, just as the AND

(see above) and the OR (see below) operators. First of all, NOT

"complements" the value of each bit in the expression, which must

evaluate to a number. The complement result of using NOT

produces the expression increased by one and with a negative sign.

Thus, NOT (45) results in -46. The second use of NOT is with

expressions which are evaluated to be true or false. If an expres

sion evaluates to be true, then NOT <expr> is false. If the expres

sion evaluates to be false, then NOT <expr> is true.

Example:

10 AB=10:BA=20

20 IF NOT(AB=BA) THEN PRINT "NOT EQUAL!"

Since AB is not equal to BA, the expression (AB=BA) is false.

Thus, NOT(AB=BA) is true, and the program will print "NOT

EQUAL".

72

ON

FORMAT: ON <expr> GOTO/GOSUB <expr>[,<expr>]...

This statement allows your program to GOTO or GOSUB to

one of the line numbers specified by the list of <expr> after GOTO

or GOSUB, depending on the value of the first expression. The list

of <expr> may be constants or labels. If the value of the first

expression is 1, then the ON statement will GOTO or GOSUB to

the first line number in the list. If the value of the expression is 2,

then the ON statement will GOTO or GOSUB to the second line

number in the list, and so on. If the value of the expression is not

an integer, the fractional portion of it is ignored. If the value of the

expression is zero or a number larger than the number of line

numbers in the list, then the ON statement is ignored and execu

tion continues with the next statement in the program. If the value

of the expression is less than zero, an 7ILLEGAL QUANTITY

error occurs. The ON statement can replace a whole series of IF

statements for more efficient programs.

Example:

10X=5

20 ON X-4 GOSUB 100,200,300,400:REM WILL GOSUB TO 100

10 ON EQ/10 GOTO 200,250,300,350,400,400,400

20 ON X-4 GOSUB @NM1,@NM2,@NM3

If there are values which the expression will never equal, you

must still include a dummy line number in the list of line numbers

if the variable COULD equal a value which is higher. You may

also make the ON statement branch to the same line number for

several different values of the expression.

ONERR

FORMAT: ONERR <expr>

Redirects errors to a line number. The geoBASIC stack is

73

cleared so you can't tell where you came from. Routine must end

with a GOTO or MAINLOOP.

OPEN

FORMAT: OPEN <filename$>,[<expr>]

This command opens a channel for input or output to a file on

the disk drive. The <filename> is a string constant or string

variable specifying the filename for the disk file. The expression,

if used, specifies which disk drive to load the file from. Valid disk

drive numbers range from 8 to 11. If the expression is not used,

then OPEN will try to open the file on the current disk drive.

Example:

10 OPEN "TEST"

OR

FORMAT: <expr> OR <expr>

The OR operator can be used for two purposes. As a

mathematical (boolean) operator, it is used to combine two

numbers together to produce a result. Each bit in the first expres

sion is ORed against the corresponding bit in the second expres

sion. The bit in the result is equal to 1 if the bit in either expression

is 1. If the bit in both expressions is 0, then the bit in the result is

zero. Thus, you get:

0 OR 0 = 0 1 OR 0 = 1 0 OR 1 = 1 1 OR 1 = 1

Each of the expressions must evaluate to a number between

-32768 and +32767. If either of the expressions evaluate to a

number outside this range, it will cause an 7ILLEGAL

QUANTITY error.

74

Example:

10 X=32007 OR 28761: PRINT X

This would produce the result 32095. To see why, convert each

of the numbers to binary: 32007 is 0111110100000111 and 28761

is 0111000001011001. ORing each bit of the two numbers:

0111110100000111 OR

0111000001011001

0111110101011111 (binary)

or 32095 (decimal).

The other way to use the OR operator is to test the truth of two

expressions. Each expression is generally an IF statement (see IF,

above). The result evaluates as true if either of the expressions are

true, and if both expressions are false, then the result is false. The

"truth table" for the OR statement looks like:

First Second Result

Expression Expression Expression

T T T

F T T

T F T

F F F

Example:

10 X=7:Y=10:Z=15

20 IF X=7 OR Y=10 THEN PRINT "TRUE"

30 IF X=7 OR Y=10 OR Z=15 THEN PRINT "TRUE"

40 IF X=5 OR Y=10 THEN PRINT "TRUE"

50 IF X=7 OR Y=12 THEN PRINT "TRUE"

60 IF X=5 OR Y=12 THEN PRINT "TRUE"

The statements in lines 20, 30,40 and 50 will print the word

"TRUE" when you run this short program because at least one of

the statements is true. The statement in line 60 will not, because

75

Li

both expressions being tested are false. Note that in line 30, the

OR statement is testing the truth of three statements (X=7, Y=10,

and Z=15). This works by evaluating the statements two at a time.

Thus, the truth of X=7 OR Y=10 is tested. In this case, this evalu

ates to be true. Then the result of this test (TRUE) is tested with

the third statement, Z=15. Since Z is 15, this evaluates to: TRUE

OR TRUE, which is TRUE. Larger groups of statements can be

tested for truth in this way, and statements can be grouped together

using parentheses:

10 IF (X=5 OR Y=10) OR (Z=20 OR Z*Y=200) THEN....

In this example, the truth of X=5 OR Y=10 is evaluated and

stored. Then the truth of Z=20 OR Z*Y=200 is tested and stored.

Finally, the two stored results are tested against each other for the

final result. You can also combine OR statements with AND state
ments (see AND, above).

When a statement evaluates as FALSE, the value 0 is assigned

to the result, and if the statement evaluates as true, the value of -1

is assigned to the result. Your program can determine the numer

ical value that the expression evaluates to by equating the expres
sion to a variable:

Example:

10X=10:Y=20

20 RES1=(X=2O)

30 RES2=(X=10) OR (Y=20)

The variable RES1 will be zero, since the statement (X=20) is

false. The variable RES2 will be -1, since both statements (X=10)

and (Y=20) are true. As above, you can combine more than two

expressions and evaluate the numerical result.

PATTERN

FORMAT: PATTERN <expr>

This command sets the pattern which will be used for all filled

76

shapes, such as RECT. The expression must evaluate to a number

between 0 and 31.

Example:

10 PATTERN 10

PEEK

FORMAT: PEEK(<expr>)

This function returns the contents of the memory location

specified by the expression which must evaluate to an integer

between 0 and 65535. The contents will always be a number

between 0 and 255.

Example:

10 A=PEEK(45)+256*PEEK(46)

20 PRINT PEEK(IOO)

POINT

FORMAT: POINT <expr>,<expr>

This command turns on the screen pixel located at the X and Y

coordinates given by the two expressions. The X coordinate

expression must evaluate to a number between 0 and 319, while

the Y coordinate expression must evaluate to a number between 0

and 199.

Example:

10 POINT 10,20

77

u

POKE □

FORMAT: POKE <location>,<expr> U
The POKE command writes the one-byte value given by ^

<expr> into the memory location given by <location>. The p

<location> expression must evaluate to an integer between 0 and

65535 and the expression must evaluate to an integer between 0

and 255. If either quantity is outside of its range, an 7ILLEGAL

QUANTITY error will result.

The POKE command writes the expression directly into a

memory location. Extreme care should be exercised when using

this command, since putting the wrong value into a memory

location could cause your computer to lock-up.

Example:

10 A=2040:B=0:POKE A,B

PRASCII

FORMAT: PRASCII [<expr>][<,/;xexpr>]...

The PRASCII command is used to print data on the printer.

The expressions can be of any type, including mathematical

formulas, variables, strings and numeric or string constants. If no
expressions are specified, then a blank line is printed.

The punctuation used between expressions determines how the

items will be printed out. The 80-column line is broken up into 8

print zones of 10 characters each. If the expressions are separated

by commas, the next value is printed at the beginning of the next

zone. If the expressions are separated by semicolons (;), then the

next value is printed immediately following the previous value.

Using a semicolon at the end of a PRASCII statement suppresses
the carriage return which would otherwise cause the next

PRASCII statement to print at the beginning of the next line. Even

78

when a semicolon is used between expressions, numeric items are

always followed by a space and positive numbers are preceded by

a space.

You may also use a space or no separation at all between string

variables or string constants which will have the same effect as

using a semicolon.

Example:

10X=10

20 PRASCII "X=";X;" X SQUARED IS ";X*X

30A$="DAVID":B$="FRED":C$="LARRY"

40 PRASCII AB;C$,A$

The results of line 20 would print:

X=10 X SQUARED IS 100

and line 40 would print:

DAVIDFREDLARRY DAVID

PRINT

FORMAT: PRINT[<expr>][<,/;xexpr>]...

The PRINT command is normally used to print data on the

screen, although the output can be redirected to the printer using

the PRNTER command. The expressions can be of any type,

including mathematical formulas, variables, strings and numeric or

string constants. If no expressions are specified, then a blank line

is printed.

The punctuation used between expressions determine how the

items will be printed out. The 80-column logical screen line is

broken up into 8 print zones of 10 characters each. If the expres

sions are separated by commas, the next value is printed at the

beginning of the next zone. If the expressions are separated by

79

semicolons (;), then the next value is printed immediately

following the previous value. Using a semicolon at the end of a

PRINT statement suppresses the carriage return which would

otherwise cause the next PRINT statement to print at the beginning

of the next line. Even when a semicolon is used between expres

sions, numeric items are always followed by a space and positive

numbers are preceded by a space.

You may also use a space or no separation at all between string

variables or string constants which will have the same effect as

using a semicolon.

Example:

10X=10

20 PRINT "X=";X;" X SQUARED IS ";X*X

30A$="DAVro":B$="FRED":C$="LARRY"

40 PRINT AB;C$,A$

The results of line 20 would print something like:

X=10 X SQUARED IS 100

and line 40 would print:

DAVIDFREDLARRY DAVID

PRNTER

FORMAT: PRNTER <expr>

This function controls whether output of PRINT statements is

routed to the printer or to the screen. If the expression is 0, then

any subsequent PRINT statements will route output to the screen.

If the <expr> is any other number, then output is routed to the

printer instead of the screen.

80

Example:

10 PRNTER 0

PROCESS

FORMAT: PROCESS <expr>,<expr>

This command sets up a process which interrupts your main

program and executes automatically on a periodic basis. The first

expression defines the line number (or label) of the subroutine

which will be executed. The second expression specifies the time

(in 60ths of a second) before the process subroutine will be

executed. The timer is reset after the process subroutine is

executed. The subroutine must end with a RETURN. A maximum

of 8 processes can be defined and running in a program at any one

time. A running process is turned off by using the DELPROC

command (see above).

Example:

10 PROCESS 10,100:REM EXECUTES THE SUBROUTINE

BEGINNING AT LINE 10 EVERY 100

JIFFIES.

PROMPT

FORMAT: PROMPT <expr>,<expr>,<expr>

Turns the GEOS prompt (line which flashes during INPUT) off

or on. The first <expr> determines whether the prompt will be

turned off or on. If it is equal to 0, then the prompt is turned off. If

it is any other number, then the prompt is turned on. The prompt

will be located at the X and Y coordinates given by the second and

third expressions. The X coordinate expression must evaluate to a

number between 0 and 319, and the Y coordinate expression must

evaluate to a number between 0 and 199. The X and Y coordinate

expressions are required even if you are turning the prompt off.

81

Example:

10 PROMPT 1,10,20

PRSCREEN

FORMAT: PRSCREEN <expr>

This command prints a copy of whatever is on the graphics

screen (where your program output is shown) on the printer. If the

<expr> evaluates to zero, then the screen is printed as viewed. If

the <expr> evaluates to 1, then the screen is rotated 90 degrees,

with the top half of the screen being printed on the left side of the

paper, and the bottom half of the screen being printed on the right

side of the paper.

Example:

10 PRSCREEN 0

PTREC

FORMAT: PTREC <recordnum>

This command is used to point to a specific record in a VLIR

file. The file must have been opened with CREATE, OPEN or

DBFILE. Recordnum can be a number or numeric variable

between 0 and 127. ALWAYS USE THIS COMMAND AFTER

WRITING TO A RECORD! See the WRITE command.

RDBYTE

FORMAT: RDBYTE <variable$>[,<variable$>,...]

This command is used to fill variables with information from a

disk file. The file being read from must have been previously

opened with the OPEN, CREATE, or DBFILE commands. While

numeric variables are permitted they are not recommended

82

because if the information coming in from the disk is not numeric

an error will result. Use string variables and cast them to numbers

with the VAL() command instead. This command differs from the

DREAD command in that only single bytes are read from the file

rather than strings. For example if the file contained:

now,is,the,time

DREAD a$,b$,c$,d$ would return "now", "is", "the", "time"

while RDBYTE a$,b$,c$,d$ would return "n", "o", "w", "," (see

also DREAD).

READ

FORMAT: READ <variable>[,<variable>]...

The READ statement is used to fill variables with values from

information contained in DATA statements. The type of the data

which is read from the DATA statements must match the type of

the variable in the READ statement or the error ?SYNTAX

ERROR will occur.

DATA statements are accessed in order by the READ state

ments, and a READ statement can cross from one DATA statement

n to another. Each subsequent READ statement picks up where the
last one left off (see also the RESTORE statement, below). If there

' are not enough data items in DATA statements for the variables in
pj the READ statements, you will get the ?OUT OF DATA error.

*""] Example:

i—I 10 READ A,B,C$

20 10,20,HELLO

n

83

RECT

FORMAT: RECT <expr>,<expr>,<expr>,<expr>

This command draws a filled rectangle on the screen. The first

two expressions specify the X and Y coordinates of the upper left

corner of the rectangle, and the last two expressions select the X

and Y coordinates of the lower right corner of the rectangle. The X

coordinate expressions must evaluate to a number between 0 and

319, while the Y coordinate expressions must evaluate to a number

between 0 and 199. The rectangle is drawn using the pattern

chosen using PATTERN.

Example:

10 PATTERN 10

20 RECT 10,20,20,30

REDRAW

FORMAT: REDRAW <expr>

If a desk accessory is run while your program is running, it

will likely mess up the graphics of your program's screen. Menus

and icons are also deactivated by a desk accessory. When the desk

accessory is closed up, if the REDRAW command is present in

your program and has been executed, then it goes to the line

number given by the expression. This section can be used to

redraw the screen, reset menus and icons and any other functions

necessary to get your program going again.

Example:

10 REDRAW 100

100 MENU "STUFF":CLS:PRINT "HELLO THERE":MAINLOOP

84

REM

FORMAT: REM [<text>]

The REM statement and anything which follows it on the line

are ignored by your program. Thus, you can put anything you like

on the REM line, although this command is typically used to put

comments and notes in your program to make it easier to

understand.

Example:

10 PRINT "HELLO WORLD"

20 REM SENDS THE MESSAGE "HELLO WORLD" TO THE

PRINTER

ri REPEAT...UNTIL
; t

H FORMAT: REPEAT...UNTIL <expr>

P- This command establishes a loop structure. All commands

following REPEAT will be executed until the command UNTIL is

r-« reached. If the expression following UNTIL is FALSE (0), then

the program loops back to REPEAT and executes the block of

r"? statements between REPEAT and UNTIL again. This continues

until the expression following UNTIL is TRUE (-1). The program

•^ then leaves the loop and continues execution with the statement
pj immediately following UNTIL. Note that the block of statements

between REPEAT and UNTIL will always be executed at least

^1 once, since the test of the condition doesn't occur till the end of the

loop. If the expression following UNTIL is never true, then the

!""! loop will continue indefinitely.

Example:

r"! 10 A=10
p^ 20 REPEAT:A=A+1:PRINT A

30 UNTIL A=20:REM WILL EXECUTE 10 TIMES

85

u

RESTORE

FORMAT: RESTORE

When using READ statements to read data stored in DATA

statements, the READ statements read the data beginning with the

first DATA statement in the program and proceeding through the

DATA statements in numerical order. The RESTORE statement

causes the next READ statement to begin reading data from the

first DATA statement in the program again. Thus, information in

DATA statements can be used many times to put values in the

variables in READ statements.

Example:

10 FOR LP=1 TO 10: READ AB(X):NEXT LP

20 RESTORE

30 FOR LP=1 TO 10 READ CD(X):NEXT LP

40 DATA 1,2,3,4,5,6,7,8,9,0

This sample program fills the two arrays with the same data.

RIGHTS

FORMAT: RIGHT$(<string>,<expr>)

This function returns the number of characters specified by

<expr> (which must evaluate to a number between 0 and 255)

from the right end of the string specified by <string>. If the value

of the expression is 0, then the null string is returned. If the value

of the expression is bigger than the length of <string>, then all of

<string> is returned.

Example:

10 A$="BERKELEY SOFTWORKS"

20 B$=RIGHT$(A$,4):PRINT B$:REM WOULD PRINT "WORKS"

86

P-, RND
H

^ FORMAT: RND(<expr>)

The RND function returns a random number between 0 and the

M value of the expression minus 1. The number is a floating point

p^ number, and it may be negative.

[—\ Example:

p 10 A=RND(5):PRINT A

20 A=INT(RND(10))+l:REM RANDOM INTEGER BETWEEN 1 AND 10

n

H RUN

FORMAT: RUN[<line-number>]

i RUN is used to start execution of the program currently in

^ memory. The optional <line-number> will cause the program to

start to RUN at the specified line number. Otherwise, the RUN

r-j command begins the program execution at the first line of the

program. If the <line-number> doesn't exist, the error UNDEF'D

n STATEMENT will occur.

A running program stops and returns to your control when the

—, END or STOP statements are encountered, when the last line of

the program is reached, when a BASIC error occurs, or when you

r? press the [RUN/STOP] key.

T Example:

!—! RUN starts at the first line of the program

RUN 200 starts the run at line 200

n

n

SAVE

FORMAT: SAVE <filename>,<expr>,<expr>,[<expr>]
' j

_ 87

This statement writes the contents of memory to a file on disk.

The filename identifies the name of the file you want to write. The

filename may be contained in a string variable.

The first expression is the memory address where the file

starts. It must evaluate to a number between 0 and 65535. The

second expression is how much of the file (how many bytes) to

save. The third optional expression specifies the device number

that the file is to be saved to . It must evaluate to a number

between 8 (first disk drive) and 11. If the expression is left out, the

current drive will be used.

Example:

SAVE "PIC",40960,8000 (saves the graphics screen to disk.)

SAVE B$,32768,200,8 saves the filename given by B$ to disk.

The file will be saved from memory location

32768 and 200 bytes of it will be saved.

SETCOL

FORMAT: SETCOL <expr>

This command sets the variety of color and pattern parameters,mis command sets uic vaiiciy

depending on the expression used.

1) For lines, (see LINE, above) if the expression evaluates to 0,

the line is drawn in background color, and if the expression is not

zero, the line is drawn in foreground color.

2) For rectangles the low four bits (nibble) of the expression

sets the background color (used for COLRECT) and the high

nibble sets the foreground color (used for RECT). To use a

foreground color of 5 and a background color of 8, you would use

SETCOL 8+16*5.

3) For a framed rectangle, created with FRECT, the expression U

sets what the four lines which make up the frame of the rectangle

will look like. Instead of setting the color of the lines, SETCOL

sets the line pattern. The 8 bits which make up the number passed

to SETCOL can be either On or Off. If the bit is On, then it shows

up in the line, and if the bit is Off, then that is also off in the line.

For example, the number 255 (binary 11111111) has all bits on, so

the line drawn with FRECT will be solid. 85 (binary 10101010)

will produce a dashed line, with every other pixel of the line being

On.

Example:

10 SETCOL 80

20 COLRECT 10,10,20,20

30 FRECT 40,40,80,80

This short program puts up a green colored rectangle and a

dotted, framed rectangle (80 is 01010000 in binary).

SETPOS

n
FORMAT: SETPOS <X expr>,<Y expr>

This command sets the cursor to the position where the PRINT

command will output the next character. The X expression must

evaluate to a number between 0 and 319 and the Y expression

must be between 0 and 199.

Example:

10 SETPOS 100,100

SGN

FORMAT: SGN(<expr>)

The results of using the SGN function on an expression is to

return the following depending on the value of the expression: -1

if the expression is less than zero, 0 if the expression is equal to

zero, and 1 if the expression is greater than 0.

89

Example:

10 X=2:PRINT SGN(X):REM PRINTS 1

20 X=0:PRINT SGN(X):REM PRINTS 0

30 X=2:PRINT SGN(X*(-1)):REM PRINTS -1

SIN

FORMAT: SIN(<expr>)

This function returns the sine of the expression which must

evaluate to a numeric value. The angle is in radians.

Example:

10 PRINT SIN(4):REM PRINTS -.756802495

SOUND

FORMAT: SOUND <expr>,<expr>,<expr>,<expr>

This command generates sound. The key to creating a sound is

the shape of the envelope. A sound rises to a maximum volume

from zero (attack), falls back to a lower volume (decay), holds that

volume for awhile (sustain) and then drops back to zero (release).

The period of time which is spent on each part of the curve defines

how the sound will behave. If you look at a plot of the sound of a

piano versus, say, the sound of a trumpet, you can see the differ

ence in their sound envelopes. It is this difference which causes the

notes produced by each instrument to sound different to your ear.

The first expression in SOUND specifies which voice will be

used for the sound and it must evaluate to a number from 0 to 3.

The second expression is the frequency of the note to play. In the

third expression, the low nibble specifies the attack time and the

high nibble specifies the decay time. In the fourth expression, the

low nibble specifies the sustain and the high nibble specifies the

release time. Both the third and fourth expressions must evaluate to

90

numbers between 0 and 255. Since both nibbles of the third and

fourth expression are used to define separate items, the attack,

decay, sustain and release can each have only 16 different values.

The amount of time corresponding to each of the 16 values depends

on whether you are using attack or decay/release. They are:

Value Attack time Decay/Release time

0 2 ms 6 ms

1 8 ms 24 ms

2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms

6 68 ms 204 ms

7 80 ms 240 ms

8 100 ms 300 ms

9 250 ms 750 ms

10 500 ms 1.5 s

11 800 ms 2.4 s

12 Is 3 s

13 3 s 9 s

14 5 s 15 s

15 8 s 24 s

The Sustain is not controlled in this way. Although it also can

have a value from 0 to 15, this value defines the proportion of the

peak volume (at the end of the attack) that sustain will be.

Example:

10 SOUND 1,10000,5*16+10,8*16+3

By multiplying the Decay by 16 and adding the Attack, the two

nibble values can be constructed into a single number to use with

SOUND. The Release and Sustain (fourth expression) also works

this way.

91

SPC

FORMAT: SPC(<expr>)

This function will (when used with the PRINT statement) print

the number of spaces specified by the expression, which must

evaluate to a positive integer between 0 and 255. When sending

spaces to a printer using SPC, if the end of the line is encountered,

a carriage and line feed will be sent, and no further spaces will be

output on the next line. NOTE: On the screen a single space is five

pixels.

Example:

10 PRINT "LEFT AND";

20 PRINT SPC(20); "RIGHT";

This example will print:

LEFT AND RIGHT

SPRCOL

FORMAT: SPRCOL <expr>,<expr>

Sprites may be up to three colors, but only one of those colors

can be different for each sprite. The other two colors are the same

for all the sprites. These colors are set by using this command. The

two expressions are the color numbers of the two colors to set.

There are sixteen colors (numbered 0 to 15). They are: black,

white, red, cyan, purple, green, blue, yellow, orange, brown, light

red, dark grey, grey, light green, light blue, and light grey.

Example:

10 SPRCOL 2,5

92

SPRITE

FORMAT: SPRITE <string>

Puts sprites on the screen. The sprites must have been designed

previously using the Sprite Editor. The <string> is the name of the

Sprite definition file you want to use. It must have the same name

you gave the file when you designed it using the Sprite Editor. If a

velocity, sprite linking or animation was specified when the sprites

were designed, using this command will cause the sprites to

begin to move, animate, etc. The sprites will appear initially at the

X and Y locations specified when they were designed.

Example:

10 SPRITE "SNEW"

SPRT

FORMAT: SPRT <sprite # (3-8)>,<sprt attribute #>,<new

value or variable>

This allows you to change or retrieve sprite information while

the sprite is moving, etc. This command is a bit different from the

others—basically you specify which sprite (3-8) you'd like infor

mation about or change its information. You then pass which

attribute you'd like to get info about or change—attribute numbers

range from 0-5:

0 color

1 X velocity (or X position of TRAIL'S end if TRAIL was used)

2 Y velocity (or Y position of TRAIL'S end if TRAIL was used)

3 X position (0-512)

4 Y position (0-256)

5 timeout time

Therefore, if you'd like an accelerating sprite you might add

something like this in your code:

93

Example:

500 FOR XVEL = 50 TO 200 STEP 10

510 SPRT 3,1, XVEL : REM SET VELOCITY IN SPRITE 3

520 NEXT XVEL

If you pass a negative sprite attribute number, then a variable is

assigned the value of the attribute. Notice that there is no "negative

zero" so a sprite color cannot be returned in a variable—the color

of a sprite should never change unless specifically told to do so,

but velocities and positions may change as the sprite moves about.

For example, if you'd like to know where a sprite is you

could do:

600 SPRT 3, -3, xPos : SPRT 3, -4, yPos

xPos and yPos would then be assigned the current position of the

sprite.

SQR

FORMAT: SQR(<expr>)

This function returns the square root of the expression, which

must evaluate to a positive number. If it is negative, an 7ILLEGAL

QUANTITY error will occur.

Example:

10 FOR X=l TO 10

20 PRINT SQR(X)

30 NEXT X

STR$

FORMAT: STR$(<expr>)

This function converts the numeric value given by the

expression to a string. Any number in the expression, when

converted to a string, will be followed by a space. If it is a positive

94

number, it will also be preceded by a space. Converting a number

to a string is handy for formatting reports.

Example:

10 PRINT STR$(3450)

20 X=10:Y=20:A$=STR$(X*Y)

SYSINFO

FORMAT: SYSINFO PARAMETER NUMBER>,

<VARIABLE>

SYSINFO will return some system relevant stuff in case you'd

like to have your program easily portable on other machines. The

parameter number is from 0 to 16 and is returned in the variable.

Parameter # Description

0 Machine type—0 = C64,1 = C128,2 = APPLE (future use)

1 GEOS Kernal version

2 Language (0 = English)

3 Current drive (8,9)

4 Maximum right edge of graphics screen (319 on C64)

5 Maximum bottom edge of graphics screen (199 on C64)

6 Last basic error encountered (see Errors list)

7 Current hour

8 Current minutes

9 Current seconds

10 Current month

11 Current day

12 Current year

13 Calling option (0 - none, 1 - double clicked, 2 - print)

14 Name of file double clicked on (if any)

15 Current time (hour : minutes : seconds)

16 Current date (month / day / year)

The variables for parameters 0-13 should be floating point

95

whereas the last three (14 - 16) should be string variables. For

example, if you'd like to see what error occurred in your program

with the ONERR statement you could do something like this:

Example:

10 BREAK = 47 : ONERR 1000

1000 SYSINFO 6, CHECKBREAK

1010 IF CHECKBREAK = BREAK THEN PRINT "HAHA YOU CAN'T

GETOUT!!":GOTO10

TAB

FORMAT: TAB(<expr>)

The TAB function moves the cursor to the position on the line

specified by expression, which must evaluate to a number between

0 and 7. There are tab positions every 40 pixels, for a total of 8 on

a line. If the current cursor position is to the right of the expres

sion, then the cursor moves to the new position. If the current

position is equal to or already past the position specified by the

expression, then TAB has no effect. TAB must be used with

PRINT to have any effect.

Example:

10 PRINT "FIRST";TAB(3);"LAST"

TAN

FORMAT: TAN(<expr>)

This function returns the tangent of the value given by the

expression in radians. The TAN function is undefined at certain

96

points. If you choose a point at which the TAN function is

undefined, a 7DIVISI0N BY ZERO error will result.

Example:

10 X=1:Y=TAN(X*2):PRINT Y

This example will print -2.18503987.

TESTPT

FORMAT: TESTPT (<expr>,<expr>)

This function checks to see if a point on the screen is turned

on, that is, not the background color. The first expression is the X

coordinate of the point, and the second expression is the Y coordi

nate. The X coordinate expression must evaluate to a number

between 0 and 319, and the Y coordinate expression must evaluate

to a number between 0 and 199. If the point on the screen is on,

TESTPT returns TRUE (-1), and if the point is not on, TESTPT

returns FALSE (0).

Example:

10 TESTPT (20,30)

USR

FORMAT: USR(<expr>)

This function causes a BASIC program to begin executing a

machine language subroutine which has its starting address

pointed to by the contents of two memory locations: 785 (low

byte) and 786 (high byte). This starting address must be inserted

into these memory locations before making the USR call by using

the POKE statement (see above).

The value which the expression evaluates to is stored in the

floating point accumulator starting at memory location 97, which

97

can be accessed by the Assembler code. The result of the USR

subroutine is stored in these same locations when the subroutine

returns to the current BASIC program. The USR machine

language subroutine should end with RTS so that execution

continues with the statement immediately following the USR call

in the BASIC program.

Example:

10 POKE 786,HIBYTE:POKE 785,LOBYTE

20 USR(X)

VAL

FORMAT: VAL(<string>)

This function converts the string specified by <string> to a

numeric VALue. If the first non-blank character is not a number or

a sign (+ or -), then the function returns 0. The function terminates

and returns a value either when the end of the string is encountered

or any non-digit character is found, except that the decimal point

or exponential e are allowed.

Example:

10A$="4567":B$="+1.44e04":C$="X23"

20 A=VAL(A$):B=VAL(B$):C=VAL(C$)

30 PRINT A,B,C

This example program would print: 4567 1.44eO4 0

VOICE

FORMAT: VOICE <expr>,<expr>

This command sets the type of instrument which will be played

when the SOUND command is used for each of the four available

voices. The first expression specifies the voice number, and can

range from 0 to 3. The second expression specifies the instrument

98

H

R for that voice. Instrument numbers are

H 0 - noise

1 - woodwind

R 2 - strings
3 - brass

n

4-bell

Example:

R 10 VOICE 1,2

R

H WHILE...LOOP

R FORMAT: WHILE <expr> ... LOOP

n This command establishes a loop structure. If the expression

following WHILE is TRUE(l), then the program executes the

H block of statements between WHILE and LOOP. When the state-

^ ment LOOP is reached, the program returns to the WHILE state-

; ment and executes the block of statements again. This continues

— until the expression following WHILE is FALSE (0). The program

then leaves the loop and continues execution with the statement

r^ immediately following LOOP. Note that the block of statements

between WHILE and LOOP may never be executed since the test

R of the condition occurs at the beginning of the loop. If the expres-
sion following WHILE is always true, then the loop will continue

"^ indefinitely.

n
Example:

10X=10

p-| 20 WHILE X<20:X=X+l:PRINT X

30 LOOP

WINDOW

FORMAT: WINDOW <expr>,<expr>,<expr>,<expr>

n
99

n

This command defines a print window on the screen. All

PRINT command output will be confined to the window. The first

two arguments are the X and Y coordinates of the top left corner of

the window, and the last two arguments are the X and Y coordi

nates of the bottom right corner of the window. The X coordinate

expressions must evaluate to a number between 0 and 312

(rounded down to the nearest 8th pixel), and the Y coordinate

expressions must evaluate to a number between 0 and 199. It is

possible to have more than one print window going at once,

switching the cursor between them under program control:

Example:

10 WINDOW 10,10,100,100 :REM DEFINE THE 1ST WINDOW

20 PRINT "HELLO WORLD"

30 PRINT "NEXT LINE OF WIND 1"

40 X(1)=XPOS(0):Y(1)=YPOS(0) :REM SAVE CURSOR POS.

50 WINDOW 20,20,200,200 :REM DEFINE THE 2ND WINDOW

60 PRINT "HELLO AGAIN"

70 PRINT "NEXT LINE OF WIND 2"

80 X(2)=XPOS(0):Y(2)=YPOS(0) :REM SAVE CURSOR POS.

90 SETPOS X(1),Y(1) :REM CURSOR BACK TO WINDOW 1

100 WINDOW 10,10,100,100 :REM REDEFINE WINDOW 1

110 PRINT "THIS IS AGAIN IN WINDOW 1"

WRITE

FORMAT: WRITE <var/var$/string>[,<var/var$/string>,...]

The WRITE command is used to write data to a disk file. The

file must have been previously opened with the OPEN, CREATE

or DBFILE commands. The data may be any type of variable,

quoted strings, or numbers. ALWAYS USE THE PTREC

COMMAND AFTER WRITING TO A RECORD! The informa

tion will not be written out to the disk until a PTREC command is

issued. It does not matter what record number you point to. If you

CLOSE the file (or try reading) without using PTREC the file will

not be updated!

100

Example:

100 OPEN "MYFILE"

110 PTREC 0

120 WRITE A$,C,123,C%,D$(5),"HI THERE!"

130 PTREC 0

140 CLOSE

XPOS

FORMAT: XPOS (<expr>)

This function returns the X coordinate of the current position

of the cursor (where PRINT statements produce output on the

screen). The expression may be any number or variable. See

WINDOW for a more extensive example of how to use XPOS.

Example:

10 A=XPOS(1)

YPOS

FORMAT: YPOS (<expr>)

This function returns the Y coordinate of the current position

of the cursor (where PRINT statements produce output on the

screen). The expression may be any number or variable. See

WINDOW for a more extensive example of how to use YPOS.

Example:

10 A=YPOS(1)

101

Chapter 6—Disk and File Programming

Disk programming is usually considered difficult, and even

though geoBASIC has a wealth of commands for the BASIC

programmer, it can still be a challenge to many beginners. So this

chapter brings all the disk and file commands under one heading,

with easy to understand examples. For information on other

geoBASIC commands please refer to the chapter on geoBASIC

commands and their syntax.

CREATE <filename$>[,<drivenum>]

This command creates a VLIR file on the disk. A VLIR file is

composed of a collection of records, each of which may have a

maximum size of 32K bytes. There may be up to 128 of these

records in the file (numbered 0 to 127). The filename parameter

may be a string variable or quoted string of any length but only the

first 16 characters are significant. Drivenum is an optional param

eter and specifies the device number to create the file on. This

number can range from 8 to 11. If this parameter is omitted the

current drive will be used.

Unless changed with the HEADER command, CREATE will

create only files of type 'BASIC DATA', with an empty permanent

name string. DO NOT USE CREATE IF THE THIRD PARAM

ETER OF THE HEADER COMMAND IS ZERO! CREATE will

not create sequential files properly!

Note that CREATE will leave the file in an open state so there

is no need to issue an OPEN command prior to accessing the file.

Example:

10 CREATE "TEST" : REM CREATES 'TEST' ON THE CURRENT

DRIVE

10 CREATE A$,9 : REM CREATES FILE NAMED IN A$ ON DEVICE #9

102

OPEN <filename$>,[<expr>]

This command opens a channel for input or output to a file on

the disk drive. The <filename> is a string constant or string

variable specifying the filename for the disk file. The expression,

if used, specifies which disk drive to load the file from. Valid disk

drive numbers range from 8 to 11. If the expression is not used,

then OPEN will try to open the file on the current disk drive.

Example:

10 OPEN "TEST"

CLOSE

This statement closes the data file which was opened using the

OPEN command. Only a single file can be OPEN at once, so you

must use CLOSE to close any open file before OPENing another

file.

Example:

10 CLOSE

HEADER <expr>,<string>[,<expr>]

The HEADER command allows you to specify the type of file

and permanent file name of the files which will appear when using

DBFILE or that will be created using CREATE. If the HEADER

command is not used, then only files matching type BASIC DATA

and with a permanent file name of "" (null string) will appear

when using DBFILE or be created when using CREATE. The first

<expr> must evaluate to a valid file type. Valid file types are:

BASIC (1), ASSEMBLY (2), DATA (3), SYSTEM (4),

DESK_ACC (5), APPLICATION (6), APPL_DATA (7), FONT

(8), PRINTER (9), INPUT.DEVICE (10), DISKJDEVICE (11),

SYSTEMROOT (12), TEMPORARY (13), AUTOJEXEC (14),

and NUM_FILE_TYPES (15).

103

u

Most of these file types would never need to be used or LJ

accessed by a user. For more information on the different file

types, see page 398 of the GEOS Programmers Reference Guide. ^

The <string> is the permanent file name to match. If used, then

only files which match this permanent file name will appear in the lJ

dialog box. The permanent file name is used by GEOS to help

identify what application a file belongs to. For example, it is by the

permanent file name that GEOS can tell the difference between

GeoPaint and GeoWrite files. The permanent file name of any file

can be seen from the desktop. Click on the file you are interested

in to highlight it, then drop down the File submenu and click on

Info. The name which appears in the Info box next to Class is the

permanent file name.

The optional last <expr> is the file structure. It must evaluate

to either 0 (sequential) or 1 (VLIR).

Example:

10 HEADER 3,"",1

PTREC <recordnum>

This command is used to point to a specific record in a VLIR

file. The file must have been opened with CREATE, OPEN or

DBFILE. Recordnum can be a number or numeric variable

between 0 and 127. ALWAYS USE THIS COMMAND AFTER

WRITING TO A RECORD! See the WRITE command.

APPEND <recordnum>

This command adds a new record to a VLIR file. Recordnum

is either a number or a numeric variable that points to the record

that will be appended to. For example:

104

before: 0 12 3 4 5...

after an APPEND 2: 0 1 2 3 4 5 6 ...

A

— new record

All records after the appended record are moved up one record.

If the last record would exceed 127 then an OUT_OF_RECORDS

error will occur. There is a bug in this command that prevents

APPENDing to record 126. APPEND will do an implicit PTREC

to the new record (see also INSERT).

INSERT <recordnum>

This command adds a new record to a VLIR file. Recordnum is

either a number or a numeric variable that points to where record

will be inserted. For example:

before: 0 1 2 3 4 5...

after an INSERT 2: 0 1 2 3 4 5 6 ...

A

— new record

All records after the inserted record are moved up one record.

If the last record would exceed 127 then an OUT_OF_RECORDS

error will occur. There is a bug in this command that prevents

INSERTing to record 126. INSERT will do an implicit PTREC to

the new record (see also APPEND).

DREAD <variable$>[,<variable$>,...]

This command is used to fill variables with information from a

disk file. The file being read from must have been previously

opened with the OPEN, CREATE, or DBFILE commands. While

numeric variables are permitted they are not recommended

because if the information coming in from the disk is not numeric

105

an error will result. Use string variables and cast them to numbers

with the VAL() command instead. Each string in the file must be

terminated with a carriage return or a comma. An error will occur

if the string is longer than 255 characters or if you try to read from

an empty record (see also RDBYTE).

RDBYTE <variable$>[,<variable$>,...]

This command is used to fill variables with information from a

disk file. The file being read from must have been previously

opened with the OPEN, CREATE, or DBFILE commands. While

numeric variables are permitted they are not recommended

because if the information coming in from the disk is not numeric

an error will result. Use string variables and cast them to numbers

with the VAL() command instead. This command differs from the

DREAD command in that only single bytes are read from the file

rather than strings. For example if the file contained:

now,is,the,time

DREAD a$,b$,c$,d$ would return "now", "is", "the", "time"

while RDBYTE a$,b$,c$,d$ would return "n", "o", "w", "," (see

also DREAD).

WRITE <var/var$/string>[9<var/var$/string>,...]

The WRITE command is used to write data to a disk file. The

file must have been previously opened with the OPEN, CREATE

or DBFILE commands. The data may be any type of variable,

quoted strings, or numbers. ALWAYS USE THE PTREC

COMMAND AFTER WRITING TO A RECORD! The informa

tion will not be written out to the disk until a PTREC command is

issued. It does not matter what record number you point to. If you

CLOSE the file (or try reading) without using PTREC the file will

not be updated!

106

Example:

100 OPEN "MYFILE"

110 PTREC 0

120 WRITE A$,C,123,C%,D$(5),"HI THERE!"

130 PTREC 0

140 CLOSE

EOF(0)

This function is used to signal the end of a disk record. The

argument may be any variable or a number. If the last DREAD or

RDBYTE returned the last character of the record, or if PTREC is

used on an empty record, then a TRUE (-1) is returned. Otherwise,

EOF(0) returns zero.

Remember that there is a difference between an empty record

and an unused record. An empty record is one that was created

with INSERT or APPEND but nothing was written to it. An

unused record has never been accessed at all. PTREC will generate

an error if you try to point to an unused record, preventing the use

ofEOF()!

Example:

10 OPEN "MYFILE"

20 PTREC 0

30 WHILE NOT EOF(0)

40 RDBYTE A$

50 A = ASC(A$)+CHR$(0)

60 IF A > 31 OR A = 13 THEN PRINT A$;

70 LOOP

80 CLOSE

90 END

VLIR File Description

A VLIR (Variable Length Index Record) file is simply a

107

collection of 'records' that are linked together by a common

sector. This 'index sector' contains pointers to each record on the

disk. Think of each record as a file that is referenced by a number
instead of a filename.

Normal Commodore file:

:Directory: —> :1st sector: —> —> :Last sector:

* this is the file proper. *

GEOS VLIR file:

:Directory: —> :Index Sector:

(Record #0) :- -> :1st sector: —> ... —> :Last sector:

(Record #1) :- -> :1st sector: —>... —> :Last sector:

(Record #2) -> :1st sector: —> ... —> :Last sector:

(Record #127) :- -> :1st sector: —> ... —> :Last sector:

108

Chapter 7—The geoBASIC Utility Programs

THE MENU EDITOR

The menus located at the top of the screen are an integral part

of a geoBASIC program and the GEOS environment. The words

which are visible on the top line of the screen are called submenus.

Moving the mouse pointer up to a submenu and clicking the left

button causes the submenu to "drop down," making the items in

the submenu visible on the screen. To select one of the menu

items, move the mouse pointer to the item you want and click the

left button. The submenu will then close up and your choice will

be acted on. If you change your mind about wanting to use one of

the menu items, simply move the mouse pointer away from the

dropped-down submenu, and it will close up again.

The first step to using menus in programs of your own is to

construct the menus with the Menu editor, which is built into your

geoBASIC package. There are two major steps in building your

own menus. The first is to specify the text which is to appear in

each submenu and all its items. The second is to tie each menu

item to a particular subroutine. When the menu item is selected

while your program is running, the program will automatically

branch to the subroutine at the line number which was specified

when the menu was designed. Since geoBASIC automatically

monitors menu selections for you, it is very easy to use your

custom menus in your own programs, as we will see below.

STARTING THE MENU EDITOR

To start using the Menu editor from geoBASIC move the

mouse pointer up to the Utilities menu and click the left button.

Move the mouse pointer to the menu item menu and click the left

button again. The first screen of the menu editor will appear. In the

box in the center will be listed any menu files which exist on the

current disk in the drive. You may select one of these files to edit

109

by clicking on it or type in the name of a new file under the

prompt Create or edit an item Name:. Menu names can be a

maximum of 5 characters long. To continue, press [RETURN] or

click on OK. To return to geoBASIC just click on CANCEL.

USING THE MENU EDITOR

The next screen which appears is the menu editing screen. If

you are creating a new menu, this screen appears with four

submenus, each one containing four items. The number of

submenus and items can be easily changed. If you are editing an

existing menu, the condition of the menu when you last saved it to

disk will be reflected on this screen. Let's take a look at the

elements of the screen, one by one.

On the top line of the screen, you can see the menu as you

actually build it. Because of the highly interactive nature of the

Menu editor, it is easy to make changes to the menu and see

immediately what they look like. The first submenu is GEOS. This

is always the first submenu on the line, and you cannot remove it.

The rest of the submenus on the line can be modified.

At the top of the menu edit box is a line which reads: Number

of submenus. Alongside this line is a number, with an up arrow on

the left and a down arrow on the right. To increase the number of

submenus, click on the up arrow. To decrease the number of

submenus, click on the down arrow. The number in the box will

change to reflect the new number of submenus, and the submenus

at the top of the screen will also change as submenus are added or

removed. The maximum number of submenus is 8. Clicking on the

up arrow when there are eight submenus selected will return to just

a single submenu (GEOS).

Below the line where you set the number of submenus are the

lines where you set the text which will appear in each submenu.

There is one line for each submenu you specified above. The

submenus are created with a default name of menu followed by a

number. To edit the submenu name, click the mouse pointer on the

110

line for the submenu you wish to edit to move the cursor to that

line and type in your changes. To delete a character, use the [DEL]

key. Once you are done making changes on a particular line, click

the mouse pointer on a different line or press [RETURN] to move

the cursor to the next line down. The text changes to the submenu

text will be reflected in the menus at the top of the screen.

Note: If you specify submenu names which are too long to fit

in the menus at the top of the screen, the last few characters may

be cut off and will not be visible. You are allowed 37 characters in

the menus at the top of the screen. This maximum length limits the

amount of text AND the number of submenus you can use. For

example, if you use long submenu titles, only three or four may fit

within the 37 character limit.

To the right of the submenu text are boxes (one for each

submenu) for specifying how many items will be present in each

submenu. There are initially four items in each submenu, but you

can change that. The submenus DO NOT all have to have the same

number of items. Each item box has an up arrow and a down arrow

alongside the number of items. To increase the number of items in

a given submenu, click on the up arrow. To decrease the number of

items in a given submenu, click on the down arrow. The maximum

number of items in a submenu is 12. Clicking on the up arrow

when Items is 12 causes the number of items to return to 1.

To set the text of an item, move the mouse pointer to the

submenu that the item belongs to and click the left button, causing

the submenu to drop down. Then move the mouse pointer to the

item you want to change and click the left button again. A dialog

box will be presented on the screen for you to type in the next text

of the item. Each item is created with the default nameaction

followed by a number. To delete text, use the [DEL] key. When

you are done changing the text, press [RETURN]. If you want to

discard the changes, click on the button marked Cancel. The

maximum length of text for an item is 24 characters.

The next dialog box will ask the question Gosub where if

111

selected? Here you enter the line number or label where the

program should branch if the item you are currently working on is

selected while the program is running. You may leave this blank,

in which case nothing will happen if that submenu item is selected.

This allows you to come back and fill in the subroutine when you

have defined it in your geoBASIC program. If you changed your

selection of where to Gosub and then change your mind, click on

the button marked Cancel.

There is one menu item under the GEOS submenu. The text of

the item and the subroutine to branch to if the item is selected are

set up exactly the same way as the other submenu items. Often, the

subroutine which is branched to by clicking on this item will put

up a dialog box on the screen, identifying the program's author

(that would be you!) and the program revision number.

When you have completed designing or changing your menu,

click on OK. The menu file will automatically be saved to disk

under the name you gave it earlier. If you decide not to store the

changes or the new menu file, click on Cancel.

USING A MENU IN YOUR OWN PROGRAM

Using your new menu in your own program couldn't be

simpler. To install the menu at the top of the screen, use the

command:

10 MENU "MNAME"

where "mname" is the name you gave the menu when you created

it. You then use the MAINLOOP command to wait for a menu

item to be clicked on (among other things). If a menu item is

clicked on, the program will branch automatically to the subrou

tine you specified when you built the menu.

THE BITMAP UTILITY

Bitmaps are small pictures which can be used in various ways

in your own programs. A bitmap can be any size from 8 pixels

112

wide and 1 pixel high all the way up to 48 pixels wide by 42 pixels

high. Once you have created a bitmap using the bitmap utility and

stored the bitmap on disk, you can use the created bitmap as an

icon in a Dialog box or as an icon in an Icon list (see below).

Bitmaps can only be one color.

STARTING THE BITMAP UTILITY

To start using the Bitmap editor from geoBASIC move the

mouse pointer up to the Utilities menu and click the left button.

Move the mouse pointer to the menu item Bitmap and click the left

button again. The first screen of the Bitmap editor will appear. In

the box in the center will be listed any Bitmap files which exist on

the current disk in the drive. You may select one of these files to

edit by clicking on it or type in the name of a new file under the

prompt Create or edit an item Name:. Bitmap names may be a

maximum of 5 letters long. To continue, press [RETURN] or click

on OK. To return to geoBASIC just click on CANCEL.

USING THE BITMAP UTILITY

The Bitmap utility screen consists of two main parts. On the

left side of the screen is the working area, where you draw your

bitmap in a magnified mode. On the top of the right side is a blank

area which will show what your bitmap looks like in actual size.

Also on the right side are two numbers, labeled Width and Height.

These define the overall size of the bitmap you are creating. On

the left side of each number is an up arrow, and on the right side is

a down arrow. To increase the height or width, move the mouse

pointer to the up arrow and click the left button. The Height can be

any size between 1 and 42 pixels, but the width changes only in

increments of 8 pixels, up to a maximum of 48 pixels wide. To

decrease the height or width, click on the down arrow. As you

adjust the dimensions, the bitmap frame on the left side of the

screen will change to reflect the new size. At certain combinations

of height and width, the size of the magnified bitmap frame may

suddenly change drastically. There are two sizes of "dot" you can

draw with when creating your bitmap, and the Bitmap utility will

113

always try to let you use the larger size dot. Hence, if you make

the size of the bitmap small, the frame may enlarge to let you use

the larger dot, while if you make the bitmap large, the frame will

adjust because you will have to draw using the small size dot. The

size of the dot applies only to the magnified view of the bitmap.

The dot size in the actual bitmap does not vary. You may adjust the

size of the bitmap frame at any time, even after you have drawn a

picture. If you make the box too small to hold the picture, part of

the bitmap will be cut off, but it is not lost. Simply make the

bitmap frame bigger again and you will find that your bitmap is

still intact.

Once you have established the size you want your bitmap to

be, you can start drawing. The drawing tool becomes a paintbrush

when it moves over the bitmap frame. The tool can be one of three

colors. When it is blue, it passes over the bitmap without drawing

or erasing. To begin drawing, place the paintbrush over any empty

pixel and press the left mouse button. The paintbrush will turn

black, and anywhere you move it in the bitmap frame box, it will

draw dots. To stop drawing, click the left mouse button again. To

erase some of the dots, move the paintbrush on top of a previously

drawn dot and press the left mouse button. The paintbrush will

turn red, and anywhere you move it, it will erase dots. To stop

erasing, click the left mouse button again.

There are two submenus at the top of the Bitmap Utility

screen. The first is the GEOS submenu. Next is the options

submenu. The first item under the options submenu is paste photo

scrap. A photo scrap can be created and saved using geoPAINT. If

you select this option, a box will appear showing all photo scrap

files on the current disk. Click on one with the mouse, then click

on OK to load the photo scrap into the bitmap, or click on Cancel

to change your mind and not load a photo scrap. The next item is

erase bitmap. This clears everything you have drawn from the

bitmap frame. Be careful, this function does not verify that you
really mean to clear!

114

USING BITMAPS IN YOUR PROGRAM

The most straightforward way to use a bitmap you have

created in a program of your own is to display it on the screen. To

do so, use the command:

10 BITMAP <STRING>,<XPOS>,<YPOS>

where the <string> is the name you gave your bitmap, <xpos> is

the X position to place the bitmap on the screen and <ypos> is the

Y position to place the bitmap on the screen. The <xpos> param

eter can vary from 0 to 39, while the <ypos> can range from 0 to

199.

See below also for details of how to use bitmaps with Dialog

boxes and Icon Lists.

DIALOG BOX EDITOR

Dialog boxes are used to present information and get a choice

from the user. When geoBASIC is commanded to place a dialog

box on the screen, it draws the dialog box in the center of the

screen and waits for the user to click the mouse pointer in one of

the buttons or on one of the icons in the dialog box. The box is

then removed from the screen, and whatever was underneath it is

restored. Finally, a number is returned indicating which choice the

user clicked on.

STARTING THE DIALOG BOX EDITOR

To start using the Dialog Box editor from geoBASIC move the

mouse pointer up to the Utilities submenu and click the left button.

Move the mouse pointer to the submenu item dialog and click the

left button again. The first screen of the Dialog Box editor will

appear. In the box in the center will be listed any Dialog Box files

which exist on the current disk in the drive. You may select one of

these file to edit by clicking on it or type in the name of a new file

under the prompt Create or edit an item Name:. Dialog Box names

may be a maximum of 5 letters long. To continue, press

115

[RETURN] or click on OK. To return to geoBASIC just click on

CANCEL.

USING THE DIALOG BOX EDITOR

The Dialog Box editor screen is split into two parts. On the left

side of the screen, you can set the number and type of objects

which will appear in the dialog box. On the right side, you set the

placement and details of each item.

At the upper left side of the screen is a box with a number in it

with the word Objects: next to it. This is the total number of

objects in the dialog box. This number can vary from 1 object to 8

objects. Clicking in the up arrow on the left side of the number

increases the total number of objects in the dialog box, and

clicking in the down arrow on the right side of the number

decreases the number of objects. As you increase and decrease the

number of objects, the number of boxes which appear directly

below the object number box will change. These boxes are used to

set the type for each object which will appear in the dialog box.

You may adjust the number of objects at any time.

Each object which appears in the dialog box can be one of a

number of types, as detailed below. To adjust the type of a partic

ular object, move the mouse to the object line and click on the up

or down arrow to cycle through the different object types avail

able. The various types of objects look different and some return

numbers to the DIALOG call in your program, enabling the

program to tell which object was selected to exit the dialog box.

For each type of object, certain additional information needs to be

specified on the left side of the screen. The appropriate prompts

appear on the left side of the screen for each object line as you

click on it with the mouse pointer. The object types are:

1. OK ICON— A button which contains the word OK. This is

normally for the user to approve the last action taken by your

program. The OK Icon returns the value 1 in the geoBASIC

DIALOG function. Values which must be set on the right side of

116

the screen are the X and Y location of the icon.

2. CANCEL ICON— A button which contains the word

CANCEL. This is normally for the user to cancel the last change

made to the program and revert to the previous conditions. The

CANCEL Icon returns the value 2 in the geoBASIC DIALOG

function. Values which must be set on the right side of the screen

are the X and Y location of the icon.

3. YES ICON— A button which contains the word YES. The

YES Icon returns the value 3 in the geoBASIC DIALOG function.

Values which must be set on the right side of the screen are the X

and Y location of the icon.

4. NO ICON — A button which contains the word NO. The

NO Icon returns the value 4 in the geoBASIC DIALOG function.

Values which must be set on the right side of the screen are the X

and Y location of the icon.

5. OPEN—A button which contains the word OPEN. This is

normally for the user to open a disk file. The OPEN Icon returns

the value 5 in the geoBASIC DIALOG function. Values which

must be set on the right side of the screen are the X and Y location

of the icon.

6. DISK— A button which contains the word DISK. Normally

for the user to select the disk from various devices (such as the

screen, printer, etc.). The DISK Icon returns the value 6 in the

geoBASIC DIALOG function. Values which must be set on the

right side of the screen are the X and Y location of the icon.

7. FIXED TEXT— This is a string constant which will appear

in the dialog box. It is normally used to pass information to the

user. Clicking on a fixed text string in the dialog box does not exit

the dialog box and returns no value. Values which need to be set

on the right side of the screen are the X and Y location of the text

string and the text itself (30 characters maximum), which is

entered on the Text: line.

117

8. VARIABLE TEXT— This is an expression which will

appear in the dialog box. The expression can contain string and

numeric constants as well as string variables and numeric

variables. During the program, the string variables and numeric

variables will be evaluated and their values used to put the variable

text in the dialog box. Thus, the Variable Text field in a dialog box

may be different each time the dialog box appears on the screen,

unlike any of the other objects in the dialog box. Clicking on a

Variable Text field in the dialog box does not exit the dialog box

and returns no value. Values which need to be set on the right side

of the screen are the X and Y location of the expression and the

expression itself (30 characters maximum), which is entered on the

String expression to use: line.

9. USER ICON— This is an icon designed using the Bitmap

editor (see above). You must specify the X and Y location of the

bitmap, the 5 character name that you gave the bitmap when you

designed it, and the value returned to the DIALOG function if the

user clicks on the bitmap. This value can vary from 20 to 255 and

is entered at the Value to return: prompt.

SETTING OBJECT SPECIFICATIONS

As mentioned earlier, various information about each object

must be specified on the right side of the screen. Both the Fixed

Text and Variable Text objects require text lines, which are typed

into the space provided for this purpose. The User Icon requires

the value it will return to the DIALOG function. To adjust the

number which appears in the Value to return box, click on the up

or down arrow alongside the box. The number will "roll over" if

you exceed the maximum (255) or try to go below the minimum

allowed (20). The User Icon also requires the Bitmap name, which

is typed into the space provided.

The X and Y positions must be specified for each object, and

are measured as offsets from the upper left corner of the dialog

box. The X position is changed by clicking in the up or down

118

arrows alongside the X offset: box, and the Y position is changed

by clicking in the up or down arrows alongside the Y offset box.

By default, the X and Y offsets will cycle through the default

GEOS positions, which makes it easier to position the text and

icons correctly. If you wish to have more freedom (within the

confines of the dialog box) to position your object, click on the

guides off item in the options submenu. You can adjust the Y

offset to be anything between 1 and 95, while the X offset can vary

from 0 to 176 in steps of 16 pixels. To return to using the default

GEOS settings, click on guides on in the options submenu. Be

careful not to set the X and Y offsets to be identical for two

objects, since they will be drawn on top of each other, and one will

be hidden from view.

OTHER MENU ITEMS

There are two submenus at the top of the screen. The first is

the GEOS submenu. The other one is the options submenu. The

items in the options submenu are:

GUIDES OFF/ON

The X and Y offsets for Dialog box objects will cycle through

the default GEOS positions when guides are on. These positions

make it easier to ensure that the objects don't overlap. When

guides are off, the Y offset can be varied from 1 to 95, while the X

offset can vary from 0 to 176 in steps of 16 pixels.

DISPLAY DIALOG BOX

This shows the current dialog box on the screen, except that

any user-defined bitmaps are simply shown as blocks of pixels the

size of the bitmap. Click on any button or bitmap to exit the dialog

box and return to the editor.

QUIT

This exits the editor and allows you to save your dialog box

definition, then exits back to geoBASIC.

119

USING DIALOG BOXES IN YOUR PROGRAMS

To display a dialog box designed with the Dialog Box editor on

the screen in one of your geoBASIC programs, use the command

DIALOG:

10 DIALOG STRING, VARIABLE

The string specifies the name of the dialog box as it was saved

in the Dialog box editor. The variable, which is optional, will

contain the number of the icon which the user clicked on when

exiting the dialog box.

ICON LIST UTILITY

An Icon List is a group of bitmaps (maximum of 31) which can

appear on the screen in your geoBASIC program. The bitmaps are

designed using the Bitmap editor (see above). Once the bitmaps

are on the screen, your geoBASIC program can branch to a speci

fied subroutine if a bitmap icon is clicked on by the user. This

ability to provide pictures on the screen from which the user

makes a choice can enable you to write very easy-to-use programs.

STARTING THE ICON LIST UTILITY

To start using the Dialog Box editor from geoBASIC move the

mouse pointer up to the Utilities submenu and click the left button.

Move the mouse pointer to the submenu item icon and click the

left button again. The first screen of the Icon List editor will

appear. In the box in the center will be listed any Icon List files

which exist on the current disk in the drive. You may select one of

these files to edit by clicking on it or type in the name of a new file

under the prompt Create or edit an item Name:. Dialog Box names

may be a maximum of 5 letters long. To continue, press

[RETURN] or click on OK. To return to geoBASIC just click on

CANCEL.

120

USING THE ICON LIST EDITOR

At the top of the Icon List Editor screen is the Number of

icons: box containing the number of icons that will be in the list.

To increase the number of icons, click on the up arrow to the left

of the number, and to decrease the number of icons, click on the

down arrow to the right of the number. You can go back and

readjust the number of icons in the list at any time.

Below the Number of icons: box is the Icon number box. This

indicates the icon you are currently working on, and you can adjust

this number from 1 to the maximum number of icons (as set

above) by using the up and down arrows alongside the number.

The X and Y positions, name of the icon to display, and the

subroutine to branch to if the icon is selected refer to the icon

number specified here. Next is the X position and Y position

boxes. The X position can be set from 0 to 312 in increments of 8

pixels, while the Y position can be set from 0 to 199. Below the X

and Y position boxes is a line for you to enter the name of the

bitmap. This name is the one you gave it when you designed it

using the Bitmap editor. Finally, Place to go: is for you to indicate

which line number or label the program should branch to when the

icon is clicked on. This location must be a subroutine. If nothing is

specified here, then your program will not respond when you click

on that icon.

There are two submenus at the top of the screen. The first is

the GEOS submenu. The other one is the options submenu. The

item in the options submenu is:

QUIT

This exits the editor and will allow you to save the changes,

then exits back to geoBASIC.

USING THE ICON LIST IN YOUR OWN PROGRAMS

To use the Icon List created in your own programs is very

simple: use the Icon command:

121

u

10 ICON "NAME"

where "NAME" is the name you gave the icon list when you

designed it using the Icon List Editor. The icons (bitmaps) will be

placed on the screen in the chosen positions when this command is

executed in a geoBASIC program.

SPRITE EDITOR

Sprites are graphic shapes which can be placed on the screen.

The special property of a sprite is that it does not affect the

graphics and text it passes over as it moves across the screen.

Sprites are separate and independent of the screen graphics, which

means you can create programs with sprites without having to

worry about redrawing your background.

You may use up to six sprites in your program. Each sprite can

be drawn in up to three colors and can be animated with multiple

views (called frames). A starting position, X and Y velocity and

the ability to link several sprites together into a larger shape can all

be specified. Sprites can also be expanded (doubled in size) in the

X direction, Y direction, or both. A position on the screen can be

set, with the sprite moving from its initial position to this final

position (called a "trail"). Finally, you may specify that after a

given length of time, the sprite's motion be stopped and that a

BASIC subroutine be called automatically. This is called a

"timeout."

STARTING THE SPRITE EDITOR

To start using the Sprite editor from geoBASIC move the

mouse pointer up to the Utilities submenu and click the left button.

Move the mouse pointer to the submenu item sprite and click the

left button again. The first screen of the Sprite editor will appear.

In the box in the center will be listed any Sprite files which exist

on the current disk in the drive. You may select one of these files

to edit by clicking on it or type in the name of a new file under the

prompt Create or edit an item Name:. Sprite names may be a

122

maximum of 5 letters long. To continue, press [RETURN] or click

on OK. To return to geoBASIC just click on CANCEL.

If you choose the name of an existing sprite file, the next

screen will request whether you want to Edit the sprite, Copy the

sprite into a new sprite, Delete the sprite, or Cancel using the

Sprite editor. Click on the item you want. The Copy option allows

you to copy all the information about the sprite into a new sprite,

so that you can make changes without affecting the original. If you

select Copy then a new dialog box will appear for you to type in

the name of the new file you want to copy the sprite data to. Type

in the name and press [RETURN]. If you change your mind, click

on Cancel.

USING THE SPRITE EDITOR

Once you have specified the name of the sprite file (either new

or existing), the initial or Attribute screen of the Sprite Editor will

appear on the screen. If the sprite is a new sprite, the minimum

amount of information necessary for sprite definition will be

placed on the screen. On the top line of the screen is the Sprite

number. You may choose any sprite from 3 to 8 (sprites 1 and 2 are

used by the system). To increase the sprite number, click on the up

arrow to the left of the sprite number, and to decrease the sprite

number, click on the down arrow to the right of the number. The

sprite number will roll-over at sprite number 3 (to sprite number

8) and at sprite number 8 (to sprite number 3).

Just below the sprite number is some basic information about

the sprite. First is the sprite Color. Although the sprites may be in

up to three colors, two of those colors are the same for every

sprite. Only one color can be varied, but this color may be

different for every sprite. To cycle through the 16 available colors

(black, white, red, cyan, purple, green, blue, yellow, orange,

brown, light red, dark grey, grey, light green, light blue, and light

grey) click on the up or down arrows alongside the sprite color.

Next to the Color box are the Double in X and in Y flags.

123

u

Clicking in the boxes will make the sprite twice as large in the X >LJ

or Y direction. You may click on both boxes to double the sprite's _

size in both directions. Each sprite is 12 pixels wide by 21 pixels <—-I
high. Realize that doubling the size of the sprite doesn't give you q

more pixels (higher resolution), it just makes the pixels you have

larger. ±J

The Start POSITION of the sprite is the final item on the LJ

Attribute screen. The starting X and Y coordinates can be set. To —

increase the X or Y coordinate, click on the up arrow to the left of *—
the coordinate, and to decrease the coordinate, click in the down fj

arrow to the right of the coordinate. The X coordinate can range

from 0 to 380, while the Y coordinate can be from 0 to 256. The (J)

upper left corner of the screen is coordinate 31,31, so that sprites

can move onto the screen from an off-screen position.

The rest of the items in the Sprite editor are available by

selecting them from the two menus (in addition to the GEOS

menu). When a submenu item has been specified for a sprite, an

asterisk will appear next to the submenu item. Many of the options

can be used together, although some options will deactivate others.

These will be noted below. The submenu items under the New

menu are:

SPRITE

This item is asterisked automatically because you are working

on a sprite.

VELOCITY

The sprite velocity in the X and Y directions may be set.

Velocity varies in increments of 8 pixels/second. To increase the

velocity, click on the up arrow to the left of the X and Y To

decrease the velocity, click on the down arrow to the right. The X

and Y velocities can range from -101 to 99, with negative veloci

ties being motion to the left (X) or up (Y), and positive velocities

being motion to the right (X) or down (Y). Setting a velocity of 0

for both X and Y causes the sprite to remain stationary. Velocity

cannot be used with Trail.

124

PICTURE

For a sprite to be meaningful, it must have a picture.

Otherwise, there would be nothing to see when the sprite was put

on the screen. Clicking on this item adds a button marked Edit to

the Attribute screen. Clicking on this button takes you to the Editor

screen, where you can design your sprites, including multiple

frame animations. The Editor screen is described below.

SEQUENCE

The ability to animate sprites is one of the most powerful

features of geoBASIC . The animation is created by cycling

through a series of frames to give the illusion of motion. Much as

it is done in the movies, each frame shows a view of the object

which is slightly different from the frame before. Each frame can

be designed using the Editor screen.

Selecting this submenu item adds the animation information to

the Attribute screen. The first item is how many ANIMATION

Frames you want to use. You may have up to a maximum of 8

frames for each sprite. To increase the number of frames, click on

the up arrow to the left of the number of frames. To decrease the

number of frames, click on the down arrow to the right of the

number of frames. The number you set here will determine how

many frames are available for you to edit on the Editor screen. The

ANIMATION Rate sets how fast the frames will cycle through the

sequence. The rate measures how many 60ths of a second each

frame will remain on the screen, and may vary from 1 to 240 (4

seconds). To increase the rate, click on the up arrow to the left of

the rate. To decrease the rate, click on the down arrow to the right

of the rate. The last item in this section is the Continuous ANIMA

TION button. If this is selected, then the animation will cycle

continuously (like a man running). If this item is not selected, then

the animation will cycle once and stop.

TIMEOUT

This item lets you specify the time interval between activating

a sprite and calling a geoBASIC subroutine. You do not have to

125

use the timeout feature. The TIMEOUT Time sets the time delay

before the BASIC subroutine is called. This is measured in 60ths

of a second and can vary from 1 to 240 (4 seconds). The Stop

motion at TIMEOUT flag sets whether the animation and motion

will stop when the time runs out. If this item is selected, then the

sprite will freeze in place at timeout, otherwise, it will continue to

follow the instructions you set in the sprite editor file. To specify

where the geoBASIC program will branch to when the time runs

out use the At TIMEOUT gosub item. The line number or label of

the subroutine is required, and the subroutine specified must end

with a RETURN. When the subroutine has been performed,

program execution will continue with the statement after the last

one that was executed when the timeout occurred. Timeout cannot

be used with Trail.

TRAIL

This submenu item lets you choose a position on the screen

that the sprite will move to, as well as the velocity of the sprite.

The program then takes care of all the complex calculations of

figuring out the X and Y component of the velocity to get the

sprite where you want it. If you had previously selected Velocity or

Timeout, these selections will be replaced by the Trail data, since

Trail cannot be used with those submenu items.

The X and Y coordinates of the position where the sprite is to

end up can be set using the TRAIL to X coordinate and to Y

coordinate. To increase the X or Y coordinate, click on the up

arrow to the left of the coordinate, and to decrease the coordinate,

click in the down arrow to the right of the coordinate. The X

coordinate can range from 0 to 380, while the Y coordinate can be

from 0 to 256. The upper left corner of the screen is coordinate

31,31, so that sprites can move onto the screen from an off-screen

position. The Stop motion at trail end flag sets whether the anima

tion and motion will stop when the sprite reaches the specified trail

X and Y coordinates. If this item is selected, then the sprite will

freeze in place when it reaches the trail point, otherwise, it will

continue to cycle through its animation sequence. The At end

gosub item specifies the subroutine that the geoBASIC program

126

will branch to when the sprite reaches the trail point. A line

number or label is required, and the subroutine specified must end

with a RETURN. When the subroutine has been performed,

program execution will continue with the statement after the last

one that was executed when the sprite reached its trail point.

Unlike the other items in the New menu, Trail is a toggle. Select it

once to turn it on, select it again to deactivate it and allow setting

of Velocity and Timeout.

THE EDITOR SCREEN

The Editor screen is where sprites are actually designed. Each

frame of the sprite must be drawn in order for it to be used in your

program. To get to the editor screen, click on the Edit button in the

lower right corner of the Attribute screen. If the button is not

visible, select the item picture under the new submenu. You may

also reach the editor screen by selecting the editor screen item

under the options submenu.

The editor screen consists of two main portions. On the left

side is the enlarged area for designing your sprite. The current

sprite (as specified on the Attribute screen, above) will appear in

an enlarged version when you enter the editor screen. Except when

using linked sprites you must return to the Attribute screen to

change the sprite you are working on. Whenever the mouse cursor

enters the area on the left and is ready to start drawing, it will turn

from its normal arrow shape to a paintbrush. To draw in the current

color, move the mouse pointer over an empty pixel and click the

left button. The mouse pointer will appear darker, and as you move

the mouse pointer, it will fill in the pixels it passes over. To stop

drawing, click the left button again. The pointer will appear

lighter. To erase, move the mouse pointer over a pixel which is

filled in and click the left button. The mouse pointer will appear

darker, and as you move the mouse pointer, pixels will be erased.

On the right side of the Editor screen are various tools and

information for your use. In the lower left corner are the three

available colors for drawing the sprites. The color on the left is the

127

u

one which is different for the current sprite, and can be set using

the Attribute screen. To choose a color for drawing the sprite,

move the mouse pointer to the color you want to use and click the

left button. A frame will be drawn around the currently selected

color.

Directly above the color bar is the Current FRAME. When

animating a sprite, each animation consists of several frames, up to

a maximum of eight. You set the total number of frames for each

sprite on the Attribute screen. The enlarged version of the sprite on

the left side of the screen corresponds to the Current FRAME. To

increase the frame number you are currently working on, click on

the up arrow to the left of the current frame number. To decrease

the frame number of the sprite you are working on, click on the

down arrow to the right of the current frame number.

In the lower right corner of the Edit screen is a button marked

Attr. Clicking on this button returns you to the Attribute screen.

You may also return to the Attribute screen by selecting attribute

screen item under the options submenu.

In the top portion of the right side of the screen, your anima

tion runs continuously, showing the effects of any changes you

have made. The speed at which this animation is running reflects

the Animation Rate set on the Attribute screen.

In the center of the right side of the edit screen is information

related to linking sprites. geoBASIC has the capability of linking

up to four sprites together to form a larger, more complex shape

than can be achieved by use of a single sprite. When sprites are

linked, all motion of the sprite is controlled by specifying velocity,

animation rate, etc., for the main sprite. The linked sprites will

automatically follow the main sprite (which is counted as one of

the linked sprites). To link sprites, click on the link sprites item

under the options submenu. When you select this item, several

choices will appear in another menu to the right of the link sprites

item. You may select one of these items to link 2, 3 or 4 sprites.

Whichever sprite you are currently editing will become the main

128

sprite which controls group movement. The sprites which will be

linked are the next sprites in the numbering sequence. Thus, if

you are editing sprite number 3 and want to link 4 sprites, then the

sprites 3, 4, 5 and 6 will be linked. The current sprite must have a

sprite number which is low enough that sprite number eight is not

exceeded by any sprite in the sequence. You may not, for example,

link four sprites beginning with number 6, since this would try to

link sprite numbers 6 ,7, 8 and 9. There is no sprite number 9, so

an error message will appear if you attempt this.

On the editor screen, the information for linked sprites appears

in the center of the right portion of the screen. At the top is the

Current SPRITE. Click on the up or down arrow alongside the

current sprite number to cycle through the linked sprites. The

current sprite is shown in the enlarged left portion of the editor

screen, and its shape can be edited as described above. The

Current FRAME item refers to the current frame of the current

sprite, so by using both these controls, you may access any frame

of any of the linked sprites.

When sprites are first linked, they are positioned on top of one

another. If you wish to move the linked sprites to change their

position relative to the main sprite, use the X Off or Y Off options

under the LINK Offsets heading. Use the Current SPRITE option

to set the sprite whose offset you want to adjust (you cannot adjust

the offset for the main sprite). Then click on the up arrow to the

left of the X Off to increase the X offset of the sprite (move it to

the right of the main sprite) or click on the down arrow to the

right of X Off to decrease the X offset of the sprite (move it to the

left). The sprite can be positioned to the left of the main sprite by

setting the X Off to a negative number. To adjust the Y offset of

the sprite, click on the up arrow to the left of the Y Off to increase

the Y offset of the sprite (move it below the main sprite) or click

on the down arrow to the right of Y Off to decrease the Y offset of

the sprite (move it up). The sprite can be positioned above the

main sprite by setting the Y Off to a negative number.

In addition to the attribute screen and link sprites items in the

129

options submenu (discussed above), the following are available:

PASTE FRAME

This item will paste the contents of another frame of the

current sprite into the current frame. This can be very handy when

the frames of your animation require only small changes from one

frame to another. Selecting this menu item brings up a dialog box

requesting the number of the frame whose contents you want to

paste into the current frame. Enter the number of the frame and

press [RETURN] or click on the Cancel button to abort. If you

select a frame number which does not exist, then an error message

will appear to let you know that.

QUIT

This menu item exits the editor and will allow you to save all

your changes, then returns you to geoBASIC.

130

Chapter 8—The geoBASIC Debugger

The geoBASIC debugger allows you to check the values of

variables, stop the program on certain lines or when variables

reach certain values, and single-step through your code. For those

who are used to debugging by printing out variables, the debugger

will take a little getting used to, but you will find it very powerful

with practice. The debugger is loaded with the geoBASIC

program, so programs may run slightly slower when you are in

debugging mode.

To debug a program from the editor, click on the DEBUG

menu option. The debugger dialog box has four fields for

displaying the values of variables or breakpoints in the program.

There is a menu in the debugger box for setting the current

debugging mode and choosing what to display in the field boxes.

Clicking OK will start the program running. Clicking CANCEL

will take you back to the editor. To return to the debug box while a

program is running, hit the RUN/STOP key.

ENTERING EXPRESSIONS OR BREAKPOINTS

Clicking in any of the four field boxes will allow you to enter

or edit an expression or a breakpoint. By default, expressions are

displayed whenever the debugger dialog box comes up. To enter

an expression, click on one of the boxes. Enter the name of a

variable. When you press return or click on another box, the value

of that variable will be displayed to the right of the box. This is

similar to typing PRINT in a Commodore program after a program

has been running. Normal arithmetic operators can be used, +, -,

etc., but functions may not. Logical operators such as AND, OR or

NOT can be used, but you must use the single characters &, I, and

! respectively (I is C= A). This is a little bit confusing but useful in

debugging.

Some examples of legal debugger expressions and their

131

BASIC equivalents:

X

X + Y

(2 * X) + Y

(X<10) & (X>15)

(X<10) | (X>15)

X<>5

! (X <> 5)

X(5)

3.14 * X

XA3

A$

A$ + B$

X

X + Y

(2 * X) + 7

(X<10) AND (X>15)

(X<10) OR (X>15)

X<>5

NOT (X <> 5)

X(5)

3.14 * X

XA3

A$

A$ + B$

Some illegal expressions:

SIN(X)

SQR(X)

LEFT$(A$)

ABS(X+Y)

LEN(A$)

To change something in a field box, click on it and edit it.

When you press return the changes will be reflected in the result.

Expressions can be up to 15 characters in a given field.

The debugger supports two kinds of breakpoints, line break

points (In brk) and expression breakpoints (ex brk). Breakpoints

are places in the program where you would like to stop execution

and look at the values of variables. Hitting cl brk on the submenu

of "show" will clear the breakpoints.

Line breakpoints allow you to specify up to four line numbers

that the program will stop at after it executes a line. Type in the

following program and select DEBUG:

10 A = 3

20 B = 2

30 B = 4

132

The debugger box will come up immediately, with four blank

boxes for displaying expression values. To set a line breakpoint,

choose "line break" in the display menu. Now the four fields will

display and allow editing of four line breakpoints. Type "20" into

one of the boxes. Click OK. The program will execute lines 10 and

20 and return to the debug box. You can use the display boxes to

print out the values of a and b, if desired. If you wish to set another

line breakpoint, choose "line break" again and enter another line

number to break at. If you do not delete the old breakpoint, it will

still be active. NOTE: Line breakpoints break at the completion of

the entire line and effectively ignore RETURN statements. If you

are still displaying line breakpoints and want to display expres

sions again, choose "values" in the display menu. When the

program ENDs, you will be returned to the editor again, as if

running a normal program.

Another kind of breakpoint is an expression breakpoint. This

allows you to specify up to four expressions to break on. If any of

the expressions are true after executing a line of the program, the

program will halt execution and return to the debug box. Start

execution of the above program by clicking on OK. When the

debug box comes up, choose "expr break" in the display menu.

Type "b > 2" in one of the field boxes. When you press OK again,

the program will halt when the variable b exceeds 2, which should

happen after executing line 30. This is especially useful when you

have an "out-of-range" error for an array subscript. You can set up

an expression breakpoint to stop the program when your subscript

goes over the maximum value it can be. The line you stop on

should be the line that causes the problem.

If an expression breakpoint occurs, an asterisk "*" is placed to

the left of the first expression that caused it (there may be more

than one true expression).

You can clear a particular breakpoint simply by editing it and

deleting everything or you can clear all the breakpoints by

selecting CL BRK in the SHOW submenu. This is useful if you

used the RUN or TRACE mode, a breakpoint was encountered and

133

you would like the program to continue without stopping

any more.

DEBUG MODES

There are three debugging modes, RUN, STEP and TRACE.

RUN allows the program to execute normally and the debugger

dialog box only appears if a breakpoint was found, so it is like

RUNning a Commodore BASIC program with STOP commands

imbedded in it. The default debug mode is RUN, and clicking OK

starts up the current mode. If you hit BREAK while the program is

running, the debugger dialog box comes up and you can set more

breakpoints or change the expressions being displayed in the

windows.

STEP allows you to single-step through your program

command by command. The debug box will reappear after each

command is executed. It redisplays your expressions (if any) as the

program progresses. For example, if you had a FOR-NEXT loop,

you could put the name of the index variable in a display field and

watch it increment as the loop is being executed. To continue

stepping through your program, click on OK or "step" on the mode

menu. The line number at the bottom is updated after each

command has been executed—therefore, if you have multiple

commands on one line, the line number will not change until the

next line is encountered.

The TRACE option is like RUN, but if the program encounters

a breakpoint the debug box is displayed only briefly, then

continues execution. Hence you can display the value of a variable

in a loop without hitting OK each time. To get out of TRACE

mode, hit the break key. The debug dialog box will return and will

automatically be set to STEP mode.

ERRORS

If, while running the debugger, an error occurs in your

program, a dialog box with "Check #" and the error number will

134

come up. Clicking OK will bring up the debugger dialog box and

you can display variables to see what went wrong. If you hit OK at

this point, the debugger will attempt to continue if the error was

not fatal.

135

Chapter 9—geoBASIC Error Messages

The following is a list of error messages geoBASIC can

generate. They are listed in numeric order.

Number Error message Description

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Syntax

Out of blocks

Bad track

Disk full

Full directory

File not found

Bad BAM

Unopened file

Bad Record

Out of records

Bad structure

Buffer overflow

No print driver

Device not found

Next without For

Return without Gosub

Out of data

a typo, number of parameters wrong, etc.,

see the GEOS Programmer's Reference Guide

see the GEOS Programmer's Reference Guide

there is no more room on the disk to SAVE or CREATE,
etc., a file

see the GEOS Programmer's Reference Guide

OPENing, LOADing, etc., a nonexistent file

see the GEOS Programmer's Reference Guide

a file must be OPENed before APPEND, DELETE, etc.,

can be done on it

this record does not exist yet so use an APPEND or an

INSERT at the correct record number

the limit on a VLIR file is 128 records so no more

INSERT or APPENDS can be done

see the GEOS Programmer's Reference Guide

generally happens if a file is read past its end, i.e., with
RDBYTE, etc.,

a printer driver was not selected or not on the current

disk drive with geoBASIC

the printer is either off-line or turned off

a NEXT statement was found before a FOR command

a RETURN statement was found before a GOSUB

there was not enouah data in DATA statements tn keen

up with all the READ commands

17 Illegal quantity an illegal value was used for something, i.e., using 320

as a parameter for the LINE command but the right

136

18

24

25

26

28

30

31

32

33

34

35

37

38

39

40

41

42

maximum is 319, etc.,

the result of an expression was too large or too small for

geoBASIC to handle

there was not enough memory to allocate a new array,

string or load in a new font

the line number for a GOTO, GOSUB, etc., does not

exist

the value given an array subscript is negative or larger

than in a DIM statement

an array with the same name was already defined

an attempt was made to divide by zero, most likely an

uninitialized variable

an attempt was made to assign a string to a floating

point variable or vice-versa without using VAL or STR$

String too long string expressions must have 0 to 255—if the resulting

string is longer (i.e., adding two 200 byte strings

together) then this error ensues

Formula too complex formula too hard to evaluate—most likely when a string

expression has three or more sub-expressions

Overflow

Out of memory

Undefined Statement

Bad subscript

Redimensioned array

Division by zero

Type mismatch

Undefined function

Redefined label

Line too long

No header

No disk

No data block

Bad data

Verify

Write protect

Bad header

Font too big

Wrong disk

Label not found

a function was used without first using DEF FN

a label already exists with the same name—check the

first six characters again

a line was greater than 240 characters

see the GEOS Programmer's Reference Guide

the disk is not in the drive

see the GEOS Programmer's Reference Guide

see the GEOS Programmer's Reference Guide

see the GEOS Programmer's Reference Guide

an attempt was made to write to the disk with the write

protect notch covered

see the GEOS Programmer's Reference Guide

the font was too big to fit in memory

the disk that was in the drive was accidentally taken out

and replaced with another one

the label used as an argument was not defined or the

object data does not exist

137

there can only be 127 labels

a LOOP or UNTIL was not found after a REPEAT or

WHILE command was executed

a LOOP or UNTIL was found before a REPEAT or

WHILE command was executed

see the GEOS Programmer's Reference Guide

RUN/STOP was pressed to halt the program

Too many processes there can only be 8 processes running at a time to start

up a new one, an old one must be deleted first

49 DOS mismatch see the GEOS Programmer's Reference Guide

43

44

45

46

47

48

Labels full

Loop not found

Loop without do

Byte decode

Break

Too manv Droce

138

NOTES

o

D

a

G

d"

a

a

w/

U

U

D

D

Q.

Li.

a

NEED HELP?

Your best source of technical assistance is on the QuantumLink

online network. RUN maintains a geoBASIC message board on

Q-Link to provide users with timely answers to questions and

comments. Check it out even if you don't need assistance. The

RUN geoBASIC area also provides users with programming tips

and information, sample applications and programs to download.

If any manufacturing defect becomes apparent, RUN will

replace the defective disk free of charge if returned by prepaid

mail within 30 days of purchase. Send it, with a letter specifying

the defect, to

RUN Special Products

80 Elm Street

Peterborough, NH 03458

Replacements will not be made if the disk has been altered,

repaired or misused through negligence, or if it shows signs of

excessive wear or is damaged by equipment.

This manual and software are copyrighted with all rights

reserved. No part of this manual or software may be copied, repro

duced or translated without the prior written consent ofRUN or

Berkeley Softworks.

DON'T MISS THESE OTHER SPECIAL DISKS AND

PRODUCTS AVAILABLE FROM RUN:

GEOS COMPANION—RUN'S GEOS "creativity" disk with music and animation

programs, clip art and fonts included among the ten powerful programs on this

disk. $24.97.

GEOS POWER PAK II—GEOS enhancements, accessories, applications and

utilities, including the latest GEOS telecommunications program, text editor, games

and more. For both C-64 and C-128 GEOS users. $24.97.

GEOS POWER PAK I—Features ten application and utility programs, over 20

fonts and over 100 clip art images. For C-64 GEOS. $24.97.

SUPER STARTER PAK—Seven powerful applications to meet all your computing

needs—word processing, database, spreadsheet, terminal program, paint and

draw, DOS shell, mailing label. For both C-64 and C-128 modes. $24.97.

FUN PAK 128—A special collection of eight games—including an exciting space

adventure, arcade and role-playing games and brain-teasing challenges—that take

advantage of the C-128 mode capabilities. $19.95.

PRODUCTIVITY PAK Ill—Everything C-64 and C-128 users need on one

disk—including the famous RUN Script word processor. $19.97.

RUN WORKS—Seven of RUN'S most powerful programs, including RUN Paint,

RUN Term, Graphmaker and Money Manager. For both C-64 and C-128. $24.97.

PRODUCTIVITY PAK I—Fifteen of RUN'S best applications and utilities for C-64

mode computerists. Includes the powerful database. DATAFILE, and

accompanying mailing label and spreadsheet programs. $19.97.

VOICEMASTER JR.—Now your Commodore can speak your language with this

speech output and voice recognition peripheral that lets you control programs or

other peripherals with simple spoken commands. $19.95.

To order call flL/A/at 800-343-0728 or send check or

money order to RUN Special Products, 80 Elm Street,

Peterborough, NH 03458.

