

KIPPER API Technical Reference

Document History
Date Author Changes
2009-09-22 Jonno Downes Initial baseline
2009-10-04 Jonno Downes Removed VBI
2009-10-28 Jonno Downes Added web application server functions

2

Contents
KIPPER API Technical Reference .. 1

Document History .. 1
Contents ... 2
Introduction .. 3
Using the API ... 4

Detecting and activating the KIPPER API .. 4
IP stack initialisation .. 4
Periodic Processing .. 4
API Conventions .. 4
Errors.. 5

KIPPER Functions ... 6
API housekeeping functions .. 6
Transport layer functions ... 7
TFTP Functions ... 9
Other network functions .. 11
File Access functions ... 12
Web Application Server functions ... 12
Printing Functions .. 14
Input Functions .. 14
Utility Functions .. 15

KIPPER Web Applications .. 16
Starting the Web Application Server ... 16
The request callback handler ... 16
HTML templates .. 17
Example Web Application ... 17

KIPPER Structures... 19
IP Configuration Structure ... 19
TFTP Server Parameter Structure .. 19
TFTP Transfer Parameter Structure ... 19
File Access Parameter Structure .. 20
DNS Parameter Structure ... 20
UDP Listener Parameter Structure... 20
UDP/TCP Packet Parameter Structure ... 21
TCP Connect Parameter Structure ... 21
TCP Send Parameter Structure .. 21
Error Codes .. 23

Memory Map ... 24
Implementers Guide ... 25
TFTP Directory Listings .. 26
Licenses.. 27

3

Introduction
The KIPPER application programming interface (or API) is a set of functions that
allow C64 programs to communicate over an IP network without being tied to a
specific hardware device.

The KIPPER API is intended to

• Be simple for developers to use, regardless of what their preferred
development tools.

• Allow programs loaded from disk (or via tftp) to use code stored in cartridge
ROM without being tied to any specific ROM image.

• Remove requirement for each program to independently configure MAC and
IP addresses.

• Provide a hardware abstraction layer to allow independent development of
network programs and network interface devices - KIPPER programs should
work as easily with a (as yet undeveloped) wifi cartridge as with the current
cs8900a based RR-NET compatible devices (as long as each cartridge
implements the appropriate KIPPER functions).

The initial implementation of the KIPPER API is part of the “kipper” project, which
is based on the “ip65” library, and includes a ruby based tftp server with some non-
standard extensions. However it is important to keep a distinction between the
definition of the KIPPER API, and the implementation of that API within the kipper
project – other cartridge developers are free to implement the KIPPER in their own
cartridges, using whatever underlying library they choose, and as long as they
implement each function defined by the KIPPER API, any program coded to that API
should work.

In the remainder of this document, text in italics contains information specific to the
kipper implementation of the KIPPER API, where other implementers are free to do
things differently. All other text refers to KIPPER API as it should be in every
implementation.

4

Using the API
Detecting and activating the KIPPER API
If the KIPPER API is installed and active (banked in), the string “KIPPER” (hex $4B
$49 $50 $50 $45 $52) can be read from location $8009..$800e.

IP stack initialisation

Once the KIPPER API has been located, call KPR_INITIALIZE. This function takes
no inputs, and the only result returned is the carry flag is set on error, and clear
otherwise.

The IP initialisation process will do the following

• Configure MAC address, IP address, netmask , default gateway and DNS
server (the kipper cartridge does this via DHCP)

• Any other internal housekeeping (the kipper cartridge sets up to use the timers
on CIA #2 ($DD0x). Timers A & B are a combined 16-bit count-down of
milliseconds.)

For the kipper cartridge, the most likely causes of failure are:

• No ethernet controller being found, in which case the next call to
KPR_GET_LAST_ERROR will return $85 -
KPR_ERROR_DEVICE_FAILURE

• No DHCP server responds during DHCP initialisation, in which case the next
call to KPR_GET_LAST_ERROR will return $81 -
KPR_ERROR_TIMEOUT_ON_RECEIVE

Periodic Processing
In order to detect and respond to inbound IP packets, the KIPPER Periodic Processing
Vector ($8012) should be called regularly – at least a few times each second. The
amount of time each call to this vector will vary, depending on whether or not an
inbound message is waiting.

API Conventions
All KIPPER functions are called by a JSR to $800F with the Y register loaded with a
function number.

Where a function has 1 input, it will be passed in via the A & X registers. Where a
function has 1 output, that output will be passed via the A & X registers.

Where a function has more than 1 input, or returns more than 1 output , AX should be
set with the address of a buffer that can be used for passing multiple parameters.
Addresses are passed in with A=low byte, X=high byte (e.g.$1234 would be passed in
as A=$34, X=$12.) The format of this buffer will vary for each function, although no
function requires a parameter buffer of more than $20 bytes so a single area of that
size can be reserved for this purpose.

5

Errors
All KIPPER functions set the carry flag if there is an error, and clear it if there was no
error. If the carry flag is set, the KPR_GET_LAST_ERROR function can be called to
retrieve a 1 byte error code indicating what went wrong (NB – the value returned by
KPR_GET_LAST_ERROR is not cleared by successful function calls, it always
carries the code indicating the last failure).

6

KIPPER Functions
API housekeeping functions
Number Description Parameters *
$01 KPR_INITIALIZE

Should be called once by each program,
prior to using any other KIPPER functions
In the kipper implementation, this sets up
internal structures, and also injects an IRQ
handler into $314

The kipper implementation checks whether
or not the RUN/STOP key has been
pressed, and if it has will abort the DHCP
configuration (and the next call to
KPR_GET_LAST_ERROR will return $86
– Aborted by user.

Inputs: none
Outputs: none

$02 KPR_GET_IP_CONFIG
Returns a pointer to a table containing the
current IP configuration. The data in this
table should not be modified.

Inputs: n/a
Outputs: AX contains
pointer to an IP
Configuration Structure

$0F KPR_DEACTIVATE
This routine should be called if an program
has finished using the KIPPER API and
wants to reclaim RAM for other purposes.
On kipper cartridges, this function
restores the previous value of the IRQ
vector $314

Inputs: none
Outputs: none

$FF KPR_GET_LAST_ERROR
Returns an error code that specifies the
reason for the last failure by any KIPPER
function (which may not have been the last
KIPPER function called)

Inputs: none
Outputs: A = error code
(per table below)

7

Transport layer functions
$10 KPR_UDP_ADD_LISTENER

This function takes a port number and a
callback address – whenever a UDP packet
arrives on the specified port, then the
specified callback routine will be executed.

Inputs: AX contains pointer
to a UDP Listener Structure
Outputs: None

$11 KPR_GET_INPUT_PACKET_INFO
This routine returns information about the
last IP packet to arrive. If it is called within
a TCP or UDP Listener callback routine,
then the packet being described is the one
which triggered the callback.
The structure returned by this function is in
the same format as the structure required
as input to KPR_SEND_UDP_PACKET,
this makes it easy to create callback
routines that generate replies.

Inputs: AX contains pointer
to a buffer where the UDP
/TCP Packet Structure can
be written
Outputs: specified buffer
has Packet Structure written
to it.

$12 KPR_SEND_UDP_PACKET
Send a UDP packet to a remote host.

On kipper cartridges, this function
requires there already be an entry in the
ip65 ARP table with the MAC address
corresponding to the specified IP. If there
is no such ARP entry, then the call to
KPR_SEND_UDP_PACKET will fail, but
an ARP request will be sent out, so future
attempts to communicate with the
requested IP will succeed. Note: in order
for replies to the ARP request to be seen,
and the ARP table updated, programs must
call the KIPPER Periodic Processing
Vector ($8012) at the original attempt to
send the UDP packet which failed but
triggered the ARP request being sent, and
the next attempt to send the same UDP
packet.

Note that even if the call returns
successfully, there is no guarantee that the
packet has been transmitted intact across
the network and arrived at the destination,
hence UDP programs generally implement
acknowledgment, timeout and
retransmission mechanisms – if this is in
place then the special case outlined above
(where ARP resolution is required before
the packet is transmitted) will be covered
as well and no additional handling is

Inputs: AX contains pointer
to a UDP Packet Structure
Outputs: none

8

required.
$13 KPR_UDP_REMOVE_LISTENER

This function takes a port number – this
UDP port will no longer be listened on.

Inputs: AX contains number
of port that will no longer be
listened on.
Outputs: None

$14

KPR_TCP_CONNECT
This function will takes an IP address, a
port number and a pointer to a callback
routine.

If the IP address passed in is “0.0.0.0”, this
is treated as a request to act as a server,
and the specified port will be listened on.
The call will not return until either an
inbound client connects, OR an error
occurs (including the user aborting the
listen by keypress).

If any other address is specified, this is
treated as a request to act as a client, and a
TCP connection will be attempted to the
specified IP address and port number - a
unique port number will be used for the
local side of the connection.

Whether a remote IP is passed in (client
mode) or not (server mode), whenever any
data (excluding any empty ‘ACK only’, or
out of sequence, packets) arrives from the
remote end, the routine specified by the
‘callback’ pointer will be executed. If the
connection is terminated by the other end,
a callback will be generated with a payload
length of $ffff.

Inputs: AX contains pointer
to TCP Connection
Structure.
Outputs: none

$15

KPR_SEND_TCP_PACKET
Sends data via to specified TCP
connection. The connection must have
already been set up (via
KPR_TCP_CONNECT). Data is sent
immediately and must fit into a single
datagram i.e. (there is no buffering or
splitting of input into multiple datagrams).

Inputs: AX contains pointer
to TCP Send Structure.
Outputs: None

$16

KPR_TCP_CLOSE_CONNECTION
Closes the current TCP connection.

Inputs: None
Outputs: None

9

TFTP Functions
$20 KPR_TFTP_SET_SERVER

Sets the IP address of the TFTP server that
all subsequent TFTP transfers will occur
with.

Inputs: AX contains pointer
to a TFTP Transfer Server
Structure
Outputs: none

$22 KPR_TFTP_DOWNLOAD
Download the specified filename from a
tftp server. This uses the standard tftp
download opcode and hence will work
with any tftp server.

There is no bounds checking on this
function – it is up to the caller to ensure
that the file will fit into the specified buffer.
If the file is too large it is likely to
overwrite kipper code or system variables
with unpredictable results.

Inputs: AX contains pointer
to a TFTP Transfer
Parameter Structure
Outputs:
The specified file will be
downloaded into the buffer
pointed at by
KPR_TFTP_POINTER . If
the address passed in was
$000 then the first 2 bytes of
the file are used to determine
the load address and
KPR_TFTP_POINTER will
be updated with that address

$23 KPR_TFTP_
CALLBACK_DOWNLOAD
Download the specified filename from a
tftp server. This uses the standard tftp
download opcode and hence will work
with any tftp server.

This function will generate a callback
when each block arrives from the server.

This can be used to (for example) write
files of that are too big to fit into RAM to
disk.

All blocks except the last block will be 512
bytes long. The last block will be less than
512 bytes long (and will be 0 bytes long if
the length of the file being downloaded is a
multiple of 512 bytes). So the way the
callback routine should test whether the
current block is the last one in the transfer
is to see test byte 1 in the input buffer – if
it is a $02 then there are more blocks to
come, if it is a $00 or $01 then this is the
last block.

Inputs: AX contains pointer
to a TFTP Transfer
Parameter Structure
Outputs:
The specified file will be
downloaded in 512 byte
blocks. When each block
arrives, the routine specified
by KPR_TFTP_POINTER
will be called with AX set to
point at a buffer containing:
Bytes 0/1 = length of block
Bytes 2..514 = block data.

10

$24 KPR_TFTP_ UPLOAD
Send a file with the specified filename to a
tftp server. This uses the standard tftp
download opcode and hence will work
with any tftp server.

This function will send data from the
address specified in the
KPR_TFTP_POINTER parameter.
The total number of bytes to send must be
specified in the KPR_TFTP_FILESIZE
parameter.

Inputs: AX contains pointer
to a TFTP Transfer
Parameter Structure
Outputs:
The specified file will be
sent to the specified tftp
server.

$25 KPR_TFTP_ CALLBACK_UPLOAD
Send a file with the specified filename to a
tftp server. This uses the standard tftp
download opcode and hence will work
with any tftp server.

This function will call the user provided
function once for each 512 block that
needs to be sent to the server. Note that the
filename passed in is only used to inform
the tftp server what name to save the
uploaded data as. This function will not
open a file from a local disk and send it – it
is up to the calling program to provide the
function of reading from the disk.

The callback routine needs to be
implemented as follows:

1) When it is called, AX will be
pointing at a 512 byte buffer that
the next block of data is to be
written to.

2) The routine must copy up to 512
bytes of data into that buffer, and
then set AX to be the number of
bytes actually copied (i.e. should be
between 0 and 512).

3) The TFTP protocols signals the
“end of file” by sending a block
with less than 512 bytes. Therefore
the last block sent must be less than
512 bytes. If the file being sent is a
multiple of 512 bytes, then a final
block of 0 bytes must be sent to
transmission has finished.

Inputs: AX contains pointer
to a TFTP Transfer
Parameter Structure
Outputs:
The specified file will be
sent in 512 byte blocks. The
routine specified by
KPR_TFTP_POINTER will
be called once for each block
that needs to be sent,
with AX pointing at a buffer
that needs to be filled with
the next block of data to be
sent.

11

Other network functions
$30 KPR_DNS_RESOLVE

Resolve a string containing a hostname OR
an IP address in “dotted quad” format (e.g.
“192.168.1.1”) into a 32 bit IP address.
This requires a DNS server that supports
recursive queries (which almost all DNS
servers will)

The kipper implementation checks whether
or not the RUN/STOP key has been
pressed, and if it has will abort the DNS
resolution (and the next call to
KPR_GET_LAST_ERROR will return $86
– Aborted by user.

Inputs: AX contains pointer
to a DNS Parameter
Structure
Outputs: First 4 bytes of the
DNS Parameter structure
updated to contain the IP
address.

$31

KPR_DOWNLOAD_RESOURCE
Downloads (via http or gopher) a
“resource”, e.g. a file.

Specified URL must be a valid http:// or
gopher:// URL in ASCII. (e.g.
http://www.example.com:8080/foo.xml)
Any ‘control character’ (i.e. <$20,
including CR ($0D), LF($0A) or NUL
($00) will be treated as the end of the
URL.

This implementation has the following
limitations:

• http and gopher only (not ftp or
https)

• authentication is not supported (e.g.
http://user:pass@example.com/prot
ected/ will NOT work)

• no entity encoding/decoding
• The result of a HTTP download

will include the full HTTP response
header, i.e. client code will need to
interpret status code, follow
redirects, skip to “\n\n” to get the
actual file contents etc.

HTTP downloads are 1.0 compliant
(including sending a valid Host: header)

The downloaded file will always have a
trailing null byte ($00) appended.

Inputs: AX contains pointer
to a URL Download
Structure
Outputs: The specified
resource will be downloaded
into the buffer pointed at by
KPR_URL_DOWNLOAD_
BUFFER (truncated to
buffer size)

12

$32

KPR_PING_HOST
Sends a “ping” (ICMP echo request)
message to a host and reports on how long
it took to receive a response. NB – the
response time is measured by the TCP
stack timer, which is neither very accurate
nor very granular.

Inputs: AX contains pointer
to IP address of host to ping
Outputs: AX will contain
the time (in milliseconds)
between pinging the host
and receiving a response.

File Access functions
$40

KPR_FILE_LOAD
Load the specified filename from disk.

KPR_FILE_ACCESS_DEVICE should be
set as follows:
$00 = whatever device was last accessed
(or the ‘default’ drive if this is the first
access)
$01 = first drive on system (i.e. drive #8 on
a C64)
$02 = second drive on system (i.e. drive #9
on a C64)
Etc.

There is no bounds checking on this
function – it is up to the caller to ensure
that the file will fit into the specified buffer.
If the file is too large it is likely to
overwrite kipper code or system variables
with unpredictable results.

Inputs: AX contains pointer
to a Disk Access Parameter
Structure
Outputs:
The specified file will be
loaded into the buffer
pointed at by
KPR_FILE_ACESS_POINT
ER . If the address passed in
was $000 then the first 2
bytes of the file are used to
determine the load address
and
KPR_FILE_ACESS_POINT
ER will be updated with
that address.

The size of the loaded file
will be saved in
KPR_FILE_ACCESS_FILE
SIZE

Web Application Server functions
$50

KPR_HTTPD_START
Start the web application server (aka HTTP
daemon).

This function will return ONLY after the
web application server stops, i.e. either due
to an error or after the runstop/restore key
being pressed.

Inputs: AX contains pointer
to the httpd callback routine
(executed for each inbound
http request).
Outputs:
Since this function only
returns after the web server
stops, the carry flag will be
set and the reason for exit
can be retrived by calling
KPR_GET_LAST_ERROR

13

$52 KPR_HTTPD_GET_VAR_VALUE
To be used by httpd callback routines to
check value of query string variables.

Current implementation has the following
limitations:

• Only the first letter in each variable
name is significant, i.e. ‘e’ and
‘example’ are treated as a single
variable (although case is
significant – ‘e’ and ‘E’ are
different variables)

• Only variables in the query string
can be retrieived, i.e. if you have a
html form, you should use
method=GET not method=POST

The following ‘special’ variables can be
retrieved:
$01 = ‘method’ (e.g. “GET” or “POST”)
$02 = path (e.g “/foo.html”)

For example, if a client made a HTTP
request of:

GET /example.html?foo=bar HTTP/1.0
User-Agent: IP65 v0.9.1
Host: c64.example.com

Then the following values will be returned

Call
with
A =

Returns

$01 AX points to “GET”,$00
$02 AX points to

“/example.html”,$00
‘f’ AX points to “bar”,$00
‘F’ Error : Carry flag set

Inputs: A contains first char
of variable name
Outputs:
AX points at null terminated
string containing variable
value.

14

Printing Functions
All the KPR_PRINT_* functions use the CHROUT kernal routine for output and do
not modify the output device number, so programs can if they choose, change the
output to go somewhere other than the screen via calling the kernal CHKOUT first.
$80 KPR_PRINT_ASCIIZ

This routine prints the specified string to
the screen

Inputs: AX contains pointer
to null terminated string to
be printed to screen
Outputs: none

$81 KPR_PRINT_HEX
This routine prints a single byte as two hex
digits.

Inputs: A = byte digit to be
displayed on screen as (zero
padded) hex digit
Outputs: none

$82 KPR_PRINT_DOTTED_QUAD
This routine prints a 32 byte IP address in
“dotted quad” format.
For example, $C0A80102 will be
displayed as “192.168.1.2”

Inputs: AX contains pointer
to 32 bit IP address
Outputs: none

$83 KPR_PRINT_IP_CONFIG
Prints a summary of the currently active IP
configuration. The exact format of this
output can vary by implementation.

Inputs: none
Outputs: none

$84 KPR_PRINT_INTEGER
Prints a 16 bit number as an unsigned (and
unpadded) integer.

Inputs: AX = 16 bit number
to be printed
Outputs: none

Input Functions
$90

KPR_INPUT_STRING
This routine returns a user-entered string.
The ‘periodic processing’ routine will be
regularly polled while waiting for user
input.

$90

$91

KPR_INPUT_HOSTNAME
This routine returns a user-entered string
that contains a hostname. Only characters
that are valid in a DNS hostname can be
entered (including dots and numbers, but
no white space). The ‘periodic processing’
routine will be regularly polled while
waiting for user input.

Inputs: none
Outputs: AX points to a null
terminated string containing
hostname entered by user.
The carry flag is set if
nothing was entered.

$91

KPR_INPUT_PORT_NUMBER
This routine waits for the user to input a
number, and returns the value entered as a
16 bit number in AX. The ‘periodic
processing’ routine will be regularly polled
while waiting for user input.

Inputs: none
Outputs: AX contains the
value entered by the user.
The carry flag is set if
nothing was entered.

15

Utility Functions
$A0

KPR_BLOCK_COPY
This routine copies a block of bytes from
one location in memory to another. The
copy is done from the bottom up.

Inputs: AX contains pointer
to a Block Copy Structure
Outputs: none

$A1

KPR_PARSER_INIT
This routines sets up a string to be
searched for substrings (i.e. by subsequent
calls to KPR_PARSER_SKIP_NEXT).

Inputs: AX points to a null
terminated string.
Outputs: none

$A2

KPR_PARSER_SKIP_NEXT
This routine scans through the string
previously loaded into the parser (i.e. by
calling KPR_PARSER_INIT) and returns
once the specified substring has been
found. A pointer is updated so successive
calls to this routine will return different
parts of the string being parsed. If there are
no more occurrences of the specified
substring, the carry flag will be set (and
AX will be whatever the pointer was at
start of the call, i.e. whatever was the last
substring successfully searched for, OR the
start of the string, if no substring searches
have yet matched).

Inputs: AX points to a null
terminated string.
Outputs: AX points to the
first byte past the next
occurrence of the specified
substring within the string
that the parser was last
initialised with.

* In addition to the outputs specified in this column, each function uses the carry flag
to indicate success (clear) or failure (set). If an error occurs (and carry flag is set) then
the other outputs are undefined. Any register not mentioned in the outputs should be
treated as ‘undefined’ (i.e. there is no guarantee they won’t be modified by the
function).

16

KIPPER Web Applications
Starting the Web Application Server
The KIPPER Web Application Server is started with the KPR_HTTPD_START
function. This function does not return while the server is running. Before calling this
function, load AX with the address of a routine to be called when each HTTP request
is made.

The request callback handler
The request callback routine will be called by the web application server whenever a
http request has arrived. This routine must be written to provide the following
interface:

Inputs
When called, the none of the flags or registers have any special meanings.
The HTTP request triggering this callback will have been parsed, and query string
variables and other components of the request can be accessed by calls to the
KPR_HTTPD_GET_VAR_VALUE function.

Outputs
When execution of the callback handler completes (i.e. via an RTS) the registers must
be set as follows:
Carry Flag – should be clear
AX – points to a buffer containing the data to be sent back as a response.
Y – indicates the ‘type’ of the response (which is used to create the HTTP header at
that start of the response). Valid values are:

Y Response
$00 No header is created (assumes there is a header in the buffer pointed

at by AX)
$01 Normal text – response created with status code 200 (OK), with

Content-Type: 'text/text'
$02 Normal html – response created with status code 200 (OK), with

Content-Type: 'text/html
$03 Binary file – response created with status code 200 (OK), with

Content-Type: 'application/octet-stream'
$04 Response created with status code 404 (Not Found)
$05 Response created with status code 500 (System Error)

17

HTML templates
The buffer pointed at by AX when the callback routine completes is treated as a null
terminated string containing a HTML template (this implies the current version of the
API can’t be used to send arbitrary binary data).
The following codes have special meaning in the HTML template
Code Meaning
%$ Variable Value : The byte following %$ is treated as the name of

variable. The value of the variable of that name is inserted into the
output in place of the %$ code.

%:<bbbb> Call Routine : The 4 bytes following %: are treated as being hex
digits specifying the address of a routine to call.

%;<bb> Call Routine : The 2 bytes following %; are treated as being hex
digits specifying the address of a routine to call.

%? If Variable Defined : The byte following %? is treated as the name
of variable. If that variable is defined in the input request query
string (even if it is set to a null value) then output continues as
normal. If the variable is NOT defined, then output is suppressed
until the %. Code appears in the HTML template.

%! If Variable Not Defined : The byte following %! is treated as the
name of variable. If that variable is NOT defined in the input request
query string (even if it is set to a null value) then output continues as
normal. If the variable IS defined, then output is suppressed until
the %. Code appears in the HTML template.

%. End of Condition – this code marks the end of a %? or %!
condition. Output resumes if it had previously been suppressed
(because of a %? which specified an undefined variable, or a %!
which specified a defined variable)

Example Web Application
This code implements a simple html form which prompts for a handle (nickname) and
a message – if the form is submitted, the values that were input are echoed back.

lda <#httpd_callback
ldx >#httpd_callback
ldy #KPR_HTTPD_START
jsr KPR_DISPATCH_VECTOR ;should never exit
rts

httpd_callback:
 lda <#html
 ldx >#html
 ldy #2 ;text/html
 clc
 rts

html:

18

 .byte "<h1>hello world</h1>%?mMessage recorded as
'%$h:%$m'%.<form>Your Handle:<input name=h type=text
length=20 value='%$h'>
Your Message: <input type=text
lengh=60 name='m'>
<input type=submit></form>
",0

19

KIPPER Structures
IP Configuration Structure
Used By: KPR_GET_IP_CONFIG

Offset Size (bytes) Contents
$00 $06 MAC Address
$06 $04 Local IP address (will be overwritten by DHCP)
$0A $04 Local netmask (will be overwritten by DHCP)
$0E $04 Local gateway (will be overwritten by DHCP)
$12 $04 IP address of DNS server (will be overwritten by DHCP)
$16 $04 IP address of DHCP server (will only be set by DHCP

initialisation)
$1A $02 Pointer to ASCIIZ string containing name of device type

(e.g. “RR-NET”)

TFTP Server Parameter Structure
Used By: KPR_TFTP_SET_SERVER

Offset Size (bytes) Contents
$00 $04 IP address of TFTP server (use $FFFFFFFF to do a broadcast

on local LAN)

TFTP Transfer Parameter Structure
Used By: KPR_TFTP_DOWNLOAD, KPR_TFTP_CALLBACK_DOWNLOAD,
KPR_TFTP_UPLOAD, KPR_TFTP_CALLBACK_UPLOAD

Offset Size (bytes) Contents
$00 $02 Pointer to ASCIIZ filename
$02 $02 For KPR_TFTP_DOWNLOAD this field is a pointer to

memory location data to be stored in (set this to $0000 when
downloading a file where the first 2 bytes are the memory
location the file should be stored in, e.g. a C64 PRG file)

For KPR_TFTP_CALLBACK_DOWNLOAD, this field is
the address of the routine to be called when each 512 block
arrives.

$04 $02 Size of file will be filled in by KPR_TFTP_DOWNLOAD
and KPR_TFTP_CALLBACK_DOWNLOAD, must be
passed in by KPR_TFTP_UPLOAD.

NB KPR_TFTP_CALLBACK_DOWNLOAD can send files
of more than 64K, in which case this variable will have
wrapped around back to $0000.

20

File Access Parameter Structure
Used By: KPR_FILE_LOAD

Offset Size (bytes) Contents
$00 $02 Pointer to ASCIIZ filename
$02 $02 For KPR_FILE_LOAD this field is a pointer to memory

location data to be stored in (set this to $0000 when
downloading a file where the first 2 bytes are the memory
location the file should be stored in, e.g. a C64 PRG file)

$04 $02 Size of file will be filled in by KPR_FILE_LOAD
$06 $01 Device number:

$00 – last accessed device (or default drive on first access)
$01 – first drive on system (i.e. drive #8 on a C64)
$02 – second drive on system (i.e. drive #9 on a C64)
Etc

DNS Parameter Structure
Used By: KPR_DNS_RESOLVE

Offset Size (bytes) Contents
$00 $02 Pointer to asciiz hostname to resolve (can also be a dotted

quad string)
$00 $04 IP address (filled in on successful resolution of hostname). If

the same buffer is used for all KIPPER calls, then after a call
to KPR_DNS_RESOLVE, the IP address should end up in
the same memory location as the “Remote IP” field in the
UDP Parameter Structure needed to call KPR_
SEND_UDP_PACKET

UDP Listener Parameter Structure
Used By: KPR_UDP_ADD_LISTENER

Offset Size (bytes) Contents
$00 $02 Port number to listen on (lo/high format)
$04 $02 Address of routine to be called when UDP packets arrive on

specified port (lo/high format)

21

UDP/TCP Packet Parameter Structure
Used By: KPR_GET_INPUT_PACKET_INFO & KPR_SEND_UDP_PACKET
Offset Size (bytes) Contents
$00 $04 IP address of remote machine (source of inbound packets,

destination of outbound packets)
$04 $02 Port number of remote machine (source of inbound packets,

destination of outbound packets)
$06 $02 Port number of local machine (source of outbound packets,

destination of inbound packets)
$08 $02 length of payload of packet (after all Ethernet, IP, UDP/TCP

headers) in little-endian format. In a TCP connection, if the
remote end terminates the connection, then the calling
application will be notified via a packet having a length of
$FFFF.

$0A $02 Pointer to payload of packet.

TCP Connect Parameter Structure
Used By: KPR_TCP_CONNECT
Offset Size (bytes) Contents
$00 $04 IP address of remote machine.

If this is 0.0.0.0, this creates a server connection, i.e. it will
listen on the specified port for an inbound connection from a
client. Set to any other value to initiate an outbound request
(i.e. a client connection)

$04 $02 Port number – if this is a server connection, this port will be
listened on. If this is a client connection then this is the
remote port that will be connected to and a unique client port
will be assigned.

$06 $02 Callback address – once the connection is made, the routine
pointed at here will be called whenever new data arrives.

TCP Send Parameter Structure
Used By: KPR_SEND_TCP_PACKET
Offset Size (bytes) Contents
$00 $02 Payload length – length (in bytes) of data to be sent.
$02 $02 Payload pointer – pointer to data to be sent.

22

Block Copy Structure
Used By: KPR_BLOCK_COPY
Offset Size (bytes) Contents
$00 $02 Source address – pointer to first byte where block will be

copied from
$02 $02 Destination address – pointer to first byte where block will

be copied to
$04 $02 Block size – number of bytes to be copied

23

Error Codes

Code Meaning
$80 Port in use
$81 Timeout on receive
$82 Transmit failed
$83 Transmission rejected by peer
$84 Input too large
$85 Device Failure
$86 Aborted by user
$87 Listener not available
$88 No such listener
$89 Connection reset by peer
$90 File Access Failure
$A0 Malformed URL
$A1 DNS Lookup Failed
$FE Option not supported
$FF Function not supported

24

Memory Map
Location Contents
$A3..$B6 KIPPER page zero scratch area – programs should leave this

area alone, and not assume that the use of any specific
locations in this area will remain constant between versions
of KIPPER

$334..$3FF Additional scratch RAM area (this is the tape I/O buffer in
the standard C64 memory map)

$2000..$2FFF Used by the KIPPER web application server as temporary
buffer (i.e. only used when calling KPR_HTTPD_START)

$8009..$800E KIPPER signature – “KIPPER” (in hex, this is $4B $49 $50
$50 $45 $52)

$800F KIPPER dispatch vector – JSR $800F to call any KIPPER
function

$8012 KIPPER periodic processing vector – programs should call
this location “regularly” to allow the IP stack to receive and
process any inbound IP packets – at least a few times each
second.

$8015.. $BFFF KIPPER implementation code. Code in this region will vary
between versions.

$C000..$CFFF KIPPER scratch RAM – programs should not write to this
area, nor should they assume variables in this space will
remain constant between KIPPER implementations.

$DD0x CIA #2 – KIPPER uses Timer A & Timer B on CIA #2. The
timers are set up as a 16-bit counter, counting milliseconds.

25

Implementers Guide
This section contains information relevant for anyone wishing to create a cartridge
that implements the KIPPER API, it may not be relevant for developers wishing to
write programs that simply use that API.

To maximise compatibility:

• Make sure that if a call to one function fails, then a call to
KPR_GET_LAST_ERROR will return a code indicating the type of error –
this code should NOT be reset by successful function requests.

• Don’t turn off interrupts for extended periods of time during any processing
done during calls to KPR_PERIODIC_PROCESSING_VECTOR

• Keep any processing done by the routine called through KPR_VBL_VECTOR
as short as possible.

• The output of KPR_PRINT_IP_CONFIG can be formatted in anyway you
chose, and can include device specific information if appropriate. However the
format of other KPR_PRINT_* functions should match that of the kipper
implementation.

• The KPR_PRINT_* functions should use the kernal routine at $ffd2 to send
output to the screen.

26

TFTP Directory Listings
A previous draft of the API had a function that used a proprietary tftp opcode to allow
tftp directory listings. This function has now been removed, since using a proprietary
opcode can prevent NAT from working correctly on the typical broadband routers
most people are likely to have on their home networks.

So a new approach has been taken to allow directory listings without using
proprietary opcodes. The protocol is not part of the KIPPER API itself, rather it is
implemented solely within the kipper tftp server.

The kipper tftp server will treat any file download request where the filename starts
with a $ as being a directory listing request. The remainder of the filename (after the
leading $) is treated as a filemask. For example, doing a download request for a file
named “$*.prg” will result in retrieving a list of all filenames that end with the
extension .prg.

The resulting file will consist of null-terminated ASCII (not PETSCII) strings, with an
extra null byte at the end of the last string in the listing.

So to use the kipper directory listing feature, the calling application must

1) construct an appropriate filename ($ followed by filemask).
2) Call KPR_TFTP_DOWNLOAD with a parameter block containing a pointer

to the constructed filename, and the address of the buffer the directory listing
will be placed in

27

Licenses

The KipperKart (i.e. the initial implementation of the KIPPER API) is licensed under
the Mozilla Public License version 1.1 - http://www.mozilla.org/MPL/MPL-1.1.html

The KIPPER API specification (including this document) is released into the public
domain.

This means:

• A program that uses the functions in the KIPPER API has no licensing
restrictions imposed on it because of that usage.

• A program that implements the KIPPER API, but does not use any of the
original KipperKart or ip65 source code in that implementation is also free to
be licensed however the author of that implementation choses.

• A program that reuses any of the KipperKart of ip65 source code must be
licensed under the terms of the MPL.

http://www.mozilla.org/MPL/MPL-1.1.html

	KIPPER API Technical Reference
	Document History
	Contents
	Introduction
	Using the API
	Detecting and activating the KIPPER API
	IP stack initialisation
	Periodic Processing
	API Conventions
	Errors

	KIPPER Functions
	API housekeeping functions
	Transport layer functions
	TFTP Functions
	Other network functions
	File Access functions
	Web Application Server functions
	Printing Functions
	Input Functions
	Utility Functions

	KIPPER Web Applications
	Starting the Web Application Server
	The request callback handler
	HTML templates
	Example Web Application

	KIPPER Structures
	IP Configuration Structure
	TFTP Server Parameter Structure
	TFTP Transfer Parameter Structure
	File Access Parameter Structure
	DNS Parameter Structure
	UDP Listener Parameter Structure
	UDP/TCP Packet Parameter Structure
	TCP Connect Parameter Structure
	TCP Send Parameter Structure
	Error Codes

	Memory Map
	Implementers Guide
	TFTP Directory Listings
	Licenses

