

COPYRIGHT NOTICE

Abacus makes this package available for use on a single
computer only. It is unlawful to copy any portion of this
software package onto any medium for any purpose other
than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorized distribution of
this product deprives the authors of their deserved
royalties. For use on mUltiple computers, please contact
Abacus to make such arrangements.

WARRANTY

Abacus makes no warranties, expressed or implied, as to
the fitness of this software package for any particular
purpose. In no event will Abacus be liable for consequen
tial damages. Abacus will replace any copy of the software
that is unreadable if returned within 30 days of purchase.
Thereafter it will charge a nominal fee for replacement

Third Printing, May 1988
Printed in U.S.A.

Copyright © 1986 Data Becker GmbH
MerowingerstraBe 30
400 Dusseldorf, West Germany

Copyright © 1986 Abacus
5370 52nd Street SE
Grand Rapids MI 49508 •

ISBN i 0-916439-62-3

Table of Contents

e 1. Super Pascal on the el2S 3
1.1 General comments 3
1.2 Loading and starting Super Pascal 128 5
1.3 Generating an example program 9
1.4 Operation of the RAM disk 15
1.5 SYSGEN 17

2. The MAIN menu 21
2.1 Differences from Super Pascal 64 21
2.2 BATCH files 21
2.3 STARTUP and AUTOBAT 25

3. The text editor 26
3.1 Differences from Super Pascal 64 26
3.2 C (RANGE) command 27

e 3.3 K(ILLFILE) command 28
3.4 X (CRNGFILE) command 28

4. The Pascal compiler 29
4.1 Differences from Super Pascal 64 29
4.2 New language extensions 29
4.2.1 Type and variable declaration 30
4.2.1.1 TIME 30
4.2.1.2 CLOCK 30
4.2.2 Standard procedures and functions 31
4.2.2.1 System and screen control 31
4.2.2.2 String handling 33
4.2.2.3 ~scellaneous 36

5. The 65XX assembler 38

6. The UTILITY package 39

• 6.1 Differences from Super Pascal 64 39
6.2 o (BSERVMEM) command 40

7. The graphics package 42
7.1 General comments 42
7.2 Graphic commands under Super Pascal 128 42 e
8. Appendix 44
8.1 The demonstration program GRAFDEMO 44

Abacus Software Super Pascal 128

1. Super Pascal on the el28

e 1.1 General comments

Super Pascal 128 is a version of Super Pascal 64 specially adapted
and expanded for the Commodore 128. The larger memory
capacity of the C128 was taken into account, as well as its ability
to control an 80-column screen in text and graphics modes. Super
Pascal 128 is also laid out flexibly so that it can be used in all
C128 modes.

In the text mode, Super Pascal 128 works just as well with an
80-column screen as with a 40-column screen. The 80-column
screen is recommended, however, because it can display more
information at a time. It is also possible to change the screen
format under program control.

Super Pascal 128 can also work in both speed modes of the C128
(SLOW and FAST), whereby the 80-column screen again offers
the advantage of faster speed because of its ability to work in the
FAST mode (2 MHz). The speed of the computer (clock
frequency) can be changed from within the program itself
independent of the selected screen.

Like Super Pascal 64, Super Pascal 128 can work with one or two
disk drives. The type of disk drive does not really playa role,
although the 1571 has an advantage here not only because of its
higher capacity on the diskette (resulting in access to more data or
programs for Super Pascal 128), but also faster access through the
burst mode, which Super Pascal 128 supports both for loading
and saving. The read and write speed advantages also apply to the
1570, although this drive has only half the capacity of the 157!.
The fast disk routines from Super Pascal 64 for the 1541 are also
built into Super Pascal 128, but they still can't reach the speed of
the 1570 and 1571 drives. In addition to the slower speed, the
1541, like the 1570, has lower storage capacity.

Within Super Pascal 128 the disk drive with device address 8
functions as the master drive with drive number O. A second drive
can be used as drive number 1 with Super Pascal 128 by setting
the device address to 9. Combinations of different drives can also

3

Abacus Software Super Pascal 128

be used by Super Pascal 128 and are automatically recognized and
properly controlled. Remember that only half of a disk created on
a 1571 can be read or written in a 1541 or 1570. This may e
naturally result in error messages from Super Pascal. Otherwise
the disks are completely compatible.

All Commodore-compatible printers which communicate over the
serial bus can be used with Super Pascal 128. Any other printers
can also be used if you write your own printer driver programs,
which is easy to do with Super Pascal 128. In this connection it
should be mentioned that the RS-232 interface on the C128 can be
used only with appropriate driver software.

Concerning the input of direct system commands, filenames, and
Pascal programs, Super Pascal 128 behaves the same way as
Super Pascal 64 in that only uppercase ASCII letters are allowed.
As a rule, these are created on Commodore computers-including
the C128-by entering unshifted characters, regardless of what
the characters look like on the screen. The current character mode
can be changed with <C=>/<SHIFf>. The only important thing _
is that the letters are entered as unshifted characters. Any
characters can be used when entering strings or comments, of
course.

In order to avoid losing your Super Pascal 128 disk through
destruction, damage, and/or overwriting of the system disk, you
should make a backup copy of it immediately . You can do this
easily if you have one or two 1570 or 1571 disk drives. You just
use the Copy command from the DOS SHELL package. But it is
also possible to create a backup copy of the Super Pascal 128 disk
with an appropriate copy program for single disk drives. To make
this possible, the entire Super Pascal package is stored only on the
first side of the disk. If you can't make a backup copy using any
of the methods listed here, you can generate a system disk with the
SYSGEN program included in the package (see section 1.5), and
copy the programs onto this disk one by one with the UTILITY
program. These possibilities are available because unlike Super •
Pascal 64, Super Pascal 128 is delivered without copy protection,
although this doesn't mean that it is not copyrighted. Please note
the tremendous amount of work that went into developing this
program package.

4

Abacus Software Super Pascal 128

1.2 Loading and starting Super Pascal 128

Loading the Super Pascal 128 system is quite simple. After
turning on the computer and the disk drive with device address 8,
insert the system disk in this drive and close it. The loading
process is started automatically by pressing the key combination
<SHIFT>/<RUN STOP>. After a short time, the following
message will appear on the screen:

******* C=128 SUPER-PASCAL-SYSTEM *******

BY H. SCHNEPF

COPYRIGHT
DATA BECKER

ABACUS SOFTWARE

A short time later, the loading is done and Super Pascal responds
with:

*** INSTALLATION OF SUPER PASCAL ***

AVAILABLE OPTIONS:

"A" SETS ALL
"c" SET CLOCK
"s" SAVES CONFIG
"Q" QUITS INSTALL

You can call one of the menu options offered by entering the
corresponding letter ('A', 'C', 'S', or 'Q'). The most
comprehensive option is the 'A' command, which will be explained
in more detail in what follows.

After pressing the <A> key, you will be in the set mode for the
system clock, and the following display appears:

5

Abacus Software

SET PASCAL - CLOCK:

"H" SETS HOUR
"M" SETS MINUTE
"s" ST ARTS CLOCK

I 0: 0: 0,0 I

Super Pascal 128

By pressing the <H> and <M> keys you can set the system clock
to the current time. The display for seconds cannot be changed by
this process. The clock can be started after setting by pressing the
<S> key. Once set, the clock will keep the proper time while you
are working with Super Pascal, so you can read it at any time with
the appropriate commands (which will be discussed later). Since
the power-line synchronized clock built into the Cl28 is used for
the system clock in Super Pascal, the time will be kept quite
accurately. e
After starting the system clock, the display changes to:

SET COLOR - MODE:

"B" SETS BACKGROUND
"c" SETS CHARACTERS
"Q" QUITS SETTING

In addition the correct time will be displayed on the screen (this
applies to the other installation screens as well as here, to help set
your parameters). You can select the colors for the screen
characters and the background with the and <C> keys. Each
time you press one of the keys, the color changes. The current
character color is shown by the color of the clock display, while the
background color is changed immediately. No option is given to •
change the border color of the 40-column screen because it is not
possible to change the border on the 80-column screen. On the
40-column screen the border is always displayed in the same color
as the background.

6

Abacus Software Super Pascal 128

The <Q> key ends the setting of background and character colors,
and this color combination will remain constant while you work
with Super Pascal. These colors can be changed by program
instructions which will be explained later. After exiting the menu
with the option 'Q', the next display will be as follows:

NOTE:

SET SPEED MODE:

"F" SETS FAST MODE
"s" SETS SLOW MODE
"Q" QUITS SETTING

"F"-MODE DISABLES LOWSCRN
DURING PROGRAM-EXECUTION!

This menu allows you to set the execution speed of the C128. The
<F> key enables the fast mode with 2MHz clock frequency, while
the <S> key selects the slow mode with IMHz clock frequency.
The current speed can be seen by the rate at which an asterisk (*)
flashes on the screen.

When setting the speed, you should note that Cl28 works twice as
fast in the 2MHz mode as in the lMHz mode, but that the
40-column screen does not work at this speed and will therefore be
disabled. The note on the screen reminds you of this. When
working with Super Pascal 128 on a 40-column screen you don't
have to avoid the 2MHz mode, because when the 40-column screen
is active, the fast mode will be enabled only when the actual
program is running. As soon as the program expects some input
from the keyboard, the IMHz will be re-enabled (the computer
speed doesn't matter for keyboard input). During this time the
4O-colurnn screen is again enabled and you can follow the program
output and keyboard entry. Not until the input is done does Super
Pascal 128 switch back into the faster 2MHz mode and disable the
40-column screen.

Moreover, the execution speed can be controlled during the course
of the program through corresponding Pascal statements. These
statements will be explained later.

7

Abacus Software Super Pascal 128

The <Q> key sets the current speed for all future work in this
session and advances to the next menu. This responds with the
following display: e

SET INPUT-BEEP:

"s" SETS INP.-BEEP
"c" CLRS INP.-BEEP
"Q" QUITS SETTING

You can enable or disable the key beep of Super Pascal 128. This
input beep signals you that you have pressed the <RETIJRN> key
at the end of input. If the input beep is enabled during this setting
phase, it will signal itself by beeping. This assumes that your
monitor can produce sound from the C128. The setting chosen is
verified by pressing <Q> and can be changed only by going
through the installation procedure again. The suppression of the
bell tone produced by <CTRL><G> with <ESC><H> does not
have any effect on this audible input response. _

After entering <Q>, the system installation is complete and you find
yourself back in the main menu, from which you can restart the
whole installation with <A>, or just set the system clock with <C>.
In addition, you can save the system settings to the start (boot)
diskette, assuming that the disk is not write-protected. If you save
the settings, the e128 will be set with these specifications when
you load Super Pascal 128 in the future. You need only set the
system clock with <C>. You can then press the <Q> key, which
you can also do right away, to exit the installation procedure.

After system installation, more load and copy operations occur in
quick succession, accompanied by corresponding screen messages.
These procedures generate an optimal Super Pascal configuration.
Later you will learn more about these processes and get the
opportunity to modify them according to your own needs.

For the moment we will just say that a RAM disk is created onto
which the system programs LOADDAT, C_EDITOR (program
editor) and C _ C P L R (compiler) are placed. This system
configuration allows you to generate short- to medium-length

8

Abacus Software Super Pascal 128

programs-especially in the test and development phase-with
very high editing and compilation speeds.

The configuration process ends by calling the editor, which
responds with the following display (given here in 40-column
form).

• C128 SOURCE-EDITOR 6.1 •

COMMANDS:

A(PPENDSRC)
F(lND)
K(ILLFILE)
N(UMBERING)
Q(UIT)
U(PDATESRC)

C(HANGE)
G(ETSOURCE)
L(IST)
O(UTPUTDVC)
R(ENUMBER)
V(ACANCY)

D(ELETE)
H(ELP)
M(AP/DRIVE)
P(UTSOURCE)
S(HIFTLINE)
X(CNHGFILE)

You can now start entering a Pascal program and working with the
entire Super Pascal 128 system. This will be explained using a
simple example program in the following section.

1.3 Generating an example program

In this section we will demonstrate the operation of the Super
Pascal 128 system by means of a simple Pascal program. It is
assumed that Super Pascal is loaded as explained in section 1.2 and
that the editor is available.

We want to write a program which will read the radius of a circle
and then calculate the circumference and area of the corresponding
circle. The program will keep doing this until you tell the program
"N" in response. We enter the line-numbering mode of the editor
by typing <N><RETURN>. The editor acknowledges by printing
the first line number 1000 and waiting for the line-by-line entry of
the program text. We will now enter the following program,
concluding each line with <RETURN>. The editor accepts these
lines into memory and prints the next line number when it is ready
for more input.

9

Abacus Software

1000 PROGRAM THE_FI RST_PROGRAM;
1005 VAR RADIUS:REAL; ANSWER: CHAR;
1010 BEGIN

Super Pascal 128

1015 WRITELN('PROGRAM FOR CIRCLE CALCULATIONS. I);
1020 WRITELN;
1025 REPEAT
1030 WRITE('RADIUS = ');
1035 READLN(RADIUS);WRITELN;WRITELN;
1040 WRITELN('CIRCUMFERENCE = 1,2*PI*RADIUS:20:10);
1045 WRITELN('AREA = ',PI*SQUARE(RADIUS) :20:10);
1050 WRITELN;
1055 WRITE('CONTINUE PROGRAM? (YiN) ');
1060 READLN(ANSWER);WRITELN;WRITELN;
1065 UNTIL ANSWER='N'
1070 END.

Some comments should be made about entering this program. The
first concerns the text structure, which does not occur
automatically, but is the programmer's responsibility. In the
auto-numbering mode the editor helps you by indenting each line as
far as the previous one. The underline character _ is allowed in _
identifiers. This character is displayed as a left-arrow in the nonnal .,
mode of the C128. If you made an error entering the program, you
can correct it in the current line with the usual editor functions of
the Cl28 (delete, insert, etc.). It is also no problem to correct an
error in a previous line. Note that you must exit the auto-numbering
mode and recall it with 'N'. See Chapter 3 of the Super Pascal 64
manual for more information on the editor.

After the program text has been entered correctly, it must be stored
on a disk so that Super Pascal can process it further. Call the
P (UT80URCE) command by entering <P><RETURN>. The
editor responds with:

FILE TITLE =

and you enter the name under which this program will be stored on
the disk. We will enter the name 8 CIRCLE and press _
<RETURN>. The editor will display the ITIename and the current .,
disk drive number, and wait for a confIrmation:

CONFIRM "8 CIRCLE ,2" N/Y

10

•

Abacus Software Super Pascal 128

Note that the editor gives a 2 as the current drive, even though there
is clearly no such drive. A RAM disk is generated in the Cl28 as
drive 2 when the Super Pascal system is configured. A RAM disk
is a simulated disk drive which performs all read and write
operations in the memory of the computer. These operations are
then performed very quickly, but the information is not
permanently saved; it will be lost when the computer is turned off,
so you will have to transfer it to a real floppy disk. We confirm the
saving operation with <RETURN>, since the cursor is already on
the default answer Y. The editor is immediately available for
additional commands because the saving operation takes only a
moment. As a check, we can display the directory of the disk with
the M (AP /DRIVE) command. We enter <M><RETDRN> and the
editor asks for the number of the drive for which it should display a
directory:

DRIVE (MAP) = 2

whereby the current drive is given as the default selection. We just
press <RETURN> to get the following display:

MAP OF DISC "RAMDISC If:
LOADDAT C EDITOR C CPLR
DISK 0 = 3-//
BLOCKS FREE!

S CIRCLE

We see that the editor saved our program on the RAM disk, and
that the editor itself as well as the compiler is on the RAM disk. We
also note that there are only 3 free blocks available on the RAM
disk. The memory space of the Cl28 is not unlimited and the
compiler program takes 8 blocks. We will continue with our
program development, however. We want to compile the entered
and stored Pascal program.

Exit the editor by entering <Q><RETURN >. The MAIN menu of
Super Pascal 128 appears. Now enter <C><RETURN> in the
MAIN menu to call the compiler. This causes the program to ask
for the name of the program to be compiled:

FILE-TITLE = ?

11

Abacus Software Super Pascal 128

Since we just entered and saved the program with the editor, we
can enter *, which tells the compiler that we want to compile the
program that was just edited. After entering <*><RETURN> the e
compiler asks for confrrmation of the input:

CONFIRM "S_CIRCLE ,2" N/Y

Since this is the file we want to compile, we just have to press
<RETURN>, because the default answer is Y. The compiler will be
loaded into memory and started.

The compiler responds with the following screen:

• C12S PASCAL·COMPILER 6.1 •

READY TO COMPILE: PROGRAM "S_CIRCLE ,2"!

DEFAULT OPTIONS? NIY

We will answer the question regarding the options by pressing
<RETURN>. The compiler then begins to compile the program and
outputs appropriate information. This information is described in
Chapter 6 of the Super Pascal 64 manual and will not be discussed
here. The compiler suddenly responds with the error message:

ERROR 104 IN
1045 WRITELN('AREA = ',PI*tQUARE(RADIUS) :20:10)

The compiler waits for the acknowledgement of the error message
by pressing the spacebar. Two more errors show up, but they are
secondary errors resulting from the flrst one:

ERROR 129 IN

1045 WRITELN('AREA = ',PI*SQUARE(RADIUS) :20:10);
l'

ERROR 53 IN

1045 WRITELN('AREA = ',PI*SQUARE(RADIUS) :20:10);
l'

12

Abacus Software Super Pascal 128

You have probably noticed by now that we have used an
undeclared identifier in our program as a result of entering SQUARE
instead of SQR for the square function, which is indicated by the
first error message (ERROR 104 = identifier not
declared).

After acknowledging the last error message by pressing the
spacebar, the compiler responds with the number of errors and calls
the editor and loads the program. This all happens-thanks to the
RAM disk-so quickly that we can hardly follow it on the screen.
We are already back in the editor and we can list our program with
the 'L' command. We enter <L><RETURN> and our entire
program appears immediately. We can correct the program with the
usual editing functions of the C128 and save the corrected line
1045 to the editor with <RETURN>.

1045 WRITELN('AREA = ',PI*SQR(RADIUS) :20:10);

Naturally we could have listed only the incorrect line with L 1045
<RETURN> in order to correct it, then re-save the program to the
RAM disk with <P><RETURN>. We can now simply answer the
filename question with <*><RETURN> because the Super Pascal
128 system knows that S CIRCLE is the current name. We can
also answer the confirmation question with <RETURN>. We
return to the MAIN menu of Super Pascal with <Q><RETURN>
and from there call the compiler with <C><RETURN>. The
filename prompt can again be answered with <*><RETURN> and
the confIrmation question:

CONFIRM "s CIRCLE ,2"? N/Y

can be answered with the <RETURN> key, as well as the
compiler-options question:

DEFAULT OPTIONS N/Y

The compiler now compiles the entire program without interruption
and responds with:

COMPILATION COMPLETE!

13

Abacus Software Super Pascal 128

A question appears, asking us whether we want a statistical
evaluation of the compiled program:

STATISTICAL SUMMARY? NIY

which we answer with no by entering <N><RETURN>. More
details about this can be found in the Super Pascal 64 manual in
Chapter 6. The compiler responds:

LINKING AND SAVING "THE FIRS"

and finishes its work.

Our program is now saved on the RAM disk under the name
THE F IRS (only the first 8 letters of Pascal identifiers are
significant). After the compilation we find ourselves back in the
MAIN menu of Super Pascal 128 and we can start our program
with the 'R' command. We enter <R><RETURN> and are asked
for the name of the program to be run:

FILE-TITLE = ?

We can start the program just compiled by entering
<*><RETURN >, and we see that our program responds with:

PROGRAM FOR CIRCLE CALCULATION

RADIUS =

Enter, for example, 4.7<RETVRN>, and the program yields the
following output:

CIRCUMFERENCE= 29.5309709440
AREA= 69.3977817170
CONTINUE PROGRAM ? (YIN)

We can now decide whether to continue the program by entering e
<Y><RETURN> or end it with <N><RETDRN>. In the second
case, the MAIN menu of the Super Pascal 128 system returns after
the program ends.

14

•

Abacus Software Super Pascal 128

The generation of this example program is now complete. It
probably seemed more complicated and more work than it really is.
In particular, the whole thing runs much faster than reading these
lines. Before we move on to a detailed discussion of the commands
at the MAIN menu, we should take a closer look at the RAM disk.

1.4 Operation of the RAM disk

As we have already mentioned several times, a RAM disk is
installed in the C128 while Super Pascal 128 is first started. After
loading (booting) Super Pascal, it is available for all read and write
operations as drive 2. In a certain sense it represents an extra disk
drive. An important difference lies in the fact that the data is not
permanently stored as with a real disk drive. Another difference is
in the storage capacity. With a 1571 disk drive-not counting the
directory-you can store 316K in 79 blocks on a diskette under
Super Pasca1128, and a 1541 can store 156K in 39 blocks, while
the RAM disk can store only 56K in 14 blocks.

The RAM disk under Super Pascal 128 is organized in the same
manner as an actual disk. In addition to a storage capacity of 56K,
it has a directory (map) and can be initialized, written, read, and
erased just like a real disk. Accesses to it under Super Pascal 128
are made with the same commands and Pascal instructions that are
used for a normal disk. The available storage capacity and the files
protected with LOCK are maintained. In the UTILITY program of
Super Pasca1128, the same commands can be used with the RAM
disk as with a regular disk. For all operations and accesses, the
RAM disk is addressed as drive 2. The advantage which the RAM
disk offers is its short access time, something which is very
important for a disk-intensive package like Super Pascal. Even the
speed of a C128 with a 1570 or 1571 disk drive, despite its burst
mode, is slow compared to the RAM disk.

Naturally we face the question of how to make the best possible use
of the RAM disk. You have already seen a very useful application
in the generation of the example program. During program
development you should have the editor and compiler available on
the RAM disk. This prevents you from having to wait while they
load from the system disk. The compiler is a highly segmented

15

Abacus Software Super Pascal 128

program and works much more quickly when it resides on the
RAM disk.

These considerations aside, the file LOADDAT should always be on
the RAM disk. It contains a collection of various small routines and
programs which are always required while working with Super
Pascal 128 and must be on either the system disk in drive 0 or the
RAM disk. Accesses to the Super Pascal system automatically take
place to the RAM disk, provided LOADDAT is located there. This
also applies to the availability of the editor and compiler on the
system drive 0 and the RAM disk. This is why when Super Pascal
128 is booted, the RAM disk is initialized immediately and the files
LOADDAT, C EDITOR, and C CPLR are automatically placed on
the RAM diSk. This applies fi1 particular to the file LOADDAT,
which occupies only 4 blocks on the RAM disk, while the transfer
of the editor and compiler to the RAM disk can be suppressed. You
can transfer files of your own to the RAM disk during the start
phase or later. This is explained in section 2.2 of this Addendum.

Back to the question of the best use of the RAM disk. During
program development the RAM disk can be used for storing the
Pascal program under development and the compiled program code
as well as the editor and compiler. This was demonstrated during
the generation of the example program (section 1.3). There are a
total of four blocks providing 16K of storage available on the RAM
disk. This means that after subtracting one block for the program
code generated by the compiler there are 3 blocks or 12K available
for your program source code. This allows you to edit, compile,
execute and test medium-length Pascal programs on the RAM disk.
You should always remember to backup your work onto a diskette
in drive 0 or 1. You can copy your files from RAM disk (drive 2)
to a regular diskette with the UTILITY program of the Super
Pascal 128 system. Even if the storage space of the RAM disk is
not sufficient to store the program under development, the use of
the RAM disk for the editor and compiler saves you a good deal of
time during development.

Another useful application of the RAM disk is to reduce the load
time of larger programs. These program can be placed on the RAM
disk themselves so that the loading time of subsequent sections
(segments, chained programs, external procedures/functions, etc.)

16

Abacus Software Super Pascal 128

is dramatically reduced. The RAM disk is also available to the.
programs for storing files that they manage, allowing very fast
access to information storing the files, but sti111eaving the working
memory available for the program.

Before we move on to developing your own programs, we should
flrst talk about generating system diskettes for the Super Pascal 128
system.

1.5 SYSGEN

The Super Pascal 128 package contains a program called SYSGEN
which is used for generating system diskettes. Super Pascal 128
uses its own DOS (Disk Operating System) and will not work
properly with a normal disk formatted under the Commodore DOS.
Disk utility programs are stored on certain sectors of every system
disk which make fast access possible with 1541 disk drives as well
as the 1570/1571 drives. Each system disk also contains the start
and load procedure as well as the basic operating system for Super
Pascal 128. This makes it possible to start Super Pascal with any
system disk generated with SYSGEN.

The load and start procedures as well as the disk utility programs
are stored on specific sectors of the system disk, sectors which are
unreachable by the Super Pascal 128 DOS. Section 7.3 contains
more information about this. The basic operating system of Super
Pascal is contained in the me LOADDAT, which is placed on the
system disk when SYSGEN is run. LOADDAT should be be the first
file on the disk, so you should always use SYSGEN to create a
system disk. You should also note that the file LOADDAT on the
RAM disk is not as large as the original file because it contains only
the routines which are constantly needed by Super Pascal.
Considerable space can be saved on the RAM disk because the
system is never started from the RAM disk. Only if you want to
create a non-bootable system disk does it make sense to remove the·
original LOADDAT that SYSGEN places on the disk and replace it
with the shortened version from the RAM disk. The UTILITY
program can be used to do this.

17

Abacus Software Super Pascal 128

The program S Y S G EN is called from MAIN menu with the 'R'
command. You can reach this MAIN menu by quitting the editor
with the 'Q' command. The editor is the level at which you find e
yourself after loading and starting Super Pasca1128. After entering
<R><RETURN> from the MAIN menu, you will be asked for the
name of the program to call:

FILE-TITLE = ?

After entering <SYSGEN><RETURN>, you are asked for the
drive from which the program is to be loaded:

DRIVE (MAP) = 0

Press <RETURN> to accept the default drive 0 (which is the
current drive). The program SYSGEN will now load and start,
provided that you have the correct disk in drive O. It responds with:

• PASCAL·SYS.DISC. GENERATOR·
•••••••••••• VS 128············

LOADING SYSTEM 00 PLEASE WAIT!

DRIVE(MAP) = 0

After loading all of the system data, SYSGEN waits for you to
specify the drive which contains the disk to be turned into a system
disk. Since drive 0 is again given as the default answer, you can
just press <RETURN>. You must answer the next question:

DISC-TITLE =

with the name that you want to give to the disk you are generating.
You can enter <SYSDISCl>, for example, and press
<RETURN>. SYSGEN then asks you to insert the disk in the given
drive (here 0) and press <RETURN>. Once you have done this,
you will be asked to confirm that you really do want to overwrite e
(format) the disk you have inserted. You must answer
<Y><RETURN> in order to start the generation of the new system
diskette. SYSGEN then responds:

18

Abacus Software

FORMATING .•. READY!
COPYING SYSTEM

MAP OF DISC "SYSDISCl"
LOADDAT
DISC 0 = 74 II
BLOCKS FREE !

REPEAT WITH ANOTHER DISC ? NIY

Super Pascal 128

After printing the directory of the system disk just created, SYSGEN
asks if you want to format another disk. If you answer no by
entering <N><RETVRN>, SYSGEN ends and control is returned
to the MAIN menu of Super Pascal 128.

You can see from the directory that S Y S G E N placed the file
LOAD OAT on the generated disk and that it is (software) protected
against overwriting or erasing. The reversed video display of the
filename indicates this. You can also see how much free storage
capacity is available on the disk. On a 1541 or 1570 drive this is 34
blocks with 4K each (132K total), while a disk created on a 1571
has 74 blocks of 4K (296K total). Of the total of 40 blocks that are
placed on a Super Pascal 128 disk, the directory occupies one and
LOADDAT occupies 5 more. The strange appearance of the number
of blocks remaining on the disk in the directory 0 I SC 0=74 / /
BLOCKS FREE! is because the Super Pascal system for the e64
can combine two diskettes and specifies the free space for the two
separately (DISC 0 = •• / / DISC 1 = ••). To keep the
directories of Super Pascal 64 and Super Pascal 128 compatible,
this format had to be retained.

In this context, we would like to make you aware of the following.
When generating a system disk with the program SYSGEN, the disk
will be adapted to the capacity of the given disk drive. This means
that the total of 80 blocks of 4K each available under Super Pascal
128 are marked in the directory according to the capacity of the
drive. With a 1541 or 1570 drive, blocks 40 to 79 are excluded
from normal access (see also section 6.1.24 in the Super Pascal 64
manual). This makes the maximum storage space of such a disk 40
blocks. It also means, however, that the reverse side of the diskette
is not formatted. Such a disk can be used on a 1571 drive because

19

Abacus Software Super Pascal 128

Super Pascal 128 does not allow any access to excluded blocks.
Releasing these blocks with the help of the UTILITY program will
naturally lead to read/write errors because the blocks are not e
formatted. On the other hand, only half of a disk created on a 1571
can be accessed with a 1541 or 1570 drive because these drives
have only one read/write head. An attempt to access the second side
of the drive will be greeted with a corresponding error message
(DRV. ERROR) from Super Pascal. Likewise, blocks 15 to 79 are
excluded on the RAM disk. Releasing these blocks with the
UTILITY program will only lead to unnecessary error messages
because no more blocks are available in the e128.

For the sake of completeness, we should also mention that you can
copy the remaining files from the original Super Pascal 128 disk to
a system disk created with SYSGEN one by one with the UTILITY
program ('C' command, see section 6.1.3 of the manual). This
allows you to create a complete duplicate of your original disk. In
addition, you can copy your own Pascal program to a system disk
containing LOADDAT and call your program STARTUP; your ~
progl am will automatically be loaded and started when you boot the •
disk (with <SHIFT> <RUN/STOP>). The installation procedure
explained in section 1.2 will be skipped; the RAM disk will be
initialized and LOADDAT will be copied to it. You can distribute
programs that you write with Super Pascal 128 without royalty on
such a startup disk provided that the only Super Pascal 128 system
file on the disk is LOADDAT.

20

Abacus Software Super Pascal 128

2. The MAIN menu

The MAIN menu of Super Pascal 128 is just like the uppermost
command level of Super Pascal 64. The various system programs
and the programs which you write are called from here, and you
return to this level after executing the programs. The MAIN menu
responds as follows:

• CllS PASCAL-SYSTEM 6.1 •

COMMANDS:

A(SSEMBLER) B(ATCH) C(OMPILER)
E(DITOR) G(ETRAM) H(ELP)
J(UMP) M(AP/DRIVE) P(UTRAM)
R(UNPRGM) U(TILITY) W(RITESRC)

2.1 Differences from Super Pascal 64

You can read about the operation of the MAIN menu, which
corresponds closely to the MAIN menu of Super Pascal 64, in
Chapter 2 of the Super Pascal 64 manual.

In addition to insignificant changes in the output of the command
menu when calling the 'H' command-which is also accessible
from the <HELP> key on the Cl28-the essential difference from
Super Pascal 64 lies in the ability to process BATCH files. This
extension of Super Pascal is explained in detail in the following
section. Finally, you can see the directory of the disk in the main
drive (drive 0) by pressing <SHIFT> and <RUN/STOP> at the
same time. This can be done at all levels of Super Pascal 128.

2.2 BATCH files

You can start the execution of a BATCH file with the B (ATCH)
command of the MAIN menu. BATCH files can contain all of the
commands of the Super Pascal 128 system which are normally
entered by hand via the keyboard. When a BATCH file is executed,
these commands are read from a file and executed in order.

21

Abacus Software Super Pascal 128

Such a BATCH file can be created easily with the editor because
BATCH files are text files, just like Pascal sourcecodes, and are
stored as such on the disk. The difference is that Pascal programs e
yield executable programs after they are compiled, while the
BATCH text files contain commands which are executed
immediately by the Super Pascal 128 system. Such a BATCH file
is already integrated into your Super Pascal 128 system and is
found on the system disk under the name AUTOBAT. In order to
become familiar with the operation of BATCH processing, the
simplest thing to do would be to take a look at this fIle.

To do this, call the editor with the 'E' command and load the fIle
AUTOBAT with the '0' command of the editor. Remember that this
file is found on the system diskette (drive 0). The 'L' command
will list the fIle as follows:

1000 U
1005 C
1010 0
1015 2
1020 C EDITOR
1025 C
1030 0
1035 2
1040 C CPLR
1045 Q
1050 E

As you see, the file contains a number of system commands in the
same form that they are entered via the keyboard. These are the
following instructions:

1. Call the UTILITY program ('V' command);
2. Copy the file C ED ITOR from drive 0 to the RAM disk =

drive 2 ('C' cOnUnand);
3. Copy the fIle C CP LR in the same manner;
4. Exit the UTILITY program and return to the MAIN menu A

('Q' command); and •
5. Call the editor ('E' command).

This clarifies what happens when Super Pascal 128 is loaded after
the installation procedure and where the screen messages come

22

Abacus Software Super Pascal 128

from. These messages are simply those that accompany the
commands in the BATCH file. The BATCH file AUTOBAT is
executed when Super Pasca1128 is started.

You can change this BATCH file with the editor, or enter new
BATCH files and store them in the disk. The only limitation that
you must observe is that the maximum size such a file may occupy
is one 4K block. Since the editor does not store line numbers, this
limit should not prevent you from making full use of BATCH files.
The file AUTOBAT, for instance, is only 45 bytes long. When
executing a BATCH file, spaces between the line number and the
text following are ignored. If you want to create a <RETURN> as a
BATCH instruction, you can enter it as an _ character (typed in as a
left arrow <f-»:

1055

BATCH files are very versatile. You can use them to compile and
execute programs that you have created. It is also possible to edit
files from a BATCH file (such as with the 'C' command of the
editor). BATCH files can also access the 'B' command of the main
level, so that BATCH files can call other BATCH files. The
following example demonstrates this rather impressively. Enter the
following text in the editor and store it under the name STUP ID on
the disk:

1000 B
1005 STUPID
1010 0

After storing the file and exiting the editor, call the BATCH
command from the MAIN level with the 'B' command. The Super
Pasca1128 system asks for the name of the BATCH file to execute:

FILE-TITLE = ?

After entering STUP ID<RETURN>, the system also asks for the
drive in which the disk containing the file is found:

DRIVE (MAP) = 0

23

Abacus Software Super Pascal 128

The default value given is the current drive (here 0). In general you
need only press <RETURN> in order to start the BATCH
procedure. If you want to call a BATCH file just created with the e
editor, it suffices to answer the filename question with
<* > <RETURN>.

The C128 now begins to process the instructions in the BATCH
file, which means that it will call the BATCH file STUPID, which
will in tum call the BATCH file STUPID, and so on. Once you
think that your computer has demonstrated the possibilities of
BATCH processing well enough, you can stop the procedure by
opening the disk drive.

Working with BATCH files is somewhat difficult at first, but you
will soon learn how powerful an option it is and that it can save you
a good deal of keyboard entry. As a final example, we would like
to expand the previous BATCH file STUP ID so that it generates
and calls itself. To understand this better, the command lines are
commented:

1000 E
1005 1000 B
1010 1005 STUPID
1015 1010 0
1020 M
1025 0
1030 P
1035 STUPID
1040 Y
1045 Q
1050 B
1055 *
1060 Y

(* Call the editor *)

(* Enter the BATCH file *)

(* Switch to drive 0 *)

(* Save the file *)

(* confirm .•• *)

(* Return to the MAIN level *)
(* Call the BATCH command *)

(* Enter the name abbreviation *)
(* confirm •.. *)

24

Abacus Software Super Pascal 128

2.3 STARTUP and AUTOBAT

The two filenames STARTUP and AUTOBAT have a special
significance in connection with the start procedure of Super Pascal
128. The operation of this procedure can be influenced by these
files and adapted to the needs of the user.

If, during loading and starting system, Super Pascal 128 discovers
a file on the diskette under the name STARTUP, this file will be
loaded as a machine language program and started (as with Super
Pascal 64). This skips the initialization process except for the
initialization of the RAM disk. The ability to automatically load and
start a Pascal program is especially useful for creating auto-starting
application programs (see section 1.5 of this Addendum).

The behavior caused by the presence of a file called AUTOBAT lies
on a somewhat different level. Such a file is automatically called as
a BATCH file after the installation and jump to the MAIN menu. In
the framework of Super Pascal 128, a BATCH file takes care of
copying the editor and the compiler from the system disk to the
RAM disk. As the user, you can adapt the system configuration to
your own situation. Naturally, you can also equip a user disk with
such a file and perform various startup procedures, up to and
including starting a user program. The main difference from the
STARTUP file is that the STARTUP file bypasses the installation
procedure, while the AUTOBAT file is not called as a BATCH file
until after the installation.

If both STARTUP and AUTOBAT are present on the start disk,
calling the STARTUP program has precedence over the execution of
the BATCH instructions of the AUTOBAT file.

25

Abacus Sortware Super Pascal 128

3. The text editor

Like Super Pascal 64, the text editor in Super Pascal 128 is used e
for creation and input of source programs. It is also used for
creating BATCH files. The text editor is stored under the name
C ED ITOR on the system disk and its main menu looks like this:

* C128 PASCAL-SYSTEM 6.1 •

COMMANDS:

A(PPENDSRC) C(HANGE) D(ELETE)
F(IND) G(ETSOURCE)H(ELP)
K(ILLFILE) L(lST) M(AP/DRIVE)
Q(UIT) R(ENUMBER) S(HIFTLINE)
U(PDATESRC) V(ACANCY) X(CNHGFILE)

3.1 Differences from Super Pascal 64

You can read about the editor, which works much like the Super
Pascal 64 editor, in Chapter 3 of the Super Pascal 64 manual.

In addition to insignificant changes in the output of the command
menu when calling the 'H' command-also accessible in Super
Pascal 128 by pressing the <HELP> key on the C 128-the actual
differences from Super Pascal 64 are:

I} the syntax of some commands,
2} the assignment of often-used Pascal terms and names to the

function keys,
3} the construction of the 'C' command, and
4} the extension of the 'K' and 'X' commands.

The syntaxes of some editor commands were changed to match the
syntax of all Super Pascal 128 system commands. The input of
filenames and strings for editor commands no longer occurs e
immediately after the command (set apart by the colon); this was
done in response to a number of Super Pascal 64 users. Instead,
the additional specifications (filenames, search strings, etc.) are
entered on a separate line.

26

•

Abacus Software Super Pascal 128

To simplify the entry of Pascal programs, the function keys of the
C128 are assigned the following strings under Super Pascal 128:

<F1> BEGIN <RETURN>
<F2> REPEAT <RETURN>
<F3> PROCEDURE
<F4> FUNCTION
<F5> WRITELN(
<F6> READLN(
<F7> : INTEGER;
<F8> : BOOLEAN;

In addition, the directory of the disk in drive 0 can be displayed by
pressing the keys <SHIFT> and <RUN/STOP> at the same time.
This assignment of the special keys on the C 128 applies for all
program levels of Super Pascal 128.

3.2 C (BANGE) command

This command has been changed from the 'C' command in the
Super Pascal 64 editor and extended as follows:

Mter calling the command by entering <C><RETURN>, the editor
asks for the string to be replaced:

SEARCH FOR :

After entering the appropriate search string, which is terminated
with <RETURN>, the editor asks for the replacement string:

REPLACEMENT=

This input must also be terminated with <RETURN>. You can then
determine whether you want all occurrences of the search string
replaced with the second string or not:

CHANGE ALL? N/Y

Note that Y is the default answer and can be selected by simply
pressing <RETURN>. If you answer <N><RETVRN>, each

27

Abacus Software Super Pascal 128

location containing the search string will be printed and marked
with the t character, and the editor will ask you if you want to _
replace this occurrence: ,.

... REPLACE? N/Y

Pressing <RETURN> will cause the string to be replaced. If you
enter <N><RETURN>, the string will not be replaced and the
editor will search for the next occurrence in the text. This is
repeated until the end of the text is reached. You can terminate the
execution of the 'C' command with <RUN/STOP>.

3.3 K (ILLFILE) command

To simplify the management of disks and files, a command to
delete files from the disk has been included in the editor. This
command has the same function as the K (ILLTITLE) command
of the UT I L I TY program. It is described in detail in section 6.1.11 _
of the Super Pascal 64 manual. ,.

3.4 X (CHNGFILE) command

This command (= exchange file title) has also been included in the
editor to simplify disk and file management. It has the same
function as the R (ENAME) command in the UTILITY program
and is used to change the names of files in the disk directory.
Information about the command syntax and input can be found in
section 6.1.18 of the Super Pascal 64 manual.

28

Abacus Software Super Pascal 128

4. The Pascal compiler

e 4.1 Differences from Super Pascal 64

There are almost no external differences from the Super Pascal 64
version. Additional optimizations are made in the internal
compilation processes, however, so that the program code created
by Super Pascal 128 is shorter and faster than before for some
Pascal statements. The compilation itself is also faster, which is
most obvious when the compiler is stored on the RAM disk.
Changes had to be made in the memory layout of Super Pascal 128
because of the different memory map of the C128. This applies first
of all to the location of the compiled code and the variable stack for
the program. Despite the inclusion of additional standard
procedures and the increase in the power of the system, the
memory space available to the user-exc1uding the RAM disk---can
still be expanded. We did not reach any limits during the
development of Super Pascal 128.

The modified memory layout is of course taken into account in the
default options for the compilation process. The availability of the
RAM disk is included in these options. If the program to be
compiled is found on the RAM disk, the compilation procedure
normally set to disk compilation (DEFAULT OPTIONS) is set to
RAM compilation. This allows you to still select the default options
when compiling while keeping the compilation optimal.

The remaining differences from Super Pascal 64 lie in the inclusion
of additional language extensions.

4.2 New language extensions

The language extensions of Super Pascal 128 comprise the area of
type and variable declaration as well as the area of standard
procedures and functions.

29

Abacus Software Super Pascal 128

4.2.1 Type and variable declaration

4.2.1.1 TIME

Super Pascal 128 recognizes the predefined variable type TIME.
This is intended to be used in connection with the variable CLOCK,
which will be explained next. TIME is a structured type, a RECORD
with the following definition:

TYPE TIME = RECORD
HOUR,
MINUTE,
SECOND,
DSEC : INTEGER
END;

4.2.1.2 CLOCK

Within Super Pascal 128, the integrated system clock can be set and _
read via the predefined variable CLOCK. As described in section
1.2, this system clock is set during the installation process of Super
Pascal. It can be accessed under program control with the help of
the assignment statement. The use of the variable CLOCK (with the
type declaration TIME described above) is illustrated in the
following example:

VAR CLOCKTIME:TIME (* define a temporary variable *)

WITH CLOCKTIME DO (* assignment of 16:45:30.0 *)
BEGIN

HOUR:=16; MINUTE:=45; SECOND:=30; DSEC:=O;
END;

CLOCK:=CLOCKTIME; (* set the system clock *)

CLOCKTIME:=CLOCK; (* read the system clock *)

WITH CLOCKTIME DO (* output the time *)

WRITELN(HOUR:3,MINUTE:3,SECOND:3,' .',DSEC);

30

Abacus Software Super Pascal 128

4.2.2 Standard procedures and functions

e The extensions in this category can be divided into three areas:

4.2.2.1 System and screen control

CLRSCRN

This standard procedure clears the text screen or a defined text
window (see WINDOW) and sets the cursor in the upper left corner
of the screen (window).

FAST

This procedure enables the 2MHz mode of the e128. All program
statements (except 110 operations) then run at twice the speed at
which they ran under Super Pascal 64. The 4O-column screen is not
active in this mode.

e GOTOXY

With this standard procedure, the cursor can be set to any location
on the text screen or a defined text window.

GOTOXY(expressionl, expression2)

The cursor is set to the column position determined by
expressionl (type INTEGER) and the row position determined
by expression2 (type INTEGER). The extreme left screen or
window column is defined as column 0 and the top screen or
window line is defined as row O. Positioning outside the screen
(window) will be ignored.

LOWSCRN

This standard identifier defines a function which returns type
BOOLEAN. The function LOWSCRN is TRUE if the 40-column
screen is active and it returns FALSE if the 80-column screen is
active.

31

Abacus Software Super Pascal 128

MODE40 and MODE80

These two standard procedures allow program controlled activation e
and deactivation of the possible text screens on the C128. MODE40
enables the 40-column screen and MODE80 enables the 80-column
screen. Remember that the 4O-column screen can be used only in
the IMHz mode of the C128.

SETCOLOR

The character, background, and border colors of the text screen can
be set with the help of this procedure.

Syntax: SETCOLOR(expressionl, expression2)

The background color (and the border color of the 40-column
screen) is determined by expressionl (type INlEGER), while
expression2 (type INTEGER) sets the character color. The
color values lie between 0 and 15, inclusive, and correspond to the
definitions in the C 128 manual. Values outside of this range will be
ignored, so an invalid value can be used to set only one of the
colors without changing the other. For example,
SETCOLOR (4, 1) sets the character color to purple and the
background color to white, while SETCOLOR (2, 255) sets the
character color to red, but does not change the background color.

SLOW

This procedure switches the C128 into the IMHz mode; it is
essentially the opposite of the FAST procedure. Both the
80-column and the 40-column screens are accessible and active in
this mode.

The initial setting of Super Pascal 128 is FAST, whereby the
computer will be switched into the SLOW mode to display any text _
outputs on the 4O-column screen when the keyboard is read. .,

32

Abacus Software Super Pascal 128

WHEREX and WHEREY

These two standard functions, which return values of type
INTEGER, yield the current column and row positions of the
cursor in the text screen or window. WHEREX returns the column,
while WHEREY returns the row number. The values start at the left
column and top line with O. Statements like GOTOXY (WHEREX,
WHERE Y - 2) are possible. This one moves the cursor exactly two
lines above the current position.

WINDOW and NOWINDOW

With this standard procedure you can open and close output
windows on the text screen.

Syntax:
WINDOW (expressionl,expression2,expression3,expression4)

The parameters to be passed to WINDOW (expressionl to
expression4) are all of type INTEGER; they determine the
position and size of the window. Expressionl (= column) and
expression2 (= row) determine the upper left comer of the
window, while expression3 (= column) and expression4
(= row) define the lower right comer. Values outside of the screen
will be ignored. NOWINDOW removes the window defined with
WINDOW and redirects output to the entire screen.

4.2.2.2 String handling

CONSTR

This is a string function whose name is derived from the terms
CONcatenate STRing. With this function we can combine two
string expressions into one string.

Syntax: CONSTR(stringl,string2,position)
(function type: STRING)

33

Abacus Software Super Pascal 128

Stringl (any STRING expression) is inserted into string2
(another STRING expression) at the given position returned as ...
the result of the function CONSTR. For example, the following: : _

VAR STR1,STR2:STRING;

STR1:='abcd' ;
STR2:=CONSTR('XYZ',STR1,3);

return the string abXYZcd to the variable STR2. If the value 0 or 1
is passed for the position, s t r in g 1 will be inserted in front of
string2, while stringl will be appended to string2 for
values >= LEN (s t r in g 2) . If the total length of the string
exceeds the maximum value of 255, CONSTR will terminate the
string at this length.

POS

POS can be used to test whether a string expression is contained
within another expression, and if so, where.

Syntax: POS(stringl,string2,pos)
(function type: INTEGER)

POS will return the position of stringl (any expression of type
STRING) in string2 (another string expression), provided that
s t r ing2 contains s t ring 1. The test begins at the given
position (an expression of type INTEGER). The result of the
function is the position of the first occurrence of s t r in g 1 in
string2. If this value is 0, the string was not found or lies before
the given position. Borrowing from the first example:

WRITELN(POS('XYZ',STR1,O))

yields the result 3.

34

Abacus Software Super Pascal 128

REDUSTR

This function returns a string reduced by a defined number of
characters. The name comes from the terms REDUce STRing.

Syntax: REDUSTR(string,position,nurr~er)
(function type: STRING)

St ring (an arbitrary expression of type STRING) is reduced by
number (an INTEGER expression) characters at position
(another INTEGER expression) and returned as the result of the
function. If position has the value 0 or 1, the string expression
starting at the first character will be reduced; if the value is >
LEN (string), no characters will be removed. If string
contains fewer characters than are specified through pos it ion
and number, the string expression will be truncated at the given
position. Borrowing from the previous example:

STR2:=REDUSTR(CONSTR('XYZ',STR1,3),2,2)

assigns the string aYZcd to the variable STR2.

SUBSTR

The name of this string function is an abbreviation for
SUBSTRing. It returns a defined section of a string expression.

Syntax: SUBSTR(string, position, number)
(function type: STRING)

A substring with number (an INTEGER expression) characters
will be taken from st ring (an arbitrary expression of type
STRING) at position (an INTEGER expression) and returned
as the result of the function SUBsTR.lfthe value for position is
> LEN (st ring) , SUBSTR will return an empty string. If
po sit ion and n u rob e r indicate more characters than are
available in the string expression, the return string will end with the
last character of string.

35

Abacus Software Super Pascal 128

In the example, the statement:

STR2:=SUBSTR(STR1,O,1)

assigns the string a to the variable S TR2.

4.2.2.3 Miscellaneous

This group includes the two remaining language extensions of
Super Pascal 128:

LOCALITY

This standard function is not really an extension of Super
Pascal-it is available in Super Pascal 64, but it was left out of the
Super Pascal 64 manual. It returns the memory address of a Pascal
variable as its result.

Syntax: LOCALITY (variable)
(function type: INTEGER)

Variable stands for any variable declared in the Pascal program
or for an element of a structured variable. The value returned by the
function represents the address which the compiler assigned to this
variable or variable element. This function can be used to assign
the address of a variable to a pointer variable with the help of the
ALLOCATE procedure, which is often very helpful in system
programming. In the following statement:

ALLOCATE(POINTER,LOCALITY(XYZ»

the pointer variable POINTER is set to the address of the variable
XYZ. You should be careful when using such constructions,
however, and you must know what you are doing, because no type
checking is done between the variables POINTER and XYZ and it
therefore does not correspond to the Pascal philosophy.

36

Abacus Software Super Pascal 128

SEEKEOF

e This procedure provides an easy way to move the file access
pointer to the end of the file. SEEKEOF makes it quick and easy to
append additional information to an existing file.

Syntax: SEEKEOF(file variable)

File variable is the variable of type Fll...E declared in the
program. The procedure has the same effect as SEEK, that is, it
opens the file for reading (which doesn't make sense given the EOF
position) and for writing. More information about the SEEK
procedure can be found in the Super Pascal 64 manual in section
4.1.2.1.

37

Abacus Software Super Pascal 128

5. The 65XX assembler

The assembler for the 6502-series microprocessors integrated e
into Super Pascal 128 corresponds completely to the assembler
included with Super Pascal 64. Information about this assembler
can be found in Chapter 5 of the Super Pascal 64 manual.

38

•

Abacus Software Super Pascal 128

6. The OT I L I TY package

The UTILITY program included with Super Pascal 128 is similar
to the program of the same name in the Super Pascal 64 system.
Within the Pascal system it is in charge of disk and file management
and maintenance, and it offers some monitor functions, so that it is
also possible to do machine-level work within the enclosed Super
Pascal 128 system. The UTILITY program is stored on the system
disk under the name C UT I LIT and is called with the 'V'
command from the MAIN-menu. It responds as follows:

* C12S FILE UTILITY 6.1 *
COMMANDS:

A(DVISE) B(LOCKTABLE) C(OPY)
D(UPLICATE)E(NTERSECT) F(ETCHSECT)
G(ETRAM) H(ELP) I(NSERT ADV)
J(UMP) K(ILL TITLE) L(OCKFILE)
M(AP) N(EW) O(SERVEMEM)
P(UTRAM) Q(UIT) R(ENAME)
S(TOREMEM) T(RNSFRMEM) U(NLOCKFILE)
V(IEWMEM) W(RITEDIR) X(CLUDEBLC)
Y(LISTFILE) Z(EROBLOCK)

6.1 Differences from Super Pascal 64

Most of the information you will need to use the UTILITY package
can be found in the Super Pascal 64 manual in Chapter 6. In
addition to some insignificant changes in the output of command
menus when calling the 'H' command-also accessible on the
C 128 by pressing the <HELP> key-the difference from the Super
Pascal 64 version lies in the construction of the S (TOREMEM),
T (RNSFRMEM) , and V (IEWMEM) commands, as well as the
extension of the 0 (BSERVEMEM) command. Also, pressing
<SHIFf> and <RUN/STOP> will produce a directory of the disk
in the main drive (drive 0) from any program level in Super Pascal
128.

39

Abacus Software Super Pascal 128

S (TOREMEM)

After calling this command with <S > <RETURN > and specifying e
the start address, the UTILITY program prints the contents of this
address. This can be changed by overwriting the output and
pressing <RETURN>. If only <RETURN> is pressed, no change
is made in memory. The UT I LIT Y program then asks if the
command should be continued. If you press <RETURN> at this
point, the default answer Y will be entered and UTILITY will
automatically continue the'S' command with the next memory
address. This allows you to easily fill a sequence of memory
locations with new contents.

T(RNSFRMEM)

Under Super Pascal 128, it is now possible to move the contents of
one section of memory to other locations (even overlapping).

v (IEWMEM)

After calling the 'V 'command and specifying the start address, the
UTILITY program will output the start address as the default end
address, which, if you accept it with <RETURN>, will cause only
one line to be displayed as a memory dump. A new line will be
printed each time you press <RETURN>. The 'Y' command will
end if you enter <N><RETURN>.

6.2 0 (BSERVEMEM) command

This command is a new addition to the UTILITY program in Super
Pascal 128. The original 0 (RGANIZE) command from Super
Pascal 64 has been omitted because it is no longer necessary in
Super Pascal12F

With the 0 (P ,ERVE) command, a section of memory in the C128 e
can be se~_ ~d for a given string. The addresses of all locations at
which this S', ';ng is found will be printed.

40

Abacus Software Super Pascal 128

After calling the command with <O><RETURN>, the UTILITY
program asks for the start address of the block to search:

START-ADR. = ?

The address can be in decimal or hexadecimal (with hexadecimal
numbers preceded by a dollar sign). It will then ask for the end of
the memory section in question:

END-ADR.+1 = ?

Finally you are asked what you want the computer to look for:

SEARCH FOR:

Any combination of decimal and hexadecimal numbers as well as
strings are possible here (such as $FF 'Pascal' 123). The memory
section specified will now be searched and the presence of the
string will be reported.

41

Abacus Software Super Pascal 128

7. The graphics package

7.1 General comments

Super Pascal 128 supports the graphic capabilities of the 80-column
screen of the C128, which has a resolution of 640x200 pixels
(dots). This graphic resolution, which is not available in Cl28
BASIC 7.0, is twice as high as that of the 40-column screen. The
additional advantage of these graphics is the higher processing
speed (2MHz) with which the 80-column screen can be accessed.

Given these considerations, an extremely fast graphics package can
be developed despite the high resolution. The inclusion of graphics
commands in Super Pascal 128 is done in a Pascal source program,
like Super Pascal 64. This means that the graphic routines are to be
included in your Pascal program with the & INCLUDE instruction.
You can see how this is done in section 4.1.2.4 of the Super Pascal
64 manual. In contrast to the C64, the graphic package for Super
Pascal 128 has the name S GR128. Also, no changes need to be _
mad; to the compiler options any more. You can compile your .,
graphics program with the default options, just like any other
Pascal program.

7.2 Graphic commands under Super Pascal 128

When you include the graphics routines available on the system
disk under the filename S GR128 in your own Pascal program,
you can use the following graphic commands:

GRAF ON

This statement enables the graphic mode (640x200) and clears the
graphic screen.

GRAF OFF

This statement exits the graphic mode and returns to the normal text
mode.

42

Abacus Software Super Pascal 128

PLOT (X_coordinate, Y_coordinate)

e This procedure sets a point at the location determined by
x coordinate and Y coordinate. The parameters must be
of type INTEGER. The ongin of the coordinate system is the upper
left comer of the screen; the positive directions then run to the right
and down.

UNPLOT(X_coordinate, Y_coordinate)

In contrast to PLOT, this procedure erases a point.

DRAW (Xl coordinate, Yl coordinate,
X2=coordinate,Y2_coordinate)

This procedure joins the points defined by the Xl, Y2 and X2, Y2
coordinates with a line. As with the P LOT procedure, the
parameters passed to DRAW must be integers.

UNDRAW(XI coordinate, Yl coordinate,
X2=coordinate, Y2=coordinate)

Like UNP LOT, the UND RAW procedure erases a line between the
specified points.

GRAFCOL(front_color, back_color)

The colors of the graphic points to be drawn and the background
color (including the border) can be changed with this procedure.
The color values lie between 0 and 15 and correspond to the
definitions in the C 128 manual. They must be of type INTEGER.

43

Abacus Software Super Pascal 128

8. Appendix

8.1 The demonstration program GRAFDEMO

The possibilities and capabilities of the Super Pascal 128 graphics
package are demonstrated by the program GRAFDEMO, located on
the system diskette. It is started from the MAIN menu with
R (UNPROGRAM) <RETURN>, GRAFDEMO (program name)
<RETURN>, 0 (drive) <RETURN>.

44

SUPER Pascal

Compiler and Software
Development System

By H. Schnepf

A Data Becker Product

Published by:

Abacus Software
P.O. Box 7211

Grand Rapids, MI 45910

Copyright Notice

Abacus Software makes this package available for use on a single
computer only. It is unlawful to copy any portion of this software e
package onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple computers,
please contact Abacus Software to make arrangements.

Warranty

Abacus Software makes no warranties, expressed or implied, as to
the fitness of this software package for any particular purpose. In
no event will Abacus Software be liable for consequential damages.
Abacus Software will replace any copy of this software which is
unreadable, if returned within 30 days of purchase. Thereafter,
there will be a nominal charge for replacement.

Fourth Printing, November 1987
Printed in U.S.A.
Copyright © 1986

Copyright © 1986,1987

Data Becker GmbH
Merowingerstra8e 30
4000 Dusseldorf, West Germany
Abacus Software, Inc.
5370 52nd Street SE
Grand Rapids MI 49508

ISBN 0-916439-41-0

FOREWORD

This is the handbook to your SUPER Pascal Development System for the
Commodore 64 and 128. The minimum hardware required to run SUPER
Pascal is a C-64 (or C-128 in C64 mode), a 1541, and a television or
monitor. A second disk drive and printer wi11let you take full advantage of
SUPER Pascal.

This handbook is designed to help you understand the workings of SUPER
Pascal, assuming that you have had experience in the Pascal language. It is
not a basic course in Pascal, and makes no claims to that effect. Before
using SUPER Pascal, you should be familiar with the PASCAL language
and how it works.

SUPER Pascal is a complete implementation of "Standard Pascal", based on
the "Pascal User Manual and Report" (or "The Pascal Bible") by Kathleen
Jensen and Niklaus Wirth. You'll fmd SUPER Pascal to be one of the most
comprehensive Pascal systems ever offered for C-64 or similar machines.
One of the problems with the C-64 is the slow transfer of data between
computer and disk drive (250- 400 bytes per second); SUPER Pascal solves
that problem, allowing you to transfer 1250 bytes per second from disk to
computer and back. This means that disk access is increased threefold!

I should mention that when developing a comprehensive software package
as large in scope as SUPER Pascal, errors may occur. We have done our
best to make SUPER Pascal as bug-free as possible. Naturally if you do
encounter problems, please let us know. Your suggestions are always
welcome.

January 1985

H. Schnepf

TABLE OF CONTENTS

e 1.0 SUPER PASCAL - SYSTEM 1

1.1 SYSTEM OVERVIEW 1
1.2 LOADING THE SYSTEM 2
1.3 SHORT DESCRIPTION OF SUPER PASCAL 3

1.3.1 MAIN 3
1.3.2 ASSEMBLER 4
1.3.3 COMPILER 6
1.3.4 EDITOR 13
1.3.5 UTILITY 15

1.4 SYSGEN - SETTING UP YOUR SYSTEM 17
1.4.1 MAIN DISKETTES 18
1.4.2 WORK DISKETTES 19
1.4.3 COMPILER DISKETTES 19

2.0 MAIN MENU 21

e 2.1 MAIN MENU COMMANDS 21
2.1.1 A(=ASSEMBLER) 21
2.1.2 C(=COMPILER) 22
2.1.3 E(=EDITOR) 23
2.1.4 G(=GETFILE FROM DISK TO MEMORY) 23
2.1.5 H(=HELP) 24
2.1.6 J(=JUMP) 25
2.1.7 M(=MAPIDRIVE) 25
2.1.8 P=(UT MEMORY AS FILE TO DISK) 26
2.1.9 R(=RUN PROGRAM) 28
2.1.10 U(= UTILITY) 30
2.1.11 W(=WRITE SOURCE) 30

2.2 EXIT TO BASIC 31

3.0 TEXT EDITOR 33
3.1 EDITOR COMMANDS 35

3.1.1 A:(=APPEND FILE) 35

e 3.1.2 C:(=CHANGE) 36
3.1.3 D(=DELETE) 36
3.1.4 F:(=FIND) 37
3.1.5 G:(=GET SOURCE FROM DISK) 38

3.1.6 H(=HELP) 39
3.1.7 L(=LIST) 39
3.1.8 M(=MAPIDRIVE) 40
3.1.9 N:(=AUTO-NUMBERING) 40 e 3.1.10 O:(=OUTPUT DEVICE) 41
3.1.11 P:(=PUT SOURCE TO DISK) 42
3.1.12 Q(=QUIT) 43
3.1.13 R(=RENUMBER) 43
3.1.14 S(=SHIFf LINE) 44
3.1.15 U:(=UPDATE Fll...E) 44
3.1.16 V(=VACANCY) 45

3.2 EDITING PASCAL PROGRAMS 45
3.3 EDITING ASSEMBLER PROGRAMS 48
3.4 MIXED PROGRAMS 53
3.5 INTERNAL ORGANIZATION OF TIlE EDITOR 56
3.6 TEX1FILE DESIGN 57

4.0 PASCAL COMPILER 59
4.1 SCOPE OF THE LANGUAGE 59

4.1.1 STANDARD LANGUAGE ELEMENTS 59 e 4.1.2 LANGUAGE EXTENSIONS 83
4.1.2.1 ADDITIONAL ASSIGNMENTS,

PROCEDURES AND FUNCTIONS 84
4.1.2.2 ADDITIONAL PROGRAM

STRUCTURES, EXTERNALS,
SEGMENTS 104

4.1.2.3 ASSEMBLER. ROUTINE DESIGN 111
4.1.2.4 COMPILER COMMANDS 113

4.2 OPTIONS 116
4.3 THE COMPILATION PROCESS 120
4.4 ERROR MESSAGES 121
4.5 END OF COMPILATION 122
4.6 LOCALIZING RUNTIME ERRORS 124

5.0 THE 6510 ASSEMBLER 127
5.1 SOURCE TEXT DESIGN 127
5.2 COMMAND SET 129 e 5.3 TYPES OF ADDRESSES 130
5.4 PSEUDO OPERATION CODES 134
5.5 RUNNING THE ASSEMBLER/OPTIONS 136

6.0 UTILITY MENU 143
6.1 UTILITY COMMANDS 144

tit
6.1.1 A=(=ADVICE) 144
6.1.2 B(=BLOCKT ABLE) 145
6.1.3 C=(=COPY FILE) 146
6.1.4 D(=DUPLICATE DISK) 147
6.1.5 E(=ENTER SECTOR) 148
6.1.6 F(=FETCH SECTOR) 148
6.1.7 G(=GET FILE FROM DISK TO RAM) 149
6.1.8 H(=HELP) 150
6.1.9 I(=INSERT ADVICE) 150
6.1.10 J(=JUMP) 150
6.1.11 K(= KILL TITLE) 151
6.1.12 L(=LOCK FILE) 152
6.1.13 M(=MAP/DRIVE) 152
6.1.14 N(=NEW DISC) 153
6.1.15 O(=ORGANIZE DISK) 154
6.1.16 P(=PUT RAM AS FILE TO DISK) 154
6.1.17 Q(=QUIT) 155
6.1.18 R(=RENAME) 155
6.1.19 S(=STORE BYTE INTO MEMORY) 156
6.1.20 T(= TRANSFER MEMORY BLOCK) 157
6.1.21 U(= UNLOCK FILE) 157
6.1.22 V(=VIEW MEMORY 158
6.1.23 W(=WRITE DIRECTORY) 159
6.1.24 X(=XCLUDE BLOCK) 160
6.1.25 Y(=LIST FILE) 161
6.1.26 Z(=RELEASE BLOCK TO ZERO) 162

7.0 SYSTEM SPECIFIC INFORM A TION 163
7.1 SYSTEM SIZE AND DEFINITIONS 163
7.2 MEMORY LAYOUT AND ADDRESSES 167
7.3 DISKETTE ORGANIZATION 169

8.0 PROGRAM EXAMPLES AND GRAPHIC EXTENSIONS 173
8.1 THE EDITOR PROGRAM 173 e 8.2 RPNPROGRAM 189
8.3 THE GRAPHICS PACKET 194
8.3.1 HILBERT CURVES 206
8.4 C64 TO PASCAL DOS 210

9.0
9.1
9.2

APPENDIX
ERROR LIST
FOR FURTIlER READING

211
211
215

ABACUS Software SUPER Pascal Development System

1.0 SUPER PASCAL - SYSTEM

1.1 SYSTEM OVERVIEW

Super Pascal works with one or two 1541 disk drives. If you are using two
1541 drives, the second 1541 drive should be designated as drive 9 (see your
1541 manual). SUPER Pascal refers to these as drive 0 and drive 1 (device
numbers 8 and 9 respectively). Drive 0 acts as the master drive. SUPER
Pascal searches drive 0 for the system programs, such as the Assembler,
Compiler, Editor and Utility programs.

Keywords, commands, names and identifiers are entered in upper-case, i.e.,
ASCII codes 65-90 ($41-$5A). These codes are entered as unshifted keys in
normal upper-case/graphics mode. In upper/lower-case mode, these
characters are displayed as lower case. This feature is peculiar to
Commodore machines, not Pascal.

The latter mode is the default when SUPER Pascal is initialized. Remember
to type statements, identifiers and names in lower case when in this mode! If
this confuses you, modes can be switched by pressing <C=+SHIFT>.

A few thoughts on the syntax for Pascal identifiers are in order here. These
identifiers are names defined for constants, variables, filenames, procedures,
functions, etc. Rules dictate that an identifier:

consists of no more than 8 significant characters

begin with a letter

must use letters and numbers for the remaining characters,
as well as the character "_"(ASCII $5F), shown on the C-
64 as a back-arrow.

Screen dumps (printer outputs of the screen) can be done with a suitable
printer (Commodore, or another properly interfaced printer). Unusual
printer set-ups can be "tuned" in by software changes.

A third item worth mentioning here is the input of direct commands, and
response to the prompts. Generally, direct commands are issued using a

1

ABACUS Software SUPER Pascal Development System

single letter (e.g., "E" will call the Editor). Direct commands must be
followed by pressing the <RETURN> key. Later descriptions of these
commands do not mention this fact, so please keep this in mind. If the _
command requires further information, you will be prompted (NOTE: in .,
some cases, a default value is available). If your input is illegal or invalid,
the system will ignore it, and you'll have to re-enter the command correctly.

If the system is expecting a numeric value -- such as in the procedures READ
and READLN -- and you input a non-numerical response, the system will
respond "IL. INPUT", and wait for the correct input. A <RETURN>
without any other input is interpreted as a 0. Integer values can be input in
decimal form or in hexadecimal form (e.g., 1024 = $0400) when preceded
by a dollar-sign ("$"), .

Due to the limitations of the integer range (-MAXINT .. +MAXINT [-
32767 .. +32767]), any addresses from +32769 to +65535 should be specified
using hexadecimal notation ($8000 .. $FFFF).

Another strength of SUPER Pascal is the system's high resistance to errors
and bad input from the user. You'll be surprised at how well this program _
handles errors. ,.

1.2 LOADING THE SYSTEM

Loading SUPER Pascal is extremely simple. After turning on the computer
and disk drive(s), put the system disk into drive 0, and close the drive door.
Then type LOAD"*", 8, l<RETURN>. The autoboot (load/run procedure)
takes over from there. If you happen to type LOAD"*", 8<RETURN>, and
leave out the 1, the system will respond with READY. In this case just type
RUN <RETURN> to fmish the loading process.

The autoboot displays the title screen, which asks you to press a key. Once
you've pressed a key, SUPER Pascal will display:

2

ABACUS Software SUPER Pascal Development System

LOADING ...

***** C-64 SUPER PASCAL - SYSTEM 5.3 *****
BY H. SCHNEPF

(C) COPYRIGHT 1985 DATA BECKER
LICENSED BY ABACUS SOFTWARE

When the load procedure is completed, Pascal is initialized, and the system
displays the Main Menu:

* C-64 PASCAL-SYSTEM 5.3. *
COMMANDS =

A (S SEMBLER)
C (OMPILER)
E (DITOR)
G(ETRAM)

@

H(ELP)
J (UMP)
M(AP/DRIVE)
P (UTRAM)

R(UNPRGM)
U (TILITY)
W(RITESRCE)

Note that the cursor is represented here by a n@n

The 64's BASIC operating system has now been temporarily replaced by the
SUPER Pascal operating system; you can return to BASIC by shutting off
the computer.

1.3 SHORT DESCRIPTION OF SUPER PASCAL

Let's look at the elements of the Main Menu individually -- this makes up
the RUNPAC, a set of machine code routines and compiled Pascal routines,
which allows us to create our own Pascal programs.

1.3.1 MAIN MENU

The Main Menu of SUPER Pascal has the following commands:

3

ABACUS Software SUPER Pascal Development System

'A' (-ASSEMBLER)
Calls the 6510 assembler source-program.

'C' (=COMPILER)
Calls the Pascal compiler.

'E' (=EDITOR)
Calls the program to edit source files.

'G' (=GETRAM)
Load a file into memory from disk.

'H' (=HELP)
Prints Main Menu command list.

'J' (=JUMP)
Jump to machine code program found at
specified address.

'M' (=MAP/DRIVE)
Displays disk directory.

'P' (=PUTRAM)
Saves specific memory area contents to disk.

'R' (=RUN PROGRAM)
Starts a Pascal program.

'U' (-UTILITY)
Calls utility program for working with files, etc.

'W' (-WRITE SOURCE)
Formatted output of source-file to disk or printer.

1.3.2 ASSEMBLER

The assembler is used to create 6510 machine code programs from an
assembler source file. The machine code is stored as a file. The assembler
source files must have the following form:

--> TEXTLINE

zzzz
S
LLLLLLLL

:ZZZZSLLLLLLLLSIIISOOOOOOOOOOOO ...

line number
space
label field

maximum of 8 characters (same as for Pascal identifiers).
Unused space in a label field is filled in with blank spaces.

4

e

ABACUS Software SUPER Pascal Development System

III instruction field

Operation codes (mnemonics) in 6510 assembler notation:

ASL CLC INC PHA SEI
BCC CLD INX PHP STA
BCS CLI INY PLA STX
BEQ CLV JMP PLP STY
BIT CMP JSR ROL TAX
BMI CPX LDA ROR TAY
BNE CPY LDX RTI TSX
BPL DEC LDY RTS TXA
BRK DEX LSR SBC TXS
BVC DEY NOP SEC TYA
BVS EOR ORA SED

Pseudo-operating-code notation:

.BA begin assembly

.BY insert byte

. CT continue with source ...

.DL define label

.DS displacement

.EN end assembly

.EQ condo assembly: equal 0

.NE condo assembly: not equal 0

.OC object code clear

.OS object code set
end of condo assembly

00000000 .. = Operand field

As operands are labels, decimal numbers, hex numbers and +/
combinations, the following types of addresses are permitted:

5

ABACUS Software

Operand
Operand,X
Operand,Y
(Operand,X)
(Operand), Y
(Operand)
*Operand
*Operand,X
*Operand,Y
#Operand
#H,Operand
#L,Operand
A

SUPER Pascal Development System

= absolute
=absolute indexed X
=absolute indexed Y
=indirect indexed X
=indirect indexed Y
=indirect absolute
=zeropage
=zeropage indexed X
=zeropage indexed Y
=immediate
=immediate high-byte
=immediate low-byte
=implicit Accumulator

A semicolon (;) at position 6, 15, or after 0 should precede any remarks or
commentary .

1.3.3 COMPILER

The compiler compiles Pascal source programs from diskette. The user then
has the option of putting the compiled program code (Pascal-Pcode) on disk,
or keeping it in memory.

The compiler accepts and compiles the following reserved words found in
the Pascal language:

WORDS:

AND DO FUNCTION NIL PROGRAM TYPE
ARRAY DOWNTO GOTO NOT RECORD UNTIL
BEGIN ELSE IF OF REPEAT VAR
CASE END IN OR SET WHILE
CONST FILE LABEL PACKED* THEN WITH
DIV FOR MOD PROCEDURE TO

* PACKED will not always compile!!

6

e

ABACUS Software SUPER Pascal Development System

The following standard identifiers are also permitted:

Constants: FALSE, MAXINT, TRUE

Types: ALFA, BOOLEAN, CHAR, INTEGER,
REAL, TEXT

Variables: INPUT, OUTPUT

Procedures: GET, NEW, PUT,
READ, READLN, RESET,
REWRITE, WRITE, WRITELN

Functions: ABS, ARCTAN, CHR, COS,
EOF, EOLN, EXP, LN,
ODD, ORD, PRED, ROUND,
SIN, SQR, SQRT, SUCC,
TRUNC

In addition, all the standard characters mentioned in The Pascal Users
Manual and Report are accepted by the compiler:

Symbols:

The following commands, etc., are additions to SUPER Pascal Development
System:

Reserved Words:

AND
ELSE
NOT
OR
SHL

combines BYTE-values
used as an alternative in a CASE statement
negates a BYTE-value
ORr's BYTE-value
rapid integer multiplication by a factor of 2'11 (n=O to
16) without overflow checking

7

ABACUS Software

SHR
USERFUNC
USERPROC
XTRNFUNC
XTRNPRGM
XTRNPROC

Other Indicators:

Constants:

PI
STKPOI

Types:

BYTE

STRING

Variables:

MEM

RANDOM

Procedures:

ALLOCATE

CLOSE
CONTINUE
CLRTRAP
EXECUTE

SUPER Pascal Development System

rapid integer division by a divisor of 2"n (n=O to 16)
declares an external function written in machine code
declares an external procedure written in machine code
declares/defines an external Pascal function
declares an external Pascal program
declares/defines an external Pascal procedure

the real number pi (3.141...)
the value of the variable stack pointer

a single-byte, preceded by the character "#"
(range: #0-#255 = #$OO-#$FF)
a dynamic array of CHAR, defmed as :
RECORD
LENGTH: BYTE;
CHRS: [#O .. L] OF CHAR
END

a pseudo-variable array that permits access to
memory (similar to PEEK and POKE in BASIC)
a pseudo-variable that produces a random real
number between 0 and 1;

sets pointer variables to an address accessible to
the user.
close and clears the me in last buffer
load and run a Pascal program from diskette
clear trap of runtime I/O errors
load a Pascal program from disk, and run
subprogram already in memory

8

ABACUS Software

HEX

e INDVC
KILL

LOCK
LOAD

MARK
NAME
OUTDVC
RELEASE
SEEK
SETADR

SETDRV
SETTRAP

Functions:

e ANYKEY
EOF

FRAC

FREE

GETKEY

HBYT

HXS

INT

SUPER Pascal Development System

converts integer or byte parameters to
hexadecimal
redirect input from device
delete an unprotected (unlocked) file from
diskette
close and protect a me on diskette
loads external Pascal program, procedure or
function into memory from diskette
records the current heap pointer
assign a filename to a file
redirect output to device
set heap pointer to previously MARKed value
set file position pointer for direct access
define starting address for an external Pascal or
machine language routine
define disk drive for file access
activates trap for runtime-error (110 errors)

returns TRUE if any keyboard input is present
returns TRUE if end of file or BREAK key
pressed (: BOOLEAN)
returns the fractional part of a real number
(: REAL)

returns the amount of memory remaining on
Pascal variable stack (: INTEGER)
returns the value of the next key in keyboard
buffer; otherwise, waits for next key (: CHAR)
returns the most significant byte value of an
integer (: BYTE)
(=hexsum), returns the sum of two integer values
without checking for overflow, used for
calculating addresses (: INTEGER)
returns the integer value of a real number or
gives IL. QUANT. ERROR (: INTEGER)

9

ABACUS Software SUPER Pascal Development System

IOERROR returns the value for the I/O error (: INTEGER)
as follows:

LOCALITY

LOW

LBYT

LEN
ROUND

SIGN

SIZE

TRUNC

o OK
1 DISK ERROR
2 NOT OPEN ERROR
3 NOT CLOSED ERROR
4 BUFFER OVERFLOW ERROR
5 DIRECTORY OVERFLOW ERROR
6 NOT FOUND ERROR
7 DISK OVERFLOW ERROR
8 DISK MISMATCH ERROR
9 ILLEGAL FILE-OPERATION ERROR

10 AFTER EOF ACCESS ERROR
11 IEEE-ERROR

returns the current memory location of Pascal
variables (: INTEGER)
converts an integer or a single number into high
byte,low-byte (when possible)
returns the least significant byte value of an
integer (: BYTE)
returns the length of a string (: INTEGER)
returns the rounded value of any real number
(: REAL)

gives previous item an integer or a real value
(: INTEGER)
returns the number of bytes occupied by a Pascal
variable (: INTEGER)
returns the integer portion a real value (: REAL)

Structural Commands~

These commands aid in structuring Pascal programs:

FORWARD

SEGMENT

for forward definitions of PROCs and FUNCs
according to "The Pascal Bible"
to break a Pascal program into segments used for
overlay techniques

10

ABACUS Software SUPER Pascal Development System

ASSEMBLE converts the text to follow from Pascal into
assembly language.

e Compiler Directives:

These commands change the defaults of the compiler.

&ADR+

&ADR
&CONTINUE

& INCLUDE

&PCODE+
&PCODE
&TRUTH

e Error Messages:

activates output of addresses during compilation

deactivates output of addresses
instruct the compiler to continue compilation on
the given source-file
instruct the compiler to include given sourcefile
in the compilation presently being done
activates the P-code output
deactivate P-code display
identify section of source file for conditional
compilation

The standard error messages identified by the compiler (according to the
Pascal User Manual and Report) are as follows:

22: ' . .' expected
23: '.' expected
24: ',' or '}' expected
25: BOOLEAN constant expected

60: PROGRAM incomplete

182: Parameter list of extern PRGM not allowed
183: LOAD/SETADR only for externals
184: Externals without address defmition
185 Slice-ARRA Y must be CHAR or BYTE type
186: SLICE:= SLICE not allowed

207: BYTE-const too large
208: Error in BYTE-const
209: Error in HEX-const

11

ABACUS Software SUPER Pascal Development System

210: Error in numeric const

400: FILE-element too long
401: STRINGS not allowed here
402: Too many identifiers
403: READLN/WRlTELN only with TEXT
405: Too many segments
406: Nested segments not allowed
407: Separated segments not allowed
408: Compiling of segmented PRGMS to RAM not allowed
409: Too many parameters
410: Error in '&'-option
411: Too many nested sources

Runtime Errors

Runtime errors can also include I/O errors:

OUTOFRNG.
NOT EXQ.
NUM.OV.
BAD SUBS.
ILL. QUANT.
STK.OV.
ZERODIV.
ILL. DVC.

number out of range
non-executable P-code
number overflow
bad subscript
illegal quantity
stack overflow
division by 0
illegal device number

Options: The following items may be changed when the compiler is started
(contents in parentheses are defaults):

Start-of-program
Starting address of heap
Max. address of variable stack
Compiling mode
Memory location for compo
Test for end-of-memory
File for post-mortem dump
post-mortem filename
Suppress program listing
Suppress printer output

12

($0800)
(end-of -program)
($9000)
(disk), or RAM:
($9000)
(yes) , or no:
(no) , or yes:
(P_M_DUMP)
(yes)
(yes)

ABACUS Software SUPER Pascal Development System

1.3.4 EDITOR

The editor sets the source-program into a screen-oriented formal The line
numbers displayed in edit mode are there for editing only -- they aren't part
of the program itself. The following commands available for changing
parameters in edit mode :

, A: '

, C: '

'D'

D
D

D

D
D

, F: '

, G: '

, H'

, L'

xxxx
-xxxx
xxxx-

(=APPEND FILE)

Append specific file on diskette to file in
memory.

(=CHANGE)
Change the character string following '.' to
another string.

(=DELETE)

Delete lines:

delete AlL lines
delete line xxxx
delete up to and including line xxxx
delete from line xxxx on

xxxx-yyyy delete from line xxxx to line yyyy

(=FIND)
Find and list the line containing the specified
character string.

(=GET SOURCE FROM DISK)
Load a source file from diskette into the Editor.

(=HELP)

Display Editor's command set.

(=LIST)
List line(s); parameters are similar to 'D'.

13

ABACUS Software SUPER Pascal Development System

, M' (=MAP /DRIVE)
Display disk directory; defines drive for 'A:',
'G:', 'P:', and 'U:' commands.

'N' (=AUTO-NUMBERIN~)

Automatically generate line numbers in
increments of 5, with an option of changing the
starting line number (Nxxxx).

'0' (=OUTPUT DEVICE)
Change output device for display to screen or
printer.

o screen
o 4, 0 printer

'P:' (=PUT SOURCE TO DISK)
Save source file from editor to diskette (NOTE:
If a file of the same name already exists on the
diskette, the old file is overwritten).

'Q' (=QUIT)
Return to the Main Menu.

'R' (=RENUMBER)
Renumber lines in increments of 5, starting at
line number 1000.

'S' (=SHIFT LINE)
Move line(s) to a different memory range (S xxxx
- yyyy : zzzz ... move lines xxxx to yyyy to
location after line zzzz).

'U:' (=UPDATE FILE)
Append source file in Editor to file on diskette.

'V' (=VACANCY)
List amount of memory left for text.

14

ABACUS Software SUPER Pascal Development System

1.3.5 UTILITY

e The Utility function has disk management commands, as well as some
useful monitor commands; this section gives you working memory in $4000
- $C200, and this register can be used as standard RAM. Here are the
commands:

, A'

, B'

, C'

, D'

, E'

, F'

, G'

, H'

, I'

(=ADVICE)
Display any special information. on a given me
(data. version number, etc.).

(=BLOCKTABLE)
Display a diskette blocktable (similar to block
availability map).

(=COPY FILE)
Copy file from one diskette to another.

(=DUPLICATE DISK)
Duplicate an entire disk (only possible with two
drives).

(=ENTER SECTOR)
Store any sector (=512 bytes) of memory to
diskette.

(=FETCH SECTOR)
Load any sector of disk into memory.

(=GET FILE FROM DISK TO MEMORY)
Load a file from diskette.

(=HELP)
Display the Utility command list

(=INSERT ADVICE)
Input extra information (see ADVICE) to file on
diskette.

15

ABACUS Software SUPER Pascal Development System

, J' (=JUMP)

, K'

, L'

'M'

'N'

, 0'

'P'

, Q'

'R'

, S'

, T'

Jump to any program in memory.

(=KILL FILE)
Scratch file from diskette.

(=LOCK FILE)
Protect a file on diskette from killing of
overwriting. Locked files appear in the directory
in reverse video.

Display the disk directory. Also defines the
drive for 'A', 'B', 'E', 'F', '1', 'K', 'L', 'R', 'U',
'X' and 'z' commands.

(=NEW MAP)
Generate new directory (in disk-formatting and
producing system disks).

(=ORGANIZE DISK)
Reorganize disk contents; pack two disks' worth
of material to one disk, giving more memory
space (possible only with two drives).

(=PUT MEMORY AS FILE TO DISK)
Store any memory range to diskette as a file.

(=QUIT)
Return to Main Menu.

(=RENAME FILE)
Change the name of a file.

(=STORE BYTE INTO MEMORY)
Place a value into any memory cell in the
computer (similar to POKE).

(=TRANSFER MEMORY-PAGES)
Transfer anyone of 256 bytes to another area in
memory.

16

ABACUS Software SUPER Pascal Development System

'u' (=UNLOCK FILE)
Unlock fIle protection.

, V'

, W'

, X'

, Y'

, Z'

(=VIEW MEMORY)
List any memory range in hexadecimal OR
ASCII (memory dump).

(=WRITE DIRECTORY)
Output all additional information in the disk
directory.

(=XCLUDE BLOCK)
Exclude a block on diskette from further use.

(=FILE DUMP)
List fIle on diskette in hex or ASCII.

(=RELEASE BLOCK (SET ZERO))
Release used or kept block to diskette for later
reference.

1.4 SYSGEN· SETIING UP YOUR SYSTEM

As already mentioned, SUPER Pascal supports the use of two floppy disk
drives. However, the limitations of using only one drive are so minimal that
you could easily get along with one drive (only a few of Utility Menu
commands require two drives -- 'D' and '0').

We'd now like to offer a few words of advice on the use of SUPER Pascal.

First. please keep in mind that copying the original disk for your own
personal use is possible -- but the Compiler and Assembler on that backup
won't run properly. All the other programs should run just fine, though.

The segmenting by the compiler (overlay-technique) requires the original
diskette to be in drive O. Similarly, the assembler looks for the source file in
drive O. Unfortunately, if you're using only one disk drive, the source code

17

ABACUS Software SUPER Pascal Development System

produced is saved on the original disk. It is best to use the system diskette
only for compiling and assembling.

1.4.1 MAIN DISKETTES

Let's have a look at the procedures for formatting a Super Pascal disk:

Several basic disks can be created using SYSGEN, called using the 'R'
command from the main menu. The program displays a header, and asks in
which drive the new disk lies:

* PASCAL-SYS.DISK. GENERATOR *
************ vs 5.3 *************

'DRIVE (MAP) = 0'

The default drive is O. Next, you'll be asked for the disk title -- supply a
name for the disk. Next comes the message:

INSERT DISK INTO DRIVE x
... PRESS: "RETURN" IF DONE!

Just to make sure, the system will ask

SURE TO REWRITE THE DISK? yiN

since generating a diskette will destroy any old material previously on the
disk.

If all is well, the program will format the diskette, put in a directory under
the given name, and put a LOADDAT me onto the diskette.

WARNING!!!

A diskette formatted by SYSGEN is readable ONLY by Super Pascal -- you
can't use this disk in BASIC, unless you format it normally. With a -
SYSGEN disk, it is vital that LOADDAT -- which contains the Pascal •
operating system -- be on the disk.

18

ABACUS Software SUPER Pascal Development System

From the file UTILITY menu you can clear a Pascal directory using 'N',
duplicate a disk with 'D', and reorganize data with '0'.

If a read/write error occurs during formatting, you'll see the following error
message:

FORMATTING OR FLOPPY ERROR!
... EXECUTION NOT SUCCESSFUL!

REPEAT WITH ANOTHER DISK ? N/Y

Try again; or, if you tell the system "n", it will go back to the Main Menu.

1.4.2 WORK DISKETTES

Now, using the file UTILITY program and the COPY command ('C'), you
can make work disks of your choice, e.g.:

An Editor Disk would be make up of WADDAT and C _EDITOR <
represents the back arrow key). You could use such a disk for developing,
editing and storing Pascal or assembly language source programs.

A Utility Disk would contain LOADDAT, C_UTlLIT, C_PMDUMP and
SYSGEN (more on this in Section 4.6). This is a good choice for some
quick system work.

A Program Disk containing LOADDAT and the compiled Pascal programs
and/or assembled machine-code programs of your choice. This would
essentially be a user program disk, which would run on any C-64 without the
help of the original diskette.

1.4.3 COMPILER DISKETTES

Once you've copied the different programs off of the original diskette (with
the exceptions of the Compiler and Assembler, which are copy-protected),
and put them into work diskettes to suit your own needs, you may want to

19

ABACUS Software SUPER Pascal Development System

delete those files from the original diskette (K command in Utility Menu).
After doing so, you'll be left with LOADDAT, C_CPLR (Compiler) and
C_ASMBLR (Assembler), as well as 25 blocks (= 100 kilobytes) available
for assembling and compiling larger programs. When you are ready to
compile you copy the source program from the work diskette (if you haven't
a second disk drive) to the compiler diskette for writing and reading program
code. We're following one of the oldest rules in computing here: Make
backups whenever possible, and use the original only when necessary.

NOTE:

During compiling and/or assembling, the respective program will put a
temporary file (or set of files) on diskette, which can be found by the source
program. At least 3 blocks must be free on the diskette if you are running
only one disk drive. The first temporary file (CODDAT) becomes the
necessary program code after compiling/assembling; CODDAT is deleted
after the compilation/assembly. The temporary flIes can be accessed ONLY
if a break or error occurs during the compiling or assembly process.

We realize that, at first glance, the material given so far can look pretty
intimidating to the beginner. Rest assured that, like BASIC, the more you e
work with this language, the more experienced you'll become in controlling
its inner workings. Good luck with SUPER PASCAL!

20

ABACUS Software SUPER Pascal Development System

2.0 MAIN MENU

The Main Menu is the outer-most command set of SUPER Pascal; it gives
you access to the primary system programs, such as the Assembler,
Compiler, Editor, etc., or you can use it to run your own programs. After
user-written programs run, an "OK" message appears, and you are returned
to the Main Menu. The cursor is displayed in the Main Menu as a '@' sign.

This menu also gives you the ability to load specific memory registers from
disk or to save any memory range to disk.

The following is displayed when in the Main Menu:

* C=64 PASCAL-SYSTEM 5.3 *

COMMANDS
A (S SEMBLER)
C (OMPILER)
E (DITOR)
G (ETRAM)

H(ELP)

J(UMP)
M(AP/DRIVE)
P (UTRAM)

R(UNPRGM)
U (TILITY)
W(RITE8RCE)

These are the direct commands mentioned earlier in this manual, which we
will now cover in detail. Remember that all commands and responses to
input must be followed by a <RETURN> (see 1.1).

2.1 MAIN MENU COMMANDS

2.1.1 A (= ASSEMBLER)

This command calls the onboard 6510 assembler, which allows you to
convert 6510 assembly language into 6510 machine code. The assembler
looks for an assembler source-program file on diskette, and will ask for input e concerning this file:

FILE-TITLE ?
DRIVE (MAP) X

21

ABACUS Software SUPER Pascal Development System

The default value of X is the number of the last disk drive used, so a
<RETURN> here will usually suffice.

You could use an asterisk (*) instead of an actual file-name; this instructs the e
assembler to assemble the first textfIle found. The assembler next offers a
verification of fIlename and corresponding drive number:

CONFIRM "FILENAME,DRIVE_NR"? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is
correct the assembler will load and run. This process begins with the
loading of the fIle LOADDAT; both LOADDAT and the assembler program
(C_ASMBLR) MUST be in drive O. If the given name of the textfile isn't
found, the assembler generates an error message, and returns you to the
Main Menu. If the given file cannot be handled as a textfile, an error
message will appear, and you return to the Main Menu.

The individual commands and operation of the assembler are handled in
Chapter 5.

2.1.2 C (= COMPILER)

This command puts you in the compiler section, which allows you to create
Pascal programs. One very important feature to this compiler is the fact that
it accepts mixtures of 6510 assembly language and Pascal. When you press
'C' in the Main Menu, you will get prompts similar to those found in the
assembler:

FILE-TITLE ?
DRIVE (MAP) X

The default value of X is the number of the last disk drive used, so a
<RETURN> will usually suffice.

You could use an asterisk (*) instead of an actual fIlename; this instructs the _
compiler to assemble the first textfile found. The compiler next offers a •
verification of filename and corresponding drive number:

22

ABACUS Software SUPER Pascal Development System

CONFIRM "FILENAME,DRIVE_NR"? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is
correct the compiler will load and run. This process begins with the loading
of the file LOADDAT; both LOADDAT and the compiler program
(C_CPLR) MUST be in drive O. If the given name of the textftle isn't
found, the compiler generates an error message, and returns you to the Main
Menu. If the given file cannot be handled as a textfile, an error message will
appear, and you return to the Main Menu.

The program operation and individual commands of the compiler can be
found in Chapter 4.

2.1.3 E (= EDITOR)

This command loads and runs LOADDAT, then the text-editor (the file
C _EDITOR) from drive O.

e Assembler and Pascal source-programs can be modified using the editor,
then saved to diskette in Pascal DOS. Chapter 3 contains the individual
editor commands.

2.1.4 G (= GET FILE FROM DISK TO MEMORY)

This command loads any file into memory from diskette; this is especially
useful for temporarily storing information, as well as specifically loading
programs. The 'G' command will ask for input on the following parameters:

START-ADR. = ?

Input the starting address of the file to be loaded. As already mentioned in
1.1, the address can be input either in decimal or hexadecimal.

FILE-TITLE = ?

Input the name of the desired file.

23

ABACUS Software SUPER Pascal Development System

DRIVE (MAP) = X

Give the number of the drive containing the file. The default value for X
will be the number of the last drive used, so you could just press e
<RETURN>, unless the me is in the "other" drive.

If all input is correct, the routine will load the me from diskette. The load
routine is part of the system diskette program LOADDAT, which must be
kept in drive O. If this is not the case, or if the file is not found, a
corresponding error message will be given, and program control will return
to the Main Menu.

NOTE:

The 'G' command doesn't check to see if there is enough memory to hold
the file being loaded, nor does it see if the memory address given matches
the file's starting address. The me will be loaded at the stated starting
address, and will end at the EOF (end-of-file) marker supplied on the me.
The 'G' command can utilize the memory space from $0800 to $BBFF.
This can be extended to include screen memory ($0400 - $07FF).

After loading, the end address (END ADDRESS + 1) is displayed; and
program control returns to the Main Menu.

2.1.5 H (= HELP)

This command calls the complete command list, just to remind you what's
available.

24

ABACUS Software SUPER Paseal Development System

2.1.6 J (= JUMP)

This command lets you jump to any machine-language or Pascal routine in
memory:

START-ADR. = ?

Input starting address of the routine.

NOTE:

If you give the starting address of an incomplete, or non-debugged program,
you may lose control of the system.

Memory from $0800 to $BBFF is at your disposal for programs. When
working with a machine-language program, you could insert RTS, which
will return you to the Main Menu, as long as locations $0028-$004F, $0340-
$0379 and $BCOO-$F2FF are unchanged. Another method would be to put
in the mil command JMP $C200, which also returns you to the Main.

2.1.7 M (= MAPIDRIVE)

The 'M' command displays the contents of a disk (the directory, or MAP)
onscreen:

DRlVE(MAP)= X

Response to this prompt will display the directory in the drive number given
(default value of X is the drive number last used, so a <RETURN> will do in
most cases).

The directory output is accomplished with the help of a routine in
LOADDAT, so it is vital that LOADDAT be in drive 0 when the 'M'
command is used.

A reminder: The directory in Pascal DOS is designed quite differently from
that of "normal" Commodore DOS 2.6; in fact, SUPER Pascal cannot read a

25

ABACUS Software SUPER Pascal Development System

directory made under the standard operating system, nor can BASIC read a
Pascal disk. With the exception of 22 blocks (with a standard block-size of
256 bytes each), the rest of the system disk is under Pascal DOS.

The directory will tell you the filenames and the amount of memory left on
the diskette. Remember that a block in Pascal DOS is equal to 4k (4096
bytes), as opposed to the 256 bytes per block in DOS 2.6.

The directory of a system disk looks something like this:

MAP OF DISK "PASCAL" :
LOADDAT SYSGEN C EDITOR C UTILITY
C CPLR C ASMBLR C PMDUMP
DISC 0 18 II
BLOCKS FREE !

Locked (protected) flIes appear with names in reverse video. For more
information on locking and unlocking flIes, please see the chapter on
utilities.

More detailed informationconceming Pascal DOS and new disk commands e
can be found in Chapters 6 (Utility) and 7 (System- Specific Information).

2.1.8 P (= PUT MEMORY AS FILE TO DISK)

This command is the opposite of 'G' -- it saves any portion of memory to
diskette as a data flIe. It will allow you to generate any specific information
(data, program, etc.) on a file presently in memory, and put the information
into the directory. The following parameters must be taken care of:

START-ADR. = ?

Input the address at which the information to be saved begins (as before, in
either decimal or hexadecimal notation).

26

ABACUS Software SUPER Pascal Development System

END-ADR.+1 = ?

Input the number immediately following the end address of the register (e.g., e if the material stops at $OAOO, input $OAOl).

FILE-TITLE = ?

Type in the name as you wish to have it appear on the directory, bearing in
mind these rules:

*

*

*

Identifiers have up to eight characters.

Identifiers must begin with an upper-case character.

Remaining characters in an identifier must be upper-case
characters, numbers and '_' .

DRIVE (MAP) = X

Give the drive number, or press <RETURN> for the default value.

After all parameters are in, on condition that no errors have occurred, the
save process calls LOADDAT, and stores the fIle on diskette. As before,
LOADDAT must be in system drive 0, or the routine will not work.

NOTE:

If there is a file of the same name already on the target disk, this older file
will be scratched and replaced by the file being saved; in short, you'll lose
the old file. There is an exception to this -- if the older file is locked
(protected), you'll get the error message "ILL.FILE OPR. ERROR!".

If there isn't enough space on the disk, or if the disk has a write-protect tab, a
respective error message will be displayed, and the 'P' command breaks off.

During a save, the memory configuration shifts: $OOOO-$CFFF is RAM;
$DOOO-$DFFF is for I/O; and $EOOO-$FFFF contains the ROM (Kernal).

Barring errors, the program returns to the Main Menu.

27

ABACUS Software SUPER Pascal Development System

2.1.9 R (= RUN PROGRAM)

The 'R' command gives the user the ability to call and run any compiled
Pascal program on diskette. The command automatically loads the program
into memory, and starts it, after filling in these parameters:

FILE-TITLE ?

Input the filename.

DRIVE (MAP) = X

Give the corresponding drive number (or <RETURN> for default). After
correct input, the program is loaded with the help of LOADDAT (read from
drive 0); ifLOADDAT cannot be found, an error message is displayed, and
the 'R' command is ignored.

Here are two simple methods for calling programs:

a) After compiling a program, respond to the filename prompt with" *".

b) Call a program in 'R' mode using "*".

These cases assume that the system will immediately be able to find the
program on disk.

There are times when runtime-errors will happen (i.e., problems during a
program run); when this happens, the program returns you to the Main
Menu, and gives you the error message and address of the error, thusly:

... ERROR IN $

Here is a short list of runtime-errors:

OUT OF RNG. ERROR! number out of legal range

NOT EXQ. ERROR! program code cannot be executed

28

e

e

ABACUS Software

NUM.OV. ERRORI

B. SUBS. ERROR

IL.QUANT. ERROR!

STK.OV. ERROR!

ZERO-OIV. ERROR!

IL.OVC. ERROR!

FLOPPY ERROR!

NOT OPEN ERROR!

NOT CLO. ERROR!

BUF.OV. ERROR!

OIR.OV. ERROR!

NOT FND. ERROR!

DSC.OV. ERROR!

DSC.MISM. ERROR!

SUPER Pascal Development System

numerical overflow beyond a predefined
integer range

bad subscript (array index)

illegal quantity

overflow of stack (variables)

division by zero

illegal device number

error in data transfer via disk drive

fIle not open

RESET /REWRITE attempted on an open
fIle

attempt to use more than three file buffers

not enough directory space

fIle not found

not enough memory on diskette

illegal! non-matching diskette

IL. FILE aPR. ERROR! illegal fIle operation

AFTEREOF ERROR! attempt to read fIle after EOF

IEEE-ERROR! data transfer error in IEEE-bus

e A successful program run will end with the message "OK" displayed.

29

ABACUS Software SUPER Pascal Development System

2.1.10 U (= UTILITY)

This command loads and starts the utility section of the system diskette, fIrst .
loading LOADDAT (in drive 0) and C _UTILITY. ,.,

The utility program permits a simple fIle-management system. However,
you also get access to a set of monitor functions in this menu. In addition,
'u' mode lets you load and run programs without having to resort to
LOADDAT, making the system disk unnecessary once the Utility Menu is
loaded!

The idiosyncrasies of this menu are covered in Chapter 6.

2.1.11 W (=WRITE SOURCE)

'w' gives you a hardcopy (printout) of a source program. Essentially, this
command will let you print out any text fIle, with line numbers to help you .
in debugging. These line numbers are NOT part of the program itself -- they ,.,
are there as an aid to the user.

You have the option of either printing the program on a continuous-feed
sheet (no pagination,etc.), or printing it out in a readable format, with page
headers.
Once you choose 'W', you'll have to answer a few prompts:

FILE-TITLE = ?

Input fIlename of the text to be printed.

DRIVE (MAP) = x

Input drive number, or press <RETURN> for default.

After input, LOADDAT is loaded and run (did you remember to leave it in
drive O?). If the fIle isn't found, or if it isn't a textftle after all, the command
will break off, and display an error message.

30

ABACUS Software SUPER Pascal Development System

Assuming the WRITE routine hasn't hit any problems, a new set of
parameters are displayed:

4It PRT-DEVICE = 4,0

Ifnecessary, you can change the primary (default 4) and secondary (default
0) addresses to suit your own printer.

LINES/PAGE = 72

This is for page formatting -- the number 72 represents the total number of
lines per page.

Once input is completed, the printing begins immediately; you may stop the
printout at ant time using RUN/STOP, which will send you back to the
Main Menu.

If you should have a different form of printer (different from a serial-port
printer), you can change the primary address (4 = printer in serial port! 5 =

user port). Both device addresses reside in a subroutine at $CA03.
Changing the device address can be done at $0373 (change to either 4 or 5).

2.2 EXIT TO BASIC

SUPER Pascal will return to BASIC when you press the RUN/STOP and
RESTORE keys, which executes a RESET routine and does a BASIC cold
start. As long as $C200-$FFFF remains unchanged, you can get from
BASIC back into SUPER Pascal by typing SYS 49664, which puts you in
the Main Menu.

31

ABACUS Software SUPER Pascal Development System

3.0 TEXT EDITOR

The editor is started from the Main Menu by pressing 'E'. If you make a
diskette for editing, be sure to include LOADDAT -- again, LOADDAT is a
necessity for booting this section -- in addition to the editor itself
(C _EDITOR).

The following message is displayed in edit mode:

* C=64 SOURCE-EDITOR 5.3 *

COMMANDS = ...
A: (PPENDSRC)
C: (HANGE)
D(ELETE)
F: (IND)
G: (ETSOURCE)
H (ELP)

L(IST) Q(UIT)
M(AP/DRIVE) R(ENUMBER)
N(UMBERING) S(HIFTLINE)
o (UTPUTDVC) U: (PDATESRC)
P: (UTSOURCE) V (ACANCY)

No cursor is displayed in edit mode. In this mode, you can edit Pascal and
assembler programs as textfiles, and save them to disk for
compiling/assembling later; this mode supplies 43000 bytes of memory
available to the user. Note that auto-repeat is in effect for all keys.

Essentially, the editor lets you edit and augment programs, with line
numbers supplied during editing. Each line can be 80 characters long - just
as in BASIC - and you have full control of the normal screen editing keys
(cursor up/dnJlftJrt;insertidelete). Revised lines are "installed" by pressing
<RETURN> when you're through editing. If you type in a line number and
<RETURN> only, and that number already exists, said line will be deleted.

Lines can be edited in any order, at any time; just move the cursor to the line
in question, correct, and press <RETURN>.

There is one small limitation in editing: It is impossible to start a text line
(i.e., immediately following a line number) with a number. If you do so,
you'll get one of two messages:

33

ABACUS Software SUPER Pascal Development System

ILLEG. LINE#!
EXECUTION NOT SUCCESSFUL!

If a line is typed in without line number, the fIrst character will be read as a e
command, and again, you'll probably get

EXECUTION NOT SUCCESSFUL!

since the system will be confused by the number.

If command input is wrong, two common error messages are

ILLEG. SYNTAX!
EXECUTION NOT SUCCESSFUL!

These are the remaining error messages:

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

(illegal device number)

ILLEG. TITLE!
EXECUTION NOT SUCCESSFUL!

(illegal filename)

TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

('*' used for unspecified filename)

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL!

(insufficient memory)

COMMAND IGNORED!
(use of undefined command abbreviation)

Other errors encountered will be I/O errors, which will display messages, but e
will not dump you from the editor, or destroy your fIle.

34

ABACUS Software SUPER Pascal Development System

3.1 EDITOR COMMANDS

e Some of these commands have a colon (:) appended to them; the reason for
this is a string or set of numbers are expected to follow. If mistakes are
made in giving input, you'll be greeted with a syntax error. Remember, too,
that all input must be concluded with <RETURN>.

3.1.1 A: (= APPEND FILE)

This command permits appending files on disk to flIes already in memory.
Its syntax sounds like this:

A: FILENAME

with FILENAME representing the file to be appended (added).This means
that the file is taken from the last disk drive used (which should be 0
immediately after the editor starts, but you can change that with the 'M'
command). The editor will ignore any illegal input, and respond with an
error message. When correct input has been supplied, the editor will get the
flIe from disk, and append the two programs.

To avoid any conflicts, the second flIe (the one to be appended) should be
shifted above the last address of the original flIe ('S').

If errors are encountered (file not found, file not a textfile, etc.), the
procedure is stopped, but the original flIe will remain behind. On the chance
that you run out of memory, the error message will read

RAM-OVERFLOW!
EXECUTION NOT SUCCESSFUL!

See 3.5 for help with memory trouble.

35

ABACUS Software SUPER Pascal Development System

3.1.2 C: (= CHANGE)

This conunand makes it possible to replace any text string with a new string.
Syntax:

C:STRING OLD

refers to the old string. Alteration reads:

TO:STRING NEW

A string can be defined as any character or set of characters found on the
keyboard, and printed onscreen. The editor uses all material following the
colons (:). Unused columns are filled in with blank spaces (NOTE: Do not
end strings with a space yourself).

If the change involves replacing a short string with a longer one, see that the
line doesn't have more than 80 characters, or this error message will turn up:

LINELENGTH EXCEEDED IN LINE:
... CURRENT TEXT LINE ...

You will have to go in and change this line "by hand"; 'e:' will not operate
with overstepped lines. Errors will not cause you to lose your text, though
(for additional help, see 3.5).

3.1.3 D (= DELETE)

This conunand deletes a line, or a number of lines, specified by the user.

D

alone will delete all text in the editor. You'll get a warning--

SURE TO DELETE THE COMPLETE SOURCE? YIN

36

ABACUS Software SUPER Pascal Development System

-- to avoid deleting something you may not want dumped. Respond 'Y' if
you want to dispose of the text.

Dxxxx

deletes line #xxxx; this is equivalent to typing just the line number with no
text following.

D-xxxx

deletes from beginning-of-file to line #xxxx.

Dxxxx-

deletes from #xxxx to end-of-text.

Dxxxx-yyyy

deletes from xxxx to yyyy. Ifyyyy is a number less than xxxx, then no text e is scratched.

Input not following these patterns will be ignored, and treated as syntax
errors, excepting input using additional spaces between parameters.

3.1.4 F: (= FIND)

The 'F:' command is handled much like the 'C:' command; it allows you to
fmd any text string:

F:STRING

The editor will then list all lines containing this string. The listing can be
stopped and started by pressing the spacebar. The RUN/STOP key aborts
the listing, and halts the 'F:' command

37

ABACUS Software SUPER Pascal Development System

3.1.5 G: (= GET SOURCE FROM DISK)

This command will load a textflle from diskette for editing. The command e
syntax is similar to ' A:':

G:FILENAME

FILENAME, of course, refers to the flle to be loaded from the last drive
used, or the drive stated by the 'M' command.

An asterisk (*) can also be used for FILENAME, provided that '*' has been
predefined (see also 'P:'). If no such file has been defined, or if an error has
been caused from' A:' or 'U:' commands, you'll see

TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

onscreen; if this, or some other error message comes up, the command given
by the user will be ignored. _

Immediately after all proper input, the 'G:' command will load the flle
requested from diskette into memory. The system will arrange the file into
lines numbered in fivefold steps, beginning at 1000 (i.e.,
1000, 1005,10 10, 10 15,etc.). NOTE: The line numbers are there for your
convenience only--they are not in fact part of the file itself.

Errors, such as flle not found, no textfile, read error, etc., will stop the
command, and send you back to the editor. Whatever text loaded into the
system before the error will be available to you.

If there isn't enough memory to handle the file, this message appears:

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL!

However, you WILL be able to edit the text loaded up to the time of the
overflow.

38

ABACUS Software SUPER Pascal Development System

NOTE:

Any text in memory when the 'G:' command is called will be lost and
overwritten by the new material. Be sure that this old material is saved
before calling a new file. If you choose not to save it, the 'G:' command
will ask:

SURE NOT SAVING THE SOURCE? YIN

giving you the option of saving or not

3.1.6 H (= HELP)

'H' prints the complete command set onscreen, to remind you of all sections
of the program (MAIN/EDITORJUTILITY).

3.1.7 L (= LIST)

This command allows you to list all or part of the textfile for review or
debugging, using the "artificial line numbers". Here are the individual
versions of LIST:

L

lists entire text from beginning to end.

Lxxxx

lists line number xxxx.

L-xxxx

lists text from beginning up to line xxxx.

39

ABACUS Software SUPER Pascal Development System

Lxxxx-

lists lines xxxx to the end of the ftle.

LXxxx-yyyy

lists from xxxx to yyyy. If yyyy is less than xxxx, then no lines will be
listed.

The listing can be slowed with the CTRL key, or stopped and started by the
spacebar. Press the RUN/STOP key to abort the listing altogether.

3.1.8 M (= MAP/DRIVE)

For details on the 'M' command, see Chapter 2.1.7 eM' in Main Menu).

Keep in mind that disk drive 0 will be the "main drive", i.e., that the system
will look there for LOADDAT and the respective system programs. The
'M' command will let you change drive numbers for 'A:', '0:', 'P:', and
'U:'.

3.1.9 N (= AUTO-NUMBERING)

This command automatically generates line numbers in steps of 5, allowing
you to add text There are two methods of starting auto-number mode:

N

which begins with a number 5 higher than the last number of text. If no
previous text exists, then 'N' will start at line 1000.

Nxxxx

begins at line xxxx (determined by the user) and goes in five-step increments
from there.

40

ABACUS Software SUPER Pascal Development System

Auto mode will switch off if:

you move to a different line for editing, and press <RETURN>.
you enter a <RETURN> after a line number.

During auto mode, no other editing conunands can be accessed; in order to
return to editing, use one of the above methods.

3.1.10 0 (= OUTPUT DEVICE)

This lets you select the output device to be used. When the editor starts, the
output device is obviously the screen, but using

Ox,y

will let you redefine this device number; x represents the primary address,
i.e., the device number proper, and y the secondary address. If no number is
given for y, the default value will be O. Here are three ways to reset the
output to the screen:

00,0 (or) 00 (or) o

Input of an illegal device number (other than 0 or 4-7) or secondary address
(other than 0-15) will result in

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

being displayed.

After redefining the output channel, the entire output -- which would
normally appear onscreen -- will go to the specified device; this feature can
be very useful for the 'F:', 'L' and 'M' conunands. On the other hand, your
best bet for a hardcopy of the text would be the 'W' command in the Main
Menu, since that conunand gives you a neatly formatted printout of a file.

Output mode can be halted with the RUN/STOP key, or an error will change
the readout back to the screen.

41

ABACUS Software SUPER Pascal Development System

3.1.11 P (= PUT SOURCE TO DISK)

This takes a text flle from the editor, and saves it to disk. This text file can e
later be compiled or assembled:

P:FILENAME

FILENAME is, of course, the name under which you want the flle saved to
disk. You may first want to check the directory or change drives CM'
command).

Rather than use a fllename, you could use the identifier "*", in connection
with the 'G:' command which also allows for predefined filenames. If such
a filename hasn't been defmed, or you have accidentally used 'A:' or 'U:',
the system will display

TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

The following prompt is displayed to insure against any other bad input:

CONFIRM "FILENAME,DRIVE_NR"? N/Y

Confmnation ("Y") begins the save procedure.

Any errors occurring during the save sequence (e.g., bad syntax, illegal
identifier) will display a corresponding error message, and bring the
command to a halt.

The syntax rules for Pascal identifiers must be followed (as we've
mentioned before at Chapter 2.1.8). Be sure to reread those rules, as it will
make your file storage easier.

NOTE:

It is very important that you give a textfile a different name from the e
compiled "program" version, when saving to disk -- Pascal syntax suggests a
PROGRAM header (PROGRAM PROGRAM NAME; ...), to avoid any
overwriting problems.

42

ABACUS Software SUPER Pascal Development System

Here are the important identifiers:

S NAME name of a Pascal source-file (source)
A NAME name of an assembler source-file (asmblr)
C NAME name for Pascal program code (code)
M NAME name for 6510 object code (M-prgm)

The remaining files (data) have no specific identifiers.

If you give the fIle to be saved a name identical to a fIle already on disk, the
old ftle will be scratched, and replaced by the new. However, if the ftle on
disk is locked (protected), the save process will abort, and this message will
be displayed:

ILL.FILE OPR.

Corresponding error messages will come up for any 110 errors. Once the 'P:'
section is done, the old text remains in the editor for your work.

3.1.12 Q (= QUIT)

This command leaves the editor and returns you to the Main Menu. If there
is text in the editor when the 'Q' command is given, the system will ask
whether you want to save the fIle or not

SURE NOT SAVING THE SOURCE? yiN

Choosing 'Y' (yes) erases the ftle and returns you to the Main Men!J.

3.1.13 R (=RENUMBER)

The 'R' command comes in handy for renumbering programs (for, say,
renumbering a program after editing). The numbering begins at 1000, and
increases in 5-step increments.

43

ABACUS Software SUPER Pascal Development System

If the need arises for more than four lines' worth of space for additional text,
just insert a new line number, a (* comment *), <RETURN>, and run the 'R'
command; this will give you 9 lines to work with.

3.1.14 S (=SHIFf LINE)

Often the user will fmd it necessary to move an entire set of program text to
another place (e.g., when appending files); to accomplish this, we've
included the'S' command. The syntax must be typed in as follows:

Sxxxx-yyyy:zzzz

The command moves lines xxxx through yyyy to the place defined by zzzz.
If the value for line yyyy is less then that of line xxxx, the command will be
ignored. On the other hand, if zzzz is defined within the ranges xxxx to
yyyy, the system will say

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

After moving text, it should be renumbered (see 'R' command). Now you
can work with the newly-moved text.

3.1.15 U: (=UPDATE FILE)

To some extent, this is a companion to the' A:' command -- it allows you to
append text to flles already on disk. The opening syntax sounds like this:

U:FILENAME

. -- FILENAME representing the file on disk (you may first want to verify
that ftlename with the 'M' command). The system will ask for verification:

CONFIRM "FILENAME,DRIVE_NR"? N/Y

44

ABACUS Software SUPER Pascal Development System

A positive response ("Y") starts the save routine; any other character will
cancel the command.

If the file is locked (protected), the 'U:' command displays

ILL.FILE OPR.

and halts the command; any 110 errors will also display messages and abort
the command, although the text will remain in the editor.

NOTE:

The 'U:' command can, with repeated use, produce extremely long text flIes
--longer, in fact, than the 'G:' command will be able to handle. Keep this in
mind, and watch file size carefully.

3.1.16 V (=VACANCY)

This command returns the amount of memory free in the editor at any time
(the empty editor has 43000 bytes free). Any time that memory runs out will
cause the following to be displayed. (see 3.5 for a solution).

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL

3.2 EDITING PASCAL PROGRAMS

This chapter will briefly cover writing Pascal programs in edit mode.

Source programs are input using the syntax described in the "Pascal User
Manual and Report". The reserved words (keywords and word symbols) and
identifiers use the ASCII characters from $41 to $5A (upper-case). These
will be printed differently on the C-64, as we mentioned at the beginning of
this manual.

45

ABACUS Software SUPER Pascal Development System

In the default mode of SUPER Pascal (lower/upper-case mode), these
characters appear as lower-case, rather than upper- case (to avoid confusion,
you can go back to upper- case/graphics mode by pressing C=/SHIFT). _
Identifiers are distinguished by the "_" character (ASCII $5F, or "back- _
arrow").

The "{" and "}" characters, unavailable on the C-64, are replaced in SUPER
Pascal by "(*" and *)". Any other characters, strings or CHAR -types are
those used on the 64.

There are a few restrictions imposed by the 64 in developing Pascal
programs, but these are so trivial, that they probably won't make that much
difference in your programming:

Textlines (including line number) cannot exceed 80
characters (solution -- divide text into smaller sections);

First character of text (immediately following the line
number) cannot be a number (solution -- start text with a
space);

No blank text lines (answer -- input as a blank comment (*
*));

Aside from that, the 'N' command (see Chapter 3.1.9) helps in making room
for plenty of program development, where there seems to be no room.

Thanks to the large amount of text memory (43k), you can edit and write
Pascal programs that are downright huge. Large programs can be divided
into smaller sections, stored on disk in this form, and edited piece-by-piece.
A simple command at the end of each file tells the compiler that this is only
part of a program. We have managed to develop and effectively compile a
Pascal program of six separate sections of 40k each, and as far as we know,
the ability to divide programs is limitless, and can be used at your own
discretion (do keep in mind, though, that these sections must be absolutely
correct, syntactically speaking, before compiling).

The compiler command for continuing with another program section should
read:

46

ABACUS Software SUPER Pascal Development System

&CONTINUE(FILENAME, DRlVE_NR)i
(or)

&C(FILENAME,DRIVE_)i

This tells the compiler to get FILENAME for compiling, once it's through
with the present fIle, compile FILENAME from disk.

A simpler method:

&CONTINUE(FILENAME);
(or)

&C (FILENAME) ;

can be used if the additional source sections can be found on the same
diskette as the fIrst program section.

Next in the intermediate commands for the compiler is a second routine for
larger programs, which basically includes one much-used routine at a certain
spot in the program, rather than type in that routine time and again:

&INCLUDE(FILENAME,DRIVE_NR);
(or)

&I(FILENAME,DRIVE_NR);

This command interrupts the compiling of the present fIle, and pulls the
specifIed me (FILENAME) from disk, compiles that, and continues with the
old file. The fIle called by '&1' is now an integral part of the original
program. Needless to say, the text called by '&1' should be debugged and
ready to go before compiling, to avoid errors.

The short versions of this command are:

&INCLUDE(FILENAME)i
(and)

&I (FILENAME) ;

e which, as above, will work if the me to be INCLUDEd is in the same drive
as the original fIle.

47

ABACUS Software SUPER Pascal Development System

A program section can contain a number of '&C' and '&1' commands. A
program can work with up to 4 nested' &I' commands.

The INCLUDE command allows similar CONST-, VAR-, PROCEDURE-, e
FUNCTION- or statement defmitions to be used in different programs. Also,
individual routines can be used again and again, e.g., you could use the demo
program "Hilbert-Curve" in one of your high-resolution programs.

There's a third aid in designing Pascal source-code; the command for
conditional compilation. That is, versions of a program which differ from
one another in a few respects can be attended to as one program. The
conditional option reads:

&TRUTH(BOOLEAN_CONST);
(or)

&T(BOOLEAN_CONST);

This command tells the compiler to translate this section of the program text
only if the Boolean constant is lRUE. If the constant is FALSE, the
compiler ignores the text and continues searching until the TRUE a
conditional command is found. The compiler will compile the TRUE .,
version only.

It should be self-evident that control can be turned on with' & T (TRUE) , and
off again with '&T (FALSE) '.

The remaining compiler commands (' &P' and' &A') don't deal so much
with the source text as they do with information about the compiling process.
We will cover these in detail in the chapter on the compiler (Chapter 4).

3.3 EDITING ASSEMBLER PROGRAMS

This chapter will cover only the text editing assembler programs; particulars
of the assembler can be found in Chapter 5.

The assembler source follow tightly-assigned rules of syntax, in order for the
text to be properly converted to 6510 machine language. At the same time,
the source code must also be readable.

48

ABACUS Software SUPER Pascal Development System

These two items are often the reasons for an assembler source-code to have
specific colunms drawn within a text line. They aren't nonnal procedure;
those columns are for the user's convenience. Though they aren't necessary
to compiling, four-digit line numbers (1000-9999) are also included for user
readability. These are the same numbers generated by 'R' (see 3.1); starting
number 1000, steps of 5, up to 9999, 43k of memory.

On to those column divisions: The assembler has certain ranges for specific
material within a line -- a label field, an instruction- or operator-field, and an
operand- or address-field. The room left on a line can be used for comments
if desired.

Here's a sample text line, with its individual features defined:

--> text line : z z Z Z LLLLLLLL II I 00000000 ...

POSITION 1-4 (zzzz=linenumber)

Field for 4-digit line number.

POSITION 5 (space)

Blank space, separating line number from label field.

POSITION 6-13 (LLLLLLLL=label field)

This is where labels are placed for recognition by the assembler program.
The labels are linked together into an array. All identifiers are allowed here
as labels. The structural rules for labels are:

8 significant characters (no more can be used per field), whereby

the first character must be a letter, and

the remainder can be letters, numbers or It_It

Unused positions on a label field will be made up of spaces. If no label
exists in a line of text, then the entire field will be blank (spaces).

POSITION 14 (space)

49

ABACUS Software SUPER Pascal Development System

A space separating the label field from the instruction field.

POSITION 15-17 (I II=instruction or operator field)

This field is where the 6510 mnemonic instructions proper are put. The
abbreviations here are identical to Commodores 6510 defmitions. Here is a
list of these instructions:

ASL BPL CLV EOR LDX PLA SEC TAY
BCC BRK CMP INC LDY PLP SED TSX
BCS BVC CPX INX LSR ROL SEI TXA
BEQ BVS CPY INY NOP ROR STA TXS
BIT CLC DEC JMP ORA RTI STX TYA
BMI CLD DEX JSR PHA RTS STY
BNE CLI DEY LDA PLP SBC TAX

Along with these instructions, there are several pseudo- commands, which
behave like assembler commands:

.BA

.BY

.CT

.DL

.DS

.EN

.EQ

.NE

.OC

.OS

These pseudo-operations begin with a '.' at position 15. Chapter 5 contains
detailed descriptions of these commands, but we shall touch on these
pseudo-operands here.

POsmON 18 (space)

A blank space, separating the instruction field from the operand field to
follow.

POSITION 19 ff. (00000000 ... = operand field)

Column 19 is the starting place of the operand field, the length of which
varies. This field gives the operands for the operation, i.e., the parameters

e

for the machine language commands. Here is where the symbolic or _
absolute addresses appear, containing an address to which the routine should -
jump, ora particular item on which the command should operate.

50

ABACUS Software SUPER Pascal Development System

The length of the operand field depends on the type of addressing used in the
command, the length of the label used, and the address range. The
maximum length of an operand is limited to linelength (80 characters,
including line number).

If you should wish to add any commentary (similar to REMS in BASIC) that
the system will ignore, you can do so after the operand field by adding a
space and a semicolon (;). You can also insert comments after placing a
semicolon at position 6 or 15.

We have some other commands in the assembler which are quite different
from the norm (.CT,.NE, etc. -- see earlier in this chapter); these affect the
design on source-code and assembler processes.

The frrst of these is a string command:

. CT FILENAME

This command (IlUlemonic for IConTinue") instructs the assembler to
translate the source me on diskette listed in the operand field as
FILENAME .. CT allows you to work with assembler programs much larger
than the editor can handle; you can edit them in smaller sections, then
connect them into one unit with .CT.

Next we'll discuss the conditional commands

. EQ OPERAND and .NE OPERAND

in detail. These commands, similar to the conditional compiler instructions
(see 3.2), give the assembler the ability to choose between different versions
of a source program, and choose the one conditionally proper for editing and
saving. The mnemonic for .EQ means "If operand equals 0"; i.e., the
command converts the program that follows ONLY if the given operand is
equal to zero. In other words, the program would be acceptable if the
constant label at the beginning of the program equals O.

The pseudo-instruction .NE ("if operand is not equal to 0") works much the
same way, except the operand would have to be anything but O.

A conditional program section must be ended by the pseudocode

51

ABACUS Software SUPER Pascal Development System

which sets the assembler back to normal.

The following pages contain a sample program showing all these features. It
demonstrates carriage return output for the C-64, PET and ABC:

1100 C64 .DL 1 iset label C64 to 1
1105 PET .DL 0 iset label PET to 0
1110 ABC .DL 0 iset label ABC to 0

1200 CR .DL SOD iset label CR to 13

1300 . NE C64 icond . assemb. if C64<>0

1350 BSOUT .DL $F1CA ;label BSOUT address

1390 ;end of condo assemb.-C64
1395
1400 . NE PET icond . assemb. if PET <>0
1405 ignored if PET = O!

1450 BSOUT .DL $FFD2 iBSOUT address

1490 iend condo assem. PET
1495
1500 . NE ABC icond . assem. if ABC <>0
1505 ignored here if ABC=O!

1550 BSOUT .DL $FFOO iset label BSOUT

52

e

e

e

ABACUS Software SUPER Pascal Development System

1590 iend condo assemb. ABC

2000 OUTCR CR-output program,
2005 LDA #CR ;load CR-code and perform
2010 JSR BSOUT ;output routine,
2015
2020 .NE ABC icond. assemb. if ABC <>0
2025 give LF code (linefeed) as well
2030 LDA #$OA ;as CR (cancel by C64/PET)
2035 JSR BSOUT ;ignored here if ABC
2040 is equal to 0
2040 iend ABC.cond. assembly

iprogram for other versions

3000 .CT DEMO 2 iassembly command, which
3005 ;converts source file DEMO_2
3010 if found on diskette.
3015

3.4 MIXED PROGRAMS

A major strength of the SUPER Pascal compiler is its ability to handle
mixed programs -- in other words, it isn't limited to Pascal; it can also deal
with machine-language routines within a Pascal program. Assembler
source-code is called into a Pascal routine with PROCEDURE or
FUNCTION; it's a simple matter to treat assembly routines as "normal"
Pascal functions or procedures. For more information on this matter, see
Chapter 4.1.2.3. For the moment, however, we'll look at a few relevant
aspects.

53

ABACUS Software SUPER Pascal Development System

As we said above, machine language routines can be inserted in a Pascal
program with PROCEDURE or FUNCTION. In addition to standard
procedures of machine-code syntax (see 3.3 and 5), certain parameters must
be fitted to the routine to make it a Pascal-compatible procedure or function. _
The assembler section can be cordoned off with BEGIN and END, while the -
compilercornrnand

ASSEMBLE;

calls the program section.

This command should be developed somewhat to defme the exact name and
location of the file (if the disk has more than one assembler program):

ASSEMBLE(FILENAME,DRIVE_NR);

The system looks for the FILENAME on the drive selected. If the file is on
the "working disk", all you need type in is

ASSEMBLE(FILENAME);

Pascal-level constants can be defined within the assembler routine.
Furthermore, the contents of the Pascal variable stack can be read within
such a mil routine with STKPOI.

The machine-code routine is concluded with the instruction RTS, which
sends us back to the Pascal routine currently called. The chapter concerning
the assembler (5) suggests that the pseudo-command . EN should be used
after RTS. N01E: the next line of the source program should be in Pascal.
The following routine will give you an example of what has been discussed:
Essentially, this program is a Pascal routine containing a machine-language
subroutine to change the 64'S screen colors.

54

ABACUS Software SUPER Pascal Development System

1500
1505
1510
1515
1520
1525

PROCEDURE SCREENCOLOR (COLOR:BYTE);
{ }

{Pascal routine with a call to change screen)
{colors (parameters in single-byte form) }

{ }

1530 ASSEMBLE;
1535
1540 CPUPORT .DL $01
1545 SCREE RG .DL $D020
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625 EXIT
1630
1635
1640 {}

SEI ;broaden IRQ for
LDA *CPUPORT ;different memory
ORA t3 ; configuration
STA *CPUPORT ; (I/O enable)
LDY to ;set index register
LDA (STKPOI),Y ;get parameters
STA SCREE RG ;set screen color
LDA *CPUPORT
AND t$FC
STA *CPUPORT
CLI
INC *STKPOI
BNE EXIT
INC *STKPOI+1
RTS

.EN

;reset memory
;config.I/O disable

; IRQ permit
;set-raise Pascal
;variable stack and
;thus parameters
;return to Pascal

;end Assem routine

1645 {now back to the Pascal routine}
1650 {}

2000 SCREENCOLOR(tO);
2005 {call to switch on screen color BLACK}

55

ABACUS Software SUPER Pascal Development System

3.5 INTERNAL ORGANIZATION OF THE EDITOR

We'll spend this chapter looking at the design of the editor, and give a few e
explanations on how to write textfiles in this mode. The chapter will
conclude with memory management during edit mode.

With the exception of one critical section in machine language, the editor
itself is a Pascal program (see the complete listing in the Appendix of this
manual). When editing, the program organization and variables carry
greater weight than individual textlines; here we can see a connection
between necessary memory usage and the program's ability to find lines
Quickly. The best type of program in Pascal is a solidly-written one.

Program design involves being able to edit, delete, move and augment lines
without any problems to the system. The contents of a given line is defined
in terms of STRING-length, which is, of course, limited to line-length (80
chars.). Aside from that, the Pascal-heap (which contains the dynamic
variables) can also be altered. However, removing text strings which are no
longer needed can pose some problems with pointer manipulation, thus A
slowing the program down. In addition, leaving these text strings in can take _
up a good deal of memory.

There is, however, a way out of our memory problems: Rather than keep the
text in memory, the editor will allow us to move memory around, and make
adjustments for text storage on disk to be called up later; as this space fills
up from loading (and as the strings become unnecessary), the garbage
collection is speeded up, and the heap pointers don't get pushed about by the
collection. Another good reason for using temporary storage is that it
increases the amount of memory available for writing programs. The
compiler commands &CONTINUE, & INCLUDE, ASSEMBLE and the
assembler command . CT are used in this respect

56

ABACUS Software SUPER Pascal Development System

3.6 TEXTFILE DESIGN

We'll conclude Chapter 3 with some remarks about the structure of textfiles.
They contain the information which will eventually become programs
(sourcefiles) in SUPER Pascal.

SUPER Pascal textfiles are designated with the file type declaration TEXT
per standard Pascal (i.e., the FILE OF CHAR according to the "Pascal User
Manual and Report"), with the filename and type followed by a carriage
return (ASCII $OD). As mentioned before, source programs are saved
without line numbers or other characteristics of textfiles. An end-of- file
(EOF) character will not be produced, and is not an absolute requirement of
the files. An EOF can be set in the information section of the directory.

If have a source program that's unfamiliar to you, and you'd like to have a
look at it (for editing, curiosity, whatever), it's possible to write a file
conversion program, to tum the file from SUPER Pascal back to a textfile.
We suggest that you have a good look at the "Pascal User Manual and
Report" for proper Pascal syntax and programming methods.

57

ABACUS Software SUPER Pascal Development System

4.0 PASCAL COMPILER

As mentioned previously, this manual is an instruction book for SUPER
Pascal, nothing more -- it is not a Pascal tutor, nor is it intended to be. We
suggest that you check the chapter at the end of this book ("For Further
Reading") for a list of beginning Pascal texts.

The basic concepts and definitions of Pascal were essentially invented by
Niklaus Wirth, a professor at the Technische Hochschule (technical college)
of Zurich, Switzerland). Professor Wirth literally "wrote the book" on the
subject -- the Pascal User Manual and Report, which is the acknowledged
text on the language. The language name, Pascal, is in honor of the French
mathematician Blaise Pascal(1623-1662), who built a working mechanical
calculator in the 17th century.

4.1 SCOPE OF THE LANGUAGE

The SUPER Pascal compiler contains the complete set of commands and
"figures of speech" used in standard Pascal, plus a few commands that we
included to make C-64 programming easier. The chapters that follow give
definitions of these commands.

4.1.1 ST ANDARD LANGUAGE ELEMENTS

All Pascal programs are written in a block-oriented manner, with program
blocks divided into two sections -- an arrangement section and a command
section. The arrangement section contains the definitions and declarations
necessary to the problems being handled, while the command section
contains the statements used for comparison, problem solving, etc.
Subprograms (procedures and functions) contained within such a main
program are written with the same block orientation. This top-down concept
is an important reason for the structural elegance of Pascal programs.
There's another, more functional reason for top-down programming: That
structure dictates the sequence in which the different language elements

59

ABACUS Software SUPER Pascal Development System

should appear. Now, on to the basics: The standard symbols and identifiers
are listed below followed by their defmitions.

Every Pascal program begins with the program header, which gives filename e
and individual parameters of a file. A header looks like this:

PROGRAM PROGRAM NAME (FILEPARAMETERLIST);

PROGRAM is the reserved word for the program header.

PROGRAM NAME represents the program identifier by which the program is
known; the SUPER Pascal compiler will save the program code to diskette
under this name.

NOTE:
The source program MUST be saved under a different name than the name
on the program header; otherwise, the sourcefile will be overwritten by
program code with the same name.

FILEPARAMETERLIST refers to the other identifiers within a file (placed _
within parentheses, with each parameter separated by commas), which are ..
used in the program. Two examples of this are INPUT and OUTPUT. These
last two, needed for accessing external files, are relics from the early days of
the mainframe computer -- used to call not only program code, but the
devices involved in retrieving data. On a home computer such as the 64, this
sort of thing is unnecessary for file retrieval, since we have immediate access
to disk. SO, INPUT and OUTPUT for us stands for the keyboard and screen
respectively. You can use the parameter list -- but you don't absolutely
HAVE to; the program header can be abbreviated:

PROGRAM PROGRAM NAME;

which makes life much simpler.

The next must be included in the course of the arrangement section -- the
label declaration:

LABEL LABELLIST;

LABEL is the reserved word for label declaration.

60

ABACUS Software SUPER Pascal Development System

LABELLIST stands for the label number(s) (separated by comma(s». The
label number should be used in connection with the GOTO command; the
number can be any whole number between 0 and 32767 (maxint).

The section fol1owing the label declaration is the constant arrangement:

CONST CONSTANTLIST:

CONST is the reserved word for constant arrangement.

CONSTANTLIST refers to a set of constant deftnitions (separated by
semicolons (;» required in the program -- these deftnitions consist of the
deftnition, followed by an equal sign (=), followed by the value of the
deftnition. It is permissible in SUPER Pascal to arrange deftned values for
simple calculations, or for comparisons between constants. Here are some
possibilities, encompassed in one example:

CONST VALUE = 3: NUMBER = 0;
ENDVALUE =VALUE * $FF +5:RETURN= CHR($OD):
ASCII = ORD(X): LESS = PRED(MAX):

The full scope of these comparisons are described in 4.1.2.1 under language
extensions.

The constants

FALSE (ordinal value 0),

TRUE (ordinal value 1),

and
MAXINT (ordinal value 32767)

are predetermined values.

There are two more constants, which aren't used in constant declarations per e se, but are handled within a program as if they are constants:

61

ABACUS Software SUPER Pascal Development System

NIL (as pointer constant for zero)

and

[] as constant for a blank number.

The declarations end with the type declaration:

TYPE TYPELIST;

TYPE is the reserved word for the type arrangement.

TYPELIST stands for the sequence of type definitions (each separated by
semicolons (;». The basic type definitions are set out thoroughly in the
Pascal User Manual and Report. It is possible to set subtypes in conjunction
with constants:

TYPE INDEX
COMMAND
ARRAY
DAY
WORKDAYS

O .. PRED(MAXVALUE);
ARRAY [CHR(O) .. PRED(' ')] OF CHAR;
ARRAY [1 .. 10*10] OF INTEGER;
(SU,MO,TU,WE,TH,FR,SA);
SUCC(SU) .. PRED(SA);

User-dermed scalar types (such as above) can go as high as 256 values.

Predetermined types:

BOOLEAN (FALSE, TRUE);

CHAR (CHR(O) .. CHR($FF»;

IN'l'EGER -MAXINT .. MAXINT;

and

REAL

In addition to these, the following list contains reserved words usable for
structure commands AND variable types:

62

ABACUS Software SUPER Pascal Development System

ARRAY

Arrays can be defined without limit as

ARRAY [DIMl,DIM2 ...] OF ELEMENT;

ARRAY [DIMl] [DIM2] ... OF ELEMENT;

or

ARRAY [DIMl] OF ARRAY [DIM2] ... OF ELEMENT;

-- take your choice.

RECORD

Fixed or variable records can be defmed; variable records can be set up
within a CASE-list; the component variables (tagfield) will only be allowed
with Ii specific array defmition in a memory location; the component
variable can be used with just a type name, so the array isn't an important
part of the record.

SET

Quantities of all scalar types (REAL) are permitted; a SET can contain a
maximum of 256; the range must not go beyond 0 .. 255.

FILE

FILE is not an element of a structured type itself, i.e., it doesn't fit in as an
element of an array, record, pointer or me. A FILE can be no more than
512 bytes (size of the me buffer).

" (POINTER)

The defmition of pointer types is used in connection with the design of list
and branch structures (progression and recursion):

63

ABACUS Software

BRANCH
JOINT

MARK;

RECORD

SUPER Pascal Development System

ENTRY:ARRAY [0 .. 7] OF CHAR;
LBRANCH,
RBRANCH :BRANCH

END;

These structured types are predetermined according to the Pascal User
Manual and Report:

ALFA = ARRAY [0 .. 7] OF CHAR;

and

TEXT = FILE OF CHAR;.

Next section deals with variable declarations:

VAR VARIABLELIST;

VAR is the reserved word for variable declaration.

VARIABLELIST states any set of variable groups, each group separated by
a semicolon (;). A variable group consists of a series of variable identifiers
(separated by commas (,)and ended by a colon (:»,for example:

VAR FLAG, SWITCH
CH
VALUE,NUMBER,SUMQ
TITLE, FILENAME
ARRAY
HEAP

: BOOLEAN;
:CHAR;
: INTEGER;
:ALFA;
:ARRAY [0 .. 9] OF INTEGER;
: "INTEGER;

64

ABACUS Software SUPER Pascal Development System

The variables

INPUT

and

OUTPUT

are predefined (under type TEXT).

In connection with these variable types, here are the memory requirements
for each type:

BOOLEAN, CHAR and user-specific variables - 1 byte

INTEGER- and pointer-variables - 2 bytes

REAL-variables - 6 bytes

SET-variables - 32 bytes

The variable arrangement set ends with the declaration of procedure and
function headers:

PROCEDURE PROCEDURENAME (PARAMETERLIST);

and

FUNCTION FUNCTIONNAME (PARAMETERLIST) : TYPENAME;

PROCEDURE is the reserved word for procedure assignment.

FUNCTION assigns function (reserved word).

TYPENAME defines the function return value, i.e. the type of function called.
SUPER Pascal allows all types except FILE for this value.

PARAMETERLIST defines the parameters for the given functiOn/procedure.
Syntax follows the "Pascal User Manual and Report". SUPER Pascal
permits all sorts of parameters:

65

ABACUS Software SUPER Pascal Development System

parameter transfer by number,

II II by name

and

procedure and function transfer by name.

Two examples:

FUNCTION FILEHANDLING(ELMNT:INTEGERiVAR SEQU:TEXTi
PROCEDURE ERROR) :BOOLEANi

PROCEDURE TEST(VAL1,VAL2:INTEGERiVAR MESG:ALFAi
FUNCTION CHECK:BOOLEAN)i

These type definitions must be determined and set up before this routine,
either as computer default (predefmed by system) or by the user.

The assignment set is done: Now we go on to the command set. This section _
contains the program activity proper; the entire command section is defmed •
(or bordered, if you prefer) by the reserved words

BEGIN

and

END

which give the start and end of the program. These two words are set off as
individual statements (nothing else on that line).

The individual statements from standard Pascal are given here, but you'll
have to check a Pascal instruction book for proper syntax and use; any
special differences between standard and SUPER Pascal will be laid out
below:

66

ABACUS Software SUPER Pascal Development System

: = (assignment)

Assignment operator goes to the left -- the expression (variable) goes to the
right of the equal sign.

IF ••• THEN .•• ELSE •••

Checks conditions, and branches to whichever next statement applies -
much more practical than Commodore BASIC's IFITHEN construct.

CASE .•. OF ... END

Sets up a multiple-choice of sorts, going to END if all else fails. SUPER
Pascal lets you make an infinite number of CASES. If none of the choices
work out, the program will immediately go to the next statement.

WHILE •.. DO ...

No difference between standard and SUPER Pascal.

REPEAT •.• UNTIL •..

No difference between standard and SUPER Pascal.

FOR •.• TO /DOWNTO ••• DO

Loop number can be defined as any scalar variable (aside from REAL
variables).

WITH ... DO •.. (record access)

This statement simplifies access to the array variables of a record. This can
save lots of memory in a source program by calling up a number of array
lists during runtime.

GOTO •••

This statement makes the program jump to the label specified (similar to
BASIC's GOTO). Pascal very seldom uses GOTO, mainly because earlier
generations of the language never even HAD such a command; but there are

67

ABACUS Software SUPER Pascal Development System

a few exceptional situations that might be made simpler by using this
command. For example, when errors crop up, it was possible to tell the
compiler to take an "easy out" using GOTO, to cease program flow and return _
control to you. Most of the time, though, other Pascal commands (e.g., •
IF /THEN/ELSE) had to suffice.

SUPER Pascal has a fully implemented GOTO statement; that is, no
limitations. You can use the statement to call up a procedure, function, or
even another program without compunction. One warning: If GOing TO a
loop or set of loops, be sure that the loop (set) is properly structured -- or the
system might get caught in an endless loop, which tends not to return
program control to you.

Standard procedures which are predefmed in standard and SUPER Pascal
consist of:

DISPOSE

This procedure is used in standard Pascal for freeing up parts of memory by
changing the dynamic (pointer-) variables on the heap (memory heap for e
dynamic variables). The area can next be cleared out with NEW (see
corresponding section).

The memory reserved for dynamic variables is quite different in a small
computer (such as a C-64) as opposed to a mainframe. Mainframes have
massive amounts of memory, and seldom need to do very much adjusting.
SUPER Pascal, like most other Pascal versions for home equipment, has a
DISPOSE command. There are, of course, other commands used to change
the heap pointers (MARK and RELEASE).

GET

GET sets the read pointer (which is set for an opened file by RESET) for a
file element.

Syntax: GET (FILEVARIABLE) ;

FILEVARIABLE stands for the identifier declared in the variable type
FILE. GET allows you to set the access pointer for the next character to be
read (see remarks under READ/READLN).

68

ABACUS Software SUPER Pascal Development System

NEW

NEW allocates and reserves a section of memory on the heap using a pointer
variable under Pascal control, i.e., the pointer containing the value for the
heap pointer is set to the next free space on the heap. The setting of the
heap pointer depends upon the size of the pointer variable.

Synmx:NEW (POINTERVARIABLE);

POINTERVARIABLE smnds for the identifier declared under POINTER
(see arrangement section). This variable is accessed with
POINTERVARIABLEI\.

NOTE:
Treat this command with care:

It can be adjusted to point to any memory location -- careless adjustment
could be fatal to your variables, and even the program. Be sure you know
where you're aiming it....

A pointer set to NIL obviously sets that value to 0, i.e., memory location
$0000.

PACK

This procedure packs spread-out structured variables together (saves
memory) in standard Pascal. SUPER Pascal already does this internally, so
this command isn't available.

PUT

Sets write pointer in conjunction with REWRITE (analogous to GET).

Synmx: PUT (FILEVARIABLE) ;

FlLEVARIABLE smnds for the identifier declared in the arrangement
section as FILE>.

69

ABACUS Software SUPER Pascal Development System

READ

This procedure has a double purpose: First, it serves to allocate access to _
existing ftle elements under one target variable; second, it sets the read .,
pointer to the next ftle element.

Syntax: READ(FILEVARIABLE,TARGETVARIABLELIST)i

FILEVARIABLE stands for the identifier for accessing the existing ftle
variables. When handling a ftle as INPUT, this variable we needn't be so
explicitly described. The syntax for the simple version is

READ(TARGETVARIABLELIST)i

TARGETVARIABLELIST stands for a set of ftle elements (each separated
by commas), for a set of variables -- these represent at least one identifier.
Obviously, the target variables must be of the same type as the ftle elements.
An exception to the rule applies to TEXT filetypes (thus, INPUT ftles as
well). The target variables for these flles can be declared as CHAR,
INTEGER and REAL types. Target species INTEGER and REAL will
automatically convert ASCII representations of strings in the file to the
binary coding used within variables.

There is another point to consider about the above. When reading
INTEGER and REAL values from a TEXT ftle, a numeric string must be
ended with the proper syntax. This end character will not be read: Rather,
the read-access pointer will point to this character after the read operation.
This closing character must be recognized, or the next INTEGER or REAL
read operation will not take place. When READ encounters a numeric
variable, the access pointer will go to the start of the next number string.
Leading spaces are ignored when reading a REAL or INTEGER variable.

One item to be observed is the line delimiter used in TEXT ftletypes (the
ClR, or carriage return: ASCII $OD, or 13 in decimal). When the ftle-access
pointer comes upon this character, the pointer is set to the function return
value of the function EOLN to TRUE. This return value is 0 on reading a
numeric variable; the read pointer then goes to the start of the next line.

The variable INPUT has a peculiar relationship to the TEXT type itself.
This INPUT has its own ftle buffer (not to be confused with the keyboard

70

ABACUS Software SUPER Pascal Development System

buffer, in which any key pressed is held temporarily, until the C-64
operating system gets around to working with it). Suppose we have an
empty input buffer; if we call up me INPUT, the C-64 system routine
GETLINE is called upon once this buffer is filled. GETLINE reads the
keyboard and puts the given characters onscreen. Program control remains
in this routine until the <RETURN> key is pressed (EOLN). The line of text
is taken into the input buffer after <RETURN>. Now the input buffer will be
provided with the first target variable from the READ call. The access
pointer sets itself for however many characters are in the buffer, as is
necessary for the provision of the target variables. A new READ command,
or arrangement for another target variable immediately puts the next
character into the input buffer. The procedure GET (INPUT) works in
much the same way in resetting pointers by one character position.

The input buffer's involvement in this reading process continues until the
access pointer reaches a carriage return, which is interpreted as a space (or
as a 0). The next GETLINE and READ will cause the input buffer to reml,
whereby the access pointer goes back to the beginning of the buffer . .
One difference between READing a diskette me and the me INPUT is the
response to illegal characters used for numerical variables: Such characters
(or bad syntax) will give you:

IL. INPUT

Bad access to a diskette me will stop the program with a runtime error, while
bad INPUT will let you re-enter the input without program stoppage.

READLN

READLN will require some re-reading of READ. Here we have an additional
use for the access pointer. Once all target variables are fed in, READLN sets
the pointer to the next carriage return; i.e., the next read access can be from
a diskette me AND call INPUT and GETLINE. It's possible to call up
READLN without a target variable list:

READLN(FILEVARIABLE)i

or simpler still, for reading INPUT alone:

71

ABACUS Software SUPER Pascal Development System

READLN;

This procedure will set any ftle access pointer to the next carriage return.

Because READLN will only run properly if a clr is read, the command is best
used with TEXT ftletypes.

If a ftle access (regardless of being called with GET, READ or READLN) isn't
preceded by a RESET for opening said ftle, the runtime-error

NOT OPEN ERROR!

will appear, and the program will cease.

This last doesn't apply to ftle INPUT, which doesn't open ftles per se;
RESET (INPUT) has a special meaning, to be covered later.

RESET

RESET opens a file for reading purposes, i.e., the ftle access pointer will be
set for the fIrst element of this me.

Syntax: RESET(FILEVARIABLE);

F:ILEVAR:IABLE represents the identifIer for a FILE variable declared in
the assignment section of the program.

RESET utilized with INPUT deserves special mention: The standard
procedure RESET (INPUT) resets the the read pointer (in the input buffer)
back to the start-of-buffer, then allows the buffer to read any new file
INPUT. This, unlike READLN, makes it possible to provide correct input, if
the me was incorrect.

REWRITE

Analogous to RESET: REWRITE opens a ftle for writing, i.e.,the ftle access
pointer is set to the start of the new sector of said me. e
Syntax: REWRITE(FILEVARIABLE);

72

ABACUS Software SUPER Pascal Development System

FILEVARIABLE identifies the FILE variable declared in the assignment
section.

e NOTE:

A file already on diskette (i.e., bearing the same name) will be deleted by
REWRITE, except when the file is locked (protected), in which case the
runtime-error message

IL.FILE OPR. ERROR!

is displayed, and program run is stopped

REWRITE (OUTPUT) isn't needed by our system, so it has been left out.

We should supply some background information on the file procedures
RESET and REWRITE: When a diskette file is opened (regardless of
purpose [read or write]), the file- access is limited to the me buffer. This file
buffer is 1024 bytes in size (Ik, if you prefer); RESET loads the fIrst sector
(512 bytes) of the opened file into the buffer.

Now, a relatively simple access mechanism in the file access pointer can pull
type and variable declarations set up in the file elements. Once the access
pointer goes beyond the frrst sector, the fIrst sector moves to the "bottom"
half of the buffer, and the new sector is loaded into the "upper" half. This
adds up to fast and effIcient file access. When the access pointer gets to the
conclusion of the last file element (end-of-file, or EOF), the return value of
the standard function EOF is set to TRUE. If, by some chance, the read
access finishes reading the file without running into EOF, the runtime
message

AFTER EOF ERROR!

is displayed, and the program stops.

The write access to a me is similar to reading a file. REWRI TE sets the
access pointer to the beginning of the extant file, reserving the file buffer.
WRITEs and PUTs utilize this "half-and-half' buffer usage (see the
previous paragraph).

73

ABACUS Software SUPER Pascal Development System

SUPER Pascal has a special command that must be used to end the write
process, and commit the remaining contents of the buffer to the diskette file.
This command is CLOSE, in a slightly different form from standard Pascal, _
in that it closes the flle opened with RESET or REWRITE, and clears the file •
buffer for access to another file.

Now, regarding our fast file access system from a few paragraphs back:
SUPER Pascal has three such file buffers (each lk) set up. This means that
you can only access three flles at one time, regardless of whether they are
being accessed for reading or writing. This may not seem like much, but
we've had no problems in terms of practical usage with SUPER Pascal. In
fact, you'll find that three lk buffers will be quite enough for handling the
most complicated file operations (reading sourceflles, generating codefiles,
generating revised data, accessing sourcefiles temporarily for 2-pass
assembly, accessing variable data for a post-mortem-dump, etc.).

If you happen to try opening a fourth file buffer with RESET or REWRITE,
you'll get a

BUF.OV. ERROR! (buffer overflow)

and a stopped program.

One interesting feature of the file buffer system is the ability, when a RE SET
and GET are called, to load any sector of a program-code flle, and join it
with any callable external procedure or function. SUPER Pascal gives you a
number of direct commands to call up such routines ('M', 'G', 'P', 'W');
these commands are contained in LOADDAT.

One thing not clearly discussed in the standard Pascal literature should be
mentioned here: Should a file be opened for reading with RESET, you can
switch from read access to write access at any time (Le., regardless of
whether the pointer is at the beginning, middle, or end of the file). This is
simply a matter of using PUT instead of GET, and WRITE instead of READ.
SO, it's an easy matter to add new data to any spot on the flle ("UPDATE").
The new file length, and the EOF marker are adjusted accordingly with this _
switch. Once you switch from READ to WRITE, though, switching back to •
READ isn't possible; otherwise, the new data will be lost.

74

ABACUS Software SUPER Pascal Development System

If a file, opened with REWRITE or RESET, has not been closed properly
(CLOSE), the program will halt, and

4It NOT CLO. ERROR!

will be displayed. As we mentioned before, this doesn't apply to file
INPUT. Attempts to read or write to an unopened file (with RESET or
REWRITE) will cause the system to state:

NOT OPEN ERROR!

This also doesn't apply to INPUT or OUTPUT.

WRITE

Like READ, WRITE has a double function: To arrange a new me element;
and to set the write pointer to the next position available for that me element.

Syntax: WRITE(FILEVARIABLE,SOURCELIST);

FILEVARIABLE refers to the identifier for accessing extant me-variables.
When file OUTPUT is being handled, this variable is unnecessary. The
"short" syntax for this occasion is:

WRITE(SOURCELIST);

SOURCELIST stands for at least one expression (more than one would have
each separated by commas) representing output of me elements. It's
obvious that the source expression(s) must be of the same type as the file
elements. The file type TEXT (OUTPUT also fits in this class) is an
exception to the rule. Such source expressions as CHAR, BOOLEAN,
INTEGER and REAL can be listed in these files. These last three will be
automatically converted in the file from the binary system (used internally)
to ASCII. Integer or real output, as with boolean expressions, will be set out
in a specific format. Boolean sets will be printed without leading or ending
spaces.

OUTPUT is particularly helpful in making formatted screen or printed
output, when used with the write procedure. This array format is separated
from the source expression by a colon (:), thus:

75

ABACUS Software SUPER Pascal Development System

WRITE(FILEVARIABLE,SOURCEEXPRESSION:ARRAYFORMAT)i

The file variable given must be a TEXT type. The source expressions will
now be put out in ARRAYFORMAT, right-justified. ARRAYFORMAT must be
an INTEGER type. The maximum allowable value for an ARRAYFORMAT
hinges on the usual 132 characters per printer-line; the output buffer is also
limited to 132 characters. If this number is surpassed (or if the value is less
than 0), the runtime error

IL.QUANT. ERROR! (illegal quantity)

is displayed, and the procedure stops.
There is a further adjustment that can be made for the formatted output of
real numbers:

WRITE (FILEVARIABLE,REALEXPRESSION:ARRAYFORMAT:PLACE
FORMAT) i

As above, the me-variable must be TEXT. ARRAYFORMAT is also covered
above. PLACEFORMAT -- which must be INTEGER -- the numbers are _
formatted in fixed-point notation (i.e., decimal points are neatly lined up).
There is a limitation; the numbers are limited to 11 decimal places, and the
last place rounded off. This can be adjusted to anywhere between 0 and 31
decimal places. A larger value for PLACEFORMAT will give you an

IL . QUANT. ERROR!

In contrast to the array format, the place format will take negative values.
This means that the real number is given in floating-point notation, but a
negative sign is attached. The range exists between -1 and -11; any steps out
of range bring up

IL • QUANT. ERROR!

See the next section (WRITELN) for output options.

76

ABACUS Software SUPER Pascal Development System

WRITELN

WRITELN basically goes under the same rules as WRITE. However,
WRITELN also seeks out the target file(s) and resets the write pointer at each
CIR, then after printing, looks for the next line.

Syntax: WRITELN(FILEVARIABLE);

"Short" syntax (for use with OUTPUT):

WRITELN;

The command produces a fonnatted sourcelist. WRITELN is used only with
TEXT files.

If attempts to access a file are made without a previous REWRITE or
RESET, you'll see

NOT OPEN ERROR!

and the program will halt

NOTE:

It is always possible to write to a file opened with RESET i.e., a file opened
for reading). Internal control can switch the pointer to the end of the file, so
that new data can be written in. If the file in question is locked, the data
stays untouched, and the runtime-error

IL.FILE OPR. ERROR!

appears.

The functions defined by standard Pascal fall under three categories:

Type-conversion functions
Conditional functions
~athematicalfunctions

77

ABACUS Software SUPER Pascal Development System

The fIrst of these, the type-conversion functions, serves to convert a quantity
of one type into a quantity of another type. This allows different types to be
compatible to one another. To this set belong:

CHR

This converts any scalar argument (REAL numbers) to CHAR.

Syntax:

CHR(EXPRESSION) (function type:CHAR)

EXPRESSION stands for any scalar quantity. For example, typing in

CHR (65) or CHR($41)

gives the letter A and

CHR (13) or CHR($OD)

gives a carriage return (c/R). Naturally, you are limited to the size of the
character set (0-255, or $OO-$FF). Any value above or below yields

IL.QUANT. ERROR!

ORD

This function peJforms the opposite of CHR; from an integer to any scalar
argument (REAL).

Syntax:

ORD (EXPRESSION) (function type:INTEGER)

EXPRESSION stands for any quantity. The function call gives the
respective ordinal number; numbering begins with O. CHAR-size determines
the consequent ASCII <ode of the ordinal value.

78

ABACUS Software SUPER Pascal Development Systelll

The second group of functions are those which read all conditions in the
system (I/O register, for example), and act on the truth of those col'lditiOftS
(TRUE or FALSE). These functions are therefore BOOLEAN in nature.

EOF

Reads the ftle access (GET, READ or READLN) for end-of-file; case is
TRUE if reached, FALSE if not

Syntax:

EOF(FILEVARIABLE); (function type:BOOLEAN)

EOF can also check on ftle INPUT:

EOF (INPUT)

or in short form (without the argument)

e EOF

Since the C-64 views keyboard input in the same way as ftle input, the EOF
flag can be set to TRUE by pressing the RUN/STOP key.

EOLN

This function can detect whether the read pointer fmds a carriage return in a
TEXT ftle; TRUE if so, FALSE if not.

Syntax:

EOLN(FILEVARIABLE) (function type:BOOLEAN)

This function is also useful for INPUT.

ODD

Gives information regarding the remainder of an integer divided by 2. If the
remainder is 1, the function is TRUE; otherwise, FALSE.

79

ABACUS Software SUPER Pascal Development System

Syntax:

ODD (EXPRESSION) (function type:BOOLEAN)

The EXPRESSION used must be an INTEGER.

The third group of functions embrace the mathematical ("computing")
functions. Two common functions:

P:RED

and

succ

which are used to determine the Predecessor and Successor to the
argument(s).

Syntax:

PRED(EXPRESSION)
SUCC(EXPRESSION)

(function type:EXPRESSION-TYPE)
(function type:EXPRESSION -TYPE)

EXPRESSION must be defmed as a REAL number. The return value of the
function will consistently be the same type as the argument (EXPRESSION).
PRED will be less than the defined value, while SUCC will be greater than
that value. This function should not be used with undefmed values.

The remaining functions are arithmetical, and particularly useful for
scientific programs:

DS (determines absolute value)
SQR (squares value)

Syntax:

ABS (EXPRESSION)
SQR (EXPRESSION)

(function type:EXPRESSION-TYPE)
(function type:EXPRESSION-TYPE)

Both these functions will work with INTEGERs or REAL numbers.

80

e

ABACUS Software SUPER Pascal Development System

ARCTAN (reverse of TAN-function)

cos (COSINE-function)

EXP (exponent)

LN (logarithm)

SIN (SINE)

SQRT (square root)

TRONC (whole numbers (left of decimal pt.»

ROUND (round off to next whole number)

These functions all have same syntax and type:

funct (EXPRESSION) (function type:REAL)

EXPRESSION is the expression used for the function; this argument can be
either INTEGER or REAL. The function value, returned, however, will
consistently be REAL, so SUPER Pascal has more call for the functions
TRUNC and ROUND than you would in standard Pascal. These functions
give you integers. In order to maximize the use of TRUNC and ROUND (i.e.,
to avoid limiting these functions to -MAXINT to +MAXINT) these two
functions belong to the REAL types. Converting these numbers to integers
is possible with INT:

INT(TRUNC(EXP(l») gives the integer 2

INT(ROUND(EXP(l») gives the integer 3

If illegal arguments are given for the functions LN and SQRT (negative
numbers, 0 for LN), the program will stop and display the error message

IL . QUANT. ERROR!

81

ABACUS Seftware SUPER Pascal Development System

Those are the standard functions in Pascal. The next few paragraphs discuss
the combining operations which can go within the expressions. The reserved
words according to standard Pascal are:

AND and OR

for logical boolean comparisons. The result is always a BOOLEAN

expression.

NOT

for logical negation. The result is likewise BOOLEAN.

IN

to test for quantity relationship. Result BOOLEAN.

DIV

for wilole-Rumber division of integers. Result will be INTEGER.

HOD

for determining the remainder of integers. Result: INTEGER.

+ and

as leading characters, and for the addition and subtraction of integer and/or
real Mm.bel'S. An integer results from an equation made up of integers;
otherwise, the result is real.

*
is used to I6Ilkiply integer andIO£ real numbers. As above, an all-integer
equation yields an integer result; otherwise the result is a real number.

/

for dividing integer and/or real numbers. The quotient will always be a real
number.

82

ABACUS Software SUPER Pascal Development System

Pascal recognizes a number of comparative operations (see below). These
comparisons must be used in conjunction with like types of numbers, i.e., all
integers, all real, etc. The result of such expressions is BOOLEAN.

= Test for equality

<> Test for inequality

< Test for "less than"

<= Less than or equal to test amount

> Greater than test quantity

>= Greater than or equal to test quantity

Please check your Pascal User Manual and Report for standard usage of
these elements. Now, on to one command that has nothing to do with the
assignment set, or the command section: Rather, it deals greatly with
compiler control:

FORWARD

This directive allows you to defme blocks within a program which the
compiler will treat as procedures or functions. Thus, these
procedures/functions which have been predefmd can be called repeatedly:
This is useful for such things as recursion routines (see the Appendix for the
HILBERT curve sample program).

4.1.2 LANGUAGE EXTENSIONS

The language extensions in SUPER Pascal were required for two reasons:

First it's a difficult task to put a Pascal implementation into a computer the
likes of the C-64; its memory capacity, the fact that it is an 8-bit machine (8
bits=1 byte), and its input/output functions require some changes from any
mainframe version of Pascal.

83

ABACUS Software SUPER Pascal Development System

Second, a complete language and programming system had to be set up
within the 64 which would bypass the standard operating system, and cut
down the time factor.

4.1.2.1 ADDITIONAL ASSIGNMENTS, PROCEDURES AND
FUNCTIONS

As with the normal assignment section, the block-design sequence applies
here. The assignment set begins with the

PROGRAM HEADER ASSIGNMENT

and the

LABEL ASSIGNMENT.

Once again, as mentioned previously, these parameters can only be

•

contained in the list in the program header. There are really no extra _
commands for these lists. _
On the other hand, the

CONSTANT ASSIGNMENTS

have a few extra surprises:

PI as the real constant 3. 1415926536E+00

STKPOI -- the pointer for the Pascal variable stack.

STKPOI is the two-byte pointer for the lowermost memory cell for the stack
(top-of-stack). This pointer can call for parameters in the ftrst line, or call
certain parameter values: These values are of the BYTE type, and are
characterized by the symbol

Let's clarify this a bit -- this constant can handle a single-byte value, and not
a 2-byte integer, e.g.:

84

ABACUS Software SUPER Pascal Development System

CYAN = *3; SPRITE = *$3C;

The other supplements in constant assignment allow the use of simple
constant expressions. The following are allowed:

DIV, MOD, SBL, SHR,
*, +, -

PRED, SUCC, OlU>, LOW

CHR

LBY'l' , &BY'l'

TYPE ASSIGNMENT

There are two additional types:

BY'l'E = *0 .. *255;.

for integer constants and/or
their corresponding expressions

for all constants and/or
corresponding expressions

for integer and byte constants
and/or corresponding expressions

for integer constants and/or
corresponding expressions

Defines the numerical contents of a one-byte-sized memory location. The
other predetermined type is

STRING

which allows you to predefme any sequence of characters of a length up to
to 132 characters (maximum print line in Super Pascal). A blank line is
permissible in the form ". Characters for string constants are, of course,
tteated as CHAR constants.

Let's take a quick look at how to handle string lengths. The type STRING
is handled by the pointer like this:

RECORD LENGTH:BYTE; CHARACTER[l ... LENGTH] OF CHAR
END;

85

ABACUS Software SUPER Pascal Development System

This means that every time a new string is read, placed or generated on the
heap (the memory heap for dynamic variables), more memory will be
provided. MARK and RELEASE are also commands that can be taken into
consideration when managing memory. This doesn't apply, however, to e
programs already containing string constants; they are automatically
provided for in the compiling process. Internally-defined record elements
are not accessible to the user.

Another intriguing point is the compatibility between a STRING and an

ARRAY [INDEX] OF CHAR.

This means that opposite assignments and comparisons are possible. It also
means that if a STRING quantity is longer than the defined ARRAY, the
string will be tailored accordingly; then again, if the string is shorter than the
chosen array, spaces will be inserted after the string to bring it to the same
size as the array. The heap changes with the combination of a CHAR array
with a string; the compiler, however, will only watch string length to avoid
overflow. One great advantage to STRING types is the possibility of
immediately reading these with READ or READLN (and with INPUT) from
files. Here's an example:

CONST
VAR

LINELNGTH = t80; {constant decl.}
TITLE:ALFAi {variable decl.}
LINE:ARRAY[O .. PRED(LINELNGTH)] OF CHARi
TEMP,
LINE : STRING;

BEGIN
READLN(LINE);
LINE:=LINE;
IFLINE[O] IN ['A' .. 'Z']
TEMP:=LINE;
TITLE:=TEMP

END;

THEN

{command section}
{read string input}
{provide an array}

{provide temp. string}
{provide an ALFA quantity}

86

ABACUS Software SUPER Pascal Development System

VARIABLE ASSIGNMENTS

MEM :ARRAY[$OOOO .. $FFFF] OF BYTE

RANDOM : REAL

MEM can access the entire memory of the C-64. That is, it can perform this
task if the elements of this array are defmed as BYTE types. MEM will also
allow you to rearrange any memory cell (vague equivalent of "POKE") and
read these cell contents (similar to "PEEK"), e.g.:

MEM [$277] : =LOW (' A') i writes an "A" to the frrst memory
location in the keyboard buffer and

NUMBER: =MEM [$C 6] i transfers the number of the key
pressed to the byte-variable
NUMBER.

The variable RANDOM produces a random REAL number, which lies in the
range:

0<= RANDOM < 1 .

RANDOM is best used in programming that requires random numbers; be
forewarned, however, that the sequence of random numbers given isn't all
THAT random -- a seed number is determined at startup, and the set of
numbers depends upon that seed for its sequence.

COMMAND SET

The only modification to the command section is the CASE statement, with
an ELSE-branch. Syntax:

CASE ... OF ... ELSE ... END

This means that if none of the criteria for the CASE statement are met, the
ELSE will be the next command executed. Here's a sample program:

87

ABACUS Software

CASE CHARACTER OF
'A' :ONEi
'B' :TWOi
'C':BEGIN ONEiTWO END;
'D' : THREE

SUPER Pascal Development System

ELSE BEGIN ONEiTWOiTHREE END
ENDi

If none of the values contained in ' A' .. 'D' are encountered, CHARACTER
will go to the ELSE sequence: 'BEGIN ONE; TWO; THREE END'.

In contrast, this case statement operates differently without the ELSE:

CASE CHARACTER OF
'A' :ONEi
'B' :TWO;
'C' :BEGIN ONEiTWO END;
'D' : THREE

END;

NOTE:
As in an IF /THEN statement, ELSE shouldn't have a semicolon preceding
it. The compiler will generate an error message otherwise.

STANDARD PROCEDURES

There are a number of procedures in Super Pascal that are unavailable to
Standard Pascal. They are:

ALLOCATE

Unlike NEW, a pointer variable can be assigned to a memory cell by the
user.

Synmx: ALLOCATE(POINTERVARIABLE,EXPRESSION);

POINTERVARIABLE stands for the identifier declared as a POINTER type e
in the assignment section. Access to this variable occurs with
POINTERVARIABLEA.

88

ABACUS Software SUPER Pascal Development System

EXPRESSION stands for that expression determining the pointer address.
This expression must be an INTEGER. You can, for example, defme an
internal 2-byte address pointer as "INTEGER, and easily manage memory
in Super Pascal. Here's a sample program, using ALLOCATE:

TYPE LINE = ARRAY[O .. 39] OF BYTE;
SCRN = ARRAY[O .. 24] OF LINE;

VAR I : INTEGER;
TEMP :LINEi
SCRNRAM:"SCRN;

BEGIN
ALLOCATE(SCRNRAM,$400);TEMP:=SCRNRAM"[24];
FORI:=O TO 23 DO SCRNRAM"[SUCC(I)] :=SCRNRAM"[I];
SCRNRAM"[O] :=TEMP

END;

This program gives you a continual screen scroll from top to bottom under
Pascal control. This uses the procedure ALLOCATE (SCRNRAM, $ 400) to
put the screen-repeat memory into $400 (decimal 1024). Bear in mind that
the color RAM should be moved as the screen has been shifted, for the best
demonstration of the program.

NOTE:
This procedure doesn't give you free reign over program code or other
variables. A complete knowledge of memory layout will be necessary.

CLOSE

See the section on standard language elements.

Syntax: CLOSE(FILEVARIABLE)i

FILEVARIABLE is the FILE type defined in the assignment block. This
procedure will put the buffer contents to the last file opened for writing, and
close the file; the file buffer will then be cleared for the next access.
CLOSEing an unOPENed file produces the runtime error:

NOT OPEN ERROR!

and a program break.

89

ABACUS Software SUPER Pascal Development System

CLRTRAP

This command, used without other parameters, clears the runtime error trap
for I/O (input/output) errors. This means that after calling this procedure, e
neither a text error message nor a program break will occur. The I/O error
trap is switched on with SETTRAP.

CON'rINUE

This procedure lets you load and start an entirely different Pascal program.

Synmx: CONTINUE(FILENAME,DRIVE_NR);

The new program must be in the drive number indicated (DRIVE _ NR) , and
must be listed under the proper identifier (FILENAME); the procedure
fmishes the loading process. WADDAT is necessary to this procedure, so
it must be in drive O. If, by some chance, WADDAT isn't available, a
respective error message and program break happens. The program is
loaded into the memory range where it was compiled.

A return to the original program isn't a vital part of this procedure, which e
makes possible the use of

EXECUTE

This procedure is similar to CONTINUE in calling a new program; in this
case, though, it acts as a subroutine for the running program.

Synmx: EXECUTE(FILENAME,DRIVE_NR);

This procedure concludes the program load so that this procedure will
execute under the conditions given by CONTINUE. As above, FILENAME
and DRIVE _ NR must correspond, and WADDAT must be located in drive
O. The loaded program will be placed in the memory range at which it was
compiled, and will use the variable stack range assigned by the compiler.
Needless to say, the memory of the program first in memory must not run
into any conflict with the registers of the currently loaded program. You'll e
have to program VERY carefully in terms of memory management and
variable assignment.

90

ABACUS Software SUPER Pascal Development System

HEX

This procedure converts integers and byte-numbers into hexadecimal
numbers.

Synmx: WRITE(FILEVARIABLE, ••• HEX(EXPRESSION) ...);
or

WRITELN(FILEVARIABLE, .•• HEX(EXPRESSION) .••);

EXPRESSION stands for any INTEGER or BYTE expression. The
expression can be input either in decimal or in hex (the latter with a dollar
sign preceding the number,e.g., $OA3F).

INDVC

Switches the active input device.

Synmx: INDVC(EXPRESSION1,EXPRESSION2);

EXPRESSIONl refers to the desired primary address (device number),
while EXPRESSION2 gives the secondary address within the device. Both
must be INTEGER types, with the primary address set within limits (0 -
255). Any number beyond or below this range will present

IL . QUANT. ERROR!

as a runtime error, and the program will stop.

When Super Pascal is initialized, the primary and secondary addresses are 0,
which follows the INPUT "GETLINE" (from the keyboard).
EXPRESSIONl changes that device number in INDVC until a new
procedure call changes it to another device, or if switched "manually".
Runtime errors will reset the input device number to O.

NOTE:
The primary address 2 will not operate the user port: It is NOT available as
an INDVC. Although the possibility exists to adapt Super Pascal for this
port, the system "as-is" will only work with serial devices.

91

ABACUS Software SUPER Pascal Development System

K:ILL

KILL will delete unlocked (non-protected) fIles from the diskette and
directory.

Synmx: KILL(FILEVARIABLE)i

F:ILEVAR:IABLE is the label for the fIle to be scratched. If this is attempted
with a locked fIle, the runtime error

IL.FILE OPR. ERROR!

appears, and the program stops. Locked fIles can only be dealt with in the
Utility segment of the program. If the fIle isn't found in the running disk
drive, again, an error message and a program end will occur.

This procedure can be used in the same manner as CLOSE, i.e., for closing
previously opened fIles. However, LOCK has one extra feature -- it protects
fIles from overwriting and deleting.

Syntax: LOCK (FILEVARIABLE) ;

F:ILEVARIABLE is the FILE declared in the assignment section. A fIle
need be locked only once (no need to do so repeatedly, unless you need
access to the fIle, and have to unlock it). Attempts to scratch a LOCKed fIle
will result in the program stopping, and

IL. FILE OPR. ERROR!

LOAD

LOAD puts an external Pascal routine into memory from diskette.

Synmx: LOAD(FILENAME,DRIVE_NR)i

All that this command does is load the program, as opposed to CONT INUE
and EXECUTE. The program must be loaded using the proper FILENAME

92

ABACUS Software SUPER Pascal Development System

and disk drive (DRIVE _ NR). The load procedure itself requires the aid of
LOADDAT (which must be in drive 0).

This procedure loads the program code into the memory location at which
the code was compiled.

Program routines called with CONT INUE and EXECUTE

a) can handle independent Pascal programs; and
b) can be called for at any time;

while LOAD

NOTE:

a) will load independent programs, AND simple external
procedures and functions (XTRNPRGM, XTRNPROC &

XTRNFUNC); and
b)only offers one chance to use the command

LOAD offers you no control over whether there is sufficient memory for the
routine being loaded; you'll have to be very precise in knowing how much
memory is involved, and how it is distributed

Other examples are quoted in Chapter 4.1.2.2.

Together with RELEASE, MARK serves to control management of the heap
(memory heap for dynamic variables).

Syntax: MARK (POINTERVARIABLE) ;

PO:INTERVAR:rABLE stands for the identifier for an "INTEGER pointer
variable, which becomes the active heap-pointer when the procedure is
called This is the pointer to the topmost portion of the variable stack and
the ever-growing heap. Even when the heap is cleared (see NEW), any
input strings cause the heap to begin growing yet again. If a situation occurs
where the heap is unnecessary for storing strings or dynamic variables,
RELEASE sets the pointer back to the POINTERVARIABLE. The next
memory cell is available to you. See RELEASE for a short example.

93

ABACUS Software SUPER Pascal Development System

NAME

This procedure allows you to give a program a different name from that e
stated by the current identifier.

Synmx: NAME(FILEVARIABLE,EXPRESSION)i

FILEVARIABLE stands for the identifier which was declared within the
assignment section as a FILE variable. As long as no changes have been
made to this variable using NAME, the file variable will go under its
"normal" identifier, i.e., by that fIlename on diskette. After providing the
EXPRESSION, which must be ALFA or STRING, the file-variable will be
changed to that name. Here's a short example:

VAR SOURCE:TEXTi
TITLE:ALFAi

{formal declaration of file}
{variable SOURCE,}

RESET(SOURCE)iREAD(SOURCE)iCLOSE(SOURCE)i
{access to a file with the name SOURCE}

NAME(SOURCE,'OTHER')i {provision of actual name
{OTHER for the formal var.
{SOURCE,

REWRITE(SOURCE)i [access to file with current}
WRITELN(SOURCE,'l.LINE')i {name OTHER instead of}
CLOSE(SOURCE)i {the formal identifier SOURCE, }

NAME (SOURCE,TITLE) {provision of name contained}
{in title as current file- }
{name, etc. }

94

ABACUS Software SUPER Pascal Development System

OUTDVC

OUTDVC switches current output device.

Synrnx: OUTDVC (EXPRESSION1, EXPRESSION2)

EXPRESSIONl stands for the primary address of the desired device, while
EXPRESSION2 gives the appropriate secondary address. Both must be
INTEGERs; the primary address must be within the boundaries of 0 to 255.
Any differing address yields

IL. QUANT. ERROR!

and the program stops.

Thus, this procedure defmes the output device to be used in conjunction with
OUTPUT, WRITE anellor WRITELN. Primary and secondary default
addresses (i.e., when Super Pascal is started up) are 0 (screen). An OUTDVC
call (say, to send output to the printer) will remain at that address until the
procedure is called again. Runtime errors automatically switch the output
device back to O.

NOTE:
As mentioned with INDVC, the user port is inaccessible.

RELEASE

This procedure represents the counterpart to the abovementioned procedure
MARK; with it, the heap memory can be released from any earlier defmition
by MARK.

Synrnx: RELEASE(POINTERVARIABLE)i

POINTERVARIABLE is the '"'INTEGER identifier for a pointer variable,
which is contained in the "interim" heap pointer. This value will dictate
where the heap pointer will be set Below is an example of both MARK and
RELEASE:

95

ABACUS Software SUPER Pascal Development System

VAR HEAPl,HEAP2,HEAP3: AINTEGER; {declo of three}
INFO;ALFA; {pointer variables of}
LINE: STRING; {AINTEGER type }

MARK (HEAPl) ;

MARK (HEAP2) ;

READLN (LINE) ;
INFO:=LINE;

RELEASE (HEAP2) ;

MARK (HEAP3) ;

TRE_TREE;
PRINT_TREE;
RELEASE(HEAP3);

RELEASE(HEAPl);
etc.

SEEK

{heap pointer starts
{at HEAPl
{current heap pointer}
{at HEAP2 }
{read a string placed}
{on the heap and }
{INFO provided }
{reset heap pointer }
{to value HEAP2 }
{freeze up current }
{pointer at HEAP3 }

{call routine wi dy- }
{dynamic variable use}
{reset to value be- }
{fore procedure call }
{release entire heap }

Used like RESET and REWRITE in opening files, the difference being that
RESET and REWRITE use the access pointer "as-is", while SEEK lets you
set that pointer.

Synmx: SEEK(FILEVARIABLE,EXPRESSION);

FI:LEVARI:ABLE stands for the identifier set up in the assignment section
(FILE type). EXPRESSION sets the position of the file-access pointer. In
cases where numbers might be an element in such a file (e.g., TEXT),
EXPRESSION must be a REAL number. The access pointer will always
take on the whole-number portion of that REAL expression. Negative
numbers lead to the message

IL.QUANT. ERROR!

and a break, while numbers that overshoot the end-of-file give

96

ABACUS Software SUPER Pascal Development System

AFTER EOF ERROR!

e and a subsequent program end.

The distinction between read/write operations in SEEK mode depends on the
operation which follows: GET, READ or READLN puts you in read mode,
while PUT, WRITE or WRITELN lets you write to the file. The access
pointer will move to the next spot after each access.

After write access, any data after the write-position will be lost The
read/write operation is concluded with CLOSE or LOCK.

SETADR

This procedure contacts a running program to find and load an existing
routine. Unlike LOAD, this is for resident or quasi-resident routines (esp.
assembler routines). Syntax:

e SETADR(PROCEDURE FUNCTIONS_NAME,EXPRESSION)i

PROCEDURE_FUNCTIONS _NAME represents the identifier of the
externally called procedure/function. These "EXTERNALS" shall be called
by these names which should have been defined in the procedure/function
assignments. The procedure SETADR establishes the connection between
name and actual address during runtime; this address is an integer stated in
EXPRESSION. This can be handy when a routine is needed time and again
(see 4.1.2.2 for an example).

SETDRV

This procedure sets the number of the current disk drive. The file-opening
procedures RESET, REWRITE and SEEK come after SETDRV.

Syntax: SETDRV(EXPRESSION)i

EXPRESSION must be an integer, and must state drive number (0 or 1,
nothing else).

97

ABACUS Software SUPER Pascal Development System

Initializing the program creates a default value of drive O. And already-open
ftle needs no further ftle defmition; drive number will hold until the ftle is
closed

SET TRAP

SETTRAP (no parameters) switches the I/O error trap back on. Having the
I/O error trap on will produce error messages and program breaks if (when)
the time comes. Switching the trap off gives no messages, but programs will
cease.

FUNCTION ASSIGNMENTS

There are three groups of predefmed functions in Super Pascal:

Type conversion functions
Conditional functions
Mathematical functions

The fIrSt group consists of:

INT

This function converts real numbers into integers.

Syn~: INT(EXPRESSION) (function type: INTEGER)

EXPRESSION refers to a REAL expression. The conversion naturally
works only if the quantity remains within the limits of -
MAXINT ... +MAXINT. Otherwise

IL.QUANT. ERROR!

comes up as a runtime error.

HBYT
LBYT

Both these functions deal with conversion of integers into BYTE quantities,
simultaneously isolating high-bytes (HBYT) and low-bytes (LBYT).

98

ABACUS Software SUPER Pascal Development System

Syntax: HBYT(EXPRESSION)
LBYT(EXPRESSION)

(function type:BYTE)
(function type:BYTE)

EXPRESS:ION is any integer. The function delivers the most significant
byte (HBYT) of this integer, and the least significant byte (LBYT) of same.
BYTE is the result in both cases. This can be convenient for m/l
programming, since both "half-bytes" add up to one integer.

LOW

This function converts any scalar argument type (REAL) into a BYTE
quantity.

Syntax: LOW (EXPRESSION) (function type:BYTE)

EXPRESS:ION stands for any scalar type. Using this function with integers
will limit you to conversions up to 255 ($FF).

The second group of functions don't just operate as predefmed functions
which give Boolean information (yes/no cases), rather control internal
system conditions.

ANYKEY

This function is chiefly used in programs involving input from the user, or
just pausing until the user hits a key to go on. No parameters are needed:

Syntax: ANYKEY (function type:BOOLEAN)

It can be used, for example, for programming a wait loop, or perhaps you
can have the system do something else while it's waiting for a keypress:

WHILE NOT ANYKEY DO;

It's just as simple to set up a conditional branch:

IF ANYKEY THEN ... (ELSE ...);

99

ABACUS Software SUPER Pascal Development System

GETKEY

This function is comparable to BASIC's GET statement; it awaits input from _
the keyboard. No other parameters are necessary. •

Syntax : GETKEY (function type:CHAR)

This allows you to read characters from the keyboard; every character will
be pulled from the keyboard buffer (i.e., with GETKEY, every character will
go to the buffer ftrst). Here's an example of using GETKEY to control a
program:

CASE GETKEY OF ... (ELSE ...) END;

:IOERROR

This has already been mentioned in connection with CLRTRAP and
SETTRAP; it checks for I/O errors -- and if it ftnds one, looks to see which
error it is. This function, too, can be called without argument.

Syntax: IOERROR (function type: INTEGER)

The only sensible time to use IOERROR is when the error trap has been
switched off with CLRTRAP; otherwise, the system automatically reacts to
any I/O errors. If, however, the trap is off, IOERROR will call up the
number of such an error (NOTE: The program won't halt in this state). Here
are the error numbers (all INTEGER, by the way):

FLOPPY ERROR (1)

NOT OPEN ERROR (2)
NOT CLO. ERROR (3)
BUF.OV. ERROR (4)
DIR.OV. ERROR (5)
NOT FND. ERROR (6)
DSC.OV. ERROR (7)

DSC.MISM. ERROR (8)
IL.FILE OPR. ERROR (9)
AFTER EOF ERROR (10)

IEEE-ERROR (11)

100

ABACUS Software SUPER Pascal Development System

No I/O errors gives the function a O.

Runtime errors that aren't I/O-based - as already mentioned - always stop
the program; these same errors aren't affected by the error trap's status:

OUT OF RNG. ERROR
NOT EXQ. ERROR
NUM. OV. ERROR
B.SUBS. ERROR
IL.QUANT. ERROR
STK.OV. ERROR
ZERO-DIV. ERROR
IL . DVC. ERROR

See Chapter 2.1.9 (RUN PROGRAM) for the definitions of these messages.

There are other functions grouped with these three conditionals.

FREE

Reads the amount of available memory between heap and stack at any time;
no argument is needed.

Syntax : FREE (function type:INTEGER)

The value returned to you is expressed in 256-byte increments (pages), i.e., 1
block=256 bytes, 4 blocks= lK, etc. It's possible to end up with a

STK.OV ERROR

depending on the memory available.

LEN

LEN is an integer which supplies the length of a string, i.e., the number of
characters in a string.

Syntax: LEN (EXPRESSION) (function type: INTEGER)

101

ABACUS Software SUPER Pascal Development System

EXPRESSION refers to the string expression. This function is quite useful
for determining the length of an unknown string within a me, and
determining what to do about the length of same. The maximum allowable
length of a string is the available size of the 110 buffer, while the maximum e
length of a printed line is 132 characters.

NOTE:
Attempts to overshoot these maximum lengths will lead to a system error.

SIZE

The size of a Pascal-variable can be found within a program with this
function.

Syntax : SIZE (TYPENAME) (function type: INTEGER)

TYPENAME stands for the identifier stated in the type assignment of the
program. Therefore, it is NOT the name of the variable itself, but of the type
of variable. The return value will be given in bytes (rather than blocks); the
value is given as an integer, in connection with ALLOCATE, i.e., the ~
memory adjustments for pointer variables can be used. •

The third group of functions contains the following three:

HXS

(HeX-Sum) This can be used for adding two integers without worry of
overstepping the integer range.

Syntax: HXS (EXPRESSION1, EXPRESSION2) (func.type:INTEGER)

EXPRESS ION 1 and 2 stand for the two integers to be added. For example,

HXS($7FOO,$lA80) $9980

and

HXS($AOOO,-$3800) $6680.

102

ABACUS Software SUPER Pascal Development System

SIGN

The SIGN-function gives a preceding character with a numerical expression:

Syntax : SIGN (EXPRESSION) (function type: INTEGER)

EXPRESSION can be either INTEGER or REAL. The function's result will
give this EXPRESSION as an integer (the positive number ... +1; negative,
.... -1). A functional argument of 0 gives a 0 result; similar to this example:

EXPRESSION = SIGN(EXPRESSION) * ABS(EXPRESSION)

FRAC

The mathematical function FRAC delivers the opposite of the already
mentioned TRUNC -- it gives you the fractional section of a real number.

Syntax: FRAC(EXPRESSION) (function type:REAL)

EXPRESSION stands for any REAL expression; FRAC will separate the
decimal numbers, and these numbers will be the result sent back to you. The
leading character works the same here as in identifying functions.

These are the additional functions that you'll find in Super Pascal. The fmal
section consists of the mathematical operations used within expressions. In
addition to the normal operators:

SHL and SHR

Defined as reserved words. SHL (SHift Left) moves the bit pattern of an
integer to the left, while SHR (SHift Right) moves an integer quantity to the
right. The number of bits shifted is controlled by two operands:

Syntax : EXPRESSIONl SHL EXPRESSION2 (type: INTEGER)
EXPRESSIONl SHR EXPRESSION2 (type: INTEGER)

EXPRESSIONl and 2 can be any integers; the result will also be an integer.

103

ABACUS Software SUPER Pascal Development System

Besides bit manipulation, these operations can also be used for quick
multiplication with a factor of 2"EXPRESSION (SHL) or fast division
with 2"EXPRESSION (SHR). Examples:

4747 SHL 2 4747 * (2"2) 4747 * 4

1111 SHR 4 1111 / (2"4) 1111 / 16

AND OR NOT

These comparatives are BYTE types in SUPER Pascal; used for comparing
bit patterns and checking memory contents, the result will consequently be a
BYTE quantity. For example:

and

f3 ANDU2 (1$03 AND I$OC) gives the byte f3 (=*$03),
U61 OR .25 ('$A1 OR '$19) gives UB5 (='$B9)

NOT .200 (NOT '$CB) givesthebyte'55 (='$37).

4.1.2.2 ADDITIONAL PROGRAM STRUCTURES, EXTERNALS,
SEGMENTS

This chapter will cover the techniques of program division and structure in
Pascal, along with the connection and declaration of EXTERNALS and
machine language routines. We'll try to include some common examples as
we go along.

At the top of the list is the segmenting of Pascal programs. This division -
better known as overlay-technique -- involves breaking a larger program
into several cooperative program blocks; this is called into play with the
command

SEGMENT

Like FORWARD, this command is neither a reserved assignment command, e
command symbol nor execution command; rather, it's a control command
for the compiler. The SEGMENT command is always in the same spot
(syntactically speaking) as FORWARD, i.e., immediately after the procedure

104

ABACUS Software SUPER Pascal Development System

and/or function header. SEGMENT tells the compiler to treat the entire
block of this procedure or function as a portion to be followed by other
sections that will be compiled in the same memory range. The compiler
notes the starting address of this block, and compiles those which follow at
the same starting address. In a way, the segments are compiled as parallel
program sections. The amount of memory reserved is dependent upon the
longest segment being compiled.

There are a few ground rules for defining segmented blocks:

a)

b)

c)

d)

They must be arranged one immediately after
another,

They must be defmed as the same program level,
regardless of label,

Interlocked routines should be avoided and

The whole number 8 should not be overstepped.

e These limitations are not that bad, considering that you can sidestep some of
them. For example, within a segment-assigned block, any deep
functiOn/procedure can be nested -- just as long as the remaining segments
use the same procedures/functions. You should keep in mind that when
working with segmented programs, the segments cannot be placed in the
proper sequence by the computer itself; the computer will compile according
to the sequence found on the diskette.

The 8-segment limit is really no problem, since there will be very few
occasions when you'll write a program as large as that One good example
of a segmented program is the compiler itself; it's made up of the following
segments:

INITIALIZATION

MAIN SECTION
ASSEMBLER SECTION

in which the predefined identifiers,
functions and procedures are
declared,
which takes up compiling a block,
which assembles the built-in
assembly routines, and the

CONCLUDING SECTION statistical evaluation.

105

ABACUS Software SUPER Pasc:a1 Development System

These 4 segments, if put together normally, would take up a substantial
amount more memory ($0800 - $C200); as compiled here, they only take up
$0800 - $9000! Needless to say, segmenting programs is quite a practical a
move with the C-64. •

NOTE:
Any reloading of segments requires that those segments all be in the same
disk drive. Once the program is started, the disk drives can be switched
around within the program. An additional me buffer will not be necessary
for reloading segments.

The next two commands for developing larger programs shouldn't be
unfamiliar to you, since we've mentioned them earlier:

CONTINUE EXECUTE

These procedures will let you load and run separate compiled (and complete)
programs. There are differences between the two:

CONTINUE allows chaining of different programs, i.e., the new program _
can utilize variables and such defined in the previous program, or use its -
own definitions. No memory collisions can occur with continue.

EXECUTE allows separate Pascal programs to be called as subroutines to the
main program. Memory must be set aside for both programs, so a solid
knowledge of memory layout and management would be wise before using
this technique.

"EXTERNALS"

We designed this category to allow for generating external programs and/or
program routines. You can see the disadvantages of EXECUTE (see above);
the command discussed here lets you define program routines as procedures
or functions. The compiler recognizes these external reserved words:

XTRNPROC
XTRNFUNC

(eXTeRNal PROCedure)
(eXIRNal FUNCtion)

The compiler registers these as declared procedure/function identifiers and
their respective parameter lists. The proper block for this procedure/function

106

ABACUS Software SUPER Pascal Development System

is canceled, since it is, of course, assigned externally. Now, in order for the
program to find the EXTERNAL, a LOAD (for implicit address assignment)
or SETADR (for explicit assignment) must be included (see 4.1.2.1). The
assigned routines for XTRNPROC and XTRNFUNC are nested with the main
program's variable stack. You can define all parameters in SUPER Pascal
as predefined variable types; same goes for function values.

External procedures/functions will be compiled as such, i.e., contained in the
program header NOT by the word PROGRAM, but rather by their XTRN

identifiers and parameter lists. The rest is compiled like a normal Pascal
program block.

To round out the set, we corne to declaration of entire external programs,
which are handled like the above externals.

XTRNPRGM (eXTeRNal PRoGraM)

No further parameters are needed; the main program calls the external
program using the identifier defined in the main routine. Here again, we
must be concerned about the starting addresses of external and main
program, whether loading implicitly or explicitly (LOAD and SETADR,

respectively). External programs are compiled "normally".

When using externals, it's important to remember that the main program will
load the externals into the given memory cells; there is always a possibility
of memory collision, if you haven't planned your memory layout carefully.
Calling externals with CONTINUE or EXECUTE avoids these problems.

The last point we'll cover in this sector will be the "USER" routines.

These represent an extra step beyond the external routines. Unlike the
externals, user routines are external machine-language routines, though
assigned like standard procedures and functions. There are two types:

USERPROC
USERFUNC

You would then give these routines identifiers matching those given within
the main program's assignment section. For more details on handling these
routines, see Chapter 4.1.2.3 on the "internal" mil routines.

107

ABACUS Software SUPER Pascal Development System

During runtime, the procedure SETADER must be used to assign the jump
address. The machine language routine must be consistent with the start-of
program, because, for example, when loading a code-file into the file buffer e
with RESET, the buffer address will equal the jump address. To help you
out a bit, here are some items concerning memory information, and a sample
program.

Regarding program design----

The main program (example) should run and work in
$2000 - $9FFF.
Three independent subprograms will be generated in
$0800 - $lFFF (SUBl, SUB2 and SUB3).
Registers $AOOO - $A7FF have been assigned to a
procedure (X _PROC), while $A800 - $AFFF have been
assigned a function (X _FUNC).
An exit program (BADEXIT) has been designed for $0800
- $8FFF.
A machine-language routine (TESTI and TEST2) will be
defined in $FlOO - $F27F and $F280 - $F3FF, in
connection with the flle USER CODE.

PROGRAM EXAMPLE;
CONST {address declaration for SUPER}

$FIOO; {Pascal system file buffers; }
BUFFERl + $400; {an opened file will}
BUFFER2 + $400; {go to the first}

BUFFERl
BUFFER2
BUFFER3

TYPE
RECORD

{free buffer }

RANGE:ARRAY[0 .. 99] OF ALFA;
SET :SET OF CHAR;

END;

VAR
TABLE :ARRAY[1 .. 3] OF RECORD;
FLOW : INTEGER;

108

ABACUS Software SUPER Pascal Development System

PROCEDURE REGULATE; {Decl. of a normal }
BEGIN ... END; {Pascal procedure; }

XTRNPROC X PROC {declaring an external }
(A,B:INTEGER;MSG:STRING); {procedure w/parameter}

{transfer; }
XTRNFUNC X FUNC {declaring an external}

{ function }
(CH:CHAR;VAR TITLE:ALFA) :BOOLEAN

FUNCTION READALFA {declo of a normal }
(VAR READFILE:TEXT) :ALFA;
VAR

{Pascal function; }

INPUT: STRING;
BEGIN

READLN(READFILE,INPUT);READALFA:=INPUT;

END;

USERPROC TESTl
(VAR TAB : RECORD) ;

USERFUNC TEST2:BOOLEAN;

PROCEDURE INIT;SEGMENT,
BEGIN

{declares an)
{assembler-procedure;}
{declares an }
{assembler-function;}

{declares a procedure}
{segment; }

LOAD(X_PROC,O); {load X PROC from drive a;}
LOAD(X_FUNC,O); {load X FUNC from drive O}
SETADR(TESTl,BUFFERl); {address transfer
SETADR(TEST2,BUF8ERl+$l80); {address transfer;
RESET(USERCODE); {load program-code

FOR FLOW:=l TO 3 DO
TESTl(TABLE[FLOW]);

IF NOT TEST2 THEN
BEGIN

CLOSE(USERCODE);
CONTINUE (BADEXIT,0)

{into file bufferl}

{multiple call of TESTl;}
{call of Boolean function}

{TEST2 }

{prg. jump to BADEXITj

109

ABACUS Software SUPER Pascal Development System

END;

END;
PROCEDURE PARTl(JOB:KENNER);{declaring second

SEGMENT; {segment block;
BEGIN

CASE JOB OF {call for one of the three }
LOAD :EXECUTE(SUBl,l); {Pascal subprograms -}
SAVE:EXECUTE(SUB2,l); {SUBl, SUB2 or SUB3 }
REGISTER :EXECUTE(SUB3,l)
ELSE

END;

END;
FUNCTION PART2:BOOLEAN;

SEGMENT;

BEGIN
REGULATE;

PARTl (MENU) ;

{declaring the third
{segment block

{call another segment;}

PART2:= {provision for function val.;}
READALFA(INPUT)='END'

END;
PROCEDURE EXIT;SEGMENT; {declaration of fourth

BEGIN ... END; {segment block
BEGIN {main program

INIT; {call for INIT. segment;
IF PART2 THEN EXIT {call for OK-output;
ELSE CONTINUE(BADEXIT,O) {call for error-output;}

END.

110

ABACUS Software SUPER Pascal Development System

4.1.2.3 ASSEMBLER ROUTINE DESIGN

Inserting assembler routines in a Pascal program is a subject already touched
upon in Chapter 3.4; see that section for a sample program. Here, however,
we'll look at the "mechanism" used for parameters and function return
values. More detailed information on 6510 machine language will be found
in Chapter 5.2, but for LEARNING machine code, we suggest you read
books dealing directly with the subject (see Appendix).

Here are the commands accepted by the compiler for integrating 6510 code
and Pascal (pseudo-instructions: For the complete set, see Chapter 5.3):

.BA

. oc

. CT

This pseudo-instruction will tell the assembler the starting
address of the program to be assembled (also, the address
is vital to the Pascal program itself). This is the routine
which embeds the routine into the Pascal program .

This pseudo-command suppresses the machine-language
output, once the generation of the addresses (for the
address label) is complete (note: . this command is not
provided in Pascal itself). The machine code will be
produced within the Pascal program sequence .

This pseudocode will chain assembler sources (not
possible in Pascal proper).

Keep the following in mind regarding parameter and function values: The
place will be reserved on the Pascal variable stack for functions defined in
the assignment section, and for the function return value, i.e., the top- of
stack will be adjusted accordingly. This will happen regardless of whether it
is a regular Pascal function, a machine-language function, or an external
"USER" function. (NOTE:Please see Chapter 4.1.1 for variable size, and use
of the function SIZE). Machine programs have a different access
mechanism to the stack -- indirect-indexed addressing.

111

ABACUS Software SUPER Pascal Development System

The relative address (calculated from top-of-stack) is put into the Y register
of the CPU; and the instruction

LDA (STKPOI) , Y

lets any byte be put on the Pascal stack. If parameter bytes go over 256, the
most significant byte will be incremented by the zeropage pointer STKPOI.
STKPOI (address $2E) is recognized by Pascal as a predefined quantity.

When a function return value should be put onto the stack, it must appear in
the proper place on the stack (STA (STKPOI) , Y) , i.e., above all eventual
given parameters.

The stack pointer will again be corrected at the end of the machine-language
routine, i.e., set to the value preceding the call of the mil routine.

This point should be remembered when integrating mil and Pascal; constants
can be set up for the Pascal section within the mil section.

The sample here may clear up some of the mystery of parameter and
function return values:

An assembler routine assigned with

FUNCTION DEMO(MSG:STRING;CHARACTR:CHAR;VAR
WORD:ALFA) : INTEGER

and called with

IF 36 = DEMO (' HELLO' ,CX, TITLE) THEN ...

whereby CX should be a CHAR-variable, and TITLE and ALFA- variable.
Below is an illustration of stack management (TOS==top-of-stack):

112

e

ABACUS Software SUPER Pascal Development System

high address
1. TOS before entering 1 ____ _

comparative expressionl ____ _
2. Deposit a value of 1 $00 ____ __

36 •••••.••••..•.•••• 1 $24, __ _
3.Arranging a place for 1 1

the funct return value 1 ••••••••• 1

4. Deposit the string 1 ADR H 1 1
address 'HELLO' 1 ADR L 1 1

5. Deposit CX I ••• 1 1 I

6. Deposit address for 1 ADR H I 1 1

variable TITLE 1 ADR L ... I 1 I

7. TOS enters DEMO 1 1 1 1 I

(= STKPO I) I 1 1 I

B. Parameter range which I 1
can be accessed with 1 1
(STKPOI),y 1 1

9. Deposit function 1

ret urn value I
10. STKPOI corrected when leaving 1

DEMO I
11. Comparative operation

taken up I

4.1.2.4 COMPILER COMMANDS

We mentioned before that you can embed different compiler directives
within a Pascal program. These commands are all preceded with an
ampersand (the '&' character). You can use the "long form", or an
abbreviated versions of the commands -- here are both versions (the short
versions are printed here in parentheses):

113

ABACUS Software

&ADR+
&ADR
&CONTINUE
& INCLUDE
&PCODE+
&PCODE
&TRUTH

(&A+)
(&A-)
(&C)
(& I)

(&P+)
(&P-)
(&T)

SUPER Pasc:al Development System

&CONTINUE and &INCLUDE, used for inserting and appending program
sources, have already been discussed in Chapter 3.2. &TRUTH, used in
conditional compiling, has also been explained. The remaining commands
(&ADR and &PCODE) serve to control address declaration and PCODE

output

&ADR+ will switch on address output, giving the memory address for every
line: This is useful for debugging runtime-errors. This output can be
switched off with &ADR-.

PCODE output is switched on using &PCODE+, and off with &PCODE-.
For every PCODE instruction given, the compiler generates a mnemonic
command abbreviation, with the memory location and necessary parameters
(in bytes). The PCODE abbreviations are as follows:

ADDI
CALI
CALL
CALS
CPIB
CPIN
CPIW
EQUN
GEQN
GETN
GOTO
GRTI
GRTN
INCT
JCDO
JCUP
JMPC

ADD IMM. WORD
CALL INDIRECT
CALL ABSOLUTE
CALL SEGMENT
COMPARE IMMEDIATE BYTE
COMPARE IMM. n BYTES
COMPARE IMMEDIATE WORD
COMPARE n BYTES (=)
COMPARE n BYTES (>=)
GET n BYTES (»
GO TO
COMPARE IMM. WORD (»
COMPARE n BYTES (»
INCREMENT STACK
COND.-JUMP DOWN
COND.-JUMP UP
COND.-JUMP ABSOLUTE

114

ABACUS Software

JUMP
LEQN
LESN
LITB
LITW
LODA
LODB
LODS
LODW
LODX
LSSI
MULI
NEQN
NEWN
NOP
OPRC
PFIX
PUTN
RTRN
RTNS
STOB
STOS
STOW
STOX
SUBI
TBYT
WRTA

JUMP ABSOLUTE
COMPARE n BYTES «=)
COMPARE n BYTES «)
LOAD IMMEDIATE BYTE
LOAD IMMEDIATE WORD
LOAD ADDRESS
LOAD BYTE
LOAD STRING
LOAD WORD
LOAD INDEXED
COMP ARE IMM. WORD «)
MULTIPLY IMM. WORD
COMPARE n BYTES «»
NEW n BYTES
NO OPERATION
OPERATION CODE
PREFIX OPR. CODE
PUT n BYTES
RETURN ABSOLUTE
RETURN SEGMENT
STORE BYTE
STORE STRING
STORE WORD
STORE INDEXED
SUBTRACT IMM. WORD
CHECK BOUNDS
WRITE ARRAY

SUPER Pascal Development System

The &ADR and &PCODE commands can be started with a general command
at the start of the compiling process, then left on for the entirety of the
procedure.

115

ABACUS Software SUPER Pascal Development System

4.2 OPTIONS

SUPER Pascal offers a number of options for the compilation process itself. e
You do, of course, have the "option" of not choosing any options -- before
compiling, the system will ask you

DEFAULT OPTIONS ? N/Y

and if you wish to compile" as-is", press "N". If, however, you choose "Y",
the options will run off in sequence, beginning with .

START-OF-PROGRAM

which allows you to change the staring address to your liking. You have
$0800 to $C IFF to work with, and, under very special circumstances, the me
buffer range ($F100 to $FEFF) at your disposal as well. With free choice of
starting address, it's possible for you to easily develop a larger program
packet from smaller units (with the help of the memory map). The default
value --

START OF PRGM = $0800

-- can be retained, or changed (decimal OR hex value).

VARIABLE MEMORY

The compiler prompts with

START OF HEAP = EOPGM

to tell you the starting point of the heap (storage for dynamic variables),
from bottom of heap to the top of the stack (used for static variables). The
default is EOPGM (end-of-program), i.e., the heap will be placed immediately
after the end of the program being compiled. You, however, can reorganize
the heap to your preference. After defining the start-of-heap,

TOP OF STACK = $9000

denotes the default for the end of the stack. Be sure the input is correct or

116

ABACUS Software SUPER Pascal Development System

ILLEG. DECLARATION!
or even

START OF HEAP EXCEEDS TOP OF STACK!

can occur. All in all you have from $0800 to $CIFF for program code and
variable storage, and, in special circumstances ONLY, $FlOO to $FEFF
(fIle-buffer space). If all input so far has been proper, we go on to

COMPILATION MODE

The compiler prompts you with

P.-CODE TO DISK? N/Y

You have your choice of either compiling to diskette or compiling in RAM.

Diskette Compilation:
The default mode writes the p-code generated to disk as a
temporary file (CODDAT); the fix-up information used to
complete the compiling phase is placed in the so-called
FIXUP-FILE. The fix-up procedure is necessary to
eventually install the correct addresses into the program
code once the single-pass compiler is done. Analogous to
this is the management of assembler program sections,
which are assembled with a two-pass process -- this is the
reason for the second choice ---

RAM Compilation:
The compiler generates p-code directly into RAM
memory. The fix-up process and the two-pass procedure
will be handled in memory as well. The advantage to
RAM mode lies in the higher working speed, since no
write operation is required of the disk drive at the time;
however, one way or another, you'll still end up saving the
Pascal source to diskette.

In order to generate Pascal programs in RAM that you'll want to run later,
the compiler will claim some memory for itself, and will let you determine
the memory at which the compiled program will be located. The system will
ask

117

ABACUS Software SUPER Pascal Development System

STORING ADRS. = $9000

The default is $9000 (the compiler itself takes up $0800 - $8FFF); memory a
available to you is $9000 - $CIFF. •

Owing to parallel addressing, compiling segmented programs in RAM is
impossible; if attempted, the compiler will give an error message.

VARIABLE CONTROL

The compiler prompts with

TESTS OF BOUNDS ? N/Y

which gives you the choice of controlling the low-range defined variables.
The default identifies the variable-defmed boundaries, and is extraordinarily
important for array-indices. The control is accountable for IL. QUANT.
ERROR messages (runtime). The control mechanism will be set into the
program as additional p-code.

NOTE:
Choosing variable control (bound test) should be for security of program
control, on condition that the program has been thoroughly tested first. For
example, false array indices (outside a defmed array) tend to cause
extremely nasty and hard-to-Iocalize errors. Be very sure that the program is
as completely debugged as possible (and, of cour~e, that enough memory is
available).

POST-MORTEM-DUMP

A particular problem in compiled programs is the diagnosis, analysis and
cure of runtime errors; the problem is often a serious one in Pascal. SUPER
Pascal has the ability to make a "post-mortem-dump", i.e., after running into
a runtime error, the program section is dumped with corresponding section,
function, procedure, and gravity of the error; also, the variables are listed
with defined names and contents at that moment. Normally, the post
mortem-dump is suppressed, but this can be changed with the prompt e

SUPPRESS PMDUMP ? N/Y

118

ABACUS Software SUPER Pascal Development System

Unless stated otherwise by you, a fIle will be dumped as

DUMP-TITLE = P M DUMP

The printout will consist of the source-code on the one side, and the coded
program on the other. NOTE: You'll be better off debugging the source
code, and just re-compiling the source.

A/P OPTION

By default, the compiler ignores the integral conimands &ADR+/ &ADR
and &PCODE+ and &PCODE- :

IGNORE A/P-OPT. ? N/Y

Change this option ONLY if you're utilizing these commands.

OUTPUT FORM/HARDCOPY

The last option gives control over the output form during the compilation
process. Default value for output is "suppressed":

SUPPRESS OUTPUT ? N/Y

'N' will give you a line-by-line listing of the source text onscreen. If output
is suppressed, the compiler generates an asterisk (*) for each line, and lists
only the names of procedures and functions being compiled.

SUPPR. HARDCOPY ? N/Y

clarifies whether the compiler will run output normally (onscreen) or send
the output to a printer. If the latter is desired,

OUTPUT DEVICE 4,0

will be the default for the primary and secondary device numbers. Incorrect It input will produce

ILLEG. INPUT!

119

ABACUS Software SUPER Pascal Development System

4.3 THE COMPILATION PROCESS

Pascal sourcecode (as well as procedures and functions written in 6510 e
assembler notation) will be converted by the SUPER Pascal compiler into a
viable pascal program. The compiler is accessed from the Main Menu using
the C-command. This subprogram awaits a source program (textfile) from
diskette. Once in the C-command menu, the system asks for the mename to
be compiled, and the disk drive in which said me can be found:

FILE-TITLE ?
DRIVE (MAP) = x

Rather than give a mename, you can use an asterisk (*), which tells the
system to compile the last program contained within the editor. The system
will ask for confIrmation:

CONFIRM "FILENAME,DRIVE_NR?" N/Y

Improper input will return the system to the Main Menu.

If all input is acceptable, the compiler loads into the computer from the
system diskette; remember to have the disk with LOADDAT and C _ CPLR
in drive O. If these programs aren't in drive 0, or the textflle isn't in the
stated disk drive, the system will generate appropriate error messages, and
return to the Main Menu. If the me turns out NOT to be a textfile, a
corresponding error message will be displayed, and the compiler will abort
to the Main Menu.

After the compiler has initialized, and the source program has been opened
by the compiler, the following will appear:

READY TO COMPILE: PROGRAM "NAME,DRIVE_NR"!

NAME represents the identifIer for PROGRAM in the program header;
DRIVE NR stands for the drive in which the source me exists.

If a source other than a program (e.g., an external function or external
procedure) is to be compiled, the above messages will use the appropriate

120

ABACUS Software SUPER Pascal Development System

word (XTRNPROC/XTRNFUNC) instead of the PROGRAM symbol. In
conclusion, the program will ask

~ DEFAULT OPTIONS ? N/Y

to confrrrn whether to use internally defined parameters or not (,Y' if so). If
the response is 'N', the relevant prompts will run by you (see Chapter 4.2).

Externals have no default values, so you'll have to go through the options
menu to provide parameters (again, see Chapter 4.2). NOTE: Externals
have no variable range of their own available.

Now the compiler will take the source program, and produce a viable
program code. Any syntax errors will be pointed out by the compiler (see
4.4).

Assuming no errors have cropped up, the program codes are linked and
saved; after this, the compiler returns program control to the Main Menu. If,
however, a compiling error arises in the text, or if the RUN/STOP key is
pressed, the compiler will immediately load and run the editor, to let you edit
the program. From there, you'll have to return to the Main Menu to
recompile the program.

4.4 ERROR MESSAGES

This chapter deals with the handling and classification of syntax errors
which might arise in the program text. For those Pascal novices, you'll run
into many such errors in your first few attempts at programming; don't let
this get you down -- expert programmers slip up a lot, too. If, after having
problems, you consider switching to a language other than Pascal, remember
that Pascal has error control' seldom seen in other languages. The compiler
drops out at the slightest discrepancy.

The compiler will display the error number, the offending line, and mark the
error itself with an up-arrow (II) (Note: This display will either occur on the
screen or the printer, dependent on what you have defined as an output
device). Screen output will await your acknowledgement of the error (press

121

ABACUS Software SUPER Pascal Development System

<SPACE> to continue). The compiler will then look for the next convenient
place to go, and continue compiling from that point on.

If the syntax problem is a meaningless write error (e.g., ',' instead of ';'), _
the compiler gives you a WARNING rather than an ERROR. .,

The compilation process can be stopped at any time with the RUN/STOP
key; this will automatically load and run the Editor section, and the source
code being worked on at the time. This also happens at the end of the entire
compilation, if any errors have cropped up. Once edited, the program can be
re-saved using" *" to represent the most recent fIlename used.

The total number of errors and warnings is displayed at the end of
compilation (see Chapter 1.3.3 for a complete list of error messages, and the
error lists used at the end of this manual).

4.5 END OF COMPILATION

How the compilation ends depends upon the manner of compilation. Errors _
in the sourcecode call the editor program, and reload the program (see
Chapter 3 [Editor] and 4.3 [Compilation Process]).

However, if all goes well, the compiler prompts for a statistical summary:

STATISTICAL SUMMARY? N/Y

'y' (yes) puts out a list of data concerning the program -- see next page:

122

ABACUS Software SUPER Pascal Development System

STATISTICAL SUMMARY OF "NAME II.

NO ERRORS! II xx WARNINGS!
MAXIMUM OF STATIC LEVELS = x
MAXIMUM OF VALID IDENTIFIERS

INCL. PREDFND. IDENT'S = xx
AT THE SCOPE OF "NAME "
MAX. OF VALID PARAMETERS = xx
DECLARATIONS IN DETAIL

DIV. REFERENCES
CONSTANTS
VARIABLES

FIELD-IDENTIFIERS
PROCEDURES

FUNCTIONS
PARAMETERS-BY-NAME

PRGM-PCODE AT: $xxxx
HEAPISTACK AT: $xxxx

TOTAL

LINKING AND SAVING "NAME
---> PRESS "RETURN"

xx
xx
xx
xx
xx
xx
xx
xx

$xxxx (= $xxxx)
$xxxx (= $xxxx)

"

Immediately following the last output line, the compiler begins fixing up the
p-code, diskette compilation, and connecting segmented program code. To
see how things came out, right after the compiler returns to the main menu,
hit R and "*" to run the compiled program.

123

ABACUS Software SUPER Pascal Development System

4.6 LOCALIZING RUNTIME ERRORS

Runtime errors are those errors which aren't found during compilation; in e
fact, the only time that you WllL find them is when the program is up and
running. The program will stop and give you a runtime message; this
doesn't give you specific information as to why the error occurred.

SUPER Pascal helps you avoid runtime errors. Clearing the I/O trap will
skip over I/O errors. Most of it has to come from YOU, though; the best
way to avoid errors is to do as much "fine work" in the testing stages as is
possible.

One especially important factor in debugging is the ability to find the
problem areas, i.e., the place at which the runtime error occurred, and what
state the data is in at this point The "classical" solution is to surround the
suspected areas with WRITE statements

a) to convey up to what point the program runs properly
and

b) to output "suspicious" variables.

This, however, is time-consuming work. SUPER Pascal, which gives an
error message and the memory location involved, takes at least some of the
mystery out of fmding the problem. Attempts at verifying errors by
recompiling the source using" &ADR+" is inexcusable.

Another aid is the post-mortem-dump. A program interruption gives all
available information, and allows you to find those especially tenacious
runtime errors. The PM-dump is in the Options menu (see Chapter 4.2).

If this option is chosen, a special marker will be put into the program; when
a runtime error is encountered, the error display will automatically load and
run the post-mortem output control.

All available data up to and including the error will be tabulated and listed.
The variables will be listed by their identifiers AND present contents (when e
possible). LOADDAT (for loading), C_PMDUMP (output program proper)
and the respective program me must all be available. The PM-dump file

124

ABACUS Software SUPER Pascal Development System

will be in its specified drive, but LOADDAT and C]MDUMP MUST be in
drive O.

The PM output program will ask whether the output will be on screen or to
the printer. This determines format for array and record variables.

Another trick in SUPER Pascal for fmding runtime errors lies in the Editor
and Utility programs. Frankly, these don't help all that much -- they can be
in connection with the following:

The program call from the MAIN menu sets the address
pointer to the system address $0363 (ADR]RPO).

The return from a program to the MAIN menu -- from
program end or runtime error -- makes an indirect spring
using the address pointer at $0361 (ADR _EXPO).

Calling a program will set in the MAIN a so-called
WARMFLAG ($0360), setting that flag to O.

If the program is has a starting address matching up with
the pointers ADR_PRPO and ADR_EXPO, every program
break will jump immediately back into the program. It
goes to the start-of-program, be it first time or re-entry (
This is controlled by WARMFLAG).

125

ABACUS Software SUPER Pascal Development System

5.0 THE 6510 ASSEMBLER

The 6510 assembler runs completely in harmony with SUPER Pascal. This
assembler is, however, a separate program, and must not be confused with
the compiler-integrated assembler segment. Essentially, the assembler takes
6510 assembler source code and helps you turn these source codes into
functional 6510 machine code.

The assembler itself is a Pascal program, but that makes no difference: It
will still turn out acceptable 6510 code, and you will only occasionally
notice that the SUPER Pascal assembler is slower than a standard machine
code assembler/monitor.

The great strength to this assembler is its ability to assemble huge source
texts; a splendid example of this is the mil runtime packet in SUPER Pascal
which has 200K of assembler squeezed into 8K of program code (divided
into 7 individual files).

Another advantage to this assembler is the fact that when machine language
is being generated directly to disk, there is no possibility of memory
collision occurring.

5.1 SOURCETEXT DESIGN

This material has already been touched upon in Chapter 3.3. Bearing that in
mind, we'll only recap the most important items here, just to avoid repeating
ourselves too much.

The assembler converts a textfile into 6510 machine language (if the source
text is in proper syntactical form). Each line is set up in a columnar
arrangement, with each column reserved for a specific purpose:

Text line : ZZZZ LLLLLLLL III 00000000 ...

POSITION 1-4 (ZZZZ = line number)

This field contains the line number.

127

ABACUS Software SUPER Pascal Development System

POSITION 5 (space)

This column separates the line number from the next item
(label field) with a space.

POSITION 6-13 (LLLLLLLL = label field)

This field contains the label by which specific areas within
an assembler program are recognized. Labels are written
in the same manner as Pascal identifiers:

8 significant characters
First character must be a letter
Remaining characters can be letters, numbers and/or '_'
(ASCII $5F, the back arrow on the C-64)

POSITION 14 (space)

Separates the label field from the instruction field.

POSITION 15-17 (III = instruction (operator) field)

This field contains the 6510 mnemonic instruction (see
5.2), and will also accept pseudocommands (see 5.4).

POSITION 18 (space)

This space separates the instruction field from the operand.

POSITION 19 ff. (00000000 ... = operand field)

The operand field, in which the operand corresponding to
the operation (see above) is contained; the first line gives
the address type (see 5.3 for an explanation of addressing).

Commentary can be. supplied after the operand field; begin the comment line
with a semicolon (;). e

128

ABACUS Software SUPER Pascal Development System

S.2 COMMAND SET

e The 6510 assembler built into SUPER Pascal accepts standard 6510 (or
6502, if you prefer) mnemonics, as well as pseudo-instructions (preceded by
a period' .'). Here are all the 6510 operation codes:

ADC Add memory to accumulator with carry
AND "and" memory with accumulator
ASL shift one bit left (memory or accumulator)
BCC branch on carry clear
BCS branch on carry set
BEQ branch on result zero
BIT test bits in memory with accumulator
BMI branch on result minus
BNE branch on result not zero
BPL branch on result plus
BRK force break
BVC branch on overflow clear
BVS branch on overflow set
CLC clear carry flag
CLD clear decimal mode
CLI clear interrupt disable bit
CLV clear overflow flag
CMP compare memory and accumulator
CPX compare memory and x-register
CPY compare memory and y-register
DEC decrement memory by one
DEX decrement x-register by one
DEY decrement y-register by one
EOR "exclusive-or" memory with accumulator
INC increment memory by one
INX increment x-register by one
INY increment y-register by one
JMP jump to new location
JSR jump to subroutine (retain return address)
LDA load accumulator with memory
LDX load x-register with memory
LDY load y-register with memory
LSR logical shift right (memory or accumulator)

129

ABACUS Software SUPER Pascal Development System

NOP no operation
ORA "or" memory with accumulator
PHA push accumulator on stack
PHP push processor status on stack
PLA pull accumulator from stack
PLP pull processor status from stack
ROL rotate one bit left (memory or accumulator)
ROR rotate one bit right (memory or accumulator)
RTI return from interrupt
RTS return to subroutine (back to main prg.)
SBC subtract memory from accumulator wI carry
SEC set carry flag
SED set decimal mode
SEI set interrupt disable status
STA store accumulator in memory
STX store index x in memory
STY store index y in memory
TAX transfer accumulator to index x
TAY transfer accumulator to index y
TSX transfer stack pointer to index x
TXA transfer index x to accumulator
TXS transfer index x to stack pointer
TYA transfer index y to accumulator

5.3 TYPES OF ADDRESSES

The opcodes quoted in the last chapter are actually quite versatile -- they can
be addressed in different ways. The different types of addresses and their
symbols are listed below. These types can be defmed in the LABEL
EXPRESSION, with the respective operand and type stated there. The
expressions can

be made of symbolic labels
be in either decimal or hexadecimal form
be in CHAR form (ASCII)
present arguments for functions in H and L (high-byte,
low-byte form).

130

e

e

ABACUS Software SUPER Pascal Development System

The elements named can be combined with + and - for addition or
subtraction. Examples of these label expressions:

OUTPUT $D o L,BUFFER
I 0 PORT $OOlA 13 H,MEMORY
TIMER1 $FFFE 1024 H,10000
I X' ADDRESS+1 LBL-2
L, BUFFER+41 EXIT+$10 $400+65+$FOOOO-MEM_ADR

The address types for the 6510 CPU:

IMP (implied) Syntax: no operand section

ACC (accumulator) Syntax: A

IMM (immediate) Syntax: #LABEL EXPRESSION

ABS (absolute) Syntax: LABEL EXPRESSIONS

ABX (absolute,X) Syntax: LABEL EXPRESSION,X

ABY (absolute,Y) Syntax: LABEL EXPRESSION, Y

ZPG (zero page) Syntax: #LABEL EXPRESSION

ZPX (zero page,X) Syntax: #LABEL EXPRESSION,X

ZPY (zeropage,Y) Syntax: #LABEL EXPRESSION,Y

IXX (indexed,X) Syntax: (LABEL EXPRESSION,X)

IXY «indexed),Y) Syntax: (LABEL EXPRESSION), Y

IND (indirect) Syntax: (LABEL EXPRESSION)

REL (relative) Syntax: LABEL EXPRESSION

These types coincide with the opcodes in the following table.

131

ABACUS Software SUPER Pascal Development System

OPCODE ADDRESS TYPES
IMP ACC IMM ABS ABX ABY ZPG ZPX ZPY IX> IX' INr RE

ADC * * * * * * * *
AND * * * * * * * *
ASL * * * * *
BCC *
BCS *

BEQ *
BIT * *
BMI *
BNE *
BPL *

BRK *
BVC *
BVS *
CLC *
CLD *

CLI *
CLV *
CMP * * * * * * * *
CPX * * *
CPY * * *

DEC * * * *
DEX *
DEY *
EOR * * * * * * * *
INC * * * *

INX *
INY *
JMP * *
JSR *
LDA * * * * * * * *

132

ABACUS Software SUPER Pascal Development System

OPCODE ADDRESS TYPES
IMP ACC IMM ABS ABX ABY ZPG ZPX ZPY IXX IXY IND REL

LDX * * * * *
LDY * * * * *
LSR * * * * *
NOP *
ORA * * * * * * * *

PHA *
PHP *
PLA *
PLP *
ROL * * * * *

ROR * * * * *
RTI *
RTS *
SBC * * * * * * * *
SEC *

. SED *
SEI *
STA * * * * * * *
STX * * *
STY * * *

TAX *
TAY *
TSX *
TXA *
TXS *
TYA *

133

ABACUS Software SUPER Pascal Development System

5.4 PSEUDO OPERATION CODES

The pseudo operation codes accepted by the assembler are for controlling the e
assembler and generating code. All pseudo opcodes are preceded by a
period (.):

CONTROL pseudo opcodes:

• BA (Begin Assembly)
Syntax: . BA ADDRESSEXPRESSION

This command defines the starting address for the machine code.
ADDRESSEXPRESSION stands for an absolute address in decimal or
hexadecimal form, or for an expression already defined as a label.

NOTE:
Expressions should NOT contain spaces; any material after spaces will be
viewed as commentary by the assembler (and consequently ignored).

· CT (ConTinue with ...)
Syntax: . CT FILENAME

This command appends separate source programs. FILENAME stands for
the file desired in the current disk drive.

· DL (Defme Label)
Syntax: . DL ADDRESSEXPRESSION

This command will determine the comparison between an already-used label
name, and the address given at ADDRESSEXPRESSION.

· EN (ENd of assembly)
Syntax: .EN

This signals the conclusion of assembly .. EN can be defined as a label (e.g.,
END . EN). e

134

ABACUS Software SUPER Pascal Development System

· EO (if EQual to 0)
· NE (if uNEqual to 0)

(end of condition)
SYNTAX: • EQ ADDRESSEXPRESSION

• NE ADDRESSEXPRESSION
· .. ADDRESSEXPRESSION

These instructions will handle conditional assembly; the details are handled
in 3.3 .

. oc (Objectcode Clear)
· OS (Objectcode Set)

Syntax: .OC
.OS

These codes switch the machine code generator off (.OC) and on (.OS); the
default value of the generator (Le., at power-up) is ON. This option allows
insertion of already- assembled external program code.

e PROGRAMMING pseudo opcodes:

· BY (BYte (table)
Syntax: • BY BYTELIST

This can insert any sequence of bytes of running machine code. The number
of bytes are governed by the size of the bytelist (min. 1 BYTE - max. to end
of-line). If more bytes need be generated, just keep calling up . BY in the
lines to follow. A BYTELIST is any set of bytes; they can be in decimal or
hex; or, individual characters and strings, e.g.:

.BY 0 128 255

.BY 0 $80 $FF

.BY , A' , C' , E' 'u'

.BY 'SUPER PASCAL'

.BY 0 ' A' $80 'DATA' 255

A commentary character (;) or a clr ends the bytelist in any line.

135

ABACUS Software SUPER Pascal Development System

• DS (DiSplacement)
Syntax: • OS ADDRESSEXPRESSION

This command can create large memory ranges in machine language. The e
assembler generates code from $00 through the amount stated in
ADDRESSEXPRESSION; the assembly continues with the next available
memory address .

• SA (Set Address)
Syntax: . SA LABELEXPRESSION

From this command, the assembler generates a 2-byte address (low
byte/high-byte) and puts it into the code. LABELEXPRESSION is an
expression made up of any labels and/or absolute addresses (hex or decimal).

5.5 RUNNING THE ASSEMBLER I OPTIONS

The assembler is loaded from the MAIN menu using the 'A'command; it
will load an assembler sourcecode from diskette. The system prompts with:

FILE-TITLE ?
ORIVE(MAP) = x

The default value for x is the number of the disk drive last used; by rights,
then, you need only press <RETURN>.

If the file to be assembled was edited most recently, you can simply respond
to the FILENAME prompt by pressing * and <RETURN>. The system asks
for verification:

CONFIRM "FILENAME,ORIVE_NR"? N/Y

Any incorrect input will abort the assembler, and return you to the MAIN
menu.

When all materials have been properly entered, the assembler will load from
the system diskette (which requires LOADDAT and C _ ASMBLR in drive

136

ABACUS Software SUPER Pas<:a1 Development System

0). If the textfile is not found, or if the ftle isn't a textfile, the system will
display the proper error message and return you to the MAIN menu.

Once the assembler has initialized, and the sourcecode ftle has been opened,
the assembler displays

* C=64 6510 ASSEMBLER 5.3 *

and prompts with

LISTING ? YIN

so it knows whether or not to run a program listing (not designed like the
source text, but rather a listing of memory locations and machine code in hex
notation). If commentary running over 80 characters per line exists, the right
portion of the commentary will be cut off. The system questions further:

HARDCOPY ? YIN

-- giving you the option of seeing the listing on screen or on paper. If you
choose the latter, the output device numbers will be requested:

OUTPUT-DVC = 4,0

Once this is conftrmed, PASS 1 of the assembly process will commence.

The assembler might find some syntax or formula errors: An error message
and the offending line will be displayed. For example,

2005 1 BUFFER LDA #1

will generate

ILLEG. CHARACTER IN LABEL ERROR IN ..
2005 1 BUFFER LDA #!

If you're reading this onscreen rather than on a printout, the assembler will
wait for you to press the <RETURN> key before continuing -- to give you a
chance to write the problem down.

137

ABACUS Software SUPER Pascal Development System

Here are the possible error messages:

ILLEG. CHARACTER IN LABEL ERROR IN ..
ILLEG. MNEMONIC ERROR IN ..
ILLEG. PSEUDO ERROR IN ..
ILLEG. OPERAND ERROR IN ..
ILLEG. BYTE-DEFINITION ERROR IN ..
LABEL NOT FOUND ERROR IN ..
DUPLICATE LABEL ERROR IN ..
ILLEG. ADDR. MODE ERROR IN
ILLEG. INDEX ERROR IN ..
ILLEG. ADDRESS ERROR IN
LONG BRANCH ERROR IN
.EN MISSING ERROR IN

If the first pass goes without a hitch, the assembler announces the good
news:

PASS 1 OK

-- and starts PASS 2, which assembles the file, and stores it on diskette as a
temporary fIle (CODDAT). Errors are displayed just as in PASS 1.

If all has gone well, the assembler lets you know --

PASS 2 OK.
---> 0 ERRORS

-- and asks for the name of the object code file:

TITLE OF OBJECT-FILE =

You give the identifier that you wish this mil program to have.

Next, you'll be asked about the fate of the label list:

LABEL-FILE TO DISC ? YIN

Choosing 'Y' will make the system ask for a fIlename:

138

ABACUS Software SUPER Pascal Development System

TITLE OF LABEL-FILE =

LABEL-FILE TO PRTR ? YIN

This gives you the option of printing out the label list file. If 'Y' is chosen,
the system will ask for the printer address:

OUTPUT-DVC = 4,0

If you so desire, the label file can be sent to the screen and/or the printer.
One more time, you'll be asked about the label list:

LABEL-LISTING? YIN

This time, if you say' Y', the system will put this listing on screen. The list is
arranged in alphabetical order of labels, together with their address
definitions. The list can be stopped and resumed by pressing <SPACE>.
The RUN/STOP key aborts the output, and returns you to the MAIN menu.
Choosing 'N' for the label list prompt will also send you back to the MAIN
section.

If errors are found during PASS 2, the system scratches (deletes) the
temporary file CODDAT; the label list is still accessible, however. Leaving
the assembler automatically loads and starts the Editor, which loads the bad
sourcecode, so that you can immediately go in and debug it. From there, you
must go back to the MAIN before calling the Assembler.

Pressing the RUN/STOP key while in the Assembler will display a

BREAK •••

and load the Editor and sourcefile.

Here is a short program demonstrating the design of an assembly program,
the program listing output, and the label list output. The program should
switch the C-64's screen on and off in intervals of one second.

139

ABACUS Software SUPER PaseaI Development System

1000 DEMO .BA $0800iDEMO PROGRAM SWITCH SCREEN
1005
1010 CPUPORT .DL 1 i DETERMINE MEM. CONFIGURATION ~
1015 VICREG17 .DL $DOOOO+17 i SW. SCREEN BIT 4 OFF ~
1020 MARKER .DL $FFOO iMARKER CELL FOR SCR. MODE
1025
1030 START LDY 40 iRESET COUNTER
1035 STY MARKER iINITIALIZE MARKER
1040 LOOPO JSR SWITCH iSWITCH SCR. MODE
1045 DEC MARKER iMARK BIT 0
1050 LOOP1 JSR DUMMY ill-COUNT CPU TIME DELAY
1055
1060
1065
1070
1075
1080
1085 SWITCH
1090
1095
1100
1105
1110
1115
1120
1125
1130 DUMMY
1135

DEX
BNE LOOP1
DEY

;LOWBYTE COUNT
i256 TIMES
iHIGHBYTE COUNT
;256 TIMES BNE LOOP1

JMP LOOPO iSWITCH -- BREAK CONDITION
iIS HERE

LDA *CPUPORT
ORA n
STA *CPUPORT
LDA VICREG17
EOR 4$10
STA VICREG17
LDA *CPUPORT
AND 4$FC
STA *CPUPORT
RTS

iI/O BANK ON

iINVERT BIT 4

i RAM-BANK ON

1140 END .EN

1000 $0800

1005 $0800
1010 $0800

1015 $0800

1020 $0800

DEMO .BA $0800
iDEMO PROGRAM SWITCH SCREEN

CPUPORT .DL 1
iDETERMINE MEM. CONFIGURATION ~

VICREG17 .DL $DOOOO+17 ~

i SW. SCREEN BIT 4 OFF
MARKER .DL $FFOO

iMARKER CELL FOR SCR. MODE

140

ABACUS Software SUPER Pascal Development System

1025 $0800
1030 $0800 AO 00 START LDY to ;RESET COUNTER

e 1035 $0802 8C 00 FF STY MARKER
;INITIALIZE MARKER

1040 $0805 20 17 08 LOOPO JSR SWITCH
; SWITCH SCR. MODE

1045 $0808 CE 00 FF DEC MARKER;MARK BIT 0
1050 $080B 20 2B 08 LOOP1 JSR DUMMY

;ll-COUNT CPU TIME DELAY
1055 $080E CA DEX ;LOWBYTE COUNT
1060 $080F DO FA BNE LOOP1 ;256 TIMES
1065 $0811 88 DEY ;HIGHBYTE COUNT

1075 $0814 4C 05 08 JMP LOOPO
iSWITCH -- BREAK CONDITION

1080 $0817 iIS HERE
1085 $0817 AS 01 SWITCH LOA *CPUPORT
1090 $0819 09 01 ORA t1 iI/O BANK ON
1095 $081B 85 01 STA *CPUPORT
1100 $0810 AD 11 DO LDA VICREG17
1105 $0820 49 10 EOR f$10iINVERT BIT 4
1110 $0822 80 11 DO STA VICREG17
1115 $0825 A5 01 LOA *CPUPORT
1120 $0827 29 FC AND f$FC i RAM-BANK ON
1125 $0829 85 01 STA *CPUPORT
1130 $082B 60 DUMMY RTS
1135 $082C
1140 $082C END .EN

PASS 2 OK.

> 0 ERRORS <

LABELLIST

CPUPORT $0001 DEMO $0000 DUMMY $082B
END $082C LOOP 0 $0805 LOOP 1 $080B
MARKER $FFOO START $0800 SWITCH $0817
VICREG17 $D011

141

ABACUS Software SUPER Pascal Development System

6.0 UTILITY MENU

e The Utility program is an extremely useful software packge. You know that
a utility is universally defined as a program that helps you program; our
packet gives you simple disk management and help in running SUPER
Pascal. Pressing 'u' brings you to the Utility menu; it is important that two
programs, LOADDAT and C _ UTILIT, be in disk drive O.

e

One advantage of the Utility program is that the loading of programs can be
handled in this section itself. Once this menu is started, the system diskette
is no longer needed. Here's what you'll see on initialization:

* C=64 FILE-UTILITY 5.3 *
COMMANDS

A (DVICE) J (UMP) S (TOREMEM)
B(LOCKTABLE) K(ILLTITLE) T(RNSFRMEM)
C (OPY) L (OCKFILE) U (NLOCKFILE)
D(UPLICATE) M(AP/DRIVE) V (IEWMEM)
E(NTERSECT) N (EWDISC) W(RITEDIR)
F(ETCHSECT) o (RGANIZE) X (CLUDEBLC)
G (ETRAM) Q(UIT) Z(EROBLOCK)
I (NSERT ADV) R(ENAME)

The cursor always turns into a dollar-sign ($) when you're in Utility. As
mentioned previously, typing the first letter and <RETURN> gets you the
individual menu selections; all other input requires pressing the <RETURN>
key at the conclusion of the input line. Numbers can be entered in decimal
or hexadecimal form (preceded by $, of course). False string input will be
answered with

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

e Improper numeric input will yield

143

ABACUS Software SUPER Pascal Development System

INVALID INPUT
EXECUTION NOT SUCCESSFUL!

Disk access defaults to system drive 0; the 'M' command can redefine drive e
numbers.

The Utility program is fairly insensitive to errors -- any problems will bring
up appropriate error messages, and hand control back to the Utility menu
itself.

You have the option of sending Utility output to the screen or a printer. The
default printer address is 4,0 but you can change it at any time with

@X,Y

with X representing the primary address, and Y the secondary address.

6.1 UTILITY COMMANDS

6.1.1 A (= ADVICE)

This command lets you review the user-specific information in any file
(assuming that information has been added -- see 'i'). First prompt is:

FILE-TITLE =

to which you respond with the filename which has the information you want
to view. The system searches the disk drive and displays

ADVICE TO "FILENAME,DRIVE_NR":
current information

If no information exists,

... NO ADVICE INSERTED!

appears. If the file itself doesn't exist, you'll see

144

ABACUS Software SUPER Pascal Development System

6.1.2

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

B (= BLOCKTABLE)

This command displays the block table map (or block availability map, as
it's known in BASIC) of a diskette. The table is in Pascal-DOS, which
means that the diskette is divided into 40 blocks of 4K each, with each block
subdivided into 8 512-byte sectors.

'B' displays individual blocks with symbols explaining status. Here are the
symbols, and their defmitions:

F (FREE)
The block displayed is ready to be used. The internal
content is O.

I (INVALID)
This block shouldn't be changed; it contains the disk
directory and information (see 6.1.1 and 6.1.9). Internal
value is 255 ($FF).

U (USED)
This block is filled; internal value is >= 80 and <96.

X (eXCLUDE)
This block has been reserved from the DOS (see the 'X'
command); the block can be freed up with the 'z'
command. Internal value is 256 ($FE).

The block table of the system disk looks something like this:

145

ABACUS Software SUPER Pascal Development System

BLOCK-TABLE OF DISC "PASCAL ,0":
('XCLUDE,FREE,INVALID,USED)

° : I U U U U U U U U U
10: U U U U U F F F F F
20: F F F F F F F F F F
30: F F F F F F F F F F

6.1.3 C (= COpy FILE)

Here you can copy Pascal-DOS files, regardless of type. The system
prompts for the following parameters:

SOURCE - DRIVE ?
DESTINAT-DRIVE ?
FILE-TITLE = ?

Any bad input will repeat the prompts. Once all input is sent, the system will
copy the file. If the system has two disk drives, the program will perform
data transfer in a block-wise manner, while the single-drive system will load
the file, ask you to change to the destination disk, and press <RE TURN>,
which will save the file to the new diskette.

Other information (ADVICE) is copied as well as the file. The procedure
ends with "READY" displayed. If there is insufficient space on the
destination disk, you'll get either

DISC OVERFLOW!
EXECUTION Nn~ SUCCESSFUL!

or

MAP OVERFLOW!
EXECUTION NOT SUCCESSFUL!

If the destination disk has a filename identical to the file you're copying,
you'll get

146

ABACUS Software SUPER Pascal Development System

FILENAME EXISTS ON DESTINATION-DISC!
SURE TO REWRITE FILE ? yiN

e to which if you respond 'Y', the old file will be overwritten by the new.

6.1.4 D (= DUPLICATE DISC)

In cases where large amounts of information must be copied (or, for that
matter, all 40 blocks of a diskette), the 'D'command is at your disposal; it
can be used ONLY with a two-drive system:

SOURCE - DRIVE ?
DESTINAT-DRIVE ?

requires your response (011). Since the destination diskette may be
overwritten, you'll get this prompt to confirm:

DISC MAY BE USED; SURE TO REWRITE ? yiN

Once the parameters have been given, the system performs blockwise
copying --

COPYING; PLEASE WAIT!
BLOCK IN PROGRESS ... x

If you try this command with only one disk drive, the system will protest:

NO DUPLICATING WITH SINGLE-FLOPPY!
EXECUTION NOT SUCCESSFUL!

Should something go wrong to stop the copying process (e.g., drive switched
off, no diskette in drive, unformatted diskette, etc.), a corresponding error
message appears, and execution ceases.

NOTE:
Duplication can only be done on diskettes formatted with SYSGEN!!

147

ABACUS Software SUPER Pascal Development System

6.1.5 E (= ENTER SECTOR)

This command allows any 512 byte memory range to be saved to any sector e
of the diskette. The following parameters are requested:

RAM-ADR ?
SECTOR# ?

Input errors will make these prompts repeal

Disk sectors are lined up in a logical sequence, with eight sectors to a block
(sectors 0-7 in block 0, sectors 8-15 in block 1, etc.), up to 319 sectors.
Double-drive systems offer sectors from 0-639.

In cases where the block is marked'T' or "U" (see 6.1.2), the system will ask
for confIrmation:

NOTE:

CONDITION OF CORRESPONDING BLOCK: x
SURE TO SAVE INTO THIS SECTOR? YIN

There is a possibility of overwriting old data, or even destroying the disk
directory (sector 0); be careful.

6.1.6 F (= FETCH SECTOR)

The 'F' command is the reverse of 'E'; it will transfer any sector from
diskette into memory. Prompts:

SECTOR# ?
RAM-ADR ?

Illegal input will be ignored. Once loaded, the sector can be displayed with
the 'V' command.

148

ABACUS Software SUPER Pascal Development System

NOTE:
The 'F' command doesn't check for sufficient memory space when loading.
You have the entire memory from $4000 to $C200 available for this
command (and, in exceptional cases, $0400-$07FF (screen memory».

6.1.7 G (= GET FILE FROM DISC TO RAM)

This command loads any fIle from diskette to the computer, which can be
useful for temporarily storing information as well as loading programs. This
dialogue occurs:

START-ADR = ?

-- give the address of where you want the program in memory (either in
decimal or hexadecimal).

FILE-TITLE = ?

e -- you supply the filename.

DRIVE (MAP) = x

-- give the drive number where the file can be currently found (default is the
last-used drive).

END-ADR+l = $xxxx

--assuming the rest of the input was valid, give the ending address in
memory.

NOTE:
This command doesn't test for available memory, or whether any collisions
may occur (see the NOTE at 'F' for available memory).

149

ABACUS Software SUPER Pascal Development System

6.1.8 H (= HELP)

This command displays the complete command list for the Utility menu.

6.1.9 I (= INSERT ADVICE)

Advice (extra infonnation) is put in using this command (and read with' A').
Mostly, this advice can consist of version number, memory range, starting
address, etc.).

FILE-TITLE = ?

asks for the filename to which you want to add comments.

CONFIRM "FILENAME,DRIVE_NR"? N/Y

asks for verification. If the title isn't on the diskette, the machine responds
with

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

The prompt for the infonnation will read:

WRITE THE ADVICE (MAX. 63 CHAR.)
AND TERMINATE WITH 'RETURN' !

The comments will be stored in sectors 1-5 (block 0) of the diskette.

6.1.10 J (= JUMP)

This allows a jump to any machine language or Pascal program in memory. e
PRGM-ADR. = ?

150

ABACUS Software SUPER Paseal Development System

-- you give the jump address.

NOTE: e There is no control over memory overlapping.

You have $4000 to $C200 at your disposal for a jump. When through with
the routine, it would be wise to have

JMP $0800

for the last command (this returns you to the Utility menu); do NOT return
to $0028-$004F, $0340-$0379 or $0800-4000.

The 6510 command

JMP $C200

will return you to the MAIN menu.

e 6.1.11 K (= KILL TITLE)

The 'K' command allows you to delete diskette files no longer needed.

FILE-TITLE = ?

asks for the fIlename you wish scratched.

CONFIRM "FILENAME,DRIVE_NR ? N/Y

asks for verification; 'Y' will delete the fIle (the disk drive can be redefined
with the 'M' command).

If the fIle isn't in the drive, you'll get

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

and a stopped command.

151

ABACUS Software SUPER Pascal Development System

If the file is locked, the Utility will recheck --

FILE I S LOCKED!
SURE TO KILL THE FILE ? N/Y

Pressing 'Y' will kill the locked file.

At the conclusion of the process, the revised directory will be displayed
onscreen.

6.1.12 L (= LOCK FILE)

Files can be protected from overwriting and deletion by this command. The
Utility asks:

FILE-TITLE = ?

If file isn't existent, the system says

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

The appropriate file is locked (and is shown in the directory in reverse
video).

6.1.13 M (= MAP/DRIVE)

The 'M' command serves to display the directory (or MAP) of a diskette
onscreen.

DRIVE (MAP) = x

x defines the drive desired; the default is the last utilized disk drive, so a _
<RETURN> alone will often suffice. ,.,

152

ABACUS Software SUPER Pascal Development System

Note that the 'M' command reads Pascal-DOS disks ONLY! Since the DOS
has been rewritten, the system cannot read disks formatted in the "normal"
way. The system disk, with the exception of 22 blocks of normal size (256
bytes), the entire Pascal disk is under Pascal-DOS.

The directory shows fIlenames and the number of blocks still available on
the disk (remember, Pascal blocks equal4K each).

The map of the boot diskette looks like this:

MAP OF DISC "PASCAL ".
LOADDAT SYSGEN C EDITOR C UTILITY
C CPLR C ASMBLR C PMDUMP
DISC 0 = 18 II
BLOCKS FREE !

Further information· about chosen files can be had with the 'W' command.
See Chapter 7 for more information about Pascal-DOS.

6.1.14 N (= NEW DISC)

This command clears the directory of a diskette already formatted using
SYSGEN. First, state which drive has the disk to be "newed out":

DRIVE (MAP) = x

Default value is the last disk drive accessed. Incorrect input is treated as
mentioned earlier.

For security reasons, the Utility asks the user for confirmation:

DISC MAY BE USED; SURE TO REWRITE ? yiN

If you wish to go on, respond with 'Y'; the system will ask:

DISC-TITLE = ?

-- you give the name you want given to the diskette.

153

ABACUS Software SUPER Pascal Development System

N OF DISCS = ?

Answering '1' will new one disk (40 blocks); '2' (assuming you have two _
drives) will new BOTH disks for use as one (totaling 80 blocks). •

The new directory will be listed on the screen

6.1.15 0 (= ORGANIZE DISC)

This command works in connection with 'N' -- where in 'N', two disk drives
are used to create one directory, this command can return us to "single disk"
status. Also, the disk is "organized" -- a closer packing of meso

DRIVE (MAP) = x

x = the drive number which contains the system diskette. Concluding with

NEW SIZE =

reorganizes the disk. If your input above is equal to 2, be sure that the
second disk is in drive 1 (the second drive). An input of 1 separates the
material in drive 0 from the files in drive 1. This procedure must conclude
with the 'N' command if the second diskette has files on it, the Utility says:

DISC >= 1 NOT FREE!
SURE TO RESIZE DISC ? yiN

6.1.16 P (= PUT RAM AS FILE TO DISC)

Store any memory contents to diskette as a datafile (see 'G' to retrieve).
Parameters are as follows:

154

ABACUS Software

START-ADR.
END-ADR.+1

?

?
FILE-TITLE ? e DRIVE (MAP) = X

SUPER Pascal Development System

Addresses can be in decimal or hex; filenames must be given per syntax for
Pascal identifiers:

8 significant characters
1st char. must be a letter
remaining chars. can be letters, numbers and'_'

Default for x is the last drive number accessed.

NOTE:
Any file already on the destination disk~tte with the same name as the file
being saved will be overwritten, unless the original file is locked: Then

IL.FILE OPR. ERROR!

will appear.

You have the following memory available to you for this procedure:

$OOOO-$CFFF(RAM); $DOOO-$DFFF(I/O);$EOOO
$FFFF (KERNAL)

6.1.17 Q (= QUIT)

Exits Utility menu and goes to MAIN.

6.1.18 R (= RENAME FILE)

'R' lets you rename any me in the directory. The system will ask:

FILE-TITLE = ?

155

ABACUS Software SUPER Pascal Development System

You give the filename to be changed (NOTE: The disk wiIh this file must be
in the directory, or a 'TITLE NOT FOUND!' error will appear).

REPLACEMENT=

is the prompt for the new filename. The directory will then be changed, and
the revised map shown onscreen.

If the new filename already exists, the Utility states

TITLE EXISTS ON THIS DISC!
EXECUTION UNSUCCESSFUL!

and the procedure is left undone.

It is also possible to change Ihe diskette name itself with 'R'.

6.1.19 S (= STORE BYTE INTO MEMORy)

Byte information can be immediately changed in the 64, and stored in
memory. The system will ask:

MEM-ADR =
CONTENTS=

Give the memory address and the contents of that address (both in decimal
or $hexadecimal); a CONTENT of over 255 ($FF) will be ignored by the
Utility.

NOTE:
No testing for the legality of the content in the memory location.

156

ABACUS Software SUPER Pascal Development System

6.1.20 T (= TRANSFER MEMORY-BLOCK)

Here you can transfer memory contents (for test purposes) in increments of 1
memory page (256 bytes); however, the starting address can be virtually any
number (see below), just as long as you don't go past page borders (low
order byte = $(0).

ADR OF SOURCE - PAGE ?
ADR OF DESTINAT-PAGE ?

The input can be either in hex or decimal.

NOTE:
The target range isn't tested for what sort of manipulation it can perform.
Use this command only if you're well-versed in memory management. You
have available memory of $4000- $CFFF.

6.1.21 U (= UNLOCK FILE)

Opposite of 'L' -- unlock secured files.

FILE-TITLE = ?

requests the filename, which must be in the disk drive (drive can first be
redefined with 'M', as necessary). If the file isn't onhand, the system
responds with

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

and starts over again. Assun$g that all is well, the file is unlocked, and the
revised directory is displayed.

157

ABACUS Software SUPER Pascal Development System

6.1.22 V (= VIEW MEMORY)

The 'V' command lists any memory range to the screen or a printer; contents
will be printed out in hexadecimal and -- when possible -- in ASCII form e
(hex-dump). The Utility asks for

START-ADR. ?

END-ADR.+1 ?

which can be given in either hex or decimal. If the start and end addresses
are identical, the Utility will show the one line on screen. If a fair amount of
memory is requested, the prompt

HARDCOPY TO PRINTER? yiN

will appear. Any changes to the printer addresses can be made according to
the introduction to this chapter.

A memory dump of, say, $C200-$C22F would look like this:

«MEMORY DUMP»

$C200:20 21 CA 12 C2 00 00 BC !
$C208:Fl Cl 00 00 00 C2 FD FF
$C210:00 00 4D 19 C2 FF B1 11 .. M
$C218:C6 80 lC 2A 20 43 3D 36 ... * C=6
$C220:34 20 20 50 41 53 43 41 4 PASCA
$C228:4C 2D 53 59 53 54 45 4D L-SYSTEM

Memory contents in the range $20-$7f are ASCII characters. This listing
can be stopped and restarted with the <SPACE> bar; pressing RUN/STOP,
however, aborts the program.

158

ABACUS Software SUPER Pascal Development System

6.1.23 W (= WRITE DIRECTORY)

e This command sends an entire disk directory to the printer in extended form
(with extra information):

CONDITION:
Whether the me is locked or unlocked.

STARTBLOCK
The first block in which information is stored on diskette.

LENGTH
File length -- in an X,Y format (X= number of 256-byte
pages, and Y = remainder not counted in X).

ADVICE
File information. If non is available, '---' is printed.

e Mter calling the 'W' command, you'll be asked for the drive number:

DRIVE (MAP) = x

As before, the default for x is the last drive used.

Finally, the output mode will be asked for:

HARDCOPY TO PRINTER? Y!N

Responding with "Y" will start printer output. Printer specification should
be done with '@X,Y', as previously mentioned in the introduction to

Chapter 6.

You have a choice of seeing the extended directory onscreen or on paper ;
you have control over the fIrst by pressing the <SPACE> bar to stop and
resume output. Pressing RUN/STOP breaks off either screen or printer
output.

Here is a sample directory -- one of a disk just formatted with SYSGEN:

159

ABACUS Software SUPER Pascal Development System

« DIRECTORY OF DISC "PASCAL ,0"»

FILE-TITLE "LOADDAT"
CONDITION: LOCKED STARTBLOCK: 1

LENGTH: 63.255 ADVICE: ---

(list of files)

TOTAL: 1 DISC II 1 TITLES II
5 BLOCKS (35 FREE)II

6.1.24 X (= 'XCLUDE BLOCK)

This command allows you to set aside blocks of memory from regular use
by the DOS. Such a block registers in the block availability map with a
value of 254 ($FE), and is marked on the block table with an 'X'. Answer
the prompt

EXCLUDING-BLOCK

with an appropriate number; attempts to exclude the directory block (block
0) will be turned away with

INVALID INPUT!
EXECUTION NOT SUCCESSFUL!

The new BAM will be displayed on the screen.

Excluded blocks can be accessed with the 'E' command.

160

ABACUS Software SUPER Pascal Development System

6.1.25 Y (= LIST FILE)

This generates a hex-dump from any Pascal-DOS-accessible file (similar to
'V', which dumps a certain memory range).

FILE-TITLE = ?

Give the name of the file to be listed -- must be in the directory (and,
consequently, in the disk drive).

HARDCOPY TO PRINTER ? yiN

'Y' sends the fIle to the printer, rather than to the screen.

NOTE:
File dumps will begin with $0000, regardless of memory address at which
the file is located.

Onscreen dumps can be stopped and resumed with the <SPACE> bar -
RUN/STOP aborts any dump format

Here's a sample dump:

« FILE-DUMP of "LOADDAT ,0" »

$0000:20 21 CA 12 F7 81 00 BA !

$0008:F1 C1 00 00 00 F7 FE FF ·
$0010:00 00 4D 34 F8 4C 09 CA · . M4 . L ..
$0018:4C 06 CA 5E 02 79 41 26 L .. A. YA&
$0020:F1 08 5F FA F7 08 FC 08 ·
$0028:40 29 79 5E 02 79 6B 79 @YY".YkY

161

ABACUS Software SUPER Pascal Development System

6.1.26 Z (= RELEASE BLOCK TO ZERO)

This releases an excluded block for regular use by the Pascal-DOS, and give e
the block a value of 0 (marked in the block table with an 'F').

RELEASING-BLOCK (TO ZERO)

Input any number except 0 (directory block).

If this block is already occupied with memory, the system will confirm:

BLOCK IS USED! SURE TO RELEASE? YIN

REMEMBER: If you say 'Y' after this prompt, the data that was in this
block is lost forever.

The procedure concludes with a display of the revised BAM.

162

e

ABACUS Software SUPER Pascal Development System

7.0 SYSTEM·SPECIFIC INFORMATION

This chapter should give you enough detailed information about SUPER
Pascal's design to let you develop, adapt and change it to suit your own
needs. You can reach this information with your own file access.

7.1 SYSTEM SIZE AND DEFINITION

Variable Design

BOOLEAN VARIABLES are one byte in size, and are one of two values:

FALSE
TRUE

OODO 0000
0000 0001

CHAR and BYTE V ARIABLES represent user-specified scalar variables,
and run in a range from

a ($00) 0000 0000
to

255 ($FF) 1111 1111

CHAR VARIABLES stand for the ASCII codes of the characters in the
C64's system.

INTEGER VARIABLES are two-byte, binary-coded numbers, where the
msb (most significant bit) contains the integer information (0 for positive, 1
for negative). They have the following range:

-32767 (-MAXINT) ($8001) 1000 000 0000 0001
-1 ($FFFF) 1111 1111 1111 1111
a ($0000) 0000 0000 0000 0000
1 ($0001) 0000 0000 0000 0001

+32767 (+MAXINT) ($7FFF) 0111 1111 1111 1111

REAL V ARIABLES total 6 bytes in binary-coded exponential form. The
most significant byte represents the binary exponent:

163

ABACUS Software

(2") -127 ($01)
(2") 0 ($80)
(2") 127 ($FF)

SUPER Pascal Development System

0000 0001
1000 0000
1111 1111

The remaining five bytes represent the normal Mantissa, i.e., the msb is
always 1, so that its representation is assured. The Mantissa function is
integral (1 = positive, 0 = negative). For example:

-23.5 would be (in binary) -10111.1 = -1.01111 * 10 1\ 100
with the following 6 bytes: $84 $BC $00 $00 $00 $00

Zero is not available here. The value 0 would be arranged with an exponent
of 0 ($00) thus:

$00 $80 $00 $00 $00 $00

ADDRESS quantities are represented in two bytes.

SET VARIABLES can contain up to 256 elements (256 bits = 32 bytes).
The lesser byte represents the elements 0-7, while the greater byte stands for e
the elements 248-255.

ARRAY VARIABLES are represented sequentially, from lowest to highest
address.

RECORD V ARIABLES are analogous to array variables.

Here are the variables in sequence from top-of-stack to bottom-of-stack:

164

ABACUS Software

A,B:INTEGER;

C : REAL;

D,E:ARRAY[1 .. 3J OF CHAR;

F :RECORD
G : BOOLEAN;
H :BYTE;

CASE I: INTEGER;
1: (J:STRING);
2: (K:SET OF O .. 255)

END;

SUPER Pascal Development System

HIGH ADDRESS

___ A (HIGH) ____ _
______ A (LOW) _____ _
___ B(HIGH) ____ _
________ B(LOW) ____ _
_______ C(EXP) ________ __
_____ C(MAN.HIGH) ______ __
_____ C(MAN. __ 1_) ______ __
_____ C(MAN. __ 3_) ______ _
_____ C(MAN. __ 4_) ______ __
__ C (MAN . __ 5_) _____ _
_____ C(MAN._LOW) ______ __
______ ~D[3J __________ _
________ D[2J _______ _
_______ D[lJ _______ _
________ E[3J ________ _
_____ ~E[2J _________ _
________ E[lJ ______ _
_ ---'K (248 .. 255) _____ _
__ K(240 •. 247) ______ _
__ K() ______ _

_K(8 .. 15) / J(HIGH) __
I_K(O .. 7) / J(LOW)
I I (HIGH) _____ _
I I (LOW) ______ __
I H. ____________ _
I G ____________ _

I LOWEST ADDRESS

165

ABACUS Software SUPER Pascal Development System

PROCEDUREIFUNCfION descriptions take up 6 (7) bytes, and are set on
the stack with every procedure/function call. These 6 (7) bytes represent:

Dynamic link (2 bytes)
Return address(2 bytes)
Static link (2 bytes)
(segment nr. (1 byte»

System-defmed runtime errors are as follows:

0 OK
1 NA
2 IL. INPUT
3 NA
4 OUT OF RNG.
5 NOT EXQ.
6 NUM.OV.
7 B.SUBS.
8 IL.QUANT.
9 STK.OV.

10 ZERO-DIV
11 IL.DVC.
12 FLOPPY-
13 NOT OPEN
14 NOT CLO.
15 BUF.OV
16 DIR.OV.
17 NOT FND.
18 DSC.OV.
19 DSC.MISM.
20 IL.FILE OPR.
21 AFTER EOF
22 IEE -

166

(I/O error 0)

(I/O ERROR 1)
(I/O ERROR 2)
(I/O ERROR 3)
(I/O ERROR 4)
(I/O ERROR 5)
(I/O ERROR 6)
(I/O ERROR 7)
(I/O ERROR 8)
(I/O ERROR 9)
(I/O ERROR 10)
(I/O ERROR 11)

ABACUS Software SUPER Pascal Development System

7.2 MEMORY LAYOUT AND ADDRESSES

e SUPER Pascal uses the following addresses in the 64:

$0028 .. $0029
$002A .. $0028
$002C .. $002D
$002E .. $002F
$0030 .. $0031
$0032 .. $0039

$003A .. $004F
$0050 .. $0066
$0067 .. $006F
$0100 .. $0184
$0185 .. $01F9
$OlFA .. $OlFF

$0340 .. $0348
$0349 .. $0351
$0352 .. $035A
$0358
$035C
$035D
$035E
$035F
$0360
$0361 .. $0362
$0363 .. $0364
$0365 .. $036C
$036D
$036E .. $036F
$0370
$0371 .. $0372
$0373
$0374 .. $0375
$0376 .. $0379
$037A .. $03FF

Start-of-stack pointer
unused reserve pointer
base-pointer
top-of-stack pointer (STKPOI)
pointer for current heap
diverse pointers (usable in assembler
routines)
Fetch routine for "P-machine"
sundry zero-page cells
assorted C-64 system registers
INPUT buffer
6510 machine stack
RANDOM variable

Descriptor for 1st file buffer
Descriptor for 2nd file buffer
Descriptor for 3rd file buffer
Error-trap flag
I/O ERROR number
Working disk drive
"EXECUTE" flag
temporary disk drive
Warm flag
MAIN menu pointer
Start-of-program pointer
Filename for source transfer
Transfer drive for PUT/GET sector
Sector number for PUT/GET sector
INPUT device
INPUT secondary address
OUTPUT device
OUTPUT secondary address
assorted uses
OUTPUT buffer

167

ABACUS Software

$0800 ..

$BBFF

$BCOO .. $ClFF
$C200 .. $C7FF
$C800 .. $FOFF

$CA03
$CA06

$CA09

$CAOC

$CAOF

$CA12

$CAIS

$F300 .. $F6FF
$F700 .. $FAFF
$FBOO .. $FEFF

$FFFA .. $FFFF

SUPER Pasc:aI Development System

Start of programming memory

End of regular free stack

MAIN menu variable stack
MAIN menu
SUPER Pascal runtime packet

JUMP for external printer routine
JUMP on GET sector
(variable transfer on Pascal stack:

Drive number (high)
Drive number (low)
Sector number(high)
Sector number(low)
RAM address (high)
RAM address (low»

JUMP on PUT sector
(variable transfer like GET sector)
JUMP on runtime error
(error number put on Pascal stack)
JUMP to MAIN menu
(JMP$C200)
Indirect JUMP on program end
(regular:MAlN menu (JMP($0361)))
Indirect JUMP to program
(regular at $0800 (JMP ($0363»)

1 st me buffer
2nd me buffer
3rd me buffer

Machine vectors

168

ABACUS Software SUPER Pascal Development System

7.3 DISKETTE ORGANIZATION

Diskettes are laid out in Pascal-DOS, i.e., 320 sectors (0 .. 319), with each
sector totaling 512 bytes. Data is transferred in this DOS by the GET-sector
and PUT-sector routines ($CA06 and $CA09 respectively). Each sector in
Pascal-DOS is double the size of a normal DOS sector (256 bytes); the
changed DOS cuts the number of available disk blocks from 683 to 640,
with the remaining 43 blocks unused by SUPER Pascal. The blocks are
arranged as follows:

Track 1 - 17 / Sector 20
Track 18 / Sector 0, 1, 9, 10, 18
Track 19 - 24 / Sector 18
Track 25 - 30 /
Track 31 - 34 / Sector 16
Track 35 / Sector 6 - 16

The blocks Tl/S20 and T21S20 contain the loader software for changing the
DOS in SUPER Pascal. Tl8/S0 and T18/S1 hold the directory and BAM in
regular DOS, while T18/S9, S10, S18, as well as Tl7/S20, T16/S20,
T15/S20 and Tl4/S20 store the SUPER Pascal boot software.

The 320 sectors of a Pascal diskette aren't read individually; rather, in
clusters of eight (blocks). Such a block comprises 8 X 512 bytes = 4096
bytes or 4k. This block-wise arrangement of sectors gives you a total of 40
blocks per diskette, which increases to 80 blocks when two drives are used
in concert. The first block of every diskette (#0) is reserved for internal use
(contains #255). Block 0 of sector 0 is set aside for the Pascal DOS
directory; this directory is arranged schematically. Sectors 1..5 of block 0
are used for storing advice (additional information). The remaining sectors
(6 and 7) are free.

GET-sector and PUT-sector (mentioned previously) allow access to all 320
sectors. With the help of these routines, you can reserve blocks for your
own fIle- and diskette management, or data handling; you can also handle
program control of the directory. Just use these routines as USER functions:

169

ABACUS Software SUPER Pascal Development System

USERFUNC GETSECTOR(DRIVE,SECTOR,RAMPOINTER:INTEGER)
: BOOLEAN;

and

USERFUNC PUTSECTOR(DRIVE, SECTOR, RAMPOINTER: INTEGER)
: BOOLEAN;

and use SETADR to get the desired address. Calling the function transfers
the disk drive number, sector and RAM pointer to the specified memory
range. If you've declared the memory range as a variable, you'll have to
give the function as parameters of the variable address (LOCALITY). The
return value of the function is FALSE for bad execution, and TRUE if
everything runs correctly.

The directory is accessed in SUPER Pascal in a similar manner; the directory
is loaded into an appropriate variable range. This declaration has the
following design:

(START (top end) OF DIRECTORY)

EQUALIZE :BYTE;
WORKBLOCK :BYTE;
BLOCKTABLE :ARRAY[O .. 79] OF BYTE;
LASTBYTE :ARRAY[0 .. 37] OF BYTE;
STARTBLOCK :ARRAY[O .. 37] OF BYTE;
FIXFLAG :SET OF O .. 37;
WORKNAME :ALFAi
TITLETABLE : ARRAY [0 .. 37] OF ALFA;
DISCNAME :ALFA;
DISCNUMBER :BYTE;
DISCSIZE :BYTE;
(END (bottom end) OF DIRECTORY)

These variable declarations take up exactly 512 bytes (the sector with logical
number 0):

170

ABACUS Software SUPER Pasc:a1 Development System

Address

"
"
"

"
"

"

"

"

"
"

NOTE:

o
1
2 .. 9

10 .. 313

($000)
($001)
($002 .. $009)
($OOA .. $139)

Diskette size (0 or 1)
Diskette number(O - 1)
Diskette name (ALFA)
up to 38 filenames
(ALFA)

313 .. 321 ($13A .. $141) temp. work name (ALFA)
321 .. 353 ($142 .. $161) 32 * 8 bits, first 38

with LOCK flag
354 .. 391 ($162 .. $187) 38 * 1 byte in

position as EOF in
last "1541" block

392 .. 429 ($188 .. $lAD) 38 * startblock in
filename order

430 .. 509 ($lAE .. $lFD) 80 * 1 byte for
blocktable

510
511

($lFE)
($lFF)

temporary work block
fillbyte

Try out program control via directory with a scratch disk FIRST!
Rebuilding a directory from scratch is rough work -- make sure that your
variable declarations work out properly.

171

ABACUS Software SUPER Pascal Development System

8.0 PROGRAM EXAMPLES AND GRAPIDC EXTENSIONS

8.1 THE EDITOR PROGRAM

The complete Editor program is listed here as a demonstration program (the
Super Pascal Editor itself). You may have ideas on changing the program to
suit your own needs. AUTO LINE MODE offers machine-code-like
programming in Pascal.

PROGRAM EDITOR;

LABEL 99;

CONST BUFFER
KEY BUF
CRT DVC
CRSRUP
SCRNLENG
WARMFLG
ADRPRPO
MAIN JMP

HEAD
ILL LINE
NOTXT FL
SURE NSS
EX N SUC
ILL SYN
RAM OVER

{PASCAL - TEXT - EDITOR}

=$F300; KEY CNT
=$0277; MAXLW NR
=0; BCSP
=CHR($91);CRTN
=80; LWTEMP
=$360; ADR EXPO
=$363; ADR COMM
=$CA12;

=$C6;
=1;
=CHR($9D) ;
=CHR ($D) ;
=$035F;
=$0361;
=$0365;

='* C=64 SOURCE-EDITOR
='ILLEG. LINE#';

5.3 *, . ,

='NO TEXT-FILE';
='SURE NOT SAVING THE SOURCE';
='EXECUTION NOT SUCCESSFUL!';
='ILLEG. SYNTAX';
=' RAM OVERFLOW' ;

TITLE ND ='TITLE UNDEFINED' ;
ILL TITLE ='ILLEG.TITLE';
ILL INPUT ='ILLEG. INPUT';
TO ='TO:';
L LEN EX - -
SURE D S
HELP

='LINELENGTH EXCEEDED IN LINE:';
='SURE TO DELETE ALL THE SOURCE';
='HELP FOR:';

173

ABACUS Software SUPER Paseal Development System

BYTE FREE ='0 BYTES FREE!';
ONLY ENT =' PLEASE ONLY ENTER:';
DRV MAP
CONFIRM
COM IGN

TYPE REF
ITEM

='DRIVE(MAP)' ;
='CONFIRM '" . ,
='COMMAND IGNORED!';

"ITEM;
RECORD

NR: INTEGER;
NX:REF;
ST:STRING;

END;
BUFFSIZE
INARRY

VAR SOURCE
LOADDAT

ARRAY [0 .. 511] OF BYTE
ARRAY [0 .. PRED(SCRNLENG)] OF CHAR;

:TEXT;
:FILE OF BUFFSIZE;

:REF; LINE,TRNSLINE,TPMLINE,FIRST
FROM,TIL,HNTR,NUM,AUTO_NUM,DRIVE
SPARE
CH
TITLE,SEEKSTR
NOT_DEF,SAVED,AUTO_FLAG
BEGINHEAP,LFDHEAP,ADRPOI
COMMON

: INTEGER;
:INARRY;

: CHAR;
: STRING;
: BOOLEAN;
: "INTEGER;
:AALFA;

NUMBER,LETTER : SET OF ' 0' .. ' 9' ;

XTRNFUNC MAP_EXT:BOOLEAN;

FUNCTION COMPARE (SUSTR,TESTR,STRING;
STRTPOS:BYTE) :BYTE;

ASSEMBLE;

.*************************** ,

;* SEARCH -- ROUTINE *

.*************************** ,

174

ABACUS Software SUPER Pascal Development System

e POI .DL STKPOI+4
HBAS .DL STKPOI+6
TEMP .DL STKPOI+8

START LDY #4
LOOP LDA (STKPOI) ,Y

STA POI-l,Y
DEY
BNE LOOP
LDA (HBAS),Y
STA *TEMP
SEC
LDA (POI) , Y
SBC *TEMP
BCC EXIT
SBC (STKPOI),Y
BCC EXIT
STA *TEMP+l
CLC
LDA (STKPOI) , Y
TAX
ADC *POI
STA *POI
BCC LOOPl
INC *POI+l

LOOPl LDY *TEMP
INX

LOOP2 LDA (POI) , Y
CMP (HBAS) ,Y
BNE INCTEST
DEY
BNE LOOP2
BEQ EXIT

e INCTEST INC *POI
BNE INCTESTl
INC *POI+l

175

ABACUS Software SUPER Pascal Development System

INCTESTl DEC *TEMP+l
BPL LOOPl
LDX *0

EXIT TXA
LDY 41=5
STA (STKPOI),Y
TYA
CLC
ADC *STKPOI
STA *STKPOI
BCC EXITl
INC *STKPOI+l

EXITl RTS

.EN

PROCEDURE JUMPMAIN;ASSEMBLE;
JMP MAIN JMP
.EN

PROCEDURE STOP(MESSAGE:STRING);
BEGIN

WRITE (MESSAGE, , !' " ');
WRITELN(EX_N_SUC);AUTO_FLAG:=FALSE;
GOTO 99

END;

PROCEDURE SYN_STOP;
BEGIN STOP (ILL_SYN) END;

PROCEDURE OV_STOP;
BEGIN STOP(RAM_OVER) END;

PROCEDURE TEST_SURE(MSG:STRING);
BEGIN

READLN;WRITE(MSG,'? Y/N',BCSP);
READ(CH);WRITELN;
IF CH<>'Y' THEN BEGIN WRITELN(COM_IGN);

GOTO 99 END
END;

176

ABACUS Software SUPER Pascal Development System

BEGIN
IF NOT SAVED THEN TEST_SURE (SURE_NSS)

END;

PROCEDURE WAIT_BRK;

PROCEDURE BREAK;
BEGIN

IF EOF THEN BEGIN READLN;OUTDVC(CRT_DVC,O);
GOTO 99 END

END;

BEGIN
BREAK;
IF ANYKEY THEN

IF GETKEY=' , THEN
REPEAT

WHILE NOT ANYKEY DO BREAK
UNTIL GETKEY=' ,

END;

PROCEDURE IGN_SPACE;
BEGIN WHILE CH=' , DO READ(CH) END;

PROCEDURE GETCH;
BEGIN READ (CH) ; I GN_S PACE END;

PROCFDURE TEST_SYNTAX;
BEGIN

IF EOLN THEN SYN STOP;GETCH;
IF (CH<>' :') OR EOLN THEN SYN STOP

END;

PROCEDURE SET_LAST;
BEGIN LINEA.NR:=MAXINT

LINEA.NX:=NIL;MARK(LFDHEAP) END;

177

ABACUS Software SUPER Pascal Development System

PROCEDURE CLEAR;
BEGIN

RELEASE(BEGINHEAP):NEW(LINE);SET_LAST;
FIRST:=LINE:

SAVED :=TRUE
END;

PROCEDURE GET_NUM(VAR LN_NR:INTEGER);
BEGIN

IF NOT (CH IN NUMBER) THEN SYN_STOP;
LN_NR:=O;
WHILE CH IN NUMBER DO

BEGIN
IF LN NR >3275 THEN STOP(ILL_LINE);
LN NR:=10*LN NR - 48 + ORD(CH);
IF NOT EOLN AND (INPUT A IN NUMBER) THEN

READ (CH)
ELSE CH:=' ,

END
END;

PROCEDURE GET_SECND(TESTCH:CHAR);
BEGIN

GETCH;
IF CH<>TESTCH THEN SYN_STOP;
IF NOT EOLN THEN BEGIN GETCH; GET_NUM(TIL) END

END;

PROCEDURE FROM_TIL;
BEGIN

FROM :=O;TIL:=PRED(MAXINT);
IF NOT EOLN THEN

BEGIN
GETCH;
IF CH='-' THEN

BEGIN
IF EOLN THEN SYN_STOP;
GETCH;GET_NUM(TIL)

END

178

ABACUS Software

ELSE
BEGIN

GET_NUM(FROM) ;

SUPER Pascal Development System

IF NOT EOLN THEN GET_SECND('-') ELSE
TIL:=FROM

END
END

END;

PROCEDURE GET_TITLE(FOR_GET:BOOLEAN);
BEGIN

TEST SYNTAX;
IF INPUT A=,*, THEN

BEGIN
IF NOT DEF THEN STOP(TITLE_ND);
IF FOR GET THEN TEST FOR SAVE

END
ELSE

BEGIN
IF NOT(INPUT A IN LETTER) THEN
STOP(ILL_TITLE);

READ (TITLE) ;
IF FOR GET THEN TEST FOR SAVE;

- -
NOT DEF:=FALSE;COMMONA:=TITLE

END
END;

PROCEDURE RENUMBER;
BEGIN

NUM:=1000; LINE:=FIRST;
WHILE LINEA.NX<>NIL DO

BEGIN LINE A.NR:=NUM;NUM:=NUM+5;
LINE:=LINEA.NX END

END;

PROCEDURE PREPARE;
BEGIN

SETDRV(DRIVE) ; NAME (SOURCE,COMMONA) ;
MEM[LWTEMP] :=LOW(DRIVE)

END;

179

ABACUS Software SUPER Pascal Development System

PROCEDURE SAV_SRCE(FOR_PUT:BOOLEAN);
BEGIN

GET_TITLE (FALSE) ;
READLN;
WRITE(CONFIRM,COMMON",' ,'DRIVE,'''? N/Y',BCSP);
READ(CH);WRITELN;
IF CH<>'Y' THEN BEGIN WRITELN(COM_IGN);

GOTO 99 END;
PREPARE;
IF FOR PUT THEN REWRITE (SOURCE)
ELSE

BEGIN
RESET (SOURCE) ;
WHILE NOT EOF(SOURCE) DO READLN(SOURCE)

END;
LINE:=FIRST;
WHILE LINE".NX<>NIL DO

BEGIN WRITELN(SOURCE,LINE".ST);
LINE:=LINE".NX END;

CLOSE(SOURCE);SAVED:=TRUE
END;

PROCEDURE LOAD_SRCE;
VAR CNT: INTEGER;
BEGIN

PREPARE;
RESET(SOURCE);CNT:=O;
WHILE (SOURCE"<>CRTN) AND (CNT<=80) AND NOT

EOF(SOURCE) DO
BEGIN

CNT:=SUCC(CNT) ;
IF (CNT>80) OR (SOURCE"<' ') THEN

BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END;
GET (SOURCE)

END;
IF SOURCE"<>CRTN THEN

BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END;
CLOSE (SOURCE) ;RESET(SOURCE);
WHILE NOT EOF(SOURCE) DO

180

•
ABACUS Software SUPER Pascal Development System

BEGIN
LINEA.NR:=NUM;READLN(SOURCE,LINEA.ST);

NUM:=NUM +5;
IF FREE<=3 THEN

BEGIN SET_LAST;CLOSE(SOURCE);OV_STOP END;
NEW(TMPLINE);LINEA.NX:=TMPLINE;LINE:=TMPLINE

END;
SET_LAST; CLOSE (SOURCE)

END;

PROCEDURE SEEK(LN_NR:INTEGER);
BEGIN

LINE:=FIRST;WHILE LINEA.NR<LN_NR
DO LINE:=LINEA.NX

END;

PROCEDURE CHANGE;

VAR

OLD_LINE;NEW LINE:INARRY;
POSITION: BYTE;
SEEKLEN,OLDLEN,NEWLEN,FSTLEN,CMPLEN,DELTA,

FLOT:INTEGER;
SPEC:RECORD CASE INTEGER OF

0: (HEAP:AINTEGER);
1: (LENG: ABYTE) ;
2: (ADRS : I~TEGER)

END;
BEGIN
TEST_SYNTAX;READLN(SEEKSTR);SEEKLEN:=LEN(SEEKSTR);
MARK(SPEC.HEAP);
WRITE(TO_);READ(TITLE);WRITELN;RESET(INPUT);
IF EOLN THEN FSTLEN:=O ELSE FSTLEN:=LEN(TITLE);
DELTA:=SEEKLEN-FSTLEN;SPARE:=TITLE;
RELEASE(SPEC.HEAP);LINE:=FIRST;POSITION:=fO
WHILE (LINEA.NX<>NIL) AND NOT EOF DO

WITH LINEA DO
BEGIN

CMPLEN:=ORD(COMPARE(SEEKSTR,ST,POSITION»;
IF CMPLEN<>O THEN

181

ABACUS Software SUPER Pascal Development System

BEGIN
OLDLEN :=LEN (ST) ;
IF (OLDLEN-DELTA) > (SCRNLENG-4) THEN

BEGIN WRITELN(L_LEN_EX)iWRITELN(NR,ST)i 4It
GOTO 99 ENDi

OLD_LINE:=STiNEW_LINE:=OLD_LINEi
FOR FLOT:= 0 TO PRED(FSTLEN) DO

NEW_LINE[PRED(CMPLEN+FLOT)] :=SPARE[FLOT]i
FOR FLOT:= PRED(CMPLEN+SEEKLEN) TO

PRED(OLDLEN) DO
NEW_LINE [FLOT-DELTA] :=OLD_LINE[FLOT]i

ST:=NEW_LINEiSPEC.LENGA:=LOW(OLDLEN-DELTA) i

SPEC.ADRS:=HXS(SPEC.ADRS,SUCC(OLDLEN-DELTA)) i

RELEASE(SPEC.HEAP);
POSITIN:=PRED(LOW(CMPLEN+FSTLEN);

IF FREE<=3 THEN OV STOP
END

ELSE BEGIN LINE:=NX;POSITION:=#O END
END

END;

PROCEDURE COMMANDS i

BEGIN
WRITELN('COMMANDS = ... ');
WRITELN('A: (PPENDSRC) L(IST)
WRITELN('C: (HANGE) M(AP/DRIVE)
WRITELN('D(ELETE) N(UMBERING)
WRITELN (' F: (IND) 0 (UTPUTDVC)
WRITELN('G: (ETSOURCE) P: (UTSOURCE)
WRITELN('H(ELP)')iWRITELN

END;

182

Q(UIT)')i
R(ENUMBER)');
S(HIFTLINE)');
U: (PDATESRC)') ;
V(ACANCY)');

ABACUS Software SUPER Pascal Development System

{MAIN PROGRAM}

BEGIN

IF MEM[WARMFLG]=*l THEN

BEGIN WRITELN;RELEASE(LFDHEAP) END

ELSE

BEGIN
NUMBER: = [' 0' .. ' 9'] ; LETTER: = [' A' .. ' Z'] ;
ALLOCATE(COMMON,ADR_COMM);
SETADR(MAP_EXT,BUFFER1);
AUTO_FLAG:=FALSE;NEW(TRNSLINE);
MARK(BEGINHEAP);MARK(LFDHEAP);CLEAR;
ALLOCATE(ADRPOI,ADR_PRPO);
FROM:=ADRPOI" ;
ALLOCATE(ADRPOI,ADR_EXPO);
TDRPOI":=FROM;
NOT_DEF:=MEM [WARMFLG] <>*2;
IF NOT NOT DEF THEN

BEGIN
DRIVE:=ORD(MEM[LWTEMP]);NUM:=1000;
LOAD SRCE

END
ELSE DRIVE:=O;
WRITELN;
WRITELN(HEAD:34);
WRITELN;COMMANDS;
MEM[WARMFLG] :=*l;SAVED:=TRUE

END;

183

ABACUS Software

REPEAT

IF AUTO FLAG THEN
BEGIN

WRITE(AUTO_NUM,' , :NUM);
READLN(CH);WRITELN;
MEM[KEY_BUF] :=LOW(CRSRUP) ;

SUPER Pascal Development System

MEM[SUCC(KEY_BUF)] :=LOW(CRTN);
MEM[KEY_CNT] :=#2;
AUTO_NUM:=AUTO_NUM+5;
IF AUTO NUM>=32750 THEN STOP(ILL_LINE)

END;

READ(CH);IGN_SPACE;WRITELN;

IF CH IN NUMBER THEN {LINE NUMBER INPUT}
BEGIN

GET_NUM(NUM);IF NUM<>AUTO_NUM-5 THEN
AUTO_FLAG:=FALSE;

SEEK (NUM) ;
IF LINEA.NR=NUM THEN

IF EOLN THEN
IF NOT AUTO FLAG THEN LINEA:=LINEA.NXA
ELSE AUTO FLAG:=FALSE

ELSE READ(LINEA.ST)
ELSE

IF NOT EOLN THEN
BEGIN

NEW(TMPLINE);
TMPLINEA:=LINEA;LINEA.NR:=NUM;
LINEA.NX:=TMPLINE;READ(LINEA.ST)

END
ELSE AUTO_FLAG:=FALSE;

IF AUTO FLAG THEN
BEGIN

SPARE:=LINEA.ST;NUM:=O;
WHILE SPARE[NUM]=' , DO NUM :=SUCC(NUM)

END;

184

ABACUS Software SUPER Pascal Development System

SAVED:=FALSE;
IF FREE<=3 THEN OV STOP;
MARK (LFDHEAP)

END
ELSE

BEGIN
{COMMAND INPUT}

AUTO_FLAG:=FALSE;CASE CH OF

'A' :BEGIN {APPEND}
RENUMBER;GET_TITLE(FALSE);

NOT_DEF:=TRUE;LOAD_SRCE
END;

'e' :BEGIN {CHANGE}
CHANGE;SAVED:=FALSE

END;

'D' : BEGIN {DELETE}
FROM_TIL;

IF (FROM=O) AND (TIL=PRED(MAXINT)) THEN
BEGIN

TEST_SURE(SURE_D_S);
CLEAR

END
ELSE

IF FROM<=TIL THEN
BEGIN

SAVED:=FALSE;
SEEK(FROM);TMPLINE:=LINE;
SEEK(SUCC(TIL));TMPLINE#:=LINE A

END
END;

'F' : BEGIN {FIND}
TEST_SYNTAX;
READ(SEEKSTR);LINE:=FIRST;
WHILE LINEA.NX<>NIL DO

BEGIN
IF COMPARE(SEEKSTR,LINEA.ST,#O)<>#O THEN

WRITELN(LINE#.NR,LINE#.ST);

185

ABACUS Software

LINE:=LINE".NXi
WAIT BRK

END
ENDi

'G' :BEGIN {GET}
GET_TITLE (TRUE) i

CLEARiNUM:=1000i
LOAD SRCE

END;

'H' :BEGIN {HELP}
WRITELN(HELP,HEAD);
WRITELNiCOMMANDS

ENDi

SUPER Pascal Development System

'L' :BEGIN {LIST}
FROM_TILiSEEK(FROM)i
WHILE LINE".NR<=TIL DO

BEGIN
WRITELN(LINE".NR,LINE".ST);
LINE:=LINE".NX;
WAIT BRR

END
ENDi

'M' : BEGIN {MAP}
READLNi
WRITE (DRV_MAP, , = ',DRIVE,BCSP)i
IF DRIVE>9 THEN WRITE(BCSP)i
READ(FROM)iWRITELNi
IF (FROM<O) OR (FROM>MAXLW_NR) THEN

STOP(ILL_INPUT)i
DRIVE:=FROMi
SETDRV(O)iRESET(LOADDAT)i
GET (LOADDAT) iGET(LOADDAT) iGET(LOADDAT) i

CLOSE(LOADDAT)i
SETDRV(DRIVE)i
IF NOT MAP EXT THEN

BEGIN DRIVE:=OiSETDRV(O) END

186

ABACUS Software SUPER Pascal Development System

END;

'N' :BEGIN {AUTO-NUMBERING}
IF EOLN THEN

BEGIN
AUTO_NUM:=1000;LINE:=FIRST;
WHILE LINEA.NX<>NIL DO

BEGIN AUTO_NUM:=LINE A.NR+5;
LINE:=LINEA.NX END

END
ELSE

BEGIN
GETCH;GET_NUM(AUTO_NUM) ;
IF NOT EOLN THEN SYN STOP

END;
AUTO FLAG:=TRUE;NUM:=O

END;

'0' :IF EOLN THEN OUTDVC(CRT_DVC,0)
{SET OUTPUT DVC}

ELSE
BEGIN

GETCH;GET_NUM(FROM);TIL:=O;
IF NOT EOLN THEN GET_SECND(' ,');
IF NOT «FROM IN [0,4 .. 7]) AND

(TIL<=15» THEN
STOP (ILL_INPUT) ;

OUTDVC(FROM,TIL)
END;

'p' :SAV_SRCE(TRUE); {PUT}

'Q' :BEGIN {QUIT}
TEST_FOR_SAVE;
OUTDVC(CRT_DVC,O);
JUMPMAIN

END;

'R' : RENUMBER; {RENUMBER}

187

ABACUS Software SUPER Pascal Development System

END.

'S' :BEGIN {SHIFTLINE}
FROM_TIL; TEST_SYNTAX;
GETCH;GET_NUM(HNTR);
IF (HNTR>=FROM) AND (HNTR<=TIL) THEN

STOP (ILL_INPUT) ;
SEEK(SUCC(HNTR»;
TRNSLINEA:=LINEA;TMPLINE:=LINE;
SEEK (FROM) ;
TMPLINEA:=LINEA;TMPLINE:=LINE;
SEEK (SUCC (TIL)) ;
TMPLINEA:=LINEA;LINEA:=TRNSLINEA;
RENUMBER;SAVED:=FALSE;

END;

'U' :BEGIN {UPDATE}
NOT_DEF:=TRUE;SAV_SRCE(FALSE)

END;

'V' :WRITELN(FREE*25-77+(FREE*6)
DIV lO,BYTE_FREE)

ELSE
BEGIN

WRITELN(COM_IGN,ONLY_ENT);
COMMANDS

END
END
END;

99: READLN

UNTIL FALSE

188

ABACUS Software SUPER Pascal Development System

8.2 "RPN" PROGRAM

e Here is the complete program listing for RPN, which you'll find on your
SUPER Pascal diskette in both compiled form and sourcecode. RPN
simulates the functions of an RPN pocket calculator; some runtime errors
will occur whatever shape the program is in, since some transcendental math
functions can cause such errors. The modular structure of this program
allows for easy modification.

(***)
(* *)
(* R P N *)

(* ------- *)
(* THIS PROGRAM SIMULATES THE *)
(* FUNCTIONS OF A CALCULATOR *)
(* WHICH USES REVERSE POLISH NOTATION *)
(* (RPN) (NOTE: ALL INPUT MUST *)
(* CONCLUDE WITH <RETURN> *)
(***)

PROGRAM RPN;

CONST MAXBEF =79;
WARMFLG =$360;
ADR EXPO =$361;

VAR REG
STACK

CUP
ADR PRPO

=CHR ($91) ;
=$363;

:(X,Y,Z,T);
:ARRAY[X .. T] OF REAL;

LSTX,Sl,KEYIN,ZW,QU : REAL;
FLOT,CON,PLACE,FIELD : INTEGER;
CX : CHAR;
LSTRI
BEFARR
ADRPOI, HEAP

: STRING;
: ARRAY [0 .. MAXBEF]OF CHAR;
: "INTEGER;

189

ABACUS Software

PROCEDURE EXIT;

ASSEMBLE;
JMP $C200

.EN

PROCEDURE ENTER;
BEGIN

SUPER Pascal Development System

FOR REG:=Z DOWNTO X DO
STACK[SUCC(REG)] :=STACK[REG]

END;

PROCEDURE CALC(RESULT:REAL;SINGLE:BOOLEAN);
BEGIN

LSTX:=STACK[X];STACK[X] :=RESULT;
IF NOT SINGLE THEN

FOR REG:=Y TO Z DO
STACK [REG] :=STACK[SUCC(REG)]

END;

PROCEDURE PRTSTK;
BEGIN

WRITELN(CUP,CUP,CUP,CUP,CUP,CUP);
WRITELN('T ' :lO,STACK[T] :FIELD:PLACE);
WRITELN('Z ' :lO,STACK[Z] :FIELD:PLACE);
WRITELN('Y , :lO,STACK[Y] :FIELD:PLACE);
WRITELN('X ' :lO,STACK[X] :FIELD:PLACE);
WRITELN;WRITELN(' , :39,CUP)

END;

PROCEDURE COMANDS;
BEGIN

WRITELN;WRITELN;
WRITELN (' «COMMANDS FOR "RPN" »': 32) ;
WRITELN('======================' :29);
WRITELN('A=ABSOLUTE B=ROUND C=COSINE');
WRITELN('D=ROLL DOWN E=EXP F=FRAC');
WRITELN('G=GETMEM H=CLEAR X I=INTEGER');
WRITELN('K=RECIPROCAL L=LN M=MEM');
WRITELN('N=ENTER O=OUTP.FORM. P=PI');

190

ABACUS Software SUPER Pascal Development System

WRITELN('Q=SQUARE R=SQROOT S=SINE');
WRITELN('T=TANGENT U=ROLL UP V=SIGN');
WRITELN('W=CH.SIGN X=LAST X Y=X CH Y');
WRITELN('Z=RAND.NUM. @=ARCTAN');WRITELN;
WRITELN('RELATIONS: <,>,=');
WRITELN('OPERATORS:+,-,*,/') ;
WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;
WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;
WRITELN(CUP,CUP,CUP,CUP,CUP)

END;

PROCEDURE JOB;
BEGIN

CASE CX OF
'A' :CALC(ABS(STACK[X]),TRUE);
'@' :CALC(ARCTAN(STACK[X]),TRUE);
'B' :CALC(ROUND(STACK[X]),TRUE);
'c' :CALC(COS(STACK[X]),TRUE);
'0' :BEGIN

KEYIN:=STACK[X];
FOR REG:=X TO Z DO

STACK [REG] :=STACK[SUCC(REG)];
STACK[T] :=KEYIN

END;
'E' :CALC(EXP(STACK[X]) ,TRUE);
'F' :CALC(FRAC(STACK[X]) ,TRUE);
'G' :BEGIN ENTER; STACK [X] :=Sl END;
'H' : STACK [X] :=0.0;
'I' :CALC(TRUNC(STACK[X]),TRUE);
'K' :CALC(l/STACK[X],TRUE);
'L' :CALC(LN(STACK[X]),TRUE);
'M':Sl:=STACK[X];
'N' : ENTER;
'0' : BEGIN

FLOT:=INT(STACK[X]);
IF FLOT < 12 THEN

IF FLOT > 0 THEN
BEGIN

WRITELN(CUP,CUP,CUP,CUP,CUP,' , :39);
WRITELN (, ': 39) ; WRITELN (, ': 39) ;

191

ABACUS Software SUPER Pascal Development System

WRITELN(' , :39);WRITELN;
PLACE:=-FLOTi
FIELD:=ABS(INT(ROUND(lOO*FRAC(FLOT»»

END
END;

'P' :BEGIN ENTERi STACK [X) :=PI END;
'Q' :CALC(SQR(STACK[X),TRUE);
'R' :CALC(SQRT(STACK[X),TRUE);
's' :CALC(SIN(STACK[X),TRUE);
'u' :BEGIN

KEYIN:=STACK[T);ENTER;
STACK [X) :=KEYIN

END;
'V' :CALC(SIGN(STACK[X),TRUE);
'w' : STACK [X) :=-STACK[X);
'X':BEGIN ENTER; STACK [X) :=LSTX END;
'Y':BEGIN

KEYIN:=STACK[X);STACK[X) :=STACK[Y);
STACK[Y) :=KEYIN

END;
'z' :BEGIN ENTER; STACK [X] :=RANDOM END;
,<, :CALC(ORD(STACK[Y)<STACK[X),FALSE);
'=' :CALC(ORD(STACK[X)=STACK[Y),FALSE);
'>' :CALC(ORD(STACK[X)=STACK[Y),FALSE);
,+' :CALC(STACK[X)+STACK[Y),FALSE);
'-' :CALC(STACK[Y)-STACK[X),FALSE);
,*, :CALC(STACK[X)*STACK[Y),FALSE);
'I' :CALC(STACK[Y)/STACK[X),FALSE);

END
END;

192

ABACUS Software SUPER Pascal Development System

(* ****************************** *)
(* *** MAIN OF RPN **** *)
(* ****************************** *)

BEGIN

IF MEM[WARMFLAG]=#O THEN
BEGIN

MARK(HEAP);COMANDS;LSTRI:='SXC/' ;
BEFARR:=LSTRI;MEM[WARMFLAG] :=#1;
ALLOCATE(ADRPOI,ADR_PRPO);
FLOT:=ADRPOIA;ALLOCATE(ADRPOI,ADR_EXPO) ;
ADRPOIA:=FLOT;

END
ELSE

BEGIN
WRITELN('PRESS "SPACE" !' :32,CUP);
WHILE GETKEY<>' 'DO;
WRITELN(' , :39,CUP);
WRITELN(CUP,' , :39,CUP,CUP);
WRITELN(" :39,CUP)

END;
FOR REG := X TO T DO STACK [REG] :=0;
Sl:=O;FIELD:=O;PLACE:=-ll;PRTSTK;

WHILE NOT EOF DO
BEGIN

READ(CX);RESET(INPUT);
WHILE (INPUT A=, ') AND NOT EOLN DO READ(CX);
IF INPUT A IN ['0' .. '9'] THEN

BEGIN
READLN(KEYIN);ENTER;STACK[X] :=KEYIN

END;
ELSE

BEGIN
READ(CX);JOB;READLN

END;
PRTSTK;RELEASE(HEAP)

END;
EXIT

END.

193

ABACUS Software SUPER Pascal Development System

8.3 THE GRAPIDCS PACKET

You won't need the 64' s graphic capabilities in normal use of SUPER e
Pascal. However, S _GRAPH ill let you perform high-resolution tasks in
your own program routines. The routine is treated as a Pascal routine during
compiling -- to install this routine into your own programs, just use the
compiler command

&INCLUDE(S _ * GRAPH)

S _ * GRAPH is written in machine code for the sake of speed, but is clearly
written to allow you to make your own changes. The HILBERT-CURVES
program in Chapter 8.2.1 uses the routine, and shows a few changes that can
be performed.

(*****************************)
(* *)
(* GRAPHICS PACKET FOR C64 *)
(* *)
(*****************************)

PROCEDURE GRAPHIC

(COM:GRAPHICCOMMAND;VAL1,VAL2,VAL3,VAL4:INTEGER);

ASSEMBLE;

CPUPORT .DL $0001 ;DEFINE MEMORY
CONFIGURATION
VIDCTR .DL $DOOO ;VIDEO CONTROLLER
BITMAP .DL $2000 ;GRAPHIC SCREEN
COLRAM .DL $0800 ;COLOR RAM

TMPMOD .DL $FFOl ;DEFINE TEMPORARY
TMPPOI .DL $FF02 ; MEMORY LOCATIONS
PLFLG .DL $FF03

194

ABACUS Software SUPER Pascal Development System

TMP .DL STKPOI+4 iDEFINE ZEROPAGE CELLS
XKOR .DL STKPOI+6 iIN SUPER PASCAL

e YKOR .DL STKPOI+8 iVIA STACK POINTER
COLOR .DL STKPOI+9
XKORl .DL STKPOI+34
ZW .DL STKPOI+36
ZA .DL STKPOI+37
MSK .DL STKPOI+38
DIFO .DL STKPOI+39
DIFl .DL STKPOI+40
DIF2 .DL STKPOI+41
DIF3 .DL STKPOI+42
DIF4 .DL STKPOI+43
DIF5 .DL STKPOI+44
YKORl .DL STKPOI+45

START LDA U iI/O ON AND
ORA *CPUPORT iPASCAL RAM OUT
STA *CPUPORT
LDY *8
LDA (STKPOI) , Y iCALL GRAPHIC COMMAND FROM
ASL A iSTACK, AND USE AS POINTER
TAX iIN JUMP TABLE
LDA SPRGTAB,X
STA *TMP
LDA SPRGTAB+l,X
STA *TMP+l
JMP (TMP) iJUMP INDIRECTLY TO CALLED

ROUTINE

SPRGRTAB .SA GRAPH IN iGRAPHIC SCREEN ON
.SA GRAPHOUT iGRAPHIC SCREEN OFF
.SA GCLEAR iCLEAR GRAPHIC SCREEN
.SA COLCLEAR iCLEAR COLOR SCREEN
.SA DOT ON iSET DOT
. SA DOT OFF iCLEAR DOT
.SA LINESET iDRAW LINE
.SA LINECLR iCLEAR LINE
.SA REVERS iREVERSE GRAPHIC SCREEN

195

ABACUS Software SUPER Pascal Development System

GRAPH IN LDA VIDCTR+17 iSWITCH ON GRAPHIC SCREEN
STA TMPMOD
LDA VIDCTR+24 ~

STA TMPPOI •
LDA *$3B
STA VIDCTR+17 iBITMAP MODE
LDA *$28
STA VIDCTR+24 iBITMAP AFTER $2000
JMP EXIT

GRAPHOUT LDA TMPMOD
STA VIDCTR+17
LDA TMPPOI
STA VIDCTR+24

iGRAPHIC SCREEN OFF

EXIT

EXITO

GCLEAR

GCLEAR1

LDA *$FC iPROGRAM EXIT
AND *CPUPORT iPASCAL RAM SWITCHED ON
STA *CPUPORT iAND I/O REGISTER OFF
CLC iPASCAL STACK SET BACK A
LDA *9 iTOTAL OF 9 BYTES
ADC *STKPOI i (1 BYTE + 4 INTEGER)
STA *STKPOI
BCC EXITO
INC *STKPOI+1
RTS iBACK TO PASCAL

LDA *H,BITMAP iCLEAR GRAPHIC SCREEN
STA *TMP+1
LDY *L,BITMAP
STY *TMP
LDX *$20
TYA
STA (TMP),Y
INY
BNE GCLEAR1
INC *TMP+1
DEX
BNE GCLEAR1
JMP EXIT

i* OF PAGES

196

ABACUS Software SUPER Pascal Development System

COLCLEAR DEY iCLEAR COLOR SCREEN
DEY

e LDA (STKPOI) , Y iLOWBYTE OF VALl FROM.
ASL A iSTACK AS SCREEN COLOR
ASL A
ASL A
ASL A
STA *cOLc1R
DEY
DEY
LDA(STKPOI),Y iLOWBYTE OF VAL 2 FROM
AND #$OF iSTACK AS BORDER COLOR,
ORA *COLOR iAND STORED WITH
LDX #L,COLRAM iSCREENCOLOR
STX *TMP
LDX tH,COLRAM
STX *TMP+l
LDY #0

e LDX #3

COLCLO STA (TMP) , Y iSCREEN INFORMATION STORED
DEY iIN COLOR RAM
BNE COLCLO
DEX
BMI COLCLO
INC *TMP+l
BNE COLCLO
LDY t$ES
BNE COLCLO

COLCLl STA (TMP) , Y
JMP EXIT

DOT OFF JSR SETO iUNSET DOT
JMP EXIT

DOT ON JSR SETl iSET DOT
JMP EXIT

197

ABACUS Software SUPER Pascal Development System

SETO

SET1

PLOT

PLOTO

LDX #$80
.BY $2C
LDX #0
STX PLFLG
JSR TESTCOR
JSR HPOSN
JMP PLOT

LDY #0
LDA *MSK
BIT PLFLG
BPL PLOTO
EOR #$FF
AND (TMP) , Y
.BY $2C
ORA (TMP) , Y
STA (TMP),Y
RTS

;ROUTINE FOR SETTING OR
;UNSETTING
;DOT-POINTS

;GET & TEST COORDINATES
;CALC MEMORY POSITION
;DOT SET/CLEAR

;DRAw/eLEAR DOT IN
;POSITION CALCULATED

TEST X Y JSR TETCOR
RTS

TESTCOR DEY

TEST1

LDA (STKPOI),Y ;HIBYTE OF VALl OR VAL3
STA *XKOR+1 ; (=X) CALLED FROM STACK
DEY
CMP #1 ;>1?
BCC TEST1
BNE IGNOR ;IGNORE AND EXIT
LDA #$3F
CMP (STKPOI),Y ;>=320?
BCC IGNOR ;IGNORE AND EXIT
LDA (STKPOI),Y ;LOWBYTE OF VALUES 1 OR 3
STA *XKOR ;CALLED AND STORED
DEY
LDA (STKPOI),Y ;HIGHBYTE OF VAL2 OR VAL4
BNE IGNOR ; (=Y) CALLED FR STACK
DEY ;<>O?:IGNORE AND EXIT
LDA (STKPOI),Y ;LOWBYTE OF VALUES 2 AND 4
CMP #200 ;CALLED FROM STACK; >=200?

198

ABACUS Software SUPER Pascal Development System

BCS IGNOR ;IGNORE AND EXIT
STA *YKOR ;STORE Y-COORDINATES
RTS

e IGNOR PLA ;COMMAND EXECUTION
PLA ;FOR IGNORING ILLEGAL
PLA ; NUMBERS; SUBROUTINE-LEVEL
PLA ; CORRECTION
JMP EXIT

HPOSN AND #7 ;CALC MEMORY ADDRESSES
STA *TMP
LDA *XKOR+l
STA *TMP+l
LDA *YKOR
LSR A
LSR A
LSR A
TAX
LDA *XKOR
AND #$F8

CLC
ADC *TMP
Bce HPOSNO
INC *TMP+l

HPOSNO CLC
ADC LOWTAB,X
STA *TMP
LDA *TMP+l
ADC HIGHTAB,X
ADC fH,*BTIMAP
STA *TMP+l
LDA *XKOR
AND #7
TAX
LDA BITTAB,X
STA *MSK
RTS

199

ABACUS Software

LINECLR JSR
JMP

LINESET JSR
LINEO LDA

STA
LDA
STA
LDA
STA
LDY
JSR
LDA
LDX
LDY

SETO
LINEO
SETl
*YKOR
*YKORl
*XKOR
*XKORl
* XKOR+ 1
*XKOR1+l
H
TESTCOR
*XKOR
*XKOR+l
*YKOR

SUPER Pascal Development System

iCLEAR LINE

iDRAW LINE
iFIRST COORDINATES

;SECOND SET OF COORDINATES
iCALLED, TESTED AND
iUTILIZED

PHA iDEPENDENT & INDEPENDENT
LDA *XKOR1+l
LSR A
LDA *XKORl
ROR A
LSR A
LSR A

STA *ZW
PLA
PHA
SEC
SBC XKORl
PHA
TXA
SBC XKOR1+l
STA *DIF3
BCS LINE3
PLA
EOR f:$FF
ADC U
PHA
LDA 10
SBC *DIF3

iCOORDINATES DETERMINED
iINDEPENDENTS INCREMENTED

iENDPOINTS CLEARED/SET

200

ABACUS Software SUPER Pascal Development System

LINE3 STA *DIFl
STA *DIFS

e PLA
STA *DIFO
STA *DIF4
PLA
STA *XKORl
STX *XKORl+l
TYA
CLC
SBC *YKORl
BCC LINE4
EOR t$FF
ADC t$FE

LINE4 STA *DIF2
STY *YKORl
ROR *DIF3
SEC
SBC *DIFO
TAX
LDA t$FF
SBC *DIFl
STA *ZA
LDY *ZW
BCS LINES

LINEl ASL A
JSR R L
SEC

LINES LDA *DIF4
ADC *DIF2
STA *DIF4
LDA *DIFS
SBC to

LINE2 STA *DIFS
STY *ZW

e JSR PLOT
INX
BNE LINE6
JMP EXIT

201

ABACUS Software SUPER Pascal Development System

LINE6 LDA *DIF3
BCS LINEl
JSR U 0
CLC
LDA *DIF4
ADC *DIFO
STA *DIF4
LDA *DIF5
ADC *DIFl
BVC LINE2

SETCELL INC *TMP iSET UP 8 X 8 MATRIX
BNE SETCELLO i (BOTTOM)
INC *TMP+l

SETCELLO LDA *TMP
AND #7
BNE SETCELL2
INC *TMP+l
LDA #$38

SETCELLl CLC
ADC *TMP
STA *TMP
BCC SETCELL2
INC *TMP+l

SETCELL2 RTS

U 0 BMI SETCELL iLEAVE 8 X 8 FIELD

TOPCELL LDA *TMP iSET UP TOP OF 8 X 8
BNE TOPCELLO iMATRIX
DEC *TMP+l

TOPCELLO DEC *TMP
AND #7
BNE SETCELL2
DEC *TMP+l
DEC *TMP+l
LDA #$C8
BNE SETCELLl

202

ABACUS Software SUPER Pascal Development System

RGHCELL LSR *MSK iSET UP RIGHT SIDE OF
BCC RGHCELL2 i8 X 8 FIELD

e ROR *MSK
INY
LDA f8

RGHCELLI CLC
ADC *TMP
STA *TMP
BCC RGHCELL2
INC *TMP+l

RGHCELL2 RTS

R L BPL RGHCELL iLEAVE 8 X 8 MATRIX

LINKS ASK *MSK iDESIGN LEFT SIDE OF 8 X 8
BCC RGHCELL2 iFIELD
ROL *MSK
DEC *TMP+l
LDA f$F8

e BNE RGHCELLI

REVERS LDY fO iINVERSE VIDEO SCREEN
LDA fH,BITMAP
STY *TMP
STA *TMP+l
LDX f$20

REVERS 1 LDA (TMP) ,Y
EOR f$FF
STA (TMP) ,Y
INY
BNE REVERS 1
INC *TMP+l
DEX
BNE REVERS 1
RTS

203

ABACUS Software SUPER Pascal Development System

LOWTAB

HIGHTAB

BITTAB

.BY $00 $40 $80 $CO ; LOWBYTE

.BY $00 $40 $80 $CO ;MULTIPLICATION

.BY $00 $40 $80 $CO ; TABLE

.BY $00 $40 $80 $CO

.BY $00 $40 $80 $CO

.BY $00 $40 $80 $CO $00

.BY $00 $01 $02 $03 ;HIGHBYTE

.BY $05 $06 $07 $08 ;MULTIPLICATION

.BY $OA $OB $OC $OD ; TABLE

.BY $OF $10 $11 $12

.BY $14 $15 $16 $17

.BY $19 $lA $lB $lC $lE

.BY 128 64 32 16 8 4 2 1 ;BIT TABLE FOR
;MASK BITS

.EN

PROCEDURE GRAPHIN (*GRAPHIC SCREEN ON*);
BEGIN GRAPHIC(GRIN,O,O,O,O) END;

PROCEDURE GRAPHOUT (*GRAPHIC SCREEN OFF*);
BEGIN GRAPHIC(GROT,O,O,O,O) END;

PROCEDURE GRAPHCLR (*GRAPHIC SCREEN CLEAR*) ;
BEGIN GRAPHIC(GCLR,O,O,O,O) END;

PROCEDURE COLCLR (*SCOLR,BCOLR:INTEGER*);
BEGIN GRAPHIC (CCLR, SCLOR,BCLOR, 0, 0) END;

PROCEDURE DOT (X,Y:INTEGER);
BEGIN GRAPHIC (ON,X,Y, 0,0) END;

PROCEDURE UNDOT (X,Y:INTEGER);
BEGIN GRAPHIC(OFF,X,Y,O,O) END;

PROCEDURE LINE(A1,B1,A2,B2:INTEGER);
BEGIN GRAPHIC(LINS,A1,B1,A2,B2) END;

PROCEDURE CLINE(A1,B1,A2,B2:INTEGER);

204

ABACUS Software SUPER Pascal Development System

BEGIN GRAPHIC(LINC,Al,Bl,A2,B2) END;

PROCEDURE REVERS; 4It BEGIN GRAPHIC (REV, 0,0,0,0) END;

(* END OF GRAPHIC ROUTINE *)

205

ABACUS Software SUPER Pascal Development System

8.3.1 fiLBERT CURVES

The program listed below gives you a practical demonstration of the material e
covered previously concerning graphics. The program draws meandering
lines, and can also do recursion. We suggest that you read Algorithms and
Data Structures by Niklaus Wirth. The program is stored on your system
disk under the name HILBERT. If you compile this program be sure to
change the defaults as listed in the program.

PROGRAM HILBERT;

CONST

TYPE

(*--------------------------------*)
(* START-OF-PROGRAM: $OCOO *)
(* HEAP
(* TOP-OF-STACK

: EOPRGM
: $2000

*)
*)

(*--------------------------------*)

HXO=320; HYO=192;
CLRHOM=CHR($93);
BACKSPC=CHR($9D);

GRAPH ICCOMMAND= (GRIN,GROT,GCLR,CCLR,ON,OFF,LINS,
LINC, REV) ;

VAR DEPTH,XO,YO,HX,XX1,XX2,I,YY1,YY2:INTEGER;
CHARIN : CHAR;

(*----------------------------*)
(* *)

&INCLUDE(S_GRAPH);
(* *)
(* &INCLUDE CAN INSERT ANY *)
(* USER PROGRAM *)

206

ABACUS Software SUPER Pascal Development System

PROCEDURE DRAWi
BEGIN

LINE(XX1,YY1,XX2,YY2)i
XX1:=XX2iYY1:=YY2 ENDi

PROCEDURE B(I:INTEGER)iFORWARDi
PROCEDURE C(I:INTEGER)iFORWARDi
PROCEDURE D(I:INTEGER)iFORWARDi

PROCEDURE A(I:INTEGER) i

BEGIN
IF I> 0 THEN

BEGIN
D(I-l)iXX2:=XX1-HXiDRAWi
A(I-l)iYY2:=YY1-HYi DRAW i
A(I-l)iXX2:=XX1+HXi DRAWi
B(I-l)

END
ENDi

PROCEDURE Bi
BEGIN

IF I> 0 THEN
BEGIN

C(I-l)iYY2:=YY1+HYi DRAW i
B(I-l)iXX2:=XX1+HXiDRAWi
B(I-l)iYY2:=YY1-HYi DRAW i
A (I-l)

END
ENDi

PROCEDURE Ci
BEGIN

IF I> 0 THEN
BEGIN

B(I-l)iXX2:=XX1+HXiDRAWi
C(I-l)iYY2:=YY1+HYiDRAWi
C(I-l)iXX2:=XX1-HXi DRAW i
D (I-l)

END
ENDi

207

ABACUS Software

PROCEDURE Di

BEGIN
IF I> 0 THEN

BEGIN
A(I-1)iXX2:=YY2-HYiDRAW;
D(I-1);XX2:=XX1-HX;DRAW;
A(I-1);YY2:=YY1+HY;DRAW;
C (I-I)

END
END;

SUPER Pascal Development System

BEGIN (*MAIN OF HILBERT*)
WRITELN(CLRHOM);WRITELN;
WRITELN('HILBERT - CURVES' :2G);
WRITELN;
WRITELN('THIS PROGRAM DRAWS HILBERT CURVES');
WRITELN('WITH THE HIGH-RES-GRAPHICS OF THE C-G4');
WRITELN('
WRITELN ('
WRITELN ('
WRITELN;

SEE: NIKLAUS WIRTH, ');
ALGORITHMS AND DATA STRUCTURES ');

TEUBNER PUB., ');

WRITELN('DEPTHS OF RECURSION CAN BE INPUT')i
WRITELN('BETWEEN THE NUMBERS OF 1 AND G');
WRITELN;
WRITELN('RUN/STOP EXITS HIGH-RES MODE;');
WRITELN(' "E" EXITS THE PROGRAM ALTOGETHER.');
WRITELN;
WRITELNi
REPEAT

WRITE('CHOICE (l-G,E) =?',BACKSPC)i
REPEAT

CHARIN:=GETKEY
UNTIL CHARIN IN ['1' .. 'G']i
WRITELN(CHARIN)i
IF CHARIN <>'E' THEN

BEGIN
DEPTH:=ORD(CHARIN)-ORD('O');
GRAPHINiGRAPHCLR;COLCLR(O,5);
HX:=HXO;XO:=HX DIV 2;

208

ABACUS Software

HY:=HYO;YO:=HY DIV 2;
1:=0;
REPEAT;
1:=1+1;
HX:=HX DIV 2;HY:=HY DIV 2;
XO:=XO + HX DIV 2;
YO:=YO + HY DIV 2;
XX1:=XO;YY1:=YO;
XX2:=XX1;YY2:=YY1;
A(I)

UNTIL I = DEPTH;

SUPER Pascal Development System

REPEAT UNTIL EOF; (*WAIT FOR BREAK *)
GRAPHOUT
END

UNTIL CHARIN='E'
END.

209

ABACUS Software SUPER Pascal Development System

8.4 C64 TO PASCAL DOS

The program C64TOP AS on the main disk converts files from C64 format to e
SUPER Pascal DOS format The program is started by running it from the
Main Menu in the following manner:

R
FILE-TITLE
DRIVE (MAP)

C64TOPAS
o

* FILE-TRANSFER C64-DOS TO PASCAL-DOS *
*************** VS 5.3 ***************

TITLE OF SOURCE-FILE (C64-FILE) = ...
?

Enter the C-64 file name.

The program will then ask if the file is stored in program or sequential
format.

PROGRAM OR SEQUENTIAL (PIS)?

Next enter the new name for the SUPER Pascal file.

TITLE OF PASCAL-FILE =?

Insert the C-64 formatted disk into drive O.

INSERT DISC WITH SOURCE-FILE (C64-FILE)
INTO DRIVE O! PRESS"RETURN" IF DONE

INSERT THE DESTINAT'-DISC (PASCAL-DISC)
INTO DRIVE O! PRESS "RETURN" IF DONE.

The file will be converted to SUPER Pascal DOS format

210

ABACUS Software SUPER Pascal Development System

9.0 APPENDIX

e 9.1 ERROR LIST

This is the complete SUPER Pascal list of compiler errors, per the Pascal
User Manual and Report.

1: ERROR IN SIMPLE TYPE
2: IDENTIFIER EXPECTED
3: 'PROGRAM' EXPECTED
4: ')' EXPECTED
5: ,., EXPECTED
6: ILLEGAL SYMBOL
7: ERROR IN PARAMETER LIST
8: 'OF' EXPECTED
9: ' (' EXPECTED

10: ERROR IN TYPE
11: 'A"' EXPECTED
12: ' U'" EXPECTED
13: 'END' EXPECTED
14: ';' EXPECTED
15: INTEGER EXPECTED
16: '=' EXPECTED
17: , BEGIN' EXPECTED
18: ERROR IN DECLARATION PART
19: ERROR IN FIELD-LIST
20: ',' EXPECTED
21: ,*, EXPECTED
22: ' .. 'EXPECTED
23: "EXPECTED
24: ',' OR ')' EXPECTED
25: BOOLEAN CONSTANT EXPECTED

50: ERROR IN CONSTANT
51: ' :=' EXPECTED
52: 'THEN' EXPECTED
53: 'UNTIL' EXPECTED
54: 'DO' EXPECTED

211

ABACUS Software

55: 'TO' OR 'DOWNTO' EXPECTED
56: 'IF' EXPECTED
57: 'FILE' EXPECTED
58: ERROR IN FACTOR
59: ERROR IN VARIABLE
60: PROGRAM INCOMPLETE

SUPER Pascal Development System

101: IDENTIFIER DECLARED TWICE
102: LOW BOUND EXCEEDS HIGHBOUND
103: IDENTIFIER IS NOT OF APPROPRIATE CLASS
104: IDENTIFIER NOT DECLARED
105: SIGN NOT ALLOWED
106: NUMBER EXPECTED
107: INCOMPATIBLE SUBRANGE TYPES
108: FILE NOT ALLOWED HERE
110: TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE
111: INCOMPATIBLE WITH TAGFIELD TYPE
113: INDEX TYPE MUST BE SCALAR OR SUBRANGE
115: BASE TYPE MUST BE SCALAR OR SUBRANGE
116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER
117: UNSATISFIED FORWARD REFERENCE
118: FORWARD REFERENCE TYPE IDENTIFIER IN VARIABLE

DECLARATION
119: FORWARD DECLARED;

REPETITION OF PARAMETER LIST NOT ALLOWED
121: FILE VALUE PARAMETER NOT ALLOWED
122: FORWARD DECLARATION FUNCTION;

REPETITION OF RESULT TYPE NOT ALLOWED
123: MISSING RESULT TYPE IN FUNCTION DECLARATION
124: F-FORMAT FOR REAL ONLY
125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER
126: NUMBER OF PARAMETERS DOES NOT AGREE WITH

DECLARATION
127: ILLEGAL PARAMETER SUBSTITUTION
128: RESULT TYPE OF PARAMETER FUNCTION

DOES NOT AGREE WITH DECLARATION
129: TYPE CONFLICT OF OPERANDS
130: EXPRESSION IS NOT OF SET TYPE
131: TESTS ON EQUALITY ALLOWED ONLY
133: FILE COMPARISON NOT ALLOWED

212

e

e

ABACUS Software SUPER Pascal Development System

134:
135:
136:
137:
138:
139:
140:
141 :
142:
143:
144:
145 :
146 :
147:

148:
149:
150:

151:
152:
153:
154:
158:
159:
160:
161:
162 :
163:
164:

165:
166:
167:
168:
169:
170:
171:
177:

ILLEGAL TYPE OF OPERAND(S)
TYPE OF OPERAND MUST BE BOOLEAN
SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE
SET ELEMENT TYPES NOT COMPATIBLE
TYPE OF VARIABLE IS NOT ARRAY
INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
TYPE OF VARIABLE I S NOT RECORD
TYPE OF VARIABLE MUST BE FILE OR POINTER
ILLEGAL PARAMETER SUBSTITUTION
ILLEGAL TYPE OF LOOP CONTROL VARIABLE
ILLEGAL TYPE OF EXPRESSION
TYPE CONFLICT
ASSIGNMENT OF FILES NOT ALLOWED
LABEL TYPE INCOMPATIBLE WITH SELECTING
EXPRESSION
SUBRANGE BOUNDS MUST BE SCALAR
INDEX TYPE MUST NOT BE INTEGER
ASSIGNMENT TO STANDARD FUNCTION IS NOT
ALLOWED
ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED
NO SUCH FIELD IN THIS RECORD
TYPE ERROR IN READ
ACTUAL PARAMETER MUST BE A VARIABLE
MISSING CORRESPONDING VARIANT DECLARATION
REAL OR STRING TAGFIELDS NOT ALLOWED
PREVIOUS DECLARATION WAS NOT FORWARD
AGAIN FORWARD DECLARED
PARAMETER SIZE MUST BE CONSTANT
MISSING VARIANT IN DECLARATION
SUBSTITUTION OF STANDARD PROC OR FUNC NOT
ALLOWED
MULTIDEFINED LABEL
MULTIDECLARED LABEL
UNDECLARED LABEL
UNDEFINED LABEL
ERROR IN BASE SET
VALUE PARAMETER EXPECTED
STANDARD FILE WAS REDECLARED
ASSIGNMENT TO FUNCTION IDENTIFIER NOT ALLOWED
HERE

213

ABACUS Software SUPER Pascal Development System

178: MULTIDEFINED RECORD VARIANT
179: X-OPT OF ACTUAL PROC OF FUNC

DOES NOT MATCH FORMAL DECLARATION
182: PARAMETER LIST OF EXTERN PRGM NOT ALLOWED
183: LOAD/SETADR ONLY FOR EXTERNALS
184: EXTERNAL WITHOUT ADDRESS-DEFINITION
185: SLICE-ARRAY MUST BE OF TYPE CHAR OR BYTE
186: ASSIGNMENT OF SLICE TO SLICE NOT ALLOWED

201: ERROR IN REAL CONSTANT: DIGIT EXPECTED
202: STRING CONSTANT MUST NOT EXCEED SOURCE LINE
203: INTEGER CONSTANT EXCEEDS RANGE
206: INTEGER PART OF REAL CONSTANT EXCEEDS RANGE
207: BYTE-CONST TOO LARGE
208: ERROR IN BYTE-CONST
209: ERROR IN HEX-CONST
210: ERROR IN NUMERIC-CONST

250: TOO MANY NESTED SCOPES OF IDENTIFIERS
251: TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS
252: TOO MANY FORWARD REFERENCES OF PROC ENTRIES
257: TOO MANY EXTERNALS
258: TOO MANY LOCAL FILES
259: EXPRESSION TOO COMPLICATED

398: IMPLEMENTATION RESTRICTION
399: VARIABLE DIMENSION ARRAYS NOT IMPLEMENTED
400: FILE-ELEMENT TOO LONG
401: STRING NOT ALLOWED HERE
402: TOO MANY IDENTIFIERS
403: READLN/WRITELN ONLY WITH TEXT
404: PROGRAM INCOMPLETE
405: TOO MANY SEGMENTS
406: NESTED SEGMENTS NOT ALLOWED
407: SEPARATED SEGMENTS NOT ALLOWED
408: COMPILING OF SEGMENTED PRGMS TO RAM NOT

ALLOWED
409: TOO MANY PARAMETERS
410: ERROR IN '&' OPTIONS
411: TOO MANY NESTED SOURCES

214

ABACUS Software SUPER Pascal Development System

9.2 FOR FURTHER READING

e ON PASCAL:

Alpert/Stephen: PASCAL. A structured strong Language
BYTE 3nS BYTE Publications

Barron, D.W.: PASCAL. The Language and its Implementation
John Wiley & Sons, New York

Bowles: USCD PASCAL
BYTE5nS

Jensen/Wirth: PASCAL User Manual and Report
Springer Verlag, New York

Zaks, R: Introduction to PASCAL including USCD PASCAL
Sybex, Berkeley CA

ON THE C-64 AND MACHINE LANGUAGE:

AngerhausenlBeckerlEnglishlGerits:
Anatomy of the Commodore 64
Abacus Software, Grand Rapids MI

Englisch, L.: The Advanced Machine Language Book for the
Commod.ore-64
Abacus Software, Grand Rapids MI

EnglishlSzczepanowski: The Anatomy of the 1541 Disk Drive
Abacus Software, Grand Rapids MI

Commodore 64 Programmer's Reference Guide

215

ABACUS Software SUPER Pascal Development System

9.3 INDEX

ABS 80 CASE-statement 67,87 e Addition, binary 102 CHANGE 36
Additional CHAR 62
-definitions 84 CHR78
-functions 84 Clear fIle 151
-procedures 84 CLOSE 89
&ADR 114 CLRTRAP90
Address types 130 Command section 66,87
ADVICE 144 Compiler 6,59
ALFA64 -call 113
ALLOCATE 88 -commands 22
AND 82,104 -diskette 19
ANYKEY99 -errors 121,211
APPEND 35 -mode 117
ARCTAN 81 CONST61
ARRAY 63 Constant assignment 61,84
-access 86 CONTINUE, program 90,106

e ASSEMBLE 53,111 - source 47,51,114,134
Assembler 4,127 &CONTINUE 114
-call 21 COpy 146
-commands 129 Copy fIle 146
-errors 138 COS 81
-routines 111 CPU -instructions 129
Assembly 136 .CT 111,134
Assignment 67
Auto line numbers 40 Default 116

DELETE 36
.BA H1,134 Directory 25,40,152,159
BEGIN 66 Direct commands 1
Bit manipulation 103,104 Disk-mode 117
BLOCKTABLE 145,169 Diskette-dup.147
BOOLEAN 62,65 -organization 145,154,169
Boolean operations 104 Diskette protection 152
BYTE 85 DISPOSE 68 e Bytelist 135 DIV82
.BY 135 .DL 134

DOS 169
.DS 136

217

ABACUS Software

Dump 118,124,158,161
DUPLICATE 239

Editor 13,33
-call 23
-commands 35
-organization 56
-program 173

ELSE-of-CASE 87
.EN 134
END 66
ENTER 148
EOF79
EOLN79
.EQ 135
Error trap 90,98
-messages 90,98,138

Error format 76
EXCLUDE 160
EXECUTE 90,106
EXP81
Externals 104

FALSE 61
FILE 63
File-copy 146
-buffer 74
-list 161

FIND 37
Formatted output 76
Formatting 17
FOR 67
FORWARD 83
FRAC 103
FREE 101
FUNCTION 65
Function assignment 65,84

GET 68
GETKEY 100

SUPER Pascal Development System

GET-RAM 23,149
GET-SECTOR 170
GET-SOURCE 38
GOT067

Hardcopy 30,41
HBYT98
Heap 89,93,116
HELP 24,39,150
HEX 91
Hex notation 2
HXS 102

IF 67
IN 82
INCLUDE 47
&INCLUDE 113
INDVC91
INPUT 60,65,74
Input buffer 74
INSERT ADVICE 150
INT98
INTEGER 62
Integers 2

218

IOERROR 29,90,98,100

JUMP 25,150

KILL 92,151

LABEL 60
Label
-declaration 61,84
-defmition 134
-expression 130
-listing 137

Languge extensions 83
LBYT98
LEN 101
Line numbers 33

ABACUS Software SUPER Pascal Development System

LIST 39 -Editor 56
LN81 -Diskette 169

e LOAD 92 .OS 135
LOADDAT 17 OUTDVC95
LOCK 92,152 OU1PUT 60,65,73
Logical functions 104 OU1PUT-DEVICE 41
LOW 99 Output

-format 76
MAIN menu 3,21 -buffer 76
MAP 25,40,152,159 Overlay 104
MARK 93
Machine-language program Parameters 113
108 Pascal 59
MAXINT61 -compiler 59
MEM87 -DOS 169
Memory -programs 45
-addresses 167 PCode 114
-dump 158 &PCODE 114
-map 167 PEEK 87

e Mnemonic 129 PI 84
MOD 82 Pointer-type 63
Move POKE 87,156
-line 44 Post-mortem dump 118,124
-memory 157 PRED80

Printer 2
NAME 94 PROCEDURE 65
.NE 134 -assignment 65,84
NEW 69 Program 60
NEW-DISC 153 -break 124
NIL 62 -head 60,846
NOT 82,104 -location 45

-start 116
.OC 111,135 Pseudo OP Codes 134
ODD 79 PUT 69
OPCodes 76,129 PUT-RAM 26,154
Options 116 PUT-SECTOR 170 e OR 82,104 PUT-SOURCE 42
ORD78
ORGANIZE 154 QUIT 43,155
Organization

219

ABACUS Software

RAM-mode 118
RANDOM 87
RANDOM access 88
READ 70
READLN71
REAL 62
RECORD 63
RELEASE 95
RELEASE BLOCK (zero) 162
RENAME 55
RENUMBER 43
REPEAT 67
RESET 72
REWRITEn
ROUND 81
RS-23291,95
RUN-PROGRAM 28
RUN/STOP 79
Runtime-errors 90,98,124

.sA 136
Scratch 151
Search 37
SEEK 96
SEGMENT 104
Sector 148
SET 63
SETADR97
SETDRV98
SETTRAP98
SHIFT-LINE 44
Shift-memory 157
SHL 103
SHR 103
SIGN 102
SIN 81
SIZE 101
Source file 57
SQR80
SQRT 81

220

SUPER Pascal Development System

Stack 116
Standard language elements 59
-functions 78 e -procedures 68,89

STARTUP 19
Statistics 122
STKPOI84
STORE-MEMORY 156
STRING 85
String length 101
SUCC80
Sum 102
Syntax
-check 121
-error 121

SYSGEN 17
System size 163
-declaration 1
-information 163
-loading 2

Test-of-bounds 118
TEXT 64
Text
-editor 33
-file 57

Top-of-stack 113
Transfer line 44
Transfer memory 157
TRUE 61
&TRUE 114
TRUNC81
TYPE 61
Type assignment 61,85

UNLOCK 158
UPDATE 44
USERFUNC 107
USERPROC 107
User-routines 107

ABACUS Software

Utility 15,143
-call 30

• VACANCY 45
VAR65
Variable design 163
-check 118
-memory 116
-size 102
VIEW-MEMORY 158

WHILE 67
WITH 67
WRI1E75
WRI1E-DIRECTORY 159
WRI1ELN77
Write protection 152
WRI1E-SOURCE 30

XTRNFUNC 106
XTRNPRGM 107
XTRNPROC 106

ZEROING 162

SUPER PaseaI Development System

221

Auto-Run Super Pascal Programs

To make an auto-run Super Pascal program disk:

Load Super Pascal into your computer.

From the main menu run the SYSGEN program by:

r [RETURN] for r(unprgm)
SYSGEN [RETURN]

This creates a Super Pascal disk. When this is finished remove the newly
created Super Pascal Disk and insert the Master Super Pascal disk.

From the main menu goto the Utility menu by pressing:

u [RETURN] for u(tility)

Copy the program you wish to automatically start, using the c(opy)
command to the new Super Pascal Disk as follows:

c [RETURN] for c(opy)
source - drive: 0
destinat-drive: 0
file-title = program name

When the copy is finished rename "program name" to" start up" using
the r(ename) command as follows:

r [RETURN] for r(ename)
file-title = program name
replacement = startup

Restart the C-64 system and with the Super Pascal disk you created in the
disk dri ve simply type:

LOAD "*",8,1

The Super Pascal System will be loaded and your program will
automatically start.

Abacus Software Super Pascal 64 Addendum

Super Pascal Addendum

This addendum consists of clarifications and corrections to the
Super Pascal 64 manual. Page numbers refer to those in the Super
Pascal 64 manual.

A. (text follows program code at bottom of p. 86)

The type compatibility between STRING and CHAR array also
means that the procedures WRITE and WRITELN can output
quantities of type CHAR in addition to quantities of type STRING.
For example, WRITELN (TITLE: 10); is absolutely correct in
Super Pascal if TITLE is defined as type ALFA.

B. (page 87, following the description of RANDOM and preceding
COMMAND SET)

Following the variable declaration comes the

Procedure declaration

and

Function declaration

Except for the structuring and compiler instructions to be discussed
later, we will not say anything more about these two here.

The next part of a program block is the

Statement section

with its sequence of statements. Two extensions of Super Pascal
should be mentioned in the area of the statement section. The first is
regarding the

:= (assignment) statement

223

Abacus Software Super Pascal 64 Addendum

To allow for easy access to variables of type FILE and ARRA Y OF
CHAR or ARRAY OF BYTE, the following access mechanisms
are provided:

File access

Instructions with the following syntax:

FILEVARIABLE(INDEX) :=ELEMENT;

or

DESTVAR:=FILEVARIABLE(INDEX);

can be used to access a precisely defined element of a file (random
access) for both reading and writing, depending on the assignment

FILEVARIABLE stands for the identifier which was declared as a
variable of type FILE in the declaration section.

ELEMENT stands for a expression of the type of the elements of the e
file in question.

DESTVAR stands for the identifier of a variable of the type of the
elements of the file in question.

INDEX stands for the number of the desired file element. The
elements are placed in the file sequentially and the first element has
the number O. The INDEX expression must be of type REAL so
that large files can be accessed. The integer portion of the index
expression will always be chosen. Negative values or values which
are too large lead to runtime errors:

IL.FILE OPR. ERROR or AFTER EOF ERROR!

If the element type of the file is a structured type, individual sub-
variables can also be accessed: e

FILEVARIABLE(5000) .CITY:='NEW YORK';

224

Abacus Software Super Pascal 64 Addendum

If the file element contains a field definition of type ALFA.
Something like this is also allowed:

4It IF FILEVARIABLE(5000) .CITY[O]='N' THEN ...

NOTE:
This method of file access implicitly includes opening and closing
the file, which takes a noticeable amount of time on the C64
because of the slow transfer of data to and from the disk drive.
Care must also be taken to ensure that three fIle buffers of the Super
Pascal system are available for fIle access. The file being addressed
must be accessible in the working disk drive (see the procedure
SETDRV).

Array access

In addition to the assignment of entire arrays or individual array
elements, sections of arrays (called slices) can be accessed in Super
Pascal. This is especially useful when working with CHAR arrays
and string quantities.

The syntax is as follows:

ARRAYVAR[>INDEX] :=EXPRESSION;

and

DESTVAR:=ARRAYVAR[>INDEX];

In the fIrst case, the quantity indicated by EXPRESSION is placed
in the array designated by ARRAYVAR at position INDEX. The
lowest array element has the number O. INDEX must be of type
INTEGER, while the array variables must be of type ARRA Y OF
CHAR or ARRAY OF BYTE.

NOTE:
During these assignment, the quantity EXPRESSION is placed over
the specified array range in its entirety, regardless of whether it fIts
this range or not. Under certain circumstances, neighboring
variables may be overwritten! This assignment technique should be
used only for known relationships.

225

Abacus Software Super Pascal 64 Addendum

For example:

TITLE [>4] :=1234;

places the binary coding of the integer value 1234 in positions 4
and 5 of the array TITLE.

TITLE [>4] :=TITLE;

leads to a "dangerous" range overflow because it places the entire
variable TITLE in the variable area at position 4 and beyond.

In the opposite assignment:

DESTVAR:=ARRAYVAR[>INDEX];

the destination variable will be filled in its entire length with the
array elements of ARRAYVAR at position INDEX (inclusive).
Missing values will be taken from the variable storage adjacent to
ARRAYVAR. ~

Although the constructs presented here do not conform to the
Pascal concept, they do provide an easy way to process elements of
differing types and sizes, especially for system programming,
when applied conscientiously. If a particular problem is to be
solved using good Pascal style, there are other ways of
accomplishing the same things.

c. (This text is the conclusion of CLOSE, p. 89, bottom)

NOTE:
The CLOSE procedure must be used for a file opened for writing or
the information last written to the file will be lost. The information
will be written to the file buffer, but not actually stored in the given
file. The buffer is not written to disk until it is full or the file is a
closed. .,

226

•

•

Abacus Software Super Pascal 64 Addendum

D. (Re-definition of LOAD,p. 93)

LOAD
LOAD loads an external Pascal program routine into memory.

Syntax:
LOAD(PROCEDURE_FUNCTION_NAME,FILENAME,DRIVE_NR)i

In contrast to CONTINUE and EXECUTE, the LOAD procedure
allows only an external program routine to be loaded. The external
routine declared under an arbitrary identifier (PROCEDURE
FUNCTION_NAME) will be loaded into memory during the
program run. It must be available under the given identifier
(FILENAME) in the given drive (DRIVE_NR). The procedure or
function identifier (PROCEDURE FUNCTION NAME) must not be
the same as the disk entry (FILENAME). Theloading procedure
itself is performed by a utility routine in the file LOADDAT.
LOADDAT must be present in drive 0 or the program run will stop
with an error message.

Calling the loaded function is no longer part of the procedure; it
takes place as with a normal procedure or function via the identifier
declared with the reserved word symbols XTRNPRGM, XTRNPROC,
and XTRNFUNC.

E. (text added to OUTDVC, p. 95 under NOTE:)

NOTE:
The inadequate input/output interface built into the C64 under the
primary address 2 (RS-232) is not available via OUTDVC. If you
are interested, you can make an adaptation with Super Pascal.
OUTDVC addresses only the devices connected to the serial
input/output bus.

• F. (add to SEEK, p. 96-97)

The SEEK procedure can only be used on files which are available
in the drive defined as the current working drive. If the file is not

227

Abacus Software Super Pascal 64 Addendum

found, the program will stop with an appropriate error message.
The working drive can be defined with the procedure SETDRV,
discussed later.

This procedure positions the access pointer to the file element
whose ordinal number is determined by the value representing
EXPRESSION. The first element of a file, the element to which the
access pointer is set by RESET or REWRITE, has the ordinal
number O. The difference between read and write access results
from the operation following the SEEK procedure. GET, READ,
and READLN cause read accesses, while PUT, WRITE, and
WRITELN write to the file. After each access, the access pointer is
advanced one element.

After a write access, any data behind the write position will be
erased. Only writing can continue in the file. Termination of the
read/write operations is done with CLOSE or LOCK. It is not
possible to write to a file which has been LOCKed. If an attempt is
made, the message

IL.FILE OPR. ERROR!

will occur and the program will be terminated.

G. (add to Chapter 4.6, p. 125, end of page)

If, at the beginning of a program, its entry address is taken from the
pointer ADR_PRPO and placed in the pointer ADR_EXPO, then
every program end will lead back to the called program. All you
must do is check at the beginning of the program whether it is being
called for the first time and must be initialized or whether this is a
re-entry. This can be determined from the WARMFLAG; if it is set at
the beginning of the program, it can be used to recognize a re-entry
and bypass the initialization routine. All variables will remain intact.

The only problem is the actual jump to the MAIN menu (QUIT). •
This is possible via a small assembly language routine which
executes a 65XX JUMP to the MAIN menu. More details can be
gathered from the listing of the editor program in Chapter 8.

228

• Nlake Your Choice
'AaIC~'" Compl.'. BASte compiler

and development package.
SpMCI up your program. 51
to 351. Compile to rMChine
code, eompect p-COde or
both. '121 veflion: 40 or 10
col. monitor output and
FAST -mod. QJ*fation. "28
..,."ion incluCl.. e.le"II".
80-pqe program.,.. guida.
A g, .. t package that no
softwar. library should til
withol.lt. C·U 131."

C·12. "I."

C-64 or C-128
BASIC

COIIOI.
Now you CII" learn COBOL.
Ih. mOil wielaly u •• CI
commercial programming
IIr!gUllQtl. on your '21 or 04.
COBOL Compiler peck8ge
comet comptMI with syntax·
checklng editor, i"t.rpr • ..,
and symbolic debugging
.. ·12.v~iOfIworIra
with 40110 COlumn monitorl
and " quicker than the 'M
.,...ion, c·... 131,1'

c·nl I"."
'-"Co". V_,

"porC~ • __ ~

For .chool or 10nw.,. Com~te m tor
drte6opment. lMrn lhe C oping appIic:alklnt; In PucaI.
IiInCIUlCla on the '84 or '121. Extenelve editor. Standn J
CompllM Into ,., m.nlna a W compiler, araphlca
code. Added '121 fMlu,..; litnry. Added "21 r..t1.I,..;
CPlM-liU operadng .,.tem; RAM disk; lOOK lOuteeIonI
10K RAM dI Combine IlM. dtlv. or HOKl1wo; 10/40
& C ueing CALl; 51 K • .,.... COlumn. It you .. nt to learn
... for o~t code; F.t PucaI or dIvIlop .oftware
IoIcIlng; Two .tandard 110 ... Ina ", belt tool av.MatM,
Ilbratyl pi ... math I g,..,nle Super P.cal I. your flrat
Iltnr". c.t4 ,..... Cf'oolce. c.... •
cA' C·U'1 C·U'

..... ~\._ Cad,....
"eC~1 your .. or '21 oommun. Euy·to-.... Interac:liv. draW-

leate with the aulllCl. world. In; pckag. fOl' 'ccural,
Obllin Inform.tlon trom III'apIIlc delIgM, Dimen"'·
....,Iou. computer n.tworkl. Ing r..tu,. to create '.K!
Flexlbl., comm.nd drlv.n ICaled output to 1111
minlll tortw packag" dot·m.trI. prin .. ,.. ,"put .. ,
Support. mo.t mod.m.. IWybolltd or lightpen. Two

Xmodem lind Punte, Ita,.,.,. ~~!. -= ~~I:,
protocol. VTS2 termi,..1 emu· BOX, ARC, ELLIPSE, 'Ic. :~~I~~~~~~~~~I ::n :'u:,r::YI. ~= avail"'. Deline your own
dell,.,. l.Inction IwyI. libr.ry or .ymbotaJobteClI-
.... , C.... .n." lIor. up to '04 .. per.te

C.U • ., • .• s ~~==:=::~~~~~ oo;.cta. c· •• '31." C·". , ••.••
Chart,.. PPM

er prof",ional qu.lity Compr.h.nsiv. portfoliO IF~-;""--,,-.:-:-----"LLD..,I

~':In~~~n:;C:I, :~ :::..~~t:,.:~ ~~ ___ .~:*: __ uo

=dr~rt!~~,!':,ra:= :':.= !'",:;.~= =-t:.;;':: :::; ~; ~-~ :; ~= ::
,,,ph. Set .caling, labliing dividend •• in .. ,..t incom.;
lind positioning. Dr .. dtartt r.concile .. ch brOk.raga
• din.rant brm ... Statistical account c .. h baJanoa with
routln.lor~a, standan! the YTO Ir.n.action fir.;
deviation, INIIsqua,.. and on·lina quotat through Dow
foraI;Mling, Uta dala 'rom Jon .. or warnar. ProclUOll
.... dthMtt. Output to mOlt y type 0' raport nMdaCI tI

.: p " .. •• ~'''''-f§:;:- ':':
•• Of. ::.-!'I § ~~iiE ~§ .. Ma iller _f1.. __

........ _--_ ... , ..
prin...... C·... ", •• S .n.lyza • portfolio or

C-121'SI." MaJrity. ~:~:. :::::: lj~' •.. _"'_..,i;" ... _ ___ '"

Call now for the name of the dealer nearest you .

•
Or order directly form Abacus using your MC. Visa Aba _
or Amex card. Add $4.00 per order for shippin .
Foreign orders add $10.00 per item. Call (61~) CUS
241-5510 or write lor your free catalog. 30-day •
money back software guarantee. Dealers inquiret., P.O.Box7219DepjM2GrandRap'ids,MI49510
welcome--over 1500 dealers nationwide. I'I1OIIe 6161241~10 • Telex 700-101· Fax 61&1241-5021

•

•

•

•

•

¥op sid tlooks ,
from Abacus

INTERNALS

¢'3===ITF

iiii
... 1IA1"-.E""EMOOC>< 6 .. [O~. ...Cil' ... ·aECO<EMIIIXXPIJlL ... m .. .CilI ... ·8EC><'~""'"'_ ED ..

AbacusllllSoftware Abacus IIII!IIIISoftw.re Abacus.Software

Filed with inlo lor .~.rwon •. eov.,. Insld,rs' guld. lor nov~ & .d· L"fn IundarMnhlle of CAD while
eo column hi-,.s gll1lphlc" win- walK*! VSII'!I. Co~" MqU.nlilll OevaloplFlg your own 1)'StIm. Design
dowlng. memory I.yovl, Klrn.1 ,elatw. lilft., & direct .ccns com· objtct. on your tc,.." 10 W"lllo,
roulinl', sprl,." lonw". pro· mandl. Olscrlbn OOS JOutInM. prinllr. IncUdlI 1iI11ng, lor '84 with
Ieeflon. ,utostartlnt. 30_ ,'9,gs Comm.n~ listing.. $111.05 Simon', BHIc. 30tJpp $li.95

At>l'" II[C'lt~8O<)C~m.. """'",aEc..t~lJC>O<~m''' r ... ·I£aQ:M"""" IL .. m ...

AbacusBIIIIBISoRwarc Abacus_Sortwarc Abacus_Software

:n*~~o~~;~!~~:i:O~";. ~~::_n~~::.,:.~ P~~'~:~~JI ::=n1li~'8,~ ~:rt::';re~~i=~
BASIC commands with hundl'eds of techniq,HI' on the operating 'ysllm, ,.plana!"'" 01 thl Clp8ratino 1)'Sllm,

::~~ =~r t4fY1man~;~.~~ ::~'lnt':~~f!ga~'d ~:~t.r$i6 t:: ;:=,r~~~:es ~P~re~ti'itll~~s
ANATOMY OF CoM I~r'. guide to tM
'64 Int.m.... Graphka, .ound, UO. k.m.~
mamory mapa. mo Complela commanted
ROM htlntft. MOp, SIt.as

TRICKS. TIPS FOR C· ... Colltoction of ICIENC"EIENGINEERtNQ ON C-I. In
ahr-1o-UM tachnlque,: adYanoed gr tc.. d.pth In190 to compute ... In .dane.. TopIaI:
Improved data Input. anhanced BASIC. ch.mltlrr. phplce. blologr. atlronom),.
CP/M.mor'. l1"p 119.95 alea.ronc..ott.rs. ~50Ptl 111_15

ANA TOllY ~' 1 DRiYE. aa" 1541 REPAIR • M"INTENANCE CASSETTE lOOK C-,./YIC·20
h.nclbook on al. Man), Harldbook da.crh. 1M disk drive hard- Compr.h.n,lve guide; m.nr sampla
e~ampl" ancl commented •••. Indud .. ,chem_ICII and t.chnlqu.. program,. "'lgII .pe.d operating .y.tam
15-4' AD''''. . 100 .. 11'.05 10 ka~ 15-41 running. 200" 119.05 last lila Io~ng....::r .wring. 225p, SI •. i5

MACHINE LANGUAGE C-U Laarn ADVANCED MACHINE LANGUAGE IDEAl FOR USE ON C-... Tham .. :
6510 coda wrha la .. program •. Manr sam- Not ooY,r,d ,I .. whera: _ vld.o eomroll,r. aulO '~pen.", calclJlilllor. raclpe tile, "cdr.
pi .. and 11.ling. 10f compl.,. a .. ambler. interrupt., ti", clodr.., 110, r.aI 11m., li,I •• dlat plann.r, window ady.,II.lng,
monitor, & .lmuIatOl. 200pp S14.95 nGad &ASIC, more, 2111", 51 •• M olher •• lnctudat,iaUnga. 200pp 112.05

GRAPHICS lOOK C· ... • be" NI.r.noe PAINTER lOOK C.'.,YIC.20 Und.r. COMPILER BOOK C·'.'C·121 All rou
co,ar. b.,le and advanced grllflhlca. .I.nd Commodor., Eplon-compatblll print. n .. d 10 know .tIoUi compile ... : how ""1
Sprit .. , .nlmaljon. Hir ... Muilicolor. ar. and 1520 plon.r. Padl.d: utllllla.; gra. work; de.lgnlng and wrlling)'our. own;

Ad.-nlura a.mawrlt.r'. H.ndbook
Stap--by·.I.p guld.1O OIIslgnlng and wrlling
your own ad¥amu .. gamH. WIIh auIIomatad
adnmu .. pIM generator. lOG" II •. "
PEEKI • POKE. FOR THE C·'"
Includ •• In-daplh .xplanatioM of PEEl<.
POKE. USR. and COIher BASIC commMft.
Lum !he -JnsId,a- trid<.. to ga4 the moel 0..
of yo ... 'M. 200" "4.15
Optlon.1 DI.k.II •• lot' book.
For),our conyenl.nce, lhe program.
contained In .~h 01 our book. ar •• vall·
able on clltIt.lI. 10 ... you tim •• nt.rlng
the", trom)'Our k.ybcNud. Spaclf)' n.n. CIt
book when orelarl"", '1 •. 15 HCh

~:~~'cu:·:.r::re~· IR~;O~:OSI:::; phlcl dump; 30-plot; oomm.mad MPSlOI ~;=':";~Ina oode. ~~~;P w~~~;:

Aba~~s i61iiiiill SoftWare"---
P.O. Box 7219 Dept.M9 Grand Rapids, M149510· Telex 709·101· Phone (616) 241·5510
Optional diskette. available lor all book t~les • $14.95 each. Other books & software also available. Call lor the name 01 your
nearest dealer. Or order directly Irom ABACUS using your MO, Visa or Ame. card. Add $4.00 per order lor shipping. Foreign
orders ad~ tl0.00 per book. Call now or wr~e lor your tr .. catalog. Dealer inquires welcome-over 1400 dealer. nationwide.

•

•

