
XXHHHX»X)-
x>-
X)-

XXXX
XXHX
xxxx
xxxx.
ooooc
»

i»
-ooooc
-(XXXX
-OÖÖOC

XXXXXXxxxxXXx>-
X)-

xxxx
XXHX
xxxx

xxxx
ooooc
xxxx
ooooc
ooooc
-ooooc
-OOOOC

XXXXXXx>x>-
x^X>-
X)-

xxxx
XXHX
ooooc
xxxx
-ooooc
xgoc
ooooc
ooooc
-oooor
-ooooc

XXXXXX&&X)-

xxxx
XXHX
xxxx
xxxx
ooooc
xxxx
ooooc
ooooc
-orm
ooooc

xxxx

xxxx
oooot
HHX
■(XXXX
ooooc
-oooot
-ooooc

XXKHKHX)-
X)-
x>-
X)-
x>

XXXK
XXHX
OOOOC
OOOOC
-ooooc
ooooc
ooooc
ooooc
-ooooc
-ooooc

XXKKococx>̂
XXxoxoxo

XXXK
XD-OC
ooooc
XXXX
■ooooc
>5995
ooooc
ooooc
■ooooc
-ooooc

XXKKH
]

X
]

»x>-
XXX>-

XXXK
ooo-oc
xxxx
xxxx
-ooooc

ooooc
-ooooc
ooooc

SUPER Pascal
Compiler and Software

Development System
By H. Schnepf

05 0 5 0 9

A Data Becker Product

Published by:

Abacus Software
P.O. Box 7211

Grand Rapids, MI 45910

Copyright Notice

Abacus Software makes this package available for use on a single
computer only. It is unlawful to copy any portion of this software
package onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple computers,
please contact Abacus Software to make arrangements.

Warranty

Abacus Software makes no warranties, expressed or implied, as to
the fitness o f this software package for any particular purpose, hi
no event will Abacus Software be liable for consequential damages.
Abacus Software will replace any copy of this software which is
unreadable, if returned within 30 days o f purchase. Thereafter,
there will be a nominal charge for replacement.

Fourth Printing, November 1987
Printed in U.S.A.
Copyright © 1986 Data Becker GmbH

Merowingerstraße 30
4000 Düsseldorf, West Germany

Copyright © 1986,1987 Abacus Software, Inc.
5370 52nd Street SE
Grand Rapids MI 49508

ISBN 0-916439-41-0

FOREWORD

This is the handbook to your SUPER Pascal Development System for the
Commodore 64 and 128. The minimum hardware required to run SUPER
Pascal is a C-64 (or C-128 in C64 mode), a 1541, and a television or
monitor. A second disk drive and printer will let you take full advantage of
SUPER Pascal.

This handbook is designed to help you understand the workings of SUPER
Pascal, assuming that you have had experience in the Pascal language. It is
not a basic course in Pascal, and makes no claims to that effect. Before
using SUPER Pascal, you should be familiar with the PASCAL language
and how it works.

SUPER Pascal is a complete implementation of "Standard Pascal", based on
the "Pascal User Manual and Report" (or "The Pascal Bible") by Kathleen
Jensen and Niklaus Wirth. You’ll find SUPER Pascal to be one of the most
comprehensive Pascal systems ever offered for C-64 or similar machines.
One of the problems with the C-64 is the slow transfer of data between
computer and disk drive (250- 400 bytes per second); SUPER Pascal solves
that problem, allowing you to transfer 1250 bytes per second from disk to
computer and back. This means that disk access is increased threefold!

I should mention that when developing a comprehensive software package
as large in scope as SUPER Pascal, errors may occur. We have done our
best to make SUPER Pascal as bug-free as possible. Naturally if you do
encounter problems, please let us know. Your suggestions are always
welcome.

January 1985

H. Schnepf

TABLE OF CONTENTS

1.0 SUPER PASCAL - SYSTEM 1

1.1 SYSTEM OVERVIEW 1
1.2 LOADING THE SYSTEM 2
1.3 SHORT DESCRIPTION OF SUPER PASCAL 3

1.3.1 MAIN 3
1.3.2 ASSEMBLER 4
1.3.3 COMPILER 6
1.3.4 EDITOR 13
1.3.5 UTILITY 15

1.4 SYSGEN - SETTING UP YOUR SYSTEM 17
1.4.1 MAIN DISKETTES 18
1.4.2 WORK DISKETTES 19
1.4.3 COMPILER DISKETTES 19

2.0 MAIN MENU 21
2.1 MAIN MENU COMMANDS 21

2.1.1 A(=ASSEMBLER) 21
2.1.2 C(=COMPILER) 22
2.1.3 E(=EDITOR) 23
2.1.4 G(=GETFILE FROM DISK TO MEMORY) 23
2.1.5 H(=HELP) 24
2.1.6 J(=JUMP) 25
2.1.7 M(=MAP/DRIVE) 25
2.1.8 P=(UT MEMORY AS FILE TO DISK) 26
2.1.9 R(=RUN PROGRAM) 28
2.1.10 U(=UTILITY) 30
2.1.11 W(=WRITE SOURCE) 30

2.2 EXIT TO BASIC 31

3.0 TEXT EDITOR 33
3.1 EDITOR COMMANDS 35

3.1.1 A:(=APPEND FILE) 35
3.1.2 C:(=CHANGE) 36
3.1.3 D(=DELETE) 36
3.1.4 F:(=FIND) 37
3.1.5 G:(=GET SOURCE FROM DISK) 38

3.1.6 H(=HELP) 39
3.1.7 L(=LIST) 39
3.1.8 M(=MAP/DRIVE) 40
3.1.9 N:(=AUTO-NUMBERING) 40
3.1.10 0:(=0UTPUT DEVICE) 41
3.1.11 P:(=PUT SOURCE TO DISK) 42
3.1.12 Q(=QUIT) 43
3.1.13 R(=RENUMBER) 43
3.1.14 S(=SHIFT LINE) 44
3.1.15 U:(=UPDATE FILE) 44
3.1.16 V(=VACANCY) 45

3.2 EDITING PASCAL PROGRAMS 45
3.3 EDITING ASSEMBLER PROGRAMS 48
3.4 MIXED PROGRAMS 53
3.5 INTERNAL ORGANIZATION OF THE EDITOR 56
3.6 TEXTFILE DESIGN 57

4.0 PASCAL COMPILER 59
4.1 SCOPE OF THE LANGUAGE 59

4.1.1 STANDARD LANGUAGE ELEMENTS 59
4.1.2 LANGUAGE EXTENSIONS 83

4.1.2.1 ADDITIONAL ASSIGNMENTS,
PROCEDURES AND FUNCTIONS 84

4.1.2.2 ADDITIONAL PROGRAM
STRUCTURES, EXTERNALS,
SEGMENTS 104

4.1.2.3 ASSEMBLER. ROUTINE DESIGN 111
4.1.2.4 COMPILER COMMANDS 113

4.2 OPTIONS 116
4.3 THE COMPILATION PROCESS 120
4.4 ERROR MESSAGES 121
4.5 END OF COMPILATION 122
4.6 LOCALIZING RUNTIME ERRORS 124

5.0 THE 6510 ASSEMBLER 127
5.1 SOURCE TEXT DESIGN 127
5.2 COMMAND SET 129
5.3 TYPES OF ADDRESSES 130
5.4 PSEUDO OPERATION CODES 134
5.5 RUNNING THE ASSEMBLER/OPTIONS 136

6.0 UTILITY MENU 143
6.1 UTILITY COMMANDS 144

6.1.1 A=(=ADVICE) 144
6.1.2 B(=BLOCKTABLE) 145
6.1.3 C=(=COPY FILE) 146
6.1.4 D(=DUPLICATE DISK) 147
6.1.5 E(=ENTER SECTOR) 148
6.1.6 F(=FETCH SECTOR) 148
6.1.7 G(=GET FILE FROM DISK TO RAM) 149
6.1.8 H(=HELP) 150
6.1.9 I(=INSERT ADVICE) 150
6.1.10 J(=JUMP) 150
6.1.11 K(=KILL TITLE) 151
6.1.12 L(=LOCK FILE) 152
6.1.13 M(=MAP/DRIVE) 152
6.1.14 N(=NEW DISC) 153
6.1.15 0(=ORGANIZEDISK) 154
6.1.16 P(=PUT RAM AS FILE TO DISK) 154
6.1.17 Q(=QUIT) 155
6.1.18 R(=RENAME) 155
6.1.19 S(=STORE BYTE INTO MEMORY) 156
6.1.20 T(=TRANSFER MEMORY BLOCK) 157
6.1.21 U(=UNLOCK FILE) 157
6.1.22 V(=VIEW MEMORY 158
6.1.23 W(=WRITE DIRECTORY) 159
6.1.24 X(=XCLUDE BLOCK) 160
6.1.25 Y(=LIST FILE) 161
6.1.26 Z(=RELEASE BLOCK TO ZERO) 162

7.0 SYSTEM SPECIFIC INFORMATION 163
7.1 SYSTEM SIZE AND DEFINITIONS 163
7.2 MEMORY LAYOUT AND ADDRESSES 167
7.3 DISKETTE ORGANIZATION 169

8.0 PROGRAM EXAMPLES AND GRAPHIC EXTENSIONS 173
8.1 THE EDITOR PROGRAM 173
8.2 RPNPROGRAM 189
8.3 THE GRAPHICS PACKET 194
8.3.1 HILBERT CURVES 206
8.4 C64 TO PASCAL DOS 210

9.0 APPENDIX 211
9.1 ERROR LIST 211
9.2 FOR FURTHER READING 215

ABACUS Software SUPER Pascal Development System

1.0 SUPER PASCAL - SYSTEM

1.1 SYSTEM OVERVIEW

Super Pascal works with one or two 1541 disk drives. If you are using two
1541 drives, the second 1541 drive should be designated as drive 9 (see your
1541 manual). SUPER Pascal refers to these as drive 0 and drive 1 (device
numbers 8 and 9 respectively). Drive 0 acts as the master drive. SUPER
Pascal searches drive 0 for the system programs, such as the Assembler,
Compiler, Editor and Utility programs.

Keywords, commands, names and identifiers are entered in upper-case, i.e.,
ASCII codes 65-90 ($41-$5A). These codes are entered as unshifted keys in
normal upper-case/graphics mode. In upper/lower-case mode, these
characters are displayed as lower case. This feature is peculiar to
Commodore machines, not Pascal.

The latter mode is the default when SUPER Pascal is initialized. Remember
to type statements, identifiers and names in lower case when in this mode! If
this confuses you, modes can be switched by pressing <C=+SHIFT>.

A few thoughts on the syntax for Pascal identifiers are in order here. These
identifiers are names defined for constants, variables, filenames, procedures,
functions, etc. Rules dictate that an identifier:

consists of no more than 8 significant characters

begin with a letter

must use letters and numbers for the remaining characters,
as well as the character (ASCII $5F), shown on the C-
64 as a back-arrow.

Screen dumps (printer outputs of the screen) can be done with a suitable
printer (Commodore, or another properly interfaced printer). Unusual
printer set-ups can be ”tuned” in by software changes.

A third item worth mentioning here is the input of direct commands, and
response to the prompts. Generally, direct commands are issued using a

1

ABACUS Software SUPER Pascal Development System

single letter (e.g., "E" will call the Editor). Direct commands must be
followed by pressing the <RETURN> key. Later descriptions of these
commands do not mention this fact, so please keep this in mind. If the
command requires further information, you will be prompted (NOTE: in
some cases, a default value is available). If your input is illegal or invalid,
the system will ignore it, and you’ll have to re-enter the command correctly.

If the system is expecting a numeric value - such as in the procedures READ
and READLN — and you input a non-numerical response, the system will
respond ” IL . INPUT”, and wait for the correct input. A <RETURN>
without any other input is interpreted as a 0. Integer values can be input in
decimal form or in hexadecimal form (e.g., 1024 = $0400) when preceded
by a dollar-sign ("$”),.

Due to the limitations of the integer range (-MAXINT..+MAXINT [-
32767..+32767]), any addresses from +32769 to +65535 should be specified
using hexadecimal notation ($8000..$FFFF).

Another strength of SUPER Pascal is the system’s high resistance to errors
and bad input from the user. You’ll be surprised at how well this program
handles errors.

1.2 LOADING THE SYSTEM

Loading SUPER Pascal is extremely simple. After turning on the computer
and disk drive(s), put the system disk into drive 0, and close the drive door.
Then type LOAD " * " , 8 , 1<RETURN>. The autoboot (load/run procedure)
takes over from there. If you happen to type LOAD" * " , 8<RETURN>, and
leave out the 1, the system will respond with READY. In this case just type
RUN<RETURN> to finish the loading process.

The autoboot displays the title screen, which asks you to press a key. Once
you’ve pressed a key, SUPER Pascal will display:

2

ABACUS Software SUPER Pascal Development System

LOADING . . .

* * * * * C -6 4 SUPER PASCAL - SYSTEM 5 .3 * * * * *
BY H. SCHNEPF

(C) COPYRIGHT 19 8 5 DATA BECKER
LICENSED BY ABACUS SOFTWARE

* *

When the load procedure is completed, Pascal is initialized, and the system
displays the Main Menu:

* C -6 4 PASCAL-SYSTEM 5 . 3 . *
COMMANDS = . . .

A(SSEMBLER)
C(OMPILER)
E (DITOR)
G(ETRAM)

H(ELP)
J(UMP)
M(AP/DRIVE)
P (UTRAM)

R (UNPRGM)
U (TILITY)
W(RITESRCE)

0

Note that the cursor is represented here by a

The 64’s BASIC operating system has now been temporarily replaced by the
SUPER Pascal operating system; you can return to BASIC by shutting off
the computer.

13 SHORT DESCRIPTION OF SUPER PASCAL

Let’s look at the elements of the Main Menu individually — this makes up
the RUNPAC, a set of machine code routines and compiled Pascal routines,
which allows us to create our own Pascal programs.

1.3.1 MAIN MENU

The Main Menu of SUPER Pascal has the following commands:

3

ABACUS Software SUPER Pascal Development System

' A' (=ASSEMBLER)
Calls the 6510 assembler source-program.

'C ' (“ COMPILER)
Calls the Pascal compiler.

'E ' (=EDITOR)
Calls the program to edit source files.

' G' (“ GETRAM)
Load a file into memory from disk.

'H ' (=HELP)
Prints Main Menu command list.

' J ' (= JUMP)
Jump to machine code program found at
specified address.

'M' (=MAP/ DRIVE)
Displays disk directory.

'P ' (“ PUTRAM)
Saves specific memory area contents to disk.

' R' (=RUN PROGRAM)
Starts a Pascal program.

'U ' (»UTILITY)
Calls utility program for working with files, etc.

'W' (“ WRITE SOURCE)
Formatted output of source-file to disk or printer.

13.2 ASSEMBLER

The assembler is used to create 6510 machine code programs from an
assembler source file. The machine code is stored as a file. The assembler
source files must have the following form:

~> TEXT LINE : Z Z Z Z SLLLLLLLLS111SOOOOOOOOOOOO...

zzzz
s
LLLLLLLL

line number
space
label field

maximum of 8 characters (same as for Pascal identifiers).
Unused space in a label field is filled in with blank spaces.

4

ABACUS Software SUPER Pascal Development System

ID = instruction field

Operation codes (mnemonics) in 6510 assembler notation:

ASL CLC INC PHA SEI
BCC CLD I NX PHP STA
BCS CLI INY PLA STX
BEQ CLV JMP PLP STY
BIT CMP JSR ROL TAX
BMI CPX LDA ROR TAY
BNE CPY LDX RTI TSX
BPL DEC LDY RTS TXA
BRK DEX LSR SBC TXS
BVC DEY NOP SEC TYA
BVS EOR ORA SED

Pseudo-operating-code notation:

.BA = begin assembly

.BY = insert byte

.CT = continue with source...

.DL = define label

.DS = displacement

.EN = end assembly

.EQ =. cond. assembly: equal 0

.NE = cond. assembly: not equal 0

.OC = object code clear

.OS = object code set
= end of cond. assembly

00000000..= Operand field

As operands are labels, decimal numbers, hex numbers and +/-
combinations, the following types of addresses are permitted:

5

ABACUS Software SUPER Pascal Development System

Operand =absolute
Operand,X =absolute indexed X
Operand,Y =absolute indexed Y
(Operand,X) indirect indexed X
(Operand),Y indirect indexed Y
(Operand) indirect absolute
♦Operand =zeropage
♦Operand,X =zeropage indexed X
*Operand,Y =zeropage indexed Y
#Operand =immediate
#H,Operand immediate high-byte
#L,Operand immediate low-byte
A =implicit Accumulator

A semicolon (;) at position 6, 15, or after 0 should precede any remarks or
commentary.

U .3 COMPILER

The compiler compiles Pascal source programs from diskette. The user then
has the option of putting the compiled program code (Pascal-Pcode) on disk,
or keeping it in memory.

The compiler accepts and compiles the following reserved words found in
the Pascal language:

WORDS:

AND DO FUNCTION NIL PROGRAM TYPE
ARRAY DOWNTO GOTO NOT RECORD UNTIL
BEGIN ELSE IF OF REPEAT VAR
CASE END IN OR SET WHILE
CONST FILE LABEL PACKED* THEN WITH
DIV FOR MOD PROCEDURE TO

* PACKED will not always compile!!

6

ABACUS Software SUPER Pascal Development System

The following standard identifiers are also permitted:

Constants: FALSE, MAXINT, TRUE

Types: ALFA, BOOLEAN, CHAR, INTEGER
REAL, TEXT

Variables: INPUT, OUTPUT

Procedures: GET, NEW, PUT,
READ, READLN, RESET,
REWRITE, WRITE r WRITELN

Functions: ABS, ARCTAN, CHR, COS,
EOF, EOLN, EXP, LN,
ODD, ORD, PRED, ROUND,
S IN ,
TRUNC

SQR, SQRT, SUCC,

In addition, all the standard characters mentioned in The Pascal Users
Manual and Report are accepted by the compiler:

< [(*
<> <=] *)
> (-[
>=)]-

The following commands, etc., are additions to SUPER Pascal Development
System:

Reserved Words:

AND combines BYTE-values
e l s e used as an alternative in a CASE statement
NOT negates a BYTE-value
OR ORr’s BYTE-value
SHL rapid integer multiplication by a factor o f 2An (n=0 to

16) without overflow checking

Symbols:

*
/

7

ABACUS Software SUPER Pascal Development System

SHR
USERFUNC
USERPROC
XTRNFUNC
XTRNPRGM
XTRNPROC

Other Indicators:

Constants:

P I
STKPOI

Types:

BYTE

STRING

Variables:

MEM

RANDOM

Procedures:

ALLOCATE

CLOSE
CONTINUE
CLRTRAP
EXECUTE

rapid integer division by a divisor of 2*n (n=0 to 16)
declares an external function written in machine code
declares an external procedure written in machine code
declares/defines an external Pascal function
declares an external Pascal program
declares/defines an external Pascal procedure

the real number pi (3.141...)
the value of the variable stack pointer

a single-byte, preceded by the character "#"
(range: #0-#255 = #$00-#$FF)
a dynamic array of CHAR, defined as :
RECORD
LENGTH:BYTE;
CHRS:[#0..L] OF CHAR
END

a pseudo-variable array that permits access to
memory (similar to PEEK and POKE in BASIC)
a pseudo-variable that produces a random real
number between 0 and 1;

sets pointer variables to an address accessible to
the user.
close and clears the file in last buffer
load and run a Pascal program from diskette
clear trap of runtime I/O errors
load a Pascal program from disk, and run
subprogram already in memory

8

ABACUS Software SUPER Pascal Development System

HEX

INDVC
KILL

LOCK
LOAD

MARK
NAME
OUTDVC
RELEASE
SEEK
SETADR

SETDRV
SETTRAP

Functions:

ANYKEY
EOF

FRAC

FREE

GETKEY

HBYT

HXS

INT

converts integer or byte parameters to
hexadecimal
redirect input from device
delete an unprotected (unlocked) file from
diskette
close and protect a file on diskette
loads external Pascal program, procedure or
function into memory from diskette
records the current heap pointer
assign a filename to a file
redirect output to device
set heap pointer to previously MARKed value
set file position pointer for direct access
define starting address for an external Pascal or
machine language routine
define disk drive for file access
activates trap for runtime-error (I/O errors)

returns TRUE if any keyboard input is present
returns TRUE if end of file or BREAK key
pressed (: BOOLEAN)
returns the fractional part of a real number
(: REAL)

returns the amount of memory remaining on
Pascal variable stack (: INTEGER)
returns the value of the next key in keyboard
buffer; otherwise, waits for next key (: CHAR)
returns the most significant byte value of an
integer (: BYTE)
(=hexsum), returns the sum of two integer values
without checking for overflow, used for
calculating addresses (: INTEGER)
returns the integer value of a real number or
gives IL . QUANT . ERROR (: INTEGER)

9

ABACUS Software SUPER Pascal Development System

IOERROR returns the value for the I/O error (: INTEGER)
as follows:

0 = OK
1 = DISK ERROR
2 = NOT OPEN ERROR
3 = NOT CLOSED ERROR
4 = BUFFER OVERFLOW ERROR
5 = DIRECTORY OVERFLOW ERROR
6 = NOT FOUND ERROR
7 = DISK OVERFLOW ERROR
8 = DISK MISMATCH ERROR
9 = ILLEGAL FILE-OPERATION ERROR

10 = AFTER EOF ACCESS ERROR
11 = IEEE-ERROR

LOCALITY returns the current memory location o f Pascal
variables (: in t e g e r)

LOW converts an integer or a single number into high-
byte,low-byte (when possible)

LBYT returns the least significant byte value o f an
integer (: BYTE)

LEN
ROUND

returns the length o f a string (: INTEGER)
returns the rounded value o f any real number
(: REAL)

SIGN gives previous item an integer or a real value
(: INTEGER)

SIZE returns the number of bytes occupied by a Pascal
variable (: in t e g e r)

TRUNC returns the integer portion a real value (: REAL)

Structural Commands:

These commands aid in structuring Pascal programs:

FORWARD for forward definitions of PROCs and FUNCs

SEGMENT
according to "The Pascal Bible"
to break a Pascal program into segments used for
overlay techniques

10

ABACUS Software SUPER Pascal Development System

ASSEMBLE converts the text to follow from Pascal into
assembly language.

Compiler Directives:

These commands change the defaults of the compiler.

&ADR+ activates output of addresses during compilation

&ADR-
&CONTINUE

&INCLUDE

&PCODE+
&PCODE-
&TRUTH

deactivates output of addresses
instruct the compiler to continue compilation on
the given source-file
instruct the compiler to include given sourcefile
in the compilation presently being done
activates the P-code output
deactivate P-code display
identify section of source file for conditional
compilation

Error Messages:

The standard error messages identified by the compiler (according to the
Pascal User Manual and Report! are as follows:

22: expected
23: expected
24: or ’)’ expected
25: BOOLEAN constant expected

60: PROGRAM incomplete

182: Parameter list of extern PRGM not allowed
183: LOAD/SETADR only for externals
184: Externals without address definition
185 Slice-ARRAY must be CHAR or BYTE type
186: SLICE := SLICE not allowed

207: BYTE-const too large
208: Error in BYTE-const
209: Error in HEX-const

11

ABACUS Software SUPER Pascal Development System

210: Error in numeric const

400: FILE-element too long
401: STRINGS not allowed here
402: Too many identifiers
403: READLN/WRITELN only with TEXT
405: Too many segments
406: Nested segments not allowed
407: Separated segments not allowed
408: Compiling of segmented PRGMS to RAM not allowed
409: Too many parameters
410: Error in ’ &’ -option
411: Too many nested sources

Runtime Errors

Runtime errors can also include I/O errors:

OUT OF RNG.
NOT EXQ.
NUM. OV.
BAD SUBS.
ILL. QUANT.
STK. OV.
ZERODIV.
ILL. DVC.

number out of range
non-executable P-code
number overflow
bad subscript
illegal quantity
stack overflow
division by 0
illegal device number

Options: The following items may be changed when the compiler is started
(contents in parentheses are defaults):

Start-of-program
Starting address of heap
Max. address of variable stack
Compiling mode
Memory location for comp.
Test for end-of-memory
File for post-mortem dump
post-mortem filename
Suppress program listing
Suppress printer output

($0800)
(end-of-program)
($9000)
(disk), or RAM:
($9000)
(yes), or no:
(no), or yes:
(PM DU MP)
(yes)
(yes)

12

ABACUS Software SUPER Pascal Development System

13.4 EDITOR

The editor sets the source-program into a screen-oriented format The line
numbers displayed in edit mode are there for editing only — they aren’t part
of the program itself. The following commands available for changing
parameters in edit mode :

' A : ' (=APPEND FILE)
Append specific file on diskette to file in
memory.

' C : ' (CHANGE)
Change the character string following to
another string.

'D ' (=DELETE)
Delete lines:

D
D x x x x
D - x x x x
D x x x x -
D x x x x - y y y y

(=FIND)
Find and list the line containing the specified
character string.

(=GET SOURCE FROM DISK)
Load a source file from diskette into the Editor.

(=HELP)
Display Editor’s command set.

(C I S T)
List line(s); parameters are similar to ’D’.

' F: '

' G : '

' H'

' L'

delete ALL lines
delete line xxxx
delete up to and including line xxxx
delete from line xxxx on
delete from line xxxx to line yyyy

13

ABACUS Software SUPER Pascal Development System

'M' (=MAP/DRIVE)
Display disk directory; defines drive for ’A:’,
’G:’, ’P:’, and ’U:’ commands.

' N' («AUTO-NUMBERING)
Automatically generate line numbers in
increments of 5, with an option of changing the
starting line number (Nxxxx).

'0" («OUTPUT DEVICE)
Change output device for display to screen or
printer.

0 -------- screen
0 4 ,0 -------- printer

' P : ' (=PUT SOURCE TO DISK)
Save source file from editor to diskette (NOTE:
If a file of the same name already exists on the
diskette, the old file is overwritten).

'Q ' («QUIT)
Return to the Main Menu.

'R ' (=RENUMBER)
Renumber lines in increments of 5, starting at
line number 1000.

'S ' (=SHIFT LINE)
Move line(s) to a different memory range (S xxxx
- yyyy : zzzz ... move lines xxxx to yyyy to
location after line zzzz).

' U : ' (=UPDATE FILE)
Append source file in Editor to file on diskette.

'V ' («VACANCY)
List amount of memory left for text.

14

ABACUS Software SUPER Pascal Development System

13.5 UTILITY

The Utility function has disk management commands, as well as some
useful monitor commands; this section gives you working memory in $4000
- $C200, and this register can be used as standard RAM. Here are the
commands:

' A'

'B '

'C '

'D '

' E'

' F '

' G'

(=ADVICE)
Display any special information on a given file
(data, version number, etc.).

(=BLOCKTABLE)
Display a diskette blocktable (similar to block
availability map).

(=COPY FILE)
Copy file from one diskette to another.

(=DUPLICATE DISK)
Duplicate an entire disk (only possible with two
drives).

(=ENTER SECTOR)
Store any sector (=512 bytes) of memory to
diskette.

(=FETCH SECTOR)
Load any sector of disk into memory.

(=GET FILE FROM DISK TO MEMORY)
Load a file from diskette.

'H ' (=HELP)
Display the Utility command list

' I ' (=INSERT ADVICE)
Input extra information (see ADVICE) to file on
diskette.

15

ABACUS Software SUPER Pascal Development System

' J ' (=JUMP)
Jump to any program in memory.

'K ' (=KILL FILE)
Scratch file from diskette.

'L ' (=LOCK FILE)
Protect a file on diskette from killing of
overwriting. Locked files appear in the directory
in reverse video.

'M ' Display the disk directory. Also defines the
drive for ’A’, ’B \ ’E’, ’F’, T , ’K \ ’L \ ’R’, TJ\
’X’ and ’Z’ commands.

'N ' (=NEW MAP)
Generate new directory (in disk-formatting and
producing system disks).

'O ' (=ORGANIZE DISK)
Reorganize disk contents; pack two disks’ worth
of material to one disk, giving more memory
space (possible only with two drives).

'P ' (=PUT MEMORY AS FILE TO DISK)
Store any memory range to diskette as a file.

'Q ' (=QUIT)
Return to Main Menu.

'R ' (=RENAME FILE)
Change the name of a file.

' S ' (=STORE BYTE INTO MEMORY)
Place a value into any memory cell in the
computer (similar to POKE).

'T ' (=TRANSFER MEMORY-PAGES)
Transfer any one of 256 bytes to another area in
memory.

16

ABACUS Software SUPER Pascal Development System

'U ' (=UNLOCK FILE)
Unlock file protection.

'V ' (=VIEW MEMORY)
List any memory range in hexadecimal OR
ASCII (memory dump).

'W' (=WRITE DIRECTORY)
Output all additional information in the disk
directory.

'X ' (=XCLUDE BLOCK)
Exclude a block on diskette from further use.

'Y ' (=FILE DUMP)
List file on diskette in hex or ASCII.

'Z ' (^RELEASE BLOCK (SET ZERO))
Release used or kept block to diskette for later
reference.

1.4 SYSGEN - SETTING UP YOUR SYSTEM

As already mentioned, SUPER Pascal supports the use of two floppy disk
drives. However, the limitations of using only one drive are so minimal that
you could easily get along with one drive (only a few of Utility Menu
commands require two drives -- ’D’ and ’O’).

We’d now like to offer a few words of advice on the use of SUPER Pascal.

First, please keep in mind that copying the original disk for your own
personal use is possible - but the Compiler and Assembler on that backup
won’t run properly. All the other programs should run just fine, though.

The segmenting by the compiler (overlay-technique) requires the original
diskette to be in drive 0. Similarly, the assembler looks for the source file in
drive 0. Unfortunately, if you’re using only one disk drive, the source code

17

ABACUS Software SUPER Pascal Development System

produced is saved on the original disk. It is best to use the system diskette
only for compiling and assembling.

1.4.1 MAIN DISKETTES

Let's have a look at the procedures for formatting a Super Pascal disk:

Several basic disks can be created using SYSGEN, called using the ’R’
command from the main menu. The program displays a header, and asks in
which drive the new disk lies:

* PASCAL-SYS.DISK . GENERATOR *
★***★**★★★★* yg 5 .3 ***********★*

'DRIVE(MAP) = 0 '

The default drive is 0. Next, you’ll be asked for the disk title - supply a
name for the disk. Next comes the message:

INSERT DISK INTO DRIVE x
. . .P R E S S : "RETURN" IF DONE!

Just to make sure, the system will ask

SURE TO REWRITE THE DISK ? Y/N

since generating a diskette will destroy any old material previously on the
disk.

If all is well, the program will format the diskette, put in a directory under
the given name, and put a LOADDAT file onto the diskette.

WARNING!!!

A diskette formatted by SYSGEN is readable ONLY by Super Pascal - you
can’t use this disk in BASIC, unless you format it normally. With a
SYSGEN disk, it is vital that LOADDAT — which contains the Pascal
operating system -- be on the disk.

18

ABACUS Software SUPER Pascal Development System

From the file UTILITY menu you can clear a Pascal directory using ’N \
duplicate a disk with ’D’, and reorganize data with ’O’.

If a read/write error occurs during formatting, you’ll see the following error
message:

FORMATTING OR FLOPPY ERROR!
...EXECUTION NOT SUCCESSFUL!

REPEAT WITH ANOTHER DISK ? N/Y

Try again; or, if you tell the system "n", it will go back to the Main Menu.

1.4.2 WORK DISKETTES

Now, using the file UTILITY program and the COPY command (’C’>, you
can make work disks of your choice, e.g.:

An Editor Disk would be make up of LOADDAT and C EDITOR (_
represents the back arrow key). You could use such a disk for developing,
editing and storing Pascal or assembly language source programs.

A Utility Disk would contain LOADDAT, C_UTILIT, C PMDUMP and
SYSGEN (more on this in Section 4.6). This is a good choice for some
quick system work.

A Program Disk containing LOADDAT and the compiled Pascal programs
and/or assembled machine-code programs of your choice. This would
essentially be a user program disk, which would run on any C-64 without the
help of the original diskette.

1.4.3 COMPILER DISKETTES

Once you’ve copied the different programs off of the original diskette (with
the exceptions of the Compiler and Assembler, which are copy-protected),
and put them into work diskettes to suit your own needs, you may want to

19

ABACUS Software SUPER Pascal Development System

delete those files from the original diskette (K command in Utility Menu).
After doing so, you’ll be left with LOADDAT, CCPLR (Compiler) and
CASMBLR (Assembler), as well as 25 blocks (= 100 kilobytes) available
for assembling and compiling larger programs. When you are ready to
compile you copy the source program from the work diskette (if you haven’t
a second disk drive) to the compiler diskette for writing and reading program
code. We’re following one of the oldest rules in computing here: Make
backups whenever possible, and use the original only when necessary.

NOTE:

During compiling and/or assembling, the respective program will put a
temporary file (or set of files) on diskette, which can be found by the source
program. At least 3 blocks must be free on the diskette if you are running
only one disk drive. The first temporary file (CODDAT) becomes the
necessary program code after compiling/assembling; CODDAT is deleted
after the compilation/assembly. The temporary files can be accessed ONLY
if a break or error occurs during the compiling or assembly process.

We realize that, at first glance, the material given so far can look pretty
intimidating to the beginner. Rest assured that, like BASIC, the more you
work with this language, the more experienced you’ll become in controlling
its inner workings. Good luck with SUPER PASCAL!

20

ABACUS Software SUPER Pascal Development System

2.0 MAIN MENU

The Main Menu is the outer-most command set of SUPER Pascal; it gives
you access to the primary system programs, such as the Assembler,
Compiler, Editor, etc., or you can use it to run your own programs. After
user-written programs run, an "OK" message appears, and you are returned
to the Main Menu. The cursor is displayed in the Main Menu as a ’@’ sign.

This menu also gives you the ability to load specific memory registers from
disk or to save any memory range to disk.

The following is displayed when in the Main Menu:

* C=64 PASCAL-SYSTEM 5 .3 *

COMMANDS = . . .
A(SSEMBLER) H(ELP) R(UNPRGM)
C(OMPILER) J(UMP) U (TILITY)
E(DITOR) M(AP/DRIVE) W(RITESRCE)
G(ETRAM) P(UTRAM)

These are the direct commands mentioned earlier in this manual, which we
will now cover in detail. Remember that all commands and responses to
input must be followed by a <RETURN> (see 1.1).

2.1 MAIN MENU COMMANDS

2.1.1 A (= ASSEMBLER)

This command calls the onboard 6510 assembler, which allows you to
convert 6510 assembly language into 6510 machine code. The assembler
looks for an assembler source-program file on diskette, and will ask for input
concerning this file:

FILE-TITLE = ?
DRIVE(MAP) = X

21

ABACUS Software SUPER Pascal Development System

The default value of X is the number of the last disk drive used, so a
<RETURN> here will usually suffice.

You could use an asterisk (*) instead of an actual file-name; this instructs the
assembler to assemble the first textfile found. The assembler next offers a
verification of filename and corresponding drive number:

CONFIRM ”FILENAME,DRIVE_NR” ? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is
correct the assembler will load and run. This process begins with the
loading of the file LO ADD AT; both LOADDAT and the assembler program
(C_ASMBLR) MUST be in drive 0. If the given name of the textfile isn’t
found, the assembler generates an error message, and returns you to the
Main Menu. If the given file cannot be handled as a textfile, an error
message will appear, and you return to the Main Menu.

The individual commands and operation of the assembler are handled in
Chapter 5.

2.1.2 C (= COMPILER)

This command puts you in the compiler section, which allows you to create
Pascal programs. One very important feature to this compiler is the fact that
it accepts mixtures of 6510 assembly language and Pascal. When you press
’C’ in the Main Menu, you will get prompts similar to those found in the
assembler:

FILE-TITLE = ?
DRIVE(MAP) = X

The default value of X is the number of the last disk drive used, so a
<RETURN> will usually suffice.

You could use an asterisk (*) instead of an actual filename; this instructs the
compiler to assemble the first textfile found. The compiler next offers a
verification of filename and corresponding drive number:

22

ABACUS Software SUPER Pascal Development System

CONFIRM ”FILENAME,DRIVE__NRM? N/Y

Incorrect input of any kind will return you to the Main Menu. If all input is
correct the compiler will load and run. This process begins with the loading
of the file LOADDAT; both LOADDAT and the compiler program
(C CPLR) MUST be in drive 0. If the given name of the textfile isn’t
found, the compiler generates an error message, and returns you to the Main
Menu. If the given file cannot be handled as a textfile, an error message will
appear, and you return to the Main Menu.

The program operation and individual commands of the compiler can be
found in Chapter 4.

2.13 E (= EDITOR)

This command loads and runs LOADDAT, then the text-editor (the file
C EDITOR) from drive 0.

Assembler and Pascal source-programs can be modified using the editor,
then saved to diskette in Pascal DOS. Chapter 3 contains the individual
editor commands.

2.1.4 G (= GET FILE FROM DISK TO MEMORY)

This command loads any file into memory from diskette; this is especially
useful for temporarily storing information, as well as specifically loading
programs. The ’G’ command will ask for input on the following parameters:

START-ADR. = ?

Input the starting address of the file to be loaded. As already mentioned in
1.1, the address can be input either in decimal or hexadecimal.

FILE-TITLE = ?

Input the name of the desired file.

23

ABACUS Software SUPER Pascal Development System

DRIVE(MAP) = X

Give the number of the drive containing the file. The default value for X
will be the number of the last drive used, so you could just press
<RETURN>, unless the file is in the "other” drive.

If all input is correct, the routine will load the file from diskette. The load
routine is part of the system diskette program LOADDAT, which must be
kept in drive 0. If this is not the case, or if the file is not found, a
corresponding error message will be given, and program control will return
to the Main Menu.

NOTE:

The ’G’ command doesn’t check to see if there is enough memory to hold
the file being loaded, nor does it see if the memory address given matches
the file’s starting address. The file will be loaded at the stated starting
address, and will end at the EOF (end-of-file) marker supplied on the file.
The ’G’ command can utilize the memory space from $0800 to $BBFF.
This can be extended to include screen memory ($0400 - $07FF).

After loading, the end address (END ADDRESS + 1) is displayed; and
program control returns to the Main Menu.

2.1.5 H (= HELP)

This command calls the complete command list, just to remind you what’s
available.

24

ABACUS Software SUPER Pascal Development System

2.1.6 J (= JUMP)

This command lets you jump to any machine-language or Pascal routine in
memory:

START-ADR. = ?

Input starting address of the routine.

NOTE:

If you give the starting address of an incomplete, or non-debugged program,
you may lose control of the system.

Memory from $0800 to $BBFF is at your disposal for programs. When
working with a machine-language program, you could insert RTS, which
will return you to the Main Menu, as long as locations $0028-$004F, $0340-
$0379 and $BC00-$F2FF are unchanged. Another method would be to put
in the m/1 command JMP $C200, which also returns you to the Main.

2.1.7 M (= MAP/DRIVE)

The ’M’ command displays the contents of a disk (the directory, or MAP)
onscreen:

DRIVE(MAP)= X

Response to this prompt will display the directory in the drive number given
(default value of X is the drive number last used, so a <RETURN> will do in
most cases).

The directory output is accomplished with the help of a routine in
LOADDAT, so it is vital that LOADDAT be in drive 0 when the ’M’
command is used.

A reminder: The directory in Pascal DOS is designed quite differently from
that of "normal" Commodore DOS 2.6; in fact, SUPER Pascal cannot read a

25

ABACUS Software SUPER Pascal Development System

directory made under the standard operating system, nor can BASIC read a
Pascal disk. With the exception of 22 blocks (with a standard block-size of
256 bytes each), the rest of the system disk is under Pascal DOS.

The directory will tell you the filenames and the amount of memory left on
the diskette. Remember that a block in Pascal DOS is equal to 4k (4096
bytes), as opposed to the 256 bytes per block in DOS 2.6.

The directory of a system disk looks something like this:

MAP OF DISK ”PASCAL” :
LOADDAT SYSGEN C_EDITOR CJJTILITY
C_CPLR C_ASMBLR C_PMDUMP
DISC 0 = 18 / /
BLOCKS FREE !

Locked (protected) files appear with names in reverse video. For more
information on locking and unlocking files, please see the chapter on
utilities.

More detailed information concerning Pascal DOS and new disk commands
can be found in Chapters 6 (Utility) and 7 (System- Specific Information).

2.1.8 P (= PUT MEMORY AS FILE TO DISK)

This command is the opposite of ’G’ - it saves any portion of memory to
diskette as a data file. It will allow you to generate any specific information
(data, program, etc.) on a file presently in memory, and put the information
into the directory. The following parameters must be taken care of:

START-ADR. = ?

Input the address at which the information to be saved begins (as before, in
either decimal or hexadecimal notation).

26

ABACUS Software SUPER Pascal Development System

END-ADR.+1 = ?

Input the number immediately following the end address of the register (e.g.,
if the material stops at $0A00, input $0A01).

FILE-TITLE = ?

Type in the name as you wish to have it appear on the directory, bearing in
mind these rules:

* Identifiers have up to eight characters.

* Identifiers must begin with an upper-case character.

* Remaining characters in an identifier must be upper-case
characters, numbers and

DRIVE(MAP) = X

Give the drive number, or press <RETURN> for the default value.

After all parameters are in, on condition that no errors have occurred, the
save process calls LOADDAT, and stores the file on diskette. As before,
LOADDAT must be in system drive 0, or the routine will not work.

NOTE:

If there is a file of the same name already on the target disk, this older file
will be scratched and replaced by the file being saved; in short, youTl lose
the old file. There is an exception to this - if the older file is locked
(protected), you’ll get the error message "ILL.FILE OPR. ERROR!".

If there isn’t enough space on the disk, or if the disk has a write-protect tab, a
respective error message will be displayed, and the ’P’ command breaks off.

During a save, the memory configuration shifts: $0000-$CFFF is RAM;
$D000-$DFFF is for I/O; and $E000-$FFFF contains the ROM (Kemal).

Barring errors, the program returns to the Main Menu.

27

ABACUS Software SUPER Pascal Development System

2.1.9 R (= RUN PROGRAM)

The ’R’ command gives the user the ability to call and run any compiled
Pascal program on diskette. The command automatically loads the program
into memory, and starts it, after filling in these parameters:

FILE-TITLE = ?

Input the filename.

DRIVE(MAP) = X

Give the corresponding drive number (or <RETURN> for default). After
correct input, the program is loaded with the help of LOADDAT (read from
drive 0); if LOADD AT cannot be found, an error message is displayed, and
the ’R’ command is ignored.

Here are two simple methods for calling programs:

a) After compiling a program, respond to the filename prompt with

b) Call a program in ’R’ mode using

These cases assume that the system will immediately be able to find the
program on disk.

There are times when runtime-errors will happen (i.e., problems during a
program run); when this happens, the program returns you to the Main
Menu, and gives you the error message and address of the error, thusly:

. . . ERROR IN $ ____

Here is a short list of runtime-errors:

OUT OF RNG. ERROR! number out of legal range

NOT EXQ. ERROR! program code cannot be executed

28

ABACUS Software SUPER Pascal Development System

NUM.OV. ERROR1 numerical overflow beyond a predefined
integer range

B .S U B S . ERROR bad subscript (array index)

IL.QUANT. ERROR! illegal quantity

STK.OV. ERROR! overflow of stack (variables)

ZERO-DIV. ERROR! division by zero

IL .D V C . ERROR! illegal device number

FLOPPY ERROR! error in data transfer via disk drive

NOT OPEN ERROR! file not open

NOT CLO. ERROR! RESET/REWRITE attempted on an open
file

BUF.OV. ERROR! attempt to use more than three file buffers

D IR .O V . ERROR! not enough directory space

NOT FND. ERROR! file not found

DSC.OV. ERROR! not enough memory on diskette

DSC.MISM. ERROR! illegal/ non-matching diskette

IL . FILE OPR. ERROR! illegal file operation

AFTER EOF ERROR! attempt to read file after EOF

IEEE-ERROR! data transfer error in IEEE-bus

A successful program run will end with the message "OK" displayed.

29

ABACUS Software SUPER Pascal Development System

2.1.10 U (= UTILITY)

This command loads and starts the utility section of the system diskette, first
loading LOADDAT (in drive 0) and CUTILITY.

The utility program permits a simple file-management system. However,
you also get access to a set of monitor functions in this menu. In addition,
’U* mode lets you load and run programs without having to resort to
LOADDAT, making the system disk unnecessary once the Utility Menu is
loaded!

The idiosyncrasies of this menu are covered in Chapter 6.

2.1.11 W (=WRITE SOURCE)

’W* gives you a hardcopy (printout) of a source program. Essentially, this
command will let you print out any text file, with line numbers to help you
in debugging. These line numbers are NOT part of the program itself - they
are there as an aid to the user.

You have the option of either printing the program on a continuous-feed
sheet (no pagination,etc.), or printing it out in a readable format, with page
headers.
Once you choose ’W’, you’ll have to answer a few prompts:

FILE-TITLE = ?

Input filename of the text to be printed.

DRIVE(MAP) = X

Input drive number, or press <RETURN> for default.

After input, LOADDAT is loaded and run (did you remember to leave it in
drive 0?). If the file isn’t found, or if it isn’t a textfile after all, the command
will break off, and display an error message.

30

ABACUS Software SUPER Pascal Development System

Assuming the WRITE routine hasn’t hit any problems, a new set of
parameters are displayed:

PRT—DEVICE = 4 , 0

If necessary, you can change the primary (default 4) and secondary (default
0) addresses to suit your own printer.

LINES/PAGE = 72

This is for page formatting ~ the number 72 represents the total number of
lines per page.

Once input is completed, the printing begins immediately; you may stop the
printout at ant time using RUN/STOP, which will send you back to the
Main Menu.

If you should have a different form of printer (different from a serial-port
printer), you can change the primary address (4 = printer in serial port/ 5 =
user port). Both device addresses reside in a subroutine at SCA03.
Changing the device address can be done at $0373 (change to either 4 or 5).

2.2 EXIT TO BASIC

SUPER Pascal will return to BASIC when you press the RUN/STOP and
RESTORE keys, which executes a RESET routine and does a BASIC cold-
start. As long as $C200-$FFFF remains unchanged, you can get from
BASIC back into SUPER Pascal by typing SYS 49664, which puts you in
the Main Menu.

31

ABACUS Software SUPER Pascal Development System

3.0 TEXT EDITOR

The editor is started from the Main Menu by pressing ’E’. If you make a
diskette for editing, be sure to include LOADDAT - again, LOADDAT is a
necessity for booting this section -- in addition to the editor itself
(CEDITOR).

The following message is displayed in edit mode:

* C=64 SOURCE-EDITOR 5 .3 *

COMMANDS = .
A: (PPENDSRC)
C : (HANGE)
D(ELETE)
F :(IN D)
G :(E T SOURCE)
H(ELP)

L (1ST) Q(UIT)
M(AP/DRIVE) R (ENUMBER)
N(UMBERING) S (HIFTLINE)
O (UTPUTDVC) U : (PDATESRC)
P : (UTSOURCE) V(ACANCY)

No cursor is displayed in edit mode. In this mode, you can edit Pascal and
assembler programs as textfiles, and save them to disk for
compiling/assembling later; this mode supplies 43000 bytes of memory
available to the user. Note that auto-repeat is in effect for all keys.

Essentially, the editor lets you edit and augment programs, with line
numbers supplied during editing. Each line can be 80 characters long - just
as in BASIC - and you have full control of the normal screen editing keys
(cursor up/dn/lft/rt;insert/delete). Revised lines are "installed" by pressing
<RETURN> when you’re through editing. If you type in a line number and
<RETURN> only, and that number already exists, said line will be deleted.

Lines can be edited in any order, at any time; just move the cursor to the line
in question, correct, and press <RETURN>.

There is one small limitation in editing: It is impossible to start a text line
(i.e., immediately following a line number) with a number. If you do so,
you’ll get one of two messages:

33

ABACUS Software SUPER Pascal Development System

ILLEG. LINE#!
EXECUTION NOT SUCCESSFUL!

If a line is typed in without line number, the first character will be read as a
command, and again, you’ll probably get

EXECUTION NOT SUCCESSFUL!

since the system will be confused by the number.

If command input is wrong, two common error messages are

ILLEG. SYNTAX!
EXECUTION NOT SUCCESSFUL!

These are the remaining error messages:

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

(illegal device number)
ILLEG. TITLE!
EXECUTION NOT SUCCESSFUL!

(illegal filename)
TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

('*' used for unspecified filename)

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL!

(insufficient memory)
COMMAND IGNORED!

(use of undefined command abbreviation)

Other errors encountered will be I/O errors, which will display messages, but
will not dump you from the editor, or destroy your file.

34

ABACUS Software SUPER Pascal Development System

3.1 EDITOR COMMANDS

Some of these commands have a colon (:) appended to them; the reason for
this is a string or set of numbers are expected to follow. If mistakes are
made in giving input, you'll be greeted with a syntax error. Remember, too,
that all input must be concluded with <RETURN>.

3.1.1 A: (= APPEND FILE)

This command permits appending files on disk to files already in memory.
Its syntax sounds like this:

A:FILENAME

with FILENAME representing the file to be appended (added).This means
that the file is taken from the last disk drive used (which should be 0
immediately after the editor starts, but you can change that with the ’M’
command). The editor will ignore any illegal input, and respond with an
error message. When correct input has been supplied, the editor will get the
file from disk, and append the two programs.

To avoid any conflicts, the second file (the one to be appended) should be
shifted above the last address of the original file ('S').

If errors are encountered (file not found, file not a textfile, etc.), the
procedure is stopped, but the original file will remain behind. On the chance
that you run out of memory, the error message will read

RAM-OVERFLOW!
EXECUTION NOT SUCCESSFUL!

See 3.5 for help with memory trouble.

35

ABACUS Software SUPER Pascal Development System

3.1.2 C: (= CHANGE)

This command makes it possible to replace any text string with a new string.
Syntax:

C:STRING_OLD

refers to the old string. Alteration reads:

TO:STRING_NEW
A string can be defined as any character or set of characters found on the
keyboard, and printed onscreen. The editor uses all material following the
colons (:). Unused columns are filled in with blank spaces (NOTE: Do not
end strings with a space yourself).

If the change involves replacing a short string with a longer one, see that the
line doesn’t have more than 80 characters, or this error message will turn up:

LINELENGTH EXCEEDED IN LINE:
... CURRENT TEXT LINE ...

You will have to go in and change this line "by hand”; ’C:’ will not operate
with overstepped lines. Errors will not cause you to lose your text, though
(for additional help, see 3.5).

3.1.3 D (= DELETE)

This command deletes a line, or a number of lines, specified by the user.

D

alone will delete all text in the editor. You’ll get a warning -

SURE TO DELETE THE COMPLETE SOURCE? Y/N

36

ABACUS Software SUPER Pascal Development System

- to avoid deleting something you may not want dumped. Respond ’Y* if
you want to dispose of the text.

Dxxxx
deletes line #xxxx; this is equivalent to typing just the line number with no
text following.

D-xxxx

deletes from beginning-of-file to line #xxxx.

Dxxxx-

deletes from #xxxx to end-of-text.

Dxxxx-yyyy
deletes from xxxx to yyyy. If yyyy is a number less than xxxx, then no text
is scratched.

Input not following these patterns will be ignored, and treated as syntax
errors, excepting input using additional spaces between parameters.

3.1.4 F: (= FIND)

The ’F:’ command is handled much like the ’C:’ command; it allows you to
find any text string:

F:STRING
The editor will then list all lines containing this string. The listing can be
stopped and started by pressing the spacebar. The RUN/STOP key aborts
the listing, and halts the ’F:’ command.

37

ABACUS Software SUPER Pascal Development System

3.1.5 G: (= GET SOURCE FROM DISK)

This command will load a textfile from diskette for editing. The command
syntax is similar to ’A:’:

G:FILENAME

FILENAME, of course, refers to the file to be loaded from the last drive
used, or the drive stated by the ’M’ command.

An asterisk (*) can also be used for FILENAME, provided that has been
predefined (see also *P:’). If no such file has been defined, or if an error has
been caused from ’A:’ or ’U:’ commands, youTl see

TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

onscreen; if this, or some other error message comes up, the command given
by the user will be ignored.

Immediately after all proper input, the ’G:’ command will load the file
requested from diskette into memory. The system will arrange the file into
lines numbered in fivefold steps, beginning at 1000 (i.e.,
1000,1005,1010,1015,etc.). NOTE: The line numbers are there for your
convenience only-they are not in fact part of the file itself.

Errors, such as file not found, no textfile, read error, etc., will stop the
command, and send you back to the editor. Whatever text loaded into the
system before the error will be available to you.

If there isn’t enough memory to handle the file, this message appears:

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL!

However, you WILL be able to edit the text loaded up to the time of the
overflow.

38

ABACUS Software SUPER Pascal Development System

NOTE:

Any text in memory when the ’G:’ command is called will be lost and
overwritten by the new material. Be sure that this old material is saved
before calling a new file. If you choose not to save it, the ’G:’ command
will ask:

SURE NOT SAVING THE SOURCE? Y/N

giving you the option of saving or not.

3.1.6 H (= HELP)

’H’ prints the complete command set onscreen, to remind you of all sections
of the program (MAIN/EDITOR/UTILITY).

3.1.7 L (= LIST)

This command allows you to list all or part of the textfile for review or
debugging, using the "artificial line numbers". Here are the individual
versions of LIST:

L

lists entire text from beginning to end.

Lxxxx

lists line number xxxx.

L-xxxx
lists text from beginning up to line xxxx.

39

ABACUS Software SUPER Pascal Development System

Lxxxx-

lists lines xxxx to the end of the file.

Lxxxx-yyyy

lists from xxxx to yyyy. If yyyy is less than xxxx, then no lines will be
listed.

The listing can be slowed with the CTRL key, or stopped and started by the
spacebar. Press the RUN/STOP key to abort the listing altogether.

3.1.8 M (= MAP/DRIVE)

For details on the ’NT command, see Chapter 2.1.7 (’M’ in Main Menu).

Keep in mind that disk drive 0 will be the ”main drive”, i.e., that the system
will look there for LOADDAT and the respective system programs. The
’M’ command will let you change drive numbers for ’A:’, ’G :\ ’P:’, and
TJ:’.

3.1.9 N (= AUTO-NUMBERING)

This command automatically generates line numbers in steps of 5, allowing
you to add text. There are two methods of starting auto-number mode:

N
which begins with a number 5 higher than the last number of text. If no
previous text exists, then ’N’ will start at line 1000.

Nxxxx

begins at line xxxx (determined by the user) and goes in five-step increments
from there.

40

ABACUS Software SUPER Pascal Development System

Auto mode will switch off if:

you move to a different line for editing, and press <RETURN>.
you enter a <RETURN> after a line number.

During auto mode, no other editing commands can be accessed; in order to
return to editing, use one of the above methods.

3.1.10 O (= OUTPUT DEVICE)

This lets you select the output device to be used. When the editor starts, the
output device is obviously the screen, but using

Ox, y

will let you redefine this device number; x represents the primary address,
i.e., the device number proper, and y the secondary address. If no number is
given for y, the default value will be 0. Here are three ways to reset the
output to the screen:

0 0 ,0 (or) OO (or) O

Input of an illegal device number (other than 0 or 4-7) or secondary address
(other than 0-15) will result in

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

being displayed.

After redefining the output channel, the entire output -- which would
normally appear onscreen - will go to the specified device; this feature can
be very useful for the T :?, ’L’ and ’NT commands. On the other hand, your
best bet for a hardcopy of the text would be the ’W’ command in the Main
Menu, since that command gives you a neatly formatted printout of a file.

Output mode can be halted with the RUN/STOP key, or an error will change
the readout back to the screen.

41

ABACUS Software SUPER Pascal Development System

3.1.11 P (= PUT SOURCE TO DISK)

This takes a text file from the editor, and saves it to disk. This text file can
later be compiled or assembled:

P:FILENAME

FILENAME is, of course, the name under which you want the file saved to
disk. You may first want to check the directory or change drives (’M’
command).

Rather than use a filename, you could use the identifier in connection
with the ’G:’ command which also allows for predefined filenames. If such
a filename hasn’t been defined, or you have accidentally used ’A:’ or ’U:’,
the system will display

TITLE UNDEFINED!
EXECUTION NOT SUCCESSFUL!

The following prompt is displayed to insure against any other bad input:

CONFIRM "FILENAME,DRIVE_NR"? N/Y

Confirmation ("Y") begins the save procedure.

Any errors occurring during the save sequence (e.g., bad syntax, illegal
identifier) will display a corresponding error message, and bring the
command to a halt.

The syntax rules for Pascal identifiers must be followed (as we’ve
mentioned before at Chapter 2.1.8). Be sure to reread those rules, as it will
make your file storage easier.

NOTE:

It is very important that you give a textfile a different name from the
compiled ’'program" version, when saving to disk -- Pascal syntax suggests a
PROGRAM header (PROGRAM PROGRAM NAME; ...), to avoid any
overwriting problems.

42

ABACUS Software SUPER Pascal Development System

Here are the important identifiers:

S_NAME name of a Pascal source-file (source)
A_NAME name of an assembler source-file (asmblr)
C_NAME name for Pascal program code (code)
M_NAME name for 6510 object code (M-prgm)

The remaining files (data) have no specific identifiers.

If you give the file to be saved a name identical to a file already on disk, the
old file will be scratched, and replaced by the new. However, if the file on
disk is locked (protected), the save process will abort, and this message will
be displayed:

IL L .F IL E OPR.

Corresponding error messages will come up for any I/O errors. Once the ’P:’
section is done, the old text remains in the editor for your work.

3.1.12 Q (= QUIT)

This command leaves the editor and returns you to the Main Menu. If there
is text in the editor when the ’Q’ command is given, the system will ask
whether you want to save the file or not:

SURE NOT SAVING THE SOURCE? Y/N

Choosing ’ Y’ (yes) erases the file and returns you to the Main Menu.

3.1.13 R (=RENUMBER)

The ’R’ command comes in handy for renumbering programs (for, say,
renumbering a program after editing). The numbering begins at 1000, and
increases in 5-step increments.

43

ABACUS Software SUPER Pascal Development System

If the need arises for more than four lines* worth of space for additional text,
just insert a new line number, a (* comment *), <RETURN>, and run the ’R’
command; this will give you 9 lines to work with.

3.1.14 S (=SHIFT LINE)

Often the user will find it necessary to move an entire set of program text to
another place (e.g., when appending files); to accomplish this, we’ve
included the ’S’ command. The syntax must be typed in as follows:

S x x x x -y y y y : z z z z

The command moves lines xxxx through yyyy to the place defined by zzzz.
If the value for line yyyy is less then that of line xxxx, the command will be
ignored. On the other hand, if zzzz is defined within the ranges xxxx to
yyyy, the system will say

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

After moving text, it should be renumbered (see ’R’ command). Now you
can work with the newly-moved text.

3.1.15 U: (=UPDATE FILE)

To some extent, this is a companion to the ’A:’ command — it allows you to
append text to files already on disk. The opening syntax sounds like this:

U:FILENAME

~ FILENAME representing the file on disk (you may first want to verify
that filename with the ’M’ command). The system will ask for verification:

CONFIRM ”FILENAME,DRIVE_NR” ? N/Y

44

ABACUS Software SUPER Pascal Development System

A positive response ("Y") starts the save routine; any other character will
cancel the command.

If the file is locked (protected), the ’ll:’ command displays

IL L .F IL E OPR.

and halts the command; any I/O errors will also display messages and abort
the command, although the text will remain in the editor.

NOTE:

The ’U:’ command can, with repeated use, produce extremely long text files
-- longer, in fact, than the ’G:’ command will be able to handle. Keep this in
mind, and watch file size carefully.

3.1.16 Y (=VACANCY)

This command returns the amount of memory free in the editor at any time
(the empty editor has 43000 bytes free). Any time that memory runs out will
cause the following to be displayed, (see 3.5 for a solution).

RAM OVERFLOW!
EXECUTION NOT SUCCESSFUL

3.2 EDITING PASCAL PROGRAMS

This chapter will briefly cover writing Pascal programs in edit mode.

Source programs are input using the syntax described in the ”Pascal User
Manual and Report”. The reserved words (keywords and word symbols) and
identifiers use the ASCII characters from $41 to $5A (upper-case). These
will be printed differently on the C-64, as we mentioned at the beginning of
this manual.

45

ABACUS Software SUPER Pascal Development System

In the default mode of SUPER Pascal (lower/upper-case mode), these
characters appear as lower-case, rather than upper- case (to avoid confusion,
you can go back to upper- case/graphics mode by pressing C=/SHIFT).
Identifiers are distinguished by the "_M character (ASCII $5F, or "back-
arrow”).

The"{" a n d c h a r a c t e r s , unavailable on the C-64, are replaced in SUPER
Pascal by "(*" and *)". Any other characters, strings or CHAR-types are
those used on the 64.

There are a few restrictions imposed by the 64 in developing Pascal
programs, but these are so trivial, that they probably won’t make that much
difference in your programming:

Textlines (including line number) cannot exceed 80
characters (solution - divide text into smaller sections);

First character of text (immediately following the line
number) cannot be a number (solution - start text with a
space);

No blank text lines (answer - input as a blank comment (*
*));

Aside from that, the ’N’ command (see Chapter 3.1.9) helps in making room
for plenty of program development, where there seems to be no room.

Thanks to the large amount of text memory (43k), you can edit and write
Pascal programs that are downright huge. Large programs can be divided
into smaller sections, stored on disk in this form, and edited piece-by-piece.
A simple command at the end of each file tells the compiler that this is only
part of a program. We have managed to develop and effectively compile a
Pascal program of six separate sections of 40k each, and as far as we know,
the ability to divide programs is limitless, and can be used at your own
discretion (do keep in mind, though, that these sections must be absolutely
correct, syntactically speaking, before compiling).

The compiler command for continuing with another program section should
read:

46

ABACUS Software SUPER Pascal Development System

&CONTINUE(FILENAME, DRIVE_NR);
(or)

& C (FILENAME,DRIVE_);

This tells the compiler to get FILENAME for compiling, once it’s through
with the present file, compile FILENAME from disk.

A simpler method:

&CONTINUE(FILENAME);
(or)

&C(FILENAME);

can be used if the additional source sections can be found on the same
diskette as the first program section.

Next in the intermediate commands for the compiler is a second routine for
larger programs, which basically includes one much-used routine at a certain
spot in the program, rather than type in that routine time and again:

&INCLUDE(FILENAME,DRIVE_NR);
(or)

&I(FILENAME,DRIVE_NR);

This command interrupts the compiling of the present file, and pulls the
specified file (FILENAME) from disk, compiles that, and continues with the
old file. The file called by ’&I’ is now an integral part of the original
program. Needless to say, the text called by ’&I’ should be debugged and
ready to go before compiling, to avoid errors.

The short versions of this command are:

&INCLUDE(FILENAME);
(and)

&I(FILENAME);

which, as above, will work if the file to be INCLUDEd is in the same drive
as the original file.

47

ABACUS Software SUPER Pascal Development System

A program section can contain a number of ’&C’ and ’&I’ commands. A
program can work with up to 4 nested ’&I’ commands.

The INCLUDE command allows similar CONST-, VAR-, PROCEDURE-,
FUNCTION- or statement definitions to be used in different programs. Also,
individual routines can be used again and again, e.g., you could use the demo
program "Hilbert-Curve" in one of your high-resolution programs.

There’s a third aid in designing Pascal source-code; the command for
conditional compilation. That is, versions of a program which differ from
one another in a few respects can be attended to as one program. The
conditional option reads:

&TRUTH(BOOLEAN_CONST);
(or)

&T(BOOLEAN_CONST);

This command tells the compiler to translate this section of the program text
only if the Boolean constant is TRUE. If the constant is FALSE, the
compiler ignores the text and continues searching until the TRUE
conditional command is found. The compiler will compile the TRUE
version only.

It should be self-evident that control can be turned on with ’ & T (TRUE) ’ and
off again with ’&T (FALSE) ’.

The remaining compiler commands (’&P’ and ’&A’) don’t deal so much
with the source text as they do with information about the compiling process.
We will cover these in detail in the chapter on the compiler (Chapter 4).

3.3 EDITING ASSEMBLER PROGRAMS

This chapter will cover only the text editing assembler programs; particulars
of the assembler can be found in Chapter 5.

The assembler source follow tightly-assigned rules of syntax, in order for the
text to be properly converted to 6510 machine language. At the same time,
the source code must also be readable.

48

ABACUS Software SUPER Pascal Development System

These two items are often the reasons for an assembler source-code to have
specific columns drawn within a text line. They aren’t normal procedure;
those columns are for the user’s convenience. Though they aren’t necessary
to compiling, four-digit line numbers (1000-9999) are also included for user-
readability. These are the same numbers generated by ’R’ (see 3.1); starting
number 1000, steps of 5, up to 9999,43k of memory.

On to those column divisions: The assembler has certain ranges for specific
material within a line - a label field, an instruction- or operator-field, and an
operand- or address-field. The room left on a line can be used for comments
if desired.

Here’s a sample text line, with its individual features defined:

~ > text line : ZZZZ LLLLLLLL I I I OOOOOOOO...

POSITION 1-4 (ZZZZ=line number)

Field for 4-digit line number.

POSITION 5 (space)

Blank space, separating line number from label field.

POSITION 6-13 (LLLLLLLL=label field)

This is where labels are placed for recognition by the assembler program.
The labels are linked together into an array. All identifiers are allowed here
as labels. The structural rules for labels are:

8 significant characters (no more can be used per field), whereby

the first character must be a letter, and

the remainder can be letters, numbers or

Unused positions on a label field will be made up of spaces. If no label
exists in a line of text, then die entire field will be blank (spaces).

POSITION 14 (space)

49

ABACUS Software SUPER Pascal Development System

A space separating the label field from the instruction field.

POSITION 15-17 (I I ̂ instruction or operator field)

This field is where the 6510 mnemonic instructions proper are put. The
abbreviations here are identical to Commodores 6510 definitions. Here is a
list of these instructions:

ASL BPL CLV EOR LDX PLA SEC TAY
BCC BRK CMP INC LDY PLP SED TSX
BCS BVC CPX INX LSR ROL SEI TXA
BEQ BVS CPY INY NOP ROR STA TXS
BIT CLC DEC JMP ORA RTI STX TYA
BMI CLD DEX JSR PHA RTS STY
BNE CLI DEY LDA PLP SBC TAX

Along with these instructions, there are several pseudo- commands, which
behave like assembler commands:

BA .DL .EQ .OS
BY -DS .NE . . .
CT .EN .OC

These pseudo-operations begin with a V at position 15. Chapter 5 contains
detailed descriptions of these commands, but we shall touch on these
pseudo-operands here.

POSITION 18 (space)

A blank space, separating the instruction field from the operand field to
follow.

POSITION 19 ff. (OOOOOOOO... = operand field)

Column 19 is the starting place of the operand field, the length of which
varies. This field gives the operands for the operation, i.e., the parameters
for the machine language commands. Here is where the symbolic or
absolute addresses appear, containing an address to which the routine should
jump, or a particular item on which the command should operate.

50

ABACUS Software SUPER Pascal Development System

The length of the operand field depends on the type of addressing used in the
command, the length of the label used, and the address range. The
maximum length of an operand is limited to linelength (80 characters,
including line number).

If you should wish to add any commentary (similar to REMS in BASIC) that
the system will ignore, you can do so after the operand field by adding a
space and a semicolon (;). You can also insert comments after placing a
semicolon at position 6 or 15.

We have some other commands in the assembler which are quite different
from the norm (.CT,.NE, etc. ~ see earlier in this chapter); these affect the
design on source-code and assembler processes.

The first of these is a string command:

.CT FILENAME

This command (mnemonic for "ConTinue") instructs the assembler to
translate the source file on diskette listed in the operand field as
FILENAME. .CT allows you to work with assembler programs much larger
than the editor can handle; you can edit them in smaller sections, then
connect them into one unit with .CT.

Next we’ll discuss the conditional commands

.EQ OPERAND and .NE OPERAND

in detail. These commands, similar to the conditional compiler instructions
(see 3.2), give the assembler the ability to choose between different versions
of a source program, and choose the one conditionally proper for editing and
saving. The mnemonic for .EQ means "If operand equals 0"; i.e., the
command converts the program that follows ONLY if the given operand is
equal to zero. In other words, the program would be acceptable if the
constant label at the beginning of the program equals 0.

The pseudo-instruction .NE ("if operand is not equal to 0") works much the
same way, except the operand would have to be anything but 0.

A conditional program section must be ended by the pseudocode

51

ABACUS Software SUPER Pascal Development System

which sets the assembler back to normal.

The following pages contain a sample program showing all these features. It
demonstrates carriage return output for the C-64, PET and ABC:

1100 C64 .DL 1 ;set label C64 to 1
1105 PET .DL 0 ;set label PET to 0
1110 ABC .DL 0 ;set label ABC to 0

1200 CR .DL $0D ;set label CR to 13

1300 .NE C64 ;cond. assemb. if C64O0

1350 BSOUT .DL $F1CA /label BSOUT = address

1390 ;end of cond. assemb.-C64
1395 /

1400 •NE PET ;cond. assemb. if PET <>0
1405 / ignored if PET = 0!

1450 BSOUT .DL $FFD2 ;BSOUT = address

1490 ;end cond. assem. PET
1495 r

1500 •NE ABC ;cond. assem. if ABC <>0
1505 f ignored here if ABC=0!

1550 BSOUT .DL $FF00 ;set label BSOUT

52

ABACUS Software SUPER Pascal Development System

1590 /end cond. assemb. ABC

2000 OUTCR r CR-output program,
2005 LDA #CR /load CR-code and perform
2010 JSR BSOUT /output routine,
2015 r

2020 .NE ABC /cond. assemb. if ABC <>0
2025 / give LF code (linefeed) as well
2030 LDA #$0A /as CR (cancel by C64/PET)
2035 JSR BSOUT /ignored here if ABC
2040 r is equal to 0
2040 /end ABC cond. assembly

•
/program for other versions

3000 .CT DEMO_2 /assembly command, which
3005 r converts source file DEMO_2
3010 f if found on diskette.
3015 r

3.4 MIXED PROGRAMS

A major strength of the SUPER Pascal compiler is its ability to handle
mixed programs -- in other words, it isn’t limited to Pascal; it can also deal
with machine-language routines within a Pascal program. Assembler
source-code is called into a Pascal routine with PROCEDURE or
FUNCTION; it’s a simple matter to treat assembly routines as "normal"
Pascal functions or procedures. For more information on this matter, see
Chapter 4.1.2.3. For the moment, however, we’ll look at a few relevant
aspects.

53

ABACUS Software SUPER Pascal Development System

As we said above, machine language routines can be inserted in a Pascal
program with PROCEDURE or FUNCTION. In addition to standard
procedures of machine-code syntax (see 3.3 and 5), certain parameters must
be fitted to the routine to make it a Pascal-compatible procedure or function.
The assembler section can be cordoned off with BEGIN and END, while the
compiler command

ASSEMBLE;

calls the program section.

This command should be developed somewhat to define the exact name and
location of the file (if the disk has more than one assembler program):

ASSEMBLE(FILENAME,DRIVE_NR);

The system looks for the FILENAME on the drive selected. If the file is on
the "working disk”, all you need type in is

ASSEMBLE(FILENAME);

Pascal-level constants can be defined within the assembler routine.
Furthermore, the contents of the Pascal variable stack can be read within
such a m/1 routine with STKPOI.

The machine-code routine is concluded with the instruction RTS, which
sends us back to the Pascal routine currently called. The chapter concerning
the assembler (5) suggests that the pseudo-command . EN should be used
after RTS. NOTE: the next line of the source program should be in Pascal.
The following routine will give you an example of what has been discussed:
Essentially, this program is a Pascal routine containing a machine-language
subroutine to change the 64’s screen colors.

54

ABACUS Software SUPER Pascal Development System

1500 PROCEDURE SCREENCOLOR (COLOR:BYTE);
1505 U
1510 {Pascal routine with a call to change screen!
1515 {colors (parameters .in single-byte form)}
1520 {}
1525
1530 ASSEMBLE;
1535 z
1540 CPUPORT .DL $01
1545 SCREE_RG .DL $D020
1550 r

1555 SEI /broaden IRQ for
1560 LDA *CPUPORT /different memory
1565 ORA #3 ; configuration
1570 STA *CPUPORT ;(I/O enable)
1575 LDY #0 /set index register
1580 LDA (STKPOI)/Y /get parameters
1585 STA SCREE_RG /set screen color
1590 LDA *CPUPORT /reset memory
1595 AND #$FC /config.I/O disable
1600 STA *CPUPORT ;
1605 CLI ; IRQ permit
1610 INC *STKPOI /set-raise Pascal
1615 BNE EXIT /variable stack and
1620 INC *STKPOI+l /thus parameters
1625 EXIT RTS /return to Pascal
1630 r

1635 .EN /end Assem routine
1640 U
1645 {now back to the Pascal routine}
1650 U
2000 SCREENCOLOR(#0);
2005 {call to switch on screen color BLACK}

55

ABACUS Software SUPER Pascal Development System

3.5 INTERNAL ORGANIZATION OF THE EDITOR

We’ll spend this chapter looking at the design of the editor, and give a few
explanations on how to write textfiles in this mode. The chapter will
conclude with memory management during edit mode.

With the exception of one critical section in machine language, the editor
itself is a Pascal program (see the complete listing in the Appendix of this
manual). When editing, the program organization and variables carry
greater weight than individual textlines; here we can see a connection
between necessary memory usage and the program’s ability to find lines
quickly. The best type of program in Pascal is a solidly-written one.

Program design involves being able to edit, delete, move and augment lines
without any problems to the system. The contents of a given line is defined
in terms of STRING-length, which is, of course, limited to line-length (80
chars.). Aside from that, the Pascal-heap (which contains the dynamic
variables) can also be altered. However, removing text strings which are no
longer needed can pose some problems with pointer manipulation, thus
slowing the program down. In addition, leaving these text strings in can take
up a good deal of memory.

There is, however, a way out of our memory problems: Rather than keep the
text in memory, the editor will allow us to move memory around, and make
adjustments for text storage on disk to be called up later; as this space fills
up from loading (and as the strings become unnecessary), the garbage
collection is speeded up, and the heap pointers don’t get pushed about by the
collection. Another good reason for using temporary storage is that it
increases the amount of memory available for writing programs. The
compiler commands & CONTINUE, & INCLUDE, ASSEMBLE and the
assembler command . CT are used in this respect.

56

ABACUS Software SUPER Pascal Development System

3.6 TEXTFILE DESIGN

We’ll conclude Chapter 3 with some remarks about the structure of textfiles.
They contain the information which will eventually become programs
(sourcefiles) in SUPER Pascal.

SUPER Pascal textfiles are designated with the filetype declaration TEXT
per standard Pascal (i.e., the FILE OF CHAR according to the "Pascal User
Manual and Report"), with the filename and type followed by a carriage
return. (ASCII $0D). As mentioned before, source programs are saved
without line numbers or other characteristics of textfiles. An end-of- file
(EOF) character will not be produced, and is not an absolute requirement of
the files. An EOF can be set in the information section of the directory.

If have a source program that’s unfamiliar to you, and you’d like to have a
look at it (for editing, curiosity, whatever), it’s possible to write a file-
conversion program, to turn the file from SUPER Pascal back to a textfile.
We suggest that you have a good look at the "Pascal User Manual and
Report" for proper Pascal syntax and programming methods.

57

ABACUS Software SUPER Pascal Development System

4.0 PASCAL COMPILER

As mentioned previously, this manual is an instruction book for SUPER
Pascal, nothing more - it is not a Pascal tutor, nor is it intended to be. We
suggest that you check the chapter at the end of this book ("For Further
Reading”) for a list of beginning Pascal texts.

The basic concepts and definitions of Pascal were essentially invented by
Niklaus Wirth, a professor at the Technische Hochschule (technical college)
of Zurich, Switzerland). Professor Wirth literally ”wrote the book" on the
subject — the Pascal User Manual and Report, which is the acknowledged
text on the language. The language name, Pascal, is in honor of the French
mathematician Blaise Pascal(1623-1662), who built a working mechanical
calculator in the 17 th century.

4.1 SCOPE OF THE LANGUAGE

The SUPER Pascal compiler contains the complete set of commands and
"figures of speech" used in standard Pascal, plus a few commands that we
included to make C-64 programming easier. The chapters that follow give
definitions of these commands.

4.1.1 STANDARD LANGUAGE ELEMENTS

All Pascal programs are written in a block-oriented manner, with program
blocks divided into two sections - an arrangement section and a command
section. The arrangement section contains the definitions and declarations
necessary to the problems being handled, while the command section
contains the statements used for comparison, problem solving, etc.
Subprograms (procedures and functions) contained within such a main
program are written with the same block orientation. This top-down concept
is an important reason for the structural elegance of Pascal programs.
There's another, more functional reason for top-down programming: That
structure dictates the sequence in which the different language elements

59

ABACUS Software SUPER Pascal Development System

should appear. Now, on to the basics: The standard symbols and identifiers
are listed below followed by their definitions.

Every Pascal program begins with the program header, which gives filename
and individual parameters of a file. A header looks like this:

PROGRAM PROGRAM NAME (FILEPARAMETERLIST);

PROGRAM is the reserved word for the program header.

PROGRAM NAME represents the program identifier by which the program is
known; the SUPER Pascal compiler will save the program code to diskette
under this name.

NOTE:
The source program MUST be saved under a different name than the name
on the program header; otherwise, the sourcefile will be overwritten by
program code with the same name.

FILEPARAMETERLIST refers to the other identifiers within a file (placed
within parentheses, with each parameter separated by commas), which are
used in the program. Two examples of this are INPUT and OUTPUT. These
last two, needed for accessing external files, are relics from the early days of
the mainframe computer - used to call not only program code, but the
devices involved in retrieving data. On a home computer such as the 64, this
sort of thing is unnecessary for file retrieval, since we have immediate access
to disk. So, INPUT and OUTPUT for us stands for the keyboard and screen
respectively. You can use the parameter list - but you don’t absolutely
HAVE to; the program header can be abbreviated:

PROGRAM PROGRAM NAME;

which makes life much simpler.

The next must be included in the course of the arrangement section - the
label declaration:

LABEL LABELLIST;

LABEL is the reserved word for label declaration.

60

ABACUS Software SUPER Pascal Development System

LABELLIST stands for the label number(s) (separated by comma(s)). The
label number should be used in connection with the GOTO command; the
number can be any whole number between 0 and 32767 (maxint).

The section following the label declaration is the constant arrangement:

CONST CONSTANTLIST;

CONST is the reserved word for constant arrangement.

CONSTANTLIST refers to a set of constant definitions (separated by
semicolons (;)) required in the program - these definitions consist of the
definition, followed by an equal sign (=), followed by the value of the
definition. It is permissible in SUPER Pascal to arrange defined values for
simple calculations, or for comparisons between constants. Here are some
possibilities, encompassed in one example:

CONST VALUE = 3; NUMBER = 0;
ENDVALUE =VALUE * $FF +5;RETURN= CHR($0D);
ASCII = ORD(X) ; LESS = PRED(MAX);

The full scope of these comparisons are described in 4.1.2.1 under language
extensions.

The constants

FALSE (ordinal value 0),

TRUE (ordinal value 1),

and
MAXINT (ordinal value 32767)

are predetermined values.

There are two more constants, which aren’t used in constant declarations per
se, but are handled within a program as if they are constants:

61

ABACUS Software SUPER Pascal Development System

NIL (as pointer constant for zero)

and

[] as constant for a blank number.

The declarations end with the type declaration:

TYPE TYPELIST;

TYPE is the reserved word for the type arrangement.

TYPELIST stands for the sequence of type definitions (each separated by
semicolons (;)). The basic type definitions are set out thoroughly in the
Pascal User Manual and Report. It is possible to set subtypes in conjunction
with constants:

TYPE INDEX
COMMAND
ARRAY
DAY
WORKDAYS

0..PRED(MAXVALUE);
ARRAY [CHR(0)..PRED(' ')] OF CHAR;
ARRAY [1..10*10] OF INTEGER;
(SU,MO,TU, WE fTH,FR,SA) ;
SUCC(SU)..PRED(SA);

User-defined scalar types (such as above) can go as high as 256 values.

Predetermined types:

BOOLEAN = (FALSE, TRUE);

CHAR = (CHR(O) . . CHR($ FF)) ;

INTEGER = -MAXINT..MAXINT;

and

REAL

In addition to these, the following list contains reserved words usable for
structure commands AND variable types:

62

ABACUS Software SUPER Pascal Development System

ARRAY

Arrays can be defined without limit as

ARRAY [DIM1,DIM2...] OF ELEMENT;

ARRAY [DIM1][DIM2]... OF ELEMENT;
or

ARRAY [DIM1] OF ARRAY [DIM2] ... OF ELEMENT;

- take your choice.

RECORD

Fixed or variable records can be defined; variable records can be set up
within a CASE-list; the component variables (tagfield) will only be allowed
with a specific array definition in a memory location; the component
variable can be used with just a type name, so the array isn’t an important
part of the record.

SET

Quantities of all scalar types (REAL) are permitted; a SET can contain a
maximum of 256; the range must not go beyond 0..255.

FILE

FILE is not an element of a structured type itself, i.e., it doesn’t fit in as an
element of an array, record, pointer or file. A FILE can be no more than
512 bytes (size of the file buffer).

A (POINTER)

The definition of pointer types is used in connection with the design of list
and branch structures (progression and recursion):

63

ABACUS Software SUPER Pascal Development System

BRANCH = MARK;
JOINT = RECORD

ENTRY:ARRAY [0 . . 7] OF CHAR;
LBRANCH,
RBRANCH :BRANCH

END;

These structured types are predetermined according to the Pascal User
Manual and Report:

ALFA = ARRAY [0 . . 7] OF CHAR;

and

TEXT = FILE OF CHAR;.

Next section deals with variable declarations:

VAR VARIABLELIST;

VAR is the reserved word for variable declaration.

VARIABLELIST states any set o f variable groups, each group separated by
a semicolon (;). A variable group consists of a series of variable identifiers
(separated by commas (,)and ended by a colon (:)),for example:

VAR FLAG,SWITCH
CH
VALUE, NUMBER, SUMQ
TITLE,FILENAME
ARRAY
HEAP

BOOLEAN;
CHAR;
INTEGER;
ALFA;
ARRAY [0 . . 9] OF INTEGER;
AINTEGER;

64

ABACUS Software SUPER Pascal Development System

The variables

INPUT

and

OUTPUT

are predefined (under type TEXT).

In connection with these variable types, here are the memory requirements
for each type:

BOOLEAN, CHAR and user-specific variables - 1 byte

INTEGER- and pointer-variables - 2 bytes

REAL-variables - 6 bytes

SET-variables - 32 bytes

The variable arrangement set ends with the declaration of procedure and
function headers:

PROCEDURE PROCEDURENAME (PARAMETERLIST);

and

FUNCTION FUNCTIONNAME (PARAMETERLIST):TYPENAME;

PROCEDURE is the reserved word for procedure assignment.

FUNCTION assigns function (reserved word).

TYPENAME defines the function return value, i.e. the type of function called.
SUPER Pascal allows all types except FILE for this value.

PARAMETERLIST defines the parameters for the given function/procedure.
Syntax follows the "Pascal User Manual and Report". SUPER Pascal
permits all sorts of parameters:

65

ABACUS Software SUPER Pascal Development System

parameter transfer by number,

” " by name
and

procedure and function transfer by name.
Two examples:

FUNCTION FILEHANDLING(ELMNT:INTEGER;VAR SEQUrTEXT;
PROCEDURE ERROR): BOOLEAN;

PROCEDURE TEST(VAL1, VAL2: INTEGER;VAR MESG:ALFA;
FUNCTION CHECK:BOOLEAN);

These type definitions must be determined and set up before this routine,
either as computer default (predefined by system) or by the user.

The assignment set is done: Now we go on to the command set. This section
contains the program activity proper; the entire command section is defined
(or bordered, if you prefer) by the reserved words

BEGIN

and

END

which give the start and end of the program. These two words are set off as
individual statements (nothing else on that line).

The individual statements from standard Pascal are given here, but you'll
have to check a Pascal instruction book for proper syntax and use; any
special differences between standard and SUPER Pascal will be laid out
below:

66

ABACUS Software SUPER Pascal Development System

: = (assignment)

Assignment operator goes to the left - the expression (variable) goes to the
right of the equal sign.

IF . . . THEN . . . ELSE . . .

Checks conditions, and branches to whichever next statement applies --
much more practical than Commodore BASIC’s IF/THEN construct.

CASE . . . OF . . . END

Sets up a multiple-choice of sorts, going to END if all else fails. SUPER
Pascal lets you make an infinite number of CASES. If none of the choices
work out, the program will immediately go to the next statement.

WHILE . . . DO . . .

No difference between standard and SUPER Pascal.

REPEAT . . . UNTIL . . .

No difference between standard and SUPER Pascal.

FOR . . . TO/DOWNTO . . . DO

Loop number can be defined as any scalar variable (aside from REAL
variables).

WITH . . . DO . . . (r e c o r d a c c e s s)

This statement simplifies access to the array variables of a record. This can
save lots of memory in a source program by calling up a number of array
lists during runtime.

GOTO . . .

This statement makes the program jump to the label specified (similar to
BASIC’s GOTO). Pascal very seldom uses GOTO, mainly because earlier
generations of the language never even HAD such a command; but there are

67

ABACUS Software SUPER Pascal Development System

a few exceptional situations that might be made simpler by using this
command. For example, when errors crop up, it was possible to tell the
compiler to take an "easy out" using GOTO, to cease program flow and return
control to you. Most of the time, though, other Pascal commands (e.g.,
IF/THEN/ELSE) had to suffice.

SUPER Pascal has a fully implemented GOTO statement; that is, no
limitations. You can use the statement to call up a procedure, function, or
even another program without compunction. One warning: If GOing TO a
loop or set of loops, be sure that the loop (set) is properly structured - or the
system might get caught in an endless loop, which tends not to return
program control to you.

Standard procedures which are predefined in standard and SUPER Pascal
consist of:

DISPOSE

This procedure is used in standard Pascal for freeing up parts of memory by
changing the dynamic (pointer-) variables on the heap (memory heap for
dynamic variables). The area can next be cleared out with NEW (see
corresponding section).

The memory reserved for dynamic variables is quite different in a small
computer (such as a C-64) as opposed to a mainframe. Mainframes have
massive amounts of memory, and seldom need to do very much adjusting.
SUPER Pascal, like most other Pascal versions for home equipment, has a
DISPOSE command. There are, of course, other commands used to change
the heap pointers (MARK and RELEASE).

GET

GET sets the read pointer (which is set for an opened file by RESET) for a
file element.

Syntax: GET (FILEVARIABLE) ;

F I LEVARI ABLE stands for the identifier declared in the variable type
FILE. GET allows you to set the access pointer for the next character to be
read (see remarks under READ/READLN).

68

ABACUS Software SUPER Pascal Development System

NEW

NEW allocates and reserves a section of memory on the heap using a pointer
variable under Pascal control, i.e., the pointer containing the value for the
heap pointer is set to the next free space on the heap. The setting of the
heap pointer depends upon the size of the pointer variable.

Syntax: NEW (POINTERVARIABLE) ;

POINTERVARIABLE stands for the identifier declared under POINTER
(see arrangement section). This variable is accessed with
POINTERVARIABLEa.

NOTE:
Treat this command with care:

It can be adjusted to point to any memory location ~ careless adjustment
could be fatal to your variables, and even the program. Be sure you know
where you’re aiming it....

A pointer set to NIL obviously sets that value to 0, i.e., memory location
$0000.

PACK

This procedure packs spread-out structured variables together (saves
memory) in standard Pascal. SUPER Pascal already does this internally, so
this command isn’t available.

PUT

Sets write pointer in conjunction with REWRITE (analogous to GET).

Syntax: PUT (FILEVARIABLE) ;

F I LEVARI ABLE stands for the identifier declared in the arrangement
section as FILE>.

69

ABACUS Software SUPER Pascal Development System

READ

This procedure has a double purpose: First, it serves to allocate access to
existing file elements under one target variable; second, it sets the read
pointer to the next file element.

Syntax: READ (FILEVARIABLE, TARGETVARIABLELIST) ;
F I LEVARI ABLE stands for the identifier for accessing the existing file
variables. When handling a file as INPUT, this variable we needn’t be so
explicitly described. The syntax for the simple version is

READ(TARGETVARIABLELIST);
TARGETVARIABLELIST stands for a set of file elements (each separated
by commas), for a set of variables - these represent at least one identifier.
Obviously, the target variables must be of the same type as the file elements.
An exception to the rule applies to TEXT filetypes (thus, INPUT files as
well). The taiget variables for these files can be declared as CHAR,
INTEGER and REAL types. Target species INTEGER and REAL will
automatically convert ASCII representations of strings in the file to the
binary coding used within variables.

There is another point to consider about the above. When reading
INTEGER and REAL values from a TEXT file, a numeric string must be
ended with the proper syntax. This end character will not be read: Rather,
the read-access pointer will point to this character after the read operation.
This closing character must be recognized, or the next INTEGER or REAL
read operation will not take place. When READ encounters a numeric
variable, the access pointer will go to the start of the next number string.
Leading spaces are ignored when reading a REAL or INTEGER variable.

One item to be observed is the line delimiter used in TEXT filetypes (the
C/R, or carriage return: ASCII $0D, or 13 in decimal). When the file-access
pointer comes upon this character, the pointer is set to the function return
value of the function EOLN to TRUE. This return value is 0 on reading a
numeric variable; the read pointer then goes to the start of the next line.

The variable INPUT has a peculiar relationship to the TEXT type itself.
This INPUT has its own file buffer (not to be confused with the keyboard

70

ABACUS Software SUPER Pascal Development System

buffer, in which any key pressed is held temporarily, until the C-64
operating system gets around to working with it). Suppose we have an
empty input buffer; if we call up file INPUT, the C-64 system routine
GETLINE is called upon once this buffer is filled. GETLINE reads the
keyboard and puts the given characters onscreen. Program control remains
in this routine until the <RETURN> key is pressed (EOLN). The line of text
is taken into the input buffer after <RETURN>. Now the input buffer will be
provided with the first target variable from the READ call. The access
pointer sets itself for however many characters are in the buffer, as is
necessary for the provision of the target variables. A new READ command,
or arrangement for another target variable immediately puts the next
character into the input buffer. The procedure get (INPUT) works in
much the same way in resetting pointers by one character position.

The input buffer’s involvement in this reading process continues until the
access pointer reaches a carriage return, which is interpreted as a space (or
as a 0). The next GETLINE and READ will cause the input buffer to refill,
whereby the access pointer goes back to the beginning of die buffer.

One difference between READing a diskette file and the file INPUT is the
response to illegal characters used for numerical variables: Such characters
(or bad syntax) will give you:

I L . INPUT

Bad access to a diskette file will stop the program with a runtime error, while
bad INPUT will let you re-enter the input without program stoppage.

READLN

READLN will require some re-reading of READ. Here we have an additional
use for the access pointer. Once all target variables are fed in, READLN sets
the pointer to the next carriage return; i.e., the next read access can be from
a diskette file AND call INPUT and GETLINE. It’s possible to call up
READLN without a target variable list:

READLN(FILEVARIABLE);

or simpler still, for reading INPUT alone:

71

ABACUS Software SUPER Pascal Development System

READLN;

This procedure will set any file access pointer to the next carriage return.

Because READLN will only run properly if a c/r is read, the command is best
used with TEXT filetypes.

If a file access (regardless of being called with GET, READ or READLN) isn't
preceded by a RESET for opening said file, the runtime-error

NOT OPEN ERROR!
will appear, and the program will cease.

This last doesn't apply to file INPUT, which doesn't open files per se;
RESET (INPUT) has a special meaning, to be covered later.

RESET

RESET opens a file for reading purposes, i.e., the file access pointer will be
set for the first element of this file.

Syntax: RESET (FILEVARIABLE) ;
FI LEVARI ABLE represents the identifier for a FILE variable declared in
the assignment section of the program.
RESET utilized with INPUT deserves special mention: The standard
procedure RESET (INPUT) resets the the read pointer (in the input buffer)
back to the start-of-buffer, then allows the buffer to read any new file
INPUT. This, unlike READLN, makes it possible to provide correct input, if
the file was incorrect.

REWRITE

Analogous to RESET: REWRITE opens a file for writing, i.e.,the file access
pointer is set to the start of the new sector of said file.

Syntax: REWRITE (FILEVARIABLE) ;

72

ABACUS Software SUPER Pascal Development System

F I l e v a r i a b l e identifies the f i l e variable declared in the assignment
section.

NOTE:

A file already on diskette (i.e., bearing the same name) will be deleted by
r e w r it e , except when the file is locked (protected), in which case the
runtime-error message

IL .F IL E OPR. ERROR!

is displayed, and program run is stopped.

REWRITE (OUTPUT) isn’t needed by our system, so it has been left out.

We should supply some background information on the file procedures
RESET and REWRITE: When a diskette file is opened (regardless of
purpose [read or write]), the file- access is limited to the file buffer. This file
buffer is 1024 bytes in size (lk, if you prefer); RESET loads the first sector
(512 bytes) of the opened file into the buffer.

Now, a relatively simple access mechanism in the file access pointer can pull
type and variable declarations set up in the file elements. Once the access
pointer goes beyond the first sector, the first sector moves to the "bottom"
half of the buffer, and the new sector is loaded into the "upper" half. This
adds up to fast and efficient file access. When the access pointer gets to the
conclusion of the last file element (end-of-file, or EOF), die return value of
the standard function EOF is set to TRUE. If, by some chance, the read
access finishes reading the file without running into EOF, the runtime-
message

AFTER EOF ERROR!

is displayed, and the program stops.

The write access to a file is similar to reading a file. REWRITE sets the
access pointer to the beginning o f the extant file, reserving the file buffer.
w r it e s and PUTs utilize this "half-and-half' buffer usage (see the
previous paragraph).

73

ABACUS Software SUPER Pascal Development System

SUPER Pascal has a special command that must be used to end the write
process, and commit the remaining contents of the buffer to the diskette file.
This command is CLOSE, in a slightly different form from standard Pascal,
in that it closes the file opened with RESET or REWRITE, and clears the file
buffer for access to another file.

Now, regarding our fast file access system from a few paragraphs back:
SUPER Pascal has three such file buffers (each lk) set up. This means that
you can only access three files at one time, regardless of whether they are
being accessed for reading or writing. This may not seem like much, but
we've had no problems in terms of practical usage with SUPER Pascal. In
fact, you'll find that three lk buffers will be quite enough for handling the
most complicated file operations (reading sourcefiles, generating codefiles,
generating revised data, accessing sourcefiles temporarily for 2-pass
assembly, accessing variable data for a post-mortem-dump, etc.).

If you happen to try opening a fourth file buffer with RESET or REWRITE,
you'll get a

BUF.OV. ERROR! (buffer overflow)
and a stopped program.

One interesting feature of the file buffer system is the ability, when a RESET
and GET are called, to load any sector of a program-code file, and join it
with any callable external procedure or function. SUPER Pascal gives you a
number of direct commands to call up such routines ('M \ 'G ', 'P \ 'W');
these commands are contained in LOADDAT.

One thing not clearly discussed in the standard Pascal literature should be
mentioned here: Should a file be opened for reading with RESET, you can
switch from read access to write access at any time (i.e., regardless of
whether the pointer is at the beginning, middle, or end of the file). This is
simply a matter of using PUT instead of GET, and WRITE instead of READ.
So, it's an easy matter to add new data to any spot on the file ("UPDATE").
The new file length, and the EOF marker are adjusted accordingly with this
switch. Once you switch from READ to WRITE, though, switching back to
READ isn't possible; otherwise, the new data will be lost.

74

ABACUS Software SUPER Pascal Development System

If a file, opened with r e w r it e or r e s e t , has not been closed properly
(CLOSE), the program will halt, and

NOT CLO. ERROR!

will be displayed. As we mentioned before, this doesn’t apply to file
INPUT. Attempts to read or write to an unopened file (with RESET or
REWRITE) will cause the system to state:

NOT OPEN ERROR!

This also doesn’t apply to INPUT or OUTPUT.

WRITE

Like READ, WRITE has a double function: To arrange a new file element;
and to set the write pointer to the next position available for that file element.

Syntax: WRITE (FILEVARIABLE, SOURCELIST) ;

f il e v a r ia b l e refers to the identifier for accessing extant file-variables.
When file OUTPUT is being handled, this variable is unnecessary. The
”short” syntax for this occasion is:

WRITE(SOURCELIST);

SOURCELIST stands for at least one expression (more than one would have
each separated by commas) representing output of file elements. It’s
obvious that the source expression(s) must be of the same type as the file
elements. The file type TEXT (OUTPUT also fits in this class) is an
exception to the rule. Such source expressions as CHAR, BOOLEAN,
INTEGER and REAL can be listed in these files. These last three will be
automatically converted in the file from the binary system (used internally)
to ASCII. Integer or real output, as with boolean expressions, will be set out
in a specific format. Boolean sets will be printed without leading or ending
spaces.

OUTPUT is particularly helpful in making formatted screen or printed
output, when used with the write procedure. This array format is separated
from the source expression by a colon (:), thus:

75

ABACUS Software SUPER Pascal Development System

WRITE(FILEVARIABLE,SOURCEEXPRESSION:ARRAYFORMAT);

The file variable given must be a TEXT type. The source expressions will
now be put out in ARRAYFORMAT, right-justified. ARRAYFORMAT must be
an INTEGER type. The maximum allowable value for an ARRAYFORMAT
hinges on the usual 132 characters per printer-line; the output buffer is also
limited to 132 characters. If this number is surpassed (or if the value is less
than 0), the runtime error

IL.QUANT. ERROR! (illegal quantity)
is displayed, and the procedure stops.
There is a further adjustment that can be made for the formatted output of
real numbers:

WRITE (FI LEVARI ABLE, REALEXPRE S SION: ARRAYFORMAT : P LACE
FORMAT);
As above, the file-variable must be TEXT. ARRAYFORMAT is also covered
above. PLACEFORMAT - which must be INTEGER - the numbers are
formatted in fixed-point notation (i.e., decimal points are neatly lined up).
There is a limitation; the numbers are limited to 11 decimal places, and the
last place rounded off. This can be adjusted to anywhere between 0 and 31
decimal places. A larger value for PLACEFORMAT will give you an

IL.QUANT. ERROR!
In contrast to the array format, the place format will take negative values.
This means that the real number is given in floating-point notation, but a
negative sign is attached. The range exists between -1 and -11; any steps out
of range bring up

IL.QUANT. ERROR!
See the next section (WRITELN) for output options.

76

ABACUS Software SUPER Pascal Development System

WRITELN

WRITELN basically goes under the same rules as WRITE. However,
w r it e l n also seeks out the target file(s) and resets the write pointer at each
C/R, then after printing, looks for the next line.

Syntax: WRITELN (FILEVARIABLE) ;

"Short" syntax (for use with OUTPUT):

WRITELN;

The command produces a formatted sourcelist. WRITELN is used only with
TEXT files.

If attempts to access a file are made without a previous r e w r it e or
RESET, you’ll see

NOT OPEN ERROR!

and the program will halt

NOTE:

It is always possible to write to a file opened with r e s e t i.e., a file opened
for reading). Internal control can switch the pointer to the end of the file, so
that new data can be written in. If the file in question is locked, the data
stays untouched, and the runtime-error

IL .F IL E OPR. ERROR!

appears.

The functions defined by standard Pascal fall under three categories:

Type-conversion functions
Conditional functions
Mathematical functions

77

ABACUS Software SUPER Pascal Development System

The first of these, the type-conversion functions, serves to convert a quantity
of one type into a quantity of another type. This allows different types to be
compatible to one another. To this set belong:

CHR

This converts any scalar argument (REAL numbers) to CHAR.
Syntax:

CHR(EXPRESSION) (function type:CHAR)

EXPRESSION stands for any scalar quantity. For example, typing in

CHR (65) or CHR ($41)
gives the letter A and

CHR (13) or CHR ($0D)
gives a carriage return (C/R). Naturally, you are limited to the size of the
character set (0-255, or S00-SFF). Any value above or below yields

IL.QUANT. ERROR!
ORD

This function performs the opposite of CHR; from an integer to any scalar
argument (REAL).
Syntax:

ORD(EXPRESSION) (function type:INTEGER)

EXPRESSION stands for any quantity. The function call gives the
respective ordinal number; numbering begins with 0. CHAR-size determines
the consequent ASCII-code of the ordinal value.

78

ABACUS Software SUPER Pascal Development System

The second group of functions are those which read all conditions in the
system (I/O register, for example), and act on the truth of those conditions
(TRUE or FALSE). These functions are therefore BOOLEAN in nature.

EOF

Reads the file access (GET, READ or READLN) for end-of-file; case is
TRUE if reached, FALSE if not

Syntax:

EOF(FILEVARIABLE); (f u n c t i o n type:BOOLEAN)

EOF can also check on file INPUT:

EOF(INPUT)

or in short form (without the argument)

EOF

Since the C-64 views keyboard input in the same way as file input, the EOF
flag can be set to TRUE by pressing the RUN/STOP key.

EOLN

This function can detect whether the read pointer finds a carriage return in a
TEXT file; TRUE if so, FALSE if not.

Syntax:

EOLN(FILEVARIABLE) (f u n c t i o n t y p e : BOOLEAN)

This function is also useful for INPUT.

ODD

Gives information regarding the remainder of an integer divided by 2. If the
remainder is 1, the function is TRUE; otherwise, FALSE.

79

ABACUS Software SUPER Pascal Development System

Syntax:

ODD(EXPRESSION) (f u n c t i o n type:BOOLEAN)

The EXPRESSION used must be an INTEGER.

The third group of functions embrace the mathematical ("computing")
functions. Two common functions:

PRED

and

SUCC

which are used to determine the Predecessor and Successor to the
arguments).

Syntax:

PRED (EXPRESSION) (function type:EXPRESSION-TYPE)
SUCC (EXPRESSION) (function type:EXPRESSION-TYPE)

EXPRESSION must be defined as a REAL number. The return value of the
function will consistently be the same type as the argument (EXPRESSION).
PRED will be less than the defined value, while SUCC will be greater than
that value. This function should not be used with undefined values.

The remaining functions are arithmetical, and particularly useful for
scientific programs:

ABS (determines absolute value)
SQR (squares value)

Syntax:

ABS(EXPRESSION) (f u n c t i o n t y p e :EXPRESSION-TYPE)
SQR(EXPRESSION) (f u n c t i o n t y p e :EXPRESSION-TYPE)

Both these functions will work with INTEGERS or REAL numbers.

80

ABACUS Software SUPER Pascal Development System

ARCTAN (reverse o f TAN-function)

COS (COSINE-function)

EXP (exponent)

LN (logarithm)

SIN (SINE)

SQRT (square root)

t r u n c (whole numbers (left o f decimal pt.))

ROUND (round off to next whole number)

These functions all have same syntax and type:

funct (EXPRESSION) (function type:REAL)

EXPRESSION is the expression used for the function; this argument can be
either INTEGER or REAL. The function value, returned, however, will
consistently be REAL, so SUPER Pascal has more call for the functions
TRUNC and ROUND than you would in standard Pascal. These functions
give you integers. In order to maximize the use of TRUNC and ROUND (i.e.,
to avoid limiting these functions to -MAXINT to +MAXINT) these two
functions belong to the REAL types. Converting these numbers to integers
is possible with INT:

INT(TRUNC(EXP(1))) — gives the integer 2
INT(ROUND(EXP(1))) — gives the integer 3

If illegal arguments are given for the functions LN and SQRT (negative
numbers, 0 for LN), the program will stop and display the error message

IL.QUANT. ERROR!

81

ABACUS Software SUPER Pascal Development System

Those are the standard functions in Pascal. The next few paragraphs discuss
the combining operations which can go within the expressions. The reserved
words according to standard Pascal are:

AND an d OR

for logical boolean comparisons. The result is always a BOOLEAN
expression.

NOT

for logical negation. The result is likewise BOOLEAN.
IN

to test for quantity relationship. Result: BOOLEAN.
DIV

for whole-number division of integers. Result will be INTEGER.
MOD

for determining the remainder of integers. Result: INTEGER.
+ and

as leading characters, and for the addition and subtraction of integer and/or
real numbers. An integer results from an equation made up of integers;
otherwise, the result is real.

*

is used to multiply integer and/or real numbers. As above, an all-integer
equation yields an integer result; otherwise the result is a real number.

/

for dividing integer and/or real numbers. The quotient will always be a real
number.

82

ABACUS Software SUPER Pascal Development System

Pascal recognizes a number of comparative operations (see below). These
comparisons must be used in conjunction with like types of numbers, i.e., all
integers, all real, etc. The result of such expressions is BOOLEAN.

= Test for equality

<> Test for inequality

< Test for "less than”

<= Less than or equal to test amount

> Greater than test quantity

>= Greater than or equal to test quantity

Please check your Pascal User Manual and Report for standard usage of
these elements. Now, on to one command that has nothing to do with the
assignment set, or the command section: Rather, it deals greatly with
compiler control:

FORWARD

This directive allows you to define blocks within a program which the
compiler will treat as procedures or functions. Thus, these
procedures/functions which have been predefind can be called repeatedly:
This is useful for such things as recursion routines (see the Appendix for the
HILBERT curve sample program).

4.1.2 LANGUAGE EXTENSIONS

The language extensions in SUPER Pascal were required for two reasons:

First it’s a difficult task to put a Pascal implementation into a computer the
likes of the C-64; its memory capacity, the fact that it is an 8-bit machine (8
bits=l byte), and its input/output functions require some changes from any
mainframe version of Pascal.

83

ABACUS Software SUPER Pascal Development System

Second, a complete language and programming system had to be set up
within the 64 which would bypass the standard operating system, and cut
down the time factor.

4.1.2.1 ADDITIONAL ASSIGNMENTS, PROCEDURES AND
FUNCTIONS

As with the normal assignment section, the block-design sequence applies
here. The assignment set begins with the

PROGRAM HEADER ASSIGNMENT
and the

LABEL ASSIGNMENT.
Once again, as mentioned previously, these parameters can only be
contained in the list in the program header. There are really no extra
commands for these lists.
On the other hand, the

CONSTANT ASSIGNMENTS
have a few extra surprises:

P I as the real constant 3.1415926536E+00

STKPOI - the pointer for the Pascal variable stack.

STKPOI is the two-byte pointer for the lowermost memory cell for the stack
(top-of-stack). This pointer can call for parameters in the first line, or call
certain parameter values: These values are of the BYTE type, and are
characterized by the symbol

#

Let’s clarify this a bit — this constant can handle a single-byte value, and not
a 2-byte integer, e.g.:

ABACUS Software SUPER Pascal Development System

CYAN = #3; SPRITE^ = #$3C;

The other supplements in constant assignment allow the use of simple
constant expressions. The following are allowed:

D IV , MOD, SHL, SHR,
* + - r ~ r

PRED, SUCC, ORD, LOW

CHR

LBYT, HBYT

TYPE ASSIGNMENT

for integer constants and/or
their corresponding expressions

for all constants and/or
corresponding expressions

for integer and byte constants
and/or corresponding expressions

for integer constants and/or
corresponding expressions

There are two additional types:

BYTE = #0 ..#2 5 5;.

Defines the numerical contents of a one-byte-sized memory location. The
other predetermined type is

STRING

which allows you to predefine any sequence of characters of a length up to
to 132 characters (maximum print line in Super Pascal). A blank line is
permissible in the form ” . Characters for string constants are, of course,
treated as CHAR constants.

Let’s take a quick look at how to handle string lengths. The type STRING
is handled by the pointer like this:

RECORD LENGTH:BYTE; CHARACTER[1 ... LENGTH] OF CHAR
END;

85

ABACUS Software SUPER Pascal Development System

This means that every time a new string is read, placed or generated on the
heap (the memory heap for dynamic variables), more memory will be
provided. MARK and RELEASE are also commands that can be taken into
consideration when managing memory. This doesn’t apply, however, to
programs already containing string constants; they are automatically
provided for in the compiling process. Internally-defined record elements
are not accessible to the user.

Another intriguing point is the compatibility between a STRING and an

ARRAY[INDEX] OF CHAR.
This means that opposite assignments and comparisons are possible. It also
means that if a STRING quantity is longer than the defined ARRAY, the
string will be tailored accordingly; then again, if the string is shorter than the
chosen array, spaces will be inserted after the string to bring it to the same
size as the array. The heap changes with the combination of a CHAR array
with a string; the compiler, however, will only watch string length to avoid
overflow. One great advantage to STRING types is the possibility of
immediately reading these with READ or READLN (and with INPUT) from
files. Here’s an example:

CONST LINELNGTH = #80; {constant decl.}
VAR TITLE:ALFA; {variable decl.}

LINE :ARRAY[0. .PRED(LINELNGTH)] OF CHAR;
TEMP,
LINE : STRING;

BEGIN
READLN(LINE);
LINE :=LINE;
IFLINE[0] IN ['A'..'Z'] THEN
TEMP:=LINE;

{command section}
{read string input}
{provide an array}

TITLE:=TEMP
END;

{provide temp, string}
{provide an ALFA quantity}

86

ABACUS Software SUPER Pascal Development System

VARIABLE ASSIGNMENTS

MEM :ARRAY[$ 0 0 0 0 . .$FFFF] OF BYTE

RANDOM :REAL

MEM can access the entire memory of the C-64. That is, it can perform this
task if the elements of this array are defined as BYTE types. MEM will also
allow you to rearrange any memory cell (vague equivalent of "POKE") and
read these cell contents (similar to "PEEK"), e.g.:

MEM [$277] : =LOW (' A ') ; writes an "A" to the first memory
location in the keyboard buffer and

num ber : =mem [$c 6] ; transfers the number of the key
pressed to the byte-variable
NUMBER.

The variable RANDOM produces a random REAL number, which lies in the
range:

0<= RANDOM < 1 .

RANDOM is best used in programming that requires random numbers; be
forewarned, however, that the sequence o f random numbers given isn’t all
THAT random — a seed number is determined at startup, and the set o f
numbers depends upon that seed for its sequence.

COMMAND SET

The only modification to the command section is the CASE statement, with
an ELSE-branch. Syntax:

CASE . . . OF . . . ELSE . . . END

This means that if none of the criteria for the CASE statement are met, the
ELSE will be the next command executed. Here’s a sample program:

87

ABACUS Software SUPER Pascal Development System

CASE CHARACTER OF
' A ' : ONE;
9B ' : TWO;
'C ':B E G IN ONE;TWO END;
' D ' : THREE
ELSE BEGIN ONE; TWO;THREE END

END;

If none of the values contained in ’A’ .. ’D’ are encountered, CHARACTER
will go to the ELSE sequence: ’BEGIN ONE; TWO; THREE END\

In contrast, this case statement operates differently without the ELSE:

CASE CHARACTER OF
' A ' : ONE;
9B ' : TWO;
9 C ' : BEGIN ONE;TWO END;
' D ' : THREE

END;

NOTE:
As in an IF /THEN statement, ELSE shouldn’t have a semicolon preceding
it. The compiler will generate an error message otherwise.

STANDARD PROCEDURES
There are a number of procedures in Super Pascal that are unavailable to
Standard Pascal. They are:

ALLOCATE

Unlike NEW, a pointer variable can be assigned to a memory cell by the
user.

Syntax: ALLOCATE (POINTERVARIABLE, EXPRESSION) ;
POin t e r v a r ia b l e stands for the identifier declared as a POINTER type
in the assignment section. Access to this variable occurs with
POINTERVARIABLEA.

88

ABACUS Software SUPER Pascal Development System

EXPRESSION stands for that expression determining the pointer address.
This expression must be an in t e g e r . You can, for example, define an
internal 2-byte address pointer as A INTEGER, and easily manage memory
in Super Pascal. Here’s a sample program, using ALLOCATE:

TYPE LINE = ARRAY[0 . .3 9] OF BYTE;
SCRN = ARRAY[0 . .2 4] OF LINE;

VAR I : INTEGER;
TEMP : LINE;
SCRNRAM:ASCRN;

BEGIN
ALLOCATE(SCRNRAM,$ 4 0 0) ;TEMP: =SCRNRAMA[2 4] ;
FORI:=0 TO 23 DO SCRNRAMA[SU C C (I)] :=SCRNRAMA[I] ;
SCRNRAMA[0] : =TEMP

END;

This program gives you a continual screen scroll from top to bottom under
Pascal control. This uses the procedure ALLOCATE (SCRNRAM, $400) to
put the screen-repeat memory into $400 (decimal 1024). Bear in mind that
the color RAM should be moved as the screen has been shifted, for the best
demonstration of the program.

NOTE:
This procedure doesn’t give you free reign over program code or other
variables. A complete knowledge of memory layout will be necessary.

CLOSE

See the section on standard language elements.

Syntax: CLOSE (FILEVARIABLE) ;

FILEVARIABLE is the FILE type defined in the assignment block. This
procedure will put the buffer contents to the last file opened for writing, and
close the file; the file buffer will then be cleared for the next access.
CLOSEing an unOPENed file produces the runtime error:

NOT OPEN ERROR!

and a program break.

89

ABACUS Software SUPER Pascal Development System

CLRTRAP

This command, used without other parameters, clears the runtime error trap
for I/O (input/output) errors. This means that after calling this procedure,
neither a text error message nor a program break will occur. The I/O error
trap is switched on with SETTRAP.

CONTINUE

This procedure lets you load and start an entirely different Pascal program.

Syntax: CONTINUE(FILENAME,DRIVE_NR);

The new program must be in the drive number indicated (DRIVE__NR), and
must be listed under the proper identifier (FILENAME); the procedure
finishes the loading process. LOADDAT is necessary to this procedure, so
it must be in drive 0. If, by some chance, LOADDAT isn’t available, a
respective error message and program break happens. The program is
loaded into the memory range where it was compiled.

A return to the original program isn’t a vital part of this procedure, which
makes possible the use of

EXECUTE

This procedure is similar to CONTINUE in calling a new program; in this
case, though, it acts as a subroutine for the running program.

Syntax: EXECUTE(FILENAME,DRIVE_NR);

This procedure concludes the program load so that this procedure will
execute under the conditions given by CONTINUE. As above, FILENAME
and DRIVE_NR must correspond, and LOADDAT must be located in drive
0. The loaded program will be placed in the memory range at which it was
compiled, and will use the variable stack range assigned by the compiler.
Needless to say, the memory of the program first in memory must not run
into any conflict with the registers of the currently loaded program. You’ll
have to program VERY carefully in terms of memory management and
variable assignment.

90

ABACUS Software SUPER Pascal Development System

HEX

This procedure converts integers and byte-numbers into hexadecimal
numbers.

Syntax: WRITE (F I LEVARI ABLE, . . .HEX (EXPRESSION) . . .) ;
or

WRITELN(FILEVARIABLE,...HEX(EXPRESSION)...);

EXPRESSION stands for any INTEGER or BYTE expression. The
expression can be input either in decimal or in hex (the latter with a dollar-
sign preceding the number,e.g., $0A3F).

INDVC

Switches the active input device.

Syntax: INDVC (EXPRESSIONS EXPRESSION2) ;

EXPRESSION1 refers to the desired primary address (device number),
while EXPRESSION2 gives the secondary address within the device. Both
must be INTEGER types, with the primary address set within limits (0 -
2SS). Any number beyond or below this range will present

IL.QUANT. ERROR!

as a runtime error, and the program will stop.

When Super Pascal is initialized, the primary and secondary addresses are 0,
which follows the INPUT "GETLINE" (from the keyboard).
EXPRESSION1 changes that device number in INDVC until a new
procedure call changes it to another device, or if switched "manually”.
Runtime errors will reset the input device number to 0.

NOTE:
The primary address 2 will not operate the user port: It is NOT available as
an INDVC. Although the possibility exists to adapt Super Pascal for this
port, the system "as-is" will only work with serial devices.

91

ABACUS Software SUPER Pascal Development System

KILL

KILL will delete unlocked (non-protected) Hies from the diskette and
directory.

Syntax: KILL(FILEVARIABLE);

FILEVARIABLE is the label for the file to be scratched. If this is attempted
with a locked file, the runtime error

I L . FILE OPR. ERROR!

appears, and the program stops. Locked files can only be dealt with in the
Utility segment of the program. If the Hie isn’t found in the running disk
drive, again, an error message and a program end will occur.

LOCK

This procedure can be used in the same manner as CLOSE, i.e., for closing
previously opened files. However, LOCK has one extra feature - it protects
files from overwriting and deleting.

Syntax: LOCK(FILEVARIABLE);

FILEVARIABLE is the FILE declared in the assignment section. A file
need be locked only once (no need to do so repeatedly, unless you need
access to the file, and have to unlock it). Attempts to scratch a LOCKed file
will result in the program stopping, and

I L . FILE OPR. ERROR!

LOAD

LOAD puts an external Pascal routine into memory from diskette.

Syntax: LOAD (FILENAME, DRIVE_NR) ;

All that this command does is load the program, as opposed to CONTINUE
and EXECUTE. The program must be loaded using the proper FILENAME

92

ABACUS Software SUPER Pascal Development System

and disk drive (DRIVE_NR). The load procedure itself requires the aid of
LOADDAT (which must be in drive 0).

This procedure loads the program code into the memory location at which
the code was compiled.

Program routines called with CONTINUE and EXECUTE

a) can handle independent Pascal programs; and
b) can be called for at any time;

while LOAD

a) will load independent programs, AND simple external
procedures and functions (XTRNPRGM, XTRNPROC &
XTRNFUNC); and
b) only offers one chance to use the command.

NOTE:
LOAD offers you no control over whether there is sufficient memory for the
routine being loaded; you’ll have to be very precise in knowing how much
memory is involved, and how it is distributed.

Other examples are quoted in Chapter 4.1.2.2.

MARK

Together with RELEASE, MARK serves to control management of the heap
(memory heap for dynamic variables).

Syntax: MARK(POINTERVARIABLE) ;
POINTERVARIABLE stands for the identifier for an A INTEGER pointer
variable, which becomes the active heap-pointer when the procedure is
called. This is the pointer to the topmost portion of the variable stack and
the ever-growing heap. Even when the heap is cleared (see NEW), any
input strings cause the heap to begin growing yet again. If a situation occurs
where the heap is unnecessary for storing strings or dynamic variables,
RELEASE sets the pointer back to the POINTERVARIABLE. The next
memory cell is available to you. See RELEASE for a short example.

93

ABACUS Software SUPER Pascal Development System

NAME

This procedure allows you to give a program a different name from that
stated by the current identifier.

Syntax: NAME (FILEVARIABLE, EXPRESSION) ;
F I LEVARI ABLE stands for the identifier which was declared within the
assignment section as a FILE variable. As long as no changes have been
made to this variable using NAME, the file variable will go under its
”normal” identifier, i.e., by that filename on diskette. After providing the
EXPRESSION, which must be ALFA or STRING, the file-variable will be
changed to that name. Here’s a short example:

VAR SOURCE:TEXT; {formal declaration of file}
TITLE:ALFA; {variable SOURCE,}

RESET(SOURCE); READ(SOURCE);CLOSE(SOURCE);
{access to a file with the name SOURCE}

NAME(SOURCE,'OTHER'); {provision of actual name }
{OTHER for the formal var. }
{SOURCE, }

REWRITE(SOURCE); [access to file with current}
WRITELN(SOURCE,'1.LINE'); {name OTHER instead of}
CLOSE(SOURCE); {the formal identifier SOURCE, }

NAME(SOURCE,TITLE) {provision of name contained}
{in title as current file- }
{name, etc. }

94

ABACUS Software SUPER Pascal Development System

OUTDVC

OUTDVC switches current output device.

Syntax: OUTDVC (EXPRESSION].,EXPRESSION2)

EXPRESSION1 stands for the primary address of the desired device, while
EXPRESSION2 gives the appropriate secondary address. Both must be
INTEGERS; the primary address must be within the boundaries of 0 to 255.
Any differing address yields

I L . QUANT. ERROR!

and the program stops.

Thus, this procedure defines the output device to be used in conjunction with
OUTPUT, WRITE and/or WRITELN. Primary and secondary default
addresses (i.e., when Super Pascal is started up) are 0 (screen). An OUTDVC
call (say, to send output to the printer) will remain at that address until the
procedure is called again. Runtime errors automatically switch the output
device back to 0.

NOTE:
As mentioned with INDVC, the user port is inaccessible.

RELEASE

This procedure represents the counterpart to the abovementioned procedure
MARK; with it, the heap memory can be released from any earlier definition
by MARK.

Syntax: RELEASE(POINTERVARIABLE) ;

POin t e r v a r ia b l e is the A in t e g e r identifier for a pointer variable,
which is contained in the "interim" heap pointer. This value will dictate
where the heap pointer will be set Below is an example of both MARK and
RELEASE:

95

ABACUS Software SUPER Pascal Development System

VAR HEAP1rHEAP2,HEAP3:AINTEGER; {decl. of three}
INFO;ALFA; (pointer variables of}
LINE:STRING; {AINTEGER type }
MARK(HEAP1);

MARK(HEAP2) ;

READLN (LINE) ;
INFO: =LINE;

RELEASE(HEAP2) ;

MARK(HEAP3) ;

TRE_TREE;
PRINTJTREE;
RELEASE(HEAP3) ;

RELEASE(HEAP1) ;
etc.

(heap pointer starts }
(at HEAPl }
(current heap pointer}
(at HEAP2 }
(read a string placed}
(on the heap and }
{INFO provided }
(reset heap pointer }
(to value HEAP2 }
(freeze up current }
(pointer at HEAP3 }
(call routine w/ dy- }
(dynamic variable use}
(reset to value be- }
(fore procedure call }
(release entire heap }

SEEK

Used like RESET and REWRITE in opening files, the difference being that
RESET and REWRITE use the access pointer "as-is", while SEEK lets you
set that pointer.

Syntax: SEEK (FILEVARIABLE, EXPRESSION) ;
F I LEVARI ABLE stands for the identifier set up in the assignment section
(FILE type). EXPRESSION sets the position of the file-access pointer. In
cases where numbers might be an element in such a file (e.g., TEXT),
EXPRESSION must be a REAL number. The access pointer will always
take on the whole-number portion of that REAL expression. Negative
numbers lead to the message

IL.QUANT. ERROR!
and a break, while numbers that overshoot the end-of-file give

96

ABACUS Software SUPER Pascal Development System

AFTER EOF ERROR!

and a subsequent program end.

The distinction between read/write operations in SEEK mode depends on the
operation which follows: GET, READ or READLN puts you in read mode,
while PUT, w r it e or WRITELN lets you write to the file. The access
pointer will move to the next spot after each access.

After write access, any data after the write-position will be lost The
read/write operation is concluded with CLOSE or LOCK.

SETADR

This procedure contacts a running program to find and load an existing
routine. Unlike LOAD, this is for resident or quasi-resident routines (esp.
assembler routines). Syntax:

SETADR(PROCEDURE_FUNCTIONS_NAME,EXPRESSION);

PROCEDURE_FUNCTIONS_NAME represents the identifier of the
externally called procedure/function. These "EXTERNALS" shall be called
by these names which should have been defined in the procedure/function
assignments. The procedure SETADR establishes the connection between
name and actual address during runtime; this address is an integer stated in
EXPRESSION. This can be handy when a routine is needed time and again
(see 4.1.2.2 for an example).

SETDRV

This procedure sets the number of the current disk drive. The file-opening
procedures RESET, r e w r it e and SEEK come after SETDRV.

Syntax: SETDRV(EXPRESSION);

e x p r e s s i o n must be an integer, and must state drive number (0 or 1,
nothing else).

97

ABACUS Software SUPER Pascal Development System

Initializing the program creates a default value of drive 0. And already-open
file needs no further file definition; drive number will hold until the file is
closed.

SETTRAP

SETTRAP (no parameters) switches the I/O error trap back on. Having the
I/O error trap on will produce error messages and program breaks if (when)
the time comes. Switching the trap off gives no messages, but programs will
cease.

FUNCTION ASSIGNMENTS

There are three groups of predefined functions in Super Pascal:

Type conversion functions
Conditional functions
Mathematical functions

The first group consists of:

INT

This function converts real numbers into integers.

Syntax: INT (EXPRESSION) (function type: INTEGER)
EXPRESSION refers to a REAL expression. The conversion naturally
works only if the quantity remains within the limits of -
MAXINT...+MAXINT. Otherwise

IL.QUANT. ERROR!
comes up as a runtime error.

HBYT
LBYT

Both these functions deal with conversion of integers into BYTE quantities,
simultaneously isolating high-bytes (HBYT) and low-bytes (LBYT).

98

ABACUS Software SUPER Pascal Development System

Syntax: HBYT (EXPRESSION) (function type:BYTE)
LBYT (EXPRESSION) (function type:BYTE)

EXPRESSION is any integer. The function delivers the most significant
byte (HBYT) of this integer, and the least significant byte (LBYT) of same.
b y t e is the result in both cases. This can be convenient for m/1
programming, since both "half-bytes" add up to one integer.

LOW

This function converts any scalar argument type (REAL) into a BYTE
quantity.

Syntax: LOW (EXPRESSION) (function type:BYTE)

EXPRESSION stands for any scalar type. Using this function with integers
will limit you to conversions up to 255 ($FF).

The second group of functions don’t just operate as predefined functions
which give Boolean information (yes/no cases), rather control internal
system conditions.

ANYKEY

This function is chiefly used in programs involving input from the user, or
just pausing until the user hits a key to go on. No parameters are needed:

Syntax: ANYKEY (function type:BOOLEAN)

It can be used, for example, for programming a wait loop, or perhaps you
can have the system do something else while it’s waiting for a keypress:

WHILE NOT ANYKEY DO;

It’s just as simple to set up a conditional branch:

IF ANYKEY THEN . . . (ELSE . . .) ;

99

ABACUS Software SUPER Pascal Development System

GETKEY

This function is comparable to BASIC’s GET statement; it awaits input from
the keyboard. No other parameters are necessary.

Syntax: GETKEY (function typerCHAR)

This allows you to read characters from the keyboard; every character will
be pulled from the keyboard buffer (i.e., with GETKEY, every character will
go to the buffer first). Here’s an example of using GETKEY to control a
program:

CASE GETKEY OF . . . (ELSE . . .) END;

IOERROR

This has already been mentioned in connection with CLRTRAP and
SETTRAP; it checks for I/O errors - aid if it finds one, looks to see which
error it is. This function, too, can be called without argument.

Syntax: IOERROR (function type: INTEGER)

The only sensible time to use IOERROR is when the error trap has been
switched off with CLRTRAP; otherwise, the system automatically reacts to
any I/O errors. If, however, the trap is off, IOERROR will call up the
number of such an error (NOTE: The program won’t halt in this state). Here
are the error numbers (all INTEGER, by the way):

FLOPPY ERROR (i)
NOT OPEN ERROR (2)
NOT CLO. ERROR (3)
BUF.OV. ERROR (4)
D IR .O V . ERROR (5)
NOT FND. ERROR (6)
DSC.OV. ERROR (7)
DSC.MISM. ERROR (8)
IL .F IL E OPR. ERROR (9)
AFTER EOF ERROR (10)
IEEE-ERROR (I D

100

ABACUS Software SUPER Pascal Development System

No I/O errors gives the function a 0.

Runtime errors that aren’t I/O-based - as already mentioned - always stop
the program; these same errors aren’t affected by the error trap’s status:

OUT OF RNG. ERROR
NOT EXQ. ERROR
NUM.OV. ERROR
B .S U B S . ERROR
IL.QUANT. ERROR
STK.OV. ERROR
ZERO-DIV. ERROR
IL .D V C . ERROR

See Chapter 2.1.9 (RUN PROGRAM) for the definitions of these messages.

There are other functions grouped with these three conditionals.

FREE

Reads the amount of available memory between heap and stack at any time;
no argument is needed.

Syntax: FREE (function type: INTEGER)

The value returned to you is expressed in 256-byte increments (pages), i.e., 1
block=256bytes,4blocks=lK, etc. It’s possible to end up with a

STK.OV ERROR

depending on the memory available.

LEN

LEN is an integer which supplies the length o f a string, i.e., the number of
characters in a string.

Syntax: LEN (EXPRESSION) (function type:INTEGER)

101

ABACUS Software SUPER Pascal Development System

EXPRESSION refers to the string expression. This function is quite useful
for determining the length of an unknown string within a rile, and
determining what to do about the length of same. The maximum allowable
length of a string is the available size of the I/O buffer, while the maximum
length of a printed line is 132 characters.

NOTE:
Attempts to overshoot these maximum lengths will lead to a system error.

SIZE

The size of a Pascal-variable can be found within a program with this
function.

Syntax: SIZE (TYPENAME) (function type: INTEGER)

TYPENAME stands for the identifier stated in the type assignment of the
program. Therefore, it is NOT the name of the variable itself, but of the type
of variable. The return value will be given in bytes (rather than blocks); the
value is given as an integer, in connection with ALLOCATE, i.e., the
memory adjustments for pointer variables can be used.

The third group of functions contains the following three:

HXS

(HeX-Sum) This can be used for adding two integers without worry of
overstepping the integer range.

Syntax: HXS (EXPRESSION].,EXPRESSION2) (func.type:INTEGER)

EXPRESSION1 and 2 stand for the two integers to be added. For example,

H X S ($ 7 F 0 0 ,$ 1 A 8 0) = $ 9 9 8 0

and

HXS($ AO 0 0 , - $ 3 8 0 0) = $ 6 6 8 0 .

102

ABACUS Software SUPER Pascal Development System

SIGN

The SIGN-function gives a preceding character with a numerical expression:

Syntax: SIGN (EXPRESSION) (function type:INTEGER)

EXPRESSION can be either INTEGER or REAL. The function’s result will
give this EXPRESSION as an integer (the positive number ... +1; negative,
.... -1). A functional argument of 0 gives a 0 result; similar to this example:

EXPRESSION = SIGN(EXPRESSION) * ABS(EXPRESSION)

FRAC

The mathematical function FRAC delivers the opposite of the already-
mentioned TRUNC -- it gives you the fractional section of a real number.

Syntax: FRAC (EXPRESSION) (function type:REAL)
EXPRESSION stands for any REAL expression; FRAC will separate the
decimal numbers, and these numbers will be the result sent back to you. The
leading character works the same here as in identifying functions.

These are the additional functions that you’ll find in Super Pascal. The final
section consists of the mathematical operations used within expressions. In
addition to the normal operators:

SHL and SHR

Defined as reserved words. SHL (SHift Left) moves the bit pattern of an
integer to the left, while SHR (SHift Right) moves an integer quantity to the
right. The number of bits shifted is controlled by two operands:

Syntax: EXPRESSION1 SHL EXPRESSION2 (type:INTEGER)
EXPRESSION1 SHR EXPRESSI0N2 (type:INTEGER)

EXPRESSION! and 2 can be any integers; the result will also be an integer.

103

ABACUS Software SUPER Pascal Development System

Besides bit manipulation, these operations can also be used for quick
multiplication with a factor of 2 ae x p r e s s io n (SHL) or fast division
with 2 ae x p RES SION (s HR) . Examples:

4 747 SHL 2 = 4 7 4 7 * (2 A2) = 4747 * 4

1 1 1 1 SHR 4 = 1 1 1 1 / < 2 A 4) = 1 111 / 16

AND OR NOT

These comparatives are b y t e types in SUPER Pascal; used for comparing
bit patterns and checking memory contents, the result will consequently be a
BYTE quantity. For example:

#3 A N D #12(#$03 AND #$0C) gives the byte #3 (= # $ 0 3) ,
1 6 1 OR #2 5 (#$A 1 OR # $ 1 9) gives # 1 8 5 (=#$B 9)

and
NOT # 2 0 0 (NOT # $C 8) gives the byte #55 (= # $ 3 7) .

4.1.2.2 ADDITIONAL PROGRAM STRUCTURES, EXTERNALS,
SEGMENTS

This chapter will cover the techniques of program division and structure in
Pascal, along with the connection and declaration of EXTERNALS and
machine language routines. We’ll try to include some common examples as
we go along.

At the top of the list is the segmenting of Pascal programs. This division --
better known as overlay-technique - involves breaking a larger program
into several cooperative program blocks; this is called into play with the
command

SEGMENT

Like FORWARD, this command is neither a reserved assignment command,
command symbol nor execution command; rather, it’s a control command
for the compiler. The SEGMENT command is always in the same spot
(syntactically speaking) as FORWARD, i.e., immediately after the procedure

104

ABACUS Software SUPER Pascal Development System

and/or function header. SEGMENT tells the compiler to treat the entire
block of this procedure or function as a portion to be followed by other
sections that will be compiled in the same memory range. The compiler
notes the starting address of this block, and compiles those which follow at
the same starting address. In a way, the segments are compiled as parallel
program sections. The amount of memory reserved is dependent upon the
longest segment being compiled.

There are a few ground rules for defining segmented blocks:

a) They must be arranged one immediately after
another,

b) They must be defined as the same program level,
regardless of label,

c) Interlocked routines should be avoided and

d) The whole number 8 should not be overstepped.

These limitations are not that bad, considering that you can sidestep some of
them. For example, within a segment-assigned block, any deep
function/procedure can be nested - just as long as the remaining segments
use the same procedures/functions. You should keep in mind that when
working with segmented programs, the segments cannot be placed in the
proper sequence by the computer itself; the computer will compile according
to the sequence found on the diskette.

The 8-segment limit is really no problem, since there will be very few
occasions when you’ll write a program as large as that One good example
of a segmented program is the compiler itself; it’s made up of the following
segments:

INITIALIZATION

MAIN SECTION
ASSEMBLER SECTION

CONCLUDING SECTION

in which the predefined identifiers,
functions and procedures are
declared,
which takes up compiling a block,
which assembles the built-in
assembly routines, and the
statistical evaluation.

105

ABACUS Software SUPER Pascal Development System

These 4 segments, if put together normally, would take up a substantial
amount more memory ($0800 - $C200); as compiled here, they only take up
$0800 - $9000! Needless to say, segmenting programs is quite a practical
move with the C-64.

NOTE:
Any reloading of segments requires that those segments all be in the same
disk drive. Once the program is started, the disk drives can be switched
around within the program. An additional file buffer will not be necessary
for reloading segments.

The next two commands for developing larger programs shouldn’t be
unfamiliar to you, since we’ve mentioned them earlier

CONTINUE EXECUTE

These procedures will let you load and run separate compiled (and complete)
programs. There are differences between the two:

CONTINUE allows chaining of different programs, i.e., the new program
can utilize variables and such defined in the previous program, or use its
own definitions. No memory collisions can occur with continue.

EXECUTE allows separate Pascal programs to be called as subroutines to the
main program. Memory must be set aside for both programs, so a solid
knowledge of memory layout and management would be wise before using
this technique.

"EXTERNALS"

We designed this category to allow for generating external programs and/or
program routines. You can see the disadvantages of EXECUTE (see above);
the command discussed here lets you define program routines as procedures
or functions. The compiler recognizes these external reserved words:

XTRNPROC (eXTeRNal PROCedure)
XTRNFUNC (eXTRNal FUNCtion)

The compiler registers these as declared procedure/function identifiers and
their respective parameter lists. The proper block for this procedure/function

106

ABACUS Software SUPER Pascal Development System

is canceled, since it is, of course, assigned externally. Now, in order for the
program to find the EXTERNAL, a LOAD (for implicit address assignment)
or SETADR (for explicit assignment) must be included (see 4.1.2.1). The
assigned routines for XTRNPROC and x tr n fu n c are nested with the main
program’s variable stack. You can define all parameters in SUPER Pascal
as predefined variable types; same goes for function values.

External procedures/functions will be compiled as such, i.e., contained in the
program header NOT by the word PROGRAM, but rather by their XTRN
identifiers and parameter lists. The rest is compiled like a normal Pascal
program block.

To round out the set, we come to declaration of entire external programs,
which are handled like the above externals.

XTRNPRGM (eXTeRNal PRoGraM)

No further parameters are needed; the main program calls the external
program using the identifier defined in the main routine. Here again, we
must be concerned about the starting addresses of external and main
program, whether loading implicitly or explicidy (LOAD and SETADR,
respectively). External programs are compiled "normaUy".

When using externals, it’s important to remember that the main program will
load the externals into the given memory cells; there is always a possibility
of memory collision, if you haven’t planned your memory layout carefully.
Calling externals with CONTINUE or EXECUTE avoids these problems.

The last point we’ll cover in this sector will be the "USER" routines.

These represent an extra step beyond the external routines. Unlike the
externals, user routines are external machine-language routines, though
assigned like standard procedures and functions. There are two types:

USERPROC
USERFUNC

You would then give these routines identifiers matching those given within
the main program’s assignment section. For more details on handling these
routines, see Chapter 4.1.2.3 on the "internal" m/1 routines.

107

ABACUS Software SUPER Pascal Development System

During runtime, the procedure SETADER must be used to assign the jump
address. The machine language routine must be consistent with the start-of-
program, because, for example, when loading a code-file into the file buffer
with RESET, the buffer address will equal the jump address. To help you
out a bit, here are some items concerning memory information, and a sample
program.

Regarding program design-—

The main program (example) should run and work in
$2000 - S9FFF.
Three independent subprograms will be generated in
$0800 - $1FFF (SUB1, SUB2 and SUB3).
Registers $A000 - $A7FF have been assigned to a
procedure (XPROC), while $A800 - $AFFF have been
assigned a function (X FUNC).
An exit program (B ADEXIT) has been designed for $0800
- $8FFF.
A machine-language routine (TEST1 and TEST2) will be
defined in $F100 - $F27F and $F280 - $F3FF, in
connection with the file USERCODE.

PROGRAM EXAMPLE;
CONST {address declaration for SUPER}
BUFFER1 = $F100; {Pascal system file buffers; }
BUFFER2 = BUFFER1 + $400; {an opened file will}
BUFFER3 = BUFFER2 + $400; {go to the first}

{free buffer }
TYPE
RECORD

RANGE:ARRAY[0..99] OF ALFA;
SET :SET OF CHAR;

END;

VAR
TABLE :ARRAY[1..3] OF RECORD;
FLOW : INTEGER;

108

ABACUS Software SUPER Pascal Development System

PROCEDURE REGULATE; {Decl. of a normal }
BEGIN ... END; {Pascal procedure; }

XTRNPROC X__PROC {declaring an external }
(A,B:INTEGER;MSG:STRING); {procedure w/parameter}

{transfer; }
XTRNFUNC X_FUNC {declaring an external)

{ function)
(CH:CHAR;VAR TITLE:ALFA):BOOLEAN

FUNCTION READALFA
(VAR READFILE:TEXT):ALFA;
VAR
INPUT-.STRING;

BEGIN
READLN(READFILE,INPUT);READALFA:=INPUT;

{decl. of a normal)
{Pascal function; }

END;

USERPROC TESTI
(VAR TAB-.RECORD) ;

USERFUNC TEST2:BOOLEAN;

PROCEDURE INIT;SEGMENT,
BEGIN

{declares an)
{assembler-procedure;}
{declares an }
{assembler-function;}

{declares a procedure)
{segment; }

LOAD(X_PROC,0); {load X_PROC from drive 0;}
LOAD (X__FUNC, 0) ; {load X__FUNC from drive 0)
SETADR(TESTI,BUFFER1); {address transfer }
SETADR(TEST2,BUFFER1+$180); {address transfer;)
RESET(USERCODE);

FOR FLOW:=1 TO 3 DO
T E S T I(TABLE[FLOW]) ;

IF NOT TEST2 THEN
BEGIN

CLOSE(USERCODE);
CONTINUE(BADEXIT,0)

{load program-code }
{into file bufferl)

{multiple call of TEST1;}
{call of Boolean function)

{TEST2)
{prg. jump to BADEXIT)

109

ABACUS Software SUPER Pascal Development System

END;

END;
PROCEDURE PARTI(JOB:KENNER);{declaring second }
SEGMENT; {segment block; }
BEGIN

CASE JOB OF {call for one of the three }
LOAD :EXECUTE(SUB1,1); {Pascal subprograms -}
SAVE:EXECUTE(SUB2,1); {SUB1, SUB2 or SUB3 }
REGISTER :EXECUTE(SUB3,1)
ELSE ...
END;

END;
FUNCTION PART2: BOOLEAN;
SEGMENT;

BEGIN
REGULATE;

PARTI(MENU); {call another segment;)

{declaring the third }
{segment block ;)

PART2:= {provision for function val.;)
READALFA(INPUT)='END'

END;
PROCEDURE EXIT; SEGMENT;
BEGIN ... END;
BEGIN
INIT;

{declaration of fourth }
{segment block)
{main program }

{call for INIT. segment; }
{call for OK-output; }

{call for error-output;)
IF PART2 THEN EXIT
ELSE CONTINUE(BADEXIT,0)
END.

110

ABACUS Software SUPER Pascal Development System

4.123 ASSEMBLER ROUTINE DESIGN

Inserting assembler routines in a Pascal program is a subject already touched
upon in Chapter 3.4; see that section for a sample program. Here, however,
we’ll look at the ”mechanism" used for parameters and function return
values. More detailed information on 6510 machine language will be found
in Chapter 5.2, but for LEARNING machine code, we suggest you read
books dealing directly with the subject (see Appendix).

Here are the commands accepted by the compiler for integrating 6510 code
and Pascal (pseudo-instructions: For the complete set, see Chapter 5.3):

.BA
This pseudo-instruction will tell the assembler the starting
address of the program to be assembled (also, the address
is vital to the Pascal program itself). This is the routine
which embeds the routine into the Pascal program.

.OC
This pseudo-command suppresses the machine-language
output, once the generation of the addresses (for the
address label) is complete (note: this command is not
provided in Pascal itself). The machine code will be
produced within the Pascal program sequence.

.CT
This pseudocode will chain assembler sources (not
possible in Pascal proper).

Keep the following in mind regarding parameter and function values: The
place will be reserved on the Pascal variable stack for functions defined in
the assignment section, and for the function return value, i.e., the top- of-
stack will be adjusted accordingly. This will happen regardless of whether it
is a regular Pascal function, a machine-language function, or an external
"USER" function. (NOTE:Please see Chapter 4.1.1 for variable size, and use
of the function SIZE). Machine programs have a different access
mechanism to the stack -- indirect-indexed addressing.

I l l

ABACUS Software SUPER Pascal Development System

The relative address (calculated from top-of-stack) is put into the Y register
of the CPU; and the instruction

LDA(STK PO I),Y

lets any byte be put on the Pascal stack. If parameter bytes go over 256, the
most significant byte will be incremented by the zeropage pointer STKPOI.
STKPOI (address $2E) is recognized by Pascal as a predefined quantity.

When a function return value should be put onto the stack, it must appear in
the proper place on the stack (STA (STKPOI) , Y), i.e., above all eventual
given parameters.

The stack pointer will again be corrected at the end of the machine-language
routine, i.e., set to the value preceding the call of the m/1 routine.

This point should be remembered when integrating m/1 and Pascal; constants
can be set up for the Pascal section within the m/1 section.

The sample here may clear up some of the mystery of parameter and
function return values:

An assembler routine assigned with

FUNCTION DEMO(MSG: STRING;CHARACTR:CHAR;VAR
WORD:A L FA): INTEGER

and called with

IF 36 = DEMO(' HELLO', CX,TITLE) THEN . . .

whereby CX should be a CHAR-variable, and TITLE and ALFA- variable.
Below is an illustration of stack management (TOS=top-of-stack):

112

ABACUS Software SUPER Pascal Development System

high address
1. TOS before entering
comparative expression

2. Deposit a value of
36.................

$00.
$24

3.Arranging a place for
the funct return value

4. Deposit the string | ADR H i
address 'HELLO'....| ADR L ...

5. Deposit CX......... | ...
6. Deposit address for | ADR H i i

variable TITLE..... | ADR L
7. TOS enters DEMO |

(= STKPOI)...........
i

....i
i i

i
8. Parameter range which

can be accessed with
i
i

(STKPOI),Y i
9. Deposit function

return value.........
10. STKPOI corrected when

d e m o
leaving

11. Comparative operation
taken up.............

4.1.2.4 COMPILER COMMANDS

We mentioned before that you can embed different compiler directives
within a Pascal program. These commands are all preceded with an
ampersand (the character). You can use the "long form", or an
abbreviated versions of the commands ~ here are both versions (the short
versions are printed here in parentheses):

113

ABACUS Software SUPER Pascal Development System

&ADR+ (&A+)
&ADR- (&A-)
&CONTINUE (&C)
&INCLUDE (&I)
&PCODE+ (&P+)
&PCODE- (&P-)
&TRUTH (&T)

& CONTINUE and & INCLUDE, used for inserting and appending program
sources, have already been discussed in Chapter 3.2. & TRUTH, used in
conditional compiling, has also been explained. The remaining commands
(&ADR and &PCODE) serve to control address declaration and PCODE

output.

&ADR+ will switch on address output, giving the memory address for every
line: This is useful for debugging runtime-errors. This output can be
switched off with & ADR-.
PCODE output is switched on using &PCODE+, and off with &PCODE-.
For every PCODE instruction given, the compiler generates a mnemonic
command abbreviation, with the memory location and necessary parameters
(in bytes). The PCODE abbreviations are as follows:

ADDI = ADD IMM. WORD
CALI = CALL INDIRECT
CALL = CALL ABSOLUTE
CALS = CALL SEGMENT
CPIB = COMPARE IMMEDIATE BYTE
CPIN = COMPARE IMM. n BYTES
CPIW = COMPARE IMMEDIATE WORD
EQUN = COMPARE n BYTES (=)
GEQN = COMPARE n BYTES (>=)
GETN = GET n BYTES (>)
GOTO = GO TO
GRTI = COMPARE IMM. WORD (>)
GRTN = COMPARE n BYTES (>)
INCT = INCREMENT STACK
JCDO = COND.-JUMP DOWN
JCUP = COND.-JUMP UP
JMPC = COND.-JUMP ABSOLUTE

114

ABACUS Software SUPER Pascal Development System

JUMP =
LEQN =
LESN =
LITB =
LITW =
LODA =
LODB =
LODS =
LODW =
LODX =
L SSI =
MULI =
NEQN =
NEWN =
NOP =
OPRC =
PFIX =
PUTN =
RTRN =
RTNS =
STOB =
STOS =
STOW =
STOX =
SUB I =
TBYT =
WRTA =

= JUMP ABSOLUTE
= COMPARE n BYTES (<=)
= COMPARE n BYTES (<)
= LOAD IMMEDIATE BYTE
= LOAD IMMEDIATE WORD
= LOAD ADDRESS
= LOAD BYTE
= LOAD STRING
= LOAD WORD
= LOAD INDEXED
= COMPARE IMM. WORD (<)
= MULTIPLY IMM. WORD
= COMPARE n BYTES (<>)
= NEW n BYTES
= NO OPERATION
= OPERATION CODE
= PREFIX OPR. CODE
= PUT n BYTES
= RETURN ABSOLUTE
= RETURN SEGMENT
= STORE BYTE
= STORE STRING
= STORE WORD
= STORE INDEXED
= SUBTRACT IMM. WORD
= CHECK BOUNDS
= WRITE ARRAY

The &ADR and &PCODE commands can be started with a general command
at the start of the compiling process, then left on for the entirety of the
procedure.

115

ABACUS Software SUPER Pascal Development System

4.2 OPTIONS

SUPER Pascal offers a number of options for the compilation process itself.
You do, of course, have the ,,option,, of not choosing any options -- before
compiling, the system will ask you

DEFAULT OPTIONS ? N/Y
and if you wish to compile ”as-is", press "N". If, however, you choose "Y",
the options will run off in sequence, beginning with

START-OF-PROGRAM
which allows you to change the staring address to your liking. You have
$0800 to $C1FF to woik with, and, under very special circumstances, the file
buffer range ($F100 to $FEFF) at your disposal as well. With free choice of
starting address, it's possible for you to easily develop a larger program
packet from smaller units (with the help of the memory map). The default
value —

START OF PRGM = $ 0 8 0 0

-- can be retained, or changed (decimal OR hex value).

VARIABLE MEMORY
The compiler prompts with

START OF HEAP = EOPGM
to tell you the starting point of the heap (storage for dynamic variables),
from bottom of heap to the top of the stack (used for static variables). The
default is EOPGM (end-of-program), i.e., the heap will be placed immediately
after the end of the program being compiled. You, however, can reorganize
the heap to your preference. After defining the start-of-heap,

TOP OF STACK = $ 9 0 0 0

denotes the default for the end of the stack. Be sure the input is correct or

116

or even
START OF HEAP EXCEEDS TOP OF STACK!

can occur. All in all you have from $0800 to $C1FF for program code and
variable storage, and, in special circumstances ONLY, SF100 to $FEFF
(file-buffer space). If all input so far has been proper, we go on to

COMPILATION MODE

The compiler prompts you with

P.-CODE TO DISK ? N/Y

You have your choice of either compiling to diskette or compiling in RAM.

Diskette Compilation:
The default mode writes the p-code generated to disk as a
temporary file (CODDAT); the fix-up information used to
complete the compiling phase is placed in the so-called
FIXUP-FILE. The fix-up procedure is necessary to
eventually install the correct addresses into the program
code once the single-pass compiler is done. Analogous to
this is the management of assembler program sections,
which are assembled with a two-pass process - this is the
reason for the second choice —

RAM Compilation:
The compiler generates p-code directly into RAM
memory. The fix-up process and the two-pass procedure
will be handled in memory as well. The advantage to
RAM mode lies in the higher working speed, since no
write operation is required of the disk drive at the time;
however, one way or another, you’ll still end up saving the
Pascal source to diskette.

In order to generate Pascal programs in RAM that you’ll want to run later,
the compiler will claim some memory for itself, and will let you determine
the memory at which the compiled program will be located. The system will
ask

IL L E G . DECLARATION!

117

ABACUS Software SUPER Pascal Development System

STORING ADRS. = $ 9 0 0 0

The default is $9000 (the compiler itself takes up $0800 - $8FFF); memory
available to you is $9000 - $C1FF.

Owing to parallel addressing, compiling segmented programs in RAM is
impossible; if attempted, the compiler will give an error message.

VARIABLE CONTROL

The compiler prompts with

TESTS OF BOUNDS ? N/Y

which gives you the choice of controlling the low-range defined variables.
The default identifies the variable-defined boundaries, and is extraordinarily
important for array-indices. The control is accountable for I L . QUANT.
ERROR messages (runtime). The control mechanism will be set into the
program as additional p-code.

NOTE:
Choosing variable control (bound test) should be for security of program
control, on condition that the program has been thoroughly tested first. For
example, false array indices (outside a defined array) tend to cause
extremely nasty and hard-to-localize errors. Be very sure that the program is
as completely debugged as possible (and, of course, that enough memory is
available).

POST-MORTEM-DUMP

A particular problem in compiled programs is the diagnosis, analysis and
cure of runtime errors; the problem is often a serious one in Pascal. SUPER
Pascal has the ability to make a ,,post-mortem-dump,,, i.e., after running into
a runtime error, the program section is dumped with corresponding section,
function, procedure, and gravity of the error; also, the variables are listed
with defined names and contents at that moment. Normally, the post­
mortem-dump is suppressed, but this can be changed with the prompt

SUPPRESS PMDUMP ? N/Y

118

ABACUS Software SUPER Pascal Development System

Unless stated otherwise by you, a file will be dumped as

DUMP-TITLE = P_M_DUMP

The printout will consist of the source-code on the one side, and the coded
program on the other. NOTE: You’ll be better off debugging the source-
code, and just re-compiling the source.

A/P OPTION

By default, the compiler ignores the integral commands &ADR+/ &ADR-
and &PCODE+and &PCODE-:

IGNORE A/P-OPT. ? N/Y

Change this option ONLY if you’re utilizing these commands.

OUTPUT FORM/HARDCOPY
The last option gives control over the output form during the compilation
process. Default value for output is "suppressed":

SUPPRESS OUTPUT ? N/Y
’N’ will give you a line-by-line listing of the source text onscreen. If output
is suppressed, the compiler generates an asterisk (*) for each line, and lists
only the names of procedures and functions being compiled.

SUPPR. HARDCOPY ? N/Y
clarifies whether the compiler will run output normally (onscreen) or send
the output to a printer. If the latter is desired,

OUTPUT DEVICE 4,0
will be the default for the primary and secondary device numbers. Incorrect
input will produce

ILLEG. INPUT!

119

ABACUS Software SUPER Pascal Development System

43 THE COMPILATION PROCESS

Pascal sourcecode (as well as procedures and functions written in 6510
assembler notation) will be converted by the SUPER Pascal compiler into a
viable pascal program. The compiler is accessed from the Main Menu using
the C-command. This subprogram awaits a source program (textfile) from
diskette. Once in the C-command menu, the system asks for the filename to
be compiled, and the disk drive in which said file can be found:

FILE-TITLE = ?
DRIVE(MAP) = x

Rather than give a filename, you can use an asterisk (*), which tells the
system to compile the last program contained within the editor. The system
will ask for confirmation:

CONFIRM ”FILENAME,DRIVE_NR?” N/Y
Improper input will return the system to the Main Menu.

If all input is acceptable, the compiler loads into the computer from the
system diskette; remember to have the disk with LOADDAT and C_CPLR
in drive 0. If these programs aren’t in drive 0, or the textfile isn’t in the
stated disk drive, the system will generate appropriate error messages, and
return to the Main Menu. If the file turns out NOT to be a textfile, a
corresponding error message will be displayed, and the compiler will abort
to the Main Menu.

After the compiler has initialized, and the source program has been opened
by the compiler, the following will appear:

READY TO COMPILE: PROGRAM ”NAME,DRIVE_NR”!

NAME represents the identifier for PROGRAM in the program header;
d r iv e _ nr stands for the drive in which the source file exists.

If a source other than a program (e.g., an external function or external
procedure) is to be compiled, the above messages will use the appropriate

120

ABACUS Software SUPER Pascal Development System

word (XTRNPROC/XTRNFUNC) instead of the PROGRAM symbol. In
conclusion, the program will ask

DEFAULT OPTIONS ? N/Y
to confirm whether to use internally defined parameters or not (’Y’ if so). If
the response is ’N’, the relevant prompts will run by you (see Chapter 4.2).

Externals have no default values, so you’ll have to go through the options
menu to provide parameters (again, see Chapter 4.2). NOTE: Externals
have no variable range of their own available.

Now the compiler will take the source program, and produce a viable
program code. Any syntax errors will be pointed out by the compiler (see
4.4).

Assuming no errors have cropped up, the program codes are linked and
saved; after this, the compiler returns program control to the Main Menu. If,
however, a compiling error arises in the text, or if the RUN/STOP key is
pressed, the compiler will immediately load and run the editor, to let you edit
the program. From there, you’ll have to return to the Main Menu to
recompile the program.

4.4 ERROR MESSAGES

This chapter deals with the handling and classification of syntax errors
which might arise in the program text For those Pascal novices, you’ll run
into many such errors in your first few attempts at programming; don’t let
this get you down — expert programmers slip up a lot, too. If, after having
problems, you consider switching to a language other than Pascal, remember
that Pascal has error control seldom seen in other languages. The compiler
drops out at the slightest discrepancy.

The compiler will display the error number, the offending line, and mark the
error itself with an up-arrow (A) (Note: This display will either occur on the
screen or the printer, dependent on what you have defined as an output
device). Screen output will await your acknowledgement of the error (press

121

ABACUS Software SUPER Pascal Development System

<SPACE> to continue). The compiler will then look for the next convenient
place to go, and continue compiling from that point on.

If the syntax problem is a meaningless write error (e.g., instead of
the compiler gives you a WARNING rather than an ERROR.

The compilation process can be stopped at any time with the RUN/STOP
key; this will automatically load and run the Editor section, and the source
code being worked on at the time. This also happens at the end of the entire
compilation, if any errors have cropped up. Once edited, the program can be
re-saved using to represent the most recent filename used.

The total number of errors and warnings is displayed at the end of
compilation (see Chapter 1.3.3 for a complete list of error messages, and the
error lists used at the end of this manual).

4.5 END OF COMPILATION

How the compilation ends depends upon the manner of compilation. Errors
in the sourcecode call the editor program, and reload the program (see
Chapter 3 [Editor] and 4.3 [Compilation Process]).

However, if all goes well, the compiler prompts for a statistical summary:

STATISTICAL SUMMARY? N/Y
’ Y’ (yes) puts out a list of data concerning the program - see next page:

122

ABACUS Software SUPER Pascal Development System

STATISTICAL ̂ SUMMARY OF ”NAME____” :

NO ERRORS! // xx WARNINGS!
MAXIMUM OF STATIC LEVELS = x
MAXIMUM OF VALID IDENTIFIERS
INCL. PREDFND. IDENT'S = xx

AT THE SCOPE OF ”NAME____”
MAX. OF VALID PARAMETERS = xx
DECLARATIONS IN DETAIL ...

DIV. REFERENCES = xx
CONSTANTS = xx
VARIABLES = xx

FIELD-IDENTIFIERS = xx
PROCEDURES = xx
FUNCTIONS = xx

PARAMETERS-BY-NAME = xx
TOTAL = xx

PRGM-PCODE AT: $xxxx ... $xxxx (= $xxxx)
HEAP/STACK AT: $xxxx ... $xxxx (= $xxxx)

LINKING AND SAVING ”NAME____”
-- > PRESS ”RETURN”

Immediately following the last output line, the compiler begins fixing up the
p-code, diskette compilation, and connecting segmented program code. To
see how things came out, right after the compiler returns to the main menu,
hit R and to run the compiled program.

123

ABACUS Software SUPER Pascal Development System

4.6 LOCALIZING RUNTIME ERRORS

Runtime errors are those errors which aren’t found during compilation; in
fact, the only time that you WILL find them is when the program is up and
running. The program will stop and give you a runtime message; this
doesn’t give you specific information as to why the error occurred.

SUPER Pascal helps you avoid runtime errors. Clearing the I/O trap will
skip over I/O errors. Most of it has to come from YOU, though; the best
way to avoid errors is to do as much "fine work” in the testing stages as is
possible.

One especially important factor in debugging is the ability to find the
problem areas, i.e., the place at which the runtime error occurred, and what
state the data is in at this point The "classical" solution is to surround the
suspected areas with WRITE statements

a) to convey up to what point the program runs properly
and

b) to output "suspicious" variables.

This, however, is time-consuming work. SUPER Pascal, which gives an
error message and the memory location involved, takes at least some of the
mystery out of finding the problem. Attempts at verifying errors by
recompiling the source using "&ADR+" is inexcusable.

Another aid is the post-mortem-dump. A program interruption gives all
available information, and allows you to find those especially tenacious
runtime errors. The PM-dump is in the Options menu (see Chapter 4.2).

If this option is chosen, a special marker will be put into the program; when
a runtime error is encountered, the error display will automatically load and
run the post-mortem output control.

All available data up to and including the error will be tabulated and listed.
The variables will be listed by their identifiers AND present contents (when
possible). LOADDAT (for loading), C PMDUMP (output program proper)
and the respective program file must all be available. The PM-dump file

124

ABACUS Software SUPER Pascal Development System

will be in its specified drive, but LOADDAT and C_PMDUMP MUST be in
drive 0.

The PM output program will ask whether the output will be onscreen or to
the printer. This determines format for array and record variables.

Another trick in SUPER Pascal for rinding runtime errors lies in the Editor
and Utility programs. Frankly, these don’t help all that much — they can be
in connection with the following:

The program call from the MAIN menu sets the address
pointer to the system address $0363 (ADR_PRPO).

The return from a program to the MAIN menu - from
program end or runtime error -- makes an indirect spring
using the address pointer at $0361 (ADR_EXPO).

Calling a program will set in the MAIN a so-called
WARMFLAG ($0360), setting that flag to 0.

If the program is has a starting address matching up with
the pointers ADR_PRPO and ADR_EXPO, every program
break will jump immediately back into the program. It
goes to the start-of-program, be it first time or re-entry (
This is controlled by WARMFLAG).

125

ABACUS Software SUPER Pascal Development System

5.0 THE 6510 ASSEMBLER

The 6510 assembler runs completely in harmony with SUPER Pascal. This
assembler is, however, a separate program, and must not be confused with
the compiler-integrated assembler segment. Essentially, the assembler takes
6510 assembler source code and helps you turn these source codes into
functional 6510 machine code.

The assembler itself is a Pascal program, but that makes no difference: It
will still turn out acceptable 6510 code, and you will only occasionally
notice that the SUPER Pascal assembler is slower than a standard machine
code assembler/monitor.

The great strength to this assembler is its ability to assemble huge source
texts; a splendid example of this is the m/1 runtime packet in SUPER Pascal
which has 200K of assembler squeezed into 8K of program code (divided
into 7 individual files).

Another advantage to this assembler is the fact that when machine language
is being generated directly to disk, there is no possibility of memory
collision occurring.

5.1 SOURCETEXT DESIGN

This material has already been touched upon in Chapter 3.3. Bearing that in
mind, we’ll only recap the most important items here, just to avoid repeating
ourselves too much.

The assembler converts a textfile into 6510 machine language (if the source
text is in proper syntactical form). Each line is set up in a columnar
arrangement, with each column reserved for a specific purpose:

Text line : ZZZZ LLLLLLLL III OOOOOOOO...

POSITION 1-4 (ZZZZ = line number)

This field contains the line number.

127

ABACUS Software SUPER Pascal Development System

POSITION 5 (space)

This column separates the line number from the next item
(label field) with a space.

POSITION 6-13 (LLLLLLLL = label field)

This field contains the label by which specific areas within
an assembler program are recognized. Labels are written
in the same manner as Pascal identifiers:

8 significant characters
First character must be a letter
Remaining characters can be letters, numbers and/or
(ASCII $5F, the back arrow on the C-64)

POSITION 14 (space)

Separates the label field from the instruction field.

POSITION 15-17 (I I I = instruction (operator) field)

This field contains the 6510 mnemonic instruction (see
5.2), and will also accept pseudocommands (see 5.4).

POSITION 18 (space)

This space separates the instruction field from the operand.

POSITION 19 ff. (OOOOOOOO... = operand field)

The operand field, in which the operand corresponding to
the operation (see above) is contained; the first line gives
the address type (see 5.3 for an explanation of addressing).

Commentary can be supplied after the operand field; begin the comment line
with a semicolon (;).

128

ABACUS Software SUPER Pascal Development System

5.2 COMMAND SET

The 6510 assembler built into SUPER Pascal accepts standard 6510 (or
6502, if you prefer) mnemonics, as well as pseudo-instructions (preceded by
a period Here are all the 6510 operation codes:

ADC Add memory to accumulator with carry
AND "and" memory with accumulator
AS L shift one bit left (memory or accumulator)
BCC branch on carry clear
BCS branch on carry set
be q branch on result zero
BIT test bits in memory with accumulator
BMI branch on result minus
BNE branch on result not zero
BP L branch on result plus
brk force break
BVC branch on overflow clear
BVS branch on overflow set
CLC clear carry flag
CLD clear decimal mode
CL I clear interrupt disable bit
CLV clear overflow flag
CMP compare memory and accumulator
CPX compare memory and x-register
CPY compare memory and y-register
DEC decrement memory by one
d e x decrement x-register by one
DEY decrement y-register by one
EOR "exclusive-or" memory with accumulator
INC increment memory by one
INX increment x-register by one
INY increment y-register by one
JMP jump to new location
JSR jump to subroutine (retain return address)
LDA load accumulator with memory
LDX load x-register with memory
LDY load y-register with memory
LSR logical shift right (memory or accumulator)

129

ABACUS Software SUPER Pascal Development System

NOP no operation
ORA ”or” memory with accumulator
PHA push accumulator on stack
PHP push processor status on stack
P LA pull accumulator from stack
P LP pull processor status from stack
ROL rotate one bit left (memory or accumulator)
ROR rotate one bit right (memory or accumulator)
RTI return from interrupt
RTS return to subroutine (back to main prg.)
SBC subtract memory from accumulator w/ carry
SEC set carry flag
S ED set decimal mode
SEI set interrupt disable status
STA store accumulator in memory
STX store index x in memory
STY store index y in memory
TAX transfer accumulator to index x
TAY transfer accumulator to index y
T SX transfer stack pointer to index x
TXA transfer index x to accumulator
TXS transfer index x to stack pointer
TYA transfer index y to accumulator

5.3 TYPES OF ADDRESSES

The opcodes quoted in the last chapter are actually quite versatile - they can
be addressed in different ways. The different types of addresses and their
symbols are listed below. These types can be defined in the LABEL
EXPRESSION, with the respective operand and type stated there. The
expressions can

be made of symbolic labels
be in either decimal or hexadecimal form
be in CHAR form (ASCII)
present arguments for functions in H and L (high-byte,
low-byte form).

130

ABACUS Software SUPER Pascal Development System

The elements named can be combined with + and - for addition or
subtraction. Examples of these label expressions:

OUTPUT
I _ 0 _ P 0 R T
TIMER1
'X '
L,BUFFER+41

$D 0 L,BUFFER
$001A 13 H,MEMORY
$FFFE 1 0 2 4 H ,1 0 0 0 0

. . ADDRESS+1 LBL-2
EXIT+$10 $400+65+$F0000-M EM _ADR

The address types for the 6510 CPU:

IMP (implied) Syntax: no operand section

ACC (accumulator) Syntax: A

IMM (immediate) Syntax: #LABEL EXPRESSION

ABS (absolute) Syntax: LABEL EXPRESSIONS

ABX (absolute, X) Syntax: LABEL EXPRESSION,X

aby (absolute,Y) Syntax: LABEL EXPRESSIONS

ZPG (zero page) Syntax: #LABEL EXPRESSION

zpx (zero page,X) Syntax: #LABEL EXPRESSIONS

zpy (zero page,Y) Syntax: #LABEL EXPRESSIONS

IXX (indexed,X) Syntax: (LABEL EXPRESSIONS)

IXY ((indexed),Y) Syntax: (LABEL EXPRESSION),Y

IND (indirect) Syntax: (LABEL EXPRESSION)

REL (relative) Syntax: LABEL EXPRESSION

These types coincide with the opcodes in the following table.

131

ABACUS Software SUPER Pascal Development System

OPCODE ADDRESS TYPES
IMP ACC I MM ABS ABX ABY ZPG ZPX ZPY IXX IXY IND REI

ADC * ★ ★ * ★ ★ ★ ★

AND ★ ★ ★ * ★ ★ * ★

ASL ★ ★ * ★ ★

BCC *
BCS *

BEQ ★

BIT * ★

BMI ★

BNE ★

BPL ★

BRK *
BVC *
BVS ★

CLC *

CLD *

CLI ★

CLV ★

CMP * ★ ★ ★ ★ ★ ★ *
CPX ★ ★ ★

CPY ★ ★ ★

DEC ★ ★ ★ ★

DEX ★

DEY ★

EOR ★ ★ * ★ ★ ★ ★ ★

INC ★ ★ ★ ★

INX ★

INY *
JMP * ★

JSR ★

LDA ★ ★ ★ ★ ★ ★ * ★

132

ABACUS Software SUPER Pascal Development System

OPCODE ADDRESS TYPES

133

ABACUS Software SUPER Pascal Development System

5.4 PSEUDO OPERATION CODES

The pseudo operation codes accepted by the assembler are for controlling the
assembler and generating code. All pseudo opcodes are preceded by a
period (.):

CONTROL pseudo opcodes:

. BA (Begin Assembly)
Syntax: . BA ADDRESSEXPRESSION

This command defines the starting address for the machine code.
ADDRESSEXPRESSION stands for an absolute address in decimal or
hexadecimal form, or for an expression already defined as a label.

NOTE:
Expressions should NOT contain spaces; any material after spaces will be
viewed as commentary by the assembler (and consequently ignored).

.CT (ConTinue w ith ...)
Syntax: . CT FILENAME

This command appends separate source programs. FILENAME stands for
the file desired in the current disk drive.

.Dli (Define Label)
Syntax: . DL ADDRESSEXPRESSION

This command will determine the comparison between an already-used label
name, and the address given at ADDRESSEXPRESSION.

.EN (ENd of assembly)
Syntax: . EN

This signals the conclusion o f assembly. . EN can be defined as a label (e.g.,
END .EN).

134

ABACUS Software SUPER Pascal Development System

.EQ (ifEQualtoO)

.NE (if uNEqual to 0)

. . . (end of condition)
SYNTAX: . EQ ADDRESSEXPRESSION

. NE ADDRESSEXPRESSION
. . . ADDRESSEXPRESSION

These instructions will handle conditional assembly; the details are handled
in 3.3.

.OC (Objectcode Clear)

.OS (ObjectcodeSet)
Syntax: . OC

.os

These codes switch the machine code generator off (.OC) and on (.OS); the
default value of the generator (i.e., at power-up) is ON. This option allows
insertion of already- assembled external program code.

PROGRAMMING pseudo opcodes:

.BY (BYte (table)
Syntax: . BY BYTELIST

This can insert any sequence of bytes of running machine code. The number
of bytes are governed by the size of the bytelist (min. 1 BYTE - max. to end-
of-line). If more bytes need be generated, just keep calling up . BY in the
lines to follow. A BYTELIST is any set of bytes; they can be in decimal or
hex; or, individual characters and strings, e.g.:

.BY 0 128 2 5 5
•BY 0 $80 $FF
.BY 'A ' 'C ' 'E ' 'U '
.BY 'SUPER PASCAL'
.BY 0 'A ' $80 'DATA' 255

A commentary character (;) or a c/r ends the bytelist in any line.

135

ABACUS Software SUPER Pascal Development System

.DS (Displacement)
Syntax: . DS ADDRESSEXPRESSION

This command can create large memory ranges in machine language. The
assembler generates code from $00 through the amount stated in
ADDRESSEXPRESSION; the assembly continues with the next available
memory address.

.SA (Set Address)
Syntax: . S A LABELEXPRESSION

From this command, the assembler generates a 2-byte address (low-
byte/high-byte) and puts it into the code. LABELEXPRESSION is an
expression made up of any labels and/or absolute addresses (hex or decimal).

5.5 RUNNING THE ASSEMBLER / OPTIONS

The assembler is loaded from the MAIN menu using the ’A’command; it
will load an assembler sourcecode from diskette. The system prompts with:

FILE-TITLE = ?
DRIVE(MAP) = x

The default value for x is the number of the disk drive last used; by rights,
then, you need only press <RETURN>.

If the file to be assembled was edited most recently, you can simply respond
to the FILENAME prompt by pressing * and <RETURN>. The system asks
for verification:

CONFIRM "FILENAME, DRIVE_NR"? N/Y

Any incorrect input will abort the assembler, and return you to the MAIN
menu.

When all materials have been properly entered, the assembler will load from
the system diskette (which requires LOADDAT and C ASMBLR in drive

136

ABACUS Software SUPER Pascal Development System

0). If the textfile is not found, or if the file isn’t a textfile, the system will
display the proper error message and return you to the MAIN menu.

Once the assembler has initialized, and the sourcecode file has been opened,
the assembler displays

* C=64 6 510 ASSEMBLER 5 .3 *

and prompts with

LISTING ? Y/N

so it knows whether or not to run a program listing (not designed like the
source text, but rather a listing of memory locations and machine code in hex
notation). If commentary running over 80 characters per line exists, the right
portion of the commentary will be cut off. The system questions further:

HARDCOPY ? Y/N

— giving you the option of seeing the listing on screen or on paper. If you
choose the latter, the output device numbers will be requested:

OUTPUT-DVC = 4 , 0

Once this is confirmed, PASS 1 of the assembly process will commence.

The assembler might find some syntax or formula errors: An error message
and the offending line will be displayed. For example,

2 0 0 5 1_BUFFER LDA #1

will generate

ILLEG. CHARACTER IN LABEL ERROR IN . .
2 0 0 5 1_BUFFER LDA #!

If you’re reading this onscreen rather than on a printout, the assembler will
wait for you to press the <RETURN> key before continuing - to give you a
chance to write the problem down.

137

ABACUS Software SUPER Pascal Development System

Here are the possible error messages:

ILLEG. CHARACTER IN LABEL ERROR IN . .
ILLEG. MNEMONIC ERROR IN . .
ILLEG. PSEUDO ERROR IN . .
ILLEG. OPERAND ERROR IN . .
ILLEG. BYTE-DEFINITION ERROR IN . .
LABEL NOT FOUND ERROR IN . .
DUPLICATE LABEL ERROR IN . .
ILLEG. ADDR. MODE ERROR IN . .
ILLEG. INDEX ERROR IN . .
ILLEG. ADDRESS ERROR IN . .
LONG BRANCH ERROR IN . .
.EN MISSING ERROR IN . .

If the first pass goes without a hitch, the assembler announces the good
news:

PASS 1 OK

- and starts PASS 2, which assembles the file, and stores it on diskette as a
temporary file (CODDAT). Errors are displayed just as in PASS 1.

If all has gone well, the assembler lets you know -

PASS 2 OK.
----- > 0 ERRORS _ —

- and asks for the name of the object code file:

TITLE OF OBJECT-FILE =

You give the identifier that you wish this m/1 program to have.

Next, you’ll be asked about the fate of the label list:

LABEL-FILE TO DISC ? Y/N

Choosing ’ Y’ will make the system ask for a filename:

138

ABACUS Software SUPER Pascal Development System

TITLE OF LABEL-FILE =

LABEL-FILE TO PRTR ? Y/N

This gives you the option of printing out the label list file. If ’Y’ is chosen,
the system will ask for the printer address:

OUTPUT-DVC = 4 , 0

If you so desire, the label file can be sent to the screen and/or the printer.
One more time, you’ll be asked about the label list:

LABEL-LISTING ? Y/N

This time, if you say ’Y’, the system will put this listing onscreen. The list is
arranged in alphabetical order of labels, together with their address
definitions. The list can be stopped and resumed by pressing <SPACE>.
The RUN/STOP key aborts the output, and returns you to the MAIN menu.
Choosing ’N’ for the label list prompt will also send you back to the MAIN
section.

If errors are found during PASS 2, the system scratches (deletes) the
temporary file CODDAT; the label list is still accessible, however. Leaving
the assembler automatically loads and starts the Editor, which loads the bad
sourcecode, so that you can immediately go in and debug i t From there, you
must go back to the MAIN before calling the Assembler.

Pressing the RUN/STOP key while in the Assembler will display a

BREAK . . .

and load the Editor and sourcefile.

Here is a short program demonstrating the design of an assembly program,
the program listing output and the label list output The program should
switch the C-64’s screen on and off in intervals of one second.

139

ABACUS Software SUPER Pascal Development System

1000 DEMO .BA $ 0 8 0 0 ; DEMO PROGRAM SWITCH SCREEN
10 0 5 /
1010 CPUPORT .DL 1 ; DETERMINE MEM. CONFIGURATION
10 1 5 VICREG17 .DL $D 0000+ 17 ; SW. SCREEN BIT 4 OFF
1020 MARKER .DL $FF00 ; MARKER CELL FOR SCR. MODE
10 2 5 r

1030 START LDY #0 /RESET COUNTER
1 0 3 5 STY MARKER /IN IT IA L IZ E MARKER
1040 LOOPO JSR SWITCH /SWITCH SCR. MODE
1 0 4 5 DEC MARKER /MARK BIT 0
1050 LOOP1 JSR DUMMY ; 11 -COUNT CPU TIME DELAY
10 5 5 DEX /LOWBYTE COUNT
1060 BNE LOOPl /2 5 6 TIMES
1 065 DEY /HIGHBYTE COUNT
1070 BNE LOOPl /2 5 6 TIMES
1 075 JMP LOOPO ; SWITCH — BREAK CONDITION
1080 / ; IS HERE
1 0 8 5 SWITCH LDA *CPUPORT
1 090 ORA #1 ; I /O BANK ON
10 9 5 STA *CPUPORT
1 100 LDA VICREG17
1 1 0 5 EOR #$ 1 0 /INVERT BIT 4
1110 STA VICREG17
1 115 LDA *CPUPORT
1120 AND #$FC ; RAM-BANK ON
1 1 2 5 STA *CPUPORT
1130 DUMMY RTS
1 1 3 5 /
1140 END .EN

1000 $ 0 8 0 0 DEMO . BA $ 0800
; DEMO PROGRAM SWITCH SCREEN

10 0 5 $ 0 8 0 0 /
1010 $ 0 8 0 0 CPUPORT .DL 1

/DETERMINE MEM. CONFIGURATION
10 1 5 $ 0 8 0 0 VICREG17 .DL $D 0000+17

; SW. SCREEN BIT 4 OFF
1020 $ 0 8 0 0 MARKER .DL $FF00

;MARKER CELL FOR SCR. MODE

140

ABACUS Software SUPER Pascal Development System

10 2 5 $ 0 8 0 0 /
1 030 $ 0 8 0 0 AO 00 START LDY #0 /RESET COUNTER
1 0 3 5 $ 0 8 0 2 8C 00 FF STY MARKER

; INITIALIZE MARKER
1040 $ 0 8 0 5 20 17 08 LOOPO JSR SWITCH

; SWITCH SCR. MODE
1 0 4 5 $ 0 8 0 8 CE 00 FF DEC MARKER;MARK BIT 0
1 0 5 0 $080B 20 2B 08 LOOP1 JSR DUMMY

; 11-COUNT CPU TIME DELAY
1 0 5 5 $080E CA DEX ; LOWBYTE COUNT
1060 $080F DO FA BNE LOOP1 ;2 5 6 TIMES
10 6 5 $ 0 8 1 1 88 DEY ; HIGHBYTE COUNT

10 7 5 $ 0 8 1 4 4C 05 08 JMP LOOPO
; SWITCH — BREAK CONDITION

1 080 $ 0 8 1 7 / ; IS HERE
1 0 8 5 $ 0 8 1 7 A5 01 SWITCH LDA *CPUPORT
1090 $ 0 8 1 9 09 01 ORA #1 ; I /O BANK ON
1 0 9 5 $081B 85 01 STA *CPUPORT
1100 $081D AD 11 DO LDA VICREG17
1 1 0 5 $ 0 8 2 0 49 10 EOR # $ 1 0 /INVERT BIT 4
1 110 $ 0 8 2 2 8D 11 DO STA VICREG17
11 1 5 $ 0 8 2 5 A5 01 LDA *CPUPORT
1120 $ 0 8 2 7 29 FC AND #$FC /RAM-BANK ON
1 1 2 5 $ 0 8 2 9 85 01 STA *CPUPORT
1130 $082B 60 DUMMY RTS
11 3 5 $082C /
1 140 $082C END .EN

PASS 2 OK.

> 0 ERRORS <

LABELLIST
CPUPORT $ 0 0 0 1 DEMO $ 0 0 0 0 DUMMY $082B
END $082C LOOPO $ 0 8 0 5 LOOPl $080B
MARKER $FF00 START $ 0 8 0 0 SWITCH $ 0 8 1 7
VICREG17 $D 011

141

ABACUS Software SUPER Pascal Development System

6.0 UTILITY MENU

The Utility program is an extremely useful software packge. You know that
a utility is universally defined as a program that helps you program; our
packet gives you simple disk management and help in running SUPER
Pascal. Pressing ’U’ brings you to the Utility menu; it is important that two
programs, LOADDAT and C_UTILIT, be in disk drive 0.

One advantage of the Utility program is that the loading of programs can be
handled in this section itself. Once this menu is started, the system diskette
is no longer needed. Here’s what you’ll see on initialization:

* C=64 FILE-U TILITY 5 .3 *

COMMANDS = . . .

A(DVICE)
B (LOCKTABLE)
C(OPY)
D(UPLICATE)
E(NTERSECT)
F (ETCHSECT)
G (ETRAM)
I(NSERT ADV)

J(UMP)
K (ILLTITLE)
L(OCKFILE)
M(AP/DRIVE)
N(EWDISC)
O(RGANIZE)
Q(UIT)
R(ENAME)

S(TOREMEM)
T (RNSFRMEM)
U(NLOCKFILE)
V (IEWMEM)
W(RITEDIR)
X(CLUDEBLC)
Z (EROBLOCK)

The cursor always turns into a dollar-sign ($) when you’re in Utility. As
mentioned previously, typing the first letter and <RETURN> gets you the
individual menu selections; all other input requires pressing the <RETURN>
key at the conclusion of the input line. Numbers can be entered in decimal
or hexadecimal form (preceded by $, of course). False string input will be
answered with

ILLEG. INPUT!
EXECUTION NOT SUCCESSFUL!

Improper numeric input will yield

143

ABACUS Software SUPER Pascal Development System

INVALID INPUT
EXECUTION NOT SUCCESSFUL!

Disk access defaults to system drive 0; the 'NT command can redefine drive
numbers.

The Utility program is fairly insensitive to errors - any problems will bring
up appropriate error messages, and hand control back to the Utility menu
itself.

You have the option of sending Utility output to the screen or a printer. The
default printer address is 4,0 but you can change it at any time with

6X,Y
with X representing the primary address, and Y the secondary address.

6.1 UTILITY COMMANDS

6.1.1 A (= ADVICE)

This command lets you review the user-specific information in any file
(assuming that information has been added - see T). First prompt is:

FILE-TITLE =
to which you respond with the filename which has the information you want
to view. The system searches the disk drive and displays

ADVICE TO "FILENAME,DRIVE_NR":
current information ...

If no information exists,

... NO ADVICE INSERTED!
appears. If the file itself doesn’t exist, you’ll see

144

ABACUS Software SUPER Pascal Development System

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

6.1.2 B (= BLOCKT ABLE)

This command displays the block table map (or block availability map, as
it’s known in BASIC) of a diskette. The table is in Pascal-DOS, which
meahs that the diskette is divided into 40 blocks of 4K each, with each block
subdivided into 8 512-byte sectors.

’B’ displays individual blocks with symbols explaining status. Here are the
symbols, and their definitions:

F (FREE)
The block displayed is ready to be used. The internal
content is 0.

I (INVALID)
This block shouldn’t be changed; it contains the disk
directory and information (see 6.1.1 and 6.1.9). Internal
value is 255 ($FF).

U (USED)
This block is filled; internal value is >= 80 and <96.

X (eXCLUDE)
This block has been reserved from the DOS (see the ’X’
command); the block can be freed up with the ’Z’
command. Internal value is 256 ($FE).

The block table of the system disk looks something like this:

145

ABACUS Software SUPER Pascal Development System

BLOCK-TABLE OF DISC "PASCAL ,0":
... ('XCLUDE,FREE,INVALID,USED)
0: I U U U U U U U U U

10: U U U U U F F F F F
20: F F F F F F F F F F
30: F F F F F F F F F F

6.1.3 C (= COPY FILE)

Here you can copy Pascal-DOS files, regardless of type. The system
prompts for the following parameters:

SOURCE - DRIVE = ?
DESTINAT-DRIVE = ?
FILE-TITLE = ?

Any bad input will repeat the prompts. Once all input is sent, the system will
copy the file. If the system has two disk drives, the program will perform
data transfer in a block-wise manner, while the single-drive system will load
the file, ask you to change to the destination disk, and press <RETURN>,
which will save the file to the new diskette.

Other information (ADVICE) is copied as well as the file. The procedure
ends with "READY" displayed. If there is insufficient space on the
destination disk, you’ll get either

DISC OVERFLOW!
EXECUTION Nrvr SUCCESSFUL!

or

MAP OVERFLOW!
EXECUTION NOT SUCCESSFUL!

If the destination disk has a filename identical to the file you’re copying,
you’ll get

146

ABACUS Software SUPER Pascal Development System

FILENAME EXISTS ON DESTINATION-DISC!
SURE TO REWRITE FILE ? Y/N

to which if you respond ’ Y’, the old file will be overwritten by the new.

6.1.4 D (= DUPLICATE DISC)

In cases where large amounts of information must be copied (or, for that
matter, all 40 blocks of a diskette), the ’D’command is at your disposal; it
can be used ONLY with a two-drive system:

SOURCE - DRIVE = ?
DESTINAT-DRIVE = ?

requires your response (0/1). Since the destination diskette may be
overwritten, you’ll get this prompt to confirm:

DISC MAY BE USED; SURE TO REWRITE ? Y/N
Once the parameters have been given, the system performs blockwise
copying -

COPYING; PLEASE WAIT!
BLOCK IN PROGRESS ... x

If you try this command with only one disk drive, the system will protest:

NO DUPLICATING WITH SINGLE-FLOPPY!
EXECUTION NOT SUCCESSFUL!

Should something go wrong to stop the copying process (e.g., drive switched
off, no diskette in drive, unformatted diskette, etc.), a corresponding error
message appears, and execution ceases.

NOTE:
Duplication can only be done on diskettes formatted with SYSGEN!!

147

ABACUS Software SUPER Pascal Development System

6.1.5 E (= ENTER SECTOR)

This command allows any 512 byte memory range to be saved to any sector
of the diskette. The following parameters are requested:

RAM-ADR = ?
SECTOR# = ?

Input errors will make these prompts repeat.

Disk sectors are lined up in a logical sequence, with eight sectors to a block
(sectors 0-7 in block 0, sectors 8-15 in block 1, etc.), up to 319 sectors.
Double-drive systems offer sectors from 0-639.

In cases where the block is marked T or "U" (see 6.1.2), the system will ask
for confirmation:

CONDITION OF CORRESPONDING BLOCK: x
SURE TO SAVE INTO THIS SECTOR ? Y/N

NOTE:
There is a possibility of overwriting old data, or even destroying the disk
directory (sector 0); be careful.

6.1.6 F (= FETCH SECTOR)

The ’F’ command is the reverse of ’E’; it will transfer any sector from
diskette into memory. Prompts:

SECTOR# = ?
RAM-ADR = ?

Illegal input will be ignored. Once loaded, the sector can be displayed with
the ’V’ command.

148

ABACUS Software SUPER Pascal Development System

NOTE:
The ’F’ command doesn’t check for sufficient memory space when loading.
You have the entire memory from $4000 to $C200 available for this
command (and, in exceptional cases, $0400-$07FF (screen memory)).

6.1.7 G (= GET FILE FROM DISC TO RAM)

This command loads any file from diskette to the computer, which can be
useful for temporarily storing information as well as loading programs. This
dialogue occurs:

START-ADR = ?

- give the address of where you want the program in memory (either in
decimal or hexadecimal).

FILE-TITLE = ?

- you supply the filename.

DRIVE(MAP) = x

- give the drive number where the file can be currently found (default is the
last-used drive).

END-ADR+1 = $ x x x x

—assuming the rest of the input was valid, give the ending address in
memory.

NOTE:
This command doesn’t test for available memory, or whether any collisions
may occur (see the NOTE at ’F’ for available memory).

149

ABACUS Software SUPER Pascal Development System

6.1.8 H (= HELP)

This command displays the complete command list for the Utility menu.

6.1.9 I (= INSERT ADVICE)

Advice (extra information) is put in using this command (and read with ’A’).
Mostly, this advice can consist of version number, memory range, starting
address, etc.).

FILE-TITLE = ?

asks for the filename to which you want to add comments.

CONFIRM "FILENAME,DRIVE_NR"? N/Y

asks for verification. If the title isn’t on the diskette, the machine responds
with

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

The prompt for the information will read:

WRITE THE ADVICE (MAX. 63 CHAR.)
AND TERMINATE WITH 'RETURN' !

The comments will be stored in sectors 1-5 (block 0) of the diskette.

6.1.10 J (= JUMP)

This allows a jump to any machine language or Pascal program in memory.

PRGM-ADR. = ?

150

ABACUS Software SUPER Pascal Development System

- you give the jump address.

NOTE:
There is no control over memory overlapping.

You have $4000 to $C200 at your disposal for a jump. When through with
the routine, it would be wise to have

JMP $0800

for the last command (this returns you to the Utility menu); do NOT return
to $0028-$004F, S0340-S0379 or $0800-4000.

The 6510 command

JMP $C200

will return you to the MAIN menu.

6.1.11 K (= KILL TITLE)

The ’K’ command allows you to delete diskette files no longer needed.

FILE-TITLE = ?
asks for the filename you wish scratched.

CONFIRM "FILENAME,DRIVE_NR ? N/Y
asks for verification; ’Y’ will delete the file (the disk drive can be redefined
with the ’M’ command).

If the file isn’t in the drive, you’ll get

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

and a stopped command.

151

ABACUS Software SUPER Pascal Development System

If the file is locked, the Utility will recheck -

FILE IS LOCKED!
SURE TO KILL THE FILE ? N/Y

Pressing ’ Y’ will kill the locked file.

At the conclusion of the process, the revised directory will be displayed
onscreen.

6.1.12 L (= LOCK FILE)

Files can be protected from overwriting and deletion by this command. The
Utility asks:

FILE-TITLE = ?

If file isn’t existent, the system says

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

The appropriate file is locked (and is shown in the directory in reverse
video).

6.1.13 M (= MAP/DRIVE)

The ’M’ command serves to display the directory (or MAP) of a diskette
onscreen.

DRIVE(MAP) = x
x defines the drive desired; the default is the last utilized disk drive, so a
<RETURN> alone will often suffice.

152

ABACUS Software SUPER Pascal Development System

Note that the ’M’ command reads Pascal-DOS disks ONLY! Since the DOS
has been rewritten, the system cannot read disks formatted in the "normal"
way. The system disk, with the exception of 22 blocks of normal size (256
bytes), the entire Pascal disk is under Pascal-DOS.

The directory shows filenames and the number of blocks still available on
the disk (remember, Pascal blocks equal 4K each).

The map of the boot diskette looks like this:

MAP OF DISC "PASCAL ":
LOADDAT SYSGEN C_EDITOR C_UTILITY
C_CPLR C_ASMBLR C_PMDUMP
DISC 0 = 18 //
BLOCKS FREE !

Further information about chosen files can be had with the ’W’ command.
See Chapter 7 for more information about Pascal-DOS.

6.1.14 N (= NEW DISC)

This command clears the directory of a diskette already formatted using
SYSGEN. First, state which drive has the disk to be "newed out":

DRIVE(MAP) = x

Default value is the last disk drive accessed. Incorrect input is treated as
mentioned earlier.

For security reasons, the Utility asks the user for confirmation:

DISC MAY BE USED; SURE TO REWRITE ? Y/N

If you wish to go on, respond with ’Y’; the system will ask:

DISC-TITLE = ?

- you give the name you want given to the diskette.

153

ABACUS Software SUPER Pascal Development System

N OF DISCS = ?
Answering 9V will new one disk (40 blocks); ’2’ (assuming you have two
drives) will new BOTH disks for use as one (totaling 80 blocks).

The new directory will be listed on the screen

6.1.15 O (= ORGANIZE DISC)

This command works in connection with ’N’ - where in ’N’, two disk drives
are used to create one directory, this command can return us to ”single disk"
status. Also, the disk is ”organized" -- a closer packing of files.

DRIVE(MAP) = x
x = the drive number which contains the system diskette. Concluding with

NEW SIZE =
reorganizes the disk. If your input above is equal to 2, be sure that the
second disk is in drive 1 (the second drive). An input of 1 separates the
material in drive 0 from the files in drive 1. This procedure must conclude
with the ’N’ command if the second diskette has files on it, the Utility says:

DISC >= 1 NOT FREE!
SURE TO RESIZE DISC ? Y/N

6.1.16 P (= PUT RAM AS FILE TO DISC)

Store any memory contents to diskette as a datafile (see ’G’ to retrieve).
Parameters are as follows:

154

ABACUS Software SUPER Pascal Development System

START-ADR. = ?
END-ADR.+l = ?
FILE-TITLE = ?
DRIVE(MAP) = x

Addresses can be in decimal or hex; filenames must be given per syntax for
Pascal identifiers:

8 significant characters
1st char, must be a letter
remaining chars, can be letters, numbers and

Default for x is the last drive number accessed.

NOTE:
Any file already on the destination diskette with the same name as the file
being saved will be overwritten, unless the original file is locked: Then

IL.FILE OPR. ERROR!
will appear.

You have the following memory available to you for this procedure:

$0000—$CFFF(RAM); $D000-$DFFF(I/O); $E000-
$FFFF(KERNAL)

6.1.17 Q (= QUIT)

Exits Utility menu and goes to MAIN.

6.1.18 R (= RENAME FILE)

’R’ lets you rename any file in the directory. The system will ask:

FILE-TITLE = ?

155

ABACUS Software SUPER Pascal Development System

You give the filename to be changed (NOTE: The disk with this file must be
in the directory, or a ’TITLE NOT FOUND!’ error will appear).

REP LACEMENT=

is the prompt for the new filename. The directory will then be changed, and
the revised map shown onscreen.

If the new filename already exists, the Utility states

TITLE EXISTS ON THIS DISC!
EXECUTION UNSUCCESSFUL!

and the procedure is left undone.

It is also possible to change the diskette name itself with ’R’.

6.1.19 S (= STORE BYTE INTO MEMORY)

Byte information can be immediately changed in the 64, and stored in
memory. The system will ask:

MEM-ADR =
CONTENTS=

Give the memory address and the contents of that address (both in decimal
or $hexadecimal); a CONTENT of over 255 ($FF) will be ignored by the
Utility.

NOTE:
No testing for the legality of the content in the memory location.

156

ABACUS Software SUPER Pascal Development System

6.1.20 T (= TRANSFER MEMORY-BLOCK)

Here you can transfer memory contents (for test purposes) in increments of 1
memory page (256 bytes); however, the starting address can be virtually any
number (see below), just as long as you don’t go past page borders (low-
order byte = $00).

ADR OF SOURCE - PAGE = ?
ADR OF DESTINAT-PAGE = ?

The input can be either in hex or decimal.

NOTE:
The target range isn’t tested for what sort of manipulation it can perform.
Use this command only if you’re well-versed in memory management. You
have available memory of $4000- $CFFF.

6.1.21 U (= UNLOCK FILE)

Opposite of ’L’ - unlock secured files.

FILE-TITLE = ?
requests the filename, which must be in the disk drive (drive can first be
redefined with ’M’, as necessary). If the file isn’t onhand, the system
responds with

TITLE NOT FOUND!
EXECUTION NOT SUCCESSFUL!

and starts over again. Assuming that all is well, the file is unlocked, and the
revised directory is displayed.

157

ABACUS Software SUPER Pascal Development System

6.1.22 V (= VIEW MEMORY)

The ’V’ command lists any memory range to the screen or a printer; contents
will be printed out in hexadecimal and ~ when possible - in ASCII form
(hex-dump). The Utility asks for

START-ADR. = ?
END-ADR.+1 = ?

which can be given in either hex or decimal. If the start and end addresses
are identical, the Utility will show the one line on screen. If a fair amount of
memory is requested, the prompt

HARDCOPY TO PRINTER ? Y/N
will appear. Any changes to the printer addresses can be made according to
the introduction to this chapter.

A memory dump of, say, $C200-$C22F would look like this:

«MEMORY DUMP»

$C200:20 21 CA 12 C2 00 00 BC !.....
$C208:FI Cl 00 00 00 C2 FD FF
$C210:00 00 4D 19 C2 FF B1 11 ..M....
$C218:C6 80 1C 2A 20 43 3D 36 ...* C=6
$C220:34 20 20 50 41 53 43 41 4 PASCA
$C228:4C 2D 53 59 53 54 45 4D L-SYSTEM

Memory contents in the range $20-$7f are ASCII characters. This listing
can be stopped and restarted with the <SPACE> bar; pressing RUN/STOP,
however, aborts the program.

158

ABACUS Software SUPER Pascal Development System

6.1.23 W (= WRITE DIRECTORY)

This command sends an entire disk directory to the printer in extended form
(with extra information):

CONDITION:
Whether the file is locked or unlocked.

STARTBLOCK
The first block in which information is stored on diskette.

LENGTH
File length — in an X,Y format (X= number of 256-byte
pages, and Y= remainder not counted in X).

ADVICE
File information. If non is available, ’—’ is printed.

After calling the ’ W’ command, you’ll be asked for the drive number:

DRIVE(MAP) = x

As before, the default for x is the last drive used.

Finally, the output mode will be asked for:

HARDCOPY TO PRINTER ? Y/N
Responding with "Y" will start printer output. Printer specification should
be done with ’@X,Y’, as previously mentioned in the introduction to
Chapter 6.

You have a choice of seeing the extended directory onscreen or on paper ;
you have control over the first by pressing the <SPACE> bar to stop and
resume output. Pressing RUN/STOP breaks off either screen or printer
output

Here is a sample directory - one of a disk just formatted with SYSGEN:

159

ABACUS Software SUPER Pascal Development System

« DIRECTORY OF DISC ”PASCAL ,0” »
FILE-TITLE ”LOADDAT”
CONDITION:LOCKED STARTBLOCK: 1

LENGTH: 63.255 ADVICE: --

(list of files)

TOTAL: 1 DISC // 1 TITLES //
5 BLOCKS (35 FREE)//

6.1.24 X (= ’XCLUDE BLOCK)

This command allows you to set aside blocks of memory from regular use
by the DOS. Such a block registers in the block availability map with a
value of 254 ($FE), and is marked on the block table with an ’X’. Answer
the prompt

EXCLUDING-BLOCK =

with an appropriate number; attempts to exclude the directory block (block
0) will be turned away with

INVALID INPUT!
EXECUTION NOT SUCCESSFUL!

The new BAM will be displayed on the screen.

Excluded blocks can be accessed with the ’E’ command.

160

ABACUS Software SUPER Pascal Development System

6.1.25 Y (= LIST FILE)

This generates a hex-dump from any Pascal-DOS-accessible file (similar to
’V’, which dumps a certain memory range).

FILE-TITLE = ?
Give the name of the file to be listed - must be in the directory (and,
consequently, in the disk drive).

HARDCOPY TO PRINTER ? Y/N
’ Y’ sends the file to the printer, rather than to the screen.

NOTE:
File dumps will begin with $0000, regardless of memory address at which
the file is located.

Onscreen dumps can be stopped and resumed with the <SPACE> bar -
RUN/STOP aborts any dump format.

Here’s a sample dump:

« FILE-DUMP of "LOADDAT ,0" »
$0000:20 21 CA 12 F7 81 00 BA i

</> o o o 00 Cl 00 00 00 F7 FE FF
$0010:00 00 4D 34 F8 4C 09 CA ..M4.L..
$0018:4C 06 CA 5E 02 79 41 26 L..A.YA&
$0020:F1 08 5F FA F7 08 FC 08
$0028:40 29 79 5E 02 79 6B 79 @YYA.YkY

161

ABACUS Software SUPER Pascal Development System

6.1.26 Z (= RELEASE BLOCK TO ZERO)

This releases an excluded block for regular use by the Pascal-DOS, and give
the block a value of 0 (marked in the block table with an ’F’).

RELEASING-BLOCK (TO ZERO) =
Input any number except 0 (directory block).

If this block is already occupied with memory, the system will confirm:

BLOCK IS USED! SURE TO RELEASE ? Y/N

REMEMBER: If you say ’Y’ after this prompt, the data that was in this
block is lost forever.

The procedure concludes with a display of the revised BAM.

162

ABACUS Software SUPER Pascal Development System

7.0 SYSTEM-SPECIFIC INFORMATION

This chapter should give you enough detailed information about SUPER
Pascal’s design to let you develop, adapt and change it to suit your own
needs. You can reach this information with your own file access.

7.1 SYSTEM SIZE AND DEFINITION

Variable Design

BOOLEAN VARIABLES are one byte in size, and are one of two values:

FALSE = 0000 0000
TRUE = 0000 0001

CHAR and BYTE VARIABLES represent user-specified scalar variables,
and run in a range from

to
0 ($0 0)

255 ($FF)
0000 0000

1111 1111

CHAR VARIABLES stand for the ASCII codes of the characters in the
C64’s system.

INTEGER VARIABLES are two-byte, binary-coded numbers, where the
msb (most significant bit) contains the integer information (0 for positive, 1
for negative). They have the following range:

-32767 (-MAXINT) ($8001) = 1000 000 0000 0001
-1 ($FFFF) = 1111 1111 1111 1111

0 ($0 0 0 0) = 0000 0000 0000 0000
1 ($0 0 0 1) = 0000 0000 0000 0001

+32767 (+MAXINT) ($7FFF) = 0111 1111 1111 1111
REAL VARIABLES total 6 bytes in binary-coded exponential form. The
most significant byte represents the binary exponent:

163

ABACUS Software SUPER Pascal Development System

(2A) -127 ($01)
(2A) 0 ($80)
(2A) 127 ($FF)

0000 0001
1000 0000
1111 1111

The remaining five bytes represent the normal Mantissa, i.e., the msb is
always 1, so that its representation is assured. The Mantissa function is
integral (1 = positive, 0 = negative). For example:

-23.5 would be (in binary) -10111.1 = -1.01111 * 10 A 100
with the following 6 bytes: $84 $BC $00 $00 $00 $00

Zero is not available here. The value 0 would be arranged with an exponent
of 0 ($00) thus:

$00 $80 $00 $00 $00 $00
ADDRESS quantities are represented in two bytes.

SET VARIABLES can contain up to 256 elements (256 bits = 32 bytes).
The lesser byte represents the elements 0-7, while the greater byte stands for
the elements 248-255.

ARRAY VARIABLES are represented sequentially, from lowest to highest
address.

RECORD VARIABLES are analogous to array variables.

Here are the variables in sequence from top-of-stack to bottom-of-stack:

164

ABACUS Software SUPER Pascal Development System

HIGH ADDRESS

A, B : INTEGER;

C :REAL;

D, E :ARRAY[1 . . 3] OF CHAR;

F :RECORD
G :BOOLEAN;
H :BYTE;
CASE I : INTEGER;

1:(J:STRING);
2: (K: SET OF 0..255)
END;

______A(HIGH)_____
_______A(LOW)_____
______B(HIGH)_____
_______B(LOW)_____
______C(EXP)_____
____C(MAN.HIGH)___
____C (MAN.__1_)___
____C (MAN._3 _)___
____C (MAN.__4_)___
____C (MAN.__5_)___
____C(MAN._LOW)___
_______D [3]_______
_______D [2]_______
_______D [1]_______
_________ E [3] _________
_______E (2]______
_______E [1]______
____K (248..255)__
____K (240..247)__
_____K(. . .)___
K (8..15) / J(HIGH)
K(0..7) / J(LOW)
’_____I (HIGH)_____
_____I(LOW)_____
_______H_________
_______G_________
LOWEST ADDRESS

165

ABACUS Software SUPER Pascal Development System

PROCEDURE/FUNCTION descriptions take up 6 (7) bytes, and are set on
the stack with every procedure/function call. These 6 (7) bytes represent:

Dynamic link (2 bytes)
Return address(2 bytes)
Static link (2 bytes)
(segment nr. (1 byte))

System-defined runtime errors are as follows:

0 = OK (I/O error 0
1 = NA
2 = IL.INPUT
3 = NA
4 = OUT OF RNG.
5 = NOT EXQ.
6 = NUM.OV.
7 = B .SUBS.
8 = IL.QUANT.
9 = STK.OV.

10 = ZERO-DIV
11 = IL.DVC.
12 = FLOPPY­ (I/o ERROR i)
13 = NOT OPEN (I/o ERROR 2)
14 = NOT CLO. (I/O ERROR 3)
15 = BUF.OV (I/O ERROR 4)
16 = DIR.OV. (I/o ERROR 5)
17 = NOT FND. (I/o ERROR 6)
18 = DSC.OV. (I/O ERROR 7)
19 = DSC.MISM. (I/O ERROR 8)
20 = IL.FILE OPR. (I/O ERROR 9)
21 = AFTER EOF (I/o ERROR 10)
22 = IEE - (I/O ERROR 11)

166

ABACUS Software SUPER Pascal Development System

12 MEMORY LAYOUT AND ADDRESSES

SUPER Pascal uses the following addresses in the 64:

$0028..$0029 Start-of-stack pointer
$002A..$002B unused reserve pointer
$002C..$002D base-pointer
$002E..$002F top-of-stack pointer (STKPOI)
$0030..$0031 pointer for current heap
$0032..$0039 diverse pointers (usable in assembler

routines)
$003A..$004F Fetch routine for "P-machine"
$0050..$0066 sundry zero-page cells
$0067..$006F assorted C-64 system registers
$0100..$0184 INPUT buffer
$0185..$01F9 6510 machine stack
$01FA..$01FF RANDOM variable

$0340..$0348 Descriptor for 1st file buffer
$0349..$0351 Descriptor for 2nd file buffer
$0352..$035A Descriptor for 3rd file buffer
$035B Error-trap flag
$035C I/O ERROR number
$035D Working disk drive
$035E ”EXECUTE” flag
$035F temporary disk drive
$0360 Warm flag
$0361..$0362 MAIN menu pointer
$0363..$0364 Start-of-program pointer
$0365..$036C Filename for source transfer
$036D Transfer drive for PUT/GET sector
$036E..$036F Sector number for PUT/GET sector
$0370 INPUT device
$0371..$0372 INPUT secondary address
$0373 OUTPUT device
$0374..$0375 OUTPUT secondary address
$0376. .$0379 assorted uses
$037A..$03FF OUTPUT buffer

167

ABACUS Software SUPER Pascal Development System

$0800..... Start of programming memory

$BBFF End of regular free stack

$BC00..$C1FF MAIN menu variable stack
$C200..$C7FF MAIN menu
$C800..$F0FF SUPER Pascal runtime packet

$CA03 JUMP for external printer routine
$CA0 6 JUMP on GET sector

(variable transfer on Pascal stack:
Drive number (high)
Drive number (low)
Sector number(high)
Sector number(low)
RAM address (high)
RAM address (low))

$CA0 9 JUMP on PUT sector
(variable transfer like GET sector)

$CA0C JUMP on runtime error
(error number put on Pascal stack)

$CA0F JUMP to MAIN menu
(JMP $C200)

$CA12 Indirect JUMP on program end
(regular:MAIN menu (JMP($0361)))

$CA15 Indirect JUMP to program
(regular at $0800 (JMP ($0363)))

$F300..$F6FF 1st file buffer
$F700..$FAFF 2nd file buffer
$FB00..$FEFF 3rd file buffer

$FFFA..$FFFF Machine vectors

168

ABACUS Software SUPER Pascal Development System

73 DISKETTE ORGANIZATION

Diskettes are laid out in Pascal-DOS, i.e., 320 sectors (0..319), with each
sector totaling 512 bytes. Data is transferred in this DOS by the GET-sector
and PUT-sector routines ($CA06 and $CA09 respectively). Each sector in
Pascal-DOS is double the size of a normal DOS sector (256 bytes); the
changed DOS cuts the number of available disk blocks from 683 to 640,
with the remaining 43 blocks unused by SUPER Pascal. The blocks are
arranged as follows:

Track 1 - 17 / Sector 20
Track 18 / Sector 0,
Track 19 - 24 / Sector 18
Track 25 - 30 / -

Track 31 - 34 / Sector 16
Track 35 / Sector 6

The blocks T1/S20 and T2/S20 contain the loader software for changing the
DOS in SUPER Pascal. T18/S0 and T18/S1 hold the directory and BAM in
regular DOS, while T18/S9, S10, S18, as well as T17/S20, T16/S20,
T15/S20 and T14/S20 store the SUPER Pascal boot software.

The 320 sectors of a Pascal diskette aren’t read individually; rather, in
clusters of eight (blocks). Such a block comprises 8 X 512 bytes = 4096
bytes or 4k. This block-wise arrangement of sectors gives you a total of 40
blocks per diskette, which increases to 80 blocks when two drives are used
in concert. The first block of every diskette (#0) is reserved for internal use
(contains #255). Block 0 of sector 0 is set aside for the Pascal DOS
directory; this directory is arranged schematically. Sectors 1..5 of block 0
are used for storing advice (additional information). The remaining sectors
(6 and 7) are free.

GET-sector and PUT-sector (mentioned previously) allow access to all 320
sectors. With the help of these routines, you can reserve blocks for your
own file- and diskette management, or data handling; you can also handle
program control of the directory. Just use these routines as USER functions:

169

ABACUS Software SUPER Pascal Development System

USERFUNC GETSECTOR(DRIVE,SECTOR,RAMPOINTER:INTEGER)
:BOOLEAN;
and

USERFUNC PUTSECTOR(DRIVE,SECTOR,RAMPOINTER:INTEGER)
: BOOLEAN;

and use SETADR to get the desired address. Calling the function transfers
the disk drive number, sector and RAM pointer to the specified memory
range. If you’ve declared the memory range as a variable, you’ll have to
give the function as parameters of the variable address (LOCALITY). The
return value of the function is FALSE for bad execution, and TRUE if
everything runs correctly.

The directory is accessed in SUPER Pascal in a similar manner; the directory
is loaded into an appropriate variable range. This declaration has the
following design:

(START (top end) OF DIRECTORY)
EQUALIZE
WORKBLOCK
BLOCKTABLE
LASTBYTE
STARTBLOCK
FIXFLAG
WORKNAME
TITLETABLE
DISCNAME
DISCNUMBER
DISCSIZE

BYTE;
BYTE;
ARRAY [0
ARRAY[0
ARRAY[0
SET OF 0..37;
ALFA;
ARRAY[0
ALFA;
BYTE;
BYTE;

.79] OF BYTE;

.37] OF BYTE;

.37] OF BYTE;

.37] OF ALFA;

(END (bottom end) OF DIRECTORY)

These variable declarations take up exactly 512 bytes (the sector with logical
number 0):

170

ABACUS Software SUPER Pascal Development System

Address 0 ($000) Diskette size (0 or 1)i« 1 ($001) Diskette number(0 - 1)it 2. .9 ($002. .$009) Diskette name (ALFA)it 10. .313 ($00A. .$139) up to 38 filenames
(ALFA)it 313. .321 ($13A. .$141) temp, work name (ALFA)ti 321. .353 ($142. .$161) 32 * 8 bits, first 38
with LOCK flag•i 354. .391 ($162. .$187) 38 * 1 byte in
position as EOF in
last ”1541” blockit 392. .429 ($188. .$1AD) 38 * startblock in
filename orderit 430. .509 ($1AE..$1FD) 80 * 1 byte for
blocktableti 510 ($1FE) temporary work blockit 511 ($1FF) fillbyte

NOTE:
Try out program control via directory with a scratch disk FIRST!
Rebuilding a directory from scratch is rough work - make sure that your
variable declarations work out properly.

171

ABACUS Software SUPER Pascal Development System

8.0 PROGRAM EXAMPLES AND GRAPHIC EXTENSIONS

8.1 THE EDITOR PROGRAM

The complete Editor program is listed here as a demonstration program (the
Super Pascal Editor itself). You may have ideas on changing the program to
suit your own needs. AUTO LINE MODE offers machine-code-like
programming in Pascal.

{PASCAL - TEXT - EDITOR}

PROGRAM EDITOR;
LABEL 99;
CONST BUFFER =$F300; KEY_CNT =$C6;

KEY_BUF =$0277; MAXLW_NR =1;
CRT_DVC =0 ; BCSP =CHR($9D)
CRSRUP =CHR($91) ; CRTN =CHR($D);
SCRNLENG =80; LWTEMP =$035F;
WARMFLG =$360; ADR_EXPO =$0361;
ADR_PRPO =$363;
MAIN JMP =$CA12;

ADR_COMM =$0365;

HEAD
ILL_LINE
NOTXT_FL
SURE_NSS
EX__N__SUC
ILL_SYN
RAM_OVER
TITLE_ND
ILL_TITLE
ILL_INPUT
TO_
L_LEN_EX
SURE_D_S
HELP

= '* C=64 SOURCE-EDITOR 5.3 *' ;
= 'ILLEG. LINE#';
='NO TEXT-FILE';
='SURE NOT SAVING THE SOURCE';
='EXECUTION NOT SUCCESSFUL!';
='ILLEG. SYNTAX';
='RAM OVERFLOW';
='TITLE UNDEFINED';
='ILLEG.TITLE';
='ILLEG. INPUT';
= ' TO: ' ;
='LINELENGTH EXCEEDED IN LINE:';
='SURE TO DELETE ALL THE SOURCE';
='HELP FOR:';

173

ABACUS Software SUPER Pascal Development System

BYTE_FREE ='0 BYTES FREE!';
ONLY_ENT = ' PLEASE ONLY ENTER:
DRV_MAP ='DRIVE(MAP)';
CONFIRM ='CONFIRM ;
COM IGN = 'COMMAND IGNORED!';

TYPE REF
ITEM

VAR

BUFFSIZE
INARRY
SOURCE
LOADDAT

= AITEM;
= RECORD

NR:INTEGER;
NX : REF;
ST : STRING;

END;
= ARRAY [0..511] OF BYTE
= ARRAY [0..PRED(SCRNLENG)] OF CHAR;

: TEXT;
: FILE OF BUFFSIZE;

LINE,TRNSLINE,TPMLINE,FIRST
FROM,TIL,HNTR,NUM,AUTO_NUM,DRIVE
SPARE
CH
TITLE,SEEKSTR
NOT_DEF,SAVED,AUTO_FLAG
BEGINHEAP,LFDHEAP,ADRPOI
COMMON
NUMBER,LETTER

: REF;
:INTEGER;

INARRY;
CHAR;
STRING;
BOOLEAN;
AINTEGER;
AALFA;

:SET OF f 0' . .'9#
XTRNFUNC MAP EXT:BOOLEAN;

FUNCTION COMPARE(SUSTR,TESTR,STRING;
STRTPOS: BYTE) : BYTE;

ASSEMBLE;
;***************************

;* SEARCH — ROUTINE *

174

ABACUS Software SUPER Pascal Development System

POI
HBAS
TEMP
r

START
LOOP

LOOP1
LOOP 2

INCTEST

.DL STKPOI+4
•DL STKPOI+6
.DL STKPOI+8
LDY #4
LDA (STKPOI),Y
STA POI-1,Y
DEY
BNE LOOP
LDA (HBAS),Y
STA *TEMP
SEC
LDA (POI),Y
SBC *TEMP
BCC EXIT
SBC (STKPOI),Y
BCC EXIT
STA *TEMP+1
CLC
LDA (STKPOI),Y
TAX
ADC *POI
STA *POI
BCC LOOP1
INC *POI+l
LDY *TEMP
INX
LDA (POI),Y
CMP (HBAS),Y
BNE INCTEST
DEY
BNE LOOP2
BEQ EXIT
INC *POI
BNE INCTEST1
INC *POI+l

175

ABACUS Software SUPER Pascal Development System

INCTEST1 DEC *TEMP+1
BPL LOOP1
LDX #0

EXIT TXA
LDY #5
STA (STKPOI),Y
TYA
CLC
ADC *STKPOI
STA *STKPOI
BCC EXIT1
INC *STKPOI+l

EXIT1 RTS
r

.EN
PROCEDURE JUMPMAIN;ASSEMBLE;

JMP MAIN_JMP
.EN

PROCEDURE STOP(MESSAGE : STRING);
BEGIN
WRITE(MESSAGE, ' ');
WRITELN(EX_N_SUC);AUTO_FLAG:»FALSE;
GOTO 99
END;

PROCEDURE SYN_STOP;
BEGIN STOP(ILL_SYN) END;

PROCEDURE OV_STOP;
BEGIN STOP(RAMJDVER) END;

PROCEDURE TEST_SURE(MSG : STRING);
BEGIN
READLN;WRITE(MSG,'? Y/N',BCSP);
READ(CH);WRITELN;
IF CHO'Y' THEN BEGIN WRITELN (COM_IGN) ;
GOTO 99 END

END;

176

ABACUS Software SUPER Pascal Development System

PROCEDURE TEST_FOR_SAVE;
BEGIN
IF NOT SAVED THEN TEST_SURE(SURE_NSS)

END;

PROCEDURE WAIT_BRK;
PROCEDURE BREAK;

BEGIN
IF EOF THEN BEGIN READLN;OUTDVC(CRT_DVC,0);
GOTO 99 END

END;
BEGIN

BREAK;
IF ANYKEY THEN
IF GETKEY=' ' THEN
REPEAT

WHILE NOT ANYKEY DO BREAK
UNTIL GETKEY=' '

END;
PROCEDURE IGN_SPACE;
BEGIN WHILE CH=' ' DO READ(CH) END;

PROCEDURE GETCH;
BEGIN READ(CH);IGN_SPACE END;

PROCEDURE TEST_S YNTAX ;
BEGIN
IF EOLN THEN SYN_STOP ;GETCH;
IF (CHO' : ') OR EOLN THEN SYN__STOP

END;
PROCEDURE SET_LAST;
BEGIN LINEA.NR:=MAXINT
LINE^.NX:=NIL;MARK(LFDHEAP) END;

177

ABACUS Software SUPER Pascal Development System

PROCEDURE CLEAR;
BEGIN
RELEASE(BEGINHEAP);NEW(LINE);SET_LAST;
FIRST:=LINE;
SAVED :=TRUE

END;

PROCEDURE GET_NUM(VAR LN_NR: INTEGER) ;
BEGIN
IF NOT (CH IN NUMBER) THEN SYN_STOP;
LN_NR:=0 ;
WHILE CH IN NUMBER DO
BEGIN
IF LN_NR >3275 THEN STOP(ILL_LINE);
LN__NR: = 10 *LN_NR - 48 + ORD (CH) ;
IF NOT EOLN AND (INPUTA IN NUMBER) THEN
READ(CH)
ELSE CH:=' '

END
END;

PROCEDURE GET_SECND(TESTCH: CHAR) ;
BEGIN
GETCH;
IF CHOTESTCH THEN SYN_STOP;
IF NOT EOLN THEN BEGIN GETCH; GET_NUM(TIL) END

END;
PROCEDURE FROM—T IL;
BEGIN
FROM :=0 ; TIL :=PRED(MAXINT);
IF NOT EOLN THEN
BEGIN
GETCH;
IF CH='-' THEN
BEGIN
IF EOLN THEN SYN_STOP;
GETCH;GET_NUM(TIL)
END

178

ABACUS Software SUPER Pascal Development System

ELSE
BEGIN
GE T_NUM(FROM) ;
IF NOT EOLN THEN GET_SECND(')
TIL :=FROM

END
END

END;
PROCEDURE GET_TITLE (FOR_GET: BOOLEAN) ;
BEGIN
TEST_SYNTAX;
IF INPUTA= ' * ' THEN
BEGIN
IF NOT__DEF THEN STOP (TITLE__ND) ;
IF FOR_GET THEN TEST_FOR_SAVE

END
ELSE
BEGIN
IF NOT(INPUTA IN LETTER) THEN
STOP(ILL_TITLE);

READ(TITLE);
IF FOR_GET THEN TEST_FOR_SAVE;
NOT_DEF:=FALSE; COMMONA:=TITLE
END
END;

PROCEDURE RENUMBER;
BEGIN

NUM:= 1 0 0 0 ; LINE : = F IR ST ;
WHILE LINEA .NXONIL DO
BEGIN LINEA.NR:=NUM;NUM:=NUM+5;
LINE :=LINEA.NX END

END;
PROCEDURE PREPARE;
BEGIN
SETDRV(DRIVE) ;NAME(SOURCE rCOMMONA)
MEM[LWTEMP]:=LOW(DRIVE)
END;

ELSE

179

ABACUS Software SUPER Pascal Development System

PROCEDURE SAV_SRCE(FOR_PUT:BOOLEAN);
BEGIN
GET_TITLE(FALSE);
READLN;
WRITE (CONFIRM, COMMON"', ' , 'DRIVE, ' "? N/Y' ,BCSP) ;
READ(CH);WRITELN;
IF CHO'Y' THEN BEGIN WRITELN(COM_IGN);
GOTO 99 END;
PREPARE;
IF FOR_PUT THEN REWRITE(SOURCE)
ELSE
BEGIN
RESET(SOURCE);
WHILE NOT EOF(SOURCE) DO READLN(SOURCE)
END;
LINE:=FIRST;
WHILE LINE A . NXONIL DO
BEGIN WRITELN(SOURCE,LINEA.ST) ;
LINE:=LINEA.NX END;

CLOSE(SOURCE);SAVED:=TRUE
END;

PROCEDURE LOAD_SRCE;
VAR CNT:INTEGER;
BEGIN
PREPARE;
RESET(SOURCE);CNT:=0;
WHILE (SOURCEAOCRTN) AND (CNT<=80) AND NOT
EOF(SOURCE) DO
BEGIN
CNT:=SUCC(CNT) ;
IF (CNT>80) OR (SOURCEA<' ') THEN
BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END;
GET(SOURCE)
END;

IF SOURCEAOCRTN THEN
BEGIN CLOSE(SOURCE);STOP(NOTXT_FL) END;
CLOSE(SOURCE);RESET(SOURCE);
WHILE NOT EOF(SOURCE) DO

180

ABACUS Software SUPER Pascal Development System

BEGIN
LINEA.NR:=NUM;READLN(SOURCE,LINEA. ST) ;
NUM:=NUM +5;
IF FREE<=3 THEN
BEGIN SET_LAST;CLOSE(SOURCE);OV_STOP END;

NEW(TMPLINE);LINE A.NX :=TMPLINE;LINE:=TMPLINE
END;
SET_LAST; CLOSE (SOURCE)

END;

PROCEDURE SEEK(LN_NR: INTEGER);
BEGIN

LINE:=FIRST;WHILE LINEA.NR<LN_NR
DO LINE : =LINEA. NX

END;

PROCEDURE CHANGE;

VAR
OLD__LINE; NEW_LINE : INARRY;
POSITION:BYTE;
SEEKLEN,OLDLEN,NEWLEN,FSTLEN,CMPLEN,DELTA,
FLOT:INTEGER;
SPEC:RECORD CASE INTEGER OF

0:(HEAP:AINTEGER);
1:(LENG:ABYTE);
2:(ADRS:INTEGER)

END;
BEGIN
TEST_SYNTAX;READLN(SEEKSTR);SEEKLEN:=LEN(SEEKSTR);
MARK(SPEC.HEAP);
WRITE(TO_);READ(TITLE);WRITELN;RESET(INPUT);
IF EOLN THEN FSTLEN:=0 ELSE FSTLEN:=LEN(TITLE);
DELTA:=SEEKLEN-FSTLEN;SPARE:=TITLE;
RELEASE(SPEC.HEAP);LINE:=FIRST;POSITION:=#0
WHILE (LINEA .NXONIL) AND NOT EOF DO
WITH LINEA DO
BEGIN
CMPLEN:=ORD(COMPARE(SEEKSTR,ST,POSITION));
IF CMPLENO0 THEN

181

ABACUS Software SUPER Pascal Development System

BEGIN
OLDLEN:=LEN(ST);
IF (OLDLEN-DELTA)> (SCRNLENG-4) THEN
BEGIN WRITELN(L_LEN_EX);WRITELN(NR,ST);
GOTO 99 END;

OLD_LINE:=ST;NEW_LINE:=OLD_LINE;
FOR FLOT:= 0 TO PRED(FSTLEN) DO
NEW_LINE[PRED(CMP LEN+FLOT)] :=SPARE[FLOT];
FOR FLOT := PRED(CMPLEN+SEEKLEN) TO
PRED(OLDLEN) DO
NEW_LINE[FLOT-DELTA]:=OLD_LINE[FLOT];

ST :=NEW_LINE;SPEC.LENGA:=LOW(OLDLEN-DELTA);
SPEC.ADRS:=HXS(SPEC.ADRS,SUCC(OLDLEN-DELTA));
RELEASE(SPEC.HEAP);
POSITIN :=PRED(LOW(CMPLEN+FSTLEN);
IF FREE<=3 THEN OV_STOP

END
ELSE BEGIN LINE:=NX;POSITION:=#0 END

END
END;

PROCEDURE COMMANDS;

BEGIN
WRITELN(' COMMANDS = . . . ') ;
WRITELN('A:(PPENDSRC) L(IST)
WRITELN('C:(HANGE) M(AP/DRIVE)
WRITELN('D(ELETE) N(UMBERING)
WRITELN('F : (IND) O (UTPUTDVC)
WRITELN('G:(ETSOURCE) P:(UTSOURCE)
WRITELN('H(ELP)');WRITELN
END;

Q (U I T) ') ;
R(ENUMBER)') ;
S(HIFTLINE)');
U:(PDATESRC)');
V (ACANCY)');

182

ABACUS Software SUPER Pascal Development System

{MAIN PROGRAM)

BEGIN

IF MEM[WARMFLG]=#1 THEN
BEGIN WRITELN;RELEASE(LFDHEAP) END
ELSE

BEGIN
NUMBER: = [' 0 ' . 9 '] ; LETTER: = [' A ' . . ' Z '] ;
ALLOCATE(COMMON,ADR_COMM);
SETADR(MAP_EXT,BUFFER1);
AUTO_FLAG:=FALSE;NEW(TRNSLINE);
MARK(BEGINHEAP)/MARK(LFDHEAP)/CLEAR;
ALLOCATE(ADRPOI,ADR_PRPO);
FROM:=ADRPOIA;
ALLOCATE(ADRPOI,ADR_EXPO);
TDRPOI*:=FROM;
NOT_DEF:=MEM[WARMFLG]<>#2;
IF NOT NOT_DEF THEN
BEGIN

DRIVE: =ORD(MEM[LWTEMP]) ; NUM:= 10 0 0 ;
LOAD_SRCE

END
ELSE DRIVE:=0;
WRITELN;
WRITELN(HEAD:34);
WRITELN;COMMANDS;
MEM[WARMFLG] : = # 1 ; SAVED:=TRUE

END;

183

ABACUS Software SUPER Pascal Development System

REPEAT

IF AUTO_FLAG THEN
BEGIN
WRITE(AUTO_NUM,' ':NUM);
READLN(CH);WRITELN;
MEM[KEY_BUF]:=LOW(CRSRUP);
MEM[SUCC(KEY_BUF)]:=LOW(CRTN);

MEM[KEY_CNT]:=#2;
AUTO_NUM:=AUT0_NUM+5;
IF AUTO_NUM>=32750 THEN STOP(ILL_LINE)

END;

READ(CH); IGN_SPACE; WRITELN;

IF CH IN NUMBER THEN {LINE NUMBER INPUT}
BEGIN

GET_NUM (NUM) ; IF NUMOAUT0_NUM-5 THEN
AUTO_FLAG: =FALSE;

SEEK(NUM);
IF LINEA.NR=NUM THEN

IF EOLN THEN
IF NOT AUTO_FLAG THEN LINEA: =LINEA.NXA
ELSE AUTO_FLAG:=FALSE

ELSE READ(LINEA.ST)
ELSE

IF NOT EOLN THEN
BEGIN

NEW (TMPLINE) ;
TMPLINEA: =LINEA; LINEA. NR: =NUM;
LINEA.NX : =TMPLINE;READ(LINEA.ST)

END
ELSE AUTO_FLAG:=FALSE;

IF AUTO_FLAG THEN
BEGIN

SPARE:=LINEA.ST;NUM:= 0;
WHILE SPARE[NUM]=' ' DO NUM :=SUCC(NUM)

END;

184

ABACUS Software SUPER Pascal Development System

SAVED:=FALSE;
IF FREE<=3 THEN OV_STOP;
MARK(LFDHEAP)

END
ELSE {COMMAND INPUT}

BEGIN
AUTO___FLAG : =FALSE ; CASE CH OF

' A ' : BEGIN {APPEND}
RENUMBER;GET_TITLE(FALSE);

NOTJDEF:=TRUE; LOAD_SRCE
END;

' C ' : BEGIN {CHANGE}
CHANGE; SAVED : =FALSE

END;

'D' : BEGIN {DELETE}
FROMJTIL;
IF (FROM=0) AND (TIL=PRED(MAXINT)) THEN
BEGIN
TEST__SURE (SURE__D_S) ;
CLEAR
END
ELSE
IF FROM<=TIL THEN
BEGIN
SAVED:=FALSE;
SEEK(FROM);TMPLINE:=LINE;
SEEK(SUCC(TIL));TMPLINE#:=LINEA

END
END;

r F r : BEGIN {FIND}
TEST__SYNTAX;
READ(SEEKSTR) ; LINE : =FIRST;
WHILE LINEA .N X O N IL DO

BEGIN
IF COMPARE(SEEKSTR,LINEA.S T ,# 0)< > # 0 THEN

W RITELN(LINE#.NR,LINE#. S T);

185

ABACUS Software SUPER Pascal Development System

LINE :=LINEA.NX;
WAIT_BRK
END

END;

' G' : BEGIN {GET}
GET_TITLE(TRUE);
CLEAR;NUM:=1000;
LOAD_SRCE

END;

'H' : BEGIN {HELP}
WRITELN(HELP,HEAD);
WRITELN;COMMANDS
END;

' 1 / :BEGIN {LIST}
FROM_TIL;SEEK(FROM);
WHILE LINEA.NR<=TIL DO

BEGIN
WRITELN(LINEA.N R ,L IN E A. S T);
LINE : =LINEA.NX;
WAIT_BRK

END
END;

'M' ¡BEGIN {MAP}
READLN;
WRITE(DRV_MAP,' = DRIVE,BCSP) ;
IF DRIVE>9 THEN WRITE(BCSP);
READ(FROM); WRITELN;
IF (FROMCO) OR (FROM>MAXLW_NR) THEN

STOP(ILL_INPUT);
DRIVE:=FROM;
SETDRV(0) ; RESET(LOADDAT);
GET(LOADDAT); GET(LOADDAT); GET(LOADDAT);
CLOSE(LOADDAT);
SETDRV(DRIVE);
IF NOT MAP__EXT THEN
BEGIN DRIVE:=0;SETDRV(0) END

186

ABACUS Software SUPER Pascal Development System

END;

' N ' : BEGIN (AUTO-NUMBERING)
IF EOLN THEN

BEGIN
AUTO__NUM: =10 0 0; LINE : =FIRST ;
WHILE LINEA .N X O N IL DO

BEGIN AUTO_NUM:=LINEA. NR+5;
LIN E: =LINEA. NX END

END
ELSE

BEGIN
GETCH; GET_NUM (AUTO_NUM) ;
IF NOT EOLN THEN SYN_STOP

END;
AUTO_FLAG:=TRUE; NUM:=0

END;

'O' : IF EOLN THEN OUTDVC(CRT_DVC,0)
(SET OUTPUT DVC}

ELSE
BEGIN
GETCH;GET_NUM(FROM);TIL:=0;
IF NOT EOLN THEN GET_SECND(',');
IF NOT ((FROM IN [0f4..7]) AND

(TIL<=15)) THEN
STOP(ILL_INPUT) ;

OUTDVC(FROM,TIL)
END;

' P ' : SAV_SRCE(TRUE) ; {PUT}

'Q ':B E G IN (QUIT)
TES T_FOR_S AVE ;
OUTDVC(CRT_DVC,0) ;
JUMPMAIN

END;

' R ' : RENUMBER; (RENUMBER)

187

ABACUS Software SUPER Pascal Development System

'S' : BEGIN {SHIFTLINE)
FROM_TIL;TEST_SYNTAX;
GETCH;GET_NUM(HNTR);
IF(HNTR>=FROM) AND (HNTR<=TIL) THEN
STOP(ILL_INPUT);

SEEK(SUCC(HNTR));
TRNSLINEA:=LINEA;TMPLINE:=LINE;
SEEK(FROM);
TMPLINEA:=LINEA;TMPLINE:=LINE;
SEEK(SUCC(TIL));
TMPLINEA:=LINEA; LINEA:=TRNSLINEA;
RENUMBER;SAVED :=FALSE;
END;

'U' : BEGIN (UPDATE)
NOT_DEF:=TRUE;SAV_SRCE(FALSE)
END;

'V':WRITELN(FREE*25-77+(FREE*6)
DIV 10, BYTE__FREE)

ELSE
BEGIN

WRITELN(COM_IGN,ONLY_ENT) ;
COMMANDS

END
END
END;

9 9 : READLN

UNTIL FALSE

END.

188

ABACUS Software SUPER Pascal Development System

8.2 "RPN" PROGRAM

Here is the complete program listing for RPN, which you’ll find on your
SUPER Pascal diskette in both compiled form and sourcecode. RPN
simulates the functions of an RPN pocket calculator; some runtime errors
will occur whatever shape the program is in, since some transcendental math
functions can cause such errors. The modular structure of this program
allows for easy modification.

(* *)
(* R P N *)
(* ------------ *)
(* THIS PROGRAM SIMULATES THE *)
(* FUNCTIONS OF A CALCULATOR *)
(* WHICH USES REVERSE POLISH NOTATION *)
(* (RPN) (NOTE: ALL INPUT MUST *)
(* CONCLUDE WITH <RETURN> *)
(***)

PROGRAM RPN;

CONST MAXBEF = 7 9 ; »
WARMFLG = $ 3 6 0 ;
ADR_EXPO = $ 3 6 1 ;

VAR REG
STACK
LSTX, S I , KEYIN,ZW,QU
FLOT,CON,PLACE,FIELD
CX
LSTRI
BEFARR
ADRPOI,HEAP

CUP =CHR($ 9 1) ;
ADR PRPO = $ 3 6 3 ;

(X, Y, Z, T) ;
ARRAY[X . . T] OF REAL;
REAL;
INTEGER;
CHAR;
STRING;
ARRAY[0 . . MAXBEF] OF CHAR ;
^INTEGER;

189

ABACUS Software SUPER Pascal Development System

PROCEDURE E X IJ ­

AS SEMBLE;
JMP $C200

.EN

PROCEDURE ENTER;
BEGIN

FOR REG :=Z DOWNTO X DO
STACK[SUCC(REG)] : =STACK[REG]

END;

PROCEDURE CALC(RESULT : REAL;SINGLE :BOOLEAN);
BEGIN

LSTX: =STACK[X]; STACK[X] :=RESULT;
IF NOT SINGLE THEN

FOR REG : =Y TO Z DO
STACK[REG]: =STACK[SUCC(REG)]

END;

PROCEDURE PRTSTK;
BEGIN

WRITELN(CUP, CUP, CUP, CUP, CUP, CUP) ;
WRITELN(' T = ' : 1 0 , STACK[T] : FIELD : PLACE) ;
WRITELN(' Z = ' : 1 0 , STACK[Z] : FIELD : PLACE) ;
WRITELN(' Y = ' : 1 0 , STACK[Y] : FIELD:PLACE) ;
WRITELN('X = ’ : 1 0 f STACK[X] : FIELD : PLACE) ;
WRITELN;WRITELN(' ' : 3 9 , CUP)

END;

PROCEDURE COMANDS;
BEGIN

WRITELN;WRITELN;
WRITELN (' «COMMANDS FOR "RPN” >>':32);
WRITELN(' ======================f : 2 9) ;
WRITELN(f A=ABSOLUTE B=ROUND
WRITELN(f D=ROLL DOWN E=EXP
WRITELN(9G=GETMEM H=CLEAR X
WRITELN(f K=RECIPROCAL L=LN
WRITELN(r N=ENTER 0=0U T P. FORM.

C=COSINEf);
F=FRACf);
I=INTEGER');
M=MEMf);
P = P I ') ;

190

ABACUS Software SUPER Pascal Development System

WRITELN(' Q=SQUARE
WRITELN(' T=TANGENT
WRITELN(' W=CH. SIGN
WRITELN(' Z=RAND. NUM.
WRITELN(' RELATIONS :

R=SQROOT S = S IN E ') ;
U=ROLL UP V =SIG N ') ;
X=LAST X Y=X CH Y')
@=ARCTAN') /WRITELN;

<~r>t=') >
WRITELN(' OPERATORS/+ , - , * , / ') ;
WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;
WRITELN;WRITELN;WRITELN;WRITELN;WRITELN;
WRITELN(CUP, CUP, CUP, CUP f CUP)

END;

PROCEDURE JOB;
BEGIN

CASE CX OF
'A ';C A L C (A B S(ST A C K [X]) , TRUE);
' @ : CALC(ARCTAN(STACK[X]) , TRUE);
' B' /CALC(ROUND(STACK[X]) , TRUE);
' C' :CALC(COS(STACK[X]) , TRUE);
'D ' : BEGIN

KEYIN :=STACK[X];
FOR REG : =X TO Z DO

STACK[REG]:=STACK[SUCC(REG)] ;
STACK [T]: =KEYIN

END;
' E ' :CALC(EXP(STACK[X]) , TRUE) ;
' F ' :CALC(FRAC(STACK[X]) , TRUE) ;
' G' : BEGIN ENTER;STACK[X] :=S1 END;
' H ' : S T A C K [X]:= 0 .0 ;
'I':C A LC (TR U N C (STA C K [X]) , TRUE);
'K ':C A L C (1/S T A C K [X], TRUE);
' L ' :CALC(LN(STACK[X]) , TRUE) ;
'M ': S I :=STACK[X];
'N '/E N T E R ;
'O '/B E G IN

FLOT;=IN T (ST A C K [X]) ;
IF FLOT < 12 THEN

IF FLOT > 0 THEN
BEGIN

W RITELN(CUP,CUP,CUP,CUP,CUP,' ' z 3 9) ;
WRITELN(' ' z 3 9) ; WRITELN(' ' / 3 9) ;

191

ABACUS Software SUPER Pascal Development System

WRITELN(' ' : 3 9) ; WRITELN;
PLACE :=-FLO T;
FIELD:=ABS(INT(ROUND(1 0 0*FRAC(FLOT))))

END
END;

' P ' :BEGIN ENTER;STACK[X]:=PI END;
' Q ' :CALC(SQR(STACK[X]) , TRUE);
' R ' :CALC(SQRT(STACK[X], TRUE);
'S ':C A L C (S IN (S T A C K [X], TRUE);
' U ' : BEGIN

KEYIN:=STACK[T]; ENTER;
STACK[X]:=KEYIN

END;
' V ' :CALC(S IG N (STACK[X] , TRUE) ;
'W ': STACK[X]:=-STACK[X] ;
' X' : BEGIN ENTER;STACK[X] : =LSTX END;
' Y' : BEGIN

KEYIN:=STACK[X]; STACK[X] :=STACK[Y];
STACK[Y]: =KEYIN

END;
' Z ' :BEGIN ENTER;STACK[X]: =RANDOM END;
•<• : CALC(ORD(STACK[Y]<STACK[X]) , FA LSE);
' = ' : CALC(ORD(STACK[X]=STACK[Y]) , FALSE);
' > ' :CALC(ORD(STACK[X]=STACK[Y]) , FALSE);
' + ' :CALC(STACK[X]+STACK[Y], FALSE);

: CALC(STACK[Y]-STACK[X], FALSE);
' * ' : CALC(STACK[X]*STACK[Y], FALSE) ;
' / ' : CALC(STA C K [Y]/STA C K [X],FA LSE);

END
END;

192

ABACUS Software SUPER Pascal Development System

(* *** MAIN of r pn * *** *)

BEGIN

IF MEM[WARMFLAG]=#0 THEN
BEGIN

MARK(HEAP); COMANDS; LSTR I: = ' SXC/ 9 ;
BEFARR:=LSTRI;MEM[WARMFLAG]: = #1 ;
ALLOCATE(ADRPOI,ADR_PRPO);
FLOT : =ADRPOIA; ALLOCATE (ADRPOI, ADR__EXPO) ;
ADRPOIA:=FLOT;

END
ELSE

BEGIN
WRITELN('PRESS ” SPACE” ! ' : 3 2 ,C U P) ;
WHILE GETKEYO' f D0;
WRITELN(f ' : 3 9 , C U P);
WRITELN(CUP, ' ' : 3 9 , C U P,C U P);
WRITELN(" : 3 9 , CUP)

END;
FOR REG := X TO T DO STACK[REG] := 0 ;
S 1 :=0 ; FIELD :=0 ; PLACE : = - l 1 ; PRTSTK;

WHILE NOT EOF DO
BEGIN

READ(CX); RESET(INPUT);
WHILE(INPUTA= ' ') AND NOT EOLN DO READ(CX);
IF INPUTA IN [f 0 f . . ' 9 f] THEN

BEGIN
READLN(KEYIN) ; ENTER;STACK[X] :=KEYIN

END;
ELSE

BEGIN
READ(CX) ; JOB;READLN

END;
PRTSTK;RELEASE(HEAP)

END;
EXIT

END.

193

ABACUS Software SUPER Pascal Development System

8.3 THE GRAPHICS PACKET

You won’t need the 64’s graphic capabilities in normal use of SUPER
Pascal. However, S GRAPH ill let you perform high-resolution tasks in
your own program routines. The routine is treated as a Pascal routine during
compiling - to install this routine into your own programs, just use the
compiler command

&INCLUDE(S_*GRAPH)

S_*GRAPH is written in machine code for the sake of speed, but is clearly
written to allow you to make your own changes. The HILBERT-CURVES
program in Chapter 8.2.1 uses the routine, and shows a few changes that can
be performed.

<* *)
(* GRAPHICS PACKET FOR C64 *)
(* *)
(★★★★★★★★★★★★★★★★★★★★★★★★★★★★★J

PROCEDURE GRAPHIC

(COM:GRAPHICCOMMAND; VALI, VAL2 , VAL3 , VAL4 : INTEGER);

ASSEMBLE;

CPUPORT .DL
CONFIGURATION

$ 0 0 0 1 /DEFINE MEMORY

VIDCTR .DL $D000 /VIDEO CONTROLLER
BITMAP .DL $ 2 0 0 0 /GRAPHIC SCREEN
COLRAM .DL $ 0 8 0 0 /COLOR RAM

TMPMOD .DL $FF01 /DEFINE TEMPORARY
TMPPOI .DL $FF02 /MEMORY LOCATIONS
PLFLG .DL $FF03

194

ABACUS Software SUPER Pascal Development System

TMP .DL STKPOI+4 ; DEFINE ZEROPAGE CELLS
XKOR .DL STKPOI+6 ; IN SUPER PASCAL
YKOR •DL STKPOI+8 ; VIA STACK POINTER
COLOR .DL STKPOI+9
XKOR1 .DL STKPOI+34
ZW .DL STKPOI+36
ZA •DL STKPOI+37
MSK .DL STKPOI+38
DIFO .DL STKPOI+39
D IF1 .DL STKPOI+40
DIF2 .DL STKPOI+41
DIF3 .DL STKPOI+42
DIF4 .DL STKPOI+43
DIF5 .DL STKPOI+44
YKOR1 •DL STKPOI+45
r

START LDA #1 ; I /O ON AND
ORA *CPUPORT
STA *CPUPORT
LDY #8

; PASCAL RAM OUT

LDA (ST K PO I), Y ; CALL GRAPHIC COMMAND FROM
ASL A ; STACK, AND USE AS POINTER
TAX
LDA SPRGTAB,X
STA *TMP

; IN JUMP TABLE

LDA SPRGTAB+1,
STA *TMP+1

X

JMP (TMP) ; JUMP INDIRECTLY TO CALLED
ROUTINE

SPRGRTAB
r

.SA GRAPHIN ; GRAPHIC SCREEN ON

.SA GRAPHOUT ; GRAPHIC SCREEN OFF

.SA GCLEAR /CLEAR GRAPHIC SCREEN

.SA COLCLEAR /CLEAR COLOR SCREEN

.SA DOT_ON /SET DOT

.SA DOT__OFF /CLEAR DOT

.SA LINESET /DRAW LINE

.SA LINECLR /CLEAR LINE

.SA REVERS /REVERSE GRAPHIC SCREEN

195

ABACUS Software SUPER Pascal Development System

GRAPHIN LDA VIDCTR+17
STA TMPMOD
LDA VIDCTR+24
STA TMPPOI
LDA #$3B
STA VIDCTR+17
LDA #$28
STA VIDCTR+24
JMP EXIT

GRAPHOUT
/
LDA TMPMOD
STA VIDCTR+17
LDA TMPPOI
STA VIDCTR+24

EXIT
r
LDA #$FC
AND *CPUPORT
STA *CPUPORT
CLC
LDA #9
ADC *STKPOI
STA *STKPOI
BCC EXITO
INC *STKPOI+l

EXITO RTS
t

GCLEAR
r
LDA #H,BITMAP
STA *TMP+1
LDY #L,BITMAP
STY *TMP
LDX #$ 2 0
TYA

GCLEAR1 STA (TMP) , Y
INY
BNE GCLEAR1
INC *TMP+1
DEX
BNE GCLEAR1
JMP EXIT

; SWITCH ON GRAPHIC SCREEN

/BITMAP MODE

/BITMAP AFTER $2 0 0 0

/GRAPHIC SCREEN OFF

/PROGRAM EXIT
/PASCAL RAM SWITCHED ON
/AND I /O REGISTER OFF
/PASCAL STACK SET BACK A
/TOTAL OF 9 BYTES
/ (1 BYTE + 4 INTEGER)

/BACK TO PASCAL

/CLEAR GRAPHIC SCREEN

/# OF PAGES

196

ABACUS Software SUPER Pascal Development System

COLCLEAR

COLCLO

COLCL1

DOT_OFF

DOT ON

DEY ;CLEAR COLOR SCREEN
DEY
LDA (STKPOI)f Y ;LOWBYTE OF VALI FROM.
ASL A ; STACK AS SCREEN COLOR
ASL A
ASL A
ASL A
STA
DEY
DEY

*COLOR

LDA(STKPOI),Y ;LOWBYTE OF VAL 2 FROM
AND #$0F ; STACK AS BORDER COLOR,
ORA *COLOR ;AND STORED WITH
LDX #L,COLRAM ;SCREENCOLOR
STX *TMP
LDX #H,COLRAM
STX *TMP+1
LDY #0
LDX #3
t

STA (TMP) , Y /SCREEN INFORMATION STORED
DEY ; IN COLOR RAM
BNE
DEX

COLCLO
BMI COLCLO
INC *TMP+1
BNE COLCLO
LDY #$E8
BNE COLCLO
STA (TMP),Y
JMP EXIT
f

JSR SETO /UNSET DOT
JMP EXIT
t

JSR SET1 /SET DOT
JMP EXIT

197

ABACUS Software SUPER Pascal Development System

SETO LDX # $ 8 0 ; ROUTINE FOR SETTING OR
.BY $2C ; UNSETTING

SETI LDX #0 ; DOT-POINTS
STX PLFLG
JSR TESTCOR ; GET & TEST COORDINATES
JSR HPOSN ; CALC MEMORY POSITION
JMP PLOT ;DOT SET/CLEAR

PLOT
r
LDY #0 ; DRAW/CLEAR DOT IN
LDA *MSK ; POSITION CALCULATED
BIT PLFLG
BPL PLOTO
EOR #$FF
AND (TMP), Y
.BY $2C

PLOTO ORA (TMP), Y
STA (TM P),Y
RTS

TEST_X_Y
/
JSR TETCOR
RTS

TESTCOR
f
DEY
LDA (STK PO I), Y ; HIBYTE OF VAL1 OR VAL3
STA *XKOR+l ; (=X) CALLED FROM STACK
DEY
CMP #1 ; > l?
BCC TESTI
BNE IGNOR ; IGNORE AND EXIT
LDA #$3F
CMP (ST K PO I), Y ;> = 3 2 0 ?
BCC IGNOR /IGNORE AND EXIT

TESTI LDA (STK PO I), Y /LOWBYTE OF VALUES 1 OR 3
STA *XKOR /CALLED AND STORED
DEY
LDA (STK PO I), Y /HIGHBYTE OF VAL2 OR VAL4
BNE IGNOR / (=Y) CALLED FR STACK
DEY /<>0?:IGNORE AND EXIT
LDA (ST K PO I),Y /LOWBYTE OF VALUES 2 AND 4
CMP #2 0 0 /CALLED FROM STACK/ > = 200?

198

ABACUS Software SUPER Pascal Development System

IGNOR

HPOSN

HPOSNO

BCS IGNOR
STA *YKOR
RTS
/
PLA
PLA
PLA
PLA
JMP EXIT
r
AND #7
STA *TMP
LDA *XKOR+l
STA *TMP+1
LDA *YKOR
LSR A
LSR A
LSR A
TAX
LDA *XKOR
AND #$F8
/
CLC
ADC *TMP
BCC HPOSNO
INC *TMP+1
CLC
ADC LOWTAB,X
STA *TMP
LDA *TMP+1
ADC HIGHTAB,X
ADC #H,*BTIMAP
STA *TMP+1
LDA *XKOR
AND #7
TAX
LDA BITTAB,X
STA *MSK
RTS

; IGNORE AND EXIT
; STORE Y-COORDINATES

; COMMAND EXECUTION
; FOR IGNORING ILLEGAL
; NUMBERS ; SUBROUTINE-LEVEL
/CORRECTION

; CALC MEMORY ADDRESSES

199

ABACUS Software SUPER Pascal Development System

LINECLR JSR SETO /CLEAR LINE
JMP LINEO

LINESET JSR SET1 /DRAW LINE
LINEO LDA *YKOR /FIR ST COORDINATES

STA *YK0R1
LDA *XKOR
STA *XK0R1
LDA *XKOR+l
STA *XK0R1+1
LDY #4 /SECOND SET OF COORDINATES
JSR TESTCOR / CALLED, TESTED AND
LDA *XKOR /UTILIZED
LDX *XKOR+l
LDY *YKOR
PHA ; DEPENDENT & INDEPENDENT
LDA *XK0R1+1 /COORDINATES DETERMINED
LSR A / INDEPENDENTS INCREMENTED
LDA *XK0R1
ROR A /ENDPOINTS CLEARED/SET
LSR A
LSR A

STA *ZW
PLA
PHA
SEC
SBC XKOR1
PHA
TXA
SBC XKOR1+1
STA *DIF3
BCS LINE3
PLA
EOR #$FF
ADC #1
PHA
LDA #0
SBC *DIF3

200

ABACUS Software SUPER Pascal Development System

LINE 3

LINE 4

LINE1

LINE 5

LINE2

STA *DIF1
STA *DIF5
PLA
STA *DIF0
STA *DIF4
PLA
STA *XKORl
STX *XKORl+l
TYA
CLC
SBC *YKORl
BCC LINE4
EOR #$FF
ADC #$FE
STA *DIF2
STY *YKORl
ROR *DIF3
SEC
SBC *DIF0
TAX
LDA #$FF
SBC *DIF1
STA *ZA
LDY *ZW
BCS LINE5
ASL A
JSR R_L
SEC
LDA *DIF4
ADC *DIF2
STA *D IF4
LDA *D IF5
SBC #0
STA *DIF5
STY *ZW
JSR PLOT
I NX
BNE LINE6
JMP EXIT

201

ABACUS Software SUPER Pascal Development System

LINE 6 LDA *DIF3
BCS LINE1
JSR U_0
CLC
LDA *DIF4
ADC *DIF0
STA *DIF4
LDA *D IF5
ADC * D IF l
BVC LINE2

SETCELL INC *TMP ; SET UP 8 X 8 MATRIX
BNE SETCELLO ; (BOTTOM)
INC *TMP+1

SETCELLO LDA *TMP
AND #7
BNE SETCELL2
INC *TMP+1
LDA #$ 3 8

SETCELL1 CLC
ADC *TMP
STA *TMP
BCC SETCELL2
INC *TMP+1

SETCELL2 RTS

U_0
r
BMI SETCELL ; LEAVE 8 X 8 FIELD

TOPCELL
/
LDA *TMP ; SET UP TOP OF 8 X 8
BNE TOPCELLO /MATRIX
DEC *TMP+1

TOPCELLO DEC *TMP
AND #7
BNE SETCELL2
DEC *TMP+1
DEC *TMP+1
LDA #$C8
BNE SETCELL1

202

ABACUS Software SUPER Pascal Development System

RGHCELL LSR *MSK
BCC RGHCELL2
ROR *MSK
INY
LDA #8

RGHCELL1 CLC
ADC *TMP
STA *TMP
BCC RGHCELL2
INC *TMP+1

RGHCELL2 RTS

R_L
r

BPL RGHCELL

LINKS
/

ASK *MSK
BCC RGHCELL2
ROL *MSK
DEC *TMP+1
LDA #$F8
BNE RGHCELL1

REVERS
r

LDY #0
LDA #H,BITMAP
STY *TMP
STA *TMP+1
LDX #$ 2 0

REVERSI LDA (TMP), Y
EOR #$FF
STA (TMP), Y
INY
BNE REVERSI
INC *TMP+1
DEX
BNE REVERSI
RTS

; SET UP RIGHT SIDE OF
;8 X 8 FIELD

; LEAVE 8 X 8 MATRIX

; DESIGN LEFT SIDE OF 8 X 8
/FIELD

/INVERSE VIDEO SCREEN

203

ABACUS Software SUPER Pascal Development System

LOWTAB

HIGHTAB

BITTAB

.BY $00 $40 $80 $C0 ; LOWBYTE

.BY $00 $40 $80 $C0 /MULTIPLICATION

.BY $00 $40 $80 $C0 ; TABLE

.BY $00 $40 $80 $C0

.BY $00 $40 $80 $C0

.BY $00 $40 $80 $C0 $00
/

.BY $00 $01 $02 $03 /HIGHBYTE

.BY $05 $06 $07 $08 /MULTIPLICATION

.BY $0A $0B $0C $0D / TABLE

.BY $0F $10 $11 $12

.BY $14 $15 $16 $17

.BY $19 $1A $1B $1C $1E
r

.BY

.EN

128 64 :32 16; 8 4 2 1 /B IT TABLE FOR
/MASK BITS

PROCEDURE GRAPHIN (*GRAPHIC SCREEN O N*);
BEGIN GRAPHIC(GRIN,0 , 0 , 0 , 0) END;

PROCEDURE GRAPHOUT (*GRAPHIC SCREEN O FF*);
BEGIN GRAPHIC(GROT,0 , 0 , 0 , 0) END;

PROCEDURE GRAPHCLR (*GRAPHIC SCREEN CLEAR*);
BEGIN GRAPHIC(GCLR,0 , 0 , 0 , 0) END;

PROCEDURE COLCLR (*SCOLR,BCOLR:INTEGER*) ;
BEGIN GRAPHIC(CCLR,SCLOR,BCLOR,0 ,0) END;

PROCEDURE DOT (X,Y : INTEGER);
BEGIN GRAPHIC(ON,X,Y,0,0) END;

PROCEDURE UNDOT (X,Y : INTEGER);
BEGIN GRAPHIC(OFF,X,Y,0,0) END;

PROCEDURE LINE(A1,B1,A2,B2: INTEGER);
BEGIN GRAPHIC(LINS,A1,B1,A2,B2) END;

PROCEDURE CLINE(Al,Bl,A2,B2: INTEGER) ;

204

ABACUS Software SUPER Pascal Development System

BEGIN GRAPHIC(LINC,A1,B1,A2,B2) END;

PROCEDURE REVERS;
BEGIN GRAPHIC(REV,0,0,0,0) END;
(* END OF GRAPHIC ROUTINE *)

205

ABACUS Software SUPER Pascal Development System

8.3.1 HILBERT CURVES

The program listed below gives you a practical demonstration of the material
covered previously concerning graphics. The program draws meandering
lines, and can also do recursion. We suggest that you read Algorithms and
Data Structures by Niklaus Wirth. The program is stored on your system
disk under the name HILBERT. If you compile this program be sure to
change the defaults as listed in the program.

PROGRAM HILBERT;
(*---*)
(* START-OF-PROGRAM: $0C00 *)
(* HEAP : EOPRGM *)
(* TOP-OF-STACK : $2000 *)
(*---*)

CONST
HX0=320; HY0=192;
CLRHOM=CHR($ 93);
BACKSPC=CHR($9D);

TYPE
GRAPHICCOMMAND=(GRIN,GROT,GCLR,CCLR,ON,OFF,LINS,
L IN C ,R E V);

VAR DEPTH,X0, Y 0, HX,XXI, XX2, I ,Y Y 1 ,Y Y 2 : INTEGER;
CHARIN :CHAR;

(*--- *)
(* *)

«¡INCLUDE (S_GRAPH) ;
(* *)
(* &INCLUDE CAN INSERT ANY *)
(* USER PROGRAM *)

206

ABACUS Software SUPER Pascal Development System

PROCEDURE DRAW;
BEGIN

L IN E (X X I,Y Y 1,X X 2,Y Y 2);
XXI :=XX2; YY1:=YY2 END;

PROCEDURE B (I : INTEGER); FORWARD;
PROCEDURE C (I ; INTEGER); FORWARD;
PROCEDURE D (I : INTEGER); FORWARD;

PROCEDURE A (I : INTEGER);
BEGIN

IF I> 0 THEN
BEGIN

D (I - l) ; XX2; =XX1-HX;DRAW;
A (I - l) ; YY2: =YY1-HY;DRAW;
A (I - l) ; XX2:=XX1+HX;DRAW;
B (I - l)

END
END;

PROCEDURE B;
BEGIN

IF I> 0 THEN
BEGIN

C (I - l) ; YY2: =YY1+HY;DRAW;
B (I - l) ; XX2:=XX1+HX;DRAW;
B (I - l) ; YY2: =YY1-HY;DRAW;
A (I - l)

END
END;

PROCEDURE C;
BEGIN

IF I> 0 THEN
BEGIN

B (I - l) ; XX2: =XX1+HX;DRAW;
C (I - l) ; YY2:=YY1+HY; DRAW;
C (I - l) ; XX2: =XX1-HX; DRAW;
D (I - l)
END
END;

207

ABACUS Software SUPER Pascal Development System

PROCEDURE D;
BEGIN

IF I> 0 THEN
BEGIN

A (I —1) ; XX2:=YY2-HY;DRAW;
D (I - l) ; XX2: =XX1-HX;DRAW;
A (I - l) ; YY2:=YY1+HY;DRAW;
C (I - l)

END
END;

BEGIN (*MAIN OF HILBERT*)
WRITELN(CLRHOM); WRITELN;
WRITELN(' HILBERT - CURVES': 2 6) ;
WRITELN;
WRITELN('THIS PROGRAM DRAWS HILBERT CURVES');
WRITELN(' WITH THE HIGH-RES-GRAPHICS OF THE C - 6 4 ') ;
WRITELN(' SEE: NIKLAUS WIRTH, ') ;
WRITELN(' ALGORITHMS AND DATA STRUCTURES ') ;
WRITELN(' TEUBNER PUB. , ') ;
WRITELN;
WRITELN(' DEPTHS OF RECURSION CAN BE IN P U T ');
WRITELN(' BETWEEN THE NUMBERS OF 1 AND 6 ') ;
WRITELN;
WRITELN('RUN/STOP EXITS HIGH-RES M O D E;');
WRITELN(' "E" EXITS THE PROGRAM ALTOGETHER.');
WRITELN;
WRITELN;
REPEAT

WRITE(' CHOICE (1 - 6 , E) = ? ' ,BACKSPC);
REPEAT

CHARIN:=GETKEY
UNTIL CHARIN IN [' 1 ' . . ' 6 '] ;
WRITELN(CHARIN);
IF CHARIN O ' E ' THEN

BEGIN
DEPTH :=O RD(CH ARIN)-O RD('O ');
GRAPHIN;GRAPHCLR;COLCLR(0 , 5) ;
HX:=HX0;X0:=HX DIV 2 ;

208

ABACUS Software SUPER Pascal Development System

HY:=HY0;Y0:=HY DIV 2 ;
I := 0 ;
REPEAT;
I := I + 1 ;
HX:=HX DIV 2;HY:=HY DIV 2 ;
X 0:=X 0 + HX DIV 2 ;
YO:=Y0 + HY DIV 2 ;
X X I:=X 0;Y Y 1:=Y 0;
XX2:=XX1; YY2:=YY1;
A (I)

UNTIL I = DEPTH;
REPEAT UNTIL EOF; (*WAIT FOR BREAK *)

GRAPHOUT
END

UNTIL CHARIN=, E'
END.

209

ABACUS Software SUPER Pascal Development System

8.4 C64 TO PASCAL DOS

The program C64TOPAS on the main disk converts files from C64 format to
SUPER Pascal DOS format The program is started by running it from the
Main Menu in the following manner:

R
FILE-TITLE = C64TOPAS
DRIVE(MAP) = 0

* FILE-TRANSFER C64-DOS TO PASCAL-DOS **************** vs 5_3 ***************

TITLE OF SOURCE-FILE (C 64-F IL E) = . . .

Enter the C-64 file name.

The program will then ask if the file is stored in program or sequential
format.

PROGRAM OR SEQUENTIAL (P /S) ?

Next enter the new name for the SUPER Pascal file.

TITLE OF PASCAL-FILE =?

Insert the C-64 formatted disk into drive 0.

INSERT DISC WITH SOURCE-FILE (C 64-F IL E)
INTO DRIVE 0! PRESS"RETURN" IF DONE

INSERT THE DESTINAT'-DISC (PASCAL-DISC)
INTO DRIVE 0! PRESS "RETURN" IF DONE.

The file will be converted to SUPER Pascal DOS format

210

ABACUS Software SUPER Pascal Development System

9.0 APPENDIX

9.1 ERROR LIST

This is the complete SUPER Pascal list of compiler errors, per the Pascal
User Manual and Report

1: ERROR IN SIMPLE TYPE
2 : IDENTIFIER EXPECTED
3 : ' PROGRAM' EXPECTED
4: ') ' EXPECTED
5 : ' : ' EXPECTED
6: ILLEGAL SYMBOL
7 : ERROR IN PARAMETER LIST
8: 'O F' EXPECTED
9: ' (' EXPECTED

1 0 : ERROR IN TYPE
1 1 : 'A " ' EXPECTED
1 2 : 'U " ' EXPECTED
1 3 : 'END' EXPECTED
1 4 : ' ; ' EXPECTED
1 5 : INTEGER EXPECTED
1 6 : '= ' EXPECTED
1 7 : 'BEGIN'EXPECTED
1 8 : ERROR IN DECLARATION PART
1 9 : ERROR IN FIELD -LIST
2 0 : ' , ' EXPECTED
2 1 : ' * ' EXPECTED
2 2 : '..'E X P E C T E D
2 3 : ' . ' EXPECTED
2 4 : ' , ' OR ') ' EXPECTED
2 5 : BOOLEAN CONSTANT EXPECTED

5 0 : ERROR IN CONSTANT
5 1 : ' : = ' EXPECTED
5 2 : ' THEN' EXPECTED
5 3 : 'UNTIL' EXPECTED
5 4 : 'DO' EXPECTED

211

ABACUS Software SUPER Pascal Development System

5 5 : 'TO ' OR 'DOWNTO' EXPECTED
5 6 : ' I F ' EXPECTED
5 7 : 'F IL E ' EXPECTED
5 8 : ERROR IN FACTOR
5 9 : ERROR IN VARIABLE
6 0 : PROGRAM INCOMPLETE

1 0 1 : IDENTIFIER DECLARED TWICE
1 0 2 : LOW BOUND EXCEEDS HIGHBOUND
1 0 3 : IDENTIFIER IS NOT OF APPROPRIATE CLASS
1 0 4 : IDENTIFIER NOT DECLARED
1 0 5 : SIGN NOT ALLOWED
1 0 6 : NUMBER EXPECTED
1 0 7 : INCOMPATIBLE SUBRANGE TYPES
1 0 8 : FILE NOT ALLOWED HERE
1 1 0 : TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE
1 1 1 : INCOMPATIBLE WITH TAGFIELD TYPE
1 1 3 : INDEX TYPE MUST BE SCALAR OR SUBRANGE
1 1 5 : BASE TYPE MUST BE SCALAR OR SUBRANGE
1 1 6 : ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER
1 1 7 : UNSATISFIED FORWARD REFERENCE
1 1 8 : FORWARD REFERENCE TYPE IDENTIFIER IN VARIABLE

DECLARATION
1 1 9 : FORWARD DECLARED;

REPETITION OF PARAMETER LIST NOT ALLOWED
1 2 1 : FILE VALUE PARAMETER NOT ALLOWED
1 2 2 : FORWARD DECLARATION FUNCTION;

REPETITION OF RESULT TYPE NOT ALLOWED
1 2 3 : MISSING RESULT TYPE IN FUNCTION DECLARATION
1 2 4 : F-FORMAT FOR REAL ONLY
1 2 5 : ERROR IN TYPE OF STANDARD FUNCTION PARAMETER
1 2 6 : NUMBER OF PARAMETERS DOES NOT AGREE WITH

DECLARATION
1 2 7 : ILLEGAL PARAMETER SUBSTITUTION
1 2 8 : RESULT TYPE OF PARAMETER FUNCTION

DOES NOT AGREE WITH DECLARATION
1 2 9 : TYPE CONFLICT OF OPERANDS
1 3 0 : EXPRESSION IS NOT OF SET TYPE
1 3 1 : TESTS ON EQUALITY ALLOWED ONLY
1 3 3 : FILE COMPARISON NOT ALLOWED

212

ABACUS Software SUPER Pascal Development System

1 3 4 : ILLEGAL TYPE OF OPERAND(S)
1 3 5 : TYPE OF OPERAND MUST BE BOOLEAN
1 3 6 : SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE
1 3 7 : SET ELEMENT TYPES NOT COMPATIBLE
1 3 8 : TYPE OF VARIABLE IS NOT ARRAY
1 3 9 : INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
1 4 0 : TYPE OF VARIABLE IS NOT RECORD
1 4 1 : TYPE OF VARIABLE MUST BE FILE OR POINTER
1 4 2 : ILLEGAL PARAMETER SUBSTITUTION
1 4 3 : ILLEGAL TYPE OF LOOP CONTROL VARIABLE
1 4 4 : ILLEGAL TYPE OF EXPRESSION
1 4 5 : TYPE CONFLICT
1 4 6 : ASSIGNMENT OF FILES NOT ALLOWED
1 4 7 : LABEL TYPE INCOMPATIBLE WITH SELECTING

EXPRESSION
1 4 8 : SUBRANGE BOUNDS MUST BE SCALAR
1 4 9 : INDEX TYPE MUST NOT BE INTEGER
1 5 0 : ASSIGNMENT TO STANDARD FUNCTION IS NOT

ALLOWED
1 5 1 : ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED
1 5 2 : NO SUCH FIELD IN THIS RECORD
1 5 3 : TYPE ERROR IN READ
1 5 4 : ACTUAL PARAMETER MUST BE A VARIABLE
1 5 8 : MISSING CORRESPONDING VARIANT DECLARATION
1 5 9 : REAL OR STRING TAGFIELDS NOT ALLOWED
1 6 0 : PREVIOUS DECLARATION WAS NOT FORWARD
1 6 1 : AGAIN FORWARD DECLARED
1 6 2 : PARAMETER SIZE MUST BE CONSTANT
1 6 3 : MISSING VARIANT IN DECLARATION
1 6 4 : SUBSTITUTION OF STANDARD PROC OR FUNC NOT

ALLOWED
1 6 5 : MULTIDEFINED LABEL
1 6 6 : MULTIDECLARED LABEL
1 6 7 : UNDECLARED LABEL
1 6 8 : UNDEFINED LABEL
1 6 9 : ERROR IN BASE SET
1 7 0 : VALUE PARAMETER EXPECTED
1 7 1 : STANDARD FILE WAS REDECLARED
1 7 7 : ASSIGNMENT TO FUNCTION IDENTIFIER NOT ALLOWED

HERE

213

ABACUS Software SUPER Pascal Development System

1 7 8 : MULTIDEFINED RECORD VARIANT
1 7 9 : X-OPT OF ACTUAL PROC OF FUNC

DOES NOT MATCH FORMAL DECLARATION
1 8 2 : PARAMETER LIST OF EXTERN PRGM NOT ALLOWED
1 8 3 : LOAD/SETADR ONLY FOR EXTERNALS
1 8 4 : EXTERNAL WITHOUT ADDRESS-DEFINITION
1 8 5 : SLICE-ARRAY MUST BE OF TYPE CHAR OR BYTE
1 8 6 : ASSIGNMENT OF SLICE TO SLICE NOT ALLOWED

2 0 1 : ERROR IN REAL CONSTANT: DIGIT EXPECTED
2 0 2 : STRING CONSTANT MUST NOT EXCEED SOURCE LINE
2 0 3 : INTEGER CONSTANT EXCEEDS RANGE
2 0 6 : INTEGER PART OF REAL CONSTANT EXCEEDS RANGE
2 0 7 : BYTE-CONST TOO LARGE
2 0 8 : ERROR IN BYTE-CONST
2 0 9 : ERROR IN HEX-CONST
2 1 0 : ERROR IN NUMERIC-CONST

2 5 0 : TOO MANY NESTED SCOPES OF IDENTIFIERS
2 5 1 : TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS
2 5 2 : TOO MANY FORWARD REFERENCES OF PROC ENTRIES
2 5 7 : TOO MANY EXTERNALS
2 5 8 : TOO MANY LOCAL FILES
2 5 9 : EXPRESSION TOO COMPLICATED

3 9 8 : IMPLEMENTATION RESTRICTION
3 9 9 : VARIABLE DIMENSION ARRAYS NOT IMPLEMENTED
4 0 0 : FILE-ELEMENT TOO LONG
4 0 1 : STRING NOT ALLOWED HERE
4 0 2 : TOO MANY IDENTIFIERS
4 0 3 : READLN/WRITELN ONLY WITH TEXT
4 0 4 : PROGRAM INCOMPLETE
4 0 5 : TOO MANY SEGMENTS
4 0 6 : NESTED SEGMENTS NOT ALLOWED
4 0 7 : SEPARATED SEGMENTS NOT ALLOWED
4 0 8 : COMPILING OF SEGMENTED PRGMS TO RAM NOT

ALLOWED
4 0 9 : TOO MANY PARAMETERS
4 1 0 : ERROR IN OPTIONS
4 1 1 : TOO MANY NESTED SOURCES

214

ABACUS Software SUPER Pascal Development System

92 FOR FURTHER READING

ON PASCAL:

Alpert/Stephen: PASCAL. A structured strong Language
BYTE 3/78 BYTE Publications

Barron, D.W.: PASCAL. The Language and its Implementation
John Wiley & Sons, New York

Bowles: USCD PASCAL
BYTE 5/78

Jensen/Wirth: PASCAL User Manual and Report
Springer Verlag, New York

Zaks. R: Introduction to PASCAL including USCD PASCAL
Sybex, Berkeley CA

ON THE C-64 AND MACHINE LANGUAGE:

Angerhausen/Becker/English/Gerits:
Anatomy of the Commodore 64
Abacus Software, Grand Rapids MI

Englisch, L.: The Advanced Machine Language Book for the
Commodore-64
Abacus Software, Grand Rapids MI

English/Szczepanowski: The Anatomy of the 1541 Disk Drive
Abacus Software, Grand Rapids MI

Commodore 64 Programmer’s Reference Guide

215

ABACUS Software SUPER Pascal Development System

9.3 INDEX

ABS 80
Addition, binary 102
Additional
-definitions 84
-functions 84
-procedures 84
&ADR 114
Address types 130
ADVICE 144
ALFA 64
ALLOCATE 88
AND 82,104
ANYKEY 99
APPEND 35
ARCTAN 81
ARRAY 63
-access 86

ASSEMBLE 53,111
Assembler 4,127
-call 21
-commands 129
-errors 138
-routines 111
Assembly 136
Assignment 67
Auto line numbers 40

.BA 111,134
BEGIN 66
Bit manipulation 103,104
BLOCKTABLE 145,169
BOOLEAN 62,65
Boolean operations 104
BYTE 85
Bytelist 135
.BY 135

CASE-statement 67,87
CHANGE 36
CHAR 62
CHR78
Clear file 151
CLOSE 89
CLRTRAP 90
Command section 66,87
Compiler 6,59
-call 113
-commands 22
-diskette 19
-errors 121,211
-mode 117

CONST 61
Constant assignment 61,84
CONTINUE, program 90,106
-source 47,51,114,134

&CONTINUE 114
COPY 146
Copy file 146
COS 81
CPU-instructions 129
.CT 111,134

Default 116
DELETE 36
Directory 25,40,152,159
Direct commands 1
Disk-mode 117
Diskette-dup. 147
-organization 145,154,169

Diskette protection 152
DISPOSE 68
DIV82
.DL 134
DOS 169
.DS 136

217

ABACUS Software SUPER Pascal Development System

Dump 118,124,158,161
DUPLICATE 239

Editor 13,33
-call 23
-commands 35
-organization 56
-program 173

ELSE-of-CASE 87
.EN 134
END 66
ENTER 148
EOF 79
EOLN 79
.EQ 135
Error trap 90,98
-messages 90,98,138

Error format 76
EXCLUDE 160
EXECUTE 90,106
EXP 81
Externals 104

FALSE 61
FILE 63
File-copy 146
-buffer 74
-list 161

FIND 37
Formatted output 76
Formatting 17
FOR 67
FORWARD 83
FRAC 103
FREE 101
FUNCTION 65
Function assignment 65,84

GET 68
GETKEY 100

GET-RAM 23,149
GET-SECTOR 170
GET-SOURCE 38
GOTO 67

Hardcopy 30,41
HBYT98
Heap 89,93,116
HELP 24,39,150
HEX 91
Hex notation 2
HXS 102

IF 67
IN 82
INCLUDE 47
&INCLUDE 113
INDVC91
INPUT 60,65,74
Input buffer 74
INSERT ADVICE 150
INT98
INTEGER 62
Integers 2
IOERROR 29,90,98,100

JUMP 25,150

KILL 92,151

LABEL 60
Label
-declaration 61,84
-definition 134
-expression 130
-listing 137

Languge extensions 83
LBYT98
LEN 101
Line numbers 33

218

ABACUS Software SUPER Pascal Development System

LIST 39
LN 81
LOAD 92
LOADDAT 17
LOCK 92,152
Logical functions 104
LOW 99

MAIN menu 3,21
MAP 25,40,152,159
MARK 93
Machine-language program
108
MAXINT 61
MEM 87
Memory
-addresses 167
-dump 158
-map 167

Mnemonic 129
MOD 82
Move
-line 44
-memory 157

NAME 94
.NE 134
NEW 69
NEW-DISC 153
NIL 62
NOT 82,104

.OC 111,135
ODD 79
OPCodes 76,129
Options 116
OR 82,104
ORD78
ORGANIZE 154
Organization

-Editor 56
-Diskette 169
.OS 135
OUTDVC 95
OUTPUT 60,65,73
OUTPUT-DEVICE 41
Output
-format 76
-buffer 76

Overlay 104

Parameters 113
Pascal 59
-compiler 59
-DOS 169
-programs 45

PCode 114
&PCODE 114
PEEK 87
PI 84
Pointer-type 63
POKE 87,156
Post-mortem dump 118,124
PRED80
Printer 2
PROCEDURE 65
-assignment 65,84

Program 60
-break 124
-head 60,846
-location 45
-start 116

Pseudo OP Codes 134
PUT 69
PUT-RAM 26,154
PUT-SECTOR 170
PUT-SOURCE 42

QUIT 43,155

219

ABACUS Software SUPER Pascal Development System

RAM-mode 118
RANDOM 87
RANDOM access 88
READ 70
READLN 71
REAL 62
RECORD 63
RELEASE 95
RELEASE BLOCK (zero) 162
RENAME 55
RENUMBER 43
REPEAT 67
RESET72
REWRITE 72
ROUND 81
RS-232 91,95
RUN-PROGRAM 28
RUN/STOP 79
Runtime-errors 90,98,124

.SA 136
Scratch 151
Search 37
SEEK 96
SEGMENT 104
Sector 148
SET 63
SETADR 97
SETDRV 98
SETTRAP98
SHIFT-LINE 44
Shift-memory 157
SHL 103
SHR 103
SIGN 102
SIN 81
SEE 101
Source file 57
SQR80
SQRT81

Stack 116
Standard language elements 59
-functions 78
-procedures 68,89

STARTUP 19
Statistics 122
STKPOI84
STORE-MEMORY 156
STRING 85
String length 101
SUCC 80
Sum 102
Syntax
-check 121
-error 121

SYSGEN 17
System size 163
-declaration 1
-information 163
-loading 2

Test-of-bounds 118
TEXT 64
Text
-editor 33
-file 57

Top-of-stack 113
Transfer line 44
Transfer memory 157
TRUE 61
&TRUE 114
TRUNC81
TYPE 61
Type assignment 61,85

UNLOCK 158
UPDATE 44
USERFUNC 107
USERPROC 107
User-routines 107

220

ABACUS Software SUPER Pascal Development System

Utility 15,143
-call 30

VACANCY 45
VAR 65
Variable design 163
-check 118
-memory 116
-size 102
VIEW-MEMORY 158

WHILE 67
WITH 67
WRITE 75
WRITE-DIRECTORY 159
WRITELN 77
Write protection 152
WRITE-SOURCE 30

XTRNFUNC 106
XTRNPRGM 107
XTRNPROC 106

ZEROING 162

Auto-Run Super Pascal Programs
To make an auto-run Super Pascal program disk:

Load Super Pascal into your computer.

From the main menu run the SYSGEN program by:

r [RETURN] for r(unprgm)
SYSGEN [RETURN]

This creates a Super Pascal disk. When this is finished remove the newly
created Super Pascal Disk and insert the Master Super Pascal disk.

From the main menu goto the Utility menu by pressing:

u [RETURN] for u(tility)

Copy the program you wish to automatically start, using the c(opy)
command to the new Super Pascal Disk as follows:

c [RETURN] for c(opy)
s o u rc e - d r i v e : 0
d e s t i n a t - d r i v e : 0
f i l e - t i t l e = p ro g ram name

When the copy is finished rename "program name" to " s t a r tu p " usi
the r(ename) command as follows:

r [RETURN] for r(ename)
f i l e - t i t l e = p ro g ram name
re p la c e m e n t = s t a r t u p

Restart the C-64 system and with the Super Pascal disk you created in the
disk drive simply type:

LOAD ”*",8,1
The Super Pascal System will be loaded and your program will
automatically start.

Abacus Software Super Pascal 64 Addendum

Super Pascal Addendum
This addendum consists of clarifications and corrections to the
Super Pascal 64 manual. Page numbers refer to those in the Super
Pascal 64 manual.

A . (text follows program code at bottom of p. 86)

The type compatibility between STRING and CHAR array also
means that the procedures w r i t e and w r i t e l n can output
quantities of type CHAR in addition to quantities of type STRING.
For example, WRITELN (TITLE : 10) ; is absolutely correct in
Super Pascal if TITLE is defined as type ALFA.

B . (page 87, following the description of RANDOM and preceding
COMMAND SET)
Following the variable declaration comes the

Procedure declaration

and

Function declaration

Except for the structuring and compiler instructions to be discussed
later, we will not say anything more about these two here.

The next part of a program block is the

Statement section

with its sequence of statements. Two extensions of Super Pascal
should be mentioned in the area of the statement section. The first is
regarding the

:= (assignment) statement

223

Abacus Software Super Pascal 64 Addendum

To allow for easy access to variables of type FILE and ARRAY OF
CHAR or ARRAY OF BYTE, the following access mechanisms
are provided:

File access

Instructions with the following syntax:

FILEV A R IA B LE(IN D EX):=ELEM EN T;

or

DESTVAR:=FILEVARIABLE(INDEX);
can be used to access a precisely defined element of a file (random
access) for both reading and writing, depending on the assignment

FILEVARIABLE stands for the identifier which was declared as a
variable of type FILE in the declaration section.

ELEMENT stands for a expression of the type of the elements of the
file in question.

DESTVAR stands for the identifier of a variable of the type of the
elements of the file in question.

INDEX stands for the number of the desired file element. The
elements are placed in the file sequentially and the first element has
the number 0. The i n d e x expression must be of type REAL so
that large files can be accessed. The integer portion of the index
expression will always be chosen. Negative values or values which
are too large lead to runtime errors:

IL.FILE OPR. ERROR or AFTER EOF ERROR!
If the element type of the file is a structured type, individual sub­
variables can also be accessed:

FILEVARIABLE(5000).CITY:='NEW YORK';

224

Abacus Software Super Pascal 64 Addendum

If the file element contains a field definition of type ALFA.
Something like this is also allowed:

IF FILEVARIABLE(5000).CITY[0]='N' THEN ...
N O TE:
This method of file access implicitly includes opening and closing
the file, which takes a noticeable amount of time on the C64
because of the slow transfer of data to and from the disk drive.
Care must also be taken to ensure that three file buffers of the Super
Pascal system are available for file access. The file being addressed
must be accessible in the working disk drive (see the procedure
SETDRV).
Array access

In addition to the assignment of entire arrays or individual array
elements, sections of arrays (called slices) can be accessed in Super
Pascal. This is especially useful when working with CHAR arrays
and string quantities.

The syntax is as follows:

ARRAYVAR[>INDEX]: =EXPRESSION;

and

DESTVAR: =ARRAYVAR[>INDEX] ;

In the first case, the quantity indicated by EXPRESSION is placed
in the array designated by ARRAYVAR at position INDEX. The
lowest array element has the number 0. INDEX must be of type
INTEGER, while the array variables must be of type ARRAY OF
CHAR or ARRAY OF BYTE.

N O TE:
During these assignment, the quantity EXPRESSION is placed over
the specified array range in its entirety, regardless of whether it fits
this range or not. Under certain circumstances, neighboring
variables may be overwritten! This assignment technique should be
used only for known relationships.

225

Abacus Software Super Pascal 64 Addendum

For example:

TITLE [> 4] : = 1 2 3 4 ;

places the binary coding of the integer value 1234 in positions 4
and 5 of the array TITLE.

TITLE[>4] :=TITLE;
leads to a "dangerous" range overflow because it places the entire
variable t i t l e in the variable area at position 4 and beyond.
In the opposite assignment:

DESTVAR:=ARRAYVAR[>INDEX];
the destination variable will be filled in its entire length with the
array elements of a r r a y VAR at position INDEX (inclusive).
Missing values will be taken from the variable storage adjacent to
ARRAYVAR.
Although the constructs presented here do not conform to the
Pascal concept, they do provide an easy way to process elements of
differing types and sizes, especially for system programming,
when applied conscientiously. If a particular problem is to be
solved using good Pascal style, there are other ways o f
accomplishing the same things.

C . (This text is the conclusion of CLOSE, p. 89, bottom)

N O TE:
The CLOSE procedure must be used for a file opened for writing or
the information last written to the file will be lost. The information
will be written to the file buffer, but not actually stored in the given
file. The buffer is not written to disk until it is full or the file is
closed.

226

Abacus Software Super Pascal 64 Addendum

D. (Re-definition of LOAD,p. 93)

LOAD
LOAD loads an external Pascal program routine into memory.

Syntax:
LOAD(PROCEDURE_FUNCTION_NAIfE,FILENAME,DRIVE_NR);

In contrast to CONTINUE and EXECUTE, the LOAD procedure
allows only an external program routine to be loaded. The external
routine declared under an arbitrary identifier (PRO CED U RE_
FU N CTlO N _N A M E) will be loaded into memory during the
program run. It must be available under the given identifier
(FILENAM E) in the given drive (DRIVE_NR). The procedure or
function identifier (p r o c e d u r e _ f u n c t io n _ n a m e) must not be
the same as the disk entry (f i l e n a m e). The loading procedure
itself is performed by a utility routine in the file LOADDAT.
LOADDAT must be present in drive 0 or the program run will stop
with an error message.

Calling the loaded function is no longer part of the procedure; it
takes place as with a normal procedure or function via the identifier
declared with the reserved word symbols x t r n p r g m , XTRNPROC,
and XTRNFUNC.

E. (text added to OUTDVC, p. 95 under NOTE:)

N O TE:
The inadequate input/output interface built into the C64 under the
primary address 2 (RS-232) is not available via OUTDVC. If you
are interested, you can make an adaptation with Super Pascal.
OUTDVC addresses only the devices connected to the serial
input/output bus.

F . (add to SEEK, p. 96-97)

The SEEK procedure can only be used on files which are available
in the drive defined as the current working drive. If the file is not

227

Abacus Software Super Pascal 64 Addendum

found, the program will stop with an appropriate error message.
The working drive can be defined with the procedure SETDRV,
discussed later.

This procedure positions the access pointer to the file element
whose ordinal number is determined by the value representing
e x p r e s s i o n . The first elepent of a file, the element to which the
access pointer is set by RESET or REWRITE, has the ordinal
number 0. The difference between read and write access results
from the operation following the s e e k procedure. GET, READ,
and READLN cause read accesses, while PUT, WRITE, and
w r i t e l n write to the file. After each access, the access pointer is
advanced one element.

After a write access, any data behind the write position will be
erased. Only writing can continue in the file. Termination of the
read/write operations is done with CLOSE or LOCK. It is not
possible to write to a file which has been LOCKed. If an attempt is
made, the message

IL.FILE OPR. ERROR!
will occur and the program will be terminated.

G . (add to Chapter 4.6, p. 125, end of page)

If, at the beginning of a program, its entry address is taken from the
pointer ADR_PRPO and placed in the pointer a d r _EXPO, then
every program end will lead back to the called program. All you
must do is check at the beginning of the program whether it is being
called for the first time and must be initialized or whether this is a
re-entry. This can be determined from the WARMFLAG; if it is set at
the beginning of the program, it can be used to recognize a re-entry
and bypass the initialization routine. All variables will remain intact.

The only problem is the actual jump to the MAIN menu (QUIT).
This is possible via a small assembly language routine which
executes a 65XX JUMP to the MAIN menu. More details can be
gathered from the listing of the editor program in Chapter 8.

2 2 8

Make Your Choice
C-64 or C-128

B A S IC C o m p ile r
ompløtø B A S IC c o m p ile r
i d d e v e lo p m e n t p a ckag e ,
peed u p you r p rogram » 5x
■ 3 5 * . C o m p ile to m ach in e
ode, c o m p a c t p -c o d e o r
3th. '1 2 8 ve rs io n : 40 o r 80
o l. m o n ito r o u tp u t a n d
A S T -m o d e o p e ra tio n . ‘128
• re io n in c lu d e « e x te n e iv e
0 -p a g e p ro g ram ed » gu ida .
. g re a t p a c k a g e th a t no
o ftw a re lib ra ry s h o u ld be
'ithou t. C -6 4 $ 3 8 .9 5

C -1 2 8 $ 5 9 .9 8

S u p e r C C o m pMer
>r » c h o o l o r s o f tw a re
► velopment. Le a rn th e C
n g ua ge on th e '9 4 o r '128.
om p ile s In to tø»l m ach in e
>de. A d d e d ‘12 8 fe a tu re« :
P /M -like op e ra tin g s ys te m ;
)K R A M d isk . C om b in a M /L
C us in g C A L L ; 5 1 K a v a ll­

óle fo r o b je c t c o d e ; F a s t
« d in g ; T w o s ta n d a rd 1 0
v a ry » p lus m ath 8 g ra ph ic
xa r iea . C -8 4 9 5 9 .9 5

. . C -1 2 8 9 5 9 .9 8&**
Spøødtørm

• t you r 54 o r 128 oom m un­
a te w ith th e o u ts id e w orld ,
ib ta in In fo rm a tio n fro m
sr lo us c o m p u te r ne tw orks ,
le x ib le , c o m m a n d d r iv e n
trm in a l s o ftw a re pa cka g e ,
u p p o r ts m o s t m o d e m s ,
m od em and P u n ta r transfe r
ro toco l. V T 5 2 te rm ina l em u-
i lio n w ith cu rso r keys, large
5K c a p tu re b u ffe r 8 use r
• fin a b le fonction keys.
• t e l c-64 939.95

C -1 2 9 939.95

BASIC
Compiler

Speeds up your BASIC programs by
3 to 20 times. For C-64 and C-128

C O B O L
N ow you can lea rn C O B O L,
th e m o s t w id e ly u s e d
c o m m e rc ia l p ro g ra m m in g
language, on you r 128 o r 64.
C O B O L C o m p ile r p a c k a g e
com e s c om p le te w ith syn tax-
c h e c k in g e d ito r , in te rp re te r
a n d s y m b o lic d e b u g g in g
• id s . N ew ‘128 ve rs ion w orks
w ith 4 0 /8 0 co lu m n m on ito rs
and is q u ic k e r th an th e *4
vers ion . C -6 4 9 3 9 .9 5

C -1 2 9 9 5 9 .9 5

Vereionf
S u p e r P a soa l Com pM er

C o m p le te sys te m fo r d e v e l-
optng ap p lica tion s In P ascal.
E xten s ive ed ito r. S tan da rd J
8 W c o m p ile r . G ra p h ic s
lib rary . A d de d '1 28 fea tu res:
R AM d is k ; 10 0K sou rce /o ne
d r iv e o r 2 5 0 K /tw o ; 8 0 /4 0
co lum n. If you w a n t to lea rn
P a sca l o r d e v e lo p so ftw a re
using the b e s t too l ava ilab le ,
8 u p e r P a s c a l Is y o u r firs t

C -8 4 9 5 9 .9 5
C -1 2 8 9 5 9 .9 8

Us# your 64 or 128 lo commun-
Ipftft wjtø IN outttd* werkt

re a te p ro fe s s io n a l q u a lity
ha rts (0st— w ith o u t p ro -
ram m in g . En te r, ed it, save
nd reca ll da ta . In te ra ctive ly
u ild p ie , ba r, line o r s ca tte r
raph. S e t sc a lin g , lab e ling
nd po s ition ing . D ra w charts
d iffe ren t fo rm ats. S ta tis tica l

XJtines to r ave rage, s tandard
av ia tion , lea s t squ are s and
» • c a s t in g . U se d a ta from
preadsheets . O u tpu t to m ost
rin ters. C -6 4 9 3 9 .9 5

C -1 2 8 9 3 9 .9 5

• m ä ö a a

Ea sy-to -use in te rac tive dra w ­
ing p a c k a g e fo r a c c u ra te
g ra p h ic de s ign s . D im e n s io n ­
ing fe a tu re s to c re a te exa c t
sc a le d o u tp u t to a ll m a jo r
d o t-m a tr ix p rin te rs . In pu t vi«|
k e y b o a rd o r l ig h tp e n . T w o
gra ph ic screens tor C O P Y in g
from one to th e othe r. DRAW ,
B O X , A R C , E L L IP 8 E , e tc .
a v a ila b le . D e fin e yo u r ow n
lib ra ry o f s y m b o ls /o b je c ls -
• to re u p to 10 4 s e p a ra te
ob jec ts . C -8 4 9 3 9 .9 9

C -1 2 9 9 5 9 .9 5

PPM
C o m p re h e n s iv e p o r t fo lio
m a n ag em en t syste m to r the
64 and 128. M an ag e s tocks,
bonds, m utu a l fu nd s, T -b ills ;
reco rd ta xab le o r no n-taxab le
d iv id en ds 8 in te res t inco m e ;
re c o n c ile e a c h b ro k e ra g e
ac c o u n t c a s h b a la n c e w ith
th e Y T D tra n s a c t io n fi le ;
on - lin e q u o tes th ro u g h D ow
Jo n e s o r W arne r. P rod uce s
an y typ e o f report need ed to
a n a ly z e a p o r t fo lio o r
security. C -6 4 $ 3 9 .9 5

C -1 2 6 9 5 9 .9 5

P o r i & K ñ S
Mai iger li i;

»all now for the name of the dealer nearest you.
)r order directly form Abacus using your MC, visa
r Amex card. Add $4.00 per order for shipping,
oreign orders add $10.00 per item. Call (616)
41-5510 or write for your free catalog. 30-day .. 11NANA

money back software guarantee. Dealers inquires P»0. BOX 7219 DeptM2 Grand RdpldS, Ml 49510
welcome-over 1500 dealers nationwide. Phono 616̂ 241-5510 • Telex 709-101 • Fax 616/241-5021

Abacusnimm«

from Abacus

DsUilad gulda prasants

Introduction to programing; problem
analysis; thorough description of all
BASIC commands with hundreds of
eiamples; monitor commands; util­
ities; much more. $16.95

ANATOMY OF C-64 Insider's guide to the
64 Internals. Graphics, sound. I/O. karnal,
memory maps, more. Complete commented
ROM listings. 300pp $19.95

ANATOMY OF 1S4L1 ¿DRIVE Best
tandbook on U fM ^ H p jfio a oH. Many
»samples and \jmMMt4M6Wy commented
1541 ROM lstln(/fc*r 600pp $19.95
MACHINE LANGUAGE C-64 Learn
>510 code write fast programs. Many sam-
)les and listings lor complete assembler,
monitor, * simulator. 200pp $14.95
GRAPHICS BOOK C-64 - best reference
covers basic and advanced graphics.
Sprites, animation. Hires, Multicolor,
lightpen, 30-graphics. IRQ, CAD, pro-
lections, curves, more. 360pp $19.95

TRICKS A TIPS FOR C-64 Collection of
easy-to-use techniques: advanced graphics,
improved data input, enhanced BASIC,
CP/M. more. 275pp $19.95
1541 REPAIR A MAINTENANCE
Handbook describes the disk drive hard­
ware. Includes schematics and techniques
to keep 1541 running. 200pp $19.95
ADVANCED MACHINE LANGUAGE
Not covered elsewhere: - video controller.
Interrupts, timers, clocks, I/O, real time,
extended BASIC, more. 2l0pp $14.95

PRINTER BOOK C-64/VIC-20 Under­
stand Commodore. Epson-com pat ble print­
ers and 1520 plotter. Packed: utilities; gra­
phics dump; 3D-plot; commented MPS801
ROM listings, more. 330pp $19.95

SCIENCE/ENGINEER1NG ON C-64 In
depth Intro to computers In science. Topics:
chemistry, physics, biology, astronomy,
electronics, others. 190pp $19.95
CASSETTE BOOK C-64/VIC-20
Comprehensive guide; many sample
programs. High speed operating system
last file loading and saving. 225pp $14.95
IDEAS FOR USE ON C-64 Themes:
auto expenses, calculator, recipe IHe, stock
lists, diet planner, window advertising,
others. Indudes listings. 200pp $12.95
COMPILER BOOK C-64/C-126 All you
need to know about compilers: how they
work; designing and writing your own;
generating machine code. With working
example compiler. 300pp $19.95

Adventure Qamewrlter'o Handbook
Step-by-step guide to designing and writing
your own adventure games. With automated
adventure game generator. 200pp $14.95
PEEKS A POKES FOR THE C-64
Includes In-depth explanations of PEEK,
POKE, USR. and other BASIC commands.
Loam the 'Inside* tricks to get the most out
of your '64. 200pp $14.95
Optional Dlakettee for books
For your convenience, the programs
contained In each of our books are avail­
able on dlskene to save you time entering
them from your keyboard. Spedfy name of
book when ordering. $14.96 each

Abacus H i S Software
P.0. Box 7219 Dept.M9 Grand Rapids, Ml 49510 ■ Telex 709-101 ■ Phone (616) 241-5510
Optional diskettes available for all book titles • $14.95 each. Other books & software also available. Call for the name of your
nearest dealer. Or order directly from ABACUS using your MC, Visa or Amex card. Add $4.00 per order for shipping. Foreign
orders add *10.00 per book. Call now or write for your free catalog. Dealer inquires welcome-over 1400 dealers nationwide.

FO
LD

 H
E

R
E

-»
 A

N
D

 T
A

PE

You Can Count On

Register this software and be eligible
to win additional software free

in our monthly drawing.

Return this card to register your purchase and to
receive free technical support for this product. You
may also order a backup copy of this program.

Monthly drawing winner will be notified by mail. Good Luck!

900
Product ID REGISTRATION CARD

Registration #.
Name______
Address

City.

0 5 0 5 0 9 ..____________ Program;.

State. Zip.

Purchase Information:
Dealer
Address
City________________________ State_______________ Zip_____________

Return this registration card to obtain a backup copy of the above program
for a handling charge of $10.00. A check, money order, or credit card
number must accompany this request. Purchase orders are not acceptable.

BACKUP COPY?

O No, do not send a backup copy, but register my purchase.

O Yes, send a backup copy. $10.00 payment is enclosed.

Credit card#______________________________________
Expiration Date / /

uo iunoø ubq no\ øjbmjjos
fflsnseqv

JA I You Can Count On

Abacus
Softw

tiHi******

usimnnii
tware 5370 52nd Street SE

Grand Rapids, Ml 49508

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

