
64tass v1.51 r992 reference manual
This is the manual for 64tass, the multi pass optimizing macro assembler for the 65xx series
of processors. Key features:

Open source, mostly portable C with minimal dependencies
Familiar syntax to Omicron TASS and TASM.
Supports 6502, 65C02, R65C02, W65C02, 65CE02, 65816, DTV, 65EL02
Arbitrary-precision integers and bitstrings, double precision floating point numbers
Character and byte strings, array arithmetic
Handles UTF-8, UTF-16 and 8 bit RAW encoded source files, unicode character strings
Supports Unicode identifiers with case folding and compatibility normalization
Built-in “linker” with section support
CPU or flat address space for creating huge binaries (e.g. cartridges)
Conditional compilation, macros, struct/union structures, scopes.

This is a development version, features or syntax may change over time. Not every‐
thing is backwards compatible.

Project page: http://sourceforge.net/projects/tass64/

1 Table of Contents

1 Table of Contents

2 Usage tips

3 Expressions and data types
3.1 Integer constants
3.2 Bit string constants
3.3 Floating point constants
3.4 Character string constants
3.5 Byte string constants
3.6 Lists and tuples
3.7 Dictionaries
3.8 Code
3.9 Addressing modes
3.10 Uninitialized memory
3.11 Booleans
3.12 Types
3.13 Symbols

3.13.1 Regular symbols
3.13.1 Local symbols
3.13.1 Anonymous symbols
3.13.1 Constant and re-definable symbols
3.13.1 The star label

3.14 Built-in functions
3.14.1 Mathematical functions
3.14.1 Other functions

3.15 Expressions
3.15.1 Operators
3.15.1 Comparison operators
3.15.1 Bit string extraction operators
3.15.1 Conditional operators
3.15.1 Address length forcing
3.15.1 Compound assignment

4 Compiler directives
4.1 Controlling the compile offset and program counter

64tass v1.51 r992 reference manual

1 / 57

4.2 Dumping data
4.2.1 Storing numeric values
4.2.1 Storing string values

4.3 Text encoding
4.4 Structured data

4.4.1 Structure
4.4.1 Union
4.4.1 Combined use of structures and unions

4.5 Macros
4.5.1 Parameter references
4.5.1 Text references

4.6 Custom functions
4.7 Conditional assembly

4.7.1 If, else if, else
4.7.1 Switch, case, default

4.8 Repetitions
4.9 Including files
4.10 Scopes
4.11 Sections
4.12 65816 related
4.13 Controlling errors
4.14 Target
4.15 Misc
4.16 Printer control

5 Pseudo instructions
5.1 Aliases
5.2 Always taken branches
5.3 Long branches

6 Original turbo assembler compatibility
6.1 How to convert source code for use with 64tass
6.2 Differences to the original turbo ass macro on the C64
6.3 Labels
6.4 Expression evaluation
6.5 Macros
6.6 Bugs

7 Command line options
7.1 Output options
7.2 Operation options
7.3 Target selection on command line
7.4 Source listing options
7.5 Other options

8 Messages
8.1 Warnings
8.2 Errors
8.3 Fatal errors

9 Credits

10 Default translation and escape sequences
10.1 Raw 8-bit source

10.1.1 The none encoding for raw 8-bit
10.1.1 The screen encoding for raw 8-bit

10.2 Unicode and ASCII source
10.2.1 The none encoding for Unicode
10.2.1 The screen encoding for Unicode

11 Opcodes
11.1 Standard 6502 opcodes
11.2 6502 illegal opcodes

64tass v1.51 r992 reference manual

2 / 57

11.3 65DTV02 opcodes
11.4 Standard 65C02 opcodes
11.5 R65C02 opcodes
11.6 W65C02 opcodes
11.7 W65816 opcodes
11.8 65EL02 opcodes
11.9 65CE02 opcodes

12 Appendix
12.1 Assembler directives
12.2 Built-in functions
12.3 Built-in types

2 Usage tips

64tass is a command line assembler, the source can be written in any text editor. As a mini‐
mum the source filename must be given on the command line. The “-a” parameter is highly
recommended if the source is Unicode or ASCII.

64tass -a src.asm

There are also some useful parameters which are described later.

For comfortable compiling I use such “Makefile”s (for make):

demo.prg: source.asm macros.asm pic.drp music.bin
64tass -C -a -B -i source.asm -o demo.tmp
pucrunch -ffast -x 2048 demo.tmp >demo.prg

This way “demo.prg” is recreated by compiling “source.asm” whenever “source.asm”,
“macros.asm”, “pic.drp” or “music.bin” had changed.

Of course it's not much harder to create something similar for win32 (make.bat), however
this will always compile and compress:

64tass.exe -C -a -B -i source.asm -o demo.tmp
pucrunch.exe -ffast -x 2048 demo.tmp >demo.prg

Here's a slightly more advanced Makefile example with default action as testing in VICE,
clean target for removal of temporary files and compressing using an intermediate tempo‐
rary file:

all: demo.prg
x64 -autostartprgmode 1 -autostart-warp +truedrive +cart $<

demo.prg: demo.tmp
pucrunch -ffast -x 2048 $< >$@

demo.tmp: source.asm macros.asm pic.drp music.bin
64tass -C -a -B -i $< -o $@

.INTERMEDIATE: demo.tmp

.PHONY: all clean
clean:
 $(RM) demo.prg demo.tmp

It's useful to add a basic header to your source files like the one below, so that the resulting
file is directly runnable without additional compression:

* = $0801

64tass v1.51 r992 reference manual

3 / 57

.word (+), 2005 ;pointer, line number

.null $9e, ^start;will be sys 4096
+ .word 0 ;basic line end

* = $1000

start rts

A frequently coming up question is, how to automatically allocate memory, without hacks
like ∗=∗+1? Sure there's .byte and friends for variables with initial values but what about zero
page, or RAM outside of program area? The solution is to not use an initial value by using “?”
or not giving a fill byte value to .fill.

* = $02
p1 .word ? ;a zero page pointer
temp .fill 10 ;a 10 byte temporary area

Space allocated this way is not saved in the output as there's no data to save at those ad‐
dresses.

What about some code running on zero page for speed? It needs to be relocated, and the
length must be known to copy it there. Here's an example:

ldx #size(zpcode)-1;calculate length
- lda zpcode,x

sta wrbyte,x
dex ;install to zeropage
bpl -
jsr wrbyte
rts

;code continues here but is compiled to run from $02
zpcode .logical $02
wrbyte sta $ffff ;quick byte writer at $02

inc wrbyte+1
bne +
inc wrbyte+2

+ rts
.here

The assembler supports lists and tuples, which does not seems interesting at first as it sound
like something which is only useful when heavy scripting is involved. But as normal arith‐
metic operations also apply on all their elements at once, this could spare quite some typing
and repetition.

Let's take a simple example of a low/high byte jump table of return addresses, this usually
involves some unnecessary copy/pasting to create a pair of tables with constructs like
>(label−1).

jumpcmd lda hibytes,x ; selected routine in X register
pha
lda lobytes,x ; push address to stack
pha
rts ; jump, rts will increase pc by one!

; Build an anonymous list of jump addresses minus 1
- = (cmd_p, cmd_c, cmd_m, cmd_s, cmd_r, cmd_l, cmd_e)-1
lobytes .byte <(-) ; low bytes of jump addresses
hibytes .byte >(-) ; high bytes

There are some other tips below in the descriptions.

64tass v1.51 r992 reference manual

4 / 57

3 Expressions and data types

3.1 Integer constants

Integer constants can be entered as decimal digits of arbitrary length. An underscore can be
used between digits as a separator for better readability of long numbers. The following op‐
erations are accepted:

Table 1: Integer operators and functions

x + y add x to y 2 + 2 is 4
x − y subtract y from x 4 − 1 is 3
x ∗ y multiply x with y 2 ∗ 3 is 6
x / y integer divide x by y 7 / 2 is 3
x % y integer modulo of x divided by y 5 % 2 is 1
x ∗∗ y x raised to power of y 2 ∗∗ 4 is 16
−x negated value −2 is −2
+x unchanged +2 is 2
~x −x − 1 ~3 is −4
x | y bitwise or 2 | 6 is 6
x ^ y bitwise xor 2 ^ 6 is 4
x & y bitwise and 2 & 6 is 2
x << y logical shift left 1 << 3 is 8
x >> y arithmetic shift right −8 >> 3 is −1

Integers are automatically promoted to float as necessary in expressions. Other types can be
converted to integer using the integer type int.

.byte 23 ; decimal

lda #((bitmap >> 10) & $0f) | ((screen >> 6) & $f0)
sta $d018

3.2 Bit string constants

Bit string constants can be entered in hexadecimal form with a leading dollar sign or in bi‐
nary with a leading percent sign. An underscore can be used between digits as a separator
for better readability of long numbers. The following operations are accepted:

Table 2: Bit string operators and functions

~x invert bits ~%101 is ~%101
y .. x concatenate bits $a .. $b is $ab
y x n repeat %101 x 3 is %101101101
x[n] extract bit(s) $a[1] is %1
x[s] slice bits $1234[4:8] is $3
x | y bitwise or ~$2 | $6 is ~$0
x ^ y bitwise xor ~$2 ^ $6 is ~$4
x & y bitwise and ~$2 & $6 is $4
x << y bitwise shift left $0f << 4 is $0f0
x >> y bitwise shift right ~$f4 >> 4 is ~$f

Length of bit string constants are defined in bits and is calculated from the number of bit
digits used including leading zeros.

Bit strings are automatically promoted to integer or floating point as necessary in expres‐
sions. The higher bits are extended with zeros or ones as needed.

Other types can be converted to bit string using the bit string type bits.

64tass v1.51 r992 reference manual

5 / 57

.byte $33 ; hex

.byte %00011111 ; binary

.text $1234 ; $34, $12

lda $01
and #~$07
ora #$05
sta $01

lda $d015
and #~%00100000 ;clear a bit
sta $d015

3.3 Floating point constants

Floating point constants have a radix point in them and optionally an exponent. A decimal
exponent is “e” while a binary one is “p”. An underscore can be used between digits as a
separator for better readability. The following operations can be used:

Table 3: Floating point operators and functions

x + y add x to y 2.2 + 2.2 is 4.4
x − y subtract y from x 4.1 − 1.1 is 3.0
x ∗ y multiply x with y 1.5 ∗ 3 is 4.5
x / y integer divide x by y 7.0 / 2.0 is 3.5
x % y integer modulo of x divided by y 5.0 % 2.0 is 1.0
x ∗∗ y x raised t power of y 2.0 ∗∗ −1 is 0.5
−x negated value −2.0 is −2.0
+x unchanged +2.0 is 2.0
x | y bitwise or 2.5 | 6.5 is 6.5
x ^ y bitwise xor 2.5 ^ 6.5 is 4.0
x & y bitwise and 2.5 & 6.5 is 2.5
x << y logical shift left 1.0 << 3.0 is 8.0
x >> y arithmetic shift right −8.0 >> 4 is −0.5
~x almost −x ~2.1 is almost −2.1

As usual comparing floating point numbers for (non) equality is a bad idea due to rounding
errors.

There are no predefined floating point constants, define them as necessary. Hint: pi is
rad(180) and e is exp(1).

Floating point numbers are automatically truncated to integer as necessary. Other types
can be converted to floating point by using the type float.

Fixed point conversion can be done by using the shift operators. For example a 8.16 fixed
point number can be calculated as (3.14 << 16) & $ffffff. The binary operators operate like
if the floating point number would be a fixed point one. This is the reason for the strange
definition of inversion.

.byte 3.66e1 ; 36.6, truncated to 36

.byte $1.8p4 ; 4:4 fixed point number (1.5)

.int 12.2p8 ; 8:8 fixed point number (12.2)

3.4 Character string constants

Character strings are enclosed in single or double quotes and can hold any Unicode charac‐
ter. Operations like indexing or slicing are always done on the original representation. The
current encoding is only applied when it's used in expressions as numeric constants or in
context of text data directives. Doubling the quotes inside string literals escapes them and

64tass v1.51 r992 reference manual

6 / 57

results in a single quote.

Table 4: Character string operators and functions

y .. x concatenate strings "a" .. "b" is "ab"
y in x is substring of "b" in "abc" is true
a x n repeat "ab" x 3 is "ababab"
a[i] character from start "abc"[1] is "b"
a[i] character from end "abc"[−1] is "c"
a[s] no change "abc"[:] is "abc"
a[s] cut off start "abc"[1:] is "bc"
a[s] cut off end "abc"[:−1] is "ab"
a[s] reverse "abc"[::−1] is "cba"

Character strings are converted to integers, byte and bit strings as necessary using the cur‐
rent encoding and escape rules. For example when using a sane encoding "z"−"a" is 25.

Other types can be converted to character strings by using the type str or by using the
repr and format functions.

Indexing characters with positive integers start with zero. Negative indexes are trans‐
lated internally by adding the number of characters to them, therefore −1 can be used to ac‐
cess the last character. Indexing with list of integers is possible as well so "abc"[(−1, 0, 1)]
is "cab".

Slicing is an operation when parts of string are extracted from a start position to an end
position with a step value. These parameters are separated with colons enclosed in square
brackets and are all optional. Their default values are [start:maximum:step=1]. Negative
start and end characters are converted to positive internally by adding the length of string to
them. Negative step operates in reverse direction, non single steps will jump over charac‐
ters.

mystr = "oeU" ; text
.text 'it''s' ; text: it's
.word "ab"+1 ; character, results in "bb" usually

.text "text"[:2] ; "te"

.text "text"[2:] ; "xt"

.text "text"[:-1] ; "tex"

.text "reverse"[::-1]; "esrever"

3.5 Byte string constants

Byte strings are like character strings, but hold bytes instead of characters.

Quoted character strings prefixing by “b”, “l”, “n”, “p” or “s” characters can be used to
create byte strings. The resulting byte string contains what .text, .shiftl, .null, .ptext and
.shift would create.

Table 5: Byte string operators and functions

y .. x concatenate strings b"a" .. b"b" is b"ab"
y in x is substring of b"b" in b"abc" is true
a x n repeat b"ab" x 3 is b"ababab"
a[i] byte from start b"abc"[1] is b"b"
a[i] byte from end b"abc"[−1] is b"c"
a[s] no change b"abc"[:] is b"abc"
a[s] cut off start b"abc"[1:] is b"bc"
a[s] cut off end b"abc"[:−1] is b"ab"
a[s] reverse b"abc"[::−1] is b"cba"

Indexing and slicing works as with character strings.

64tass v1.51 r992 reference manual

7 / 57

Other types can be converted to byte strings by using the type bytes.

.enc screen ;use screen encoding
mystr = b"oeU" ;convert text to bytes, like .text

.enc none ;normal encoding

.text mystr ;text as originally encoded

.text s"p1" ;convert to bytes like .shift

.text l"p2" ;convert to bytes like .shiftl

.text n"p3" ;convert to bytes like .null

.text p"p4" ;convert to bytes like .ptext

3.6 Lists and tuples

Lists and tuples can hold a collection of values. Lists are defined from values separated by
comma between square brackets [1, 2, 3], an empty list is []. Tuples are similar but are en‐
closed in parentheses instead. An empty tuple is (), a single element tuple is (4,) to differen‐
tiate from normal numeric expression parentheses. When nested they function similar to an
array. Currently both types are immutable.

Table 6: List and tuple operators and functions

y .. x concatenate lists [1] .. [2] is [1, 2]
y in x is member of list 2 in [1, 2, 3] is true
a x n repeat [1, 2] x 2 is [1, 2, 1, 2]
a[i] element from start ("1", 2)[1] is 2
a[i] element from end ("1", 2, 3)[−1] is 3
a[s] no change (1, 2, 3)[:] is (1, 2, 3)
a[s] cut off start (1, 2, 3)[1:] is (2, 3)
a[s] cut off end (1, 2.0, 3)[:−1] is (1, 2.0)
a[s] reverse (1, 2, 3)[::−1] is (3, 2, 1)
∗a convert to arguments format("%d: %s", ∗mylist)

Arithmetic operations are applied on the all elements recursively, therefore [1, 2] + 1 is [2,
3], and abs([1, −1]) is [1, 1].

Arithmetic operations between lists are applied one by one on their elements, so [1, 2] +
[3, 4] is [4, 6].

When lists form an array and columns/rows are missing the smaller array is stretched to
fill in the gaps if possible, so [[1], [2]] ∗ [3, 4] is [[3, 4], [6, 8]].

Indexing elements with positive integers start with zero. Negative indexes are trans‐
formed to positive by adding the number of elements to them, therefor −1 is the last ele‐
ment. Indexing with list of integers is possible as well so [1, 2, 3][(−1, 0, 1)] is [3, 1, 2].

Slicing is an operation when parts of list or tuple are extracted from a start position to an
end position with a step value. These parameters are separated with colons enclosed in
square brackets and are all optional. Their default values are [start:maximum:step=1]. Neg‐
ative start and end elements are converted to positive internally by adding the number of el‐
ements to them. Negative step operates in reverse direction, non single steps will jump over
elements.

mylist = [1, 2, "whatever"]
mytuple = (cmd_e, cmd_g)

mylist = ("e", cmd_e, "g", cmd_g, "i", cmd_i)
keys .text mylist[::2] ; keys ("e", "g", "i")
call_l .byte <mylist[1::2]-1; routines (<cmd_e−1, <cmd_g−1, <cmd_i−1)
call_h .byte >mylist[1::2]-1; routines (>cmd_e−1, >cmd_g−1, >cmd_i−1)

64tass v1.51 r992 reference manual

8 / 57

The range(start, end, step) built-in function can be used to create lists of integers in a range
with a given step value. At least the end must be given, the start defaults to 0 and the step to
1. Sounds not very useful, so here are a few examples:

;Bitmask table, 8 bits from left to right
.byte %10000000 >> range(8)

;Classic 256 byte single period sinus table with values of 0−255.
.byte 128.5 + 127 * sin(range(256) * rad(360.0/256))

;Screen row address tables
- = $400 + range(0, 1000, 40)
scrlo .byte <(-)
scrhi .byte >(-)

3.7 Dictionaries

Dictionaries are unsorted lists holding key and value pairs. Definition is done by collecting
key:value pairs separated by comma between braces {1:"value", "key":1, :"optional default
value"}.

Looking up a non existing key is normally an error unless a default value is given. An
empty dictionary is {}. Currently this type is immutable. Numeric and string keys are ac‐
cepted, the value can be anything.

Table 7: Dictionary operators and functions

x[i] value lookup {"1":2}["1"] is 2
y in x is a key 1 in {1:2} is true

.text {1:"one", 2:"two"}[2]; "two"

3.8 Code

Code holds the result of compilation in binary and other enclosed objects. In an arithmetic
operation it's used as the numeric address of the memory where it starts. The compiled con‐
tent remains static even if later parts of the source overwrite the same memory area.

Indexing and slicing of code to access the compiled content might be imple‐
mented differently in future releases. Use this feature at your own risk for now, you
might need to update your code later.

Table 8: Label operators and functions

a.b member label.locallabel

a[i] element from start label[1]

a[i] element from end label[−1]

a[s] copy as tuple label[:]

a[s] cut off start, as tuple label[1:]

a[s] cut off end, as tuple label[:−1]

a[s] reverse, as tuple label[::−1]

mydata .word 1, 4, 3
mycode .block
local lda #0

.bend

ldx #size(mydata) ;6 bytes (3∗2)
ldx #len(mydata) ;3 elements
ldx #mycode[0] ;lda instruction, $a9
ldx #mydata[1] ;2nd element, 4
jmp mycode.local ;address of local label

64tass v1.51 r992 reference manual

9 / 57

3.9 Addressing modes

Addressing modes are used for determining addressing modes of instructions.

For indexing there must be no white space between the comma and the register letter,
otherwise the indexing operator is not recognized. On the other hand put a space between
the comma and a single letter symbol in a list to avoid it being recognized as an operator.

Table 9: Addressing mode operators

immediate
(indirect
[long indirect
,b data bank indexed
,d direct page indexed
,k program bank indexed
,r data stack pointer indexed
,s stack pointer indexed
,x x register indexed
,y y register indexed
,z z register indexed

Parentheses are used for indirection and square brackets for long indirection. These opera‐
tions are only available after instructions and functions to not interfere with their normal use
in expressions.

Several addressing mode operators can be combined together. Currently the complex‐
ity is limited to 3 operators. This is enough to describe all addressing modes of the
supported CPUs.

Table 10: Valid addressing mode operator combinations

immediate lda #$12

#addr,#addr move mvp #5,#6

addr direct or relative lda $12 lda $1234 bne $1234

addr,addr direct page bit rmb 5,$12

addr,addr,addr direct page bit relative jump bbs 5,$12,$1234

(addr) indirect lda ($12) jmp ($1234)
(addr),y indirect y indexed lda ($12),y

(addr),z indirect z indexed lda ($12),z

(addr,x) x indexed indirect lda ($12,x) jmp ($1234,x)

[addr] long indirect lda [$12] jmp [$1234]

[addr],y long indirect y indexed lda [$12],y

addr,b data bank indexed lda 0,b

addr,b,x data bank x indexed lda 0,b,x

addr,b,y data bank y indexed lda 0,b,y

addr,d direct page indexed lda 0,d

addr,d,x direct page x indexed lda 0,d,x

addr,d,y direct page y indexed ldx 0,d,y

(addr,d) direct page indirect lda ($12,d)

(addr,d,x) direct page x indexed indirect lda ($12,d,x)

(addr,d),y direct page indirect y indexed lda ($12,d),y

(addr,d),z direct page indirect z indexed lda ($12,d),z

[addr,d] direct page long indirect lda [$12,d]

[addr,d],y direct page long indirect y indexed lda [$12,d],y

addr,k program bank indexed jsr 0,k

(addr,k,x) program bank x indexed indirect jmp ($1234,k,x)

addr,r data stack indexed lda 1,r

(addr,r),y data stack indexed indirect y indexed lda ($12,r),y

64tass v1.51 r992 reference manual

10 / 57

addr,s stack indexed lda 1,s

(addr,s),y stack indexed indirect y indexed lda ($12,s),y

addr,x x indexed lda $12,x

addr,y y indexed lda $12,y

Direct page, data bank, program bank indexed and long addressing modes of instructions
are inteligently chosen based on the instruction type, the address ranges set up by .dpage,
.databank and the current program counter address. Therefore the “,d”, “,b” and “,k” index‐
ing is only used in very special cases.

The direct page indexed addressing mode is not affected by the .dpage directive and al‐
ways forces the 8 bit address as is. It's only usable for direct/zero page instructions.

The data bank indexed addressing mode is not affected by the .databank directive and al‐
ways forces the 16 bit address as is. It's only usable with data bank accessing instructions.

The program bank indexed addressing mode is not affected by the current program bank
and always generates the 16 bit constant value as is. It's only usable with jump instructions.

Normally addressing mode operators are used in expressions right after instructions.
They can also be used for defining stack variable symbols when using a 65816, or to force a
specific addressing mode.

param = 1,s ;define a stack variable
const = #1 ;immediate constant

lda 0,b ;always "absolute" lda $0000
lda param ;results in lda $01,s
lda param+1 ;results in lda $02,s
lda (param),y ;results in lda ($01,s),y
ldx const ;results in ldx #$01

3.10 Uninitialized memory

There's a special value for uninitialized memory, it's represented by a question mark. When‐
ever it's used to generate data it creates a “hole” where the previous content of memory is
visible.

Uninitialized memory holes without previous content are not saved unless it's really nec‐
essary for the output format, in that case it's replaced with zeros.

It's not just data generation statements (e.g. .byte) that can create uninitialized memory,
but .fill, .align, .offs or address manipulation as well.

* = $200 ;bytes as necessary
.word ? ;2 bytes
.fill 10 ;10 bytes
.align 64 ;bytes as necessary
.offs 16 ;16 bytes

3.11 Booleans

There are two predefined boolean variables, true and false.

In numeric expressions true is 1 and false is 0. Other types can be converted to boolean by
using the type bool.

Booleans are created by comparison operators (<, <=, !=, ==, >=, >), logical operators (&&, ||,
^^, !), the membership operator (in) and the all and any functions.

Conditional expressions, logical expressions and conditional compilation uses them.

Table 11: Boolean values of various types
bits At least one non-zero bit

64tass v1.51 r992 reference manual

11 / 57

bool When true
bytes At least one non-zero byte
code Address is non-zero
float Not 0.0
int Not zero
str At least one non-zero byte after translation

3.12 Types

The various types mentioned earlier have predefined names. These can used for conversions
or type checks.

Table 12: Built-in type names

address Address type
bits Bit string type
bool Boolean type
bytes Byte string type
code Code type
dict Dictionary type
float Floating point type
gap Uninitialized memory type
int Integer type
list List type
str Character string type
tuple Tuple type
type Type type

.cerror type(var) != str, "Not a string!"

.text str(year) ; convert to string

3.13 Symbols

Symbols are used to reference objects. Regularly named, anonymous and local symbols are
supported. These can be constant or re-definable.

Scopes are where symbols are stored and looked up. The global scope is always defined
and it can contain any number of nested scopes.

Symbols must be uniquely named in a scope, therefore in big programs it's hard to come
up with useful and easy to type names. That's why local and anonymous symbols exists. And
grouping certain related symbols into a scope makes sense sometimes too.

Scopes are usually created by .proc and .block directives, but there are a few other ways.
Symbols in a scope can be accessed by using the dot operator, which is applied between the
name of the scope and the symbol (e.g. myconsts.math.pi).

3.13.1 Regular symbols

Regular symbol names are starting with a letter and containing letters, numbers and under‐
scores. Unicode letters are allowed if the "-a" command line option was used. There's no re‐
striction on the length of symbol names.

Care must be taken to not use duplicate names in the same scope when the symbol is
used as a constant. Case sensitivity can be enabled with the "-C" command line option, other‐
wise symbols are matched case insensitive.

Duplicate names in parent scopes are never a problem, they'll just be “shadowed”. This
could be either good by reducing collisions and gives the ability to override “defaults” de‐
fined in lower scopes. On the other hand it's possible to mix-up the new symbol with a old
one by mistake, which is hard to notice.

64tass v1.51 r992 reference manual

12 / 57

A regular symbol is looked up first in the current scope, then in lower scopes until the
global scope is reached.

f .block
g .block
n nop ;jump here

.bend
.bend

jsr f.g.n ;reference from a scope
f.x = 3 ;create x in scope f with value 3

3.13.2 Local symbols

Local symbols have their own scope between two regularly named code symbols and are as‐
signed to the code symbol above them.

Therefore they're easy to reuse without explicit scope declaration directives.

Not all regularly named symbols can be scope boundaries just plain code symbol ones
without anything or an opcode after them (no macros!). Symbols defined as procedures,
blocks, macros, functions, structs and unions are ignored. Also symbols defined by .var, := or
= don't apply, and there are a few more exceptions, so stick to using plain code labels.

The name must start with an underscore (_), otherwise the same character restrictions
apply as for regular symbols. There's no restriction on the length of the name.

Care must be taken to not use the duplicate names in the same scope when the symbol is
used as a constant.

A local symbol is only looked up in it's own scope and nowhere else.

incr inc ac
bne _skip
inc ac+1

_skip rts

decr lda ac
bne _skip
dec ac+1

_skip dec ac ;symbol reused here
jmp incr._skip ;this works too, but is not advised

3.13.3 Anonymous symbols

Anonymous symbols don't have a unique name and are always called as a single plus or mi‐
nus sign. They are also called as forward (+) and backward (−) references.

When referencing them “−” means the first backward, “−−” means the second backwards
and so on. It's the same for forward, but with “+”. In expressions it may be necessary to put
them into brackets.

ldy #4
- ldx #0
- txa

cmp #3
bcc +
adc #44

+ sta $400,x
inx
bne -

64tass v1.51 r992 reference manual

13 / 57

dey
bne --

Excessive nesting or long distance references create poorly readable code. It's also very easy
to copy-paste a few lines of code with these references into a code fragment already contain‐
ing similar references. The result is usually a long debugging session to find out what went
wrong.

These references are also useful in segments, but this can create a nice trap when seg‐
ments are copied into the code with their internal references.

bne +
#somemakro ;let's hope that this segment does

+ nop ;not contain forward references...

A anonymous symbols are looked up first in the current scope, then in lower scopes until the
global scope is reached.

3.13.4 Constant and re-definable symbols

Constant symbols can be created with the equal sign. These are not re-definable. Forward
referencing of them is allowed as they retain the objects over compilation passes.

Symbols in front of code or certain assembler directives are created as constant symbols
too. They are binded to the object following them.

Re-definable symbols can be created by the .var directive or := construct. These are also
called as variables as they don't carry their content over from the previous pass. Therefore
it's not possible to use them before their definition.

border = $d020 ;a constant
inc border ;inc $d020

variabl .var 1 ;a variable
var2 := 1 ;another variable

.rept 10

.byte variabl
variabl .var variabl+1 ;increment it

.next

3.13.5 The star label

The “∗” symbol denotes the current program counter value. When accessed it's value is the
program counter at the beginning of the line. Assigning to it changes the program counter
and the compiling offset.

3.14 Built-in functions

Builting functions are assigned to the symbols listed below. If you reuse these symbols in a
scope for other purposes then they become inaccessible, or can perform a different function.

Built-in functions can be assigned to symbols (e.g. sinus = sin), and the new name can be
used as the original function. They can even be passed as parameters to functions.

3.14.1 Mathematical functions

floor(<expression>)
Round down. E.g. floor(−4.8) is −5.0

round(<expression>)
Round to nearest away from zero. E.g. round(4.8) is 5.0

64tass v1.51 r992 reference manual

14 / 57

ceil(<expression>)
Round up. E.g. ceil(1.1) is 2.0

trunc(<expression>)
Round down towards zero. E.g. trunc(−1.9) is −1

frac(<expression>)
Fractional part. E.g. frac(1.1) is 0.1

sqrt(<expression>)
Square root. E.g. sqrt(16.0) is 4.0

cbrt(<expression>)
Cube root. E.g. cbrt(27.0) is 3.0

log10(<expression>)
Common logarithm. E.g. log10(100.0) is 2.0

log(<expression>)
Natural logarithm. E.g. log(1) is 0.0

exp(<expression>)
Exponential. E.g. exp(0) is 1.0

pow(<expression a>, <expression b>)
A raised to power of B. E.g. pow(2.0, 3.0) is 8.0

sin(<expression>)
Sine. E.g. sin(0.0) is 0.0

asin(<expression>)
Arc sine. E.g. asin(0.0) is 0.0

sinh(<expression>)
Hyperbolic sine. E.g. sinh(0.0) is 0.0

cos(<expression>)
Cosine. E.g. cos(0.0) is 1.0

acos(<expression>)
Arc cosine. E.g. acos(1.0) is 0.0

cosh(<expression>)
Hyperbolic cosine. E.g. cosh(0.0) is 1.0

tan(<expression>)
Tangent. E.g. tan(0.0) is 0.0

atan(<expression>)
Arc tangent. E.g. atan(0.0) is 0.0

tanh(<expression>)
Hyperbolic tangent. E.g. tanh(0.0) is 0.0

rad(<expression>)
Degrees to radian. E.g. rad(0.0) is 0.0

deg(<expression>)
Radian to degrees. E.g. deg(0.0) is 0.0

hypot(<expression y>, <expression x>)
Polar distance. E.g. hypot(4.0, 3.0) is 5.0

atan2(<expression y>, <expression x>)
Polar angle in −pi to +pi range. E.g. atan2(0.0, 3.0) is 0.0

abs(<expression>)
Absolute value. E.g. abs(−1) is 1

sign(<expression>)
Returns the sign of value as −1, 0 or 1 for negative, zero and positive. E.g. sign(−5) is
−1

64tass v1.51 r992 reference manual

15 / 57

3.14.2 Other functions

all(<expression>)
Return truth for various definitions of “all”.

Table 13: All function

all bits set or no bits at all all($f) is true
all characters non-zero or empty string all("c") is true
all bytes non-zero or no bytes all(b"c") is true
all elements true or empty list all([1, 1, 0]) is false

any(<expression>)
Return truth for various definitions of “any”.

Table 14: Any function

at least one bit set any(~$f) is false
at least one non-zero character any("c") is true
at least one non-zero byte any(b"c") is true
at least one true element any([1, 1, 0]) is true

format(<string expression>[, <expression>, …])
Create string from values according to a format string.

The format function converts a list of values into a character string. The converted val‐
ues are inserted in place of the % sign. Optional conversion flags and minimum field
length may follow, before the conversion type character. These flags can be used:

Table 15: Formatting flags

alternate form ($a, %10, 10.)
∗ width/precision from list
. precision
0 pad with zeros
− left adjusted (default right)

blank when positive or minus sign
+ sign even if positive

The following conversion types are implemented:

Table 16: Formatting conversion types

a A hexadecimal floating point (uppercase)
b binary
c unicode character
d decimal
e E exponential float (uppercase)
f F floating point (uppercase)
g G exponential/floating point
s string
r representation
x X hexadecimal (uppercase)
% percent sign

.text format("%#04x bytes left", 1000); $03e8 bytes left

len(<expression>)
Returns the number of elements.

Table 17: Length of various types

bit string length in bits len($034) is 12
character string number of characters len("abc") is 3
byte string number of bytes len(b"abc") is 3

64tass v1.51 r992 reference manual

16 / 57

tuple, list number of elements len([1, 2, 3]) is 3
dictionary number of elements len({1:2, 3:4]) is 2
code number of elements len(label)

random([<expression>, …])
Returns a pseudo random number.

The sequence does not change across compilations and is the same every time. Differ‐
ent sequences can be generated by seeding.

Table 18: Random function invocation types

floating point number 0.0 <= x < 1.0 random()

integer in range of 0 <= x < e random(e)

integer in range of s <= x < e random(s, a)

integer in range of s <= x < e, step t random(s, a, t)

.seed 1234 ; default is boring, seed the generator

.byte random(256); a pseudo random byte (0..255)

range(<expression>[, <expression>, …])
Returns a list of integers in a range, with optional stepping.

Table 19: Range function invocation types

integers from 0 to e−1 range(e)

integers from s to e−1 range(s, a)

integers from s to e (not including e), step t range(s, a, t)

.byte range(16) ; 0, 1, ..., 14, 15

.char range(-5, 6); -5, -4, ..., 4, 5
mylist = range(10, 0, -2); [10, 8, 6, 4, 2]

repr(<expression>)
Returns a string representation of value.

.warn repr(var) ; pretty print value, for debugging

size(<expression>)
Returns the size of code, structure or union in bytes.

ldx #size(var) ; size to x

3.15 Expressions

3.15.1 Operators

The following operators are available. Not all are defined for all types of arguments and their
meaning might slightly vary depending on the type.

Table 20: Unary operators

− negative + positive
! not ~ invert
∗ convert to arguments ^ decimal string

Table 21: Binary operators

+ add − subtract
∗ multiply / divide
% modulo ∗∗ raise to power
| binary or ^ binary xor
& binary and << shift left

64tass v1.51 r992 reference manual

17 / 57

>> shift right . member
.. concat x repeat
in contains

There's a ternary operator (?:) which gives the second value if the first is true or the third if
the first is false.

Parenthesis (()) can be used to override operator precedence. Don't forget that they also
denote indirect addressing mode for certain opcodes.

lda #(4+2)*3

3.15.2 Comparison operators

Traditional comparison operators give false or true depending on the result.

The compare operator (<=>) gives −1 for less, 0 for equal and 1 for more.

Table 22: Comparison operators

<=> compare
== equals != not equal
< less than >= more than or equals
> more than <= less than or equals

3.15.3 Bit string extraction operators

These unary operators extract 8 or 16 bits as a bit string from various types of operands.

Table 23: Bit string extraction operators

< lower byte > higher byte
<> lower word >` higher word
>< lower byte swapped word ` bank byte

lda #<label
ldy #>label
jsr $ab1e

ldx #<>source ; word extraction
ldy #<>dest
lda #size(source)-1
mvn #`source, #`dest; bank extraction

3.15.4 Conditional operators

Boolean conditional operators give false or true or one of the operands as the result. True is
defined as a non-zero number, anything else is false.

Table 24: Logical and conditional operators

x || y if x is true then x otherwise y
x ^^ y if both false or true then false otherwise x || y
x && y if x is true then y otherwise x
!x if x is true then false otherwise true
!!x if x is true then true otherwise false
c ? x : y if c is true then x otherwise y

;Silly example for 1=>"simple", 2=>"advanced", else "normal"
.text MODE == 1 && "simple" || MODE == 2 && "advanced" || "normal"
.text MODE == 1 ? "simple" : MODE == 2 ? "advanced" : "normal"

64tass v1.51 r992 reference manual

18 / 57

Please note that these are not short circuiting operations and both sides are calculated even
if thrown away later.

3.15.5 Address length forcing

Special addressing length forcing operators in front of an expression can be used to make
sure the expected addressing mode is used. Only applicable when used directly with instruc‐
tions.

Table 25: Address size forcing

@b to force 8 bit address
@w to force 16 bit address
@l to force 24 bit address (65816)

lda @w$0000

3.15.6 Compound assignment

These assignment operators are shorthands for common .var directive use.

With the exception of := the variables updated must be defined beforehand. As with .var
they can't update constants, only variables.

Table 26: Compound assignments

+= add −= subtract
∗= multiply /= divide
%= modulo ∗∗= raise to power
|= binary or ^= binary xor
&= binary and <<= shift left
>>= shift right ..= concat
x= repeat := assign

v := 1 ; same as 'v .var 1'
v += 1 ; same as 'v .var v + 1'

4 Compiler directives

4.1 Controlling the compile offset and program counter

Two counters are used while assembling.

The compile offset is where the data and code ends up in memory (or in image file).

The program counter is what labels get set to and what the special star label refers to. It
wraps when the border of a 64 KiB program bank is crossed. The actual program bank is not
incremented, just like on a real processor.

Normally both are the same (code is compiled to the location it runs from) but it does not
need to be.

∗= <expression>
The compile offset is adjusted so that the program counter will match the requested
address in the expression.

;Offset PC Bytes Disassembly Source
* = $0800

>0800 .byte
.logical $1000

>0800 1000 .byte

64tass v1.51 r992 reference manual

19 / 57

* = $1200
>0a00 1200 .byte

.here
>0a00 .byte

.offs <expression>
Add an offset to the compile offset (create a gap). The program counter stays the same
as before.

;Offset PC Bytes Disassembly Source
* = $1000

.1000 nop .byte
.offs 100

.1064 1000 nop .byte

.logical <expression>

.here
Changes the program counter only, the compile offset is not changed. Used for code
copied to it's proper location at runtime. Can be nested of course.

;Offset PC Bytes Disassembly Source
* = $1000

.logical $300
.1000 0300 a9 80 lda #$80 drive lda #$80
.1002 0302 85 00 sta $00 sta $00
.1004 0304 4c 00 03 jmp $0300 jmp drive

.here

.align <expression>[, <fill>]
Align code to a dividable program counter address by inserting uninitialized memory
or repeated bytes.

;Offset PC Bytes Disassembly Source
* = $ffc

>0ffc .align $100
.1000 ee 19 d0 inc $d019 irq inc $d019
>1003 ea .align 4, $ea
.1004 69 01 adc #$01 loop adc #1

4.2 Dumping data

4.2.1 Storing numeric values

Multi byte numeric data is stored in the little-endian order, which is the natural byte order
for 65xx processors. Numeric ranges are enforced depending on the directives used.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”)
creates holes of different sizes. Character string constants are converted using the current
encoding.

Please note that multi character strings usually don't fit into 8 bits and therefore the .byte
directive is not appropriate for them. Use .text instead which accepts strings of any length.

.byte <expression>[, <expression>, …]
Create bytes from 8 bit unsigned constants (0–255)

.char <expression>[, <expression>, …]
Create bytes from 8 bit signed constants (−128–127)

.byte 255 ; $ff

64tass v1.51 r992 reference manual

20 / 57

.byte "a" ; single character

.byte ? ; reserve 1 byte of space

.char -3 ; $fd
;Store 4.4 signed fixed point constants

.byte (-3.5, 3.25, 3.125) * 1p4

;Compact computed jumps using self modifying code
lda jumps,x
sta smod+1

smod bne *
jumps .char (routine1, routine2)-smod-2 ;Routines nearby (−128–127 bytes)

.word <expression>[, <expression>, …]
Create bytes from 16 bit unsigned constants (0–65535)

.int <expression>[, <expression>, …]
Create bytes from 16 bit signed constants (−32768–32767)

.word $2342, $4555; $42 $23 $55 $45

.word ? ; reserve 2 bytes of space

.int -533, 4433 ; $eb $fd $51 $11
;Store 8.8 signed fixed point constants

.int (-3.5, 3.25, 3.125) * 1p8

;Computed jumps with jump table (bank zero or non-65816)
lda jumps,x
sta ind
lda jumps+1,x
sta ind+1
jmp (ind)

jumps .word routine1, routine2; but better use .addr instead

.addr <expression>[, <expression>, …]
Create 16 bit address constants for addresses (in current program bank)

.rta <expression>[, <expression>, …]
Create 16 bit return address constants for addresses (in current program bank)

;Computed jumps with jump table (65816, current bank)
* = $12000

jmp (jumps,x)
jumps .addr $12050, routine1, routine2

;Computed jumps by using stack (current bank)
* = $103000

lda rets+1,x
pha
lda rets,x
pha
rts

rets .rta $10f000, routine1, routine2

.long <expression>[, <expression>, …]
Create bytes from 24 bit unsigned constants (0–16777215)

.lint <expression>[, <expression>, …]
Create bytes from 24 bit signed constants (−8388608–8388607)

.long $123456 ; $56 $34 $12

.long ? ; reserve 3 bytes of space

64tass v1.51 r992 reference manual

21 / 57

.lint -533, 4433; $eb $fd $ff $51 $11 $00
;Store 8.16 signed fixed point constants

.lint (-3.44, 3.4, 3.52) * 1p16

;Computed long jumps with jump table (65816)
lda jumps,x
sta ind
lda jumps+1,x
sta ind+1
lda jumps+2,x
sta ind+2
jmp [ind]

jumps .long routine1, routine2

.dword <expression>[, <expression>, …]
Create bytes from 32 bit constants (0–4294967295)

.dint <expression>[, <expression>, …]
Create bytes from 32 bit signed constants (−2147483648–2147483647)

.dword $12345678; $78 $56 $34 $12

.dword ? ; reserve 4 bytes of space

.dint -411469219; $5d $7a $79 $e7
;Store 16.16 signed fixed point constants

.dint (-3.44, 3.4, 3.52) * 1p16

4.2.2 Storing string values

The following directives store strings of characters, bytes or bits as bytes. Small numeric
constants can be mixed in to represent single byte control characters.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”)
creates byte sized holes. Character string constants are converted using the current encod‐
ing.

.text <expression>[, <expression>, …]
Assemble strings without conversion into bytes.

.text "oeU" ; text, "" means $22

.text 'oeU' ; text, '' means $27

.text 23, $33 ; bytes

.text $0a0d ; $0d, $0a, little endian!

.text %00011111 ; more bytes

.text ^OEU ; the decimal value as string (^23 is $32,$33)

.fill <length>[, <fill>]
Skip bytes (using uninitialized data), or fill with repeated bytes.

.fill $100 ;no fill, just reserve $100 bytes

.fill $4000, 0 ;16384 bytes of 0

.fill 8000, [$55, $aa];8000 bytes of alternating $55, $aa

.shift <expression>[, <expression>, …]
Same as .text, but the last byte will have the highest bit set. Any byte which already
has the most significant bit set will cause an error. The last byte can't be uninitialized
or missing of course.

ldx #0
loop lda txt,x

64tass v1.51 r992 reference manual

22 / 57

php
and #$7f
jsr $ffd2
inx
plp
bpl loop
rts

txt .shift "single", 32, "string"
.text s"first", s"second"

.shiftl <expression>[, <expression>, …]
Same as .text, but all bytes are shifted to left, and the last byte gets the lowest bit set.
Any byte which already has the most significant bit set will cause an error as this is cut
off on shifting. The last byte can't be uninitialized or missing of course.

ldx #0
loop lda txt,x

lsr
sta $400,x ;screen memory
inx
bcc loop
rts
.enc screen

txt .shiftl "single", 32, "string"
.text l"first", l"second"
.enc none

.null <expression>[, <expression>, …]
Same as .text, but adds a zero byte to the end. An existing zero byte is an error as it'd
cause a false end marker.

lda #<txt
ldy #>txt
jsr $ab1e

txt .null "single", 32, "string"
.text n"first", n"second"

.ptext <expression>[, <expression>, …]
Same as .text, but prepend the number of bytes in front of the string (pascal style
string). Therefore it can't do more than 255 bytes.

lda #<txt
ldx #>txt
jsr print
rts

print sta $fb
stx $fc
ldy #0
lda ($fb),y
beq null
tax

- iny
lda ($fb),y
jsr $ffd2
dex
bne -

null rts

64tass v1.51 r992 reference manual

23 / 57

txt .ptext "single", 32, "string"
.text p"first", p"second"

4.3 Text encoding

64tass supports sources written in UTF-8, UTF-16 (be/le) and RAW 8 bit encoding. To take
advantage of this capability custom encodings can be defined to map Unicode characters to
8 bit values in strings.

.enc <name>
Selects text encoding, predefined encodings are “none” and “screen” (screen code),
anything else is user defined. All user encodings start without any character or escape
definitions, add some as required.

.enc screen ;screen code mode

.text "text with screen codes"
cmp #"u" ;compare screen code
.enc none ;normal mode again
cmp #"u" ;compare ASCII

.cdef <start>, <end>, <coded> [, <start>, <end>, <coded>, …]

.cdef "<start><end>", <coded> [, "<start><end>", <coded>, …]
Assigns characters in a range to single bytes.

This is a simple single character to byte translation definition. It is applied to a range
as characters and bytes are usually assigned sequentially. The start and end positions
are Unicode character codes either by numbers or by typing them. Overlapping ranges
are not allowed.

.edef "<escapetext>", <value> [, "<escapetext>", <value>, …]
Assigns strings to byte sequences as a translated value.

When these substrings are found in a text they are replaced by bytes defined here.
When strings with common prefixes are used the longest match wins. Useful for defin‐
ing non-typeable control code aliases, or as a simple tokenizer.

.enc petscii ;define an ascii->petscii encoding

.cdef " @", 32 ;characters

.cdef "AZ", $c1

.cdef "az", $41

.cdef "[[", $5b

.cdef "££", $5c

.cdef "]]", $5d

.cdef "ππ", $5e

.cdef $2190, $2190, $1f;left arrow

.edef "\n", 13 ;one byte control codes

.edef "{clr}", 147

.edef "{crlf}", [13, 10];two byte control code

.edef "<nothing>", [];replace with no bytes

.text "{clr}Text in PETSCII\n"

4.4 Structured data

Structures and unions can be defined to create complex data types. The offset of fields are
available by using the definition's name. The fields themselves by using the instance name.

The initialization method is very similar to macro parameters, the difference is that unset

64tass v1.51 r992 reference manual

24 / 57

parameters always return uninitialized data (“?”) instead of an error.

4.4.1 Structure

Structures are for organizing sequential data, so the length of a structure is the sum of
lengths of all items.

.struct [<name>][=<default>]][, [<name>][=<default>] …]

.ends [<result>][, <result> …]
Structure definition, with named parameters and default values

.dstruct <name>[, <initialization values>]

.<name> [<initialization values>]
Create instance of structure with initialization values

.struct ;anonymous structure
x .byte 0 ;labels are visible
y .byte 0 ;content compiled here

.ends ;useful inside unions

nn_s .struct col, row;named structure
x .byte \col ;labels are not visible
y .byte \row ;no content is compiled here

.ends ;it's just a definition

nn .dstruct nn_s, 1, 2;structure instance, content here

lda nn.x ;direct field access
ldy #nn_s.x ;get offset of field
lda nn,y ;and use it indirectly

4.4.2 Union

Unions can be used for overlapping data as the compile offset and program counter remains
the same on each line. Therefore the length of a union is the length of it's longest item.

.union [<name>][=<default>]][, [<name>][=<default>] …]

.endu
Union definition, with named parameters and default values

.dunion <name>[, <initialization values>]

.<name> [<initialization values>]
Create instance of union with initialization values

.union ;anonymous union
x .byte 0 ;labels are visible
y .word 0 ;content compiled here

.endu

nn_u .union ;named union
x .byte ? ;labels are not visible
y .word \1 ;no content is compiled here

.endu ;it's just a definition

nn .dunion nn_u, 1 ;union instance here

lda nn.x ;direct field access
ldy #nn_u.x ;get offset of field
lda nn,y ;and use it indirectly

64tass v1.51 r992 reference manual

25 / 57

4.4.3 Combined use of structures and unions

The example below shows how to define structure to a binary include.

.union

.binary "pic.drp", 2

.struct
color .fill 1024
screen .fill 1024
bitmap .fill 8000
backg .byte ?

.ends

.endu

Anonymous structures and unions in combination with sections are useful for overlapping
memory assignment. The example below shares zeropage allocations for two separate parts
of a bigger program. The common subroutine variables are assigned after in the “zp” sec‐
tion.

* = $02
.union ;spare some memory
.struct
.dsection zp1 ;declare zp1 section
.ends
.struct
.dsection zp2 ;declare zp2 section
.ends
.endu
.dsection zp ;declare zp section

4.5 Macros

Macros can be used to reduce typing of frequently used source lines. Each invocation is a
copy of the macro's content with parameter references replaced by the parameter texts.

.segment [<name>][=<default>]][, [<name>][=<default>] …]

.endm [<result>][, <result> …]
Copies the code segment as it is, so symbols can be used from outside, but this also
means multiple use will result in double defines unless anonymous labels are used.

.macro [<name>][=<default>]][, [<name>][=<default>] …]

.endm [<result>][, <result> …]
The code is enclosed in it's own block so symbols inside are non-accessible, unless a la‐
bel is prefixed at the place of use, then local labels can be accessed through that label.

#<name> [<param>][[,][<param>] …]
.<name> [<param>][[,][<param>] …]

Invoke the macro after “#” or “.” with the parameters. Normally the name of the
macro is used, but it can be any expression.

;A simple macro
copy .macro

ldx #size(\1)
lp lda \1,x

sta \2,x
dex
bpl lp
.endm

64tass v1.51 r992 reference manual

26 / 57

#copy label, $500

;Use macro as an assembler directive
lohi .macro
lo .byte <(\@)
hi .byte >(\@)

.endm

var .lohi 1234, 5678

lda var.lo,y
ldx var.hi,y

4.5.1 Parameter references

The first 9 parameters can be referenced by “\1”–“\9”. The entire parameter list including
separators is “\@”.

name .macro
lda #\1 ;first parameter 23+1
.endm

#name 23+1 ;call macro

Parameters can be named, and it's possible to set a default value after an equal sign which is
used as a replacement when the parameter is missing.

These named parameters can be referenced by \name or \{name}. Names must match com‐
pletely, if unsure use the quoted name reference syntax.

name .macro first, b=2, , last
lda #\first ;first parameter
lda #\b ;second parameter
lda #\3 ;third parameter
lda #\last ;fourth parameter
.endm

#name 1, , 3, 4 ;call macro

4.5.2 Text references

In the original turbo assembler normal references are passed by value and can only appear
in place of one. Text references on the other hand can appear everywhere and will work in
place of e.g. quoted text or opcodes and labels. The first 9 parameters can be referenced as
text by @1–@9.

name .macro
jsr print
.null "Hello @1!";first parameter
.endm

#name "wth?" ;call macro

4.6 Custom functions

Beyond the built-in functions mentioned earlier it's possible to define custom ones for fre‐
quently used calculations.

64tass v1.51 r992 reference manual

27 / 57

.function <name>[=<default>]][, <name>[=<default>] …][, ∗<name>]

.endf [<result>][, <result> …]
Defines a user function

#<name> [<param>][[,][<param>] …]
.<name> [<param>][[,][<param>] …]
<name> [<param>][[,][<param>] …]

Invoke a function like a macro, directive or pseudo instruction.

Parameters are assigned to constant symbols in the function scope on invocation. The de‐
fault values are calculated at function definition time only, and these values are used at invo‐
cation time when a parameter is missing.

Extra parameters are not accepted, unless the last parameter symbol is preceded with a
star, in this case these parameters are collected into a tuple. Multiple values are returned
are also returned as tuple.

Functions can span multiple lines but unlike macros they can't create new code. Only
those external variables and functions are available which were accessible at the place of
definition, but not those at the place of invocation.

wpack .function a, b=0
.endf a+b*256

.word wpack(1), wpack(2, 3)

If a function is used as macro, directive or pseudo instruction and there's a label in front
then the returned value is assigned to it. If nothing is returned then it's used as regular la‐
bel. Of course when used like this it can create code and access local variables.

mva .function s, d
lda s
sta d
.endf

mva #1, label

4.7 Conditional assembly

To prevent parts of source from compiling conditional constructs can be used. This is useful
when multiple slightly different versions needs to be compiled from the same source.

4.7.1 If, else if, else

.if <expression>
Compile, if result is true (not zero)

.elsif <expression>
Compile if the previous conditions were all skipped and the result is true (not zero)

.else
Compile if the previous conditions were all skipped

.fi

.endif
End of conditional compile

.ifne <value>
Compile, if value is not zero (or true)

.ifeq <value>
Compile, if value is zero (or false)

64tass v1.51 r992 reference manual

28 / 57

.ifpl <value>
Compile, if value is greater or equal zero

.ifmi <value>
Compile, if value is less than zero

The .ifne, .ifeq, .ifpl and .ifmi directives exists for compatibility only, in practice it's better
to use comparison operators instead.

.if wait==2 ;2 cycles
nop
.elsif wait==3 ;3 cycles
bit $ea
.elsif wait==4 ;4 cycles
bit $eaea
.else ;else 5 cycles
inc $2
.fi

4.7.2 Switch, case, default

Similar to the .if/.elsif/.else/.fi construct, but the compared value needs to be written only
once in the switch statement.

.switch <expression>
Evaluate expression and remember it

.case <expression>[, <expression> …]
Compile if the previous conditions were all skipped and one of the values equals

.default
Compile if the previous conditions were all skipped

.endswitch
End of conditional compile

.switch wait

.case 2 ;2 cycles
nop
.case 3 ;3 cycles
bit $ea
.case 4 ;4 cycles
bit $eaea
.default ;else 5 cycles
inc $2
.endswitch

4.8 Repetitions

.for [<variable>=<expression>], [<condition expression>], [<variable>=<expression>]

.next
Loop while the condition is true. If there's no condition then it's an infinite loop and
.break must be used to terminate it.

ldx #0
lda #32

lp .for ue = $400, ue < $800, ue = ue + $100
sta ue,x
.next
dex

64tass v1.51 r992 reference manual

29 / 57

bne lp

.rept <expression>

.next
Repeat by expression number of times.

.rept 100
nop
.next

.break
Exit current loop immediately

.continue
Continue current loop's next iteration

.lbl
Creates a special jump label that can be referenced by .goto

.goto <labelname>
Causes assembler to continue assembling from the jump label. No forward references
of course, handle with care. Typically used in classic TASM sources for creating loops.

i .var 100
loop .lbl

nop
i .var i - 1

.ifne i

.goto loop ;generates 100 nops

.fi

4.9 Including files

Longer sources are usually separated into multiple files for easier handling. Precomputed bi‐
nary data can also be included directly without converting it into source code first.

Search path is relative to the location of current source file. If it's not found there the in‐
clude search path is consulted for further possible locations.

To make your sources portable please always use forward slashes (/) as a directory sepa‐
rator and use lower/uppercase consistently in filenames!

.include <filename>
Include source file here.

.binclude <filename>
Include source file here in it's local block. If the directive is prefixed with a label then
all labels are local and are accessible through that label only, otherwise not reachable
at all.

.include "macros.asm" ;include macros
menu .binclude "menu.asm" ;include in a block

jmp menu.start

.binary <filename>[, <offset>[, <length>]]
Include raw binary data from file. By using offset and length it's possible to break out
chunks of data from a file separately, like bitmap and colors for example.

.binary "stuffz.bin" ;simple include, all bytes

.binary "stuffz.bin", 2 ;skip start address

.binary "stuffz.bin", 2, 1000;skip start address, 1000 bytes max

64tass v1.51 r992 reference manual

30 / 57

* = $1000 ;load music to $1000 and
.binary "music.sid", $7e ;strip SID header

4.10 Scopes

Scopes may contain symbols or other scopes nested. They are useful to avoid symbol clashes
as the same symbol name can repeated as long as it's in a different scope.

In nested scopes the symbol lookup starts from the local scope and goes in the direction
of the global scope. This means that local variables will “shadow” global one with the same
name.

.proc

.pend
Procedure start and end of procedure.

If it's label is not used then the code won't be compiled at all. This is very useful to
avoid a lot of .if blocks to exclude unused sections of code.

All labels inside are local enclosed in a scope and are accessible through the pre‐
fixed label. Useful for building libraries.

ize .proc
nop

cucc nop
.pend

jsr ize
jmp ize.cucc

.block

.bend
Block start and block end.

All labels inside a block are local enclosed in a scope. If prefixed with a label local vari‐
ables are accessible through that label using the dot notation, otherwise not at all.

.block
inc count + 1

count ldx #0
.bend

.weak

.endweak
Weak symbol area

Any symbols defined inside can be overriden by “stronger” symbols in the same scope
from outside. Can be nested as necessary.

This gives the possibility of giving default values for symbols which might not al‐
ways exist without resorting to .ifdef/.ifndef or similar directives in other assemblers.

symbol = 1 ;stronger symbol than the one below
.weak

symbol = 0 ;default value if the one above does not exists
.endweak
.if symbol ;almost like an .ifdef ;)

Other use of weak symbols might be in included libraries to change default values or
replace stub functions and data structures.

64tass v1.51 r992 reference manual

31 / 57

If these stubs are defined using .proc/.pend then their default implementations will
not even exists in the output at all when a stronger symbol overrides them.

Multiple definition of a symbol with the same “strength” in the same scope is of
course not allowed and it results in double definition error.

Please note that .ifdef/.ifndef directives are left out from 64tass for of technical
reasons, so don't wait for them to appear anytime soon.

4.11 Sections

Sections can be used to collect data or code into separate memory areas without moving
source code lines around. This is achieved by having separate compile offset and program
counters for each defined section.

.section <name>

.send [<name>]
Defines a section fragment. The name at .send must match but it's optional.

.dsection <name>
Collect the section fragments here.

All .section fragments are compiled to the memory area allocated by the .dsection directive.
Compilation happens as the code appears, this directive only assigns enough space to hold
all the content in the section fragments.

The space used by section fragments is calculated from the difference of starting compile
offset and the maximum compile offset reached. It is possible to manipulate the compile off‐
set in fragments, but putting code before the start of .dsection is not allowed.

* = $02
.dsection zp ;declare zeropage section
.cerror * > $30, "Too many zeropage variables"

* = $334
.dsection bss ;declare uninitialized variable section
.cerror * > $400, "Too many variables"

* = $0801
.dsection code ;declare code section
.cerror * > $1000, "Program too long!"

* = $1000
.dsection data ;declare data section
.cerror * > $2000, "Data too long!"

;−−−−−−−−−−−−−−−−−−−−
.section code
.word ss, 2005
.null $9e, ^start

ss .word 0

start sei
.section zp ;declare some new zeropage variables

p2 .word ? ;a pointer
.send zp
.section bss ;new variables

buffer .fill 10 ;temporary area
.send bss

lda (p2),y
lda #<label

64tass v1.51 r992 reference manual

32 / 57

ldy #>label
jsr print

.section data ;some data
label .null "message"

.send data

jmp error
.section zp ;declare some more zeropage variables

p3 .word ? ;a pointer
.send zp
.send code

The compiled code will look like:

>0801 0b 08 d5 07 .word ss, 2005
>0805 9e 32 30 36 31 00 .null $9e, ^start
>080b 00 00 ss .word 0

.080d 78 start sei

>0002 p2 .word ? ;a pointer
>0334 buffer .fill 10 ;temporary area

.080e b1 02 lda (p2),y

.0810 a9 00 lda #<label

.0812 a0 10 ldy #>label

.0814 20 1e ab jsr print

>1000 6d 65 73 73 61 67 65 00 label .null "message"

.0817 4c e2 fc jmp error

>0004 p2 .word ? ;a pointer

Sections can form a hierarchy by nesting a .dsection into another section. The section names
must only be unique within a section but can be reused otherwise. Parent section names are
visible for children, siblings can be reached through parents.

In the following example the included sources don't have to know which “code” and
“data” sections they use, while the “bss” section is shared for all banks.

;First 8K bank at the beginning, PC at $8000
* = $0000

.logical $8000

.dsection bank1

.cerror * > $a000, "Bank1 too long"

.here

bank1 .block ;Make all symbols local
.section bank1
.dsection code ;Code and data sections in bank1
.dsection data
.section code ;Pre-open code section
.include "code.asm"; see below
.include "iter.asm"
.send code
.send bank1
.bend

64tass v1.51 r992 reference manual

33 / 57

;Second 8K bank at $2000, PC at $8000
* = $2000

.logical $8000

.dsection bank2

.cerror * > $a000, "Bank2 too long"

.here

bank2 .block ;Make all symbols local
.section bank2
.dsection code ;Code and data sections in bank2
.dsection data
.section code ;Pre-open code section
.include "scr.asm"
.send code
.send bank2
.bend

;Common data, avoid initialized variables here!
* = $c000

.dsection bss

.cerror * > $d000, "Too much common data"
;−−−−−−−−−−−−− The following is in "code.asm"
code sei

.section bss ;Common data section
buffer .fill 10

.send bss

.section data ;Data section (in bank1)
routine .word print

.send bss

4.12 65816 related

.as

.al
Select short (8 bit) or long (16 bit) accumulator immediate constants.

.al
lda #$4322

.xs

.xl
Select short (8 bit) or long (16 bit) index register immediate constants.

.xl
ldx #$1000

.autsiz

.mansiz
Select automatic adjustment of immediate constant sizes based on SEP/REP instructions.

.autsiz
rep #$10 ;implicit .xl
ldx #$1000

.databank <expression>

64tass v1.51 r992 reference manual

34 / 57

Data bank (absolute) addressing is only used for addresses falling into this 64 KiB
bank. The default is 0, which means addresses in bank zero.

When data bank is switched off only data bank indexed (,b) addresses create data bank
accessing instructions.

.databank $10 ;data bank at $10xxxx
lda $101234 ;results in $ad, $34, $12
.databank ? ;no data bank
lda $1234 ;direct page or long addressing
lda $1234,b ;results in $ad, $34, $12

.dpage <expression>
Direct (zero) page addressing is only used for addresses falling into a specific 256 byte
address range. The default is 0, which is the first page of bank zero.

When direct page is switched off only the direct page indexed (,d) addresses create di‐
rect page accessing instructions.

.dpage $400 ;direct page $400-$4ff
lda $456 ;results in $a5, $56
.dpage ? ;no direct page
lda $56 ;data bank or long addressing
lda $56,d ;results in $a5, $56

4.13 Controlling errors

.page

.endp
Gives an error on page boundary crossing, e.g. for timing sensitive code.

.page
table .byte 0, 1, 2, 3, 4, 5, 6, 7

.endp

.option allow_branch_across_page
Switches error generation on page boundary crossing during relative branch. Such a
condition on 6502 adds 1 extra cycle to the execution time, which can ruin the timing
of a carefully cycle counted code.

.option allow_branch_across_page = 0
ldx #3 ;now this will execute in

- dex ;16 cycles for sure
bne -
.option allow_branch_across_page = 1

.error <message> [, <message>, …]

.cerror <condition>, <message> [, <message>, …]
Exit with error or conditionally exit with error

.error "Unfinished here..."

.cerror * > $1200, "Program too long by ", * - $1200, " bytes"

.warn <message> [, <message>, …]

.cwarn <condition>, <message> [, <message>, …]
Display a warning message always or depending on a condition

.warn "FIXME: handle negative values too!"

64tass v1.51 r992 reference manual

35 / 57

.cwarn * > $1200, "This may not work!"

4.14 Target

.cpu <expression>
Selects CPU according to the string argument.

.cpu "6502" ;standard 65xx

.cpu "65c02" ;CMOS 65C02

.cpu "65ce02" ;CSG 65CE02

.cpu "6502i" ;NMOS 65xx

.cpu "65816" ;W65C816

.cpu "65dtv02" ;65dtv02

.cpu "65el02" ;65el02

.cpu "r65c02" ;R65C02

.cpu "w65c02" ;W65C02

.cpu "default" ;cpu set on commandline

4.15 Misc

.end
Terminate assembly. Any content after this directive is ignored.

.eor <expression>
XOR output with a 8 bit value. Useful for reverse screen code text for example, or for
silly “encryption”.

.seed <expression>
Seed the pseudo random number generator with an unsigned integer of maximum 128
bits, to make the generated numbers less boring.

.var <expression>
Defines a variable identified by the label preceding, which is set to the value of expres‐
sion or reference of variable.

.comment

.endc
Comment block start and comment block end.

.comment
 lda #1 ;this won't be compiled

sta $d020
.endc

.assert

.check
Do not use these, the syntax will change in next version!

4.16 Printer control

.pron

.proff
Turn on or off source listing on part of the file.

.proff ;Don't put filler bytes into listing
* = $8000

.fill $2000, $ff ;Pre-fill ROM area

.pron
* = $8000

.word reset, restore

64tass v1.51 r992 reference manual

36 / 57

.text "CBM80"
reset cld

.hidemac

.showmac
Ignored for compatibility

5 Pseudo instructions

5.1 Aliases

For better code readability BCC has an alias named BLT (Branch Less Than) and BCS one
named BGE (Branch Greater Equal).

cmp #3
blt exit ; less than 3?

For similar reasons ASL has an alias named SHL (SHift Left) and LSR one named SHR (SHift
Right). This naming however is not very common.

The implied variants LSR, ROR, ASL and ROL are a shorthand for LSR A, ROR A, ASL A and ROL A.
Using the implied form is considered poor coding style.

For compatibility INA and DEA is a shorthand of INC A and DEC A. Therefore there's no “im‐
plied” variants like INC or DEC. The full form with the accumulator is preferred.

The longer forms of INC X, DEC X, INC Y, DEC Y, INC Z and DEC Z are available for INX, DEX, INY,
DEY, INZ and DEZ. For this to work care must be taken to not reuse the “x”, “y” and “z” single
letter register symbols for other purposes. Same goes for “a” of course.

Load instructions with registers are translated to transfer instructions. For example LDA X
becomes TXA.

Store instructions with registers are translated to transfer instructions, but only if it in‐
volves the “s” or “b” registers. For example STX S becomes TXS.

Many illegal opcodes have aliases for compatibility as there's no standard naming conven‐
tion.

5.2 Always taken branches

For writing short code there are some special pseudo instructions for always taken branches.
These are automatically compiled as relative branches when the jump distance is short
enough and as JMP or BRL when longer.

The names are derived from conditional branches and are: GEQ, GNE, GCC, GCS, GPL, GMI, GVC,
GVS, GLT and GGE.

There's one more called GRA for CPUs supporting BRA, which is expanded to BRL (if avail‐
able) or JMP.

.0000 a9 03 lda #$03 in1 lda #3

.0002 d0 02 bne $0006 gne at ;branch always

.0004 a9 02 lda #$02 in2 lda #2

.0006 4c 00 10 jmp $1000 at gne $1000 ;branch further

If the branch would skip only one byte then the opposite condition is compiled and only the
first byte is emitted. This is now a never executed jump, and the relative distance byte after
the opcode is the jumped over byte.

If the branch would not skip anything at all then no code is generated.

.0009 geq in3 ;zero length "branch"

64tass v1.51 r992 reference manual

37 / 57

.0009 18 clc in3 clc

.000a b0 bcs gcc at2 ;one byte skip, as bcs

.000b 38 sec in4 sec ;sec is skipped!

.000c 20 0f 00 jsr $000f at2 jsr func

.000f func

Please note that expressions like Gxx ∗+2 or Gxx ∗+3 are not allowed as the compiler can't fig‐
ure out if it has to create no code at all, the 1 byte variant or the 2 byte one. Therefore use
normal or anonymous labels defined after the jump instruction when jumping forward!

5.3 Long branches

To avoid branch too long errors the assembler also supports long branches. It can automati‐
cally convert conditional relative branches to it's opposite and a JMP or BRL. This can be en‐
abled on the command line using the “--long-branch” option.

.0000 ea nop nop

.0001 b0 03 bcs $0006 bcc $1000 ;long branch (6502)

.0003 4c 00 10 jmp $1000

.0006 1f 17 03 bbr 1,$17,$000c bbs 1,23,$1000 ;long branch (R65C02)

.0009 4c 00 10 jmp $1000

.000c d0 04 bne $0012 beq $10000 ;long branch (65816)

.000e 5c 00 00 01 jmp $010000

.0012 30 03 bmi $0017 bpl $1000 ;long branch (65816)

.0014 82 e9 lf brl $1000

.0017 ea nop nop

Please note that forward jump expressions like Bxx ∗+130, Bxx ∗+131 and Bxx ∗+132 are not al‐
lowed as the compiler can't decide between a short/long branch. Of course these destina‐
tions can be used, but only with normal or anonymous labels defined after the jump instruc‐
tion.

In the above example extra JMP instructions are emitted for each long branch. This is sub‐
optimal and wasting space if there are several long branches to the same location in close
proximity. Therefore the assembler might decide to reuse a JMP for more than one long
branch to save space.

6 Original turbo assembler compatibility

6.1 How to convert source code for use with 64tass

Currently there are two options, either use “TMPview” by Style to convert the sourcefile di‐
rectly, or do the following:

load turbo assembler, start (by SYS 9∗4096 or SYS 8∗4096 depending on version)
← then l to load a source file
← then w to write a source file in PETSCII format
convert the result to ASCII using petcat (from the vice package)

The resulting file should then (with the restrictions below) assemble using the following
command line:

64tass -C -T -a -W -i source.asm -o outfile.prg

6.2 Differences to the original turbo ass macro on the C64

64tass is nearly 100% compatible with the original “Turbo Assembler”, and supports most of
the features of the original “Turbo Assembler Macro”. The remaining notable differences are

64tass v1.51 r992 reference manual

38 / 57

listed here.

6.3 Labels

The original turbo assembler uses case sensitive labels, use the -C, --case-sensitive option to
enable this behaviour.

6.4 Expression evaluation

There are a few differences which can be worked around by the -T, --tasm-compatible option.
These are:

The original expression parser has no operator precedence, but 64tass has. That means
that you will have to fix expressions using braces accordingly, for example 1+2∗3 becomes
(1+2)∗3.

The following operators used by the original Turbo Assembler are different:

Table 27: TASM Operator differences

. bitwise or, now |
: bitwise eor, now ^
! force 16 bit address, now @w

The default expression evaluation is not limited to 16 bit unsigned numbers anymore.

6.5 Macros

Macro parameters are referenced by “\1”–“\9” instead of using the pound sign.

Parameters are always copied as text into the macro and not passed by value as the origi‐
nal turbo assembler does, which sometimes may lead to unexpected behaviour. You may
need to make use of braces around arguments and/or references to fix this.

6.6 Bugs

Some versions of the original turbo assembler had bugs that are not reproduced by 64tass,
you will have to fix the code instead.

In some versions labels used in the first .block are globally available. If you get a related
error move the respective label out of the .block.

7 Command line options

7.1 Output options

-o <filename>
Place output into <filename>. The default output filename is “a.out”. This option
changes it.

64tass a.asm -o a.prg

no option
Outputs CBM format binaries

The first 2 bytes are the little endian address of the first valid byte (start address).
Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved.

Used for C64 binaries.

-b, --nostart

64tass v1.51 r992 reference manual

39 / 57

Output data only without start address

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved.

Useful for small ROM files.

-f, --flat
Flat address space output mode.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory after the last valid byte is not saved.

Useful for creating huge multi bank ROM files (over 64 KiB). See sections for an ex‐
ample.

-n, --nonlinear
Generate nonlinear output file.

Overlapping blocks are flattened. Blocks are saved in sorted order and uninitialized
memory is skipped.

Used for linkers.

64tass --nonlinear a.asm
* = $1000

lda #2
* = $2000

nop

Table 28: Result of compilation

$02, $00 little endian length, 2 bytes
$00, $10 little endian start $1000
$a9, $02 code
$01, $00 little endian length, 1 byte
$00, $20 little endian start $2000
$ea code
$00, $00 end marker (length=0)

-X, --long-address
Use 3 byte address/length for CBM and nonlinear output instead of 2 bytes.

64tass --long-address --m65816 a.asm

--atari-xex
Generate a Atari XEX output file.

Overlapping blocks are kept, continuing blocks are concatenated. Saving happens in
the definition order without sorting, and uninitialized memory is skipped in the output.

64tass --atari-xex a.asm
* = $02e0

.word start ;run address
* = $2000
start rts

Table 29: Result of compilation

$ff, $ff header, 2 bytes
$e0, $02 little endian start $02e0
$e1, $02 little endian last byte $02e1
$00, $20 start address word

64tass v1.51 r992 reference manual

40 / 57

$00, $20 little endian start $2000
$00, $20 little endian last byte $2000
$60 code

--apple2
Generate a Apple II output file (DOS 3.3).

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved.

64tass --apple-ii a.asm
* = $0c00

rts

Table 30: Result of compilation

$00, $0c little endian start $0c00
$01, $00 little endian length $0001
$60 code

7.2 Operation options

-a, --ascii
Use ASCII/Unicode text encoding instead of raw 8-bit

Normally no conversion takes place, this is for backwards compatibility with a DOS
based Turbo Assembler editor, which could create PETSCII files for 6502tass. (includ‐
ing control characters of course)

Using this option will change the default “none” and “screen” encodings to map
'a'–'z' and 'A'–'Z' into the correct PETSCII range of $41–$5A and $C1–$DA, which is
more suitable for an ASCII editor. It also adds predefined petcat style PETSCII literals
to the default encodings, and enables Unicode letters in symbol names.

For writing sources in UTF-8/UTF-16 encodings this option is required!

64tass a.asm

.0000 a9 61 lda #$61 lda #"a"

>0002 31 61 41 .text "1aA"
>0005 7b 63 6c 65 61 72 7d 74 .text "{clear}text{return}more"
>000e 65 78 74 7b 72 65 74 75
>0016 72 6e 7d 6d 6f 72 65

64tass --ascii a.asm

.0000 a9 41 lda #$41 lda #"a"
>0002 31 41 c1 .text "1aA"
>0005 93 54 45 58 54 0d 4d 4f .text "{clear}text{return}more"
>000e 52 45

-B, --long-branch
Automatic BXX ∗+5 JMP xxx. Branch too long messages can be annoying sometimes, usu‐
ally they'll need to be rewritten to BXX ∗+5 JMP xxx. 64tass can do this automatically if
this option is used. But BRA is not converted.

64tass a.asm
* = $1000

bcc $1233 ;error...

64tass v1.51 r992 reference manual

41 / 57

64tass a.asm
* = $1000

bcs *+5 ;opposite condition
jmp $1233 ;as simple workaround

64tass --long-branch a.asm
* = $1000

bcc $1233 ;no error, automatically converted to the above one.

-C, --case-sensitive
Case sensitive labels. Labels are not case sensitive by default, this option changes that.

64tass a.asm
label nop
Label nop ;double defined...

64tass --case-sensitive a.asm
label nop
Label nop ;Ok, it's a different label...

-D <label>=<value>
Define <label> to <value>. Defines a label to a value. Same syntax is allowed as in
source files. Be careful with string quoting, the shell might eat some of the characters.

64tass -D ii=2 a.asm
lda #ii ;result: $a9, $02

-w, --no-warn
Suppress warnings. Disables warnings during compile.

64tass --no-warn a.asm

--no-caret-diag
Suppress displaying of faulty source line and fault position after fault messages.

64tass --no-caret-diag a.asm

-q, --quiet
Suppress messages. Disables header and summary messages.

64tass --quiet a.asm

-T, --tasm-compatible
Enable TASM compatible operators and precedence

Switches the expression evaluator into compatibility mode. This enables “.”, “:” and “!”
operators and disables 64tass specific extensions, disables precedence handling and
forces 16 bit unsigned evaluation (see “differences to original Turbo Assembler” be‐
low)

-I <path>
Specify include search path

If an included source or binary file can't be found in the directory of the source file
then this path is tried. More than one directories can be specified by repeating this op‐
tion. If multiple matches exist the first one is used.

7.3 Target selection on command line

64tass v1.51 r992 reference manual

42 / 57

These options will select the default architecture. It can be overridden by using the .cpu di‐
rective in the source.

--m65xx
Standard 65xx (default). For writing compatible code, no extra codes. This is the de‐
fault.

64tass --m65xx a.asm
lda $14 ;regular instructions

-c, --m65c02
CMOS 65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --m65c02 a.asm
stz $d020 ;65c02 instruction

-c, --m65ce02
CSG 65CE02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --m65ce02 a.asm
inz

-i, --m6502
NMOS 65xx. Enables extra illegal opcodes. Useful for demo coding for C64, disk drive
code, etc.

64tass --m6502 a.asm
lax $14 ;illegal instruction

-t, --m65dtv02
65DTV02. Enables extra opcodes specific to DTV.

64tass --m65dtv02 a.asm
sac #$00

-x, --m65816
W65C816. Enables extra opcodes, and full 16 MiB address space. Useful for SuperCPU
projects.

64tass --m65816 a.asm
lda $123456,x

-e, --m65el02
65EL02. Enables extra opcodes, useful RedPower CPU projects. Probably you'll need
“--nostart” as well.

64tass --m65el02 a.asm
lda 0,r

--mr65c02
R65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --mr65c02 a.asm
rmb 7,$20

--mw65c02
W65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass v1.51 r992 reference manual

43 / 57

64tass --mw65c02 a.asm
wai

7.4 Source listing options

-l <file>, --labels=<file>
List labels into <file>. List global used labels to a file.

64tass -l labels.txt a.asm
* = $1000
label jmp label

result (labels.txt):
label = $1000

--vice-labels
List labels in a VICE readable format.

64tass --vice-labels -l labels.txt a.asm
* = $1000
label jmp label

result (labels.txt):
al 1000 .label

-L <file>, --list=<file>
List into <file>. Dumps source code and compiled code into file. Useful for debugging,
it's much easier to identify the code in memory within the source files.

64tass -L list.txt a.asm
* = $1000

ldx #0
loop dex

bne loop
rts

result (list.txt):

;64tass Turbo Assembler Macro V1.5x listing file of "a.asm"
;done on Fri Dec 9 19:08:55 2005

.1000 a2 00 ldx #$00 ldx #0

.1002 ca dex loop dex

.1003 d0 fd bne $1002 bne loop

.1005 60 rts rts

;∗∗∗∗∗∗ end of code

-m, --no-monitor
Don't put monitor code into listing. There won't be any monitor listing in the list file.

64tass --no-monitor -L list.txt a.asm

result (list.txt):

;64tass Turbo Assembler Macro V1.5x listing file of "a.asm"
;done on Fri Dec 9 19:11:43 2005

64tass v1.51 r992 reference manual

44 / 57

.1000 a2 00 ldx #0

.1002 ca loop dex

.1003 d0 fd bne loop

.1005 60 rts

;∗∗∗∗∗∗ end of code

-s, --no-source
Don't put source code into listing. There won't be any source listing in the list file.

64tass --no-source -L list.txt a.asm

result (list.txt):

;64tass Turbo Assembler Macro V1.5x listing file of "a.asm"
;done on Fri Dec 9 19:13:25 2005

.1000 a2 00 ldx #$00

.1002 ca dex

.1003 d0 fd bne $1002

.1005 60 rts

;∗∗∗∗∗∗ end of code

--tab-size=<number>
By default the listing file is using a tab size of 8 to align the disassembly. This can be
changed to other more favorable values like 4. Only spaces are used if 1 is selected.
Please note that this has no effect on the source code on the right hand side.

7.5 Other options

-?, --help
Give this help list. Prints help about command line options.

--usage
Give a short usage message. Prints short help about command line options.

-V, --version
Print program version

8 Messages

Faults and warnings encountered are sent to standard error for logging. To redirect them
into a file append “2>filename.log” after the command. The format of messages is the follow‐
ing:

<filename>:<line>:<character>: <severity>: <message>

filename: The name and path of source file where the error happened.
line: Line number of file, starts from 1.
character: Character in line, starts from 1. Tabs are not expanded.
severity: Note, warning, error or fatal.
message: The fault message itself.

The faulty line may be displayed after the message with a caret pointing to the error loca‐
tion.

64tass v1.51 r992 reference manual

45 / 57

a.asm:3:21: error: not defined 'label'
 lda label
 ^
a.asm:3:21: note: searched in the global scope

Lines containing macros are expanded whenever possible, but due to internal limitations ref‐
erenced lines in relation to the actual fault will display without them.

8.1 Warnings

directive ignored
an assembler directive was ignored for compatibility reasons.

label not on left side
check if an instruction name was not mistyped and if the currect CPU has it, or remove
white space before label

long branch used
branch too long, so long branch was used (bxx ∗+5 jmp)

possible jmp ($xxff) bug
yet another 65xx feature...

processor program counter overflow
pc address was set back to the start of actual 64 KiB program bank

top of memory exceeded
compile continues at the bottom ($0000)

8.2 Errors

? expected
something is missing

address not in processor address space
value larger than current CPU address space

address out of section
moving the address around is fine, but do not place it before the section

at least one byte is needed
the expression didn't yield any bytes

branch crosses page
page crossing detected

branch too far by ? bytes
can't branch that far

can't calculate stable value
somehow it's impossible to calculate this expression

can't calculate this
could not get any value, is this a circular reference?

can't convert to a ? bit signed/unsigned integer
value out of range

can't encode character $xx
can't translate character, not part of current encoding

can't get absolute value of type '?'
value has no absolute value

can't get boolean value of type '?'
conversion error

can't get integer value of type '?'

64tass v1.51 r992 reference manual

46 / 57

conversion error

can't get length of type '?'
value has no length

can't get sign of type '?'
value does not have a sign

can't get size of type '?'
value has no size

conflict
at least one feature is provided, which shouldn't be there

constant too large
floating point overflow and other value out of range conditions

division by zero
can't calculate this

double defined escape
escape sequence already defined in another .edef

double defined range
part of a character range was already defined by another .cdef

duplicate definition
symbol defined more than once

empty range not allowed
invalid range

empty string not allowed
at least one character is required

expected exactly/at least/at most ? arguments, got ?
wrong number of function arguments

expression syntax
syntax error

extra characters on line
there's some garbage on the end of line

floating point overflow
infinity reached during a calculation

general syntax
can't do anything with this

index out of range
not enough elements in list

instruction can't cross banks
this instruction is only limited to the current bank

invalid operands to ? '?' and '?'
can't do this calculation with these values

key error
not in dictionary

label required
a label is mandatory for this directive

last byte must not be gap
.shift or .shiftl needs a normal byte at the end

logarithm of non-positive number
only positive numbers have a logarithm

missing argument
not enough arguments supplied to function

64tass v1.51 r992 reference manual

47 / 57

most significiant bit must be clear in byte
for .shift and .shiftl only 7 bit "bytes" are valid

negative number raised on fractional power
can't calculate this

no ? addressing mode for opcode
this addressing mode is not valid for this opcode

not a bank 0 address
value must be a bank zero address

not a data bank address
value must be a data bank address

not a direct page address
value must be a direct page address

not a key and value pair
dictionaries are built from key and value pairs separated by a colon

not a one character string
only a single character string is allowed

not allowed here: ?
do not use this directive here

not defined '?'
can't find this label

not hashable
can't be used as a key in a dictionary

not in range -1.0 to 1.0
the function is only valid in the -1.0 to 1.0 range

not iterable
value is not a list or other iterable object

operands could not be broadcast together with shapes ? and ?
list length must match or must have a single element only

page error at $xxxx
page crossing detected

ptext too long by ? bytes
.ptext is limited to 255 bytes maximum

requirements not met
Not all features are provided, at least one is missing

reserved symbol name '?'
do not use this symbol name

square root of negative number
can't calculate the square root of a negative number

too early to reference
processing still ongoing, can't access this yet

unknown processor '?'
unknown cpu name

wrong type <?>
wrong object type used

zero value not allowed
do not use zero, also not with .null

8.3 Fatal errors

64tass v1.51 r992 reference manual

48 / 57

can't open file
cannot open file

can't write label file
cannot write the label file

can't write listing file
cannot write the list file

can't write object file
cannot write the result

error reading file
error while reading

file recursion
wrong use of .include

macro recursion too deep
wrong use of nested macros

function recursion too deep
wrong use of nested functions

unknown option '?'
option not known

out of memory
won't happen ;)

too many passes
with a carefully crafted source file it's possible to create unresolvable situations. Fix
your code.

9 Credits

Original written for DOS by Marek Matula of Taboo, then ported to ANSI C by Big‐
Foot/Breeze, and finally added 65816 support, DTV, illegal opcodes, optimizations, multi pass
compile and a lot of features by Soci/Singular. Improved TASS compatibility, PETSCII codes
by Groepaz.

Additional code: my_getopt command-line argument parser by Benjamin Sittler, avl tree
code by Franck Bui-Huu, ternary tree code by Daniel Berlin, snprintf Alain Magloire, Amiga
OS4 support files by Janne Peräaho.

Pierre Zero helped to uncover a lot of faults by fuzzing.

Main developer and maintainer: soci at c64.rulez.org

10 Default translation and escape sequences

10.1 Raw 8-bit source

By default raw 8-bit encoding is used and nothing is translated or escaped. This mode is for
compiling sources which are already PETSCII.

10.1.1 The “none” encoding for raw 8-bit

Does no translation at all, no translation table, no escape sequences.

10.1.2 The “screen” encoding for raw 8-bit

The following translation table applies, no escape sequences.

64tass v1.51 r992 reference manual

49 / 57

Table 31: Built-in PETSCII to PETSCII screen code translation table

Input Byte Input Byte
00–1F 80–9F 20–3F 20–3F
40–5F 00–1F 60–7F 40–5F
80–9F 80–9F A0–BF 60–7F
C0–FE 40–7E FF 5E

10.2 Unicode and ASCII source

Unicode encoding is used when the “-a” option is given on the command line.

10.2.1 The “none” encoding for Unicode

This is a Unicode to PETSCII mapping, including escape sequences for control codes.

Table 32: Built-in Unicode to PETSCII translation table

Glyph Unicode Byte Glyph Unicode Byte
 –@ U+0020–U+0040 20–40 A–Z U+0041–U+005A C1–DA

[U+005B 5B] U+005D 5D

a–z U+0061–U+007A 41–5A £ U+00A3 5C

π U+03C0 FF ← U+2190 5F

↑ U+2191 5E ─ U+2500 C0

│ U+2502 DD ┌ U+250C B0

┐ U+2510 AE └ U+2514 AD

┘ U+2518 BD ├ U+251C AB

┤ U+2524 B3 ┬ U+252C B2

┴ U+2534 B1 ┼ U+253C DB

╭ U+256D D5 ╮ U+256E C9

╯ U+256F CB ╰ U+2570 CA

╱ U+2571 CE ╲ U+2572 CD

╳ U+2573 D6 ▁ U+2581 A4

▂ U+2582 AF ▃ U+2583 B9

▄ U+2584 A2 ▌ U+258C A1

▍ U+258D B5 ▎ U+258E B4

▏ U+258F A5 ▒ U+2592 A6

▔ U+2594 A3 ▕ U+2595 A7

▖ U+2596 BB ▗ U+2597 AC

▘ U+2598 BE ▚ U+259A BF

▝ U+259D BC ○ U+25CB D7

● U+25CF D1 ◤ U+25E4 A9

◥ U+25E5 DF ♠ U+2660 C1

♣ U+2663 D8 ♥ U+2665 D3

♦ U+2666 DA ✓ U+2713 BA

Table 33: Built-in PETSCII escape sequences

Escape Byte Escape Byte Escape Byte
{bell} 07 {black} 90 {blk} 90

{blue} 1F {blu} 1F {brn} 95

{brown} 95 {cbm-*} DF {cbm-+} A6

{cbm--} DC {cbm-0} 30 {cbm-1} 81

{cbm-2} 95 {cbm-3} 96 {cbm-4} 97

{cbm-5} 98 {cbm-6} 99 {cbm-7} 9A

{cbm-8} 9B {cbm-9} 29 {cbm-@} A4

{cbm-^} DE {cbm-a} B0 {cbm-b} BF

{cbm-c} BC {cbm-d} AC {cbm-e} B1

{cbm-f} BB {cbm-g} A5 {cbm-h} B4

64tass v1.51 r992 reference manual

50 / 57

Escape Byte Escape Byte Escape Byte
{cbm-i} A2 {cbm-j} B5 {cbm-k} A1

{cbm-l} B6 {cbm-m} A7 {cbm-n} AA

{cbm-o} B9 {cbm-pound} A8 {cbm-p} AF

{cbm-q} AB {cbm-r} B2 {cbm-s} AE

{cbm-t} A3 {cbm-up arrow} DE {cbm-u} B8

{cbm-v} BE {cbm-w} B3 {cbm-x} BD

{cbm-y} B7 {cbm-z} AD {clear} 93

{clr} 93 {control-0} 92 {control-1} 90

{control-2} 05 {control-3} 1C {control-4} 9F

{control-5} 9C {control-6} 1E {control-7} 1F

{control-8} 9E {control-9} 12 {control-:} 1B

{control-;} 1D {control-=} 1F {control-@} 00

{control-a} 01 {control-b} 02 {control-c} 03

{control-d} 04 {control-e} 05 {control-f} 06

{control-g} 07 {control-h} 08 {control-i} 09

{control-j} 0A {control-k} 0B {control-left arrow} 06

{control-l} 0C {control-m} 0D {control-n} 0E

{control-o} 0F {control-pound} 1C {control-p} 10

{control-q} 11 {control-r} 12 {control-s} 13

{control-t} 14 {control-up arrow} 1E {control-u} 15

{control-v} 16 {control-w} 17 {control-x} 18

{control-y} 19 {control-z} 1A {cr} 0D

{cyan} 9F {cyn} 9F {delete} 14

{del} 14 {dish} 08 {down} 11

{ensh} 09 {esc} 1B {f10} 82

{f11} 84 {f12} 8F {f1} 85

{f2} 89 {f3} 86 {f4} 8A

{f5} 87 {f6} 8B {f7} 88

{f8} 8C {f9} 80 {gray1} 97

{gray2} 98 {gray3} 9B {green} 1E

{grey1} 97 {grey2} 98 {grey3} 9B

{grn} 1E {gry1} 97 {gry2} 98

{gry3} 9B {help} 84 {home} 13

{insert} 94 {inst} 94 {lblu} 9A

{left arrow} 5F {left} 9D {lf} 0A

{lgrn} 99 {lower case} 0E {lred} 96

{lt blue} 9A {lt green} 99 {lt red} 96

{orange} 81 {orng} 81 {pi} FF

{pound} 5C {purple} 9C {pur} 9C

{red} 1C {return} 0D {reverse off} 92

{reverse on} 12 {rght} 1D {right} 1D

{run} 83 {rvof} 92 {rvon} 12

{rvs off} 92 {rvs on} 12 {shift return} 8D

{shift-*} C0 {shift-+} DB {shift-,} 3C

{shift--} DD {shift-.} 3E {shift-/} 3F

{shift-0} 30 {shift-1} 21 {shift-2} 22

{shift-3} 23 {shift-4} 24 {shift-5} 25

{shift-6} 26 {shift-7} 27 {shift-8} 28

{shift-9} 29 {shift-:} 5B {shift-;} 5D

{shift-@} BA {shift-^} DE {shift-a} C1

{shift-b} C2 {shift-c} C3 {shift-d} C4

{shift-e} C5 {shift-f} C6 {shift-g} C7

{shift-h} C8 {shift-i} C9 {shift-j} CA

{shift-k} CB {shift-l} CC {shift-m} CD

64tass v1.51 r992 reference manual

51 / 57

Escape Byte Escape Byte Escape Byte
{shift-n} CE {shift-o} CF {shift-pound} A9

{shift-p} D0 {shift-q} D1 {shift-r} D2

{shift-space} A0 {shift-s} D3 {shift-t} D4

{shift-up arrow} DE {shift-u} D5 {shift-v} D6

{shift-w} D7 {shift-x} D8 {shift-y} D9

{shift-z} DA {space} 20 {sret} 8D

{stop} 03 {swlc} 0E {swuc} 8E

{tab} 09 {up arrow} 5E {up/lo lock off} 09

{up/lo lock on} 08 {upper case} 8E {up} 91

{white} 05 {wht} 05 {yellow} 9E

{yel} 9E

10.2.2 The “screen” encoding for Unicode

This is a Unicode to PETSCII screen code mapping, including escape sequences for control
code screen codes.

Table 34: Built-in Unicode to PETSCII screen code translation table

Glyph Unicode Translated Glyph Unicode Translated
 –? U+0020–U+003F 20–3F @ U+0040 00

A–Z U+0041–U+005A 41–5A [U+005B 1B

] U+005D 1D a–z U+0061–U+007A 01–1A

£ U+00A3 1C π U+03C0 5E

← U+2190 1F ↑ U+2191 1E

─ U+2500 40 │ U+2502 5D

┌ U+250C 70 ┐ U+2510 6E

└ U+2514 6D ┘ U+2518 7D

├ U+251C 6B ┤ U+2524 73

┬ U+252C 72 ┴ U+2534 71

┼ U+253C 5B ╭ U+256D 55

╮ U+256E 49 ╯ U+256F 4B

╰ U+2570 4A ╱ U+2571 4E

╲ U+2572 4D ╳ U+2573 56

▁ U+2581 64 ▂ U+2582 6F

▃ U+2583 79 ▄ U+2584 62

▌ U+258C 61 ▍ U+258D 75

▎ U+258E 74 ▏ U+258F 65

▒ U+2592 66 ▔ U+2594 63

▕ U+2595 67 ▖ U+2596 7B

▗ U+2597 6C ▘ U+2598 7E

▚ U+259A 7F ▝ U+259D 7C

○ U+25CB 57 ● U+25CF 51

◤ U+25E4 69 ◥ U+25E5 5F

♠ U+2660 41 ♣ U+2663 58

♥ U+2665 53 ♦ U+2666 5A

✓ U+2713 7A

Table 35: Built-in PETSCII screen code escape sequences

Escape Byte Escape Byte Escape Byte
{cbm-*} 5F {cbm-+} 66 {cbm--} 5C

{cbm-0} 30 {cbm-9} 29 {cbm-@} 64

{cbm-^} 5E {cbm-a} 70 {cbm-b} 7F

{cbm-c} 7C {cbm-d} 6C {cbm-e} 71

{cbm-f} 7B {cbm-g} 65 {cbm-h} 74

{cbm-i} 62 {cbm-j} 75 {cbm-k} 61

{cbm-l} 76 {cbm-m} 67 {cbm-n} 6A

64tass v1.51 r992 reference manual

52 / 57

Escape Byte Escape Byte Escape Byte
{cbm-o} 79 {cbm-pound} 68 {cbm-p} 6F

{cbm-q} 6B {cbm-r} 72 {cbm-s} 6E

{cbm-t} 63 {cbm-up arrow} 5E {cbm-u} 78

{cbm-v} 7E {cbm-w} 73 {cbm-x} 7D

{cbm-y} 77 {cbm-z} 6D {left arrow} 1F

{pi} 5E {pound} 1C {shift-*} 40

{shift-+} 5B {shift-,} 3C {shift--} 5D

{shift-.} 3E {shift-/} 3F {shift-0} 30

{shift-1} 21 {shift-2} 22 {shift-3} 23

{shift-4} 24 {shift-5} 25 {shift-6} 26

{shift-7} 27 {shift-8} 28 {shift-9} 29

{shift-:} 1B {shift-;} 1D {shift-@} 7A

{shift-^} 5E {shift-a} 41 {shift-b} 42

{shift-c} 43 {shift-d} 44 {shift-e} 45

{shift-f} 46 {shift-g} 47 {shift-h} 48

{shift-i} 49 {shift-j} 4A {shift-k} 4B

{shift-l} 4C {shift-m} 4D {shift-n} 4E

{shift-o} 4F {shift-pound} 69 {shift-p} 50

{shift-q} 51 {shift-r} 52 {shift-space} 60

{shift-s} 53 {shift-t} 54 {shift-up arrow} 5E

{shift-u} 55 {shift-v} 56 {shift-w} 57

{shift-x} 58 {shift-y} 59 {shift-z} 5A

{space} 20 {up arrow} 1E

11 Opcodes

11.1 Standard 6502 opcodes

Table 36: The standard 6502 opcodes

ADC 61 65 69 6D 71 75 79 7D AND 21 25 29 2D 31 35 39 3D

ASL 06 0A 0E 16 1E BCC 90

BCS B0 BEQ F0

BIT 24 2C BMI 30

BNE D0 BPL 10

BRK 00 BVC 50

BVS 70 CLC 18

CLD D8 CLI 58

CLV B8 CMP C1 C5 C9 CD D1 D5 D9 DD

CPX E0 E4 EC CPY C0 C4 CC

DEC C6 CE D6 DE DEX CA

DEY 88 EOR 41 45 49 4D 51 55 59 5D

INC E6 EE F6 FE INX E8

INY C8 JMP 4C 6C

JSR 20 LDA A1 A5 A9 AD B1 B5 B9 BD

LDX A2 A6 AE B6 BE LDY A0 A4 AC B4 BC

LSR 46 4A 4E 56 5E NOP EA

ORA 01 05 09 0D 11 15 19 1D PHA 48

PHP 08 PLA 68

PLP 28 ROL 26 2A 2E 36 3E

ROR 66 6A 6E 76 7E RTI 40

RTS 60 SBC E1 E5 E9 ED F1 F5 F9 FD

SEC 38 SED F8

SEI 78 STA 81 85 8D 91 95 99 9D

STX 86 8E 96 STY 84 8C 94

64tass v1.51 r992 reference manual

53 / 57

TAX AA TAY A8

TSX BA TXA 8A

TXS 9A TYA 98

Table 37: Aliases, pseudo instructions

ASL 0A BGE B0

BLT 90 GCC 4C 90

GCS 4C B0 GEQ 4C F0

GGE 4C B0 GLT 4C 90

GMI 30 4C GNE 4C D0

GPL 10 4C GVC 4C 50

GVS 4C 70 LSR 4A

ROL 2A ROR 6A

SHL 06 0A 0E 16 1E SHR 46 4A 4E 56 5E

11.2 6502 illegal opcodes

This processor is a standard 6502 with the NMOS illegal opcodes.

Table 38: Additional opcodes

ANC 0B ANE 8B

ARR 6B ASR 4B

DCP C3 C7 CF D3 D7 DB DF ISB E3 E7 EF F3 F7 FB FF

JAM 02 LAX A3 A7 AB AF B3 B7 BF

LDS BB NOP 04 0C 14 1C 80

RLA 23 27 2F 33 37 3B 3F RRA 63 67 6F 73 77 7B 7F

SAX 83 87 8F 97 SBX CB

SHA 93 9F SHS 9B

SHX 9E SHY 9C

SLO 03 07 0F 13 17 1B 1F SRE 43 47 4F 53 57 5B 5F

Table 39: Additional aliases

AHX 93 9F ALR 4B

AXS CB DCM C3 C7 CF D3 D7 DB DF

INS E3 E7 EF F3 F7 FB FF ISC E3 E7 EF F3 F7 FB FF

LAE BB LAS BB

LXA AB TAS 9B

XAA 8B

11.3 65DTV02 opcodes

This processor is an enhanced version of standard 6502 with some illegal opcodes.

Table 40: Additionally to 6502 illegal opcodes

BRA 12 SAC 32

SIR 42

Table 41: Additional pseudo instruction
GRA 12 4C

Table 42: These illegal opcodes are not valid

ANC 0B JAM 02

LDS BB NOP 04 0C 14 1C 80

SBX CB SHA 93 9F

SHS 9B SHX 9E

SHY 9C

Table 43: These aliases are not valid
AHX 93 9F AXS CB

64tass v1.51 r992 reference manual

54 / 57

LAE BB LAS BB

TAS 9B

11.4 Standard 65C02 opcodes

This processor is an enhanced version of standard 6502.

Table 44: Additional opcodes

ADC 72 AND 32

BIT 34 3C 89 BRA 80

CMP D2 DEC 3A

EOR 52 INC 1A

JMP 7C LDA B2

ORA 12 PHX DA

PHY 5A PLX FA

PLY 7A SBC F2

STA 92 STZ 64 74 9C 9E

TRB 14 1C TSB 04 0C

Table 45: Additional aliases and pseudo instructions

CLR 64 74 9C 9E DEA 3A

GRA 4C 80 INA 1A

11.5 R65C02 opcodes

This processor is an enhanced version of standard 65C02.

Table 46: Additional opcodes

BBR 0F 1F 2F 3F 4F 5F 6F 7F BBS 8F 9F AF BF CF DF EF FF

RMB 07 17 27 37 47 57 67 77 SMB 87 97 A7 B7 C7 D7 E7 F7

11.6 W65C02 opcodes

This processor is an enhanced version of R65C02.

Table 47: Additional opcodes
STP DB WAI CB

Table 48: Additional aliases
HLT DB

11.7 W65816 opcodes

This processor is an enhanced version of W65C02.

Table 49: Additional opcodes

ADC 63 67 6F 73 77 7F AND 23 27 2F 33 37 3F

BRL 82 CMP C3 C7 CF D3 D7 DF

COP 02 EOR 43 47 4F 53 57 5F

JMP 5C DC JSL 22

JSR FC LDA A3 A7 AF B3 B7 BF

MVN 54 MVP 44

ORA 03 07 0F 13 17 1F PEA F4

PEI D4 PER 62

PHB 8B PHD 0B

PHK 4B PLB AB

PLD 2B REP C2

RTL 6B SBC E3 E7 EF F3 F7 FF

64tass v1.51 r992 reference manual

55 / 57

SEP E2 STA 83 87 8F 93 97 9F

TCD 5B TCS 1B

TDC 7B TSC 3B

TXY 9B TYX BB

XBA EB XCE FB

Table 50: Additional aliases

CSP 02 CLP C2

JML 5C DC SWA EB

TAD 5B TAS 1B

TDA 7B TSA 3B

11.8 65EL02 opcodes

This processor is an enhanced version of standard 65C02.

Table 51: Additional opcodes

ADC 63 67 73 77 AND 23 27 33 37

CMP C3 C7 D3 D7 DIV 4F 5F 6F 7F

ENT 22 EOR 43 47 53 57

JSR FC LDA A3 A7 B3 B7

MMU EF MUL 0F 1F 2F 3F

NXA 42 NXT 02

ORA 03 07 13 17 PEA F4

PEI D4 PER 62

PHD DF PLD CF

REA 44 REI 54

REP C2 RER 82

RHA 4B RHI 0B

RHX 1B RHY 5B

RLA 6B RLI 2B

RLX 3B RLY 7B

SBC E3 E7 F3 F7 SEA 9F

SEP E2 STA 83 87 93 97

STP DB SWA EB

TAD BF TDA AF

TIX DC TRX AB

TXI 5C TXR 8B

TXY 9B TYX BB

WAI CB XBA EB

XCE FB ZEA 8F

Table 52: Additional aliases
CLP C2 HLT DB

11.9 65CE02 opcodes

This processor is an enhanced version of R65C02.

Table 53: Additional opcodes

ASR 43 44 54 ASW CB

BCC 93 BCS B3

BEQ F3 BMI 33

BNE D3 BPL 13

BRA 83 BSR 63

BVC 53 BVS 73

CLE 02 CPZ C2 D4 DC

64tass v1.51 r992 reference manual

56 / 57

DEW C3 DEZ 3B

INW E3 INZ 1B

JSR 22 23 LDA E2

LDZ A3 AB BB NEG 42

PHW F4 FC PHZ DB

PLZ FB ROW EB

RTS 62 SEE 03

STA 82 STX 9B

STY 8B TAB 5B

TAZ 4B TBA 7B

TSY 0B TYS 2B

TZA 6B

Table 54: Additional aliases

ASR 43 BGE B3

BLT 93 NEG 42

RTN 62

Table 55: This alias is not valid
CLR 64 74 9C 9E

12 Appendix

12.1 Assembler directives

.addr .al .align .as .assert .autsiz .bend .binary .binclude .block .break .byte .case

.cdef .cerror .char .check .comment .continue .cpu .cwarn .databank .default .dint

.dpage .dsection .dstruct .dunion .dword .edef .else .elsif .enc .end .endc .endf

.endif .endm .endp .ends .endswitch .endu .endweak .eor .error .fi .fill .for .func‐

tion .goto .here .hidemac .if .ifeq .ifmi .ifne .ifpl .include .int .lbl .lint .logical

.long .macro .mansiz .next .null .offs .option .page .pend .proc .proff .pron .ptext

.rept .rta .section .seed .segment .send .shift .shiftl .showmac .struct .switch .text

.union .var .warn .weak .word .xl .xs

12.2 Built-in functions

abs acos all any asin atan atan2 cbrt ceil cos cosh deg exp floor format frac

hypot len log log10 pow rad random range repr round sign sin sinh size sqrt

tan tanh trunc

12.3 Built-in types

address bits bool bytes code dict float gap int list str tuple type

64tass v1.51 r992 reference manual

57 / 57

	64tass v1.51 r992 reference manual
	1 Table of Contents
	2 Usage tips
	3 Expressions and data types
	3.1 Integer constants
	3.2 Bit string constants
	3.3 Floating point constants
	3.4 Character string constants
	3.5 Byte string constants
	3.6 Lists and tuples
	3.7 Dictionaries
	3.8 Code
	3.9 Addressing modes
	3.10 Uninitialized memory
	3.11 Booleans
	3.12 Types
	3.13 Symbols
	3.13.1 Regular symbols
	3.13.2 Local symbols
	3.13.3 Anonymous symbols
	3.13.4 Constant and re-definable symbols
	3.13.5 The star label

	3.14 Built-in functions
	3.14.1 Mathematical functions
	3.14.2 Other functions

	3.15 Expressions
	3.15.1 Operators
	3.15.2 Comparison operators
	3.15.3 Bit string extraction operators
	3.15.4 Conditional operators
	3.15.5 Address length forcing
	3.15.6 Compound assignment

	4 Compiler directives
	4.1 Controlling the compile offset and program counter
	4.2 Dumping data
	4.2.1 Storing numeric values
	4.2.2 Storing string values

	4.3 Text encoding
	4.4 Structured data
	4.4.1 Structure
	4.4.2 Union
	4.4.3 Combined use of structures and unions

	4.5 Macros
	4.5.1 Parameter references
	4.5.2 Text references

	4.6 Custom functions
	4.7 Conditional assembly
	4.7.1 If, else if, else
	4.7.2 Switch, case, default

	4.8 Repetitions
	4.9 Including files
	4.10 Scopes
	4.11 Sections
	4.12 65816 related
	4.13 Controlling errors
	4.14 Target
	4.15 Misc
	4.16 Printer control

	5 Pseudo instructions
	5.1 Aliases
	5.2 Always taken branches
	5.3 Long branches

	6 Original turbo assembler compatibility
	6.1 How to convert source code for use with 64tass
	6.2 Differences to the original turbo ass macro on the C64
	6.3 Labels
	6.4 Expression evaluation
	6.5 Macros
	6.6 Bugs

	7 Command line options
	7.1 Output options
	7.2 Operation options
	7.3 Target selection on command line
	7.4 Source listing options
	7.5 Other options

	8 Messages
	8.1 Warnings
	8.2 Errors
	8.3 Fatal errors

	9 Credits
	10 Default translation and escape sequences
	10.1 Raw 8-bit source
	10.1.1 The “none” encoding for raw 8-bit
	10.1.2 The “screen” encoding for raw 8-bit

	10.2 Unicode and ASCII source
	10.2.1 The “none” encoding for Unicode
	10.2.2 The “screen” encoding for Unicode

	11 Opcodes
	11.1 Standard 6502 opcodes
	11.2 6502 illegal opcodes
	11.3 65DTV02 opcodes
	11.4 Standard 65C02 opcodes
	11.5 R65C02 opcodes
	11.6 W65C02 opcodes
	11.7 W65816 opcodes
	11.8 65EL02 opcodes
	11.9 65CE02 opcodes

	12 Appendix
	12.1 Assembler directives
	12.2 Built-in functions
	12.3 Built-in types

