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Preface

This book 1is intended to complement lan Sinclair's /Introducing
Commodore 64 Machine Code, also published by Granada. The word
‘Advanced’ appears in our title although this should in no way deter
beginners providing they possess tenacity and sufficient dedication. It is
assumed, however, that readers already have a little experience with
BASIC.

Machine code has always had the reputation of being abstruse, difficult
and prone to error. It is certainly more difficult than BASIC but, providing
you invest in an assembler, not greatly so. If you intend to master machine
code, an assembiler is a necessity. If you try and muddle along with POKE
codes there is a real danger that you will become frustrated and give up.
Failure, in this case, would be due to the problems involved with entering
and debugging, rather than difficulties intrinsic to the code. All programs
in this book have been developed on a MIKRO 64 assembler, which is
obtainable in plug-in cartridge form.

The microprocessor in the Commodore 64 is a 6510A which, for all
practical purposes, is identical to the well-known 6502. Consequently, a
good deal of the programming material in this book may be found useful to
owners of other machines employing the 6502.

Although it is possible to use machine code without any hardware
knowledge, it is certainly an advantage - and satisfying - to be aware of the
various components and layout of the machine. In fact, it is not uncommon
for beginners in machine code to develop aninterest in the hardware side of
the art, simply because studying machine code tends to generate such
interest. Because of this, a certain amount of space has been devoted to
aspects of hardware which might overlap software. A brief outline of TTL
logic is given in the last chapter for those who like designing and/or
interfacing their own circuitry for attachment to the user port or expansion
bus.

A complete chapter is devoted to sort procedures and another to
graphics because the speed advantage of machine code over BASIC is most
evident in these two areas.

A. P. and D. J. Stephenson



Chapter One
Introduction

Virtues and faults of BASIC

Most users of personal computers either buy software ready-made or else
they write their own programs in BASIC. This is natural. Afterall, BASIC
was initially designed to be a pleasant and easy language to learn and use.
Since it was first launched on 1st May 1964, there have been changes, some
of which could be considered improvements, in both ‘user-friendliness’ and
speed of execution. As far as possible, modern dialects of BASIC have
reached the stage where the computer itself need hardly be considered. The
language attempts to insulate the user not only from the harsh reality of the
system software but also from the appalling complexity of the hardware.

Variations in BASIC dialects

There are one or two aspects of the language which can be irritating. First,
BASIC, unlike the more traditional languages, is far from being
standardised. Although broadly similar, there are significant variations
between different versions of BASIC because software designers (software
‘engineers’ as they are now called) try to mould a particular version in a way
which takes full advantage of features which are peculiar to a specific
machine. Consequently, BASIC cannot be considered a standardised
language since it is very unlikely that a program written for one brand of
computer will run on another make without modifications to suit the
change in the machine’s ‘personality’.

One reason for this is the inevitable result of the rapid progress in
technology. In the era when BASIC was in its infancy, there was no chance
of laser beam noises screeching away underneath the keyboard. Television
sets were not used as screen displays then so there were no screen displays to
worry about and certainly no coloured pixels. Extra BASIC keywords had
to be invented to enable users to handle all these new pleasures, but
software engineers on the design staff of each company had their own
independent ideas on the syntax of these keywords.

Although the philosophy of free competition has much to commend it, it
tends to contribute little to standardisation. On the contrary, it would
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appear that manufacturers take some pride in the ‘superiority’ of their own
version of BASIC over rival versions. It is impossible to be superior to
something unless it is also different so BASIC has evolved in an
undisciplined manner. In fact, there is no guarantee that a program will
even remain compatible between identical machines if one is a much later
version off the production line. It is not uncommon for a manufacturer to
bring out a modified version only a few months after the launch
of a new machine. These changes can take the form of improvements such
as the addition of extra BASIC keywords or perhaps some slight alteration
in syntax of existing keywords. However, established computer manufac-
turers are always conscious of the responsibility they owe to writers of
software and normally ensure ‘upward compatibility’ between the old and
new versions. That is to say, they arrange that programs written for the old
version will continue to work on the new but not, necessarily, the other way
round.

The speed of BASIC

Another disadvantage of BASIC is that it is slow in execution. Even its
strongest devotees would admit this although, as they rightly point out,
many programs appear to execute ‘instantaneously’ so what does it matter
anyway? However, in certain areas, the slowness of BASIC can be irritating
almost to the point of unacceptability.

If you are new to computing (perhaps the Commodore 64 may be your
first computer) the speed at which the machine can calculate reams of
square roots, trig functions and advanced mathematical relations can blur
the critical faculties. Waiting about twenty or thirty seconds for a program
to sort out a hundred or so names and addresses in alphabetical order is
initially borne with equanimity. After all, it is still very much faster than a
fellow human could do it. But, after a few months, tolerance and
wonderment gradually give way to irritation and discontent. A stage is
reached at which a computer is compared with other computers rather than
with a human! Waiting for a blank screen to deliver the goods is about as
exciting as watching grass grow. The trouble with BASIC is due to the fact
that it is interpreted rather than compiled. As many readers will already be
aware, the intrinsic language of any computer is machine code so the ability
to program in any other language must depend on translation software.
This must be available in addition to the resident operating system. To gain
a clear idea of the difference between interpreters and compilers it is
necessary to distinguish ‘source code’ from ‘object code’. Source code is the
program written in a particular ‘high level’ language (such as BASIC,
COBOL, or FORTRAN) and object code is the machine code translation.
Source code may be considered as the input to the translation software and
object code as the output. The difference between compiling and
interpreting can now be explained.
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Compilers

These first translate the entire source code into object code, the process
being known as ‘compiling’. Only after compiling can the program be
executed (run). Compiling takes time, in fact a relatively long time, but the
program has to be compiled only once.

Once compiled, the original source code could, in theory, be thrown
away (although this often demands more courage than most of us have).
The program is now stored as object code which, as explained above, is
machine code. This means that henceforth it will run like lightning
whenever it is required. The essential idea behind a compiler is really that of
a time shift. We put up with a lengthy translation time (which only has to be
tolerated once) in return for fast execution of all subsequent runs.

Interpreters

These are a different kettle of fish altogether. Each line of source code is
translated and then executed before the next line is translated so there is no
tidy distinction between the source and object codes. When we instruct
such a program to ‘run’, we are unconscious of the fact thateach line has to
be translated to machine code before the line is executed and that this takes
place again on each subsequent occasion the program runs.

This wasteful re-translation each time is the fundamental reason why
interpreted languages, such as BASIC, are much slower in execution than
compiled languages. However efficient the interpretive software is written,
there is always this same time penalty. However, in spite of this, there are
advantages. During the original development of BASIC, the overriding
consideration was to produce a language that would not only be easy for
engineers, physicists and other non-specialists to use but, more
importantly, easy to correct mistakes and/or change bits of the program at
short notice. It is certainly easier and quicker to correct mistakes in an
interpreted language because it is still in source code form.

Structured programming

Naturally the mistakes have first to be found. How easy it is to find them
depends to some extent on the skill and experience of the programmer and
also to the degree in which the language is ‘structured’. It would be out of
place in this book to discuss the ins and outs of ‘structure’ in great detail.
Many books, and hundreds of magazine articles have already done justice
to the art of structured programming. It is sufficient, here, to describeitasa
programming style in which great stress is placed on the concept of self-
sufficient blocks of code, each capable of independent verification. The



4 Advanced Machine Code Programming for the Commodore 64

blocks, or ‘modules’ are strung together in a manner which simplifies final
testing and, what is equally important, allows future modifications or
additions to be incorporated without altering existing modules.

Some languages, PASCAL and ALGOL in particular, are designed in a
way which forces programmers to write good structure. BASIC, at least the
version used in most microcomputers, including the Commodore 64, has
no such pretentions. In fact, BASIC has been subjected to much abuse for
its complete lack of structure. It is said to encourage sloppy, ragged
programming. Serious attempts have been made over the last few years to
improve BASIC and some of the new versions have already incorporated
some of the syntactical forms which, previously, were exclusive to the true
structured languages.

Why learn machine code?

There are many reasons why you should make an effort to learn machine
code and we shall, of course, be discussing some of them. Initially, the
important question is ‘“When is the best time to learn it?” For example, do
we buy a computer and then start right away learning machine code or do
we first pass through some form of ‘apprenticeship’ in BASIC and then go
on, as it were, to better things.

The answer to this depends to some extent on your strength of character.
If you are easily frustrated and eager to get results then you would be well
advised to stick to BASIC, at least for a time, in order to gain familiarity
with the general principles of programming. Unfortunately, the longer you
remain hooked on BASIC, the more difficult it becomes to leave it. If, on
the other hand, you intend to become seriously involved in various aspects
of computing, including the writing of software for commercial purposes, it
would be wise to combine machine code studies together with BASIC from
the start, a reasonable study ratio being about five to one in favour of
machine code. Here are some of the reasons for learning it:

Speed
Programs written in machine code can be between one hundred to one
thousand times faster than the same program written in BASIC.

Compatibility

Subject to a few provisos, programs written in machine code will run on
any computer which uses the same microprocessor. In other words,
machine code programs are specific to the particular microprocessor used
in the computer rather than the computer itself, The provisos are that due
regard must be taken of changes in the overall memory map of the
computer and possible variations in syntax of the assembler used for
entering the code. However, it is worth pointing out that an assembler is
only an aid to the writing of code. It is possible to write machine code
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programs on any computer by ‘poking’ code directly into memory cells.
This method is tedious but the end result is exactly the same as when an
assembler is used.

Machine knowledge

A machine code environment stimulates interest in both the hardware and
system software. The microprocessor takes on a new look. It ceases to be
what the media are pleased to call a ‘miracle chip’. It can no longer be taken
for granted because programming in machine code demands fairly intimate
knowledge of the registers within the chip together with the interconnecting
buses.

Peripheral projects

Few users of microcomputers devote much time to the input/ output end.
Such lack of interest places users at the mercy of the ‘add-on’
manufacturers. They remain content to buy ready-made devices that
simply plug into the back. No disrespect is intended towards these
manufacturers. In fact, they play an almost indispensable role in the
provision of interfacing black boxes. Nevertheless, it is much more
interesting if you have some idea of the theory behind interfacing, and can
pay dividends in cases where the commercial project requires some slight
modification in order to satisfy local conditions. Machine code work tends
to force an interest in the input/output chips (such as the CIA in the
Commodore 64) as well as the microprocessor.

Ego-boosting

This is trivial but we are all human. ‘Experts’ in machine code tend to be
treated with just a tinge of respect, probably due to the mistaken belief that
machine code can only be understood by those with exceptional intellects.
It is rewarding to keep this myth alive although, inwardly, you soon learn
that it is more to do with patience and tenacity than intellect. The average
man or woman has more than sufficient intellect to master machine code
but not all are able to muster or sustain sufficient interest!

How difficult is machine code?
Machine code is more difficult to use than BASIC but not greatly so. In fact
the difficulty factor is much less than is popularly supposed. It is tedious
rather than difficult. Unlike high level languages such as BASIC, each
instruction is of atomic rather than molecular dimensions. Some
instructions do little more than move eight bits from one place in the
computer to another. Some may alter the arrangement of the bits within a
location or register. Some are able to perform the primitive arithmetic
processes of addition or subtraction. There are, of course, instructions
which alter the sequential address flow of the form ‘branch if’ but they have
no built-in sophistication such as the [F/THEN statements of BASIC.
Not very much happens when we write a machine code instruction. The
first habit to acquire, and one which many people find the most difficult, 1s
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the ability to think low enough! The relatively advanced style of
communication we use to communicate with each other tends to spoil us. It
is essential to get the brain into the lowest gear possible because although
you need high power it has to be released at a slow rate! We have to face the
fact that the microprocessor, the so-called ‘miracle chip’, has the mental
capacity of an earthworm. Once this is realised, and firmly established,
many of the difficulties vanish.

It may be argued that such a moronic view of a microcomputer is valid
even when programming in BASIC. This is true in principle but not in
magnitude. We should remember that the team that wrote the BASIC
interpreter for the Commodore 64 injected some measure of human
intelligence into the ROM. Syntax and other errors committed by
programmers are gently pointed out by the operating system. In pure
machine code, which can only be entered into the Commodore 64 by
poking directly into RAM locations, there is not even a suspicion of
humanity. Enter a wrong code by mistake and the system crashes. The
microprocessor has no built-in intelligence and offers no advice
whatsoever. Only codes it can understand are obeyed. Leave one tiny
loophole open in, say, an end-of-loop test and the microprocessor falls
straight into it. If code is entered by anassembler, such as MIKRO, there is
some improvement in friendliness, although this is due mainly to less error-
prone methods of entering code.

Commodore 64 hardware

It is wise for prospective machine code programmers to develop an interest
in the hardware side. This does not mean spending long hours studying
electronics. It is strange, and rather disconcerting for mature engineers and
technicians, that modern computers, although almost entirely electronic in
nature, can be understood quite well by those with only a smattering of
electronic theory. Silicon chips have displaced the conventional theoretical
circuit. The complete schematic diagram of the Commodore 64 contains
only eight discrete (separately manufactured) transistors. In contrast, the
number of transistors integrated within the chips would probably reach a
figure in excess of 100000.

Understanding and repairing microcomputers is no longer the exclusive
province of highly trained electronic engineers. An ability to think logically
is the primary quality and more important than theoretical electronic
knowledge. The advantages of academic qualifications in electronics is,
rather sadly, slowly being reduced to the status of an optional extra.

The MPU
The Micro Processing Unit controlling the Commodore 64 is a 6510A
microprocessor, occupying position U7 on the circuit board. The 6510A is
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virtually identical to the more widely known 6502 chip, manufactured by
MOS Technology. Both these chips are, in fact, software-compatible with
each other and both share the same instruction set. The full details of the
microprocessor will be found in Chapter 3 but, because this book may also
be read by other than Commodore 64 users, it was felt that it should
continue to be referred to as a ‘6502’

The 6510A has an extra facility in the shape of an on-chip input/output
port. Although eight input/ output lines (PO to P7) are provided, only six of
these are used. Three of them are dedicated to the cassette recorder and
three for switching in different memory chips. The machine code
programmer will normally have little interest in this port because it remains
obscurely in the background and is controlled entirely by the operating
system. Further details can be found in the Commodore 64 Programmer’s
Reference Guide.

On-board ROMs

The permanent (resident) software in the Commodore 64 is buried, quite
logically, within five separate ROM chips. The individual chips are now
described.

The operating system ROM

The operating system ROM is called the ‘kernal’ by Commodore and hasa
capacity of 8K bytes and the type number 2364 A. It occupies position U4
on the circuit board. The range of hexadecimal addresses allocated to the
kernal is EO00 to FFFF (59344 to 65535 decimal). It lies, therefore, at the
extreme top of the 64K memory map. The software buried within the
kernal ensures that the conflicting demands of various sub-units in the
computer are dealt with in a calm and logical fashion and with priorities
normally dependent on their relative speeds. Controlling the keyboard and
display system is an important responsibility which is left to the kernal.

The BASIC ROM

This chip contains the interpreter software necessary for users who wish to
communicate with the computer via BASIC. Like the kernal, the chip type
number is 2364A and it occupies position U3 on the circuit board. The
ROM has a capacity of 8K bytes and the address range allocated to it is
A000 to BFFF hex (40960 to 49151 decimal).

It is difficult to write a BASIC interpreter that will fit into the tight
confines of an 8K ROM. The software writers have done their best but
there is no point in denying that the Commodore 64 will never be renowned
for the quality of its BASIC. It must be considered a primitive version of
the language without frills or fuss. Because of this, there is a greater need
for, and a greater urge to learn, machine code in order to write subroutines
to supplement BASIC.
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The character generator ROM

When a character is displayed on the screen, it is not immediately obvious
that we are looking at a pattern of dots. In fact, the principle behind the
display of a screen character is similar to the principle used in a normal dot
matrix printer. Each character has its own unique pattern of dots. A single
dot on the screen can be produced by a single bit in the ‘I’ state and the
absence of a dot by the same bit in the ‘0’ state.

Each character in the Commodore 64 is formed on a background of 64
dot positions, arranged in an 8 X § matrix. In other words, each character
requires 8 bytes of information. The patterns for 512 different characters
are stored in the character generator ROM in the form of two character
sets. One set of 256 characters covers upper-case characters and fixed
keyboard graphics and the other caters for the more normal ‘typewriter
style’ upper- and lower-case characters. The ROM carries the type number
2332A and occupies position U5 on the circuit board.

The character ROM only generates characters. To display a character,
the operating system arranges that the chosen character in the ROM is
placed in that part of RAM designated as ‘screen memory’ which
(normally) occupies the decimal address range 1024 to 2023. Any character
pattern from the ROM placed in this area will be displayed at a position
determined by the current cursor or by means of a direct poke.

The RAM chips

The Commodore 64 uses, as its name suggests, 64K bytes of user RAM.
This is provided by a bank of eight chips, occupying positions
U12,U24,U11,U23,U10,U22,U9 and U2l. All eight chips are identical,
bearing the type number 4164-2, Each chip has a capacity of 64K bits and
therefore can only contribute a single bit towards a memory byte, From the
user’s viewpoint, the RAM appears as one chip with a capacity of 64K bytes
because the address selection wires of each chip are common to all eight.

It is interesting to note that the chips only have 8 address lines labelled
A0 to A7 and yet, to provide 64K (216) different addresses, the law of binary
combinations demands that at least 16 address lines are required. However,
pins on a chip cost money and the more there are, the more intricate (and
costly) is the final circuit board which holds them. It has been common
practice for some years to compromise on the number of address lines by
supplying the address in two equal instalments. The addressing matrix
within each 64K chip is arranged in eight columns and eight rows. Only
eight address lines, marked MAQ to MA7, are required to feed the chip
because control lines (CAS and RAS on the chip) switch the first batch of §
to the row address and the next batch to the column address. The steering
of each 8-address bit from the 16-bit microprocessor address bus is
achieved by two 741.S257 multiplexer chips. A ‘multiplexer’, in this sense,
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is an electronically operated multi-arm ‘switch’ without any moving parts.

Memory organisation

One of the awkward features of the 6510A, in common with almost all
other popular 8-bit microprocessors, is the upper limit imposed on directly
addressable memory due to having only a 16-bit address bus. The number
of possible binary combinations (the number of unique addresses) is
therefore 216 which is 65536 and, because 1K=1024, is 64K.

When 8-bit microprocessors were first launched in 1971, semiconductor
memories were very expensive so it was probably considered at the time
that a 16-bit address bus, supporting 64K of memory, would be more than
ample. It was never envisaged that microcomputer users would ever be able
to afford, or even need, anything like 64K of memory. They were wrong. In
the last few years, the price of semiconductor RAM has fallen sharply, due
to volume production and advances in production technology.

We now come to the strange case of the Commodore 64. It supports the
full 64K of RAM which, according to our previous remarks, completely
fills the directly addressable memory space. But there s, in addition, 20K of
ROM which means that a total of 84K of addressable space is needed.
Commodore solved this problem by choosing the 6510A microprocessor
instead of the 6502. You will remember that the 6510A has a built-in 8-line
input/output port. Three of these lines PO,P1 and P2 are used to switch the
three ROMs in and out of the available address space. Although this
switching action normally rests in the defau/t mode by the operating
system, there may be occasions when the machine code programmer will
want to alter the sequence in order to cater for a special situation. For
example, the normal (default) situation for memory distribution is as
follows:

(1) 38K of RAM available for user’s programs.

(2) The 8K kernal ROM and 8K BASIC ROM.

(3) The remaining 10K is RAM used by the operating system for
input/output buffering and as general-purpose ‘workspace’. If the 32K of
user RAM is not sufficient, it is possible to alter the memory distribution to
obtain more RAM but this naturally means sacrificing some of the
facilities. However, for the benefit of those who may wish to alter the
default system, the manner in which the switching is carried out will now be
described.

ROM/RAM switching

In common with most input/output ports, the data lines can be
programmed to behave as inputs or outputs, depending on the bit pattern
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placed in the Direction Register. The data lines themselves are controlled
by the Data Register. These two registers have the following fixed
addresses:

Direction Register 0000 hex
Data Register 0001 hex

To make any particular data line behave as an output, the corresponding
bit in the Direction Register must be programmed with a ‘I’. To ensure
input behaviour, the corresponding bit must be a ‘0’. Figure 1.1 shows
relevant details of the two registers and the ROM/RAM switching lines.

Part of 65610A microprocessor

76543210
DirectionR.[ | [1Jo[1[1]1]1]

DataR.[ I [x]xlx|1 [1]0|

:‘1] :?(::-IF:!I:\TVI » BASIC ROM or 8K RAM

P2 | CHARAN » KERNAL ROM or 8K RAM
» CHARACTER ROMor 1/0

P3 o

Pa -« ? C tte

P5 o

WW Note: Register bits are shown in default status

Fig. 1.7. Memory switching by input/output port lines.

The Direction Register bits are initialised to 0010 1111 by the
operating system on power-up. Since the three rightmost bits are ‘1’s, the
lines PO,P1 and P2, which control the switching, behave as outputs. The
remaining bits are of no concern at this stage because they are used as
control lines for the motor and sense circuits of the tape cassette.

The Data Register, which controls the logic state on P0,P1 and P2, is
normally programmed by the operating system. The sequence is as follows:

(1) PO drives the signal called LORAM which switches the BASIC ROM
and normally rests in the HIGH state (the ‘1" state). When this line goes
LOW (the ‘0’ state), the ROM is switched out of the memory space, leaving
8K of addressable RAM in its place over the range A000 to BFFF hex.
(2)P1 drives the signal called HIR AM which switches the kernal ROM and
normally rests in the HIGH state. When this line goes LOW, the ROM is
switched out of the memory space, leaving 8K of addressable RAM in its
place over the address range E000 to FFFF hex.

(3) P2 drives the signal called CHARAN which switches the character
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Generator ROM and normally rests in the HIGH state. The ROM occupies
the same address space as the input/ output (I/ O) devices (D000 to DFFF
hex) but only replaces them when CHARAN is driven LOW.

It is clear from the above that the default state of PO,P1 and P2 are all
initialised to the ‘I’ state by setting the three rightmost bits in the Data
Register accordingly. The memory distribution can be altered to suit
individual requirements by adjusting these bits. Care should be taken to
preserve the state of the remaining bits because they are used for the
cassette unit.

Cassette unit control

The three data lines P3,P4 and PS5, on the 6510A input/output port,
control the Commodore C2N cassette unit. Figure 1.2 shows the
connections. The following functions are performed:

+5V

+9V

'L 0.1uF Q1

1.5K
]3.3K

a3
1K Q2
P54

P4 c.3

Mgtor

Sense F.6

P3 —_— Write ES
FLAG _
(VIC1A) Reqd

+5V oemeeb B 2

|

D,4

Cassette connector

A

|”_

Fig. 1.2. The cassette control circuit.

(1) P3 is an output to the CASS WRT line. It goes direct to pin ES on the 6-
pin male edge connector and carries data to be written to tape.

(2) P4 is an input and receives the CASS SENSE signal from pin F6 on the
edge connector. It senses if the PLAY button on the cassette unit has been
pressed and, if not, sends the appropriate error message to the user.

(3) P5 is the CASS MOTOR output but is quite incapable of delivering
sufficient current level for directly driving the cassette motor. Amplification
is provided by three transistors Q1,Q2 and Q3. The first stage, Q2, is a
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conventional ground-emitter amplifier delivering an inverted output signal
to QI and Q3. These are connected as a darlington pair (see Chapter 8) to
ensure high current gain. When P5 goes LOW, Q2 is cut off, causing the
collector voltage to rise. This, in turn, drives the darlington pair into full
conduction and completes the 9-volt circuit to the cassette motor. The
information read from the cassette tape arrives at pin D4 on the 6-pin edge
connector. It then connects to pin 24, the FLAG input, of the CIA located
at position Ul on the circuit board.

The CIA chips

There are two CIA (Complex Interface Adaptor) chips on the circuit
board. They are specially designed to cater for a wide range of
input/output requirements. They bear the type number 6526 and are not
unlike the more familiar 6522 VIA chip (Versatile Interface Adaptor). The
CIA provides two separate 8-bit input/output ports (known as side A and
side B) with the customary pair of handshaking controls on each port.
There are 16 addressable registers including direction and data registers,
timers, counters and control registers.

The details of the ClAs will be left until Chapter 8 since they are
sufficiently complex to deserve separate treatement. However, it is worth
noting here that the CIA occupying position Ul on the circuit board is,
more or less, dedicated for reading the rows and columns of the keyboard.
It sits in the 16 locations DCOO0 to DCFF hex, on the memory map.

The B side of the CIA occupying position U2 on the circuit board
provides the facilities of a user port. It sits at the address range DDO0O0 to
DDFF hex in the memory map. The port is available from the 24-pin edge
connector CN2.

The Video Interface Chip

This is known as the VIC-11 chip. It contains the truly complex circuitry for
producing the low and high resolution displays besides allowing easy
control of the little moving objects which have been given the rather
delightful name of ‘sprites’. It bears the type number 6567 and occupies
position U18 on the circuit board. It has 47 internal registers addressable
within the address range D000 to DO2E hex. It was designed as a general-
purpose colour video control chip for video terminals or video games.

The Sound Interface Device (SID)

This is virtually a complete music synthesiser on a single chip. SID occupies
position U18 on the circuit board and bears the type number 6581. It
contains 29 programmable registers, addressable over the range D400 to
D41C. Full details of the register functions in VIC and SID are contained
in the Commodore Programmer’s Reference Guide.
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Summary

1.

10.
11.

Source code is the program as entered in high level or assembly
language and is the input to the translation software.

Object code is the output from the translation software and is ina form
which can be directly executed.

A compiler is software which translates the entire source code into
object code, ready for execution.

An interpreter is a program which translates each line of source code
into object code then executes it before translating the next line.
Once a program is compiled, the original source code is no longer
required.

Programs which are interpreted (such as BASIC) always require the
presence of source code.

Compiling takes time but only has to be done once, so all subsequent
execution takes place rapidly.

Machine code programs are microprocessor-, rather than machine-,
compatible.

The Commodore 64 uses the 6510A microprocessor which has an on-
chip 1/O port. Otherwise, it is software-compatible with the 6502.
The 8K operating system ROM is called the ‘kernal’.

64K of RAM is provided by eight 64K one-bit dynamic RAM chips,
although normally, only 38K of this is on-line.

12. The BASIC and other ROMs can be switched out of the memory map
if extra RAM is required.

13. ROM/RAM bank switching is dependent on the states of PO,P1 and
P2 terminals on the microprocessor.

14. The data register, for setting the states of PO,P1 and P2, is addressed at
$0001.

15. The cassette interface is driven from P3,P4 and P5 on the 6510A 1/ O
port.

16. There are two Complex Interface Adapator chips (CIAs). One of them
is dedicated to the keyboard and control ports and the other is mainly
for the user port and the serial interface.

17. Video effects are handled by the Video Interface Chip (VIC).

18. Sound synthesiser effects are handled by the Sound Interface Device
(SID).

Self test

1.1 s a program, written in BASIC, source code or object code?

1.2 State two advantages of compiling over interpreting.

1.3 State two disadvantages of compiling over interpreting.

1.4 Name two languages which were designed with the needs for

structured programming in mind.
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1.5
1.6
1.7
1.8

1.9
1.10

1.11
1.12

1.13

1.14
1.15

Advanced Machine Code Programming for the Commodore 64

State the main difference between a 6502 and a 6510A microprocessor.
What is the name given by Commodore to the operating system?
If a ROM occupies the address range & D000 to FFFF, how many
kilobytes are stored?

How many dots are used to form a screen character and how is the
matrix arranged?

State the normal top and bottom addresses of screen memory.
How many bits are stored in one of the RAM chips? (Answer in
decimal.)

Why is a multiplexer necessary in the RAM address system?

How much RAM is available to the user without sacrificing some of
the normal facilities?

The normal (default) distribution of RAM and ROM can be changed
by altering the bits in a certain address. What is this address?
How do you gain an extra 8K of RAM at the expense of the kernal?
Which particular I/O port is responsible for the cassette interface?



Chapter Two

The 6502/63510A
Microprocessor

Abbreviations and conventions

There are many of these - in fact, too many for comfort. Although a
comprehensive list of terms is explained in the glossary (found at the end of
this book), the following selection will be found particularly relevant when
reading this and the following chapter.

Isb=least significant bit. msb=most significant bit.
Bit positions within a byte are numbered 7 6 5 4 3 2 1 0.
Bit 0 is the Isb. Bit 7 is the msb.

A=the accumulator. X=register X. Y=register Y.

P=process status register. PC=program counter. PCL=low
byte of PC.

PCH=high byte of PC. SP=stack pointer. ALU=arithmetic
and logic unit.

AR=address register. ARL=low byte of AR. ARH=high
byte of AR.

Process status flags:

N=negative (bit 7). V=overflow (bit 6). B=break (bit 4).
D=BCD (bit 3). I=interrupt (bit 2).

Z=zero (bit 1). C=carry (bit 0).

Although the microprocessor used in the Commodore 64 is a 6510A, it is
completely compatible with the more popular 6502. To reassure readers
who already have some experience with the popular version, we shall still
refer to the microprocessor as a 6502. It is possible to plunge straight into
machine code programming without troubling too much about the
technical details of the 6502 or 6510A. However, it pays dividends in the
long run if some of the internal behaviour is understood and it can also be

interesting for its own sake.
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The 6502 family versus the Z80

The 6502 and the Z80 8-bit microprocessors have retained their popularity
with personal computer manufacturers for many years. Their popularity is
likely to remain until the approaching 16-bit revolution is established. Both
the 6502 and the Z80 have good and bad teatures which are fairly equally
distributed. The Z80 has sometimes been praised as the more powerful of
the two but, in the absence of a satisfactory definition of ‘power’ that praise
has little substance. If by ‘power’ we mean execution speed then neither is
superior to the other. Some types of program can execute faster on the Z80,
others execute faster on the 6502. Because of this it is not wise to pay too
much attention to ‘benchmark’ tests.

The Z80 has a powerful marketing advantage because of its downward
compatibility with the Intel 8080. The widely used disk operating system
CP/ M, for which an enormous amount of commercial software has been
written, is based on the 8080 instruction set so any microcomputer which
runs on the 6502 could be said to be disadvantaged in this respect.
However, this should not trouble us too much because CP/M has not been
without its critics. What popularity it used to enjoy was due to the fact that
it was the only disk operating system around at the beginning of the
microprocessor era. An enormous amount of software has been written to
run under CP/M which accounts for its still being around.

6502 architecture

As most readers will already be aware, programs written in machine code
for any given microprocessor should, subject to minor variations, still run
on any make of computer employing the same microprocessor. That is to
say, machine code programs are microprocessor- (rather than machine-)
specific. The ‘minor variations’ mentioned above include such things as
differences in the way memory is allocated - in particular, the amount and
location of free space. Machine code programs are usually written with the
aid of an assembler and some variation in syntax can be expected between
different commercial versions.

It is better to begin by reviewing the microprocessor in relation to other
main components of the system as shown in Fig. 2.1. The microprocessor
communicates with the rest of the computer via three bundles of wires
known as buses. The address bus is responsible for picking out the
‘particular memory location required by the programmer. The data bus is
responsible for sending or receiving data to and from the chosen location.
The control bus is a hotch-potch of wires, necessary for the overall
discipline of the system.

Note that the address bus is shown split down the middle because it is
important always to bear in mind that a 4-hex digit address code is handled
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6502 Microprocessor
Address bus P Data bus
V/
A8 — A15 / Ao_A7 D.-D
(high byte) ™ /"‘ (low byte) /‘—— o—D,
ROM
—»
RAM
P

B

C Zl 1

]

-
SCREEN | _ |
display -—
4 section
Peripherals
B
1
A Various external lines

Fig. 2.1. Position of the 6502 in relation to the external bus devices.

by the microprocessor in two halves, the lines A0 to A7 (high byte) and lines

A8 to Al5 (low-byte).

The ROM chips

These contain fixed information and cannot be subsequently altered by the
computer. Notice from Fig. 2.1 that the data flow arrow is one-way only,
indicating that data can only flow from the ROM to the 6502 via the data
bus. The information stored includes the 8K operating system of the

computer (CBM call this

the ‘kernal’ ROM). The BASIC language
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interpreter is also an 8K ROM. The most important characteristic of
ROMs is the permanence of the stored information which is retained after
the power is disconnected.

The RAM chips (Random Access Memory)

The title is misleading because the essential quality of RAMs, which
distinguishes them from ROMSs, is the ability to change the stored
information under program control. The mere fact that they are ‘random’
access is incidental because so also are ROMs. In other words, RAMs are
really read/write memories.

Depending on the internal structure, RAMs may be further classified
into static or dynamic. Some writers refer to dynamic RAMs as DRAMs,
the ‘D’ prefix standing for dynamic. Due to the need for reducing current
consumption and maximising packing density, each bit is stored within the
inter-electrode capacity of MOS transistors. The stored information,
however, is a transient affair because it is only a minute electrostatic charge
which leaks away in a few milliseconds. Consequently, each stored bit must
be periodically recharged in order to compensate for the leakage. This
process, called ‘refreshing’ is inherent in the hardware design and is not the
responsibility of the programmer. However, the refresh-cycle takes up
extra time. Dynamic RAMs are therefore a compromise in which access
time is sacrificed in order to increase packing density and reduce cost.

The Commodore 64, and indeed nearly all other makes of microcomputers,
will use dynamic RAMs. The alternative would be to use static RAMs but
the cost would be prohibitive and they would occupy a greater space on
circuit boards. From now on in this book, the term RAM will be taken to
mean the dynamic type. Notice from Fig. 2.1 that, unlike ROMs, the
RAMs are fed by a bidirectional data bus. The data flow arrow indicates
that data can be passed either way between the memory locations and the
mIiCroprocessor.

6502 systems are memory-mapped so it is not surprising that the
keyboard, screen display and the input/output interfaces are strung across
the address and data buses as if they were memory chips. In the case of the
screen display, the dotted line on the figure indicates the additional data
path between the area of RAM dedicated to the screen and the display
circuits. To avoid cluttering the diagram the various signal lines, forming
the ‘control bus’, are not shown.

Inside the 6502

Figure 2.2 shows reasonable, but by no means complete, details of the
paths between the various registers. Such paths within a microprocessor
were often called ‘highways’ because they ramified over the chip area,
providing a kind of long-distance communication.
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Fig. 2.2. 6502 registers and highways.

Most of the units within the microprocessor are 8-bit registers, the
exception being the Program Counter which is 16 bits wide. Control lines
{not shown) operate the input and output gates of each separate register,
ensuring that only one pair is allowed access to the highway at any one
time. For example, during the machine code instruction TAX (which
means Transfer Accumulator to X register) only register A output gate and
register X input gate are open to the data highway. This makes the highway
free to pass the contents of A to X without being jammed by data resting in
any of the other registers.

The majority of instructions we give to microprocessors are in the nature
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of data transfers either between internal registers or between registers and
external RAM,ROM or peripherals. Some instructions, such as ADC
(ADd with Carry) perform arithmetical operations on the data but this still
has to be fetched from somewhere. Even a simple instruction like INX
(INcrement contents of X) involves a transfer because the X register is not
equipped for altering itself. Instead, the contents of X must be transferred
along the highway to the arithmetic section before the 1 can be added. It
then has to be returned.

Directly programmable internal registers

It 1s assumed that many readers will already be aware of the various
registers and their functions but, for the sake of continuity, a brief
description follows together with the standard abbreviations subsequently
used in all references. A distinction is made between directly programmable
and other registers which, although playing a vital role, remain in the
background, unseen by the programmer.

Accumulator (A)

This register has a supreme role. It is the only one capable of performing
arithmetic processing. This is evident from Fig. 2.2 which shows that, in
addition to the usual connection to the highway, there is a direct and
exclusive link to the Arithmetic and Logic Unit (ALU). It is involved in
transfers to and from memory and acts as an interim data storage during
arithmetic and logic operations.

For example, during a simple addition of two numbers (ADC), the first
number must pass to the accumulator and is then ‘entered’ to a holding
register within the ALU. The second number then enters A, the addition is
carried out and the result sent back to A. Those used to scientific
calculators in the Hewlett Packard range will recognise the inherent
Reverse Polish (RP) action. It is worth digressing a little to explain RP. A
Polish mathematician proposed a new method of expressing arithmetic,
the essence of which was placing the operator (+,— X, etc.) after, instead of
in between, variables. For example, instead of writing A+B to indicate
addition, he proposed that it should be written as AB+. Because his name
was quite impossible to pronounce, his system has become known simply
as Reverse Polish Notation (RPN or simply RP). Von Neumann, who is
often referred to as the father of the modern computer, suggested that the
arithmetic system of digital computers would operate most efficiently if
based on RPN. Thus the ALU in the 6502, in common with nearly all other
microprocessors, require the two variables first, the add operator is then
activated and the result passed to the accumulator, replacing the previous
contents.

The dominance of the accumulator over other registers is evident from
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the instruction set of the 6502. However, the fact that only one accumulator
is present gives ammunition for the protagonists of the rival Z80 which
boasts eight accumulator type registers. A single accumulator does tend to
be restrictive in organising efficient machine code.

The X and Y registers

Like the accumulator, the X register and the Y register (subsequently
referred to as X and Y) are both 8 bits wide. They have three primary uses in
programming:

(1) They make up for the inconvenience of the solitary accumulator.
Important data residing in A can be transferred temporarily by the use of
TAX or TAY and later, when A is free, transferred back using TXA or
TYA.

(2) They can serve as up-counters or down-counters for setting up machine
code loops. This is due to the ease by which they can be incremented or
decremented by the instructions INX,DEX,INY or DEY. It is curious that
the designers failed to provide an equivalent instruction for incrementing
or decrementing A. The only way is to use the relatively inefficient method
of adding or subtracting 1, using ADC or SBC.

(3) They are fundamental to the technique known as address modification
by indexing. When using an indexed addressing mode (denoted in
assembly form by a comma followed by X or Y), the data inthe X or Y
register is automatically added to the data in the operand. The resultant is
interpreted as the address of the required data.

This idea was pioneered by a team at Manchester University and, at the
time, represented a huge step forward in computer science. They called the
index register the ‘B box’, presumably to differentiate it from the
accumulator A. Before this, altering the operand address in loops was
cumbersome. It involved loading the operand from inside the program,
incrementing it and then storing it back in the original position. In other
words, it was necessary to alter the program in order to modify an address.
Indexed addressing is so much cleaner to work with and certainly less
error-prone. Most of the indexable instructions in the 6502 allow a choice
of using either X or Y for indexing. Although indexed addressing is dealt
with later in detail, there is no harm in a little anticipation for the benefit of
those who are new to the idea. So let’s study the following example.
Assume that X contains 30 and that we wish to use indexed addressing,
writing, say, LDA 100,X. The simple instruction LDA 130 would have had
the equivalent effect in that both would have loaded the contents of address
130 into A. The advantage of the indexed over the simpler form will be
apparent when organising loops involving action on consecutive addresses.

This discussion should help to explain why the address bus, as well as the
data bus, has access to the ALU. This should be understandable now it is
recognised that the index register contents have to be added to the operand.



22 Advanced Machine Code Programming for the Commodore 64

After all, address modification by indexing produces a computed address
and only the ALU can truly compute.

The Process Status register (P)

If we define a register as an internal memory location for holding or
processing data, then the Process Status register (P) is not a register at all. It
is in fact a collection of isolated single-bit storage cells (flip-flops). Each bit
is called a flag because it conveys certain information in yes/no form either
for the benefit of the machine or the programmer.

After most instructions, the relevant flags are updated, depending on the
result. There is no connection, either in the hardware or software aspects,
between different flags. In spite of this, it is convenient and conventional to
refer to it as a ‘register’. [t is important to the programmer to understand
the exact significance of each flag - that is to say, under what conditions
they are set or reset. It is also important to know which are under sole
control of the microprocessor and which are directly programmable. There
are seven bits in P, defined as follows:

The N bit: If this is 1, the last result contained a | in bit 7 position. The N bit
is often misleadingly called the ‘sign bit’ because two’s complement
arithmetic recognises bit 7 as the sign rather than magnitude. If the number
is unsigned binary, the N flag merely indicates the state of bit 7. It is
automatically set or reset and is not directly programmable. BMI (branch if
minus) and BPL (branch if plus) are the relevant branch instructions
conditional on the state of the N bit. Most instructions leave the N bit up-
dated as part of the execution routine, the notable exceptions being
STA.STX,STY, TXA, and all branch and jump instructions. LSR is
unique in that the N bit is always reset to 0, irrespective of the resuit.

The V bir: If this bit is 1, it indicates that the last arithmetic instruction
caused two’s complement overflow due to the result being outside the
capacity of a single byte. It can be tested by the conditional branch
instructions, BVS or BVC. The V bit is not important to the programmer if
he is using unsigned binary because bit 7 of the result represents magnitude
rather than sign. In this case, therefore, it can be ignored. However, the V
bit also plays a major role in the BIT test instruction, assuming the same
state as bit 6 of the data being tested. It is possible directly to clear the V bit
to 0 by the instruction CLV although there is no corresponding instruction
directly to set it to 1. Only the instructions ADC,SBC,BIT, PLP,RTI and
CLV affect the V bit.

The B bit: This is set to 1 when a BRK instruction is encountered. Its
significance is limited almost entirely to interrupt sequences. It cannot be
directly programmed.

The D bit: The 6502 can perform arithmetic on straightforward binary
numbers or on BCD (Binary Coded Decimal) numbers. The programmer
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decides this by the use of either SED (Set Decimal) which makes D=1 or
CLD (Clear Decimal) which makes D=0. The arithmetic mode currently in
use remains until the D bit is altered. The default mode is D=0. The
instructions which effect the D bit are CLD,SED,PLP and RTI.

The I bir: This is called the interrupt mask bit or the interrupt inhibit. It is
inspected by the microprocessor when an interrupt request is received from
a peripheral source. If it is I, the request is not granted. It can be directly set
to 1 by SEI (Set Interrupt) or cleared to 0 by CLI (Clear Interrupt). These
instructions are vital when designing the software for peripheral interfaces,
most of which will be interrupt driven. The instructions which affect the 1
bit are BRK,CLL,SELLPLP and RTL

The Z bit: This is the zero bit, and is set to 1 when a result is 0. This is worth
emphasising strongly because it is often interpreted back to front. If a result
is non-zero, the Z bit goes to 0. It can be tested by the branch instructions,
BEQ (branch if equal to zero) or BNE (branch if not equal to zero). There
are no instructions which can directly affect it. Most instructions affect the
Z bit. The exceptions include TXS,STA,STX,STY and the branch and
jump instructions.

The C bit: This is the carry bit, and is set to 1 when a carry out from the msb
is detected. Instead of the bit ‘dropping on to the floor’ it is popped into the
C bit. It can also be thought of as the ninth bit, particularly in shift and
rotate instructions. It can be tested by the branch instructions BCS (branch
if carry set) or BCC (branch if carry clear). It can also be directly
programmed by SEC which sets C to 1 or CLC which clears C to 0.
Instructions which affect the C bit are ADC,SBC,ASL,LSR,ROL,ROR,
SEC,CLC,PLP,RTI,CMP, CPX and CPY.

It is clear from the above that the process status register flags have a
profound effect on program behaviour. The majority of errors encountered,
particularly when setting the terminating conditions for loop exit, are due
to misinterpreting the behaviour of the flag bits. Unless you are already
confident in this area you would do well to re-read the above treatment
several times.

The stack pointer {SP)

This is an 8-bit register, dedicated to the automatic control of a special area
in page one in RAM memory designated the ‘stack’. Its function is in the
nature of anaddress generator. It is impossible to describe the stack pointer
fully without describing the stack itself. Because the stack is so important in
its own right, discussion of its anatomy will be postponed. It is sufficient at
this point to grasp the following essentials:

(1) The contents of SP is interpreted by the microprocessor as the address
of the currently vacant location in the stack.
(2) To ensure that the address is always on page 1, rather than page 0, a
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permanent 1 is hardwired at the msb end of SP acting as a ninth bit. Thus if
SP itself contains 0000 0011 (0003 hex), the address is interpreted as if it
were 1 0000 0011 (0103 hex) - that is to say, address 3 on page | rather
than address 3 on page 0.

(3) SP can be initially loaded to any address on page 1 but the method is a
little cumbersome. There is no actual instruction to load SP directly. It is
necessary to first load X and then transfer it to SP by the instruction TXS.
This may seem a chore but in practice it may only have to be done once,
during the initialisation phase of a complete machine code program. In
fact, it would generally be unwise to tamper with SP at all when using the
assembler because it will have been initialised by the ROM operating
system. However, if you are brave enough to attempt circumvention, SPis
normally initialised to FF hex in order to utilise the entire stack area.
(4) Once initialised, use of the stack is simplicity itself. If you want
temporarily to save the contents of the accumulator, without having to
specify a storage address, just push it on to the stack with PHA (Push A).
To retrieve it again, pull it back with PLA (Pull A). It is not possible to push
X or Y directly but it can be done piecemeal by first using TXA or TYA.
(5) The stack is a LIFO, meaning Last In First Out memory so you must
pull data back with this in mind. After every push, SP decrements by 1 in
order for the next push to operate on a new vacant location. When data is
to be pulled back, SP first increments by 1 (in order to point to the last
stored item) before the pull operates. The stack pointer automatically ‘rises’
with each push and falls with each pull so there is no need to bother with SP
(see Fig. 2.3). You can forget the existence of the stack pointer providing
you remember that the last item pushed onto the stack from A will always
be the first item pulled back into A.

00FF
0100
0101

0102
1
[
t Limits
V of STACK
I

[ 1 I FC J—> 01FC next vacant
Stack pointer 01FD 35
O1FE data
01FF data
0200

L 2 | 0201

Accumulator

Stack contents after PHA

Fig. 2.3. The stack and stack pointer.
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(6) The stack can only hold one page, i.e. 256 bytes. If you overflow the
stack, there is no friendly warning as in BASIC. All that happens is a ‘wrap
around’ effect. For example, if SP is initially set to FF hex and data keeps
piling on the stack, SP eventually reduces decrements to 00. The next
decrement wraps around to FF again causing weird and unexpected
results. However, a 256 byte stack is normally more than ample for most
programs and overflow conditions should be rare.

(7) In addition to its use as a temporary dumping ground for general work,
the stack plays a vital role in both subroutines and interrupts. When a
subroutine is called by means of JSR, the two bytes forming the return
address (which will be in the program counter) are pushed onto the stack -
high byte first, low byte second. When the subroutine ends (with RTS), the
return address is pulled back from the stack (low-byte first, high-byte
second) and passed to the program counter, allowing the body of the
program to resume again.

Registers which are not directly programmable

In any microprocessor, some of the most important registers remain
transparent (or at least translucent) to the programmer. That is to say,
instructions are not provided which make direct reference to them. Infact,
the more important a register, the less likely it is that the programmer is
allowed direct access. In the 6502, the unseen registers (refer back to Fig.
2.2) are the Program Counter (PC), the two address registers ADL,ADH
and the Instruction Register (IR).

The Program Counter

This enjoys the honour of being the only 16-bit register in the 6502. If there
is an established register hierarchy, then PC is the undisputed candidate so
its function deserves strong emphasis:

The Program Counter is a 16-bit register which always contains the
address of the next instruction byte to be executed. The 16-bit length
allows reference to any address in the entire 64K range.

Once a stored program is commanded to ‘start execution’, the following
automatic sequence begins:

(1) The contents of PC is transferred to the address bus and the first
instruction byte at that address is loaded into the computer and ‘processed’.
(2) The PC then increments by 1.

(3) The PC is again transferred to the address bus and the next instruction
byte is loaded and processed.
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The sequence continues indefinitely, sweeping through the program
bytes like a scythe until it is halted legitimately or reaches an illegal code.
The sequence makes no distinction whatsoever between program and data.
It is up to the programmer to arrange the instruction bytes in consecutive
address order and organise either a break (BRK) or an orderly return to the
operating system loop. If the PC is allowed to reach data bytes it will
interpret these as instructions which the 6502 will either attempt to execute
or crash.

It is all very well describing the sequence but how does PC know where
the program starts? When entering a program under the direction of the
assembler, there is no problem. It is simply a case of knowing the starting
address of a program and quoting this in the manner laid down in the
handbook of the particular assembler used. However, suppose there were
no assembler and also suppose there were not even an operating system in
ROM. In other words, suppose you were in the situation of having a
perfectly serviceable piece of hardware but absolutely no software at all.
Where would you start? As a matter of fact, the actual mechanism of
loading the PC gives rise to a disturbing question which strikes at the root
of stored program sequence control. This is the question — how was it
possible to load PC with the starting address of the program unless there is
already a program capable of performing the load action?

This is a chicken and egg situation because we can’t fall back on the
‘operating system’. The operating system is also a program so how was this
loaded originally? Computer scientists have produced various solutions,
although here we are concerned only with the one which is peculiar to the
6502 microprocessor family.

When the reset line (RES) is momentarily grounded (usually arranged to
coincide with the closing of the power-on switch) the following series of
events take place:

(1) All peripherals connected to the reset line are initialised to an orderly
‘start-up’ state. The interrupt mask is set to | to prevent the possibility of an
interrupt during the start-up sequence.

(2) PC is loaded with the data which happens to be resident in the special
addresses SFFFC (low-byte) and $FFFD (high-byte). The addresses were
fixed during the design of the microprocessor.

(3) PC commences program execution because it now contains the starting
address of the program.

From the above, it is evident that the writers of the operating system
must ensure that the correct starting address is in SFFFC and SFFFD. It is
equally evident that they must be in ROM (RAM can only be loaded with
data by a program which already exists). Note that the concept of a
vectored address allows the system programmer complete freedom to
position the program anywhere. It would have been easier, of course, for
microprocessor designers to lay down a mandatory starting address - say,
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‘all programs must start at address $0000°. This would allow PC to be
initialised by a simple zero reset.

However, the vectored address approach is flexible and we should
remember that infinite flexibility has always been the aim of computer
scientists. There are three vectored addresses in the 6502 and, for
completeness, these are shown in the following table.

6502 vectored addresses

Vector address Function

$FFFA and $FFFB Non-maskable interrupt
. $SFFFC and $FFFD Start-up/reset
$FFFE and $FFFF Interrupt request

Although PC ensures that instructions are normally accessed and
executed in consecutive order, there are times when the sequence must be
broken. When a jump or conditional branch is encountered, the current
contents of PC are altered drastically. In the case of an absolute jump, the
entire contents of PC are replaced by the instruction operand. Branch
instructions, however, use relative addressing rather than absolute. The
operand is in the nature of an offset, which is added to, rather than
replacing, the existing contents of PC. Since the offset is in two’s
complement binary (allowing positive or negative numbers) it is still
possible to branch forward or backward.

The Instruction Register (IR)

The first byte of all machine code instructions is the operation code
(abbreviated to ‘op-code’). The code, which is different for every
instruction and addressing mode, carries two vital pieces of information:

(1) What kind of operation is required.
(2) How many operand bytes (if any) are still required to complete the
instruction.

After the code has been transferred from memory (known as the
FETCH phase) it is routed via the highways to IR where it is held pending
execution. If the decoding reveals that the instruction requires no further
operand bytes (such as TXA, TAX etc) the instruction sequence enters the
EXECUTE phase. If, on the other hand, decoding reveals that one or more
operand bytes must follow, the sequence remains in the FETCH phase
until the complete instruction has been received from memory.
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The Data Register (DR)

The data bus carries information downwards from the microprocessor
when writing to memory and wpwards to the microprocessor when
reading from memory. Because of this, DR operates as a bidirectional
holding register, controlled by the R/ W line. You will remember, from
earlier discussions, that when R/ W is in the high state (logic 1) the DR
would be switched to the READ direction and when in the low state (logic
0), to the WRITE direction. The power levels on the raw bus are weak and
external buffers are needed to boost the power. A full 64K of memory with
additional peripheral loads could lead to degradation of logic levels, unless
well buffered.

Whilst on the subject of the data bus, it is convenient to discuss the effect
of data jamming. 1t is essential that all memory and peripheral devices
connected directly to the data bus are equipped with ‘tristate’ outputs. That
is to say, when the devices are in the disabled state, their connections to the
data bus should be electrically impotent. Tristate devices ensure this by
effectively open-circuiting the outputs during the disabled state.

The Address Register (ARL and ARH)

A 4-hex digit address describes a 16-bit logic pattern on the address wires
AQ to A15. The address information can originate from several possible
sources. It could originate from A, the output of the ALU or even the data
bus. From whatever source, it will eventually be routed along the highway,
ending up in the address register.

This register is split into two halves, each contributing a byte to the two-
byte address. The lower order byte (A0 to A7) is held in ARL and the high
order byte (A8 to AlS) in ARH. As discussed earlier, the high byte
determines the page address and the low byte the address on the page. The
individual lines on the address bus are direct outputs of the registers. They
are, of course, always outputs so the R/ W control line is not involved.

It should also be noted that, unlike the data bus, devices connected to the
address bus need not be tristate. This is because the address bus is always an
output from the microprocessor intended to feed only the address decode
circuits of memory or peripheral devices. Only the address registers can
supply the bus so there is no possibility of data jamming by alternative logic
voltage sources.

The microprogram

The term ‘microprogram’ has nothing to do with programs written for a
microcomputer. In fact, microprograms are those which are buried inside
the silicon of the microprocessor chip itself! It may surprise some readers
that every instruction in the repertoire (about 200 in the 6502) requires its
own special microprogram. A simple machine code instruction like LDA
$72 is simple only from the viewpoint of the human intellect. In contrast,
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logic circuits (which are baffled if required to answer any question with
other than ‘yes/no’) require considerable assistance in dealing with LDA
$72. They need micro-instructions, fed one at a time in order to open and
close the appropriate register gates and activate the control lines. These
micro-instructions must be given in the correct sequential order, for every
individual instruction. Since a sequential set of instructions is, by
definition, a program, then it is seen that the following statement is
justified:

Every instruction has its own microprogram

It is not proposed to examine in detail each of these microprograms. This
would take more space than this book allows. However, it is interesting to
examine a possible microprogram for the simple instruction mentioned
previously: LDA $72 will LoaD A with the data stored at address $72 on
page 0 hex. This instruction consists of two bytes, which we will assume are
residing at addresses $2E34,$2E35. The microprogram will first have to
fetch these two bytes from memory in two phases of events - FETCH and
EXECUTE.

(1) The FETCH phase
PC, having just dealt with the last byte of the preceding instruction, will
already have been incremented to $2E34. A typical sequence would be:

(a) Contents of PC pass to ARL and ARH.

(b) The R/W line goes or remains high causing the op-code (LDA) to be
read from memory and passed, via the data bus to DR.

(c) The contents of DR are then passed to IR and the instruction is
decoded. From this decoding, the system now ‘knows’ there is a single
operand byte to follow. PC is incremented to $2E35.

(d) The contents of PC pass to ARL and ARH.

(e) The memory is again read, causing the first operand byte (§72) to enter
DR.

() PC is again incremented.

The complete instruction is now lodged in the microprocessor registers,
ending the fetch phase.

(2) The EXECUTE phase

(a) The operand ($72) in DR is passed, via the highway, to ADL. ADH is
cleared to zero (because it is a page 0 address).

(b) The memory is read, and the data at address $72 is passed to DR.
(c) The contents of DR are passed to A.

The instruction has now been executed with the PC left pointing to the
address of the first byte of the next instruction.
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The instruction chosen in the example was particularly simple and yet
the microprogram was quite involved. It is left to the imagination to
visualise the microprogram for ADC ($72),X (post-indexed indirect
addressing).

Microprogrammers are a specialist breed and usually employed on the
design staff of the chip manufacturer. It is fortunate that the brief outline
above on microprogramming was included for interest only. The normal
machine code programmer takes each complete instruction for granted and
is oblivious to the existence of the internal microprogram steps. If we call
machine code a ‘low level language’, then microprogramming is at ground
zero.

The decoding matrix

Figure 2.2 showed the decode matrix. The function is to accept the op-code
held in IR, decode it, and finally output a pattern of bits on the various gate
and timing controls. This pattern will be different for every step in the
microprogram. If this function is analysed carefully, we may come to the
conclusion that the decode matrix will behave like a miniature computer
with a number of fixed programs inside. We can relate IR to the ‘program
counter’. The op-code is only the starting address of the relevant
microprogram. The ‘words’ read out from the ROM are the bit patterns
supplying the various register gates and controls. These patterns will vary
for each step of the microprogram. The gate controls are all hard-wired to
the various registers. This wiring has been omitted from Fig. 2.2, however,
to prevent an already complex diagram becoming incomprehensible.

Sub-pulses of the clock

It is not always appreciated that the clock pulses, which in the 6502 are
running at 2 MHz (0.5us period), are split up within the decoding matrix.
Several sub-pulses are formed, each sub-pulse initiating each step of the
microprograms. Within the matrix, the clock pulses are merely the ‘low-
frequency’ envelope of the sub-pulses.

The Arithmetic and Logic Unit

Addition, subtraction and logical instructions will obviously be the
responsibility of the ALU. However, in the interests of versatility, nearly all
data is made to pass through the ALU irrespective of the particular
instruction. For example, data can pass through the ALU without change
by adding zero. This may seem time-wasting but is often justifiable. For
example, address modification by indexing involves adding the contents of
X or Y to the operand so the ALU is directly involved.
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The 6502 is incapable of multiplication, division or exponential
operations. It is not alone in this respect. It is very rare to find 8-bit
microprocessors capable of performing any arithmetic instructions other
than addition. Even subtraction is achieved by the roundabout way of
adding the complement.

Before criticising these limitations, it should be remembered that the
microprocessor was designed with the primary objective of controlling
electrically operated devices and a primitive instruction repertoire was
quite sufficient for the purpose. It was never intended to be the brain of a
general purpose computer. However, if a machine can add, it is fairly easy
to write subroutines which can multiply, divide and handle exponentials.
Users of BASIC, or indeed most other high level languages, are unaware of
the primitive capabilities of the microprocessor although they have to pay
for it by reduced execution speed. Software solutions are always much
slower than hardware implementations.

The new breed of 16-bit microprocessors are virtually second generation
products many of which include instructions which perform direct
multiplication and division at an impressive speed.

The design of an ALU is based on a parallel binary adder which can be
considered as an arithmetical prototype. With this as a basic building
block, it is a relatively simple exercise in logic to arrange gates for
implementing exclusive-OR (EOR), logical anding (AND) and the
inclusive-OR (ORA) functions. Finally, it would only require ‘function
select’ inputs to complete the transformation. Four of these, driven by the
output word from the control matrix, could activate any one of 16
functions.

Software Interrupt (BRK)

The details of all machine code instructions are given in the relevant
chapters but it is convenient at this stage to introduce the BRK instruction.
Interrupts are normally the prerogative of peripheral devices but BRK is
software initiated. Superficially, it just stops the computer but a dig
beneath the surface reveals some interesting side effects. The instruction
takes 7 clock cycles to complete the following sequence:

(1) It sets the B flag in the process status register (P).

(2) Adds 2 to PC.

(3) Sets the 1 and B bit in P then pushes P on to the stack.

(4) Loads the contents of $FFFE into PCL and $FFFF into PCH.

The motive behind this seeming complexity is to aid the writing of
software error traps during program development. It is common practice
to put BRK at strategic ‘bug-hazard’ points. This would be useless if the
sole function of break was to kill all program flow completely. However, it
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will be seen from the above that a convenient loop-hole is prepared.
Providing a routine is written, with the start address residing in the Break
Vector at SFFFE/ SFFFF, control is automatically diverted to the routine
rather than stopping dead. The routine must establish, by pulling P back
from the stack, that the B bit was set as a result of a true BRK rather than as
a genuine peripheral interrupt.

Summary

1.

10.
11.

12.

13.

14.

15.
16.

The Commodore uses the 6510A microprocessor which is virtually
identical to the 6502.

All internal registers communicate by means of input/output gates at
the entrance to the highways. The gate controls ensure that only data
from one register output occupies a common highway.

Not all registers in the 6502 are directly programmable.

The single accumulator (A) is the only register equipped with
arithmetic facilities. There are no incrementing or decrementing
instructions for the accumulator.

The X and Y registers are used as transfer registers to and from A, loop
counters and indexed addressing modes.

Address modification by indexing consists of adding X (or Y) to the
operand address.

The process status register (P) is a collection of seven independent flag
bits, each signalling some important result. Most instructions keep P
updated. Conditional branch instructions depend on the state of these
flags.

The N flag=1 if bit 7 was set. The Z bit=1 on a zero result. Neither is
directly programmable.

The V bit=1 on a two’s complement overflow result. 1t can be ignored
if the data is unsigned binary. The V bit copies bit 6 during the BIT test.
It can be directly programmed by CLV and SEV.

The B bit=1 if an interrupt occurs as a result of BRK.

The D bit can only be directly programmed. SED makes D=1 causing
subsequent numerical data to be processed in BCD format. CLD
makes D=0 causing subsequent numerical data to be processed in
normal binary format.

SEI sets the I bit, preventing interrupt when requested by IRQ. It is
cleared by CLI.

The C bit sets to 1 on detecting a carry out from the msb. The C bit can
act as a ninth data bit.

The stack is any dedicated area in page 1 of RAM. PSH pushes A to
stack. PLA pulls A back from stack.

The address of the next vacant stack address is maintained by SP.
SP is automatically incremented after a push and decremented before
a pull. This causes the stack to rise and fall.
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17. The contents of SP can be initialised or changed only by means of
TXS.

18. Access to the stack must obey the rule - last in, first out (LIFO).

19. The stack is used by subroutines to hold the return address, pending
RTS.

20. The program counter (PC) is the only 16-bit register and is not directly
programmable. It is in supreme control of the program sequence by
always pointing to the next byte in the program.

21. PC is altered directly by JMP. An offset may be added by relative
address action during conditional branches.

22. A pulse on the reset line (RST) initialises peripheral devices to zero
PC is thenloaded by the contents of the address pointed to by the start-
up vector at $FFFC,SFFFD.

23. The instruction register (IR) holds the op-code fetched from memory.

24. The op-code defines the instruction type and carries information on
the number of operand bytes to follow.

25. The data register (DR) is a bidirectional buffer between the data bus
and the highways.

Self test

2.1 What does the ‘D’ mean in DRAM chips?

2.2 Name one advantage and one disadvantage of static over dynamic
ram chips.

2.3 Which 6502 register is 16 bits wide?

2.4 What does ALU stand for?

2.5 Describe two ways of incrementing the accumulator.

2.6 What is the maximum negative number which can be held in a single
byte?

2.7 What is the hex contents of a byte which is holding the maximum
positive number in two’s complement form?

2.8 Under what circumstances will a programmer ignore the V bit in the
process status register?

2.9 Assume the D bit in the process status register has been previously set
to 1 and the accumulator contains 0001 1001. What will the
accumulator contain after 0000 0010 has been added?

2.10 If the Z bit in the process status register is at 0, the last active
instruction must have yielded a zero result. True or false?

2.11 Which bit in the process status register is often termed the ninth bit?

2.12 What do the initials LIFO mean?

2.13 The stack pointer can only refer to one particular page in memory.
What is this page?

2.14 There are three fixed vector addresses in the 6502. Name them.

2.15 How is data jamming prevented in a paralleled bus system?



Chapter Three

The 6502/6510A
Instructions and
Addressing Modes

Initial terms and definitions

Some readers will be aware of the following points but it will be helpful to
repeat them. In any case, the terms used to describe aspects of machine
code are far from standardised. The complete instruction set is relegated to
Appendix C which should be consulted frequently during reading this and
subsequent chapters. When programming in a high level language such as
BASIC, an individual order to the computer is called a statement. For
example, E = M*C12 is an example of a statement.

In machine code, orders given to the computer are by means of
instructions. Instructions are primitive and many are needed to form the
familiar high level statements. An instruction will normally consist of an
op-code to indicate the required action and an operand to indicate where
the data is to be found. Sometimes, the location of the data will be obvious
from the op-code but, in the general case, an operand is required.

There are several ways in which the operand can specify the location of
the data. They are known as addressing modes and there are thirteen of
them in the 6502 family although not all of these are available to every
instruction. Because one byte is used for the op-code it would be possible to
have 256 different ones. However, 90 of the possible combinations are
reserved for ‘future expansion’ (illegal in other words). This leaves 166 valid
instructions to choose from. The task of selecting the most suitable op-code
is less bewildering than it appears from the figures. There are only 56
completely different instructions, It is the available addressing modes for
each instruction which multiply the choice.

The op-codes are specified by means of a pair of hex digits. There is a
different op-code for every variation of addressing mode. However, the hex
coding is really of academic interest because machine code on the
Commodore 64 should be entered by means of an assembler. The details of
an assembler will be discussed fully in Chapter 4. The most useful property
of an assembler is the facility to enter op-codes in three-letter mnemonic
form. The desired addressing mode is indicated by the form in which the
operand is written. The repertoire of instructions is set out formally in
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Appendix C. Consequently, the purpose of this chapter will be to explain
the symbols, to define the addressing modes and to offer guidelines on the
choice of a particular instruction and the most suitable method of
addressing.

Factors influencing choice

It is not easy to give a specific answer to the question “What is the correct
instruction to use here? The choice is very often a compromise between
execution speed, memory economy and the demands of structure.
Newcomers to machine code may be quite satisfied if their subroutine
works at all but it soon becomes apparent that there are good and not so
good variants. It is popularly supposed that a program written in machine
code will always be much faster and take less memory than the BASIC
version. This is a reasonable generalisation but not a universal truth. A
poorly written machine code program could be slower than the BASIC
equivalent. Even if it is faster, it is well to remember that a speed advantage,
to have any real meaning, must be assessed on human, rather than
machine, time scales. If a BASIC version runs in one second and the
machine code version runs in a millisecond, the advantage is academic
rather than visible. The items of information needed to assess the merits of
each instruction are as follows:

(1) What does it do? This information is conveyed by a three-letter
mnemonic such as LDA or ADC. Although the mnemonic itself conveys a
reasonable idea of what the instruction does, it is primarily intended as an
aid to the interpretation of a listing. It cannot cover all the subtleties. It is
necessary to augment the mnemonic by either a verbal definition or a
loosely standardised format known as operational symbols (discussed
later).

(2) What addressing modes are available?

(3) What flags in the process status register are altered (updated)?
Ignorance or confusion in this area is the cause of many an intractable bug.
(4) How many clock cycles does it consume? The number of clock cycles is
influenced more by the addressing mode than the actual instruction.Clock
cycle time is particularly critical if the instruction is within a loop which
revolves many times. Outside a loop, it is seldom important enough to
influence choice.

(5) How many bytes are in the instruction? All instructions take at least one
byte because they all have an op-code. The operand, however, can be
absent altogether, one byte long, or two bytes long. Knowledge of the
number of bytes required can be helpful. For example, it can be a matter of
doubt in certain circumstances whether to write $004B or $4B in the
operand. They are mathematically the same but an incorrect choice can
cause havoc to the program.
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(6) What is the hex op-code? Programming will always be performed with
the aid of the assembler which uses mnemonic op-codes. However, it is still
necessary at times to be aware of the hex coding for every instruction
because the assembled machine code program will include it. It is easy to
use an incorrect address mode by mistake when writing the operand but the
hex code, which is specific for the addressing mode, might highlight the
error during debugging. It is interesting, but not particularly rewarding, to
write out the hex code in binary. It gives an insight into the mind of the
microprocessor designer because some intriguing patterns emerge which
can give a clue to the microprogram within the chip.

(7) What is the correct syntax for the operand? This depends on the
addressing mode and the rules are rigid, more so than in BASIC. The
assembler does its best but it would be foolish to add user-friendliness to its
list of virtues. Make a mistake and you are on your own!

Operational symbols

Universities have traditionally considered computing and data processing
subjects to be the prerogative of the mathematics department. The
computer is useful as a tool in mathematics so it was considered natural
that computing should be taught by mathematicians. Whether this has
helped or hindered progress may be arguable. There is no denying that a
mathematical brain was behind the establishment of operational symbols.
How do we describe exactly what an instruction will do, bearing in mind
that there must be one, and only one, interpretation? Normal language is
one way; perhaps the obvious way. But, to a mathematician, normal
language lacks precision and is difficult to formulate concisely without
using a lot of ifs and buts. Operational symbols are concise and
unequivocal. They explain what the instruction does but make no attempt
to explain the meaning of the operand. This is understandable because the
meaning of an operand depends only on the addressing mode chosen. For
example, the instruction LDA will have the same operation symbols
whether it is using immediate, zero-page, absolute, indexed or indirect
addressing. The general pattern of operational symbols is of the form:

Action — Result

The arrow denotes the direction of data transfer and is preferable to the
= sign sometimes used. The abbreviations used for the registers are those
already used but M is used to represent the data specified by the operand.
As a simple example, the instruction STA could be described as follows:

A—M

This means ‘Store a copy of the contents of the accumulator in the
address specified by the operand’. Note that the arrow points from the
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source to the destination and only the destination contents are over-written
by the new data; the source data is preserved.

To take a little more complex example, the instruction ADC could be
described concisely as follows:

A+M+C— A

This means ‘Add together the present contents of the accumulator, the data
specified by the operand, and the carry bit, then place the result in the
accumulator’.

The shift and rotate instructions are fearsome looking. For example, the
instruction ASL (which is Arithmetic Shift Left) has the operational
symbolism:

C—(7...00— 0

The bracketed expression indicates the bits within a byte numbered 0 to 7.
The action shows that a zero enters from the right and overspill from bit 7
goes into the carry.

Classification of instructions

There are many ways of classifying instructions. Appendix C simply lists
them in alphabetical order by mnemonic group. This is useful as a quick
reference but is by no means a scientific classification. Appendix C2
classifies them according to the flags affected in the processor status
register and can be quite useful. Appendix C4is an attempt to classify them
according to ‘popularity’. It is undeniable that some instructions out of the
56 are used a lot, some are used at times and a few are used spasmodically.
Unfortunately, the choice of instructions to perform a given task is very
much an individual affair. Some programmers have a particular liking fora
certain subset. Indeed, it is often possible to recognise a friend’s handiwork
from the listing which can be almost a fingerprint. Because of the individual
character, Appendix C4 can be no more than the author’s personal choice
although it might help those who are initially bewildered.

In this chapter, the instructions will be introduced (rather than
classified), according to need. No account will yet be taken of the various
addressing modes under each mnemonic.

Finding temporary homes for data
Due to the single accumulator in the 6502, it is often necessary to find a
temporary home for existing data. There are several choices:

(1) Transfer A to another register by the use of TAX or TAY and later
restore by TXA or TYA. This is the simple and speedy solution because
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they are both single-byte instructions, taking only two clock cycles. The
trouble is that existing data in the X and Y registers may also be valuable
and must not be overwritten. X and Y are often totally committed for
indexing or loop counting.

(2) Push A to stack by using PHA and retrieve later by PLA. These are
single-byte instructions but they take three clock cycles. It is important to
bear in mind the LIFO (last in first out) nature of the stack. Mistakes in the
order of retrieval could result in false data entering A. Another danger, of
course, is stack overflow although this should be a comparatively rare
event.

(3) Store A ina memory location by use of STA and retrieve it with LDA.
This will take three clock cycles if the location is on page zero and four on
any other page (indexing and indirect addressing can take five or six
cycles).

Performing arithmetic

There are only two direct arithmetical instructions, ADC and SBC for
addition and subtraction respectively. The carry is always involved and, to
avoid introducing garbage carries left over from a previous operation, it is
important to be aware of the following rules:

(1) Before using ADC, the carry should normally be cleared with CLC.
(2) Before using SBC, the carry should normally be ser with SEC.

Although in some circumstances the carry can be treated as the ‘ninth bit’, it
should be borne in mind that this is purely a way of looking at it. Obviously,
this ninth bit is not transferred by STA, TAX or TAY.

Addition and subtraction of single byte numbers are, of course, severely
limited in the range of the result (255 in unsigned binary and +127 and —128
in two’s complement binary). Fortunately, the carry bit allows double or
multiple byte numbers to be added or subtracted because it can act as the
continuity element between the msb of one byte and the Isb of the next.
Thus, the carry is only cleared before the two lower order bytes are added.
The higher order byte additions will include the carry over (if any) from any
previous process so it would be fatal to clear the carry first.

It is important not to forget that there are two arithmetic modes
depending on the D flag being set or cleared. The default condition is D =
0, which is the normal two’s complement binary arithmetic mode. [t is wise,
though, to ensure the default condition by initialising with CLD at the head
of a program. On the rare occasions when decimal (BCD) mode is required
then the initialisation begins with SED, but remember this mode continues
until cancelled again.

Multiplication and division is possible by a tongue-in-the-cheek method
using ASL and LSR respectively. The operations are limited to integral
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powers of two. Watch must be kept on overspill from the msb in
multiplication and the Isb in division.

Subject to overspill into the carry, shifting left by ASL will multiply by
two each time so four consecutive ASL operations will multiply the
existing data by 16. Division by two is achieved by LSR although we must
remember that the overspill from the right (from the Isb) goes into the
carry. As a matter of interest, the reason why LSR is named Logical Shift
Right is due to this very reason. It is arithmetically absurd for carry status
to be in the Isb position, hence it is deemed to be ‘logical’ shift. This is in
contrast to ASL (Arithmetic Shift Left) where the carry action is at the msb
end. Unless the programmer is sure, from previous knowledge of the data,
multiplication and division by these instructions must check for the
presence of a carry after each use. There will be exceptions, of course, such
as when multiple-byte precision is used. In these circumstances, the carry
will be providing continuity between the component bytes when used in
conjunction with ROL or ROR.

Clearing memory and registers

There are no instructions in the 6502 which can clear any of the registers or
memory locations to zero. The usual way to clear registers is to store zero in
them. To clear memory locations, a previously zeroed register can be stored
in them. Those who are fascinated by novelty may be attracted by the
following little snippet:

Exclusive-oring data with itself always results in all zeros.

For example, if A contains $9D and we write EOR #$9D, the accumulator
result is $00. (To confirm, write out the example in binary form.)

Up-counting and down-counting

Counting is essentially an adding-by-one operation and implies ‘up-
counting’. It is also called incrementing. Down-counting is subtracting by
one. Itis also called decrementing. The X and Y registers can be counted up
or down by the single byte instructions INX, INY, DEX and DEY, each
taking only two clock cycles. Data in memory can be incremented or
decremented by means of INC or DEC but not economically. They each
take five to seven cycles depending on the addressing mode in use.

The accumulator is left out in the cold, lacking an increment or
decrement instruction. It can, of course, be done by adding or subtracting 1
which, like DEX or INX only takes two clock cycles, but it requires two
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bytes even for the immediate addressing mode. There is also the possibility
that the carry might have to be cleared first which, if forgotten, could lead
to a mystery bug. An alternative is some roundabout method such as TAX
then INX then TXA, providing of course, that X (or Y) is free.
Counting is an essential part of loop control. The number of loop revs
can be achieved either by starting with N and counting down to zero or
starting with | and counting up to N. The advantage of the count down
method is that testing for loop exit can be achieved with BNE or BPL.
Unfortunately, it is very easy to be ‘one out” in the count down. If we count
up to N, an extra comparison instruction such as CPX, CPY or CMP is
required to check the exit condition but the method may have the
advantage of seeming more ‘natural’ and errors by one are less likely.

Processing particular bits

There will be times when it will be required to operate on one or more
particular bits within a byte, rather than on the entire byte. We may wishto
ensure, say, that bit 3 is set to | without altering the remaining bits. The
possible operations fall into three main groups, clearing bits to zero, setting
bits to | and finally, changing bits. This is achieved by using one of the three
‘logical’ instructions AND, ORA and EOR in conjunction with the
appropriate mask word in the operand. The action is always on the
accumulator.

To clear selected bits:

Use AND with an operand mask as follows: ‘I's in the mask will leave
corresponding bits unchanged. ‘0’s in the mask will ensure that
corresponding bits are 0.

To set selected bits:

Use ORA with an operand mask as follows: ‘0’s in the mask will leave
corresponding bits unchanged. ‘I’s in the mask will ensure that
corresponding bits are 1.

To change selected bits:

Use EOR with operand mask as follows: ‘0’s in the mask will leave
corresponding bits unchanged. ‘I’s in the mask will ensure that
corresponding bits are changed.

The following examples may help in understanding how to work out the
correct mask:

(a) To ensure that bit 5 in the accumulator is a 0, use AND #$DF (the mask
in binary i1s 1101 1111).

(b) To ensure that bits 2 and 6 in the accumulator are ‘I’s, use ORA #%$44
(the mask in binary is 0100 0100).

(c) To ensure that bit 3 in the accumulator is changed, use EOR #$08 (the
mask in binary is 0000 1000).
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One’s complement of accumulator

It is sometimes necessary to flip all the bits in a byte (i.e. produce the one’s
complement). Assuming the data is already in the accumulator, this can be
done by exclusive-oring as follows:

EOR #$FF or EOR #255

Two’s complement of accumulator

The two’s complement is obtained by adding 1 to the above. Unfortunately,
we can’t add the 1 by incrementing because the resultis inthe accumulator.
The only way is to follow with ADC #1, makingsure to clear the carry first.
The coding is as follows:

EOR #$FF
CLC
ADC #1

Since the two’s complement of X is 0—X, an alternative method is simply to
subtract the number from zero. This is, by definition, the two’s complement
but would entail storing the data first before loading the accumulator with 0.

Finding the state of a particular bit

It is sometimes important, particularly in peripheral control, to find out the
state of one particular bit within a byte. This can be done by loading the byte
into the accumulator, erasing all bits except the one of interest, then testing
for zero. 1f the result is non-zero, the bit must have been a 1. For example,
suppose we are interested in bit 3, the coding could be:

LDA data
AND #08 (0000 1000)
BNE etc.

An alternative method, which only works if bit 6 or bit 7 is involved, is the
BIT test. For example, we can start by writing:

BIT data (‘data’ is an arbitrary address)

This copies bit 6 and bit 7 of the data into the V and N bits respectively. This
can be followed by BVS or BMI as required. The BIT instruction takes 3
clock cycles if data is on page zero but otherwise 4 cycles. As a bonus, the bit
test also logically ANDs the data into the accumulator. If this is a nuisance
rather than a bonus, the accumulator should be stored first. Because of this,
use of the BIT test is not a commonly used instruction.

Besides the three logical instructions AND, ORA and EOR, the shift and
rotate instructions LSR, ASL, ROR and ROL are also used to play around
with bits. LSR and ASL should be thought of as ‘open-loop’ operations
because bits are lost if the carry is already full. In contrast, ROR and ROL are
‘closed-loop’ because the bit pattern circulates. They can all play an
important role in peripheral work and some off-beat requirements. The shift
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and rotate instructions are unique in having ‘accumulator’ addressing. Thus,
they can act on the accumulator or a memory location. If the action is
required on the accumulator, the mnemonic must be followed by A. For
example, to shift the accumulator right, we must write LSR A. When using
accumulator addressing, no operand is necessary (the ‘A’ is not a true
operand and does not consume a byte). Because of this, it should be noted
(because it is a common mistake) that the shift and rotate instructions must
either have an operand or an ‘A’. For example, a naked LSR is illegal.

Double-byte multiplication

This provides a useful exercise in shift and rotate operations. Although
ASL and ROL both multiply by two, the carry can be a problem if they are
not chosen wisely. No carry must be allowed to enter the lower order byte
from the right so ASL is appropriate. On the other hand, the higher order
byte must take into consideration the carry from the right so ROL must be
used. Assuming the data is in two bytes of memory, the coding would be:

ASL low-byte
ROL high-byte

Double-byte division

The opposite is required here. Thus, the higher order byte must be
attacked first and a carry must not be allowed to enter from the left.
This suggests LSR as the first step. The lower order byte must receive
a carry (if any) from the left so the correct instruction here is ROR.
Assuming that the data is in two bytes of memory, the coding is
therefore:

LSR high-byte
ROR low-byte

Branching techniques

The equivalent of the dreaded GOTO in BASIC is JMP. The jumpto a new
part of the program is unconditional and, because JMP has a two-byte
operand, can reach any part of the 64K memory map. Appendix C lists
seven conditional branch instructions. A common cause of a programming
bug is an incorrectly used branch test allowing an unexpected loophole.
The following points are worth emphasising:

(1) Branch instructions themselves have no effect on the processor status
register. Thus, two different branch instructions can follow one another so
the original data can be tested for two conditions.

(2) BMI or BPL should only be used if data is represented in two’s
complement binary. They are meaningless in unsigned binary because
there is no differentiation into positive or negative sets.
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(3) Before using a branch, make certain that the last operation actually
updates the bits you are testing. In other words, check up on Appendix C2
which includes a classification of all instructions according to their effect
on the processor flag bits. For example, it may be pointless to use BCC
after DEX because only the N and Z flag bits are updated.

The limits of +127 byte forward or—128 bytes backwards has been covered
elsewhere. If the branch is beyond range (which should not be often) the
customary solution is to combine the branch with a JMP. For example,
suppose the branch is to be BNE LOOP and the label ‘LOOP” is out of
range. The conventional way out is as follows:

BEQ SKIP

JMP LOOP

SKIP
Note that the opposite test (BEQ) is used instead of BNE so the jump is
leap-frogged to the label SKIP.

Comparisons

It is often required to compare two numbers in order to set the status flags
without altering the contents of the register. There are three instructions
which perform this task, all of which set the N, Z and C flags:

CMP, which compares memory with the contents of the accumulator.
CPX, which compares memory with the contents of the X register.
CPY, which compares memory with the contents of the Y register.

The comparisons are done by subtracting the memory data from a copy of
the register in question. The operational symbolism is therefore A—M,
X—M or Y—M respectively. It is easy to get mixed up with the direction of
the subtraction, so note carefully that the subtractionis from the register. A
suitable branch instruction must follow a comparison (otherwise there
would be no point in asking for the comparison). It is possible to get in
some funny mix-ups. The following examples may help in choosing the
correct branch:

(1) To check if the register is Jess than memory, follow with BCC.

(2) To check if the register is equal to memory, follow with BEQ.

(3) To check if the register is greater than memory, follow with BEQ first
then BCS.

(4) To check if the register is greater than or equal to memory, follow with
BCS.
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Addressing modes

Commencing with a definition, an addressing mode is the significance to be
attached to the operand part of the instruction. Addressing modes
available on the 6502 can be conveniently divided into three groups: non-
indexed, simple indexed, and indirect indexed. Most of these modes may
already be familiar to most readers. However, some revision or
restatements are advisable, if only to maintain continuity during the lead-
up to the rather nasty (nasty to grasp, that is) indirect addressing modes.
Appendix C3 classifies instructions according to the addressing modes
available.

Implied addressing

This is the simplest addressing mode in the repertoire because memory is
not involved, neither is an operand required. They are all single byte
instructions, conveying full information by the op-code alone. They all
refer to internal operations on the 6502 registers. Because most of them
only take two clock cycles, they are, or should be, the popular choice
wherever possible.

Instructions which allow implied addressing and consume only two
clock cycles are: CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP,
SEC, SED, SEI, TAX, TAY, TSX, TXA and TXS.

The following take more than two clock cycles: BRK, PHA, PHP, PLA,
PLP, RTI, and RTS.

Immediate addressing

Memory is not involved because the operand is the data. All instructions
using immediate addressing consume two bytes: one for the op-code and
one for the operand. The standard assembler prefix to denote this mode is
the symbol (#). For example:

LDA #32 or LDA #$20

Both are using immediate addressing. The first example is loading the
decimal number 32 into the accumulator while the second example loads
hex 20. Whether to use hex or decimal is optional but the guiding rule isto
choose the more natural form for the purpose in use. For normal numerical
work, decimal would be the preferred notation but for AND, EOR or ORA
masks, hexadecimal has more meaning. Although it may seem to be stating
the obvious, the largest numerical operand is 255 or $FF because
immediate addressing only allows a single byte operand.

Immediate addressing is used for constants, particularly in conjunction
with comparison instructions at the end of a loop as, for example, CMP
#20. The constant must, of course, be known to the programmer at the time -
of writing. In BASIC, we are usually extolled to avoid constants within the
body of the program, the advice being to assign them to a variable at the
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head of the program. Such advice is not necessarily sound when appliedto
machine code because this would mean a trip to memory to obtain the data.
The power of immediate addressing lies in the fact that memory is not
involved: the data is immediately available in the instruction, providing, as
said before, the programmer knows it at the time of writing.

There are eleven instructions which allow immediate addressing: ADC,
AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA and SBC.

Absolute addressing

We should begin by sorting out some of the confusing terms used by
different authorities. The term ‘direct’ addressing is often used loosely
when the operand refers to the address of data, rather than the data itself.
Thus, the instruction LDA $0034 is an example of ‘direct’ addressing (note
there is no ‘4 prefix). The instruction causes the contents of address $0034
to be placed in the accumulator. However, bearing in mind that 6502 hasa
64K memory map, it will be evident that addresses between $0000 and
$00FF would result in an inefficient use of memory space if the full four-
hex digit address were mandatory. Since the data bus is only eight bits
wide, the microprocessor would need to make two trips down the address
and up the data bus to collect the full operand. The first two leading zeros
are useless passengers. '

To improve the efficiency, the address space is broken down into two
domains. As mentioned in an earlier chapter, addresses within the range
$0000 to $OOFF are designated the page zero domain, to distinguish them
from all other addresses $0100 to $FFFF. With regard to the terms used,
the Motorola 6800 (the ancestor of the 6502) used the term ‘direct’
addressing instead of zero-page addressing and ‘extended’ addressing to
cover the rest. Many machine code programmers, brought up on the 6800,
had to readjust to the change in terminology. Returning to the 6502, the
term ‘absolute’ addressing is applied to addresses anywhere in the 64K
memory map. In other words, absolute addressing requires four hex digits,
while zero-page addressing only requires two. Instructions using absolute
addressing require three bytes, one for the op-code and two for the
operand.

There are 21 instructions which allow absolute addressing. These are:
ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR,
LDA, LDX, LDY, LSR, ORA, ROL, STA, STX and STY.

Zero-page addressing
The concept of zero-page (sometimes called page-zero) is so important that
it justifies emphasising the boundaries once again.

Zero-page is the address range $00 to $FF or 0 to 255
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There are reasons why this page deserves special treatment. There are
obvious speed advantages, due to the single byte operand. This also leads to
a saving in program memory space. Another reason is that the more
complex addressing modes (to be dealt with later) require address pointers
which must be in zero-page. Perhaps the most disappointing aspect is the
scarcity of available space. The operating system, not surprisingly,
utilises the vast majority of zero-page.

Free space in zero-page is between $FB and $FF inclusive

Because of the restricted space, it is essential, before planning any
ambitious machine code systems, to choose zero-page locations with care.
The apparent speed advantage is not, in itself, sufficient to justify
squandering locations. In fact, it is sound philosophy to treat zero-page
locations in the same light as registers - as valuable and scarce
commodities. A good rule is to use zero-page for the most frequently used
variable data. Sometimes, it may be wise to use zero-page for data withina
loop, even if it means temporarily transferring it from an absolute address
and then back again. The advantage of this approach may be appreciated
more readily if we examine a few figures. Suppose a variable data item,
located in an absolute address, is in the middle of a long loop which
revolves 10000 times. Suppose we then transfer it temporarily to zero-page
before entering the loop by using:

LDA $xxxx (absolute, 4 clock cycles)
STA $xx (zero-page, 3 clock cycles)

After the loop ends, the status quo can be regained with:

LDA $xx (zero-page, 3 clock cycles)
STA $xxxx (absolute, 4 clock cycles)

The four extra instructions for the complete transfer have taken a total of
14 clock cycles and consumed an extra 10 bytes of programming space. The
saving within the loop, however, would be | cycle per rev, leading to a total
saving of 10000—14 = 9986 clock cycles. We shall see later that indirect
address pointers in zero-page will take two bytes each and many of these
may be required in a program of even moderate complexity.

Relative addressing

Relative addressing is only used with branch instructions. In fact,
forgetting the assembler for a moment, relative addressing is the only
method possible in branch instructions. Using hex machine code as an
example,

BEQ $04
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The literal meaning is ‘If equal to zero, branch 4 bytes forward’. The term
‘relative’ refers to the program counter. If the branch conditions are
satisfied, the program counter (which always contains the address of the
next program byte) has 04 added to it. This causes the next byte executed to
be 04 bytes ahead, relative to the previous position. In other words, the
operand indicates the number of bytes to be skipped. To branch backward,
the two’s complement is required (see Appendix A) so, to branch 04 bytes
back, the instruction would be BEQ $FC. Clearly, the calculation of the
correct operand is an error-prone exercise. The assembler takes all the
drudgery out of relative addressing by allowing the operand to be a label
instead of a relative address. We can use,

BEQ Loop

This works, subject to the proviso that the line, to which we wish to
branch, is prefixed with the ‘Loop’ label (naturally, the choice of label is
arbitrary). The assembler is hiding from us the fact that relative addressing
is being used. Instead, it appears as a simple ‘branch to label’ operation
which is far less error-prone than grappling with relative addressing.

As for the timings of relative addressing, these will depend on whether or
not the branch is taken. If taken, a branch takes 3 clock cycles or, if across a
page boundary, 4 clock cycles. If it is not taken, the branch takes 2 clock
cycles.

The extra cycle when a page boundary is crossed is due to the alteration
to the high- as well as low-byte of the addresses. If speed is very critical, a
programmer should watch the hexadecimal assembly listing closely to see if
a page boundary is crossed. For example, suppose the program counter
was showing $05FC prior to a branch. If the relative branch is $04 ahead,
the new program counter reading would be $0600, therefore there has been
a boundary crossing between page 5 to page 6 which consumes an extra
clock cycle. If such a branch was in the middle of a loop which revolves N
times, it would be sensible to manipulate the coding, or alternatively
relocate, so that the branch range was limited to the same page, and saving
N clock cycles. It is surprising how attention to such small details can result
in a material gain in execution speed. Although terribly wasteful in terms of
memory, it is better to cut loops out altogether and resort to straight in-line
coding if speed is absolutely vital. In most cases, this will be little more than
an idealistic solution.

Indexed addressing

Although briefly discussed elsewhere, the concept of indexed addressing
deserves detailed treatment. The indexing mode is denoted by a comma
following the operand, followed in turn by X or Y. For example:

LDA $2356,X or LDA §75,Y

Both are examples of indexed addressing but the first is using an absolute
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address and the second is using a zero-page address. The contents of the X
(or Y) register is automatically added to the operand address before the
instruction operates on the resultant address. It is well to recap on the terms
used in indexed addressing:

(a) The base address is the address as stated in the operand.
(b) The relative address is the contents of index register (X or Y).
(c) The absolute address is the sum of the base and relative addresses.

As an example, assume that X contains 3 and that the instruction LDA
$34,X is written. The base address is 34, the relative address is 3 and the
absolute address is 34+3=37. Alternatively, the term ‘effective’ is often
used in place of ‘absolute’.

Two forms of indexed addressing are recognised:

(1) Absolute indexed, when the operand is any address in the 64K memory
map. The instructions allowing X as the index register are ADC, AND,
ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA, ROL, SBC, and
STA. The Y index register can be used in ADC, AND, CMP, EOR, LDA,
LDX, ORA, SBC and STA.

(2) Zero-page indexed, when the operand is on page-zero. The instructions
which allow X as the index register are ADC, AND, ASL, CMP, DEC,
EOR, INC, LDA,LDY,LSR,ORA,ROL,SBC,STA and STY. There are
only two instructions which allow the Y register for indexing. They are
LDX and STX.

A mysterious bug can occur when using zero-page indexed addressing if
the contents of X plus the operand address come to more than 255 or $FF.
Clearly the single byte operand cannot hold numbers of this value so a
wrap-around takes place. For example, if the instruction is LDA $FE,X
and X contains 2, the arithmetical sum would be $100. The wrap-around
action, however, will mean that the first hex digit is dropped and the
absolute address will be $00 instead of $100.

Indexing allows any item in a block of data to be addressed by suitable
adjustment of the index register. The operand of an indexed instruction
(the base address) can be the address of the first item in the block or the last,
depending on convenience or the programmer’s whim. For example, if the
base address is to be the start of the block, the index register can be
incremented (by INX) within the loop until the last item is reached. On the
other hand, it may be more convenient to choose the end of the data as the
base address, in which case the index register is decremented (by DEX)
until the first item is reached. Decrementation of the index register towards
zero is generally recognised to be the more efficient method because the
end-of-loop test can be carried out by a simple branch, such as BNE. The
incrementation method demands a comparison (CPX or CPY) before the
branch test. However, program legibility is sometimes more important
than speed. There is a natural incliniation to count up towards a finite limit
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rather than to count down towards zero and there is less chance of being 1
out in the count.

Besides accessing a data block sequentially, indexing is useful for look-
up tables. For example, imagine a table of sines (or other mathematical
functions) between, say, 0 and 89 degrees to be stored in a data block and
that the base address is where sin(zero) is located. The table can be accessed
by

LDA base, X

If the required angle is in X, the sine of the angle will be in the
accumulator. The limitation of 8 bits for each sine will only give an
accuracy to about two decimal places unless multi-byte working is used.
Also, the programmer must take account of the decimal point when
interpreting the result. Obviously, it would be absurd to use this method in
place of the resident BASIC trig functions unless high speed access is vital.

Indexing is really address modification made easy. Besides being
interesting, it is worth examining an alternative method (which was,
historically, used before index registers were thought of ) involving direct
modification of the operand. This consists of loading the operand of an
instruction into the accumulator (or other register), changing its value and
then returning it to the previous location. To see how this works, consider
the following line:

STA blogs

The operand has an arbitrary symbolic address. [f this were in a loop and
we wished to store the next item in blogs+1 without using indexing, it could
be achieved as follows:

Modify STA blogs
INC Modify+1

Note that the original line has now been given an arbitrary label ‘Modify’
which is where the op-code STA is stored, so blogs must be located in the
next address, Modify+1. The next line increments the contents of blogs+1
so we have achieved ‘address modification’ by aroundabout method. If the
change is to be more than just a simple increment — say, adding 7 - the
coding could be as follows:

Modify STA blogs
LDA Modify+1
ADC #7
STA Modify+1

Such direct alteration of an operand by the program itself is sometimes
useful, but it is not a practice to be recommended. Listings of machine code
are never easy to follow and these sorts of tricks can only add to the general
confusion. It is worth emphasising that the primary function of an index
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register lies in the ability to alter the effect of an operand and without
altering the operand itself. One disadvantage of the 6502, which soon
becomes evident in the early stages of programming, is the limit of 8 bits.
This, of course, restricts the range of addresses which can be scanned by
indexing even when absolute indexing is used.

Indirect addressing

Mastering any subject consists of systematically overcoming the various
intellectual hurdles which appear during a course of study. Student drop-
outs may occur when a hurdle is reached which is just too high. In machine
code programming, there are many hurdles to overcome but the one which
is responsible for the greatest student drop-out ratio is the concept of
indirect addressing. Indexing is relatively easy to grasp once the advantages
of address modification are realised but the following definition may help
in understanding why difficulties arise in indirect addressing.

An indirect address is the address of an address.

In assembly language, indirect addressing is indicated by enclosing the
operand in parentheses as follows:

LDA (operand)

Note that although the operand is indeed an address, it is where the
computer must go to find the address of the data. We shall continue for the
moment to use LDA in examples, but it should be mentioned that simple
indirect addressing as described above is only available with one
instruction, JMP. Providing this is borne in mind, there is no harm in
continuing with LDA in the initial stages. Consider the instruction:

LDA ($70)

Because of the parentheses, $70 is an indirect address, referring the
computer to go to a double-byre address $70 (low-byte) and $71 (high-
byte). This double-byte address is known as the address pointer because it
‘points’ to where the required data is located. Continuing with the
examples, suppose that address $70 contains $35 and address $71 contains
$0D. Returning now to the original instruction, LDA ($70), it should now
be apparent that the contents of address $0D35 will be loaded into the
accumulator. We will further assume that $0DD35 contains $56.
Let us recap, using this example to illustrate the terms once more:

The instruction was LDA ($70).

The indirect address is $70.

The address pointer is $0D35.

The data pointed to and finally loaded into the accumulator is $56.
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Figure 3.1 may help in the understanding of the above example.

When first introduced to the idea of indirect addressing, it is difficult to
grasp the use of it. It appears to be a complicated and tortuous path to
follow, merely to place data in the accumulator. For instance, it is

Memory
0D35 56 — | 56 |
Accumulator result
70 35 LDA ($ 70)
7 oD

Fig. 3.1. Data flow in indirect addressing.

understandable, and pertinent, to ask why the line in the above example
couldn’t have been written in the simpler absolute addressing form:

LDA $0D35

After all, it may be argued, both forms would have identical effects. They
would both load the same item of data into the accumulator, but the second
form would not be wasting a valuable location ($70) in zero-page and
would certainly be quicker to execute. The answer to this lies in the ability
of indirect addressing to alter the effect of an operand without altering the
operand itself. You will remember that this quality was the fundamental
justification for the use of indexed addressing. If the address pointer is
changed in any instruction using indirect addressing, the effect of the
instruction acts on a different location. This has far-reaching advantages,
particularly when writing general purpose machine code subroutines.
Clearly, when writing a subroutine intended to act on a block of data, it
would be restrictive to force the writer of the program using the subroutine
always to place the data in a fixed memory block. However, with indirect
addressing, all that is necessary is for the main program to know where the
address pointer is (370 and $71 in our previous example) and load it with
the starting address of the data block. This flexibility means that the writer
of the machine code subroutine need have no knowledge of the where-
abouts of the eventual data block.

Before proceeding further, it should be remembered that the descriptions
so far have been simplified by assuming that a 6502 has the instruction
LDA (operand). Apart from the single instruction, JMP, simple indirect
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addressing is not supported. Instead, we have the added benefit (and
unfortunately, the added complication) of indirect addressing combined
with indexing. In fact, there are two forms to choose from, called ‘indirect
indexed’ and ‘indexed indirect’.

Indirect indexed addressing
This is the form most often required. Only the Y index register is allowed in
this mode. The assembler form is:

LDA (operand), Y

The operand is single byte and therefore can only refer to a zero-page
address.

The only difference between this mode and simple indirect addressing is
the addition of the Y register contents to the address pointer. That is to say,
the operand still defines where a double-byte pointer is located but the
pointer is modified by the addition of the Y register contents. As an
example, assume that the following line is written:

LDA (870}, Y

Also assume that the contents of address $70 contains $35, address $71
contains 30D and the Y register contains $02. The effective address pointer
will be $0D35 + $02 = $0D37. The effect of the instruction is therefore to
load the contents of address $0D37 into the accumulator. The example
figures can be used to define a few more terms connected with indirect
indexing;

The instruction was LDA ($70), Y.

The base address pointer was $0D35.
The relative offset in Y was $02.

The effective address pointer was $0D37.

Figure 3.2 illustrates the example.

0D37 84 —_— [ 84 j
Accumulator result

® L 02 ]

Y register

70 35 }
71 oD LDA($ 70), Y

_/

Fig. 3.2. Data flow in indirect indexed addressing.
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Indirect indexed addressing allows the effect of the operand to be altered
in either of two ways, by changing the base address pointer, by altering the
contents of the Y register or both. The index register should be looked upon
as an optional extra because there is no need to use it actively. For example,
if Y is reset to $00, the instruction,

LDA ($70), Y

has the same effect as the simple (but fictitious) indirect addressing
example given earlier:

LDA ($70)

However, an obvious use of indirect indexing lies in sequencing through
a block of data items by incrementing or decrementing the Y register. It is
helpful to distinguish simple indexed loops from indirect indexed loops by
considering under what circumstances they would be used:

(a) Use simple indexing if the base address is known and constant.
(b) Use indirect indexing if the base address is not known at the time of
writing or is liable to require changing.

One advantage of indirect addressing not yet mentioned is the ability to
reach any part of the 64K memory map by use of a single-byte operand.
This 1s because the address pointer in zero-page is double-byte (16 bits).

The following example is outline coding to perform a process on a block
of memory with just sufficient detail to illustrate indirect indexed
addressing. Assume that the address of the first data item has been prior
assigned to the address pointer in $70 (low-byte) and $71 (high-byte) and
the length of the block minus 1 is 20.

LDY #20
.data LDA (§70),Y

process

DEY
BPL data

rest of program

The example should require little explanation, except perhaps to note
that the indexing proceeds downwards towards zero, so the processing
begins with the last data item and finishes with the first. As mentioned
earlier, a downwards scan enables the end of the loop to be tested without
the use of a CPY.

Some variations in the jargon exist. The alternative name for indirect
indexed (and in some ways more informative) is ‘post-indexed’ indirect
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addressing because the indexing is done after the indirect address has been
found. Also, address pointers are sometimes called address vectors.
Indirect indexed addressing is available with ADC, AND, CMP, EOR,
LDA, ORA, SBC, and STA. They all take 5 clock cycles except STA which
takes 6. If a page boundary is crossed, they take an extra clock cycle.

Indexed indirect addressing
This mode doesn’t enjoy quite the same measure of popularity as indirect
indexed. The assembler form is:

LDA (operand, X)

Note carefully the position of the parentheses, that X is inside instead of
outside and only X is allowed for indexing. As before, the operand must be
single-byte so can only refer to a zero-page address.

X is shown within parentheses to emphasise the manner in which
indexing is carried out. The behaviour of indexed indirect addressing is as
follows:

The address of the pointer in indexed indirect addressing is the sum of
the operand and the contents of X.

This definition may explain why an alternative name of this mode is ‘pre-
indexed’ indirect addressing. To aid understanding, first study the
following numerical example:

LDA ($70,X)

In the first instance, assume that X is zero. The pointer is then the double
byte address which happens to be in $70 (low-byte) and $71 (high-byte).
However, if we assume that X contains $02, the address pointer is located at
the double-byte address $72 and $73. Proceeding with this example,
suppose that $72 contains $35 and $73 contains $0D, the instruction would
load the accumulator with the contents of address $0D35. The example is
illustrated in Fig. 3.3.

Until familiarity is gained, it is easy to get mixed up with the two indirect
modes because of the relatively superficial differences in the assembler
form. In order to emphasise the difference in form and effect, it is worth
viewing the two side by side:

Indirect indexed (post-indexed indirect ) addressing keeps the pointer
at a constant location but uses Y indexing to modify the pointer
value.
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0D35 96 —_— | 96 ]

Accumulator result

LDA ($.70, X)

72 35
73 oD l 02 }
X register

O~ ~

Fig. 3.3. Data flow in indexed indirect addressing.

Indexed indirect (pre-indexed indirect) addressing uses X indexingto
modify the operand, and hence, the location of the address pointer.

As hinted earlier, indexed indirect addressing is not a commonly used
mode. One area in which it is valuable is in handling peripheral interrupts.
The course of a program can often depend on the particular peripheral
which has requested interrupt. For example, the data sent to a printer will
originate from a different area than the data sent to a digital-to-analogue
converter. Assuming there are two peripherals on line, then we can arrange
to have two separate address pointers to service them, located in zero-page.
Suppose these double-byte addresses occupy the four locations $72, $73
and $74, $75 and consider the following line:

STA ($70,X)

The value placed in X must be that which modifies the operand to locate
the desired address pointer. Care should be taken when calculating the
value of X. The indirect address pointer is a two-byte address, so X must be
changed by two at a time, otherwise the instruction above will define the
high-byte instead of the low-byte. For example, if X is initially zero, the
address pointer selected is located at $72, $73. If X is incremented only
once, there is a foul-up because the address pointer is taken to be $73, $74
which is the high-byte of the first pointer and the low-byte of the second.

Apart from handling peripherals, indexed indirect addressing can be
used to simulate the CASE statement found in some of the structured
languages orthe ON GOTO in BASIC. Control can be switched to separate
machine code processes, each switched by a unique address pointer. The
value in X determines which process is activated.
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Indexed indirect addressing is available with ADC, AND, CMP, EOR,
LDA, ORA, SBC and STA.

Summary

1. A machine code instruction always has an op-code but not all have
operands.

2. The op-code defines the required action; the operand indicates where
data is to be found.

3. Addressing modes are various ways in which operands express
location of data.

4. The computer recognises only binary op-codes expressed as two hex
digits but the resident assembler allows three-letter mnemonic groups.

5. The precise effect of an instruction is more concise if written in opera-
tional symbols rather than words.

6. During transfers, source data remains intact but old data at the
destination is overwritten.

7. In normal use, the carry is cleared before adding but set before
subtracting,

8. In double or multiple byte arithmetic, clear carry only before adding
the lowest order bytes and set carry only before subtracting the lowest
order bytes.

9. Memory or registers are cleared by a load zero. There are no CLR
instructions.

10. There are no instructions to increment or decrement A.

11. Use AND to clear, ORA to set and EOR to change selected bits within
a byte.

12. To flip over all bits, exclusive-or with $FF.

13. To produce two’s complement, flip first and then add 1.

14. To find the state of a single bit, mask out uninteresting bits using AND
and test for zero.

15. The BIT test copies bit 6 and 7 of the data into V and N bits respectively
and ANDs the data into A.

16. LSR has the carry bit at the Isb end; ASR has the carry bit at the msb
end.

17. Only shift and rotate instructions have accumulator-addressing.

18. In double-byte multiplication, use ASL for low-order and ROL for
high-order byte.

19. In double-byte division, use LSR first for the high-order then ROR for
the low-order byte.

20. The current state of the process status register determines whether or
not a branch takes place.

21. Branch instructions themselves do not affect the process status register.

22. BMI and BPL are only useful if two’s complement binary is used.
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If the branch is out of range, combine with JMP.

In comparisons (CMP, CPX or CPY), the data is subtracted from the
register in order to set flags but the original contents are restored.
To check if the register is less, use BCC; to check if equal use BEQ; to
check if greater, use BEQ first then BCS.

Implied addressing has no operand.

Immediate addressing is when the operand, which must be single byte,
is the data.

Absolute addressing is when the operand, which must be double-byte,
is the address of the data.

Zero-page addressing is when the operand, which must be single byte,
is the page-zero address of the data.

There are only 5 addresses guaranteed left free by the operating
system, $FB to $FF inclusive.

Relative addressing, used only with branch instructions, is when the
operand signifies how many bytes away is the next instruction.
Two’s complement arithmetic is used to cover forward and backward
branches. With the assembler, branch-to-label is possible.

Absolute indexed addressing is when the operand (which must be
double byte) plus the index register, is the address of the data.
Zero-page indexed addressing is when the operand (which must be
single byte) plus the index register, is the address of the data.

In an indexed instruction, the operand defines the base address, the
index register the relative address. The sum of the two is the absolute
or ‘effective’ address.

The operand in simple indirect addressing is the address of the lower
order byte of a two-byte address pointer. Only JMP offers this mode.
JMP excepted, address pointers can only reside in zero-page (page-
7€r0).

Indirectly indexed addressing modifies the address pointer by the
addition of Y. The assembler operand format is (operand), Y.
Indexed indirect addressing modifies the address of the address
pointer by the addition of the X register. The operand assembler
format is (operand,X).

40. Address pointers are also called address vectors.

Self test

3.1 Should you clear or set the carry bit before subtracting?

3.2 If the accumulator holds $DF, what will it contain after the
instruction EOR $DF has been executed?

3.3 Which of the three logical instructions are used to change selected bits
within a byte?

3.4 What instruction could you use to ensure that bit 2 in the

accumulator was in the 1 state, without disturbing the remaining bits?
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3.5 One of these instructions is illegal, LDA #20, AND 20, STA #20.
Which one?

3.6 Which type of instruction uses relative addressing?

3.7 What address is referenced if X contains $OF and we write STA
$2003,X?

3.8 Only one instruction in the 6502 repertoire supports simple indirect
addressing. Which one?

3.9 This is illegal: LDA ($30),X. Why?

3.10 What is wrong with this instruction: LDA ($0D45),Y?

3.11 Ifanassembler was not available, how could you write the instruction
STA 35.X?



Chapter Four
Entering and Assembling
Machine Code

Direct entry by POKE statements

Machine code bytes can be pushed directly into consecutive memory
locations by means of a series of POKEs. In fact, if no additional software
is purchased, this may be the only method possible. Once the program is
successfully entered, the POKE method is as effective as any other but it
must be admitted that the process is both tedious and error-prone. In fact,
it would be difficult to imagine a more onerous task on a computer (any
computer) than poking machine code into memory. Providing the routine
is short, say less than 50 bytes, it might just be tolerable. On the other hand,
the task of entering hundreds of bytes could turn out to be a traumatic
experience, unlikely to be repeated in future unless the ‘poker’ is blessed
with a cast-iron constitution.

The trouble with poking is the awful appearance of final listings. Row
after row of numbers are spewed out, all quite meaningless unless each op-
code byte is compared with the literal translation given in the 6502
instruction set. The POKE method is suitable for those who are content to
enter programs listings from magazines or books. All that is needed for this
operation is patience and care. But, when developing your own programs,
there are many other pitfalls apart from entering code. The odds against a
machine code program working first time are fairly high so debuggingisan
inevitable consequence after the initial entry. It is frustrating to develop
and debug machine code without some form of software aid. However, in
spite of these remarks, there will be many users who will be quite willing to
put up with the difficulties and enter their code by a series of POKEs. It is
simply a case of ‘assembling by hand’ and will involve the following steps:

(1) Write out the program on paper using the standard three-letter
mnemonics for the operation codes together with the assembly format as
given in Appendix C. In other words, proceed as if you were using the full
assembler.

(2) Using the assembly code as a pattern, rewrite it with the correct hex
codes and operand.

(3) Convert the hex into equivalent decimal (necessary because there is no
provision in the computer for allowing direct entry in hex).
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The final resuit should be a list of small decimal numbers none of which
must exceed 255 decimal because this is the limit which can be entered with
a single poke. For example, assume one of the assembly lines is as follows:

LDA #$21

We first note from the operand that it is using immediate addressing
(because of the ‘4’ character). We must then look up the correct LDA op-
code for immediate addressing to find it is $A9. Since the operand is also
given in hex, the original assembly code becomes

A9 21

The final stage is to convert this to decimal,
169 33

Using M for an arbitrary memory address, the POKE statement becomes
POKE M,169:POKEM+1,33

This example was deliberately chosen because it was simple. Not all
assembly translation is quite so easy so it is worth trying out the following
example which is a bit more tricky to follow:

LDA $FF34
STA $2510,X

Note that, in the first line, there are four hex digits in the operand. This
indicates absolute addressing, so the LDA op-code is AD. Be careful with
the operand because the 6502 expects the lower order byte of an absolute
address to come first. Bearing this in mind, the complete instruction,
written out in hex becomes

AD 34 FF (173 52 255 in decimal)

In the second line, the STA is using absolute index addressing with X as the
index register, so the hex op-code is 9D and the operand with reversed
bytes is 10 25. Therefore, the full line becomes

9D 10 25 (157 16 37 in decimal)
The complete POKE statements for the two lines becomes

POKE M,173:POKE M+1,52:POKE M+2,255:
POKE M+3,157:POKE M+4,16:POKE M+5,37

The above examples illustrate the emphasis the previous gloomy remarks
regarding the entry of machine code by poking. The possibilities of error
are too horrific to contemplate, particularly when lengthy programs are
involved.
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Where to load programs

It is customary to locate machine code in the special memory block
reserved by the Commodore 64 operating system.

Machine code programs can be safely stored in the 4K block
commencing at address $C000 (49153 decimal).

Programs stored in this area are immune from the ravages of BASIC. They
remain tucked away until called.

Programs to load machine code

It is possible to simplify the poking procedure by using a ‘loading’ program
which can be written in BASIC. Program 4.1 is reasonably straightforward
and worth saving on tape for use when entering hexadecimal machine code
bytes. It can easily be adapted or expanded to suit individual taste.

10 REM POKING A HEX DUMP INTO MEMORY
20 REM STARTING AT ADDRESS $CO000

30 INPUT"HOW MANY BYTES IN HEX DUMP™;3;NY%
40 R=49152

50 FOR L=0 TO N%—1

60 READ D%

70 FDZ=ASC (D%)-48

80 SDZ=ASC(RIGHT%(D%,1))-48

90 IF FD%>% THEN FDY%=FD%-7

100 IF S8D%>? THEN SD%=SD%-7

110 BT%Z=1&%FD%+5D%

120 POKE B+L,BT%

130 NEXT

140 DATA A%,00,85,FB,A9,05,85,FC

150 DATA A9,48,20,CA,F1,38,A5,FB

160 DATA E9,01,85,FEB,B0,02,C6,FC

170 DATA AS,FR,DO,EC,AS,FC,DO,E8

180 DATA 60

Program 4.7. Poking a hex dump into memory.

This program, controlled by a FOR/NEXT loop, allows the entry of
machine code bytes directly in hex. This is helpful because it removes the
error-prone activity associated with hex to decimal conversions.

Lines 10 to 130 form the actual program for performing the load. Lines
140 to 180 give sample DATA for purposes of illustration only. The
program automatically places the code in the address $C000 onwards.

Line 30 asks for the number of bytes to be entered and is easy to answer if
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you get into the habit of spacing your data bytes in blocks of eight per line.
We shall see later that machine code monitors also stick to the idea of 8-
byte blocks ~ 10 is an unfriendly number in machine code work.

Lines 70 to 110 take advantage of the fixed ASCII code interval between
alphanumerics and zero to obtain a simple hex to decimal conversion.
Lines 90 to 100 take care of the extra interval (7) between the ASCII code
for ‘9’ (57) and the ASCII code for ‘A’ (65) exclusive. By such means, the
hex digits in the DATA blocks are neatly converted into decimal as
demanded by the POKE statements at line 120.

It is convenient now to introduce the hex dump, a term used to describe a
collection of hex digits displayed (or printed) with location addresses which
represents the object code of a program. If you care to try out the program
with the sample data supplied, you will find it displays on the screen the
character ‘H’ 1024 times, with scrolling, of course, on the last 25 characters.
Needless to say, having loaded the hex dump, it will need to be executed by
using SYS 49152 (which is the decimal equivalent of $C000).

Entry by machine code monitor

A machine code monitor is a software aid to the task of entering machine
code. The original Commodore PET series came with a very useful monitor
called TIM built into the operating system but not so the 64. Fortunately,
there are utility software packages available which include a TIM-like
monitor. They will differ slightly in detail but, in general, such monitors
will offer the facilities described below.

Display of memory block

Memory contents can be displayed, starting from a given absolute address
in hex. The display is usually laid out in the form of blocks of eight memory
locations together with the address of the first byte of each block. The
contents of each location is shown in hex digit form. A typical display
might have the following appearance:

$C000 DF 3C A9 24 35 FD 3F A4
$C008 34 57 AC B5 BD 47 20 00
$C010 20 00 3F BD 11 60 00 00

From this, we could deduce that address $C002 contains A9 and address
$SCOOF contains 00. It is worth noting that actual programs will not
necessarily use an exact multiple of eight bytes. This means that a few codes
on the last line may be garbage. The last active code will probably be $60,
the 6502 RTS instruction. The example above has two garbage bytes (00
00) following RTS.
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Entering code

Having asked for the display of a block, as shown above, code is entered by
moving the cursor over to existing digits and overwriting them with new
code. This action automatically places the new contents into memory. Even
if this were the only facility offered by a monitor, its use would be justified.
The ability to use hex direct is a great help apart from the advantages of the
block-of-eight display. Decimal is often an alien notation in machine code
environments.

Register display

It is useful, and quite often necessary, to have a facility for viewing the
current contents of the 6502 registers. A monitor will normally provide
such a display at any time by keying ‘R’. The registers displayed will be the
Program Counter, Status Register, Accumulator and the X and Y
registers. Overwriting existing register contents by means of the cursor and
edit keys is often provided.

Assemblers

The ultimate software aid for machine code programmers is an assembler.
In fact, it is doubtful whether any serious development work with machine
code can be carried out without one. An assembler may be looked uponasa
kind of super-monitor equipped with powerful extras. The most
outstanding of these extras is an ability to ‘understand’ op-codes entered in
the form of mnemonic letter groups instead of hex. The irksome task of
looking up the instruction set for hex codes (which have no intelligible
meaning to humans) is replaced by an instantly recognisable group of
letters. Thus, a line like A9 #4 can be written as LDA #4.

If you look up Appendix C, you will notice that there are eight different
LDAs, each with a separate pair of hex op-codes. An assembler sorts out
which particular LDA you want by noting the format of your operand. In
the example just quoted above, the particular LDA (the one which uses
immediate addressing) is chosen by the assembler because the operand is
only two decimal digits and is preceded by the character ‘#’. It is evident
that, even with an assembler, the exact format required by the assembler
for each addressing mode must be respected.

Assembly languages

We have, of course, been using assembly language freely during the lead up
to this but it is now time to enquire if all assembly language is the same.
Fortunately, it is possible to give a tentative ‘yes’ to this question providing
we are talking about the same microprocessor. That is to say, assembly
language for the 65XX microprocessor family (which includes, of course,
the 6502 and the 6510A) is, from the user’s point of view, virtually the same
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in all machines which employ them. This is because the mnemonic letter
groups and the operand format for different addressing modes are defined
rigidly by the manufacturers when new families of microprocessors are first
launched. Although this leads to a degree of standardisation, it is
unreasonable to expect that an assembler written for machine X will work
on machine Y just because they both employ the same microprocessor.
Apart from the microprocessor, there may be differences in the operating
system and almost certainly in RAM capacity and address allocations,
both of which rule out the chance of compatibility with other machines.

The MIKRO 64 Assembler

Whenever a microcomputer appears to be gaining popularity, one or more
of the established software houses will bring out an assembler for it. This
has happened in the case of the Commodore 64. Although Commodore
markets a wide range of in-house software aids, including an assembler,
other firms have also launched their own versions. The assembler we have
used during the production of this book has been the MIKRO 64
Assembler. We have found it to be a powerful assembler which is easy to
use. However, it would be wrong to imply from this that the MIKRO 64 is
in any way superior to the official Commodore version, or indeed, any
other assembler on the market. Nevertheless, the operating instructions
which follow are valid for the MIKRO 64 and based on the handbook
accompanying the assembler cartridge. The instructions for other
assemblers may differ perhaps in slight detail and facilities offered but not
in overall structure.

Assembler passes

MIKRO 64 is defined as a ‘three pass assembler’, meaning that three scans
of the source code, written in assembly language are required before the
end result (pure machine code) resides in memory. More than one pass is
required because symbolic operands and jump labels must be assigned to
absolute addresses. The assembler performs the three passes automatically
without assistance from the user.

MIKRO 64 Assembler notation
To list all the formatting rules would be to repeat what is already in the
accompanying manual so it is sufficient here to show a simple program to
illustrate some of the more important features.
This is how a program may appear as initially typed:
10 *#=%C000
20 SCREEN=$0400
Z0 LDX #0
40 LDA #0
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S0 BACK S5TA SCREEN, X
60 INX

70 BNE BACK

80 RTS !BACK TO BASIC

Line 10 illustrates how to tell the assembler where to locate the first byte
of the assembled code. Note that * followed by = is mandatory at the left.
The ultimate effect of this line will be to set the Program Counter to start at
$C000.

Line 20 shows how to allocate a symbolic name to an absolute memory
address. Once set like this, all subsequent references to SCREEN will be
taken by the assembler to mean $0400 which, incidentally, is the address of
the top left-hand corner of the screen.

Lines 30 and 40 are obvious.

Line 50 should be studied carefully because it illustrates the format for
branch labels. The first word ‘BACK’ is a branch label. How does the
assembler know this? Because it first searches through its dictionary to see
if the word is a legal mnemonic op-code. If not, it searches again to see if it is
a legal pseudo-op. Only after these two searches have been proved false
does it then conclude that the word must be a branch label. The operand, in
line 50, indicates that simple indexed addressing is required.

Line 70 is the bottom of the loop containing the branch to the label BACK.
The last line, containing RTS, shows the method of appending remarks by
preceding them with ‘.

Spaces and FORMAT command

At least one space to separate the different parts of the code on a line is of
fundamental importance. They should follow the pattern above. If you
leave them out the assembly process will fail. More than one space can be
left between the parts but there is no need to use them to make the assembly
listing more presentable. To present a nice clear listing on paper, the
assembler is equipped witha FORMAT command. To see how this works,
we assume that the example program given earlier has been assembled and
we now require a posh printout. The procedure for printers connected to
a parallel interface is:

OPEN6,6:CMD6:FORMAT
The result should appear as follows:

10 *»=%C000

20 SCREEN =  $0400
20 LDX #0

40 LDA #0

50 BACK 5TA SCREEN, X
&0 INX

70 BNE BACK

ao RTS 'BACK TO BASIC
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Listings in this book have been printed under the FORMAT command
because of the resulting clarity. The wide separation between labels and
mnemonic op-codes aids comprehension. There is only one snag. The
listings must be in camera-ready form for publishing which means that, for
technical reasons, the maximum width should preferably be limited to 100
mm. This does not leave much room for remarks so they have been left out
altogether from our programs. In any case, remarks on listings are
necessarily staccato in style and can often pollute, rather than clarify.
Consequently, programs in this book are explained in the accompanying
text.

The OUT command

The OUT command is used to output data to the screen or printer. OUT,4
will direct output to the printer connected to the RS232 serial interface and
OUT,6 to the parallel interface. If the command is given without a device
number, the output is directed to the screen by default. The data outputted
is that which follows the OUT command and continues until the command
OFF or END appears.

Operand format
This is standard 6502 format but, to aid continuity, some examples, using
LDA as the mnemonic op-code, are given below:

LDA #32 immediate (decimal)
LDA #8$32 immediate (hex)
LDA $FF zero-page

LDA $40BF absolute

LDA BLOGS absolute

LDA $D0,X zero-page indexed
LDA MEMORY.,Y absolute indexed

LDA (POINTER),Y indirect indexed
LDA (POINTER,X) indexed indirect

Pseudo-ops

Pseudo-ops are instructions, given in source code, to the assembler. This
distinguishes them from true op-codes recognisable by the microprocessor.
All assemblers have a few of them. The MIKRO 64 assembler includes the
following pseudo-ops in its repertoire:

WOR...can be used to place 16-bit data values into memory in low-high
byte form. For example,

10 *=$C000
20 WOR 65535, $4867, #0653

This would store in successive locations, starting from address $C000, the
bytes $FF,$FF,67,48,53 and 06.
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BYT...is similar to WOR but used to store 8-bit data. For example,
20 BYT 425,254,106

This would store the bytes $25,$FE,$10. To save working out ASCII
values, BYT will also convert characters to their ASCII equivalent,
providing the character is preceded by °. For example, BYT $23,A,20
would store the bytes $23,$41,$14.

TXT ... can be used to store text characters in successive locations. For
example:

50 TXT "GREASBY,MERSEYSIDE™

This will store the eighteen ASCII characters within the double quotes.
Program 4.2 includes an example of the use of TXT. The first line of the
program assigns the name OUTPUT to the kernal subroutine CHROUT
located at address $SFFD2 (see Appendix B). The individual characters of
the text SHORT WAVE RADIO, 16 in all including the spaces, are sent
one at a time to the OUTPUT subroutine by indexed addressing in line 40.

10 oUuTPUT = $FFD2
20 *=3$£000

0 LDX #0

40 LOOP LDA TEXT,X
50 JSR QUTPUT
&0 INX

70 CPX #16

80 BNE LOOP
0 BEQ OVER
100 TEXT TXT "SHORT WAVE RADIO™
110 OVER RTS

Program 4.2. Use of pseudo-op TXT.

The next, Program 4.3, uses the pseudo-op BYT for laying down sound
output data.

The program is fairly straightforward and hardly justifies detailed line-
by-line treatment. The data table uses BYT for storing the pitch and
envelope parameters. They have been selected to sound the eight individual
notes which span an octave of the major diatonic scale in C major. The
envelope parameters are intended to simulate the percussion tones of a
piano. Delay between the notes is accomplished by calling the subroutine
DELAY, occupying lines 380 to 430. The loop counter, determining the
delay time, is initialised to $FB and assigned to the variable DUR atline 40.
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10 ! € MAJOR SCALE
20 ! ADSR ENVELOPE
30 BASE =
40 DUR =
S0 #=$C000

60 LDX
70 LDA
80 LOOF 5TA
20 DEX
100 BPL
110 LDA
120 8TA
130 LDA
140 S5Ta
150 LDA
160 STA
170 LDX
180 LOOFZ LDA
150 STA
200 INX
210 LDA
220 STA
230 INX
240 LbA
250 5TA
260 LDA
270 STA
280 JSR
290 LDA
00 STA
310 LDA
320 5TA
F30 JSR
240 INX
350 CPX
3460 BNE
370 RTS
380 DELAY LDY
370 LOOPZ LbA
400 BNE
410 DEY
420 BENE
430 RTS
440 TABLE BYT
450 BYT
460 BYT
470 BYT

WITH
SHAFP ING
$D400
$FB

#24
#O
BASE, X

LooP

#9
BASE+S
#0
BASE+6&6
#15
BASE+24
#0
TABLE, X
BASE+1

TABLE, X
BASE

TABLE, X
DUR
#33
BASE+4
DELAY
#$32
BASE+4
#255
DUR
DELAY

#24
LOoopP2

DUR
$D012
LOOP3

LOOP3

16,195,100, 18,209, 100
21,31,100,22,96, 100
25,30, 100,28, 49, 100
31,165, 100,33, 135, 255

Program 4.3. C major scale.
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Renumbering

Unfortunately, MIKRO 64 does not provide a line renumbering program,
probably because the designers felt it was unnecessary. Line numbers in

10 ' FIXED RENUMBER ROUTINE
20 ' FOR MIKRO 64 ASSEMBLER
30 ' START LINE 10 INCREMENT 10

40 LINK = &FB

50 LINE = %FD

60 *=$C400

70 LDA #10

80 STA LINE

0 LDA #0

100 STA LINE+1
110 LDA $2ZB

120 STA LINK

130 LDA $2C

140 STA LINK+1
150 LOOP LDY #0

160 LDA (LINK),Y
170 PHA

180 INY

190 LDA (LINK),Y
200 TAX

210 LDA LINE

220 INY

230 STA (LINK),Y
240 LDA LINE+1
250 INY

260 STA (LINK),Y
270 cLC

280 LDA LINE

290 ADC #10

300 STA LINE

310 BCC SKIP

320 INC LINE+1
330 SKIFP STX LINK+1
240 PLA

350 STA LINK

360 BENE LOOP

370 TXA

380 BNE LOOP

390 RTS

400 END

Program 4.4. Renumber routine.
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BASIC are important because GOTO destinations refer to line numbers. In
contrast, line numbers in assembly listings have no such status and are
useful only for references purposes in textual descriptions. Nevertheless,
there is no denying that a listing with ragged line numbers is not a pleasant
sight. A listing with line numbers 10,11,13,47,49, etc. does not inspire
confidence. There is always a feeling (probably an unfair one) that the
program has been hastily put together. Program 4.4 is a neat renumbering
routine which can be used before printing out a final assembly listing. Itis a
modified version of a program taken from lan Sinclair’s excellent book
Introducing Commodore 64 Machine Code (Granada).

Machine code monitor

The MIKRO 64 assembler is also equipped with a machine code monitor
and, from the user’s viewpoint, is similar to the original Commodore TIM
but including some powerful extras. To call up the monitor, it is sufficient
to enter:

CALL @814B
The response on the screen is a simple register dump as follows:

ADDR IRQ SR XR YR SP
.;814B EA31 3B 00 00 F9

The abbreviations refer to the 6510A internal registers, the interrupt vector
(IRQ), the status register (SR), the X and Y registers (XR,YR) and the
stack pointer (SP).

The syntax for calling up monitor facilities is quite straightforward:
Display registers: enter R.
Display memory block: enter M followed by the hexadecimal start and end
addresses. (Example: R C000 COFF)
Save on disk: enter S “drive:name”,device number start address,end
address +1. (Example: S “0:TEST”08,C000,C100)
Load from disk: enter L “name”,08. (Example: L “TEST”,08)
Note: If the device number is not quoted, saving or loading takes place on
cassette.
Execute program: enter G alone or G followed by the start address. G alone
will execute from the program counter address shown in the register
display. (Example: G C004)
Hunt for byte pattern: enter H, followed by the start and finishing
addresses of the block to be searched, followed by the byte pattern.
(Example: C000 COFF 30 C3 7D)
Transfer memory block: enter T followed by start and finishing address+1,
followed by the start address of the new block. (Example: T C000 C100
D000)
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Disassemble: enter D followed by start and finishing addresses of the block
to be dissassembled. (Example: D C000 COFF)
Note: lllegal bytes are shown as BYT.

Free zero-page locations

The Commodore 64 is not over-endowed with user-free zero-page
locations. In fact the only ones guaranteed to be vacant are the 5 bytes from
$FB to $FF. This can be a handicap with larger programs since indirect
indexed addressing must use zero-page locations. Fortunately, there is a
way out, because we can reclaim most of the zero-page BASIC workspace
as long as the locations are used only within the machine code routine itself.
This is quite in order as long as it is remembered that the locations may be
overwritten at any time on returning to BASIC. Most of the programs in
Chapters 6 and 7 employ this technique without any adverse problems.
However, it is best where possible to use $FB to $FF for passing parameters
between BASIC and machine code routines and vice versa.

Zero-page locations free:
$FB to $FF
Zero-page BASIC workspace that can be reclaimed:

$4E to $60
$26 to $29

There are a few other locations here and there which can be reclaimed,
but the above is more than sufficient for all the programs in this book.

Where to obtain the MIKRO 64 Assembler cartridge
The MIKRO 64 Assembler is distributed by:

Supersoft
Winchester House
Canning Road
Wealdstone
Harrow HA3 7SJ
England

In North America the MIKRO 64 Assembler is distributed by:

Skyles Electric Works
231E S Whisman Road
Mountain View

CA 94041

USA
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Summary

1.

Machine code can be entered by poking instruction bytes directly into
memory.

2. Direct poking requires looking up hexadecimal op-codes and then
converting to decimal.
3. Directly poked 2-byte operands must be entered in low-byte, high-byte
order.
4. Directly poked decimal numbers must not exceed 255.
5. The safe area for locating machine code programs is the 4K block from
$C000 onwards (49153 decimal).
6. Program 4.1 is a useful hex loading program, allowing hex bytes to be
used.
7. A machine code monitor, if subsequently installed, simplifies entering
and debugging machine code.
8. An assembler is the supreme software aid to all machine code work.
Without one, serious development work is hardly possible.
9. The programs in this book have been developed with the aid of the
MIKRO 64 Assembler.
10. At least one space must be left between fields. More than one is
allowed.
11. The appearance of the listings in this book are due to the FORMAT
command.
Self test
4.1 What is the largest decimal number you can POKE?
4.2 What POKE numbers would you use to enter the machine instruction
AND #8§32?
4.3 What POKE numbers would you use to enter the machine instruction
LDA 256?
4.4 The last POKE number in a machine code block is often 60. Why?
4.5 State an important facility present in an assembler but not in a
monitor.
4.6 Using the MIKRO assembler, write the line which positions the
starting address at $C234.
4.7 How does a pseudo-op differ from a normal machine op-code?
4.8 Is WOR a genuine op-code or a pseudo-op?
4.9 In the MIKRO assembler, what is the pseudo-op for storing text

characters?



Chapter Five
Machine Code Building
Bricks

Bricks versus instructions

During the initial learning phase, it is a bewildering task trying to work out
the coding required to perform even the most simple operation. As
experience is gained, you notice that certain code patterns seem to crop up
over and over again. In other words, you begin to recognise the existence of
general purpose building bricks which will conveniently fit into program
slots. You no longer think in terms of individual instructions because the
building bricks, rather than the individual (and primitive) machine code
instructions, become the ‘atoms’ of action. It becomes a question of which
building brick to choose, rather than which instruction to choose.

When you reach this desirable situation machine code changes from the
horrific to the benign. It is rather like a child learning to read. During the
first week or two, reading is a painfully hard and laborious process because
only the individual letters are recognised and each word has to be built up
from them. Eventually, groups of letters (words) are recognised on sight
and the mind is barely conscious of the individual letters which form them.
Speed readers advance even further and can comprehend entire lines at
sight without even being consciously aware of the words.

However, there is one danger if the analogy between learning machine
code and reading is taken too literally. Machine code building bricks are
ideal as preliminary inserts whilst the program is passing through the
development stage. But, because of their general-purpose nature, they
would normally require polishing up before the program is finally released.
Nothing designed to be general-purpose in its functions can at the same
time be of maximum efficiency when specifically employed. The polishing
up stage would normally entail removing code which has been found to be
redundant because of pre-existing code. For example, the building brick in
its original general-purpose form may have included CLC at the top but,
when employed in the program slot, the carry might already have been
cleared. Of course, the opposite condition can also occur. It may be that the
building brick requires an extra line or two in order to tailor it to fit a
specific situation.
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In spite of these occasional variations, there is much to be said for
acquiring the building brick habit as soon as possible. The rest of the
chapter is devoted to this subject and although it includes many examples,
you are strongly advised to add to the list. In this way, a fairly exhaustive
‘library’ of them can be formed, able to cope eventually with the most
bizarre requirements.

Machine code equivalents to BASIC

Most of us begin computer studies within the comfort of BASIC rather
than beginning with, and risking the perils of, machine code. In view of this,
it helps to sweeten the pill if a gentle transition to machine code is made via
roughly equivalent BASIC forms. The following section describes some
common BASIC structures with their machine code equivalents. As an
initial simplification, the machine code equivalents are restricted to single
byte, two’s complement working.

Assigning constants:

BASIC Machine code
SPEED=30 LDA #30
85Ta SPEED

Re-assigning variables:

BASIC Machine code
S=B LDA E
S5TA S5
Adding a constant:
BASIC Machine code
A=A+23 LDA A
CcLC
aADC #23
STA A
Subtracting a constant:
BASIC Machine code
A=A-15 SEC
LDA A
SBC #15
Addition and subtraction: STA A
BASIC Machine code
A=A+K-8§ LDA A
CLC
ADC K
SEC
SRC #8

S5TA A



Doubling a number:

Machine Code Building Bricks

BASIC Machine code
N=N*2 ASL N
Expressions:
BASIC Machine code
N=4*(K+25) LDA K
cL.C
ADC #25
ASL A
ASL A
STA N

Incrementing by I:

BASIC
N=N+1

Decrementing by 3:

Machine code
INC N

BASIC Machine code

N=N-3 DEC N
DEC N
DEC N

Calling subroutine:

BASIC
GOSUB 2460

Machine code
JSR BLOGS

75

Note that whereas in BASIC the GOSUB is to a meaningless line number, a
machine code assembler allows a meaningful label to be used instead of
working out the destination line number.

Returning from subroutine:

BASIC Machine code
RETURN RTS
Simple loop:

Writing the equivalent machine code versions of FOR/NEXT loops is
fairly straightforward. The only hazard is remembering that one extra loop
revolution is demanded before exiting. This extra ‘one’ can either be
allowed for at the beginning or, as in the following examples, at the end
where the final comparison is made.

BASIC Machine code
FOR N=1 TO 20 LDX #1
BACK xxxx
NEXT -
INX
CFX #21
BNE BACK
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Simple loop with step:

BASIC Machine code
FOR N=0 TO 80 STEP 5 LDX #O
BACK xxxux
NEXT .
CLC
TXA
ADC #5
TAX
CFX #BS
BENE BALCEK
Loop with variables:
BASIC Machine code
FOR N=S TO F—1 LDX S
: BACK =#x#x
NEXT )
INX
CFX F
BNE BACK

Loop with step:
BASIC Machine code
FOR N=S TO F—1 STEP J LDX S
BACK »xux

NEXT

CLC
TXA
ADC J
TAX
CFX F
BENE BACK
Decrementing loop:
BASIC Machine code
FOR N=10TO 1 LDX #10

BACK xuxux
NEXT .
DEX
ENE BACK
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Note that a decrementing loop is easier and does not require either a CPX

or an allowance for an extra ‘one’.
Branch if zero:

BASIC
IF N=0 THEN GOTO 500

Branch if N non-zero:

BASIC
IF N<>0 THEN GOTO 500

Branch if N<O0:

BASIC
IF N<<0 THEN GOTO 500

Branch if >= zero:

BASIC
IF N>=0 THEN GOTO 500

Machine code
L.DA N
EEQ LAEBEL

LABEL xxxx

Machine code

LbA N
BNE LABEL

LABEL xxxx

Machine code
LDA N
EMI LABEL

LABEL xxux

Machine code
LDA N
BFL LABEL

LABEL #xux

Note that zero is classified as a positive number.

Change contents of variable if zero:

BASIC
IF N=0 THEN S=Q

Machine code
LDA N

BENE LABEL
LDA @

STa &
LABEL xxuxx
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If zero, change sign of a variable:

BASIC Machine code
IF N=0 THEN S=S§ LDA N
ENE LABEL
LbAa S
EOR #%FF
CLC
ADC #1
STA S
LABEL xxxx

Branch if both comparisons are true:

BASIC Machine code

IF N=30 AND K=22 LDA N

THEN GOTO 500 CMF #30
BNE LABEL1
LDA K
CHMF #2Z22

REQ LABELZ2
LABREL 1 xuxx

LAREL 2 wxxux
Branch if either of two comparisons are true:

BASIC Machine code
IF N=30 OR K=22 LDa N
THEN GOTO 500 CMF #30
BEG LABEL
LDA K
CMFP #22
BEQ LABEL

LABEL xxxx

Double byte working

Single byte working is ideal for illustrating the basic principles of the 6502
or, indeed any other 8-bit microprocessor. However, machine code
programs of practical value must assume that numbers will, in many cases,
greatly exceed the capacity of a single byte. We should always bear in mind
that the maximum unsigned binary number in a byte is limited to 255
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decimal ($FF). With signed numbers in two’s complement form, the
maximum positive number is +127 and —128 decimal ($7F and $80)
respectively. These limits are dictated by the hardware but, fortunately, it is
easy to overcome them by the application of software. Multi-byte (or
multi-precision) working is the software solution. In other words, an 8-bit
microprocessor can, by software, simulate a microprocessor of (theoretic-
ally) any desirable wordlength.

There are penalties, of course - the most important being increased
execution time and extra programming involved in arranging the
component bytes. The examples which follow in this chapter are intended
only for guidance, not as fully workable programs. To have made them
workable would have entailed adding various initialising lines, thus
complicating, rather than clarifying, the issue.

Handling two-byte numbers

By considering one number as two bytes joined end to end, the maximum
unsigned binary number increases to 65535 (216—1). In two’s complement
binary, the maximum positive number is 32765 (2i5—1) and-the maximum
negative number is —32766 (215). It does not matter in principle where the
component bytes are stored during processing but it is logical for them to be
stored in consecutive locations with the lower order byte first. For
example, we might quite arbitrarily choose the address $1234 for the lower
order byte so the highest order byte would naturally reside in $1235.
However, it is customary in any explanatory text involving locations to
avoid specifying absolute addresses. It is far better to choose a variable
name, preferably of mnemonic value, even if it is only provisional. Thus we
could refer to the composite two bytes as NUMBER but, with regard to the
addresses, the lower order byte would be located in NUMBER and the
higher order byte in NUMBER+1.

Incrementing a two-byte number

The numerical limit imposed by a single byte is also a nuisance in loop
counting. For example, we can’t set up a simple loop to clear the screen if
the total number of revs is limited to 256. However, it is easy to extend this
by using a couple of extra instructions in the counting loop as shown in the
following example:

INC NUMEER
ENE SkKIP

INC NUMBER+1
SKIF xxux

NUMBER is the low order byte of theloop counterand NUMBER +1 the
high order byte. While the count remains less than 255, only the low order
byte is incremented because of the branch to the branch label SKIP
(XXXX indicates any instruction which would be applicable in a real case).
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On the 256th revolution, NUMBER goes over the top from 255 to zero.
When this occurs, the branch to SKIP is not taken and the higher order
byte of the counter in NUMBER+1 is incremented ready for the next
round of the outer loop. Note that the inner loop will revolve 256 times for
each revolution of the outer loop. The outer loop can, if desired, revolve
256 times, making the complete count equal to 256X256 or 65536 revs.
However, the outer loop test (not shown) can be tailored to suit any
required number of revolutions within that limit.

Decrementing a two-byte number
It is not quite so straightforward to set up a two-byte loop which
decrements towards zero rather than incrementing towards some finite
number. This is because SBC must be used instead of DEC to avoid trouble
with the carry bit.

The following procedure is as economical (in execution time) as any:

SEC

LDA NUMBER
SEC #1

STA MUMBER
BCS SKIP
DEC NUMBER+1
SKIP xxxx

Note that SBC is used for decrementing the low order byte instead of DEC.
This is because

(a) DEC will not effect the carry flag
(b) The Z flag cannot be used because the high-byte is only decremented
when the low-byte has passed through zero.

Adding two single byte numbers

It is obvious that when adding two single byte numbers, although the
numbers may be within the capacity of a single byte, we must aliow for the
possibility of a double byte result. In the following example, the double
byte result is assumed to be in SUM and SUM+1,

LDA #0

57TA SUM+1
cLC

LDA NUMBER1
ADC NUMBERZ
5TA SUM

BCC SKIF
INC SUM+1
SKIP »xxxx
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Adding a single byte number to a double byte number

CLC

LDA NUMBERI1
ADC NUMBERZ
5TA NUMBER1
BRCC SKIF

INC NUMBER1+1
SKIP xuxx

The double byte number is NUMBER1 and NUMBER 1+1 and the single
byte number is NUMBER?2. The new result overwrites the original data in
NUMBERLI, a practice frequently used. For example, in BASIC, A=A+1

employs a similar overwrite technique. Extra locations for the result must
be used if the original data is to be preserved.

Adding two double byte numbers

CLC

DA NUMBERI1
ADC NUMBERZ
S5TA RESULT
LDA NUMBERi+1
ADC NUMBER2+1
85TA RESULT+1

Subtracting a single byte number from a double byte number
The coding for subtraction is similar to addition except that SEC and SBC
are substituted for CLC and ADC respectively.

SEC

LDA NUMBER1
SBC MUMBERZ
5TA NUMBER1
BCS SKIF

DEC NUMBER1+1
SKIP xuxx

Subtracting a double byte number from a double byte number

SEC

LDA NUMBER1
SBC NUMBERZ2
5TA RESULT
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LDA NUMBER1+1
SEC NUMBERZ2+1
STA RESULT+1

Multiplication by a constant

The 6502, in common with nearly all other 8-bit microprocessors, does
not know how to multiply or divide. It has no MUL or DIV instruction in
its repertoire. When working in BASIC, this deficiency is not noticed
because the interpreter has supplied multiplication and division subroutines.
However, because these subroutines are general-purpose, and must include
multiplication and division of floating point numbers of enormous
magnitude, they, quite naturally, tend to be a little on the slow side. In
contrast, the majority of numbers encountered in everyday life (or in data
processing) are of unassuming size.

Because of this, it is worth considering a few multiplication routines even
if they are restricted to small numbers. Subject to certain restrictions, a
simple way to multiply, or divide, is by the use of shift and rotate
instructions.

Multiplying a two byte number by a constant power of 2

ASL LOWBYTE
ROL HIGHRBRYTE

Shifting a register (or memory location) left is equivalent to multiplying by
2. In the case of a double byte number, we must first use ASL to shift the
lower order byte then follow it with ROL which, in addition to the natural
shift action, collects any carry generated by the previous ASL.

In general, each time we repeat the above action, we double the previous
value. For example, the following code multiplies by 4:

ASL LOWBYTE
ROL HIGHRYTE
ASL LOWBYTE
ROL HIGHBYTE

Multiplying a two byte number by non-integral powers of 2

It is not possible to multiply by 3,5,6,7,9, etc., because they are not exact
integrals of powers of 2. Consequently, we must resort to a piecemeal
procedure involving shifting and adding. The following example will
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multiply the contents of NUMBER and NUMBER+1 by 3 and store the
product in RESULT and RESULTH1.

LDA NUMBER+1
PHA

LDA NUMBER
ASL A

ROL NUMBER+1
cLC

ADC NUMBER
S5TA RESULT
PLA

ADC NUMBER-+1
STA RESULT+1

To multiply a two byte number by 5
The following code is similar to, but more lengthy than, the above.

LDA NUMBER+1
PHA

LLDA NUMBER
ASL A

ROL NUMBER+1
ASL A

ROL NUMBER+1
CLC

ADC NUMBER
STA RESULT
PLA

ADC NUMBER+1
STA RESULT+1

It would, of course, be possible to multiply by repeated addition and avoid
the complexity of shifting and adding but it could be at the expense of
coding. When the multiplying constant is large, say greater than 5, then
loop methods would be employed.

Branching and testing

The building brick idea can be extended to cover branching and end-of-
loop testing. These are the most error-prone techniques in machine code.
The most common error is being one count out in the number of
revolutions.
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Comparing a two-byte number to zero and branching if result is non-
zero

The two-byte number to be compared is assumed to be in NUMBER and
NUMBER+1

LDA NUMBER
ENE [_ABEL
LDA NUMBER+1
BNE LABEL

Comparing a pair of two byte numbers and branching if they are
unequal

LDA NUMBER1
CMP NUMBERZ
BNE LAREL
LDA NUMBERIL+1
CMP NUMBERZ+1
BNE LABEL

Up counting, using a twin byte loop

All previous examples in this chapter have been presented in terse format,
intended for study rather than for keyboard entry. Program 5.1 is a simple
example of an up counting loop which willfill the screen with the character
‘H’ and a few over for luck. It is worth entering, if only to consolidate the
idea behind building bricks.

10 ' UPCOUNTING TWIN BYTE LOOP’

20 OQUTPUT = $FFD2
JO CYCLE = 4FBR

40 NUMBER = S$FD

50 *#=%C000

&0 LDA #0

70 STA NUMBER
80 85TA CYCLE
F0 S5TA CYCLE+]
100 LDhA #4

110 STA NUMBER+1
120 LOOP LDA #%48
130 JSR OUTPUT
140 INC CYCLE
150 BNE SKIP
160 INC CYCLE+1

170 SKIP LDA NUMBER
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180 CMFP CYCLE
170 BNE LOOP
200 LDA NUMBER+1
210 CMP CYCLE+1
220 BNE L OOP
230 RTS

Program 5.1. Up counting twin byte loop.

The first keyable program in a chapter deserves a line-by-line treatment:

Line 10: the character ‘" indicates that what follows is comment only.
Line 20 assigns the arbitrary chosen label OUTPUT to the absolute address
$FFD2. This is the address of the kernal subroutine CHROUT which
prints the character corresponding to the ASCII code in the accumulator.
Line 30: the label CYCLE is assigned to the zero-page address $FB. This is
the low-byte address of the counter; the high-byte will be addressed by
CYCLE+1 (which of course is $FC).

Line 40: the number of characters to be printed isin NUMBER (low-byte is
assigned to $FD so high-byte is in NUMBER+1 at $FE).

Line 50: the first byte of the assembled program is to start at $C000. This
format is standard to the MIKRO Assembler.

Lines 60 to 90 initialise the low byte of NUMBER, CYCLE and CYCLE+1
to zero.

Lines 100 and 110 load 4 into the high byte of NUMBER. (Note that the
two byte number is now 400 in hex or 4 X 256 = 1024 in decimal.) This will
be the final end of loop comparison test prior to exit.

Line 120 loads the accumulator with the ASCII code for ‘H’. The line is also
the top of the loop so has been given the branch label LOOP.

Line 130 calls the subroutine for printing the character on the screen.
Lines 140 to 160 increment CYCLE and, where necessary, CYCLE-1.
Note that only when CYCLE has passed the 255 barrier and gone over the
top to zero is CYCLE+ 1 incremented. Until this state arrives, the program
will always short-circuit to SKIP.

Lines 170 to 220 form the end of loop test by comparing the low bytes of
CYCLE and NUMBER and branching back to LOOP if not equal. If they
are equal the program falls through to compare the high bytes, again
branching back to LOOP if not equal.

Figure 5.1 shows a flowchart of the program but the ‘process’ is kept
undefined to maintain the building brick concept. The ‘process’ in the
listing (painting ‘H’s over the screen) was intentionally trivial but it should
be clear that lines 120 and 130 can be replaced and expanded to cover any
repetitive process. The point of the program was to portray the loop
mechanism, not the process within the loop.

Although loops which count up towards a terminating number always
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SET UP NUMBER
IN ZERO PAGE

[ INITIALISE |

| _CYCLETO ZERO

PROCESS

INCREMENT
CYCLE
(2BYTES)

] >
NO

EXIT

Fig. 5.1. Flowchart for Program 5.1.

seem more natural, they require an extra comparison test and so are
slightly less efficient than down counting loops.

Down counting using a twin byte loop

Program 5.2 can also be keyed in direct from the listing shown. Since this

10
20
30
40
30
60
70
80
?0
100

'DOWNCOUNTING TWIN BYTE LOOP

OuUTPUT
CYCLE
*#=$C000

START

LDA
STA
LDA
STA
LDA
JSR

$FFD2
sFB

#0
CYCLE
#4
CYCLE+1
#$48
OuUTPUT
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110 SEC

120 LDA CYCLE
130 SBC #1

140 STA CYCLE
150 BCS SKIP
160 DEC CYCLE+1
170 SKIP LDA CYCLE
180 BNE START
1390 LDA CYCLE+1
200 BNE START
210 RTS

Program 5.2. Down counting twin byte loop.

program is broadly similar to the previous program, a line-by-line
treatment was considered unnecessary. However, the change in counting
direction allows two economies. In the first case, there is no need for the
variable NUMBER and NUMBER+1. Instead, CYCLE is decremented

directly and the loop termination is compared to zero.

User subroutines

Machine code programs, called from, and intended to return to, BASIC via
RTS are essentially subroutines. However, it is a common requirement for
the machine code program itself to use subroutines, either user-designed or
one of the many resident subroutines embedded within the kernal
operating system. Subroutines designed by the user are called by JSR
followed by an operand, either an absolute machine address (not
recommended) or a destination label.

As in BASIC, machine code subroutines can be nested one within the
other. Enthusiasm for high nesting levels should not be carried to excess or
the stack could overflow. Each unreturned JSR uses up two stack
locations, storing the two-byte return address in the Program Counter. No
provision is made in the 6502 for saving the other registers. It is up to the
programmer to make provisions for protecting valuable register data from
corruption by the subroutine. Subroutines are best avoided altogether
within loops which are time critical. Each JSR squanders 6 clock cycles and
RTS another six. It is far better to splice the code within the main program,
even if it means writing the same segment of code several times.

Subroutines in the kernal

There are many subroutines buried within the kernal, most of which can be
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called up by the user. They constitute a valuable source of ‘free’ building
bricks. It would be pointless at this stage to plod through the entire
repertoire of kernal operating system calls. The complete list appears in the
Commodore 64 Programmer’s Reference Guide but, for convenience, has
been repeated in slightly different form in Appendix B at the back of this
book.

Jump vectors

As far as the user is concerned, the kernal i1s essentially a jump table
containing a set of calling addresses for the various subroutines. Most are
called via a direct jump, but some of the more useful subroutines are called
via an indirect jump. We have already used one of these, CHROUT, which
had the calling address $FFD2 or 65490 decimal. This uses an indirect
jump via a page 3 location $0326. The address contained in $0326 (low-
byte) and $0327 (high-byte) is the actual starting address of CHROUT,
normally $FICA.

This apparently roundabout method of calling subroutines is not
peculiar to the Commodore 64. It is, in fact, a well-known solution to a
problem which arises when an up-dated operating system is brought out. If
operating system subroutines were called directly rather than using kernal
jump vectors, they would, in all probability, be incorrect for an up-dated
ROM unless the new designers tailored the software to maintain address
compatibility, a restriction which would almost certainly degrade software
efficiency. With kernal vectors, all that would be required is a
rearrangement of the jump table in the RAM area. In fact the overall
advantages are as follows:

(a) It allows the user freedom to intercept the standard operating system
call by simply changing the vectored address.

(b) It allows the user to write extra code to modify the normal call before
the original routine is entered.

(c) Operating syste ROMs can be updated or modified without affecting
previously written software. All that needs to be changed by the new
operating system is the vector contents.

Important kernal subroutines

As previously stated, Appendix B lists most of the subroutines together
with the calling addresses and relevant details. However, some of the most
commonly used examples are worth special treatment.

CHROUT
Function: to output a character at the next printing position to the
currently opened output channel. If no other channel (such as the printer)
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has been opened, the subroutine considers the channel to be the screen; it
defaults to Device 6 which is the screen.

Calling address: $FFD2 or 64590 decimal.

Register involved: the ASCII code of the required character must be in the
accumulator before calling CHROUT.

You are reminded that using JSR CHROUT (which is the preferred
form) will only work if a previous assignment to $FFD2 or 64590 decimal
has been made to the label CHROUT. If not, the absolute address form,
JSR $FFD2 must be used. This reminder also applies to other subroutine
calls.

CHRIN

Function: obtains a character from the currently open input channel and
passes it to the accumulator. If no channel has previously been opened, the
subroutine defaults to the keyboard. In addition to the above function, the
cursor blink is turned on until CR (carriage return) is keyed in. The input
from the keyboard is stored in the BASIC buffer which can hold up to 88
characters.

Calling address: SFFCF or 65487 decimal.

Register involved: accumulator.

The following example shows how to input a stream of characters from
the keyboard and store sequentially in a block of memory. The process
ends on receipt of a carriage return (ASCII 13).

LDY #0O
INFUT JSR CHRIN

5TA BLOCK,Y

INY

CHMP #13

BNE INFUT

SCNKEY

Function: scan the keyboard for key pressed. If key is then pressed, the
ASCII value is placed in the keyboard buffer.

Calling address: SFF9F or 65439.

Register involved: none.

GETIN
Function: Get a character from the currently open channel, defaulting to
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the keyboard. Removes a character from the keyboard buffer and places its
ASCII code in the accumulator.

Calling address: $FFE4 or 65508,

Register involved: accumulator.

The following example illustrates some of the subroutines described
above:

TYFPE JSR SCNKEY
JSR GETIN
CMP #42
BEQ FINISH
JSR CHROUT
JMP TYFPE
FINISH RTS

SCNKEY puts the keyed character into the keyboard buffer. GETIN
transfers the character from the buffer into the accumulator. CHROUT
transfers the character from the accumulator to the screen. The sequence is
terminated whenever an asterisk (ASCII 42) is entered. Provided the usual
assignments are added to the above example, it can be used for typing
practice.

Adding an array of integers

To consolidate the concept of building bricks, some of them are put
together into a simple practical program that will sum an integer array.

Program 5.3 adds two-byte integer numbers held in a BASIC array
(A%). For testing purposes only, the BASIC routine, Program 5.4, fills an
array with random integers of mixed sign, the number of integers being
specified by the user. The flowchart shown in Fig. 5.2 is given first in the
hope it will help in the understanding of the listing.

Program 5.3 is the first one in this book which illustrates the speed of
machine code. When assessing the speed, it should be realised that the
filling of the array and the scrolled display of the numbers is carried out in
BASIC. The speed referred to applies only to the machine code portion
which performs the actual addition. A sequential addition check is carried
out in BASIC, primarily for speed comparisons. To compare machine code
speed with the BASIC equivalent, run the test program with 4000 integers.
It will be seen that the machine code sum appears almost instantaneously
after the numbers stop scrolling. The BASIC check on the addition takes
many seconds. The program should be fairly easy to follow when traced in
conjunction with the flowchart. It uses some of the coding blocks discussed
in the earlier part of this chapter. For those without an assembler, the
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‘ START )

Get start address of BASIC integer
array from locations $2F and $30

Add offset to address of 1st element
of array. Store in POINTER (2 bytes)

|

Initialise RESULT to zero (2 bytes)

T
]

Add successive integers in array.
Store cumulative sum in RESULT (2 bytes)

I

Add 2 to POINTER (2 bytes)

|

Decrement NUMBER by 1 (2 bytes)

NUMBER=0
(2 bytes)

C = )

Fig. 5.2. Flowchart of Program 5.3.

10 ! SUMMATION OF AN INTEGER ARRAY

20 NUMBER = $FB
30 RESULT = 4FD
40 POINTER = $4E

50 *=$C000
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&0 cLc

70 LDA $2F

80 ADC #9

0 STA POINTER
100 LDA %30

110 ADC #0

120 STA POINTER+1
130 LDA #0

140 STA RESULT
150 STA RESULT+1
160 LOOP LDY #1

170 CLC

180 LDA (POINTER),Y
190 ADC RESULT
200 S5TA RESULT
210 DEY

220 LDA (POINTER),Y
230 ADC RESULT+1
240 STA RESULT+1
250 cLC

260 LDA POINTER
270 ADC #2

280 S5TA POINTER
290 BCC SKIP

300 INC POINTER+1
310 SKIF SEC

320 LDA NUMBER
330 SBC #1

340 STA NUMBER
350 BCS5 SKIP2
360 DEC NUMBER+1
370 LDA NUMBER
380 SKIPZ BNE LOOP

390 LDA NUMBER+1
400 BNE LOOP

410 RTS

Program 5.3. Integer array summation.

10 REM INT ARRAY SUMMATION TEST PROGRAM
20 INPUT"HOW MANY INTEGERS";BZ

30 REM FILL AND DISPLAY RANDOM ARRAY

40 DIM AL(BL)

S0 FOR N=1 TO B%

60 AZLIN)=1000%RND (1)
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70 AL IN)Y=ALI{N)-500

80 PRINT AZ(N)

0 NEXT

100 REM SET UP NUMBER PARAMETER
110 HB%Z=BL/256

120 LB%Z=BZ-(HBL*256)

130 REM PASS NUMBER PARAMETER
140 POKE 251,LB%

150 POKE 252,HB%

160 REM CALL SUMMATION ROUTINE
170 SYS5 491352

180 PRINT

190 PRINT"SUMMATION M/CODE"

200 PRINT"= "PEEK (253)+PEEK (254) %236
210 PRINT

220 S%=0

230 FOR N=1 TO BZ

240 SL=SAU+AL(N)

250 NEXT

260 PRINT"CHECK USING BASIC="SZ

Program 5.4. BASIC test program for integer array summation.

CO00 18 AS 2F &9 09 BS 4E AS
£008 30 69 00 B3 4F A9 00 85
CO010 FD 83 FE AO 01 18 Bl 4E
€018 65 FD 85 FD 88 Bl 4E 65
CO20 FE 85 FE 18 AS 4E &9 02
COZ8 85 4E 90 02 E& 4F 38 AS
CO30 FB E7 Q1 85 FB BO 02 Céb6
CO38B FC AS FB DO D& AS FC DO
€o40 D2 &0

Hex Dump 5.1. Object code for Program 5.3.

object code of Program 5.3 is given in Hex Dump 5.1. This can be poked
into memory with the hex loader routine given in Chapter 4 (Program 4.1).

Summary

1. Certain machine code patterns tend to reappear frequently and may be
thought of as ‘building bricks’.

2. Although building bricks are useful during development, some lines
may be redundant when fitted into real programs.
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3. The building brick habit could begin with machine code versions of
structures encountered in BASIC.

4. It is unlikely that programs using only single byte numbers would have
wide practical value.

5. The maximum signed numbers possible in a single byte are +127 and
—128.

6. The maximum signed numbers possible in double byte representation
are +32765 and —32766.

7. It is useful to name the two bytes representing one number as ‘name’
and ‘name+1’ - for example, NUMBER and NUMBER+1 for low-
and high-byte respectively.

8. Remember to use CLC before adding low-byte pairs.

9. Remember to use SEC before subtracting low-byte pairs.

10. Never use CLC or SEC when handling high-byte pairs.

11. To multiply by 2, use ASL on low-byte and then ROL on high-byte
each time.

12. To multiply by non-integral powers of 2, employ a mixture of shifting
and adding.

13. Loops which count down towards zero are more efficient, but more
error-prone, than those which count up.

14. There are useful subroutines already within the kernal which can be
called up. They are defined in Appendix B, together with the calling
addresses.

15. The most commonly used kernal subroutines will be CHROUT,
CHRIN,SCNKEY and GETIN.

Self test

5.1 Write your own machine code routines to simulate the following

BASIC lines:
(a) FOR N=3TO 21 STEP 3
(b) 1IF K = A—3 THEN J=J-1
(c) PRINT*"GRANADA TECHNICAL BOOKS”
5.2 Write a routine to clear a double byte number held in NUMBER and

NUMBER+I.



Chapter Six
Sort Routines

Introduction

Apart from personal interest and/or intetlectual stimulation, there is little
point in adopting a partisan approach to machine code. It is pointless to
view BASIC as a language inferior to machine code. The two should
complement, rather than rival, each other. Once familiarity and confidence
is gained in handling machine code, it will gradually become clear which
parts of a BASIC program should be relegated to machine code and which
parts can be handled quite adequately in BASIC. There can be no doubt
that one area in data processing, calling out for machine code solutions, is
sorting data into numerical or alphabetical order. It has been stated that
approximately 30% of all commercial computing time is spent on some
kind of sorting activity. An ordered system of any kind represents a ‘high
energy’ system. Since the equation for energy in physics is power multiplied
by time, we would therefore expect that programs which sort data will
make heavy demands on computing time.

The physical power of a given computer is fixed by the hardware, which
in turn depends on such things as the clock frequency, wordlength and the
sophistication built into the central processor (in the Commodore 64, the
central processor is the 6510A). Although in no way meant as criticism, the
machine, and indeed most other microcomputers likely to be found in the
average home, are slow in terms of mips (millions of instructions per
second). The Commodore 64 is rated at about 0.5 mips. In contrast, some
of the modern mainframe giants have reached a speed approaching 100
mips with a wordlength of 64 bits and it is confidently expected that this
figure will be substantially beaten by the forthcoming breed of fifth
generation machines. Returning to present day reality, there is nothing we
can do about the limitations imposed by the hardware of our machine. The
only method of attack is by the use of software which takes the fullest
advantage of the machine.

This chapter is devoted entirely to the problem of machine code sorting
routines wich will be found useful in any programs designed to handle large
amounts of data. In the home, for example, lists of names, addresses and
telephone numbers are more valuable as information sources if arranged in
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some sort of order. Stock control, payrolls and customer accounts in
business are nearly always arranged in alphabetical or numerical order.

The programs in this chapter cover the sorting of integers, strings,
floating point numbers and two-dimensional string arrays. They will also
include routines which sort fixed length multi-field records. Programs are
given, complete with a BASIC test program, so they can be entered and
exhaustively examined. It should be pointed out that the machine code
portion of the listings will stand alone as subroutines as long as (a) the
correct parameters are passed from any BASIC program, and (b) the code
is lodged either in one of the safe areas (not necessarily the areas used in our
listings) or dynamically, above or below BASIC.

Bubble sort of a BASIC integer array

The bubble sort is well known but often despised because it is slow. It is one
of the simplest sort routines to understand. However, providing there are
not too many elements in the array, even bubble sorts are acceptable if
written in machine code. Because the programs which follow are intended
to be used in conjunction with BASIC, it is important to understand how
the interpreter allocates variable space.

How integer array variables are stored
The two bytes, allocated to each integer array variable, are arranged as
shown in Fig. 6.1.

sign bit (bit 7)

'

, Hbyte | Lbyte

Increasing memory
-

Fig. 6.1. How integers are stored.

Each integer of the array is stored sequentially so, in effect, each element
has an address two bytes in advance of the previous integer.

The array header
The array itself always has a header. This is automatically set up in the form
laid out in Fig. 6.2.

The first two bytes are the array name and correspond to the maximum
of two distinguishable characters. For integer arrays, the first byte is the
character ASCII code + $40. The second byte is the character ASCII code
+ $40, or just $40 if no second character exists in the array name. For
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example, the array name A% would have $81 for the first byte ($41+$40)
and $40 for the second since there is no second character.

The second two bytes are a pointer to the start of the next array stored in
memory (if any). If the start address of the present array is incremented by
the contents of these two locations then the address of the next array is
obtained. Incidentally, this facility is used in the array search routine at the
end of the chapter. The bytes mentioned above are followed by a single byte
set to the number of dimensions in the array. The final two bytes of the
header are the array size low-byte and high-byte respectively. The elements
of the array, that is the actual values, are then stored sequentially in
memory following the header in two-byte blocks, starting with the zeroth
element. It is always useful to leave the zeroth element clear in many
applications, so incrementing the array start address by 9 will give the
address of the first array integer. A further increment of 2 will give the
second, etc., and is the method used later in Program 6.1. However, if the
zeroth element in the sort is to be included, an initial offset of 7 must be
used.

Increasing memory

\j

Number of

Array name Pointer to next array dimensions Array size
ASCIl |ASCIi+128
t
+ 128 or 128 | L byte H byte 01 H byte L byte H byte
| ELEMENT 0
L byte H byte L byte H byte L byte E
Element 1 Element 2 I

Fig. 6.2. How integer arrays are stored.

When a machine code routine is called from BASIC via SYS, it is
necessary to POKE certain locations prior to the call in order to supply the
routine with the essential parameters. The short program below shows how
the parameters can be passed to sort routines before the call is made:

10 HEZL=NL/2556

20 LBYL=NY— (HBL*2Z56)
30 POEE Z251,LB%

40 POKE 252,HBY

S0 5Y58 49152

The number of integers within the array is stored in N%. The BASIC
integer variable N9 will need to be split into its two component bytes for
poking into locations 251 and 252. It is these locations which are used by
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the sort routine to contain the number of integers. The high-byte HB% is
formed by simply dividing by 256. Since HB% is an integer variable the
INT function will occur automatically. The low-byte LB% is formed from
the remainder by the equation shown in line 20. If the machine code is
assembled at $C000 then SYS49152 will call the routine. Of course, the
above variable names are arbitrarily chosen but they must be in the above

order.
The flowchart of the bubble sort is given in Figure 6.3. As can be seen, the

algorithm consists basically of an inner control loop and an outer control
loop. The pairs of integers are repeatedly incremented, compared (and if
necessary swopped) in the inner loop. The largest integer in the list always
‘bubbles’ through to the last position. It is no longer necessary to involve
this integer again so the outer loop count may be reduced by one. On
subsequent inner loop series of cycles, the next largest integer bubbles
through to the last but one position in the list, and so on, until the list is fully
sorted. The maximum number of comparisons is approximately equal to
half the square of the array size.

The use of aswop flag often speeds up the execution of a bubble sort. The
reason is that the program can exit early when no swops have been made
during the current cycle. (This condition cannot be sensed by a standard
bubble sort.) The savings are particularly noticeable when the array is only
moderately disordered. In view of this extra addition to the bubble sort, the
algorithm can be considered a bubble/exchange sort hybrid. Note from the
flowchart that the blocks have been numbered for reference purposes.
Block 7 is expanded in Fig. 6.4. The listing corresponding to the previous
flowcharts (Figs. 6.3 and 6.4) is given in Program 6.1.

Breakdown of Program 6.1

Lines 30-70 set up the zero-page labelled locations referred to in assembly
code.

Lines 90 to 140 decrement NUMBER (stored in two successive bytes) by
one. NUMBER and NUMBER+1 are set up by poking locations 251 and
252 from BASIC. They contain the number of integers in the array low-
byte and high-byte respectively. Note, that zero-page locations must be
used for indirect indexed addressing.

Lines 150 to 210 store the address of the first element of the array in
POINTER?2 (2 bytes). This is done by picking up the start address of the
array from locations $2F and $30 and adding the 9 offset as described
earlier.

Lines 200 to 250 initialise the swop FLAG and CYCLE counter to zero.
Lines 260 to 290 copy POINTER2 (2 bytes) contents into POINTER1 (2
bytes).

Lines 300 to 340 adds 2to POINTERI and stores the result in POINTER2.
The reason why 2 is added is so that POINTER2 is the address of the next
integer in the array, that is to say, 2 bytes onwards.
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START

i Decrement NUMBER by 1 (2 bytes) ]
T
|
2 Set FLAG to zero (1 byte)
Set CYCLE to zero (2 bytes)
Obtain start address of integer array
3 from locations $2F and $30
Add 9 offset for address of 1st element
4 of Array and store in POINTER 2 (2 bytes)

]
1

5 I POINTER 2 becomes POINTER 1 (2 bytes) I

Add 2 to POINTER 1 and

6 store in POINTER 2 (2 bytes)
| l Compare integers J —l
[
| 7 in order? Yes |
I n order? |
| 1
| | Set swap FLAG ]y |

| ' |

[ Swap integers a byte at a time (2 bytes) ]

LT |
s| Increment CYCLE (2 bytes) ]
9
No CYCLE = NUMBER

(2 bytes)

10

swap
FLAG clear
(1 byte)?

Yes

n] Decrement NUMBER by 1 (2 bytes)

No

RETURN

Fig. 6.3. Flowchart for integer array bubble sort.
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Set carry

I
I
I I
|
[

Set Y index register to 1

| I

I
I
I
I
I
I
Subtract 1st integer low-byte I
I
I
I
|
I

! from 2nd integer low-byte
I
| I
I

Decrement Y index register

' |
Subtract 1st integer high-byte
from 2nd integer high-byte

Carry flag
set?

Set swap
| FLAG

|
I |
I
I

Swap integers a byte
at a time (2 bytes)

Fig. 6.4. Expansion of block 7.

10 ! BUEBRBLE SORT

20 ! ARRAY OF UNSIGNED INTEGERS
30 NUMBER = %FB

40 CYCLE %FD

SO FOINTER1 57
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60 POINTER2 = 459
70 FLAG = &%FF
80 *=%C000
F0 SEC
100 t DA NUMBER
110 SBC #1
120 STA NUMBER
130 BCS OUTERLOOF
140 DEC NUMBER+1
150 OUTERLOOP cLC
160 LDA $2F
170 ADC #9
180 STA POINTERZ
170 LDA $30
200 ADC #0
210 STA POINTERZ2+1
220 LDA #0
230 STA FLAG
240 85TA CYCLE
250 STA CYCLE+1
260 INNERLOOP LDA POINTERZ+1
270 S5TA POINTER1+1
280 LDA POINTER2
290 STA POINTERI
00 cLC
310 ADC #2
320 8TA POINTERZ
I30 BCC SKIP
340 INC POINTER2+1
350 SKIP LDY #1
360 SEC
370 LDbA (POINTER2Z),Y
J80 SBC (POINTER1),Y
320 DEY
400 LDA (POINTERZ),Y
410 SBC (POINTER1),Y
/420 BCS NOSWOFP
430 INY .
440 STY FLAG
450 SWOFLOOP LDA (POINTER1),Y
460 TAX
470 LDA (POINTER2),Y
480 STa (POINTER1),Y
490 TXA

500 STA (POINTER2),Y
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310 DEY

8520 BPL SWOFLOOF
530 NOSWOP INC CYCLE

540 BNE SKIPZ2

550 INC CYCLE+1
560 SKIPZ LDA CYCLE

570 CHMP NUMBER
a80 BNE INNERLOOP
590 LDA CYCLE+1
&00 CMP NUMBER+1
610 BNE INNERLOOP
620 LDA FLAG

630 BER FLAGCLEAR
&40 LDA NUMBER
650 SEC

660 SBC #1

670 STA NUMBER
680 BCS SKIP3

&690 DEC NUMBER+1
700 LDA NUMBER
710 SKIFZ BNE OQUTERLOOP
720 LDA NUMBER+1
730 BNE OUTERLOOP

740 FLAGCLEAR RTS

Program 6.1. Bubble sort of an unsigned integer array.

Line 350 initialises the Y index register to 1 for indirect indexed addressing.
Lines 360 to 420 subtract the integers with carry, a byte at a time, keeping
the result of the second bytes in the accumulator. Indirect indexed
addressing is used so the Y register is decremented to pick up the high-byte.
If the carry flag is set at the end of the subtraction, no swop is required.
(This method only works for unsigned integers.)

Line 430 prepares the Y index register for the swop process. INY is used to
set this to 1 since the current value of Y is 0.

Line 440 stores the Y register contents as a swop flag in FLAG (any non-
zero quantity would do here).

Lines 450 to 520 swop the integers, a byte at a time, starting with the high
byte. Notice that the X register is used as a temporary storage location
because it is economical in terms of execution time. TAX uses only two
machine cycles, whereas the alternatives PHA or STA require 3 cycles.
Lines 530 to 550 increment the CYCLE counter by 1. The coding given is
economical in execution time.,

Lines 560 to 610 compare the low-byte of CYCLE and NUMBER. If the
result is non-zero, a branch is made to the label INNERLOOP. If the result
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is zero, the program ‘falls through’ to compare the high-byte in the same
manner.

Lines 620 to 630 checks if the swop FLAG is clear. If so, a branch to
FLAGCLEAR is made.

Lines 640 to 690 decrement NUMBER by 1 (2 bytes of course).

Lines 700 to 730 check if NUMBER has reached zero, first checking the
low-byte with branching to OUTERLOOP if not true, otherwise ‘falling
through’ to compare the high-byte.

10 REM SORT TEST PROGRAM

20 REM ARRAY OF UNSIGNED INTEGERS
30 INPUT"SORT HOW MANY INTEGERS";BZ
40 REM FILL AND DISPLAY RANDOM ARRAY
50 DIM AXA(BAL)

60 FOR N=1 TO EBZ

70 AL(N)=INT (FZ2000%RND (1))

80 PRINT AL(N)

F0 NEXT

100 FRINT"SORTING"

110 REM SET UP NUMBER PARAMETER
120 HRYL=BL/236

130 LBYL=B%Z-(HBYL*256)

140 REM PASS NUMBER PARAMETER

150 POKE 251,LB%

160 POKE 252,HB%

170 REM CALL SORT ROUTINE

180 TI1$="000000"

190 5YS 491352

200 TL=TI1/60+0.5

210 REM DISPFLAY SORTED ARRAY

220 FOR N=1 TO B%

230 PRINT ALZN)

240 NEXT

250 PRINT"SORTED"RZ"INTEGERS IN"TZ"SECONDS

Program 6.2. BASIC test program for unsigned integer array sort.

To test Program 6.1, a BASIC program on the lines of Program 6.2 can
be used. This fills an integer array with random unsigned integers. The size
of the array is selected by the user in line 30. The parameters are set up as
previously described and the sort routine called with SYS49152. The sorted
array is then displayed on the screen together with the time taken. It is not
surprising that the time taken to set up and display the arrays often exceeds
the time taken to sort them, due to the inherent slowness of BASIC. This is
a good illustration of the speed of machine code.
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COo00 38 AS FB E? 01 85 FB BO
o008 02 C6 FC 18 AS 2F 69 09
COo10 85 59 AS 30 69 00 85 S5A
CO18 A9 00 83 FF 85 FD 85 FE
COo20 AS S5A 835 58 AS 59 85 57
Co28 18 69 02 83 59 20 02 Eéb
CO30 5A A0 01 38 B1 59 F1 57
€038 88 Bl 592 F1 57 BO 10 C8
Co40 84 FF B1 57 AA Bi 59 91
C0o48 57 8A 91 59 88 10 F3 Eé6
CO50 FD DO 02 E6 FE AS FD CS
CO58 FB DO C5 AS FE CS FC DO
COo&60 BF AS FF FO 13 AS FB 38
Co68 ET 01 85 FB BO 04 Cé6 FC
CO70 AS FB DO 97 AS FC DO 93
£o78 60

Hex Dump 6.1. Object code for Program 6.1.

The hex dump is given to help those who have not yet purchasea any
form of assembler. The object code for Program 6.1 is given in Hex Dump
6.1. The code can be positioned from $C000 onwards by entering the bytes
in the DATA section of the hex loader given and described in Chapter 4
(Program 4.1).

Bubble sort of a BASIC string array

This routine is capable of sorting a BASIC string array, where the string
elements can vary in length up to the legal maximum of 255.

How string arrays are stored *

When a string array is set up by the interpreter three bytes are used in a
similar manner to integers but these bytes are not the strings themselves but
the length and address details of where the string is actually stored. These
three bytes can be referred to as a string information block, the details of
which are given in Fig. 6.5.

String . .
. length String pointer

[y i

L byte H byte

Increasing memory

-
Lot

Fig. 6.5. How string information blocks are stored.
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The actual string, consisting of the ASCII codes in sequential memory
locations, is stored from the starting address given by the string pointer. A
string array is formed by a series of such string information blocks, stored
sequentially in memory. Therefore, if we want to swop strings (such as
during a string sort) it is only necessary to swop the string information
blocks since these tell the system where the strings are stored. This makes
programs involving machine code sorting much easier because most of the
work is already done by the interpreter. The string length byte of the string
information block gives the actual length of the string in bytes (characters).
A string array is stored in the format shown in Fig. 6.6.

Increasing memory

Y

Number of
Array name Pointer to next array dimensions Array size
ASCI1+128|
ASCII or 128 L byte H byte 01 H byte L byte length
! String
Pointer | Pointer lenath Pointer | Pointer
Lbyte | Hbyte 9 Lbyte | Hbyte
|
Information block 0" ' String Informationblock 1 =

Fig. 6.6. How string arrays are stored.

With reference to Fig. 6.6, the header is much the same as that used for
integers. However, the first two bytes that hold the array name are set out in
a different way. This is so that the system can differentiate between
different array types. For a string array, the first byte of the name is simply
the ASCII character code. The second byte of the name is set to the ASCII
code of the second character + $40, or just $40 if the second allowable
character is not used. For example, the array name A$ would have $41 (the
ASCII code for ‘A’) as the first byte and $40 as the second byte.

Again, as with the integer array sort, it is necessary to POKE locations
251 and 252 with the number of strings in the array prior to calling the sort
routine with a SYS49152 command. The flowchart is essentially the same
as Fig. 6.3 with one proviso, the details of block 7. The flowchart, showing
the amendment is given in Fig. 6.7. The corresponding listing is given in
Program 6.3.

It is only necessary here to explain the differences between Program 6.3
and Program 6.1. In Program 6.3, POINTERI and POINTER?2 are the
address pointers to the string information blocks of the pair of strings. A
further level of indirect indexed addressing is necessary to pick up the
actual string characters since the string information block supplies only the
address of where the string is stored.
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| Obtain addresses and length of strings [
from string information block. Store in
| STRING 1and STRING 2 (2 bytes each) [

and LENGTH 1 and LENGTH 2 {2 bytes each)

| | |
| | Initialise character counter to zero ] I

=
I L I
Compare current STRING 1 and STRING 2
] ASCII codes |

Descending
ASCIl order?

ASCII codes
equal?

| Increment character counter |

Y | '

I Compare character counter to Y A |
LENGTH 1 (1 byte)

End of

Yes
I STRING 1?

Compare character counter to LENGTH 2
(1 byte) |

End of

2 No I
STRING 2

[
: [ Set swalp FLAG ] |

I Swap string information block a |
| byte at a time (1 byte) |

Fig. 6.7. Block 7 expansion for string array sort.
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10 'BUBBLE SORT
20 'STRING ARRAY

F0O NUMBER = &FB

40 CYCLE = %FD

50 POINTER1 = $37

60 POINTERZ = %59

70 FLAG = &FF

B0 STRING1 = 3B

20 STRING2 = %3D

100 LENGTHI = $5F

110 LENGTHZ = $60

120 *=3C000

130 SEC

140 LDA NUMBER

130 SBC #1

160 STA NUMBER

170 BRCS OUTERLOOP
180 DEC NUMBER+1
190 OUTERLOOFP cLc

200 LDA $2F

210 ADC #$0A

220 S5TA POINTERZ
220 LDA %30

240 ADC #0

250 STA POINTERZ2+1
260 LDA #O

270 STA FLAG

280 STA CYCLE

290 STA CYCLE+1
FO0 INNERLOOF LDA FPOINTERZ+1
310 STA POINTER1+1
J20 LDA POINTERZ2
J30 STA FOINTER1
340 CLC

350 ADC #3

360 STA POINTERZ2
370 BCC SKIF

380 INC POINTER2Z2+1
390 SBKIF LDY #0O
400 LDA (POINTER1),Y
410 STA LENGTHI1
420 LDA (POINTER2),Y
430 STA LENGTH2
440 INY

450 LDA (POINTER1),Y
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460 STA STRING1

470 LDA (POINTERZ2),Y
480 STA STRINGZ

490 INY

200 LbA (POINTER1),Y
310 S5TA STRING1+1
520 LDA (POINTERZ),Y
330 STA STRING2+1
540 LDY #0O

oS0 CoMPLOOP LDA (STRING2),Y
560 CHMFP (STRING1),Y
570 BCC Sswor

280 BNE NOSWOFP

590 INY

600 CPY LENGTHI

610 BEQ@ NOSWOP

620 CPY LENGTHZ2

630 BER SWOF

640 BNE COMFLOOF

&50 STAGE BNE OUTERLOOP
660 SWOP LDY #2

&70 STY FLAG

680 SWOPLOOGF LDA (POINTER1),Y
690 TAX

700 L DA (POINTERZ2),Y
710 STA (POINTER1),Y
720 TXA

730 STA (POINTER2),Y
740 DEY

750 BFL SWOFPLOOF
760 NOSWOF INC CYCLE

770 BNE SKIFPZ

780 INC CYCLE+1

790 SKIP2 LDA CYCLE

800 CMF NUMBER

810 BNE INNERLOOP
820 LDA CYCLE+1

830 CMP NUMBER+1

B840 ENE INNERLOOF
850 LDA FLAG

860 BER@ FLAGCLEAR
870 LDA NUMBER

880 SEC

890 SBC #1

Q00 5TA NUMBER
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10 RCS SKIP3
P20 DEC NUMBER+1
930 LDA NUMBER
240 SKIP3 BNE STAGE
S0 LDA NUMBER+1
P60 BNE STAGE

970 FLAGCLEAR RTS

Program 6.3. String array bubble sort.

Breakdown of Program 6.3

Lines 30 to 110 assign labels to frequently used locations.

Lines 130 to 180 decrement NUMBER (2 bytes) by one.

Lines 190 to 250 pick up the array start address from $2F and $30 and add
$0A offset so as to point to the first element of the array. The result is then
placed temporarily in the address pointer POINTER2 (2 bytes). The zeroth
element is left clear for headings, etc.

Lines 260 to 290 initialise the locations labelled FLAG and CYCLE (2
bytes) to zero.

Lines 300 to 330 copy the contents of POINTER2 (2 bytes) to POINTERI
(2 bytes).

Lines 340 to 380 add 3, the length of a string information block, to
POINTER?2? (2 bytes).

Lines 390 to 410 use indirect indexed addressing to pick up the length of the
first string from its string information block. This data is stored in
LENGTHT (1 byte).

Lines 420 to 430 pick up the length of the second string and store it in
LENGTH2 (1 byte).

Lines 440 to 530 pick up the start addresses of the pair of strings, using
indirect indexed addressing. The addresses are stored in zero page
locations STRINGI (2 bytes) and STRING2 (2 bytes).

Line 540 sets the Y index register to zero. The Y register doubles as the
string character counter.

Lines 550 to 580 compare the ASCII codes of the pair of strings picked up
by indirect indexed addressing.

On comparison, as soon as the ASCII codes are found to be in descending
order the strings are immediately swopped. If the ASCII codes are found to
be ascending order, then no swop is required.

Line 590 increments the character counter.

Lines 600 to 610 compare the length of the first string (LENGTH 1) to the
character counter. If they are equal, a swop is not required.

Lines 620 to 630 compare the length of the second string (LENGTH2) to
the character counter. If they are equal, a swop is forced.

Line 640 forces the branch to COMPLOOP which compares the next
characters in the pair of strings, and so on.
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Line 650 is an out-of-range branch patch. It is due to the displacement limit
in relative addressing, which would have been exceeded in line 960. This
method is often preferred to an absolute JMP instruction for object code
relocation purposes.

Line 660 sets the Y register to 2. The Y register doubles as a byte counter
and the index register for indirect indexed addressing.

Line 670 sets the swop flag. Any non-zero value can be stored in FLAG to
indicate that a swop has occurred.

Lines 680 to 750 swop the 3-byte string information blocks, one byte at a
time, using the X register as a temporary store.

Lines 760 to 970 are similar to lines 530 to 740 of Program 6.1.

The routine can be tested by the BASIC Program 6.4 which fills a string
array with random strings of various lengths. The array size is entered by
the user and split up into low-byte and high-byte components. These values
are poked into locations 251 and 252 respectively and the sort routine
called with SYS49152. The sorted string array is then displayed along with
the sorting time. The object code is also supplied in the form of Hex Dump
6.2.

10 REM SORT TEST PROGRAM

20 REM STRING ARRAY

30 INPUT"SORT HOW MANY STRINGS";R7Z
40 REM FILL AND DISFLAY RANDOM ARRAY
50 DIM A% (BY)

60 FOR N=1 TO BZ%Z

70 Bf=""

80 AZ=10«*RND(1)+1

0 FOR Z=1 TO A%

100 RU=26%RND(1)

110 K$=CHR%& (RZ+65)

120 Be=BE+KS

130 NEXT

140 A% (N)=R%

150 PRINT A%(N)

160 NEXT

170 PRINT:PRINT

180 PRINT"SORTING"

190 PRINT:FPRINT

200 REM SET UF NUMBER PARAMETER
210 HBYI=BL/Z256

220 LBZ=Ri- (HRZ*254)

230 REM PASS NUMBER PARAMETER
240 POKE 251,LBY%

250 POKE 252,HBZ

260 REM CALL SORT ROUTINE
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270 TI%="000000"

280 SYS 49152

290 TL=TI/60+0.5

300 REM DISPLAY SORTED ARRAY

310 FOR N=1 TO BZL

320 PRINT A% (N)

330 NEXT

340 PRINT

350 PRINT"SORTED"BL"STRINGS IN"TZ"SECONDS”

Program 6.4. BASIC test program for string array sort routines.

Co00 38 AS FB E? 01 85 FB BO
Co08 02 Cé6 FC 18 AS 2F 6% 0A
C010 85 39 AS 30 69 00 835 S5A
Co18 A9 00 85 FF 85 FD 85 FE
CO20 AS 5A 85 58 AS 59 85 57
€028 18 &9 03 H3 59 20 02 E6
CO30 5A AO OO0 B1 57 85 SF Bi
€CO38 57 85 &0 €8 B1 57 85 5B
C040 B1 59 85 SD C8 Bl 57 85
Cco4g 5C Bl 59 85 SE A0 00 Bl
Cos0 5D DI SR 90 OF DO 1E C8
COS8 C4 SF FO 19 C4 60 FO 04
CO&0 DO ED DO A7 AOC 02 84 FF
Co68 B1 57 AA Bl S9 21 57 BA
CO70 91 59 88 10 F3 E6 FD DO
Co78 02 E6 FE AS FD €S FB DO
£080 9F AS FE C5 FC DO 99 AS
Ccoa8 FF FO 15 AS FB 38 E9 01
CO%0 85 FR BO 04 C6 FC AS FB
Co98 DO €8 AS FC DO C4 &0

Hex Dump 6.2. Object code for Program 6.3.

Merge sort of BASIC integer array

Although the bubble sort routines given earlier are fast for small numbers
of elements, the execution time increases alarmingly when in excess of
about a hundred elements. To see the delay on high numbers, try running
Program 6.1 with 1000 integers. You could well wait a minute or so before
the sort was completed. A far better solution is to use a merge sort
algorithm. We noted earlier that the bubble sort is fairly efficient if only a
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START

Find next power of 2> = NUMBER!

Store in SIZE (2 bytes). 1

Store respective index in POWER (1 byte)
|

I
[ Divide SIZE by 2 (2 bytes) ]2

[__Store NUMBER'SIZE in CYCLES (2bytes) | 3

T
I

Set LOOPCOUNT to zero {2 bytes)
Set swap FLAG to zero (1 byte)

Obtain start of integer array from
locations $2F and $30

l

Add 9 offset for address of 1st element
of array and store in POINTER 1 (2 bytes) 6

Multiply SIZE by 2 (2 bytes) then add to

POINTER 1 and store result in POINTER 2 7
(2 bytes)
b
— — - - Tl - == = s
[—I Compare integers —I j

| |

| Yes |

H Set swap FLAG y!
|

1
[ Swap integers a byte at a time (2 bytes) J l
—

______l_______

l Add 2 to both POINTER 1 and POINTER 2 (2 bytes) | ]

[ Increment LOOPCOUNT (2 bytes) 110

No LoOPCOUNT_ 1
=CYCLES

Swap
FLAG clear
1 byte]

No

I Decrement CYCLES (2 bytes) 13

| Decrement POWER (1 byte) 15
16
No
POWER =0
RTS

Fig. 6.8. Merge sort of an integer array.
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small number of elements are to be sorted. We also noted that the useof a
swop flag system significantly speeds up the execution of a bubblesort ofa
roughly ordered list. The merge sort algorithm takes advantage of both
these virtues. Essentially, the array to be sorted is split up into small sets
which are bubble sorted. These are merged to form larger sets which will be
roughly in order. These larger sets are bubble sorted and merged to form
even larger sets and so on until we are left with one large, roughly ordered
list. This is finally bubble sorted which will be efficient due to the points
made earlier. A flow-chart for a version of a merge sort is given in Fig. 6.8.

There is a danger of becoming intoxicated with verbosity in an attempt
to explain the intricate details of a merge sort. A better grasp of the
principles can be obtained by a trace table. In fact, any program which is
difficult to follow will benefit from such an analysis. The idea is to follow
the program through with arbitrary test data, keeping track of what
happens to the various ‘key’ locations such as loop counters, etc. A trace
table for the flowchart is given in Fig. 6.9. The unsorted array uses 8
random integers and shows how they would be sorted at various stages of

TRACE TABLE FOR A MERGE SORT

LOCATION LABELS Value after st Value after 2nd Value after 3rd
outer loop completed | outer loop completed | outer loop completed
NUMBER 8 8 8
POWER 2 1 0
SIZE 4 2 1
CYCLES 4 6 7
Unsorted array Array after Ist Array after 2nd Array after 3rd
outer loop completed | outer loop compileted | outer loop completed
S 5 3 1
8 6 1 2
3 3 4 3
| 1 2 4
7 7 S 5
6 8 6 6
4 4 7 7
2 2 8 8

Fig. 6.9. Simple trace table of merge sort algorithm.



114 Advanced Machine Code Programming for the Commodore 64

- 3
| Set Y index register I
| | |
| I
| Set carry flag |
| | |
| Subtract with carry 1st integer |
low-byte from 2nd integer low-byte
I |
| Decrement Y index register
l
| l |
Subtract with carry 1st integer
| high-byte from 2nd integer high-byte |
I |
l |
Overflow FLAG
| |
l
y |
| Reverse sign bit of accumulator |
I T |
| Result Yes I
| positive? |
| |
| Set swap FLAG |
| Yy
| I
| |
Swap integers a byte at a time
| (2 bytes) |
N |

Fig. 6.10. Expansion of Block 8.
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the trace. Notice how the array becomes more and more ordered as each
outer loop cycle is completed.

If the flowchart and trace table have been understood, Program 6.5
should be reasonably easy to decipher. In this program, there is provision
for sorting signed integers. An expansion of Block 8 of the flowchart is
given in Fig. 6.10, showing the extra details required.

Program 6.5 assumes that the number of integers in the array are stored
in locations 251 (low-byte) and 252 (high-byte). This is done using the
POKE statement in BASIC prior to calling the routine with SYS49152. See
Program 6.6 for details of how this is performed.

10 'MERGE SORT
20 'ARRAY OF SIGNED INTEGERS

30 NUMBER = S$FB

40 CYCLES = %FD

S50 SIZE = %57

60 STORE = %59

70 LOOPCOUNT = $5A

8C POWER = $5C

20 POINTER1 = 43D
100 POINTERZ = $4E
110 FLAG = &FF
120 *=%C000

130 LDA #1

140 STA SIZE
150 LDA #0

160 S5TA POWER
170 STA SIZE+1
180 SIZELOOP INC POWER
150 ASL SIZE
200 ROL SIZE+1
210 SEC

220 LDA SIZE
230 SEC NUMBER
240 LDA SIZE+1
250 SBC NUMBER+1
260 BCC SI1ZELOOP
270 OUTERLOOP LSR SIZE+1
280 ROR GIZE
290 SEC

00 LDA NUMBER
10 SBC SIZE
320 S5TA CYCLES
330 LDA NUMBER+1

40 SBC SIZE+1
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350
360
370
380
320
400
410
420
430
440
450
460
470
480
490
=00
510
520
330
S40
S50
260
S70
580 INNERLOOF
970

600

610

620

&30

640

650

660

&70 NOOVERFLOW
&80

670

700 SWOPLOOP
710

720

730

740

730

760

770

780

770 S5TAGE1

MIDLOOF

STA
LDA
S5TA
5TA
5TA
CLC
LDA
ADC
S5TA
LDA
ADC
STA
LDA
5TA
LDA
ASL
ROL
CLC
ADC
5TaA
LDA
ADC
574
LDY
SEC
LDA
SEC
DEY
LDA
SBC
BVC
EOR
BPL
INY
5TY
LDA
TAX
LDA
5TA
TXA
STA
DEY
BFL
EMI
EBNE

CYCLES+1

#0

FLAG
LOOPCOUNT
LOOPCOUNT +1

2F

#9
POINTER1
$30

#0
POINTER1+1
SIZE+1
STORE
SIZE

A

STORE

POINTERI1
POINTER2
POINTER1+1
STORE
POINTERZ+1
#1

(POINTER2) , Y
(POINTER1), Y

(POINTERZ),Y
(POINTER1),Y
NOOVERFLOW
#480

NOSWOP

FLAG
(POINTER1),Y

(POINTERZ),Y
(POINTER1),Y

(POINTER2),Y
SWOPLOOP

NOSWOP
MIDLOOP



800
810
820
830
840
850
860
870
880
870
200
F10
Q20
930
Q40
950
960
970
Q80
g0
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

STAGE2
NOSWOF

SKIF

SKIFP2

SKIP3

SKIF4

FLAGCLEAR

BNE
INC
BNE
INC
LDA
cLC
ADC
STA
ECC
INC
CLC
L. DA
ADC
STA
BCC
INC
L DA
CMP
BNE
LDA
CHMF
BNE
LDA
BEQ
SEC
LDA
SEC
S5TA
BCS
DEC
LDA
BNE
LbA
BNE
DEC
BNE
RTS

Sort Routines

OUTERLOOF
LOOPCOUNT
SKIP
LOOPCOUNT+1
POINTER1

#2
POINTER1
SKIP2
FOINTER1+1

POINTERZ
#2
POINTERZ
SKIFP3
POINTERZ+1
CYCLES
LOOPCOUNT
INNERLOOP
CYCLES+1
LOOPCOUNT+1
INNERLOOF
FLAG
FLAGCLEAR

CYCLES
#1
CYCLES
SK1P4
CYCLES+1
CYCLES
STAGEL
CYCLES+1
STAGE1L
POWER
STABEZ

Program 6.5. Merge sort of an array of signed integers.

Breakdown of Program 6.5

Lines 30 to 110 assign labels to often used locations.
Line 120 causes assembly at location $C000.

117
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Lines 90 to 120 obtain the address of the BASIC variable NUMBER 9%from
the CALL parameter block. The address is placed in zero-page locations
STORE (2 bytes).

Lines 130 to 170 initialise the locations POWER (1 byte) and SIZE (2
bytes).

Lines 180 to 260 are a block of code dedicated to finding the next power of
2, greater than or equal to the contents of NUMBER (2 bytes). The result is
stored in SIZE (2 bytes). The corresponding power index is stored in
POWER (1 byte). The op-codes ASL and ROL in conjunction are
convenient for 2-byte manipulation of powers of 2.

Lines 270 to 280 divide SIZE by 2 by shifting right.

Lines 290 to 350 subtract SIZE from NUMBER and store the result in
CYCLES (2 bytes).

Lines 360 to 390 initialise LOOPCOUNT (2 bytes) and the swop FLAG (1
byte) to zero.

Lines 400 to 460 pick up the address of the first element in the array by
adding 9 to the contents of locations $2F (low-byte) and $30 (high-byte).
These locations hold the address of the start of array space and 9is added to
account for the array header bytes. The result is stored in POINTER] 2
bytes).

Lines 470 to 570 are a block of code which multiplies SIZE (2 bytes) by 2
and adds POINTERI1 (2 bytes), storing the result in POINTER 2 (2 bytes).
The reason why it is multiplied by 2 is because each integer occupies two
bytes. The multiplication is achieved by shifting left once.

Lines 580 to 640 subtract the first integer from the second, low-byte then
high-byte, keeping the most significant byte of the result in the accumulat or
(this has the most important sign bit). Indirect indexed addressing is used
to pick up the integers from memory. Remember that integers are stored in
memory with the high-byte lowest in memory.

Line 650 checks if the V flag is set. If clear, it skips line 660.

Line 660 assumes that the V flag is set so reverses the sign bit.

Line 670 tests the sign of the accumulator contents and bypasses the swop
loop if positive (including zero). This ensures that if both integers are the
same, no swopping occurs.

Lines 680 and 690 set the Y index register to 1 again. This is also a
convenient place to set the swop flag so that the Y register contents are
stored in FLAG. Any non-zero value would have done equally well.
Lines 700 to 770 swop the integers, a byte at a time, using indirect indexed
addressing.

Line 780 serves no useful purpose in the program, other than causing a
bypass of the out of range branch-patch section (lines 790 to 800). This is
due to the relative branch limit being exceeded later on in the program. A
staging post is needed to branch back again. An absolute jump could have
been used but the advantage of relocating the object code would have been
lost. This may be a problem for those without assemblers.
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Lines 810 to 830 increment LOOPCOUNT (2 bytes).

Lines 840 to 950 add the usual 4 to each of POINTERI (2 bytes) and
POINTER?2? (2 bytes).

Lines 960 to 1010 compare LOOPCOUNT to CYCLES, branching to
INNERLOOP if not equal.

Lines 1020 to 1030 test the swop flag and, if clear, branch to
FLAGCLEAR.

Lines 1040 to 1090 decrement CYCLES (2 bytes).

Lines 1100 to 1130 compare CYCLES to zero, branching to MIDLOOP
via STAGE], the out of range branch-patch.

Lines 1140 to 1150 decrement POWER (1 byte) and compare it to zero,
branching if not zero to OUTERLOOP via STAGE?2.

10
20
30
40
S0

&0

70

80

F0

100
110
120
130
140
150
160
170
180
170
200
210
220
230
240
250

260

REM SORT TEST PROGRAM

REM ARRAY OF SIGNED INTEGERS
INPUTYSORT HOW MANY INTEGERS":BL
REM FILL AND DISPLAY RANDOM ARRAY
DIM AX(BL)

FOR N=1 TO BZ

AZ (N)Y=INT (32000%RND (1))
AL IN) =AL(N) -16000
FPRINT AXZN)

NEXT

PRINT"SORTING"

REM SET UFP NUMBER FPARAMETER
HBZ=BZ/256

LB%=R%L- (HRL%256)

REM PASS NUMBER PARAMETER
POKE 251,LB%Z

FOKE 252,HB%

REM CALL SORT ROUTINE
TI&="000000"

5YS 49152

T4=TI1/60+0.5

REM DISPLAY SORTED ARRAY
FOR N=1 TO BX

PRINT AZLN)

NEXT

PRINT"SORTED*BL" INTEGERS IN"TL"SECONDS

Program 6.6. BASIC program for testing signed integer array sort routine.

Program 6.6 is a simple BASIC testing program which sets up an array of
signed integers, passes the usual parameters and calls the sort routine with
SYS49152. Finally the sorted array is displayed along with the sorting time.
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For those without assemblers the object code of Program 6.6 is given in
Hex Dump 6.3.

CO00 A7 01 B85 57 A9 00 85 SC
Co08 B 5B E6 SC 06 57 26 S8
CO10 3B AS 57 ES FB AS 5B ES
Co18 FC 90 EF 46 58 66 57 38
CO20 AS FB ES 57 83 FD AS FC
CoZ8 ES 58 85 FE AT 00 85 FF
CO30 85 5A 85 SR 18 AS 2F &9
CO38 09 85 5SD AS 30 &9 00 85
Co40 5E AS S8 85 S? AS 57 OA
Co48 26 59 18 65 SD 85 4E AS
COG0 DE &5 59 85 4F A0 01 38
Co58 Bl 4E F1 5SD 88 Bl 4E Fi
CO&60 5D S50 02 4% B0 10 16 CB
Co68 84 FF Bl SD AA Bl 4E 291
CO70 3D 8A 91 4E 88 10 F3 30
CO78 04 DO Bl DO 9E E&6 S5A DO
COBO 02 E6 SB AS SD 18 469 02
€o8B8 85 5D 20 02 E6 SE 18 AS
CO90 4E &9 02 8BS 4E 90 02 Eé
COo?8 4F AS FD CS S5SA DO RBR6 AS
€COA0 FE CS5 SB DO BO AS FF FO
COAB 13 3B AS FD EZ 01 85 FD
CORO BO 04 C& FE AS FD DO Ci
COB8 AS FE DO BD C6 SC DO ER
COCO &0

Hex Dump 6.3. Object code for Program 6.6.

Merge sort of a BASIC string array

The overall structure of the next program is similar to Program 6.5, the
main difference being the substitution of the string comparison segment for
block 8 in the flowchart. This segment has been described in detail for the
bubble sort. For other minor differences, refer to the program breakdown
section.

Since the overall structure is similar to that of Program 6.5 the
breakdown of Program 6.7 will only stress the differences.

10 'MERGE SORT
20 !'STRING ARRAY



30
40
50
60
70
80
0

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

4460

470

NUMBER =
CYCLES =
POINTERI1 =
POINTERZ2 =
FLAG =
STRING1 =
STRING2 =
LENGTH1 =
LENGTH2 =
POMWER =
SIZE =
LOOPCOUNT =
STORE =
*=$C000
L DA
S5TA
LDA
8TA
STA
SIZELOOF INC
ASL
ROL
SEC
LDA
ShC
LDA
5BC
BCC
OUTERLOOF LSR
ROR
SEC
LDA
SHC
5TA
LDA
SEC
STA
MIDLOOF LDA
S8TA
5TaA
STA
cLc
LDA
ADC
STA

Sort Routines

$FB
$FD
$57
$59
$FF
$5B
$5D
$5F
$60
$4E
$4F
$51
$26

#1
SIZE
#0O
FPOWER
SI1ZE+1
FOWER
SIZE
SI1ZE+1

SIZE
NUMEBER
SIZE+1
NUMBER+1
SIZELOOF
SIZE+1
SIZE

NUMBER
S1ZE
CYCLES
NUMBER+1
SIZE+1
CYCLES+1
#0

FLAG
LOOPCOUNT
LOOPCOUNT+1

+2F
#50A
FPOINTER1

121
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480
490
200
510
520
330
540
350
560
570
280
990
&00
&610
620
&30
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
00 STAGE1
710 STAGEZ

INNERLOOP

COMPLOOCF

LDA
ADC
STA
LDA
STA
L DA
ASL
ROL
CLC
ADC
ADC
sSTA
LDA
ADC
ADC
STA

LDY

LDA
STA
LDA
STA
INY
LDA
STA
LDA
STaA
INY
LDA
S5TA
LDA
5Ta
LDY
LDA
CMP
BCC
BNE
INY
CrPY
BEQ
CPY
BE®
BNE
BNE
BNE

£30

#0
POINTER1+1
SIZE+1
STORE
SIZE

A

STORE

S1ZE
POINTERI1
POINTERZ2
STORE

S1ZE+1
POINTER1+1
FOINTERZ+1
#0
(FPOINTER1),Y
LENGTH1
(POINTERZ2),Y
LENGTHZ

(POINTER1),Y
STRING1
(POINTER2),Y
STRINGZ

(POINTER1),Y
STRING1+1
(POINTERZ),Y
STRINGZ+1
#0
(STRING2),Y
(STRING1),Y
SWoP

NaSwor

LENGTH1
NOSWOP
LENGTHZ2
SWoP
coMPLOOP
MIDLOOP
OUTERL.OOP



F20
930
P40
930
940
970
80
790
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1330 FLAGCLEAR

SWOP

SWOPLOOP

NOSWOP

SKIP

SKIP2

SKIP3

SK1F4

LDY
STY
L.DA
TAX
LDA
STA
TXA
STA
DEY
BPL
INC
BNE
INC
LDA
cLc
ADC
5TA
BCC
INC
LDA
cLC
ADC
STA
BCC
INC
LDA
cCMP
BNE
LDA
CHMP
BNE
LDA
BEQ
SEC
LDA
S5BC
STA
BCS
DEC
LDA
BNE
L.DA
BNE
DEC

Sort Routines

#2
FLAG
(POINTER1),Y

(POINTERZ),Y
(FOINTER1),Y

(POINTERZ),Y

SWarLO0P
LOOPCOUNT
SKIP
LOOPCOUNT+1
POINTER1

#3
POINTERI1
SKIP2
POINTER1+1
POINTERZ2

#3
POINTERZ
SKIP3
POINTERZ+1
CYCLES
LOOPCOUNT
INNERLOOP
CYCLEG+1
LOOPCOUNT+1
INNERLOOGP
FLAG
FLAGCLEAR

CYCLES
#1
CYCLES
SKIF4
CYCLES+1
CYCLES
STAGE1
CYCLEGS+1
STAGE1
POWER

123
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1360 BNE STAGEZ
1370 RTS

Program 6.7. Merge sort of a BASIC string array.

Breakdown of Program 6.7
Lines 80 to 110 assign labels to the extra locations needed.
Lines 440 to 500 add $A offset instead of 9 to the array start address to
point to the first element of the array. This is because string information
blocks require an extra three locations for each element.
Lines 510 to 620 multiply SIZE (2 bytes) by 3. Thisis also to accommodate
the extra length of the string information block. The process is carried out
by shifting SIZE left once and adding in the original SIZE contents. The
contents of POINTERI1 is then added and the result stored in POINTER2.
In lines 1060 to 1160, three is added to both POINTER 1 and POINTER?2
for the same reason.

The routine can be called and tested with the same BASIC test program
as that used for the bubble sort. The object code of Program 6.7 is given in
Hex Dump 6.4.

CO00 A9 01 85 4F A? 00 85 4E
Co08 B85 50 E6 4E 06 4F 26 S0
CO10 38 AS 4F ES FB AS S0 ES
Co18 FC 90 EF 446 S50 66 4F 38
COZ0 AS FB ES 4F 85 FD AS FC
CoZ8 ES 50 85 FE AT 00 85 FF
CO30 85 51 85 52 18 AS 2F 69
Co38 0A BS 57 AS 30 69 00 B85
CO40 58 AS S50 85 26 AS 4F 0A
Co4a8 26 26 18 65 4F 65 57 85
CO50 59 AS 26 65 50 65 58 85
€o38 5A A0 00 Bl 57 85 SF Bi
CO060 59 85 60 CB Bl 57 85 SB
Co68 Bl 59 95 5D C8 Bl 57 85
Co70 5 Bl 59 85 SE A0 00 Bi
Co78 5D DI 5B 90 11 DO 20 C8
COoBO C4 SF FO 1B C4 60 FO 06
£o88 DO ED DO A0 DO 8D A0 02
CO90 84 FF B1 57 AA B1 59 91
COo98 57 8A 91 59 88 10 F3 Eb
COAO 51 DO 02 Eb6 52 AS 57 18
COAB 69 03X 85 57 90 02 E&6 58
COBO AS 59 18 69 03 85 59 90
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CcoRg 02 E6 GA AS FD CS5 51 DO
COoCO 98 AS FE C5 52 DO 92 AS
€coc8 FF FO 13 38 AS FD E9 01
CODO 85 FD BO 02 C&6 FE AS FD
CoD8 DO BO AS FE DO AC Cé6 4E
COEO DO AA 60

Hex Dump 6.4. Object code for Program 6.7.

Merge sort of an unsigned BASIC floating point array

Programs which handle records or tables often need to sort unsigned
floating point numbers (most numerical values in such programs are
unsigned). It is therefore important to have at least an outline
understanding of how floating point numbers are stored in the
Commodore 64.

A floating point number consists of a mantissa and an exponent. Four
bytes are allocated to the mantissa and one for the exponent. The most
significant bit of the exponent is the sign bit and is in reverse two’s
complement. That is to say, a negative exponent has ‘0’ as the sign bit, and a
‘1’ indicates a positive exponent. The reason for this rather strange practice
is that the maximum possible negative exponent closely approaches zero.
This means that zero can be loosely taken as the most negative exponent.
Therefore less negative exponents, through to positive, correspond to a
progression of increasingly larger exponents.

From a mathematical viewpoint, a mantissa is always positive so no sign
bit is required. Therefore, the sign bit in the mantissa is used to denote the
sign of the entire number in conventional two’s complement form.

How floating point numbers are stored
Floating point numbers are stored in a five-byte form, the details of which
are given in Figure 6.11. When an array of floating point numbers is set up,

Sign bit Overall
of exponent sign bit
+ of number

L

: ! MSB L.S.B.

|Exponer£ [ Mantissa |
= >

Increasing memory

Fig. 6.11. How floating point numbers are stored.
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a header is used in a similar manner to other types of array described
previously. The details are shown in Fig. 6.12. The only difference, other
than the method of storing each element, is the contents of the first two
bytes which name the array. The first byte is the ASCII code of the first

Increasing memory

Number of
Array name Pointer to next array dimensions Array size
s T |l T |l i ey pey |
| - i N o
ASCII
ASCH o zero L byte H byte 01 H byte L byte |exponent
e
MSB LSB exponent MSB
Element 0 = Element 1
LSB exponent MSB LSB i
Element 2

|
> |- »|

Fig. 6.72. How a floating point array is stored.

character and the second byte is the ASCII code of the second character of
the array name. The second byte is set to zero if the second distinguishable
character is not used. For example, if the array is named A, the first byte
will be set to $41 and the second set to zero. Another point worth noticing is
that the first element is offset from the start of the array by $0C bytes.
However, if the zeroth element is to be used the offset is reduced to § bytes.

The overall structure of the flowchart differs from that of Fig. 6.8,
mainly in Block 8. The element comparison block is replaced by Fig. 6.13.
There are other minor differences due to the increased number of bytes
required for storing each array element. The breakdown of Program 6.8
will detail the differences only. It should also be remembered that the
number of array elements must be poked into the locations 251 and 252 as
before. The complete listing is shown in Program 6.8.

Breakdown of Program 6.8

Lines 400 to 460 arrange for an offset of $C to be added to the array start
address in order to set POINTER 1 (2 bytes) to the first element in the array.
Lines 460 to 610 multiply SIZE (2 bytes) by five to account for the increased
number of bytes used to store each element. This is done by shifting SIZE
left twice and adding in the original value of SIZE. The contents of
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r_—___J[_____

| Compare exponents of 1st FP number
to that of 2nd FP number (1 byte)

- =

In descending
order?

Exponents
the same?

Subtract mantissa of 1st number Y
| from that of 2nd number

In descending
order?

| Set swap FLAG |

‘ Swap FP numbers a byte |
at a time (5 bytes)

Fig. 6.13. Block 8 expansion for unsigned floating merge sort.

POINTER! (2 bytes) are added and the result stored in POINTER2 (2
bytes).

Line 620 initialises the Y index register for indirect indexed addressing.
Lines 630 to 660 compare the exponent bytes of the accessed pair of
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10 ! MERGE SORT
20 ! ARRAY OF UNSIGNED FP NUMBERS

30 NUMBER = &$FB

40 CYCLES = &FD

S0 SIZE = %57

60 STORE = %59

70 LOOPCOUNT = &$3B

80 POMWER = &3D

0 POINTER1 = %35E

100 POINTERZ2 =  $4E

110 FLAG = &FF

120 *=4C000

130 LDA 3#1

140 8TA SIZE
150 LDA #0

160 STA POWER
170 S5TA SIZE+1
180 G5IZELOOP INC POWER
190 ASL SIZE
200 ROL SIZE+1
210 SEC

220 LDA SIZE
230 5BC NUMBER
240 LDA SIZE+1
250 SHEC NUMBER+1
260 BCC SIZELOOP
270 OUTERLOCOP LSRR SIZE+1
280 ROR SIZE
270 SEC

300 LDA NUMBER
310 SBC S1ZE
J20 STA CYCLES
330 LDA NUMBER+1
340 SBC SIZE+1
350 STA CYCLES+1
360 MIDLOOF LDA #0

370 STA FLAG
380 STA LOOPCOUNT
390 STA LOOPCOUNT+1
400 CLc
410 LDA $2F

420 ADC #%0C
430 STA POINTER1
440 LDA %30

450 ADC #0



460
470
480
490
500
510
520
530
540
330
560
570
580
590
600
610
620
630
640
650
660
&70
6£80
6570
700
710
720
730
740
750
760
770
780
730
800
810
820
830
840
850
860
870
880
890
200

INNERLOOFP

cCOoMPLOOP

SWOP

SWOPLOOF

STAGE1L
STAGEZ
NOSWOF

SKIP

STA
LDA
STA
LDA
ASL
ROL
ASL
ROL
cLc
ADC
ADC
STA
LDA
ADC
ADC
5TA
LDy
LDA
CHMP
BCC
BNE
LDY
SEC
LDA
SBC
DEY
BNE
BCS
LDY
STY
LDA
TAX
LDA
5TA
TXA
STA
DEY
BFL
BMI
ENE
ENE
INC
BNE
INC
LDA
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POINTER1+1
SIZE+1
STORE+1
SIZE

A

STORE+1

A

STORE+1

SI1ZE
POINTER1
POINTERZ2
STORE+1
SIZE+1
POINTER1+1
POINTERZ+1
#0
(POINTER2),Y
(POINTER1),Y
SWOP
NOSWOF
#4

(POINTER2) , Y
(POINTER1),Y

CaoMPLOOF
NOSWOF

#4

FLAG
(POINTER1),Y

(POINTERZ),Y
(FPOINTER1),Y

(POINTER2),Y

SWOPLOOP
NOSWOF
MIDLOOP
OUTERLOOP
LOOPCOUNT
SKIF
L.OOPCOUNT+1
POINTERI1

129



130 Advanced Machine Code Programming for the Commodore 64

210 cLC

920 ADC #5

@30 STA POINTER1
F40 BCC SKIP2

950 INC POINTER1+1
960 SKIP2 CLC

970 LDA FOINTERZ2
780 ADC #5

P90 STA POINTERZ2
1000 BCC SKIPZ
1010 INC POINTERZ2Z+1
1020 SKIP3 LDA CYCLES
1030 CMP LOOPCOUNT
1040 BNE INNERLOOP
1050 LDA CYCLES+1
1060 CMF LOOPCOUNT+1
1070 BNE INNERLOOF
1080 LDA FLAG

1090 BEQ FLAGCLEAR
1100 SEC

1110 LDA CYCLES
1120 SBC #1

1130 STA CYCLES
1140 BCS SKIFP4
1150 DEC CYCLES+1
1160 LDA CYCLES
1170 SKIF4 BNE STAGE1
1180 LDA CYCLES+1
1190 BNE STAGE1
1200 FLAGCLEAR DEC POWER
1210 BNE STAGEZ2
1220 RTS

Program 6.8. Merge sort of an unsigned floating point array.

floating point array elements. The element corresponding to POINTER [ is
considered as the first of the pair. If they are in descending order, the
elements are swopped. If already in ascending order, the elements are not
swopped. If the exponents are equal the program falls through to line 670.
Lines 670 to 730 subtract the mantissas a byte at a time keeping the result of
the most significant bytes in the accumulator. If the carry flag is clear at the
end, indicating descending order, the elements are swopped. If the carry
flag is set the swop routine is bypassed. This includes the case where the
mantissas are equal.

Lines 850 to 860 are out-of-range branch patches used for reasons outlined
earlier.
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Lines 900 to 1010 add 5to POINTER rather than 2 or 3as in the previous
programs.This is due to the increased byte length of the array elements (5
bytes each).

The routine can be tested by means of Program 6.9, and is similar to the
previous test programs, apart from setting up the relevant type of array.
The object code of Program 6.8 is given in Hex Dump 6.5. The hex dump
can be placed into memory with the help of the hex loader (Program 4.1)
given in Chapter 4.

10 REM SORT TEST PROGRAM

20 REM FLOATING POINT ARRAY

30 INPUT"SORT HOW MANY FP NUMBERS";EZ
40 REM FILL AND DISPLAY RANDOM ARRAY
50 DIM A(BL)

60 FOR N=1 TO BZL

70 A(N)=1500#RND (1)

80 PRINT AMN)

90 NEXT

100 PRINT"SORTING"

110 REM SET UP NUMBER PARAMETER
120 HBZL=RZL/256

130 LBY%=RL-(HBL%256)

140 REM PASS NUMBER PARAMETER
150 POKE 251,LB%

160 POKE 252,HBZ

170 REM CALL SORT ROUTINE

180 TIs="000000"

120 SYS 49152

200 TL=T1/60+0.5

210 REM DISPLAY SORTED ARRAY
220 FOR N=1 TO BZ%Z

230 PRINT A(N)

240 NEXT

250 PRINT"SORTED"BZ"FF NUMBERS IN"TX"SECONDS'

Program 6.9. BASIC test program for floating point array sort routines.

Machine code sort routines applied to BASIC multifield filing
programs

There are two common methods of generating multifield records in
BASIC. One is to use fields of fixed length substrings where the complete
record is stored as one string array element. The other is to create a two-
dimensional string array where the records occupy one dimension and the
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CO00 A7 01 85 57 A9 00 85 SD
COo08 85 58 E6 5D 06 57 26 S8
CO10 38 AS 57 ES FB AS S8 ES
Co18 FC 90 EF 46 58 66 57 38
COZ0 AS FB ES 57 85 FD AS FC
CoZ8 ES 58 85 FE A9 00 85 FF
CO30 85 SB 85 SC 18 AS 2F &9
Co38 OC B85 SE AS 30 69 00 85
€040 SF AD 58 85 SA AS 57 OA
Co48 26 SA OA 26 SA 18 &5 57
COS0 65 SE 85 4E AS SA 65 58
€058 65 SF 85 4F A0 00 B1 4E
CO&60 D1 SE 90 OE DO 23 A0 04
Coé68 38 Bl 4E F1 SE 88 DO F9
CO70 BO 17 A0 04 84 FF Bl SE
CO78 AA Bl 4E 91 SE 8A 91 4E
€080 BB 10 F3 30 04 DO AS DO
Cogg8 92 E6 SB DO 02 E6 SC AS
COo90 5E 18 &9 05 85 SE 90 02
CO98 E& SF 18 AS 4E 69 05 85
COAO 4E 90 02 E6 4F AS FD CS
COAB 5B DO Bl AS FE CS5 5C DO
CORO AB AS FF FO 13 38 AS FD
CoB8 E7 01 85 FD BO 02 C6 FE
COCO AS FD DO C1 AS FE DO BD
CoC8 Cé 5D DO BB 60

Hex Dump 6.5. Object code for Program 6.8.

fields occupy the other. This is often referred to as a row/column file
format. Both have advantages and disadvantages. The former method is
more economical when storing records since only one string information
block is set up per record by the interpreter. On the other hand, BASIC
programming can be tedious and expensive on memory. The latter method
makes for concise programming in BASIC but is heavy on string
information blocks (the number of fields multiplied by number of records).
It is a matter of personal preference which method is used so a machine
code merge sort routine to handle each type of record format will be given.
The requirement of any routine of this type is to sort entire records
according to any specified field, therefore additional calling parameters
will be necessary.

Merge sort of fixed length multifield records

The complete source code listing is given in Program 6. 10, the BASIC test
program in Program 6.11, and the object code in Hex Dump 6.6. The
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overall structure of Program 6.10 is similar to that of a simple string array
merge sort but with a few extra complications due to the component field
substrings. The extra coding and changes are detailed in the program
breakdown. Two new zero-page locations are assigned labels. The first is
FIELDST which stores the first character position of the field within the
string array element. The second is FIELDEND, the last character position
of the field within the string array element. By convention, the zero element
is reserved for headings, labels, etc.

10 ' MERGE SORT OF MULTIFIELD
20 ' FIXED LENGTH RECORDS

F0 NUMBER = $FB

40 FIELDST = $FD

50 FIELDEND = SFE

&0 POINTERI = %57

70 POINTERZ2 = %59

80 FLAG = $FF

0 STRING1 = %5B
100 STRINGZ = $35D
110 CYCLES = %35F
120 POWER = $4E
130 8IZE = $4F
140 LOOPCOUNT = %51
150 STORE = $26
160 #=%$C000

170 LDA #1

180 STA SIZE
1920 L.DA #O

200 STA POWER
210 STA SIZE+1
220 SIZELOOP INC FOWER
230 ASL SIZE
240 ROL SIZE+1
250 SEC

260 DA SIZE
270 SEC NUMBER
280 LDA SIZE+1
290 SBC NUMBER+1
F00 BCC SIZELOOP
310 OUTERLOOF LSR SIZE+1
320 ROR SIZE
F30 SeC

340 L DA NUMBER
350 SBRC SIZE

F60 STA CYCLES
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370 LDA NUMBER+1
80 SBC SIZE+1

390 STA CYCLES+1
400 MIDLODOF LDA #0

410 STA FLAG

420 S5TA LOOPCOUNT
430 STA LOOPCOUNT+1
440 cLe

450 LDA $2F

460 ADC #$0A

470 STA PDINTER1
480 LDA $30

490 ADC #0

3500 S5TA PDINTER1+1
310 LDA S5IZE+1

920 STA STORE

930 LDA SIZE

340 ASL A

530 ROL STORE

S60 CLC

570 ADC SIZE

280 ADC POINTER1
390 STA POINTERZ2
600 LDA STORE

610 ADC SIZE+1

620 ADC POINTER1+1
630 STA POINTERZ+1
640 INNERLOOF LDY #1

650 LDA (POINTER1),Y
660 5TA 5TRING1

&70 LDA (POINTER2),Y
&80 S5TA STRINGZ2

690 INY

700 LDA (POINTER1),Y
710 S5TA STRING1+1
720 LDA (POINTERZ2),Y
730 STA STRING2+1
740 LDY FIELDST

750 DEY

760 COMPLOOF LDA (STRINGZ2),Y
770 CMP (STRING1),Y
780 ECC SWoOP

790 BNE NOSWOFP

800 INY

810 CPY FIELDEND



B20
830
840
850
860
870
880
890
00
2?10
20
FIO
F40
750
F&60
970
980
F90
1000
1010
1020
1030
1040
1030
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

STAGE1
STAGEZ
SwWorP

SWOPLOOP

NOSWOP

SKIP

SKIP2

SKIP3

SKIP4

BNE
BEQ
BNE
ENE
LDY
STY
LDA
TAX
L.DA
5TA
TXA
S5TA
DEY
BPL
INC
BNE
INC
LbA
CLC
ADC
S5TA
RCC
INC
LDA
cLC
ADbC
5TA
BCC
INC
LDA
CMP
BNE
LDbA
CMP
BNE
LDA
BEG
SEC
LDbA
SEC
STA
BCS
DEC
LDA
BNE
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COMPLOOP
NOSWOP
MIDLOOP
OUTERLOOP

#2

FLAG
(POINTER1),Y

{POINTER2),Y
(POINTER1),Y

(POINTER2), Y

SWOPLOOP
LLOOFPCOUNT
SKIP
LOOPCOUNT+1
POINTER1

#3
POINTERI1
SKIP2
POINTER1+1
POINTERZ

#3
FPOINTERZ2
SKIP3
POINTERZ+1
CYCLES
LOOPCOUNT
INNERLOOFP
CYCLES+1
LOOFCOUNT+1
INNERLOOP
FLAG
FLAGCLEAR

CYCLES
#1
CYCLES
SKIFP4
CYCLES+!
CYCLES
STAGE1L
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1270 LDA CYCLES+1
1280 BNE STAGE1
1290 FLAGCLEAR DEC FOWER
1300 BNE STAGEZ
1310 RTS

Program 6.10. Merge sort of multifield fixed-length records.

Breakdown of Program 6.10

Lines 40 to 50 assign labels to the extra locations needed.

Lines 740 to 820 swop the entire string (record) according to the field
substring comparison. The Y index register is initially loaded with the
contents of FIELDST. Using indirect indexed addressing, the substring
(field) is then compared character by character, branching as necessary.
The loop is concluded with a comparison of the contents of FIELDEND
with the Y index register.

Program 6.11, the BASIC program used for testing, sets up a random
string array of any specified length up to 255. These strings can be
considered as the form eventually used for record storage. The number of
records (elements) in the array are, as usual, poked into locations 251 and
252. The field-start (FS9%) and field-end (FE%) character positions are
poked into locations 253 and 254 respectively. The routine is called with
SYS49152 and the sorted array displayed on the screen. On examination of
the display the entire string element will be sorted according to a smaller
substring or field as requested.

10 REM SORT TEST FPROGRAM

20 REM MULTIFIELD FIXED LENGTH RECORDS
F0 INPUT"SORT HOW MANY RECORDS”;BXL

33 INPFUT"HOW MANY CHARACTERS EACH":VL
40 INPUT"FIELD START FPOSITION";FSYL

S0 INFUT"FIELD END POSITION “"iFEZ

60 IF FSLXVE DR FEL>VZL THEN 30

70 REM FILL AND DISFLAY RANDOM ARRAY
BO DIM A% (B¥L)

0 FOR N=1 T0O B%Z

100 Re=""

110 FOR Z=1 TO Vi

120 R¥=26%RND (1)

130 K$=CHR% (RL+635)

140 He=B$+KS

130 NEXT

160 A%{(N)=B%

170 PRINT A$((N)
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180 NEXT

190 PRINT:PRINT

200 PRINT"SORTING"

210 PRINT:PRINT

220 REM SET UP NUMBER PARAMETER
230 HEL=BL/256

240 LBZ=Bi- (HBZL*256)

250 REM PASS FARAMETERS

260 POKE 251,LB%

270 POKE 252,HB%L

280 POKE 253,FG5X4

290 POKE 254,FE%Z

Z00 REM CALL SORT ROUTINE
310 TIs$="000000"

320 85YS5 49152

FIO TL=T1/60+0.5

340 REM DISPLAY SORTED ARRAY
350 FOR N=1 TO B4

360 PRINT A& {(N)

I70 NEXT

380 PRINT

390 PRINT"SORTED"BXL"RECORDS IN"TL"SECONDS”

Program 6.11. BASIC test program for multifield fixed-length record sorts.

CO00 A7 01 85 4F A7 00 85 4E
co08 85 50 E6 4E 06 4F 26 50
CO10 38 AS 4F ES FB AS 50 ES
Co18 FC 20 EF 46 50 66 4F 38
CO20 AS FB ES 4F 85 S5F AS FC
Co28 ES 50 85 &40 A? 00 85 FF
CO30 85 51 85 52 18 AS 2F 49
€O03X8 0A 85 57 AS 30 69 00 85
£C040 5B AS S50 85 26 AS 4F OA
COo4B 26 26 18 65 4F 65 57 85
COD0 539 AS 26 65 50 65 58 85
CO58 5A A0 01 Bl 37 85 5B Bl
Co60 59 85 SD €8 BI 57 85 SC
Cco68 B1I 59 85 SE A4 FD 88 Bl
COo70 5D D1 SB 90 OD DO 1C C8
€078 €C4 FE DO F3 FO 15 DO AC
Cogo DO 29 A0 02 B84 FF Bl 57
coB8 AR B1 57 91 57 8A 21 59
CO90 88 10 F3 Eb6 51 DO 02 E6
Co98 52 AS 57 18 &9 OX 85 57
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COAO0 0 02 E6 58 AS 59 18 69
CoAB O3 B85 59 20 02 E6 S5A AS
COBO 5F CS 51 DO A4 A5 60 C5
CoB8 52 DO 9E AS FF FO 13 38
COCO AS SF E9 01 85 SF BO 02
COC8 C&6 60 AS 5F DO BO A5 &0
CODO DO AC C6 4E DO AA &0

Hex Dump 6.6. Object code for Program 6.10.

Merge sort of a two-dimensional string array

The string information blocks, corresponding to multidimensional string
array elements, are stored sequentially in memory. The following series
shows the order in which they occur for a two-dimensional string array in
the Commodore 64.

A$(0,0),A5(1,0),A$(2,0),A$(3,0),A$(0,1),A$(1,1)...... A$(3,N).

The array is set up with a header, the locations corresponding with that
shown in Fig. 6.14.

Increasing memory

-

Number of Number of elements Number of elements

Array name Pointer to next array dimensions  first dimension second dimension
- :i: > #i: >
ASCII ASCIH+128 L byte H byte 02 H byte L byte H byte
or 128

[ Leve | L1 [ ]
1 Element (0,0) | El 1(1,0) ol

Element (2,0) Element (3,0) | El (0,1 o

|

W"_
o

Element (1,1) | Element (2,1 |

Fig. 6.714. How a two-dimensional string array is stored.

If a file is DIMensioned in BASIC as A$(NF%,NR %) then a file AS can
be considered as NR% records, each containing NF% fields. We can define
a specific field of a specific record by A$(F,R) where F stands for field
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number and R for record number. The parameters that need passing
from BASIC to a sort routine are:

(a) the number of fields, NF%
(b) the number of records, NR%
(c) the field index number, F%.

These quantities are needed by the sort routine, Program 6.12, and can
be poked directly into memory by the method shown in the BASIC test
program, Program 6.13. Of these, only NR% may occupy two bytes. The
number of fields are poked into the location labelled NUMBYTE. The
number of records are poked into NUMBER and NUMBER+1. Finally
the index number of the field by which the records are to be sorted is poked
into OFFSET. The complete source code listing and BASIC test routine
are shown in Programs 6.12 and 6.13 respectively.

Since each string information block occupies 3 bytes and there are
NF%+1 fields to each record, the sort routine will need to calculate the
number of bytes necessary before swopping the total string information
blocks corresponding to each record. Referring to Program 6.12, this is
performed by lines 350 to 400 and the result is overwritten in NUMBYTE
(1 byte). This piece of code evaluates the expression: NUMBYTE=3%
(NF%+1).

The by now familiar SI block address pointers POINTERI and
POINTER?2 refer to the zeroth element of NF% so an offset needs to be
calculated to point to the required sort-field element SI block in the NF%
dimension (remember that 3 bytes offset is required for each). This is
performed by lines 410 to 450 and the result is overwritten in OFFSET (1
byte). The segment of code calculates the expression OFFSET=3*(F9%+1).
By setting the Y register to OFFSET and using indirect indexed addressing,
the required sort field SI block positions in the record can be accessed. The
code responsible is at lines 910 to 1050. Plainly, in lines 740 to 900,
NUMBYTE is used as the multiplier for SIZE, rather than 3 used in
previous single dimension string array sorts. Another difference is that we
will need to add NUMBYTE instead of 3 to the previous SI block address
pointers in order to access the next record. This code is at lines 1330 to
1380. Apart from these differences, the overall structure is similar to that
previously described.

The A$(F,0) elements are excluded from the sort since these elements are
useful for column headings, labels, etc. in a practical filing system. The
routine can sort records with up to a maximum of integer 128/3=42 fields
(not much of a handicap in practice). Program 6.7 derivatives have been
well-tried and tested in a practical filing system and will sort a computerful
of records in a second or so.The object code for Program 6.12 is given in
Hex Dump 6.7 and can be loaded directly into memory with the hex loader,
Program 4.1. However, if you have an assembler it is better to enter the
source code.
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10 'MERGE SORT OF A TWO DIMENSIONAL
20 !'STRING ARRAY (FIELD,RECORD) FORMAT

30 NUMBER = %FB

40 NUMBYTE = SFD

o0 OFFSET = %FE

60 POINTERI1 = $57

70 POINTERZ2 = 4359

B8O FLAG = %FF

F0 STRING1 = $3B

100 STRING2 = %3D

110 LENGTH1 = $35F

120 LENGTHZ =  $60

130 START = %461

140 POWER = $4E

150 SIZE = $4F

160 LOOPCOUNT = %351

170 STORE = 426

180 CYCLES = %28

120 *=%C000

200 LDA #1

210 STA SIZE
220 LbAa #0

230 STA POWER
240 5TA SIZE+1
250 SIZELOOP INC POWER
260 ASL SIZE
270 ROL SIZE+1
280 SEC

290 LDA SIZE
300 S5BC NUMBER
210 LDA SIZE+1
320 SBC NUMBER+1
330 BCC S1zZELOOF
340 LDA NUMBYTE
350 CcLC

260 ADC #1
70 STA NUMBYTE
380 ASL A
320 ADC NUMBYTE
400 STA NUMBYTE
410 cLc
420 LDA OFFSET
430 ASL A

440 ADC OFFSET

450 STA OFFSET



460

470

480

490

500

510

920

530

540 OUTERLOOP
S50
560
370
580
o990
600
610
620
630
640
&40
660
&70
680
&£90
700
710
720
730
740
750
760
770
780
770
800
810
820
830
840
850
860
870
ga80
870
00

MIDLOOF

MULTLOOP

cLC
LDA
ADC
ADC
STA
LDA
ADC
STA
LSk
ROR
SEC
LDA
5BC
8TA
LDA
SEC
5TA
LDA
S5TA
5TA
85TA
LDA
S5TA
LDA
STa
LDA
5TA
sSTA
LDX
CcLC
LDA
ADC
STA
LDA
ADC
57A
DEX
BNE
CLC
LDA
ADC
S5TA
LDA
ADC
sSTA

Sort Routines

$2F

#9
NUMBYTE
START
$30

#O
START+1
SI1ZE+1
SIZE

NUMBER
SI1ZE
CYCLES
NUMBER+1
SIZE+1
CYCLES+1
#0

FLAG
LOOFPCOUNT
LOOPCOUNT+1
START
POINTER1
START+1
POINTER1+1
#0

STORE
STORE+1
NUMBYTE

STORE
S1ZE
STORE
STORE+1
SIZE+1
STORE+1

MULTLOOP

POINTER1
STORE
POINTERZ
POINTER1+1
STORE+1
POINTERZ+1

141



142 Advanced Machine Code Programming for the Commodore 64

F10 INNERLOOP LDY OFFSET

F20 1.DA (POINTER1),Y
930 STA LENGTH1

40 LbA (POINTER2),Y
F50 5TA LENGTHZ

F&60 INY

970 LDA (PDINTER1),Y
980 STA STRING1

FP0 LDA (POINTER2),Y
1000 STA STRINGZ2

1010 INY

1020 LDA (POINTER1),Y
1030 5TA STRING1+1
1040 LDA (POINTER2),Y
1050 STA STRINGZ+1
1060 LDY #0O

1070 COMPLOOFP LDA (STRINGZ),Y
1080 CMP (STRING1),Y
1090 BEC SWOF

1100 BNE NOSWOP

1110 INY

1120 CPY LENGTHI1

1130 BEQ NOSWOP

1140 CPY LENGTHZ

1150 BEQ SWOF

1160 BNE COMPLOOP
1170 S5TAGE1 ENE MIDLOOP

1180 STAGEZ BNE OUTERLOOF
1120 SWOF LDY NUMBYTE

1200 DEY

1210 STY FLAG

1220 SWOPLOOFP LDA (PDINTER1),Y
1230 TAX

1240 LDA (POINTER2),Y
250 STA (POINTER1),Y
1260 TXA

1270 STA (POINTER2),Y
1280 DEY

1290 BFL SWOPLOOP
1300 NOSWOF INC LOOPCOUNT
1310 BNE SKIP

1320 INC LOOPCOUNT+1
1330 SKIFP LDA POINTER1
1340 cLc

1350 ADC NUMBYTE
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1360 STA POINTERI1
1370 BCC SKIPZ

1380 INC POINTER1+1
1390 SKIPZ2 LDA POINTERZ2
1400 cLC

1410 ADC NUMBYTE
1420 STA POINTERZ
1430 BCC SKIP3

1440 INC POINTER2+1
1450 SKIP3 LDA CYCLES
1460 CMP LOOPCOUNT
1470 BNE INNERLOOP
1480 LDA CYCLES+1
1490 CMF LOOPCOUNT+1
1500 BNE INNERLOOP
1510 LDA FLAG

1520 BEG@ FLAGCLEAR
1530 SEC

1540 LDA CYCLES
1550 SBC #1

1360 S5TA CYCLES
1570 BCS SKIP4

1580 DEC CYCLESG+1
1590 LDA CYCLES
1600 SKIP4 BNE STAGE1
1610 LDA CYCLES+1
1620 BNE STAGE1
1630 FLAGCLEAR DEC POMWER

1640 BNE STAGEZ
1650 RTS

Program 6.12. Merge sort of a two-dimensional string array sort.

10 REM SORT TEST PROGRAM
20 REM 2 DIMENSIONAL STRING ARRAY

30 INPUT"SORT HOW MANY RECORDS"j;NRY
40 INPUT"NUMBER OF FIELDS";NF

50 INPUT"SORT WHICH FIELD";FZ

60 REM FILL AND DISPLAY RANDOM ARRAY
70 DIM A% (NFZ%,NR%)

80 FOR R=1 TO NR%

90 FOR F=1 TO NF%Z

100 B$=""

110 A%Z=10%RND (1) +1

120 FOR Z=1 TO A%
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130 RU=26%RND{1)

140 K$=CHR% (RZL+65)

150 B$=B$+Ks$

160 NEXT

170 A%{F,R)=R$

180 PRINTA%(F,R)

190 NEXT

200 PRINT

210 NEXT

220 PRINT:zPRINT

230 PRINT"SORTING"

240 PRINT:PRINT

250 REM SET UP NUMBER FPARAMETER
260 HBZL=NRL/256

270 LBZ=NRY%Z— (HBZ*2546)

280 REM PASS PARAMETERS
2790 POKE 251,LB%Z

300 POKE 252,HE%Z

F10 POKE 253,NF%

320 POKE 254,F%

330 REM CALL SORT ROUTINE
340 TI$="000000"

350 5YS 49152

360 T4A=TI/60+0.5

370 REM DISFLAY SORTED ARRAY
380 FOR R=1 TO NR%Z

IP0 FOR F=1 TO NFZ%Z

400 FPRINT As(F,R)

410 NEXT

420 PRINT

430 NEXT

440 PRINT"SORTED"NRXL'RECORDS IN"TL"SECONDS™

CO00 A7 01 85 4F A9 00 85 4E
€008 85 50 E&4 4E 06 4F 26 SO
CO10 38 ADS 4F ES FB AS S50 ES
€018 FC 90 EF AS FD 18 &9 01
CO20 85 FD 0A &5 FD 85 FD 18
CoZ8 AS FE OA &5 FE BS FE 18
CO30 AS 2F &9 09 65 FD 85 61
CO38 AS 30 672 00 85 62 46 50
CO40 &6 4F 38 AS FB ES 4F B85
Co48 28 AS FC ES S50 85 29 A9
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COS0 00 85 FF 835 51 85 52 AS
CoS8 61 85 57 AS 62 85 58 A?
C0&60 00 85 26 85 27 A6 FD 18
COo68B AS 26 &5 4F 83 26 AS 27
CO70 65 S0 835 27 CA DO FO 18
078 AS 57 65 26 85 597 AS 58
CoBO 65 27 85 SA A4 FE B1 57
£o88 85 5F Bl 59 85 60 C8 B1
Co%0 57 85 SB Bl 59 85 5D C8
co98 B1 57 85 5C Bl 59 85 5E
CoA0 AO 00 BY SD D1 5B 90 1t
COAB DO 21 C8B C4 SF FO 1C C4
COBO 60 FO 06 DO ED DO 98 DO
COR8 8BS A4 FD 88 84 FF Bl 57
COCO AA B1 592 91 57 8A 91 59
COoC8 88 10 F3 E6 51 DO 02 Eb
CODO S2 AS 57 18 65 FD 85 57
COoD8 90 02 E& 58 AS 59 18 65
COEO FD B85 59 90 02 E6 SA AS
COE8 28 C5 51 DO 97 AS 29 CS
COFO 52 DO 91 AS FF FO 13 38
COF8 AS 28 E? 01 85 28 BO 02
C100 Cé& 29 AS 28 DO AF AS 29
Ci108 DO AB C6 4E DO A? &0

Hex Dump 6.7. Object code for Program 6.12.

Searching for an array

All the programs in this chapter assume that the array to be sorted is the
first stored in the array space. This may not be the case. In certain
applications, many arrays could be stored so it is well to discuss the
modifications necessary to search for a particular named array.

The address pointers $2F and $30 hold the address of the start of array
space, low-byte and high-byte respectively. Referring to Fig. 6.2, this
address is byte | of the array header corresponding to the first array stored
in memory. By adding the contents of bytes 3and 4 to this address, low and
high bytes respectively, the next array address is calculated. The process
can be repeated till the end of array space is reached, the pointer to the end
of array space being $31 (low-byte) and $32 (high-byte).

The search problem is easily solved. All that is needed is to find the start
of each array, as above, and test whether the codes of the array names
satisfy the search requirement. This process is performed by Program 6.14.
The specified array-name codes are placed into the locations 251 ($FB) and
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10 !START OF ARRAY SEARCH ROUTINE

20 NAME = 4FB

30 ADDRESS = &FD

40 OUTPUT = $FFD2

20 #=%$0000

&0 LDA $2F

70 STA ADDRESS

80 LDhA 30

90 STA ADDRESS+1
100 LOOP LDY #0

110 LDA (ADDRESS),Y
120 CMF NAME

130 BNE NEXT

140 INY

150 LDA (ADDRESS),Y
160 CMFP NAME+1

170 BNE NEXT

180 BEG@ FINISH

190 NEXT LDY #3

200 LDA (ADDRESS),Y
210 FHA

220 DEY

230 LDA (ADDRESS),Y
240 ADC ADDRESS
230 5TA ADDRESS

260 FPLA

270 ADC ADDRESS+1
280 STA ADDRESS+1
290 LDA 31

300 CMFP ADDRESS

310 BNE LOOP

320 LDA $32

330 CMP ADDRESS+1
240 BNE LOOP

350 LDX #0O

260 LOOFP2 LDA TEXT,X

370 JSR OUTPUT

380 INX

F90 CPX #4611

400 BNE LOOP2

410 BEQ@ FINISH

420 TEXT TXT "ARRAY NOT PRESENT"
430 FINISH RTS

Program 6.14. Array search routine.
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252 ($FC) from BASIC. The BASIC test routine, Program 6.15, shows
how this is done in lines 80 and 90. On calling the machine code routine, the
array name codes are searched for and, if found, the address is stored in
locations $FB and $FE. The pointer ADDRESS (2 bytes) can then be
utilised instead of $2F and $30 in any of the sort routines in Chapter 6. It
should be pointed out that the locations used in Program 6.14 will clash, in
its present form, with locations used in the previous sort routines. The
solution is simple: assign different locations to the labels in lines 20 and 30
and assemble at, say, $C400.

10 REM TEST PROGRAM FOR ARRAY SEARCH
20 AL=0:B%L=0:C%=0:DZ=30

30 REM DIMENSION UP 3 ARRAYS

40 DIM A$(DL)

S50 DIM B$(DX)

&0 DIM C$(D%A)

70 REM FIND START ADDRESS OF ARRAY B%
80 POKE 251,A5C("B")

20 POKE 252,128

100 8YS 49152

110 AYL=PEEK (47)+PEEK (48) %236

120 BY%=PEEK (253) +PEEK (254) #2356

130 C%=PEEK (4%)+PEEK (50) #2356

140 IF BRZ=C% THEN 180

150 PRINT"ARRAY SPACE START="AZL

160 PRINT"ARRAY ADDRESS ="R%
170 PRINT"ARRAY SPACE END ="CZ
180 END

Program 6.15. BASIC test program for array searching.

Summary

1. Sorting routines, where large numbers of elements are involved, can be

painfully slow in BASIC. Machine code versions are much faster.

Even the bubble sort is often fast enough if it is in machine code.

3. Understanding program listings in this chapter demands knowledge of
the way BASIC stores array variables.

4. BASIC integer arrays are stored in consecutive two-byte form
commencing with a seven byte header - 2 bytes for the array name, 2
bytes for the next array pointer, 1 byte for the number of dimensions
and the last 2 bytes for array size.

{ad
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5.

10.

BASIC string arrays are stored in ASCII characters. The array header
contains details of the length and the address of where the strings are
stored and is known as the string information block.

The ‘merge sort’, although more complex and requiring more coding
lines, is still based on the bubble sort but capitalises on the advantages
offered by a progressive increase in order. It is much faster than the
bubble sort where large numbers of elements are involved.

The course of a program can often be understood more ecasily if
supported by a ‘trace table’.

To test out machine code sort routines given in this chapter, BASIC
test programs are provided. These pass the parameters entered from
the keyboard, generate random arrays and display them again after
sorting.

BASIC stores floating point numbers in 5 byte form, four for the
mantissa (the significant digits) and one for the exponent.

Records can use either fixed-length fields and be one long single string
element or a two-dimensional string array in row/column format.

Self test

6.1
6.2
6.3
6.4

6.5
6.6

Name at least five factors which you consider might influence the
processing power of a computer.

Develop a comprehensive merge sort program which will sort signed
integers, strings or floating point arrays.

Develop a comprehensive bubble sort program which will sort signed
integers, strings or unsigned floating point numbers.

Develop a routine which will sort signed floating point numbers.
Develop a bubble sort routine which will sort signed integers.
Develop a routine, called from BASIC, which will sort signed
integers into either ascending or descending order as requested.



Chapter Seven

High Resolution Graphics

Applications

Apart from the obvious application to computer games, high resolution
graphics are invaluable as diagrammatic aids. Graphs, picharts, bar charts
and historgrams can convey information in concise and easily assimilated
form. Although the graphics keys on the Commodore 64 are easy to use,
the picture resolution is limited by the large 8 X 8 ‘pixel’ size. High
resolution graphics, although more difficult to handle than the graphic
keys, can produce finer grain displays. Virtually all teaching programs
benefit if screen diagrams are used to support textual material and, over the
last few years, it has become fashionable to include diagrams and charts in
much of the software designed for general business use.

High resolution bit-mapping

High resolution bit-mapped graphics modes are difficult to use in BASIC.
Furthermore, the execution speed is painfully slow unless the optional
cartridge is fitted with the Extended BASIC repertoire. The relative speed
and freedom that assembly language programing offers can help us to
utilise these modes more efficiently. By arming ourselves with a few
machine code routines it is possible to tailor high resolution graphics
screens quite easily.

Standard high resolution bit-mapped mode

This section is based around a high-resolution graphics utility which can
light individual pixels specified by simple X,Y screen coordinates. The
routine Program 7.1 can be called from BASIC or used within an assembly
language program. For those without an assembler the object code is listed
in Hex Dump 7.1. This can be loaded directly from $C000 using the hex
loader given in Chapter 4 (Program 4.1). The routine is followed by a



150 Advanced Machine Code Programming for the Commodore 64

detailed breakdown of the coding. An example of its use is also provided in
the form of a simple BASIC graph plotter, Program 7.2, which calls the
utility from within the program.

In standard high resolution mode, the Commodore 64 sets aside 8K of
memory in order to bit-raap the entire screen with a resolution of 320 by
200 pixels. This area of memory is called, not surprisingly, the bit map. The
colours available in this mode are limited to two and are determined by the
contents of screen memory. The wupper nybble supplies the colour
information code of any pixel represented by a binary 1 in the bit map. The
lower nybble supplies the colour code of any pixel represented by a zero in
the bit map. The whole process is coordinated by the VIC-II chip and is
transparent to the user. The standard high resolution bit-mapped mode is
enabled by setting bit 5 of the VIC-II control register to a ‘1>. The base
address of the VIC-II register block is located at $D000 and the control
register is located at $D011. The following code will do this:

LDA D011
ORA #$20

5Ta D011

When the above code is assembled and executed, the screen will be filled
with garbage. Unfortunately, there are no routines resident in the
Commodore 64 to clear the bit map area or to load up the screen memory
with the desired colour codes, so we need to write our own.

Clearing the bit map area, consisting of 8K bytes of memory, would take
many seconds using a series of POKEs from BASIC. This delay is clearly
unacceptable. A machine code routine can handle this instantaneously -
from the user’s point of view. Lines 650 to 810 of Program 7.1 make up a
subroutine capable of performing this efficiently. Refer to the program
breakdown section for details if you are not sure how it works.

A further complication is that screen memory must be set up prior to
using any hi-res graphics screens. The reason is that the VIC-II gets its
colour information from this area of memory. This is a similar exercise to
the above but instead of clearing out memory to zeros the actual colour
codes need to be placed in memory. Lines 830to 1010 of Program 7.1 show
howtodothis. Thelocation labelled SCRCOL is used to hold the two-colour
choice and is best set up in BASIC prior to calling the routine by POKEing
location 254. Referring to Program 7.2 (the BASIC graph-plotting
example) line 30 shows POKE 254,7. This will set the colours to black on
cyan - a good combination of colours for this sort of use. The high nybble is
set to zero, so the foreground colour will be black. The low nybble is set to
7, thus specifying cyan for the background colour. If you are using the
routine from within an assembly language program the following will need
to be added to Program 7.1 at the initialisation stage:

LDA #7
STA #sFE
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Again refer to the program breakdown section for details of the coding.

In order to complete the utility, a subroutine is required which will set the
appropriate bit within the bit map according to the specified X,Y
coordinates. Figure 7.2 shows the XY coordinate system required. Refer-
ring to Fig. 7.1, it is seen that the bit-mapped area of memory is laid
out in blocks of eight sequential locations. These correspond to the 25 rows

$0 $8 L $138
$1 $e | T T T~ $139
$2 SA $13A
$3 $B $13B
$4 $C $13C
$5 $D $13D
$6 SE $13E
$7 $F $13F
$140 [s148 | T T T~ $278
$141 | $149 $279
$142 [ $14A $27A
$143 | $14B $27B
$144 | $14C $27C
$145 | 14D $27D
$146 | $14E $27E
$147 |$14F | $27F

t i i

| | I

| | |

| | |

| | |

¥ | |

| | |

. |

i I !

| ‘o '
$3000 | $3008 $3138
$3001 | $3009 $3139
$3002 | $300A $313A
$3003 | $300B $313B
$3004 | $300C $313C
$3005 | $300D $313D
$3006 | $300E $313E
$3007 | $300F $313F

Fig. 7.1. Bit map.

of 40 programmable characters as seen by the VIC-II chip. This layout is
chosen m most microcomputers because it is convenient for text. However,
for bit mapping, where we deal in XY coordinates, it is not the ideal
organisation of memory.
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X
o] 319

Yy

199

Fig. 7.2. The XY coordinate system.

The difference between equivalent address positions in any adjacent
blockinthe Y direction is $140 or 320 decimal. Similarly, in the X direction,
the difference is 8. Therefore the equation to calculate a unique bit map
address from an XY coordinate is given by:

ADDRESS = BASE + ROW*320 + LINE +CHAR*8

where

BASE = the bit map start address. (This is usually set to $2000.)

ROW = INT(Y/8), the block of eight or character row number (0 to 24)
containing the Y coordinate.

LINE = (Y AND 7). This is the position within the character or block of
eight bytes described earlier which contains the Y coordinate (0 to 7).
CHAR = INT(X/8). This is the position of the block or character, within
the row, which contains the X coordinate (0 to 39).

Rearranging the equations

The above equation is not suited to machine codingin its present form. We
need to rearrange the equation so that all multipliers are, as far as possible,
equal to exact powers of two. The reason for this is that any multiplication
or division simplifies to shifting bits left or right respectively. This saves us
coding multiplication or division algorithms which would be relatively
slow due to their general purpose nature. The rearrangement can be
conveniently achieved as follows:

ADDRESS = BASE +40*(ROW*8) + LINE + CHAR*8
ADDRESS = BASE + 32*(ROW*8) + 8*(ROW*8) + LINE +
CHAR*§



High Resolution Graphics 153

Substituting the equations for ROW,LINE, and CHAR we have:

ADDRESS = $2000+ 32*(INT(Y/8)*8) + 8*(INT(Y/8)*8) +
(Y AND 7) + 8*INT(X/8)

The above equation may appear unnerving to code initially, butin fact it
is relatively easy. All INT(Y/8) entails is shifting Y right 3 times, thus
dividing by 8 and losing the remainder (3 least significant bits of Y).
Multiplying by 8, giving INT(Y/8)*8, is then achieved by shifting left 3
times. The net result of all this is simply to lose the 3 least significant bits of
Y. They have fallen off the end. A simple way of arriving at the same result
is to mask out the 3 least significant bits of Y with AND #$F8. This can be
accomplished with:

LDy YCOORD
AND #4F8

Similarly, INT(X/8)*8 can be coded by ANDing the lower byte of X with
#SF8.

LDbA XCOORD
AND #$F8

Remember that the specified X coordinate will occupy two bytes in this
particular graphics mode (0 to 319).

The 32*(INT(Y/8)*8) expression can be arrived at by shifting the result
of INT(Y/8)*8 left 5 times. However, if you can imagine a two-byte result,
shifting right 3 times and storing it as the high-byte of the result is the exact
equivalent and uses less instructions.

LDA #0
5TA LOC
LDA YCOORD
LSK A

LSR A

LSRR A

S5TA LOC+1

We can do this because the 3 least significant bits of INT(Y/8)*8 have been
masked out by the previous operation. The low-byte of the result can be
cleared to zero.

Two further shifts right, of the two-byte 32*(INT(Y/8)*8) result, will
divide by 4 giving 8*(INT(Y/8)*g). However, there is a complication. We
must rotate the carry into the low-byte of the result each time. The LSR and
ROR instructions, respectively, are needed for this as shown below:

LSK A
ROR LOC
LSRR A
ROR LOC



154 Advanced Machine Code Programming for the Commodore 64

The remaining easily coded expression (Y AND 7) completes the equation.

L.DA YCDORD
AND #7

All that is needed now is to add the whole lot together to give the required
bit map address. Refer to lines 360 to 630 of Program 7.1 for details of one
way to code the above. A detailed breakdown of the utility is also provided.

The above text points the way to calculating the address of the bit map.
We now have to set the appropriate bit corresponding to the XY coordinate
within the calculated location. This can be achieved by generating a mask
and ORing with the contents of the above location. The mask can be
constructed by setting the carry and rotating right the required number of
times. The loop counter can be initialised, from the 3 least significant bits of
X, which is the X co-ordinate value. The following piece of code will do
this:

LDA XCOORD
AND #7
TAX
SEC
LDA #0
SHIFT ROR A
DEX
EFL SHIFT
STA MASE
10 ' HI-RESOLUTION GRAPHICS UTILITY
20 XCOORD = $FR
30 YCOORD = $FD
40 SCRCOL = $FE
S50 BMPAGE = 4FF
60 MASK = %59
70 LOC = $5A
80 STORE = $5C
90 SCRFAGE = $CORO
100 *=$CO00
110 ¢
120 LDA #%20
130 STA BMPAGE
140 LDA #4
150 STA SCRPAGE
160 LDA $DO18
170 ORA #8
180 5TA $DO18
190 LDA $DO11

200 ORA #4220
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210 STA $DO11
220 JSR CLEARMAP
230 JSR SCRFILL
240 RTS

250 !

260 PLOTBIT LDA XCOORD
270 AND #7

280 TAX

290 SEC

300 LDA #0

310 STA LOC

320 SHIFT ROR A

330 DEX

340 BPL SHIFT
IS0 STA MASK
360 LDA XCOORD
370 AND #$F8
280 STA STORE
390 LDA YCOORD
400 LSR A

410 LSR A

420 LSR A

430 STA LOC+1
440 LSR A

450 ROR LOC

460 LSR A

470 ROR LOC

480 ADC LOC+1
490 STA LOC+1
500 LDA YCOORD
510 AND #7

520 ADC LOC

530 ADC STORE
540 STA LOC

S50 LDA LOC+1
S&0 ADC XCOORD+1
570 ADC BMPAGE
S80 STA LOC+1
590 LDY #0

&00 LDA (LOC),Y
610 ORA MASK
620 STA (LOC),Y
630 RTS

640 !

650 CLEARMAF LDA BMPAGE
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660 STA STORE+1
&70 LDA #O

&80 S5TA STORE

670 LDX #$1F

700 LOOP LDY #0

710 LOOPZ2 STA (STORE),Y
720 DEY

730 BNE LOOP2

740 INC STORE+1
7530 DEX

760 BNE LOOP

770 LDY #$3F

780 LOOPZ 5TA (STORE),Y
790 DEY

8OO BPL LOOP3

810 RTS

820 !

830 SCRFILL LDAa #0O

840 S5TA S5TORE

850 LDA SCRFPAGE
860 5TA STORE+1
870 LDA SCRCOL
880 LDX #3

870 BLOCK LDY #O

00 CYCLE STA (STORE),Y
F10 DEY

QZ0 BNE CYCLE
930 INC STORE+1
F40 DEX

P50 BNE BLOCK

F60 STA (STORE) .Y
970 LDY #$E7

80 NEXT STA (STORE) .Y
990 DEY

1000 BNE NEXT

1010 RTS

Program 7.1. High resolution graphics utility.

10 REM TEST PROGRAM FOR HI-RESOLUTION
20 REM GRAPHICS ROUTINES (BIT MAPFING)
Z0 POKE254,7:REM PASS COLOUR NYBBLES
40 SYS549152:REM CALL INIT ROUTINES

50 FOR X=0 TO 319

60 Yi=100+BO*5IN(X/20)
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70 XHZL=X/256

B8O XLi=X- (XHL*Z56)

F0 REM PASS PARAMETERS

100 POKEZS1, XL%

110 POKEZ252, XHX

120 FPOKE253,Y%Z

130 §Y549184:REM CALL PLOTBIT
140 NEXT X

150 GOT0150

Program 7.2. Test program for high resolution graphics routine.

CO00 A7 20 85 FF A% 04 8D BO
Co08 CO AD 18 DO 09 08 8D 18
CO10 DO AD 11 DO 09 20 8D 11
€018 DO 20 62 CO 20 B8O CO &0
COZ20 AS FBR 29 07 AA 38 AT 00
cozZ8 85 A 6A CA 10 FC 835 59
CO30 AS FB 29 F8 85 SC AS FD
CO38 4A 4A 4A BS SB 4A 66 5A
CO40 4n 66 SA &5 SB 89 OB AS
Co48 FD 29 07 65 SA 65 5C 85
CO50 3A AS SB &5 FC 65 FF 85
COo58 SR AD OO0 Bl SA 05 59 91
CO60 5A 60 AS FF 85 5D A9 00
CO68 85 5C AZ 1IF AO 00 91 5C
CO70 88 DO FB E6 SD CA DO F4a
€CO78 A0 3F 91 5C 88 10 FR 60
€080 A7 00 85 SC AD RO CO 85
Co8g8 3D AS FE A2 03X A0 00 21
Co?0 SC 88 DO FH E6 5D CA DO
£o98 F4 91 SC A0 E7 91 S5C 98
COAO DO FB &40

Hex Dump 7.1. Object code for Program 7.

Breakdown of Program 7.1

Lines 10 to 90 assign named locations.

Line 100 causes assembly at $C000.

Lines 120 to 130 set the labelled location BMPAGE to $20 which contains
the base address page of the bit map.

Lines 140 to 150 set the labelled location SCRPAGE to 4, which contains
the base address page of screen memory.

Lines 160 to 180 place the bit map at $2000.

Lines 190 to 210 enable the bit map mode.
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Line 220 calls the subroutine CLEARMAP, which clears the bit map area of
memory.

Line 230 calls the subroutine SCRFILL, which sets up screen memory.
Lines 260 to 330 clear the location LOC and produce the mask for setting
the XY coordinate bit.

Lines 360 to 580 calculate the XY coordinate address LOC (2 bytes). (See
earlier text for details.)

Lines 590 to 620 set the appropriate bit by ORing the mask with the
calculated address.

Lines 650 to 680 initialise STORE and STORE+1 to the base address of
the bit map as set in the location BMPAGE.

Line 690 sets the X register to #$1F which is the page counter. This is set to
the nearest whole number of pages (256 byte blocks) to be cleared in the bit
map.

Lines 700 to 760 form a loop which clears memory a page at a time using
indirect indexed addressing.

Lines 770 to 800 form a loop which clears the odd $3F bytes of the bit map
remaining,.

Lines 830 to 860 initialise STORE and STORE+1 to the base address of
screen memory as set in SCRPAGE.

Line 870 loads the accumulator with the combination of colours set up in
the location SCRCOL. This is POKEd in from BASIC for maximum
flexibility in colour choice as explained earlier.

Lines 880 to 1000 load up screen memory in a similar manner to the
CLEARMAP subroutine.

Test program

Program 7.2 is a routine which not only tests Program 7.1 but shows how

the routine can be called from BASIC.

Line 30 passes the colour nybble codes by POKEing location 254, In this

case black on cyan is used.

Line 40, SYS49152 calls the initialisation routine. This sets up the bit map

mode, clears the bit map area of memory and sets up screen memory.
Lines 50 to 140 are a loop, responsible for calculating and passing

parameters for use by the routine. The program plots a simple sinusoidal

function for illustrative purposes. A far more elaborate graph plotting

program may be written in BASIC using these machine code routines.

Notice that 2 bytes are required for the X coordinate. The values XL% and

XH9% are POKEd into locations 251 and 252 respectively. The Y

coordinate value is POKEd into location 253. A SYS49184 call is needed to

plot the appropriate bit.

Line 150 is a loop which locks the program so that scrolling will not occur

on completion of graph plotting.
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Multicolour bit map mode

This mode has only half the horizontal resolution of the mode previously
described. However, the choice of colours available in any 8 by 8 dot
programmable character space is increased from 2 to 4. Multicolour bit
map mode is enabled by the following:

LDA D018
DRA #8
S5TA D018
LDA $DO11
ORA #$20
5TA $DO11

and disabled by:

LDA $DO18
AND #&DF
5TA D018
LDA $DO11
AND #$EF
5TA $Doi1d

This mode utilises 160 by 200 pixels and differs from the standard hi-
resolution mode. A bit pair, rather than a solitary bit, determines which
pixel is lit. Furthermore, the 2 bit code, to which the bit pair is set,
determines the colour of the pixel. As instandard hi-resolution bit-mapped
mode, there is a one to one relationship between the 8K of memory used
and what is viewed on the screen. The setting of a bit pair to a particular
code instructs the VIC-1I chip from where it is to get its colour information.
The codes are as follows:

Bit pair Colour information taken from:
00 Background colour location $D021
01 Upper 4 bits of screen memory
10 Lower 4 bits of screen memory
11 Lower 4 bits of colour memory

Each bit pair can specify one of 4 colours as long as the various areas of
memory, given above, are each loaded with one of the standard colour
codes we are used to in BASIC. These are given on page 139 of the User
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Manual supplied with the machine. For example, setting each location of
screen memory to $25 will set the upper nybbles to 2 and the lower nybbles
to 5, specifying red and green respectively. Thus, if any particular bit pair is
set to 01, a red pixel will be lit. Alternatively, a bit pair code 10, will cause a
green pixel to light up. Notice how hexadecimal notation simplifies the
setting of nybbles. It would be tedious and error-prone to use decimal
notation.

The bit map memory needs to be cleared prior to use and screen memory
should be set up in a similar manner to that shown above. Additionally,
colour memory can be set up to a specific colour code if four-colour mode is
required. You may appreciate that this entails access to a large number of
separate locations and may well take the time necessary to drink a cup of
tea if BASIC were to be used. However, short machine code routines
perform this task instantaneously as far as the user is concerned.

Experimental routines

Program 7.3 is a set of routines for experimenting with the multicolour bit
mapped mode. The subroutines are capable of plotting individual pixels or
lines, specified by XY coordinates and supplied colour codes. The routines
are intended to be used from within assembly language programs and
cannot be called from BASIC in their present form. However,
modifications can easily be made by passing parameters such as X and Y
coordinates via the POKE statement.

The subroutine CLEARMAP is identical to that in Program 7.1 and is
used to clear the bit map area of memory. MEMFILL is a subroutine used
for setting up chosen colour information into screen memory and/or
colour memory. The parameters are passed viathe X and Y registers. The X
register should contain the base page of the area of memory to be set up.
The Y register should contain the chosen colour code information that is
placed into each location of the intended area of memory.

PLOTPIXEL is a similar subroutine to PLOTBIT described earlier. The
essential differences are due to the reduced horizontal resolution of 160 and
increased selection of colours. In multicolour bit-mapped mode, the
equation that specifies the address of a given XY coordinate is:

ADDRESS = BASE + ROW*320 + LINE + CHAR*8

where

BASE = $2000 (default)

ROW = INT (Y/8) as before

LINE = (Y AND 7) as before

However, CHAR = INT (X/4) this time since only half the horizontal
resolution is available. There are still 40 characters a line but the value of X
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can only be between 0 and 159. Again, this can be simplified to a form
which is more easily coded:

ADDRESS = BASE + 40*(ROW*g8) + LINE + CHAR*8
=BASE + 32¥ROW*8) + 8*(ROW*8) + LINE +
CHAR*8

Expanding,

ADDRESS = $2000 + 32*(INT(Y/8)*8) + S$*(INT(Y/8)*8) +
(Y AND 7) + 8*INT(X/4)

The above equation differs from that derived for PLOTBIT only in the
last term. The INT(X/4) term can be coded by shifting right twice, thus
dividing by 4 and losing the two least significant bits. The term 8*INT(X/4)
is obtained by shifting the result left three times. This, in effect, is
equivalent to ANDing out the two least significant bits of X and shifting
left once. The following code performs this:

LDA XCOORD
AND #4FC
ASL A

ROL STORE+1
5TAa STORE

Notice that, although XCOORD is a single byte number, the result of
8*INT(X/4) requires two bytes STORE and STORE+-1. This is because
the most significant bit of XCOORD is shifted via the carry into the least
significant bit of STORE+1. The rest of the coding for the above equation
is identical to that described for Program 7.1. The whole lot is then added
together as before and the calculated address placed in LOC and LOC—H+1.

Setting the mask
The mask byte used in setting the appropriate bit pair within the calculated
address is, unfortunately, more complex. The essential coding is:

LDA XCOORD
AND #3
TAX
LDA COLCODE
CLC
Loar ROR A
ROR A
ROR A
DEX
EFL LOOFP
S5TA MASK

XCOORD is loaded into the accumulator and the five most significant
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bits are ANDed out. The result in range 0 to 3 is placed in the X register
which is acting as a loop counter. The bit pair, specifying where the VIC-11
chip gets its colour information from, is previously selected and stored in
the location labelled COLCODE. This pattern is loaded into the
accumulator and the loop initialised. This is performed by clearing the
carry flag and rotating the accumulator one place to the right. The least
significant bit of the bit pair is now in the carry and the most significant bit
of the bit pair is placed in the least significant bit of the accumulator. Two
further rotate right instructions will cause the bit pair to enter the
accumulator from the left. Each further cycle of the loop will cause the bit
pair to shift right twice. According to the number of cycles of the loop (0 to
3), the bit pair will be set to any one of the four possible mask positions. The
number of cycles is dictated by the two least significant bits of XCOORD.
The mask can then be ORed with the contents of the calculated address
LOC by indirect indexed addressing.

10 ! MULTICOLOUR BIT MAPPING
20 'PLOTTING INDIVIDUAL FPIXELS

F0 XCOORD = S$FRB

40 YCOORD = $FC

50 COLCODE = $FD

60 SCRMEM = $FE

70 COLMEM = $FF

80 BMPAGE = $59

F0 LOC = $5A
100 STORE = $5C
110 SCRFAGE = $35E
120 MASK = %50
130 *=$C000

140 !

150 LDA #$20
160 STA BMPAGE
170 LDA #4

180 STA SCRPAGE
190 LDA #$25
200 5TA SCRMEM
210 LDA #4

220 5TA COLMEM
2Z0 L.DA $DO18
240 ORA #8
230 57TA $D0O18
260 LDA $DO11
270 ORA #%20
280 STA $DO11
290 LDA $DO16

300 ORA #%10



310

320

330

340

350

3&60

370

380

370

400

410

420

430 !
4490

450

460

470

480

490

=00

510

520

530

540

550

560 FIN
870 !
580 HLIN
590

&00

610 REP
620

&30

640

630

&60 !
670 VLIN
680

&0

700 REFZ
710

720

730

7490

750 !

sSTA
LDA
STA
LDA
STA
JSR
LDX
LDbY
JSK
LDX
LDY
JSR

LDA
STA
LDX
LDY
LDA
JSR
LDA
STA
LDX
LDY
LDA
JSR
JHMP

57X
STY
TAX
JSR
INC
DEX
BNE
RTS

STX
STY
TAX
JSK
INC
DEX
BNE
RTS
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$DO16
#6
$D020
#7
$DO21
CLEARMAP
SCRPAGE
SCRMEM
MEMFILL
#4$D8
COLMEM
MEMFILL

#3
COLCODE
#0

#100
#160
HLIN

#2
COLCODE
#80

#0

#200
VLIN
FIN

XCOORD
YCOORD

PLOTPIXEL
XCOORD

REF

XCOORD

YCOORD

PLOTPIXEL
YCOORD

REP2
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760 PLOTPIXEL LDA XCOORD

770 AND #3

780 STA STORE
790 LDA #0

800 5TA LOC
810 STA STORE+1
820 LDA COLCODE
830 cLC

840 ROR A

850 LOOP4 ROR A

860 ROR A

870 DEC STORE
880 BFL LOOP4
890 STA MASK
00 LDA XCOORD
10 AND #$FC
F20 ASL A

930 ROL STORE+1
240 STA STORE
P50 LDbA YCOORD
P60 LSR A

970 LSR A

780 LSR A

990 STA LOC+1
1000 LSR A

1010 ROR LOC
1020 LSR A

1030 ROR LOC
1040 cic

1050 ADC LOC+1
1060 STA LOC+1
1070 LDA YCOORD
1080 AND #7

1090 ADC LOC
1100 ADC STORE
1110 STA LOC
1120 LDA LOC+1
1130 ADC STORE+1
1140 ADC BMPAGE
1150 STA LOC+1
11460 LDY #0O

1170 LDA (LOC),Y
1180 ORA MASK
1190 5TA (LOO),Y

1200 RTS
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1210 !

1220 CLEARMAFP LDA BMPAGE
1230 STA STORE+1
1240 LDA #0O

1250 STA STORE
1260 LDX #$1F

1270 LOOFP LDY #O

1280 LOOP2 STA (STORE),Y
1290 DEY

1300 BNE LOOPZ
1310 INC STORE+1
1320 DEX

1330 BNE LOOP

1340 LDY #$3F

1350 LOOP3 STA (STORE),Y
1360 DEY

1370 BPL LOOP3
1380 RTS

1390 !

1400 MEMFILL LDA #0

1410 85TA STORE
1420 STX STORE+1
1430 TYA

1440 LDX #3

1450 BLOCK LDY #0O

1460 CYCLE STA (STORE),Y
1470 DEY

1480 BNE CYCLE
1490 INC STORE+1
1500 DEX

1510 BNE BLOCK
1520 STA (STORE),Y
1530 LDY #$E7

1540 NEXT S5TA (STORE),Y
1550 DEY

1560 BNE NEXT

1570 RTS

Program 7.3. Multicolour bit mapping.

Two subroutines are incorporated, capable of drawing vertical or
horizontal lines. These are called VLIN and HLIN respectively.
Three parameters must be passed in order to draw a line. They are
the X and Y coordinates, where the line is to start, and the length of
the line to be drawn. The length can be 1 to 200 in the Y dimension or
1 to 160 in the X dimension. Parameters are passed to the subroutine
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by means of the X register for the X coordinate and the Y register for
the Y coordinate. The length parameter is passed in the accumulator.
The parameters should be set up in the various registers prior
to calling the subroutine. An example of using VLIN is given
below:

LDA #2

STA COLCODE
LDX #B8o

LDY #0O

LbhAa #Z00
JSR VLIN

The above code draws a vertical line from top to bottom about
halfway across the screen. The selected colour for the line must be
set, using the bit pair code (0 to 3), and stored in the location
COLCODE. This is required by the PLOTPIXEL subroutine. Note
that these are not the colour codes we use in BASIC but the pointer
code to where this information may be found (in the table given
earlier). The subroutines HLIN and VLIN themselves are just simple
loops that repetitively plot pixels by calling the PLOTPIXEL subroutine.

The lines of source code 440 to 560 show how to use the routines
by drawing a pair of coloured cross hair-lines. Far more elaborate
graphics can be programmed using these routines but, sadly, there is
insufficient space for the subject in this book. For instance, Program
7.3 can be used in the same manner as Program 7.1 for plotting hi-
res graphs, etc.

Breakdown of Program 7.3

Lines 30 to 120 assign labels to often used locations.

Line 130 instructs assembly starting at location $C000.

Lines 150 to 180 set up the base pages of the bit map and screen
memory areas of memory respectively.

Lines 190 to 200 set up the colour nybbles pattern to be stored in
each byte of screen memory.

Lines 210 to 220 set up the colour code nybble to be stored in each
byte of colour memory.

Lines 230 to 250 place the bit map base address at $2000.

Lines 260 to 310 set up multicolour bit map mode.

Lines 320 to 330 set the border colour to blue.

Lines 340 to 350 set the background colour #0 to yellow.

Line 360 executes the clear bit map subroutine CLEARMAP.

Line 370 to 390 sets up screen memory with the colour code pattern
selected in line 190 via the subroutine MEMFILL. Parameters are
passed to MEMFILL in the X and Y registers. The X register



High Resolution Graphics 167

contains the base page of memory to be filled and the Y register
passes the colour code pattern contained in SCRMEM.

Lines 400 to 420 set up colour memory with the colour code
selected in line 210. The X register passes the base page of colour
memory and the Y register passes the colour code contained in
COLMEM.

Lines 440 to 550 show how to use the routines, as discussed
earlier.

Line 560 is a lock-up loop to prevent screen scrolling.

Lines 580 to 650 contain the HLIN subroutine. This stores the
parameters passed and calls the PLOTPIXEL subroutine many times
within a simple loop to draw a horizontal line of specified length starting at
a chosen XY coordinate.

Lines 670 to 740 contain the VLIN subroutine and is similar to the
HLIN subroutine above but draws a vertical line.

Lines 760 to 1200 contain the PLOTPIXEL subroutine and is a final
polished up version of the coding detailed earlier.

Lines 1220 to 1390 are the CLEARMAP subroutine, identical to
that used in Program 7.1.

Lines 1400 to 1570 contain the MEMFILL subroutine which has the
dual purpose of filling both screen memory and colour memory with
the desired colour codes. This routine is essentially the same as
SCRFILL described in the Program 7.1 breakdown except that
parameters are passed via the X and Y registers. The base page of memory
to be filled is passed in the X register and the filler byte pattern is passed in
the Y register.

Drawing hi-resolution static shapes

This section is built around a high resolution shape-drawing routine
using the multicolour bit map mode. The routines could also be used
for producing software sprites. However, this is unnecessary in the
case of the Commodore 64 since hardware sprite handling is provided.
The basic idea is to draw a complex multicolour shape at any
XY screen coordinate. The rqutines are designed for drawing any
number of different shapes from labelled data tables. The data,
describing the shape to be drawn, will be placed at the end of
Program 7.4 and can easily be modified to draw any designed shape.

The routine makes use of what should now be familiar methods of
translating an XY coordinate to an absolute bit map address. The
subroutine responsible is labelled ADDRESS and differs little from
that developed in the previous listing. The subroutines MEMFILL
and CLEARMAP are used to clear and prepare the viewed screen in
the manner discussed previously.
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In multicolour bit map mode, each byte of bit map corresponds to
4 consecutive horizontal pixels as seen on the screen. In order to cut
down on the number of data elements required to specify a shape, a
byte is considered as the fundamental unit. Thus each byte can
contain data specifying up to 4 horizontally consecutive pixels of
different colours. This is a help, since a lot of information can be
packed into the data tables. They can be accessed up to a limit of 255
bytes. Each data byte is constructed, using familiar bit pairs, which
point to where the colour information is stored for a particular
pixel. The actual colour codes must be previously set up in screen and
colour memory as shown in the last section. The codes are repeated below
for convenience:

Bit pair code Colour information taken from:
00 Background colour (location $D021)
01 Upper nybble of Screen memory
10 Lower nybble of Screen memory
11 Lower nybble of colour memory
o - N ]
Z r z z
= = = =
= 5 = =]
- | - | - -l
(o] o] (o] o]
o o o o
ROW 0 0 1 2 3
ROW 1 4 5 6 7
ROW 2 8 9 10 1
12 13 14 15
16 17
50 51
ROW 13 52 53 54 55
ROW 14 56 57 58 59
ROW 15 60 61 62 63

Fig. 7.3. Order in which data bytes are placed in memory.
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The subroutine DRAW places the data bytes into the bit map area of
memory and hence onto the screen in sequential columns in row by row
fashion. Figure 7.3 should clarify this point.

The shape rectangle

It is important here to think of the shape you are designing as being
contained in a rectangle. This should present no problem since the
background #0 colour can be specified where no shape detail is to be seen.
The first two entries of each data table are the height and width data for the
rectangular graphics cell. This data is read in and stored, in the locations
HEIGHT and WIDTH respectively, by the DRAW subroutine prior to
dumping the rest of the data into the bit map. For instance, in the example
data table SHAPE1 shown in program 7.4 the graphics cell is 25 bytes high
(25 pixels) by 5 bytes wide (20 pixels). The actual shape is best planned out
on grid paper, remembering that each byte in the horizontal direction
contains the data of four pixels.

XY coordinates

For ease of use within a larger program, the X and Y coordinate parameters
are passed to DRAW using the X and Y registers respectively. The relevant
data table. containing the information to be placed into memory, must
have its start address placed into the location POINTER and POINTER+1
(low-byte, high-byte) prior to calling DRAW.

The top left-hand corner of the rectangle containing the shape is the
reference starting point. If the shape is to be placed at X=20 and Y=100,
and the relevant data table base address is labelled SHAPE, the following
code would be required before DRAW is called:

LDX #Z20

LDY #1090

LDA #<SHAPE1L

STA FOINTER

LDA #>SHAPEL

5Ta FOINTER+1

J5R DRAW

The X register is loaded with the X coordinate. The Y register is loaded

with the Y coordinate. The shape table base address, labelled SHAPEI, is
stored in POINTER. Since two bytes are required, the shape table base
address must be spht into low-byte and high-byte. The MIKRO Assembler
uses the format shown above for this, using < to denote the low-byte of the
address and > for the high-byte. Other assemblers might have a different
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convention, so check this in the instruction manual supplied with the
assembler. A call to the subroutine DRAW willthen place the shape on the
screen at the specified position.

The objective of Program 7.4

Program 7.4 draws two multicoloured shapes on the screen. The first
derives its data from the table SHAPE1 and the second from SHAPE2.
More can be added using the same techniques and for a number of
purposes such as backcloth detail for games, etc, or computer artwork.
Even software sprites can be formed with a few minor modifications such
as placing a one-pixel border of background #0 round the shape and
successively incrementing or decrementing the X and/or Y coordinates.

10 ! MULTICOLOUR BIT MAPPING
20 'DRAWING MULTIPLE STATIC SHAPES

Z0 XCOORD = $FB

40 YCOORD = SFC

50 SCRPAGE = &FD

60 SCRMEM = SFE

70 COLMEM = $FF

8C BMPAGE = <26

F0 HEIGHT = %37
100 WIDTH = %38
110 WCOUNT = $59
120 LOC = %5A
130 STORE = $%35C
140 YREG = $5E
150 POINTER = %4k
160 *=%C000

170 ¢

180 LDA #%20
190 57TA BMPAGE
200 LDA #4

210 STA SCRPAGE
220 LDA #%03
230 5TA SCRMEM
240 LDA #5

250 STA COLMEM
260 ~ LDbA s$DO18
270 ORA #8

280 STA 4$D0O18
290 LDA $DO11
JF00 ORA #$20
10 STA 4$DO11

320 LDA $DO16
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F30 ORA #$10

340 STA $DO16
350 LDA #4

360 STA D020
370 LDA #7

380 STA $DO21
390 JSR CLEARMAF
400 LDX SCRPAGE
410 LDY SCRMEM
420 JSR MEMFILL
430 LDX #$D8

440 LDY COLMEM
450 JS5R MEMFILL
4460 !

470 LDX #20

480 LDY #100

490 LDA #<SHAPEL
500 STA POINTER
510 LDA #>SHAPE1
220 STA POINTER+1
530 JSR DRAW

540 LDX #10

550 LDY #3530

960 LDA #<SHAPEZ
570 STA FOINTER
080 LDA #>SHAPE2
S90 STA FPOINTER+1
600 JSR DRAW

610 HALT JMP HALT

620 !

630 DRAW STX XCOORD
640 STY YCOORD
&50 LDY #0O

660 LDA (POINTER),Y
&70 STA HEIGHT
&80 INY

670 LDA (POINTER).Y
700 STA WIDTH
710 LDX #2

720 NEWROW LDA #0O

730 STA YREG

740 LDA WIDTH
750 STA WCOUNT
760 JSR ADDRESS

770 NEWCOLUMN TXA
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780
7790
800
810
820
g30
840
850
8&0
g70
880
890
900
Q10
Q20
930
240
o0
FL0
Q70
80
Q0
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

ADDRESS

TAY
LDA
LDY
STA
TYA
cLC
ADC
STA
INX
DEC
BNE
INC
DEC
BNE
RTS

LDA
STA
S5TA
LDA
ASL
ASL
ASL
ROL
STA
LDA
LSK
LSR
LSR
STA
LSR
ROR
LSR
ROR
ADC
STA
LDA
AND
ADC
ADC
STA
LDA
ADC
ADC
STA

(POINTER) ,Y
YREG
(LDC)Y, Y

#8
YREG

WCOUNT
NEWCOLUMN
YCOORD
HEIGHT
NEWROW

#0

Loc
STORE+1
XCOORD
A

a

A
STORE+1
STORE
YCOORD
A

A

A

LOC+1
A

LOC

A

LocC
LOC+1
LOC+1
YCOORD
#7

Loc
STORE
LOC
LOC+1
STORE+1
BMPAGE
LOC+1



1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
14350
1460
1470
1480
1490
13500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

CLEARMAP

LOor
LOOP2

LOOPX

MEMFILL

BLOCK
CYCLE

NEXT

SHAPE 1

RTS

LDA
5TA
L DA
STA
LDX
LDY
5TA
DEY
BNE
INC
DEX
BNE
LDY
STA
DEY
BPL
RTS

LDA
5TA
STX
TYA
LDX
LDY
8TA
DEY
BNE
INC
DEX
BNE
5TA
LDY
STA
DEY
BNE
RTS

BYT
BYT
BYT
BYT
BYT
BYT

High Resolution Graphics

BMPAGE
STORE+1
#0
STORE
#$1F
#0

(STORE), Y

LOOP2
STORE+1

LoorP
#E3F

(STORE), Y

LOOP3

#0
STORE
STORE+1

#3
#0

(STORE), Y

CYCLE
STORE+1

BLOCK

(STORE) , Y

#SE7

(STORE), Y

NEXT

25,3
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$55, $55, $55, $55, $55
$66, 566, $66, $66, $66
$FF, $FF , $FF , $FF , $FF
$FF, $FF , $00, $FF , $FF
$FF , $FF, $FF , $FF , $FF
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1680 BYT $66,%66,%66,%66, 566
1690 BYT $55, %55, $55, $55, $55
1700 BYT $FF,$FF, $FF, $FF, $FF
1710 BYT 55, $FF, $FF, $FF, $55
1720 BYT $66,%FF,$FF, $FF,$56
1730 BYT $FF,$DB, $DE, $DB, $FF
1740 BYT $55,%DB, $DB, $DB, $55
1750 BYT $66,%00, $DB, $00, $66
1760 BYT $FF,%DB, $DB, $DB, $FF
1770 BYT %55, $DR, $DB, $DE, $55
1780 BYT $66,%FF,$FF,$FF, $66
1790 BYT $FF,$FF, $FF,$FF, $FF
1800 BYT $FF,$FF, $FF, $FF, $FF
1810 BYT $55,%55, $55,$55, $55
1820 BYT $66,%66,%66,%$66, $66
1830 BYT $FF,$FF,$FF, $FF,$FF
1840 BYT $FF,$FF, $00,$FF, $FF
1850 BYT $FF,$FF,$FF,$FF, $FF
1860 BYT $66,%6b6,%66,%66,%56
1870 BYT 455, $55, 455, $55, $55
1880 !

1890 SHAPEZ BYT 7.4

1900 BYT $FF,$FF,$FF,$FF
1910 BYT $FF,$1B,$1B,$FF
1920 BYT $FF.$1E,$1B,$FF
1930 BYT $FF,$FF,$FF, $FF
1940 BYT $FF,.$1B,%1B, $FF
1950 BYT $FF,$1B,$1B, $FF
1960 BYT $FF,$FF, $FF, $FF

Program 7.4. Drawing multiple static shapes.

Breakdown of Program 7.4

Lines 30 to 150 assign labels to commonly used locations.

Line 160 defines the assembly beginning (location $C000).

Lines 180 to 210 set up the base pages for the bit map and screen memory.
Lines 220 to 230 set the colour codes for the upper and lower nybbles of
screen memory into the location SCRMEM. In this case black is specified
for the upper nybble and cyan for the lower nybble.

Lines 240 to 250 set the colour code (green in this case) to be placed in
colour memory.

Lines 260 to 340 prepare and set up multicolour bit map mode in the same
manner as the previous Program 7.3.

Lines 350 to 360 set the screen border colour to purple.
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Lines 370 to 380 set the background #0 or screen background colour to
yellow.

Lines 390 to 450 clear the bit map area of memory then fill screen and
colour memory with the contents of SCRMEM and COLMEM
respectively.

Lines 470 to 600 store the shape table start address pointer, set up the XY
coordinate parameters and call the DRAW subroutine. This is repeated so
two different shapes can be drawn, obtaining their data from tables
SHAPEI and SHAPE2.

Line 610 loops up the program to prevent screen scrolling.

Lines 630 to 640 store the XY coordinate parameters passed via the X and
Y registers in XCOORD and YCOORD.

Lines 650 to 700 pick up the height and width data of the graphics cell and
store them in HEIGHT and WIDTH respectively.

Line 710 stores the index to the next data item in the X register. That is to
say, the current Y register content is temporarily saved in the X register.
The code TYA, followed by TAX, would have done here equally well.
Lines 720 to 730 clear the location YREG at the start of each new graphics
cell column. This can be thought of as the column index.

Lines 740 to 750 reset the graphics cell width counter (WCOUNT) with the
contents of WIDTH each time a new row is started.

Line 760 calls the subroutine ADDRESS which calculates a bit map
address from an XY coordinate.

Lines 770 to 780 transfer the data index, currently stored in the X register,
to the Y register, thus enabling the use of indirect indexed addressing.
Line 790 loads the next data item into the accumulator.

Line 800 loads the Y register with the column index stored in YREG.
Line 810 stores the data present in the accumulator in the correct place in
the bit map by the use of indirect indexed addressing.

Lines 820 to 850 add the number of bytes offset between adjacent addresses
in the X direction to the Y register contents. The result is stored in the
column index labelled YREG.

Line 860 increments the data index.

Lines 870 to 880 decrement the width counter and cause a branch to
NEWCOLUMN if row is not complete.

Lines 890 to 910 increment the Y coordinate if the row is completed and
cause a branch back to NEWROW if the total number of rows are not
completed.

Lines 940 to 1230 are the ADDRESS subroutine. This is much the same as
similar subroutines described earlier so no further explanation should be
necessary.

Lines 1250 to 1410 list the familiar CLEARMAP subroutine.

Lines 1430 to 1600 are the MEMFILL subroutine described in the previous
section.

Line 1620 contains the height and width data of SHAPE]L.
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Lines 1630 to 1870 are the SHAPEI data table.
Line 1890 contains the height and width data of SHAPE 2.
Lines 1900 to 1960 are the SHAPE?2 data table.

Formation and control of sprites

It is assumed, in this section, that readers are already familiar with the
formation and control of sprites using BASIC so it is sufficient here to
concentrate on assembly language equivalents. The programming of
sprites is particularly easy on the Commodore 64 since control simplifies to
a series of loops containing POKE statements in BASIC, the machine code
equivalent being a succession of LDAs and STAs. However, the task can be
tedious and a lot of development time is needed if a full feature-zapping
type of game is to be devised. A few examples are given on the formation
and control of sprites using assembly language.

There are two sprite modes. They can be formed in either standard
resolution two-colour mode (24 by 21 pixels) or in multicolour mode with a
reduced horizontal resolution of 12 by 21 pixels.

Standard resolution sprites

A sprite can be designed using decimal methods as described in the User
Manual. In assembly language it is far easier to use hexadecimal notation.
This is because the data byte is constructed from upper and lower byte
nybbles. That is, groups of four bits where each group can have a maximum
value of $F or 15 decimal. To translate a relatively complex bit pattern such
as 10110111 into decimal would involve calculating 128432+ 16+4+2+1=
183. By splitting the bit pattern into groups of four the hex digits $D7
emerge naturally. Those of us who don’t shine at mental arithmetic should
find hexadecimal a boon. (Refer to Appendix A for practical examples of
binary/hex conversions.)

VIC-II addressing

It is always best to assign the VIC-II register base address to a label at
the start of a program. For example, BASE=$D000 assigns the base
address to the label BASE. With most assemblers, the use of
BASE+X, where X is any offset, will now address any of the registers. This
method is incorporated in all the examples that follow.

Directly after screen memory there are 8§ locations by default
starting at $7F8 or 2040 decimal. These locations must contain the
block numbers of where the VIC-II chip can find the corresponding
sprite data 0 to 7. The block number is ADDRESS/64, so if your sprite
#0 data is stored at $340 or 832 decimal the relevant block number is
832/64=13. This is the number that must be loaded into location $7F8.

Address BASE+21 is the sprite enable register. This register is 8 bits wide
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and corresponds, Isb to msb, to the sprites 0 to 7. Thus, to turn any sprite
on, the relevant bit must be set to ‘I’. For example, to turn on sprite #0 and
sprite #1, the sprite enable register must be set to 3. When visible on the
screen, sprites have a priority system: a low numbered sprite will always
appear to pass in front of a higher numbered sprite.

What is needed now is to read in the sprite data from a table and load it
into the area of memory reserved above. The sprite can then be moved on
the screen by altering the contents of locations BASE and BASE+1. These
are the current X and Y coordinate registers respectively. Program 7.5
shows the fundamental sprite control arrangement. By studying this and
the program breakdown it should be clear how to create and move a single
sprite around.

10 'FUNDAMENTAL SPRITE CONTROL

20 BASE =  $D0O0O
30 MEM = $FH

40 *=$C000

50 LDA #147

60 JSR $FFD2

70 LDA #%40

80 STA MEM

90 LDA #3

100 S5TA MEM+1

110 LDA #1

120 STA BASE+21

130 LDA #13

140 STA $7F8

150 LDY #62

160 LOOP LDA SHAPE,Y

170 STA (MEM),Y

180 DEY

190 BPL LOOP

200 REPEAT LDX #0
210 LOOF2Z LDA BASE+LID

220 BNE LOOF2
230 STX BASE
240 STX BASE+1
250 INX
260 CPX #200
270 BNE LOOP2

280 BEG REPEAT
290 SHAPE BYT $00,%$18,$00
300 BYT $00,%18,4$00
310 BYT $00,$7E, $00

20 BYT 00, %FF, %00
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330 BYT $01,$FF,$80
340 BYT $03,%$FF,$CO
350 BYT $07,%FF,$EO
360 BYT $0OE,$3C,%$70
370 BYT $1E,$3C,$78
380 BYT $3E,$3C,$7C
390 BYT $7F,$FF,$FE
400 BYT $FF,$FF,$FF
410 BYT $FF,$FF,$FF
420 BYT $FF,$FF,$FF
430 BYT $78,%00,%1E
440 BYT $31,%$00,%$1C
450 BYT $1F,$FF,$F8
460 BYT $OF,$F7,$F0
470 BYT $07,$E3,$EO
480 BYT $03,$C1,%CO
490 EYT $01,%$81,%$80

Program 7.5. Fundamenta! sprite control.

Breakdown of Program 7.5

Lines 20 to 30 assign labels to the commonly used locations.

Line 40 causes assembly to begin at $C000.

Lines 50 to 60 clear the screen. This is the equivalent of PRINT
CHR$(147).

Lines 70 to 100 set up the locations MEM and MEM+1 (low-byte, high-
byte) to the address where the sprite data is to be stored. This address has
been arbitrarily chosen as the cassette buffer ($340) and can hold sufficient
data for up to 3 sprites.

Lines 110 to 120 set the sprite enable register to 1, thus turning on sprite #0.
Lines 130 to 140 load the first location, following the default screen
memory, with 13. This informs the VIC-11 chip that sprite data is located at
$7F8 or 2040 decimal.

Line 150 loads the Y register with the number of items in the data table
minus 1.

Lines 160 to 190 constitute a loop which dumps the data table contents into
the reserved sprite data memory. Indexed addressing with the Y register is
used to pick up the data element from the data table. The data is then stored
using indirect indexed addressing. the loop is down counting so the last
item of data is loaded first then the second to last, etec.

Line 200 initialises the X register to zero.

Lines 210 to 220 form a delay loop which repeatedly reads the faster register
$D012 and exits when zero is returned. This reduces flicker since the screen
is updated while not in the visible part of the scan.

Lines 230 to 270 simply update the X and Y coordinates of where the sprite
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is placed on the screen. LOOP2 controls the sprite across the screen
diagonally.
Line 280 causes a branch back to REPEAT thus repeating the control loop
LOOP2.
Lines 290 to 490 contain the sprite data table.

More elaborate contro! routines can be devised but the essential
techniques would be clouded by too much uninformative detail.

Separate control of sprites

Program 7.6 shows how to set up two sprites and control them separately.
The sprite enable register is set to turn on sprite #0 and sprite #1, therefore 3
is loaded. The sprite data is not placed in the cassette buffer in this example.
Instead, the data is placed sequentially in 64 byte blocks from $3000. This is
just an alternative area of memory that is not so restrictive in size as the
cassette buffer. The block numbers indicating where the sprite data is
stored are thus given by 192 and 193 for sprites #0 and #1 respectively.
These block numbers are stored directly after screen memory in locations
$7F8 and $7F9.

Two or more different data tables can be accessed in the same program
by using the method described in the last section on drawing multiple hi-res
shapes from tables. The common subroutine SPRITE, used in Program
7.6, can dump each sprite data table into the previously reserved block of
memory by simply changing the indirect addresses POINTER and MEM.

10 !'SETTING UP TWO SPRITES

20 BASE = %DO0O
F0 MEM = 4FBR

40 POINTER = $FD

S50 *=$C000

60 LDA #147
70 JSR $FFD2
a0 LDA #Z

0 STA BASE+21
100 LDA _#192
110 STA $7F8
120 LDA #193
130 5TA $7F9
140 LDA #%00
150 S5TA MEM

160 LDA #$30
170 STA MEM+1
180 LDA #7

190 STA BASE+3?

200 LDA #{GEHAPE1
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210 STA POINTER
220 LDA #>SHAPE1
230 STA POINTER+1
240 JSR SPRITE

250 LDA #3$40

260 STA MEM

270 LDA #4

280 STA BASE+40

290 LDA #<SHAPEZ2
300 STA POINTER

310 LDA #3>SHAPE2
320 STA POINTER+1
30 JSR SPRITE

340 !

350 REPEAT LDA #O

260 STA BASE

370 STA BASE+1

380 STA BASE+3

390 LDA #100

400 STA BASE+2

410 LDX #255

420 LOOP2 LDA BASE+18

430 BNE LOOP2

440 INC BASE

450 INC BASE+1

460 INC BASE+3

470 DEX

480 BNE LOOPZ

490 BE@ REPEAT

S00 !

510 SPRITE LDY #&2

520 LOOP LDA (POINTER),Y
530 STA (MEM),Y

540 DEY

550 BPL LOOP

560 RTS

570 !

580 SHAPE1 BYT $00,%18,$00
590 BYT %00, %18, $00
600 BYT $00,%7E, $00
610 BYT $00,%FF, $00
620 BYT $01,$FF,$80
&30 BYT $03,$FF,4$C0
640 BYT $07,$FF,$EO

650 BYT $0E, $3C,%70
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660 BYT $1E,$3C,$78
670 BYT $3E,$3C,$7C

680 BYT %7F, $FF, $FE

690 BYT $FF,$FF, $FF

700 BYT $FF,$FF, $FF

710 BYT $FF,$FF, $FF

720 BYT 478,$00,%$1E

730 BYT $31,%$00,%1C

740 BYT $1F,$FF,$F8

750 BYT $0F, $F7,$F0

760 BYT $07,$E3, $E0

770 BYT $03,%$C1,$C0

780 BYT %01, $81,$80

790 !

800 SHAPE2 BYT $FF,$FF, $FF

810 BYT $FF, $FF,$FF

820 BYT $FF,$00, $FF

830 BYT $FF, %00, $FF

840 BYT $FF,$00,$FF

850 BYT $FF,$00,$FF

8460 BYT $FF,$FF,$FF

870 BYT $FF, $FF, $FF

880 BYT 0,0,0,0,0,0,0,0,0,0
890 BYT 0,0,0,0,0,0,0,0,0,0
200 BYT 0,0,0,0,0,0,0,0,0,0
210 EYT 0,0,0,0,0,0,0,0,0,0,0

Program 7.6. Setting up two sprites.

Breakdown of Program 7.6

Lines 20 to 40 assign labels to commonly used locations.

Line 50 causes assembly to start at location $C000.

Lines 60 to 70 clear the screen.

Lines 80 to 90 enable sprites #0 and sprite #1.

Lines 100 to 130 store the block numbers where the VIC-I1 chip can find the
data of each sprite. The sprite #0 data is stored in block 192 of memory and
the sprite #1 data is stored in block 193. These block numbers are stored at
locations $7F8 and $7F9 following screen memory.

Lines 140 to 170 set up the base address pointers MEM (2 bytes) to where
the sprite #0 data will be placed.

Lines 180 to 190 set the colour of sprite #0 to yellow (colour code 7).
Lines 200 to 240 set up POINTER (2 bytes) to the base address of the sprite
#0 data table labelled SHAPEL. This is followed by a call to the subroutine
SPRITE which dumps the data into memory.

Lines 250 to 260 add $40 or 64 decimal to the previous contents of MEM in
order to set it to where sprite #1 data will be placed.
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Lines 270 to 280 set the colour of sprite #1 to purple (colour code 4).
Lines 290 to 330 set up POINTER (2 bytes) to the base address of the sprite
#1 data table labelled as SHAPE2. This is followed by a call to subroutine
SPRITE which dumps the data table into memory.

Lines 350 to 400 initialise the X and Y coordinate registers of the VIC-II
chip for each sprite.

Lines 410 to 490 form a loop, separately controlling the paths taken by the
two sprites. It does this by incrementing a combination of the above
registers to provide a control routine for illustrative purposes.

Lines 510 to 550 are the SPRITE subroutine. This picks up data from the
data table and stores it in the correct part of memory. Which table, and
which part of memory, must be previously set up in POINTER and MEM.
The subroutine employs indirect indexed addressing.

Lines 580 to 910 are a pair of data tables corresponding to sprite #0 and
sprite #1. Notice, in lines 880to 910, that unused locations of the sprite data
table must be set to zero in order to prevent unpredictable results.

Multicolcur sprites

In Multicolour mode a sprite is limited to a maximum of four colours. Each
bit pair instructs the VIC-IT chip on where the actual colour code is stored.
This information can be in any one of the registers laid out below and it is
the programmer’s responsibility to set up the colour codes in them.

Bit pair Where the colour code is taken from
00 Current screen colour

01 Sprite multicolour register #0 ($D023)
10 Sprite colour register

11 Sprite multicolour register #1 ($D026)

Program 7.7 shows how a multicolour sprite can be added to Program
7.6. The breakdown of Program 7.7 sets out only the details of the
additions to Program 7.6.

10 'ADDITION OF A MULTICOLOUR SPRITE

20 BASE $D0O0O
30 MEM $FB

40 POINTER = %FD

S0 *=%C000

&0 LDA #147
70 JSR $FFD2
80 LDA #7

F0 STA BASE+21

100 LDA #192



110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
F60
370
380
370
400
410
420
430
440
450
460
470
480
490
S00
510
520
330
340
5990

REPEAT

STA
LDA
5TA
LDA
STA
L DA
5TA
L.DA
STA
LDA
STA
LDA
STA
LDA
STA
ISR
LDA
STA
LDA
5TA
LDA
5TA
LDA
5TA
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
5TA
LDA
STA
LbA
STA
LDA
S5TA
JSR

LDA
5TA
STA
STA

High Resolution Graphics

+7F8
#193
$7F9
#194
$7FA
#$00

MEM

#$30
MEM+1

#7
BASE+39
#<SHAPE1
POINTER
# >SHAPE 1
POINTER+1
SPRITE
#$40

MEM

#4
BASE+40
#<SHAPEZ
POINTER
#>SHAPEZ2
POINTER+1
SPRITE
#$80

MEM

#4
BASE+28
#0
BASE+41
#4
BASE+37
#5
BASE+38
#<{ SHAPES
FOINTER
#>SHAPES
POINTER+1
SPRITE

#0O
BASE
BASE+1
BASE+Z

183
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960 STA BASE+S

S70 LDA #100

580 STA BASE+?2

590 S5TA BASE+4

600 S5TA BASE+S

&£10 I.DYX #253

620 LOOPZ LDA BASE+1S8

650 BNE LOOPZ2

640 INC BRASE

650 INC BASE+1

660 INC BASE+3

&80 INC BASE+4

670 DEX

700 BNE LOOPZ2

710 EEG REPEAT

720 ¢}

730 SFPRITE LDY #&2

740 LOOP LDA (POINTER),Y
750 S5TA (MEM),Y

760 DEY

770 BFL. LOOP

780 RTS

790 1

800 SHAPE1L BYT $00,%18, %00
810 BYT 4$00,%18,%$00
820 BYT $00,%7E, $00
830 BYT %00, %FF, %00
840 BYT 401,%FF,$80
850 BYT $03,$FF,%C0O
8460 BYT $07,%FF,$EQ
870 BYT $0E,%3C,%70
a80 BYT $1E,$%3C,.¢78
890 BYT $3E,%3C,$7C
Q0 BYT $7F,$FF,$FE
910 BYT &FF,$FF,$FF
220 BYT $FF,$FF, $FF
QIO BYT $FF,%FF,$FF
40 BYT 478,%00,%1E
50 BYT $31,%00,%1C
260 BYT $1F,sFF,$F8
Q70 BYT $0F,%$F7,%F0
280 BYT %07,%E3,$E0
990 BYT $03Z,%C1,$C0
1000 BYT $01,%81,%80

1010 !
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1020 SHAPEZ2 BYT $FF,$FF, $FF

1030 BYT $FF,$FF,$FF

1040 BYT $FF,$00,$FF

1050 BYT $FF, %00, $FF

1060 BYT $FF,$00, $FF

1070 BYT $FF,$00,$FF

1080 BYT $FF,$FF,$FF

1090 BYT $FF,$FF, $FF

1100 BYT 0,0,0,0,0,0,0,0,0,0
1110 BYT 0,0,0,0,0,0,0,0,0,0
1120 BYT 0,0,0,0,0,0,0,0,0,0
1130 BYT 0,0,0,0,0,0,0,0,0,0
1140 !

1150 SHAPES BYT $55, %55, $55

1160 BYT $AA, $AA, $AA

1170 BYT $FF,$FF, $FF

1180 BYT $55,%55,$55

1190 BYT $AA, $AA, $AA

1200 BYT $FF,$FF,$FF

1210 BYT $55,%55,$55

1220 BYT $AA,$AA, $AA

1230 BYT $FF,$FF, $FF

1240 BYT 0,0,0,0,0,0,0,0,0,0
1250 BYT 0,0,0,0,0,0,0,0,0,0
1260 BYT 0,0,0,0,0,0,0,0,0,0
1270 BYT 0,0,0,0,0,0,0,0,0

Program 7.7. Addition of multicolour sprite.

Breakdown of Program 7.7.

Lines 150 to 160 store the block number (194) where the VIC-II chip can
find the additional sprite #2 data. This is placed in the third location
following screen memory ($7FA).

Lines 360 to 370 add $40 or 64 decimalto the previous contents of MEM (2
bytes). This sets MEM to the base address of where the sprite #2 data is to
be placed.

Lines 380 to 390 sets sprite #2 to multicolour mode by setting bit 2 of the
multicolour sprite select register ($D01C).

Lines 400 to 410 set sprite #2 colour to black.

Lines 420 to 430 set sprite multicolour #0 to purple.

Lines 440 to 450 set sprite multicolour #1 to green.

Lines 460 to 500 set up POINTER (2 bytes) to the base address of the sprite
#2 data table labelled SHAPE3. This is followed by a call to the SPRITE
subroutine which places the data into the reserved memory area.

Lines 600 and 680 increment the sprite X and Y coordinate registers within
the simple control loop.
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Lines 1150 to 1270 contain the sprite #2 data table.

The routines supplied with this section are the basic methods which
enable sprites to be used in assembly language programs. All the other
refinements required in order to produce games - such as sprite expanding,
collision detection and background priorities — can be easily incorporated
by altering the contents of various registers within the VIC-II chip.

Summary

1. The standard high resolution mode uses 8K of memory, called the bit
map to address 320 X 200 pixels with two colours.

2. The upper nybble of a screen memory byte specifies the colour
information code of pixels represented by binary 1 and the lower
nybble, binary 0.

3. The standard high resolution mode is enabled by a | in bit 5 position of
the VIC-II control register, addressed at $DO11.

4. The difference between adjacent block addresses is $140 in the Y
direction and 8 in the X direction.

5. The multicolour bit map mode offers a choice of 4 colours but the
horizontal resolution is halved to 160 X 200 pixels.

6. When planning shapes in the high resolution mode, it is convenient to
consider them enclosed within a rectangle.

7. There are two sprite modes, either two-colour with 24 X 21 or four-
colour with 12 X 21 resolution.

Self test

7.1 How many pixels are available in the standard high resolution bit
map?

7.2 The standard high resolution bit map uses 8 kilobytes of RAM. How
many bits per pixel?

7.3 How do you set the standard high-resolution bit mapped mode?

7.4 In standard high resolution mode, the screen cannot be cleared by
zeroing screen locations. Why?



Chapter Eight
TTL Logic and 1/0
Techniques

Introduction

The Commodore 64 is reasonably well equipped for communication with
the outside world. Most users are content to take the various sockets at the
side and back for granted. That is to say, devices such as printers, floppy
disks, joysticks, modems, etc. are bought complete with ready-made
interface leads and simply plugged in. Even the software to drive the
devices is often supplied. The users’ attitude - which is quite
understandable - is often: ‘If the device works, why worry about how it
works?. It would be wrong to pretend that do-it-yourself methods, when
applied to input/output interfacing, are simple to understand and you
would be well advised to take the same attitude uniess you already have, or
intend to acquire, a little knowledge of electronics in general and TTL logic
in particular. Fortunately, the study of logic systems does not require a
heavy background knowledge of conventional electronic theory. There is
no need to wade through masses of alternating current and semiconductor
theory.

There are two main reasons why much of this traditional knowledge can
be skipped:

(a) Logic is concerned with only two electrical voltages (two-state
systems). Traditional electronics, on the other hand, is essentially analogue
in nature and so applies to smoothly varying voltages over an enormous
range. Consequently, traditional electronics is drenched with mathematics.
(b) Nearly all logic systems, even the most complex, can be constructed on
the Meccano principle using a selection of ready-made chips. Interfacing
problems between chips of the same family are virtually non-existent
because they are purpose-designed to be joined up directly in nose to tail
fashion.

There are two families of logic which maintain a kind of friendly rivalry.
One is called CMOS (which stands for Complementary Metal Oxide
Semiconductor) and the other is called TTL (which stands for Transistor
Transistor Logic). These names may seem a little off-putting when met for
the first time but they refer only to the kind of transistors used within the
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chip. Since chips operate within their own microscopic world, it matters
very little to the person using them how the internal semiconductor magic
behaves. In general, it is sufficient to know that CMOS chips take very low
currents but are not quite as fast or available in such variety as TTL chips.
Also, TTL is marginally easier to handle and tends to be more popular in
microcomputer work than CMOS. In view of this, only TTL logic will be
discussed in this chapter.

Introducing Logic

Simple switching

We start with the assumption that you already possess a smattering of
normal electrical knowledge. That is to say, you know the difference
between positive and negative, the difference between components in series
and parallel and know how to wire up simple circuits consisting of a lamp,
battery and one or more switches. Armed with a 4.5 volt dry battery as the
power source, you can soon get the feel of simple logic by hooking up the
circuits as shown in Fig. 8.1.

The AND function

Figure 8.1(a) shows two switches, marked A and B, in series. Clearly, they
must both be in the closed position for the lamp L to light. We can state the
behaviour of this circuit in various ways. For example, we can use plain
English:

The lamp lights if we close both switches.
This can be expressed a little more concisely if we use symbols:
If A and B are true, then L is true.

By using a special kind of notation used in Boolean algebra, we can
condense still further:

A.B=L
This is a Boolean statement (not an equation) and means:
If Aand B THEN L

The dot between the two letters on the left implies they are connected by the
AND function and the ‘="sign simply means the word THEN. (The dot is
sometimes omitted.) It is a highly symbolised form, difficult to grasp at first
but extremely useful as a shorthand, so it is worth more explanation.

A switch or a lamp can only be in one of two possible states, either ON or
OFF (operated or not operated). It is not too important what we call these
states and we could equally well use any other pair of opposites like TRUE
and FALSE or even | and 0. Thus the Boolean statement A.B=L could be
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Truth Table Boolean
a)——'/
A B
ABL
_ 000
el OL 010 A*B:L
T 100
111
<
A
b)
A ABL
jpu— 000
— @L 0 11 A+B:L
T 101
111
L
B
c) - ABCL
A 0000
0010
— c 0100
g :OL 0 1 1 0] A-(B+C)-L
T 1000
1011
1101
-.L 11 11
= L 2 & *r—
A B
A B L
—_‘T 000 _
— FOL 011 A*B:-L
T 100
110

I

Fig. 8.1. Simple switch arrangements.

taken to mean ‘If A and B are | THEN L is I>. The use of 1 and 0 is very
handy because it can be directly related to binary arithmetic.

Leaving Boolean for the moment and returning to Fig. 8.1(a), the
essential point to grasp is that the switches are simulating the AND
function. Another method of defining the action of this (and other
switching circuits) is by means of the truth table. Since there are two
switches, there must be four combinations. Using 0 for OFF and 1 for ON,
the truth table shows there are three combinations which keep the lamp off
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and only one which make it come on. It is tempting to sneer at sucha truth
table because it only appears to be stating the ‘obvious’. Not all truth tables
are as obvious as this. Writing out the truth table of a logic problem can
often show up unexpected combinations.

The OR function
Figure 8.1(b) shows that the switches are now in parallel. In ordinary

English, we could state:
The lamp lights if switch A or B is operated.

Instead of an AND, we now have an OR function. We can express this in
Boolean as follows:

A+B=L

Note carefully that the ‘4’ sign means OR (not ‘add’). You will also notice
that the truth table shows three combinations for the lamp to be on and
only one for off. The last line in the truth table is the AND function so there
appears to be aslight overlap here between the OR and the AND. In fact, to
be strictly accurate, this should be called the INCLUSIVE-OR function
because it includes the AND function as well. However, it is the norm,
when speaking of the OR function, to assume the inclusive form. It is worth
mentioning at this point that there is a special form known as the
EXCLUSIVE-OR which, as its name implies, excludes the AND function.
That is to say, the last combination of two ‘I’s gives a 0 instead of a 1.

AND and OR combinations
Figure 8.1(c) shows how one series and two parallel switches. Using
ordinary English, we could state:

The lamp lights if switch A is operated and either B or C is also
operated.

This can be expressed in Boolean as follows:
A.(B+C)=L

Note the OR function is within brackets and that the A dot is outside in
order to denote the AND function. Fortunately, brackets can be
manipulated in Boolean just the same as innormalalgebraso theexpression
can be expanded as follows:

A.B+A.C=L

This can be interpreted as ‘The lamp lights if A and B are operated OR A
and C are operated’.

Reverse action switches
Some switches, particularly those which are operated by relays, often work
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in reverse. That is to say, the switch is normally in the closed position but
becomes open when operated. Figure 8.1(d) shows that switch A is
normally closed and switch B is normally open. Using ordinary English we
could state:

The lamp will light if we operate switch B but do not operate switch A.
This can be expressed very neatly in Boolean:
A.B=L

The bar over the top of A means ‘not A’ and is known as the negater bar and
is a useful and concise way of indicating reverse action. If an input terminal
on a logic chip is labelled, say, RESET then it is assumed that a HIGH level
(logic 1) is required to cause reset action. Conversely, if it is marked
RESET, a LOW level would be required.

Common ground requirements
The circuits shown in Fig. 8 were only intended to introduce preliminary
switching ideas. Practical logic circuits still use ‘switch’ action but
obviously the switches have no moving parts. They are simply circuits
which can change state (from HIGH to LOW) with respect to a common
ground line. It can be seen from Fig. 8 that both sides of each switch are
above ground level. This method of switching would be an awful nuisance
in computer logic systems trying to work at high speed.

We shall now go on to examine some of the logic chips available in the
so-called ‘TTL family’.

Logic levels and TTL

Logic chips contain circuits which respond to, or deliver, one of two
possible voltage levels. The TTL family of chips has set a common standard
(see Fig. 8.2). All members of the TTL family (there are over 300 different
chips) have type numbers beginning with 74 or 74LS. The LS prefix
denotes Low-power Schockty apd although similar in logic function they
consume less current and are faster. (‘Low-power Schockty’ means that the
transistors used have a special diode between the connector and base.) LS is
now recommended for general use in favour of the traditional ‘standard’
TTL.

Logic 1 (also known as a HIGH) = any voltage within the range +2.8 V to
3V.

Logic 0 (also known as a LOW) = any voltage within the range 0V to
+0.8V,

Any voltage in between is called a ‘bad level’ and will lead to indeterminate
results. Bad levels are usually caused by an output over load pulling up or
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Voltage

Logic1 HIGH

+17

Ground O
Fig. 8.2. TTL logic levels.

dragging down the voltage. Testing for HIGHs and LOWSs at various
points in the system can be done with a voltmeter although one of the
various makes of ‘logic probe’ displaying either a red or green light is more
convenient and less hazardous.

Logic gates

A gate is essentially a logic-operated switch with one output and one or
more inputs. The combination of logic voltages on the inputs determines
the output state. Although the function of a gate can be described in words,
a truth table — with all possible input combinations - is concise and
unequivocal. Figure 8.2 shows the six common gates in their most popular
diagrammatic form, together with the corresponding truth tables. The
inverter is not worth a truth table.

Notes on Fig. 8.2:

The AND gate: output | only if all inputs 1.

The OR gate: output 1 only if one or more inputs are 1.

The NAND gate: output 0 only if all inputs are 1.

The NOR gate: output 0 only if one or more inputs are 1.

The INVERTER: output is reverse of input.

The EXCLUSIVE OR: output 1 only if inputs are different.
Examination of the truth table reveals that it is similar to the OR but
‘excludes’ the bottom AND line.

Although only two inputs are shown at each gate in Fig. 8.3; the TTL family
includes gates with as many as eight inputs. The two common chips are the
7400 quad NAND and the 7404 hex inverter. The pin connections for these
appear in Fig. 8.3. The power supply to the chips are marked Vec (+5 V)
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Fig. 8.3. The six primitive gates.

and Gnd (0 V) pin marked Gnd. Chip pin-out diagrams are always drawn
looking down on to the top of the chip.

Active levels and negation

More complex chips such as decoders, buffers, counters, etc., do notalways
recognise a | or HIGH state as being in some way superior to a 0 or LOW
state. Any input terminal which is immune to a 1 but activated by 0 is said
to be active-LOW. such terminals are indicated either by (a) a bar over the
terminal label such as C or clock (the bar is a Boolean symbol for negation —
for example, A is the opposite state to A) or (b) a small circle or ‘bubble’.
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Dominance of NAND and INVERTER gates

TTL logic is based on the NAND and INVERTER, the other three gates
tend to be under-used and therefore not so readily available. There are
three reasons for their dominance:

(1) Many of the more complex chips are gated on by a LOW rather than a
HIGH in order to minimise standby current.

(2) The internal circuitry of TTL gates is such that NAND and INVERTER
functions arise more naturally and require less components.

(3) Combinations of NAND and INVERTER can be arranged to simulate
AND and OR gates. An AND is an inverted output NAND. AnOR is a
NAND with all inputs inverted. Even the INVERTER is not strictly
essential because a NAND, with all inputs strapped or held permanently at
1, behaves as an INVERTER.

Use of gates

Traditionally, the study of logic has leant heavily on a branch of
mathematics known as Boolean Algebra. It is both a useful shorthand and
a powerful tool in the mathematical analysis of logic. Boolean is still useful
but, for the home enthusiast, the availability of complex integrated circuits
has lessened the need to design and construct systems from an assortment
of gates, so time spent on studying the special algebra may not always be
justified.

The main use (now) for logic gates is to ‘glue’ together the more complex
chips which may be incompatible in some way. For instance, one chip may
deliver a 1 where a 0 is needed, meriting an inverter in between. Another
possibility is the need to enable a chip only if ‘something’ else is at 1. Figure
8.4 shows some of the switching arrangements using gates.

Figure 8.4(a) shows an AND gate simulating a series switch in the data
path. A serial data stream entering can only pass through the switch if the
control C is HIGH.

If a NAND gate is used, as in Fig. 8.4(b), an inverter is needed. Without
the inverter, the serial data stream would still pass if C is held HIGH but
would be in inverted form (called the ‘one’s or logical complement’).

Figure 8.4(c) shows how it is possible to enable a chip providing both A
and B inputs are held HIGH. Note that the example chip is marked CE (not
chip enable) which is convenient for the LOW output from the NAND.
Remember that the bar over the CE label is an alternative to the bubble.

The exclusive-OR gate in Fig. 8.4(d) provides an easy way of controlling
the phase of the output data. If the control C is held LOW, the output data
stream is a replica of the input. If C is held HIGH, the output data is an
inverted version of the input.

Figure 8.4(¢) is a simulation of a single pole, double throw switch
whereby the serial data stream can be diverted to either data out 1 or data
out 2, depending on the state of the control C. If C is held HIGH, the data
emerges from the bottom gate but from the top gate if held LOW.
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Fig. 8.4. Uses of simple gates.

INVERTERSs would be needed at the outputs if NANDs were used instead
of ANDs.

Flip-flops
Logic gates deliver an output state, depending on the present input
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conditions. They are combinatorial devices, acting inreal time and capable
of analysis by simple Boolean algebra. Flip-flops are in an entirely different
class because their present state depends on some event (usually a logic
pulse) which occurred in the past. From this, it should be easy to conclude
that flip-flops have the ability to memorise. But they can’t memorise much.
In fact, one flip-flop can only store a single bit so we would need eight of
them to store one byte of data. A flip-flop which is storing a 1 is said to be
set; if it 1s storing a 0, it is said to be reset. The four varieties of flip-flop in
common use are shown in Fig. 8.5.

[»]}
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Simple SR flip-flop
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| J I

Toggle flip-flop

(b)

© ) 1
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D type flip-tiop JK flip-flop

Fig. 8 5. Types of flip-flop.

The SR flip-flop. The logic symbol shows it to be a four-terminal black
box. The output state is available at the ‘Q’ terminal which is set or reset by
a negative-going pulse on S or R respectively. The term negative-going
means a sudden drop in voltage from HIGH to LOW. It is important to
realise that, although a transition from HIGH to LOW is required, it is not
necessary to maintain the LOW state. In fact, the easiest way to try it out
would be momentarily to touch the S terminal with a grounded wire. If itis
already in the set state, nothing will happen. If it is in the reset state, the Q
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terminal will go from 0 to | and remain in the new state until you flick the R
terminal. The action is similar to the push-on/push-off switch found on
table lights - it memorises the last order.

When a RS flip-flop is needed, it is customary to ‘make’ one from two
cross-strapped NANDs (this only takes half a 7400). As a ‘free gift’, the Q
terminal is always in the opposite state to Q. Knowledge of this can often
save an inverter.,

The T flip-flop. This is often called a ‘toggle’ because every negative-going
edge of a pulse on T will change the state at Q — it toggles the state
backwards and forwards. The waveforms shown on Fig. 8.4(b) indicate
that a continuous pulse of frequency f applied to T causes an output
frequency of f/2, illustrating its primary use as a frequency divide-by-two
stage. The Q output will be at the same half-frequency as Q but in the
opposite phase. Direct set and reset terminals, which override T, may also
be present in some types.

The D flip-flop. The D stands for ‘Data’. The state at Q is oblivious to the D
state until the trigger pulse arrives at T. When the negative goingedge of the
trigger arrives, the state of D (at that time) is passed (latched) into the flip-
flop. In other words, the Q state is always the state which D was, prior to
the arrival of the trigger. The 7475 is a quad D-type latch, containing four
identical D flip-flops. Two of these can be used to latch in a byte of data.

The JK flip-flop. This is a versatile breed of flip-flop, shown in Fig. 8.4(d).
The logic state on the J K terminals decide the eventual state of Q after the
next trigger pulse on T. The action is best described with the aid of the
following truth table:

J K State of Q after next trigger

0 0 No change
0 1 Reset (Q=0)
1 0 Set (Q=0)
11 Change

Note that when J and K are both 0, the flip-flop is paralysed, unable to
respond to any triggers.

If J and K are both held at 1, a trigger will always change the state. In other
words, this perm of J.K transforms it to a T flip-flop.

If J is joined to K by an‘inverter, it is transformed to a D flip-flop, the J
terminal acting as a D.

From this, it is easy to see why the JK flip-flop was described as versatile.

Finally, it should be mentioned that some diagrams will choose different
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labels for the trigger terminal. The terminal we have marked T may, in
some diagrams, be marked clock or just C.

Wired-OR and tristate outputs

A microprocessor system is based on the common bus. The output data
from RAM, ROM, etc., are all wired in parallel across the same wires. Itis
important that such devices in the disabled state are effectively
disconnected from the common bus. Normal TTL logic allows inputs to be
connected together but under no circumstances must outputs be connected
together unless they are of the class known as open-collector. Figure 8.6(a)
shows the idea behind wired-OR connections.

(a) +5V

22K
Open collectors

Common bus

/

(b)

IRIRIININI
XYY YY Y

Fig. 8.6. Wired OR and tristate.

The output stage of normal TTL consists of two transistors in series
across the 5V supply (known as totem pole) with the gate outputemerging
from the centre point. The top transistor is missing in open-collector types
and the feed to the 5 V line must come from an external pull-up resistor.
This allows several outputs to be connected together, providing they all
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share the same pull-up resistor. Many of the popular chips in the TTL
family are available in both standard and open-collector versions.

Although wired-OR connections are useful in odd places, the solution is
too messy for computer bus work. The alternative, and cleaner, solution is
to provide chips with tristate outputs as shown in Fig. 8.6(b). An extra
transistor is built into each output line, acting as a series switch and turned
on or off by the enable terminal. When the chip is disabled, the outputs are
effectively removed from the bus. The TTL chips offering tristate outputs
are normally more complex than simple gates. RAM and ROM chips are
almost always tristate.

Mechanical switches

Some disconcerting effects can occur if logic voltages are applied by means
of an ordinary mechanical switch, particularly if the terminal supplied
expects a single pulse. Due to the natural resonance of the operating spring,
switches bounce backwards and forwards several times before coming to
rest in the final position. The evil is called switch-bounce and can be over-
come by either of the following two methods:

(1) Using an SR flip-flop and a single pole two-way switch as shown in
Fig. 8.7. The flip-flop can be fashioned from the two strapped-NANDs
previously described.

(2) Using software, incorporating a few milliseconds delay before ‘reading’
the state of the switch.

+5V Switch output
2K 2K Q a
s R

Fig. 8.7. Switch de-bounce circuit.

Driving lamps and relays

Small lamps are popular for displaying logic states. All lamps take current
which can be ill afforded in logic work. Incandescent filament lamps are
sluggish and take 50 mA or more. Neons take negligible current but require
about 80 volts before they emit the characteristic red glow. This leaves the
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light-emitting diode (LED) as the only serious contender. They give a
reasonable light with about 5mA and only drop about 1.2 volts. They must
always be fed via a series resistor somewhere in the chain in order to ensure
current, rather than voltage, drive. They are best driven from the output of
an inverter as shown in Fig. 8.8.

+5V

330 ohms

/A T
LED / (or equivalent)

e

Logic 1 here
Fig. 8.8. Feeding a LED.

The LED lights when a 1 is applied to the inverter input. The inverter
output then drops to near ground, completing the circuit through the LED.
The output of the inverter is said to be sinking the LED current to ground.

Devices which require current in excess of 20 mA or voltages in excess of
5V cannot be driven from logic circuits without help. This help can be
supplied by the familiar electromagnetic relay, the opto-isolator or a
combination of both. Figure 8.9 shows some arrangements.

In spite of the glamour associated with the semiconductor age, there are
still uses for the traditional electromagnetic relay. Design methods have
improved and the modern forms are efficient, physically small and take
relatively low currents. Although no different in principle, the variant
known as the reed relay, shown in Fig. 8.9(c) , is common-place in modern
interface circuitry. The operating contacts are enclosed within a glass tube
filled with inert gas, which prevents the build-up of oxidation products.
Because of this, the contact life is much higher than in the traditional open-
contact relay. The operating coil is a separate component slipped over the
tube and therefore can cater for a variety of current and impedance
requirements.

Relays fulfil two primary requirements of the power interface:

(a) They allow the weak logic output from the computer to control high
power.
(b) They electrically isolate the computer from high voltage circuits.

They must never be used without a reverse diode across the operat-
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Fig. 8.9. Relays and opto-isolator drives.

ing coil. The diode safeguards the logic circuits from induced voltages
which appear when the current is interrupted. Figure 8.9(b) shows a
typical drive arrangement, using a common npn transistor as a current
amplifier. The transistor conducts through the operating coil of the relay.
The 1K resistor supplies the requisite base current. The presence of the
inverter gate means that the transistor conducts on a logic 0 input and
switches off onalogic 1. This is a case of an active-low drive causing a back-
to-front action. If this is undesirable, the remedy is to insert an extra series
inverter to bring it right again or substitute a non-inverting buffer gate. In
either case, some form of logic gate is desirable in home constructed
projects rather than a direct raw feed from the computer output port. Gates
are cheap, computers aren’t!

The opto-isolator is another popular component in interface work. Like
the electromagnetic relay, the objective is to isolate electrically the
computer from any high power/voltage/current components. In fact, the
only connection is via the light emitted from a small LED falling on the
base of a light-sensitive transistor. They are available singly as 6-pin chips,
with the diode and transistor buried within the silicon. A typical circuit
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using a single opto-isolator is shown in Fig. 8.9(a). The RS 305759 is only
one of the many types available in the catalogues.

The box marked ‘load’ is a blanket term covering any contraption driven
by the isolator. In all probability, this will include yet another transistor
because the opto-isolator introduces a power ‘gain’ of less than unity
(typically 0.2). To convert the loss into a gain, some opto-isolators
incorporate two transistors and are classified as Darlington-connected.
Some chips are available which contain four independent opto-isolators so
two of these could handle the output from an §-bit port.

Schmitt triggers

When the logic state changes from 0 to 1, or vice versa, logic chips expect
the change to be rapid. In other words, the waveform should display, as far
as possible. straight-sided pulses. If the input changes are sluggish, the
behaviour could be impaired, particularly for clock-type inputs . If the
input is obtained from the output of another logic circuit and the wiring
between the two is not too long. there is no problem. However, if the input
is obtained from an analogue, or ‘home-made’ source, the waveform is
probably suspect and must be cleaned up before qualifying as a legitimate
gate input. The 74 logic series has the answer in the form of the schmitt
trigger, a standard circuit which acceptsa poor pulse shape and transforms
it into a steep-sided version. Figure 8.10 shows the gate symbol with typical
input and output waveforms. The 7414 is a hex schmitt inverter,
performing in the same way as a normal inverter but accepts poor
waveforms. The schmitt does not protect against voltages which are out of
range. It offers waveform but not voltage protection.

Inverter symbol ouT

Waveforms

Fig. 8.710. The Schmitt trigger.

With reference to the mention of ‘long’ wires, it is worth pointing out that
distributed capacity across wires, or between wires and ground, is often a
cause of weird faults. It is sometimes a source of complamnt that
manufacturers of peripheral equipment appear to be miserly in the length
of connecting cable supplied. In all fairness, this is not always due to
penny-pinching. It is simply a wise precaution to avoid complaints of
erratic behaviour which might arise if the cable length were increased. Apart
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from distributed capacity, the longer the wire, the more chance of picking
up stray induced voltages.

Timer chips

It must be admitted that discussion of these chips is a little out of place here.
The 555 timer chip is not strictly a logic circuit although, if operated from a
+5V supply, it accepts and delivers reasonable TTL voltage states. It is
versatile, very low-priced, and easy to use. We are concerned here only with
its use as a hardware timer, i.¢. a device which, on receipt of a single narrow
pulse, delivers an output HIGH state for a certain time before reverting to
the quiescent LOW state automatically. Figure 8.11(a) shows the pin
connections, wiring and waveforms.

(a)

+5V
Ground V+ N l
R
Trigger Discharge 4
6
Output Threshold 7
Reset Control o—2 33—
1

()

+5V

12
ZN1034E 11

10 1
; [] 2
12

Fig. 8.711. The 555 and ZN1034E timers.

The 555 is ideal for cases where a single pulse from the computer can turn
on a device (electric motor, perhaps) but is not required to stop under
computer control. It is realised, of course, that the Commodore 64 includes
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programmable timer facilities so the job could have been entirely software-
controlled without a 555. However, it is good to be aware of alternative
possibilities.

The output pulse-width, which determines the ON time of the device, is
dependent on the value of C and R according to the following formula:

T = 1.1 CR (where Cis in uF and R is in megohms)

Forexample, if C=0.1 uFand R= 100K, the ON time will be 0.011 seconds.
The figures illustrate that the 555 is not generally suitable for long time periods. It
is not recommended to use R values greater than 1M, and capacities of the
order of some microfarads means using electrolytics with wide tolerances.
For periods over several seconds up to minutes, it is better to use one of the
more sophisticated timers such as the ZN1034E shown in Fig. 8.11(b). The
timing formula is:

T = 2736 CR (where Cisin uF and R in megohms)

The multiplication factor 2736 is achieved by an internal 12-bit binary
counter allowing time periods up to an hour or more. A useful feature is the
provision of two complementary outputs, marked Q and Q in the diagram.
It is a complex 14-pin chip with some of the pins allocated to external
calibration resistors but only the simplified wiring is shown. To utilise the
full potential, it is worth sending for detailed data sheets.

Decoders

A decoder will have several outputs but only one selected output can be
activated at a time. The particular output depends on the specific
combination applied to the selection input. Three select terminals can
provide only eight different combinations of binary digits, the rule being:

Number of combinations of n bits = 2n

For example, to select any one of sixteen outputs requires four select
inputs. There is a wide range of decoders in the TTL series. Inadditionto the
select inputs, there will be one or more enabling inputs, allowing decodersto
be linked together. Some of these may be active-high and some active-low.
It is important to realise that all enable inputs must be activated before the
chip becomes ‘live’.

Demultiplexers

A demultiplexer routes serial input data to one particular output line and is
the logic equivalent to a single pole multiway switch. Like the decoder, the
particular output selected depends on the combinationsupplied tothe select
terminals. In fact, a decoder with enable inputs can be used as a
demultiplexer by feeding the data to one which is active-high.
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Multiplexers

These are mirror images of demultiplexers. They route any one of many
input data sources to a single output line. The particular input source
depends on the combination applied to the select inputs. The usual enable
terminals will be present in most TTL chips.

Encoders

An encoder delivers a particular binary pattern on the output terminals.
depending on which of the many input lines is activated. For example,
there could be ten inputs, each capable of producing a unique four-bit
pattern on the outputs and acting as a decimal to binary encoder. Most
microcomputer keyboards are decoded by scanning software but some of
the more expensive types are hardware encoded.

Counters

A counter is essentially a device which delivers an output binary pattern
which changes on receipt of each input pulse. The TTL range offers a wide
variety of counters. They may be classified as follows:

Binary counters. The input pulses cause the four-bit outputto progressfrom
0000 to 1111 inasimple binary sequence. The pulse starts the count again at
0000.

BCD counters. The input pulses cause the four-bit output to progress from
0000 to 1001 (0 to 9 decimal). The tenth pulse starts the count again at 0000.

All counters will be supplied with a reset-to-zero input and most supplya
terminal which emits a pulse when the count goes over the top to 0000. This
is useful for cascading the output of onecountertotheinput ofanother. Two
binary counters in cascade would then handle countsup to 1111 1111 (255
decimal) and two BCD counters up to 1001 1001 (99 decimal). There is
another classification according to the direction of count. For example,
those described above are up-counters but some varieties can be persuaded
to down-count. For example, a four-bit binary down-counter has 1111 as
the ‘reset’ state and decreases on each input pulse towards 0000. Down-
counters are not supplied as such but some of the more sophisticated
varieties have a control terminal which can be maintained HIGH for up-
count and LOW for down-count. It is worth mentioning that an ordinary
up-counter can be turned into a down-counter by inverting the outputs.

Shift-registers

It 1s self-evident that a shift-register shifts but, as with counters, there are

generic variants depending on the direction of shift (left or right) and

whether the initialised data is applied serially or in parallel. They will all

have a ‘shift’ terminal (marked T or Clock). Every pulse on T shifts the

contents one place, bits being pushed out at one end.
Parallel-in-parallel-outs, known as P/POs, accept parallel data on the
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four inputs, and data is available on the four output lines after the shift
pulses have ended. The new input data is only let in to the register whenan
enabling level is applied to the appropriate terminal.

Parallel-in-serial-outs, known as PISOs, are similar to above but the
output data can only be obtained a bit at a time on the serial output line.

Whatever other facilities they possess, shift-registers will always have
serial-in and serial-out terminals. Many varieties exist in the TTL range.
Some handle 8-bits and some can shift left or right depending on the state
of a control terminal. The most obvious use for shift-registers is for parallel
to serial or serial to parallel conversion.

Buffer registers

A buffer is a temporary holding register for data, the contents of which are
subject to a latching pulse. Typically, there will be four data inputs, four
data outputs and a terminal which is used to latch in the new data. Data
variations at the input are ‘unseen’ until a latching pulse is applied when the
current data overwrites the old. Some buffers have tristate outputs and are
bi-directional.

Expansion ports

The expansion port on the Commodore 64 is the 44-pin socket at the back
of the machine. For reasons of space alone, we will not attempt to dissect
the port in any detail because pin connections and definitions are well
explained in the Commodore Programmer’s Reference Guide. It is hoped
that our previous treatment of TTL logic will persuade readers to further
their studies so that eventually they can design and connect their own
expansion systems.

Expansion ports are normally intended for increasing existing facilities,
particularly the amount of RAM and ROM. In view of this, it is
understandable that the majority of the socket pins are tapped from the
microprocessor address, data and control buses. It should be pointed out
thatextra RAM (or ROM) hooked on to the expansion port cannot be used
to increase the total directly addressable memory space. For example,
hooking on another 64K of RAM will not turn your computer into a 128K
RAM because you cannot have access to all of it at once because the upper
limit of 64K is imposed by the 16-bit address bus. All 16 address pins, A0 to
A15, the 8 data pins, D0 to D7 and various control pins are available at the
expansion port. There are also several ground and +5 volt lines although
the current which can safely be drawn from them is minimal. It is not a
good idea to rely too much on these voltages and they should not be
regarded as a free supply source for all external equipment. To ease the
problem of decoding sections of the address bus, special lines are provided
on the expansion port.
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ROML is an active-low decoded line for the address $8000, which means
that only the least significant three digits need be decoded to access
particular locations from $8000 upwards. Although the label implies ROM
usage, RAM can equally well be used.

ROMH is similar to the above but provides an active low decoded
output for address $E000.

DMA is the active-low Direct Memory Access line and is normally in the
HIGH state. When this line is taken low, the address bus, data bus and
read/ write line from the 6510 microprocessor are effectively disconnected,
they are said to have entered the high-impedance state. This allows an
entirely separate control system to take over the memory chips. this
separate system can be an extra 6510A or even a different microprocessor
altogether. Obviously both microprocessors can’t be in control at the same
time but some form of switch action on the DMA line can change control of
the buses from one to the other.

DOTCLOCK makes the 8.18 MHz clock oscillator on the main circuit
board available to the expansion bus. All timing required by the
microprocessor and memory chips are ultimately derived from this source
although, apart from the video dot clock, the frequency is divided down
before use.

The user port

Unlike an expansion port, which you may remember is primarily intended
for memory expansion, a user port is completely undedicated. The designer
of the machine will have no knowledge of the eventual use to which it may
be put. Because of this, a user port is comparatively unsophisticated. The
Commodore 64 user port provides a set of eight pins, labelled PBOto PB7,
which can be used to control, or be controlled by, any logic operated
devices. The port is actually the B side of one of the CIAs. As explained in
Chapter 1, any of the eight lines can act as either an input or an output
depending on the bits programmed in the Direction Register. Logic 1
defines the appropriate line as an output and Logic 0 as an input. The
actual logic on lines programmed as outputs depends on the corresponding
bits programmed in the Data Register. The logic on input lines, which will
arrive from an outside source, sets the corresponding bits in the Port Data
Register.

The Address Register is addressed at $DDO03 ( 56579 decimal). For
example, if the lines corresponding to bits 4, 5, 6 and 7 are to be outputs and
the rest inputs, the initialisation would be as follows:

LDA #$F0
STA $DD03

Always use hex when working out bit patterns because decimal notation is
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just not worth the effort. For example, we want the bit pattern 1111 0000 in
the following example. This is directly convertible, almost onsight, to $F0.
It requires a lot of fumbling around to find the decimal equivalent. Try it! It
should come to 128+64+32-+16=240.

Suppose, having defined these lines as outputs, we now wish to set bit 7
to the HIGH state and bits 4,5 and 6 to the LOW state. It is the Port Data
Register which is now important (the Direction Register is not responsible
for the actual logic state on the lines).

The Port Data Register is addressed at $DDO01 (decimal 56577), so to set
the lines as specified above, we use the following coding:

L.DA #B0
5TA $DDO1

$80 is 1000 0000 in binary so bit 7 will be set HIGH. The pattern in the least
significant nybble does not really matter because the right-hand half was
directed to behave as inputs. This means that these port lines can only be
defined by external inputs and so will ignore attempts to alter the logic by
programming the Port Data Register.

Apart from the eight data lines, the port supplies two special lines which
are used for controlling, rather than defining, the data lines. They are often
referred to as ‘handshaking’ lines because they can be used for carrying on a
kind of dialogue between the computer (which is a rigidly synchronised
system) and the external device (which is usually unsynchronised and
always undisciplined). For example, it would be useless sending data to a
printer faster than the cogwheels can turn. What is needed is a signal from
the port which asks ‘Are you READY? and another signal from the device
when it has ACCEPTed the data. The two control lines are labelled FLAG
and PA2 have the following specification:

FLAG. This is an input. On receipt of a negative-going edge (a drop from
HIGH state to LOW), a FLAG interrupt bit is set which can, if suitably
programmed, cause an interrupt signal to pass along the IRQ line to the
microprocessor (refer back to Chapter 2).

PA2. This will normally be programmed as an output when used for
handshaking purposes. It is not, in the usual meaning of the term, a true
control line because it is simply one of the data lines (PA2) ‘borrowed’ from
the A side port of the same CIA. The direction register for the A side is
located at $D D02 and the port data register at $D (. Care must be taken
when programming these registers for a particular PA2 behaviour, that
only bit 2 is affected otherwise the serial bus action (which uses PA3 to
PA7) will be disturbed. The safest way is to program by mask techniques,
as described in Chapter 3.
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The |EEE bus

Commodore have always been keen on the special standardised interface
known as the IEEE bus so it is worth digressing a little in order to trace its
history. In 1972, Hewlett-Packard cooperated with various USA and
European bodies attempting to standardise some form of general purpose
interface between computers and instruments. The design submitted by
Hewlett-Packard was provisionally accepted by the IEEE (USA) in 1975.
The full title of the agreed system was IEEE 488-1975 although the
modified form by Hewlett-Packard was called the HP-IB. The
specification contained elaborate detail, even down to the exact spacing
and materials to be used in interface sockets. Needless to say, standards
soon wilt under the onslaught of free market forces. Cost-effective
‘improvements’, while they may continue to preserve the original
framework, tend to generate hybrids.

The IEEE protocol

Suppose we wish to use a computer to control, say, ten or more different
peripherals, any of which must be on-line at the same time in case they are
to be called. The first obstacle which arises is the number of sockets
required, assuming one is used for each peripheral. Apart from the cost of
supplying enough sockets to cover the future demand, there would still be
the problem of finding enough space at the back of a microcomputer for
fitting them. The IEEE bus idea overcomes this obstacle by employing only
one interface plug at the back of the computer. All peripherals connect to
this on what has become known as a ‘daisy chain’.

Daisy chains

‘Daisy chains’ means using sets of interface cables with male and female
sockets on one end and male on the other. One of these is then plugged into
the computer and the other into the first peripheral. The next peripheral is
fed from the female socket of the first cable and so on. Thus we may have
ten or more peripherals all ‘daisy chained’ to each other but all fed from one
computer. This is the answer to the socket problem. However, itis obvious
that a second, and potentially more serious, obstacle now arises. How does
the computer correspond with a particular peripheralto the exclusion of all
the rest? As far as the bus wires within the connecting cable are concerned,
the peripherals are all in parallel and consequently, indistinguishable from
one another. This problem is overcome, partly by hardware and partly by
software, in the following manner:

Standardised signals.

Every wire in the bus has a rigidly defined signal function as laid down by
the IEEE protocol.

Device address.

Peripherals must have four switches, or movable jumper wires for
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establishing a 4-bit device number, unique to that peripheral. The total
number of devices on the bus must not exceed 16, including the computer
itself. (Four switches have 16 combinations.) Once the switches have been
set, the binary combination becomes the device address of the peripheral.
For example, if the switches have been set to HIGH HIGH LOW HIGH
(1101 in binary) the device address is $D or 13 in decimal. When commands
are sent along the bus they are preceded by a device address. Peripherals
with a different address would not recognise the command.

The secondary address. As stated earlier, the original objective of the IEEE
bus system was to provide a general-purpose interface for the many
digitally controlled instruments which began to flood the market in the
seventies. Such instruments, which included frequency generators and
analysers, voltage and current meters, etc., were becoming sophisticated
and each capable of performing a wide variety of functions. To incorporate
such instruments into an integrated computerised control system required
a device address and also a ‘secondary address’. The secondary address is
regarded as the address of one particular function within the total
repertoire of the peripheral. The secondary address would follow the device
address at the head of a bus command. For example, a digital voltmeter
might have the device number 7 but possibly eight or more secondary
addresses to cover the ranges of measurement. A peripheralis limited to 31
secondary addresses, which is more than adequate for most devices. In fact,
as far as ordinary computer peripherals are concerned (floppy disks, for
example) two secondary addresses would be ample, one for READ and one
for WRITE.

Listeners and talkers

The IEEE establishment thought it would be a good idea to employ nice
homely terms for the bus. They decided to classify devices as either ‘talkers’
or ‘listeners’. A talker is a device which can only send data to the bus. A
listener is a device which can only receive data from the bus. A keyboard
can only talk and a printer can only listen. Many devices can either talk or
listen, depending on their present mode. For example, a floppy disk can
both talk and listen. The computer has been rechristened a ‘controller’ and
there can be only one of them on the bus.

Handshaking protocol

The complete specification for handshaking covers all possible eventualities
and is an awe-inspiring read. The serial bus on the Commodore 64 employs
a simplified form of IEEE bus. External devices addresses are within the
brand 4 to 31, the lower addresses belong internally. Device address 4 or 5
will call up the VIC-1525 Graphic Printer and device 8 is the VIC-1541 disk
drive. These addresses can be changed by internal adjustments if required.
The full details of the serial bus are given in the Commodore Programmer’s
Reference Guide.
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Summary

1.

LA

10.

11.

12.

13.
14.

15.

16.

There are only two logic states, the ‘1’ state and the ‘0’ state.
Alternatively, they can be called the HIGH and LOW states.

TTL logic uses a nominal 5 volt power supply, positive to ground.
The HIGH state is any voltage between about 2.8 and 5 volts.

The LOW state is any voltage between about 0.8 volts and ground.
Any voltages in between HIGH and LOW are known as bad states and
are suspect.

Any input terminal requiring a HIGH to activate it is called an active
high terminal.

Any input terminal requiring a LOW to activate it is called an active
low terminal.

On a logic diagram, active low inputs are either recognised by a small
bubble at the input or by a bar over the label.

Flip-flops are single bit storage cells which can rest, or be triggered
into, the SET or RESET state.

Devices with tristate outputs can be either HIGH, LOW or in the high
impedance ‘dead’ state.

Tristate devices are superior to wired-OR for connection to a
paralleled bus system.

Relays must have reverse diodes across the operating coil if driven by
TTL devices.

Schmitt triggers circuits are used to clean up bad edges on a pulse.
Decoders have many outputs, only one of which can be activated at
any one time.

Multiplexers select one of the input signals for passage through to the
output.

Demultiplexers select one of the outputs to receive the input signal.

Self test

8.1
8.2

83
84
8.5
8.6

State the main advantage of CMOS over TTL logic.

Write the Boolean statement corresponding to the following plain
language statements:

(a) For the electric crane (C) to operate, switch A must be operated or
switch B must not be operated.

(b) To fire the ballistic missile (M), switches A,B,C and D must all be
operated but switch E must not be operated if switch F is operated.
Why are LS versions of the TTL family favoured?

A NOR gate gives a 1 out if none of the inputs are 1. True or false?
A NAND gate gives a 1 out if all inputs are 0. True or false?

If both inputs to an exclusive OR gate are [, what is the output state?



212 Advanced Machine Code Programming for the Commodore 64

8.7 If a NAND gate output is fed to an inverter, what is the equivalent
logic gate?

8.8 A NOR gate has inverters wired to all inputs. What is the equivalent
logic gate?

8.9 What is the alternative to tristate connections to a common bus?

8.10 Electromagnetic relays must have a diode connected across the
operating coil. Why?
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Binary and Hex

Binary

® Unless otherwise stated, numbers will be assumed to be decimal. Hex
numbers are prefixed by §.

® To aid comprehension, strings of bits may be split into groups of four,
but the space between groups is artificial.

® ‘X’ is used for ‘don’t care’ bits and can mean 1 or 0.

® To “flip’ a bit means to change it from 1 to 0 or vice versa.

Unsigned binary system
Computer languages, whether entered in high level, assembly coding, or
hexadecimal, are incomprehensible to the machine. All information is
converted by the resident operating system to binary bits (1s and 0s).
All number systems, including the familiar decimal, rely on the relative
position of digits to indicate their ‘worth’. Each binary digit in a byte is
twice the value of the bit to its right. In pure unsigned binary, the value of
each binary 1 is shown below in both decimal equivalents and powers of
two:

128 6 32 16 8 4 2 | 2726 25 4 3 2 gl Q0
I I (NSO N N (N [ (N (N (N NN N N
U0 EE T T A U T AT Y U EUE AU IFU AR T R

Examples:

1000 1001 = 137

1001 1111 = 159
1111 1111 = 235

Sometimes, the following tip is useful:
A string of all Is = 2°—1, where n — number of bits in the string.
Examples:

1 =24=1=13
1111 1111 1111 1111 = 2161 = 63535
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It is advisable, but not essential, to memorise powers of two up to the first
sixteen bit positions. It is convenient to coansider them divided into low-
byte and high-byte as follows:

Powers of 2
High-byte Low-byte
15 1413 12 11w 9 8|7 6 5 4 3 2 1 0 on
| | ||
RN T T A I O O R O
(32768) (16384) (8192) (4096) (2048) (1024) (512) (256) [(128) (64) (32) (16) (8) (4) (2) () 2

Any binary number in the high-byte position is always 236 times its low-
byte value. For example: 0000 1001 would be worth 9 if low-byte, but 256*9
= 2304 if high-byte. Remember, the 6302 always stores 16-bit data in
consecutive memory addresses, low-byte first.

Hexadecimal notation (hex)
Hex uses the 16 characters 0,1,2,3.4,5,6,7,8,9,A,B,C.D,E,F to describe a
nibble (4 bits):

0000=0 0001 =1 0010=2 0011=3
0100=4 0101=35 0110=6 OIll1=7
1000=8 1001=9 1010=A 10I1=B
[100=C 1101=D 1110=E 1111 =F

Two hex characters describe a byte. Some examples follow:

1111 0011 = F3 0001 1011 = 1B 1100 1101 = CD 0000 0001 = 01
110 1111 1111 1111 = FFFF 1000 1100 1010 0111 = 8CA7

Hex arithmetic
Hex is based on powers of 16 so any character, depending on its position,
must be multiplied by the appropriate power of 16 as follows:

16 =4096 162 =256 16! =16 160=1

4096 256 16 1
Using H for hex character: H H H H

Examples:
$0032=(3*16)+2=50 $00FC—=(15*16)+12 =252
SO0FF=(15*16)+15=255

$203E=(2*4096)+(3*16)+14=8254
$1111=4096+256+16+1=4369



Binary and Hex 215

Signed binary and two’s complement
In order to represent both positive and negative numbers in a byte, the msb
(bit 7) is reserved as the ‘sign’ bit.

The sign bit is 1 for negative and 0 for positive numbers. For example:

0XXX XXXX is positive and 1XXX XXXX is negative.

A negative number is said to be the two’s complement of the equivalent
positive and vice versa. There are two ways of obtaining the two’s
complement of a binary number:

(1) First flip all the bits and then add one. Ignore any carry out from msb
end.

(2) Starting from the Isb, copy up to and including the first ‘1’ then flip the
remaining bits.

Examples: Number Two’s complement
(+7) 0000 0111 1111 1001 (—7)
(+1) 0000 0001 I 1111 (=1
(—2) 1111 1110 0000 0010 (+2)

Method | can lead to errors when adding the 1, so method 2 is safer.
The two’s complement of decimal numbers is found by subtracting from
256.

Example: —1=1-236 =255= 1111 1111.

The two’s complement of hex numbers is found by subtracting from &FF
and adding 1.

Example: —3 = &FF-3 = &FC+1 = &FD

The largest positive number in a byte is +127 = 0111 1111 = &7F.
The largest negative number is —128 = 1000 0000 = &80.

Notes:

(a) The larger the negative number, the more binary Os appear. In two’s
complement, everything is reversed, including the relative status of 1s and
0Os.

(b) There are 128 positive and 128 negative numbers. The factthat zeroisa
positive number is the reason why there appears to be one more negative
than positive (—128,+127).

Binary coded decimal (BCD)

Decimal numbers are awkward when expressed in binary, simply because
base 10 and base 2 don’t mix well. BCD is a code which sacrifices efficiency
for decimal compatibility. A byte is divided into two 4-bit groups (nibbles).
Each nibble is coded for numbers from 0 to 9, as follows:
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BCD Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

B LN =0

Neliie oI Be NV

The six groups from 1010 to 1111, which are used for the characters Ato F
in hex, are illegal in BCD. A single byte can hold decimal numbers in BCD
form only in the range, 0 to 99.

Examples: 0001 0011=13 0000 0111=07 1001 1001=99

The efficiency of a code = (number of combinations used) + (total
combinations).

In pure binary, all combinations are used, so the efficiency is 100%. In
BCD, only 10 combinations are used out of a total of 16 possible, so the
efficiency is 10/ 16=639% approximately. When the efficiency within a byte
is calculated, the loss in information content is worse — 100/256 which is
not quite 409%.

Because of the inefficiency of BCD, its use is limited. However, a large
proportion of digital instrumentation delivers, or expects to receive,
information in BCD form. The 6502 microprocessor obligingly processes
BCD arithmetic if the D flag in the processor register is set to 1. However, it
is up to the programmer to ensure that the data entering the arithmetic area
is free from illegal groups.
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Kernal Subroutines

ACPTR

Function: get data from serial bus

Call address: SFFAS or 65445 decimal
Parameter register: accumulator receives data byte
Preparation routines: TALK, TKSA

Example:

JSR ACPTR

CHKIN

Function: open input channel

Call address: $FFC6 or 65478 decimal

Parameter register: X must contain channel number
Preparation routines: OPEN

Example:

LDX #4
JSR CHKIN

CHKOUT

Function: open output channel
Call address: SFFC9 or 65481
Parameter register: X
Preparation routines: OPEN
Example:

LDX #2
JSR CHKOUT

CHRIN
Function: get character from input channel
Call address: SFFCF or 65487
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Parameter register: accamulator receives data byte
Preparation routines: OPEN,CHKIN
Example:

JSR CHRIN
STA DATA

CHROUT

Function: send character to output channel

Call address: $FFD2 or 65490

Parameter register: accumulator must contain character code
Preparation routines: CHKOUT,OPEN

Example:

LDA #42
JSR CHROUT

CIOUT

Function: Send data over serial bus

Call address: SFFAS or 65448 decimal

Parameter register: accumulator must contain data byte
Preparation routines: LISTEN and, if necessary, SECOND
Example:

JSR CIOUT

CINT

Function: initialise screen editor and VIC
Call address: SFF81 or 65409 decimal
Parameter register: not applicable
Preparation routines: not applicable
Example:

JSR CINT

CLALL

Function: close every file

Call address: $FFE7 or 65511 decimal
Parameter register: not applicable
Preparation routines: not applicable
Example:

JSR CLALL
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CLOSE

Function: close a file

Call address: $FFC3 or 65475 decimal

Parameter register: accumulator must contain logical file number
Preparation routines: not applicable

Example:

LDA #3
JSR CLOSE

CLRCHN

Function: clear input/output channels
Call address: SFFCC or 65484 decimal
Parameter register: not applicable
Preparation routines: not applicable
Example:

JSR CLRCHN

GETIN

Function: get character from keyboard buffer
Call address: SFFE4 or 65508 decimal
Parameter register. accumulator receives data
Preparation routines: CHKIN,OPEN

Example:
BACK JSR GETIN
CMP #0
BEQ BACK
IOBASE

Function: Set input/output memory page

Call address: $FFF3 or 65523 decimal

Parameter registers: X and Y. After calling, X and Y contain the low- and
high-byte address respectively of the memory-mapped 1/O devices.
Preparation routines: not applicable

Example:

JSRIOBASE

TI0INIT

Function: initialise every input/output device
Call address: SFF84 or 65412 decimal
Parameter register: not applicable
Preparation routines: not applicable
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Example:
JSR IOINIT

LISTEN

Function: cause serial bus device to listen

Call address: SFFBI1 or 65457 decimal

Parameter register: accumulator must contain device number
Preparation routines: not applicable

Example:

LDA #6
JSR LISTEN

LOAD

Function: load data from device into RAM

Call address: $FFD5 or 65493 decimal

Parameter registers: accumulator must contain 0 (for load) or 1 (for verify).
If input device has been opened with a secondary address 0, the X and Y
registers must contain the low- and high-byte address respectively of the
RAM starting address.

Preparation routines: SETLFS,SETNAM

Example:

LDA #0
JSR LOAD

MEMBOT

Function: sets bottom of RAM

Call address: $FF9C or 65436 decimal

Parameter registers: X and Y must contain the low- and high-byte
respectively of the bottom address. (The normal default value is $0800 or
2048 decimal.)

Preparation routines: not applicable

Example:

CLC
JSR MEMBOT

MEMTOP

Function: set top of RAM

Call address: $FF99 or 65433 decimal

Parameter registers: X and Y must contain the low- and high-byte
respectively of the top address

Preparation routines: not applicable
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Example:
CLC
JSR MEMTOP

OPEN

Function: open a file

Call address: $SFFCO0 or 65472 decimal
Parameter register: not applicable
Preparation routines: SETLFS,SETNAM
Example:

JSR OPEN

PLOT

Function: Set location of cursor

Call address: $FFF0 or 65520 decimal

Parameter register: X and Y must contain the coordinates of the cursor
position

Preparation routines: not applicable

Example:

LDX #13
LDY #20
CLC

JSR PLOT

RAMTAS

Function: execute memory test, initialise memory pointers and various
workspaces

Call address: SFF87 or 65415 decimal

Parameter registers: not applicable

Preparation routines: not applicable

Example:

JSR RAMTAS

RDTIM

Function: reads time clock

Call address: $SFFDE or 65502 decimal

Parameter register: accumulator, X and Y registers receive the high, middle
and low bytes respectively of the current system clock

Preparation routines: not applicable

Example:

JSR RDTIM
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STY CLOCK
STX CLOCK+1
STA CLOCK+2

READST

Function: read input/output status word

Call address. $SFFB7 or 65463 decimal
Parameter register: accamulator receives the word
Preparation routine: not applicable

Example:

JSR READST

RESTOR

Function: restores all system vectors and BASIC routines and interrupts to
their default states

Call address: SFF8A or 65418 decimal

Parameter register. not applicable

Preparation routines: not applicable

Example:

JSR RESTOR

SAVE

Function: Save memory on output device

Call address: SFFD8 or 63496 decimal

Register parameters: accumulator must have theindirectaddress of thestart
and X and Y must have the address of the end of the block to be saved
Preparation routines: SETLFS,SETNAM

Example:

LDX ENDLOW
LDY ENDHIGH
LDA START
JSR SAVE

SCNKEY

Function: scan keyboard and transfer character to buffer
Call address: SFF9F or 65439 decimal

Parameter register: not applicable

Preparation routine: IOINIT

Example:

SCAN JSR SCNKEY
JSR GETIN
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CMP #$00
BEQ SCAN

SECOND

Function: send secondary address for LISTEN

Call address: SFF93 or 65427 decimal

Parameter registers: accumulator must contain the secondary address
Preparation routines: LISTEN

Example:

LDA #12
JSR SECOND

SETLFS

Function: set up afile

Call address: $SFFBA or 65466 decimal

Parameter register: X must contain the file number; Y must contain the
secondary address (command) but if there is no secondary address, Y must
contain $FF; accumulator must contain the device number.

Preparation routines: not applicable

Example:

LDA #6
LDX #5
LDY #$FF
JSR SETLEFS

SETNAM

Function: set up file name

Call address: SFFBD or 65469 decimal

Parameter registers: accumulator must contain length of file name; Xand Y
registers must contain low- and high-byte respectively of the address where
the name is stored

Preparation routines: not applicable

Example:

LDX LOWNAME
LDY HIGHNAME
LDA LENGTH
JSR SETNAM

SETTIM

Function: set time clock in units of 1/60 seconds

Call address: SFFDB or 65499 decimal

Parameter registers: accumulator must contain high-byte, X must contain
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high-byte, X must contain middle-byte and Y the low-byte
Preparation subroutines: not applicable
Example:

LDA #HIGHEST
LDX #LOWBYTE
LDY #HIGHBYTE

SETTMO

Function: set IEEE bus time-out flag

Call address: SFFA2 or 65442 decimal

Parameter register: accumulator must contain 0 in bit 7 if time-out is to be
enabled but 1if to be disabled

Preparation routines: not applicable

Example:

LDA #0

JSR SETTMO
or

LDA #$80

JSRSETTMO
STOP

Function: to check STOP key

Call address: $FFEI1 or 65505

Parameter register: accumulator will receive a byte representingthe lastrow
of the scan if STOP is not found

Preparation routines: not applicable

Example:.

JSR STOP

TALK

Function: cause a serial bus device to talk

Call address: $FFB4 or 65460 decimal

Parameter register: accumulator must contain device number
Preparation routines: not applicable

Example:

LDA #7
JSRTALK

TKSA
Function: send secondary address number to a device caused to talk
Call address: SFF96 or 65430 decimal
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Parameter register: accumulator must contain secondary address number
Preparation routine: TALK
Example:

LDA #1
JSR TKSA

UDTIM

Function: update time clock

Call address: SFFEA or 65514 decimal
Parameter register: not applicable
Preparation routines: not applicable
Example:

JSR UDTIM

UNLSN

Function: command all devices to stop listening to the bus
Call address: SFFAE or 65454 decimal

Parameter register: not applicable

Preparation routines: not applicable

Example:

JSR UNLSN

UNTLK

Function: command all devices to stop talking to the bus
Call address: SFFAB or 65451

Parameter registers: not applicable

Preparation routines: not applicable

Example:

JSR UNTLK
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6502/6510A
Complete
Instruction Set

Appendix C1

6502 Complete Instruction Set

ADC | Add withcarry | A+M+C—A NZCV
Address mode Op-code Bytes Cycles
Immediate $69 2 2
Zero-page $65 2 3
Zero-page, X $75 2 4
Absolute $6D 3 4
Absolute, X $7D 3 4or3
Absolute,Y $79 3 dors
(Indirect, X) $61 2 6
(Indirect),Y $71 2 5
AND | Andwith A Aand M—A NZ
Address mode Op-code Bytes Cycles
Immediate $29 2 2
Zero-page $25 2 3
Zero-page, X $35 2 4
Absolute $2D 3 4
Absolute, X $3D 3 4or3
Absolute, Y $39 3 4or3
(Indirect,X) $21 2 6
(Indirect)
(Indirect,X) $21 2 6
(Indirect),Y $31 2 3
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ASL Shift left C—(7...00—0 NZC
Address mode Op-code Bytes Cycles
Accumulator $0A 1 2
Zero-page $06 2 5
Zero-page, X $16 2 6
Absolute $0E 3 6
Absolute, X $1E 3 7

BCC Branch if C=0 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $90 2 2o0r3
BCS Branch if C=1 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $BO 2 20r3
BEQ Branch if Z=1 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $FO 2 20r3
BIT A and M\M7—-N,M6—-V | Z N,V
Address mode Op-code Bytes Cycles
Zero-page $24 2 3
Absolute $2C 3 4

BMI1 Branch if N=1 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $30 2 2o0r3
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BNE Branch if Z=0 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $DO 2 2or3
BPL Branch if N=0 Flags unaltered
1
Address mode Op-code Bytes Cycles
Relative $10 2 2or3
BRK Break PCH+2 I flag=1
Address mode Op-code Bytes Cycles
Implied $00 1 7
BVC Branch if V=0 Flags unaltered
Address mode Op-code Bytes Cycles
Relative $50 2 2o0r3
BVS Branch if V=] Flags unaltered
Address mode Op-code Bytes Cycles
Relative $70 2 2or3
CLC Clear Carry C flag=0
Address mode Op-code Bytes Cycles
Implied 518 l 2
CLD Clear Decimal D flag=0
Address mode Op-code Bytes Cycles
Implied $D8 1 2
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CLI Clear I mask I flag=0
Address mode Op-code Bytes Cycles
Implied $58 l 2

CLV Clear overflow V flag=0
Address mode Op-code Bytes Cycles
Implied B8 1 2

CMP Compare A | A-M NZC
Address mode Op-code Bytes Cycles
Immediate $C9 2 2
Zero-page $CS 2 3
Zero-page, X $D5 2 4
Absolute SCD 3 4
Absolute, X $DD 3 4or5
Absolute,Y $D9 3 4o0r5
(Indirect,X) $ClI 2 6
(Indirect),Y $D1 2 Sorb
CPX Compare X | X-M NzZC
Address mode Op-code Bytes Cycles
Immediate $EO0 2 2
Zero-page $E4 2 3
Absolute SEC 3 4

CPY CompareY | Y-M NzZC
Address mode Op-code Bytes Cycles
Immediate $CO 2 2
Zero-page $C4 2 3
Absolute $CC 3 4
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DEC Decrement M |[M—1—M NZ
Address mode Op-code Bytes Cycles
Zero-page $Co 2 5
Zero-page, X $D6 2 6
Absolute $CE 3 6
Absolute, X $DE 3 7

DEX Decrement X | X—1—X NZ
Address mode Op-code Bytes Cycles
Implied §CA | 2

DEY Decrement Y | Y—1—Y NZ
Address mode Op-code Bytes Cycles
Implied $88 1 2

EOR | Exclusive-OR | AexcM—A NZ
Address mode Op-code Bytes Cycles
Immediate $49 2 2
Zero-page $45 2 3
Zero-page, X $55 2 4
Absolute $4D 3 4
Absolute, X $5D 3 4or5
Absolute,Y $59 3 4or5
(Indirect, X) $41 2 6
(Indirect),Y $51 2 5

INC | Increment M M+1—-M NZ
Address mode Op-code Bytes Cycles
Zero-page $E6 2 5
Zero-page, X $F6 2 6
Absolute $EE 3 6
Absolute, X $FE 3 7
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INX Increment X X+1-X NZ
Address mode Op-code Bytes Cycles
Implied $E8 1 2

INY Increment Y Y+I1—Y NZ
Address mode Op-code Bytes Cycles
Implied $C8 1 2
JMP Jump Flags unaltered
Address mode Op-code Bytes Cycles
Absolute $4C 3 3
Indirect $6C 3 5

JSR Jump to SR Flags unaltered
Address mode Op-code Bytes Cycles
Absolute $20 3 6
LDA Load A M—A NZ
Address mode Op-code Bytes Cycles
Immediate $A9 2 2
Zero-page $AS 2 3
Zero-page, X $BS 2 4
Absolute $AD 3 4
Absolute, X $BD 3 4or5
Absolute,Y $B9 3 4or5
(Indirect,X) SAI 2 6
(Indirect),Y $B1 2 So0r6
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LDX Load X M—-X NZ

Address mode Op-code Bytes Cycles

Immediate $A2 2 2
Zero-page $A6 2 3
Zero-page,Y $B6 2 4
Absolute $AE 3 4
Absolute,Y $BE 3 4ors
LDY Load Y M—Y NZ

Address mode Op-code Bytes Cycles

Immediate $A0 2 2
Zero-page 5A4 2 3
Zero-page, X $B4 2 4
Absolute $AC 3 4
Absolute, X $BC 3 4or)

LSR | Logical SR | 0—(7...0)—C | N=0,ZC

Address mode Op-code Bytes Cycles

Accumulator $4A 1 2
Zero-page $46 2 5
Zero-page, X $56 2 6
Absolute $4E 3 6
Absolute, X $3E 3 7
NOP No operation Flags unaltered

Address mode Op-code Bytes Cycles
Implied $EA 1 2
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ORA | Inclusive OR | AorM—A NZ
Address mode Op-code Bytes Cycles
Immediate $09 2 2
Zero-page $05 2 3
Zero-page, X $15 2 4
Absolute $0D 3 4
Absolute, X $ID 3 4or5
Absolute,Y $19 3 4or5
(Indirect, X) 301 2 6
(Indirect),Y $11 2 5
PHA Push A Flags unaltered
Address mode Op-code Bytes Cycles
Implied $48 | 3
PHP Push status Flags unaltered
Address mode Op-code Bytes Cycles
Implied $08 1 3
PLA Pull A NZ
Address mode Op-code Bytes Cycles
Immediate $68 1 4
PLP Pull status Flags as status
Address mode Op-code Bytes Cycles
Implied $28 1 4
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ROL | RotateL | —(7...0)—C+— NZC

Address mode Op-code Bytes Cycles

Accumulator $2A 1 2
Zero-page $26 2 5
Zero-page, X $36 2 6
Absolute $2E 3 6
Absolute, X $3E 3 7
ROR | RotateR | —C—(7...0)— NZC

Address mode Op-code Bytes Cycles

Accumulator $6A 1 2
Zero-page $66 2 5
Zero-page, X $76 2 6
Absolute $6E 3 6
Absolute, X $7E 3 7
RTI Return from | Flags as pulled

Address mode Op-code Bytes Cycles
Implied $40 1 6

RTS | Return from SR Flags unaltered

Address mode Op-code Bytes Cycles
Implied $60 1 6

SBC | Subtract A-M—-C—A NZCV

Address mode Op-code Bytes Cycles

Immediate $E9 2 2
Zero-page $ES 2 3
Zero-page, X $F5 2 4
Absolute SED 3 4
Absolute, X $FD 3 4or5
Absolute,Y $F9 3 4or5
(Indirect, X) SE1 2 6
(Indirect),Y $F1 2 S5oré
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SEC Set carry C=1
Address mode Op-code Bytes Cycles
Implied $38 l 2

SED Set decimal D=1
Address mode Op-code Bytes Cycles
Implied SF8 1 2

SEl Set I mask I=1
Address mode Op-code Bytes Cycles
Implied $78 1 2

STA Store A A—M | Flags unaltered
Address mode Op-code Bytes Cycles
Zero-page $85 2 3
Zero-page, X $95 2 4
Absolute $8D 3 4
Absolute, X $9D 3 5
Absolute,Y $99 3 5
(Indirect,X) £81 2 6
(Indirect),Y $91 2 6

STX Store X X—M | Flags unaltered
Address mode Op-code Bytes Cycles
Zero-page $86 2 3
Zero-page,Y $96 2 4
Absolute $8E 3 4
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STY Store Y Y—M [ Flags unaltered
Address mode Op-code Bytes Cycles
Zero-page $84 2 3
Zero-page, X $94 2 4
Absolute $8C 3 4
TAX Transfer A—X NZ
Address mode Op-code Bytes Cycles
Implied SAA 1 2
TAY Transfer A—Y NZ
Address mode Op-code Bytes Cycles
Implied $AS8 1 2
TYA Transfer Y—A NZ
Address mode Op-code Bytes Cycles
Implied $98 1 2
TSX Transfer SP—X NZ
Address mode Op-code Bytes Cycles
Implied $BA 1 2
TXA Transfer X—A NZ
Address mode Op-code Bytes Cycles
Implied $8A I 2
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TXS Transfer X—SP | Flags unaltered

Address mode Op-code Bytes Cycles
Implied $9A 1 2

Appendix C2
6502/6510A Instruction Set: Classification by processor flag

Updates N, Z and C flags:
ADC,ASL,CMP,CPX,CPY,ROL,ROR,SBC.

Updates N and Z flags:
AND,DEC,DEX,DEY,EOR,INC,INX,INY,LDA,
LDX,LDY,ORA,PLA TAX,TAY,TYA TSX, TXA.

Updates N,Z,C and V flags:
ADC,SBC.

Updates N, C and clears N:
LSR.

Op-codes not mentioned above either: (a) have no effect on processor flags
or

(b) set or reset certain flags by direct programming
(CLC,CLD,CLL,CLV,SEC,SED,SEI).

Appendix C3
6502/6510A Instruction Set: Classification by addressing modes

Immediate:
ADC,AND,CMP,CPX,CPY,EOR,LDA,LDX,LDY,ORA,SBC

Zero-page:
ADC,AND,ASL,BIT,CMP,CPX,CPY,DEC,EOR,INC.LDA,LDX,
LDY,LSR,ORA,ROL,ROR,SBC,STA,STX,STY

Zero-page, X:
ADC,AND,ASL,CMP,DEC,EOR,INC,LDA,LDY,LSR,ORA,ROL,
ROR,SBC,STA,STY
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Absolute:
ADC,AND,ASL,BIT,CMP,CPX.CPY,DEC,EOR,INC,JMP,JSR,
LDA,LDX,LDY,LSR,ORA ROL,SBC,STA,STX,STY

Absolute, X:
ADC,AND,ASL,CMP,DEC,EOR,INC,LDA,LSR,ORA,ROL,ROR,
SBC,STA

Absolute, Y:
ADC,AND,CMP,EOR,LDA,LDX,ORA,SBC,STA

(Indirect, X):
ADC,AND,CMP,EOR,LDA,ORA,SBC,STA

(Indirect), Y:
ADC,AND,CMP.EOR,LDA,ORA,SBC,STA

Accumulator:
ASL,LSR,ROL,ROR

Implied:
BRK,CLC,CLD,CLI,CLV,.DEX,DEY,INX,INY,NOP,PHA ,PHP,PLA,
PLP,RTL,RTS,SEC,SED,SELTAX, TAY, TSX, TXA ,TXS, TYA

Relative:
BCC,BCS,BEQ,BMI1,BNE,BPL,BVC,BVS

The following instructions have no effect on status flags:
BCC,BCS,BEQ,BMI,BNE,BPL,BVC,BVS,JMP,JSR,NOP,PHA,PHP,
RTS,STA,STX,STY,TXS

Appendix C4
6502 /6510A Instructions in order of common usage

In common use:
ADC BCC BCS BNE CLC CMP CPX CPY DEX DEY

INX INY LDA LDX LDY RTS
SBC SEC STA STX STY TAX TAY TYA TXA

Often used.:
BEQ ASL BMI BPL DEC INC JMP JSR LSR PLA
PHA ROL ROR

Sometimes used:
AND BIT BRK BVC BVS CLV EOR NOP ORA
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Seldom used:
CLD PHP PLP RTI SED SEI TSX TXS

Note: The above classification must not be taken too seriously. It is very
much a question of personal preference and programming style. It is
doubtful if two writers would ever agree. However, it may still be useful,
particularly if you are in the initial learning phase.



Appendix D
Colour Code

Colour Decimal Hex
Black 0 0
White 1 1
Red 2 2
Cyan 3 3
Purple 4 4
Green 5 5
Blue 6 6
Yellow 7 7

The following colours are not valid in multicolour character mode:

Orange 8 8
Brown 9 9
Light red 10 A
Grey 1 11 B
Grey 2 12 C
Light green 13 D
Light blue 14 E
Grey 3 15 F




Appendix E
ASCIl Code

Character Dec Hex Character Dec Hex
! 33 21 @ 64 40
? 34 22 A 65 41
# 35 23 B 66 42
$ 36 24 C 67 43

% 37 25 D 68 44
& 38 26 E 69 45
’ 39 27 F 70 46
( 40 28 G 71 47
) 41 29 H 72 48
* 42 2A I 73 49
+ 43 2B J 74 4A
, 44 2C K 75 4B
- 45 2D L 76 4C
. 46 2E M 77 4D
/ 47 2F N 78 4E
0 48 30 O 79 4F
1 49 31 P 80 50
2 50 32 Q 81 51
3 51 33 R 82 52
4 52 34 S 83 53
5 53 35 T 84 54
6 54 36 8] 85 55
7 55 37 \Y 86 56
8 56 38 A% 87 57
9 57 39 X 88 58
: 58 3A Y 89 59
; 59 3B Z 90 5A
< 60 3C [ 91 5B
= 61 3D AN 92 5C
> 62 3E 1 93 5D
? 63 3F N 94 S5E
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Character Dec Hex Character Dec Hex
95 SF o 111 6F
£ 96 60 p 112 70
a 97 61 q 113 71
b 98 62 T 114 72
C 99 63 s 115 73
d 100 64 t 116 74
e 101 65 u 117 75
f 102 66 \% 118 76
g 103 67 w 119 77
h 104 68 X 120 78
i 105 69 y 121 79
] 106 6A z 122 7A
k 107 6B { 123 7B
1 108 6C | 124 7C
m 109 6D } 125 7D
n 110 6E ~ 126 7E
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Appendix G
Glossary of Terms

absolute address: the numerical number identifying an address.

accumulator: the main register within the microprocessor and the only one
equipped for arithmetic.

ACR: abbreviation for Auxiliary Control Register. One of the VIA
registers.

active high: any input which requires a logic 1 to turn it on.

active low: any input which requires a logic 0 to turn it on.

address bus: the 16 lines from the microprocessor which activate the
selected memory location or device.

address: a number which is associated with a particular memory location.
This number can be in decimal or hexadecimal.

and gate: a gate which delivers a logic 1 out only if all inputs are logic 1.

anding: using a mask to ensure selected bits become or remain 0.

assembler mnemonics: a three-letter group uniquely defining an op-code.

assembler: a program which converts a program written in assembly code
to the equivalent machine code.

base address: the operand address of an indexed instruction.

base: the number of different characters used in a counting system.
Decimal is base 10, binary is base 2 and hex 1s base 16.

bit: one of the two possible states of a binary counting system, 1 or 0.

block diagram: a simplified diagram of an electrical system using
interconnected labelled boxes.

Boolean algebra: an algebraic notation, introduced by George Boole, for
manipulating two-state logic.

bubble sort: sorting an array by pairs at a time until all data is in order.

bus: a collection of wires having some common purpose such as data bus,
address bus and control bus.

byte: a group of 8 bits.

Centronics: trademark for a standardised parallel interface for printers.

chip: accepted slang for an integrated circuit,

compiler: system software which translates a program written in high level
language into a machine code equivalent. The entire program is
translated before it is run.
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conditional assembly: when parts or all of the assembled code can vary
depending on test conditions.

darlington: a two-transistor configuration used to multiply the current
gain.

data bus. the 8 lines from the microprocessor which carry the data to and
from memory or external devices.

DDRB: abbreviation for Data Direction Register B. One of the VIA
registers.

decimal: the normal counting system using the ten characters 0,1, ...9.

decoder: a logic device with many possible outputs, only one of which can
be activated at a time. This depends on the logic pattern applied to
the ‘select’ inputs.

direct addressing: the operand is a two-byte address as distinct from zero-
page addressing which is a single byte address. Also called absolute
addressing.

disassembler: a program which will display a machine code program in
assembly language. The opposite process to assembly.

effective address: the sum of the base and relative address.

exclusive or gate: a gate which delivers a logic | only if the inputs are at
different logic states.

exclusive oring: using a mask to ensure that selected bits assume the
opposite state.

firmware:programs already in ROM.

flag: a single bit used to indicate whether something has happened or not
(see program status register).

handshaking: a term used to describe the method of synchronising an
external device to the computer.

hardware: all the bits and pieces of a computer such as the chips, circuit
board, keys, etc. That which you can see, feel and break.

hex: see hexadecimal.

hexadecimal: a counting system using sixteen characters 0,1,...9,A,B,C,
D,E,F.

high-byte: the most significant half of a two-byte number.

high level language: a language written in the form of statements, each
statement being equivalent to many machine code instructions. BASIC
is a high level language.

IER: abbreviation for Interrupt Enable Register. One of the VIA registers.

IFR: abbreviation for Interrupt Flag Register. One of the VIA registers.

immediate addressing: the operand is the data itself rather than an address.

implicit address: see implied address.

implied address: an address which is inherent in the op-code, therefore
requiring no following operand.

index register: either the X or Y register when used to modify an address.

indexed address: an address which has been formed by the addition of an
index register’s contents.
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indexed indirect addressing: the indirect address is the sum of the operand
and contents of Y.

indirect addressing: the operand refers to an address in page zero which is
the address of the wanted data.

indirect indexed addressing: the indirect address is modified by the
addition of Y.

instruction register: a register within the microprocessor holding the op-
code during instruction decoding.

integer: a whole number without a fraction.

integrated circuit: a chip containing a number of interconnected circuits.

interpreter: system software which translates and executes each high level
language statement separately. BASIC is normally interpreted although
compiler versions exist.

IRB: abbreviation for Input Register B. One of the VIA registers.

kernal: the 8k operating system of the Commodore 64.

latch: a buffer register which retains old data until new data is enabled.

logic gates: electrical circuits which behave as switches. The input
conditions determine whether the switch is ‘open’ or ‘closed’.

low byte: the least significant half of a two-byte number.

low level language: a series of codes rather than a language, each line
resulting in one order to the microprocessor.

Ish: the least significant bit in the byte (the right-most bit).

LSI:large scale integration. Normally taken to mean in the order of tens of
thousands of circuits on a single chip. The 6502 microprocessor is LSI.

machine code: strictly, this term should be used for instructions written in
binary; now used loosely to include hex coding and assembly language.

macro: a routine assembled in line each time it is called.

mask: a bit pattern used in conjunction with either AND,EOR or ORA to
act on selected bits within a byte.

merge sort: similar to bubble sort but faster due to progressive halving of
the array before sorting into pairs.

microprocessor. the integrated circuit which is the central processor or
‘brain’ of the computer. The Commodore uses the 6510A species.

microprogram: a program inside the microprocessor which informs it how
to carry out each machine code instruction.

mnemonics: code groups chosen so we can memorise them easily.

MOB: abbreviation for Moving OBject. Any screen object which is
destined to be moved.

msb: the most significant bit in the byte (the leftmost bit).

msi: medium scale integration. Normally taken to mean up to a few
hundred circuits on a single chip.

nibble: a group of 4 bits.

nybble: see nibble.

object code: the translated version of the source code.
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one’s complement: a number formed by changing the state of all bits in a
register.

op-code: abbreviation for operational code. It is that part of a machine
code instruction which tells the computer what kind of action is required.

operand: that part of a machine code instruction which gives the data or
where to find the data.

operating system. the software already in ROM which is designed to help
you use the computer.

or gate: a gate which delivers a logic out if any one or more inputs are
logic 1.

ORB: abbreviation for Output Register B. One of the VIA registers.

oring: using a mask to ensure selected bits become or remain 1.

OSBYTE: keyword for Operating System Byte. Allows machine code calls
to the operating system.

OSRDCH: keyword for Operating System Read Character. A subroutine
for reading a character from selected input systems.

OSWORD: keyword for Operating System Word. Similar to OSBYTE but
allows more parameters to be passed.

OSWRCH: keyword for Operating System Write Character. Passes
character to selected output system.

page one address: any address within the range 256 to 511 decimal or 0100
to O1FF hex.

PC: see program counter.

PCR: abbreviation for Peripheral Control Register. One of the VIA
registers.

PIA: abbreviation for the 6820 Peripheral Interface Adaptor.

pixel: a small picture element.

program counter: the only 16-bit register in the 6502 (and 6510A). Contains
the address of the next instruction byte.

program status register: a register containing flag bits which indicate if
overflow, carries, etc. have been caused by the previous instruction.

PSR: see program status register.

read: to examine the existing data in a register or memory location, usually
by means of LDA,LDX or LDY.

relative address: the contents of the index register.

resident assembler: an assembler which is already in ROM when you
purchase the machine.

resident subroutines: those in ROM which you can use, providing you
know their starting address.

ROM: abbreviation for Read Only Memory. Information stored is
permanent even when the power supply is off.

rotate: similar to shift but any bit pushed out from the carry is reinserted at
the other end.

rpn: abbreviation for ‘reverse Polish notation’, which is concerned with the
order in which numeric variables are processed by a machine.
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RS423: a standardised interface which passes data serially along a single
line.

scrolling: movement of the screen vertically or horizontally in order to
bring fresh data into view.

shift: to move the bit pattern, one place to the left or right.

signed binary: the binary system which uses the msb as a sign bit.

silicon chip: most chips are fabricated from a silicon base although some of
the super-fast modern varieties may be using a mixture of gallium and
arsenic.

software: general term for all programs.

source code: the program in its high level form.

sprite: a screen object destined to be moved, together with accompanying
coordinate data. Similar to MOB.

S R: abbreviation for Shift Register.

ssi: small scale integration. Normally taken to mean a few circuits, often
simple logic gates, on a single chip.

subroutine: a program segment which will normally have general-purpose
use and which can be used in other programs.

supply rail: a wire, feeding several components with a specific voltage.

symbolic address: an arbitrarily chosen name used in place of the
numerical address. It is only recognised if it has been previously
assigned to this number.

tristate: logic devices which can be either in the HIGH, LOW or open circuit
state. When in the open circuit state, the output of the device is
transparent to a common bus line.

TTL: abbreviation for Transistor Transistor Logic, a family of compatible
logic chips operating on 5 volts. First launched by Texas Instruments
but soon second-sourced by other manufacturers.

two-pass assembly: passing the source code twice through the assembler.
Essential if branches are to forward addresses.

two’s complement: a number formed by adding 1 to the one’s complement.
Used for negative number representation.

unsigned integer: a binary number without using the msb as a sign bit.

user port: one of the output sockets which can be used to control your own
special devices.

user subroutines: subroutines which you can make for yourself.

vector: a word in memory containing the address of an operating system
routine.

VIA: abbreviation for the 6522 Versatile Interface Adaptor chip.

volatile memory: one which loses all data when power is interrupted.

write: to place new data into a register or memory location, usually by
means of STA,STX or STY. The old data is overwritten by the new.

X register: a general-purpose register which can be used in indexed
addressing.

Y register: similar to X register.

zero-page address: any address within the range 0 to 255 decimal or 00 to
FF hex.



Answers to Seclf-Test
Questions

Chapter One

1.1 Source

1.2(a) Source code becomes redundant after compiling. (b) Execution
time is faster.

1.3(a) Compile time is long. (b) Trial and error programming is lengthy
and difficult.

1.4 ALGOL and PASCAL.

1.5  The 6510A has an on-board I/O port.

1.6 The kernal.

1.7 12K.

1.8(a) 64; (b) 8X8.

1.9  2023,1024.

1.10  65536.

1.11 Because there are only 8 address wires on the RAM chip.

1.12  38K.

1.13  0001.

1.14 Set HIRAM to the low state.

1.15 P3,P4 and P5 on the 6510A microprocessor.

Chapter 2

2.1 Dynamic.

2.2 Faster but more costly.

2.3 Program counter.

2.4  Arithmetic and logic unit.
2.5 ADC #1 or TAX,INC, TXA.
2.6 —128.

2.7 $7F.

2.8 Unsigned binary arithmetic.
2.9 0010 0001.

2.10 False.
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2.11 The C bit.

2.12 Last in first out.

2.13 Page one.

2.14 Non-maskable interrupt.
2.15 Devices have tristate outputs.

Chapter 3

3.1 Set.

3.2 Zero.

33 EOR.

34 ORA #304.
35 STA #20.
3.6 Branch type.
3.7 $2012.

3.8 JMP.

3.9  This is indirect indexed form so only Y can index.
3.10 Operand must be a page-zero address.

3.11 95 23.
Chapter 4
4.1 255.
4.2  41,50.

4.3 173,00,01.
44 60 is RTS.
4.5  Ability to use mnemonic groups for op-codes.

4.6 *=§C234.

4.7 It is an instruction to the assembler rather than to the
MiCTOProcessor.

4.8 Pseudo-op.

49 TXT.

Chapter 5

No formal answers.

Chapter 6

No formal answers.
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Chapter 7

7.1 64,000.

7.2 One.

7.3 Set bit 5 of the VIC-II control register.

7.4  Because the colour code for black must be entered in all screen
locations.

Chapter 8

8.1 Require much lower operating currents.

8.2(a) A+B=C; (b) A.B.C.D.(E+F)

8.3  They are faster and take less current.

8.4  True.

8.5 True.

86 O

8.7 AND.

8.8 AND.

8.9  Wired-OR.

8.10 To prevent induced voltages destroying the driver transistor.



IndeXx

2-byte decrements, 80
2-byte downcount, 86
2-byte increments, 79
2-byte working, 78

absolute indexing, 48
accumulator, 20
active levels, 193
addition, 80

address register, 28
address bus, 16
address modes, 34
AND function, 188
arithmetic unit, 30
array addition, 90
array header, 96
array search, 145
assembler notation, 64
assemblers, 63
assembly language, 63
assembly passes, 64

B bit, 22

base address, 52
BCD counters, 205
benchmarks, 16
binary counters, 205
bit-mapped mode, 149
branch and test, 84
branching, 42
bubble sort, 99
buffer registers, 206
building bricks, 73

C bit, 23

cassette control, 11
character generator, §
CIA chips, 12

clear memory, 39
colour codes, 159

comparisons, 43
compatibility, 4
compilers, 3
control bus, 16

daisy chaining, 209
data bus, 16
decode matrix, 30
decoders, 204
demultiplexers, 204
down-counting, 39
DRAMS, 18

effective address, 52
EM relays, 199
encoders, 205
entering code, 63
execute, 29
expansion ports, 206

F.P. merge sort, 125
fetch, 29

flip flops. 195
formatting, 65

handshaking, 210
hi-res shapes, 167

I bit, 23

IEEE protocol, 209
immediate address, 44
implied addressing, 44
indexed indirect, 54
indirect address, 50
indirect index, 52
instruction register, 27
integer arrays, 96
interpreters, 3

JK flip flop, 197
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jump vectors, 88
kernal, 7

lamp driving, 199
listeners, 210

loading programs, 61
logic gates, 192

logic levels, 191
logical operations, 40

MPU, 6

machine ¢. monitor, 63
memory organisation, 9
memory switching, 10
merge sort, 113

micro assembler, 64
microprogram, 28
multi-field sort, 131
multicolour map, 159
multicolour sprite, 182
multiplexers, 205
multiplication, 42, 82

N bit, 22

NAND/INVERTERS, 194

object code, 2

one’s complement, 41
operand format, 66
operation symbols, 36
opto-isolators, 201
OR function, 190

POKE statements, 59
program counter, 25
pseudo-ops, 66

RAM chips, 8, 18
register display, 63
relative address, 46
renumbering, 69

reverse switch, 190
ROM/RAM switching, 9

Schmitt triggers, 202
shape rectangles, 169
shift registers, 205
SID, 12

simple switching, 188
software interrupt, 31
sound interface, 12
source code, 2
sprites, 176

SR flip flop, 196
stack pointer, 23
status flags, 15
status register, 22
string pointer, 104
string sort, 104
structure, 3

sub pulses, 30
subroutines, 87
subtracting, 81
switch bounce, 199

T flip flop, 197
talkers, 210
timer chips, 203
tristate, 198
TTL, 191

up-counting, 39
user ports, 207

V bit, 22
VIC-II chip, 12
video interface, 12

wired-OR, 198

X register, 21
XY coordinates, 169

Y register, 21

Z bit, 23

zero-page address, 45
zero-page indexing, 48
zero-page space, 71






